xref: /titanic_51/usr/src/uts/common/io/igb/igb_gld.c (revision c2785286330b58810071fc24f6ca69f401682dff)
1 /*
2  * CDDL HEADER START
3  *
4  * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at:
10  *	http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When using or redistributing this file, you may do so under the
15  * License only. No other modification of this header is permitted.
16  *
17  * If applicable, add the following below this CDDL HEADER, with the
18  * fields enclosed by brackets "[]" replaced with your own identifying
19  * information: Portions Copyright [yyyy] [name of copyright owner]
20  *
21  * CDDL HEADER END
22  */
23 
24 /*
25  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
26  * Use is subject to license terms of the CDDL.
27  */
28 
29 #pragma ident	"%Z%%M%	%I%	%E% SMI"
30 
31 #include "igb_sw.h"
32 
33 int
34 igb_m_stat(void *arg, uint_t stat, uint64_t *val)
35 {
36 	igb_t *igb = (igb_t *)arg;
37 	struct e1000_hw *hw = &igb->hw;
38 	igb_stat_t *igb_ks;
39 	uint32_t low_val, high_val;
40 
41 	igb_ks = (igb_stat_t *)igb->igb_ks->ks_data;
42 
43 	mutex_enter(&igb->gen_lock);
44 
45 	if (igb->igb_state & IGB_SUSPENDED) {
46 		mutex_exit(&igb->gen_lock);
47 		return (ECANCELED);
48 	}
49 
50 	switch (stat) {
51 	case MAC_STAT_IFSPEED:
52 		*val = igb->link_speed * 1000000ull;
53 		break;
54 
55 	case MAC_STAT_MULTIRCV:
56 		igb_ks->mprc.value.ui64 +=
57 		    E1000_READ_REG(hw, E1000_MPRC);
58 		*val = igb_ks->mprc.value.ui64;
59 		break;
60 
61 	case MAC_STAT_BRDCSTRCV:
62 		igb_ks->bprc.value.ui64 +=
63 		    E1000_READ_REG(hw, E1000_BPRC);
64 		*val = igb_ks->bprc.value.ui64;
65 		break;
66 
67 	case MAC_STAT_MULTIXMT:
68 		igb_ks->mptc.value.ui64 +=
69 		    E1000_READ_REG(hw, E1000_MPTC);
70 		*val = igb_ks->mptc.value.ui64;
71 		break;
72 
73 	case MAC_STAT_BRDCSTXMT:
74 		igb_ks->bptc.value.ui64 +=
75 		    E1000_READ_REG(hw, E1000_BPTC);
76 		*val = igb_ks->bptc.value.ui64;
77 		break;
78 
79 	case MAC_STAT_NORCVBUF:
80 		igb_ks->rnbc.value.ui64 +=
81 		    E1000_READ_REG(hw, E1000_RNBC);
82 		*val = igb_ks->rnbc.value.ui64;
83 		break;
84 
85 	case MAC_STAT_IERRORS:
86 		igb_ks->rxerrc.value.ui64 +=
87 		    E1000_READ_REG(hw, E1000_RXERRC);
88 		igb_ks->algnerrc.value.ui64 +=
89 		    E1000_READ_REG(hw, E1000_ALGNERRC);
90 		igb_ks->rlec.value.ui64 +=
91 		    E1000_READ_REG(hw, E1000_RLEC);
92 		igb_ks->crcerrs.value.ui64 +=
93 		    E1000_READ_REG(hw, E1000_CRCERRS);
94 		igb_ks->cexterr.value.ui64 +=
95 		    E1000_READ_REG(hw, E1000_CEXTERR);
96 		*val = igb_ks->rxerrc.value.ui64 +
97 		    igb_ks->algnerrc.value.ui64 +
98 		    igb_ks->rlec.value.ui64 +
99 		    igb_ks->crcerrs.value.ui64 +
100 		    igb_ks->cexterr.value.ui64;
101 		break;
102 
103 	case MAC_STAT_NOXMTBUF:
104 		*val = 0;
105 		break;
106 
107 	case MAC_STAT_OERRORS:
108 		igb_ks->ecol.value.ui64 +=
109 		    E1000_READ_REG(hw, E1000_ECOL);
110 		*val = igb_ks->ecol.value.ui64;
111 		break;
112 
113 	case MAC_STAT_COLLISIONS:
114 		igb_ks->colc.value.ui64 +=
115 		    E1000_READ_REG(hw, E1000_COLC);
116 		*val = igb_ks->colc.value.ui64;
117 		break;
118 
119 	case MAC_STAT_RBYTES:
120 		/*
121 		 * The 64-bit register will reset whenever the upper
122 		 * 32 bits are read. So we need to read the lower
123 		 * 32 bits first, then read the upper 32 bits.
124 		 */
125 		low_val = E1000_READ_REG(hw, E1000_TORL);
126 		high_val = E1000_READ_REG(hw, E1000_TORH);
127 		igb_ks->tor.value.ui64 +=
128 		    (uint64_t)high_val << 32 | (uint64_t)low_val;
129 		*val = igb_ks->tor.value.ui64;
130 		break;
131 
132 	case MAC_STAT_IPACKETS:
133 		igb_ks->tpr.value.ui64 +=
134 		    E1000_READ_REG(hw, E1000_TPR);
135 		*val = igb_ks->tpr.value.ui64;
136 		break;
137 
138 	case MAC_STAT_OBYTES:
139 		/*
140 		 * The 64-bit register will reset whenever the upper
141 		 * 32 bits are read. So we need to read the lower
142 		 * 32 bits first, then read the upper 32 bits.
143 		 */
144 		low_val = E1000_READ_REG(hw, E1000_TOTL);
145 		high_val = E1000_READ_REG(hw, E1000_TOTH);
146 		igb_ks->tot.value.ui64 +=
147 		    (uint64_t)high_val << 32 | (uint64_t)low_val;
148 		*val = igb_ks->tot.value.ui64;
149 		break;
150 
151 	case MAC_STAT_OPACKETS:
152 		igb_ks->tpt.value.ui64 +=
153 		    E1000_READ_REG(hw, E1000_TPT);
154 		*val = igb_ks->tpt.value.ui64;
155 		break;
156 
157 	/* RFC 1643 stats */
158 	case ETHER_STAT_ALIGN_ERRORS:
159 		igb_ks->algnerrc.value.ui64 +=
160 		    E1000_READ_REG(hw, E1000_ALGNERRC);
161 		*val = igb_ks->algnerrc.value.ui64;
162 		break;
163 
164 	case ETHER_STAT_FCS_ERRORS:
165 		igb_ks->crcerrs.value.ui64 +=
166 		    E1000_READ_REG(hw, E1000_CRCERRS);
167 		*val = igb_ks->crcerrs.value.ui64;
168 		break;
169 
170 	case ETHER_STAT_FIRST_COLLISIONS:
171 		igb_ks->scc.value.ui64 +=
172 		    E1000_READ_REG(hw, E1000_SCC);
173 		*val = igb_ks->scc.value.ui64;
174 		break;
175 
176 	case ETHER_STAT_MULTI_COLLISIONS:
177 		igb_ks->mcc.value.ui64 +=
178 		    E1000_READ_REG(hw, E1000_MCC);
179 		*val = igb_ks->mcc.value.ui64;
180 		break;
181 
182 	case ETHER_STAT_SQE_ERRORS:
183 		igb_ks->sec.value.ui64 +=
184 		    E1000_READ_REG(hw, E1000_SEC);
185 		*val = igb_ks->sec.value.ui64;
186 		break;
187 
188 	case ETHER_STAT_DEFER_XMTS:
189 		igb_ks->dc.value.ui64 +=
190 		    E1000_READ_REG(hw, E1000_DC);
191 		*val = igb_ks->dc.value.ui64;
192 		break;
193 
194 	case ETHER_STAT_TX_LATE_COLLISIONS:
195 		igb_ks->latecol.value.ui64 +=
196 		    E1000_READ_REG(hw, E1000_LATECOL);
197 		*val = igb_ks->latecol.value.ui64;
198 		break;
199 
200 	case ETHER_STAT_EX_COLLISIONS:
201 		igb_ks->ecol.value.ui64 +=
202 		    E1000_READ_REG(hw, E1000_ECOL);
203 		*val = igb_ks->ecol.value.ui64;
204 		break;
205 
206 	case ETHER_STAT_MACXMT_ERRORS:
207 		igb_ks->ecol.value.ui64 +=
208 		    E1000_READ_REG(hw, E1000_ECOL);
209 		*val = igb_ks->ecol.value.ui64;
210 		break;
211 
212 	case ETHER_STAT_CARRIER_ERRORS:
213 		igb_ks->cexterr.value.ui64 +=
214 		    E1000_READ_REG(hw, E1000_CEXTERR);
215 		*val = igb_ks->cexterr.value.ui64;
216 		break;
217 
218 	case ETHER_STAT_TOOLONG_ERRORS:
219 		igb_ks->roc.value.ui64 +=
220 		    E1000_READ_REG(hw, E1000_ROC);
221 		*val = igb_ks->roc.value.ui64;
222 		break;
223 
224 	case ETHER_STAT_MACRCV_ERRORS:
225 		igb_ks->rxerrc.value.ui64 +=
226 		    E1000_READ_REG(hw, E1000_RXERRC);
227 		*val = igb_ks->rxerrc.value.ui64;
228 		break;
229 
230 	/* MII/GMII stats */
231 	case ETHER_STAT_XCVR_ADDR:
232 		/* The Internal PHY's MDI address for each MAC is 1 */
233 		*val = 1;
234 		break;
235 
236 	case ETHER_STAT_XCVR_ID:
237 		*val = hw->phy.id | hw->phy.revision;
238 		break;
239 
240 	case ETHER_STAT_XCVR_INUSE:
241 		switch (igb->link_speed) {
242 		case SPEED_1000:
243 			*val =
244 			    (hw->phy.media_type == e1000_media_type_copper) ?
245 			    XCVR_1000T : XCVR_1000X;
246 			break;
247 		case SPEED_100:
248 			*val =
249 			    (hw->phy.media_type == e1000_media_type_copper) ?
250 			    (igb->param_100t4_cap == 1) ?
251 			    XCVR_100T4 : XCVR_100T2 : XCVR_100X;
252 			break;
253 		case SPEED_10:
254 			*val = XCVR_10;
255 			break;
256 		default:
257 			*val = XCVR_NONE;
258 			break;
259 		}
260 		break;
261 
262 	case ETHER_STAT_CAP_1000FDX:
263 		*val = igb->param_1000fdx_cap;
264 		break;
265 
266 	case ETHER_STAT_CAP_1000HDX:
267 		*val = igb->param_1000hdx_cap;
268 		break;
269 
270 	case ETHER_STAT_CAP_100FDX:
271 		*val = igb->param_100fdx_cap;
272 		break;
273 
274 	case ETHER_STAT_CAP_100HDX:
275 		*val = igb->param_100hdx_cap;
276 		break;
277 
278 	case ETHER_STAT_CAP_10FDX:
279 		*val = igb->param_10fdx_cap;
280 		break;
281 
282 	case ETHER_STAT_CAP_10HDX:
283 		*val = igb->param_10hdx_cap;
284 		break;
285 
286 	case ETHER_STAT_CAP_ASMPAUSE:
287 		*val = igb->param_asym_pause_cap;
288 		break;
289 
290 	case ETHER_STAT_CAP_PAUSE:
291 		*val = igb->param_pause_cap;
292 		break;
293 
294 	case ETHER_STAT_CAP_AUTONEG:
295 		*val = igb->param_autoneg_cap;
296 		break;
297 
298 	case ETHER_STAT_ADV_CAP_1000FDX:
299 		*val = igb->param_adv_1000fdx_cap;
300 		break;
301 
302 	case ETHER_STAT_ADV_CAP_1000HDX:
303 		*val = igb->param_adv_1000hdx_cap;
304 		break;
305 
306 	case ETHER_STAT_ADV_CAP_100FDX:
307 		*val = igb->param_adv_100fdx_cap;
308 		break;
309 
310 	case ETHER_STAT_ADV_CAP_100HDX:
311 		*val = igb->param_adv_100hdx_cap;
312 		break;
313 
314 	case ETHER_STAT_ADV_CAP_10FDX:
315 		*val = igb->param_adv_10fdx_cap;
316 		break;
317 
318 	case ETHER_STAT_ADV_CAP_10HDX:
319 		*val = igb->param_adv_10hdx_cap;
320 		break;
321 
322 	case ETHER_STAT_ADV_CAP_ASMPAUSE:
323 		*val = igb->param_adv_asym_pause_cap;
324 		break;
325 
326 	case ETHER_STAT_ADV_CAP_PAUSE:
327 		*val = igb->param_adv_pause_cap;
328 		break;
329 
330 	case ETHER_STAT_ADV_CAP_AUTONEG:
331 		*val = hw->mac.autoneg;
332 		break;
333 
334 	case ETHER_STAT_LP_CAP_1000FDX:
335 		*val = igb->param_lp_1000fdx_cap;
336 		break;
337 
338 	case ETHER_STAT_LP_CAP_1000HDX:
339 		*val = igb->param_lp_1000hdx_cap;
340 		break;
341 
342 	case ETHER_STAT_LP_CAP_100FDX:
343 		*val = igb->param_lp_100fdx_cap;
344 		break;
345 
346 	case ETHER_STAT_LP_CAP_100HDX:
347 		*val = igb->param_lp_100hdx_cap;
348 		break;
349 
350 	case ETHER_STAT_LP_CAP_10FDX:
351 		*val = igb->param_lp_10fdx_cap;
352 		break;
353 
354 	case ETHER_STAT_LP_CAP_10HDX:
355 		*val = igb->param_lp_10hdx_cap;
356 		break;
357 
358 	case ETHER_STAT_LP_CAP_ASMPAUSE:
359 		*val = igb->param_lp_asym_pause_cap;
360 		break;
361 
362 	case ETHER_STAT_LP_CAP_PAUSE:
363 		*val = igb->param_lp_pause_cap;
364 		break;
365 
366 	case ETHER_STAT_LP_CAP_AUTONEG:
367 		*val = igb->param_lp_autoneg_cap;
368 		break;
369 
370 	case ETHER_STAT_LINK_ASMPAUSE:
371 		*val = igb->param_asym_pause_cap;
372 		break;
373 
374 	case ETHER_STAT_LINK_PAUSE:
375 		*val = igb->param_pause_cap;
376 		break;
377 
378 	case ETHER_STAT_LINK_AUTONEG:
379 		*val = hw->mac.autoneg;
380 		break;
381 
382 	case ETHER_STAT_LINK_DUPLEX:
383 		*val = (igb->link_duplex == FULL_DUPLEX) ?
384 		    LINK_DUPLEX_FULL : LINK_DUPLEX_HALF;
385 		break;
386 
387 	case ETHER_STAT_TOOSHORT_ERRORS:
388 		igb_ks->ruc.value.ui64 +=
389 		    E1000_READ_REG(hw, E1000_RUC);
390 		*val = igb_ks->ruc.value.ui64;
391 		break;
392 
393 	case ETHER_STAT_CAP_REMFAULT:
394 		*val = igb->param_rem_fault;
395 		break;
396 
397 	case ETHER_STAT_ADV_REMFAULT:
398 		*val = igb->param_adv_rem_fault;
399 		break;
400 
401 	case ETHER_STAT_LP_REMFAULT:
402 		*val = igb->param_lp_rem_fault;
403 		break;
404 
405 	case ETHER_STAT_JABBER_ERRORS:
406 		igb_ks->rjc.value.ui64 +=
407 		    E1000_READ_REG(hw, E1000_RJC);
408 		*val = igb_ks->rjc.value.ui64;
409 		break;
410 
411 	case ETHER_STAT_CAP_100T4:
412 		*val = igb->param_100t4_cap;
413 		break;
414 
415 	case ETHER_STAT_ADV_CAP_100T4:
416 		*val = igb->param_adv_100t4_cap;
417 		break;
418 
419 	case ETHER_STAT_LP_CAP_100T4:
420 		*val = igb->param_lp_100t4_cap;
421 		break;
422 
423 	default:
424 		mutex_exit(&igb->gen_lock);
425 		return (ENOTSUP);
426 	}
427 
428 	mutex_exit(&igb->gen_lock);
429 
430 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
431 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_UNAFFECTED);
432 
433 	return (0);
434 }
435 
436 /*
437  * Bring the device out of the reset/quiesced state that it
438  * was in when the interface was registered.
439  */
440 int
441 igb_m_start(void *arg)
442 {
443 	igb_t *igb = (igb_t *)arg;
444 
445 	mutex_enter(&igb->gen_lock);
446 
447 	if (igb->igb_state & IGB_SUSPENDED) {
448 		mutex_exit(&igb->gen_lock);
449 		return (ECANCELED);
450 	}
451 
452 	if (igb_start(igb) != IGB_SUCCESS) {
453 		mutex_exit(&igb->gen_lock);
454 		return (EIO);
455 	}
456 
457 	igb->igb_state |= IGB_STARTED;
458 
459 	mutex_exit(&igb->gen_lock);
460 
461 	/*
462 	 * Enable and start the watchdog timer
463 	 */
464 	igb_enable_watchdog_timer(igb);
465 
466 	return (0);
467 }
468 
469 /*
470  * Stop the device and put it in a reset/quiesced state such
471  * that the interface can be unregistered.
472  */
473 void
474 igb_m_stop(void *arg)
475 {
476 	igb_t *igb = (igb_t *)arg;
477 
478 	mutex_enter(&igb->gen_lock);
479 
480 	if (igb->igb_state & IGB_SUSPENDED) {
481 		mutex_exit(&igb->gen_lock);
482 		return;
483 	}
484 
485 	igb->igb_state &= ~IGB_STARTED;
486 
487 	igb_stop(igb);
488 
489 	mutex_exit(&igb->gen_lock);
490 
491 	/*
492 	 * Disable and stop the watchdog timer
493 	 */
494 	igb_disable_watchdog_timer(igb);
495 }
496 
497 /*
498  * Set the promiscuity of the device.
499  */
500 int
501 igb_m_promisc(void *arg, boolean_t on)
502 {
503 	igb_t *igb = (igb_t *)arg;
504 	uint32_t reg_val;
505 
506 	mutex_enter(&igb->gen_lock);
507 
508 	if (igb->igb_state & IGB_SUSPENDED) {
509 		mutex_exit(&igb->gen_lock);
510 		return (ECANCELED);
511 	}
512 
513 	reg_val = E1000_READ_REG(&igb->hw, E1000_RCTL);
514 
515 	if (on)
516 		reg_val |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
517 	else
518 		reg_val &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
519 
520 	E1000_WRITE_REG(&igb->hw, E1000_RCTL, reg_val);
521 
522 	mutex_exit(&igb->gen_lock);
523 
524 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
525 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
526 		return (EIO);
527 	}
528 
529 	return (0);
530 }
531 
532 /*
533  * Add/remove the addresses to/from the set of multicast
534  * addresses for which the device will receive packets.
535  */
536 int
537 igb_m_multicst(void *arg, boolean_t add, const uint8_t *mcst_addr)
538 {
539 	igb_t *igb = (igb_t *)arg;
540 	int result;
541 
542 	mutex_enter(&igb->gen_lock);
543 
544 	if (igb->igb_state & IGB_SUSPENDED) {
545 		mutex_exit(&igb->gen_lock);
546 		return (ECANCELED);
547 	}
548 
549 	result = (add) ? igb_multicst_add(igb, mcst_addr)
550 	    : igb_multicst_remove(igb, mcst_addr);
551 
552 	mutex_exit(&igb->gen_lock);
553 
554 	return (result);
555 }
556 
557 /*
558  * Set a new device unicast address.
559  */
560 int
561 igb_m_unicst(void *arg, const uint8_t *mac_addr)
562 {
563 	igb_t *igb = (igb_t *)arg;
564 	int result;
565 
566 	mutex_enter(&igb->gen_lock);
567 
568 	if (igb->igb_state & IGB_SUSPENDED) {
569 		mutex_exit(&igb->gen_lock);
570 		return (ECANCELED);
571 	}
572 
573 	/*
574 	 * Store the new MAC address.
575 	 */
576 	bcopy(mac_addr, igb->hw.mac.addr, ETHERADDRL);
577 
578 	/*
579 	 * Set MAC address in address slot 0, which is the default address.
580 	 */
581 	result = igb_unicst_set(igb, mac_addr, 0);
582 
583 	mutex_exit(&igb->gen_lock);
584 
585 	return (result);
586 }
587 
588 /*
589  * Pass on M_IOCTL messages passed to the DLD, and support
590  * private IOCTLs for debugging and ndd.
591  */
592 void
593 igb_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
594 {
595 	igb_t *igb = (igb_t *)arg;
596 	struct iocblk *iocp;
597 	enum ioc_reply status;
598 
599 	iocp = (struct iocblk *)(uintptr_t)mp->b_rptr;
600 	iocp->ioc_error = 0;
601 
602 	switch (iocp->ioc_cmd) {
603 	case LB_GET_INFO_SIZE:
604 	case LB_GET_INFO:
605 	case LB_GET_MODE:
606 	case LB_SET_MODE:
607 		status = igb_loopback_ioctl(igb, iocp, mp);
608 		break;
609 
610 	case ND_GET:
611 	case ND_SET:
612 		status = igb_nd_ioctl(igb, q, mp, iocp);
613 		break;
614 
615 	default:
616 		status = IOC_INVAL;
617 		break;
618 	}
619 
620 	/*
621 	 * Decide how to reply
622 	 */
623 	switch (status) {
624 	default:
625 	case IOC_INVAL:
626 		/*
627 		 * Error, reply with a NAK and EINVAL or the specified error
628 		 */
629 		miocnak(q, mp, 0, iocp->ioc_error == 0 ?
630 		    EINVAL : iocp->ioc_error);
631 		break;
632 
633 	case IOC_DONE:
634 		/*
635 		 * OK, reply already sent
636 		 */
637 		break;
638 
639 	case IOC_ACK:
640 		/*
641 		 * OK, reply with an ACK
642 		 */
643 		miocack(q, mp, 0, 0);
644 		break;
645 
646 	case IOC_REPLY:
647 		/*
648 		 * OK, send prepared reply as ACK or NAK
649 		 */
650 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
651 		    M_IOCACK : M_IOCNAK;
652 		qreply(q, mp);
653 		break;
654 	}
655 }
656 
657 
658 /*
659  * Find an unused address slot, set the address to it, reserve
660  * this slot and enable the device to start filtering on the
661  * new address.
662  */
663 int
664 igb_m_unicst_add(void *arg, mac_multi_addr_t *maddr)
665 {
666 	igb_t *igb = (igb_t *)arg;
667 	mac_addr_slot_t slot;
668 	int err;
669 
670 	mutex_enter(&igb->gen_lock);
671 
672 	if (igb->igb_state & IGB_SUSPENDED) {
673 		mutex_exit(&igb->gen_lock);
674 		return (ECANCELED);
675 	}
676 
677 	if (mac_unicst_verify(igb->mac_hdl,
678 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE) {
679 		mutex_exit(&igb->gen_lock);
680 		return (EINVAL);
681 	}
682 
683 	if (igb->unicst_avail == 0) {
684 		/* no slots available */
685 		mutex_exit(&igb->gen_lock);
686 		return (ENOSPC);
687 	}
688 
689 	/*
690 	 * Primary/default address is in slot 0. The next addresses
691 	 * are the multiple MAC addresses. So multiple MAC address 0
692 	 * is in slot 1, 1 in slot 2, and so on. So the first multiple
693 	 * MAC address resides in slot 1.
694 	 */
695 	for (slot = 1; slot < igb->unicst_total; slot++) {
696 		if (igb->unicst_addr[slot].mac.set == 0) {
697 			igb->unicst_addr[slot].mac.set = 1;
698 			break;
699 		}
700 	}
701 
702 	ASSERT((slot > 0) && (slot < igb->unicst_total));
703 
704 	igb->unicst_avail--;
705 	mutex_exit(&igb->gen_lock);
706 
707 	maddr->mma_slot = slot;
708 
709 	if ((err = igb_unicst_set(igb, maddr->mma_addr, slot)) != 0) {
710 		mutex_enter(&igb->gen_lock);
711 		igb->unicst_addr[slot].mac.set = 0;
712 		igb->unicst_avail++;
713 		mutex_exit(&igb->gen_lock);
714 	}
715 
716 	return (err);
717 }
718 
719 
720 /*
721  * Removes a MAC address that was added before.
722  */
723 int
724 igb_m_unicst_remove(void *arg, mac_addr_slot_t slot)
725 {
726 	igb_t *igb = (igb_t *)arg;
727 	int err;
728 
729 	mutex_enter(&igb->gen_lock);
730 
731 	if (igb->igb_state & IGB_SUSPENDED) {
732 		mutex_exit(&igb->gen_lock);
733 		return (ECANCELED);
734 	}
735 
736 	if ((slot <= 0) || (slot >= igb->unicst_total)) {
737 		mutex_exit(&igb->gen_lock);
738 		return (EINVAL);
739 	}
740 
741 	if (igb->unicst_addr[slot].mac.set == 1) {
742 		igb->unicst_addr[slot].mac.set = 0;
743 		igb->unicst_avail++;
744 
745 		/* Copy the default address to the passed slot */
746 		if ((err = igb_unicst_set(igb,
747 		    igb->unicst_addr[0].mac.addr, slot)) != 0) {
748 			igb->unicst_addr[slot].mac.set = 1;
749 			igb->unicst_avail--;
750 		}
751 
752 		mutex_exit(&igb->gen_lock);
753 
754 		return (err);
755 	}
756 	mutex_exit(&igb->gen_lock);
757 
758 	return (EINVAL);
759 }
760 
761 /*
762  * Modifies the value of an address that has been added before.
763  * The new address length and the slot number that was returned
764  * in the call to add should be passed in. mma_flags should be
765  * set to 0.
766  * Returns 0 on success.
767  */
768 int
769 igb_m_unicst_modify(void *arg, mac_multi_addr_t *maddr)
770 {
771 	igb_t *igb = (igb_t *)arg;
772 	mac_addr_slot_t slot;
773 
774 	mutex_enter(&igb->gen_lock);
775 
776 	if (igb->igb_state & IGB_SUSPENDED) {
777 		mutex_exit(&igb->gen_lock);
778 		return (ECANCELED);
779 	}
780 
781 	if (mac_unicst_verify(igb->mac_hdl,
782 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE) {
783 		mutex_exit(&igb->gen_lock);
784 		return (EINVAL);
785 	}
786 
787 	slot = maddr->mma_slot;
788 
789 	if ((slot <= 0) || (slot >= igb->unicst_total)) {
790 		mutex_exit(&igb->gen_lock);
791 		return (EINVAL);
792 	}
793 
794 	if (igb->unicst_addr[slot].mac.set == 1) {
795 		mutex_exit(&igb->gen_lock);
796 
797 		return (igb_unicst_set(igb, maddr->mma_addr, slot));
798 	}
799 	mutex_exit(&igb->gen_lock);
800 
801 	return (EINVAL);
802 }
803 
804 /*
805  * Get the MAC address and all other information related to
806  * the address slot passed in mac_multi_addr_t.
807  * mma_flags should be set to 0 in the call.
808  * On return, mma_flags can take the following values:
809  * 1) MMAC_SLOT_UNUSED
810  * 2) MMAC_SLOT_USED | MMAC_VENDOR_ADDR
811  * 3) MMAC_SLOT_UNUSED | MMAC_VENDOR_ADDR
812  * 4) MMAC_SLOT_USED
813  */
814 int
815 igb_m_unicst_get(void *arg, mac_multi_addr_t *maddr)
816 {
817 	igb_t *igb = (igb_t *)arg;
818 	mac_addr_slot_t slot;
819 
820 	mutex_enter(&igb->gen_lock);
821 
822 	if (igb->igb_state & IGB_SUSPENDED) {
823 		mutex_exit(&igb->gen_lock);
824 		return (ECANCELED);
825 	}
826 
827 	slot = maddr->mma_slot;
828 
829 	if ((slot <= 0) || (slot >= igb->unicst_total)) {
830 		mutex_exit(&igb->gen_lock);
831 		return (EINVAL);
832 	}
833 
834 	if (igb->unicst_addr[slot].mac.set == 1) {
835 		bcopy(igb->unicst_addr[slot].mac.addr,
836 		    maddr->mma_addr, ETHERADDRL);
837 		maddr->mma_flags = MMAC_SLOT_USED;
838 	} else {
839 		maddr->mma_flags = MMAC_SLOT_UNUSED;
840 	}
841 	mutex_exit(&igb->gen_lock);
842 
843 	return (0);
844 }
845 
846 /*
847  * Obtain the MAC's capabilities and associated data from
848  * the driver.
849  */
850 boolean_t
851 igb_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
852 {
853 	igb_t *igb = (igb_t *)arg;
854 
855 	switch (cap) {
856 	case MAC_CAPAB_HCKSUM: {
857 		uint32_t *tx_hcksum_flags = cap_data;
858 
859 		/*
860 		 * We advertise our capabilities only if tx hcksum offload is
861 		 * enabled.  On receive, the stack will accept checksummed
862 		 * packets anyway, even if we haven't said we can deliver
863 		 * them.
864 		 */
865 		if (!igb->tx_hcksum_enable)
866 			return (B_FALSE);
867 
868 		*tx_hcksum_flags = HCKSUM_INET_PARTIAL | HCKSUM_IPHDRCKSUM;
869 		break;
870 	}
871 	case MAC_CAPAB_MULTIADDRESS: {
872 		multiaddress_capab_t *mmacp = cap_data;
873 
874 		/*
875 		 * The number of MAC addresses made available by
876 		 * this capability is one less than the total as
877 		 * the primary address in slot 0 is counted in
878 		 * the total.
879 		 */
880 		mmacp->maddr_naddr = igb->unicst_total - 1;
881 		mmacp->maddr_naddrfree = igb->unicst_avail;
882 		/* No multiple factory addresses, set mma_flag to 0 */
883 		mmacp->maddr_flag = 0;
884 		mmacp->maddr_handle = igb;
885 		mmacp->maddr_add = igb_m_unicst_add;
886 		mmacp->maddr_remove = igb_m_unicst_remove;
887 		mmacp->maddr_modify = igb_m_unicst_modify;
888 		mmacp->maddr_get = igb_m_unicst_get;
889 		mmacp->maddr_reserve = NULL;
890 		break;
891 	}
892 	default:
893 		return (B_FALSE);
894 	}
895 	return (B_TRUE);
896 }
897