1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * MAC Services Module 29 * 30 * The GLDv3 framework locking - The MAC layer 31 * -------------------------------------------- 32 * 33 * The MAC layer is central to the GLD framework and can provide the locking 34 * framework needed for itself and for the use of MAC clients. MAC end points 35 * are fairly disjoint and don't share a lot of state. So a coarse grained 36 * multi-threading scheme is to single thread all create/modify/delete or set 37 * type of control operations on a per mac end point while allowing data threads 38 * concurrently. 39 * 40 * Control operations (set) that modify a mac end point are always serialized on 41 * a per mac end point basis, We have at most 1 such thread per mac end point 42 * at a time. 43 * 44 * All other operations that are not serialized are essentially multi-threaded. 45 * For example a control operation (get) like getting statistics which may not 46 * care about reading values atomically or data threads sending or receiving 47 * data. Mostly these type of operations don't modify the control state. Any 48 * state these operations care about are protected using traditional locks. 49 * 50 * The perimeter only serializes serial operations. It does not imply there 51 * aren't any other concurrent operations. However a serialized operation may 52 * sometimes need to make sure it is the only thread. In this case it needs 53 * to use reference counting mechanisms to cv_wait until any current data 54 * threads are done. 55 * 56 * The mac layer itself does not hold any locks across a call to another layer. 57 * The perimeter is however held across a down call to the driver to make the 58 * whole control operation atomic with respect to other control operations. 59 * Also the data path and get type control operations may proceed concurrently. 60 * These operations synchronize with the single serial operation on a given mac 61 * end point using regular locks. The perimeter ensures that conflicting 62 * operations like say a mac_multicast_add and a mac_multicast_remove on the 63 * same mac end point don't interfere with each other and also ensures that the 64 * changes in the mac layer and the call to the underlying driver to say add a 65 * multicast address are done atomically without interference from a thread 66 * trying to delete the same address. 67 * 68 * For example, consider 69 * mac_multicst_add() 70 * { 71 * mac_perimeter_enter(); serialize all control operations 72 * 73 * grab list lock protect against access by data threads 74 * add to list 75 * drop list lock 76 * 77 * call driver's mi_multicst 78 * 79 * mac_perimeter_exit(); 80 * } 81 * 82 * To lessen the number of serialization locks and simplify the lock hierarchy, 83 * we serialize all the control operations on a per mac end point by using a 84 * single serialization lock called the perimeter. We allow recursive entry into 85 * the perimeter to facilitate use of this mechanism by both the mac client and 86 * the MAC layer itself. 87 * 88 * MAC client means an entity that does an operation on a mac handle 89 * obtained from a mac_open/mac_client_open. Similarly MAC driver means 90 * an entity that does an operation on a mac handle obtained from a 91 * mac_register. An entity could be both client and driver but on different 92 * handles eg. aggr. and should only make the corresponding mac interface calls 93 * i.e. mac driver interface or mac client interface as appropriate for that 94 * mac handle. 95 * 96 * General rules. 97 * ------------- 98 * 99 * R1. The lock order of upcall threads is natually opposite to downcall 100 * threads. Hence upcalls must not hold any locks across layers for fear of 101 * recursive lock enter and lock order violation. This applies to all layers. 102 * 103 * R2. The perimeter is just another lock. Since it is held in the down 104 * direction, acquiring the perimeter in an upcall is prohibited as it would 105 * cause a deadlock. This applies to all layers. 106 * 107 * Note that upcalls that need to grab the mac perimeter (for example 108 * mac_notify upcalls) can still achieve that by posting the request to a 109 * thread, which can then grab all the required perimeters and locks in the 110 * right global order. Note that in the above example the mac layer iself 111 * won't grab the mac perimeter in the mac_notify upcall, instead the upcall 112 * to the client must do that. Please see the aggr code for an example. 113 * 114 * MAC client rules 115 * ---------------- 116 * 117 * R3. A MAC client may use the MAC provided perimeter facility to serialize 118 * control operations on a per mac end point. It does this by by acquring 119 * and holding the perimeter across a sequence of calls to the mac layer. 120 * This ensures atomicity across the entire block of mac calls. In this 121 * model the MAC client must not hold any client locks across the calls to 122 * the mac layer. This model is the preferred solution. 123 * 124 * R4. However if a MAC client has a lot of global state across all mac end 125 * points the per mac end point serialization may not be sufficient. In this 126 * case the client may choose to use global locks or use its own serialization. 127 * To avoid deadlocks, these client layer locks held across the mac calls 128 * in the control path must never be acquired by the data path for the reason 129 * mentioned below. 130 * 131 * (Assume that a control operation that holds a client lock blocks in the 132 * mac layer waiting for upcall reference counts to drop to zero. If an upcall 133 * data thread that holds this reference count, tries to acquire the same 134 * client lock subsequently it will deadlock). 135 * 136 * A MAC client may follow either the R3 model or the R4 model, but can't 137 * mix both. In the former, the hierarchy is Perim -> client locks, but in 138 * the latter it is client locks -> Perim. 139 * 140 * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able 141 * context since they may block while trying to acquire the perimeter. 142 * In addition some calls may block waiting for upcall refcnts to come down to 143 * zero. 144 * 145 * R6. MAC clients must make sure that they are single threaded and all threads 146 * from the top (in particular data threads) have finished before calling 147 * mac_client_close. The MAC framework does not track the number of client 148 * threads using the mac client handle. Also mac clients must make sure 149 * they have undone all the control operations before calling mac_client_close. 150 * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding 151 * mac_unicast_add/mac_multicast_add. 152 * 153 * MAC framework rules 154 * ------------------- 155 * 156 * R7. The mac layer itself must not hold any mac layer locks (except the mac 157 * perimeter) across a call to any other layer from the mac layer. The call to 158 * any other layer could be via mi_* entry points, classifier entry points into 159 * the driver or via upcall pointers into layers above. The mac perimeter may 160 * be acquired or held only in the down direction, for e.g. when calling into 161 * a mi_* driver enty point to provide atomicity of the operation. 162 * 163 * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across 164 * mac driver interfaces, the MAC layer must provide a cut out for control 165 * interfaces like upcall notifications and start them in a separate thread. 166 * 167 * R9. Note that locking order also implies a plumbing order. For example 168 * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt 169 * to plumb in any other order must be failed at mac_open time, otherwise it 170 * could lead to deadlocks due to inverse locking order. 171 * 172 * R10. MAC driver interfaces must not block since the driver could call them 173 * in interrupt context. 174 * 175 * R11. Walkers must preferably not hold any locks while calling walker 176 * callbacks. Instead these can operate on reference counts. In simple 177 * callbacks it may be ok to hold a lock and call the callbacks, but this is 178 * harder to maintain in the general case of arbitrary callbacks. 179 * 180 * R12. The MAC layer must protect upcall notification callbacks using reference 181 * counts rather than holding locks across the callbacks. 182 * 183 * R13. Given the variety of drivers, it is preferable if the MAC layer can make 184 * sure that any pointers (such as mac ring pointers) it passes to the driver 185 * remain valid until mac unregister time. Currently the mac layer achieves 186 * this by using generation numbers for rings and freeing the mac rings only 187 * at unregister time. The MAC layer must provide a layer of indirection and 188 * must not expose underlying driver rings or driver data structures/pointers 189 * directly to MAC clients. 190 * 191 * MAC driver rules 192 * ---------------- 193 * 194 * R14. It would be preferable if MAC drivers don't hold any locks across any 195 * mac call. However at a minimum they must not hold any locks across data 196 * upcalls. They must also make sure that all references to mac data structures 197 * are cleaned up and that it is single threaded at mac_unregister time. 198 * 199 * R15. MAC driver interfaces don't block and so the action may be done 200 * asynchronously in a separate thread as for example handling notifications. 201 * The driver must not assume that the action is complete when the call 202 * returns. 203 * 204 * R16. Drivers must maintain a generation number per Rx ring, and pass it 205 * back to mac_rx_ring(); They are expected to increment the generation 206 * number whenever the ring's stop routine is invoked. 207 * See comments in mac_rx_ring(); 208 * 209 * R17 Similarly mi_stop is another synchronization point and the driver must 210 * ensure that all upcalls are done and there won't be any future upcall 211 * before returning from mi_stop. 212 * 213 * R18. The driver may assume that all set/modify control operations via 214 * the mi_* entry points are single threaded on a per mac end point. 215 * 216 * Lock and Perimeter hierarchy scenarios 217 * --------------------------------------- 218 * 219 * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify] 220 * 221 * ft_lock -> fe_lock [mac_flow_lookup] 222 * 223 * mi_rw_lock -> fe_lock [mac_bcast_send] 224 * 225 * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw] 226 * 227 * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind] 228 * 229 * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename] 230 * 231 * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac 232 * client to driver. In the case of clients that explictly use the mac provided 233 * perimeter mechanism for its serialization, the hierarchy is 234 * Perimeter -> mac layer locks, since the client never holds any locks across 235 * the mac calls. In the case of clients that use its own locks the hierarchy 236 * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly 237 * calls mac_perim_enter/exit in this case. 238 * 239 * Subflow creation rules 240 * --------------------------- 241 * o In case of a user specified cpulist present on underlying link and flows, 242 * the flows cpulist must be a subset of the underlying link. 243 * o In case of a user specified fanout mode present on link and flow, the 244 * subflow fanout count has to be less than or equal to that of the 245 * underlying link. The cpu-bindings for the subflows will be a subset of 246 * the underlying link. 247 * o In case if no cpulist specified on both underlying link and flow, the 248 * underlying link relies on a MAC tunable to provide out of box fanout. 249 * The subflow will have no cpulist (the subflow will be unbound) 250 * o In case if no cpulist is specified on the underlying link, a subflow can 251 * carry either a user-specified cpulist or fanout count. The cpu-bindings 252 * for the subflow will not adhere to restriction that they need to be subset 253 * of the underlying link. 254 * o In case where the underlying link is carrying either a user specified 255 * cpulist or fanout mode and for a unspecified subflow, the subflow will be 256 * created unbound. 257 * o While creating unbound subflows, bandwidth mode changes attempt to 258 * figure a right fanout count. In such cases the fanout count will override 259 * the unbound cpu-binding behavior. 260 * o In addition to this, while cycling between flow and link properties, we 261 * impose a restriction that if a link property has a subflow with 262 * user-specified attributes, we will not allow changing the link property. 263 * The administrator needs to reset all the user specified properties for the 264 * subflows before attempting a link property change. 265 * Some of the above rules can be overridden by specifying additional command 266 * line options while creating or modifying link or subflow properties. 267 */ 268 269 #include <sys/types.h> 270 #include <sys/conf.h> 271 #include <sys/id_space.h> 272 #include <sys/esunddi.h> 273 #include <sys/stat.h> 274 #include <sys/mkdev.h> 275 #include <sys/stream.h> 276 #include <sys/strsun.h> 277 #include <sys/strsubr.h> 278 #include <sys/dlpi.h> 279 #include <sys/modhash.h> 280 #include <sys/mac_provider.h> 281 #include <sys/mac_client_impl.h> 282 #include <sys/mac_soft_ring.h> 283 #include <sys/mac_impl.h> 284 #include <sys/mac.h> 285 #include <sys/dls.h> 286 #include <sys/dld.h> 287 #include <sys/modctl.h> 288 #include <sys/fs/dv_node.h> 289 #include <sys/thread.h> 290 #include <sys/proc.h> 291 #include <sys/callb.h> 292 #include <sys/cpuvar.h> 293 #include <sys/atomic.h> 294 #include <sys/bitmap.h> 295 #include <sys/sdt.h> 296 #include <sys/mac_flow.h> 297 #include <sys/ddi_intr_impl.h> 298 #include <sys/disp.h> 299 #include <sys/sdt.h> 300 #include <sys/vnic.h> 301 #include <sys/vnic_impl.h> 302 #include <sys/vlan.h> 303 #include <inet/ip.h> 304 #include <inet/ip6.h> 305 #include <sys/exacct.h> 306 #include <sys/exacct_impl.h> 307 #include <inet/nd.h> 308 #include <sys/ethernet.h> 309 310 #define IMPL_HASHSZ 67 /* prime */ 311 312 kmem_cache_t *i_mac_impl_cachep; 313 mod_hash_t *i_mac_impl_hash; 314 krwlock_t i_mac_impl_lock; 315 uint_t i_mac_impl_count; 316 static kmem_cache_t *mac_ring_cache; 317 static id_space_t *minor_ids; 318 static uint32_t minor_count; 319 320 /* 321 * Logging stuff. Perhaps mac_logging_interval could be broken into 322 * mac_flow_log_interval and mac_link_log_interval if we want to be 323 * able to schedule them differently. 324 */ 325 uint_t mac_logging_interval; 326 boolean_t mac_flow_log_enable; 327 boolean_t mac_link_log_enable; 328 timeout_id_t mac_logging_timer; 329 330 /* for debugging, see MAC_DBG_PRT() in mac_impl.h */ 331 int mac_dbg = 0; 332 333 #define MACTYPE_KMODDIR "mac" 334 #define MACTYPE_HASHSZ 67 335 static mod_hash_t *i_mactype_hash; 336 /* 337 * i_mactype_lock synchronizes threads that obtain references to mactype_t 338 * structures through i_mactype_getplugin(). 339 */ 340 static kmutex_t i_mactype_lock; 341 342 /* 343 * mac_tx_percpu_cnt 344 * 345 * Number of per cpu locks per mac_client_impl_t. Used by the transmit side 346 * in mac_tx to reduce lock contention. This is sized at boot time in mac_init. 347 * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2. 348 * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1. 349 */ 350 int mac_tx_percpu_cnt; 351 int mac_tx_percpu_cnt_max = 128; 352 353 static int i_mac_constructor(void *, void *, int); 354 static void i_mac_destructor(void *, void *); 355 static int i_mac_ring_ctor(void *, void *, int); 356 static void i_mac_ring_dtor(void *, void *); 357 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *); 358 void mac_tx_client_flush(mac_client_impl_t *); 359 void mac_tx_client_block(mac_client_impl_t *); 360 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t); 361 static int mac_start_group_and_rings(mac_group_t *); 362 static void mac_stop_group_and_rings(mac_group_t *); 363 364 /* 365 * Module initialization functions. 366 */ 367 368 void 369 mac_init(void) 370 { 371 mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus : 372 boot_max_ncpus); 373 374 /* Upper bound is mac_tx_percpu_cnt_max */ 375 if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max) 376 mac_tx_percpu_cnt = mac_tx_percpu_cnt_max; 377 378 if (mac_tx_percpu_cnt < 1) { 379 /* Someone set max_tx_percpu_cnt_max to 0 or less */ 380 mac_tx_percpu_cnt = 1; 381 } 382 383 ASSERT(mac_tx_percpu_cnt >= 1); 384 mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1)); 385 /* 386 * Make it of the form 2**N - 1 in the range 387 * [0 .. mac_tx_percpu_cnt_max - 1] 388 */ 389 mac_tx_percpu_cnt--; 390 391 i_mac_impl_cachep = kmem_cache_create("mac_impl_cache", 392 sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor, 393 NULL, NULL, NULL, 0); 394 ASSERT(i_mac_impl_cachep != NULL); 395 396 mac_ring_cache = kmem_cache_create("mac_ring_cache", 397 sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL, 398 NULL, NULL, 0); 399 ASSERT(mac_ring_cache != NULL); 400 401 i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash", 402 IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor, 403 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 404 rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL); 405 406 mac_flow_init(); 407 mac_soft_ring_init(); 408 mac_bcast_init(); 409 mac_client_init(); 410 411 i_mac_impl_count = 0; 412 413 i_mactype_hash = mod_hash_create_extended("mactype_hash", 414 MACTYPE_HASHSZ, 415 mod_hash_null_keydtor, mod_hash_null_valdtor, 416 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 417 418 /* 419 * Allocate an id space to manage minor numbers. The range of the 420 * space will be from MAC_MAX_MINOR+1 to MAXMIN32 (maximum legal 421 * minor number is MAXMIN, but id_t is type of integer and does not 422 * allow MAXMIN). 423 */ 424 minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1, MAXMIN32); 425 ASSERT(minor_ids != NULL); 426 minor_count = 0; 427 428 /* Let's default to 20 seconds */ 429 mac_logging_interval = 20; 430 mac_flow_log_enable = B_FALSE; 431 mac_link_log_enable = B_FALSE; 432 mac_logging_timer = 0; 433 } 434 435 int 436 mac_fini(void) 437 { 438 if (i_mac_impl_count > 0 || minor_count > 0) 439 return (EBUSY); 440 441 id_space_destroy(minor_ids); 442 mac_flow_fini(); 443 444 mod_hash_destroy_hash(i_mac_impl_hash); 445 rw_destroy(&i_mac_impl_lock); 446 447 mac_client_fini(); 448 kmem_cache_destroy(mac_ring_cache); 449 450 mod_hash_destroy_hash(i_mactype_hash); 451 mac_soft_ring_finish(); 452 return (0); 453 } 454 455 void 456 mac_init_ops(struct dev_ops *ops, const char *name) 457 { 458 dld_init_ops(ops, name); 459 } 460 461 void 462 mac_fini_ops(struct dev_ops *ops) 463 { 464 dld_fini_ops(ops); 465 } 466 467 /*ARGSUSED*/ 468 static int 469 i_mac_constructor(void *buf, void *arg, int kmflag) 470 { 471 mac_impl_t *mip = buf; 472 473 bzero(buf, sizeof (mac_impl_t)); 474 475 mip->mi_linkstate = LINK_STATE_UNKNOWN; 476 mip->mi_nclients = 0; 477 478 mutex_init(&mip->mi_lock, NULL, MUTEX_DRIVER, NULL); 479 rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL); 480 mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL); 481 mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL); 482 mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL); 483 484 mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock; 485 cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 486 mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock; 487 cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 488 return (0); 489 } 490 491 /*ARGSUSED*/ 492 static void 493 i_mac_destructor(void *buf, void *arg) 494 { 495 mac_impl_t *mip = buf; 496 mac_cb_info_t *mcbi; 497 498 ASSERT(mip->mi_ref == 0); 499 ASSERT(mip->mi_active == 0); 500 ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN); 501 ASSERT(mip->mi_devpromisc == 0); 502 ASSERT(mip->mi_promisc == 0); 503 ASSERT(mip->mi_ksp == NULL); 504 ASSERT(mip->mi_kstat_count == 0); 505 ASSERT(mip->mi_nclients == 0); 506 ASSERT(mip->mi_nactiveclients == 0); 507 ASSERT(mip->mi_single_active_client == NULL); 508 ASSERT(mip->mi_state_flags == 0); 509 ASSERT(mip->mi_factory_addr == NULL); 510 ASSERT(mip->mi_factory_addr_num == 0); 511 ASSERT(mip->mi_default_tx_ring == NULL); 512 513 mcbi = &mip->mi_notify_cb_info; 514 ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0); 515 ASSERT(mip->mi_notify_bits == 0); 516 ASSERT(mip->mi_notify_thread == NULL); 517 ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock); 518 mcbi->mcbi_lockp = NULL; 519 520 mcbi = &mip->mi_promisc_cb_info; 521 ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL); 522 ASSERT(mip->mi_promisc_list == NULL); 523 ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock); 524 mcbi->mcbi_lockp = NULL; 525 526 ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL); 527 ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0); 528 529 mutex_destroy(&mip->mi_lock); 530 rw_destroy(&mip->mi_rw_lock); 531 532 mutex_destroy(&mip->mi_promisc_lock); 533 cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv); 534 mutex_destroy(&mip->mi_notify_lock); 535 cv_destroy(&mip->mi_notify_cb_info.mcbi_cv); 536 mutex_destroy(&mip->mi_ring_lock); 537 } 538 539 /* ARGSUSED */ 540 static int 541 i_mac_ring_ctor(void *buf, void *arg, int kmflag) 542 { 543 mac_ring_t *ring = (mac_ring_t *)buf; 544 545 bzero(ring, sizeof (mac_ring_t)); 546 cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL); 547 mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL); 548 ring->mr_state = MR_FREE; 549 return (0); 550 } 551 552 /* ARGSUSED */ 553 static void 554 i_mac_ring_dtor(void *buf, void *arg) 555 { 556 mac_ring_t *ring = (mac_ring_t *)buf; 557 558 cv_destroy(&ring->mr_cv); 559 mutex_destroy(&ring->mr_lock); 560 } 561 562 /* 563 * Common functions to do mac callback addition and deletion. Currently this is 564 * used by promisc callbacks and notify callbacks. List addition and deletion 565 * need to take care of list walkers. List walkers in general, can't hold list 566 * locks and make upcall callbacks due to potential lock order and recursive 567 * reentry issues. Instead list walkers increment the list walker count to mark 568 * the presence of a walker thread. Addition can be carefully done to ensure 569 * that the list walker always sees either the old list or the new list. 570 * However the deletion can't be done while the walker is active, instead the 571 * deleting thread simply marks the entry as logically deleted. The last walker 572 * physically deletes and frees up the logically deleted entries when the walk 573 * is complete. 574 */ 575 void 576 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 577 mac_cb_t *mcb_elem) 578 { 579 mac_cb_t *p; 580 mac_cb_t **pp; 581 582 /* Verify it is not already in the list */ 583 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 584 if (p == mcb_elem) 585 break; 586 } 587 VERIFY(p == NULL); 588 589 /* 590 * Add it to the head of the callback list. The membar ensures that 591 * the following list pointer manipulations reach global visibility 592 * in exactly the program order below. 593 */ 594 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 595 596 mcb_elem->mcb_nextp = *mcb_head; 597 membar_producer(); 598 *mcb_head = mcb_elem; 599 } 600 601 /* 602 * Mark the entry as logically deleted. If there aren't any walkers unlink 603 * from the list. In either case return the corresponding status. 604 */ 605 boolean_t 606 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 607 mac_cb_t *mcb_elem) 608 { 609 mac_cb_t *p; 610 mac_cb_t **pp; 611 612 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 613 /* 614 * Search the callback list for the entry to be removed 615 */ 616 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 617 if (p == mcb_elem) 618 break; 619 } 620 VERIFY(p != NULL); 621 622 /* 623 * If there are walkers just mark it as deleted and the last walker 624 * will remove from the list and free it. 625 */ 626 if (mcbi->mcbi_walker_cnt != 0) { 627 p->mcb_flags |= MCB_CONDEMNED; 628 mcbi->mcbi_del_cnt++; 629 return (B_FALSE); 630 } 631 632 ASSERT(mcbi->mcbi_del_cnt == 0); 633 *pp = p->mcb_nextp; 634 p->mcb_nextp = NULL; 635 return (B_TRUE); 636 } 637 638 /* 639 * Wait for all pending callback removals to be completed 640 */ 641 void 642 mac_callback_remove_wait(mac_cb_info_t *mcbi) 643 { 644 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 645 while (mcbi->mcbi_del_cnt != 0) { 646 DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi); 647 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 648 } 649 } 650 651 /* 652 * The last mac callback walker does the cleanup. Walk the list and unlik 653 * all the logically deleted entries and construct a temporary list of 654 * removed entries. Return the list of removed entries to the caller. 655 */ 656 mac_cb_t * 657 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head) 658 { 659 mac_cb_t *p; 660 mac_cb_t **pp; 661 mac_cb_t *rmlist = NULL; /* List of removed elements */ 662 int cnt = 0; 663 664 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 665 ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0); 666 667 pp = mcb_head; 668 while (*pp != NULL) { 669 if ((*pp)->mcb_flags & MCB_CONDEMNED) { 670 p = *pp; 671 *pp = p->mcb_nextp; 672 p->mcb_nextp = rmlist; 673 rmlist = p; 674 cnt++; 675 continue; 676 } 677 pp = &(*pp)->mcb_nextp; 678 } 679 680 ASSERT(mcbi->mcbi_del_cnt == cnt); 681 mcbi->mcbi_del_cnt = 0; 682 return (rmlist); 683 } 684 685 boolean_t 686 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 687 { 688 mac_cb_t *mcb; 689 690 /* Verify it is not already in the list */ 691 for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) { 692 if (mcb == mcb_elem) 693 return (B_TRUE); 694 } 695 696 return (B_FALSE); 697 } 698 699 boolean_t 700 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 701 { 702 boolean_t found; 703 704 mutex_enter(mcbi->mcbi_lockp); 705 found = mac_callback_lookup(mcb_headp, mcb_elem); 706 mutex_exit(mcbi->mcbi_lockp); 707 708 return (found); 709 } 710 711 /* Free the list of removed callbacks */ 712 void 713 mac_callback_free(mac_cb_t *rmlist) 714 { 715 mac_cb_t *mcb; 716 mac_cb_t *mcb_next; 717 718 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 719 mcb_next = mcb->mcb_nextp; 720 kmem_free(mcb->mcb_objp, mcb->mcb_objsize); 721 } 722 } 723 724 /* 725 * The promisc callbacks are in 2 lists, one off the 'mip' and another off the 726 * 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there 727 * is only a single shared total walker count, and an entry can't be physically 728 * unlinked if a walker is active on either list. The last walker does this 729 * cleanup of logically deleted entries. 730 */ 731 void 732 i_mac_promisc_walker_cleanup(mac_impl_t *mip) 733 { 734 mac_cb_t *rmlist; 735 mac_cb_t *mcb; 736 mac_cb_t *mcb_next; 737 mac_promisc_impl_t *mpip; 738 739 /* 740 * Construct a temporary list of deleted callbacks by walking the 741 * the mi_promisc_list. Then for each entry in the temporary list, 742 * remove it from the mci_promisc_list and free the entry. 743 */ 744 rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info, 745 &mip->mi_promisc_list); 746 747 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 748 mcb_next = mcb->mcb_nextp; 749 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 750 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info, 751 &mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link)); 752 mcb->mcb_flags = 0; 753 mcb->mcb_nextp = NULL; 754 kmem_cache_free(mac_promisc_impl_cache, mpip); 755 } 756 } 757 758 void 759 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type) 760 { 761 mac_cb_info_t *mcbi; 762 763 /* 764 * Signal the notify thread even after mi_ref has become zero and 765 * mi_disabled is set. The synchronization with the notify thread 766 * happens in mac_unregister and that implies the driver must make 767 * sure it is single-threaded (with respect to mac calls) and that 768 * all pending mac calls have returned before it calls mac_unregister 769 */ 770 rw_enter(&i_mac_impl_lock, RW_READER); 771 if (mip->mi_state_flags & MIS_DISABLED) 772 goto exit; 773 774 /* 775 * Guard against incorrect notifications. (Running a newer 776 * mac client against an older implementation?) 777 */ 778 if (type >= MAC_NNOTE) 779 goto exit; 780 781 mcbi = &mip->mi_notify_cb_info; 782 mutex_enter(mcbi->mcbi_lockp); 783 mip->mi_notify_bits |= (1 << type); 784 cv_broadcast(&mcbi->mcbi_cv); 785 mutex_exit(mcbi->mcbi_lockp); 786 787 exit: 788 rw_exit(&i_mac_impl_lock); 789 } 790 791 /* 792 * Mac serialization primitives. Please see the block comment at the 793 * top of the file. 794 */ 795 void 796 i_mac_perim_enter(mac_impl_t *mip) 797 { 798 mac_client_impl_t *mcip; 799 800 if (mip->mi_state_flags & MIS_IS_VNIC) { 801 /* 802 * This is a VNIC. Return the lower mac since that is what 803 * we want to serialize on. 804 */ 805 mcip = mac_vnic_lower(mip); 806 mip = mcip->mci_mip; 807 } 808 809 mutex_enter(&mip->mi_perim_lock); 810 if (mip->mi_perim_owner == curthread) { 811 mip->mi_perim_ocnt++; 812 mutex_exit(&mip->mi_perim_lock); 813 return; 814 } 815 816 while (mip->mi_perim_owner != NULL) 817 cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock); 818 819 mip->mi_perim_owner = curthread; 820 ASSERT(mip->mi_perim_ocnt == 0); 821 mip->mi_perim_ocnt++; 822 #ifdef DEBUG 823 mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack, 824 MAC_PERIM_STACK_DEPTH); 825 #endif 826 mutex_exit(&mip->mi_perim_lock); 827 } 828 829 int 830 i_mac_perim_enter_nowait(mac_impl_t *mip) 831 { 832 /* 833 * The vnic is a special case, since the serialization is done based 834 * on the lower mac. If the lower mac is busy, it does not imply the 835 * vnic can't be unregistered. But in the case of other drivers, 836 * a busy perimeter or open mac handles implies that the mac is busy 837 * and can't be unregistered. 838 */ 839 if (mip->mi_state_flags & MIS_IS_VNIC) { 840 i_mac_perim_enter(mip); 841 return (0); 842 } 843 844 mutex_enter(&mip->mi_perim_lock); 845 if (mip->mi_perim_owner != NULL) { 846 mutex_exit(&mip->mi_perim_lock); 847 return (EBUSY); 848 } 849 ASSERT(mip->mi_perim_ocnt == 0); 850 mip->mi_perim_owner = curthread; 851 mip->mi_perim_ocnt++; 852 mutex_exit(&mip->mi_perim_lock); 853 854 return (0); 855 } 856 857 void 858 i_mac_perim_exit(mac_impl_t *mip) 859 { 860 mac_client_impl_t *mcip; 861 862 if (mip->mi_state_flags & MIS_IS_VNIC) { 863 /* 864 * This is a VNIC. Return the lower mac since that is what 865 * we want to serialize on. 866 */ 867 mcip = mac_vnic_lower(mip); 868 mip = mcip->mci_mip; 869 } 870 871 ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0); 872 873 mutex_enter(&mip->mi_perim_lock); 874 if (--mip->mi_perim_ocnt == 0) { 875 mip->mi_perim_owner = NULL; 876 cv_signal(&mip->mi_perim_cv); 877 } 878 mutex_exit(&mip->mi_perim_lock); 879 } 880 881 /* 882 * Returns whether the current thread holds the mac perimeter. Used in making 883 * assertions. 884 */ 885 boolean_t 886 mac_perim_held(mac_handle_t mh) 887 { 888 mac_impl_t *mip = (mac_impl_t *)mh; 889 mac_client_impl_t *mcip; 890 891 if (mip->mi_state_flags & MIS_IS_VNIC) { 892 /* 893 * This is a VNIC. Return the lower mac since that is what 894 * we want to serialize on. 895 */ 896 mcip = mac_vnic_lower(mip); 897 mip = mcip->mci_mip; 898 } 899 return (mip->mi_perim_owner == curthread); 900 } 901 902 /* 903 * mac client interfaces to enter the mac perimeter of a mac end point, given 904 * its mac handle, or macname or linkid. 905 */ 906 void 907 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp) 908 { 909 mac_impl_t *mip = (mac_impl_t *)mh; 910 911 i_mac_perim_enter(mip); 912 /* 913 * The mac_perim_handle_t returned encodes the 'mip' and whether a 914 * mac_open has been done internally while entering the perimeter. 915 * This information is used in mac_perim_exit 916 */ 917 MAC_ENCODE_MPH(*mphp, mip, 0); 918 } 919 920 int 921 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp) 922 { 923 int err; 924 mac_handle_t mh; 925 926 if ((err = mac_open(name, &mh)) != 0) 927 return (err); 928 929 mac_perim_enter_by_mh(mh, mphp); 930 MAC_ENCODE_MPH(*mphp, mh, 1); 931 return (0); 932 } 933 934 int 935 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp) 936 { 937 int err; 938 mac_handle_t mh; 939 940 if ((err = mac_open_by_linkid(linkid, &mh)) != 0) 941 return (err); 942 943 mac_perim_enter_by_mh(mh, mphp); 944 MAC_ENCODE_MPH(*mphp, mh, 1); 945 return (0); 946 } 947 948 void 949 mac_perim_exit(mac_perim_handle_t mph) 950 { 951 mac_impl_t *mip; 952 boolean_t need_close; 953 954 MAC_DECODE_MPH(mph, mip, need_close); 955 i_mac_perim_exit(mip); 956 if (need_close) 957 mac_close((mac_handle_t)mip); 958 } 959 960 int 961 mac_hold(const char *macname, mac_impl_t **pmip) 962 { 963 mac_impl_t *mip; 964 int err; 965 966 /* 967 * Check the device name length to make sure it won't overflow our 968 * buffer. 969 */ 970 if (strlen(macname) >= MAXNAMELEN) 971 return (EINVAL); 972 973 /* 974 * Look up its entry in the global hash table. 975 */ 976 rw_enter(&i_mac_impl_lock, RW_WRITER); 977 err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname, 978 (mod_hash_val_t *)&mip); 979 980 if (err != 0) { 981 rw_exit(&i_mac_impl_lock); 982 return (ENOENT); 983 } 984 985 if (mip->mi_state_flags & MIS_DISABLED) { 986 rw_exit(&i_mac_impl_lock); 987 return (ENOENT); 988 } 989 990 if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) { 991 rw_exit(&i_mac_impl_lock); 992 return (EBUSY); 993 } 994 995 mip->mi_ref++; 996 rw_exit(&i_mac_impl_lock); 997 998 *pmip = mip; 999 return (0); 1000 } 1001 1002 void 1003 mac_rele(mac_impl_t *mip) 1004 { 1005 rw_enter(&i_mac_impl_lock, RW_WRITER); 1006 ASSERT(mip->mi_ref != 0); 1007 if (--mip->mi_ref == 0) { 1008 ASSERT(mip->mi_nactiveclients == 0 && 1009 !(mip->mi_state_flags & MIS_EXCLUSIVE)); 1010 } 1011 rw_exit(&i_mac_impl_lock); 1012 } 1013 1014 /* 1015 * Private GLDv3 function to start a MAC instance. 1016 */ 1017 int 1018 mac_start(mac_handle_t mh) 1019 { 1020 mac_impl_t *mip = (mac_impl_t *)mh; 1021 int err = 0; 1022 1023 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1024 ASSERT(mip->mi_start != NULL); 1025 1026 /* 1027 * Check whether the device is already started. 1028 */ 1029 if (mip->mi_active++ == 0) { 1030 mac_ring_t *ring = NULL; 1031 1032 /* 1033 * Start the device. 1034 */ 1035 err = mip->mi_start(mip->mi_driver); 1036 if (err != 0) { 1037 mip->mi_active--; 1038 return (err); 1039 } 1040 1041 /* 1042 * Start the default tx ring. 1043 */ 1044 if (mip->mi_default_tx_ring != NULL) { 1045 1046 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1047 err = mac_start_ring(ring); 1048 if (err != 0) { 1049 mip->mi_active--; 1050 return (err); 1051 } 1052 ring->mr_state = MR_INUSE; 1053 } 1054 1055 if (mip->mi_rx_groups != NULL) { 1056 /* 1057 * Start the default ring, since it will be needed 1058 * to receive broadcast and multicast traffic for 1059 * both primary and non-primary MAC clients. 1060 */ 1061 mac_group_t *grp = &mip->mi_rx_groups[0]; 1062 1063 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); 1064 err = mac_start_group_and_rings(grp); 1065 if (err != 0) { 1066 mip->mi_active--; 1067 if (ring != NULL) { 1068 mac_stop_ring(ring); 1069 ring->mr_state = MR_FREE; 1070 } 1071 return (err); 1072 } 1073 mac_set_rx_group_state(grp, MAC_GROUP_STATE_SHARED); 1074 } 1075 } 1076 1077 return (err); 1078 } 1079 1080 /* 1081 * Private GLDv3 function to stop a MAC instance. 1082 */ 1083 void 1084 mac_stop(mac_handle_t mh) 1085 { 1086 mac_impl_t *mip = (mac_impl_t *)mh; 1087 1088 ASSERT(mip->mi_stop != NULL); 1089 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1090 1091 /* 1092 * Check whether the device is still needed. 1093 */ 1094 ASSERT(mip->mi_active != 0); 1095 if (--mip->mi_active == 0) { 1096 if (mip->mi_rx_groups != NULL) { 1097 /* 1098 * There should be no more active clients since the 1099 * MAC is being stopped. Stop the default RX group 1100 * and transition it back to registered state. 1101 */ 1102 mac_group_t *grp = &mip->mi_rx_groups[0]; 1103 1104 /* 1105 * When clients are torn down, the groups 1106 * are release via mac_release_rx_group which 1107 * knows the the default group is always in 1108 * started mode since broadcast uses it. So 1109 * we can assert that their are no clients 1110 * (since mac_bcast_add doesn't register itself 1111 * as a client) and group is in SHARED state. 1112 */ 1113 ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED); 1114 ASSERT(MAC_RX_GROUP_NO_CLIENT(grp) && 1115 mip->mi_nactiveclients == 0); 1116 mac_stop_group_and_rings(grp); 1117 mac_set_rx_group_state(grp, MAC_GROUP_STATE_REGISTERED); 1118 } 1119 1120 if (mip->mi_default_tx_ring != NULL) { 1121 mac_ring_t *ring; 1122 1123 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1124 mac_stop_ring(ring); 1125 ring->mr_state = MR_FREE; 1126 } 1127 1128 /* 1129 * Stop the device. 1130 */ 1131 mip->mi_stop(mip->mi_driver); 1132 } 1133 } 1134 1135 int 1136 i_mac_promisc_set(mac_impl_t *mip, boolean_t on, mac_promisc_type_t ptype) 1137 { 1138 int err = 0; 1139 1140 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1141 ASSERT(mip->mi_setpromisc != NULL); 1142 ASSERT(ptype == MAC_DEVPROMISC || ptype == MAC_PROMISC); 1143 1144 /* 1145 * Determine whether we should enable or disable promiscuous mode. 1146 * For details on the distinction between "device promiscuous mode" 1147 * and "MAC promiscuous mode", see PSARC/2005/289. 1148 */ 1149 if (on) { 1150 /* 1151 * Enable promiscuous mode on the device if not yet enabled. 1152 */ 1153 if (mip->mi_devpromisc++ == 0) { 1154 err = mip->mi_setpromisc(mip->mi_driver, B_TRUE); 1155 if (err != 0) { 1156 mip->mi_devpromisc--; 1157 return (err); 1158 } 1159 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1160 } 1161 1162 /* 1163 * Enable promiscuous mode on the MAC if not yet enabled. 1164 */ 1165 if (ptype == MAC_PROMISC && mip->mi_promisc++ == 0) 1166 i_mac_notify(mip, MAC_NOTE_PROMISC); 1167 } else { 1168 if (mip->mi_devpromisc == 0) 1169 return (EPROTO); 1170 1171 /* 1172 * Disable promiscuous mode on the device if this is the last 1173 * enabling. 1174 */ 1175 if (--mip->mi_devpromisc == 0) { 1176 err = mip->mi_setpromisc(mip->mi_driver, B_FALSE); 1177 if (err != 0) { 1178 mip->mi_devpromisc++; 1179 return (err); 1180 } 1181 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1182 } 1183 1184 /* 1185 * Disable promiscuous mode on the MAC if this is the last 1186 * enabling. 1187 */ 1188 if (ptype == MAC_PROMISC && --mip->mi_promisc == 0) 1189 i_mac_notify(mip, MAC_NOTE_PROMISC); 1190 } 1191 1192 return (0); 1193 } 1194 1195 int 1196 mac_promisc_set(mac_handle_t mh, boolean_t on, mac_promisc_type_t ptype) 1197 { 1198 mac_impl_t *mip = (mac_impl_t *)mh; 1199 int rv; 1200 1201 i_mac_perim_enter(mip); 1202 rv = i_mac_promisc_set(mip, on, ptype); 1203 if (rv != 0 && !on) { 1204 cmn_err(CE_WARN, "%s: failed to switch OFF promiscuous mode " 1205 "because of error 0x%x", mip->mi_name, rv); 1206 rv = 0; 1207 } 1208 i_mac_perim_exit(mip); 1209 return (rv); 1210 } 1211 1212 /* 1213 * The promiscuity state can change any time. If the caller needs to take 1214 * actions that are atomic with the promiscuity state, then the caller needs 1215 * to bracket the entire sequence with mac_perim_enter/exit 1216 */ 1217 boolean_t 1218 mac_promisc_get(mac_handle_t mh, mac_promisc_type_t ptype) 1219 { 1220 mac_impl_t *mip = (mac_impl_t *)mh; 1221 1222 ASSERT(ptype == MAC_DEVPROMISC || ptype == MAC_PROMISC); 1223 1224 /* 1225 * Return the current promiscuity. 1226 */ 1227 if (ptype == MAC_DEVPROMISC) 1228 return (mip->mi_devpromisc != 0); 1229 else 1230 return (mip->mi_promisc != 0); 1231 } 1232 1233 /* 1234 * Invoked at MAC instance attach time to initialize the list 1235 * of factory MAC addresses supported by a MAC instance. This function 1236 * builds a local cache in the mac_impl_t for the MAC addresses 1237 * supported by the underlying hardware. The MAC clients themselves 1238 * use the mac_addr_factory*() functions to query and reserve 1239 * factory MAC addresses. 1240 */ 1241 void 1242 mac_addr_factory_init(mac_impl_t *mip) 1243 { 1244 mac_capab_multifactaddr_t capab; 1245 uint8_t *addr; 1246 int i; 1247 1248 /* 1249 * First round to see how many factory MAC addresses are available. 1250 */ 1251 bzero(&capab, sizeof (capab)); 1252 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR, 1253 &capab) || (capab.mcm_naddr == 0)) { 1254 /* 1255 * The MAC instance doesn't support multiple factory 1256 * MAC addresses, we're done here. 1257 */ 1258 return; 1259 } 1260 1261 /* 1262 * Allocate the space and get all the factory addresses. 1263 */ 1264 addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP); 1265 capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr); 1266 1267 mip->mi_factory_addr_num = capab.mcm_naddr; 1268 mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num * 1269 sizeof (mac_factory_addr_t), KM_SLEEP); 1270 1271 for (i = 0; i < capab.mcm_naddr; i++) { 1272 bcopy(addr + i * MAXMACADDRLEN, 1273 mip->mi_factory_addr[i].mfa_addr, 1274 mip->mi_type->mt_addr_length); 1275 mip->mi_factory_addr[i].mfa_in_use = B_FALSE; 1276 } 1277 1278 kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN); 1279 } 1280 1281 void 1282 mac_addr_factory_fini(mac_impl_t *mip) 1283 { 1284 if (mip->mi_factory_addr == NULL) { 1285 ASSERT(mip->mi_factory_addr_num == 0); 1286 return; 1287 } 1288 1289 kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num * 1290 sizeof (mac_factory_addr_t)); 1291 1292 mip->mi_factory_addr = NULL; 1293 mip->mi_factory_addr_num = 0; 1294 } 1295 1296 /* 1297 * Reserve a factory MAC address. If *slot is set to -1, the function 1298 * attempts to reserve any of the available factory MAC addresses and 1299 * returns the reserved slot id. If no slots are available, the function 1300 * returns ENOSPC. If *slot is not set to -1, the function reserves 1301 * the specified slot if it is available, or returns EBUSY is the slot 1302 * is already used. Returns ENOTSUP if the underlying MAC does not 1303 * support multiple factory addresses. If the slot number is not -1 but 1304 * is invalid, returns EINVAL. 1305 */ 1306 int 1307 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot) 1308 { 1309 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1310 mac_impl_t *mip = mcip->mci_mip; 1311 int i, ret = 0; 1312 1313 i_mac_perim_enter(mip); 1314 /* 1315 * Protect against concurrent readers that may need a self-consistent 1316 * view of the factory addresses 1317 */ 1318 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1319 1320 if (mip->mi_factory_addr_num == 0) { 1321 ret = ENOTSUP; 1322 goto bail; 1323 } 1324 1325 if (*slot != -1) { 1326 /* check the specified slot */ 1327 if (*slot < 1 || *slot > mip->mi_factory_addr_num) { 1328 ret = EINVAL; 1329 goto bail; 1330 } 1331 if (mip->mi_factory_addr[*slot-1].mfa_in_use) { 1332 ret = EBUSY; 1333 goto bail; 1334 } 1335 } else { 1336 /* pick the next available slot */ 1337 for (i = 0; i < mip->mi_factory_addr_num; i++) { 1338 if (!mip->mi_factory_addr[i].mfa_in_use) 1339 break; 1340 } 1341 1342 if (i == mip->mi_factory_addr_num) { 1343 ret = ENOSPC; 1344 goto bail; 1345 } 1346 *slot = i+1; 1347 } 1348 1349 mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE; 1350 mip->mi_factory_addr[*slot-1].mfa_client = mcip; 1351 1352 bail: 1353 rw_exit(&mip->mi_rw_lock); 1354 i_mac_perim_exit(mip); 1355 return (ret); 1356 } 1357 1358 /* 1359 * Release the specified factory MAC address slot. 1360 */ 1361 void 1362 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot) 1363 { 1364 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1365 mac_impl_t *mip = mcip->mci_mip; 1366 1367 i_mac_perim_enter(mip); 1368 /* 1369 * Protect against concurrent readers that may need a self-consistent 1370 * view of the factory addresses 1371 */ 1372 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1373 1374 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1375 ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use); 1376 1377 mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE; 1378 1379 rw_exit(&mip->mi_rw_lock); 1380 i_mac_perim_exit(mip); 1381 } 1382 1383 /* 1384 * Stores in mac_addr the value of the specified MAC address. Returns 1385 * 0 on success, or EINVAL if the slot number is not valid for the MAC. 1386 * The caller must provide a string of at least MAXNAMELEN bytes. 1387 */ 1388 void 1389 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr, 1390 uint_t *addr_len, char *client_name, boolean_t *in_use_arg) 1391 { 1392 mac_impl_t *mip = (mac_impl_t *)mh; 1393 boolean_t in_use; 1394 1395 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1396 1397 /* 1398 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter 1399 * and mi_rw_lock 1400 */ 1401 rw_enter(&mip->mi_rw_lock, RW_READER); 1402 bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN); 1403 *addr_len = mip->mi_type->mt_addr_length; 1404 in_use = mip->mi_factory_addr[slot-1].mfa_in_use; 1405 if (in_use && client_name != NULL) { 1406 bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name, 1407 client_name, MAXNAMELEN); 1408 } 1409 if (in_use_arg != NULL) 1410 *in_use_arg = in_use; 1411 rw_exit(&mip->mi_rw_lock); 1412 } 1413 1414 /* 1415 * Returns the number of factory MAC addresses (in addition to the 1416 * primary MAC address), 0 if the underlying MAC doesn't support 1417 * that feature. 1418 */ 1419 uint_t 1420 mac_addr_factory_num(mac_handle_t mh) 1421 { 1422 mac_impl_t *mip = (mac_impl_t *)mh; 1423 1424 return (mip->mi_factory_addr_num); 1425 } 1426 1427 1428 void 1429 mac_rx_group_unmark(mac_group_t *grp, uint_t flag) 1430 { 1431 mac_ring_t *ring; 1432 1433 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next) 1434 ring->mr_flag &= ~flag; 1435 } 1436 1437 /* 1438 * The following mac_hwrings_xxx() functions are private mac client functions 1439 * used by the aggr driver to access and control the underlying HW Rx group 1440 * and rings. In this case, the aggr driver has exclusive control of the 1441 * underlying HW Rx group/rings, it calls the following functions to 1442 * start/stop the HW Rx rings, disable/enable polling, add/remove mac' 1443 * addresses, or set up the Rx callback. 1444 */ 1445 /* ARGSUSED */ 1446 static void 1447 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs, 1448 mblk_t *mp_chain, boolean_t loopback) 1449 { 1450 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs; 1451 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; 1452 mac_direct_rx_t proc; 1453 void *arg1; 1454 mac_resource_handle_t arg2; 1455 1456 proc = srs_rx->sr_func; 1457 arg1 = srs_rx->sr_arg1; 1458 arg2 = mac_srs->srs_mrh; 1459 1460 proc(arg1, arg2, mp_chain, NULL); 1461 } 1462 1463 /* 1464 * This function is called to get the list of HW rings that are reserved by 1465 * an exclusive mac client. 1466 * 1467 * Return value: the number of HW rings. 1468 */ 1469 int 1470 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh, 1471 mac_ring_handle_t *hwrh) 1472 { 1473 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1474 flow_entry_t *flent = mcip->mci_flent; 1475 mac_group_t *grp = flent->fe_rx_ring_group; 1476 mac_ring_t *ring; 1477 int cnt = 0; 1478 1479 /* 1480 * The mac client did not reserve any RX group, return directly. 1481 * This is probably because the underlying MAC does not support 1482 * any RX groups. 1483 */ 1484 *hwgh = NULL; 1485 if (grp == NULL) 1486 return (0); 1487 1488 /* 1489 * This RX group must be reserved by this mac client. 1490 */ 1491 ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) && 1492 (mch == (mac_client_handle_t)(MAC_RX_GROUP_ONLY_CLIENT(grp)))); 1493 1494 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next) { 1495 ASSERT(cnt < MAX_RINGS_PER_GROUP); 1496 hwrh[cnt++] = (mac_ring_handle_t)ring; 1497 } 1498 *hwgh = (mac_group_handle_t)grp; 1499 return (cnt); 1500 } 1501 1502 /* 1503 * Setup the RX callback of the mac client which exclusively controls HW ring. 1504 */ 1505 void 1506 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh) 1507 { 1508 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1509 mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs; 1510 1511 mac_srs->srs_mrh = prh; 1512 mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process; 1513 } 1514 1515 void 1516 mac_hwring_teardown(mac_ring_handle_t hwrh) 1517 { 1518 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1519 mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs; 1520 1521 mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process; 1522 mac_srs->srs_mrh = NULL; 1523 } 1524 1525 int 1526 mac_hwring_disable_intr(mac_ring_handle_t rh) 1527 { 1528 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1529 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1530 1531 return (intr->mi_disable(intr->mi_handle)); 1532 } 1533 1534 int 1535 mac_hwring_enable_intr(mac_ring_handle_t rh) 1536 { 1537 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1538 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1539 1540 return (intr->mi_enable(intr->mi_handle)); 1541 } 1542 1543 int 1544 mac_hwring_start(mac_ring_handle_t rh) 1545 { 1546 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1547 1548 MAC_RING_UNMARK(rr_ring, MR_QUIESCE); 1549 return (0); 1550 } 1551 1552 void 1553 mac_hwring_stop(mac_ring_handle_t rh) 1554 { 1555 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1556 1557 mac_rx_ring_quiesce(rr_ring, MR_QUIESCE); 1558 } 1559 1560 mblk_t * 1561 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup) 1562 { 1563 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1564 mac_ring_info_t *info = &rr_ring->mr_info; 1565 1566 return (info->mri_poll(info->mri_driver, bytes_to_pickup)); 1567 } 1568 1569 int 1570 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr) 1571 { 1572 mac_group_t *group = (mac_group_t *)gh; 1573 1574 return (mac_group_addmac(group, addr)); 1575 } 1576 1577 int 1578 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr) 1579 { 1580 mac_group_t *group = (mac_group_t *)gh; 1581 1582 return (mac_group_remmac(group, addr)); 1583 } 1584 1585 /* 1586 * Set the RX group to be shared/reserved. Note that the group must be 1587 * started/stopped outside of this function. 1588 */ 1589 void 1590 mac_set_rx_group_state(mac_group_t *grp, mac_group_state_t state) 1591 { 1592 /* 1593 * If there is no change in the group state, just return. 1594 */ 1595 if (grp->mrg_state == state) 1596 return; 1597 1598 switch (state) { 1599 case MAC_GROUP_STATE_RESERVED: 1600 /* 1601 * Successfully reserved the group. 1602 * 1603 * Given that there is an exclusive client controlling this 1604 * group, we enable the group level polling when available, 1605 * so that SRSs get to turn on/off individual rings they's 1606 * assigned to. 1607 */ 1608 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 1609 1610 if (GROUP_INTR_DISABLE_FUNC(grp) != NULL) 1611 GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 1612 1613 break; 1614 1615 case MAC_GROUP_STATE_SHARED: 1616 /* 1617 * Set all rings of this group to software classified. 1618 * If the group has an overriding interrupt, then re-enable it. 1619 */ 1620 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 1621 1622 if (GROUP_INTR_ENABLE_FUNC(grp) != NULL) 1623 GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 1624 1625 /* The ring is not available for reservations any more */ 1626 break; 1627 1628 case MAC_GROUP_STATE_REGISTERED: 1629 /* Also callable from mac_register, perim is not held */ 1630 break; 1631 1632 default: 1633 ASSERT(B_FALSE); 1634 break; 1635 } 1636 1637 grp->mrg_state = state; 1638 } 1639 1640 /* 1641 * Quiesce future hardware classified packets for the specified Rx ring 1642 */ 1643 static void 1644 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag) 1645 { 1646 ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER); 1647 ASSERT(ring_flag == MR_CONDEMNED || ring_flag == MR_QUIESCE); 1648 1649 mutex_enter(&rx_ring->mr_lock); 1650 rx_ring->mr_flag |= ring_flag; 1651 while (rx_ring->mr_refcnt != 0) 1652 cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock); 1653 mutex_exit(&rx_ring->mr_lock); 1654 } 1655 1656 /* 1657 * Please see mac_tx for details about the per cpu locking scheme 1658 */ 1659 static void 1660 mac_tx_lock_all(mac_client_impl_t *mcip) 1661 { 1662 int i; 1663 1664 for (i = 0; i <= mac_tx_percpu_cnt; i++) 1665 mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1666 } 1667 1668 static void 1669 mac_tx_unlock_all(mac_client_impl_t *mcip) 1670 { 1671 int i; 1672 1673 for (i = mac_tx_percpu_cnt; i >= 0; i--) 1674 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1675 } 1676 1677 static void 1678 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip) 1679 { 1680 int i; 1681 1682 for (i = mac_tx_percpu_cnt; i > 0; i--) 1683 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1684 } 1685 1686 static int 1687 mac_tx_sum_refcnt(mac_client_impl_t *mcip) 1688 { 1689 int i; 1690 int refcnt = 0; 1691 1692 for (i = 0; i <= mac_tx_percpu_cnt; i++) 1693 refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt; 1694 1695 return (refcnt); 1696 } 1697 1698 /* 1699 * Stop future Tx packets coming down from the client in preparation for 1700 * quiescing the Tx side. This is needed for dynamic reclaim and reassignment 1701 * of rings between clients 1702 */ 1703 void 1704 mac_tx_client_block(mac_client_impl_t *mcip) 1705 { 1706 mac_tx_lock_all(mcip); 1707 mcip->mci_tx_flag |= MCI_TX_QUIESCE; 1708 while (mac_tx_sum_refcnt(mcip) != 0) { 1709 mac_tx_unlock_allbutzero(mcip); 1710 cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock); 1711 mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock); 1712 mac_tx_lock_all(mcip); 1713 } 1714 mac_tx_unlock_all(mcip); 1715 } 1716 1717 void 1718 mac_tx_client_unblock(mac_client_impl_t *mcip) 1719 { 1720 mac_tx_lock_all(mcip); 1721 mcip->mci_tx_flag &= ~MCI_TX_QUIESCE; 1722 mac_tx_unlock_all(mcip); 1723 /* 1724 * We may fail to disable flow control for the last MAC_NOTE_TX 1725 * notification because the MAC client is quiesced. Send the 1726 * notification again. 1727 */ 1728 i_mac_notify(mcip->mci_mip, MAC_NOTE_TX); 1729 } 1730 1731 /* 1732 * Wait for an SRS to quiesce. The SRS worker will signal us when the 1733 * quiesce is done. 1734 */ 1735 static void 1736 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag) 1737 { 1738 mutex_enter(&srs->srs_lock); 1739 while (!(srs->srs_state & srs_flag)) 1740 cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock); 1741 mutex_exit(&srs->srs_lock); 1742 } 1743 1744 /* 1745 * Quiescing an Rx SRS is achieved by the following sequence. The protocol 1746 * works bottom up by cutting off packet flow from the bottommost point in the 1747 * mac, then the SRS, and then the soft rings. There are 2 use cases of this 1748 * mechanism. One is a temporary quiesce of the SRS, such as say while changing 1749 * the Rx callbacks. Another use case is Rx SRS teardown. In the former case 1750 * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used 1751 * for the SRS and MR flags. In the former case the threads pause waiting for 1752 * a restart, while in the latter case the threads exit. The Tx SRS teardown 1753 * is also mostly similar to the above. 1754 * 1755 * 1. Stop future hardware classified packets at the lowest level in the mac. 1756 * Remove any hardware classification rule (CONDEMNED case) and mark the 1757 * rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt 1758 * from increasing. Upcalls from the driver that come through hardware 1759 * classification will be dropped in mac_rx from now on. Then we wait for 1760 * the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are 1761 * sure there aren't any upcall threads from the driver through hardware 1762 * classification. In the case of SRS teardown we also remove the 1763 * classification rule in the driver. 1764 * 1765 * 2. Stop future software classified packets by marking the flow entry with 1766 * FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from 1767 * increasing. We also remove the flow entry from the table in the latter 1768 * case. Then wait for the fe_refcnt to reach an appropriate quiescent value 1769 * that indicates there aren't any active threads using that flow entry. 1770 * 1771 * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread, 1772 * SRS worker thread, and the soft ring threads are quiesced in sequence 1773 * with the SRS worker thread serving as a master controller. This 1774 * mechansim is explained in mac_srs_worker_quiesce(). 1775 * 1776 * The restart mechanism to reactivate the SRS and softrings is explained 1777 * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the 1778 * restart sequence. 1779 */ 1780 void 1781 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 1782 { 1783 flow_entry_t *flent = srs->srs_flent; 1784 uint_t mr_flag, srs_done_flag; 1785 1786 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 1787 ASSERT(!(srs->srs_type & SRST_TX)); 1788 1789 if (srs_quiesce_flag == SRS_CONDEMNED) { 1790 mr_flag = MR_CONDEMNED; 1791 srs_done_flag = SRS_CONDEMNED_DONE; 1792 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 1793 mac_srs_client_poll_disable(srs->srs_mcip, srs); 1794 } else { 1795 ASSERT(srs_quiesce_flag == SRS_QUIESCE); 1796 mr_flag = MR_QUIESCE; 1797 srs_done_flag = SRS_QUIESCE_DONE; 1798 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 1799 mac_srs_client_poll_quiesce(srs->srs_mcip, srs); 1800 } 1801 1802 if (srs->srs_ring != NULL) { 1803 mac_rx_ring_quiesce(srs->srs_ring, mr_flag); 1804 } else { 1805 /* 1806 * SRS is driven by software classification. In case 1807 * of CONDEMNED, the top level teardown functions will 1808 * deal with flow removal. 1809 */ 1810 if (srs_quiesce_flag != SRS_CONDEMNED) { 1811 FLOW_MARK(flent, FE_QUIESCE); 1812 mac_flow_wait(flent, FLOW_DRIVER_UPCALL); 1813 } 1814 } 1815 1816 /* 1817 * Signal the SRS to quiesce itself, and then cv_wait for the 1818 * SRS quiesce to complete. The SRS worker thread will wake us 1819 * up when the quiesce is complete 1820 */ 1821 mac_srs_signal(srs, srs_quiesce_flag); 1822 mac_srs_quiesce_wait(srs, srs_done_flag); 1823 } 1824 1825 /* 1826 * Remove an SRS. 1827 */ 1828 void 1829 mac_rx_srs_remove(mac_soft_ring_set_t *srs) 1830 { 1831 flow_entry_t *flent = srs->srs_flent; 1832 int i; 1833 1834 mac_rx_srs_quiesce(srs, SRS_CONDEMNED); 1835 /* 1836 * Locate and remove our entry in the fe_rx_srs[] array, and 1837 * adjust the fe_rx_srs array entries and array count by 1838 * moving the last entry into the vacated spot. 1839 */ 1840 mutex_enter(&flent->fe_lock); 1841 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1842 if (flent->fe_rx_srs[i] == srs) 1843 break; 1844 } 1845 1846 ASSERT(i != 0 && i < flent->fe_rx_srs_cnt); 1847 if (i != flent->fe_rx_srs_cnt - 1) { 1848 flent->fe_rx_srs[i] = 1849 flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1]; 1850 i = flent->fe_rx_srs_cnt - 1; 1851 } 1852 1853 flent->fe_rx_srs[i] = NULL; 1854 flent->fe_rx_srs_cnt--; 1855 mutex_exit(&flent->fe_lock); 1856 1857 mac_srs_free(srs); 1858 } 1859 1860 static void 1861 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag) 1862 { 1863 mutex_enter(&srs->srs_lock); 1864 srs->srs_state &= ~flag; 1865 mutex_exit(&srs->srs_lock); 1866 } 1867 1868 void 1869 mac_rx_srs_restart(mac_soft_ring_set_t *srs) 1870 { 1871 flow_entry_t *flent = srs->srs_flent; 1872 mac_ring_t *mr; 1873 1874 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 1875 ASSERT((srs->srs_type & SRST_TX) == 0); 1876 1877 /* 1878 * This handles a change in the number of SRSs between the quiesce and 1879 * and restart operation of a flow. 1880 */ 1881 if (!SRS_QUIESCED(srs)) 1882 return; 1883 1884 /* 1885 * Signal the SRS to restart itself. Wait for the restart to complete 1886 * Note that we only restart the SRS if it is not marked as 1887 * permanently quiesced. 1888 */ 1889 if (!SRS_QUIESCED_PERMANENT(srs)) { 1890 mac_srs_signal(srs, SRS_RESTART); 1891 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 1892 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 1893 1894 mac_srs_client_poll_restart(srs->srs_mcip, srs); 1895 } 1896 1897 /* Finally clear the flags to let the packets in */ 1898 mr = srs->srs_ring; 1899 if (mr != NULL) { 1900 MAC_RING_UNMARK(mr, MR_QUIESCE); 1901 /* In case the ring was stopped, safely restart it */ 1902 (void) mac_start_ring(mr); 1903 } else { 1904 FLOW_UNMARK(flent, FE_QUIESCE); 1905 } 1906 } 1907 1908 /* 1909 * Temporary quiesce of a flow and associated Rx SRS. 1910 * Please see block comment above mac_rx_classify_flow_rem. 1911 */ 1912 /* ARGSUSED */ 1913 int 1914 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg) 1915 { 1916 int i; 1917 1918 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1919 mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i], 1920 SRS_QUIESCE); 1921 } 1922 return (0); 1923 } 1924 1925 /* 1926 * Restart a flow and associated Rx SRS that has been quiesced temporarily 1927 * Please see block comment above mac_rx_classify_flow_rem 1928 */ 1929 /* ARGSUSED */ 1930 int 1931 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg) 1932 { 1933 int i; 1934 1935 for (i = 0; i < flent->fe_rx_srs_cnt; i++) 1936 mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]); 1937 1938 return (0); 1939 } 1940 1941 void 1942 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on) 1943 { 1944 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1945 flow_entry_t *flent = mcip->mci_flent; 1946 mac_impl_t *mip = mcip->mci_mip; 1947 mac_soft_ring_set_t *mac_srs; 1948 int i; 1949 1950 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1951 1952 if (flent == NULL) 1953 return; 1954 1955 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1956 mac_srs = flent->fe_rx_srs[i]; 1957 mutex_enter(&mac_srs->srs_lock); 1958 if (on) 1959 mac_srs->srs_state |= SRS_QUIESCE_PERM; 1960 else 1961 mac_srs->srs_state &= ~SRS_QUIESCE_PERM; 1962 mutex_exit(&mac_srs->srs_lock); 1963 } 1964 } 1965 1966 void 1967 mac_rx_client_quiesce(mac_client_handle_t mch) 1968 { 1969 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1970 mac_impl_t *mip = mcip->mci_mip; 1971 1972 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1973 1974 if (MCIP_DATAPATH_SETUP(mcip)) { 1975 (void) mac_rx_classify_flow_quiesce(mcip->mci_flent, 1976 NULL); 1977 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 1978 mac_rx_classify_flow_quiesce, NULL); 1979 } 1980 } 1981 1982 void 1983 mac_rx_client_restart(mac_client_handle_t mch) 1984 { 1985 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1986 mac_impl_t *mip = mcip->mci_mip; 1987 1988 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1989 1990 if (MCIP_DATAPATH_SETUP(mcip)) { 1991 (void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL); 1992 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 1993 mac_rx_classify_flow_restart, NULL); 1994 } 1995 } 1996 1997 /* 1998 * This function only quiesces the Tx SRS and softring worker threads. Callers 1999 * need to make sure that there aren't any mac client threads doing current or 2000 * future transmits in the mac before calling this function. 2001 */ 2002 void 2003 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 2004 { 2005 mac_client_impl_t *mcip = srs->srs_mcip; 2006 2007 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2008 2009 ASSERT(srs->srs_type & SRST_TX); 2010 ASSERT(srs_quiesce_flag == SRS_CONDEMNED || 2011 srs_quiesce_flag == SRS_QUIESCE); 2012 2013 /* 2014 * Signal the SRS to quiesce itself, and then cv_wait for the 2015 * SRS quiesce to complete. The SRS worker thread will wake us 2016 * up when the quiesce is complete 2017 */ 2018 mac_srs_signal(srs, srs_quiesce_flag); 2019 mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ? 2020 SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE); 2021 } 2022 2023 void 2024 mac_tx_srs_restart(mac_soft_ring_set_t *srs) 2025 { 2026 /* 2027 * Resizing the fanout could result in creation of new SRSs. 2028 * They may not necessarily be in the quiesced state in which 2029 * case it need be restarted 2030 */ 2031 if (!SRS_QUIESCED(srs)) 2032 return; 2033 2034 mac_srs_signal(srs, SRS_RESTART); 2035 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 2036 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 2037 } 2038 2039 /* 2040 * Temporary quiesce of a flow and associated Rx SRS. 2041 * Please see block comment above mac_rx_srs_quiesce 2042 */ 2043 /* ARGSUSED */ 2044 int 2045 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg) 2046 { 2047 /* 2048 * The fe_tx_srs is null for a subflow on an interface that is 2049 * not plumbed 2050 */ 2051 if (flent->fe_tx_srs != NULL) 2052 mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE); 2053 return (0); 2054 } 2055 2056 /* ARGSUSED */ 2057 int 2058 mac_tx_flow_restart(flow_entry_t *flent, void *arg) 2059 { 2060 /* 2061 * The fe_tx_srs is null for a subflow on an interface that is 2062 * not plumbed 2063 */ 2064 if (flent->fe_tx_srs != NULL) 2065 mac_tx_srs_restart(flent->fe_tx_srs); 2066 return (0); 2067 } 2068 2069 void 2070 mac_tx_client_quiesce(mac_client_impl_t *mcip, uint_t srs_quiesce_flag) 2071 { 2072 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2073 2074 mac_tx_client_block(mcip); 2075 if (MCIP_TX_SRS(mcip) != NULL) { 2076 mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag); 2077 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2078 mac_tx_flow_quiesce, NULL); 2079 } 2080 } 2081 2082 void 2083 mac_tx_client_restart(mac_client_impl_t *mcip) 2084 { 2085 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2086 2087 mac_tx_client_unblock(mcip); 2088 if (MCIP_TX_SRS(mcip) != NULL) { 2089 mac_tx_srs_restart(MCIP_TX_SRS(mcip)); 2090 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2091 mac_tx_flow_restart, NULL); 2092 } 2093 } 2094 2095 void 2096 mac_tx_client_flush(mac_client_impl_t *mcip) 2097 { 2098 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2099 2100 mac_tx_client_quiesce(mcip, SRS_QUIESCE); 2101 mac_tx_client_restart(mcip); 2102 } 2103 2104 void 2105 mac_client_quiesce(mac_client_impl_t *mcip) 2106 { 2107 mac_rx_client_quiesce((mac_client_handle_t)mcip); 2108 mac_tx_client_quiesce(mcip, SRS_QUIESCE); 2109 } 2110 2111 void 2112 mac_client_restart(mac_client_impl_t *mcip) 2113 { 2114 mac_rx_client_restart((mac_client_handle_t)mcip); 2115 mac_tx_client_restart(mcip); 2116 } 2117 2118 /* 2119 * Allocate a minor number. 2120 */ 2121 minor_t 2122 mac_minor_hold(boolean_t sleep) 2123 { 2124 minor_t minor; 2125 2126 /* 2127 * Grab a value from the arena. 2128 */ 2129 atomic_add_32(&minor_count, 1); 2130 2131 if (sleep) 2132 minor = (uint_t)id_alloc(minor_ids); 2133 else 2134 minor = (uint_t)id_alloc_nosleep(minor_ids); 2135 2136 if (minor == 0) { 2137 atomic_add_32(&minor_count, -1); 2138 return (0); 2139 } 2140 2141 return (minor); 2142 } 2143 2144 /* 2145 * Release a previously allocated minor number. 2146 */ 2147 void 2148 mac_minor_rele(minor_t minor) 2149 { 2150 /* 2151 * Return the value to the arena. 2152 */ 2153 id_free(minor_ids, minor); 2154 atomic_add_32(&minor_count, -1); 2155 } 2156 2157 uint32_t 2158 mac_no_notification(mac_handle_t mh) 2159 { 2160 mac_impl_t *mip = (mac_impl_t *)mh; 2161 return (mip->mi_unsup_note); 2162 } 2163 2164 /* 2165 * Prevent any new opens of this mac in preparation for unregister 2166 */ 2167 int 2168 i_mac_disable(mac_impl_t *mip) 2169 { 2170 mac_client_impl_t *mcip; 2171 2172 rw_enter(&i_mac_impl_lock, RW_WRITER); 2173 if (mip->mi_state_flags & MIS_DISABLED) { 2174 /* Already disabled, return success */ 2175 rw_exit(&i_mac_impl_lock); 2176 return (0); 2177 } 2178 /* 2179 * See if there are any other references to this mac_t (e.g., VLAN's). 2180 * If so return failure. If all the other checks below pass, then 2181 * set mi_disabled atomically under the i_mac_impl_lock to prevent 2182 * any new VLAN's from being created or new mac client opens of this 2183 * mac end point. 2184 */ 2185 if (mip->mi_ref > 0) { 2186 rw_exit(&i_mac_impl_lock); 2187 return (EBUSY); 2188 } 2189 2190 /* 2191 * mac clients must delete all multicast groups they join before 2192 * closing. bcast groups are reference counted, the last client 2193 * to delete the group will wait till the group is physically 2194 * deleted. Since all clients have closed this mac end point 2195 * mi_bcast_ngrps must be zero at this point 2196 */ 2197 ASSERT(mip->mi_bcast_ngrps == 0); 2198 2199 /* 2200 * Don't let go of this if it has some flows. 2201 * All other code guarantees no flows are added to a disabled 2202 * mac, therefore it is sufficient to check for the flow table 2203 * only here. 2204 */ 2205 mcip = mac_primary_client_handle(mip); 2206 if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) { 2207 rw_exit(&i_mac_impl_lock); 2208 return (ENOTEMPTY); 2209 } 2210 2211 mip->mi_state_flags |= MIS_DISABLED; 2212 rw_exit(&i_mac_impl_lock); 2213 return (0); 2214 } 2215 2216 int 2217 mac_disable_nowait(mac_handle_t mh) 2218 { 2219 mac_impl_t *mip = (mac_impl_t *)mh; 2220 int err; 2221 2222 if ((err = i_mac_perim_enter_nowait(mip)) != 0) 2223 return (err); 2224 err = i_mac_disable(mip); 2225 i_mac_perim_exit(mip); 2226 return (err); 2227 } 2228 2229 int 2230 mac_disable(mac_handle_t mh) 2231 { 2232 mac_impl_t *mip = (mac_impl_t *)mh; 2233 int err; 2234 2235 i_mac_perim_enter(mip); 2236 err = i_mac_disable(mip); 2237 i_mac_perim_exit(mip); 2238 2239 /* 2240 * Clean up notification thread and wait for it to exit. 2241 */ 2242 if (err == 0) 2243 i_mac_notify_exit(mip); 2244 2245 return (err); 2246 } 2247 2248 /* 2249 * Called when the MAC instance has a non empty flow table, to de-multiplex 2250 * incoming packets to the right flow. 2251 * The MAC's rw lock is assumed held as a READER. 2252 */ 2253 /* ARGSUSED */ 2254 static mblk_t * 2255 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp) 2256 { 2257 flow_entry_t *flent = NULL; 2258 uint_t flags = FLOW_INBOUND; 2259 int err; 2260 2261 /* 2262 * If the mac is a port of an aggregation, pass FLOW_IGNORE_VLAN 2263 * to mac_flow_lookup() so that the VLAN packets can be successfully 2264 * passed to the non-VLAN aggregation flows. 2265 * 2266 * Note that there is possibly a race between this and 2267 * mac_unicast_remove/add() and VLAN packets could be incorrectly 2268 * classified to non-VLAN flows of non-aggregation mac clients. These 2269 * VLAN packets will be then filtered out by the mac module. 2270 */ 2271 if ((mip->mi_state_flags & MIS_EXCLUSIVE) != 0) 2272 flags |= FLOW_IGNORE_VLAN; 2273 2274 err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent); 2275 if (err != 0) { 2276 /* no registered receive function */ 2277 return (mp); 2278 } else { 2279 mac_client_impl_t *mcip; 2280 2281 /* 2282 * This flent might just be an additional one on the MAC client, 2283 * i.e. for classification purposes (different fdesc), however 2284 * the resources, SRS et. al., are in the mci_flent, so if 2285 * this isn't the mci_flent, we need to get it. 2286 */ 2287 if ((mcip = flent->fe_mcip) != NULL && 2288 mcip->mci_flent != flent) { 2289 FLOW_REFRELE(flent); 2290 flent = mcip->mci_flent; 2291 FLOW_TRY_REFHOLD(flent, err); 2292 if (err != 0) 2293 return (mp); 2294 } 2295 (flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp, 2296 B_FALSE); 2297 FLOW_REFRELE(flent); 2298 } 2299 return (NULL); 2300 } 2301 2302 mblk_t * 2303 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 2304 { 2305 mac_impl_t *mip = (mac_impl_t *)mh; 2306 mblk_t *bp, *bp1, **bpp, *list = NULL; 2307 2308 /* 2309 * We walk the chain and attempt to classify each packet. 2310 * The packets that couldn't be classified will be returned 2311 * back to the caller. 2312 */ 2313 bp = mp_chain; 2314 bpp = &list; 2315 while (bp != NULL) { 2316 bp1 = bp; 2317 bp = bp->b_next; 2318 bp1->b_next = NULL; 2319 2320 if (mac_rx_classify(mip, mrh, bp1) != NULL) { 2321 *bpp = bp1; 2322 bpp = &bp1->b_next; 2323 } 2324 } 2325 return (list); 2326 } 2327 2328 static int 2329 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg) 2330 { 2331 mac_ring_handle_t ring = arg; 2332 2333 if (flent->fe_tx_srs) 2334 mac_tx_srs_wakeup(flent->fe_tx_srs, ring); 2335 return (0); 2336 } 2337 2338 void 2339 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring) 2340 { 2341 mac_client_impl_t *cclient; 2342 mac_soft_ring_set_t *mac_srs; 2343 2344 /* 2345 * After grabbing the mi_rw_lock, the list of clients can't change. 2346 * If there are any clients mi_disabled must be B_FALSE and can't 2347 * get set since there are clients. If there aren't any clients we 2348 * don't do anything. In any case the mip has to be valid. The driver 2349 * must make sure that it goes single threaded (with respect to mac 2350 * calls) and wait for all pending mac calls to finish before calling 2351 * mac_unregister. 2352 */ 2353 rw_enter(&i_mac_impl_lock, RW_READER); 2354 if (mip->mi_state_flags & MIS_DISABLED) { 2355 rw_exit(&i_mac_impl_lock); 2356 return; 2357 } 2358 2359 /* 2360 * Get MAC tx srs from walking mac_client_handle list. 2361 */ 2362 rw_enter(&mip->mi_rw_lock, RW_READER); 2363 for (cclient = mip->mi_clients_list; cclient != NULL; 2364 cclient = cclient->mci_client_next) { 2365 if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) 2366 mac_tx_srs_wakeup(mac_srs, ring); 2367 (void) mac_flow_walk(cclient->mci_subflow_tab, 2368 mac_tx_flow_srs_wakeup, ring); 2369 } 2370 rw_exit(&mip->mi_rw_lock); 2371 rw_exit(&i_mac_impl_lock); 2372 } 2373 2374 /* ARGSUSED */ 2375 void 2376 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg, 2377 boolean_t add) 2378 { 2379 mac_impl_t *mip = (mac_impl_t *)mh; 2380 2381 i_mac_perim_enter((mac_impl_t *)mh); 2382 /* 2383 * If no specific refresh function was given then default to the 2384 * driver's m_multicst entry point. 2385 */ 2386 if (refresh == NULL) { 2387 refresh = mip->mi_multicst; 2388 arg = mip->mi_driver; 2389 } 2390 2391 mac_bcast_refresh(mip, refresh, arg, add); 2392 i_mac_perim_exit((mac_impl_t *)mh); 2393 } 2394 2395 void 2396 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg) 2397 { 2398 mac_impl_t *mip = (mac_impl_t *)mh; 2399 2400 /* 2401 * If no specific refresh function was given then default to the 2402 * driver's m_promisc entry point. 2403 */ 2404 if (refresh == NULL) { 2405 refresh = mip->mi_setpromisc; 2406 arg = mip->mi_driver; 2407 } 2408 ASSERT(refresh != NULL); 2409 2410 /* 2411 * Call the refresh function with the current promiscuity. 2412 */ 2413 refresh(arg, (mip->mi_devpromisc != 0)); 2414 } 2415 2416 /* 2417 * The mac client requests that the mac not to change its margin size to 2418 * be less than the specified value. If "current" is B_TRUE, then the client 2419 * requests the mac not to change its margin size to be smaller than the 2420 * current size. Further, return the current margin size value in this case. 2421 * 2422 * We keep every requested size in an ordered list from largest to smallest. 2423 */ 2424 int 2425 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current) 2426 { 2427 mac_impl_t *mip = (mac_impl_t *)mh; 2428 mac_margin_req_t **pp, *p; 2429 int err = 0; 2430 2431 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2432 if (current) 2433 *marginp = mip->mi_margin; 2434 2435 /* 2436 * If the current margin value cannot satisfy the margin requested, 2437 * return ENOTSUP directly. 2438 */ 2439 if (*marginp > mip->mi_margin) { 2440 err = ENOTSUP; 2441 goto done; 2442 } 2443 2444 /* 2445 * Check whether the given margin is already in the list. If so, 2446 * bump the reference count. 2447 */ 2448 for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) { 2449 if (p->mmr_margin == *marginp) { 2450 /* 2451 * The margin requested is already in the list, 2452 * so just bump the reference count. 2453 */ 2454 p->mmr_ref++; 2455 goto done; 2456 } 2457 if (p->mmr_margin < *marginp) 2458 break; 2459 } 2460 2461 2462 p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP); 2463 p->mmr_margin = *marginp; 2464 p->mmr_ref++; 2465 p->mmr_nextp = *pp; 2466 *pp = p; 2467 2468 done: 2469 rw_exit(&(mip->mi_rw_lock)); 2470 return (err); 2471 } 2472 2473 /* 2474 * The mac client requests to cancel its previous mac_margin_add() request. 2475 * We remove the requested margin size from the list. 2476 */ 2477 int 2478 mac_margin_remove(mac_handle_t mh, uint32_t margin) 2479 { 2480 mac_impl_t *mip = (mac_impl_t *)mh; 2481 mac_margin_req_t **pp, *p; 2482 int err = 0; 2483 2484 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2485 /* 2486 * Find the entry in the list for the given margin. 2487 */ 2488 for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) { 2489 if (p->mmr_margin == margin) { 2490 if (--p->mmr_ref == 0) 2491 break; 2492 2493 /* 2494 * There is still a reference to this address so 2495 * there's nothing more to do. 2496 */ 2497 goto done; 2498 } 2499 } 2500 2501 /* 2502 * We did not find an entry for the given margin. 2503 */ 2504 if (p == NULL) { 2505 err = ENOENT; 2506 goto done; 2507 } 2508 2509 ASSERT(p->mmr_ref == 0); 2510 2511 /* 2512 * Remove it from the list. 2513 */ 2514 *pp = p->mmr_nextp; 2515 kmem_free(p, sizeof (mac_margin_req_t)); 2516 done: 2517 rw_exit(&(mip->mi_rw_lock)); 2518 return (err); 2519 } 2520 2521 boolean_t 2522 mac_margin_update(mac_handle_t mh, uint32_t margin) 2523 { 2524 mac_impl_t *mip = (mac_impl_t *)mh; 2525 uint32_t margin_needed = 0; 2526 2527 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2528 2529 if (mip->mi_mmrp != NULL) 2530 margin_needed = mip->mi_mmrp->mmr_margin; 2531 2532 if (margin_needed <= margin) 2533 mip->mi_margin = margin; 2534 2535 rw_exit(&(mip->mi_rw_lock)); 2536 2537 if (margin_needed <= margin) 2538 i_mac_notify(mip, MAC_NOTE_MARGIN); 2539 2540 return (margin_needed <= margin); 2541 } 2542 2543 /* 2544 * MAC Type Plugin functions. 2545 */ 2546 2547 mactype_t * 2548 mactype_getplugin(const char *pname) 2549 { 2550 mactype_t *mtype = NULL; 2551 boolean_t tried_modload = B_FALSE; 2552 2553 mutex_enter(&i_mactype_lock); 2554 2555 find_registered_mactype: 2556 if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname, 2557 (mod_hash_val_t *)&mtype) != 0) { 2558 if (!tried_modload) { 2559 /* 2560 * If the plugin has not yet been loaded, then 2561 * attempt to load it now. If modload() succeeds, 2562 * the plugin should have registered using 2563 * mactype_register(), in which case we can go back 2564 * and attempt to find it again. 2565 */ 2566 if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) { 2567 tried_modload = B_TRUE; 2568 goto find_registered_mactype; 2569 } 2570 } 2571 } else { 2572 /* 2573 * Note that there's no danger that the plugin we've loaded 2574 * could be unloaded between the modload() step and the 2575 * reference count bump here, as we're holding 2576 * i_mactype_lock, which mactype_unregister() also holds. 2577 */ 2578 atomic_inc_32(&mtype->mt_ref); 2579 } 2580 2581 mutex_exit(&i_mactype_lock); 2582 return (mtype); 2583 } 2584 2585 mactype_register_t * 2586 mactype_alloc(uint_t mactype_version) 2587 { 2588 mactype_register_t *mtrp; 2589 2590 /* 2591 * Make sure there isn't a version mismatch between the plugin and 2592 * the framework. In the future, if multiple versions are 2593 * supported, this check could become more sophisticated. 2594 */ 2595 if (mactype_version != MACTYPE_VERSION) 2596 return (NULL); 2597 2598 mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP); 2599 mtrp->mtr_version = mactype_version; 2600 return (mtrp); 2601 } 2602 2603 void 2604 mactype_free(mactype_register_t *mtrp) 2605 { 2606 kmem_free(mtrp, sizeof (mactype_register_t)); 2607 } 2608 2609 int 2610 mactype_register(mactype_register_t *mtrp) 2611 { 2612 mactype_t *mtp; 2613 mactype_ops_t *ops = mtrp->mtr_ops; 2614 2615 /* Do some sanity checking before we register this MAC type. */ 2616 if (mtrp->mtr_ident == NULL || ops == NULL) 2617 return (EINVAL); 2618 2619 /* 2620 * Verify that all mandatory callbacks are set in the ops 2621 * vector. 2622 */ 2623 if (ops->mtops_unicst_verify == NULL || 2624 ops->mtops_multicst_verify == NULL || 2625 ops->mtops_sap_verify == NULL || 2626 ops->mtops_header == NULL || 2627 ops->mtops_header_info == NULL) { 2628 return (EINVAL); 2629 } 2630 2631 mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP); 2632 mtp->mt_ident = mtrp->mtr_ident; 2633 mtp->mt_ops = *ops; 2634 mtp->mt_type = mtrp->mtr_mactype; 2635 mtp->mt_nativetype = mtrp->mtr_nativetype; 2636 mtp->mt_addr_length = mtrp->mtr_addrlen; 2637 if (mtrp->mtr_brdcst_addr != NULL) { 2638 mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP); 2639 bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr, 2640 mtrp->mtr_addrlen); 2641 } 2642 2643 mtp->mt_stats = mtrp->mtr_stats; 2644 mtp->mt_statcount = mtrp->mtr_statcount; 2645 2646 mtp->mt_mapping = mtrp->mtr_mapping; 2647 mtp->mt_mappingcount = mtrp->mtr_mappingcount; 2648 2649 if (mod_hash_insert(i_mactype_hash, 2650 (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) { 2651 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 2652 kmem_free(mtp, sizeof (*mtp)); 2653 return (EEXIST); 2654 } 2655 return (0); 2656 } 2657 2658 int 2659 mactype_unregister(const char *ident) 2660 { 2661 mactype_t *mtp; 2662 mod_hash_val_t val; 2663 int err; 2664 2665 /* 2666 * Let's not allow MAC drivers to use this plugin while we're 2667 * trying to unregister it. Holding i_mactype_lock also prevents a 2668 * plugin from unregistering while a MAC driver is attempting to 2669 * hold a reference to it in i_mactype_getplugin(). 2670 */ 2671 mutex_enter(&i_mactype_lock); 2672 2673 if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident, 2674 (mod_hash_val_t *)&mtp)) != 0) { 2675 /* A plugin is trying to unregister, but it never registered. */ 2676 err = ENXIO; 2677 goto done; 2678 } 2679 2680 if (mtp->mt_ref != 0) { 2681 err = EBUSY; 2682 goto done; 2683 } 2684 2685 err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val); 2686 ASSERT(err == 0); 2687 if (err != 0) { 2688 /* This should never happen, thus the ASSERT() above. */ 2689 err = EINVAL; 2690 goto done; 2691 } 2692 ASSERT(mtp == (mactype_t *)val); 2693 2694 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 2695 kmem_free(mtp, sizeof (mactype_t)); 2696 done: 2697 mutex_exit(&i_mactype_lock); 2698 return (err); 2699 } 2700 2701 /* 2702 * Returns TRUE when the specified property is intended for the MAC framework, 2703 * as opposed to driver defined properties. 2704 */ 2705 static boolean_t 2706 mac_is_macprop(mac_prop_t *macprop) 2707 { 2708 switch (macprop->mp_id) { 2709 case MAC_PROP_MAXBW: 2710 case MAC_PROP_PRIO: 2711 case MAC_PROP_BIND_CPU: 2712 return (B_TRUE); 2713 default: 2714 return (B_FALSE); 2715 } 2716 } 2717 2718 /* 2719 * mac_set_prop() sets mac or hardware driver properties: 2720 * mac properties include maxbw, priority, and cpu binding list. Driver 2721 * properties are private properties to the hardware, such as mtu, speed 2722 * etc. 2723 * If the property is a driver property, mac_set_prop() calls driver's callback 2724 * function to set it. 2725 * If the property is a mac property, mac_set_prop() invokes mac_set_resources() 2726 * which will cache the property value in mac_impl_t and may call 2727 * mac_client_set_resource() to update property value of the primary mac client, 2728 * if it exists. 2729 */ 2730 int 2731 mac_set_prop(mac_handle_t mh, mac_prop_t *macprop, void *val, uint_t valsize) 2732 { 2733 int err = ENOTSUP; 2734 mac_impl_t *mip = (mac_impl_t *)mh; 2735 2736 ASSERT(MAC_PERIM_HELD(mh)); 2737 2738 /* If it is mac property, call mac_set_resources() */ 2739 if (mac_is_macprop(macprop)) { 2740 mac_resource_props_t mrp; 2741 2742 if (valsize < sizeof (mac_resource_props_t)) 2743 return (EINVAL); 2744 bzero(&mrp, sizeof (mac_resource_props_t)); 2745 bcopy(val, &mrp, sizeof (mrp)); 2746 return (mac_set_resources(mh, &mrp)); 2747 } 2748 switch (macprop->mp_id) { 2749 case MAC_PROP_MTU: { 2750 uint32_t mtu; 2751 2752 if (valsize < sizeof (mtu)) 2753 return (EINVAL); 2754 bcopy(val, &mtu, sizeof (mtu)); 2755 err = mac_set_mtu(mh, mtu, NULL); 2756 break; 2757 } 2758 default: 2759 /* For other driver properties, call driver's callback */ 2760 if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) { 2761 err = mip->mi_callbacks->mc_setprop(mip->mi_driver, 2762 macprop->mp_name, macprop->mp_id, valsize, val); 2763 } 2764 } 2765 return (err); 2766 } 2767 2768 /* 2769 * mac_get_prop() gets mac or hardware driver properties. 2770 * 2771 * If the property is a driver property, mac_get_prop() calls driver's callback 2772 * function to get it. 2773 * If the property is a mac property, mac_get_prop() invokes mac_get_resources() 2774 * which returns the cached value in mac_impl_t. 2775 */ 2776 int 2777 mac_get_prop(mac_handle_t mh, mac_prop_t *macprop, void *val, uint_t valsize, 2778 uint_t *perm) 2779 { 2780 int err = ENOTSUP; 2781 mac_impl_t *mip = (mac_impl_t *)mh; 2782 uint32_t sdu; 2783 link_state_t link_state; 2784 2785 /* If mac property, read from cache */ 2786 if (mac_is_macprop(macprop)) { 2787 mac_resource_props_t mrp; 2788 2789 if (valsize < sizeof (mac_resource_props_t)) 2790 return (EINVAL); 2791 bzero(&mrp, sizeof (mac_resource_props_t)); 2792 mac_get_resources(mh, &mrp); 2793 bcopy(&mrp, val, sizeof (mac_resource_props_t)); 2794 return (0); 2795 } 2796 2797 switch (macprop->mp_id) { 2798 case MAC_PROP_MTU: 2799 if (valsize < sizeof (sdu)) 2800 return (EINVAL); 2801 if ((macprop->mp_flags & MAC_PROP_DEFAULT) == 0) { 2802 mac_sdu_get(mh, NULL, &sdu); 2803 bcopy(&sdu, val, sizeof (sdu)); 2804 if ((mip->mi_callbacks->mc_callbacks & MC_SETPROP) && 2805 (mip->mi_callbacks->mc_setprop(mip->mi_driver, 2806 macprop->mp_name, macprop->mp_id, valsize, 2807 val) == 0)) { 2808 *perm = MAC_PROP_PERM_RW; 2809 } else { 2810 *perm = MAC_PROP_PERM_READ; 2811 } 2812 return (0); 2813 } else { 2814 if (mip->mi_info.mi_media == DL_ETHER) { 2815 sdu = ETHERMTU; 2816 bcopy(&sdu, val, sizeof (sdu)); 2817 2818 return (0); 2819 } 2820 /* 2821 * ask driver for its default. 2822 */ 2823 break; 2824 } 2825 case MAC_PROP_STATUS: 2826 if (valsize < sizeof (link_state)) 2827 return (EINVAL); 2828 *perm = MAC_PROP_PERM_READ; 2829 link_state = mac_link_get(mh); 2830 bcopy(&link_state, val, sizeof (link_state)); 2831 return (0); 2832 default: 2833 break; 2834 2835 } 2836 /* If driver property, request from driver */ 2837 if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) { 2838 err = mip->mi_callbacks->mc_getprop(mip->mi_driver, 2839 macprop->mp_name, macprop->mp_id, macprop->mp_flags, 2840 valsize, val, perm); 2841 } 2842 return (err); 2843 } 2844 2845 void 2846 mac_register_priv_prop(mac_impl_t *mip, mac_priv_prop_t *mpp, uint_t nprop) 2847 { 2848 mac_priv_prop_t *mpriv; 2849 2850 if (mpp == NULL) 2851 return; 2852 2853 mpriv = kmem_zalloc(nprop * sizeof (*mpriv), KM_SLEEP); 2854 (void) memcpy(mpriv, mpp, nprop * sizeof (*mpriv)); 2855 mip->mi_priv_prop = mpriv; 2856 mip->mi_priv_prop_count = nprop; 2857 } 2858 2859 void 2860 mac_unregister_priv_prop(mac_impl_t *mip) 2861 { 2862 mac_priv_prop_t *mpriv; 2863 2864 mpriv = mip->mi_priv_prop; 2865 if (mpriv != NULL) { 2866 kmem_free(mpriv, mip->mi_priv_prop_count * sizeof (*mpriv)); 2867 mip->mi_priv_prop = NULL; 2868 } 2869 mip->mi_priv_prop_count = 0; 2870 } 2871 2872 /* 2873 * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure 2874 * (by invoking mac_rx()) even after processing mac_stop_ring(). In such 2875 * cases if MAC free's the ring structure after mac_stop_ring(), any 2876 * illegal access to the ring structure coming from the driver will panic 2877 * the system. In order to protect the system from such inadverent access, 2878 * we maintain a cache of rings in the mac_impl_t after they get free'd up. 2879 * When packets are received on free'd up rings, MAC (through the generation 2880 * count mechanism) will drop such packets. 2881 */ 2882 static mac_ring_t * 2883 mac_ring_alloc(mac_impl_t *mip, mac_capab_rings_t *cap_rings) 2884 { 2885 mac_ring_t *ring; 2886 2887 if (cap_rings->mr_type == MAC_RING_TYPE_RX) { 2888 mutex_enter(&mip->mi_ring_lock); 2889 if (mip->mi_ring_freelist != NULL) { 2890 ring = mip->mi_ring_freelist; 2891 mip->mi_ring_freelist = ring->mr_next; 2892 bzero(ring, sizeof (mac_ring_t)); 2893 } else { 2894 ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP); 2895 } 2896 mutex_exit(&mip->mi_ring_lock); 2897 } else { 2898 ring = kmem_zalloc(sizeof (mac_ring_t), KM_SLEEP); 2899 } 2900 ASSERT((ring != NULL) && (ring->mr_state == MR_FREE)); 2901 return (ring); 2902 } 2903 2904 static void 2905 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring) 2906 { 2907 if (ring->mr_type == MAC_RING_TYPE_RX) { 2908 mutex_enter(&mip->mi_ring_lock); 2909 ring->mr_state = MR_FREE; 2910 ring->mr_flag = 0; 2911 ring->mr_next = mip->mi_ring_freelist; 2912 mip->mi_ring_freelist = ring; 2913 mutex_exit(&mip->mi_ring_lock); 2914 } else { 2915 kmem_free(ring, sizeof (mac_ring_t)); 2916 } 2917 } 2918 2919 static void 2920 mac_ring_freeall(mac_impl_t *mip) 2921 { 2922 mac_ring_t *ring_next; 2923 mutex_enter(&mip->mi_ring_lock); 2924 mac_ring_t *ring = mip->mi_ring_freelist; 2925 while (ring != NULL) { 2926 ring_next = ring->mr_next; 2927 kmem_cache_free(mac_ring_cache, ring); 2928 ring = ring_next; 2929 } 2930 mip->mi_ring_freelist = NULL; 2931 mutex_exit(&mip->mi_ring_lock); 2932 } 2933 2934 int 2935 mac_start_ring(mac_ring_t *ring) 2936 { 2937 int rv = 0; 2938 2939 if (ring->mr_start != NULL) 2940 rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num); 2941 2942 return (rv); 2943 } 2944 2945 void 2946 mac_stop_ring(mac_ring_t *ring) 2947 { 2948 if (ring->mr_stop != NULL) 2949 ring->mr_stop(ring->mr_driver); 2950 2951 /* 2952 * Increment the ring generation number for this ring. 2953 */ 2954 ring->mr_gen_num++; 2955 } 2956 2957 int 2958 mac_start_group(mac_group_t *group) 2959 { 2960 int rv = 0; 2961 2962 if (group->mrg_start != NULL) 2963 rv = group->mrg_start(group->mrg_driver); 2964 2965 return (rv); 2966 } 2967 2968 void 2969 mac_stop_group(mac_group_t *group) 2970 { 2971 if (group->mrg_stop != NULL) 2972 group->mrg_stop(group->mrg_driver); 2973 } 2974 2975 /* 2976 * Called from mac_start() on the default Rx group. Broadcast and multicast 2977 * packets are received only on the default group. Hence the default group 2978 * needs to be up even if the primary client is not up, for the other groups 2979 * to be functional. We do this by calling this function at mac_start time 2980 * itself. However the broadcast packets that are received can't make their 2981 * way beyond mac_rx until a mac client creates a broadcast flow. 2982 */ 2983 static int 2984 mac_start_group_and_rings(mac_group_t *group) 2985 { 2986 mac_ring_t *ring; 2987 int rv = 0; 2988 2989 ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED); 2990 if ((rv = mac_start_group(group)) != 0) 2991 return (rv); 2992 2993 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 2994 ASSERT(ring->mr_state == MR_FREE); 2995 if ((rv = mac_start_ring(ring)) != 0) 2996 goto error; 2997 ring->mr_state = MR_INUSE; 2998 ring->mr_classify_type = MAC_SW_CLASSIFIER; 2999 } 3000 return (0); 3001 3002 error: 3003 mac_stop_group_and_rings(group); 3004 return (rv); 3005 } 3006 3007 /* Called from mac_stop on the default Rx group */ 3008 static void 3009 mac_stop_group_and_rings(mac_group_t *group) 3010 { 3011 mac_ring_t *ring; 3012 3013 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 3014 if (ring->mr_state != MR_FREE) { 3015 mac_stop_ring(ring); 3016 ring->mr_state = MR_FREE; 3017 ring->mr_flag = 0; 3018 ring->mr_classify_type = MAC_NO_CLASSIFIER; 3019 } 3020 } 3021 mac_stop_group(group); 3022 } 3023 3024 3025 static mac_ring_t * 3026 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index, 3027 mac_capab_rings_t *cap_rings) 3028 { 3029 mac_ring_t *ring; 3030 mac_ring_info_t ring_info; 3031 3032 ring = mac_ring_alloc(mip, cap_rings); 3033 3034 /* Prepare basic information of ring */ 3035 ring->mr_index = index; 3036 ring->mr_type = group->mrg_type; 3037 ring->mr_gh = (mac_group_handle_t)group; 3038 3039 /* Insert the new ring to the list. */ 3040 ring->mr_next = group->mrg_rings; 3041 group->mrg_rings = ring; 3042 3043 /* Zero to reuse the info data structure */ 3044 bzero(&ring_info, sizeof (ring_info)); 3045 3046 /* Query ring information from driver */ 3047 cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index, 3048 index, &ring_info, (mac_ring_handle_t)ring); 3049 3050 ring->mr_info = ring_info; 3051 3052 /* Update ring's status */ 3053 ring->mr_state = MR_FREE; 3054 ring->mr_flag = 0; 3055 3056 /* Update the ring count of the group */ 3057 group->mrg_cur_count++; 3058 return (ring); 3059 } 3060 3061 /* 3062 * Rings are chained together for easy regrouping. 3063 */ 3064 static void 3065 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size, 3066 mac_capab_rings_t *cap_rings) 3067 { 3068 int index; 3069 3070 /* 3071 * Initialize all ring members of this group. Size of zero will not 3072 * enter the loop, so it's safe for initializing an empty group. 3073 */ 3074 for (index = size - 1; index >= 0; index--) 3075 (void) mac_init_ring(mip, group, index, cap_rings); 3076 } 3077 3078 int 3079 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype) 3080 { 3081 mac_capab_rings_t *cap_rings; 3082 mac_group_t *group, *groups; 3083 mac_group_info_t group_info; 3084 uint_t group_free = 0; 3085 uint_t ring_left; 3086 mac_ring_t *ring; 3087 int g, err = 0; 3088 3089 switch (rtype) { 3090 case MAC_RING_TYPE_RX: 3091 ASSERT(mip->mi_rx_groups == NULL); 3092 3093 cap_rings = &mip->mi_rx_rings_cap; 3094 cap_rings->mr_type = MAC_RING_TYPE_RX; 3095 break; 3096 case MAC_RING_TYPE_TX: 3097 ASSERT(mip->mi_tx_groups == NULL); 3098 3099 cap_rings = &mip->mi_tx_rings_cap; 3100 cap_rings->mr_type = MAC_RING_TYPE_TX; 3101 break; 3102 default: 3103 ASSERT(B_FALSE); 3104 } 3105 3106 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, 3107 cap_rings)) 3108 return (0); 3109 3110 /* 3111 * Allocate a contiguous buffer for all groups. 3112 */ 3113 groups = kmem_zalloc(sizeof (mac_group_t) * (cap_rings->mr_gnum + 1), 3114 KM_SLEEP); 3115 3116 ring_left = cap_rings->mr_rnum; 3117 3118 /* 3119 * Get all ring groups if any, and get their ring members 3120 * if any. 3121 */ 3122 for (g = 0; g < cap_rings->mr_gnum; g++) { 3123 group = groups + g; 3124 3125 /* Prepare basic information of the group */ 3126 group->mrg_index = g; 3127 group->mrg_type = rtype; 3128 group->mrg_state = MAC_GROUP_STATE_UNINIT; 3129 group->mrg_mh = (mac_handle_t)mip; 3130 group->mrg_next = group + 1; 3131 3132 /* Zero to reuse the info data structure */ 3133 bzero(&group_info, sizeof (group_info)); 3134 3135 /* Query group information from driver */ 3136 cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info, 3137 (mac_group_handle_t)group); 3138 3139 switch (cap_rings->mr_group_type) { 3140 case MAC_GROUP_TYPE_DYNAMIC: 3141 if (cap_rings->mr_gaddring == NULL || 3142 cap_rings->mr_gremring == NULL) { 3143 DTRACE_PROBE3( 3144 mac__init__rings_no_addremring, 3145 char *, mip->mi_name, 3146 mac_group_add_ring_t, 3147 cap_rings->mr_gaddring, 3148 mac_group_add_ring_t, 3149 cap_rings->mr_gremring); 3150 err = EINVAL; 3151 goto bail; 3152 } 3153 3154 switch (rtype) { 3155 case MAC_RING_TYPE_RX: 3156 /* 3157 * The first RX group must have non-zero 3158 * rings, and the following groups must 3159 * have zero rings. 3160 */ 3161 if (g == 0 && group_info.mgi_count == 0) { 3162 DTRACE_PROBE1( 3163 mac__init__rings__rx__def__zero, 3164 char *, mip->mi_name); 3165 err = EINVAL; 3166 goto bail; 3167 } 3168 if (g > 0 && group_info.mgi_count != 0) { 3169 DTRACE_PROBE3( 3170 mac__init__rings__rx__nonzero, 3171 char *, mip->mi_name, 3172 int, g, int, group_info.mgi_count); 3173 err = EINVAL; 3174 goto bail; 3175 } 3176 break; 3177 case MAC_RING_TYPE_TX: 3178 /* 3179 * All TX ring groups must have zero rings. 3180 */ 3181 if (group_info.mgi_count != 0) { 3182 DTRACE_PROBE3( 3183 mac__init__rings__tx__nonzero, 3184 char *, mip->mi_name, 3185 int, g, int, group_info.mgi_count); 3186 err = EINVAL; 3187 goto bail; 3188 } 3189 break; 3190 } 3191 break; 3192 case MAC_GROUP_TYPE_STATIC: 3193 /* 3194 * Note that an empty group is allowed, e.g., an aggr 3195 * would start with an empty group. 3196 */ 3197 break; 3198 default: 3199 /* unknown group type */ 3200 DTRACE_PROBE2(mac__init__rings__unknown__type, 3201 char *, mip->mi_name, 3202 int, cap_rings->mr_group_type); 3203 err = EINVAL; 3204 goto bail; 3205 } 3206 3207 3208 /* 3209 * Driver must register group->mgi_addmac/remmac() for rx groups 3210 * to support multiple MAC addresses. 3211 */ 3212 if (rtype == MAC_RING_TYPE_RX) { 3213 if ((group_info.mgi_addmac == NULL) || 3214 (group_info.mgi_addmac == NULL)) 3215 goto bail; 3216 } 3217 3218 /* Cache driver-supplied information */ 3219 group->mrg_info = group_info; 3220 3221 /* Update the group's status and group count. */ 3222 mac_set_rx_group_state(group, MAC_GROUP_STATE_REGISTERED); 3223 group_free++; 3224 3225 group->mrg_rings = NULL; 3226 group->mrg_cur_count = 0; 3227 mac_init_group(mip, group, group_info.mgi_count, cap_rings); 3228 ring_left -= group_info.mgi_count; 3229 3230 /* The current group size should be equal to default value */ 3231 ASSERT(group->mrg_cur_count == group_info.mgi_count); 3232 } 3233 3234 /* Build up a dummy group for free resources as a pool */ 3235 group = groups + cap_rings->mr_gnum; 3236 3237 /* Prepare basic information of the group */ 3238 group->mrg_index = -1; 3239 group->mrg_type = rtype; 3240 group->mrg_state = MAC_GROUP_STATE_UNINIT; 3241 group->mrg_mh = (mac_handle_t)mip; 3242 group->mrg_next = NULL; 3243 3244 /* 3245 * If there are ungrouped rings, allocate a continuous buffer for 3246 * remaining resources. 3247 */ 3248 if (ring_left != 0) { 3249 group->mrg_rings = NULL; 3250 group->mrg_cur_count = 0; 3251 mac_init_group(mip, group, ring_left, cap_rings); 3252 3253 /* The current group size should be equal to ring_left */ 3254 ASSERT(group->mrg_cur_count == ring_left); 3255 3256 ring_left = 0; 3257 3258 /* Update this group's status */ 3259 mac_set_rx_group_state(group, MAC_GROUP_STATE_REGISTERED); 3260 } else 3261 group->mrg_rings = NULL; 3262 3263 ASSERT(ring_left == 0); 3264 3265 bail: 3266 /* Cache other important information to finalize the initialization */ 3267 switch (rtype) { 3268 case MAC_RING_TYPE_RX: 3269 mip->mi_rx_group_type = cap_rings->mr_group_type; 3270 mip->mi_rx_group_count = cap_rings->mr_gnum; 3271 mip->mi_rx_groups = groups; 3272 break; 3273 case MAC_RING_TYPE_TX: 3274 mip->mi_tx_group_type = cap_rings->mr_group_type; 3275 mip->mi_tx_group_count = cap_rings->mr_gnum; 3276 mip->mi_tx_group_free = group_free; 3277 mip->mi_tx_groups = groups; 3278 3279 /* 3280 * Ring 0 is used as the default one and it could be assigned 3281 * to a client as well. 3282 */ 3283 group = groups + cap_rings->mr_gnum; 3284 ring = group->mrg_rings; 3285 while ((ring->mr_index != 0) && (ring->mr_next != NULL)) 3286 ring = ring->mr_next; 3287 ASSERT(ring->mr_index == 0); 3288 mip->mi_default_tx_ring = (mac_ring_handle_t)ring; 3289 break; 3290 default: 3291 ASSERT(B_FALSE); 3292 } 3293 3294 if (err != 0) 3295 mac_free_rings(mip, rtype); 3296 3297 return (err); 3298 } 3299 3300 /* 3301 * Called to free all ring groups with particular type. It's supposed all groups 3302 * have been released by clinet. 3303 */ 3304 void 3305 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype) 3306 { 3307 mac_group_t *group, *groups; 3308 uint_t group_count; 3309 3310 switch (rtype) { 3311 case MAC_RING_TYPE_RX: 3312 if (mip->mi_rx_groups == NULL) 3313 return; 3314 3315 groups = mip->mi_rx_groups; 3316 group_count = mip->mi_rx_group_count; 3317 3318 mip->mi_rx_groups = NULL; 3319 mip->mi_rx_group_count = 0; 3320 break; 3321 case MAC_RING_TYPE_TX: 3322 ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free); 3323 3324 if (mip->mi_tx_groups == NULL) 3325 return; 3326 3327 groups = mip->mi_tx_groups; 3328 group_count = mip->mi_tx_group_count; 3329 3330 mip->mi_tx_groups = NULL; 3331 mip->mi_tx_group_count = 0; 3332 mip->mi_tx_group_free = 0; 3333 mip->mi_default_tx_ring = NULL; 3334 break; 3335 default: 3336 ASSERT(B_FALSE); 3337 } 3338 3339 for (group = groups; group != NULL; group = group->mrg_next) { 3340 mac_ring_t *ring; 3341 3342 if (group->mrg_cur_count == 0) 3343 continue; 3344 3345 ASSERT(group->mrg_rings != NULL); 3346 3347 while ((ring = group->mrg_rings) != NULL) { 3348 group->mrg_rings = ring->mr_next; 3349 mac_ring_free(mip, ring); 3350 } 3351 } 3352 3353 /* Free all the cached rings */ 3354 mac_ring_freeall(mip); 3355 /* Free the block of group data strutures */ 3356 kmem_free(groups, sizeof (mac_group_t) * (group_count + 1)); 3357 } 3358 3359 /* 3360 * Associate a MAC address with a receive group. 3361 * 3362 * The return value of this function should always be checked properly, because 3363 * any type of failure could cause unexpected results. A group can be added 3364 * or removed with a MAC address only after it has been reserved. Ideally, 3365 * a successful reservation always leads to calling mac_group_addmac() to 3366 * steer desired traffic. Failure of adding an unicast MAC address doesn't 3367 * always imply that the group is functioning abnormally. 3368 * 3369 * Currently this function is called everywhere, and it reflects assumptions 3370 * about MAC addresses in the implementation. CR 6735196. 3371 */ 3372 int 3373 mac_group_addmac(mac_group_t *group, const uint8_t *addr) 3374 { 3375 ASSERT(group->mrg_type == MAC_RING_TYPE_RX); 3376 ASSERT(group->mrg_info.mgi_addmac != NULL); 3377 3378 return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr)); 3379 } 3380 3381 /* 3382 * Remove the association between MAC address and receive group. 3383 */ 3384 int 3385 mac_group_remmac(mac_group_t *group, const uint8_t *addr) 3386 { 3387 ASSERT(group->mrg_type == MAC_RING_TYPE_RX); 3388 ASSERT(group->mrg_info.mgi_remmac != NULL); 3389 3390 return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr)); 3391 } 3392 3393 /* 3394 * Release a ring in use by marking it MR_FREE. 3395 * Any other client may reserve it for its use. 3396 */ 3397 void 3398 mac_release_tx_ring(mac_ring_handle_t rh) 3399 { 3400 mac_ring_t *ring = (mac_ring_t *)rh; 3401 mac_group_t *group = (mac_group_t *)ring->mr_gh; 3402 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 3403 3404 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3405 ASSERT(ring->mr_state != MR_FREE); 3406 3407 /* 3408 * Default tx ring will be released by mac_stop(). 3409 */ 3410 if (rh == mip->mi_default_tx_ring) 3411 return; 3412 3413 mac_stop_ring(ring); 3414 3415 ring->mr_state = MR_FREE; 3416 ring->mr_flag = 0; 3417 } 3418 3419 /* 3420 * Send packets through a selected tx ring. 3421 */ 3422 mblk_t * 3423 mac_ring_tx(mac_ring_handle_t rh, mblk_t *mp) 3424 { 3425 mac_ring_t *ring = (mac_ring_t *)rh; 3426 mac_ring_info_t *info = &ring->mr_info; 3427 3428 ASSERT(ring->mr_type == MAC_RING_TYPE_TX); 3429 ASSERT(ring->mr_state >= MR_INUSE); 3430 ASSERT(info->mri_tx != NULL); 3431 3432 return (info->mri_tx(info->mri_driver, mp)); 3433 } 3434 3435 /* 3436 * Find a ring from its index. 3437 */ 3438 mac_ring_t * 3439 mac_find_ring(mac_group_t *group, int index) 3440 { 3441 mac_ring_t *ring = group->mrg_rings; 3442 3443 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) 3444 if (ring->mr_index == index) 3445 break; 3446 3447 return (ring); 3448 } 3449 /* 3450 * Add a ring to an existing group. 3451 * 3452 * The ring must be either passed directly (for example if the ring 3453 * movement is initiated by the framework), or specified through a driver 3454 * index (for example when the ring is added by the driver. 3455 * 3456 * The caller needs to call mac_perim_enter() before calling this function. 3457 */ 3458 int 3459 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index) 3460 { 3461 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 3462 mac_capab_rings_t *cap_rings; 3463 boolean_t driver_call = (ring == NULL); 3464 mac_group_type_t group_type; 3465 int ret = 0; 3466 3467 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3468 3469 switch (group->mrg_type) { 3470 case MAC_RING_TYPE_RX: 3471 cap_rings = &mip->mi_rx_rings_cap; 3472 group_type = mip->mi_rx_group_type; 3473 break; 3474 case MAC_RING_TYPE_TX: 3475 cap_rings = &mip->mi_tx_rings_cap; 3476 group_type = mip->mi_tx_group_type; 3477 break; 3478 default: 3479 ASSERT(B_FALSE); 3480 } 3481 3482 /* 3483 * There should be no ring with the same ring index in the target 3484 * group. 3485 */ 3486 ASSERT(mac_find_ring(group, driver_call ? index : ring->mr_index) == 3487 NULL); 3488 3489 if (driver_call) { 3490 /* 3491 * The function is called as a result of a request from 3492 * a driver to add a ring to an existing group, for example 3493 * from the aggregation driver. Allocate a new mac_ring_t 3494 * for that ring. 3495 */ 3496 ring = mac_init_ring(mip, group, index, cap_rings); 3497 ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT); 3498 } else { 3499 /* 3500 * The function is called as a result of a MAC layer request 3501 * to add a ring to an existing group. In this case the 3502 * ring is being moved between groups, which requires 3503 * the underlying driver to support dynamic grouping, 3504 * and the mac_ring_t already exists. 3505 */ 3506 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 3507 ASSERT(cap_rings->mr_gaddring != NULL); 3508 ASSERT(ring->mr_gh == NULL); 3509 } 3510 3511 /* 3512 * At this point the ring should not be in use, and it should be 3513 * of the right for the target group. 3514 */ 3515 ASSERT(ring->mr_state < MR_INUSE); 3516 ASSERT(ring->mr_srs == NULL); 3517 ASSERT(ring->mr_type == group->mrg_type); 3518 3519 if (!driver_call) { 3520 /* 3521 * Add the driver level hardware ring if the process was not 3522 * initiated by the driver, and the target group is not the 3523 * group. 3524 */ 3525 if (group->mrg_driver != NULL) { 3526 cap_rings->mr_gaddring(group->mrg_driver, 3527 ring->mr_driver, ring->mr_type); 3528 } 3529 3530 /* 3531 * Insert the ring ahead existing rings. 3532 */ 3533 ring->mr_next = group->mrg_rings; 3534 group->mrg_rings = ring; 3535 ring->mr_gh = (mac_group_handle_t)group; 3536 group->mrg_cur_count++; 3537 } 3538 3539 /* 3540 * If the group has not been actively used, we're done. 3541 */ 3542 if (group->mrg_index != -1 && 3543 group->mrg_state < MAC_GROUP_STATE_RESERVED) 3544 return (0); 3545 3546 /* 3547 * Set up SRS/SR according to the ring type. 3548 */ 3549 switch (ring->mr_type) { 3550 case MAC_RING_TYPE_RX: 3551 /* 3552 * Setup SRS on top of the new ring if the group is 3553 * reserved for someones exclusive use. 3554 */ 3555 if (group->mrg_state == MAC_GROUP_STATE_RESERVED) { 3556 flow_entry_t *flent; 3557 mac_client_impl_t *mcip; 3558 3559 mcip = MAC_RX_GROUP_ONLY_CLIENT(group); 3560 ASSERT(mcip != NULL); 3561 flent = mcip->mci_flent; 3562 ASSERT(flent->fe_rx_srs_cnt > 0); 3563 mac_srs_group_setup(mcip, flent, group, SRST_LINK); 3564 } 3565 break; 3566 case MAC_RING_TYPE_TX: 3567 /* 3568 * For TX this function is only invoked during the 3569 * initial creation of a group when a share is 3570 * associated with a MAC client. So the datapath is not 3571 * yet setup, and will be setup later after the 3572 * group has been reserved and populated. 3573 */ 3574 break; 3575 default: 3576 ASSERT(B_FALSE); 3577 } 3578 3579 /* 3580 * Start the ring if needed. Failure causes to undo the grouping action. 3581 */ 3582 if ((ret = mac_start_ring(ring)) != 0) { 3583 if (ring->mr_type == MAC_RING_TYPE_RX) { 3584 if (ring->mr_srs != NULL) { 3585 mac_rx_srs_remove(ring->mr_srs); 3586 ring->mr_srs = NULL; 3587 } 3588 } 3589 if (!driver_call) { 3590 cap_rings->mr_gremring(group->mrg_driver, 3591 ring->mr_driver, ring->mr_type); 3592 } 3593 group->mrg_cur_count--; 3594 group->mrg_rings = ring->mr_next; 3595 3596 ring->mr_gh = NULL; 3597 3598 if (driver_call) 3599 mac_ring_free(mip, ring); 3600 3601 return (ret); 3602 } 3603 3604 /* 3605 * Update the ring's state. 3606 */ 3607 ring->mr_state = MR_INUSE; 3608 MAC_RING_UNMARK(ring, MR_INCIPIENT); 3609 return (0); 3610 } 3611 3612 /* 3613 * Remove a ring from it's current group. MAC internal function for dynamic 3614 * grouping. 3615 * 3616 * The caller needs to call mac_perim_enter() before calling this function. 3617 */ 3618 void 3619 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring, 3620 boolean_t driver_call) 3621 { 3622 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 3623 mac_capab_rings_t *cap_rings = NULL; 3624 mac_group_type_t group_type; 3625 3626 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3627 3628 ASSERT(mac_find_ring(group, ring->mr_index) == ring); 3629 ASSERT((mac_group_t *)ring->mr_gh == group); 3630 ASSERT(ring->mr_type == group->mrg_type); 3631 3632 switch (ring->mr_type) { 3633 case MAC_RING_TYPE_RX: 3634 group_type = mip->mi_rx_group_type; 3635 cap_rings = &mip->mi_rx_rings_cap; 3636 3637 if (group->mrg_state >= MAC_GROUP_STATE_RESERVED) 3638 mac_stop_ring(ring); 3639 3640 /* 3641 * Only hardware classified packets hold a reference to the 3642 * ring all the way up the Rx path. mac_rx_srs_remove() 3643 * will take care of quiescing the Rx path and removing the 3644 * SRS. The software classified path neither holds a reference 3645 * nor any association with the ring in mac_rx. 3646 */ 3647 if (ring->mr_srs != NULL) { 3648 mac_rx_srs_remove(ring->mr_srs); 3649 ring->mr_srs = NULL; 3650 } 3651 ring->mr_state = MR_FREE; 3652 ring->mr_flag = 0; 3653 3654 break; 3655 case MAC_RING_TYPE_TX: 3656 /* 3657 * For TX this function is only invoked in two 3658 * cases: 3659 * 3660 * 1) In the case of a failure during the 3661 * initial creation of a group when a share is 3662 * associated with a MAC client. So the SRS is not 3663 * yet setup, and will be setup later after the 3664 * group has been reserved and populated. 3665 * 3666 * 2) From mac_release_tx_group() when freeing 3667 * a TX SRS. 3668 * 3669 * In both cases the SRS and its soft rings are 3670 * already quiesced. 3671 */ 3672 ASSERT(!driver_call); 3673 group_type = mip->mi_tx_group_type; 3674 cap_rings = &mip->mi_tx_rings_cap; 3675 break; 3676 default: 3677 ASSERT(B_FALSE); 3678 } 3679 3680 /* 3681 * Remove the ring from the group. 3682 */ 3683 if (ring == group->mrg_rings) 3684 group->mrg_rings = ring->mr_next; 3685 else { 3686 mac_ring_t *pre; 3687 3688 pre = group->mrg_rings; 3689 while (pre->mr_next != ring) 3690 pre = pre->mr_next; 3691 pre->mr_next = ring->mr_next; 3692 } 3693 group->mrg_cur_count--; 3694 3695 if (!driver_call) { 3696 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 3697 ASSERT(cap_rings->mr_gremring != NULL); 3698 3699 /* 3700 * Remove the driver level hardware ring. 3701 */ 3702 if (group->mrg_driver != NULL) { 3703 cap_rings->mr_gremring(group->mrg_driver, 3704 ring->mr_driver, ring->mr_type); 3705 } 3706 } 3707 3708 ring->mr_gh = NULL; 3709 if (driver_call) { 3710 mac_ring_free(mip, ring); 3711 } else { 3712 ring->mr_state = MR_FREE; 3713 ring->mr_flag = 0; 3714 } 3715 } 3716 3717 /* 3718 * Move a ring to the target group. If needed, remove the ring from the group 3719 * that it currently belongs to. 3720 * 3721 * The caller need to enter MAC's perimeter by calling mac_perim_enter(). 3722 */ 3723 static int 3724 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring) 3725 { 3726 mac_group_t *s_group = (mac_group_t *)ring->mr_gh; 3727 int rv; 3728 3729 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3730 ASSERT(d_group != NULL); 3731 ASSERT(s_group->mrg_mh == d_group->mrg_mh); 3732 3733 if (s_group == d_group) 3734 return (0); 3735 3736 /* 3737 * Remove it from current group first. 3738 */ 3739 if (s_group != NULL) 3740 i_mac_group_rem_ring(s_group, ring, B_FALSE); 3741 3742 /* 3743 * Add it to the new group. 3744 */ 3745 rv = i_mac_group_add_ring(d_group, ring, 0); 3746 if (rv != 0) { 3747 /* 3748 * Failed to add ring back to source group. If 3749 * that fails, the ring is stuck in limbo, log message. 3750 */ 3751 if (i_mac_group_add_ring(s_group, ring, 0)) { 3752 cmn_err(CE_WARN, "%s: failed to move ring %p\n", 3753 mip->mi_name, (void *)ring); 3754 } 3755 } 3756 3757 return (rv); 3758 } 3759 3760 /* 3761 * Find a MAC address according to its value. 3762 */ 3763 mac_address_t * 3764 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr) 3765 { 3766 mac_address_t *map; 3767 3768 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3769 3770 for (map = mip->mi_addresses; map != NULL; map = map->ma_next) { 3771 if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) 3772 break; 3773 } 3774 3775 return (map); 3776 } 3777 3778 /* 3779 * Check whether the MAC address is shared by multiple clients. 3780 */ 3781 boolean_t 3782 mac_check_macaddr_shared(mac_address_t *map) 3783 { 3784 ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip)); 3785 3786 return (map->ma_nusers > 1); 3787 } 3788 3789 /* 3790 * Remove the specified MAC address from the MAC address list and free it. 3791 */ 3792 static void 3793 mac_free_macaddr(mac_address_t *map) 3794 { 3795 mac_impl_t *mip = map->ma_mip; 3796 3797 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3798 ASSERT(mip->mi_addresses != NULL); 3799 3800 map = mac_find_macaddr(mip, map->ma_addr); 3801 3802 ASSERT(map != NULL); 3803 ASSERT(map->ma_nusers == 0); 3804 3805 if (map == mip->mi_addresses) { 3806 mip->mi_addresses = map->ma_next; 3807 } else { 3808 mac_address_t *pre; 3809 3810 pre = mip->mi_addresses; 3811 while (pre->ma_next != map) 3812 pre = pre->ma_next; 3813 pre->ma_next = map->ma_next; 3814 } 3815 3816 kmem_free(map, sizeof (mac_address_t)); 3817 } 3818 3819 /* 3820 * Add a MAC address reference for a client. If the desired MAC address 3821 * exists, add a reference to it. Otherwise, add the new address by adding 3822 * it to a reserved group or setting promiscuous mode. Won't try different 3823 * group is the group is non-NULL, so the caller must explictly share 3824 * default group when needed. 3825 * 3826 * Note, the primary MAC address is initialized at registration time, so 3827 * to add it to default group only need to activate it if its reference 3828 * count is still zero. Also, some drivers may not have advertised RINGS 3829 * capability. 3830 */ 3831 int 3832 mac_add_macaddr(mac_impl_t *mip, mac_group_t *group, uint8_t *mac_addr, 3833 boolean_t use_hw) 3834 { 3835 mac_address_t *map; 3836 int err = 0; 3837 boolean_t allocated_map = B_FALSE; 3838 3839 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3840 3841 map = mac_find_macaddr(mip, mac_addr); 3842 3843 /* 3844 * If the new MAC address has not been added. Allocate a new one 3845 * and set it up. 3846 */ 3847 if (map == NULL) { 3848 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 3849 map->ma_len = mip->mi_type->mt_addr_length; 3850 bcopy(mac_addr, map->ma_addr, map->ma_len); 3851 map->ma_nusers = 0; 3852 map->ma_group = group; 3853 map->ma_mip = mip; 3854 3855 /* add the new MAC address to the head of the address list */ 3856 map->ma_next = mip->mi_addresses; 3857 mip->mi_addresses = map; 3858 3859 allocated_map = B_TRUE; 3860 } 3861 3862 ASSERT(map->ma_group == group); 3863 3864 /* 3865 * If the MAC address is already in use, simply account for the 3866 * new client. 3867 */ 3868 if (map->ma_nusers++ > 0) 3869 return (0); 3870 3871 /* 3872 * Activate this MAC address by adding it to the reserved group. 3873 */ 3874 if (group != NULL) { 3875 err = mac_group_addmac(group, (const uint8_t *)mac_addr); 3876 if (err == 0) { 3877 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 3878 return (0); 3879 } 3880 } 3881 3882 /* 3883 * The MAC address addition failed. If the client requires a 3884 * hardware classified MAC address, fail the operation. 3885 */ 3886 if (use_hw) { 3887 err = ENOSPC; 3888 goto bail; 3889 } 3890 3891 /* 3892 * Try promiscuous mode. 3893 * 3894 * For drivers that don't advertise RINGS capability, do 3895 * nothing for the primary address. 3896 */ 3897 if ((group == NULL) && 3898 (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) { 3899 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 3900 return (0); 3901 } 3902 3903 /* 3904 * Enable promiscuous mode in order to receive traffic 3905 * to the new MAC address. 3906 */ 3907 if ((err = i_mac_promisc_set(mip, B_TRUE, MAC_DEVPROMISC)) == 0) { 3908 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC; 3909 return (0); 3910 } 3911 3912 /* 3913 * Free the MAC address that could not be added. Don't free 3914 * a pre-existing address, it could have been the entry 3915 * for the primary MAC address which was pre-allocated by 3916 * mac_init_macaddr(), and which must remain on the list. 3917 */ 3918 bail: 3919 map->ma_nusers--; 3920 if (allocated_map) 3921 mac_free_macaddr(map); 3922 return (err); 3923 } 3924 3925 /* 3926 * Remove a reference to a MAC address. This may cause to remove the MAC 3927 * address from an associated group or to turn off promiscuous mode. 3928 * The caller needs to handle the failure properly. 3929 */ 3930 int 3931 mac_remove_macaddr(mac_address_t *map) 3932 { 3933 mac_impl_t *mip = map->ma_mip; 3934 int err = 0; 3935 3936 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3937 3938 ASSERT(map == mac_find_macaddr(mip, map->ma_addr)); 3939 3940 /* 3941 * If it's not the last client using this MAC address, only update 3942 * the MAC clients count. 3943 */ 3944 if (--map->ma_nusers > 0) 3945 return (0); 3946 3947 /* 3948 * The MAC address is no longer used by any MAC client, so remove 3949 * it from its associated group, or turn off promiscuous mode 3950 * if it was enabled for the MAC address. 3951 */ 3952 switch (map->ma_type) { 3953 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 3954 /* 3955 * Don't free the preset primary address for drivers that 3956 * don't advertise RINGS capability. 3957 */ 3958 if (map->ma_group == NULL) 3959 return (0); 3960 3961 err = mac_group_remmac(map->ma_group, map->ma_addr); 3962 break; 3963 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 3964 err = i_mac_promisc_set(mip, B_FALSE, MAC_DEVPROMISC); 3965 break; 3966 default: 3967 ASSERT(B_FALSE); 3968 } 3969 3970 if (err != 0) 3971 return (err); 3972 3973 /* 3974 * We created MAC address for the primary one at registration, so we 3975 * won't free it here. mac_fini_macaddr() will take care of it. 3976 */ 3977 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0) 3978 mac_free_macaddr(map); 3979 3980 return (0); 3981 } 3982 3983 /* 3984 * Update an existing MAC address. The caller need to make sure that the new 3985 * value has not been used. 3986 */ 3987 int 3988 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr) 3989 { 3990 mac_impl_t *mip = map->ma_mip; 3991 int err = 0; 3992 3993 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3994 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 3995 3996 switch (map->ma_type) { 3997 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 3998 /* 3999 * Update the primary address for drivers that are not 4000 * RINGS capable. 4001 */ 4002 if (map->ma_group == NULL) { 4003 err = mip->mi_unicst(mip->mi_driver, (const uint8_t *) 4004 mac_addr); 4005 if (err != 0) 4006 return (err); 4007 break; 4008 } 4009 4010 /* 4011 * If this MAC address is not currently in use, 4012 * simply break out and update the value. 4013 */ 4014 if (map->ma_nusers == 0) 4015 break; 4016 4017 /* 4018 * Need to replace the MAC address associated with a group. 4019 */ 4020 err = mac_group_remmac(map->ma_group, map->ma_addr); 4021 if (err != 0) 4022 return (err); 4023 4024 err = mac_group_addmac(map->ma_group, mac_addr); 4025 4026 /* 4027 * Failure hints hardware error. The MAC layer needs to 4028 * have error notification facility to handle this. 4029 * Now, simply try to restore the value. 4030 */ 4031 if (err != 0) 4032 (void) mac_group_addmac(map->ma_group, map->ma_addr); 4033 4034 break; 4035 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 4036 /* 4037 * Need to do nothing more if in promiscuous mode. 4038 */ 4039 break; 4040 default: 4041 ASSERT(B_FALSE); 4042 } 4043 4044 /* 4045 * Successfully replaced the MAC address. 4046 */ 4047 if (err == 0) 4048 bcopy(mac_addr, map->ma_addr, map->ma_len); 4049 4050 return (err); 4051 } 4052 4053 /* 4054 * Freshen the MAC address with new value. Its caller must have updated the 4055 * hardware MAC address before calling this function. 4056 * This funcitons is supposed to be used to handle the MAC address change 4057 * notification from underlying drivers. 4058 */ 4059 void 4060 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr) 4061 { 4062 mac_impl_t *mip = map->ma_mip; 4063 4064 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4065 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 4066 4067 /* 4068 * Freshen the MAC address with new value. 4069 */ 4070 bcopy(mac_addr, map->ma_addr, map->ma_len); 4071 bcopy(mac_addr, mip->mi_addr, map->ma_len); 4072 4073 /* 4074 * Update all MAC clients that share this MAC address. 4075 */ 4076 mac_unicast_update_clients(mip, map); 4077 } 4078 4079 /* 4080 * Set up the primary MAC address. 4081 */ 4082 void 4083 mac_init_macaddr(mac_impl_t *mip) 4084 { 4085 mac_address_t *map; 4086 4087 /* 4088 * The reference count is initialized to zero, until it's really 4089 * activated. 4090 */ 4091 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 4092 map->ma_len = mip->mi_type->mt_addr_length; 4093 bcopy(mip->mi_addr, map->ma_addr, map->ma_len); 4094 4095 /* 4096 * If driver advertises RINGS capability, it shouldn't have initialized 4097 * its primary MAC address. For other drivers, including VNIC, the 4098 * primary address must work after registration. 4099 */ 4100 if (mip->mi_rx_groups == NULL) 4101 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 4102 4103 /* 4104 * The primary MAC address is reserved for default group according 4105 * to current design. 4106 */ 4107 map->ma_group = mip->mi_rx_groups; 4108 map->ma_mip = mip; 4109 4110 mip->mi_addresses = map; 4111 } 4112 4113 /* 4114 * Clean up the primary MAC address. Note, only one primary MAC address 4115 * is allowed. All other MAC addresses must have been freed appropriately. 4116 */ 4117 void 4118 mac_fini_macaddr(mac_impl_t *mip) 4119 { 4120 mac_address_t *map = mip->mi_addresses; 4121 4122 if (map == NULL) 4123 return; 4124 4125 /* 4126 * If mi_addresses is initialized, there should be exactly one 4127 * entry left on the list with no users. 4128 */ 4129 ASSERT(map->ma_nusers == 0); 4130 ASSERT(map->ma_next == NULL); 4131 4132 kmem_free(map, sizeof (mac_address_t)); 4133 mip->mi_addresses = NULL; 4134 } 4135 4136 /* 4137 * Logging related functions. 4138 */ 4139 4140 /* Write the Flow description to the log file */ 4141 int 4142 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip) 4143 { 4144 flow_desc_t *fdesc; 4145 mac_resource_props_t *mrp; 4146 net_desc_t ndesc; 4147 4148 bzero(&ndesc, sizeof (net_desc_t)); 4149 4150 /* 4151 * Grab the fe_lock to see a self-consistent fe_flow_desc. 4152 * Updates to the fe_flow_desc are done under the fe_lock 4153 */ 4154 mutex_enter(&flent->fe_lock); 4155 fdesc = &flent->fe_flow_desc; 4156 mrp = &flent->fe_resource_props; 4157 4158 ndesc.nd_name = flent->fe_flow_name; 4159 ndesc.nd_devname = mcip->mci_name; 4160 bcopy(fdesc->fd_src_mac, ndesc.nd_ehost, ETHERADDRL); 4161 bcopy(fdesc->fd_dst_mac, ndesc.nd_edest, ETHERADDRL); 4162 ndesc.nd_sap = htonl(fdesc->fd_sap); 4163 ndesc.nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION; 4164 ndesc.nd_bw_limit = mrp->mrp_maxbw; 4165 if (ndesc.nd_isv4) { 4166 ndesc.nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]); 4167 ndesc.nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]); 4168 } else { 4169 bcopy(&fdesc->fd_local_addr, ndesc.nd_saddr, IPV6_ADDR_LEN); 4170 bcopy(&fdesc->fd_remote_addr, ndesc.nd_daddr, IPV6_ADDR_LEN); 4171 } 4172 ndesc.nd_sport = htons(fdesc->fd_local_port); 4173 ndesc.nd_dport = htons(fdesc->fd_remote_port); 4174 ndesc.nd_protocol = (uint8_t)fdesc->fd_protocol; 4175 mutex_exit(&flent->fe_lock); 4176 4177 return (exacct_commit_netinfo((void *)&ndesc, EX_NET_FLDESC_REC)); 4178 } 4179 4180 /* Write the Flow statistics to the log file */ 4181 int 4182 mac_write_flow_stats(flow_entry_t *flent) 4183 { 4184 flow_stats_t *fl_stats; 4185 net_stat_t nstat; 4186 4187 fl_stats = &flent->fe_flowstats; 4188 nstat.ns_name = flent->fe_flow_name; 4189 nstat.ns_ibytes = fl_stats->fs_rbytes; 4190 nstat.ns_obytes = fl_stats->fs_obytes; 4191 nstat.ns_ipackets = fl_stats->fs_ipackets; 4192 nstat.ns_opackets = fl_stats->fs_opackets; 4193 nstat.ns_ierrors = fl_stats->fs_ierrors; 4194 nstat.ns_oerrors = fl_stats->fs_oerrors; 4195 4196 return (exacct_commit_netinfo((void *)&nstat, EX_NET_FLSTAT_REC)); 4197 } 4198 4199 /* Write the Link Description to the log file */ 4200 int 4201 mac_write_link_desc(mac_client_impl_t *mcip) 4202 { 4203 net_desc_t ndesc; 4204 flow_entry_t *flent = mcip->mci_flent; 4205 4206 bzero(&ndesc, sizeof (net_desc_t)); 4207 4208 ndesc.nd_name = mcip->mci_name; 4209 ndesc.nd_devname = mcip->mci_name; 4210 ndesc.nd_isv4 = B_TRUE; 4211 /* 4212 * Grab the fe_lock to see a self-consistent fe_flow_desc. 4213 * Updates to the fe_flow_desc are done under the fe_lock 4214 * after removing the flent from the flow table. 4215 */ 4216 mutex_enter(&flent->fe_lock); 4217 bcopy(flent->fe_flow_desc.fd_src_mac, ndesc.nd_ehost, ETHERADDRL); 4218 mutex_exit(&flent->fe_lock); 4219 4220 return (exacct_commit_netinfo((void *)&ndesc, EX_NET_LNDESC_REC)); 4221 } 4222 4223 /* Write the Link statistics to the log file */ 4224 int 4225 mac_write_link_stats(mac_client_impl_t *mcip) 4226 { 4227 net_stat_t nstat; 4228 4229 nstat.ns_name = mcip->mci_name; 4230 nstat.ns_ibytes = mcip->mci_stat_ibytes; 4231 nstat.ns_obytes = mcip->mci_stat_obytes; 4232 nstat.ns_ipackets = mcip->mci_stat_ipackets; 4233 nstat.ns_opackets = mcip->mci_stat_opackets; 4234 nstat.ns_ierrors = mcip->mci_stat_ierrors; 4235 nstat.ns_oerrors = mcip->mci_stat_oerrors; 4236 4237 return (exacct_commit_netinfo((void *)&nstat, EX_NET_LNSTAT_REC)); 4238 } 4239 4240 /* 4241 * For a given flow, if the descrition has not been logged before, do it now. 4242 * If it is a VNIC, then we have collected information about it from the MAC 4243 * table, so skip it. 4244 */ 4245 /*ARGSUSED*/ 4246 static int 4247 mac_log_flowinfo(flow_entry_t *flent, void *args) 4248 { 4249 mac_client_impl_t *mcip = flent->fe_mcip; 4250 4251 if (mcip == NULL) 4252 return (0); 4253 4254 /* 4255 * If the name starts with "vnic", and fe_user_generated is true (to 4256 * exclude the mcast and active flow entries created implicitly for 4257 * a vnic, it is a VNIC flow. i.e. vnic1 is a vnic flow, 4258 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active. 4259 */ 4260 if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 && 4261 (flent->fe_type & FLOW_USER) != 0) { 4262 return (0); 4263 } 4264 4265 if (!flent->fe_desc_logged) { 4266 /* 4267 * We don't return error because we want to continu the 4268 * walk in case this is the last walk which means we 4269 * need to reset fe_desc_logged in all the flows. 4270 */ 4271 if (mac_write_flow_desc(flent, mcip) != 0) 4272 return (0); 4273 flent->fe_desc_logged = B_TRUE; 4274 } 4275 4276 /* 4277 * Regardless of the error, we want to proceed in case we have to 4278 * reset fe_desc_logged. 4279 */ 4280 (void) mac_write_flow_stats(flent); 4281 4282 if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED)) 4283 flent->fe_desc_logged = B_FALSE; 4284 4285 return (0); 4286 } 4287 4288 typedef struct i_mac_log_state_s { 4289 boolean_t mi_last; 4290 int mi_fenable; 4291 int mi_lenable; 4292 } i_mac_log_state_t; 4293 4294 /* 4295 * Walk the mac_impl_ts and log the description for each mac client of this mac, 4296 * if it hasn't already been done. Additionally, log statistics for the link as 4297 * well. Walk the flow table and log information for each flow as well. 4298 * If it is the last walk (mci_last), then we turn off mci_desc_logged (and 4299 * also fe_desc_logged, if flow logging is on) since we want to log the 4300 * description if and when logging is restarted. 4301 */ 4302 /*ARGSUSED*/ 4303 static uint_t 4304 i_mac_log_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 4305 { 4306 mac_impl_t *mip = (mac_impl_t *)val; 4307 i_mac_log_state_t *lstate = (i_mac_log_state_t *)arg; 4308 int ret; 4309 mac_client_impl_t *mcip; 4310 4311 /* 4312 * Only walk the client list for NIC and etherstub 4313 */ 4314 if ((mip->mi_state_flags & MIS_DISABLED) || 4315 ((mip->mi_state_flags & MIS_IS_VNIC) && 4316 (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) 4317 return (MH_WALK_CONTINUE); 4318 4319 for (mcip = mip->mi_clients_list; mcip != NULL; 4320 mcip = mcip->mci_client_next) { 4321 if (!MCIP_DATAPATH_SETUP(mcip)) 4322 continue; 4323 if (lstate->mi_lenable) { 4324 if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) { 4325 ret = mac_write_link_desc(mcip); 4326 if (ret != 0) { 4327 /* 4328 * We can't terminate it if this is the last 4329 * walk, else there might be some links with 4330 * mi_desc_logged set to true, which means 4331 * their description won't be logged the next 4332 * time logging is started (similarly for the 4333 * flows within such links). We can continue 4334 * without walking the flow table (i.e. to 4335 * set fe_desc_logged to false) because we 4336 * won't have written any flow stuff for this 4337 * link as we haven't logged the link itself. 4338 */ 4339 if (lstate->mi_last) 4340 return (MH_WALK_CONTINUE); 4341 else 4342 return (MH_WALK_TERMINATE); 4343 } 4344 mcip->mci_state_flags |= MCIS_DESC_LOGGED; 4345 } 4346 } 4347 4348 if (mac_write_link_stats(mcip) != 0 && !lstate->mi_last) 4349 return (MH_WALK_TERMINATE); 4350 4351 if (lstate->mi_last) 4352 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED; 4353 4354 if (lstate->mi_fenable) { 4355 if (mcip->mci_subflow_tab != NULL) { 4356 (void) mac_flow_walk(mcip->mci_subflow_tab, 4357 mac_log_flowinfo, mip); 4358 } 4359 } 4360 } 4361 return (MH_WALK_CONTINUE); 4362 } 4363 4364 /* 4365 * The timer thread that runs every mac_logging_interval seconds and logs 4366 * link and/or flow information. 4367 */ 4368 /* ARGSUSED */ 4369 void 4370 mac_log_linkinfo(void *arg) 4371 { 4372 i_mac_log_state_t lstate; 4373 4374 rw_enter(&i_mac_impl_lock, RW_READER); 4375 if (!mac_flow_log_enable && !mac_link_log_enable) { 4376 rw_exit(&i_mac_impl_lock); 4377 return; 4378 } 4379 lstate.mi_fenable = mac_flow_log_enable; 4380 lstate.mi_lenable = mac_link_log_enable; 4381 lstate.mi_last = B_FALSE; 4382 rw_exit(&i_mac_impl_lock); 4383 4384 mod_hash_walk(i_mac_impl_hash, i_mac_log_walker, &lstate); 4385 4386 rw_enter(&i_mac_impl_lock, RW_WRITER); 4387 if (mac_flow_log_enable || mac_link_log_enable) { 4388 mac_logging_timer = timeout(mac_log_linkinfo, NULL, 4389 SEC_TO_TICK(mac_logging_interval)); 4390 } 4391 rw_exit(&i_mac_impl_lock); 4392 } 4393 4394 /* 4395 * Start the logging timer. 4396 */ 4397 void 4398 mac_start_logusage(mac_logtype_t type, uint_t interval) 4399 { 4400 rw_enter(&i_mac_impl_lock, RW_WRITER); 4401 switch (type) { 4402 case MAC_LOGTYPE_FLOW: 4403 if (mac_flow_log_enable) { 4404 rw_exit(&i_mac_impl_lock); 4405 return; 4406 } 4407 mac_flow_log_enable = B_TRUE; 4408 /* FALLTHRU */ 4409 case MAC_LOGTYPE_LINK: 4410 if (mac_link_log_enable) { 4411 rw_exit(&i_mac_impl_lock); 4412 return; 4413 } 4414 mac_link_log_enable = B_TRUE; 4415 break; 4416 default: 4417 ASSERT(0); 4418 } 4419 mac_logging_interval = interval; 4420 rw_exit(&i_mac_impl_lock); 4421 mac_log_linkinfo(NULL); 4422 } 4423 4424 /* 4425 * Stop the logging timer if both Link and Flow logging are turned off. 4426 */ 4427 void 4428 mac_stop_logusage(mac_logtype_t type) 4429 { 4430 i_mac_log_state_t lstate; 4431 4432 rw_enter(&i_mac_impl_lock, RW_WRITER); 4433 lstate.mi_fenable = mac_flow_log_enable; 4434 lstate.mi_lenable = mac_link_log_enable; 4435 4436 /* Last walk */ 4437 lstate.mi_last = B_TRUE; 4438 4439 switch (type) { 4440 case MAC_LOGTYPE_FLOW: 4441 if (lstate.mi_fenable) { 4442 ASSERT(mac_link_log_enable); 4443 mac_flow_log_enable = B_FALSE; 4444 mac_link_log_enable = B_FALSE; 4445 break; 4446 } 4447 /* FALLTHRU */ 4448 case MAC_LOGTYPE_LINK: 4449 if (!lstate.mi_lenable || mac_flow_log_enable) { 4450 rw_exit(&i_mac_impl_lock); 4451 return; 4452 } 4453 mac_link_log_enable = B_FALSE; 4454 break; 4455 default: 4456 ASSERT(0); 4457 } 4458 rw_exit(&i_mac_impl_lock); 4459 (void) untimeout(mac_logging_timer); 4460 mac_logging_timer = 0; 4461 4462 /* Last walk */ 4463 mod_hash_walk(i_mac_impl_hash, i_mac_log_walker, &lstate); 4464 } 4465 4466 /* 4467 * Walk the rx and tx SRS/SRs for a flow and update the priority value. 4468 */ 4469 void 4470 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent) 4471 { 4472 pri_t pri; 4473 int count; 4474 mac_soft_ring_set_t *mac_srs; 4475 4476 if (flent->fe_rx_srs_cnt <= 0) 4477 return; 4478 4479 if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type == 4480 SRST_FLOW) { 4481 pri = FLOW_PRIORITY(mcip->mci_min_pri, 4482 mcip->mci_max_pri, 4483 flent->fe_resource_props.mrp_priority); 4484 } else { 4485 pri = mcip->mci_max_pri; 4486 } 4487 4488 for (count = 0; count < flent->fe_rx_srs_cnt; count++) { 4489 mac_srs = flent->fe_rx_srs[count]; 4490 mac_update_srs_priority(mac_srs, pri); 4491 } 4492 /* 4493 * If we have a Tx SRS, we need to modify all the threads associated 4494 * with it. 4495 */ 4496 if (flent->fe_tx_srs != NULL) 4497 mac_update_srs_priority(flent->fe_tx_srs, pri); 4498 } 4499 4500 /* 4501 * RX and TX rings are reserved according to different semantics depending 4502 * on the requests from the MAC clients and type of rings: 4503 * 4504 * On the Tx side, by default we reserve individual rings, independently from 4505 * the groups. 4506 * 4507 * On the Rx side, the reservation is at the granularity of the group 4508 * of rings, and used for v12n level 1 only. It has a special case for the 4509 * primary client. 4510 * 4511 * If a share is allocated to a MAC client, we allocate a TX group and an 4512 * RX group to the client, and assign TX rings and RX rings to these 4513 * groups according to information gathered from the driver through 4514 * the share capability. 4515 * 4516 * The foreseable evolution of Rx rings will handle v12n level 2 and higher 4517 * to allocate individual rings out of a group and program the hw classifier 4518 * based on IP address or higher level criteria. 4519 */ 4520 4521 /* 4522 * mac_reserve_tx_ring() 4523 * Reserve a unused ring by marking it with MR_INUSE state. 4524 * As reserved, the ring is ready to function. 4525 * 4526 * Notes for Hybrid I/O: 4527 * 4528 * If a specific ring is needed, it is specified through the desired_ring 4529 * argument. Otherwise that argument is set to NULL. 4530 * If the desired ring was previous allocated to another client, this 4531 * function swaps it with a new ring from the group of unassigned rings. 4532 */ 4533 mac_ring_t * 4534 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring) 4535 { 4536 mac_group_t *group; 4537 mac_ring_t *ring; 4538 4539 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4540 4541 if (mip->mi_tx_groups == NULL) 4542 return (NULL); 4543 4544 /* 4545 * Find an available ring and start it before changing its status. 4546 * The unassigned rings are at the end of the mi_tx_groups 4547 * array. 4548 */ 4549 group = mip->mi_tx_groups + mip->mi_tx_group_count; 4550 4551 for (ring = group->mrg_rings; ring != NULL; 4552 ring = ring->mr_next) { 4553 if (desired_ring == NULL) { 4554 if (ring->mr_state == MR_FREE) 4555 /* wanted any free ring and found one */ 4556 break; 4557 } else { 4558 mac_ring_t *sring; 4559 mac_client_impl_t *client; 4560 mac_soft_ring_set_t *srs; 4561 4562 if (ring != desired_ring) 4563 /* wants a desired ring but this one ain't it */ 4564 continue; 4565 4566 if (ring->mr_state == MR_FREE) 4567 break; 4568 4569 /* 4570 * Found the desired ring but it's already in use. 4571 * Swap it with a new ring. 4572 */ 4573 4574 /* find the client which owns that ring */ 4575 for (client = mip->mi_clients_list; client != NULL; 4576 client = client->mci_client_next) { 4577 srs = MCIP_TX_SRS(client); 4578 if (srs != NULL && mac_tx_srs_ring_present(srs, 4579 desired_ring)) { 4580 /* found our ring */ 4581 break; 4582 } 4583 } 4584 if (client == NULL) { 4585 /* 4586 * The TX ring is in use, but it's not 4587 * associated with any clients, so it 4588 * has to be the default ring. In that 4589 * case we can simply assign a new ring 4590 * as the default ring, and we're done. 4591 */ 4592 ASSERT(mip->mi_default_tx_ring == 4593 (mac_ring_handle_t)desired_ring); 4594 4595 /* 4596 * Quiesce all clients on top of 4597 * the NIC to make sure there are no 4598 * pending threads still relying on 4599 * that default ring, for example 4600 * the multicast path. 4601 */ 4602 for (client = mip->mi_clients_list; 4603 client != NULL; 4604 client = client->mci_client_next) { 4605 mac_tx_client_quiesce(client, 4606 SRS_QUIESCE); 4607 } 4608 4609 mip->mi_default_tx_ring = (mac_ring_handle_t) 4610 mac_reserve_tx_ring(mip, NULL); 4611 4612 /* resume the clients */ 4613 for (client = mip->mi_clients_list; 4614 client != NULL; 4615 client = client->mci_client_next) 4616 mac_tx_client_restart(client); 4617 4618 break; 4619 } 4620 4621 /* 4622 * Note that we cannot simply invoke the group 4623 * add/rem routines since the client doesn't have a 4624 * TX group. So we need to instead add/remove 4625 * the rings from the SRS. 4626 */ 4627 ASSERT(client->mci_share == NULL); 4628 4629 /* first quiece the client */ 4630 mac_tx_client_quiesce(client, SRS_QUIESCE); 4631 4632 /* give a new ring to the client... */ 4633 sring = mac_reserve_tx_ring(mip, NULL); 4634 if (sring != NULL) { 4635 /* 4636 * There are no other available ring 4637 * on that MAC instance. The client 4638 * will fallback to the shared TX 4639 * ring. 4640 */ 4641 mac_tx_srs_add_ring(srs, sring); 4642 } 4643 4644 /* ... in exchange for our desired ring */ 4645 mac_tx_srs_del_ring(srs, desired_ring); 4646 4647 /* restart the client */ 4648 mac_tx_client_restart(client); 4649 4650 if (mip->mi_default_tx_ring == 4651 (mac_ring_handle_t)desired_ring) { 4652 /* 4653 * The desired ring is the default ring, 4654 * and there are one or more clients 4655 * using that default ring directly. 4656 */ 4657 mip->mi_default_tx_ring = 4658 (mac_ring_handle_t)sring; 4659 /* 4660 * Find clients using default ring and 4661 * swap it with the new default ring. 4662 */ 4663 for (client = mip->mi_clients_list; 4664 client != NULL; 4665 client = client->mci_client_next) { 4666 srs = MCIP_TX_SRS(client); 4667 if (srs != NULL && 4668 mac_tx_srs_ring_present(srs, 4669 desired_ring)) { 4670 /* first quiece the client */ 4671 mac_tx_client_quiesce(client, 4672 SRS_QUIESCE); 4673 4674 /* 4675 * Give it the new default 4676 * ring, and remove the old 4677 * one. 4678 */ 4679 if (sring != NULL) { 4680 mac_tx_srs_add_ring(srs, 4681 sring); 4682 } 4683 mac_tx_srs_del_ring(srs, 4684 desired_ring); 4685 4686 /* restart the client */ 4687 mac_tx_client_restart(client); 4688 } 4689 } 4690 } 4691 break; 4692 } 4693 } 4694 4695 if (ring != NULL) { 4696 if (mac_start_ring(ring) != 0) 4697 return (NULL); 4698 ring->mr_state = MR_INUSE; 4699 } 4700 4701 return (ring); 4702 } 4703 4704 /* 4705 * Minimum number of rings to leave in the default TX group when allocating 4706 * rings to new clients. 4707 */ 4708 static uint_t mac_min_rx_default_rings = 1; 4709 4710 /* 4711 * Populate a zero-ring group with rings. If the share is non-NULL, 4712 * the rings are chosen according to that share. 4713 * Invoked after allocating a new RX or TX group through 4714 * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively. 4715 * Returns zero on success, an errno otherwise. 4716 */ 4717 int 4718 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type, 4719 mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share) 4720 { 4721 mac_ring_t **rings, *tmp_ring[1], *ring; 4722 uint_t nrings; 4723 int rv, i, j; 4724 4725 ASSERT(mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC && 4726 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC); 4727 ASSERT(new_group->mrg_cur_count == 0); 4728 4729 /* 4730 * First find the rings to allocate to the group. 4731 */ 4732 if (share != NULL) { 4733 /* get rings through ms_squery() */ 4734 mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings); 4735 ASSERT(nrings != 0); 4736 rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t), 4737 KM_SLEEP); 4738 mip->mi_share_capab.ms_squery(share, ring_type, 4739 (mac_ring_handle_t *)rings, &nrings); 4740 } else { 4741 /* this function is called for TX only with a share */ 4742 ASSERT(ring_type == MAC_RING_TYPE_RX); 4743 /* 4744 * Pick one ring from default group. 4745 * 4746 * for now pick the second ring which requires the first ring 4747 * at index 0 to stay in the default group, since it is the 4748 * ring which carries the multicast traffic. 4749 * We need a better way for a driver to indicate this, 4750 * for example a per-ring flag. 4751 */ 4752 for (ring = src_group->mrg_rings; ring != NULL; 4753 ring = ring->mr_next) { 4754 if (ring->mr_index != 0) 4755 break; 4756 } 4757 ASSERT(ring != NULL); 4758 nrings = 1; 4759 tmp_ring[0] = ring; 4760 rings = tmp_ring; 4761 } 4762 4763 switch (ring_type) { 4764 case MAC_RING_TYPE_RX: 4765 if (src_group->mrg_cur_count - nrings < 4766 mac_min_rx_default_rings) { 4767 /* we ran out of rings */ 4768 return (ENOSPC); 4769 } 4770 4771 /* move receive rings to new group */ 4772 for (i = 0; i < nrings; i++) { 4773 rv = mac_group_mov_ring(mip, new_group, rings[i]); 4774 if (rv != 0) { 4775 /* move rings back on failure */ 4776 for (j = 0; j < i; j++) { 4777 (void) mac_group_mov_ring(mip, 4778 src_group, rings[j]); 4779 } 4780 return (rv); 4781 } 4782 } 4783 break; 4784 4785 case MAC_RING_TYPE_TX: { 4786 mac_ring_t *tmp_ring; 4787 4788 /* move the TX rings to the new group */ 4789 ASSERT(src_group == NULL); 4790 for (i = 0; i < nrings; i++) { 4791 /* get the desired ring */ 4792 tmp_ring = mac_reserve_tx_ring(mip, rings[i]); 4793 ASSERT(tmp_ring == rings[i]); 4794 rv = mac_group_mov_ring(mip, new_group, rings[i]); 4795 if (rv != 0) { 4796 /* cleanup on failure */ 4797 for (j = 0; j < i; j++) { 4798 (void) mac_group_mov_ring(mip, 4799 mip->mi_tx_groups + 4800 mip->mi_tx_group_count, rings[j]); 4801 } 4802 } 4803 } 4804 break; 4805 } 4806 } 4807 4808 if (share != NULL) { 4809 /* add group to share */ 4810 mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver); 4811 /* free temporary array of rings */ 4812 kmem_free(rings, nrings * sizeof (mac_ring_handle_t)); 4813 } 4814 4815 return (0); 4816 } 4817 4818 void 4819 mac_rx_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip) 4820 { 4821 mac_grp_client_t *mgcp; 4822 4823 for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { 4824 if (mgcp->mgc_client == mcip) 4825 break; 4826 } 4827 4828 VERIFY(mgcp == NULL); 4829 4830 mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP); 4831 mgcp->mgc_client = mcip; 4832 mgcp->mgc_next = grp->mrg_clients; 4833 grp->mrg_clients = mgcp; 4834 4835 } 4836 4837 void 4838 mac_rx_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip) 4839 { 4840 mac_grp_client_t *mgcp, **pprev; 4841 4842 for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL; 4843 pprev = &mgcp->mgc_next, mgcp = *pprev) { 4844 if (mgcp->mgc_client == mcip) 4845 break; 4846 } 4847 4848 ASSERT(mgcp != NULL); 4849 4850 *pprev = mgcp->mgc_next; 4851 kmem_free(mgcp, sizeof (mac_grp_client_t)); 4852 } 4853 4854 /* 4855 * mac_reserve_rx_group() 4856 * 4857 * Finds an available group and exclusively reserves it for a client. 4858 * The group is chosen to suit the flow's resource controls (bandwidth and 4859 * fanout requirements) and the address type. 4860 * If the requestor is the pimary MAC then return the group with the 4861 * largest number of rings, otherwise the default ring when available. 4862 */ 4863 mac_group_t * 4864 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, 4865 mac_rx_group_reserve_type_t rtype) 4866 { 4867 mac_share_handle_t share = mcip->mci_share; 4868 mac_impl_t *mip = mcip->mci_mip; 4869 mac_group_t *grp = NULL; 4870 int i, start, loopcount; 4871 int err; 4872 mac_address_t *map; 4873 4874 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4875 4876 /* Check if a group already has this mac address (case of VLANs) */ 4877 if ((map = mac_find_macaddr(mip, mac_addr)) != NULL) 4878 return (map->ma_group); 4879 4880 if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0 || 4881 rtype == MAC_RX_NO_RESERVE) 4882 return (NULL); 4883 4884 /* 4885 * Try to exclusively reserve a RX group. 4886 * 4887 * For flows requires SW_RING it always goes to the default group 4888 * (Until we can explicitely call out default groups (CR 6695600), 4889 * we assume that the default group is always at position zero); 4890 * 4891 * For flows requires HW_DEFAULT_RING (unicast flow of the primary 4892 * client), try to reserve the default RX group only. 4893 * 4894 * For flows requires HW_RING (unicast flow of other clients), try 4895 * to reserve non-default RX group then the default group. 4896 */ 4897 switch (rtype) { 4898 case MAC_RX_RESERVE_DEFAULT: 4899 start = 0; 4900 loopcount = 1; 4901 break; 4902 case MAC_RX_RESERVE_NONDEFAULT: 4903 start = 1; 4904 loopcount = mip->mi_rx_group_count; 4905 } 4906 4907 for (i = start; i < start + loopcount; i++) { 4908 grp = &mip->mi_rx_groups[i % mip->mi_rx_group_count]; 4909 4910 DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name, 4911 int, grp->mrg_index, mac_group_state_t, grp->mrg_state); 4912 4913 /* 4914 * Check to see whether this mac client is the only client 4915 * on this RX group. If not, we cannot exclusively reserve 4916 * this RX group. 4917 */ 4918 if (!MAC_RX_GROUP_NO_CLIENT(grp) && 4919 (MAC_RX_GROUP_ONLY_CLIENT(grp) != mcip)) { 4920 continue; 4921 } 4922 4923 /* 4924 * This group could already be SHARED by other multicast 4925 * flows on this client. In that case, the group would 4926 * be shared and has already been started. 4927 */ 4928 ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT); 4929 4930 if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) && 4931 (mac_start_group(grp) != 0)) { 4932 continue; 4933 } 4934 4935 if ((i % mip->mi_rx_group_count) == 0 || 4936 mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) { 4937 break; 4938 } 4939 4940 ASSERT(grp->mrg_cur_count == 0); 4941 4942 /* 4943 * Populate the group. Rings should be taken 4944 * from the default group at position 0 for now. 4945 */ 4946 4947 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, 4948 &mip->mi_rx_groups[0], grp, share); 4949 if (err == 0) 4950 break; 4951 4952 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, 4953 mip->mi_name, int, grp->mrg_index, int, err); 4954 4955 /* 4956 * It's a dynamic group but the grouping operation failed. 4957 */ 4958 mac_stop_group(grp); 4959 } 4960 4961 if (i == start + loopcount) 4962 return (NULL); 4963 4964 ASSERT(grp != NULL); 4965 4966 DTRACE_PROBE2(rx__group__reserved, 4967 char *, mip->mi_name, int, grp->mrg_index); 4968 return (grp); 4969 } 4970 4971 /* 4972 * mac_rx_release_group() 4973 * 4974 * This is called when there are no clients left for the group. 4975 * The group is stopped and marked MAC_GROUP_STATE_REGISTERED, 4976 * and if it is a non default group, the shares are removed and 4977 * all rings are assigned back to default group. 4978 */ 4979 void 4980 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group) 4981 { 4982 mac_impl_t *mip = mcip->mci_mip; 4983 mac_ring_t *ring; 4984 4985 ASSERT(group != &mip->mi_rx_groups[0]); 4986 4987 /* 4988 * This is the case where there are no clients left. Any 4989 * SRS etc on this group have also be quiesced. 4990 */ 4991 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 4992 if (ring->mr_classify_type == MAC_HW_CLASSIFIER) { 4993 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 4994 /* 4995 * Remove the SRS associated with the HW ring. 4996 * As a result, polling will be disabled. 4997 */ 4998 ring->mr_srs = NULL; 4999 } 5000 ASSERT(ring->mr_state == MR_INUSE); 5001 mac_stop_ring(ring); 5002 ring->mr_state = MR_FREE; 5003 ring->mr_flag = 0; 5004 } 5005 5006 /* remove group from share */ 5007 if (mcip->mci_share != NULL) { 5008 mip->mi_share_capab.ms_sremove(mcip->mci_share, 5009 group->mrg_driver); 5010 } 5011 5012 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 5013 mac_ring_t *ring; 5014 5015 /* 5016 * Rings were dynamically allocated to group. 5017 * Move rings back to default group. 5018 */ 5019 while ((ring = group->mrg_rings) != NULL) { 5020 (void) mac_group_mov_ring(mip, 5021 &mip->mi_rx_groups[0], ring); 5022 } 5023 } 5024 mac_stop_group(group); 5025 /* 5026 * Possible improvement: See if we can assign the group just released 5027 * to a another client of the mip 5028 */ 5029 } 5030 5031 /* 5032 * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup() 5033 * when a share was allocated to the client. 5034 */ 5035 mac_group_t * 5036 mac_reserve_tx_group(mac_impl_t *mip, mac_share_handle_t share) 5037 { 5038 mac_group_t *grp; 5039 int rv, i; 5040 5041 /* 5042 * TX groups are currently allocated only to MAC clients 5043 * which are associated with a share. Since we have a fixed 5044 * number of share and groups, and we already successfully 5045 * allocated a share, find an available TX group. 5046 */ 5047 ASSERT(share != NULL); 5048 ASSERT(mip->mi_tx_group_free > 0); 5049 5050 for (i = 0; i < mip->mi_tx_group_count; i++) { 5051 grp = &mip->mi_tx_groups[i]; 5052 5053 if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) || 5054 (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) 5055 continue; 5056 5057 rv = mac_start_group(grp); 5058 ASSERT(rv == 0); 5059 5060 grp->mrg_state = MAC_GROUP_STATE_RESERVED; 5061 break; 5062 } 5063 5064 ASSERT(grp != NULL); 5065 5066 /* 5067 * Populate the group. Rings should be taken from the group 5068 * of unassigned rings, which is past the array of TX 5069 * groups adversized by the driver. 5070 */ 5071 rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, NULL, 5072 grp, share); 5073 if (rv != 0) { 5074 DTRACE_PROBE3(tx__group__reserve__alloc__rings, 5075 char *, mip->mi_name, int, grp->mrg_index, int, rv); 5076 5077 mac_stop_group(grp); 5078 grp->mrg_state = MAC_GROUP_STATE_UNINIT; 5079 5080 return (NULL); 5081 } 5082 5083 mip->mi_tx_group_free--; 5084 5085 return (grp); 5086 } 5087 5088 void 5089 mac_release_tx_group(mac_impl_t *mip, mac_group_t *grp) 5090 { 5091 mac_client_impl_t *mcip = grp->mrg_tx_client; 5092 mac_share_handle_t share = mcip->mci_share; 5093 mac_ring_t *ring; 5094 5095 ASSERT(mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC); 5096 ASSERT(share != NULL); 5097 ASSERT(grp->mrg_state == MAC_GROUP_STATE_RESERVED); 5098 5099 mip->mi_share_capab.ms_sremove(share, grp->mrg_driver); 5100 while ((ring = grp->mrg_rings) != NULL) { 5101 /* move the ring back to the pool */ 5102 (void) mac_group_mov_ring(mip, mip->mi_tx_groups + 5103 mip->mi_tx_group_count, ring); 5104 } 5105 mac_stop_group(grp); 5106 mac_set_rx_group_state(grp, MAC_GROUP_STATE_REGISTERED); 5107 grp->mrg_tx_client = NULL; 5108 mip->mi_tx_group_free++; 5109 } 5110 5111 /* 5112 * This is a 1-time control path activity initiated by the client (IP). 5113 * The mac perimeter protects against other simultaneous control activities, 5114 * for example an ioctl that attempts to change the degree of fanout and 5115 * increase or decrease the number of softrings associated with this Tx SRS. 5116 */ 5117 static mac_tx_notify_cb_t * 5118 mac_client_tx_notify_add(mac_client_impl_t *mcip, 5119 mac_tx_notify_t notify, void *arg) 5120 { 5121 mac_cb_info_t *mcbi; 5122 mac_tx_notify_cb_t *mtnfp; 5123 5124 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 5125 5126 mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP); 5127 mtnfp->mtnf_fn = notify; 5128 mtnfp->mtnf_arg = arg; 5129 mtnfp->mtnf_link.mcb_objp = mtnfp; 5130 mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t); 5131 mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T; 5132 5133 mcbi = &mcip->mci_tx_notify_cb_info; 5134 mutex_enter(mcbi->mcbi_lockp); 5135 mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link); 5136 mutex_exit(mcbi->mcbi_lockp); 5137 return (mtnfp); 5138 } 5139 5140 static void 5141 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp) 5142 { 5143 mac_cb_info_t *mcbi; 5144 mac_cb_t **cblist; 5145 5146 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 5147 5148 if (!mac_callback_find(&mcip->mci_tx_notify_cb_info, 5149 &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) { 5150 cmn_err(CE_WARN, 5151 "mac_client_tx_notify_remove: callback not " 5152 "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp); 5153 return; 5154 } 5155 5156 mcbi = &mcip->mci_tx_notify_cb_info; 5157 cblist = &mcip->mci_tx_notify_cb_list; 5158 mutex_enter(mcbi->mcbi_lockp); 5159 if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link)) 5160 kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t)); 5161 else 5162 mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info); 5163 mutex_exit(mcbi->mcbi_lockp); 5164 } 5165 5166 /* 5167 * mac_client_tx_notify(): 5168 * call to add and remove flow control callback routine. 5169 */ 5170 mac_tx_notify_handle_t 5171 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func, 5172 void *ptr) 5173 { 5174 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 5175 mac_tx_notify_cb_t *mtnfp = NULL; 5176 5177 i_mac_perim_enter(mcip->mci_mip); 5178 5179 if (callb_func != NULL) { 5180 /* Add a notify callback */ 5181 mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr); 5182 } else { 5183 mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr); 5184 } 5185 i_mac_perim_exit(mcip->mci_mip); 5186 5187 return ((mac_tx_notify_handle_t)mtnfp); 5188 } 5189