xref: /titanic_51/usr/src/uts/common/io/lofi.c (revision c39526b769298791ff5b0b6c5e761f49aabaeb4e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * lofi (loopback file) driver - allows you to attach a file to a device,
28  * which can then be accessed through that device. The simple model is that
29  * you tell lofi to open a file, and then use the block device you get as
30  * you would any block device. lofi translates access to the block device
31  * into I/O on the underlying file. This is mostly useful for
32  * mounting images of filesystems.
33  *
34  * lofi is controlled through /dev/lofictl - this is the only device exported
35  * during attach, and is minor number 0. lofiadm communicates with lofi through
36  * ioctls on this device. When a file is attached to lofi, block and character
37  * devices are exported in /dev/lofi and /dev/rlofi. Currently, these devices
38  * are identified by their minor number, and the minor number is also used
39  * as the name in /dev/lofi. If we ever decide to support virtual disks,
40  * we'll have to divide the minor number space to identify fdisk partitions
41  * and slices, and the name will then be the minor number shifted down a
42  * few bits. Minor devices are tracked with state structures handled with
43  * ddi_soft_state(9F) for simplicity.
44  *
45  * A file attached to lofi is opened when attached and not closed until
46  * explicitly detached from lofi. This seems more sensible than deferring
47  * the open until the /dev/lofi device is opened, for a number of reasons.
48  * One is that any failure is likely to be noticed by the person (or script)
49  * running lofiadm. Another is that it would be a security problem if the
50  * file was replaced by another one after being added but before being opened.
51  *
52  * The only hard part about lofi is the ioctls. In order to support things
53  * like 'newfs' on a lofi device, it needs to support certain disk ioctls.
54  * So it has to fake disk geometry and partition information. More may need
55  * to be faked if your favorite utility doesn't work and you think it should
56  * (fdformat doesn't work because it really wants to know the type of floppy
57  * controller to talk to, and that didn't seem easy to fake. Or possibly even
58  * necessary, since we have mkfs_pcfs now).
59  *
60  * Normally, a lofi device cannot be detached if it is open (i.e. busy).  To
61  * support simulation of hotplug events, an optional force flag is provided.
62  * If a lofi device is open when a force detach is requested, then the
63  * underlying file is closed and any subsequent operations return EIO.  When the
64  * device is closed for the last time, it will be cleaned up at that time.  In
65  * addition, the DKIOCSTATE ioctl will return DKIO_DEV_GONE when the device is
66  * detached but not removed.
67  *
68  * Known problems:
69  *
70  *	UFS logging. Mounting a UFS filesystem image "logging"
71  *	works for basic copy testing but wedges during a build of ON through
72  *	that image. Some deadlock in lufs holding the log mutex and then
73  *	getting stuck on a buf. So for now, don't do that.
74  *
75  *	Direct I/O. Since the filesystem data is being cached in the buffer
76  *	cache, _and_ again in the underlying filesystem, it's tempting to
77  *	enable direct I/O on the underlying file. Don't, because that deadlocks.
78  *	I think to fix the cache-twice problem we might need filesystem support.
79  *
80  *	lofi on itself. The simple lock strategy (lofi_lock) precludes this
81  *	because you'll be in lofi_ioctl, holding the lock when you open the
82  *	file, which, if it's lofi, will grab lofi_lock. We prevent this for
83  *	now, though not using ddi_soft_state(9F) would make it possible to
84  *	do. Though it would still be silly.
85  *
86  * Interesting things to do:
87  *
88  *	Allow multiple files for each device. A poor-man's metadisk, basically.
89  *
90  *	Pass-through ioctls on block devices. You can (though it's not
91  *	documented), give lofi a block device as a file name. Then we shouldn't
92  *	need to fake a geometry, however, it may be relevant if you're replacing
93  *	metadisk, or using lofi to get crypto.
94  *	It makes sense to do lofiadm -c aes -a /dev/dsk/c0t0d0s4 /dev/lofi/1
95  *	and then in /etc/vfstab have an entry for /dev/lofi/1 as /export/home.
96  *	In fact this even makes sense if you have lofi "above" metadisk.
97  *
98  * Encryption:
99  *	Each lofi device can have its own symmetric key and cipher.
100  *	They are passed to us by lofiadm(1m) in the correct format for use
101  *	with the misc/kcf crypto_* routines.
102  *
103  *	Each block has its own IV, that is calculated in lofi_blk_mech(), based
104  *	on the "master" key held in the lsp and the block number of the buffer.
105  */
106 
107 #include <sys/types.h>
108 #include <netinet/in.h>
109 #include <sys/sysmacros.h>
110 #include <sys/uio.h>
111 #include <sys/kmem.h>
112 #include <sys/cred.h>
113 #include <sys/mman.h>
114 #include <sys/errno.h>
115 #include <sys/aio_req.h>
116 #include <sys/stat.h>
117 #include <sys/file.h>
118 #include <sys/modctl.h>
119 #include <sys/conf.h>
120 #include <sys/debug.h>
121 #include <sys/vnode.h>
122 #include <sys/lofi.h>
123 #include <sys/fcntl.h>
124 #include <sys/pathname.h>
125 #include <sys/filio.h>
126 #include <sys/fdio.h>
127 #include <sys/open.h>
128 #include <sys/disp.h>
129 #include <vm/seg_map.h>
130 #include <sys/ddi.h>
131 #include <sys/sunddi.h>
132 #include <sys/zmod.h>
133 #include <sys/crypto/common.h>
134 #include <sys/crypto/api.h>
135 #include <LzmaDec.h>
136 
137 /*
138  * The basis for CRYOFF is derived from usr/src/uts/common/sys/fs/ufs_fs.h.
139  * Crypto metadata, if it exists, is located at the end of the boot block
140  * (BBOFF + BBSIZE, which is SBOFF).  The super block and everything after
141  * is offset by the size of the crypto metadata which is handled by
142  * lsp->ls_crypto_offset.
143  */
144 #define	CRYOFF	((off_t)8192)
145 
146 #define	NBLOCKS_PROP_NAME	"Nblocks"
147 #define	SIZE_PROP_NAME		"Size"
148 
149 #define	SETUP_C_DATA(cd, buf, len) 		\
150 	(cd).cd_format = CRYPTO_DATA_RAW;	\
151 	(cd).cd_offset = 0;			\
152 	(cd).cd_miscdata = NULL;		\
153 	(cd).cd_length = (len);			\
154 	(cd).cd_raw.iov_base = (buf);		\
155 	(cd).cd_raw.iov_len = (len);
156 
157 #define	UIO_CHECK(uio)	\
158 	if (((uio)->uio_loffset % DEV_BSIZE) != 0 || \
159 	    ((uio)->uio_resid % DEV_BSIZE) != 0) { \
160 		return (EINVAL); \
161 	}
162 
163 static dev_info_t *lofi_dip = NULL;
164 static void *lofi_statep = NULL;
165 static kmutex_t lofi_lock;		/* state lock */
166 
167 /*
168  * Because lofi_taskq_nthreads limits the actual swamping of the device, the
169  * maxalloc parameter (lofi_taskq_maxalloc) should be tuned conservatively
170  * high.  If we want to be assured that the underlying device is always busy,
171  * we must be sure that the number of bytes enqueued when the number of
172  * enqueued tasks exceeds maxalloc is sufficient to keep the device busy for
173  * the duration of the sleep time in taskq_ent_alloc().  That is, lofi should
174  * set maxalloc to be the maximum throughput (in bytes per second) of the
175  * underlying device divided by the minimum I/O size.  We assume a realistic
176  * maximum throughput of one hundred megabytes per second; we set maxalloc on
177  * the lofi task queue to be 104857600 divided by DEV_BSIZE.
178  */
179 static int lofi_taskq_maxalloc = 104857600 / DEV_BSIZE;
180 static int lofi_taskq_nthreads = 4;	/* # of taskq threads per device */
181 
182 uint32_t lofi_max_files = LOFI_MAX_FILES;
183 const char lofi_crypto_magic[6] = LOFI_CRYPTO_MAGIC;
184 
185 /*
186  * To avoid decompressing data in a compressed segment multiple times
187  * when accessing small parts of a segment's data, we cache and reuse
188  * the uncompressed segment's data.
189  *
190  * A single cached segment is sufficient to avoid lots of duplicate
191  * segment decompress operations. A small cache size also reduces the
192  * memory footprint.
193  *
194  * lofi_max_comp_cache is the maximum number of decompressed data segments
195  * cached for each compressed lofi image. It can be set to 0 to disable
196  * caching.
197  */
198 
199 uint32_t lofi_max_comp_cache = 1;
200 
201 static int gzip_decompress(void *src, size_t srclen, void *dst,
202 	size_t *destlen, int level);
203 
204 static int lzma_decompress(void *src, size_t srclen, void *dst,
205 	size_t *dstlen, int level);
206 
207 lofi_compress_info_t lofi_compress_table[LOFI_COMPRESS_FUNCTIONS] = {
208 	{gzip_decompress,	NULL,	6,	"gzip"}, /* default */
209 	{gzip_decompress,	NULL,	6,	"gzip-6"},
210 	{gzip_decompress,	NULL,	9,	"gzip-9"},
211 	{lzma_decompress,	NULL,	0,	"lzma"}
212 };
213 
214 /*ARGSUSED*/
215 static void
216 *SzAlloc(void *p, size_t size)
217 {
218 	return (kmem_alloc(size, KM_SLEEP));
219 }
220 
221 /*ARGSUSED*/
222 static void
223 SzFree(void *p, void *address, size_t size)
224 {
225 	kmem_free(address, size);
226 }
227 
228 static ISzAlloc g_Alloc = { SzAlloc, SzFree };
229 
230 /*
231  * Free data referenced by the linked list of cached uncompressed
232  * segments.
233  */
234 static void
235 lofi_free_comp_cache(struct lofi_state *lsp)
236 {
237 	struct lofi_comp_cache *lc;
238 
239 	while ((lc = list_remove_head(&lsp->ls_comp_cache)) != NULL) {
240 		kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
241 		kmem_free(lc, sizeof (struct lofi_comp_cache));
242 		lsp->ls_comp_cache_count--;
243 	}
244 	ASSERT(lsp->ls_comp_cache_count == 0);
245 }
246 
247 static int
248 lofi_busy(void)
249 {
250 	minor_t	minor;
251 
252 	/*
253 	 * We need to make sure no mappings exist - mod_remove won't
254 	 * help because the device isn't open.
255 	 */
256 	mutex_enter(&lofi_lock);
257 	for (minor = 1; minor <= lofi_max_files; minor++) {
258 		if (ddi_get_soft_state(lofi_statep, minor) != NULL) {
259 			mutex_exit(&lofi_lock);
260 			return (EBUSY);
261 		}
262 	}
263 	mutex_exit(&lofi_lock);
264 	return (0);
265 }
266 
267 static int
268 is_opened(struct lofi_state *lsp)
269 {
270 	ASSERT(mutex_owned(&lofi_lock));
271 	return (lsp->ls_chr_open || lsp->ls_blk_open || lsp->ls_lyr_open_count);
272 }
273 
274 static int
275 mark_opened(struct lofi_state *lsp, int otyp)
276 {
277 	ASSERT(mutex_owned(&lofi_lock));
278 	switch (otyp) {
279 	case OTYP_CHR:
280 		lsp->ls_chr_open = 1;
281 		break;
282 	case OTYP_BLK:
283 		lsp->ls_blk_open = 1;
284 		break;
285 	case OTYP_LYR:
286 		lsp->ls_lyr_open_count++;
287 		break;
288 	default:
289 		return (-1);
290 	}
291 	return (0);
292 }
293 
294 static void
295 mark_closed(struct lofi_state *lsp, int otyp)
296 {
297 	ASSERT(mutex_owned(&lofi_lock));
298 	switch (otyp) {
299 	case OTYP_CHR:
300 		lsp->ls_chr_open = 0;
301 		break;
302 	case OTYP_BLK:
303 		lsp->ls_blk_open = 0;
304 		break;
305 	case OTYP_LYR:
306 		lsp->ls_lyr_open_count--;
307 		break;
308 	default:
309 		break;
310 	}
311 }
312 
313 static void
314 lofi_free_crypto(struct lofi_state *lsp)
315 {
316 	ASSERT(mutex_owned(&lofi_lock));
317 
318 	if (lsp->ls_crypto_enabled) {
319 		/*
320 		 * Clean up the crypto state so that it doesn't hang around
321 		 * in memory after we are done with it.
322 		 */
323 		bzero(lsp->ls_key.ck_data,
324 		    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
325 		kmem_free(lsp->ls_key.ck_data,
326 		    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
327 		lsp->ls_key.ck_data = NULL;
328 		lsp->ls_key.ck_length = 0;
329 
330 		if (lsp->ls_mech.cm_param != NULL) {
331 			kmem_free(lsp->ls_mech.cm_param,
332 			    lsp->ls_mech.cm_param_len);
333 			lsp->ls_mech.cm_param = NULL;
334 			lsp->ls_mech.cm_param_len = 0;
335 		}
336 
337 		if (lsp->ls_iv_mech.cm_param != NULL) {
338 			kmem_free(lsp->ls_iv_mech.cm_param,
339 			    lsp->ls_iv_mech.cm_param_len);
340 			lsp->ls_iv_mech.cm_param = NULL;
341 			lsp->ls_iv_mech.cm_param_len = 0;
342 		}
343 
344 		mutex_destroy(&lsp->ls_crypto_lock);
345 	}
346 }
347 
348 static void
349 lofi_free_handle(dev_t dev, minor_t minor, struct lofi_state *lsp,
350     cred_t *credp)
351 {
352 	dev_t	newdev;
353 	char	namebuf[50];
354 
355 	ASSERT(mutex_owned(&lofi_lock));
356 
357 	lofi_free_crypto(lsp);
358 
359 	if (lsp->ls_vp) {
360 		(void) VOP_CLOSE(lsp->ls_vp, lsp->ls_openflag,
361 		    1, 0, credp, NULL);
362 		VN_RELE(lsp->ls_vp);
363 		lsp->ls_vp = NULL;
364 	}
365 
366 	newdev = makedevice(getmajor(dev), minor);
367 	(void) ddi_prop_remove(newdev, lofi_dip, SIZE_PROP_NAME);
368 	(void) ddi_prop_remove(newdev, lofi_dip, NBLOCKS_PROP_NAME);
369 
370 	(void) snprintf(namebuf, sizeof (namebuf), "%d", minor);
371 	ddi_remove_minor_node(lofi_dip, namebuf);
372 	(void) snprintf(namebuf, sizeof (namebuf), "%d,raw", minor);
373 	ddi_remove_minor_node(lofi_dip, namebuf);
374 
375 	kmem_free(lsp->ls_filename, lsp->ls_filename_sz);
376 	taskq_destroy(lsp->ls_taskq);
377 	if (lsp->ls_kstat) {
378 		kstat_delete(lsp->ls_kstat);
379 		mutex_destroy(&lsp->ls_kstat_lock);
380 	}
381 
382 	/*
383 	 * Free cached decompressed segment data
384 	 */
385 	lofi_free_comp_cache(lsp);
386 	list_destroy(&lsp->ls_comp_cache);
387 	mutex_destroy(&lsp->ls_comp_cache_lock);
388 
389 	if (lsp->ls_uncomp_seg_sz > 0) {
390 		kmem_free(lsp->ls_comp_index_data, lsp->ls_comp_index_data_sz);
391 		lsp->ls_uncomp_seg_sz = 0;
392 	}
393 
394 	mutex_destroy(&lsp->ls_vp_lock);
395 
396 	ddi_soft_state_free(lofi_statep, minor);
397 }
398 
399 /*ARGSUSED*/
400 static int
401 lofi_open(dev_t *devp, int flag, int otyp, struct cred *credp)
402 {
403 	minor_t	minor;
404 	struct lofi_state *lsp;
405 
406 	mutex_enter(&lofi_lock);
407 	minor = getminor(*devp);
408 	if (minor == 0) {
409 		/* master control device */
410 		/* must be opened exclusively */
411 		if (((flag & FEXCL) != FEXCL) || (otyp != OTYP_CHR)) {
412 			mutex_exit(&lofi_lock);
413 			return (EINVAL);
414 		}
415 		lsp = ddi_get_soft_state(lofi_statep, 0);
416 		if (lsp == NULL) {
417 			mutex_exit(&lofi_lock);
418 			return (ENXIO);
419 		}
420 		if (is_opened(lsp)) {
421 			mutex_exit(&lofi_lock);
422 			return (EBUSY);
423 		}
424 		(void) mark_opened(lsp, OTYP_CHR);
425 		mutex_exit(&lofi_lock);
426 		return (0);
427 	}
428 
429 	/* otherwise, the mapping should already exist */
430 	lsp = ddi_get_soft_state(lofi_statep, minor);
431 	if (lsp == NULL) {
432 		mutex_exit(&lofi_lock);
433 		return (EINVAL);
434 	}
435 
436 	if (lsp->ls_vp == NULL) {
437 		mutex_exit(&lofi_lock);
438 		return (ENXIO);
439 	}
440 
441 	if (mark_opened(lsp, otyp) == -1) {
442 		mutex_exit(&lofi_lock);
443 		return (EINVAL);
444 	}
445 
446 	mutex_exit(&lofi_lock);
447 	return (0);
448 }
449 
450 /*ARGSUSED*/
451 static int
452 lofi_close(dev_t dev, int flag, int otyp, struct cred *credp)
453 {
454 	minor_t	minor;
455 	struct lofi_state *lsp;
456 
457 	mutex_enter(&lofi_lock);
458 	minor = getminor(dev);
459 	lsp = ddi_get_soft_state(lofi_statep, minor);
460 	if (lsp == NULL) {
461 		mutex_exit(&lofi_lock);
462 		return (EINVAL);
463 	}
464 	mark_closed(lsp, otyp);
465 
466 	/*
467 	 * If we forcibly closed the underlying device (li_force), or
468 	 * asked for cleanup (li_cleanup), finish up if we're the last
469 	 * out of the door.
470 	 */
471 	if (minor != 0 && !is_opened(lsp) &&
472 	    (lsp->ls_cleanup || lsp->ls_vp == NULL))
473 		lofi_free_handle(dev, minor, lsp, credp);
474 
475 	mutex_exit(&lofi_lock);
476 	return (0);
477 }
478 
479 /*
480  * Sets the mechanism's initialization vector (IV) if one is needed.
481  * The IV is computed from the data block number.  lsp->ls_mech is
482  * altered so that:
483  *	lsp->ls_mech.cm_param_len is set to the IV len.
484  *	lsp->ls_mech.cm_param is set to the IV.
485  */
486 static int
487 lofi_blk_mech(struct lofi_state *lsp, longlong_t lblkno)
488 {
489 	int	ret;
490 	crypto_data_t cdata;
491 	char	*iv;
492 	size_t	iv_len;
493 	size_t	min;
494 	void	*data;
495 	size_t	datasz;
496 
497 	ASSERT(mutex_owned(&lsp->ls_crypto_lock));
498 
499 	if (lsp == NULL)
500 		return (CRYPTO_DEVICE_ERROR);
501 
502 	/* lsp->ls_mech.cm_param{_len} has already been set for static iv */
503 	if (lsp->ls_iv_type == IVM_NONE) {
504 		return (CRYPTO_SUCCESS);
505 	}
506 
507 	/*
508 	 * if kmem already alloced from previous call and it's the same size
509 	 * we need now, just recycle it; allocate new kmem only if we have to
510 	 */
511 	if (lsp->ls_mech.cm_param == NULL ||
512 	    lsp->ls_mech.cm_param_len != lsp->ls_iv_len) {
513 		iv_len = lsp->ls_iv_len;
514 		iv = kmem_zalloc(iv_len, KM_SLEEP);
515 	} else {
516 		iv_len = lsp->ls_mech.cm_param_len;
517 		iv = lsp->ls_mech.cm_param;
518 		bzero(iv, iv_len);
519 	}
520 
521 	switch (lsp->ls_iv_type) {
522 	case IVM_ENC_BLKNO:
523 		/* iv is not static, lblkno changes each time */
524 		data = &lblkno;
525 		datasz = sizeof (lblkno);
526 		break;
527 	default:
528 		data = 0;
529 		datasz = 0;
530 		break;
531 	}
532 
533 	/*
534 	 * write blkno into the iv buffer padded on the left in case
535 	 * blkno ever grows bigger than its current longlong_t size
536 	 * or a variation other than blkno is used for the iv data
537 	 */
538 	min = MIN(datasz, iv_len);
539 	bcopy(data, iv + (iv_len - min), min);
540 
541 	/* encrypt the data in-place to get the IV */
542 	SETUP_C_DATA(cdata, iv, iv_len);
543 
544 	ret = crypto_encrypt(&lsp->ls_iv_mech, &cdata, &lsp->ls_key,
545 	    NULL, NULL, NULL);
546 	if (ret != CRYPTO_SUCCESS) {
547 		cmn_err(CE_WARN, "failed to create iv for block %lld: (0x%x)",
548 		    lblkno, ret);
549 		if (lsp->ls_mech.cm_param != iv)
550 			kmem_free(iv, iv_len);
551 
552 		return (ret);
553 	}
554 
555 	/* clean up the iv from the last computation */
556 	if (lsp->ls_mech.cm_param != NULL && lsp->ls_mech.cm_param != iv)
557 		kmem_free(lsp->ls_mech.cm_param, lsp->ls_mech.cm_param_len);
558 
559 	lsp->ls_mech.cm_param_len = iv_len;
560 	lsp->ls_mech.cm_param = iv;
561 
562 	return (CRYPTO_SUCCESS);
563 }
564 
565 /*
566  * Performs encryption and decryption of a chunk of data of size "len",
567  * one DEV_BSIZE block at a time.  "len" is assumed to be a multiple of
568  * DEV_BSIZE.
569  */
570 static int
571 lofi_crypto(struct lofi_state *lsp, struct buf *bp, caddr_t plaintext,
572     caddr_t ciphertext, size_t len, boolean_t op_encrypt)
573 {
574 	crypto_data_t cdata;
575 	crypto_data_t wdata;
576 	int ret;
577 	longlong_t lblkno = bp->b_lblkno;
578 
579 	mutex_enter(&lsp->ls_crypto_lock);
580 
581 	/*
582 	 * though we could encrypt/decrypt entire "len" chunk of data, we need
583 	 * to break it into DEV_BSIZE pieces to capture blkno incrementing
584 	 */
585 	SETUP_C_DATA(cdata, plaintext, len);
586 	cdata.cd_length = DEV_BSIZE;
587 	if (ciphertext != NULL) {		/* not in-place crypto */
588 		SETUP_C_DATA(wdata, ciphertext, len);
589 		wdata.cd_length = DEV_BSIZE;
590 	}
591 
592 	do {
593 		ret = lofi_blk_mech(lsp, lblkno);
594 		if (ret != CRYPTO_SUCCESS)
595 			continue;
596 
597 		if (op_encrypt) {
598 			ret = crypto_encrypt(&lsp->ls_mech, &cdata,
599 			    &lsp->ls_key, NULL,
600 			    ((ciphertext != NULL) ? &wdata : NULL), NULL);
601 		} else {
602 			ret = crypto_decrypt(&lsp->ls_mech, &cdata,
603 			    &lsp->ls_key, NULL,
604 			    ((ciphertext != NULL) ? &wdata : NULL), NULL);
605 		}
606 
607 		cdata.cd_offset += DEV_BSIZE;
608 		if (ciphertext != NULL)
609 			wdata.cd_offset += DEV_BSIZE;
610 		lblkno++;
611 	} while (ret == CRYPTO_SUCCESS && cdata.cd_offset < len);
612 
613 	mutex_exit(&lsp->ls_crypto_lock);
614 
615 	if (ret != CRYPTO_SUCCESS) {
616 		cmn_err(CE_WARN, "%s failed for block %lld:  (0x%x)",
617 		    op_encrypt ? "crypto_encrypt()" : "crypto_decrypt()",
618 		    lblkno, ret);
619 	}
620 
621 	return (ret);
622 }
623 
624 #define	RDWR_RAW	1
625 #define	RDWR_BCOPY	2
626 
627 static int
628 lofi_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp,
629     struct lofi_state *lsp, size_t len, int method, caddr_t bcopy_locn)
630 {
631 	ssize_t resid;
632 	int isread;
633 	int error;
634 
635 	/*
636 	 * Handles reads/writes for both plain and encrypted lofi
637 	 * Note:  offset is already shifted by lsp->ls_crypto_offset
638 	 * when it gets here.
639 	 */
640 
641 	isread = bp->b_flags & B_READ;
642 	if (isread) {
643 		if (method == RDWR_BCOPY) {
644 			/* DO NOT update bp->b_resid for bcopy */
645 			bcopy(bcopy_locn, bufaddr, len);
646 			error = 0;
647 		} else {		/* RDWR_RAW */
648 			error = vn_rdwr(UIO_READ, lsp->ls_vp, bufaddr, len,
649 			    offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred,
650 			    &resid);
651 			bp->b_resid = resid;
652 		}
653 		if (lsp->ls_crypto_enabled && error == 0) {
654 			if (lofi_crypto(lsp, bp, bufaddr, NULL, len,
655 			    B_FALSE) != CRYPTO_SUCCESS) {
656 				/*
657 				 * XXX: original code didn't set residual
658 				 * back to len because no error was expected
659 				 * from bcopy() if encryption is not enabled
660 				 */
661 				if (method != RDWR_BCOPY)
662 					bp->b_resid = len;
663 				error = EIO;
664 			}
665 		}
666 		return (error);
667 	} else {
668 		void *iobuf = bufaddr;
669 
670 		if (lsp->ls_crypto_enabled) {
671 			/* don't do in-place crypto to keep bufaddr intact */
672 			iobuf = kmem_alloc(len, KM_SLEEP);
673 			if (lofi_crypto(lsp, bp, bufaddr, iobuf, len,
674 			    B_TRUE) != CRYPTO_SUCCESS) {
675 				kmem_free(iobuf, len);
676 				if (method != RDWR_BCOPY)
677 					bp->b_resid = len;
678 				return (EIO);
679 			}
680 		}
681 		if (method == RDWR_BCOPY) {
682 			/* DO NOT update bp->b_resid for bcopy */
683 			bcopy(iobuf, bcopy_locn, len);
684 			error = 0;
685 		} else {		/* RDWR_RAW */
686 			error = vn_rdwr(UIO_WRITE, lsp->ls_vp, iobuf, len,
687 			    offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred,
688 			    &resid);
689 			bp->b_resid = resid;
690 		}
691 		if (lsp->ls_crypto_enabled) {
692 			kmem_free(iobuf, len);
693 		}
694 		return (error);
695 	}
696 }
697 
698 static int
699 lofi_mapped_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp,
700     struct lofi_state *lsp)
701 {
702 	int error;
703 	offset_t alignedoffset, mapoffset;
704 	size_t	xfersize;
705 	int	isread;
706 	int	smflags;
707 	caddr_t	mapaddr;
708 	size_t	len;
709 	enum seg_rw srw;
710 	int	save_error;
711 
712 	/*
713 	 * Note:  offset is already shifted by lsp->ls_crypto_offset
714 	 * when it gets here.
715 	 */
716 	if (lsp->ls_crypto_enabled)
717 		ASSERT(lsp->ls_vp_comp_size == lsp->ls_vp_size);
718 
719 	/*
720 	 * segmap always gives us an 8K (MAXBSIZE) chunk, aligned on
721 	 * an 8K boundary, but the buf transfer address may not be
722 	 * aligned on more than a 512-byte boundary (we don't enforce
723 	 * that even though we could). This matters since the initial
724 	 * part of the transfer may not start at offset 0 within the
725 	 * segmap'd chunk. So we have to compensate for that with
726 	 * 'mapoffset'. Subsequent chunks always start off at the
727 	 * beginning, and the last is capped by b_resid
728 	 *
729 	 * Visually, where "|" represents page map boundaries:
730 	 *   alignedoffset (mapaddr begins at this segmap boundary)
731 	 *    |   offset (from beginning of file)
732 	 *    |    |	   len
733 	 *    v    v	    v
734 	 * ===|====X========|====...======|========X====|====
735 	 *	   /-------------...---------------/
736 	 *		^ bp->b_bcount/bp->b_resid at start
737 	 *    /----/--------/----...------/--------/
738 	 *	^	^	^   ^		^
739 	 *	|	|	|   |		nth xfersize (<= MAXBSIZE)
740 	 *	|	|	2nd thru n-1st xfersize (= MAXBSIZE)
741 	 *	|	1st xfersize (<= MAXBSIZE)
742 	 *    mapoffset (offset into 1st segmap, non-0 1st time, 0 thereafter)
743 	 *
744 	 * Notes: "alignedoffset" is "offset" rounded down to nearest
745 	 * MAXBSIZE boundary.  "len" is next page boundary of size
746 	 * PAGESIZE after "alignedoffset".
747 	 */
748 	mapoffset = offset & MAXBOFFSET;
749 	alignedoffset = offset - mapoffset;
750 	bp->b_resid = bp->b_bcount;
751 	isread = bp->b_flags & B_READ;
752 	srw = isread ? S_READ : S_WRITE;
753 	do {
754 		xfersize = MIN(lsp->ls_vp_comp_size - offset,
755 		    MIN(MAXBSIZE - mapoffset, bp->b_resid));
756 		len = roundup(mapoffset + xfersize, PAGESIZE);
757 		mapaddr = segmap_getmapflt(segkmap, lsp->ls_vp,
758 		    alignedoffset, MAXBSIZE, 1, srw);
759 		/*
760 		 * Now fault in the pages. This lets us check
761 		 * for errors before we reference mapaddr and
762 		 * try to resolve the fault in bcopy (which would
763 		 * panic instead). And this can easily happen,
764 		 * particularly if you've lofi'd a file over NFS
765 		 * and someone deletes the file on the server.
766 		 */
767 		error = segmap_fault(kas.a_hat, segkmap, mapaddr,
768 		    len, F_SOFTLOCK, srw);
769 		if (error) {
770 			(void) segmap_release(segkmap, mapaddr, 0);
771 			if (FC_CODE(error) == FC_OBJERR)
772 				error = FC_ERRNO(error);
773 			else
774 				error = EIO;
775 			break;
776 		}
777 		/* error may be non-zero for encrypted lofi */
778 		error = lofi_rdwr(bufaddr, 0, bp, lsp, xfersize,
779 		    RDWR_BCOPY, mapaddr + mapoffset);
780 		if (error == 0) {
781 			bp->b_resid -= xfersize;
782 			bufaddr += xfersize;
783 			offset += xfersize;
784 		}
785 		smflags = 0;
786 		if (isread) {
787 			smflags |= SM_FREE;
788 			/*
789 			 * If we're reading an entire page starting
790 			 * at a page boundary, there's a good chance
791 			 * we won't need it again. Put it on the
792 			 * head of the freelist.
793 			 */
794 			if (mapoffset == 0 && xfersize == MAXBSIZE)
795 				smflags |= SM_DONTNEED;
796 		} else {
797 			if (error == 0)		/* write back good pages */
798 				smflags |= SM_WRITE;
799 		}
800 		(void) segmap_fault(kas.a_hat, segkmap, mapaddr,
801 		    len, F_SOFTUNLOCK, srw);
802 		save_error = segmap_release(segkmap, mapaddr, smflags);
803 		if (error == 0)
804 			error = save_error;
805 		/* only the first map may start partial */
806 		mapoffset = 0;
807 		alignedoffset += MAXBSIZE;
808 	} while ((error == 0) && (bp->b_resid > 0) &&
809 	    (offset < lsp->ls_vp_comp_size));
810 
811 	return (error);
812 }
813 
814 /*
815  * Check if segment seg_index is present in the decompressed segment
816  * data cache.
817  *
818  * Returns a pointer to the decompressed segment data cache entry if
819  * found, and NULL when decompressed data for this segment is not yet
820  * cached.
821  */
822 static struct lofi_comp_cache *
823 lofi_find_comp_data(struct lofi_state *lsp, uint64_t seg_index)
824 {
825 	struct lofi_comp_cache *lc;
826 
827 	ASSERT(mutex_owned(&lsp->ls_comp_cache_lock));
828 
829 	for (lc = list_head(&lsp->ls_comp_cache); lc != NULL;
830 	    lc = list_next(&lsp->ls_comp_cache, lc)) {
831 		if (lc->lc_index == seg_index) {
832 			/*
833 			 * Decompressed segment data was found in the
834 			 * cache.
835 			 *
836 			 * The cache uses an LRU replacement strategy;
837 			 * move the entry to head of list.
838 			 */
839 			list_remove(&lsp->ls_comp_cache, lc);
840 			list_insert_head(&lsp->ls_comp_cache, lc);
841 			return (lc);
842 		}
843 	}
844 	return (NULL);
845 }
846 
847 /*
848  * Add the data for a decompressed segment at segment index
849  * seg_index to the cache of the decompressed segments.
850  *
851  * Returns a pointer to the cache element structure in case
852  * the data was added to the cache; returns NULL when the data
853  * wasn't cached.
854  */
855 static struct lofi_comp_cache *
856 lofi_add_comp_data(struct lofi_state *lsp, uint64_t seg_index,
857     uchar_t *data)
858 {
859 	struct lofi_comp_cache *lc;
860 
861 	ASSERT(mutex_owned(&lsp->ls_comp_cache_lock));
862 
863 	while (lsp->ls_comp_cache_count > lofi_max_comp_cache) {
864 		lc = list_remove_tail(&lsp->ls_comp_cache);
865 		ASSERT(lc != NULL);
866 		kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
867 		kmem_free(lc, sizeof (struct lofi_comp_cache));
868 		lsp->ls_comp_cache_count--;
869 	}
870 
871 	/*
872 	 * Do not cache when disabled by tunable variable
873 	 */
874 	if (lofi_max_comp_cache == 0)
875 		return (NULL);
876 
877 	/*
878 	 * When the cache has not yet reached the maximum allowed
879 	 * number of segments, allocate a new cache element.
880 	 * Otherwise the cache is full; reuse the last list element
881 	 * (LRU) for caching the decompressed segment data.
882 	 *
883 	 * The cache element for the new decompressed segment data is
884 	 * added to the head of the list.
885 	 */
886 	if (lsp->ls_comp_cache_count < lofi_max_comp_cache) {
887 		lc = kmem_alloc(sizeof (struct lofi_comp_cache), KM_SLEEP);
888 		lc->lc_data = NULL;
889 		list_insert_head(&lsp->ls_comp_cache, lc);
890 		lsp->ls_comp_cache_count++;
891 	} else {
892 		lc = list_remove_tail(&lsp->ls_comp_cache);
893 		if (lc == NULL)
894 			return (NULL);
895 		list_insert_head(&lsp->ls_comp_cache, lc);
896 	}
897 
898 	/*
899 	 * Free old uncompressed segment data when reusing a cache
900 	 * entry.
901 	 */
902 	if (lc->lc_data != NULL)
903 		kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
904 
905 	lc->lc_data = data;
906 	lc->lc_index = seg_index;
907 	return (lc);
908 }
909 
910 
911 /*ARGSUSED*/
912 static int
913 gzip_decompress(void *src, size_t srclen, void *dst,
914     size_t *dstlen, int level)
915 {
916 	ASSERT(*dstlen >= srclen);
917 
918 	if (z_uncompress(dst, dstlen, src, srclen) != Z_OK)
919 		return (-1);
920 	return (0);
921 }
922 
923 #define	LZMA_HEADER_SIZE	(LZMA_PROPS_SIZE + 8)
924 /*ARGSUSED*/
925 static int
926 lzma_decompress(void *src, size_t srclen, void *dst,
927 	size_t *dstlen, int level)
928 {
929 	size_t insizepure;
930 	void *actual_src;
931 	ELzmaStatus status;
932 
933 	insizepure = srclen - LZMA_HEADER_SIZE;
934 	actual_src = (void *)((Byte *)src + LZMA_HEADER_SIZE);
935 
936 	if (LzmaDecode((Byte *)dst, (size_t *)dstlen,
937 	    (const Byte *)actual_src, &insizepure,
938 	    (const Byte *)src, LZMA_PROPS_SIZE, LZMA_FINISH_ANY, &status,
939 	    &g_Alloc) != SZ_OK) {
940 		return (-1);
941 	}
942 	return (0);
943 }
944 
945 /*
946  * This is basically what strategy used to be before we found we
947  * needed task queues.
948  */
949 static void
950 lofi_strategy_task(void *arg)
951 {
952 	struct buf *bp = (struct buf *)arg;
953 	int error;
954 	struct lofi_state *lsp;
955 	offset_t offset;
956 	caddr_t	bufaddr;
957 	size_t	len;
958 	size_t	xfersize;
959 	boolean_t bufinited = B_FALSE;
960 
961 	lsp = ddi_get_soft_state(lofi_statep, getminor(bp->b_edev));
962 	if (lsp == NULL) {
963 		error = ENXIO;
964 		goto errout;
965 	}
966 	if (lsp->ls_kstat) {
967 		mutex_enter(lsp->ls_kstat->ks_lock);
968 		kstat_waitq_to_runq(KSTAT_IO_PTR(lsp->ls_kstat));
969 		mutex_exit(lsp->ls_kstat->ks_lock);
970 	}
971 	bp_mapin(bp);
972 	bufaddr = bp->b_un.b_addr;
973 	offset = bp->b_lblkno * DEV_BSIZE;	/* offset within file */
974 	if (lsp->ls_crypto_enabled) {
975 		/* encrypted data really begins after crypto header */
976 		offset += lsp->ls_crypto_offset;
977 	}
978 	len = bp->b_bcount;
979 	bufinited = B_TRUE;
980 
981 	if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) {
982 		error = EIO;
983 		goto errout;
984 	}
985 
986 	/*
987 	 * We used to always use vn_rdwr here, but we cannot do that because
988 	 * we might decide to read or write from the the underlying
989 	 * file during this call, which would be a deadlock because
990 	 * we have the rw_lock. So instead we page, unless it's not
991 	 * mapable or it's a character device or it's an encrypted lofi.
992 	 */
993 	if ((lsp->ls_vp->v_flag & VNOMAP) || (lsp->ls_vp->v_type == VCHR) ||
994 	    lsp->ls_crypto_enabled) {
995 		error = lofi_rdwr(bufaddr, offset, bp, lsp, len, RDWR_RAW,
996 		    NULL);
997 	} else if (lsp->ls_uncomp_seg_sz == 0) {
998 		error = lofi_mapped_rdwr(bufaddr, offset, bp, lsp);
999 	} else {
1000 		uchar_t *compressed_seg = NULL, *cmpbuf;
1001 		uchar_t *uncompressed_seg = NULL;
1002 		lofi_compress_info_t *li;
1003 		size_t oblkcount;
1004 		ulong_t seglen;
1005 		uint64_t sblkno, eblkno, cmpbytes;
1006 		uint64_t uncompressed_seg_index;
1007 		struct lofi_comp_cache *lc;
1008 		offset_t sblkoff, eblkoff;
1009 		u_offset_t salign, ealign;
1010 		u_offset_t sdiff;
1011 		uint32_t comp_data_sz;
1012 		uint64_t i;
1013 
1014 		/*
1015 		 * From here on we're dealing primarily with compressed files
1016 		 */
1017 		ASSERT(!lsp->ls_crypto_enabled);
1018 
1019 		/*
1020 		 * Compressed files can only be read from and
1021 		 * not written to
1022 		 */
1023 		if (!(bp->b_flags & B_READ)) {
1024 			bp->b_resid = bp->b_bcount;
1025 			error = EROFS;
1026 			goto done;
1027 		}
1028 
1029 		ASSERT(lsp->ls_comp_algorithm_index >= 0);
1030 		li = &lofi_compress_table[lsp->ls_comp_algorithm_index];
1031 		/*
1032 		 * Compute starting and ending compressed segment numbers
1033 		 * We use only bitwise operations avoiding division and
1034 		 * modulus because we enforce the compression segment size
1035 		 * to a power of 2
1036 		 */
1037 		sblkno = offset >> lsp->ls_comp_seg_shift;
1038 		sblkoff = offset & (lsp->ls_uncomp_seg_sz - 1);
1039 		eblkno = (offset + bp->b_bcount) >> lsp->ls_comp_seg_shift;
1040 		eblkoff = (offset + bp->b_bcount) & (lsp->ls_uncomp_seg_sz - 1);
1041 
1042 		/*
1043 		 * Check the decompressed segment cache.
1044 		 *
1045 		 * The cache is used only when the requested data
1046 		 * is within a segment. Requests that cross
1047 		 * segment boundaries bypass the cache.
1048 		 */
1049 		if (sblkno == eblkno ||
1050 		    (sblkno + 1 == eblkno && eblkoff == 0)) {
1051 			/*
1052 			 * Request doesn't cross a segment boundary,
1053 			 * now check the cache.
1054 			 */
1055 			mutex_enter(&lsp->ls_comp_cache_lock);
1056 			lc = lofi_find_comp_data(lsp, sblkno);
1057 			if (lc != NULL) {
1058 				/*
1059 				 * We've found the decompressed segment
1060 				 * data in the cache; reuse it.
1061 				 */
1062 				bcopy(lc->lc_data + sblkoff, bufaddr,
1063 				    bp->b_bcount);
1064 				mutex_exit(&lsp->ls_comp_cache_lock);
1065 				bp->b_resid = 0;
1066 				error = 0;
1067 				goto done;
1068 			}
1069 			mutex_exit(&lsp->ls_comp_cache_lock);
1070 		}
1071 
1072 		/*
1073 		 * Align start offset to block boundary for segmap
1074 		 */
1075 		salign = lsp->ls_comp_seg_index[sblkno];
1076 		sdiff = salign & (DEV_BSIZE - 1);
1077 		salign -= sdiff;
1078 		if (eblkno >= (lsp->ls_comp_index_sz - 1)) {
1079 			/*
1080 			 * We're dealing with the last segment of
1081 			 * the compressed file -- the size of this
1082 			 * segment *may not* be the same as the
1083 			 * segment size for the file
1084 			 */
1085 			eblkoff = (offset + bp->b_bcount) &
1086 			    (lsp->ls_uncomp_last_seg_sz - 1);
1087 			ealign = lsp->ls_vp_comp_size;
1088 		} else {
1089 			ealign = lsp->ls_comp_seg_index[eblkno + 1];
1090 		}
1091 
1092 		/*
1093 		 * Preserve original request paramaters
1094 		 */
1095 		oblkcount = bp->b_bcount;
1096 
1097 		/*
1098 		 * Assign the calculated parameters
1099 		 */
1100 		comp_data_sz = ealign - salign;
1101 		bp->b_bcount = comp_data_sz;
1102 
1103 		/*
1104 		 * Allocate fixed size memory blocks to hold compressed
1105 		 * segments and one uncompressed segment since we
1106 		 * uncompress segments one at a time
1107 		 */
1108 		compressed_seg = kmem_alloc(bp->b_bcount, KM_SLEEP);
1109 		uncompressed_seg = kmem_alloc(lsp->ls_uncomp_seg_sz, KM_SLEEP);
1110 		/*
1111 		 * Map in the calculated number of blocks
1112 		 */
1113 		error = lofi_mapped_rdwr((caddr_t)compressed_seg, salign,
1114 		    bp, lsp);
1115 
1116 		bp->b_bcount = oblkcount;
1117 		bp->b_resid = oblkcount;
1118 		if (error != 0)
1119 			goto done;
1120 
1121 		/*
1122 		 * We have the compressed blocks, now uncompress them
1123 		 */
1124 		cmpbuf = compressed_seg + sdiff;
1125 		for (i = sblkno; i <= eblkno; i++) {
1126 			ASSERT(i < lsp->ls_comp_index_sz - 1);
1127 
1128 			/*
1129 			 * The last segment is special in that it is
1130 			 * most likely not going to be the same
1131 			 * (uncompressed) size as the other segments.
1132 			 */
1133 			if (i == (lsp->ls_comp_index_sz - 2)) {
1134 				seglen = lsp->ls_uncomp_last_seg_sz;
1135 			} else {
1136 				seglen = lsp->ls_uncomp_seg_sz;
1137 			}
1138 
1139 			/*
1140 			 * Each of the segment index entries contains
1141 			 * the starting block number for that segment.
1142 			 * The number of compressed bytes in a segment
1143 			 * is thus the difference between the starting
1144 			 * block number of this segment and the starting
1145 			 * block number of the next segment.
1146 			 */
1147 			cmpbytes = lsp->ls_comp_seg_index[i + 1] -
1148 			    lsp->ls_comp_seg_index[i];
1149 
1150 			/*
1151 			 * The first byte in a compressed segment is a flag
1152 			 * that indicates whether this segment is compressed
1153 			 * at all
1154 			 */
1155 			if (*cmpbuf == UNCOMPRESSED) {
1156 				bcopy((cmpbuf + SEGHDR), uncompressed_seg,
1157 				    (cmpbytes - SEGHDR));
1158 			} else {
1159 				if (li->l_decompress((cmpbuf + SEGHDR),
1160 				    (cmpbytes - SEGHDR), uncompressed_seg,
1161 				    &seglen, li->l_level) != 0) {
1162 					error = EIO;
1163 					goto done;
1164 				}
1165 			}
1166 
1167 			uncompressed_seg_index = i;
1168 
1169 			/*
1170 			 * Determine how much uncompressed data we
1171 			 * have to copy and copy it
1172 			 */
1173 			xfersize = lsp->ls_uncomp_seg_sz - sblkoff;
1174 			if (i == eblkno)
1175 				xfersize -= (lsp->ls_uncomp_seg_sz - eblkoff);
1176 
1177 			bcopy((uncompressed_seg + sblkoff), bufaddr, xfersize);
1178 
1179 			cmpbuf += cmpbytes;
1180 			bufaddr += xfersize;
1181 			bp->b_resid -= xfersize;
1182 			sblkoff = 0;
1183 
1184 			if (bp->b_resid == 0)
1185 				break;
1186 		}
1187 
1188 		/*
1189 		 * Add the data for the last decopressed segment to
1190 		 * the cache.
1191 		 *
1192 		 * In case the uncompressed segment data was added to (and
1193 		 * is referenced by) the cache, make sure we don't free it
1194 		 * here.
1195 		 */
1196 		mutex_enter(&lsp->ls_comp_cache_lock);
1197 		if ((lc = lofi_add_comp_data(lsp, uncompressed_seg_index,
1198 		    uncompressed_seg)) != NULL) {
1199 			uncompressed_seg = NULL;
1200 		}
1201 		mutex_exit(&lsp->ls_comp_cache_lock);
1202 
1203 done:
1204 		if (compressed_seg != NULL)
1205 			kmem_free(compressed_seg, comp_data_sz);
1206 		if (uncompressed_seg != NULL)
1207 			kmem_free(uncompressed_seg, lsp->ls_uncomp_seg_sz);
1208 	} /* end of handling compressed files */
1209 
1210 errout:
1211 	if (bufinited && lsp->ls_kstat) {
1212 		size_t n_done = bp->b_bcount - bp->b_resid;
1213 		kstat_io_t *kioptr;
1214 
1215 		mutex_enter(lsp->ls_kstat->ks_lock);
1216 		kioptr = KSTAT_IO_PTR(lsp->ls_kstat);
1217 		if (bp->b_flags & B_READ) {
1218 			kioptr->nread += n_done;
1219 			kioptr->reads++;
1220 		} else {
1221 			kioptr->nwritten += n_done;
1222 			kioptr->writes++;
1223 		}
1224 		kstat_runq_exit(kioptr);
1225 		mutex_exit(lsp->ls_kstat->ks_lock);
1226 	}
1227 
1228 	mutex_enter(&lsp->ls_vp_lock);
1229 	if (--lsp->ls_vp_iocount == 0)
1230 		cv_broadcast(&lsp->ls_vp_cv);
1231 	mutex_exit(&lsp->ls_vp_lock);
1232 
1233 	bioerror(bp, error);
1234 	biodone(bp);
1235 }
1236 
1237 static int
1238 lofi_strategy(struct buf *bp)
1239 {
1240 	struct lofi_state *lsp;
1241 	offset_t	offset;
1242 
1243 	/*
1244 	 * We cannot just do I/O here, because the current thread
1245 	 * _might_ end up back in here because the underlying filesystem
1246 	 * wants a buffer, which eventually gets into bio_recycle and
1247 	 * might call into lofi to write out a delayed-write buffer.
1248 	 * This is bad if the filesystem above lofi is the same as below.
1249 	 *
1250 	 * We could come up with a complex strategy using threads to
1251 	 * do the I/O asynchronously, or we could use task queues. task
1252 	 * queues were incredibly easy so they win.
1253 	 */
1254 	lsp = ddi_get_soft_state(lofi_statep, getminor(bp->b_edev));
1255 	if (lsp == NULL) {
1256 		bioerror(bp, ENXIO);
1257 		biodone(bp);
1258 		return (0);
1259 	}
1260 
1261 	mutex_enter(&lsp->ls_vp_lock);
1262 	if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) {
1263 		bioerror(bp, EIO);
1264 		biodone(bp);
1265 		mutex_exit(&lsp->ls_vp_lock);
1266 		return (0);
1267 	}
1268 
1269 	offset = bp->b_lblkno * DEV_BSIZE;	/* offset within file */
1270 	if (lsp->ls_crypto_enabled) {
1271 		/* encrypted data really begins after crypto header */
1272 		offset += lsp->ls_crypto_offset;
1273 	}
1274 	if (offset == lsp->ls_vp_size) {
1275 		/* EOF */
1276 		if ((bp->b_flags & B_READ) != 0) {
1277 			bp->b_resid = bp->b_bcount;
1278 			bioerror(bp, 0);
1279 		} else {
1280 			/* writes should fail */
1281 			bioerror(bp, ENXIO);
1282 		}
1283 		biodone(bp);
1284 		mutex_exit(&lsp->ls_vp_lock);
1285 		return (0);
1286 	}
1287 	if (offset > lsp->ls_vp_size) {
1288 		bioerror(bp, ENXIO);
1289 		biodone(bp);
1290 		mutex_exit(&lsp->ls_vp_lock);
1291 		return (0);
1292 	}
1293 	lsp->ls_vp_iocount++;
1294 	mutex_exit(&lsp->ls_vp_lock);
1295 
1296 	if (lsp->ls_kstat) {
1297 		mutex_enter(lsp->ls_kstat->ks_lock);
1298 		kstat_waitq_enter(KSTAT_IO_PTR(lsp->ls_kstat));
1299 		mutex_exit(lsp->ls_kstat->ks_lock);
1300 	}
1301 	(void) taskq_dispatch(lsp->ls_taskq, lofi_strategy_task, bp, KM_SLEEP);
1302 	return (0);
1303 }
1304 
1305 /*ARGSUSED2*/
1306 static int
1307 lofi_read(dev_t dev, struct uio *uio, struct cred *credp)
1308 {
1309 	if (getminor(dev) == 0)
1310 		return (EINVAL);
1311 	UIO_CHECK(uio);
1312 	return (physio(lofi_strategy, NULL, dev, B_READ, minphys, uio));
1313 }
1314 
1315 /*ARGSUSED2*/
1316 static int
1317 lofi_write(dev_t dev, struct uio *uio, struct cred *credp)
1318 {
1319 	if (getminor(dev) == 0)
1320 		return (EINVAL);
1321 	UIO_CHECK(uio);
1322 	return (physio(lofi_strategy, NULL, dev, B_WRITE, minphys, uio));
1323 }
1324 
1325 /*ARGSUSED2*/
1326 static int
1327 lofi_aread(dev_t dev, struct aio_req *aio, struct cred *credp)
1328 {
1329 	if (getminor(dev) == 0)
1330 		return (EINVAL);
1331 	UIO_CHECK(aio->aio_uio);
1332 	return (aphysio(lofi_strategy, anocancel, dev, B_READ, minphys, aio));
1333 }
1334 
1335 /*ARGSUSED2*/
1336 static int
1337 lofi_awrite(dev_t dev, struct aio_req *aio, struct cred *credp)
1338 {
1339 	if (getminor(dev) == 0)
1340 		return (EINVAL);
1341 	UIO_CHECK(aio->aio_uio);
1342 	return (aphysio(lofi_strategy, anocancel, dev, B_WRITE, minphys, aio));
1343 }
1344 
1345 /*ARGSUSED*/
1346 static int
1347 lofi_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
1348 {
1349 	switch (infocmd) {
1350 	case DDI_INFO_DEVT2DEVINFO:
1351 		*result = lofi_dip;
1352 		return (DDI_SUCCESS);
1353 	case DDI_INFO_DEVT2INSTANCE:
1354 		*result = 0;
1355 		return (DDI_SUCCESS);
1356 	}
1357 	return (DDI_FAILURE);
1358 }
1359 
1360 static int
1361 lofi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
1362 {
1363 	int	error;
1364 
1365 	if (cmd != DDI_ATTACH)
1366 		return (DDI_FAILURE);
1367 	error = ddi_soft_state_zalloc(lofi_statep, 0);
1368 	if (error == DDI_FAILURE) {
1369 		return (DDI_FAILURE);
1370 	}
1371 	error = ddi_create_minor_node(dip, LOFI_CTL_NODE, S_IFCHR, 0,
1372 	    DDI_PSEUDO, NULL);
1373 	if (error == DDI_FAILURE) {
1374 		ddi_soft_state_free(lofi_statep, 0);
1375 		return (DDI_FAILURE);
1376 	}
1377 	/* driver handles kernel-issued IOCTLs */
1378 	if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
1379 	    DDI_KERNEL_IOCTL, NULL, 0) != DDI_PROP_SUCCESS) {
1380 		ddi_remove_minor_node(dip, NULL);
1381 		ddi_soft_state_free(lofi_statep, 0);
1382 		return (DDI_FAILURE);
1383 	}
1384 	lofi_dip = dip;
1385 	ddi_report_dev(dip);
1386 	return (DDI_SUCCESS);
1387 }
1388 
1389 static int
1390 lofi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
1391 {
1392 	if (cmd != DDI_DETACH)
1393 		return (DDI_FAILURE);
1394 	if (lofi_busy())
1395 		return (DDI_FAILURE);
1396 	lofi_dip = NULL;
1397 	ddi_remove_minor_node(dip, NULL);
1398 	ddi_prop_remove_all(dip);
1399 	ddi_soft_state_free(lofi_statep, 0);
1400 	return (DDI_SUCCESS);
1401 }
1402 
1403 /*
1404  * With addition of encryption, be careful that encryption key is wiped before
1405  * kernel memory structures are freed, and also that key is not accidentally
1406  * passed out into userland structures.
1407  */
1408 static void
1409 free_lofi_ioctl(struct lofi_ioctl *klip)
1410 {
1411 	/* Make sure this encryption key doesn't stick around */
1412 	bzero(klip->li_key, sizeof (klip->li_key));
1413 	kmem_free(klip, sizeof (struct lofi_ioctl));
1414 }
1415 
1416 /*
1417  * These two just simplify the rest of the ioctls that need to copyin/out
1418  * the lofi_ioctl structure.
1419  */
1420 struct lofi_ioctl *
1421 copy_in_lofi_ioctl(const struct lofi_ioctl *ulip, int flag)
1422 {
1423 	struct lofi_ioctl *klip;
1424 	int	error;
1425 
1426 	klip = kmem_alloc(sizeof (struct lofi_ioctl), KM_SLEEP);
1427 	error = ddi_copyin(ulip, klip, sizeof (struct lofi_ioctl), flag);
1428 	if (error) {
1429 		free_lofi_ioctl(klip);
1430 		return (NULL);
1431 	}
1432 
1433 	/* make sure filename is always null-terminated */
1434 	klip->li_filename[MAXPATHLEN-1] = '\0';
1435 
1436 	/* validate minor number */
1437 	if (klip->li_minor > lofi_max_files) {
1438 		free_lofi_ioctl(klip);
1439 		cmn_err(CE_WARN, "attempt to map more than lofi_max_files (%d)",
1440 		    lofi_max_files);
1441 		return (NULL);
1442 	}
1443 	return (klip);
1444 }
1445 
1446 int
1447 copy_out_lofi_ioctl(const struct lofi_ioctl *klip, struct lofi_ioctl *ulip,
1448 	int flag)
1449 {
1450 	int	error;
1451 
1452 	/*
1453 	 * NOTE: Do NOT copy the crypto_key_t "back" to userland.
1454 	 * This ensures that an attacker can't trivially find the
1455 	 * key for a mapping just by issuing the ioctl.
1456 	 *
1457 	 * It can still be found by poking around in kmem with mdb(1),
1458 	 * but there is no point in making it easy when the info isn't
1459 	 * of any use in this direction anyway.
1460 	 *
1461 	 * Either way we don't actually have the raw key stored in
1462 	 * a form that we can get it anyway, since we just used it
1463 	 * to create a ctx template and didn't keep "the original".
1464 	 */
1465 	error = ddi_copyout(klip, ulip, sizeof (struct lofi_ioctl), flag);
1466 	if (error)
1467 		return (EFAULT);
1468 	return (0);
1469 }
1470 
1471 /*
1472  * Return the minor number 'filename' is mapped to, if it is.
1473  */
1474 static int
1475 file_to_minor(char *filename)
1476 {
1477 	minor_t	minor;
1478 	struct lofi_state *lsp;
1479 
1480 	ASSERT(mutex_owned(&lofi_lock));
1481 	for (minor = 1; minor <= lofi_max_files; minor++) {
1482 		lsp = ddi_get_soft_state(lofi_statep, minor);
1483 		if (lsp == NULL)
1484 			continue;
1485 		if (strcmp(lsp->ls_filename, filename) == 0)
1486 			return (minor);
1487 	}
1488 	return (0);
1489 }
1490 
1491 /*
1492  * lofiadm does some validation, but since Joe Random (or crashme) could
1493  * do our ioctls, we need to do some validation too.
1494  */
1495 static int
1496 valid_filename(const char *filename)
1497 {
1498 	static char *blkprefix = "/dev/" LOFI_BLOCK_NAME "/";
1499 	static char *charprefix = "/dev/" LOFI_CHAR_NAME "/";
1500 
1501 	/* must be absolute path */
1502 	if (filename[0] != '/')
1503 		return (0);
1504 	/* must not be lofi */
1505 	if (strncmp(filename, blkprefix, strlen(blkprefix)) == 0)
1506 		return (0);
1507 	if (strncmp(filename, charprefix, strlen(charprefix)) == 0)
1508 		return (0);
1509 	return (1);
1510 }
1511 
1512 /*
1513  * Fakes up a disk geometry, and one big partition, based on the size
1514  * of the file. This is needed because we allow newfs'ing the device,
1515  * and newfs will do several disk ioctls to figure out the geometry and
1516  * partition information. It uses that information to determine the parameters
1517  * to pass to mkfs. Geometry is pretty much irrelevant these days, but we
1518  * have to support it.
1519  */
1520 static void
1521 fake_disk_geometry(struct lofi_state *lsp)
1522 {
1523 	u_offset_t dsize = lsp->ls_vp_size - lsp->ls_crypto_offset;
1524 
1525 	/* dk_geom - see dkio(7I) */
1526 	/*
1527 	 * dkg_ncyl _could_ be set to one here (one big cylinder with gobs
1528 	 * of sectors), but that breaks programs like fdisk which want to
1529 	 * partition a disk by cylinder. With one cylinder, you can't create
1530 	 * an fdisk partition and put pcfs on it for testing (hard to pick
1531 	 * a number between one and one).
1532 	 *
1533 	 * The cheezy floppy test is an attempt to not have too few cylinders
1534 	 * for a small file, or so many on a big file that you waste space
1535 	 * for backup superblocks or cylinder group structures.
1536 	 */
1537 	if (dsize < (2 * 1024 * 1024)) /* floppy? */
1538 		lsp->ls_dkg.dkg_ncyl = dsize / (100 * 1024);
1539 	else
1540 		lsp->ls_dkg.dkg_ncyl = dsize / (300 * 1024);
1541 	/* in case file file is < 100k */
1542 	if (lsp->ls_dkg.dkg_ncyl == 0)
1543 		lsp->ls_dkg.dkg_ncyl = 1;
1544 	lsp->ls_dkg.dkg_acyl = 0;
1545 	lsp->ls_dkg.dkg_bcyl = 0;
1546 	lsp->ls_dkg.dkg_nhead = 1;
1547 	lsp->ls_dkg.dkg_obs1 = 0;
1548 	lsp->ls_dkg.dkg_intrlv = 0;
1549 	lsp->ls_dkg.dkg_obs2 = 0;
1550 	lsp->ls_dkg.dkg_obs3 = 0;
1551 	lsp->ls_dkg.dkg_apc = 0;
1552 	lsp->ls_dkg.dkg_rpm = 7200;
1553 	lsp->ls_dkg.dkg_pcyl = lsp->ls_dkg.dkg_ncyl + lsp->ls_dkg.dkg_acyl;
1554 	lsp->ls_dkg.dkg_nsect = dsize / (DEV_BSIZE * lsp->ls_dkg.dkg_ncyl);
1555 	lsp->ls_dkg.dkg_write_reinstruct = 0;
1556 	lsp->ls_dkg.dkg_read_reinstruct = 0;
1557 
1558 	/* vtoc - see dkio(7I) */
1559 	bzero(&lsp->ls_vtoc, sizeof (struct vtoc));
1560 	lsp->ls_vtoc.v_sanity = VTOC_SANE;
1561 	lsp->ls_vtoc.v_version = V_VERSION;
1562 	(void) strncpy(lsp->ls_vtoc.v_volume, LOFI_DRIVER_NAME,
1563 	    sizeof (lsp->ls_vtoc.v_volume));
1564 	lsp->ls_vtoc.v_sectorsz = DEV_BSIZE;
1565 	lsp->ls_vtoc.v_nparts = 1;
1566 	lsp->ls_vtoc.v_part[0].p_tag = V_UNASSIGNED;
1567 
1568 	/*
1569 	 * A compressed file is read-only, other files can
1570 	 * be read-write
1571 	 */
1572 	if (lsp->ls_uncomp_seg_sz > 0) {
1573 		lsp->ls_vtoc.v_part[0].p_flag = V_UNMNT | V_RONLY;
1574 	} else {
1575 		lsp->ls_vtoc.v_part[0].p_flag = V_UNMNT;
1576 	}
1577 	lsp->ls_vtoc.v_part[0].p_start = (daddr_t)0;
1578 	/*
1579 	 * The partition size cannot just be the number of sectors, because
1580 	 * that might not end on a cylinder boundary. And if that's the case,
1581 	 * newfs/mkfs will print a scary warning. So just figure the size
1582 	 * based on the number of cylinders and sectors/cylinder.
1583 	 */
1584 	lsp->ls_vtoc.v_part[0].p_size = lsp->ls_dkg.dkg_pcyl *
1585 	    lsp->ls_dkg.dkg_nsect * lsp->ls_dkg.dkg_nhead;
1586 
1587 	/* dk_cinfo - see dkio(7I) */
1588 	bzero(&lsp->ls_ci, sizeof (struct dk_cinfo));
1589 	(void) strcpy(lsp->ls_ci.dki_cname, LOFI_DRIVER_NAME);
1590 	lsp->ls_ci.dki_ctype = DKC_MD;
1591 	lsp->ls_ci.dki_flags = 0;
1592 	lsp->ls_ci.dki_cnum = 0;
1593 	lsp->ls_ci.dki_addr = 0;
1594 	lsp->ls_ci.dki_space = 0;
1595 	lsp->ls_ci.dki_prio = 0;
1596 	lsp->ls_ci.dki_vec = 0;
1597 	(void) strcpy(lsp->ls_ci.dki_dname, LOFI_DRIVER_NAME);
1598 	lsp->ls_ci.dki_unit = 0;
1599 	lsp->ls_ci.dki_slave = 0;
1600 	lsp->ls_ci.dki_partition = 0;
1601 	/*
1602 	 * newfs uses this to set maxcontig. Must not be < 16, or it
1603 	 * will be 0 when newfs multiplies it by DEV_BSIZE and divides
1604 	 * it by the block size. Then tunefs doesn't work because
1605 	 * maxcontig is 0.
1606 	 */
1607 	lsp->ls_ci.dki_maxtransfer = 16;
1608 }
1609 
1610 /*
1611  * map in a compressed file
1612  *
1613  * Read in the header and the index that follows.
1614  *
1615  * The header is as follows -
1616  *
1617  * Signature (name of the compression algorithm)
1618  * Compression segment size (a multiple of 512)
1619  * Number of index entries
1620  * Size of the last block
1621  * The array containing the index entries
1622  *
1623  * The header information is always stored in
1624  * network byte order on disk.
1625  */
1626 static int
1627 lofi_map_compressed_file(struct lofi_state *lsp, char *buf)
1628 {
1629 	uint32_t index_sz, header_len, i;
1630 	ssize_t	resid;
1631 	enum uio_rw rw;
1632 	char *tbuf = buf;
1633 	int error;
1634 
1635 	/* The signature has already been read */
1636 	tbuf += sizeof (lsp->ls_comp_algorithm);
1637 	bcopy(tbuf, &(lsp->ls_uncomp_seg_sz), sizeof (lsp->ls_uncomp_seg_sz));
1638 	lsp->ls_uncomp_seg_sz = ntohl(lsp->ls_uncomp_seg_sz);
1639 
1640 	/*
1641 	 * The compressed segment size must be a power of 2
1642 	 */
1643 	if (lsp->ls_uncomp_seg_sz < DEV_BSIZE ||
1644 	    !ISP2(lsp->ls_uncomp_seg_sz))
1645 		return (EINVAL);
1646 
1647 	for (i = 0; !((lsp->ls_uncomp_seg_sz >> i) & 1); i++)
1648 		;
1649 
1650 	lsp->ls_comp_seg_shift = i;
1651 
1652 	tbuf += sizeof (lsp->ls_uncomp_seg_sz);
1653 	bcopy(tbuf, &(lsp->ls_comp_index_sz), sizeof (lsp->ls_comp_index_sz));
1654 	lsp->ls_comp_index_sz = ntohl(lsp->ls_comp_index_sz);
1655 
1656 	tbuf += sizeof (lsp->ls_comp_index_sz);
1657 	bcopy(tbuf, &(lsp->ls_uncomp_last_seg_sz),
1658 	    sizeof (lsp->ls_uncomp_last_seg_sz));
1659 	lsp->ls_uncomp_last_seg_sz = ntohl(lsp->ls_uncomp_last_seg_sz);
1660 
1661 	/*
1662 	 * Compute the total size of the uncompressed data
1663 	 * for use in fake_disk_geometry and other calculations.
1664 	 * Disk geometry has to be faked with respect to the
1665 	 * actual uncompressed data size rather than the
1666 	 * compressed file size.
1667 	 */
1668 	lsp->ls_vp_size =
1669 	    (u_offset_t)(lsp->ls_comp_index_sz - 2) * lsp->ls_uncomp_seg_sz
1670 	    + lsp->ls_uncomp_last_seg_sz;
1671 
1672 	/*
1673 	 * Index size is rounded up to DEV_BSIZE for ease
1674 	 * of segmapping
1675 	 */
1676 	index_sz = sizeof (*lsp->ls_comp_seg_index) * lsp->ls_comp_index_sz;
1677 	header_len = sizeof (lsp->ls_comp_algorithm) +
1678 	    sizeof (lsp->ls_uncomp_seg_sz) +
1679 	    sizeof (lsp->ls_comp_index_sz) +
1680 	    sizeof (lsp->ls_uncomp_last_seg_sz);
1681 	lsp->ls_comp_offbase = header_len + index_sz;
1682 
1683 	index_sz += header_len;
1684 	index_sz = roundup(index_sz, DEV_BSIZE);
1685 
1686 	lsp->ls_comp_index_data = kmem_alloc(index_sz, KM_SLEEP);
1687 	lsp->ls_comp_index_data_sz = index_sz;
1688 
1689 	/*
1690 	 * Read in the index -- this has a side-effect
1691 	 * of reading in the header as well
1692 	 */
1693 	rw = UIO_READ;
1694 	error = vn_rdwr(rw, lsp->ls_vp, lsp->ls_comp_index_data, index_sz,
1695 	    0, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
1696 
1697 	if (error != 0)
1698 		return (error);
1699 
1700 	/* Skip the header, this is where the index really begins */
1701 	lsp->ls_comp_seg_index =
1702 	    /*LINTED*/
1703 	    (uint64_t *)(lsp->ls_comp_index_data + header_len);
1704 
1705 	/*
1706 	 * Now recompute offsets in the index to account for
1707 	 * the header length
1708 	 */
1709 	for (i = 0; i < lsp->ls_comp_index_sz; i++) {
1710 		lsp->ls_comp_seg_index[i] = lsp->ls_comp_offbase +
1711 		    BE_64(lsp->ls_comp_seg_index[i]);
1712 	}
1713 
1714 	return (error);
1715 }
1716 
1717 /*
1718  * Check to see if the passed in signature is a valid
1719  * one.  If it is valid, return the index into
1720  * lofi_compress_table.
1721  *
1722  * Return -1 if it is invalid
1723  */
1724 static int lofi_compress_select(char *signature)
1725 {
1726 	int i;
1727 
1728 	for (i = 0; i < LOFI_COMPRESS_FUNCTIONS; i++) {
1729 		if (strcmp(lofi_compress_table[i].l_name, signature) == 0)
1730 			return (i);
1731 	}
1732 
1733 	return (-1);
1734 }
1735 
1736 /*
1737  * map a file to a minor number. Return the minor number.
1738  */
1739 static int
1740 lofi_map_file(dev_t dev, struct lofi_ioctl *ulip, int pickminor,
1741     int *rvalp, struct cred *credp, int ioctl_flag)
1742 {
1743 	minor_t	newminor;
1744 	struct lofi_state *lsp;
1745 	struct lofi_ioctl *klip;
1746 	int	error;
1747 	struct vnode *vp;
1748 	int64_t	Nblocks_prop_val;
1749 	int64_t	Size_prop_val;
1750 	int	compress_index;
1751 	vattr_t	vattr;
1752 	int	flag;
1753 	enum vtype v_type;
1754 	int zalloced = 0;
1755 	dev_t	newdev;
1756 	char	namebuf[50];
1757 	char	buf[DEV_BSIZE];
1758 	char	crybuf[DEV_BSIZE];
1759 	ssize_t	resid;
1760 	boolean_t need_vn_close = B_FALSE;
1761 	boolean_t keycopied = B_FALSE;
1762 	boolean_t need_size_update = B_FALSE;
1763 
1764 	klip = copy_in_lofi_ioctl(ulip, ioctl_flag);
1765 	if (klip == NULL)
1766 		return (EFAULT);
1767 
1768 	mutex_enter(&lofi_lock);
1769 
1770 	if (!valid_filename(klip->li_filename)) {
1771 		error = EINVAL;
1772 		goto out;
1773 	}
1774 
1775 	if (file_to_minor(klip->li_filename) != 0) {
1776 		error = EBUSY;
1777 		goto out;
1778 	}
1779 
1780 	if (pickminor) {
1781 		/* Find a free one */
1782 		for (newminor = 1; newminor <= lofi_max_files; newminor++)
1783 			if (ddi_get_soft_state(lofi_statep, newminor) == NULL)
1784 				break;
1785 		if (newminor >= lofi_max_files) {
1786 			error = EAGAIN;
1787 			goto out;
1788 		}
1789 	} else {
1790 		newminor = klip->li_minor;
1791 		if (ddi_get_soft_state(lofi_statep, newminor) != NULL) {
1792 			error = EEXIST;
1793 			goto out;
1794 		}
1795 	}
1796 
1797 	/* make sure it's valid */
1798 	error = lookupname(klip->li_filename, UIO_SYSSPACE, FOLLOW,
1799 	    NULLVPP, &vp);
1800 	if (error) {
1801 		goto out;
1802 	}
1803 	v_type = vp->v_type;
1804 	VN_RELE(vp);
1805 	if (!V_ISLOFIABLE(v_type)) {
1806 		error = EINVAL;
1807 		goto out;
1808 	}
1809 	flag = FREAD | FWRITE | FOFFMAX | FEXCL;
1810 	error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0, &vp, 0, 0);
1811 	if (error) {
1812 		/* try read-only */
1813 		flag &= ~FWRITE;
1814 		error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0,
1815 		    &vp, 0, 0);
1816 		if (error) {
1817 			goto out;
1818 		}
1819 	}
1820 	need_vn_close = B_TRUE;
1821 
1822 	vattr.va_mask = AT_SIZE;
1823 	error = VOP_GETATTR(vp, &vattr, 0, credp, NULL);
1824 	if (error) {
1825 		goto out;
1826 	}
1827 	/* the file needs to be a multiple of the block size */
1828 	if ((vattr.va_size % DEV_BSIZE) != 0) {
1829 		error = EINVAL;
1830 		goto out;
1831 	}
1832 	newdev = makedevice(getmajor(dev), newminor);
1833 	Size_prop_val = vattr.va_size;
1834 	if ((ddi_prop_update_int64(newdev, lofi_dip,
1835 	    SIZE_PROP_NAME, Size_prop_val)) != DDI_PROP_SUCCESS) {
1836 		error = EINVAL;
1837 		goto out;
1838 	}
1839 	Nblocks_prop_val = vattr.va_size / DEV_BSIZE;
1840 	if ((ddi_prop_update_int64(newdev, lofi_dip,
1841 	    NBLOCKS_PROP_NAME, Nblocks_prop_val)) != DDI_PROP_SUCCESS) {
1842 		error = EINVAL;
1843 		goto propout;
1844 	}
1845 	error = ddi_soft_state_zalloc(lofi_statep, newminor);
1846 	if (error == DDI_FAILURE) {
1847 		error = ENOMEM;
1848 		goto propout;
1849 	}
1850 	zalloced = 1;
1851 	(void) snprintf(namebuf, sizeof (namebuf), "%d", newminor);
1852 	error = ddi_create_minor_node(lofi_dip, namebuf, S_IFBLK, newminor,
1853 	    DDI_PSEUDO, NULL);
1854 	if (error != DDI_SUCCESS) {
1855 		error = ENXIO;
1856 		goto propout;
1857 	}
1858 	(void) snprintf(namebuf, sizeof (namebuf), "%d,raw", newminor);
1859 	error = ddi_create_minor_node(lofi_dip, namebuf, S_IFCHR, newminor,
1860 	    DDI_PSEUDO, NULL);
1861 	if (error != DDI_SUCCESS) {
1862 		/* remove block node */
1863 		(void) snprintf(namebuf, sizeof (namebuf), "%d", newminor);
1864 		ddi_remove_minor_node(lofi_dip, namebuf);
1865 		error = ENXIO;
1866 		goto propout;
1867 	}
1868 	lsp = ddi_get_soft_state(lofi_statep, newminor);
1869 	lsp->ls_filename_sz = strlen(klip->li_filename) + 1;
1870 	lsp->ls_filename = kmem_alloc(lsp->ls_filename_sz, KM_SLEEP);
1871 	(void) snprintf(namebuf, sizeof (namebuf), "%s_taskq_%d",
1872 	    LOFI_DRIVER_NAME, newminor);
1873 	lsp->ls_taskq = taskq_create(namebuf, lofi_taskq_nthreads,
1874 	    minclsyspri, 1, lofi_taskq_maxalloc, 0);
1875 	lsp->ls_kstat = kstat_create(LOFI_DRIVER_NAME, newminor,
1876 	    NULL, "disk", KSTAT_TYPE_IO, 1, 0);
1877 	if (lsp->ls_kstat) {
1878 		mutex_init(&lsp->ls_kstat_lock, NULL, MUTEX_DRIVER, NULL);
1879 		lsp->ls_kstat->ks_lock = &lsp->ls_kstat_lock;
1880 		kstat_install(lsp->ls_kstat);
1881 	}
1882 	cv_init(&lsp->ls_vp_cv, NULL, CV_DRIVER, NULL);
1883 	mutex_init(&lsp->ls_vp_lock, NULL, MUTEX_DRIVER, NULL);
1884 
1885 	list_create(&lsp->ls_comp_cache, sizeof (struct lofi_comp_cache),
1886 	    offsetof(struct lofi_comp_cache, lc_list));
1887 	mutex_init(&lsp->ls_comp_cache_lock, NULL, MUTEX_DRIVER, NULL);
1888 
1889 	/*
1890 	 * save open mode so file can be closed properly and vnode counts
1891 	 * updated correctly.
1892 	 */
1893 	lsp->ls_openflag = flag;
1894 
1895 	/*
1896 	 * Try to handle stacked lofs vnodes.
1897 	 */
1898 	if (vp->v_type == VREG) {
1899 		if (VOP_REALVP(vp, &lsp->ls_vp, NULL) != 0) {
1900 			lsp->ls_vp = vp;
1901 		} else {
1902 			/*
1903 			 * Even though vp was obtained via vn_open(), we
1904 			 * can't call vn_close() on it, since lofs will
1905 			 * pass the VOP_CLOSE() on down to the realvp
1906 			 * (which we are about to use). Hence we merely
1907 			 * drop the reference to the lofs vnode and hold
1908 			 * the realvp so things behave as if we've
1909 			 * opened the realvp without any interaction
1910 			 * with lofs.
1911 			 */
1912 			VN_HOLD(lsp->ls_vp);
1913 			VN_RELE(vp);
1914 		}
1915 	} else {
1916 		lsp->ls_vp = vp;
1917 	}
1918 	lsp->ls_vp_size = vattr.va_size;
1919 	(void) strcpy(lsp->ls_filename, klip->li_filename);
1920 	if (rvalp)
1921 		*rvalp = (int)newminor;
1922 	klip->li_minor = newminor;
1923 
1924 	/*
1925 	 * Initialize crypto details for encrypted lofi
1926 	 */
1927 	if (klip->li_crypto_enabled) {
1928 		int ret;
1929 
1930 		mutex_init(&lsp->ls_crypto_lock, NULL, MUTEX_DRIVER, NULL);
1931 
1932 		lsp->ls_mech.cm_type = crypto_mech2id(klip->li_cipher);
1933 		if (lsp->ls_mech.cm_type == CRYPTO_MECH_INVALID) {
1934 			cmn_err(CE_WARN, "invalid cipher %s requested for %s",
1935 			    klip->li_cipher, lsp->ls_filename);
1936 			error = EINVAL;
1937 			goto propout;
1938 		}
1939 
1940 		/* this is just initialization here */
1941 		lsp->ls_mech.cm_param = NULL;
1942 		lsp->ls_mech.cm_param_len = 0;
1943 
1944 		lsp->ls_iv_type = klip->li_iv_type;
1945 		lsp->ls_iv_mech.cm_type = crypto_mech2id(klip->li_iv_cipher);
1946 		if (lsp->ls_iv_mech.cm_type == CRYPTO_MECH_INVALID) {
1947 			cmn_err(CE_WARN, "invalid iv cipher %s requested"
1948 			    " for %s", klip->li_iv_cipher, lsp->ls_filename);
1949 			error = EINVAL;
1950 			goto propout;
1951 		}
1952 
1953 		/* iv mech must itself take a null iv */
1954 		lsp->ls_iv_mech.cm_param = NULL;
1955 		lsp->ls_iv_mech.cm_param_len = 0;
1956 		lsp->ls_iv_len = klip->li_iv_len;
1957 
1958 		/*
1959 		 * Create ctx using li_cipher & the raw li_key after checking
1960 		 * that it isn't a weak key.
1961 		 */
1962 		lsp->ls_key.ck_format = CRYPTO_KEY_RAW;
1963 		lsp->ls_key.ck_length = klip->li_key_len;
1964 		lsp->ls_key.ck_data = kmem_alloc(
1965 		    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length), KM_SLEEP);
1966 		bcopy(klip->li_key, lsp->ls_key.ck_data,
1967 		    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
1968 		keycopied = B_TRUE;
1969 
1970 		ret = crypto_key_check(&lsp->ls_mech, &lsp->ls_key);
1971 		if (ret != CRYPTO_SUCCESS) {
1972 			error = EINVAL;
1973 			cmn_err(CE_WARN, "weak key check failed for cipher "
1974 			    "%s on file %s (0x%x)", klip->li_cipher,
1975 			    lsp->ls_filename, ret);
1976 			goto propout;
1977 		}
1978 	}
1979 	lsp->ls_crypto_enabled = klip->li_crypto_enabled;
1980 
1981 	/*
1982 	 * Read the file signature to check if it is compressed or encrypted.
1983 	 * Crypto signature is in a different location; both areas should
1984 	 * read to keep compression and encryption mutually exclusive.
1985 	 */
1986 	if (lsp->ls_crypto_enabled) {
1987 		error = vn_rdwr(UIO_READ, lsp->ls_vp, crybuf, DEV_BSIZE,
1988 		    CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
1989 		if (error != 0)
1990 			goto propout;
1991 	}
1992 	error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE, 0, UIO_SYSSPACE,
1993 	    0, RLIM64_INFINITY, kcred, &resid);
1994 	if (error != 0)
1995 		goto propout;
1996 
1997 	/* initialize these variables for all lofi files */
1998 	lsp->ls_uncomp_seg_sz = 0;
1999 	lsp->ls_vp_comp_size = lsp->ls_vp_size;
2000 	lsp->ls_comp_algorithm[0] = '\0';
2001 
2002 	/* encrypted lofi reads/writes shifted by crypto metadata size */
2003 	lsp->ls_crypto_offset = 0;
2004 
2005 	/* this is a compressed lofi */
2006 	if ((compress_index = lofi_compress_select(buf)) != -1) {
2007 
2008 		/* compression and encryption are mutually exclusive */
2009 		if (klip->li_crypto_enabled) {
2010 			error = ENOTSUP;
2011 			goto propout;
2012 		}
2013 
2014 		/* initialize compression info for compressed lofi */
2015 		lsp->ls_comp_algorithm_index = compress_index;
2016 		(void) strlcpy(lsp->ls_comp_algorithm,
2017 		    lofi_compress_table[compress_index].l_name,
2018 		    sizeof (lsp->ls_comp_algorithm));
2019 
2020 		error = lofi_map_compressed_file(lsp, buf);
2021 		if (error != 0)
2022 			goto propout;
2023 		need_size_update = B_TRUE;
2024 
2025 	/* this is an encrypted lofi */
2026 	} else if (strncmp(crybuf, lofi_crypto_magic,
2027 	    sizeof (lofi_crypto_magic)) == 0) {
2028 
2029 		char *marker = crybuf;
2030 
2031 		/*
2032 		 * This is the case where the header in the lofi image is
2033 		 * already initialized to indicate it is encrypted.
2034 		 * There is another case (see below) where encryption is
2035 		 * requested but the lofi image has never been used yet,
2036 		 * so the header needs to be written with encryption magic.
2037 		 */
2038 
2039 		/* indicate this must be an encrypted lofi due to magic */
2040 		klip->li_crypto_enabled = B_TRUE;
2041 
2042 		/*
2043 		 * The encryption header information is laid out this way:
2044 		 *	6 bytes:	hex "CFLOFI"
2045 		 *	2 bytes:	version = 0 ... for now
2046 		 *	96 bytes:	reserved1 (not implemented yet)
2047 		 *	4 bytes:	data_sector = 2 ... for now
2048 		 *	more...		not implemented yet
2049 		 */
2050 
2051 		/* copy the magic */
2052 		bcopy(marker, lsp->ls_crypto.magic,
2053 		    sizeof (lsp->ls_crypto.magic));
2054 		marker += sizeof (lsp->ls_crypto.magic);
2055 
2056 		/* read the encryption version number */
2057 		bcopy(marker, &(lsp->ls_crypto.version),
2058 		    sizeof (lsp->ls_crypto.version));
2059 		lsp->ls_crypto.version = ntohs(lsp->ls_crypto.version);
2060 		marker += sizeof (lsp->ls_crypto.version);
2061 
2062 		/* read a chunk of reserved data */
2063 		bcopy(marker, lsp->ls_crypto.reserved1,
2064 		    sizeof (lsp->ls_crypto.reserved1));
2065 		marker += sizeof (lsp->ls_crypto.reserved1);
2066 
2067 		/* read block number where encrypted data begins */
2068 		bcopy(marker, &(lsp->ls_crypto.data_sector),
2069 		    sizeof (lsp->ls_crypto.data_sector));
2070 		lsp->ls_crypto.data_sector = ntohl(lsp->ls_crypto.data_sector);
2071 		marker += sizeof (lsp->ls_crypto.data_sector);
2072 
2073 		/* and ignore the rest until it is implemented */
2074 
2075 		lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE;
2076 		need_size_update = B_TRUE;
2077 
2078 	/* neither compressed nor encrypted, BUT could be new encrypted lofi */
2079 	} else if (klip->li_crypto_enabled) {
2080 
2081 		/*
2082 		 * This is the case where encryption was requested but the
2083 		 * appears to be entirely blank where the encryption header
2084 		 * would have been in the lofi image.  If it is blank,
2085 		 * assume it is a brand new lofi image and initialize the
2086 		 * header area with encryption magic and current version
2087 		 * header data.  If it is not blank, that's an error.
2088 		 */
2089 		int	i;
2090 		char	*marker;
2091 		struct crypto_meta	chead;
2092 
2093 		for (i = 0; i < sizeof (struct crypto_meta); i++)
2094 			if (crybuf[i] != '\0')
2095 				break;
2096 		if (i != sizeof (struct crypto_meta)) {
2097 			error = EINVAL;
2098 			goto propout;
2099 		}
2100 
2101 		/* nothing there, initialize as encrypted lofi */
2102 		marker = crybuf;
2103 		bcopy(lofi_crypto_magic, marker, sizeof (lofi_crypto_magic));
2104 		marker += sizeof (lofi_crypto_magic);
2105 		chead.version = htons(LOFI_CRYPTO_VERSION);
2106 		bcopy(&(chead.version), marker, sizeof (chead.version));
2107 		marker += sizeof (chead.version);
2108 		marker += sizeof (chead.reserved1);
2109 		chead.data_sector = htonl(LOFI_CRYPTO_DATA_SECTOR);
2110 		bcopy(&(chead.data_sector), marker, sizeof (chead.data_sector));
2111 
2112 		/* write the header */
2113 		error = vn_rdwr(UIO_WRITE, lsp->ls_vp, crybuf, DEV_BSIZE,
2114 		    CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
2115 		if (error != 0)
2116 			goto propout;
2117 
2118 		/* fix things up so it looks like we read this info */
2119 		bcopy(lofi_crypto_magic, lsp->ls_crypto.magic,
2120 		    sizeof (lofi_crypto_magic));
2121 		lsp->ls_crypto.version = LOFI_CRYPTO_VERSION;
2122 		lsp->ls_crypto.data_sector = LOFI_CRYPTO_DATA_SECTOR;
2123 
2124 		lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE;
2125 		need_size_update = B_TRUE;
2126 	}
2127 
2128 	/*
2129 	 * Either lsp->ls_vp_size or lsp->ls_crypto_offset changed;
2130 	 * for encrypted lofi, advertise that it is somewhat shorter
2131 	 * due to embedded crypto metadata section
2132 	 */
2133 	if (need_size_update) {
2134 		/* update DDI properties */
2135 		Size_prop_val = lsp->ls_vp_size - lsp->ls_crypto_offset;
2136 		if ((ddi_prop_update_int64(newdev, lofi_dip, SIZE_PROP_NAME,
2137 		    Size_prop_val)) != DDI_PROP_SUCCESS) {
2138 			error = EINVAL;
2139 			goto propout;
2140 		}
2141 		Nblocks_prop_val =
2142 		    (lsp->ls_vp_size - lsp->ls_crypto_offset) / DEV_BSIZE;
2143 		if ((ddi_prop_update_int64(newdev, lofi_dip, NBLOCKS_PROP_NAME,
2144 		    Nblocks_prop_val)) != DDI_PROP_SUCCESS) {
2145 			error = EINVAL;
2146 			goto propout;
2147 		}
2148 	}
2149 
2150 	fake_disk_geometry(lsp);
2151 	mutex_exit(&lofi_lock);
2152 	(void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2153 	free_lofi_ioctl(klip);
2154 	return (0);
2155 
2156 propout:
2157 	if (keycopied) {
2158 		bzero(lsp->ls_key.ck_data,
2159 		    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
2160 		kmem_free(lsp->ls_key.ck_data,
2161 		    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
2162 		lsp->ls_key.ck_data = NULL;
2163 		lsp->ls_key.ck_length = 0;
2164 	}
2165 
2166 	if (zalloced)
2167 		ddi_soft_state_free(lofi_statep, newminor);
2168 
2169 	(void) ddi_prop_remove(newdev, lofi_dip, SIZE_PROP_NAME);
2170 	(void) ddi_prop_remove(newdev, lofi_dip, NBLOCKS_PROP_NAME);
2171 
2172 out:
2173 	if (need_vn_close) {
2174 		(void) VOP_CLOSE(vp, flag, 1, 0, credp, NULL);
2175 		VN_RELE(vp);
2176 	}
2177 
2178 	mutex_exit(&lofi_lock);
2179 	free_lofi_ioctl(klip);
2180 	return (error);
2181 }
2182 
2183 /*
2184  * unmap a file.
2185  */
2186 static int
2187 lofi_unmap_file(dev_t dev, struct lofi_ioctl *ulip, int byfilename,
2188     struct cred *credp, int ioctl_flag)
2189 {
2190 	struct lofi_state *lsp;
2191 	struct lofi_ioctl *klip;
2192 	minor_t	minor;
2193 
2194 	klip = copy_in_lofi_ioctl(ulip, ioctl_flag);
2195 	if (klip == NULL)
2196 		return (EFAULT);
2197 
2198 	mutex_enter(&lofi_lock);
2199 	if (byfilename) {
2200 		minor = file_to_minor(klip->li_filename);
2201 	} else {
2202 		minor = klip->li_minor;
2203 	}
2204 	if (minor == 0) {
2205 		mutex_exit(&lofi_lock);
2206 		free_lofi_ioctl(klip);
2207 		return (ENXIO);
2208 	}
2209 	lsp = ddi_get_soft_state(lofi_statep, minor);
2210 	if (lsp == NULL || lsp->ls_vp == NULL) {
2211 		mutex_exit(&lofi_lock);
2212 		free_lofi_ioctl(klip);
2213 		return (ENXIO);
2214 	}
2215 
2216 	/*
2217 	 * If it's still held open, we'll do one of three things:
2218 	 *
2219 	 * If no flag is set, just return EBUSY.
2220 	 *
2221 	 * If the 'cleanup' flag is set, unmap and remove the device when
2222 	 * the last user finishes.
2223 	 *
2224 	 * If the 'force' flag is set, then we forcibly close the underlying
2225 	 * file.  Subsequent operations will fail, and the DKIOCSTATE ioctl
2226 	 * will return DKIO_DEV_GONE.  When the device is last closed, the
2227 	 * device will be cleaned up appropriately.
2228 	 *
2229 	 * This is complicated by the fact that we may have outstanding
2230 	 * dispatched I/Os.  Rather than having a single mutex to serialize all
2231 	 * I/O, we keep a count of the number of outstanding I/O requests
2232 	 * (ls_vp_iocount), as well as a flag to indicate that no new I/Os
2233 	 * should be dispatched (ls_vp_closereq).
2234 	 *
2235 	 * We set the flag, wait for the number of outstanding I/Os to reach 0,
2236 	 * and then close the underlying vnode.
2237 	 */
2238 	if (is_opened(lsp)) {
2239 		if (klip->li_force) {
2240 			mutex_enter(&lsp->ls_vp_lock);
2241 			lsp->ls_vp_closereq = B_TRUE;
2242 			/* wake up any threads waiting on dkiocstate */
2243 			cv_broadcast(&lsp->ls_vp_cv);
2244 			while (lsp->ls_vp_iocount > 0)
2245 				cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock);
2246 			mutex_exit(&lsp->ls_vp_lock);
2247 			lofi_free_handle(dev, minor, lsp, credp);
2248 
2249 			klip->li_minor = minor;
2250 			mutex_exit(&lofi_lock);
2251 			(void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2252 			free_lofi_ioctl(klip);
2253 			return (0);
2254 		} else if (klip->li_cleanup) {
2255 			lsp->ls_cleanup = 1;
2256 			mutex_exit(&lofi_lock);
2257 			free_lofi_ioctl(klip);
2258 			return (0);
2259 		}
2260 
2261 		mutex_exit(&lofi_lock);
2262 		free_lofi_ioctl(klip);
2263 		return (EBUSY);
2264 	}
2265 
2266 	lofi_free_handle(dev, minor, lsp, credp);
2267 
2268 	klip->li_minor = minor;
2269 	mutex_exit(&lofi_lock);
2270 	(void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2271 	free_lofi_ioctl(klip);
2272 	return (0);
2273 }
2274 
2275 /*
2276  * get the filename given the minor number, or the minor number given
2277  * the name.
2278  */
2279 /*ARGSUSED*/
2280 static int
2281 lofi_get_info(dev_t dev, struct lofi_ioctl *ulip, int which,
2282     struct cred *credp, int ioctl_flag)
2283 {
2284 	struct lofi_state *lsp;
2285 	struct lofi_ioctl *klip;
2286 	int	error;
2287 	minor_t	minor;
2288 
2289 	klip = copy_in_lofi_ioctl(ulip, ioctl_flag);
2290 	if (klip == NULL)
2291 		return (EFAULT);
2292 
2293 	switch (which) {
2294 	case LOFI_GET_FILENAME:
2295 		minor = klip->li_minor;
2296 		if (minor == 0) {
2297 			free_lofi_ioctl(klip);
2298 			return (EINVAL);
2299 		}
2300 
2301 		mutex_enter(&lofi_lock);
2302 		lsp = ddi_get_soft_state(lofi_statep, minor);
2303 		if (lsp == NULL) {
2304 			mutex_exit(&lofi_lock);
2305 			free_lofi_ioctl(klip);
2306 			return (ENXIO);
2307 		}
2308 		(void) strcpy(klip->li_filename, lsp->ls_filename);
2309 		(void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm,
2310 		    sizeof (klip->li_algorithm));
2311 		klip->li_crypto_enabled = lsp->ls_crypto_enabled;
2312 		mutex_exit(&lofi_lock);
2313 		error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2314 		free_lofi_ioctl(klip);
2315 		return (error);
2316 	case LOFI_GET_MINOR:
2317 		mutex_enter(&lofi_lock);
2318 		klip->li_minor = file_to_minor(klip->li_filename);
2319 		/* caller should not depend on klip->li_crypto_enabled here */
2320 		mutex_exit(&lofi_lock);
2321 		if (klip->li_minor == 0) {
2322 			free_lofi_ioctl(klip);
2323 			return (ENOENT);
2324 		}
2325 		error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2326 		free_lofi_ioctl(klip);
2327 		return (error);
2328 	case LOFI_CHECK_COMPRESSED:
2329 		mutex_enter(&lofi_lock);
2330 		klip->li_minor = file_to_minor(klip->li_filename);
2331 		mutex_exit(&lofi_lock);
2332 		if (klip->li_minor == 0) {
2333 			free_lofi_ioctl(klip);
2334 			return (ENOENT);
2335 		}
2336 		mutex_enter(&lofi_lock);
2337 		lsp = ddi_get_soft_state(lofi_statep, klip->li_minor);
2338 		if (lsp == NULL) {
2339 			mutex_exit(&lofi_lock);
2340 			free_lofi_ioctl(klip);
2341 			return (ENXIO);
2342 		}
2343 		ASSERT(strcmp(klip->li_filename, lsp->ls_filename) == 0);
2344 
2345 		(void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm,
2346 		    sizeof (klip->li_algorithm));
2347 		mutex_exit(&lofi_lock);
2348 		error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2349 		free_lofi_ioctl(klip);
2350 		return (error);
2351 	default:
2352 		free_lofi_ioctl(klip);
2353 		return (EINVAL);
2354 	}
2355 
2356 }
2357 
2358 static int
2359 lofi_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *credp,
2360     int *rvalp)
2361 {
2362 	int	error;
2363 	enum dkio_state dkstate;
2364 	struct lofi_state *lsp;
2365 	minor_t	minor;
2366 
2367 	minor = getminor(dev);
2368 	/* lofi ioctls only apply to the master device */
2369 	if (minor == 0) {
2370 		struct lofi_ioctl *lip = (struct lofi_ioctl *)arg;
2371 
2372 		/*
2373 		 * the query command only need read-access - i.e., normal
2374 		 * users are allowed to do those on the ctl device as
2375 		 * long as they can open it read-only.
2376 		 */
2377 		switch (cmd) {
2378 		case LOFI_MAP_FILE:
2379 			if ((flag & FWRITE) == 0)
2380 				return (EPERM);
2381 			return (lofi_map_file(dev, lip, 1, rvalp, credp, flag));
2382 		case LOFI_MAP_FILE_MINOR:
2383 			if ((flag & FWRITE) == 0)
2384 				return (EPERM);
2385 			return (lofi_map_file(dev, lip, 0, rvalp, credp, flag));
2386 		case LOFI_UNMAP_FILE:
2387 			if ((flag & FWRITE) == 0)
2388 				return (EPERM);
2389 			return (lofi_unmap_file(dev, lip, 1, credp, flag));
2390 		case LOFI_UNMAP_FILE_MINOR:
2391 			if ((flag & FWRITE) == 0)
2392 				return (EPERM);
2393 			return (lofi_unmap_file(dev, lip, 0, credp, flag));
2394 		case LOFI_GET_FILENAME:
2395 			return (lofi_get_info(dev, lip, LOFI_GET_FILENAME,
2396 			    credp, flag));
2397 		case LOFI_GET_MINOR:
2398 			return (lofi_get_info(dev, lip, LOFI_GET_MINOR,
2399 			    credp, flag));
2400 		case LOFI_GET_MAXMINOR:
2401 			error = ddi_copyout(&lofi_max_files, &lip->li_minor,
2402 			    sizeof (lofi_max_files), flag);
2403 			if (error)
2404 				return (EFAULT);
2405 			return (0);
2406 		case LOFI_CHECK_COMPRESSED:
2407 			return (lofi_get_info(dev, lip, LOFI_CHECK_COMPRESSED,
2408 			    credp, flag));
2409 		default:
2410 			break;
2411 		}
2412 	}
2413 
2414 	mutex_enter(&lofi_lock);
2415 	lsp = ddi_get_soft_state(lofi_statep, minor);
2416 	if (lsp == NULL || lsp->ls_vp_closereq) {
2417 		mutex_exit(&lofi_lock);
2418 		return (ENXIO);
2419 	}
2420 	mutex_exit(&lofi_lock);
2421 
2422 	/*
2423 	 * We explicitly allow DKIOCSTATE, but all other ioctls should fail with
2424 	 * EIO as if the device was no longer present.
2425 	 */
2426 	if (lsp->ls_vp == NULL && cmd != DKIOCSTATE)
2427 		return (EIO);
2428 
2429 	/* these are for faking out utilities like newfs */
2430 	switch (cmd) {
2431 	case DKIOCGVTOC:
2432 		switch (ddi_model_convert_from(flag & FMODELS)) {
2433 		case DDI_MODEL_ILP32: {
2434 			struct vtoc32 vtoc32;
2435 
2436 			vtoctovtoc32(lsp->ls_vtoc, vtoc32);
2437 			if (ddi_copyout(&vtoc32, (void *)arg,
2438 			    sizeof (struct vtoc32), flag))
2439 				return (EFAULT);
2440 			break;
2441 			}
2442 
2443 		case DDI_MODEL_NONE:
2444 			if (ddi_copyout(&lsp->ls_vtoc, (void *)arg,
2445 			    sizeof (struct vtoc), flag))
2446 				return (EFAULT);
2447 			break;
2448 		}
2449 		return (0);
2450 	case DKIOCINFO:
2451 		error = ddi_copyout(&lsp->ls_ci, (void *)arg,
2452 		    sizeof (struct dk_cinfo), flag);
2453 		if (error)
2454 			return (EFAULT);
2455 		return (0);
2456 	case DKIOCG_VIRTGEOM:
2457 	case DKIOCG_PHYGEOM:
2458 	case DKIOCGGEOM:
2459 		error = ddi_copyout(&lsp->ls_dkg, (void *)arg,
2460 		    sizeof (struct dk_geom), flag);
2461 		if (error)
2462 			return (EFAULT);
2463 		return (0);
2464 	case DKIOCSTATE:
2465 		/*
2466 		 * Normally, lofi devices are always in the INSERTED state.  If
2467 		 * a device is forcefully unmapped, then the device transitions
2468 		 * to the DKIO_DEV_GONE state.
2469 		 */
2470 		if (ddi_copyin((void *)arg, &dkstate, sizeof (dkstate),
2471 		    flag) != 0)
2472 			return (EFAULT);
2473 
2474 		mutex_enter(&lsp->ls_vp_lock);
2475 		lsp->ls_vp_iocount++;
2476 		while (((dkstate == DKIO_INSERTED && lsp->ls_vp != NULL) ||
2477 		    (dkstate == DKIO_DEV_GONE && lsp->ls_vp == NULL)) &&
2478 		    !lsp->ls_vp_closereq) {
2479 			/*
2480 			 * By virtue of having the device open, we know that
2481 			 * 'lsp' will remain valid when we return.
2482 			 */
2483 			if (!cv_wait_sig(&lsp->ls_vp_cv,
2484 			    &lsp->ls_vp_lock)) {
2485 				lsp->ls_vp_iocount--;
2486 				cv_broadcast(&lsp->ls_vp_cv);
2487 				mutex_exit(&lsp->ls_vp_lock);
2488 				return (EINTR);
2489 			}
2490 		}
2491 
2492 		dkstate = (!lsp->ls_vp_closereq && lsp->ls_vp != NULL ?
2493 		    DKIO_INSERTED : DKIO_DEV_GONE);
2494 		lsp->ls_vp_iocount--;
2495 		cv_broadcast(&lsp->ls_vp_cv);
2496 		mutex_exit(&lsp->ls_vp_lock);
2497 
2498 		if (ddi_copyout(&dkstate, (void *)arg,
2499 		    sizeof (dkstate), flag) != 0)
2500 			return (EFAULT);
2501 		return (0);
2502 	default:
2503 		return (ENOTTY);
2504 	}
2505 }
2506 
2507 static struct cb_ops lofi_cb_ops = {
2508 	lofi_open,		/* open */
2509 	lofi_close,		/* close */
2510 	lofi_strategy,		/* strategy */
2511 	nodev,			/* print */
2512 	nodev,			/* dump */
2513 	lofi_read,		/* read */
2514 	lofi_write,		/* write */
2515 	lofi_ioctl,		/* ioctl */
2516 	nodev,			/* devmap */
2517 	nodev,			/* mmap */
2518 	nodev,			/* segmap */
2519 	nochpoll,		/* poll */
2520 	ddi_prop_op,		/* prop_op */
2521 	0,			/* streamtab  */
2522 	D_64BIT | D_NEW | D_MP,	/* Driver compatibility flag */
2523 	CB_REV,
2524 	lofi_aread,
2525 	lofi_awrite
2526 };
2527 
2528 static struct dev_ops lofi_ops = {
2529 	DEVO_REV,		/* devo_rev, */
2530 	0,			/* refcnt  */
2531 	lofi_info,		/* info */
2532 	nulldev,		/* identify */
2533 	nulldev,		/* probe */
2534 	lofi_attach,		/* attach */
2535 	lofi_detach,		/* detach */
2536 	nodev,			/* reset */
2537 	&lofi_cb_ops,		/* driver operations */
2538 	NULL,			/* no bus operations */
2539 	NULL,			/* power */
2540 	ddi_quiesce_not_needed,	/* quiesce */
2541 };
2542 
2543 static struct modldrv modldrv = {
2544 	&mod_driverops,
2545 	"loopback file driver",
2546 	&lofi_ops,
2547 };
2548 
2549 static struct modlinkage modlinkage = {
2550 	MODREV_1,
2551 	&modldrv,
2552 	NULL
2553 };
2554 
2555 int
2556 _init(void)
2557 {
2558 	int error;
2559 
2560 	error = ddi_soft_state_init(&lofi_statep,
2561 	    sizeof (struct lofi_state), 0);
2562 	if (error)
2563 		return (error);
2564 
2565 	mutex_init(&lofi_lock, NULL, MUTEX_DRIVER, NULL);
2566 	error = mod_install(&modlinkage);
2567 	if (error) {
2568 		mutex_destroy(&lofi_lock);
2569 		ddi_soft_state_fini(&lofi_statep);
2570 	}
2571 
2572 	return (error);
2573 }
2574 
2575 int
2576 _fini(void)
2577 {
2578 	int	error;
2579 
2580 	if (lofi_busy())
2581 		return (EBUSY);
2582 
2583 	error = mod_remove(&modlinkage);
2584 	if (error)
2585 		return (error);
2586 
2587 	mutex_destroy(&lofi_lock);
2588 	ddi_soft_state_fini(&lofi_statep);
2589 
2590 	return (error);
2591 }
2592 
2593 int
2594 _info(struct modinfo *modinfop)
2595 {
2596 	return (mod_info(&modlinkage, modinfop));
2597 }
2598