xref: /titanic_51/usr/src/uts/common/io/igb/igb_main.c (revision 24fe0b3bf671e123467ce1df0b67cadd3614c8e4)
1 /*
2  * CDDL HEADER START
3  *
4  * Copyright(c) 2007-2009 Intel Corporation. All rights reserved.
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at:
10  *	http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When using or redistributing this file, you may do so under the
15  * License only. No other modification of this header is permitted.
16  *
17  * If applicable, add the following below this CDDL HEADER, with the
18  * fields enclosed by brackets "[]" replaced with your own identifying
19  * information: Portions Copyright [yyyy] [name of copyright owner]
20  *
21  * CDDL HEADER END
22  */
23 
24 /*
25  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
26  * Use is subject to license terms.
27  */
28 
29 #include "igb_sw.h"
30 
31 static char ident[] = "Intel 1Gb Ethernet";
32 static char igb_version[] = "igb 1.1.7";
33 
34 /*
35  * Local function protoypes
36  */
37 static int igb_register_mac(igb_t *);
38 static int igb_identify_hardware(igb_t *);
39 static int igb_regs_map(igb_t *);
40 static void igb_init_properties(igb_t *);
41 static int igb_init_driver_settings(igb_t *);
42 static void igb_init_locks(igb_t *);
43 static void igb_destroy_locks(igb_t *);
44 static int igb_init_mac_address(igb_t *);
45 static int igb_init(igb_t *);
46 static int igb_init_adapter(igb_t *);
47 static void igb_stop_adapter(igb_t *);
48 static int igb_reset(igb_t *);
49 static void igb_tx_clean(igb_t *);
50 static boolean_t igb_tx_drain(igb_t *);
51 static boolean_t igb_rx_drain(igb_t *);
52 static int igb_alloc_rings(igb_t *);
53 static void igb_free_rings(igb_t *);
54 static void igb_setup_rings(igb_t *);
55 static void igb_setup_rx(igb_t *);
56 static void igb_setup_tx(igb_t *);
57 static void igb_setup_rx_ring(igb_rx_ring_t *);
58 static void igb_setup_tx_ring(igb_tx_ring_t *);
59 static void igb_setup_rss(igb_t *);
60 static void igb_setup_mac_rss_classify(igb_t *);
61 static void igb_setup_mac_classify(igb_t *);
62 static void igb_init_unicst(igb_t *);
63 static void igb_setup_multicst(igb_t *);
64 static void igb_get_phy_state(igb_t *);
65 static void igb_get_conf(igb_t *);
66 static int igb_get_prop(igb_t *, char *, int, int, int);
67 static boolean_t igb_is_link_up(igb_t *);
68 static boolean_t igb_link_check(igb_t *);
69 static void igb_local_timer(void *);
70 static void igb_arm_watchdog_timer(igb_t *);
71 static void igb_start_watchdog_timer(igb_t *);
72 static void igb_restart_watchdog_timer(igb_t *);
73 static void igb_stop_watchdog_timer(igb_t *);
74 static void igb_disable_adapter_interrupts(igb_t *);
75 static void igb_enable_adapter_interrupts_82575(igb_t *);
76 static void igb_enable_adapter_interrupts_82576(igb_t *);
77 static boolean_t is_valid_mac_addr(uint8_t *);
78 static boolean_t igb_stall_check(igb_t *);
79 static boolean_t igb_set_loopback_mode(igb_t *, uint32_t);
80 static void igb_set_external_loopback(igb_t *);
81 static void igb_set_internal_mac_loopback(igb_t *);
82 static void igb_set_internal_phy_loopback(igb_t *);
83 static void igb_set_internal_serdes_loopback(igb_t *);
84 static boolean_t igb_find_mac_address(igb_t *);
85 static int igb_alloc_intrs(igb_t *);
86 static int igb_alloc_intr_handles(igb_t *, int);
87 static int igb_add_intr_handlers(igb_t *);
88 static void igb_rem_intr_handlers(igb_t *);
89 static void igb_rem_intrs(igb_t *);
90 static int igb_enable_intrs(igb_t *);
91 static int igb_disable_intrs(igb_t *);
92 static void igb_setup_msix_82575(igb_t *);
93 static void igb_setup_msix_82576(igb_t *);
94 static uint_t igb_intr_legacy(void *, void *);
95 static uint_t igb_intr_msi(void *, void *);
96 static uint_t igb_intr_rx(void *, void *);
97 static uint_t igb_intr_tx(void *, void *);
98 static uint_t igb_intr_tx_other(void *, void *);
99 static void igb_intr_rx_work(igb_rx_ring_t *);
100 static void igb_intr_tx_work(igb_tx_ring_t *);
101 static void igb_intr_link_work(igb_t *);
102 static void igb_get_driver_control(struct e1000_hw *);
103 static void igb_release_driver_control(struct e1000_hw *);
104 
105 static int igb_attach(dev_info_t *, ddi_attach_cmd_t);
106 static int igb_detach(dev_info_t *, ddi_detach_cmd_t);
107 static int igb_resume(dev_info_t *);
108 static int igb_suspend(dev_info_t *);
109 static int igb_quiesce(dev_info_t *);
110 static void igb_unconfigure(dev_info_t *, igb_t *);
111 static int igb_fm_error_cb(dev_info_t *, ddi_fm_error_t *,
112     const void *);
113 static void igb_fm_init(igb_t *);
114 static void igb_fm_fini(igb_t *);
115 static void igb_release_multicast(igb_t *);
116 
117 static struct cb_ops igb_cb_ops = {
118 	nulldev,		/* cb_open */
119 	nulldev,		/* cb_close */
120 	nodev,			/* cb_strategy */
121 	nodev,			/* cb_print */
122 	nodev,			/* cb_dump */
123 	nodev,			/* cb_read */
124 	nodev,			/* cb_write */
125 	nodev,			/* cb_ioctl */
126 	nodev,			/* cb_devmap */
127 	nodev,			/* cb_mmap */
128 	nodev,			/* cb_segmap */
129 	nochpoll,		/* cb_chpoll */
130 	ddi_prop_op,		/* cb_prop_op */
131 	NULL,			/* cb_stream */
132 	D_MP | D_HOTPLUG,	/* cb_flag */
133 	CB_REV,			/* cb_rev */
134 	nodev,			/* cb_aread */
135 	nodev			/* cb_awrite */
136 };
137 
138 static struct dev_ops igb_dev_ops = {
139 	DEVO_REV,		/* devo_rev */
140 	0,			/* devo_refcnt */
141 	NULL,			/* devo_getinfo */
142 	nulldev,		/* devo_identify */
143 	nulldev,		/* devo_probe */
144 	igb_attach,		/* devo_attach */
145 	igb_detach,		/* devo_detach */
146 	nodev,			/* devo_reset */
147 	&igb_cb_ops,		/* devo_cb_ops */
148 	NULL,			/* devo_bus_ops */
149 	ddi_power,		/* devo_power */
150 	igb_quiesce,	/* devo_quiesce */
151 };
152 
153 static struct modldrv igb_modldrv = {
154 	&mod_driverops,		/* Type of module.  This one is a driver */
155 	ident,			/* Discription string */
156 	&igb_dev_ops,		/* driver ops */
157 };
158 
159 static struct modlinkage igb_modlinkage = {
160 	MODREV_1, &igb_modldrv, NULL
161 };
162 
163 /* Access attributes for register mapping */
164 ddi_device_acc_attr_t igb_regs_acc_attr = {
165 	DDI_DEVICE_ATTR_V0,
166 	DDI_STRUCTURE_LE_ACC,
167 	DDI_STRICTORDER_ACC,
168 	DDI_FLAGERR_ACC
169 };
170 
171 #define	IGB_M_CALLBACK_FLAGS	(MC_IOCTL | MC_GETCAPAB)
172 
173 static mac_callbacks_t igb_m_callbacks = {
174 	IGB_M_CALLBACK_FLAGS,
175 	igb_m_stat,
176 	igb_m_start,
177 	igb_m_stop,
178 	igb_m_promisc,
179 	igb_m_multicst,
180 	NULL,
181 	NULL,
182 	igb_m_ioctl,
183 	igb_m_getcapab
184 };
185 
186 /*
187  * Initialize capabilities of each supported adapter type
188  */
189 static adapter_info_t igb_82575_cap = {
190 	/* limits */
191 	4,		/* maximum number of rx queues */
192 	1,		/* minimum number of rx queues */
193 	4,		/* default number of rx queues */
194 	4,		/* maximum number of tx queues */
195 	1,		/* minimum number of tx queues */
196 	4,		/* default number of tx queues */
197 	65535,		/* maximum interrupt throttle rate */
198 	0,		/* minimum interrupt throttle rate */
199 	200,		/* default interrupt throttle rate */
200 
201 	/* function pointers */
202 	igb_enable_adapter_interrupts_82575,
203 	igb_setup_msix_82575,
204 
205 	/* capabilities */
206 	(IGB_FLAG_HAS_DCA |	/* capability flags */
207 	IGB_FLAG_VMDQ_POOL),
208 
209 	0xffc00000		/* mask for RXDCTL register */
210 };
211 
212 static adapter_info_t igb_82576_cap = {
213 	/* limits */
214 	16,		/* maximum number of rx queues */
215 	1,		/* minimum number of rx queues */
216 	4,		/* default number of rx queues */
217 	16,		/* maximum number of tx queues */
218 	1,		/* minimum number of tx queues */
219 	4,		/* default number of tx queues */
220 	65535,		/* maximum interrupt throttle rate */
221 	0,		/* minimum interrupt throttle rate */
222 	200,		/* default interrupt throttle rate */
223 
224 	/* function pointers */
225 	igb_enable_adapter_interrupts_82576,
226 	igb_setup_msix_82576,
227 
228 	/* capabilities */
229 	(IGB_FLAG_HAS_DCA |	/* capability flags */
230 	IGB_FLAG_VMDQ_POOL |
231 	IGB_FLAG_NEED_CTX_IDX),
232 
233 	0xffe00000		/* mask for RXDCTL register */
234 };
235 
236 /*
237  * Module Initialization Functions
238  */
239 
240 int
241 _init(void)
242 {
243 	int status;
244 
245 	mac_init_ops(&igb_dev_ops, MODULE_NAME);
246 
247 	status = mod_install(&igb_modlinkage);
248 
249 	if (status != DDI_SUCCESS) {
250 		mac_fini_ops(&igb_dev_ops);
251 	}
252 
253 	return (status);
254 }
255 
256 int
257 _fini(void)
258 {
259 	int status;
260 
261 	status = mod_remove(&igb_modlinkage);
262 
263 	if (status == DDI_SUCCESS) {
264 		mac_fini_ops(&igb_dev_ops);
265 	}
266 
267 	return (status);
268 
269 }
270 
271 int
272 _info(struct modinfo *modinfop)
273 {
274 	int status;
275 
276 	status = mod_info(&igb_modlinkage, modinfop);
277 
278 	return (status);
279 }
280 
281 /*
282  * igb_attach - driver attach
283  *
284  * This function is the device specific initialization entry
285  * point. This entry point is required and must be written.
286  * The DDI_ATTACH command must be provided in the attach entry
287  * point. When attach() is called with cmd set to DDI_ATTACH,
288  * all normal kernel services (such as kmem_alloc(9F)) are
289  * available for use by the driver.
290  *
291  * The attach() function will be called once for each instance
292  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
293  * Until attach() succeeds, the only driver entry points which
294  * may be called are open(9E) and getinfo(9E).
295  */
296 static int
297 igb_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
298 {
299 	igb_t *igb;
300 	struct igb_osdep *osdep;
301 	struct e1000_hw *hw;
302 	int instance;
303 
304 	/*
305 	 * Check the command and perform corresponding operations
306 	 */
307 	switch (cmd) {
308 	default:
309 		return (DDI_FAILURE);
310 
311 	case DDI_RESUME:
312 		return (igb_resume(devinfo));
313 
314 	case DDI_ATTACH:
315 		break;
316 	}
317 
318 	/* Get the device instance */
319 	instance = ddi_get_instance(devinfo);
320 
321 	/* Allocate memory for the instance data structure */
322 	igb = kmem_zalloc(sizeof (igb_t), KM_SLEEP);
323 
324 	igb->dip = devinfo;
325 	igb->instance = instance;
326 
327 	hw = &igb->hw;
328 	osdep = &igb->osdep;
329 	hw->back = osdep;
330 	osdep->igb = igb;
331 
332 	/* Attach the instance pointer to the dev_info data structure */
333 	ddi_set_driver_private(devinfo, igb);
334 
335 
336 	/* Initialize for fma support */
337 	igb->fm_capabilities = igb_get_prop(igb, "fm-capable",
338 	    0, 0x0f,
339 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
340 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
341 	igb_fm_init(igb);
342 	igb->attach_progress |= ATTACH_PROGRESS_FMINIT;
343 
344 	/*
345 	 * Map PCI config space registers
346 	 */
347 	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
348 		igb_error(igb, "Failed to map PCI configurations");
349 		goto attach_fail;
350 	}
351 	igb->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
352 
353 	/*
354 	 * Identify the chipset family
355 	 */
356 	if (igb_identify_hardware(igb) != IGB_SUCCESS) {
357 		igb_error(igb, "Failed to identify hardware");
358 		goto attach_fail;
359 	}
360 
361 	/*
362 	 * Map device registers
363 	 */
364 	if (igb_regs_map(igb) != IGB_SUCCESS) {
365 		igb_error(igb, "Failed to map device registers");
366 		goto attach_fail;
367 	}
368 	igb->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
369 
370 	/*
371 	 * Initialize driver parameters
372 	 */
373 	igb_init_properties(igb);
374 	igb->attach_progress |= ATTACH_PROGRESS_PROPS;
375 
376 	/*
377 	 * Allocate interrupts
378 	 */
379 	if (igb_alloc_intrs(igb) != IGB_SUCCESS) {
380 		igb_error(igb, "Failed to allocate interrupts");
381 		goto attach_fail;
382 	}
383 	igb->attach_progress |= ATTACH_PROGRESS_ALLOC_INTR;
384 
385 	/*
386 	 * Allocate rx/tx rings based on the ring numbers.
387 	 * The actual numbers of rx/tx rings are decided by the number of
388 	 * allocated interrupt vectors, so we should allocate the rings after
389 	 * interrupts are allocated.
390 	 */
391 	if (igb_alloc_rings(igb) != IGB_SUCCESS) {
392 		igb_error(igb, "Failed to allocate rx/tx rings or groups");
393 		goto attach_fail;
394 	}
395 	igb->attach_progress |= ATTACH_PROGRESS_ALLOC_RINGS;
396 
397 	/*
398 	 * Add interrupt handlers
399 	 */
400 	if (igb_add_intr_handlers(igb) != IGB_SUCCESS) {
401 		igb_error(igb, "Failed to add interrupt handlers");
402 		goto attach_fail;
403 	}
404 	igb->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
405 
406 	/*
407 	 * Initialize driver parameters
408 	 */
409 	if (igb_init_driver_settings(igb) != IGB_SUCCESS) {
410 		igb_error(igb, "Failed to initialize driver settings");
411 		goto attach_fail;
412 	}
413 
414 	if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK) {
415 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
416 		goto attach_fail;
417 	}
418 
419 	/*
420 	 * Initialize mutexes for this device.
421 	 * Do this before enabling the interrupt handler and
422 	 * register the softint to avoid the condition where
423 	 * interrupt handler can try using uninitialized mutex
424 	 */
425 	igb_init_locks(igb);
426 	igb->attach_progress |= ATTACH_PROGRESS_LOCKS;
427 
428 	/*
429 	 * Allocate DMA resources
430 	 */
431 	if (igb_alloc_dma(igb) != IGB_SUCCESS) {
432 		igb_error(igb, "Failed to allocate DMA resources");
433 		goto attach_fail;
434 	}
435 	igb->attach_progress |= ATTACH_PROGRESS_ALLOC_DMA;
436 
437 	/*
438 	 * Initialize the adapter and setup the rx/tx rings
439 	 */
440 	if (igb_init(igb) != IGB_SUCCESS) {
441 		igb_error(igb, "Failed to initialize adapter");
442 		goto attach_fail;
443 	}
444 	igb->attach_progress |= ATTACH_PROGRESS_INIT_ADAPTER;
445 
446 	/*
447 	 * Initialize statistics
448 	 */
449 	if (igb_init_stats(igb) != IGB_SUCCESS) {
450 		igb_error(igb, "Failed to initialize statistics");
451 		goto attach_fail;
452 	}
453 	igb->attach_progress |= ATTACH_PROGRESS_STATS;
454 
455 	/*
456 	 * Initialize NDD parameters
457 	 */
458 	if (igb_nd_init(igb) != IGB_SUCCESS) {
459 		igb_error(igb, "Failed to initialize ndd");
460 		goto attach_fail;
461 	}
462 	igb->attach_progress |= ATTACH_PROGRESS_NDD;
463 
464 	/*
465 	 * Register the driver to the MAC
466 	 */
467 	if (igb_register_mac(igb) != IGB_SUCCESS) {
468 		igb_error(igb, "Failed to register MAC");
469 		goto attach_fail;
470 	}
471 	igb->attach_progress |= ATTACH_PROGRESS_MAC;
472 
473 	/*
474 	 * Now that mutex locks are initialized, and the chip is also
475 	 * initialized, enable interrupts.
476 	 */
477 	if (igb_enable_intrs(igb) != IGB_SUCCESS) {
478 		igb_error(igb, "Failed to enable DDI interrupts");
479 		goto attach_fail;
480 	}
481 	igb->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
482 
483 	igb_log(igb, "%s", igb_version);
484 	igb->igb_state |= IGB_INITIALIZED;
485 
486 	return (DDI_SUCCESS);
487 
488 attach_fail:
489 	igb_unconfigure(devinfo, igb);
490 	return (DDI_FAILURE);
491 }
492 
493 /*
494  * igb_detach - driver detach
495  *
496  * The detach() function is the complement of the attach routine.
497  * If cmd is set to DDI_DETACH, detach() is used to remove  the
498  * state  associated  with  a  given  instance of a device node
499  * prior to the removal of that instance from the system.
500  *
501  * The detach() function will be called once for each  instance
502  * of the device for which there has been a successful attach()
503  * once there are no longer  any  opens  on  the  device.
504  *
505  * Interrupts routine are disabled, All memory allocated by this
506  * driver are freed.
507  */
508 static int
509 igb_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
510 {
511 	igb_t *igb;
512 
513 	/*
514 	 * Check detach command
515 	 */
516 	switch (cmd) {
517 	default:
518 		return (DDI_FAILURE);
519 
520 	case DDI_SUSPEND:
521 		return (igb_suspend(devinfo));
522 
523 	case DDI_DETACH:
524 		break;
525 	}
526 
527 
528 	/*
529 	 * Get the pointer to the driver private data structure
530 	 */
531 	igb = (igb_t *)ddi_get_driver_private(devinfo);
532 	if (igb == NULL)
533 		return (DDI_FAILURE);
534 
535 	/*
536 	 * Unregister MAC. If failed, we have to fail the detach
537 	 */
538 	if (mac_unregister(igb->mac_hdl) != 0) {
539 		igb_error(igb, "Failed to unregister MAC");
540 		return (DDI_FAILURE);
541 	}
542 	igb->attach_progress &= ~ATTACH_PROGRESS_MAC;
543 
544 	/*
545 	 * If the device is still running, it needs to be stopped first.
546 	 * This check is necessary because under some specific circumstances,
547 	 * the detach routine can be called without stopping the interface
548 	 * first.
549 	 */
550 	mutex_enter(&igb->gen_lock);
551 	if (igb->igb_state & IGB_STARTED) {
552 		igb->igb_state &= ~IGB_STARTED;
553 		igb_stop(igb);
554 		mutex_exit(&igb->gen_lock);
555 		/* Disable and stop the watchdog timer */
556 		igb_disable_watchdog_timer(igb);
557 	} else
558 		mutex_exit(&igb->gen_lock);
559 
560 	/*
561 	 * Check if there are still rx buffers held by the upper layer.
562 	 * If so, fail the detach.
563 	 */
564 	if (!igb_rx_drain(igb))
565 		return (DDI_FAILURE);
566 
567 	/*
568 	 * Do the remaining unconfigure routines
569 	 */
570 	igb_unconfigure(devinfo, igb);
571 
572 	return (DDI_SUCCESS);
573 }
574 
575 /*
576  * quiesce(9E) entry point.
577  *
578  * This function is called when the system is single-threaded at high
579  * PIL with preemption disabled. Therefore, this function must not be
580  * blocked.
581  *
582  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
583  * DDI_FAILURE indicates an error condition and should almost never happen.
584  */
585 static int
586 igb_quiesce(dev_info_t *devinfo)
587 {
588 	igb_t *igb;
589 	struct e1000_hw *hw;
590 
591 	igb = (igb_t *)ddi_get_driver_private(devinfo);
592 
593 	if (igb == NULL)
594 		return (DDI_FAILURE);
595 
596 	hw = &igb->hw;
597 
598 	/*
599 	 * Disable the adapter interrupts
600 	 */
601 	igb_disable_adapter_interrupts(igb);
602 
603 	/* Tell firmware driver is no longer in control */
604 	igb_release_driver_control(hw);
605 
606 	/*
607 	 * Reset the chipset
608 	 */
609 	(void) e1000_reset_hw(hw);
610 
611 	/*
612 	 * Reset PHY if possible
613 	 */
614 	if (e1000_check_reset_block(hw) == E1000_SUCCESS)
615 		(void) e1000_phy_hw_reset(hw);
616 
617 	return (DDI_SUCCESS);
618 }
619 
620 /*
621  * igb_unconfigure - release all resources held by this instance
622  */
623 static void
624 igb_unconfigure(dev_info_t *devinfo, igb_t *igb)
625 {
626 	/*
627 	 * Disable interrupt
628 	 */
629 	if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
630 		(void) igb_disable_intrs(igb);
631 	}
632 
633 	/*
634 	 * Unregister MAC
635 	 */
636 	if (igb->attach_progress & ATTACH_PROGRESS_MAC) {
637 		(void) mac_unregister(igb->mac_hdl);
638 	}
639 
640 	/*
641 	 * Free ndd parameters
642 	 */
643 	if (igb->attach_progress & ATTACH_PROGRESS_NDD) {
644 		igb_nd_cleanup(igb);
645 	}
646 
647 	/*
648 	 * Free statistics
649 	 */
650 	if (igb->attach_progress & ATTACH_PROGRESS_STATS) {
651 		kstat_delete((kstat_t *)igb->igb_ks);
652 	}
653 
654 	/*
655 	 * Remove interrupt handlers
656 	 */
657 	if (igb->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
658 		igb_rem_intr_handlers(igb);
659 	}
660 
661 	/*
662 	 * Remove interrupts
663 	 */
664 	if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_INTR) {
665 		igb_rem_intrs(igb);
666 	}
667 
668 	/*
669 	 * Remove driver properties
670 	 */
671 	if (igb->attach_progress & ATTACH_PROGRESS_PROPS) {
672 		(void) ddi_prop_remove_all(devinfo);
673 	}
674 
675 	/*
676 	 * Release the DMA resources of rx/tx rings
677 	 */
678 	if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_DMA) {
679 		igb_free_dma(igb);
680 	}
681 
682 	/*
683 	 * Stop the adapter
684 	 */
685 	if (igb->attach_progress & ATTACH_PROGRESS_INIT_ADAPTER) {
686 		mutex_enter(&igb->gen_lock);
687 		igb_stop_adapter(igb);
688 		mutex_exit(&igb->gen_lock);
689 		if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
690 			ddi_fm_service_impact(igb->dip, DDI_SERVICE_UNAFFECTED);
691 	}
692 
693 	/*
694 	 * Free multicast table
695 	 */
696 	igb_release_multicast(igb);
697 
698 	/*
699 	 * Free register handle
700 	 */
701 	if (igb->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
702 		if (igb->osdep.reg_handle != NULL)
703 			ddi_regs_map_free(&igb->osdep.reg_handle);
704 	}
705 
706 	/*
707 	 * Free PCI config handle
708 	 */
709 	if (igb->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
710 		if (igb->osdep.cfg_handle != NULL)
711 			pci_config_teardown(&igb->osdep.cfg_handle);
712 	}
713 
714 	/*
715 	 * Free locks
716 	 */
717 	if (igb->attach_progress & ATTACH_PROGRESS_LOCKS) {
718 		igb_destroy_locks(igb);
719 	}
720 
721 	/*
722 	 * Free the rx/tx rings
723 	 */
724 	if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_RINGS) {
725 		igb_free_rings(igb);
726 	}
727 
728 	/*
729 	 * Remove FMA
730 	 */
731 	if (igb->attach_progress & ATTACH_PROGRESS_FMINIT) {
732 		igb_fm_fini(igb);
733 	}
734 
735 	/*
736 	 * Free the driver data structure
737 	 */
738 	kmem_free(igb, sizeof (igb_t));
739 
740 	ddi_set_driver_private(devinfo, NULL);
741 }
742 
743 /*
744  * igb_register_mac - Register the driver and its function pointers with
745  * the GLD interface
746  */
747 static int
748 igb_register_mac(igb_t *igb)
749 {
750 	struct e1000_hw *hw = &igb->hw;
751 	mac_register_t *mac;
752 	int status;
753 
754 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
755 		return (IGB_FAILURE);
756 
757 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
758 	mac->m_driver = igb;
759 	mac->m_dip = igb->dip;
760 	mac->m_src_addr = hw->mac.addr;
761 	mac->m_callbacks = &igb_m_callbacks;
762 	mac->m_min_sdu = 0;
763 	mac->m_max_sdu = igb->max_frame_size -
764 	    sizeof (struct ether_vlan_header) - ETHERFCSL;
765 	mac->m_margin = VLAN_TAGSZ;
766 	mac->m_v12n = MAC_VIRT_LEVEL1;
767 
768 	status = mac_register(mac, &igb->mac_hdl);
769 
770 	mac_free(mac);
771 
772 	return ((status == 0) ? IGB_SUCCESS : IGB_FAILURE);
773 }
774 
775 /*
776  * igb_identify_hardware - Identify the type of the chipset
777  */
778 static int
779 igb_identify_hardware(igb_t *igb)
780 {
781 	struct e1000_hw *hw = &igb->hw;
782 	struct igb_osdep *osdep = &igb->osdep;
783 
784 	/*
785 	 * Get the device id
786 	 */
787 	hw->vendor_id =
788 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
789 	hw->device_id =
790 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
791 	hw->revision_id =
792 	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
793 	hw->subsystem_device_id =
794 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
795 	hw->subsystem_vendor_id =
796 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
797 
798 	/*
799 	 * Set the mac type of the adapter based on the device id
800 	 */
801 	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
802 		return (IGB_FAILURE);
803 	}
804 
805 	/*
806 	 * Install adapter capabilities based on mac type
807 	 */
808 	switch (hw->mac.type) {
809 	case e1000_82575:
810 		igb->capab = &igb_82575_cap;
811 		break;
812 	case e1000_82576:
813 		igb->capab = &igb_82576_cap;
814 		break;
815 	default:
816 		return (IGB_FAILURE);
817 	}
818 
819 	return (IGB_SUCCESS);
820 }
821 
822 /*
823  * igb_regs_map - Map the device registers
824  */
825 static int
826 igb_regs_map(igb_t *igb)
827 {
828 	dev_info_t *devinfo = igb->dip;
829 	struct e1000_hw *hw = &igb->hw;
830 	struct igb_osdep *osdep = &igb->osdep;
831 	off_t mem_size;
832 
833 	/*
834 	 * First get the size of device registers to be mapped.
835 	 */
836 	if (ddi_dev_regsize(devinfo, IGB_ADAPTER_REGSET, &mem_size) !=
837 	    DDI_SUCCESS) {
838 		return (IGB_FAILURE);
839 	}
840 
841 	/*
842 	 * Call ddi_regs_map_setup() to map registers
843 	 */
844 	if ((ddi_regs_map_setup(devinfo, IGB_ADAPTER_REGSET,
845 	    (caddr_t *)&hw->hw_addr, 0,
846 	    mem_size, &igb_regs_acc_attr,
847 	    &osdep->reg_handle)) != DDI_SUCCESS) {
848 		return (IGB_FAILURE);
849 	}
850 
851 	return (IGB_SUCCESS);
852 }
853 
854 /*
855  * igb_init_properties - Initialize driver properties
856  */
857 static void
858 igb_init_properties(igb_t *igb)
859 {
860 	/*
861 	 * Get conf file properties, including link settings
862 	 * jumbo frames, ring number, descriptor number, etc.
863 	 */
864 	igb_get_conf(igb);
865 }
866 
867 /*
868  * igb_init_driver_settings - Initialize driver settings
869  *
870  * The settings include hardware function pointers, bus information,
871  * rx/tx rings settings, link state, and any other parameters that
872  * need to be setup during driver initialization.
873  */
874 static int
875 igb_init_driver_settings(igb_t *igb)
876 {
877 	struct e1000_hw *hw = &igb->hw;
878 	igb_rx_ring_t *rx_ring;
879 	igb_tx_ring_t *tx_ring;
880 	uint32_t rx_size;
881 	uint32_t tx_size;
882 	int i;
883 
884 	/*
885 	 * Initialize chipset specific hardware function pointers
886 	 */
887 	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
888 		return (IGB_FAILURE);
889 	}
890 
891 	/*
892 	 * Get bus information
893 	 */
894 	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
895 		return (IGB_FAILURE);
896 	}
897 
898 	/*
899 	 * Get the system page size
900 	 */
901 	igb->page_size = ddi_ptob(igb->dip, (ulong_t)1);
902 
903 	/*
904 	 * Set rx buffer size
905 	 * The IP header alignment room is counted in the calculation.
906 	 * The rx buffer size is in unit of 1K that is required by the
907 	 * chipset hardware.
908 	 */
909 	rx_size = igb->max_frame_size + IPHDR_ALIGN_ROOM;
910 	igb->rx_buf_size = ((rx_size >> 10) +
911 	    ((rx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10;
912 
913 	/*
914 	 * Set tx buffer size
915 	 */
916 	tx_size = igb->max_frame_size;
917 	igb->tx_buf_size = ((tx_size >> 10) +
918 	    ((tx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10;
919 
920 	/*
921 	 * Initialize rx/tx rings parameters
922 	 */
923 	for (i = 0; i < igb->num_rx_rings; i++) {
924 		rx_ring = &igb->rx_rings[i];
925 		rx_ring->index = i;
926 		rx_ring->igb = igb;
927 
928 		rx_ring->ring_size = igb->rx_ring_size;
929 		rx_ring->free_list_size = igb->rx_ring_size;
930 		rx_ring->copy_thresh = igb->rx_copy_thresh;
931 		rx_ring->limit_per_intr = igb->rx_limit_per_intr;
932 	}
933 
934 	for (i = 0; i < igb->num_tx_rings; i++) {
935 		tx_ring = &igb->tx_rings[i];
936 		tx_ring->index = i;
937 		tx_ring->igb = igb;
938 		if (igb->tx_head_wb_enable)
939 			tx_ring->tx_recycle = igb_tx_recycle_head_wb;
940 		else
941 			tx_ring->tx_recycle = igb_tx_recycle_legacy;
942 
943 		tx_ring->ring_size = igb->tx_ring_size;
944 		tx_ring->free_list_size = igb->tx_ring_size +
945 		    (igb->tx_ring_size >> 1);
946 		tx_ring->copy_thresh = igb->tx_copy_thresh;
947 		tx_ring->recycle_thresh = igb->tx_recycle_thresh;
948 		tx_ring->overload_thresh = igb->tx_overload_thresh;
949 		tx_ring->resched_thresh = igb->tx_resched_thresh;
950 	}
951 
952 	/*
953 	 * Initialize values of interrupt throttling rates
954 	 */
955 	for (i = 1; i < MAX_NUM_EITR; i++)
956 		igb->intr_throttling[i] = igb->intr_throttling[0];
957 
958 	/*
959 	 * The initial link state should be "unknown"
960 	 */
961 	igb->link_state = LINK_STATE_UNKNOWN;
962 
963 	return (IGB_SUCCESS);
964 }
965 
966 /*
967  * igb_init_locks - Initialize locks
968  */
969 static void
970 igb_init_locks(igb_t *igb)
971 {
972 	igb_rx_ring_t *rx_ring;
973 	igb_tx_ring_t *tx_ring;
974 	int i;
975 
976 	for (i = 0; i < igb->num_rx_rings; i++) {
977 		rx_ring = &igb->rx_rings[i];
978 		mutex_init(&rx_ring->rx_lock, NULL,
979 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
980 		mutex_init(&rx_ring->recycle_lock, NULL,
981 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
982 	}
983 
984 	for (i = 0; i < igb->num_tx_rings; i++) {
985 		tx_ring = &igb->tx_rings[i];
986 		mutex_init(&tx_ring->tx_lock, NULL,
987 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
988 		mutex_init(&tx_ring->recycle_lock, NULL,
989 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
990 		mutex_init(&tx_ring->tcb_head_lock, NULL,
991 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
992 		mutex_init(&tx_ring->tcb_tail_lock, NULL,
993 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
994 	}
995 
996 	mutex_init(&igb->gen_lock, NULL,
997 	    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
998 
999 	mutex_init(&igb->watchdog_lock, NULL,
1000 	    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1001 }
1002 
1003 /*
1004  * igb_destroy_locks - Destroy locks
1005  */
1006 static void
1007 igb_destroy_locks(igb_t *igb)
1008 {
1009 	igb_rx_ring_t *rx_ring;
1010 	igb_tx_ring_t *tx_ring;
1011 	int i;
1012 
1013 	for (i = 0; i < igb->num_rx_rings; i++) {
1014 		rx_ring = &igb->rx_rings[i];
1015 		mutex_destroy(&rx_ring->rx_lock);
1016 		mutex_destroy(&rx_ring->recycle_lock);
1017 	}
1018 
1019 	for (i = 0; i < igb->num_tx_rings; i++) {
1020 		tx_ring = &igb->tx_rings[i];
1021 		mutex_destroy(&tx_ring->tx_lock);
1022 		mutex_destroy(&tx_ring->recycle_lock);
1023 		mutex_destroy(&tx_ring->tcb_head_lock);
1024 		mutex_destroy(&tx_ring->tcb_tail_lock);
1025 	}
1026 
1027 	mutex_destroy(&igb->gen_lock);
1028 	mutex_destroy(&igb->watchdog_lock);
1029 }
1030 
1031 static int
1032 igb_resume(dev_info_t *devinfo)
1033 {
1034 	igb_t *igb;
1035 
1036 	igb = (igb_t *)ddi_get_driver_private(devinfo);
1037 	if (igb == NULL)
1038 		return (DDI_FAILURE);
1039 
1040 	mutex_enter(&igb->gen_lock);
1041 
1042 	if (igb->igb_state & IGB_STARTED) {
1043 		if (igb_start(igb) != IGB_SUCCESS) {
1044 			mutex_exit(&igb->gen_lock);
1045 			return (DDI_FAILURE);
1046 		}
1047 
1048 		/*
1049 		 * Enable and start the watchdog timer
1050 		 */
1051 		igb_enable_watchdog_timer(igb);
1052 	}
1053 
1054 	igb->igb_state &= ~IGB_SUSPENDED;
1055 
1056 	mutex_exit(&igb->gen_lock);
1057 
1058 	return (DDI_SUCCESS);
1059 }
1060 
1061 static int
1062 igb_suspend(dev_info_t *devinfo)
1063 {
1064 	igb_t *igb;
1065 
1066 	igb = (igb_t *)ddi_get_driver_private(devinfo);
1067 	if (igb == NULL)
1068 		return (DDI_FAILURE);
1069 
1070 	mutex_enter(&igb->gen_lock);
1071 
1072 	igb->igb_state |= IGB_SUSPENDED;
1073 
1074 	if (!(igb->igb_state & IGB_STARTED)) {
1075 		mutex_exit(&igb->gen_lock);
1076 		return (DDI_SUCCESS);
1077 	}
1078 
1079 	igb_stop(igb);
1080 
1081 	mutex_exit(&igb->gen_lock);
1082 
1083 	/*
1084 	 * Disable and stop the watchdog timer
1085 	 */
1086 	igb_disable_watchdog_timer(igb);
1087 
1088 	return (DDI_SUCCESS);
1089 }
1090 
1091 static int
1092 igb_init(igb_t *igb)
1093 {
1094 	int i;
1095 
1096 	mutex_enter(&igb->gen_lock);
1097 
1098 	/*
1099 	 * Initilize the adapter
1100 	 */
1101 	if (igb_init_adapter(igb) != IGB_SUCCESS) {
1102 		mutex_exit(&igb->gen_lock);
1103 		igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1104 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1105 		return (IGB_FAILURE);
1106 	}
1107 
1108 	/*
1109 	 * Setup the rx/tx rings
1110 	 */
1111 	for (i = 0; i < igb->num_rx_rings; i++)
1112 		mutex_enter(&igb->rx_rings[i].rx_lock);
1113 	for (i = 0; i < igb->num_tx_rings; i++)
1114 		mutex_enter(&igb->tx_rings[i].tx_lock);
1115 
1116 	igb_setup_rings(igb);
1117 
1118 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1119 		mutex_exit(&igb->tx_rings[i].tx_lock);
1120 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1121 		mutex_exit(&igb->rx_rings[i].rx_lock);
1122 
1123 	mutex_exit(&igb->gen_lock);
1124 
1125 	return (IGB_SUCCESS);
1126 }
1127 
1128 /*
1129  * igb_init_mac_address - Initialize the default MAC address
1130  *
1131  * On success, the MAC address is entered in the igb->hw.mac.addr
1132  * and hw->mac.perm_addr fields and the adapter's RAR(0) receive
1133  * address register.
1134  *
1135  * Important side effects:
1136  * 1. adapter is reset - this is required to put it in a known state.
1137  * 2. all of non-volatile memory (NVM) is read & checksummed - NVM is where
1138  * MAC address and all default settings are stored, so a valid checksum
1139  * is required.
1140  */
1141 static int
1142 igb_init_mac_address(igb_t *igb)
1143 {
1144 	struct e1000_hw *hw = &igb->hw;
1145 
1146 	ASSERT(mutex_owned(&igb->gen_lock));
1147 
1148 	/*
1149 	 * Reset chipset to put the hardware in a known state
1150 	 * before we try to get MAC address from NVM.
1151 	 */
1152 	if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1153 		igb_error(igb, "Adapter reset failed.");
1154 		goto init_mac_fail;
1155 	}
1156 
1157 	/*
1158 	 * NVM validation
1159 	 */
1160 	if (e1000_validate_nvm_checksum(hw) < 0) {
1161 		/*
1162 		 * Some PCI-E parts fail the first check due to
1163 		 * the link being in sleep state.  Call it again,
1164 		 * if it fails a second time its a real issue.
1165 		 */
1166 		if (e1000_validate_nvm_checksum(hw) < 0) {
1167 			igb_error(igb,
1168 			    "Invalid NVM checksum. Please contact "
1169 			    "the vendor to update the NVM.");
1170 			goto init_mac_fail;
1171 		}
1172 	}
1173 
1174 	/*
1175 	 * Get the mac address
1176 	 * This function should handle SPARC case correctly.
1177 	 */
1178 	if (!igb_find_mac_address(igb)) {
1179 		igb_error(igb, "Failed to get the mac address");
1180 		goto init_mac_fail;
1181 	}
1182 
1183 	/* Validate mac address */
1184 	if (!is_valid_mac_addr(hw->mac.addr)) {
1185 		igb_error(igb, "Invalid mac address");
1186 		goto init_mac_fail;
1187 	}
1188 
1189 	return (IGB_SUCCESS);
1190 
1191 init_mac_fail:
1192 	return (IGB_FAILURE);
1193 }
1194 
1195 /*
1196  * igb_init_adapter - Initialize the adapter
1197  */
1198 static int
1199 igb_init_adapter(igb_t *igb)
1200 {
1201 	struct e1000_hw *hw = &igb->hw;
1202 	uint32_t pba;
1203 	uint32_t high_water;
1204 	int i;
1205 
1206 	ASSERT(mutex_owned(&igb->gen_lock));
1207 
1208 	/*
1209 	 * In order to obtain the default MAC address, this will reset the
1210 	 * adapter and validate the NVM that the address and many other
1211 	 * default settings come from.
1212 	 */
1213 	if (igb_init_mac_address(igb) != IGB_SUCCESS) {
1214 		igb_error(igb, "Failed to initialize MAC address");
1215 		goto init_adapter_fail;
1216 	}
1217 
1218 	/*
1219 	 * Setup flow control
1220 	 *
1221 	 * These parameters set thresholds for the adapter's generation(Tx)
1222 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1223 	 * settings.  Flow control is enabled or disabled in the configuration
1224 	 * file.
1225 	 * High-water mark is set down from the top of the rx fifo (not
1226 	 * sensitive to max_frame_size) and low-water is set just below
1227 	 * high-water mark.
1228 	 * The high water mark must be low enough to fit one full frame above
1229 	 * it in the rx FIFO.  Should be the lower of:
1230 	 * 90% of the Rx FIFO size, or the full Rx FIFO size minus one full
1231 	 * frame.
1232 	 */
1233 	/*
1234 	 * The default setting of PBA is correct for 82575 and other supported
1235 	 * adapters do not have the E1000_PBA register, so PBA value is only
1236 	 * used for calculation here and is never written to the adapter.
1237 	 */
1238 	if (hw->mac.type == e1000_82575) {
1239 		pba = E1000_PBA_34K;
1240 	} else {
1241 		pba = E1000_PBA_64K;
1242 	}
1243 
1244 	high_water = min(((pba << 10) * 9 / 10),
1245 	    ((pba << 10) - igb->max_frame_size));
1246 
1247 	if (hw->mac.type == e1000_82575) {
1248 		/* 8-byte granularity */
1249 		hw->fc.high_water = high_water & 0xFFF8;
1250 		hw->fc.low_water = hw->fc.high_water - 8;
1251 	} else {
1252 		/* 16-byte granularity */
1253 		hw->fc.high_water = high_water & 0xFFF0;
1254 		hw->fc.low_water = hw->fc.high_water - 16;
1255 	}
1256 
1257 	hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1258 	hw->fc.send_xon = B_TRUE;
1259 
1260 	e1000_validate_mdi_setting(hw);
1261 
1262 	/*
1263 	 * Reset the chipset hardware the second time to put PBA settings
1264 	 * into effect.
1265 	 */
1266 	if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1267 		igb_error(igb, "Second reset failed");
1268 		goto init_adapter_fail;
1269 	}
1270 
1271 	/*
1272 	 * Don't wait for auto-negotiation to complete
1273 	 */
1274 	hw->phy.autoneg_wait_to_complete = B_FALSE;
1275 
1276 	/*
1277 	 * Copper options
1278 	 */
1279 	if (hw->phy.media_type == e1000_media_type_copper) {
1280 		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
1281 		hw->phy.disable_polarity_correction = B_FALSE;
1282 		hw->phy.ms_type = e1000_ms_hw_default; /* E1000_MASTER_SLAVE */
1283 	}
1284 
1285 	/*
1286 	 * Initialize link settings
1287 	 */
1288 	(void) igb_setup_link(igb, B_FALSE);
1289 
1290 	/*
1291 	 * Configure/Initialize hardware
1292 	 */
1293 	if (e1000_init_hw(hw) != E1000_SUCCESS) {
1294 		igb_error(igb, "Failed to initialize hardware");
1295 		goto init_adapter_fail;
1296 	}
1297 
1298 	/*
1299 	 * Disable wakeup control by default
1300 	 */
1301 	E1000_WRITE_REG(hw, E1000_WUC, 0);
1302 
1303 	/*
1304 	 * Record phy info in hw struct
1305 	 */
1306 	(void) e1000_get_phy_info(hw);
1307 
1308 	/*
1309 	 * Make sure driver has control
1310 	 */
1311 	igb_get_driver_control(hw);
1312 
1313 	/*
1314 	 * Restore LED settings to the default from EEPROM
1315 	 * to meet the standard for Sun platforms.
1316 	 */
1317 	(void) e1000_cleanup_led(hw);
1318 
1319 	/*
1320 	 * Setup MSI-X interrupts
1321 	 */
1322 	if (igb->intr_type == DDI_INTR_TYPE_MSIX)
1323 		igb->capab->setup_msix(igb);
1324 
1325 	/*
1326 	 * Initialize unicast addresses.
1327 	 */
1328 	igb_init_unicst(igb);
1329 
1330 	/*
1331 	 * Setup and initialize the mctable structures.
1332 	 */
1333 	igb_setup_multicst(igb);
1334 
1335 	/*
1336 	 * Set interrupt throttling rate
1337 	 */
1338 	for (i = 0; i < igb->intr_cnt; i++)
1339 		E1000_WRITE_REG(hw, E1000_EITR(i), igb->intr_throttling[i]);
1340 
1341 	/*
1342 	 * Save the state of the phy
1343 	 */
1344 	igb_get_phy_state(igb);
1345 
1346 	return (IGB_SUCCESS);
1347 
1348 init_adapter_fail:
1349 	/*
1350 	 * Reset PHY if possible
1351 	 */
1352 	if (e1000_check_reset_block(hw) == E1000_SUCCESS)
1353 		(void) e1000_phy_hw_reset(hw);
1354 
1355 	return (IGB_FAILURE);
1356 }
1357 
1358 /*
1359  * igb_stop_adapter - Stop the adapter
1360  */
1361 static void
1362 igb_stop_adapter(igb_t *igb)
1363 {
1364 	struct e1000_hw *hw = &igb->hw;
1365 
1366 	ASSERT(mutex_owned(&igb->gen_lock));
1367 
1368 	/* Tell firmware driver is no longer in control */
1369 	igb_release_driver_control(hw);
1370 
1371 	/*
1372 	 * Reset the chipset
1373 	 */
1374 	if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1375 		igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1376 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1377 	}
1378 
1379 	/*
1380 	 * e1000_phy_hw_reset is not needed here, MAC reset above is sufficient
1381 	 */
1382 }
1383 
1384 /*
1385  * igb_reset - Reset the chipset and restart the driver.
1386  *
1387  * It involves stopping and re-starting the chipset,
1388  * and re-configuring the rx/tx rings.
1389  */
1390 static int
1391 igb_reset(igb_t *igb)
1392 {
1393 	int i;
1394 
1395 	mutex_enter(&igb->gen_lock);
1396 
1397 	ASSERT(igb->igb_state & IGB_STARTED);
1398 
1399 	/*
1400 	 * Disable the adapter interrupts to stop any rx/tx activities
1401 	 * before draining pending data and resetting hardware.
1402 	 */
1403 	igb_disable_adapter_interrupts(igb);
1404 
1405 	/*
1406 	 * Drain the pending transmit packets
1407 	 */
1408 	(void) igb_tx_drain(igb);
1409 
1410 	for (i = 0; i < igb->num_rx_rings; i++)
1411 		mutex_enter(&igb->rx_rings[i].rx_lock);
1412 	for (i = 0; i < igb->num_tx_rings; i++)
1413 		mutex_enter(&igb->tx_rings[i].tx_lock);
1414 
1415 	/*
1416 	 * Stop the adapter
1417 	 */
1418 	igb_stop_adapter(igb);
1419 
1420 	/*
1421 	 * Clean the pending tx data/resources
1422 	 */
1423 	igb_tx_clean(igb);
1424 
1425 	/*
1426 	 * Start the adapter
1427 	 */
1428 	if (igb_init_adapter(igb) != IGB_SUCCESS) {
1429 		igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1430 		goto reset_failure;
1431 	}
1432 
1433 	/*
1434 	 * Setup the rx/tx rings
1435 	 */
1436 	igb_setup_rings(igb);
1437 
1438 	/*
1439 	 * Enable adapter interrupts
1440 	 * The interrupts must be enabled after the driver state is START
1441 	 */
1442 	igb->capab->enable_intr(igb);
1443 
1444 	if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK)
1445 		goto reset_failure;
1446 
1447 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1448 		goto reset_failure;
1449 
1450 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1451 		mutex_exit(&igb->tx_rings[i].tx_lock);
1452 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1453 		mutex_exit(&igb->rx_rings[i].rx_lock);
1454 
1455 	mutex_exit(&igb->gen_lock);
1456 
1457 	return (IGB_SUCCESS);
1458 
1459 reset_failure:
1460 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1461 		mutex_exit(&igb->tx_rings[i].tx_lock);
1462 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1463 		mutex_exit(&igb->rx_rings[i].rx_lock);
1464 
1465 	mutex_exit(&igb->gen_lock);
1466 
1467 	ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1468 
1469 	return (IGB_FAILURE);
1470 }
1471 
1472 /*
1473  * igb_tx_clean - Clean the pending transmit packets and DMA resources
1474  */
1475 static void
1476 igb_tx_clean(igb_t *igb)
1477 {
1478 	igb_tx_ring_t *tx_ring;
1479 	tx_control_block_t *tcb;
1480 	link_list_t pending_list;
1481 	uint32_t desc_num;
1482 	int i, j;
1483 
1484 	LINK_LIST_INIT(&pending_list);
1485 
1486 	for (i = 0; i < igb->num_tx_rings; i++) {
1487 		tx_ring = &igb->tx_rings[i];
1488 
1489 		mutex_enter(&tx_ring->recycle_lock);
1490 
1491 		/*
1492 		 * Clean the pending tx data - the pending packets in the
1493 		 * work_list that have no chances to be transmitted again.
1494 		 *
1495 		 * We must ensure the chipset is stopped or the link is down
1496 		 * before cleaning the transmit packets.
1497 		 */
1498 		desc_num = 0;
1499 		for (j = 0; j < tx_ring->ring_size; j++) {
1500 			tcb = tx_ring->work_list[j];
1501 			if (tcb != NULL) {
1502 				desc_num += tcb->desc_num;
1503 
1504 				tx_ring->work_list[j] = NULL;
1505 
1506 				igb_free_tcb(tcb);
1507 
1508 				LIST_PUSH_TAIL(&pending_list, &tcb->link);
1509 			}
1510 		}
1511 
1512 		if (desc_num > 0) {
1513 			atomic_add_32(&tx_ring->tbd_free, desc_num);
1514 			ASSERT(tx_ring->tbd_free == tx_ring->ring_size);
1515 
1516 			/*
1517 			 * Reset the head and tail pointers of the tbd ring;
1518 			 * Reset the head write-back if it is enabled.
1519 			 */
1520 			tx_ring->tbd_head = 0;
1521 			tx_ring->tbd_tail = 0;
1522 			if (igb->tx_head_wb_enable)
1523 				*tx_ring->tbd_head_wb = 0;
1524 
1525 			E1000_WRITE_REG(&igb->hw, E1000_TDH(tx_ring->index), 0);
1526 			E1000_WRITE_REG(&igb->hw, E1000_TDT(tx_ring->index), 0);
1527 		}
1528 
1529 		mutex_exit(&tx_ring->recycle_lock);
1530 
1531 		/*
1532 		 * Add the tx control blocks in the pending list to
1533 		 * the free list.
1534 		 */
1535 		igb_put_free_list(tx_ring, &pending_list);
1536 	}
1537 }
1538 
1539 /*
1540  * igb_tx_drain - Drain the tx rings to allow pending packets to be transmitted
1541  */
1542 static boolean_t
1543 igb_tx_drain(igb_t *igb)
1544 {
1545 	igb_tx_ring_t *tx_ring;
1546 	boolean_t done;
1547 	int i, j;
1548 
1549 	/*
1550 	 * Wait for a specific time to allow pending tx packets
1551 	 * to be transmitted.
1552 	 *
1553 	 * Check the counter tbd_free to see if transmission is done.
1554 	 * No lock protection is needed here.
1555 	 *
1556 	 * Return B_TRUE if all pending packets have been transmitted;
1557 	 * Otherwise return B_FALSE;
1558 	 */
1559 	for (i = 0; i < TX_DRAIN_TIME; i++) {
1560 
1561 		done = B_TRUE;
1562 		for (j = 0; j < igb->num_tx_rings; j++) {
1563 			tx_ring = &igb->tx_rings[j];
1564 			done = done &&
1565 			    (tx_ring->tbd_free == tx_ring->ring_size);
1566 		}
1567 
1568 		if (done)
1569 			break;
1570 
1571 		msec_delay(1);
1572 	}
1573 
1574 	return (done);
1575 }
1576 
1577 /*
1578  * igb_rx_drain - Wait for all rx buffers to be released by upper layer
1579  */
1580 static boolean_t
1581 igb_rx_drain(igb_t *igb)
1582 {
1583 	igb_rx_ring_t *rx_ring;
1584 	boolean_t done;
1585 	int i, j;
1586 
1587 	/*
1588 	 * Polling the rx free list to check if those rx buffers held by
1589 	 * the upper layer are released.
1590 	 *
1591 	 * Check the counter rcb_free to see if all pending buffers are
1592 	 * released. No lock protection is needed here.
1593 	 *
1594 	 * Return B_TRUE if all pending buffers have been released;
1595 	 * Otherwise return B_FALSE;
1596 	 */
1597 	for (i = 0; i < RX_DRAIN_TIME; i++) {
1598 
1599 		done = B_TRUE;
1600 		for (j = 0; j < igb->num_rx_rings; j++) {
1601 			rx_ring = &igb->rx_rings[j];
1602 			done = done &&
1603 			    (rx_ring->rcb_free == rx_ring->free_list_size);
1604 		}
1605 
1606 		if (done)
1607 			break;
1608 
1609 		msec_delay(1);
1610 	}
1611 
1612 	return (done);
1613 }
1614 
1615 /*
1616  * igb_start - Start the driver/chipset
1617  */
1618 int
1619 igb_start(igb_t *igb)
1620 {
1621 	int i;
1622 
1623 	ASSERT(mutex_owned(&igb->gen_lock));
1624 
1625 	for (i = 0; i < igb->num_rx_rings; i++)
1626 		mutex_enter(&igb->rx_rings[i].rx_lock);
1627 	for (i = 0; i < igb->num_tx_rings; i++)
1628 		mutex_enter(&igb->tx_rings[i].tx_lock);
1629 
1630 	/*
1631 	 * Start the adapter
1632 	 */
1633 	if ((igb->attach_progress & ATTACH_PROGRESS_INIT_ADAPTER) == 0) {
1634 		if (igb_init_adapter(igb) != IGB_SUCCESS) {
1635 			igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1636 			goto start_failure;
1637 		}
1638 		igb->attach_progress |= ATTACH_PROGRESS_INIT_ADAPTER;
1639 
1640 		/*
1641 		 * Setup the rx/tx rings
1642 		 */
1643 		igb_setup_rings(igb);
1644 	}
1645 
1646 	/*
1647 	 * Enable adapter interrupts
1648 	 * The interrupts must be enabled after the driver state is START
1649 	 */
1650 	igb->capab->enable_intr(igb);
1651 
1652 	if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK)
1653 		goto start_failure;
1654 
1655 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1656 		goto start_failure;
1657 
1658 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1659 		mutex_exit(&igb->tx_rings[i].tx_lock);
1660 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1661 		mutex_exit(&igb->rx_rings[i].rx_lock);
1662 
1663 	return (IGB_SUCCESS);
1664 
1665 start_failure:
1666 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1667 		mutex_exit(&igb->tx_rings[i].tx_lock);
1668 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1669 		mutex_exit(&igb->rx_rings[i].rx_lock);
1670 
1671 	ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1672 
1673 	return (IGB_FAILURE);
1674 }
1675 
1676 /*
1677  * igb_stop - Stop the driver/chipset
1678  */
1679 void
1680 igb_stop(igb_t *igb)
1681 {
1682 	int i;
1683 
1684 	ASSERT(mutex_owned(&igb->gen_lock));
1685 
1686 	igb->attach_progress &= ~ATTACH_PROGRESS_INIT_ADAPTER;
1687 
1688 	/*
1689 	 * Disable the adapter interrupts
1690 	 */
1691 	igb_disable_adapter_interrupts(igb);
1692 
1693 	/*
1694 	 * Drain the pending tx packets
1695 	 */
1696 	(void) igb_tx_drain(igb);
1697 
1698 	for (i = 0; i < igb->num_rx_rings; i++)
1699 		mutex_enter(&igb->rx_rings[i].rx_lock);
1700 	for (i = 0; i < igb->num_tx_rings; i++)
1701 		mutex_enter(&igb->tx_rings[i].tx_lock);
1702 
1703 	/*
1704 	 * Stop the adapter
1705 	 */
1706 	igb_stop_adapter(igb);
1707 
1708 	/*
1709 	 * Clean the pending tx data/resources
1710 	 */
1711 	igb_tx_clean(igb);
1712 
1713 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1714 		mutex_exit(&igb->tx_rings[i].tx_lock);
1715 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1716 		mutex_exit(&igb->rx_rings[i].rx_lock);
1717 
1718 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1719 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1720 }
1721 
1722 /*
1723  * igb_alloc_rings - Allocate memory space for rx/tx rings
1724  */
1725 static int
1726 igb_alloc_rings(igb_t *igb)
1727 {
1728 	/*
1729 	 * Allocate memory space for rx rings
1730 	 */
1731 	igb->rx_rings = kmem_zalloc(
1732 	    sizeof (igb_rx_ring_t) * igb->num_rx_rings,
1733 	    KM_NOSLEEP);
1734 
1735 	if (igb->rx_rings == NULL) {
1736 		return (IGB_FAILURE);
1737 	}
1738 
1739 	/*
1740 	 * Allocate memory space for tx rings
1741 	 */
1742 	igb->tx_rings = kmem_zalloc(
1743 	    sizeof (igb_tx_ring_t) * igb->num_tx_rings,
1744 	    KM_NOSLEEP);
1745 
1746 	if (igb->tx_rings == NULL) {
1747 		kmem_free(igb->rx_rings,
1748 		    sizeof (igb_rx_ring_t) * igb->num_rx_rings);
1749 		igb->rx_rings = NULL;
1750 		return (IGB_FAILURE);
1751 	}
1752 
1753 	/*
1754 	 * Allocate memory space for rx ring groups
1755 	 */
1756 	igb->rx_groups = kmem_zalloc(
1757 	    sizeof (igb_rx_group_t) * igb->num_rx_groups,
1758 	    KM_NOSLEEP);
1759 
1760 	if (igb->rx_groups == NULL) {
1761 		kmem_free(igb->rx_rings,
1762 		    sizeof (igb_rx_ring_t) * igb->num_rx_rings);
1763 		kmem_free(igb->tx_rings,
1764 		    sizeof (igb_tx_ring_t) * igb->num_tx_rings);
1765 		igb->rx_rings = NULL;
1766 		igb->tx_rings = NULL;
1767 		return (IGB_FAILURE);
1768 	}
1769 
1770 	return (IGB_SUCCESS);
1771 }
1772 
1773 /*
1774  * igb_free_rings - Free the memory space of rx/tx rings.
1775  */
1776 static void
1777 igb_free_rings(igb_t *igb)
1778 {
1779 	if (igb->rx_rings != NULL) {
1780 		kmem_free(igb->rx_rings,
1781 		    sizeof (igb_rx_ring_t) * igb->num_rx_rings);
1782 		igb->rx_rings = NULL;
1783 	}
1784 
1785 	if (igb->tx_rings != NULL) {
1786 		kmem_free(igb->tx_rings,
1787 		    sizeof (igb_tx_ring_t) * igb->num_tx_rings);
1788 		igb->tx_rings = NULL;
1789 	}
1790 
1791 	if (igb->rx_groups != NULL) {
1792 		kmem_free(igb->rx_groups,
1793 		    sizeof (igb_rx_group_t) * igb->num_rx_groups);
1794 		igb->rx_groups = NULL;
1795 	}
1796 }
1797 
1798 /*
1799  * igb_setup_rings - Setup rx/tx rings
1800  */
1801 static void
1802 igb_setup_rings(igb_t *igb)
1803 {
1804 	/*
1805 	 * Setup the rx/tx rings, including the following:
1806 	 *
1807 	 * 1. Setup the descriptor ring and the control block buffers;
1808 	 * 2. Initialize necessary registers for receive/transmit;
1809 	 * 3. Initialize software pointers/parameters for receive/transmit;
1810 	 */
1811 	igb_setup_rx(igb);
1812 
1813 	igb_setup_tx(igb);
1814 
1815 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1816 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1817 }
1818 
1819 static void
1820 igb_setup_rx_ring(igb_rx_ring_t *rx_ring)
1821 {
1822 	igb_t *igb = rx_ring->igb;
1823 	struct e1000_hw *hw = &igb->hw;
1824 	rx_control_block_t *rcb;
1825 	union e1000_adv_rx_desc	*rbd;
1826 	uint32_t size;
1827 	uint32_t buf_low;
1828 	uint32_t buf_high;
1829 	uint32_t rxdctl;
1830 	int i;
1831 
1832 	ASSERT(mutex_owned(&rx_ring->rx_lock));
1833 	ASSERT(mutex_owned(&igb->gen_lock));
1834 
1835 	/*
1836 	 * Initialize descriptor ring with buffer addresses
1837 	 */
1838 	for (i = 0; i < igb->rx_ring_size; i++) {
1839 		rcb = rx_ring->work_list[i];
1840 		rbd = &rx_ring->rbd_ring[i];
1841 
1842 		rbd->read.pkt_addr = rcb->rx_buf.dma_address;
1843 		rbd->read.hdr_addr = NULL;
1844 	}
1845 
1846 	/*
1847 	 * Initialize the base address registers
1848 	 */
1849 	buf_low = (uint32_t)rx_ring->rbd_area.dma_address;
1850 	buf_high = (uint32_t)(rx_ring->rbd_area.dma_address >> 32);
1851 	E1000_WRITE_REG(hw, E1000_RDBAH(rx_ring->index), buf_high);
1852 	E1000_WRITE_REG(hw, E1000_RDBAL(rx_ring->index), buf_low);
1853 
1854 	/*
1855 	 * Initialize the length register
1856 	 */
1857 	size = rx_ring->ring_size * sizeof (union e1000_adv_rx_desc);
1858 	E1000_WRITE_REG(hw, E1000_RDLEN(rx_ring->index), size);
1859 
1860 	/*
1861 	 * Initialize buffer size & descriptor type
1862 	 */
1863 	E1000_WRITE_REG(hw, E1000_SRRCTL(rx_ring->index),
1864 	    ((igb->rx_buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) |
1865 	    E1000_SRRCTL_DESCTYPE_ADV_ONEBUF));
1866 
1867 	/*
1868 	 * Setup the Receive Descriptor Control Register (RXDCTL)
1869 	 */
1870 	rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rx_ring->index));
1871 	rxdctl &= igb->capab->rxdctl_mask;
1872 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1873 	rxdctl |= 16;		/* pthresh */
1874 	rxdctl |= 8 << 8;	/* hthresh */
1875 	rxdctl |= 1 << 16;	/* wthresh */
1876 	E1000_WRITE_REG(hw, E1000_RXDCTL(rx_ring->index), rxdctl);
1877 
1878 	rx_ring->rbd_next = 0;
1879 
1880 	/*
1881 	 * Note: Considering the case that the chipset is being reset
1882 	 * and there are still some buffers held by the upper layer,
1883 	 * we should not reset the values of rcb_head, rcb_tail and
1884 	 * rcb_free;
1885 	 */
1886 	if (igb->igb_state == IGB_UNKNOWN) {
1887 		rx_ring->rcb_head = 0;
1888 		rx_ring->rcb_tail = 0;
1889 		rx_ring->rcb_free = rx_ring->free_list_size;
1890 	}
1891 }
1892 
1893 static void
1894 igb_setup_rx(igb_t *igb)
1895 {
1896 	igb_rx_ring_t *rx_ring;
1897 	igb_rx_group_t *rx_group;
1898 	struct e1000_hw *hw = &igb->hw;
1899 	uint32_t rctl, rxcsum;
1900 	uint32_t ring_per_group;
1901 	int i;
1902 
1903 	/*
1904 	 * Setup the Receive Control Register (RCTL), and enable the
1905 	 * receiver. The initial configuration is to: enable the receiver,
1906 	 * accept broadcasts, discard bad packets, accept long packets,
1907 	 * disable VLAN filter checking, and set receive buffer size to
1908 	 * 2k.  For 82575, also set the receive descriptor minimum
1909 	 * threshold size to 1/2 the ring.
1910 	 */
1911 	rctl = E1000_READ_REG(hw, E1000_RCTL);
1912 
1913 	/*
1914 	 * Clear the field used for wakeup control.  This driver doesn't do
1915 	 * wakeup but leave this here for completeness.
1916 	 */
1917 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1918 
1919 	switch (hw->mac.type) {
1920 	case e1000_82575:
1921 		rctl |= (E1000_RCTL_EN |	/* Enable Receive Unit */
1922 		    E1000_RCTL_BAM |		/* Accept Broadcast Packets */
1923 		    E1000_RCTL_LPE |		/* Large Packet Enable */
1924 						/* Multicast filter offset */
1925 		    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT) |
1926 		    E1000_RCTL_RDMTS_HALF |	/* rx descriptor threshold */
1927 		    E1000_RCTL_SECRC);		/* Strip Ethernet CRC */
1928 		break;
1929 
1930 	case e1000_82576:
1931 		rctl |= (E1000_RCTL_EN |	/* Enable Receive Unit */
1932 		    E1000_RCTL_BAM |		/* Accept Broadcast Packets */
1933 		    E1000_RCTL_LPE |		/* Large Packet Enable */
1934 						/* Multicast filter offset */
1935 		    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT) |
1936 		    E1000_RCTL_SECRC);		/* Strip Ethernet CRC */
1937 		break;
1938 
1939 	default:
1940 		igb_log(igb, "unsupported MAC type: %d", hw->mac.type);
1941 		return;	/* should never come here; this will cause rx failure */
1942 	}
1943 
1944 	for (i = 0; i < igb->num_rx_groups; i++) {
1945 		rx_group = &igb->rx_groups[i];
1946 		rx_group->index = i;
1947 		rx_group->igb = igb;
1948 	}
1949 
1950 	/*
1951 	 * Set up all rx descriptor rings - must be called before receive unit
1952 	 * enabled.
1953 	 */
1954 	ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
1955 	for (i = 0; i < igb->num_rx_rings; i++) {
1956 		rx_ring = &igb->rx_rings[i];
1957 		igb_setup_rx_ring(rx_ring);
1958 
1959 		/*
1960 		 * Map a ring to a group by assigning a group index
1961 		 */
1962 		rx_ring->group_index = i / ring_per_group;
1963 	}
1964 
1965 	/*
1966 	 * Setup the Rx Long Packet Max Length register
1967 	 */
1968 	E1000_WRITE_REG(hw, E1000_RLPML, igb->max_frame_size);
1969 
1970 	/*
1971 	 * Hardware checksum settings
1972 	 */
1973 	if (igb->rx_hcksum_enable) {
1974 		rxcsum =
1975 		    E1000_RXCSUM_TUOFL |	/* TCP/UDP checksum */
1976 		    E1000_RXCSUM_IPOFL;		/* IP checksum */
1977 
1978 		E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
1979 	}
1980 
1981 	/*
1982 	 * Setup classify and RSS for multiple receive queues
1983 	 */
1984 	switch (igb->vmdq_mode) {
1985 	case E1000_VMDQ_OFF:
1986 		/*
1987 		 * One ring group, only RSS is needed when more than
1988 		 * one ring enabled.
1989 		 */
1990 		if (igb->num_rx_rings > 1)
1991 			igb_setup_rss(igb);
1992 		break;
1993 	case E1000_VMDQ_MAC:
1994 		/*
1995 		 * Multiple groups, each group has one ring,
1996 		 * only the MAC classification is needed.
1997 		 */
1998 		igb_setup_mac_classify(igb);
1999 		break;
2000 	case E1000_VMDQ_MAC_RSS:
2001 		/*
2002 		 * Multiple groups and multiple rings, both
2003 		 * MAC classification and RSS are needed.
2004 		 */
2005 		igb_setup_mac_rss_classify(igb);
2006 		break;
2007 	}
2008 
2009 	/*
2010 	 * Enable the receive unit - must be done after all
2011 	 * the rx setup above.
2012 	 */
2013 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2014 
2015 	/*
2016 	 * Initialize all adapter ring head & tail pointers - must
2017 	 * be done after receive unit is enabled
2018 	 */
2019 	for (i = 0; i < igb->num_rx_rings; i++) {
2020 		rx_ring = &igb->rx_rings[i];
2021 		E1000_WRITE_REG(hw, E1000_RDH(i), 0);
2022 		E1000_WRITE_REG(hw, E1000_RDT(i), rx_ring->ring_size - 1);
2023 	}
2024 
2025 	/*
2026 	 * 82575 with manageability enabled needs a special flush to make
2027 	 * sure the fifos start clean.
2028 	 */
2029 	if ((hw->mac.type == e1000_82575) &&
2030 	    (E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN)) {
2031 		e1000_rx_fifo_flush_82575(hw);
2032 	}
2033 }
2034 
2035 static void
2036 igb_setup_tx_ring(igb_tx_ring_t *tx_ring)
2037 {
2038 	igb_t *igb = tx_ring->igb;
2039 	struct e1000_hw *hw = &igb->hw;
2040 	uint32_t size;
2041 	uint32_t buf_low;
2042 	uint32_t buf_high;
2043 	uint32_t reg_val;
2044 
2045 	ASSERT(mutex_owned(&tx_ring->tx_lock));
2046 	ASSERT(mutex_owned(&igb->gen_lock));
2047 
2048 
2049 	/*
2050 	 * Initialize the length register
2051 	 */
2052 	size = tx_ring->ring_size * sizeof (union e1000_adv_tx_desc);
2053 	E1000_WRITE_REG(hw, E1000_TDLEN(tx_ring->index), size);
2054 
2055 	/*
2056 	 * Initialize the base address registers
2057 	 */
2058 	buf_low = (uint32_t)tx_ring->tbd_area.dma_address;
2059 	buf_high = (uint32_t)(tx_ring->tbd_area.dma_address >> 32);
2060 	E1000_WRITE_REG(hw, E1000_TDBAL(tx_ring->index), buf_low);
2061 	E1000_WRITE_REG(hw, E1000_TDBAH(tx_ring->index), buf_high);
2062 
2063 	/*
2064 	 * Setup head & tail pointers
2065 	 */
2066 	E1000_WRITE_REG(hw, E1000_TDH(tx_ring->index), 0);
2067 	E1000_WRITE_REG(hw, E1000_TDT(tx_ring->index), 0);
2068 
2069 	/*
2070 	 * Setup head write-back
2071 	 */
2072 	if (igb->tx_head_wb_enable) {
2073 		/*
2074 		 * The memory of the head write-back is allocated using
2075 		 * the extra tbd beyond the tail of the tbd ring.
2076 		 */
2077 		tx_ring->tbd_head_wb = (uint32_t *)
2078 		    ((uintptr_t)tx_ring->tbd_area.address + size);
2079 		*tx_ring->tbd_head_wb = 0;
2080 
2081 		buf_low = (uint32_t)
2082 		    (tx_ring->tbd_area.dma_address + size);
2083 		buf_high = (uint32_t)
2084 		    ((tx_ring->tbd_area.dma_address + size) >> 32);
2085 
2086 		/* Set the head write-back enable bit */
2087 		buf_low |= E1000_TX_HEAD_WB_ENABLE;
2088 
2089 		E1000_WRITE_REG(hw, E1000_TDWBAL(tx_ring->index), buf_low);
2090 		E1000_WRITE_REG(hw, E1000_TDWBAH(tx_ring->index), buf_high);
2091 
2092 		/*
2093 		 * Turn off relaxed ordering for head write back or it will
2094 		 * cause problems with the tx recycling
2095 		 */
2096 		reg_val = E1000_READ_REG(hw,
2097 		    E1000_DCA_TXCTRL(tx_ring->index));
2098 		reg_val &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
2099 		E1000_WRITE_REG(hw,
2100 		    E1000_DCA_TXCTRL(tx_ring->index), reg_val);
2101 	} else {
2102 		tx_ring->tbd_head_wb = NULL;
2103 	}
2104 
2105 	tx_ring->tbd_head = 0;
2106 	tx_ring->tbd_tail = 0;
2107 	tx_ring->tbd_free = tx_ring->ring_size;
2108 
2109 	/*
2110 	 * Note: for the case that the chipset is being reset, we should not
2111 	 * reset the values of tcb_head, tcb_tail. And considering there might
2112 	 * still be some packets kept in the pending_list, we should not assert
2113 	 * (tcb_free == free_list_size) here.
2114 	 */
2115 	if (igb->igb_state == IGB_UNKNOWN) {
2116 		tx_ring->tcb_head = 0;
2117 		tx_ring->tcb_tail = 0;
2118 		tx_ring->tcb_free = tx_ring->free_list_size;
2119 	}
2120 
2121 	/*
2122 	 * Enable TXDCTL per queue
2123 	 */
2124 	reg_val = E1000_READ_REG(hw, E1000_TXDCTL(tx_ring->index));
2125 	reg_val |= E1000_TXDCTL_QUEUE_ENABLE;
2126 	E1000_WRITE_REG(hw, E1000_TXDCTL(tx_ring->index), reg_val);
2127 
2128 	/*
2129 	 * Initialize hardware checksum offload settings
2130 	 */
2131 	bzero(&tx_ring->tx_context, sizeof (tx_context_t));
2132 }
2133 
2134 static void
2135 igb_setup_tx(igb_t *igb)
2136 {
2137 	igb_tx_ring_t *tx_ring;
2138 	struct e1000_hw *hw = &igb->hw;
2139 	uint32_t reg_val;
2140 	int i;
2141 
2142 	for (i = 0; i < igb->num_tx_rings; i++) {
2143 		tx_ring = &igb->tx_rings[i];
2144 		igb_setup_tx_ring(tx_ring);
2145 	}
2146 
2147 	/*
2148 	 * Setup the Transmit Control Register (TCTL)
2149 	 */
2150 	reg_val = E1000_READ_REG(hw, E1000_TCTL);
2151 	reg_val &= ~E1000_TCTL_CT;
2152 	reg_val |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2153 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2154 
2155 	/* Enable transmits */
2156 	reg_val |= E1000_TCTL_EN;
2157 
2158 	E1000_WRITE_REG(hw, E1000_TCTL, reg_val);
2159 }
2160 
2161 /*
2162  * igb_setup_rss - Setup receive-side scaling feature
2163  */
2164 static void
2165 igb_setup_rss(igb_t *igb)
2166 {
2167 	struct e1000_hw *hw = &igb->hw;
2168 	uint32_t i, mrqc, rxcsum;
2169 	int shift = 0;
2170 	uint32_t random;
2171 	union e1000_reta {
2172 		uint32_t	dword;
2173 		uint8_t		bytes[4];
2174 	} reta;
2175 
2176 	/* Setup the Redirection Table */
2177 	if (hw->mac.type == e1000_82576) {
2178 		shift = 0;
2179 	} else if (hw->mac.type == e1000_82575) {
2180 		shift = 6;
2181 	}
2182 	for (i = 0; i < (32 * 4); i++) {
2183 		reta.bytes[i & 3] = (i % igb->num_rx_rings) << shift;
2184 		if ((i & 3) == 3) {
2185 			E1000_WRITE_REG(hw,
2186 			    (E1000_RETA(0) + (i & ~3)), reta.dword);
2187 		}
2188 	}
2189 
2190 	/* Fill out hash function seeds */
2191 	for (i = 0; i < 10; i++) {
2192 		(void) random_get_pseudo_bytes((uint8_t *)&random,
2193 		    sizeof (uint32_t));
2194 		E1000_WRITE_REG(hw, E1000_RSSRK(i), random);
2195 	}
2196 
2197 	/* Setup the Multiple Receive Queue Control register */
2198 	mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2199 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2200 	    E1000_MRQC_RSS_FIELD_IPV4_TCP |
2201 	    E1000_MRQC_RSS_FIELD_IPV6 |
2202 	    E1000_MRQC_RSS_FIELD_IPV6_TCP |
2203 	    E1000_MRQC_RSS_FIELD_IPV4_UDP |
2204 	    E1000_MRQC_RSS_FIELD_IPV6_UDP |
2205 	    E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2206 	    E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2207 
2208 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2209 
2210 	/*
2211 	 * Disable Packet Checksum to enable RSS for multiple receive queues.
2212 	 *
2213 	 * The Packet Checksum is not ethernet CRC. It is another kind of
2214 	 * checksum offloading provided by the 82575 chipset besides the IP
2215 	 * header checksum offloading and the TCP/UDP checksum offloading.
2216 	 * The Packet Checksum is by default computed over the entire packet
2217 	 * from the first byte of the DA through the last byte of the CRC,
2218 	 * including the Ethernet and IP headers.
2219 	 *
2220 	 * It is a hardware limitation that Packet Checksum is mutually
2221 	 * exclusive with RSS.
2222 	 */
2223 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2224 	rxcsum |= E1000_RXCSUM_PCSD;
2225 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2226 }
2227 
2228 /*
2229  * igb_setup_mac_rss_classify - Setup MAC classification and rss
2230  */
2231 static void
2232 igb_setup_mac_rss_classify(igb_t *igb)
2233 {
2234 	struct e1000_hw *hw = &igb->hw;
2235 	uint32_t i, mrqc, vmdctl, rxcsum;
2236 	uint32_t ring_per_group;
2237 	int shift_group0, shift_group1;
2238 	uint32_t random;
2239 	union e1000_reta {
2240 		uint32_t	dword;
2241 		uint8_t		bytes[4];
2242 	} reta;
2243 
2244 	ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
2245 
2246 	/* Setup the Redirection Table, it is shared between two groups */
2247 	shift_group0 = 2;
2248 	shift_group1 = 6;
2249 	for (i = 0; i < (32 * 4); i++) {
2250 		reta.bytes[i & 3] = ((i % ring_per_group) << shift_group0) |
2251 		    ((ring_per_group + (i % ring_per_group)) << shift_group1);
2252 		if ((i & 3) == 3) {
2253 			E1000_WRITE_REG(hw,
2254 			    (E1000_RETA(0) + (i & ~3)), reta.dword);
2255 		}
2256 	}
2257 
2258 	/* Fill out hash function seeds */
2259 	for (i = 0; i < 10; i++) {
2260 		(void) random_get_pseudo_bytes((uint8_t *)&random,
2261 		    sizeof (uint32_t));
2262 		E1000_WRITE_REG(hw, E1000_RSSRK(i), random);
2263 	}
2264 
2265 	/*
2266 	 * Setup the Multiple Receive Queue Control register,
2267 	 * enable VMDq based on packet destination MAC address and RSS.
2268 	 */
2269 	mrqc = E1000_MRQC_ENABLE_VMDQ_MAC_RSS_GROUP;
2270 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2271 	    E1000_MRQC_RSS_FIELD_IPV4_TCP |
2272 	    E1000_MRQC_RSS_FIELD_IPV6 |
2273 	    E1000_MRQC_RSS_FIELD_IPV6_TCP |
2274 	    E1000_MRQC_RSS_FIELD_IPV4_UDP |
2275 	    E1000_MRQC_RSS_FIELD_IPV6_UDP |
2276 	    E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2277 	    E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2278 
2279 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2280 
2281 
2282 	/* Define the default group and default queues */
2283 	vmdctl = E1000_VMDQ_MAC_GROUP_DEFAULT_QUEUE;
2284 	E1000_WRITE_REG(hw, E1000_VT_CTL, vmdctl);
2285 
2286 	/*
2287 	 * Disable Packet Checksum to enable RSS for multiple receive queues.
2288 	 *
2289 	 * The Packet Checksum is not ethernet CRC. It is another kind of
2290 	 * checksum offloading provided by the 82575 chipset besides the IP
2291 	 * header checksum offloading and the TCP/UDP checksum offloading.
2292 	 * The Packet Checksum is by default computed over the entire packet
2293 	 * from the first byte of the DA through the last byte of the CRC,
2294 	 * including the Ethernet and IP headers.
2295 	 *
2296 	 * It is a hardware limitation that Packet Checksum is mutually
2297 	 * exclusive with RSS.
2298 	 */
2299 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2300 	rxcsum |= E1000_RXCSUM_PCSD;
2301 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2302 }
2303 
2304 /*
2305  * igb_setup_mac_classify - Setup MAC classification feature
2306  */
2307 static void
2308 igb_setup_mac_classify(igb_t *igb)
2309 {
2310 	struct e1000_hw *hw = &igb->hw;
2311 	uint32_t mrqc, rxcsum;
2312 
2313 	/*
2314 	 * Setup the Multiple Receive Queue Control register,
2315 	 * enable VMDq based on packet destination MAC address.
2316 	 */
2317 	mrqc = E1000_MRQC_ENABLE_VMDQ_MAC_GROUP;
2318 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2319 
2320 	/*
2321 	 * Disable Packet Checksum to enable RSS for multiple receive queues.
2322 	 *
2323 	 * The Packet Checksum is not ethernet CRC. It is another kind of
2324 	 * checksum offloading provided by the 82575 chipset besides the IP
2325 	 * header checksum offloading and the TCP/UDP checksum offloading.
2326 	 * The Packet Checksum is by default computed over the entire packet
2327 	 * from the first byte of the DA through the last byte of the CRC,
2328 	 * including the Ethernet and IP headers.
2329 	 *
2330 	 * It is a hardware limitation that Packet Checksum is mutually
2331 	 * exclusive with RSS.
2332 	 */
2333 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2334 	rxcsum |= E1000_RXCSUM_PCSD;
2335 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2336 
2337 }
2338 
2339 /*
2340  * igb_init_unicst - Initialize the unicast addresses
2341  */
2342 static void
2343 igb_init_unicst(igb_t *igb)
2344 {
2345 	struct e1000_hw *hw = &igb->hw;
2346 	int slot;
2347 
2348 	/*
2349 	 * Here we should consider two situations:
2350 	 *
2351 	 * 1. Chipset is initialized the first time
2352 	 *    Initialize the multiple unicast addresses, and
2353 	 *    save the default MAC address.
2354 	 *
2355 	 * 2. Chipset is reset
2356 	 *    Recover the multiple unicast addresses from the
2357 	 *    software data structure to the RAR registers.
2358 	 */
2359 
2360 	/*
2361 	 * Clear the default MAC address in the RAR0 rgister,
2362 	 * which is loaded from EEPROM when system boot or chipreset,
2363 	 * this will cause the conficts with add_mac/rem_mac entry
2364 	 * points when VMDq is enabled. For this reason, the RAR0
2365 	 * must be cleared for both cases mentioned above.
2366 	 */
2367 	e1000_rar_clear(hw, 0);
2368 
2369 	if (!igb->unicst_init) {
2370 
2371 		/* Initialize the multiple unicast addresses */
2372 		igb->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
2373 		igb->unicst_avail = igb->unicst_total;
2374 
2375 		for (slot = 0; slot < igb->unicst_total; slot++)
2376 			igb->unicst_addr[slot].mac.set = 0;
2377 
2378 		igb->unicst_init = B_TRUE;
2379 	} else {
2380 		/* Re-configure the RAR registers */
2381 		for (slot = 0; slot < igb->unicst_total; slot++) {
2382 			e1000_rar_set_vmdq(hw, igb->unicst_addr[slot].mac.addr,
2383 			    slot, igb->vmdq_mode,
2384 			    igb->unicst_addr[slot].mac.group_index);
2385 		}
2386 	}
2387 
2388 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
2389 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2390 }
2391 
2392 /*
2393  * igb_unicst_find - Find the slot for the specified unicast address
2394  */
2395 int
2396 igb_unicst_find(igb_t *igb, const uint8_t *mac_addr)
2397 {
2398 	int slot;
2399 
2400 	ASSERT(mutex_owned(&igb->gen_lock));
2401 
2402 	for (slot = 0; slot < igb->unicst_total; slot++) {
2403 		if (bcmp(igb->unicst_addr[slot].mac.addr,
2404 		    mac_addr, ETHERADDRL) == 0)
2405 			return (slot);
2406 	}
2407 
2408 	return (-1);
2409 }
2410 
2411 /*
2412  * igb_unicst_set - Set the unicast address to the specified slot
2413  */
2414 int
2415 igb_unicst_set(igb_t *igb, const uint8_t *mac_addr,
2416     int slot)
2417 {
2418 	struct e1000_hw *hw = &igb->hw;
2419 
2420 	ASSERT(mutex_owned(&igb->gen_lock));
2421 
2422 	/*
2423 	 * Save the unicast address in the software data structure
2424 	 */
2425 	bcopy(mac_addr, igb->unicst_addr[slot].mac.addr, ETHERADDRL);
2426 
2427 	/*
2428 	 * Set the unicast address to the RAR register
2429 	 */
2430 	e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2431 
2432 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2433 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2434 		return (EIO);
2435 	}
2436 
2437 	return (0);
2438 }
2439 
2440 /*
2441  * igb_multicst_add - Add a multicst address
2442  */
2443 int
2444 igb_multicst_add(igb_t *igb, const uint8_t *multiaddr)
2445 {
2446 	struct ether_addr *new_table;
2447 	size_t new_len;
2448 	size_t old_len;
2449 
2450 	ASSERT(mutex_owned(&igb->gen_lock));
2451 
2452 	if ((multiaddr[0] & 01) == 0) {
2453 		igb_error(igb, "Illegal multicast address");
2454 		return (EINVAL);
2455 	}
2456 
2457 	if (igb->mcast_count >= igb->mcast_max_num) {
2458 		igb_error(igb, "Adapter requested more than %d mcast addresses",
2459 		    igb->mcast_max_num);
2460 		return (ENOENT);
2461 	}
2462 
2463 	if (igb->mcast_count == igb->mcast_alloc_count) {
2464 		old_len = igb->mcast_alloc_count *
2465 		    sizeof (struct ether_addr);
2466 		new_len = (igb->mcast_alloc_count + MCAST_ALLOC_COUNT) *
2467 		    sizeof (struct ether_addr);
2468 
2469 		new_table = kmem_alloc(new_len, KM_NOSLEEP);
2470 		if (new_table == NULL) {
2471 			igb_error(igb,
2472 			    "Not enough memory to alloc mcast table");
2473 			return (ENOMEM);
2474 		}
2475 
2476 		if (igb->mcast_table != NULL) {
2477 			bcopy(igb->mcast_table, new_table, old_len);
2478 			kmem_free(igb->mcast_table, old_len);
2479 		}
2480 		igb->mcast_alloc_count += MCAST_ALLOC_COUNT;
2481 		igb->mcast_table = new_table;
2482 	}
2483 
2484 	bcopy(multiaddr,
2485 	    &igb->mcast_table[igb->mcast_count], ETHERADDRL);
2486 	igb->mcast_count++;
2487 
2488 	/*
2489 	 * Update the multicast table in the hardware
2490 	 */
2491 	igb_setup_multicst(igb);
2492 
2493 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2494 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2495 		return (EIO);
2496 	}
2497 
2498 	return (0);
2499 }
2500 
2501 /*
2502  * igb_multicst_remove - Remove a multicst address
2503  */
2504 int
2505 igb_multicst_remove(igb_t *igb, const uint8_t *multiaddr)
2506 {
2507 	struct ether_addr *new_table;
2508 	size_t new_len;
2509 	size_t old_len;
2510 	int i;
2511 
2512 	ASSERT(mutex_owned(&igb->gen_lock));
2513 
2514 	for (i = 0; i < igb->mcast_count; i++) {
2515 		if (bcmp(multiaddr, &igb->mcast_table[i],
2516 		    ETHERADDRL) == 0) {
2517 			for (i++; i < igb->mcast_count; i++) {
2518 				igb->mcast_table[i - 1] =
2519 				    igb->mcast_table[i];
2520 			}
2521 			igb->mcast_count--;
2522 			break;
2523 		}
2524 	}
2525 
2526 	if ((igb->mcast_alloc_count - igb->mcast_count) >
2527 	    MCAST_ALLOC_COUNT) {
2528 		old_len = igb->mcast_alloc_count *
2529 		    sizeof (struct ether_addr);
2530 		new_len = (igb->mcast_alloc_count - MCAST_ALLOC_COUNT) *
2531 		    sizeof (struct ether_addr);
2532 
2533 		new_table = kmem_alloc(new_len, KM_NOSLEEP);
2534 		if (new_table != NULL) {
2535 			bcopy(igb->mcast_table, new_table, new_len);
2536 			kmem_free(igb->mcast_table, old_len);
2537 			igb->mcast_alloc_count -= MCAST_ALLOC_COUNT;
2538 			igb->mcast_table = new_table;
2539 		}
2540 	}
2541 
2542 	/*
2543 	 * Update the multicast table in the hardware
2544 	 */
2545 	igb_setup_multicst(igb);
2546 
2547 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2548 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2549 		return (EIO);
2550 	}
2551 
2552 	return (0);
2553 }
2554 
2555 static void
2556 igb_release_multicast(igb_t *igb)
2557 {
2558 	if (igb->mcast_table != NULL) {
2559 		kmem_free(igb->mcast_table,
2560 		    igb->mcast_alloc_count * sizeof (struct ether_addr));
2561 		igb->mcast_table = NULL;
2562 	}
2563 }
2564 
2565 /*
2566  * igb_setup_multicast - setup multicast data structures
2567  *
2568  * This routine initializes all of the multicast related structures
2569  * and save them in the hardware registers.
2570  */
2571 static void
2572 igb_setup_multicst(igb_t *igb)
2573 {
2574 	uint8_t *mc_addr_list;
2575 	uint32_t mc_addr_count;
2576 	struct e1000_hw *hw = &igb->hw;
2577 
2578 	ASSERT(mutex_owned(&igb->gen_lock));
2579 	ASSERT(igb->mcast_count <= igb->mcast_max_num);
2580 
2581 	mc_addr_list = (uint8_t *)igb->mcast_table;
2582 	mc_addr_count = igb->mcast_count;
2583 
2584 	/*
2585 	 * Update the multicase addresses to the MTA registers
2586 	 */
2587 	e1000_update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2588 	    igb->unicst_total, hw->mac.rar_entry_count);
2589 }
2590 
2591 /*
2592  * igb_get_conf - Get driver configurations set in driver.conf
2593  *
2594  * This routine gets user-configured values out of the configuration
2595  * file igb.conf.
2596  *
2597  * For each configurable value, there is a minimum, a maximum, and a
2598  * default.
2599  * If user does not configure a value, use the default.
2600  * If user configures below the minimum, use the minumum.
2601  * If user configures above the maximum, use the maxumum.
2602  */
2603 static void
2604 igb_get_conf(igb_t *igb)
2605 {
2606 	struct e1000_hw *hw = &igb->hw;
2607 	uint32_t default_mtu;
2608 	uint32_t flow_control;
2609 	uint32_t ring_per_group;
2610 	int i;
2611 
2612 	/*
2613 	 * igb driver supports the following user configurations:
2614 	 *
2615 	 * Link configurations:
2616 	 *    adv_autoneg_cap
2617 	 *    adv_1000fdx_cap
2618 	 *    adv_100fdx_cap
2619 	 *    adv_100hdx_cap
2620 	 *    adv_10fdx_cap
2621 	 *    adv_10hdx_cap
2622 	 * Note: 1000hdx is not supported.
2623 	 *
2624 	 * Jumbo frame configuration:
2625 	 *    default_mtu
2626 	 *
2627 	 * Ethernet flow control configuration:
2628 	 *    flow_control
2629 	 *
2630 	 * Multiple rings configurations:
2631 	 *    tx_queue_number
2632 	 *    tx_ring_size
2633 	 *    rx_queue_number
2634 	 *    rx_ring_size
2635 	 *
2636 	 * Call igb_get_prop() to get the value for a specific
2637 	 * configuration parameter.
2638 	 */
2639 
2640 	/*
2641 	 * Link configurations
2642 	 */
2643 	igb->param_adv_autoneg_cap = igb_get_prop(igb,
2644 	    PROP_ADV_AUTONEG_CAP, 0, 1, 1);
2645 	igb->param_adv_1000fdx_cap = igb_get_prop(igb,
2646 	    PROP_ADV_1000FDX_CAP, 0, 1, 1);
2647 	igb->param_adv_100fdx_cap = igb_get_prop(igb,
2648 	    PROP_ADV_100FDX_CAP, 0, 1, 1);
2649 	igb->param_adv_100hdx_cap = igb_get_prop(igb,
2650 	    PROP_ADV_100HDX_CAP, 0, 1, 1);
2651 	igb->param_adv_10fdx_cap = igb_get_prop(igb,
2652 	    PROP_ADV_10FDX_CAP, 0, 1, 1);
2653 	igb->param_adv_10hdx_cap = igb_get_prop(igb,
2654 	    PROP_ADV_10HDX_CAP, 0, 1, 1);
2655 
2656 	/*
2657 	 * Jumbo frame configurations
2658 	 */
2659 	default_mtu = igb_get_prop(igb, PROP_DEFAULT_MTU,
2660 	    MIN_MTU, MAX_MTU, DEFAULT_MTU);
2661 
2662 	igb->max_frame_size = default_mtu +
2663 	    sizeof (struct ether_vlan_header) + ETHERFCSL;
2664 
2665 	/*
2666 	 * Ethernet flow control configuration
2667 	 */
2668 	flow_control = igb_get_prop(igb, PROP_FLOW_CONTROL,
2669 	    e1000_fc_none, 4, e1000_fc_full);
2670 	if (flow_control == 4)
2671 		flow_control = e1000_fc_default;
2672 
2673 	hw->fc.requested_mode = flow_control;
2674 
2675 	/*
2676 	 * Multiple rings configurations
2677 	 */
2678 	igb->tx_ring_size = igb_get_prop(igb, PROP_TX_RING_SIZE,
2679 	    MIN_TX_RING_SIZE, MAX_TX_RING_SIZE, DEFAULT_TX_RING_SIZE);
2680 	igb->rx_ring_size = igb_get_prop(igb, PROP_RX_RING_SIZE,
2681 	    MIN_RX_RING_SIZE, MAX_RX_RING_SIZE, DEFAULT_RX_RING_SIZE);
2682 
2683 	igb->mr_enable = igb_get_prop(igb, PROP_MR_ENABLE, 0, 1, 1);
2684 	igb->num_rx_groups = igb_get_prop(igb, PROP_RX_GROUP_NUM,
2685 	    MIN_RX_GROUP_NUM, MAX_RX_GROUP_NUM, DEFAULT_RX_GROUP_NUM);
2686 	/*
2687 	 * Currently we do not support VMDq for 82576.
2688 	 * If it is e1000_82576, set num_rx_groups to 1.
2689 	 */
2690 	if (hw->mac.type == e1000_82576)
2691 		igb->num_rx_groups = 1;
2692 
2693 	if (igb->mr_enable) {
2694 		igb->num_tx_rings = igb->capab->def_tx_que_num;
2695 		igb->num_rx_rings = igb->capab->def_rx_que_num;
2696 	} else {
2697 		igb->num_tx_rings = 1;
2698 		igb->num_rx_rings = 1;
2699 
2700 		if (igb->num_rx_groups > 1) {
2701 			igb_error(igb,
2702 			    "Invalid rx groups number. Please enable multiple "
2703 			    "rings first");
2704 			igb->num_rx_groups = 1;
2705 		}
2706 	}
2707 
2708 	/*
2709 	 * Check the divisibility between rx rings and rx groups.
2710 	 */
2711 	for (i = igb->num_rx_groups; i > 0; i--) {
2712 		if ((igb->num_rx_rings % i) == 0)
2713 			break;
2714 	}
2715 	if (i != igb->num_rx_groups) {
2716 		igb_error(igb,
2717 		    "Invalid rx groups number. Downgrade the rx group "
2718 		    "number to %d.", i);
2719 		igb->num_rx_groups = i;
2720 	}
2721 
2722 	/*
2723 	 * Get the ring number per group.
2724 	 */
2725 	ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
2726 
2727 	if (igb->num_rx_groups == 1) {
2728 		/*
2729 		 * One rx ring group, the rx ring number is num_rx_rings.
2730 		 */
2731 		igb->vmdq_mode = E1000_VMDQ_OFF;
2732 	} else if (ring_per_group == 1) {
2733 		/*
2734 		 * Multiple rx groups, each group has one rx ring.
2735 		 */
2736 		igb->vmdq_mode = E1000_VMDQ_MAC;
2737 	} else {
2738 		/*
2739 		 * Multiple groups and multiple rings.
2740 		 */
2741 		igb->vmdq_mode = E1000_VMDQ_MAC_RSS;
2742 	}
2743 
2744 	/*
2745 	 * Tunable used to force an interrupt type. The only use is
2746 	 * for testing of the lesser interrupt types.
2747 	 * 0 = don't force interrupt type
2748 	 * 1 = force interrupt type MSIX
2749 	 * 2 = force interrupt type MSI
2750 	 * 3 = force interrupt type Legacy
2751 	 */
2752 	igb->intr_force = igb_get_prop(igb, PROP_INTR_FORCE,
2753 	    IGB_INTR_NONE, IGB_INTR_LEGACY, IGB_INTR_NONE);
2754 
2755 	igb->tx_hcksum_enable = igb_get_prop(igb, PROP_TX_HCKSUM_ENABLE,
2756 	    0, 1, 1);
2757 	igb->rx_hcksum_enable = igb_get_prop(igb, PROP_RX_HCKSUM_ENABLE,
2758 	    0, 1, 1);
2759 	igb->lso_enable = igb_get_prop(igb, PROP_LSO_ENABLE,
2760 	    0, 1, 1);
2761 	igb->tx_head_wb_enable = igb_get_prop(igb, PROP_TX_HEAD_WB_ENABLE,
2762 	    0, 1, 1);
2763 
2764 	/*
2765 	 * igb LSO needs the tx h/w checksum support.
2766 	 * Here LSO will be disabled if tx h/w checksum has been disabled.
2767 	 */
2768 	if (igb->tx_hcksum_enable == B_FALSE)
2769 		igb->lso_enable = B_FALSE;
2770 
2771 	igb->tx_copy_thresh = igb_get_prop(igb, PROP_TX_COPY_THRESHOLD,
2772 	    MIN_TX_COPY_THRESHOLD, MAX_TX_COPY_THRESHOLD,
2773 	    DEFAULT_TX_COPY_THRESHOLD);
2774 	igb->tx_recycle_thresh = igb_get_prop(igb, PROP_TX_RECYCLE_THRESHOLD,
2775 	    MIN_TX_RECYCLE_THRESHOLD, MAX_TX_RECYCLE_THRESHOLD,
2776 	    DEFAULT_TX_RECYCLE_THRESHOLD);
2777 	igb->tx_overload_thresh = igb_get_prop(igb, PROP_TX_OVERLOAD_THRESHOLD,
2778 	    MIN_TX_OVERLOAD_THRESHOLD, MAX_TX_OVERLOAD_THRESHOLD,
2779 	    DEFAULT_TX_OVERLOAD_THRESHOLD);
2780 	igb->tx_resched_thresh = igb_get_prop(igb, PROP_TX_RESCHED_THRESHOLD,
2781 	    MIN_TX_RESCHED_THRESHOLD, MAX_TX_RESCHED_THRESHOLD,
2782 	    DEFAULT_TX_RESCHED_THRESHOLD);
2783 
2784 	igb->rx_copy_thresh = igb_get_prop(igb, PROP_RX_COPY_THRESHOLD,
2785 	    MIN_RX_COPY_THRESHOLD, MAX_RX_COPY_THRESHOLD,
2786 	    DEFAULT_RX_COPY_THRESHOLD);
2787 	igb->rx_limit_per_intr = igb_get_prop(igb, PROP_RX_LIMIT_PER_INTR,
2788 	    MIN_RX_LIMIT_PER_INTR, MAX_RX_LIMIT_PER_INTR,
2789 	    DEFAULT_RX_LIMIT_PER_INTR);
2790 
2791 	igb->intr_throttling[0] = igb_get_prop(igb, PROP_INTR_THROTTLING,
2792 	    igb->capab->min_intr_throttle,
2793 	    igb->capab->max_intr_throttle,
2794 	    igb->capab->def_intr_throttle);
2795 
2796 	/*
2797 	 * Max number of multicast addresses
2798 	 */
2799 	igb->mcast_max_num =
2800 	    igb_get_prop(igb, PROP_MCAST_MAX_NUM,
2801 	    MIN_MCAST_NUM, MAX_MCAST_NUM, DEFAULT_MCAST_NUM);
2802 }
2803 
2804 /*
2805  * igb_get_prop - Get a property value out of the configuration file igb.conf
2806  *
2807  * Caller provides the name of the property, a default value, a minimum
2808  * value, and a maximum value.
2809  *
2810  * Return configured value of the property, with default, minimum and
2811  * maximum properly applied.
2812  */
2813 static int
2814 igb_get_prop(igb_t *igb,
2815     char *propname,	/* name of the property */
2816     int minval,		/* minimum acceptable value */
2817     int maxval,		/* maximim acceptable value */
2818     int defval)		/* default value */
2819 {
2820 	int value;
2821 
2822 	/*
2823 	 * Call ddi_prop_get_int() to read the conf settings
2824 	 */
2825 	value = ddi_prop_get_int(DDI_DEV_T_ANY, igb->dip,
2826 	    DDI_PROP_DONTPASS, propname, defval);
2827 
2828 	if (value > maxval)
2829 		value = maxval;
2830 
2831 	if (value < minval)
2832 		value = minval;
2833 
2834 	return (value);
2835 }
2836 
2837 /*
2838  * igb_setup_link - Using the link properties to setup the link
2839  */
2840 int
2841 igb_setup_link(igb_t *igb, boolean_t setup_hw)
2842 {
2843 	struct e1000_mac_info *mac;
2844 	struct e1000_phy_info *phy;
2845 	boolean_t invalid;
2846 
2847 	mac = &igb->hw.mac;
2848 	phy = &igb->hw.phy;
2849 	invalid = B_FALSE;
2850 
2851 	if (igb->param_adv_autoneg_cap == 1) {
2852 		mac->autoneg = B_TRUE;
2853 		phy->autoneg_advertised = 0;
2854 
2855 		/*
2856 		 * 1000hdx is not supported for autonegotiation
2857 		 */
2858 		if (igb->param_adv_1000fdx_cap == 1)
2859 			phy->autoneg_advertised |= ADVERTISE_1000_FULL;
2860 
2861 		if (igb->param_adv_100fdx_cap == 1)
2862 			phy->autoneg_advertised |= ADVERTISE_100_FULL;
2863 
2864 		if (igb->param_adv_100hdx_cap == 1)
2865 			phy->autoneg_advertised |= ADVERTISE_100_HALF;
2866 
2867 		if (igb->param_adv_10fdx_cap == 1)
2868 			phy->autoneg_advertised |= ADVERTISE_10_FULL;
2869 
2870 		if (igb->param_adv_10hdx_cap == 1)
2871 			phy->autoneg_advertised |= ADVERTISE_10_HALF;
2872 
2873 		if (phy->autoneg_advertised == 0)
2874 			invalid = B_TRUE;
2875 	} else {
2876 		mac->autoneg = B_FALSE;
2877 
2878 		/*
2879 		 * 1000fdx and 1000hdx are not supported for forced link
2880 		 */
2881 		if (igb->param_adv_100fdx_cap == 1)
2882 			mac->forced_speed_duplex = ADVERTISE_100_FULL;
2883 		else if (igb->param_adv_100hdx_cap == 1)
2884 			mac->forced_speed_duplex = ADVERTISE_100_HALF;
2885 		else if (igb->param_adv_10fdx_cap == 1)
2886 			mac->forced_speed_duplex = ADVERTISE_10_FULL;
2887 		else if (igb->param_adv_10hdx_cap == 1)
2888 			mac->forced_speed_duplex = ADVERTISE_10_HALF;
2889 		else
2890 			invalid = B_TRUE;
2891 	}
2892 
2893 	if (invalid) {
2894 		igb_notice(igb, "Invalid link settings. Setup link to "
2895 		    "autonegotiation with full link capabilities.");
2896 		mac->autoneg = B_TRUE;
2897 		phy->autoneg_advertised = ADVERTISE_1000_FULL |
2898 		    ADVERTISE_100_FULL | ADVERTISE_100_HALF |
2899 		    ADVERTISE_10_FULL | ADVERTISE_10_HALF;
2900 	}
2901 
2902 	if (setup_hw) {
2903 		if (e1000_setup_link(&igb->hw) != E1000_SUCCESS)
2904 			return (IGB_FAILURE);
2905 	}
2906 
2907 	return (IGB_SUCCESS);
2908 }
2909 
2910 
2911 /*
2912  * igb_is_link_up - Check if the link is up
2913  */
2914 static boolean_t
2915 igb_is_link_up(igb_t *igb)
2916 {
2917 	struct e1000_hw *hw = &igb->hw;
2918 	boolean_t link_up = B_FALSE;
2919 
2920 	ASSERT(mutex_owned(&igb->gen_lock));
2921 
2922 	/*
2923 	 * get_link_status is set in the interrupt handler on link-status-change
2924 	 * or rx sequence error interrupt.  get_link_status will stay
2925 	 * false until the e1000_check_for_link establishes link only
2926 	 * for copper adapters.
2927 	 */
2928 	switch (hw->phy.media_type) {
2929 	case e1000_media_type_copper:
2930 		if (hw->mac.get_link_status) {
2931 			(void) e1000_check_for_link(hw);
2932 			link_up = !hw->mac.get_link_status;
2933 		} else {
2934 			link_up = B_TRUE;
2935 		}
2936 		break;
2937 	case e1000_media_type_fiber:
2938 		(void) e1000_check_for_link(hw);
2939 		link_up = (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU);
2940 		break;
2941 	case e1000_media_type_internal_serdes:
2942 		(void) e1000_check_for_link(hw);
2943 		link_up = hw->mac.serdes_has_link;
2944 		break;
2945 	}
2946 
2947 	return (link_up);
2948 }
2949 
2950 /*
2951  * igb_link_check - Link status processing
2952  */
2953 static boolean_t
2954 igb_link_check(igb_t *igb)
2955 {
2956 	struct e1000_hw *hw = &igb->hw;
2957 	uint16_t speed = 0, duplex = 0;
2958 	boolean_t link_changed = B_FALSE;
2959 
2960 	ASSERT(mutex_owned(&igb->gen_lock));
2961 
2962 	if (igb_is_link_up(igb)) {
2963 		/*
2964 		 * The Link is up, check whether it was marked as down earlier
2965 		 */
2966 		if (igb->link_state != LINK_STATE_UP) {
2967 			(void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
2968 			igb->link_speed = speed;
2969 			igb->link_duplex = duplex;
2970 			igb->link_state = LINK_STATE_UP;
2971 			igb->link_down_timeout = 0;
2972 			link_changed = B_TRUE;
2973 		}
2974 	} else {
2975 		if (igb->link_state != LINK_STATE_DOWN) {
2976 			igb->link_speed = 0;
2977 			igb->link_duplex = 0;
2978 			igb->link_state = LINK_STATE_DOWN;
2979 			link_changed = B_TRUE;
2980 		}
2981 
2982 		if (igb->igb_state & IGB_STARTED) {
2983 			if (igb->link_down_timeout < MAX_LINK_DOWN_TIMEOUT) {
2984 				igb->link_down_timeout++;
2985 			} else if (igb->link_down_timeout ==
2986 			    MAX_LINK_DOWN_TIMEOUT) {
2987 				igb_tx_clean(igb);
2988 				igb->link_down_timeout++;
2989 			}
2990 		}
2991 	}
2992 
2993 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
2994 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2995 
2996 	return (link_changed);
2997 }
2998 
2999 /*
3000  * igb_local_timer - driver watchdog function
3001  *
3002  * This function will handle the transmit stall check, link status check and
3003  * other routines.
3004  */
3005 static void
3006 igb_local_timer(void *arg)
3007 {
3008 	igb_t *igb = (igb_t *)arg;
3009 	boolean_t link_changed = B_FALSE;
3010 
3011 	if (igb_stall_check(igb)) {
3012 		igb_fm_ereport(igb, DDI_FM_DEVICE_STALL);
3013 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
3014 		igb->reset_count++;
3015 		if (igb_reset(igb) == IGB_SUCCESS)
3016 			ddi_fm_service_impact(igb->dip,
3017 			    DDI_SERVICE_RESTORED);
3018 	}
3019 
3020 	mutex_enter(&igb->gen_lock);
3021 	if (!(igb->igb_state & IGB_SUSPENDED) && (igb->igb_state & IGB_STARTED))
3022 		link_changed = igb_link_check(igb);
3023 	mutex_exit(&igb->gen_lock);
3024 
3025 	if (link_changed)
3026 		mac_link_update(igb->mac_hdl, igb->link_state);
3027 
3028 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
3029 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
3030 
3031 	igb_restart_watchdog_timer(igb);
3032 }
3033 
3034 /*
3035  * igb_stall_check - check for transmit stall
3036  *
3037  * This function checks if the adapter is stalled (in transmit).
3038  *
3039  * It is called each time the watchdog timeout is invoked.
3040  * If the transmit descriptor reclaim continuously fails,
3041  * the watchdog value will increment by 1. If the watchdog
3042  * value exceeds the threshold, the igb is assumed to
3043  * have stalled and need to be reset.
3044  */
3045 static boolean_t
3046 igb_stall_check(igb_t *igb)
3047 {
3048 	igb_tx_ring_t *tx_ring;
3049 	boolean_t result;
3050 	int i;
3051 
3052 	if (igb->link_state != LINK_STATE_UP)
3053 		return (B_FALSE);
3054 
3055 	/*
3056 	 * If any tx ring is stalled, we'll reset the chipset
3057 	 */
3058 	result = B_FALSE;
3059 	for (i = 0; i < igb->num_tx_rings; i++) {
3060 		tx_ring = &igb->tx_rings[i];
3061 
3062 		if (tx_ring->recycle_fail > 0)
3063 			tx_ring->stall_watchdog++;
3064 		else
3065 			tx_ring->stall_watchdog = 0;
3066 
3067 		if (tx_ring->stall_watchdog >= STALL_WATCHDOG_TIMEOUT) {
3068 			result = B_TRUE;
3069 			break;
3070 		}
3071 	}
3072 
3073 	if (result) {
3074 		tx_ring->stall_watchdog = 0;
3075 		tx_ring->recycle_fail = 0;
3076 	}
3077 
3078 	return (result);
3079 }
3080 
3081 
3082 /*
3083  * is_valid_mac_addr - Check if the mac address is valid
3084  */
3085 static boolean_t
3086 is_valid_mac_addr(uint8_t *mac_addr)
3087 {
3088 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
3089 	const uint8_t addr_test2[6] =
3090 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3091 
3092 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
3093 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
3094 		return (B_FALSE);
3095 
3096 	return (B_TRUE);
3097 }
3098 
3099 static boolean_t
3100 igb_find_mac_address(igb_t *igb)
3101 {
3102 	struct e1000_hw *hw = &igb->hw;
3103 #ifdef __sparc
3104 	uchar_t *bytes;
3105 	struct ether_addr sysaddr;
3106 	uint_t nelts;
3107 	int err;
3108 	boolean_t found = B_FALSE;
3109 
3110 	/*
3111 	 * The "vendor's factory-set address" may already have
3112 	 * been extracted from the chip, but if the property
3113 	 * "local-mac-address" is set we use that instead.
3114 	 *
3115 	 * We check whether it looks like an array of 6
3116 	 * bytes (which it should, if OBP set it).  If we can't
3117 	 * make sense of it this way, we'll ignore it.
3118 	 */
3119 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip,
3120 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
3121 	if (err == DDI_PROP_SUCCESS) {
3122 		if (nelts == ETHERADDRL) {
3123 			while (nelts--)
3124 				hw->mac.addr[nelts] = bytes[nelts];
3125 			found = B_TRUE;
3126 		}
3127 		ddi_prop_free(bytes);
3128 	}
3129 
3130 	/*
3131 	 * Look up the OBP property "local-mac-address?". If the user has set
3132 	 * 'local-mac-address? = false', use "the system address" instead.
3133 	 */
3134 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip, 0,
3135 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
3136 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
3137 			if (localetheraddr(NULL, &sysaddr) != 0) {
3138 				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
3139 				found = B_TRUE;
3140 			}
3141 		}
3142 		ddi_prop_free(bytes);
3143 	}
3144 
3145 	/*
3146 	 * Finally(!), if there's a valid "mac-address" property (created
3147 	 * if we netbooted from this interface), we must use this instead
3148 	 * of any of the above to ensure that the NFS/install server doesn't
3149 	 * get confused by the address changing as Solaris takes over!
3150 	 */
3151 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip,
3152 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
3153 	if (err == DDI_PROP_SUCCESS) {
3154 		if (nelts == ETHERADDRL) {
3155 			while (nelts--)
3156 				hw->mac.addr[nelts] = bytes[nelts];
3157 			found = B_TRUE;
3158 		}
3159 		ddi_prop_free(bytes);
3160 	}
3161 
3162 	if (found) {
3163 		bcopy(hw->mac.addr, hw->mac.perm_addr, ETHERADDRL);
3164 		return (B_TRUE);
3165 	}
3166 #endif
3167 
3168 	/*
3169 	 * Read the device MAC address from the EEPROM
3170 	 */
3171 	if (e1000_read_mac_addr(hw) != E1000_SUCCESS)
3172 		return (B_FALSE);
3173 
3174 	return (B_TRUE);
3175 }
3176 
3177 #pragma inline(igb_arm_watchdog_timer)
3178 
3179 static void
3180 igb_arm_watchdog_timer(igb_t *igb)
3181 {
3182 	/*
3183 	 * Fire a watchdog timer
3184 	 */
3185 	igb->watchdog_tid =
3186 	    timeout(igb_local_timer,
3187 	    (void *)igb, 1 * drv_usectohz(1000000));
3188 
3189 }
3190 
3191 /*
3192  * igb_enable_watchdog_timer - Enable and start the driver watchdog timer
3193  */
3194 void
3195 igb_enable_watchdog_timer(igb_t *igb)
3196 {
3197 	mutex_enter(&igb->watchdog_lock);
3198 
3199 	if (!igb->watchdog_enable) {
3200 		igb->watchdog_enable = B_TRUE;
3201 		igb->watchdog_start = B_TRUE;
3202 		igb_arm_watchdog_timer(igb);
3203 	}
3204 
3205 	mutex_exit(&igb->watchdog_lock);
3206 
3207 }
3208 
3209 /*
3210  * igb_disable_watchdog_timer - Disable and stop the driver watchdog timer
3211  */
3212 void
3213 igb_disable_watchdog_timer(igb_t *igb)
3214 {
3215 	timeout_id_t tid;
3216 
3217 	mutex_enter(&igb->watchdog_lock);
3218 
3219 	igb->watchdog_enable = B_FALSE;
3220 	igb->watchdog_start = B_FALSE;
3221 	tid = igb->watchdog_tid;
3222 	igb->watchdog_tid = 0;
3223 
3224 	mutex_exit(&igb->watchdog_lock);
3225 
3226 	if (tid != 0)
3227 		(void) untimeout(tid);
3228 
3229 }
3230 
3231 /*
3232  * igb_start_watchdog_timer - Start the driver watchdog timer
3233  */
3234 static void
3235 igb_start_watchdog_timer(igb_t *igb)
3236 {
3237 	mutex_enter(&igb->watchdog_lock);
3238 
3239 	if (igb->watchdog_enable) {
3240 		if (!igb->watchdog_start) {
3241 			igb->watchdog_start = B_TRUE;
3242 			igb_arm_watchdog_timer(igb);
3243 		}
3244 	}
3245 
3246 	mutex_exit(&igb->watchdog_lock);
3247 }
3248 
3249 /*
3250  * igb_restart_watchdog_timer - Restart the driver watchdog timer
3251  */
3252 static void
3253 igb_restart_watchdog_timer(igb_t *igb)
3254 {
3255 	mutex_enter(&igb->watchdog_lock);
3256 
3257 	if (igb->watchdog_start)
3258 		igb_arm_watchdog_timer(igb);
3259 
3260 	mutex_exit(&igb->watchdog_lock);
3261 }
3262 
3263 /*
3264  * igb_stop_watchdog_timer - Stop the driver watchdog timer
3265  */
3266 static void
3267 igb_stop_watchdog_timer(igb_t *igb)
3268 {
3269 	timeout_id_t tid;
3270 
3271 	mutex_enter(&igb->watchdog_lock);
3272 
3273 	igb->watchdog_start = B_FALSE;
3274 	tid = igb->watchdog_tid;
3275 	igb->watchdog_tid = 0;
3276 
3277 	mutex_exit(&igb->watchdog_lock);
3278 
3279 	if (tid != 0)
3280 		(void) untimeout(tid);
3281 }
3282 
3283 /*
3284  * igb_disable_adapter_interrupts - Clear/disable all hardware interrupts
3285  */
3286 static void
3287 igb_disable_adapter_interrupts(igb_t *igb)
3288 {
3289 	struct e1000_hw *hw = &igb->hw;
3290 
3291 	/*
3292 	 * Set the IMC register to mask all the interrupts,
3293 	 * including the tx interrupts.
3294 	 */
3295 	E1000_WRITE_REG(hw, E1000_IMC, ~0);
3296 	E1000_WRITE_REG(hw, E1000_IAM, 0);
3297 
3298 	/*
3299 	 * Additional disabling for MSI-X
3300 	 */
3301 	if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3302 		E1000_WRITE_REG(hw, E1000_EIMC, ~0);
3303 		E1000_WRITE_REG(hw, E1000_EIAC, 0);
3304 		E1000_WRITE_REG(hw, E1000_EIAM, 0);
3305 	}
3306 
3307 	E1000_WRITE_FLUSH(hw);
3308 }
3309 
3310 /*
3311  * igb_enable_adapter_interrupts_82576 - Enable NIC interrupts for 82576
3312  */
3313 static void
3314 igb_enable_adapter_interrupts_82576(igb_t *igb)
3315 {
3316 	struct e1000_hw *hw = &igb->hw;
3317 
3318 	/* Clear any pending interrupts */
3319 	(void) E1000_READ_REG(hw, E1000_ICR);
3320 
3321 	if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3322 
3323 		/* Interrupt enabling for MSI-X */
3324 		E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3325 		E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3326 		igb->ims_mask = E1000_IMS_LSC;
3327 		E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3328 	} else {
3329 		/* Interrupt enabling for MSI and legacy */
3330 		E1000_WRITE_REG(hw, E1000_IVAR0, E1000_IVAR_VALID);
3331 		igb->ims_mask = IMS_ENABLE_MASK | E1000_IMS_TXQE;
3332 		E1000_WRITE_REG(hw, E1000_IMS,
3333 		    (IMS_ENABLE_MASK | E1000_IMS_TXQE));
3334 	}
3335 
3336 	/* Disable auto-mask for ICR interrupt bits */
3337 	E1000_WRITE_REG(hw, E1000_IAM, 0);
3338 
3339 	E1000_WRITE_FLUSH(hw);
3340 }
3341 
3342 /*
3343  * igb_enable_adapter_interrupts_82575 - Enable NIC interrupts for 82575
3344  */
3345 static void
3346 igb_enable_adapter_interrupts_82575(igb_t *igb)
3347 {
3348 	struct e1000_hw *hw = &igb->hw;
3349 	uint32_t reg;
3350 
3351 	/* Clear any pending interrupts */
3352 	(void) E1000_READ_REG(hw, E1000_ICR);
3353 
3354 	if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3355 		/* Interrupt enabling for MSI-X */
3356 		E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3357 		E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3358 		igb->ims_mask = E1000_IMS_LSC;
3359 		E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3360 
3361 		/* Enable MSI-X PBA support */
3362 		reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
3363 		reg |= E1000_CTRL_EXT_PBA_CLR;
3364 
3365 		/* Non-selective interrupt clear-on-read */
3366 		reg |= E1000_CTRL_EXT_IRCA;	/* Called NSICR in the EAS */
3367 
3368 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
3369 	} else {
3370 		/* Interrupt enabling for MSI and legacy */
3371 		igb->ims_mask = IMS_ENABLE_MASK;
3372 		E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
3373 	}
3374 
3375 	E1000_WRITE_FLUSH(hw);
3376 }
3377 
3378 /*
3379  * Loopback Support
3380  */
3381 static lb_property_t lb_normal =
3382 	{ normal,	"normal",	IGB_LB_NONE		};
3383 static lb_property_t lb_external =
3384 	{ external,	"External",	IGB_LB_EXTERNAL		};
3385 static lb_property_t lb_mac =
3386 	{ internal,	"MAC",		IGB_LB_INTERNAL_MAC	};
3387 static lb_property_t lb_phy =
3388 	{ internal,	"PHY",		IGB_LB_INTERNAL_PHY	};
3389 static lb_property_t lb_serdes =
3390 	{ internal,	"SerDes",	IGB_LB_INTERNAL_SERDES	};
3391 
3392 enum ioc_reply
3393 igb_loopback_ioctl(igb_t *igb, struct iocblk *iocp, mblk_t *mp)
3394 {
3395 	lb_info_sz_t *lbsp;
3396 	lb_property_t *lbpp;
3397 	struct e1000_hw *hw;
3398 	uint32_t *lbmp;
3399 	uint32_t size;
3400 	uint32_t value;
3401 
3402 	hw = &igb->hw;
3403 
3404 	if (mp->b_cont == NULL)
3405 		return (IOC_INVAL);
3406 
3407 	switch (iocp->ioc_cmd) {
3408 	default:
3409 		return (IOC_INVAL);
3410 
3411 	case LB_GET_INFO_SIZE:
3412 		size = sizeof (lb_info_sz_t);
3413 		if (iocp->ioc_count != size)
3414 			return (IOC_INVAL);
3415 
3416 		value = sizeof (lb_normal);
3417 		value += sizeof (lb_mac);
3418 		if (hw->phy.media_type == e1000_media_type_copper)
3419 			value += sizeof (lb_phy);
3420 		else
3421 			value += sizeof (lb_serdes);
3422 		value += sizeof (lb_external);
3423 
3424 		lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
3425 		*lbsp = value;
3426 		break;
3427 
3428 	case LB_GET_INFO:
3429 		value = sizeof (lb_normal);
3430 		value += sizeof (lb_mac);
3431 		if (hw->phy.media_type == e1000_media_type_copper)
3432 			value += sizeof (lb_phy);
3433 		else
3434 			value += sizeof (lb_serdes);
3435 		value += sizeof (lb_external);
3436 
3437 		size = value;
3438 		if (iocp->ioc_count != size)
3439 			return (IOC_INVAL);
3440 
3441 		value = 0;
3442 		lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
3443 
3444 		lbpp[value++] = lb_normal;
3445 		lbpp[value++] = lb_mac;
3446 		if (hw->phy.media_type == e1000_media_type_copper)
3447 			lbpp[value++] = lb_phy;
3448 		else
3449 			lbpp[value++] = lb_serdes;
3450 		lbpp[value++] = lb_external;
3451 		break;
3452 
3453 	case LB_GET_MODE:
3454 		size = sizeof (uint32_t);
3455 		if (iocp->ioc_count != size)
3456 			return (IOC_INVAL);
3457 
3458 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
3459 		*lbmp = igb->loopback_mode;
3460 		break;
3461 
3462 	case LB_SET_MODE:
3463 		size = 0;
3464 		if (iocp->ioc_count != sizeof (uint32_t))
3465 			return (IOC_INVAL);
3466 
3467 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
3468 		if (!igb_set_loopback_mode(igb, *lbmp))
3469 			return (IOC_INVAL);
3470 		break;
3471 	}
3472 
3473 	iocp->ioc_count = size;
3474 	iocp->ioc_error = 0;
3475 
3476 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
3477 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
3478 		return (IOC_INVAL);
3479 	}
3480 
3481 	return (IOC_REPLY);
3482 }
3483 
3484 /*
3485  * igb_set_loopback_mode - Setup loopback based on the loopback mode
3486  */
3487 static boolean_t
3488 igb_set_loopback_mode(igb_t *igb, uint32_t mode)
3489 {
3490 	struct e1000_hw *hw;
3491 
3492 	if (mode == igb->loopback_mode)
3493 		return (B_TRUE);
3494 
3495 	hw = &igb->hw;
3496 
3497 	igb->loopback_mode = mode;
3498 
3499 	if (mode == IGB_LB_NONE) {
3500 		/* Reset the chip */
3501 		hw->phy.autoneg_wait_to_complete = B_TRUE;
3502 		(void) igb_reset(igb);
3503 		hw->phy.autoneg_wait_to_complete = B_FALSE;
3504 		return (B_TRUE);
3505 	}
3506 
3507 	mutex_enter(&igb->gen_lock);
3508 
3509 	switch (mode) {
3510 	default:
3511 		mutex_exit(&igb->gen_lock);
3512 		return (B_FALSE);
3513 
3514 	case IGB_LB_EXTERNAL:
3515 		igb_set_external_loopback(igb);
3516 		break;
3517 
3518 	case IGB_LB_INTERNAL_MAC:
3519 		igb_set_internal_mac_loopback(igb);
3520 		break;
3521 
3522 	case IGB_LB_INTERNAL_PHY:
3523 		igb_set_internal_phy_loopback(igb);
3524 		break;
3525 
3526 	case IGB_LB_INTERNAL_SERDES:
3527 		igb_set_internal_serdes_loopback(igb);
3528 		break;
3529 	}
3530 
3531 	mutex_exit(&igb->gen_lock);
3532 
3533 	return (B_TRUE);
3534 }
3535 
3536 /*
3537  * igb_set_external_loopback - Set the external loopback mode
3538  */
3539 static void
3540 igb_set_external_loopback(igb_t *igb)
3541 {
3542 	struct e1000_hw *hw;
3543 
3544 	hw = &igb->hw;
3545 
3546 	/* Set phy to known state */
3547 	(void) e1000_phy_hw_reset(hw);
3548 
3549 	(void) e1000_write_phy_reg(hw, 0x0, 0x0140);
3550 	(void) e1000_write_phy_reg(hw, 0x9, 0x1b00);
3551 	(void) e1000_write_phy_reg(hw, 0x12, 0x1610);
3552 	(void) e1000_write_phy_reg(hw, 0x1f37, 0x3f1c);
3553 }
3554 
3555 /*
3556  * igb_set_internal_mac_loopback - Set the internal MAC loopback mode
3557  */
3558 static void
3559 igb_set_internal_mac_loopback(igb_t *igb)
3560 {
3561 	struct e1000_hw *hw;
3562 	uint32_t ctrl;
3563 	uint32_t rctl;
3564 	uint32_t ctrl_ext;
3565 	uint16_t phy_ctrl;
3566 	uint16_t phy_status;
3567 
3568 	hw = &igb->hw;
3569 
3570 	(void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
3571 	phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
3572 	(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
3573 
3574 	(void) e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
3575 
3576 	/* Set link mode to PHY (00b) in the Extended Control register */
3577 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3578 	ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
3579 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3580 
3581 	/* Set the Device Control register */
3582 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
3583 	if (!(phy_status & MII_SR_LINK_STATUS))
3584 		ctrl |= E1000_CTRL_ILOS; /* Set ILOS when the link is down */
3585 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
3586 	ctrl |= (E1000_CTRL_SLU |	/* Force link up */
3587 	    E1000_CTRL_FRCSPD |		/* Force speed */
3588 	    E1000_CTRL_FRCDPX |		/* Force duplex */
3589 	    E1000_CTRL_SPD_1000 |	/* Force speed to 1000 */
3590 	    E1000_CTRL_FD);		/* Force full duplex */
3591 
3592 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
3593 
3594 	/* Set the Receive Control register */
3595 	rctl = E1000_READ_REG(hw, E1000_RCTL);
3596 	rctl &= ~E1000_RCTL_LBM_TCVR;
3597 	rctl |= E1000_RCTL_LBM_MAC;
3598 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3599 }
3600 
3601 /*
3602  * igb_set_internal_phy_loopback - Set the internal PHY loopback mode
3603  */
3604 static void
3605 igb_set_internal_phy_loopback(igb_t *igb)
3606 {
3607 	struct e1000_hw *hw;
3608 	uint32_t ctrl_ext;
3609 	uint16_t phy_ctrl;
3610 	uint16_t phy_pconf;
3611 
3612 	hw = &igb->hw;
3613 
3614 	/* Set link mode to PHY (00b) in the Extended Control register */
3615 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3616 	ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
3617 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3618 
3619 	/*
3620 	 * Set PHY control register (0x4140):
3621 	 *    Set full duplex mode
3622 	 *    Set loopback bit
3623 	 *    Clear auto-neg enable bit
3624 	 *    Set PHY speed
3625 	 */
3626 	phy_ctrl = MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000 | MII_CR_LOOPBACK;
3627 	(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
3628 
3629 	/* Set the link disable bit in the Port Configuration register */
3630 	(void) e1000_read_phy_reg(hw, 0x10, &phy_pconf);
3631 	phy_pconf |= (uint16_t)1 << 14;
3632 	(void) e1000_write_phy_reg(hw, 0x10, phy_pconf);
3633 }
3634 
3635 /*
3636  * igb_set_internal_serdes_loopback - Set the internal SerDes loopback mode
3637  */
3638 static void
3639 igb_set_internal_serdes_loopback(igb_t *igb)
3640 {
3641 	struct e1000_hw *hw;
3642 	uint32_t ctrl_ext;
3643 	uint32_t ctrl;
3644 	uint32_t pcs_lctl;
3645 	uint32_t connsw;
3646 
3647 	hw = &igb->hw;
3648 
3649 	/* Set link mode to SerDes (11b) in the Extended Control register */
3650 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3651 	ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
3652 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3653 
3654 	/* Configure the SerDes to loopback */
3655 	E1000_WRITE_REG(hw, E1000_SCTL, 0x410);
3656 
3657 	/* Set Device Control register */
3658 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
3659 	ctrl |= (E1000_CTRL_FD |	/* Force full duplex */
3660 	    E1000_CTRL_SLU);		/* Force link up */
3661 	ctrl &= ~(E1000_CTRL_RFCE |	/* Disable receive flow control */
3662 	    E1000_CTRL_TFCE |		/* Disable transmit flow control */
3663 	    E1000_CTRL_LRST);		/* Clear link reset */
3664 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
3665 
3666 	/* Set PCS Link Control register */
3667 	pcs_lctl = E1000_READ_REG(hw, E1000_PCS_LCTL);
3668 	pcs_lctl |= (E1000_PCS_LCTL_FORCE_LINK |
3669 	    E1000_PCS_LCTL_FSD |
3670 	    E1000_PCS_LCTL_FDV_FULL |
3671 	    E1000_PCS_LCTL_FLV_LINK_UP);
3672 	pcs_lctl &= ~E1000_PCS_LCTL_AN_ENABLE;
3673 	E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_lctl);
3674 
3675 	/* Set the Copper/Fiber Switch Control - CONNSW register */
3676 	connsw = E1000_READ_REG(hw, E1000_CONNSW);
3677 	connsw &= ~E1000_CONNSW_ENRGSRC;
3678 	E1000_WRITE_REG(hw, E1000_CONNSW, connsw);
3679 }
3680 
3681 #pragma inline(igb_intr_rx_work)
3682 /*
3683  * igb_intr_rx_work - rx processing of ISR
3684  */
3685 static void
3686 igb_intr_rx_work(igb_rx_ring_t *rx_ring)
3687 {
3688 	mblk_t *mp;
3689 
3690 	mutex_enter(&rx_ring->rx_lock);
3691 	mp = igb_rx(rx_ring, IGB_NO_POLL);
3692 	mutex_exit(&rx_ring->rx_lock);
3693 
3694 	if (mp != NULL)
3695 		mac_rx_ring(rx_ring->igb->mac_hdl, rx_ring->ring_handle, mp,
3696 		    rx_ring->ring_gen_num);
3697 }
3698 
3699 #pragma inline(igb_intr_tx_work)
3700 /*
3701  * igb_intr_tx_work - tx processing of ISR
3702  */
3703 static void
3704 igb_intr_tx_work(igb_tx_ring_t *tx_ring)
3705 {
3706 	/* Recycle the tx descriptors */
3707 	tx_ring->tx_recycle(tx_ring);
3708 
3709 	/* Schedule the re-transmit */
3710 	if (tx_ring->reschedule &&
3711 	    (tx_ring->tbd_free >= tx_ring->resched_thresh)) {
3712 		tx_ring->reschedule = B_FALSE;
3713 		mac_tx_ring_update(tx_ring->igb->mac_hdl, tx_ring->ring_handle);
3714 		IGB_DEBUG_STAT(tx_ring->stat_reschedule);
3715 	}
3716 }
3717 
3718 #pragma inline(igb_intr_link_work)
3719 /*
3720  * igb_intr_link_work - link-status-change processing of ISR
3721  */
3722 static void
3723 igb_intr_link_work(igb_t *igb)
3724 {
3725 	boolean_t link_changed;
3726 
3727 	igb_stop_watchdog_timer(igb);
3728 
3729 	mutex_enter(&igb->gen_lock);
3730 
3731 	/*
3732 	 * Because we got a link-status-change interrupt, force
3733 	 * e1000_check_for_link() to look at phy
3734 	 */
3735 	igb->hw.mac.get_link_status = B_TRUE;
3736 
3737 	/* igb_link_check takes care of link status change */
3738 	link_changed = igb_link_check(igb);
3739 
3740 	/* Get new phy state */
3741 	igb_get_phy_state(igb);
3742 
3743 	mutex_exit(&igb->gen_lock);
3744 
3745 	if (link_changed)
3746 		mac_link_update(igb->mac_hdl, igb->link_state);
3747 
3748 	igb_start_watchdog_timer(igb);
3749 }
3750 
3751 /*
3752  * igb_intr_legacy - Interrupt handler for legacy interrupts
3753  */
3754 static uint_t
3755 igb_intr_legacy(void *arg1, void *arg2)
3756 {
3757 	igb_t *igb = (igb_t *)arg1;
3758 	igb_tx_ring_t *tx_ring;
3759 	uint32_t icr;
3760 	mblk_t *mp;
3761 	boolean_t tx_reschedule;
3762 	boolean_t link_changed;
3763 	uint_t result;
3764 
3765 	_NOTE(ARGUNUSED(arg2));
3766 
3767 	mutex_enter(&igb->gen_lock);
3768 
3769 	if (igb->igb_state & IGB_SUSPENDED) {
3770 		mutex_exit(&igb->gen_lock);
3771 		return (DDI_INTR_UNCLAIMED);
3772 	}
3773 
3774 	mp = NULL;
3775 	tx_reschedule = B_FALSE;
3776 	link_changed = B_FALSE;
3777 	icr = E1000_READ_REG(&igb->hw, E1000_ICR);
3778 
3779 	if (icr & E1000_ICR_INT_ASSERTED) {
3780 		/*
3781 		 * E1000_ICR_INT_ASSERTED bit was set:
3782 		 * Read(Clear) the ICR, claim this interrupt,
3783 		 * look for work to do.
3784 		 */
3785 		ASSERT(igb->num_rx_rings == 1);
3786 		ASSERT(igb->num_tx_rings == 1);
3787 
3788 		/* Make sure all interrupt causes cleared */
3789 		(void) E1000_READ_REG(&igb->hw, E1000_EICR);
3790 
3791 		if (icr & E1000_ICR_RXT0) {
3792 			mp = igb_rx(&igb->rx_rings[0], IGB_NO_POLL);
3793 		}
3794 
3795 		if (icr & E1000_ICR_TXDW) {
3796 			tx_ring = &igb->tx_rings[0];
3797 
3798 			/* Recycle the tx descriptors */
3799 			tx_ring->tx_recycle(tx_ring);
3800 
3801 			/* Schedule the re-transmit */
3802 			tx_reschedule = (tx_ring->reschedule &&
3803 			    (tx_ring->tbd_free >= tx_ring->resched_thresh));
3804 		}
3805 
3806 		if (icr & E1000_ICR_LSC) {
3807 			/*
3808 			 * Because we got a link-status-change interrupt, force
3809 			 * e1000_check_for_link() to look at phy
3810 			 */
3811 			igb->hw.mac.get_link_status = B_TRUE;
3812 
3813 			/* igb_link_check takes care of link status change */
3814 			link_changed = igb_link_check(igb);
3815 
3816 			/* Get new phy state */
3817 			igb_get_phy_state(igb);
3818 		}
3819 
3820 		result = DDI_INTR_CLAIMED;
3821 	} else {
3822 		/*
3823 		 * E1000_ICR_INT_ASSERTED bit was not set:
3824 		 * Don't claim this interrupt.
3825 		 */
3826 		result = DDI_INTR_UNCLAIMED;
3827 	}
3828 
3829 	mutex_exit(&igb->gen_lock);
3830 
3831 	/*
3832 	 * Do the following work outside of the gen_lock
3833 	 */
3834 	if (mp != NULL)
3835 		mac_rx(igb->mac_hdl, NULL, mp);
3836 
3837 	if (tx_reschedule)  {
3838 		tx_ring->reschedule = B_FALSE;
3839 		mac_tx_ring_update(igb->mac_hdl, tx_ring->ring_handle);
3840 		IGB_DEBUG_STAT(tx_ring->stat_reschedule);
3841 	}
3842 
3843 	if (link_changed)
3844 		mac_link_update(igb->mac_hdl, igb->link_state);
3845 
3846 	return (result);
3847 }
3848 
3849 /*
3850  * igb_intr_msi - Interrupt handler for MSI
3851  */
3852 static uint_t
3853 igb_intr_msi(void *arg1, void *arg2)
3854 {
3855 	igb_t *igb = (igb_t *)arg1;
3856 	uint32_t icr;
3857 
3858 	_NOTE(ARGUNUSED(arg2));
3859 
3860 	icr = E1000_READ_REG(&igb->hw, E1000_ICR);
3861 
3862 	/* Make sure all interrupt causes cleared */
3863 	(void) E1000_READ_REG(&igb->hw, E1000_EICR);
3864 
3865 	/*
3866 	 * For MSI interrupt, we have only one vector,
3867 	 * so we have only one rx ring and one tx ring enabled.
3868 	 */
3869 	ASSERT(igb->num_rx_rings == 1);
3870 	ASSERT(igb->num_tx_rings == 1);
3871 
3872 	if (icr & E1000_ICR_RXT0) {
3873 		igb_intr_rx_work(&igb->rx_rings[0]);
3874 	}
3875 
3876 	if (icr & E1000_ICR_TXDW) {
3877 		igb_intr_tx_work(&igb->tx_rings[0]);
3878 	}
3879 
3880 	if (icr & E1000_ICR_LSC) {
3881 		igb_intr_link_work(igb);
3882 	}
3883 
3884 	return (DDI_INTR_CLAIMED);
3885 }
3886 
3887 /*
3888  * igb_intr_rx - Interrupt handler for rx
3889  */
3890 static uint_t
3891 igb_intr_rx(void *arg1, void *arg2)
3892 {
3893 	igb_rx_ring_t *rx_ring = (igb_rx_ring_t *)arg1;
3894 
3895 	_NOTE(ARGUNUSED(arg2));
3896 
3897 	/*
3898 	 * Only used via MSI-X vector so don't check cause bits
3899 	 * and only clean the given ring.
3900 	 */
3901 	igb_intr_rx_work(rx_ring);
3902 
3903 	return (DDI_INTR_CLAIMED);
3904 }
3905 
3906 /*
3907  * igb_intr_tx - Interrupt handler for tx
3908  */
3909 static uint_t
3910 igb_intr_tx(void *arg1, void *arg2)
3911 {
3912 	igb_tx_ring_t *tx_ring = (igb_tx_ring_t *)arg1;
3913 
3914 	_NOTE(ARGUNUSED(arg2));
3915 
3916 	/*
3917 	 * Only used via MSI-X vector so don't check cause bits
3918 	 * and only clean the given ring.
3919 	 */
3920 	igb_intr_tx_work(tx_ring);
3921 
3922 	return (DDI_INTR_CLAIMED);
3923 }
3924 
3925 /*
3926  * igb_intr_tx_other - Interrupt handler for both tx and other
3927  *
3928  */
3929 static uint_t
3930 igb_intr_tx_other(void *arg1, void *arg2)
3931 {
3932 	igb_t *igb = (igb_t *)arg1;
3933 	uint32_t icr;
3934 
3935 	_NOTE(ARGUNUSED(arg2));
3936 
3937 	icr = E1000_READ_REG(&igb->hw, E1000_ICR);
3938 
3939 	/*
3940 	 * Look for tx reclaiming work first. Remember, in the
3941 	 * case of only interrupt sharing, only one tx ring is
3942 	 * used
3943 	 */
3944 	igb_intr_tx_work(&igb->tx_rings[0]);
3945 
3946 	/*
3947 	 * Check for "other" causes.
3948 	 */
3949 	if (icr & E1000_ICR_LSC) {
3950 		igb_intr_link_work(igb);
3951 	}
3952 
3953 	/*
3954 	 * The DOUTSYNC bit indicates a tx packet dropped because
3955 	 * DMA engine gets "out of sync". There isn't a real fix
3956 	 * for this. The Intel recommendation is to count the number
3957 	 * of occurrences so user can detect when it is happening.
3958 	 * The issue is non-fatal and there's no recovery action
3959 	 * available.
3960 	 */
3961 	if (icr & E1000_ICR_DOUTSYNC) {
3962 		IGB_STAT(igb->dout_sync);
3963 	}
3964 
3965 	return (DDI_INTR_CLAIMED);
3966 }
3967 
3968 /*
3969  * igb_alloc_intrs - Allocate interrupts for the driver
3970  *
3971  * Normal sequence is to try MSI-X; if not sucessful, try MSI;
3972  * if not successful, try Legacy.
3973  * igb->intr_force can be used to force sequence to start with
3974  * any of the 3 types.
3975  * If MSI-X is not used, number of tx/rx rings is forced to 1.
3976  */
3977 static int
3978 igb_alloc_intrs(igb_t *igb)
3979 {
3980 	dev_info_t *devinfo;
3981 	int intr_types;
3982 	int rc;
3983 
3984 	devinfo = igb->dip;
3985 
3986 	/* Get supported interrupt types */
3987 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
3988 
3989 	if (rc != DDI_SUCCESS) {
3990 		igb_log(igb,
3991 		    "Get supported interrupt types failed: %d", rc);
3992 		return (IGB_FAILURE);
3993 	}
3994 	IGB_DEBUGLOG_1(igb, "Supported interrupt types: %x", intr_types);
3995 
3996 	igb->intr_type = 0;
3997 
3998 	/* Install MSI-X interrupts */
3999 	if ((intr_types & DDI_INTR_TYPE_MSIX) &&
4000 	    (igb->intr_force <= IGB_INTR_MSIX)) {
4001 		rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_MSIX);
4002 
4003 		if (rc == IGB_SUCCESS)
4004 			return (IGB_SUCCESS);
4005 
4006 		igb_log(igb,
4007 		    "Allocate MSI-X failed, trying MSI interrupts...");
4008 	}
4009 
4010 	/* MSI-X not used, force rings to 1 */
4011 	igb->num_rx_rings = 1;
4012 	igb->num_tx_rings = 1;
4013 	igb_log(igb,
4014 	    "MSI-X not used, force rx and tx queue number to 1");
4015 
4016 	/* Install MSI interrupts */
4017 	if ((intr_types & DDI_INTR_TYPE_MSI) &&
4018 	    (igb->intr_force <= IGB_INTR_MSI)) {
4019 		rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_MSI);
4020 
4021 		if (rc == IGB_SUCCESS)
4022 			return (IGB_SUCCESS);
4023 
4024 		igb_log(igb,
4025 		    "Allocate MSI failed, trying Legacy interrupts...");
4026 	}
4027 
4028 	/* Install legacy interrupts */
4029 	if (intr_types & DDI_INTR_TYPE_FIXED) {
4030 		rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_FIXED);
4031 
4032 		if (rc == IGB_SUCCESS)
4033 			return (IGB_SUCCESS);
4034 
4035 		igb_log(igb,
4036 		    "Allocate Legacy interrupts failed");
4037 	}
4038 
4039 	/* If none of the 3 types succeeded, return failure */
4040 	return (IGB_FAILURE);
4041 }
4042 
4043 /*
4044  * igb_alloc_intr_handles - Allocate interrupt handles.
4045  *
4046  * For legacy and MSI, only 1 handle is needed.  For MSI-X,
4047  * if fewer than 2 handles are available, return failure.
4048  * Upon success, this sets the number of Rx rings to a number that
4049  * matches the handles available for Rx interrupts.
4050  */
4051 static int
4052 igb_alloc_intr_handles(igb_t *igb, int intr_type)
4053 {
4054 	dev_info_t *devinfo;
4055 	int orig, request, count, avail, actual;
4056 	int diff, minimum;
4057 	int rc;
4058 
4059 	devinfo = igb->dip;
4060 
4061 	switch (intr_type) {
4062 	case DDI_INTR_TYPE_FIXED:
4063 		request = 1;	/* Request 1 legacy interrupt handle */
4064 		minimum = 1;
4065 		IGB_DEBUGLOG_0(igb, "interrupt type: legacy");
4066 		break;
4067 
4068 	case DDI_INTR_TYPE_MSI:
4069 		request = 1;	/* Request 1 MSI interrupt handle */
4070 		minimum = 1;
4071 		IGB_DEBUGLOG_0(igb, "interrupt type: MSI");
4072 		break;
4073 
4074 	case DDI_INTR_TYPE_MSIX:
4075 		/*
4076 		 * Number of vectors for the adapter is
4077 		 * # rx rings + # tx rings
4078 		 * One of tx vectors is for tx & other
4079 		 */
4080 		request = igb->num_rx_rings + igb->num_tx_rings;
4081 		orig = request;
4082 		minimum = 2;
4083 		IGB_DEBUGLOG_0(igb, "interrupt type: MSI-X");
4084 		break;
4085 
4086 	default:
4087 		igb_log(igb,
4088 		    "invalid call to igb_alloc_intr_handles(): %d\n",
4089 		    intr_type);
4090 		return (IGB_FAILURE);
4091 	}
4092 	IGB_DEBUGLOG_2(igb, "interrupt handles requested: %d  minimum: %d",
4093 	    request, minimum);
4094 
4095 	/*
4096 	 * Get number of supported interrupts
4097 	 */
4098 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
4099 	if ((rc != DDI_SUCCESS) || (count < minimum)) {
4100 		igb_log(igb,
4101 		    "Get supported interrupt number failed. "
4102 		    "Return: %d, count: %d", rc, count);
4103 		return (IGB_FAILURE);
4104 	}
4105 	IGB_DEBUGLOG_1(igb, "interrupts supported: %d", count);
4106 
4107 	/*
4108 	 * Get number of available interrupts
4109 	 */
4110 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
4111 	if ((rc != DDI_SUCCESS) || (avail < minimum)) {
4112 		igb_log(igb,
4113 		    "Get available interrupt number failed. "
4114 		    "Return: %d, available: %d", rc, avail);
4115 		return (IGB_FAILURE);
4116 	}
4117 	IGB_DEBUGLOG_1(igb, "interrupts available: %d", avail);
4118 
4119 	if (avail < request) {
4120 		igb_log(igb, "Request %d handles, %d available",
4121 		    request, avail);
4122 		request = avail;
4123 	}
4124 
4125 	actual = 0;
4126 	igb->intr_cnt = 0;
4127 
4128 	/*
4129 	 * Allocate an array of interrupt handles
4130 	 */
4131 	igb->intr_size = request * sizeof (ddi_intr_handle_t);
4132 	igb->htable = kmem_alloc(igb->intr_size, KM_SLEEP);
4133 
4134 	rc = ddi_intr_alloc(devinfo, igb->htable, intr_type, 0,
4135 	    request, &actual, DDI_INTR_ALLOC_NORMAL);
4136 	if (rc != DDI_SUCCESS) {
4137 		igb_log(igb, "Allocate interrupts failed. "
4138 		    "return: %d, request: %d, actual: %d",
4139 		    rc, request, actual);
4140 		goto alloc_handle_fail;
4141 	}
4142 	IGB_DEBUGLOG_1(igb, "interrupts actually allocated: %d", actual);
4143 
4144 	igb->intr_cnt = actual;
4145 
4146 	if (actual < minimum) {
4147 		igb_log(igb, "Insufficient interrupt handles allocated: %d",
4148 		    actual);
4149 		goto alloc_handle_fail;
4150 	}
4151 
4152 	/*
4153 	 * For MSI-X, actual might force us to reduce number of tx & rx rings
4154 	 */
4155 	if ((intr_type == DDI_INTR_TYPE_MSIX) && (orig > actual)) {
4156 		diff = orig - actual;
4157 		if (diff < igb->num_tx_rings) {
4158 			igb_log(igb,
4159 			    "MSI-X vectors force Tx queue number to %d",
4160 			    igb->num_tx_rings - diff);
4161 			igb->num_tx_rings -= diff;
4162 		} else {
4163 			igb_log(igb,
4164 			    "MSI-X vectors force Tx queue number to 1");
4165 			igb->num_tx_rings = 1;
4166 
4167 			igb_log(igb,
4168 			    "MSI-X vectors force Rx queue number to %d",
4169 			    actual - 1);
4170 			igb->num_rx_rings = actual - 1;
4171 		}
4172 	}
4173 
4174 	/*
4175 	 * Get priority for first vector, assume remaining are all the same
4176 	 */
4177 	rc = ddi_intr_get_pri(igb->htable[0], &igb->intr_pri);
4178 	if (rc != DDI_SUCCESS) {
4179 		igb_log(igb,
4180 		    "Get interrupt priority failed: %d", rc);
4181 		goto alloc_handle_fail;
4182 	}
4183 
4184 	rc = ddi_intr_get_cap(igb->htable[0], &igb->intr_cap);
4185 	if (rc != DDI_SUCCESS) {
4186 		igb_log(igb,
4187 		    "Get interrupt cap failed: %d", rc);
4188 		goto alloc_handle_fail;
4189 	}
4190 
4191 	igb->intr_type = intr_type;
4192 
4193 	return (IGB_SUCCESS);
4194 
4195 alloc_handle_fail:
4196 	igb_rem_intrs(igb);
4197 
4198 	return (IGB_FAILURE);
4199 }
4200 
4201 /*
4202  * igb_add_intr_handlers - Add interrupt handlers based on the interrupt type
4203  *
4204  * Before adding the interrupt handlers, the interrupt vectors have
4205  * been allocated, and the rx/tx rings have also been allocated.
4206  */
4207 static int
4208 igb_add_intr_handlers(igb_t *igb)
4209 {
4210 	igb_rx_ring_t *rx_ring;
4211 	igb_tx_ring_t *tx_ring;
4212 	int vector;
4213 	int rc;
4214 	int i;
4215 
4216 	vector = 0;
4217 
4218 	switch (igb->intr_type) {
4219 	case DDI_INTR_TYPE_MSIX:
4220 		/* Add interrupt handler for tx + other */
4221 		tx_ring = &igb->tx_rings[0];
4222 		rc = ddi_intr_add_handler(igb->htable[vector],
4223 		    (ddi_intr_handler_t *)igb_intr_tx_other,
4224 		    (void *)igb, NULL);
4225 
4226 		if (rc != DDI_SUCCESS) {
4227 			igb_log(igb,
4228 			    "Add tx/other interrupt handler failed: %d", rc);
4229 			return (IGB_FAILURE);
4230 		}
4231 		tx_ring->intr_vector = vector;
4232 		vector++;
4233 
4234 		/* Add interrupt handler for each rx ring */
4235 		for (i = 0; i < igb->num_rx_rings; i++) {
4236 			rx_ring = &igb->rx_rings[i];
4237 
4238 			rc = ddi_intr_add_handler(igb->htable[vector],
4239 			    (ddi_intr_handler_t *)igb_intr_rx,
4240 			    (void *)rx_ring, NULL);
4241 
4242 			if (rc != DDI_SUCCESS) {
4243 				igb_log(igb,
4244 				    "Add rx interrupt handler failed. "
4245 				    "return: %d, rx ring: %d", rc, i);
4246 				for (vector--; vector >= 0; vector--) {
4247 					(void) ddi_intr_remove_handler(
4248 					    igb->htable[vector]);
4249 				}
4250 				return (IGB_FAILURE);
4251 			}
4252 
4253 			rx_ring->intr_vector = vector;
4254 
4255 			vector++;
4256 		}
4257 
4258 		/* Add interrupt handler for each tx ring from 2nd ring */
4259 		for (i = 1; i < igb->num_tx_rings; i++) {
4260 			tx_ring = &igb->tx_rings[i];
4261 
4262 			rc = ddi_intr_add_handler(igb->htable[vector],
4263 			    (ddi_intr_handler_t *)igb_intr_tx,
4264 			    (void *)tx_ring, NULL);
4265 
4266 			if (rc != DDI_SUCCESS) {
4267 				igb_log(igb,
4268 				    "Add tx interrupt handler failed. "
4269 				    "return: %d, tx ring: %d", rc, i);
4270 				for (vector--; vector >= 0; vector--) {
4271 					(void) ddi_intr_remove_handler(
4272 					    igb->htable[vector]);
4273 				}
4274 				return (IGB_FAILURE);
4275 			}
4276 
4277 			tx_ring->intr_vector = vector;
4278 
4279 			vector++;
4280 		}
4281 
4282 		break;
4283 
4284 	case DDI_INTR_TYPE_MSI:
4285 		/* Add interrupt handlers for the only vector */
4286 		rc = ddi_intr_add_handler(igb->htable[vector],
4287 		    (ddi_intr_handler_t *)igb_intr_msi,
4288 		    (void *)igb, NULL);
4289 
4290 		if (rc != DDI_SUCCESS) {
4291 			igb_log(igb,
4292 			    "Add MSI interrupt handler failed: %d", rc);
4293 			return (IGB_FAILURE);
4294 		}
4295 
4296 		rx_ring = &igb->rx_rings[0];
4297 		rx_ring->intr_vector = vector;
4298 
4299 		vector++;
4300 		break;
4301 
4302 	case DDI_INTR_TYPE_FIXED:
4303 		/* Add interrupt handlers for the only vector */
4304 		rc = ddi_intr_add_handler(igb->htable[vector],
4305 		    (ddi_intr_handler_t *)igb_intr_legacy,
4306 		    (void *)igb, NULL);
4307 
4308 		if (rc != DDI_SUCCESS) {
4309 			igb_log(igb,
4310 			    "Add legacy interrupt handler failed: %d", rc);
4311 			return (IGB_FAILURE);
4312 		}
4313 
4314 		rx_ring = &igb->rx_rings[0];
4315 		rx_ring->intr_vector = vector;
4316 
4317 		vector++;
4318 		break;
4319 
4320 	default:
4321 		return (IGB_FAILURE);
4322 	}
4323 
4324 	ASSERT(vector == igb->intr_cnt);
4325 
4326 	return (IGB_SUCCESS);
4327 }
4328 
4329 /*
4330  * igb_setup_msix_82575 - setup 82575 adapter to use MSI-X interrupts
4331  *
4332  * For each vector enabled on the adapter, Set the MSIXBM register accordingly
4333  */
4334 static void
4335 igb_setup_msix_82575(igb_t *igb)
4336 {
4337 	uint32_t eims = 0;
4338 	int i, vector;
4339 	struct e1000_hw *hw = &igb->hw;
4340 
4341 	/*
4342 	 * Set vector for tx ring 0 and other causes.
4343 	 * NOTE assumption that it is vector 0.
4344 	 */
4345 	vector = 0;
4346 
4347 	igb->eims_mask = E1000_EICR_TX_QUEUE0 | E1000_EICR_OTHER;
4348 	E1000_WRITE_REG(hw, E1000_MSIXBM(vector), igb->eims_mask);
4349 	vector++;
4350 
4351 	for (i = 0; i < igb->num_rx_rings; i++) {
4352 		/*
4353 		 * Set vector for each rx ring
4354 		 */
4355 		eims = (E1000_EICR_RX_QUEUE0 << i);
4356 		E1000_WRITE_REG(hw, E1000_MSIXBM(vector), eims);
4357 
4358 		/*
4359 		 * Accumulate bits to enable in
4360 		 * igb_enable_adapter_interrupts_82575()
4361 		 */
4362 		igb->eims_mask |= eims;
4363 
4364 		vector++;
4365 	}
4366 
4367 	for (i = 1; i < igb->num_tx_rings; i++) {
4368 		/*
4369 		 * Set vector for each tx ring from 2nd tx ring
4370 		 */
4371 		eims = (E1000_EICR_TX_QUEUE0 << i);
4372 		E1000_WRITE_REG(hw, E1000_MSIXBM(vector), eims);
4373 
4374 		/*
4375 		 * Accumulate bits to enable in
4376 		 * igb_enable_adapter_interrupts_82575()
4377 		 */
4378 		igb->eims_mask |= eims;
4379 
4380 		vector++;
4381 	}
4382 
4383 	ASSERT(vector == igb->intr_cnt);
4384 
4385 	/*
4386 	 * Disable IAM for ICR interrupt bits
4387 	 */
4388 	E1000_WRITE_REG(hw, E1000_IAM, 0);
4389 	E1000_WRITE_FLUSH(hw);
4390 }
4391 
4392 /*
4393  * igb_setup_msix_82576 - setup 82576 adapter to use MSI-X interrupts
4394  *
4395  * 82576 uses a table based method for assigning vectors.  Each queue has a
4396  * single entry in the table to which we write a vector number along with a
4397  * "valid" bit.  The entry is a single byte in a 4-byte register.  Vectors
4398  * take a different position in the 4-byte register depending on whether
4399  * they are numbered above or below 8.
4400  */
4401 static void
4402 igb_setup_msix_82576(igb_t *igb)
4403 {
4404 	struct e1000_hw *hw = &igb->hw;
4405 	uint32_t ivar, index, vector;
4406 	int i;
4407 
4408 	/* must enable msi-x capability before IVAR settings */
4409 	E1000_WRITE_REG(hw, E1000_GPIE,
4410 	    (E1000_GPIE_MSIX_MODE | E1000_GPIE_PBA | E1000_GPIE_NSICR));
4411 
4412 	/*
4413 	 * Set vector for tx ring 0 and other causes.
4414 	 * NOTE assumption that it is vector 0.
4415 	 * This is also interdependent with installation of interrupt service
4416 	 * routines in igb_add_intr_handlers().
4417 	 */
4418 
4419 	/* assign "other" causes to vector 0 */
4420 	vector = 0;
4421 	ivar = ((vector | E1000_IVAR_VALID) << 8);
4422 	E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
4423 
4424 	/* assign tx ring 0 to vector 0 */
4425 	ivar = ((vector | E1000_IVAR_VALID) << 8);
4426 	E1000_WRITE_REG(hw, E1000_IVAR0, ivar);
4427 
4428 	/* prepare to enable tx & other interrupt causes */
4429 	igb->eims_mask = (1 << vector);
4430 
4431 	vector ++;
4432 	for (i = 0; i < igb->num_rx_rings; i++) {
4433 		/*
4434 		 * Set vector for each rx ring
4435 		 */
4436 		index = (i & 0x7);
4437 		ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4438 
4439 		if (i < 8) {
4440 			/* vector goes into low byte of register */
4441 			ivar = ivar & 0xFFFFFF00;
4442 			ivar |= (vector | E1000_IVAR_VALID);
4443 		} else {
4444 			/* vector goes into third byte of register */
4445 			ivar = ivar & 0xFF00FFFF;
4446 			ivar |= ((vector | E1000_IVAR_VALID) << 16);
4447 		}
4448 		E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4449 
4450 		/* Accumulate interrupt-cause bits to enable */
4451 		igb->eims_mask |= (1 << vector);
4452 
4453 		vector ++;
4454 	}
4455 
4456 	for (i = 1; i < igb->num_tx_rings; i++) {
4457 		/*
4458 		 * Set vector for each tx ring from 2nd tx ring.
4459 		 * Note assumption that tx vectors numericall follow rx vectors.
4460 		 */
4461 		index = (i & 0x7);
4462 		ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4463 
4464 		if (i < 8) {
4465 			/* vector goes into second byte of register */
4466 			ivar = ivar & 0xFFFF00FF;
4467 			ivar |= ((vector | E1000_IVAR_VALID) << 8);
4468 		} else {
4469 			/* vector goes into fourth byte of register */
4470 			ivar = ivar & 0x00FFFFFF;
4471 			ivar |= (vector | E1000_IVAR_VALID) << 24;
4472 		}
4473 		E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4474 
4475 		/* Accumulate interrupt-cause bits to enable */
4476 		igb->eims_mask |= (1 << vector);
4477 
4478 		vector ++;
4479 	}
4480 
4481 	ASSERT(vector == igb->intr_cnt);
4482 }
4483 
4484 /*
4485  * igb_rem_intr_handlers - remove the interrupt handlers
4486  */
4487 static void
4488 igb_rem_intr_handlers(igb_t *igb)
4489 {
4490 	int i;
4491 	int rc;
4492 
4493 	for (i = 0; i < igb->intr_cnt; i++) {
4494 		rc = ddi_intr_remove_handler(igb->htable[i]);
4495 		if (rc != DDI_SUCCESS) {
4496 			IGB_DEBUGLOG_1(igb,
4497 			    "Remove intr handler failed: %d", rc);
4498 		}
4499 	}
4500 }
4501 
4502 /*
4503  * igb_rem_intrs - remove the allocated interrupts
4504  */
4505 static void
4506 igb_rem_intrs(igb_t *igb)
4507 {
4508 	int i;
4509 	int rc;
4510 
4511 	for (i = 0; i < igb->intr_cnt; i++) {
4512 		rc = ddi_intr_free(igb->htable[i]);
4513 		if (rc != DDI_SUCCESS) {
4514 			IGB_DEBUGLOG_1(igb,
4515 			    "Free intr failed: %d", rc);
4516 		}
4517 	}
4518 
4519 	kmem_free(igb->htable, igb->intr_size);
4520 	igb->htable = NULL;
4521 }
4522 
4523 /*
4524  * igb_enable_intrs - enable all the ddi interrupts
4525  */
4526 static int
4527 igb_enable_intrs(igb_t *igb)
4528 {
4529 	int i;
4530 	int rc;
4531 
4532 	/* Enable interrupts */
4533 	if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) {
4534 		/* Call ddi_intr_block_enable() for MSI */
4535 		rc = ddi_intr_block_enable(igb->htable, igb->intr_cnt);
4536 		if (rc != DDI_SUCCESS) {
4537 			igb_log(igb,
4538 			    "Enable block intr failed: %d", rc);
4539 			return (IGB_FAILURE);
4540 		}
4541 	} else {
4542 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
4543 		for (i = 0; i < igb->intr_cnt; i++) {
4544 			rc = ddi_intr_enable(igb->htable[i]);
4545 			if (rc != DDI_SUCCESS) {
4546 				igb_log(igb,
4547 				    "Enable intr failed: %d", rc);
4548 				return (IGB_FAILURE);
4549 			}
4550 		}
4551 	}
4552 
4553 	return (IGB_SUCCESS);
4554 }
4555 
4556 /*
4557  * igb_disable_intrs - disable all the ddi interrupts
4558  */
4559 static int
4560 igb_disable_intrs(igb_t *igb)
4561 {
4562 	int i;
4563 	int rc;
4564 
4565 	/* Disable all interrupts */
4566 	if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) {
4567 		rc = ddi_intr_block_disable(igb->htable, igb->intr_cnt);
4568 		if (rc != DDI_SUCCESS) {
4569 			igb_log(igb,
4570 			    "Disable block intr failed: %d", rc);
4571 			return (IGB_FAILURE);
4572 		}
4573 	} else {
4574 		for (i = 0; i < igb->intr_cnt; i++) {
4575 			rc = ddi_intr_disable(igb->htable[i]);
4576 			if (rc != DDI_SUCCESS) {
4577 				igb_log(igb,
4578 				    "Disable intr failed: %d", rc);
4579 				return (IGB_FAILURE);
4580 			}
4581 		}
4582 	}
4583 
4584 	return (IGB_SUCCESS);
4585 }
4586 
4587 /*
4588  * igb_get_phy_state - Get and save the parameters read from PHY registers
4589  */
4590 static void
4591 igb_get_phy_state(igb_t *igb)
4592 {
4593 	struct e1000_hw *hw = &igb->hw;
4594 	uint16_t phy_ctrl;
4595 	uint16_t phy_status;
4596 	uint16_t phy_an_adv;
4597 	uint16_t phy_an_exp;
4598 	uint16_t phy_ext_status;
4599 	uint16_t phy_1000t_ctrl;
4600 	uint16_t phy_1000t_status;
4601 	uint16_t phy_lp_able;
4602 
4603 	ASSERT(mutex_owned(&igb->gen_lock));
4604 
4605 	(void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
4606 	(void) e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
4607 	(void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_an_adv);
4608 	(void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_an_exp);
4609 	(void) e1000_read_phy_reg(hw, PHY_EXT_STATUS, &phy_ext_status);
4610 	(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_1000t_ctrl);
4611 	(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_1000t_status);
4612 	(void) e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_lp_able);
4613 
4614 	igb->param_autoneg_cap =
4615 	    (phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
4616 	igb->param_pause_cap =
4617 	    (phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
4618 	igb->param_asym_pause_cap =
4619 	    (phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
4620 	igb->param_1000fdx_cap = ((phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4621 	    (phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
4622 	igb->param_1000hdx_cap = ((phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
4623 	    (phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
4624 	igb->param_100t4_cap =
4625 	    (phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
4626 	igb->param_100fdx_cap = ((phy_status & MII_SR_100X_FD_CAPS) ||
4627 	    (phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
4628 	igb->param_100hdx_cap = ((phy_status & MII_SR_100X_HD_CAPS) ||
4629 	    (phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
4630 	igb->param_10fdx_cap =
4631 	    (phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
4632 	igb->param_10hdx_cap =
4633 	    (phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
4634 	igb->param_rem_fault =
4635 	    (phy_status & MII_SR_REMOTE_FAULT) ? 1 : 0;
4636 
4637 	igb->param_adv_autoneg_cap = hw->mac.autoneg;
4638 	igb->param_adv_pause_cap =
4639 	    (phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
4640 	igb->param_adv_asym_pause_cap =
4641 	    (phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
4642 	igb->param_adv_1000hdx_cap =
4643 	    (phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
4644 	igb->param_adv_100t4_cap =
4645 	    (phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
4646 	igb->param_adv_rem_fault =
4647 	    (phy_an_adv & NWAY_AR_REMOTE_FAULT) ? 1 : 0;
4648 	if (igb->param_adv_autoneg_cap == 1) {
4649 		igb->param_adv_1000fdx_cap =
4650 		    (phy_1000t_ctrl & CR_1000T_FD_CAPS) ? 1 : 0;
4651 		igb->param_adv_100fdx_cap =
4652 		    (phy_an_adv & NWAY_AR_100TX_FD_CAPS) ? 1 : 0;
4653 		igb->param_adv_100hdx_cap =
4654 		    (phy_an_adv & NWAY_AR_100TX_HD_CAPS) ? 1 : 0;
4655 		igb->param_adv_10fdx_cap =
4656 		    (phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
4657 		igb->param_adv_10hdx_cap =
4658 		    (phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
4659 	}
4660 
4661 	igb->param_lp_autoneg_cap =
4662 	    (phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
4663 	igb->param_lp_pause_cap =
4664 	    (phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
4665 	igb->param_lp_asym_pause_cap =
4666 	    (phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
4667 	igb->param_lp_1000fdx_cap =
4668 	    (phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
4669 	igb->param_lp_1000hdx_cap =
4670 	    (phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
4671 	igb->param_lp_100t4_cap =
4672 	    (phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
4673 	igb->param_lp_100fdx_cap =
4674 	    (phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
4675 	igb->param_lp_100hdx_cap =
4676 	    (phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
4677 	igb->param_lp_10fdx_cap =
4678 	    (phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
4679 	igb->param_lp_10hdx_cap =
4680 	    (phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
4681 	igb->param_lp_rem_fault =
4682 	    (phy_lp_able & NWAY_LPAR_REMOTE_FAULT) ? 1 : 0;
4683 }
4684 
4685 /*
4686  * igb_get_driver_control
4687  */
4688 static void
4689 igb_get_driver_control(struct e1000_hw *hw)
4690 {
4691 	uint32_t ctrl_ext;
4692 
4693 	/* Notify firmware that driver is in control of device */
4694 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
4695 	ctrl_ext |= E1000_CTRL_EXT_DRV_LOAD;
4696 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
4697 }
4698 
4699 /*
4700  * igb_release_driver_control
4701  */
4702 static void
4703 igb_release_driver_control(struct e1000_hw *hw)
4704 {
4705 	uint32_t ctrl_ext;
4706 
4707 	/* Notify firmware that driver is no longer in control of device */
4708 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
4709 	ctrl_ext &= ~E1000_CTRL_EXT_DRV_LOAD;
4710 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
4711 }
4712 
4713 /*
4714  * igb_atomic_reserve - Atomic decrease operation
4715  */
4716 int
4717 igb_atomic_reserve(uint32_t *count_p, uint32_t n)
4718 {
4719 	uint32_t oldval;
4720 	uint32_t newval;
4721 
4722 	/* ATOMICALLY */
4723 	do {
4724 		oldval = *count_p;
4725 		if (oldval < n)
4726 			return (-1);
4727 		newval = oldval - n;
4728 	} while (atomic_cas_32(count_p, oldval, newval) != oldval);
4729 
4730 	return (newval);
4731 }
4732 
4733 /*
4734  * FMA support
4735  */
4736 
4737 int
4738 igb_check_acc_handle(ddi_acc_handle_t handle)
4739 {
4740 	ddi_fm_error_t de;
4741 
4742 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
4743 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
4744 	return (de.fme_status);
4745 }
4746 
4747 int
4748 igb_check_dma_handle(ddi_dma_handle_t handle)
4749 {
4750 	ddi_fm_error_t de;
4751 
4752 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
4753 	return (de.fme_status);
4754 }
4755 
4756 /*
4757  * The IO fault service error handling callback function
4758  */
4759 /*ARGSUSED*/
4760 static int
4761 igb_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
4762 {
4763 	/*
4764 	 * as the driver can always deal with an error in any dma or
4765 	 * access handle, we can just return the fme_status value.
4766 	 */
4767 	pci_ereport_post(dip, err, NULL);
4768 	return (err->fme_status);
4769 }
4770 
4771 static void
4772 igb_fm_init(igb_t *igb)
4773 {
4774 	ddi_iblock_cookie_t iblk;
4775 	int fma_acc_flag, fma_dma_flag;
4776 
4777 	/* Only register with IO Fault Services if we have some capability */
4778 	if (igb->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
4779 		igb_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
4780 		fma_acc_flag = 1;
4781 	} else {
4782 		igb_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
4783 		fma_acc_flag = 0;
4784 	}
4785 
4786 	if (igb->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
4787 		fma_dma_flag = 1;
4788 	} else {
4789 		fma_dma_flag = 0;
4790 	}
4791 
4792 	(void) igb_set_fma_flags(fma_acc_flag, fma_dma_flag);
4793 
4794 	if (igb->fm_capabilities) {
4795 
4796 		/* Register capabilities with IO Fault Services */
4797 		ddi_fm_init(igb->dip, &igb->fm_capabilities, &iblk);
4798 
4799 		/*
4800 		 * Initialize pci ereport capabilities if ereport capable
4801 		 */
4802 		if (DDI_FM_EREPORT_CAP(igb->fm_capabilities) ||
4803 		    DDI_FM_ERRCB_CAP(igb->fm_capabilities))
4804 			pci_ereport_setup(igb->dip);
4805 
4806 		/*
4807 		 * Register error callback if error callback capable
4808 		 */
4809 		if (DDI_FM_ERRCB_CAP(igb->fm_capabilities))
4810 			ddi_fm_handler_register(igb->dip,
4811 			    igb_fm_error_cb, (void*) igb);
4812 	}
4813 }
4814 
4815 static void
4816 igb_fm_fini(igb_t *igb)
4817 {
4818 	/* Only unregister FMA capabilities if we registered some */
4819 	if (igb->fm_capabilities) {
4820 
4821 		/*
4822 		 * Release any resources allocated by pci_ereport_setup()
4823 		 */
4824 		if (DDI_FM_EREPORT_CAP(igb->fm_capabilities) ||
4825 		    DDI_FM_ERRCB_CAP(igb->fm_capabilities))
4826 			pci_ereport_teardown(igb->dip);
4827 
4828 		/*
4829 		 * Un-register error callback if error callback capable
4830 		 */
4831 		if (DDI_FM_ERRCB_CAP(igb->fm_capabilities))
4832 			ddi_fm_handler_unregister(igb->dip);
4833 
4834 		/* Unregister from IO Fault Services */
4835 		ddi_fm_fini(igb->dip);
4836 	}
4837 }
4838 
4839 void
4840 igb_fm_ereport(igb_t *igb, char *detail)
4841 {
4842 	uint64_t ena;
4843 	char buf[FM_MAX_CLASS];
4844 
4845 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
4846 	ena = fm_ena_generate(0, FM_ENA_FMT1);
4847 	if (DDI_FM_EREPORT_CAP(igb->fm_capabilities)) {
4848 		ddi_fm_ereport_post(igb->dip, buf, ena, DDI_NOSLEEP,
4849 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
4850 	}
4851 }
4852