1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Data-Link Driver 30 */ 31 32 #include <sys/stropts.h> 33 #include <sys/strsun.h> 34 #include <sys/strsubr.h> 35 #include <sys/atomic.h> 36 #include <sys/mkdev.h> 37 #include <sys/vlan.h> 38 #include <sys/dld.h> 39 #include <sys/dld_impl.h> 40 #include <sys/dls_impl.h> 41 #include <inet/common.h> 42 43 static int str_constructor(void *, void *, int); 44 static void str_destructor(void *, void *); 45 static mblk_t *str_unitdata_ind(dld_str_t *, mblk_t *); 46 static void str_notify_promisc_on_phys(dld_str_t *); 47 static void str_notify_promisc_off_phys(dld_str_t *); 48 static void str_notify_phys_addr(dld_str_t *, const uint8_t *); 49 static void str_notify_link_up(dld_str_t *); 50 static void str_notify_link_down(dld_str_t *); 51 static void str_notify_capab_reneg(dld_str_t *); 52 static void str_notify_speed(dld_str_t *, uint32_t); 53 static void str_notify(void *, mac_notify_type_t); 54 55 static void ioc_raw(dld_str_t *, mblk_t *); 56 static void ioc_fast(dld_str_t *, mblk_t *); 57 static void ioc(dld_str_t *, mblk_t *); 58 static void dld_ioc(dld_str_t *, mblk_t *); 59 static minor_t dld_minor_hold(boolean_t); 60 static void dld_minor_rele(minor_t); 61 62 static uint32_t str_count; 63 static kmem_cache_t *str_cachep; 64 static vmem_t *minor_arenap; 65 static uint32_t minor_count; 66 static mod_hash_t *str_hashp; 67 68 #define MINOR_TO_PTR(minor) ((void *)(uintptr_t)(minor)) 69 #define PTR_TO_MINOR(ptr) ((minor_t)(uintptr_t)(ptr)) 70 71 #define STR_HASHSZ 64 72 #define STR_HASH_KEY(key) ((mod_hash_key_t)(uintptr_t)(key)) 73 74 /* 75 * Some notes on entry points, flow-control, queueing and locking: 76 * 77 * This driver exports the traditional STREAMS put entry point as well as 78 * the non-STREAMS fast-path transmit routine which is provided to IP via 79 * the DL_CAPAB_POLL negotiation. The put procedure handles all control 80 * and data operations, while the fast-path routine deals only with M_DATA 81 * fast-path packets. Regardless of the entry point, all outbound packets 82 * will end up in str_mdata_fastpath_put(), where they will be delivered to 83 * the MAC driver. 84 * 85 * The transmit logic operates in two modes: a "not busy" mode where the 86 * packets will be delivered to the MAC for a send attempt, or "busy" mode 87 * where they will be enqueued in the internal queue because of flow-control. 88 * Flow-control happens when the MAC driver indicates the packets couldn't 89 * be transmitted due to lack of resources (e.g. running out of descriptors). 90 * In such case, the driver will place a dummy message on its write-side 91 * STREAMS queue so that the queue is marked as "full". Any subsequent 92 * packets arriving at the driver will be enqueued in the internal queue, 93 * which is drained in the context of the service thread that gets scheduled 94 * whenever the driver is in the "busy" mode. When all packets have been 95 * successfully delivered by MAC and the internal queue is empty, it will 96 * transition to the "not busy" mode by removing the dummy message from the 97 * write-side STREAMS queue; in effect this will trigger backenabling. 98 * The sizes of q_hiwat and q_lowat are set to 1 and 0, respectively, due 99 * to the above reasons. 100 * 101 * The driver implements an internal transmit queue independent of STREAMS. 102 * This allows for flexibility and provides a fast enqueue/dequeue mechanism 103 * compared to the putq() and get() STREAMS interfaces. The only putq() and 104 * getq() operations done by the driver are those related to placing and 105 * removing the dummy message to/from the write-side STREAMS queue for flow- 106 * control purposes. 107 * 108 * Locking is done independent of STREAMS due to the driver being fully MT. 109 * Threads entering the driver (either from put or service entry points) 110 * will most likely be readers, with the exception of a few writer cases 111 * such those handling DLPI attach/detach/bind/unbind/etc. or any of the 112 * DLD-related ioctl requests. The DLPI detach case is special, because 113 * it involves freeing resources and therefore must be single-threaded. 114 * Unfortunately the readers/writers lock can't be used to protect against 115 * it, because the lock is dropped prior to the driver calling places where 116 * putnext() may be invoked, and such places may depend on those resources 117 * to exist. Because of this, the driver always completes the DLPI detach 118 * process when there are no other threads running in the driver. This is 119 * done by keeping track of the number of threads, such that the the last 120 * thread leaving the driver will finish the pending DLPI detach operation. 121 */ 122 123 /* 124 * dld_max_q_count is the queue depth threshold used to limit the number of 125 * outstanding packets or bytes allowed in the queue; once this limit is 126 * reached the driver will free any incoming ones until the queue depth 127 * drops below the threshold. 128 * 129 * This buffering is provided to accomodate clients which do not employ 130 * their own buffering scheme, and to handle occasional packet bursts. 131 * Clients which handle their own buffering will receive positive feedback 132 * from this driver as soon as it transitions into the "busy" state, i.e. 133 * when the queue is initially filled up; they will get backenabled once 134 * the queue is empty. 135 * 136 * The value chosen here is rather arbitrary; in future some intelligent 137 * heuristics may be involved which could take into account the hardware's 138 * transmit ring size, etc. 139 */ 140 uint_t dld_max_q_count = (16 * 1024 *1024); 141 142 /* 143 * dld_finddevinfo() returns the dev_info_t * corresponding to a particular 144 * dev_t. It searches str_hashp (a table of dld_str_t's) for streams that 145 * match dev_t. If a stream is found and it is attached, its dev_info_t * 146 * is returned. 147 */ 148 typedef struct i_dld_str_state_s { 149 major_t ds_major; 150 minor_t ds_minor; 151 dev_info_t *ds_dip; 152 } i_dld_str_state_t; 153 154 /* ARGSUSED */ 155 static uint_t 156 i_dld_str_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 157 { 158 i_dld_str_state_t *statep = arg; 159 dld_str_t *dsp = (dld_str_t *)val; 160 161 if (statep->ds_major != dsp->ds_major) 162 return (MH_WALK_CONTINUE); 163 164 ASSERT(statep->ds_minor != 0); 165 166 /* 167 * Access to ds_ppa and ds_mh need to be protected by ds_lock. 168 */ 169 rw_enter(&dsp->ds_lock, RW_READER); 170 if (statep->ds_minor <= DLD_MAX_MINOR) { 171 /* 172 * Style 1: minor can be derived from the ppa. we 173 * continue to walk until we find a matching stream 174 * in attached state. 175 */ 176 if (statep->ds_minor == DLS_PPA2MINOR(dsp->ds_ppa) && 177 dsp->ds_mh != NULL) { 178 statep->ds_dip = mac_devinfo_get(dsp->ds_mh); 179 rw_exit(&dsp->ds_lock); 180 return (MH_WALK_TERMINATE); 181 } 182 } else { 183 /* 184 * Clone: a clone minor is unique. we can terminate the 185 * walk if we find a matching stream -- even if we fail 186 * to obtain the devinfo. 187 */ 188 if (statep->ds_minor == dsp->ds_minor) { 189 if (dsp->ds_mh != NULL) 190 statep->ds_dip = mac_devinfo_get(dsp->ds_mh); 191 rw_exit(&dsp->ds_lock); 192 return (MH_WALK_TERMINATE); 193 } 194 } 195 rw_exit(&dsp->ds_lock); 196 return (MH_WALK_CONTINUE); 197 } 198 199 static dev_info_t * 200 dld_finddevinfo(dev_t dev) 201 { 202 i_dld_str_state_t state; 203 204 state.ds_minor = getminor(dev); 205 state.ds_major = getmajor(dev); 206 state.ds_dip = NULL; 207 208 if (state.ds_minor == 0) 209 return (NULL); 210 211 mod_hash_walk(str_hashp, i_dld_str_walker, &state); 212 return (state.ds_dip); 213 } 214 215 216 /* 217 * devo_getinfo: getinfo(9e) 218 */ 219 /*ARGSUSED*/ 220 int 221 dld_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **resp) 222 { 223 dev_info_t *devinfo; 224 minor_t minor = getminor((dev_t)arg); 225 int rc = DDI_FAILURE; 226 227 switch (cmd) { 228 case DDI_INFO_DEVT2DEVINFO: 229 if ((devinfo = dld_finddevinfo((dev_t)arg)) != NULL) { 230 *(dev_info_t **)resp = devinfo; 231 rc = DDI_SUCCESS; 232 } 233 break; 234 case DDI_INFO_DEVT2INSTANCE: 235 if (minor > 0 && minor <= DLD_MAX_MINOR) { 236 *resp = (void *)(uintptr_t)DLS_MINOR2INST(minor); 237 rc = DDI_SUCCESS; 238 } else if (minor > DLD_MAX_MINOR && 239 (devinfo = dld_finddevinfo((dev_t)arg)) != NULL) { 240 *resp = (void *)(uintptr_t)ddi_get_instance(devinfo); 241 rc = DDI_SUCCESS; 242 } 243 break; 244 } 245 return (rc); 246 } 247 248 /* 249 * qi_qopen: open(9e) 250 */ 251 /*ARGSUSED*/ 252 int 253 dld_open(queue_t *rq, dev_t *devp, int flag, int sflag, cred_t *credp) 254 { 255 dld_str_t *dsp; 256 major_t major; 257 minor_t minor; 258 int err; 259 260 if (sflag == MODOPEN) 261 return (ENOTSUP); 262 263 /* 264 * This is a cloning driver and therefore each queue should only 265 * ever get opened once. 266 */ 267 if (rq->q_ptr != NULL) 268 return (EBUSY); 269 270 major = getmajor(*devp); 271 minor = getminor(*devp); 272 if (minor > DLD_MAX_MINOR) 273 return (ENODEV); 274 275 /* 276 * Create a new dld_str_t for the stream. This will grab a new minor 277 * number that will be handed back in the cloned dev_t. Creation may 278 * fail if we can't allocate the dummy mblk used for flow-control. 279 */ 280 dsp = dld_str_create(rq, DLD_DLPI, major, 281 ((minor == 0) ? DL_STYLE2 : DL_STYLE1)); 282 if (dsp == NULL) 283 return (ENOSR); 284 285 ASSERT(dsp->ds_dlstate == DL_UNATTACHED); 286 if (minor != 0) { 287 /* 288 * Style 1 open 289 */ 290 291 if ((err = dld_str_attach(dsp, (t_uscalar_t)minor - 1)) != 0) 292 goto failed; 293 ASSERT(dsp->ds_dlstate == DL_UNBOUND); 294 } else { 295 (void) qassociate(rq, -1); 296 } 297 298 /* 299 * Enable the queue srv(9e) routine. 300 */ 301 qprocson(rq); 302 303 /* 304 * Construct a cloned dev_t to hand back. 305 */ 306 *devp = makedevice(getmajor(*devp), dsp->ds_minor); 307 return (0); 308 309 failed: 310 dld_str_destroy(dsp); 311 return (err); 312 } 313 314 /* 315 * qi_qclose: close(9e) 316 */ 317 int 318 dld_close(queue_t *rq) 319 { 320 dld_str_t *dsp = rq->q_ptr; 321 322 /* 323 * Wait until pending requests are processed. 324 */ 325 mutex_enter(&dsp->ds_thr_lock); 326 while (dsp->ds_pending_cnt > 0) 327 cv_wait(&dsp->ds_pending_cv, &dsp->ds_thr_lock); 328 mutex_exit(&dsp->ds_thr_lock); 329 330 /* 331 * Disable the queue srv(9e) routine. 332 */ 333 qprocsoff(rq); 334 335 /* 336 * At this point we can not be entered by any threads via STREAMS 337 * or the direct call interface, which is available only to IP. 338 * After the interface is unplumbed, IP wouldn't have any reference 339 * to this instance, and therefore we are now effectively single 340 * threaded and don't require any lock protection. Flush all 341 * pending packets which are sitting in the transmit queue. 342 */ 343 ASSERT(dsp->ds_thr == 0); 344 dld_tx_flush(dsp); 345 346 /* 347 * This stream was open to a provider node. Check to see 348 * if it has been cleanly shut down. 349 */ 350 if (dsp->ds_dlstate != DL_UNATTACHED) { 351 /* 352 * The stream is either open to a style 1 provider or 353 * this is not clean shutdown. Detach from the PPA. 354 * (This is still ok even in the style 1 case). 355 */ 356 dld_str_detach(dsp); 357 } 358 359 dld_str_destroy(dsp); 360 return (0); 361 } 362 363 /* 364 * qi_qputp: put(9e) 365 */ 366 void 367 dld_wput(queue_t *wq, mblk_t *mp) 368 { 369 dld_str_t *dsp = (dld_str_t *)wq->q_ptr; 370 371 DLD_ENTER(dsp); 372 373 switch (DB_TYPE(mp)) { 374 case M_DATA: 375 rw_enter(&dsp->ds_lock, RW_READER); 376 if (dsp->ds_dlstate != DL_IDLE || 377 dsp->ds_mode == DLD_UNITDATA) { 378 freemsg(mp); 379 } else if (dsp->ds_mode == DLD_FASTPATH) { 380 str_mdata_fastpath_put(dsp, mp); 381 } else if (dsp->ds_mode == DLD_RAW) { 382 str_mdata_raw_put(dsp, mp); 383 } 384 rw_exit(&dsp->ds_lock); 385 break; 386 case M_PROTO: 387 case M_PCPROTO: 388 dld_proto(dsp, mp); 389 break; 390 case M_IOCTL: 391 dld_ioc(dsp, mp); 392 break; 393 case M_FLUSH: 394 if (*mp->b_rptr & FLUSHW) { 395 dld_tx_flush(dsp); 396 *mp->b_rptr &= ~FLUSHW; 397 } 398 399 if (*mp->b_rptr & FLUSHR) { 400 qreply(wq, mp); 401 } else { 402 freemsg(mp); 403 } 404 break; 405 default: 406 freemsg(mp); 407 break; 408 } 409 410 DLD_EXIT(dsp); 411 } 412 413 /* 414 * qi_srvp: srv(9e) 415 */ 416 void 417 dld_wsrv(queue_t *wq) 418 { 419 mblk_t *mp; 420 dld_str_t *dsp = wq->q_ptr; 421 422 DLD_ENTER(dsp); 423 rw_enter(&dsp->ds_lock, RW_READER); 424 /* 425 * Grab all packets (chained via b_next) off our transmit queue 426 * and try to send them all to the MAC layer. Since the queue 427 * is independent of streams, we are able to dequeue all messages 428 * at once without looping through getq() and manually chaining 429 * them. Note that the queue size parameters (byte and message 430 * counts) are cleared as well, but we postpone the backenabling 431 * until after the MAC transmit since some packets may end up 432 * back at our transmit queue. 433 */ 434 mutex_enter(&dsp->ds_tx_list_lock); 435 if ((mp = dsp->ds_tx_list_head) == NULL) { 436 ASSERT(!dsp->ds_tx_qbusy); 437 ASSERT(dsp->ds_tx_flow_mp != NULL); 438 ASSERT(dsp->ds_tx_list_head == NULL); 439 ASSERT(dsp->ds_tx_list_tail == NULL); 440 ASSERT(dsp->ds_tx_cnt == 0); 441 ASSERT(dsp->ds_tx_msgcnt == 0); 442 mutex_exit(&dsp->ds_tx_list_lock); 443 goto done; 444 } 445 dsp->ds_tx_list_head = dsp->ds_tx_list_tail = NULL; 446 dsp->ds_tx_cnt = dsp->ds_tx_msgcnt = 0; 447 mutex_exit(&dsp->ds_tx_list_lock); 448 449 /* 450 * Discard packets unless we are attached and bound; note that 451 * the driver mode (fastpath/raw/unitdata) is irrelevant here, 452 * because regardless of the mode all transmit will end up in 453 * str_mdata_fastpath_put() where the packets may be queued. 454 */ 455 ASSERT(DB_TYPE(mp) == M_DATA); 456 if (dsp->ds_dlstate != DL_IDLE) { 457 freemsgchain(mp); 458 goto done; 459 } 460 461 /* 462 * Attempt to transmit one or more packets. If the MAC can't 463 * send them all, re-queue the packet(s) at the beginning of 464 * the transmit queue to avoid any re-ordering. 465 */ 466 if ((mp = dls_tx(dsp->ds_dc, mp)) != NULL) 467 dld_tx_enqueue(dsp, mp, B_TRUE); 468 469 /* 470 * Grab the list lock again and check if the transmit queue is 471 * really empty; if so, lift up flow-control and backenable any 472 * writer queues. If the queue is not empty, schedule service 473 * thread to drain it. 474 */ 475 mutex_enter(&dsp->ds_tx_list_lock); 476 if (dsp->ds_tx_list_head == NULL) { 477 dsp->ds_tx_flow_mp = getq(wq); 478 ASSERT(dsp->ds_tx_flow_mp != NULL); 479 dsp->ds_tx_qbusy = B_FALSE; 480 } 481 mutex_exit(&dsp->ds_tx_list_lock); 482 done: 483 rw_exit(&dsp->ds_lock); 484 DLD_EXIT(dsp); 485 } 486 487 void 488 dld_init_ops(struct dev_ops *ops, const char *name) 489 { 490 struct streamtab *stream; 491 struct qinit *rq, *wq; 492 struct module_info *modinfo; 493 494 modinfo = kmem_zalloc(sizeof (struct module_info), KM_SLEEP); 495 modinfo->mi_idname = kmem_zalloc(FMNAMESZ, KM_SLEEP); 496 (void) snprintf(modinfo->mi_idname, FMNAMESZ, "%s", name); 497 modinfo->mi_minpsz = 0; 498 modinfo->mi_maxpsz = 64*1024; 499 modinfo->mi_hiwat = 1; 500 modinfo->mi_lowat = 0; 501 502 rq = kmem_zalloc(sizeof (struct qinit), KM_SLEEP); 503 rq->qi_qopen = dld_open; 504 rq->qi_qclose = dld_close; 505 rq->qi_minfo = modinfo; 506 507 wq = kmem_zalloc(sizeof (struct qinit), KM_SLEEP); 508 wq->qi_putp = (pfi_t)dld_wput; 509 wq->qi_srvp = (pfi_t)dld_wsrv; 510 wq->qi_minfo = modinfo; 511 512 stream = kmem_zalloc(sizeof (struct streamtab), KM_SLEEP); 513 stream->st_rdinit = rq; 514 stream->st_wrinit = wq; 515 ops->devo_cb_ops->cb_str = stream; 516 517 ops->devo_getinfo = &dld_getinfo; 518 } 519 520 void 521 dld_fini_ops(struct dev_ops *ops) 522 { 523 struct streamtab *stream; 524 struct qinit *rq, *wq; 525 struct module_info *modinfo; 526 527 stream = ops->devo_cb_ops->cb_str; 528 rq = stream->st_rdinit; 529 wq = stream->st_wrinit; 530 modinfo = rq->qi_minfo; 531 ASSERT(wq->qi_minfo == modinfo); 532 533 kmem_free(stream, sizeof (struct streamtab)); 534 kmem_free(wq, sizeof (struct qinit)); 535 kmem_free(rq, sizeof (struct qinit)); 536 kmem_free(modinfo->mi_idname, FMNAMESZ); 537 kmem_free(modinfo, sizeof (struct module_info)); 538 } 539 540 /* 541 * Initialize this module's data structures. 542 */ 543 void 544 dld_str_init(void) 545 { 546 /* 547 * Create dld_str_t object cache. 548 */ 549 str_cachep = kmem_cache_create("dld_str_cache", sizeof (dld_str_t), 550 0, str_constructor, str_destructor, NULL, NULL, NULL, 0); 551 ASSERT(str_cachep != NULL); 552 553 /* 554 * Allocate a vmem arena to manage minor numbers. The range of the 555 * arena will be from DLD_MAX_MINOR + 1 to MAXMIN (maximum legal 556 * minor number). 557 */ 558 minor_arenap = vmem_create("dld_minor_arena", 559 MINOR_TO_PTR(DLD_MAX_MINOR + 1), MAXMIN, 1, NULL, NULL, NULL, 0, 560 VM_SLEEP | VMC_IDENTIFIER); 561 ASSERT(minor_arenap != NULL); 562 563 /* 564 * Create a hash table for maintaining dld_str_t's. 565 * The ds_minor field (the clone minor number) of a dld_str_t 566 * is used as a key for this hash table because this number is 567 * globally unique (allocated from "dld_minor_arena"). 568 */ 569 str_hashp = mod_hash_create_idhash("dld_str_hash", STR_HASHSZ, 570 mod_hash_null_valdtor); 571 } 572 573 /* 574 * Tear down this module's data structures. 575 */ 576 int 577 dld_str_fini(void) 578 { 579 /* 580 * Make sure that there are no objects in use. 581 */ 582 if (str_count != 0) 583 return (EBUSY); 584 585 /* 586 * Check to see if there are any minor numbers still in use. 587 */ 588 if (minor_count != 0) 589 return (EBUSY); 590 591 /* 592 * Destroy object cache. 593 */ 594 kmem_cache_destroy(str_cachep); 595 vmem_destroy(minor_arenap); 596 mod_hash_destroy_idhash(str_hashp); 597 return (0); 598 } 599 600 /* 601 * Create a new dld_str_t object. 602 */ 603 dld_str_t * 604 dld_str_create(queue_t *rq, uint_t type, major_t major, t_uscalar_t style) 605 { 606 dld_str_t *dsp; 607 int err; 608 609 /* 610 * Allocate an object from the cache. 611 */ 612 atomic_add_32(&str_count, 1); 613 dsp = kmem_cache_alloc(str_cachep, KM_SLEEP); 614 615 /* 616 * Allocate the dummy mblk for flow-control. 617 */ 618 dsp->ds_tx_flow_mp = allocb(1, BPRI_HI); 619 if (dsp->ds_tx_flow_mp == NULL) { 620 kmem_cache_free(str_cachep, dsp); 621 atomic_add_32(&str_count, -1); 622 return (NULL); 623 } 624 dsp->ds_type = type; 625 dsp->ds_major = major; 626 dsp->ds_style = style; 627 628 /* 629 * Initialize the queue pointers. 630 */ 631 ASSERT(RD(rq) == rq); 632 dsp->ds_rq = rq; 633 dsp->ds_wq = WR(rq); 634 rq->q_ptr = WR(rq)->q_ptr = (void *)dsp; 635 636 /* 637 * We want explicit control over our write-side STREAMS queue 638 * where the dummy mblk gets added/removed for flow-control. 639 */ 640 noenable(WR(rq)); 641 642 err = mod_hash_insert(str_hashp, STR_HASH_KEY(dsp->ds_minor), 643 (mod_hash_val_t)dsp); 644 ASSERT(err == 0); 645 return (dsp); 646 } 647 648 /* 649 * Destroy a dld_str_t object. 650 */ 651 void 652 dld_str_destroy(dld_str_t *dsp) 653 { 654 queue_t *rq; 655 queue_t *wq; 656 mod_hash_val_t val; 657 /* 658 * Clear the queue pointers. 659 */ 660 rq = dsp->ds_rq; 661 wq = dsp->ds_wq; 662 ASSERT(wq == WR(rq)); 663 664 rq->q_ptr = wq->q_ptr = NULL; 665 dsp->ds_rq = dsp->ds_wq = NULL; 666 667 ASSERT(!RW_LOCK_HELD(&dsp->ds_lock)); 668 ASSERT(MUTEX_NOT_HELD(&dsp->ds_tx_list_lock)); 669 ASSERT(dsp->ds_tx_list_head == NULL); 670 ASSERT(dsp->ds_tx_list_tail == NULL); 671 ASSERT(dsp->ds_tx_cnt == 0); 672 ASSERT(dsp->ds_tx_msgcnt == 0); 673 ASSERT(!dsp->ds_tx_qbusy); 674 675 ASSERT(MUTEX_NOT_HELD(&dsp->ds_thr_lock)); 676 ASSERT(dsp->ds_thr == 0); 677 ASSERT(dsp->ds_pending_req == NULL); 678 679 /* 680 * Reinitialize all the flags. 681 */ 682 dsp->ds_notifications = 0; 683 dsp->ds_passivestate = DLD_UNINITIALIZED; 684 dsp->ds_mode = DLD_UNITDATA; 685 686 /* 687 * Free the dummy mblk if exists. 688 */ 689 if (dsp->ds_tx_flow_mp != NULL) { 690 freeb(dsp->ds_tx_flow_mp); 691 dsp->ds_tx_flow_mp = NULL; 692 } 693 694 (void) mod_hash_remove(str_hashp, STR_HASH_KEY(dsp->ds_minor), &val); 695 ASSERT(dsp == (dld_str_t *)val); 696 697 /* 698 * Free the object back to the cache. 699 */ 700 kmem_cache_free(str_cachep, dsp); 701 atomic_add_32(&str_count, -1); 702 } 703 704 /* 705 * kmem_cache contructor function: see kmem_cache_create(9f). 706 */ 707 /*ARGSUSED*/ 708 static int 709 str_constructor(void *buf, void *cdrarg, int kmflags) 710 { 711 dld_str_t *dsp = buf; 712 713 bzero(buf, sizeof (dld_str_t)); 714 715 /* 716 * Allocate a new minor number. 717 */ 718 if ((dsp->ds_minor = dld_minor_hold(kmflags == KM_SLEEP)) == 0) 719 return (-1); 720 721 /* 722 * Initialize the DLPI state machine. 723 */ 724 dsp->ds_dlstate = DL_UNATTACHED; 725 dsp->ds_ppa = (t_uscalar_t)-1; 726 727 mutex_init(&dsp->ds_thr_lock, NULL, MUTEX_DRIVER, NULL); 728 rw_init(&dsp->ds_lock, NULL, RW_DRIVER, NULL); 729 mutex_init(&dsp->ds_tx_list_lock, NULL, MUTEX_DRIVER, NULL); 730 cv_init(&dsp->ds_pending_cv, NULL, CV_DRIVER, NULL); 731 732 return (0); 733 } 734 735 /* 736 * kmem_cache destructor function. 737 */ 738 /*ARGSUSED*/ 739 static void 740 str_destructor(void *buf, void *cdrarg) 741 { 742 dld_str_t *dsp = buf; 743 744 /* 745 * Make sure the DLPI state machine was reset. 746 */ 747 ASSERT(dsp->ds_dlstate == DL_UNATTACHED); 748 749 /* 750 * Make sure the data-link interface was closed. 751 */ 752 ASSERT(dsp->ds_mh == NULL); 753 ASSERT(dsp->ds_dc == NULL); 754 755 /* 756 * Make sure enabled notifications are cleared. 757 */ 758 ASSERT(dsp->ds_notifications == 0); 759 760 /* 761 * Make sure polling is disabled. 762 */ 763 ASSERT(!dsp->ds_polling); 764 765 /* 766 * Release the minor number. 767 */ 768 dld_minor_rele(dsp->ds_minor); 769 770 ASSERT(!RW_LOCK_HELD(&dsp->ds_lock)); 771 rw_destroy(&dsp->ds_lock); 772 773 ASSERT(MUTEX_NOT_HELD(&dsp->ds_tx_list_lock)); 774 mutex_destroy(&dsp->ds_tx_list_lock); 775 ASSERT(dsp->ds_tx_flow_mp == NULL); 776 777 ASSERT(MUTEX_NOT_HELD(&dsp->ds_thr_lock)); 778 mutex_destroy(&dsp->ds_thr_lock); 779 ASSERT(dsp->ds_pending_req == NULL); 780 ASSERT(dsp->ds_pending_op == NULL); 781 ASSERT(dsp->ds_pending_cnt == 0); 782 cv_destroy(&dsp->ds_pending_cv); 783 } 784 785 /* 786 * M_DATA put (IP fast-path mode) 787 */ 788 void 789 str_mdata_fastpath_put(dld_str_t *dsp, mblk_t *mp) 790 { 791 /* 792 * This function can be called from within dld or from an upper 793 * layer protocol (currently only tcp). If we are in the busy 794 * mode enqueue the packet(s) and return. Otherwise hand them 795 * over to the MAC driver for transmission; any remaining one(s) 796 * which didn't get sent will be queued. 797 * 798 * Note here that we don't grab the list lock prior to checking 799 * the busy flag. This is okay, because a missed transition 800 * will not cause any packet reordering for any particular TCP 801 * connection (which is single-threaded). The enqueue routine 802 * will atomically set the busy flag and schedule the service 803 * thread to run; the flag is only cleared by the service thread 804 * when there is no more packet to be transmitted. 805 */ 806 if (dsp->ds_tx_qbusy || (mp = dls_tx(dsp->ds_dc, mp)) != NULL) 807 dld_tx_enqueue(dsp, mp, B_FALSE); 808 } 809 810 /* 811 * M_DATA put (raw mode) 812 */ 813 void 814 str_mdata_raw_put(dld_str_t *dsp, mblk_t *mp) 815 { 816 struct ether_header *ehp; 817 mblk_t *bp; 818 size_t size; 819 size_t hdrlen; 820 821 size = MBLKL(mp); 822 if (size < sizeof (struct ether_header)) 823 goto discard; 824 825 hdrlen = sizeof (struct ether_header); 826 827 ehp = (struct ether_header *)mp->b_rptr; 828 if (ntohs(ehp->ether_type) == VLAN_TPID) { 829 struct ether_vlan_header *evhp; 830 831 if (size < sizeof (struct ether_vlan_header)) 832 goto discard; 833 834 /* 835 * Replace vtag with our own 836 */ 837 evhp = (struct ether_vlan_header *)ehp; 838 evhp->ether_tci = htons(VLAN_TCI(dsp->ds_pri, 839 ETHER_CFI, dsp->ds_vid)); 840 hdrlen = sizeof (struct ether_vlan_header); 841 } 842 843 /* 844 * Check the packet is not too big and that any remaining 845 * fragment list is composed entirely of M_DATA messages. (We 846 * know the first fragment was M_DATA otherwise we could not 847 * have got here). 848 */ 849 for (bp = mp->b_cont; bp != NULL; bp = bp->b_cont) { 850 if (DB_TYPE(bp) != M_DATA) 851 goto discard; 852 size += MBLKL(bp); 853 } 854 855 if (size > dsp->ds_mip->mi_sdu_max + hdrlen) 856 goto discard; 857 858 str_mdata_fastpath_put(dsp, mp); 859 return; 860 861 discard: 862 freemsg(mp); 863 } 864 865 /* 866 * Process DL_ATTACH_REQ (style 2) or open(2) (style 1). 867 */ 868 int 869 dld_str_attach(dld_str_t *dsp, t_uscalar_t ppa) 870 { 871 int err; 872 const char *drvname; 873 char name[MAXNAMELEN]; 874 dls_channel_t dc; 875 uint_t addr_length; 876 877 ASSERT(dsp->ds_dc == NULL); 878 879 if ((drvname = ddi_major_to_name(dsp->ds_major)) == NULL) 880 return (EINVAL); 881 882 (void) snprintf(name, MAXNAMELEN, "%s%u", drvname, ppa); 883 884 if (strcmp(drvname, "aggr") != 0 && 885 qassociate(dsp->ds_wq, DLS_PPA2INST(ppa)) != 0) 886 return (EINVAL); 887 888 /* 889 * Open a channel. 890 */ 891 if ((err = dls_open(name, &dc)) != 0) { 892 (void) qassociate(dsp->ds_wq, -1); 893 return (err); 894 } 895 896 /* 897 * Cache the MAC interface handle, a pointer to the immutable MAC 898 * information and the current and 'factory' MAC address. 899 */ 900 dsp->ds_mh = dls_mac(dc); 901 dsp->ds_mip = mac_info(dsp->ds_mh); 902 903 mac_unicst_get(dsp->ds_mh, dsp->ds_curr_addr); 904 905 addr_length = dsp->ds_mip->mi_addr_length; 906 bcopy(dsp->ds_mip->mi_unicst_addr, dsp->ds_fact_addr, addr_length); 907 908 /* 909 * Cache the interface VLAN identifier. (This will be VLAN_ID_NONE for 910 * a non-VLAN interface). 911 */ 912 dsp->ds_vid = dls_vid(dc); 913 914 /* 915 * Set the default packet priority. 916 */ 917 dsp->ds_pri = 0; 918 919 /* 920 * Add a notify function so that the we get updates from the MAC. 921 */ 922 dsp->ds_mnh = mac_notify_add(dsp->ds_mh, str_notify, (void *)dsp); 923 924 dsp->ds_ppa = ppa; 925 dsp->ds_dc = dc; 926 dsp->ds_dlstate = DL_UNBOUND; 927 928 return (0); 929 } 930 931 /* 932 * Process DL_DETACH_REQ (style 2) or close(2) (style 1). Can also be called 933 * from close(2) for style 2. 934 */ 935 void 936 dld_str_detach(dld_str_t *dsp) 937 { 938 ASSERT(dsp->ds_thr == 0); 939 940 /* 941 * Remove the notify function. 942 */ 943 mac_notify_remove(dsp->ds_mh, dsp->ds_mnh); 944 945 /* 946 * Clear the polling and promisc flags. 947 */ 948 dsp->ds_polling = B_FALSE; 949 dsp->ds_soft_ring = B_FALSE; 950 dsp->ds_promisc = 0; 951 952 /* 953 * Close the channel. 954 */ 955 dls_close(dsp->ds_dc); 956 dsp->ds_ppa = (t_uscalar_t)-1; 957 dsp->ds_dc = NULL; 958 dsp->ds_mh = NULL; 959 960 (void) qassociate(dsp->ds_wq, -1); 961 962 /* 963 * Re-initialize the DLPI state machine. 964 */ 965 dsp->ds_dlstate = DL_UNATTACHED; 966 967 } 968 969 /* 970 * Raw mode receive function. 971 */ 972 /*ARGSUSED*/ 973 void 974 dld_str_rx_raw(void *arg, mac_resource_handle_t mrh, mblk_t *mp, 975 size_t header_length) 976 { 977 dld_str_t *dsp = (dld_str_t *)arg; 978 mblk_t *next; 979 980 ASSERT(mp != NULL); 981 do { 982 /* 983 * Get the pointer to the next packet in the chain and then 984 * clear b_next before the packet gets passed on. 985 */ 986 next = mp->b_next; 987 mp->b_next = NULL; 988 989 /* 990 * Wind back b_rptr to point at the MAC header. 991 */ 992 ASSERT(mp->b_rptr >= DB_BASE(mp) + header_length); 993 mp->b_rptr -= header_length; 994 if (header_length == sizeof (struct ether_vlan_header)) { 995 /* 996 * Strip off the vtag 997 */ 998 ovbcopy(mp->b_rptr, mp->b_rptr + VLAN_TAGSZ, 999 2 * ETHERADDRL); 1000 mp->b_rptr += VLAN_TAGSZ; 1001 } 1002 1003 /* 1004 * Pass the packet on. 1005 */ 1006 if (canputnext(dsp->ds_rq)) 1007 putnext(dsp->ds_rq, mp); 1008 else 1009 freemsg(mp); 1010 1011 /* 1012 * Move on to the next packet in the chain. 1013 */ 1014 mp = next; 1015 } while (mp != NULL); 1016 } 1017 1018 /* 1019 * Fast-path receive function. 1020 */ 1021 /*ARGSUSED*/ 1022 void 1023 dld_str_rx_fastpath(void *arg, mac_resource_handle_t mrh, mblk_t *mp, 1024 size_t header_length) 1025 { 1026 dld_str_t *dsp = (dld_str_t *)arg; 1027 mblk_t *next; 1028 1029 ASSERT(mp != NULL); 1030 do { 1031 /* 1032 * Get the pointer to the next packet in the chain and then 1033 * clear b_next before the packet gets passed on. 1034 */ 1035 next = mp->b_next; 1036 mp->b_next = NULL; 1037 1038 /* 1039 * Pass the packet on. 1040 */ 1041 if (canputnext(dsp->ds_rq)) 1042 putnext(dsp->ds_rq, mp); 1043 else 1044 freemsg(mp); 1045 /* 1046 * Move on to the next packet in the chain. 1047 */ 1048 mp = next; 1049 } while (mp != NULL); 1050 } 1051 1052 /* 1053 * Default receive function (send DL_UNITDATA_IND messages). 1054 */ 1055 /*ARGSUSED*/ 1056 void 1057 dld_str_rx_unitdata(void *arg, mac_resource_handle_t mrh, mblk_t *mp, 1058 size_t header_length) 1059 { 1060 dld_str_t *dsp = (dld_str_t *)arg; 1061 mblk_t *ud_mp; 1062 mblk_t *next; 1063 1064 ASSERT(mp != NULL); 1065 do { 1066 /* 1067 * Get the pointer to the next packet in the chain and then 1068 * clear b_next before the packet gets passed on. 1069 */ 1070 next = mp->b_next; 1071 mp->b_next = NULL; 1072 1073 /* 1074 * Wind back b_rptr to point at the MAC header. 1075 */ 1076 ASSERT(mp->b_rptr >= DB_BASE(mp) + header_length); 1077 mp->b_rptr -= header_length; 1078 1079 /* 1080 * Create the DL_UNITDATA_IND M_PROTO. 1081 */ 1082 if ((ud_mp = str_unitdata_ind(dsp, mp)) == NULL) { 1083 freemsgchain(mp); 1084 return; 1085 } 1086 1087 /* 1088 * Advance b_rptr to point at the payload again. 1089 */ 1090 mp->b_rptr += header_length; 1091 1092 /* 1093 * Prepend the DL_UNITDATA_IND. 1094 */ 1095 ud_mp->b_cont = mp; 1096 1097 /* 1098 * Send the message. 1099 */ 1100 if (canputnext(dsp->ds_rq)) 1101 putnext(dsp->ds_rq, ud_mp); 1102 else 1103 freemsg(ud_mp); 1104 1105 /* 1106 * Move on to the next packet in the chain. 1107 */ 1108 mp = next; 1109 } while (mp != NULL); 1110 } 1111 1112 /* 1113 * Generate DL_NOTIFY_IND messages to notify the DLPI consumer of the 1114 * current state of the interface. 1115 */ 1116 void 1117 dld_str_notify_ind(dld_str_t *dsp) 1118 { 1119 mac_notify_type_t type; 1120 1121 for (type = 0; type < MAC_NNOTE; type++) 1122 str_notify(dsp, type); 1123 } 1124 1125 typedef struct dl_unitdata_ind_wrapper { 1126 dl_unitdata_ind_t dl_unitdata; 1127 uint8_t dl_dest_addr[MAXADDRLEN + sizeof (uint16_t)]; 1128 uint8_t dl_src_addr[MAXADDRLEN + sizeof (uint16_t)]; 1129 } dl_unitdata_ind_wrapper_t; 1130 1131 /* 1132 * Create a DL_UNITDATA_IND M_PROTO message. 1133 */ 1134 static mblk_t * 1135 str_unitdata_ind(dld_str_t *dsp, mblk_t *mp) 1136 { 1137 mblk_t *nmp; 1138 dl_unitdata_ind_wrapper_t *dlwp; 1139 dl_unitdata_ind_t *dlp; 1140 dls_header_info_t dhi; 1141 uint_t addr_length; 1142 uint8_t *daddr; 1143 uint8_t *saddr; 1144 1145 /* 1146 * Get the packet header information. 1147 */ 1148 dls_header_info(dsp->ds_dc, mp, &dhi); 1149 1150 /* 1151 * Allocate a message large enough to contain the wrapper structure 1152 * defined above. 1153 */ 1154 if ((nmp = mexchange(dsp->ds_wq, NULL, 1155 sizeof (dl_unitdata_ind_wrapper_t), M_PROTO, 1156 DL_UNITDATA_IND)) == NULL) 1157 return (NULL); 1158 1159 dlwp = (dl_unitdata_ind_wrapper_t *)nmp->b_rptr; 1160 1161 dlp = &(dlwp->dl_unitdata); 1162 ASSERT(dlp == (dl_unitdata_ind_t *)nmp->b_rptr); 1163 ASSERT(dlp->dl_primitive == DL_UNITDATA_IND); 1164 1165 /* 1166 * Copy in the destination address. 1167 */ 1168 addr_length = dsp->ds_mip->mi_addr_length; 1169 daddr = dlwp->dl_dest_addr; 1170 dlp->dl_dest_addr_offset = (uintptr_t)daddr - (uintptr_t)dlp; 1171 bcopy(dhi.dhi_daddr, daddr, addr_length); 1172 1173 /* 1174 * Set the destination DLSAP to our bound DLSAP value. 1175 */ 1176 *(uint16_t *)(daddr + addr_length) = dsp->ds_sap; 1177 dlp->dl_dest_addr_length = addr_length + sizeof (uint16_t); 1178 1179 /* 1180 * If the destination address was a group address then 1181 * dl_group_address field should be non-zero. 1182 */ 1183 dlp->dl_group_address = dhi.dhi_isgroup; 1184 1185 /* 1186 * Copy in the source address. 1187 */ 1188 saddr = dlwp->dl_src_addr; 1189 dlp->dl_src_addr_offset = (uintptr_t)saddr - (uintptr_t)dlp; 1190 bcopy(dhi.dhi_saddr, saddr, addr_length); 1191 1192 /* 1193 * Set the source DLSAP to the packet ethertype. 1194 */ 1195 *(uint16_t *)(saddr + addr_length) = dhi.dhi_ethertype; 1196 dlp->dl_src_addr_length = addr_length + sizeof (uint16_t); 1197 1198 return (nmp); 1199 } 1200 1201 /* 1202 * DL_NOTIFY_IND: DL_NOTE_PROMISC_ON_PHYS 1203 */ 1204 static void 1205 str_notify_promisc_on_phys(dld_str_t *dsp) 1206 { 1207 mblk_t *mp; 1208 dl_notify_ind_t *dlip; 1209 1210 if (!(dsp->ds_notifications & DL_NOTE_PROMISC_ON_PHYS)) 1211 return; 1212 1213 if ((mp = mexchange(dsp->ds_wq, NULL, sizeof (dl_notify_ind_t), 1214 M_PROTO, 0)) == NULL) 1215 return; 1216 1217 bzero(mp->b_rptr, sizeof (dl_notify_ind_t)); 1218 dlip = (dl_notify_ind_t *)mp->b_rptr; 1219 dlip->dl_primitive = DL_NOTIFY_IND; 1220 dlip->dl_notification = DL_NOTE_PROMISC_ON_PHYS; 1221 1222 qreply(dsp->ds_wq, mp); 1223 } 1224 1225 /* 1226 * DL_NOTIFY_IND: DL_NOTE_PROMISC_OFF_PHYS 1227 */ 1228 static void 1229 str_notify_promisc_off_phys(dld_str_t *dsp) 1230 { 1231 mblk_t *mp; 1232 dl_notify_ind_t *dlip; 1233 1234 if (!(dsp->ds_notifications & DL_NOTE_PROMISC_OFF_PHYS)) 1235 return; 1236 1237 if ((mp = mexchange(dsp->ds_wq, NULL, sizeof (dl_notify_ind_t), 1238 M_PROTO, 0)) == NULL) 1239 return; 1240 1241 bzero(mp->b_rptr, sizeof (dl_notify_ind_t)); 1242 dlip = (dl_notify_ind_t *)mp->b_rptr; 1243 dlip->dl_primitive = DL_NOTIFY_IND; 1244 dlip->dl_notification = DL_NOTE_PROMISC_OFF_PHYS; 1245 1246 qreply(dsp->ds_wq, mp); 1247 } 1248 1249 /* 1250 * DL_NOTIFY_IND: DL_NOTE_PHYS_ADDR 1251 */ 1252 static void 1253 str_notify_phys_addr(dld_str_t *dsp, const uint8_t *addr) 1254 { 1255 mblk_t *mp; 1256 dl_notify_ind_t *dlip; 1257 uint_t addr_length; 1258 uint16_t ethertype; 1259 1260 if (!(dsp->ds_notifications & DL_NOTE_PHYS_ADDR)) 1261 return; 1262 1263 addr_length = dsp->ds_mip->mi_addr_length; 1264 if ((mp = mexchange(dsp->ds_wq, NULL, 1265 sizeof (dl_notify_ind_t) + addr_length + sizeof (uint16_t), 1266 M_PROTO, 0)) == NULL) 1267 return; 1268 1269 bzero(mp->b_rptr, sizeof (dl_notify_ind_t)); 1270 dlip = (dl_notify_ind_t *)mp->b_rptr; 1271 dlip->dl_primitive = DL_NOTIFY_IND; 1272 dlip->dl_notification = DL_NOTE_PHYS_ADDR; 1273 dlip->dl_data = DL_CURR_PHYS_ADDR; 1274 dlip->dl_addr_offset = sizeof (dl_notify_ind_t); 1275 dlip->dl_addr_length = addr_length + sizeof (uint16_t); 1276 1277 bcopy(addr, &dlip[1], addr_length); 1278 1279 ethertype = (dsp->ds_sap < ETHERTYPE_802_MIN) ? 0 : dsp->ds_sap; 1280 *(uint16_t *)((uchar_t *)(dlip + 1) + addr_length) = 1281 ethertype; 1282 1283 qreply(dsp->ds_wq, mp); 1284 } 1285 1286 /* 1287 * DL_NOTIFY_IND: DL_NOTE_LINK_UP 1288 */ 1289 static void 1290 str_notify_link_up(dld_str_t *dsp) 1291 { 1292 mblk_t *mp; 1293 dl_notify_ind_t *dlip; 1294 1295 if (!(dsp->ds_notifications & DL_NOTE_LINK_UP)) 1296 return; 1297 1298 if ((mp = mexchange(dsp->ds_wq, NULL, sizeof (dl_notify_ind_t), 1299 M_PROTO, 0)) == NULL) 1300 return; 1301 1302 bzero(mp->b_rptr, sizeof (dl_notify_ind_t)); 1303 dlip = (dl_notify_ind_t *)mp->b_rptr; 1304 dlip->dl_primitive = DL_NOTIFY_IND; 1305 dlip->dl_notification = DL_NOTE_LINK_UP; 1306 1307 qreply(dsp->ds_wq, mp); 1308 } 1309 1310 /* 1311 * DL_NOTIFY_IND: DL_NOTE_LINK_DOWN 1312 */ 1313 static void 1314 str_notify_link_down(dld_str_t *dsp) 1315 { 1316 mblk_t *mp; 1317 dl_notify_ind_t *dlip; 1318 1319 if (!(dsp->ds_notifications & DL_NOTE_LINK_DOWN)) 1320 return; 1321 1322 if ((mp = mexchange(dsp->ds_wq, NULL, sizeof (dl_notify_ind_t), 1323 M_PROTO, 0)) == NULL) 1324 return; 1325 1326 bzero(mp->b_rptr, sizeof (dl_notify_ind_t)); 1327 dlip = (dl_notify_ind_t *)mp->b_rptr; 1328 dlip->dl_primitive = DL_NOTIFY_IND; 1329 dlip->dl_notification = DL_NOTE_LINK_DOWN; 1330 1331 qreply(dsp->ds_wq, mp); 1332 } 1333 1334 /* 1335 * DL_NOTIFY_IND: DL_NOTE_SPEED 1336 */ 1337 static void 1338 str_notify_speed(dld_str_t *dsp, uint32_t speed) 1339 { 1340 mblk_t *mp; 1341 dl_notify_ind_t *dlip; 1342 1343 if (!(dsp->ds_notifications & DL_NOTE_SPEED)) 1344 return; 1345 1346 if ((mp = mexchange(dsp->ds_wq, NULL, sizeof (dl_notify_ind_t), 1347 M_PROTO, 0)) == NULL) 1348 return; 1349 1350 bzero(mp->b_rptr, sizeof (dl_notify_ind_t)); 1351 dlip = (dl_notify_ind_t *)mp->b_rptr; 1352 dlip->dl_primitive = DL_NOTIFY_IND; 1353 dlip->dl_notification = DL_NOTE_SPEED; 1354 dlip->dl_data = speed; 1355 1356 qreply(dsp->ds_wq, mp); 1357 } 1358 1359 /* 1360 * DL_NOTIFY_IND: DL_NOTE_CAPAB_RENEG 1361 */ 1362 static void 1363 str_notify_capab_reneg(dld_str_t *dsp) 1364 { 1365 mblk_t *mp; 1366 dl_notify_ind_t *dlip; 1367 1368 if (!(dsp->ds_notifications & DL_NOTE_CAPAB_RENEG)) 1369 return; 1370 1371 if ((mp = mexchange(dsp->ds_wq, NULL, sizeof (dl_notify_ind_t), 1372 M_PROTO, 0)) == NULL) 1373 return; 1374 1375 bzero(mp->b_rptr, sizeof (dl_notify_ind_t)); 1376 dlip = (dl_notify_ind_t *)mp->b_rptr; 1377 dlip->dl_primitive = DL_NOTIFY_IND; 1378 dlip->dl_notification = DL_NOTE_CAPAB_RENEG; 1379 1380 qreply(dsp->ds_wq, mp); 1381 } 1382 1383 /* 1384 * MAC notification callback. 1385 */ 1386 static void 1387 str_notify(void *arg, mac_notify_type_t type) 1388 { 1389 dld_str_t *dsp = (dld_str_t *)arg; 1390 queue_t *q = dsp->ds_wq; 1391 1392 switch (type) { 1393 case MAC_NOTE_TX: 1394 qenable(q); 1395 break; 1396 1397 case MAC_NOTE_DEVPROMISC: 1398 /* 1399 * Send the appropriate DL_NOTIFY_IND. 1400 */ 1401 if (mac_promisc_get(dsp->ds_mh, MAC_DEVPROMISC)) 1402 str_notify_promisc_on_phys(dsp); 1403 else 1404 str_notify_promisc_off_phys(dsp); 1405 break; 1406 1407 case MAC_NOTE_PROMISC: 1408 break; 1409 1410 case MAC_NOTE_UNICST: 1411 /* 1412 * This notification is sent whenever the MAC unicast address 1413 * changes. We need to re-cache the address. 1414 */ 1415 mac_unicst_get(dsp->ds_mh, dsp->ds_curr_addr); 1416 1417 /* 1418 * Send the appropriate DL_NOTIFY_IND. 1419 */ 1420 str_notify_phys_addr(dsp, dsp->ds_curr_addr); 1421 break; 1422 1423 case MAC_NOTE_LINK: 1424 /* 1425 * This notification is sent every time the MAC driver 1426 * updates the link state. 1427 */ 1428 switch (mac_link_get(dsp->ds_mh)) { 1429 case LINK_STATE_UP: 1430 /* 1431 * The link is up so send the appropriate 1432 * DL_NOTIFY_IND. 1433 */ 1434 str_notify_link_up(dsp); 1435 1436 /* 1437 * If we can find the link speed then send a 1438 * DL_NOTIFY_IND for that too. 1439 */ 1440 if (dsp->ds_mip->mi_stat[MAC_STAT_IFSPEED]) { 1441 uint64_t val; 1442 1443 val = mac_stat_get(dsp->ds_mh, 1444 MAC_STAT_IFSPEED); 1445 str_notify_speed(dsp, 1446 (uint32_t)(val / 1000ull)); 1447 } 1448 break; 1449 1450 case LINK_STATE_DOWN: 1451 /* 1452 * The link is down so send the appropriate 1453 * DL_NOTIFY_IND. 1454 */ 1455 str_notify_link_down(dsp); 1456 break; 1457 1458 default: 1459 break; 1460 } 1461 break; 1462 1463 case MAC_NOTE_RESOURCE: 1464 /* 1465 * This notification is sent whenever the MAC resources 1466 * change. We need to renegotiate the capabilities. 1467 * Send the appropriate DL_NOTIFY_IND. 1468 */ 1469 str_notify_capab_reneg(dsp); 1470 break; 1471 1472 default: 1473 ASSERT(B_FALSE); 1474 break; 1475 } 1476 } 1477 1478 /* 1479 * Enqueue one or more messages to the transmit queue. 1480 * Caller specifies the insertion position (head/tail). 1481 */ 1482 void 1483 dld_tx_enqueue(dld_str_t *dsp, mblk_t *mp, boolean_t head_insert) 1484 { 1485 mblk_t *tail; 1486 queue_t *q = dsp->ds_wq; 1487 uint_t cnt, msgcnt; 1488 uint_t tot_cnt, tot_msgcnt; 1489 1490 ASSERT(DB_TYPE(mp) == M_DATA); 1491 /* Calculate total size and count of the packet(s) */ 1492 for (tail = mp, cnt = msgdsize(mp), msgcnt = 1; 1493 tail->b_next != NULL; tail = tail->b_next) { 1494 ASSERT(DB_TYPE(tail) == M_DATA); 1495 cnt += msgdsize(tail); 1496 msgcnt++; 1497 } 1498 1499 mutex_enter(&dsp->ds_tx_list_lock); 1500 /* 1501 * If the queue depth would exceed the allowed threshold, drop 1502 * new packet(s) and drain those already in the queue. 1503 */ 1504 tot_cnt = dsp->ds_tx_cnt + cnt; 1505 tot_msgcnt = dsp->ds_tx_msgcnt + msgcnt; 1506 1507 if (!head_insert && 1508 (tot_cnt >= dld_max_q_count || tot_msgcnt >= dld_max_q_count)) { 1509 ASSERT(dsp->ds_tx_qbusy); 1510 mutex_exit(&dsp->ds_tx_list_lock); 1511 freemsgchain(mp); 1512 goto done; 1513 } 1514 1515 /* Update the queue size parameters */ 1516 dsp->ds_tx_cnt = tot_cnt; 1517 dsp->ds_tx_msgcnt = tot_msgcnt; 1518 1519 /* 1520 * If the transmit queue is currently empty and we are 1521 * about to deposit the packet(s) there, switch mode to 1522 * "busy" and raise flow-control condition. 1523 */ 1524 if (!dsp->ds_tx_qbusy) { 1525 dsp->ds_tx_qbusy = B_TRUE; 1526 ASSERT(dsp->ds_tx_flow_mp != NULL); 1527 (void) putq(q, dsp->ds_tx_flow_mp); 1528 dsp->ds_tx_flow_mp = NULL; 1529 } 1530 1531 if (!head_insert) { 1532 /* Tail insertion */ 1533 if (dsp->ds_tx_list_head == NULL) 1534 dsp->ds_tx_list_head = mp; 1535 else 1536 dsp->ds_tx_list_tail->b_next = mp; 1537 dsp->ds_tx_list_tail = tail; 1538 } else { 1539 /* Head insertion */ 1540 tail->b_next = dsp->ds_tx_list_head; 1541 if (dsp->ds_tx_list_head == NULL) 1542 dsp->ds_tx_list_tail = tail; 1543 dsp->ds_tx_list_head = mp; 1544 } 1545 mutex_exit(&dsp->ds_tx_list_lock); 1546 done: 1547 /* Schedule service thread to drain the transmit queue */ 1548 qenable(q); 1549 } 1550 1551 void 1552 dld_tx_flush(dld_str_t *dsp) 1553 { 1554 mutex_enter(&dsp->ds_tx_list_lock); 1555 if (dsp->ds_tx_list_head != NULL) { 1556 freemsgchain(dsp->ds_tx_list_head); 1557 dsp->ds_tx_list_head = dsp->ds_tx_list_tail = NULL; 1558 dsp->ds_tx_cnt = dsp->ds_tx_msgcnt = 0; 1559 if (dsp->ds_tx_qbusy) { 1560 dsp->ds_tx_flow_mp = getq(dsp->ds_wq); 1561 ASSERT(dsp->ds_tx_flow_mp != NULL); 1562 dsp->ds_tx_qbusy = B_FALSE; 1563 } 1564 } 1565 mutex_exit(&dsp->ds_tx_list_lock); 1566 } 1567 1568 /* 1569 * Process an M_IOCTL message. 1570 */ 1571 static void 1572 dld_ioc(dld_str_t *dsp, mblk_t *mp) 1573 { 1574 uint_t cmd; 1575 1576 cmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 1577 ASSERT(dsp->ds_type == DLD_DLPI); 1578 1579 switch (cmd) { 1580 case DLIOCRAW: 1581 ioc_raw(dsp, mp); 1582 break; 1583 case DLIOCHDRINFO: 1584 ioc_fast(dsp, mp); 1585 break; 1586 default: 1587 ioc(dsp, mp); 1588 } 1589 } 1590 1591 /* 1592 * DLIOCRAW 1593 */ 1594 static void 1595 ioc_raw(dld_str_t *dsp, mblk_t *mp) 1596 { 1597 queue_t *q = dsp->ds_wq; 1598 1599 rw_enter(&dsp->ds_lock, RW_WRITER); 1600 if (dsp->ds_polling || dsp->ds_soft_ring) { 1601 rw_exit(&dsp->ds_lock); 1602 miocnak(q, mp, 0, EPROTO); 1603 return; 1604 } 1605 1606 if (dsp->ds_mode != DLD_RAW && dsp->ds_dlstate == DL_IDLE) { 1607 /* 1608 * Set the receive callback. 1609 */ 1610 dls_rx_set(dsp->ds_dc, dld_str_rx_raw, (void *)dsp); 1611 1612 /* 1613 * Note that raw mode is enabled. 1614 */ 1615 dsp->ds_mode = DLD_RAW; 1616 } 1617 1618 rw_exit(&dsp->ds_lock); 1619 miocack(q, mp, 0, 0); 1620 } 1621 1622 /* 1623 * DLIOCHDRINFO 1624 */ 1625 static void 1626 ioc_fast(dld_str_t *dsp, mblk_t *mp) 1627 { 1628 dl_unitdata_req_t *dlp; 1629 off_t off; 1630 size_t len; 1631 const uint8_t *addr; 1632 uint16_t sap; 1633 mblk_t *nmp; 1634 mblk_t *hmp; 1635 uint_t addr_length; 1636 queue_t *q = dsp->ds_wq; 1637 int err; 1638 dls_channel_t dc; 1639 1640 if (dld_opt & DLD_OPT_NO_FASTPATH) { 1641 err = ENOTSUP; 1642 goto failed; 1643 } 1644 1645 nmp = mp->b_cont; 1646 if (nmp == NULL || MBLKL(nmp) < sizeof (dl_unitdata_req_t) || 1647 (dlp = (dl_unitdata_req_t *)nmp->b_rptr, 1648 dlp->dl_primitive != DL_UNITDATA_REQ)) { 1649 err = EINVAL; 1650 goto failed; 1651 } 1652 1653 off = dlp->dl_dest_addr_offset; 1654 len = dlp->dl_dest_addr_length; 1655 1656 if (!MBLKIN(nmp, off, len)) { 1657 err = EINVAL; 1658 goto failed; 1659 } 1660 1661 rw_enter(&dsp->ds_lock, RW_READER); 1662 if (dsp->ds_dlstate != DL_IDLE) { 1663 rw_exit(&dsp->ds_lock); 1664 err = ENOTSUP; 1665 goto failed; 1666 } 1667 1668 addr_length = dsp->ds_mip->mi_addr_length; 1669 if (len != addr_length + sizeof (uint16_t)) { 1670 rw_exit(&dsp->ds_lock); 1671 err = EINVAL; 1672 goto failed; 1673 } 1674 1675 addr = nmp->b_rptr + off; 1676 sap = *(uint16_t *)(nmp->b_rptr + off + addr_length); 1677 dc = dsp->ds_dc; 1678 1679 if ((hmp = dls_header(dc, addr, sap, dsp->ds_pri)) == NULL) { 1680 rw_exit(&dsp->ds_lock); 1681 err = ENOMEM; 1682 goto failed; 1683 } 1684 1685 /* 1686 * This is a performance optimization. We originally entered 1687 * as reader and only become writer upon transitioning into 1688 * the DLD_FASTPATH mode for the first time. Otherwise we 1689 * stay as reader and return the fast-path header to IP. 1690 */ 1691 if (dsp->ds_mode != DLD_FASTPATH) { 1692 if (!rw_tryupgrade(&dsp->ds_lock)) { 1693 rw_exit(&dsp->ds_lock); 1694 rw_enter(&dsp->ds_lock, RW_WRITER); 1695 1696 /* 1697 * State may have changed before we re-acquired 1698 * the writer lock in case the upgrade failed. 1699 */ 1700 if (dsp->ds_dlstate != DL_IDLE) { 1701 rw_exit(&dsp->ds_lock); 1702 err = ENOTSUP; 1703 goto failed; 1704 } 1705 } 1706 1707 /* 1708 * Set the receive callback (unless polling is enabled). 1709 */ 1710 if (!dsp->ds_polling && !dsp->ds_soft_ring) 1711 dls_rx_set(dc, dld_str_rx_fastpath, (void *)dsp); 1712 1713 /* 1714 * Note that fast-path mode is enabled. 1715 */ 1716 dsp->ds_mode = DLD_FASTPATH; 1717 } 1718 rw_exit(&dsp->ds_lock); 1719 1720 freemsg(nmp->b_cont); 1721 nmp->b_cont = hmp; 1722 1723 miocack(q, mp, MBLKL(nmp) + MBLKL(hmp), 0); 1724 return; 1725 failed: 1726 miocnak(q, mp, 0, err); 1727 } 1728 1729 /* 1730 * Catch-all handler. 1731 */ 1732 static void 1733 ioc(dld_str_t *dsp, mblk_t *mp) 1734 { 1735 queue_t *q = dsp->ds_wq; 1736 mac_handle_t mh; 1737 1738 rw_enter(&dsp->ds_lock, RW_READER); 1739 if (dsp->ds_dlstate == DL_UNATTACHED) { 1740 rw_exit(&dsp->ds_lock); 1741 miocnak(q, mp, 0, EINVAL); 1742 return; 1743 } 1744 mh = dsp->ds_mh; 1745 ASSERT(mh != NULL); 1746 rw_exit(&dsp->ds_lock); 1747 mac_ioctl(mh, q, mp); 1748 } 1749 1750 /* 1751 * Allocate a new minor number. 1752 */ 1753 static minor_t 1754 dld_minor_hold(boolean_t sleep) 1755 { 1756 minor_t minor; 1757 1758 /* 1759 * Grab a value from the arena. 1760 */ 1761 atomic_add_32(&minor_count, 1); 1762 if ((minor = PTR_TO_MINOR(vmem_alloc(minor_arenap, 1, 1763 (sleep) ? VM_SLEEP : VM_NOSLEEP))) == 0) { 1764 atomic_add_32(&minor_count, -1); 1765 return (0); 1766 } 1767 1768 return (minor); 1769 } 1770 1771 /* 1772 * Release a previously allocated minor number. 1773 */ 1774 static void 1775 dld_minor_rele(minor_t minor) 1776 { 1777 /* 1778 * Return the value to the arena. 1779 */ 1780 vmem_free(minor_arenap, MINOR_TO_PTR(minor), 1); 1781 1782 atomic_add_32(&minor_count, -1); 1783 } 1784