xref: /titanic_51/usr/src/uts/common/io/e1000g/e1000g_main.c (revision b6d5e9b682eacb2ea8d7ac8b6695bc419b680378)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2008 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * **********************************************************************
28  *									*
29  * Module Name:								*
30  *   e1000g_main.c							*
31  *									*
32  * Abstract:								*
33  *   This file contains the interface routines for the solaris OS.	*
34  *   It has all DDI entry point routines and GLD entry point routines.	*
35  *									*
36  *   This file also contains routines that take care of initialization	*
37  *   uninit routine and interrupt routine.				*
38  *									*
39  * **********************************************************************
40  */
41 
42 #include <sys/dlpi.h>
43 #include <sys/mac.h>
44 #include "e1000g_sw.h"
45 #include "e1000g_debug.h"
46 
47 static char ident[] = "Intel PRO/1000 Ethernet";
48 static char e1000g_string[] = "Intel(R) PRO/1000 Network Connection";
49 static char e1000g_version[] = "Driver Ver. 5.2.13";
50 
51 /*
52  * Proto types for DDI entry points
53  */
54 static int e1000g_attach(dev_info_t *, ddi_attach_cmd_t);
55 static int e1000g_detach(dev_info_t *, ddi_detach_cmd_t);
56 static int e1000g_quiesce(dev_info_t *);
57 
58 /*
59  * init and intr routines prototype
60  */
61 static int e1000g_resume(dev_info_t *);
62 static int e1000g_suspend(dev_info_t *);
63 static uint_t e1000g_intr_pciexpress(caddr_t);
64 static uint_t e1000g_intr(caddr_t);
65 static void e1000g_intr_work(struct e1000g *, uint32_t);
66 #pragma inline(e1000g_intr_work)
67 static uint32_t e1000g_get_itr(uint32_t, uint32_t, uint32_t);
68 #pragma inline(e1000g_get_itr)
69 static int e1000g_init(struct e1000g *);
70 static int e1000g_start(struct e1000g *, boolean_t);
71 static void e1000g_stop(struct e1000g *, boolean_t);
72 static int e1000g_m_start(void *);
73 static void e1000g_m_stop(void *);
74 static int e1000g_m_promisc(void *, boolean_t);
75 static boolean_t e1000g_m_getcapab(void *, mac_capab_t, void *);
76 static int e1000g_m_unicst(void *, const uint8_t *);
77 static int e1000g_m_unicst_add(void *, mac_multi_addr_t *);
78 static int e1000g_m_unicst_remove(void *, mac_addr_slot_t);
79 static int e1000g_m_unicst_modify(void *, mac_multi_addr_t *);
80 static int e1000g_m_unicst_get(void *, mac_multi_addr_t *);
81 static int e1000g_m_multicst(void *, boolean_t, const uint8_t *);
82 static void e1000g_m_ioctl(void *, queue_t *, mblk_t *);
83 static int e1000g_m_setprop(void *, const char *, mac_prop_id_t,
84     uint_t, const void *);
85 static int e1000g_m_getprop(void *, const char *, mac_prop_id_t,
86     uint_t, uint_t, void *, uint_t *);
87 static int e1000g_set_priv_prop(struct e1000g *, const char *, uint_t,
88     const void *);
89 static int e1000g_get_priv_prop(struct e1000g *, const char *, uint_t,
90     uint_t, void *, uint_t *);
91 static void e1000g_init_locks(struct e1000g *);
92 static void e1000g_destroy_locks(struct e1000g *);
93 static int e1000g_identify_hardware(struct e1000g *);
94 static int e1000g_regs_map(struct e1000g *);
95 static int e1000g_set_driver_params(struct e1000g *);
96 static void e1000g_set_bufsize(struct e1000g *);
97 static int e1000g_register_mac(struct e1000g *);
98 static boolean_t e1000g_rx_drain(struct e1000g *);
99 static boolean_t e1000g_tx_drain(struct e1000g *);
100 static void e1000g_init_unicst(struct e1000g *);
101 static int e1000g_unicst_set(struct e1000g *, const uint8_t *, mac_addr_slot_t);
102 
103 /*
104  * Local routines
105  */
106 static boolean_t e1000g_reset_adapter(struct e1000g *);
107 static void e1000g_tx_clean(struct e1000g *);
108 static void e1000g_rx_clean(struct e1000g *);
109 static void e1000g_link_timer(void *);
110 static void e1000g_local_timer(void *);
111 static boolean_t e1000g_link_check(struct e1000g *);
112 static boolean_t e1000g_stall_check(struct e1000g *);
113 static void e1000g_smartspeed(struct e1000g *);
114 static void e1000g_get_conf(struct e1000g *);
115 static int e1000g_get_prop(struct e1000g *, char *, int, int, int);
116 static void enable_watchdog_timer(struct e1000g *);
117 static void disable_watchdog_timer(struct e1000g *);
118 static void start_watchdog_timer(struct e1000g *);
119 static void restart_watchdog_timer(struct e1000g *);
120 static void stop_watchdog_timer(struct e1000g *);
121 static void stop_link_timer(struct e1000g *);
122 static void stop_82547_timer(e1000g_tx_ring_t *);
123 static void e1000g_force_speed_duplex(struct e1000g *);
124 static void e1000g_get_max_frame_size(struct e1000g *);
125 static boolean_t is_valid_mac_addr(uint8_t *);
126 static void e1000g_unattach(dev_info_t *, struct e1000g *);
127 #ifdef E1000G_DEBUG
128 static void e1000g_ioc_peek_reg(struct e1000g *, e1000g_peekpoke_t *);
129 static void e1000g_ioc_poke_reg(struct e1000g *, e1000g_peekpoke_t *);
130 static void e1000g_ioc_peek_mem(struct e1000g *, e1000g_peekpoke_t *);
131 static void e1000g_ioc_poke_mem(struct e1000g *, e1000g_peekpoke_t *);
132 static enum ioc_reply e1000g_pp_ioctl(struct e1000g *,
133     struct iocblk *, mblk_t *);
134 #endif
135 static enum ioc_reply e1000g_loopback_ioctl(struct e1000g *,
136     struct iocblk *, mblk_t *);
137 static boolean_t e1000g_check_loopback_support(struct e1000_hw *);
138 static boolean_t e1000g_set_loopback_mode(struct e1000g *, uint32_t);
139 static void e1000g_set_internal_loopback(struct e1000g *);
140 static void e1000g_set_external_loopback_1000(struct e1000g *);
141 static void e1000g_set_external_loopback_100(struct e1000g *);
142 static void e1000g_set_external_loopback_10(struct e1000g *);
143 static int e1000g_add_intrs(struct e1000g *);
144 static int e1000g_intr_add(struct e1000g *, int);
145 static int e1000g_rem_intrs(struct e1000g *);
146 static int e1000g_enable_intrs(struct e1000g *);
147 static int e1000g_disable_intrs(struct e1000g *);
148 static boolean_t e1000g_link_up(struct e1000g *);
149 #ifdef __sparc
150 static boolean_t e1000g_find_mac_address(struct e1000g *);
151 #endif
152 static void e1000g_get_phy_state(struct e1000g *);
153 static void e1000g_free_priv_devi_node(struct e1000g *, boolean_t);
154 static int e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err,
155     const void *impl_data);
156 static void e1000g_fm_init(struct e1000g *Adapter);
157 static void e1000g_fm_fini(struct e1000g *Adapter);
158 static int e1000g_get_def_val(struct e1000g *, mac_prop_id_t, uint_t, void *);
159 static void e1000g_param_sync(struct e1000g *);
160 static void e1000g_get_driver_control(struct e1000_hw *);
161 static void e1000g_release_driver_control(struct e1000_hw *);
162 static void e1000g_restore_promisc(struct e1000g *Adapter);
163 
164 mac_priv_prop_t e1000g_priv_props[] = {
165 	{"_tx_bcopy_threshold", MAC_PROP_PERM_RW},
166 	{"_tx_interrupt_enable", MAC_PROP_PERM_RW},
167 	{"_tx_intr_delay", MAC_PROP_PERM_RW},
168 	{"_tx_intr_abs_delay", MAC_PROP_PERM_RW},
169 	{"_rx_bcopy_threshold", MAC_PROP_PERM_RW},
170 	{"_max_num_rcv_packets", MAC_PROP_PERM_RW},
171 	{"_rx_intr_delay", MAC_PROP_PERM_RW},
172 	{"_rx_intr_abs_delay", MAC_PROP_PERM_RW},
173 	{"_intr_throttling_rate", MAC_PROP_PERM_RW},
174 	{"_intr_adaptive", MAC_PROP_PERM_RW},
175 	{"_tx_recycle_thresh", MAC_PROP_PERM_RW},
176 	{"_adv_pause_cap", MAC_PROP_PERM_READ},
177 	{"_adv_asym_pause_cap", MAC_PROP_PERM_READ},
178 	{"_tx_recycle_num", MAC_PROP_PERM_RW}
179 };
180 #define	E1000G_MAX_PRIV_PROPS	\
181 	(sizeof (e1000g_priv_props)/sizeof (mac_priv_prop_t))
182 
183 
184 static struct cb_ops cb_ws_ops = {
185 	nulldev,		/* cb_open */
186 	nulldev,		/* cb_close */
187 	nodev,			/* cb_strategy */
188 	nodev,			/* cb_print */
189 	nodev,			/* cb_dump */
190 	nodev,			/* cb_read */
191 	nodev,			/* cb_write */
192 	nodev,			/* cb_ioctl */
193 	nodev,			/* cb_devmap */
194 	nodev,			/* cb_mmap */
195 	nodev,			/* cb_segmap */
196 	nochpoll,		/* cb_chpoll */
197 	ddi_prop_op,		/* cb_prop_op */
198 	NULL,			/* cb_stream */
199 	D_MP | D_HOTPLUG,	/* cb_flag */
200 	CB_REV,			/* cb_rev */
201 	nodev,			/* cb_aread */
202 	nodev			/* cb_awrite */
203 };
204 
205 static struct dev_ops ws_ops = {
206 	DEVO_REV,		/* devo_rev */
207 	0,			/* devo_refcnt */
208 	NULL,			/* devo_getinfo */
209 	nulldev,		/* devo_identify */
210 	nulldev,		/* devo_probe */
211 	e1000g_attach,		/* devo_attach */
212 	e1000g_detach,		/* devo_detach */
213 	nodev,			/* devo_reset */
214 	&cb_ws_ops,		/* devo_cb_ops */
215 	NULL,			/* devo_bus_ops */
216 	ddi_power,		/* devo_power */
217 	e1000g_quiesce		/* devo_quiesce */
218 };
219 
220 static struct modldrv modldrv = {
221 	&mod_driverops,		/* Type of module.  This one is a driver */
222 	ident,			/* Discription string */
223 	&ws_ops,		/* driver ops */
224 };
225 
226 static struct modlinkage modlinkage = {
227 	MODREV_1, &modldrv, NULL
228 };
229 
230 /* Access attributes for register mapping */
231 static ddi_device_acc_attr_t e1000g_regs_acc_attr = {
232 	DDI_DEVICE_ATTR_V0,
233 	DDI_STRUCTURE_LE_ACC,
234 	DDI_STRICTORDER_ACC,
235 	DDI_FLAGERR_ACC
236 };
237 
238 #define	E1000G_M_CALLBACK_FLAGS \
239 	(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP)
240 
241 static mac_callbacks_t e1000g_m_callbacks = {
242 	E1000G_M_CALLBACK_FLAGS,
243 	e1000g_m_stat,
244 	e1000g_m_start,
245 	e1000g_m_stop,
246 	e1000g_m_promisc,
247 	e1000g_m_multicst,
248 	e1000g_m_unicst,
249 	e1000g_m_tx,
250 	NULL,
251 	e1000g_m_ioctl,
252 	e1000g_m_getcapab,
253 	NULL,
254 	NULL,
255 	e1000g_m_setprop,
256 	e1000g_m_getprop
257 };
258 
259 /*
260  * Global variables
261  */
262 uint32_t e1000g_mblks_pending = 0;
263 /*
264  * Workaround for Dynamic Reconfiguration support, for x86 platform only.
265  * Here we maintain a private dev_info list if e1000g_force_detach is
266  * enabled. If we force the driver to detach while there are still some
267  * rx buffers retained in the upper layer, we have to keep a copy of the
268  * dev_info. In some cases (Dynamic Reconfiguration), the dev_info data
269  * structure will be freed after the driver is detached. However when we
270  * finally free those rx buffers released by the upper layer, we need to
271  * refer to the dev_info to free the dma buffers. So we save a copy of
272  * the dev_info for this purpose. On x86 platform, we assume this copy
273  * of dev_info is always valid, but on SPARC platform, it could be invalid
274  * after the system board level DR operation. For this reason, the global
275  * variable e1000g_force_detach must be B_FALSE on SPARC platform.
276  */
277 #ifdef __sparc
278 boolean_t e1000g_force_detach = B_FALSE;
279 #else
280 boolean_t e1000g_force_detach = B_TRUE;
281 #endif
282 private_devi_list_t *e1000g_private_devi_list = NULL;
283 
284 /*
285  * The rwlock is defined to protect the whole processing of rx recycling
286  * and the rx packets release in detach processing to make them mutually
287  * exclusive.
288  * The rx recycling processes different rx packets in different threads,
289  * so it will be protected with RW_READER and it won't block any other rx
290  * recycling threads.
291  * While the detach processing will be protected with RW_WRITER to make
292  * it mutually exclusive with the rx recycling.
293  */
294 krwlock_t e1000g_rx_detach_lock;
295 /*
296  * The rwlock e1000g_dma_type_lock is defined to protect the global flag
297  * e1000g_dma_type. For SPARC, the initial value of the flag is "USE_DVMA".
298  * If there are many e1000g instances, the system may run out of DVMA
299  * resources during the initialization of the instances, then the flag will
300  * be changed to "USE_DMA". Because different e1000g instances are initialized
301  * in parallel, we need to use this lock to protect the flag.
302  */
303 krwlock_t e1000g_dma_type_lock;
304 
305 /*
306  * The 82546 chipset is a dual-port device, both the ports share one eeprom.
307  * Based on the information from Intel, the 82546 chipset has some hardware
308  * problem. When one port is being reset and the other port is trying to
309  * access the eeprom, it could cause system hang or panic. To workaround this
310  * hardware problem, we use a global mutex to prevent such operations from
311  * happening simultaneously on different instances. This workaround is applied
312  * to all the devices supported by this driver.
313  */
314 kmutex_t e1000g_nvm_lock;
315 
316 /*
317  * Loadable module configuration entry points for the driver
318  */
319 
320 /*
321  * _init - module initialization
322  */
323 int
324 _init(void)
325 {
326 	int status;
327 
328 	mac_init_ops(&ws_ops, WSNAME);
329 	status = mod_install(&modlinkage);
330 	if (status != DDI_SUCCESS)
331 		mac_fini_ops(&ws_ops);
332 	else {
333 		rw_init(&e1000g_rx_detach_lock, NULL, RW_DRIVER, NULL);
334 		rw_init(&e1000g_dma_type_lock, NULL, RW_DRIVER, NULL);
335 		mutex_init(&e1000g_nvm_lock, NULL, MUTEX_DRIVER, NULL);
336 	}
337 
338 	return (status);
339 }
340 
341 /*
342  * _fini - module finalization
343  */
344 int
345 _fini(void)
346 {
347 	int status;
348 
349 	rw_enter(&e1000g_rx_detach_lock, RW_READER);
350 	if (e1000g_mblks_pending != 0) {
351 		rw_exit(&e1000g_rx_detach_lock);
352 		return (EBUSY);
353 	}
354 	rw_exit(&e1000g_rx_detach_lock);
355 
356 	status = mod_remove(&modlinkage);
357 	if (status == DDI_SUCCESS) {
358 		mac_fini_ops(&ws_ops);
359 
360 		if (e1000g_force_detach) {
361 			private_devi_list_t *devi_node;
362 
363 			rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
364 			while (e1000g_private_devi_list != NULL) {
365 				devi_node = e1000g_private_devi_list;
366 				e1000g_private_devi_list =
367 				    e1000g_private_devi_list->next;
368 
369 				kmem_free(devi_node->priv_dip,
370 				    sizeof (struct dev_info));
371 				kmem_free(devi_node,
372 				    sizeof (private_devi_list_t));
373 			}
374 			rw_exit(&e1000g_rx_detach_lock);
375 		}
376 
377 		rw_destroy(&e1000g_rx_detach_lock);
378 		rw_destroy(&e1000g_dma_type_lock);
379 		mutex_destroy(&e1000g_nvm_lock);
380 	}
381 
382 	return (status);
383 }
384 
385 /*
386  * _info - module information
387  */
388 int
389 _info(struct modinfo *modinfop)
390 {
391 	return (mod_info(&modlinkage, modinfop));
392 }
393 
394 /*
395  * e1000g_attach - driver attach
396  *
397  * This function is the device-specific initialization entry
398  * point. This entry point is required and must be written.
399  * The DDI_ATTACH command must be provided in the attach entry
400  * point. When attach() is called with cmd set to DDI_ATTACH,
401  * all normal kernel services (such as kmem_alloc(9F)) are
402  * available for use by the driver.
403  *
404  * The attach() function will be called once for each instance
405  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
406  * Until attach() succeeds, the only driver entry points which
407  * may be called are open(9E) and getinfo(9E).
408  */
409 static int
410 e1000g_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
411 {
412 	struct e1000g *Adapter;
413 	struct e1000_hw *hw;
414 	struct e1000g_osdep *osdep;
415 	int instance;
416 
417 	switch (cmd) {
418 	default:
419 		e1000g_log(NULL, CE_WARN,
420 		    "Unsupported command send to e1000g_attach... ");
421 		return (DDI_FAILURE);
422 
423 	case DDI_RESUME:
424 		return (e1000g_resume(devinfo));
425 
426 	case DDI_ATTACH:
427 		break;
428 	}
429 
430 	/*
431 	 * get device instance number
432 	 */
433 	instance = ddi_get_instance(devinfo);
434 
435 	/*
436 	 * Allocate soft data structure
437 	 */
438 	Adapter =
439 	    (struct e1000g *)kmem_zalloc(sizeof (*Adapter), KM_SLEEP);
440 
441 	Adapter->dip = devinfo;
442 	Adapter->instance = instance;
443 	Adapter->tx_ring->adapter = Adapter;
444 	Adapter->rx_ring->adapter = Adapter;
445 
446 	hw = &Adapter->shared;
447 	osdep = &Adapter->osdep;
448 	hw->back = osdep;
449 	osdep->adapter = Adapter;
450 
451 	ddi_set_driver_private(devinfo, (caddr_t)Adapter);
452 
453 	/*
454 	 * Initialize for fma support
455 	 */
456 	Adapter->fm_capabilities = e1000g_get_prop(Adapter, "fm-capable",
457 	    0, 0x0f,
458 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
459 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
460 	e1000g_fm_init(Adapter);
461 	Adapter->attach_progress |= ATTACH_PROGRESS_FMINIT;
462 
463 	/*
464 	 * PCI Configure
465 	 */
466 	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
467 		e1000g_log(Adapter, CE_WARN, "PCI configuration failed");
468 		goto attach_fail;
469 	}
470 	Adapter->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
471 
472 	/*
473 	 * Setup hardware
474 	 */
475 	if (e1000g_identify_hardware(Adapter) != DDI_SUCCESS) {
476 		e1000g_log(Adapter, CE_WARN, "Identify hardware failed");
477 		goto attach_fail;
478 	}
479 
480 	/*
481 	 * Map in the device registers.
482 	 */
483 	if (e1000g_regs_map(Adapter) != DDI_SUCCESS) {
484 		e1000g_log(Adapter, CE_WARN, "Mapping registers failed");
485 		goto attach_fail;
486 	}
487 	Adapter->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
488 
489 	/*
490 	 * Initialize driver parameters
491 	 */
492 	if (e1000g_set_driver_params(Adapter) != DDI_SUCCESS) {
493 		goto attach_fail;
494 	}
495 	Adapter->attach_progress |= ATTACH_PROGRESS_SETUP;
496 
497 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
498 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
499 		goto attach_fail;
500 	}
501 
502 	/*
503 	 * Initialize interrupts
504 	 */
505 	if (e1000g_add_intrs(Adapter) != DDI_SUCCESS) {
506 		e1000g_log(Adapter, CE_WARN, "Add interrupts failed");
507 		goto attach_fail;
508 	}
509 	Adapter->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
510 
511 	/*
512 	 * Initialize mutex's for this device.
513 	 * Do this before enabling the interrupt handler and
514 	 * register the softint to avoid the condition where
515 	 * interrupt handler can try using uninitialized mutex
516 	 */
517 	e1000g_init_locks(Adapter);
518 	Adapter->attach_progress |= ATTACH_PROGRESS_LOCKS;
519 
520 	/*
521 	 * Initialize Driver Counters
522 	 */
523 	if (e1000g_init_stats(Adapter) != DDI_SUCCESS) {
524 		e1000g_log(Adapter, CE_WARN, "Init stats failed");
525 		goto attach_fail;
526 	}
527 	Adapter->attach_progress |= ATTACH_PROGRESS_KSTATS;
528 
529 	/*
530 	 * Initialize chip hardware and software structures
531 	 */
532 	if (e1000g_init(Adapter) != DDI_SUCCESS) {
533 		e1000g_log(Adapter, CE_WARN, "Adapter initialization failed");
534 		goto attach_fail;
535 	}
536 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
537 
538 	/*
539 	 * Register the driver to the MAC
540 	 */
541 	if (e1000g_register_mac(Adapter) != DDI_SUCCESS) {
542 		e1000g_log(Adapter, CE_WARN, "Register MAC failed");
543 		goto attach_fail;
544 	}
545 	Adapter->attach_progress |= ATTACH_PROGRESS_MAC;
546 
547 	/*
548 	 * Now that mutex locks are initialized, and the chip is also
549 	 * initialized, enable interrupts.
550 	 */
551 	if (e1000g_enable_intrs(Adapter) != DDI_SUCCESS) {
552 		e1000g_log(Adapter, CE_WARN, "Enable DDI interrupts failed");
553 		goto attach_fail;
554 	}
555 	Adapter->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
556 
557 	/*
558 	 * If e1000g_force_detach is enabled, in global private dip list,
559 	 * we will create a new entry, which maintains the priv_dip for DR
560 	 * supports after driver detached.
561 	 */
562 	if (e1000g_force_detach) {
563 		private_devi_list_t *devi_node;
564 
565 		Adapter->priv_dip =
566 		    kmem_zalloc(sizeof (struct dev_info), KM_SLEEP);
567 		bcopy(DEVI(devinfo), DEVI(Adapter->priv_dip),
568 		    sizeof (struct dev_info));
569 
570 		devi_node =
571 		    kmem_zalloc(sizeof (private_devi_list_t), KM_SLEEP);
572 
573 		rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
574 		devi_node->priv_dip = Adapter->priv_dip;
575 		devi_node->flag = E1000G_PRIV_DEVI_ATTACH;
576 		devi_node->next = e1000g_private_devi_list;
577 		e1000g_private_devi_list = devi_node;
578 		rw_exit(&e1000g_rx_detach_lock);
579 	}
580 
581 	cmn_err(CE_CONT, "!%s, %s\n", e1000g_string, e1000g_version);
582 
583 	return (DDI_SUCCESS);
584 
585 attach_fail:
586 	e1000g_unattach(devinfo, Adapter);
587 	return (DDI_FAILURE);
588 }
589 
590 static int
591 e1000g_register_mac(struct e1000g *Adapter)
592 {
593 	struct e1000_hw *hw = &Adapter->shared;
594 	mac_register_t *mac;
595 	int err;
596 
597 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
598 		return (DDI_FAILURE);
599 
600 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
601 	mac->m_driver = Adapter;
602 	mac->m_dip = Adapter->dip;
603 	mac->m_src_addr = hw->mac.addr;
604 	mac->m_callbacks = &e1000g_m_callbacks;
605 	mac->m_min_sdu = 0;
606 	mac->m_max_sdu = Adapter->default_mtu;
607 	mac->m_margin = VLAN_TAGSZ;
608 	mac->m_priv_props = e1000g_priv_props;
609 	mac->m_priv_prop_count = E1000G_MAX_PRIV_PROPS;
610 
611 	err = mac_register(mac, &Adapter->mh);
612 	mac_free(mac);
613 
614 	return (err == 0 ? DDI_SUCCESS : DDI_FAILURE);
615 }
616 
617 static int
618 e1000g_identify_hardware(struct e1000g *Adapter)
619 {
620 	struct e1000_hw *hw = &Adapter->shared;
621 	struct e1000g_osdep *osdep = &Adapter->osdep;
622 
623 	/* Get the device id */
624 	hw->vendor_id =
625 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
626 	hw->device_id =
627 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
628 	hw->revision_id =
629 	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
630 	hw->subsystem_device_id =
631 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
632 	hw->subsystem_vendor_id =
633 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
634 
635 	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
636 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
637 		    "MAC type could not be set properly.");
638 		return (DDI_FAILURE);
639 	}
640 
641 	return (DDI_SUCCESS);
642 }
643 
644 static int
645 e1000g_regs_map(struct e1000g *Adapter)
646 {
647 	dev_info_t *devinfo = Adapter->dip;
648 	struct e1000_hw *hw = &Adapter->shared;
649 	struct e1000g_osdep *osdep = &Adapter->osdep;
650 	off_t mem_size;
651 
652 	/* Get size of adapter register memory */
653 	if (ddi_dev_regsize(devinfo, ADAPTER_REG_SET, &mem_size) !=
654 	    DDI_SUCCESS) {
655 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
656 		    "ddi_dev_regsize for registers failed");
657 		return (DDI_FAILURE);
658 	}
659 
660 	/* Map adapter register memory */
661 	if ((ddi_regs_map_setup(devinfo, ADAPTER_REG_SET,
662 	    (caddr_t *)&hw->hw_addr, 0, mem_size, &e1000g_regs_acc_attr,
663 	    &osdep->reg_handle)) != DDI_SUCCESS) {
664 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
665 		    "ddi_regs_map_setup for registers failed");
666 		goto regs_map_fail;
667 	}
668 
669 	/* ICH needs to map flash memory */
670 	if (hw->mac.type == e1000_ich8lan ||
671 	    hw->mac.type == e1000_ich9lan ||
672 	    hw->mac.type == e1000_ich10lan) {
673 		/* get flash size */
674 		if (ddi_dev_regsize(devinfo, ICH_FLASH_REG_SET,
675 		    &mem_size) != DDI_SUCCESS) {
676 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
677 			    "ddi_dev_regsize for ICH flash failed");
678 			goto regs_map_fail;
679 		}
680 
681 		/* map flash in */
682 		if (ddi_regs_map_setup(devinfo, ICH_FLASH_REG_SET,
683 		    (caddr_t *)&hw->flash_address, 0,
684 		    mem_size, &e1000g_regs_acc_attr,
685 		    &osdep->ich_flash_handle) != DDI_SUCCESS) {
686 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
687 			    "ddi_regs_map_setup for ICH flash failed");
688 			goto regs_map_fail;
689 		}
690 	}
691 
692 	return (DDI_SUCCESS);
693 
694 regs_map_fail:
695 	if (osdep->reg_handle != NULL)
696 		ddi_regs_map_free(&osdep->reg_handle);
697 
698 	return (DDI_FAILURE);
699 }
700 
701 static int
702 e1000g_set_driver_params(struct e1000g *Adapter)
703 {
704 	struct e1000_hw *hw;
705 	uint32_t mem_bar, io_bar, bar64;
706 
707 	hw = &Adapter->shared;
708 
709 	/* Set MAC type and initialize hardware functions */
710 	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
711 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
712 		    "Could not setup hardware functions");
713 		return (DDI_FAILURE);
714 	}
715 
716 	/* Get bus information */
717 	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
718 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
719 		    "Could not get bus information");
720 		return (DDI_FAILURE);
721 	}
722 
723 	/* get mem_base addr */
724 	mem_bar = pci_config_get32(Adapter->osdep.cfg_handle, PCI_CONF_BASE0);
725 	bar64 = mem_bar & PCI_BASE_TYPE_ALL;
726 
727 	/* get io_base addr */
728 	if (hw->mac.type >= e1000_82544) {
729 		if (bar64) {
730 			/* IO BAR is different for 64 bit BAR mode */
731 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
732 			    PCI_CONF_BASE4);
733 		} else {
734 			/* normal 32-bit BAR mode */
735 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
736 			    PCI_CONF_BASE2);
737 		}
738 		hw->io_base = io_bar & PCI_BASE_IO_ADDR_M;
739 	} else {
740 		/* no I/O access for adapters prior to 82544 */
741 		hw->io_base = 0x0;
742 	}
743 
744 	e1000_read_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->bus.pci_cmd_word);
745 
746 	hw->mac.autoneg_failed = B_TRUE;
747 
748 	/* Set the autoneg_wait_to_complete flag to B_FALSE */
749 	hw->phy.autoneg_wait_to_complete = B_FALSE;
750 
751 	/* Adaptive IFS related changes */
752 	hw->mac.adaptive_ifs = B_TRUE;
753 
754 	/* Enable phy init script for IGP phy of 82541/82547 */
755 	if ((hw->mac.type == e1000_82547) ||
756 	    (hw->mac.type == e1000_82541) ||
757 	    (hw->mac.type == e1000_82547_rev_2) ||
758 	    (hw->mac.type == e1000_82541_rev_2))
759 		e1000_init_script_state_82541(hw, B_TRUE);
760 
761 	/* Enable the TTL workaround for 82541/82547 */
762 	e1000_set_ttl_workaround_state_82541(hw, B_TRUE);
763 
764 #ifdef __sparc
765 	Adapter->strip_crc = B_TRUE;
766 #else
767 	Adapter->strip_crc = B_FALSE;
768 #endif
769 
770 	/* Get conf file properties */
771 	e1000g_get_conf(Adapter);
772 
773 	/* Get speed/duplex settings in conf file */
774 	hw->mac.forced_speed_duplex = ADVERTISE_100_FULL;
775 	hw->phy.autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
776 	e1000g_force_speed_duplex(Adapter);
777 
778 	/* Get Jumbo Frames settings in conf file */
779 	e1000g_get_max_frame_size(Adapter);
780 
781 	/* Set Rx/Tx buffer size */
782 	e1000g_set_bufsize(Adapter);
783 
784 	/* Master Latency Timer */
785 	Adapter->master_latency_timer = DEFAULT_MASTER_LATENCY_TIMER;
786 
787 	/* copper options */
788 	if (hw->phy.media_type == e1000_media_type_copper) {
789 		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
790 		hw->phy.disable_polarity_correction = B_FALSE;
791 		hw->phy.ms_type = e1000_ms_hw_default;	/* E1000_MASTER_SLAVE */
792 	}
793 
794 	/* The initial link state should be "unknown" */
795 	Adapter->link_state = LINK_STATE_UNKNOWN;
796 
797 	/* Initialize rx parameters */
798 	Adapter->rx_intr_delay = DEFAULT_RX_INTR_DELAY;
799 	Adapter->rx_intr_abs_delay = DEFAULT_RX_INTR_ABS_DELAY;
800 
801 	/* Initialize tx parameters */
802 	Adapter->tx_intr_enable = DEFAULT_TX_INTR_ENABLE;
803 	Adapter->tx_bcopy_thresh = DEFAULT_TX_BCOPY_THRESHOLD;
804 	Adapter->tx_intr_delay = DEFAULT_TX_INTR_DELAY;
805 	Adapter->tx_intr_abs_delay = DEFAULT_TX_INTR_ABS_DELAY;
806 
807 	/* Initialize rx parameters */
808 	Adapter->rx_bcopy_thresh = DEFAULT_RX_BCOPY_THRESHOLD;
809 
810 	return (DDI_SUCCESS);
811 }
812 
813 static void
814 e1000g_set_bufsize(struct e1000g *Adapter)
815 {
816 	struct e1000_mac_info *mac = &Adapter->shared.mac;
817 	uint64_t rx_size;
818 	uint64_t tx_size;
819 
820 	dev_info_t *devinfo = Adapter->dip;
821 #ifdef __sparc
822 	ulong_t iommu_pagesize;
823 #endif
824 	/* Get the system page size */
825 	Adapter->sys_page_sz = ddi_ptob(devinfo, (ulong_t)1);
826 
827 #ifdef __sparc
828 	iommu_pagesize = dvma_pagesize(devinfo);
829 	if (iommu_pagesize != 0) {
830 		if (Adapter->sys_page_sz == iommu_pagesize) {
831 			if (iommu_pagesize > 0x4000)
832 				Adapter->sys_page_sz = 0x4000;
833 		} else {
834 			if (Adapter->sys_page_sz > iommu_pagesize)
835 				Adapter->sys_page_sz = iommu_pagesize;
836 		}
837 	}
838 	if (Adapter->lso_enable) {
839 		Adapter->dvma_page_num = E1000_LSO_MAXLEN /
840 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
841 	} else {
842 		Adapter->dvma_page_num = Adapter->max_frame_size /
843 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
844 	}
845 	ASSERT(Adapter->dvma_page_num >= E1000G_DEFAULT_DVMA_PAGE_NUM);
846 #endif
847 
848 	Adapter->min_frame_size = ETHERMIN + ETHERFCSL;
849 
850 	rx_size = Adapter->max_frame_size + E1000G_IPALIGNPRESERVEROOM;
851 	if ((rx_size > FRAME_SIZE_UPTO_2K) && (rx_size <= FRAME_SIZE_UPTO_4K))
852 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_4K;
853 	else if ((rx_size > FRAME_SIZE_UPTO_4K) &&
854 	    (rx_size <= FRAME_SIZE_UPTO_8K))
855 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_8K;
856 	else if ((rx_size > FRAME_SIZE_UPTO_8K) &&
857 	    (rx_size <= FRAME_SIZE_UPTO_16K))
858 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_16K;
859 	else
860 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
861 
862 	tx_size = Adapter->max_frame_size;
863 	if ((tx_size > FRAME_SIZE_UPTO_2K) && (tx_size <= FRAME_SIZE_UPTO_4K))
864 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_4K;
865 	else if ((tx_size > FRAME_SIZE_UPTO_4K) &&
866 	    (tx_size <= FRAME_SIZE_UPTO_8K))
867 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_8K;
868 	else if ((tx_size > FRAME_SIZE_UPTO_8K) &&
869 	    (tx_size <= FRAME_SIZE_UPTO_16K))
870 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_16K;
871 	else
872 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K;
873 
874 	/*
875 	 * For Wiseman adapters we have an requirement of having receive
876 	 * buffers aligned at 256 byte boundary. Since Livengood does not
877 	 * require this and forcing it for all hardwares will have
878 	 * performance implications, I am making it applicable only for
879 	 * Wiseman and for Jumbo frames enabled mode as rest of the time,
880 	 * it is okay to have normal frames...but it does involve a
881 	 * potential risk where we may loose data if buffer is not
882 	 * aligned...so all wiseman boards to have 256 byte aligned
883 	 * buffers
884 	 */
885 	if (mac->type < e1000_82543)
886 		Adapter->rx_buf_align = RECEIVE_BUFFER_ALIGN_SIZE;
887 	else
888 		Adapter->rx_buf_align = 1;
889 }
890 
891 /*
892  * e1000g_detach - driver detach
893  *
894  * The detach() function is the complement of the attach routine.
895  * If cmd is set to DDI_DETACH, detach() is used to remove  the
896  * state  associated  with  a  given  instance of a device node
897  * prior to the removal of that instance from the system.
898  *
899  * The detach() function will be called once for each  instance
900  * of the device for which there has been a successful attach()
901  * once there are no longer  any  opens  on  the  device.
902  *
903  * Interrupts routine are disabled, All memory allocated by this
904  * driver are freed.
905  */
906 static int
907 e1000g_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
908 {
909 	struct e1000g *Adapter;
910 	boolean_t rx_drain;
911 
912 	switch (cmd) {
913 	default:
914 		return (DDI_FAILURE);
915 
916 	case DDI_SUSPEND:
917 		return (e1000g_suspend(devinfo));
918 
919 	case DDI_DETACH:
920 		break;
921 	}
922 
923 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
924 	if (Adapter == NULL)
925 		return (DDI_FAILURE);
926 
927 	if (mac_unregister(Adapter->mh) != 0) {
928 		e1000g_log(Adapter, CE_WARN, "Unregister MAC failed");
929 		return (DDI_FAILURE);
930 	}
931 	Adapter->attach_progress &= ~ATTACH_PROGRESS_MAC;
932 
933 
934 	if (Adapter->chip_state != E1000G_STOP)
935 		e1000g_stop(Adapter, B_TRUE);
936 
937 	rx_drain = e1000g_rx_drain(Adapter);
938 
939 	/*
940 	 * If e1000g_force_detach is enabled, driver detach is safe.
941 	 * We will let e1000g_free_priv_devi_node routine determine
942 	 * whether we need to free the priv_dip entry for current
943 	 * driver instance.
944 	 */
945 	if (e1000g_force_detach) {
946 		e1000g_free_priv_devi_node(Adapter, rx_drain);
947 	} else {
948 		if (!rx_drain)
949 			return (DDI_FAILURE);
950 	}
951 
952 	e1000g_unattach(devinfo, Adapter);
953 
954 	return (DDI_SUCCESS);
955 }
956 
957 /*
958  * e1000g_free_priv_devi_node - free a priv_dip entry for driver instance
959  *
960  * If free_flag is true, that indicates the upper layer is not holding
961  * the rx buffers, we could free the priv_dip entry safely.
962  *
963  * Otherwise, we have to keep this entry even after driver detached,
964  * and we also need to mark this entry with E1000G_PRIV_DEVI_DETACH flag,
965  * so that driver could free it while all of rx buffers are returned
966  * by upper layer later.
967  */
968 static void
969 e1000g_free_priv_devi_node(struct e1000g *Adapter, boolean_t free_flag)
970 {
971 	private_devi_list_t *devi_node, *devi_del;
972 
973 	rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
974 	ASSERT(e1000g_private_devi_list != NULL);
975 	ASSERT(Adapter->priv_dip != NULL);
976 
977 	devi_node = e1000g_private_devi_list;
978 	if (devi_node->priv_dip == Adapter->priv_dip) {
979 		if (free_flag) {
980 			e1000g_private_devi_list =
981 			    devi_node->next;
982 			kmem_free(devi_node->priv_dip,
983 			    sizeof (struct dev_info));
984 			kmem_free(devi_node,
985 			    sizeof (private_devi_list_t));
986 		} else {
987 			ASSERT(e1000g_mblks_pending != 0);
988 			devi_node->flag =
989 			    E1000G_PRIV_DEVI_DETACH;
990 		}
991 		rw_exit(&e1000g_rx_detach_lock);
992 		return;
993 	}
994 
995 	devi_node = e1000g_private_devi_list;
996 	while (devi_node->next != NULL) {
997 		if (devi_node->next->priv_dip == Adapter->priv_dip) {
998 			if (free_flag) {
999 				devi_del = devi_node->next;
1000 				devi_node->next = devi_del->next;
1001 				kmem_free(devi_del->priv_dip,
1002 				    sizeof (struct dev_info));
1003 				kmem_free(devi_del,
1004 				    sizeof (private_devi_list_t));
1005 			} else {
1006 				ASSERT(e1000g_mblks_pending != 0);
1007 				devi_node->next->flag =
1008 				    E1000G_PRIV_DEVI_DETACH;
1009 			}
1010 			break;
1011 		}
1012 		devi_node = devi_node->next;
1013 	}
1014 	rw_exit(&e1000g_rx_detach_lock);
1015 }
1016 
1017 static void
1018 e1000g_unattach(dev_info_t *devinfo, struct e1000g *Adapter)
1019 {
1020 	int result;
1021 
1022 	if (Adapter->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1023 		(void) e1000g_disable_intrs(Adapter);
1024 	}
1025 
1026 	if (Adapter->attach_progress & ATTACH_PROGRESS_MAC) {
1027 		(void) mac_unregister(Adapter->mh);
1028 	}
1029 
1030 	if (Adapter->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
1031 		(void) e1000g_rem_intrs(Adapter);
1032 	}
1033 
1034 	if (Adapter->attach_progress & ATTACH_PROGRESS_SETUP) {
1035 		(void) ddi_prop_remove_all(devinfo);
1036 	}
1037 
1038 	if (Adapter->attach_progress & ATTACH_PROGRESS_KSTATS) {
1039 		kstat_delete((kstat_t *)Adapter->e1000g_ksp);
1040 	}
1041 
1042 	if (Adapter->attach_progress & ATTACH_PROGRESS_INIT) {
1043 		stop_link_timer(Adapter);
1044 
1045 		mutex_enter(&e1000g_nvm_lock);
1046 		result = e1000_reset_hw(&Adapter->shared);
1047 		mutex_exit(&e1000g_nvm_lock);
1048 
1049 		if (result != E1000_SUCCESS) {
1050 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1051 			ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1052 		}
1053 	}
1054 
1055 	if (Adapter->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
1056 		if (Adapter->osdep.reg_handle != NULL)
1057 			ddi_regs_map_free(&Adapter->osdep.reg_handle);
1058 		if (Adapter->osdep.ich_flash_handle != NULL)
1059 			ddi_regs_map_free(&Adapter->osdep.ich_flash_handle);
1060 	}
1061 
1062 	if (Adapter->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
1063 		if (Adapter->osdep.cfg_handle != NULL)
1064 			pci_config_teardown(&Adapter->osdep.cfg_handle);
1065 	}
1066 
1067 	if (Adapter->attach_progress & ATTACH_PROGRESS_LOCKS) {
1068 		e1000g_destroy_locks(Adapter);
1069 	}
1070 
1071 	if (Adapter->attach_progress & ATTACH_PROGRESS_FMINIT) {
1072 		e1000g_fm_fini(Adapter);
1073 	}
1074 
1075 	e1000_remove_device(&Adapter->shared);
1076 
1077 	kmem_free((caddr_t)Adapter, sizeof (struct e1000g));
1078 
1079 	/*
1080 	 * Another hotplug spec requirement,
1081 	 * run ddi_set_driver_private(devinfo, null);
1082 	 */
1083 	ddi_set_driver_private(devinfo, NULL);
1084 }
1085 
1086 static void
1087 e1000g_init_locks(struct e1000g *Adapter)
1088 {
1089 	e1000g_tx_ring_t *tx_ring;
1090 	e1000g_rx_ring_t *rx_ring;
1091 
1092 	rw_init(&Adapter->chip_lock, NULL,
1093 	    RW_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1094 	mutex_init(&Adapter->link_lock, NULL,
1095 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1096 	mutex_init(&Adapter->watchdog_lock, NULL,
1097 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1098 
1099 	tx_ring = Adapter->tx_ring;
1100 
1101 	mutex_init(&tx_ring->tx_lock, NULL,
1102 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1103 	mutex_init(&tx_ring->usedlist_lock, NULL,
1104 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1105 	mutex_init(&tx_ring->freelist_lock, NULL,
1106 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1107 
1108 	rx_ring = Adapter->rx_ring;
1109 
1110 	mutex_init(&rx_ring->rx_lock, NULL,
1111 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1112 	mutex_init(&rx_ring->freelist_lock, NULL,
1113 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1114 }
1115 
1116 static void
1117 e1000g_destroy_locks(struct e1000g *Adapter)
1118 {
1119 	e1000g_tx_ring_t *tx_ring;
1120 	e1000g_rx_ring_t *rx_ring;
1121 
1122 	tx_ring = Adapter->tx_ring;
1123 	mutex_destroy(&tx_ring->tx_lock);
1124 	mutex_destroy(&tx_ring->usedlist_lock);
1125 	mutex_destroy(&tx_ring->freelist_lock);
1126 
1127 	rx_ring = Adapter->rx_ring;
1128 	mutex_destroy(&rx_ring->rx_lock);
1129 	mutex_destroy(&rx_ring->freelist_lock);
1130 
1131 	mutex_destroy(&Adapter->link_lock);
1132 	mutex_destroy(&Adapter->watchdog_lock);
1133 	rw_destroy(&Adapter->chip_lock);
1134 }
1135 
1136 static int
1137 e1000g_resume(dev_info_t *devinfo)
1138 {
1139 	struct e1000g *Adapter;
1140 
1141 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1142 	if (Adapter == NULL)
1143 		return (DDI_FAILURE);
1144 
1145 	if (e1000g_start(Adapter, B_TRUE))
1146 		return (DDI_FAILURE);
1147 
1148 	return (DDI_SUCCESS);
1149 }
1150 
1151 static int
1152 e1000g_suspend(dev_info_t *devinfo)
1153 {
1154 	struct e1000g *Adapter;
1155 
1156 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1157 	if (Adapter == NULL)
1158 		return (DDI_FAILURE);
1159 
1160 	e1000g_stop(Adapter, B_TRUE);
1161 
1162 	return (DDI_SUCCESS);
1163 }
1164 
1165 static int
1166 e1000g_init(struct e1000g *Adapter)
1167 {
1168 	uint32_t pba;
1169 	uint32_t high_water;
1170 	struct e1000_hw *hw;
1171 	clock_t link_timeout;
1172 	int result;
1173 
1174 	hw = &Adapter->shared;
1175 
1176 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1177 
1178 	/*
1179 	 * reset to put the hardware in a known state
1180 	 * before we try to do anything with the eeprom
1181 	 */
1182 	mutex_enter(&e1000g_nvm_lock);
1183 	result = e1000_reset_hw(hw);
1184 	mutex_exit(&e1000g_nvm_lock);
1185 
1186 	if (result != E1000_SUCCESS) {
1187 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1188 		goto init_fail;
1189 	}
1190 
1191 	mutex_enter(&e1000g_nvm_lock);
1192 	result = e1000_validate_nvm_checksum(hw);
1193 	if (result < E1000_SUCCESS) {
1194 		/*
1195 		 * Some PCI-E parts fail the first check due to
1196 		 * the link being in sleep state.  Call it again,
1197 		 * if it fails a second time its a real issue.
1198 		 */
1199 		result = e1000_validate_nvm_checksum(hw);
1200 	}
1201 	mutex_exit(&e1000g_nvm_lock);
1202 
1203 	if (result < E1000_SUCCESS) {
1204 		e1000g_log(Adapter, CE_WARN,
1205 		    "Invalid NVM checksum. Please contact "
1206 		    "the vendor to update the NVM.");
1207 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1208 		goto init_fail;
1209 	}
1210 
1211 	result = 0;
1212 #ifdef __sparc
1213 	/*
1214 	 * First, we try to get the local ethernet address from OBP. If
1215 	 * failed, then we get it from the EEPROM of NIC card.
1216 	 */
1217 	result = e1000g_find_mac_address(Adapter);
1218 #endif
1219 	/* Get the local ethernet address. */
1220 	if (!result) {
1221 		mutex_enter(&e1000g_nvm_lock);
1222 		result = e1000_read_mac_addr(hw);
1223 		mutex_exit(&e1000g_nvm_lock);
1224 	}
1225 
1226 	if (result < E1000_SUCCESS) {
1227 		e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1228 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1229 		goto init_fail;
1230 	}
1231 
1232 	/* check for valid mac address */
1233 	if (!is_valid_mac_addr(hw->mac.addr)) {
1234 		e1000g_log(Adapter, CE_WARN, "Invalid mac addr");
1235 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1236 		goto init_fail;
1237 	}
1238 
1239 	/* Set LAA state for 82571 chipset */
1240 	e1000_set_laa_state_82571(hw, B_TRUE);
1241 
1242 	/* Master Latency Timer implementation */
1243 	if (Adapter->master_latency_timer) {
1244 		pci_config_put8(Adapter->osdep.cfg_handle,
1245 		    PCI_CONF_LATENCY_TIMER, Adapter->master_latency_timer);
1246 	}
1247 
1248 	if (hw->mac.type < e1000_82547) {
1249 		/*
1250 		 * Total FIFO is 64K
1251 		 */
1252 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1253 			pba = E1000_PBA_40K;	/* 40K for Rx, 24K for Tx */
1254 		else
1255 			pba = E1000_PBA_48K;	/* 48K for Rx, 16K for Tx */
1256 	} else if ((hw->mac.type == e1000_82571) ||
1257 	    (hw->mac.type == e1000_82572) ||
1258 	    (hw->mac.type == e1000_80003es2lan)) {
1259 		/*
1260 		 * Total FIFO is 48K
1261 		 */
1262 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1263 			pba = E1000_PBA_30K;	/* 30K for Rx, 18K for Tx */
1264 		else
1265 			pba = E1000_PBA_38K;	/* 38K for Rx, 10K for Tx */
1266 	} else if (hw->mac.type == e1000_82573) {
1267 		pba = E1000_PBA_20K;		/* 20K for Rx, 12K for Tx */
1268 	} else if (hw->mac.type == e1000_82574) {
1269 		/* Keep adapter default: 20K for Rx, 20K for Tx */
1270 		pba = E1000_READ_REG(hw, E1000_PBA);
1271 	} else if (hw->mac.type == e1000_ich8lan) {
1272 		pba = E1000_PBA_8K;		/* 8K for Rx, 12K for Tx */
1273 	} else if (hw->mac.type == e1000_ich9lan) {
1274 		pba = E1000_PBA_10K;
1275 	} else if (hw->mac.type == e1000_ich10lan) {
1276 		pba = E1000_PBA_10K;
1277 	} else {
1278 		/*
1279 		 * Total FIFO is 40K
1280 		 */
1281 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1282 			pba = E1000_PBA_22K;	/* 22K for Rx, 18K for Tx */
1283 		else
1284 			pba = E1000_PBA_30K;	/* 30K for Rx, 10K for Tx */
1285 	}
1286 	E1000_WRITE_REG(hw, E1000_PBA, pba);
1287 
1288 	/*
1289 	 * These parameters set thresholds for the adapter's generation(Tx)
1290 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1291 	 * settings.  Flow control is enabled or disabled in the configuration
1292 	 * file.
1293 	 * High-water mark is set down from the top of the rx fifo (not
1294 	 * sensitive to max_frame_size) and low-water is set just below
1295 	 * high-water mark.
1296 	 * The high water mark must be low enough to fit one full frame above
1297 	 * it in the rx FIFO.  Should be the lower of:
1298 	 * 90% of the Rx FIFO size and the full Rx FIFO size minus the early
1299 	 * receive size (assuming ERT set to E1000_ERT_2048), or the full
1300 	 * Rx FIFO size minus one full frame.
1301 	 */
1302 	high_water = min(((pba << 10) * 9 / 10),
1303 	    ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_ich9lan ||
1304 	    hw->mac.type == e1000_ich10lan) ?
1305 	    ((pba << 10) - (E1000_ERT_2048 << 3)) :
1306 	    ((pba << 10) - Adapter->max_frame_size)));
1307 
1308 	hw->fc.high_water = high_water & 0xFFF8;
1309 	hw->fc.low_water = hw->fc.high_water - 8;
1310 
1311 	if (hw->mac.type == e1000_80003es2lan)
1312 		hw->fc.pause_time = 0xFFFF;
1313 	else
1314 		hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1315 	hw->fc.send_xon = B_TRUE;
1316 
1317 	/*
1318 	 * Reset the adapter hardware the second time.
1319 	 */
1320 	mutex_enter(&e1000g_nvm_lock);
1321 	result = e1000_reset_hw(hw);
1322 	mutex_exit(&e1000g_nvm_lock);
1323 
1324 	if (result != E1000_SUCCESS) {
1325 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1326 		goto init_fail;
1327 	}
1328 
1329 	/* disable wakeup control by default */
1330 	if (hw->mac.type >= e1000_82544)
1331 		E1000_WRITE_REG(hw, E1000_WUC, 0);
1332 
1333 	/* MWI setup */
1334 	e1000_pci_set_mwi(hw);
1335 
1336 	/*
1337 	 * Configure/Initialize hardware
1338 	 */
1339 	mutex_enter(&e1000g_nvm_lock);
1340 	result = e1000_init_hw(hw);
1341 	mutex_exit(&e1000g_nvm_lock);
1342 
1343 	if (result < E1000_SUCCESS) {
1344 		e1000g_log(Adapter, CE_WARN, "Initialize hw failed");
1345 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1346 		goto init_fail;
1347 	}
1348 
1349 	/*
1350 	 * Restore LED settings to the default from EEPROM
1351 	 * to meet the standard for Sun platforms.
1352 	 */
1353 	(void) e1000_cleanup_led(hw);
1354 
1355 	/* Disable Smart Power Down */
1356 	phy_spd_state(hw, B_FALSE);
1357 
1358 	/* Make sure driver has control */
1359 	e1000g_get_driver_control(hw);
1360 
1361 	/*
1362 	 * Initialize unicast addresses.
1363 	 */
1364 	e1000g_init_unicst(Adapter);
1365 
1366 	/*
1367 	 * Setup and initialize the mctable structures.  After this routine
1368 	 * completes  Multicast table will be set
1369 	 */
1370 	e1000g_setup_multicast(Adapter);
1371 	msec_delay(5);
1372 
1373 	/*
1374 	 * Implement Adaptive IFS
1375 	 */
1376 	e1000_reset_adaptive(hw);
1377 
1378 	/* Setup Interrupt Throttling Register */
1379 	if (hw->mac.type >= e1000_82540) {
1380 		E1000_WRITE_REG(hw, E1000_ITR, Adapter->intr_throttling_rate);
1381 	} else
1382 		Adapter->intr_adaptive = B_FALSE;
1383 
1384 	/* Start the timer for link setup */
1385 	if (hw->mac.autoneg)
1386 		link_timeout = PHY_AUTO_NEG_LIMIT * drv_usectohz(100000);
1387 	else
1388 		link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
1389 
1390 	mutex_enter(&Adapter->link_lock);
1391 	if (hw->phy.autoneg_wait_to_complete) {
1392 		Adapter->link_complete = B_TRUE;
1393 	} else {
1394 		Adapter->link_complete = B_FALSE;
1395 		Adapter->link_tid = timeout(e1000g_link_timer,
1396 		    (void *)Adapter, link_timeout);
1397 	}
1398 	mutex_exit(&Adapter->link_lock);
1399 
1400 	/* Enable PCI-Ex master */
1401 	if (hw->bus.type == e1000_bus_type_pci_express) {
1402 		e1000_enable_pciex_master(hw);
1403 	}
1404 
1405 	/* Save the state of the phy */
1406 	e1000g_get_phy_state(Adapter);
1407 
1408 	e1000g_param_sync(Adapter);
1409 
1410 	Adapter->init_count++;
1411 
1412 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
1413 		goto init_fail;
1414 	}
1415 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1416 		goto init_fail;
1417 	}
1418 
1419 	rw_exit(&Adapter->chip_lock);
1420 
1421 	return (DDI_SUCCESS);
1422 
1423 init_fail:
1424 	rw_exit(&Adapter->chip_lock);
1425 	ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1426 	return (DDI_FAILURE);
1427 }
1428 
1429 /*
1430  * Check if the link is up
1431  */
1432 static boolean_t
1433 e1000g_link_up(struct e1000g *Adapter)
1434 {
1435 	struct e1000_hw *hw;
1436 	boolean_t link_up;
1437 
1438 	hw = &Adapter->shared;
1439 
1440 	(void) e1000_check_for_link(hw);
1441 
1442 	if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU) ||
1443 	    ((!hw->mac.get_link_status) && (hw->mac.type == e1000_82543)) ||
1444 	    ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
1445 	    (hw->mac.serdes_has_link))) {
1446 		link_up = B_TRUE;
1447 	} else {
1448 		link_up = B_FALSE;
1449 	}
1450 
1451 	return (link_up);
1452 }
1453 
1454 static void
1455 e1000g_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
1456 {
1457 	struct iocblk *iocp;
1458 	struct e1000g *e1000gp;
1459 	enum ioc_reply status;
1460 
1461 	iocp = (struct iocblk *)(uintptr_t)mp->b_rptr;
1462 	iocp->ioc_error = 0;
1463 	e1000gp = (struct e1000g *)arg;
1464 
1465 	ASSERT(e1000gp);
1466 	if (e1000gp == NULL) {
1467 		miocnak(q, mp, 0, EINVAL);
1468 		return;
1469 	}
1470 
1471 	switch (iocp->ioc_cmd) {
1472 
1473 	case LB_GET_INFO_SIZE:
1474 	case LB_GET_INFO:
1475 	case LB_GET_MODE:
1476 	case LB_SET_MODE:
1477 		status = e1000g_loopback_ioctl(e1000gp, iocp, mp);
1478 		break;
1479 
1480 
1481 #ifdef E1000G_DEBUG
1482 	case E1000G_IOC_REG_PEEK:
1483 	case E1000G_IOC_REG_POKE:
1484 		status = e1000g_pp_ioctl(e1000gp, iocp, mp);
1485 		break;
1486 	case E1000G_IOC_CHIP_RESET:
1487 		e1000gp->reset_count++;
1488 		if (e1000g_reset_adapter(e1000gp))
1489 			status = IOC_ACK;
1490 		else
1491 			status = IOC_INVAL;
1492 		break;
1493 #endif
1494 	default:
1495 		status = IOC_INVAL;
1496 		break;
1497 	}
1498 
1499 	/*
1500 	 * Decide how to reply
1501 	 */
1502 	switch (status) {
1503 	default:
1504 	case IOC_INVAL:
1505 		/*
1506 		 * Error, reply with a NAK and EINVAL or the specified error
1507 		 */
1508 		miocnak(q, mp, 0, iocp->ioc_error == 0 ?
1509 		    EINVAL : iocp->ioc_error);
1510 		break;
1511 
1512 	case IOC_DONE:
1513 		/*
1514 		 * OK, reply already sent
1515 		 */
1516 		break;
1517 
1518 	case IOC_ACK:
1519 		/*
1520 		 * OK, reply with an ACK
1521 		 */
1522 		miocack(q, mp, 0, 0);
1523 		break;
1524 
1525 	case IOC_REPLY:
1526 		/*
1527 		 * OK, send prepared reply as ACK or NAK
1528 		 */
1529 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1530 		    M_IOCACK : M_IOCNAK;
1531 		qreply(q, mp);
1532 		break;
1533 	}
1534 }
1535 
1536 static int
1537 e1000g_m_start(void *arg)
1538 {
1539 	struct e1000g *Adapter = (struct e1000g *)arg;
1540 
1541 	return (e1000g_start(Adapter, B_TRUE));
1542 }
1543 
1544 static int
1545 e1000g_start(struct e1000g *Adapter, boolean_t global)
1546 {
1547 	if (global) {
1548 		/* Allocate dma resources for descriptors and buffers */
1549 		if (e1000g_alloc_dma_resources(Adapter) != DDI_SUCCESS) {
1550 			e1000g_log(Adapter, CE_WARN,
1551 			    "Alloc DMA resources failed");
1552 			return (ENOTACTIVE);
1553 		}
1554 		Adapter->rx_buffer_setup = B_FALSE;
1555 	}
1556 
1557 	if (!(Adapter->attach_progress & ATTACH_PROGRESS_INIT)) {
1558 		if (e1000g_init(Adapter) != DDI_SUCCESS) {
1559 			e1000g_log(Adapter, CE_WARN,
1560 			    "Adapter initialization failed");
1561 			if (global)
1562 				e1000g_release_dma_resources(Adapter);
1563 			return (ENOTACTIVE);
1564 		}
1565 	}
1566 
1567 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1568 
1569 	/* Setup and initialize the transmit structures */
1570 	e1000g_tx_setup(Adapter);
1571 	msec_delay(5);
1572 
1573 	/* Setup and initialize the receive structures */
1574 	e1000g_rx_setup(Adapter);
1575 	msec_delay(5);
1576 
1577 	/* Restore the e1000g promiscuous mode */
1578 	e1000g_restore_promisc(Adapter);
1579 
1580 	e1000g_mask_interrupt(Adapter);
1581 
1582 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1583 		rw_exit(&Adapter->chip_lock);
1584 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1585 		return (ENOTACTIVE);
1586 	}
1587 
1588 	Adapter->chip_state = E1000G_START;
1589 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
1590 
1591 	rw_exit(&Adapter->chip_lock);
1592 
1593 	/* Enable and start the watchdog timer */
1594 	enable_watchdog_timer(Adapter);
1595 
1596 	return (0);
1597 }
1598 
1599 static void
1600 e1000g_m_stop(void *arg)
1601 {
1602 	struct e1000g *Adapter = (struct e1000g *)arg;
1603 
1604 	e1000g_stop(Adapter, B_TRUE);
1605 }
1606 
1607 static void
1608 e1000g_stop(struct e1000g *Adapter, boolean_t global)
1609 {
1610 	int result;
1611 
1612 	/* Set stop flags */
1613 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1614 
1615 	Adapter->chip_state = E1000G_STOP;
1616 	Adapter->attach_progress &= ~ATTACH_PROGRESS_INIT;
1617 
1618 	rw_exit(&Adapter->chip_lock);
1619 
1620 	/* Drain tx sessions */
1621 	(void) e1000g_tx_drain(Adapter);
1622 
1623 	/* Disable and stop all the timers */
1624 	disable_watchdog_timer(Adapter);
1625 	stop_link_timer(Adapter);
1626 	stop_82547_timer(Adapter->tx_ring);
1627 
1628 	/* Stop the chip and release pending resources */
1629 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1630 
1631 	/* Tell firmware driver is no longer in control */
1632 	e1000g_release_driver_control(&Adapter->shared);
1633 
1634 	e1000g_clear_all_interrupts(Adapter);
1635 
1636 	mutex_enter(&e1000g_nvm_lock);
1637 	result = e1000_reset_hw(&Adapter->shared);
1638 	mutex_exit(&e1000g_nvm_lock);
1639 
1640 	if (result != E1000_SUCCESS) {
1641 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1642 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1643 	}
1644 
1645 	/* Release resources still held by the TX descriptors */
1646 	e1000g_tx_clean(Adapter);
1647 
1648 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1649 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1650 
1651 	/* Clean the pending rx jumbo packet fragment */
1652 	e1000g_rx_clean(Adapter);
1653 
1654 	rw_exit(&Adapter->chip_lock);
1655 
1656 	if (global)
1657 		e1000g_release_dma_resources(Adapter);
1658 }
1659 
1660 static void
1661 e1000g_rx_clean(struct e1000g *Adapter)
1662 {
1663 	e1000g_rx_ring_t *rx_ring = Adapter->rx_ring;
1664 
1665 	if (rx_ring->rx_mblk != NULL) {
1666 		freemsg(rx_ring->rx_mblk);
1667 		rx_ring->rx_mblk = NULL;
1668 		rx_ring->rx_mblk_tail = NULL;
1669 		rx_ring->rx_mblk_len = 0;
1670 	}
1671 }
1672 
1673 static void
1674 e1000g_tx_clean(struct e1000g *Adapter)
1675 {
1676 	e1000g_tx_ring_t *tx_ring;
1677 	p_tx_sw_packet_t packet;
1678 	mblk_t *mp;
1679 	mblk_t *nmp;
1680 	uint32_t packet_count;
1681 
1682 	tx_ring = Adapter->tx_ring;
1683 
1684 	/*
1685 	 * Here we don't need to protect the lists using
1686 	 * the usedlist_lock and freelist_lock, for they
1687 	 * have been protected by the chip_lock.
1688 	 */
1689 	mp = NULL;
1690 	nmp = NULL;
1691 	packet_count = 0;
1692 	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list);
1693 	while (packet != NULL) {
1694 		if (packet->mp != NULL) {
1695 			/* Assemble the message chain */
1696 			if (mp == NULL) {
1697 				mp = packet->mp;
1698 				nmp = packet->mp;
1699 			} else {
1700 				nmp->b_next = packet->mp;
1701 				nmp = packet->mp;
1702 			}
1703 			/* Disconnect the message from the sw packet */
1704 			packet->mp = NULL;
1705 		}
1706 
1707 		e1000g_free_tx_swpkt(packet);
1708 		packet_count++;
1709 
1710 		packet = (p_tx_sw_packet_t)
1711 		    QUEUE_GET_NEXT(&tx_ring->used_list, &packet->Link);
1712 	}
1713 
1714 	if (mp != NULL)
1715 		freemsgchain(mp);
1716 
1717 	if (packet_count > 0) {
1718 		QUEUE_APPEND(&tx_ring->free_list, &tx_ring->used_list);
1719 		QUEUE_INIT_LIST(&tx_ring->used_list);
1720 
1721 		/* Setup TX descriptor pointers */
1722 		tx_ring->tbd_next = tx_ring->tbd_first;
1723 		tx_ring->tbd_oldest = tx_ring->tbd_first;
1724 
1725 		/* Setup our HW Tx Head & Tail descriptor pointers */
1726 		E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
1727 		E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
1728 	}
1729 }
1730 
1731 static boolean_t
1732 e1000g_tx_drain(struct e1000g *Adapter)
1733 {
1734 	int i;
1735 	boolean_t done;
1736 	e1000g_tx_ring_t *tx_ring;
1737 
1738 	tx_ring = Adapter->tx_ring;
1739 
1740 	/* Allow up to 'wsdraintime' for pending xmit's to complete. */
1741 	for (i = 0; i < TX_DRAIN_TIME; i++) {
1742 		mutex_enter(&tx_ring->usedlist_lock);
1743 		done = IS_QUEUE_EMPTY(&tx_ring->used_list);
1744 		mutex_exit(&tx_ring->usedlist_lock);
1745 
1746 		if (done)
1747 			break;
1748 
1749 		msec_delay(1);
1750 	}
1751 
1752 	return (done);
1753 }
1754 
1755 static boolean_t
1756 e1000g_rx_drain(struct e1000g *Adapter)
1757 {
1758 	e1000g_rx_ring_t *rx_ring;
1759 	p_rx_sw_packet_t packet;
1760 	boolean_t done;
1761 
1762 	rx_ring = Adapter->rx_ring;
1763 	done = B_TRUE;
1764 
1765 	rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
1766 
1767 	while (rx_ring->pending_list != NULL) {
1768 		packet = rx_ring->pending_list;
1769 		rx_ring->pending_list =
1770 		    rx_ring->pending_list->next;
1771 
1772 		if (packet->flag == E1000G_RX_SW_STOP) {
1773 			packet->flag = E1000G_RX_SW_DETACH;
1774 			done = B_FALSE;
1775 		} else {
1776 			ASSERT(packet->flag == E1000G_RX_SW_FREE);
1777 			ASSERT(packet->mp == NULL);
1778 			e1000g_free_rx_sw_packet(packet);
1779 		}
1780 	}
1781 
1782 	rw_exit(&e1000g_rx_detach_lock);
1783 
1784 	return (done);
1785 }
1786 
1787 static boolean_t
1788 e1000g_reset_adapter(struct e1000g *Adapter)
1789 {
1790 	e1000g_stop(Adapter, B_FALSE);
1791 
1792 	if (e1000g_start(Adapter, B_FALSE)) {
1793 		e1000g_log(Adapter, CE_WARN, "Reset failed");
1794 		return (B_FALSE);
1795 	}
1796 
1797 	return (B_TRUE);
1798 }
1799 
1800 boolean_t
1801 e1000g_global_reset(struct e1000g *Adapter)
1802 {
1803 	e1000g_stop(Adapter, B_TRUE);
1804 
1805 	Adapter->init_count = 0;
1806 
1807 	if (e1000g_start(Adapter, B_TRUE)) {
1808 		e1000g_log(Adapter, CE_WARN, "Reset failed");
1809 		return (B_FALSE);
1810 	}
1811 
1812 	return (B_TRUE);
1813 }
1814 
1815 /*
1816  * e1000g_intr_pciexpress - ISR for PCI Express chipsets
1817  *
1818  * This interrupt service routine is for PCI-Express adapters.
1819  * The ICR contents is valid only when the E1000_ICR_INT_ASSERTED
1820  * bit is set.
1821  */
1822 static uint_t
1823 e1000g_intr_pciexpress(caddr_t arg)
1824 {
1825 	struct e1000g *Adapter;
1826 	uint32_t icr;
1827 
1828 	Adapter = (struct e1000g *)(uintptr_t)arg;
1829 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
1830 
1831 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1832 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
1833 
1834 	if (icr & E1000_ICR_INT_ASSERTED) {
1835 		/*
1836 		 * E1000_ICR_INT_ASSERTED bit was set:
1837 		 * Read(Clear) the ICR, claim this interrupt,
1838 		 * look for work to do.
1839 		 */
1840 		e1000g_intr_work(Adapter, icr);
1841 		return (DDI_INTR_CLAIMED);
1842 	} else {
1843 		/*
1844 		 * E1000_ICR_INT_ASSERTED bit was not set:
1845 		 * Don't claim this interrupt, return immediately.
1846 		 */
1847 		return (DDI_INTR_UNCLAIMED);
1848 	}
1849 }
1850 
1851 /*
1852  * e1000g_intr - ISR for PCI/PCI-X chipsets
1853  *
1854  * This interrupt service routine is for PCI/PCI-X adapters.
1855  * We check the ICR contents no matter the E1000_ICR_INT_ASSERTED
1856  * bit is set or not.
1857  */
1858 static uint_t
1859 e1000g_intr(caddr_t arg)
1860 {
1861 	struct e1000g *Adapter;
1862 	uint32_t icr;
1863 
1864 	Adapter = (struct e1000g *)(uintptr_t)arg;
1865 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
1866 
1867 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1868 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
1869 
1870 	if (icr) {
1871 		/*
1872 		 * Any bit was set in ICR:
1873 		 * Read(Clear) the ICR, claim this interrupt,
1874 		 * look for work to do.
1875 		 */
1876 		e1000g_intr_work(Adapter, icr);
1877 		return (DDI_INTR_CLAIMED);
1878 	} else {
1879 		/*
1880 		 * No bit was set in ICR:
1881 		 * Don't claim this interrupt, return immediately.
1882 		 */
1883 		return (DDI_INTR_UNCLAIMED);
1884 	}
1885 }
1886 
1887 /*
1888  * e1000g_intr_work - actual processing of ISR
1889  *
1890  * Read(clear) the ICR contents and call appropriate interrupt
1891  * processing routines.
1892  */
1893 static void
1894 e1000g_intr_work(struct e1000g *Adapter, uint32_t icr)
1895 {
1896 	struct e1000_hw *hw;
1897 	hw = &Adapter->shared;
1898 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
1899 	uint32_t itr;
1900 
1901 	Adapter->rx_pkt_cnt = 0;
1902 	Adapter->tx_pkt_cnt = 0;
1903 
1904 	rw_enter(&Adapter->chip_lock, RW_READER);
1905 	/*
1906 	 * Here we need to check the "chip_state" flag within the chip_lock to
1907 	 * ensure the receive routine will not execute when the adapter is
1908 	 * being reset.
1909 	 */
1910 	if (Adapter->chip_state != E1000G_START) {
1911 		rw_exit(&Adapter->chip_lock);
1912 		return;
1913 	}
1914 
1915 	if (icr & E1000_ICR_RXT0) {
1916 		mblk_t *mp;
1917 
1918 		mutex_enter(&Adapter->rx_ring->rx_lock);
1919 		mp = e1000g_receive(Adapter);
1920 		mutex_exit(&Adapter->rx_ring->rx_lock);
1921 
1922 		rw_exit(&Adapter->chip_lock);
1923 
1924 		if (mp != NULL)
1925 			mac_rx(Adapter->mh, Adapter->mrh, mp);
1926 	} else
1927 		rw_exit(&Adapter->chip_lock);
1928 
1929 	if (icr & E1000_ICR_TXDW) {
1930 		if (!Adapter->tx_intr_enable)
1931 			e1000g_clear_tx_interrupt(Adapter);
1932 
1933 		/* Recycle the tx descriptors */
1934 		rw_enter(&Adapter->chip_lock, RW_READER);
1935 		(void) e1000g_recycle(tx_ring);
1936 		E1000G_DEBUG_STAT(tx_ring->stat_recycle_intr);
1937 		rw_exit(&Adapter->chip_lock);
1938 
1939 		/* Schedule the re-transmit */
1940 		if (tx_ring->resched_needed &&
1941 		    (tx_ring->tbd_avail > DEFAULT_TX_UPDATE_THRESHOLD)) {
1942 			tx_ring->resched_needed = B_FALSE;
1943 			mac_tx_update(Adapter->mh);
1944 			E1000G_STAT(tx_ring->stat_reschedule);
1945 		}
1946 	}
1947 
1948 	if (Adapter->intr_adaptive) {
1949 		itr = e1000g_get_itr(Adapter->rx_pkt_cnt, Adapter->tx_pkt_cnt,
1950 		    Adapter->intr_throttling_rate);
1951 		if (itr) {
1952 			E1000_WRITE_REG(hw, E1000_ITR, itr);
1953 			Adapter->intr_throttling_rate = itr;
1954 		}
1955 	}
1956 
1957 	/*
1958 	 * The Receive Sequence errors RXSEQ and the link status change LSC
1959 	 * are checked to detect that the cable has been pulled out. For
1960 	 * the Wiseman 2.0 silicon, the receive sequence errors interrupt
1961 	 * are an indication that cable is not connected.
1962 	 */
1963 	if ((icr & E1000_ICR_RXSEQ) ||
1964 	    (icr & E1000_ICR_LSC) ||
1965 	    (icr & E1000_ICR_GPI_EN1)) {
1966 		boolean_t link_changed;
1967 		timeout_id_t tid = 0;
1968 
1969 		stop_watchdog_timer(Adapter);
1970 
1971 		rw_enter(&Adapter->chip_lock, RW_WRITER);
1972 
1973 		/*
1974 		 * Because we got a link-status-change interrupt, force
1975 		 * e1000_check_for_link() to look at phy
1976 		 */
1977 		Adapter->shared.mac.get_link_status = B_TRUE;
1978 
1979 		/* e1000g_link_check takes care of link status change */
1980 		link_changed = e1000g_link_check(Adapter);
1981 
1982 		/* Get new phy state */
1983 		e1000g_get_phy_state(Adapter);
1984 
1985 		/*
1986 		 * If the link timer has not timed out, we'll not notify
1987 		 * the upper layer with any link state until the link is up.
1988 		 */
1989 		if (link_changed && !Adapter->link_complete) {
1990 			if (Adapter->link_state == LINK_STATE_UP) {
1991 				mutex_enter(&Adapter->link_lock);
1992 				Adapter->link_complete = B_TRUE;
1993 				tid = Adapter->link_tid;
1994 				Adapter->link_tid = 0;
1995 				mutex_exit(&Adapter->link_lock);
1996 			} else {
1997 				link_changed = B_FALSE;
1998 			}
1999 		}
2000 		rw_exit(&Adapter->chip_lock);
2001 
2002 		if (link_changed) {
2003 			if (tid != 0)
2004 				(void) untimeout(tid);
2005 
2006 			/*
2007 			 * Workaround for esb2. Data stuck in fifo on a link
2008 			 * down event. Stop receiver here and reset in watchdog.
2009 			 */
2010 			if ((Adapter->link_state == LINK_STATE_DOWN) &&
2011 			    (Adapter->shared.mac.type == e1000_80003es2lan)) {
2012 				uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
2013 				E1000_WRITE_REG(hw, E1000_RCTL,
2014 				    rctl & ~E1000_RCTL_EN);
2015 				e1000g_log(Adapter, CE_WARN,
2016 				    "ESB2 receiver disabled");
2017 				Adapter->esb2_workaround = B_TRUE;
2018 			}
2019 
2020 			mac_link_update(Adapter->mh, Adapter->link_state);
2021 		}
2022 
2023 		start_watchdog_timer(Adapter);
2024 	}
2025 }
2026 
2027 static uint32_t
2028 e1000g_get_itr(uint32_t rx_packet, uint32_t tx_packet, uint32_t cur_itr)
2029 {
2030 	uint32_t new_itr;
2031 
2032 	/*
2033 	 * Determine a propper itr according to rx/tx packet count
2034 	 * per interrupt, the value of itr are based on document
2035 	 * and testing.
2036 	 */
2037 	if ((rx_packet < DEFAULT_INTR_PACKET_LOW) ||
2038 	    (tx_packet < DEFAULT_INTR_PACKET_LOW)) {
2039 		new_itr = DEFAULT_INTR_THROTTLING_LOW;
2040 		goto itr_done;
2041 	}
2042 	if ((rx_packet > DEFAULT_INTR_PACKET_HIGH) ||
2043 	    (tx_packet > DEFAULT_INTR_PACKET_HIGH)) {
2044 		new_itr = DEFAULT_INTR_THROTTLING_LOW;
2045 		goto itr_done;
2046 	}
2047 	if (cur_itr < DEFAULT_INTR_THROTTLING_HIGH) {
2048 		new_itr = cur_itr + (DEFAULT_INTR_THROTTLING_HIGH >> 2);
2049 		if (new_itr > DEFAULT_INTR_THROTTLING_HIGH)
2050 			new_itr = DEFAULT_INTR_THROTTLING_HIGH;
2051 	} else
2052 		new_itr = DEFAULT_INTR_THROTTLING_HIGH;
2053 
2054 itr_done:
2055 	if (cur_itr == new_itr)
2056 		return (0);
2057 	else
2058 		return (new_itr);
2059 }
2060 
2061 static void
2062 e1000g_init_unicst(struct e1000g *Adapter)
2063 {
2064 	struct e1000_hw *hw;
2065 	int slot;
2066 
2067 	hw = &Adapter->shared;
2068 
2069 	if (!Adapter->unicst_init) {
2070 		/* Initialize the multiple unicast addresses */
2071 		Adapter->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
2072 
2073 		if ((hw->mac.type == e1000_82571) &&
2074 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2075 			Adapter->unicst_total--;
2076 
2077 		Adapter->unicst_avail = Adapter->unicst_total - 1;
2078 
2079 		/* Store the default mac address */
2080 		e1000_rar_set(hw, hw->mac.addr, 0);
2081 		if ((hw->mac.type == e1000_82571) &&
2082 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2083 			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2084 
2085 		bcopy(hw->mac.addr, Adapter->unicst_addr[0].mac.addr,
2086 		    ETHERADDRL);
2087 		Adapter->unicst_addr[0].mac.set = 1;
2088 
2089 		for (slot = 1; slot < Adapter->unicst_total; slot++)
2090 			Adapter->unicst_addr[slot].mac.set = 0;
2091 
2092 		Adapter->unicst_init = B_TRUE;
2093 	} else {
2094 		/* Recover the default mac address */
2095 		bcopy(Adapter->unicst_addr[0].mac.addr, hw->mac.addr,
2096 		    ETHERADDRL);
2097 
2098 		/* Store the default mac address */
2099 		e1000_rar_set(hw, hw->mac.addr, 0);
2100 		if ((hw->mac.type == e1000_82571) &&
2101 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2102 			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2103 
2104 		/* Re-configure the RAR registers */
2105 		for (slot = 1; slot < Adapter->unicst_total; slot++)
2106 			e1000_rar_set(hw,
2107 			    Adapter->unicst_addr[slot].mac.addr, slot);
2108 	}
2109 
2110 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2111 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2112 }
2113 
2114 static int
2115 e1000g_m_unicst(void *arg, const uint8_t *mac_addr)
2116 {
2117 	struct e1000g *Adapter;
2118 
2119 	Adapter = (struct e1000g *)arg;
2120 
2121 	/* Store the default MAC address */
2122 	bcopy(mac_addr, Adapter->shared.mac.addr, ETHERADDRL);
2123 
2124 	/* Set MAC address in address slot 0, which is the default address */
2125 	return (e1000g_unicst_set(Adapter, mac_addr, 0));
2126 }
2127 
2128 static int
2129 e1000g_unicst_set(struct e1000g *Adapter, const uint8_t *mac_addr,
2130     mac_addr_slot_t slot)
2131 {
2132 	struct e1000_hw *hw;
2133 
2134 	hw = &Adapter->shared;
2135 
2136 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2137 
2138 	/*
2139 	 * The first revision of Wiseman silicon (rev 2.0) has an errata
2140 	 * that requires the receiver to be in reset when any of the
2141 	 * receive address registers (RAR regs) are accessed.  The first
2142 	 * rev of Wiseman silicon also requires MWI to be disabled when
2143 	 * a global reset or a receive reset is issued.  So before we
2144 	 * initialize the RARs, we check the rev of the Wiseman controller
2145 	 * and work around any necessary HW errata.
2146 	 */
2147 	if ((hw->mac.type == e1000_82542) &&
2148 	    (hw->revision_id == E1000_REVISION_2)) {
2149 		e1000_pci_clear_mwi(hw);
2150 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2151 		msec_delay(5);
2152 	}
2153 
2154 	bcopy(mac_addr, Adapter->unicst_addr[slot].mac.addr, ETHERADDRL);
2155 	e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2156 
2157 	if (slot == 0) {
2158 		if ((hw->mac.type == e1000_82571) &&
2159 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2160 			e1000_rar_set(hw, (uint8_t *)mac_addr, LAST_RAR_ENTRY);
2161 	}
2162 
2163 	/*
2164 	 * If we are using Wiseman rev 2.0 silicon, we will have previously
2165 	 * put the receive in reset, and disabled MWI, to work around some
2166 	 * HW errata.  Now we should take the receiver out of reset, and
2167 	 * re-enabled if MWI if it was previously enabled by the PCI BIOS.
2168 	 */
2169 	if ((hw->mac.type == e1000_82542) &&
2170 	    (hw->revision_id == E1000_REVISION_2)) {
2171 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2172 		msec_delay(1);
2173 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2174 			e1000_pci_set_mwi(hw);
2175 		e1000g_rx_setup(Adapter);
2176 	}
2177 
2178 	rw_exit(&Adapter->chip_lock);
2179 
2180 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2181 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2182 		return (EIO);
2183 	}
2184 
2185 	return (0);
2186 }
2187 
2188 /*
2189  * e1000g_m_unicst_add() - will find an unused address slot, set the
2190  * address value to the one specified, reserve that slot and enable
2191  * the NIC to start filtering on the new MAC address.
2192  * Returns 0 on success.
2193  */
2194 static int
2195 e1000g_m_unicst_add(void *arg, mac_multi_addr_t *maddr)
2196 {
2197 	struct e1000g *Adapter = (struct e1000g *)arg;
2198 	mac_addr_slot_t slot;
2199 	int err;
2200 
2201 	if (mac_unicst_verify(Adapter->mh,
2202 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
2203 		return (EINVAL);
2204 
2205 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2206 	if (Adapter->unicst_avail == 0) {
2207 		/* no slots available */
2208 		rw_exit(&Adapter->chip_lock);
2209 		return (ENOSPC);
2210 	}
2211 
2212 	/*
2213 	 * Primary/default address is in slot 0. The next addresses
2214 	 * are the multiple MAC addresses. So multiple MAC address 0
2215 	 * is in slot 1, 1 in slot 2, and so on. So the first multiple
2216 	 * MAC address resides in slot 1.
2217 	 */
2218 	for (slot = 1; slot < Adapter->unicst_total; slot++) {
2219 		if (Adapter->unicst_addr[slot].mac.set == 0) {
2220 			Adapter->unicst_addr[slot].mac.set = 1;
2221 			break;
2222 		}
2223 	}
2224 
2225 	ASSERT((slot > 0) && (slot < Adapter->unicst_total));
2226 
2227 	Adapter->unicst_avail--;
2228 	rw_exit(&Adapter->chip_lock);
2229 
2230 	maddr->mma_slot = slot;
2231 
2232 	if ((err = e1000g_unicst_set(Adapter, maddr->mma_addr, slot)) != 0) {
2233 		rw_enter(&Adapter->chip_lock, RW_WRITER);
2234 		Adapter->unicst_addr[slot].mac.set = 0;
2235 		Adapter->unicst_avail++;
2236 		rw_exit(&Adapter->chip_lock);
2237 	}
2238 
2239 	return (err);
2240 }
2241 
2242 /*
2243  * e1000g_m_unicst_remove() - removes a MAC address that was added by a
2244  * call to e1000g_m_unicst_add(). The slot number that was returned in
2245  * e1000g_m_unicst_add() is passed in the call to remove the address.
2246  * Returns 0 on success.
2247  */
2248 static int
2249 e1000g_m_unicst_remove(void *arg, mac_addr_slot_t slot)
2250 {
2251 	struct e1000g *Adapter = (struct e1000g *)arg;
2252 	int err;
2253 
2254 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2255 		return (EINVAL);
2256 
2257 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2258 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2259 		Adapter->unicst_addr[slot].mac.set = 0;
2260 		Adapter->unicst_avail++;
2261 		rw_exit(&Adapter->chip_lock);
2262 
2263 		/* Copy the default address to the passed slot */
2264 		if ((err = e1000g_unicst_set(Adapter,
2265 		    Adapter->unicst_addr[0].mac.addr, slot)) != 0) {
2266 			rw_enter(&Adapter->chip_lock, RW_WRITER);
2267 			Adapter->unicst_addr[slot].mac.set = 1;
2268 			Adapter->unicst_avail--;
2269 			rw_exit(&Adapter->chip_lock);
2270 		}
2271 		return (err);
2272 	}
2273 	rw_exit(&Adapter->chip_lock);
2274 
2275 	return (EINVAL);
2276 }
2277 
2278 /*
2279  * e1000g_m_unicst_modify() - modifies the value of an address that
2280  * has been added by e1000g_m_unicst_add(). The new address, address
2281  * length and the slot number that was returned in the call to add
2282  * should be passed to e1000g_m_unicst_modify(). mma_flags should be
2283  * set to 0. Returns 0 on success.
2284  */
2285 static int
2286 e1000g_m_unicst_modify(void *arg, mac_multi_addr_t *maddr)
2287 {
2288 	struct e1000g *Adapter = (struct e1000g *)arg;
2289 	mac_addr_slot_t slot;
2290 
2291 	if (mac_unicst_verify(Adapter->mh,
2292 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
2293 		return (EINVAL);
2294 
2295 	slot = maddr->mma_slot;
2296 
2297 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2298 		return (EINVAL);
2299 
2300 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2301 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2302 		rw_exit(&Adapter->chip_lock);
2303 
2304 		return (e1000g_unicst_set(Adapter, maddr->mma_addr, slot));
2305 	}
2306 	rw_exit(&Adapter->chip_lock);
2307 
2308 	return (EINVAL);
2309 }
2310 
2311 /*
2312  * e1000g_m_unicst_get() - will get the MAC address and all other
2313  * information related to the address slot passed in mac_multi_addr_t.
2314  * mma_flags should be set to 0 in the call.
2315  * On return, mma_flags can take the following values:
2316  * 1) MMAC_SLOT_UNUSED
2317  * 2) MMAC_SLOT_USED | MMAC_VENDOR_ADDR
2318  * 3) MMAC_SLOT_UNUSED | MMAC_VENDOR_ADDR
2319  * 4) MMAC_SLOT_USED
2320  */
2321 static int
2322 e1000g_m_unicst_get(void *arg, mac_multi_addr_t *maddr)
2323 {
2324 	struct e1000g *Adapter = (struct e1000g *)arg;
2325 	mac_addr_slot_t slot;
2326 
2327 	slot = maddr->mma_slot;
2328 
2329 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2330 		return (EINVAL);
2331 
2332 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2333 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2334 		bcopy(Adapter->unicst_addr[slot].mac.addr,
2335 		    maddr->mma_addr, ETHERADDRL);
2336 		maddr->mma_flags = MMAC_SLOT_USED;
2337 	} else {
2338 		maddr->mma_flags = MMAC_SLOT_UNUSED;
2339 	}
2340 	rw_exit(&Adapter->chip_lock);
2341 
2342 	return (0);
2343 }
2344 
2345 static int
2346 multicst_add(struct e1000g *Adapter, const uint8_t *multiaddr)
2347 {
2348 	struct e1000_hw *hw = &Adapter->shared;
2349 	int res = 0;
2350 
2351 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2352 
2353 	if ((multiaddr[0] & 01) == 0) {
2354 		res = EINVAL;
2355 		goto done;
2356 	}
2357 
2358 	if (Adapter->mcast_count >= MAX_NUM_MULTICAST_ADDRESSES) {
2359 		res = ENOENT;
2360 		goto done;
2361 	}
2362 
2363 	bcopy(multiaddr,
2364 	    &Adapter->mcast_table[Adapter->mcast_count], ETHERADDRL);
2365 	Adapter->mcast_count++;
2366 
2367 	/*
2368 	 * Update the MC table in the hardware
2369 	 */
2370 	e1000g_clear_interrupt(Adapter);
2371 
2372 	e1000g_setup_multicast(Adapter);
2373 
2374 	if ((hw->mac.type == e1000_82542) &&
2375 	    (hw->revision_id == E1000_REVISION_2))
2376 		e1000g_rx_setup(Adapter);
2377 
2378 	e1000g_mask_interrupt(Adapter);
2379 
2380 done:
2381 	rw_exit(&Adapter->chip_lock);
2382 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2383 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2384 		res = EIO;
2385 	}
2386 
2387 	return (res);
2388 }
2389 
2390 static int
2391 multicst_remove(struct e1000g *Adapter, const uint8_t *multiaddr)
2392 {
2393 	struct e1000_hw *hw = &Adapter->shared;
2394 	unsigned i;
2395 
2396 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2397 
2398 	for (i = 0; i < Adapter->mcast_count; i++) {
2399 		if (bcmp(multiaddr, &Adapter->mcast_table[i],
2400 		    ETHERADDRL) == 0) {
2401 			for (i++; i < Adapter->mcast_count; i++) {
2402 				Adapter->mcast_table[i - 1] =
2403 				    Adapter->mcast_table[i];
2404 			}
2405 			Adapter->mcast_count--;
2406 			break;
2407 		}
2408 	}
2409 
2410 	/*
2411 	 * Update the MC table in the hardware
2412 	 */
2413 	e1000g_clear_interrupt(Adapter);
2414 
2415 	e1000g_setup_multicast(Adapter);
2416 
2417 	if ((hw->mac.type == e1000_82542) &&
2418 	    (hw->revision_id == E1000_REVISION_2))
2419 		e1000g_rx_setup(Adapter);
2420 
2421 	e1000g_mask_interrupt(Adapter);
2422 
2423 done:
2424 	rw_exit(&Adapter->chip_lock);
2425 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2426 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2427 		return (EIO);
2428 	}
2429 
2430 	return (0);
2431 }
2432 
2433 /*
2434  * e1000g_setup_multicast - setup multicast data structures
2435  *
2436  * This routine initializes all of the multicast related structures.
2437  */
2438 void
2439 e1000g_setup_multicast(struct e1000g *Adapter)
2440 {
2441 	uint8_t *mc_addr_list;
2442 	uint32_t mc_addr_count;
2443 	uint32_t rctl;
2444 	struct e1000_hw *hw;
2445 
2446 	hw = &Adapter->shared;
2447 
2448 	/*
2449 	 * The e1000g has the ability to do perfect filtering of 16
2450 	 * addresses. The driver uses one of the e1000g's 16 receive
2451 	 * address registers for its node/network/mac/individual address.
2452 	 * So, we have room for up to 15 multicast addresses in the CAM,
2453 	 * additional MC addresses are handled by the MTA (Multicast Table
2454 	 * Array)
2455 	 */
2456 
2457 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2458 
2459 	mc_addr_list = (uint8_t *)Adapter->mcast_table;
2460 
2461 	if (Adapter->mcast_count > MAX_NUM_MULTICAST_ADDRESSES) {
2462 		E1000G_DEBUGLOG_1(Adapter, CE_WARN,
2463 		    "Adapter requested more than %d MC Addresses.\n",
2464 		    MAX_NUM_MULTICAST_ADDRESSES);
2465 		mc_addr_count = MAX_NUM_MULTICAST_ADDRESSES;
2466 	} else {
2467 		/*
2468 		 * Set the number of MC addresses that we are being
2469 		 * requested to use
2470 		 */
2471 		mc_addr_count = Adapter->mcast_count;
2472 	}
2473 	/*
2474 	 * The Wiseman 2.0 silicon has an errata by which the receiver will
2475 	 * hang  while writing to the receive address registers if the receiver
2476 	 * is not in reset before writing to the registers. Updating the RAR
2477 	 * is done during the setting up of the multicast table, hence the
2478 	 * receiver has to be put in reset before updating the multicast table
2479 	 * and then taken out of reset at the end
2480 	 */
2481 	/*
2482 	 * if WMI was enabled then dis able it before issueing the global
2483 	 * reset to the hardware.
2484 	 */
2485 	/*
2486 	 * Only required for WISEMAN_2_0
2487 	 */
2488 	if ((hw->mac.type == e1000_82542) &&
2489 	    (hw->revision_id == E1000_REVISION_2)) {
2490 		e1000_pci_clear_mwi(hw);
2491 		/*
2492 		 * The e1000g must be in reset before changing any RA
2493 		 * registers. Reset receive unit.  The chip will remain in
2494 		 * the reset state until software explicitly restarts it.
2495 		 */
2496 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2497 		/* Allow receiver time to go in to reset */
2498 		msec_delay(5);
2499 	}
2500 
2501 	e1000_update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2502 	    Adapter->unicst_total, hw->mac.rar_entry_count);
2503 
2504 	/*
2505 	 * Only for Wiseman_2_0
2506 	 * If MWI was enabled then re-enable it after issueing (as we
2507 	 * disabled it up there) the receive reset command.
2508 	 * Wainwright does not have a receive reset command and only thing
2509 	 * close to it is global reset which will require tx setup also
2510 	 */
2511 	if ((hw->mac.type == e1000_82542) &&
2512 	    (hw->revision_id == E1000_REVISION_2)) {
2513 		/*
2514 		 * if WMI was enabled then reenable it after issueing the
2515 		 * global or receive reset to the hardware.
2516 		 */
2517 
2518 		/*
2519 		 * Take receiver out of reset
2520 		 * clear E1000_RCTL_RST bit (and all others)
2521 		 */
2522 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2523 		msec_delay(5);
2524 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2525 			e1000_pci_set_mwi(hw);
2526 	}
2527 
2528 	/*
2529 	 * Restore original value
2530 	 */
2531 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2532 }
2533 
2534 int
2535 e1000g_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
2536 {
2537 	struct e1000g *Adapter = (struct e1000g *)arg;
2538 
2539 	return ((add) ? multicst_add(Adapter, addr)
2540 	    : multicst_remove(Adapter, addr));
2541 }
2542 
2543 int
2544 e1000g_m_promisc(void *arg, boolean_t on)
2545 {
2546 	struct e1000g *Adapter = (struct e1000g *)arg;
2547 	uint32_t rctl;
2548 
2549 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2550 
2551 	rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
2552 
2553 	if (on)
2554 		rctl |=
2555 		    (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
2556 	else
2557 		rctl &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
2558 
2559 	E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
2560 
2561 	Adapter->e1000g_promisc = on;
2562 
2563 	rw_exit(&Adapter->chip_lock);
2564 
2565 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2566 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2567 		return (EIO);
2568 	}
2569 
2570 	return (0);
2571 }
2572 
2573 static boolean_t
2574 e1000g_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
2575 {
2576 	struct e1000g *Adapter = (struct e1000g *)arg;
2577 
2578 	switch (cap) {
2579 	case MAC_CAPAB_HCKSUM: {
2580 		uint32_t *txflags = cap_data;
2581 
2582 		if (Adapter->tx_hcksum_enable)
2583 			*txflags = HCKSUM_IPHDRCKSUM |
2584 			    HCKSUM_INET_PARTIAL;
2585 		else
2586 			return (B_FALSE);
2587 		break;
2588 	}
2589 	case MAC_CAPAB_POLL:
2590 		/*
2591 		 * There's nothing for us to fill in, simply returning
2592 		 * B_TRUE stating that we support polling is sufficient.
2593 		 */
2594 		break;
2595 
2596 	case MAC_CAPAB_MULTIADDRESS: {
2597 		multiaddress_capab_t *mmacp = cap_data;
2598 
2599 		/*
2600 		 * The number of MAC addresses made available by
2601 		 * this capability is one less than the total as
2602 		 * the primary address in slot 0 is counted in
2603 		 * the total.
2604 		 */
2605 		mmacp->maddr_naddr = Adapter->unicst_total - 1;
2606 		mmacp->maddr_naddrfree = Adapter->unicst_avail;
2607 		/* No multiple factory addresses, set mma_flag to 0 */
2608 		mmacp->maddr_flag = 0;
2609 		mmacp->maddr_handle = Adapter;
2610 		mmacp->maddr_add = e1000g_m_unicst_add;
2611 		mmacp->maddr_remove = e1000g_m_unicst_remove;
2612 		mmacp->maddr_modify = e1000g_m_unicst_modify;
2613 		mmacp->maddr_get = e1000g_m_unicst_get;
2614 		mmacp->maddr_reserve = NULL;
2615 		break;
2616 	}
2617 
2618 	case MAC_CAPAB_LSO: {
2619 		mac_capab_lso_t *cap_lso = cap_data;
2620 
2621 		if (Adapter->lso_enable) {
2622 			cap_lso->lso_flags = LSO_TX_BASIC_TCP_IPV4;
2623 			cap_lso->lso_basic_tcp_ipv4.lso_max =
2624 			    E1000_LSO_MAXLEN;
2625 		} else
2626 			return (B_FALSE);
2627 		break;
2628 	}
2629 
2630 	default:
2631 		return (B_FALSE);
2632 	}
2633 	return (B_TRUE);
2634 }
2635 
2636 static boolean_t
2637 e1000g_param_locked(mac_prop_id_t pr_num)
2638 {
2639 	/*
2640 	 * All en_* parameters are locked (read-only) while
2641 	 * the device is in any sort of loopback mode ...
2642 	 */
2643 	switch (pr_num) {
2644 		case MAC_PROP_EN_1000FDX_CAP:
2645 		case MAC_PROP_EN_1000HDX_CAP:
2646 		case MAC_PROP_EN_100FDX_CAP:
2647 		case MAC_PROP_EN_100HDX_CAP:
2648 		case MAC_PROP_EN_10FDX_CAP:
2649 		case MAC_PROP_EN_10HDX_CAP:
2650 		case MAC_PROP_AUTONEG:
2651 		case MAC_PROP_FLOWCTRL:
2652 			return (B_TRUE);
2653 	}
2654 	return (B_FALSE);
2655 }
2656 
2657 /*
2658  * callback function for set/get of properties
2659  */
2660 static int
2661 e1000g_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
2662     uint_t pr_valsize, const void *pr_val)
2663 {
2664 	struct e1000g *Adapter = arg;
2665 	struct e1000_mac_info *mac = &Adapter->shared.mac;
2666 	struct e1000_phy_info *phy = &Adapter->shared.phy;
2667 	struct e1000_fc_info *fc = &Adapter->shared.fc;
2668 	int err = 0;
2669 	link_flowctrl_t flowctrl;
2670 	uint32_t cur_mtu, new_mtu;
2671 	uint64_t tmp = 0;
2672 
2673 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2674 	if (Adapter->loopback_mode != E1000G_LB_NONE &&
2675 	    e1000g_param_locked(pr_num)) {
2676 		/*
2677 		 * All en_* parameters are locked (read-only)
2678 		 * while the device is in any sort of loopback mode.
2679 		 */
2680 		rw_exit(&Adapter->chip_lock);
2681 		return (EBUSY);
2682 	}
2683 
2684 	switch (pr_num) {
2685 		case MAC_PROP_EN_1000FDX_CAP:
2686 			Adapter->param_en_1000fdx = *(uint8_t *)pr_val;
2687 			Adapter->param_adv_1000fdx = *(uint8_t *)pr_val;
2688 			goto reset;
2689 		case MAC_PROP_EN_100FDX_CAP:
2690 			Adapter->param_en_100fdx = *(uint8_t *)pr_val;
2691 			Adapter->param_adv_100fdx = *(uint8_t *)pr_val;
2692 			goto reset;
2693 		case MAC_PROP_EN_100HDX_CAP:
2694 			Adapter->param_en_100hdx = *(uint8_t *)pr_val;
2695 			Adapter->param_adv_100hdx = *(uint8_t *)pr_val;
2696 			goto reset;
2697 		case MAC_PROP_EN_10FDX_CAP:
2698 			Adapter->param_en_10fdx = *(uint8_t *)pr_val;
2699 			Adapter->param_adv_10fdx = *(uint8_t *)pr_val;
2700 			goto reset;
2701 		case MAC_PROP_EN_10HDX_CAP:
2702 			Adapter->param_en_10hdx = *(uint8_t *)pr_val;
2703 			Adapter->param_adv_10hdx = *(uint8_t *)pr_val;
2704 			goto reset;
2705 		case MAC_PROP_AUTONEG:
2706 			Adapter->param_adv_autoneg = *(uint8_t *)pr_val;
2707 			goto reset;
2708 		case MAC_PROP_FLOWCTRL:
2709 			fc->send_xon = B_TRUE;
2710 			bcopy(pr_val, &flowctrl, sizeof (flowctrl));
2711 
2712 			switch (flowctrl) {
2713 			default:
2714 				err = EINVAL;
2715 				break;
2716 			case LINK_FLOWCTRL_NONE:
2717 				fc->type = e1000_fc_none;
2718 				break;
2719 			case LINK_FLOWCTRL_RX:
2720 				fc->type = e1000_fc_rx_pause;
2721 				break;
2722 			case LINK_FLOWCTRL_TX:
2723 				fc->type = e1000_fc_tx_pause;
2724 				break;
2725 			case LINK_FLOWCTRL_BI:
2726 				fc->type = e1000_fc_full;
2727 				break;
2728 			}
2729 reset:
2730 			if (err == 0) {
2731 				if (e1000g_reset_link(Adapter) != DDI_SUCCESS)
2732 					err = EINVAL;
2733 			}
2734 			break;
2735 		case MAC_PROP_ADV_1000FDX_CAP:
2736 		case MAC_PROP_ADV_1000HDX_CAP:
2737 		case MAC_PROP_ADV_100FDX_CAP:
2738 		case MAC_PROP_ADV_100HDX_CAP:
2739 		case MAC_PROP_ADV_10FDX_CAP:
2740 		case MAC_PROP_ADV_10HDX_CAP:
2741 		case MAC_PROP_EN_1000HDX_CAP:
2742 		case MAC_PROP_STATUS:
2743 		case MAC_PROP_SPEED:
2744 		case MAC_PROP_DUPLEX:
2745 			err = ENOTSUP; /* read-only prop. Can't set this. */
2746 			break;
2747 		case MAC_PROP_MTU:
2748 			cur_mtu = Adapter->default_mtu;
2749 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
2750 			if (new_mtu == cur_mtu) {
2751 				err = 0;
2752 				break;
2753 			}
2754 
2755 			tmp = new_mtu + sizeof (struct ether_vlan_header) +
2756 			    ETHERFCSL;
2757 			if ((tmp < DEFAULT_FRAME_SIZE) ||
2758 			    (tmp > MAXIMUM_FRAME_SIZE)) {
2759 				err = EINVAL;
2760 				break;
2761 			}
2762 
2763 			/* ich8 does not support jumbo frames */
2764 			if ((mac->type == e1000_ich8lan) &&
2765 			    (tmp > DEFAULT_FRAME_SIZE)) {
2766 				err = EINVAL;
2767 				break;
2768 			}
2769 			/* ich9 does not do jumbo frames on one phy type */
2770 			if ((mac->type == e1000_ich9lan) &&
2771 			    (phy->type == e1000_phy_ife) &&
2772 			    (tmp > DEFAULT_FRAME_SIZE)) {
2773 				err = EINVAL;
2774 				break;
2775 			}
2776 			if (Adapter->chip_state != E1000G_STOP) {
2777 				err = EBUSY;
2778 				break;
2779 			}
2780 
2781 			err = mac_maxsdu_update(Adapter->mh, new_mtu);
2782 			if (err == 0) {
2783 				Adapter->max_frame_size = (uint32_t)tmp;
2784 				Adapter->default_mtu = new_mtu;
2785 				e1000g_set_bufsize(Adapter);
2786 			}
2787 			break;
2788 		case MAC_PROP_PRIVATE:
2789 			err = e1000g_set_priv_prop(Adapter, pr_name,
2790 			    pr_valsize, pr_val);
2791 			break;
2792 		default:
2793 			err = ENOTSUP;
2794 			break;
2795 	}
2796 	rw_exit(&Adapter->chip_lock);
2797 	return (err);
2798 }
2799 
2800 static int
2801 e1000g_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
2802     uint_t pr_flags, uint_t pr_valsize, void *pr_val, uint_t *perm)
2803 {
2804 	struct e1000g *Adapter = arg;
2805 	struct e1000_fc_info *fc = &Adapter->shared.fc;
2806 	int err = 0;
2807 	link_flowctrl_t flowctrl;
2808 	uint64_t tmp = 0;
2809 
2810 	if (pr_valsize == 0)
2811 		return (EINVAL);
2812 
2813 	*perm = MAC_PROP_PERM_RW;
2814 
2815 	bzero(pr_val, pr_valsize);
2816 	if ((pr_flags & MAC_PROP_DEFAULT) && (pr_num != MAC_PROP_PRIVATE)) {
2817 		return (e1000g_get_def_val(Adapter, pr_num,
2818 		    pr_valsize, pr_val));
2819 	}
2820 
2821 	switch (pr_num) {
2822 		case MAC_PROP_DUPLEX:
2823 			*perm = MAC_PROP_PERM_READ;
2824 			if (pr_valsize >= sizeof (link_duplex_t)) {
2825 				bcopy(&Adapter->link_duplex, pr_val,
2826 				    sizeof (link_duplex_t));
2827 			} else
2828 				err = EINVAL;
2829 			break;
2830 		case MAC_PROP_SPEED:
2831 			*perm = MAC_PROP_PERM_READ;
2832 			if (pr_valsize >= sizeof (uint64_t)) {
2833 				tmp = Adapter->link_speed * 1000000ull;
2834 				bcopy(&tmp, pr_val, sizeof (tmp));
2835 			} else
2836 				err = EINVAL;
2837 			break;
2838 		case MAC_PROP_AUTONEG:
2839 			*(uint8_t *)pr_val = Adapter->param_adv_autoneg;
2840 			break;
2841 		case MAC_PROP_FLOWCTRL:
2842 			if (pr_valsize >= sizeof (link_flowctrl_t)) {
2843 				switch (fc->type) {
2844 					case e1000_fc_none:
2845 						flowctrl = LINK_FLOWCTRL_NONE;
2846 						break;
2847 					case e1000_fc_rx_pause:
2848 						flowctrl = LINK_FLOWCTRL_RX;
2849 						break;
2850 					case e1000_fc_tx_pause:
2851 						flowctrl = LINK_FLOWCTRL_TX;
2852 						break;
2853 					case e1000_fc_full:
2854 						flowctrl = LINK_FLOWCTRL_BI;
2855 						break;
2856 				}
2857 				bcopy(&flowctrl, pr_val, sizeof (flowctrl));
2858 			} else
2859 				err = EINVAL;
2860 			break;
2861 		case MAC_PROP_ADV_1000FDX_CAP:
2862 			*perm = MAC_PROP_PERM_READ;
2863 			*(uint8_t *)pr_val = Adapter->param_adv_1000fdx;
2864 			break;
2865 		case MAC_PROP_EN_1000FDX_CAP:
2866 			*(uint8_t *)pr_val = Adapter->param_en_1000fdx;
2867 			break;
2868 		case MAC_PROP_ADV_1000HDX_CAP:
2869 			*perm = MAC_PROP_PERM_READ;
2870 			*(uint8_t *)pr_val = Adapter->param_adv_1000hdx;
2871 			break;
2872 		case MAC_PROP_EN_1000HDX_CAP:
2873 			*perm = MAC_PROP_PERM_READ;
2874 			*(uint8_t *)pr_val = Adapter->param_en_1000hdx;
2875 			break;
2876 		case MAC_PROP_ADV_100FDX_CAP:
2877 			*perm = MAC_PROP_PERM_READ;
2878 			*(uint8_t *)pr_val = Adapter->param_adv_100fdx;
2879 			break;
2880 		case MAC_PROP_EN_100FDX_CAP:
2881 			*(uint8_t *)pr_val = Adapter->param_en_100fdx;
2882 			break;
2883 		case MAC_PROP_ADV_100HDX_CAP:
2884 			*perm = MAC_PROP_PERM_READ;
2885 			*(uint8_t *)pr_val = Adapter->param_adv_100hdx;
2886 			break;
2887 		case MAC_PROP_EN_100HDX_CAP:
2888 			*(uint8_t *)pr_val = Adapter->param_en_100hdx;
2889 			break;
2890 		case MAC_PROP_ADV_10FDX_CAP:
2891 			*perm = MAC_PROP_PERM_READ;
2892 			*(uint8_t *)pr_val = Adapter->param_adv_10fdx;
2893 			break;
2894 		case MAC_PROP_EN_10FDX_CAP:
2895 			*(uint8_t *)pr_val = Adapter->param_en_10fdx;
2896 			break;
2897 		case MAC_PROP_ADV_10HDX_CAP:
2898 			*perm = MAC_PROP_PERM_READ;
2899 			*(uint8_t *)pr_val = Adapter->param_adv_10hdx;
2900 			break;
2901 		case MAC_PROP_EN_10HDX_CAP:
2902 			*(uint8_t *)pr_val = Adapter->param_en_10hdx;
2903 			break;
2904 		case MAC_PROP_ADV_100T4_CAP:
2905 		case MAC_PROP_EN_100T4_CAP:
2906 			*perm = MAC_PROP_PERM_READ;
2907 			*(uint8_t *)pr_val = Adapter->param_adv_100t4;
2908 			break;
2909 		case MAC_PROP_PRIVATE:
2910 			err = e1000g_get_priv_prop(Adapter, pr_name,
2911 			    pr_flags, pr_valsize, pr_val, perm);
2912 			break;
2913 		default:
2914 			err = ENOTSUP;
2915 			break;
2916 	}
2917 	return (err);
2918 }
2919 
2920 /* ARGSUSED2 */
2921 static int
2922 e1000g_set_priv_prop(struct e1000g *Adapter, const char *pr_name,
2923     uint_t pr_valsize, const void *pr_val)
2924 {
2925 	int err = 0;
2926 	long result;
2927 	struct e1000_hw *hw = &Adapter->shared;
2928 
2929 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
2930 		if (pr_val == NULL) {
2931 			err = EINVAL;
2932 			return (err);
2933 		}
2934 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2935 		if (result < MIN_TX_BCOPY_THRESHOLD ||
2936 		    result > MAX_TX_BCOPY_THRESHOLD)
2937 			err = EINVAL;
2938 		else {
2939 			Adapter->tx_bcopy_thresh = (uint32_t)result;
2940 		}
2941 		return (err);
2942 	}
2943 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
2944 		if (pr_val == NULL) {
2945 			err = EINVAL;
2946 			return (err);
2947 		}
2948 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2949 		if (result < 0 || result > 1)
2950 			err = EINVAL;
2951 		else {
2952 			Adapter->tx_intr_enable = (result == 1) ?
2953 			    B_TRUE: B_FALSE;
2954 			if (Adapter->tx_intr_enable)
2955 				e1000g_mask_tx_interrupt(Adapter);
2956 			else
2957 				e1000g_clear_tx_interrupt(Adapter);
2958 			if (e1000g_check_acc_handle(
2959 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
2960 				ddi_fm_service_impact(Adapter->dip,
2961 				    DDI_SERVICE_DEGRADED);
2962 		}
2963 		return (err);
2964 	}
2965 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
2966 		if (pr_val == NULL) {
2967 			err = EINVAL;
2968 			return (err);
2969 		}
2970 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2971 		if (result < MIN_TX_INTR_DELAY ||
2972 		    result > MAX_TX_INTR_DELAY)
2973 			err = EINVAL;
2974 		else {
2975 			Adapter->tx_intr_delay = (uint32_t)result;
2976 			E1000_WRITE_REG(hw, E1000_TIDV, Adapter->tx_intr_delay);
2977 			if (e1000g_check_acc_handle(
2978 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
2979 				ddi_fm_service_impact(Adapter->dip,
2980 				    DDI_SERVICE_DEGRADED);
2981 		}
2982 		return (err);
2983 	}
2984 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
2985 		if (pr_val == NULL) {
2986 			err = EINVAL;
2987 			return (err);
2988 		}
2989 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2990 		if (result < MIN_TX_INTR_ABS_DELAY ||
2991 		    result > MAX_TX_INTR_ABS_DELAY)
2992 			err = EINVAL;
2993 		else {
2994 			Adapter->tx_intr_abs_delay = (uint32_t)result;
2995 			E1000_WRITE_REG(hw, E1000_TADV,
2996 			    Adapter->tx_intr_abs_delay);
2997 			if (e1000g_check_acc_handle(
2998 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
2999 				ddi_fm_service_impact(Adapter->dip,
3000 				    DDI_SERVICE_DEGRADED);
3001 		}
3002 		return (err);
3003 	}
3004 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3005 		if (pr_val == NULL) {
3006 			err = EINVAL;
3007 			return (err);
3008 		}
3009 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3010 		if (result < MIN_RX_BCOPY_THRESHOLD ||
3011 		    result > MAX_RX_BCOPY_THRESHOLD)
3012 			err = EINVAL;
3013 		else
3014 			Adapter->rx_bcopy_thresh = (uint32_t)result;
3015 		return (err);
3016 	}
3017 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3018 		if (pr_val == NULL) {
3019 			err = EINVAL;
3020 			return (err);
3021 		}
3022 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3023 		if (result < MIN_RX_LIMIT_ON_INTR ||
3024 		    result > MAX_RX_LIMIT_ON_INTR)
3025 			err = EINVAL;
3026 		else
3027 			Adapter->rx_limit_onintr = (uint32_t)result;
3028 		return (err);
3029 	}
3030 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3031 		if (pr_val == NULL) {
3032 			err = EINVAL;
3033 			return (err);
3034 		}
3035 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3036 		if (result < MIN_RX_INTR_DELAY ||
3037 		    result > MAX_RX_INTR_DELAY)
3038 			err = EINVAL;
3039 		else {
3040 			Adapter->rx_intr_delay = (uint32_t)result;
3041 			E1000_WRITE_REG(hw, E1000_RDTR, Adapter->rx_intr_delay);
3042 			if (e1000g_check_acc_handle(
3043 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3044 				ddi_fm_service_impact(Adapter->dip,
3045 				    DDI_SERVICE_DEGRADED);
3046 		}
3047 		return (err);
3048 	}
3049 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3050 		if (pr_val == NULL) {
3051 			err = EINVAL;
3052 			return (err);
3053 		}
3054 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3055 		if (result < MIN_RX_INTR_ABS_DELAY ||
3056 		    result > MAX_RX_INTR_ABS_DELAY)
3057 			err = EINVAL;
3058 		else {
3059 			Adapter->rx_intr_abs_delay = (uint32_t)result;
3060 			E1000_WRITE_REG(hw, E1000_RADV,
3061 			    Adapter->rx_intr_abs_delay);
3062 			if (e1000g_check_acc_handle(
3063 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3064 				ddi_fm_service_impact(Adapter->dip,
3065 				    DDI_SERVICE_DEGRADED);
3066 		}
3067 		return (err);
3068 	}
3069 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3070 		if (pr_val == NULL) {
3071 			err = EINVAL;
3072 			return (err);
3073 		}
3074 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3075 		if (result < MIN_INTR_THROTTLING ||
3076 		    result > MAX_INTR_THROTTLING)
3077 			err = EINVAL;
3078 		else {
3079 			if (hw->mac.type >= e1000_82540) {
3080 				Adapter->intr_throttling_rate =
3081 				    (uint32_t)result;
3082 				E1000_WRITE_REG(hw, E1000_ITR,
3083 				    Adapter->intr_throttling_rate);
3084 				if (e1000g_check_acc_handle(
3085 				    Adapter->osdep.reg_handle) != DDI_FM_OK)
3086 					ddi_fm_service_impact(Adapter->dip,
3087 					    DDI_SERVICE_DEGRADED);
3088 			} else
3089 				err = EINVAL;
3090 		}
3091 		return (err);
3092 	}
3093 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3094 		if (pr_val == NULL) {
3095 			err = EINVAL;
3096 			return (err);
3097 		}
3098 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3099 		if (result < 0 || result > 1)
3100 			err = EINVAL;
3101 		else {
3102 			if (hw->mac.type >= e1000_82540) {
3103 				Adapter->intr_adaptive = (result == 1) ?
3104 				    B_TRUE : B_FALSE;
3105 			} else {
3106 				err = EINVAL;
3107 			}
3108 		}
3109 		return (err);
3110 	}
3111 	if (strcmp(pr_name, "_tx_recycle_thresh") == 0) {
3112 		if (pr_val == NULL) {
3113 			err = EINVAL;
3114 			return (err);
3115 		}
3116 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3117 		if (result < MIN_TX_RECYCLE_THRESHOLD ||
3118 		    result > MAX_TX_RECYCLE_THRESHOLD)
3119 			err = EINVAL;
3120 		else
3121 			Adapter->tx_recycle_thresh = (uint32_t)result;
3122 		return (err);
3123 	}
3124 	if (strcmp(pr_name, "_tx_recycle_num") == 0) {
3125 		if (pr_val == NULL) {
3126 			err = EINVAL;
3127 			return (err);
3128 		}
3129 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3130 		if (result < MIN_TX_RECYCLE_NUM ||
3131 		    result > MAX_TX_RECYCLE_NUM)
3132 			err = EINVAL;
3133 		else
3134 			Adapter->tx_recycle_num = (uint32_t)result;
3135 		return (err);
3136 	}
3137 	return (ENOTSUP);
3138 }
3139 
3140 static int
3141 e1000g_get_priv_prop(struct e1000g *Adapter, const char *pr_name,
3142     uint_t pr_flags, uint_t pr_valsize, void *pr_val, uint_t *perm)
3143 {
3144 	int err = ENOTSUP;
3145 	boolean_t is_default = (pr_flags & MAC_PROP_DEFAULT);
3146 	int value;
3147 
3148 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
3149 		*perm = MAC_PROP_PERM_READ;
3150 		if (is_default)
3151 			goto done;
3152 		value = Adapter->param_adv_pause;
3153 		err = 0;
3154 		goto done;
3155 	}
3156 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
3157 		*perm = MAC_PROP_PERM_READ;
3158 		if (is_default)
3159 			goto done;
3160 		value = Adapter->param_adv_asym_pause;
3161 		err = 0;
3162 		goto done;
3163 	}
3164 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3165 		value = (is_default ? DEFAULT_TX_BCOPY_THRESHOLD :
3166 		    Adapter->tx_bcopy_thresh);
3167 		err = 0;
3168 		goto done;
3169 	}
3170 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3171 		value = (is_default ? DEFAULT_TX_INTR_ENABLE :
3172 		    Adapter->tx_intr_enable);
3173 		err = 0;
3174 		goto done;
3175 	}
3176 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3177 		value = (is_default ? DEFAULT_TX_INTR_DELAY :
3178 		    Adapter->tx_intr_delay);
3179 		err = 0;
3180 		goto done;
3181 	}
3182 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3183 		value = (is_default ? DEFAULT_TX_INTR_ABS_DELAY :
3184 		    Adapter->tx_intr_abs_delay);
3185 		err = 0;
3186 		goto done;
3187 	}
3188 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3189 		value = (is_default ? DEFAULT_RX_BCOPY_THRESHOLD :
3190 		    Adapter->rx_bcopy_thresh);
3191 		err = 0;
3192 		goto done;
3193 	}
3194 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3195 		value = (is_default ? DEFAULT_RX_LIMIT_ON_INTR :
3196 		    Adapter->rx_limit_onintr);
3197 		err = 0;
3198 		goto done;
3199 	}
3200 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3201 		value = (is_default ? DEFAULT_RX_INTR_DELAY :
3202 		    Adapter->rx_intr_delay);
3203 		err = 0;
3204 		goto done;
3205 	}
3206 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3207 		value = (is_default ? DEFAULT_RX_INTR_ABS_DELAY :
3208 		    Adapter->rx_intr_abs_delay);
3209 		err = 0;
3210 		goto done;
3211 	}
3212 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3213 		value = (is_default ? DEFAULT_INTR_THROTTLING :
3214 		    Adapter->intr_throttling_rate);
3215 		err = 0;
3216 		goto done;
3217 	}
3218 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3219 		value = (is_default ? 1 : Adapter->intr_adaptive);
3220 		err = 0;
3221 		goto done;
3222 	}
3223 	if (strcmp(pr_name, "_tx_recycle_thresh") == 0) {
3224 		value = (is_default ? DEFAULT_TX_RECYCLE_THRESHOLD :
3225 		    Adapter->tx_recycle_thresh);
3226 		err = 0;
3227 		goto done;
3228 	}
3229 	if (strcmp(pr_name, "_tx_recycle_num") == 0) {
3230 		value = (is_default ? DEFAULT_TX_RECYCLE_NUM :
3231 		    Adapter->tx_recycle_num);
3232 		err = 0;
3233 		goto done;
3234 	}
3235 done:
3236 	if (err == 0) {
3237 		(void) snprintf(pr_val, pr_valsize, "%d", value);
3238 	}
3239 	return (err);
3240 }
3241 
3242 /*
3243  * e1000g_get_conf - get configurations set in e1000g.conf
3244  * This routine gets user-configured values out of the configuration
3245  * file e1000g.conf.
3246  *
3247  * For each configurable value, there is a minimum, a maximum, and a
3248  * default.
3249  * If user does not configure a value, use the default.
3250  * If user configures below the minimum, use the minumum.
3251  * If user configures above the maximum, use the maxumum.
3252  */
3253 static void
3254 e1000g_get_conf(struct e1000g *Adapter)
3255 {
3256 	struct e1000_hw *hw = &Adapter->shared;
3257 	boolean_t tbi_compatibility = B_FALSE;
3258 
3259 	/*
3260 	 * get each configurable property from e1000g.conf
3261 	 */
3262 
3263 	/*
3264 	 * NumTxDescriptors
3265 	 */
3266 	Adapter->tx_desc_num =
3267 	    e1000g_get_prop(Adapter, "NumTxDescriptors",
3268 	    MIN_NUM_TX_DESCRIPTOR, MAX_NUM_TX_DESCRIPTOR,
3269 	    DEFAULT_NUM_TX_DESCRIPTOR);
3270 
3271 	/*
3272 	 * NumRxDescriptors
3273 	 */
3274 	Adapter->rx_desc_num =
3275 	    e1000g_get_prop(Adapter, "NumRxDescriptors",
3276 	    MIN_NUM_RX_DESCRIPTOR, MAX_NUM_RX_DESCRIPTOR,
3277 	    DEFAULT_NUM_RX_DESCRIPTOR);
3278 
3279 	/*
3280 	 * NumRxFreeList
3281 	 */
3282 	Adapter->rx_freelist_num =
3283 	    e1000g_get_prop(Adapter, "NumRxFreeList",
3284 	    MIN_NUM_RX_FREELIST, MAX_NUM_RX_FREELIST,
3285 	    DEFAULT_NUM_RX_FREELIST);
3286 
3287 	/*
3288 	 * NumTxPacketList
3289 	 */
3290 	Adapter->tx_freelist_num =
3291 	    e1000g_get_prop(Adapter, "NumTxPacketList",
3292 	    MIN_NUM_TX_FREELIST, MAX_NUM_TX_FREELIST,
3293 	    DEFAULT_NUM_TX_FREELIST);
3294 
3295 	/*
3296 	 * FlowControl
3297 	 */
3298 	hw->fc.send_xon = B_TRUE;
3299 	hw->fc.type =
3300 	    e1000g_get_prop(Adapter, "FlowControl",
3301 	    e1000_fc_none, 4, DEFAULT_FLOW_CONTROL);
3302 	/* 4 is the setting that says "let the eeprom decide" */
3303 	if (hw->fc.type == 4)
3304 		hw->fc.type = e1000_fc_default;
3305 
3306 	/*
3307 	 * Max Num Receive Packets on Interrupt
3308 	 */
3309 	Adapter->rx_limit_onintr =
3310 	    e1000g_get_prop(Adapter, "MaxNumReceivePackets",
3311 	    MIN_RX_LIMIT_ON_INTR, MAX_RX_LIMIT_ON_INTR,
3312 	    DEFAULT_RX_LIMIT_ON_INTR);
3313 
3314 	/*
3315 	 * PHY master slave setting
3316 	 */
3317 	hw->phy.ms_type =
3318 	    e1000g_get_prop(Adapter, "SetMasterSlave",
3319 	    e1000_ms_hw_default, e1000_ms_auto,
3320 	    e1000_ms_hw_default);
3321 
3322 	/*
3323 	 * Parameter which controls TBI mode workaround, which is only
3324 	 * needed on certain switches such as Cisco 6500/Foundry
3325 	 */
3326 	tbi_compatibility =
3327 	    e1000g_get_prop(Adapter, "TbiCompatibilityEnable",
3328 	    0, 1, DEFAULT_TBI_COMPAT_ENABLE);
3329 	e1000_set_tbi_compatibility_82543(hw, tbi_compatibility);
3330 
3331 	/*
3332 	 * MSI Enable
3333 	 */
3334 	Adapter->msi_enable =
3335 	    e1000g_get_prop(Adapter, "MSIEnable",
3336 	    0, 1, DEFAULT_MSI_ENABLE);
3337 
3338 	/*
3339 	 * Interrupt Throttling Rate
3340 	 */
3341 	Adapter->intr_throttling_rate =
3342 	    e1000g_get_prop(Adapter, "intr_throttling_rate",
3343 	    MIN_INTR_THROTTLING, MAX_INTR_THROTTLING,
3344 	    DEFAULT_INTR_THROTTLING);
3345 
3346 	/*
3347 	 * Adaptive Interrupt Blanking Enable/Disable
3348 	 * It is enabled by default
3349 	 */
3350 	Adapter->intr_adaptive =
3351 	    (e1000g_get_prop(Adapter, "intr_adaptive", 0, 1, 1) == 1) ?
3352 	    B_TRUE : B_FALSE;
3353 
3354 	/*
3355 	 * Tx recycle threshold
3356 	 */
3357 	Adapter->tx_recycle_thresh =
3358 	    e1000g_get_prop(Adapter, "tx_recycle_thresh",
3359 	    MIN_TX_RECYCLE_THRESHOLD, MAX_TX_RECYCLE_THRESHOLD,
3360 	    DEFAULT_TX_RECYCLE_THRESHOLD);
3361 
3362 	/*
3363 	 * Tx recycle descriptor number
3364 	 */
3365 	Adapter->tx_recycle_num =
3366 	    e1000g_get_prop(Adapter, "tx_recycle_num",
3367 	    MIN_TX_RECYCLE_NUM, MAX_TX_RECYCLE_NUM,
3368 	    DEFAULT_TX_RECYCLE_NUM);
3369 
3370 	/*
3371 	 * Hardware checksum enable/disable parameter
3372 	 */
3373 	Adapter->tx_hcksum_enable =
3374 	    e1000g_get_prop(Adapter, "tx_hcksum_enable",
3375 	    0, 1, DEFAULT_TX_HCKSUM_ENABLE);
3376 	/*
3377 	 * Checksum on/off selection via global parameters.
3378 	 *
3379 	 * If the chip is flagged as not capable of (correctly)
3380 	 * handling checksumming, we don't enable it on either
3381 	 * Rx or Tx side.  Otherwise, we take this chip's settings
3382 	 * from the patchable global defaults.
3383 	 *
3384 	 * We advertise our capabilities only if TX offload is
3385 	 * enabled.  On receive, the stack will accept checksummed
3386 	 * packets anyway, even if we haven't said we can deliver
3387 	 * them.
3388 	 */
3389 	switch (hw->mac.type) {
3390 		case e1000_82540:
3391 		case e1000_82544:
3392 		case e1000_82545:
3393 		case e1000_82545_rev_3:
3394 		case e1000_82546:
3395 		case e1000_82546_rev_3:
3396 		case e1000_82571:
3397 		case e1000_82572:
3398 		case e1000_82573:
3399 		case e1000_80003es2lan:
3400 			break;
3401 		/*
3402 		 * For the following Intel PRO/1000 chipsets, we have not
3403 		 * tested the hardware checksum offload capability, so we
3404 		 * disable the capability for them.
3405 		 *	e1000_82542,
3406 		 *	e1000_82543,
3407 		 *	e1000_82541,
3408 		 *	e1000_82541_rev_2,
3409 		 *	e1000_82547,
3410 		 *	e1000_82547_rev_2,
3411 		 */
3412 		default:
3413 			Adapter->tx_hcksum_enable = B_FALSE;
3414 	}
3415 
3416 	/*
3417 	 * Large Send Offloading(LSO) Enable/Disable
3418 	 * If the tx hardware checksum is not enabled, LSO should be
3419 	 * disabled.
3420 	 */
3421 	Adapter->lso_enable =
3422 	    e1000g_get_prop(Adapter, "lso_enable",
3423 	    0, 1, DEFAULT_LSO_ENABLE);
3424 
3425 	switch (hw->mac.type) {
3426 		case e1000_82546:
3427 		case e1000_82546_rev_3:
3428 			if (Adapter->lso_enable)
3429 				Adapter->lso_premature_issue = B_TRUE;
3430 			/* FALLTHRU */
3431 		case e1000_82571:
3432 		case e1000_82572:
3433 		case e1000_82573:
3434 		case e1000_80003es2lan:
3435 			break;
3436 		default:
3437 			Adapter->lso_enable = B_FALSE;
3438 	}
3439 
3440 	if (!Adapter->tx_hcksum_enable) {
3441 		Adapter->lso_premature_issue = B_FALSE;
3442 		Adapter->lso_enable = B_FALSE;
3443 	}
3444 }
3445 
3446 /*
3447  * e1000g_get_prop - routine to read properties
3448  *
3449  * Get a user-configure property value out of the configuration
3450  * file e1000g.conf.
3451  *
3452  * Caller provides name of the property, a default value, a minimum
3453  * value, and a maximum value.
3454  *
3455  * Return configured value of the property, with default, minimum and
3456  * maximum properly applied.
3457  */
3458 static int
3459 e1000g_get_prop(struct e1000g *Adapter,	/* point to per-adapter structure */
3460     char *propname,		/* name of the property */
3461     int minval,			/* minimum acceptable value */
3462     int maxval,			/* maximim acceptable value */
3463     int defval)			/* default value */
3464 {
3465 	int propval;		/* value returned for requested property */
3466 	int *props;		/* point to array of properties returned */
3467 	uint_t nprops;		/* number of property value returned */
3468 
3469 	/*
3470 	 * get the array of properties from the config file
3471 	 */
3472 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, Adapter->dip,
3473 	    DDI_PROP_DONTPASS, propname, &props, &nprops) == DDI_PROP_SUCCESS) {
3474 		/* got some properties, test if we got enough */
3475 		if (Adapter->instance < nprops) {
3476 			propval = props[Adapter->instance];
3477 		} else {
3478 			/* not enough properties configured */
3479 			propval = defval;
3480 			E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3481 			    "Not Enough %s values found in e1000g.conf"
3482 			    " - set to %d\n",
3483 			    propname, propval);
3484 		}
3485 
3486 		/* free memory allocated for properties */
3487 		ddi_prop_free(props);
3488 
3489 	} else {
3490 		propval = defval;
3491 	}
3492 
3493 	/*
3494 	 * enforce limits
3495 	 */
3496 	if (propval > maxval) {
3497 		propval = maxval;
3498 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3499 		    "Too High %s value in e1000g.conf - set to %d\n",
3500 		    propname, propval);
3501 	}
3502 
3503 	if (propval < minval) {
3504 		propval = minval;
3505 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3506 		    "Too Low %s value in e1000g.conf - set to %d\n",
3507 		    propname, propval);
3508 	}
3509 
3510 	return (propval);
3511 }
3512 
3513 static boolean_t
3514 e1000g_link_check(struct e1000g *Adapter)
3515 {
3516 	uint16_t speed, duplex, phydata;
3517 	boolean_t link_changed = B_FALSE;
3518 	struct e1000_hw *hw;
3519 	uint32_t reg_tarc;
3520 
3521 	hw = &Adapter->shared;
3522 
3523 	if (e1000g_link_up(Adapter)) {
3524 		/*
3525 		 * The Link is up, check whether it was marked as down earlier
3526 		 */
3527 		if (Adapter->link_state != LINK_STATE_UP) {
3528 			(void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
3529 			Adapter->link_speed = speed;
3530 			Adapter->link_duplex = duplex;
3531 			Adapter->link_state = LINK_STATE_UP;
3532 			link_changed = B_TRUE;
3533 
3534 			Adapter->tx_link_down_timeout = 0;
3535 
3536 			if ((hw->mac.type == e1000_82571) ||
3537 			    (hw->mac.type == e1000_82572)) {
3538 				reg_tarc = E1000_READ_REG(hw, E1000_TARC(0));
3539 				if (speed == SPEED_1000)
3540 					reg_tarc |= (1 << 21);
3541 				else
3542 					reg_tarc &= ~(1 << 21);
3543 				E1000_WRITE_REG(hw, E1000_TARC(0), reg_tarc);
3544 			}
3545 		}
3546 		Adapter->smartspeed = 0;
3547 	} else {
3548 		if (Adapter->link_state != LINK_STATE_DOWN) {
3549 			Adapter->link_speed = 0;
3550 			Adapter->link_duplex = 0;
3551 			Adapter->link_state = LINK_STATE_DOWN;
3552 			link_changed = B_TRUE;
3553 
3554 			/*
3555 			 * SmartSpeed workaround for Tabor/TanaX, When the
3556 			 * driver loses link disable auto master/slave
3557 			 * resolution.
3558 			 */
3559 			if (hw->phy.type == e1000_phy_igp) {
3560 				(void) e1000_read_phy_reg(hw,
3561 				    PHY_1000T_CTRL, &phydata);
3562 				phydata |= CR_1000T_MS_ENABLE;
3563 				(void) e1000_write_phy_reg(hw,
3564 				    PHY_1000T_CTRL, phydata);
3565 			}
3566 		} else {
3567 			e1000g_smartspeed(Adapter);
3568 		}
3569 
3570 		if (Adapter->chip_state == E1000G_START) {
3571 			if (Adapter->tx_link_down_timeout <
3572 			    MAX_TX_LINK_DOWN_TIMEOUT) {
3573 				Adapter->tx_link_down_timeout++;
3574 			} else if (Adapter->tx_link_down_timeout ==
3575 			    MAX_TX_LINK_DOWN_TIMEOUT) {
3576 				e1000g_tx_clean(Adapter);
3577 				Adapter->tx_link_down_timeout++;
3578 			}
3579 		}
3580 	}
3581 
3582 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
3583 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
3584 
3585 	return (link_changed);
3586 }
3587 
3588 /*
3589  * e1000g_reset_link - Using the link properties to setup the link
3590  */
3591 int
3592 e1000g_reset_link(struct e1000g *Adapter)
3593 {
3594 	struct e1000_mac_info *mac;
3595 	struct e1000_phy_info *phy;
3596 	boolean_t invalid;
3597 
3598 	mac = &Adapter->shared.mac;
3599 	phy = &Adapter->shared.phy;
3600 	invalid = B_FALSE;
3601 
3602 	if (Adapter->param_adv_autoneg == 1) {
3603 		mac->autoneg = B_TRUE;
3604 		phy->autoneg_advertised = 0;
3605 
3606 		/*
3607 		 * 1000hdx is not supported for autonegotiation
3608 		 */
3609 		if (Adapter->param_adv_1000fdx == 1)
3610 			phy->autoneg_advertised |= ADVERTISE_1000_FULL;
3611 
3612 		if (Adapter->param_adv_100fdx == 1)
3613 			phy->autoneg_advertised |= ADVERTISE_100_FULL;
3614 
3615 		if (Adapter->param_adv_100hdx == 1)
3616 			phy->autoneg_advertised |= ADVERTISE_100_HALF;
3617 
3618 		if (Adapter->param_adv_10fdx == 1)
3619 			phy->autoneg_advertised |= ADVERTISE_10_FULL;
3620 
3621 		if (Adapter->param_adv_10hdx == 1)
3622 			phy->autoneg_advertised |= ADVERTISE_10_HALF;
3623 
3624 		if (phy->autoneg_advertised == 0)
3625 			invalid = B_TRUE;
3626 	} else {
3627 		mac->autoneg = B_FALSE;
3628 
3629 		/*
3630 		 * 1000fdx and 1000hdx are not supported for forced link
3631 		 */
3632 		if (Adapter->param_adv_100fdx == 1)
3633 			mac->forced_speed_duplex = ADVERTISE_100_FULL;
3634 		else if (Adapter->param_adv_100hdx == 1)
3635 			mac->forced_speed_duplex = ADVERTISE_100_HALF;
3636 		else if (Adapter->param_adv_10fdx == 1)
3637 			mac->forced_speed_duplex = ADVERTISE_10_FULL;
3638 		else if (Adapter->param_adv_10hdx == 1)
3639 			mac->forced_speed_duplex = ADVERTISE_10_HALF;
3640 		else
3641 			invalid = B_TRUE;
3642 
3643 	}
3644 
3645 	if (invalid) {
3646 		e1000g_log(Adapter, CE_WARN,
3647 		    "Invalid link sets. Setup link to"
3648 		    "support autonegotiation with all link capabilities.");
3649 		mac->autoneg = B_TRUE;
3650 		phy->autoneg_advertised = ADVERTISE_1000_FULL |
3651 		    ADVERTISE_100_FULL | ADVERTISE_100_HALF |
3652 		    ADVERTISE_10_FULL | ADVERTISE_10_HALF;
3653 	}
3654 
3655 	return (e1000_setup_link(&Adapter->shared));
3656 }
3657 
3658 static void
3659 e1000g_local_timer(void *ws)
3660 {
3661 	struct e1000g *Adapter = (struct e1000g *)ws;
3662 	struct e1000_hw *hw;
3663 	e1000g_ether_addr_t ether_addr;
3664 	boolean_t link_changed;
3665 
3666 	hw = &Adapter->shared;
3667 
3668 	if (Adapter->chip_state == E1000G_ERROR) {
3669 		Adapter->reset_count++;
3670 		if (e1000g_global_reset(Adapter))
3671 			ddi_fm_service_impact(Adapter->dip,
3672 			    DDI_SERVICE_RESTORED);
3673 		else
3674 			ddi_fm_service_impact(Adapter->dip,
3675 			    DDI_SERVICE_LOST);
3676 		return;
3677 	}
3678 
3679 	if (e1000g_stall_check(Adapter)) {
3680 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
3681 		    "Tx stall detected. Activate automatic recovery.\n");
3682 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_STALL);
3683 		Adapter->reset_count++;
3684 		if (e1000g_reset_adapter(Adapter))
3685 			ddi_fm_service_impact(Adapter->dip,
3686 			    DDI_SERVICE_RESTORED);
3687 		else
3688 			ddi_fm_service_impact(Adapter->dip,
3689 			    DDI_SERVICE_LOST);
3690 		return;
3691 	}
3692 
3693 	link_changed = B_FALSE;
3694 	rw_enter(&Adapter->chip_lock, RW_READER);
3695 	if (Adapter->link_complete)
3696 		link_changed = e1000g_link_check(Adapter);
3697 	rw_exit(&Adapter->chip_lock);
3698 
3699 	if (link_changed)
3700 		mac_link_update(Adapter->mh, Adapter->link_state);
3701 
3702 	/*
3703 	 * Workaround for esb2. Data stuck in fifo on a link
3704 	 * down event. Reset the adapter to recover it.
3705 	 */
3706 	if (Adapter->esb2_workaround) {
3707 		Adapter->esb2_workaround = B_FALSE;
3708 		(void) e1000g_reset_adapter(Adapter);
3709 	}
3710 
3711 	/*
3712 	 * With 82571 controllers, any locally administered address will
3713 	 * be overwritten when there is a reset on the other port.
3714 	 * Detect this circumstance and correct it.
3715 	 */
3716 	if ((hw->mac.type == e1000_82571) &&
3717 	    (e1000_get_laa_state_82571(hw) == B_TRUE)) {
3718 		ether_addr.reg.low = E1000_READ_REG_ARRAY(hw, E1000_RA, 0);
3719 		ether_addr.reg.high = E1000_READ_REG_ARRAY(hw, E1000_RA, 1);
3720 
3721 		ether_addr.reg.low = ntohl(ether_addr.reg.low);
3722 		ether_addr.reg.high = ntohl(ether_addr.reg.high);
3723 
3724 		if ((ether_addr.mac.addr[5] != hw->mac.addr[0]) ||
3725 		    (ether_addr.mac.addr[4] != hw->mac.addr[1]) ||
3726 		    (ether_addr.mac.addr[3] != hw->mac.addr[2]) ||
3727 		    (ether_addr.mac.addr[2] != hw->mac.addr[3]) ||
3728 		    (ether_addr.mac.addr[1] != hw->mac.addr[4]) ||
3729 		    (ether_addr.mac.addr[0] != hw->mac.addr[5])) {
3730 			e1000_rar_set(hw, hw->mac.addr, 0);
3731 		}
3732 	}
3733 
3734 	/*
3735 	 * Long TTL workaround for 82541/82547
3736 	 */
3737 	(void) e1000_igp_ttl_workaround_82547(hw);
3738 
3739 	/*
3740 	 * Check for Adaptive IFS settings If there are lots of collisions
3741 	 * change the value in steps...
3742 	 * These properties should only be set for 10/100
3743 	 */
3744 	if ((hw->phy.media_type == e1000_media_type_copper) &&
3745 	    ((Adapter->link_speed == SPEED_100) ||
3746 	    (Adapter->link_speed == SPEED_10))) {
3747 		e1000_update_adaptive(hw);
3748 	}
3749 	/*
3750 	 * Set Timer Interrupts
3751 	 */
3752 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
3753 
3754 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
3755 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
3756 
3757 	restart_watchdog_timer(Adapter);
3758 }
3759 
3760 /*
3761  * The function e1000g_link_timer() is called when the timer for link setup
3762  * is expired, which indicates the completion of the link setup. The link
3763  * state will not be updated until the link setup is completed. And the
3764  * link state will not be sent to the upper layer through mac_link_update()
3765  * in this function. It will be updated in the local timer routine or the
3766  * interrupt service routine after the interface is started (plumbed).
3767  */
3768 static void
3769 e1000g_link_timer(void *arg)
3770 {
3771 	struct e1000g *Adapter = (struct e1000g *)arg;
3772 
3773 	mutex_enter(&Adapter->link_lock);
3774 	Adapter->link_complete = B_TRUE;
3775 	Adapter->link_tid = 0;
3776 	mutex_exit(&Adapter->link_lock);
3777 }
3778 
3779 /*
3780  * e1000g_force_speed_duplex - read forced speed/duplex out of e1000g.conf
3781  *
3782  * This function read the forced speed and duplex for 10/100 Mbps speeds
3783  * and also for 1000 Mbps speeds from the e1000g.conf file
3784  */
3785 static void
3786 e1000g_force_speed_duplex(struct e1000g *Adapter)
3787 {
3788 	int forced;
3789 	struct e1000_mac_info *mac = &Adapter->shared.mac;
3790 	struct e1000_phy_info *phy = &Adapter->shared.phy;
3791 
3792 	/*
3793 	 * get value out of config file
3794 	 */
3795 	forced = e1000g_get_prop(Adapter, "ForceSpeedDuplex",
3796 	    GDIAG_10_HALF, GDIAG_ANY, GDIAG_ANY);
3797 
3798 	switch (forced) {
3799 	case GDIAG_10_HALF:
3800 		/*
3801 		 * Disable Auto Negotiation
3802 		 */
3803 		mac->autoneg = B_FALSE;
3804 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
3805 		break;
3806 	case GDIAG_10_FULL:
3807 		/*
3808 		 * Disable Auto Negotiation
3809 		 */
3810 		mac->autoneg = B_FALSE;
3811 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
3812 		break;
3813 	case GDIAG_100_HALF:
3814 		/*
3815 		 * Disable Auto Negotiation
3816 		 */
3817 		mac->autoneg = B_FALSE;
3818 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
3819 		break;
3820 	case GDIAG_100_FULL:
3821 		/*
3822 		 * Disable Auto Negotiation
3823 		 */
3824 		mac->autoneg = B_FALSE;
3825 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
3826 		break;
3827 	case GDIAG_1000_FULL:
3828 		/*
3829 		 * The gigabit spec requires autonegotiation.  Therefore,
3830 		 * when the user wants to force the speed to 1000Mbps, we
3831 		 * enable AutoNeg, but only allow the harware to advertise
3832 		 * 1000Mbps.  This is different from 10/100 operation, where
3833 		 * we are allowed to link without any negotiation.
3834 		 */
3835 		mac->autoneg = B_TRUE;
3836 		phy->autoneg_advertised = ADVERTISE_1000_FULL;
3837 		break;
3838 	default:	/* obey the setting of AutoNegAdvertised */
3839 		mac->autoneg = B_TRUE;
3840 		phy->autoneg_advertised =
3841 		    (uint16_t)e1000g_get_prop(Adapter, "AutoNegAdvertised",
3842 		    0, AUTONEG_ADVERTISE_SPEED_DEFAULT,
3843 		    AUTONEG_ADVERTISE_SPEED_DEFAULT);
3844 		break;
3845 	}	/* switch */
3846 }
3847 
3848 /*
3849  * e1000g_get_max_frame_size - get jumbo frame setting from e1000g.conf
3850  *
3851  * This function reads MaxFrameSize from e1000g.conf
3852  */
3853 static void
3854 e1000g_get_max_frame_size(struct e1000g *Adapter)
3855 {
3856 	int max_frame;
3857 	struct e1000_mac_info *mac = &Adapter->shared.mac;
3858 	struct e1000_phy_info *phy = &Adapter->shared.phy;
3859 
3860 	/*
3861 	 * get value out of config file
3862 	 */
3863 	max_frame = e1000g_get_prop(Adapter, "MaxFrameSize", 0, 3, 0);
3864 
3865 	switch (max_frame) {
3866 	case 0:
3867 		Adapter->default_mtu = ETHERMTU;
3868 		break;
3869 	/*
3870 	 * To avoid excessive memory allocation for rx buffers,
3871 	 * the bytes of E1000G_IPALIGNPRESERVEROOM are reserved.
3872 	 */
3873 	case 1:
3874 		Adapter->default_mtu = FRAME_SIZE_UPTO_4K -
3875 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
3876 		    E1000G_IPALIGNPRESERVEROOM;
3877 		break;
3878 	case 2:
3879 		Adapter->default_mtu = FRAME_SIZE_UPTO_8K -
3880 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
3881 		    E1000G_IPALIGNPRESERVEROOM;
3882 		break;
3883 	case 3:
3884 		if (mac->type >= e1000_82571)
3885 			Adapter->default_mtu = MAXIMUM_MTU;
3886 		else
3887 			Adapter->default_mtu = FRAME_SIZE_UPTO_16K -
3888 			    sizeof (struct ether_vlan_header) - ETHERFCSL -
3889 			    E1000G_IPALIGNPRESERVEROOM;
3890 		break;
3891 	default:
3892 		Adapter->default_mtu = ETHERMTU;
3893 		break;
3894 	}	/* switch */
3895 
3896 	Adapter->max_frame_size = Adapter->default_mtu +
3897 	    sizeof (struct ether_vlan_header) + ETHERFCSL;
3898 
3899 	/* ich8 does not do jumbo frames */
3900 	if (mac->type == e1000_ich8lan) {
3901 		Adapter->max_frame_size = ETHERMTU +
3902 		    sizeof (struct ether_vlan_header) + ETHERFCSL;
3903 	}
3904 
3905 	/* ich9 does not do jumbo frames on one phy type */
3906 	if ((mac->type == e1000_ich9lan) &&
3907 	    (phy->type == e1000_phy_ife)) {
3908 		Adapter->max_frame_size = ETHERMTU +
3909 		    sizeof (struct ether_vlan_header) + ETHERFCSL;
3910 	}
3911 }
3912 
3913 static void
3914 arm_watchdog_timer(struct e1000g *Adapter)
3915 {
3916 	Adapter->watchdog_tid =
3917 	    timeout(e1000g_local_timer,
3918 	    (void *)Adapter, 1 * drv_usectohz(1000000));
3919 }
3920 #pragma inline(arm_watchdog_timer)
3921 
3922 static void
3923 enable_watchdog_timer(struct e1000g *Adapter)
3924 {
3925 	mutex_enter(&Adapter->watchdog_lock);
3926 
3927 	if (!Adapter->watchdog_timer_enabled) {
3928 		Adapter->watchdog_timer_enabled = B_TRUE;
3929 		Adapter->watchdog_timer_started = B_TRUE;
3930 		arm_watchdog_timer(Adapter);
3931 	}
3932 
3933 	mutex_exit(&Adapter->watchdog_lock);
3934 }
3935 
3936 static void
3937 disable_watchdog_timer(struct e1000g *Adapter)
3938 {
3939 	timeout_id_t tid;
3940 
3941 	mutex_enter(&Adapter->watchdog_lock);
3942 
3943 	Adapter->watchdog_timer_enabled = B_FALSE;
3944 	Adapter->watchdog_timer_started = B_FALSE;
3945 	tid = Adapter->watchdog_tid;
3946 	Adapter->watchdog_tid = 0;
3947 
3948 	mutex_exit(&Adapter->watchdog_lock);
3949 
3950 	if (tid != 0)
3951 		(void) untimeout(tid);
3952 }
3953 
3954 static void
3955 start_watchdog_timer(struct e1000g *Adapter)
3956 {
3957 	mutex_enter(&Adapter->watchdog_lock);
3958 
3959 	if (Adapter->watchdog_timer_enabled) {
3960 		if (!Adapter->watchdog_timer_started) {
3961 			Adapter->watchdog_timer_started = B_TRUE;
3962 			arm_watchdog_timer(Adapter);
3963 		}
3964 	}
3965 
3966 	mutex_exit(&Adapter->watchdog_lock);
3967 }
3968 
3969 static void
3970 restart_watchdog_timer(struct e1000g *Adapter)
3971 {
3972 	mutex_enter(&Adapter->watchdog_lock);
3973 
3974 	if (Adapter->watchdog_timer_started)
3975 		arm_watchdog_timer(Adapter);
3976 
3977 	mutex_exit(&Adapter->watchdog_lock);
3978 }
3979 
3980 static void
3981 stop_watchdog_timer(struct e1000g *Adapter)
3982 {
3983 	timeout_id_t tid;
3984 
3985 	mutex_enter(&Adapter->watchdog_lock);
3986 
3987 	Adapter->watchdog_timer_started = B_FALSE;
3988 	tid = Adapter->watchdog_tid;
3989 	Adapter->watchdog_tid = 0;
3990 
3991 	mutex_exit(&Adapter->watchdog_lock);
3992 
3993 	if (tid != 0)
3994 		(void) untimeout(tid);
3995 }
3996 
3997 static void
3998 stop_link_timer(struct e1000g *Adapter)
3999 {
4000 	timeout_id_t tid;
4001 
4002 	/* Disable the link timer */
4003 	mutex_enter(&Adapter->link_lock);
4004 
4005 	tid = Adapter->link_tid;
4006 	Adapter->link_tid = 0;
4007 
4008 	mutex_exit(&Adapter->link_lock);
4009 
4010 	if (tid != 0)
4011 		(void) untimeout(tid);
4012 }
4013 
4014 static void
4015 stop_82547_timer(e1000g_tx_ring_t *tx_ring)
4016 {
4017 	timeout_id_t tid;
4018 
4019 	/* Disable the tx timer for 82547 chipset */
4020 	mutex_enter(&tx_ring->tx_lock);
4021 
4022 	tx_ring->timer_enable_82547 = B_FALSE;
4023 	tid = tx_ring->timer_id_82547;
4024 	tx_ring->timer_id_82547 = 0;
4025 
4026 	mutex_exit(&tx_ring->tx_lock);
4027 
4028 	if (tid != 0)
4029 		(void) untimeout(tid);
4030 }
4031 
4032 void
4033 e1000g_clear_interrupt(struct e1000g *Adapter)
4034 {
4035 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC,
4036 	    0xffffffff & ~E1000_IMS_RXSEQ);
4037 }
4038 
4039 void
4040 e1000g_mask_interrupt(struct e1000g *Adapter)
4041 {
4042 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS,
4043 	    IMS_ENABLE_MASK & ~E1000_IMS_TXDW);
4044 
4045 	if (Adapter->tx_intr_enable)
4046 		e1000g_mask_tx_interrupt(Adapter);
4047 }
4048 
4049 /*
4050  * This routine is called by e1000g_quiesce(), therefore must not block.
4051  */
4052 void
4053 e1000g_clear_all_interrupts(struct e1000g *Adapter)
4054 {
4055 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, 0xffffffff);
4056 }
4057 
4058 void
4059 e1000g_mask_tx_interrupt(struct e1000g *Adapter)
4060 {
4061 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS, E1000_IMS_TXDW);
4062 }
4063 
4064 void
4065 e1000g_clear_tx_interrupt(struct e1000g *Adapter)
4066 {
4067 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, E1000_IMS_TXDW);
4068 }
4069 
4070 static void
4071 e1000g_smartspeed(struct e1000g *Adapter)
4072 {
4073 	struct e1000_hw *hw = &Adapter->shared;
4074 	uint16_t phy_status;
4075 	uint16_t phy_ctrl;
4076 
4077 	/*
4078 	 * If we're not T-or-T, or we're not autoneg'ing, or we're not
4079 	 * advertising 1000Full, we don't even use the workaround
4080 	 */
4081 	if ((hw->phy.type != e1000_phy_igp) ||
4082 	    !hw->mac.autoneg ||
4083 	    !(hw->phy.autoneg_advertised & ADVERTISE_1000_FULL))
4084 		return;
4085 
4086 	/*
4087 	 * True if this is the first call of this function or after every
4088 	 * 30 seconds of not having link
4089 	 */
4090 	if (Adapter->smartspeed == 0) {
4091 		/*
4092 		 * If Master/Slave config fault is asserted twice, we
4093 		 * assume back-to-back
4094 		 */
4095 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4096 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4097 			return;
4098 
4099 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4100 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4101 			return;
4102 		/*
4103 		 * We're assuming back-2-back because our status register
4104 		 * insists! there's a fault in the master/slave
4105 		 * relationship that was "negotiated"
4106 		 */
4107 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4108 		/*
4109 		 * Is the phy configured for manual configuration of
4110 		 * master/slave?
4111 		 */
4112 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4113 			/*
4114 			 * Yes.  Then disable manual configuration (enable
4115 			 * auto configuration) of master/slave
4116 			 */
4117 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4118 			(void) e1000_write_phy_reg(hw,
4119 			    PHY_1000T_CTRL, phy_ctrl);
4120 			/*
4121 			 * Effectively starting the clock
4122 			 */
4123 			Adapter->smartspeed++;
4124 			/*
4125 			 * Restart autonegotiation
4126 			 */
4127 			if (!e1000_phy_setup_autoneg(hw) &&
4128 			    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4129 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4130 				    MII_CR_RESTART_AUTO_NEG);
4131 				(void) e1000_write_phy_reg(hw,
4132 				    PHY_CONTROL, phy_ctrl);
4133 			}
4134 		}
4135 		return;
4136 		/*
4137 		 * Has 6 seconds transpired still without link? Remember,
4138 		 * you should reset the smartspeed counter once you obtain
4139 		 * link
4140 		 */
4141 	} else if (Adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4142 		/*
4143 		 * Yes.  Remember, we did at the start determine that
4144 		 * there's a master/slave configuration fault, so we're
4145 		 * still assuming there's someone on the other end, but we
4146 		 * just haven't yet been able to talk to it. We then
4147 		 * re-enable auto configuration of master/slave to see if
4148 		 * we're running 2/3 pair cables.
4149 		 */
4150 		/*
4151 		 * If still no link, perhaps using 2/3 pair cable
4152 		 */
4153 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4154 		phy_ctrl |= CR_1000T_MS_ENABLE;
4155 		(void) e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4156 		/*
4157 		 * Restart autoneg with phy enabled for manual
4158 		 * configuration of master/slave
4159 		 */
4160 		if (!e1000_phy_setup_autoneg(hw) &&
4161 		    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4162 			phy_ctrl |=
4163 			    (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
4164 			(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
4165 		}
4166 		/*
4167 		 * Hopefully, there are no more faults and we've obtained
4168 		 * link as a result.
4169 		 */
4170 	}
4171 	/*
4172 	 * Restart process after E1000_SMARTSPEED_MAX iterations (30
4173 	 * seconds)
4174 	 */
4175 	if (Adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4176 		Adapter->smartspeed = 0;
4177 }
4178 
4179 static boolean_t
4180 is_valid_mac_addr(uint8_t *mac_addr)
4181 {
4182 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
4183 	const uint8_t addr_test2[6] =
4184 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4185 
4186 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
4187 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
4188 		return (B_FALSE);
4189 
4190 	return (B_TRUE);
4191 }
4192 
4193 /*
4194  * e1000g_stall_check - check for tx stall
4195  *
4196  * This function checks if the adapter is stalled (in transmit).
4197  *
4198  * It is called each time the watchdog timeout is invoked.
4199  * If the transmit descriptor reclaim continuously fails,
4200  * the watchdog value will increment by 1. If the watchdog
4201  * value exceeds the threshold, the adapter is assumed to
4202  * have stalled and need to be reset.
4203  */
4204 static boolean_t
4205 e1000g_stall_check(struct e1000g *Adapter)
4206 {
4207 	e1000g_tx_ring_t *tx_ring;
4208 
4209 	tx_ring = Adapter->tx_ring;
4210 
4211 	if (Adapter->link_state != LINK_STATE_UP)
4212 		return (B_FALSE);
4213 
4214 	if (tx_ring->recycle_fail > 0)
4215 		tx_ring->stall_watchdog++;
4216 	else
4217 		tx_ring->stall_watchdog = 0;
4218 
4219 	if (tx_ring->stall_watchdog < E1000G_STALL_WATCHDOG_COUNT)
4220 		return (B_FALSE);
4221 
4222 	tx_ring->stall_watchdog = 0;
4223 	tx_ring->recycle_fail = 0;
4224 
4225 	return (B_TRUE);
4226 }
4227 
4228 #ifdef E1000G_DEBUG
4229 static enum ioc_reply
4230 e1000g_pp_ioctl(struct e1000g *e1000gp, struct iocblk *iocp, mblk_t *mp)
4231 {
4232 	void (*ppfn)(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
4233 	e1000g_peekpoke_t *ppd;
4234 	uint64_t mem_va;
4235 	uint64_t maxoff;
4236 	boolean_t peek;
4237 
4238 	switch (iocp->ioc_cmd) {
4239 
4240 	case E1000G_IOC_REG_PEEK:
4241 		peek = B_TRUE;
4242 		break;
4243 
4244 	case E1000G_IOC_REG_POKE:
4245 		peek = B_FALSE;
4246 		break;
4247 
4248 	deault:
4249 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4250 		    "e1000g_diag_ioctl: invalid ioctl command 0x%X\n",
4251 		    iocp->ioc_cmd);
4252 		return (IOC_INVAL);
4253 	}
4254 
4255 	/*
4256 	 * Validate format of ioctl
4257 	 */
4258 	if (iocp->ioc_count != sizeof (e1000g_peekpoke_t))
4259 		return (IOC_INVAL);
4260 	if (mp->b_cont == NULL)
4261 		return (IOC_INVAL);
4262 
4263 	ppd = (e1000g_peekpoke_t *)(uintptr_t)mp->b_cont->b_rptr;
4264 
4265 	/*
4266 	 * Validate request parameters
4267 	 */
4268 	switch (ppd->pp_acc_space) {
4269 
4270 	default:
4271 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4272 		    "e1000g_diag_ioctl: invalid access space 0x%X\n",
4273 		    ppd->pp_acc_space);
4274 		return (IOC_INVAL);
4275 
4276 	case E1000G_PP_SPACE_REG:
4277 		/*
4278 		 * Memory-mapped I/O space
4279 		 */
4280 		ASSERT(ppd->pp_acc_size == 4);
4281 		if (ppd->pp_acc_size != 4)
4282 			return (IOC_INVAL);
4283 
4284 		if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
4285 			return (IOC_INVAL);
4286 
4287 		mem_va = 0;
4288 		maxoff = 0x10000;
4289 		ppfn = peek ? e1000g_ioc_peek_reg : e1000g_ioc_poke_reg;
4290 		break;
4291 
4292 	case E1000G_PP_SPACE_E1000G:
4293 		/*
4294 		 * E1000g data structure!
4295 		 */
4296 		mem_va = (uintptr_t)e1000gp;
4297 		maxoff = sizeof (struct e1000g);
4298 		ppfn = peek ? e1000g_ioc_peek_mem : e1000g_ioc_poke_mem;
4299 		break;
4300 
4301 	}
4302 
4303 	if (ppd->pp_acc_offset >= maxoff)
4304 		return (IOC_INVAL);
4305 
4306 	if (ppd->pp_acc_offset + ppd->pp_acc_size > maxoff)
4307 		return (IOC_INVAL);
4308 
4309 	/*
4310 	 * All OK - go!
4311 	 */
4312 	ppd->pp_acc_offset += mem_va;
4313 	(*ppfn)(e1000gp, ppd);
4314 	return (peek ? IOC_REPLY : IOC_ACK);
4315 }
4316 
4317 static void
4318 e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4319 {
4320 	ddi_acc_handle_t handle;
4321 	uint32_t *regaddr;
4322 
4323 	handle = e1000gp->osdep.reg_handle;
4324 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
4325 	    (uintptr_t)ppd->pp_acc_offset);
4326 
4327 	ppd->pp_acc_data = ddi_get32(handle, regaddr);
4328 }
4329 
4330 static void
4331 e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4332 {
4333 	ddi_acc_handle_t handle;
4334 	uint32_t *regaddr;
4335 	uint32_t value;
4336 
4337 	handle = e1000gp->osdep.reg_handle;
4338 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
4339 	    (uintptr_t)ppd->pp_acc_offset);
4340 	value = (uint32_t)ppd->pp_acc_data;
4341 
4342 	ddi_put32(handle, regaddr, value);
4343 }
4344 
4345 static void
4346 e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4347 {
4348 	uint64_t value;
4349 	void *vaddr;
4350 
4351 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4352 
4353 	switch (ppd->pp_acc_size) {
4354 	case 1:
4355 		value = *(uint8_t *)vaddr;
4356 		break;
4357 
4358 	case 2:
4359 		value = *(uint16_t *)vaddr;
4360 		break;
4361 
4362 	case 4:
4363 		value = *(uint32_t *)vaddr;
4364 		break;
4365 
4366 	case 8:
4367 		value = *(uint64_t *)vaddr;
4368 		break;
4369 	}
4370 
4371 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
4372 	    "e1000g_ioc_peek_mem($%p, $%p) peeked 0x%llx from $%p\n",
4373 	    (void *)e1000gp, (void *)ppd, value, vaddr);
4374 
4375 	ppd->pp_acc_data = value;
4376 }
4377 
4378 static void
4379 e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4380 {
4381 	uint64_t value;
4382 	void *vaddr;
4383 
4384 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4385 	value = ppd->pp_acc_data;
4386 
4387 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
4388 	    "e1000g_ioc_poke_mem($%p, $%p) poking 0x%llx at $%p\n",
4389 	    (void *)e1000gp, (void *)ppd, value, vaddr);
4390 
4391 	switch (ppd->pp_acc_size) {
4392 	case 1:
4393 		*(uint8_t *)vaddr = (uint8_t)value;
4394 		break;
4395 
4396 	case 2:
4397 		*(uint16_t *)vaddr = (uint16_t)value;
4398 		break;
4399 
4400 	case 4:
4401 		*(uint32_t *)vaddr = (uint32_t)value;
4402 		break;
4403 
4404 	case 8:
4405 		*(uint64_t *)vaddr = (uint64_t)value;
4406 		break;
4407 	}
4408 }
4409 #endif
4410 
4411 /*
4412  * Loopback Support
4413  */
4414 static lb_property_t lb_normal =
4415 	{ normal,	"normal",	E1000G_LB_NONE		};
4416 static lb_property_t lb_external1000 =
4417 	{ external,	"1000Mbps",	E1000G_LB_EXTERNAL_1000	};
4418 static lb_property_t lb_external100 =
4419 	{ external,	"100Mbps",	E1000G_LB_EXTERNAL_100	};
4420 static lb_property_t lb_external10 =
4421 	{ external,	"10Mbps",	E1000G_LB_EXTERNAL_10	};
4422 static lb_property_t lb_phy =
4423 	{ internal,	"PHY",		E1000G_LB_INTERNAL_PHY	};
4424 
4425 static enum ioc_reply
4426 e1000g_loopback_ioctl(struct e1000g *Adapter, struct iocblk *iocp, mblk_t *mp)
4427 {
4428 	lb_info_sz_t *lbsp;
4429 	lb_property_t *lbpp;
4430 	struct e1000_hw *hw;
4431 	uint32_t *lbmp;
4432 	uint32_t size;
4433 	uint32_t value;
4434 
4435 	hw = &Adapter->shared;
4436 
4437 	if (mp->b_cont == NULL)
4438 		return (IOC_INVAL);
4439 
4440 	if (!e1000g_check_loopback_support(hw)) {
4441 		e1000g_log(NULL, CE_WARN,
4442 		    "Loopback is not supported on e1000g%d", Adapter->instance);
4443 		return (IOC_INVAL);
4444 	}
4445 
4446 	switch (iocp->ioc_cmd) {
4447 	default:
4448 		return (IOC_INVAL);
4449 
4450 	case LB_GET_INFO_SIZE:
4451 		size = sizeof (lb_info_sz_t);
4452 		if (iocp->ioc_count != size)
4453 			return (IOC_INVAL);
4454 
4455 		rw_enter(&Adapter->chip_lock, RW_WRITER);
4456 		e1000g_get_phy_state(Adapter);
4457 
4458 		/*
4459 		 * Workaround for hardware faults. In order to get a stable
4460 		 * state of phy, we will wait for a specific interval and
4461 		 * try again. The time delay is an experiential value based
4462 		 * on our testing.
4463 		 */
4464 		msec_delay(100);
4465 		e1000g_get_phy_state(Adapter);
4466 		rw_exit(&Adapter->chip_lock);
4467 
4468 		value = sizeof (lb_normal);
4469 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4470 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4471 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4472 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4473 			value += sizeof (lb_phy);
4474 			switch (hw->mac.type) {
4475 			case e1000_82571:
4476 			case e1000_82572:
4477 			case e1000_80003es2lan:
4478 				value += sizeof (lb_external1000);
4479 				break;
4480 			}
4481 		}
4482 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4483 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4484 			value += sizeof (lb_external100);
4485 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4486 			value += sizeof (lb_external10);
4487 
4488 		lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
4489 		*lbsp = value;
4490 		break;
4491 
4492 	case LB_GET_INFO:
4493 		value = sizeof (lb_normal);
4494 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4495 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4496 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4497 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4498 			value += sizeof (lb_phy);
4499 			switch (hw->mac.type) {
4500 			case e1000_82571:
4501 			case e1000_82572:
4502 			case e1000_80003es2lan:
4503 				value += sizeof (lb_external1000);
4504 				break;
4505 			}
4506 		}
4507 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4508 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4509 			value += sizeof (lb_external100);
4510 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4511 			value += sizeof (lb_external10);
4512 
4513 		size = value;
4514 		if (iocp->ioc_count != size)
4515 			return (IOC_INVAL);
4516 
4517 		value = 0;
4518 		lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
4519 		lbpp[value++] = lb_normal;
4520 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4521 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4522 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4523 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4524 			lbpp[value++] = lb_phy;
4525 			switch (hw->mac.type) {
4526 			case e1000_82571:
4527 			case e1000_82572:
4528 			case e1000_80003es2lan:
4529 				lbpp[value++] = lb_external1000;
4530 				break;
4531 			}
4532 		}
4533 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4534 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4535 			lbpp[value++] = lb_external100;
4536 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4537 			lbpp[value++] = lb_external10;
4538 		break;
4539 
4540 	case LB_GET_MODE:
4541 		size = sizeof (uint32_t);
4542 		if (iocp->ioc_count != size)
4543 			return (IOC_INVAL);
4544 
4545 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
4546 		*lbmp = Adapter->loopback_mode;
4547 		break;
4548 
4549 	case LB_SET_MODE:
4550 		size = 0;
4551 		if (iocp->ioc_count != sizeof (uint32_t))
4552 			return (IOC_INVAL);
4553 
4554 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
4555 		if (!e1000g_set_loopback_mode(Adapter, *lbmp))
4556 			return (IOC_INVAL);
4557 		break;
4558 	}
4559 
4560 	iocp->ioc_count = size;
4561 	iocp->ioc_error = 0;
4562 
4563 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
4564 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4565 		return (IOC_INVAL);
4566 	}
4567 
4568 	return (IOC_REPLY);
4569 }
4570 
4571 static boolean_t
4572 e1000g_check_loopback_support(struct e1000_hw *hw)
4573 {
4574 	switch (hw->mac.type) {
4575 	case e1000_82540:
4576 	case e1000_82545:
4577 	case e1000_82545_rev_3:
4578 	case e1000_82546:
4579 	case e1000_82546_rev_3:
4580 	case e1000_82541:
4581 	case e1000_82541_rev_2:
4582 	case e1000_82547:
4583 	case e1000_82547_rev_2:
4584 	case e1000_82571:
4585 	case e1000_82572:
4586 	case e1000_82573:
4587 	case e1000_80003es2lan:
4588 		return (B_TRUE);
4589 	}
4590 	return (B_FALSE);
4591 }
4592 
4593 static boolean_t
4594 e1000g_set_loopback_mode(struct e1000g *Adapter, uint32_t mode)
4595 {
4596 	struct e1000_hw *hw;
4597 	int i, times;
4598 	boolean_t link_up;
4599 
4600 	if (mode == Adapter->loopback_mode)
4601 		return (B_TRUE);
4602 
4603 	hw = &Adapter->shared;
4604 	times = 0;
4605 
4606 	Adapter->loopback_mode = mode;
4607 
4608 	if (mode == E1000G_LB_NONE) {
4609 		/* Reset the chip */
4610 		hw->phy.autoneg_wait_to_complete = B_TRUE;
4611 		(void) e1000g_reset_adapter(Adapter);
4612 		hw->phy.autoneg_wait_to_complete = B_FALSE;
4613 		return (B_TRUE);
4614 	}
4615 
4616 again:
4617 
4618 	rw_enter(&Adapter->chip_lock, RW_WRITER);
4619 
4620 	switch (mode) {
4621 	default:
4622 		rw_exit(&Adapter->chip_lock);
4623 		return (B_FALSE);
4624 
4625 	case E1000G_LB_EXTERNAL_1000:
4626 		e1000g_set_external_loopback_1000(Adapter);
4627 		break;
4628 
4629 	case E1000G_LB_EXTERNAL_100:
4630 		e1000g_set_external_loopback_100(Adapter);
4631 		break;
4632 
4633 	case E1000G_LB_EXTERNAL_10:
4634 		e1000g_set_external_loopback_10(Adapter);
4635 		break;
4636 
4637 	case E1000G_LB_INTERNAL_PHY:
4638 		e1000g_set_internal_loopback(Adapter);
4639 		break;
4640 	}
4641 
4642 	times++;
4643 
4644 	rw_exit(&Adapter->chip_lock);
4645 
4646 	/* Wait for link up */
4647 	for (i = (PHY_FORCE_LIMIT * 2); i > 0; i--)
4648 		msec_delay(100);
4649 
4650 	rw_enter(&Adapter->chip_lock, RW_WRITER);
4651 
4652 	link_up = e1000g_link_up(Adapter);
4653 
4654 	rw_exit(&Adapter->chip_lock);
4655 
4656 	if (!link_up) {
4657 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4658 		    "Failed to get the link up");
4659 		if (times < 2) {
4660 			/* Reset the link */
4661 			E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4662 			    "Reset the link ...");
4663 			(void) e1000g_reset_adapter(Adapter);
4664 			goto again;
4665 		}
4666 	}
4667 
4668 	return (B_TRUE);
4669 }
4670 
4671 /*
4672  * The following loopback settings are from Intel's technical
4673  * document - "How To Loopback". All the register settings and
4674  * time delay values are directly inherited from the document
4675  * without more explanations available.
4676  */
4677 static void
4678 e1000g_set_internal_loopback(struct e1000g *Adapter)
4679 {
4680 	struct e1000_hw *hw;
4681 	uint32_t ctrl;
4682 	uint32_t status;
4683 	uint16_t phy_ctrl;
4684 	uint32_t txcw;
4685 
4686 	hw = &Adapter->shared;
4687 
4688 	/* Disable Smart Power Down */
4689 	phy_spd_state(hw, B_FALSE);
4690 
4691 	(void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
4692 	phy_ctrl &= ~(MII_CR_AUTO_NEG_EN | MII_CR_SPEED_100 | MII_CR_SPEED_10);
4693 	phy_ctrl |= MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000;
4694 
4695 	switch (hw->mac.type) {
4696 	case e1000_82540:
4697 	case e1000_82545:
4698 	case e1000_82545_rev_3:
4699 	case e1000_82546:
4700 	case e1000_82546_rev_3:
4701 	case e1000_82573:
4702 		/* Auto-MDI/MDIX off */
4703 		(void) e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
4704 		/* Reset PHY to update Auto-MDI/MDIX */
4705 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4706 		    phy_ctrl | MII_CR_RESET | MII_CR_AUTO_NEG_EN);
4707 		/* Reset PHY to auto-neg off and force 1000 */
4708 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4709 		    phy_ctrl | MII_CR_RESET);
4710 		/*
4711 		 * Disable PHY receiver for 82540/545/546 and 82573 Family.
4712 		 * See comments above e1000g_set_internal_loopback() for the
4713 		 * background.
4714 		 */
4715 		(void) e1000_write_phy_reg(hw, 29, 0x001F);
4716 		(void) e1000_write_phy_reg(hw, 30, 0x8FFC);
4717 		(void) e1000_write_phy_reg(hw, 29, 0x001A);
4718 		(void) e1000_write_phy_reg(hw, 30, 0x8FF0);
4719 		break;
4720 	case e1000_80003es2lan:
4721 		/* Force Link Up */
4722 		(void) e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
4723 		    0x1CC);
4724 		/* Sets PCS loopback at 1Gbs */
4725 		(void) e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
4726 		    0x1046);
4727 		break;
4728 	}
4729 
4730 	/* Set loopback */
4731 	(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl | MII_CR_LOOPBACK);
4732 
4733 	msec_delay(250);
4734 
4735 	/* Now set up the MAC to the same speed/duplex as the PHY. */
4736 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4737 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
4738 	ctrl |= (E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
4739 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
4740 	    E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
4741 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
4742 
4743 	switch (hw->mac.type) {
4744 	case e1000_82540:
4745 	case e1000_82545:
4746 	case e1000_82545_rev_3:
4747 	case e1000_82546:
4748 	case e1000_82546_rev_3:
4749 		/*
4750 		 * For some serdes we'll need to commit the writes now
4751 		 * so that the status is updated on link
4752 		 */
4753 		if (hw->phy.media_type == e1000_media_type_internal_serdes) {
4754 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4755 			msec_delay(100);
4756 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
4757 		}
4758 
4759 		if (hw->phy.media_type == e1000_media_type_copper) {
4760 			/* Invert Loss of Signal */
4761 			ctrl |= E1000_CTRL_ILOS;
4762 		} else {
4763 			/* Set ILOS on fiber nic if half duplex is detected */
4764 			status = E1000_READ_REG(hw, E1000_STATUS);
4765 			if ((status & E1000_STATUS_FD) == 0)
4766 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
4767 		}
4768 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4769 		break;
4770 
4771 	case e1000_82571:
4772 	case e1000_82572:
4773 		/*
4774 		 * The fiber/SerDes versions of this adapter do not contain an
4775 		 * accessible PHY. Therefore, loopback beyond MAC must be done
4776 		 * using SerDes analog loopback.
4777 		 */
4778 		if (hw->phy.media_type != e1000_media_type_copper) {
4779 			status = E1000_READ_REG(hw, E1000_STATUS);
4780 			/* Set ILOS on fiber nic if half duplex is detected */
4781 			if (((status & E1000_STATUS_LU) == 0) ||
4782 			    ((status & E1000_STATUS_FD) == 0) ||
4783 			    (hw->phy.media_type ==
4784 			    e1000_media_type_internal_serdes))
4785 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
4786 
4787 			/* Disable autoneg by setting bit 31 of TXCW to zero */
4788 			txcw = E1000_READ_REG(hw, E1000_TXCW);
4789 			txcw &= ~((uint32_t)1 << 31);
4790 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
4791 
4792 			/*
4793 			 * Write 0x410 to Serdes Control register
4794 			 * to enable Serdes analog loopback
4795 			 */
4796 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
4797 			msec_delay(10);
4798 		}
4799 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4800 		break;
4801 
4802 	case e1000_82573:
4803 		ctrl |= E1000_CTRL_ILOS;
4804 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4805 		break;
4806 	}
4807 }
4808 
4809 static void
4810 e1000g_set_external_loopback_1000(struct e1000g *Adapter)
4811 {
4812 	struct e1000_hw *hw;
4813 	uint32_t rctl;
4814 	uint32_t ctrl_ext;
4815 	uint32_t ctrl;
4816 	uint32_t status;
4817 	uint32_t txcw;
4818 	uint16_t phydata;
4819 
4820 	hw = &Adapter->shared;
4821 
4822 	/* Disable Smart Power Down */
4823 	phy_spd_state(hw, B_FALSE);
4824 
4825 	switch (hw->mac.type) {
4826 	case e1000_82571:
4827 	case e1000_82572:
4828 		switch (hw->phy.media_type) {
4829 		case e1000_media_type_copper:
4830 			/* Force link up (Must be done before the PHY writes) */
4831 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
4832 			ctrl |= E1000_CTRL_SLU;	/* Force Link Up */
4833 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4834 
4835 			rctl = E1000_READ_REG(hw, E1000_RCTL);
4836 			rctl |= (E1000_RCTL_EN |
4837 			    E1000_RCTL_SBP |
4838 			    E1000_RCTL_UPE |
4839 			    E1000_RCTL_MPE |
4840 			    E1000_RCTL_LPE |
4841 			    E1000_RCTL_BAM);		/* 0x803E */
4842 			E1000_WRITE_REG(hw, E1000_RCTL, rctl);
4843 
4844 			ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
4845 			ctrl_ext |= (E1000_CTRL_EXT_SDP4_DATA |
4846 			    E1000_CTRL_EXT_SDP6_DATA |
4847 			    E1000_CTRL_EXT_SDP7_DATA |
4848 			    E1000_CTRL_EXT_SDP4_DIR |
4849 			    E1000_CTRL_EXT_SDP6_DIR |
4850 			    E1000_CTRL_EXT_SDP7_DIR);	/* 0x0DD0 */
4851 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
4852 
4853 			/*
4854 			 * This sequence tunes the PHY's SDP and no customer
4855 			 * settable values. For background, see comments above
4856 			 * e1000g_set_internal_loopback().
4857 			 */
4858 			(void) e1000_write_phy_reg(hw, 0x0, 0x140);
4859 			msec_delay(10);
4860 			(void) e1000_write_phy_reg(hw, 0x9, 0x1A00);
4861 			(void) e1000_write_phy_reg(hw, 0x12, 0xC10);
4862 			(void) e1000_write_phy_reg(hw, 0x12, 0x1C10);
4863 			(void) e1000_write_phy_reg(hw, 0x1F37, 0x76);
4864 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x1);
4865 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x0);
4866 
4867 			(void) e1000_write_phy_reg(hw, 0x1F35, 0x65);
4868 			(void) e1000_write_phy_reg(hw, 0x1837, 0x3F7C);
4869 			(void) e1000_write_phy_reg(hw, 0x1437, 0x3FDC);
4870 			(void) e1000_write_phy_reg(hw, 0x1237, 0x3F7C);
4871 			(void) e1000_write_phy_reg(hw, 0x1137, 0x3FDC);
4872 
4873 			msec_delay(50);
4874 			break;
4875 		case e1000_media_type_fiber:
4876 		case e1000_media_type_internal_serdes:
4877 			status = E1000_READ_REG(hw, E1000_STATUS);
4878 			if (((status & E1000_STATUS_LU) == 0) ||
4879 			    (hw->phy.media_type ==
4880 			    e1000_media_type_internal_serdes)) {
4881 				ctrl = E1000_READ_REG(hw, E1000_CTRL);
4882 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
4883 				E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4884 			}
4885 
4886 			/* Disable autoneg by setting bit 31 of TXCW to zero */
4887 			txcw = E1000_READ_REG(hw, E1000_TXCW);
4888 			txcw &= ~((uint32_t)1 << 31);
4889 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
4890 
4891 			/*
4892 			 * Write 0x410 to Serdes Control register
4893 			 * to enable Serdes analog loopback
4894 			 */
4895 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
4896 			msec_delay(10);
4897 			break;
4898 		default:
4899 			break;
4900 		}
4901 		break;
4902 	case e1000_80003es2lan:
4903 		(void) e1000_read_phy_reg(hw, GG82563_REG(6, 16), &phydata);
4904 		(void) e1000_write_phy_reg(hw, GG82563_REG(6, 16),
4905 		    phydata | (1 << 5));
4906 		Adapter->param_adv_autoneg = 1;
4907 		Adapter->param_adv_1000fdx = 1;
4908 		(void) e1000g_reset_link(Adapter);
4909 		break;
4910 	}
4911 }
4912 
4913 static void
4914 e1000g_set_external_loopback_100(struct e1000g *Adapter)
4915 {
4916 	struct e1000_hw *hw;
4917 	uint32_t ctrl;
4918 	uint16_t phy_ctrl;
4919 
4920 	hw = &Adapter->shared;
4921 
4922 	/* Disable Smart Power Down */
4923 	phy_spd_state(hw, B_FALSE);
4924 
4925 	phy_ctrl = (MII_CR_FULL_DUPLEX |
4926 	    MII_CR_SPEED_100);
4927 
4928 	/* Force 100/FD, reset PHY */
4929 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4930 	    phy_ctrl | MII_CR_RESET);	/* 0xA100 */
4931 	msec_delay(10);
4932 
4933 	/* Force 100/FD */
4934 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4935 	    phy_ctrl);			/* 0x2100 */
4936 	msec_delay(10);
4937 
4938 	/* Now setup the MAC to the same speed/duplex as the PHY. */
4939 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4940 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
4941 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
4942 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
4943 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
4944 	    E1000_CTRL_SPD_100 |	/* Force Speed to 100 */
4945 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
4946 
4947 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4948 }
4949 
4950 static void
4951 e1000g_set_external_loopback_10(struct e1000g *Adapter)
4952 {
4953 	struct e1000_hw *hw;
4954 	uint32_t ctrl;
4955 	uint16_t phy_ctrl;
4956 
4957 	hw = &Adapter->shared;
4958 
4959 	/* Disable Smart Power Down */
4960 	phy_spd_state(hw, B_FALSE);
4961 
4962 	phy_ctrl = (MII_CR_FULL_DUPLEX |
4963 	    MII_CR_SPEED_10);
4964 
4965 	/* Force 10/FD, reset PHY */
4966 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4967 	    phy_ctrl | MII_CR_RESET);	/* 0x8100 */
4968 	msec_delay(10);
4969 
4970 	/* Force 10/FD */
4971 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4972 	    phy_ctrl);			/* 0x0100 */
4973 	msec_delay(10);
4974 
4975 	/* Now setup the MAC to the same speed/duplex as the PHY. */
4976 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4977 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
4978 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
4979 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
4980 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
4981 	    E1000_CTRL_SPD_10 |		/* Force Speed to 10 */
4982 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
4983 
4984 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4985 }
4986 
4987 #ifdef __sparc
4988 static boolean_t
4989 e1000g_find_mac_address(struct e1000g *Adapter)
4990 {
4991 	struct e1000_hw *hw = &Adapter->shared;
4992 	uchar_t *bytes;
4993 	struct ether_addr sysaddr;
4994 	uint_t nelts;
4995 	int err;
4996 	boolean_t found = B_FALSE;
4997 
4998 	/*
4999 	 * The "vendor's factory-set address" may already have
5000 	 * been extracted from the chip, but if the property
5001 	 * "local-mac-address" is set we use that instead.
5002 	 *
5003 	 * We check whether it looks like an array of 6
5004 	 * bytes (which it should, if OBP set it).  If we can't
5005 	 * make sense of it this way, we'll ignore it.
5006 	 */
5007 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
5008 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
5009 	if (err == DDI_PROP_SUCCESS) {
5010 		if (nelts == ETHERADDRL) {
5011 			while (nelts--)
5012 				hw->mac.addr[nelts] = bytes[nelts];
5013 			found = B_TRUE;
5014 		}
5015 		ddi_prop_free(bytes);
5016 	}
5017 
5018 	/*
5019 	 * Look up the OBP property "local-mac-address?". If the user has set
5020 	 * 'local-mac-address? = false', use "the system address" instead.
5021 	 */
5022 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip, 0,
5023 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
5024 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
5025 			if (localetheraddr(NULL, &sysaddr) != 0) {
5026 				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
5027 				found = B_TRUE;
5028 			}
5029 		}
5030 		ddi_prop_free(bytes);
5031 	}
5032 
5033 	/*
5034 	 * Finally(!), if there's a valid "mac-address" property (created
5035 	 * if we netbooted from this interface), we must use this instead
5036 	 * of any of the above to ensure that the NFS/install server doesn't
5037 	 * get confused by the address changing as Solaris takes over!
5038 	 */
5039 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
5040 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
5041 	if (err == DDI_PROP_SUCCESS) {
5042 		if (nelts == ETHERADDRL) {
5043 			while (nelts--)
5044 				hw->mac.addr[nelts] = bytes[nelts];
5045 			found = B_TRUE;
5046 		}
5047 		ddi_prop_free(bytes);
5048 	}
5049 
5050 	if (found) {
5051 		bcopy(hw->mac.addr, hw->mac.perm_addr,
5052 		    ETHERADDRL);
5053 	}
5054 
5055 	return (found);
5056 }
5057 #endif
5058 
5059 static int
5060 e1000g_add_intrs(struct e1000g *Adapter)
5061 {
5062 	dev_info_t *devinfo;
5063 	int intr_types;
5064 	int rc;
5065 
5066 	devinfo = Adapter->dip;
5067 
5068 	/* Get supported interrupt types */
5069 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
5070 
5071 	if (rc != DDI_SUCCESS) {
5072 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5073 		    "Get supported interrupt types failed: %d\n", rc);
5074 		return (DDI_FAILURE);
5075 	}
5076 
5077 	/*
5078 	 * Based on Intel Technical Advisory document (TA-160), there are some
5079 	 * cases where some older Intel PCI-X NICs may "advertise" to the OS
5080 	 * that it supports MSI, but in fact has problems.
5081 	 * So we should only enable MSI for PCI-E NICs and disable MSI for old
5082 	 * PCI/PCI-X NICs.
5083 	 */
5084 	if (Adapter->shared.mac.type < e1000_82571)
5085 		Adapter->msi_enable = B_FALSE;
5086 
5087 	if ((intr_types & DDI_INTR_TYPE_MSI) && Adapter->msi_enable) {
5088 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_MSI);
5089 
5090 		if (rc != DDI_SUCCESS) {
5091 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5092 			    "Add MSI failed, trying Legacy interrupts\n");
5093 		} else {
5094 			Adapter->intr_type = DDI_INTR_TYPE_MSI;
5095 		}
5096 	}
5097 
5098 	if ((Adapter->intr_type == 0) &&
5099 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
5100 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_FIXED);
5101 
5102 		if (rc != DDI_SUCCESS) {
5103 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5104 			    "Add Legacy interrupts failed\n");
5105 			return (DDI_FAILURE);
5106 		}
5107 
5108 		Adapter->intr_type = DDI_INTR_TYPE_FIXED;
5109 	}
5110 
5111 	if (Adapter->intr_type == 0) {
5112 		E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5113 		    "No interrupts registered\n");
5114 		return (DDI_FAILURE);
5115 	}
5116 
5117 	return (DDI_SUCCESS);
5118 }
5119 
5120 /*
5121  * e1000g_intr_add() handles MSI/Legacy interrupts
5122  */
5123 static int
5124 e1000g_intr_add(struct e1000g *Adapter, int intr_type)
5125 {
5126 	dev_info_t *devinfo;
5127 	int count, avail, actual;
5128 	int x, y, rc, inum = 0;
5129 	int flag;
5130 	ddi_intr_handler_t *intr_handler;
5131 
5132 	devinfo = Adapter->dip;
5133 
5134 	/* get number of interrupts */
5135 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
5136 	if ((rc != DDI_SUCCESS) || (count == 0)) {
5137 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5138 		    "Get interrupt number failed. Return: %d, count: %d\n",
5139 		    rc, count);
5140 		return (DDI_FAILURE);
5141 	}
5142 
5143 	/* get number of available interrupts */
5144 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
5145 	if ((rc != DDI_SUCCESS) || (avail == 0)) {
5146 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5147 		    "Get interrupt available number failed. "
5148 		    "Return: %d, available: %d\n", rc, avail);
5149 		return (DDI_FAILURE);
5150 	}
5151 
5152 	if (avail < count) {
5153 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5154 		    "Interrupts count: %d, available: %d\n",
5155 		    count, avail);
5156 	}
5157 
5158 	/* Allocate an array of interrupt handles */
5159 	Adapter->intr_size = count * sizeof (ddi_intr_handle_t);
5160 	Adapter->htable = kmem_alloc(Adapter->intr_size, KM_SLEEP);
5161 
5162 	/* Set NORMAL behavior for both MSI and FIXED interrupt */
5163 	flag = DDI_INTR_ALLOC_NORMAL;
5164 
5165 	/* call ddi_intr_alloc() */
5166 	rc = ddi_intr_alloc(devinfo, Adapter->htable, intr_type, inum,
5167 	    count, &actual, flag);
5168 
5169 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
5170 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5171 		    "Allocate interrupts failed: %d\n", rc);
5172 
5173 		kmem_free(Adapter->htable, Adapter->intr_size);
5174 		return (DDI_FAILURE);
5175 	}
5176 
5177 	if (actual < count) {
5178 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5179 		    "Interrupts requested: %d, received: %d\n",
5180 		    count, actual);
5181 	}
5182 
5183 	Adapter->intr_cnt = actual;
5184 
5185 	/* Get priority for first msi, assume remaining are all the same */
5186 	rc = ddi_intr_get_pri(Adapter->htable[0], &Adapter->intr_pri);
5187 
5188 	if (rc != DDI_SUCCESS) {
5189 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5190 		    "Get interrupt priority failed: %d\n", rc);
5191 
5192 		/* Free already allocated intr */
5193 		for (y = 0; y < actual; y++)
5194 			(void) ddi_intr_free(Adapter->htable[y]);
5195 
5196 		kmem_free(Adapter->htable, Adapter->intr_size);
5197 		return (DDI_FAILURE);
5198 	}
5199 
5200 	/*
5201 	 * In Legacy Interrupt mode, for PCI-Express adapters, we should
5202 	 * use the interrupt service routine e1000g_intr_pciexpress()
5203 	 * to avoid interrupt stealing when sharing interrupt with other
5204 	 * devices.
5205 	 */
5206 	if (Adapter->shared.mac.type < e1000_82571)
5207 		intr_handler = (ddi_intr_handler_t *)e1000g_intr;
5208 	else
5209 		intr_handler = (ddi_intr_handler_t *)e1000g_intr_pciexpress;
5210 
5211 	/* Call ddi_intr_add_handler() */
5212 	for (x = 0; x < actual; x++) {
5213 		rc = ddi_intr_add_handler(Adapter->htable[x],
5214 		    intr_handler, (caddr_t)Adapter, NULL);
5215 
5216 		if (rc != DDI_SUCCESS) {
5217 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5218 			    "Add interrupt handler failed: %d\n", rc);
5219 
5220 			/* Remove already added handler */
5221 			for (y = 0; y < x; y++)
5222 				(void) ddi_intr_remove_handler(
5223 				    Adapter->htable[y]);
5224 
5225 			/* Free already allocated intr */
5226 			for (y = 0; y < actual; y++)
5227 				(void) ddi_intr_free(Adapter->htable[y]);
5228 
5229 			kmem_free(Adapter->htable, Adapter->intr_size);
5230 			return (DDI_FAILURE);
5231 		}
5232 	}
5233 
5234 	rc = ddi_intr_get_cap(Adapter->htable[0], &Adapter->intr_cap);
5235 
5236 	if (rc != DDI_SUCCESS) {
5237 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5238 		    "Get interrupt cap failed: %d\n", rc);
5239 
5240 		/* Free already allocated intr */
5241 		for (y = 0; y < actual; y++) {
5242 			(void) ddi_intr_remove_handler(Adapter->htable[y]);
5243 			(void) ddi_intr_free(Adapter->htable[y]);
5244 		}
5245 
5246 		kmem_free(Adapter->htable, Adapter->intr_size);
5247 		return (DDI_FAILURE);
5248 	}
5249 
5250 	return (DDI_SUCCESS);
5251 }
5252 
5253 static int
5254 e1000g_rem_intrs(struct e1000g *Adapter)
5255 {
5256 	int x;
5257 	int rc;
5258 
5259 	for (x = 0; x < Adapter->intr_cnt; x++) {
5260 		rc = ddi_intr_remove_handler(Adapter->htable[x]);
5261 		if (rc != DDI_SUCCESS) {
5262 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5263 			    "Remove intr handler failed: %d\n", rc);
5264 			return (DDI_FAILURE);
5265 		}
5266 
5267 		rc = ddi_intr_free(Adapter->htable[x]);
5268 		if (rc != DDI_SUCCESS) {
5269 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5270 			    "Free intr failed: %d\n", rc);
5271 			return (DDI_FAILURE);
5272 		}
5273 	}
5274 
5275 	kmem_free(Adapter->htable, Adapter->intr_size);
5276 
5277 	return (DDI_SUCCESS);
5278 }
5279 
5280 static int
5281 e1000g_enable_intrs(struct e1000g *Adapter)
5282 {
5283 	int x;
5284 	int rc;
5285 
5286 	/* Enable interrupts */
5287 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
5288 		/* Call ddi_intr_block_enable() for MSI */
5289 		rc = ddi_intr_block_enable(Adapter->htable,
5290 		    Adapter->intr_cnt);
5291 		if (rc != DDI_SUCCESS) {
5292 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5293 			    "Enable block intr failed: %d\n", rc);
5294 			return (DDI_FAILURE);
5295 		}
5296 	} else {
5297 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
5298 		for (x = 0; x < Adapter->intr_cnt; x++) {
5299 			rc = ddi_intr_enable(Adapter->htable[x]);
5300 			if (rc != DDI_SUCCESS) {
5301 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5302 				    "Enable intr failed: %d\n", rc);
5303 				return (DDI_FAILURE);
5304 			}
5305 		}
5306 	}
5307 
5308 	return (DDI_SUCCESS);
5309 }
5310 
5311 static int
5312 e1000g_disable_intrs(struct e1000g *Adapter)
5313 {
5314 	int x;
5315 	int rc;
5316 
5317 	/* Disable all interrupts */
5318 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
5319 		rc = ddi_intr_block_disable(Adapter->htable,
5320 		    Adapter->intr_cnt);
5321 		if (rc != DDI_SUCCESS) {
5322 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5323 			    "Disable block intr failed: %d\n", rc);
5324 			return (DDI_FAILURE);
5325 		}
5326 	} else {
5327 		for (x = 0; x < Adapter->intr_cnt; x++) {
5328 			rc = ddi_intr_disable(Adapter->htable[x]);
5329 			if (rc != DDI_SUCCESS) {
5330 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5331 				    "Disable intr failed: %d\n", rc);
5332 				return (DDI_FAILURE);
5333 			}
5334 		}
5335 	}
5336 
5337 	return (DDI_SUCCESS);
5338 }
5339 
5340 /*
5341  * e1000g_get_phy_state - get the state of PHY registers, save in the adapter
5342  */
5343 static void
5344 e1000g_get_phy_state(struct e1000g *Adapter)
5345 {
5346 	struct e1000_hw *hw = &Adapter->shared;
5347 
5348 	(void) e1000_read_phy_reg(hw, PHY_CONTROL, &Adapter->phy_ctrl);
5349 	(void) e1000_read_phy_reg(hw, PHY_STATUS, &Adapter->phy_status);
5350 	(void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &Adapter->phy_an_adv);
5351 	(void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &Adapter->phy_an_exp);
5352 	(void) e1000_read_phy_reg(hw, PHY_EXT_STATUS, &Adapter->phy_ext_status);
5353 	(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &Adapter->phy_1000t_ctrl);
5354 	(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5355 	    &Adapter->phy_1000t_status);
5356 	(void) e1000_read_phy_reg(hw, PHY_LP_ABILITY, &Adapter->phy_lp_able);
5357 
5358 	Adapter->param_autoneg_cap =
5359 	    (Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
5360 	Adapter->param_pause_cap =
5361 	    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5362 	Adapter->param_asym_pause_cap =
5363 	    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5364 	Adapter->param_1000fdx_cap =
5365 	    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5366 	    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
5367 	Adapter->param_1000hdx_cap =
5368 	    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
5369 	    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
5370 	Adapter->param_100t4_cap =
5371 	    (Adapter->phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
5372 	Adapter->param_100fdx_cap =
5373 	    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5374 	    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
5375 	Adapter->param_100hdx_cap =
5376 	    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
5377 	    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
5378 	Adapter->param_10fdx_cap =
5379 	    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
5380 	Adapter->param_10hdx_cap =
5381 	    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
5382 
5383 	Adapter->param_adv_autoneg = hw->mac.autoneg;
5384 	Adapter->param_adv_pause =
5385 	    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5386 	Adapter->param_adv_asym_pause =
5387 	    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5388 	Adapter->param_adv_1000hdx =
5389 	    (Adapter->phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
5390 	Adapter->param_adv_100t4 =
5391 	    (Adapter->phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
5392 	if (Adapter->param_adv_autoneg == 1) {
5393 		Adapter->param_adv_1000fdx =
5394 		    (Adapter->phy_1000t_ctrl & CR_1000T_FD_CAPS) ? 1 : 0;
5395 		Adapter->param_adv_100fdx =
5396 		    (Adapter->phy_an_adv & NWAY_AR_100TX_FD_CAPS) ? 1 : 0;
5397 		Adapter->param_adv_100hdx =
5398 		    (Adapter->phy_an_adv & NWAY_AR_100TX_HD_CAPS) ? 1 : 0;
5399 		Adapter->param_adv_10fdx =
5400 		    (Adapter->phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
5401 		Adapter->param_adv_10hdx =
5402 		    (Adapter->phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
5403 	}
5404 
5405 	Adapter->param_lp_autoneg =
5406 	    (Adapter->phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
5407 	Adapter->param_lp_pause =
5408 	    (Adapter->phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
5409 	Adapter->param_lp_asym_pause =
5410 	    (Adapter->phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
5411 	Adapter->param_lp_1000fdx =
5412 	    (Adapter->phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
5413 	Adapter->param_lp_1000hdx =
5414 	    (Adapter->phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
5415 	Adapter->param_lp_100t4 =
5416 	    (Adapter->phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
5417 	Adapter->param_lp_100fdx =
5418 	    (Adapter->phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
5419 	Adapter->param_lp_100hdx =
5420 	    (Adapter->phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
5421 	Adapter->param_lp_10fdx =
5422 	    (Adapter->phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
5423 	Adapter->param_lp_10hdx =
5424 	    (Adapter->phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
5425 }
5426 
5427 /*
5428  * FMA support
5429  */
5430 
5431 int
5432 e1000g_check_acc_handle(ddi_acc_handle_t handle)
5433 {
5434 	ddi_fm_error_t de;
5435 
5436 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
5437 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
5438 	return (de.fme_status);
5439 }
5440 
5441 int
5442 e1000g_check_dma_handle(ddi_dma_handle_t handle)
5443 {
5444 	ddi_fm_error_t de;
5445 
5446 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
5447 	return (de.fme_status);
5448 }
5449 
5450 /*
5451  * The IO fault service error handling callback function
5452  */
5453 /* ARGSUSED2 */
5454 static int
5455 e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
5456 {
5457 	/*
5458 	 * as the driver can always deal with an error in any dma or
5459 	 * access handle, we can just return the fme_status value.
5460 	 */
5461 	pci_ereport_post(dip, err, NULL);
5462 	return (err->fme_status);
5463 }
5464 
5465 static void
5466 e1000g_fm_init(struct e1000g *Adapter)
5467 {
5468 	ddi_iblock_cookie_t iblk;
5469 	int fma_acc_flag, fma_dma_flag;
5470 
5471 	/* Only register with IO Fault Services if we have some capability */
5472 	if (Adapter->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
5473 		e1000g_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
5474 		fma_acc_flag = 1;
5475 	} else {
5476 		e1000g_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
5477 		fma_acc_flag = 0;
5478 	}
5479 
5480 	if (Adapter->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
5481 		fma_dma_flag = 1;
5482 	} else {
5483 		fma_dma_flag = 0;
5484 	}
5485 
5486 	(void) e1000g_set_fma_flags(Adapter, fma_acc_flag, fma_dma_flag);
5487 
5488 	if (Adapter->fm_capabilities) {
5489 
5490 		/* Register capabilities with IO Fault Services */
5491 		ddi_fm_init(Adapter->dip, &Adapter->fm_capabilities, &iblk);
5492 
5493 		/*
5494 		 * Initialize pci ereport capabilities if ereport capable
5495 		 */
5496 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
5497 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5498 			pci_ereport_setup(Adapter->dip);
5499 
5500 		/*
5501 		 * Register error callback if error callback capable
5502 		 */
5503 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5504 			ddi_fm_handler_register(Adapter->dip,
5505 			    e1000g_fm_error_cb, (void*) Adapter);
5506 	}
5507 }
5508 
5509 static void
5510 e1000g_fm_fini(struct e1000g *Adapter)
5511 {
5512 	/* Only unregister FMA capabilities if we registered some */
5513 	if (Adapter->fm_capabilities) {
5514 
5515 		/*
5516 		 * Release any resources allocated by pci_ereport_setup()
5517 		 */
5518 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
5519 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5520 			pci_ereport_teardown(Adapter->dip);
5521 
5522 		/*
5523 		 * Un-register error callback if error callback capable
5524 		 */
5525 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5526 			ddi_fm_handler_unregister(Adapter->dip);
5527 
5528 		/* Unregister from IO Fault Services */
5529 		ddi_fm_fini(Adapter->dip);
5530 	}
5531 }
5532 
5533 void
5534 e1000g_fm_ereport(struct e1000g *Adapter, char *detail)
5535 {
5536 	uint64_t ena;
5537 	char buf[FM_MAX_CLASS];
5538 
5539 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
5540 	ena = fm_ena_generate(0, FM_ENA_FMT1);
5541 	if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities)) {
5542 		ddi_fm_ereport_post(Adapter->dip, buf, ena, DDI_NOSLEEP,
5543 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
5544 	}
5545 }
5546 
5547 /*
5548  * quiesce(9E) entry point.
5549  *
5550  * This function is called when the system is single-threaded at high
5551  * PIL with preemption disabled. Therefore, this function must not be
5552  * blocked.
5553  *
5554  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
5555  * DDI_FAILURE indicates an error condition and should almost never happen.
5556  */
5557 static int
5558 e1000g_quiesce(dev_info_t *devinfo)
5559 {
5560 	struct e1000g *Adapter;
5561 
5562 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
5563 
5564 	if (Adapter == NULL)
5565 		return (DDI_FAILURE);
5566 
5567 	e1000g_clear_all_interrupts(Adapter);
5568 
5569 	(void) e1000_reset_hw(&Adapter->shared);
5570 
5571 	/* Setup our HW Tx Head & Tail descriptor pointers */
5572 	E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
5573 	E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
5574 
5575 	/* Setup our HW Rx Head & Tail descriptor pointers */
5576 	E1000_WRITE_REG(&Adapter->shared, E1000_RDH(0), 0);
5577 	E1000_WRITE_REG(&Adapter->shared, E1000_RDT(0), 0);
5578 
5579 	return (DDI_SUCCESS);
5580 }
5581 
5582 static int
5583 e1000g_get_def_val(struct e1000g *Adapter, mac_prop_id_t pr_num,
5584     uint_t pr_valsize, void *pr_val)
5585 {
5586 	link_flowctrl_t fl;
5587 	int err = 0;
5588 
5589 	ASSERT(pr_valsize > 0);
5590 	switch (pr_num) {
5591 	case MAC_PROP_AUTONEG:
5592 		*(uint8_t *)pr_val =
5593 		    ((Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0);
5594 		break;
5595 	case MAC_PROP_FLOWCTRL:
5596 		if (pr_valsize < sizeof (link_flowctrl_t))
5597 			return (EINVAL);
5598 		fl = LINK_FLOWCTRL_BI;
5599 		bcopy(&fl, pr_val, sizeof (fl));
5600 		break;
5601 	case MAC_PROP_ADV_1000FDX_CAP:
5602 	case MAC_PROP_EN_1000FDX_CAP:
5603 		*(uint8_t *)pr_val =
5604 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5605 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
5606 		break;
5607 	case MAC_PROP_ADV_1000HDX_CAP:
5608 	case MAC_PROP_EN_1000HDX_CAP:
5609 		*(uint8_t *)pr_val =
5610 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
5611 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
5612 		break;
5613 	case MAC_PROP_ADV_100FDX_CAP:
5614 	case MAC_PROP_EN_100FDX_CAP:
5615 		*(uint8_t *)pr_val =
5616 		    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5617 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
5618 		break;
5619 	case MAC_PROP_ADV_100HDX_CAP:
5620 	case MAC_PROP_EN_100HDX_CAP:
5621 		*(uint8_t *)pr_val =
5622 		    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
5623 		    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
5624 		break;
5625 	case MAC_PROP_ADV_10FDX_CAP:
5626 	case MAC_PROP_EN_10FDX_CAP:
5627 		*(uint8_t *)pr_val =
5628 		    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
5629 		break;
5630 	case MAC_PROP_ADV_10HDX_CAP:
5631 	case MAC_PROP_EN_10HDX_CAP:
5632 		*(uint8_t *)pr_val =
5633 		    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
5634 		break;
5635 	default:
5636 		err = ENOTSUP;
5637 		break;
5638 	}
5639 	return (err);
5640 }
5641 
5642 /*
5643  * synchronize the adv* and en* parameters.
5644  *
5645  * See comments in <sys/dld.h> for details of the *_en_*
5646  * parameters. The usage of ndd for setting adv parameters will
5647  * synchronize all the en parameters with the e1000g parameters,
5648  * implicitly disabling any settings made via dladm.
5649  */
5650 static void
5651 e1000g_param_sync(struct e1000g *Adapter)
5652 {
5653 	Adapter->param_en_1000fdx = Adapter->param_adv_1000fdx;
5654 	Adapter->param_en_1000hdx = Adapter->param_adv_1000hdx;
5655 	Adapter->param_en_100fdx = Adapter->param_adv_100fdx;
5656 	Adapter->param_en_100hdx = Adapter->param_adv_100hdx;
5657 	Adapter->param_en_10fdx = Adapter->param_adv_10fdx;
5658 	Adapter->param_en_10hdx = Adapter->param_adv_10hdx;
5659 }
5660 
5661 /*
5662  * e1000g_get_driver_control - tell manageability firmware that the driver
5663  * has control.
5664  */
5665 static void
5666 e1000g_get_driver_control(struct e1000_hw *hw)
5667 {
5668 	uint32_t ctrl_ext;
5669 	uint32_t swsm;
5670 
5671 	/* tell manageability firmware the driver has taken over */
5672 	switch (hw->mac.type) {
5673 	case e1000_82573:
5674 		swsm = E1000_READ_REG(hw, E1000_SWSM);
5675 		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
5676 		break;
5677 	case e1000_82571:
5678 	case e1000_82572:
5679 	case e1000_82574:
5680 	case e1000_80003es2lan:
5681 	case e1000_ich8lan:
5682 	case e1000_ich9lan:
5683 	case e1000_ich10lan:
5684 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5685 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
5686 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
5687 		break;
5688 	default:
5689 		/* no manageability firmware: do nothing */
5690 		break;
5691 	}
5692 }
5693 
5694 /*
5695  * e1000g_release_driver_control - tell manageability firmware that the driver
5696  * has released control.
5697  */
5698 static void
5699 e1000g_release_driver_control(struct e1000_hw *hw)
5700 {
5701 	uint32_t ctrl_ext;
5702 	uint32_t swsm;
5703 
5704 	/* tell manageability firmware the driver has released control */
5705 	switch (hw->mac.type) {
5706 	case e1000_82573:
5707 		swsm = E1000_READ_REG(hw, E1000_SWSM);
5708 		E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
5709 		break;
5710 	case e1000_82571:
5711 	case e1000_82572:
5712 	case e1000_82574:
5713 	case e1000_80003es2lan:
5714 	case e1000_ich8lan:
5715 	case e1000_ich9lan:
5716 	case e1000_ich10lan:
5717 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5718 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
5719 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
5720 		break;
5721 	default:
5722 		/* no manageability firmware: do nothing */
5723 		break;
5724 	}
5725 }
5726 
5727 /*
5728  * Restore e1000g promiscuous mode.
5729  */
5730 static void
5731 e1000g_restore_promisc(struct e1000g *Adapter)
5732 {
5733 	if (Adapter->e1000g_promisc) {
5734 		uint32_t rctl;
5735 
5736 		rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
5737 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
5738 		E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
5739 	}
5740 }
5741