xref: /titanic_51/usr/src/uts/common/io/hxge/hxge_virtual.c (revision 0114761d17f41c0b83189e4bf95e6b789e7ba99e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <hxge_impl.h>
27 #include <hxge_vmac.h>
28 #include <hxge_pfc.h>
29 #include <hpi_pfc.h>
30 
31 static hxge_status_t hxge_get_mac_addr_properties(p_hxge_t);
32 static void hxge_use_cfg_hydra_properties(p_hxge_t);
33 static void hxge_use_cfg_dma_config(p_hxge_t);
34 static void hxge_use_cfg_class_config(p_hxge_t);
35 static void hxge_set_hw_dma_config(p_hxge_t);
36 static void hxge_set_hw_class_config(p_hxge_t);
37 static void hxge_ldgv_setup(p_hxge_ldg_t *ldgp, p_hxge_ldv_t *ldvp, uint8_t ldv,
38 	uint8_t endldg, int *ngrps);
39 static hxge_status_t hxge_mmac_init(p_hxge_t);
40 
41 extern uint16_t hxge_rcr_timeout;
42 extern uint16_t hxge_rcr_threshold;
43 
44 extern uint32_t hxge_rbr_size;
45 extern uint32_t hxge_rcr_size;
46 
47 extern uint_t hxge_rx_intr();
48 extern uint_t hxge_tx_intr();
49 extern uint_t hxge_vmac_intr();
50 extern uint_t hxge_syserr_intr();
51 extern uint_t hxge_pfc_intr();
52 
53 /*
54  * Entry point to populate configuration parameters into the master hxge
55  * data structure and to update the NDD parameter list.
56  */
57 hxge_status_t
58 hxge_get_config_properties(p_hxge_t hxgep)
59 {
60 	hxge_status_t		status = HXGE_OK;
61 
62 	HXGE_DEBUG_MSG((hxgep, VPD_CTL, " ==> hxge_get_config_properties"));
63 
64 	if (hxgep->hxge_hw_p == NULL) {
65 		HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
66 		    " hxge_get_config_properties: common hardware not set"));
67 		return (HXGE_ERROR);
68 	}
69 
70 	hxgep->classifier.tcam_size = TCAM_HXGE_TCAM_MAX_ENTRY;
71 
72 	status = hxge_get_mac_addr_properties(hxgep);
73 	if (status != HXGE_OK) {
74 		HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
75 		    " hxge_get_config_properties: mac addr properties failed"));
76 		return (status);
77 	}
78 
79 	HXGE_DEBUG_MSG((hxgep, VPD_CTL,
80 	    " ==> hxge_get_config_properties: Hydra"));
81 
82 	hxge_use_cfg_hydra_properties(hxgep);
83 
84 	HXGE_DEBUG_MSG((hxgep, VPD_CTL, " <== hxge_get_config_properties"));
85 	return (HXGE_OK);
86 }
87 
88 
89 static void
90 hxge_set_hw_vlan_class_config(p_hxge_t hxgep)
91 {
92 	int			i;
93 	p_hxge_param_t		param_arr;
94 	uint_t			vlan_cnt;
95 	int			*vlan_cfg_val;
96 	hxge_param_map_t	*vmap;
97 	char			*prop;
98 	p_hxge_class_pt_cfg_t 	p_class_cfgp;
99 	uint32_t		good_cfg[32];
100 	int			good_count = 0;
101 	hxge_mv_cfg_t		*vlan_tbl;
102 
103 	HXGE_DEBUG_MSG((hxgep, CFG_CTL, " ==> hxge_set_hw_vlan_config"));
104 	p_class_cfgp = (p_hxge_class_pt_cfg_t)&hxgep->class_config;
105 
106 	param_arr = hxgep->param_arr;
107 	prop = param_arr[param_vlan_ids].fcode_name;
108 
109 	/*
110 	 * uint32_t array, each array entry specifying a VLAN id
111 	 */
112 	for (i = 0; i <= VLAN_ID_MAX; i++) {
113 		p_class_cfgp->vlan_tbl[i].flag = 0;
114 	}
115 
116 	vlan_tbl = (hxge_mv_cfg_t *)&p_class_cfgp->vlan_tbl[0];
117 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, hxgep->dip, 0, prop,
118 	    &vlan_cfg_val, &vlan_cnt) != DDI_PROP_SUCCESS) {
119 		return;
120 	}
121 
122 	for (i = 0; i < vlan_cnt; i++) {
123 		vmap = (hxge_param_map_t *)&vlan_cfg_val[i];
124 		if ((vmap->param_id) && (vmap->param_id <= VLAN_ID_MAX)) {
125 			HXGE_DEBUG_MSG((hxgep, CFG2_CTL,
126 			    " hxge_vlan_config vlan id %d", vmap->param_id));
127 
128 			good_cfg[good_count] = vlan_cfg_val[i];
129 			if (vlan_tbl[vmap->param_id].flag == 0)
130 				good_count++;
131 
132 			vlan_tbl[vmap->param_id].flag = 1;
133 		}
134 	}
135 
136 	ddi_prop_free(vlan_cfg_val);
137 	if (good_count != vlan_cnt) {
138 		(void) ddi_prop_update_int_array(DDI_DEV_T_NONE,
139 		    hxgep->dip, prop, (int *)good_cfg, good_count);
140 	}
141 
142 	HXGE_DEBUG_MSG((hxgep, CFG_CTL, " <== hxge_set_hw_vlan_config"));
143 }
144 
145 
146 /*
147  * Read param_vlan_ids and param_implicit_vlan_id properties from either
148  * hxge.conf or OBP. Update the soft properties. Populate these
149  * properties into the hxge data structure.
150  */
151 static void
152 hxge_use_cfg_vlan_class_config(p_hxge_t hxgep)
153 {
154 	uint_t		vlan_cnt;
155 	int		*vlan_cfg_val;
156 	int		status;
157 	p_hxge_param_t	param_arr;
158 	char		*prop;
159 	uint32_t	implicit_vlan_id = 0;
160 	int		*int_prop_val;
161 	uint_t		prop_len;
162 	p_hxge_param_t	pa;
163 
164 	HXGE_DEBUG_MSG((hxgep, CFG_CTL, " ==> hxge_use_cfg_vlan_config"));
165 	param_arr = hxgep->param_arr;
166 	prop = param_arr[param_vlan_ids].fcode_name;
167 
168 	status = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, hxgep->dip, 0, prop,
169 	    &vlan_cfg_val, &vlan_cnt);
170 	if (status == DDI_PROP_SUCCESS) {
171 		status = ddi_prop_update_int_array(DDI_DEV_T_NONE,
172 		    hxgep->dip, prop, vlan_cfg_val, vlan_cnt);
173 		ddi_prop_free(vlan_cfg_val);
174 	}
175 
176 	pa = &param_arr[param_implicit_vlan_id];
177 	prop = pa->fcode_name;
178 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, hxgep->dip, 0, prop,
179 	    &int_prop_val, &prop_len) == DDI_PROP_SUCCESS) {
180 		implicit_vlan_id = (uint32_t)*int_prop_val;
181 		if ((implicit_vlan_id >= pa->minimum) ||
182 		    (implicit_vlan_id <= pa->maximum)) {
183 			status = ddi_prop_update_int(DDI_DEV_T_NONE, hxgep->dip,
184 			    prop, (int)implicit_vlan_id);
185 		}
186 		ddi_prop_free(int_prop_val);
187 	}
188 
189 	hxge_set_hw_vlan_class_config(hxgep);
190 
191 	HXGE_DEBUG_MSG((hxgep, CFG_CTL, " <== hxge_use_cfg_vlan_config"));
192 }
193 
194 /*
195  * Read in the configuration parameters from either hxge.conf or OBP and
196  * populate the master data structure hxge.
197  * Use these parameters to update the soft properties and the ndd array.
198  */
199 static void
200 hxge_use_cfg_hydra_properties(p_hxge_t hxgep)
201 {
202 	HXGE_DEBUG_MSG((hxgep, CFG_CTL, " ==> hxge_use_cfg_hydra_properties"));
203 
204 	(void) hxge_use_cfg_dma_config(hxgep);
205 	(void) hxge_use_cfg_vlan_class_config(hxgep);
206 	(void) hxge_use_cfg_class_config(hxgep);
207 
208 	/*
209 	 * Read in the hardware (fcode) properties and use these properties
210 	 * to update the ndd array.
211 	 */
212 	(void) hxge_get_param_soft_properties(hxgep);
213 	HXGE_DEBUG_MSG((hxgep, CFG_CTL, " <== hxge_use_cfg_hydra_properties"));
214 }
215 
216 
217 /*
218  * Read param_accept_jumbo, param_rxdma_intr_time, and param_rxdma_intr_pkts
219  * from either hxge.conf or OBP.
220  * Update the soft properties.
221  * Populate these properties into the hxge data structure for latter use.
222  */
223 static void
224 hxge_use_cfg_dma_config(p_hxge_t hxgep)
225 {
226 	int			tx_ndmas, rx_ndmas;
227 	p_hxge_dma_pt_cfg_t	p_dma_cfgp;
228 	p_hxge_hw_pt_cfg_t	p_cfgp;
229 	dev_info_t		*dip;
230 	p_hxge_param_t		param_arr;
231 	char			*prop;
232 	int 			*prop_val;
233 	uint_t 			prop_len;
234 
235 	HXGE_DEBUG_MSG((hxgep, CFG_CTL, " ==> hxge_use_cfg_dma_config"));
236 	param_arr = hxgep->param_arr;
237 
238 	p_dma_cfgp = (p_hxge_dma_pt_cfg_t)&hxgep->pt_config;
239 	p_cfgp = (p_hxge_hw_pt_cfg_t)&p_dma_cfgp->hw_config;
240 	dip = hxgep->dip;
241 
242 	tx_ndmas = 4;
243 	p_cfgp->start_tdc = 0;
244 	p_cfgp->max_tdcs =  hxgep->max_tdcs = tx_ndmas;
245 	hxgep->tdc_mask = (tx_ndmas - 1);
246 	HXGE_DEBUG_MSG((hxgep, CFG_CTL, "==> hxge_use_cfg_dma_config: "
247 	    "p_cfgp 0x%llx max_tdcs %d hxgep->max_tdcs %d",
248 	    p_cfgp, p_cfgp->max_tdcs, hxgep->max_tdcs));
249 
250 	rx_ndmas = 4;
251 	p_cfgp->start_rdc = 0;
252 	p_cfgp->max_rdcs =  hxgep->max_rdcs = rx_ndmas;
253 
254 	p_cfgp->start_ldg = 0;
255 	p_cfgp->max_ldgs = HXGE_INT_MAX_LDG;
256 
257 	HXGE_DEBUG_MSG((hxgep, CFG_CTL, "==> hxge_use_default_dma_config: "
258 	    "p_cfgp 0x%llx max_rdcs %d hxgep->max_rdcs %d",
259 	    p_cfgp, p_cfgp->max_rdcs, hxgep->max_rdcs));
260 
261 	HXGE_DEBUG_MSG((hxgep, CFG_CTL, "==> hxge_use_cfg_dma_config: "
262 	    "p_cfgp 0x%016llx start_ldg %d hxgep->max_ldgs %d ",
263 	    p_cfgp, p_cfgp->start_ldg,  p_cfgp->max_ldgs));
264 
265 	/*
266 	 * add code for individual rdc properties
267 	 */
268 	prop = param_arr[param_accept_jumbo].fcode_name;
269 
270 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, 0, prop,
271 	    &prop_val, &prop_len) == DDI_PROP_SUCCESS) {
272 		if ((prop_len > 0) && (prop_len <= p_cfgp->max_rdcs)) {
273 			(void) ddi_prop_update_int_array(DDI_DEV_T_NONE,
274 			    hxgep->dip, prop, prop_val, prop_len);
275 		}
276 		ddi_prop_free(prop_val);
277 	}
278 
279 	prop = param_arr[param_rxdma_intr_time].fcode_name;
280 
281 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, 0, prop,
282 	    &prop_val, &prop_len) == DDI_PROP_SUCCESS) {
283 		if ((prop_len > 0) && (prop_len <= p_cfgp->max_rdcs)) {
284 			(void) ddi_prop_update_int_array(DDI_DEV_T_NONE,
285 			    hxgep->dip, prop, prop_val, prop_len);
286 		}
287 		ddi_prop_free(prop_val);
288 	}
289 
290 	prop = param_arr[param_rxdma_intr_pkts].fcode_name;
291 
292 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, 0, prop,
293 	    &prop_val, &prop_len) == DDI_PROP_SUCCESS) {
294 		if ((prop_len > 0) && (prop_len <= p_cfgp->max_rdcs)) {
295 			(void) ddi_prop_update_int_array(DDI_DEV_T_NONE,
296 			    hxgep->dip, prop, prop_val, prop_len);
297 		}
298 		ddi_prop_free(prop_val);
299 	}
300 
301 	hxge_set_hw_dma_config(hxgep);
302 	HXGE_DEBUG_MSG((hxgep, CFG_CTL, "<== hxge_use_cfg_dma_config"));
303 }
304 
305 static void
306 hxge_use_cfg_class_config(p_hxge_t hxgep)
307 {
308 	hxge_set_hw_class_config(hxgep);
309 }
310 
311 static void
312 hxge_set_hw_dma_config(p_hxge_t hxgep)
313 {
314 	p_hxge_dma_pt_cfg_t	p_dma_cfgp;
315 	p_hxge_hw_pt_cfg_t	p_cfgp;
316 
317 	HXGE_DEBUG_MSG((hxgep, CFG_CTL, "==> hxge_set_hw_dma_config"));
318 
319 	p_dma_cfgp = (p_hxge_dma_pt_cfg_t)&hxgep->pt_config;
320 	p_cfgp = (p_hxge_hw_pt_cfg_t)&p_dma_cfgp->hw_config;
321 
322 	/* Transmit DMA Channels */
323 	hxgep->ntdc = p_cfgp->max_tdcs;
324 
325 	/* Receive DMA Channels */
326 	hxgep->nrdc = p_cfgp->max_rdcs;
327 
328 	p_dma_cfgp->rbr_size = hxge_rbr_size;
329 	p_dma_cfgp->rcr_size = hxge_rcr_size;
330 
331 	HXGE_DEBUG_MSG((hxgep, CFG_CTL, " <== hxge_set_hw_dma_config"));
332 }
333 
334 
335 boolean_t
336 hxge_check_rxdma_port_member(p_hxge_t hxgep, uint8_t rdc)
337 {
338 	p_hxge_dma_pt_cfg_t	p_dma_cfgp;
339 	p_hxge_hw_pt_cfg_t	p_cfgp;
340 	int			status = B_TRUE;
341 
342 	HXGE_DEBUG_MSG((hxgep, CFG2_CTL, "==> hxge_check_rxdma_port_member"));
343 
344 	p_dma_cfgp = (p_hxge_dma_pt_cfg_t)&hxgep->pt_config;
345 	p_cfgp = (p_hxge_hw_pt_cfg_t)&p_dma_cfgp->hw_config;
346 
347 	/* Receive DMA Channels */
348 	if (rdc < p_cfgp->max_rdcs)
349 		status = B_TRUE;
350 	HXGE_DEBUG_MSG((hxgep, CFG2_CTL, " <== hxge_check_rxdma_port_member"));
351 
352 	return (status);
353 }
354 
355 boolean_t
356 hxge_check_txdma_port_member(p_hxge_t hxgep, uint8_t tdc)
357 {
358 	p_hxge_dma_pt_cfg_t	p_dma_cfgp;
359 	p_hxge_hw_pt_cfg_t	p_cfgp;
360 	int			status = B_FALSE;
361 
362 	HXGE_DEBUG_MSG((hxgep, CFG2_CTL, "==> hxge_check_txdma_port_member"));
363 
364 	p_dma_cfgp = (p_hxge_dma_pt_cfg_t)&hxgep->pt_config;
365 	p_cfgp = (p_hxge_hw_pt_cfg_t)&p_dma_cfgp->hw_config;
366 
367 	/* Receive DMA Channels */
368 	if (tdc < p_cfgp->max_tdcs)
369 		status = B_TRUE;
370 	HXGE_DEBUG_MSG((hxgep, CFG2_CTL, " <== hxge_check_txdma_port_member"));
371 
372 	return (status);
373 }
374 
375 
376 /*
377  * Read the L2 classes, L3 classes, and initial hash from either hxge.conf
378  * or OBP. Populate these properties into the hxge data structure for latter
379  * use. Note that we are not updating these soft properties.
380  */
381 static void
382 hxge_set_hw_class_config(p_hxge_t hxgep)
383 {
384 	int			i, j;
385 	p_hxge_param_t		param_arr;
386 	int			*int_prop_val;
387 	uint32_t		cfg_value;
388 	char			*prop;
389 	p_hxge_class_pt_cfg_t	p_class_cfgp;
390 	int			start_prop, end_prop;
391 	uint_t			prop_cnt;
392 
393 	HXGE_DEBUG_MSG((hxgep, CFG_CTL, " ==> hxge_set_hw_class_config"));
394 
395 	p_class_cfgp = (p_hxge_class_pt_cfg_t)&hxgep->class_config;
396 
397 	param_arr = hxgep->param_arr;
398 
399 	/*
400 	 * L2 class configuration. User configurable ether types
401 	 */
402 	start_prop =  param_class_cfg_ether_usr1;
403 	end_prop = param_class_cfg_ether_usr2;
404 
405 	for (i = start_prop; i <= end_prop; i++) {
406 		prop = param_arr[i].fcode_name;
407 		if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, hxgep->dip,
408 		    0, prop, &int_prop_val, &prop_cnt) == DDI_PROP_SUCCESS) {
409 			cfg_value =  (uint32_t)*int_prop_val;
410 			ddi_prop_free(int_prop_val);
411 		} else {
412 			cfg_value = (uint32_t)param_arr[i].value;
413 		}
414 
415 		j = (i - start_prop) + TCAM_CLASS_ETYPE_1;
416 		p_class_cfgp->class_cfg[j] = cfg_value;
417 	}
418 
419 	/*
420 	 * Use properties from either .conf or the NDD param array. Only bits
421 	 * 2 and 3 are significant
422 	 */
423 	start_prop =  param_class_opt_ipv4_tcp;
424 	end_prop = param_class_opt_ipv6_sctp;
425 
426 	for (i = start_prop; i <= end_prop; i++) {
427 		prop = param_arr[i].fcode_name;
428 		if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, hxgep->dip,
429 		    0, prop, &int_prop_val, &prop_cnt) == DDI_PROP_SUCCESS) {
430 			cfg_value =  (uint32_t)*int_prop_val;
431 			ddi_prop_free(int_prop_val);
432 		} else {
433 			cfg_value = (uint32_t)param_arr[i].value;
434 		}
435 
436 		j = (i - start_prop) + TCAM_CLASS_TCP_IPV4;
437 		p_class_cfgp->class_cfg[j] = cfg_value;
438 	}
439 
440 	prop = param_arr[param_hash_init_value].fcode_name;
441 
442 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, hxgep->dip, 0, prop,
443 	    &int_prop_val, &prop_cnt) == DDI_PROP_SUCCESS) {
444 		cfg_value =  (uint32_t)*int_prop_val;
445 		ddi_prop_free(int_prop_val);
446 	} else {
447 		cfg_value = (uint32_t)param_arr[param_hash_init_value].value;
448 	}
449 
450 	p_class_cfgp->init_hash = (uint32_t)cfg_value;
451 
452 	HXGE_DEBUG_MSG((hxgep, CFG_CTL, " <== hxge_set_hw_class_config"));
453 }
454 
455 
456 /*
457  * Interrupts related interface functions.
458  */
459 hxge_status_t
460 hxge_ldgv_init(p_hxge_t hxgep, int *navail_p, int *nrequired_p)
461 {
462 	uint8_t			ldv, i, maxldvs, maxldgs, start, end, nldvs;
463 	int			ldg, endldg, ngrps;
464 	uint8_t			channel;
465 	p_hxge_dma_pt_cfg_t	p_dma_cfgp;
466 	p_hxge_hw_pt_cfg_t	p_cfgp;
467 	p_hxge_ldgv_t		ldgvp;
468 	p_hxge_ldg_t		ldgp, ptr;
469 	p_hxge_ldv_t		ldvp;
470 	hxge_status_t		status = HXGE_OK;
471 
472 	HXGE_DEBUG_MSG((hxgep, INT_CTL, "==> hxge_ldgv_init"));
473 	if (!*navail_p) {
474 		*nrequired_p = 0;
475 		HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
476 		    "<== hxge_ldgv_init:no avail"));
477 		return (HXGE_ERROR);
478 	}
479 	p_dma_cfgp = (p_hxge_dma_pt_cfg_t)&hxgep->pt_config;
480 	p_cfgp = (p_hxge_hw_pt_cfg_t)&p_dma_cfgp->hw_config;
481 
482 	/* each DMA channels */
483 	nldvs = p_cfgp->max_tdcs + p_cfgp->max_rdcs;
484 
485 	/* vmac */
486 	nldvs++;
487 
488 	/* pfc */
489 	nldvs++;
490 
491 	/* system error interrupts. */
492 	nldvs++;
493 
494 	maxldvs = nldvs;
495 	maxldgs = p_cfgp->max_ldgs;
496 
497 	if (!maxldvs || !maxldgs) {
498 		/* No devices configured. */
499 		HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL, "<== hxge_ldgv_init: "
500 		    "no logical devices or groups configured."));
501 		return (HXGE_ERROR);
502 	}
503 	ldgvp = hxgep->ldgvp;
504 	if (ldgvp == NULL) {
505 		ldgvp = KMEM_ZALLOC(sizeof (hxge_ldgv_t), KM_SLEEP);
506 		hxgep->ldgvp = ldgvp;
507 		ldgvp->maxldgs = maxldgs;
508 		ldgvp->maxldvs = maxldvs;
509 		ldgp = ldgvp->ldgp =
510 		    KMEM_ZALLOC(sizeof (hxge_ldg_t) * maxldgs, KM_SLEEP);
511 		ldvp = ldgvp->ldvp =
512 		    KMEM_ZALLOC(sizeof (hxge_ldv_t) * maxldvs, KM_SLEEP);
513 	}
514 
515 	ldgvp->ndma_ldvs = p_cfgp->max_tdcs + p_cfgp->max_rdcs;
516 	ldgvp->tmres = HXGE_TIMER_RESO;
517 
518 	HXGE_DEBUG_MSG((hxgep, INT_CTL,
519 	    "==> hxge_ldgv_init: maxldvs %d maxldgs %d nldvs %d",
520 	    maxldvs, maxldgs, nldvs));
521 
522 	ldg = p_cfgp->start_ldg;
523 	ptr = ldgp;
524 	for (i = 0; i < maxldgs; i++) {
525 		ptr->arm = B_TRUE;
526 		ptr->vldg_index = i;
527 		ptr->ldg_timer = HXGE_TIMER_LDG;
528 		ptr->ldg = ldg++;
529 		ptr->sys_intr_handler = hxge_intr;
530 		ptr->nldvs = 0;
531 		ptr->hxgep = hxgep;
532 		HXGE_DEBUG_MSG((hxgep, INT_CTL,
533 		    "==> hxge_ldgv_init: maxldvs %d maxldgs %d ldg %d",
534 		    maxldvs, maxldgs, ptr->ldg));
535 		HXGE_DEBUG_MSG((hxgep, INT_CTL,
536 		    "==> hxge_ldv_init: timer %d", ptr->ldg_timer));
537 		ptr++;
538 	}
539 
540 	ldg = p_cfgp->start_ldg;
541 	if (maxldgs > *navail_p) {
542 		ngrps = *navail_p;
543 	} else {
544 		ngrps = maxldgs;
545 	}
546 	endldg = ldg + ngrps;
547 
548 	/*
549 	 * Receive DMA channels.
550 	 */
551 	channel = p_cfgp->start_rdc;
552 	start = p_cfgp->start_rdc + HXGE_RDMA_LD_START;
553 	end = start + p_cfgp->max_rdcs;
554 	nldvs = 0;
555 	ldgvp->nldvs = 0;
556 	ldgp->ldvp = NULL;
557 	*nrequired_p = 0;
558 	ptr = ldgp;
559 
560 	/*
561 	 * Start with RDC to configure logical devices for each group.
562 	 */
563 	for (i = 0, ldv = start; ldv < end; i++, ldv++) {
564 		ldvp->is_rxdma = B_TRUE;
565 		ldvp->ldv = ldv;
566 
567 		/*
568 		 * If non-seq needs to change the following code
569 		 */
570 		ldvp->channel = channel++;
571 		ldvp->vdma_index = i;
572 		ldvp->ldv_intr_handler = hxge_rx_intr;
573 		ldvp->ldv_ldf_masks = 0;
574 		ldvp->use_timer = B_FALSE;
575 		ldvp->hxgep = hxgep;
576 		hxge_ldgv_setup(&ptr, &ldvp, ldv, endldg, nrequired_p);
577 		nldvs++;
578 	}
579 
580 	/*
581 	 * Transmit DMA channels.
582 	 */
583 	channel = p_cfgp->start_tdc;
584 	start = p_cfgp->start_tdc + HXGE_TDMA_LD_START;
585 	end = start + p_cfgp->max_tdcs;
586 	for (i = 0, ldv = start; ldv < end; i++, ldv++) {
587 		ldvp->is_txdma = B_TRUE;
588 		ldvp->ldv = ldv;
589 		ldvp->channel = channel++;
590 		ldvp->vdma_index = i;
591 		ldvp->ldv_intr_handler = hxge_tx_intr;
592 		ldvp->ldv_ldf_masks = 0;
593 		ldvp->use_timer = B_FALSE;
594 		ldvp->hxgep = hxgep;
595 		hxge_ldgv_setup(&ptr, &ldvp, ldv, endldg, nrequired_p);
596 		nldvs++;
597 	}
598 
599 	/*
600 	 * VMAC
601 	 */
602 	ldvp->is_vmac = B_TRUE;
603 	ldvp->ldv_intr_handler = hxge_vmac_intr;
604 	ldvp->ldv_ldf_masks = 0;
605 	ldv = HXGE_VMAC_LD;
606 	ldvp->ldv = ldv;
607 	ldvp->use_timer = B_FALSE;
608 	ldvp->hxgep = hxgep;
609 	hxge_ldgv_setup(&ptr, &ldvp, ldv, endldg, nrequired_p);
610 	nldvs++;
611 
612 	HXGE_DEBUG_MSG((hxgep, INT_CTL,
613 	    "==> hxge_ldgv_init: nldvs %d navail %d nrequired %d",
614 	    nldvs, *navail_p, *nrequired_p));
615 
616 	/*
617 	 * PFC
618 	 */
619 	ldvp->is_pfc = B_TRUE;
620 	ldvp->ldv_intr_handler = hxge_pfc_intr;
621 	ldvp->ldv_ldf_masks = 0;
622 	ldv = HXGE_PFC_LD;
623 	ldvp->ldv = ldv;
624 	ldvp->use_timer = B_FALSE;
625 	ldvp->hxgep = hxgep;
626 	hxge_ldgv_setup(&ptr, &ldvp, ldv, endldg, nrequired_p);
627 	nldvs++;
628 
629 	HXGE_DEBUG_MSG((hxgep, INT_CTL,
630 	    "==> hxge_ldgv_init: nldvs %d navail %d nrequired %d",
631 	    nldvs, *navail_p, *nrequired_p));
632 
633 	/*
634 	 * System error interrupts.
635 	 */
636 	ldv = HXGE_SYS_ERROR_LD;
637 	ldvp->ldv = ldv;
638 	ldvp->is_syserr = B_TRUE;
639 	ldvp->ldv_intr_handler = hxge_syserr_intr;
640 	ldvp->ldv_ldf_masks = 0;
641 	ldvp->hxgep = hxgep;
642 	ldvp->use_timer = B_FALSE;
643 	ldgvp->ldvp_syserr = ldvp;
644 
645 	/* Reset PEU error mask to allow PEU error interrupts */
646 	HXGE_REG_WR32(hxgep->hpi_handle, PEU_INTR_MASK, 0x0);
647 
648 	/*
649 	 * Unmask the system interrupt states.
650 	 */
651 	(void) hxge_fzc_sys_err_mask_set(hxgep, B_FALSE);
652 	(void) hxge_ldgv_setup(&ptr, &ldvp, ldv, endldg, nrequired_p);
653 	nldvs++;
654 
655 	ldgvp->ldg_intrs = *nrequired_p;
656 
657 	HXGE_DEBUG_MSG((hxgep, INT_CTL,
658 	    "==> hxge_ldgv_init: nldvs %d navail %d nrequired %d",
659 	    nldvs, *navail_p, *nrequired_p));
660 	HXGE_DEBUG_MSG((hxgep, INT_CTL, "<== hxge_ldgv_init"));
661 	return (status);
662 }
663 
664 hxge_status_t
665 hxge_ldgv_uninit(p_hxge_t hxgep)
666 {
667 	p_hxge_ldgv_t		ldgvp;
668 
669 	HXGE_DEBUG_MSG((hxgep, INT_CTL, "==> hxge_ldgv_uninit"));
670 	ldgvp = hxgep->ldgvp;
671 	if (ldgvp == NULL) {
672 		HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
673 		    "<== hxge_ldgv_uninit: no logical group configured."));
674 		return (HXGE_OK);
675 	}
676 
677 	if (ldgvp->ldgp) {
678 		KMEM_FREE(ldgvp->ldgp, sizeof (hxge_ldg_t) * ldgvp->maxldgs);
679 	}
680 	if (ldgvp->ldvp) {
681 		KMEM_FREE(ldgvp->ldvp, sizeof (hxge_ldv_t) * ldgvp->maxldvs);
682 	}
683 
684 	KMEM_FREE(ldgvp, sizeof (hxge_ldgv_t));
685 	hxgep->ldgvp = NULL;
686 
687 	HXGE_DEBUG_MSG((hxgep, INT_CTL, "<== hxge_ldgv_uninit"));
688 	return (HXGE_OK);
689 }
690 
691 hxge_status_t
692 hxge_intr_ldgv_init(p_hxge_t hxgep)
693 {
694 	hxge_status_t	status = HXGE_OK;
695 
696 	HXGE_DEBUG_MSG((hxgep, INT_CTL, "==> hxge_intr_ldgv_init"));
697 	/*
698 	 * Configure the logical device group numbers, state vectors
699 	 * and interrupt masks for each logical device.
700 	 */
701 	status = hxge_fzc_intr_init(hxgep);
702 
703 	/*
704 	 * Configure logical device masks and timers.
705 	 */
706 	status = hxge_intr_mask_mgmt(hxgep);
707 
708 	HXGE_DEBUG_MSG((hxgep, INT_CTL, "<== hxge_intr_ldgv_init"));
709 	return (status);
710 }
711 
712 hxge_status_t
713 hxge_intr_mask_mgmt(p_hxge_t hxgep)
714 {
715 	p_hxge_ldgv_t	ldgvp;
716 	p_hxge_ldg_t	ldgp;
717 	p_hxge_ldv_t	ldvp;
718 	hpi_handle_t	handle;
719 	int		i, j;
720 	hpi_status_t	rs = HPI_SUCCESS;
721 
722 	HXGE_DEBUG_MSG((hxgep, INT_CTL, "==> hxge_intr_mask_mgmt"));
723 
724 	if ((ldgvp = hxgep->ldgvp) == NULL) {
725 		HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
726 		    "<== hxge_intr_mask_mgmt: Null ldgvp"));
727 		return (HXGE_ERROR);
728 	}
729 	handle = HXGE_DEV_HPI_HANDLE(hxgep);
730 	ldgp = ldgvp->ldgp;
731 	ldvp = ldgvp->ldvp;
732 	if (ldgp == NULL || ldvp == NULL) {
733 		HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
734 		    "<== hxge_intr_mask_mgmt: Null ldgp or ldvp"));
735 		return (HXGE_ERROR);
736 	}
737 
738 	HXGE_DEBUG_MSG((hxgep, INT_CTL,
739 	    "==> hxge_intr_mask_mgmt: # of intrs %d ", ldgvp->ldg_intrs));
740 	/* Initialize masks. */
741 	HXGE_DEBUG_MSG((hxgep, INT_CTL,
742 	    "==> hxge_intr_mask_mgmt(Hydra): # intrs %d ", ldgvp->ldg_intrs));
743 	for (i = 0; i < ldgvp->ldg_intrs; i++, ldgp++) {
744 		HXGE_DEBUG_MSG((hxgep, INT_CTL,
745 		    "==> hxge_intr_mask_mgmt(Hydra): # ldv %d in group %d",
746 		    ldgp->nldvs, ldgp->ldg));
747 		for (j = 0; j < ldgp->nldvs; j++, ldvp++) {
748 			HXGE_DEBUG_MSG((hxgep, INT_CTL,
749 			    "==> hxge_intr_mask_mgmt: set ldv # %d "
750 			    "for ldg %d", ldvp->ldv, ldgp->ldg));
751 			rs = hpi_intr_mask_set(handle, ldvp->ldv,
752 			    ldvp->ldv_ldf_masks);
753 			if (rs != HPI_SUCCESS) {
754 				HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
755 				    "<== hxge_intr_mask_mgmt: set mask failed "
756 				    " rs 0x%x ldv %d mask 0x%x",
757 				    rs, ldvp->ldv, ldvp->ldv_ldf_masks));
758 				return (HXGE_ERROR | rs);
759 			}
760 			HXGE_DEBUG_MSG((hxgep, INT_CTL,
761 			    "==> hxge_intr_mask_mgmt: set mask OK "
762 			    " rs 0x%x ldv %d mask 0x%x",
763 			    rs, ldvp->ldv, ldvp->ldv_ldf_masks));
764 		}
765 	}
766 
767 	ldgp = ldgvp->ldgp;
768 	/* Configure timer and arm bit */
769 	for (i = 0; i < hxgep->ldgvp->ldg_intrs; i++, ldgp++) {
770 		rs = hpi_intr_ldg_mgmt_set(handle, ldgp->ldg,
771 		    ldgp->arm, ldgp->ldg_timer);
772 		if (rs != HPI_SUCCESS) {
773 			HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
774 			    "<== hxge_intr_mask_mgmt: set timer failed "
775 			    " rs 0x%x dg %d timer 0x%x",
776 			    rs, ldgp->ldg, ldgp->ldg_timer));
777 			return (HXGE_ERROR | rs);
778 		}
779 		HXGE_DEBUG_MSG((hxgep, INT_CTL,
780 		    "==> hxge_intr_mask_mgmt: set timer OK "
781 		    " rs 0x%x ldg %d timer 0x%x",
782 		    rs, ldgp->ldg, ldgp->ldg_timer));
783 	}
784 
785 	HXGE_DEBUG_MSG((hxgep, INT_CTL, "<== hxge_fzc_intr_mask_mgmt"));
786 	return (HXGE_OK);
787 }
788 
789 hxge_status_t
790 hxge_intr_mask_mgmt_set(p_hxge_t hxgep, boolean_t on)
791 {
792 	p_hxge_ldgv_t	ldgvp;
793 	p_hxge_ldg_t	ldgp;
794 	p_hxge_ldv_t	ldvp;
795 	hpi_handle_t	handle;
796 	int		i, j;
797 	hpi_status_t	rs = HPI_SUCCESS;
798 
799 	HXGE_DEBUG_MSG((hxgep, INT_CTL,
800 	    "==> hxge_intr_mask_mgmt_set (%d)", on));
801 
802 	if ((ldgvp = hxgep->ldgvp) == NULL) {
803 		HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
804 		    "==> hxge_intr_mask_mgmt_set: Null ldgvp"));
805 		return (HXGE_ERROR);
806 	}
807 	handle = HXGE_DEV_HPI_HANDLE(hxgep);
808 	ldgp = ldgvp->ldgp;
809 	ldvp = ldgvp->ldvp;
810 	if (ldgp == NULL || ldvp == NULL) {
811 		HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
812 		    "<== hxge_intr_mask_mgmt_set: Null ldgp or ldvp"));
813 		return (HXGE_ERROR);
814 	}
815 
816 	/* set masks. */
817 	for (i = 0; i < ldgvp->ldg_intrs; i++, ldgp++) {
818 		HXGE_DEBUG_MSG((hxgep, INT_CTL,
819 		    "==> hxge_intr_mask_mgmt_set: flag %d ldg %d"
820 		    "set mask nldvs %d", on, ldgp->ldg, ldgp->nldvs));
821 		for (j = 0; j < ldgp->nldvs; j++, ldvp++) {
822 			HXGE_DEBUG_MSG((hxgep, INT_CTL,
823 			    "==> hxge_intr_mask_mgmt_set: "
824 			    "for %d %d flag %d", i, j, on));
825 			if (on) {
826 				ldvp->ldv_ldf_masks = 0;
827 				HXGE_DEBUG_MSG((hxgep, INT_CTL,
828 				    "==> hxge_intr_mask_mgmt_set: "
829 				    "ON mask off"));
830 			} else {
831 				ldvp->ldv_ldf_masks = (uint8_t)LD_IM_MASK;
832 				HXGE_DEBUG_MSG((hxgep, INT_CTL,
833 				    "==> hxge_intr_mask_mgmt_set:mask on"));
834 			}
835 
836 			rs = hpi_intr_mask_set(handle, ldvp->ldv,
837 			    ldvp->ldv_ldf_masks);
838 			if (rs != HPI_SUCCESS) {
839 				HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
840 				    "==> hxge_intr_mask_mgmt_set: "
841 				    "set mask failed rs 0x%x ldv %d mask 0x%x",
842 				    rs, ldvp->ldv, ldvp->ldv_ldf_masks));
843 				return (HXGE_ERROR | rs);
844 			}
845 			HXGE_DEBUG_MSG((hxgep, INT_CTL,
846 			    "==> hxge_intr_mask_mgmt_set: flag %d"
847 			    "set mask OK ldv %d mask 0x%x",
848 			    on, ldvp->ldv, ldvp->ldv_ldf_masks));
849 		}
850 	}
851 
852 	ldgp = ldgvp->ldgp;
853 	/* set the arm bit */
854 	for (i = 0; i < hxgep->ldgvp->ldg_intrs; i++, ldgp++) {
855 		if (on && !ldgp->arm) {
856 			ldgp->arm = B_TRUE;
857 		} else if (!on && ldgp->arm) {
858 			ldgp->arm = B_FALSE;
859 		}
860 		rs = hpi_intr_ldg_mgmt_set(handle, ldgp->ldg,
861 		    ldgp->arm, ldgp->ldg_timer);
862 		if (rs != HPI_SUCCESS) {
863 			HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
864 			    "<== hxge_intr_mask_mgmt_set: "
865 			    "set timer failed rs 0x%x ldg %d timer 0x%x",
866 			    rs, ldgp->ldg, ldgp->ldg_timer));
867 			return (HXGE_ERROR | rs);
868 		}
869 		HXGE_DEBUG_MSG((hxgep, INT_CTL,
870 		    "==> hxge_intr_mask_mgmt_set: OK (flag %d) "
871 		    "set timer ldg %d timer 0x%x",
872 		    on, ldgp->ldg, ldgp->ldg_timer));
873 	}
874 
875 	HXGE_DEBUG_MSG((hxgep, INT_CTL, "<== hxge_intr_mask_mgmt_set"));
876 	return (HXGE_OK);
877 }
878 
879 /*
880  * For Big Endian systems, the mac address will be from OBP. For Little
881  * Endian (x64) systems, it will be retrieved from the card since it cannot
882  * be programmed into PXE.
883  * This function also populates the MMAC parameters.
884  */
885 static hxge_status_t
886 hxge_get_mac_addr_properties(p_hxge_t hxgep)
887 {
888 	uint32_t	num_macs;
889 	hxge_status_t	status;
890 
891 	HXGE_DEBUG_MSG((hxgep, DDI_CTL, "==> hxge_get_mac_addr_properties "));
892 
893 	(void) hxge_pfc_mac_addrs_get(hxgep);
894 	hxgep->ouraddr = hxgep->factaddr;
895 
896 	/*
897 	 * Get the number of MAC addresses the Hydra supports per blade.
898 	 */
899 	if (hxge_pfc_num_macs_get(hxgep, &num_macs) == HXGE_OK) {
900 		hxgep->hxge_mmac_info.num_mmac = (uint8_t)num_macs;
901 	} else {
902 		HXGE_ERROR_MSG((NULL, HXGE_ERR_CTL,
903 		    "hxge_get_mac_addr_properties: get macs failed"));
904 		return (HXGE_ERROR);
905 	}
906 
907 	/*
908 	 * Initialize alt. mac addr. in the mac pool
909 	 */
910 	status = hxge_mmac_init(hxgep);
911 	if (status != HXGE_OK) {
912 		HXGE_ERROR_MSG((NULL, HXGE_ERR_CTL,
913 		    "hxge_get_mac_addr_properties: init mmac failed"));
914 		return (HXGE_ERROR);
915 	}
916 
917 	HXGE_DEBUG_MSG((hxgep, DDI_CTL, "<== hxge_get_mac_addr_properties "));
918 	return (HXGE_OK);
919 }
920 
921 static void
922 hxge_ldgv_setup(p_hxge_ldg_t *ldgp, p_hxge_ldv_t *ldvp, uint8_t ldv,
923 	uint8_t endldg, int *ngrps)
924 {
925 	HXGE_DEBUG_MSG((NULL, INT_CTL, "==> hxge_ldgv_setup"));
926 	/* Assign the group number for each device. */
927 	(*ldvp)->ldg_assigned = (*ldgp)->ldg;
928 	(*ldvp)->ldgp = *ldgp;
929 	(*ldvp)->ldv = ldv;
930 
931 	HXGE_DEBUG_MSG((NULL, INT_CTL,
932 	    "==> hxge_ldgv_setup: ldv %d endldg %d ldg %d, ldvp $%p",
933 	    ldv, endldg, (*ldgp)->ldg, (*ldgp)->ldvp));
934 
935 	(*ldgp)->nldvs++;
936 	if ((*ldgp)->ldg == (endldg - 1)) {
937 		if ((*ldgp)->ldvp == NULL) {
938 			(*ldgp)->ldvp = *ldvp;
939 			*ngrps += 1;
940 			HXGE_DEBUG_MSG((NULL, INT_CTL,
941 			    "==> hxge_ldgv_setup: ngrps %d", *ngrps));
942 		}
943 		HXGE_DEBUG_MSG((NULL, INT_CTL,
944 		    "==> hxge_ldgv_setup: ldvp $%p ngrps %d",
945 		    *ldvp, *ngrps));
946 		++*ldvp;
947 	} else {
948 		(*ldgp)->ldvp = *ldvp;
949 		*ngrps += 1;
950 		HXGE_DEBUG_MSG((NULL, INT_CTL, "==> hxge_ldgv_setup(done): "
951 		    "ldv %d endldg %d ldg %d, ldvp $%p",
952 		    ldv, endldg, (*ldgp)->ldg, (*ldgp)->ldvp));
953 		(*ldvp) = ++*ldvp;
954 		(*ldgp) = ++*ldgp;
955 		HXGE_DEBUG_MSG((NULL, INT_CTL,
956 		    "==> hxge_ldgv_setup: new ngrps %d", *ngrps));
957 	}
958 
959 	HXGE_DEBUG_MSG((NULL, INT_CTL, "==> hxge_ldgv_setup: "
960 	    "ldg %d nldvs %d ldv %d ldvp $%p endldg %d ngrps %d",
961 	    (*ldgp)->ldg, (*ldgp)->nldvs, ldv, ldvp, endldg, *ngrps));
962 
963 	HXGE_DEBUG_MSG((NULL, INT_CTL, "<== hxge_ldgv_setup"));
964 }
965 
966 /*
967  * Note: This function assumes the following distribution of mac
968  * addresses for a hydra blade:
969  *
970  *      -------------
971  *    0|            |0 - local-mac-address for blade
972  *      -------------
973  *     |            |1 - Start of alt. mac addr. for blade
974  *     |            |
975  *     |            |
976  *     |            |15
977  *     --------------
978  */
979 
980 static hxge_status_t
981 hxge_mmac_init(p_hxge_t hxgep)
982 {
983 	int slot;
984 	hxge_mmac_t *mmac_info;
985 
986 	mmac_info = (hxge_mmac_t *)&hxgep->hxge_mmac_info;
987 
988 	/* Set flags for unique MAC */
989 	mmac_info->mac_pool[0].flags |= MMAC_SLOT_USED | MMAC_VENDOR_ADDR;
990 	mmac_info->num_factory_mmac = 1;
991 
992 	/*
993 	 * Skip the factory/default address which is in slot 0.
994 	 * Initialze all other mac addr. to "AVAILABLE" state.
995 	 * Clear flags of all alternate MAC slots.
996 	 */
997 	for (slot = 1; slot < mmac_info->num_mmac; slot++) {
998 		(void) hpi_pfc_clear_mac_address(hxgep->hpi_handle, slot);
999 		mmac_info->mac_pool[slot].flags = 0;
1000 	}
1001 
1002 	/* Exclude the factory mac address */
1003 	mmac_info->naddrfree = mmac_info->num_mmac - 1;
1004 
1005 	/* Initialize the first two parameters for mmac kstat */
1006 	hxgep->statsp->mmac_stats.mmac_max_cnt = mmac_info->num_mmac;
1007 	hxgep->statsp->mmac_stats.mmac_avail_cnt = mmac_info->naddrfree;
1008 
1009 	return (HXGE_OK);
1010 }
1011