xref: /titanic_51/usr/src/uts/common/io/e1000g/e1000g_main.c (revision 95c2d3023b88b9097d9822eb47ace5466e6d1cf4)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * **********************************************************************
28  *									*
29  * Module Name:								*
30  *   e1000g_main.c							*
31  *									*
32  * Abstract:								*
33  *   This file contains the interface routines for the solaris OS.	*
34  *   It has all DDI entry point routines and GLD entry point routines.	*
35  *									*
36  *   This file also contains routines that take care of initialization	*
37  *   uninit routine and interrupt routine.				*
38  *									*
39  * **********************************************************************
40  */
41 
42 #include <sys/dlpi.h>
43 #include <sys/mac.h>
44 #include "e1000g_sw.h"
45 #include "e1000g_debug.h"
46 
47 static char ident[] = "Intel PRO/1000 Ethernet";
48 static char e1000g_string[] = "Intel(R) PRO/1000 Network Connection";
49 static char e1000g_version[] = "Driver Ver. 5.3.3";
50 
51 /*
52  * Proto types for DDI entry points
53  */
54 static int e1000g_attach(dev_info_t *, ddi_attach_cmd_t);
55 static int e1000g_detach(dev_info_t *, ddi_detach_cmd_t);
56 static int e1000g_quiesce(dev_info_t *);
57 
58 /*
59  * init and intr routines prototype
60  */
61 static int e1000g_resume(dev_info_t *);
62 static int e1000g_suspend(dev_info_t *);
63 static uint_t e1000g_intr_pciexpress(caddr_t);
64 static uint_t e1000g_intr(caddr_t);
65 static void e1000g_intr_work(struct e1000g *, uint32_t);
66 #pragma inline(e1000g_intr_work)
67 static int e1000g_init(struct e1000g *);
68 static int e1000g_start(struct e1000g *, boolean_t);
69 static void e1000g_stop(struct e1000g *, boolean_t);
70 static int e1000g_m_start(void *);
71 static void e1000g_m_stop(void *);
72 static int e1000g_m_promisc(void *, boolean_t);
73 static boolean_t e1000g_m_getcapab(void *, mac_capab_t, void *);
74 static int e1000g_m_multicst(void *, boolean_t, const uint8_t *);
75 static void e1000g_m_ioctl(void *, queue_t *, mblk_t *);
76 static int e1000g_m_setprop(void *, const char *, mac_prop_id_t,
77     uint_t, const void *);
78 static int e1000g_m_getprop(void *, const char *, mac_prop_id_t,
79     uint_t, uint_t, void *, uint_t *);
80 static int e1000g_set_priv_prop(struct e1000g *, const char *, uint_t,
81     const void *);
82 static int e1000g_get_priv_prop(struct e1000g *, const char *, uint_t,
83     uint_t, void *, uint_t *);
84 static void e1000g_init_locks(struct e1000g *);
85 static void e1000g_destroy_locks(struct e1000g *);
86 static int e1000g_identify_hardware(struct e1000g *);
87 static int e1000g_regs_map(struct e1000g *);
88 static int e1000g_set_driver_params(struct e1000g *);
89 static void e1000g_set_bufsize(struct e1000g *);
90 static int e1000g_register_mac(struct e1000g *);
91 static boolean_t e1000g_rx_drain(struct e1000g *);
92 static boolean_t e1000g_tx_drain(struct e1000g *);
93 static void e1000g_init_unicst(struct e1000g *);
94 static int e1000g_unicst_set(struct e1000g *, const uint8_t *, int);
95 
96 /*
97  * Local routines
98  */
99 static boolean_t e1000g_reset_adapter(struct e1000g *);
100 static void e1000g_tx_clean(struct e1000g *);
101 static void e1000g_rx_clean(struct e1000g *);
102 static void e1000g_link_timer(void *);
103 static void e1000g_local_timer(void *);
104 static boolean_t e1000g_link_check(struct e1000g *);
105 static boolean_t e1000g_stall_check(struct e1000g *);
106 static void e1000g_smartspeed(struct e1000g *);
107 static void e1000g_get_conf(struct e1000g *);
108 static int e1000g_get_prop(struct e1000g *, char *, int, int, int);
109 static void enable_watchdog_timer(struct e1000g *);
110 static void disable_watchdog_timer(struct e1000g *);
111 static void start_watchdog_timer(struct e1000g *);
112 static void restart_watchdog_timer(struct e1000g *);
113 static void stop_watchdog_timer(struct e1000g *);
114 static void stop_link_timer(struct e1000g *);
115 static void stop_82547_timer(e1000g_tx_ring_t *);
116 static void e1000g_force_speed_duplex(struct e1000g *);
117 static void e1000g_get_max_frame_size(struct e1000g *);
118 static boolean_t is_valid_mac_addr(uint8_t *);
119 static void e1000g_unattach(dev_info_t *, struct e1000g *);
120 #ifdef E1000G_DEBUG
121 static void e1000g_ioc_peek_reg(struct e1000g *, e1000g_peekpoke_t *);
122 static void e1000g_ioc_poke_reg(struct e1000g *, e1000g_peekpoke_t *);
123 static void e1000g_ioc_peek_mem(struct e1000g *, e1000g_peekpoke_t *);
124 static void e1000g_ioc_poke_mem(struct e1000g *, e1000g_peekpoke_t *);
125 static enum ioc_reply e1000g_pp_ioctl(struct e1000g *,
126     struct iocblk *, mblk_t *);
127 #endif
128 static enum ioc_reply e1000g_loopback_ioctl(struct e1000g *,
129     struct iocblk *, mblk_t *);
130 static boolean_t e1000g_check_loopback_support(struct e1000_hw *);
131 static boolean_t e1000g_set_loopback_mode(struct e1000g *, uint32_t);
132 static void e1000g_set_internal_loopback(struct e1000g *);
133 static void e1000g_set_external_loopback_1000(struct e1000g *);
134 static void e1000g_set_external_loopback_100(struct e1000g *);
135 static void e1000g_set_external_loopback_10(struct e1000g *);
136 static int e1000g_add_intrs(struct e1000g *);
137 static int e1000g_intr_add(struct e1000g *, int);
138 static int e1000g_rem_intrs(struct e1000g *);
139 static int e1000g_enable_intrs(struct e1000g *);
140 static int e1000g_disable_intrs(struct e1000g *);
141 static boolean_t e1000g_link_up(struct e1000g *);
142 #ifdef __sparc
143 static boolean_t e1000g_find_mac_address(struct e1000g *);
144 #endif
145 static void e1000g_get_phy_state(struct e1000g *);
146 static void e1000g_free_priv_devi_node(struct e1000g *, boolean_t);
147 static int e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err,
148     const void *impl_data);
149 static void e1000g_fm_init(struct e1000g *Adapter);
150 static void e1000g_fm_fini(struct e1000g *Adapter);
151 static int e1000g_get_def_val(struct e1000g *, mac_prop_id_t, uint_t, void *);
152 static void e1000g_param_sync(struct e1000g *);
153 static void e1000g_get_driver_control(struct e1000_hw *);
154 static void e1000g_release_driver_control(struct e1000_hw *);
155 static void e1000g_restore_promisc(struct e1000g *Adapter);
156 
157 mac_priv_prop_t e1000g_priv_props[] = {
158 	{"_tx_bcopy_threshold", MAC_PROP_PERM_RW},
159 	{"_tx_interrupt_enable", MAC_PROP_PERM_RW},
160 	{"_tx_intr_delay", MAC_PROP_PERM_RW},
161 	{"_tx_intr_abs_delay", MAC_PROP_PERM_RW},
162 	{"_rx_bcopy_threshold", MAC_PROP_PERM_RW},
163 	{"_max_num_rcv_packets", MAC_PROP_PERM_RW},
164 	{"_rx_intr_delay", MAC_PROP_PERM_RW},
165 	{"_rx_intr_abs_delay", MAC_PROP_PERM_RW},
166 	{"_intr_throttling_rate", MAC_PROP_PERM_RW},
167 	{"_intr_adaptive", MAC_PROP_PERM_RW},
168 	{"_adv_pause_cap", MAC_PROP_PERM_READ},
169 	{"_adv_asym_pause_cap", MAC_PROP_PERM_READ},
170 };
171 #define	E1000G_MAX_PRIV_PROPS	\
172 	(sizeof (e1000g_priv_props)/sizeof (mac_priv_prop_t))
173 
174 
175 static struct cb_ops cb_ws_ops = {
176 	nulldev,		/* cb_open */
177 	nulldev,		/* cb_close */
178 	nodev,			/* cb_strategy */
179 	nodev,			/* cb_print */
180 	nodev,			/* cb_dump */
181 	nodev,			/* cb_read */
182 	nodev,			/* cb_write */
183 	nodev,			/* cb_ioctl */
184 	nodev,			/* cb_devmap */
185 	nodev,			/* cb_mmap */
186 	nodev,			/* cb_segmap */
187 	nochpoll,		/* cb_chpoll */
188 	ddi_prop_op,		/* cb_prop_op */
189 	NULL,			/* cb_stream */
190 	D_MP | D_HOTPLUG,	/* cb_flag */
191 	CB_REV,			/* cb_rev */
192 	nodev,			/* cb_aread */
193 	nodev			/* cb_awrite */
194 };
195 
196 static struct dev_ops ws_ops = {
197 	DEVO_REV,		/* devo_rev */
198 	0,			/* devo_refcnt */
199 	NULL,			/* devo_getinfo */
200 	nulldev,		/* devo_identify */
201 	nulldev,		/* devo_probe */
202 	e1000g_attach,		/* devo_attach */
203 	e1000g_detach,		/* devo_detach */
204 	nodev,			/* devo_reset */
205 	&cb_ws_ops,		/* devo_cb_ops */
206 	NULL,			/* devo_bus_ops */
207 	ddi_power,		/* devo_power */
208 	e1000g_quiesce		/* devo_quiesce */
209 };
210 
211 static struct modldrv modldrv = {
212 	&mod_driverops,		/* Type of module.  This one is a driver */
213 	ident,			/* Discription string */
214 	&ws_ops,		/* driver ops */
215 };
216 
217 static struct modlinkage modlinkage = {
218 	MODREV_1, &modldrv, NULL
219 };
220 
221 /* Access attributes for register mapping */
222 static ddi_device_acc_attr_t e1000g_regs_acc_attr = {
223 	DDI_DEVICE_ATTR_V0,
224 	DDI_STRUCTURE_LE_ACC,
225 	DDI_STRICTORDER_ACC,
226 	DDI_FLAGERR_ACC
227 };
228 
229 #define	E1000G_M_CALLBACK_FLAGS \
230 	(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP)
231 
232 static mac_callbacks_t e1000g_m_callbacks = {
233 	E1000G_M_CALLBACK_FLAGS,
234 	e1000g_m_stat,
235 	e1000g_m_start,
236 	e1000g_m_stop,
237 	e1000g_m_promisc,
238 	e1000g_m_multicst,
239 	NULL,
240 	e1000g_m_tx,
241 	e1000g_m_ioctl,
242 	e1000g_m_getcapab,
243 	NULL,
244 	NULL,
245 	e1000g_m_setprop,
246 	e1000g_m_getprop
247 };
248 
249 /*
250  * Global variables
251  */
252 uint32_t e1000g_mblks_pending = 0;
253 /*
254  * Workaround for Dynamic Reconfiguration support, for x86 platform only.
255  * Here we maintain a private dev_info list if e1000g_force_detach is
256  * enabled. If we force the driver to detach while there are still some
257  * rx buffers retained in the upper layer, we have to keep a copy of the
258  * dev_info. In some cases (Dynamic Reconfiguration), the dev_info data
259  * structure will be freed after the driver is detached. However when we
260  * finally free those rx buffers released by the upper layer, we need to
261  * refer to the dev_info to free the dma buffers. So we save a copy of
262  * the dev_info for this purpose. On x86 platform, we assume this copy
263  * of dev_info is always valid, but on SPARC platform, it could be invalid
264  * after the system board level DR operation. For this reason, the global
265  * variable e1000g_force_detach must be B_FALSE on SPARC platform.
266  */
267 #ifdef __sparc
268 boolean_t e1000g_force_detach = B_FALSE;
269 #else
270 boolean_t e1000g_force_detach = B_TRUE;
271 #endif
272 private_devi_list_t *e1000g_private_devi_list = NULL;
273 
274 /*
275  * The rwlock is defined to protect the whole processing of rx recycling
276  * and the rx packets release in detach processing to make them mutually
277  * exclusive.
278  * The rx recycling processes different rx packets in different threads,
279  * so it will be protected with RW_READER and it won't block any other rx
280  * recycling threads.
281  * While the detach processing will be protected with RW_WRITER to make
282  * it mutually exclusive with the rx recycling.
283  */
284 krwlock_t e1000g_rx_detach_lock;
285 /*
286  * The rwlock e1000g_dma_type_lock is defined to protect the global flag
287  * e1000g_dma_type. For SPARC, the initial value of the flag is "USE_DVMA".
288  * If there are many e1000g instances, the system may run out of DVMA
289  * resources during the initialization of the instances, then the flag will
290  * be changed to "USE_DMA". Because different e1000g instances are initialized
291  * in parallel, we need to use this lock to protect the flag.
292  */
293 krwlock_t e1000g_dma_type_lock;
294 
295 /*
296  * The 82546 chipset is a dual-port device, both the ports share one eeprom.
297  * Based on the information from Intel, the 82546 chipset has some hardware
298  * problem. When one port is being reset and the other port is trying to
299  * access the eeprom, it could cause system hang or panic. To workaround this
300  * hardware problem, we use a global mutex to prevent such operations from
301  * happening simultaneously on different instances. This workaround is applied
302  * to all the devices supported by this driver.
303  */
304 kmutex_t e1000g_nvm_lock;
305 
306 /*
307  * Loadable module configuration entry points for the driver
308  */
309 
310 /*
311  * _init - module initialization
312  */
313 int
314 _init(void)
315 {
316 	int status;
317 
318 	mac_init_ops(&ws_ops, WSNAME);
319 	status = mod_install(&modlinkage);
320 	if (status != DDI_SUCCESS)
321 		mac_fini_ops(&ws_ops);
322 	else {
323 		rw_init(&e1000g_rx_detach_lock, NULL, RW_DRIVER, NULL);
324 		rw_init(&e1000g_dma_type_lock, NULL, RW_DRIVER, NULL);
325 		mutex_init(&e1000g_nvm_lock, NULL, MUTEX_DRIVER, NULL);
326 	}
327 
328 	return (status);
329 }
330 
331 /*
332  * _fini - module finalization
333  */
334 int
335 _fini(void)
336 {
337 	int status;
338 
339 	rw_enter(&e1000g_rx_detach_lock, RW_READER);
340 	if (e1000g_mblks_pending != 0) {
341 		rw_exit(&e1000g_rx_detach_lock);
342 		return (EBUSY);
343 	}
344 	rw_exit(&e1000g_rx_detach_lock);
345 
346 	status = mod_remove(&modlinkage);
347 	if (status == DDI_SUCCESS) {
348 		mac_fini_ops(&ws_ops);
349 
350 		if (e1000g_force_detach) {
351 			private_devi_list_t *devi_node;
352 
353 			rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
354 			while (e1000g_private_devi_list != NULL) {
355 				devi_node = e1000g_private_devi_list;
356 				e1000g_private_devi_list =
357 				    e1000g_private_devi_list->next;
358 
359 				kmem_free(devi_node->priv_dip,
360 				    sizeof (struct dev_info));
361 				kmem_free(devi_node,
362 				    sizeof (private_devi_list_t));
363 			}
364 			rw_exit(&e1000g_rx_detach_lock);
365 		}
366 
367 		rw_destroy(&e1000g_rx_detach_lock);
368 		rw_destroy(&e1000g_dma_type_lock);
369 		mutex_destroy(&e1000g_nvm_lock);
370 	}
371 
372 	return (status);
373 }
374 
375 /*
376  * _info - module information
377  */
378 int
379 _info(struct modinfo *modinfop)
380 {
381 	return (mod_info(&modlinkage, modinfop));
382 }
383 
384 /*
385  * e1000g_attach - driver attach
386  *
387  * This function is the device-specific initialization entry
388  * point. This entry point is required and must be written.
389  * The DDI_ATTACH command must be provided in the attach entry
390  * point. When attach() is called with cmd set to DDI_ATTACH,
391  * all normal kernel services (such as kmem_alloc(9F)) are
392  * available for use by the driver.
393  *
394  * The attach() function will be called once for each instance
395  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
396  * Until attach() succeeds, the only driver entry points which
397  * may be called are open(9E) and getinfo(9E).
398  */
399 static int
400 e1000g_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
401 {
402 	struct e1000g *Adapter;
403 	struct e1000_hw *hw;
404 	struct e1000g_osdep *osdep;
405 	int instance;
406 
407 	switch (cmd) {
408 	default:
409 		e1000g_log(NULL, CE_WARN,
410 		    "Unsupported command send to e1000g_attach... ");
411 		return (DDI_FAILURE);
412 
413 	case DDI_RESUME:
414 		return (e1000g_resume(devinfo));
415 
416 	case DDI_ATTACH:
417 		break;
418 	}
419 
420 	/*
421 	 * get device instance number
422 	 */
423 	instance = ddi_get_instance(devinfo);
424 
425 	/*
426 	 * Allocate soft data structure
427 	 */
428 	Adapter =
429 	    (struct e1000g *)kmem_zalloc(sizeof (*Adapter), KM_SLEEP);
430 
431 	Adapter->dip = devinfo;
432 	Adapter->instance = instance;
433 	Adapter->tx_ring->adapter = Adapter;
434 	Adapter->rx_ring->adapter = Adapter;
435 
436 	hw = &Adapter->shared;
437 	osdep = &Adapter->osdep;
438 	hw->back = osdep;
439 	osdep->adapter = Adapter;
440 
441 	ddi_set_driver_private(devinfo, (caddr_t)Adapter);
442 
443 	/*
444 	 * Initialize for fma support
445 	 */
446 	Adapter->fm_capabilities = e1000g_get_prop(Adapter, "fm-capable",
447 	    0, 0x0f,
448 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
449 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
450 	e1000g_fm_init(Adapter);
451 	Adapter->attach_progress |= ATTACH_PROGRESS_FMINIT;
452 
453 	/*
454 	 * PCI Configure
455 	 */
456 	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
457 		e1000g_log(Adapter, CE_WARN, "PCI configuration failed");
458 		goto attach_fail;
459 	}
460 	Adapter->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
461 
462 	/*
463 	 * Setup hardware
464 	 */
465 	if (e1000g_identify_hardware(Adapter) != DDI_SUCCESS) {
466 		e1000g_log(Adapter, CE_WARN, "Identify hardware failed");
467 		goto attach_fail;
468 	}
469 
470 	/*
471 	 * Map in the device registers.
472 	 */
473 	if (e1000g_regs_map(Adapter) != DDI_SUCCESS) {
474 		e1000g_log(Adapter, CE_WARN, "Mapping registers failed");
475 		goto attach_fail;
476 	}
477 	Adapter->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
478 
479 	/*
480 	 * Initialize driver parameters
481 	 */
482 	if (e1000g_set_driver_params(Adapter) != DDI_SUCCESS) {
483 		goto attach_fail;
484 	}
485 	Adapter->attach_progress |= ATTACH_PROGRESS_SETUP;
486 
487 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
488 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
489 		goto attach_fail;
490 	}
491 
492 	/*
493 	 * Initialize interrupts
494 	 */
495 	if (e1000g_add_intrs(Adapter) != DDI_SUCCESS) {
496 		e1000g_log(Adapter, CE_WARN, "Add interrupts failed");
497 		goto attach_fail;
498 	}
499 	Adapter->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
500 
501 	/*
502 	 * Initialize mutex's for this device.
503 	 * Do this before enabling the interrupt handler and
504 	 * register the softint to avoid the condition where
505 	 * interrupt handler can try using uninitialized mutex
506 	 */
507 	e1000g_init_locks(Adapter);
508 	Adapter->attach_progress |= ATTACH_PROGRESS_LOCKS;
509 
510 	/*
511 	 * Initialize Driver Counters
512 	 */
513 	if (e1000g_init_stats(Adapter) != DDI_SUCCESS) {
514 		e1000g_log(Adapter, CE_WARN, "Init stats failed");
515 		goto attach_fail;
516 	}
517 	Adapter->attach_progress |= ATTACH_PROGRESS_KSTATS;
518 
519 	/*
520 	 * Initialize chip hardware and software structures
521 	 */
522 	rw_enter(&Adapter->chip_lock, RW_WRITER);
523 	if (e1000g_init(Adapter) != DDI_SUCCESS) {
524 		rw_exit(&Adapter->chip_lock);
525 		e1000g_log(Adapter, CE_WARN, "Adapter initialization failed");
526 		goto attach_fail;
527 	}
528 	rw_exit(&Adapter->chip_lock);
529 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
530 
531 	/*
532 	 * Register the driver to the MAC
533 	 */
534 	if (e1000g_register_mac(Adapter) != DDI_SUCCESS) {
535 		e1000g_log(Adapter, CE_WARN, "Register MAC failed");
536 		goto attach_fail;
537 	}
538 	Adapter->attach_progress |= ATTACH_PROGRESS_MAC;
539 
540 	/*
541 	 * Now that mutex locks are initialized, and the chip is also
542 	 * initialized, enable interrupts.
543 	 */
544 	if (e1000g_enable_intrs(Adapter) != DDI_SUCCESS) {
545 		e1000g_log(Adapter, CE_WARN, "Enable DDI interrupts failed");
546 		goto attach_fail;
547 	}
548 	Adapter->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
549 
550 	/*
551 	 * If e1000g_force_detach is enabled, in global private dip list,
552 	 * we will create a new entry, which maintains the priv_dip for DR
553 	 * supports after driver detached.
554 	 */
555 	if (e1000g_force_detach) {
556 		private_devi_list_t *devi_node;
557 
558 		Adapter->priv_dip =
559 		    kmem_zalloc(sizeof (struct dev_info), KM_SLEEP);
560 		bcopy(DEVI(devinfo), DEVI(Adapter->priv_dip),
561 		    sizeof (struct dev_info));
562 
563 		devi_node =
564 		    kmem_zalloc(sizeof (private_devi_list_t), KM_SLEEP);
565 
566 		rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
567 		devi_node->priv_dip = Adapter->priv_dip;
568 		devi_node->flag = E1000G_PRIV_DEVI_ATTACH;
569 		devi_node->next = e1000g_private_devi_list;
570 		e1000g_private_devi_list = devi_node;
571 		rw_exit(&e1000g_rx_detach_lock);
572 	}
573 
574 	cmn_err(CE_CONT, "!%s, %s\n", e1000g_string, e1000g_version);
575 	Adapter->e1000g_state = E1000G_INITIALIZED;
576 
577 	return (DDI_SUCCESS);
578 
579 attach_fail:
580 	e1000g_unattach(devinfo, Adapter);
581 	return (DDI_FAILURE);
582 }
583 
584 static int
585 e1000g_register_mac(struct e1000g *Adapter)
586 {
587 	struct e1000_hw *hw = &Adapter->shared;
588 	mac_register_t *mac;
589 	int err;
590 
591 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
592 		return (DDI_FAILURE);
593 
594 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
595 	mac->m_driver = Adapter;
596 	mac->m_dip = Adapter->dip;
597 	mac->m_src_addr = hw->mac.addr;
598 	mac->m_callbacks = &e1000g_m_callbacks;
599 	mac->m_min_sdu = 0;
600 	mac->m_max_sdu = Adapter->default_mtu;
601 	mac->m_margin = VLAN_TAGSZ;
602 	mac->m_priv_props = e1000g_priv_props;
603 	mac->m_priv_prop_count = E1000G_MAX_PRIV_PROPS;
604 	mac->m_v12n = MAC_VIRT_LEVEL1;
605 
606 	err = mac_register(mac, &Adapter->mh);
607 	mac_free(mac);
608 
609 	return (err == 0 ? DDI_SUCCESS : DDI_FAILURE);
610 }
611 
612 static int
613 e1000g_identify_hardware(struct e1000g *Adapter)
614 {
615 	struct e1000_hw *hw = &Adapter->shared;
616 	struct e1000g_osdep *osdep = &Adapter->osdep;
617 
618 	/* Get the device id */
619 	hw->vendor_id =
620 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
621 	hw->device_id =
622 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
623 	hw->revision_id =
624 	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
625 	hw->subsystem_device_id =
626 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
627 	hw->subsystem_vendor_id =
628 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
629 
630 	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
631 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
632 		    "MAC type could not be set properly.");
633 		return (DDI_FAILURE);
634 	}
635 
636 	return (DDI_SUCCESS);
637 }
638 
639 static int
640 e1000g_regs_map(struct e1000g *Adapter)
641 {
642 	dev_info_t *devinfo = Adapter->dip;
643 	struct e1000_hw *hw = &Adapter->shared;
644 	struct e1000g_osdep *osdep = &Adapter->osdep;
645 	off_t mem_size;
646 
647 	/* Get size of adapter register memory */
648 	if (ddi_dev_regsize(devinfo, ADAPTER_REG_SET, &mem_size) !=
649 	    DDI_SUCCESS) {
650 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
651 		    "ddi_dev_regsize for registers failed");
652 		return (DDI_FAILURE);
653 	}
654 
655 	/* Map adapter register memory */
656 	if ((ddi_regs_map_setup(devinfo, ADAPTER_REG_SET,
657 	    (caddr_t *)&hw->hw_addr, 0, mem_size, &e1000g_regs_acc_attr,
658 	    &osdep->reg_handle)) != DDI_SUCCESS) {
659 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
660 		    "ddi_regs_map_setup for registers failed");
661 		goto regs_map_fail;
662 	}
663 
664 	/* ICH needs to map flash memory */
665 	if (hw->mac.type == e1000_ich8lan ||
666 	    hw->mac.type == e1000_ich9lan ||
667 	    hw->mac.type == e1000_ich10lan) {
668 		/* get flash size */
669 		if (ddi_dev_regsize(devinfo, ICH_FLASH_REG_SET,
670 		    &mem_size) != DDI_SUCCESS) {
671 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
672 			    "ddi_dev_regsize for ICH flash failed");
673 			goto regs_map_fail;
674 		}
675 
676 		/* map flash in */
677 		if (ddi_regs_map_setup(devinfo, ICH_FLASH_REG_SET,
678 		    (caddr_t *)&hw->flash_address, 0,
679 		    mem_size, &e1000g_regs_acc_attr,
680 		    &osdep->ich_flash_handle) != DDI_SUCCESS) {
681 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
682 			    "ddi_regs_map_setup for ICH flash failed");
683 			goto regs_map_fail;
684 		}
685 	}
686 
687 	return (DDI_SUCCESS);
688 
689 regs_map_fail:
690 	if (osdep->reg_handle != NULL)
691 		ddi_regs_map_free(&osdep->reg_handle);
692 
693 	return (DDI_FAILURE);
694 }
695 
696 static int
697 e1000g_set_driver_params(struct e1000g *Adapter)
698 {
699 	struct e1000_hw *hw;
700 	uint32_t mem_bar, io_bar, bar64;
701 
702 	hw = &Adapter->shared;
703 
704 	/* Set MAC type and initialize hardware functions */
705 	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
706 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
707 		    "Could not setup hardware functions");
708 		return (DDI_FAILURE);
709 	}
710 
711 	/* Get bus information */
712 	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
713 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
714 		    "Could not get bus information");
715 		return (DDI_FAILURE);
716 	}
717 
718 	/* get mem_base addr */
719 	mem_bar = pci_config_get32(Adapter->osdep.cfg_handle, PCI_CONF_BASE0);
720 	bar64 = mem_bar & PCI_BASE_TYPE_ALL;
721 
722 	/* get io_base addr */
723 	if (hw->mac.type >= e1000_82544) {
724 		if (bar64) {
725 			/* IO BAR is different for 64 bit BAR mode */
726 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
727 			    PCI_CONF_BASE4);
728 		} else {
729 			/* normal 32-bit BAR mode */
730 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
731 			    PCI_CONF_BASE2);
732 		}
733 		hw->io_base = io_bar & PCI_BASE_IO_ADDR_M;
734 	} else {
735 		/* no I/O access for adapters prior to 82544 */
736 		hw->io_base = 0x0;
737 	}
738 
739 	e1000_read_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->bus.pci_cmd_word);
740 
741 	hw->mac.autoneg_failed = B_TRUE;
742 
743 	/* Set the autoneg_wait_to_complete flag to B_FALSE */
744 	hw->phy.autoneg_wait_to_complete = B_FALSE;
745 
746 	/* Adaptive IFS related changes */
747 	hw->mac.adaptive_ifs = B_TRUE;
748 
749 	/* Enable phy init script for IGP phy of 82541/82547 */
750 	if ((hw->mac.type == e1000_82547) ||
751 	    (hw->mac.type == e1000_82541) ||
752 	    (hw->mac.type == e1000_82547_rev_2) ||
753 	    (hw->mac.type == e1000_82541_rev_2))
754 		e1000_init_script_state_82541(hw, B_TRUE);
755 
756 	/* Enable the TTL workaround for 82541/82547 */
757 	e1000_set_ttl_workaround_state_82541(hw, B_TRUE);
758 
759 #ifdef __sparc
760 	Adapter->strip_crc = B_TRUE;
761 #else
762 	Adapter->strip_crc = B_FALSE;
763 #endif
764 
765 	/* Get conf file properties */
766 	e1000g_get_conf(Adapter);
767 
768 	/* Get speed/duplex settings in conf file */
769 	hw->mac.forced_speed_duplex = ADVERTISE_100_FULL;
770 	hw->phy.autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
771 	e1000g_force_speed_duplex(Adapter);
772 
773 	/* Get Jumbo Frames settings in conf file */
774 	e1000g_get_max_frame_size(Adapter);
775 
776 	/* Set Rx/Tx buffer size */
777 	e1000g_set_bufsize(Adapter);
778 
779 	/* Master Latency Timer */
780 	Adapter->master_latency_timer = DEFAULT_MASTER_LATENCY_TIMER;
781 
782 	/* copper options */
783 	if (hw->phy.media_type == e1000_media_type_copper) {
784 		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
785 		hw->phy.disable_polarity_correction = B_FALSE;
786 		hw->phy.ms_type = e1000_ms_hw_default;	/* E1000_MASTER_SLAVE */
787 	}
788 
789 	/* The initial link state should be "unknown" */
790 	Adapter->link_state = LINK_STATE_UNKNOWN;
791 
792 	/* Initialize rx parameters */
793 	Adapter->rx_intr_delay = DEFAULT_RX_INTR_DELAY;
794 	Adapter->rx_intr_abs_delay = DEFAULT_RX_INTR_ABS_DELAY;
795 
796 	/* Initialize tx parameters */
797 	Adapter->tx_intr_enable = DEFAULT_TX_INTR_ENABLE;
798 	Adapter->tx_bcopy_thresh = DEFAULT_TX_BCOPY_THRESHOLD;
799 	Adapter->tx_intr_delay = DEFAULT_TX_INTR_DELAY;
800 	Adapter->tx_intr_abs_delay = DEFAULT_TX_INTR_ABS_DELAY;
801 
802 	/* Initialize rx parameters */
803 	Adapter->rx_bcopy_thresh = DEFAULT_RX_BCOPY_THRESHOLD;
804 
805 	return (DDI_SUCCESS);
806 }
807 
808 static void
809 e1000g_set_bufsize(struct e1000g *Adapter)
810 {
811 	struct e1000_mac_info *mac = &Adapter->shared.mac;
812 	uint64_t rx_size;
813 	uint64_t tx_size;
814 
815 	dev_info_t *devinfo = Adapter->dip;
816 #ifdef __sparc
817 	ulong_t iommu_pagesize;
818 #endif
819 	/* Get the system page size */
820 	Adapter->sys_page_sz = ddi_ptob(devinfo, (ulong_t)1);
821 
822 #ifdef __sparc
823 	iommu_pagesize = dvma_pagesize(devinfo);
824 	if (iommu_pagesize != 0) {
825 		if (Adapter->sys_page_sz == iommu_pagesize) {
826 			if (iommu_pagesize > 0x4000)
827 				Adapter->sys_page_sz = 0x4000;
828 		} else {
829 			if (Adapter->sys_page_sz > iommu_pagesize)
830 				Adapter->sys_page_sz = iommu_pagesize;
831 		}
832 	}
833 	if (Adapter->lso_enable) {
834 		Adapter->dvma_page_num = E1000_LSO_MAXLEN /
835 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
836 	} else {
837 		Adapter->dvma_page_num = Adapter->max_frame_size /
838 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
839 	}
840 	ASSERT(Adapter->dvma_page_num >= E1000G_DEFAULT_DVMA_PAGE_NUM);
841 #endif
842 
843 	Adapter->min_frame_size = ETHERMIN + ETHERFCSL;
844 
845 	if (Adapter->mem_workaround_82546 &&
846 	    ((mac->type == e1000_82545) ||
847 	    (mac->type == e1000_82546) ||
848 	    (mac->type == e1000_82546_rev_3))) {
849 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
850 	} else {
851 		rx_size = Adapter->max_frame_size + E1000G_IPALIGNPRESERVEROOM;
852 		if ((rx_size > FRAME_SIZE_UPTO_2K) &&
853 		    (rx_size <= FRAME_SIZE_UPTO_4K))
854 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_4K;
855 		else if ((rx_size > FRAME_SIZE_UPTO_4K) &&
856 		    (rx_size <= FRAME_SIZE_UPTO_8K))
857 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_8K;
858 		else if ((rx_size > FRAME_SIZE_UPTO_8K) &&
859 		    (rx_size <= FRAME_SIZE_UPTO_16K))
860 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_16K;
861 		else
862 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
863 	}
864 
865 	tx_size = Adapter->max_frame_size;
866 	if ((tx_size > FRAME_SIZE_UPTO_2K) && (tx_size <= FRAME_SIZE_UPTO_4K))
867 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_4K;
868 	else if ((tx_size > FRAME_SIZE_UPTO_4K) &&
869 	    (tx_size <= FRAME_SIZE_UPTO_8K))
870 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_8K;
871 	else if ((tx_size > FRAME_SIZE_UPTO_8K) &&
872 	    (tx_size <= FRAME_SIZE_UPTO_16K))
873 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_16K;
874 	else
875 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K;
876 
877 	/*
878 	 * For Wiseman adapters we have an requirement of having receive
879 	 * buffers aligned at 256 byte boundary. Since Livengood does not
880 	 * require this and forcing it for all hardwares will have
881 	 * performance implications, I am making it applicable only for
882 	 * Wiseman and for Jumbo frames enabled mode as rest of the time,
883 	 * it is okay to have normal frames...but it does involve a
884 	 * potential risk where we may loose data if buffer is not
885 	 * aligned...so all wiseman boards to have 256 byte aligned
886 	 * buffers
887 	 */
888 	if (mac->type < e1000_82543)
889 		Adapter->rx_buf_align = RECEIVE_BUFFER_ALIGN_SIZE;
890 	else
891 		Adapter->rx_buf_align = 1;
892 }
893 
894 /*
895  * e1000g_detach - driver detach
896  *
897  * The detach() function is the complement of the attach routine.
898  * If cmd is set to DDI_DETACH, detach() is used to remove  the
899  * state  associated  with  a  given  instance of a device node
900  * prior to the removal of that instance from the system.
901  *
902  * The detach() function will be called once for each  instance
903  * of the device for which there has been a successful attach()
904  * once there are no longer  any  opens  on  the  device.
905  *
906  * Interrupts routine are disabled, All memory allocated by this
907  * driver are freed.
908  */
909 static int
910 e1000g_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
911 {
912 	struct e1000g *Adapter;
913 	boolean_t rx_drain;
914 
915 	switch (cmd) {
916 	default:
917 		return (DDI_FAILURE);
918 
919 	case DDI_SUSPEND:
920 		return (e1000g_suspend(devinfo));
921 
922 	case DDI_DETACH:
923 		break;
924 	}
925 
926 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
927 	if (Adapter == NULL)
928 		return (DDI_FAILURE);
929 
930 	rx_drain = e1000g_rx_drain(Adapter);
931 	if (!rx_drain && !e1000g_force_detach)
932 		return (DDI_FAILURE);
933 
934 	if (mac_unregister(Adapter->mh) != 0) {
935 		e1000g_log(Adapter, CE_WARN, "Unregister MAC failed");
936 		return (DDI_FAILURE);
937 	}
938 	Adapter->attach_progress &= ~ATTACH_PROGRESS_MAC;
939 
940 	ASSERT(!(Adapter->e1000g_state & E1000G_STARTED));
941 
942 	/*
943 	 * If e1000g_force_detach is enabled, driver detach is safe.
944 	 * We will let e1000g_free_priv_devi_node routine determine
945 	 * whether we need to free the priv_dip entry for current
946 	 * driver instance.
947 	 */
948 	if (e1000g_force_detach) {
949 		e1000g_free_priv_devi_node(Adapter, rx_drain);
950 	}
951 
952 	e1000g_unattach(devinfo, Adapter);
953 
954 	return (DDI_SUCCESS);
955 }
956 
957 /*
958  * e1000g_free_priv_devi_node - free a priv_dip entry for driver instance
959  *
960  * If free_flag is true, that indicates the upper layer is not holding
961  * the rx buffers, we could free the priv_dip entry safely.
962  *
963  * Otherwise, we have to keep this entry even after driver detached,
964  * and we also need to mark this entry with E1000G_PRIV_DEVI_DETACH flag,
965  * so that driver could free it while all of rx buffers are returned
966  * by upper layer later.
967  */
968 static void
969 e1000g_free_priv_devi_node(struct e1000g *Adapter, boolean_t free_flag)
970 {
971 	private_devi_list_t *devi_node, *devi_del;
972 
973 	rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
974 	ASSERT(e1000g_private_devi_list != NULL);
975 	ASSERT(Adapter->priv_dip != NULL);
976 
977 	devi_node = e1000g_private_devi_list;
978 	if (devi_node->priv_dip == Adapter->priv_dip) {
979 		if (free_flag) {
980 			e1000g_private_devi_list =
981 			    devi_node->next;
982 			kmem_free(devi_node->priv_dip,
983 			    sizeof (struct dev_info));
984 			kmem_free(devi_node,
985 			    sizeof (private_devi_list_t));
986 		} else {
987 			ASSERT(e1000g_mblks_pending != 0);
988 			devi_node->flag =
989 			    E1000G_PRIV_DEVI_DETACH;
990 		}
991 		rw_exit(&e1000g_rx_detach_lock);
992 		return;
993 	}
994 
995 	devi_node = e1000g_private_devi_list;
996 	while (devi_node->next != NULL) {
997 		if (devi_node->next->priv_dip == Adapter->priv_dip) {
998 			if (free_flag) {
999 				devi_del = devi_node->next;
1000 				devi_node->next = devi_del->next;
1001 				kmem_free(devi_del->priv_dip,
1002 				    sizeof (struct dev_info));
1003 				kmem_free(devi_del,
1004 				    sizeof (private_devi_list_t));
1005 			} else {
1006 				ASSERT(e1000g_mblks_pending != 0);
1007 				devi_node->next->flag =
1008 				    E1000G_PRIV_DEVI_DETACH;
1009 			}
1010 			break;
1011 		}
1012 		devi_node = devi_node->next;
1013 	}
1014 	rw_exit(&e1000g_rx_detach_lock);
1015 }
1016 
1017 static void
1018 e1000g_unattach(dev_info_t *devinfo, struct e1000g *Adapter)
1019 {
1020 	int result;
1021 
1022 	if (Adapter->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1023 		(void) e1000g_disable_intrs(Adapter);
1024 	}
1025 
1026 	if (Adapter->attach_progress & ATTACH_PROGRESS_MAC) {
1027 		(void) mac_unregister(Adapter->mh);
1028 	}
1029 
1030 	if (Adapter->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
1031 		(void) e1000g_rem_intrs(Adapter);
1032 	}
1033 
1034 	if (Adapter->attach_progress & ATTACH_PROGRESS_SETUP) {
1035 		(void) ddi_prop_remove_all(devinfo);
1036 	}
1037 
1038 	if (Adapter->attach_progress & ATTACH_PROGRESS_KSTATS) {
1039 		kstat_delete((kstat_t *)Adapter->e1000g_ksp);
1040 	}
1041 
1042 	if (Adapter->attach_progress & ATTACH_PROGRESS_INIT) {
1043 		stop_link_timer(Adapter);
1044 
1045 		mutex_enter(&e1000g_nvm_lock);
1046 		result = e1000_reset_hw(&Adapter->shared);
1047 		mutex_exit(&e1000g_nvm_lock);
1048 
1049 		if (result != E1000_SUCCESS) {
1050 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1051 			ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1052 		}
1053 	}
1054 
1055 	if (Adapter->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
1056 		if (Adapter->osdep.reg_handle != NULL)
1057 			ddi_regs_map_free(&Adapter->osdep.reg_handle);
1058 		if (Adapter->osdep.ich_flash_handle != NULL)
1059 			ddi_regs_map_free(&Adapter->osdep.ich_flash_handle);
1060 	}
1061 
1062 	if (Adapter->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
1063 		if (Adapter->osdep.cfg_handle != NULL)
1064 			pci_config_teardown(&Adapter->osdep.cfg_handle);
1065 	}
1066 
1067 	if (Adapter->attach_progress & ATTACH_PROGRESS_LOCKS) {
1068 		e1000g_destroy_locks(Adapter);
1069 	}
1070 
1071 	if (Adapter->attach_progress & ATTACH_PROGRESS_FMINIT) {
1072 		e1000g_fm_fini(Adapter);
1073 	}
1074 
1075 	kmem_free((caddr_t)Adapter, sizeof (struct e1000g));
1076 
1077 	/*
1078 	 * Another hotplug spec requirement,
1079 	 * run ddi_set_driver_private(devinfo, null);
1080 	 */
1081 	ddi_set_driver_private(devinfo, NULL);
1082 }
1083 
1084 static void
1085 e1000g_init_locks(struct e1000g *Adapter)
1086 {
1087 	e1000g_tx_ring_t *tx_ring;
1088 	e1000g_rx_ring_t *rx_ring;
1089 
1090 	rw_init(&Adapter->chip_lock, NULL,
1091 	    RW_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1092 	mutex_init(&Adapter->link_lock, NULL,
1093 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1094 	mutex_init(&Adapter->watchdog_lock, NULL,
1095 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1096 
1097 	tx_ring = Adapter->tx_ring;
1098 
1099 	mutex_init(&tx_ring->tx_lock, NULL,
1100 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1101 	mutex_init(&tx_ring->usedlist_lock, NULL,
1102 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1103 	mutex_init(&tx_ring->freelist_lock, NULL,
1104 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1105 
1106 	rx_ring = Adapter->rx_ring;
1107 
1108 	mutex_init(&rx_ring->rx_lock, NULL,
1109 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1110 	mutex_init(&rx_ring->freelist_lock, NULL,
1111 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1112 	mutex_init(&rx_ring->recycle_lock, NULL,
1113 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1114 }
1115 
1116 static void
1117 e1000g_destroy_locks(struct e1000g *Adapter)
1118 {
1119 	e1000g_tx_ring_t *tx_ring;
1120 	e1000g_rx_ring_t *rx_ring;
1121 
1122 	tx_ring = Adapter->tx_ring;
1123 	mutex_destroy(&tx_ring->tx_lock);
1124 	mutex_destroy(&tx_ring->usedlist_lock);
1125 	mutex_destroy(&tx_ring->freelist_lock);
1126 
1127 	rx_ring = Adapter->rx_ring;
1128 	mutex_destroy(&rx_ring->rx_lock);
1129 	mutex_destroy(&rx_ring->freelist_lock);
1130 	mutex_destroy(&rx_ring->recycle_lock);
1131 
1132 	mutex_destroy(&Adapter->link_lock);
1133 	mutex_destroy(&Adapter->watchdog_lock);
1134 	rw_destroy(&Adapter->chip_lock);
1135 }
1136 
1137 static int
1138 e1000g_resume(dev_info_t *devinfo)
1139 {
1140 	struct e1000g *Adapter;
1141 
1142 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1143 	if (Adapter == NULL)
1144 		e1000g_log(Adapter, CE_PANIC,
1145 		    "Instance pointer is null\n");
1146 
1147 	if (Adapter->dip != devinfo)
1148 		e1000g_log(Adapter, CE_PANIC,
1149 		    "Devinfo is not the same as saved devinfo\n");
1150 
1151 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1152 
1153 	if (Adapter->e1000g_state & E1000G_STARTED) {
1154 		if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) {
1155 			rw_exit(&Adapter->chip_lock);
1156 			/*
1157 			 * We note the failure, but return success, as the
1158 			 * system is still usable without this controller.
1159 			 */
1160 			e1000g_log(Adapter, CE_WARN,
1161 			    "e1000g_resume: failed to restart controller\n");
1162 			return (DDI_SUCCESS);
1163 		}
1164 		/* Enable and start the watchdog timer */
1165 		enable_watchdog_timer(Adapter);
1166 	}
1167 
1168 	Adapter->e1000g_state &= ~E1000G_SUSPENDED;
1169 
1170 	rw_exit(&Adapter->chip_lock);
1171 
1172 	return (DDI_SUCCESS);
1173 }
1174 
1175 static int
1176 e1000g_suspend(dev_info_t *devinfo)
1177 {
1178 	struct e1000g *Adapter;
1179 
1180 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1181 	if (Adapter == NULL)
1182 		return (DDI_FAILURE);
1183 
1184 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1185 
1186 	Adapter->e1000g_state |= E1000G_SUSPENDED;
1187 
1188 	/* if the port isn't plumbed, we can simply return */
1189 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
1190 		rw_exit(&Adapter->chip_lock);
1191 		return (DDI_SUCCESS);
1192 	}
1193 
1194 	e1000g_stop(Adapter, B_FALSE);
1195 
1196 	rw_exit(&Adapter->chip_lock);
1197 
1198 	/* Disable and stop all the timers */
1199 	disable_watchdog_timer(Adapter);
1200 	stop_link_timer(Adapter);
1201 	stop_82547_timer(Adapter->tx_ring);
1202 
1203 	return (DDI_SUCCESS);
1204 }
1205 
1206 static int
1207 e1000g_init(struct e1000g *Adapter)
1208 {
1209 	uint32_t pba;
1210 	uint32_t high_water;
1211 	struct e1000_hw *hw;
1212 	clock_t link_timeout;
1213 	int result;
1214 
1215 	hw = &Adapter->shared;
1216 
1217 	/*
1218 	 * reset to put the hardware in a known state
1219 	 * before we try to do anything with the eeprom
1220 	 */
1221 	mutex_enter(&e1000g_nvm_lock);
1222 	result = e1000_reset_hw(hw);
1223 	mutex_exit(&e1000g_nvm_lock);
1224 
1225 	if (result != E1000_SUCCESS) {
1226 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1227 		goto init_fail;
1228 	}
1229 
1230 	mutex_enter(&e1000g_nvm_lock);
1231 	result = e1000_validate_nvm_checksum(hw);
1232 	if (result < E1000_SUCCESS) {
1233 		/*
1234 		 * Some PCI-E parts fail the first check due to
1235 		 * the link being in sleep state.  Call it again,
1236 		 * if it fails a second time its a real issue.
1237 		 */
1238 		result = e1000_validate_nvm_checksum(hw);
1239 	}
1240 	mutex_exit(&e1000g_nvm_lock);
1241 
1242 	if (result < E1000_SUCCESS) {
1243 		e1000g_log(Adapter, CE_WARN,
1244 		    "Invalid NVM checksum. Please contact "
1245 		    "the vendor to update the NVM.");
1246 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1247 		goto init_fail;
1248 	}
1249 
1250 	result = 0;
1251 #ifdef __sparc
1252 	/*
1253 	 * First, we try to get the local ethernet address from OBP. If
1254 	 * failed, then we get it from the EEPROM of NIC card.
1255 	 */
1256 	result = e1000g_find_mac_address(Adapter);
1257 #endif
1258 	/* Get the local ethernet address. */
1259 	if (!result) {
1260 		mutex_enter(&e1000g_nvm_lock);
1261 		result = e1000_read_mac_addr(hw);
1262 		mutex_exit(&e1000g_nvm_lock);
1263 	}
1264 
1265 	if (result < E1000_SUCCESS) {
1266 		e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1267 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1268 		goto init_fail;
1269 	}
1270 
1271 	/* check for valid mac address */
1272 	if (!is_valid_mac_addr(hw->mac.addr)) {
1273 		e1000g_log(Adapter, CE_WARN, "Invalid mac addr");
1274 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1275 		goto init_fail;
1276 	}
1277 
1278 	/* Set LAA state for 82571 chipset */
1279 	e1000_set_laa_state_82571(hw, B_TRUE);
1280 
1281 	/* Master Latency Timer implementation */
1282 	if (Adapter->master_latency_timer) {
1283 		pci_config_put8(Adapter->osdep.cfg_handle,
1284 		    PCI_CONF_LATENCY_TIMER, Adapter->master_latency_timer);
1285 	}
1286 
1287 	if (hw->mac.type < e1000_82547) {
1288 		/*
1289 		 * Total FIFO is 64K
1290 		 */
1291 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1292 			pba = E1000_PBA_40K;	/* 40K for Rx, 24K for Tx */
1293 		else
1294 			pba = E1000_PBA_48K;	/* 48K for Rx, 16K for Tx */
1295 	} else if ((hw->mac.type == e1000_82571) ||
1296 	    (hw->mac.type == e1000_82572) ||
1297 	    (hw->mac.type == e1000_80003es2lan)) {
1298 		/*
1299 		 * Total FIFO is 48K
1300 		 */
1301 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1302 			pba = E1000_PBA_30K;	/* 30K for Rx, 18K for Tx */
1303 		else
1304 			pba = E1000_PBA_38K;	/* 38K for Rx, 10K for Tx */
1305 	} else if (hw->mac.type == e1000_82573) {
1306 		pba = E1000_PBA_20K;		/* 20K for Rx, 12K for Tx */
1307 	} else if (hw->mac.type == e1000_82574) {
1308 		/* Keep adapter default: 20K for Rx, 20K for Tx */
1309 		pba = E1000_READ_REG(hw, E1000_PBA);
1310 	} else if (hw->mac.type == e1000_ich8lan) {
1311 		pba = E1000_PBA_8K;		/* 8K for Rx, 12K for Tx */
1312 	} else if (hw->mac.type == e1000_ich9lan) {
1313 		pba = E1000_PBA_10K;
1314 	} else if (hw->mac.type == e1000_ich10lan) {
1315 		pba = E1000_PBA_10K;
1316 	} else {
1317 		/*
1318 		 * Total FIFO is 40K
1319 		 */
1320 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1321 			pba = E1000_PBA_22K;	/* 22K for Rx, 18K for Tx */
1322 		else
1323 			pba = E1000_PBA_30K;	/* 30K for Rx, 10K for Tx */
1324 	}
1325 	E1000_WRITE_REG(hw, E1000_PBA, pba);
1326 
1327 	/*
1328 	 * These parameters set thresholds for the adapter's generation(Tx)
1329 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1330 	 * settings.  Flow control is enabled or disabled in the configuration
1331 	 * file.
1332 	 * High-water mark is set down from the top of the rx fifo (not
1333 	 * sensitive to max_frame_size) and low-water is set just below
1334 	 * high-water mark.
1335 	 * The high water mark must be low enough to fit one full frame above
1336 	 * it in the rx FIFO.  Should be the lower of:
1337 	 * 90% of the Rx FIFO size and the full Rx FIFO size minus the early
1338 	 * receive size (assuming ERT set to E1000_ERT_2048), or the full
1339 	 * Rx FIFO size minus one full frame.
1340 	 */
1341 	high_water = min(((pba << 10) * 9 / 10),
1342 	    ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574 ||
1343 	    hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_ich10lan) ?
1344 	    ((pba << 10) - (E1000_ERT_2048 << 3)) :
1345 	    ((pba << 10) - Adapter->max_frame_size)));
1346 
1347 	hw->fc.high_water = high_water & 0xFFF8;
1348 	hw->fc.low_water = hw->fc.high_water - 8;
1349 
1350 	if (hw->mac.type == e1000_80003es2lan)
1351 		hw->fc.pause_time = 0xFFFF;
1352 	else
1353 		hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1354 	hw->fc.send_xon = B_TRUE;
1355 
1356 	/*
1357 	 * Reset the adapter hardware the second time.
1358 	 */
1359 	mutex_enter(&e1000g_nvm_lock);
1360 	result = e1000_reset_hw(hw);
1361 	mutex_exit(&e1000g_nvm_lock);
1362 
1363 	if (result != E1000_SUCCESS) {
1364 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1365 		goto init_fail;
1366 	}
1367 
1368 	/* disable wakeup control by default */
1369 	if (hw->mac.type >= e1000_82544)
1370 		E1000_WRITE_REG(hw, E1000_WUC, 0);
1371 
1372 	/*
1373 	 * MWI should be disabled on 82546.
1374 	 */
1375 	if (hw->mac.type == e1000_82546)
1376 		e1000_pci_clear_mwi(hw);
1377 	else
1378 		e1000_pci_set_mwi(hw);
1379 
1380 	/*
1381 	 * Configure/Initialize hardware
1382 	 */
1383 	mutex_enter(&e1000g_nvm_lock);
1384 	result = e1000_init_hw(hw);
1385 	mutex_exit(&e1000g_nvm_lock);
1386 
1387 	if (result < E1000_SUCCESS) {
1388 		e1000g_log(Adapter, CE_WARN, "Initialize hw failed");
1389 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1390 		goto init_fail;
1391 	}
1392 
1393 	/*
1394 	 * Restore LED settings to the default from EEPROM
1395 	 * to meet the standard for Sun platforms.
1396 	 */
1397 	(void) e1000_cleanup_led(hw);
1398 
1399 	/* Disable Smart Power Down */
1400 	phy_spd_state(hw, B_FALSE);
1401 
1402 	/* Make sure driver has control */
1403 	e1000g_get_driver_control(hw);
1404 
1405 	/*
1406 	 * Initialize unicast addresses.
1407 	 */
1408 	e1000g_init_unicst(Adapter);
1409 
1410 	/*
1411 	 * Setup and initialize the mctable structures.  After this routine
1412 	 * completes  Multicast table will be set
1413 	 */
1414 	e1000g_setup_multicast(Adapter);
1415 	msec_delay(5);
1416 
1417 	/*
1418 	 * Implement Adaptive IFS
1419 	 */
1420 	e1000_reset_adaptive(hw);
1421 
1422 	/* Setup Interrupt Throttling Register */
1423 	if (hw->mac.type >= e1000_82540) {
1424 		E1000_WRITE_REG(hw, E1000_ITR, Adapter->intr_throttling_rate);
1425 	} else
1426 		Adapter->intr_adaptive = B_FALSE;
1427 
1428 	/* Start the timer for link setup */
1429 	if (hw->mac.autoneg)
1430 		link_timeout = PHY_AUTO_NEG_LIMIT * drv_usectohz(100000);
1431 	else
1432 		link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
1433 
1434 	mutex_enter(&Adapter->link_lock);
1435 	if (hw->phy.autoneg_wait_to_complete) {
1436 		Adapter->link_complete = B_TRUE;
1437 	} else {
1438 		Adapter->link_complete = B_FALSE;
1439 		Adapter->link_tid = timeout(e1000g_link_timer,
1440 		    (void *)Adapter, link_timeout);
1441 	}
1442 	mutex_exit(&Adapter->link_lock);
1443 
1444 	/* Enable PCI-Ex master */
1445 	if (hw->bus.type == e1000_bus_type_pci_express) {
1446 		e1000_enable_pciex_master(hw);
1447 	}
1448 
1449 	/* Save the state of the phy */
1450 	e1000g_get_phy_state(Adapter);
1451 
1452 	e1000g_param_sync(Adapter);
1453 
1454 	Adapter->init_count++;
1455 
1456 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
1457 		goto init_fail;
1458 	}
1459 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1460 		goto init_fail;
1461 	}
1462 
1463 	Adapter->poll_mode = e1000g_poll_mode;
1464 
1465 	return (DDI_SUCCESS);
1466 
1467 init_fail:
1468 	ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1469 	return (DDI_FAILURE);
1470 }
1471 
1472 /*
1473  * Check if the link is up
1474  */
1475 static boolean_t
1476 e1000g_link_up(struct e1000g *Adapter)
1477 {
1478 	struct e1000_hw *hw;
1479 	boolean_t link_up;
1480 
1481 	hw = &Adapter->shared;
1482 
1483 	(void) e1000_check_for_link(hw);
1484 
1485 	if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU) ||
1486 	    ((!hw->mac.get_link_status) && (hw->mac.type == e1000_82543)) ||
1487 	    ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
1488 	    (hw->mac.serdes_has_link))) {
1489 		link_up = B_TRUE;
1490 	} else {
1491 		link_up = B_FALSE;
1492 	}
1493 
1494 	return (link_up);
1495 }
1496 
1497 static void
1498 e1000g_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
1499 {
1500 	struct iocblk *iocp;
1501 	struct e1000g *e1000gp;
1502 	enum ioc_reply status;
1503 
1504 	iocp = (struct iocblk *)(uintptr_t)mp->b_rptr;
1505 	iocp->ioc_error = 0;
1506 	e1000gp = (struct e1000g *)arg;
1507 
1508 	ASSERT(e1000gp);
1509 	if (e1000gp == NULL) {
1510 		miocnak(q, mp, 0, EINVAL);
1511 		return;
1512 	}
1513 
1514 	rw_enter(&e1000gp->chip_lock, RW_READER);
1515 	if (e1000gp->e1000g_state & E1000G_SUSPENDED) {
1516 		rw_exit(&e1000gp->chip_lock);
1517 		miocnak(q, mp, 0, EINVAL);
1518 		return;
1519 	}
1520 	rw_exit(&e1000gp->chip_lock);
1521 
1522 	switch (iocp->ioc_cmd) {
1523 
1524 	case LB_GET_INFO_SIZE:
1525 	case LB_GET_INFO:
1526 	case LB_GET_MODE:
1527 	case LB_SET_MODE:
1528 		status = e1000g_loopback_ioctl(e1000gp, iocp, mp);
1529 		break;
1530 
1531 
1532 #ifdef E1000G_DEBUG
1533 	case E1000G_IOC_REG_PEEK:
1534 	case E1000G_IOC_REG_POKE:
1535 		status = e1000g_pp_ioctl(e1000gp, iocp, mp);
1536 		break;
1537 	case E1000G_IOC_CHIP_RESET:
1538 		e1000gp->reset_count++;
1539 		if (e1000g_reset_adapter(e1000gp))
1540 			status = IOC_ACK;
1541 		else
1542 			status = IOC_INVAL;
1543 		break;
1544 #endif
1545 	default:
1546 		status = IOC_INVAL;
1547 		break;
1548 	}
1549 
1550 	/*
1551 	 * Decide how to reply
1552 	 */
1553 	switch (status) {
1554 	default:
1555 	case IOC_INVAL:
1556 		/*
1557 		 * Error, reply with a NAK and EINVAL or the specified error
1558 		 */
1559 		miocnak(q, mp, 0, iocp->ioc_error == 0 ?
1560 		    EINVAL : iocp->ioc_error);
1561 		break;
1562 
1563 	case IOC_DONE:
1564 		/*
1565 		 * OK, reply already sent
1566 		 */
1567 		break;
1568 
1569 	case IOC_ACK:
1570 		/*
1571 		 * OK, reply with an ACK
1572 		 */
1573 		miocack(q, mp, 0, 0);
1574 		break;
1575 
1576 	case IOC_REPLY:
1577 		/*
1578 		 * OK, send prepared reply as ACK or NAK
1579 		 */
1580 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1581 		    M_IOCACK : M_IOCNAK;
1582 		qreply(q, mp);
1583 		break;
1584 	}
1585 }
1586 
1587 /*
1588  * The default value of e1000g_poll_mode == 0 assumes that the NIC is
1589  * capable of supporting only one interrupt and we shouldn't disable
1590  * the physical interrupt. In this case we let the interrupt come and
1591  * we queue the packets in the rx ring itself in case we are in polling
1592  * mode (better latency but slightly lower performance and a very
1593  * high intrrupt count in mpstat which is harmless).
1594  *
1595  * e1000g_poll_mode == 1 assumes that we have per Rx ring interrupt
1596  * which can be disabled in poll mode. This gives better overall
1597  * throughput (compared to the mode above), shows very low interrupt
1598  * count but has slightly higher latency since we pick the packets when
1599  * the poll thread does polling.
1600  *
1601  * Currently, this flag should be enabled only while doing performance
1602  * measurement or when it can be guaranteed that entire NIC going
1603  * in poll mode will not harm any traffic like cluster heartbeat etc.
1604  */
1605 int e1000g_poll_mode = 0;
1606 
1607 /*
1608  * Called from the upper layers when driver is in polling mode to
1609  * pick up any queued packets. Care should be taken to not block
1610  * this thread.
1611  */
1612 static mblk_t *e1000g_poll_ring(void *arg, int bytes_to_pickup)
1613 {
1614 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)arg;
1615 	mblk_t			*mp = NULL;
1616 	mblk_t			*tail;
1617 	uint_t			sz = 0;
1618 	struct e1000g 		*adapter;
1619 
1620 	adapter = rx_ring->adapter;
1621 
1622 	rw_enter(&adapter->chip_lock, RW_READER);
1623 
1624 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
1625 		rw_exit(&adapter->chip_lock);
1626 		return (NULL);
1627 	}
1628 
1629 	mutex_enter(&rx_ring->rx_lock);
1630 	ASSERT(rx_ring->poll_flag);
1631 
1632 	/*
1633 	 * Get any packets that have arrived. Works only if we
1634 	 * actually disable the physical adapter/rx_ring interrupt.
1635 	 * (e1000g_poll_mode == 1). In case e1000g_poll_mode == 0,
1636 	 * packets will have already been added to the poll list
1637 	 * by the interrupt (see e1000g_intr_work()).
1638 	 */
1639 	if (adapter->poll_mode) {
1640 		mp = e1000g_receive(rx_ring, &tail, &sz);
1641 		if (mp != NULL) {
1642 			if (rx_ring->poll_list_head == NULL)
1643 				rx_ring->poll_list_head = mp;
1644 			else
1645 				rx_ring->poll_list_tail->b_next = mp;
1646 			rx_ring->poll_list_tail = tail;
1647 			rx_ring->poll_list_sz += sz;
1648 		}
1649 	}
1650 
1651 	mp = rx_ring->poll_list_head;
1652 	if (mp == NULL) {
1653 		mutex_exit(&rx_ring->rx_lock);
1654 		rw_exit(&adapter->chip_lock);
1655 		return (NULL);
1656 	}
1657 
1658 	/* Check if we can sendup the entire chain */
1659 	if (bytes_to_pickup >= rx_ring->poll_list_sz) {
1660 		mp = rx_ring->poll_list_head;
1661 		rx_ring->poll_list_head = NULL;
1662 		rx_ring->poll_list_tail = NULL;
1663 		rx_ring->poll_list_sz = 0;
1664 		mutex_exit(&rx_ring->rx_lock);
1665 		rw_exit(&adapter->chip_lock);
1666 		return (mp);
1667 	}
1668 
1669 	/*
1670 	 * We need to find out how much chain we can send up. We
1671 	 * are guaranteed that atleast one packet will go up since
1672 	 * we already checked that.
1673 	 */
1674 	tail = mp;
1675 	sz = 0;
1676 	while (mp != NULL) {
1677 		sz += MBLKL(mp);
1678 		if (sz > bytes_to_pickup) {
1679 			sz -= MBLKL(mp);
1680 			break;
1681 		}
1682 		tail = mp;
1683 		mp = mp->b_next;
1684 	}
1685 
1686 	mp = rx_ring->poll_list_head;
1687 	rx_ring->poll_list_head = tail->b_next;
1688 	if (rx_ring->poll_list_head == NULL)
1689 		rx_ring->poll_list_tail = NULL;
1690 	rx_ring->poll_list_sz -= sz;
1691 	tail->b_next = NULL;
1692 	mutex_exit(&rx_ring->rx_lock);
1693 	rw_exit(&adapter->chip_lock);
1694 	return (mp);
1695 }
1696 
1697 static int
1698 e1000g_m_start(void *arg)
1699 {
1700 	struct e1000g *Adapter = (struct e1000g *)arg;
1701 
1702 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1703 
1704 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
1705 		rw_exit(&Adapter->chip_lock);
1706 		return (ECANCELED);
1707 	}
1708 
1709 	if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) {
1710 		rw_exit(&Adapter->chip_lock);
1711 		return (ENOTACTIVE);
1712 	}
1713 
1714 	Adapter->e1000g_state |= E1000G_STARTED;
1715 
1716 	rw_exit(&Adapter->chip_lock);
1717 
1718 	/* Enable and start the watchdog timer */
1719 	enable_watchdog_timer(Adapter);
1720 
1721 	return (0);
1722 }
1723 
1724 static int
1725 e1000g_start(struct e1000g *Adapter, boolean_t global)
1726 {
1727 	if (global) {
1728 		/* Allocate dma resources for descriptors and buffers */
1729 		if (e1000g_alloc_dma_resources(Adapter) != DDI_SUCCESS) {
1730 			e1000g_log(Adapter, CE_WARN,
1731 			    "Alloc DMA resources failed");
1732 			return (DDI_FAILURE);
1733 		}
1734 		Adapter->rx_buffer_setup = B_FALSE;
1735 	}
1736 
1737 	if (!(Adapter->attach_progress & ATTACH_PROGRESS_INIT)) {
1738 		if (e1000g_init(Adapter) != DDI_SUCCESS) {
1739 			e1000g_log(Adapter, CE_WARN,
1740 			    "Adapter initialization failed");
1741 			if (global)
1742 				e1000g_release_dma_resources(Adapter);
1743 			return (DDI_FAILURE);
1744 		}
1745 	}
1746 
1747 	/* Setup and initialize the transmit structures */
1748 	e1000g_tx_setup(Adapter);
1749 	msec_delay(5);
1750 
1751 	/* Setup and initialize the receive structures */
1752 	e1000g_rx_setup(Adapter);
1753 	msec_delay(5);
1754 
1755 	/* Restore the e1000g promiscuous mode */
1756 	e1000g_restore_promisc(Adapter);
1757 
1758 	e1000g_mask_interrupt(Adapter);
1759 
1760 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
1761 
1762 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1763 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1764 		return (DDI_FAILURE);
1765 	}
1766 
1767 	return (DDI_SUCCESS);
1768 }
1769 
1770 static void
1771 e1000g_m_stop(void *arg)
1772 {
1773 	struct e1000g *Adapter = (struct e1000g *)arg;
1774 
1775 	/* Drain tx sessions */
1776 	(void) e1000g_tx_drain(Adapter);
1777 
1778 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1779 
1780 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
1781 		rw_exit(&Adapter->chip_lock);
1782 		return;
1783 	}
1784 	Adapter->e1000g_state &= ~E1000G_STARTED;
1785 	e1000g_stop(Adapter, B_TRUE);
1786 
1787 	rw_exit(&Adapter->chip_lock);
1788 
1789 	/* Disable and stop all the timers */
1790 	disable_watchdog_timer(Adapter);
1791 	stop_link_timer(Adapter);
1792 	stop_82547_timer(Adapter->tx_ring);
1793 }
1794 
1795 static void
1796 e1000g_stop(struct e1000g *Adapter, boolean_t global)
1797 {
1798 	int result;
1799 
1800 	Adapter->attach_progress &= ~ATTACH_PROGRESS_INIT;
1801 
1802 	/* Stop the chip and release pending resources */
1803 
1804 	/* Tell firmware driver is no longer in control */
1805 	e1000g_release_driver_control(&Adapter->shared);
1806 
1807 	e1000g_clear_all_interrupts(Adapter);
1808 
1809 	mutex_enter(&e1000g_nvm_lock);
1810 	result = e1000_reset_hw(&Adapter->shared);
1811 	mutex_exit(&e1000g_nvm_lock);
1812 
1813 	if (result != E1000_SUCCESS) {
1814 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1815 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1816 	}
1817 
1818 	/* Release resources still held by the TX descriptors */
1819 	e1000g_tx_clean(Adapter);
1820 
1821 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1822 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1823 
1824 	/* Clean the pending rx jumbo packet fragment */
1825 	e1000g_rx_clean(Adapter);
1826 
1827 	if (global)
1828 		e1000g_release_dma_resources(Adapter);
1829 }
1830 
1831 static void
1832 e1000g_rx_clean(struct e1000g *Adapter)
1833 {
1834 	e1000g_rx_ring_t *rx_ring = Adapter->rx_ring;
1835 
1836 	if (rx_ring->rx_mblk != NULL) {
1837 		freemsg(rx_ring->rx_mblk);
1838 		rx_ring->rx_mblk = NULL;
1839 		rx_ring->rx_mblk_tail = NULL;
1840 		rx_ring->rx_mblk_len = 0;
1841 	}
1842 }
1843 
1844 static void
1845 e1000g_tx_clean(struct e1000g *Adapter)
1846 {
1847 	e1000g_tx_ring_t *tx_ring;
1848 	p_tx_sw_packet_t packet;
1849 	mblk_t *mp;
1850 	mblk_t *nmp;
1851 	uint32_t packet_count;
1852 
1853 	tx_ring = Adapter->tx_ring;
1854 
1855 	/*
1856 	 * Here we don't need to protect the lists using
1857 	 * the usedlist_lock and freelist_lock, for they
1858 	 * have been protected by the chip_lock.
1859 	 */
1860 	mp = NULL;
1861 	nmp = NULL;
1862 	packet_count = 0;
1863 	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list);
1864 	while (packet != NULL) {
1865 		if (packet->mp != NULL) {
1866 			/* Assemble the message chain */
1867 			if (mp == NULL) {
1868 				mp = packet->mp;
1869 				nmp = packet->mp;
1870 			} else {
1871 				nmp->b_next = packet->mp;
1872 				nmp = packet->mp;
1873 			}
1874 			/* Disconnect the message from the sw packet */
1875 			packet->mp = NULL;
1876 		}
1877 
1878 		e1000g_free_tx_swpkt(packet);
1879 		packet_count++;
1880 
1881 		packet = (p_tx_sw_packet_t)
1882 		    QUEUE_GET_NEXT(&tx_ring->used_list, &packet->Link);
1883 	}
1884 
1885 	if (mp != NULL)
1886 		freemsgchain(mp);
1887 
1888 	if (packet_count > 0) {
1889 		QUEUE_APPEND(&tx_ring->free_list, &tx_ring->used_list);
1890 		QUEUE_INIT_LIST(&tx_ring->used_list);
1891 
1892 		/* Setup TX descriptor pointers */
1893 		tx_ring->tbd_next = tx_ring->tbd_first;
1894 		tx_ring->tbd_oldest = tx_ring->tbd_first;
1895 
1896 		/* Setup our HW Tx Head & Tail descriptor pointers */
1897 		E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
1898 		E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
1899 	}
1900 }
1901 
1902 static boolean_t
1903 e1000g_tx_drain(struct e1000g *Adapter)
1904 {
1905 	int i;
1906 	boolean_t done;
1907 	e1000g_tx_ring_t *tx_ring;
1908 
1909 	tx_ring = Adapter->tx_ring;
1910 
1911 	/* Allow up to 'wsdraintime' for pending xmit's to complete. */
1912 	for (i = 0; i < TX_DRAIN_TIME; i++) {
1913 		mutex_enter(&tx_ring->usedlist_lock);
1914 		done = IS_QUEUE_EMPTY(&tx_ring->used_list);
1915 		mutex_exit(&tx_ring->usedlist_lock);
1916 
1917 		if (done)
1918 			break;
1919 
1920 		msec_delay(1);
1921 	}
1922 
1923 	return (done);
1924 }
1925 
1926 static boolean_t
1927 e1000g_rx_drain(struct e1000g *Adapter)
1928 {
1929 	e1000g_rx_ring_t *rx_ring;
1930 	p_rx_sw_packet_t packet;
1931 	boolean_t done;
1932 
1933 	rx_ring = Adapter->rx_ring;
1934 	done = B_TRUE;
1935 
1936 	rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
1937 
1938 	while (rx_ring->pending_list != NULL) {
1939 		packet = rx_ring->pending_list;
1940 		rx_ring->pending_list =
1941 		    rx_ring->pending_list->next;
1942 
1943 		if (packet->flag == E1000G_RX_SW_STOP) {
1944 			packet->flag = E1000G_RX_SW_DETACH;
1945 			done = B_FALSE;
1946 		} else {
1947 			ASSERT(packet->flag == E1000G_RX_SW_FREE);
1948 			ASSERT(packet->mp == NULL);
1949 			e1000g_free_rx_sw_packet(packet);
1950 		}
1951 	}
1952 
1953 	rw_exit(&e1000g_rx_detach_lock);
1954 
1955 	return (done);
1956 }
1957 
1958 static boolean_t
1959 e1000g_reset_adapter(struct e1000g *Adapter)
1960 {
1961 	/* Disable and stop all the timers */
1962 	disable_watchdog_timer(Adapter);
1963 	stop_link_timer(Adapter);
1964 	stop_82547_timer(Adapter->tx_ring);
1965 
1966 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1967 
1968 	e1000g_stop(Adapter, B_FALSE);
1969 
1970 	if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) {
1971 		rw_exit(&Adapter->chip_lock);
1972 		e1000g_log(Adapter, CE_WARN, "Reset failed");
1973 			return (B_FALSE);
1974 	}
1975 
1976 	rw_exit(&Adapter->chip_lock);
1977 
1978 	/* Enable and start the watchdog timer */
1979 	enable_watchdog_timer(Adapter);
1980 
1981 	return (B_TRUE);
1982 }
1983 
1984 boolean_t
1985 e1000g_global_reset(struct e1000g *Adapter)
1986 {
1987 	/* Disable and stop all the timers */
1988 	disable_watchdog_timer(Adapter);
1989 	stop_link_timer(Adapter);
1990 	stop_82547_timer(Adapter->tx_ring);
1991 
1992 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1993 
1994 	e1000g_stop(Adapter, B_TRUE);
1995 
1996 	Adapter->init_count = 0;
1997 
1998 	if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) {
1999 		rw_exit(&Adapter->chip_lock);
2000 		e1000g_log(Adapter, CE_WARN, "Reset failed");
2001 		return (B_FALSE);
2002 	}
2003 
2004 	rw_exit(&Adapter->chip_lock);
2005 
2006 	/* Enable and start the watchdog timer */
2007 	enable_watchdog_timer(Adapter);
2008 
2009 	return (B_TRUE);
2010 }
2011 
2012 /*
2013  * e1000g_intr_pciexpress - ISR for PCI Express chipsets
2014  *
2015  * This interrupt service routine is for PCI-Express adapters.
2016  * The ICR contents is valid only when the E1000_ICR_INT_ASSERTED
2017  * bit is set.
2018  */
2019 static uint_t
2020 e1000g_intr_pciexpress(caddr_t arg)
2021 {
2022 	struct e1000g *Adapter;
2023 	uint32_t icr;
2024 
2025 	Adapter = (struct e1000g *)(uintptr_t)arg;
2026 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
2027 
2028 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2029 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2030 
2031 	if (icr & E1000_ICR_INT_ASSERTED) {
2032 		/*
2033 		 * E1000_ICR_INT_ASSERTED bit was set:
2034 		 * Read(Clear) the ICR, claim this interrupt,
2035 		 * look for work to do.
2036 		 */
2037 		e1000g_intr_work(Adapter, icr);
2038 		return (DDI_INTR_CLAIMED);
2039 	} else {
2040 		/*
2041 		 * E1000_ICR_INT_ASSERTED bit was not set:
2042 		 * Don't claim this interrupt, return immediately.
2043 		 */
2044 		return (DDI_INTR_UNCLAIMED);
2045 	}
2046 }
2047 
2048 /*
2049  * e1000g_intr - ISR for PCI/PCI-X chipsets
2050  *
2051  * This interrupt service routine is for PCI/PCI-X adapters.
2052  * We check the ICR contents no matter the E1000_ICR_INT_ASSERTED
2053  * bit is set or not.
2054  */
2055 static uint_t
2056 e1000g_intr(caddr_t arg)
2057 {
2058 	struct e1000g *Adapter;
2059 	uint32_t icr;
2060 
2061 	Adapter = (struct e1000g *)(uintptr_t)arg;
2062 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
2063 
2064 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2065 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2066 
2067 	if (icr) {
2068 		/*
2069 		 * Any bit was set in ICR:
2070 		 * Read(Clear) the ICR, claim this interrupt,
2071 		 * look for work to do.
2072 		 */
2073 		e1000g_intr_work(Adapter, icr);
2074 		return (DDI_INTR_CLAIMED);
2075 	} else {
2076 		/*
2077 		 * No bit was set in ICR:
2078 		 * Don't claim this interrupt, return immediately.
2079 		 */
2080 		return (DDI_INTR_UNCLAIMED);
2081 	}
2082 }
2083 
2084 /*
2085  * e1000g_intr_work - actual processing of ISR
2086  *
2087  * Read(clear) the ICR contents and call appropriate interrupt
2088  * processing routines.
2089  */
2090 static void
2091 e1000g_intr_work(struct e1000g *Adapter, uint32_t icr)
2092 {
2093 	struct e1000_hw *hw;
2094 	hw = &Adapter->shared;
2095 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
2096 
2097 	Adapter->rx_pkt_cnt = 0;
2098 	Adapter->tx_pkt_cnt = 0;
2099 
2100 	rw_enter(&Adapter->chip_lock, RW_READER);
2101 
2102 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2103 		rw_exit(&Adapter->chip_lock);
2104 		return;
2105 	}
2106 	/*
2107 	 * Here we need to check the "e1000g_state" flag within the chip_lock to
2108 	 * ensure the receive routine will not execute when the adapter is
2109 	 * being reset.
2110 	 */
2111 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
2112 		rw_exit(&Adapter->chip_lock);
2113 		return;
2114 	}
2115 
2116 	if (icr & E1000_ICR_RXT0) {
2117 		mblk_t			*mp;
2118 		uint_t			sz = 0;
2119 		mblk_t			*tmp, *tail = NULL;
2120 		e1000g_rx_ring_t	*rx_ring;
2121 
2122 		rx_ring = Adapter->rx_ring;
2123 		mutex_enter(&rx_ring->rx_lock);
2124 
2125 		/*
2126 		 * If the real interrupt for the Rx ring was
2127 		 * not disabled (e1000g_poll_mode == 0), then
2128 		 * we still pick up the packets and queue them
2129 		 * on Rx ring if we were in polling mode. this
2130 		 * enables the polling thread to pick up packets
2131 		 * really fast in polling mode and helps improve
2132 		 * latency.
2133 		 */
2134 		mp = e1000g_receive(rx_ring, &tail, &sz);
2135 		rw_exit(&Adapter->chip_lock);
2136 
2137 		if (mp != NULL) {
2138 			ASSERT(tail != NULL);
2139 			if (!rx_ring->poll_flag) {
2140 				/*
2141 				 * If not polling, see if something was
2142 				 * already queued. Take care not to
2143 				 * reorder packets.
2144 				 */
2145 				if (rx_ring->poll_list_head == NULL) {
2146 					mutex_exit(&rx_ring->rx_lock);
2147 					mac_rx_ring(Adapter->mh, rx_ring->mrh,
2148 					    mp, rx_ring->ring_gen_num);
2149 				} else {
2150 					tmp = rx_ring->poll_list_head;
2151 					rx_ring->poll_list_head = NULL;
2152 					rx_ring->poll_list_tail->b_next = mp;
2153 					rx_ring->poll_list_tail = NULL;
2154 					rx_ring->poll_list_sz = 0;
2155 					mutex_exit(&rx_ring->rx_lock);
2156 					mac_rx_ring(Adapter->mh, rx_ring->mrh,
2157 					    tmp, rx_ring->ring_gen_num);
2158 				}
2159 			} else {
2160 				/*
2161 				 * We are in a polling mode. Put the
2162 				 * processed packets on the poll list.
2163 				 */
2164 				if (rx_ring->poll_list_head == NULL)
2165 					rx_ring->poll_list_head = mp;
2166 				else
2167 					rx_ring->poll_list_tail->b_next = mp;
2168 				rx_ring->poll_list_tail = tail;
2169 				rx_ring->poll_list_sz += sz;
2170 				mutex_exit(&rx_ring->rx_lock);
2171 			}
2172 		} else if (!rx_ring->poll_flag &&
2173 		    rx_ring->poll_list_head != NULL) {
2174 			/*
2175 			 * Nothing new has arrived (then why
2176 			 * was the interrupt raised??). Check
2177 			 * if something queued from the last
2178 			 * time.
2179 			 */
2180 			tmp = rx_ring->poll_list_head;
2181 			rx_ring->poll_list_head = NULL;
2182 			rx_ring->poll_list_tail = NULL;
2183 			rx_ring->poll_list_sz = 0;
2184 			mutex_exit(&rx_ring->rx_lock);
2185 			mac_rx_ring(Adapter->mh, rx_ring->mrh,
2186 			    tmp, rx_ring->ring_gen_num);
2187 		} else {
2188 			mutex_exit(&rx_ring->rx_lock);
2189 		}
2190 	} else
2191 		rw_exit(&Adapter->chip_lock);
2192 
2193 	if (icr & E1000_ICR_TXDW) {
2194 		if (!Adapter->tx_intr_enable)
2195 			e1000g_clear_tx_interrupt(Adapter);
2196 
2197 		/* Recycle the tx descriptors */
2198 		rw_enter(&Adapter->chip_lock, RW_READER);
2199 		(void) e1000g_recycle(tx_ring);
2200 		E1000G_DEBUG_STAT(tx_ring->stat_recycle_intr);
2201 		rw_exit(&Adapter->chip_lock);
2202 
2203 		if (tx_ring->resched_needed &&
2204 		    (tx_ring->tbd_avail > DEFAULT_TX_UPDATE_THRESHOLD)) {
2205 			tx_ring->resched_needed = B_FALSE;
2206 			mac_tx_update(Adapter->mh);
2207 			E1000G_STAT(tx_ring->stat_reschedule);
2208 		}
2209 	}
2210 
2211 	/*
2212 	 * The Receive Sequence errors RXSEQ and the link status change LSC
2213 	 * are checked to detect that the cable has been pulled out. For
2214 	 * the Wiseman 2.0 silicon, the receive sequence errors interrupt
2215 	 * are an indication that cable is not connected.
2216 	 */
2217 	if ((icr & E1000_ICR_RXSEQ) ||
2218 	    (icr & E1000_ICR_LSC) ||
2219 	    (icr & E1000_ICR_GPI_EN1)) {
2220 		boolean_t link_changed;
2221 		timeout_id_t tid = 0;
2222 
2223 		stop_watchdog_timer(Adapter);
2224 
2225 		rw_enter(&Adapter->chip_lock, RW_WRITER);
2226 
2227 		/*
2228 		 * Because we got a link-status-change interrupt, force
2229 		 * e1000_check_for_link() to look at phy
2230 		 */
2231 		Adapter->shared.mac.get_link_status = B_TRUE;
2232 
2233 		/* e1000g_link_check takes care of link status change */
2234 		link_changed = e1000g_link_check(Adapter);
2235 
2236 		/* Get new phy state */
2237 		e1000g_get_phy_state(Adapter);
2238 
2239 		/*
2240 		 * If the link timer has not timed out, we'll not notify
2241 		 * the upper layer with any link state until the link is up.
2242 		 */
2243 		if (link_changed && !Adapter->link_complete) {
2244 			if (Adapter->link_state == LINK_STATE_UP) {
2245 				mutex_enter(&Adapter->link_lock);
2246 				Adapter->link_complete = B_TRUE;
2247 				tid = Adapter->link_tid;
2248 				Adapter->link_tid = 0;
2249 				mutex_exit(&Adapter->link_lock);
2250 			} else {
2251 				link_changed = B_FALSE;
2252 			}
2253 		}
2254 		rw_exit(&Adapter->chip_lock);
2255 
2256 		if (link_changed) {
2257 			if (tid != 0)
2258 				(void) untimeout(tid);
2259 
2260 			/*
2261 			 * Workaround for esb2. Data stuck in fifo on a link
2262 			 * down event. Stop receiver here and reset in watchdog.
2263 			 */
2264 			if ((Adapter->link_state == LINK_STATE_DOWN) &&
2265 			    (Adapter->shared.mac.type == e1000_80003es2lan)) {
2266 				uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
2267 				E1000_WRITE_REG(hw, E1000_RCTL,
2268 				    rctl & ~E1000_RCTL_EN);
2269 				e1000g_log(Adapter, CE_WARN,
2270 				    "ESB2 receiver disabled");
2271 				Adapter->esb2_workaround = B_TRUE;
2272 			}
2273 
2274 			mac_link_update(Adapter->mh, Adapter->link_state);
2275 		}
2276 
2277 		start_watchdog_timer(Adapter);
2278 	}
2279 }
2280 
2281 static void
2282 e1000g_init_unicst(struct e1000g *Adapter)
2283 {
2284 	struct e1000_hw *hw;
2285 	int slot;
2286 
2287 	hw = &Adapter->shared;
2288 
2289 	if (Adapter->init_count == 0) {
2290 		/* Initialize the multiple unicast addresses */
2291 		Adapter->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
2292 
2293 		/* Workaround for an erratum of 82571 chipst */
2294 		if ((hw->mac.type == e1000_82571) &&
2295 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2296 			Adapter->unicst_total--;
2297 
2298 		Adapter->unicst_avail = Adapter->unicst_total;
2299 
2300 		for (slot = 0; slot < Adapter->unicst_total; slot++) {
2301 			/* Clear both the flag and MAC address */
2302 			Adapter->unicst_addr[slot].reg.high = 0;
2303 			Adapter->unicst_addr[slot].reg.low = 0;
2304 		}
2305 	} else {
2306 		/* Workaround for an erratum of 82571 chipst */
2307 		if ((hw->mac.type == e1000_82571) &&
2308 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2309 			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2310 
2311 		/* Re-configure the RAR registers */
2312 		for (slot = 0; slot < Adapter->unicst_total; slot++)
2313 			if (Adapter->unicst_addr[slot].mac.set == 1)
2314 				e1000_rar_set(hw,
2315 				    Adapter->unicst_addr[slot].mac.addr, slot);
2316 	}
2317 
2318 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2319 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2320 }
2321 
2322 static int
2323 e1000g_unicst_set(struct e1000g *Adapter, const uint8_t *mac_addr,
2324     int slot)
2325 {
2326 	struct e1000_hw *hw;
2327 
2328 	hw = &Adapter->shared;
2329 
2330 	/*
2331 	 * The first revision of Wiseman silicon (rev 2.0) has an errata
2332 	 * that requires the receiver to be in reset when any of the
2333 	 * receive address registers (RAR regs) are accessed.  The first
2334 	 * rev of Wiseman silicon also requires MWI to be disabled when
2335 	 * a global reset or a receive reset is issued.  So before we
2336 	 * initialize the RARs, we check the rev of the Wiseman controller
2337 	 * and work around any necessary HW errata.
2338 	 */
2339 	if ((hw->mac.type == e1000_82542) &&
2340 	    (hw->revision_id == E1000_REVISION_2)) {
2341 		e1000_pci_clear_mwi(hw);
2342 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2343 		msec_delay(5);
2344 	}
2345 	if (mac_addr == NULL) {
2346 		E1000_WRITE_REG_ARRAY(hw, E1000_RA, slot << 1, 0);
2347 		E1000_WRITE_FLUSH(hw);
2348 		E1000_WRITE_REG_ARRAY(hw, E1000_RA, (slot << 1) + 1, 0);
2349 		E1000_WRITE_FLUSH(hw);
2350 		/* Clear both the flag and MAC address */
2351 		Adapter->unicst_addr[slot].reg.high = 0;
2352 		Adapter->unicst_addr[slot].reg.low = 0;
2353 	} else {
2354 		bcopy(mac_addr, Adapter->unicst_addr[slot].mac.addr,
2355 		    ETHERADDRL);
2356 		e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2357 		Adapter->unicst_addr[slot].mac.set = 1;
2358 	}
2359 
2360 	/* Workaround for an erratum of 82571 chipst */
2361 	if (slot == 0) {
2362 		if ((hw->mac.type == e1000_82571) &&
2363 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2364 			if (mac_addr == NULL) {
2365 				E1000_WRITE_REG_ARRAY(hw, E1000_RA,
2366 				    slot << 1, 0);
2367 				E1000_WRITE_FLUSH(hw);
2368 				E1000_WRITE_REG_ARRAY(hw, E1000_RA,
2369 				    (slot << 1) + 1, 0);
2370 				E1000_WRITE_FLUSH(hw);
2371 			} else {
2372 				e1000_rar_set(hw, (uint8_t *)mac_addr,
2373 				    LAST_RAR_ENTRY);
2374 			}
2375 	}
2376 
2377 	/*
2378 	 * If we are using Wiseman rev 2.0 silicon, we will have previously
2379 	 * put the receive in reset, and disabled MWI, to work around some
2380 	 * HW errata.  Now we should take the receiver out of reset, and
2381 	 * re-enabled if MWI if it was previously enabled by the PCI BIOS.
2382 	 */
2383 	if ((hw->mac.type == e1000_82542) &&
2384 	    (hw->revision_id == E1000_REVISION_2)) {
2385 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2386 		msec_delay(1);
2387 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2388 			e1000_pci_set_mwi(hw);
2389 		e1000g_rx_setup(Adapter);
2390 	}
2391 
2392 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2393 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2394 		return (EIO);
2395 	}
2396 
2397 	return (0);
2398 }
2399 
2400 static int
2401 multicst_add(struct e1000g *Adapter, const uint8_t *multiaddr)
2402 {
2403 	struct e1000_hw *hw = &Adapter->shared;
2404 	int res = 0;
2405 
2406 	if ((multiaddr[0] & 01) == 0) {
2407 		res = EINVAL;
2408 		goto done;
2409 	}
2410 
2411 	if (Adapter->mcast_count >= MAX_NUM_MULTICAST_ADDRESSES) {
2412 		res = ENOENT;
2413 		goto done;
2414 	}
2415 
2416 	bcopy(multiaddr,
2417 	    &Adapter->mcast_table[Adapter->mcast_count], ETHERADDRL);
2418 	Adapter->mcast_count++;
2419 
2420 	/*
2421 	 * Update the MC table in the hardware
2422 	 */
2423 	e1000g_clear_interrupt(Adapter);
2424 
2425 	e1000g_setup_multicast(Adapter);
2426 
2427 	if ((hw->mac.type == e1000_82542) &&
2428 	    (hw->revision_id == E1000_REVISION_2))
2429 		e1000g_rx_setup(Adapter);
2430 
2431 	e1000g_mask_interrupt(Adapter);
2432 
2433 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2434 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2435 		res = EIO;
2436 	}
2437 
2438 done:
2439 	return (res);
2440 }
2441 
2442 static int
2443 multicst_remove(struct e1000g *Adapter, const uint8_t *multiaddr)
2444 {
2445 	struct e1000_hw *hw = &Adapter->shared;
2446 	unsigned i;
2447 
2448 	for (i = 0; i < Adapter->mcast_count; i++) {
2449 		if (bcmp(multiaddr, &Adapter->mcast_table[i],
2450 		    ETHERADDRL) == 0) {
2451 			for (i++; i < Adapter->mcast_count; i++) {
2452 				Adapter->mcast_table[i - 1] =
2453 				    Adapter->mcast_table[i];
2454 			}
2455 			Adapter->mcast_count--;
2456 			break;
2457 		}
2458 	}
2459 
2460 	/*
2461 	 * Update the MC table in the hardware
2462 	 */
2463 	e1000g_clear_interrupt(Adapter);
2464 
2465 	e1000g_setup_multicast(Adapter);
2466 
2467 	if ((hw->mac.type == e1000_82542) &&
2468 	    (hw->revision_id == E1000_REVISION_2))
2469 		e1000g_rx_setup(Adapter);
2470 
2471 	e1000g_mask_interrupt(Adapter);
2472 
2473 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2474 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2475 		return (EIO);
2476 	}
2477 
2478 	return (0);
2479 }
2480 
2481 /*
2482  * e1000g_setup_multicast - setup multicast data structures
2483  *
2484  * This routine initializes all of the multicast related structures.
2485  */
2486 void
2487 e1000g_setup_multicast(struct e1000g *Adapter)
2488 {
2489 	uint8_t *mc_addr_list;
2490 	uint32_t mc_addr_count;
2491 	uint32_t rctl;
2492 	struct e1000_hw *hw;
2493 
2494 	hw = &Adapter->shared;
2495 
2496 	/*
2497 	 * The e1000g has the ability to do perfect filtering of 16
2498 	 * addresses. The driver uses one of the e1000g's 16 receive
2499 	 * address registers for its node/network/mac/individual address.
2500 	 * So, we have room for up to 15 multicast addresses in the CAM,
2501 	 * additional MC addresses are handled by the MTA (Multicast Table
2502 	 * Array)
2503 	 */
2504 
2505 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2506 
2507 	mc_addr_list = (uint8_t *)Adapter->mcast_table;
2508 
2509 	if (Adapter->mcast_count > MAX_NUM_MULTICAST_ADDRESSES) {
2510 		E1000G_DEBUGLOG_1(Adapter, CE_WARN,
2511 		    "Adapter requested more than %d MC Addresses.\n",
2512 		    MAX_NUM_MULTICAST_ADDRESSES);
2513 		mc_addr_count = MAX_NUM_MULTICAST_ADDRESSES;
2514 	} else {
2515 		/*
2516 		 * Set the number of MC addresses that we are being
2517 		 * requested to use
2518 		 */
2519 		mc_addr_count = Adapter->mcast_count;
2520 	}
2521 	/*
2522 	 * The Wiseman 2.0 silicon has an errata by which the receiver will
2523 	 * hang  while writing to the receive address registers if the receiver
2524 	 * is not in reset before writing to the registers. Updating the RAR
2525 	 * is done during the setting up of the multicast table, hence the
2526 	 * receiver has to be put in reset before updating the multicast table
2527 	 * and then taken out of reset at the end
2528 	 */
2529 	/*
2530 	 * if WMI was enabled then dis able it before issueing the global
2531 	 * reset to the hardware.
2532 	 */
2533 	/*
2534 	 * Only required for WISEMAN_2_0
2535 	 */
2536 	if ((hw->mac.type == e1000_82542) &&
2537 	    (hw->revision_id == E1000_REVISION_2)) {
2538 		e1000_pci_clear_mwi(hw);
2539 		/*
2540 		 * The e1000g must be in reset before changing any RA
2541 		 * registers. Reset receive unit.  The chip will remain in
2542 		 * the reset state until software explicitly restarts it.
2543 		 */
2544 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2545 		/* Allow receiver time to go in to reset */
2546 		msec_delay(5);
2547 	}
2548 
2549 	e1000_update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2550 	    Adapter->unicst_total, hw->mac.rar_entry_count);
2551 
2552 	/*
2553 	 * Only for Wiseman_2_0
2554 	 * If MWI was enabled then re-enable it after issueing (as we
2555 	 * disabled it up there) the receive reset command.
2556 	 * Wainwright does not have a receive reset command and only thing
2557 	 * close to it is global reset which will require tx setup also
2558 	 */
2559 	if ((hw->mac.type == e1000_82542) &&
2560 	    (hw->revision_id == E1000_REVISION_2)) {
2561 		/*
2562 		 * if WMI was enabled then reenable it after issueing the
2563 		 * global or receive reset to the hardware.
2564 		 */
2565 
2566 		/*
2567 		 * Take receiver out of reset
2568 		 * clear E1000_RCTL_RST bit (and all others)
2569 		 */
2570 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2571 		msec_delay(5);
2572 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2573 			e1000_pci_set_mwi(hw);
2574 	}
2575 
2576 	/*
2577 	 * Restore original value
2578 	 */
2579 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2580 }
2581 
2582 int
2583 e1000g_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
2584 {
2585 	struct e1000g *Adapter = (struct e1000g *)arg;
2586 	int result;
2587 
2588 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2589 
2590 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2591 		result = ECANCELED;
2592 		goto done;
2593 	}
2594 
2595 	result = (add) ? multicst_add(Adapter, addr)
2596 	    : multicst_remove(Adapter, addr);
2597 
2598 done:
2599 	rw_exit(&Adapter->chip_lock);
2600 	return (result);
2601 
2602 }
2603 
2604 int
2605 e1000g_m_promisc(void *arg, boolean_t on)
2606 {
2607 	struct e1000g *Adapter = (struct e1000g *)arg;
2608 	uint32_t rctl;
2609 
2610 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2611 
2612 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2613 		rw_exit(&Adapter->chip_lock);
2614 		return (ECANCELED);
2615 	}
2616 
2617 	rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
2618 
2619 	if (on)
2620 		rctl |=
2621 		    (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
2622 	else
2623 		rctl &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
2624 
2625 	E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
2626 
2627 	Adapter->e1000g_promisc = on;
2628 
2629 	rw_exit(&Adapter->chip_lock);
2630 
2631 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2632 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2633 		return (EIO);
2634 	}
2635 
2636 	return (0);
2637 }
2638 
2639 /*
2640  * Entry points to enable and disable interrupts at the granularity of
2641  * a group.
2642  * Turns the poll_mode for the whole adapter on and off to enable or
2643  * override the ring level polling control over the hardware interrupts.
2644  */
2645 static int
2646 e1000g_rx_group_intr_enable(mac_intr_handle_t arg)
2647 {
2648 	struct e1000g		*adapter = (struct e1000g *)arg;
2649 	e1000g_rx_ring_t *rx_ring = adapter->rx_ring;
2650 
2651 	/*
2652 	 * Later interrupts at the granularity of the this ring will
2653 	 * invoke mac_rx() with NULL, indicating the need for another
2654 	 * software classification.
2655 	 * We have a single ring usable per adapter now, so we only need to
2656 	 * reset the rx handle for that one.
2657 	 * When more RX rings can be used, we should update each one of them.
2658 	 */
2659 	mutex_enter(&rx_ring->rx_lock);
2660 	rx_ring->mrh = NULL;
2661 	adapter->poll_mode = B_FALSE;
2662 	mutex_exit(&rx_ring->rx_lock);
2663 	return (0);
2664 }
2665 
2666 static int
2667 e1000g_rx_group_intr_disable(mac_intr_handle_t arg)
2668 {
2669 	struct e1000g *adapter = (struct e1000g *)arg;
2670 	e1000g_rx_ring_t *rx_ring = adapter->rx_ring;
2671 
2672 	mutex_enter(&rx_ring->rx_lock);
2673 
2674 	/*
2675 	 * Later interrupts at the granularity of the this ring will
2676 	 * invoke mac_rx() with the handle for this ring;
2677 	 */
2678 	adapter->poll_mode = B_TRUE;
2679 	rx_ring->mrh = rx_ring->mrh_init;
2680 	mutex_exit(&rx_ring->rx_lock);
2681 	return (0);
2682 }
2683 
2684 /*
2685  * Entry points to enable and disable interrupts at the granularity of
2686  * a ring.
2687  * adapter poll_mode controls whether we actually proceed with hardware
2688  * interrupt toggling.
2689  */
2690 static int
2691 e1000g_rx_ring_intr_enable(mac_intr_handle_t intrh)
2692 {
2693 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)intrh;
2694 	struct e1000g 		*adapter = rx_ring->adapter;
2695 	struct e1000_hw 	*hw = &adapter->shared;
2696 	uint32_t		intr_mask;
2697 	boolean_t		poll_mode;
2698 
2699 	rw_enter(&adapter->chip_lock, RW_READER);
2700 
2701 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
2702 		rw_exit(&adapter->chip_lock);
2703 		return (0);
2704 	}
2705 
2706 	mutex_enter(&rx_ring->rx_lock);
2707 	rx_ring->poll_flag = 0;
2708 	poll_mode = adapter->poll_mode;
2709 	mutex_exit(&rx_ring->rx_lock);
2710 
2711 	if (poll_mode) {
2712 		/* Rx interrupt enabling for MSI and legacy */
2713 		intr_mask = E1000_READ_REG(hw, E1000_IMS);
2714 		intr_mask |= E1000_IMS_RXT0;
2715 		E1000_WRITE_REG(hw, E1000_IMS, intr_mask);
2716 		E1000_WRITE_FLUSH(hw);
2717 
2718 		/* Trigger a Rx interrupt to check Rx ring */
2719 		E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
2720 		E1000_WRITE_FLUSH(hw);
2721 	}
2722 
2723 	rw_exit(&adapter->chip_lock);
2724 	return (0);
2725 }
2726 
2727 static int
2728 e1000g_rx_ring_intr_disable(mac_intr_handle_t intrh)
2729 {
2730 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)intrh;
2731 	struct e1000g 		*adapter = rx_ring->adapter;
2732 	struct e1000_hw 	*hw = &adapter->shared;
2733 	boolean_t		poll_mode;
2734 
2735 	rw_enter(&adapter->chip_lock, RW_READER);
2736 
2737 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
2738 		rw_exit(&adapter->chip_lock);
2739 		return (0);
2740 	}
2741 
2742 	/*
2743 	 * Once the adapter can support per Rx ring interrupt,
2744 	 * we should disable the real interrupt instead of just setting
2745 	 * the flag.
2746 	 */
2747 	mutex_enter(&rx_ring->rx_lock);
2748 	rx_ring->poll_flag = 1;
2749 	poll_mode = adapter->poll_mode;
2750 	mutex_exit(&rx_ring->rx_lock);
2751 
2752 	if (poll_mode) {
2753 		/* Rx interrupt disabling for MSI and legacy */
2754 		E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
2755 		E1000_WRITE_FLUSH(hw);
2756 	}
2757 
2758 	rw_exit(&adapter->chip_lock);
2759 	return (0);
2760 }
2761 
2762 /*
2763  * e1000g_unicst_find - Find the slot for the specified unicast address
2764  */
2765 static int
2766 e1000g_unicst_find(struct e1000g *Adapter, const uint8_t *mac_addr)
2767 {
2768 	int slot;
2769 
2770 	for (slot = 0; slot < Adapter->unicst_total; slot++) {
2771 		if ((Adapter->unicst_addr[slot].mac.set == 1) &&
2772 		    (bcmp(Adapter->unicst_addr[slot].mac.addr,
2773 		    mac_addr, ETHERADDRL) == 0))
2774 				return (slot);
2775 	}
2776 
2777 	return (-1);
2778 }
2779 
2780 /*
2781  * Entry points to add and remove a MAC address to a ring group.
2782  * The caller takes care of adding and removing the MAC addresses
2783  * to the filter via these two routines.
2784  */
2785 
2786 static int
2787 e1000g_addmac(void *arg, const uint8_t *mac_addr)
2788 {
2789 	struct e1000g *Adapter = (struct e1000g *)arg;
2790 	int slot, err;
2791 
2792 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2793 
2794 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2795 		rw_exit(&Adapter->chip_lock);
2796 		return (ECANCELED);
2797 	}
2798 
2799 	if (e1000g_unicst_find(Adapter, mac_addr) != -1) {
2800 		/* The same address is already in slot */
2801 		rw_exit(&Adapter->chip_lock);
2802 		return (0);
2803 	}
2804 
2805 	if (Adapter->unicst_avail == 0) {
2806 		/* no slots available */
2807 		rw_exit(&Adapter->chip_lock);
2808 		return (ENOSPC);
2809 	}
2810 
2811 	/* Search for a free slot */
2812 	for (slot = 0; slot < Adapter->unicst_total; slot++) {
2813 		if (Adapter->unicst_addr[slot].mac.set == 0)
2814 			break;
2815 	}
2816 	ASSERT(slot < Adapter->unicst_total);
2817 
2818 	err = e1000g_unicst_set(Adapter, mac_addr, slot);
2819 	if (err == 0)
2820 		Adapter->unicst_avail--;
2821 
2822 	rw_exit(&Adapter->chip_lock);
2823 
2824 	return (err);
2825 }
2826 
2827 static int
2828 e1000g_remmac(void *arg, const uint8_t *mac_addr)
2829 {
2830 	struct e1000g *Adapter = (struct e1000g *)arg;
2831 	int slot, err;
2832 
2833 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2834 
2835 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2836 		rw_exit(&Adapter->chip_lock);
2837 		return (ECANCELED);
2838 	}
2839 
2840 	slot = e1000g_unicst_find(Adapter, mac_addr);
2841 	if (slot == -1) {
2842 		rw_exit(&Adapter->chip_lock);
2843 		return (EINVAL);
2844 	}
2845 
2846 	ASSERT(Adapter->unicst_addr[slot].mac.set);
2847 
2848 	/* Clear this slot */
2849 	err = e1000g_unicst_set(Adapter, NULL, slot);
2850 	if (err == 0)
2851 		Adapter->unicst_avail++;
2852 
2853 	rw_exit(&Adapter->chip_lock);
2854 
2855 	return (err);
2856 }
2857 
2858 static int
2859 e1000g_ring_start(mac_ring_driver_t rh, uint64_t mr_gen_num)
2860 {
2861 	e1000g_rx_ring_t *rx_ring = (e1000g_rx_ring_t *)rh;
2862 
2863 	mutex_enter(&rx_ring->rx_lock);
2864 	rx_ring->ring_gen_num = mr_gen_num;
2865 	mutex_exit(&rx_ring->rx_lock);
2866 	return (0);
2867 }
2868 
2869 /*
2870  * Callback funtion for MAC layer to register all rings.
2871  *
2872  * The hardware supports a single group with currently only one ring
2873  * available.
2874  * Though not offering virtualization ability per se, exposing the
2875  * group/ring still enables the polling and interrupt toggling.
2876  */
2877 void
2878 e1000g_fill_ring(void *arg, mac_ring_type_t rtype, const int grp_index,
2879     const int ring_index, mac_ring_info_t *infop, mac_ring_handle_t rh)
2880 {
2881 	struct e1000g *Adapter = (struct e1000g *)arg;
2882 	e1000g_rx_ring_t *rx_ring = Adapter->rx_ring;
2883 	mac_intr_t *mintr;
2884 
2885 	/*
2886 	 * We advertised only RX group/rings, so the MAC framework shouldn't
2887 	 * ask for any thing else.
2888 	 */
2889 	ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0 && ring_index == 0);
2890 
2891 	rx_ring->mrh = rx_ring->mrh_init = rh;
2892 	infop->mri_driver = (mac_ring_driver_t)rx_ring;
2893 	infop->mri_start = e1000g_ring_start;
2894 	infop->mri_stop = NULL;
2895 	infop->mri_poll = e1000g_poll_ring;
2896 
2897 	/* Ring level interrupts */
2898 	mintr = &infop->mri_intr;
2899 	mintr->mi_handle = (mac_intr_handle_t)rx_ring;
2900 	mintr->mi_enable = e1000g_rx_ring_intr_enable;
2901 	mintr->mi_disable = e1000g_rx_ring_intr_disable;
2902 }
2903 
2904 static void
2905 e1000g_fill_group(void *arg, mac_ring_type_t rtype, const int grp_index,
2906     mac_group_info_t *infop, mac_group_handle_t gh)
2907 {
2908 	struct e1000g *Adapter = (struct e1000g *)arg;
2909 	mac_intr_t *mintr;
2910 
2911 	/*
2912 	 * We advertised a single RX ring. Getting a request for anything else
2913 	 * signifies a bug in the MAC framework.
2914 	 */
2915 	ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0);
2916 
2917 	Adapter->rx_group = gh;
2918 
2919 	infop->mgi_driver = (mac_group_driver_t)Adapter;
2920 	infop->mgi_start = NULL;
2921 	infop->mgi_stop = NULL;
2922 	infop->mgi_addmac = e1000g_addmac;
2923 	infop->mgi_remmac = e1000g_remmac;
2924 	infop->mgi_count = 1;
2925 
2926 	/* Group level interrupts */
2927 	mintr = &infop->mgi_intr;
2928 	mintr->mi_handle = (mac_intr_handle_t)Adapter;
2929 	mintr->mi_enable = e1000g_rx_group_intr_enable;
2930 	mintr->mi_disable = e1000g_rx_group_intr_disable;
2931 }
2932 
2933 static boolean_t
2934 e1000g_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
2935 {
2936 	struct e1000g *Adapter = (struct e1000g *)arg;
2937 
2938 	switch (cap) {
2939 	case MAC_CAPAB_HCKSUM: {
2940 		uint32_t *txflags = cap_data;
2941 
2942 		if (Adapter->tx_hcksum_enable)
2943 			*txflags = HCKSUM_IPHDRCKSUM |
2944 			    HCKSUM_INET_PARTIAL;
2945 		else
2946 			return (B_FALSE);
2947 		break;
2948 	}
2949 
2950 	case MAC_CAPAB_LSO: {
2951 		mac_capab_lso_t *cap_lso = cap_data;
2952 
2953 		if (Adapter->lso_enable) {
2954 			cap_lso->lso_flags = LSO_TX_BASIC_TCP_IPV4;
2955 			cap_lso->lso_basic_tcp_ipv4.lso_max =
2956 			    E1000_LSO_MAXLEN;
2957 		} else
2958 			return (B_FALSE);
2959 		break;
2960 	}
2961 	case MAC_CAPAB_RINGS: {
2962 		mac_capab_rings_t *cap_rings = cap_data;
2963 
2964 		/* No TX rings exposed yet */
2965 		if (cap_rings->mr_type != MAC_RING_TYPE_RX)
2966 			return (B_FALSE);
2967 
2968 		cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC;
2969 		cap_rings->mr_rnum = 1;
2970 		cap_rings->mr_gnum = 1;
2971 		cap_rings->mr_rget = e1000g_fill_ring;
2972 		cap_rings->mr_gget = e1000g_fill_group;
2973 		break;
2974 	}
2975 	default:
2976 		return (B_FALSE);
2977 	}
2978 	return (B_TRUE);
2979 }
2980 
2981 static boolean_t
2982 e1000g_param_locked(mac_prop_id_t pr_num)
2983 {
2984 	/*
2985 	 * All en_* parameters are locked (read-only) while
2986 	 * the device is in any sort of loopback mode ...
2987 	 */
2988 	switch (pr_num) {
2989 		case MAC_PROP_EN_1000FDX_CAP:
2990 		case MAC_PROP_EN_1000HDX_CAP:
2991 		case MAC_PROP_EN_100FDX_CAP:
2992 		case MAC_PROP_EN_100HDX_CAP:
2993 		case MAC_PROP_EN_10FDX_CAP:
2994 		case MAC_PROP_EN_10HDX_CAP:
2995 		case MAC_PROP_AUTONEG:
2996 		case MAC_PROP_FLOWCTRL:
2997 			return (B_TRUE);
2998 	}
2999 	return (B_FALSE);
3000 }
3001 
3002 /*
3003  * callback function for set/get of properties
3004  */
3005 static int
3006 e1000g_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3007     uint_t pr_valsize, const void *pr_val)
3008 {
3009 	struct e1000g *Adapter = arg;
3010 	struct e1000_mac_info *mac = &Adapter->shared.mac;
3011 	struct e1000_phy_info *phy = &Adapter->shared.phy;
3012 	struct e1000_fc_info *fc = &Adapter->shared.fc;
3013 	int err = 0;
3014 	link_flowctrl_t flowctrl;
3015 	uint32_t cur_mtu, new_mtu;
3016 	uint64_t tmp = 0;
3017 
3018 	rw_enter(&Adapter->chip_lock, RW_WRITER);
3019 
3020 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
3021 		rw_exit(&Adapter->chip_lock);
3022 		return (ECANCELED);
3023 	}
3024 
3025 	if (Adapter->loopback_mode != E1000G_LB_NONE &&
3026 	    e1000g_param_locked(pr_num)) {
3027 		/*
3028 		 * All en_* parameters are locked (read-only)
3029 		 * while the device is in any sort of loopback mode.
3030 		 */
3031 		rw_exit(&Adapter->chip_lock);
3032 		return (EBUSY);
3033 	}
3034 
3035 	switch (pr_num) {
3036 		case MAC_PROP_EN_1000FDX_CAP:
3037 			Adapter->param_en_1000fdx = *(uint8_t *)pr_val;
3038 			Adapter->param_adv_1000fdx = *(uint8_t *)pr_val;
3039 			goto reset;
3040 		case MAC_PROP_EN_100FDX_CAP:
3041 			Adapter->param_en_100fdx = *(uint8_t *)pr_val;
3042 			Adapter->param_adv_100fdx = *(uint8_t *)pr_val;
3043 			goto reset;
3044 		case MAC_PROP_EN_100HDX_CAP:
3045 			Adapter->param_en_100hdx = *(uint8_t *)pr_val;
3046 			Adapter->param_adv_100hdx = *(uint8_t *)pr_val;
3047 			goto reset;
3048 		case MAC_PROP_EN_10FDX_CAP:
3049 			Adapter->param_en_10fdx = *(uint8_t *)pr_val;
3050 			Adapter->param_adv_10fdx = *(uint8_t *)pr_val;
3051 			goto reset;
3052 		case MAC_PROP_EN_10HDX_CAP:
3053 			Adapter->param_en_10hdx = *(uint8_t *)pr_val;
3054 			Adapter->param_adv_10hdx = *(uint8_t *)pr_val;
3055 			goto reset;
3056 		case MAC_PROP_AUTONEG:
3057 			Adapter->param_adv_autoneg = *(uint8_t *)pr_val;
3058 			goto reset;
3059 		case MAC_PROP_FLOWCTRL:
3060 			fc->send_xon = B_TRUE;
3061 			bcopy(pr_val, &flowctrl, sizeof (flowctrl));
3062 
3063 			switch (flowctrl) {
3064 			default:
3065 				err = EINVAL;
3066 				break;
3067 			case LINK_FLOWCTRL_NONE:
3068 				fc->requested_mode = e1000_fc_none;
3069 				break;
3070 			case LINK_FLOWCTRL_RX:
3071 				fc->requested_mode = e1000_fc_rx_pause;
3072 				break;
3073 			case LINK_FLOWCTRL_TX:
3074 				fc->requested_mode = e1000_fc_tx_pause;
3075 				break;
3076 			case LINK_FLOWCTRL_BI:
3077 				fc->requested_mode = e1000_fc_full;
3078 				break;
3079 			}
3080 reset:
3081 			if (err == 0) {
3082 				if (e1000g_reset_link(Adapter) != DDI_SUCCESS)
3083 					err = EINVAL;
3084 			}
3085 			break;
3086 		case MAC_PROP_ADV_1000FDX_CAP:
3087 		case MAC_PROP_ADV_1000HDX_CAP:
3088 		case MAC_PROP_ADV_100FDX_CAP:
3089 		case MAC_PROP_ADV_100HDX_CAP:
3090 		case MAC_PROP_ADV_10FDX_CAP:
3091 		case MAC_PROP_ADV_10HDX_CAP:
3092 		case MAC_PROP_EN_1000HDX_CAP:
3093 		case MAC_PROP_STATUS:
3094 		case MAC_PROP_SPEED:
3095 		case MAC_PROP_DUPLEX:
3096 			err = ENOTSUP; /* read-only prop. Can't set this. */
3097 			break;
3098 		case MAC_PROP_MTU:
3099 			cur_mtu = Adapter->default_mtu;
3100 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
3101 			if (new_mtu == cur_mtu) {
3102 				err = 0;
3103 				break;
3104 			}
3105 
3106 			tmp = new_mtu + sizeof (struct ether_vlan_header) +
3107 			    ETHERFCSL;
3108 			if ((tmp < DEFAULT_FRAME_SIZE) ||
3109 			    (tmp > MAXIMUM_FRAME_SIZE)) {
3110 				err = EINVAL;
3111 				break;
3112 			}
3113 
3114 			/* ich8 does not support jumbo frames */
3115 			if ((mac->type == e1000_ich8lan) &&
3116 			    (tmp > DEFAULT_FRAME_SIZE)) {
3117 				err = EINVAL;
3118 				break;
3119 			}
3120 			/* ich9 does not do jumbo frames on one phy type */
3121 			if ((mac->type == e1000_ich9lan) &&
3122 			    (phy->type == e1000_phy_ife) &&
3123 			    (tmp > DEFAULT_FRAME_SIZE)) {
3124 				err = EINVAL;
3125 				break;
3126 			}
3127 			if (Adapter->e1000g_state & E1000G_STARTED) {
3128 				err = EBUSY;
3129 				break;
3130 			}
3131 
3132 			err = mac_maxsdu_update(Adapter->mh, new_mtu);
3133 			if (err == 0) {
3134 				Adapter->max_frame_size = (uint32_t)tmp;
3135 				Adapter->default_mtu = new_mtu;
3136 				e1000g_set_bufsize(Adapter);
3137 			}
3138 			break;
3139 		case MAC_PROP_PRIVATE:
3140 			err = e1000g_set_priv_prop(Adapter, pr_name,
3141 			    pr_valsize, pr_val);
3142 			break;
3143 		default:
3144 			err = ENOTSUP;
3145 			break;
3146 	}
3147 	rw_exit(&Adapter->chip_lock);
3148 	return (err);
3149 }
3150 
3151 static int
3152 e1000g_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3153     uint_t pr_flags, uint_t pr_valsize, void *pr_val, uint_t *perm)
3154 {
3155 	struct e1000g *Adapter = arg;
3156 	struct e1000_fc_info *fc = &Adapter->shared.fc;
3157 	int err = 0;
3158 	link_flowctrl_t flowctrl;
3159 	uint64_t tmp = 0;
3160 
3161 	if (pr_valsize == 0)
3162 		return (EINVAL);
3163 
3164 	*perm = MAC_PROP_PERM_RW;
3165 
3166 	bzero(pr_val, pr_valsize);
3167 	if ((pr_flags & MAC_PROP_DEFAULT) && (pr_num != MAC_PROP_PRIVATE)) {
3168 		return (e1000g_get_def_val(Adapter, pr_num,
3169 		    pr_valsize, pr_val));
3170 	}
3171 
3172 	switch (pr_num) {
3173 		case MAC_PROP_DUPLEX:
3174 			*perm = MAC_PROP_PERM_READ;
3175 			if (pr_valsize >= sizeof (link_duplex_t)) {
3176 				bcopy(&Adapter->link_duplex, pr_val,
3177 				    sizeof (link_duplex_t));
3178 			} else
3179 				err = EINVAL;
3180 			break;
3181 		case MAC_PROP_SPEED:
3182 			*perm = MAC_PROP_PERM_READ;
3183 			if (pr_valsize >= sizeof (uint64_t)) {
3184 				tmp = Adapter->link_speed * 1000000ull;
3185 				bcopy(&tmp, pr_val, sizeof (tmp));
3186 			} else
3187 				err = EINVAL;
3188 			break;
3189 		case MAC_PROP_AUTONEG:
3190 			*(uint8_t *)pr_val = Adapter->param_adv_autoneg;
3191 			break;
3192 		case MAC_PROP_FLOWCTRL:
3193 			if (pr_valsize >= sizeof (link_flowctrl_t)) {
3194 				switch (fc->current_mode) {
3195 					case e1000_fc_none:
3196 						flowctrl = LINK_FLOWCTRL_NONE;
3197 						break;
3198 					case e1000_fc_rx_pause:
3199 						flowctrl = LINK_FLOWCTRL_RX;
3200 						break;
3201 					case e1000_fc_tx_pause:
3202 						flowctrl = LINK_FLOWCTRL_TX;
3203 						break;
3204 					case e1000_fc_full:
3205 						flowctrl = LINK_FLOWCTRL_BI;
3206 						break;
3207 				}
3208 				bcopy(&flowctrl, pr_val, sizeof (flowctrl));
3209 			} else
3210 				err = EINVAL;
3211 			break;
3212 		case MAC_PROP_ADV_1000FDX_CAP:
3213 			*perm = MAC_PROP_PERM_READ;
3214 			*(uint8_t *)pr_val = Adapter->param_adv_1000fdx;
3215 			break;
3216 		case MAC_PROP_EN_1000FDX_CAP:
3217 			*(uint8_t *)pr_val = Adapter->param_en_1000fdx;
3218 			break;
3219 		case MAC_PROP_ADV_1000HDX_CAP:
3220 			*perm = MAC_PROP_PERM_READ;
3221 			*(uint8_t *)pr_val = Adapter->param_adv_1000hdx;
3222 			break;
3223 		case MAC_PROP_EN_1000HDX_CAP:
3224 			*perm = MAC_PROP_PERM_READ;
3225 			*(uint8_t *)pr_val = Adapter->param_en_1000hdx;
3226 			break;
3227 		case MAC_PROP_ADV_100FDX_CAP:
3228 			*perm = MAC_PROP_PERM_READ;
3229 			*(uint8_t *)pr_val = Adapter->param_adv_100fdx;
3230 			break;
3231 		case MAC_PROP_EN_100FDX_CAP:
3232 			*(uint8_t *)pr_val = Adapter->param_en_100fdx;
3233 			break;
3234 		case MAC_PROP_ADV_100HDX_CAP:
3235 			*perm = MAC_PROP_PERM_READ;
3236 			*(uint8_t *)pr_val = Adapter->param_adv_100hdx;
3237 			break;
3238 		case MAC_PROP_EN_100HDX_CAP:
3239 			*(uint8_t *)pr_val = Adapter->param_en_100hdx;
3240 			break;
3241 		case MAC_PROP_ADV_10FDX_CAP:
3242 			*perm = MAC_PROP_PERM_READ;
3243 			*(uint8_t *)pr_val = Adapter->param_adv_10fdx;
3244 			break;
3245 		case MAC_PROP_EN_10FDX_CAP:
3246 			*(uint8_t *)pr_val = Adapter->param_en_10fdx;
3247 			break;
3248 		case MAC_PROP_ADV_10HDX_CAP:
3249 			*perm = MAC_PROP_PERM_READ;
3250 			*(uint8_t *)pr_val = Adapter->param_adv_10hdx;
3251 			break;
3252 		case MAC_PROP_EN_10HDX_CAP:
3253 			*(uint8_t *)pr_val = Adapter->param_en_10hdx;
3254 			break;
3255 		case MAC_PROP_ADV_100T4_CAP:
3256 		case MAC_PROP_EN_100T4_CAP:
3257 			*perm = MAC_PROP_PERM_READ;
3258 			*(uint8_t *)pr_val = Adapter->param_adv_100t4;
3259 			break;
3260 		case MAC_PROP_PRIVATE:
3261 			err = e1000g_get_priv_prop(Adapter, pr_name,
3262 			    pr_flags, pr_valsize, pr_val, perm);
3263 			break;
3264 		default:
3265 			err = ENOTSUP;
3266 			break;
3267 	}
3268 	return (err);
3269 }
3270 
3271 /* ARGSUSED2 */
3272 static int
3273 e1000g_set_priv_prop(struct e1000g *Adapter, const char *pr_name,
3274     uint_t pr_valsize, const void *pr_val)
3275 {
3276 	int err = 0;
3277 	long result;
3278 	struct e1000_hw *hw = &Adapter->shared;
3279 
3280 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3281 		if (pr_val == NULL) {
3282 			err = EINVAL;
3283 			return (err);
3284 		}
3285 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3286 		if (result < MIN_TX_BCOPY_THRESHOLD ||
3287 		    result > MAX_TX_BCOPY_THRESHOLD)
3288 			err = EINVAL;
3289 		else {
3290 			Adapter->tx_bcopy_thresh = (uint32_t)result;
3291 		}
3292 		return (err);
3293 	}
3294 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3295 		if (pr_val == NULL) {
3296 			err = EINVAL;
3297 			return (err);
3298 		}
3299 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3300 		if (result < 0 || result > 1)
3301 			err = EINVAL;
3302 		else {
3303 			Adapter->tx_intr_enable = (result == 1) ?
3304 			    B_TRUE: B_FALSE;
3305 			if (Adapter->tx_intr_enable)
3306 				e1000g_mask_tx_interrupt(Adapter);
3307 			else
3308 				e1000g_clear_tx_interrupt(Adapter);
3309 			if (e1000g_check_acc_handle(
3310 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3311 				ddi_fm_service_impact(Adapter->dip,
3312 				    DDI_SERVICE_DEGRADED);
3313 		}
3314 		return (err);
3315 	}
3316 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3317 		if (pr_val == NULL) {
3318 			err = EINVAL;
3319 			return (err);
3320 		}
3321 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3322 		if (result < MIN_TX_INTR_DELAY ||
3323 		    result > MAX_TX_INTR_DELAY)
3324 			err = EINVAL;
3325 		else {
3326 			Adapter->tx_intr_delay = (uint32_t)result;
3327 			E1000_WRITE_REG(hw, E1000_TIDV, Adapter->tx_intr_delay);
3328 			if (e1000g_check_acc_handle(
3329 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3330 				ddi_fm_service_impact(Adapter->dip,
3331 				    DDI_SERVICE_DEGRADED);
3332 		}
3333 		return (err);
3334 	}
3335 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3336 		if (pr_val == NULL) {
3337 			err = EINVAL;
3338 			return (err);
3339 		}
3340 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3341 		if (result < MIN_TX_INTR_ABS_DELAY ||
3342 		    result > MAX_TX_INTR_ABS_DELAY)
3343 			err = EINVAL;
3344 		else {
3345 			Adapter->tx_intr_abs_delay = (uint32_t)result;
3346 			E1000_WRITE_REG(hw, E1000_TADV,
3347 			    Adapter->tx_intr_abs_delay);
3348 			if (e1000g_check_acc_handle(
3349 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3350 				ddi_fm_service_impact(Adapter->dip,
3351 				    DDI_SERVICE_DEGRADED);
3352 		}
3353 		return (err);
3354 	}
3355 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3356 		if (pr_val == NULL) {
3357 			err = EINVAL;
3358 			return (err);
3359 		}
3360 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3361 		if (result < MIN_RX_BCOPY_THRESHOLD ||
3362 		    result > MAX_RX_BCOPY_THRESHOLD)
3363 			err = EINVAL;
3364 		else
3365 			Adapter->rx_bcopy_thresh = (uint32_t)result;
3366 		return (err);
3367 	}
3368 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3369 		if (pr_val == NULL) {
3370 			err = EINVAL;
3371 			return (err);
3372 		}
3373 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3374 		if (result < MIN_RX_LIMIT_ON_INTR ||
3375 		    result > MAX_RX_LIMIT_ON_INTR)
3376 			err = EINVAL;
3377 		else
3378 			Adapter->rx_limit_onintr = (uint32_t)result;
3379 		return (err);
3380 	}
3381 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3382 		if (pr_val == NULL) {
3383 			err = EINVAL;
3384 			return (err);
3385 		}
3386 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3387 		if (result < MIN_RX_INTR_DELAY ||
3388 		    result > MAX_RX_INTR_DELAY)
3389 			err = EINVAL;
3390 		else {
3391 			Adapter->rx_intr_delay = (uint32_t)result;
3392 			E1000_WRITE_REG(hw, E1000_RDTR, Adapter->rx_intr_delay);
3393 			if (e1000g_check_acc_handle(
3394 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3395 				ddi_fm_service_impact(Adapter->dip,
3396 				    DDI_SERVICE_DEGRADED);
3397 		}
3398 		return (err);
3399 	}
3400 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3401 		if (pr_val == NULL) {
3402 			err = EINVAL;
3403 			return (err);
3404 		}
3405 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3406 		if (result < MIN_RX_INTR_ABS_DELAY ||
3407 		    result > MAX_RX_INTR_ABS_DELAY)
3408 			err = EINVAL;
3409 		else {
3410 			Adapter->rx_intr_abs_delay = (uint32_t)result;
3411 			E1000_WRITE_REG(hw, E1000_RADV,
3412 			    Adapter->rx_intr_abs_delay);
3413 			if (e1000g_check_acc_handle(
3414 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3415 				ddi_fm_service_impact(Adapter->dip,
3416 				    DDI_SERVICE_DEGRADED);
3417 		}
3418 		return (err);
3419 	}
3420 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3421 		if (pr_val == NULL) {
3422 			err = EINVAL;
3423 			return (err);
3424 		}
3425 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3426 		if (result < MIN_INTR_THROTTLING ||
3427 		    result > MAX_INTR_THROTTLING)
3428 			err = EINVAL;
3429 		else {
3430 			if (hw->mac.type >= e1000_82540) {
3431 				Adapter->intr_throttling_rate =
3432 				    (uint32_t)result;
3433 				E1000_WRITE_REG(hw, E1000_ITR,
3434 				    Adapter->intr_throttling_rate);
3435 				if (e1000g_check_acc_handle(
3436 				    Adapter->osdep.reg_handle) != DDI_FM_OK)
3437 					ddi_fm_service_impact(Adapter->dip,
3438 					    DDI_SERVICE_DEGRADED);
3439 			} else
3440 				err = EINVAL;
3441 		}
3442 		return (err);
3443 	}
3444 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3445 		if (pr_val == NULL) {
3446 			err = EINVAL;
3447 			return (err);
3448 		}
3449 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3450 		if (result < 0 || result > 1)
3451 			err = EINVAL;
3452 		else {
3453 			if (hw->mac.type >= e1000_82540) {
3454 				Adapter->intr_adaptive = (result == 1) ?
3455 				    B_TRUE : B_FALSE;
3456 			} else {
3457 				err = EINVAL;
3458 			}
3459 		}
3460 		return (err);
3461 	}
3462 	return (ENOTSUP);
3463 }
3464 
3465 static int
3466 e1000g_get_priv_prop(struct e1000g *Adapter, const char *pr_name,
3467     uint_t pr_flags, uint_t pr_valsize, void *pr_val, uint_t *perm)
3468 {
3469 	int err = ENOTSUP;
3470 	boolean_t is_default = (pr_flags & MAC_PROP_DEFAULT);
3471 	int value;
3472 
3473 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
3474 		*perm = MAC_PROP_PERM_READ;
3475 		if (is_default)
3476 			goto done;
3477 		value = Adapter->param_adv_pause;
3478 		err = 0;
3479 		goto done;
3480 	}
3481 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
3482 		*perm = MAC_PROP_PERM_READ;
3483 		if (is_default)
3484 			goto done;
3485 		value = Adapter->param_adv_asym_pause;
3486 		err = 0;
3487 		goto done;
3488 	}
3489 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3490 		value = (is_default ? DEFAULT_TX_BCOPY_THRESHOLD :
3491 		    Adapter->tx_bcopy_thresh);
3492 		err = 0;
3493 		goto done;
3494 	}
3495 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3496 		value = (is_default ? DEFAULT_TX_INTR_ENABLE :
3497 		    Adapter->tx_intr_enable);
3498 		err = 0;
3499 		goto done;
3500 	}
3501 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3502 		value = (is_default ? DEFAULT_TX_INTR_DELAY :
3503 		    Adapter->tx_intr_delay);
3504 		err = 0;
3505 		goto done;
3506 	}
3507 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3508 		value = (is_default ? DEFAULT_TX_INTR_ABS_DELAY :
3509 		    Adapter->tx_intr_abs_delay);
3510 		err = 0;
3511 		goto done;
3512 	}
3513 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3514 		value = (is_default ? DEFAULT_RX_BCOPY_THRESHOLD :
3515 		    Adapter->rx_bcopy_thresh);
3516 		err = 0;
3517 		goto done;
3518 	}
3519 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3520 		value = (is_default ? DEFAULT_RX_LIMIT_ON_INTR :
3521 		    Adapter->rx_limit_onintr);
3522 		err = 0;
3523 		goto done;
3524 	}
3525 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3526 		value = (is_default ? DEFAULT_RX_INTR_DELAY :
3527 		    Adapter->rx_intr_delay);
3528 		err = 0;
3529 		goto done;
3530 	}
3531 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3532 		value = (is_default ? DEFAULT_RX_INTR_ABS_DELAY :
3533 		    Adapter->rx_intr_abs_delay);
3534 		err = 0;
3535 		goto done;
3536 	}
3537 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3538 		value = (is_default ? DEFAULT_INTR_THROTTLING :
3539 		    Adapter->intr_throttling_rate);
3540 		err = 0;
3541 		goto done;
3542 	}
3543 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3544 		value = (is_default ? 1 : Adapter->intr_adaptive);
3545 		err = 0;
3546 		goto done;
3547 	}
3548 done:
3549 	if (err == 0) {
3550 		(void) snprintf(pr_val, pr_valsize, "%d", value);
3551 	}
3552 	return (err);
3553 }
3554 
3555 /*
3556  * e1000g_get_conf - get configurations set in e1000g.conf
3557  * This routine gets user-configured values out of the configuration
3558  * file e1000g.conf.
3559  *
3560  * For each configurable value, there is a minimum, a maximum, and a
3561  * default.
3562  * If user does not configure a value, use the default.
3563  * If user configures below the minimum, use the minumum.
3564  * If user configures above the maximum, use the maxumum.
3565  */
3566 static void
3567 e1000g_get_conf(struct e1000g *Adapter)
3568 {
3569 	struct e1000_hw *hw = &Adapter->shared;
3570 	boolean_t tbi_compatibility = B_FALSE;
3571 
3572 	/*
3573 	 * get each configurable property from e1000g.conf
3574 	 */
3575 
3576 	/*
3577 	 * NumTxDescriptors
3578 	 */
3579 	Adapter->tx_desc_num =
3580 	    e1000g_get_prop(Adapter, "NumTxDescriptors",
3581 	    MIN_NUM_TX_DESCRIPTOR, MAX_NUM_TX_DESCRIPTOR,
3582 	    DEFAULT_NUM_TX_DESCRIPTOR);
3583 
3584 	/*
3585 	 * NumRxDescriptors
3586 	 */
3587 	Adapter->rx_desc_num =
3588 	    e1000g_get_prop(Adapter, "NumRxDescriptors",
3589 	    MIN_NUM_RX_DESCRIPTOR, MAX_NUM_RX_DESCRIPTOR,
3590 	    DEFAULT_NUM_RX_DESCRIPTOR);
3591 
3592 	/*
3593 	 * NumRxFreeList
3594 	 */
3595 	Adapter->rx_freelist_num =
3596 	    e1000g_get_prop(Adapter, "NumRxFreeList",
3597 	    MIN_NUM_RX_FREELIST, MAX_NUM_RX_FREELIST,
3598 	    DEFAULT_NUM_RX_FREELIST);
3599 
3600 	/*
3601 	 * NumTxPacketList
3602 	 */
3603 	Adapter->tx_freelist_num =
3604 	    e1000g_get_prop(Adapter, "NumTxPacketList",
3605 	    MIN_NUM_TX_FREELIST, MAX_NUM_TX_FREELIST,
3606 	    DEFAULT_NUM_TX_FREELIST);
3607 
3608 	/*
3609 	 * FlowControl
3610 	 */
3611 	hw->fc.send_xon = B_TRUE;
3612 	hw->fc.requested_mode =
3613 	    e1000g_get_prop(Adapter, "FlowControl",
3614 	    e1000_fc_none, 4, DEFAULT_FLOW_CONTROL);
3615 	/* 4 is the setting that says "let the eeprom decide" */
3616 	if (hw->fc.requested_mode == 4)
3617 		hw->fc.requested_mode = e1000_fc_default;
3618 
3619 	/*
3620 	 * Max Num Receive Packets on Interrupt
3621 	 */
3622 	Adapter->rx_limit_onintr =
3623 	    e1000g_get_prop(Adapter, "MaxNumReceivePackets",
3624 	    MIN_RX_LIMIT_ON_INTR, MAX_RX_LIMIT_ON_INTR,
3625 	    DEFAULT_RX_LIMIT_ON_INTR);
3626 
3627 	/*
3628 	 * PHY master slave setting
3629 	 */
3630 	hw->phy.ms_type =
3631 	    e1000g_get_prop(Adapter, "SetMasterSlave",
3632 	    e1000_ms_hw_default, e1000_ms_auto,
3633 	    e1000_ms_hw_default);
3634 
3635 	/*
3636 	 * Parameter which controls TBI mode workaround, which is only
3637 	 * needed on certain switches such as Cisco 6500/Foundry
3638 	 */
3639 	tbi_compatibility =
3640 	    e1000g_get_prop(Adapter, "TbiCompatibilityEnable",
3641 	    0, 1, DEFAULT_TBI_COMPAT_ENABLE);
3642 	e1000_set_tbi_compatibility_82543(hw, tbi_compatibility);
3643 
3644 	/*
3645 	 * MSI Enable
3646 	 */
3647 	Adapter->msi_enable =
3648 	    e1000g_get_prop(Adapter, "MSIEnable",
3649 	    0, 1, DEFAULT_MSI_ENABLE);
3650 
3651 	/*
3652 	 * Interrupt Throttling Rate
3653 	 */
3654 	Adapter->intr_throttling_rate =
3655 	    e1000g_get_prop(Adapter, "intr_throttling_rate",
3656 	    MIN_INTR_THROTTLING, MAX_INTR_THROTTLING,
3657 	    DEFAULT_INTR_THROTTLING);
3658 
3659 	/*
3660 	 * Adaptive Interrupt Blanking Enable/Disable
3661 	 * It is enabled by default
3662 	 */
3663 	Adapter->intr_adaptive =
3664 	    (e1000g_get_prop(Adapter, "intr_adaptive", 0, 1, 1) == 1) ?
3665 	    B_TRUE : B_FALSE;
3666 
3667 	/*
3668 	 * Hardware checksum enable/disable parameter
3669 	 */
3670 	Adapter->tx_hcksum_enable =
3671 	    e1000g_get_prop(Adapter, "tx_hcksum_enable",
3672 	    0, 1, DEFAULT_TX_HCKSUM_ENABLE);
3673 	/*
3674 	 * Checksum on/off selection via global parameters.
3675 	 *
3676 	 * If the chip is flagged as not capable of (correctly)
3677 	 * handling checksumming, we don't enable it on either
3678 	 * Rx or Tx side.  Otherwise, we take this chip's settings
3679 	 * from the patchable global defaults.
3680 	 *
3681 	 * We advertise our capabilities only if TX offload is
3682 	 * enabled.  On receive, the stack will accept checksummed
3683 	 * packets anyway, even if we haven't said we can deliver
3684 	 * them.
3685 	 */
3686 	switch (hw->mac.type) {
3687 		case e1000_82540:
3688 		case e1000_82544:
3689 		case e1000_82545:
3690 		case e1000_82545_rev_3:
3691 		case e1000_82546:
3692 		case e1000_82546_rev_3:
3693 		case e1000_82571:
3694 		case e1000_82572:
3695 		case e1000_82573:
3696 		case e1000_80003es2lan:
3697 			break;
3698 		/*
3699 		 * For the following Intel PRO/1000 chipsets, we have not
3700 		 * tested the hardware checksum offload capability, so we
3701 		 * disable the capability for them.
3702 		 *	e1000_82542,
3703 		 *	e1000_82543,
3704 		 *	e1000_82541,
3705 		 *	e1000_82541_rev_2,
3706 		 *	e1000_82547,
3707 		 *	e1000_82547_rev_2,
3708 		 */
3709 		default:
3710 			Adapter->tx_hcksum_enable = B_FALSE;
3711 	}
3712 
3713 	/*
3714 	 * Large Send Offloading(LSO) Enable/Disable
3715 	 * If the tx hardware checksum is not enabled, LSO should be
3716 	 * disabled.
3717 	 */
3718 	Adapter->lso_enable =
3719 	    e1000g_get_prop(Adapter, "lso_enable",
3720 	    0, 1, DEFAULT_LSO_ENABLE);
3721 
3722 	switch (hw->mac.type) {
3723 		case e1000_82546:
3724 		case e1000_82546_rev_3:
3725 			if (Adapter->lso_enable)
3726 				Adapter->lso_premature_issue = B_TRUE;
3727 			/* FALLTHRU */
3728 		case e1000_82571:
3729 		case e1000_82572:
3730 		case e1000_82573:
3731 		case e1000_80003es2lan:
3732 			break;
3733 		default:
3734 			Adapter->lso_enable = B_FALSE;
3735 	}
3736 
3737 	if (!Adapter->tx_hcksum_enable) {
3738 		Adapter->lso_premature_issue = B_FALSE;
3739 		Adapter->lso_enable = B_FALSE;
3740 	}
3741 
3742 	/*
3743 	 * If mem_workaround_82546 is enabled, the rx buffer allocated by
3744 	 * e1000_82545, e1000_82546 and e1000_82546_rev_3
3745 	 * will not cross 64k boundary.
3746 	 */
3747 	Adapter->mem_workaround_82546 =
3748 	    e1000g_get_prop(Adapter, "mem_workaround_82546",
3749 	    0, 1, DEFAULT_MEM_WORKAROUND_82546);
3750 }
3751 
3752 /*
3753  * e1000g_get_prop - routine to read properties
3754  *
3755  * Get a user-configure property value out of the configuration
3756  * file e1000g.conf.
3757  *
3758  * Caller provides name of the property, a default value, a minimum
3759  * value, and a maximum value.
3760  *
3761  * Return configured value of the property, with default, minimum and
3762  * maximum properly applied.
3763  */
3764 static int
3765 e1000g_get_prop(struct e1000g *Adapter,	/* point to per-adapter structure */
3766     char *propname,		/* name of the property */
3767     int minval,			/* minimum acceptable value */
3768     int maxval,			/* maximim acceptable value */
3769     int defval)			/* default value */
3770 {
3771 	int propval;		/* value returned for requested property */
3772 	int *props;		/* point to array of properties returned */
3773 	uint_t nprops;		/* number of property value returned */
3774 
3775 	/*
3776 	 * get the array of properties from the config file
3777 	 */
3778 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, Adapter->dip,
3779 	    DDI_PROP_DONTPASS, propname, &props, &nprops) == DDI_PROP_SUCCESS) {
3780 		/* got some properties, test if we got enough */
3781 		if (Adapter->instance < nprops) {
3782 			propval = props[Adapter->instance];
3783 		} else {
3784 			/* not enough properties configured */
3785 			propval = defval;
3786 			E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3787 			    "Not Enough %s values found in e1000g.conf"
3788 			    " - set to %d\n",
3789 			    propname, propval);
3790 		}
3791 
3792 		/* free memory allocated for properties */
3793 		ddi_prop_free(props);
3794 
3795 	} else {
3796 		propval = defval;
3797 	}
3798 
3799 	/*
3800 	 * enforce limits
3801 	 */
3802 	if (propval > maxval) {
3803 		propval = maxval;
3804 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3805 		    "Too High %s value in e1000g.conf - set to %d\n",
3806 		    propname, propval);
3807 	}
3808 
3809 	if (propval < minval) {
3810 		propval = minval;
3811 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3812 		    "Too Low %s value in e1000g.conf - set to %d\n",
3813 		    propname, propval);
3814 	}
3815 
3816 	return (propval);
3817 }
3818 
3819 static boolean_t
3820 e1000g_link_check(struct e1000g *Adapter)
3821 {
3822 	uint16_t speed, duplex, phydata;
3823 	boolean_t link_changed = B_FALSE;
3824 	struct e1000_hw *hw;
3825 	uint32_t reg_tarc;
3826 
3827 	hw = &Adapter->shared;
3828 
3829 	if (e1000g_link_up(Adapter)) {
3830 		/*
3831 		 * The Link is up, check whether it was marked as down earlier
3832 		 */
3833 		if (Adapter->link_state != LINK_STATE_UP) {
3834 			(void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
3835 			Adapter->link_speed = speed;
3836 			Adapter->link_duplex = duplex;
3837 			Adapter->link_state = LINK_STATE_UP;
3838 			link_changed = B_TRUE;
3839 
3840 			Adapter->tx_link_down_timeout = 0;
3841 
3842 			if ((hw->mac.type == e1000_82571) ||
3843 			    (hw->mac.type == e1000_82572)) {
3844 				reg_tarc = E1000_READ_REG(hw, E1000_TARC(0));
3845 				if (speed == SPEED_1000)
3846 					reg_tarc |= (1 << 21);
3847 				else
3848 					reg_tarc &= ~(1 << 21);
3849 				E1000_WRITE_REG(hw, E1000_TARC(0), reg_tarc);
3850 			}
3851 		}
3852 		Adapter->smartspeed = 0;
3853 	} else {
3854 		if (Adapter->link_state != LINK_STATE_DOWN) {
3855 			Adapter->link_speed = 0;
3856 			Adapter->link_duplex = 0;
3857 			Adapter->link_state = LINK_STATE_DOWN;
3858 			link_changed = B_TRUE;
3859 
3860 			/*
3861 			 * SmartSpeed workaround for Tabor/TanaX, When the
3862 			 * driver loses link disable auto master/slave
3863 			 * resolution.
3864 			 */
3865 			if (hw->phy.type == e1000_phy_igp) {
3866 				(void) e1000_read_phy_reg(hw,
3867 				    PHY_1000T_CTRL, &phydata);
3868 				phydata |= CR_1000T_MS_ENABLE;
3869 				(void) e1000_write_phy_reg(hw,
3870 				    PHY_1000T_CTRL, phydata);
3871 			}
3872 		} else {
3873 			e1000g_smartspeed(Adapter);
3874 		}
3875 
3876 		if (Adapter->e1000g_state & E1000G_STARTED) {
3877 			if (Adapter->tx_link_down_timeout <
3878 			    MAX_TX_LINK_DOWN_TIMEOUT) {
3879 				Adapter->tx_link_down_timeout++;
3880 			} else if (Adapter->tx_link_down_timeout ==
3881 			    MAX_TX_LINK_DOWN_TIMEOUT) {
3882 				e1000g_tx_clean(Adapter);
3883 				Adapter->tx_link_down_timeout++;
3884 			}
3885 		}
3886 	}
3887 
3888 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
3889 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
3890 
3891 	return (link_changed);
3892 }
3893 
3894 /*
3895  * e1000g_reset_link - Using the link properties to setup the link
3896  */
3897 int
3898 e1000g_reset_link(struct e1000g *Adapter)
3899 {
3900 	struct e1000_mac_info *mac;
3901 	struct e1000_phy_info *phy;
3902 	boolean_t invalid;
3903 
3904 	mac = &Adapter->shared.mac;
3905 	phy = &Adapter->shared.phy;
3906 	invalid = B_FALSE;
3907 
3908 	if (Adapter->param_adv_autoneg == 1) {
3909 		mac->autoneg = B_TRUE;
3910 		phy->autoneg_advertised = 0;
3911 
3912 		/*
3913 		 * 1000hdx is not supported for autonegotiation
3914 		 */
3915 		if (Adapter->param_adv_1000fdx == 1)
3916 			phy->autoneg_advertised |= ADVERTISE_1000_FULL;
3917 
3918 		if (Adapter->param_adv_100fdx == 1)
3919 			phy->autoneg_advertised |= ADVERTISE_100_FULL;
3920 
3921 		if (Adapter->param_adv_100hdx == 1)
3922 			phy->autoneg_advertised |= ADVERTISE_100_HALF;
3923 
3924 		if (Adapter->param_adv_10fdx == 1)
3925 			phy->autoneg_advertised |= ADVERTISE_10_FULL;
3926 
3927 		if (Adapter->param_adv_10hdx == 1)
3928 			phy->autoneg_advertised |= ADVERTISE_10_HALF;
3929 
3930 		if (phy->autoneg_advertised == 0)
3931 			invalid = B_TRUE;
3932 	} else {
3933 		mac->autoneg = B_FALSE;
3934 
3935 		/*
3936 		 * 1000fdx and 1000hdx are not supported for forced link
3937 		 */
3938 		if (Adapter->param_adv_100fdx == 1)
3939 			mac->forced_speed_duplex = ADVERTISE_100_FULL;
3940 		else if (Adapter->param_adv_100hdx == 1)
3941 			mac->forced_speed_duplex = ADVERTISE_100_HALF;
3942 		else if (Adapter->param_adv_10fdx == 1)
3943 			mac->forced_speed_duplex = ADVERTISE_10_FULL;
3944 		else if (Adapter->param_adv_10hdx == 1)
3945 			mac->forced_speed_duplex = ADVERTISE_10_HALF;
3946 		else
3947 			invalid = B_TRUE;
3948 
3949 	}
3950 
3951 	if (invalid) {
3952 		e1000g_log(Adapter, CE_WARN,
3953 		    "Invalid link sets. Setup link to"
3954 		    "support autonegotiation with all link capabilities.");
3955 		mac->autoneg = B_TRUE;
3956 		phy->autoneg_advertised = ADVERTISE_1000_FULL |
3957 		    ADVERTISE_100_FULL | ADVERTISE_100_HALF |
3958 		    ADVERTISE_10_FULL | ADVERTISE_10_HALF;
3959 	}
3960 
3961 	return (e1000_setup_link(&Adapter->shared));
3962 }
3963 
3964 static void
3965 e1000g_timer_tx_resched(struct e1000g *Adapter)
3966 {
3967 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
3968 
3969 	rw_enter(&Adapter->chip_lock, RW_READER);
3970 
3971 	if (tx_ring->resched_needed &&
3972 	    ((ddi_get_lbolt() - tx_ring->resched_timestamp) >
3973 	    drv_usectohz(1000000)) &&
3974 	    (Adapter->e1000g_state & E1000G_STARTED) &&
3975 	    (tx_ring->tbd_avail >= DEFAULT_TX_NO_RESOURCE)) {
3976 		tx_ring->resched_needed = B_FALSE;
3977 		mac_tx_update(Adapter->mh);
3978 		E1000G_STAT(tx_ring->stat_reschedule);
3979 		E1000G_STAT(tx_ring->stat_timer_reschedule);
3980 	}
3981 
3982 	rw_exit(&Adapter->chip_lock);
3983 }
3984 
3985 static void
3986 e1000g_local_timer(void *ws)
3987 {
3988 	struct e1000g *Adapter = (struct e1000g *)ws;
3989 	struct e1000_hw *hw;
3990 	e1000g_ether_addr_t ether_addr;
3991 	boolean_t link_changed;
3992 
3993 	hw = &Adapter->shared;
3994 
3995 	if (Adapter->e1000g_state & E1000G_ERROR) {
3996 		rw_enter(&Adapter->chip_lock, RW_WRITER);
3997 		Adapter->e1000g_state &= ~E1000G_ERROR;
3998 		rw_exit(&Adapter->chip_lock);
3999 
4000 		Adapter->reset_count++;
4001 		if (e1000g_global_reset(Adapter)) {
4002 			ddi_fm_service_impact(Adapter->dip,
4003 			    DDI_SERVICE_RESTORED);
4004 			e1000g_timer_tx_resched(Adapter);
4005 		} else
4006 			ddi_fm_service_impact(Adapter->dip,
4007 			    DDI_SERVICE_LOST);
4008 		return;
4009 	}
4010 
4011 	if (e1000g_stall_check(Adapter)) {
4012 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4013 		    "Tx stall detected. Activate automatic recovery.\n");
4014 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_STALL);
4015 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
4016 		Adapter->reset_count++;
4017 		if (e1000g_reset_adapter(Adapter)) {
4018 			ddi_fm_service_impact(Adapter->dip,
4019 			    DDI_SERVICE_RESTORED);
4020 			e1000g_timer_tx_resched(Adapter);
4021 		}
4022 		return;
4023 	}
4024 
4025 	link_changed = B_FALSE;
4026 	rw_enter(&Adapter->chip_lock, RW_READER);
4027 	if (Adapter->link_complete)
4028 		link_changed = e1000g_link_check(Adapter);
4029 	rw_exit(&Adapter->chip_lock);
4030 
4031 	if (link_changed)
4032 		mac_link_update(Adapter->mh, Adapter->link_state);
4033 
4034 	/*
4035 	 * Workaround for esb2. Data stuck in fifo on a link
4036 	 * down event. Reset the adapter to recover it.
4037 	 */
4038 	if (Adapter->esb2_workaround) {
4039 		Adapter->esb2_workaround = B_FALSE;
4040 		(void) e1000g_reset_adapter(Adapter);
4041 		return;
4042 	}
4043 
4044 	/*
4045 	 * With 82571 controllers, any locally administered address will
4046 	 * be overwritten when there is a reset on the other port.
4047 	 * Detect this circumstance and correct it.
4048 	 */
4049 	if ((hw->mac.type == e1000_82571) &&
4050 	    (e1000_get_laa_state_82571(hw) == B_TRUE)) {
4051 		ether_addr.reg.low = E1000_READ_REG_ARRAY(hw, E1000_RA, 0);
4052 		ether_addr.reg.high = E1000_READ_REG_ARRAY(hw, E1000_RA, 1);
4053 
4054 		ether_addr.reg.low = ntohl(ether_addr.reg.low);
4055 		ether_addr.reg.high = ntohl(ether_addr.reg.high);
4056 
4057 		if ((ether_addr.mac.addr[5] != hw->mac.addr[0]) ||
4058 		    (ether_addr.mac.addr[4] != hw->mac.addr[1]) ||
4059 		    (ether_addr.mac.addr[3] != hw->mac.addr[2]) ||
4060 		    (ether_addr.mac.addr[2] != hw->mac.addr[3]) ||
4061 		    (ether_addr.mac.addr[1] != hw->mac.addr[4]) ||
4062 		    (ether_addr.mac.addr[0] != hw->mac.addr[5])) {
4063 			e1000_rar_set(hw, hw->mac.addr, 0);
4064 		}
4065 	}
4066 
4067 	/*
4068 	 * Long TTL workaround for 82541/82547
4069 	 */
4070 	(void) e1000_igp_ttl_workaround_82547(hw);
4071 
4072 	/*
4073 	 * Check for Adaptive IFS settings If there are lots of collisions
4074 	 * change the value in steps...
4075 	 * These properties should only be set for 10/100
4076 	 */
4077 	if ((hw->phy.media_type == e1000_media_type_copper) &&
4078 	    ((Adapter->link_speed == SPEED_100) ||
4079 	    (Adapter->link_speed == SPEED_10))) {
4080 		e1000_update_adaptive(hw);
4081 	}
4082 	/*
4083 	 * Set Timer Interrupts
4084 	 */
4085 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
4086 
4087 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
4088 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4089 	else
4090 		e1000g_timer_tx_resched(Adapter);
4091 
4092 	restart_watchdog_timer(Adapter);
4093 }
4094 
4095 /*
4096  * The function e1000g_link_timer() is called when the timer for link setup
4097  * is expired, which indicates the completion of the link setup. The link
4098  * state will not be updated until the link setup is completed. And the
4099  * link state will not be sent to the upper layer through mac_link_update()
4100  * in this function. It will be updated in the local timer routine or the
4101  * interrupt service routine after the interface is started (plumbed).
4102  */
4103 static void
4104 e1000g_link_timer(void *arg)
4105 {
4106 	struct e1000g *Adapter = (struct e1000g *)arg;
4107 
4108 	mutex_enter(&Adapter->link_lock);
4109 	Adapter->link_complete = B_TRUE;
4110 	Adapter->link_tid = 0;
4111 	mutex_exit(&Adapter->link_lock);
4112 }
4113 
4114 /*
4115  * e1000g_force_speed_duplex - read forced speed/duplex out of e1000g.conf
4116  *
4117  * This function read the forced speed and duplex for 10/100 Mbps speeds
4118  * and also for 1000 Mbps speeds from the e1000g.conf file
4119  */
4120 static void
4121 e1000g_force_speed_duplex(struct e1000g *Adapter)
4122 {
4123 	int forced;
4124 	struct e1000_mac_info *mac = &Adapter->shared.mac;
4125 	struct e1000_phy_info *phy = &Adapter->shared.phy;
4126 
4127 	/*
4128 	 * get value out of config file
4129 	 */
4130 	forced = e1000g_get_prop(Adapter, "ForceSpeedDuplex",
4131 	    GDIAG_10_HALF, GDIAG_ANY, GDIAG_ANY);
4132 
4133 	switch (forced) {
4134 	case GDIAG_10_HALF:
4135 		/*
4136 		 * Disable Auto Negotiation
4137 		 */
4138 		mac->autoneg = B_FALSE;
4139 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
4140 		break;
4141 	case GDIAG_10_FULL:
4142 		/*
4143 		 * Disable Auto Negotiation
4144 		 */
4145 		mac->autoneg = B_FALSE;
4146 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
4147 		break;
4148 	case GDIAG_100_HALF:
4149 		/*
4150 		 * Disable Auto Negotiation
4151 		 */
4152 		mac->autoneg = B_FALSE;
4153 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
4154 		break;
4155 	case GDIAG_100_FULL:
4156 		/*
4157 		 * Disable Auto Negotiation
4158 		 */
4159 		mac->autoneg = B_FALSE;
4160 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
4161 		break;
4162 	case GDIAG_1000_FULL:
4163 		/*
4164 		 * The gigabit spec requires autonegotiation.  Therefore,
4165 		 * when the user wants to force the speed to 1000Mbps, we
4166 		 * enable AutoNeg, but only allow the harware to advertise
4167 		 * 1000Mbps.  This is different from 10/100 operation, where
4168 		 * we are allowed to link without any negotiation.
4169 		 */
4170 		mac->autoneg = B_TRUE;
4171 		phy->autoneg_advertised = ADVERTISE_1000_FULL;
4172 		break;
4173 	default:	/* obey the setting of AutoNegAdvertised */
4174 		mac->autoneg = B_TRUE;
4175 		phy->autoneg_advertised =
4176 		    (uint16_t)e1000g_get_prop(Adapter, "AutoNegAdvertised",
4177 		    0, AUTONEG_ADVERTISE_SPEED_DEFAULT,
4178 		    AUTONEG_ADVERTISE_SPEED_DEFAULT);
4179 		break;
4180 	}	/* switch */
4181 }
4182 
4183 /*
4184  * e1000g_get_max_frame_size - get jumbo frame setting from e1000g.conf
4185  *
4186  * This function reads MaxFrameSize from e1000g.conf
4187  */
4188 static void
4189 e1000g_get_max_frame_size(struct e1000g *Adapter)
4190 {
4191 	int max_frame;
4192 	struct e1000_mac_info *mac = &Adapter->shared.mac;
4193 	struct e1000_phy_info *phy = &Adapter->shared.phy;
4194 
4195 	/*
4196 	 * get value out of config file
4197 	 */
4198 	max_frame = e1000g_get_prop(Adapter, "MaxFrameSize", 0, 3, 0);
4199 
4200 	switch (max_frame) {
4201 	case 0:
4202 		Adapter->default_mtu = ETHERMTU;
4203 		break;
4204 	/*
4205 	 * To avoid excessive memory allocation for rx buffers,
4206 	 * the bytes of E1000G_IPALIGNPRESERVEROOM are reserved.
4207 	 */
4208 	case 1:
4209 		Adapter->default_mtu = FRAME_SIZE_UPTO_4K -
4210 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
4211 		    E1000G_IPALIGNPRESERVEROOM;
4212 		break;
4213 	case 2:
4214 		Adapter->default_mtu = FRAME_SIZE_UPTO_8K -
4215 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
4216 		    E1000G_IPALIGNPRESERVEROOM;
4217 		break;
4218 	case 3:
4219 		if (mac->type >= e1000_82571)
4220 			Adapter->default_mtu = MAXIMUM_MTU;
4221 		else
4222 			Adapter->default_mtu = FRAME_SIZE_UPTO_16K -
4223 			    sizeof (struct ether_vlan_header) - ETHERFCSL -
4224 			    E1000G_IPALIGNPRESERVEROOM;
4225 		break;
4226 	default:
4227 		Adapter->default_mtu = ETHERMTU;
4228 		break;
4229 	}	/* switch */
4230 
4231 	Adapter->max_frame_size = Adapter->default_mtu +
4232 	    sizeof (struct ether_vlan_header) + ETHERFCSL;
4233 
4234 	/* ich8 does not do jumbo frames */
4235 	if (mac->type == e1000_ich8lan) {
4236 		Adapter->default_mtu = ETHERMTU;
4237 		Adapter->max_frame_size = ETHERMTU +
4238 		    sizeof (struct ether_vlan_header) + ETHERFCSL;
4239 	}
4240 
4241 	/* ich9 does not do jumbo frames on one phy type */
4242 	if ((mac->type == e1000_ich9lan) &&
4243 	    (phy->type == e1000_phy_ife)) {
4244 		Adapter->default_mtu = ETHERMTU;
4245 		Adapter->max_frame_size = ETHERMTU +
4246 		    sizeof (struct ether_vlan_header) + ETHERFCSL;
4247 	}
4248 }
4249 
4250 static void
4251 arm_watchdog_timer(struct e1000g *Adapter)
4252 {
4253 	Adapter->watchdog_tid =
4254 	    timeout(e1000g_local_timer,
4255 	    (void *)Adapter, 1 * drv_usectohz(1000000));
4256 }
4257 #pragma inline(arm_watchdog_timer)
4258 
4259 static void
4260 enable_watchdog_timer(struct e1000g *Adapter)
4261 {
4262 	mutex_enter(&Adapter->watchdog_lock);
4263 
4264 	if (!Adapter->watchdog_timer_enabled) {
4265 		Adapter->watchdog_timer_enabled = B_TRUE;
4266 		Adapter->watchdog_timer_started = B_TRUE;
4267 		arm_watchdog_timer(Adapter);
4268 	}
4269 
4270 	mutex_exit(&Adapter->watchdog_lock);
4271 }
4272 
4273 static void
4274 disable_watchdog_timer(struct e1000g *Adapter)
4275 {
4276 	timeout_id_t tid;
4277 
4278 	mutex_enter(&Adapter->watchdog_lock);
4279 
4280 	Adapter->watchdog_timer_enabled = B_FALSE;
4281 	Adapter->watchdog_timer_started = B_FALSE;
4282 	tid = Adapter->watchdog_tid;
4283 	Adapter->watchdog_tid = 0;
4284 
4285 	mutex_exit(&Adapter->watchdog_lock);
4286 
4287 	if (tid != 0)
4288 		(void) untimeout(tid);
4289 }
4290 
4291 static void
4292 start_watchdog_timer(struct e1000g *Adapter)
4293 {
4294 	mutex_enter(&Adapter->watchdog_lock);
4295 
4296 	if (Adapter->watchdog_timer_enabled) {
4297 		if (!Adapter->watchdog_timer_started) {
4298 			Adapter->watchdog_timer_started = B_TRUE;
4299 			arm_watchdog_timer(Adapter);
4300 		}
4301 	}
4302 
4303 	mutex_exit(&Adapter->watchdog_lock);
4304 }
4305 
4306 static void
4307 restart_watchdog_timer(struct e1000g *Adapter)
4308 {
4309 	mutex_enter(&Adapter->watchdog_lock);
4310 
4311 	if (Adapter->watchdog_timer_started)
4312 		arm_watchdog_timer(Adapter);
4313 
4314 	mutex_exit(&Adapter->watchdog_lock);
4315 }
4316 
4317 static void
4318 stop_watchdog_timer(struct e1000g *Adapter)
4319 {
4320 	timeout_id_t tid;
4321 
4322 	mutex_enter(&Adapter->watchdog_lock);
4323 
4324 	Adapter->watchdog_timer_started = B_FALSE;
4325 	tid = Adapter->watchdog_tid;
4326 	Adapter->watchdog_tid = 0;
4327 
4328 	mutex_exit(&Adapter->watchdog_lock);
4329 
4330 	if (tid != 0)
4331 		(void) untimeout(tid);
4332 }
4333 
4334 static void
4335 stop_link_timer(struct e1000g *Adapter)
4336 {
4337 	timeout_id_t tid;
4338 
4339 	/* Disable the link timer */
4340 	mutex_enter(&Adapter->link_lock);
4341 
4342 	tid = Adapter->link_tid;
4343 	Adapter->link_tid = 0;
4344 
4345 	mutex_exit(&Adapter->link_lock);
4346 
4347 	if (tid != 0)
4348 		(void) untimeout(tid);
4349 }
4350 
4351 static void
4352 stop_82547_timer(e1000g_tx_ring_t *tx_ring)
4353 {
4354 	timeout_id_t tid;
4355 
4356 	/* Disable the tx timer for 82547 chipset */
4357 	mutex_enter(&tx_ring->tx_lock);
4358 
4359 	tx_ring->timer_enable_82547 = B_FALSE;
4360 	tid = tx_ring->timer_id_82547;
4361 	tx_ring->timer_id_82547 = 0;
4362 
4363 	mutex_exit(&tx_ring->tx_lock);
4364 
4365 	if (tid != 0)
4366 		(void) untimeout(tid);
4367 }
4368 
4369 void
4370 e1000g_clear_interrupt(struct e1000g *Adapter)
4371 {
4372 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC,
4373 	    0xffffffff & ~E1000_IMS_RXSEQ);
4374 }
4375 
4376 void
4377 e1000g_mask_interrupt(struct e1000g *Adapter)
4378 {
4379 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS,
4380 	    IMS_ENABLE_MASK & ~E1000_IMS_TXDW);
4381 
4382 	if (Adapter->tx_intr_enable)
4383 		e1000g_mask_tx_interrupt(Adapter);
4384 }
4385 
4386 /*
4387  * This routine is called by e1000g_quiesce(), therefore must not block.
4388  */
4389 void
4390 e1000g_clear_all_interrupts(struct e1000g *Adapter)
4391 {
4392 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, 0xffffffff);
4393 }
4394 
4395 void
4396 e1000g_mask_tx_interrupt(struct e1000g *Adapter)
4397 {
4398 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS, E1000_IMS_TXDW);
4399 }
4400 
4401 void
4402 e1000g_clear_tx_interrupt(struct e1000g *Adapter)
4403 {
4404 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, E1000_IMS_TXDW);
4405 }
4406 
4407 static void
4408 e1000g_smartspeed(struct e1000g *Adapter)
4409 {
4410 	struct e1000_hw *hw = &Adapter->shared;
4411 	uint16_t phy_status;
4412 	uint16_t phy_ctrl;
4413 
4414 	/*
4415 	 * If we're not T-or-T, or we're not autoneg'ing, or we're not
4416 	 * advertising 1000Full, we don't even use the workaround
4417 	 */
4418 	if ((hw->phy.type != e1000_phy_igp) ||
4419 	    !hw->mac.autoneg ||
4420 	    !(hw->phy.autoneg_advertised & ADVERTISE_1000_FULL))
4421 		return;
4422 
4423 	/*
4424 	 * True if this is the first call of this function or after every
4425 	 * 30 seconds of not having link
4426 	 */
4427 	if (Adapter->smartspeed == 0) {
4428 		/*
4429 		 * If Master/Slave config fault is asserted twice, we
4430 		 * assume back-to-back
4431 		 */
4432 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4433 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4434 			return;
4435 
4436 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4437 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4438 			return;
4439 		/*
4440 		 * We're assuming back-2-back because our status register
4441 		 * insists! there's a fault in the master/slave
4442 		 * relationship that was "negotiated"
4443 		 */
4444 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4445 		/*
4446 		 * Is the phy configured for manual configuration of
4447 		 * master/slave?
4448 		 */
4449 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4450 			/*
4451 			 * Yes.  Then disable manual configuration (enable
4452 			 * auto configuration) of master/slave
4453 			 */
4454 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4455 			(void) e1000_write_phy_reg(hw,
4456 			    PHY_1000T_CTRL, phy_ctrl);
4457 			/*
4458 			 * Effectively starting the clock
4459 			 */
4460 			Adapter->smartspeed++;
4461 			/*
4462 			 * Restart autonegotiation
4463 			 */
4464 			if (!e1000_phy_setup_autoneg(hw) &&
4465 			    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4466 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4467 				    MII_CR_RESTART_AUTO_NEG);
4468 				(void) e1000_write_phy_reg(hw,
4469 				    PHY_CONTROL, phy_ctrl);
4470 			}
4471 		}
4472 		return;
4473 		/*
4474 		 * Has 6 seconds transpired still without link? Remember,
4475 		 * you should reset the smartspeed counter once you obtain
4476 		 * link
4477 		 */
4478 	} else if (Adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4479 		/*
4480 		 * Yes.  Remember, we did at the start determine that
4481 		 * there's a master/slave configuration fault, so we're
4482 		 * still assuming there's someone on the other end, but we
4483 		 * just haven't yet been able to talk to it. We then
4484 		 * re-enable auto configuration of master/slave to see if
4485 		 * we're running 2/3 pair cables.
4486 		 */
4487 		/*
4488 		 * If still no link, perhaps using 2/3 pair cable
4489 		 */
4490 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4491 		phy_ctrl |= CR_1000T_MS_ENABLE;
4492 		(void) e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4493 		/*
4494 		 * Restart autoneg with phy enabled for manual
4495 		 * configuration of master/slave
4496 		 */
4497 		if (!e1000_phy_setup_autoneg(hw) &&
4498 		    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4499 			phy_ctrl |=
4500 			    (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
4501 			(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
4502 		}
4503 		/*
4504 		 * Hopefully, there are no more faults and we've obtained
4505 		 * link as a result.
4506 		 */
4507 	}
4508 	/*
4509 	 * Restart process after E1000_SMARTSPEED_MAX iterations (30
4510 	 * seconds)
4511 	 */
4512 	if (Adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4513 		Adapter->smartspeed = 0;
4514 }
4515 
4516 static boolean_t
4517 is_valid_mac_addr(uint8_t *mac_addr)
4518 {
4519 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
4520 	const uint8_t addr_test2[6] =
4521 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4522 
4523 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
4524 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
4525 		return (B_FALSE);
4526 
4527 	return (B_TRUE);
4528 }
4529 
4530 /*
4531  * e1000g_stall_check - check for tx stall
4532  *
4533  * This function checks if the adapter is stalled (in transmit).
4534  *
4535  * It is called each time the watchdog timeout is invoked.
4536  * If the transmit descriptor reclaim continuously fails,
4537  * the watchdog value will increment by 1. If the watchdog
4538  * value exceeds the threshold, the adapter is assumed to
4539  * have stalled and need to be reset.
4540  */
4541 static boolean_t
4542 e1000g_stall_check(struct e1000g *Adapter)
4543 {
4544 	e1000g_tx_ring_t *tx_ring;
4545 
4546 	tx_ring = Adapter->tx_ring;
4547 
4548 	if (Adapter->link_state != LINK_STATE_UP)
4549 		return (B_FALSE);
4550 
4551 	if (tx_ring->recycle_fail > 0)
4552 		tx_ring->stall_watchdog++;
4553 	else
4554 		tx_ring->stall_watchdog = 0;
4555 
4556 	if (tx_ring->stall_watchdog < E1000G_STALL_WATCHDOG_COUNT)
4557 		return (B_FALSE);
4558 
4559 	tx_ring->stall_watchdog = 0;
4560 	tx_ring->recycle_fail = 0;
4561 
4562 	return (B_TRUE);
4563 }
4564 
4565 #ifdef E1000G_DEBUG
4566 static enum ioc_reply
4567 e1000g_pp_ioctl(struct e1000g *e1000gp, struct iocblk *iocp, mblk_t *mp)
4568 {
4569 	void (*ppfn)(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
4570 	e1000g_peekpoke_t *ppd;
4571 	uint64_t mem_va;
4572 	uint64_t maxoff;
4573 	boolean_t peek;
4574 
4575 	switch (iocp->ioc_cmd) {
4576 
4577 	case E1000G_IOC_REG_PEEK:
4578 		peek = B_TRUE;
4579 		break;
4580 
4581 	case E1000G_IOC_REG_POKE:
4582 		peek = B_FALSE;
4583 		break;
4584 
4585 	deault:
4586 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4587 		    "e1000g_diag_ioctl: invalid ioctl command 0x%X\n",
4588 		    iocp->ioc_cmd);
4589 		return (IOC_INVAL);
4590 	}
4591 
4592 	/*
4593 	 * Validate format of ioctl
4594 	 */
4595 	if (iocp->ioc_count != sizeof (e1000g_peekpoke_t))
4596 		return (IOC_INVAL);
4597 	if (mp->b_cont == NULL)
4598 		return (IOC_INVAL);
4599 
4600 	ppd = (e1000g_peekpoke_t *)(uintptr_t)mp->b_cont->b_rptr;
4601 
4602 	/*
4603 	 * Validate request parameters
4604 	 */
4605 	switch (ppd->pp_acc_space) {
4606 
4607 	default:
4608 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4609 		    "e1000g_diag_ioctl: invalid access space 0x%X\n",
4610 		    ppd->pp_acc_space);
4611 		return (IOC_INVAL);
4612 
4613 	case E1000G_PP_SPACE_REG:
4614 		/*
4615 		 * Memory-mapped I/O space
4616 		 */
4617 		ASSERT(ppd->pp_acc_size == 4);
4618 		if (ppd->pp_acc_size != 4)
4619 			return (IOC_INVAL);
4620 
4621 		if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
4622 			return (IOC_INVAL);
4623 
4624 		mem_va = 0;
4625 		maxoff = 0x10000;
4626 		ppfn = peek ? e1000g_ioc_peek_reg : e1000g_ioc_poke_reg;
4627 		break;
4628 
4629 	case E1000G_PP_SPACE_E1000G:
4630 		/*
4631 		 * E1000g data structure!
4632 		 */
4633 		mem_va = (uintptr_t)e1000gp;
4634 		maxoff = sizeof (struct e1000g);
4635 		ppfn = peek ? e1000g_ioc_peek_mem : e1000g_ioc_poke_mem;
4636 		break;
4637 
4638 	}
4639 
4640 	if (ppd->pp_acc_offset >= maxoff)
4641 		return (IOC_INVAL);
4642 
4643 	if (ppd->pp_acc_offset + ppd->pp_acc_size > maxoff)
4644 		return (IOC_INVAL);
4645 
4646 	/*
4647 	 * All OK - go!
4648 	 */
4649 	ppd->pp_acc_offset += mem_va;
4650 	(*ppfn)(e1000gp, ppd);
4651 	return (peek ? IOC_REPLY : IOC_ACK);
4652 }
4653 
4654 static void
4655 e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4656 {
4657 	ddi_acc_handle_t handle;
4658 	uint32_t *regaddr;
4659 
4660 	handle = e1000gp->osdep.reg_handle;
4661 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
4662 	    (uintptr_t)ppd->pp_acc_offset);
4663 
4664 	ppd->pp_acc_data = ddi_get32(handle, regaddr);
4665 }
4666 
4667 static void
4668 e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4669 {
4670 	ddi_acc_handle_t handle;
4671 	uint32_t *regaddr;
4672 	uint32_t value;
4673 
4674 	handle = e1000gp->osdep.reg_handle;
4675 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
4676 	    (uintptr_t)ppd->pp_acc_offset);
4677 	value = (uint32_t)ppd->pp_acc_data;
4678 
4679 	ddi_put32(handle, regaddr, value);
4680 }
4681 
4682 static void
4683 e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4684 {
4685 	uint64_t value;
4686 	void *vaddr;
4687 
4688 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4689 
4690 	switch (ppd->pp_acc_size) {
4691 	case 1:
4692 		value = *(uint8_t *)vaddr;
4693 		break;
4694 
4695 	case 2:
4696 		value = *(uint16_t *)vaddr;
4697 		break;
4698 
4699 	case 4:
4700 		value = *(uint32_t *)vaddr;
4701 		break;
4702 
4703 	case 8:
4704 		value = *(uint64_t *)vaddr;
4705 		break;
4706 	}
4707 
4708 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
4709 	    "e1000g_ioc_peek_mem($%p, $%p) peeked 0x%llx from $%p\n",
4710 	    (void *)e1000gp, (void *)ppd, value, vaddr);
4711 
4712 	ppd->pp_acc_data = value;
4713 }
4714 
4715 static void
4716 e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4717 {
4718 	uint64_t value;
4719 	void *vaddr;
4720 
4721 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4722 	value = ppd->pp_acc_data;
4723 
4724 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
4725 	    "e1000g_ioc_poke_mem($%p, $%p) poking 0x%llx at $%p\n",
4726 	    (void *)e1000gp, (void *)ppd, value, vaddr);
4727 
4728 	switch (ppd->pp_acc_size) {
4729 	case 1:
4730 		*(uint8_t *)vaddr = (uint8_t)value;
4731 		break;
4732 
4733 	case 2:
4734 		*(uint16_t *)vaddr = (uint16_t)value;
4735 		break;
4736 
4737 	case 4:
4738 		*(uint32_t *)vaddr = (uint32_t)value;
4739 		break;
4740 
4741 	case 8:
4742 		*(uint64_t *)vaddr = (uint64_t)value;
4743 		break;
4744 	}
4745 }
4746 #endif
4747 
4748 /*
4749  * Loopback Support
4750  */
4751 static lb_property_t lb_normal =
4752 	{ normal,	"normal",	E1000G_LB_NONE		};
4753 static lb_property_t lb_external1000 =
4754 	{ external,	"1000Mbps",	E1000G_LB_EXTERNAL_1000	};
4755 static lb_property_t lb_external100 =
4756 	{ external,	"100Mbps",	E1000G_LB_EXTERNAL_100	};
4757 static lb_property_t lb_external10 =
4758 	{ external,	"10Mbps",	E1000G_LB_EXTERNAL_10	};
4759 static lb_property_t lb_phy =
4760 	{ internal,	"PHY",		E1000G_LB_INTERNAL_PHY	};
4761 
4762 static enum ioc_reply
4763 e1000g_loopback_ioctl(struct e1000g *Adapter, struct iocblk *iocp, mblk_t *mp)
4764 {
4765 	lb_info_sz_t *lbsp;
4766 	lb_property_t *lbpp;
4767 	struct e1000_hw *hw;
4768 	uint32_t *lbmp;
4769 	uint32_t size;
4770 	uint32_t value;
4771 
4772 	hw = &Adapter->shared;
4773 
4774 	if (mp->b_cont == NULL)
4775 		return (IOC_INVAL);
4776 
4777 	if (!e1000g_check_loopback_support(hw)) {
4778 		e1000g_log(NULL, CE_WARN,
4779 		    "Loopback is not supported on e1000g%d", Adapter->instance);
4780 		return (IOC_INVAL);
4781 	}
4782 
4783 	switch (iocp->ioc_cmd) {
4784 	default:
4785 		return (IOC_INVAL);
4786 
4787 	case LB_GET_INFO_SIZE:
4788 		size = sizeof (lb_info_sz_t);
4789 		if (iocp->ioc_count != size)
4790 			return (IOC_INVAL);
4791 
4792 		rw_enter(&Adapter->chip_lock, RW_WRITER);
4793 		e1000g_get_phy_state(Adapter);
4794 
4795 		/*
4796 		 * Workaround for hardware faults. In order to get a stable
4797 		 * state of phy, we will wait for a specific interval and
4798 		 * try again. The time delay is an experiential value based
4799 		 * on our testing.
4800 		 */
4801 		msec_delay(100);
4802 		e1000g_get_phy_state(Adapter);
4803 		rw_exit(&Adapter->chip_lock);
4804 
4805 		value = sizeof (lb_normal);
4806 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4807 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4808 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4809 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4810 			value += sizeof (lb_phy);
4811 			switch (hw->mac.type) {
4812 			case e1000_82571:
4813 			case e1000_82572:
4814 			case e1000_80003es2lan:
4815 				value += sizeof (lb_external1000);
4816 				break;
4817 			}
4818 		}
4819 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4820 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4821 			value += sizeof (lb_external100);
4822 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4823 			value += sizeof (lb_external10);
4824 
4825 		lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
4826 		*lbsp = value;
4827 		break;
4828 
4829 	case LB_GET_INFO:
4830 		value = sizeof (lb_normal);
4831 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4832 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4833 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4834 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4835 			value += sizeof (lb_phy);
4836 			switch (hw->mac.type) {
4837 			case e1000_82571:
4838 			case e1000_82572:
4839 			case e1000_80003es2lan:
4840 				value += sizeof (lb_external1000);
4841 				break;
4842 			}
4843 		}
4844 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4845 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4846 			value += sizeof (lb_external100);
4847 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4848 			value += sizeof (lb_external10);
4849 
4850 		size = value;
4851 		if (iocp->ioc_count != size)
4852 			return (IOC_INVAL);
4853 
4854 		value = 0;
4855 		lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
4856 		lbpp[value++] = lb_normal;
4857 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4858 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4859 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4860 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4861 			lbpp[value++] = lb_phy;
4862 			switch (hw->mac.type) {
4863 			case e1000_82571:
4864 			case e1000_82572:
4865 			case e1000_80003es2lan:
4866 				lbpp[value++] = lb_external1000;
4867 				break;
4868 			}
4869 		}
4870 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4871 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4872 			lbpp[value++] = lb_external100;
4873 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4874 			lbpp[value++] = lb_external10;
4875 		break;
4876 
4877 	case LB_GET_MODE:
4878 		size = sizeof (uint32_t);
4879 		if (iocp->ioc_count != size)
4880 			return (IOC_INVAL);
4881 
4882 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
4883 		*lbmp = Adapter->loopback_mode;
4884 		break;
4885 
4886 	case LB_SET_MODE:
4887 		size = 0;
4888 		if (iocp->ioc_count != sizeof (uint32_t))
4889 			return (IOC_INVAL);
4890 
4891 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
4892 		if (!e1000g_set_loopback_mode(Adapter, *lbmp))
4893 			return (IOC_INVAL);
4894 		break;
4895 	}
4896 
4897 	iocp->ioc_count = size;
4898 	iocp->ioc_error = 0;
4899 
4900 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
4901 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4902 		return (IOC_INVAL);
4903 	}
4904 
4905 	return (IOC_REPLY);
4906 }
4907 
4908 static boolean_t
4909 e1000g_check_loopback_support(struct e1000_hw *hw)
4910 {
4911 	switch (hw->mac.type) {
4912 	case e1000_82540:
4913 	case e1000_82545:
4914 	case e1000_82545_rev_3:
4915 	case e1000_82546:
4916 	case e1000_82546_rev_3:
4917 	case e1000_82541:
4918 	case e1000_82541_rev_2:
4919 	case e1000_82547:
4920 	case e1000_82547_rev_2:
4921 	case e1000_82571:
4922 	case e1000_82572:
4923 	case e1000_82573:
4924 	case e1000_82574:
4925 	case e1000_80003es2lan:
4926 	case e1000_ich9lan:
4927 	case e1000_ich10lan:
4928 		return (B_TRUE);
4929 	}
4930 	return (B_FALSE);
4931 }
4932 
4933 static boolean_t
4934 e1000g_set_loopback_mode(struct e1000g *Adapter, uint32_t mode)
4935 {
4936 	struct e1000_hw *hw;
4937 	int i, times;
4938 	boolean_t link_up;
4939 
4940 	if (mode == Adapter->loopback_mode)
4941 		return (B_TRUE);
4942 
4943 	hw = &Adapter->shared;
4944 	times = 0;
4945 
4946 	Adapter->loopback_mode = mode;
4947 
4948 	if (mode == E1000G_LB_NONE) {
4949 		/* Reset the chip */
4950 		hw->phy.autoneg_wait_to_complete = B_TRUE;
4951 		(void) e1000g_reset_adapter(Adapter);
4952 		hw->phy.autoneg_wait_to_complete = B_FALSE;
4953 		return (B_TRUE);
4954 	}
4955 
4956 again:
4957 
4958 	rw_enter(&Adapter->chip_lock, RW_WRITER);
4959 
4960 	switch (mode) {
4961 	default:
4962 		rw_exit(&Adapter->chip_lock);
4963 		return (B_FALSE);
4964 
4965 	case E1000G_LB_EXTERNAL_1000:
4966 		e1000g_set_external_loopback_1000(Adapter);
4967 		break;
4968 
4969 	case E1000G_LB_EXTERNAL_100:
4970 		e1000g_set_external_loopback_100(Adapter);
4971 		break;
4972 
4973 	case E1000G_LB_EXTERNAL_10:
4974 		e1000g_set_external_loopback_10(Adapter);
4975 		break;
4976 
4977 	case E1000G_LB_INTERNAL_PHY:
4978 		e1000g_set_internal_loopback(Adapter);
4979 		break;
4980 	}
4981 
4982 	times++;
4983 
4984 	rw_exit(&Adapter->chip_lock);
4985 
4986 	/* Wait for link up */
4987 	for (i = (PHY_FORCE_LIMIT * 2); i > 0; i--)
4988 		msec_delay(100);
4989 
4990 	rw_enter(&Adapter->chip_lock, RW_WRITER);
4991 
4992 	link_up = e1000g_link_up(Adapter);
4993 
4994 	rw_exit(&Adapter->chip_lock);
4995 
4996 	if (!link_up) {
4997 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4998 		    "Failed to get the link up");
4999 		if (times < 2) {
5000 			/* Reset the link */
5001 			E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5002 			    "Reset the link ...");
5003 			(void) e1000g_reset_adapter(Adapter);
5004 			goto again;
5005 		}
5006 	}
5007 
5008 	return (B_TRUE);
5009 }
5010 
5011 /*
5012  * The following loopback settings are from Intel's technical
5013  * document - "How To Loopback". All the register settings and
5014  * time delay values are directly inherited from the document
5015  * without more explanations available.
5016  */
5017 static void
5018 e1000g_set_internal_loopback(struct e1000g *Adapter)
5019 {
5020 	struct e1000_hw *hw;
5021 	uint32_t ctrl;
5022 	uint32_t status;
5023 	uint16_t phy_ctrl;
5024 	uint16_t phy_reg;
5025 	uint32_t txcw;
5026 
5027 	hw = &Adapter->shared;
5028 
5029 	/* Disable Smart Power Down */
5030 	phy_spd_state(hw, B_FALSE);
5031 
5032 	(void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
5033 	phy_ctrl &= ~(MII_CR_AUTO_NEG_EN | MII_CR_SPEED_100 | MII_CR_SPEED_10);
5034 	phy_ctrl |= MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000;
5035 
5036 	switch (hw->mac.type) {
5037 	case e1000_82540:
5038 	case e1000_82545:
5039 	case e1000_82545_rev_3:
5040 	case e1000_82546:
5041 	case e1000_82546_rev_3:
5042 	case e1000_82573:
5043 		/* Auto-MDI/MDIX off */
5044 		(void) e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
5045 		/* Reset PHY to update Auto-MDI/MDIX */
5046 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5047 		    phy_ctrl | MII_CR_RESET | MII_CR_AUTO_NEG_EN);
5048 		/* Reset PHY to auto-neg off and force 1000 */
5049 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5050 		    phy_ctrl | MII_CR_RESET);
5051 		/*
5052 		 * Disable PHY receiver for 82540/545/546 and 82573 Family.
5053 		 * See comments above e1000g_set_internal_loopback() for the
5054 		 * background.
5055 		 */
5056 		(void) e1000_write_phy_reg(hw, 29, 0x001F);
5057 		(void) e1000_write_phy_reg(hw, 30, 0x8FFC);
5058 		(void) e1000_write_phy_reg(hw, 29, 0x001A);
5059 		(void) e1000_write_phy_reg(hw, 30, 0x8FF0);
5060 		break;
5061 	case e1000_80003es2lan:
5062 		/* Force Link Up */
5063 		(void) e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
5064 		    0x1CC);
5065 		/* Sets PCS loopback at 1Gbs */
5066 		(void) e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
5067 		    0x1046);
5068 		break;
5069 	}
5070 
5071 	/*
5072 	 * The following registers should be set for e1000_phy_bm phy type.
5073 	 * e1000_82574, e1000_ich10lan and some e1000_ich9lan use this phy.
5074 	 * For others, we do not need to set these registers.
5075 	 */
5076 	if (hw->phy.type == e1000_phy_bm) {
5077 		/* Set Default MAC Interface speed to 1GB */
5078 		e1000_read_phy_reg(hw, PHY_REG(2, 21), &phy_reg);
5079 		phy_reg &= ~0x0007;
5080 		phy_reg |= 0x006;
5081 		e1000_write_phy_reg(hw, PHY_REG(2, 21), phy_reg);
5082 		/* Assert SW reset for above settings to take effect */
5083 		e1000_phy_commit(hw);
5084 		msec_delay(1);
5085 		/* Force Full Duplex */
5086 		e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg);
5087 		e1000_write_phy_reg(hw, PHY_REG(769, 16), phy_reg | 0x000C);
5088 		/* Set Link Up (in force link) */
5089 		e1000_read_phy_reg(hw, PHY_REG(776, 16), &phy_reg);
5090 		e1000_write_phy_reg(hw, PHY_REG(776, 16), phy_reg | 0x0040);
5091 		/* Force Link */
5092 		e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg);
5093 		e1000_write_phy_reg(hw, PHY_REG(769, 16), phy_reg | 0x0040);
5094 		/* Set Early Link Enable */
5095 		e1000_read_phy_reg(hw, PHY_REG(769, 20), &phy_reg);
5096 		e1000_write_phy_reg(hw, PHY_REG(769, 20), phy_reg | 0x0400);
5097 	}
5098 
5099 	/* Set loopback */
5100 	(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl | MII_CR_LOOPBACK);
5101 
5102 	msec_delay(250);
5103 
5104 	/* Now set up the MAC to the same speed/duplex as the PHY. */
5105 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5106 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5107 	ctrl |= (E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
5108 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5109 	    E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
5110 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5111 
5112 	switch (hw->mac.type) {
5113 	case e1000_82540:
5114 	case e1000_82545:
5115 	case e1000_82545_rev_3:
5116 	case e1000_82546:
5117 	case e1000_82546_rev_3:
5118 		/*
5119 		 * For some serdes we'll need to commit the writes now
5120 		 * so that the status is updated on link
5121 		 */
5122 		if (hw->phy.media_type == e1000_media_type_internal_serdes) {
5123 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5124 			msec_delay(100);
5125 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
5126 		}
5127 
5128 		if (hw->phy.media_type == e1000_media_type_copper) {
5129 			/* Invert Loss of Signal */
5130 			ctrl |= E1000_CTRL_ILOS;
5131 		} else {
5132 			/* Set ILOS on fiber nic if half duplex is detected */
5133 			status = E1000_READ_REG(hw, E1000_STATUS);
5134 			if ((status & E1000_STATUS_FD) == 0)
5135 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5136 		}
5137 		break;
5138 
5139 	case e1000_82571:
5140 	case e1000_82572:
5141 		/*
5142 		 * The fiber/SerDes versions of this adapter do not contain an
5143 		 * accessible PHY. Therefore, loopback beyond MAC must be done
5144 		 * using SerDes analog loopback.
5145 		 */
5146 		if (hw->phy.media_type != e1000_media_type_copper) {
5147 			/* Disable autoneg by setting bit 31 of TXCW to zero */
5148 			txcw = E1000_READ_REG(hw, E1000_TXCW);
5149 			txcw &= ~((uint32_t)1 << 31);
5150 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
5151 
5152 			/*
5153 			 * Write 0x410 to Serdes Control register
5154 			 * to enable Serdes analog loopback
5155 			 */
5156 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
5157 			msec_delay(10);
5158 		}
5159 
5160 		status = E1000_READ_REG(hw, E1000_STATUS);
5161 		/* Set ILOS on fiber nic if half duplex is detected */
5162 		if ((hw->phy.media_type == e1000_media_type_fiber) &&
5163 		    ((status & E1000_STATUS_FD) == 0 ||
5164 		    (status & E1000_STATUS_LU) == 0))
5165 			ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5166 		else if (hw->phy.media_type == e1000_media_type_internal_serdes)
5167 			ctrl |= E1000_CTRL_SLU;
5168 		break;
5169 
5170 	case e1000_82573:
5171 		ctrl |= E1000_CTRL_ILOS;
5172 		break;
5173 	case e1000_ich9lan:
5174 	case e1000_ich10lan:
5175 		ctrl |= E1000_CTRL_SLU;
5176 		break;
5177 	}
5178 	if (hw->phy.type == e1000_phy_bm)
5179 		ctrl |= E1000_CTRL_SLU | E1000_CTRL_ILOS;
5180 
5181 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5182 }
5183 
5184 static void
5185 e1000g_set_external_loopback_1000(struct e1000g *Adapter)
5186 {
5187 	struct e1000_hw *hw;
5188 	uint32_t rctl;
5189 	uint32_t ctrl_ext;
5190 	uint32_t ctrl;
5191 	uint32_t status;
5192 	uint32_t txcw;
5193 	uint16_t phydata;
5194 
5195 	hw = &Adapter->shared;
5196 
5197 	/* Disable Smart Power Down */
5198 	phy_spd_state(hw, B_FALSE);
5199 
5200 	switch (hw->mac.type) {
5201 	case e1000_82571:
5202 	case e1000_82572:
5203 		switch (hw->phy.media_type) {
5204 		case e1000_media_type_copper:
5205 			/* Force link up (Must be done before the PHY writes) */
5206 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
5207 			ctrl |= E1000_CTRL_SLU;	/* Force Link Up */
5208 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5209 
5210 			rctl = E1000_READ_REG(hw, E1000_RCTL);
5211 			rctl |= (E1000_RCTL_EN |
5212 			    E1000_RCTL_SBP |
5213 			    E1000_RCTL_UPE |
5214 			    E1000_RCTL_MPE |
5215 			    E1000_RCTL_LPE |
5216 			    E1000_RCTL_BAM);		/* 0x803E */
5217 			E1000_WRITE_REG(hw, E1000_RCTL, rctl);
5218 
5219 			ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5220 			ctrl_ext |= (E1000_CTRL_EXT_SDP4_DATA |
5221 			    E1000_CTRL_EXT_SDP6_DATA |
5222 			    E1000_CTRL_EXT_SDP7_DATA |
5223 			    E1000_CTRL_EXT_SDP4_DIR |
5224 			    E1000_CTRL_EXT_SDP6_DIR |
5225 			    E1000_CTRL_EXT_SDP7_DIR);	/* 0x0DD0 */
5226 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5227 
5228 			/*
5229 			 * This sequence tunes the PHY's SDP and no customer
5230 			 * settable values. For background, see comments above
5231 			 * e1000g_set_internal_loopback().
5232 			 */
5233 			(void) e1000_write_phy_reg(hw, 0x0, 0x140);
5234 			msec_delay(10);
5235 			(void) e1000_write_phy_reg(hw, 0x9, 0x1A00);
5236 			(void) e1000_write_phy_reg(hw, 0x12, 0xC10);
5237 			(void) e1000_write_phy_reg(hw, 0x12, 0x1C10);
5238 			(void) e1000_write_phy_reg(hw, 0x1F37, 0x76);
5239 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x1);
5240 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x0);
5241 
5242 			(void) e1000_write_phy_reg(hw, 0x1F35, 0x65);
5243 			(void) e1000_write_phy_reg(hw, 0x1837, 0x3F7C);
5244 			(void) e1000_write_phy_reg(hw, 0x1437, 0x3FDC);
5245 			(void) e1000_write_phy_reg(hw, 0x1237, 0x3F7C);
5246 			(void) e1000_write_phy_reg(hw, 0x1137, 0x3FDC);
5247 
5248 			msec_delay(50);
5249 			break;
5250 		case e1000_media_type_fiber:
5251 		case e1000_media_type_internal_serdes:
5252 			status = E1000_READ_REG(hw, E1000_STATUS);
5253 			if (((status & E1000_STATUS_LU) == 0) ||
5254 			    (hw->phy.media_type ==
5255 			    e1000_media_type_internal_serdes)) {
5256 				ctrl = E1000_READ_REG(hw, E1000_CTRL);
5257 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5258 				E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5259 			}
5260 
5261 			/* Disable autoneg by setting bit 31 of TXCW to zero */
5262 			txcw = E1000_READ_REG(hw, E1000_TXCW);
5263 			txcw &= ~((uint32_t)1 << 31);
5264 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
5265 
5266 			/*
5267 			 * Write 0x410 to Serdes Control register
5268 			 * to enable Serdes analog loopback
5269 			 */
5270 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
5271 			msec_delay(10);
5272 			break;
5273 		default:
5274 			break;
5275 		}
5276 		break;
5277 	case e1000_82574:
5278 	case e1000_80003es2lan:
5279 	case e1000_ich9lan:
5280 	case e1000_ich10lan:
5281 		(void) e1000_read_phy_reg(hw, GG82563_REG(6, 16), &phydata);
5282 		(void) e1000_write_phy_reg(hw, GG82563_REG(6, 16),
5283 		    phydata | (1 << 5));
5284 		Adapter->param_adv_autoneg = 1;
5285 		Adapter->param_adv_1000fdx = 1;
5286 		(void) e1000g_reset_link(Adapter);
5287 		break;
5288 	}
5289 }
5290 
5291 static void
5292 e1000g_set_external_loopback_100(struct e1000g *Adapter)
5293 {
5294 	struct e1000_hw *hw;
5295 	uint32_t ctrl;
5296 	uint16_t phy_ctrl;
5297 
5298 	hw = &Adapter->shared;
5299 
5300 	/* Disable Smart Power Down */
5301 	phy_spd_state(hw, B_FALSE);
5302 
5303 	phy_ctrl = (MII_CR_FULL_DUPLEX |
5304 	    MII_CR_SPEED_100);
5305 
5306 	/* Force 100/FD, reset PHY */
5307 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5308 	    phy_ctrl | MII_CR_RESET);	/* 0xA100 */
5309 	msec_delay(10);
5310 
5311 	/* Force 100/FD */
5312 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5313 	    phy_ctrl);			/* 0x2100 */
5314 	msec_delay(10);
5315 
5316 	/* Now setup the MAC to the same speed/duplex as the PHY. */
5317 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5318 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5319 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
5320 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
5321 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5322 	    E1000_CTRL_SPD_100 |	/* Force Speed to 100 */
5323 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5324 
5325 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5326 }
5327 
5328 static void
5329 e1000g_set_external_loopback_10(struct e1000g *Adapter)
5330 {
5331 	struct e1000_hw *hw;
5332 	uint32_t ctrl;
5333 	uint16_t phy_ctrl;
5334 
5335 	hw = &Adapter->shared;
5336 
5337 	/* Disable Smart Power Down */
5338 	phy_spd_state(hw, B_FALSE);
5339 
5340 	phy_ctrl = (MII_CR_FULL_DUPLEX |
5341 	    MII_CR_SPEED_10);
5342 
5343 	/* Force 10/FD, reset PHY */
5344 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5345 	    phy_ctrl | MII_CR_RESET);	/* 0x8100 */
5346 	msec_delay(10);
5347 
5348 	/* Force 10/FD */
5349 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5350 	    phy_ctrl);			/* 0x0100 */
5351 	msec_delay(10);
5352 
5353 	/* Now setup the MAC to the same speed/duplex as the PHY. */
5354 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5355 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5356 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
5357 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
5358 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5359 	    E1000_CTRL_SPD_10 |		/* Force Speed to 10 */
5360 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5361 
5362 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5363 }
5364 
5365 #ifdef __sparc
5366 static boolean_t
5367 e1000g_find_mac_address(struct e1000g *Adapter)
5368 {
5369 	struct e1000_hw *hw = &Adapter->shared;
5370 	uchar_t *bytes;
5371 	struct ether_addr sysaddr;
5372 	uint_t nelts;
5373 	int err;
5374 	boolean_t found = B_FALSE;
5375 
5376 	/*
5377 	 * The "vendor's factory-set address" may already have
5378 	 * been extracted from the chip, but if the property
5379 	 * "local-mac-address" is set we use that instead.
5380 	 *
5381 	 * We check whether it looks like an array of 6
5382 	 * bytes (which it should, if OBP set it).  If we can't
5383 	 * make sense of it this way, we'll ignore it.
5384 	 */
5385 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
5386 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
5387 	if (err == DDI_PROP_SUCCESS) {
5388 		if (nelts == ETHERADDRL) {
5389 			while (nelts--)
5390 				hw->mac.addr[nelts] = bytes[nelts];
5391 			found = B_TRUE;
5392 		}
5393 		ddi_prop_free(bytes);
5394 	}
5395 
5396 	/*
5397 	 * Look up the OBP property "local-mac-address?". If the user has set
5398 	 * 'local-mac-address? = false', use "the system address" instead.
5399 	 */
5400 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip, 0,
5401 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
5402 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
5403 			if (localetheraddr(NULL, &sysaddr) != 0) {
5404 				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
5405 				found = B_TRUE;
5406 			}
5407 		}
5408 		ddi_prop_free(bytes);
5409 	}
5410 
5411 	/*
5412 	 * Finally(!), if there's a valid "mac-address" property (created
5413 	 * if we netbooted from this interface), we must use this instead
5414 	 * of any of the above to ensure that the NFS/install server doesn't
5415 	 * get confused by the address changing as Solaris takes over!
5416 	 */
5417 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
5418 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
5419 	if (err == DDI_PROP_SUCCESS) {
5420 		if (nelts == ETHERADDRL) {
5421 			while (nelts--)
5422 				hw->mac.addr[nelts] = bytes[nelts];
5423 			found = B_TRUE;
5424 		}
5425 		ddi_prop_free(bytes);
5426 	}
5427 
5428 	if (found) {
5429 		bcopy(hw->mac.addr, hw->mac.perm_addr,
5430 		    ETHERADDRL);
5431 	}
5432 
5433 	return (found);
5434 }
5435 #endif
5436 
5437 static int
5438 e1000g_add_intrs(struct e1000g *Adapter)
5439 {
5440 	dev_info_t *devinfo;
5441 	int intr_types;
5442 	int rc;
5443 
5444 	devinfo = Adapter->dip;
5445 
5446 	/* Get supported interrupt types */
5447 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
5448 
5449 	if (rc != DDI_SUCCESS) {
5450 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5451 		    "Get supported interrupt types failed: %d\n", rc);
5452 		return (DDI_FAILURE);
5453 	}
5454 
5455 	/*
5456 	 * Based on Intel Technical Advisory document (TA-160), there are some
5457 	 * cases where some older Intel PCI-X NICs may "advertise" to the OS
5458 	 * that it supports MSI, but in fact has problems.
5459 	 * So we should only enable MSI for PCI-E NICs and disable MSI for old
5460 	 * PCI/PCI-X NICs.
5461 	 */
5462 	if (Adapter->shared.mac.type < e1000_82571)
5463 		Adapter->msi_enable = B_FALSE;
5464 
5465 	if ((intr_types & DDI_INTR_TYPE_MSI) && Adapter->msi_enable) {
5466 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_MSI);
5467 
5468 		if (rc != DDI_SUCCESS) {
5469 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5470 			    "Add MSI failed, trying Legacy interrupts\n");
5471 		} else {
5472 			Adapter->intr_type = DDI_INTR_TYPE_MSI;
5473 		}
5474 	}
5475 
5476 	if ((Adapter->intr_type == 0) &&
5477 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
5478 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_FIXED);
5479 
5480 		if (rc != DDI_SUCCESS) {
5481 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5482 			    "Add Legacy interrupts failed\n");
5483 			return (DDI_FAILURE);
5484 		}
5485 
5486 		Adapter->intr_type = DDI_INTR_TYPE_FIXED;
5487 	}
5488 
5489 	if (Adapter->intr_type == 0) {
5490 		E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5491 		    "No interrupts registered\n");
5492 		return (DDI_FAILURE);
5493 	}
5494 
5495 	return (DDI_SUCCESS);
5496 }
5497 
5498 /*
5499  * e1000g_intr_add() handles MSI/Legacy interrupts
5500  */
5501 static int
5502 e1000g_intr_add(struct e1000g *Adapter, int intr_type)
5503 {
5504 	dev_info_t *devinfo;
5505 	int count, avail, actual;
5506 	int x, y, rc, inum = 0;
5507 	int flag;
5508 	ddi_intr_handler_t *intr_handler;
5509 
5510 	devinfo = Adapter->dip;
5511 
5512 	/* get number of interrupts */
5513 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
5514 	if ((rc != DDI_SUCCESS) || (count == 0)) {
5515 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5516 		    "Get interrupt number failed. Return: %d, count: %d\n",
5517 		    rc, count);
5518 		return (DDI_FAILURE);
5519 	}
5520 
5521 	/* get number of available interrupts */
5522 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
5523 	if ((rc != DDI_SUCCESS) || (avail == 0)) {
5524 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5525 		    "Get interrupt available number failed. "
5526 		    "Return: %d, available: %d\n", rc, avail);
5527 		return (DDI_FAILURE);
5528 	}
5529 
5530 	if (avail < count) {
5531 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5532 		    "Interrupts count: %d, available: %d\n",
5533 		    count, avail);
5534 	}
5535 
5536 	/* Allocate an array of interrupt handles */
5537 	Adapter->intr_size = count * sizeof (ddi_intr_handle_t);
5538 	Adapter->htable = kmem_alloc(Adapter->intr_size, KM_SLEEP);
5539 
5540 	/* Set NORMAL behavior for both MSI and FIXED interrupt */
5541 	flag = DDI_INTR_ALLOC_NORMAL;
5542 
5543 	/* call ddi_intr_alloc() */
5544 	rc = ddi_intr_alloc(devinfo, Adapter->htable, intr_type, inum,
5545 	    count, &actual, flag);
5546 
5547 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
5548 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5549 		    "Allocate interrupts failed: %d\n", rc);
5550 
5551 		kmem_free(Adapter->htable, Adapter->intr_size);
5552 		return (DDI_FAILURE);
5553 	}
5554 
5555 	if (actual < count) {
5556 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5557 		    "Interrupts requested: %d, received: %d\n",
5558 		    count, actual);
5559 	}
5560 
5561 	Adapter->intr_cnt = actual;
5562 
5563 	/* Get priority for first msi, assume remaining are all the same */
5564 	rc = ddi_intr_get_pri(Adapter->htable[0], &Adapter->intr_pri);
5565 
5566 	if (rc != DDI_SUCCESS) {
5567 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5568 		    "Get interrupt priority failed: %d\n", rc);
5569 
5570 		/* Free already allocated intr */
5571 		for (y = 0; y < actual; y++)
5572 			(void) ddi_intr_free(Adapter->htable[y]);
5573 
5574 		kmem_free(Adapter->htable, Adapter->intr_size);
5575 		return (DDI_FAILURE);
5576 	}
5577 
5578 	/*
5579 	 * In Legacy Interrupt mode, for PCI-Express adapters, we should
5580 	 * use the interrupt service routine e1000g_intr_pciexpress()
5581 	 * to avoid interrupt stealing when sharing interrupt with other
5582 	 * devices.
5583 	 */
5584 	if (Adapter->shared.mac.type < e1000_82571)
5585 		intr_handler = (ddi_intr_handler_t *)e1000g_intr;
5586 	else
5587 		intr_handler = (ddi_intr_handler_t *)e1000g_intr_pciexpress;
5588 
5589 	/* Call ddi_intr_add_handler() */
5590 	for (x = 0; x < actual; x++) {
5591 		rc = ddi_intr_add_handler(Adapter->htable[x],
5592 		    intr_handler, (caddr_t)Adapter, NULL);
5593 
5594 		if (rc != DDI_SUCCESS) {
5595 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5596 			    "Add interrupt handler failed: %d\n", rc);
5597 
5598 			/* Remove already added handler */
5599 			for (y = 0; y < x; y++)
5600 				(void) ddi_intr_remove_handler(
5601 				    Adapter->htable[y]);
5602 
5603 			/* Free already allocated intr */
5604 			for (y = 0; y < actual; y++)
5605 				(void) ddi_intr_free(Adapter->htable[y]);
5606 
5607 			kmem_free(Adapter->htable, Adapter->intr_size);
5608 			return (DDI_FAILURE);
5609 		}
5610 	}
5611 
5612 	rc = ddi_intr_get_cap(Adapter->htable[0], &Adapter->intr_cap);
5613 
5614 	if (rc != DDI_SUCCESS) {
5615 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5616 		    "Get interrupt cap failed: %d\n", rc);
5617 
5618 		/* Free already allocated intr */
5619 		for (y = 0; y < actual; y++) {
5620 			(void) ddi_intr_remove_handler(Adapter->htable[y]);
5621 			(void) ddi_intr_free(Adapter->htable[y]);
5622 		}
5623 
5624 		kmem_free(Adapter->htable, Adapter->intr_size);
5625 		return (DDI_FAILURE);
5626 	}
5627 
5628 	return (DDI_SUCCESS);
5629 }
5630 
5631 static int
5632 e1000g_rem_intrs(struct e1000g *Adapter)
5633 {
5634 	int x;
5635 	int rc;
5636 
5637 	for (x = 0; x < Adapter->intr_cnt; x++) {
5638 		rc = ddi_intr_remove_handler(Adapter->htable[x]);
5639 		if (rc != DDI_SUCCESS) {
5640 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5641 			    "Remove intr handler failed: %d\n", rc);
5642 			return (DDI_FAILURE);
5643 		}
5644 
5645 		rc = ddi_intr_free(Adapter->htable[x]);
5646 		if (rc != DDI_SUCCESS) {
5647 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5648 			    "Free intr failed: %d\n", rc);
5649 			return (DDI_FAILURE);
5650 		}
5651 	}
5652 
5653 	kmem_free(Adapter->htable, Adapter->intr_size);
5654 
5655 	return (DDI_SUCCESS);
5656 }
5657 
5658 static int
5659 e1000g_enable_intrs(struct e1000g *Adapter)
5660 {
5661 	int x;
5662 	int rc;
5663 
5664 	/* Enable interrupts */
5665 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
5666 		/* Call ddi_intr_block_enable() for MSI */
5667 		rc = ddi_intr_block_enable(Adapter->htable,
5668 		    Adapter->intr_cnt);
5669 		if (rc != DDI_SUCCESS) {
5670 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5671 			    "Enable block intr failed: %d\n", rc);
5672 			return (DDI_FAILURE);
5673 		}
5674 	} else {
5675 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
5676 		for (x = 0; x < Adapter->intr_cnt; x++) {
5677 			rc = ddi_intr_enable(Adapter->htable[x]);
5678 			if (rc != DDI_SUCCESS) {
5679 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5680 				    "Enable intr failed: %d\n", rc);
5681 				return (DDI_FAILURE);
5682 			}
5683 		}
5684 	}
5685 
5686 	return (DDI_SUCCESS);
5687 }
5688 
5689 static int
5690 e1000g_disable_intrs(struct e1000g *Adapter)
5691 {
5692 	int x;
5693 	int rc;
5694 
5695 	/* Disable all interrupts */
5696 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
5697 		rc = ddi_intr_block_disable(Adapter->htable,
5698 		    Adapter->intr_cnt);
5699 		if (rc != DDI_SUCCESS) {
5700 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5701 			    "Disable block intr failed: %d\n", rc);
5702 			return (DDI_FAILURE);
5703 		}
5704 	} else {
5705 		for (x = 0; x < Adapter->intr_cnt; x++) {
5706 			rc = ddi_intr_disable(Adapter->htable[x]);
5707 			if (rc != DDI_SUCCESS) {
5708 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5709 				    "Disable intr failed: %d\n", rc);
5710 				return (DDI_FAILURE);
5711 			}
5712 		}
5713 	}
5714 
5715 	return (DDI_SUCCESS);
5716 }
5717 
5718 /*
5719  * e1000g_get_phy_state - get the state of PHY registers, save in the adapter
5720  */
5721 static void
5722 e1000g_get_phy_state(struct e1000g *Adapter)
5723 {
5724 	struct e1000_hw *hw = &Adapter->shared;
5725 
5726 	(void) e1000_read_phy_reg(hw, PHY_CONTROL, &Adapter->phy_ctrl);
5727 	(void) e1000_read_phy_reg(hw, PHY_STATUS, &Adapter->phy_status);
5728 	(void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &Adapter->phy_an_adv);
5729 	(void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &Adapter->phy_an_exp);
5730 	(void) e1000_read_phy_reg(hw, PHY_EXT_STATUS, &Adapter->phy_ext_status);
5731 	(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &Adapter->phy_1000t_ctrl);
5732 	(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5733 	    &Adapter->phy_1000t_status);
5734 	(void) e1000_read_phy_reg(hw, PHY_LP_ABILITY, &Adapter->phy_lp_able);
5735 
5736 	Adapter->param_autoneg_cap =
5737 	    (Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
5738 	Adapter->param_pause_cap =
5739 	    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5740 	Adapter->param_asym_pause_cap =
5741 	    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5742 	Adapter->param_1000fdx_cap =
5743 	    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5744 	    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
5745 	Adapter->param_1000hdx_cap =
5746 	    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
5747 	    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
5748 	Adapter->param_100t4_cap =
5749 	    (Adapter->phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
5750 	Adapter->param_100fdx_cap =
5751 	    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5752 	    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
5753 	Adapter->param_100hdx_cap =
5754 	    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
5755 	    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
5756 	Adapter->param_10fdx_cap =
5757 	    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
5758 	Adapter->param_10hdx_cap =
5759 	    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
5760 
5761 	Adapter->param_adv_autoneg = hw->mac.autoneg;
5762 	Adapter->param_adv_pause =
5763 	    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5764 	Adapter->param_adv_asym_pause =
5765 	    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5766 	Adapter->param_adv_1000hdx =
5767 	    (Adapter->phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
5768 	Adapter->param_adv_100t4 =
5769 	    (Adapter->phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
5770 	if (Adapter->param_adv_autoneg == 1) {
5771 		Adapter->param_adv_1000fdx =
5772 		    (Adapter->phy_1000t_ctrl & CR_1000T_FD_CAPS) ? 1 : 0;
5773 		Adapter->param_adv_100fdx =
5774 		    (Adapter->phy_an_adv & NWAY_AR_100TX_FD_CAPS) ? 1 : 0;
5775 		Adapter->param_adv_100hdx =
5776 		    (Adapter->phy_an_adv & NWAY_AR_100TX_HD_CAPS) ? 1 : 0;
5777 		Adapter->param_adv_10fdx =
5778 		    (Adapter->phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
5779 		Adapter->param_adv_10hdx =
5780 		    (Adapter->phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
5781 	}
5782 
5783 	Adapter->param_lp_autoneg =
5784 	    (Adapter->phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
5785 	Adapter->param_lp_pause =
5786 	    (Adapter->phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
5787 	Adapter->param_lp_asym_pause =
5788 	    (Adapter->phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
5789 	Adapter->param_lp_1000fdx =
5790 	    (Adapter->phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
5791 	Adapter->param_lp_1000hdx =
5792 	    (Adapter->phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
5793 	Adapter->param_lp_100t4 =
5794 	    (Adapter->phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
5795 	Adapter->param_lp_100fdx =
5796 	    (Adapter->phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
5797 	Adapter->param_lp_100hdx =
5798 	    (Adapter->phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
5799 	Adapter->param_lp_10fdx =
5800 	    (Adapter->phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
5801 	Adapter->param_lp_10hdx =
5802 	    (Adapter->phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
5803 }
5804 
5805 /*
5806  * FMA support
5807  */
5808 
5809 int
5810 e1000g_check_acc_handle(ddi_acc_handle_t handle)
5811 {
5812 	ddi_fm_error_t de;
5813 
5814 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
5815 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
5816 	return (de.fme_status);
5817 }
5818 
5819 int
5820 e1000g_check_dma_handle(ddi_dma_handle_t handle)
5821 {
5822 	ddi_fm_error_t de;
5823 
5824 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
5825 	return (de.fme_status);
5826 }
5827 
5828 /*
5829  * The IO fault service error handling callback function
5830  */
5831 /* ARGSUSED2 */
5832 static int
5833 e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
5834 {
5835 	/*
5836 	 * as the driver can always deal with an error in any dma or
5837 	 * access handle, we can just return the fme_status value.
5838 	 */
5839 	pci_ereport_post(dip, err, NULL);
5840 	return (err->fme_status);
5841 }
5842 
5843 static void
5844 e1000g_fm_init(struct e1000g *Adapter)
5845 {
5846 	ddi_iblock_cookie_t iblk;
5847 	int fma_acc_flag, fma_dma_flag;
5848 
5849 	/* Only register with IO Fault Services if we have some capability */
5850 	if (Adapter->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
5851 		e1000g_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
5852 		fma_acc_flag = 1;
5853 	} else {
5854 		e1000g_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
5855 		fma_acc_flag = 0;
5856 	}
5857 
5858 	if (Adapter->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
5859 		fma_dma_flag = 1;
5860 	} else {
5861 		fma_dma_flag = 0;
5862 	}
5863 
5864 	(void) e1000g_set_fma_flags(Adapter, fma_acc_flag, fma_dma_flag);
5865 
5866 	if (Adapter->fm_capabilities) {
5867 
5868 		/* Register capabilities with IO Fault Services */
5869 		ddi_fm_init(Adapter->dip, &Adapter->fm_capabilities, &iblk);
5870 
5871 		/*
5872 		 * Initialize pci ereport capabilities if ereport capable
5873 		 */
5874 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
5875 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5876 			pci_ereport_setup(Adapter->dip);
5877 
5878 		/*
5879 		 * Register error callback if error callback capable
5880 		 */
5881 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5882 			ddi_fm_handler_register(Adapter->dip,
5883 			    e1000g_fm_error_cb, (void*) Adapter);
5884 	}
5885 }
5886 
5887 static void
5888 e1000g_fm_fini(struct e1000g *Adapter)
5889 {
5890 	/* Only unregister FMA capabilities if we registered some */
5891 	if (Adapter->fm_capabilities) {
5892 
5893 		/*
5894 		 * Release any resources allocated by pci_ereport_setup()
5895 		 */
5896 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
5897 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5898 			pci_ereport_teardown(Adapter->dip);
5899 
5900 		/*
5901 		 * Un-register error callback if error callback capable
5902 		 */
5903 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5904 			ddi_fm_handler_unregister(Adapter->dip);
5905 
5906 		/* Unregister from IO Fault Services */
5907 		ddi_fm_fini(Adapter->dip);
5908 	}
5909 }
5910 
5911 void
5912 e1000g_fm_ereport(struct e1000g *Adapter, char *detail)
5913 {
5914 	uint64_t ena;
5915 	char buf[FM_MAX_CLASS];
5916 
5917 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
5918 	ena = fm_ena_generate(0, FM_ENA_FMT1);
5919 	if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities)) {
5920 		ddi_fm_ereport_post(Adapter->dip, buf, ena, DDI_NOSLEEP,
5921 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
5922 	}
5923 }
5924 
5925 /*
5926  * quiesce(9E) entry point.
5927  *
5928  * This function is called when the system is single-threaded at high
5929  * PIL with preemption disabled. Therefore, this function must not be
5930  * blocked.
5931  *
5932  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
5933  * DDI_FAILURE indicates an error condition and should almost never happen.
5934  */
5935 static int
5936 e1000g_quiesce(dev_info_t *devinfo)
5937 {
5938 	struct e1000g *Adapter;
5939 
5940 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
5941 
5942 	if (Adapter == NULL)
5943 		return (DDI_FAILURE);
5944 
5945 	e1000g_clear_all_interrupts(Adapter);
5946 
5947 	(void) e1000_reset_hw(&Adapter->shared);
5948 
5949 	/* Setup our HW Tx Head & Tail descriptor pointers */
5950 	E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
5951 	E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
5952 
5953 	/* Setup our HW Rx Head & Tail descriptor pointers */
5954 	E1000_WRITE_REG(&Adapter->shared, E1000_RDH(0), 0);
5955 	E1000_WRITE_REG(&Adapter->shared, E1000_RDT(0), 0);
5956 
5957 	return (DDI_SUCCESS);
5958 }
5959 
5960 static int
5961 e1000g_get_def_val(struct e1000g *Adapter, mac_prop_id_t pr_num,
5962     uint_t pr_valsize, void *pr_val)
5963 {
5964 	link_flowctrl_t fl;
5965 	int err = 0;
5966 
5967 	ASSERT(pr_valsize > 0);
5968 	switch (pr_num) {
5969 	case MAC_PROP_AUTONEG:
5970 		*(uint8_t *)pr_val =
5971 		    ((Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0);
5972 		break;
5973 	case MAC_PROP_FLOWCTRL:
5974 		if (pr_valsize < sizeof (link_flowctrl_t))
5975 			return (EINVAL);
5976 		fl = LINK_FLOWCTRL_BI;
5977 		bcopy(&fl, pr_val, sizeof (fl));
5978 		break;
5979 	case MAC_PROP_ADV_1000FDX_CAP:
5980 	case MAC_PROP_EN_1000FDX_CAP:
5981 		*(uint8_t *)pr_val =
5982 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5983 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
5984 		break;
5985 	case MAC_PROP_ADV_1000HDX_CAP:
5986 	case MAC_PROP_EN_1000HDX_CAP:
5987 		*(uint8_t *)pr_val =
5988 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
5989 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
5990 		break;
5991 	case MAC_PROP_ADV_100FDX_CAP:
5992 	case MAC_PROP_EN_100FDX_CAP:
5993 		*(uint8_t *)pr_val =
5994 		    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5995 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
5996 		break;
5997 	case MAC_PROP_ADV_100HDX_CAP:
5998 	case MAC_PROP_EN_100HDX_CAP:
5999 		*(uint8_t *)pr_val =
6000 		    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
6001 		    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
6002 		break;
6003 	case MAC_PROP_ADV_10FDX_CAP:
6004 	case MAC_PROP_EN_10FDX_CAP:
6005 		*(uint8_t *)pr_val =
6006 		    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
6007 		break;
6008 	case MAC_PROP_ADV_10HDX_CAP:
6009 	case MAC_PROP_EN_10HDX_CAP:
6010 		*(uint8_t *)pr_val =
6011 		    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
6012 		break;
6013 	default:
6014 		err = ENOTSUP;
6015 		break;
6016 	}
6017 	return (err);
6018 }
6019 
6020 /*
6021  * synchronize the adv* and en* parameters.
6022  *
6023  * See comments in <sys/dld.h> for details of the *_en_*
6024  * parameters. The usage of ndd for setting adv parameters will
6025  * synchronize all the en parameters with the e1000g parameters,
6026  * implicitly disabling any settings made via dladm.
6027  */
6028 static void
6029 e1000g_param_sync(struct e1000g *Adapter)
6030 {
6031 	Adapter->param_en_1000fdx = Adapter->param_adv_1000fdx;
6032 	Adapter->param_en_1000hdx = Adapter->param_adv_1000hdx;
6033 	Adapter->param_en_100fdx = Adapter->param_adv_100fdx;
6034 	Adapter->param_en_100hdx = Adapter->param_adv_100hdx;
6035 	Adapter->param_en_10fdx = Adapter->param_adv_10fdx;
6036 	Adapter->param_en_10hdx = Adapter->param_adv_10hdx;
6037 }
6038 
6039 /*
6040  * e1000g_get_driver_control - tell manageability firmware that the driver
6041  * has control.
6042  */
6043 static void
6044 e1000g_get_driver_control(struct e1000_hw *hw)
6045 {
6046 	uint32_t ctrl_ext;
6047 	uint32_t swsm;
6048 
6049 	/* tell manageability firmware the driver has taken over */
6050 	switch (hw->mac.type) {
6051 	case e1000_82573:
6052 		swsm = E1000_READ_REG(hw, E1000_SWSM);
6053 		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
6054 		break;
6055 	case e1000_82571:
6056 	case e1000_82572:
6057 	case e1000_82574:
6058 	case e1000_80003es2lan:
6059 	case e1000_ich8lan:
6060 	case e1000_ich9lan:
6061 	case e1000_ich10lan:
6062 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
6063 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
6064 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
6065 		break;
6066 	default:
6067 		/* no manageability firmware: do nothing */
6068 		break;
6069 	}
6070 }
6071 
6072 /*
6073  * e1000g_release_driver_control - tell manageability firmware that the driver
6074  * has released control.
6075  */
6076 static void
6077 e1000g_release_driver_control(struct e1000_hw *hw)
6078 {
6079 	uint32_t ctrl_ext;
6080 	uint32_t swsm;
6081 
6082 	/* tell manageability firmware the driver has released control */
6083 	switch (hw->mac.type) {
6084 	case e1000_82573:
6085 		swsm = E1000_READ_REG(hw, E1000_SWSM);
6086 		E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
6087 		break;
6088 	case e1000_82571:
6089 	case e1000_82572:
6090 	case e1000_82574:
6091 	case e1000_80003es2lan:
6092 	case e1000_ich8lan:
6093 	case e1000_ich9lan:
6094 	case e1000_ich10lan:
6095 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
6096 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
6097 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
6098 		break;
6099 	default:
6100 		/* no manageability firmware: do nothing */
6101 		break;
6102 	}
6103 }
6104 
6105 /*
6106  * Restore e1000g promiscuous mode.
6107  */
6108 static void
6109 e1000g_restore_promisc(struct e1000g *Adapter)
6110 {
6111 	if (Adapter->e1000g_promisc) {
6112 		uint32_t rctl;
6113 
6114 		rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
6115 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
6116 		E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
6117 	}
6118 }
6119