xref: /titanic_51/usr/src/uts/common/io/devinfo.c (revision 505d05c73a6e56769f263d4803b22eddd168ee24)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * driver for accessing kernel devinfo tree.
31  */
32 #include <sys/types.h>
33 #include <sys/pathname.h>
34 #include <sys/debug.h>
35 #include <sys/autoconf.h>
36 #include <sys/conf.h>
37 #include <sys/file.h>
38 #include <sys/kmem.h>
39 #include <sys/modctl.h>
40 #include <sys/stat.h>
41 #include <sys/ddi.h>
42 #include <sys/sunddi.h>
43 #include <sys/sunldi_impl.h>
44 #include <sys/sunndi.h>
45 #include <sys/esunddi.h>
46 #include <sys/sunmdi.h>
47 #include <sys/ddi_impldefs.h>
48 #include <sys/ndi_impldefs.h>
49 #include <sys/mdi_impldefs.h>
50 #include <sys/devinfo_impl.h>
51 #include <sys/thread.h>
52 #include <sys/modhash.h>
53 #include <sys/bitmap.h>
54 #include <util/qsort.h>
55 #include <sys/disp.h>
56 #include <sys/kobj.h>
57 #include <sys/crc32.h>
58 
59 
60 #ifdef DEBUG
61 static int di_debug;
62 #define	dcmn_err(args) if (di_debug >= 1) cmn_err args
63 #define	dcmn_err2(args) if (di_debug >= 2) cmn_err args
64 #define	dcmn_err3(args) if (di_debug >= 3) cmn_err args
65 #else
66 #define	dcmn_err(args) /* nothing */
67 #define	dcmn_err2(args) /* nothing */
68 #define	dcmn_err3(args) /* nothing */
69 #endif
70 
71 /*
72  * We partition the space of devinfo minor nodes equally between the full and
73  * unprivileged versions of the driver.  The even-numbered minor nodes are the
74  * full version, while the odd-numbered ones are the read-only version.
75  */
76 static int di_max_opens = 32;
77 
78 #define	DI_FULL_PARENT		0
79 #define	DI_READONLY_PARENT	1
80 #define	DI_NODE_SPECIES		2
81 #define	DI_UNPRIVILEGED_NODE(x)	(((x) % 2) != 0)
82 
83 #define	IOC_IDLE	0	/* snapshot ioctl states */
84 #define	IOC_SNAP	1	/* snapshot in progress */
85 #define	IOC_DONE	2	/* snapshot done, but not copied out */
86 #define	IOC_COPY	3	/* copyout in progress */
87 
88 /*
89  * Keep max alignment so we can move snapshot to different platforms
90  */
91 #define	DI_ALIGN(addr)	((addr + 7l) & ~7l)
92 
93 /*
94  * To avoid wasting memory, make a linked list of memory chunks.
95  * Size of each chunk is buf_size.
96  */
97 struct di_mem {
98 	struct di_mem *next;	/* link to next chunk */
99 	char *buf;		/* contiguous kernel memory */
100 	size_t buf_size;	/* size of buf in bytes */
101 	devmap_cookie_t cook;	/* cookie from ddi_umem_alloc */
102 };
103 
104 /*
105  * This is a stack for walking the tree without using recursion.
106  * When the devinfo tree height is above some small size, one
107  * gets watchdog resets on sun4m.
108  */
109 struct di_stack {
110 	void		*offset[MAX_TREE_DEPTH];
111 	struct dev_info *dip[MAX_TREE_DEPTH];
112 	int		circ[MAX_TREE_DEPTH];
113 	int		depth;	/* depth of current node to be copied */
114 };
115 
116 #define	TOP_OFFSET(stack)	\
117 	((di_off_t *)(stack)->offset[(stack)->depth - 1])
118 #define	TOP_NODE(stack)		\
119 	((stack)->dip[(stack)->depth - 1])
120 #define	PARENT_OFFSET(stack)	\
121 	((di_off_t *)(stack)->offset[(stack)->depth - 2])
122 #define	EMPTY_STACK(stack)	((stack)->depth == 0)
123 #define	POP_STACK(stack)	{ \
124 	ndi_devi_exit((dev_info_t *)TOP_NODE(stack), \
125 		(stack)->circ[(stack)->depth - 1]); \
126 	((stack)->depth--); \
127 }
128 #define	PUSH_STACK(stack, node, offp)	{ \
129 	ASSERT(node != NULL); \
130 	ndi_devi_enter((dev_info_t *)node, &(stack)->circ[(stack)->depth]); \
131 	(stack)->dip[(stack)->depth] = (node); \
132 	(stack)->offset[(stack)->depth] = (void *)(offp); \
133 	((stack)->depth)++; \
134 }
135 
136 #define	DI_ALL_PTR(s)	((struct di_all *)di_mem_addr((s), 0))
137 
138 /*
139  * With devfs, the device tree has no global locks. The device tree is
140  * dynamic and dips may come and go if they are not locked locally. Under
141  * these conditions, pointers are no longer reliable as unique IDs.
142  * Specifically, these pointers cannot be used as keys for hash tables
143  * as the same devinfo structure may be freed in one part of the tree only
144  * to be allocated as the structure for a different device in another
145  * part of the tree. This can happen if DR and the snapshot are
146  * happening concurrently.
147  * The following data structures act as keys for devinfo nodes and
148  * pathinfo nodes.
149  */
150 
151 enum di_ktype {
152 	DI_DKEY = 1,
153 	DI_PKEY = 2
154 };
155 
156 struct di_dkey {
157 	dev_info_t	*dk_dip;
158 	major_t		dk_major;
159 	int		dk_inst;
160 	dnode_t		dk_nodeid;
161 };
162 
163 struct di_pkey {
164 	mdi_pathinfo_t	*pk_pip;
165 	char		*pk_path_addr;
166 	dev_info_t	*pk_client;
167 	dev_info_t	*pk_phci;
168 };
169 
170 struct di_key {
171 	enum di_ktype	k_type;
172 	union {
173 		struct di_dkey dkey;
174 		struct di_pkey pkey;
175 	} k_u;
176 };
177 
178 
179 struct i_lnode;
180 
181 typedef struct i_link {
182 	/*
183 	 * If a di_link struct representing this i_link struct makes it
184 	 * into the snapshot, then self will point to the offset of
185 	 * the di_link struct in the snapshot
186 	 */
187 	di_off_t	self;
188 
189 	int		spec_type;	/* block or char access type */
190 	struct i_lnode	*src_lnode;	/* src i_lnode */
191 	struct i_lnode	*tgt_lnode;	/* tgt i_lnode */
192 	struct i_link	*src_link_next;	/* next src i_link /w same i_lnode */
193 	struct i_link	*tgt_link_next;	/* next tgt i_link /w same i_lnode */
194 } i_link_t;
195 
196 typedef struct i_lnode {
197 	/*
198 	 * If a di_lnode struct representing this i_lnode struct makes it
199 	 * into the snapshot, then self will point to the offset of
200 	 * the di_lnode struct in the snapshot
201 	 */
202 	di_off_t	self;
203 
204 	/*
205 	 * used for hashing and comparing i_lnodes
206 	 */
207 	int		modid;
208 
209 	/*
210 	 * public information describing a link endpoint
211 	 */
212 	struct di_node	*di_node;	/* di_node in snapshot */
213 	dev_t		devt;		/* devt */
214 
215 	/*
216 	 * i_link ptr to links coming into this i_lnode node
217 	 * (this i_lnode is the target of these i_links)
218 	 */
219 	i_link_t	*link_in;
220 
221 	/*
222 	 * i_link ptr to links going out of this i_lnode node
223 	 * (this i_lnode is the source of these i_links)
224 	 */
225 	i_link_t	*link_out;
226 } i_lnode_t;
227 
228 /*
229  * Soft state associated with each instance of driver open.
230  */
231 static struct di_state {
232 	di_off_t mem_size;	/* total # bytes in memlist	*/
233 	struct di_mem *memlist;	/* head of memlist		*/
234 	uint_t command;		/* command from ioctl		*/
235 	int di_iocstate;	/* snapshot ioctl state		*/
236 	mod_hash_t *reg_dip_hash;
237 	mod_hash_t *reg_pip_hash;
238 	int lnode_count;
239 	int link_count;
240 
241 	mod_hash_t *lnode_hash;
242 	mod_hash_t *link_hash;
243 } **di_states;
244 
245 static kmutex_t di_lock;	/* serialize instance assignment */
246 
247 typedef enum {
248 	DI_QUIET = 0,	/* DI_QUIET must always be 0 */
249 	DI_ERR,
250 	DI_INFO,
251 	DI_TRACE,
252 	DI_TRACE1,
253 	DI_TRACE2
254 } di_cache_debug_t;
255 
256 static uint_t	di_chunk = 32;		/* I/O chunk size in pages */
257 
258 #define	DI_CACHE_LOCK(c)	(mutex_enter(&(c).cache_lock))
259 #define	DI_CACHE_UNLOCK(c)	(mutex_exit(&(c).cache_lock))
260 #define	DI_CACHE_LOCKED(c)	(mutex_owned(&(c).cache_lock))
261 
262 #define	CACHE_DEBUG(args)	\
263 	{ if (di_cache_debug != DI_QUIET) di_cache_print args; }
264 
265 static int di_open(dev_t *, int, int, cred_t *);
266 static int di_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
267 static int di_close(dev_t, int, int, cred_t *);
268 static int di_info(dev_info_t *, ddi_info_cmd_t, void *, void **);
269 static int di_attach(dev_info_t *, ddi_attach_cmd_t);
270 static int di_detach(dev_info_t *, ddi_detach_cmd_t);
271 
272 static di_off_t di_copyformat(di_off_t, struct di_state *, intptr_t, int);
273 static di_off_t di_snapshot(struct di_state *);
274 static di_off_t di_copydevnm(di_off_t *, struct di_state *);
275 static di_off_t di_copytree(struct dev_info *, di_off_t *, struct di_state *);
276 static di_off_t di_copynode(struct di_stack *, struct di_state *);
277 static di_off_t di_getmdata(struct ddi_minor_data *, di_off_t *, di_off_t,
278     struct di_state *);
279 static di_off_t di_getppdata(struct dev_info *, di_off_t *, struct di_state *);
280 static di_off_t di_getdpdata(struct dev_info *, di_off_t *, struct di_state *);
281 static di_off_t di_getprop(struct ddi_prop *, di_off_t *,
282     struct di_state *, struct dev_info *, int);
283 static void di_allocmem(struct di_state *, size_t);
284 static void di_freemem(struct di_state *);
285 static void di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz);
286 static di_off_t di_checkmem(struct di_state *, di_off_t, size_t);
287 static caddr_t di_mem_addr(struct di_state *, di_off_t);
288 static int di_setstate(struct di_state *, int);
289 static void di_register_dip(struct di_state *, dev_info_t *, di_off_t);
290 static void di_register_pip(struct di_state *, mdi_pathinfo_t *, di_off_t);
291 static di_off_t di_getpath_data(dev_info_t *, di_off_t *, di_off_t,
292     struct di_state *, int);
293 static di_off_t di_getlink_data(di_off_t, struct di_state *);
294 static int di_dip_find(struct di_state *st, dev_info_t *node, di_off_t *off_p);
295 
296 static int cache_args_valid(struct di_state *st, int *error);
297 static int snapshot_is_cacheable(struct di_state *st);
298 static int di_cache_lookup(struct di_state *st);
299 static int di_cache_update(struct di_state *st);
300 static void di_cache_print(di_cache_debug_t msglevel, char *fmt, ...);
301 
302 static struct cb_ops di_cb_ops = {
303 	di_open,		/* open */
304 	di_close,		/* close */
305 	nodev,			/* strategy */
306 	nodev,			/* print */
307 	nodev,			/* dump */
308 	nodev,			/* read */
309 	nodev,			/* write */
310 	di_ioctl,		/* ioctl */
311 	nodev,			/* devmap */
312 	nodev,			/* mmap */
313 	nodev,			/* segmap */
314 	nochpoll,		/* poll */
315 	ddi_prop_op,		/* prop_op */
316 	NULL,			/* streamtab  */
317 	D_NEW | D_MP		/* Driver compatibility flag */
318 };
319 
320 static struct dev_ops di_ops = {
321 	DEVO_REV,		/* devo_rev, */
322 	0,			/* refcnt  */
323 	di_info,		/* info */
324 	nulldev,		/* identify */
325 	nulldev,		/* probe */
326 	di_attach,		/* attach */
327 	di_detach,		/* detach */
328 	nodev,			/* reset */
329 	&di_cb_ops,		/* driver operations */
330 	NULL			/* bus operations */
331 };
332 
333 /*
334  * Module linkage information for the kernel.
335  */
336 static struct modldrv modldrv = {
337 	&mod_driverops,
338 	"DEVINFO Driver %I%",
339 	&di_ops
340 };
341 
342 static struct modlinkage modlinkage = {
343 	MODREV_1,
344 	&modldrv,
345 	NULL
346 };
347 
348 int
349 _init(void)
350 {
351 	int	error;
352 
353 	mutex_init(&di_lock, NULL, MUTEX_DRIVER, NULL);
354 
355 	error = mod_install(&modlinkage);
356 	if (error != 0) {
357 		mutex_destroy(&di_lock);
358 		return (error);
359 	}
360 
361 	return (0);
362 }
363 
364 int
365 _info(struct modinfo *modinfop)
366 {
367 	return (mod_info(&modlinkage, modinfop));
368 }
369 
370 int
371 _fini(void)
372 {
373 	int	error;
374 
375 	error = mod_remove(&modlinkage);
376 	if (error != 0) {
377 		return (error);
378 	}
379 
380 	mutex_destroy(&di_lock);
381 	return (0);
382 }
383 
384 static dev_info_t *di_dip;
385 
386 /*ARGSUSED*/
387 static int
388 di_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
389 {
390 	int error = DDI_FAILURE;
391 
392 	switch (infocmd) {
393 	case DDI_INFO_DEVT2DEVINFO:
394 		*result = (void *)di_dip;
395 		error = DDI_SUCCESS;
396 		break;
397 	case DDI_INFO_DEVT2INSTANCE:
398 		/*
399 		 * All dev_t's map to the same, single instance.
400 		 */
401 		*result = (void *)0;
402 		error = DDI_SUCCESS;
403 		break;
404 	default:
405 		break;
406 	}
407 
408 	return (error);
409 }
410 
411 static int
412 di_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
413 {
414 	int error = DDI_FAILURE;
415 
416 	switch (cmd) {
417 	case DDI_ATTACH:
418 		di_states = kmem_zalloc(
419 		    di_max_opens * sizeof (struct di_state *), KM_SLEEP);
420 
421 		if (ddi_create_minor_node(dip, "devinfo", S_IFCHR,
422 		    DI_FULL_PARENT, DDI_PSEUDO, NULL) == DDI_FAILURE ||
423 		    ddi_create_minor_node(dip, "devinfo,ro", S_IFCHR,
424 		    DI_READONLY_PARENT, DDI_PSEUDO, NULL) == DDI_FAILURE) {
425 			kmem_free(di_states,
426 			    di_max_opens * sizeof (struct di_state *));
427 			ddi_remove_minor_node(dip, NULL);
428 			error = DDI_FAILURE;
429 		} else {
430 			di_dip = dip;
431 			ddi_report_dev(dip);
432 
433 			error = DDI_SUCCESS;
434 		}
435 		break;
436 	default:
437 		error = DDI_FAILURE;
438 		break;
439 	}
440 
441 	return (error);
442 }
443 
444 static int
445 di_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
446 {
447 	int error = DDI_FAILURE;
448 
449 	switch (cmd) {
450 	case DDI_DETACH:
451 		ddi_remove_minor_node(dip, NULL);
452 		di_dip = NULL;
453 		kmem_free(di_states, di_max_opens * sizeof (struct di_state *));
454 
455 		error = DDI_SUCCESS;
456 		break;
457 	default:
458 		error = DDI_FAILURE;
459 		break;
460 	}
461 
462 	return (error);
463 }
464 
465 /*
466  * Allow multiple opens by tweaking the dev_t such that it looks like each
467  * open is getting a different minor device.  Each minor gets a separate
468  * entry in the di_states[] table.  Based on the original minor number, we
469  * discriminate opens of the full and read-only nodes.  If all of the instances
470  * of the selected minor node are currently open, we return EAGAIN.
471  */
472 /*ARGSUSED*/
473 static int
474 di_open(dev_t *devp, int flag, int otyp, cred_t *credp)
475 {
476 	int m;
477 	minor_t minor_parent = getminor(*devp);
478 
479 	if (minor_parent != DI_FULL_PARENT &&
480 	    minor_parent != DI_READONLY_PARENT)
481 		return (ENXIO);
482 
483 	mutex_enter(&di_lock);
484 
485 	for (m = minor_parent; m < di_max_opens; m += DI_NODE_SPECIES) {
486 		if (di_states[m] != NULL)
487 			continue;
488 
489 		di_states[m] = kmem_zalloc(sizeof (struct di_state), KM_SLEEP);
490 		break;	/* It's ours. */
491 	}
492 
493 	if (m >= di_max_opens) {
494 		/*
495 		 * maximum open instance for device reached
496 		 */
497 		mutex_exit(&di_lock);
498 		dcmn_err((CE_WARN, "devinfo: maximum devinfo open reached"));
499 		return (EAGAIN);
500 	}
501 	mutex_exit(&di_lock);
502 
503 	ASSERT(m < di_max_opens);
504 	*devp = makedevice(getmajor(*devp), (minor_t)(m + DI_NODE_SPECIES));
505 
506 	dcmn_err((CE_CONT, "di_open: thread = %p, assigned minor = %d\n",
507 		(void *)curthread, m + DI_NODE_SPECIES));
508 
509 	return (0);
510 }
511 
512 /*ARGSUSED*/
513 static int
514 di_close(dev_t dev, int flag, int otype, cred_t *cred_p)
515 {
516 	struct di_state *st;
517 	int m = (int)getminor(dev) - DI_NODE_SPECIES;
518 
519 	if (m < 0) {
520 		cmn_err(CE_WARN, "closing non-existent devinfo minor %d",
521 		    m + DI_NODE_SPECIES);
522 		return (ENXIO);
523 	}
524 
525 	st = di_states[m];
526 	ASSERT(m < di_max_opens && st != NULL);
527 
528 	di_freemem(st);
529 	kmem_free(st, sizeof (struct di_state));
530 
531 	/*
532 	 * empty slot in state table
533 	 */
534 	mutex_enter(&di_lock);
535 	di_states[m] = NULL;
536 	dcmn_err((CE_CONT, "di_close: thread = %p, assigned minor = %d\n",
537 		(void *)curthread, m + DI_NODE_SPECIES));
538 	mutex_exit(&di_lock);
539 
540 	return (0);
541 }
542 
543 
544 /*ARGSUSED*/
545 static int
546 di_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp)
547 {
548 	int rv, error;
549 	di_off_t off;
550 	struct di_all *all;
551 	struct di_state *st;
552 	int m = (int)getminor(dev) - DI_NODE_SPECIES;
553 
554 	major_t i;
555 	char *drv_name;
556 	size_t map_size, size;
557 	struct di_mem *dcp;
558 	int ndi_flags;
559 
560 	if (m < 0 || m >= di_max_opens) {
561 		return (ENXIO);
562 	}
563 
564 	st = di_states[m];
565 	ASSERT(st != NULL);
566 
567 	dcmn_err2((CE_CONT, "di_ioctl: mode = %x, cmd = %x\n", mode, cmd));
568 
569 	switch (cmd) {
570 	case DINFOIDENT:
571 		/*
572 		 * This is called from di_init to verify that the driver
573 		 * opened is indeed devinfo. The purpose is to guard against
574 		 * sending ioctl to an unknown driver in case of an
575 		 * unresolved major number conflict during bfu.
576 		 */
577 		*rvalp = DI_MAGIC;
578 		return (0);
579 
580 	case DINFOLODRV:
581 		/*
582 		 * Hold an installed driver and return the result
583 		 */
584 		if (DI_UNPRIVILEGED_NODE(m)) {
585 			/*
586 			 * Only the fully enabled instances may issue
587 			 * DINFOLDDRV.
588 			 */
589 			return (EACCES);
590 		}
591 
592 		drv_name = kmem_alloc(MAXNAMELEN, KM_SLEEP);
593 		if (ddi_copyin((void *)arg, drv_name, MAXNAMELEN, mode) != 0) {
594 			kmem_free(drv_name, MAXNAMELEN);
595 			return (EFAULT);
596 		}
597 
598 		/*
599 		 * Some 3rd party driver's _init() walks the device tree,
600 		 * so we load the driver module before configuring driver.
601 		 */
602 		i = ddi_name_to_major(drv_name);
603 		if (ddi_hold_driver(i) == NULL) {
604 			kmem_free(drv_name, MAXNAMELEN);
605 			return (ENXIO);
606 		}
607 
608 		ndi_flags = NDI_DEVI_PERSIST | NDI_CONFIG | NDI_NO_EVENT;
609 
610 		/*
611 		 * i_ddi_load_drvconf() below will trigger a reprobe
612 		 * via reset_nexus_flags(). NDI_DRV_CONF_REPROBE isn't
613 		 * needed here.
614 		 */
615 		modunload_disable();
616 		(void) i_ddi_load_drvconf(i);
617 		(void) ndi_devi_config_driver(ddi_root_node(), ndi_flags, i);
618 		kmem_free(drv_name, MAXNAMELEN);
619 		ddi_rele_driver(i);
620 		rv = i_ddi_devs_attached(i);
621 		modunload_enable();
622 
623 		i_ddi_di_cache_invalidate(KM_SLEEP);
624 
625 		return ((rv == DDI_SUCCESS)? 0 : ENXIO);
626 
627 	case DINFOUSRLD:
628 		/*
629 		 * The case for copying snapshot to userland
630 		 */
631 		if (di_setstate(st, IOC_COPY) == -1)
632 			return (EBUSY);
633 
634 		map_size = ((struct di_all *)di_mem_addr(st, 0))->map_size;
635 		if (map_size == 0) {
636 			(void) di_setstate(st, IOC_DONE);
637 			return (EFAULT);
638 		}
639 
640 		/*
641 		 * copyout the snapshot
642 		 */
643 		map_size = (map_size + PAGEOFFSET) & PAGEMASK;
644 
645 		/*
646 		 * Return the map size, so caller may do a sanity
647 		 * check against the return value of snapshot ioctl()
648 		 */
649 		*rvalp = (int)map_size;
650 
651 		/*
652 		 * Copy one chunk at a time
653 		 */
654 		off = 0;
655 		dcp = st->memlist;
656 		while (map_size) {
657 			size = dcp->buf_size;
658 			if (map_size <= size) {
659 				size = map_size;
660 			}
661 
662 			if (ddi_copyout(di_mem_addr(st, off),
663 			    (void *)(arg + off), size, mode) != 0) {
664 				(void) di_setstate(st, IOC_DONE);
665 				return (EFAULT);
666 			}
667 
668 			map_size -= size;
669 			off += size;
670 			dcp = dcp->next;
671 		}
672 
673 		di_freemem(st);
674 		(void) di_setstate(st, IOC_IDLE);
675 		return (0);
676 
677 	default:
678 		if ((cmd & ~DIIOC_MASK) != DIIOC) {
679 			/*
680 			 * Invalid ioctl command
681 			 */
682 			return (ENOTTY);
683 		}
684 		/*
685 		 * take a snapshot
686 		 */
687 		st->command = cmd & DIIOC_MASK;
688 		/*FALLTHROUGH*/
689 	}
690 
691 	/*
692 	 * Obtain enough memory to hold header + rootpath.  We prevent kernel
693 	 * memory exhaustion by freeing any previously allocated snapshot and
694 	 * refusing the operation; otherwise we would be allowing ioctl(),
695 	 * ioctl(), ioctl(), ..., panic.
696 	 */
697 	if (di_setstate(st, IOC_SNAP) == -1)
698 		return (EBUSY);
699 
700 	size = sizeof (struct di_all) +
701 	    sizeof (((struct dinfo_io *)(NULL))->root_path);
702 	if (size < PAGESIZE)
703 		size = PAGESIZE;
704 	di_allocmem(st, size);
705 
706 	all = (struct di_all *)di_mem_addr(st, 0);
707 	all->devcnt = devcnt;
708 	all->command = st->command;
709 	all->version = DI_SNAPSHOT_VERSION;
710 
711 	/*
712 	 * Note the endianness in case we need to transport snapshot
713 	 * over the network.
714 	 */
715 #if defined(_LITTLE_ENDIAN)
716 	all->endianness = DI_LITTLE_ENDIAN;
717 #else
718 	all->endianness = DI_BIG_ENDIAN;
719 #endif
720 
721 	/* Copyin ioctl args, store in the snapshot. */
722 	if (copyinstr((void *)arg, all->root_path,
723 	    sizeof (((struct dinfo_io *)(NULL))->root_path), &size) != 0) {
724 		di_freemem(st);
725 		(void) di_setstate(st, IOC_IDLE);
726 		return (EFAULT);
727 	}
728 
729 	error = 0;
730 	if ((st->command & DINFOCACHE) && !cache_args_valid(st, &error)) {
731 		di_freemem(st);
732 		(void) di_setstate(st, IOC_IDLE);
733 		return (error);
734 	}
735 
736 	off = DI_ALIGN(sizeof (struct di_all) + size);
737 
738 	/*
739 	 * Only the fully enabled version may force load drivers or read
740 	 * the parent private data from a driver.
741 	 */
742 	if ((st->command & (DINFOPRIVDATA | DINFOFORCE)) != 0 &&
743 	    DI_UNPRIVILEGED_NODE(m)) {
744 		di_freemem(st);
745 		(void) di_setstate(st, IOC_IDLE);
746 		return (EACCES);
747 	}
748 
749 	/* Do we need private data? */
750 	if (st->command & DINFOPRIVDATA) {
751 		arg += sizeof (((struct dinfo_io *)(NULL))->root_path);
752 
753 #ifdef _MULTI_DATAMODEL
754 		switch (ddi_model_convert_from(mode & FMODELS)) {
755 		case DDI_MODEL_ILP32: {
756 			/*
757 			 * Cannot copy private data from 64-bit kernel
758 			 * to 32-bit app
759 			 */
760 			di_freemem(st);
761 			(void) di_setstate(st, IOC_IDLE);
762 			return (EINVAL);
763 		}
764 		case DDI_MODEL_NONE:
765 			if ((off = di_copyformat(off, st, arg, mode)) == 0) {
766 				di_freemem(st);
767 				(void) di_setstate(st, IOC_IDLE);
768 				return (EFAULT);
769 			}
770 			break;
771 		}
772 #else /* !_MULTI_DATAMODEL */
773 		if ((off = di_copyformat(off, st, arg, mode)) == 0) {
774 			di_freemem(st);
775 			(void) di_setstate(st, IOC_IDLE);
776 			return (EFAULT);
777 		}
778 #endif /* _MULTI_DATAMODEL */
779 	}
780 
781 	all->top_devinfo = DI_ALIGN(off);
782 
783 	/*
784 	 * For cache lookups we reallocate memory from scratch,
785 	 * so the value of "all" is no longer valid.
786 	 */
787 	all = NULL;
788 
789 	if (st->command & DINFOCACHE) {
790 		*rvalp = di_cache_lookup(st);
791 	} else if (snapshot_is_cacheable(st)) {
792 		DI_CACHE_LOCK(di_cache);
793 		*rvalp = di_cache_update(st);
794 		DI_CACHE_UNLOCK(di_cache);
795 	} else {
796 		modunload_disable();
797 		*rvalp = di_snapshot(st);
798 		modunload_enable();
799 	}
800 
801 	if (*rvalp) {
802 		DI_ALL_PTR(st)->map_size = *rvalp;
803 		(void) di_setstate(st, IOC_DONE);
804 	} else {
805 		di_freemem(st);
806 		(void) di_setstate(st, IOC_IDLE);
807 	}
808 
809 	return (0);
810 }
811 
812 /*
813  * Get a chunk of memory >= size, for the snapshot
814  */
815 static void
816 di_allocmem(struct di_state *st, size_t size)
817 {
818 	struct di_mem *mem = kmem_zalloc(sizeof (struct di_mem),
819 	    KM_SLEEP);
820 	/*
821 	 * Round up size to nearest power of 2. If it is less
822 	 * than st->mem_size, set it to st->mem_size (i.e.,
823 	 * the mem_size is doubled every time) to reduce the
824 	 * number of memory allocations.
825 	 */
826 	size_t tmp = 1;
827 	while (tmp < size) {
828 		tmp <<= 1;
829 	}
830 	size = (tmp > st->mem_size) ? tmp : st->mem_size;
831 
832 	mem->buf = ddi_umem_alloc(size, DDI_UMEM_SLEEP, &mem->cook);
833 	mem->buf_size = size;
834 
835 	dcmn_err2((CE_CONT, "di_allocmem: mem_size=%x\n", st->mem_size));
836 
837 	if (st->mem_size == 0) {	/* first chunk */
838 		st->memlist = mem;
839 	} else {
840 		/*
841 		 * locate end of linked list and add a chunk at the end
842 		 */
843 		struct di_mem *dcp = st->memlist;
844 		while (dcp->next != NULL) {
845 			dcp = dcp->next;
846 		}
847 
848 		dcp->next = mem;
849 	}
850 
851 	st->mem_size += size;
852 }
853 
854 /*
855  * Copy upto bufsiz bytes of the memlist to buf
856  */
857 static void
858 di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz)
859 {
860 	struct di_mem *dcp;
861 	size_t copysz;
862 
863 	if (st->mem_size == 0) {
864 		ASSERT(st->memlist == NULL);
865 		return;
866 	}
867 
868 	copysz = 0;
869 	for (dcp = st->memlist; dcp; dcp = dcp->next) {
870 
871 		ASSERT(bufsiz > 0);
872 
873 		if (bufsiz <= dcp->buf_size)
874 			copysz = bufsiz;
875 		else
876 			copysz = dcp->buf_size;
877 
878 		bcopy(dcp->buf, buf, copysz);
879 
880 		buf += copysz;
881 		bufsiz -= copysz;
882 
883 		if (bufsiz == 0)
884 			break;
885 	}
886 }
887 
888 /*
889  * Free all memory for the snapshot
890  */
891 static void
892 di_freemem(struct di_state *st)
893 {
894 	struct di_mem *dcp, *tmp;
895 
896 	dcmn_err2((CE_CONT, "di_freemem\n"));
897 
898 	if (st->mem_size) {
899 		dcp = st->memlist;
900 		while (dcp) {	/* traverse the linked list */
901 			tmp = dcp;
902 			dcp = dcp->next;
903 			ddi_umem_free(tmp->cook);
904 			kmem_free(tmp, sizeof (struct di_mem));
905 		}
906 		st->mem_size = 0;
907 		st->memlist = NULL;
908 	}
909 
910 	ASSERT(st->mem_size == 0);
911 	ASSERT(st->memlist == NULL);
912 }
913 
914 /*
915  * Copies cached data to the di_state structure.
916  * Returns:
917  *	- size of data copied, on SUCCESS
918  *	- 0 on failure
919  */
920 static int
921 di_cache2mem(struct di_cache *cache, struct di_state *st)
922 {
923 	caddr_t	pa;
924 
925 	ASSERT(st->mem_size == 0);
926 	ASSERT(st->memlist == NULL);
927 	ASSERT(!servicing_interrupt());
928 	ASSERT(DI_CACHE_LOCKED(*cache));
929 
930 	if (cache->cache_size == 0) {
931 		ASSERT(cache->cache_data == NULL);
932 		CACHE_DEBUG((DI_ERR, "Empty cache. Skipping copy"));
933 		return (0);
934 	}
935 
936 	ASSERT(cache->cache_data);
937 
938 	di_allocmem(st, cache->cache_size);
939 
940 	pa = di_mem_addr(st, 0);
941 
942 	ASSERT(pa);
943 
944 	/*
945 	 * Verify that di_allocmem() allocates contiguous memory,
946 	 * so that it is safe to do straight bcopy()
947 	 */
948 	ASSERT(st->memlist != NULL);
949 	ASSERT(st->memlist->next == NULL);
950 	bcopy(cache->cache_data, pa, cache->cache_size);
951 
952 	return (cache->cache_size);
953 }
954 
955 /*
956  * Copies a snapshot from di_state to the cache
957  * Returns:
958  *	- 0 on failure
959  *	- size of copied data on success
960  */
961 static int
962 di_mem2cache(struct di_state *st, struct di_cache *cache)
963 {
964 	size_t map_size;
965 
966 	ASSERT(cache->cache_size == 0);
967 	ASSERT(cache->cache_data == NULL);
968 	ASSERT(!servicing_interrupt());
969 	ASSERT(DI_CACHE_LOCKED(*cache));
970 
971 	if (st->mem_size == 0) {
972 		ASSERT(st->memlist == NULL);
973 		CACHE_DEBUG((DI_ERR, "Empty memlist. Skipping copy"));
974 		return (0);
975 	}
976 
977 	ASSERT(st->memlist);
978 
979 	/*
980 	 * The size of the memory list may be much larger than the
981 	 * size of valid data (map_size). Cache only the valid data
982 	 */
983 	map_size = DI_ALL_PTR(st)->map_size;
984 	if (map_size == 0 || map_size < sizeof (struct di_all) ||
985 	    map_size > st->mem_size) {
986 		CACHE_DEBUG((DI_ERR, "cannot cache: bad size: 0x%x", map_size));
987 		return (0);
988 	}
989 
990 	cache->cache_data = kmem_alloc(map_size, KM_SLEEP);
991 	cache->cache_size = map_size;
992 	di_copymem(st, cache->cache_data, cache->cache_size);
993 
994 	return (map_size);
995 }
996 
997 /*
998  * Make sure there is at least "size" bytes memory left before
999  * going on. Otherwise, start on a new chunk.
1000  */
1001 static di_off_t
1002 di_checkmem(struct di_state *st, di_off_t off, size_t size)
1003 {
1004 	dcmn_err3((CE_CONT, "di_checkmem: off=%x size=%x\n",
1005 			off, (int)size));
1006 
1007 	/*
1008 	 * di_checkmem() shouldn't be called with a size of zero.
1009 	 * But in case it is, we want to make sure we return a valid
1010 	 * offset within the memlist and not an offset that points us
1011 	 * at the end of the memlist.
1012 	 */
1013 	if (size == 0) {
1014 		dcmn_err((CE_WARN, "di_checkmem: invalid zero size used"));
1015 		size = 1;
1016 	}
1017 
1018 	off = DI_ALIGN(off);
1019 	if ((st->mem_size - off) < size) {
1020 		off = st->mem_size;
1021 		di_allocmem(st, size);
1022 	}
1023 
1024 	return (off);
1025 }
1026 
1027 /*
1028  * Copy the private data format from ioctl arg.
1029  * On success, the ending offset is returned. On error 0 is returned.
1030  */
1031 static di_off_t
1032 di_copyformat(di_off_t off, struct di_state *st, intptr_t arg, int mode)
1033 {
1034 	di_off_t size;
1035 	struct di_priv_data *priv;
1036 	struct di_all *all = (struct di_all *)di_mem_addr(st, 0);
1037 
1038 	dcmn_err2((CE_CONT, "di_copyformat: off=%x, arg=%p mode=%x\n",
1039 		off, (void *)arg, mode));
1040 
1041 	/*
1042 	 * Copyin data and check version.
1043 	 * We only handle private data version 0.
1044 	 */
1045 	priv = kmem_alloc(sizeof (struct di_priv_data), KM_SLEEP);
1046 	if ((ddi_copyin((void *)arg, priv, sizeof (struct di_priv_data),
1047 	    mode) != 0) || (priv->version != DI_PRIVDATA_VERSION_0)) {
1048 		kmem_free(priv, sizeof (struct di_priv_data));
1049 		return (0);
1050 	}
1051 
1052 	/*
1053 	 * Save di_priv_data copied from userland in snapshot.
1054 	 */
1055 	all->pd_version = priv->version;
1056 	all->n_ppdata = priv->n_parent;
1057 	all->n_dpdata = priv->n_driver;
1058 
1059 	/*
1060 	 * copyin private data format, modify offset accordingly
1061 	 */
1062 	if (all->n_ppdata) {	/* parent private data format */
1063 		/*
1064 		 * check memory
1065 		 */
1066 		size = all->n_ppdata * sizeof (struct di_priv_format);
1067 		off = di_checkmem(st, off, size);
1068 		all->ppdata_format = off;
1069 		if (ddi_copyin(priv->parent, di_mem_addr(st, off), size,
1070 		    mode) != 0) {
1071 			kmem_free(priv, sizeof (struct di_priv_data));
1072 			return (0);
1073 		}
1074 
1075 		off += size;
1076 	}
1077 
1078 	if (all->n_dpdata) {	/* driver private data format */
1079 		/*
1080 		 * check memory
1081 		 */
1082 		size = all->n_dpdata * sizeof (struct di_priv_format);
1083 		off = di_checkmem(st, off, size);
1084 		all->dpdata_format = off;
1085 		if (ddi_copyin(priv->driver, di_mem_addr(st, off), size,
1086 		    mode) != 0) {
1087 			kmem_free(priv, sizeof (struct di_priv_data));
1088 			return (0);
1089 		}
1090 
1091 		off += size;
1092 	}
1093 
1094 	kmem_free(priv, sizeof (struct di_priv_data));
1095 	return (off);
1096 }
1097 
1098 /*
1099  * Return the real address based on the offset (off) within snapshot
1100  */
1101 static caddr_t
1102 di_mem_addr(struct di_state *st, di_off_t off)
1103 {
1104 	struct di_mem *dcp = st->memlist;
1105 
1106 	dcmn_err3((CE_CONT, "di_mem_addr: dcp=%p off=%x\n",
1107 		(void *)dcp, off));
1108 
1109 	ASSERT(off < st->mem_size);
1110 
1111 	while (off >= dcp->buf_size) {
1112 		off -= dcp->buf_size;
1113 		dcp = dcp->next;
1114 	}
1115 
1116 	dcmn_err3((CE_CONT, "di_mem_addr: new off=%x, return = %p\n",
1117 		off, (void *)(dcp->buf + off)));
1118 
1119 	return (dcp->buf + off);
1120 }
1121 
1122 /*
1123  * Ideally we would use the whole key to derive the hash
1124  * value. However, the probability that two keys will
1125  * have the same dip (or pip) is very low, so
1126  * hashing by dip (or pip) pointer should suffice.
1127  */
1128 static uint_t
1129 di_hash_byptr(void *arg, mod_hash_key_t key)
1130 {
1131 	struct di_key *dik = key;
1132 	size_t rshift;
1133 	void *ptr;
1134 
1135 	ASSERT(arg == NULL);
1136 
1137 	switch (dik->k_type) {
1138 	case DI_DKEY:
1139 		ptr = dik->k_u.dkey.dk_dip;
1140 		rshift = highbit(sizeof (struct dev_info));
1141 		break;
1142 	case DI_PKEY:
1143 		ptr = dik->k_u.pkey.pk_pip;
1144 		rshift = highbit(sizeof (struct mdi_pathinfo));
1145 		break;
1146 	default:
1147 		panic("devinfo: unknown key type");
1148 		/*NOTREACHED*/
1149 	}
1150 	return (mod_hash_byptr((void *)rshift, ptr));
1151 }
1152 
1153 static void
1154 di_key_dtor(mod_hash_key_t key)
1155 {
1156 	char		*path_addr;
1157 	struct di_key	*dik = key;
1158 
1159 	switch (dik->k_type) {
1160 	case DI_DKEY:
1161 		break;
1162 	case DI_PKEY:
1163 		path_addr = dik->k_u.pkey.pk_path_addr;
1164 		if (path_addr)
1165 			kmem_free(path_addr, strlen(path_addr) + 1);
1166 		break;
1167 	default:
1168 		panic("devinfo: unknown key type");
1169 		/*NOTREACHED*/
1170 	}
1171 
1172 	kmem_free(dik, sizeof (struct di_key));
1173 }
1174 
1175 static int
1176 di_dkey_cmp(struct di_dkey *dk1, struct di_dkey *dk2)
1177 {
1178 	if (dk1->dk_dip !=  dk2->dk_dip)
1179 		return (dk1->dk_dip > dk2->dk_dip ? 1 : -1);
1180 
1181 	if (dk1->dk_major != -1 && dk2->dk_major != -1) {
1182 		if (dk1->dk_major !=  dk2->dk_major)
1183 			return (dk1->dk_major > dk2->dk_major ? 1 : -1);
1184 
1185 		if (dk1->dk_inst !=  dk2->dk_inst)
1186 			return (dk1->dk_inst > dk2->dk_inst ? 1 : -1);
1187 	}
1188 
1189 	if (dk1->dk_nodeid != dk2->dk_nodeid)
1190 		return (dk1->dk_nodeid > dk2->dk_nodeid ? 1 : -1);
1191 
1192 	return (0);
1193 }
1194 
1195 static int
1196 di_pkey_cmp(struct di_pkey *pk1, struct di_pkey *pk2)
1197 {
1198 	char *p1, *p2;
1199 	int rv;
1200 
1201 	if (pk1->pk_pip !=  pk2->pk_pip)
1202 		return (pk1->pk_pip > pk2->pk_pip ? 1 : -1);
1203 
1204 	p1 = pk1->pk_path_addr;
1205 	p2 = pk2->pk_path_addr;
1206 
1207 	p1 = p1 ? p1 : "";
1208 	p2 = p2 ? p2 : "";
1209 
1210 	rv = strcmp(p1, p2);
1211 	if (rv)
1212 		return (rv > 0  ? 1 : -1);
1213 
1214 	if (pk1->pk_client !=  pk2->pk_client)
1215 		return (pk1->pk_client > pk2->pk_client ? 1 : -1);
1216 
1217 	if (pk1->pk_phci !=  pk2->pk_phci)
1218 		return (pk1->pk_phci > pk2->pk_phci ? 1 : -1);
1219 
1220 	return (0);
1221 }
1222 
1223 static int
1224 di_key_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
1225 {
1226 	struct di_key *dik1, *dik2;
1227 
1228 	dik1 = key1;
1229 	dik2 = key2;
1230 
1231 	if (dik1->k_type != dik2->k_type) {
1232 		panic("devinfo: mismatched keys");
1233 		/*NOTREACHED*/
1234 	}
1235 
1236 	switch (dik1->k_type) {
1237 	case DI_DKEY:
1238 		return (di_dkey_cmp(&(dik1->k_u.dkey), &(dik2->k_u.dkey)));
1239 	case DI_PKEY:
1240 		return (di_pkey_cmp(&(dik1->k_u.pkey), &(dik2->k_u.pkey)));
1241 	default:
1242 		panic("devinfo: unknown key type");
1243 		/*NOTREACHED*/
1244 	}
1245 }
1246 
1247 /*
1248  * This is the main function that takes a snapshot
1249  */
1250 static di_off_t
1251 di_snapshot(struct di_state *st)
1252 {
1253 	di_off_t off;
1254 	struct di_all *all;
1255 	dev_info_t *rootnode;
1256 	char buf[80];
1257 	int plen;
1258 	char *path;
1259 	vnode_t *vp;
1260 
1261 	all = (struct di_all *)di_mem_addr(st, 0);
1262 	dcmn_err((CE_CONT, "Taking a snapshot of devinfo tree...\n"));
1263 
1264 	/*
1265 	 * Verify path before entrusting it to e_ddi_hold_devi_by_path because
1266 	 * some platforms have OBP bugs where executing the NDI_PROMNAME code
1267 	 * path against an invalid path results in panic.  The lookupnameat
1268 	 * is done relative to rootdir without a leading '/' on "devices/"
1269 	 * to force the lookup to occur in the global zone.
1270 	 */
1271 	plen = strlen("devices/") + strlen(all->root_path) + 1;
1272 	path = kmem_alloc(plen, KM_SLEEP);
1273 	(void) snprintf(path, plen, "devices/%s", all->root_path);
1274 	if (lookupnameat(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp, rootdir)) {
1275 		dcmn_err((CE_CONT, "Devinfo node %s not found\n",
1276 		    all->root_path));
1277 		kmem_free(path, plen);
1278 		return (0);
1279 	}
1280 	kmem_free(path, plen);
1281 	VN_RELE(vp);
1282 
1283 	/*
1284 	 * Hold the devinfo node referred by the path.
1285 	 */
1286 	rootnode = e_ddi_hold_devi_by_path(all->root_path, 0);
1287 	if (rootnode == NULL) {
1288 		dcmn_err((CE_CONT, "Devinfo node %s not found\n",
1289 		    all->root_path));
1290 		return (0);
1291 	}
1292 
1293 	(void) snprintf(buf, sizeof (buf),
1294 	    "devinfo registered dips (statep=%p)", (void *)st);
1295 
1296 	st->reg_dip_hash = mod_hash_create_extended(buf, 64,
1297 	    di_key_dtor, mod_hash_null_valdtor, di_hash_byptr,
1298 	    NULL, di_key_cmp, KM_SLEEP);
1299 
1300 
1301 	(void) snprintf(buf, sizeof (buf),
1302 	    "devinfo registered pips (statep=%p)", (void *)st);
1303 
1304 	st->reg_pip_hash = mod_hash_create_extended(buf, 64,
1305 	    di_key_dtor, mod_hash_null_valdtor, di_hash_byptr,
1306 	    NULL, di_key_cmp, KM_SLEEP);
1307 
1308 	/*
1309 	 * copy the device tree
1310 	 */
1311 	off = di_copytree(DEVI(rootnode), &all->top_devinfo, st);
1312 
1313 	ddi_release_devi(rootnode);
1314 
1315 	/*
1316 	 * copy the devnames array
1317 	 */
1318 	all->devnames = off;
1319 	off = di_copydevnm(&all->devnames, st);
1320 
1321 
1322 	/* initialize the hash tables */
1323 	st->lnode_count = 0;
1324 	st->link_count = 0;
1325 
1326 	if (DINFOLYR & st->command) {
1327 		off = di_getlink_data(off, st);
1328 	}
1329 
1330 	/*
1331 	 * Free up hash tables
1332 	 */
1333 	mod_hash_destroy_hash(st->reg_dip_hash);
1334 	mod_hash_destroy_hash(st->reg_pip_hash);
1335 
1336 	/*
1337 	 * Record the timestamp now that we are done with snapshot.
1338 	 *
1339 	 * We compute the checksum later and then only if we cache
1340 	 * the snapshot, since checksumming adds some overhead.
1341 	 * The checksum is checked later if we read the cache file.
1342 	 * from disk.
1343 	 *
1344 	 * Set checksum field to 0 as CRC is calculated with that
1345 	 * field set to 0.
1346 	 */
1347 	all->snapshot_time = ddi_get_time();
1348 	all->cache_checksum = 0;
1349 
1350 	return (off);
1351 }
1352 
1353 /*
1354  * Assumes all devinfo nodes in device tree have been snapshotted
1355  */
1356 static void
1357 snap_driver_list(struct di_state *st, struct devnames *dnp, di_off_t *poff_p)
1358 {
1359 	struct dev_info *node;
1360 	struct di_node *me;
1361 	di_off_t off;
1362 
1363 	ASSERT(mutex_owned(&dnp->dn_lock));
1364 
1365 	node = DEVI(dnp->dn_head);
1366 	for (; node; node = node->devi_next) {
1367 		if (di_dip_find(st, (dev_info_t *)node, &off) != 0)
1368 			continue;
1369 
1370 		ASSERT(off > 0);
1371 		me = (struct di_node *)di_mem_addr(st, off);
1372 		ASSERT(me->next == 0 || me->next == -1);
1373 		/*
1374 		 * Only nodes which were BOUND when they were
1375 		 * snapshotted will be added to per-driver list.
1376 		 */
1377 		if (me->next != -1)
1378 			continue;
1379 
1380 		*poff_p = off;
1381 		poff_p = &me->next;
1382 	}
1383 
1384 	*poff_p = 0;
1385 }
1386 
1387 /*
1388  * Copy the devnames array, so we have a list of drivers in the snapshot.
1389  * Also makes it possible to locate the per-driver devinfo nodes.
1390  */
1391 static di_off_t
1392 di_copydevnm(di_off_t *off_p, struct di_state *st)
1393 {
1394 	int i;
1395 	di_off_t off;
1396 	size_t size;
1397 	struct di_devnm *dnp;
1398 
1399 	dcmn_err2((CE_CONT, "di_copydevnm: *off_p = %p\n", (void *)off_p));
1400 
1401 	/*
1402 	 * make sure there is some allocated memory
1403 	 */
1404 	size = devcnt * sizeof (struct di_devnm);
1405 	off = di_checkmem(st, *off_p, size);
1406 	*off_p = off;
1407 
1408 	dcmn_err((CE_CONT, "Start copying devnamesp[%d] at offset 0x%x\n",
1409 		devcnt, off));
1410 
1411 	dnp = (struct di_devnm *)di_mem_addr(st, off);
1412 	off += size;
1413 
1414 	for (i = 0; i < devcnt; i++) {
1415 		if (devnamesp[i].dn_name == NULL) {
1416 			continue;
1417 		}
1418 
1419 		/*
1420 		 * dn_name is not freed during driver unload or removal.
1421 		 *
1422 		 * There is a race condition when make_devname() changes
1423 		 * dn_name during our strcpy. This should be rare since
1424 		 * only add_drv does this. At any rate, we never had a
1425 		 * problem with ddi_name_to_major(), which should have
1426 		 * the same problem.
1427 		 */
1428 		dcmn_err2((CE_CONT, "di_copydevnm: %s%d, off=%x\n",
1429 			devnamesp[i].dn_name, devnamesp[i].dn_instance,
1430 			off));
1431 
1432 		off = di_checkmem(st, off, strlen(devnamesp[i].dn_name) + 1);
1433 		dnp[i].name = off;
1434 		(void) strcpy((char *)di_mem_addr(st, off),
1435 			devnamesp[i].dn_name);
1436 		off += DI_ALIGN(strlen(devnamesp[i].dn_name) + 1);
1437 
1438 		mutex_enter(&devnamesp[i].dn_lock);
1439 
1440 		/*
1441 		 * Snapshot per-driver node list
1442 		 */
1443 		snap_driver_list(st, &devnamesp[i], &dnp[i].head);
1444 
1445 		/*
1446 		 * This is not used by libdevinfo, leave it for now
1447 		 */
1448 		dnp[i].flags = devnamesp[i].dn_flags;
1449 		dnp[i].instance = devnamesp[i].dn_instance;
1450 
1451 		/*
1452 		 * get global properties
1453 		 */
1454 		if ((DINFOPROP & st->command) &&
1455 		    devnamesp[i].dn_global_prop_ptr) {
1456 			dnp[i].global_prop = off;
1457 			off = di_getprop(
1458 			    devnamesp[i].dn_global_prop_ptr->prop_list,
1459 			    &dnp[i].global_prop, st, NULL, DI_PROP_GLB_LIST);
1460 		}
1461 
1462 		/*
1463 		 * Bit encode driver ops: & bus_ops, cb_ops, & cb_ops->cb_str
1464 		 */
1465 		if (CB_DRV_INSTALLED(devopsp[i])) {
1466 			if (devopsp[i]->devo_cb_ops) {
1467 				dnp[i].ops |= DI_CB_OPS;
1468 				if (devopsp[i]->devo_cb_ops->cb_str)
1469 					dnp[i].ops |= DI_STREAM_OPS;
1470 			}
1471 			if (NEXUS_DRV(devopsp[i])) {
1472 				dnp[i].ops |= DI_BUS_OPS;
1473 			}
1474 		}
1475 
1476 		mutex_exit(&devnamesp[i].dn_lock);
1477 	}
1478 
1479 	dcmn_err((CE_CONT, "End copying devnamesp at offset 0x%x\n", off));
1480 
1481 	return (off);
1482 }
1483 
1484 /*
1485  * Copy the kernel devinfo tree. The tree and the devnames array forms
1486  * the entire snapshot (see also di_copydevnm).
1487  */
1488 static di_off_t
1489 di_copytree(struct dev_info *root, di_off_t *off_p, struct di_state *st)
1490 {
1491 	di_off_t off;
1492 	struct di_stack *dsp = kmem_zalloc(sizeof (struct di_stack), KM_SLEEP);
1493 
1494 	dcmn_err((CE_CONT, "di_copytree: root = %p, *off_p = %x\n",
1495 		(void *)root, *off_p));
1496 
1497 	/* force attach drivers */
1498 	if ((i_ddi_node_state((dev_info_t *)root) == DS_READY) &&
1499 	    (st->command & DINFOSUBTREE) && (st->command & DINFOFORCE)) {
1500 		(void) ndi_devi_config((dev_info_t *)root,
1501 		    NDI_CONFIG | NDI_DEVI_PERSIST | NDI_NO_EVENT |
1502 		    NDI_DRV_CONF_REPROBE);
1503 	}
1504 
1505 	/*
1506 	 * Push top_devinfo onto a stack
1507 	 *
1508 	 * The stack is necessary to avoid recursion, which can overrun
1509 	 * the kernel stack.
1510 	 */
1511 	PUSH_STACK(dsp, root, off_p);
1512 
1513 	/*
1514 	 * As long as there is a node on the stack, copy the node.
1515 	 * di_copynode() is responsible for pushing and popping
1516 	 * child and sibling nodes on the stack.
1517 	 */
1518 	while (!EMPTY_STACK(dsp)) {
1519 		off = di_copynode(dsp, st);
1520 	}
1521 
1522 	/*
1523 	 * Free the stack structure
1524 	 */
1525 	kmem_free(dsp, sizeof (struct di_stack));
1526 
1527 	return (off);
1528 }
1529 
1530 /*
1531  * This is the core function, which copies all data associated with a single
1532  * node into the snapshot. The amount of information is determined by the
1533  * ioctl command.
1534  */
1535 static di_off_t
1536 di_copynode(struct di_stack *dsp, struct di_state *st)
1537 {
1538 	di_off_t off;
1539 	struct di_node *me;
1540 	struct dev_info *node;
1541 
1542 	dcmn_err2((CE_CONT, "di_copynode: depth = %x\n",
1543 			dsp->depth));
1544 
1545 	node = TOP_NODE(dsp);
1546 
1547 	ASSERT(node != NULL);
1548 
1549 	/*
1550 	 * check memory usage, and fix offsets accordingly.
1551 	 */
1552 	off = di_checkmem(st, *(TOP_OFFSET(dsp)), sizeof (struct di_node));
1553 	*(TOP_OFFSET(dsp)) = off;
1554 	me = DI_NODE(di_mem_addr(st, off));
1555 
1556 	dcmn_err((CE_CONT, "copy node %s, instance #%d, at offset 0x%x\n",
1557 			node->devi_node_name, node->devi_instance, off));
1558 
1559 	/*
1560 	 * Node parameters:
1561 	 * self		-- offset of current node within snapshot
1562 	 * nodeid	-- pointer to PROM node (tri-valued)
1563 	 * state	-- hot plugging device state
1564 	 * node_state	-- devinfo node state (CF1, CF2, etc.)
1565 	 */
1566 	me->self = off;
1567 	me->instance = node->devi_instance;
1568 	me->nodeid = node->devi_nodeid;
1569 	me->node_class = node->devi_node_class;
1570 	me->attributes = node->devi_node_attributes;
1571 	me->state = node->devi_state;
1572 	me->node_state = node->devi_node_state;
1573 	me->user_private_data = NULL;
1574 
1575 	/*
1576 	 * Get parent's offset in snapshot from the stack
1577 	 * and store it in the current node
1578 	 */
1579 	if (dsp->depth > 1) {
1580 		me->parent = *(PARENT_OFFSET(dsp));
1581 	}
1582 
1583 	/*
1584 	 * Save the offset of this di_node in a hash table.
1585 	 * This is used later to resolve references to this
1586 	 * dip from other parts of the tree (per-driver list,
1587 	 * multipathing linkages, layered usage linkages).
1588 	 * The key used for the hash table is derived from
1589 	 * information in the dip.
1590 	 */
1591 	di_register_dip(st, (dev_info_t *)node, me->self);
1592 
1593 	/*
1594 	 * increment offset
1595 	 */
1596 	off += sizeof (struct di_node);
1597 
1598 #ifdef	DEVID_COMPATIBILITY
1599 	/* check for devid as property marker */
1600 	if (node->devi_devid) {
1601 		ddi_devid_t	devid;
1602 		char 		*devidstr;
1603 		int		devid_size;
1604 
1605 		/*
1606 		 * The devid is now represented as a property.
1607 		 * For micro release compatibility with di_devid interface
1608 		 * in libdevinfo we must return it as a binary structure in'
1609 		 * the snapshot.  When di_devid is removed from libdevinfo
1610 		 * in a future release (and devi_devid is deleted) then
1611 		 * code related to DEVID_COMPATIBILITY can be removed.
1612 		 */
1613 		ASSERT(node->devi_devid == DEVID_COMPATIBILITY);
1614 /* XXX should be DDI_DEV_T_NONE! */
1615 		if (ddi_prop_lookup_string(DDI_DEV_T_ANY, (dev_info_t *)node,
1616 		    DDI_PROP_DONTPASS, DEVID_PROP_NAME, &devidstr) ==
1617 		    DDI_PROP_SUCCESS) {
1618 			if (ddi_devid_str_decode(devidstr, &devid, NULL) ==
1619 			    DDI_SUCCESS) {
1620 				devid_size = ddi_devid_sizeof(devid);
1621 				off = di_checkmem(st, off, devid_size);
1622 				me->devid = off;
1623 				bcopy(devid,
1624 				    di_mem_addr(st, off), devid_size);
1625 				off += devid_size;
1626 				ddi_devid_free(devid);
1627 			}
1628 			ddi_prop_free(devidstr);
1629 		}
1630 	}
1631 #endif	/* DEVID_COMPATIBILITY */
1632 
1633 	if (node->devi_node_name) {
1634 		off = di_checkmem(st, off, strlen(node->devi_node_name) + 1);
1635 		me->node_name = off;
1636 		(void) strcpy(di_mem_addr(st, off), node->devi_node_name);
1637 		off += strlen(node->devi_node_name) + 1;
1638 	}
1639 
1640 	if (node->devi_compat_names && (node->devi_compat_length > 1)) {
1641 		off = di_checkmem(st, off, node->devi_compat_length);
1642 		me->compat_names = off;
1643 		me->compat_length = node->devi_compat_length;
1644 		bcopy(node->devi_compat_names, di_mem_addr(st, off),
1645 			node->devi_compat_length);
1646 		off += node->devi_compat_length;
1647 	}
1648 
1649 	if (node->devi_addr) {
1650 		off = di_checkmem(st, off, strlen(node->devi_addr) + 1);
1651 		me->address = off;
1652 		(void) strcpy(di_mem_addr(st, off), node->devi_addr);
1653 		off += strlen(node->devi_addr) + 1;
1654 	}
1655 
1656 	if (node->devi_binding_name) {
1657 		off = di_checkmem(st, off, strlen(node->devi_binding_name) + 1);
1658 		me->bind_name = off;
1659 		(void) strcpy(di_mem_addr(st, off), node->devi_binding_name);
1660 		off += strlen(node->devi_binding_name) + 1;
1661 	}
1662 
1663 	me->drv_major = node->devi_major;
1664 
1665 	/*
1666 	 * If the dip is BOUND, set the next pointer of the
1667 	 * per-instance list to -1, indicating that it is yet to be resolved.
1668 	 * This will be resolved later in snap_driver_list().
1669 	 */
1670 	if (me->drv_major != -1) {
1671 		me->next = -1;
1672 	} else {
1673 		me->next = 0;
1674 	}
1675 
1676 	/*
1677 	 * An optimization to skip mutex_enter when not needed.
1678 	 */
1679 	if (!((DINFOMINOR | DINFOPROP | DINFOPATH) & st->command)) {
1680 		goto priv_data;
1681 	}
1682 
1683 	/*
1684 	 * Grab current per dev_info node lock to
1685 	 * get minor data and properties.
1686 	 */
1687 	mutex_enter(&(node->devi_lock));
1688 
1689 	if (!(DINFOMINOR & st->command)) {
1690 		goto path;
1691 	}
1692 
1693 	if (node->devi_minor) {		/* minor data */
1694 		me->minor_data = DI_ALIGN(off);
1695 		off = di_getmdata(node->devi_minor, &me->minor_data,
1696 		    me->self, st);
1697 	}
1698 
1699 path:
1700 	if (!(DINFOPATH & st->command)) {
1701 		goto property;
1702 	}
1703 
1704 	if (MDI_CLIENT(node)) {
1705 		me->multipath_client = DI_ALIGN(off);
1706 		off = di_getpath_data((dev_info_t *)node, &me->multipath_client,
1707 		    me->self, st, 1);
1708 		dcmn_err((CE_WARN, "me->multipath_client = %x for node %p "
1709 		    "component type = %d.  off=%d",
1710 		    me->multipath_client,
1711 		    (void *)node, node->devi_mdi_component, off));
1712 	}
1713 
1714 	if (MDI_PHCI(node)) {
1715 		me->multipath_phci = DI_ALIGN(off);
1716 		off = di_getpath_data((dev_info_t *)node, &me->multipath_phci,
1717 		    me->self, st, 0);
1718 		dcmn_err((CE_WARN, "me->multipath_phci = %x for node %p "
1719 		    "component type = %d.  off=%d",
1720 		    me->multipath_phci,
1721 		    (void *)node, node->devi_mdi_component, off));
1722 	}
1723 
1724 property:
1725 	if (!(DINFOPROP & st->command)) {
1726 		goto unlock;
1727 	}
1728 
1729 	if (node->devi_drv_prop_ptr) {	/* driver property list */
1730 		me->drv_prop = DI_ALIGN(off);
1731 		off = di_getprop(node->devi_drv_prop_ptr, &me->drv_prop, st,
1732 			node, DI_PROP_DRV_LIST);
1733 	}
1734 
1735 	if (node->devi_sys_prop_ptr) {	/* system property list */
1736 		me->sys_prop = DI_ALIGN(off);
1737 		off = di_getprop(node->devi_sys_prop_ptr, &me->sys_prop, st,
1738 			node, DI_PROP_SYS_LIST);
1739 	}
1740 
1741 	if (node->devi_hw_prop_ptr) {	/* hardware property list */
1742 		me->hw_prop = DI_ALIGN(off);
1743 		off = di_getprop(node->devi_hw_prop_ptr, &me->hw_prop, st,
1744 			node, DI_PROP_HW_LIST);
1745 	}
1746 
1747 	if (node->devi_global_prop_list == NULL) {
1748 		me->glob_prop = (di_off_t)-1;	/* not global property */
1749 	} else {
1750 		/*
1751 		 * Make copy of global property list if this devinfo refers
1752 		 * global properties different from what's on the devnames
1753 		 * array. It can happen if there has been a forced
1754 		 * driver.conf update. See mod_drv(1M).
1755 		 */
1756 		ASSERT(me->drv_major != -1);
1757 		if (node->devi_global_prop_list !=
1758 		    devnamesp[me->drv_major].dn_global_prop_ptr) {
1759 			me->glob_prop = DI_ALIGN(off);
1760 			off = di_getprop(node->devi_global_prop_list->prop_list,
1761 			    &me->glob_prop, st, node, DI_PROP_GLB_LIST);
1762 		}
1763 	}
1764 
1765 unlock:
1766 	/*
1767 	 * release current per dev_info node lock
1768 	 */
1769 	mutex_exit(&(node->devi_lock));
1770 
1771 priv_data:
1772 	if (!(DINFOPRIVDATA & st->command)) {
1773 		goto pm_info;
1774 	}
1775 
1776 	if (ddi_get_parent_data((dev_info_t *)node) != NULL) {
1777 		me->parent_data = DI_ALIGN(off);
1778 		off = di_getppdata(node, &me->parent_data, st);
1779 	}
1780 
1781 	if (ddi_get_driver_private((dev_info_t *)node) != NULL) {
1782 		me->driver_data = DI_ALIGN(off);
1783 		off = di_getdpdata(node, &me->driver_data, st);
1784 	}
1785 
1786 pm_info: /* NOT implemented */
1787 
1788 subtree:
1789 	if (!(DINFOSUBTREE & st->command)) {
1790 		POP_STACK(dsp);
1791 		return (DI_ALIGN(off));
1792 	}
1793 
1794 child:
1795 	/*
1796 	 * If there is a child--push child onto stack.
1797 	 * Hold the parent busy while doing so.
1798 	 */
1799 	if (node->devi_child) {
1800 		me->child = DI_ALIGN(off);
1801 		PUSH_STACK(dsp, node->devi_child, &me->child);
1802 		return (me->child);
1803 	}
1804 
1805 sibling:
1806 	/*
1807 	 * no child node, unroll the stack till a sibling of
1808 	 * a parent node is found or root node is reached
1809 	 */
1810 	POP_STACK(dsp);
1811 	while (!EMPTY_STACK(dsp) && (node->devi_sibling == NULL)) {
1812 		node = TOP_NODE(dsp);
1813 		me = DI_NODE(di_mem_addr(st, *(TOP_OFFSET(dsp))));
1814 		POP_STACK(dsp);
1815 	}
1816 
1817 	if (!EMPTY_STACK(dsp)) {
1818 		/*
1819 		 * a sibling is found, replace top of stack by its sibling
1820 		 */
1821 		me->sibling = DI_ALIGN(off);
1822 		PUSH_STACK(dsp, node->devi_sibling, &me->sibling);
1823 		return (me->sibling);
1824 	}
1825 
1826 	/*
1827 	 * DONE with all nodes
1828 	 */
1829 	return (DI_ALIGN(off));
1830 }
1831 
1832 static i_lnode_t *
1833 i_lnode_alloc(int modid)
1834 {
1835 	i_lnode_t	*i_lnode;
1836 
1837 	i_lnode = kmem_zalloc(sizeof (i_lnode_t), KM_SLEEP);
1838 
1839 	ASSERT(modid != -1);
1840 	i_lnode->modid = modid;
1841 
1842 	return (i_lnode);
1843 }
1844 
1845 static void
1846 i_lnode_free(i_lnode_t *i_lnode)
1847 {
1848 	kmem_free(i_lnode, sizeof (i_lnode_t));
1849 }
1850 
1851 static void
1852 i_lnode_check_free(i_lnode_t *i_lnode)
1853 {
1854 	/* This lnode and its dip must have been snapshotted */
1855 	ASSERT(i_lnode->self > 0);
1856 	ASSERT(i_lnode->di_node->self > 0);
1857 
1858 	/* at least 1 link (in or out) must exist for this lnode */
1859 	ASSERT(i_lnode->link_in || i_lnode->link_out);
1860 
1861 	i_lnode_free(i_lnode);
1862 }
1863 
1864 static i_link_t *
1865 i_link_alloc(int spec_type)
1866 {
1867 	i_link_t *i_link;
1868 
1869 	i_link = kmem_zalloc(sizeof (i_link_t), KM_SLEEP);
1870 	i_link->spec_type = spec_type;
1871 
1872 	return (i_link);
1873 }
1874 
1875 static void
1876 i_link_check_free(i_link_t *i_link)
1877 {
1878 	/* This link must have been snapshotted */
1879 	ASSERT(i_link->self > 0);
1880 
1881 	/* Both endpoint lnodes must exist for this link */
1882 	ASSERT(i_link->src_lnode);
1883 	ASSERT(i_link->tgt_lnode);
1884 
1885 	kmem_free(i_link, sizeof (i_link_t));
1886 }
1887 
1888 /*ARGSUSED*/
1889 static uint_t
1890 i_lnode_hashfunc(void *arg, mod_hash_key_t key)
1891 {
1892 	i_lnode_t	*i_lnode = (i_lnode_t *)key;
1893 	struct di_node	*ptr;
1894 	dev_t		dev;
1895 
1896 	dev = i_lnode->devt;
1897 	if (dev != DDI_DEV_T_NONE)
1898 		return (i_lnode->modid + getminor(dev) + getmajor(dev));
1899 
1900 	ptr = i_lnode->di_node;
1901 	ASSERT(ptr->self > 0);
1902 	if (ptr) {
1903 		uintptr_t k = (uintptr_t)ptr;
1904 		k >>= (int)highbit(sizeof (struct di_node));
1905 		return ((uint_t)k);
1906 	}
1907 
1908 	return (i_lnode->modid);
1909 }
1910 
1911 static int
1912 i_lnode_cmp(void *arg1, void *arg2)
1913 {
1914 	i_lnode_t	*i_lnode1 = (i_lnode_t *)arg1;
1915 	i_lnode_t	*i_lnode2 = (i_lnode_t *)arg2;
1916 
1917 	if (i_lnode1->modid != i_lnode2->modid) {
1918 		return ((i_lnode1->modid < i_lnode2->modid) ? -1 : 1);
1919 	}
1920 
1921 	if (i_lnode1->di_node != i_lnode2->di_node)
1922 		return ((i_lnode1->di_node < i_lnode2->di_node) ? -1 : 1);
1923 
1924 	if (i_lnode1->devt != i_lnode2->devt)
1925 		return ((i_lnode1->devt < i_lnode2->devt) ? -1 : 1);
1926 
1927 	return (0);
1928 }
1929 
1930 /*
1931  * An lnode represents a {dip, dev_t} tuple. A link represents a
1932  * {src_lnode, tgt_lnode, spec_type} tuple.
1933  * The following callback assumes that LDI framework ref-counts the
1934  * src_dip and tgt_dip while invoking this callback.
1935  */
1936 static int
1937 di_ldi_callback(const ldi_usage_t *ldi_usage, void *arg)
1938 {
1939 	struct di_state	*st = (struct di_state *)arg;
1940 	i_lnode_t	*src_lnode, *tgt_lnode, *i_lnode;
1941 	i_link_t	**i_link_next, *i_link;
1942 	di_off_t	soff, toff;
1943 	mod_hash_val_t	nodep = NULL;
1944 	int		res;
1945 
1946 	/*
1947 	 * if the source or target of this device usage information doesn't
1948 	 * corrospond to a device node then we don't report it via
1949 	 * libdevinfo so return.
1950 	 */
1951 	if ((ldi_usage->src_dip == NULL) || (ldi_usage->tgt_dip == NULL))
1952 		return (LDI_USAGE_CONTINUE);
1953 
1954 	ASSERT(e_ddi_devi_holdcnt(ldi_usage->src_dip));
1955 	ASSERT(e_ddi_devi_holdcnt(ldi_usage->tgt_dip));
1956 
1957 	/*
1958 	 * Skip the ldi_usage if either src or tgt dip is not in the
1959 	 * snapshot. This saves us from pruning bad lnodes/links later.
1960 	 */
1961 	if (di_dip_find(st, ldi_usage->src_dip, &soff) != 0)
1962 		return (LDI_USAGE_CONTINUE);
1963 	if (di_dip_find(st, ldi_usage->tgt_dip, &toff) != 0)
1964 		return (LDI_USAGE_CONTINUE);
1965 
1966 	ASSERT(soff > 0);
1967 	ASSERT(toff > 0);
1968 
1969 	/*
1970 	 * allocate an i_lnode and add it to the lnode hash
1971 	 * if it is not already present. For this particular
1972 	 * link the lnode is a source, but it may
1973 	 * participate as tgt or src in any number of layered
1974 	 * operations - so it may already be in the hash.
1975 	 */
1976 	i_lnode = i_lnode_alloc(ldi_usage->src_modid);
1977 	i_lnode->di_node = (struct di_node *)di_mem_addr(st, soff);
1978 	i_lnode->devt = ldi_usage->src_devt;
1979 
1980 	res = mod_hash_find(st->lnode_hash, i_lnode, &nodep);
1981 	if (res == MH_ERR_NOTFOUND) {
1982 		/*
1983 		 * new i_lnode
1984 		 * add it to the hash and increment the lnode count
1985 		 */
1986 		res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode);
1987 		ASSERT(res == 0);
1988 		st->lnode_count++;
1989 		src_lnode = i_lnode;
1990 	} else {
1991 		/* this i_lnode already exists in the lnode_hash */
1992 		i_lnode_free(i_lnode);
1993 		src_lnode = (i_lnode_t *)nodep;
1994 	}
1995 
1996 	/*
1997 	 * allocate a tgt i_lnode and add it to the lnode hash
1998 	 */
1999 	i_lnode = i_lnode_alloc(ldi_usage->tgt_modid);
2000 	i_lnode->di_node = (struct di_node *)di_mem_addr(st, toff);
2001 	i_lnode->devt = ldi_usage->tgt_devt;
2002 
2003 	res = mod_hash_find(st->lnode_hash, i_lnode, &nodep);
2004 	if (res == MH_ERR_NOTFOUND) {
2005 		/*
2006 		 * new i_lnode
2007 		 * add it to the hash and increment the lnode count
2008 		 */
2009 		res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode);
2010 		ASSERT(res == 0);
2011 		st->lnode_count++;
2012 		tgt_lnode = i_lnode;
2013 	} else {
2014 		/* this i_lnode already exists in the lnode_hash */
2015 		i_lnode_free(i_lnode);
2016 		tgt_lnode = (i_lnode_t *)nodep;
2017 	}
2018 
2019 	/*
2020 	 * allocate a i_link
2021 	 */
2022 	i_link = i_link_alloc(ldi_usage->tgt_spec_type);
2023 	i_link->src_lnode = src_lnode;
2024 	i_link->tgt_lnode = tgt_lnode;
2025 
2026 	/*
2027 	 * add this link onto the src i_lnodes outbound i_link list
2028 	 */
2029 	i_link_next = &(src_lnode->link_out);
2030 	while (*i_link_next != NULL) {
2031 		if ((i_lnode_cmp(tgt_lnode, (*i_link_next)->tgt_lnode) == 0) &&
2032 		    (i_link->spec_type == (*i_link_next)->spec_type)) {
2033 			/* this link already exists */
2034 			kmem_free(i_link, sizeof (i_link_t));
2035 			return (LDI_USAGE_CONTINUE);
2036 		}
2037 		i_link_next = &((*i_link_next)->src_link_next);
2038 	}
2039 	*i_link_next = i_link;
2040 
2041 	/*
2042 	 * add this link onto the tgt i_lnodes inbound i_link list
2043 	 */
2044 	i_link_next = &(tgt_lnode->link_in);
2045 	while (*i_link_next != NULL) {
2046 		ASSERT(i_lnode_cmp(src_lnode, (*i_link_next)->src_lnode) != 0);
2047 		i_link_next = &((*i_link_next)->tgt_link_next);
2048 	}
2049 	*i_link_next = i_link;
2050 
2051 	/*
2052 	 * add this i_link to the link hash
2053 	 */
2054 	res = mod_hash_insert(st->link_hash, i_link, i_link);
2055 	ASSERT(res == 0);
2056 	st->link_count++;
2057 
2058 	return (LDI_USAGE_CONTINUE);
2059 }
2060 
2061 struct i_layer_data {
2062 	struct di_state	*st;
2063 	int		lnode_count;
2064 	int		link_count;
2065 	di_off_t	lnode_off;
2066 	di_off_t 	link_off;
2067 };
2068 
2069 /*ARGSUSED*/
2070 static uint_t
2071 i_link_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
2072 {
2073 	i_link_t		*i_link  = (i_link_t *)key;
2074 	struct i_layer_data	*data = arg;
2075 	struct di_link		*me;
2076 	struct di_lnode		*melnode;
2077 	struct di_node		*medinode;
2078 
2079 	ASSERT(i_link->self == 0);
2080 
2081 	i_link->self = data->link_off +
2082 	    (data->link_count * sizeof (struct di_link));
2083 	data->link_count++;
2084 
2085 	ASSERT(data->link_off > 0 && data->link_count > 0);
2086 	ASSERT(data->lnode_count == data->st->lnode_count); /* lnodes done */
2087 	ASSERT(data->link_count <= data->st->link_count);
2088 
2089 	/* fill in fields for the di_link snapshot */
2090 	me = (struct di_link *)di_mem_addr(data->st, i_link->self);
2091 	me->self = i_link->self;
2092 	me->spec_type = i_link->spec_type;
2093 
2094 	/*
2095 	 * The src_lnode and tgt_lnode i_lnode_t for this i_link_t
2096 	 * are created during the LDI table walk. Since we are
2097 	 * walking the link hash, the lnode hash has already been
2098 	 * walked and the lnodes have been snapshotted. Save lnode
2099 	 * offsets.
2100 	 */
2101 	me->src_lnode = i_link->src_lnode->self;
2102 	me->tgt_lnode = i_link->tgt_lnode->self;
2103 
2104 	/*
2105 	 * Save this link's offset in the src_lnode snapshot's link_out
2106 	 * field
2107 	 */
2108 	melnode = (struct di_lnode *)di_mem_addr(data->st, me->src_lnode);
2109 	me->src_link_next = melnode->link_out;
2110 	melnode->link_out = me->self;
2111 
2112 	/*
2113 	 * Put this link on the tgt_lnode's link_in field
2114 	 */
2115 	melnode = (struct di_lnode *)di_mem_addr(data->st, me->tgt_lnode);
2116 	me->tgt_link_next = melnode->link_in;
2117 	melnode->link_in = me->self;
2118 
2119 	/*
2120 	 * An i_lnode_t is only created if the corresponding dip exists
2121 	 * in the snapshot. A pointer to the di_node is saved in the
2122 	 * i_lnode_t when it is allocated. For this link, get the di_node
2123 	 * for the source lnode. Then put the link on the di_node's list
2124 	 * of src links
2125 	 */
2126 	medinode = i_link->src_lnode->di_node;
2127 	me->src_node_next = medinode->src_links;
2128 	medinode->src_links = me->self;
2129 
2130 	/*
2131 	 * Put this link on the tgt_links list of the target
2132 	 * dip.
2133 	 */
2134 	medinode = i_link->tgt_lnode->di_node;
2135 	me->tgt_node_next = medinode->tgt_links;
2136 	medinode->tgt_links = me->self;
2137 
2138 	return (MH_WALK_CONTINUE);
2139 }
2140 
2141 /*ARGSUSED*/
2142 static uint_t
2143 i_lnode_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
2144 {
2145 	i_lnode_t		*i_lnode = (i_lnode_t *)key;
2146 	struct i_layer_data	*data = arg;
2147 	struct di_lnode		*me;
2148 	struct di_node		*medinode;
2149 
2150 	ASSERT(i_lnode->self == 0);
2151 
2152 	i_lnode->self = data->lnode_off +
2153 	    (data->lnode_count * sizeof (struct di_lnode));
2154 	data->lnode_count++;
2155 
2156 	ASSERT(data->lnode_off > 0 && data->lnode_count > 0);
2157 	ASSERT(data->link_count == 0); /* links not done yet */
2158 	ASSERT(data->lnode_count <= data->st->lnode_count);
2159 
2160 	/* fill in fields for the di_lnode snapshot */
2161 	me = (struct di_lnode *)di_mem_addr(data->st, i_lnode->self);
2162 	me->self = i_lnode->self;
2163 
2164 	if (i_lnode->devt == DDI_DEV_T_NONE) {
2165 		me->dev_major = (major_t)-1;
2166 		me->dev_minor = (minor_t)-1;
2167 	} else {
2168 		me->dev_major = getmajor(i_lnode->devt);
2169 		me->dev_minor = getminor(i_lnode->devt);
2170 	}
2171 
2172 	/*
2173 	 * The dip corresponding to this lnode must exist in
2174 	 * the snapshot or we wouldn't have created the i_lnode_t
2175 	 * during LDI walk. Save the offset of the dip.
2176 	 */
2177 	ASSERT(i_lnode->di_node && i_lnode->di_node->self > 0);
2178 	me->node = i_lnode->di_node->self;
2179 
2180 	/*
2181 	 * There must be at least one link in or out of this lnode
2182 	 * or we wouldn't have created it. These fields will be set
2183 	 * during the link hash walk.
2184 	 */
2185 	ASSERT((i_lnode->link_in != NULL) || (i_lnode->link_out != NULL));
2186 
2187 	/*
2188 	 * set the offset of the devinfo node associated with this
2189 	 * lnode. Also update the node_next next pointer.  this pointer
2190 	 * is set if there are multiple lnodes associated with the same
2191 	 * devinfo node.  (could occure when multiple minor nodes
2192 	 * are open for one device, etc.)
2193 	 */
2194 	medinode = i_lnode->di_node;
2195 	me->node_next = medinode->lnodes;
2196 	medinode->lnodes = me->self;
2197 
2198 	return (MH_WALK_CONTINUE);
2199 }
2200 
2201 static di_off_t
2202 di_getlink_data(di_off_t off, struct di_state *st)
2203 {
2204 	struct i_layer_data data = {0};
2205 	size_t size;
2206 
2207 	dcmn_err2((CE_CONT, "di_copylyr: off = %x\n", off));
2208 
2209 	st->lnode_hash = mod_hash_create_extended("di_lnode_hash", 32,
2210 	    mod_hash_null_keydtor, (void (*)(mod_hash_val_t))i_lnode_check_free,
2211 	    i_lnode_hashfunc, NULL, i_lnode_cmp, KM_SLEEP);
2212 
2213 	st->link_hash = mod_hash_create_ptrhash("di_link_hash", 32,
2214 	    (void (*)(mod_hash_val_t))i_link_check_free, sizeof (i_link_t));
2215 
2216 	/* get driver layering information */
2217 	(void) ldi_usage_walker(st, di_ldi_callback);
2218 
2219 	/* check if there is any link data to include in the snapshot */
2220 	if (st->lnode_count == 0) {
2221 		ASSERT(st->link_count == 0);
2222 		goto out;
2223 	}
2224 
2225 	ASSERT(st->link_count != 0);
2226 
2227 	/* get a pointer to snapshot memory for all the di_lnodes */
2228 	size = sizeof (struct di_lnode) * st->lnode_count;
2229 	data.lnode_off = off = di_checkmem(st, off, size);
2230 	off += DI_ALIGN(size);
2231 
2232 	/* get a pointer to snapshot memory for all the di_links */
2233 	size = sizeof (struct di_link) * st->link_count;
2234 	data.link_off = off = di_checkmem(st, off, size);
2235 	off += DI_ALIGN(size);
2236 
2237 	data.lnode_count = data.link_count = 0;
2238 	data.st = st;
2239 
2240 	/*
2241 	 * We have lnodes and links that will go into the
2242 	 * snapshot, so let's walk the respective hashes
2243 	 * and snapshot them. The various linkages are
2244 	 * also set up during the walk.
2245 	 */
2246 	mod_hash_walk(st->lnode_hash, i_lnode_walker, (void *)&data);
2247 	ASSERT(data.lnode_count == st->lnode_count);
2248 
2249 	mod_hash_walk(st->link_hash, i_link_walker, (void *)&data);
2250 	ASSERT(data.link_count == st->link_count);
2251 
2252 out:
2253 	/* free up the i_lnodes and i_links used to create the snapshot */
2254 	mod_hash_destroy_hash(st->lnode_hash);
2255 	mod_hash_destroy_hash(st->link_hash);
2256 	st->lnode_count = 0;
2257 	st->link_count = 0;
2258 
2259 	return (off);
2260 }
2261 
2262 
2263 /*
2264  * Copy all minor data nodes attached to a devinfo node into the snapshot.
2265  * It is called from di_copynode with devi_lock held.
2266  */
2267 static di_off_t
2268 di_getmdata(struct ddi_minor_data *mnode, di_off_t *off_p, di_off_t node,
2269 	struct di_state *st)
2270 {
2271 	di_off_t off;
2272 	struct di_minor *me;
2273 
2274 	dcmn_err2((CE_CONT, "di_getmdata:\n"));
2275 
2276 	/*
2277 	 * check memory first
2278 	 */
2279 	off = di_checkmem(st, *off_p, sizeof (struct di_minor));
2280 	*off_p = off;
2281 
2282 	do {
2283 		me = (struct di_minor *)di_mem_addr(st, off);
2284 		me->self = off;
2285 		me->type = mnode->type;
2286 		me->node = node;
2287 		me->user_private_data = NULL;
2288 
2289 		off += DI_ALIGN(sizeof (struct di_minor));
2290 
2291 		/*
2292 		 * Split dev_t to major/minor, so it works for
2293 		 * both ILP32 and LP64 model
2294 		 */
2295 		me->dev_major = getmajor(mnode->ddm_dev);
2296 		me->dev_minor = getminor(mnode->ddm_dev);
2297 		me->spec_type = mnode->ddm_spec_type;
2298 
2299 		if (mnode->ddm_name) {
2300 			off = di_checkmem(st, off,
2301 				strlen(mnode->ddm_name) + 1);
2302 			me->name = off;
2303 			(void) strcpy(di_mem_addr(st, off), mnode->ddm_name);
2304 			off += DI_ALIGN(strlen(mnode->ddm_name) + 1);
2305 		}
2306 
2307 		if (mnode->ddm_node_type) {
2308 			off = di_checkmem(st, off,
2309 				strlen(mnode->ddm_node_type) + 1);
2310 			me->node_type = off;
2311 			(void) strcpy(di_mem_addr(st, off),
2312 					mnode->ddm_node_type);
2313 			off += DI_ALIGN(strlen(mnode->ddm_node_type) + 1);
2314 		}
2315 
2316 		off = di_checkmem(st, off, sizeof (struct di_minor));
2317 		me->next = off;
2318 		mnode = mnode->next;
2319 	} while (mnode);
2320 
2321 	me->next = 0;
2322 
2323 	return (off);
2324 }
2325 
2326 /*
2327  * di_register_dip(), di_find_dip(): The dip must be protected
2328  * from deallocation when using these routines - this can either
2329  * be a reference count, a busy hold or a per-driver lock.
2330  */
2331 
2332 static void
2333 di_register_dip(struct di_state *st, dev_info_t *dip, di_off_t off)
2334 {
2335 	struct dev_info *node = DEVI(dip);
2336 	struct di_key *key = kmem_zalloc(sizeof (*key), KM_SLEEP);
2337 	struct di_dkey *dk;
2338 
2339 	ASSERT(dip);
2340 	ASSERT(off > 0);
2341 
2342 	key->k_type = DI_DKEY;
2343 	dk = &(key->k_u.dkey);
2344 
2345 	dk->dk_dip = dip;
2346 	dk->dk_major = node->devi_major;
2347 	dk->dk_inst = node->devi_instance;
2348 	dk->dk_nodeid = node->devi_nodeid;
2349 
2350 	if (mod_hash_insert(st->reg_dip_hash, (mod_hash_key_t)key,
2351 	    (mod_hash_val_t)(uintptr_t)off) != 0) {
2352 		panic(
2353 		    "duplicate devinfo (%p) registered during device "
2354 		    "tree walk", (void *)dip);
2355 	}
2356 }
2357 
2358 
2359 static int
2360 di_dip_find(struct di_state *st, dev_info_t *dip, di_off_t *off_p)
2361 {
2362 	/*
2363 	 * uintptr_t must be used because it matches the size of void *;
2364 	 * mod_hash expects clients to place results into pointer-size
2365 	 * containers; since di_off_t is always a 32-bit offset, alignment
2366 	 * would otherwise be broken on 64-bit kernels.
2367 	 */
2368 	uintptr_t	offset;
2369 	struct		di_key key = {0};
2370 	struct		di_dkey *dk;
2371 
2372 	ASSERT(st->reg_dip_hash);
2373 	ASSERT(dip);
2374 	ASSERT(off_p);
2375 
2376 
2377 	key.k_type = DI_DKEY;
2378 	dk = &(key.k_u.dkey);
2379 
2380 	dk->dk_dip = dip;
2381 	dk->dk_major = DEVI(dip)->devi_major;
2382 	dk->dk_inst = DEVI(dip)->devi_instance;
2383 	dk->dk_nodeid = DEVI(dip)->devi_nodeid;
2384 
2385 	if (mod_hash_find(st->reg_dip_hash, (mod_hash_key_t)&key,
2386 	    (mod_hash_val_t *)&offset) == 0) {
2387 		*off_p = (di_off_t)offset;
2388 		return (0);
2389 	} else {
2390 		return (-1);
2391 	}
2392 }
2393 
2394 /*
2395  * di_register_pip(), di_find_pip(): The pip must be protected from deallocation
2396  * when using these routines. The caller must do this by protecting the
2397  * client(or phci)<->pip linkage while traversing the list and then holding the
2398  * pip when it is found in the list.
2399  */
2400 
2401 static void
2402 di_register_pip(struct di_state *st, mdi_pathinfo_t *pip, di_off_t off)
2403 {
2404 	struct di_key	*key = kmem_zalloc(sizeof (*key), KM_SLEEP);
2405 	char		*path_addr;
2406 	struct di_pkey	*pk;
2407 
2408 	ASSERT(pip);
2409 	ASSERT(off > 0);
2410 
2411 	key->k_type = DI_PKEY;
2412 	pk = &(key->k_u.pkey);
2413 
2414 	pk->pk_pip = pip;
2415 	path_addr = mdi_pi_get_addr(pip);
2416 	if (path_addr)
2417 		pk->pk_path_addr = i_ddi_strdup(path_addr, KM_SLEEP);
2418 	pk->pk_client = mdi_pi_get_client(pip);
2419 	pk->pk_phci = mdi_pi_get_phci(pip);
2420 
2421 	if (mod_hash_insert(st->reg_pip_hash, (mod_hash_key_t)key,
2422 	    (mod_hash_val_t)(uintptr_t)off) != 0) {
2423 		panic(
2424 		    "duplicate pathinfo (%p) registered during device "
2425 		    "tree walk", (void *)pip);
2426 	}
2427 }
2428 
2429 /*
2430  * As with di_register_pip, the caller must hold or lock the pip
2431  */
2432 static int
2433 di_pip_find(struct di_state *st, mdi_pathinfo_t *pip, di_off_t *off_p)
2434 {
2435 	/*
2436 	 * uintptr_t must be used because it matches the size of void *;
2437 	 * mod_hash expects clients to place results into pointer-size
2438 	 * containers; since di_off_t is always a 32-bit offset, alignment
2439 	 * would otherwise be broken on 64-bit kernels.
2440 	 */
2441 	uintptr_t	offset;
2442 	struct di_key	key = {0};
2443 	struct di_pkey	*pk;
2444 
2445 	ASSERT(st->reg_pip_hash);
2446 	ASSERT(off_p);
2447 
2448 	if (pip == NULL) {
2449 		*off_p = 0;
2450 		return (0);
2451 	}
2452 
2453 	key.k_type = DI_PKEY;
2454 	pk = &(key.k_u.pkey);
2455 
2456 	pk->pk_pip = pip;
2457 	pk->pk_path_addr = mdi_pi_get_addr(pip);
2458 	pk->pk_client = mdi_pi_get_client(pip);
2459 	pk->pk_phci = mdi_pi_get_phci(pip);
2460 
2461 	if (mod_hash_find(st->reg_pip_hash, (mod_hash_key_t)&key,
2462 	    (mod_hash_val_t *)&offset) == 0) {
2463 		*off_p = (di_off_t)offset;
2464 		return (0);
2465 	} else {
2466 		return (-1);
2467 	}
2468 }
2469 
2470 static di_path_state_t
2471 path_state_convert(mdi_pathinfo_state_t st)
2472 {
2473 	switch (st) {
2474 	case MDI_PATHINFO_STATE_ONLINE:
2475 		return (DI_PATH_STATE_ONLINE);
2476 	case MDI_PATHINFO_STATE_STANDBY:
2477 		return (DI_PATH_STATE_STANDBY);
2478 	case MDI_PATHINFO_STATE_OFFLINE:
2479 		return (DI_PATH_STATE_OFFLINE);
2480 	case MDI_PATHINFO_STATE_FAULT:
2481 		return (DI_PATH_STATE_FAULT);
2482 	default:
2483 		return (DI_PATH_STATE_UNKNOWN);
2484 	}
2485 }
2486 
2487 
2488 static di_off_t
2489 di_path_getprop(mdi_pathinfo_t *pip, di_off_t off, di_off_t *off_p,
2490     struct di_state *st)
2491 {
2492 	nvpair_t *prop = NULL;
2493 	struct di_path_prop *me;
2494 
2495 	if (mdi_pi_get_next_prop(pip, NULL) == NULL) {
2496 		*off_p = 0;
2497 		return (off);
2498 	}
2499 
2500 	off = di_checkmem(st, off, sizeof (struct di_path_prop));
2501 	*off_p = off;
2502 
2503 	while (prop = mdi_pi_get_next_prop(pip, prop)) {
2504 		int delta = 0;
2505 
2506 		me = (struct di_path_prop *)di_mem_addr(st, off);
2507 		me->self = off;
2508 		off += sizeof (struct di_path_prop);
2509 
2510 		/*
2511 		 * property name
2512 		 */
2513 		off = di_checkmem(st, off, strlen(nvpair_name(prop)) + 1);
2514 		me->prop_name = off;
2515 		(void) strcpy(di_mem_addr(st, off), nvpair_name(prop));
2516 		off += strlen(nvpair_name(prop)) + 1;
2517 
2518 		switch (nvpair_type(prop)) {
2519 		case DATA_TYPE_BYTE:
2520 		case DATA_TYPE_INT16:
2521 		case DATA_TYPE_UINT16:
2522 		case DATA_TYPE_INT32:
2523 		case DATA_TYPE_UINT32:
2524 			delta = sizeof (int32_t);
2525 			me->prop_type = DDI_PROP_TYPE_INT;
2526 			off = di_checkmem(st, off, delta);
2527 			(void) nvpair_value_int32(prop,
2528 			    (int32_t *)di_mem_addr(st, off));
2529 			break;
2530 
2531 		case DATA_TYPE_INT64:
2532 		case DATA_TYPE_UINT64:
2533 			delta = sizeof (int64_t);
2534 			me->prop_type = DDI_PROP_TYPE_INT64;
2535 			off = di_checkmem(st, off, delta);
2536 			(void) nvpair_value_int64(prop,
2537 			    (int64_t *)di_mem_addr(st, off));
2538 			break;
2539 
2540 		case DATA_TYPE_STRING:
2541 		{
2542 			char *str;
2543 			(void) nvpair_value_string(prop, &str);
2544 			delta = strlen(str) + 1;
2545 			me->prop_type = DDI_PROP_TYPE_STRING;
2546 			off = di_checkmem(st, off, delta);
2547 			(void) strcpy(di_mem_addr(st, off), str);
2548 			break;
2549 		}
2550 		case DATA_TYPE_BYTE_ARRAY:
2551 		case DATA_TYPE_INT16_ARRAY:
2552 		case DATA_TYPE_UINT16_ARRAY:
2553 		case DATA_TYPE_INT32_ARRAY:
2554 		case DATA_TYPE_UINT32_ARRAY:
2555 		case DATA_TYPE_INT64_ARRAY:
2556 		case DATA_TYPE_UINT64_ARRAY:
2557 		{
2558 			uchar_t *buf;
2559 			uint_t nelems;
2560 			(void) nvpair_value_byte_array(prop, &buf, &nelems);
2561 			delta = nelems;
2562 			me->prop_type = DDI_PROP_TYPE_BYTE;
2563 			if (nelems != 0) {
2564 				off = di_checkmem(st, off, delta);
2565 				bcopy(buf, di_mem_addr(st, off), nelems);
2566 			}
2567 			break;
2568 		}
2569 
2570 		default:	/* Unknown or unhandled type; skip it */
2571 			delta = 0;
2572 			break;
2573 		}
2574 
2575 		if (delta > 0) {
2576 			me->prop_data = off;
2577 		}
2578 
2579 		me->prop_len = delta;
2580 		off += delta;
2581 
2582 		off = di_checkmem(st, off, sizeof (struct di_path_prop));
2583 		me->prop_next = off;
2584 	}
2585 
2586 	me->prop_next = 0;
2587 	return (off);
2588 }
2589 
2590 
2591 static void
2592 di_path_one_endpoint(struct di_path *me, di_off_t noff, di_off_t **off_pp,
2593     int get_client)
2594 {
2595 	if (get_client) {
2596 		ASSERT(me->path_client == 0);
2597 		me->path_client = noff;
2598 		ASSERT(me->path_c_link == 0);
2599 		*off_pp = &me->path_c_link;
2600 		me->path_snap_state &=
2601 		    ~(DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOCLINK);
2602 	} else {
2603 		ASSERT(me->path_phci == 0);
2604 		me->path_phci = noff;
2605 		ASSERT(me->path_p_link == 0);
2606 		*off_pp = &me->path_p_link;
2607 		me->path_snap_state &=
2608 		    ~(DI_PATH_SNAP_NOPHCI | DI_PATH_SNAP_NOPLINK);
2609 	}
2610 }
2611 
2612 /*
2613  * poff_p: pointer to the linkage field. This links pips along the client|phci
2614  *	   linkage list.
2615  * noff  : Offset for the endpoint dip snapshot.
2616  */
2617 static di_off_t
2618 di_getpath_data(dev_info_t *dip, di_off_t *poff_p, di_off_t noff,
2619     struct di_state *st, int get_client)
2620 {
2621 	di_off_t off;
2622 	mdi_pathinfo_t *pip;
2623 	struct di_path *me;
2624 	mdi_pathinfo_t *(*next_pip)(dev_info_t *, mdi_pathinfo_t *);
2625 
2626 	dcmn_err2((CE_WARN, "di_getpath_data: client = %d", get_client));
2627 
2628 	/*
2629 	 * The naming of the following mdi_xyz() is unfortunately
2630 	 * non-intuitive. mdi_get_next_phci_path() follows the
2631 	 * client_link i.e. the list of pip's belonging to the
2632 	 * given client dip.
2633 	 */
2634 	if (get_client)
2635 		next_pip = &mdi_get_next_phci_path;
2636 	else
2637 		next_pip = &mdi_get_next_client_path;
2638 
2639 	off = *poff_p;
2640 
2641 	pip = NULL;
2642 	while (pip = (*next_pip)(dip, pip)) {
2643 		mdi_pathinfo_state_t state;
2644 		di_off_t stored_offset;
2645 
2646 		dcmn_err((CE_WARN, "marshalling pip = %p", (void *)pip));
2647 
2648 		mdi_pi_lock(pip);
2649 
2650 		if (di_pip_find(st, pip, &stored_offset) != -1) {
2651 			/*
2652 			 * We've already seen this pathinfo node so we need to
2653 			 * take care not to snap it again; However, one endpoint
2654 			 * and linkage will be set here. The other endpoint
2655 			 * and linkage has already been set when the pip was
2656 			 * first snapshotted i.e. when the other endpoint dip
2657 			 * was snapshotted.
2658 			 */
2659 			me = (struct di_path *)di_mem_addr(st, stored_offset);
2660 
2661 			*poff_p = stored_offset;
2662 
2663 			di_path_one_endpoint(me, noff, &poff_p, get_client);
2664 
2665 			/*
2666 			 * The other endpoint and linkage were set when this
2667 			 * pip was snapshotted. So we are done with both
2668 			 * endpoints and linkages.
2669 			 */
2670 			ASSERT(!(me->path_snap_state &
2671 			    (DI_PATH_SNAP_NOCLIENT|DI_PATH_SNAP_NOPHCI)));
2672 			ASSERT(!(me->path_snap_state &
2673 			    (DI_PATH_SNAP_NOCLINK|DI_PATH_SNAP_NOPLINK)));
2674 
2675 			mdi_pi_unlock(pip);
2676 			continue;
2677 		}
2678 
2679 		/*
2680 		 * Now that we need to snapshot this pip, check memory
2681 		 */
2682 		off = di_checkmem(st, off, sizeof (struct di_path));
2683 		me = (struct di_path *)di_mem_addr(st, off);
2684 		me->self = off;
2685 		*poff_p = off;
2686 		off += sizeof (struct di_path);
2687 
2688 		me->path_snap_state =
2689 		    DI_PATH_SNAP_NOCLINK | DI_PATH_SNAP_NOPLINK;
2690 		me->path_snap_state |=
2691 		    DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOPHCI;
2692 
2693 		/*
2694 		 * Zero out fields as di_checkmem() doesn't guarantee
2695 		 * zero-filled memory
2696 		 */
2697 		me->path_client = me->path_phci = 0;
2698 		me->path_c_link = me->path_p_link = 0;
2699 
2700 		di_path_one_endpoint(me, noff, &poff_p, get_client);
2701 
2702 		/*
2703 		 * Note the existence of this pathinfo
2704 		 */
2705 		di_register_pip(st, pip, me->self);
2706 
2707 		state = mdi_pi_get_state(pip);
2708 		me->path_state = path_state_convert(state);
2709 
2710 		/*
2711 		 * Get intermediate addressing info.
2712 		 */
2713 		off = di_checkmem(st, off, strlen(mdi_pi_get_addr(pip)) + 1);
2714 		me->path_addr = off;
2715 		(void) strcpy(di_mem_addr(st, off), mdi_pi_get_addr(pip));
2716 		off += strlen(mdi_pi_get_addr(pip)) + 1;
2717 
2718 		/*
2719 		 * Get path properties if props are to be included in the
2720 		 * snapshot
2721 		 */
2722 		if (DINFOPROP & st->command) {
2723 			off = di_path_getprop(pip, off, &me->path_prop, st);
2724 		} else {
2725 			me->path_prop = 0;
2726 		}
2727 
2728 		mdi_pi_unlock(pip);
2729 	}
2730 
2731 	*poff_p = 0;
2732 
2733 	return (off);
2734 }
2735 
2736 /*
2737  * Copy a list of properties attached to a devinfo node. Called from
2738  * di_copynode with devi_lock held. The major number is passed in case
2739  * we need to call driver's prop_op entry. The value of list indicates
2740  * which list we are copying. Possible values are:
2741  * DI_PROP_DRV_LIST, DI_PROP_SYS_LIST, DI_PROP_GLB_LIST, DI_PROP_HW_LIST
2742  */
2743 static di_off_t
2744 di_getprop(struct ddi_prop *prop, di_off_t *off_p, struct di_state *st,
2745 	struct dev_info *dip, int list)
2746 {
2747 	dev_t dev;
2748 	int (*prop_op)();
2749 	int off, need_prop_op = 0;
2750 	int prop_op_fail = 0;
2751 	ddi_prop_t *propp = NULL;
2752 	struct di_prop *pp;
2753 	struct dev_ops *ops = NULL;
2754 	int prop_len;
2755 	caddr_t prop_val;
2756 
2757 
2758 	dcmn_err2((CE_CONT, "di_getprop:\n"));
2759 
2760 	ASSERT(st != NULL);
2761 
2762 	dcmn_err((CE_CONT, "copy property list at addr %p\n", (void *)prop));
2763 
2764 	/*
2765 	 * Figure out if we need to call driver's prop_op entry point.
2766 	 * The conditions are:
2767 	 *	-- driver property list
2768 	 *	-- driver must be attached and held
2769 	 *	-- driver's cb_prop_op != ddi_prop_op
2770 	 *		or parent's bus_prop_op != ddi_bus_prop_op
2771 	 */
2772 
2773 	if (list != DI_PROP_DRV_LIST) {
2774 		goto getprop;
2775 	}
2776 
2777 	/*
2778 	 * If driver is not attached or if major is -1, we ignore
2779 	 * the driver property list. No one should rely on such
2780 	 * properties.
2781 	 */
2782 	if (i_ddi_node_state((dev_info_t *)dip) < DS_ATTACHED) {
2783 		off = *off_p;
2784 		*off_p = 0;
2785 		return (off);
2786 	}
2787 
2788 	/*
2789 	 * Now we have a driver which is held. We can examine entry points
2790 	 * and check the condition listed above.
2791 	 */
2792 	ops = dip->devi_ops;
2793 
2794 	/*
2795 	 * Some nexus drivers incorrectly set cb_prop_op to nodev,
2796 	 * nulldev or even NULL.
2797 	 */
2798 	if (ops && ops->devo_cb_ops &&
2799 	    (ops->devo_cb_ops->cb_prop_op != ddi_prop_op) &&
2800 	    (ops->devo_cb_ops->cb_prop_op != nodev) &&
2801 	    (ops->devo_cb_ops->cb_prop_op != nulldev) &&
2802 	    (ops->devo_cb_ops->cb_prop_op != NULL)) {
2803 		need_prop_op = 1;
2804 	}
2805 
2806 getprop:
2807 	/*
2808 	 * check memory availability
2809 	 */
2810 	off = di_checkmem(st, *off_p, sizeof (struct di_prop));
2811 	*off_p = off;
2812 	/*
2813 	 * Now copy properties
2814 	 */
2815 	do {
2816 		pp = (struct di_prop *)di_mem_addr(st, off);
2817 		pp->self = off;
2818 		/*
2819 		 * Split dev_t to major/minor, so it works for
2820 		 * both ILP32 and LP64 model
2821 		 */
2822 		pp->dev_major = getmajor(prop->prop_dev);
2823 		pp->dev_minor = getminor(prop->prop_dev);
2824 		pp->prop_flags = prop->prop_flags;
2825 		pp->prop_list = list;
2826 
2827 		/*
2828 		 * property name
2829 		 */
2830 		off += sizeof (struct di_prop);
2831 		if (prop->prop_name) {
2832 			off = di_checkmem(st, off, strlen(prop->prop_name)
2833 			    + 1);
2834 			pp->prop_name = off;
2835 			(void) strcpy(di_mem_addr(st, off), prop->prop_name);
2836 			off += strlen(prop->prop_name) + 1;
2837 		}
2838 
2839 		/*
2840 		 * Set prop_len here. This may change later
2841 		 * if cb_prop_op returns a different length.
2842 		 */
2843 		pp->prop_len = prop->prop_len;
2844 		if (!need_prop_op) {
2845 			if (prop->prop_val == NULL) {
2846 				dcmn_err((CE_WARN,
2847 				    "devinfo: property fault at %p",
2848 				    (void *)prop));
2849 				pp->prop_data = -1;
2850 			} else if (prop->prop_len != 0) {
2851 				off = di_checkmem(st, off, prop->prop_len);
2852 				pp->prop_data = off;
2853 				bcopy(prop->prop_val, di_mem_addr(st, off),
2854 				    prop->prop_len);
2855 				off += DI_ALIGN(pp->prop_len);
2856 			}
2857 		}
2858 
2859 		off = di_checkmem(st, off, sizeof (struct di_prop));
2860 		pp->next = off;
2861 		prop = prop->prop_next;
2862 	} while (prop);
2863 
2864 	pp->next = 0;
2865 
2866 	if (!need_prop_op) {
2867 		dcmn_err((CE_CONT, "finished property "
2868 		    "list at offset 0x%x\n", off));
2869 		return (off);
2870 	}
2871 
2872 	/*
2873 	 * If there is a need to call driver's prop_op entry,
2874 	 * we must release driver's devi_lock, because the
2875 	 * cb_prop_op entry point will grab it.
2876 	 *
2877 	 * The snapshot memory has already been allocated above,
2878 	 * which means the length of an active property should
2879 	 * remain fixed for this implementation to work.
2880 	 */
2881 
2882 
2883 	prop_op = ops->devo_cb_ops->cb_prop_op;
2884 	pp = (struct di_prop *)di_mem_addr(st, *off_p);
2885 
2886 	mutex_exit(&dip->devi_lock);
2887 
2888 	do {
2889 		int err;
2890 		struct di_prop *tmp;
2891 
2892 		if (pp->next) {
2893 			tmp = (struct di_prop *)
2894 			    di_mem_addr(st, pp->next);
2895 		} else {
2896 			tmp = NULL;
2897 		}
2898 
2899 		/*
2900 		 * call into driver's prop_op entry point
2901 		 *
2902 		 * Must search DDI_DEV_T_NONE with DDI_DEV_T_ANY
2903 		 */
2904 		dev = makedevice(pp->dev_major, pp->dev_minor);
2905 		if (dev == DDI_DEV_T_NONE)
2906 			dev = DDI_DEV_T_ANY;
2907 
2908 		dcmn_err((CE_CONT, "call prop_op"
2909 		    "(%lx, %p, PROP_LEN_AND_VAL_BUF, "
2910 		    "DDI_PROP_DONTPASS, \"%s\", %p, &%d)\n",
2911 		    dev,
2912 		    (void *)dip,
2913 		    (char *)di_mem_addr(st, pp->prop_name),
2914 		    (void *)di_mem_addr(st, pp->prop_data),
2915 		    pp->prop_len));
2916 
2917 		if ((err = (*prop_op)(dev, (dev_info_t)dip,
2918 		    PROP_LEN_AND_VAL_ALLOC, DDI_PROP_DONTPASS,
2919 		    (char *)di_mem_addr(st, pp->prop_name),
2920 		    &prop_val, &prop_len)) != DDI_PROP_SUCCESS) {
2921 			if ((propp = i_ddi_prop_search(dev,
2922 			    (char *)di_mem_addr(st, pp->prop_name),
2923 			    (uint_t)pp->prop_flags,
2924 			    &(DEVI(dip)->devi_drv_prop_ptr))) != NULL) {
2925 				pp->prop_len = propp->prop_len;
2926 				if (pp->prop_len != 0) {
2927 					off = di_checkmem(st, off,
2928 					    pp->prop_len);
2929 					pp->prop_data = off;
2930 					bcopy(propp->prop_val, di_mem_addr(st,
2931 					    pp->prop_data), propp->prop_len);
2932 					off += DI_ALIGN(pp->prop_len);
2933 				}
2934 			} else {
2935 				prop_op_fail = 1;
2936 			}
2937 		} else if (prop_len != 0) {
2938 			pp->prop_len = prop_len;
2939 			off = di_checkmem(st, off, prop_len);
2940 			pp->prop_data = off;
2941 			bcopy(prop_val, di_mem_addr(st, off), prop_len);
2942 			off += DI_ALIGN(prop_len);
2943 			kmem_free(prop_val, prop_len);
2944 		}
2945 
2946 		if (prop_op_fail) {
2947 			pp->prop_data = -1;
2948 			dcmn_err((CE_WARN, "devinfo: prop_op failure "
2949 			    "for \"%s\" err %d",
2950 			    di_mem_addr(st, pp->prop_name), err));
2951 		}
2952 
2953 		pp = tmp;
2954 
2955 	} while (pp);
2956 
2957 	mutex_enter(&dip->devi_lock);
2958 	dcmn_err((CE_CONT, "finished property list at offset 0x%x\n", off));
2959 	return (off);
2960 }
2961 
2962 /*
2963  * find private data format attached to a dip
2964  * parent = 1 to match driver name of parent dip (for parent private data)
2965  *	0 to match driver name of current dip (for driver private data)
2966  */
2967 #define	DI_MATCH_DRIVER	0
2968 #define	DI_MATCH_PARENT	1
2969 
2970 struct di_priv_format *
2971 di_match_drv_name(struct dev_info *node, struct di_state *st, int match)
2972 {
2973 	int i, count, len;
2974 	char *drv_name;
2975 	major_t major;
2976 	struct di_all *all;
2977 	struct di_priv_format *form;
2978 
2979 	dcmn_err2((CE_CONT, "di_match_drv_name: node = %s, match = %x\n",
2980 		node->devi_node_name, match));
2981 
2982 	if (match == DI_MATCH_PARENT) {
2983 		node = DEVI(node->devi_parent);
2984 	}
2985 
2986 	if (node == NULL) {
2987 		return (NULL);
2988 	}
2989 
2990 	major = ddi_name_to_major(node->devi_binding_name);
2991 	if (major == (major_t)(-1)) {
2992 		return (NULL);
2993 	}
2994 
2995 	/*
2996 	 * Match the driver name.
2997 	 */
2998 	drv_name = ddi_major_to_name(major);
2999 	if ((drv_name == NULL) || *drv_name == '\0') {
3000 		return (NULL);
3001 	}
3002 
3003 	/* Now get the di_priv_format array */
3004 	all = (struct di_all *)di_mem_addr(st, 0);
3005 
3006 	if (match == DI_MATCH_PARENT) {
3007 		count = all->n_ppdata;
3008 		form = (struct di_priv_format *)
3009 			(di_mem_addr(st, 0) + all->ppdata_format);
3010 	} else {
3011 		count = all->n_dpdata;
3012 		form = (struct di_priv_format *)
3013 			((caddr_t)all + all->dpdata_format);
3014 	}
3015 
3016 	len = strlen(drv_name);
3017 	for (i = 0; i < count; i++) {
3018 		char *tmp;
3019 
3020 		tmp = form[i].drv_name;
3021 		while (tmp && (*tmp != '\0')) {
3022 			if (strncmp(drv_name, tmp, len) == 0) {
3023 				return (&form[i]);
3024 			}
3025 			/*
3026 			 * Move to next driver name, skipping a white space
3027 			 */
3028 			if (tmp = strchr(tmp, ' ')) {
3029 				tmp++;
3030 			}
3031 		}
3032 	}
3033 
3034 	return (NULL);
3035 }
3036 
3037 /*
3038  * The following functions copy data as specified by the format passed in.
3039  * To prevent invalid format from panicing the system, we call on_fault().
3040  * A return value of 0 indicates an error. Otherwise, the total offset
3041  * is returned.
3042  */
3043 #define	DI_MAX_PRIVDATA	(PAGESIZE >> 1)	/* max private data size */
3044 
3045 static di_off_t
3046 di_getprvdata(struct di_priv_format *pdp, void *data, di_off_t *off_p,
3047 	struct di_state *st)
3048 {
3049 	caddr_t pa;
3050 	void *ptr;
3051 	int i, size, repeat;
3052 	di_off_t off, off0, *tmp;
3053 
3054 	label_t ljb;
3055 
3056 	dcmn_err2((CE_CONT, "di_getprvdata:\n"));
3057 
3058 	/*
3059 	 * check memory availability. Private data size is
3060 	 * limited to DI_MAX_PRIVDATA.
3061 	 */
3062 	off = di_checkmem(st, *off_p, DI_MAX_PRIVDATA);
3063 
3064 	if ((pdp->bytes <= 0) || pdp->bytes > DI_MAX_PRIVDATA) {
3065 		goto failure;
3066 	}
3067 
3068 	if (!on_fault(&ljb)) {
3069 		/* copy the struct */
3070 		bcopy(data, di_mem_addr(st, off), pdp->bytes);
3071 		off0 = DI_ALIGN(pdp->bytes);
3072 
3073 		/* dereferencing pointers */
3074 		for (i = 0; i < MAX_PTR_IN_PRV; i++) {
3075 
3076 			if (pdp->ptr[i].size == 0) {
3077 				goto success;	/* no more ptrs */
3078 			}
3079 
3080 			/*
3081 			 * first, get the pointer content
3082 			 */
3083 			if ((pdp->ptr[i].offset < 0) ||
3084 				(pdp->ptr[i].offset >
3085 				pdp->bytes - sizeof (char *)))
3086 				goto failure;	/* wrong offset */
3087 
3088 			pa = di_mem_addr(st, off + pdp->ptr[i].offset);
3089 			tmp = (di_off_t *)pa;	/* to store off_t later */
3090 
3091 			ptr = *((void **) pa);	/* get pointer value */
3092 			if (ptr == NULL) {	/* if NULL pointer, go on */
3093 				continue;
3094 			}
3095 
3096 			/*
3097 			 * next, find the repeat count (array dimension)
3098 			 */
3099 			repeat = pdp->ptr[i].len_offset;
3100 
3101 			/*
3102 			 * Positive value indicates a fixed sized array.
3103 			 * 0 or negative value indicates variable sized array.
3104 			 *
3105 			 * For variable sized array, the variable must be
3106 			 * an int member of the structure, with an offset
3107 			 * equal to the absolution value of struct member.
3108 			 */
3109 			if (repeat > pdp->bytes - sizeof (int)) {
3110 				goto failure;	/* wrong offset */
3111 			}
3112 
3113 			if (repeat >= 0) {
3114 				repeat = *((int *)((caddr_t)data + repeat));
3115 			} else {
3116 				repeat = -repeat;
3117 			}
3118 
3119 			/*
3120 			 * next, get the size of the object to be copied
3121 			 */
3122 			size = pdp->ptr[i].size * repeat;
3123 
3124 			/*
3125 			 * Arbitrarily limit the total size of object to be
3126 			 * copied (1 byte to 1/4 page).
3127 			 */
3128 			if ((size <= 0) || (size > (DI_MAX_PRIVDATA - off0))) {
3129 				goto failure;	/* wrong size or too big */
3130 			}
3131 
3132 			/*
3133 			 * Now copy the data
3134 			 */
3135 			*tmp = off0;
3136 			bcopy(ptr, di_mem_addr(st, off + off0), size);
3137 			off0 += DI_ALIGN(size);
3138 		}
3139 	} else {
3140 		goto failure;
3141 	}
3142 
3143 success:
3144 	/*
3145 	 * success if reached here
3146 	 */
3147 	no_fault();
3148 	*off_p = off;
3149 
3150 	return (off + off0);
3151 	/*NOTREACHED*/
3152 
3153 failure:
3154 	/*
3155 	 * fault occurred
3156 	 */
3157 	no_fault();
3158 	cmn_err(CE_WARN, "devinfo: fault in private data at %p", data);
3159 	*off_p = -1;	/* set private data to indicate error */
3160 
3161 	return (off);
3162 }
3163 
3164 /*
3165  * get parent private data; on error, returns original offset
3166  */
3167 static di_off_t
3168 di_getppdata(struct dev_info *node, di_off_t *off_p, struct di_state *st)
3169 {
3170 	int off;
3171 	struct di_priv_format *ppdp;
3172 
3173 	dcmn_err2((CE_CONT, "di_getppdata:\n"));
3174 
3175 	/* find the parent data format */
3176 	if ((ppdp = di_match_drv_name(node, st, DI_MATCH_PARENT)) == NULL) {
3177 		off = *off_p;
3178 		*off_p = 0;	/* set parent data to none */
3179 		return (off);
3180 	}
3181 
3182 	return (di_getprvdata(ppdp, ddi_get_parent_data((dev_info_t *)node),
3183 	    off_p, st));
3184 }
3185 
3186 /*
3187  * get parent private data; returns original offset
3188  */
3189 static di_off_t
3190 di_getdpdata(struct dev_info *node, di_off_t *off_p, struct di_state *st)
3191 {
3192 	int off;
3193 	struct di_priv_format *dpdp;
3194 
3195 	dcmn_err2((CE_CONT, "di_getdpdata:"));
3196 
3197 	/* find the parent data format */
3198 	if ((dpdp = di_match_drv_name(node, st, DI_MATCH_DRIVER)) == NULL) {
3199 		off = *off_p;
3200 		*off_p = 0;	/* set driver data to none */
3201 		return (off);
3202 	}
3203 
3204 	return (di_getprvdata(dpdp, ddi_get_driver_private((dev_info_t *)node),
3205 	    off_p, st));
3206 }
3207 
3208 /*
3209  * The driver is stateful across DINFOCPYALL and DINFOUSRLD.
3210  * This function encapsulates the state machine:
3211  *
3212  *	-> IOC_IDLE -> IOC_SNAP -> IOC_DONE -> IOC_COPY ->
3213  *	|		SNAPSHOT		USRLD	 |
3214  *	--------------------------------------------------
3215  *
3216  * Returns 0 on success and -1 on failure
3217  */
3218 static int
3219 di_setstate(struct di_state *st, int new_state)
3220 {
3221 	int ret = 0;
3222 
3223 	mutex_enter(&di_lock);
3224 	switch (new_state) {
3225 	case IOC_IDLE:
3226 	case IOC_DONE:
3227 		break;
3228 	case IOC_SNAP:
3229 		if (st->di_iocstate != IOC_IDLE)
3230 			ret = -1;
3231 		break;
3232 	case IOC_COPY:
3233 		if (st->di_iocstate != IOC_DONE)
3234 			ret = -1;
3235 		break;
3236 	default:
3237 		ret = -1;
3238 	}
3239 
3240 	if (ret == 0)
3241 		st->di_iocstate = new_state;
3242 	else
3243 		cmn_err(CE_NOTE, "incorrect state transition from %d to %d",
3244 		    st->di_iocstate, new_state);
3245 	mutex_exit(&di_lock);
3246 	return (ret);
3247 }
3248 
3249 /*
3250  * We cannot assume the presence of the entire
3251  * snapshot in this routine. All we are guaranteed
3252  * is the di_all struct + 1 byte (for root_path)
3253  */
3254 static int
3255 header_plus_one_ok(struct di_all *all)
3256 {
3257 	/*
3258 	 * Refuse to read old versions
3259 	 */
3260 	if (all->version != DI_SNAPSHOT_VERSION) {
3261 		CACHE_DEBUG((DI_ERR, "bad version: 0x%x", all->version));
3262 		return (0);
3263 	}
3264 
3265 	if (all->cache_magic != DI_CACHE_MAGIC) {
3266 		CACHE_DEBUG((DI_ERR, "bad magic #: 0x%x", all->cache_magic));
3267 		return (0);
3268 	}
3269 
3270 	if (all->snapshot_time <= 0) {
3271 		CACHE_DEBUG((DI_ERR, "bad timestamp: %ld", all->snapshot_time));
3272 		return (0);
3273 	}
3274 
3275 	if (all->top_devinfo == 0) {
3276 		CACHE_DEBUG((DI_ERR, "NULL top devinfo"));
3277 		return (0);
3278 	}
3279 
3280 	if (all->map_size < sizeof (*all) + 1) {
3281 		CACHE_DEBUG((DI_ERR, "bad map size: %u", all->map_size));
3282 		return (0);
3283 	}
3284 
3285 	if (all->root_path[0] != '/' || all->root_path[1] != '\0') {
3286 		CACHE_DEBUG((DI_ERR, "bad rootpath: %c%c",
3287 		    all->root_path[0], all->root_path[1]));
3288 		return (0);
3289 	}
3290 
3291 	/*
3292 	 * We can't check checksum here as we just have the header
3293 	 */
3294 
3295 	return (1);
3296 }
3297 
3298 static int
3299 chunk_write(struct vnode *vp, offset_t off, caddr_t buf, size_t len)
3300 {
3301 	rlim64_t	rlimit;
3302 	ssize_t		resid;
3303 	int		error = 0;
3304 
3305 
3306 	rlimit = RLIM64_INFINITY;
3307 
3308 	while (len) {
3309 		resid = 0;
3310 		error = vn_rdwr(UIO_WRITE, vp, buf, len, off,
3311 		    UIO_SYSSPACE, FSYNC, rlimit, kcred, &resid);
3312 
3313 		if (error || resid < 0) {
3314 			error = error ? error : EIO;
3315 			CACHE_DEBUG((DI_ERR, "write error: %d", error));
3316 			break;
3317 		}
3318 
3319 		/*
3320 		 * Check if we are making progress
3321 		 */
3322 		if (resid >= len) {
3323 			error = ENOSPC;
3324 			break;
3325 		}
3326 		buf += len - resid;
3327 		off += len - resid;
3328 		len = resid;
3329 	}
3330 
3331 	return (error);
3332 }
3333 
3334 extern int modrootloaded;
3335 
3336 static void
3337 di_cache_write(struct di_cache *cache)
3338 {
3339 	struct di_all	*all;
3340 	struct vnode	*vp;
3341 	int		oflags;
3342 	size_t		map_size;
3343 	size_t		chunk;
3344 	offset_t	off;
3345 	int		error;
3346 	char		*buf;
3347 
3348 	ASSERT(DI_CACHE_LOCKED(*cache));
3349 	ASSERT(!servicing_interrupt());
3350 
3351 	if (cache->cache_size == 0) {
3352 		ASSERT(cache->cache_data == NULL);
3353 		CACHE_DEBUG((DI_ERR, "Empty cache. Skipping write"));
3354 		return;
3355 	}
3356 
3357 	ASSERT(cache->cache_size > 0);
3358 	ASSERT(cache->cache_data);
3359 
3360 	if (!modrootloaded || rootvp == NULL || vn_is_readonly(rootvp)) {
3361 		CACHE_DEBUG((DI_ERR, "Can't write to rootFS. Skipping write"));
3362 		return;
3363 	}
3364 
3365 	all = (struct di_all *)cache->cache_data;
3366 
3367 	if (!header_plus_one_ok(all)) {
3368 		CACHE_DEBUG((DI_ERR, "Invalid header. Skipping write"));
3369 		return;
3370 	}
3371 
3372 	ASSERT(strcmp(all->root_path, "/") == 0);
3373 
3374 	/*
3375 	 * The cache_size is the total allocated memory for the cache.
3376 	 * The map_size is the actual size of valid data in the cache.
3377 	 * map_size may be smaller than cache_size but cannot exceed
3378 	 * cache_size.
3379 	 */
3380 	if (all->map_size > cache->cache_size) {
3381 		CACHE_DEBUG((DI_ERR, "map_size (0x%x) > cache_size (0x%x)."
3382 		    " Skipping write", all->map_size, cache->cache_size));
3383 		return;
3384 	}
3385 
3386 	/*
3387 	 * First unlink the temp file
3388 	 */
3389 	error = vn_remove(DI_CACHE_TEMP, UIO_SYSSPACE, RMFILE);
3390 	if (error && error != ENOENT) {
3391 		CACHE_DEBUG((DI_ERR, "%s: unlink failed: %d",
3392 		    DI_CACHE_TEMP, error));
3393 	}
3394 
3395 	if (error == EROFS) {
3396 		CACHE_DEBUG((DI_ERR, "RDONLY FS. Skipping write"));
3397 		return;
3398 	}
3399 
3400 	vp = NULL;
3401 	oflags = (FCREAT|FWRITE);
3402 	if (error = vn_open(DI_CACHE_TEMP, UIO_SYSSPACE, oflags,
3403 	    DI_CACHE_PERMS, &vp, CRCREAT, 0)) {
3404 		CACHE_DEBUG((DI_ERR, "%s: create failed: %d",
3405 		    DI_CACHE_TEMP, error));
3406 		return;
3407 	}
3408 
3409 	ASSERT(vp);
3410 
3411 	/*
3412 	 * Paranoid: Check if the file is on a read-only FS
3413 	 */
3414 	if (vn_is_readonly(vp)) {
3415 		CACHE_DEBUG((DI_ERR, "cannot write: readonly FS"));
3416 		goto fail;
3417 	}
3418 
3419 	/*
3420 	 * Note that we only write map_size bytes to disk - this saves
3421 	 * space as the actual cache size may be larger than size of
3422 	 * valid data in the cache.
3423 	 * Another advantage is that it makes verification of size
3424 	 * easier when the file is read later.
3425 	 */
3426 	map_size = all->map_size;
3427 	off = 0;
3428 	buf = cache->cache_data;
3429 
3430 	while (map_size) {
3431 		ASSERT(map_size > 0);
3432 		/*
3433 		 * Write in chunks so that VM system
3434 		 * is not overwhelmed
3435 		 */
3436 		if (map_size > di_chunk * PAGESIZE)
3437 			chunk = di_chunk * PAGESIZE;
3438 		else
3439 			chunk = map_size;
3440 
3441 		error = chunk_write(vp, off, buf, chunk);
3442 		if (error) {
3443 			CACHE_DEBUG((DI_ERR, "write failed: off=0x%x: %d",
3444 			    off, error));
3445 			goto fail;
3446 		}
3447 
3448 		off += chunk;
3449 		buf += chunk;
3450 		map_size -= chunk;
3451 
3452 		/* Give pageout a chance to run */
3453 		delay(1);
3454 	}
3455 
3456 	/*
3457 	 * Now sync the file and close it
3458 	 */
3459 	if (error = VOP_FSYNC(vp, FSYNC, kcred)) {
3460 		CACHE_DEBUG((DI_ERR, "FSYNC failed: %d", error));
3461 	}
3462 
3463 	if (error = VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred)) {
3464 		CACHE_DEBUG((DI_ERR, "close() failed: %d", error));
3465 		VN_RELE(vp);
3466 		return;
3467 	}
3468 
3469 	VN_RELE(vp);
3470 
3471 	/*
3472 	 * Now do the rename
3473 	 */
3474 	if (error = vn_rename(DI_CACHE_TEMP, DI_CACHE_FILE, UIO_SYSSPACE)) {
3475 		CACHE_DEBUG((DI_ERR, "rename failed: %d", error));
3476 		return;
3477 	}
3478 
3479 	CACHE_DEBUG((DI_INFO, "Cache write successful."));
3480 
3481 	return;
3482 
3483 fail:
3484 	(void) VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred);
3485 	VN_RELE(vp);
3486 }
3487 
3488 
3489 /*
3490  * Since we could be called early in boot,
3491  * use kobj_read_file()
3492  */
3493 static void
3494 di_cache_read(struct di_cache *cache)
3495 {
3496 	struct _buf	*file;
3497 	struct di_all	*all;
3498 	int		n;
3499 	size_t		map_size, sz, chunk;
3500 	offset_t	off;
3501 	caddr_t		buf;
3502 	uint32_t	saved_crc, crc;
3503 
3504 	ASSERT(modrootloaded);
3505 	ASSERT(DI_CACHE_LOCKED(*cache));
3506 	ASSERT(cache->cache_data == NULL);
3507 	ASSERT(cache->cache_size == 0);
3508 	ASSERT(!servicing_interrupt());
3509 
3510 	file = kobj_open_file(DI_CACHE_FILE);
3511 	if (file == (struct _buf *)-1) {
3512 		CACHE_DEBUG((DI_ERR, "%s: open failed: %d",
3513 		    DI_CACHE_FILE, ENOENT));
3514 		return;
3515 	}
3516 
3517 	/*
3518 	 * Read in the header+root_path first. The root_path must be "/"
3519 	 */
3520 	all = kmem_zalloc(sizeof (*all) + 1, KM_SLEEP);
3521 	n = kobj_read_file(file, (caddr_t)all, sizeof (*all) + 1, 0);
3522 
3523 	if ((n != sizeof (*all) + 1) || !header_plus_one_ok(all)) {
3524 		kmem_free(all, sizeof (*all) + 1);
3525 		kobj_close_file(file);
3526 		CACHE_DEBUG((DI_ERR, "cache header: read error or invalid"));
3527 		return;
3528 	}
3529 
3530 	map_size = all->map_size;
3531 
3532 	kmem_free(all, sizeof (*all) + 1);
3533 
3534 	ASSERT(map_size >= sizeof (*all) + 1);
3535 
3536 	buf = di_cache.cache_data = kmem_alloc(map_size, KM_SLEEP);
3537 	sz = map_size;
3538 	off = 0;
3539 	while (sz) {
3540 		/* Don't overload VM with large reads */
3541 		chunk = (sz > di_chunk * PAGESIZE) ? di_chunk * PAGESIZE : sz;
3542 		n = kobj_read_file(file, buf, chunk, off);
3543 		if (n != chunk) {
3544 			CACHE_DEBUG((DI_ERR, "%s: read error at offset: %lld",
3545 			    DI_CACHE_FILE, off));
3546 			goto fail;
3547 		}
3548 		off += chunk;
3549 		buf += chunk;
3550 		sz -= chunk;
3551 	}
3552 
3553 	ASSERT(off == map_size);
3554 
3555 	/*
3556 	 * Read past expected EOF to verify size.
3557 	 */
3558 	if (kobj_read_file(file, (caddr_t)&sz, 1, off) > 0) {
3559 		CACHE_DEBUG((DI_ERR, "%s: file size changed", DI_CACHE_FILE));
3560 		goto fail;
3561 	}
3562 
3563 	all = (struct di_all *)di_cache.cache_data;
3564 	if (!header_plus_one_ok(all)) {
3565 		CACHE_DEBUG((DI_ERR, "%s: file header changed", DI_CACHE_FILE));
3566 		goto fail;
3567 	}
3568 
3569 	/*
3570 	 * Compute CRC with checksum field in the cache data set to 0
3571 	 */
3572 	saved_crc = all->cache_checksum;
3573 	all->cache_checksum = 0;
3574 	CRC32(crc, di_cache.cache_data, map_size, -1U, crc32_table);
3575 	all->cache_checksum = saved_crc;
3576 
3577 	if (crc != all->cache_checksum) {
3578 		CACHE_DEBUG((DI_ERR,
3579 		    "%s: checksum error: expected=0x%x actual=0x%x",
3580 		    DI_CACHE_FILE, all->cache_checksum, crc));
3581 		goto fail;
3582 	}
3583 
3584 	if (all->map_size != map_size) {
3585 		CACHE_DEBUG((DI_ERR, "%s: map size changed", DI_CACHE_FILE));
3586 		goto fail;
3587 	}
3588 
3589 	kobj_close_file(file);
3590 
3591 	di_cache.cache_size = map_size;
3592 
3593 	return;
3594 
3595 fail:
3596 	kmem_free(di_cache.cache_data, map_size);
3597 	kobj_close_file(file);
3598 	di_cache.cache_data = NULL;
3599 	di_cache.cache_size = 0;
3600 }
3601 
3602 
3603 /*
3604  * Checks if arguments are valid for using the cache.
3605  */
3606 static int
3607 cache_args_valid(struct di_state *st, int *error)
3608 {
3609 	ASSERT(error);
3610 	ASSERT(st->mem_size > 0);
3611 	ASSERT(st->memlist != NULL);
3612 
3613 	if (!modrootloaded || !i_ddi_io_initialized()) {
3614 		CACHE_DEBUG((DI_ERR,
3615 		    "cache lookup failure: I/O subsystem not inited"));
3616 		*error = ENOTACTIVE;
3617 		return (0);
3618 	}
3619 
3620 	/*
3621 	 * No other flags allowed with DINFOCACHE
3622 	 */
3623 	if (st->command != (DINFOCACHE & DIIOC_MASK)) {
3624 		CACHE_DEBUG((DI_ERR,
3625 		    "cache lookup failure: bad flags: 0x%x",
3626 		    st->command));
3627 		*error = EINVAL;
3628 		return (0);
3629 	}
3630 
3631 	if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) {
3632 		CACHE_DEBUG((DI_ERR,
3633 		    "cache lookup failure: bad root: %s",
3634 		    DI_ALL_PTR(st)->root_path));
3635 		*error = EINVAL;
3636 		return (0);
3637 	}
3638 
3639 	CACHE_DEBUG((DI_INFO, "cache lookup args ok: 0x%x", st->command));
3640 
3641 	*error = 0;
3642 
3643 	return (1);
3644 }
3645 
3646 static int
3647 snapshot_is_cacheable(struct di_state *st)
3648 {
3649 	ASSERT(st->mem_size > 0);
3650 	ASSERT(st->memlist != NULL);
3651 
3652 	if (st->command != (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK)) {
3653 		CACHE_DEBUG((DI_INFO,
3654 		    "not cacheable: incompatible flags: 0x%x",
3655 		    st->command));
3656 		return (0);
3657 	}
3658 
3659 	if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) {
3660 		CACHE_DEBUG((DI_INFO,
3661 		    "not cacheable: incompatible root path: %s",
3662 		    DI_ALL_PTR(st)->root_path));
3663 		return (0);
3664 	}
3665 
3666 	CACHE_DEBUG((DI_INFO, "cacheable snapshot request: 0x%x", st->command));
3667 
3668 	return (1);
3669 }
3670 
3671 static int
3672 di_cache_lookup(struct di_state *st)
3673 {
3674 	size_t	rval;
3675 	int	cache_valid;
3676 
3677 	ASSERT(cache_args_valid(st, &cache_valid));
3678 	ASSERT(modrootloaded);
3679 
3680 	DI_CACHE_LOCK(di_cache);
3681 
3682 	/*
3683 	 * The following assignment determines the validity
3684 	 * of the cache as far as this snapshot is concerned.
3685 	 */
3686 	cache_valid = di_cache.cache_valid;
3687 
3688 	if (cache_valid && di_cache.cache_data == NULL) {
3689 		di_cache_read(&di_cache);
3690 		/* check for read or file error */
3691 		if (di_cache.cache_data == NULL)
3692 			cache_valid = 0;
3693 	}
3694 
3695 	if (cache_valid) {
3696 		/*
3697 		 * Ok, the cache was valid as of this particular
3698 		 * snapshot. Copy the cached snapshot. This is safe
3699 		 * to do as the cache cannot be freed (we hold the
3700 		 * cache lock). Free the memory allocated in di_state
3701 		 * up until this point - we will simply copy everything
3702 		 * in the cache.
3703 		 */
3704 
3705 		ASSERT(di_cache.cache_data != NULL);
3706 		ASSERT(di_cache.cache_size > 0);
3707 
3708 		di_freemem(st);
3709 
3710 		rval = 0;
3711 		if (di_cache2mem(&di_cache, st) > 0) {
3712 
3713 			ASSERT(DI_ALL_PTR(st));
3714 
3715 			/*
3716 			 * map_size is size of valid data in the
3717 			 * cached snapshot and may be less than
3718 			 * size of the cache.
3719 			 */
3720 			rval = DI_ALL_PTR(st)->map_size;
3721 
3722 			ASSERT(rval >= sizeof (struct di_all));
3723 			ASSERT(rval <= di_cache.cache_size);
3724 		}
3725 	} else {
3726 		/*
3727 		 * The cache isn't valid, we need to take a snapshot.
3728 		 * Set the command flags appropriately
3729 		 */
3730 		ASSERT(st->command == (DINFOCACHE & DIIOC_MASK));
3731 		st->command = (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK);
3732 		rval = di_cache_update(st);
3733 		st->command = (DINFOCACHE & DIIOC_MASK);
3734 	}
3735 
3736 	DI_CACHE_UNLOCK(di_cache);
3737 
3738 	/*
3739 	 * For cached snapshots, the devinfo driver always returns
3740 	 * a snapshot rooted at "/".
3741 	 */
3742 	ASSERT(rval == 0 || strcmp(DI_ALL_PTR(st)->root_path, "/") == 0);
3743 
3744 	return (rval);
3745 }
3746 
3747 /*
3748  * This is a forced update of the cache  - the previous state of the cache
3749  * may be:
3750  *	- unpopulated
3751  *	- populated and invalid
3752  *	- populated and valid
3753  */
3754 static int
3755 di_cache_update(struct di_state *st)
3756 {
3757 	int rval;
3758 	uint32_t crc;
3759 	struct di_all *all;
3760 
3761 	ASSERT(DI_CACHE_LOCKED(di_cache));
3762 	ASSERT(snapshot_is_cacheable(st));
3763 
3764 	/*
3765 	 * Free the in-core cache and the on-disk file (if they exist)
3766 	 */
3767 	i_ddi_di_cache_free(&di_cache);
3768 
3769 	/*
3770 	 * Set valid flag before taking the snapshot,
3771 	 * so that any invalidations that arrive
3772 	 * during or after the snapshot are not
3773 	 * removed by us.
3774 	 */
3775 	atomic_or_32(&di_cache.cache_valid, 1);
3776 
3777 	modunload_disable();
3778 	rval = di_snapshot(st);
3779 	modunload_enable();
3780 
3781 	if (rval == 0) {
3782 		CACHE_DEBUG((DI_ERR, "can't update cache: bad snapshot"));
3783 		return (0);
3784 	}
3785 
3786 	DI_ALL_PTR(st)->map_size = rval;
3787 
3788 	if (di_mem2cache(st, &di_cache) == 0) {
3789 		CACHE_DEBUG((DI_ERR, "can't update cache: copy failed"));
3790 		return (0);
3791 	}
3792 
3793 	ASSERT(di_cache.cache_data);
3794 	ASSERT(di_cache.cache_size > 0);
3795 
3796 	/*
3797 	 * Now that we have cached the snapshot, compute its checksum.
3798 	 * The checksum is only computed over the valid data in the
3799 	 * cache, not the entire cache.
3800 	 * Also, set all the fields (except checksum) before computing
3801 	 * checksum.
3802 	 */
3803 	all = (struct di_all *)di_cache.cache_data;
3804 	all->cache_magic = DI_CACHE_MAGIC;
3805 	all->map_size = rval;
3806 
3807 	ASSERT(all->cache_checksum == 0);
3808 	CRC32(crc, di_cache.cache_data, all->map_size, -1U, crc32_table);
3809 	all->cache_checksum = crc;
3810 
3811 	di_cache_write(&di_cache);
3812 
3813 	return (rval);
3814 }
3815 
3816 static void
3817 di_cache_print(di_cache_debug_t msglevel, char *fmt, ...)
3818 {
3819 	va_list	ap;
3820 
3821 	if (di_cache_debug <= DI_QUIET)
3822 		return;
3823 
3824 	if (di_cache_debug < msglevel)
3825 		return;
3826 
3827 	switch (msglevel) {
3828 		case DI_ERR:
3829 			msglevel = CE_WARN;
3830 			break;
3831 		case DI_INFO:
3832 		case DI_TRACE:
3833 		default:
3834 			msglevel = CE_NOTE;
3835 			break;
3836 	}
3837 
3838 	va_start(ap, fmt);
3839 	vcmn_err(msglevel, fmt, ap);
3840 	va_end(ap);
3841 }
3842