xref: /titanic_51/usr/src/uts/common/io/e1000g/e1000g_stat.c (revision e041b2e79357babb5b90ede68defaeec57ed9145)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2008 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * **********************************************************************
28  *									*
29  * Module Name:  e1000g_stat.c						*
30  *									*
31  * Abstract: Functions for processing statistics			*
32  *									*
33  * **********************************************************************
34  */
35 #include "e1000g_sw.h"
36 #include "e1000g_debug.h"
37 
38 static int e1000g_update_stats(kstat_t *ksp, int rw);
39 
40 /*
41  * e1000_tbi_adjust_stats
42  *
43  * Adjusts statistic counters when a frame is accepted
44  * under the TBI workaround. This function has been
45  * adapted for Solaris from shared code.
46  */
47 void
48 e1000_tbi_adjust_stats(struct e1000g *Adapter,
49     uint32_t frame_len, uint8_t *mac_addr)
50 {
51 	uint32_t carry_bit;
52 	p_e1000g_stat_t e1000g_ksp;
53 
54 	e1000g_ksp = (p_e1000g_stat_t)Adapter->e1000g_ksp->ks_data;
55 
56 	/* First adjust the frame length */
57 	frame_len--;
58 
59 	/*
60 	 * We need to adjust the statistics counters, since the hardware
61 	 * counters overcount this packet as a CRC error and undercount
62 	 * the packet as a good packet
63 	 */
64 	/* This packet should not be counted as a CRC error */
65 	e1000g_ksp->Crcerrs.value.ul--;
66 	/* This packet does count as a Good Packet Received */
67 	e1000g_ksp->Gprc.value.ul++;
68 
69 	/*
70 	 * Adjust the Good Octets received counters
71 	 */
72 	carry_bit = 0x80000000 & e1000g_ksp->Gorl.value.ul;
73 	e1000g_ksp->Gorl.value.ul += frame_len;
74 	/*
75 	 * If the high bit of Gorcl (the low 32 bits of the Good Octets
76 	 * Received Count) was one before the addition,
77 	 * AND it is zero after, then we lost the carry out,
78 	 * need to add one to Gorch (Good Octets Received Count High).
79 	 * This could be simplified if all environments supported
80 	 * 64-bit integers.
81 	 */
82 	if (carry_bit && ((e1000g_ksp->Gorl.value.ul & 0x80000000) == 0)) {
83 		e1000g_ksp->Gorh.value.ul++;
84 	}
85 	/*
86 	 * Is this a broadcast or multicast?  Check broadcast first,
87 	 * since the test for a multicast frame will test positive on
88 	 * a broadcast frame.
89 	 */
90 	if ((mac_addr[0] == (uint8_t)0xff) &&
91 	    (mac_addr[1] == (uint8_t)0xff)) {
92 		/*
93 		 * Broadcast packet
94 		 */
95 		e1000g_ksp->Bprc.value.ul++;
96 	} else if (*mac_addr & 0x01) {
97 		/*
98 		 * Multicast packet
99 		 */
100 		e1000g_ksp->Mprc.value.ul++;
101 	}
102 
103 	if (frame_len == Adapter->max_frame_size) {
104 		/*
105 		 * In this case, the hardware has overcounted the number of
106 		 * oversize frames.
107 		 */
108 		if (e1000g_ksp->Roc.value.ul > 0)
109 			e1000g_ksp->Roc.value.ul--;
110 	}
111 
112 #ifdef E1000G_DEBUG
113 	/*
114 	 * Adjust the bin counters when the extra byte put the frame in the
115 	 * wrong bin. Remember that the frame_len was adjusted above.
116 	 */
117 	if (frame_len == 64) {
118 		e1000g_ksp->Prc64.value.ul++;
119 		e1000g_ksp->Prc127.value.ul--;
120 	} else if (frame_len == 127) {
121 		e1000g_ksp->Prc127.value.ul++;
122 		e1000g_ksp->Prc255.value.ul--;
123 	} else if (frame_len == 255) {
124 		e1000g_ksp->Prc255.value.ul++;
125 		e1000g_ksp->Prc511.value.ul--;
126 	} else if (frame_len == 511) {
127 		e1000g_ksp->Prc511.value.ul++;
128 		e1000g_ksp->Prc1023.value.ul--;
129 	} else if (frame_len == 1023) {
130 		e1000g_ksp->Prc1023.value.ul++;
131 		e1000g_ksp->Prc1522.value.ul--;
132 	} else if (frame_len == 1522) {
133 		e1000g_ksp->Prc1522.value.ul++;
134 	}
135 #endif
136 }
137 
138 
139 /*
140  * e1000g_update_stats - update driver private kstat counters
141  *
142  * This routine will dump and reset the e1000's internal
143  * statistics counters. The current stats dump values will
144  * be sent to the kernel status area.
145  */
146 static int
147 e1000g_update_stats(kstat_t *ksp, int rw)
148 {
149 	struct e1000g *Adapter;
150 	struct e1000_hw *hw;
151 	p_e1000g_stat_t e1000g_ksp;
152 	e1000g_tx_ring_t *tx_ring;
153 	e1000g_rx_ring_t *rx_ring;
154 	uint64_t val;
155 	uint32_t low_val, high_val;
156 
157 	if (rw == KSTAT_WRITE)
158 		return (EACCES);
159 
160 	Adapter = (struct e1000g *)ksp->ks_private;
161 	ASSERT(Adapter != NULL);
162 	e1000g_ksp = (p_e1000g_stat_t)ksp->ks_data;
163 	ASSERT(e1000g_ksp != NULL);
164 	hw = &Adapter->shared;
165 
166 	tx_ring = Adapter->tx_ring;
167 	rx_ring = Adapter->rx_ring;
168 
169 	rw_enter(&Adapter->chip_lock, RW_WRITER);
170 
171 	e1000g_ksp->link_speed.value.ul = Adapter->link_speed;
172 	e1000g_ksp->reset_count.value.ul = Adapter->reset_count;
173 
174 	e1000g_ksp->rx_error.value.ul = rx_ring->stat_error;
175 	e1000g_ksp->rx_esballoc_fail.value.ul = rx_ring->stat_esballoc_fail;
176 	e1000g_ksp->rx_allocb_fail.value.ul = rx_ring->stat_allocb_fail;
177 
178 	e1000g_ksp->tx_no_swpkt.value.ul = tx_ring->stat_no_swpkt;
179 	e1000g_ksp->tx_no_desc.value.ul = tx_ring->stat_no_desc;
180 	e1000g_ksp->tx_send_fail.value.ul = tx_ring->stat_send_fail;
181 	e1000g_ksp->tx_reschedule.value.ul = tx_ring->stat_reschedule;
182 	e1000g_ksp->tx_over_size.value.ul = tx_ring->stat_over_size;
183 
184 #ifdef E1000G_DEBUG
185 	e1000g_ksp->rx_none.value.ul = rx_ring->stat_none;
186 	e1000g_ksp->rx_multi_desc.value.ul = rx_ring->stat_multi_desc;
187 	e1000g_ksp->rx_no_freepkt.value.ul = rx_ring->stat_no_freepkt;
188 	e1000g_ksp->rx_avail_freepkt.value.ul = rx_ring->avail_freepkt +
189 	    rx_ring->recycle_freepkt;
190 
191 	e1000g_ksp->tx_under_size.value.ul = tx_ring->stat_under_size;
192 	e1000g_ksp->tx_exceed_frags.value.ul = tx_ring->stat_exceed_frags;
193 	e1000g_ksp->tx_empty_frags.value.ul = tx_ring->stat_empty_frags;
194 	e1000g_ksp->tx_recycle.value.ul = tx_ring->stat_recycle;
195 	e1000g_ksp->tx_recycle_intr.value.ul = tx_ring->stat_recycle_intr;
196 	e1000g_ksp->tx_recycle_retry.value.ul = tx_ring->stat_recycle_retry;
197 	e1000g_ksp->tx_recycle_none.value.ul = tx_ring->stat_recycle_none;
198 	e1000g_ksp->tx_copy.value.ul = tx_ring->stat_copy;
199 	e1000g_ksp->tx_bind.value.ul = tx_ring->stat_bind;
200 	e1000g_ksp->tx_multi_copy.value.ul = tx_ring->stat_multi_copy;
201 	e1000g_ksp->tx_multi_cookie.value.ul = tx_ring->stat_multi_cookie;
202 	e1000g_ksp->tx_lack_desc.value.ul = tx_ring->stat_lack_desc;
203 #endif
204 
205 	/*
206 	 * Standard Stats
207 	 */
208 	e1000g_ksp->Mpc.value.ul += E1000_READ_REG(hw, E1000_MPC);
209 	e1000g_ksp->Rlec.value.ul += E1000_READ_REG(hw, E1000_RLEC);
210 	e1000g_ksp->Xonrxc.value.ul += E1000_READ_REG(hw, E1000_XONRXC);
211 	e1000g_ksp->Xontxc.value.ul += E1000_READ_REG(hw, E1000_XONTXC);
212 	e1000g_ksp->Xoffrxc.value.ul += E1000_READ_REG(hw, E1000_XOFFRXC);
213 	e1000g_ksp->Xofftxc.value.ul += E1000_READ_REG(hw, E1000_XOFFTXC);
214 	e1000g_ksp->Fcruc.value.ul += E1000_READ_REG(hw, E1000_FCRUC);
215 
216 	if ((hw->mac.type != e1000_ich8lan) &&
217 	    (hw->mac.type != e1000_ich9lan) &&
218 	    (hw->mac.type != e1000_ich10lan)) {
219 		e1000g_ksp->Symerrs.value.ul +=
220 		    E1000_READ_REG(hw, E1000_SYMERRS);
221 #ifdef E1000G_DEBUG
222 		e1000g_ksp->Prc64.value.ul +=
223 		    E1000_READ_REG(hw, E1000_PRC64);
224 		e1000g_ksp->Prc127.value.ul +=
225 		    E1000_READ_REG(hw, E1000_PRC127);
226 		e1000g_ksp->Prc255.value.ul +=
227 		    E1000_READ_REG(hw, E1000_PRC255);
228 		e1000g_ksp->Prc511.value.ul +=
229 		    E1000_READ_REG(hw, E1000_PRC511);
230 		e1000g_ksp->Prc1023.value.ul +=
231 		    E1000_READ_REG(hw, E1000_PRC1023);
232 		e1000g_ksp->Prc1522.value.ul +=
233 		    E1000_READ_REG(hw, E1000_PRC1522);
234 
235 		e1000g_ksp->Ptc64.value.ul +=
236 		    E1000_READ_REG(hw, E1000_PTC64);
237 		e1000g_ksp->Ptc127.value.ul +=
238 		    E1000_READ_REG(hw, E1000_PTC127);
239 		e1000g_ksp->Ptc255.value.ul +=
240 		    E1000_READ_REG(hw, E1000_PTC255);
241 		e1000g_ksp->Ptc511.value.ul +=
242 		    E1000_READ_REG(hw, E1000_PTC511);
243 		e1000g_ksp->Ptc1023.value.ul +=
244 		    E1000_READ_REG(hw, E1000_PTC1023);
245 		e1000g_ksp->Ptc1522.value.ul +=
246 		    E1000_READ_REG(hw, E1000_PTC1522);
247 #endif
248 	}
249 
250 	e1000g_ksp->Gprc.value.ul += E1000_READ_REG(hw, E1000_GPRC);
251 	e1000g_ksp->Gptc.value.ul += E1000_READ_REG(hw, E1000_GPTC);
252 	e1000g_ksp->Ruc.value.ul += E1000_READ_REG(hw, E1000_RUC);
253 	e1000g_ksp->Rfc.value.ul += E1000_READ_REG(hw, E1000_RFC);
254 	e1000g_ksp->Roc.value.ul += E1000_READ_REG(hw, E1000_ROC);
255 	e1000g_ksp->Rjc.value.ul += E1000_READ_REG(hw, E1000_RJC);
256 	e1000g_ksp->Tpr.value.ul += E1000_READ_REG(hw, E1000_TPR);
257 	e1000g_ksp->Tncrs.value.ul += E1000_READ_REG(hw, E1000_TNCRS);
258 	e1000g_ksp->Tsctc.value.ul += E1000_READ_REG(hw, E1000_TSCTC);
259 	e1000g_ksp->Tsctfc.value.ul += E1000_READ_REG(hw, E1000_TSCTFC);
260 
261 	/*
262 	 * Adaptive Calculations
263 	 */
264 	hw->mac.tx_packet_delta = E1000_READ_REG(hw, E1000_TPT);
265 	e1000g_ksp->Tpt.value.ul += hw->mac.tx_packet_delta;
266 
267 	/*
268 	 * The 64-bit register will reset whenever the upper
269 	 * 32 bits are read. So we need to read the lower
270 	 * 32 bits first, then read the upper 32 bits.
271 	 */
272 	low_val = E1000_READ_REG(hw, E1000_GORCL);
273 	high_val = E1000_READ_REG(hw, E1000_GORCH);
274 	val = (uint64_t)e1000g_ksp->Gorh.value.ul << 32 |
275 	    (uint64_t)e1000g_ksp->Gorl.value.ul;
276 	val += (uint64_t)high_val << 32 | (uint64_t)low_val;
277 	e1000g_ksp->Gorl.value.ul = (uint32_t)val;
278 	e1000g_ksp->Gorh.value.ul = (uint32_t)(val >> 32);
279 
280 	low_val = E1000_READ_REG(hw, E1000_GOTCL);
281 	high_val = E1000_READ_REG(hw, E1000_GOTCH);
282 	val = (uint64_t)e1000g_ksp->Goth.value.ul << 32 |
283 	    (uint64_t)e1000g_ksp->Gotl.value.ul;
284 	val += (uint64_t)high_val << 32 | (uint64_t)low_val;
285 	e1000g_ksp->Gotl.value.ul = (uint32_t)val;
286 	e1000g_ksp->Goth.value.ul = (uint32_t)(val >> 32);
287 
288 	low_val = E1000_READ_REG(hw, E1000_TORL);
289 	high_val = E1000_READ_REG(hw, E1000_TORH);
290 	val = (uint64_t)e1000g_ksp->Torh.value.ul << 32 |
291 	    (uint64_t)e1000g_ksp->Torl.value.ul;
292 	val += (uint64_t)high_val << 32 | (uint64_t)low_val;
293 	e1000g_ksp->Torl.value.ul = (uint32_t)val;
294 	e1000g_ksp->Torh.value.ul = (uint32_t)(val >> 32);
295 
296 	low_val = E1000_READ_REG(hw, E1000_TOTL);
297 	high_val = E1000_READ_REG(hw, E1000_TOTH);
298 	val = (uint64_t)e1000g_ksp->Toth.value.ul << 32 |
299 	    (uint64_t)e1000g_ksp->Totl.value.ul;
300 	val += (uint64_t)high_val << 32 | (uint64_t)low_val;
301 	e1000g_ksp->Totl.value.ul = (uint32_t)val;
302 	e1000g_ksp->Toth.value.ul = (uint32_t)(val >> 32);
303 
304 	rw_exit(&Adapter->chip_lock);
305 
306 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
307 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_UNAFFECTED);
308 
309 	return (0);
310 }
311 
312 int
313 e1000g_m_stat(void *arg, uint_t stat, uint64_t *val)
314 {
315 	struct e1000g *Adapter = (struct e1000g *)arg;
316 	struct e1000_hw *hw = &Adapter->shared;
317 	p_e1000g_stat_t e1000g_ksp;
318 	uint32_t low_val, high_val;
319 
320 	e1000g_ksp = (p_e1000g_stat_t)Adapter->e1000g_ksp->ks_data;
321 
322 	rw_enter(&Adapter->chip_lock, RW_READER);
323 
324 	switch (stat) {
325 	case MAC_STAT_IFSPEED:
326 		*val = Adapter->link_speed * 1000000ull;
327 		break;
328 
329 	case MAC_STAT_MULTIRCV:
330 		e1000g_ksp->Mprc.value.ul +=
331 		    E1000_READ_REG(hw, E1000_MPRC);
332 		*val = e1000g_ksp->Mprc.value.ul;
333 		break;
334 
335 	case MAC_STAT_BRDCSTRCV:
336 		e1000g_ksp->Bprc.value.ul +=
337 		    E1000_READ_REG(hw, E1000_BPRC);
338 		*val = e1000g_ksp->Bprc.value.ul;
339 		break;
340 
341 	case MAC_STAT_MULTIXMT:
342 		e1000g_ksp->Mptc.value.ul +=
343 		    E1000_READ_REG(hw, E1000_MPTC);
344 		*val = e1000g_ksp->Mptc.value.ul;
345 		break;
346 
347 	case MAC_STAT_BRDCSTXMT:
348 		e1000g_ksp->Bptc.value.ul +=
349 		    E1000_READ_REG(hw, E1000_BPTC);
350 		*val = e1000g_ksp->Bptc.value.ul;
351 		break;
352 
353 	case MAC_STAT_NORCVBUF:
354 		e1000g_ksp->Rnbc.value.ul +=
355 		    E1000_READ_REG(hw, E1000_RNBC);
356 		*val = e1000g_ksp->Rnbc.value.ul;
357 		break;
358 
359 	case MAC_STAT_IERRORS:
360 		e1000g_ksp->Rxerrc.value.ul +=
361 		    E1000_READ_REG(hw, E1000_RXERRC);
362 		e1000g_ksp->Algnerrc.value.ul +=
363 		    E1000_READ_REG(hw, E1000_ALGNERRC);
364 		e1000g_ksp->Rlec.value.ul +=
365 		    E1000_READ_REG(hw, E1000_RLEC);
366 		e1000g_ksp->Crcerrs.value.ul +=
367 		    E1000_READ_REG(hw, E1000_CRCERRS);
368 		e1000g_ksp->Cexterr.value.ul +=
369 		    E1000_READ_REG(hw, E1000_CEXTERR);
370 		*val = e1000g_ksp->Rxerrc.value.ul +
371 		    e1000g_ksp->Algnerrc.value.ul +
372 		    e1000g_ksp->Rlec.value.ul +
373 		    e1000g_ksp->Crcerrs.value.ul +
374 		    e1000g_ksp->Cexterr.value.ul;
375 		break;
376 
377 	case MAC_STAT_NOXMTBUF:
378 		*val = Adapter->tx_ring->stat_no_desc;
379 		break;
380 
381 	case MAC_STAT_OERRORS:
382 		e1000g_ksp->Ecol.value.ul +=
383 		    E1000_READ_REG(hw, E1000_ECOL);
384 		*val = e1000g_ksp->Ecol.value.ul;
385 		break;
386 
387 	case MAC_STAT_COLLISIONS:
388 		e1000g_ksp->Colc.value.ul +=
389 		    E1000_READ_REG(hw, E1000_COLC);
390 		*val = e1000g_ksp->Colc.value.ul;
391 		break;
392 
393 	case MAC_STAT_RBYTES:
394 		/*
395 		 * The 64-bit register will reset whenever the upper
396 		 * 32 bits are read. So we need to read the lower
397 		 * 32 bits first, then read the upper 32 bits.
398 		 */
399 		low_val = E1000_READ_REG(hw, E1000_TORL);
400 		high_val = E1000_READ_REG(hw, E1000_TORH);
401 		*val = (uint64_t)e1000g_ksp->Torh.value.ul << 32 |
402 		    (uint64_t)e1000g_ksp->Torl.value.ul;
403 		*val += (uint64_t)high_val << 32 | (uint64_t)low_val;
404 
405 		e1000g_ksp->Torl.value.ul = (uint32_t)*val;
406 		e1000g_ksp->Torh.value.ul = (uint32_t)(*val >> 32);
407 		break;
408 
409 	case MAC_STAT_IPACKETS:
410 		e1000g_ksp->Tpr.value.ul +=
411 		    E1000_READ_REG(hw, E1000_TPR);
412 		*val = e1000g_ksp->Tpr.value.ul;
413 		break;
414 
415 	case MAC_STAT_OBYTES:
416 		/*
417 		 * The 64-bit register will reset whenever the upper
418 		 * 32 bits are read. So we need to read the lower
419 		 * 32 bits first, then read the upper 32 bits.
420 		 */
421 		low_val = E1000_READ_REG(hw, E1000_TOTL);
422 		high_val = E1000_READ_REG(hw, E1000_TOTH);
423 		*val = (uint64_t)e1000g_ksp->Toth.value.ul << 32 |
424 		    (uint64_t)e1000g_ksp->Totl.value.ul;
425 		*val += (uint64_t)high_val << 32 | (uint64_t)low_val;
426 
427 		e1000g_ksp->Totl.value.ul = (uint32_t)*val;
428 		e1000g_ksp->Toth.value.ul = (uint32_t)(*val >> 32);
429 		break;
430 
431 	case MAC_STAT_OPACKETS:
432 		e1000g_ksp->Tpt.value.ul +=
433 		    E1000_READ_REG(hw, E1000_TPT);
434 		*val = e1000g_ksp->Tpt.value.ul;
435 		break;
436 
437 	case ETHER_STAT_ALIGN_ERRORS:
438 		e1000g_ksp->Algnerrc.value.ul +=
439 		    E1000_READ_REG(hw, E1000_ALGNERRC);
440 		*val = e1000g_ksp->Algnerrc.value.ul;
441 		break;
442 
443 	case ETHER_STAT_FCS_ERRORS:
444 		e1000g_ksp->Crcerrs.value.ul +=
445 		    E1000_READ_REG(hw, E1000_CRCERRS);
446 		*val = e1000g_ksp->Crcerrs.value.ul;
447 		break;
448 
449 	case ETHER_STAT_SQE_ERRORS:
450 		e1000g_ksp->Sec.value.ul +=
451 		    E1000_READ_REG(hw, E1000_SEC);
452 		*val = e1000g_ksp->Sec.value.ul;
453 		break;
454 
455 	case ETHER_STAT_CARRIER_ERRORS:
456 		e1000g_ksp->Cexterr.value.ul +=
457 		    E1000_READ_REG(hw, E1000_CEXTERR);
458 		*val = e1000g_ksp->Cexterr.value.ul;
459 		break;
460 
461 	case ETHER_STAT_EX_COLLISIONS:
462 		e1000g_ksp->Ecol.value.ul +=
463 		    E1000_READ_REG(hw, E1000_ECOL);
464 		*val = e1000g_ksp->Ecol.value.ul;
465 		break;
466 
467 	case ETHER_STAT_TX_LATE_COLLISIONS:
468 		e1000g_ksp->Latecol.value.ul +=
469 		    E1000_READ_REG(hw, E1000_LATECOL);
470 		*val = e1000g_ksp->Latecol.value.ul;
471 		break;
472 
473 	case ETHER_STAT_DEFER_XMTS:
474 		e1000g_ksp->Dc.value.ul +=
475 		    E1000_READ_REG(hw, E1000_DC);
476 		*val = e1000g_ksp->Dc.value.ul;
477 		break;
478 
479 	case ETHER_STAT_FIRST_COLLISIONS:
480 		e1000g_ksp->Scc.value.ul +=
481 		    E1000_READ_REG(hw, E1000_SCC);
482 		*val = e1000g_ksp->Scc.value.ul;
483 		break;
484 
485 	case ETHER_STAT_MULTI_COLLISIONS:
486 		e1000g_ksp->Mcc.value.ul +=
487 		    E1000_READ_REG(hw, E1000_MCC);
488 		*val = e1000g_ksp->Mcc.value.ul;
489 		break;
490 
491 	case ETHER_STAT_MACRCV_ERRORS:
492 		e1000g_ksp->Rxerrc.value.ul +=
493 		    E1000_READ_REG(hw, E1000_RXERRC);
494 		*val = e1000g_ksp->Rxerrc.value.ul;
495 		break;
496 
497 	case ETHER_STAT_MACXMT_ERRORS:
498 		e1000g_ksp->Ecol.value.ul +=
499 		    E1000_READ_REG(hw, E1000_ECOL);
500 		*val = e1000g_ksp->Ecol.value.ul;
501 		break;
502 
503 	case ETHER_STAT_TOOLONG_ERRORS:
504 		e1000g_ksp->Roc.value.ul +=
505 		    E1000_READ_REG(hw, E1000_ROC);
506 		*val = e1000g_ksp->Roc.value.ul;
507 		break;
508 
509 	case ETHER_STAT_XCVR_ADDR:
510 		/* The Internal PHY's MDI address for each MAC is 1 */
511 		*val = 1;
512 		break;
513 
514 	case ETHER_STAT_XCVR_ID:
515 		*val = hw->phy.id | hw->phy.revision;
516 		break;
517 
518 	case ETHER_STAT_XCVR_INUSE:
519 		switch (Adapter->link_speed) {
520 		case SPEED_1000:
521 			*val =
522 			    (hw->phy.media_type == e1000_media_type_copper) ?
523 			    XCVR_1000T : XCVR_1000X;
524 			break;
525 		case SPEED_100:
526 			*val =
527 			    (hw->phy.media_type == e1000_media_type_copper) ?
528 			    (Adapter->phy_status & MII_SR_100T4_CAPS) ?
529 			    XCVR_100T4 : XCVR_100T2 : XCVR_100X;
530 			break;
531 		case SPEED_10:
532 			*val = XCVR_10;
533 			break;
534 		default:
535 			*val = XCVR_NONE;
536 			break;
537 		}
538 		break;
539 
540 	case ETHER_STAT_CAP_1000FDX:
541 		*val = Adapter->param_1000fdx_cap;
542 		break;
543 
544 	case ETHER_STAT_CAP_1000HDX:
545 		*val = Adapter->param_1000hdx_cap;
546 		break;
547 
548 	case ETHER_STAT_CAP_100FDX:
549 		*val = Adapter->param_100fdx_cap;
550 		break;
551 
552 	case ETHER_STAT_CAP_100HDX:
553 		*val = Adapter->param_100hdx_cap;
554 		break;
555 
556 	case ETHER_STAT_CAP_10FDX:
557 		*val = Adapter->param_10fdx_cap;
558 		break;
559 
560 	case ETHER_STAT_CAP_10HDX:
561 		*val = Adapter->param_10hdx_cap;
562 		break;
563 
564 	case ETHER_STAT_CAP_ASMPAUSE:
565 		*val = Adapter->param_asym_pause_cap;
566 		break;
567 
568 	case ETHER_STAT_CAP_PAUSE:
569 		*val = Adapter->param_pause_cap;
570 		break;
571 
572 	case ETHER_STAT_CAP_AUTONEG:
573 		*val = Adapter->param_autoneg_cap;
574 		break;
575 
576 	case ETHER_STAT_ADV_CAP_1000FDX:
577 		*val = Adapter->param_adv_1000fdx;
578 		break;
579 
580 	case ETHER_STAT_ADV_CAP_1000HDX:
581 		*val = Adapter->param_adv_1000hdx;
582 		break;
583 
584 	case ETHER_STAT_ADV_CAP_100FDX:
585 		*val = Adapter->param_adv_100fdx;
586 		break;
587 
588 	case ETHER_STAT_ADV_CAP_100HDX:
589 		*val = Adapter->param_adv_100hdx;
590 		break;
591 
592 	case ETHER_STAT_ADV_CAP_10FDX:
593 		*val = Adapter->param_adv_10fdx;
594 		break;
595 
596 	case ETHER_STAT_ADV_CAP_10HDX:
597 		*val = Adapter->param_adv_10hdx;
598 		break;
599 
600 	case ETHER_STAT_ADV_CAP_ASMPAUSE:
601 		*val = Adapter->param_adv_asym_pause;
602 		break;
603 
604 	case ETHER_STAT_ADV_CAP_PAUSE:
605 		*val = Adapter->param_adv_pause;
606 		break;
607 
608 	case ETHER_STAT_ADV_CAP_AUTONEG:
609 		*val = hw->mac.autoneg;
610 		break;
611 
612 	case ETHER_STAT_LP_CAP_1000FDX:
613 		*val = Adapter->param_lp_1000fdx;
614 		break;
615 
616 	case ETHER_STAT_LP_CAP_1000HDX:
617 		*val = Adapter->param_lp_1000hdx;
618 		break;
619 
620 	case ETHER_STAT_LP_CAP_100FDX:
621 		*val = Adapter->param_lp_100fdx;
622 		break;
623 
624 	case ETHER_STAT_LP_CAP_100HDX:
625 		*val = Adapter->param_lp_100hdx;
626 		break;
627 
628 	case ETHER_STAT_LP_CAP_10FDX:
629 		*val = Adapter->param_lp_10fdx;
630 		break;
631 
632 	case ETHER_STAT_LP_CAP_10HDX:
633 		*val = Adapter->param_lp_10hdx;
634 		break;
635 
636 	case ETHER_STAT_LP_CAP_ASMPAUSE:
637 		*val = Adapter->param_lp_asym_pause;
638 		break;
639 
640 	case ETHER_STAT_LP_CAP_PAUSE:
641 		*val = Adapter->param_lp_pause;
642 		break;
643 
644 	case ETHER_STAT_LP_CAP_AUTONEG:
645 		*val = Adapter->param_lp_autoneg;
646 		break;
647 
648 	case ETHER_STAT_LINK_ASMPAUSE:
649 		*val = Adapter->param_asym_pause_cap;
650 		break;
651 
652 	case ETHER_STAT_LINK_PAUSE:
653 		*val = Adapter->param_pause_cap;
654 		break;
655 
656 	case ETHER_STAT_LINK_AUTONEG:
657 		*val = hw->mac.autoneg;
658 		break;
659 
660 	case ETHER_STAT_LINK_DUPLEX:
661 		*val = (Adapter->link_duplex == FULL_DUPLEX) ?
662 		    LINK_DUPLEX_FULL : LINK_DUPLEX_HALF;
663 		break;
664 
665 	case ETHER_STAT_CAP_100T4:
666 		*val = Adapter->param_100t4_cap;
667 		break;
668 
669 	case ETHER_STAT_ADV_CAP_100T4:
670 		*val = Adapter->param_adv_100t4;
671 		break;
672 
673 	case ETHER_STAT_LP_CAP_100T4:
674 		*val = Adapter->param_lp_100t4;
675 		break;
676 
677 	default:
678 		rw_exit(&Adapter->chip_lock);
679 		return (ENOTSUP);
680 	}
681 
682 	rw_exit(&Adapter->chip_lock);
683 
684 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
685 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_UNAFFECTED);
686 
687 	return (0);
688 }
689 
690 /*
691  * e1000g_init_stats - initialize kstat data structures
692  *
693  * This routine will create and initialize the driver private
694  * statistics counters.
695  */
696 int
697 e1000g_init_stats(struct e1000g *Adapter)
698 {
699 	kstat_t *ksp;
700 	p_e1000g_stat_t e1000g_ksp;
701 
702 	/*
703 	 * Create and init kstat
704 	 */
705 	ksp = kstat_create(WSNAME, ddi_get_instance(Adapter->dip),
706 	    "statistics", "net", KSTAT_TYPE_NAMED,
707 	    sizeof (e1000g_stat_t) / sizeof (kstat_named_t), 0);
708 
709 	if (ksp == NULL) {
710 		e1000g_log(Adapter, CE_WARN,
711 		    "Could not create kernel statistics\n");
712 		return (DDI_FAILURE);
713 	}
714 
715 	Adapter->e1000g_ksp = ksp;	/* Fill in the Adapters ksp */
716 
717 	e1000g_ksp = (p_e1000g_stat_t)ksp->ks_data;
718 
719 	/*
720 	 * Initialize all the statistics
721 	 */
722 	kstat_named_init(&e1000g_ksp->link_speed, "link_speed",
723 	    KSTAT_DATA_ULONG);
724 	kstat_named_init(&e1000g_ksp->reset_count, "Reset Count",
725 	    KSTAT_DATA_ULONG);
726 
727 	kstat_named_init(&e1000g_ksp->rx_error, "Rx Error",
728 	    KSTAT_DATA_ULONG);
729 	kstat_named_init(&e1000g_ksp->rx_esballoc_fail, "Rx Desballoc Failure",
730 	    KSTAT_DATA_ULONG);
731 	kstat_named_init(&e1000g_ksp->rx_allocb_fail, "Rx Allocb Failure",
732 	    KSTAT_DATA_ULONG);
733 
734 	kstat_named_init(&e1000g_ksp->tx_no_desc, "Tx No Desc",
735 	    KSTAT_DATA_ULONG);
736 	kstat_named_init(&e1000g_ksp->tx_no_swpkt, "Tx No Buffer",
737 	    KSTAT_DATA_ULONG);
738 	kstat_named_init(&e1000g_ksp->tx_send_fail, "Tx Send Failure",
739 	    KSTAT_DATA_ULONG);
740 	kstat_named_init(&e1000g_ksp->tx_over_size, "Tx Pkt Over Size",
741 	    KSTAT_DATA_ULONG);
742 	kstat_named_init(&e1000g_ksp->tx_reschedule, "Tx Reschedule",
743 	    KSTAT_DATA_ULONG);
744 
745 	kstat_named_init(&e1000g_ksp->Mpc, "Recv_Missed_Packets",
746 	    KSTAT_DATA_ULONG);
747 	kstat_named_init(&e1000g_ksp->Symerrs, "Recv_Symbol_Errors",
748 	    KSTAT_DATA_ULONG);
749 	kstat_named_init(&e1000g_ksp->Rlec, "Recv_Length_Errors",
750 	    KSTAT_DATA_ULONG);
751 	kstat_named_init(&e1000g_ksp->Xonrxc, "XONs_Recvd",
752 	    KSTAT_DATA_ULONG);
753 	kstat_named_init(&e1000g_ksp->Xontxc, "XONs_Xmitd",
754 	    KSTAT_DATA_ULONG);
755 	kstat_named_init(&e1000g_ksp->Xoffrxc, "XOFFs_Recvd",
756 	    KSTAT_DATA_ULONG);
757 	kstat_named_init(&e1000g_ksp->Xofftxc, "XOFFs_Xmitd",
758 	    KSTAT_DATA_ULONG);
759 	kstat_named_init(&e1000g_ksp->Fcruc, "Recv_Unsupport_FC_Pkts",
760 	    KSTAT_DATA_ULONG);
761 #ifdef E1000G_DEBUG
762 	kstat_named_init(&e1000g_ksp->Prc64, "Pkts_Recvd_(  64b)",
763 	    KSTAT_DATA_ULONG);
764 	kstat_named_init(&e1000g_ksp->Prc127, "Pkts_Recvd_(  65- 127b)",
765 	    KSTAT_DATA_ULONG);
766 	kstat_named_init(&e1000g_ksp->Prc255, "Pkts_Recvd_( 127- 255b)",
767 	    KSTAT_DATA_ULONG);
768 	kstat_named_init(&e1000g_ksp->Prc511, "Pkts_Recvd_( 256- 511b)",
769 	    KSTAT_DATA_ULONG);
770 	kstat_named_init(&e1000g_ksp->Prc1023, "Pkts_Recvd_( 511-1023b)",
771 	    KSTAT_DATA_ULONG);
772 	kstat_named_init(&e1000g_ksp->Prc1522, "Pkts_Recvd_(1024-1522b)",
773 	    KSTAT_DATA_ULONG);
774 #endif
775 	kstat_named_init(&e1000g_ksp->Gprc, "Good_Pkts_Recvd",
776 	    KSTAT_DATA_ULONG);
777 	kstat_named_init(&e1000g_ksp->Gptc, "Good_Pkts_Xmitd",
778 	    KSTAT_DATA_ULONG);
779 	kstat_named_init(&e1000g_ksp->Gorl, "Good_Octets_Recvd_Lo",
780 	    KSTAT_DATA_ULONG);
781 	kstat_named_init(&e1000g_ksp->Gorh, "Good_Octets_Recvd_Hi",
782 	    KSTAT_DATA_ULONG);
783 	kstat_named_init(&e1000g_ksp->Gotl, "Good_Octets_Xmitd_Lo",
784 	    KSTAT_DATA_ULONG);
785 	kstat_named_init(&e1000g_ksp->Goth, "Good_Octets_Xmitd_Hi",
786 	    KSTAT_DATA_ULONG);
787 	kstat_named_init(&e1000g_ksp->Ruc, "Recv_Undersize",
788 	    KSTAT_DATA_ULONG);
789 	kstat_named_init(&e1000g_ksp->Rfc, "Recv_Frag",
790 	    KSTAT_DATA_ULONG);
791 	kstat_named_init(&e1000g_ksp->Roc, "Recv_Oversize",
792 	    KSTAT_DATA_ULONG);
793 	kstat_named_init(&e1000g_ksp->Rjc, "Recv_Jabber",
794 	    KSTAT_DATA_ULONG);
795 	kstat_named_init(&e1000g_ksp->Torl, "Total_Octets_Recvd_Lo",
796 	    KSTAT_DATA_ULONG);
797 	kstat_named_init(&e1000g_ksp->Torh, "Total_Octets_Recvd_Hi",
798 	    KSTAT_DATA_ULONG);
799 	kstat_named_init(&e1000g_ksp->Totl, "Total_Octets_Xmitd_Lo",
800 	    KSTAT_DATA_ULONG);
801 	kstat_named_init(&e1000g_ksp->Toth, "Total_Octets_Xmitd_Hi",
802 	    KSTAT_DATA_ULONG);
803 	kstat_named_init(&e1000g_ksp->Tpr, "Total_Packets_Recvd",
804 	    KSTAT_DATA_ULONG);
805 	kstat_named_init(&e1000g_ksp->Tpt, "Total_Packets_Xmitd",
806 	    KSTAT_DATA_ULONG);
807 #ifdef E1000G_DEBUG
808 	kstat_named_init(&e1000g_ksp->Ptc64, "Pkts_Xmitd_(  64b)",
809 	    KSTAT_DATA_ULONG);
810 	kstat_named_init(&e1000g_ksp->Ptc127, "Pkts_Xmitd_(  65- 127b)",
811 	    KSTAT_DATA_ULONG);
812 	kstat_named_init(&e1000g_ksp->Ptc255, "Pkts_Xmitd_( 128- 255b)",
813 	    KSTAT_DATA_ULONG);
814 	kstat_named_init(&e1000g_ksp->Ptc511, "Pkts_Xmitd_( 255- 511b)",
815 	    KSTAT_DATA_ULONG);
816 	kstat_named_init(&e1000g_ksp->Ptc1023, "Pkts_Xmitd_( 512-1023b)",
817 	    KSTAT_DATA_ULONG);
818 	kstat_named_init(&e1000g_ksp->Ptc1522, "Pkts_Xmitd_(1024-1522b)",
819 	    KSTAT_DATA_ULONG);
820 #endif
821 	kstat_named_init(&e1000g_ksp->Tncrs, "Xmit_with_No_CRS",
822 	    KSTAT_DATA_ULONG);
823 	kstat_named_init(&e1000g_ksp->Tsctc, "Xmit_TCP_Seg_Contexts",
824 	    KSTAT_DATA_ULONG);
825 	kstat_named_init(&e1000g_ksp->Tsctfc, "Xmit_TCP_Seg_Contexts_Fail",
826 	    KSTAT_DATA_ULONG);
827 
828 #ifdef E1000G_DEBUG
829 	kstat_named_init(&e1000g_ksp->rx_none, "Rx No Data",
830 	    KSTAT_DATA_ULONG);
831 	kstat_named_init(&e1000g_ksp->rx_multi_desc, "Rx Span Multi Desc",
832 	    KSTAT_DATA_ULONG);
833 	kstat_named_init(&e1000g_ksp->rx_no_freepkt, "Rx Freelist Empty",
834 	    KSTAT_DATA_ULONG);
835 	kstat_named_init(&e1000g_ksp->rx_avail_freepkt, "Rx Freelist Avail",
836 	    KSTAT_DATA_ULONG);
837 
838 	kstat_named_init(&e1000g_ksp->tx_under_size, "Tx Pkt Under Size",
839 	    KSTAT_DATA_ULONG);
840 	kstat_named_init(&e1000g_ksp->tx_exceed_frags, "Tx Exceed Max Frags",
841 	    KSTAT_DATA_ULONG);
842 	kstat_named_init(&e1000g_ksp->tx_empty_frags, "Tx Empty Frags",
843 	    KSTAT_DATA_ULONG);
844 	kstat_named_init(&e1000g_ksp->tx_recycle, "Tx Recycle",
845 	    KSTAT_DATA_ULONG);
846 	kstat_named_init(&e1000g_ksp->tx_recycle_intr, "Tx Recycle Intr",
847 	    KSTAT_DATA_ULONG);
848 	kstat_named_init(&e1000g_ksp->tx_recycle_retry, "Tx Recycle Retry",
849 	    KSTAT_DATA_ULONG);
850 	kstat_named_init(&e1000g_ksp->tx_recycle_none, "Tx Recycled None",
851 	    KSTAT_DATA_ULONG);
852 	kstat_named_init(&e1000g_ksp->tx_copy, "Tx Send Copy",
853 	    KSTAT_DATA_ULONG);
854 	kstat_named_init(&e1000g_ksp->tx_bind, "Tx Send Bind",
855 	    KSTAT_DATA_ULONG);
856 	kstat_named_init(&e1000g_ksp->tx_multi_copy, "Tx Copy Multi Frags",
857 	    KSTAT_DATA_ULONG);
858 	kstat_named_init(&e1000g_ksp->tx_multi_cookie, "Tx Bind Multi Cookies",
859 	    KSTAT_DATA_ULONG);
860 	kstat_named_init(&e1000g_ksp->tx_lack_desc, "Tx Desc Insufficient",
861 	    KSTAT_DATA_ULONG);
862 #endif
863 
864 	/*
865 	 * Function to provide kernel stat update on demand
866 	 */
867 	ksp->ks_update = e1000g_update_stats;
868 
869 	/*
870 	 * Pointer into provider's raw statistics
871 	 */
872 	ksp->ks_private = (void *)Adapter;
873 
874 	/*
875 	 * Add kstat to systems kstat chain
876 	 */
877 	kstat_install(ksp);
878 
879 	return (DDI_SUCCESS);
880 }
881