xref: /titanic_51/usr/src/uts/common/io/e1000g/e1000g_main.c (revision 89a7715a55deca73d03076f5c24463717f0aaa91)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms of the CDDLv1.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * **********************************************************************
30  *									*
31  * Module Name:								*
32  *   e1000g_main.c							*
33  *									*
34  * Abstract:								*
35  *   This file contains the interface routines for the solaris OS.	*
36  *   It has all DDI entry point routines and GLD entry point routines.	*
37  *									*
38  *   This file also contains routines that take care of initialization	*
39  *   uninit routine and interrupt routine.				*
40  *									*
41  * **********************************************************************
42  */
43 
44 #include <sys/dlpi.h>
45 #include <sys/mac.h>
46 #include "e1000g_sw.h"
47 #include "e1000g_debug.h"
48 
49 #define	E1000_RX_INTPT_TIME	128
50 #define	E1000_RX_PKT_CNT	8
51 
52 static char ident[] = "Intel PRO/1000 Ethernet 5.2.3";
53 static char e1000g_string[] = "Intel(R) PRO/1000 Network Connection";
54 static char e1000g_version[] = "Driver Ver. 5.2.3";
55 
56 /*
57  * Proto types for DDI entry points
58  */
59 static int e1000g_attach(dev_info_t *, ddi_attach_cmd_t);
60 static int e1000g_detach(dev_info_t *, ddi_detach_cmd_t);
61 
62 /*
63  * init and intr routines prototype
64  */
65 static int e1000g_resume(dev_info_t *);
66 static int e1000g_suspend(dev_info_t *);
67 static uint_t e1000g_intr_pciexpress(caddr_t);
68 static uint_t e1000g_intr(caddr_t);
69 static void e1000g_intr_work(struct e1000g *, uint32_t);
70 #pragma inline(e1000g_intr_work)
71 static int e1000g_init(struct e1000g *);
72 static int e1000g_start(struct e1000g *, boolean_t);
73 static void e1000g_stop(struct e1000g *, boolean_t);
74 static int e1000g_m_start(void *);
75 static void e1000g_m_stop(void *);
76 static int e1000g_m_promisc(void *, boolean_t);
77 static boolean_t e1000g_m_getcapab(void *, mac_capab_t, void *);
78 static int e1000g_m_unicst(void *, const uint8_t *);
79 static int e1000g_m_unicst_add(void *, mac_multi_addr_t *);
80 static int e1000g_m_unicst_remove(void *, mac_addr_slot_t);
81 static int e1000g_m_unicst_modify(void *, mac_multi_addr_t *);
82 static int e1000g_m_unicst_get(void *, mac_multi_addr_t *);
83 static int e1000g_m_multicst(void *, boolean_t, const uint8_t *);
84 static void e1000g_m_blank(void *, time_t, uint32_t);
85 static void e1000g_m_resources(void *);
86 static void e1000g_m_ioctl(void *, queue_t *, mblk_t *);
87 static void e1000g_init_locks(struct e1000g *);
88 static void e1000g_destroy_locks(struct e1000g *);
89 static int e1000g_identify_hardware(struct e1000g *);
90 static int e1000g_regs_map(struct e1000g *);
91 static int e1000g_set_driver_params(struct e1000g *);
92 static int e1000g_register_mac(struct e1000g *);
93 static boolean_t e1000g_rx_drain(struct e1000g *);
94 static boolean_t e1000g_tx_drain(struct e1000g *);
95 static void e1000g_init_unicst(struct e1000g *);
96 static int e1000g_unicst_set(struct e1000g *, const uint8_t *, mac_addr_slot_t);
97 
98 /*
99  * Local routines
100  */
101 static void e1000g_tx_clean(struct e1000g *);
102 static void e1000g_rx_clean(struct e1000g *);
103 static void e1000g_link_timer(void *);
104 static void e1000g_local_timer(void *);
105 static boolean_t e1000g_link_check(struct e1000g *);
106 static boolean_t e1000g_stall_check(struct e1000g *);
107 static void e1000g_smartspeed(struct e1000g *);
108 static void e1000g_get_conf(struct e1000g *);
109 static int e1000g_get_prop(struct e1000g *, char *, int, int, int);
110 static void enable_watchdog_timer(struct e1000g *);
111 static void disable_watchdog_timer(struct e1000g *);
112 static void start_watchdog_timer(struct e1000g *);
113 static void restart_watchdog_timer(struct e1000g *);
114 static void stop_watchdog_timer(struct e1000g *);
115 static void stop_link_timer(struct e1000g *);
116 static void stop_82547_timer(e1000g_tx_ring_t *);
117 static void e1000g_force_speed_duplex(struct e1000g *);
118 static void e1000g_get_max_frame_size(struct e1000g *);
119 static boolean_t is_valid_mac_addr(uint8_t *);
120 static void e1000g_unattach(dev_info_t *, struct e1000g *);
121 #ifdef E1000G_DEBUG
122 static void e1000g_ioc_peek_reg(struct e1000g *, e1000g_peekpoke_t *);
123 static void e1000g_ioc_poke_reg(struct e1000g *, e1000g_peekpoke_t *);
124 static void e1000g_ioc_peek_mem(struct e1000g *, e1000g_peekpoke_t *);
125 static void e1000g_ioc_poke_mem(struct e1000g *, e1000g_peekpoke_t *);
126 static enum ioc_reply e1000g_pp_ioctl(struct e1000g *,
127     struct iocblk *, mblk_t *);
128 #endif
129 static enum ioc_reply e1000g_loopback_ioctl(struct e1000g *,
130     struct iocblk *, mblk_t *);
131 static boolean_t e1000g_set_loopback_mode(struct e1000g *, uint32_t);
132 static void e1000g_set_internal_loopback(struct e1000g *);
133 static void e1000g_set_external_loopback_1000(struct e1000g *);
134 static void e1000g_set_external_loopback_100(struct e1000g *);
135 static void e1000g_set_external_loopback_10(struct e1000g *);
136 static int e1000g_add_intrs(struct e1000g *);
137 static int e1000g_intr_add(struct e1000g *, int);
138 static int e1000g_rem_intrs(struct e1000g *);
139 static int e1000g_enable_intrs(struct e1000g *);
140 static int e1000g_disable_intrs(struct e1000g *);
141 static boolean_t e1000g_link_up(struct e1000g *);
142 #ifdef __sparc
143 static boolean_t e1000g_find_mac_address(struct e1000g *);
144 #endif
145 static void e1000g_get_phy_state(struct e1000g *);
146 static void e1000g_free_priv_devi_node(struct e1000g *, boolean_t);
147 static int e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err,
148     const void *impl_data);
149 static void e1000g_fm_init(struct e1000g *Adapter);
150 static void e1000g_fm_fini(struct e1000g *Adapter);
151 
152 static struct cb_ops cb_ws_ops = {
153 	nulldev,		/* cb_open */
154 	nulldev,		/* cb_close */
155 	nodev,			/* cb_strategy */
156 	nodev,			/* cb_print */
157 	nodev,			/* cb_dump */
158 	nodev,			/* cb_read */
159 	nodev,			/* cb_write */
160 	nodev,			/* cb_ioctl */
161 	nodev,			/* cb_devmap */
162 	nodev,			/* cb_mmap */
163 	nodev,			/* cb_segmap */
164 	nochpoll,		/* cb_chpoll */
165 	ddi_prop_op,		/* cb_prop_op */
166 	NULL,			/* cb_stream */
167 	D_MP | D_HOTPLUG,	/* cb_flag */
168 	CB_REV,			/* cb_rev */
169 	nodev,			/* cb_aread */
170 	nodev			/* cb_awrite */
171 };
172 
173 static struct dev_ops ws_ops = {
174 	DEVO_REV,		/* devo_rev */
175 	0,			/* devo_refcnt */
176 	NULL,			/* devo_getinfo */
177 	nulldev,		/* devo_identify */
178 	nulldev,		/* devo_probe */
179 	e1000g_attach,		/* devo_attach */
180 	e1000g_detach,		/* devo_detach */
181 	nodev,			/* devo_reset */
182 	&cb_ws_ops,		/* devo_cb_ops */
183 	NULL,			/* devo_bus_ops */
184 	ddi_power		/* devo_power */
185 };
186 
187 static struct modldrv modldrv = {
188 	&mod_driverops,		/* Type of module.  This one is a driver */
189 	ident,			/* Discription string */
190 	&ws_ops,		/* driver ops */
191 };
192 
193 static struct modlinkage modlinkage = {
194 	MODREV_1, &modldrv, NULL
195 };
196 
197 /* Access attributes for register mapping */
198 static ddi_device_acc_attr_t e1000g_regs_acc_attr = {
199 	DDI_DEVICE_ATTR_V0,
200 	DDI_STRUCTURE_LE_ACC,
201 	DDI_STRICTORDER_ACC,
202 	DDI_FLAGERR_ACC
203 };
204 
205 #define	E1000G_M_CALLBACK_FLAGS	(MC_RESOURCES | MC_IOCTL | MC_GETCAPAB)
206 
207 static mac_callbacks_t e1000g_m_callbacks = {
208 	E1000G_M_CALLBACK_FLAGS,
209 	e1000g_m_stat,
210 	e1000g_m_start,
211 	e1000g_m_stop,
212 	e1000g_m_promisc,
213 	e1000g_m_multicst,
214 	e1000g_m_unicst,
215 	e1000g_m_tx,
216 	e1000g_m_resources,
217 	e1000g_m_ioctl,
218 	e1000g_m_getcapab
219 };
220 
221 /*
222  * Global variables
223  */
224 
225 uint32_t e1000g_mblks_pending = 0;
226 /*
227  * Workaround for Dynamic Reconfiguration support, for x86 platform only.
228  * Here we maintain a private dev_info list if e1000g_force_detach is
229  * enabled. If we force the driver to detach while there are still some
230  * rx buffers retained in the upper layer, we have to keep a copy of the
231  * dev_info. In some cases (Dynamic Reconfiguration), the dev_info data
232  * structure will be freed after the driver is detached. However when we
233  * finally free those rx buffers released by the upper layer, we need to
234  * refer to the dev_info to free the dma buffers. So we save a copy of
235  * the dev_info for this purpose. On x86 platform, we assume this copy
236  * of dev_info is always valid, but on SPARC platform, it could be invalid
237  * after the system board level DR operation. For this reason, the global
238  * variable e1000g_force_detach must be B_FALSE on SPARC platform.
239  */
240 #ifdef __sparc
241 boolean_t e1000g_force_detach = B_FALSE;
242 #else
243 boolean_t e1000g_force_detach = B_TRUE;
244 #endif
245 private_devi_list_t *e1000g_private_devi_list = NULL;
246 
247 /*
248  * The rwlock is defined to protect the whole processing of rx recycling
249  * and the rx packets release in detach processing to make them mutually
250  * exclusive.
251  * The rx recycling processes different rx packets in different threads,
252  * so it will be protected with RW_READER and it won't block any other rx
253  * recycling threads.
254  * While the detach processing will be protected with RW_WRITER to make
255  * it mutually exclusive with the rx recycling.
256  */
257 krwlock_t e1000g_rx_detach_lock;
258 /*
259  * The rwlock e1000g_dma_type_lock is defined to protect the global flag
260  * e1000g_dma_type. For SPARC, the initial value of the flag is "USE_DVMA".
261  * If there are many e1000g instances, the system may run out of DVMA
262  * resources during the initialization of the instances, then the flag will
263  * be changed to "USE_DMA". Because different e1000g instances are initialized
264  * in parallel, we need to use this lock to protect the flag.
265  */
266 krwlock_t e1000g_dma_type_lock;
267 
268 
269 /*
270  * Loadable module configuration entry points for the driver
271  */
272 
273 /*
274  * _init - module initialization
275  */
276 int
277 _init(void)
278 {
279 	int status;
280 
281 	mac_init_ops(&ws_ops, WSNAME);
282 	status = mod_install(&modlinkage);
283 	if (status != DDI_SUCCESS)
284 		mac_fini_ops(&ws_ops);
285 	else {
286 		rw_init(&e1000g_rx_detach_lock, NULL, RW_DRIVER, NULL);
287 		rw_init(&e1000g_dma_type_lock, NULL, RW_DRIVER, NULL);
288 	}
289 
290 	return (status);
291 }
292 
293 /*
294  * _fini - module finalization
295  */
296 int
297 _fini(void)
298 {
299 	int status;
300 
301 	rw_enter(&e1000g_rx_detach_lock, RW_READER);
302 	if (e1000g_mblks_pending != 0) {
303 		rw_exit(&e1000g_rx_detach_lock);
304 		return (EBUSY);
305 	}
306 	rw_exit(&e1000g_rx_detach_lock);
307 
308 	status = mod_remove(&modlinkage);
309 	if (status == DDI_SUCCESS) {
310 		mac_fini_ops(&ws_ops);
311 
312 		if (e1000g_force_detach) {
313 			private_devi_list_t *devi_node;
314 
315 			rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
316 			while (e1000g_private_devi_list != NULL) {
317 				devi_node = e1000g_private_devi_list;
318 				e1000g_private_devi_list =
319 				    e1000g_private_devi_list->next;
320 
321 				kmem_free(devi_node->priv_dip,
322 				    sizeof (struct dev_info));
323 				kmem_free(devi_node,
324 				    sizeof (private_devi_list_t));
325 			}
326 			rw_exit(&e1000g_rx_detach_lock);
327 		}
328 
329 		rw_destroy(&e1000g_rx_detach_lock);
330 		rw_destroy(&e1000g_dma_type_lock);
331 	}
332 
333 	return (status);
334 }
335 
336 /*
337  * _info - module information
338  */
339 int
340 _info(struct modinfo *modinfop)
341 {
342 	return (mod_info(&modlinkage, modinfop));
343 }
344 
345 /*
346  * e1000g_attach - driver attach
347  *
348  * This function is the device-specific initialization entry
349  * point. This entry point is required and must be written.
350  * The DDI_ATTACH command must be provided in the attach entry
351  * point. When attach() is called with cmd set to DDI_ATTACH,
352  * all normal kernel services (such as kmem_alloc(9F)) are
353  * available for use by the driver.
354  *
355  * The attach() function will be called once for each instance
356  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
357  * Until attach() succeeds, the only driver entry points which
358  * may be called are open(9E) and getinfo(9E).
359  */
360 static int
361 e1000g_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
362 {
363 	struct e1000g *Adapter;
364 	struct e1000_hw *hw;
365 	struct e1000g_osdep *osdep;
366 	int instance;
367 
368 	switch (cmd) {
369 	default:
370 		e1000g_log(NULL, CE_WARN,
371 		    "Unsupported command send to e1000g_attach... ");
372 		return (DDI_FAILURE);
373 
374 	case DDI_RESUME:
375 		return (e1000g_resume(devinfo));
376 
377 	case DDI_ATTACH:
378 		break;
379 	}
380 
381 	/*
382 	 * get device instance number
383 	 */
384 	instance = ddi_get_instance(devinfo);
385 
386 	/*
387 	 * Allocate soft data structure
388 	 */
389 	Adapter =
390 	    (struct e1000g *)kmem_zalloc(sizeof (*Adapter), KM_SLEEP);
391 
392 	Adapter->dip = devinfo;
393 	Adapter->instance = instance;
394 	Adapter->tx_ring->adapter = Adapter;
395 	Adapter->rx_ring->adapter = Adapter;
396 
397 	hw = &Adapter->shared;
398 	osdep = &Adapter->osdep;
399 	hw->back = osdep;
400 	osdep->adapter = Adapter;
401 
402 	ddi_set_driver_private(devinfo, (caddr_t)Adapter);
403 
404 	/*
405 	 * Initialize for fma support
406 	 */
407 	Adapter->fm_capabilities = e1000g_get_prop(Adapter, "fm-capable",
408 	    0, 0x0f,
409 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
410 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
411 	e1000g_fm_init(Adapter);
412 	Adapter->attach_progress |= ATTACH_PROGRESS_FMINIT;
413 
414 	/*
415 	 * PCI Configure
416 	 */
417 	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
418 		e1000g_log(Adapter, CE_WARN, "PCI configuration failed");
419 		goto attach_fail;
420 	}
421 	Adapter->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
422 
423 	/*
424 	 * Setup hardware
425 	 */
426 	if (e1000g_identify_hardware(Adapter) != DDI_SUCCESS) {
427 		e1000g_log(Adapter, CE_WARN, "Identify hardware failed");
428 		goto attach_fail;
429 	}
430 
431 	/*
432 	 * Map in the device registers.
433 	 */
434 	if (e1000g_regs_map(Adapter) != DDI_SUCCESS) {
435 		e1000g_log(Adapter, CE_WARN, "Mapping registers failed");
436 		goto attach_fail;
437 	}
438 	Adapter->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
439 
440 	/*
441 	 * Initialize driver parameters
442 	 */
443 	if (e1000g_set_driver_params(Adapter) != DDI_SUCCESS) {
444 		goto attach_fail;
445 	}
446 	Adapter->attach_progress |= ATTACH_PROGRESS_SETUP;
447 
448 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
449 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
450 		goto attach_fail;
451 	}
452 
453 	/*
454 	 * Initialize interrupts
455 	 */
456 	if (e1000g_add_intrs(Adapter) != DDI_SUCCESS) {
457 		e1000g_log(Adapter, CE_WARN, "Add interrupts failed");
458 		goto attach_fail;
459 	}
460 	Adapter->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
461 
462 	/*
463 	 * Initialize mutex's for this device.
464 	 * Do this before enabling the interrupt handler and
465 	 * register the softint to avoid the condition where
466 	 * interrupt handler can try using uninitialized mutex
467 	 */
468 	e1000g_init_locks(Adapter);
469 	Adapter->attach_progress |= ATTACH_PROGRESS_LOCKS;
470 
471 	Adapter->tx_softint_pri = DDI_INTR_SOFTPRI_MAX;
472 	if (ddi_intr_add_softint(devinfo,
473 	    &Adapter->tx_softint_handle, Adapter->tx_softint_pri,
474 	    e1000g_tx_softint_worker, (caddr_t)Adapter) != DDI_SUCCESS) {
475 		e1000g_log(Adapter, CE_WARN, "Add soft intr failed");
476 		goto attach_fail;
477 	}
478 	Adapter->attach_progress |= ATTACH_PROGRESS_SOFT_INTR;
479 
480 	/*
481 	 * Initialize Driver Counters
482 	 */
483 	if (e1000g_init_stats(Adapter) != DDI_SUCCESS) {
484 		e1000g_log(Adapter, CE_WARN, "Init stats failed");
485 		goto attach_fail;
486 	}
487 	Adapter->attach_progress |= ATTACH_PROGRESS_KSTATS;
488 
489 	/*
490 	 * Initialize chip hardware and software structures
491 	 */
492 	if (e1000g_init(Adapter) != DDI_SUCCESS) {
493 		e1000g_log(Adapter, CE_WARN, "Adapter initialization failed");
494 		goto attach_fail;
495 	}
496 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
497 
498 	/*
499 	 * Initialize NDD parameters
500 	 */
501 	if (e1000g_nd_init(Adapter) != DDI_SUCCESS) {
502 		e1000g_log(Adapter, CE_WARN, "Init ndd failed");
503 		goto attach_fail;
504 	}
505 	Adapter->attach_progress |= ATTACH_PROGRESS_NDD;
506 
507 	/*
508 	 * Register the driver to the MAC
509 	 */
510 	if (e1000g_register_mac(Adapter) != DDI_SUCCESS) {
511 		e1000g_log(Adapter, CE_WARN, "Register MAC failed");
512 		goto attach_fail;
513 	}
514 	Adapter->attach_progress |= ATTACH_PROGRESS_MAC;
515 
516 	/*
517 	 * Now that mutex locks are initialized, and the chip is also
518 	 * initialized, enable interrupts.
519 	 */
520 	if (e1000g_enable_intrs(Adapter) != DDI_SUCCESS) {
521 		e1000g_log(Adapter, CE_WARN, "Enable DDI interrupts failed");
522 		goto attach_fail;
523 	}
524 	Adapter->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
525 
526 	/*
527 	 * If e1000g_force_detach is enabled, in global private dip list,
528 	 * we will create a new entry, which maintains the priv_dip for DR
529 	 * supports after driver detached.
530 	 */
531 	if (e1000g_force_detach) {
532 		private_devi_list_t *devi_node;
533 
534 		Adapter->priv_dip =
535 		    kmem_zalloc(sizeof (struct dev_info), KM_SLEEP);
536 		bcopy(DEVI(devinfo), DEVI(Adapter->priv_dip),
537 		    sizeof (struct dev_info));
538 
539 		devi_node =
540 		    kmem_zalloc(sizeof (private_devi_list_t), KM_SLEEP);
541 
542 		rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
543 		devi_node->priv_dip = Adapter->priv_dip;
544 		devi_node->flag = E1000G_PRIV_DEVI_ATTACH;
545 		devi_node->next = e1000g_private_devi_list;
546 		e1000g_private_devi_list = devi_node;
547 		rw_exit(&e1000g_rx_detach_lock);
548 	}
549 
550 	cmn_err(CE_CONT, "!%s, %s\n", e1000g_string, e1000g_version);
551 
552 	return (DDI_SUCCESS);
553 
554 attach_fail:
555 	e1000g_unattach(devinfo, Adapter);
556 	return (DDI_FAILURE);
557 }
558 
559 static int
560 e1000g_register_mac(struct e1000g *Adapter)
561 {
562 	struct e1000_hw *hw = &Adapter->shared;
563 	mac_register_t *mac;
564 	int err;
565 
566 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
567 		return (DDI_FAILURE);
568 
569 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
570 	mac->m_driver = Adapter;
571 	mac->m_dip = Adapter->dip;
572 	mac->m_src_addr = hw->mac.addr;
573 	mac->m_callbacks = &e1000g_m_callbacks;
574 	mac->m_min_sdu = 0;
575 	mac->m_max_sdu =
576 	    (hw->mac.max_frame_size > FRAME_SIZE_UPTO_8K) ?
577 	    hw->mac.max_frame_size - 256 :
578 	    (hw->mac.max_frame_size != ETHERMAX) ?
579 	    hw->mac.max_frame_size - 24 : ETHERMTU;
580 
581 	err = mac_register(mac, &Adapter->mh);
582 	mac_free(mac);
583 
584 	return (err == 0 ? DDI_SUCCESS : DDI_FAILURE);
585 }
586 
587 static int
588 e1000g_identify_hardware(struct e1000g *Adapter)
589 {
590 	struct e1000_hw *hw = &Adapter->shared;
591 	struct e1000g_osdep *osdep = &Adapter->osdep;
592 
593 	/* Get the device id */
594 	hw->vendor_id =
595 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
596 	hw->device_id =
597 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
598 	hw->revision_id =
599 	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
600 	hw->subsystem_device_id =
601 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
602 	hw->subsystem_vendor_id =
603 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
604 
605 	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
606 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
607 		    "MAC type could not be set properly.");
608 		return (DDI_FAILURE);
609 	}
610 
611 	return (DDI_SUCCESS);
612 }
613 
614 static int
615 e1000g_regs_map(struct e1000g *Adapter)
616 {
617 	dev_info_t *devinfo = Adapter->dip;
618 	struct e1000_hw *hw = &Adapter->shared;
619 	struct e1000g_osdep *osdep = &Adapter->osdep;
620 	off_t mem_size;
621 
622 	/*
623 	 * first get the size of device register to be mapped. The
624 	 * second parameter is the register we are interested. I our
625 	 * wiseman 0 is for config registers and 1 is for memory mapped
626 	 * registers Mem size should have memory mapped region size
627 	 */
628 	if (ddi_dev_regsize(devinfo, 1, &mem_size) != DDI_SUCCESS) {
629 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
630 		    "ddi_dev_regsize for registers failed");
631 		return (DDI_FAILURE);
632 	}
633 
634 	if ((ddi_regs_map_setup(devinfo, 1, /* register of interest */
635 	    (caddr_t *)&hw->hw_addr, 0, mem_size, &e1000g_regs_acc_attr,
636 	    &osdep->reg_handle)) != DDI_SUCCESS) {
637 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
638 		    "ddi_regs_map_setup for registers failed");
639 		goto regs_map_fail;
640 	}
641 
642 	/* ICH needs to map flash memory */
643 	if (hw->mac.type == e1000_ich8lan || hw->mac.type == e1000_ich9lan) {
644 		/* get flash size */
645 		if (ddi_dev_regsize(devinfo, ICH_FLASH_REG_SET,
646 		    &mem_size) != DDI_SUCCESS) {
647 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
648 			    "ddi_dev_regsize for ICH flash failed");
649 			goto regs_map_fail;
650 		}
651 
652 		/* map flash in */
653 		if (ddi_regs_map_setup(devinfo, ICH_FLASH_REG_SET,
654 		    (caddr_t *)&hw->flash_address, 0,
655 		    mem_size, &e1000g_regs_acc_attr,
656 		    &osdep->ich_flash_handle) != DDI_SUCCESS) {
657 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
658 			    "ddi_regs_map_setup for ICH flash failed");
659 			goto regs_map_fail;
660 		}
661 	}
662 
663 	return (DDI_SUCCESS);
664 
665 regs_map_fail:
666 	if (osdep->reg_handle != NULL)
667 		ddi_regs_map_free(&osdep->reg_handle);
668 
669 	return (DDI_FAILURE);
670 }
671 
672 static int
673 e1000g_set_driver_params(struct e1000g *Adapter)
674 {
675 	struct e1000_hw *hw;
676 	e1000g_tx_ring_t *tx_ring;
677 	uint32_t mem_bar, io_bar, bar64;
678 #ifdef __sparc
679 	dev_info_t *devinfo = Adapter->dip;
680 	ulong_t iommu_pagesize;
681 #endif
682 
683 	hw = &Adapter->shared;
684 
685 	/* Set MAC type and initialize hardware functions */
686 	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
687 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
688 		    "Could not setup hardware functions");
689 		return (DDI_FAILURE);
690 	}
691 
692 	/* Get bus information */
693 	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
694 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
695 		    "Could not get bus information");
696 		return (DDI_FAILURE);
697 	}
698 
699 	/* get mem_base addr */
700 	mem_bar = pci_config_get32(Adapter->osdep.cfg_handle, PCI_CONF_BASE0);
701 	bar64 = mem_bar & PCI_BASE_TYPE_ALL;
702 
703 	/* get io_base addr */
704 	if (hw->mac.type >= e1000_82544) {
705 		if (bar64) {
706 			/* IO BAR is different for 64 bit BAR mode */
707 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
708 			    PCI_CONF_BASE4);
709 		} else {
710 			/* normal 32-bit BAR mode */
711 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
712 			    PCI_CONF_BASE2);
713 		}
714 		hw->io_base = io_bar & PCI_BASE_IO_ADDR_M;
715 	} else {
716 		/* no I/O access for adapters prior to 82544 */
717 		hw->io_base = 0x0;
718 	}
719 
720 	e1000_read_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->bus.pci_cmd_word);
721 
722 	hw->mac.autoneg_failed = B_TRUE;
723 
724 	/* Set the wait_for_link flag to B_FALSE */
725 	hw->phy.wait_for_link = B_FALSE;
726 
727 	/* Adaptive IFS related changes */
728 	hw->mac.adaptive_ifs = B_TRUE;
729 
730 	/* Enable phy init script for IGP phy of 82541/82547 */
731 	if ((hw->mac.type == e1000_82547) ||
732 	    (hw->mac.type == e1000_82541) ||
733 	    (hw->mac.type == e1000_82547_rev_2) ||
734 	    (hw->mac.type == e1000_82541_rev_2))
735 		e1000_init_script_state_82541(hw, B_TRUE);
736 
737 	/* Enable the TTL workaround for 82541/82547 */
738 	e1000_set_ttl_workaround_state_82541(hw, B_TRUE);
739 
740 #ifdef __sparc
741 	Adapter->strip_crc = B_TRUE;
742 #else
743 	Adapter->strip_crc = B_FALSE;
744 #endif
745 
746 	/* Get conf file properties */
747 	e1000g_get_conf(Adapter);
748 
749 	/* Get speed/duplex settings in conf file */
750 	hw->mac.forced_speed_duplex = ADVERTISE_100_FULL;
751 	hw->phy.autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
752 	e1000g_force_speed_duplex(Adapter);
753 
754 	/* Get Jumbo Frames settings in conf file */
755 	e1000g_get_max_frame_size(Adapter);
756 	hw->mac.min_frame_size =
757 	    MINIMUM_ETHERNET_PACKET_SIZE + CRC_LENGTH;
758 
759 #ifdef __sparc
760 	/* Get the system page size */
761 	Adapter->sys_page_sz = ddi_ptob(devinfo, (ulong_t)1);
762 	iommu_pagesize = dvma_pagesize(devinfo);
763 	if (iommu_pagesize != 0) {
764 		if (Adapter->sys_page_sz == iommu_pagesize) {
765 			if (iommu_pagesize > 0x4000)
766 				Adapter->sys_page_sz = 0x4000;
767 		} else {
768 			if (Adapter->sys_page_sz > iommu_pagesize)
769 				Adapter->sys_page_sz = iommu_pagesize;
770 		}
771 	}
772 	Adapter->dvma_page_num = hw->mac.max_frame_size /
773 	    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
774 	ASSERT(Adapter->dvma_page_num >= E1000G_DEFAULT_DVMA_PAGE_NUM);
775 #endif
776 
777 	/* Set Rx/Tx buffer size */
778 	switch (hw->mac.max_frame_size) {
779 	case ETHERMAX:
780 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
781 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K;
782 		break;
783 	case FRAME_SIZE_UPTO_4K:
784 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_4K;
785 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_4K;
786 		break;
787 	case FRAME_SIZE_UPTO_8K:
788 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_8K;
789 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_8K;
790 		break;
791 	case FRAME_SIZE_UPTO_9K:
792 	case FRAME_SIZE_UPTO_16K:
793 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_16K;
794 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_16K;
795 		break;
796 	default:
797 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
798 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K;
799 		break;
800 	}
801 	Adapter->rx_buffer_size += E1000G_IPALIGNPRESERVEROOM;
802 
803 #ifndef NO_82542_SUPPORT
804 	/*
805 	 * For Wiseman adapters we have an requirement of having receive
806 	 * buffers aligned at 256 byte boundary. Since Livengood does not
807 	 * require this and forcing it for all hardwares will have
808 	 * performance implications, I am making it applicable only for
809 	 * Wiseman and for Jumbo frames enabled mode as rest of the time,
810 	 * it is okay to have normal frames...but it does involve a
811 	 * potential risk where we may loose data if buffer is not
812 	 * aligned...so all wiseman boards to have 256 byte aligned
813 	 * buffers
814 	 */
815 	if (hw->mac.type < e1000_82543)
816 		Adapter->rx_buf_align = RECEIVE_BUFFER_ALIGN_SIZE;
817 	else
818 		Adapter->rx_buf_align = 1;
819 #endif
820 
821 	/* Master Latency Timer */
822 	Adapter->master_latency_timer = DEFAULT_MASTER_LATENCY_TIMER;
823 
824 	/* copper options */
825 	if (hw->media_type == e1000_media_type_copper) {
826 		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
827 		hw->phy.disable_polarity_correction = B_FALSE;
828 		hw->phy.ms_type = e1000_ms_hw_default;	/* E1000_MASTER_SLAVE */
829 	}
830 
831 	/* The initial link state should be "unknown" */
832 	Adapter->link_state = LINK_STATE_UNKNOWN;
833 
834 	/* Initialize tx parameters */
835 	Adapter->tx_intr_enable = DEFAULT_TX_INTR_ENABLE;
836 	Adapter->tx_bcopy_thresh = DEFAULT_TX_BCOPY_THRESHOLD;
837 
838 	tx_ring = Adapter->tx_ring;
839 	tx_ring->recycle_low_water = DEFAULT_TX_RECYCLE_LOW_WATER;
840 	tx_ring->recycle_num = DEFAULT_TX_RECYCLE_NUM;
841 	tx_ring->frags_limit =
842 	    (hw->mac.max_frame_size / Adapter->tx_bcopy_thresh) + 2;
843 	if (tx_ring->frags_limit > (MAX_TX_DESC_PER_PACKET >> 1))
844 		tx_ring->frags_limit = (MAX_TX_DESC_PER_PACKET >> 1);
845 
846 	/* Initialize rx parameters */
847 	Adapter->rx_bcopy_thresh = DEFAULT_RX_BCOPY_THRESHOLD;
848 
849 	return (DDI_SUCCESS);
850 }
851 
852 /*
853  * e1000g_detach - driver detach
854  *
855  * The detach() function is the complement of the attach routine.
856  * If cmd is set to DDI_DETACH, detach() is used to remove  the
857  * state  associated  with  a  given  instance of a device node
858  * prior to the removal of that instance from the system.
859  *
860  * The detach() function will be called once for each  instance
861  * of the device for which there has been a successful attach()
862  * once there are no longer  any  opens  on  the  device.
863  *
864  * Interrupts routine are disabled, All memory allocated by this
865  * driver are freed.
866  */
867 static int
868 e1000g_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
869 {
870 	struct e1000g *Adapter;
871 	boolean_t rx_drain;
872 
873 	switch (cmd) {
874 	default:
875 		return (DDI_FAILURE);
876 
877 	case DDI_SUSPEND:
878 		return (e1000g_suspend(devinfo));
879 
880 	case DDI_DETACH:
881 		break;
882 	}
883 
884 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
885 	if (Adapter == NULL)
886 		return (DDI_FAILURE);
887 
888 	if (mac_unregister(Adapter->mh) != 0) {
889 		e1000g_log(Adapter, CE_WARN, "Unregister MAC failed");
890 		return (DDI_FAILURE);
891 	}
892 	Adapter->attach_progress &= ~ATTACH_PROGRESS_MAC;
893 
894 
895 	if (Adapter->chip_state != E1000G_STOP)
896 		e1000g_stop(Adapter, B_TRUE);
897 
898 	rx_drain = e1000g_rx_drain(Adapter);
899 
900 	/*
901 	 * If e1000g_force_detach is enabled, driver detach is safe.
902 	 * We will let e1000g_free_priv_devi_node routine determine
903 	 * whether we need to free the priv_dip entry for current
904 	 * driver instance.
905 	 */
906 	if (e1000g_force_detach) {
907 		e1000g_free_priv_devi_node(Adapter, rx_drain);
908 	} else {
909 		if (!rx_drain)
910 			return (DDI_FAILURE);
911 	}
912 
913 	e1000g_unattach(devinfo, Adapter);
914 
915 	return (DDI_SUCCESS);
916 }
917 
918 /*
919  * e1000g_free_priv_devi_node - free a priv_dip entry for driver instance
920  *
921  * If free_flag is true, that indicates the upper layer is not holding
922  * the rx buffers, we could free the priv_dip entry safely.
923  *
924  * Otherwise, we have to keep this entry even after driver detached,
925  * and we also need to mark this entry with E1000G_PRIV_DEVI_DETACH flag,
926  * so that driver could free it while all of rx buffers are returned
927  * by upper layer later.
928  */
929 static void
930 e1000g_free_priv_devi_node(struct e1000g *Adapter, boolean_t free_flag)
931 {
932 	private_devi_list_t *devi_node, *devi_del;
933 
934 	rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
935 	ASSERT(e1000g_private_devi_list != NULL);
936 	ASSERT(Adapter->priv_dip != NULL);
937 
938 	devi_node = e1000g_private_devi_list;
939 	if (devi_node->priv_dip == Adapter->priv_dip) {
940 		if (free_flag) {
941 			e1000g_private_devi_list =
942 			    devi_node->next;
943 			kmem_free(devi_node->priv_dip,
944 			    sizeof (struct dev_info));
945 			kmem_free(devi_node,
946 			    sizeof (private_devi_list_t));
947 		} else {
948 			ASSERT(e1000g_mblks_pending != 0);
949 			devi_node->flag =
950 			    E1000G_PRIV_DEVI_DETACH;
951 		}
952 		rw_exit(&e1000g_rx_detach_lock);
953 		return;
954 	}
955 
956 	devi_node = e1000g_private_devi_list;
957 	while (devi_node->next != NULL) {
958 		if (devi_node->next->priv_dip == Adapter->priv_dip) {
959 			if (free_flag) {
960 				devi_del = devi_node->next;
961 				devi_node->next = devi_del->next;
962 				kmem_free(devi_del->priv_dip,
963 				    sizeof (struct dev_info));
964 				kmem_free(devi_del,
965 				    sizeof (private_devi_list_t));
966 			} else {
967 				ASSERT(e1000g_mblks_pending != 0);
968 				devi_node->next->flag =
969 				    E1000G_PRIV_DEVI_DETACH;
970 			}
971 			break;
972 		}
973 		devi_node = devi_node->next;
974 	}
975 	rw_exit(&e1000g_rx_detach_lock);
976 }
977 
978 static void
979 e1000g_unattach(dev_info_t *devinfo, struct e1000g *Adapter)
980 {
981 	if (Adapter->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
982 		(void) e1000g_disable_intrs(Adapter);
983 	}
984 
985 	if (Adapter->attach_progress & ATTACH_PROGRESS_MAC) {
986 		(void) mac_unregister(Adapter->mh);
987 	}
988 
989 	if (Adapter->attach_progress & ATTACH_PROGRESS_NDD) {
990 		e1000g_nd_cleanup(Adapter);
991 	}
992 
993 	if (Adapter->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
994 		(void) e1000g_rem_intrs(Adapter);
995 	}
996 
997 	if (Adapter->attach_progress & ATTACH_PROGRESS_SOFT_INTR) {
998 		(void) ddi_intr_remove_softint(Adapter->tx_softint_handle);
999 	}
1000 
1001 	if (Adapter->attach_progress & ATTACH_PROGRESS_SETUP) {
1002 		(void) ddi_prop_remove_all(devinfo);
1003 	}
1004 
1005 	if (Adapter->attach_progress & ATTACH_PROGRESS_KSTATS) {
1006 		kstat_delete((kstat_t *)Adapter->e1000g_ksp);
1007 	}
1008 
1009 	if (Adapter->attach_progress & ATTACH_PROGRESS_INIT) {
1010 		stop_link_timer(Adapter);
1011 		if (e1000_reset_hw(&Adapter->shared) != 0) {
1012 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1013 			ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1014 		}
1015 	}
1016 
1017 	if (Adapter->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
1018 		if (Adapter->osdep.reg_handle != NULL)
1019 			ddi_regs_map_free(&Adapter->osdep.reg_handle);
1020 		if (Adapter->osdep.ich_flash_handle != NULL)
1021 			ddi_regs_map_free(&Adapter->osdep.ich_flash_handle);
1022 	}
1023 
1024 	if (Adapter->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
1025 		if (Adapter->osdep.cfg_handle != NULL)
1026 			pci_config_teardown(&Adapter->osdep.cfg_handle);
1027 	}
1028 
1029 	if (Adapter->attach_progress & ATTACH_PROGRESS_LOCKS) {
1030 		e1000g_destroy_locks(Adapter);
1031 	}
1032 
1033 	if (Adapter->attach_progress & ATTACH_PROGRESS_FMINIT) {
1034 		e1000g_fm_fini(Adapter);
1035 	}
1036 
1037 	e1000_remove_device(&Adapter->shared);
1038 
1039 	kmem_free((caddr_t)Adapter, sizeof (struct e1000g));
1040 
1041 	/*
1042 	 * Another hotplug spec requirement,
1043 	 * run ddi_set_driver_private(devinfo, null);
1044 	 */
1045 	ddi_set_driver_private(devinfo, NULL);
1046 }
1047 
1048 static void
1049 e1000g_init_locks(struct e1000g *Adapter)
1050 {
1051 	e1000g_tx_ring_t *tx_ring;
1052 	e1000g_rx_ring_t *rx_ring;
1053 
1054 	rw_init(&Adapter->chip_lock, NULL,
1055 	    RW_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1056 	mutex_init(&Adapter->link_lock, NULL,
1057 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1058 	mutex_init(&Adapter->watchdog_lock, NULL,
1059 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1060 
1061 	tx_ring = Adapter->tx_ring;
1062 
1063 	mutex_init(&tx_ring->tx_lock, NULL,
1064 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1065 	mutex_init(&tx_ring->usedlist_lock, NULL,
1066 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1067 	mutex_init(&tx_ring->freelist_lock, NULL,
1068 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1069 	mutex_init(&tx_ring->mblks_lock, NULL,
1070 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1071 
1072 	rx_ring = Adapter->rx_ring;
1073 
1074 	mutex_init(&rx_ring->rx_lock, NULL,
1075 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1076 	mutex_init(&rx_ring->freelist_lock, NULL,
1077 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1078 }
1079 
1080 static void
1081 e1000g_destroy_locks(struct e1000g *Adapter)
1082 {
1083 	e1000g_tx_ring_t *tx_ring;
1084 	e1000g_rx_ring_t *rx_ring;
1085 
1086 	tx_ring = Adapter->tx_ring;
1087 	mutex_destroy(&tx_ring->tx_lock);
1088 	mutex_destroy(&tx_ring->usedlist_lock);
1089 	mutex_destroy(&tx_ring->freelist_lock);
1090 	mutex_destroy(&tx_ring->mblks_lock);
1091 
1092 	rx_ring = Adapter->rx_ring;
1093 	mutex_destroy(&rx_ring->rx_lock);
1094 	mutex_destroy(&rx_ring->freelist_lock);
1095 
1096 	mutex_destroy(&Adapter->link_lock);
1097 	mutex_destroy(&Adapter->watchdog_lock);
1098 	rw_destroy(&Adapter->chip_lock);
1099 }
1100 
1101 static int
1102 e1000g_resume(dev_info_t *devinfo)
1103 {
1104 	struct e1000g *Adapter;
1105 
1106 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1107 	if (Adapter == NULL)
1108 		return (DDI_FAILURE);
1109 
1110 	if (e1000g_start(Adapter, B_TRUE))
1111 		return (DDI_FAILURE);
1112 
1113 	return (DDI_SUCCESS);
1114 }
1115 
1116 static int
1117 e1000g_suspend(dev_info_t *devinfo)
1118 {
1119 	struct e1000g *Adapter;
1120 
1121 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1122 	if (Adapter == NULL)
1123 		return (DDI_FAILURE);
1124 
1125 	e1000g_stop(Adapter, B_TRUE);
1126 
1127 	return (DDI_SUCCESS);
1128 }
1129 
1130 static int
1131 e1000g_init(struct e1000g *Adapter)
1132 {
1133 	uint32_t pba;
1134 	uint32_t high_water;
1135 	struct e1000_hw *hw;
1136 	clock_t link_timeout;
1137 
1138 	hw = &Adapter->shared;
1139 
1140 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1141 
1142 	/*
1143 	 * reset to put the hardware in a known state
1144 	 * before we try to do anything with the eeprom
1145 	 */
1146 	if (e1000_reset_hw(hw) != 0) {
1147 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1148 		goto init_fail;
1149 	}
1150 
1151 	if (e1000_validate_nvm_checksum(hw) < 0) {
1152 		/*
1153 		 * Some PCI-E parts fail the first check due to
1154 		 * the link being in sleep state.  Call it again,
1155 		 * if it fails a second time its a real issue.
1156 		 */
1157 		if (e1000_validate_nvm_checksum(hw) < 0) {
1158 			e1000g_log(Adapter, CE_WARN,
1159 			    "Invalid NVM checksum. Please contact "
1160 			    "the vendor to update the NVM.");
1161 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1162 			goto init_fail;
1163 		}
1164 	}
1165 
1166 #ifdef __sparc
1167 	/*
1168 	 * Firstly, we try to get the local ethernet address from OBP. If
1169 	 * fail, we get from EEPROM of NIC card.
1170 	 */
1171 	if (!e1000g_find_mac_address(Adapter)) {
1172 		if (e1000_read_mac_addr(hw) < 0) {
1173 			e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1174 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1175 			goto init_fail;
1176 		}
1177 	}
1178 #else
1179 	/* Get the local ethernet address. */
1180 	if (e1000_read_mac_addr(hw) < 0) {
1181 		e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1182 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1183 		goto init_fail;
1184 	}
1185 #endif
1186 
1187 	/* check for valid mac address */
1188 	if (!is_valid_mac_addr(hw->mac.addr)) {
1189 		e1000g_log(Adapter, CE_WARN, "Invalid mac addr");
1190 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1191 		goto init_fail;
1192 	}
1193 
1194 	/* Set LAA state for 82571 chipset */
1195 	e1000_set_laa_state_82571(hw, B_TRUE);
1196 
1197 	/* Master Latency Timer implementation */
1198 	if (Adapter->master_latency_timer) {
1199 		pci_config_put8(Adapter->osdep.cfg_handle,
1200 		    PCI_CONF_LATENCY_TIMER, Adapter->master_latency_timer);
1201 	}
1202 
1203 	if (hw->mac.type < e1000_82547) {
1204 		/*
1205 		 * Total FIFO is 64K
1206 		 */
1207 		if (hw->mac.max_frame_size > FRAME_SIZE_UPTO_8K)
1208 			pba = E1000_PBA_40K;	/* 40K for Rx, 24K for Tx */
1209 		else
1210 			pba = E1000_PBA_48K;	/* 48K for Rx, 16K for Tx */
1211 	} else if (hw->mac.type >= e1000_82571 &&
1212 	    hw->mac.type <= e1000_82572) {
1213 		/*
1214 		 * Total FIFO is 48K
1215 		 */
1216 		if (hw->mac.max_frame_size > FRAME_SIZE_UPTO_8K)
1217 			pba = E1000_PBA_30K;	/* 30K for Rx, 18K for Tx */
1218 		else
1219 			pba = E1000_PBA_38K;	/* 38K for Rx, 10K for Tx */
1220 	} else if (hw->mac.type == e1000_ich8lan) {
1221 		pba = E1000_PBA_8K;		/* 8K for Rx, 12K for Tx */
1222 	} else if (hw->mac.type == e1000_ich9lan) {
1223 		pba = E1000_PBA_12K;
1224 	} else {
1225 		/*
1226 		 * Total FIFO is 40K
1227 		 */
1228 		if (hw->mac.max_frame_size > FRAME_SIZE_UPTO_8K)
1229 			pba = E1000_PBA_22K;	/* 22K for Rx, 18K for Tx */
1230 		else
1231 			pba = E1000_PBA_30K;	/* 30K for Rx, 10K for Tx */
1232 	}
1233 	E1000_WRITE_REG(hw, E1000_PBA, pba);
1234 
1235 	/*
1236 	 * These parameters set thresholds for the adapter's generation(Tx)
1237 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1238 	 * settings.  Flow control is enabled or disabled in the configuration
1239 	 * file.
1240 	 * High-water mark is set down from the top of the rx fifo (not
1241 	 * sensitive to max_frame_size) and low-water is set just below
1242 	 * high-water mark.
1243 	 * The high water mark must be low enough to fit one full frame above
1244 	 * it in the rx FIFO.  Should be the lower of:
1245 	 * 90% of the Rx FIFO size and the full Rx FIFO size minus the early
1246 	 * receive size (assuming ERT set to E1000_ERT_2048), or the full
1247 	 * Rx FIFO size minus one full frame.
1248 	 */
1249 	high_water = min(((pba << 10) * 9 / 10),
1250 	    ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_ich9lan) ?
1251 	    ((pba << 10) - (E1000_ERT_2048 << 3)) :
1252 	    ((pba << 10) - hw->mac.max_frame_size)));
1253 
1254 	hw->mac.fc_high_water = high_water & 0xFFF8;
1255 	hw->mac.fc_low_water = hw->mac.fc_high_water - 8;
1256 
1257 	if (hw->mac.type == e1000_80003es2lan)
1258 		hw->mac.fc_pause_time = 0xFFFF;
1259 	else
1260 		hw->mac.fc_pause_time = E1000_FC_PAUSE_TIME;
1261 	hw->mac.fc_send_xon = B_TRUE;
1262 	hw->mac.fc = hw->mac.original_fc;
1263 
1264 	/*
1265 	 * Reset the adapter hardware the second time.
1266 	 */
1267 	if (e1000_reset_hw(hw) != 0) {
1268 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1269 		goto init_fail;
1270 	}
1271 
1272 	/* disable wakeup control by default */
1273 	if (hw->mac.type >= e1000_82544)
1274 		E1000_WRITE_REG(hw, E1000_WUC, 0);
1275 
1276 	/* MWI setup */
1277 	e1000_pci_set_mwi(hw);
1278 
1279 	/*
1280 	 * Configure/Initialize hardware
1281 	 */
1282 	if (e1000_init_hw(hw) < 0) {
1283 		e1000g_log(Adapter, CE_WARN, "Initialize hw failed");
1284 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1285 		goto init_fail;
1286 	}
1287 
1288 	/* Disable Smart Power Down */
1289 	phy_spd_state(hw, B_FALSE);
1290 
1291 	/* Make sure driver has control */
1292 	e1000g_get_driver_control(hw);
1293 
1294 	/*
1295 	 * Initialize unicast addresses.
1296 	 */
1297 	e1000g_init_unicst(Adapter);
1298 
1299 	/*
1300 	 * Setup and initialize the mctable structures.  After this routine
1301 	 * completes  Multicast table will be set
1302 	 */
1303 	e1000g_setup_multicast(Adapter);
1304 	msec_delay(5);
1305 
1306 	/*
1307 	 * Implement Adaptive IFS
1308 	 */
1309 	e1000_reset_adaptive(hw);
1310 
1311 	/* Setup Interrupt Throttling Register */
1312 	E1000_WRITE_REG(hw, E1000_ITR, Adapter->intr_throttling_rate);
1313 
1314 	/* Start the timer for link setup */
1315 	if (hw->mac.autoneg)
1316 		link_timeout = PHY_AUTO_NEG_LIMIT * drv_usectohz(100000);
1317 	else
1318 		link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
1319 
1320 	mutex_enter(&Adapter->link_lock);
1321 	if (hw->phy.wait_for_link) {
1322 		Adapter->link_complete = B_TRUE;
1323 	} else {
1324 		Adapter->link_complete = B_FALSE;
1325 		Adapter->link_tid = timeout(e1000g_link_timer,
1326 		    (void *)Adapter, link_timeout);
1327 	}
1328 	mutex_exit(&Adapter->link_lock);
1329 
1330 	/* Enable PCI-Ex master */
1331 	if (hw->bus.type == e1000_bus_type_pci_express) {
1332 		e1000_enable_pciex_master(hw);
1333 	}
1334 
1335 	/* Save the state of the phy */
1336 	e1000g_get_phy_state(Adapter);
1337 
1338 	Adapter->init_count++;
1339 
1340 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
1341 		goto init_fail;
1342 	}
1343 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1344 		goto init_fail;
1345 	}
1346 
1347 	rw_exit(&Adapter->chip_lock);
1348 
1349 	return (DDI_SUCCESS);
1350 
1351 init_fail:
1352 	rw_exit(&Adapter->chip_lock);
1353 	ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1354 	return (DDI_FAILURE);
1355 }
1356 
1357 /*
1358  * Check if the link is up
1359  */
1360 static boolean_t
1361 e1000g_link_up(struct e1000g *Adapter)
1362 {
1363 	struct e1000_hw *hw;
1364 	boolean_t link_up;
1365 
1366 	hw = &Adapter->shared;
1367 
1368 	e1000_check_for_link(hw);
1369 
1370 	if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU) ||
1371 	    ((!hw->mac.get_link_status) && (hw->mac.type == e1000_82543)) ||
1372 	    ((hw->media_type == e1000_media_type_internal_serdes) &&
1373 	    (hw->mac.serdes_has_link))) {
1374 		link_up = B_TRUE;
1375 	} else {
1376 		link_up = B_FALSE;
1377 	}
1378 
1379 	return (link_up);
1380 }
1381 
1382 static void
1383 e1000g_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
1384 {
1385 	struct iocblk *iocp;
1386 	struct e1000g *e1000gp;
1387 	enum ioc_reply status;
1388 	int err;
1389 
1390 	iocp = (struct iocblk *)mp->b_rptr;
1391 	iocp->ioc_error = 0;
1392 	e1000gp = (struct e1000g *)arg;
1393 
1394 	ASSERT(e1000gp);
1395 	if (e1000gp == NULL) {
1396 		miocnak(q, mp, 0, EINVAL);
1397 		return;
1398 	}
1399 
1400 	switch (iocp->ioc_cmd) {
1401 
1402 	case LB_GET_INFO_SIZE:
1403 	case LB_GET_INFO:
1404 	case LB_GET_MODE:
1405 	case LB_SET_MODE:
1406 		status = e1000g_loopback_ioctl(e1000gp, iocp, mp);
1407 		break;
1408 
1409 	case ND_GET:
1410 	case ND_SET:
1411 		status = e1000g_nd_ioctl(e1000gp, q, mp, iocp);
1412 		break;
1413 
1414 #ifdef E1000G_DEBUG
1415 	case E1000G_IOC_REG_PEEK:
1416 	case E1000G_IOC_REG_POKE:
1417 		status = e1000g_pp_ioctl(e1000gp, iocp, mp);
1418 		break;
1419 	case E1000G_IOC_CHIP_RESET:
1420 		e1000gp->reset_count++;
1421 		if (e1000g_reset(e1000gp))
1422 			status = IOC_ACK;
1423 		else
1424 			status = IOC_INVAL;
1425 		break;
1426 #endif
1427 	default:
1428 		status = IOC_INVAL;
1429 		break;
1430 	}
1431 
1432 	/*
1433 	 * Decide how to reply
1434 	 */
1435 	switch (status) {
1436 	default:
1437 	case IOC_INVAL:
1438 		/*
1439 		 * Error, reply with a NAK and EINVAL or the specified error
1440 		 */
1441 		miocnak(q, mp, 0, iocp->ioc_error == 0 ?
1442 		    EINVAL : iocp->ioc_error);
1443 		break;
1444 
1445 	case IOC_DONE:
1446 		/*
1447 		 * OK, reply already sent
1448 		 */
1449 		break;
1450 
1451 	case IOC_ACK:
1452 		/*
1453 		 * OK, reply with an ACK
1454 		 */
1455 		miocack(q, mp, 0, 0);
1456 		break;
1457 
1458 	case IOC_REPLY:
1459 		/*
1460 		 * OK, send prepared reply as ACK or NAK
1461 		 */
1462 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1463 		    M_IOCACK : M_IOCNAK;
1464 		qreply(q, mp);
1465 		break;
1466 	}
1467 }
1468 
1469 static void e1000g_m_blank(void *arg, time_t ticks, uint32_t count)
1470 {
1471 	struct e1000g *Adapter;
1472 
1473 	Adapter = (struct e1000g *)arg;
1474 
1475 	/*
1476 	 * Adjust ITR (Interrupt Throttling Register) to coalesce
1477 	 * interrupts. This formula and its coefficient come from
1478 	 * our experiments.
1479 	 */
1480 	if (Adapter->intr_adaptive) {
1481 		Adapter->intr_throttling_rate = count << 5;
1482 		E1000_WRITE_REG(&Adapter->shared, E1000_ITR,
1483 		    Adapter->intr_throttling_rate);
1484 	}
1485 
1486 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1487 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_UNAFFECTED);
1488 }
1489 
1490 static void
1491 e1000g_m_resources(void *arg)
1492 {
1493 	struct e1000g *adapter = (struct e1000g *)arg;
1494 	mac_rx_fifo_t mrf;
1495 
1496 	mrf.mrf_type = MAC_RX_FIFO;
1497 	mrf.mrf_blank = e1000g_m_blank;
1498 	mrf.mrf_arg = (void *)adapter;
1499 	mrf.mrf_normal_blank_time = E1000_RX_INTPT_TIME;
1500 	mrf.mrf_normal_pkt_count = E1000_RX_PKT_CNT;
1501 
1502 	adapter->mrh = mac_resource_add(adapter->mh, (mac_resource_t *)&mrf);
1503 }
1504 
1505 static int
1506 e1000g_m_start(void *arg)
1507 {
1508 	struct e1000g *Adapter = (struct e1000g *)arg;
1509 
1510 	return (e1000g_start(Adapter, B_TRUE));
1511 }
1512 
1513 static int
1514 e1000g_start(struct e1000g *Adapter, boolean_t global)
1515 {
1516 	if (global) {
1517 		/* Allocate dma resources for descriptors and buffers */
1518 		if (e1000g_alloc_dma_resources(Adapter) != DDI_SUCCESS) {
1519 			e1000g_log(Adapter, CE_WARN,
1520 			    "Alloc DMA resources failed");
1521 			return (ENOTACTIVE);
1522 		}
1523 		Adapter->rx_buffer_setup = B_FALSE;
1524 	}
1525 
1526 	if (!(Adapter->attach_progress & ATTACH_PROGRESS_INIT)) {
1527 		if (e1000g_init(Adapter) != DDI_SUCCESS) {
1528 			e1000g_log(Adapter, CE_WARN,
1529 			    "Adapter initialization failed");
1530 			if (global)
1531 				e1000g_release_dma_resources(Adapter);
1532 			return (ENOTACTIVE);
1533 		}
1534 	}
1535 
1536 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1537 
1538 	/* Setup and initialize the transmit structures */
1539 	e1000g_tx_setup(Adapter);
1540 	msec_delay(5);
1541 
1542 	/* Setup and initialize the receive structures */
1543 	e1000g_rx_setup(Adapter);
1544 	msec_delay(5);
1545 
1546 	e1000g_mask_interrupt(Adapter);
1547 	if (Adapter->tx_intr_enable)
1548 		e1000g_mask_tx_interrupt(Adapter);
1549 
1550 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1551 		rw_exit(&Adapter->chip_lock);
1552 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1553 		return (ENOTACTIVE);
1554 	}
1555 
1556 	Adapter->chip_state = E1000G_START;
1557 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
1558 
1559 	rw_exit(&Adapter->chip_lock);
1560 
1561 	/* Enable and start the watchdog timer */
1562 	enable_watchdog_timer(Adapter);
1563 
1564 	return (0);
1565 }
1566 
1567 static void
1568 e1000g_m_stop(void *arg)
1569 {
1570 	struct e1000g *Adapter = (struct e1000g *)arg;
1571 
1572 	e1000g_stop(Adapter, B_TRUE);
1573 }
1574 
1575 static void
1576 e1000g_stop(struct e1000g *Adapter, boolean_t global)
1577 {
1578 	/* Set stop flags */
1579 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1580 
1581 	Adapter->chip_state = E1000G_STOP;
1582 	Adapter->attach_progress &= ~ATTACH_PROGRESS_INIT;
1583 
1584 	rw_exit(&Adapter->chip_lock);
1585 
1586 	/* Drain tx sessions */
1587 	(void) e1000g_tx_drain(Adapter);
1588 
1589 	/* Disable and stop all the timers */
1590 	disable_watchdog_timer(Adapter);
1591 	stop_link_timer(Adapter);
1592 	stop_82547_timer(Adapter->tx_ring);
1593 
1594 	/* Stop the chip and release pending resources */
1595 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1596 
1597 	e1000g_clear_all_interrupts(Adapter);
1598 	if (e1000_reset_hw(&Adapter->shared) != 0) {
1599 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1600 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1601 	}
1602 
1603 	/* Release resources still held by the TX descriptors */
1604 	e1000g_tx_clean(Adapter);
1605 
1606 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1607 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1608 
1609 	/* Clean the pending rx jumbo packet fragment */
1610 	e1000g_rx_clean(Adapter);
1611 
1612 	rw_exit(&Adapter->chip_lock);
1613 
1614 	if (global)
1615 		e1000g_release_dma_resources(Adapter);
1616 }
1617 
1618 static void
1619 e1000g_rx_clean(struct e1000g *Adapter)
1620 {
1621 	e1000g_rx_ring_t *rx_ring = Adapter->rx_ring;
1622 
1623 	if (rx_ring->rx_mblk != NULL) {
1624 		freemsg(rx_ring->rx_mblk);
1625 		rx_ring->rx_mblk = NULL;
1626 		rx_ring->rx_mblk_tail = NULL;
1627 		rx_ring->rx_mblk_len = 0;
1628 	}
1629 }
1630 
1631 static void
1632 e1000g_tx_clean(struct e1000g *Adapter)
1633 {
1634 	e1000g_tx_ring_t *tx_ring;
1635 	p_tx_sw_packet_t packet;
1636 	mblk_t *mp;
1637 	mblk_t *nmp;
1638 	uint32_t packet_count;
1639 
1640 	tx_ring = Adapter->tx_ring;
1641 
1642 	/*
1643 	 * Here we don't need to protect the lists using
1644 	 * the usedlist_lock and freelist_lock, for they
1645 	 * have been protected by the chip_lock.
1646 	 */
1647 	mp = NULL;
1648 	nmp = NULL;
1649 	packet_count = 0;
1650 	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list);
1651 	while (packet != NULL) {
1652 		if (packet->mp != NULL) {
1653 			/* Assemble the message chain */
1654 			if (mp == NULL) {
1655 				mp = packet->mp;
1656 				nmp = packet->mp;
1657 			} else {
1658 				nmp->b_next = packet->mp;
1659 				nmp = packet->mp;
1660 			}
1661 			/* Disconnect the message from the sw packet */
1662 			packet->mp = NULL;
1663 		}
1664 
1665 		e1000g_free_tx_swpkt(packet);
1666 		packet_count++;
1667 
1668 		packet = (p_tx_sw_packet_t)
1669 		    QUEUE_GET_NEXT(&tx_ring->used_list, &packet->Link);
1670 	}
1671 
1672 	if (mp != NULL) {
1673 		mutex_enter(&tx_ring->mblks_lock);
1674 		if (tx_ring->mblks.head == NULL) {
1675 			tx_ring->mblks.head = mp;
1676 			tx_ring->mblks.tail = nmp;
1677 		} else {
1678 			tx_ring->mblks.tail->b_next = mp;
1679 			tx_ring->mblks.tail = nmp;
1680 		}
1681 		mutex_exit(&tx_ring->mblks_lock);
1682 	}
1683 
1684 	ddi_intr_trigger_softint(Adapter->tx_softint_handle, NULL);
1685 
1686 	if (packet_count > 0) {
1687 		QUEUE_APPEND(&tx_ring->free_list, &tx_ring->used_list);
1688 		QUEUE_INIT_LIST(&tx_ring->used_list);
1689 
1690 		/* Setup TX descriptor pointers */
1691 		tx_ring->tbd_next = tx_ring->tbd_first;
1692 		tx_ring->tbd_oldest = tx_ring->tbd_first;
1693 
1694 		/* Setup our HW Tx Head & Tail descriptor pointers */
1695 		E1000_WRITE_REG(&Adapter->shared, E1000_TDH, 0);
1696 		E1000_WRITE_REG(&Adapter->shared, E1000_TDT, 0);
1697 	}
1698 }
1699 
1700 static boolean_t
1701 e1000g_tx_drain(struct e1000g *Adapter)
1702 {
1703 	int i;
1704 	boolean_t done;
1705 	e1000g_tx_ring_t *tx_ring;
1706 
1707 	tx_ring = Adapter->tx_ring;
1708 
1709 	/* Allow up to 'wsdraintime' for pending xmit's to complete. */
1710 	for (i = 0; i < TX_DRAIN_TIME; i++) {
1711 		mutex_enter(&tx_ring->usedlist_lock);
1712 		done = IS_QUEUE_EMPTY(&tx_ring->used_list);
1713 		mutex_exit(&tx_ring->usedlist_lock);
1714 
1715 		if (done)
1716 			break;
1717 
1718 		msec_delay(1);
1719 	}
1720 
1721 	return (done);
1722 }
1723 
1724 static boolean_t
1725 e1000g_rx_drain(struct e1000g *Adapter)
1726 {
1727 	e1000g_rx_ring_t *rx_ring;
1728 	p_rx_sw_packet_t packet;
1729 	boolean_t done;
1730 
1731 	rx_ring = Adapter->rx_ring;
1732 	done = B_TRUE;
1733 
1734 	rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
1735 
1736 	while (rx_ring->pending_list != NULL) {
1737 		packet = rx_ring->pending_list;
1738 		rx_ring->pending_list =
1739 		    rx_ring->pending_list->next;
1740 
1741 		if (packet->flag == E1000G_RX_SW_STOP) {
1742 			packet->flag = E1000G_RX_SW_DETACH;
1743 			done = B_FALSE;
1744 		} else {
1745 			ASSERT(packet->flag == E1000G_RX_SW_FREE);
1746 			ASSERT(packet->mp == NULL);
1747 			e1000g_free_rx_sw_packet(packet);
1748 		}
1749 	}
1750 
1751 	rw_exit(&e1000g_rx_detach_lock);
1752 
1753 	return (done);
1754 }
1755 
1756 boolean_t
1757 e1000g_reset(struct e1000g *Adapter)
1758 {
1759 	e1000g_stop(Adapter, B_FALSE);
1760 
1761 	if (e1000g_start(Adapter, B_FALSE)) {
1762 		e1000g_log(Adapter, CE_WARN, "Reset failed");
1763 		return (B_FALSE);
1764 	}
1765 
1766 	return (B_TRUE);
1767 }
1768 
1769 boolean_t
1770 e1000g_global_reset(struct e1000g *Adapter)
1771 {
1772 	e1000g_stop(Adapter, B_TRUE);
1773 
1774 	Adapter->init_count = 0;
1775 
1776 	if (e1000g_start(Adapter, B_TRUE)) {
1777 		e1000g_log(Adapter, CE_WARN, "Reset failed");
1778 		return (B_FALSE);
1779 	}
1780 
1781 	return (B_TRUE);
1782 }
1783 
1784 /*
1785  * e1000g_intr_pciexpress - ISR for PCI Express chipsets
1786  *
1787  * This interrupt service routine is for PCI-Express adapters.
1788  * The ICR contents is valid only when the E1000_ICR_INT_ASSERTED
1789  * bit is set.
1790  */
1791 static uint_t
1792 e1000g_intr_pciexpress(caddr_t arg)
1793 {
1794 	struct e1000g *Adapter;
1795 	uint32_t icr;
1796 
1797 	Adapter = (struct e1000g *)arg;
1798 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
1799 
1800 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1801 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
1802 
1803 	if (icr & E1000_ICR_INT_ASSERTED) {
1804 		/*
1805 		 * E1000_ICR_INT_ASSERTED bit was set:
1806 		 * Read(Clear) the ICR, claim this interrupt,
1807 		 * look for work to do.
1808 		 */
1809 		e1000g_intr_work(Adapter, icr);
1810 		return (DDI_INTR_CLAIMED);
1811 	} else {
1812 		/*
1813 		 * E1000_ICR_INT_ASSERTED bit was not set:
1814 		 * Don't claim this interrupt, return immediately.
1815 		 */
1816 		return (DDI_INTR_UNCLAIMED);
1817 	}
1818 }
1819 
1820 /*
1821  * e1000g_intr - ISR for PCI/PCI-X chipsets
1822  *
1823  * This interrupt service routine is for PCI/PCI-X adapters.
1824  * We check the ICR contents no matter the E1000_ICR_INT_ASSERTED
1825  * bit is set or not.
1826  */
1827 static uint_t
1828 e1000g_intr(caddr_t arg)
1829 {
1830 	struct e1000g *Adapter;
1831 	uint32_t icr;
1832 
1833 	Adapter = (struct e1000g *)arg;
1834 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
1835 
1836 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1837 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
1838 
1839 	if (icr) {
1840 		/*
1841 		 * Any bit was set in ICR:
1842 		 * Read(Clear) the ICR, claim this interrupt,
1843 		 * look for work to do.
1844 		 */
1845 		e1000g_intr_work(Adapter, icr);
1846 		return (DDI_INTR_CLAIMED);
1847 	} else {
1848 		/*
1849 		 * No bit was set in ICR:
1850 		 * Don't claim this interrupt, return immediately.
1851 		 */
1852 		return (DDI_INTR_UNCLAIMED);
1853 	}
1854 }
1855 
1856 /*
1857  * e1000g_intr_work - actual processing of ISR
1858  *
1859  * Read(clear) the ICR contents and call appropriate interrupt
1860  * processing routines.
1861  */
1862 static void
1863 e1000g_intr_work(struct e1000g *Adapter, uint32_t icr)
1864 {
1865 	rw_enter(&Adapter->chip_lock, RW_READER);
1866 	/*
1867 	 * Here we need to check the "chip_state" flag within the chip_lock to
1868 	 * ensure the receive routine will not execute when the adapter is
1869 	 * being reset.
1870 	 */
1871 	if (Adapter->chip_state != E1000G_START) {
1872 		rw_exit(&Adapter->chip_lock);
1873 		return;
1874 	}
1875 
1876 	if (icr & E1000_ICR_RXT0) {
1877 		mblk_t *mp;
1878 
1879 		mutex_enter(&Adapter->rx_ring->rx_lock);
1880 		mp = e1000g_receive(Adapter);
1881 		mutex_exit(&Adapter->rx_ring->rx_lock);
1882 
1883 		rw_exit(&Adapter->chip_lock);
1884 
1885 		if (mp != NULL)
1886 			mac_rx(Adapter->mh, Adapter->mrh, mp);
1887 	} else
1888 		rw_exit(&Adapter->chip_lock);
1889 
1890 	/*
1891 	 * The Receive Sequence errors RXSEQ and the link status change LSC
1892 	 * are checked to detect that the cable has been pulled out. For
1893 	 * the Wiseman 2.0 silicon, the receive sequence errors interrupt
1894 	 * are an indication that cable is not connected.
1895 	 */
1896 	if ((icr & E1000_ICR_RXSEQ) ||
1897 	    (icr & E1000_ICR_LSC) ||
1898 	    (icr & E1000_ICR_GPI_EN1)) {
1899 		boolean_t link_changed;
1900 		timeout_id_t tid = 0;
1901 
1902 		stop_watchdog_timer(Adapter);
1903 
1904 		rw_enter(&Adapter->chip_lock, RW_WRITER);
1905 
1906 		/*
1907 		 * Because we got a link-status-change interrupt, force
1908 		 * e1000_check_for_link() to look at phy
1909 		 */
1910 		Adapter->shared.mac.get_link_status = B_TRUE;
1911 
1912 		/* e1000g_link_check takes care of link status change */
1913 		link_changed = e1000g_link_check(Adapter);
1914 
1915 		/* Get new phy state */
1916 		e1000g_get_phy_state(Adapter);
1917 
1918 		/*
1919 		 * If the link timer has not timed out, we'll not notify
1920 		 * the upper layer with any link state until the link is up.
1921 		 */
1922 		if (link_changed && !Adapter->link_complete) {
1923 			if (Adapter->link_state == LINK_STATE_UP) {
1924 				mutex_enter(&Adapter->link_lock);
1925 				Adapter->link_complete = B_TRUE;
1926 				tid = Adapter->link_tid;
1927 				Adapter->link_tid = 0;
1928 				mutex_exit(&Adapter->link_lock);
1929 			} else {
1930 				link_changed = B_FALSE;
1931 			}
1932 		}
1933 		rw_exit(&Adapter->chip_lock);
1934 
1935 		if (link_changed) {
1936 			if (tid != 0)
1937 				(void) untimeout(tid);
1938 
1939 			/*
1940 			 * Workaround for esb2. Data stuck in fifo on a link
1941 			 * down event. Reset the adapter to recover it.
1942 			 */
1943 			if ((Adapter->link_state == LINK_STATE_DOWN) &&
1944 			    (Adapter->shared.mac.type == e1000_80003es2lan))
1945 				(void) e1000g_reset(Adapter);
1946 
1947 			mac_link_update(Adapter->mh, Adapter->link_state);
1948 		}
1949 
1950 		start_watchdog_timer(Adapter);
1951 	}
1952 
1953 	if (icr & E1000G_ICR_TX_INTR) {
1954 		e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
1955 
1956 		if (!Adapter->tx_intr_enable)
1957 			e1000g_clear_tx_interrupt(Adapter);
1958 		/* Schedule the re-transmit */
1959 		if (tx_ring->resched_needed) {
1960 			E1000G_STAT(tx_ring->stat_reschedule);
1961 			tx_ring->resched_needed = B_FALSE;
1962 			mac_tx_update(Adapter->mh);
1963 		}
1964 		if (Adapter->tx_intr_enable) {
1965 			/* Recycle the tx descriptors */
1966 			rw_enter(&Adapter->chip_lock, RW_READER);
1967 			E1000G_DEBUG_STAT(tx_ring->stat_recycle_intr);
1968 			e1000g_recycle(tx_ring);
1969 			rw_exit(&Adapter->chip_lock);
1970 			/* Free the recycled messages */
1971 			ddi_intr_trigger_softint(Adapter->tx_softint_handle,
1972 			    NULL);
1973 		}
1974 	}
1975 }
1976 
1977 static void
1978 e1000g_init_unicst(struct e1000g *Adapter)
1979 {
1980 	struct e1000_hw *hw;
1981 	int slot;
1982 
1983 	hw = &Adapter->shared;
1984 
1985 	if (!Adapter->unicst_init) {
1986 		/* Initialize the multiple unicast addresses */
1987 		Adapter->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
1988 
1989 		if ((hw->mac.type == e1000_82571) &&
1990 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
1991 			Adapter->unicst_total--;
1992 
1993 		Adapter->unicst_avail = Adapter->unicst_total - 1;
1994 
1995 		/* Store the default mac address */
1996 		e1000_rar_set(hw, hw->mac.addr, 0);
1997 		if ((hw->mac.type == e1000_82571) &&
1998 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
1999 			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2000 
2001 		bcopy(hw->mac.addr, Adapter->unicst_addr[0].mac.addr,
2002 		    ETHERADDRL);
2003 		Adapter->unicst_addr[0].mac.set = 1;
2004 
2005 		for (slot = 1; slot < Adapter->unicst_total; slot++)
2006 			Adapter->unicst_addr[slot].mac.set = 0;
2007 
2008 		Adapter->unicst_init = B_TRUE;
2009 	} else {
2010 		/* Recover the default mac address */
2011 		bcopy(Adapter->unicst_addr[0].mac.addr, hw->mac.addr,
2012 		    ETHERADDRL);
2013 
2014 		/* Store the default mac address */
2015 		e1000_rar_set(hw, hw->mac.addr, 0);
2016 		if ((hw->mac.type == e1000_82571) &&
2017 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2018 			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2019 
2020 		/* Re-configure the RAR registers */
2021 		for (slot = 1; slot < Adapter->unicst_total; slot++)
2022 			e1000_rar_set(hw,
2023 			    Adapter->unicst_addr[slot].mac.addr, slot);
2024 	}
2025 
2026 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2027 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2028 }
2029 
2030 static int
2031 e1000g_m_unicst(void *arg, const uint8_t *mac_addr)
2032 {
2033 	struct e1000g *Adapter;
2034 
2035 	Adapter = (struct e1000g *)arg;
2036 
2037 	/* Store the default MAC address */
2038 	bcopy(mac_addr, Adapter->shared.mac.addr, ETHERADDRL);
2039 
2040 	/* Set MAC address in address slot 0, which is the default address */
2041 	return (e1000g_unicst_set(Adapter, mac_addr, 0));
2042 }
2043 
2044 static int
2045 e1000g_unicst_set(struct e1000g *Adapter, const uint8_t *mac_addr,
2046     mac_addr_slot_t slot)
2047 {
2048 	struct e1000_hw *hw;
2049 
2050 	hw = &Adapter->shared;
2051 
2052 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2053 
2054 #ifndef NO_82542_SUPPORT
2055 	/*
2056 	 * The first revision of Wiseman silicon (rev 2.0) has an errata
2057 	 * that requires the receiver to be in reset when any of the
2058 	 * receive address registers (RAR regs) are accessed.  The first
2059 	 * rev of Wiseman silicon also requires MWI to be disabled when
2060 	 * a global reset or a receive reset is issued.  So before we
2061 	 * initialize the RARs, we check the rev of the Wiseman controller
2062 	 * and work around any necessary HW errata.
2063 	 */
2064 	if ((hw->mac.type == e1000_82542) &&
2065 	    (hw->revision_id == E1000_REVISION_2)) {
2066 		e1000_pci_clear_mwi(hw);
2067 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2068 		msec_delay(5);
2069 	}
2070 #endif
2071 
2072 	bcopy(mac_addr, Adapter->unicst_addr[slot].mac.addr, ETHERADDRL);
2073 	e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2074 
2075 	if (slot == 0) {
2076 		if ((hw->mac.type == e1000_82571) &&
2077 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2078 			e1000_rar_set(hw, (uint8_t *)mac_addr, LAST_RAR_ENTRY);
2079 	}
2080 
2081 #ifndef NO_82542_SUPPORT
2082 	/*
2083 	 * If we are using Wiseman rev 2.0 silicon, we will have previously
2084 	 * put the receive in reset, and disabled MWI, to work around some
2085 	 * HW errata.  Now we should take the receiver out of reset, and
2086 	 * re-enabled if MWI if it was previously enabled by the PCI BIOS.
2087 	 */
2088 	if ((hw->mac.type == e1000_82542) &&
2089 	    (hw->revision_id == E1000_REVISION_2)) {
2090 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2091 		msec_delay(1);
2092 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2093 			e1000_pci_set_mwi(hw);
2094 		e1000g_rx_setup(Adapter);
2095 	}
2096 #endif
2097 
2098 	rw_exit(&Adapter->chip_lock);
2099 
2100 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2101 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2102 		return (EIO);
2103 	}
2104 
2105 	return (0);
2106 }
2107 
2108 /*
2109  * e1000g_m_unicst_add() - will find an unused address slot, set the
2110  * address value to the one specified, reserve that slot and enable
2111  * the NIC to start filtering on the new MAC address.
2112  * Returns 0 on success.
2113  */
2114 static int
2115 e1000g_m_unicst_add(void *arg, mac_multi_addr_t *maddr)
2116 {
2117 	struct e1000g *Adapter = (struct e1000g *)arg;
2118 	mac_addr_slot_t slot;
2119 	int err;
2120 
2121 	if (mac_unicst_verify(Adapter->mh,
2122 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
2123 		return (EINVAL);
2124 
2125 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2126 	if (Adapter->unicst_avail == 0) {
2127 		/* no slots available */
2128 		rw_exit(&Adapter->chip_lock);
2129 		return (ENOSPC);
2130 	}
2131 
2132 	/*
2133 	 * Primary/default address is in slot 0. The next addresses
2134 	 * are the multiple MAC addresses. So multiple MAC address 0
2135 	 * is in slot 1, 1 in slot 2, and so on. So the first multiple
2136 	 * MAC address resides in slot 1.
2137 	 */
2138 	for (slot = 1; slot < Adapter->unicst_total; slot++) {
2139 		if (Adapter->unicst_addr[slot].mac.set == 0) {
2140 			Adapter->unicst_addr[slot].mac.set = 1;
2141 			break;
2142 		}
2143 	}
2144 
2145 	ASSERT((slot > 0) && (slot < Adapter->unicst_total));
2146 
2147 	Adapter->unicst_avail--;
2148 	rw_exit(&Adapter->chip_lock);
2149 
2150 	maddr->mma_slot = slot;
2151 
2152 	if ((err = e1000g_unicst_set(Adapter, maddr->mma_addr, slot)) != 0) {
2153 		rw_enter(&Adapter->chip_lock, RW_WRITER);
2154 		Adapter->unicst_addr[slot].mac.set = 0;
2155 		Adapter->unicst_avail++;
2156 		rw_exit(&Adapter->chip_lock);
2157 	}
2158 
2159 	return (err);
2160 }
2161 
2162 /*
2163  * e1000g_m_unicst_remove() - removes a MAC address that was added by a
2164  * call to e1000g_m_unicst_add(). The slot number that was returned in
2165  * e1000g_m_unicst_add() is passed in the call to remove the address.
2166  * Returns 0 on success.
2167  */
2168 static int
2169 e1000g_m_unicst_remove(void *arg, mac_addr_slot_t slot)
2170 {
2171 	struct e1000g *Adapter = (struct e1000g *)arg;
2172 	int err;
2173 
2174 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2175 		return (EINVAL);
2176 
2177 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2178 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2179 		Adapter->unicst_addr[slot].mac.set = 0;
2180 		Adapter->unicst_avail++;
2181 		rw_exit(&Adapter->chip_lock);
2182 
2183 		/* Copy the default address to the passed slot */
2184 		if (err = e1000g_unicst_set(Adapter,
2185 		    Adapter->unicst_addr[0].mac.addr, slot) != 0) {
2186 			rw_enter(&Adapter->chip_lock, RW_WRITER);
2187 			Adapter->unicst_addr[slot].mac.set = 1;
2188 			Adapter->unicst_avail--;
2189 			rw_exit(&Adapter->chip_lock);
2190 		}
2191 		return (err);
2192 	}
2193 	rw_exit(&Adapter->chip_lock);
2194 
2195 	return (EINVAL);
2196 }
2197 
2198 /*
2199  * e1000g_m_unicst_modify() - modifies the value of an address that
2200  * has been added by e1000g_m_unicst_add(). The new address, address
2201  * length and the slot number that was returned in the call to add
2202  * should be passed to e1000g_m_unicst_modify(). mma_flags should be
2203  * set to 0. Returns 0 on success.
2204  */
2205 static int
2206 e1000g_m_unicst_modify(void *arg, mac_multi_addr_t *maddr)
2207 {
2208 	struct e1000g *Adapter = (struct e1000g *)arg;
2209 	mac_addr_slot_t slot;
2210 
2211 	if (mac_unicst_verify(Adapter->mh,
2212 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
2213 		return (EINVAL);
2214 
2215 	slot = maddr->mma_slot;
2216 
2217 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2218 		return (EINVAL);
2219 
2220 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2221 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2222 		rw_exit(&Adapter->chip_lock);
2223 
2224 		return (e1000g_unicst_set(Adapter, maddr->mma_addr, slot));
2225 	}
2226 	rw_exit(&Adapter->chip_lock);
2227 
2228 	return (EINVAL);
2229 }
2230 
2231 /*
2232  * e1000g_m_unicst_get() - will get the MAC address and all other
2233  * information related to the address slot passed in mac_multi_addr_t.
2234  * mma_flags should be set to 0 in the call.
2235  * On return, mma_flags can take the following values:
2236  * 1) MMAC_SLOT_UNUSED
2237  * 2) MMAC_SLOT_USED | MMAC_VENDOR_ADDR
2238  * 3) MMAC_SLOT_UNUSED | MMAC_VENDOR_ADDR
2239  * 4) MMAC_SLOT_USED
2240  */
2241 static int
2242 e1000g_m_unicst_get(void *arg, mac_multi_addr_t *maddr)
2243 {
2244 	struct e1000g *Adapter = (struct e1000g *)arg;
2245 	mac_addr_slot_t slot;
2246 
2247 	slot = maddr->mma_slot;
2248 
2249 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2250 		return (EINVAL);
2251 
2252 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2253 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2254 		bcopy(Adapter->unicst_addr[slot].mac.addr,
2255 		    maddr->mma_addr, ETHERADDRL);
2256 		maddr->mma_flags = MMAC_SLOT_USED;
2257 	} else {
2258 		maddr->mma_flags = MMAC_SLOT_UNUSED;
2259 	}
2260 	rw_exit(&Adapter->chip_lock);
2261 
2262 	return (0);
2263 }
2264 
2265 static int
2266 multicst_add(struct e1000g *Adapter, const uint8_t *multiaddr)
2267 {
2268 	struct e1000_hw *hw = &Adapter->shared;
2269 	unsigned i;
2270 	int res = 0;
2271 
2272 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2273 
2274 	if ((multiaddr[0] & 01) == 0) {
2275 		res = EINVAL;
2276 		goto done;
2277 	}
2278 
2279 	if (Adapter->mcast_count >= MAX_NUM_MULTICAST_ADDRESSES) {
2280 		res = ENOENT;
2281 		goto done;
2282 	}
2283 
2284 	bcopy(multiaddr,
2285 	    &Adapter->mcast_table[Adapter->mcast_count], ETHERADDRL);
2286 	Adapter->mcast_count++;
2287 
2288 	/*
2289 	 * Update the MC table in the hardware
2290 	 */
2291 	e1000g_clear_interrupt(Adapter);
2292 
2293 	e1000g_setup_multicast(Adapter);
2294 
2295 #ifndef NO_82542_SUPPORT
2296 	if ((hw->mac.type == e1000_82542) &&
2297 	    (hw->revision_id == E1000_REVISION_2))
2298 		e1000g_rx_setup(Adapter);
2299 #endif
2300 
2301 	e1000g_mask_interrupt(Adapter);
2302 
2303 done:
2304 	rw_exit(&Adapter->chip_lock);
2305 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2306 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2307 		res = EIO;
2308 	}
2309 
2310 	return (res);
2311 }
2312 
2313 static int
2314 multicst_remove(struct e1000g *Adapter, const uint8_t *multiaddr)
2315 {
2316 	struct e1000_hw *hw = &Adapter->shared;
2317 	unsigned i;
2318 
2319 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2320 
2321 	for (i = 0; i < Adapter->mcast_count; i++) {
2322 		if (bcmp(multiaddr, &Adapter->mcast_table[i],
2323 		    ETHERADDRL) == 0) {
2324 			for (i++; i < Adapter->mcast_count; i++) {
2325 				Adapter->mcast_table[i - 1] =
2326 				    Adapter->mcast_table[i];
2327 			}
2328 			Adapter->mcast_count--;
2329 			break;
2330 		}
2331 	}
2332 
2333 	/*
2334 	 * Update the MC table in the hardware
2335 	 */
2336 	e1000g_clear_interrupt(Adapter);
2337 
2338 	e1000g_setup_multicast(Adapter);
2339 
2340 #ifndef NO_82542_SUPPORT
2341 	if ((hw->mac.type == e1000_82542) &&
2342 	    (hw->revision_id == E1000_REVISION_2))
2343 		e1000g_rx_setup(Adapter);
2344 #endif
2345 
2346 	e1000g_mask_interrupt(Adapter);
2347 
2348 done:
2349 	rw_exit(&Adapter->chip_lock);
2350 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2351 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2352 		return (EIO);
2353 	}
2354 
2355 	return (0);
2356 }
2357 
2358 /*
2359  * e1000g_setup_multicast - setup multicast data structures
2360  *
2361  * This routine initializes all of the multicast related structures.
2362  */
2363 void
2364 e1000g_setup_multicast(struct e1000g *Adapter)
2365 {
2366 	uint8_t *mc_addr_list;
2367 	uint32_t mc_addr_count;
2368 	uint32_t rctl;
2369 	struct e1000_hw *hw;
2370 
2371 	hw = &Adapter->shared;
2372 
2373 	/*
2374 	 * The e1000g has the ability to do perfect filtering of 16
2375 	 * addresses. The driver uses one of the e1000g's 16 receive
2376 	 * address registers for its node/network/mac/individual address.
2377 	 * So, we have room for up to 15 multicast addresses in the CAM,
2378 	 * additional MC addresses are handled by the MTA (Multicast Table
2379 	 * Array)
2380 	 */
2381 
2382 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2383 
2384 	mc_addr_list = (uint8_t *)Adapter->mcast_table;
2385 
2386 	if (Adapter->mcast_count > MAX_NUM_MULTICAST_ADDRESSES) {
2387 		E1000G_DEBUGLOG_1(Adapter, CE_WARN,
2388 		    "Adapter requested more than %d MC Addresses.\n",
2389 		    MAX_NUM_MULTICAST_ADDRESSES);
2390 		mc_addr_count = MAX_NUM_MULTICAST_ADDRESSES;
2391 	} else {
2392 		/*
2393 		 * Set the number of MC addresses that we are being
2394 		 * requested to use
2395 		 */
2396 		mc_addr_count = Adapter->mcast_count;
2397 	}
2398 #ifndef NO_82542_SUPPORT
2399 	/*
2400 	 * The Wiseman 2.0 silicon has an errata by which the receiver will
2401 	 * hang  while writing to the receive address registers if the receiver
2402 	 * is not in reset before writing to the registers. Updating the RAR
2403 	 * is done during the setting up of the multicast table, hence the
2404 	 * receiver has to be put in reset before updating the multicast table
2405 	 * and then taken out of reset at the end
2406 	 */
2407 	/*
2408 	 * if WMI was enabled then dis able it before issueing the global
2409 	 * reset to the hardware.
2410 	 */
2411 	/*
2412 	 * Only required for WISEMAN_2_0
2413 	 */
2414 	if ((hw->mac.type == e1000_82542) &&
2415 	    (hw->revision_id == E1000_REVISION_2)) {
2416 		e1000_pci_clear_mwi(hw);
2417 		/*
2418 		 * The e1000g must be in reset before changing any RA
2419 		 * registers. Reset receive unit.  The chip will remain in
2420 		 * the reset state until software explicitly restarts it.
2421 		 */
2422 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2423 		/* Allow receiver time to go in to reset */
2424 		msec_delay(5);
2425 	}
2426 #endif
2427 
2428 	e1000_mc_addr_list_update(hw, mc_addr_list, mc_addr_count,
2429 	    Adapter->unicst_total, hw->mac.rar_entry_count);
2430 
2431 #ifndef NO_82542_SUPPORT
2432 	/*
2433 	 * Only for Wiseman_2_0
2434 	 * If MWI was enabled then re-enable it after issueing (as we
2435 	 * disabled it up there) the receive reset command.
2436 	 * Wainwright does not have a receive reset command and only thing
2437 	 * close to it is global reset which will require tx setup also
2438 	 */
2439 	if ((hw->mac.type == e1000_82542) &&
2440 	    (hw->revision_id == E1000_REVISION_2)) {
2441 		/*
2442 		 * if WMI was enabled then reenable it after issueing the
2443 		 * global or receive reset to the hardware.
2444 		 */
2445 
2446 		/*
2447 		 * Take receiver out of reset
2448 		 * clear E1000_RCTL_RST bit (and all others)
2449 		 */
2450 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2451 		msec_delay(5);
2452 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2453 			e1000_pci_set_mwi(hw);
2454 	}
2455 #endif
2456 
2457 	/*
2458 	 * Restore original value
2459 	 */
2460 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2461 }
2462 
2463 int
2464 e1000g_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
2465 {
2466 	struct e1000g *Adapter = (struct e1000g *)arg;
2467 
2468 	return ((add) ? multicst_add(Adapter, addr)
2469 	    : multicst_remove(Adapter, addr));
2470 }
2471 
2472 int
2473 e1000g_m_promisc(void *arg, boolean_t on)
2474 {
2475 	struct e1000g *Adapter = (struct e1000g *)arg;
2476 	uint32_t rctl;
2477 
2478 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2479 
2480 	rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
2481 
2482 	if (on)
2483 		rctl |=
2484 		    (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
2485 	else
2486 		rctl &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
2487 
2488 	E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
2489 
2490 	Adapter->e1000g_promisc = on;
2491 
2492 	rw_exit(&Adapter->chip_lock);
2493 
2494 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2495 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2496 		return (EIO);
2497 	}
2498 
2499 	return (0);
2500 }
2501 
2502 static boolean_t
2503 e1000g_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
2504 {
2505 	struct e1000g *Adapter = (struct e1000g *)arg;
2506 	struct e1000_hw *hw = &Adapter->shared;
2507 
2508 	switch (cap) {
2509 	case MAC_CAPAB_HCKSUM: {
2510 		uint32_t *txflags = cap_data;
2511 		/*
2512 		 * Checksum on/off selection via global parameters.
2513 		 *
2514 		 * If the chip is flagged as not capable of (correctly)
2515 		 * handling checksumming, we don't enable it on either
2516 		 * Rx or Tx side.  Otherwise, we take this chip's settings
2517 		 * from the patchable global defaults.
2518 		 *
2519 		 * We advertise our capabilities only if TX offload is
2520 		 * enabled.  On receive, the stack will accept checksummed
2521 		 * packets anyway, even if we haven't said we can deliver
2522 		 * them.
2523 		 */
2524 		switch (hw->mac.type) {
2525 		case e1000_82540:
2526 		case e1000_82544:
2527 		case e1000_82545:
2528 		case e1000_82545_rev_3:
2529 		case e1000_82546:
2530 		case e1000_82546_rev_3:
2531 		case e1000_82571:
2532 		case e1000_82572:
2533 		case e1000_82573:
2534 		case e1000_80003es2lan:
2535 			*txflags = HCKSUM_IPHDRCKSUM | HCKSUM_INET_PARTIAL;
2536 			break;
2537 
2538 		/*
2539 		 * For the following Intel PRO/1000 chipsets, we have not
2540 		 * tested the hardware checksum offload capability, so we
2541 		 * disable the capability for them.
2542 		 *	e1000_82542,
2543 		 *	e1000_82543,
2544 		 *	e1000_82541,
2545 		 *	e1000_82541_rev_2,
2546 		 *	e1000_82547,
2547 		 *	e1000_82547_rev_2,
2548 		 */
2549 		default:
2550 			return (B_FALSE);
2551 		}
2552 
2553 		break;
2554 	}
2555 	case MAC_CAPAB_POLL:
2556 		/*
2557 		 * There's nothing for us to fill in, simply returning
2558 		 * B_TRUE stating that we support polling is sufficient.
2559 		 */
2560 		break;
2561 
2562 	case MAC_CAPAB_MULTIADDRESS: {
2563 		multiaddress_capab_t *mmacp = cap_data;
2564 
2565 		/*
2566 		 * The number of MAC addresses made available by
2567 		 * this capability is one less than the total as
2568 		 * the primary address in slot 0 is counted in
2569 		 * the total.
2570 		 */
2571 		mmacp->maddr_naddr = Adapter->unicst_total - 1;
2572 		mmacp->maddr_naddrfree = Adapter->unicst_avail;
2573 		/* No multiple factory addresses, set mma_flag to 0 */
2574 		mmacp->maddr_flag = 0;
2575 		mmacp->maddr_handle = Adapter;
2576 		mmacp->maddr_add = e1000g_m_unicst_add;
2577 		mmacp->maddr_remove = e1000g_m_unicst_remove;
2578 		mmacp->maddr_modify = e1000g_m_unicst_modify;
2579 		mmacp->maddr_get = e1000g_m_unicst_get;
2580 		mmacp->maddr_reserve = NULL;
2581 		break;
2582 	}
2583 	default:
2584 		return (B_FALSE);
2585 	}
2586 	return (B_TRUE);
2587 }
2588 
2589 /*
2590  * e1000g_get_conf - get configurations set in e1000g.conf
2591  *
2592  * This routine gets user-configured values out of the configuration
2593  * file e1000g.conf.
2594  *
2595  * For each configurable value, there is a minimum, a maximum, and a
2596  * default.
2597  * If user does not configure a value, use the default.
2598  * If user configures below the minimum, use the minumum.
2599  * If user configures above the maximum, use the maxumum.
2600  */
2601 static void
2602 e1000g_get_conf(struct e1000g *Adapter)
2603 {
2604 	struct e1000_hw *hw = &Adapter->shared;
2605 	boolean_t tbi_compatibility = B_FALSE;
2606 
2607 	/*
2608 	 * get each configurable property from e1000g.conf
2609 	 */
2610 
2611 	/*
2612 	 * NumTxDescriptors
2613 	 */
2614 	Adapter->tx_desc_num =
2615 	    e1000g_get_prop(Adapter, "NumTxDescriptors",
2616 	    MIN_NUM_TX_DESCRIPTOR, MAX_NUM_TX_DESCRIPTOR,
2617 	    DEFAULT_NUM_TX_DESCRIPTOR);
2618 
2619 	/*
2620 	 * NumRxDescriptors
2621 	 */
2622 	Adapter->rx_desc_num =
2623 	    e1000g_get_prop(Adapter, "NumRxDescriptors",
2624 	    MIN_NUM_RX_DESCRIPTOR, MAX_NUM_RX_DESCRIPTOR,
2625 	    DEFAULT_NUM_RX_DESCRIPTOR);
2626 
2627 	/*
2628 	 * NumRxFreeList
2629 	 */
2630 	Adapter->rx_freelist_num =
2631 	    e1000g_get_prop(Adapter, "NumRxFreeList",
2632 	    MIN_NUM_RX_FREELIST, MAX_NUM_RX_FREELIST,
2633 	    DEFAULT_NUM_RX_FREELIST);
2634 
2635 	/*
2636 	 * NumTxPacketList
2637 	 */
2638 	Adapter->tx_freelist_num =
2639 	    e1000g_get_prop(Adapter, "NumTxPacketList",
2640 	    MIN_NUM_TX_FREELIST, MAX_NUM_TX_FREELIST,
2641 	    DEFAULT_NUM_TX_FREELIST);
2642 
2643 	/*
2644 	 * FlowControl
2645 	 */
2646 	hw->mac.fc_send_xon = B_TRUE;
2647 	hw->mac.fc =
2648 	    e1000g_get_prop(Adapter, "FlowControl",
2649 	    e1000_fc_none, 4, DEFAULT_FLOW_CONTROL);
2650 	/* 4 is the setting that says "let the eeprom decide" */
2651 	if (hw->mac.fc == 4)
2652 		hw->mac.fc = e1000_fc_default;
2653 
2654 	/*
2655 	 * Max Num Receive Packets on Interrupt
2656 	 */
2657 	Adapter->rx_limit_onintr =
2658 	    e1000g_get_prop(Adapter, "MaxNumReceivePackets",
2659 	    MIN_RX_LIMIT_ON_INTR, MAX_RX_LIMIT_ON_INTR,
2660 	    DEFAULT_RX_LIMIT_ON_INTR);
2661 
2662 	/*
2663 	 * PHY master slave setting
2664 	 */
2665 	hw->phy.ms_type =
2666 	    e1000g_get_prop(Adapter, "SetMasterSlave",
2667 	    e1000_ms_hw_default, e1000_ms_auto,
2668 	    e1000_ms_hw_default);
2669 
2670 	/*
2671 	 * Parameter which controls TBI mode workaround, which is only
2672 	 * needed on certain switches such as Cisco 6500/Foundry
2673 	 */
2674 	tbi_compatibility =
2675 	    e1000g_get_prop(Adapter, "TbiCompatibilityEnable",
2676 	    0, 1, DEFAULT_TBI_COMPAT_ENABLE);
2677 	e1000_set_tbi_compatibility_82543(hw, tbi_compatibility);
2678 
2679 	/*
2680 	 * MSI Enable
2681 	 */
2682 	Adapter->msi_enabled =
2683 	    e1000g_get_prop(Adapter, "MSIEnable",
2684 	    0, 1, DEFAULT_MSI_ENABLE);
2685 
2686 	/*
2687 	 * Interrupt Throttling Rate
2688 	 */
2689 	Adapter->intr_throttling_rate =
2690 	    e1000g_get_prop(Adapter, "intr_throttling_rate",
2691 	    MIN_INTR_THROTTLING, MAX_INTR_THROTTLING,
2692 	    DEFAULT_INTR_THROTTLING);
2693 
2694 	/*
2695 	 * Adaptive Interrupt Blanking Enable/Disable
2696 	 * It is enabled by default
2697 	 */
2698 	Adapter->intr_adaptive =
2699 	    (e1000g_get_prop(Adapter, "intr_adaptive", 0, 1, 1) == 1) ?
2700 	    B_TRUE : B_FALSE;
2701 }
2702 
2703 /*
2704  * e1000g_get_prop - routine to read properties
2705  *
2706  * Get a user-configure property value out of the configuration
2707  * file e1000g.conf.
2708  *
2709  * Caller provides name of the property, a default value, a minimum
2710  * value, and a maximum value.
2711  *
2712  * Return configured value of the property, with default, minimum and
2713  * maximum properly applied.
2714  */
2715 static int
2716 e1000g_get_prop(struct e1000g *Adapter,	/* point to per-adapter structure */
2717     char *propname,		/* name of the property */
2718     int minval,			/* minimum acceptable value */
2719     int maxval,			/* maximim acceptable value */
2720     int defval)			/* default value */
2721 {
2722 	int propval;		/* value returned for requested property */
2723 	int *props;		/* point to array of properties returned */
2724 	uint_t nprops;		/* number of property value returned */
2725 
2726 	/*
2727 	 * get the array of properties from the config file
2728 	 */
2729 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, Adapter->dip,
2730 	    DDI_PROP_DONTPASS, propname, &props, &nprops) == DDI_PROP_SUCCESS) {
2731 		/* got some properties, test if we got enough */
2732 		if (Adapter->instance < nprops) {
2733 			propval = props[Adapter->instance];
2734 		} else {
2735 			/* not enough properties configured */
2736 			propval = defval;
2737 			E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
2738 			    "Not Enough %s values found in e1000g.conf"
2739 			    " - set to %d\n",
2740 			    propname, propval);
2741 		}
2742 
2743 		/* free memory allocated for properties */
2744 		ddi_prop_free(props);
2745 
2746 	} else {
2747 		propval = defval;
2748 	}
2749 
2750 	/*
2751 	 * enforce limits
2752 	 */
2753 	if (propval > maxval) {
2754 		propval = maxval;
2755 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
2756 		    "Too High %s value in e1000g.conf - set to %d\n",
2757 		    propname, propval);
2758 	}
2759 
2760 	if (propval < minval) {
2761 		propval = minval;
2762 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
2763 		    "Too Low %s value in e1000g.conf - set to %d\n",
2764 		    propname, propval);
2765 	}
2766 
2767 	return (propval);
2768 }
2769 
2770 static boolean_t
2771 e1000g_link_check(struct e1000g *Adapter)
2772 {
2773 	uint16_t speed, duplex, phydata;
2774 	boolean_t link_changed = B_FALSE;
2775 	struct e1000_hw *hw;
2776 	uint32_t reg_tarc;
2777 
2778 	hw = &Adapter->shared;
2779 
2780 	if (e1000g_link_up(Adapter)) {
2781 		/*
2782 		 * The Link is up, check whether it was marked as down earlier
2783 		 */
2784 		if (Adapter->link_state != LINK_STATE_UP) {
2785 			e1000_get_speed_and_duplex(hw, &speed, &duplex);
2786 			Adapter->link_speed = speed;
2787 			Adapter->link_duplex = duplex;
2788 			Adapter->link_state = LINK_STATE_UP;
2789 			link_changed = B_TRUE;
2790 
2791 			Adapter->tx_link_down_timeout = 0;
2792 
2793 			if ((hw->mac.type == e1000_82571) ||
2794 			    (hw->mac.type == e1000_82572)) {
2795 				reg_tarc = E1000_READ_REG(hw, E1000_TARC0);
2796 				if (speed == SPEED_1000)
2797 					reg_tarc |= (1 << 21);
2798 				else
2799 					reg_tarc &= ~(1 << 21);
2800 				E1000_WRITE_REG(hw, E1000_TARC0, reg_tarc);
2801 			}
2802 		}
2803 		Adapter->smartspeed = 0;
2804 	} else {
2805 		if (Adapter->link_state != LINK_STATE_DOWN) {
2806 			Adapter->link_speed = 0;
2807 			Adapter->link_duplex = 0;
2808 			Adapter->link_state = LINK_STATE_DOWN;
2809 			link_changed = B_TRUE;
2810 
2811 			/*
2812 			 * SmartSpeed workaround for Tabor/TanaX, When the
2813 			 * driver loses link disable auto master/slave
2814 			 * resolution.
2815 			 */
2816 			if (hw->phy.type == e1000_phy_igp) {
2817 				e1000_read_phy_reg(hw,
2818 				    PHY_1000T_CTRL, &phydata);
2819 				phydata |= CR_1000T_MS_ENABLE;
2820 				e1000_write_phy_reg(hw,
2821 				    PHY_1000T_CTRL, phydata);
2822 			}
2823 		} else {
2824 			e1000g_smartspeed(Adapter);
2825 		}
2826 
2827 		if (Adapter->chip_state == E1000G_START) {
2828 			if (Adapter->tx_link_down_timeout <
2829 			    MAX_TX_LINK_DOWN_TIMEOUT) {
2830 				Adapter->tx_link_down_timeout++;
2831 			} else if (Adapter->tx_link_down_timeout ==
2832 			    MAX_TX_LINK_DOWN_TIMEOUT) {
2833 				e1000g_tx_clean(Adapter);
2834 				Adapter->tx_link_down_timeout++;
2835 			}
2836 		}
2837 	}
2838 
2839 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2840 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2841 
2842 	return (link_changed);
2843 }
2844 
2845 static void
2846 e1000g_local_timer(void *ws)
2847 {
2848 	struct e1000g *Adapter = (struct e1000g *)ws;
2849 	struct e1000_hw *hw;
2850 	e1000g_ether_addr_t ether_addr;
2851 	boolean_t link_changed;
2852 
2853 	hw = &Adapter->shared;
2854 
2855 	if (Adapter->chip_state == E1000G_ERROR) {
2856 		Adapter->reset_count++;
2857 		if (e1000g_global_reset(Adapter))
2858 			ddi_fm_service_impact(Adapter->dip,
2859 			    DDI_SERVICE_RESTORED);
2860 		else
2861 			ddi_fm_service_impact(Adapter->dip,
2862 			    DDI_SERVICE_LOST);
2863 		return;
2864 	}
2865 
2866 	(void) e1000g_tx_freemsg(Adapter->tx_ring);
2867 
2868 	if (e1000g_stall_check(Adapter)) {
2869 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
2870 		    "Tx stall detected. Activate automatic recovery.\n");
2871 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_STALL);
2872 		Adapter->reset_count++;
2873 		if (e1000g_reset(Adapter))
2874 			ddi_fm_service_impact(Adapter->dip,
2875 			    DDI_SERVICE_RESTORED);
2876 		else
2877 			ddi_fm_service_impact(Adapter->dip,
2878 			    DDI_SERVICE_LOST);
2879 		return;
2880 	}
2881 
2882 	link_changed = B_FALSE;
2883 	rw_enter(&Adapter->chip_lock, RW_READER);
2884 	if (Adapter->link_complete)
2885 		link_changed = e1000g_link_check(Adapter);
2886 	rw_exit(&Adapter->chip_lock);
2887 
2888 	if (link_changed) {
2889 		/*
2890 		 * Workaround for esb2. Data stuck in fifo on a link
2891 		 * down event. Reset the adapter to recover it.
2892 		 */
2893 		if ((Adapter->link_state == LINK_STATE_DOWN) &&
2894 		    (hw->mac.type == e1000_80003es2lan))
2895 			(void) e1000g_reset(Adapter);
2896 
2897 		mac_link_update(Adapter->mh, Adapter->link_state);
2898 	}
2899 
2900 	/*
2901 	 * With 82571 controllers, any locally administered address will
2902 	 * be overwritten when there is a reset on the other port.
2903 	 * Detect this circumstance and correct it.
2904 	 */
2905 	if ((hw->mac.type == e1000_82571) &&
2906 	    (e1000_get_laa_state_82571(hw) == B_TRUE)) {
2907 		ether_addr.reg.low = E1000_READ_REG_ARRAY(hw, E1000_RA, 0);
2908 		ether_addr.reg.high = E1000_READ_REG_ARRAY(hw, E1000_RA, 1);
2909 
2910 		ether_addr.reg.low = ntohl(ether_addr.reg.low);
2911 		ether_addr.reg.high = ntohl(ether_addr.reg.high);
2912 
2913 		if ((ether_addr.mac.addr[5] != hw->mac.addr[0]) ||
2914 		    (ether_addr.mac.addr[4] != hw->mac.addr[1]) ||
2915 		    (ether_addr.mac.addr[3] != hw->mac.addr[2]) ||
2916 		    (ether_addr.mac.addr[2] != hw->mac.addr[3]) ||
2917 		    (ether_addr.mac.addr[1] != hw->mac.addr[4]) ||
2918 		    (ether_addr.mac.addr[0] != hw->mac.addr[5])) {
2919 			e1000_rar_set(hw, hw->mac.addr, 0);
2920 		}
2921 	}
2922 
2923 	/*
2924 	 * Long TTL workaround for 82541/82547
2925 	 */
2926 	e1000_igp_ttl_workaround_82547(hw);
2927 
2928 	/*
2929 	 * Check for Adaptive IFS settings If there are lots of collisions
2930 	 * change the value in steps...
2931 	 * These properties should only be set for 10/100
2932 	 */
2933 	if ((hw->media_type == e1000_media_type_copper) &&
2934 	    ((Adapter->link_speed == SPEED_100) ||
2935 	    (Adapter->link_speed == SPEED_10))) {
2936 		e1000_update_adaptive(hw);
2937 	}
2938 	/*
2939 	 * Set Timer Interrupts
2940 	 */
2941 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
2942 
2943 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2944 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2945 
2946 	restart_watchdog_timer(Adapter);
2947 }
2948 
2949 /*
2950  * The function e1000g_link_timer() is called when the timer for link setup
2951  * is expired, which indicates the completion of the link setup. The link
2952  * state will not be updated until the link setup is completed. And the
2953  * link state will not be sent to the upper layer through mac_link_update()
2954  * in this function. It will be updated in the local timer routine or the
2955  * interrupt service routine after the interface is started (plumbed).
2956  */
2957 static void
2958 e1000g_link_timer(void *arg)
2959 {
2960 	struct e1000g *Adapter = (struct e1000g *)arg;
2961 
2962 	mutex_enter(&Adapter->link_lock);
2963 	Adapter->link_complete = B_TRUE;
2964 	Adapter->link_tid = 0;
2965 	mutex_exit(&Adapter->link_lock);
2966 }
2967 
2968 /*
2969  * e1000g_force_speed_duplex - read forced speed/duplex out of e1000g.conf
2970  *
2971  * This function read the forced speed and duplex for 10/100 Mbps speeds
2972  * and also for 1000 Mbps speeds from the e1000g.conf file
2973  */
2974 static void
2975 e1000g_force_speed_duplex(struct e1000g *Adapter)
2976 {
2977 	int forced;
2978 	struct e1000_mac_info *mac = &Adapter->shared.mac;
2979 	struct e1000_phy_info *phy = &Adapter->shared.phy;
2980 
2981 	/*
2982 	 * get value out of config file
2983 	 */
2984 	forced = e1000g_get_prop(Adapter, "ForceSpeedDuplex",
2985 	    GDIAG_10_HALF, GDIAG_ANY, GDIAG_ANY);
2986 
2987 	switch (forced) {
2988 	case GDIAG_10_HALF:
2989 		/*
2990 		 * Disable Auto Negotiation
2991 		 */
2992 		mac->autoneg = B_FALSE;
2993 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
2994 		break;
2995 	case GDIAG_10_FULL:
2996 		/*
2997 		 * Disable Auto Negotiation
2998 		 */
2999 		mac->autoneg = B_FALSE;
3000 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
3001 		break;
3002 	case GDIAG_100_HALF:
3003 		/*
3004 		 * Disable Auto Negotiation
3005 		 */
3006 		mac->autoneg = B_FALSE;
3007 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
3008 		break;
3009 	case GDIAG_100_FULL:
3010 		/*
3011 		 * Disable Auto Negotiation
3012 		 */
3013 		mac->autoneg = B_FALSE;
3014 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
3015 		break;
3016 	case GDIAG_1000_FULL:
3017 		/*
3018 		 * The gigabit spec requires autonegotiation.  Therefore,
3019 		 * when the user wants to force the speed to 1000Mbps, we
3020 		 * enable AutoNeg, but only allow the harware to advertise
3021 		 * 1000Mbps.  This is different from 10/100 operation, where
3022 		 * we are allowed to link without any negotiation.
3023 		 */
3024 		mac->autoneg = B_TRUE;
3025 		phy->autoneg_advertised = ADVERTISE_1000_FULL;
3026 		break;
3027 	default:	/* obey the setting of AutoNegAdvertised */
3028 		mac->autoneg = B_TRUE;
3029 		phy->autoneg_advertised =
3030 		    (uint16_t)e1000g_get_prop(Adapter, "AutoNegAdvertised",
3031 		    0, AUTONEG_ADVERTISE_SPEED_DEFAULT,
3032 		    AUTONEG_ADVERTISE_SPEED_DEFAULT);
3033 		break;
3034 	}	/* switch */
3035 }
3036 
3037 /*
3038  * e1000g_get_max_frame_size - get jumbo frame setting from e1000g.conf
3039  *
3040  * This function reads MaxFrameSize from e1000g.conf
3041  */
3042 static void
3043 e1000g_get_max_frame_size(struct e1000g *Adapter)
3044 {
3045 	int max_frame;
3046 	struct e1000_mac_info *mac = &Adapter->shared.mac;
3047 	struct e1000_phy_info *phy = &Adapter->shared.phy;
3048 
3049 	/*
3050 	 * get value out of config file
3051 	 */
3052 	max_frame = e1000g_get_prop(Adapter, "MaxFrameSize", 0, 3, 0);
3053 
3054 	switch (max_frame) {
3055 	case 0:
3056 		mac->max_frame_size = ETHERMAX;
3057 		break;
3058 	case 1:
3059 		mac->max_frame_size = FRAME_SIZE_UPTO_4K;
3060 		break;
3061 	case 2:
3062 		mac->max_frame_size = FRAME_SIZE_UPTO_8K;
3063 		break;
3064 	case 3:
3065 		if (mac->type < e1000_82571)
3066 			mac->max_frame_size = FRAME_SIZE_UPTO_16K;
3067 		else
3068 			mac->max_frame_size = FRAME_SIZE_UPTO_9K;
3069 		break;
3070 	default:
3071 		mac->max_frame_size = ETHERMAX;
3072 		break;
3073 	}	/* switch */
3074 
3075 	/* ich8 does not do jumbo frames */
3076 	if (mac->type == e1000_ich8lan) {
3077 		mac->max_frame_size = ETHERMAX;
3078 	}
3079 
3080 	/* ich9 does not do jumbo frames on one phy type */
3081 	if ((mac->type == e1000_ich9lan) &&
3082 	    (phy->type == e1000_phy_ife)) {
3083 		mac->max_frame_size = ETHERMAX;
3084 	}
3085 }
3086 
3087 static void
3088 arm_watchdog_timer(struct e1000g *Adapter)
3089 {
3090 	Adapter->watchdog_tid =
3091 	    timeout(e1000g_local_timer,
3092 	    (void *)Adapter, 1 * drv_usectohz(1000000));
3093 }
3094 #pragma inline(arm_watchdog_timer)
3095 
3096 static void
3097 enable_watchdog_timer(struct e1000g *Adapter)
3098 {
3099 	mutex_enter(&Adapter->watchdog_lock);
3100 
3101 	if (!Adapter->watchdog_timer_enabled) {
3102 		Adapter->watchdog_timer_enabled = B_TRUE;
3103 		Adapter->watchdog_timer_started = B_TRUE;
3104 		arm_watchdog_timer(Adapter);
3105 	}
3106 
3107 	mutex_exit(&Adapter->watchdog_lock);
3108 }
3109 
3110 static void
3111 disable_watchdog_timer(struct e1000g *Adapter)
3112 {
3113 	timeout_id_t tid;
3114 
3115 	mutex_enter(&Adapter->watchdog_lock);
3116 
3117 	Adapter->watchdog_timer_enabled = B_FALSE;
3118 	Adapter->watchdog_timer_started = B_FALSE;
3119 	tid = Adapter->watchdog_tid;
3120 	Adapter->watchdog_tid = 0;
3121 
3122 	mutex_exit(&Adapter->watchdog_lock);
3123 
3124 	if (tid != 0)
3125 		(void) untimeout(tid);
3126 }
3127 
3128 static void
3129 start_watchdog_timer(struct e1000g *Adapter)
3130 {
3131 	mutex_enter(&Adapter->watchdog_lock);
3132 
3133 	if (Adapter->watchdog_timer_enabled) {
3134 		if (!Adapter->watchdog_timer_started) {
3135 			Adapter->watchdog_timer_started = B_TRUE;
3136 			arm_watchdog_timer(Adapter);
3137 		}
3138 	}
3139 
3140 	mutex_exit(&Adapter->watchdog_lock);
3141 }
3142 
3143 static void
3144 restart_watchdog_timer(struct e1000g *Adapter)
3145 {
3146 	mutex_enter(&Adapter->watchdog_lock);
3147 
3148 	if (Adapter->watchdog_timer_started)
3149 		arm_watchdog_timer(Adapter);
3150 
3151 	mutex_exit(&Adapter->watchdog_lock);
3152 }
3153 
3154 static void
3155 stop_watchdog_timer(struct e1000g *Adapter)
3156 {
3157 	timeout_id_t tid;
3158 
3159 	mutex_enter(&Adapter->watchdog_lock);
3160 
3161 	Adapter->watchdog_timer_started = B_FALSE;
3162 	tid = Adapter->watchdog_tid;
3163 	Adapter->watchdog_tid = 0;
3164 
3165 	mutex_exit(&Adapter->watchdog_lock);
3166 
3167 	if (tid != 0)
3168 		(void) untimeout(tid);
3169 }
3170 
3171 static void
3172 stop_link_timer(struct e1000g *Adapter)
3173 {
3174 	timeout_id_t tid;
3175 
3176 	/* Disable the link timer */
3177 	mutex_enter(&Adapter->link_lock);
3178 
3179 	tid = Adapter->link_tid;
3180 	Adapter->link_tid = 0;
3181 
3182 	mutex_exit(&Adapter->link_lock);
3183 
3184 	if (tid != 0)
3185 		(void) untimeout(tid);
3186 }
3187 
3188 static void
3189 stop_82547_timer(e1000g_tx_ring_t *tx_ring)
3190 {
3191 	timeout_id_t tid;
3192 
3193 	/* Disable the tx timer for 82547 chipset */
3194 	mutex_enter(&tx_ring->tx_lock);
3195 
3196 	tx_ring->timer_enable_82547 = B_FALSE;
3197 	tid = tx_ring->timer_id_82547;
3198 	tx_ring->timer_id_82547 = 0;
3199 
3200 	mutex_exit(&tx_ring->tx_lock);
3201 
3202 	if (tid != 0)
3203 		(void) untimeout(tid);
3204 }
3205 
3206 void
3207 e1000g_clear_interrupt(struct e1000g *Adapter)
3208 {
3209 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC,
3210 	    0xffffffff & ~E1000_IMS_RXSEQ);
3211 }
3212 
3213 void
3214 e1000g_mask_interrupt(struct e1000g *Adapter)
3215 {
3216 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS,
3217 	    IMS_ENABLE_MASK & ~E1000_IMS_TXDW & ~E1000_IMS_TXQE);
3218 }
3219 
3220 void
3221 e1000g_clear_all_interrupts(struct e1000g *Adapter)
3222 {
3223 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, 0xffffffff);
3224 }
3225 
3226 void
3227 e1000g_mask_tx_interrupt(struct e1000g *Adapter)
3228 {
3229 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS, E1000G_IMS_TX_INTR);
3230 }
3231 
3232 void
3233 e1000g_clear_tx_interrupt(struct e1000g *Adapter)
3234 {
3235 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, E1000G_IMS_TX_INTR);
3236 }
3237 
3238 static void
3239 e1000g_smartspeed(struct e1000g *Adapter)
3240 {
3241 	struct e1000_hw *hw = &Adapter->shared;
3242 	uint16_t phy_status;
3243 	uint16_t phy_ctrl;
3244 
3245 	/*
3246 	 * If we're not T-or-T, or we're not autoneg'ing, or we're not
3247 	 * advertising 1000Full, we don't even use the workaround
3248 	 */
3249 	if ((hw->phy.type != e1000_phy_igp) ||
3250 	    !hw->mac.autoneg ||
3251 	    !(hw->phy.autoneg_advertised & ADVERTISE_1000_FULL))
3252 		return;
3253 
3254 	/*
3255 	 * True if this is the first call of this function or after every
3256 	 * 30 seconds of not having link
3257 	 */
3258 	if (Adapter->smartspeed == 0) {
3259 		/*
3260 		 * If Master/Slave config fault is asserted twice, we
3261 		 * assume back-to-back
3262 		 */
3263 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
3264 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
3265 			return;
3266 
3267 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
3268 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
3269 			return;
3270 		/*
3271 		 * We're assuming back-2-back because our status register
3272 		 * insists! there's a fault in the master/slave
3273 		 * relationship that was "negotiated"
3274 		 */
3275 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
3276 		/*
3277 		 * Is the phy configured for manual configuration of
3278 		 * master/slave?
3279 		 */
3280 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
3281 			/*
3282 			 * Yes.  Then disable manual configuration (enable
3283 			 * auto configuration) of master/slave
3284 			 */
3285 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
3286 			e1000_write_phy_reg(hw,
3287 			    PHY_1000T_CTRL, phy_ctrl);
3288 			/*
3289 			 * Effectively starting the clock
3290 			 */
3291 			Adapter->smartspeed++;
3292 			/*
3293 			 * Restart autonegotiation
3294 			 */
3295 			if (!e1000_phy_setup_autoneg(hw) &&
3296 			    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
3297 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3298 				    MII_CR_RESTART_AUTO_NEG);
3299 				e1000_write_phy_reg(hw,
3300 				    PHY_CONTROL, phy_ctrl);
3301 			}
3302 		}
3303 		return;
3304 		/*
3305 		 * Has 6 seconds transpired still without link? Remember,
3306 		 * you should reset the smartspeed counter once you obtain
3307 		 * link
3308 		 */
3309 	} else if (Adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
3310 		/*
3311 		 * Yes.  Remember, we did at the start determine that
3312 		 * there's a master/slave configuration fault, so we're
3313 		 * still assuming there's someone on the other end, but we
3314 		 * just haven't yet been able to talk to it. We then
3315 		 * re-enable auto configuration of master/slave to see if
3316 		 * we're running 2/3 pair cables.
3317 		 */
3318 		/*
3319 		 * If still no link, perhaps using 2/3 pair cable
3320 		 */
3321 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
3322 		phy_ctrl |= CR_1000T_MS_ENABLE;
3323 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
3324 		/*
3325 		 * Restart autoneg with phy enabled for manual
3326 		 * configuration of master/slave
3327 		 */
3328 		if (!e1000_phy_setup_autoneg(hw) &&
3329 		    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
3330 			phy_ctrl |=
3331 			    (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
3332 			e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
3333 		}
3334 		/*
3335 		 * Hopefully, there are no more faults and we've obtained
3336 		 * link as a result.
3337 		 */
3338 	}
3339 	/*
3340 	 * Restart process after E1000_SMARTSPEED_MAX iterations (30
3341 	 * seconds)
3342 	 */
3343 	if (Adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
3344 		Adapter->smartspeed = 0;
3345 }
3346 
3347 static boolean_t
3348 is_valid_mac_addr(uint8_t *mac_addr)
3349 {
3350 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
3351 	const uint8_t addr_test2[6] =
3352 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3353 
3354 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
3355 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
3356 		return (B_FALSE);
3357 
3358 	return (B_TRUE);
3359 }
3360 
3361 /*
3362  * e1000g_stall_check - check for tx stall
3363  *
3364  * This function checks if the adapter is stalled (in transmit).
3365  *
3366  * It is called each time the watchdog timeout is invoked.
3367  * If the transmit descriptor reclaim continuously fails,
3368  * the watchdog value will increment by 1. If the watchdog
3369  * value exceeds the threshold, the adapter is assumed to
3370  * have stalled and need to be reset.
3371  */
3372 static boolean_t
3373 e1000g_stall_check(struct e1000g *Adapter)
3374 {
3375 	e1000g_tx_ring_t *tx_ring;
3376 
3377 	tx_ring = Adapter->tx_ring;
3378 
3379 	if (Adapter->link_state != LINK_STATE_UP)
3380 		return (B_FALSE);
3381 
3382 	if (tx_ring->recycle_fail > 0)
3383 		tx_ring->stall_watchdog++;
3384 	else
3385 		tx_ring->stall_watchdog = 0;
3386 
3387 	if (tx_ring->stall_watchdog < E1000G_STALL_WATCHDOG_COUNT)
3388 		return (B_FALSE);
3389 
3390 	tx_ring->stall_watchdog = 0;
3391 	tx_ring->recycle_fail = 0;
3392 
3393 	return (B_TRUE);
3394 }
3395 
3396 #ifdef E1000G_DEBUG
3397 static enum ioc_reply
3398 e1000g_pp_ioctl(struct e1000g *e1000gp, struct iocblk *iocp, mblk_t *mp)
3399 {
3400 	void (*ppfn)(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
3401 	e1000g_peekpoke_t *ppd;
3402 	uint64_t mem_va;
3403 	uint64_t maxoff;
3404 	boolean_t peek;
3405 
3406 	switch (iocp->ioc_cmd) {
3407 
3408 	case E1000G_IOC_REG_PEEK:
3409 		peek = B_TRUE;
3410 		break;
3411 
3412 	case E1000G_IOC_REG_POKE:
3413 		peek = B_FALSE;
3414 		break;
3415 
3416 	deault:
3417 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
3418 		    "e1000g_diag_ioctl: invalid ioctl command 0x%X\n",
3419 		    iocp->ioc_cmd);
3420 		return (IOC_INVAL);
3421 	}
3422 
3423 	/*
3424 	 * Validate format of ioctl
3425 	 */
3426 	if (iocp->ioc_count != sizeof (e1000g_peekpoke_t))
3427 		return (IOC_INVAL);
3428 	if (mp->b_cont == NULL)
3429 		return (IOC_INVAL);
3430 
3431 	ppd = (e1000g_peekpoke_t *)mp->b_cont->b_rptr;
3432 
3433 	/*
3434 	 * Validate request parameters
3435 	 */
3436 	switch (ppd->pp_acc_space) {
3437 
3438 	default:
3439 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
3440 		    "e1000g_diag_ioctl: invalid access space 0x%X\n",
3441 		    ppd->pp_acc_space);
3442 		return (IOC_INVAL);
3443 
3444 	case E1000G_PP_SPACE_REG:
3445 		/*
3446 		 * Memory-mapped I/O space
3447 		 */
3448 		ASSERT(ppd->pp_acc_size == 4);
3449 		if (ppd->pp_acc_size != 4)
3450 			return (IOC_INVAL);
3451 
3452 		if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
3453 			return (IOC_INVAL);
3454 
3455 		mem_va = 0;
3456 		maxoff = 0x10000;
3457 		ppfn = peek ? e1000g_ioc_peek_reg : e1000g_ioc_poke_reg;
3458 		break;
3459 
3460 	case E1000G_PP_SPACE_E1000G:
3461 		/*
3462 		 * E1000g data structure!
3463 		 */
3464 		mem_va = (uintptr_t)e1000gp;
3465 		maxoff = sizeof (struct e1000g);
3466 		ppfn = peek ? e1000g_ioc_peek_mem : e1000g_ioc_poke_mem;
3467 		break;
3468 
3469 	}
3470 
3471 	if (ppd->pp_acc_offset >= maxoff)
3472 		return (IOC_INVAL);
3473 
3474 	if (ppd->pp_acc_offset + ppd->pp_acc_size > maxoff)
3475 		return (IOC_INVAL);
3476 
3477 	/*
3478 	 * All OK - go!
3479 	 */
3480 	ppd->pp_acc_offset += mem_va;
3481 	(*ppfn)(e1000gp, ppd);
3482 	return (peek ? IOC_REPLY : IOC_ACK);
3483 }
3484 
3485 static void
3486 e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
3487 {
3488 	ddi_acc_handle_t handle;
3489 	uint32_t *regaddr;
3490 
3491 	handle = e1000gp->osdep.reg_handle;
3492 	regaddr =
3493 	    (uint32_t *)(e1000gp->shared.hw_addr + ppd->pp_acc_offset);
3494 
3495 	ppd->pp_acc_data = ddi_get32(handle, regaddr);
3496 }
3497 
3498 static void
3499 e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
3500 {
3501 	ddi_acc_handle_t handle;
3502 	uint32_t *regaddr;
3503 	uint32_t value;
3504 
3505 	handle = e1000gp->osdep.reg_handle;
3506 	regaddr =
3507 	    (uint32_t *)(e1000gp->shared.hw_addr + ppd->pp_acc_offset);
3508 	value = (uint32_t)ppd->pp_acc_data;
3509 
3510 	ddi_put32(handle, regaddr, value);
3511 }
3512 
3513 static void
3514 e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
3515 {
3516 	uint64_t value;
3517 	void *vaddr;
3518 
3519 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
3520 
3521 	switch (ppd->pp_acc_size) {
3522 	case 1:
3523 		value = *(uint8_t *)vaddr;
3524 		break;
3525 
3526 	case 2:
3527 		value = *(uint16_t *)vaddr;
3528 		break;
3529 
3530 	case 4:
3531 		value = *(uint32_t *)vaddr;
3532 		break;
3533 
3534 	case 8:
3535 		value = *(uint64_t *)vaddr;
3536 		break;
3537 	}
3538 
3539 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
3540 	    "e1000g_ioc_peek_mem($%p, $%p) peeked 0x%llx from $%p\n",
3541 	    (void *)e1000gp, (void *)ppd, value, vaddr);
3542 
3543 	ppd->pp_acc_data = value;
3544 }
3545 
3546 static void
3547 e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
3548 {
3549 	uint64_t value;
3550 	void *vaddr;
3551 
3552 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
3553 	value = ppd->pp_acc_data;
3554 
3555 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
3556 	    "e1000g_ioc_poke_mem($%p, $%p) poking 0x%llx at $%p\n",
3557 	    (void *)e1000gp, (void *)ppd, value, vaddr);
3558 
3559 	switch (ppd->pp_acc_size) {
3560 	case 1:
3561 		*(uint8_t *)vaddr = (uint8_t)value;
3562 		break;
3563 
3564 	case 2:
3565 		*(uint16_t *)vaddr = (uint16_t)value;
3566 		break;
3567 
3568 	case 4:
3569 		*(uint32_t *)vaddr = (uint32_t)value;
3570 		break;
3571 
3572 	case 8:
3573 		*(uint64_t *)vaddr = (uint64_t)value;
3574 		break;
3575 	}
3576 }
3577 #endif
3578 
3579 /*
3580  * Loopback Support
3581  */
3582 static lb_property_t lb_normal =
3583 	{ normal,	"normal",	E1000G_LB_NONE		};
3584 static lb_property_t lb_external1000 =
3585 	{ external,	"1000Mbps",	E1000G_LB_EXTERNAL_1000	};
3586 static lb_property_t lb_external100 =
3587 	{ external,	"100Mbps",	E1000G_LB_EXTERNAL_100	};
3588 static lb_property_t lb_external10 =
3589 	{ external,	"10Mbps",	E1000G_LB_EXTERNAL_10	};
3590 static lb_property_t lb_phy =
3591 	{ internal,	"PHY",		E1000G_LB_INTERNAL_PHY	};
3592 
3593 static enum ioc_reply
3594 e1000g_loopback_ioctl(struct e1000g *Adapter, struct iocblk *iocp, mblk_t *mp)
3595 {
3596 	lb_info_sz_t *lbsp;
3597 	lb_property_t *lbpp;
3598 	struct e1000_hw *hw;
3599 	uint32_t *lbmp;
3600 	uint32_t size;
3601 	uint32_t value;
3602 
3603 	hw = &Adapter->shared;
3604 
3605 	if (mp->b_cont == NULL)
3606 		return (IOC_INVAL);
3607 
3608 	switch (iocp->ioc_cmd) {
3609 	default:
3610 		return (IOC_INVAL);
3611 
3612 	case LB_GET_INFO_SIZE:
3613 		size = sizeof (lb_info_sz_t);
3614 		if (iocp->ioc_count != size)
3615 			return (IOC_INVAL);
3616 
3617 		rw_enter(&Adapter->chip_lock, RW_WRITER);
3618 		e1000g_get_phy_state(Adapter);
3619 
3620 		/*
3621 		 * Workaround for hardware faults. In order to get a stable
3622 		 * state of phy, we will wait for a specific interval and
3623 		 * try again. The time delay is an experiential value based
3624 		 * on our testing.
3625 		 */
3626 		msec_delay(100);
3627 		e1000g_get_phy_state(Adapter);
3628 		rw_exit(&Adapter->chip_lock);
3629 
3630 		value = sizeof (lb_normal);
3631 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
3632 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
3633 		    (hw->media_type == e1000_media_type_fiber) ||
3634 		    (hw->media_type == e1000_media_type_internal_serdes)) {
3635 			value += sizeof (lb_phy);
3636 			switch (hw->mac.type) {
3637 			case e1000_82571:
3638 			case e1000_82572:
3639 				value += sizeof (lb_external1000);
3640 				break;
3641 			}
3642 		}
3643 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
3644 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
3645 			value += sizeof (lb_external100);
3646 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
3647 			value += sizeof (lb_external10);
3648 
3649 		lbsp = (lb_info_sz_t *)mp->b_cont->b_rptr;
3650 		*lbsp = value;
3651 		break;
3652 
3653 	case LB_GET_INFO:
3654 		value = sizeof (lb_normal);
3655 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
3656 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
3657 		    (hw->media_type == e1000_media_type_fiber) ||
3658 		    (hw->media_type == e1000_media_type_internal_serdes)) {
3659 			value += sizeof (lb_phy);
3660 			switch (hw->mac.type) {
3661 			case e1000_82571:
3662 			case e1000_82572:
3663 				value += sizeof (lb_external1000);
3664 				break;
3665 			}
3666 		}
3667 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
3668 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
3669 			value += sizeof (lb_external100);
3670 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
3671 			value += sizeof (lb_external10);
3672 
3673 		size = value;
3674 		if (iocp->ioc_count != size)
3675 			return (IOC_INVAL);
3676 
3677 		value = 0;
3678 		lbpp = (lb_property_t *)mp->b_cont->b_rptr;
3679 		lbpp[value++] = lb_normal;
3680 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
3681 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
3682 		    (hw->media_type == e1000_media_type_fiber) ||
3683 		    (hw->media_type == e1000_media_type_internal_serdes)) {
3684 			lbpp[value++] = lb_phy;
3685 			switch (hw->mac.type) {
3686 			case e1000_82571:
3687 			case e1000_82572:
3688 				lbpp[value++] = lb_external1000;
3689 				break;
3690 			}
3691 		}
3692 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
3693 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
3694 			lbpp[value++] = lb_external100;
3695 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
3696 			lbpp[value++] = lb_external10;
3697 		break;
3698 
3699 	case LB_GET_MODE:
3700 		size = sizeof (uint32_t);
3701 		if (iocp->ioc_count != size)
3702 			return (IOC_INVAL);
3703 
3704 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
3705 		*lbmp = Adapter->loopback_mode;
3706 		break;
3707 
3708 	case LB_SET_MODE:
3709 		size = 0;
3710 		if (iocp->ioc_count != sizeof (uint32_t))
3711 			return (IOC_INVAL);
3712 
3713 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
3714 		if (!e1000g_set_loopback_mode(Adapter, *lbmp))
3715 			return (IOC_INVAL);
3716 		break;
3717 	}
3718 
3719 	iocp->ioc_count = size;
3720 	iocp->ioc_error = 0;
3721 
3722 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
3723 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
3724 		return (IOC_INVAL);
3725 	}
3726 
3727 	return (IOC_REPLY);
3728 }
3729 
3730 static boolean_t
3731 e1000g_set_loopback_mode(struct e1000g *Adapter, uint32_t mode)
3732 {
3733 	struct e1000_hw *hw;
3734 	int i, times;
3735 	boolean_t link_up;
3736 
3737 	if (mode == Adapter->loopback_mode)
3738 		return (B_TRUE);
3739 
3740 	hw = &Adapter->shared;
3741 	times = 0;
3742 
3743 	Adapter->loopback_mode = mode;
3744 
3745 	if (mode == E1000G_LB_NONE) {
3746 		/* Reset the chip */
3747 		hw->phy.wait_for_link = B_TRUE;
3748 		(void) e1000g_reset(Adapter);
3749 		hw->phy.wait_for_link = B_FALSE;
3750 		return (B_TRUE);
3751 	}
3752 
3753 again:
3754 
3755 	(void) e1000g_reset(Adapter);
3756 
3757 	rw_enter(&Adapter->chip_lock, RW_WRITER);
3758 
3759 	switch (mode) {
3760 	default:
3761 		rw_exit(&Adapter->chip_lock);
3762 		return (B_FALSE);
3763 
3764 	case E1000G_LB_EXTERNAL_1000:
3765 		e1000g_set_external_loopback_1000(Adapter);
3766 		break;
3767 
3768 	case E1000G_LB_EXTERNAL_100:
3769 		e1000g_set_external_loopback_100(Adapter);
3770 		break;
3771 
3772 	case E1000G_LB_EXTERNAL_10:
3773 		e1000g_set_external_loopback_10(Adapter);
3774 		break;
3775 
3776 	case E1000G_LB_INTERNAL_PHY:
3777 		e1000g_set_internal_loopback(Adapter);
3778 		break;
3779 	}
3780 
3781 	times++;
3782 
3783 	/* Wait for link up */
3784 	for (i = (PHY_FORCE_LIMIT * 2); i > 0; i--)
3785 		msec_delay(100);
3786 
3787 	link_up = e1000g_link_up(Adapter);
3788 
3789 	rw_exit(&Adapter->chip_lock);
3790 
3791 	if (!link_up) {
3792 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
3793 		    "Failed to get the link up");
3794 		if (times < 2) {
3795 			/* Reset the link */
3796 			E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
3797 			    "Reset the link ...");
3798 			(void) e1000g_reset(Adapter);
3799 			goto again;
3800 		}
3801 	}
3802 
3803 	return (B_TRUE);
3804 }
3805 
3806 /*
3807  * The following loopback settings are from Intel's technical
3808  * document - "How To Loopback". All the register settings and
3809  * time delay values are directly inherited from the document
3810  * without more explanations available.
3811  */
3812 static void
3813 e1000g_set_internal_loopback(struct e1000g *Adapter)
3814 {
3815 	struct e1000_hw *hw;
3816 	uint32_t ctrl;
3817 	uint32_t status;
3818 	uint16_t phy_ctrl;
3819 	uint32_t txcw;
3820 
3821 	hw = &Adapter->shared;
3822 
3823 	/* Disable Smart Power Down */
3824 	phy_spd_state(hw, B_FALSE);
3825 
3826 	e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
3827 	phy_ctrl &= ~(MII_CR_AUTO_NEG_EN | MII_CR_SPEED_100 | MII_CR_SPEED_10);
3828 	phy_ctrl |= MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000;
3829 
3830 	switch (hw->mac.type) {
3831 	case e1000_82540:
3832 	case e1000_82545:
3833 	case e1000_82545_rev_3:
3834 	case e1000_82546:
3835 	case e1000_82546_rev_3:
3836 	case e1000_82573:
3837 		/* Auto-MDI/MDIX off */
3838 		e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
3839 		/* Reset PHY to update Auto-MDI/MDIX */
3840 		e1000_write_phy_reg(hw, PHY_CONTROL,
3841 		    phy_ctrl | MII_CR_RESET | MII_CR_AUTO_NEG_EN);
3842 		/* Reset PHY to auto-neg off and force 1000 */
3843 		e1000_write_phy_reg(hw, PHY_CONTROL,
3844 		    phy_ctrl | MII_CR_RESET);
3845 		/*
3846 		 * Disable PHY receiver for 82540/545/546 and 82573 Family.
3847 		 * See comments above e1000g_set_internal_loopback() for the
3848 		 * background.
3849 		 */
3850 		e1000_write_phy_reg(hw, 29, 0x001F);
3851 		e1000_write_phy_reg(hw, 30, 0x8FFC);
3852 		e1000_write_phy_reg(hw, 29, 0x001A);
3853 		e1000_write_phy_reg(hw, 30, 0x8FF0);
3854 		break;
3855 	}
3856 
3857 	/* Set loopback */
3858 	e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl | MII_CR_LOOPBACK);
3859 
3860 	msec_delay(250);
3861 
3862 	/* Now set up the MAC to the same speed/duplex as the PHY. */
3863 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
3864 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
3865 	ctrl |= (E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
3866 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
3867 	    E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
3868 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
3869 
3870 	switch (hw->mac.type) {
3871 	case e1000_82540:
3872 	case e1000_82545:
3873 	case e1000_82545_rev_3:
3874 	case e1000_82546:
3875 	case e1000_82546_rev_3:
3876 		/*
3877 		 * For some serdes we'll need to commit the writes now
3878 		 * so that the status is updated on link
3879 		 */
3880 		if (hw->media_type == e1000_media_type_internal_serdes) {
3881 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
3882 			msec_delay(100);
3883 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
3884 		}
3885 
3886 		if (hw->media_type == e1000_media_type_copper) {
3887 			/* Invert Loss of Signal */
3888 			ctrl |= E1000_CTRL_ILOS;
3889 		} else {
3890 			/* Set ILOS on fiber nic if half duplex is detected */
3891 			status = E1000_READ_REG(hw, E1000_STATUS);
3892 			if ((status & E1000_STATUS_FD) == 0)
3893 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
3894 		}
3895 		break;
3896 
3897 	case e1000_82571:
3898 	case e1000_82572:
3899 		/*
3900 		 * The fiber/SerDes versions of this adapter do not contain an
3901 		 * accessible PHY. Therefore, loopback beyond MAC must be done
3902 		 * using SerDes analog loopback.
3903 		 */
3904 		if (hw->media_type != e1000_media_type_copper) {
3905 			status = E1000_READ_REG(hw, E1000_STATUS);
3906 			/* Set ILOS on fiber nic if half duplex is detected */
3907 			if (((status & E1000_STATUS_LU) == 0) ||
3908 			    ((status & E1000_STATUS_FD) == 0) ||
3909 			    (hw->media_type ==
3910 			    e1000_media_type_internal_serdes))
3911 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
3912 
3913 			/* Disable autoneg by setting bit 31 of TXCW to zero */
3914 			txcw = E1000_READ_REG(hw, E1000_TXCW);
3915 			txcw &= ~((uint32_t)1 << 31);
3916 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
3917 
3918 			/*
3919 			 * Write 0x410 to Serdes Control register
3920 			 * to enable Serdes analog loopback
3921 			 */
3922 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
3923 			msec_delay(10);
3924 		}
3925 		break;
3926 
3927 	case e1000_82573:
3928 		ctrl |= E1000_CTRL_ILOS;
3929 		break;
3930 	}
3931 
3932 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
3933 
3934 }
3935 
3936 static void
3937 e1000g_set_external_loopback_1000(struct e1000g *Adapter)
3938 {
3939 	struct e1000_hw *hw;
3940 	uint32_t rctl;
3941 	uint32_t ctrl_ext;
3942 	uint32_t ctrl;
3943 	uint32_t status;
3944 	uint32_t txcw;
3945 
3946 	hw = &Adapter->shared;
3947 
3948 	/* Disable Smart Power Down */
3949 	phy_spd_state(hw, B_FALSE);
3950 
3951 	switch (hw->media_type) {
3952 	case e1000_media_type_copper:
3953 		/* Force link up (Must be done before the PHY writes) */
3954 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
3955 		ctrl |= E1000_CTRL_SLU;	/* Force Link Up */
3956 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
3957 
3958 		rctl = E1000_READ_REG(hw, E1000_RCTL);
3959 		rctl |= (E1000_RCTL_EN |
3960 		    E1000_RCTL_SBP |
3961 		    E1000_RCTL_UPE |
3962 		    E1000_RCTL_MPE |
3963 		    E1000_RCTL_LPE |
3964 		    E1000_RCTL_BAM);		/* 0x803E */
3965 		E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3966 
3967 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3968 		ctrl_ext |= (E1000_CTRL_EXT_SDP4_DATA |
3969 		    E1000_CTRL_EXT_SDP6_DATA |
3970 		    E1000_CTRL_EXT_SDP7_DATA |
3971 		    E1000_CTRL_EXT_SDP4_DIR |
3972 		    E1000_CTRL_EXT_SDP6_DIR |
3973 		    E1000_CTRL_EXT_SDP7_DIR);	/* 0x0DD0 */
3974 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3975 
3976 		/*
3977 		 * This sequence tunes the PHY's SDP and no customer
3978 		 * settable values. For background, see comments above
3979 		 * e1000g_set_internal_loopback().
3980 		 */
3981 		e1000_write_phy_reg(hw, 0x0, 0x140);
3982 		msec_delay(10);
3983 		e1000_write_phy_reg(hw, 0x9, 0x1A00);
3984 		e1000_write_phy_reg(hw, 0x12, 0xC10);
3985 		e1000_write_phy_reg(hw, 0x12, 0x1C10);
3986 		e1000_write_phy_reg(hw, 0x1F37, 0x76);
3987 		e1000_write_phy_reg(hw, 0x1F33, 0x1);
3988 		e1000_write_phy_reg(hw, 0x1F33, 0x0);
3989 
3990 		e1000_write_phy_reg(hw, 0x1F35, 0x65);
3991 		e1000_write_phy_reg(hw, 0x1837, 0x3F7C);
3992 		e1000_write_phy_reg(hw, 0x1437, 0x3FDC);
3993 		e1000_write_phy_reg(hw, 0x1237, 0x3F7C);
3994 		e1000_write_phy_reg(hw, 0x1137, 0x3FDC);
3995 
3996 		msec_delay(50);
3997 		break;
3998 	case e1000_media_type_fiber:
3999 	case e1000_media_type_internal_serdes:
4000 		status = E1000_READ_REG(hw, E1000_STATUS);
4001 		if (((status & E1000_STATUS_LU) == 0) ||
4002 		    (hw->media_type == e1000_media_type_internal_serdes)) {
4003 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
4004 			ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
4005 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4006 		}
4007 
4008 		/* Disable autoneg by setting bit 31 of TXCW to zero */
4009 		txcw = E1000_READ_REG(hw, E1000_TXCW);
4010 		txcw &= ~((uint32_t)1 << 31);
4011 		E1000_WRITE_REG(hw, E1000_TXCW, txcw);
4012 
4013 		/*
4014 		 * Write 0x410 to Serdes Control register
4015 		 * to enable Serdes analog loopback
4016 		 */
4017 		E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
4018 		msec_delay(10);
4019 		break;
4020 	default:
4021 		break;
4022 	}
4023 }
4024 
4025 static void
4026 e1000g_set_external_loopback_100(struct e1000g *Adapter)
4027 {
4028 	struct e1000_hw *hw;
4029 	uint32_t ctrl;
4030 	uint16_t phy_ctrl;
4031 
4032 	hw = &Adapter->shared;
4033 
4034 	/* Disable Smart Power Down */
4035 	phy_spd_state(hw, B_FALSE);
4036 
4037 	phy_ctrl = (MII_CR_FULL_DUPLEX |
4038 	    MII_CR_SPEED_100);
4039 
4040 	/* Force 100/FD, reset PHY */
4041 	e1000_write_phy_reg(hw, PHY_CONTROL,
4042 	    phy_ctrl | MII_CR_RESET);	/* 0xA100 */
4043 	msec_delay(10);
4044 
4045 	/* Force 100/FD */
4046 	e1000_write_phy_reg(hw, PHY_CONTROL,
4047 	    phy_ctrl);			/* 0x2100 */
4048 	msec_delay(10);
4049 
4050 	/* Now setup the MAC to the same speed/duplex as the PHY. */
4051 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4052 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
4053 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
4054 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
4055 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
4056 	    E1000_CTRL_SPD_100 |	/* Force Speed to 100 */
4057 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
4058 
4059 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4060 }
4061 
4062 static void
4063 e1000g_set_external_loopback_10(struct e1000g *Adapter)
4064 {
4065 	struct e1000_hw *hw;
4066 	uint32_t ctrl;
4067 	uint16_t phy_ctrl;
4068 
4069 	hw = &Adapter->shared;
4070 
4071 	/* Disable Smart Power Down */
4072 	phy_spd_state(hw, B_FALSE);
4073 
4074 	phy_ctrl = (MII_CR_FULL_DUPLEX |
4075 	    MII_CR_SPEED_10);
4076 
4077 	/* Force 10/FD, reset PHY */
4078 	e1000_write_phy_reg(hw, PHY_CONTROL,
4079 	    phy_ctrl | MII_CR_RESET);	/* 0x8100 */
4080 	msec_delay(10);
4081 
4082 	/* Force 10/FD */
4083 	e1000_write_phy_reg(hw, PHY_CONTROL,
4084 	    phy_ctrl);			/* 0x0100 */
4085 	msec_delay(10);
4086 
4087 	/* Now setup the MAC to the same speed/duplex as the PHY. */
4088 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4089 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
4090 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
4091 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
4092 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
4093 	    E1000_CTRL_SPD_10 |		/* Force Speed to 10 */
4094 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
4095 
4096 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4097 }
4098 
4099 #ifdef __sparc
4100 static boolean_t
4101 e1000g_find_mac_address(struct e1000g *Adapter)
4102 {
4103 	struct e1000_hw *hw = &Adapter->shared;
4104 	uchar_t *bytes;
4105 	struct ether_addr sysaddr;
4106 	uint_t nelts;
4107 	int err;
4108 	boolean_t found = B_FALSE;
4109 
4110 	/*
4111 	 * The "vendor's factory-set address" may already have
4112 	 * been extracted from the chip, but if the property
4113 	 * "local-mac-address" is set we use that instead.
4114 	 *
4115 	 * We check whether it looks like an array of 6
4116 	 * bytes (which it should, if OBP set it).  If we can't
4117 	 * make sense of it this way, we'll ignore it.
4118 	 */
4119 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
4120 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
4121 	if (err == DDI_PROP_SUCCESS) {
4122 		if (nelts == ETHERADDRL) {
4123 			while (nelts--)
4124 				hw->mac.addr[nelts] = bytes[nelts];
4125 			found = B_TRUE;
4126 		}
4127 		ddi_prop_free(bytes);
4128 	}
4129 
4130 	/*
4131 	 * Look up the OBP property "local-mac-address?". If the user has set
4132 	 * 'local-mac-address? = false', use "the system address" instead.
4133 	 */
4134 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip, 0,
4135 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
4136 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
4137 			if (localetheraddr(NULL, &sysaddr) != 0) {
4138 				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
4139 				found = B_TRUE;
4140 			}
4141 		}
4142 		ddi_prop_free(bytes);
4143 	}
4144 
4145 	/*
4146 	 * Finally(!), if there's a valid "mac-address" property (created
4147 	 * if we netbooted from this interface), we must use this instead
4148 	 * of any of the above to ensure that the NFS/install server doesn't
4149 	 * get confused by the address changing as Solaris takes over!
4150 	 */
4151 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
4152 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
4153 	if (err == DDI_PROP_SUCCESS) {
4154 		if (nelts == ETHERADDRL) {
4155 			while (nelts--)
4156 				hw->mac.addr[nelts] = bytes[nelts];
4157 			found = B_TRUE;
4158 		}
4159 		ddi_prop_free(bytes);
4160 	}
4161 
4162 	if (found) {
4163 		bcopy(hw->mac.addr, hw->mac.perm_addr,
4164 		    ETHERADDRL);
4165 	}
4166 
4167 	return (found);
4168 }
4169 #endif
4170 
4171 static int
4172 e1000g_add_intrs(struct e1000g *Adapter)
4173 {
4174 	dev_info_t *devinfo;
4175 	int intr_types;
4176 	int rc;
4177 
4178 	devinfo = Adapter->dip;
4179 
4180 	/* Get supported interrupt types */
4181 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
4182 
4183 	if (rc != DDI_SUCCESS) {
4184 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4185 		    "Get supported interrupt types failed: %d\n", rc);
4186 		return (DDI_FAILURE);
4187 	}
4188 
4189 	/*
4190 	 * Based on Intel Technical Advisory document (TA-160), there are some
4191 	 * cases where some older Intel PCI-X NICs may "advertise" to the OS
4192 	 * that it supports MSI, but in fact has problems.
4193 	 * So we should only enable MSI for PCI-E NICs and disable MSI for old
4194 	 * PCI/PCI-X NICs.
4195 	 */
4196 	if (Adapter->shared.mac.type < e1000_82571)
4197 		Adapter->msi_enabled = B_FALSE;
4198 
4199 	if ((intr_types & DDI_INTR_TYPE_MSI) && Adapter->msi_enabled) {
4200 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_MSI);
4201 
4202 		if (rc != DDI_SUCCESS) {
4203 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
4204 			    "Add MSI failed, trying Legacy interrupts\n");
4205 		} else {
4206 			Adapter->intr_type = DDI_INTR_TYPE_MSI;
4207 		}
4208 	}
4209 
4210 	if ((Adapter->intr_type == 0) &&
4211 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
4212 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_FIXED);
4213 
4214 		if (rc != DDI_SUCCESS) {
4215 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
4216 			    "Add Legacy interrupts failed\n");
4217 			return (DDI_FAILURE);
4218 		}
4219 
4220 		Adapter->intr_type = DDI_INTR_TYPE_FIXED;
4221 	}
4222 
4223 	if (Adapter->intr_type == 0) {
4224 		E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
4225 		    "No interrupts registered\n");
4226 		return (DDI_FAILURE);
4227 	}
4228 
4229 	return (DDI_SUCCESS);
4230 }
4231 
4232 /*
4233  * e1000g_intr_add() handles MSI/Legacy interrupts
4234  */
4235 static int
4236 e1000g_intr_add(struct e1000g *Adapter, int intr_type)
4237 {
4238 	dev_info_t *devinfo;
4239 	int count, avail, actual;
4240 	int x, y, rc, inum = 0;
4241 	int flag;
4242 	ddi_intr_handler_t *intr_handler;
4243 
4244 	devinfo = Adapter->dip;
4245 
4246 	/* get number of interrupts */
4247 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
4248 	if ((rc != DDI_SUCCESS) || (count == 0)) {
4249 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
4250 		    "Get interrupt number failed. Return: %d, count: %d\n",
4251 		    rc, count);
4252 		return (DDI_FAILURE);
4253 	}
4254 
4255 	/* get number of available interrupts */
4256 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
4257 	if ((rc != DDI_SUCCESS) || (avail == 0)) {
4258 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
4259 		    "Get interrupt available number failed. "
4260 		    "Return: %d, available: %d\n", rc, avail);
4261 		return (DDI_FAILURE);
4262 	}
4263 
4264 	if (avail < count) {
4265 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
4266 		    "Interrupts count: %d, available: %d\n",
4267 		    count, avail);
4268 	}
4269 
4270 	/* Allocate an array of interrupt handles */
4271 	Adapter->intr_size = count * sizeof (ddi_intr_handle_t);
4272 	Adapter->htable = kmem_alloc(Adapter->intr_size, KM_SLEEP);
4273 
4274 	/* Set NORMAL behavior for both MSI and FIXED interrupt */
4275 	flag = DDI_INTR_ALLOC_NORMAL;
4276 
4277 	/* call ddi_intr_alloc() */
4278 	rc = ddi_intr_alloc(devinfo, Adapter->htable, intr_type, inum,
4279 	    count, &actual, flag);
4280 
4281 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
4282 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4283 		    "Allocate interrupts failed: %d\n", rc);
4284 
4285 		kmem_free(Adapter->htable, Adapter->intr_size);
4286 		return (DDI_FAILURE);
4287 	}
4288 
4289 	if (actual < count) {
4290 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
4291 		    "Interrupts requested: %d, received: %d\n",
4292 		    count, actual);
4293 	}
4294 
4295 	Adapter->intr_cnt = actual;
4296 
4297 	/* Get priority for first msi, assume remaining are all the same */
4298 	rc = ddi_intr_get_pri(Adapter->htable[0], &Adapter->intr_pri);
4299 
4300 	if (rc != DDI_SUCCESS) {
4301 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4302 		    "Get interrupt priority failed: %d\n", rc);
4303 
4304 		/* Free already allocated intr */
4305 		for (y = 0; y < actual; y++)
4306 			(void) ddi_intr_free(Adapter->htable[y]);
4307 
4308 		kmem_free(Adapter->htable, Adapter->intr_size);
4309 		return (DDI_FAILURE);
4310 	}
4311 
4312 	/*
4313 	 * In Legacy Interrupt mode, for PCI-Express adapters, we should
4314 	 * use the interrupt service routine e1000g_intr_pciexpress()
4315 	 * to avoid interrupt stealing when sharing interrupt with other
4316 	 * devices.
4317 	 */
4318 	if (Adapter->shared.mac.type < e1000_82571)
4319 		intr_handler = (ddi_intr_handler_t *)e1000g_intr;
4320 	else
4321 		intr_handler = (ddi_intr_handler_t *)e1000g_intr_pciexpress;
4322 
4323 	/* Call ddi_intr_add_handler() */
4324 	for (x = 0; x < actual; x++) {
4325 		rc = ddi_intr_add_handler(Adapter->htable[x],
4326 		    intr_handler, (caddr_t)Adapter, NULL);
4327 
4328 		if (rc != DDI_SUCCESS) {
4329 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4330 			    "Add interrupt handler failed: %d\n", rc);
4331 
4332 			/* Remove already added handler */
4333 			for (y = 0; y < x; y++)
4334 				(void) ddi_intr_remove_handler(
4335 				    Adapter->htable[y]);
4336 
4337 			/* Free already allocated intr */
4338 			for (y = 0; y < actual; y++)
4339 				(void) ddi_intr_free(Adapter->htable[y]);
4340 
4341 			kmem_free(Adapter->htable, Adapter->intr_size);
4342 			return (DDI_FAILURE);
4343 		}
4344 	}
4345 
4346 	rc = ddi_intr_get_cap(Adapter->htable[0], &Adapter->intr_cap);
4347 
4348 	if (rc != DDI_SUCCESS) {
4349 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4350 		    "Get interrupt cap failed: %d\n", rc);
4351 
4352 		/* Free already allocated intr */
4353 		for (y = 0; y < actual; y++) {
4354 			(void) ddi_intr_remove_handler(Adapter->htable[y]);
4355 			(void) ddi_intr_free(Adapter->htable[y]);
4356 		}
4357 
4358 		kmem_free(Adapter->htable, Adapter->intr_size);
4359 		return (DDI_FAILURE);
4360 	}
4361 
4362 	return (DDI_SUCCESS);
4363 }
4364 
4365 static int
4366 e1000g_rem_intrs(struct e1000g *Adapter)
4367 {
4368 	int x;
4369 	int rc;
4370 
4371 	for (x = 0; x < Adapter->intr_cnt; x++) {
4372 		rc = ddi_intr_remove_handler(Adapter->htable[x]);
4373 		if (rc != DDI_SUCCESS) {
4374 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4375 			    "Remove intr handler failed: %d\n", rc);
4376 			return (DDI_FAILURE);
4377 		}
4378 
4379 		rc = ddi_intr_free(Adapter->htable[x]);
4380 		if (rc != DDI_SUCCESS) {
4381 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4382 			    "Free intr failed: %d\n", rc);
4383 			return (DDI_FAILURE);
4384 		}
4385 	}
4386 
4387 	kmem_free(Adapter->htable, Adapter->intr_size);
4388 
4389 	return (DDI_SUCCESS);
4390 }
4391 
4392 static int
4393 e1000g_enable_intrs(struct e1000g *Adapter)
4394 {
4395 	int x;
4396 	int rc;
4397 
4398 	/* Enable interrupts */
4399 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
4400 		/* Call ddi_intr_block_enable() for MSI */
4401 		rc = ddi_intr_block_enable(Adapter->htable,
4402 		    Adapter->intr_cnt);
4403 		if (rc != DDI_SUCCESS) {
4404 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4405 			    "Enable block intr failed: %d\n", rc);
4406 			return (DDI_FAILURE);
4407 		}
4408 	} else {
4409 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
4410 		for (x = 0; x < Adapter->intr_cnt; x++) {
4411 			rc = ddi_intr_enable(Adapter->htable[x]);
4412 			if (rc != DDI_SUCCESS) {
4413 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4414 				    "Enable intr failed: %d\n", rc);
4415 				return (DDI_FAILURE);
4416 			}
4417 		}
4418 	}
4419 
4420 	return (DDI_SUCCESS);
4421 }
4422 
4423 static int
4424 e1000g_disable_intrs(struct e1000g *Adapter)
4425 {
4426 	int x;
4427 	int rc;
4428 
4429 	/* Disable all interrupts */
4430 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
4431 		rc = ddi_intr_block_disable(Adapter->htable,
4432 		    Adapter->intr_cnt);
4433 		if (rc != DDI_SUCCESS) {
4434 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4435 			    "Disable block intr failed: %d\n", rc);
4436 			return (DDI_FAILURE);
4437 		}
4438 	} else {
4439 		for (x = 0; x < Adapter->intr_cnt; x++) {
4440 			rc = ddi_intr_disable(Adapter->htable[x]);
4441 			if (rc != DDI_SUCCESS) {
4442 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4443 				    "Disable intr failed: %d\n", rc);
4444 				return (DDI_FAILURE);
4445 			}
4446 		}
4447 	}
4448 
4449 	return (DDI_SUCCESS);
4450 }
4451 
4452 /*
4453  * e1000g_get_phy_state - get the state of PHY registers, save in the adapter
4454  */
4455 static void
4456 e1000g_get_phy_state(struct e1000g *Adapter)
4457 {
4458 	struct e1000_hw *hw = &Adapter->shared;
4459 
4460 	e1000_read_phy_reg(hw, PHY_CONTROL, &Adapter->phy_ctrl);
4461 	e1000_read_phy_reg(hw, PHY_STATUS, &Adapter->phy_status);
4462 	e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &Adapter->phy_an_adv);
4463 	e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &Adapter->phy_an_exp);
4464 	e1000_read_phy_reg(hw, PHY_EXT_STATUS, &Adapter->phy_ext_status);
4465 	e1000_read_phy_reg(hw, PHY_1000T_CTRL, &Adapter->phy_1000t_ctrl);
4466 	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &Adapter->phy_1000t_status);
4467 	e1000_read_phy_reg(hw, PHY_LP_ABILITY, &Adapter->phy_lp_able);
4468 }
4469 
4470 /*
4471  * FMA support
4472  */
4473 
4474 int
4475 e1000g_check_acc_handle(ddi_acc_handle_t handle)
4476 {
4477 	ddi_fm_error_t de;
4478 
4479 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
4480 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
4481 	return (de.fme_status);
4482 }
4483 
4484 int
4485 e1000g_check_dma_handle(ddi_dma_handle_t handle)
4486 {
4487 	ddi_fm_error_t de;
4488 
4489 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
4490 	return (de.fme_status);
4491 }
4492 
4493 /*
4494  * The IO fault service error handling callback function
4495  */
4496 static int
4497 e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
4498 {
4499 	/*
4500 	 * as the driver can always deal with an error in any dma or
4501 	 * access handle, we can just return the fme_status value.
4502 	 */
4503 	pci_ereport_post(dip, err, NULL);
4504 	return (err->fme_status);
4505 }
4506 
4507 static void
4508 e1000g_fm_init(struct e1000g *Adapter)
4509 {
4510 	ddi_iblock_cookie_t iblk;
4511 	int fma_acc_flag, fma_dma_flag;
4512 
4513 	/* Only register with IO Fault Services if we have some capability */
4514 	if (Adapter->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
4515 		e1000g_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
4516 		fma_acc_flag = 1;
4517 	} else {
4518 		e1000g_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
4519 		fma_acc_flag = 0;
4520 	}
4521 
4522 	if (Adapter->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
4523 		fma_dma_flag = 1;
4524 	} else {
4525 		fma_dma_flag = 0;
4526 	}
4527 
4528 	(void) e1000g_set_fma_flags(Adapter, fma_acc_flag, fma_dma_flag);
4529 
4530 	if (Adapter->fm_capabilities) {
4531 
4532 		/* Register capabilities with IO Fault Services */
4533 		ddi_fm_init(Adapter->dip, &Adapter->fm_capabilities, &iblk);
4534 
4535 		/*
4536 		 * Initialize pci ereport capabilities if ereport capable
4537 		 */
4538 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
4539 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
4540 			pci_ereport_setup(Adapter->dip);
4541 
4542 		/*
4543 		 * Register error callback if error callback capable
4544 		 */
4545 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
4546 			ddi_fm_handler_register(Adapter->dip,
4547 			    e1000g_fm_error_cb, (void*) Adapter);
4548 	}
4549 }
4550 
4551 static void
4552 e1000g_fm_fini(struct e1000g *Adapter)
4553 {
4554 	/* Only unregister FMA capabilities if we registered some */
4555 	if (Adapter->fm_capabilities) {
4556 
4557 		/*
4558 		 * Release any resources allocated by pci_ereport_setup()
4559 		 */
4560 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
4561 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
4562 			pci_ereport_teardown(Adapter->dip);
4563 
4564 		/*
4565 		 * Un-register error callback if error callback capable
4566 		 */
4567 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
4568 			ddi_fm_handler_unregister(Adapter->dip);
4569 
4570 		/* Unregister from IO Fault Services */
4571 		ddi_fm_fini(Adapter->dip);
4572 	}
4573 }
4574 
4575 void
4576 e1000g_fm_ereport(struct e1000g *Adapter, char *detail)
4577 {
4578 	uint64_t ena;
4579 	char buf[FM_MAX_CLASS];
4580 
4581 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
4582 	ena = fm_ena_generate(0, FM_ENA_FMT1);
4583 	if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities)) {
4584 		ddi_fm_ereport_post(Adapter->dip, buf, ena, DDI_NOSLEEP,
4585 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
4586 	}
4587 }
4588