xref: /titanic_51/usr/src/uts/common/io/e1000g/e1000g_main.c (revision 0d928757379972073af9fb22bdc827b74e8ba6ac)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*
26  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
27  */
28 
29 /*
30  * **********************************************************************
31  *									*
32  * Module Name:								*
33  *   e1000g_main.c							*
34  *									*
35  * Abstract:								*
36  *   This file contains the interface routines for the solaris OS.	*
37  *   It has all DDI entry point routines and GLD entry point routines.	*
38  *									*
39  *   This file also contains routines that take care of initialization	*
40  *   uninit routine and interrupt routine.				*
41  *									*
42  * **********************************************************************
43  */
44 
45 #include <sys/dlpi.h>
46 #include <sys/mac.h>
47 #include "e1000g_sw.h"
48 #include "e1000g_debug.h"
49 
50 static char ident[] = "Intel PRO/1000 Ethernet";
51 /* LINTED E_STATIC_UNUSED */
52 static char e1000g_version[] = "Driver Ver. 5.3.24";
53 
54 /*
55  * Proto types for DDI entry points
56  */
57 static int e1000g_attach(dev_info_t *, ddi_attach_cmd_t);
58 static int e1000g_detach(dev_info_t *, ddi_detach_cmd_t);
59 static int e1000g_quiesce(dev_info_t *);
60 
61 /*
62  * init and intr routines prototype
63  */
64 static int e1000g_resume(dev_info_t *);
65 static int e1000g_suspend(dev_info_t *);
66 static uint_t e1000g_intr_pciexpress(caddr_t);
67 static uint_t e1000g_intr(caddr_t);
68 static void e1000g_intr_work(struct e1000g *, uint32_t);
69 #pragma inline(e1000g_intr_work)
70 static int e1000g_init(struct e1000g *);
71 static int e1000g_start(struct e1000g *, boolean_t);
72 static void e1000g_stop(struct e1000g *, boolean_t);
73 static int e1000g_m_start(void *);
74 static void e1000g_m_stop(void *);
75 static int e1000g_m_promisc(void *, boolean_t);
76 static boolean_t e1000g_m_getcapab(void *, mac_capab_t, void *);
77 static int e1000g_m_multicst(void *, boolean_t, const uint8_t *);
78 static void e1000g_m_ioctl(void *, queue_t *, mblk_t *);
79 static int e1000g_m_setprop(void *, const char *, mac_prop_id_t,
80     uint_t, const void *);
81 static int e1000g_m_getprop(void *, const char *, mac_prop_id_t,
82 			    uint_t, void *);
83 static void e1000g_m_propinfo(void *, const char *, mac_prop_id_t,
84     mac_prop_info_handle_t);
85 static int e1000g_set_priv_prop(struct e1000g *, const char *, uint_t,
86     const void *);
87 static int e1000g_get_priv_prop(struct e1000g *, const char *, uint_t, void *);
88 static void e1000g_init_locks(struct e1000g *);
89 static void e1000g_destroy_locks(struct e1000g *);
90 static int e1000g_identify_hardware(struct e1000g *);
91 static int e1000g_regs_map(struct e1000g *);
92 static int e1000g_set_driver_params(struct e1000g *);
93 static void e1000g_set_bufsize(struct e1000g *);
94 static int e1000g_register_mac(struct e1000g *);
95 static boolean_t e1000g_rx_drain(struct e1000g *);
96 static boolean_t e1000g_tx_drain(struct e1000g *);
97 static void e1000g_init_unicst(struct e1000g *);
98 static int e1000g_unicst_set(struct e1000g *, const uint8_t *, int);
99 static int e1000g_alloc_rx_data(struct e1000g *);
100 static void e1000g_release_multicast(struct e1000g *);
101 static void e1000g_pch_limits(struct e1000g *);
102 static uint32_t e1000g_mtu2maxframe(uint32_t);
103 
104 /*
105  * Local routines
106  */
107 static boolean_t e1000g_reset_adapter(struct e1000g *);
108 static void e1000g_tx_clean(struct e1000g *);
109 static void e1000g_rx_clean(struct e1000g *);
110 static void e1000g_link_timer(void *);
111 static void e1000g_local_timer(void *);
112 static boolean_t e1000g_link_check(struct e1000g *);
113 static boolean_t e1000g_stall_check(struct e1000g *);
114 static void e1000g_smartspeed(struct e1000g *);
115 static void e1000g_get_conf(struct e1000g *);
116 static boolean_t e1000g_get_prop(struct e1000g *, char *, int, int, int,
117     int *);
118 static void enable_watchdog_timer(struct e1000g *);
119 static void disable_watchdog_timer(struct e1000g *);
120 static void start_watchdog_timer(struct e1000g *);
121 static void restart_watchdog_timer(struct e1000g *);
122 static void stop_watchdog_timer(struct e1000g *);
123 static void stop_link_timer(struct e1000g *);
124 static void stop_82547_timer(e1000g_tx_ring_t *);
125 static void e1000g_force_speed_duplex(struct e1000g *);
126 static void e1000g_setup_max_mtu(struct e1000g *);
127 static void e1000g_get_max_frame_size(struct e1000g *);
128 static boolean_t is_valid_mac_addr(uint8_t *);
129 static void e1000g_unattach(dev_info_t *, struct e1000g *);
130 static int e1000g_get_bar_info(dev_info_t *, int, bar_info_t *);
131 #ifdef E1000G_DEBUG
132 static void e1000g_ioc_peek_reg(struct e1000g *, e1000g_peekpoke_t *);
133 static void e1000g_ioc_poke_reg(struct e1000g *, e1000g_peekpoke_t *);
134 static void e1000g_ioc_peek_mem(struct e1000g *, e1000g_peekpoke_t *);
135 static void e1000g_ioc_poke_mem(struct e1000g *, e1000g_peekpoke_t *);
136 static enum ioc_reply e1000g_pp_ioctl(struct e1000g *,
137     struct iocblk *, mblk_t *);
138 #endif
139 static enum ioc_reply e1000g_loopback_ioctl(struct e1000g *,
140     struct iocblk *, mblk_t *);
141 static boolean_t e1000g_check_loopback_support(struct e1000_hw *);
142 static boolean_t e1000g_set_loopback_mode(struct e1000g *, uint32_t);
143 static void e1000g_set_internal_loopback(struct e1000g *);
144 static void e1000g_set_external_loopback_1000(struct e1000g *);
145 static void e1000g_set_external_loopback_100(struct e1000g *);
146 static void e1000g_set_external_loopback_10(struct e1000g *);
147 static int e1000g_add_intrs(struct e1000g *);
148 static int e1000g_intr_add(struct e1000g *, int);
149 static int e1000g_rem_intrs(struct e1000g *);
150 static int e1000g_enable_intrs(struct e1000g *);
151 static int e1000g_disable_intrs(struct e1000g *);
152 static boolean_t e1000g_link_up(struct e1000g *);
153 #ifdef __sparc
154 static boolean_t e1000g_find_mac_address(struct e1000g *);
155 #endif
156 static void e1000g_get_phy_state(struct e1000g *);
157 static int e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err,
158     const void *impl_data);
159 static void e1000g_fm_init(struct e1000g *Adapter);
160 static void e1000g_fm_fini(struct e1000g *Adapter);
161 static void e1000g_param_sync(struct e1000g *);
162 static void e1000g_get_driver_control(struct e1000_hw *);
163 static void e1000g_release_driver_control(struct e1000_hw *);
164 static void e1000g_restore_promisc(struct e1000g *Adapter);
165 
166 char *e1000g_priv_props[] = {
167 	"_tx_bcopy_threshold",
168 	"_tx_interrupt_enable",
169 	"_tx_intr_delay",
170 	"_tx_intr_abs_delay",
171 	"_rx_bcopy_threshold",
172 	"_max_num_rcv_packets",
173 	"_rx_intr_delay",
174 	"_rx_intr_abs_delay",
175 	"_intr_throttling_rate",
176 	"_intr_adaptive",
177 	"_adv_pause_cap",
178 	"_adv_asym_pause_cap",
179 	NULL
180 };
181 
182 static struct cb_ops cb_ws_ops = {
183 	nulldev,		/* cb_open */
184 	nulldev,		/* cb_close */
185 	nodev,			/* cb_strategy */
186 	nodev,			/* cb_print */
187 	nodev,			/* cb_dump */
188 	nodev,			/* cb_read */
189 	nodev,			/* cb_write */
190 	nodev,			/* cb_ioctl */
191 	nodev,			/* cb_devmap */
192 	nodev,			/* cb_mmap */
193 	nodev,			/* cb_segmap */
194 	nochpoll,		/* cb_chpoll */
195 	ddi_prop_op,		/* cb_prop_op */
196 	NULL,			/* cb_stream */
197 	D_MP | D_HOTPLUG,	/* cb_flag */
198 	CB_REV,			/* cb_rev */
199 	nodev,			/* cb_aread */
200 	nodev			/* cb_awrite */
201 };
202 
203 static struct dev_ops ws_ops = {
204 	DEVO_REV,		/* devo_rev */
205 	0,			/* devo_refcnt */
206 	NULL,			/* devo_getinfo */
207 	nulldev,		/* devo_identify */
208 	nulldev,		/* devo_probe */
209 	e1000g_attach,		/* devo_attach */
210 	e1000g_detach,		/* devo_detach */
211 	nodev,			/* devo_reset */
212 	&cb_ws_ops,		/* devo_cb_ops */
213 	NULL,			/* devo_bus_ops */
214 	ddi_power,		/* devo_power */
215 	e1000g_quiesce		/* devo_quiesce */
216 };
217 
218 static struct modldrv modldrv = {
219 	&mod_driverops,		/* Type of module.  This one is a driver */
220 	ident,			/* Discription string */
221 	&ws_ops,		/* driver ops */
222 };
223 
224 static struct modlinkage modlinkage = {
225 	MODREV_1, &modldrv, NULL
226 };
227 
228 /* Access attributes for register mapping */
229 static ddi_device_acc_attr_t e1000g_regs_acc_attr = {
230 	DDI_DEVICE_ATTR_V1,
231 	DDI_STRUCTURE_LE_ACC,
232 	DDI_STRICTORDER_ACC,
233 	DDI_FLAGERR_ACC
234 };
235 
236 #define	E1000G_M_CALLBACK_FLAGS \
237 	(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP | MC_PROPINFO)
238 
239 static mac_callbacks_t e1000g_m_callbacks = {
240 	E1000G_M_CALLBACK_FLAGS,
241 	e1000g_m_stat,
242 	e1000g_m_start,
243 	e1000g_m_stop,
244 	e1000g_m_promisc,
245 	e1000g_m_multicst,
246 	NULL,
247 	e1000g_m_tx,
248 	NULL,
249 	e1000g_m_ioctl,
250 	e1000g_m_getcapab,
251 	NULL,
252 	NULL,
253 	e1000g_m_setprop,
254 	e1000g_m_getprop,
255 	e1000g_m_propinfo
256 };
257 
258 /*
259  * Global variables
260  */
261 uint32_t e1000g_jumbo_mtu = MAXIMUM_MTU_9K;
262 uint32_t e1000g_mblks_pending = 0;
263 /*
264  * Workaround for Dynamic Reconfiguration support, for x86 platform only.
265  * Here we maintain a private dev_info list if e1000g_force_detach is
266  * enabled. If we force the driver to detach while there are still some
267  * rx buffers retained in the upper layer, we have to keep a copy of the
268  * dev_info. In some cases (Dynamic Reconfiguration), the dev_info data
269  * structure will be freed after the driver is detached. However when we
270  * finally free those rx buffers released by the upper layer, we need to
271  * refer to the dev_info to free the dma buffers. So we save a copy of
272  * the dev_info for this purpose. On x86 platform, we assume this copy
273  * of dev_info is always valid, but on SPARC platform, it could be invalid
274  * after the system board level DR operation. For this reason, the global
275  * variable e1000g_force_detach must be B_FALSE on SPARC platform.
276  */
277 #ifdef __sparc
278 boolean_t e1000g_force_detach = B_FALSE;
279 #else
280 boolean_t e1000g_force_detach = B_TRUE;
281 #endif
282 private_devi_list_t *e1000g_private_devi_list = NULL;
283 
284 /*
285  * The mutex e1000g_rx_detach_lock is defined to protect the processing of
286  * the private dev_info list, and to serialize the processing of rx buffer
287  * freeing and rx buffer recycling.
288  */
289 kmutex_t e1000g_rx_detach_lock;
290 /*
291  * The rwlock e1000g_dma_type_lock is defined to protect the global flag
292  * e1000g_dma_type. For SPARC, the initial value of the flag is "USE_DVMA".
293  * If there are many e1000g instances, the system may run out of DVMA
294  * resources during the initialization of the instances, then the flag will
295  * be changed to "USE_DMA". Because different e1000g instances are initialized
296  * in parallel, we need to use this lock to protect the flag.
297  */
298 krwlock_t e1000g_dma_type_lock;
299 
300 /*
301  * The 82546 chipset is a dual-port device, both the ports share one eeprom.
302  * Based on the information from Intel, the 82546 chipset has some hardware
303  * problem. When one port is being reset and the other port is trying to
304  * access the eeprom, it could cause system hang or panic. To workaround this
305  * hardware problem, we use a global mutex to prevent such operations from
306  * happening simultaneously on different instances. This workaround is applied
307  * to all the devices supported by this driver.
308  */
309 kmutex_t e1000g_nvm_lock;
310 
311 /*
312  * Loadable module configuration entry points for the driver
313  */
314 
315 /*
316  * _init - module initialization
317  */
318 int
319 _init(void)
320 {
321 	int status;
322 
323 	mac_init_ops(&ws_ops, WSNAME);
324 	status = mod_install(&modlinkage);
325 	if (status != DDI_SUCCESS)
326 		mac_fini_ops(&ws_ops);
327 	else {
328 		mutex_init(&e1000g_rx_detach_lock, NULL, MUTEX_DRIVER, NULL);
329 		rw_init(&e1000g_dma_type_lock, NULL, RW_DRIVER, NULL);
330 		mutex_init(&e1000g_nvm_lock, NULL, MUTEX_DRIVER, NULL);
331 	}
332 
333 	return (status);
334 }
335 
336 /*
337  * _fini - module finalization
338  */
339 int
340 _fini(void)
341 {
342 	int status;
343 
344 	if (e1000g_mblks_pending != 0)
345 		return (EBUSY);
346 
347 	status = mod_remove(&modlinkage);
348 	if (status == DDI_SUCCESS) {
349 		mac_fini_ops(&ws_ops);
350 
351 		if (e1000g_force_detach) {
352 			private_devi_list_t *devi_node;
353 
354 			mutex_enter(&e1000g_rx_detach_lock);
355 			while (e1000g_private_devi_list != NULL) {
356 				devi_node = e1000g_private_devi_list;
357 				e1000g_private_devi_list =
358 				    e1000g_private_devi_list->next;
359 
360 				kmem_free(devi_node->priv_dip,
361 				    sizeof (struct dev_info));
362 				kmem_free(devi_node,
363 				    sizeof (private_devi_list_t));
364 			}
365 			mutex_exit(&e1000g_rx_detach_lock);
366 		}
367 
368 		mutex_destroy(&e1000g_rx_detach_lock);
369 		rw_destroy(&e1000g_dma_type_lock);
370 		mutex_destroy(&e1000g_nvm_lock);
371 	}
372 
373 	return (status);
374 }
375 
376 /*
377  * _info - module information
378  */
379 int
380 _info(struct modinfo *modinfop)
381 {
382 	return (mod_info(&modlinkage, modinfop));
383 }
384 
385 /*
386  * e1000g_attach - driver attach
387  *
388  * This function is the device-specific initialization entry
389  * point. This entry point is required and must be written.
390  * The DDI_ATTACH command must be provided in the attach entry
391  * point. When attach() is called with cmd set to DDI_ATTACH,
392  * all normal kernel services (such as kmem_alloc(9F)) are
393  * available for use by the driver.
394  *
395  * The attach() function will be called once for each instance
396  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
397  * Until attach() succeeds, the only driver entry points which
398  * may be called are open(9E) and getinfo(9E).
399  */
400 static int
401 e1000g_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
402 {
403 	struct e1000g *Adapter;
404 	struct e1000_hw *hw;
405 	struct e1000g_osdep *osdep;
406 	int instance;
407 
408 	switch (cmd) {
409 	default:
410 		e1000g_log(NULL, CE_WARN,
411 		    "Unsupported command send to e1000g_attach... ");
412 		return (DDI_FAILURE);
413 
414 	case DDI_RESUME:
415 		return (e1000g_resume(devinfo));
416 
417 	case DDI_ATTACH:
418 		break;
419 	}
420 
421 	/*
422 	 * get device instance number
423 	 */
424 	instance = ddi_get_instance(devinfo);
425 
426 	/*
427 	 * Allocate soft data structure
428 	 */
429 	Adapter =
430 	    (struct e1000g *)kmem_zalloc(sizeof (*Adapter), KM_SLEEP);
431 
432 	Adapter->dip = devinfo;
433 	Adapter->instance = instance;
434 	Adapter->tx_ring->adapter = Adapter;
435 	Adapter->rx_ring->adapter = Adapter;
436 
437 	hw = &Adapter->shared;
438 	osdep = &Adapter->osdep;
439 	hw->back = osdep;
440 	osdep->adapter = Adapter;
441 
442 	ddi_set_driver_private(devinfo, (caddr_t)Adapter);
443 
444 	/*
445 	 * Initialize for fma support
446 	 */
447 	(void) e1000g_get_prop(Adapter, "fm-capable",
448 	    0, 0x0f,
449 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
450 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE,
451 	    &Adapter->fm_capabilities);
452 	e1000g_fm_init(Adapter);
453 	Adapter->attach_progress |= ATTACH_PROGRESS_FMINIT;
454 
455 	/*
456 	 * PCI Configure
457 	 */
458 	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
459 		e1000g_log(Adapter, CE_WARN, "PCI configuration failed");
460 		goto attach_fail;
461 	}
462 	Adapter->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
463 
464 	/*
465 	 * Setup hardware
466 	 */
467 	if (e1000g_identify_hardware(Adapter) != DDI_SUCCESS) {
468 		e1000g_log(Adapter, CE_WARN, "Identify hardware failed");
469 		goto attach_fail;
470 	}
471 
472 	/*
473 	 * Map in the device registers.
474 	 */
475 	if (e1000g_regs_map(Adapter) != DDI_SUCCESS) {
476 		e1000g_log(Adapter, CE_WARN, "Mapping registers failed");
477 		goto attach_fail;
478 	}
479 	Adapter->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
480 
481 	/*
482 	 * Initialize driver parameters
483 	 */
484 	if (e1000g_set_driver_params(Adapter) != DDI_SUCCESS) {
485 		goto attach_fail;
486 	}
487 	Adapter->attach_progress |= ATTACH_PROGRESS_SETUP;
488 
489 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
490 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
491 		goto attach_fail;
492 	}
493 
494 	/*
495 	 * Initialize interrupts
496 	 */
497 	if (e1000g_add_intrs(Adapter) != DDI_SUCCESS) {
498 		e1000g_log(Adapter, CE_WARN, "Add interrupts failed");
499 		goto attach_fail;
500 	}
501 	Adapter->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
502 
503 	/*
504 	 * Initialize mutex's for this device.
505 	 * Do this before enabling the interrupt handler and
506 	 * register the softint to avoid the condition where
507 	 * interrupt handler can try using uninitialized mutex
508 	 */
509 	e1000g_init_locks(Adapter);
510 	Adapter->attach_progress |= ATTACH_PROGRESS_LOCKS;
511 
512 	/*
513 	 * Initialize Driver Counters
514 	 */
515 	if (e1000g_init_stats(Adapter) != DDI_SUCCESS) {
516 		e1000g_log(Adapter, CE_WARN, "Init stats failed");
517 		goto attach_fail;
518 	}
519 	Adapter->attach_progress |= ATTACH_PROGRESS_KSTATS;
520 
521 	/*
522 	 * Initialize chip hardware and software structures
523 	 */
524 	rw_enter(&Adapter->chip_lock, RW_WRITER);
525 	if (e1000g_init(Adapter) != DDI_SUCCESS) {
526 		rw_exit(&Adapter->chip_lock);
527 		e1000g_log(Adapter, CE_WARN, "Adapter initialization failed");
528 		goto attach_fail;
529 	}
530 	rw_exit(&Adapter->chip_lock);
531 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
532 
533 	/*
534 	 * Register the driver to the MAC
535 	 */
536 	if (e1000g_register_mac(Adapter) != DDI_SUCCESS) {
537 		e1000g_log(Adapter, CE_WARN, "Register MAC failed");
538 		goto attach_fail;
539 	}
540 	Adapter->attach_progress |= ATTACH_PROGRESS_MAC;
541 
542 	/*
543 	 * Now that mutex locks are initialized, and the chip is also
544 	 * initialized, enable interrupts.
545 	 */
546 	if (e1000g_enable_intrs(Adapter) != DDI_SUCCESS) {
547 		e1000g_log(Adapter, CE_WARN, "Enable DDI interrupts failed");
548 		goto attach_fail;
549 	}
550 	Adapter->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
551 
552 	/*
553 	 * If e1000g_force_detach is enabled, in global private dip list,
554 	 * we will create a new entry, which maintains the priv_dip for DR
555 	 * supports after driver detached.
556 	 */
557 	if (e1000g_force_detach) {
558 		private_devi_list_t *devi_node;
559 
560 		Adapter->priv_dip =
561 		    kmem_zalloc(sizeof (struct dev_info), KM_SLEEP);
562 		bcopy(DEVI(devinfo), DEVI(Adapter->priv_dip),
563 		    sizeof (struct dev_info));
564 
565 		devi_node =
566 		    kmem_zalloc(sizeof (private_devi_list_t), KM_SLEEP);
567 
568 		mutex_enter(&e1000g_rx_detach_lock);
569 		devi_node->priv_dip = Adapter->priv_dip;
570 		devi_node->flag = E1000G_PRIV_DEVI_ATTACH;
571 		devi_node->pending_rx_count = 0;
572 
573 		Adapter->priv_devi_node = devi_node;
574 
575 		if (e1000g_private_devi_list == NULL) {
576 			devi_node->prev = NULL;
577 			devi_node->next = NULL;
578 			e1000g_private_devi_list = devi_node;
579 		} else {
580 			devi_node->prev = NULL;
581 			devi_node->next = e1000g_private_devi_list;
582 			e1000g_private_devi_list->prev = devi_node;
583 			e1000g_private_devi_list = devi_node;
584 		}
585 		mutex_exit(&e1000g_rx_detach_lock);
586 	}
587 
588 	Adapter->e1000g_state = E1000G_INITIALIZED;
589 	return (DDI_SUCCESS);
590 
591 attach_fail:
592 	e1000g_unattach(devinfo, Adapter);
593 	return (DDI_FAILURE);
594 }
595 
596 static int
597 e1000g_register_mac(struct e1000g *Adapter)
598 {
599 	struct e1000_hw *hw = &Adapter->shared;
600 	mac_register_t *mac;
601 	int err;
602 
603 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
604 		return (DDI_FAILURE);
605 
606 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
607 	mac->m_driver = Adapter;
608 	mac->m_dip = Adapter->dip;
609 	mac->m_src_addr = hw->mac.addr;
610 	mac->m_callbacks = &e1000g_m_callbacks;
611 	mac->m_min_sdu = 0;
612 	mac->m_max_sdu = Adapter->default_mtu;
613 	mac->m_margin = VLAN_TAGSZ;
614 	mac->m_priv_props = e1000g_priv_props;
615 	mac->m_v12n = MAC_VIRT_LEVEL1;
616 
617 	err = mac_register(mac, &Adapter->mh);
618 	mac_free(mac);
619 
620 	return (err == 0 ? DDI_SUCCESS : DDI_FAILURE);
621 }
622 
623 static int
624 e1000g_identify_hardware(struct e1000g *Adapter)
625 {
626 	struct e1000_hw *hw = &Adapter->shared;
627 	struct e1000g_osdep *osdep = &Adapter->osdep;
628 
629 	/* Get the device id */
630 	hw->vendor_id =
631 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
632 	hw->device_id =
633 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
634 	hw->revision_id =
635 	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
636 	hw->subsystem_device_id =
637 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
638 	hw->subsystem_vendor_id =
639 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
640 
641 	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
642 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
643 		    "MAC type could not be set properly.");
644 		return (DDI_FAILURE);
645 	}
646 
647 	return (DDI_SUCCESS);
648 }
649 
650 static int
651 e1000g_regs_map(struct e1000g *Adapter)
652 {
653 	dev_info_t *devinfo = Adapter->dip;
654 	struct e1000_hw *hw = &Adapter->shared;
655 	struct e1000g_osdep *osdep = &Adapter->osdep;
656 	off_t mem_size;
657 	bar_info_t bar_info;
658 	int offset, rnumber;
659 
660 	rnumber = ADAPTER_REG_SET;
661 	/* Get size of adapter register memory */
662 	if (ddi_dev_regsize(devinfo, rnumber, &mem_size) !=
663 	    DDI_SUCCESS) {
664 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
665 		    "ddi_dev_regsize for registers failed");
666 		return (DDI_FAILURE);
667 	}
668 
669 	/* Map adapter register memory */
670 	if ((ddi_regs_map_setup(devinfo, rnumber,
671 	    (caddr_t *)&hw->hw_addr, 0, mem_size, &e1000g_regs_acc_attr,
672 	    &osdep->reg_handle)) != DDI_SUCCESS) {
673 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
674 		    "ddi_regs_map_setup for registers failed");
675 		goto regs_map_fail;
676 	}
677 
678 	/* ICH needs to map flash memory */
679 	switch (hw->mac.type) {
680 	case e1000_ich8lan:
681 	case e1000_ich9lan:
682 	case e1000_ich10lan:
683 	case e1000_pchlan:
684 	case e1000_pch2lan:
685 		rnumber = ICH_FLASH_REG_SET;
686 
687 		/* get flash size */
688 		if (ddi_dev_regsize(devinfo, rnumber,
689 		    &mem_size) != DDI_SUCCESS) {
690 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
691 			    "ddi_dev_regsize for ICH flash failed");
692 			goto regs_map_fail;
693 		}
694 
695 		/* map flash in */
696 		if (ddi_regs_map_setup(devinfo, rnumber,
697 		    (caddr_t *)&hw->flash_address, 0,
698 		    mem_size, &e1000g_regs_acc_attr,
699 		    &osdep->ich_flash_handle) != DDI_SUCCESS) {
700 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
701 			    "ddi_regs_map_setup for ICH flash failed");
702 			goto regs_map_fail;
703 		}
704 		break;
705 	default:
706 		break;
707 	}
708 
709 	/* map io space */
710 	switch (hw->mac.type) {
711 	case e1000_82544:
712 	case e1000_82540:
713 	case e1000_82545:
714 	case e1000_82546:
715 	case e1000_82541:
716 	case e1000_82541_rev_2:
717 		/* find the IO bar */
718 		rnumber = -1;
719 		for (offset = PCI_CONF_BASE1;
720 		    offset <= PCI_CONF_BASE5; offset += 4) {
721 			if (e1000g_get_bar_info(devinfo, offset, &bar_info)
722 			    != DDI_SUCCESS)
723 				continue;
724 			if (bar_info.type == E1000G_BAR_IO) {
725 				rnumber = bar_info.rnumber;
726 				break;
727 			}
728 		}
729 
730 		if (rnumber < 0) {
731 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
732 			    "No io space is found");
733 			goto regs_map_fail;
734 		}
735 
736 		/* get io space size */
737 		if (ddi_dev_regsize(devinfo, rnumber,
738 		    &mem_size) != DDI_SUCCESS) {
739 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
740 			    "ddi_dev_regsize for io space failed");
741 			goto regs_map_fail;
742 		}
743 
744 		/* map io space */
745 		if ((ddi_regs_map_setup(devinfo, rnumber,
746 		    (caddr_t *)&hw->io_base, 0, mem_size,
747 		    &e1000g_regs_acc_attr,
748 		    &osdep->io_reg_handle)) != DDI_SUCCESS) {
749 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
750 			    "ddi_regs_map_setup for io space failed");
751 			goto regs_map_fail;
752 		}
753 		break;
754 	default:
755 		hw->io_base = 0;
756 		break;
757 	}
758 
759 	return (DDI_SUCCESS);
760 
761 regs_map_fail:
762 	if (osdep->reg_handle != NULL)
763 		ddi_regs_map_free(&osdep->reg_handle);
764 	if (osdep->ich_flash_handle != NULL)
765 		ddi_regs_map_free(&osdep->ich_flash_handle);
766 	return (DDI_FAILURE);
767 }
768 
769 static int
770 e1000g_set_driver_params(struct e1000g *Adapter)
771 {
772 	struct e1000_hw *hw;
773 
774 	hw = &Adapter->shared;
775 
776 	/* Set MAC type and initialize hardware functions */
777 	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
778 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
779 		    "Could not setup hardware functions");
780 		return (DDI_FAILURE);
781 	}
782 
783 	/* Get bus information */
784 	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
785 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
786 		    "Could not get bus information");
787 		return (DDI_FAILURE);
788 	}
789 
790 	e1000_read_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->bus.pci_cmd_word);
791 
792 	hw->mac.autoneg_failed = B_TRUE;
793 
794 	/* Set the autoneg_wait_to_complete flag to B_FALSE */
795 	hw->phy.autoneg_wait_to_complete = B_FALSE;
796 
797 	/* Adaptive IFS related changes */
798 	hw->mac.adaptive_ifs = B_TRUE;
799 
800 	/* Enable phy init script for IGP phy of 82541/82547 */
801 	if ((hw->mac.type == e1000_82547) ||
802 	    (hw->mac.type == e1000_82541) ||
803 	    (hw->mac.type == e1000_82547_rev_2) ||
804 	    (hw->mac.type == e1000_82541_rev_2))
805 		e1000_init_script_state_82541(hw, B_TRUE);
806 
807 	/* Enable the TTL workaround for 82541/82547 */
808 	e1000_set_ttl_workaround_state_82541(hw, B_TRUE);
809 
810 #ifdef __sparc
811 	Adapter->strip_crc = B_TRUE;
812 #else
813 	Adapter->strip_crc = B_FALSE;
814 #endif
815 
816 	/* setup the maximum MTU size of the chip */
817 	e1000g_setup_max_mtu(Adapter);
818 
819 	/* Get speed/duplex settings in conf file */
820 	hw->mac.forced_speed_duplex = ADVERTISE_100_FULL;
821 	hw->phy.autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
822 	e1000g_force_speed_duplex(Adapter);
823 
824 	/* Get Jumbo Frames settings in conf file */
825 	e1000g_get_max_frame_size(Adapter);
826 
827 	/* Get conf file properties */
828 	e1000g_get_conf(Adapter);
829 
830 	/* enforce PCH limits */
831 	e1000g_pch_limits(Adapter);
832 
833 	/* Set Rx/Tx buffer size */
834 	e1000g_set_bufsize(Adapter);
835 
836 	/* Master Latency Timer */
837 	Adapter->master_latency_timer = DEFAULT_MASTER_LATENCY_TIMER;
838 
839 	/* copper options */
840 	if (hw->phy.media_type == e1000_media_type_copper) {
841 		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
842 		hw->phy.disable_polarity_correction = B_FALSE;
843 		hw->phy.ms_type = e1000_ms_hw_default;	/* E1000_MASTER_SLAVE */
844 	}
845 
846 	/* The initial link state should be "unknown" */
847 	Adapter->link_state = LINK_STATE_UNKNOWN;
848 
849 	/* Initialize rx parameters */
850 	Adapter->rx_intr_delay = DEFAULT_RX_INTR_DELAY;
851 	Adapter->rx_intr_abs_delay = DEFAULT_RX_INTR_ABS_DELAY;
852 
853 	/* Initialize tx parameters */
854 	Adapter->tx_intr_enable = DEFAULT_TX_INTR_ENABLE;
855 	Adapter->tx_bcopy_thresh = DEFAULT_TX_BCOPY_THRESHOLD;
856 	Adapter->tx_intr_delay = DEFAULT_TX_INTR_DELAY;
857 	Adapter->tx_intr_abs_delay = DEFAULT_TX_INTR_ABS_DELAY;
858 
859 	/* Initialize rx parameters */
860 	Adapter->rx_bcopy_thresh = DEFAULT_RX_BCOPY_THRESHOLD;
861 
862 	return (DDI_SUCCESS);
863 }
864 
865 static void
866 e1000g_setup_max_mtu(struct e1000g *Adapter)
867 {
868 	struct e1000_mac_info *mac = &Adapter->shared.mac;
869 	struct e1000_phy_info *phy = &Adapter->shared.phy;
870 
871 	switch (mac->type) {
872 	/* types that do not support jumbo frames */
873 	case e1000_ich8lan:
874 	case e1000_82573:
875 	case e1000_82583:
876 		Adapter->max_mtu = ETHERMTU;
877 		break;
878 	/* ich9 supports jumbo frames except on one phy type */
879 	case e1000_ich9lan:
880 		if (phy->type == e1000_phy_ife)
881 			Adapter->max_mtu = ETHERMTU;
882 		else
883 			Adapter->max_mtu = MAXIMUM_MTU_9K;
884 		break;
885 	/* pch can do jumbo frames up to 4K */
886 	case e1000_pchlan:
887 		Adapter->max_mtu = MAXIMUM_MTU_4K;
888 		break;
889 	/* pch2 can do jumbo frames up to 9K */
890 	case e1000_pch2lan:
891 		Adapter->max_mtu = MAXIMUM_MTU_9K;
892 		break;
893 	/* types with a special limit */
894 	case e1000_82571:
895 	case e1000_82572:
896 	case e1000_82574:
897 	case e1000_80003es2lan:
898 	case e1000_ich10lan:
899 		if (e1000g_jumbo_mtu >= ETHERMTU &&
900 		    e1000g_jumbo_mtu <= MAXIMUM_MTU_9K) {
901 			Adapter->max_mtu = e1000g_jumbo_mtu;
902 		} else {
903 			Adapter->max_mtu = MAXIMUM_MTU_9K;
904 		}
905 		break;
906 	/* default limit is 16K */
907 	default:
908 		Adapter->max_mtu = FRAME_SIZE_UPTO_16K -
909 		    sizeof (struct ether_vlan_header) - ETHERFCSL;
910 		break;
911 	}
912 }
913 
914 static void
915 e1000g_set_bufsize(struct e1000g *Adapter)
916 {
917 	struct e1000_mac_info *mac = &Adapter->shared.mac;
918 	uint64_t rx_size;
919 	uint64_t tx_size;
920 
921 	dev_info_t *devinfo = Adapter->dip;
922 #ifdef __sparc
923 	ulong_t iommu_pagesize;
924 #endif
925 	/* Get the system page size */
926 	Adapter->sys_page_sz = ddi_ptob(devinfo, (ulong_t)1);
927 
928 #ifdef __sparc
929 	iommu_pagesize = dvma_pagesize(devinfo);
930 	if (iommu_pagesize != 0) {
931 		if (Adapter->sys_page_sz == iommu_pagesize) {
932 			if (iommu_pagesize > 0x4000)
933 				Adapter->sys_page_sz = 0x4000;
934 		} else {
935 			if (Adapter->sys_page_sz > iommu_pagesize)
936 				Adapter->sys_page_sz = iommu_pagesize;
937 		}
938 	}
939 	if (Adapter->lso_enable) {
940 		Adapter->dvma_page_num = E1000_LSO_MAXLEN /
941 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
942 	} else {
943 		Adapter->dvma_page_num = Adapter->max_frame_size /
944 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
945 	}
946 	ASSERT(Adapter->dvma_page_num >= E1000G_DEFAULT_DVMA_PAGE_NUM);
947 #endif
948 
949 	Adapter->min_frame_size = ETHERMIN + ETHERFCSL;
950 
951 	if (Adapter->mem_workaround_82546 &&
952 	    ((mac->type == e1000_82545) ||
953 	    (mac->type == e1000_82546) ||
954 	    (mac->type == e1000_82546_rev_3))) {
955 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
956 	} else {
957 		rx_size = Adapter->max_frame_size;
958 		if ((rx_size > FRAME_SIZE_UPTO_2K) &&
959 		    (rx_size <= FRAME_SIZE_UPTO_4K))
960 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_4K;
961 		else if ((rx_size > FRAME_SIZE_UPTO_4K) &&
962 		    (rx_size <= FRAME_SIZE_UPTO_8K))
963 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_8K;
964 		else if ((rx_size > FRAME_SIZE_UPTO_8K) &&
965 		    (rx_size <= FRAME_SIZE_UPTO_16K))
966 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_16K;
967 		else
968 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
969 	}
970 	Adapter->rx_buffer_size += E1000G_IPALIGNROOM;
971 
972 	tx_size = Adapter->max_frame_size;
973 	if ((tx_size > FRAME_SIZE_UPTO_2K) && (tx_size <= FRAME_SIZE_UPTO_4K))
974 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_4K;
975 	else if ((tx_size > FRAME_SIZE_UPTO_4K) &&
976 	    (tx_size <= FRAME_SIZE_UPTO_8K))
977 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_8K;
978 	else if ((tx_size > FRAME_SIZE_UPTO_8K) &&
979 	    (tx_size <= FRAME_SIZE_UPTO_16K))
980 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_16K;
981 	else
982 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K;
983 
984 	/*
985 	 * For Wiseman adapters we have an requirement of having receive
986 	 * buffers aligned at 256 byte boundary. Since Livengood does not
987 	 * require this and forcing it for all hardwares will have
988 	 * performance implications, I am making it applicable only for
989 	 * Wiseman and for Jumbo frames enabled mode as rest of the time,
990 	 * it is okay to have normal frames...but it does involve a
991 	 * potential risk where we may loose data if buffer is not
992 	 * aligned...so all wiseman boards to have 256 byte aligned
993 	 * buffers
994 	 */
995 	if (mac->type < e1000_82543)
996 		Adapter->rx_buf_align = RECEIVE_BUFFER_ALIGN_SIZE;
997 	else
998 		Adapter->rx_buf_align = 1;
999 }
1000 
1001 /*
1002  * e1000g_detach - driver detach
1003  *
1004  * The detach() function is the complement of the attach routine.
1005  * If cmd is set to DDI_DETACH, detach() is used to remove  the
1006  * state  associated  with  a  given  instance of a device node
1007  * prior to the removal of that instance from the system.
1008  *
1009  * The detach() function will be called once for each  instance
1010  * of the device for which there has been a successful attach()
1011  * once there are no longer  any  opens  on  the  device.
1012  *
1013  * Interrupts routine are disabled, All memory allocated by this
1014  * driver are freed.
1015  */
1016 static int
1017 e1000g_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
1018 {
1019 	struct e1000g *Adapter;
1020 	boolean_t rx_drain;
1021 
1022 	switch (cmd) {
1023 	default:
1024 		return (DDI_FAILURE);
1025 
1026 	case DDI_SUSPEND:
1027 		return (e1000g_suspend(devinfo));
1028 
1029 	case DDI_DETACH:
1030 		break;
1031 	}
1032 
1033 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1034 	if (Adapter == NULL)
1035 		return (DDI_FAILURE);
1036 
1037 	rx_drain = e1000g_rx_drain(Adapter);
1038 	if (!rx_drain && !e1000g_force_detach)
1039 		return (DDI_FAILURE);
1040 
1041 	if (mac_unregister(Adapter->mh) != 0) {
1042 		e1000g_log(Adapter, CE_WARN, "Unregister MAC failed");
1043 		return (DDI_FAILURE);
1044 	}
1045 	Adapter->attach_progress &= ~ATTACH_PROGRESS_MAC;
1046 
1047 	ASSERT(!(Adapter->e1000g_state & E1000G_STARTED));
1048 
1049 	if (!e1000g_force_detach && !rx_drain)
1050 		return (DDI_FAILURE);
1051 
1052 	e1000g_unattach(devinfo, Adapter);
1053 
1054 	return (DDI_SUCCESS);
1055 }
1056 
1057 /*
1058  * e1000g_free_priv_devi_node - free a priv_dip entry for driver instance
1059  */
1060 void
1061 e1000g_free_priv_devi_node(private_devi_list_t *devi_node)
1062 {
1063 	ASSERT(e1000g_private_devi_list != NULL);
1064 	ASSERT(devi_node != NULL);
1065 
1066 	if (devi_node->prev != NULL)
1067 		devi_node->prev->next = devi_node->next;
1068 	if (devi_node->next != NULL)
1069 		devi_node->next->prev = devi_node->prev;
1070 	if (devi_node == e1000g_private_devi_list)
1071 		e1000g_private_devi_list = devi_node->next;
1072 
1073 	kmem_free(devi_node->priv_dip,
1074 	    sizeof (struct dev_info));
1075 	kmem_free(devi_node,
1076 	    sizeof (private_devi_list_t));
1077 }
1078 
1079 static void
1080 e1000g_unattach(dev_info_t *devinfo, struct e1000g *Adapter)
1081 {
1082 	private_devi_list_t *devi_node;
1083 	int result;
1084 
1085 	if (Adapter->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1086 		(void) e1000g_disable_intrs(Adapter);
1087 	}
1088 
1089 	if (Adapter->attach_progress & ATTACH_PROGRESS_MAC) {
1090 		(void) mac_unregister(Adapter->mh);
1091 	}
1092 
1093 	if (Adapter->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
1094 		(void) e1000g_rem_intrs(Adapter);
1095 	}
1096 
1097 	if (Adapter->attach_progress & ATTACH_PROGRESS_SETUP) {
1098 		(void) ddi_prop_remove_all(devinfo);
1099 	}
1100 
1101 	if (Adapter->attach_progress & ATTACH_PROGRESS_KSTATS) {
1102 		kstat_delete((kstat_t *)Adapter->e1000g_ksp);
1103 	}
1104 
1105 	if (Adapter->attach_progress & ATTACH_PROGRESS_INIT) {
1106 		stop_link_timer(Adapter);
1107 
1108 		mutex_enter(&e1000g_nvm_lock);
1109 		result = e1000_reset_hw(&Adapter->shared);
1110 		mutex_exit(&e1000g_nvm_lock);
1111 
1112 		if (result != E1000_SUCCESS) {
1113 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1114 			ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1115 		}
1116 	}
1117 
1118 	e1000g_release_multicast(Adapter);
1119 
1120 	if (Adapter->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
1121 		if (Adapter->osdep.reg_handle != NULL)
1122 			ddi_regs_map_free(&Adapter->osdep.reg_handle);
1123 		if (Adapter->osdep.ich_flash_handle != NULL)
1124 			ddi_regs_map_free(&Adapter->osdep.ich_flash_handle);
1125 		if (Adapter->osdep.io_reg_handle != NULL)
1126 			ddi_regs_map_free(&Adapter->osdep.io_reg_handle);
1127 	}
1128 
1129 	if (Adapter->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
1130 		if (Adapter->osdep.cfg_handle != NULL)
1131 			pci_config_teardown(&Adapter->osdep.cfg_handle);
1132 	}
1133 
1134 	if (Adapter->attach_progress & ATTACH_PROGRESS_LOCKS) {
1135 		e1000g_destroy_locks(Adapter);
1136 	}
1137 
1138 	if (Adapter->attach_progress & ATTACH_PROGRESS_FMINIT) {
1139 		e1000g_fm_fini(Adapter);
1140 	}
1141 
1142 	mutex_enter(&e1000g_rx_detach_lock);
1143 	if (e1000g_force_detach && (Adapter->priv_devi_node != NULL)) {
1144 		devi_node = Adapter->priv_devi_node;
1145 		devi_node->flag |= E1000G_PRIV_DEVI_DETACH;
1146 
1147 		if (devi_node->pending_rx_count == 0) {
1148 			e1000g_free_priv_devi_node(devi_node);
1149 		}
1150 	}
1151 	mutex_exit(&e1000g_rx_detach_lock);
1152 
1153 	kmem_free((caddr_t)Adapter, sizeof (struct e1000g));
1154 
1155 	/*
1156 	 * Another hotplug spec requirement,
1157 	 * run ddi_set_driver_private(devinfo, null);
1158 	 */
1159 	ddi_set_driver_private(devinfo, NULL);
1160 }
1161 
1162 /*
1163  * Get the BAR type and rnumber for a given PCI BAR offset
1164  */
1165 static int
1166 e1000g_get_bar_info(dev_info_t *dip, int bar_offset, bar_info_t *bar_info)
1167 {
1168 	pci_regspec_t *regs;
1169 	uint_t regs_length;
1170 	int type, rnumber, rcount;
1171 
1172 	ASSERT((bar_offset >= PCI_CONF_BASE0) &&
1173 	    (bar_offset <= PCI_CONF_BASE5));
1174 
1175 	/*
1176 	 * Get the DDI "reg" property
1177 	 */
1178 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
1179 	    DDI_PROP_DONTPASS, "reg", (int **)&regs,
1180 	    &regs_length) != DDI_PROP_SUCCESS) {
1181 		return (DDI_FAILURE);
1182 	}
1183 
1184 	rcount = regs_length * sizeof (int) / sizeof (pci_regspec_t);
1185 	/*
1186 	 * Check the BAR offset
1187 	 */
1188 	for (rnumber = 0; rnumber < rcount; ++rnumber) {
1189 		if (PCI_REG_REG_G(regs[rnumber].pci_phys_hi) == bar_offset) {
1190 			type = regs[rnumber].pci_phys_hi & PCI_ADDR_MASK;
1191 			break;
1192 		}
1193 	}
1194 
1195 	ddi_prop_free(regs);
1196 
1197 	if (rnumber >= rcount)
1198 		return (DDI_FAILURE);
1199 
1200 	switch (type) {
1201 	case PCI_ADDR_CONFIG:
1202 		bar_info->type = E1000G_BAR_CONFIG;
1203 		break;
1204 	case PCI_ADDR_IO:
1205 		bar_info->type = E1000G_BAR_IO;
1206 		break;
1207 	case PCI_ADDR_MEM32:
1208 		bar_info->type = E1000G_BAR_MEM32;
1209 		break;
1210 	case PCI_ADDR_MEM64:
1211 		bar_info->type = E1000G_BAR_MEM64;
1212 		break;
1213 	default:
1214 		return (DDI_FAILURE);
1215 	}
1216 	bar_info->rnumber = rnumber;
1217 	return (DDI_SUCCESS);
1218 }
1219 
1220 static void
1221 e1000g_init_locks(struct e1000g *Adapter)
1222 {
1223 	e1000g_tx_ring_t *tx_ring;
1224 	e1000g_rx_ring_t *rx_ring;
1225 
1226 	rw_init(&Adapter->chip_lock, NULL,
1227 	    RW_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1228 	mutex_init(&Adapter->link_lock, NULL,
1229 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1230 	mutex_init(&Adapter->watchdog_lock, NULL,
1231 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1232 
1233 	tx_ring = Adapter->tx_ring;
1234 
1235 	mutex_init(&tx_ring->tx_lock, NULL,
1236 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1237 	mutex_init(&tx_ring->usedlist_lock, NULL,
1238 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1239 	mutex_init(&tx_ring->freelist_lock, NULL,
1240 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1241 
1242 	rx_ring = Adapter->rx_ring;
1243 
1244 	mutex_init(&rx_ring->rx_lock, NULL,
1245 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1246 }
1247 
1248 static void
1249 e1000g_destroy_locks(struct e1000g *Adapter)
1250 {
1251 	e1000g_tx_ring_t *tx_ring;
1252 	e1000g_rx_ring_t *rx_ring;
1253 
1254 	tx_ring = Adapter->tx_ring;
1255 	mutex_destroy(&tx_ring->tx_lock);
1256 	mutex_destroy(&tx_ring->usedlist_lock);
1257 	mutex_destroy(&tx_ring->freelist_lock);
1258 
1259 	rx_ring = Adapter->rx_ring;
1260 	mutex_destroy(&rx_ring->rx_lock);
1261 
1262 	mutex_destroy(&Adapter->link_lock);
1263 	mutex_destroy(&Adapter->watchdog_lock);
1264 	rw_destroy(&Adapter->chip_lock);
1265 
1266 	/* destory mutex initialized in shared code */
1267 	e1000_destroy_hw_mutex(&Adapter->shared);
1268 }
1269 
1270 static int
1271 e1000g_resume(dev_info_t *devinfo)
1272 {
1273 	struct e1000g *Adapter;
1274 
1275 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1276 	if (Adapter == NULL)
1277 		e1000g_log(Adapter, CE_PANIC,
1278 		    "Instance pointer is null\n");
1279 
1280 	if (Adapter->dip != devinfo)
1281 		e1000g_log(Adapter, CE_PANIC,
1282 		    "Devinfo is not the same as saved devinfo\n");
1283 
1284 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1285 
1286 	if (Adapter->e1000g_state & E1000G_STARTED) {
1287 		if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) {
1288 			rw_exit(&Adapter->chip_lock);
1289 			/*
1290 			 * We note the failure, but return success, as the
1291 			 * system is still usable without this controller.
1292 			 */
1293 			e1000g_log(Adapter, CE_WARN,
1294 			    "e1000g_resume: failed to restart controller\n");
1295 			return (DDI_SUCCESS);
1296 		}
1297 		/* Enable and start the watchdog timer */
1298 		enable_watchdog_timer(Adapter);
1299 	}
1300 
1301 	Adapter->e1000g_state &= ~E1000G_SUSPENDED;
1302 
1303 	rw_exit(&Adapter->chip_lock);
1304 
1305 	return (DDI_SUCCESS);
1306 }
1307 
1308 static int
1309 e1000g_suspend(dev_info_t *devinfo)
1310 {
1311 	struct e1000g *Adapter;
1312 
1313 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1314 	if (Adapter == NULL)
1315 		return (DDI_FAILURE);
1316 
1317 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1318 
1319 	Adapter->e1000g_state |= E1000G_SUSPENDED;
1320 
1321 	/* if the port isn't plumbed, we can simply return */
1322 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
1323 		rw_exit(&Adapter->chip_lock);
1324 		return (DDI_SUCCESS);
1325 	}
1326 
1327 	e1000g_stop(Adapter, B_FALSE);
1328 
1329 	rw_exit(&Adapter->chip_lock);
1330 
1331 	/* Disable and stop all the timers */
1332 	disable_watchdog_timer(Adapter);
1333 	stop_link_timer(Adapter);
1334 	stop_82547_timer(Adapter->tx_ring);
1335 
1336 	return (DDI_SUCCESS);
1337 }
1338 
1339 static int
1340 e1000g_init(struct e1000g *Adapter)
1341 {
1342 	uint32_t pba;
1343 	uint32_t high_water;
1344 	struct e1000_hw *hw;
1345 	clock_t link_timeout;
1346 	int result;
1347 
1348 	hw = &Adapter->shared;
1349 
1350 	/*
1351 	 * reset to put the hardware in a known state
1352 	 * before we try to do anything with the eeprom
1353 	 */
1354 	mutex_enter(&e1000g_nvm_lock);
1355 	result = e1000_reset_hw(hw);
1356 	mutex_exit(&e1000g_nvm_lock);
1357 
1358 	if (result != E1000_SUCCESS) {
1359 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1360 		goto init_fail;
1361 	}
1362 
1363 	mutex_enter(&e1000g_nvm_lock);
1364 	result = e1000_validate_nvm_checksum(hw);
1365 	if (result < E1000_SUCCESS) {
1366 		/*
1367 		 * Some PCI-E parts fail the first check due to
1368 		 * the link being in sleep state.  Call it again,
1369 		 * if it fails a second time its a real issue.
1370 		 */
1371 		result = e1000_validate_nvm_checksum(hw);
1372 	}
1373 	mutex_exit(&e1000g_nvm_lock);
1374 
1375 	if (result < E1000_SUCCESS) {
1376 		e1000g_log(Adapter, CE_WARN,
1377 		    "Invalid NVM checksum. Please contact "
1378 		    "the vendor to update the NVM.");
1379 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1380 		goto init_fail;
1381 	}
1382 
1383 	result = 0;
1384 #ifdef __sparc
1385 	/*
1386 	 * First, we try to get the local ethernet address from OBP. If
1387 	 * failed, then we get it from the EEPROM of NIC card.
1388 	 */
1389 	result = e1000g_find_mac_address(Adapter);
1390 #endif
1391 	/* Get the local ethernet address. */
1392 	if (!result) {
1393 		mutex_enter(&e1000g_nvm_lock);
1394 		result = e1000_read_mac_addr(hw);
1395 		mutex_exit(&e1000g_nvm_lock);
1396 	}
1397 
1398 	if (result < E1000_SUCCESS) {
1399 		e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1400 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1401 		goto init_fail;
1402 	}
1403 
1404 	/* check for valid mac address */
1405 	if (!is_valid_mac_addr(hw->mac.addr)) {
1406 		e1000g_log(Adapter, CE_WARN, "Invalid mac addr");
1407 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1408 		goto init_fail;
1409 	}
1410 
1411 	/* Set LAA state for 82571 chipset */
1412 	e1000_set_laa_state_82571(hw, B_TRUE);
1413 
1414 	/* Master Latency Timer implementation */
1415 	if (Adapter->master_latency_timer) {
1416 		pci_config_put8(Adapter->osdep.cfg_handle,
1417 		    PCI_CONF_LATENCY_TIMER, Adapter->master_latency_timer);
1418 	}
1419 
1420 	if (hw->mac.type < e1000_82547) {
1421 		/*
1422 		 * Total FIFO is 64K
1423 		 */
1424 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1425 			pba = E1000_PBA_40K;	/* 40K for Rx, 24K for Tx */
1426 		else
1427 			pba = E1000_PBA_48K;	/* 48K for Rx, 16K for Tx */
1428 	} else if ((hw->mac.type == e1000_82571) ||
1429 	    (hw->mac.type == e1000_82572) ||
1430 	    (hw->mac.type == e1000_80003es2lan)) {
1431 		/*
1432 		 * Total FIFO is 48K
1433 		 */
1434 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1435 			pba = E1000_PBA_30K;	/* 30K for Rx, 18K for Tx */
1436 		else
1437 			pba = E1000_PBA_38K;	/* 38K for Rx, 10K for Tx */
1438 	} else if (hw->mac.type == e1000_82573) {
1439 		pba = E1000_PBA_20K;		/* 20K for Rx, 12K for Tx */
1440 	} else if (hw->mac.type == e1000_82574) {
1441 		/* Keep adapter default: 20K for Rx, 20K for Tx */
1442 		pba = E1000_READ_REG(hw, E1000_PBA);
1443 	} else if (hw->mac.type == e1000_ich8lan) {
1444 		pba = E1000_PBA_8K;		/* 8K for Rx, 12K for Tx */
1445 	} else if (hw->mac.type == e1000_ich9lan) {
1446 		pba = E1000_PBA_10K;
1447 	} else if (hw->mac.type == e1000_ich10lan) {
1448 		pba = E1000_PBA_10K;
1449 	} else if (hw->mac.type == e1000_pchlan) {
1450 		pba = E1000_PBA_26K;
1451 	} else if (hw->mac.type == e1000_pch2lan) {
1452 		pba = E1000_PBA_26K;
1453 	} else {
1454 		/*
1455 		 * Total FIFO is 40K
1456 		 */
1457 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1458 			pba = E1000_PBA_22K;	/* 22K for Rx, 18K for Tx */
1459 		else
1460 			pba = E1000_PBA_30K;	/* 30K for Rx, 10K for Tx */
1461 	}
1462 	E1000_WRITE_REG(hw, E1000_PBA, pba);
1463 
1464 	/*
1465 	 * These parameters set thresholds for the adapter's generation(Tx)
1466 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1467 	 * settings.  Flow control is enabled or disabled in the configuration
1468 	 * file.
1469 	 * High-water mark is set down from the top of the rx fifo (not
1470 	 * sensitive to max_frame_size) and low-water is set just below
1471 	 * high-water mark.
1472 	 * The high water mark must be low enough to fit one full frame above
1473 	 * it in the rx FIFO.  Should be the lower of:
1474 	 * 90% of the Rx FIFO size and the full Rx FIFO size minus the early
1475 	 * receive size (assuming ERT set to E1000_ERT_2048), or the full
1476 	 * Rx FIFO size minus one full frame.
1477 	 */
1478 	high_water = min(((pba << 10) * 9 / 10),
1479 	    ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574 ||
1480 	    hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_ich10lan) ?
1481 	    ((pba << 10) - (E1000_ERT_2048 << 3)) :
1482 	    ((pba << 10) - Adapter->max_frame_size)));
1483 
1484 	hw->fc.high_water = high_water & 0xFFF8;
1485 	hw->fc.low_water = hw->fc.high_water - 8;
1486 
1487 	if (hw->mac.type == e1000_80003es2lan)
1488 		hw->fc.pause_time = 0xFFFF;
1489 	else
1490 		hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1491 	hw->fc.send_xon = B_TRUE;
1492 
1493 	/*
1494 	 * Reset the adapter hardware the second time.
1495 	 */
1496 	mutex_enter(&e1000g_nvm_lock);
1497 	result = e1000_reset_hw(hw);
1498 	mutex_exit(&e1000g_nvm_lock);
1499 
1500 	if (result != E1000_SUCCESS) {
1501 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1502 		goto init_fail;
1503 	}
1504 
1505 	/* disable wakeup control by default */
1506 	if (hw->mac.type >= e1000_82544)
1507 		E1000_WRITE_REG(hw, E1000_WUC, 0);
1508 
1509 	/*
1510 	 * MWI should be disabled on 82546.
1511 	 */
1512 	if (hw->mac.type == e1000_82546)
1513 		e1000_pci_clear_mwi(hw);
1514 	else
1515 		e1000_pci_set_mwi(hw);
1516 
1517 	/*
1518 	 * Configure/Initialize hardware
1519 	 */
1520 	mutex_enter(&e1000g_nvm_lock);
1521 	result = e1000_init_hw(hw);
1522 	mutex_exit(&e1000g_nvm_lock);
1523 
1524 	if (result < E1000_SUCCESS) {
1525 		e1000g_log(Adapter, CE_WARN, "Initialize hw failed");
1526 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1527 		goto init_fail;
1528 	}
1529 
1530 	/*
1531 	 * Restore LED settings to the default from EEPROM
1532 	 * to meet the standard for Sun platforms.
1533 	 */
1534 	(void) e1000_cleanup_led(hw);
1535 
1536 	/* Disable Smart Power Down */
1537 	phy_spd_state(hw, B_FALSE);
1538 
1539 	/* Make sure driver has control */
1540 	e1000g_get_driver_control(hw);
1541 
1542 	/*
1543 	 * Initialize unicast addresses.
1544 	 */
1545 	e1000g_init_unicst(Adapter);
1546 
1547 	/*
1548 	 * Setup and initialize the mctable structures.  After this routine
1549 	 * completes  Multicast table will be set
1550 	 */
1551 	e1000_update_mc_addr_list(hw,
1552 	    (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
1553 	msec_delay(5);
1554 
1555 	/*
1556 	 * Implement Adaptive IFS
1557 	 */
1558 	e1000_reset_adaptive(hw);
1559 
1560 	/* Setup Interrupt Throttling Register */
1561 	if (hw->mac.type >= e1000_82540) {
1562 		E1000_WRITE_REG(hw, E1000_ITR, Adapter->intr_throttling_rate);
1563 	} else
1564 		Adapter->intr_adaptive = B_FALSE;
1565 
1566 	/* Start the timer for link setup */
1567 	if (hw->mac.autoneg)
1568 		link_timeout = PHY_AUTO_NEG_LIMIT * drv_usectohz(100000);
1569 	else
1570 		link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
1571 
1572 	mutex_enter(&Adapter->link_lock);
1573 	if (hw->phy.autoneg_wait_to_complete) {
1574 		Adapter->link_complete = B_TRUE;
1575 	} else {
1576 		Adapter->link_complete = B_FALSE;
1577 		Adapter->link_tid = timeout(e1000g_link_timer,
1578 		    (void *)Adapter, link_timeout);
1579 	}
1580 	mutex_exit(&Adapter->link_lock);
1581 
1582 	/* Save the state of the phy */
1583 	e1000g_get_phy_state(Adapter);
1584 
1585 	e1000g_param_sync(Adapter);
1586 
1587 	Adapter->init_count++;
1588 
1589 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
1590 		goto init_fail;
1591 	}
1592 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1593 		goto init_fail;
1594 	}
1595 
1596 	Adapter->poll_mode = e1000g_poll_mode;
1597 
1598 	return (DDI_SUCCESS);
1599 
1600 init_fail:
1601 	ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1602 	return (DDI_FAILURE);
1603 }
1604 
1605 static int
1606 e1000g_alloc_rx_data(struct e1000g *Adapter)
1607 {
1608 	e1000g_rx_ring_t *rx_ring;
1609 	e1000g_rx_data_t *rx_data;
1610 
1611 	rx_ring = Adapter->rx_ring;
1612 
1613 	rx_data = kmem_zalloc(sizeof (e1000g_rx_data_t), KM_NOSLEEP);
1614 
1615 	if (rx_data == NULL)
1616 		return (DDI_FAILURE);
1617 
1618 	rx_data->priv_devi_node = Adapter->priv_devi_node;
1619 	rx_data->rx_ring = rx_ring;
1620 
1621 	mutex_init(&rx_data->freelist_lock, NULL,
1622 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1623 	mutex_init(&rx_data->recycle_lock, NULL,
1624 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1625 
1626 	rx_ring->rx_data = rx_data;
1627 
1628 	return (DDI_SUCCESS);
1629 }
1630 
1631 void
1632 e1000g_free_rx_pending_buffers(e1000g_rx_data_t *rx_data)
1633 {
1634 	rx_sw_packet_t *packet, *next_packet;
1635 
1636 	if (rx_data == NULL)
1637 		return;
1638 
1639 	packet = rx_data->packet_area;
1640 	while (packet != NULL) {
1641 		next_packet = packet->next;
1642 		e1000g_free_rx_sw_packet(packet, B_TRUE);
1643 		packet = next_packet;
1644 	}
1645 	rx_data->packet_area = NULL;
1646 }
1647 
1648 void
1649 e1000g_free_rx_data(e1000g_rx_data_t *rx_data)
1650 {
1651 	if (rx_data == NULL)
1652 		return;
1653 
1654 	mutex_destroy(&rx_data->freelist_lock);
1655 	mutex_destroy(&rx_data->recycle_lock);
1656 
1657 	kmem_free(rx_data, sizeof (e1000g_rx_data_t));
1658 }
1659 
1660 /*
1661  * Check if the link is up
1662  */
1663 static boolean_t
1664 e1000g_link_up(struct e1000g *Adapter)
1665 {
1666 	struct e1000_hw *hw = &Adapter->shared;
1667 	boolean_t link_up = B_FALSE;
1668 
1669 	/*
1670 	 * get_link_status is set in the interrupt handler on link-status-change
1671 	 * or rx sequence error interrupt.  get_link_status will stay
1672 	 * false until the e1000_check_for_link establishes link only
1673 	 * for copper adapters.
1674 	 */
1675 	switch (hw->phy.media_type) {
1676 	case e1000_media_type_copper:
1677 		if (hw->mac.get_link_status) {
1678 			(void) e1000_check_for_link(hw);
1679 			if ((E1000_READ_REG(hw, E1000_STATUS) &
1680 			    E1000_STATUS_LU)) {
1681 				link_up = B_TRUE;
1682 			} else {
1683 				link_up = !hw->mac.get_link_status;
1684 			}
1685 		} else {
1686 			link_up = B_TRUE;
1687 		}
1688 		break;
1689 	case e1000_media_type_fiber:
1690 		(void) e1000_check_for_link(hw);
1691 		link_up = (E1000_READ_REG(hw, E1000_STATUS) &
1692 		    E1000_STATUS_LU);
1693 		break;
1694 	case e1000_media_type_internal_serdes:
1695 		(void) e1000_check_for_link(hw);
1696 		link_up = hw->mac.serdes_has_link;
1697 		break;
1698 	}
1699 
1700 	return (link_up);
1701 }
1702 
1703 static void
1704 e1000g_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
1705 {
1706 	struct iocblk *iocp;
1707 	struct e1000g *e1000gp;
1708 	enum ioc_reply status;
1709 
1710 	iocp = (struct iocblk *)(uintptr_t)mp->b_rptr;
1711 	iocp->ioc_error = 0;
1712 	e1000gp = (struct e1000g *)arg;
1713 
1714 	ASSERT(e1000gp);
1715 	if (e1000gp == NULL) {
1716 		miocnak(q, mp, 0, EINVAL);
1717 		return;
1718 	}
1719 
1720 	rw_enter(&e1000gp->chip_lock, RW_READER);
1721 	if (e1000gp->e1000g_state & E1000G_SUSPENDED) {
1722 		rw_exit(&e1000gp->chip_lock);
1723 		miocnak(q, mp, 0, EINVAL);
1724 		return;
1725 	}
1726 	rw_exit(&e1000gp->chip_lock);
1727 
1728 	switch (iocp->ioc_cmd) {
1729 
1730 	case LB_GET_INFO_SIZE:
1731 	case LB_GET_INFO:
1732 	case LB_GET_MODE:
1733 	case LB_SET_MODE:
1734 		status = e1000g_loopback_ioctl(e1000gp, iocp, mp);
1735 		break;
1736 
1737 
1738 #ifdef E1000G_DEBUG
1739 	case E1000G_IOC_REG_PEEK:
1740 	case E1000G_IOC_REG_POKE:
1741 		status = e1000g_pp_ioctl(e1000gp, iocp, mp);
1742 		break;
1743 	case E1000G_IOC_CHIP_RESET:
1744 		e1000gp->reset_count++;
1745 		if (e1000g_reset_adapter(e1000gp))
1746 			status = IOC_ACK;
1747 		else
1748 			status = IOC_INVAL;
1749 		break;
1750 #endif
1751 	default:
1752 		status = IOC_INVAL;
1753 		break;
1754 	}
1755 
1756 	/*
1757 	 * Decide how to reply
1758 	 */
1759 	switch (status) {
1760 	default:
1761 	case IOC_INVAL:
1762 		/*
1763 		 * Error, reply with a NAK and EINVAL or the specified error
1764 		 */
1765 		miocnak(q, mp, 0, iocp->ioc_error == 0 ?
1766 		    EINVAL : iocp->ioc_error);
1767 		break;
1768 
1769 	case IOC_DONE:
1770 		/*
1771 		 * OK, reply already sent
1772 		 */
1773 		break;
1774 
1775 	case IOC_ACK:
1776 		/*
1777 		 * OK, reply with an ACK
1778 		 */
1779 		miocack(q, mp, 0, 0);
1780 		break;
1781 
1782 	case IOC_REPLY:
1783 		/*
1784 		 * OK, send prepared reply as ACK or NAK
1785 		 */
1786 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1787 		    M_IOCACK : M_IOCNAK;
1788 		qreply(q, mp);
1789 		break;
1790 	}
1791 }
1792 
1793 /*
1794  * The default value of e1000g_poll_mode == 0 assumes that the NIC is
1795  * capable of supporting only one interrupt and we shouldn't disable
1796  * the physical interrupt. In this case we let the interrupt come and
1797  * we queue the packets in the rx ring itself in case we are in polling
1798  * mode (better latency but slightly lower performance and a very
1799  * high intrrupt count in mpstat which is harmless).
1800  *
1801  * e1000g_poll_mode == 1 assumes that we have per Rx ring interrupt
1802  * which can be disabled in poll mode. This gives better overall
1803  * throughput (compared to the mode above), shows very low interrupt
1804  * count but has slightly higher latency since we pick the packets when
1805  * the poll thread does polling.
1806  *
1807  * Currently, this flag should be enabled only while doing performance
1808  * measurement or when it can be guaranteed that entire NIC going
1809  * in poll mode will not harm any traffic like cluster heartbeat etc.
1810  */
1811 int e1000g_poll_mode = 0;
1812 
1813 /*
1814  * Called from the upper layers when driver is in polling mode to
1815  * pick up any queued packets. Care should be taken to not block
1816  * this thread.
1817  */
1818 static mblk_t *e1000g_poll_ring(void *arg, int bytes_to_pickup)
1819 {
1820 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)arg;
1821 	mblk_t			*mp = NULL;
1822 	mblk_t			*tail;
1823 	struct e1000g 		*adapter;
1824 
1825 	adapter = rx_ring->adapter;
1826 
1827 	rw_enter(&adapter->chip_lock, RW_READER);
1828 
1829 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
1830 		rw_exit(&adapter->chip_lock);
1831 		return (NULL);
1832 	}
1833 
1834 	mutex_enter(&rx_ring->rx_lock);
1835 	mp = e1000g_receive(rx_ring, &tail, bytes_to_pickup);
1836 	mutex_exit(&rx_ring->rx_lock);
1837 	rw_exit(&adapter->chip_lock);
1838 	return (mp);
1839 }
1840 
1841 static int
1842 e1000g_m_start(void *arg)
1843 {
1844 	struct e1000g *Adapter = (struct e1000g *)arg;
1845 
1846 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1847 
1848 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
1849 		rw_exit(&Adapter->chip_lock);
1850 		return (ECANCELED);
1851 	}
1852 
1853 	if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) {
1854 		rw_exit(&Adapter->chip_lock);
1855 		return (ENOTACTIVE);
1856 	}
1857 
1858 	Adapter->e1000g_state |= E1000G_STARTED;
1859 
1860 	rw_exit(&Adapter->chip_lock);
1861 
1862 	/* Enable and start the watchdog timer */
1863 	enable_watchdog_timer(Adapter);
1864 
1865 	return (0);
1866 }
1867 
1868 static int
1869 e1000g_start(struct e1000g *Adapter, boolean_t global)
1870 {
1871 	e1000g_rx_data_t *rx_data;
1872 
1873 	if (global) {
1874 		if (e1000g_alloc_rx_data(Adapter) != DDI_SUCCESS) {
1875 			e1000g_log(Adapter, CE_WARN, "Allocate rx data failed");
1876 			goto start_fail;
1877 		}
1878 
1879 		/* Allocate dma resources for descriptors and buffers */
1880 		if (e1000g_alloc_dma_resources(Adapter) != DDI_SUCCESS) {
1881 			e1000g_log(Adapter, CE_WARN,
1882 			    "Alloc DMA resources failed");
1883 			goto start_fail;
1884 		}
1885 		Adapter->rx_buffer_setup = B_FALSE;
1886 	}
1887 
1888 	if (!(Adapter->attach_progress & ATTACH_PROGRESS_INIT)) {
1889 		if (e1000g_init(Adapter) != DDI_SUCCESS) {
1890 			e1000g_log(Adapter, CE_WARN,
1891 			    "Adapter initialization failed");
1892 			goto start_fail;
1893 		}
1894 	}
1895 
1896 	/* Setup and initialize the transmit structures */
1897 	e1000g_tx_setup(Adapter);
1898 	msec_delay(5);
1899 
1900 	/* Setup and initialize the receive structures */
1901 	e1000g_rx_setup(Adapter);
1902 	msec_delay(5);
1903 
1904 	/* Restore the e1000g promiscuous mode */
1905 	e1000g_restore_promisc(Adapter);
1906 
1907 	e1000g_mask_interrupt(Adapter);
1908 
1909 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
1910 
1911 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1912 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1913 		goto start_fail;
1914 	}
1915 
1916 	return (DDI_SUCCESS);
1917 
1918 start_fail:
1919 	rx_data = Adapter->rx_ring->rx_data;
1920 
1921 	if (global) {
1922 		e1000g_release_dma_resources(Adapter);
1923 		e1000g_free_rx_pending_buffers(rx_data);
1924 		e1000g_free_rx_data(rx_data);
1925 	}
1926 
1927 	mutex_enter(&e1000g_nvm_lock);
1928 	(void) e1000_reset_hw(&Adapter->shared);
1929 	mutex_exit(&e1000g_nvm_lock);
1930 
1931 	return (DDI_FAILURE);
1932 }
1933 
1934 static void
1935 e1000g_m_stop(void *arg)
1936 {
1937 	struct e1000g *Adapter = (struct e1000g *)arg;
1938 
1939 	/* Drain tx sessions */
1940 	(void) e1000g_tx_drain(Adapter);
1941 
1942 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1943 
1944 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
1945 		rw_exit(&Adapter->chip_lock);
1946 		return;
1947 	}
1948 	Adapter->e1000g_state &= ~E1000G_STARTED;
1949 	e1000g_stop(Adapter, B_TRUE);
1950 
1951 	rw_exit(&Adapter->chip_lock);
1952 
1953 	/* Disable and stop all the timers */
1954 	disable_watchdog_timer(Adapter);
1955 	stop_link_timer(Adapter);
1956 	stop_82547_timer(Adapter->tx_ring);
1957 }
1958 
1959 static void
1960 e1000g_stop(struct e1000g *Adapter, boolean_t global)
1961 {
1962 	private_devi_list_t *devi_node;
1963 	e1000g_rx_data_t *rx_data;
1964 	int result;
1965 
1966 	Adapter->attach_progress &= ~ATTACH_PROGRESS_INIT;
1967 
1968 	/* Stop the chip and release pending resources */
1969 
1970 	/* Tell firmware driver is no longer in control */
1971 	e1000g_release_driver_control(&Adapter->shared);
1972 
1973 	e1000g_clear_all_interrupts(Adapter);
1974 
1975 	mutex_enter(&e1000g_nvm_lock);
1976 	result = e1000_reset_hw(&Adapter->shared);
1977 	mutex_exit(&e1000g_nvm_lock);
1978 
1979 	if (result != E1000_SUCCESS) {
1980 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1981 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1982 	}
1983 
1984 	mutex_enter(&Adapter->link_lock);
1985 	Adapter->link_complete = B_FALSE;
1986 	mutex_exit(&Adapter->link_lock);
1987 
1988 	/* Release resources still held by the TX descriptors */
1989 	e1000g_tx_clean(Adapter);
1990 
1991 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1992 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1993 
1994 	/* Clean the pending rx jumbo packet fragment */
1995 	e1000g_rx_clean(Adapter);
1996 
1997 	if (global) {
1998 		e1000g_release_dma_resources(Adapter);
1999 
2000 		mutex_enter(&e1000g_rx_detach_lock);
2001 		rx_data = Adapter->rx_ring->rx_data;
2002 		rx_data->flag |= E1000G_RX_STOPPED;
2003 
2004 		if (rx_data->pending_count == 0) {
2005 			e1000g_free_rx_pending_buffers(rx_data);
2006 			e1000g_free_rx_data(rx_data);
2007 		} else {
2008 			devi_node = rx_data->priv_devi_node;
2009 			if (devi_node != NULL)
2010 				atomic_inc_32(&devi_node->pending_rx_count);
2011 			else
2012 				atomic_inc_32(&Adapter->pending_rx_count);
2013 		}
2014 		mutex_exit(&e1000g_rx_detach_lock);
2015 	}
2016 
2017 	if (Adapter->link_state != LINK_STATE_UNKNOWN) {
2018 		Adapter->link_state = LINK_STATE_UNKNOWN;
2019 		if (!Adapter->reset_flag)
2020 			mac_link_update(Adapter->mh, Adapter->link_state);
2021 	}
2022 }
2023 
2024 static void
2025 e1000g_rx_clean(struct e1000g *Adapter)
2026 {
2027 	e1000g_rx_data_t *rx_data = Adapter->rx_ring->rx_data;
2028 
2029 	if (rx_data == NULL)
2030 		return;
2031 
2032 	if (rx_data->rx_mblk != NULL) {
2033 		freemsg(rx_data->rx_mblk);
2034 		rx_data->rx_mblk = NULL;
2035 		rx_data->rx_mblk_tail = NULL;
2036 		rx_data->rx_mblk_len = 0;
2037 	}
2038 }
2039 
2040 static void
2041 e1000g_tx_clean(struct e1000g *Adapter)
2042 {
2043 	e1000g_tx_ring_t *tx_ring;
2044 	p_tx_sw_packet_t packet;
2045 	mblk_t *mp;
2046 	mblk_t *nmp;
2047 	uint32_t packet_count;
2048 
2049 	tx_ring = Adapter->tx_ring;
2050 
2051 	/*
2052 	 * Here we don't need to protect the lists using
2053 	 * the usedlist_lock and freelist_lock, for they
2054 	 * have been protected by the chip_lock.
2055 	 */
2056 	mp = NULL;
2057 	nmp = NULL;
2058 	packet_count = 0;
2059 	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list);
2060 	while (packet != NULL) {
2061 		if (packet->mp != NULL) {
2062 			/* Assemble the message chain */
2063 			if (mp == NULL) {
2064 				mp = packet->mp;
2065 				nmp = packet->mp;
2066 			} else {
2067 				nmp->b_next = packet->mp;
2068 				nmp = packet->mp;
2069 			}
2070 			/* Disconnect the message from the sw packet */
2071 			packet->mp = NULL;
2072 		}
2073 
2074 		e1000g_free_tx_swpkt(packet);
2075 		packet_count++;
2076 
2077 		packet = (p_tx_sw_packet_t)
2078 		    QUEUE_GET_NEXT(&tx_ring->used_list, &packet->Link);
2079 	}
2080 
2081 	if (mp != NULL)
2082 		freemsgchain(mp);
2083 
2084 	if (packet_count > 0) {
2085 		QUEUE_APPEND(&tx_ring->free_list, &tx_ring->used_list);
2086 		QUEUE_INIT_LIST(&tx_ring->used_list);
2087 
2088 		/* Setup TX descriptor pointers */
2089 		tx_ring->tbd_next = tx_ring->tbd_first;
2090 		tx_ring->tbd_oldest = tx_ring->tbd_first;
2091 
2092 		/* Setup our HW Tx Head & Tail descriptor pointers */
2093 		E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
2094 		E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
2095 	}
2096 }
2097 
2098 static boolean_t
2099 e1000g_tx_drain(struct e1000g *Adapter)
2100 {
2101 	int i;
2102 	boolean_t done;
2103 	e1000g_tx_ring_t *tx_ring;
2104 
2105 	tx_ring = Adapter->tx_ring;
2106 
2107 	/* Allow up to 'wsdraintime' for pending xmit's to complete. */
2108 	for (i = 0; i < TX_DRAIN_TIME; i++) {
2109 		mutex_enter(&tx_ring->usedlist_lock);
2110 		done = IS_QUEUE_EMPTY(&tx_ring->used_list);
2111 		mutex_exit(&tx_ring->usedlist_lock);
2112 
2113 		if (done)
2114 			break;
2115 
2116 		msec_delay(1);
2117 	}
2118 
2119 	return (done);
2120 }
2121 
2122 static boolean_t
2123 e1000g_rx_drain(struct e1000g *Adapter)
2124 {
2125 	int i;
2126 	boolean_t done;
2127 
2128 	/*
2129 	 * Allow up to RX_DRAIN_TIME for pending received packets to complete.
2130 	 */
2131 	for (i = 0; i < RX_DRAIN_TIME; i++) {
2132 		done = (Adapter->pending_rx_count == 0);
2133 
2134 		if (done)
2135 			break;
2136 
2137 		msec_delay(1);
2138 	}
2139 
2140 	return (done);
2141 }
2142 
2143 static boolean_t
2144 e1000g_reset_adapter(struct e1000g *Adapter)
2145 {
2146 	/* Disable and stop all the timers */
2147 	disable_watchdog_timer(Adapter);
2148 	stop_link_timer(Adapter);
2149 	stop_82547_timer(Adapter->tx_ring);
2150 
2151 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2152 
2153 	if (Adapter->stall_flag) {
2154 		Adapter->stall_flag = B_FALSE;
2155 		Adapter->reset_flag = B_TRUE;
2156 	}
2157 
2158 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
2159 		rw_exit(&Adapter->chip_lock);
2160 		return (B_TRUE);
2161 	}
2162 
2163 	e1000g_stop(Adapter, B_FALSE);
2164 
2165 	if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) {
2166 		rw_exit(&Adapter->chip_lock);
2167 		e1000g_log(Adapter, CE_WARN, "Reset failed");
2168 			return (B_FALSE);
2169 	}
2170 
2171 	rw_exit(&Adapter->chip_lock);
2172 
2173 	/* Enable and start the watchdog timer */
2174 	enable_watchdog_timer(Adapter);
2175 
2176 	return (B_TRUE);
2177 }
2178 
2179 boolean_t
2180 e1000g_global_reset(struct e1000g *Adapter)
2181 {
2182 	/* Disable and stop all the timers */
2183 	disable_watchdog_timer(Adapter);
2184 	stop_link_timer(Adapter);
2185 	stop_82547_timer(Adapter->tx_ring);
2186 
2187 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2188 
2189 	e1000g_stop(Adapter, B_TRUE);
2190 
2191 	Adapter->init_count = 0;
2192 
2193 	if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) {
2194 		rw_exit(&Adapter->chip_lock);
2195 		e1000g_log(Adapter, CE_WARN, "Reset failed");
2196 		return (B_FALSE);
2197 	}
2198 
2199 	rw_exit(&Adapter->chip_lock);
2200 
2201 	/* Enable and start the watchdog timer */
2202 	enable_watchdog_timer(Adapter);
2203 
2204 	return (B_TRUE);
2205 }
2206 
2207 /*
2208  * e1000g_intr_pciexpress - ISR for PCI Express chipsets
2209  *
2210  * This interrupt service routine is for PCI-Express adapters.
2211  * The ICR contents is valid only when the E1000_ICR_INT_ASSERTED
2212  * bit is set.
2213  */
2214 static uint_t
2215 e1000g_intr_pciexpress(caddr_t arg)
2216 {
2217 	struct e1000g *Adapter;
2218 	uint32_t icr;
2219 
2220 	Adapter = (struct e1000g *)(uintptr_t)arg;
2221 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
2222 
2223 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2224 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2225 		return (DDI_INTR_CLAIMED);
2226 	}
2227 
2228 	if (icr & E1000_ICR_INT_ASSERTED) {
2229 		/*
2230 		 * E1000_ICR_INT_ASSERTED bit was set:
2231 		 * Read(Clear) the ICR, claim this interrupt,
2232 		 * look for work to do.
2233 		 */
2234 		e1000g_intr_work(Adapter, icr);
2235 		return (DDI_INTR_CLAIMED);
2236 	} else {
2237 		/*
2238 		 * E1000_ICR_INT_ASSERTED bit was not set:
2239 		 * Don't claim this interrupt, return immediately.
2240 		 */
2241 		return (DDI_INTR_UNCLAIMED);
2242 	}
2243 }
2244 
2245 /*
2246  * e1000g_intr - ISR for PCI/PCI-X chipsets
2247  *
2248  * This interrupt service routine is for PCI/PCI-X adapters.
2249  * We check the ICR contents no matter the E1000_ICR_INT_ASSERTED
2250  * bit is set or not.
2251  */
2252 static uint_t
2253 e1000g_intr(caddr_t arg)
2254 {
2255 	struct e1000g *Adapter;
2256 	uint32_t icr;
2257 
2258 	Adapter = (struct e1000g *)(uintptr_t)arg;
2259 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
2260 
2261 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2262 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2263 		return (DDI_INTR_CLAIMED);
2264 	}
2265 
2266 	if (icr) {
2267 		/*
2268 		 * Any bit was set in ICR:
2269 		 * Read(Clear) the ICR, claim this interrupt,
2270 		 * look for work to do.
2271 		 */
2272 		e1000g_intr_work(Adapter, icr);
2273 		return (DDI_INTR_CLAIMED);
2274 	} else {
2275 		/*
2276 		 * No bit was set in ICR:
2277 		 * Don't claim this interrupt, return immediately.
2278 		 */
2279 		return (DDI_INTR_UNCLAIMED);
2280 	}
2281 }
2282 
2283 /*
2284  * e1000g_intr_work - actual processing of ISR
2285  *
2286  * Read(clear) the ICR contents and call appropriate interrupt
2287  * processing routines.
2288  */
2289 static void
2290 e1000g_intr_work(struct e1000g *Adapter, uint32_t icr)
2291 {
2292 	struct e1000_hw *hw;
2293 	hw = &Adapter->shared;
2294 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
2295 
2296 	Adapter->rx_pkt_cnt = 0;
2297 	Adapter->tx_pkt_cnt = 0;
2298 
2299 	rw_enter(&Adapter->chip_lock, RW_READER);
2300 
2301 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2302 		rw_exit(&Adapter->chip_lock);
2303 		return;
2304 	}
2305 	/*
2306 	 * Here we need to check the "e1000g_state" flag within the chip_lock to
2307 	 * ensure the receive routine will not execute when the adapter is
2308 	 * being reset.
2309 	 */
2310 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
2311 		rw_exit(&Adapter->chip_lock);
2312 		return;
2313 	}
2314 
2315 	if (icr & E1000_ICR_RXT0) {
2316 		mblk_t			*mp = NULL;
2317 		mblk_t			*tail = NULL;
2318 		e1000g_rx_ring_t	*rx_ring;
2319 
2320 		rx_ring = Adapter->rx_ring;
2321 		mutex_enter(&rx_ring->rx_lock);
2322 		/*
2323 		 * Sometimes with legacy interrupts, it possible that
2324 		 * there is a single interrupt for Rx/Tx. In which
2325 		 * case, if poll flag is set, we shouldn't really
2326 		 * be doing Rx processing.
2327 		 */
2328 		if (!rx_ring->poll_flag)
2329 			mp = e1000g_receive(rx_ring, &tail,
2330 			    E1000G_CHAIN_NO_LIMIT);
2331 		mutex_exit(&rx_ring->rx_lock);
2332 		rw_exit(&Adapter->chip_lock);
2333 		if (mp != NULL)
2334 			mac_rx_ring(Adapter->mh, rx_ring->mrh,
2335 			    mp, rx_ring->ring_gen_num);
2336 	} else
2337 		rw_exit(&Adapter->chip_lock);
2338 
2339 	if (icr & E1000_ICR_TXDW) {
2340 		if (!Adapter->tx_intr_enable)
2341 			e1000g_clear_tx_interrupt(Adapter);
2342 
2343 		/* Recycle the tx descriptors */
2344 		rw_enter(&Adapter->chip_lock, RW_READER);
2345 		(void) e1000g_recycle(tx_ring);
2346 		E1000G_DEBUG_STAT(tx_ring->stat_recycle_intr);
2347 		rw_exit(&Adapter->chip_lock);
2348 
2349 		if (tx_ring->resched_needed &&
2350 		    (tx_ring->tbd_avail > DEFAULT_TX_UPDATE_THRESHOLD)) {
2351 			tx_ring->resched_needed = B_FALSE;
2352 			mac_tx_update(Adapter->mh);
2353 			E1000G_STAT(tx_ring->stat_reschedule);
2354 		}
2355 	}
2356 
2357 	/*
2358 	 * The Receive Sequence errors RXSEQ and the link status change LSC
2359 	 * are checked to detect that the cable has been pulled out. For
2360 	 * the Wiseman 2.0 silicon, the receive sequence errors interrupt
2361 	 * are an indication that cable is not connected.
2362 	 */
2363 	if ((icr & E1000_ICR_RXSEQ) ||
2364 	    (icr & E1000_ICR_LSC) ||
2365 	    (icr & E1000_ICR_GPI_EN1)) {
2366 		boolean_t link_changed;
2367 		timeout_id_t tid = 0;
2368 
2369 		stop_watchdog_timer(Adapter);
2370 
2371 		rw_enter(&Adapter->chip_lock, RW_WRITER);
2372 
2373 		/*
2374 		 * Because we got a link-status-change interrupt, force
2375 		 * e1000_check_for_link() to look at phy
2376 		 */
2377 		Adapter->shared.mac.get_link_status = B_TRUE;
2378 
2379 		/* e1000g_link_check takes care of link status change */
2380 		link_changed = e1000g_link_check(Adapter);
2381 
2382 		/* Get new phy state */
2383 		e1000g_get_phy_state(Adapter);
2384 
2385 		/*
2386 		 * If the link timer has not timed out, we'll not notify
2387 		 * the upper layer with any link state until the link is up.
2388 		 */
2389 		if (link_changed && !Adapter->link_complete) {
2390 			if (Adapter->link_state == LINK_STATE_UP) {
2391 				mutex_enter(&Adapter->link_lock);
2392 				Adapter->link_complete = B_TRUE;
2393 				tid = Adapter->link_tid;
2394 				Adapter->link_tid = 0;
2395 				mutex_exit(&Adapter->link_lock);
2396 			} else {
2397 				link_changed = B_FALSE;
2398 			}
2399 		}
2400 		rw_exit(&Adapter->chip_lock);
2401 
2402 		if (link_changed) {
2403 			if (tid != 0)
2404 				(void) untimeout(tid);
2405 
2406 			/*
2407 			 * Workaround for esb2. Data stuck in fifo on a link
2408 			 * down event. Stop receiver here and reset in watchdog.
2409 			 */
2410 			if ((Adapter->link_state == LINK_STATE_DOWN) &&
2411 			    (Adapter->shared.mac.type == e1000_80003es2lan)) {
2412 				uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
2413 				E1000_WRITE_REG(hw, E1000_RCTL,
2414 				    rctl & ~E1000_RCTL_EN);
2415 				e1000g_log(Adapter, CE_WARN,
2416 				    "ESB2 receiver disabled");
2417 				Adapter->esb2_workaround = B_TRUE;
2418 			}
2419 			if (!Adapter->reset_flag)
2420 				mac_link_update(Adapter->mh,
2421 				    Adapter->link_state);
2422 			if (Adapter->link_state == LINK_STATE_UP)
2423 				Adapter->reset_flag = B_FALSE;
2424 		}
2425 
2426 		start_watchdog_timer(Adapter);
2427 	}
2428 }
2429 
2430 static void
2431 e1000g_init_unicst(struct e1000g *Adapter)
2432 {
2433 	struct e1000_hw *hw;
2434 	int slot;
2435 
2436 	hw = &Adapter->shared;
2437 
2438 	if (Adapter->init_count == 0) {
2439 		/* Initialize the multiple unicast addresses */
2440 		Adapter->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
2441 
2442 		/* Workaround for an erratum of 82571 chipst */
2443 		if ((hw->mac.type == e1000_82571) &&
2444 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2445 			Adapter->unicst_total--;
2446 
2447 		Adapter->unicst_avail = Adapter->unicst_total;
2448 
2449 		for (slot = 0; slot < Adapter->unicst_total; slot++) {
2450 			/* Clear both the flag and MAC address */
2451 			Adapter->unicst_addr[slot].reg.high = 0;
2452 			Adapter->unicst_addr[slot].reg.low = 0;
2453 		}
2454 	} else {
2455 		/* Workaround for an erratum of 82571 chipst */
2456 		if ((hw->mac.type == e1000_82571) &&
2457 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2458 			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2459 
2460 		/* Re-configure the RAR registers */
2461 		for (slot = 0; slot < Adapter->unicst_total; slot++)
2462 			if (Adapter->unicst_addr[slot].mac.set == 1)
2463 				e1000_rar_set(hw,
2464 				    Adapter->unicst_addr[slot].mac.addr, slot);
2465 	}
2466 
2467 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2468 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2469 }
2470 
2471 static int
2472 e1000g_unicst_set(struct e1000g *Adapter, const uint8_t *mac_addr,
2473     int slot)
2474 {
2475 	struct e1000_hw *hw;
2476 
2477 	hw = &Adapter->shared;
2478 
2479 	/*
2480 	 * The first revision of Wiseman silicon (rev 2.0) has an errata
2481 	 * that requires the receiver to be in reset when any of the
2482 	 * receive address registers (RAR regs) are accessed.  The first
2483 	 * rev of Wiseman silicon also requires MWI to be disabled when
2484 	 * a global reset or a receive reset is issued.  So before we
2485 	 * initialize the RARs, we check the rev of the Wiseman controller
2486 	 * and work around any necessary HW errata.
2487 	 */
2488 	if ((hw->mac.type == e1000_82542) &&
2489 	    (hw->revision_id == E1000_REVISION_2)) {
2490 		e1000_pci_clear_mwi(hw);
2491 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2492 		msec_delay(5);
2493 	}
2494 	if (mac_addr == NULL) {
2495 		E1000_WRITE_REG_ARRAY(hw, E1000_RA, slot << 1, 0);
2496 		E1000_WRITE_FLUSH(hw);
2497 		E1000_WRITE_REG_ARRAY(hw, E1000_RA, (slot << 1) + 1, 0);
2498 		E1000_WRITE_FLUSH(hw);
2499 		/* Clear both the flag and MAC address */
2500 		Adapter->unicst_addr[slot].reg.high = 0;
2501 		Adapter->unicst_addr[slot].reg.low = 0;
2502 	} else {
2503 		bcopy(mac_addr, Adapter->unicst_addr[slot].mac.addr,
2504 		    ETHERADDRL);
2505 		e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2506 		Adapter->unicst_addr[slot].mac.set = 1;
2507 	}
2508 
2509 	/* Workaround for an erratum of 82571 chipst */
2510 	if (slot == 0) {
2511 		if ((hw->mac.type == e1000_82571) &&
2512 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2513 			if (mac_addr == NULL) {
2514 				E1000_WRITE_REG_ARRAY(hw, E1000_RA,
2515 				    slot << 1, 0);
2516 				E1000_WRITE_FLUSH(hw);
2517 				E1000_WRITE_REG_ARRAY(hw, E1000_RA,
2518 				    (slot << 1) + 1, 0);
2519 				E1000_WRITE_FLUSH(hw);
2520 			} else {
2521 				e1000_rar_set(hw, (uint8_t *)mac_addr,
2522 				    LAST_RAR_ENTRY);
2523 			}
2524 	}
2525 
2526 	/*
2527 	 * If we are using Wiseman rev 2.0 silicon, we will have previously
2528 	 * put the receive in reset, and disabled MWI, to work around some
2529 	 * HW errata.  Now we should take the receiver out of reset, and
2530 	 * re-enabled if MWI if it was previously enabled by the PCI BIOS.
2531 	 */
2532 	if ((hw->mac.type == e1000_82542) &&
2533 	    (hw->revision_id == E1000_REVISION_2)) {
2534 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2535 		msec_delay(1);
2536 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2537 			e1000_pci_set_mwi(hw);
2538 		e1000g_rx_setup(Adapter);
2539 	}
2540 
2541 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2542 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2543 		return (EIO);
2544 	}
2545 
2546 	return (0);
2547 }
2548 
2549 static int
2550 multicst_add(struct e1000g *Adapter, const uint8_t *multiaddr)
2551 {
2552 	struct e1000_hw *hw = &Adapter->shared;
2553 	struct ether_addr *newtable;
2554 	size_t new_len;
2555 	size_t old_len;
2556 	int res = 0;
2557 
2558 	if ((multiaddr[0] & 01) == 0) {
2559 		res = EINVAL;
2560 		e1000g_log(Adapter, CE_WARN, "Illegal multicast address");
2561 		goto done;
2562 	}
2563 
2564 	if (Adapter->mcast_count >= Adapter->mcast_max_num) {
2565 		res = ENOENT;
2566 		e1000g_log(Adapter, CE_WARN,
2567 		    "Adapter requested more than %d mcast addresses",
2568 		    Adapter->mcast_max_num);
2569 		goto done;
2570 	}
2571 
2572 
2573 	if (Adapter->mcast_count == Adapter->mcast_alloc_count) {
2574 		old_len = Adapter->mcast_alloc_count *
2575 		    sizeof (struct ether_addr);
2576 		new_len = (Adapter->mcast_alloc_count + MCAST_ALLOC_SIZE) *
2577 		    sizeof (struct ether_addr);
2578 
2579 		newtable = kmem_alloc(new_len, KM_NOSLEEP);
2580 		if (newtable == NULL) {
2581 			res = ENOMEM;
2582 			e1000g_log(Adapter, CE_WARN,
2583 			    "Not enough memory to alloc mcast table");
2584 			goto done;
2585 		}
2586 
2587 		if (Adapter->mcast_table != NULL) {
2588 			bcopy(Adapter->mcast_table, newtable, old_len);
2589 			kmem_free(Adapter->mcast_table, old_len);
2590 		}
2591 		Adapter->mcast_alloc_count += MCAST_ALLOC_SIZE;
2592 		Adapter->mcast_table = newtable;
2593 	}
2594 
2595 	bcopy(multiaddr,
2596 	    &Adapter->mcast_table[Adapter->mcast_count], ETHERADDRL);
2597 	Adapter->mcast_count++;
2598 
2599 	/*
2600 	 * Update the MC table in the hardware
2601 	 */
2602 	e1000g_clear_interrupt(Adapter);
2603 
2604 	e1000_update_mc_addr_list(hw,
2605 	    (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
2606 
2607 	e1000g_mask_interrupt(Adapter);
2608 
2609 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2610 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2611 		res = EIO;
2612 	}
2613 
2614 done:
2615 	return (res);
2616 }
2617 
2618 static int
2619 multicst_remove(struct e1000g *Adapter, const uint8_t *multiaddr)
2620 {
2621 	struct e1000_hw *hw = &Adapter->shared;
2622 	struct ether_addr *newtable;
2623 	size_t new_len;
2624 	size_t old_len;
2625 	unsigned i;
2626 
2627 	for (i = 0; i < Adapter->mcast_count; i++) {
2628 		if (bcmp(multiaddr, &Adapter->mcast_table[i],
2629 		    ETHERADDRL) == 0) {
2630 			for (i++; i < Adapter->mcast_count; i++) {
2631 				Adapter->mcast_table[i - 1] =
2632 				    Adapter->mcast_table[i];
2633 			}
2634 			Adapter->mcast_count--;
2635 			break;
2636 		}
2637 	}
2638 
2639 	if ((Adapter->mcast_alloc_count - Adapter->mcast_count) >
2640 	    MCAST_ALLOC_SIZE) {
2641 		old_len = Adapter->mcast_alloc_count *
2642 		    sizeof (struct ether_addr);
2643 		new_len = (Adapter->mcast_alloc_count - MCAST_ALLOC_SIZE) *
2644 		    sizeof (struct ether_addr);
2645 
2646 		newtable = kmem_alloc(new_len, KM_NOSLEEP);
2647 		if (newtable != NULL) {
2648 			bcopy(Adapter->mcast_table, newtable, new_len);
2649 			kmem_free(Adapter->mcast_table, old_len);
2650 
2651 			Adapter->mcast_alloc_count -= MCAST_ALLOC_SIZE;
2652 			Adapter->mcast_table = newtable;
2653 		}
2654 	}
2655 
2656 	/*
2657 	 * Update the MC table in the hardware
2658 	 */
2659 	e1000g_clear_interrupt(Adapter);
2660 
2661 	e1000_update_mc_addr_list(hw,
2662 	    (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
2663 
2664 	e1000g_mask_interrupt(Adapter);
2665 
2666 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2667 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2668 		return (EIO);
2669 	}
2670 
2671 	return (0);
2672 }
2673 
2674 static void
2675 e1000g_release_multicast(struct e1000g *Adapter)
2676 {
2677 	if (Adapter->mcast_table != NULL) {
2678 		kmem_free(Adapter->mcast_table,
2679 		    Adapter->mcast_alloc_count * sizeof (struct ether_addr));
2680 		Adapter->mcast_table = NULL;
2681 	}
2682 }
2683 
2684 int
2685 e1000g_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
2686 {
2687 	struct e1000g *Adapter = (struct e1000g *)arg;
2688 	int result;
2689 
2690 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2691 
2692 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2693 		result = ECANCELED;
2694 		goto done;
2695 	}
2696 
2697 	result = (add) ? multicst_add(Adapter, addr)
2698 	    : multicst_remove(Adapter, addr);
2699 
2700 done:
2701 	rw_exit(&Adapter->chip_lock);
2702 	return (result);
2703 
2704 }
2705 
2706 int
2707 e1000g_m_promisc(void *arg, boolean_t on)
2708 {
2709 	struct e1000g *Adapter = (struct e1000g *)arg;
2710 	uint32_t rctl;
2711 
2712 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2713 
2714 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2715 		rw_exit(&Adapter->chip_lock);
2716 		return (ECANCELED);
2717 	}
2718 
2719 	rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
2720 
2721 	if (on)
2722 		rctl |=
2723 		    (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
2724 	else
2725 		rctl &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
2726 
2727 	E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
2728 
2729 	Adapter->e1000g_promisc = on;
2730 
2731 	rw_exit(&Adapter->chip_lock);
2732 
2733 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2734 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2735 		return (EIO);
2736 	}
2737 
2738 	return (0);
2739 }
2740 
2741 /*
2742  * Entry points to enable and disable interrupts at the granularity of
2743  * a group.
2744  * Turns the poll_mode for the whole adapter on and off to enable or
2745  * override the ring level polling control over the hardware interrupts.
2746  */
2747 static int
2748 e1000g_rx_group_intr_enable(mac_intr_handle_t arg)
2749 {
2750 	struct e1000g		*adapter = (struct e1000g *)arg;
2751 	e1000g_rx_ring_t *rx_ring = adapter->rx_ring;
2752 
2753 	/*
2754 	 * Later interrupts at the granularity of the this ring will
2755 	 * invoke mac_rx() with NULL, indicating the need for another
2756 	 * software classification.
2757 	 * We have a single ring usable per adapter now, so we only need to
2758 	 * reset the rx handle for that one.
2759 	 * When more RX rings can be used, we should update each one of them.
2760 	 */
2761 	mutex_enter(&rx_ring->rx_lock);
2762 	rx_ring->mrh = NULL;
2763 	adapter->poll_mode = B_FALSE;
2764 	mutex_exit(&rx_ring->rx_lock);
2765 	return (0);
2766 }
2767 
2768 static int
2769 e1000g_rx_group_intr_disable(mac_intr_handle_t arg)
2770 {
2771 	struct e1000g *adapter = (struct e1000g *)arg;
2772 	e1000g_rx_ring_t *rx_ring = adapter->rx_ring;
2773 
2774 	mutex_enter(&rx_ring->rx_lock);
2775 
2776 	/*
2777 	 * Later interrupts at the granularity of the this ring will
2778 	 * invoke mac_rx() with the handle for this ring;
2779 	 */
2780 	adapter->poll_mode = B_TRUE;
2781 	rx_ring->mrh = rx_ring->mrh_init;
2782 	mutex_exit(&rx_ring->rx_lock);
2783 	return (0);
2784 }
2785 
2786 /*
2787  * Entry points to enable and disable interrupts at the granularity of
2788  * a ring.
2789  * adapter poll_mode controls whether we actually proceed with hardware
2790  * interrupt toggling.
2791  */
2792 static int
2793 e1000g_rx_ring_intr_enable(mac_intr_handle_t intrh)
2794 {
2795 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)intrh;
2796 	struct e1000g 		*adapter = rx_ring->adapter;
2797 	struct e1000_hw 	*hw = &adapter->shared;
2798 	uint32_t		intr_mask;
2799 
2800 	rw_enter(&adapter->chip_lock, RW_READER);
2801 
2802 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
2803 		rw_exit(&adapter->chip_lock);
2804 		return (0);
2805 	}
2806 
2807 	mutex_enter(&rx_ring->rx_lock);
2808 	rx_ring->poll_flag = 0;
2809 	mutex_exit(&rx_ring->rx_lock);
2810 
2811 	/* Rx interrupt enabling for MSI and legacy */
2812 	intr_mask = E1000_READ_REG(hw, E1000_IMS);
2813 	intr_mask |= E1000_IMS_RXT0;
2814 	E1000_WRITE_REG(hw, E1000_IMS, intr_mask);
2815 	E1000_WRITE_FLUSH(hw);
2816 
2817 	/* Trigger a Rx interrupt to check Rx ring */
2818 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
2819 	E1000_WRITE_FLUSH(hw);
2820 
2821 	rw_exit(&adapter->chip_lock);
2822 	return (0);
2823 }
2824 
2825 static int
2826 e1000g_rx_ring_intr_disable(mac_intr_handle_t intrh)
2827 {
2828 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)intrh;
2829 	struct e1000g 		*adapter = rx_ring->adapter;
2830 	struct e1000_hw 	*hw = &adapter->shared;
2831 
2832 	rw_enter(&adapter->chip_lock, RW_READER);
2833 
2834 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
2835 		rw_exit(&adapter->chip_lock);
2836 		return (0);
2837 	}
2838 	mutex_enter(&rx_ring->rx_lock);
2839 	rx_ring->poll_flag = 1;
2840 	mutex_exit(&rx_ring->rx_lock);
2841 
2842 	/* Rx interrupt disabling for MSI and legacy */
2843 	E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
2844 	E1000_WRITE_FLUSH(hw);
2845 
2846 	rw_exit(&adapter->chip_lock);
2847 	return (0);
2848 }
2849 
2850 /*
2851  * e1000g_unicst_find - Find the slot for the specified unicast address
2852  */
2853 static int
2854 e1000g_unicst_find(struct e1000g *Adapter, const uint8_t *mac_addr)
2855 {
2856 	int slot;
2857 
2858 	for (slot = 0; slot < Adapter->unicst_total; slot++) {
2859 		if ((Adapter->unicst_addr[slot].mac.set == 1) &&
2860 		    (bcmp(Adapter->unicst_addr[slot].mac.addr,
2861 		    mac_addr, ETHERADDRL) == 0))
2862 				return (slot);
2863 	}
2864 
2865 	return (-1);
2866 }
2867 
2868 /*
2869  * Entry points to add and remove a MAC address to a ring group.
2870  * The caller takes care of adding and removing the MAC addresses
2871  * to the filter via these two routines.
2872  */
2873 
2874 static int
2875 e1000g_addmac(void *arg, const uint8_t *mac_addr)
2876 {
2877 	struct e1000g *Adapter = (struct e1000g *)arg;
2878 	int slot, err;
2879 
2880 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2881 
2882 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2883 		rw_exit(&Adapter->chip_lock);
2884 		return (ECANCELED);
2885 	}
2886 
2887 	if (e1000g_unicst_find(Adapter, mac_addr) != -1) {
2888 		/* The same address is already in slot */
2889 		rw_exit(&Adapter->chip_lock);
2890 		return (0);
2891 	}
2892 
2893 	if (Adapter->unicst_avail == 0) {
2894 		/* no slots available */
2895 		rw_exit(&Adapter->chip_lock);
2896 		return (ENOSPC);
2897 	}
2898 
2899 	/* Search for a free slot */
2900 	for (slot = 0; slot < Adapter->unicst_total; slot++) {
2901 		if (Adapter->unicst_addr[slot].mac.set == 0)
2902 			break;
2903 	}
2904 	ASSERT(slot < Adapter->unicst_total);
2905 
2906 	err = e1000g_unicst_set(Adapter, mac_addr, slot);
2907 	if (err == 0)
2908 		Adapter->unicst_avail--;
2909 
2910 	rw_exit(&Adapter->chip_lock);
2911 
2912 	return (err);
2913 }
2914 
2915 static int
2916 e1000g_remmac(void *arg, const uint8_t *mac_addr)
2917 {
2918 	struct e1000g *Adapter = (struct e1000g *)arg;
2919 	int slot, err;
2920 
2921 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2922 
2923 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2924 		rw_exit(&Adapter->chip_lock);
2925 		return (ECANCELED);
2926 	}
2927 
2928 	slot = e1000g_unicst_find(Adapter, mac_addr);
2929 	if (slot == -1) {
2930 		rw_exit(&Adapter->chip_lock);
2931 		return (EINVAL);
2932 	}
2933 
2934 	ASSERT(Adapter->unicst_addr[slot].mac.set);
2935 
2936 	/* Clear this slot */
2937 	err = e1000g_unicst_set(Adapter, NULL, slot);
2938 	if (err == 0)
2939 		Adapter->unicst_avail++;
2940 
2941 	rw_exit(&Adapter->chip_lock);
2942 
2943 	return (err);
2944 }
2945 
2946 static int
2947 e1000g_ring_start(mac_ring_driver_t rh, uint64_t mr_gen_num)
2948 {
2949 	e1000g_rx_ring_t *rx_ring = (e1000g_rx_ring_t *)rh;
2950 
2951 	mutex_enter(&rx_ring->rx_lock);
2952 	rx_ring->ring_gen_num = mr_gen_num;
2953 	mutex_exit(&rx_ring->rx_lock);
2954 	return (0);
2955 }
2956 
2957 /*
2958  * Callback funtion for MAC layer to register all rings.
2959  *
2960  * The hardware supports a single group with currently only one ring
2961  * available.
2962  * Though not offering virtualization ability per se, exposing the
2963  * group/ring still enables the polling and interrupt toggling.
2964  */
2965 /* ARGSUSED */
2966 void
2967 e1000g_fill_ring(void *arg, mac_ring_type_t rtype, const int grp_index,
2968     const int ring_index, mac_ring_info_t *infop, mac_ring_handle_t rh)
2969 {
2970 	struct e1000g *Adapter = (struct e1000g *)arg;
2971 	e1000g_rx_ring_t *rx_ring = Adapter->rx_ring;
2972 	mac_intr_t *mintr;
2973 
2974 	/*
2975 	 * We advertised only RX group/rings, so the MAC framework shouldn't
2976 	 * ask for any thing else.
2977 	 */
2978 	ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0 && ring_index == 0);
2979 
2980 	rx_ring->mrh = rx_ring->mrh_init = rh;
2981 	infop->mri_driver = (mac_ring_driver_t)rx_ring;
2982 	infop->mri_start = e1000g_ring_start;
2983 	infop->mri_stop = NULL;
2984 	infop->mri_poll = e1000g_poll_ring;
2985 	infop->mri_stat = e1000g_rx_ring_stat;
2986 
2987 	/* Ring level interrupts */
2988 	mintr = &infop->mri_intr;
2989 	mintr->mi_handle = (mac_intr_handle_t)rx_ring;
2990 	mintr->mi_enable = e1000g_rx_ring_intr_enable;
2991 	mintr->mi_disable = e1000g_rx_ring_intr_disable;
2992 	if (Adapter->msi_enable)
2993 		mintr->mi_ddi_handle = Adapter->htable[0];
2994 }
2995 
2996 /* ARGSUSED */
2997 static void
2998 e1000g_fill_group(void *arg, mac_ring_type_t rtype, const int grp_index,
2999     mac_group_info_t *infop, mac_group_handle_t gh)
3000 {
3001 	struct e1000g *Adapter = (struct e1000g *)arg;
3002 	mac_intr_t *mintr;
3003 
3004 	/*
3005 	 * We advertised a single RX ring. Getting a request for anything else
3006 	 * signifies a bug in the MAC framework.
3007 	 */
3008 	ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0);
3009 
3010 	Adapter->rx_group = gh;
3011 
3012 	infop->mgi_driver = (mac_group_driver_t)Adapter;
3013 	infop->mgi_start = NULL;
3014 	infop->mgi_stop = NULL;
3015 	infop->mgi_addmac = e1000g_addmac;
3016 	infop->mgi_remmac = e1000g_remmac;
3017 	infop->mgi_count = 1;
3018 
3019 	/* Group level interrupts */
3020 	mintr = &infop->mgi_intr;
3021 	mintr->mi_handle = (mac_intr_handle_t)Adapter;
3022 	mintr->mi_enable = e1000g_rx_group_intr_enable;
3023 	mintr->mi_disable = e1000g_rx_group_intr_disable;
3024 }
3025 
3026 static boolean_t
3027 e1000g_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
3028 {
3029 	struct e1000g *Adapter = (struct e1000g *)arg;
3030 
3031 	switch (cap) {
3032 	case MAC_CAPAB_HCKSUM: {
3033 		uint32_t *txflags = cap_data;
3034 
3035 		if (Adapter->tx_hcksum_enable)
3036 			*txflags = HCKSUM_IPHDRCKSUM |
3037 			    HCKSUM_INET_PARTIAL;
3038 		else
3039 			return (B_FALSE);
3040 		break;
3041 	}
3042 
3043 	case MAC_CAPAB_LSO: {
3044 		mac_capab_lso_t *cap_lso = cap_data;
3045 
3046 		if (Adapter->lso_enable) {
3047 			cap_lso->lso_flags = LSO_TX_BASIC_TCP_IPV4;
3048 			cap_lso->lso_basic_tcp_ipv4.lso_max =
3049 			    E1000_LSO_MAXLEN;
3050 		} else
3051 			return (B_FALSE);
3052 		break;
3053 	}
3054 	case MAC_CAPAB_RINGS: {
3055 		mac_capab_rings_t *cap_rings = cap_data;
3056 
3057 		/* No TX rings exposed yet */
3058 		if (cap_rings->mr_type != MAC_RING_TYPE_RX)
3059 			return (B_FALSE);
3060 
3061 		cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC;
3062 		cap_rings->mr_rnum = 1;
3063 		cap_rings->mr_gnum = 1;
3064 		cap_rings->mr_rget = e1000g_fill_ring;
3065 		cap_rings->mr_gget = e1000g_fill_group;
3066 		break;
3067 	}
3068 	default:
3069 		return (B_FALSE);
3070 	}
3071 	return (B_TRUE);
3072 }
3073 
3074 static boolean_t
3075 e1000g_param_locked(mac_prop_id_t pr_num)
3076 {
3077 	/*
3078 	 * All en_* parameters are locked (read-only) while
3079 	 * the device is in any sort of loopback mode ...
3080 	 */
3081 	switch (pr_num) {
3082 		case MAC_PROP_EN_1000FDX_CAP:
3083 		case MAC_PROP_EN_1000HDX_CAP:
3084 		case MAC_PROP_EN_100FDX_CAP:
3085 		case MAC_PROP_EN_100HDX_CAP:
3086 		case MAC_PROP_EN_10FDX_CAP:
3087 		case MAC_PROP_EN_10HDX_CAP:
3088 		case MAC_PROP_AUTONEG:
3089 		case MAC_PROP_FLOWCTRL:
3090 			return (B_TRUE);
3091 	}
3092 	return (B_FALSE);
3093 }
3094 
3095 /*
3096  * callback function for set/get of properties
3097  */
3098 static int
3099 e1000g_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3100     uint_t pr_valsize, const void *pr_val)
3101 {
3102 	struct e1000g *Adapter = arg;
3103 	struct e1000_hw *hw = &Adapter->shared;
3104 	struct e1000_fc_info *fc = &Adapter->shared.fc;
3105 	int err = 0;
3106 	link_flowctrl_t flowctrl;
3107 	uint32_t cur_mtu, new_mtu;
3108 
3109 	rw_enter(&Adapter->chip_lock, RW_WRITER);
3110 
3111 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
3112 		rw_exit(&Adapter->chip_lock);
3113 		return (ECANCELED);
3114 	}
3115 
3116 	if (Adapter->loopback_mode != E1000G_LB_NONE &&
3117 	    e1000g_param_locked(pr_num)) {
3118 		/*
3119 		 * All en_* parameters are locked (read-only)
3120 		 * while the device is in any sort of loopback mode.
3121 		 */
3122 		rw_exit(&Adapter->chip_lock);
3123 		return (EBUSY);
3124 	}
3125 
3126 	switch (pr_num) {
3127 		case MAC_PROP_EN_1000FDX_CAP:
3128 			if (hw->phy.media_type != e1000_media_type_copper) {
3129 				err = ENOTSUP;
3130 				break;
3131 			}
3132 			Adapter->param_en_1000fdx = *(uint8_t *)pr_val;
3133 			Adapter->param_adv_1000fdx = *(uint8_t *)pr_val;
3134 			goto reset;
3135 		case MAC_PROP_EN_100FDX_CAP:
3136 			if (hw->phy.media_type != e1000_media_type_copper) {
3137 				err = ENOTSUP;
3138 				break;
3139 			}
3140 			Adapter->param_en_100fdx = *(uint8_t *)pr_val;
3141 			Adapter->param_adv_100fdx = *(uint8_t *)pr_val;
3142 			goto reset;
3143 		case MAC_PROP_EN_100HDX_CAP:
3144 			if (hw->phy.media_type != e1000_media_type_copper) {
3145 				err = ENOTSUP;
3146 				break;
3147 			}
3148 			Adapter->param_en_100hdx = *(uint8_t *)pr_val;
3149 			Adapter->param_adv_100hdx = *(uint8_t *)pr_val;
3150 			goto reset;
3151 		case MAC_PROP_EN_10FDX_CAP:
3152 			if (hw->phy.media_type != e1000_media_type_copper) {
3153 				err = ENOTSUP;
3154 				break;
3155 			}
3156 			Adapter->param_en_10fdx = *(uint8_t *)pr_val;
3157 			Adapter->param_adv_10fdx = *(uint8_t *)pr_val;
3158 			goto reset;
3159 		case MAC_PROP_EN_10HDX_CAP:
3160 			if (hw->phy.media_type != e1000_media_type_copper) {
3161 				err = ENOTSUP;
3162 				break;
3163 			}
3164 			Adapter->param_en_10hdx = *(uint8_t *)pr_val;
3165 			Adapter->param_adv_10hdx = *(uint8_t *)pr_val;
3166 			goto reset;
3167 		case MAC_PROP_AUTONEG:
3168 			if (hw->phy.media_type != e1000_media_type_copper) {
3169 				err = ENOTSUP;
3170 				break;
3171 			}
3172 			Adapter->param_adv_autoneg = *(uint8_t *)pr_val;
3173 			goto reset;
3174 		case MAC_PROP_FLOWCTRL:
3175 			fc->send_xon = B_TRUE;
3176 			bcopy(pr_val, &flowctrl, sizeof (flowctrl));
3177 
3178 			switch (flowctrl) {
3179 			default:
3180 				err = EINVAL;
3181 				break;
3182 			case LINK_FLOWCTRL_NONE:
3183 				fc->requested_mode = e1000_fc_none;
3184 				break;
3185 			case LINK_FLOWCTRL_RX:
3186 				fc->requested_mode = e1000_fc_rx_pause;
3187 				break;
3188 			case LINK_FLOWCTRL_TX:
3189 				fc->requested_mode = e1000_fc_tx_pause;
3190 				break;
3191 			case LINK_FLOWCTRL_BI:
3192 				fc->requested_mode = e1000_fc_full;
3193 				break;
3194 			}
3195 reset:
3196 			if (err == 0) {
3197 				/* check PCH limits & reset the link */
3198 				e1000g_pch_limits(Adapter);
3199 				if (e1000g_reset_link(Adapter) != DDI_SUCCESS)
3200 					err = EINVAL;
3201 			}
3202 			break;
3203 		case MAC_PROP_ADV_1000FDX_CAP:
3204 		case MAC_PROP_ADV_1000HDX_CAP:
3205 		case MAC_PROP_ADV_100FDX_CAP:
3206 		case MAC_PROP_ADV_100HDX_CAP:
3207 		case MAC_PROP_ADV_10FDX_CAP:
3208 		case MAC_PROP_ADV_10HDX_CAP:
3209 		case MAC_PROP_EN_1000HDX_CAP:
3210 		case MAC_PROP_STATUS:
3211 		case MAC_PROP_SPEED:
3212 		case MAC_PROP_DUPLEX:
3213 			err = ENOTSUP; /* read-only prop. Can't set this. */
3214 			break;
3215 		case MAC_PROP_MTU:
3216 			/* adapter must be stopped for an MTU change */
3217 			if (Adapter->e1000g_state & E1000G_STARTED) {
3218 				err = EBUSY;
3219 				break;
3220 			}
3221 
3222 			cur_mtu = Adapter->default_mtu;
3223 
3224 			/* get new requested MTU */
3225 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
3226 			if (new_mtu == cur_mtu) {
3227 				err = 0;
3228 				break;
3229 			}
3230 
3231 			if ((new_mtu < DEFAULT_MTU) ||
3232 			    (new_mtu > Adapter->max_mtu)) {
3233 				err = EINVAL;
3234 				break;
3235 			}
3236 
3237 			/* inform MAC framework of new MTU */
3238 			err = mac_maxsdu_update(Adapter->mh, new_mtu);
3239 
3240 			if (err == 0) {
3241 				Adapter->default_mtu = new_mtu;
3242 				Adapter->max_frame_size =
3243 				    e1000g_mtu2maxframe(new_mtu);
3244 
3245 				/*
3246 				 * check PCH limits & set buffer sizes to
3247 				 * match new MTU
3248 				 */
3249 				e1000g_pch_limits(Adapter);
3250 				e1000g_set_bufsize(Adapter);
3251 
3252 				/*
3253 				 * decrease the number of descriptors and free
3254 				 * packets for jumbo frames to reduce tx/rx
3255 				 * resource consumption
3256 				 */
3257 				if (Adapter->max_frame_size >=
3258 				    (FRAME_SIZE_UPTO_4K)) {
3259 					if (Adapter->tx_desc_num_flag == 0)
3260 						Adapter->tx_desc_num =
3261 						    DEFAULT_JUMBO_NUM_TX_DESC;
3262 
3263 					if (Adapter->rx_desc_num_flag == 0)
3264 						Adapter->rx_desc_num =
3265 						    DEFAULT_JUMBO_NUM_RX_DESC;
3266 
3267 					if (Adapter->tx_buf_num_flag == 0)
3268 						Adapter->tx_freelist_num =
3269 						    DEFAULT_JUMBO_NUM_TX_BUF;
3270 
3271 					if (Adapter->rx_buf_num_flag == 0)
3272 						Adapter->rx_freelist_limit =
3273 						    DEFAULT_JUMBO_NUM_RX_BUF;
3274 				} else {
3275 					if (Adapter->tx_desc_num_flag == 0)
3276 						Adapter->tx_desc_num =
3277 						    DEFAULT_NUM_TX_DESCRIPTOR;
3278 
3279 					if (Adapter->rx_desc_num_flag == 0)
3280 						Adapter->rx_desc_num =
3281 						    DEFAULT_NUM_RX_DESCRIPTOR;
3282 
3283 					if (Adapter->tx_buf_num_flag == 0)
3284 						Adapter->tx_freelist_num =
3285 						    DEFAULT_NUM_TX_FREELIST;
3286 
3287 					if (Adapter->rx_buf_num_flag == 0)
3288 						Adapter->rx_freelist_limit =
3289 						    DEFAULT_NUM_RX_FREELIST;
3290 				}
3291 			}
3292 			break;
3293 		case MAC_PROP_PRIVATE:
3294 			err = e1000g_set_priv_prop(Adapter, pr_name,
3295 			    pr_valsize, pr_val);
3296 			break;
3297 		default:
3298 			err = ENOTSUP;
3299 			break;
3300 	}
3301 	rw_exit(&Adapter->chip_lock);
3302 	return (err);
3303 }
3304 
3305 static int
3306 e1000g_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3307     uint_t pr_valsize, void *pr_val)
3308 {
3309 	struct e1000g *Adapter = arg;
3310 	struct e1000_fc_info *fc = &Adapter->shared.fc;
3311 	int err = 0;
3312 	link_flowctrl_t flowctrl;
3313 	uint64_t tmp = 0;
3314 
3315 	switch (pr_num) {
3316 		case MAC_PROP_DUPLEX:
3317 			ASSERT(pr_valsize >= sizeof (link_duplex_t));
3318 			bcopy(&Adapter->link_duplex, pr_val,
3319 			    sizeof (link_duplex_t));
3320 			break;
3321 		case MAC_PROP_SPEED:
3322 			ASSERT(pr_valsize >= sizeof (uint64_t));
3323 			tmp = Adapter->link_speed * 1000000ull;
3324 			bcopy(&tmp, pr_val, sizeof (tmp));
3325 			break;
3326 		case MAC_PROP_AUTONEG:
3327 			*(uint8_t *)pr_val = Adapter->param_adv_autoneg;
3328 			break;
3329 		case MAC_PROP_FLOWCTRL:
3330 			ASSERT(pr_valsize >= sizeof (link_flowctrl_t));
3331 			switch (fc->current_mode) {
3332 				case e1000_fc_none:
3333 					flowctrl = LINK_FLOWCTRL_NONE;
3334 					break;
3335 				case e1000_fc_rx_pause:
3336 					flowctrl = LINK_FLOWCTRL_RX;
3337 					break;
3338 				case e1000_fc_tx_pause:
3339 					flowctrl = LINK_FLOWCTRL_TX;
3340 					break;
3341 				case e1000_fc_full:
3342 					flowctrl = LINK_FLOWCTRL_BI;
3343 					break;
3344 			}
3345 			bcopy(&flowctrl, pr_val, sizeof (flowctrl));
3346 			break;
3347 		case MAC_PROP_ADV_1000FDX_CAP:
3348 			*(uint8_t *)pr_val = Adapter->param_adv_1000fdx;
3349 			break;
3350 		case MAC_PROP_EN_1000FDX_CAP:
3351 			*(uint8_t *)pr_val = Adapter->param_en_1000fdx;
3352 			break;
3353 		case MAC_PROP_ADV_1000HDX_CAP:
3354 			*(uint8_t *)pr_val = Adapter->param_adv_1000hdx;
3355 			break;
3356 		case MAC_PROP_EN_1000HDX_CAP:
3357 			*(uint8_t *)pr_val = Adapter->param_en_1000hdx;
3358 			break;
3359 		case MAC_PROP_ADV_100FDX_CAP:
3360 			*(uint8_t *)pr_val = Adapter->param_adv_100fdx;
3361 			break;
3362 		case MAC_PROP_EN_100FDX_CAP:
3363 			*(uint8_t *)pr_val = Adapter->param_en_100fdx;
3364 			break;
3365 		case MAC_PROP_ADV_100HDX_CAP:
3366 			*(uint8_t *)pr_val = Adapter->param_adv_100hdx;
3367 			break;
3368 		case MAC_PROP_EN_100HDX_CAP:
3369 			*(uint8_t *)pr_val = Adapter->param_en_100hdx;
3370 			break;
3371 		case MAC_PROP_ADV_10FDX_CAP:
3372 			*(uint8_t *)pr_val = Adapter->param_adv_10fdx;
3373 			break;
3374 		case MAC_PROP_EN_10FDX_CAP:
3375 			*(uint8_t *)pr_val = Adapter->param_en_10fdx;
3376 			break;
3377 		case MAC_PROP_ADV_10HDX_CAP:
3378 			*(uint8_t *)pr_val = Adapter->param_adv_10hdx;
3379 			break;
3380 		case MAC_PROP_EN_10HDX_CAP:
3381 			*(uint8_t *)pr_val = Adapter->param_en_10hdx;
3382 			break;
3383 		case MAC_PROP_ADV_100T4_CAP:
3384 		case MAC_PROP_EN_100T4_CAP:
3385 			*(uint8_t *)pr_val = Adapter->param_adv_100t4;
3386 			break;
3387 		case MAC_PROP_PRIVATE:
3388 			err = e1000g_get_priv_prop(Adapter, pr_name,
3389 			    pr_valsize, pr_val);
3390 			break;
3391 		default:
3392 			err = ENOTSUP;
3393 			break;
3394 	}
3395 
3396 	return (err);
3397 }
3398 
3399 static void
3400 e1000g_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3401     mac_prop_info_handle_t prh)
3402 {
3403 	struct e1000g *Adapter = arg;
3404 	struct e1000_hw *hw = &Adapter->shared;
3405 
3406 	switch (pr_num) {
3407 	case MAC_PROP_DUPLEX:
3408 	case MAC_PROP_SPEED:
3409 	case MAC_PROP_ADV_1000FDX_CAP:
3410 	case MAC_PROP_ADV_1000HDX_CAP:
3411 	case MAC_PROP_ADV_100FDX_CAP:
3412 	case MAC_PROP_ADV_100HDX_CAP:
3413 	case MAC_PROP_ADV_10FDX_CAP:
3414 	case MAC_PROP_ADV_10HDX_CAP:
3415 	case MAC_PROP_ADV_100T4_CAP:
3416 	case MAC_PROP_EN_100T4_CAP:
3417 		mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3418 		break;
3419 
3420 	case MAC_PROP_EN_1000FDX_CAP:
3421 		if (hw->phy.media_type != e1000_media_type_copper) {
3422 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3423 		} else {
3424 			mac_prop_info_set_default_uint8(prh,
3425 			    ((Adapter->phy_ext_status &
3426 			    IEEE_ESR_1000T_FD_CAPS) ||
3427 			    (Adapter->phy_ext_status &
3428 			    IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0);
3429 		}
3430 		break;
3431 
3432 	case MAC_PROP_EN_100FDX_CAP:
3433 		if (hw->phy.media_type != e1000_media_type_copper) {
3434 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3435 		} else {
3436 			mac_prop_info_set_default_uint8(prh,
3437 			    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
3438 			    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
3439 			    ? 1 : 0);
3440 		}
3441 		break;
3442 
3443 	case MAC_PROP_EN_100HDX_CAP:
3444 		if (hw->phy.media_type != e1000_media_type_copper) {
3445 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3446 		} else {
3447 			mac_prop_info_set_default_uint8(prh,
3448 			    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
3449 			    (Adapter->phy_status & MII_SR_100T2_HD_CAPS))
3450 			    ? 1 : 0);
3451 		}
3452 		break;
3453 
3454 	case MAC_PROP_EN_10FDX_CAP:
3455 		if (hw->phy.media_type != e1000_media_type_copper) {
3456 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3457 		} else {
3458 			mac_prop_info_set_default_uint8(prh,
3459 			    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0);
3460 		}
3461 		break;
3462 
3463 	case MAC_PROP_EN_10HDX_CAP:
3464 		if (hw->phy.media_type != e1000_media_type_copper) {
3465 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3466 		} else {
3467 			mac_prop_info_set_default_uint8(prh,
3468 			    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0);
3469 		}
3470 		break;
3471 
3472 	case MAC_PROP_EN_1000HDX_CAP:
3473 		if (hw->phy.media_type != e1000_media_type_copper)
3474 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3475 		break;
3476 
3477 	case MAC_PROP_AUTONEG:
3478 		if (hw->phy.media_type != e1000_media_type_copper) {
3479 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3480 		} else {
3481 			mac_prop_info_set_default_uint8(prh,
3482 			    (Adapter->phy_status & MII_SR_AUTONEG_CAPS)
3483 			    ? 1 : 0);
3484 		}
3485 		break;
3486 
3487 	case MAC_PROP_FLOWCTRL:
3488 		mac_prop_info_set_default_link_flowctrl(prh, LINK_FLOWCTRL_BI);
3489 		break;
3490 
3491 	case MAC_PROP_MTU: {
3492 		struct e1000_mac_info *mac = &Adapter->shared.mac;
3493 		struct e1000_phy_info *phy = &Adapter->shared.phy;
3494 		uint32_t max;
3495 
3496 		/* some MAC types do not support jumbo frames */
3497 		if ((mac->type == e1000_ich8lan) ||
3498 		    ((mac->type == e1000_ich9lan) && (phy->type ==
3499 		    e1000_phy_ife))) {
3500 			max = DEFAULT_MTU;
3501 		} else {
3502 			max = Adapter->max_mtu;
3503 		}
3504 
3505 		mac_prop_info_set_range_uint32(prh, DEFAULT_MTU, max);
3506 		break;
3507 	}
3508 	case MAC_PROP_PRIVATE: {
3509 		char valstr[64];
3510 		int value;
3511 
3512 		if (strcmp(pr_name, "_adv_pause_cap") == 0 ||
3513 		    strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
3514 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3515 			return;
3516 		} else if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3517 			value = DEFAULT_TX_BCOPY_THRESHOLD;
3518 		} else if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3519 			value = DEFAULT_TX_INTR_ENABLE;
3520 		} else if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3521 			value = DEFAULT_TX_INTR_DELAY;
3522 		} else if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3523 			value = DEFAULT_TX_INTR_ABS_DELAY;
3524 		} else if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3525 			value = DEFAULT_RX_BCOPY_THRESHOLD;
3526 		} else if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3527 			value = DEFAULT_RX_LIMIT_ON_INTR;
3528 		} else if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3529 			value = DEFAULT_RX_INTR_DELAY;
3530 		} else if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3531 			value = DEFAULT_RX_INTR_ABS_DELAY;
3532 		} else if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3533 			value = DEFAULT_INTR_THROTTLING;
3534 		} else if (strcmp(pr_name, "_intr_adaptive") == 0) {
3535 			value = 1;
3536 		} else {
3537 			return;
3538 		}
3539 
3540 		(void) snprintf(valstr, sizeof (valstr), "%d", value);
3541 		mac_prop_info_set_default_str(prh, valstr);
3542 		break;
3543 	}
3544 	}
3545 }
3546 
3547 /* ARGSUSED2 */
3548 static int
3549 e1000g_set_priv_prop(struct e1000g *Adapter, const char *pr_name,
3550     uint_t pr_valsize, const void *pr_val)
3551 {
3552 	int err = 0;
3553 	long result;
3554 	struct e1000_hw *hw = &Adapter->shared;
3555 
3556 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3557 		if (pr_val == NULL) {
3558 			err = EINVAL;
3559 			return (err);
3560 		}
3561 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3562 		if (result < MIN_TX_BCOPY_THRESHOLD ||
3563 		    result > MAX_TX_BCOPY_THRESHOLD)
3564 			err = EINVAL;
3565 		else {
3566 			Adapter->tx_bcopy_thresh = (uint32_t)result;
3567 		}
3568 		return (err);
3569 	}
3570 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3571 		if (pr_val == NULL) {
3572 			err = EINVAL;
3573 			return (err);
3574 		}
3575 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3576 		if (result < 0 || result > 1)
3577 			err = EINVAL;
3578 		else {
3579 			Adapter->tx_intr_enable = (result == 1) ?
3580 			    B_TRUE: B_FALSE;
3581 			if (Adapter->tx_intr_enable)
3582 				e1000g_mask_tx_interrupt(Adapter);
3583 			else
3584 				e1000g_clear_tx_interrupt(Adapter);
3585 			if (e1000g_check_acc_handle(
3586 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3587 				ddi_fm_service_impact(Adapter->dip,
3588 				    DDI_SERVICE_DEGRADED);
3589 				err = EIO;
3590 			}
3591 		}
3592 		return (err);
3593 	}
3594 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3595 		if (pr_val == NULL) {
3596 			err = EINVAL;
3597 			return (err);
3598 		}
3599 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3600 		if (result < MIN_TX_INTR_DELAY ||
3601 		    result > MAX_TX_INTR_DELAY)
3602 			err = EINVAL;
3603 		else {
3604 			Adapter->tx_intr_delay = (uint32_t)result;
3605 			E1000_WRITE_REG(hw, E1000_TIDV, Adapter->tx_intr_delay);
3606 			if (e1000g_check_acc_handle(
3607 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3608 				ddi_fm_service_impact(Adapter->dip,
3609 				    DDI_SERVICE_DEGRADED);
3610 				err = EIO;
3611 			}
3612 		}
3613 		return (err);
3614 	}
3615 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3616 		if (pr_val == NULL) {
3617 			err = EINVAL;
3618 			return (err);
3619 		}
3620 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3621 		if (result < MIN_TX_INTR_ABS_DELAY ||
3622 		    result > MAX_TX_INTR_ABS_DELAY)
3623 			err = EINVAL;
3624 		else {
3625 			Adapter->tx_intr_abs_delay = (uint32_t)result;
3626 			E1000_WRITE_REG(hw, E1000_TADV,
3627 			    Adapter->tx_intr_abs_delay);
3628 			if (e1000g_check_acc_handle(
3629 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3630 				ddi_fm_service_impact(Adapter->dip,
3631 				    DDI_SERVICE_DEGRADED);
3632 				err = EIO;
3633 			}
3634 		}
3635 		return (err);
3636 	}
3637 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3638 		if (pr_val == NULL) {
3639 			err = EINVAL;
3640 			return (err);
3641 		}
3642 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3643 		if (result < MIN_RX_BCOPY_THRESHOLD ||
3644 		    result > MAX_RX_BCOPY_THRESHOLD)
3645 			err = EINVAL;
3646 		else
3647 			Adapter->rx_bcopy_thresh = (uint32_t)result;
3648 		return (err);
3649 	}
3650 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3651 		if (pr_val == NULL) {
3652 			err = EINVAL;
3653 			return (err);
3654 		}
3655 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3656 		if (result < MIN_RX_LIMIT_ON_INTR ||
3657 		    result > MAX_RX_LIMIT_ON_INTR)
3658 			err = EINVAL;
3659 		else
3660 			Adapter->rx_limit_onintr = (uint32_t)result;
3661 		return (err);
3662 	}
3663 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3664 		if (pr_val == NULL) {
3665 			err = EINVAL;
3666 			return (err);
3667 		}
3668 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3669 		if (result < MIN_RX_INTR_DELAY ||
3670 		    result > MAX_RX_INTR_DELAY)
3671 			err = EINVAL;
3672 		else {
3673 			Adapter->rx_intr_delay = (uint32_t)result;
3674 			E1000_WRITE_REG(hw, E1000_RDTR, Adapter->rx_intr_delay);
3675 			if (e1000g_check_acc_handle(
3676 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3677 				ddi_fm_service_impact(Adapter->dip,
3678 				    DDI_SERVICE_DEGRADED);
3679 				err = EIO;
3680 			}
3681 		}
3682 		return (err);
3683 	}
3684 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3685 		if (pr_val == NULL) {
3686 			err = EINVAL;
3687 			return (err);
3688 		}
3689 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3690 		if (result < MIN_RX_INTR_ABS_DELAY ||
3691 		    result > MAX_RX_INTR_ABS_DELAY)
3692 			err = EINVAL;
3693 		else {
3694 			Adapter->rx_intr_abs_delay = (uint32_t)result;
3695 			E1000_WRITE_REG(hw, E1000_RADV,
3696 			    Adapter->rx_intr_abs_delay);
3697 			if (e1000g_check_acc_handle(
3698 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3699 				ddi_fm_service_impact(Adapter->dip,
3700 				    DDI_SERVICE_DEGRADED);
3701 				err = EIO;
3702 			}
3703 		}
3704 		return (err);
3705 	}
3706 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3707 		if (pr_val == NULL) {
3708 			err = EINVAL;
3709 			return (err);
3710 		}
3711 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3712 		if (result < MIN_INTR_THROTTLING ||
3713 		    result > MAX_INTR_THROTTLING)
3714 			err = EINVAL;
3715 		else {
3716 			if (hw->mac.type >= e1000_82540) {
3717 				Adapter->intr_throttling_rate =
3718 				    (uint32_t)result;
3719 				E1000_WRITE_REG(hw, E1000_ITR,
3720 				    Adapter->intr_throttling_rate);
3721 				if (e1000g_check_acc_handle(
3722 				    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3723 					ddi_fm_service_impact(Adapter->dip,
3724 					    DDI_SERVICE_DEGRADED);
3725 					err = EIO;
3726 				}
3727 			} else
3728 				err = EINVAL;
3729 		}
3730 		return (err);
3731 	}
3732 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3733 		if (pr_val == NULL) {
3734 			err = EINVAL;
3735 			return (err);
3736 		}
3737 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3738 		if (result < 0 || result > 1)
3739 			err = EINVAL;
3740 		else {
3741 			if (hw->mac.type >= e1000_82540) {
3742 				Adapter->intr_adaptive = (result == 1) ?
3743 				    B_TRUE : B_FALSE;
3744 			} else {
3745 				err = EINVAL;
3746 			}
3747 		}
3748 		return (err);
3749 	}
3750 	return (ENOTSUP);
3751 }
3752 
3753 static int
3754 e1000g_get_priv_prop(struct e1000g *Adapter, const char *pr_name,
3755     uint_t pr_valsize, void *pr_val)
3756 {
3757 	int err = ENOTSUP;
3758 	int value;
3759 
3760 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
3761 		value = Adapter->param_adv_pause;
3762 		err = 0;
3763 		goto done;
3764 	}
3765 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
3766 		value = Adapter->param_adv_asym_pause;
3767 		err = 0;
3768 		goto done;
3769 	}
3770 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3771 		value = Adapter->tx_bcopy_thresh;
3772 		err = 0;
3773 		goto done;
3774 	}
3775 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3776 		value = Adapter->tx_intr_enable;
3777 		err = 0;
3778 		goto done;
3779 	}
3780 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3781 		value = Adapter->tx_intr_delay;
3782 		err = 0;
3783 		goto done;
3784 	}
3785 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3786 		value = Adapter->tx_intr_abs_delay;
3787 		err = 0;
3788 		goto done;
3789 	}
3790 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3791 		value = Adapter->rx_bcopy_thresh;
3792 		err = 0;
3793 		goto done;
3794 	}
3795 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3796 		value = Adapter->rx_limit_onintr;
3797 		err = 0;
3798 		goto done;
3799 	}
3800 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3801 		value = Adapter->rx_intr_delay;
3802 		err = 0;
3803 		goto done;
3804 	}
3805 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3806 		value = Adapter->rx_intr_abs_delay;
3807 		err = 0;
3808 		goto done;
3809 	}
3810 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3811 		value = Adapter->intr_throttling_rate;
3812 		err = 0;
3813 		goto done;
3814 	}
3815 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3816 		value = Adapter->intr_adaptive;
3817 		err = 0;
3818 		goto done;
3819 	}
3820 done:
3821 	if (err == 0) {
3822 		(void) snprintf(pr_val, pr_valsize, "%d", value);
3823 	}
3824 	return (err);
3825 }
3826 
3827 /*
3828  * e1000g_get_conf - get configurations set in e1000g.conf
3829  * This routine gets user-configured values out of the configuration
3830  * file e1000g.conf.
3831  *
3832  * For each configurable value, there is a minimum, a maximum, and a
3833  * default.
3834  * If user does not configure a value, use the default.
3835  * If user configures below the minimum, use the minumum.
3836  * If user configures above the maximum, use the maxumum.
3837  */
3838 static void
3839 e1000g_get_conf(struct e1000g *Adapter)
3840 {
3841 	struct e1000_hw *hw = &Adapter->shared;
3842 	boolean_t tbi_compatibility = B_FALSE;
3843 	boolean_t is_jumbo = B_FALSE;
3844 	int propval;
3845 	/*
3846 	 * decrease the number of descriptors and free packets
3847 	 * for jumbo frames to reduce tx/rx resource consumption
3848 	 */
3849 	if (Adapter->max_frame_size >= FRAME_SIZE_UPTO_4K) {
3850 		is_jumbo = B_TRUE;
3851 	}
3852 
3853 	/*
3854 	 * get each configurable property from e1000g.conf
3855 	 */
3856 
3857 	/*
3858 	 * NumTxDescriptors
3859 	 */
3860 	Adapter->tx_desc_num_flag =
3861 	    e1000g_get_prop(Adapter, "NumTxDescriptors",
3862 	    MIN_NUM_TX_DESCRIPTOR, MAX_NUM_TX_DESCRIPTOR,
3863 	    is_jumbo ? DEFAULT_JUMBO_NUM_TX_DESC
3864 	    : DEFAULT_NUM_TX_DESCRIPTOR, &propval);
3865 	Adapter->tx_desc_num = propval;
3866 
3867 	/*
3868 	 * NumRxDescriptors
3869 	 */
3870 	Adapter->rx_desc_num_flag =
3871 	    e1000g_get_prop(Adapter, "NumRxDescriptors",
3872 	    MIN_NUM_RX_DESCRIPTOR, MAX_NUM_RX_DESCRIPTOR,
3873 	    is_jumbo ? DEFAULT_JUMBO_NUM_RX_DESC
3874 	    : DEFAULT_NUM_RX_DESCRIPTOR, &propval);
3875 	Adapter->rx_desc_num = propval;
3876 
3877 	/*
3878 	 * NumRxFreeList
3879 	 */
3880 	Adapter->rx_buf_num_flag =
3881 	    e1000g_get_prop(Adapter, "NumRxFreeList",
3882 	    MIN_NUM_RX_FREELIST, MAX_NUM_RX_FREELIST,
3883 	    is_jumbo ? DEFAULT_JUMBO_NUM_RX_BUF
3884 	    : DEFAULT_NUM_RX_FREELIST, &propval);
3885 	Adapter->rx_freelist_limit = propval;
3886 
3887 	/*
3888 	 * NumTxPacketList
3889 	 */
3890 	Adapter->tx_buf_num_flag =
3891 	    e1000g_get_prop(Adapter, "NumTxPacketList",
3892 	    MIN_NUM_TX_FREELIST, MAX_NUM_TX_FREELIST,
3893 	    is_jumbo ? DEFAULT_JUMBO_NUM_TX_BUF
3894 	    : DEFAULT_NUM_TX_FREELIST, &propval);
3895 	Adapter->tx_freelist_num = propval;
3896 
3897 	/*
3898 	 * FlowControl
3899 	 */
3900 	hw->fc.send_xon = B_TRUE;
3901 	(void) e1000g_get_prop(Adapter, "FlowControl",
3902 	    e1000_fc_none, 4, DEFAULT_FLOW_CONTROL, &propval);
3903 	hw->fc.requested_mode = propval;
3904 	/* 4 is the setting that says "let the eeprom decide" */
3905 	if (hw->fc.requested_mode == 4)
3906 		hw->fc.requested_mode = e1000_fc_default;
3907 
3908 	/*
3909 	 * Max Num Receive Packets on Interrupt
3910 	 */
3911 	(void) e1000g_get_prop(Adapter, "MaxNumReceivePackets",
3912 	    MIN_RX_LIMIT_ON_INTR, MAX_RX_LIMIT_ON_INTR,
3913 	    DEFAULT_RX_LIMIT_ON_INTR, &propval);
3914 	Adapter->rx_limit_onintr = propval;
3915 
3916 	/*
3917 	 * PHY master slave setting
3918 	 */
3919 	(void) e1000g_get_prop(Adapter, "SetMasterSlave",
3920 	    e1000_ms_hw_default, e1000_ms_auto,
3921 	    e1000_ms_hw_default, &propval);
3922 	hw->phy.ms_type = propval;
3923 
3924 	/*
3925 	 * Parameter which controls TBI mode workaround, which is only
3926 	 * needed on certain switches such as Cisco 6500/Foundry
3927 	 */
3928 	(void) e1000g_get_prop(Adapter, "TbiCompatibilityEnable",
3929 	    0, 1, DEFAULT_TBI_COMPAT_ENABLE, &propval);
3930 	tbi_compatibility = (propval == 1);
3931 	e1000_set_tbi_compatibility_82543(hw, tbi_compatibility);
3932 
3933 	/*
3934 	 * MSI Enable
3935 	 */
3936 	(void) e1000g_get_prop(Adapter, "MSIEnable",
3937 	    0, 1, DEFAULT_MSI_ENABLE, &propval);
3938 	Adapter->msi_enable = (propval == 1);
3939 
3940 	/*
3941 	 * Interrupt Throttling Rate
3942 	 */
3943 	(void) e1000g_get_prop(Adapter, "intr_throttling_rate",
3944 	    MIN_INTR_THROTTLING, MAX_INTR_THROTTLING,
3945 	    DEFAULT_INTR_THROTTLING, &propval);
3946 	Adapter->intr_throttling_rate = propval;
3947 
3948 	/*
3949 	 * Adaptive Interrupt Blanking Enable/Disable
3950 	 * It is enabled by default
3951 	 */
3952 	(void) e1000g_get_prop(Adapter, "intr_adaptive", 0, 1, 1,
3953 	    &propval);
3954 	Adapter->intr_adaptive = (propval == 1);
3955 
3956 	/*
3957 	 * Hardware checksum enable/disable parameter
3958 	 */
3959 	(void) e1000g_get_prop(Adapter, "tx_hcksum_enable",
3960 	    0, 1, DEFAULT_TX_HCKSUM_ENABLE, &propval);
3961 	Adapter->tx_hcksum_enable = (propval == 1);
3962 	/*
3963 	 * Checksum on/off selection via global parameters.
3964 	 *
3965 	 * If the chip is flagged as not capable of (correctly)
3966 	 * handling checksumming, we don't enable it on either
3967 	 * Rx or Tx side.  Otherwise, we take this chip's settings
3968 	 * from the patchable global defaults.
3969 	 *
3970 	 * We advertise our capabilities only if TX offload is
3971 	 * enabled.  On receive, the stack will accept checksummed
3972 	 * packets anyway, even if we haven't said we can deliver
3973 	 * them.
3974 	 */
3975 	switch (hw->mac.type) {
3976 		case e1000_82540:
3977 		case e1000_82544:
3978 		case e1000_82545:
3979 		case e1000_82545_rev_3:
3980 		case e1000_82546:
3981 		case e1000_82546_rev_3:
3982 		case e1000_82571:
3983 		case e1000_82572:
3984 		case e1000_82573:
3985 		case e1000_80003es2lan:
3986 			break;
3987 		/*
3988 		 * For the following Intel PRO/1000 chipsets, we have not
3989 		 * tested the hardware checksum offload capability, so we
3990 		 * disable the capability for them.
3991 		 *	e1000_82542,
3992 		 *	e1000_82543,
3993 		 *	e1000_82541,
3994 		 *	e1000_82541_rev_2,
3995 		 *	e1000_82547,
3996 		 *	e1000_82547_rev_2,
3997 		 */
3998 		default:
3999 			Adapter->tx_hcksum_enable = B_FALSE;
4000 	}
4001 
4002 	/*
4003 	 * Large Send Offloading(LSO) Enable/Disable
4004 	 * If the tx hardware checksum is not enabled, LSO should be
4005 	 * disabled.
4006 	 */
4007 	(void) e1000g_get_prop(Adapter, "lso_enable",
4008 	    0, 1, DEFAULT_LSO_ENABLE, &propval);
4009 	Adapter->lso_enable = (propval == 1);
4010 
4011 	switch (hw->mac.type) {
4012 		case e1000_82546:
4013 		case e1000_82546_rev_3:
4014 			if (Adapter->lso_enable)
4015 				Adapter->lso_premature_issue = B_TRUE;
4016 			/* FALLTHRU */
4017 		case e1000_82571:
4018 		case e1000_82572:
4019 		case e1000_82573:
4020 		case e1000_80003es2lan:
4021 			break;
4022 		default:
4023 			Adapter->lso_enable = B_FALSE;
4024 	}
4025 
4026 	if (!Adapter->tx_hcksum_enable) {
4027 		Adapter->lso_premature_issue = B_FALSE;
4028 		Adapter->lso_enable = B_FALSE;
4029 	}
4030 
4031 	/*
4032 	 * If mem_workaround_82546 is enabled, the rx buffer allocated by
4033 	 * e1000_82545, e1000_82546 and e1000_82546_rev_3
4034 	 * will not cross 64k boundary.
4035 	 */
4036 	(void) e1000g_get_prop(Adapter, "mem_workaround_82546",
4037 	    0, 1, DEFAULT_MEM_WORKAROUND_82546, &propval);
4038 	Adapter->mem_workaround_82546 = (propval == 1);
4039 
4040 	/*
4041 	 * Max number of multicast addresses
4042 	 */
4043 	(void) e1000g_get_prop(Adapter, "mcast_max_num",
4044 	    MIN_MCAST_NUM, MAX_MCAST_NUM, hw->mac.mta_reg_count * 32,
4045 	    &propval);
4046 	Adapter->mcast_max_num = propval;
4047 }
4048 
4049 /*
4050  * e1000g_get_prop - routine to read properties
4051  *
4052  * Get a user-configure property value out of the configuration
4053  * file e1000g.conf.
4054  *
4055  * Caller provides name of the property, a default value, a minimum
4056  * value, a maximum value and a pointer to the returned property
4057  * value.
4058  *
4059  * Return B_TRUE if the configured value of the property is not a default
4060  * value, otherwise return B_FALSE.
4061  */
4062 static boolean_t
4063 e1000g_get_prop(struct e1000g *Adapter,	/* point to per-adapter structure */
4064     char *propname,		/* name of the property */
4065     int minval,			/* minimum acceptable value */
4066     int maxval,			/* maximim acceptable value */
4067     int defval,			/* default value */
4068     int *propvalue)		/* property value return to caller */
4069 {
4070 	int propval;		/* value returned for requested property */
4071 	int *props;		/* point to array of properties returned */
4072 	uint_t nprops;		/* number of property value returned */
4073 	boolean_t ret = B_TRUE;
4074 
4075 	/*
4076 	 * get the array of properties from the config file
4077 	 */
4078 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, Adapter->dip,
4079 	    DDI_PROP_DONTPASS, propname, &props, &nprops) == DDI_PROP_SUCCESS) {
4080 		/* got some properties, test if we got enough */
4081 		if (Adapter->instance < nprops) {
4082 			propval = props[Adapter->instance];
4083 		} else {
4084 			/* not enough properties configured */
4085 			propval = defval;
4086 			E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
4087 			    "Not Enough %s values found in e1000g.conf"
4088 			    " - set to %d\n",
4089 			    propname, propval);
4090 			ret = B_FALSE;
4091 		}
4092 
4093 		/* free memory allocated for properties */
4094 		ddi_prop_free(props);
4095 
4096 	} else {
4097 		propval = defval;
4098 		ret = B_FALSE;
4099 	}
4100 
4101 	/*
4102 	 * enforce limits
4103 	 */
4104 	if (propval > maxval) {
4105 		propval = maxval;
4106 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
4107 		    "Too High %s value in e1000g.conf - set to %d\n",
4108 		    propname, propval);
4109 	}
4110 
4111 	if (propval < minval) {
4112 		propval = minval;
4113 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
4114 		    "Too Low %s value in e1000g.conf - set to %d\n",
4115 		    propname, propval);
4116 	}
4117 
4118 	*propvalue = propval;
4119 	return (ret);
4120 }
4121 
4122 static boolean_t
4123 e1000g_link_check(struct e1000g *Adapter)
4124 {
4125 	uint16_t speed, duplex, phydata;
4126 	boolean_t link_changed = B_FALSE;
4127 	struct e1000_hw *hw;
4128 	uint32_t reg_tarc;
4129 
4130 	hw = &Adapter->shared;
4131 
4132 	if (e1000g_link_up(Adapter)) {
4133 		/*
4134 		 * The Link is up, check whether it was marked as down earlier
4135 		 */
4136 		if (Adapter->link_state != LINK_STATE_UP) {
4137 			(void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
4138 			Adapter->link_speed = speed;
4139 			Adapter->link_duplex = duplex;
4140 			Adapter->link_state = LINK_STATE_UP;
4141 			link_changed = B_TRUE;
4142 
4143 			if (Adapter->link_speed == SPEED_1000)
4144 				Adapter->stall_threshold = TX_STALL_TIME_2S;
4145 			else
4146 				Adapter->stall_threshold = TX_STALL_TIME_8S;
4147 
4148 			Adapter->tx_link_down_timeout = 0;
4149 
4150 			if ((hw->mac.type == e1000_82571) ||
4151 			    (hw->mac.type == e1000_82572)) {
4152 				reg_tarc = E1000_READ_REG(hw, E1000_TARC(0));
4153 				if (speed == SPEED_1000)
4154 					reg_tarc |= (1 << 21);
4155 				else
4156 					reg_tarc &= ~(1 << 21);
4157 				E1000_WRITE_REG(hw, E1000_TARC(0), reg_tarc);
4158 			}
4159 		}
4160 		Adapter->smartspeed = 0;
4161 	} else {
4162 		if (Adapter->link_state != LINK_STATE_DOWN) {
4163 			Adapter->link_speed = 0;
4164 			Adapter->link_duplex = 0;
4165 			Adapter->link_state = LINK_STATE_DOWN;
4166 			link_changed = B_TRUE;
4167 
4168 			/*
4169 			 * SmartSpeed workaround for Tabor/TanaX, When the
4170 			 * driver loses link disable auto master/slave
4171 			 * resolution.
4172 			 */
4173 			if (hw->phy.type == e1000_phy_igp) {
4174 				(void) e1000_read_phy_reg(hw,
4175 				    PHY_1000T_CTRL, &phydata);
4176 				phydata |= CR_1000T_MS_ENABLE;
4177 				(void) e1000_write_phy_reg(hw,
4178 				    PHY_1000T_CTRL, phydata);
4179 			}
4180 		} else {
4181 			e1000g_smartspeed(Adapter);
4182 		}
4183 
4184 		if (Adapter->e1000g_state & E1000G_STARTED) {
4185 			if (Adapter->tx_link_down_timeout <
4186 			    MAX_TX_LINK_DOWN_TIMEOUT) {
4187 				Adapter->tx_link_down_timeout++;
4188 			} else if (Adapter->tx_link_down_timeout ==
4189 			    MAX_TX_LINK_DOWN_TIMEOUT) {
4190 				e1000g_tx_clean(Adapter);
4191 				Adapter->tx_link_down_timeout++;
4192 			}
4193 		}
4194 	}
4195 
4196 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
4197 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4198 
4199 	return (link_changed);
4200 }
4201 
4202 /*
4203  * e1000g_reset_link - Using the link properties to setup the link
4204  */
4205 int
4206 e1000g_reset_link(struct e1000g *Adapter)
4207 {
4208 	struct e1000_mac_info *mac;
4209 	struct e1000_phy_info *phy;
4210 	struct e1000_hw *hw;
4211 	boolean_t invalid;
4212 
4213 	mac = &Adapter->shared.mac;
4214 	phy = &Adapter->shared.phy;
4215 	hw = &Adapter->shared;
4216 	invalid = B_FALSE;
4217 
4218 	if (hw->phy.media_type != e1000_media_type_copper)
4219 		goto out;
4220 
4221 	if (Adapter->param_adv_autoneg == 1) {
4222 		mac->autoneg = B_TRUE;
4223 		phy->autoneg_advertised = 0;
4224 
4225 		/*
4226 		 * 1000hdx is not supported for autonegotiation
4227 		 */
4228 		if (Adapter->param_adv_1000fdx == 1)
4229 			phy->autoneg_advertised |= ADVERTISE_1000_FULL;
4230 
4231 		if (Adapter->param_adv_100fdx == 1)
4232 			phy->autoneg_advertised |= ADVERTISE_100_FULL;
4233 
4234 		if (Adapter->param_adv_100hdx == 1)
4235 			phy->autoneg_advertised |= ADVERTISE_100_HALF;
4236 
4237 		if (Adapter->param_adv_10fdx == 1)
4238 			phy->autoneg_advertised |= ADVERTISE_10_FULL;
4239 
4240 		if (Adapter->param_adv_10hdx == 1)
4241 			phy->autoneg_advertised |= ADVERTISE_10_HALF;
4242 
4243 		if (phy->autoneg_advertised == 0)
4244 			invalid = B_TRUE;
4245 	} else {
4246 		mac->autoneg = B_FALSE;
4247 
4248 		/*
4249 		 * For Intel copper cards, 1000fdx and 1000hdx are not
4250 		 * supported for forced link
4251 		 */
4252 		if (Adapter->param_adv_100fdx == 1)
4253 			mac->forced_speed_duplex = ADVERTISE_100_FULL;
4254 		else if (Adapter->param_adv_100hdx == 1)
4255 			mac->forced_speed_duplex = ADVERTISE_100_HALF;
4256 		else if (Adapter->param_adv_10fdx == 1)
4257 			mac->forced_speed_duplex = ADVERTISE_10_FULL;
4258 		else if (Adapter->param_adv_10hdx == 1)
4259 			mac->forced_speed_duplex = ADVERTISE_10_HALF;
4260 		else
4261 			invalid = B_TRUE;
4262 
4263 	}
4264 
4265 	if (invalid) {
4266 		e1000g_log(Adapter, CE_WARN,
4267 		    "Invalid link settings. Setup link to "
4268 		    "support autonegotiation with all link capabilities.");
4269 		mac->autoneg = B_TRUE;
4270 		phy->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
4271 	}
4272 
4273 out:
4274 	return (e1000_setup_link(&Adapter->shared));
4275 }
4276 
4277 static void
4278 e1000g_timer_tx_resched(struct e1000g *Adapter)
4279 {
4280 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
4281 
4282 	rw_enter(&Adapter->chip_lock, RW_READER);
4283 
4284 	if (tx_ring->resched_needed &&
4285 	    ((ddi_get_lbolt() - tx_ring->resched_timestamp) >
4286 	    drv_usectohz(1000000)) &&
4287 	    (Adapter->e1000g_state & E1000G_STARTED) &&
4288 	    (tx_ring->tbd_avail >= DEFAULT_TX_NO_RESOURCE)) {
4289 		tx_ring->resched_needed = B_FALSE;
4290 		mac_tx_update(Adapter->mh);
4291 		E1000G_STAT(tx_ring->stat_reschedule);
4292 		E1000G_STAT(tx_ring->stat_timer_reschedule);
4293 	}
4294 
4295 	rw_exit(&Adapter->chip_lock);
4296 }
4297 
4298 static void
4299 e1000g_local_timer(void *ws)
4300 {
4301 	struct e1000g *Adapter = (struct e1000g *)ws;
4302 	struct e1000_hw *hw;
4303 	e1000g_ether_addr_t ether_addr;
4304 	boolean_t link_changed;
4305 
4306 	hw = &Adapter->shared;
4307 
4308 	if (Adapter->e1000g_state & E1000G_ERROR) {
4309 		rw_enter(&Adapter->chip_lock, RW_WRITER);
4310 		Adapter->e1000g_state &= ~E1000G_ERROR;
4311 		rw_exit(&Adapter->chip_lock);
4312 
4313 		Adapter->reset_count++;
4314 		if (e1000g_global_reset(Adapter)) {
4315 			ddi_fm_service_impact(Adapter->dip,
4316 			    DDI_SERVICE_RESTORED);
4317 			e1000g_timer_tx_resched(Adapter);
4318 		} else
4319 			ddi_fm_service_impact(Adapter->dip,
4320 			    DDI_SERVICE_LOST);
4321 		return;
4322 	}
4323 
4324 	if (e1000g_stall_check(Adapter)) {
4325 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4326 		    "Tx stall detected. Activate automatic recovery.\n");
4327 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_STALL);
4328 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
4329 		Adapter->reset_count++;
4330 		if (e1000g_reset_adapter(Adapter)) {
4331 			ddi_fm_service_impact(Adapter->dip,
4332 			    DDI_SERVICE_RESTORED);
4333 			e1000g_timer_tx_resched(Adapter);
4334 		}
4335 		return;
4336 	}
4337 
4338 	link_changed = B_FALSE;
4339 	rw_enter(&Adapter->chip_lock, RW_READER);
4340 	if (Adapter->link_complete)
4341 		link_changed = e1000g_link_check(Adapter);
4342 	rw_exit(&Adapter->chip_lock);
4343 
4344 	if (link_changed) {
4345 		if (!Adapter->reset_flag &&
4346 		    (Adapter->e1000g_state & E1000G_STARTED) &&
4347 		    !(Adapter->e1000g_state & E1000G_SUSPENDED))
4348 			mac_link_update(Adapter->mh, Adapter->link_state);
4349 		if (Adapter->link_state == LINK_STATE_UP)
4350 			Adapter->reset_flag = B_FALSE;
4351 	}
4352 	/*
4353 	 * Workaround for esb2. Data stuck in fifo on a link
4354 	 * down event. Reset the adapter to recover it.
4355 	 */
4356 	if (Adapter->esb2_workaround) {
4357 		Adapter->esb2_workaround = B_FALSE;
4358 		(void) e1000g_reset_adapter(Adapter);
4359 		return;
4360 	}
4361 
4362 	/*
4363 	 * With 82571 controllers, any locally administered address will
4364 	 * be overwritten when there is a reset on the other port.
4365 	 * Detect this circumstance and correct it.
4366 	 */
4367 	if ((hw->mac.type == e1000_82571) &&
4368 	    (e1000_get_laa_state_82571(hw) == B_TRUE)) {
4369 		ether_addr.reg.low = E1000_READ_REG_ARRAY(hw, E1000_RA, 0);
4370 		ether_addr.reg.high = E1000_READ_REG_ARRAY(hw, E1000_RA, 1);
4371 
4372 		ether_addr.reg.low = ntohl(ether_addr.reg.low);
4373 		ether_addr.reg.high = ntohl(ether_addr.reg.high);
4374 
4375 		if ((ether_addr.mac.addr[5] != hw->mac.addr[0]) ||
4376 		    (ether_addr.mac.addr[4] != hw->mac.addr[1]) ||
4377 		    (ether_addr.mac.addr[3] != hw->mac.addr[2]) ||
4378 		    (ether_addr.mac.addr[2] != hw->mac.addr[3]) ||
4379 		    (ether_addr.mac.addr[1] != hw->mac.addr[4]) ||
4380 		    (ether_addr.mac.addr[0] != hw->mac.addr[5])) {
4381 			e1000_rar_set(hw, hw->mac.addr, 0);
4382 		}
4383 	}
4384 
4385 	/*
4386 	 * Long TTL workaround for 82541/82547
4387 	 */
4388 	(void) e1000_igp_ttl_workaround_82547(hw);
4389 
4390 	/*
4391 	 * Check for Adaptive IFS settings If there are lots of collisions
4392 	 * change the value in steps...
4393 	 * These properties should only be set for 10/100
4394 	 */
4395 	if ((hw->phy.media_type == e1000_media_type_copper) &&
4396 	    ((Adapter->link_speed == SPEED_100) ||
4397 	    (Adapter->link_speed == SPEED_10))) {
4398 		e1000_update_adaptive(hw);
4399 	}
4400 	/*
4401 	 * Set Timer Interrupts
4402 	 */
4403 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
4404 
4405 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
4406 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4407 	else
4408 		e1000g_timer_tx_resched(Adapter);
4409 
4410 	restart_watchdog_timer(Adapter);
4411 }
4412 
4413 /*
4414  * The function e1000g_link_timer() is called when the timer for link setup
4415  * is expired, which indicates the completion of the link setup. The link
4416  * state will not be updated until the link setup is completed. And the
4417  * link state will not be sent to the upper layer through mac_link_update()
4418  * in this function. It will be updated in the local timer routine or the
4419  * interrupt service routine after the interface is started (plumbed).
4420  */
4421 static void
4422 e1000g_link_timer(void *arg)
4423 {
4424 	struct e1000g *Adapter = (struct e1000g *)arg;
4425 
4426 	mutex_enter(&Adapter->link_lock);
4427 	Adapter->link_complete = B_TRUE;
4428 	Adapter->link_tid = 0;
4429 	mutex_exit(&Adapter->link_lock);
4430 }
4431 
4432 /*
4433  * e1000g_force_speed_duplex - read forced speed/duplex out of e1000g.conf
4434  *
4435  * This function read the forced speed and duplex for 10/100 Mbps speeds
4436  * and also for 1000 Mbps speeds from the e1000g.conf file
4437  */
4438 static void
4439 e1000g_force_speed_duplex(struct e1000g *Adapter)
4440 {
4441 	int forced;
4442 	int propval;
4443 	struct e1000_mac_info *mac = &Adapter->shared.mac;
4444 	struct e1000_phy_info *phy = &Adapter->shared.phy;
4445 
4446 	/*
4447 	 * get value out of config file
4448 	 */
4449 	(void) e1000g_get_prop(Adapter, "ForceSpeedDuplex",
4450 	    GDIAG_10_HALF, GDIAG_ANY, GDIAG_ANY, &forced);
4451 
4452 	switch (forced) {
4453 	case GDIAG_10_HALF:
4454 		/*
4455 		 * Disable Auto Negotiation
4456 		 */
4457 		mac->autoneg = B_FALSE;
4458 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
4459 		break;
4460 	case GDIAG_10_FULL:
4461 		/*
4462 		 * Disable Auto Negotiation
4463 		 */
4464 		mac->autoneg = B_FALSE;
4465 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
4466 		break;
4467 	case GDIAG_100_HALF:
4468 		/*
4469 		 * Disable Auto Negotiation
4470 		 */
4471 		mac->autoneg = B_FALSE;
4472 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
4473 		break;
4474 	case GDIAG_100_FULL:
4475 		/*
4476 		 * Disable Auto Negotiation
4477 		 */
4478 		mac->autoneg = B_FALSE;
4479 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
4480 		break;
4481 	case GDIAG_1000_FULL:
4482 		/*
4483 		 * The gigabit spec requires autonegotiation.  Therefore,
4484 		 * when the user wants to force the speed to 1000Mbps, we
4485 		 * enable AutoNeg, but only allow the harware to advertise
4486 		 * 1000Mbps.  This is different from 10/100 operation, where
4487 		 * we are allowed to link without any negotiation.
4488 		 */
4489 		mac->autoneg = B_TRUE;
4490 		phy->autoneg_advertised = ADVERTISE_1000_FULL;
4491 		break;
4492 	default:	/* obey the setting of AutoNegAdvertised */
4493 		mac->autoneg = B_TRUE;
4494 		(void) e1000g_get_prop(Adapter, "AutoNegAdvertised",
4495 		    0, AUTONEG_ADVERTISE_SPEED_DEFAULT,
4496 		    AUTONEG_ADVERTISE_SPEED_DEFAULT, &propval);
4497 		phy->autoneg_advertised = (uint16_t)propval;
4498 		break;
4499 	}	/* switch */
4500 }
4501 
4502 /*
4503  * e1000g_get_max_frame_size - get jumbo frame setting from e1000g.conf
4504  *
4505  * This function reads MaxFrameSize from e1000g.conf
4506  */
4507 static void
4508 e1000g_get_max_frame_size(struct e1000g *Adapter)
4509 {
4510 	int max_frame;
4511 
4512 	/*
4513 	 * get value out of config file
4514 	 */
4515 	(void) e1000g_get_prop(Adapter, "MaxFrameSize", 0, 3, 0,
4516 	    &max_frame);
4517 
4518 	switch (max_frame) {
4519 	case 0:
4520 		Adapter->default_mtu = ETHERMTU;
4521 		break;
4522 	case 1:
4523 		Adapter->default_mtu = FRAME_SIZE_UPTO_4K -
4524 		    sizeof (struct ether_vlan_header) - ETHERFCSL;
4525 		break;
4526 	case 2:
4527 		Adapter->default_mtu = FRAME_SIZE_UPTO_8K -
4528 		    sizeof (struct ether_vlan_header) - ETHERFCSL;
4529 		break;
4530 	case 3:
4531 		Adapter->default_mtu = FRAME_SIZE_UPTO_16K -
4532 		    sizeof (struct ether_vlan_header) - ETHERFCSL;
4533 		break;
4534 	default:
4535 		Adapter->default_mtu = ETHERMTU;
4536 		break;
4537 	}	/* switch */
4538 
4539 	/*
4540 	 * If the user configed MTU is larger than the deivce's maximum MTU,
4541 	 * the MTU is set to the deivce's maximum value.
4542 	 */
4543 	if (Adapter->default_mtu > Adapter->max_mtu)
4544 		Adapter->default_mtu = Adapter->max_mtu;
4545 
4546 	Adapter->max_frame_size = e1000g_mtu2maxframe(Adapter->default_mtu);
4547 }
4548 
4549 /*
4550  * e1000g_pch_limits - Apply limits of the PCH silicon type
4551  *
4552  * At any frame size larger than the ethernet default,
4553  * prevent linking at 10/100 speeds.
4554  */
4555 static void
4556 e1000g_pch_limits(struct e1000g *Adapter)
4557 {
4558 	struct e1000_hw *hw = &Adapter->shared;
4559 
4560 	/* only applies to PCH silicon type */
4561 	if (hw->mac.type != e1000_pchlan && hw->mac.type != e1000_pch2lan)
4562 		return;
4563 
4564 	/* only applies to frames larger than ethernet default */
4565 	if (Adapter->max_frame_size > DEFAULT_FRAME_SIZE) {
4566 		hw->mac.autoneg = B_TRUE;
4567 		hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
4568 
4569 		Adapter->param_adv_autoneg = 1;
4570 		Adapter->param_adv_1000fdx = 1;
4571 
4572 		Adapter->param_adv_100fdx = 0;
4573 		Adapter->param_adv_100hdx = 0;
4574 		Adapter->param_adv_10fdx = 0;
4575 		Adapter->param_adv_10hdx = 0;
4576 
4577 		e1000g_param_sync(Adapter);
4578 	}
4579 }
4580 
4581 /*
4582  * e1000g_mtu2maxframe - convert given MTU to maximum frame size
4583  */
4584 static uint32_t
4585 e1000g_mtu2maxframe(uint32_t mtu)
4586 {
4587 	uint32_t maxframe;
4588 
4589 	maxframe = mtu + sizeof (struct ether_vlan_header) + ETHERFCSL;
4590 
4591 	return (maxframe);
4592 }
4593 
4594 static void
4595 arm_watchdog_timer(struct e1000g *Adapter)
4596 {
4597 	Adapter->watchdog_tid =
4598 	    timeout(e1000g_local_timer,
4599 	    (void *)Adapter, 1 * drv_usectohz(1000000));
4600 }
4601 #pragma inline(arm_watchdog_timer)
4602 
4603 static void
4604 enable_watchdog_timer(struct e1000g *Adapter)
4605 {
4606 	mutex_enter(&Adapter->watchdog_lock);
4607 
4608 	if (!Adapter->watchdog_timer_enabled) {
4609 		Adapter->watchdog_timer_enabled = B_TRUE;
4610 		Adapter->watchdog_timer_started = B_TRUE;
4611 		arm_watchdog_timer(Adapter);
4612 	}
4613 
4614 	mutex_exit(&Adapter->watchdog_lock);
4615 }
4616 
4617 static void
4618 disable_watchdog_timer(struct e1000g *Adapter)
4619 {
4620 	timeout_id_t tid;
4621 
4622 	mutex_enter(&Adapter->watchdog_lock);
4623 
4624 	Adapter->watchdog_timer_enabled = B_FALSE;
4625 	Adapter->watchdog_timer_started = B_FALSE;
4626 	tid = Adapter->watchdog_tid;
4627 	Adapter->watchdog_tid = 0;
4628 
4629 	mutex_exit(&Adapter->watchdog_lock);
4630 
4631 	if (tid != 0)
4632 		(void) untimeout(tid);
4633 }
4634 
4635 static void
4636 start_watchdog_timer(struct e1000g *Adapter)
4637 {
4638 	mutex_enter(&Adapter->watchdog_lock);
4639 
4640 	if (Adapter->watchdog_timer_enabled) {
4641 		if (!Adapter->watchdog_timer_started) {
4642 			Adapter->watchdog_timer_started = B_TRUE;
4643 			arm_watchdog_timer(Adapter);
4644 		}
4645 	}
4646 
4647 	mutex_exit(&Adapter->watchdog_lock);
4648 }
4649 
4650 static void
4651 restart_watchdog_timer(struct e1000g *Adapter)
4652 {
4653 	mutex_enter(&Adapter->watchdog_lock);
4654 
4655 	if (Adapter->watchdog_timer_started)
4656 		arm_watchdog_timer(Adapter);
4657 
4658 	mutex_exit(&Adapter->watchdog_lock);
4659 }
4660 
4661 static void
4662 stop_watchdog_timer(struct e1000g *Adapter)
4663 {
4664 	timeout_id_t tid;
4665 
4666 	mutex_enter(&Adapter->watchdog_lock);
4667 
4668 	Adapter->watchdog_timer_started = B_FALSE;
4669 	tid = Adapter->watchdog_tid;
4670 	Adapter->watchdog_tid = 0;
4671 
4672 	mutex_exit(&Adapter->watchdog_lock);
4673 
4674 	if (tid != 0)
4675 		(void) untimeout(tid);
4676 }
4677 
4678 static void
4679 stop_link_timer(struct e1000g *Adapter)
4680 {
4681 	timeout_id_t tid;
4682 
4683 	/* Disable the link timer */
4684 	mutex_enter(&Adapter->link_lock);
4685 
4686 	tid = Adapter->link_tid;
4687 	Adapter->link_tid = 0;
4688 
4689 	mutex_exit(&Adapter->link_lock);
4690 
4691 	if (tid != 0)
4692 		(void) untimeout(tid);
4693 }
4694 
4695 static void
4696 stop_82547_timer(e1000g_tx_ring_t *tx_ring)
4697 {
4698 	timeout_id_t tid;
4699 
4700 	/* Disable the tx timer for 82547 chipset */
4701 	mutex_enter(&tx_ring->tx_lock);
4702 
4703 	tx_ring->timer_enable_82547 = B_FALSE;
4704 	tid = tx_ring->timer_id_82547;
4705 	tx_ring->timer_id_82547 = 0;
4706 
4707 	mutex_exit(&tx_ring->tx_lock);
4708 
4709 	if (tid != 0)
4710 		(void) untimeout(tid);
4711 }
4712 
4713 void
4714 e1000g_clear_interrupt(struct e1000g *Adapter)
4715 {
4716 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC,
4717 	    0xffffffff & ~E1000_IMS_RXSEQ);
4718 }
4719 
4720 void
4721 e1000g_mask_interrupt(struct e1000g *Adapter)
4722 {
4723 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS,
4724 	    IMS_ENABLE_MASK & ~E1000_IMS_TXDW);
4725 
4726 	if (Adapter->tx_intr_enable)
4727 		e1000g_mask_tx_interrupt(Adapter);
4728 }
4729 
4730 /*
4731  * This routine is called by e1000g_quiesce(), therefore must not block.
4732  */
4733 void
4734 e1000g_clear_all_interrupts(struct e1000g *Adapter)
4735 {
4736 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, 0xffffffff);
4737 }
4738 
4739 void
4740 e1000g_mask_tx_interrupt(struct e1000g *Adapter)
4741 {
4742 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS, E1000_IMS_TXDW);
4743 }
4744 
4745 void
4746 e1000g_clear_tx_interrupt(struct e1000g *Adapter)
4747 {
4748 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, E1000_IMS_TXDW);
4749 }
4750 
4751 static void
4752 e1000g_smartspeed(struct e1000g *Adapter)
4753 {
4754 	struct e1000_hw *hw = &Adapter->shared;
4755 	uint16_t phy_status;
4756 	uint16_t phy_ctrl;
4757 
4758 	/*
4759 	 * If we're not T-or-T, or we're not autoneg'ing, or we're not
4760 	 * advertising 1000Full, we don't even use the workaround
4761 	 */
4762 	if ((hw->phy.type != e1000_phy_igp) ||
4763 	    !hw->mac.autoneg ||
4764 	    !(hw->phy.autoneg_advertised & ADVERTISE_1000_FULL))
4765 		return;
4766 
4767 	/*
4768 	 * True if this is the first call of this function or after every
4769 	 * 30 seconds of not having link
4770 	 */
4771 	if (Adapter->smartspeed == 0) {
4772 		/*
4773 		 * If Master/Slave config fault is asserted twice, we
4774 		 * assume back-to-back
4775 		 */
4776 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4777 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4778 			return;
4779 
4780 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4781 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4782 			return;
4783 		/*
4784 		 * We're assuming back-2-back because our status register
4785 		 * insists! there's a fault in the master/slave
4786 		 * relationship that was "negotiated"
4787 		 */
4788 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4789 		/*
4790 		 * Is the phy configured for manual configuration of
4791 		 * master/slave?
4792 		 */
4793 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4794 			/*
4795 			 * Yes.  Then disable manual configuration (enable
4796 			 * auto configuration) of master/slave
4797 			 */
4798 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4799 			(void) e1000_write_phy_reg(hw,
4800 			    PHY_1000T_CTRL, phy_ctrl);
4801 			/*
4802 			 * Effectively starting the clock
4803 			 */
4804 			Adapter->smartspeed++;
4805 			/*
4806 			 * Restart autonegotiation
4807 			 */
4808 			if (!e1000_phy_setup_autoneg(hw) &&
4809 			    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4810 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4811 				    MII_CR_RESTART_AUTO_NEG);
4812 				(void) e1000_write_phy_reg(hw,
4813 				    PHY_CONTROL, phy_ctrl);
4814 			}
4815 		}
4816 		return;
4817 		/*
4818 		 * Has 6 seconds transpired still without link? Remember,
4819 		 * you should reset the smartspeed counter once you obtain
4820 		 * link
4821 		 */
4822 	} else if (Adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4823 		/*
4824 		 * Yes.  Remember, we did at the start determine that
4825 		 * there's a master/slave configuration fault, so we're
4826 		 * still assuming there's someone on the other end, but we
4827 		 * just haven't yet been able to talk to it. We then
4828 		 * re-enable auto configuration of master/slave to see if
4829 		 * we're running 2/3 pair cables.
4830 		 */
4831 		/*
4832 		 * If still no link, perhaps using 2/3 pair cable
4833 		 */
4834 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4835 		phy_ctrl |= CR_1000T_MS_ENABLE;
4836 		(void) e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4837 		/*
4838 		 * Restart autoneg with phy enabled for manual
4839 		 * configuration of master/slave
4840 		 */
4841 		if (!e1000_phy_setup_autoneg(hw) &&
4842 		    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4843 			phy_ctrl |=
4844 			    (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
4845 			(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
4846 		}
4847 		/*
4848 		 * Hopefully, there are no more faults and we've obtained
4849 		 * link as a result.
4850 		 */
4851 	}
4852 	/*
4853 	 * Restart process after E1000_SMARTSPEED_MAX iterations (30
4854 	 * seconds)
4855 	 */
4856 	if (Adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4857 		Adapter->smartspeed = 0;
4858 }
4859 
4860 static boolean_t
4861 is_valid_mac_addr(uint8_t *mac_addr)
4862 {
4863 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
4864 	const uint8_t addr_test2[6] =
4865 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4866 
4867 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
4868 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
4869 		return (B_FALSE);
4870 
4871 	return (B_TRUE);
4872 }
4873 
4874 /*
4875  * e1000g_stall_check - check for tx stall
4876  *
4877  * This function checks if the adapter is stalled (in transmit).
4878  *
4879  * It is called each time the watchdog timeout is invoked.
4880  * If the transmit descriptor reclaim continuously fails,
4881  * the watchdog value will increment by 1. If the watchdog
4882  * value exceeds the threshold, the adapter is assumed to
4883  * have stalled and need to be reset.
4884  */
4885 static boolean_t
4886 e1000g_stall_check(struct e1000g *Adapter)
4887 {
4888 	e1000g_tx_ring_t *tx_ring;
4889 
4890 	tx_ring = Adapter->tx_ring;
4891 
4892 	if (Adapter->link_state != LINK_STATE_UP)
4893 		return (B_FALSE);
4894 
4895 	(void) e1000g_recycle(tx_ring);
4896 
4897 	if (Adapter->stall_flag)
4898 		return (B_TRUE);
4899 
4900 	return (B_FALSE);
4901 }
4902 
4903 #ifdef E1000G_DEBUG
4904 static enum ioc_reply
4905 e1000g_pp_ioctl(struct e1000g *e1000gp, struct iocblk *iocp, mblk_t *mp)
4906 {
4907 	void (*ppfn)(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
4908 	e1000g_peekpoke_t *ppd;
4909 	uint64_t mem_va;
4910 	uint64_t maxoff;
4911 	boolean_t peek;
4912 
4913 	switch (iocp->ioc_cmd) {
4914 
4915 	case E1000G_IOC_REG_PEEK:
4916 		peek = B_TRUE;
4917 		break;
4918 
4919 	case E1000G_IOC_REG_POKE:
4920 		peek = B_FALSE;
4921 		break;
4922 
4923 	deault:
4924 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4925 		    "e1000g_diag_ioctl: invalid ioctl command 0x%X\n",
4926 		    iocp->ioc_cmd);
4927 		return (IOC_INVAL);
4928 	}
4929 
4930 	/*
4931 	 * Validate format of ioctl
4932 	 */
4933 	if (iocp->ioc_count != sizeof (e1000g_peekpoke_t))
4934 		return (IOC_INVAL);
4935 	if (mp->b_cont == NULL)
4936 		return (IOC_INVAL);
4937 
4938 	ppd = (e1000g_peekpoke_t *)(uintptr_t)mp->b_cont->b_rptr;
4939 
4940 	/*
4941 	 * Validate request parameters
4942 	 */
4943 	switch (ppd->pp_acc_space) {
4944 
4945 	default:
4946 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4947 		    "e1000g_diag_ioctl: invalid access space 0x%X\n",
4948 		    ppd->pp_acc_space);
4949 		return (IOC_INVAL);
4950 
4951 	case E1000G_PP_SPACE_REG:
4952 		/*
4953 		 * Memory-mapped I/O space
4954 		 */
4955 		ASSERT(ppd->pp_acc_size == 4);
4956 		if (ppd->pp_acc_size != 4)
4957 			return (IOC_INVAL);
4958 
4959 		if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
4960 			return (IOC_INVAL);
4961 
4962 		mem_va = 0;
4963 		maxoff = 0x10000;
4964 		ppfn = peek ? e1000g_ioc_peek_reg : e1000g_ioc_poke_reg;
4965 		break;
4966 
4967 	case E1000G_PP_SPACE_E1000G:
4968 		/*
4969 		 * E1000g data structure!
4970 		 */
4971 		mem_va = (uintptr_t)e1000gp;
4972 		maxoff = sizeof (struct e1000g);
4973 		ppfn = peek ? e1000g_ioc_peek_mem : e1000g_ioc_poke_mem;
4974 		break;
4975 
4976 	}
4977 
4978 	if (ppd->pp_acc_offset >= maxoff)
4979 		return (IOC_INVAL);
4980 
4981 	if (ppd->pp_acc_offset + ppd->pp_acc_size > maxoff)
4982 		return (IOC_INVAL);
4983 
4984 	/*
4985 	 * All OK - go!
4986 	 */
4987 	ppd->pp_acc_offset += mem_va;
4988 	(*ppfn)(e1000gp, ppd);
4989 	return (peek ? IOC_REPLY : IOC_ACK);
4990 }
4991 
4992 static void
4993 e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4994 {
4995 	ddi_acc_handle_t handle;
4996 	uint32_t *regaddr;
4997 
4998 	handle = e1000gp->osdep.reg_handle;
4999 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
5000 	    (uintptr_t)ppd->pp_acc_offset);
5001 
5002 	ppd->pp_acc_data = ddi_get32(handle, regaddr);
5003 }
5004 
5005 static void
5006 e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5007 {
5008 	ddi_acc_handle_t handle;
5009 	uint32_t *regaddr;
5010 	uint32_t value;
5011 
5012 	handle = e1000gp->osdep.reg_handle;
5013 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
5014 	    (uintptr_t)ppd->pp_acc_offset);
5015 	value = (uint32_t)ppd->pp_acc_data;
5016 
5017 	ddi_put32(handle, regaddr, value);
5018 }
5019 
5020 static void
5021 e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5022 {
5023 	uint64_t value;
5024 	void *vaddr;
5025 
5026 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5027 
5028 	switch (ppd->pp_acc_size) {
5029 	case 1:
5030 		value = *(uint8_t *)vaddr;
5031 		break;
5032 
5033 	case 2:
5034 		value = *(uint16_t *)vaddr;
5035 		break;
5036 
5037 	case 4:
5038 		value = *(uint32_t *)vaddr;
5039 		break;
5040 
5041 	case 8:
5042 		value = *(uint64_t *)vaddr;
5043 		break;
5044 	}
5045 
5046 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
5047 	    "e1000g_ioc_peek_mem($%p, $%p) peeked 0x%llx from $%p\n",
5048 	    (void *)e1000gp, (void *)ppd, value, vaddr);
5049 
5050 	ppd->pp_acc_data = value;
5051 }
5052 
5053 static void
5054 e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5055 {
5056 	uint64_t value;
5057 	void *vaddr;
5058 
5059 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5060 	value = ppd->pp_acc_data;
5061 
5062 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
5063 	    "e1000g_ioc_poke_mem($%p, $%p) poking 0x%llx at $%p\n",
5064 	    (void *)e1000gp, (void *)ppd, value, vaddr);
5065 
5066 	switch (ppd->pp_acc_size) {
5067 	case 1:
5068 		*(uint8_t *)vaddr = (uint8_t)value;
5069 		break;
5070 
5071 	case 2:
5072 		*(uint16_t *)vaddr = (uint16_t)value;
5073 		break;
5074 
5075 	case 4:
5076 		*(uint32_t *)vaddr = (uint32_t)value;
5077 		break;
5078 
5079 	case 8:
5080 		*(uint64_t *)vaddr = (uint64_t)value;
5081 		break;
5082 	}
5083 }
5084 #endif
5085 
5086 /*
5087  * Loopback Support
5088  */
5089 static lb_property_t lb_normal =
5090 	{ normal,	"normal",	E1000G_LB_NONE		};
5091 static lb_property_t lb_external1000 =
5092 	{ external,	"1000Mbps",	E1000G_LB_EXTERNAL_1000	};
5093 static lb_property_t lb_external100 =
5094 	{ external,	"100Mbps",	E1000G_LB_EXTERNAL_100	};
5095 static lb_property_t lb_external10 =
5096 	{ external,	"10Mbps",	E1000G_LB_EXTERNAL_10	};
5097 static lb_property_t lb_phy =
5098 	{ internal,	"PHY",		E1000G_LB_INTERNAL_PHY	};
5099 
5100 static enum ioc_reply
5101 e1000g_loopback_ioctl(struct e1000g *Adapter, struct iocblk *iocp, mblk_t *mp)
5102 {
5103 	lb_info_sz_t *lbsp;
5104 	lb_property_t *lbpp;
5105 	struct e1000_hw *hw;
5106 	uint32_t *lbmp;
5107 	uint32_t size;
5108 	uint32_t value;
5109 
5110 	hw = &Adapter->shared;
5111 
5112 	if (mp->b_cont == NULL)
5113 		return (IOC_INVAL);
5114 
5115 	if (!e1000g_check_loopback_support(hw)) {
5116 		e1000g_log(NULL, CE_WARN,
5117 		    "Loopback is not supported on e1000g%d", Adapter->instance);
5118 		return (IOC_INVAL);
5119 	}
5120 
5121 	switch (iocp->ioc_cmd) {
5122 	default:
5123 		return (IOC_INVAL);
5124 
5125 	case LB_GET_INFO_SIZE:
5126 		size = sizeof (lb_info_sz_t);
5127 		if (iocp->ioc_count != size)
5128 			return (IOC_INVAL);
5129 
5130 		rw_enter(&Adapter->chip_lock, RW_WRITER);
5131 		e1000g_get_phy_state(Adapter);
5132 
5133 		/*
5134 		 * Workaround for hardware faults. In order to get a stable
5135 		 * state of phy, we will wait for a specific interval and
5136 		 * try again. The time delay is an experiential value based
5137 		 * on our testing.
5138 		 */
5139 		msec_delay(100);
5140 		e1000g_get_phy_state(Adapter);
5141 		rw_exit(&Adapter->chip_lock);
5142 
5143 		value = sizeof (lb_normal);
5144 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5145 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5146 		    (hw->phy.media_type == e1000_media_type_fiber) ||
5147 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5148 			value += sizeof (lb_phy);
5149 			switch (hw->mac.type) {
5150 			case e1000_82571:
5151 			case e1000_82572:
5152 			case e1000_80003es2lan:
5153 				value += sizeof (lb_external1000);
5154 				break;
5155 			}
5156 		}
5157 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5158 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5159 			value += sizeof (lb_external100);
5160 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5161 			value += sizeof (lb_external10);
5162 
5163 		lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
5164 		*lbsp = value;
5165 		break;
5166 
5167 	case LB_GET_INFO:
5168 		value = sizeof (lb_normal);
5169 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5170 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5171 		    (hw->phy.media_type == e1000_media_type_fiber) ||
5172 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5173 			value += sizeof (lb_phy);
5174 			switch (hw->mac.type) {
5175 			case e1000_82571:
5176 			case e1000_82572:
5177 			case e1000_80003es2lan:
5178 				value += sizeof (lb_external1000);
5179 				break;
5180 			}
5181 		}
5182 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5183 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5184 			value += sizeof (lb_external100);
5185 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5186 			value += sizeof (lb_external10);
5187 
5188 		size = value;
5189 		if (iocp->ioc_count != size)
5190 			return (IOC_INVAL);
5191 
5192 		value = 0;
5193 		lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
5194 		lbpp[value++] = lb_normal;
5195 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5196 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5197 		    (hw->phy.media_type == e1000_media_type_fiber) ||
5198 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5199 			lbpp[value++] = lb_phy;
5200 			switch (hw->mac.type) {
5201 			case e1000_82571:
5202 			case e1000_82572:
5203 			case e1000_80003es2lan:
5204 				lbpp[value++] = lb_external1000;
5205 				break;
5206 			}
5207 		}
5208 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5209 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5210 			lbpp[value++] = lb_external100;
5211 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5212 			lbpp[value++] = lb_external10;
5213 		break;
5214 
5215 	case LB_GET_MODE:
5216 		size = sizeof (uint32_t);
5217 		if (iocp->ioc_count != size)
5218 			return (IOC_INVAL);
5219 
5220 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
5221 		*lbmp = Adapter->loopback_mode;
5222 		break;
5223 
5224 	case LB_SET_MODE:
5225 		size = 0;
5226 		if (iocp->ioc_count != sizeof (uint32_t))
5227 			return (IOC_INVAL);
5228 
5229 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
5230 		if (!e1000g_set_loopback_mode(Adapter, *lbmp))
5231 			return (IOC_INVAL);
5232 		break;
5233 	}
5234 
5235 	iocp->ioc_count = size;
5236 	iocp->ioc_error = 0;
5237 
5238 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
5239 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
5240 		return (IOC_INVAL);
5241 	}
5242 
5243 	return (IOC_REPLY);
5244 }
5245 
5246 static boolean_t
5247 e1000g_check_loopback_support(struct e1000_hw *hw)
5248 {
5249 	switch (hw->mac.type) {
5250 	case e1000_82540:
5251 	case e1000_82545:
5252 	case e1000_82545_rev_3:
5253 	case e1000_82546:
5254 	case e1000_82546_rev_3:
5255 	case e1000_82541:
5256 	case e1000_82541_rev_2:
5257 	case e1000_82547:
5258 	case e1000_82547_rev_2:
5259 	case e1000_82571:
5260 	case e1000_82572:
5261 	case e1000_82573:
5262 	case e1000_82574:
5263 	case e1000_80003es2lan:
5264 	case e1000_ich9lan:
5265 	case e1000_ich10lan:
5266 		return (B_TRUE);
5267 	}
5268 	return (B_FALSE);
5269 }
5270 
5271 static boolean_t
5272 e1000g_set_loopback_mode(struct e1000g *Adapter, uint32_t mode)
5273 {
5274 	struct e1000_hw *hw;
5275 	int i, times;
5276 	boolean_t link_up;
5277 
5278 	if (mode == Adapter->loopback_mode)
5279 		return (B_TRUE);
5280 
5281 	hw = &Adapter->shared;
5282 	times = 0;
5283 
5284 	Adapter->loopback_mode = mode;
5285 
5286 	if (mode == E1000G_LB_NONE) {
5287 		/* Reset the chip */
5288 		hw->phy.autoneg_wait_to_complete = B_TRUE;
5289 		(void) e1000g_reset_adapter(Adapter);
5290 		hw->phy.autoneg_wait_to_complete = B_FALSE;
5291 		return (B_TRUE);
5292 	}
5293 
5294 again:
5295 
5296 	rw_enter(&Adapter->chip_lock, RW_WRITER);
5297 
5298 	switch (mode) {
5299 	default:
5300 		rw_exit(&Adapter->chip_lock);
5301 		return (B_FALSE);
5302 
5303 	case E1000G_LB_EXTERNAL_1000:
5304 		e1000g_set_external_loopback_1000(Adapter);
5305 		break;
5306 
5307 	case E1000G_LB_EXTERNAL_100:
5308 		e1000g_set_external_loopback_100(Adapter);
5309 		break;
5310 
5311 	case E1000G_LB_EXTERNAL_10:
5312 		e1000g_set_external_loopback_10(Adapter);
5313 		break;
5314 
5315 	case E1000G_LB_INTERNAL_PHY:
5316 		e1000g_set_internal_loopback(Adapter);
5317 		break;
5318 	}
5319 
5320 	times++;
5321 
5322 	rw_exit(&Adapter->chip_lock);
5323 
5324 	/* Wait for link up */
5325 	for (i = (PHY_FORCE_LIMIT * 2); i > 0; i--)
5326 		msec_delay(100);
5327 
5328 	rw_enter(&Adapter->chip_lock, RW_WRITER);
5329 
5330 	link_up = e1000g_link_up(Adapter);
5331 
5332 	rw_exit(&Adapter->chip_lock);
5333 
5334 	if (!link_up) {
5335 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5336 		    "Failed to get the link up");
5337 		if (times < 2) {
5338 			/* Reset the link */
5339 			E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5340 			    "Reset the link ...");
5341 			(void) e1000g_reset_adapter(Adapter);
5342 			goto again;
5343 		}
5344 
5345 		/*
5346 		 * Reset driver to loopback none when set loopback failed
5347 		 * for the second time.
5348 		 */
5349 		Adapter->loopback_mode = E1000G_LB_NONE;
5350 
5351 		/* Reset the chip */
5352 		hw->phy.autoneg_wait_to_complete = B_TRUE;
5353 		(void) e1000g_reset_adapter(Adapter);
5354 		hw->phy.autoneg_wait_to_complete = B_FALSE;
5355 
5356 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5357 		    "Set loopback mode failed, reset to loopback none");
5358 
5359 		return (B_FALSE);
5360 	}
5361 
5362 	return (B_TRUE);
5363 }
5364 
5365 /*
5366  * The following loopback settings are from Intel's technical
5367  * document - "How To Loopback". All the register settings and
5368  * time delay values are directly inherited from the document
5369  * without more explanations available.
5370  */
5371 static void
5372 e1000g_set_internal_loopback(struct e1000g *Adapter)
5373 {
5374 	struct e1000_hw *hw;
5375 	uint32_t ctrl;
5376 	uint32_t status;
5377 	uint16_t phy_ctrl;
5378 	uint16_t phy_reg;
5379 	uint32_t txcw;
5380 
5381 	hw = &Adapter->shared;
5382 
5383 	/* Disable Smart Power Down */
5384 	phy_spd_state(hw, B_FALSE);
5385 
5386 	(void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
5387 	phy_ctrl &= ~(MII_CR_AUTO_NEG_EN | MII_CR_SPEED_100 | MII_CR_SPEED_10);
5388 	phy_ctrl |= MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000;
5389 
5390 	switch (hw->mac.type) {
5391 	case e1000_82540:
5392 	case e1000_82545:
5393 	case e1000_82545_rev_3:
5394 	case e1000_82546:
5395 	case e1000_82546_rev_3:
5396 	case e1000_82573:
5397 		/* Auto-MDI/MDIX off */
5398 		(void) e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
5399 		/* Reset PHY to update Auto-MDI/MDIX */
5400 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5401 		    phy_ctrl | MII_CR_RESET | MII_CR_AUTO_NEG_EN);
5402 		/* Reset PHY to auto-neg off and force 1000 */
5403 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5404 		    phy_ctrl | MII_CR_RESET);
5405 		/*
5406 		 * Disable PHY receiver for 82540/545/546 and 82573 Family.
5407 		 * See comments above e1000g_set_internal_loopback() for the
5408 		 * background.
5409 		 */
5410 		(void) e1000_write_phy_reg(hw, 29, 0x001F);
5411 		(void) e1000_write_phy_reg(hw, 30, 0x8FFC);
5412 		(void) e1000_write_phy_reg(hw, 29, 0x001A);
5413 		(void) e1000_write_phy_reg(hw, 30, 0x8FF0);
5414 		break;
5415 	case e1000_80003es2lan:
5416 		/* Force Link Up */
5417 		(void) e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
5418 		    0x1CC);
5419 		/* Sets PCS loopback at 1Gbs */
5420 		(void) e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
5421 		    0x1046);
5422 		break;
5423 	}
5424 
5425 	/*
5426 	 * The following registers should be set for e1000_phy_bm phy type.
5427 	 * e1000_82574, e1000_ich10lan and some e1000_ich9lan use this phy.
5428 	 * For others, we do not need to set these registers.
5429 	 */
5430 	if (hw->phy.type == e1000_phy_bm) {
5431 		/* Set Default MAC Interface speed to 1GB */
5432 		(void) e1000_read_phy_reg(hw, PHY_REG(2, 21), &phy_reg);
5433 		phy_reg &= ~0x0007;
5434 		phy_reg |= 0x006;
5435 		(void) e1000_write_phy_reg(hw, PHY_REG(2, 21), phy_reg);
5436 		/* Assert SW reset for above settings to take effect */
5437 		(void) e1000_phy_commit(hw);
5438 		msec_delay(1);
5439 		/* Force Full Duplex */
5440 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg);
5441 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 16),
5442 		    phy_reg | 0x000C);
5443 		/* Set Link Up (in force link) */
5444 		(void) e1000_read_phy_reg(hw, PHY_REG(776, 16), &phy_reg);
5445 		(void) e1000_write_phy_reg(hw, PHY_REG(776, 16),
5446 		    phy_reg | 0x0040);
5447 		/* Force Link */
5448 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg);
5449 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 16),
5450 		    phy_reg | 0x0040);
5451 		/* Set Early Link Enable */
5452 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 20), &phy_reg);
5453 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 20),
5454 		    phy_reg | 0x0400);
5455 	}
5456 
5457 	/* Set loopback */
5458 	(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl | MII_CR_LOOPBACK);
5459 
5460 	msec_delay(250);
5461 
5462 	/* Now set up the MAC to the same speed/duplex as the PHY. */
5463 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5464 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5465 	ctrl |= (E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
5466 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5467 	    E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
5468 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5469 
5470 	switch (hw->mac.type) {
5471 	case e1000_82540:
5472 	case e1000_82545:
5473 	case e1000_82545_rev_3:
5474 	case e1000_82546:
5475 	case e1000_82546_rev_3:
5476 		/*
5477 		 * For some serdes we'll need to commit the writes now
5478 		 * so that the status is updated on link
5479 		 */
5480 		if (hw->phy.media_type == e1000_media_type_internal_serdes) {
5481 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5482 			msec_delay(100);
5483 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
5484 		}
5485 
5486 		if (hw->phy.media_type == e1000_media_type_copper) {
5487 			/* Invert Loss of Signal */
5488 			ctrl |= E1000_CTRL_ILOS;
5489 		} else {
5490 			/* Set ILOS on fiber nic if half duplex is detected */
5491 			status = E1000_READ_REG(hw, E1000_STATUS);
5492 			if ((status & E1000_STATUS_FD) == 0)
5493 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5494 		}
5495 		break;
5496 
5497 	case e1000_82571:
5498 	case e1000_82572:
5499 		/*
5500 		 * The fiber/SerDes versions of this adapter do not contain an
5501 		 * accessible PHY. Therefore, loopback beyond MAC must be done
5502 		 * using SerDes analog loopback.
5503 		 */
5504 		if (hw->phy.media_type != e1000_media_type_copper) {
5505 			/* Disable autoneg by setting bit 31 of TXCW to zero */
5506 			txcw = E1000_READ_REG(hw, E1000_TXCW);
5507 			txcw &= ~((uint32_t)1 << 31);
5508 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
5509 
5510 			/*
5511 			 * Write 0x410 to Serdes Control register
5512 			 * to enable Serdes analog loopback
5513 			 */
5514 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
5515 			msec_delay(10);
5516 		}
5517 
5518 		status = E1000_READ_REG(hw, E1000_STATUS);
5519 		/* Set ILOS on fiber nic if half duplex is detected */
5520 		if ((hw->phy.media_type == e1000_media_type_fiber) &&
5521 		    ((status & E1000_STATUS_FD) == 0 ||
5522 		    (status & E1000_STATUS_LU) == 0))
5523 			ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5524 		else if (hw->phy.media_type == e1000_media_type_internal_serdes)
5525 			ctrl |= E1000_CTRL_SLU;
5526 		break;
5527 
5528 	case e1000_82573:
5529 		ctrl |= E1000_CTRL_ILOS;
5530 		break;
5531 	case e1000_ich9lan:
5532 	case e1000_ich10lan:
5533 		ctrl |= E1000_CTRL_SLU;
5534 		break;
5535 	}
5536 	if (hw->phy.type == e1000_phy_bm)
5537 		ctrl |= E1000_CTRL_SLU | E1000_CTRL_ILOS;
5538 
5539 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5540 }
5541 
5542 static void
5543 e1000g_set_external_loopback_1000(struct e1000g *Adapter)
5544 {
5545 	struct e1000_hw *hw;
5546 	uint32_t rctl;
5547 	uint32_t ctrl_ext;
5548 	uint32_t ctrl;
5549 	uint32_t status;
5550 	uint32_t txcw;
5551 	uint16_t phydata;
5552 
5553 	hw = &Adapter->shared;
5554 
5555 	/* Disable Smart Power Down */
5556 	phy_spd_state(hw, B_FALSE);
5557 
5558 	switch (hw->mac.type) {
5559 	case e1000_82571:
5560 	case e1000_82572:
5561 		switch (hw->phy.media_type) {
5562 		case e1000_media_type_copper:
5563 			/* Force link up (Must be done before the PHY writes) */
5564 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
5565 			ctrl |= E1000_CTRL_SLU;	/* Force Link Up */
5566 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5567 
5568 			rctl = E1000_READ_REG(hw, E1000_RCTL);
5569 			rctl |= (E1000_RCTL_EN |
5570 			    E1000_RCTL_SBP |
5571 			    E1000_RCTL_UPE |
5572 			    E1000_RCTL_MPE |
5573 			    E1000_RCTL_LPE |
5574 			    E1000_RCTL_BAM);		/* 0x803E */
5575 			E1000_WRITE_REG(hw, E1000_RCTL, rctl);
5576 
5577 			ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5578 			ctrl_ext |= (E1000_CTRL_EXT_SDP4_DATA |
5579 			    E1000_CTRL_EXT_SDP6_DATA |
5580 			    E1000_CTRL_EXT_SDP3_DATA |
5581 			    E1000_CTRL_EXT_SDP4_DIR |
5582 			    E1000_CTRL_EXT_SDP6_DIR |
5583 			    E1000_CTRL_EXT_SDP3_DIR);	/* 0x0DD0 */
5584 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5585 
5586 			/*
5587 			 * This sequence tunes the PHY's SDP and no customer
5588 			 * settable values. For background, see comments above
5589 			 * e1000g_set_internal_loopback().
5590 			 */
5591 			(void) e1000_write_phy_reg(hw, 0x0, 0x140);
5592 			msec_delay(10);
5593 			(void) e1000_write_phy_reg(hw, 0x9, 0x1A00);
5594 			(void) e1000_write_phy_reg(hw, 0x12, 0xC10);
5595 			(void) e1000_write_phy_reg(hw, 0x12, 0x1C10);
5596 			(void) e1000_write_phy_reg(hw, 0x1F37, 0x76);
5597 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x1);
5598 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x0);
5599 
5600 			(void) e1000_write_phy_reg(hw, 0x1F35, 0x65);
5601 			(void) e1000_write_phy_reg(hw, 0x1837, 0x3F7C);
5602 			(void) e1000_write_phy_reg(hw, 0x1437, 0x3FDC);
5603 			(void) e1000_write_phy_reg(hw, 0x1237, 0x3F7C);
5604 			(void) e1000_write_phy_reg(hw, 0x1137, 0x3FDC);
5605 
5606 			msec_delay(50);
5607 			break;
5608 		case e1000_media_type_fiber:
5609 		case e1000_media_type_internal_serdes:
5610 			status = E1000_READ_REG(hw, E1000_STATUS);
5611 			if (((status & E1000_STATUS_LU) == 0) ||
5612 			    (hw->phy.media_type ==
5613 			    e1000_media_type_internal_serdes)) {
5614 				ctrl = E1000_READ_REG(hw, E1000_CTRL);
5615 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5616 				E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5617 			}
5618 
5619 			/* Disable autoneg by setting bit 31 of TXCW to zero */
5620 			txcw = E1000_READ_REG(hw, E1000_TXCW);
5621 			txcw &= ~((uint32_t)1 << 31);
5622 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
5623 
5624 			/*
5625 			 * Write 0x410 to Serdes Control register
5626 			 * to enable Serdes analog loopback
5627 			 */
5628 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
5629 			msec_delay(10);
5630 			break;
5631 		default:
5632 			break;
5633 		}
5634 		break;
5635 	case e1000_82574:
5636 	case e1000_80003es2lan:
5637 	case e1000_ich9lan:
5638 	case e1000_ich10lan:
5639 		(void) e1000_read_phy_reg(hw, GG82563_REG(6, 16), &phydata);
5640 		(void) e1000_write_phy_reg(hw, GG82563_REG(6, 16),
5641 		    phydata | (1 << 5));
5642 		Adapter->param_adv_autoneg = 1;
5643 		Adapter->param_adv_1000fdx = 1;
5644 		(void) e1000g_reset_link(Adapter);
5645 		break;
5646 	}
5647 }
5648 
5649 static void
5650 e1000g_set_external_loopback_100(struct e1000g *Adapter)
5651 {
5652 	struct e1000_hw *hw;
5653 	uint32_t ctrl;
5654 	uint16_t phy_ctrl;
5655 
5656 	hw = &Adapter->shared;
5657 
5658 	/* Disable Smart Power Down */
5659 	phy_spd_state(hw, B_FALSE);
5660 
5661 	phy_ctrl = (MII_CR_FULL_DUPLEX |
5662 	    MII_CR_SPEED_100);
5663 
5664 	/* Force 100/FD, reset PHY */
5665 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5666 	    phy_ctrl | MII_CR_RESET);	/* 0xA100 */
5667 	msec_delay(10);
5668 
5669 	/* Force 100/FD */
5670 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5671 	    phy_ctrl);			/* 0x2100 */
5672 	msec_delay(10);
5673 
5674 	/* Now setup the MAC to the same speed/duplex as the PHY. */
5675 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5676 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5677 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
5678 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
5679 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5680 	    E1000_CTRL_SPD_100 |	/* Force Speed to 100 */
5681 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5682 
5683 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5684 }
5685 
5686 static void
5687 e1000g_set_external_loopback_10(struct e1000g *Adapter)
5688 {
5689 	struct e1000_hw *hw;
5690 	uint32_t ctrl;
5691 	uint16_t phy_ctrl;
5692 
5693 	hw = &Adapter->shared;
5694 
5695 	/* Disable Smart Power Down */
5696 	phy_spd_state(hw, B_FALSE);
5697 
5698 	phy_ctrl = (MII_CR_FULL_DUPLEX |
5699 	    MII_CR_SPEED_10);
5700 
5701 	/* Force 10/FD, reset PHY */
5702 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5703 	    phy_ctrl | MII_CR_RESET);	/* 0x8100 */
5704 	msec_delay(10);
5705 
5706 	/* Force 10/FD */
5707 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5708 	    phy_ctrl);			/* 0x0100 */
5709 	msec_delay(10);
5710 
5711 	/* Now setup the MAC to the same speed/duplex as the PHY. */
5712 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5713 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5714 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
5715 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
5716 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5717 	    E1000_CTRL_SPD_10 |		/* Force Speed to 10 */
5718 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5719 
5720 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5721 }
5722 
5723 #ifdef __sparc
5724 static boolean_t
5725 e1000g_find_mac_address(struct e1000g *Adapter)
5726 {
5727 	struct e1000_hw *hw = &Adapter->shared;
5728 	uchar_t *bytes;
5729 	struct ether_addr sysaddr;
5730 	uint_t nelts;
5731 	int err;
5732 	boolean_t found = B_FALSE;
5733 
5734 	/*
5735 	 * The "vendor's factory-set address" may already have
5736 	 * been extracted from the chip, but if the property
5737 	 * "local-mac-address" is set we use that instead.
5738 	 *
5739 	 * We check whether it looks like an array of 6
5740 	 * bytes (which it should, if OBP set it).  If we can't
5741 	 * make sense of it this way, we'll ignore it.
5742 	 */
5743 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
5744 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
5745 	if (err == DDI_PROP_SUCCESS) {
5746 		if (nelts == ETHERADDRL) {
5747 			while (nelts--)
5748 				hw->mac.addr[nelts] = bytes[nelts];
5749 			found = B_TRUE;
5750 		}
5751 		ddi_prop_free(bytes);
5752 	}
5753 
5754 	/*
5755 	 * Look up the OBP property "local-mac-address?". If the user has set
5756 	 * 'local-mac-address? = false', use "the system address" instead.
5757 	 */
5758 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip, 0,
5759 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
5760 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
5761 			if (localetheraddr(NULL, &sysaddr) != 0) {
5762 				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
5763 				found = B_TRUE;
5764 			}
5765 		}
5766 		ddi_prop_free(bytes);
5767 	}
5768 
5769 	/*
5770 	 * Finally(!), if there's a valid "mac-address" property (created
5771 	 * if we netbooted from this interface), we must use this instead
5772 	 * of any of the above to ensure that the NFS/install server doesn't
5773 	 * get confused by the address changing as Solaris takes over!
5774 	 */
5775 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
5776 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
5777 	if (err == DDI_PROP_SUCCESS) {
5778 		if (nelts == ETHERADDRL) {
5779 			while (nelts--)
5780 				hw->mac.addr[nelts] = bytes[nelts];
5781 			found = B_TRUE;
5782 		}
5783 		ddi_prop_free(bytes);
5784 	}
5785 
5786 	if (found) {
5787 		bcopy(hw->mac.addr, hw->mac.perm_addr,
5788 		    ETHERADDRL);
5789 	}
5790 
5791 	return (found);
5792 }
5793 #endif
5794 
5795 static int
5796 e1000g_add_intrs(struct e1000g *Adapter)
5797 {
5798 	dev_info_t *devinfo;
5799 	int intr_types;
5800 	int rc;
5801 
5802 	devinfo = Adapter->dip;
5803 
5804 	/* Get supported interrupt types */
5805 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
5806 
5807 	if (rc != DDI_SUCCESS) {
5808 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5809 		    "Get supported interrupt types failed: %d\n", rc);
5810 		return (DDI_FAILURE);
5811 	}
5812 
5813 	/*
5814 	 * Based on Intel Technical Advisory document (TA-160), there are some
5815 	 * cases where some older Intel PCI-X NICs may "advertise" to the OS
5816 	 * that it supports MSI, but in fact has problems.
5817 	 * So we should only enable MSI for PCI-E NICs and disable MSI for old
5818 	 * PCI/PCI-X NICs.
5819 	 */
5820 	if (Adapter->shared.mac.type < e1000_82571)
5821 		Adapter->msi_enable = B_FALSE;
5822 
5823 	if ((intr_types & DDI_INTR_TYPE_MSI) && Adapter->msi_enable) {
5824 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_MSI);
5825 
5826 		if (rc != DDI_SUCCESS) {
5827 			/* EMPTY */
5828 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5829 			    "Add MSI failed, trying Legacy interrupts\n");
5830 		} else {
5831 			Adapter->intr_type = DDI_INTR_TYPE_MSI;
5832 		}
5833 	}
5834 
5835 	if ((Adapter->intr_type == 0) &&
5836 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
5837 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_FIXED);
5838 
5839 		if (rc != DDI_SUCCESS) {
5840 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5841 			    "Add Legacy interrupts failed\n");
5842 			return (DDI_FAILURE);
5843 		}
5844 
5845 		Adapter->intr_type = DDI_INTR_TYPE_FIXED;
5846 	}
5847 
5848 	if (Adapter->intr_type == 0) {
5849 		E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5850 		    "No interrupts registered\n");
5851 		return (DDI_FAILURE);
5852 	}
5853 
5854 	return (DDI_SUCCESS);
5855 }
5856 
5857 /*
5858  * e1000g_intr_add() handles MSI/Legacy interrupts
5859  */
5860 static int
5861 e1000g_intr_add(struct e1000g *Adapter, int intr_type)
5862 {
5863 	dev_info_t *devinfo;
5864 	int count, avail, actual;
5865 	int x, y, rc, inum = 0;
5866 	int flag;
5867 	ddi_intr_handler_t *intr_handler;
5868 
5869 	devinfo = Adapter->dip;
5870 
5871 	/* get number of interrupts */
5872 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
5873 	if ((rc != DDI_SUCCESS) || (count == 0)) {
5874 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5875 		    "Get interrupt number failed. Return: %d, count: %d\n",
5876 		    rc, count);
5877 		return (DDI_FAILURE);
5878 	}
5879 
5880 	/* get number of available interrupts */
5881 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
5882 	if ((rc != DDI_SUCCESS) || (avail == 0)) {
5883 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5884 		    "Get interrupt available number failed. "
5885 		    "Return: %d, available: %d\n", rc, avail);
5886 		return (DDI_FAILURE);
5887 	}
5888 
5889 	if (avail < count) {
5890 		/* EMPTY */
5891 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5892 		    "Interrupts count: %d, available: %d\n",
5893 		    count, avail);
5894 	}
5895 
5896 	/* Allocate an array of interrupt handles */
5897 	Adapter->intr_size = count * sizeof (ddi_intr_handle_t);
5898 	Adapter->htable = kmem_alloc(Adapter->intr_size, KM_SLEEP);
5899 
5900 	/* Set NORMAL behavior for both MSI and FIXED interrupt */
5901 	flag = DDI_INTR_ALLOC_NORMAL;
5902 
5903 	/* call ddi_intr_alloc() */
5904 	rc = ddi_intr_alloc(devinfo, Adapter->htable, intr_type, inum,
5905 	    count, &actual, flag);
5906 
5907 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
5908 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5909 		    "Allocate interrupts failed: %d\n", rc);
5910 
5911 		kmem_free(Adapter->htable, Adapter->intr_size);
5912 		return (DDI_FAILURE);
5913 	}
5914 
5915 	if (actual < count) {
5916 		/* EMPTY */
5917 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5918 		    "Interrupts requested: %d, received: %d\n",
5919 		    count, actual);
5920 	}
5921 
5922 	Adapter->intr_cnt = actual;
5923 
5924 	/* Get priority for first msi, assume remaining are all the same */
5925 	rc = ddi_intr_get_pri(Adapter->htable[0], &Adapter->intr_pri);
5926 
5927 	if (rc != DDI_SUCCESS) {
5928 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5929 		    "Get interrupt priority failed: %d\n", rc);
5930 
5931 		/* Free already allocated intr */
5932 		for (y = 0; y < actual; y++)
5933 			(void) ddi_intr_free(Adapter->htable[y]);
5934 
5935 		kmem_free(Adapter->htable, Adapter->intr_size);
5936 		return (DDI_FAILURE);
5937 	}
5938 
5939 	/*
5940 	 * In Legacy Interrupt mode, for PCI-Express adapters, we should
5941 	 * use the interrupt service routine e1000g_intr_pciexpress()
5942 	 * to avoid interrupt stealing when sharing interrupt with other
5943 	 * devices.
5944 	 */
5945 	if (Adapter->shared.mac.type < e1000_82571)
5946 		intr_handler = (ddi_intr_handler_t *)e1000g_intr;
5947 	else
5948 		intr_handler = (ddi_intr_handler_t *)e1000g_intr_pciexpress;
5949 
5950 	/* Call ddi_intr_add_handler() */
5951 	for (x = 0; x < actual; x++) {
5952 		rc = ddi_intr_add_handler(Adapter->htable[x],
5953 		    intr_handler, (caddr_t)Adapter, NULL);
5954 
5955 		if (rc != DDI_SUCCESS) {
5956 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5957 			    "Add interrupt handler failed: %d\n", rc);
5958 
5959 			/* Remove already added handler */
5960 			for (y = 0; y < x; y++)
5961 				(void) ddi_intr_remove_handler(
5962 				    Adapter->htable[y]);
5963 
5964 			/* Free already allocated intr */
5965 			for (y = 0; y < actual; y++)
5966 				(void) ddi_intr_free(Adapter->htable[y]);
5967 
5968 			kmem_free(Adapter->htable, Adapter->intr_size);
5969 			return (DDI_FAILURE);
5970 		}
5971 	}
5972 
5973 	rc = ddi_intr_get_cap(Adapter->htable[0], &Adapter->intr_cap);
5974 
5975 	if (rc != DDI_SUCCESS) {
5976 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5977 		    "Get interrupt cap failed: %d\n", rc);
5978 
5979 		/* Free already allocated intr */
5980 		for (y = 0; y < actual; y++) {
5981 			(void) ddi_intr_remove_handler(Adapter->htable[y]);
5982 			(void) ddi_intr_free(Adapter->htable[y]);
5983 		}
5984 
5985 		kmem_free(Adapter->htable, Adapter->intr_size);
5986 		return (DDI_FAILURE);
5987 	}
5988 
5989 	return (DDI_SUCCESS);
5990 }
5991 
5992 static int
5993 e1000g_rem_intrs(struct e1000g *Adapter)
5994 {
5995 	int x;
5996 	int rc;
5997 
5998 	for (x = 0; x < Adapter->intr_cnt; x++) {
5999 		rc = ddi_intr_remove_handler(Adapter->htable[x]);
6000 		if (rc != DDI_SUCCESS) {
6001 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6002 			    "Remove intr handler failed: %d\n", rc);
6003 			return (DDI_FAILURE);
6004 		}
6005 
6006 		rc = ddi_intr_free(Adapter->htable[x]);
6007 		if (rc != DDI_SUCCESS) {
6008 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6009 			    "Free intr failed: %d\n", rc);
6010 			return (DDI_FAILURE);
6011 		}
6012 	}
6013 
6014 	kmem_free(Adapter->htable, Adapter->intr_size);
6015 
6016 	return (DDI_SUCCESS);
6017 }
6018 
6019 static int
6020 e1000g_enable_intrs(struct e1000g *Adapter)
6021 {
6022 	int x;
6023 	int rc;
6024 
6025 	/* Enable interrupts */
6026 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
6027 		/* Call ddi_intr_block_enable() for MSI */
6028 		rc = ddi_intr_block_enable(Adapter->htable,
6029 		    Adapter->intr_cnt);
6030 		if (rc != DDI_SUCCESS) {
6031 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6032 			    "Enable block intr failed: %d\n", rc);
6033 			return (DDI_FAILURE);
6034 		}
6035 	} else {
6036 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
6037 		for (x = 0; x < Adapter->intr_cnt; x++) {
6038 			rc = ddi_intr_enable(Adapter->htable[x]);
6039 			if (rc != DDI_SUCCESS) {
6040 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6041 				    "Enable intr failed: %d\n", rc);
6042 				return (DDI_FAILURE);
6043 			}
6044 		}
6045 	}
6046 
6047 	return (DDI_SUCCESS);
6048 }
6049 
6050 static int
6051 e1000g_disable_intrs(struct e1000g *Adapter)
6052 {
6053 	int x;
6054 	int rc;
6055 
6056 	/* Disable all interrupts */
6057 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
6058 		rc = ddi_intr_block_disable(Adapter->htable,
6059 		    Adapter->intr_cnt);
6060 		if (rc != DDI_SUCCESS) {
6061 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6062 			    "Disable block intr failed: %d\n", rc);
6063 			return (DDI_FAILURE);
6064 		}
6065 	} else {
6066 		for (x = 0; x < Adapter->intr_cnt; x++) {
6067 			rc = ddi_intr_disable(Adapter->htable[x]);
6068 			if (rc != DDI_SUCCESS) {
6069 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6070 				    "Disable intr failed: %d\n", rc);
6071 				return (DDI_FAILURE);
6072 			}
6073 		}
6074 	}
6075 
6076 	return (DDI_SUCCESS);
6077 }
6078 
6079 /*
6080  * e1000g_get_phy_state - get the state of PHY registers, save in the adapter
6081  */
6082 static void
6083 e1000g_get_phy_state(struct e1000g *Adapter)
6084 {
6085 	struct e1000_hw *hw = &Adapter->shared;
6086 
6087 	if (hw->phy.media_type == e1000_media_type_copper) {
6088 		(void) e1000_read_phy_reg(hw, PHY_CONTROL, &Adapter->phy_ctrl);
6089 		(void) e1000_read_phy_reg(hw, PHY_STATUS, &Adapter->phy_status);
6090 		(void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
6091 		    &Adapter->phy_an_adv);
6092 		(void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP,
6093 		    &Adapter->phy_an_exp);
6094 		(void) e1000_read_phy_reg(hw, PHY_EXT_STATUS,
6095 		    &Adapter->phy_ext_status);
6096 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL,
6097 		    &Adapter->phy_1000t_ctrl);
6098 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS,
6099 		    &Adapter->phy_1000t_status);
6100 		(void) e1000_read_phy_reg(hw, PHY_LP_ABILITY,
6101 		    &Adapter->phy_lp_able);
6102 
6103 		Adapter->param_autoneg_cap =
6104 		    (Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
6105 		Adapter->param_pause_cap =
6106 		    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
6107 		Adapter->param_asym_pause_cap =
6108 		    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
6109 		Adapter->param_1000fdx_cap =
6110 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
6111 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
6112 		Adapter->param_1000hdx_cap =
6113 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
6114 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
6115 		Adapter->param_100t4_cap =
6116 		    (Adapter->phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
6117 		Adapter->param_100fdx_cap =
6118 		    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
6119 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
6120 		Adapter->param_100hdx_cap =
6121 		    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
6122 		    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
6123 		Adapter->param_10fdx_cap =
6124 		    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
6125 		Adapter->param_10hdx_cap =
6126 		    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
6127 
6128 		Adapter->param_adv_autoneg = hw->mac.autoneg;
6129 		Adapter->param_adv_pause =
6130 		    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
6131 		Adapter->param_adv_asym_pause =
6132 		    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
6133 		Adapter->param_adv_1000hdx =
6134 		    (Adapter->phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
6135 		Adapter->param_adv_100t4 =
6136 		    (Adapter->phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
6137 		if (Adapter->param_adv_autoneg == 1) {
6138 			Adapter->param_adv_1000fdx =
6139 			    (Adapter->phy_1000t_ctrl & CR_1000T_FD_CAPS)
6140 			    ? 1 : 0;
6141 			Adapter->param_adv_100fdx =
6142 			    (Adapter->phy_an_adv & NWAY_AR_100TX_FD_CAPS)
6143 			    ? 1 : 0;
6144 			Adapter->param_adv_100hdx =
6145 			    (Adapter->phy_an_adv & NWAY_AR_100TX_HD_CAPS)
6146 			    ? 1 : 0;
6147 			Adapter->param_adv_10fdx =
6148 			    (Adapter->phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
6149 			Adapter->param_adv_10hdx =
6150 			    (Adapter->phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
6151 		}
6152 
6153 		Adapter->param_lp_autoneg =
6154 		    (Adapter->phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
6155 		Adapter->param_lp_pause =
6156 		    (Adapter->phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
6157 		Adapter->param_lp_asym_pause =
6158 		    (Adapter->phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
6159 		Adapter->param_lp_1000fdx =
6160 		    (Adapter->phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
6161 		Adapter->param_lp_1000hdx =
6162 		    (Adapter->phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
6163 		Adapter->param_lp_100t4 =
6164 		    (Adapter->phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
6165 		Adapter->param_lp_100fdx =
6166 		    (Adapter->phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
6167 		Adapter->param_lp_100hdx =
6168 		    (Adapter->phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
6169 		Adapter->param_lp_10fdx =
6170 		    (Adapter->phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
6171 		Adapter->param_lp_10hdx =
6172 		    (Adapter->phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
6173 	} else {
6174 		/*
6175 		 * 1Gig Fiber adapter only offers 1Gig Full Duplex. Meaning,
6176 		 * it can only work with 1Gig Full Duplex Link Partner.
6177 		 */
6178 		Adapter->param_autoneg_cap = 0;
6179 		Adapter->param_pause_cap = 1;
6180 		Adapter->param_asym_pause_cap = 1;
6181 		Adapter->param_1000fdx_cap = 1;
6182 		Adapter->param_1000hdx_cap = 0;
6183 		Adapter->param_100t4_cap = 0;
6184 		Adapter->param_100fdx_cap = 0;
6185 		Adapter->param_100hdx_cap = 0;
6186 		Adapter->param_10fdx_cap = 0;
6187 		Adapter->param_10hdx_cap = 0;
6188 
6189 		Adapter->param_adv_autoneg = 0;
6190 		Adapter->param_adv_pause = 1;
6191 		Adapter->param_adv_asym_pause = 1;
6192 		Adapter->param_adv_1000fdx = 1;
6193 		Adapter->param_adv_1000hdx = 0;
6194 		Adapter->param_adv_100t4 = 0;
6195 		Adapter->param_adv_100fdx = 0;
6196 		Adapter->param_adv_100hdx = 0;
6197 		Adapter->param_adv_10fdx = 0;
6198 		Adapter->param_adv_10hdx = 0;
6199 
6200 		Adapter->param_lp_autoneg = 0;
6201 		Adapter->param_lp_pause = 0;
6202 		Adapter->param_lp_asym_pause = 0;
6203 		Adapter->param_lp_1000fdx = 0;
6204 		Adapter->param_lp_1000hdx = 0;
6205 		Adapter->param_lp_100t4 = 0;
6206 		Adapter->param_lp_100fdx = 0;
6207 		Adapter->param_lp_100hdx = 0;
6208 		Adapter->param_lp_10fdx = 0;
6209 		Adapter->param_lp_10hdx = 0;
6210 	}
6211 }
6212 
6213 /*
6214  * FMA support
6215  */
6216 
6217 int
6218 e1000g_check_acc_handle(ddi_acc_handle_t handle)
6219 {
6220 	ddi_fm_error_t de;
6221 
6222 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
6223 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
6224 	return (de.fme_status);
6225 }
6226 
6227 int
6228 e1000g_check_dma_handle(ddi_dma_handle_t handle)
6229 {
6230 	ddi_fm_error_t de;
6231 
6232 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
6233 	return (de.fme_status);
6234 }
6235 
6236 /*
6237  * The IO fault service error handling callback function
6238  */
6239 /* ARGSUSED2 */
6240 static int
6241 e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
6242 {
6243 	/*
6244 	 * as the driver can always deal with an error in any dma or
6245 	 * access handle, we can just return the fme_status value.
6246 	 */
6247 	pci_ereport_post(dip, err, NULL);
6248 	return (err->fme_status);
6249 }
6250 
6251 static void
6252 e1000g_fm_init(struct e1000g *Adapter)
6253 {
6254 	ddi_iblock_cookie_t iblk;
6255 	int fma_dma_flag;
6256 
6257 	/* Only register with IO Fault Services if we have some capability */
6258 	if (Adapter->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
6259 		e1000g_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
6260 	} else {
6261 		e1000g_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
6262 	}
6263 
6264 	if (Adapter->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
6265 		fma_dma_flag = 1;
6266 	} else {
6267 		fma_dma_flag = 0;
6268 	}
6269 
6270 	(void) e1000g_set_fma_flags(fma_dma_flag);
6271 
6272 	if (Adapter->fm_capabilities) {
6273 
6274 		/* Register capabilities with IO Fault Services */
6275 		ddi_fm_init(Adapter->dip, &Adapter->fm_capabilities, &iblk);
6276 
6277 		/*
6278 		 * Initialize pci ereport capabilities if ereport capable
6279 		 */
6280 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
6281 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6282 			pci_ereport_setup(Adapter->dip);
6283 
6284 		/*
6285 		 * Register error callback if error callback capable
6286 		 */
6287 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6288 			ddi_fm_handler_register(Adapter->dip,
6289 			    e1000g_fm_error_cb, (void*) Adapter);
6290 	}
6291 }
6292 
6293 static void
6294 e1000g_fm_fini(struct e1000g *Adapter)
6295 {
6296 	/* Only unregister FMA capabilities if we registered some */
6297 	if (Adapter->fm_capabilities) {
6298 
6299 		/*
6300 		 * Release any resources allocated by pci_ereport_setup()
6301 		 */
6302 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
6303 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6304 			pci_ereport_teardown(Adapter->dip);
6305 
6306 		/*
6307 		 * Un-register error callback if error callback capable
6308 		 */
6309 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6310 			ddi_fm_handler_unregister(Adapter->dip);
6311 
6312 		/* Unregister from IO Fault Services */
6313 		mutex_enter(&e1000g_rx_detach_lock);
6314 		ddi_fm_fini(Adapter->dip);
6315 		if (Adapter->priv_dip != NULL) {
6316 			DEVI(Adapter->priv_dip)->devi_fmhdl = NULL;
6317 		}
6318 		mutex_exit(&e1000g_rx_detach_lock);
6319 	}
6320 }
6321 
6322 void
6323 e1000g_fm_ereport(struct e1000g *Adapter, char *detail)
6324 {
6325 	uint64_t ena;
6326 	char buf[FM_MAX_CLASS];
6327 
6328 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
6329 	ena = fm_ena_generate(0, FM_ENA_FMT1);
6330 	if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities)) {
6331 		ddi_fm_ereport_post(Adapter->dip, buf, ena, DDI_NOSLEEP,
6332 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
6333 	}
6334 }
6335 
6336 /*
6337  * quiesce(9E) entry point.
6338  *
6339  * This function is called when the system is single-threaded at high
6340  * PIL with preemption disabled. Therefore, this function must not be
6341  * blocked.
6342  *
6343  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
6344  * DDI_FAILURE indicates an error condition and should almost never happen.
6345  */
6346 static int
6347 e1000g_quiesce(dev_info_t *devinfo)
6348 {
6349 	struct e1000g *Adapter;
6350 
6351 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
6352 
6353 	if (Adapter == NULL)
6354 		return (DDI_FAILURE);
6355 
6356 	e1000g_clear_all_interrupts(Adapter);
6357 
6358 	(void) e1000_reset_hw(&Adapter->shared);
6359 
6360 	/* Setup our HW Tx Head & Tail descriptor pointers */
6361 	E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
6362 	E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
6363 
6364 	/* Setup our HW Rx Head & Tail descriptor pointers */
6365 	E1000_WRITE_REG(&Adapter->shared, E1000_RDH(0), 0);
6366 	E1000_WRITE_REG(&Adapter->shared, E1000_RDT(0), 0);
6367 
6368 	return (DDI_SUCCESS);
6369 }
6370 
6371 /*
6372  * synchronize the adv* and en* parameters.
6373  *
6374  * See comments in <sys/dld.h> for details of the *_en_*
6375  * parameters. The usage of ndd for setting adv parameters will
6376  * synchronize all the en parameters with the e1000g parameters,
6377  * implicitly disabling any settings made via dladm.
6378  */
6379 static void
6380 e1000g_param_sync(struct e1000g *Adapter)
6381 {
6382 	Adapter->param_en_1000fdx = Adapter->param_adv_1000fdx;
6383 	Adapter->param_en_1000hdx = Adapter->param_adv_1000hdx;
6384 	Adapter->param_en_100fdx = Adapter->param_adv_100fdx;
6385 	Adapter->param_en_100hdx = Adapter->param_adv_100hdx;
6386 	Adapter->param_en_10fdx = Adapter->param_adv_10fdx;
6387 	Adapter->param_en_10hdx = Adapter->param_adv_10hdx;
6388 }
6389 
6390 /*
6391  * e1000g_get_driver_control - tell manageability firmware that the driver
6392  * has control.
6393  */
6394 static void
6395 e1000g_get_driver_control(struct e1000_hw *hw)
6396 {
6397 	uint32_t ctrl_ext;
6398 	uint32_t swsm;
6399 
6400 	/* tell manageability firmware the driver has taken over */
6401 	switch (hw->mac.type) {
6402 	case e1000_82573:
6403 		swsm = E1000_READ_REG(hw, E1000_SWSM);
6404 		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
6405 		break;
6406 	case e1000_82571:
6407 	case e1000_82572:
6408 	case e1000_82574:
6409 	case e1000_80003es2lan:
6410 	case e1000_ich8lan:
6411 	case e1000_ich9lan:
6412 	case e1000_ich10lan:
6413 	case e1000_pchlan:
6414 	case e1000_pch2lan:
6415 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
6416 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
6417 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
6418 		break;
6419 	default:
6420 		/* no manageability firmware: do nothing */
6421 		break;
6422 	}
6423 }
6424 
6425 /*
6426  * e1000g_release_driver_control - tell manageability firmware that the driver
6427  * has released control.
6428  */
6429 static void
6430 e1000g_release_driver_control(struct e1000_hw *hw)
6431 {
6432 	uint32_t ctrl_ext;
6433 	uint32_t swsm;
6434 
6435 	/* tell manageability firmware the driver has released control */
6436 	switch (hw->mac.type) {
6437 	case e1000_82573:
6438 		swsm = E1000_READ_REG(hw, E1000_SWSM);
6439 		E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
6440 		break;
6441 	case e1000_82571:
6442 	case e1000_82572:
6443 	case e1000_82574:
6444 	case e1000_80003es2lan:
6445 	case e1000_ich8lan:
6446 	case e1000_ich9lan:
6447 	case e1000_ich10lan:
6448 	case e1000_pchlan:
6449 	case e1000_pch2lan:
6450 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
6451 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
6452 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
6453 		break;
6454 	default:
6455 		/* no manageability firmware: do nothing */
6456 		break;
6457 	}
6458 }
6459 
6460 /*
6461  * Restore e1000g promiscuous mode.
6462  */
6463 static void
6464 e1000g_restore_promisc(struct e1000g *Adapter)
6465 {
6466 	if (Adapter->e1000g_promisc) {
6467 		uint32_t rctl;
6468 
6469 		rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
6470 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
6471 		E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
6472 	}
6473 }
6474