xref: /titanic_51/usr/src/uts/common/io/e1000g/e1000g_main.c (revision 36615d24946b849e48cedbbafa9adfb4a02b590c)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2008 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * **********************************************************************
30  *									*
31  * Module Name:								*
32  *   e1000g_main.c							*
33  *									*
34  * Abstract:								*
35  *   This file contains the interface routines for the solaris OS.	*
36  *   It has all DDI entry point routines and GLD entry point routines.	*
37  *									*
38  *   This file also contains routines that take care of initialization	*
39  *   uninit routine and interrupt routine.				*
40  *									*
41  * **********************************************************************
42  */
43 
44 #include <sys/dlpi.h>
45 #include <sys/mac.h>
46 #include "e1000g_sw.h"
47 #include "e1000g_debug.h"
48 
49 static char ident[] = "Intel PRO/1000 Ethernet 5.2.8";
50 static char e1000g_string[] = "Intel(R) PRO/1000 Network Connection";
51 static char e1000g_version[] = "Driver Ver. 5.2.8";
52 
53 /*
54  * Proto types for DDI entry points
55  */
56 static int e1000g_attach(dev_info_t *, ddi_attach_cmd_t);
57 static int e1000g_detach(dev_info_t *, ddi_detach_cmd_t);
58 
59 /*
60  * init and intr routines prototype
61  */
62 static int e1000g_resume(dev_info_t *);
63 static int e1000g_suspend(dev_info_t *);
64 static uint_t e1000g_intr_pciexpress(caddr_t);
65 static uint_t e1000g_intr(caddr_t);
66 static void e1000g_intr_work(struct e1000g *, uint32_t);
67 #pragma inline(e1000g_intr_work)
68 static uint32_t e1000g_get_itr(uint32_t, uint32_t, uint32_t);
69 #pragma inline(e1000g_get_itr)
70 static int e1000g_init(struct e1000g *);
71 static int e1000g_start(struct e1000g *, boolean_t);
72 static void e1000g_stop(struct e1000g *, boolean_t);
73 static int e1000g_m_start(void *);
74 static void e1000g_m_stop(void *);
75 static int e1000g_m_promisc(void *, boolean_t);
76 static boolean_t e1000g_m_getcapab(void *, mac_capab_t, void *);
77 static int e1000g_m_unicst(void *, const uint8_t *);
78 static int e1000g_m_unicst_add(void *, mac_multi_addr_t *);
79 static int e1000g_m_unicst_remove(void *, mac_addr_slot_t);
80 static int e1000g_m_unicst_modify(void *, mac_multi_addr_t *);
81 static int e1000g_m_unicst_get(void *, mac_multi_addr_t *);
82 static int e1000g_m_multicst(void *, boolean_t, const uint8_t *);
83 static void e1000g_m_ioctl(void *, queue_t *, mblk_t *);
84 static int e1000g_m_setprop(void *, const char *, mac_prop_id_t,
85     uint_t, const void *);
86 static int e1000g_m_getprop(void *, const char *, mac_prop_id_t,
87     uint_t, uint_t, void *);
88 static int e1000g_set_priv_prop(struct e1000g *, const char *, uint_t,
89     const void *);
90 static int e1000g_get_priv_prop(struct e1000g *, const char *, uint_t,
91     uint_t, void *);
92 static void e1000g_init_locks(struct e1000g *);
93 static void e1000g_destroy_locks(struct e1000g *);
94 static int e1000g_identify_hardware(struct e1000g *);
95 static int e1000g_regs_map(struct e1000g *);
96 static int e1000g_set_driver_params(struct e1000g *);
97 static void e1000g_set_bufsize(struct e1000g *);
98 static int e1000g_register_mac(struct e1000g *);
99 static boolean_t e1000g_rx_drain(struct e1000g *);
100 static boolean_t e1000g_tx_drain(struct e1000g *);
101 static void e1000g_init_unicst(struct e1000g *);
102 static int e1000g_unicst_set(struct e1000g *, const uint8_t *, mac_addr_slot_t);
103 
104 /*
105  * Local routines
106  */
107 static void e1000g_tx_clean(struct e1000g *);
108 static void e1000g_rx_clean(struct e1000g *);
109 static void e1000g_link_timer(void *);
110 static void e1000g_local_timer(void *);
111 static boolean_t e1000g_link_check(struct e1000g *);
112 static boolean_t e1000g_stall_check(struct e1000g *);
113 static void e1000g_smartspeed(struct e1000g *);
114 static void e1000g_get_conf(struct e1000g *);
115 static int e1000g_get_prop(struct e1000g *, char *, int, int, int);
116 static void enable_watchdog_timer(struct e1000g *);
117 static void disable_watchdog_timer(struct e1000g *);
118 static void start_watchdog_timer(struct e1000g *);
119 static void restart_watchdog_timer(struct e1000g *);
120 static void stop_watchdog_timer(struct e1000g *);
121 static void stop_link_timer(struct e1000g *);
122 static void stop_82547_timer(e1000g_tx_ring_t *);
123 static void e1000g_force_speed_duplex(struct e1000g *);
124 static void e1000g_get_max_frame_size(struct e1000g *);
125 static boolean_t is_valid_mac_addr(uint8_t *);
126 static void e1000g_unattach(dev_info_t *, struct e1000g *);
127 #ifdef E1000G_DEBUG
128 static void e1000g_ioc_peek_reg(struct e1000g *, e1000g_peekpoke_t *);
129 static void e1000g_ioc_poke_reg(struct e1000g *, e1000g_peekpoke_t *);
130 static void e1000g_ioc_peek_mem(struct e1000g *, e1000g_peekpoke_t *);
131 static void e1000g_ioc_poke_mem(struct e1000g *, e1000g_peekpoke_t *);
132 static enum ioc_reply e1000g_pp_ioctl(struct e1000g *,
133     struct iocblk *, mblk_t *);
134 #endif
135 static enum ioc_reply e1000g_loopback_ioctl(struct e1000g *,
136     struct iocblk *, mblk_t *);
137 static boolean_t e1000g_set_loopback_mode(struct e1000g *, uint32_t);
138 static void e1000g_set_internal_loopback(struct e1000g *);
139 static void e1000g_set_external_loopback_1000(struct e1000g *);
140 static void e1000g_set_external_loopback_100(struct e1000g *);
141 static void e1000g_set_external_loopback_10(struct e1000g *);
142 static int e1000g_add_intrs(struct e1000g *);
143 static int e1000g_intr_add(struct e1000g *, int);
144 static int e1000g_rem_intrs(struct e1000g *);
145 static int e1000g_enable_intrs(struct e1000g *);
146 static int e1000g_disable_intrs(struct e1000g *);
147 static boolean_t e1000g_link_up(struct e1000g *);
148 #ifdef __sparc
149 static boolean_t e1000g_find_mac_address(struct e1000g *);
150 #endif
151 static void e1000g_get_phy_state(struct e1000g *);
152 static void e1000g_free_priv_devi_node(struct e1000g *, boolean_t);
153 static int e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err,
154     const void *impl_data);
155 static void e1000g_fm_init(struct e1000g *Adapter);
156 static void e1000g_fm_fini(struct e1000g *Adapter);
157 static int e1000g_get_def_val(struct e1000g *, mac_prop_id_t, uint_t, void *);
158 static void e1000g_param_sync(struct e1000g *);
159 
160 mac_priv_prop_t e1000g_priv_props[] = {
161 	{"_tx_bcopy_threshold", MAC_PROP_PERM_RW},
162 	{"_tx_interrupt_enable", MAC_PROP_PERM_RW},
163 	{"_tx_intr_delay", MAC_PROP_PERM_RW},
164 	{"_tx_intr_abs_delay", MAC_PROP_PERM_RW},
165 	{"_rx_bcopy_threshold", MAC_PROP_PERM_RW},
166 	{"_max_num_rcv_packets", MAC_PROP_PERM_RW},
167 	{"_rx_intr_delay", MAC_PROP_PERM_RW},
168 	{"_rx_intr_abs_delay", MAC_PROP_PERM_RW},
169 	{"_intr_throttling_rate", MAC_PROP_PERM_RW},
170 	{"_intr_adaptive", MAC_PROP_PERM_RW},
171 	{"_tx_recycle_thresh", MAC_PROP_PERM_RW},
172 	{"_adv_pause_cap", MAC_PROP_PERM_READ},
173 	{"_adv_asym_pause_cap", MAC_PROP_PERM_READ},
174 	{"_tx_recycle_num", MAC_PROP_PERM_RW}
175 };
176 #define	E1000G_MAX_PRIV_PROPS	\
177 	(sizeof (e1000g_priv_props)/sizeof (mac_priv_prop_t))
178 
179 
180 static struct cb_ops cb_ws_ops = {
181 	nulldev,		/* cb_open */
182 	nulldev,		/* cb_close */
183 	nodev,			/* cb_strategy */
184 	nodev,			/* cb_print */
185 	nodev,			/* cb_dump */
186 	nodev,			/* cb_read */
187 	nodev,			/* cb_write */
188 	nodev,			/* cb_ioctl */
189 	nodev,			/* cb_devmap */
190 	nodev,			/* cb_mmap */
191 	nodev,			/* cb_segmap */
192 	nochpoll,		/* cb_chpoll */
193 	ddi_prop_op,		/* cb_prop_op */
194 	NULL,			/* cb_stream */
195 	D_MP | D_HOTPLUG,	/* cb_flag */
196 	CB_REV,			/* cb_rev */
197 	nodev,			/* cb_aread */
198 	nodev			/* cb_awrite */
199 };
200 
201 static struct dev_ops ws_ops = {
202 	DEVO_REV,		/* devo_rev */
203 	0,			/* devo_refcnt */
204 	NULL,			/* devo_getinfo */
205 	nulldev,		/* devo_identify */
206 	nulldev,		/* devo_probe */
207 	e1000g_attach,		/* devo_attach */
208 	e1000g_detach,		/* devo_detach */
209 	nodev,			/* devo_reset */
210 	&cb_ws_ops,		/* devo_cb_ops */
211 	NULL,			/* devo_bus_ops */
212 	ddi_power		/* devo_power */
213 };
214 
215 static struct modldrv modldrv = {
216 	&mod_driverops,		/* Type of module.  This one is a driver */
217 	ident,			/* Discription string */
218 	&ws_ops,		/* driver ops */
219 };
220 
221 static struct modlinkage modlinkage = {
222 	MODREV_1, &modldrv, NULL
223 };
224 
225 /* Access attributes for register mapping */
226 static ddi_device_acc_attr_t e1000g_regs_acc_attr = {
227 	DDI_DEVICE_ATTR_V0,
228 	DDI_STRUCTURE_LE_ACC,
229 	DDI_STRICTORDER_ACC,
230 	DDI_FLAGERR_ACC
231 };
232 
233 #define	E1000G_M_CALLBACK_FLAGS \
234 	(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP)
235 
236 static mac_callbacks_t e1000g_m_callbacks = {
237 	E1000G_M_CALLBACK_FLAGS,
238 	e1000g_m_stat,
239 	e1000g_m_start,
240 	e1000g_m_stop,
241 	e1000g_m_promisc,
242 	e1000g_m_multicst,
243 	e1000g_m_unicst,
244 	e1000g_m_tx,
245 	NULL,
246 	e1000g_m_ioctl,
247 	e1000g_m_getcapab,
248 	NULL,
249 	NULL,
250 	e1000g_m_setprop,
251 	e1000g_m_getprop
252 };
253 
254 /*
255  * Global variables
256  */
257 uint32_t e1000g_mblks_pending = 0;
258 /*
259  * Workaround for Dynamic Reconfiguration support, for x86 platform only.
260  * Here we maintain a private dev_info list if e1000g_force_detach is
261  * enabled. If we force the driver to detach while there are still some
262  * rx buffers retained in the upper layer, we have to keep a copy of the
263  * dev_info. In some cases (Dynamic Reconfiguration), the dev_info data
264  * structure will be freed after the driver is detached. However when we
265  * finally free those rx buffers released by the upper layer, we need to
266  * refer to the dev_info to free the dma buffers. So we save a copy of
267  * the dev_info for this purpose. On x86 platform, we assume this copy
268  * of dev_info is always valid, but on SPARC platform, it could be invalid
269  * after the system board level DR operation. For this reason, the global
270  * variable e1000g_force_detach must be B_FALSE on SPARC platform.
271  */
272 #ifdef __sparc
273 boolean_t e1000g_force_detach = B_FALSE;
274 #else
275 boolean_t e1000g_force_detach = B_TRUE;
276 #endif
277 private_devi_list_t *e1000g_private_devi_list = NULL;
278 
279 /*
280  * The rwlock is defined to protect the whole processing of rx recycling
281  * and the rx packets release in detach processing to make them mutually
282  * exclusive.
283  * The rx recycling processes different rx packets in different threads,
284  * so it will be protected with RW_READER and it won't block any other rx
285  * recycling threads.
286  * While the detach processing will be protected with RW_WRITER to make
287  * it mutually exclusive with the rx recycling.
288  */
289 krwlock_t e1000g_rx_detach_lock;
290 /*
291  * The rwlock e1000g_dma_type_lock is defined to protect the global flag
292  * e1000g_dma_type. For SPARC, the initial value of the flag is "USE_DVMA".
293  * If there are many e1000g instances, the system may run out of DVMA
294  * resources during the initialization of the instances, then the flag will
295  * be changed to "USE_DMA". Because different e1000g instances are initialized
296  * in parallel, we need to use this lock to protect the flag.
297  */
298 krwlock_t e1000g_dma_type_lock;
299 
300 
301 /*
302  * Loadable module configuration entry points for the driver
303  */
304 
305 /*
306  * _init - module initialization
307  */
308 int
309 _init(void)
310 {
311 	int status;
312 
313 	mac_init_ops(&ws_ops, WSNAME);
314 	status = mod_install(&modlinkage);
315 	if (status != DDI_SUCCESS)
316 		mac_fini_ops(&ws_ops);
317 	else {
318 		rw_init(&e1000g_rx_detach_lock, NULL, RW_DRIVER, NULL);
319 		rw_init(&e1000g_dma_type_lock, NULL, RW_DRIVER, NULL);
320 	}
321 
322 	return (status);
323 }
324 
325 /*
326  * _fini - module finalization
327  */
328 int
329 _fini(void)
330 {
331 	int status;
332 
333 	rw_enter(&e1000g_rx_detach_lock, RW_READER);
334 	if (e1000g_mblks_pending != 0) {
335 		rw_exit(&e1000g_rx_detach_lock);
336 		return (EBUSY);
337 	}
338 	rw_exit(&e1000g_rx_detach_lock);
339 
340 	status = mod_remove(&modlinkage);
341 	if (status == DDI_SUCCESS) {
342 		mac_fini_ops(&ws_ops);
343 
344 		if (e1000g_force_detach) {
345 			private_devi_list_t *devi_node;
346 
347 			rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
348 			while (e1000g_private_devi_list != NULL) {
349 				devi_node = e1000g_private_devi_list;
350 				e1000g_private_devi_list =
351 				    e1000g_private_devi_list->next;
352 
353 				kmem_free(devi_node->priv_dip,
354 				    sizeof (struct dev_info));
355 				kmem_free(devi_node,
356 				    sizeof (private_devi_list_t));
357 			}
358 			rw_exit(&e1000g_rx_detach_lock);
359 		}
360 
361 		rw_destroy(&e1000g_rx_detach_lock);
362 		rw_destroy(&e1000g_dma_type_lock);
363 	}
364 
365 	return (status);
366 }
367 
368 /*
369  * _info - module information
370  */
371 int
372 _info(struct modinfo *modinfop)
373 {
374 	return (mod_info(&modlinkage, modinfop));
375 }
376 
377 /*
378  * e1000g_attach - driver attach
379  *
380  * This function is the device-specific initialization entry
381  * point. This entry point is required and must be written.
382  * The DDI_ATTACH command must be provided in the attach entry
383  * point. When attach() is called with cmd set to DDI_ATTACH,
384  * all normal kernel services (such as kmem_alloc(9F)) are
385  * available for use by the driver.
386  *
387  * The attach() function will be called once for each instance
388  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
389  * Until attach() succeeds, the only driver entry points which
390  * may be called are open(9E) and getinfo(9E).
391  */
392 static int
393 e1000g_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
394 {
395 	struct e1000g *Adapter;
396 	struct e1000_hw *hw;
397 	struct e1000g_osdep *osdep;
398 	int instance;
399 
400 	switch (cmd) {
401 	default:
402 		e1000g_log(NULL, CE_WARN,
403 		    "Unsupported command send to e1000g_attach... ");
404 		return (DDI_FAILURE);
405 
406 	case DDI_RESUME:
407 		return (e1000g_resume(devinfo));
408 
409 	case DDI_ATTACH:
410 		break;
411 	}
412 
413 	/*
414 	 * get device instance number
415 	 */
416 	instance = ddi_get_instance(devinfo);
417 
418 	/*
419 	 * Allocate soft data structure
420 	 */
421 	Adapter =
422 	    (struct e1000g *)kmem_zalloc(sizeof (*Adapter), KM_SLEEP);
423 
424 	Adapter->dip = devinfo;
425 	Adapter->instance = instance;
426 	Adapter->tx_ring->adapter = Adapter;
427 	Adapter->rx_ring->adapter = Adapter;
428 
429 	hw = &Adapter->shared;
430 	osdep = &Adapter->osdep;
431 	hw->back = osdep;
432 	osdep->adapter = Adapter;
433 
434 	ddi_set_driver_private(devinfo, (caddr_t)Adapter);
435 
436 	/*
437 	 * Initialize for fma support
438 	 */
439 	Adapter->fm_capabilities = e1000g_get_prop(Adapter, "fm-capable",
440 	    0, 0x0f,
441 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
442 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
443 	e1000g_fm_init(Adapter);
444 	Adapter->attach_progress |= ATTACH_PROGRESS_FMINIT;
445 
446 	/*
447 	 * PCI Configure
448 	 */
449 	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
450 		e1000g_log(Adapter, CE_WARN, "PCI configuration failed");
451 		goto attach_fail;
452 	}
453 	Adapter->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
454 
455 	/*
456 	 * Setup hardware
457 	 */
458 	if (e1000g_identify_hardware(Adapter) != DDI_SUCCESS) {
459 		e1000g_log(Adapter, CE_WARN, "Identify hardware failed");
460 		goto attach_fail;
461 	}
462 
463 	/*
464 	 * Map in the device registers.
465 	 */
466 	if (e1000g_regs_map(Adapter) != DDI_SUCCESS) {
467 		e1000g_log(Adapter, CE_WARN, "Mapping registers failed");
468 		goto attach_fail;
469 	}
470 	Adapter->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
471 
472 	/*
473 	 * Initialize driver parameters
474 	 */
475 	if (e1000g_set_driver_params(Adapter) != DDI_SUCCESS) {
476 		goto attach_fail;
477 	}
478 	Adapter->attach_progress |= ATTACH_PROGRESS_SETUP;
479 
480 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
481 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
482 		goto attach_fail;
483 	}
484 
485 	/*
486 	 * Initialize interrupts
487 	 */
488 	if (e1000g_add_intrs(Adapter) != DDI_SUCCESS) {
489 		e1000g_log(Adapter, CE_WARN, "Add interrupts failed");
490 		goto attach_fail;
491 	}
492 	Adapter->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
493 
494 	/*
495 	 * Initialize mutex's for this device.
496 	 * Do this before enabling the interrupt handler and
497 	 * register the softint to avoid the condition where
498 	 * interrupt handler can try using uninitialized mutex
499 	 */
500 	e1000g_init_locks(Adapter);
501 	Adapter->attach_progress |= ATTACH_PROGRESS_LOCKS;
502 
503 	/*
504 	 * Initialize Driver Counters
505 	 */
506 	if (e1000g_init_stats(Adapter) != DDI_SUCCESS) {
507 		e1000g_log(Adapter, CE_WARN, "Init stats failed");
508 		goto attach_fail;
509 	}
510 	Adapter->attach_progress |= ATTACH_PROGRESS_KSTATS;
511 
512 	/*
513 	 * Initialize chip hardware and software structures
514 	 */
515 	if (e1000g_init(Adapter) != DDI_SUCCESS) {
516 		e1000g_log(Adapter, CE_WARN, "Adapter initialization failed");
517 		goto attach_fail;
518 	}
519 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
520 
521 	/*
522 	 * Register the driver to the MAC
523 	 */
524 	if (e1000g_register_mac(Adapter) != DDI_SUCCESS) {
525 		e1000g_log(Adapter, CE_WARN, "Register MAC failed");
526 		goto attach_fail;
527 	}
528 	Adapter->attach_progress |= ATTACH_PROGRESS_MAC;
529 
530 	/*
531 	 * Now that mutex locks are initialized, and the chip is also
532 	 * initialized, enable interrupts.
533 	 */
534 	if (e1000g_enable_intrs(Adapter) != DDI_SUCCESS) {
535 		e1000g_log(Adapter, CE_WARN, "Enable DDI interrupts failed");
536 		goto attach_fail;
537 	}
538 	Adapter->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
539 
540 	/*
541 	 * If e1000g_force_detach is enabled, in global private dip list,
542 	 * we will create a new entry, which maintains the priv_dip for DR
543 	 * supports after driver detached.
544 	 */
545 	if (e1000g_force_detach) {
546 		private_devi_list_t *devi_node;
547 
548 		Adapter->priv_dip =
549 		    kmem_zalloc(sizeof (struct dev_info), KM_SLEEP);
550 		bcopy(DEVI(devinfo), DEVI(Adapter->priv_dip),
551 		    sizeof (struct dev_info));
552 
553 		devi_node =
554 		    kmem_zalloc(sizeof (private_devi_list_t), KM_SLEEP);
555 
556 		rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
557 		devi_node->priv_dip = Adapter->priv_dip;
558 		devi_node->flag = E1000G_PRIV_DEVI_ATTACH;
559 		devi_node->next = e1000g_private_devi_list;
560 		e1000g_private_devi_list = devi_node;
561 		rw_exit(&e1000g_rx_detach_lock);
562 	}
563 
564 	cmn_err(CE_CONT, "!%s, %s\n", e1000g_string, e1000g_version);
565 
566 	return (DDI_SUCCESS);
567 
568 attach_fail:
569 	e1000g_unattach(devinfo, Adapter);
570 	return (DDI_FAILURE);
571 }
572 
573 static int
574 e1000g_register_mac(struct e1000g *Adapter)
575 {
576 	struct e1000_hw *hw = &Adapter->shared;
577 	mac_register_t *mac;
578 	int err;
579 
580 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
581 		return (DDI_FAILURE);
582 
583 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
584 	mac->m_driver = Adapter;
585 	mac->m_dip = Adapter->dip;
586 	mac->m_src_addr = hw->mac.addr;
587 	mac->m_callbacks = &e1000g_m_callbacks;
588 	mac->m_min_sdu = 0;
589 	mac->m_max_sdu = Adapter->default_mtu;
590 	mac->m_margin = VLAN_TAGSZ;
591 	mac->m_priv_props = e1000g_priv_props;
592 	mac->m_priv_prop_count = E1000G_MAX_PRIV_PROPS;
593 
594 	err = mac_register(mac, &Adapter->mh);
595 	mac_free(mac);
596 
597 	return (err == 0 ? DDI_SUCCESS : DDI_FAILURE);
598 }
599 
600 static int
601 e1000g_identify_hardware(struct e1000g *Adapter)
602 {
603 	struct e1000_hw *hw = &Adapter->shared;
604 	struct e1000g_osdep *osdep = &Adapter->osdep;
605 
606 	/* Get the device id */
607 	hw->vendor_id =
608 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
609 	hw->device_id =
610 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
611 	hw->revision_id =
612 	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
613 	hw->subsystem_device_id =
614 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
615 	hw->subsystem_vendor_id =
616 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
617 
618 	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
619 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
620 		    "MAC type could not be set properly.");
621 		return (DDI_FAILURE);
622 	}
623 
624 	return (DDI_SUCCESS);
625 }
626 
627 static int
628 e1000g_regs_map(struct e1000g *Adapter)
629 {
630 	dev_info_t *devinfo = Adapter->dip;
631 	struct e1000_hw *hw = &Adapter->shared;
632 	struct e1000g_osdep *osdep = &Adapter->osdep;
633 	off_t mem_size;
634 
635 	/*
636 	 * first get the size of device register to be mapped. The
637 	 * second parameter is the register we are interested. I our
638 	 * wiseman 0 is for config registers and 1 is for memory mapped
639 	 * registers Mem size should have memory mapped region size
640 	 */
641 	if (ddi_dev_regsize(devinfo, 1, &mem_size) != DDI_SUCCESS) {
642 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
643 		    "ddi_dev_regsize for registers failed");
644 		return (DDI_FAILURE);
645 	}
646 
647 	if ((ddi_regs_map_setup(devinfo, 1, /* register of interest */
648 	    (caddr_t *)&hw->hw_addr, 0, mem_size, &e1000g_regs_acc_attr,
649 	    &osdep->reg_handle)) != DDI_SUCCESS) {
650 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
651 		    "ddi_regs_map_setup for registers failed");
652 		goto regs_map_fail;
653 	}
654 
655 	/* ICH needs to map flash memory */
656 	if (hw->mac.type == e1000_ich8lan || hw->mac.type == e1000_ich9lan) {
657 		/* get flash size */
658 		if (ddi_dev_regsize(devinfo, ICH_FLASH_REG_SET,
659 		    &mem_size) != DDI_SUCCESS) {
660 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
661 			    "ddi_dev_regsize for ICH flash failed");
662 			goto regs_map_fail;
663 		}
664 
665 		/* map flash in */
666 		if (ddi_regs_map_setup(devinfo, ICH_FLASH_REG_SET,
667 		    (caddr_t *)&hw->flash_address, 0,
668 		    mem_size, &e1000g_regs_acc_attr,
669 		    &osdep->ich_flash_handle) != DDI_SUCCESS) {
670 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
671 			    "ddi_regs_map_setup for ICH flash failed");
672 			goto regs_map_fail;
673 		}
674 	}
675 
676 	return (DDI_SUCCESS);
677 
678 regs_map_fail:
679 	if (osdep->reg_handle != NULL)
680 		ddi_regs_map_free(&osdep->reg_handle);
681 
682 	return (DDI_FAILURE);
683 }
684 
685 static int
686 e1000g_set_driver_params(struct e1000g *Adapter)
687 {
688 	struct e1000_hw *hw;
689 	e1000g_tx_ring_t *tx_ring;
690 	uint32_t mem_bar, io_bar, bar64;
691 
692 	hw = &Adapter->shared;
693 
694 	/* Set MAC type and initialize hardware functions */
695 	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
696 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
697 		    "Could not setup hardware functions");
698 		return (DDI_FAILURE);
699 	}
700 
701 	/* Get bus information */
702 	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
703 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
704 		    "Could not get bus information");
705 		return (DDI_FAILURE);
706 	}
707 
708 	/* get mem_base addr */
709 	mem_bar = pci_config_get32(Adapter->osdep.cfg_handle, PCI_CONF_BASE0);
710 	bar64 = mem_bar & PCI_BASE_TYPE_ALL;
711 
712 	/* get io_base addr */
713 	if (hw->mac.type >= e1000_82544) {
714 		if (bar64) {
715 			/* IO BAR is different for 64 bit BAR mode */
716 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
717 			    PCI_CONF_BASE4);
718 		} else {
719 			/* normal 32-bit BAR mode */
720 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
721 			    PCI_CONF_BASE2);
722 		}
723 		hw->io_base = io_bar & PCI_BASE_IO_ADDR_M;
724 	} else {
725 		/* no I/O access for adapters prior to 82544 */
726 		hw->io_base = 0x0;
727 	}
728 
729 	e1000_read_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->bus.pci_cmd_word);
730 
731 	hw->mac.autoneg_failed = B_TRUE;
732 
733 	/* Set the autoneg_wait_to_complete flag to B_FALSE */
734 	hw->phy.autoneg_wait_to_complete = B_FALSE;
735 
736 	/* Adaptive IFS related changes */
737 	hw->mac.adaptive_ifs = B_TRUE;
738 
739 	/* Enable phy init script for IGP phy of 82541/82547 */
740 	if ((hw->mac.type == e1000_82547) ||
741 	    (hw->mac.type == e1000_82541) ||
742 	    (hw->mac.type == e1000_82547_rev_2) ||
743 	    (hw->mac.type == e1000_82541_rev_2))
744 		e1000_init_script_state_82541(hw, B_TRUE);
745 
746 	/* Enable the TTL workaround for 82541/82547 */
747 	e1000_set_ttl_workaround_state_82541(hw, B_TRUE);
748 
749 #ifdef __sparc
750 	Adapter->strip_crc = B_TRUE;
751 #else
752 	Adapter->strip_crc = B_FALSE;
753 #endif
754 
755 	/* Get conf file properties */
756 	e1000g_get_conf(Adapter);
757 
758 	/* Get speed/duplex settings in conf file */
759 	hw->mac.forced_speed_duplex = ADVERTISE_100_FULL;
760 	hw->phy.autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
761 	e1000g_force_speed_duplex(Adapter);
762 
763 	/* Get Jumbo Frames settings in conf file */
764 	e1000g_get_max_frame_size(Adapter);
765 
766 	/* Set Rx/Tx buffer size */
767 	e1000g_set_bufsize(Adapter);
768 
769 	/* Master Latency Timer */
770 	Adapter->master_latency_timer = DEFAULT_MASTER_LATENCY_TIMER;
771 
772 	/* copper options */
773 	if (hw->phy.media_type == e1000_media_type_copper) {
774 		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
775 		hw->phy.disable_polarity_correction = B_FALSE;
776 		hw->phy.ms_type = e1000_ms_hw_default;	/* E1000_MASTER_SLAVE */
777 	}
778 
779 	/* The initial link state should be "unknown" */
780 	Adapter->link_state = LINK_STATE_UNKNOWN;
781 
782 	/* Initialize rx parameters */
783 	Adapter->rx_intr_delay = DEFAULT_RX_INTR_DELAY;
784 	Adapter->rx_intr_abs_delay = DEFAULT_RX_INTR_ABS_DELAY;
785 
786 	/* Initialize tx parameters */
787 	Adapter->tx_intr_enable = DEFAULT_TX_INTR_ENABLE;
788 	Adapter->tx_bcopy_thresh = DEFAULT_TX_BCOPY_THRESHOLD;
789 	Adapter->tx_intr_delay = DEFAULT_TX_INTR_DELAY;
790 	Adapter->tx_intr_abs_delay = DEFAULT_TX_INTR_ABS_DELAY;
791 
792 	tx_ring = Adapter->tx_ring;
793 	tx_ring->frags_limit =
794 	    (Adapter->max_frame_size / Adapter->tx_bcopy_thresh) + 2;
795 	if (tx_ring->frags_limit > (MAX_TX_DESC_PER_PACKET >> 1))
796 		tx_ring->frags_limit = (MAX_TX_DESC_PER_PACKET >> 1);
797 
798 	/* Initialize rx parameters */
799 	Adapter->rx_bcopy_thresh = DEFAULT_RX_BCOPY_THRESHOLD;
800 
801 	return (DDI_SUCCESS);
802 }
803 
804 static void
805 e1000g_set_bufsize(struct e1000g *Adapter)
806 {
807 	struct e1000_mac_info *mac = &Adapter->shared.mac;
808 	uint64_t rx_size;
809 	uint64_t tx_size;
810 
811 #ifdef __sparc
812 	dev_info_t *devinfo = Adapter->dip;
813 	ulong_t iommu_pagesize;
814 
815 	/* Get the system page size */
816 	Adapter->sys_page_sz = ddi_ptob(devinfo, (ulong_t)1);
817 	iommu_pagesize = dvma_pagesize(devinfo);
818 	if (iommu_pagesize != 0) {
819 		if (Adapter->sys_page_sz == iommu_pagesize) {
820 			if (iommu_pagesize > 0x4000)
821 				Adapter->sys_page_sz = 0x4000;
822 		} else {
823 			if (Adapter->sys_page_sz > iommu_pagesize)
824 				Adapter->sys_page_sz = iommu_pagesize;
825 		}
826 	}
827 	Adapter->dvma_page_num = Adapter->max_frame_size /
828 	    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
829 	ASSERT(Adapter->dvma_page_num >= E1000G_DEFAULT_DVMA_PAGE_NUM);
830 #endif
831 
832 	Adapter->min_frame_size = ETHERMIN + ETHERFCSL;
833 
834 	rx_size = Adapter->max_frame_size + E1000G_IPALIGNPRESERVEROOM;
835 	if ((rx_size > FRAME_SIZE_UPTO_2K) && (rx_size <= FRAME_SIZE_UPTO_4K))
836 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_4K;
837 	else if ((rx_size > FRAME_SIZE_UPTO_4K) &&
838 	    (rx_size <= FRAME_SIZE_UPTO_8K))
839 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_8K;
840 	else if ((rx_size > FRAME_SIZE_UPTO_8K) &&
841 	    (rx_size <= FRAME_SIZE_UPTO_16K))
842 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_16K;
843 	else
844 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
845 
846 	tx_size = Adapter->max_frame_size;
847 	if ((tx_size > FRAME_SIZE_UPTO_2K) && (tx_size <= FRAME_SIZE_UPTO_4K))
848 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_4K;
849 	else if ((tx_size > FRAME_SIZE_UPTO_4K) &&
850 	    (tx_size <= FRAME_SIZE_UPTO_8K))
851 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_8K;
852 	else if ((tx_size > FRAME_SIZE_UPTO_8K) &&
853 	    (tx_size <= FRAME_SIZE_UPTO_16K))
854 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_16K;
855 	else
856 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K;
857 
858 	/*
859 	 * For Wiseman adapters we have an requirement of having receive
860 	 * buffers aligned at 256 byte boundary. Since Livengood does not
861 	 * require this and forcing it for all hardwares will have
862 	 * performance implications, I am making it applicable only for
863 	 * Wiseman and for Jumbo frames enabled mode as rest of the time,
864 	 * it is okay to have normal frames...but it does involve a
865 	 * potential risk where we may loose data if buffer is not
866 	 * aligned...so all wiseman boards to have 256 byte aligned
867 	 * buffers
868 	 */
869 	if (mac->type < e1000_82543)
870 		Adapter->rx_buf_align = RECEIVE_BUFFER_ALIGN_SIZE;
871 	else
872 		Adapter->rx_buf_align = 1;
873 }
874 
875 /*
876  * e1000g_detach - driver detach
877  *
878  * The detach() function is the complement of the attach routine.
879  * If cmd is set to DDI_DETACH, detach() is used to remove  the
880  * state  associated  with  a  given  instance of a device node
881  * prior to the removal of that instance from the system.
882  *
883  * The detach() function will be called once for each  instance
884  * of the device for which there has been a successful attach()
885  * once there are no longer  any  opens  on  the  device.
886  *
887  * Interrupts routine are disabled, All memory allocated by this
888  * driver are freed.
889  */
890 static int
891 e1000g_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
892 {
893 	struct e1000g *Adapter;
894 	boolean_t rx_drain;
895 
896 	switch (cmd) {
897 	default:
898 		return (DDI_FAILURE);
899 
900 	case DDI_SUSPEND:
901 		return (e1000g_suspend(devinfo));
902 
903 	case DDI_DETACH:
904 		break;
905 	}
906 
907 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
908 	if (Adapter == NULL)
909 		return (DDI_FAILURE);
910 
911 	if (mac_unregister(Adapter->mh) != 0) {
912 		e1000g_log(Adapter, CE_WARN, "Unregister MAC failed");
913 		return (DDI_FAILURE);
914 	}
915 	Adapter->attach_progress &= ~ATTACH_PROGRESS_MAC;
916 
917 
918 	if (Adapter->chip_state != E1000G_STOP)
919 		e1000g_stop(Adapter, B_TRUE);
920 
921 	rx_drain = e1000g_rx_drain(Adapter);
922 
923 	/*
924 	 * If e1000g_force_detach is enabled, driver detach is safe.
925 	 * We will let e1000g_free_priv_devi_node routine determine
926 	 * whether we need to free the priv_dip entry for current
927 	 * driver instance.
928 	 */
929 	if (e1000g_force_detach) {
930 		e1000g_free_priv_devi_node(Adapter, rx_drain);
931 	} else {
932 		if (!rx_drain)
933 			return (DDI_FAILURE);
934 	}
935 
936 	e1000g_unattach(devinfo, Adapter);
937 
938 	return (DDI_SUCCESS);
939 }
940 
941 /*
942  * e1000g_free_priv_devi_node - free a priv_dip entry for driver instance
943  *
944  * If free_flag is true, that indicates the upper layer is not holding
945  * the rx buffers, we could free the priv_dip entry safely.
946  *
947  * Otherwise, we have to keep this entry even after driver detached,
948  * and we also need to mark this entry with E1000G_PRIV_DEVI_DETACH flag,
949  * so that driver could free it while all of rx buffers are returned
950  * by upper layer later.
951  */
952 static void
953 e1000g_free_priv_devi_node(struct e1000g *Adapter, boolean_t free_flag)
954 {
955 	private_devi_list_t *devi_node, *devi_del;
956 
957 	rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
958 	ASSERT(e1000g_private_devi_list != NULL);
959 	ASSERT(Adapter->priv_dip != NULL);
960 
961 	devi_node = e1000g_private_devi_list;
962 	if (devi_node->priv_dip == Adapter->priv_dip) {
963 		if (free_flag) {
964 			e1000g_private_devi_list =
965 			    devi_node->next;
966 			kmem_free(devi_node->priv_dip,
967 			    sizeof (struct dev_info));
968 			kmem_free(devi_node,
969 			    sizeof (private_devi_list_t));
970 		} else {
971 			ASSERT(e1000g_mblks_pending != 0);
972 			devi_node->flag =
973 			    E1000G_PRIV_DEVI_DETACH;
974 		}
975 		rw_exit(&e1000g_rx_detach_lock);
976 		return;
977 	}
978 
979 	devi_node = e1000g_private_devi_list;
980 	while (devi_node->next != NULL) {
981 		if (devi_node->next->priv_dip == Adapter->priv_dip) {
982 			if (free_flag) {
983 				devi_del = devi_node->next;
984 				devi_node->next = devi_del->next;
985 				kmem_free(devi_del->priv_dip,
986 				    sizeof (struct dev_info));
987 				kmem_free(devi_del,
988 				    sizeof (private_devi_list_t));
989 			} else {
990 				ASSERT(e1000g_mblks_pending != 0);
991 				devi_node->next->flag =
992 				    E1000G_PRIV_DEVI_DETACH;
993 			}
994 			break;
995 		}
996 		devi_node = devi_node->next;
997 	}
998 	rw_exit(&e1000g_rx_detach_lock);
999 }
1000 
1001 static void
1002 e1000g_unattach(dev_info_t *devinfo, struct e1000g *Adapter)
1003 {
1004 	if (Adapter->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1005 		(void) e1000g_disable_intrs(Adapter);
1006 	}
1007 
1008 	if (Adapter->attach_progress & ATTACH_PROGRESS_MAC) {
1009 		(void) mac_unregister(Adapter->mh);
1010 	}
1011 
1012 	if (Adapter->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
1013 		(void) e1000g_rem_intrs(Adapter);
1014 	}
1015 
1016 	if (Adapter->attach_progress & ATTACH_PROGRESS_SETUP) {
1017 		(void) ddi_prop_remove_all(devinfo);
1018 	}
1019 
1020 	if (Adapter->attach_progress & ATTACH_PROGRESS_KSTATS) {
1021 		kstat_delete((kstat_t *)Adapter->e1000g_ksp);
1022 	}
1023 
1024 	if (Adapter->attach_progress & ATTACH_PROGRESS_INIT) {
1025 		stop_link_timer(Adapter);
1026 		if (e1000_reset_hw(&Adapter->shared) != 0) {
1027 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1028 			ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1029 		}
1030 	}
1031 
1032 	if (Adapter->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
1033 		if (Adapter->osdep.reg_handle != NULL)
1034 			ddi_regs_map_free(&Adapter->osdep.reg_handle);
1035 		if (Adapter->osdep.ich_flash_handle != NULL)
1036 			ddi_regs_map_free(&Adapter->osdep.ich_flash_handle);
1037 	}
1038 
1039 	if (Adapter->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
1040 		if (Adapter->osdep.cfg_handle != NULL)
1041 			pci_config_teardown(&Adapter->osdep.cfg_handle);
1042 	}
1043 
1044 	if (Adapter->attach_progress & ATTACH_PROGRESS_LOCKS) {
1045 		e1000g_destroy_locks(Adapter);
1046 	}
1047 
1048 	if (Adapter->attach_progress & ATTACH_PROGRESS_FMINIT) {
1049 		e1000g_fm_fini(Adapter);
1050 	}
1051 
1052 	e1000_remove_device(&Adapter->shared);
1053 
1054 	kmem_free((caddr_t)Adapter, sizeof (struct e1000g));
1055 
1056 	/*
1057 	 * Another hotplug spec requirement,
1058 	 * run ddi_set_driver_private(devinfo, null);
1059 	 */
1060 	ddi_set_driver_private(devinfo, NULL);
1061 }
1062 
1063 static void
1064 e1000g_init_locks(struct e1000g *Adapter)
1065 {
1066 	e1000g_tx_ring_t *tx_ring;
1067 	e1000g_rx_ring_t *rx_ring;
1068 
1069 	rw_init(&Adapter->chip_lock, NULL,
1070 	    RW_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1071 	mutex_init(&Adapter->link_lock, NULL,
1072 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1073 	mutex_init(&Adapter->watchdog_lock, NULL,
1074 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1075 
1076 	tx_ring = Adapter->tx_ring;
1077 
1078 	mutex_init(&tx_ring->tx_lock, NULL,
1079 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1080 	mutex_init(&tx_ring->usedlist_lock, NULL,
1081 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1082 	mutex_init(&tx_ring->freelist_lock, NULL,
1083 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1084 
1085 	rx_ring = Adapter->rx_ring;
1086 
1087 	mutex_init(&rx_ring->freelist_lock, NULL,
1088 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1089 }
1090 
1091 static void
1092 e1000g_destroy_locks(struct e1000g *Adapter)
1093 {
1094 	e1000g_tx_ring_t *tx_ring;
1095 	e1000g_rx_ring_t *rx_ring;
1096 
1097 	tx_ring = Adapter->tx_ring;
1098 	mutex_destroy(&tx_ring->tx_lock);
1099 	mutex_destroy(&tx_ring->usedlist_lock);
1100 	mutex_destroy(&tx_ring->freelist_lock);
1101 
1102 	rx_ring = Adapter->rx_ring;
1103 	mutex_destroy(&rx_ring->freelist_lock);
1104 
1105 	mutex_destroy(&Adapter->link_lock);
1106 	mutex_destroy(&Adapter->watchdog_lock);
1107 	rw_destroy(&Adapter->chip_lock);
1108 }
1109 
1110 static int
1111 e1000g_resume(dev_info_t *devinfo)
1112 {
1113 	struct e1000g *Adapter;
1114 
1115 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1116 	if (Adapter == NULL)
1117 		return (DDI_FAILURE);
1118 
1119 	if (e1000g_start(Adapter, B_TRUE))
1120 		return (DDI_FAILURE);
1121 
1122 	return (DDI_SUCCESS);
1123 }
1124 
1125 static int
1126 e1000g_suspend(dev_info_t *devinfo)
1127 {
1128 	struct e1000g *Adapter;
1129 
1130 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1131 	if (Adapter == NULL)
1132 		return (DDI_FAILURE);
1133 
1134 	e1000g_stop(Adapter, B_TRUE);
1135 
1136 	return (DDI_SUCCESS);
1137 }
1138 
1139 static int
1140 e1000g_init(struct e1000g *Adapter)
1141 {
1142 	uint32_t pba;
1143 	uint32_t high_water;
1144 	struct e1000_hw *hw;
1145 	clock_t link_timeout;
1146 
1147 	hw = &Adapter->shared;
1148 
1149 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1150 
1151 	/*
1152 	 * reset to put the hardware in a known state
1153 	 * before we try to do anything with the eeprom
1154 	 */
1155 	if (e1000_reset_hw(hw) != 0) {
1156 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1157 		goto init_fail;
1158 	}
1159 
1160 	if (e1000_validate_nvm_checksum(hw) < 0) {
1161 		/*
1162 		 * Some PCI-E parts fail the first check due to
1163 		 * the link being in sleep state.  Call it again,
1164 		 * if it fails a second time its a real issue.
1165 		 */
1166 		if (e1000_validate_nvm_checksum(hw) < 0) {
1167 			e1000g_log(Adapter, CE_WARN,
1168 			    "Invalid NVM checksum. Please contact "
1169 			    "the vendor to update the NVM.");
1170 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1171 			goto init_fail;
1172 		}
1173 	}
1174 
1175 #ifdef __sparc
1176 	/*
1177 	 * Firstly, we try to get the local ethernet address from OBP. If
1178 	 * fail, we get from EEPROM of NIC card.
1179 	 */
1180 	if (!e1000g_find_mac_address(Adapter)) {
1181 		if (e1000_read_mac_addr(hw) < 0) {
1182 			e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1183 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1184 			goto init_fail;
1185 		}
1186 	}
1187 #else
1188 	/* Get the local ethernet address. */
1189 	if (e1000_read_mac_addr(hw) < 0) {
1190 		e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1191 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1192 		goto init_fail;
1193 	}
1194 #endif
1195 
1196 	/* check for valid mac address */
1197 	if (!is_valid_mac_addr(hw->mac.addr)) {
1198 		e1000g_log(Adapter, CE_WARN, "Invalid mac addr");
1199 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1200 		goto init_fail;
1201 	}
1202 
1203 	/* Set LAA state for 82571 chipset */
1204 	e1000_set_laa_state_82571(hw, B_TRUE);
1205 
1206 	/* Master Latency Timer implementation */
1207 	if (Adapter->master_latency_timer) {
1208 		pci_config_put8(Adapter->osdep.cfg_handle,
1209 		    PCI_CONF_LATENCY_TIMER, Adapter->master_latency_timer);
1210 	}
1211 
1212 	if (hw->mac.type < e1000_82547) {
1213 		/*
1214 		 * Total FIFO is 64K
1215 		 */
1216 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1217 			pba = E1000_PBA_40K;	/* 40K for Rx, 24K for Tx */
1218 		else
1219 			pba = E1000_PBA_48K;	/* 48K for Rx, 16K for Tx */
1220 	} else if (hw->mac.type >= e1000_82571 &&
1221 	    hw->mac.type <= e1000_82572) {
1222 		/*
1223 		 * Total FIFO is 48K
1224 		 */
1225 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1226 			pba = E1000_PBA_30K;	/* 30K for Rx, 18K for Tx */
1227 		else
1228 			pba = E1000_PBA_38K;	/* 38K for Rx, 10K for Tx */
1229 	} else if (hw->mac.type == e1000_ich8lan) {
1230 		pba = E1000_PBA_8K;		/* 8K for Rx, 12K for Tx */
1231 	} else if (hw->mac.type == e1000_ich9lan) {
1232 		pba = E1000_PBA_12K;
1233 	} else {
1234 		/*
1235 		 * Total FIFO is 40K
1236 		 */
1237 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1238 			pba = E1000_PBA_22K;	/* 22K for Rx, 18K for Tx */
1239 		else
1240 			pba = E1000_PBA_30K;	/* 30K for Rx, 10K for Tx */
1241 	}
1242 	E1000_WRITE_REG(hw, E1000_PBA, pba);
1243 
1244 	/*
1245 	 * These parameters set thresholds for the adapter's generation(Tx)
1246 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1247 	 * settings.  Flow control is enabled or disabled in the configuration
1248 	 * file.
1249 	 * High-water mark is set down from the top of the rx fifo (not
1250 	 * sensitive to max_frame_size) and low-water is set just below
1251 	 * high-water mark.
1252 	 * The high water mark must be low enough to fit one full frame above
1253 	 * it in the rx FIFO.  Should be the lower of:
1254 	 * 90% of the Rx FIFO size and the full Rx FIFO size minus the early
1255 	 * receive size (assuming ERT set to E1000_ERT_2048), or the full
1256 	 * Rx FIFO size minus one full frame.
1257 	 */
1258 	high_water = min(((pba << 10) * 9 / 10),
1259 	    ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_ich9lan) ?
1260 	    ((pba << 10) - (E1000_ERT_2048 << 3)) :
1261 	    ((pba << 10) - Adapter->max_frame_size)));
1262 
1263 	hw->fc.high_water = high_water & 0xFFF8;
1264 	hw->fc.low_water = hw->fc.high_water - 8;
1265 
1266 	if (hw->mac.type == e1000_80003es2lan)
1267 		hw->fc.pause_time = 0xFFFF;
1268 	else
1269 		hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1270 	hw->fc.send_xon = B_TRUE;
1271 
1272 	/*
1273 	 * Reset the adapter hardware the second time.
1274 	 */
1275 	if (e1000_reset_hw(hw) != 0) {
1276 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1277 		goto init_fail;
1278 	}
1279 
1280 	/* disable wakeup control by default */
1281 	if (hw->mac.type >= e1000_82544)
1282 		E1000_WRITE_REG(hw, E1000_WUC, 0);
1283 
1284 	/* MWI setup */
1285 	e1000_pci_set_mwi(hw);
1286 
1287 	/*
1288 	 * Configure/Initialize hardware
1289 	 */
1290 	if (e1000_init_hw(hw) < 0) {
1291 		e1000g_log(Adapter, CE_WARN, "Initialize hw failed");
1292 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1293 		goto init_fail;
1294 	}
1295 
1296 	/* Disable Smart Power Down */
1297 	phy_spd_state(hw, B_FALSE);
1298 
1299 	/* Make sure driver has control */
1300 	e1000g_get_driver_control(hw);
1301 
1302 	/*
1303 	 * Initialize unicast addresses.
1304 	 */
1305 	e1000g_init_unicst(Adapter);
1306 
1307 	/*
1308 	 * Setup and initialize the mctable structures.  After this routine
1309 	 * completes  Multicast table will be set
1310 	 */
1311 	e1000g_setup_multicast(Adapter);
1312 	msec_delay(5);
1313 
1314 	/*
1315 	 * Implement Adaptive IFS
1316 	 */
1317 	e1000_reset_adaptive(hw);
1318 
1319 	/* Setup Interrupt Throttling Register */
1320 	if (hw->mac.type >= e1000_82540) {
1321 		E1000_WRITE_REG(hw, E1000_ITR, Adapter->intr_throttling_rate);
1322 	} else
1323 		Adapter->intr_adaptive = B_FALSE;
1324 
1325 	/* Start the timer for link setup */
1326 	if (hw->mac.autoneg)
1327 		link_timeout = PHY_AUTO_NEG_LIMIT * drv_usectohz(100000);
1328 	else
1329 		link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
1330 
1331 	mutex_enter(&Adapter->link_lock);
1332 	if (hw->phy.autoneg_wait_to_complete) {
1333 		Adapter->link_complete = B_TRUE;
1334 	} else {
1335 		Adapter->link_complete = B_FALSE;
1336 		Adapter->link_tid = timeout(e1000g_link_timer,
1337 		    (void *)Adapter, link_timeout);
1338 	}
1339 	mutex_exit(&Adapter->link_lock);
1340 
1341 	/* Enable PCI-Ex master */
1342 	if (hw->bus.type == e1000_bus_type_pci_express) {
1343 		e1000_enable_pciex_master(hw);
1344 	}
1345 
1346 	/* Save the state of the phy */
1347 	e1000g_get_phy_state(Adapter);
1348 
1349 	e1000g_param_sync(Adapter);
1350 
1351 	Adapter->init_count++;
1352 
1353 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
1354 		goto init_fail;
1355 	}
1356 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1357 		goto init_fail;
1358 	}
1359 
1360 	rw_exit(&Adapter->chip_lock);
1361 
1362 	return (DDI_SUCCESS);
1363 
1364 init_fail:
1365 	rw_exit(&Adapter->chip_lock);
1366 	ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1367 	return (DDI_FAILURE);
1368 }
1369 
1370 /*
1371  * Check if the link is up
1372  */
1373 static boolean_t
1374 e1000g_link_up(struct e1000g *Adapter)
1375 {
1376 	struct e1000_hw *hw;
1377 	boolean_t link_up;
1378 
1379 	hw = &Adapter->shared;
1380 
1381 	e1000_check_for_link(hw);
1382 
1383 	if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU) ||
1384 	    ((!hw->mac.get_link_status) && (hw->mac.type == e1000_82543)) ||
1385 	    ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
1386 	    (hw->mac.serdes_has_link))) {
1387 		link_up = B_TRUE;
1388 	} else {
1389 		link_up = B_FALSE;
1390 	}
1391 
1392 	return (link_up);
1393 }
1394 
1395 static void
1396 e1000g_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
1397 {
1398 	struct iocblk *iocp;
1399 	struct e1000g *e1000gp;
1400 	enum ioc_reply status;
1401 	int err;
1402 
1403 	iocp = (struct iocblk *)mp->b_rptr;
1404 	iocp->ioc_error = 0;
1405 	e1000gp = (struct e1000g *)arg;
1406 
1407 	ASSERT(e1000gp);
1408 	if (e1000gp == NULL) {
1409 		miocnak(q, mp, 0, EINVAL);
1410 		return;
1411 	}
1412 
1413 	switch (iocp->ioc_cmd) {
1414 
1415 	case LB_GET_INFO_SIZE:
1416 	case LB_GET_INFO:
1417 	case LB_GET_MODE:
1418 	case LB_SET_MODE:
1419 		status = e1000g_loopback_ioctl(e1000gp, iocp, mp);
1420 		break;
1421 
1422 
1423 #ifdef E1000G_DEBUG
1424 	case E1000G_IOC_REG_PEEK:
1425 	case E1000G_IOC_REG_POKE:
1426 		status = e1000g_pp_ioctl(e1000gp, iocp, mp);
1427 		break;
1428 	case E1000G_IOC_CHIP_RESET:
1429 		e1000gp->reset_count++;
1430 		if (e1000g_reset(e1000gp))
1431 			status = IOC_ACK;
1432 		else
1433 			status = IOC_INVAL;
1434 		break;
1435 #endif
1436 	default:
1437 		status = IOC_INVAL;
1438 		break;
1439 	}
1440 
1441 	/*
1442 	 * Decide how to reply
1443 	 */
1444 	switch (status) {
1445 	default:
1446 	case IOC_INVAL:
1447 		/*
1448 		 * Error, reply with a NAK and EINVAL or the specified error
1449 		 */
1450 		miocnak(q, mp, 0, iocp->ioc_error == 0 ?
1451 		    EINVAL : iocp->ioc_error);
1452 		break;
1453 
1454 	case IOC_DONE:
1455 		/*
1456 		 * OK, reply already sent
1457 		 */
1458 		break;
1459 
1460 	case IOC_ACK:
1461 		/*
1462 		 * OK, reply with an ACK
1463 		 */
1464 		miocack(q, mp, 0, 0);
1465 		break;
1466 
1467 	case IOC_REPLY:
1468 		/*
1469 		 * OK, send prepared reply as ACK or NAK
1470 		 */
1471 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1472 		    M_IOCACK : M_IOCNAK;
1473 		qreply(q, mp);
1474 		break;
1475 	}
1476 }
1477 
1478 static int
1479 e1000g_m_start(void *arg)
1480 {
1481 	struct e1000g *Adapter = (struct e1000g *)arg;
1482 
1483 	return (e1000g_start(Adapter, B_TRUE));
1484 }
1485 
1486 static int
1487 e1000g_start(struct e1000g *Adapter, boolean_t global)
1488 {
1489 	if (global) {
1490 		/* Allocate dma resources for descriptors and buffers */
1491 		if (e1000g_alloc_dma_resources(Adapter) != DDI_SUCCESS) {
1492 			e1000g_log(Adapter, CE_WARN,
1493 			    "Alloc DMA resources failed");
1494 			return (ENOTACTIVE);
1495 		}
1496 		Adapter->rx_buffer_setup = B_FALSE;
1497 	}
1498 
1499 	if (!(Adapter->attach_progress & ATTACH_PROGRESS_INIT)) {
1500 		if (e1000g_init(Adapter) != DDI_SUCCESS) {
1501 			e1000g_log(Adapter, CE_WARN,
1502 			    "Adapter initialization failed");
1503 			if (global)
1504 				e1000g_release_dma_resources(Adapter);
1505 			return (ENOTACTIVE);
1506 		}
1507 	}
1508 
1509 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1510 
1511 	/* Setup and initialize the transmit structures */
1512 	e1000g_tx_setup(Adapter);
1513 	msec_delay(5);
1514 
1515 	/* Setup and initialize the receive structures */
1516 	e1000g_rx_setup(Adapter);
1517 	msec_delay(5);
1518 
1519 	e1000g_mask_interrupt(Adapter);
1520 
1521 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1522 		rw_exit(&Adapter->chip_lock);
1523 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1524 		return (ENOTACTIVE);
1525 	}
1526 
1527 	Adapter->chip_state = E1000G_START;
1528 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
1529 
1530 	rw_exit(&Adapter->chip_lock);
1531 
1532 	/* Enable and start the watchdog timer */
1533 	enable_watchdog_timer(Adapter);
1534 
1535 	return (0);
1536 }
1537 
1538 static void
1539 e1000g_m_stop(void *arg)
1540 {
1541 	struct e1000g *Adapter = (struct e1000g *)arg;
1542 
1543 	e1000g_stop(Adapter, B_TRUE);
1544 }
1545 
1546 static void
1547 e1000g_stop(struct e1000g *Adapter, boolean_t global)
1548 {
1549 	/* Set stop flags */
1550 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1551 
1552 	Adapter->chip_state = E1000G_STOP;
1553 	Adapter->attach_progress &= ~ATTACH_PROGRESS_INIT;
1554 
1555 	rw_exit(&Adapter->chip_lock);
1556 
1557 	/* Drain tx sessions */
1558 	(void) e1000g_tx_drain(Adapter);
1559 
1560 	/* Disable and stop all the timers */
1561 	disable_watchdog_timer(Adapter);
1562 	stop_link_timer(Adapter);
1563 	stop_82547_timer(Adapter->tx_ring);
1564 
1565 	/* Stop the chip and release pending resources */
1566 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1567 
1568 	e1000g_clear_all_interrupts(Adapter);
1569 	if (e1000_reset_hw(&Adapter->shared) != 0) {
1570 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1571 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1572 	}
1573 
1574 	/* Release resources still held by the TX descriptors */
1575 	e1000g_tx_clean(Adapter);
1576 
1577 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1578 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1579 
1580 	/* Clean the pending rx jumbo packet fragment */
1581 	e1000g_rx_clean(Adapter);
1582 
1583 	rw_exit(&Adapter->chip_lock);
1584 
1585 	if (global)
1586 		e1000g_release_dma_resources(Adapter);
1587 }
1588 
1589 static void
1590 e1000g_rx_clean(struct e1000g *Adapter)
1591 {
1592 	e1000g_rx_ring_t *rx_ring = Adapter->rx_ring;
1593 
1594 	if (rx_ring->rx_mblk != NULL) {
1595 		freemsg(rx_ring->rx_mblk);
1596 		rx_ring->rx_mblk = NULL;
1597 		rx_ring->rx_mblk_tail = NULL;
1598 		rx_ring->rx_mblk_len = 0;
1599 	}
1600 }
1601 
1602 static void
1603 e1000g_tx_clean(struct e1000g *Adapter)
1604 {
1605 	e1000g_tx_ring_t *tx_ring;
1606 	p_tx_sw_packet_t packet;
1607 	mblk_t *mp;
1608 	mblk_t *nmp;
1609 	uint32_t packet_count;
1610 
1611 	tx_ring = Adapter->tx_ring;
1612 
1613 	/*
1614 	 * Here we don't need to protect the lists using
1615 	 * the usedlist_lock and freelist_lock, for they
1616 	 * have been protected by the chip_lock.
1617 	 */
1618 	mp = NULL;
1619 	nmp = NULL;
1620 	packet_count = 0;
1621 	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list);
1622 	while (packet != NULL) {
1623 		if (packet->mp != NULL) {
1624 			/* Assemble the message chain */
1625 			if (mp == NULL) {
1626 				mp = packet->mp;
1627 				nmp = packet->mp;
1628 			} else {
1629 				nmp->b_next = packet->mp;
1630 				nmp = packet->mp;
1631 			}
1632 			/* Disconnect the message from the sw packet */
1633 			packet->mp = NULL;
1634 		}
1635 
1636 		e1000g_free_tx_swpkt(packet);
1637 		packet_count++;
1638 
1639 		packet = (p_tx_sw_packet_t)
1640 		    QUEUE_GET_NEXT(&tx_ring->used_list, &packet->Link);
1641 	}
1642 
1643 	if (mp != NULL)
1644 		freemsgchain(mp);
1645 
1646 	if (packet_count > 0) {
1647 		QUEUE_APPEND(&tx_ring->free_list, &tx_ring->used_list);
1648 		QUEUE_INIT_LIST(&tx_ring->used_list);
1649 
1650 		/* Setup TX descriptor pointers */
1651 		tx_ring->tbd_next = tx_ring->tbd_first;
1652 		tx_ring->tbd_oldest = tx_ring->tbd_first;
1653 
1654 		/* Setup our HW Tx Head & Tail descriptor pointers */
1655 		E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
1656 		E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
1657 	}
1658 }
1659 
1660 static boolean_t
1661 e1000g_tx_drain(struct e1000g *Adapter)
1662 {
1663 	int i;
1664 	boolean_t done;
1665 	e1000g_tx_ring_t *tx_ring;
1666 
1667 	tx_ring = Adapter->tx_ring;
1668 
1669 	/* Allow up to 'wsdraintime' for pending xmit's to complete. */
1670 	for (i = 0; i < TX_DRAIN_TIME; i++) {
1671 		mutex_enter(&tx_ring->usedlist_lock);
1672 		done = IS_QUEUE_EMPTY(&tx_ring->used_list);
1673 		mutex_exit(&tx_ring->usedlist_lock);
1674 
1675 		if (done)
1676 			break;
1677 
1678 		msec_delay(1);
1679 	}
1680 
1681 	return (done);
1682 }
1683 
1684 static boolean_t
1685 e1000g_rx_drain(struct e1000g *Adapter)
1686 {
1687 	e1000g_rx_ring_t *rx_ring;
1688 	p_rx_sw_packet_t packet;
1689 	boolean_t done;
1690 
1691 	rx_ring = Adapter->rx_ring;
1692 	done = B_TRUE;
1693 
1694 	rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
1695 
1696 	while (rx_ring->pending_list != NULL) {
1697 		packet = rx_ring->pending_list;
1698 		rx_ring->pending_list =
1699 		    rx_ring->pending_list->next;
1700 
1701 		if (packet->flag == E1000G_RX_SW_STOP) {
1702 			packet->flag = E1000G_RX_SW_DETACH;
1703 			done = B_FALSE;
1704 		} else {
1705 			ASSERT(packet->flag == E1000G_RX_SW_FREE);
1706 			ASSERT(packet->mp == NULL);
1707 			e1000g_free_rx_sw_packet(packet);
1708 		}
1709 	}
1710 
1711 	rw_exit(&e1000g_rx_detach_lock);
1712 
1713 	return (done);
1714 }
1715 
1716 boolean_t
1717 e1000g_reset(struct e1000g *Adapter)
1718 {
1719 	e1000g_stop(Adapter, B_FALSE);
1720 
1721 	if (e1000g_start(Adapter, B_FALSE)) {
1722 		e1000g_log(Adapter, CE_WARN, "Reset failed");
1723 		return (B_FALSE);
1724 	}
1725 
1726 	return (B_TRUE);
1727 }
1728 
1729 boolean_t
1730 e1000g_global_reset(struct e1000g *Adapter)
1731 {
1732 	e1000g_stop(Adapter, B_TRUE);
1733 
1734 	Adapter->init_count = 0;
1735 
1736 	if (e1000g_start(Adapter, B_TRUE)) {
1737 		e1000g_log(Adapter, CE_WARN, "Reset failed");
1738 		return (B_FALSE);
1739 	}
1740 
1741 	return (B_TRUE);
1742 }
1743 
1744 /*
1745  * e1000g_intr_pciexpress - ISR for PCI Express chipsets
1746  *
1747  * This interrupt service routine is for PCI-Express adapters.
1748  * The ICR contents is valid only when the E1000_ICR_INT_ASSERTED
1749  * bit is set.
1750  */
1751 static uint_t
1752 e1000g_intr_pciexpress(caddr_t arg)
1753 {
1754 	struct e1000g *Adapter;
1755 	uint32_t icr;
1756 
1757 	Adapter = (struct e1000g *)arg;
1758 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
1759 
1760 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1761 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
1762 
1763 	if (icr & E1000_ICR_INT_ASSERTED) {
1764 		/*
1765 		 * E1000_ICR_INT_ASSERTED bit was set:
1766 		 * Read(Clear) the ICR, claim this interrupt,
1767 		 * look for work to do.
1768 		 */
1769 		e1000g_intr_work(Adapter, icr);
1770 		return (DDI_INTR_CLAIMED);
1771 	} else {
1772 		/*
1773 		 * E1000_ICR_INT_ASSERTED bit was not set:
1774 		 * Don't claim this interrupt, return immediately.
1775 		 */
1776 		return (DDI_INTR_UNCLAIMED);
1777 	}
1778 }
1779 
1780 /*
1781  * e1000g_intr - ISR for PCI/PCI-X chipsets
1782  *
1783  * This interrupt service routine is for PCI/PCI-X adapters.
1784  * We check the ICR contents no matter the E1000_ICR_INT_ASSERTED
1785  * bit is set or not.
1786  */
1787 static uint_t
1788 e1000g_intr(caddr_t arg)
1789 {
1790 	struct e1000g *Adapter;
1791 	uint32_t icr;
1792 
1793 	Adapter = (struct e1000g *)arg;
1794 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
1795 
1796 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1797 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
1798 
1799 	if (icr) {
1800 		/*
1801 		 * Any bit was set in ICR:
1802 		 * Read(Clear) the ICR, claim this interrupt,
1803 		 * look for work to do.
1804 		 */
1805 		e1000g_intr_work(Adapter, icr);
1806 		return (DDI_INTR_CLAIMED);
1807 	} else {
1808 		/*
1809 		 * No bit was set in ICR:
1810 		 * Don't claim this interrupt, return immediately.
1811 		 */
1812 		return (DDI_INTR_UNCLAIMED);
1813 	}
1814 }
1815 
1816 /*
1817  * e1000g_intr_work - actual processing of ISR
1818  *
1819  * Read(clear) the ICR contents and call appropriate interrupt
1820  * processing routines.
1821  */
1822 static void
1823 e1000g_intr_work(struct e1000g *Adapter, uint32_t icr)
1824 {
1825 	struct e1000_hw *hw;
1826 	hw = &Adapter->shared;
1827 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
1828 	uint32_t itr;
1829 
1830 	Adapter->rx_pkt_cnt = 0;
1831 	Adapter->tx_pkt_cnt = 0;
1832 
1833 	rw_enter(&Adapter->chip_lock, RW_READER);
1834 	/*
1835 	 * Here we need to check the "chip_state" flag within the chip_lock to
1836 	 * ensure the receive routine will not execute when the adapter is
1837 	 * being reset.
1838 	 */
1839 	if (Adapter->chip_state != E1000G_START) {
1840 		rw_exit(&Adapter->chip_lock);
1841 		return;
1842 	}
1843 
1844 	if (icr & E1000_ICR_RXT0) {
1845 		mblk_t *mp;
1846 
1847 		mutex_enter(&Adapter->rx_ring->rx_lock);
1848 		mp = e1000g_receive(Adapter);
1849 		mutex_exit(&Adapter->rx_ring->rx_lock);
1850 
1851 		rw_exit(&Adapter->chip_lock);
1852 
1853 		if (mp != NULL)
1854 			mac_rx(Adapter->mh, Adapter->mrh, mp);
1855 	} else
1856 		rw_exit(&Adapter->chip_lock);
1857 
1858 	if (icr & E1000_ICR_TXDW) {
1859 		if (!Adapter->tx_intr_enable)
1860 			e1000g_clear_tx_interrupt(Adapter);
1861 
1862 		/* Recycle the tx descriptors */
1863 		rw_enter(&Adapter->chip_lock, RW_READER);
1864 		e1000g_recycle(tx_ring);
1865 		E1000G_DEBUG_STAT(tx_ring->stat_recycle_intr);
1866 		rw_exit(&Adapter->chip_lock);
1867 
1868 		/* Schedule the re-transmit */
1869 		if (tx_ring->resched_needed &&
1870 		    (tx_ring->tbd_avail > DEFAULT_TX_UPDATE_THRESHOLD)) {
1871 			tx_ring->resched_needed = B_FALSE;
1872 			mac_tx_update(Adapter->mh);
1873 			E1000G_STAT(tx_ring->stat_reschedule);
1874 		}
1875 	}
1876 
1877 	if (Adapter->intr_adaptive) {
1878 		itr = e1000g_get_itr(Adapter->rx_pkt_cnt, Adapter->tx_pkt_cnt,
1879 		    Adapter->intr_throttling_rate);
1880 		if (itr) {
1881 			E1000_WRITE_REG(hw, E1000_ITR, itr);
1882 			Adapter->intr_throttling_rate = itr;
1883 		}
1884 	}
1885 
1886 	/*
1887 	 * The Receive Sequence errors RXSEQ and the link status change LSC
1888 	 * are checked to detect that the cable has been pulled out. For
1889 	 * the Wiseman 2.0 silicon, the receive sequence errors interrupt
1890 	 * are an indication that cable is not connected.
1891 	 */
1892 	if ((icr & E1000_ICR_RXSEQ) ||
1893 	    (icr & E1000_ICR_LSC) ||
1894 	    (icr & E1000_ICR_GPI_EN1)) {
1895 		boolean_t link_changed;
1896 		timeout_id_t tid = 0;
1897 
1898 		stop_watchdog_timer(Adapter);
1899 
1900 		rw_enter(&Adapter->chip_lock, RW_WRITER);
1901 
1902 		/*
1903 		 * Because we got a link-status-change interrupt, force
1904 		 * e1000_check_for_link() to look at phy
1905 		 */
1906 		Adapter->shared.mac.get_link_status = B_TRUE;
1907 
1908 		/* e1000g_link_check takes care of link status change */
1909 		link_changed = e1000g_link_check(Adapter);
1910 
1911 		/* Get new phy state */
1912 		e1000g_get_phy_state(Adapter);
1913 
1914 		/*
1915 		 * If the link timer has not timed out, we'll not notify
1916 		 * the upper layer with any link state until the link is up.
1917 		 */
1918 		if (link_changed && !Adapter->link_complete) {
1919 			if (Adapter->link_state == LINK_STATE_UP) {
1920 				mutex_enter(&Adapter->link_lock);
1921 				Adapter->link_complete = B_TRUE;
1922 				tid = Adapter->link_tid;
1923 				Adapter->link_tid = 0;
1924 				mutex_exit(&Adapter->link_lock);
1925 			} else {
1926 				link_changed = B_FALSE;
1927 			}
1928 		}
1929 		rw_exit(&Adapter->chip_lock);
1930 
1931 		if (link_changed) {
1932 			if (tid != 0)
1933 				(void) untimeout(tid);
1934 
1935 			/*
1936 			 * Workaround for esb2. Data stuck in fifo on a link
1937 			 * down event. Reset the adapter to recover it.
1938 			 */
1939 			if ((Adapter->link_state == LINK_STATE_DOWN) &&
1940 			    (Adapter->shared.mac.type == e1000_80003es2lan))
1941 				(void) e1000g_reset(Adapter);
1942 
1943 			mac_link_update(Adapter->mh, Adapter->link_state);
1944 		}
1945 
1946 		start_watchdog_timer(Adapter);
1947 	}
1948 }
1949 
1950 static uint32_t
1951 e1000g_get_itr(uint32_t rx_packet, uint32_t tx_packet, uint32_t cur_itr)
1952 {
1953 	uint32_t new_itr;
1954 
1955 	/*
1956 	 * Determine a propper itr according to rx/tx packet count
1957 	 * per interrupt, the value of itr are based on document
1958 	 * and testing.
1959 	 */
1960 	if ((rx_packet < DEFAULT_INTR_PACKET_LOW) ||
1961 	    (tx_packet < DEFAULT_INTR_PACKET_LOW)) {
1962 		new_itr = DEFAULT_INTR_THROTTLING_LOW;
1963 		goto itr_done;
1964 	}
1965 	if ((rx_packet > DEFAULT_INTR_PACKET_HIGH) ||
1966 	    (tx_packet > DEFAULT_INTR_PACKET_HIGH)) {
1967 		new_itr = DEFAULT_INTR_THROTTLING_LOW;
1968 		goto itr_done;
1969 	}
1970 	if (cur_itr < DEFAULT_INTR_THROTTLING_HIGH) {
1971 		new_itr = cur_itr + (DEFAULT_INTR_THROTTLING_HIGH >> 2);
1972 		if (new_itr > DEFAULT_INTR_THROTTLING_HIGH)
1973 			new_itr = DEFAULT_INTR_THROTTLING_HIGH;
1974 	} else
1975 		new_itr = DEFAULT_INTR_THROTTLING_HIGH;
1976 
1977 itr_done:
1978 	if (cur_itr == new_itr)
1979 		return (0);
1980 	else
1981 		return (new_itr);
1982 }
1983 
1984 static void
1985 e1000g_init_unicst(struct e1000g *Adapter)
1986 {
1987 	struct e1000_hw *hw;
1988 	int slot;
1989 
1990 	hw = &Adapter->shared;
1991 
1992 	if (!Adapter->unicst_init) {
1993 		/* Initialize the multiple unicast addresses */
1994 		Adapter->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
1995 
1996 		if ((hw->mac.type == e1000_82571) &&
1997 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
1998 			Adapter->unicst_total--;
1999 
2000 		Adapter->unicst_avail = Adapter->unicst_total - 1;
2001 
2002 		/* Store the default mac address */
2003 		e1000_rar_set(hw, hw->mac.addr, 0);
2004 		if ((hw->mac.type == e1000_82571) &&
2005 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2006 			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2007 
2008 		bcopy(hw->mac.addr, Adapter->unicst_addr[0].mac.addr,
2009 		    ETHERADDRL);
2010 		Adapter->unicst_addr[0].mac.set = 1;
2011 
2012 		for (slot = 1; slot < Adapter->unicst_total; slot++)
2013 			Adapter->unicst_addr[slot].mac.set = 0;
2014 
2015 		Adapter->unicst_init = B_TRUE;
2016 	} else {
2017 		/* Recover the default mac address */
2018 		bcopy(Adapter->unicst_addr[0].mac.addr, hw->mac.addr,
2019 		    ETHERADDRL);
2020 
2021 		/* Store the default mac address */
2022 		e1000_rar_set(hw, hw->mac.addr, 0);
2023 		if ((hw->mac.type == e1000_82571) &&
2024 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2025 			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2026 
2027 		/* Re-configure the RAR registers */
2028 		for (slot = 1; slot < Adapter->unicst_total; slot++)
2029 			e1000_rar_set(hw,
2030 			    Adapter->unicst_addr[slot].mac.addr, slot);
2031 	}
2032 
2033 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2034 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2035 }
2036 
2037 static int
2038 e1000g_m_unicst(void *arg, const uint8_t *mac_addr)
2039 {
2040 	struct e1000g *Adapter;
2041 
2042 	Adapter = (struct e1000g *)arg;
2043 
2044 	/* Store the default MAC address */
2045 	bcopy(mac_addr, Adapter->shared.mac.addr, ETHERADDRL);
2046 
2047 	/* Set MAC address in address slot 0, which is the default address */
2048 	return (e1000g_unicst_set(Adapter, mac_addr, 0));
2049 }
2050 
2051 static int
2052 e1000g_unicst_set(struct e1000g *Adapter, const uint8_t *mac_addr,
2053     mac_addr_slot_t slot)
2054 {
2055 	struct e1000_hw *hw;
2056 
2057 	hw = &Adapter->shared;
2058 
2059 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2060 
2061 	/*
2062 	 * The first revision of Wiseman silicon (rev 2.0) has an errata
2063 	 * that requires the receiver to be in reset when any of the
2064 	 * receive address registers (RAR regs) are accessed.  The first
2065 	 * rev of Wiseman silicon also requires MWI to be disabled when
2066 	 * a global reset or a receive reset is issued.  So before we
2067 	 * initialize the RARs, we check the rev of the Wiseman controller
2068 	 * and work around any necessary HW errata.
2069 	 */
2070 	if ((hw->mac.type == e1000_82542) &&
2071 	    (hw->revision_id == E1000_REVISION_2)) {
2072 		e1000_pci_clear_mwi(hw);
2073 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2074 		msec_delay(5);
2075 	}
2076 
2077 	bcopy(mac_addr, Adapter->unicst_addr[slot].mac.addr, ETHERADDRL);
2078 	e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2079 
2080 	if (slot == 0) {
2081 		if ((hw->mac.type == e1000_82571) &&
2082 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2083 			e1000_rar_set(hw, (uint8_t *)mac_addr, LAST_RAR_ENTRY);
2084 	}
2085 
2086 	/*
2087 	 * If we are using Wiseman rev 2.0 silicon, we will have previously
2088 	 * put the receive in reset, and disabled MWI, to work around some
2089 	 * HW errata.  Now we should take the receiver out of reset, and
2090 	 * re-enabled if MWI if it was previously enabled by the PCI BIOS.
2091 	 */
2092 	if ((hw->mac.type == e1000_82542) &&
2093 	    (hw->revision_id == E1000_REVISION_2)) {
2094 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2095 		msec_delay(1);
2096 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2097 			e1000_pci_set_mwi(hw);
2098 		e1000g_rx_setup(Adapter);
2099 	}
2100 
2101 	rw_exit(&Adapter->chip_lock);
2102 
2103 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2104 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2105 		return (EIO);
2106 	}
2107 
2108 	return (0);
2109 }
2110 
2111 /*
2112  * e1000g_m_unicst_add() - will find an unused address slot, set the
2113  * address value to the one specified, reserve that slot and enable
2114  * the NIC to start filtering on the new MAC address.
2115  * Returns 0 on success.
2116  */
2117 static int
2118 e1000g_m_unicst_add(void *arg, mac_multi_addr_t *maddr)
2119 {
2120 	struct e1000g *Adapter = (struct e1000g *)arg;
2121 	mac_addr_slot_t slot;
2122 	int err;
2123 
2124 	if (mac_unicst_verify(Adapter->mh,
2125 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
2126 		return (EINVAL);
2127 
2128 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2129 	if (Adapter->unicst_avail == 0) {
2130 		/* no slots available */
2131 		rw_exit(&Adapter->chip_lock);
2132 		return (ENOSPC);
2133 	}
2134 
2135 	/*
2136 	 * Primary/default address is in slot 0. The next addresses
2137 	 * are the multiple MAC addresses. So multiple MAC address 0
2138 	 * is in slot 1, 1 in slot 2, and so on. So the first multiple
2139 	 * MAC address resides in slot 1.
2140 	 */
2141 	for (slot = 1; slot < Adapter->unicst_total; slot++) {
2142 		if (Adapter->unicst_addr[slot].mac.set == 0) {
2143 			Adapter->unicst_addr[slot].mac.set = 1;
2144 			break;
2145 		}
2146 	}
2147 
2148 	ASSERT((slot > 0) && (slot < Adapter->unicst_total));
2149 
2150 	Adapter->unicst_avail--;
2151 	rw_exit(&Adapter->chip_lock);
2152 
2153 	maddr->mma_slot = slot;
2154 
2155 	if ((err = e1000g_unicst_set(Adapter, maddr->mma_addr, slot)) != 0) {
2156 		rw_enter(&Adapter->chip_lock, RW_WRITER);
2157 		Adapter->unicst_addr[slot].mac.set = 0;
2158 		Adapter->unicst_avail++;
2159 		rw_exit(&Adapter->chip_lock);
2160 	}
2161 
2162 	return (err);
2163 }
2164 
2165 /*
2166  * e1000g_m_unicst_remove() - removes a MAC address that was added by a
2167  * call to e1000g_m_unicst_add(). The slot number that was returned in
2168  * e1000g_m_unicst_add() is passed in the call to remove the address.
2169  * Returns 0 on success.
2170  */
2171 static int
2172 e1000g_m_unicst_remove(void *arg, mac_addr_slot_t slot)
2173 {
2174 	struct e1000g *Adapter = (struct e1000g *)arg;
2175 	int err;
2176 
2177 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2178 		return (EINVAL);
2179 
2180 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2181 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2182 		Adapter->unicst_addr[slot].mac.set = 0;
2183 		Adapter->unicst_avail++;
2184 		rw_exit(&Adapter->chip_lock);
2185 
2186 		/* Copy the default address to the passed slot */
2187 		if (err = e1000g_unicst_set(Adapter,
2188 		    Adapter->unicst_addr[0].mac.addr, slot) != 0) {
2189 			rw_enter(&Adapter->chip_lock, RW_WRITER);
2190 			Adapter->unicst_addr[slot].mac.set = 1;
2191 			Adapter->unicst_avail--;
2192 			rw_exit(&Adapter->chip_lock);
2193 		}
2194 		return (err);
2195 	}
2196 	rw_exit(&Adapter->chip_lock);
2197 
2198 	return (EINVAL);
2199 }
2200 
2201 /*
2202  * e1000g_m_unicst_modify() - modifies the value of an address that
2203  * has been added by e1000g_m_unicst_add(). The new address, address
2204  * length and the slot number that was returned in the call to add
2205  * should be passed to e1000g_m_unicst_modify(). mma_flags should be
2206  * set to 0. Returns 0 on success.
2207  */
2208 static int
2209 e1000g_m_unicst_modify(void *arg, mac_multi_addr_t *maddr)
2210 {
2211 	struct e1000g *Adapter = (struct e1000g *)arg;
2212 	mac_addr_slot_t slot;
2213 
2214 	if (mac_unicst_verify(Adapter->mh,
2215 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
2216 		return (EINVAL);
2217 
2218 	slot = maddr->mma_slot;
2219 
2220 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2221 		return (EINVAL);
2222 
2223 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2224 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2225 		rw_exit(&Adapter->chip_lock);
2226 
2227 		return (e1000g_unicst_set(Adapter, maddr->mma_addr, slot));
2228 	}
2229 	rw_exit(&Adapter->chip_lock);
2230 
2231 	return (EINVAL);
2232 }
2233 
2234 /*
2235  * e1000g_m_unicst_get() - will get the MAC address and all other
2236  * information related to the address slot passed in mac_multi_addr_t.
2237  * mma_flags should be set to 0 in the call.
2238  * On return, mma_flags can take the following values:
2239  * 1) MMAC_SLOT_UNUSED
2240  * 2) MMAC_SLOT_USED | MMAC_VENDOR_ADDR
2241  * 3) MMAC_SLOT_UNUSED | MMAC_VENDOR_ADDR
2242  * 4) MMAC_SLOT_USED
2243  */
2244 static int
2245 e1000g_m_unicst_get(void *arg, mac_multi_addr_t *maddr)
2246 {
2247 	struct e1000g *Adapter = (struct e1000g *)arg;
2248 	mac_addr_slot_t slot;
2249 
2250 	slot = maddr->mma_slot;
2251 
2252 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2253 		return (EINVAL);
2254 
2255 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2256 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2257 		bcopy(Adapter->unicst_addr[slot].mac.addr,
2258 		    maddr->mma_addr, ETHERADDRL);
2259 		maddr->mma_flags = MMAC_SLOT_USED;
2260 	} else {
2261 		maddr->mma_flags = MMAC_SLOT_UNUSED;
2262 	}
2263 	rw_exit(&Adapter->chip_lock);
2264 
2265 	return (0);
2266 }
2267 
2268 static int
2269 multicst_add(struct e1000g *Adapter, const uint8_t *multiaddr)
2270 {
2271 	struct e1000_hw *hw = &Adapter->shared;
2272 	unsigned i;
2273 	int res = 0;
2274 
2275 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2276 
2277 	if ((multiaddr[0] & 01) == 0) {
2278 		res = EINVAL;
2279 		goto done;
2280 	}
2281 
2282 	if (Adapter->mcast_count >= MAX_NUM_MULTICAST_ADDRESSES) {
2283 		res = ENOENT;
2284 		goto done;
2285 	}
2286 
2287 	bcopy(multiaddr,
2288 	    &Adapter->mcast_table[Adapter->mcast_count], ETHERADDRL);
2289 	Adapter->mcast_count++;
2290 
2291 	/*
2292 	 * Update the MC table in the hardware
2293 	 */
2294 	e1000g_clear_interrupt(Adapter);
2295 
2296 	e1000g_setup_multicast(Adapter);
2297 
2298 	if ((hw->mac.type == e1000_82542) &&
2299 	    (hw->revision_id == E1000_REVISION_2))
2300 		e1000g_rx_setup(Adapter);
2301 
2302 	e1000g_mask_interrupt(Adapter);
2303 
2304 done:
2305 	rw_exit(&Adapter->chip_lock);
2306 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2307 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2308 		res = EIO;
2309 	}
2310 
2311 	return (res);
2312 }
2313 
2314 static int
2315 multicst_remove(struct e1000g *Adapter, const uint8_t *multiaddr)
2316 {
2317 	struct e1000_hw *hw = &Adapter->shared;
2318 	unsigned i;
2319 
2320 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2321 
2322 	for (i = 0; i < Adapter->mcast_count; i++) {
2323 		if (bcmp(multiaddr, &Adapter->mcast_table[i],
2324 		    ETHERADDRL) == 0) {
2325 			for (i++; i < Adapter->mcast_count; i++) {
2326 				Adapter->mcast_table[i - 1] =
2327 				    Adapter->mcast_table[i];
2328 			}
2329 			Adapter->mcast_count--;
2330 			break;
2331 		}
2332 	}
2333 
2334 	/*
2335 	 * Update the MC table in the hardware
2336 	 */
2337 	e1000g_clear_interrupt(Adapter);
2338 
2339 	e1000g_setup_multicast(Adapter);
2340 
2341 	if ((hw->mac.type == e1000_82542) &&
2342 	    (hw->revision_id == E1000_REVISION_2))
2343 		e1000g_rx_setup(Adapter);
2344 
2345 	e1000g_mask_interrupt(Adapter);
2346 
2347 done:
2348 	rw_exit(&Adapter->chip_lock);
2349 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2350 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2351 		return (EIO);
2352 	}
2353 
2354 	return (0);
2355 }
2356 
2357 /*
2358  * e1000g_setup_multicast - setup multicast data structures
2359  *
2360  * This routine initializes all of the multicast related structures.
2361  */
2362 void
2363 e1000g_setup_multicast(struct e1000g *Adapter)
2364 {
2365 	uint8_t *mc_addr_list;
2366 	uint32_t mc_addr_count;
2367 	uint32_t rctl;
2368 	struct e1000_hw *hw;
2369 
2370 	hw = &Adapter->shared;
2371 
2372 	/*
2373 	 * The e1000g has the ability to do perfect filtering of 16
2374 	 * addresses. The driver uses one of the e1000g's 16 receive
2375 	 * address registers for its node/network/mac/individual address.
2376 	 * So, we have room for up to 15 multicast addresses in the CAM,
2377 	 * additional MC addresses are handled by the MTA (Multicast Table
2378 	 * Array)
2379 	 */
2380 
2381 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2382 
2383 	mc_addr_list = (uint8_t *)Adapter->mcast_table;
2384 
2385 	if (Adapter->mcast_count > MAX_NUM_MULTICAST_ADDRESSES) {
2386 		E1000G_DEBUGLOG_1(Adapter, CE_WARN,
2387 		    "Adapter requested more than %d MC Addresses.\n",
2388 		    MAX_NUM_MULTICAST_ADDRESSES);
2389 		mc_addr_count = MAX_NUM_MULTICAST_ADDRESSES;
2390 	} else {
2391 		/*
2392 		 * Set the number of MC addresses that we are being
2393 		 * requested to use
2394 		 */
2395 		mc_addr_count = Adapter->mcast_count;
2396 	}
2397 	/*
2398 	 * The Wiseman 2.0 silicon has an errata by which the receiver will
2399 	 * hang  while writing to the receive address registers if the receiver
2400 	 * is not in reset before writing to the registers. Updating the RAR
2401 	 * is done during the setting up of the multicast table, hence the
2402 	 * receiver has to be put in reset before updating the multicast table
2403 	 * and then taken out of reset at the end
2404 	 */
2405 	/*
2406 	 * if WMI was enabled then dis able it before issueing the global
2407 	 * reset to the hardware.
2408 	 */
2409 	/*
2410 	 * Only required for WISEMAN_2_0
2411 	 */
2412 	if ((hw->mac.type == e1000_82542) &&
2413 	    (hw->revision_id == E1000_REVISION_2)) {
2414 		e1000_pci_clear_mwi(hw);
2415 		/*
2416 		 * The e1000g must be in reset before changing any RA
2417 		 * registers. Reset receive unit.  The chip will remain in
2418 		 * the reset state until software explicitly restarts it.
2419 		 */
2420 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2421 		/* Allow receiver time to go in to reset */
2422 		msec_delay(5);
2423 	}
2424 
2425 	e1000_update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2426 	    Adapter->unicst_total, hw->mac.rar_entry_count);
2427 
2428 	/*
2429 	 * Only for Wiseman_2_0
2430 	 * If MWI was enabled then re-enable it after issueing (as we
2431 	 * disabled it up there) the receive reset command.
2432 	 * Wainwright does not have a receive reset command and only thing
2433 	 * close to it is global reset which will require tx setup also
2434 	 */
2435 	if ((hw->mac.type == e1000_82542) &&
2436 	    (hw->revision_id == E1000_REVISION_2)) {
2437 		/*
2438 		 * if WMI was enabled then reenable it after issueing the
2439 		 * global or receive reset to the hardware.
2440 		 */
2441 
2442 		/*
2443 		 * Take receiver out of reset
2444 		 * clear E1000_RCTL_RST bit (and all others)
2445 		 */
2446 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2447 		msec_delay(5);
2448 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2449 			e1000_pci_set_mwi(hw);
2450 	}
2451 
2452 	/*
2453 	 * Restore original value
2454 	 */
2455 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2456 }
2457 
2458 int
2459 e1000g_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
2460 {
2461 	struct e1000g *Adapter = (struct e1000g *)arg;
2462 
2463 	return ((add) ? multicst_add(Adapter, addr)
2464 	    : multicst_remove(Adapter, addr));
2465 }
2466 
2467 int
2468 e1000g_m_promisc(void *arg, boolean_t on)
2469 {
2470 	struct e1000g *Adapter = (struct e1000g *)arg;
2471 	uint32_t rctl;
2472 
2473 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2474 
2475 	rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
2476 
2477 	if (on)
2478 		rctl |=
2479 		    (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
2480 	else
2481 		rctl &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
2482 
2483 	E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
2484 
2485 	Adapter->e1000g_promisc = on;
2486 
2487 	rw_exit(&Adapter->chip_lock);
2488 
2489 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2490 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2491 		return (EIO);
2492 	}
2493 
2494 	return (0);
2495 }
2496 
2497 static boolean_t
2498 e1000g_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
2499 {
2500 	struct e1000g *Adapter = (struct e1000g *)arg;
2501 	struct e1000_hw *hw = &Adapter->shared;
2502 
2503 	switch (cap) {
2504 	case MAC_CAPAB_HCKSUM: {
2505 		uint32_t *txflags = cap_data;
2506 		/*
2507 		 * Checksum on/off selection via global parameters.
2508 		 *
2509 		 * If the chip is flagged as not capable of (correctly)
2510 		 * handling checksumming, we don't enable it on either
2511 		 * Rx or Tx side.  Otherwise, we take this chip's settings
2512 		 * from the patchable global defaults.
2513 		 *
2514 		 * We advertise our capabilities only if TX offload is
2515 		 * enabled.  On receive, the stack will accept checksummed
2516 		 * packets anyway, even if we haven't said we can deliver
2517 		 * them.
2518 		 */
2519 		switch (hw->mac.type) {
2520 		case e1000_82540:
2521 		case e1000_82544:
2522 		case e1000_82545:
2523 		case e1000_82545_rev_3:
2524 		case e1000_82546:
2525 		case e1000_82546_rev_3:
2526 		case e1000_82571:
2527 		case e1000_82572:
2528 		case e1000_82573:
2529 		case e1000_80003es2lan:
2530 			if (Adapter->tx_hcksum_enabled)
2531 				*txflags = HCKSUM_IPHDRCKSUM |
2532 				    HCKSUM_INET_PARTIAL;
2533 			else
2534 				return (B_FALSE);
2535 			break;
2536 
2537 		/*
2538 		 * For the following Intel PRO/1000 chipsets, we have not
2539 		 * tested the hardware checksum offload capability, so we
2540 		 * disable the capability for them.
2541 		 *	e1000_82542,
2542 		 *	e1000_82543,
2543 		 *	e1000_82541,
2544 		 *	e1000_82541_rev_2,
2545 		 *	e1000_82547,
2546 		 *	e1000_82547_rev_2,
2547 		 */
2548 		default:
2549 			return (B_FALSE);
2550 		}
2551 
2552 		break;
2553 	}
2554 	case MAC_CAPAB_POLL:
2555 		/*
2556 		 * There's nothing for us to fill in, simply returning
2557 		 * B_TRUE stating that we support polling is sufficient.
2558 		 */
2559 		break;
2560 
2561 	case MAC_CAPAB_MULTIADDRESS: {
2562 		multiaddress_capab_t *mmacp = cap_data;
2563 
2564 		/*
2565 		 * The number of MAC addresses made available by
2566 		 * this capability is one less than the total as
2567 		 * the primary address in slot 0 is counted in
2568 		 * the total.
2569 		 */
2570 		mmacp->maddr_naddr = Adapter->unicst_total - 1;
2571 		mmacp->maddr_naddrfree = Adapter->unicst_avail;
2572 		/* No multiple factory addresses, set mma_flag to 0 */
2573 		mmacp->maddr_flag = 0;
2574 		mmacp->maddr_handle = Adapter;
2575 		mmacp->maddr_add = e1000g_m_unicst_add;
2576 		mmacp->maddr_remove = e1000g_m_unicst_remove;
2577 		mmacp->maddr_modify = e1000g_m_unicst_modify;
2578 		mmacp->maddr_get = e1000g_m_unicst_get;
2579 		mmacp->maddr_reserve = NULL;
2580 		break;
2581 	}
2582 	default:
2583 		return (B_FALSE);
2584 	}
2585 	return (B_TRUE);
2586 }
2587 
2588 static boolean_t
2589 e1000g_param_locked(mac_prop_id_t pr_num)
2590 {
2591 	/*
2592 	 * All en_* parameters are locked (read-only) while
2593 	 * the device is in any sort of loopback mode ...
2594 	 */
2595 	switch (pr_num) {
2596 		case MAC_PROP_EN_1000FDX_CAP:
2597 		case MAC_PROP_EN_1000HDX_CAP:
2598 		case MAC_PROP_EN_100FDX_CAP:
2599 		case MAC_PROP_EN_100HDX_CAP:
2600 		case MAC_PROP_EN_10FDX_CAP:
2601 		case MAC_PROP_EN_10HDX_CAP:
2602 		case MAC_PROP_AUTONEG:
2603 		case MAC_PROP_FLOWCTRL:
2604 			return (B_TRUE);
2605 	}
2606 	return (B_FALSE);
2607 }
2608 
2609 /*
2610  * callback function for set/get of properties
2611  */
2612 static int
2613 e1000g_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
2614     uint_t pr_valsize, const void *pr_val)
2615 {
2616 	struct e1000g *Adapter = arg;
2617 	struct e1000_mac_info *mac = &Adapter->shared.mac;
2618 	struct e1000_phy_info *phy = &Adapter->shared.phy;
2619 	struct e1000_fc_info *fc = &Adapter->shared.fc;
2620 	e1000g_tx_ring_t *tx_ring;
2621 	int err = 0;
2622 	link_flowctrl_t flowctrl;
2623 	uint32_t cur_mtu, new_mtu;
2624 	uint64_t tmp = 0;
2625 
2626 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2627 	if (Adapter->loopback_mode != E1000G_LB_NONE &&
2628 	    e1000g_param_locked(pr_num)) {
2629 		/*
2630 		 * All en_* parameters are locked (read-only)
2631 		 * while the device is in any sort of loopback mode.
2632 		 */
2633 		rw_exit(&Adapter->chip_lock);
2634 		return (EBUSY);
2635 	}
2636 
2637 	switch (pr_num) {
2638 		case MAC_PROP_EN_1000FDX_CAP:
2639 			Adapter->param_en_1000fdx = *(uint8_t *)pr_val;
2640 			Adapter->param_adv_1000fdx = *(uint8_t *)pr_val;
2641 			goto reset;
2642 		case MAC_PROP_EN_1000HDX_CAP:
2643 			Adapter->param_en_1000hdx = *(uint8_t *)pr_val;
2644 			Adapter->param_adv_1000hdx = *(uint8_t *)pr_val;
2645 			goto reset;
2646 		case MAC_PROP_EN_100FDX_CAP:
2647 			Adapter->param_en_100fdx = *(uint8_t *)pr_val;
2648 			Adapter->param_adv_100fdx = *(uint8_t *)pr_val;
2649 			goto reset;
2650 		case MAC_PROP_EN_100HDX_CAP:
2651 			Adapter->param_en_100hdx = *(uint8_t *)pr_val;
2652 			Adapter->param_adv_100hdx = *(uint8_t *)pr_val;
2653 			goto reset;
2654 		case MAC_PROP_EN_10FDX_CAP:
2655 			Adapter->param_en_10fdx = *(uint8_t *)pr_val;
2656 			Adapter->param_adv_10fdx = *(uint8_t *)pr_val;
2657 			goto reset;
2658 		case MAC_PROP_EN_10HDX_CAP:
2659 			Adapter->param_en_10hdx = *(uint8_t *)pr_val;
2660 			Adapter->param_adv_10hdx = *(uint8_t *)pr_val;
2661 			goto reset;
2662 		case MAC_PROP_AUTONEG:
2663 			Adapter->param_adv_autoneg = *(uint8_t *)pr_val;
2664 			goto reset;
2665 		case MAC_PROP_FLOWCTRL:
2666 			fc->send_xon = B_TRUE;
2667 			bcopy(pr_val, &flowctrl, sizeof (flowctrl));
2668 
2669 			switch (flowctrl) {
2670 			default:
2671 				err = EINVAL;
2672 				break;
2673 			case LINK_FLOWCTRL_NONE:
2674 				fc->type = e1000_fc_none;
2675 				break;
2676 			case LINK_FLOWCTRL_RX:
2677 				fc->type = e1000_fc_rx_pause;
2678 				break;
2679 			case LINK_FLOWCTRL_TX:
2680 				fc->type = e1000_fc_tx_pause;
2681 				break;
2682 			case LINK_FLOWCTRL_BI:
2683 				fc->type = e1000_fc_full;
2684 				break;
2685 			}
2686 reset:
2687 			if (err == 0) {
2688 				if (e1000g_reset_link(Adapter) != DDI_SUCCESS)
2689 					err = EINVAL;
2690 			}
2691 			break;
2692 		case MAC_PROP_ADV_1000FDX_CAP:
2693 		case MAC_PROP_ADV_1000HDX_CAP:
2694 		case MAC_PROP_ADV_100FDX_CAP:
2695 		case MAC_PROP_ADV_100HDX_CAP:
2696 		case MAC_PROP_ADV_10FDX_CAP:
2697 		case MAC_PROP_ADV_10HDX_CAP:
2698 		case MAC_PROP_STATUS:
2699 		case MAC_PROP_SPEED:
2700 		case MAC_PROP_DUPLEX:
2701 			err = ENOTSUP; /* read-only prop. Can't set this. */
2702 			break;
2703 		case MAC_PROP_MTU:
2704 			cur_mtu = Adapter->default_mtu;
2705 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
2706 			if (new_mtu == cur_mtu) {
2707 				err = 0;
2708 				break;
2709 			}
2710 
2711 			tmp = new_mtu + sizeof (struct ether_vlan_header) +
2712 			    ETHERFCSL;
2713 			if ((tmp < DEFAULT_FRAME_SIZE) ||
2714 			    (tmp > MAXIMUM_FRAME_SIZE)) {
2715 				err = EINVAL;
2716 				break;
2717 			}
2718 
2719 			/* ich8 doed not support jumbo frames */
2720 			if ((mac->type == e1000_ich8lan) &&
2721 			    (tmp > DEFAULT_FRAME_SIZE)) {
2722 				err = EINVAL;
2723 				break;
2724 			}
2725 			/* ich9 does not do jumbo frames on one phy type */
2726 			if ((mac->type == e1000_ich9lan) &&
2727 			    (phy->type == e1000_phy_ife) &&
2728 			    (tmp > DEFAULT_FRAME_SIZE)) {
2729 				err = EINVAL;
2730 				break;
2731 			}
2732 			if (Adapter->chip_state != E1000G_STOP) {
2733 				err = EBUSY;
2734 				break;
2735 			}
2736 
2737 			err = mac_maxsdu_update(Adapter->mh, new_mtu);
2738 			if (err == 0) {
2739 				Adapter->max_frame_size = tmp;
2740 				Adapter->default_mtu = new_mtu;
2741 				e1000g_set_bufsize(Adapter);
2742 				tx_ring = Adapter->tx_ring;
2743 				tx_ring->frags_limit =
2744 				    (Adapter->max_frame_size /
2745 				    Adapter->tx_bcopy_thresh) + 2;
2746 				if (tx_ring->frags_limit >
2747 				    (MAX_TX_DESC_PER_PACKET >> 1))
2748 				tx_ring->frags_limit =
2749 				    (MAX_TX_DESC_PER_PACKET >> 1);
2750 			}
2751 			break;
2752 		case MAC_PROP_PRIVATE:
2753 			err = e1000g_set_priv_prop(Adapter, pr_name,
2754 			    pr_valsize, pr_val);
2755 			break;
2756 		default:
2757 			err = ENOTSUP;
2758 			break;
2759 	}
2760 	rw_exit(&Adapter->chip_lock);
2761 	return (err);
2762 }
2763 
2764 static int
2765 e1000g_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
2766     uint_t pr_flags, uint_t pr_valsize, void *pr_val)
2767 {
2768 	struct e1000g *Adapter = arg;
2769 	struct e1000_mac_info *mac = &Adapter->shared.mac;
2770 	struct e1000_fc_info *fc = &Adapter->shared.fc;
2771 	int err = 0;
2772 	link_flowctrl_t flowctrl;
2773 	uint64_t tmp = 0;
2774 
2775 	if (pr_valsize == 0)
2776 		return (EINVAL);
2777 
2778 	bzero(pr_val, pr_valsize);
2779 	if ((pr_flags & MAC_PROP_DEFAULT) && (pr_num != MAC_PROP_PRIVATE)) {
2780 		return (e1000g_get_def_val(Adapter, pr_num,
2781 		    pr_valsize, pr_val));
2782 	}
2783 
2784 	switch (pr_num) {
2785 		case MAC_PROP_DUPLEX:
2786 			if (pr_valsize >= sizeof (link_duplex_t)) {
2787 				bcopy(&Adapter->link_duplex, pr_val,
2788 				    sizeof (link_duplex_t));
2789 			} else
2790 				err = EINVAL;
2791 			break;
2792 		case MAC_PROP_SPEED:
2793 			if (pr_valsize >= sizeof (uint64_t)) {
2794 				tmp = Adapter->link_speed * 1000000ull;
2795 				bcopy(&tmp, pr_val, sizeof (tmp));
2796 			} else
2797 				err = EINVAL;
2798 			break;
2799 		case MAC_PROP_AUTONEG:
2800 			*(uint8_t *)pr_val = Adapter->param_adv_autoneg;
2801 			break;
2802 		case MAC_PROP_FLOWCTRL:
2803 			if (pr_valsize >= sizeof (link_flowctrl_t)) {
2804 				switch (fc->type) {
2805 					case e1000_fc_none:
2806 						flowctrl = LINK_FLOWCTRL_NONE;
2807 						break;
2808 					case e1000_fc_rx_pause:
2809 						flowctrl = LINK_FLOWCTRL_RX;
2810 						break;
2811 					case e1000_fc_tx_pause:
2812 						flowctrl = LINK_FLOWCTRL_TX;
2813 						break;
2814 					case e1000_fc_full:
2815 						flowctrl = LINK_FLOWCTRL_BI;
2816 						break;
2817 				}
2818 				bcopy(&flowctrl, pr_val, sizeof (flowctrl));
2819 			} else
2820 				err = EINVAL;
2821 			break;
2822 		case MAC_PROP_ADV_1000FDX_CAP:
2823 			*(uint8_t *)pr_val = Adapter->param_adv_1000fdx;
2824 			break;
2825 		case MAC_PROP_EN_1000FDX_CAP:
2826 			*(uint8_t *)pr_val = Adapter->param_en_1000fdx;
2827 			break;
2828 		case MAC_PROP_ADV_1000HDX_CAP:
2829 			*(uint8_t *)pr_val = Adapter->param_adv_1000hdx;
2830 			break;
2831 		case MAC_PROP_EN_1000HDX_CAP:
2832 			*(uint8_t *)pr_val = Adapter->param_en_1000hdx;
2833 			break;
2834 		case MAC_PROP_ADV_100FDX_CAP:
2835 			*(uint8_t *)pr_val = Adapter->param_adv_100fdx;
2836 			break;
2837 		case MAC_PROP_EN_100FDX_CAP:
2838 			*(uint8_t *)pr_val = Adapter->param_en_100fdx;
2839 			break;
2840 		case MAC_PROP_ADV_100HDX_CAP:
2841 			*(uint8_t *)pr_val = Adapter->param_adv_100hdx;
2842 			break;
2843 		case MAC_PROP_EN_100HDX_CAP:
2844 			*(uint8_t *)pr_val = Adapter->param_en_100hdx;
2845 			break;
2846 		case MAC_PROP_ADV_10FDX_CAP:
2847 			*(uint8_t *)pr_val = Adapter->param_adv_10fdx;
2848 			break;
2849 		case MAC_PROP_EN_10FDX_CAP:
2850 			*(uint8_t *)pr_val = Adapter->param_en_10fdx;
2851 			break;
2852 		case MAC_PROP_ADV_10HDX_CAP:
2853 			*(uint8_t *)pr_val = Adapter->param_adv_10hdx;
2854 			break;
2855 		case MAC_PROP_EN_10HDX_CAP:
2856 			*(uint8_t *)pr_val = Adapter->param_en_10hdx;
2857 			break;
2858 		case MAC_PROP_ADV_100T4_CAP:
2859 		case MAC_PROP_EN_100T4_CAP:
2860 			*(uint8_t *)pr_val = Adapter->param_adv_100t4;
2861 			break;
2862 		case MAC_PROP_PRIVATE:
2863 			err = e1000g_get_priv_prop(Adapter, pr_name,
2864 			    pr_flags, pr_valsize, pr_val);
2865 			break;
2866 		default:
2867 			err = ENOTSUP;
2868 			break;
2869 	}
2870 	return (err);
2871 }
2872 
2873 /* ARGUSED */
2874 static int
2875 e1000g_set_priv_prop(struct e1000g *Adapter, const char *pr_name,
2876     uint_t pr_valsize, const void *pr_val)
2877 {
2878 	int err = 0;
2879 	long result;
2880 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
2881 	struct e1000_hw *hw = &Adapter->shared;
2882 
2883 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
2884 		if (pr_val == NULL) {
2885 			err = EINVAL;
2886 			return (err);
2887 		}
2888 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2889 		if (result < MIN_TX_BCOPY_THRESHOLD ||
2890 		    result > MAX_TX_BCOPY_THRESHOLD)
2891 			err = EINVAL;
2892 		else {
2893 			Adapter->tx_bcopy_thresh = (uint32_t)result;
2894 			tx_ring->frags_limit =
2895 			    (Adapter->max_frame_size /
2896 			    Adapter->tx_bcopy_thresh) + 2;
2897 			if (tx_ring->frags_limit >
2898 			    (MAX_TX_DESC_PER_PACKET >> 1))
2899 				tx_ring->frags_limit =
2900 				    (MAX_TX_DESC_PER_PACKET >> 1);
2901 		}
2902 		return (err);
2903 	}
2904 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
2905 		if (pr_val == NULL) {
2906 			err = EINVAL;
2907 			return (err);
2908 		}
2909 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2910 		if (result < 0 || result > 1)
2911 			err = EINVAL;
2912 		else {
2913 			Adapter->tx_intr_enable = (result == 1) ?
2914 			    B_TRUE: B_FALSE;
2915 			if (Adapter->tx_intr_enable)
2916 				e1000g_mask_tx_interrupt(Adapter);
2917 			else
2918 				e1000g_clear_tx_interrupt(Adapter);
2919 			if (e1000g_check_acc_handle(
2920 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
2921 				ddi_fm_service_impact(Adapter->dip,
2922 				    DDI_SERVICE_DEGRADED);
2923 		}
2924 		return (err);
2925 	}
2926 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
2927 		if (pr_val == NULL) {
2928 			err = EINVAL;
2929 			return (err);
2930 		}
2931 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2932 		if (result < MIN_TX_INTR_DELAY ||
2933 		    result > MAX_TX_INTR_DELAY)
2934 			err = EINVAL;
2935 		else {
2936 			Adapter->tx_intr_delay = (uint32_t)result;
2937 			E1000_WRITE_REG(hw, E1000_TIDV, Adapter->tx_intr_delay);
2938 			if (e1000g_check_acc_handle(
2939 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
2940 				ddi_fm_service_impact(Adapter->dip,
2941 				    DDI_SERVICE_DEGRADED);
2942 		}
2943 		return (err);
2944 	}
2945 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
2946 		if (pr_val == NULL) {
2947 			err = EINVAL;
2948 			return (err);
2949 		}
2950 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2951 		if (result < MIN_TX_INTR_ABS_DELAY ||
2952 		    result > MAX_TX_INTR_ABS_DELAY)
2953 			err = EINVAL;
2954 		else {
2955 			Adapter->tx_intr_abs_delay = (uint32_t)result;
2956 			E1000_WRITE_REG(hw, E1000_TADV,
2957 			    Adapter->tx_intr_abs_delay);
2958 			if (e1000g_check_acc_handle(
2959 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
2960 				ddi_fm_service_impact(Adapter->dip,
2961 				    DDI_SERVICE_DEGRADED);
2962 		}
2963 		return (err);
2964 	}
2965 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
2966 		if (pr_val == NULL) {
2967 			err = EINVAL;
2968 			return (err);
2969 		}
2970 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2971 		if (result < MIN_RX_BCOPY_THRESHOLD ||
2972 		    result > MAX_RX_BCOPY_THRESHOLD)
2973 			err = EINVAL;
2974 		else
2975 			Adapter->rx_bcopy_thresh = (uint32_t)result;
2976 		return (err);
2977 	}
2978 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
2979 		if (pr_val == NULL) {
2980 			err = EINVAL;
2981 			return (err);
2982 		}
2983 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2984 		if (result < MIN_RX_LIMIT_ON_INTR ||
2985 		    result > MAX_RX_LIMIT_ON_INTR)
2986 			err = EINVAL;
2987 		else
2988 			Adapter->rx_limit_onintr = (uint32_t)result;
2989 		return (err);
2990 	}
2991 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
2992 		if (pr_val == NULL) {
2993 			err = EINVAL;
2994 			return (err);
2995 		}
2996 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2997 		if (result < MIN_RX_INTR_DELAY ||
2998 		    result > MAX_RX_INTR_DELAY)
2999 			err = EINVAL;
3000 		else {
3001 			Adapter->rx_intr_delay = (uint32_t)result;
3002 			E1000_WRITE_REG(hw, E1000_RDTR, Adapter->rx_intr_delay);
3003 			if (e1000g_check_acc_handle(
3004 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3005 				ddi_fm_service_impact(Adapter->dip,
3006 				    DDI_SERVICE_DEGRADED);
3007 		}
3008 		return (err);
3009 	}
3010 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3011 		if (pr_val == NULL) {
3012 			err = EINVAL;
3013 			return (err);
3014 		}
3015 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3016 		if (result < MIN_RX_INTR_ABS_DELAY ||
3017 		    result > MAX_RX_INTR_ABS_DELAY)
3018 			err = EINVAL;
3019 		else {
3020 			Adapter->rx_intr_abs_delay = (uint32_t)result;
3021 			E1000_WRITE_REG(hw, E1000_RADV,
3022 			    Adapter->rx_intr_abs_delay);
3023 			if (e1000g_check_acc_handle(
3024 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3025 				ddi_fm_service_impact(Adapter->dip,
3026 				    DDI_SERVICE_DEGRADED);
3027 		}
3028 		return (err);
3029 	}
3030 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3031 		if (pr_val == NULL) {
3032 			err = EINVAL;
3033 			return (err);
3034 		}
3035 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3036 		if (result < MIN_INTR_THROTTLING ||
3037 		    result > MAX_INTR_THROTTLING)
3038 			err = EINVAL;
3039 		else {
3040 			if (hw->mac.type >= e1000_82540) {
3041 				Adapter->intr_throttling_rate =
3042 				    (uint32_t)result;
3043 				E1000_WRITE_REG(hw, E1000_ITR,
3044 				    Adapter->intr_throttling_rate);
3045 				if (e1000g_check_acc_handle(
3046 				    Adapter->osdep.reg_handle) != DDI_FM_OK)
3047 					ddi_fm_service_impact(Adapter->dip,
3048 					    DDI_SERVICE_DEGRADED);
3049 			} else
3050 				err = EINVAL;
3051 		}
3052 		return (err);
3053 	}
3054 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3055 		if (pr_val == NULL) {
3056 			err = EINVAL;
3057 			return (err);
3058 		}
3059 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3060 		if (result < 0 || result > 1)
3061 			err = EINVAL;
3062 		else {
3063 			if (hw->mac.type >= e1000_82540) {
3064 				Adapter->intr_adaptive = (result == 1) ?
3065 				    B_TRUE : B_FALSE;
3066 			} else {
3067 				err = EINVAL;
3068 			}
3069 		}
3070 		return (err);
3071 	}
3072 	if (strcmp(pr_name, "_tx_recycle_thresh") == 0) {
3073 		if (pr_val == NULL) {
3074 			err = EINVAL;
3075 			return (err);
3076 		}
3077 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3078 		if (result < MIN_TX_RECYCLE_THRESHOLD ||
3079 		    result > MAX_TX_RECYCLE_THRESHOLD)
3080 			err = EINVAL;
3081 		else
3082 			Adapter->tx_recycle_thresh = (uint32_t)result;
3083 		return (err);
3084 	}
3085 	if (strcmp(pr_name, "_tx_recycle_num") == 0) {
3086 		if (pr_val == NULL) {
3087 			err = EINVAL;
3088 			return (err);
3089 		}
3090 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3091 		if (result < MIN_TX_RECYCLE_NUM ||
3092 		    result > MAX_TX_RECYCLE_NUM)
3093 			err = EINVAL;
3094 		else
3095 			Adapter->tx_recycle_num = (uint32_t)result;
3096 		return (err);
3097 	}
3098 	return (ENOTSUP);
3099 }
3100 
3101 static int
3102 e1000g_get_priv_prop(struct e1000g *Adapter, const char *pr_name,
3103     uint_t pr_flags, uint_t pr_valsize, void *pr_val)
3104 {
3105 	char valstr[MAXNAMELEN];
3106 	int err = ENOTSUP;
3107 	uint_t strsize;
3108 	boolean_t is_default = (pr_flags & MAC_PROP_DEFAULT);
3109 	int value;
3110 
3111 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
3112 		if (is_default)
3113 			goto done;
3114 		value = Adapter->param_adv_pause;
3115 		err = 0;
3116 		goto done;
3117 	}
3118 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
3119 		if (is_default)
3120 			goto done;
3121 		value = Adapter->param_adv_asym_pause;
3122 		err = 0;
3123 		goto done;
3124 	}
3125 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3126 		value = (is_default ? DEFAULT_TX_BCOPY_THRESHOLD :
3127 		    Adapter->tx_bcopy_thresh);
3128 		err = 0;
3129 		goto done;
3130 	}
3131 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3132 		value = (is_default ? DEFAULT_TX_INTR_ENABLE :
3133 		    Adapter->tx_intr_enable);
3134 		err = 0;
3135 		goto done;
3136 	}
3137 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3138 		value = (is_default ? DEFAULT_TX_INTR_DELAY :
3139 		    Adapter->tx_intr_delay);
3140 		err = 0;
3141 		goto done;
3142 	}
3143 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3144 		value = (is_default ? DEFAULT_TX_INTR_ABS_DELAY :
3145 		    Adapter->tx_intr_abs_delay);
3146 		err = 0;
3147 		goto done;
3148 	}
3149 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3150 		value = (is_default ? DEFAULT_RX_BCOPY_THRESHOLD :
3151 		    Adapter->rx_bcopy_thresh);
3152 		err = 0;
3153 		goto done;
3154 	}
3155 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3156 		value = (is_default ? DEFAULT_RX_LIMIT_ON_INTR :
3157 		    Adapter->rx_limit_onintr);
3158 		err = 0;
3159 		goto done;
3160 	}
3161 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3162 		value = (is_default ? DEFAULT_RX_INTR_DELAY :
3163 		    Adapter->rx_intr_delay);
3164 		err = 0;
3165 		goto done;
3166 	}
3167 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3168 		value = (is_default ? DEFAULT_RX_INTR_ABS_DELAY :
3169 		    Adapter->rx_intr_abs_delay);
3170 		err = 0;
3171 		goto done;
3172 	}
3173 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3174 		value = (is_default ? DEFAULT_INTR_THROTTLING :
3175 		    Adapter->intr_throttling_rate);
3176 		err = 0;
3177 		goto done;
3178 	}
3179 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3180 		value = (is_default ? 1 : Adapter->intr_adaptive);
3181 		err = 0;
3182 		goto done;
3183 	}
3184 	if (strcmp(pr_name, "_tx_recycle_thresh") == 0) {
3185 		value = (is_default ? DEFAULT_TX_RECYCLE_THRESHOLD :
3186 		    Adapter->tx_recycle_thresh);
3187 		err = 0;
3188 		goto done;
3189 	}
3190 	if (strcmp(pr_name, "_tx_recycle_num") == 0) {
3191 		value = (is_default ? DEFAULT_TX_RECYCLE_NUM :
3192 		    Adapter->tx_recycle_num);
3193 		err = 0;
3194 		goto done;
3195 	}
3196 done:
3197 	if (err == 0) {
3198 		(void) snprintf(pr_val, pr_valsize, "%d", value);
3199 	}
3200 	return (err);
3201 }
3202 
3203 /*
3204  * e1000g_get_conf - get configurations set in e1000g.conf
3205  * This routine gets user-configured values out of the configuration
3206  * file e1000g.conf.
3207  *
3208  * For each configurable value, there is a minimum, a maximum, and a
3209  * default.
3210  * If user does not configure a value, use the default.
3211  * If user configures below the minimum, use the minumum.
3212  * If user configures above the maximum, use the maxumum.
3213  */
3214 static void
3215 e1000g_get_conf(struct e1000g *Adapter)
3216 {
3217 	struct e1000_hw *hw = &Adapter->shared;
3218 	boolean_t tbi_compatibility = B_FALSE;
3219 
3220 	/*
3221 	 * get each configurable property from e1000g.conf
3222 	 */
3223 
3224 	/*
3225 	 * NumTxDescriptors
3226 	 */
3227 	Adapter->tx_desc_num =
3228 	    e1000g_get_prop(Adapter, "NumTxDescriptors",
3229 	    MIN_NUM_TX_DESCRIPTOR, MAX_NUM_TX_DESCRIPTOR,
3230 	    DEFAULT_NUM_TX_DESCRIPTOR);
3231 
3232 	/*
3233 	 * NumRxDescriptors
3234 	 */
3235 	Adapter->rx_desc_num =
3236 	    e1000g_get_prop(Adapter, "NumRxDescriptors",
3237 	    MIN_NUM_RX_DESCRIPTOR, MAX_NUM_RX_DESCRIPTOR,
3238 	    DEFAULT_NUM_RX_DESCRIPTOR);
3239 
3240 	/*
3241 	 * NumRxFreeList
3242 	 */
3243 	Adapter->rx_freelist_num =
3244 	    e1000g_get_prop(Adapter, "NumRxFreeList",
3245 	    MIN_NUM_RX_FREELIST, MAX_NUM_RX_FREELIST,
3246 	    DEFAULT_NUM_RX_FREELIST);
3247 
3248 	/*
3249 	 * NumTxPacketList
3250 	 */
3251 	Adapter->tx_freelist_num =
3252 	    e1000g_get_prop(Adapter, "NumTxPacketList",
3253 	    MIN_NUM_TX_FREELIST, MAX_NUM_TX_FREELIST,
3254 	    DEFAULT_NUM_TX_FREELIST);
3255 
3256 	/*
3257 	 * FlowControl
3258 	 */
3259 	hw->fc.send_xon = B_TRUE;
3260 	hw->fc.type =
3261 	    e1000g_get_prop(Adapter, "FlowControl",
3262 	    e1000_fc_none, 4, DEFAULT_FLOW_CONTROL);
3263 	/* 4 is the setting that says "let the eeprom decide" */
3264 	if (hw->fc.type == 4)
3265 		hw->fc.type = e1000_fc_default;
3266 
3267 	/*
3268 	 * Max Num Receive Packets on Interrupt
3269 	 */
3270 	Adapter->rx_limit_onintr =
3271 	    e1000g_get_prop(Adapter, "MaxNumReceivePackets",
3272 	    MIN_RX_LIMIT_ON_INTR, MAX_RX_LIMIT_ON_INTR,
3273 	    DEFAULT_RX_LIMIT_ON_INTR);
3274 
3275 	/*
3276 	 * PHY master slave setting
3277 	 */
3278 	hw->phy.ms_type =
3279 	    e1000g_get_prop(Adapter, "SetMasterSlave",
3280 	    e1000_ms_hw_default, e1000_ms_auto,
3281 	    e1000_ms_hw_default);
3282 
3283 	/*
3284 	 * Parameter which controls TBI mode workaround, which is only
3285 	 * needed on certain switches such as Cisco 6500/Foundry
3286 	 */
3287 	tbi_compatibility =
3288 	    e1000g_get_prop(Adapter, "TbiCompatibilityEnable",
3289 	    0, 1, DEFAULT_TBI_COMPAT_ENABLE);
3290 	e1000_set_tbi_compatibility_82543(hw, tbi_compatibility);
3291 
3292 	/*
3293 	 * MSI Enable
3294 	 */
3295 	Adapter->msi_enabled =
3296 	    e1000g_get_prop(Adapter, "MSIEnable",
3297 	    0, 1, DEFAULT_MSI_ENABLE);
3298 
3299 	/*
3300 	 * Interrupt Throttling Rate
3301 	 */
3302 	Adapter->intr_throttling_rate =
3303 	    e1000g_get_prop(Adapter, "intr_throttling_rate",
3304 	    MIN_INTR_THROTTLING, MAX_INTR_THROTTLING,
3305 	    DEFAULT_INTR_THROTTLING);
3306 
3307 	/*
3308 	 * Adaptive Interrupt Blanking Enable/Disable
3309 	 * It is enabled by default
3310 	 */
3311 	Adapter->intr_adaptive =
3312 	    (e1000g_get_prop(Adapter, "intr_adaptive", 0, 1, 1) == 1) ?
3313 	    B_TRUE : B_FALSE;
3314 
3315 	/*
3316 	 * Tx recycle threshold
3317 	 */
3318 	Adapter->tx_recycle_thresh =
3319 	    e1000g_get_prop(Adapter, "tx_recycle_thresh",
3320 	    MIN_TX_RECYCLE_THRESHOLD, MAX_TX_RECYCLE_THRESHOLD,
3321 	    DEFAULT_TX_RECYCLE_THRESHOLD);
3322 
3323 	/*
3324 	 * Tx recycle descriptor number
3325 	 */
3326 	Adapter->tx_recycle_num =
3327 	    e1000g_get_prop(Adapter, "tx_recycle_num",
3328 	    MIN_TX_RECYCLE_NUM, MAX_TX_RECYCLE_NUM,
3329 	    DEFAULT_TX_RECYCLE_NUM);
3330 
3331 	/*
3332 	 * Hardware checksum enable/disable parameter
3333 	 */
3334 	Adapter->tx_hcksum_enabled =
3335 	    e1000g_get_prop(Adapter, "tx_hcksum_enabled",
3336 	    0, 1, DEFAULT_TX_HCKSUM_ENABLE);
3337 
3338 }
3339 
3340 /*
3341  * e1000g_get_prop - routine to read properties
3342  *
3343  * Get a user-configure property value out of the configuration
3344  * file e1000g.conf.
3345  *
3346  * Caller provides name of the property, a default value, a minimum
3347  * value, and a maximum value.
3348  *
3349  * Return configured value of the property, with default, minimum and
3350  * maximum properly applied.
3351  */
3352 static int
3353 e1000g_get_prop(struct e1000g *Adapter,	/* point to per-adapter structure */
3354     char *propname,		/* name of the property */
3355     int minval,			/* minimum acceptable value */
3356     int maxval,			/* maximim acceptable value */
3357     int defval)			/* default value */
3358 {
3359 	int propval;		/* value returned for requested property */
3360 	int *props;		/* point to array of properties returned */
3361 	uint_t nprops;		/* number of property value returned */
3362 
3363 	/*
3364 	 * get the array of properties from the config file
3365 	 */
3366 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, Adapter->dip,
3367 	    DDI_PROP_DONTPASS, propname, &props, &nprops) == DDI_PROP_SUCCESS) {
3368 		/* got some properties, test if we got enough */
3369 		if (Adapter->instance < nprops) {
3370 			propval = props[Adapter->instance];
3371 		} else {
3372 			/* not enough properties configured */
3373 			propval = defval;
3374 			E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3375 			    "Not Enough %s values found in e1000g.conf"
3376 			    " - set to %d\n",
3377 			    propname, propval);
3378 		}
3379 
3380 		/* free memory allocated for properties */
3381 		ddi_prop_free(props);
3382 
3383 	} else {
3384 		propval = defval;
3385 	}
3386 
3387 	/*
3388 	 * enforce limits
3389 	 */
3390 	if (propval > maxval) {
3391 		propval = maxval;
3392 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3393 		    "Too High %s value in e1000g.conf - set to %d\n",
3394 		    propname, propval);
3395 	}
3396 
3397 	if (propval < minval) {
3398 		propval = minval;
3399 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3400 		    "Too Low %s value in e1000g.conf - set to %d\n",
3401 		    propname, propval);
3402 	}
3403 
3404 	return (propval);
3405 }
3406 
3407 static boolean_t
3408 e1000g_link_check(struct e1000g *Adapter)
3409 {
3410 	uint16_t speed, duplex, phydata;
3411 	boolean_t link_changed = B_FALSE;
3412 	struct e1000_hw *hw;
3413 	uint32_t reg_tarc;
3414 
3415 	hw = &Adapter->shared;
3416 
3417 	if (e1000g_link_up(Adapter)) {
3418 		/*
3419 		 * The Link is up, check whether it was marked as down earlier
3420 		 */
3421 		if (Adapter->link_state != LINK_STATE_UP) {
3422 			e1000_get_speed_and_duplex(hw, &speed, &duplex);
3423 			Adapter->link_speed = speed;
3424 			Adapter->link_duplex = duplex;
3425 			Adapter->link_state = LINK_STATE_UP;
3426 			link_changed = B_TRUE;
3427 
3428 			Adapter->tx_link_down_timeout = 0;
3429 
3430 			if ((hw->mac.type == e1000_82571) ||
3431 			    (hw->mac.type == e1000_82572)) {
3432 				reg_tarc = E1000_READ_REG(hw, E1000_TARC(0));
3433 				if (speed == SPEED_1000)
3434 					reg_tarc |= (1 << 21);
3435 				else
3436 					reg_tarc &= ~(1 << 21);
3437 				E1000_WRITE_REG(hw, E1000_TARC(0), reg_tarc);
3438 			}
3439 		}
3440 		Adapter->smartspeed = 0;
3441 	} else {
3442 		if (Adapter->link_state != LINK_STATE_DOWN) {
3443 			Adapter->link_speed = 0;
3444 			Adapter->link_duplex = 0;
3445 			Adapter->link_state = LINK_STATE_DOWN;
3446 			link_changed = B_TRUE;
3447 
3448 			/*
3449 			 * SmartSpeed workaround for Tabor/TanaX, When the
3450 			 * driver loses link disable auto master/slave
3451 			 * resolution.
3452 			 */
3453 			if (hw->phy.type == e1000_phy_igp) {
3454 				e1000_read_phy_reg(hw,
3455 				    PHY_1000T_CTRL, &phydata);
3456 				phydata |= CR_1000T_MS_ENABLE;
3457 				e1000_write_phy_reg(hw,
3458 				    PHY_1000T_CTRL, phydata);
3459 			}
3460 		} else {
3461 			e1000g_smartspeed(Adapter);
3462 		}
3463 
3464 		if (Adapter->chip_state == E1000G_START) {
3465 			if (Adapter->tx_link_down_timeout <
3466 			    MAX_TX_LINK_DOWN_TIMEOUT) {
3467 				Adapter->tx_link_down_timeout++;
3468 			} else if (Adapter->tx_link_down_timeout ==
3469 			    MAX_TX_LINK_DOWN_TIMEOUT) {
3470 				e1000g_tx_clean(Adapter);
3471 				Adapter->tx_link_down_timeout++;
3472 			}
3473 		}
3474 	}
3475 
3476 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
3477 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
3478 
3479 	return (link_changed);
3480 }
3481 
3482 /*
3483  * e1000g_reset_link - Using the link properties to setup the link
3484  */
3485 int
3486 e1000g_reset_link(struct e1000g *Adapter)
3487 {
3488 	struct e1000_mac_info *mac;
3489 	struct e1000_phy_info *phy;
3490 	boolean_t invalid;
3491 
3492 	mac = &Adapter->shared.mac;
3493 	phy = &Adapter->shared.phy;
3494 	invalid = B_FALSE;
3495 
3496 	if (Adapter->param_adv_autoneg == 1) {
3497 		mac->autoneg = B_TRUE;
3498 		phy->autoneg_advertised = 0;
3499 
3500 		/*
3501 		 * 1000hdx is not supported for autonegotiation
3502 		 */
3503 		if (Adapter->param_adv_1000fdx == 1)
3504 			phy->autoneg_advertised |= ADVERTISE_1000_FULL;
3505 
3506 		if (Adapter->param_adv_100fdx == 1)
3507 			phy->autoneg_advertised |= ADVERTISE_100_FULL;
3508 
3509 		if (Adapter->param_adv_100hdx == 1)
3510 			phy->autoneg_advertised |= ADVERTISE_100_HALF;
3511 
3512 		if (Adapter->param_adv_10fdx == 1)
3513 			phy->autoneg_advertised |= ADVERTISE_10_FULL;
3514 
3515 		if (Adapter->param_adv_10hdx == 1)
3516 			phy->autoneg_advertised |= ADVERTISE_10_HALF;
3517 
3518 		if (phy->autoneg_advertised == 0)
3519 			invalid = B_TRUE;
3520 	} else {
3521 		mac->autoneg = B_FALSE;
3522 
3523 		/*
3524 		 * 1000fdx and 1000hdx are not supported for forced link
3525 		 */
3526 		if (Adapter->param_adv_100fdx == 1)
3527 			mac->forced_speed_duplex = ADVERTISE_100_FULL;
3528 		else if (Adapter->param_adv_100hdx == 1)
3529 			mac->forced_speed_duplex = ADVERTISE_100_HALF;
3530 		else if (Adapter->param_adv_10fdx == 1)
3531 			mac->forced_speed_duplex = ADVERTISE_10_FULL;
3532 		else if (Adapter->param_adv_10hdx == 1)
3533 			mac->forced_speed_duplex = ADVERTISE_10_HALF;
3534 		else
3535 			invalid = B_TRUE;
3536 
3537 	}
3538 
3539 	if (invalid) {
3540 		e1000g_log(Adapter, CE_WARN,
3541 		    "Invalid link sets. Setup link to"
3542 		    "support autonegotiation with all link capabilities.");
3543 		mac->autoneg = B_TRUE;
3544 		phy->autoneg_advertised = ADVERTISE_1000_FULL |
3545 		    ADVERTISE_100_FULL | ADVERTISE_100_HALF |
3546 		    ADVERTISE_10_FULL | ADVERTISE_10_HALF;
3547 	}
3548 
3549 	return (e1000_setup_link(&Adapter->shared));
3550 }
3551 
3552 static void
3553 e1000g_local_timer(void *ws)
3554 {
3555 	struct e1000g *Adapter = (struct e1000g *)ws;
3556 	struct e1000_hw *hw;
3557 	e1000g_ether_addr_t ether_addr;
3558 	boolean_t link_changed;
3559 
3560 	hw = &Adapter->shared;
3561 
3562 	if (Adapter->chip_state == E1000G_ERROR) {
3563 		Adapter->reset_count++;
3564 		if (e1000g_global_reset(Adapter))
3565 			ddi_fm_service_impact(Adapter->dip,
3566 			    DDI_SERVICE_RESTORED);
3567 		else
3568 			ddi_fm_service_impact(Adapter->dip,
3569 			    DDI_SERVICE_LOST);
3570 		return;
3571 	}
3572 
3573 	if (e1000g_stall_check(Adapter)) {
3574 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
3575 		    "Tx stall detected. Activate automatic recovery.\n");
3576 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_STALL);
3577 		Adapter->reset_count++;
3578 		if (e1000g_reset(Adapter))
3579 			ddi_fm_service_impact(Adapter->dip,
3580 			    DDI_SERVICE_RESTORED);
3581 		else
3582 			ddi_fm_service_impact(Adapter->dip,
3583 			    DDI_SERVICE_LOST);
3584 		return;
3585 	}
3586 
3587 	link_changed = B_FALSE;
3588 	rw_enter(&Adapter->chip_lock, RW_READER);
3589 	if (Adapter->link_complete)
3590 		link_changed = e1000g_link_check(Adapter);
3591 	rw_exit(&Adapter->chip_lock);
3592 
3593 	if (link_changed) {
3594 		/*
3595 		 * Workaround for esb2. Data stuck in fifo on a link
3596 		 * down event. Reset the adapter to recover it.
3597 		 */
3598 		if ((Adapter->link_state == LINK_STATE_DOWN) &&
3599 		    (hw->mac.type == e1000_80003es2lan))
3600 			(void) e1000g_reset(Adapter);
3601 
3602 		mac_link_update(Adapter->mh, Adapter->link_state);
3603 	}
3604 
3605 	/*
3606 	 * With 82571 controllers, any locally administered address will
3607 	 * be overwritten when there is a reset on the other port.
3608 	 * Detect this circumstance and correct it.
3609 	 */
3610 	if ((hw->mac.type == e1000_82571) &&
3611 	    (e1000_get_laa_state_82571(hw) == B_TRUE)) {
3612 		ether_addr.reg.low = E1000_READ_REG_ARRAY(hw, E1000_RA, 0);
3613 		ether_addr.reg.high = E1000_READ_REG_ARRAY(hw, E1000_RA, 1);
3614 
3615 		ether_addr.reg.low = ntohl(ether_addr.reg.low);
3616 		ether_addr.reg.high = ntohl(ether_addr.reg.high);
3617 
3618 		if ((ether_addr.mac.addr[5] != hw->mac.addr[0]) ||
3619 		    (ether_addr.mac.addr[4] != hw->mac.addr[1]) ||
3620 		    (ether_addr.mac.addr[3] != hw->mac.addr[2]) ||
3621 		    (ether_addr.mac.addr[2] != hw->mac.addr[3]) ||
3622 		    (ether_addr.mac.addr[1] != hw->mac.addr[4]) ||
3623 		    (ether_addr.mac.addr[0] != hw->mac.addr[5])) {
3624 			e1000_rar_set(hw, hw->mac.addr, 0);
3625 		}
3626 	}
3627 
3628 	/*
3629 	 * Long TTL workaround for 82541/82547
3630 	 */
3631 	e1000_igp_ttl_workaround_82547(hw);
3632 
3633 	/*
3634 	 * Check for Adaptive IFS settings If there are lots of collisions
3635 	 * change the value in steps...
3636 	 * These properties should only be set for 10/100
3637 	 */
3638 	if ((hw->phy.media_type == e1000_media_type_copper) &&
3639 	    ((Adapter->link_speed == SPEED_100) ||
3640 	    (Adapter->link_speed == SPEED_10))) {
3641 		e1000_update_adaptive(hw);
3642 	}
3643 	/*
3644 	 * Set Timer Interrupts
3645 	 */
3646 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
3647 
3648 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
3649 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
3650 
3651 	restart_watchdog_timer(Adapter);
3652 }
3653 
3654 /*
3655  * The function e1000g_link_timer() is called when the timer for link setup
3656  * is expired, which indicates the completion of the link setup. The link
3657  * state will not be updated until the link setup is completed. And the
3658  * link state will not be sent to the upper layer through mac_link_update()
3659  * in this function. It will be updated in the local timer routine or the
3660  * interrupt service routine after the interface is started (plumbed).
3661  */
3662 static void
3663 e1000g_link_timer(void *arg)
3664 {
3665 	struct e1000g *Adapter = (struct e1000g *)arg;
3666 
3667 	mutex_enter(&Adapter->link_lock);
3668 	Adapter->link_complete = B_TRUE;
3669 	Adapter->link_tid = 0;
3670 	mutex_exit(&Adapter->link_lock);
3671 }
3672 
3673 /*
3674  * e1000g_force_speed_duplex - read forced speed/duplex out of e1000g.conf
3675  *
3676  * This function read the forced speed and duplex for 10/100 Mbps speeds
3677  * and also for 1000 Mbps speeds from the e1000g.conf file
3678  */
3679 static void
3680 e1000g_force_speed_duplex(struct e1000g *Adapter)
3681 {
3682 	int forced;
3683 	struct e1000_mac_info *mac = &Adapter->shared.mac;
3684 	struct e1000_phy_info *phy = &Adapter->shared.phy;
3685 
3686 	/*
3687 	 * get value out of config file
3688 	 */
3689 	forced = e1000g_get_prop(Adapter, "ForceSpeedDuplex",
3690 	    GDIAG_10_HALF, GDIAG_ANY, GDIAG_ANY);
3691 
3692 	switch (forced) {
3693 	case GDIAG_10_HALF:
3694 		/*
3695 		 * Disable Auto Negotiation
3696 		 */
3697 		mac->autoneg = B_FALSE;
3698 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
3699 		break;
3700 	case GDIAG_10_FULL:
3701 		/*
3702 		 * Disable Auto Negotiation
3703 		 */
3704 		mac->autoneg = B_FALSE;
3705 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
3706 		break;
3707 	case GDIAG_100_HALF:
3708 		/*
3709 		 * Disable Auto Negotiation
3710 		 */
3711 		mac->autoneg = B_FALSE;
3712 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
3713 		break;
3714 	case GDIAG_100_FULL:
3715 		/*
3716 		 * Disable Auto Negotiation
3717 		 */
3718 		mac->autoneg = B_FALSE;
3719 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
3720 		break;
3721 	case GDIAG_1000_FULL:
3722 		/*
3723 		 * The gigabit spec requires autonegotiation.  Therefore,
3724 		 * when the user wants to force the speed to 1000Mbps, we
3725 		 * enable AutoNeg, but only allow the harware to advertise
3726 		 * 1000Mbps.  This is different from 10/100 operation, where
3727 		 * we are allowed to link without any negotiation.
3728 		 */
3729 		mac->autoneg = B_TRUE;
3730 		phy->autoneg_advertised = ADVERTISE_1000_FULL;
3731 		break;
3732 	default:	/* obey the setting of AutoNegAdvertised */
3733 		mac->autoneg = B_TRUE;
3734 		phy->autoneg_advertised =
3735 		    (uint16_t)e1000g_get_prop(Adapter, "AutoNegAdvertised",
3736 		    0, AUTONEG_ADVERTISE_SPEED_DEFAULT,
3737 		    AUTONEG_ADVERTISE_SPEED_DEFAULT);
3738 		break;
3739 	}	/* switch */
3740 }
3741 
3742 /*
3743  * e1000g_get_max_frame_size - get jumbo frame setting from e1000g.conf
3744  *
3745  * This function reads MaxFrameSize from e1000g.conf
3746  */
3747 static void
3748 e1000g_get_max_frame_size(struct e1000g *Adapter)
3749 {
3750 	int max_frame;
3751 	struct e1000_mac_info *mac = &Adapter->shared.mac;
3752 	struct e1000_phy_info *phy = &Adapter->shared.phy;
3753 
3754 	/*
3755 	 * get value out of config file
3756 	 */
3757 	max_frame = e1000g_get_prop(Adapter, "MaxFrameSize", 0, 3, 0);
3758 
3759 	switch (max_frame) {
3760 	case 0:
3761 		Adapter->default_mtu = ETHERMTU;
3762 		break;
3763 	/*
3764 	 * To avoid excessive memory allocation for rx buffers,
3765 	 * the bytes of E1000G_IPALIGNPRESERVEROOM are reserved.
3766 	 */
3767 	case 1:
3768 		Adapter->default_mtu = FRAME_SIZE_UPTO_4K -
3769 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
3770 		    E1000G_IPALIGNPRESERVEROOM;
3771 		break;
3772 	case 2:
3773 		Adapter->default_mtu = FRAME_SIZE_UPTO_8K -
3774 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
3775 		    E1000G_IPALIGNPRESERVEROOM;
3776 		break;
3777 	case 3:
3778 		if (mac->type >= e1000_82571)
3779 			Adapter->default_mtu = MAXIMUM_MTU;
3780 		else
3781 			Adapter->default_mtu = FRAME_SIZE_UPTO_16K -
3782 			    sizeof (struct ether_vlan_header) - ETHERFCSL -
3783 			    E1000G_IPALIGNPRESERVEROOM;
3784 		break;
3785 	default:
3786 		Adapter->default_mtu = ETHERMTU;
3787 		break;
3788 	}	/* switch */
3789 
3790 	Adapter->max_frame_size = Adapter->default_mtu +
3791 	    sizeof (struct ether_vlan_header) + ETHERFCSL;
3792 
3793 	/* ich8 does not do jumbo frames */
3794 	if (mac->type == e1000_ich8lan) {
3795 		Adapter->max_frame_size = ETHERMAX;
3796 	}
3797 
3798 	/* ich9 does not do jumbo frames on one phy type */
3799 	if ((mac->type == e1000_ich9lan) &&
3800 	    (phy->type == e1000_phy_ife)) {
3801 		Adapter->max_frame_size = ETHERMAX;
3802 	}
3803 }
3804 
3805 static void
3806 arm_watchdog_timer(struct e1000g *Adapter)
3807 {
3808 	Adapter->watchdog_tid =
3809 	    timeout(e1000g_local_timer,
3810 	    (void *)Adapter, 1 * drv_usectohz(1000000));
3811 }
3812 #pragma inline(arm_watchdog_timer)
3813 
3814 static void
3815 enable_watchdog_timer(struct e1000g *Adapter)
3816 {
3817 	mutex_enter(&Adapter->watchdog_lock);
3818 
3819 	if (!Adapter->watchdog_timer_enabled) {
3820 		Adapter->watchdog_timer_enabled = B_TRUE;
3821 		Adapter->watchdog_timer_started = B_TRUE;
3822 		arm_watchdog_timer(Adapter);
3823 	}
3824 
3825 	mutex_exit(&Adapter->watchdog_lock);
3826 }
3827 
3828 static void
3829 disable_watchdog_timer(struct e1000g *Adapter)
3830 {
3831 	timeout_id_t tid;
3832 
3833 	mutex_enter(&Adapter->watchdog_lock);
3834 
3835 	Adapter->watchdog_timer_enabled = B_FALSE;
3836 	Adapter->watchdog_timer_started = B_FALSE;
3837 	tid = Adapter->watchdog_tid;
3838 	Adapter->watchdog_tid = 0;
3839 
3840 	mutex_exit(&Adapter->watchdog_lock);
3841 
3842 	if (tid != 0)
3843 		(void) untimeout(tid);
3844 }
3845 
3846 static void
3847 start_watchdog_timer(struct e1000g *Adapter)
3848 {
3849 	mutex_enter(&Adapter->watchdog_lock);
3850 
3851 	if (Adapter->watchdog_timer_enabled) {
3852 		if (!Adapter->watchdog_timer_started) {
3853 			Adapter->watchdog_timer_started = B_TRUE;
3854 			arm_watchdog_timer(Adapter);
3855 		}
3856 	}
3857 
3858 	mutex_exit(&Adapter->watchdog_lock);
3859 }
3860 
3861 static void
3862 restart_watchdog_timer(struct e1000g *Adapter)
3863 {
3864 	mutex_enter(&Adapter->watchdog_lock);
3865 
3866 	if (Adapter->watchdog_timer_started)
3867 		arm_watchdog_timer(Adapter);
3868 
3869 	mutex_exit(&Adapter->watchdog_lock);
3870 }
3871 
3872 static void
3873 stop_watchdog_timer(struct e1000g *Adapter)
3874 {
3875 	timeout_id_t tid;
3876 
3877 	mutex_enter(&Adapter->watchdog_lock);
3878 
3879 	Adapter->watchdog_timer_started = B_FALSE;
3880 	tid = Adapter->watchdog_tid;
3881 	Adapter->watchdog_tid = 0;
3882 
3883 	mutex_exit(&Adapter->watchdog_lock);
3884 
3885 	if (tid != 0)
3886 		(void) untimeout(tid);
3887 }
3888 
3889 static void
3890 stop_link_timer(struct e1000g *Adapter)
3891 {
3892 	timeout_id_t tid;
3893 
3894 	/* Disable the link timer */
3895 	mutex_enter(&Adapter->link_lock);
3896 
3897 	tid = Adapter->link_tid;
3898 	Adapter->link_tid = 0;
3899 
3900 	mutex_exit(&Adapter->link_lock);
3901 
3902 	if (tid != 0)
3903 		(void) untimeout(tid);
3904 }
3905 
3906 static void
3907 stop_82547_timer(e1000g_tx_ring_t *tx_ring)
3908 {
3909 	timeout_id_t tid;
3910 
3911 	/* Disable the tx timer for 82547 chipset */
3912 	mutex_enter(&tx_ring->tx_lock);
3913 
3914 	tx_ring->timer_enable_82547 = B_FALSE;
3915 	tid = tx_ring->timer_id_82547;
3916 	tx_ring->timer_id_82547 = 0;
3917 
3918 	mutex_exit(&tx_ring->tx_lock);
3919 
3920 	if (tid != 0)
3921 		(void) untimeout(tid);
3922 }
3923 
3924 void
3925 e1000g_clear_interrupt(struct e1000g *Adapter)
3926 {
3927 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC,
3928 	    0xffffffff & ~E1000_IMS_RXSEQ);
3929 }
3930 
3931 void
3932 e1000g_mask_interrupt(struct e1000g *Adapter)
3933 {
3934 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS,
3935 	    IMS_ENABLE_MASK & ~E1000_IMS_TXDW);
3936 
3937 	if (Adapter->tx_intr_enable)
3938 		e1000g_mask_tx_interrupt(Adapter);
3939 }
3940 
3941 void
3942 e1000g_clear_all_interrupts(struct e1000g *Adapter)
3943 {
3944 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, 0xffffffff);
3945 }
3946 
3947 void
3948 e1000g_mask_tx_interrupt(struct e1000g *Adapter)
3949 {
3950 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS, E1000_IMS_TXDW);
3951 }
3952 
3953 void
3954 e1000g_clear_tx_interrupt(struct e1000g *Adapter)
3955 {
3956 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, E1000_IMS_TXDW);
3957 }
3958 
3959 static void
3960 e1000g_smartspeed(struct e1000g *Adapter)
3961 {
3962 	struct e1000_hw *hw = &Adapter->shared;
3963 	uint16_t phy_status;
3964 	uint16_t phy_ctrl;
3965 
3966 	/*
3967 	 * If we're not T-or-T, or we're not autoneg'ing, or we're not
3968 	 * advertising 1000Full, we don't even use the workaround
3969 	 */
3970 	if ((hw->phy.type != e1000_phy_igp) ||
3971 	    !hw->mac.autoneg ||
3972 	    !(hw->phy.autoneg_advertised & ADVERTISE_1000_FULL))
3973 		return;
3974 
3975 	/*
3976 	 * True if this is the first call of this function or after every
3977 	 * 30 seconds of not having link
3978 	 */
3979 	if (Adapter->smartspeed == 0) {
3980 		/*
3981 		 * If Master/Slave config fault is asserted twice, we
3982 		 * assume back-to-back
3983 		 */
3984 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
3985 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
3986 			return;
3987 
3988 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
3989 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
3990 			return;
3991 		/*
3992 		 * We're assuming back-2-back because our status register
3993 		 * insists! there's a fault in the master/slave
3994 		 * relationship that was "negotiated"
3995 		 */
3996 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
3997 		/*
3998 		 * Is the phy configured for manual configuration of
3999 		 * master/slave?
4000 		 */
4001 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4002 			/*
4003 			 * Yes.  Then disable manual configuration (enable
4004 			 * auto configuration) of master/slave
4005 			 */
4006 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4007 			e1000_write_phy_reg(hw,
4008 			    PHY_1000T_CTRL, phy_ctrl);
4009 			/*
4010 			 * Effectively starting the clock
4011 			 */
4012 			Adapter->smartspeed++;
4013 			/*
4014 			 * Restart autonegotiation
4015 			 */
4016 			if (!e1000_phy_setup_autoneg(hw) &&
4017 			    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4018 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4019 				    MII_CR_RESTART_AUTO_NEG);
4020 				e1000_write_phy_reg(hw,
4021 				    PHY_CONTROL, phy_ctrl);
4022 			}
4023 		}
4024 		return;
4025 		/*
4026 		 * Has 6 seconds transpired still without link? Remember,
4027 		 * you should reset the smartspeed counter once you obtain
4028 		 * link
4029 		 */
4030 	} else if (Adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4031 		/*
4032 		 * Yes.  Remember, we did at the start determine that
4033 		 * there's a master/slave configuration fault, so we're
4034 		 * still assuming there's someone on the other end, but we
4035 		 * just haven't yet been able to talk to it. We then
4036 		 * re-enable auto configuration of master/slave to see if
4037 		 * we're running 2/3 pair cables.
4038 		 */
4039 		/*
4040 		 * If still no link, perhaps using 2/3 pair cable
4041 		 */
4042 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4043 		phy_ctrl |= CR_1000T_MS_ENABLE;
4044 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4045 		/*
4046 		 * Restart autoneg with phy enabled for manual
4047 		 * configuration of master/slave
4048 		 */
4049 		if (!e1000_phy_setup_autoneg(hw) &&
4050 		    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4051 			phy_ctrl |=
4052 			    (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
4053 			e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
4054 		}
4055 		/*
4056 		 * Hopefully, there are no more faults and we've obtained
4057 		 * link as a result.
4058 		 */
4059 	}
4060 	/*
4061 	 * Restart process after E1000_SMARTSPEED_MAX iterations (30
4062 	 * seconds)
4063 	 */
4064 	if (Adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4065 		Adapter->smartspeed = 0;
4066 }
4067 
4068 static boolean_t
4069 is_valid_mac_addr(uint8_t *mac_addr)
4070 {
4071 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
4072 	const uint8_t addr_test2[6] =
4073 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4074 
4075 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
4076 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
4077 		return (B_FALSE);
4078 
4079 	return (B_TRUE);
4080 }
4081 
4082 /*
4083  * e1000g_stall_check - check for tx stall
4084  *
4085  * This function checks if the adapter is stalled (in transmit).
4086  *
4087  * It is called each time the watchdog timeout is invoked.
4088  * If the transmit descriptor reclaim continuously fails,
4089  * the watchdog value will increment by 1. If the watchdog
4090  * value exceeds the threshold, the adapter is assumed to
4091  * have stalled and need to be reset.
4092  */
4093 static boolean_t
4094 e1000g_stall_check(struct e1000g *Adapter)
4095 {
4096 	e1000g_tx_ring_t *tx_ring;
4097 
4098 	tx_ring = Adapter->tx_ring;
4099 
4100 	if (Adapter->link_state != LINK_STATE_UP)
4101 		return (B_FALSE);
4102 
4103 	if (tx_ring->recycle_fail > 0)
4104 		tx_ring->stall_watchdog++;
4105 	else
4106 		tx_ring->stall_watchdog = 0;
4107 
4108 	if (tx_ring->stall_watchdog < E1000G_STALL_WATCHDOG_COUNT)
4109 		return (B_FALSE);
4110 
4111 	tx_ring->stall_watchdog = 0;
4112 	tx_ring->recycle_fail = 0;
4113 
4114 	return (B_TRUE);
4115 }
4116 
4117 #ifdef E1000G_DEBUG
4118 static enum ioc_reply
4119 e1000g_pp_ioctl(struct e1000g *e1000gp, struct iocblk *iocp, mblk_t *mp)
4120 {
4121 	void (*ppfn)(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
4122 	e1000g_peekpoke_t *ppd;
4123 	uint64_t mem_va;
4124 	uint64_t maxoff;
4125 	boolean_t peek;
4126 
4127 	switch (iocp->ioc_cmd) {
4128 
4129 	case E1000G_IOC_REG_PEEK:
4130 		peek = B_TRUE;
4131 		break;
4132 
4133 	case E1000G_IOC_REG_POKE:
4134 		peek = B_FALSE;
4135 		break;
4136 
4137 	deault:
4138 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4139 		    "e1000g_diag_ioctl: invalid ioctl command 0x%X\n",
4140 		    iocp->ioc_cmd);
4141 		return (IOC_INVAL);
4142 	}
4143 
4144 	/*
4145 	 * Validate format of ioctl
4146 	 */
4147 	if (iocp->ioc_count != sizeof (e1000g_peekpoke_t))
4148 		return (IOC_INVAL);
4149 	if (mp->b_cont == NULL)
4150 		return (IOC_INVAL);
4151 
4152 	ppd = (e1000g_peekpoke_t *)mp->b_cont->b_rptr;
4153 
4154 	/*
4155 	 * Validate request parameters
4156 	 */
4157 	switch (ppd->pp_acc_space) {
4158 
4159 	default:
4160 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4161 		    "e1000g_diag_ioctl: invalid access space 0x%X\n",
4162 		    ppd->pp_acc_space);
4163 		return (IOC_INVAL);
4164 
4165 	case E1000G_PP_SPACE_REG:
4166 		/*
4167 		 * Memory-mapped I/O space
4168 		 */
4169 		ASSERT(ppd->pp_acc_size == 4);
4170 		if (ppd->pp_acc_size != 4)
4171 			return (IOC_INVAL);
4172 
4173 		if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
4174 			return (IOC_INVAL);
4175 
4176 		mem_va = 0;
4177 		maxoff = 0x10000;
4178 		ppfn = peek ? e1000g_ioc_peek_reg : e1000g_ioc_poke_reg;
4179 		break;
4180 
4181 	case E1000G_PP_SPACE_E1000G:
4182 		/*
4183 		 * E1000g data structure!
4184 		 */
4185 		mem_va = (uintptr_t)e1000gp;
4186 		maxoff = sizeof (struct e1000g);
4187 		ppfn = peek ? e1000g_ioc_peek_mem : e1000g_ioc_poke_mem;
4188 		break;
4189 
4190 	}
4191 
4192 	if (ppd->pp_acc_offset >= maxoff)
4193 		return (IOC_INVAL);
4194 
4195 	if (ppd->pp_acc_offset + ppd->pp_acc_size > maxoff)
4196 		return (IOC_INVAL);
4197 
4198 	/*
4199 	 * All OK - go!
4200 	 */
4201 	ppd->pp_acc_offset += mem_va;
4202 	(*ppfn)(e1000gp, ppd);
4203 	return (peek ? IOC_REPLY : IOC_ACK);
4204 }
4205 
4206 static void
4207 e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4208 {
4209 	ddi_acc_handle_t handle;
4210 	uint32_t *regaddr;
4211 
4212 	handle = e1000gp->osdep.reg_handle;
4213 	regaddr =
4214 	    (uint32_t *)(e1000gp->shared.hw_addr + ppd->pp_acc_offset);
4215 
4216 	ppd->pp_acc_data = ddi_get32(handle, regaddr);
4217 }
4218 
4219 static void
4220 e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4221 {
4222 	ddi_acc_handle_t handle;
4223 	uint32_t *regaddr;
4224 	uint32_t value;
4225 
4226 	handle = e1000gp->osdep.reg_handle;
4227 	regaddr =
4228 	    (uint32_t *)(e1000gp->shared.hw_addr + ppd->pp_acc_offset);
4229 	value = (uint32_t)ppd->pp_acc_data;
4230 
4231 	ddi_put32(handle, regaddr, value);
4232 }
4233 
4234 static void
4235 e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4236 {
4237 	uint64_t value;
4238 	void *vaddr;
4239 
4240 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4241 
4242 	switch (ppd->pp_acc_size) {
4243 	case 1:
4244 		value = *(uint8_t *)vaddr;
4245 		break;
4246 
4247 	case 2:
4248 		value = *(uint16_t *)vaddr;
4249 		break;
4250 
4251 	case 4:
4252 		value = *(uint32_t *)vaddr;
4253 		break;
4254 
4255 	case 8:
4256 		value = *(uint64_t *)vaddr;
4257 		break;
4258 	}
4259 
4260 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
4261 	    "e1000g_ioc_peek_mem($%p, $%p) peeked 0x%llx from $%p\n",
4262 	    (void *)e1000gp, (void *)ppd, value, vaddr);
4263 
4264 	ppd->pp_acc_data = value;
4265 }
4266 
4267 static void
4268 e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4269 {
4270 	uint64_t value;
4271 	void *vaddr;
4272 
4273 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4274 	value = ppd->pp_acc_data;
4275 
4276 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
4277 	    "e1000g_ioc_poke_mem($%p, $%p) poking 0x%llx at $%p\n",
4278 	    (void *)e1000gp, (void *)ppd, value, vaddr);
4279 
4280 	switch (ppd->pp_acc_size) {
4281 	case 1:
4282 		*(uint8_t *)vaddr = (uint8_t)value;
4283 		break;
4284 
4285 	case 2:
4286 		*(uint16_t *)vaddr = (uint16_t)value;
4287 		break;
4288 
4289 	case 4:
4290 		*(uint32_t *)vaddr = (uint32_t)value;
4291 		break;
4292 
4293 	case 8:
4294 		*(uint64_t *)vaddr = (uint64_t)value;
4295 		break;
4296 	}
4297 }
4298 #endif
4299 
4300 /*
4301  * Loopback Support
4302  */
4303 static lb_property_t lb_normal =
4304 	{ normal,	"normal",	E1000G_LB_NONE		};
4305 static lb_property_t lb_external1000 =
4306 	{ external,	"1000Mbps",	E1000G_LB_EXTERNAL_1000	};
4307 static lb_property_t lb_external100 =
4308 	{ external,	"100Mbps",	E1000G_LB_EXTERNAL_100	};
4309 static lb_property_t lb_external10 =
4310 	{ external,	"10Mbps",	E1000G_LB_EXTERNAL_10	};
4311 static lb_property_t lb_phy =
4312 	{ internal,	"PHY",		E1000G_LB_INTERNAL_PHY	};
4313 
4314 static enum ioc_reply
4315 e1000g_loopback_ioctl(struct e1000g *Adapter, struct iocblk *iocp, mblk_t *mp)
4316 {
4317 	lb_info_sz_t *lbsp;
4318 	lb_property_t *lbpp;
4319 	struct e1000_hw *hw;
4320 	uint32_t *lbmp;
4321 	uint32_t size;
4322 	uint32_t value;
4323 
4324 	hw = &Adapter->shared;
4325 
4326 	if (mp->b_cont == NULL)
4327 		return (IOC_INVAL);
4328 
4329 	switch (iocp->ioc_cmd) {
4330 	default:
4331 		return (IOC_INVAL);
4332 
4333 	case LB_GET_INFO_SIZE:
4334 		size = sizeof (lb_info_sz_t);
4335 		if (iocp->ioc_count != size)
4336 			return (IOC_INVAL);
4337 
4338 		rw_enter(&Adapter->chip_lock, RW_WRITER);
4339 		e1000g_get_phy_state(Adapter);
4340 
4341 		/*
4342 		 * Workaround for hardware faults. In order to get a stable
4343 		 * state of phy, we will wait for a specific interval and
4344 		 * try again. The time delay is an experiential value based
4345 		 * on our testing.
4346 		 */
4347 		msec_delay(100);
4348 		e1000g_get_phy_state(Adapter);
4349 		rw_exit(&Adapter->chip_lock);
4350 
4351 		value = sizeof (lb_normal);
4352 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4353 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4354 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4355 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4356 			value += sizeof (lb_phy);
4357 			switch (hw->mac.type) {
4358 			case e1000_82571:
4359 			case e1000_82572:
4360 				value += sizeof (lb_external1000);
4361 				break;
4362 			}
4363 		}
4364 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4365 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4366 			value += sizeof (lb_external100);
4367 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4368 			value += sizeof (lb_external10);
4369 
4370 		lbsp = (lb_info_sz_t *)mp->b_cont->b_rptr;
4371 		*lbsp = value;
4372 		break;
4373 
4374 	case LB_GET_INFO:
4375 		value = sizeof (lb_normal);
4376 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4377 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4378 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4379 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4380 			value += sizeof (lb_phy);
4381 			switch (hw->mac.type) {
4382 			case e1000_82571:
4383 			case e1000_82572:
4384 				value += sizeof (lb_external1000);
4385 				break;
4386 			}
4387 		}
4388 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4389 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4390 			value += sizeof (lb_external100);
4391 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4392 			value += sizeof (lb_external10);
4393 
4394 		size = value;
4395 		if (iocp->ioc_count != size)
4396 			return (IOC_INVAL);
4397 
4398 		value = 0;
4399 		lbpp = (lb_property_t *)mp->b_cont->b_rptr;
4400 		lbpp[value++] = lb_normal;
4401 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4402 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4403 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4404 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4405 			lbpp[value++] = lb_phy;
4406 			switch (hw->mac.type) {
4407 			case e1000_82571:
4408 			case e1000_82572:
4409 				lbpp[value++] = lb_external1000;
4410 				break;
4411 			}
4412 		}
4413 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4414 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4415 			lbpp[value++] = lb_external100;
4416 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4417 			lbpp[value++] = lb_external10;
4418 		break;
4419 
4420 	case LB_GET_MODE:
4421 		size = sizeof (uint32_t);
4422 		if (iocp->ioc_count != size)
4423 			return (IOC_INVAL);
4424 
4425 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
4426 		*lbmp = Adapter->loopback_mode;
4427 		break;
4428 
4429 	case LB_SET_MODE:
4430 		size = 0;
4431 		if (iocp->ioc_count != sizeof (uint32_t))
4432 			return (IOC_INVAL);
4433 
4434 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
4435 		if (!e1000g_set_loopback_mode(Adapter, *lbmp))
4436 			return (IOC_INVAL);
4437 		break;
4438 	}
4439 
4440 	iocp->ioc_count = size;
4441 	iocp->ioc_error = 0;
4442 
4443 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
4444 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4445 		return (IOC_INVAL);
4446 	}
4447 
4448 	return (IOC_REPLY);
4449 }
4450 
4451 static boolean_t
4452 e1000g_set_loopback_mode(struct e1000g *Adapter, uint32_t mode)
4453 {
4454 	struct e1000_hw *hw;
4455 	int i, times;
4456 	boolean_t link_up;
4457 
4458 	if (mode == Adapter->loopback_mode)
4459 		return (B_TRUE);
4460 
4461 	hw = &Adapter->shared;
4462 	times = 0;
4463 
4464 	Adapter->loopback_mode = mode;
4465 
4466 	if (mode == E1000G_LB_NONE) {
4467 		/* Reset the chip */
4468 		hw->phy.autoneg_wait_to_complete = B_TRUE;
4469 		(void) e1000g_reset(Adapter);
4470 		hw->phy.autoneg_wait_to_complete = B_FALSE;
4471 		return (B_TRUE);
4472 	}
4473 
4474 again:
4475 
4476 	rw_enter(&Adapter->chip_lock, RW_WRITER);
4477 
4478 	switch (mode) {
4479 	default:
4480 		rw_exit(&Adapter->chip_lock);
4481 		return (B_FALSE);
4482 
4483 	case E1000G_LB_EXTERNAL_1000:
4484 		e1000g_set_external_loopback_1000(Adapter);
4485 		break;
4486 
4487 	case E1000G_LB_EXTERNAL_100:
4488 		e1000g_set_external_loopback_100(Adapter);
4489 		break;
4490 
4491 	case E1000G_LB_EXTERNAL_10:
4492 		e1000g_set_external_loopback_10(Adapter);
4493 		break;
4494 
4495 	case E1000G_LB_INTERNAL_PHY:
4496 		e1000g_set_internal_loopback(Adapter);
4497 		break;
4498 	}
4499 
4500 	times++;
4501 
4502 	rw_exit(&Adapter->chip_lock);
4503 
4504 	/* Wait for link up */
4505 	for (i = (PHY_FORCE_LIMIT * 2); i > 0; i--)
4506 		msec_delay(100);
4507 
4508 	rw_enter(&Adapter->chip_lock, RW_WRITER);
4509 
4510 	link_up = e1000g_link_up(Adapter);
4511 
4512 	rw_exit(&Adapter->chip_lock);
4513 
4514 	if (!link_up) {
4515 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4516 		    "Failed to get the link up");
4517 		if (times < 2) {
4518 			/* Reset the link */
4519 			E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4520 			    "Reset the link ...");
4521 			(void) e1000g_reset(Adapter);
4522 			goto again;
4523 		}
4524 	}
4525 
4526 	return (B_TRUE);
4527 }
4528 
4529 /*
4530  * The following loopback settings are from Intel's technical
4531  * document - "How To Loopback". All the register settings and
4532  * time delay values are directly inherited from the document
4533  * without more explanations available.
4534  */
4535 static void
4536 e1000g_set_internal_loopback(struct e1000g *Adapter)
4537 {
4538 	struct e1000_hw *hw;
4539 	uint32_t ctrl;
4540 	uint32_t status;
4541 	uint16_t phy_ctrl;
4542 	uint32_t txcw;
4543 
4544 	hw = &Adapter->shared;
4545 
4546 	/* Disable Smart Power Down */
4547 	phy_spd_state(hw, B_FALSE);
4548 
4549 	e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
4550 	phy_ctrl &= ~(MII_CR_AUTO_NEG_EN | MII_CR_SPEED_100 | MII_CR_SPEED_10);
4551 	phy_ctrl |= MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000;
4552 
4553 	switch (hw->mac.type) {
4554 	case e1000_82540:
4555 	case e1000_82545:
4556 	case e1000_82545_rev_3:
4557 	case e1000_82546:
4558 	case e1000_82546_rev_3:
4559 	case e1000_82573:
4560 		/* Auto-MDI/MDIX off */
4561 		e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
4562 		/* Reset PHY to update Auto-MDI/MDIX */
4563 		e1000_write_phy_reg(hw, PHY_CONTROL,
4564 		    phy_ctrl | MII_CR_RESET | MII_CR_AUTO_NEG_EN);
4565 		/* Reset PHY to auto-neg off and force 1000 */
4566 		e1000_write_phy_reg(hw, PHY_CONTROL,
4567 		    phy_ctrl | MII_CR_RESET);
4568 		/*
4569 		 * Disable PHY receiver for 82540/545/546 and 82573 Family.
4570 		 * See comments above e1000g_set_internal_loopback() for the
4571 		 * background.
4572 		 */
4573 		e1000_write_phy_reg(hw, 29, 0x001F);
4574 		e1000_write_phy_reg(hw, 30, 0x8FFC);
4575 		e1000_write_phy_reg(hw, 29, 0x001A);
4576 		e1000_write_phy_reg(hw, 30, 0x8FF0);
4577 		break;
4578 	}
4579 
4580 	/* Set loopback */
4581 	e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl | MII_CR_LOOPBACK);
4582 
4583 	msec_delay(250);
4584 
4585 	/* Now set up the MAC to the same speed/duplex as the PHY. */
4586 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4587 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
4588 	ctrl |= (E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
4589 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
4590 	    E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
4591 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
4592 
4593 	switch (hw->mac.type) {
4594 	case e1000_82540:
4595 	case e1000_82545:
4596 	case e1000_82545_rev_3:
4597 	case e1000_82546:
4598 	case e1000_82546_rev_3:
4599 		/*
4600 		 * For some serdes we'll need to commit the writes now
4601 		 * so that the status is updated on link
4602 		 */
4603 		if (hw->phy.media_type == e1000_media_type_internal_serdes) {
4604 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4605 			msec_delay(100);
4606 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
4607 		}
4608 
4609 		if (hw->phy.media_type == e1000_media_type_copper) {
4610 			/* Invert Loss of Signal */
4611 			ctrl |= E1000_CTRL_ILOS;
4612 		} else {
4613 			/* Set ILOS on fiber nic if half duplex is detected */
4614 			status = E1000_READ_REG(hw, E1000_STATUS);
4615 			if ((status & E1000_STATUS_FD) == 0)
4616 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
4617 		}
4618 		break;
4619 
4620 	case e1000_82571:
4621 	case e1000_82572:
4622 		/*
4623 		 * The fiber/SerDes versions of this adapter do not contain an
4624 		 * accessible PHY. Therefore, loopback beyond MAC must be done
4625 		 * using SerDes analog loopback.
4626 		 */
4627 		if (hw->phy.media_type != e1000_media_type_copper) {
4628 			status = E1000_READ_REG(hw, E1000_STATUS);
4629 			/* Set ILOS on fiber nic if half duplex is detected */
4630 			if (((status & E1000_STATUS_LU) == 0) ||
4631 			    ((status & E1000_STATUS_FD) == 0) ||
4632 			    (hw->phy.media_type ==
4633 			    e1000_media_type_internal_serdes))
4634 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
4635 
4636 			/* Disable autoneg by setting bit 31 of TXCW to zero */
4637 			txcw = E1000_READ_REG(hw, E1000_TXCW);
4638 			txcw &= ~((uint32_t)1 << 31);
4639 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
4640 
4641 			/*
4642 			 * Write 0x410 to Serdes Control register
4643 			 * to enable Serdes analog loopback
4644 			 */
4645 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
4646 			msec_delay(10);
4647 		}
4648 		break;
4649 
4650 	case e1000_82573:
4651 		ctrl |= E1000_CTRL_ILOS;
4652 		break;
4653 	}
4654 
4655 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4656 
4657 }
4658 
4659 static void
4660 e1000g_set_external_loopback_1000(struct e1000g *Adapter)
4661 {
4662 	struct e1000_hw *hw;
4663 	uint32_t rctl;
4664 	uint32_t ctrl_ext;
4665 	uint32_t ctrl;
4666 	uint32_t status;
4667 	uint32_t txcw;
4668 
4669 	hw = &Adapter->shared;
4670 
4671 	/* Disable Smart Power Down */
4672 	phy_spd_state(hw, B_FALSE);
4673 
4674 	switch (hw->phy.media_type) {
4675 	case e1000_media_type_copper:
4676 		/* Force link up (Must be done before the PHY writes) */
4677 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
4678 		ctrl |= E1000_CTRL_SLU;	/* Force Link Up */
4679 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4680 
4681 		rctl = E1000_READ_REG(hw, E1000_RCTL);
4682 		rctl |= (E1000_RCTL_EN |
4683 		    E1000_RCTL_SBP |
4684 		    E1000_RCTL_UPE |
4685 		    E1000_RCTL_MPE |
4686 		    E1000_RCTL_LPE |
4687 		    E1000_RCTL_BAM);		/* 0x803E */
4688 		E1000_WRITE_REG(hw, E1000_RCTL, rctl);
4689 
4690 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
4691 		ctrl_ext |= (E1000_CTRL_EXT_SDP4_DATA |
4692 		    E1000_CTRL_EXT_SDP6_DATA |
4693 		    E1000_CTRL_EXT_SDP7_DATA |
4694 		    E1000_CTRL_EXT_SDP4_DIR |
4695 		    E1000_CTRL_EXT_SDP6_DIR |
4696 		    E1000_CTRL_EXT_SDP7_DIR);	/* 0x0DD0 */
4697 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
4698 
4699 		/*
4700 		 * This sequence tunes the PHY's SDP and no customer
4701 		 * settable values. For background, see comments above
4702 		 * e1000g_set_internal_loopback().
4703 		 */
4704 		e1000_write_phy_reg(hw, 0x0, 0x140);
4705 		msec_delay(10);
4706 		e1000_write_phy_reg(hw, 0x9, 0x1A00);
4707 		e1000_write_phy_reg(hw, 0x12, 0xC10);
4708 		e1000_write_phy_reg(hw, 0x12, 0x1C10);
4709 		e1000_write_phy_reg(hw, 0x1F37, 0x76);
4710 		e1000_write_phy_reg(hw, 0x1F33, 0x1);
4711 		e1000_write_phy_reg(hw, 0x1F33, 0x0);
4712 
4713 		e1000_write_phy_reg(hw, 0x1F35, 0x65);
4714 		e1000_write_phy_reg(hw, 0x1837, 0x3F7C);
4715 		e1000_write_phy_reg(hw, 0x1437, 0x3FDC);
4716 		e1000_write_phy_reg(hw, 0x1237, 0x3F7C);
4717 		e1000_write_phy_reg(hw, 0x1137, 0x3FDC);
4718 
4719 		msec_delay(50);
4720 		break;
4721 	case e1000_media_type_fiber:
4722 	case e1000_media_type_internal_serdes:
4723 		status = E1000_READ_REG(hw, E1000_STATUS);
4724 		if (((status & E1000_STATUS_LU) == 0) ||
4725 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4726 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
4727 			ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
4728 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4729 		}
4730 
4731 		/* Disable autoneg by setting bit 31 of TXCW to zero */
4732 		txcw = E1000_READ_REG(hw, E1000_TXCW);
4733 		txcw &= ~((uint32_t)1 << 31);
4734 		E1000_WRITE_REG(hw, E1000_TXCW, txcw);
4735 
4736 		/*
4737 		 * Write 0x410 to Serdes Control register
4738 		 * to enable Serdes analog loopback
4739 		 */
4740 		E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
4741 		msec_delay(10);
4742 		break;
4743 	default:
4744 		break;
4745 	}
4746 }
4747 
4748 static void
4749 e1000g_set_external_loopback_100(struct e1000g *Adapter)
4750 {
4751 	struct e1000_hw *hw;
4752 	uint32_t ctrl;
4753 	uint16_t phy_ctrl;
4754 
4755 	hw = &Adapter->shared;
4756 
4757 	/* Disable Smart Power Down */
4758 	phy_spd_state(hw, B_FALSE);
4759 
4760 	phy_ctrl = (MII_CR_FULL_DUPLEX |
4761 	    MII_CR_SPEED_100);
4762 
4763 	/* Force 100/FD, reset PHY */
4764 	e1000_write_phy_reg(hw, PHY_CONTROL,
4765 	    phy_ctrl | MII_CR_RESET);	/* 0xA100 */
4766 	msec_delay(10);
4767 
4768 	/* Force 100/FD */
4769 	e1000_write_phy_reg(hw, PHY_CONTROL,
4770 	    phy_ctrl);			/* 0x2100 */
4771 	msec_delay(10);
4772 
4773 	/* Now setup the MAC to the same speed/duplex as the PHY. */
4774 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4775 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
4776 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
4777 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
4778 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
4779 	    E1000_CTRL_SPD_100 |	/* Force Speed to 100 */
4780 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
4781 
4782 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4783 }
4784 
4785 static void
4786 e1000g_set_external_loopback_10(struct e1000g *Adapter)
4787 {
4788 	struct e1000_hw *hw;
4789 	uint32_t ctrl;
4790 	uint16_t phy_ctrl;
4791 
4792 	hw = &Adapter->shared;
4793 
4794 	/* Disable Smart Power Down */
4795 	phy_spd_state(hw, B_FALSE);
4796 
4797 	phy_ctrl = (MII_CR_FULL_DUPLEX |
4798 	    MII_CR_SPEED_10);
4799 
4800 	/* Force 10/FD, reset PHY */
4801 	e1000_write_phy_reg(hw, PHY_CONTROL,
4802 	    phy_ctrl | MII_CR_RESET);	/* 0x8100 */
4803 	msec_delay(10);
4804 
4805 	/* Force 10/FD */
4806 	e1000_write_phy_reg(hw, PHY_CONTROL,
4807 	    phy_ctrl);			/* 0x0100 */
4808 	msec_delay(10);
4809 
4810 	/* Now setup the MAC to the same speed/duplex as the PHY. */
4811 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4812 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
4813 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
4814 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
4815 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
4816 	    E1000_CTRL_SPD_10 |		/* Force Speed to 10 */
4817 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
4818 
4819 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4820 }
4821 
4822 #ifdef __sparc
4823 static boolean_t
4824 e1000g_find_mac_address(struct e1000g *Adapter)
4825 {
4826 	struct e1000_hw *hw = &Adapter->shared;
4827 	uchar_t *bytes;
4828 	struct ether_addr sysaddr;
4829 	uint_t nelts;
4830 	int err;
4831 	boolean_t found = B_FALSE;
4832 
4833 	/*
4834 	 * The "vendor's factory-set address" may already have
4835 	 * been extracted from the chip, but if the property
4836 	 * "local-mac-address" is set we use that instead.
4837 	 *
4838 	 * We check whether it looks like an array of 6
4839 	 * bytes (which it should, if OBP set it).  If we can't
4840 	 * make sense of it this way, we'll ignore it.
4841 	 */
4842 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
4843 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
4844 	if (err == DDI_PROP_SUCCESS) {
4845 		if (nelts == ETHERADDRL) {
4846 			while (nelts--)
4847 				hw->mac.addr[nelts] = bytes[nelts];
4848 			found = B_TRUE;
4849 		}
4850 		ddi_prop_free(bytes);
4851 	}
4852 
4853 	/*
4854 	 * Look up the OBP property "local-mac-address?". If the user has set
4855 	 * 'local-mac-address? = false', use "the system address" instead.
4856 	 */
4857 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip, 0,
4858 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
4859 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
4860 			if (localetheraddr(NULL, &sysaddr) != 0) {
4861 				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
4862 				found = B_TRUE;
4863 			}
4864 		}
4865 		ddi_prop_free(bytes);
4866 	}
4867 
4868 	/*
4869 	 * Finally(!), if there's a valid "mac-address" property (created
4870 	 * if we netbooted from this interface), we must use this instead
4871 	 * of any of the above to ensure that the NFS/install server doesn't
4872 	 * get confused by the address changing as Solaris takes over!
4873 	 */
4874 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
4875 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
4876 	if (err == DDI_PROP_SUCCESS) {
4877 		if (nelts == ETHERADDRL) {
4878 			while (nelts--)
4879 				hw->mac.addr[nelts] = bytes[nelts];
4880 			found = B_TRUE;
4881 		}
4882 		ddi_prop_free(bytes);
4883 	}
4884 
4885 	if (found) {
4886 		bcopy(hw->mac.addr, hw->mac.perm_addr,
4887 		    ETHERADDRL);
4888 	}
4889 
4890 	return (found);
4891 }
4892 #endif
4893 
4894 static int
4895 e1000g_add_intrs(struct e1000g *Adapter)
4896 {
4897 	dev_info_t *devinfo;
4898 	int intr_types;
4899 	int rc;
4900 
4901 	devinfo = Adapter->dip;
4902 
4903 	/* Get supported interrupt types */
4904 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
4905 
4906 	if (rc != DDI_SUCCESS) {
4907 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4908 		    "Get supported interrupt types failed: %d\n", rc);
4909 		return (DDI_FAILURE);
4910 	}
4911 
4912 	/*
4913 	 * Based on Intel Technical Advisory document (TA-160), there are some
4914 	 * cases where some older Intel PCI-X NICs may "advertise" to the OS
4915 	 * that it supports MSI, but in fact has problems.
4916 	 * So we should only enable MSI for PCI-E NICs and disable MSI for old
4917 	 * PCI/PCI-X NICs.
4918 	 */
4919 	if (Adapter->shared.mac.type < e1000_82571)
4920 		Adapter->msi_enabled = B_FALSE;
4921 
4922 	if ((intr_types & DDI_INTR_TYPE_MSI) && Adapter->msi_enabled) {
4923 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_MSI);
4924 
4925 		if (rc != DDI_SUCCESS) {
4926 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
4927 			    "Add MSI failed, trying Legacy interrupts\n");
4928 		} else {
4929 			Adapter->intr_type = DDI_INTR_TYPE_MSI;
4930 		}
4931 	}
4932 
4933 	if ((Adapter->intr_type == 0) &&
4934 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
4935 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_FIXED);
4936 
4937 		if (rc != DDI_SUCCESS) {
4938 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
4939 			    "Add Legacy interrupts failed\n");
4940 			return (DDI_FAILURE);
4941 		}
4942 
4943 		Adapter->intr_type = DDI_INTR_TYPE_FIXED;
4944 	}
4945 
4946 	if (Adapter->intr_type == 0) {
4947 		E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
4948 		    "No interrupts registered\n");
4949 		return (DDI_FAILURE);
4950 	}
4951 
4952 	return (DDI_SUCCESS);
4953 }
4954 
4955 /*
4956  * e1000g_intr_add() handles MSI/Legacy interrupts
4957  */
4958 static int
4959 e1000g_intr_add(struct e1000g *Adapter, int intr_type)
4960 {
4961 	dev_info_t *devinfo;
4962 	int count, avail, actual;
4963 	int x, y, rc, inum = 0;
4964 	int flag;
4965 	ddi_intr_handler_t *intr_handler;
4966 
4967 	devinfo = Adapter->dip;
4968 
4969 	/* get number of interrupts */
4970 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
4971 	if ((rc != DDI_SUCCESS) || (count == 0)) {
4972 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
4973 		    "Get interrupt number failed. Return: %d, count: %d\n",
4974 		    rc, count);
4975 		return (DDI_FAILURE);
4976 	}
4977 
4978 	/* get number of available interrupts */
4979 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
4980 	if ((rc != DDI_SUCCESS) || (avail == 0)) {
4981 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
4982 		    "Get interrupt available number failed. "
4983 		    "Return: %d, available: %d\n", rc, avail);
4984 		return (DDI_FAILURE);
4985 	}
4986 
4987 	if (avail < count) {
4988 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
4989 		    "Interrupts count: %d, available: %d\n",
4990 		    count, avail);
4991 	}
4992 
4993 	/* Allocate an array of interrupt handles */
4994 	Adapter->intr_size = count * sizeof (ddi_intr_handle_t);
4995 	Adapter->htable = kmem_alloc(Adapter->intr_size, KM_SLEEP);
4996 
4997 	/* Set NORMAL behavior for both MSI and FIXED interrupt */
4998 	flag = DDI_INTR_ALLOC_NORMAL;
4999 
5000 	/* call ddi_intr_alloc() */
5001 	rc = ddi_intr_alloc(devinfo, Adapter->htable, intr_type, inum,
5002 	    count, &actual, flag);
5003 
5004 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
5005 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5006 		    "Allocate interrupts failed: %d\n", rc);
5007 
5008 		kmem_free(Adapter->htable, Adapter->intr_size);
5009 		return (DDI_FAILURE);
5010 	}
5011 
5012 	if (actual < count) {
5013 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5014 		    "Interrupts requested: %d, received: %d\n",
5015 		    count, actual);
5016 	}
5017 
5018 	Adapter->intr_cnt = actual;
5019 
5020 	/* Get priority for first msi, assume remaining are all the same */
5021 	rc = ddi_intr_get_pri(Adapter->htable[0], &Adapter->intr_pri);
5022 
5023 	if (rc != DDI_SUCCESS) {
5024 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5025 		    "Get interrupt priority failed: %d\n", rc);
5026 
5027 		/* Free already allocated intr */
5028 		for (y = 0; y < actual; y++)
5029 			(void) ddi_intr_free(Adapter->htable[y]);
5030 
5031 		kmem_free(Adapter->htable, Adapter->intr_size);
5032 		return (DDI_FAILURE);
5033 	}
5034 
5035 	/*
5036 	 * In Legacy Interrupt mode, for PCI-Express adapters, we should
5037 	 * use the interrupt service routine e1000g_intr_pciexpress()
5038 	 * to avoid interrupt stealing when sharing interrupt with other
5039 	 * devices.
5040 	 */
5041 	if (Adapter->shared.mac.type < e1000_82571)
5042 		intr_handler = (ddi_intr_handler_t *)e1000g_intr;
5043 	else
5044 		intr_handler = (ddi_intr_handler_t *)e1000g_intr_pciexpress;
5045 
5046 	/* Call ddi_intr_add_handler() */
5047 	for (x = 0; x < actual; x++) {
5048 		rc = ddi_intr_add_handler(Adapter->htable[x],
5049 		    intr_handler, (caddr_t)Adapter, NULL);
5050 
5051 		if (rc != DDI_SUCCESS) {
5052 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5053 			    "Add interrupt handler failed: %d\n", rc);
5054 
5055 			/* Remove already added handler */
5056 			for (y = 0; y < x; y++)
5057 				(void) ddi_intr_remove_handler(
5058 				    Adapter->htable[y]);
5059 
5060 			/* Free already allocated intr */
5061 			for (y = 0; y < actual; y++)
5062 				(void) ddi_intr_free(Adapter->htable[y]);
5063 
5064 			kmem_free(Adapter->htable, Adapter->intr_size);
5065 			return (DDI_FAILURE);
5066 		}
5067 	}
5068 
5069 	rc = ddi_intr_get_cap(Adapter->htable[0], &Adapter->intr_cap);
5070 
5071 	if (rc != DDI_SUCCESS) {
5072 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5073 		    "Get interrupt cap failed: %d\n", rc);
5074 
5075 		/* Free already allocated intr */
5076 		for (y = 0; y < actual; y++) {
5077 			(void) ddi_intr_remove_handler(Adapter->htable[y]);
5078 			(void) ddi_intr_free(Adapter->htable[y]);
5079 		}
5080 
5081 		kmem_free(Adapter->htable, Adapter->intr_size);
5082 		return (DDI_FAILURE);
5083 	}
5084 
5085 	return (DDI_SUCCESS);
5086 }
5087 
5088 static int
5089 e1000g_rem_intrs(struct e1000g *Adapter)
5090 {
5091 	int x;
5092 	int rc;
5093 
5094 	for (x = 0; x < Adapter->intr_cnt; x++) {
5095 		rc = ddi_intr_remove_handler(Adapter->htable[x]);
5096 		if (rc != DDI_SUCCESS) {
5097 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5098 			    "Remove intr handler failed: %d\n", rc);
5099 			return (DDI_FAILURE);
5100 		}
5101 
5102 		rc = ddi_intr_free(Adapter->htable[x]);
5103 		if (rc != DDI_SUCCESS) {
5104 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5105 			    "Free intr failed: %d\n", rc);
5106 			return (DDI_FAILURE);
5107 		}
5108 	}
5109 
5110 	kmem_free(Adapter->htable, Adapter->intr_size);
5111 
5112 	return (DDI_SUCCESS);
5113 }
5114 
5115 static int
5116 e1000g_enable_intrs(struct e1000g *Adapter)
5117 {
5118 	int x;
5119 	int rc;
5120 
5121 	/* Enable interrupts */
5122 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
5123 		/* Call ddi_intr_block_enable() for MSI */
5124 		rc = ddi_intr_block_enable(Adapter->htable,
5125 		    Adapter->intr_cnt);
5126 		if (rc != DDI_SUCCESS) {
5127 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5128 			    "Enable block intr failed: %d\n", rc);
5129 			return (DDI_FAILURE);
5130 		}
5131 	} else {
5132 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
5133 		for (x = 0; x < Adapter->intr_cnt; x++) {
5134 			rc = ddi_intr_enable(Adapter->htable[x]);
5135 			if (rc != DDI_SUCCESS) {
5136 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5137 				    "Enable intr failed: %d\n", rc);
5138 				return (DDI_FAILURE);
5139 			}
5140 		}
5141 	}
5142 
5143 	return (DDI_SUCCESS);
5144 }
5145 
5146 static int
5147 e1000g_disable_intrs(struct e1000g *Adapter)
5148 {
5149 	int x;
5150 	int rc;
5151 
5152 	/* Disable all interrupts */
5153 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
5154 		rc = ddi_intr_block_disable(Adapter->htable,
5155 		    Adapter->intr_cnt);
5156 		if (rc != DDI_SUCCESS) {
5157 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5158 			    "Disable block intr failed: %d\n", rc);
5159 			return (DDI_FAILURE);
5160 		}
5161 	} else {
5162 		for (x = 0; x < Adapter->intr_cnt; x++) {
5163 			rc = ddi_intr_disable(Adapter->htable[x]);
5164 			if (rc != DDI_SUCCESS) {
5165 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5166 				    "Disable intr failed: %d\n", rc);
5167 				return (DDI_FAILURE);
5168 			}
5169 		}
5170 	}
5171 
5172 	return (DDI_SUCCESS);
5173 }
5174 
5175 /*
5176  * e1000g_get_phy_state - get the state of PHY registers, save in the adapter
5177  */
5178 static void
5179 e1000g_get_phy_state(struct e1000g *Adapter)
5180 {
5181 	struct e1000_hw *hw = &Adapter->shared;
5182 
5183 	e1000_read_phy_reg(hw, PHY_CONTROL, &Adapter->phy_ctrl);
5184 	e1000_read_phy_reg(hw, PHY_STATUS, &Adapter->phy_status);
5185 	e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &Adapter->phy_an_adv);
5186 	e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &Adapter->phy_an_exp);
5187 	e1000_read_phy_reg(hw, PHY_EXT_STATUS, &Adapter->phy_ext_status);
5188 	e1000_read_phy_reg(hw, PHY_1000T_CTRL, &Adapter->phy_1000t_ctrl);
5189 	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &Adapter->phy_1000t_status);
5190 	e1000_read_phy_reg(hw, PHY_LP_ABILITY, &Adapter->phy_lp_able);
5191 
5192 	Adapter->param_autoneg_cap =
5193 	    (Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
5194 	Adapter->param_pause_cap =
5195 	    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5196 	Adapter->param_asym_pause_cap =
5197 	    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5198 	Adapter->param_1000fdx_cap =
5199 	    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5200 	    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
5201 	Adapter->param_1000hdx_cap =
5202 	    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
5203 	    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
5204 	Adapter->param_100t4_cap =
5205 	    (Adapter->phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
5206 	Adapter->param_100fdx_cap =
5207 	    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5208 	    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
5209 	Adapter->param_100hdx_cap =
5210 	    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
5211 	    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
5212 	Adapter->param_10fdx_cap =
5213 	    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
5214 	Adapter->param_10hdx_cap =
5215 	    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
5216 
5217 	Adapter->param_adv_autoneg = hw->mac.autoneg;
5218 	Adapter->param_adv_pause =
5219 	    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5220 	Adapter->param_adv_asym_pause =
5221 	    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5222 	Adapter->param_adv_1000hdx =
5223 	    (Adapter->phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
5224 	Adapter->param_adv_100t4 =
5225 	    (Adapter->phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
5226 	if (Adapter->param_adv_autoneg == 1) {
5227 		Adapter->param_adv_1000fdx =
5228 		    (Adapter->phy_1000t_ctrl & CR_1000T_FD_CAPS) ? 1 : 0;
5229 		Adapter->param_adv_100fdx =
5230 		    (Adapter->phy_an_adv & NWAY_AR_100TX_FD_CAPS) ? 1 : 0;
5231 		Adapter->param_adv_100hdx =
5232 		    (Adapter->phy_an_adv & NWAY_AR_100TX_HD_CAPS) ? 1 : 0;
5233 		Adapter->param_adv_10fdx =
5234 		    (Adapter->phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
5235 		Adapter->param_adv_10hdx =
5236 		    (Adapter->phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
5237 	}
5238 
5239 	Adapter->param_lp_autoneg =
5240 	    (Adapter->phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
5241 	Adapter->param_lp_pause =
5242 	    (Adapter->phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
5243 	Adapter->param_lp_asym_pause =
5244 	    (Adapter->phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
5245 	Adapter->param_lp_1000fdx =
5246 	    (Adapter->phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
5247 	Adapter->param_lp_1000hdx =
5248 	    (Adapter->phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
5249 	Adapter->param_lp_100t4 =
5250 	    (Adapter->phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
5251 	Adapter->param_lp_100fdx =
5252 	    (Adapter->phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
5253 	Adapter->param_lp_100hdx =
5254 	    (Adapter->phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
5255 	Adapter->param_lp_10fdx =
5256 	    (Adapter->phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
5257 	Adapter->param_lp_10hdx =
5258 	    (Adapter->phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
5259 }
5260 
5261 /*
5262  * FMA support
5263  */
5264 
5265 int
5266 e1000g_check_acc_handle(ddi_acc_handle_t handle)
5267 {
5268 	ddi_fm_error_t de;
5269 
5270 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
5271 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
5272 	return (de.fme_status);
5273 }
5274 
5275 int
5276 e1000g_check_dma_handle(ddi_dma_handle_t handle)
5277 {
5278 	ddi_fm_error_t de;
5279 
5280 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
5281 	return (de.fme_status);
5282 }
5283 
5284 /*
5285  * The IO fault service error handling callback function
5286  */
5287 static int
5288 e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
5289 {
5290 	/*
5291 	 * as the driver can always deal with an error in any dma or
5292 	 * access handle, we can just return the fme_status value.
5293 	 */
5294 	pci_ereport_post(dip, err, NULL);
5295 	return (err->fme_status);
5296 }
5297 
5298 static void
5299 e1000g_fm_init(struct e1000g *Adapter)
5300 {
5301 	ddi_iblock_cookie_t iblk;
5302 	int fma_acc_flag, fma_dma_flag;
5303 
5304 	/* Only register with IO Fault Services if we have some capability */
5305 	if (Adapter->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
5306 		e1000g_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
5307 		fma_acc_flag = 1;
5308 	} else {
5309 		e1000g_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
5310 		fma_acc_flag = 0;
5311 	}
5312 
5313 	if (Adapter->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
5314 		fma_dma_flag = 1;
5315 	} else {
5316 		fma_dma_flag = 0;
5317 	}
5318 
5319 	(void) e1000g_set_fma_flags(Adapter, fma_acc_flag, fma_dma_flag);
5320 
5321 	if (Adapter->fm_capabilities) {
5322 
5323 		/* Register capabilities with IO Fault Services */
5324 		ddi_fm_init(Adapter->dip, &Adapter->fm_capabilities, &iblk);
5325 
5326 		/*
5327 		 * Initialize pci ereport capabilities if ereport capable
5328 		 */
5329 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
5330 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5331 			pci_ereport_setup(Adapter->dip);
5332 
5333 		/*
5334 		 * Register error callback if error callback capable
5335 		 */
5336 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5337 			ddi_fm_handler_register(Adapter->dip,
5338 			    e1000g_fm_error_cb, (void*) Adapter);
5339 	}
5340 }
5341 
5342 static void
5343 e1000g_fm_fini(struct e1000g *Adapter)
5344 {
5345 	/* Only unregister FMA capabilities if we registered some */
5346 	if (Adapter->fm_capabilities) {
5347 
5348 		/*
5349 		 * Release any resources allocated by pci_ereport_setup()
5350 		 */
5351 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
5352 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5353 			pci_ereport_teardown(Adapter->dip);
5354 
5355 		/*
5356 		 * Un-register error callback if error callback capable
5357 		 */
5358 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5359 			ddi_fm_handler_unregister(Adapter->dip);
5360 
5361 		/* Unregister from IO Fault Services */
5362 		ddi_fm_fini(Adapter->dip);
5363 	}
5364 }
5365 
5366 void
5367 e1000g_fm_ereport(struct e1000g *Adapter, char *detail)
5368 {
5369 	uint64_t ena;
5370 	char buf[FM_MAX_CLASS];
5371 
5372 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
5373 	ena = fm_ena_generate(0, FM_ENA_FMT1);
5374 	if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities)) {
5375 		ddi_fm_ereport_post(Adapter->dip, buf, ena, DDI_NOSLEEP,
5376 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
5377 	}
5378 }
5379 
5380 static int
5381 e1000g_get_def_val(struct e1000g *Adapter, mac_prop_id_t pr_num,
5382     uint_t pr_valsize, void *pr_val)
5383 {
5384 	link_flowctrl_t fl;
5385 	uint32_t fc;
5386 	int err = 0;
5387 
5388 	ASSERT(pr_valsize > 0);
5389 	switch (pr_num) {
5390 	case MAC_PROP_AUTONEG:
5391 		*(uint8_t *)pr_val =
5392 		    ((Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0);
5393 		break;
5394 	case MAC_PROP_FLOWCTRL:
5395 		if (pr_valsize < sizeof (link_flowctrl_t))
5396 			return (EINVAL);
5397 		fl = LINK_FLOWCTRL_BI;
5398 		bcopy(&fl, pr_val, sizeof (fl));
5399 		break;
5400 	case MAC_PROP_ADV_1000FDX_CAP:
5401 	case MAC_PROP_EN_1000FDX_CAP:
5402 		*(uint8_t *)pr_val =
5403 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5404 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
5405 		break;
5406 	case MAC_PROP_ADV_1000HDX_CAP:
5407 	case MAC_PROP_EN_1000HDX_CAP:
5408 		*(uint8_t *)pr_val =
5409 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
5410 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
5411 		break;
5412 	case MAC_PROP_ADV_100FDX_CAP:
5413 	case MAC_PROP_EN_100FDX_CAP:
5414 		*(uint8_t *)pr_val =
5415 		    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5416 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
5417 	case MAC_PROP_ADV_100HDX_CAP:
5418 	case MAC_PROP_EN_100HDX_CAP:
5419 		*(uint8_t *)pr_val =
5420 		    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
5421 		    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
5422 		break;
5423 	case MAC_PROP_ADV_10FDX_CAP:
5424 	case MAC_PROP_EN_10FDX_CAP:
5425 		*(uint8_t *)pr_val =
5426 		    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
5427 		break;
5428 	case MAC_PROP_ADV_10HDX_CAP:
5429 	case MAC_PROP_EN_10HDX_CAP:
5430 		*(uint8_t *)pr_val =
5431 		    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
5432 		break;
5433 	default:
5434 		err = ENOTSUP;
5435 		break;
5436 	}
5437 	return (err);
5438 }
5439 
5440 /*
5441  * synchronize the adv* and en* parameters.
5442  *
5443  * See comments in <sys/dld.h> for details of the *_en_*
5444  * parameters. The usage of ndd for setting adv parameters will
5445  * synchronize all the en parameters with the e1000g parameters,
5446  * implicity disalbing any settings made via dladm.
5447  */
5448 static void
5449 e1000g_param_sync(struct e1000g *Adapter)
5450 {
5451 	Adapter->param_en_1000fdx = Adapter->param_adv_1000fdx;
5452 	Adapter->param_en_1000hdx = Adapter->param_adv_1000hdx;
5453 	Adapter->param_en_100fdx = Adapter->param_adv_100fdx;
5454 	Adapter->param_en_100hdx = Adapter->param_adv_100hdx;
5455 	Adapter->param_en_10fdx = Adapter->param_adv_10fdx;
5456 	Adapter->param_en_10hdx = Adapter->param_adv_10hdx;
5457 }
5458