xref: /titanic_51/usr/src/uts/common/io/e1000g/e1000g_stat.c (revision dedec472759b1a1a25044d504201ef59ccbffb56)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * **********************************************************************
28  *									*
29  * Module Name:  e1000g_stat.c						*
30  *									*
31  * Abstract: Functions for processing statistics			*
32  *									*
33  * **********************************************************************
34  */
35 #include "e1000g_sw.h"
36 #include "e1000g_debug.h"
37 
38 static int e1000g_update_stats(kstat_t *ksp, int rw);
39 static uint32_t e1000g_read_phy_stat(struct e1000_hw *hw, int reg);
40 
41 /*
42  * e1000_tbi_adjust_stats
43  *
44  * Adjusts statistic counters when a frame is accepted
45  * under the TBI workaround. This function has been
46  * adapted for Solaris from shared code.
47  */
48 void
49 e1000_tbi_adjust_stats(struct e1000g *Adapter,
50     uint32_t frame_len, uint8_t *mac_addr)
51 {
52 	uint32_t carry_bit;
53 	p_e1000g_stat_t e1000g_ksp;
54 
55 	e1000g_ksp = (p_e1000g_stat_t)Adapter->e1000g_ksp->ks_data;
56 
57 	/* First adjust the frame length */
58 	frame_len--;
59 
60 	/*
61 	 * We need to adjust the statistics counters, since the hardware
62 	 * counters overcount this packet as a CRC error and undercount
63 	 * the packet as a good packet
64 	 */
65 	/* This packet should not be counted as a CRC error */
66 	e1000g_ksp->Crcerrs.value.ul--;
67 	/* This packet does count as a Good Packet Received */
68 	e1000g_ksp->Gprc.value.ul++;
69 
70 	/*
71 	 * Adjust the Good Octets received counters
72 	 */
73 	carry_bit = 0x80000000 & e1000g_ksp->Gorl.value.ul;
74 	e1000g_ksp->Gorl.value.ul += frame_len;
75 	/*
76 	 * If the high bit of Gorcl (the low 32 bits of the Good Octets
77 	 * Received Count) was one before the addition,
78 	 * AND it is zero after, then we lost the carry out,
79 	 * need to add one to Gorch (Good Octets Received Count High).
80 	 * This could be simplified if all environments supported
81 	 * 64-bit integers.
82 	 */
83 	if (carry_bit && ((e1000g_ksp->Gorl.value.ul & 0x80000000) == 0)) {
84 		e1000g_ksp->Gorh.value.ul++;
85 	}
86 	/*
87 	 * Is this a broadcast or multicast?  Check broadcast first,
88 	 * since the test for a multicast frame will test positive on
89 	 * a broadcast frame.
90 	 */
91 	if ((mac_addr[0] == (uint8_t)0xff) &&
92 	    (mac_addr[1] == (uint8_t)0xff)) {
93 		/*
94 		 * Broadcast packet
95 		 */
96 		e1000g_ksp->Bprc.value.ul++;
97 	} else if (*mac_addr & 0x01) {
98 		/*
99 		 * Multicast packet
100 		 */
101 		e1000g_ksp->Mprc.value.ul++;
102 	}
103 
104 	if (frame_len == Adapter->max_frame_size) {
105 		/*
106 		 * In this case, the hardware has overcounted the number of
107 		 * oversize frames.
108 		 */
109 		if (e1000g_ksp->Roc.value.ul > 0)
110 			e1000g_ksp->Roc.value.ul--;
111 	}
112 
113 #ifdef E1000G_DEBUG
114 	/*
115 	 * Adjust the bin counters when the extra byte put the frame in the
116 	 * wrong bin. Remember that the frame_len was adjusted above.
117 	 */
118 	if (frame_len == 64) {
119 		e1000g_ksp->Prc64.value.ul++;
120 		e1000g_ksp->Prc127.value.ul--;
121 	} else if (frame_len == 127) {
122 		e1000g_ksp->Prc127.value.ul++;
123 		e1000g_ksp->Prc255.value.ul--;
124 	} else if (frame_len == 255) {
125 		e1000g_ksp->Prc255.value.ul++;
126 		e1000g_ksp->Prc511.value.ul--;
127 	} else if (frame_len == 511) {
128 		e1000g_ksp->Prc511.value.ul++;
129 		e1000g_ksp->Prc1023.value.ul--;
130 	} else if (frame_len == 1023) {
131 		e1000g_ksp->Prc1023.value.ul++;
132 		e1000g_ksp->Prc1522.value.ul--;
133 	} else if (frame_len == 1522) {
134 		e1000g_ksp->Prc1522.value.ul++;
135 	}
136 #endif
137 }
138 
139 
140 /*
141  * e1000g_update_stats - update driver private kstat counters
142  *
143  * This routine will dump and reset the e1000's internal
144  * statistics counters. The current stats dump values will
145  * be sent to the kernel status area.
146  */
147 static int
148 e1000g_update_stats(kstat_t *ksp, int rw)
149 {
150 	struct e1000g *Adapter;
151 	struct e1000_hw *hw;
152 	p_e1000g_stat_t e1000g_ksp;
153 	e1000g_tx_ring_t *tx_ring;
154 	e1000g_rx_ring_t *rx_ring;
155 	e1000g_rx_data_t *rx_data;
156 	uint64_t val;
157 	uint32_t low_val, high_val;
158 
159 	if (rw == KSTAT_WRITE)
160 		return (EACCES);
161 
162 	Adapter = (struct e1000g *)ksp->ks_private;
163 	ASSERT(Adapter != NULL);
164 	e1000g_ksp = (p_e1000g_stat_t)ksp->ks_data;
165 	ASSERT(e1000g_ksp != NULL);
166 	hw = &Adapter->shared;
167 
168 	tx_ring = Adapter->tx_ring;
169 	rx_ring = Adapter->rx_ring;
170 	rx_data = rx_ring->rx_data;
171 
172 	rw_enter(&Adapter->chip_lock, RW_WRITER);
173 
174 	e1000g_ksp->link_speed.value.ul = Adapter->link_speed;
175 	e1000g_ksp->reset_count.value.ul = Adapter->reset_count;
176 
177 	e1000g_ksp->rx_error.value.ul = rx_ring->stat_error;
178 	e1000g_ksp->rx_allocb_fail.value.ul = rx_ring->stat_allocb_fail;
179 	e1000g_ksp->rx_size_error.value.ul = rx_ring->stat_size_error;
180 
181 	e1000g_ksp->tx_no_swpkt.value.ul = tx_ring->stat_no_swpkt;
182 	e1000g_ksp->tx_no_desc.value.ul = tx_ring->stat_no_desc;
183 	e1000g_ksp->tx_send_fail.value.ul = tx_ring->stat_send_fail;
184 	e1000g_ksp->tx_reschedule.value.ul = tx_ring->stat_reschedule;
185 	e1000g_ksp->tx_over_size.value.ul = tx_ring->stat_over_size;
186 
187 #ifdef E1000G_DEBUG
188 	e1000g_ksp->rx_none.value.ul = rx_ring->stat_none;
189 	e1000g_ksp->rx_multi_desc.value.ul = rx_ring->stat_multi_desc;
190 	e1000g_ksp->rx_no_freepkt.value.ul = rx_ring->stat_no_freepkt;
191 	if (rx_data != NULL)
192 		e1000g_ksp->rx_avail_freepkt.value.ul = rx_data->avail_freepkt;
193 
194 	e1000g_ksp->tx_under_size.value.ul = tx_ring->stat_under_size;
195 	e1000g_ksp->tx_exceed_frags.value.ul = tx_ring->stat_exceed_frags;
196 	e1000g_ksp->tx_empty_frags.value.ul = tx_ring->stat_empty_frags;
197 	e1000g_ksp->tx_recycle.value.ul = tx_ring->stat_recycle;
198 	e1000g_ksp->tx_recycle_intr.value.ul = tx_ring->stat_recycle_intr;
199 	e1000g_ksp->tx_recycle_retry.value.ul = tx_ring->stat_recycle_retry;
200 	e1000g_ksp->tx_recycle_none.value.ul = tx_ring->stat_recycle_none;
201 	e1000g_ksp->tx_copy.value.ul = tx_ring->stat_copy;
202 	e1000g_ksp->tx_bind.value.ul = tx_ring->stat_bind;
203 	e1000g_ksp->tx_multi_copy.value.ul = tx_ring->stat_multi_copy;
204 	e1000g_ksp->tx_multi_cookie.value.ul = tx_ring->stat_multi_cookie;
205 	e1000g_ksp->tx_lack_desc.value.ul = tx_ring->stat_lack_desc;
206 #endif
207 
208 	/*
209 	 * Standard Stats
210 	 */
211 	e1000g_ksp->Mpc.value.ul += E1000_READ_REG(hw, E1000_MPC);
212 	e1000g_ksp->Rlec.value.ul += E1000_READ_REG(hw, E1000_RLEC);
213 	e1000g_ksp->Xonrxc.value.ul += E1000_READ_REG(hw, E1000_XONRXC);
214 	e1000g_ksp->Xontxc.value.ul += E1000_READ_REG(hw, E1000_XONTXC);
215 	e1000g_ksp->Xoffrxc.value.ul += E1000_READ_REG(hw, E1000_XOFFRXC);
216 	e1000g_ksp->Xofftxc.value.ul += E1000_READ_REG(hw, E1000_XOFFTXC);
217 	e1000g_ksp->Fcruc.value.ul += E1000_READ_REG(hw, E1000_FCRUC);
218 
219 	if ((hw->mac.type != e1000_ich8lan) &&
220 	    (hw->mac.type != e1000_ich9lan) &&
221 	    (hw->mac.type != e1000_ich10lan) &&
222 	    (hw->mac.type != e1000_pchlan)) {
223 		e1000g_ksp->Symerrs.value.ul +=
224 		    E1000_READ_REG(hw, E1000_SYMERRS);
225 #ifdef E1000G_DEBUG
226 		e1000g_ksp->Prc64.value.ul +=
227 		    E1000_READ_REG(hw, E1000_PRC64);
228 		e1000g_ksp->Prc127.value.ul +=
229 		    E1000_READ_REG(hw, E1000_PRC127);
230 		e1000g_ksp->Prc255.value.ul +=
231 		    E1000_READ_REG(hw, E1000_PRC255);
232 		e1000g_ksp->Prc511.value.ul +=
233 		    E1000_READ_REG(hw, E1000_PRC511);
234 		e1000g_ksp->Prc1023.value.ul +=
235 		    E1000_READ_REG(hw, E1000_PRC1023);
236 		e1000g_ksp->Prc1522.value.ul +=
237 		    E1000_READ_REG(hw, E1000_PRC1522);
238 
239 		e1000g_ksp->Ptc64.value.ul +=
240 		    E1000_READ_REG(hw, E1000_PTC64);
241 		e1000g_ksp->Ptc127.value.ul +=
242 		    E1000_READ_REG(hw, E1000_PTC127);
243 		e1000g_ksp->Ptc255.value.ul +=
244 		    E1000_READ_REG(hw, E1000_PTC255);
245 		e1000g_ksp->Ptc511.value.ul +=
246 		    E1000_READ_REG(hw, E1000_PTC511);
247 		e1000g_ksp->Ptc1023.value.ul +=
248 		    E1000_READ_REG(hw, E1000_PTC1023);
249 		e1000g_ksp->Ptc1522.value.ul +=
250 		    E1000_READ_REG(hw, E1000_PTC1522);
251 #endif
252 	}
253 
254 	e1000g_ksp->Gprc.value.ul += E1000_READ_REG(hw, E1000_GPRC);
255 	e1000g_ksp->Gptc.value.ul += E1000_READ_REG(hw, E1000_GPTC);
256 	e1000g_ksp->Ruc.value.ul += E1000_READ_REG(hw, E1000_RUC);
257 	e1000g_ksp->Rfc.value.ul += E1000_READ_REG(hw, E1000_RFC);
258 	e1000g_ksp->Roc.value.ul += E1000_READ_REG(hw, E1000_ROC);
259 	e1000g_ksp->Rjc.value.ul += E1000_READ_REG(hw, E1000_RJC);
260 	e1000g_ksp->Tpr.value.ul += E1000_READ_REG(hw, E1000_TPR);
261 	e1000g_ksp->Tncrs.value.ul += e1000g_read_phy_stat(hw, E1000_TNCRS);
262 	e1000g_ksp->Tsctc.value.ul += E1000_READ_REG(hw, E1000_TSCTC);
263 	e1000g_ksp->Tsctfc.value.ul += E1000_READ_REG(hw, E1000_TSCTFC);
264 
265 	/*
266 	 * Adaptive Calculations
267 	 */
268 	hw->mac.tx_packet_delta = E1000_READ_REG(hw, E1000_TPT);
269 	e1000g_ksp->Tpt.value.ul += hw->mac.tx_packet_delta;
270 
271 	/*
272 	 * The 64-bit register will reset whenever the upper
273 	 * 32 bits are read. So we need to read the lower
274 	 * 32 bits first, then read the upper 32 bits.
275 	 */
276 	low_val = E1000_READ_REG(hw, E1000_GORCL);
277 	high_val = E1000_READ_REG(hw, E1000_GORCH);
278 	val = (uint64_t)e1000g_ksp->Gorh.value.ul << 32 |
279 	    (uint64_t)e1000g_ksp->Gorl.value.ul;
280 	val += (uint64_t)high_val << 32 | (uint64_t)low_val;
281 	e1000g_ksp->Gorl.value.ul = (uint32_t)val;
282 	e1000g_ksp->Gorh.value.ul = (uint32_t)(val >> 32);
283 
284 	low_val = E1000_READ_REG(hw, E1000_GOTCL);
285 	high_val = E1000_READ_REG(hw, E1000_GOTCH);
286 	val = (uint64_t)e1000g_ksp->Goth.value.ul << 32 |
287 	    (uint64_t)e1000g_ksp->Gotl.value.ul;
288 	val += (uint64_t)high_val << 32 | (uint64_t)low_val;
289 	e1000g_ksp->Gotl.value.ul = (uint32_t)val;
290 	e1000g_ksp->Goth.value.ul = (uint32_t)(val >> 32);
291 
292 	low_val = E1000_READ_REG(hw, E1000_TORL);
293 	high_val = E1000_READ_REG(hw, E1000_TORH);
294 	val = (uint64_t)e1000g_ksp->Torh.value.ul << 32 |
295 	    (uint64_t)e1000g_ksp->Torl.value.ul;
296 	val += (uint64_t)high_val << 32 | (uint64_t)low_val;
297 	e1000g_ksp->Torl.value.ul = (uint32_t)val;
298 	e1000g_ksp->Torh.value.ul = (uint32_t)(val >> 32);
299 
300 	low_val = E1000_READ_REG(hw, E1000_TOTL);
301 	high_val = E1000_READ_REG(hw, E1000_TOTH);
302 	val = (uint64_t)e1000g_ksp->Toth.value.ul << 32 |
303 	    (uint64_t)e1000g_ksp->Totl.value.ul;
304 	val += (uint64_t)high_val << 32 | (uint64_t)low_val;
305 	e1000g_ksp->Totl.value.ul = (uint32_t)val;
306 	e1000g_ksp->Toth.value.ul = (uint32_t)(val >> 32);
307 
308 	rw_exit(&Adapter->chip_lock);
309 
310 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
311 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_UNAFFECTED);
312 		return (EIO);
313 	}
314 
315 	return (0);
316 }
317 
318 int
319 e1000g_m_stat(void *arg, uint_t stat, uint64_t *val)
320 {
321 	struct e1000g *Adapter = (struct e1000g *)arg;
322 	struct e1000_hw *hw = &Adapter->shared;
323 	p_e1000g_stat_t e1000g_ksp;
324 	uint32_t low_val, high_val;
325 
326 	e1000g_ksp = (p_e1000g_stat_t)Adapter->e1000g_ksp->ks_data;
327 
328 	rw_enter(&Adapter->chip_lock, RW_READER);
329 
330 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
331 		rw_exit(&Adapter->chip_lock);
332 		return (ECANCELED);
333 	}
334 
335 	switch (stat) {
336 	case MAC_STAT_IFSPEED:
337 		*val = Adapter->link_speed * 1000000ull;
338 		break;
339 
340 	case MAC_STAT_MULTIRCV:
341 		e1000g_ksp->Mprc.value.ul +=
342 		    E1000_READ_REG(hw, E1000_MPRC);
343 		*val = e1000g_ksp->Mprc.value.ul;
344 		break;
345 
346 	case MAC_STAT_BRDCSTRCV:
347 		e1000g_ksp->Bprc.value.ul +=
348 		    E1000_READ_REG(hw, E1000_BPRC);
349 		*val = e1000g_ksp->Bprc.value.ul;
350 		break;
351 
352 	case MAC_STAT_MULTIXMT:
353 		e1000g_ksp->Mptc.value.ul +=
354 		    E1000_READ_REG(hw, E1000_MPTC);
355 		*val = e1000g_ksp->Mptc.value.ul;
356 		break;
357 
358 	case MAC_STAT_BRDCSTXMT:
359 		e1000g_ksp->Bptc.value.ul +=
360 		    E1000_READ_REG(hw, E1000_BPTC);
361 		*val = e1000g_ksp->Bptc.value.ul;
362 		break;
363 
364 	case MAC_STAT_NORCVBUF:
365 		e1000g_ksp->Rnbc.value.ul +=
366 		    E1000_READ_REG(hw, E1000_RNBC);
367 		*val = e1000g_ksp->Rnbc.value.ul;
368 		break;
369 
370 	case MAC_STAT_IERRORS:
371 		e1000g_ksp->Rxerrc.value.ul +=
372 		    E1000_READ_REG(hw, E1000_RXERRC);
373 		e1000g_ksp->Algnerrc.value.ul +=
374 		    E1000_READ_REG(hw, E1000_ALGNERRC);
375 		e1000g_ksp->Rlec.value.ul +=
376 		    E1000_READ_REG(hw, E1000_RLEC);
377 		e1000g_ksp->Crcerrs.value.ul +=
378 		    E1000_READ_REG(hw, E1000_CRCERRS);
379 		e1000g_ksp->Cexterr.value.ul +=
380 		    E1000_READ_REG(hw, E1000_CEXTERR);
381 		*val = e1000g_ksp->Rxerrc.value.ul +
382 		    e1000g_ksp->Algnerrc.value.ul +
383 		    e1000g_ksp->Rlec.value.ul +
384 		    e1000g_ksp->Crcerrs.value.ul +
385 		    e1000g_ksp->Cexterr.value.ul;
386 		break;
387 
388 	case MAC_STAT_NOXMTBUF:
389 		*val = Adapter->tx_ring->stat_no_desc;
390 		break;
391 
392 	case MAC_STAT_OERRORS:
393 		e1000g_ksp->Ecol.value.ul +=
394 		    e1000g_read_phy_stat(hw, E1000_ECOL);
395 		*val = e1000g_ksp->Ecol.value.ul;
396 		break;
397 
398 	case MAC_STAT_COLLISIONS:
399 		e1000g_ksp->Colc.value.ul +=
400 		    e1000g_read_phy_stat(hw, E1000_COLC);
401 		*val = e1000g_ksp->Colc.value.ul;
402 		break;
403 
404 	case MAC_STAT_RBYTES:
405 		/*
406 		 * The 64-bit register will reset whenever the upper
407 		 * 32 bits are read. So we need to read the lower
408 		 * 32 bits first, then read the upper 32 bits.
409 		 */
410 		low_val = E1000_READ_REG(hw, E1000_TORL);
411 		high_val = E1000_READ_REG(hw, E1000_TORH);
412 		*val = (uint64_t)e1000g_ksp->Torh.value.ul << 32 |
413 		    (uint64_t)e1000g_ksp->Torl.value.ul;
414 		*val += (uint64_t)high_val << 32 | (uint64_t)low_val;
415 
416 		e1000g_ksp->Torl.value.ul = (uint32_t)*val;
417 		e1000g_ksp->Torh.value.ul = (uint32_t)(*val >> 32);
418 		break;
419 
420 	case MAC_STAT_IPACKETS:
421 		e1000g_ksp->Tpr.value.ul +=
422 		    E1000_READ_REG(hw, E1000_TPR);
423 		*val = e1000g_ksp->Tpr.value.ul;
424 		break;
425 
426 	case MAC_STAT_OBYTES:
427 		/*
428 		 * The 64-bit register will reset whenever the upper
429 		 * 32 bits are read. So we need to read the lower
430 		 * 32 bits first, then read the upper 32 bits.
431 		 */
432 		low_val = E1000_READ_REG(hw, E1000_TOTL);
433 		high_val = E1000_READ_REG(hw, E1000_TOTH);
434 		*val = (uint64_t)e1000g_ksp->Toth.value.ul << 32 |
435 		    (uint64_t)e1000g_ksp->Totl.value.ul;
436 		*val += (uint64_t)high_val << 32 | (uint64_t)low_val;
437 
438 		e1000g_ksp->Totl.value.ul = (uint32_t)*val;
439 		e1000g_ksp->Toth.value.ul = (uint32_t)(*val >> 32);
440 		break;
441 
442 	case MAC_STAT_OPACKETS:
443 		e1000g_ksp->Tpt.value.ul +=
444 		    E1000_READ_REG(hw, E1000_TPT);
445 		*val = e1000g_ksp->Tpt.value.ul;
446 		break;
447 
448 	case ETHER_STAT_ALIGN_ERRORS:
449 		e1000g_ksp->Algnerrc.value.ul +=
450 		    E1000_READ_REG(hw, E1000_ALGNERRC);
451 		*val = e1000g_ksp->Algnerrc.value.ul;
452 		break;
453 
454 	case ETHER_STAT_FCS_ERRORS:
455 		e1000g_ksp->Crcerrs.value.ul +=
456 		    E1000_READ_REG(hw, E1000_CRCERRS);
457 		*val = e1000g_ksp->Crcerrs.value.ul;
458 		break;
459 
460 	case ETHER_STAT_SQE_ERRORS:
461 		e1000g_ksp->Sec.value.ul +=
462 		    E1000_READ_REG(hw, E1000_SEC);
463 		*val = e1000g_ksp->Sec.value.ul;
464 		break;
465 
466 	case ETHER_STAT_CARRIER_ERRORS:
467 		e1000g_ksp->Cexterr.value.ul +=
468 		    E1000_READ_REG(hw, E1000_CEXTERR);
469 		*val = e1000g_ksp->Cexterr.value.ul;
470 		break;
471 
472 	case ETHER_STAT_EX_COLLISIONS:
473 		e1000g_ksp->Ecol.value.ul +=
474 		    e1000g_read_phy_stat(hw, E1000_ECOL);
475 		*val = e1000g_ksp->Ecol.value.ul;
476 		break;
477 
478 	case ETHER_STAT_TX_LATE_COLLISIONS:
479 		e1000g_ksp->Latecol.value.ul +=
480 		    e1000g_read_phy_stat(hw, E1000_LATECOL);
481 		*val = e1000g_ksp->Latecol.value.ul;
482 		break;
483 
484 	case ETHER_STAT_DEFER_XMTS:
485 		e1000g_ksp->Dc.value.ul +=
486 		    e1000g_read_phy_stat(hw, E1000_DC);
487 		*val = e1000g_ksp->Dc.value.ul;
488 		break;
489 
490 	case ETHER_STAT_FIRST_COLLISIONS:
491 		e1000g_ksp->Scc.value.ul +=
492 		    e1000g_read_phy_stat(hw, E1000_SCC);
493 		*val = e1000g_ksp->Scc.value.ul;
494 		break;
495 
496 	case ETHER_STAT_MULTI_COLLISIONS:
497 		e1000g_ksp->Mcc.value.ul +=
498 		    e1000g_read_phy_stat(hw, E1000_MCC);
499 		*val = e1000g_ksp->Mcc.value.ul;
500 		break;
501 
502 	case ETHER_STAT_MACRCV_ERRORS:
503 		e1000g_ksp->Rxerrc.value.ul +=
504 		    E1000_READ_REG(hw, E1000_RXERRC);
505 		*val = e1000g_ksp->Rxerrc.value.ul;
506 		break;
507 
508 	case ETHER_STAT_MACXMT_ERRORS:
509 		e1000g_ksp->Ecol.value.ul +=
510 		    e1000g_read_phy_stat(hw, E1000_ECOL);
511 		*val = e1000g_ksp->Ecol.value.ul;
512 		break;
513 
514 	case ETHER_STAT_TOOLONG_ERRORS:
515 		e1000g_ksp->Roc.value.ul +=
516 		    E1000_READ_REG(hw, E1000_ROC);
517 		*val = e1000g_ksp->Roc.value.ul;
518 		break;
519 
520 	case ETHER_STAT_XCVR_ADDR:
521 		/* The Internal PHY's MDI address for each MAC is 1 */
522 		*val = 1;
523 		break;
524 
525 	case ETHER_STAT_XCVR_ID:
526 		*val = hw->phy.id | hw->phy.revision;
527 		break;
528 
529 	case ETHER_STAT_XCVR_INUSE:
530 		switch (Adapter->link_speed) {
531 		case SPEED_1000:
532 			*val =
533 			    (hw->phy.media_type == e1000_media_type_copper) ?
534 			    XCVR_1000T : XCVR_1000X;
535 			break;
536 		case SPEED_100:
537 			*val =
538 			    (hw->phy.media_type == e1000_media_type_copper) ?
539 			    (Adapter->phy_status & MII_SR_100T4_CAPS) ?
540 			    XCVR_100T4 : XCVR_100T2 : XCVR_100X;
541 			break;
542 		case SPEED_10:
543 			*val = XCVR_10;
544 			break;
545 		default:
546 			*val = XCVR_NONE;
547 			break;
548 		}
549 		break;
550 
551 	case ETHER_STAT_CAP_1000FDX:
552 		*val = Adapter->param_1000fdx_cap;
553 		break;
554 
555 	case ETHER_STAT_CAP_1000HDX:
556 		*val = Adapter->param_1000hdx_cap;
557 		break;
558 
559 	case ETHER_STAT_CAP_100FDX:
560 		*val = Adapter->param_100fdx_cap;
561 		break;
562 
563 	case ETHER_STAT_CAP_100HDX:
564 		*val = Adapter->param_100hdx_cap;
565 		break;
566 
567 	case ETHER_STAT_CAP_10FDX:
568 		*val = Adapter->param_10fdx_cap;
569 		break;
570 
571 	case ETHER_STAT_CAP_10HDX:
572 		*val = Adapter->param_10hdx_cap;
573 		break;
574 
575 	case ETHER_STAT_CAP_ASMPAUSE:
576 		*val = Adapter->param_asym_pause_cap;
577 		break;
578 
579 	case ETHER_STAT_CAP_PAUSE:
580 		*val = Adapter->param_pause_cap;
581 		break;
582 
583 	case ETHER_STAT_CAP_AUTONEG:
584 		*val = Adapter->param_autoneg_cap;
585 		break;
586 
587 	case ETHER_STAT_ADV_CAP_1000FDX:
588 		*val = Adapter->param_adv_1000fdx;
589 		break;
590 
591 	case ETHER_STAT_ADV_CAP_1000HDX:
592 		*val = Adapter->param_adv_1000hdx;
593 		break;
594 
595 	case ETHER_STAT_ADV_CAP_100FDX:
596 		*val = Adapter->param_adv_100fdx;
597 		break;
598 
599 	case ETHER_STAT_ADV_CAP_100HDX:
600 		*val = Adapter->param_adv_100hdx;
601 		break;
602 
603 	case ETHER_STAT_ADV_CAP_10FDX:
604 		*val = Adapter->param_adv_10fdx;
605 		break;
606 
607 	case ETHER_STAT_ADV_CAP_10HDX:
608 		*val = Adapter->param_adv_10hdx;
609 		break;
610 
611 	case ETHER_STAT_ADV_CAP_ASMPAUSE:
612 		*val = Adapter->param_adv_asym_pause;
613 		break;
614 
615 	case ETHER_STAT_ADV_CAP_PAUSE:
616 		*val = Adapter->param_adv_pause;
617 		break;
618 
619 	case ETHER_STAT_ADV_CAP_AUTONEG:
620 		*val = hw->mac.autoneg;
621 		break;
622 
623 	case ETHER_STAT_LP_CAP_1000FDX:
624 		*val = Adapter->param_lp_1000fdx;
625 		break;
626 
627 	case ETHER_STAT_LP_CAP_1000HDX:
628 		*val = Adapter->param_lp_1000hdx;
629 		break;
630 
631 	case ETHER_STAT_LP_CAP_100FDX:
632 		*val = Adapter->param_lp_100fdx;
633 		break;
634 
635 	case ETHER_STAT_LP_CAP_100HDX:
636 		*val = Adapter->param_lp_100hdx;
637 		break;
638 
639 	case ETHER_STAT_LP_CAP_10FDX:
640 		*val = Adapter->param_lp_10fdx;
641 		break;
642 
643 	case ETHER_STAT_LP_CAP_10HDX:
644 		*val = Adapter->param_lp_10hdx;
645 		break;
646 
647 	case ETHER_STAT_LP_CAP_ASMPAUSE:
648 		*val = Adapter->param_lp_asym_pause;
649 		break;
650 
651 	case ETHER_STAT_LP_CAP_PAUSE:
652 		*val = Adapter->param_lp_pause;
653 		break;
654 
655 	case ETHER_STAT_LP_CAP_AUTONEG:
656 		*val = Adapter->param_lp_autoneg;
657 		break;
658 
659 	case ETHER_STAT_LINK_ASMPAUSE:
660 		*val = Adapter->param_asym_pause_cap;
661 		break;
662 
663 	case ETHER_STAT_LINK_PAUSE:
664 		*val = Adapter->param_pause_cap;
665 		break;
666 
667 	case ETHER_STAT_LINK_AUTONEG:
668 		*val = hw->mac.autoneg;
669 		break;
670 
671 	case ETHER_STAT_LINK_DUPLEX:
672 		*val = (Adapter->link_duplex == FULL_DUPLEX) ?
673 		    LINK_DUPLEX_FULL : LINK_DUPLEX_HALF;
674 		break;
675 
676 	case ETHER_STAT_CAP_100T4:
677 		*val = Adapter->param_100t4_cap;
678 		break;
679 
680 	case ETHER_STAT_ADV_CAP_100T4:
681 		*val = Adapter->param_adv_100t4;
682 		break;
683 
684 	case ETHER_STAT_LP_CAP_100T4:
685 		*val = Adapter->param_lp_100t4;
686 		break;
687 
688 	default:
689 		rw_exit(&Adapter->chip_lock);
690 		return (ENOTSUP);
691 	}
692 
693 	rw_exit(&Adapter->chip_lock);
694 
695 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
696 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_UNAFFECTED);
697 		return (EIO);
698 	}
699 
700 	return (0);
701 }
702 
703 /*
704  * e1000g_init_stats - initialize kstat data structures
705  *
706  * This routine will create and initialize the driver private
707  * statistics counters.
708  */
709 int
710 e1000g_init_stats(struct e1000g *Adapter)
711 {
712 	kstat_t *ksp;
713 	p_e1000g_stat_t e1000g_ksp;
714 
715 	/*
716 	 * Create and init kstat
717 	 */
718 	ksp = kstat_create(WSNAME, ddi_get_instance(Adapter->dip),
719 	    "statistics", "net", KSTAT_TYPE_NAMED,
720 	    sizeof (e1000g_stat_t) / sizeof (kstat_named_t), 0);
721 
722 	if (ksp == NULL) {
723 		e1000g_log(Adapter, CE_WARN,
724 		    "Could not create kernel statistics\n");
725 		return (DDI_FAILURE);
726 	}
727 
728 	Adapter->e1000g_ksp = ksp;	/* Fill in the Adapters ksp */
729 
730 	e1000g_ksp = (p_e1000g_stat_t)ksp->ks_data;
731 
732 	/*
733 	 * Initialize all the statistics
734 	 */
735 	kstat_named_init(&e1000g_ksp->link_speed, "link_speed",
736 	    KSTAT_DATA_ULONG);
737 	kstat_named_init(&e1000g_ksp->reset_count, "Reset Count",
738 	    KSTAT_DATA_ULONG);
739 
740 	kstat_named_init(&e1000g_ksp->rx_error, "Rx Error",
741 	    KSTAT_DATA_ULONG);
742 	kstat_named_init(&e1000g_ksp->rx_allocb_fail, "Rx Allocb Failure",
743 	    KSTAT_DATA_ULONG);
744 	kstat_named_init(&e1000g_ksp->rx_size_error, "Rx Size Error",
745 	    KSTAT_DATA_ULONG);
746 
747 	kstat_named_init(&e1000g_ksp->tx_no_desc, "Tx No Desc",
748 	    KSTAT_DATA_ULONG);
749 	kstat_named_init(&e1000g_ksp->tx_no_swpkt, "Tx No Buffer",
750 	    KSTAT_DATA_ULONG);
751 	kstat_named_init(&e1000g_ksp->tx_send_fail, "Tx Send Failure",
752 	    KSTAT_DATA_ULONG);
753 	kstat_named_init(&e1000g_ksp->tx_over_size, "Tx Pkt Over Size",
754 	    KSTAT_DATA_ULONG);
755 	kstat_named_init(&e1000g_ksp->tx_reschedule, "Tx Reschedule",
756 	    KSTAT_DATA_ULONG);
757 
758 	kstat_named_init(&e1000g_ksp->Mpc, "Recv_Missed_Packets",
759 	    KSTAT_DATA_ULONG);
760 	kstat_named_init(&e1000g_ksp->Symerrs, "Recv_Symbol_Errors",
761 	    KSTAT_DATA_ULONG);
762 	kstat_named_init(&e1000g_ksp->Rlec, "Recv_Length_Errors",
763 	    KSTAT_DATA_ULONG);
764 	kstat_named_init(&e1000g_ksp->Xonrxc, "XONs_Recvd",
765 	    KSTAT_DATA_ULONG);
766 	kstat_named_init(&e1000g_ksp->Xontxc, "XONs_Xmitd",
767 	    KSTAT_DATA_ULONG);
768 	kstat_named_init(&e1000g_ksp->Xoffrxc, "XOFFs_Recvd",
769 	    KSTAT_DATA_ULONG);
770 	kstat_named_init(&e1000g_ksp->Xofftxc, "XOFFs_Xmitd",
771 	    KSTAT_DATA_ULONG);
772 	kstat_named_init(&e1000g_ksp->Fcruc, "Recv_Unsupport_FC_Pkts",
773 	    KSTAT_DATA_ULONG);
774 #ifdef E1000G_DEBUG
775 	kstat_named_init(&e1000g_ksp->Prc64, "Pkts_Recvd_(  64b)",
776 	    KSTAT_DATA_ULONG);
777 	kstat_named_init(&e1000g_ksp->Prc127, "Pkts_Recvd_(  65- 127b)",
778 	    KSTAT_DATA_ULONG);
779 	kstat_named_init(&e1000g_ksp->Prc255, "Pkts_Recvd_( 127- 255b)",
780 	    KSTAT_DATA_ULONG);
781 	kstat_named_init(&e1000g_ksp->Prc511, "Pkts_Recvd_( 256- 511b)",
782 	    KSTAT_DATA_ULONG);
783 	kstat_named_init(&e1000g_ksp->Prc1023, "Pkts_Recvd_( 511-1023b)",
784 	    KSTAT_DATA_ULONG);
785 	kstat_named_init(&e1000g_ksp->Prc1522, "Pkts_Recvd_(1024-1522b)",
786 	    KSTAT_DATA_ULONG);
787 #endif
788 	kstat_named_init(&e1000g_ksp->Gprc, "Good_Pkts_Recvd",
789 	    KSTAT_DATA_ULONG);
790 	kstat_named_init(&e1000g_ksp->Gptc, "Good_Pkts_Xmitd",
791 	    KSTAT_DATA_ULONG);
792 	kstat_named_init(&e1000g_ksp->Gorl, "Good_Octets_Recvd_Lo",
793 	    KSTAT_DATA_ULONG);
794 	kstat_named_init(&e1000g_ksp->Gorh, "Good_Octets_Recvd_Hi",
795 	    KSTAT_DATA_ULONG);
796 	kstat_named_init(&e1000g_ksp->Gotl, "Good_Octets_Xmitd_Lo",
797 	    KSTAT_DATA_ULONG);
798 	kstat_named_init(&e1000g_ksp->Goth, "Good_Octets_Xmitd_Hi",
799 	    KSTAT_DATA_ULONG);
800 	kstat_named_init(&e1000g_ksp->Ruc, "Recv_Undersize",
801 	    KSTAT_DATA_ULONG);
802 	kstat_named_init(&e1000g_ksp->Rfc, "Recv_Frag",
803 	    KSTAT_DATA_ULONG);
804 	kstat_named_init(&e1000g_ksp->Roc, "Recv_Oversize",
805 	    KSTAT_DATA_ULONG);
806 	kstat_named_init(&e1000g_ksp->Rjc, "Recv_Jabber",
807 	    KSTAT_DATA_ULONG);
808 	kstat_named_init(&e1000g_ksp->Torl, "Total_Octets_Recvd_Lo",
809 	    KSTAT_DATA_ULONG);
810 	kstat_named_init(&e1000g_ksp->Torh, "Total_Octets_Recvd_Hi",
811 	    KSTAT_DATA_ULONG);
812 	kstat_named_init(&e1000g_ksp->Totl, "Total_Octets_Xmitd_Lo",
813 	    KSTAT_DATA_ULONG);
814 	kstat_named_init(&e1000g_ksp->Toth, "Total_Octets_Xmitd_Hi",
815 	    KSTAT_DATA_ULONG);
816 	kstat_named_init(&e1000g_ksp->Tpr, "Total_Packets_Recvd",
817 	    KSTAT_DATA_ULONG);
818 	kstat_named_init(&e1000g_ksp->Tpt, "Total_Packets_Xmitd",
819 	    KSTAT_DATA_ULONG);
820 #ifdef E1000G_DEBUG
821 	kstat_named_init(&e1000g_ksp->Ptc64, "Pkts_Xmitd_(  64b)",
822 	    KSTAT_DATA_ULONG);
823 	kstat_named_init(&e1000g_ksp->Ptc127, "Pkts_Xmitd_(  65- 127b)",
824 	    KSTAT_DATA_ULONG);
825 	kstat_named_init(&e1000g_ksp->Ptc255, "Pkts_Xmitd_( 128- 255b)",
826 	    KSTAT_DATA_ULONG);
827 	kstat_named_init(&e1000g_ksp->Ptc511, "Pkts_Xmitd_( 255- 511b)",
828 	    KSTAT_DATA_ULONG);
829 	kstat_named_init(&e1000g_ksp->Ptc1023, "Pkts_Xmitd_( 512-1023b)",
830 	    KSTAT_DATA_ULONG);
831 	kstat_named_init(&e1000g_ksp->Ptc1522, "Pkts_Xmitd_(1024-1522b)",
832 	    KSTAT_DATA_ULONG);
833 #endif
834 	kstat_named_init(&e1000g_ksp->Tncrs, "Xmit_with_No_CRS",
835 	    KSTAT_DATA_ULONG);
836 	kstat_named_init(&e1000g_ksp->Tsctc, "Xmit_TCP_Seg_Contexts",
837 	    KSTAT_DATA_ULONG);
838 	kstat_named_init(&e1000g_ksp->Tsctfc, "Xmit_TCP_Seg_Contexts_Fail",
839 	    KSTAT_DATA_ULONG);
840 
841 #ifdef E1000G_DEBUG
842 	kstat_named_init(&e1000g_ksp->rx_none, "Rx No Data",
843 	    KSTAT_DATA_ULONG);
844 	kstat_named_init(&e1000g_ksp->rx_multi_desc, "Rx Span Multi Desc",
845 	    KSTAT_DATA_ULONG);
846 	kstat_named_init(&e1000g_ksp->rx_no_freepkt, "Rx Freelist Empty",
847 	    KSTAT_DATA_ULONG);
848 	kstat_named_init(&e1000g_ksp->rx_avail_freepkt, "Rx Freelist Avail",
849 	    KSTAT_DATA_ULONG);
850 
851 	kstat_named_init(&e1000g_ksp->tx_under_size, "Tx Pkt Under Size",
852 	    KSTAT_DATA_ULONG);
853 	kstat_named_init(&e1000g_ksp->tx_exceed_frags, "Tx Exceed Max Frags",
854 	    KSTAT_DATA_ULONG);
855 	kstat_named_init(&e1000g_ksp->tx_empty_frags, "Tx Empty Frags",
856 	    KSTAT_DATA_ULONG);
857 	kstat_named_init(&e1000g_ksp->tx_recycle, "Tx Recycle",
858 	    KSTAT_DATA_ULONG);
859 	kstat_named_init(&e1000g_ksp->tx_recycle_intr, "Tx Recycle Intr",
860 	    KSTAT_DATA_ULONG);
861 	kstat_named_init(&e1000g_ksp->tx_recycle_retry, "Tx Recycle Retry",
862 	    KSTAT_DATA_ULONG);
863 	kstat_named_init(&e1000g_ksp->tx_recycle_none, "Tx Recycled None",
864 	    KSTAT_DATA_ULONG);
865 	kstat_named_init(&e1000g_ksp->tx_copy, "Tx Send Copy",
866 	    KSTAT_DATA_ULONG);
867 	kstat_named_init(&e1000g_ksp->tx_bind, "Tx Send Bind",
868 	    KSTAT_DATA_ULONG);
869 	kstat_named_init(&e1000g_ksp->tx_multi_copy, "Tx Copy Multi Frags",
870 	    KSTAT_DATA_ULONG);
871 	kstat_named_init(&e1000g_ksp->tx_multi_cookie, "Tx Bind Multi Cookies",
872 	    KSTAT_DATA_ULONG);
873 	kstat_named_init(&e1000g_ksp->tx_lack_desc, "Tx Desc Insufficient",
874 	    KSTAT_DATA_ULONG);
875 #endif
876 
877 	/*
878 	 * Function to provide kernel stat update on demand
879 	 */
880 	ksp->ks_update = e1000g_update_stats;
881 
882 	/*
883 	 * Pointer into provider's raw statistics
884 	 */
885 	ksp->ks_private = (void *)Adapter;
886 
887 	/*
888 	 * Add kstat to systems kstat chain
889 	 */
890 	kstat_install(ksp);
891 
892 	return (DDI_SUCCESS);
893 }
894 
895 /*
896  * e1000g_read_phy_stat - read certain PHY statistics
897  *
898  * Certain statistics are read from MAC registers on some silicon types
899  * but are read from the PHY on other silicon types.  This routine
900  * handles that difference as needed.
901  */
902 static uint32_t
903 e1000g_read_phy_stat(struct e1000_hw *hw, int reg)
904 {
905 	uint16_t phy_low, phy_high;
906 	uint32_t val;
907 
908 	/* get statistic from PHY in these cases */
909 	if ((hw->phy.type == e1000_phy_82578) ||
910 	    (hw->phy.type == e1000_phy_82577)) {
911 
912 		switch (reg) {
913 		case E1000_SCC:
914 			(void) e1000_read_phy_reg(hw, HV_SCC_UPPER, &phy_high);
915 			(void) e1000_read_phy_reg(hw, HV_SCC_LOWER, &phy_low);
916 			val = ((uint32_t)phy_high << 16) | (uint32_t)phy_low;
917 			break;
918 
919 		case E1000_MCC:
920 			(void) e1000_read_phy_reg(hw, HV_MCC_UPPER, &phy_high);
921 			(void) e1000_read_phy_reg(hw, HV_MCC_LOWER, &phy_low);
922 			val = ((uint32_t)phy_high << 16) | (uint32_t)phy_low;
923 			break;
924 
925 		case E1000_ECOL:
926 			(void) e1000_read_phy_reg(hw, HV_ECOL_UPPER, &phy_high);
927 			(void) e1000_read_phy_reg(hw, HV_ECOL_LOWER, &phy_low);
928 			val = ((uint32_t)phy_high << 16) | (uint32_t)phy_low;
929 			break;
930 
931 		case E1000_COLC:
932 			(void) e1000_read_phy_reg(hw, HV_COLC_UPPER, &phy_high);
933 			(void) e1000_read_phy_reg(hw, HV_COLC_LOWER, &phy_low);
934 			val = ((uint32_t)phy_high << 16) | (uint32_t)phy_low;
935 			break;
936 
937 		case E1000_LATECOL:
938 			(void) e1000_read_phy_reg(hw, HV_LATECOL_UPPER,
939 			    &phy_high);
940 			(void) e1000_read_phy_reg(hw, HV_LATECOL_LOWER,
941 			    &phy_low);
942 			val = ((uint32_t)phy_high << 16) | (uint32_t)phy_low;
943 			break;
944 
945 		case E1000_DC:
946 			(void) e1000_read_phy_reg(hw, HV_DC_UPPER, &phy_high);
947 			(void) e1000_read_phy_reg(hw, HV_DC_LOWER, &phy_low);
948 			val = ((uint32_t)phy_high << 16) | (uint32_t)phy_low;
949 			break;
950 
951 		case E1000_TNCRS:
952 			(void) e1000_read_phy_reg(hw, HV_TNCRS_UPPER,
953 			    &phy_high);
954 			(void) e1000_read_phy_reg(hw, HV_TNCRS_LOWER,
955 			    &phy_low);
956 			val = ((uint32_t)phy_high << 16) | (uint32_t)phy_low;
957 			break;
958 
959 		default:
960 			break;
961 		}
962 
963 	/* get statistic from MAC otherwise */
964 	} else {
965 		val = E1000_READ_REG(hw, reg);
966 	}
967 
968 	return (val);
969 }
970