xref: /titanic_51/usr/src/uts/common/io/devinfo.c (revision 04580fdfa39e6e9d80ef4c60bfcf6e8461687692)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * driver for accessing kernel devinfo tree.
31  */
32 #include <sys/types.h>
33 #include <sys/pathname.h>
34 #include <sys/debug.h>
35 #include <sys/autoconf.h>
36 #include <sys/conf.h>
37 #include <sys/file.h>
38 #include <sys/kmem.h>
39 #include <sys/modctl.h>
40 #include <sys/stat.h>
41 #include <sys/ddi.h>
42 #include <sys/sunddi.h>
43 #include <sys/sunldi_impl.h>
44 #include <sys/sunndi.h>
45 #include <sys/esunddi.h>
46 #include <sys/sunmdi.h>
47 #include <sys/ddi_impldefs.h>
48 #include <sys/ndi_impldefs.h>
49 #include <sys/mdi_impldefs.h>
50 #include <sys/devinfo_impl.h>
51 #include <sys/thread.h>
52 #include <sys/modhash.h>
53 #include <sys/bitmap.h>
54 #include <util/qsort.h>
55 #include <sys/disp.h>
56 #include <sys/kobj.h>
57 #include <sys/crc32.h>
58 
59 
60 #ifdef DEBUG
61 static int di_debug;
62 #define	dcmn_err(args) if (di_debug >= 1) cmn_err args
63 #define	dcmn_err2(args) if (di_debug >= 2) cmn_err args
64 #define	dcmn_err3(args) if (di_debug >= 3) cmn_err args
65 #else
66 #define	dcmn_err(args) /* nothing */
67 #define	dcmn_err2(args) /* nothing */
68 #define	dcmn_err3(args) /* nothing */
69 #endif
70 
71 /*
72  * We partition the space of devinfo minor nodes equally between the full and
73  * unprivileged versions of the driver.  The even-numbered minor nodes are the
74  * full version, while the odd-numbered ones are the read-only version.
75  */
76 static int di_max_opens = 32;
77 
78 #define	DI_FULL_PARENT		0
79 #define	DI_READONLY_PARENT	1
80 #define	DI_NODE_SPECIES		2
81 #define	DI_UNPRIVILEGED_NODE(x)	(((x) % 2) != 0)
82 
83 #define	IOC_IDLE	0	/* snapshot ioctl states */
84 #define	IOC_SNAP	1	/* snapshot in progress */
85 #define	IOC_DONE	2	/* snapshot done, but not copied out */
86 #define	IOC_COPY	3	/* copyout in progress */
87 
88 /*
89  * Keep max alignment so we can move snapshot to different platforms
90  */
91 #define	DI_ALIGN(addr)	((addr + 7l) & ~7l)
92 
93 /*
94  * To avoid wasting memory, make a linked list of memory chunks.
95  * Size of each chunk is buf_size.
96  */
97 struct di_mem {
98 	struct di_mem *next;	/* link to next chunk */
99 	char *buf;		/* contiguous kernel memory */
100 	size_t buf_size;	/* size of buf in bytes */
101 	devmap_cookie_t cook;	/* cookie from ddi_umem_alloc */
102 };
103 
104 /*
105  * This is a stack for walking the tree without using recursion.
106  * When the devinfo tree height is above some small size, one
107  * gets watchdog resets on sun4m.
108  */
109 struct di_stack {
110 	void		*offset[MAX_TREE_DEPTH];
111 	struct dev_info *dip[MAX_TREE_DEPTH];
112 	int		circ[MAX_TREE_DEPTH];
113 	int		depth;	/* depth of current node to be copied */
114 };
115 
116 #define	TOP_OFFSET(stack)	\
117 	((di_off_t *)(stack)->offset[(stack)->depth - 1])
118 #define	TOP_NODE(stack)		\
119 	((stack)->dip[(stack)->depth - 1])
120 #define	PARENT_OFFSET(stack)	\
121 	((di_off_t *)(stack)->offset[(stack)->depth - 2])
122 #define	EMPTY_STACK(stack)	((stack)->depth == 0)
123 #define	POP_STACK(stack)	{ \
124 	ndi_devi_exit((dev_info_t *)TOP_NODE(stack), \
125 		(stack)->circ[(stack)->depth - 1]); \
126 	((stack)->depth--); \
127 }
128 #define	PUSH_STACK(stack, node, offp)	{ \
129 	ASSERT(node != NULL); \
130 	ndi_devi_enter((dev_info_t *)node, &(stack)->circ[(stack)->depth]); \
131 	(stack)->dip[(stack)->depth] = (node); \
132 	(stack)->offset[(stack)->depth] = (void *)(offp); \
133 	((stack)->depth)++; \
134 }
135 
136 #define	DI_ALL_PTR(s)	((struct di_all *)di_mem_addr((s), 0))
137 
138 /*
139  * With devfs, the device tree has no global locks. The device tree is
140  * dynamic and dips may come and go if they are not locked locally. Under
141  * these conditions, pointers are no longer reliable as unique IDs.
142  * Specifically, these pointers cannot be used as keys for hash tables
143  * as the same devinfo structure may be freed in one part of the tree only
144  * to be allocated as the structure for a different device in another
145  * part of the tree. This can happen if DR and the snapshot are
146  * happening concurrently.
147  * The following data structures act as keys for devinfo nodes and
148  * pathinfo nodes.
149  */
150 
151 enum di_ktype {
152 	DI_DKEY = 1,
153 	DI_PKEY = 2
154 };
155 
156 struct di_dkey {
157 	dev_info_t	*dk_dip;
158 	major_t		dk_major;
159 	int		dk_inst;
160 	pnode_t		dk_nodeid;
161 };
162 
163 struct di_pkey {
164 	mdi_pathinfo_t	*pk_pip;
165 	char		*pk_path_addr;
166 	dev_info_t	*pk_client;
167 	dev_info_t	*pk_phci;
168 };
169 
170 struct di_key {
171 	enum di_ktype	k_type;
172 	union {
173 		struct di_dkey dkey;
174 		struct di_pkey pkey;
175 	} k_u;
176 };
177 
178 
179 struct i_lnode;
180 
181 typedef struct i_link {
182 	/*
183 	 * If a di_link struct representing this i_link struct makes it
184 	 * into the snapshot, then self will point to the offset of
185 	 * the di_link struct in the snapshot
186 	 */
187 	di_off_t	self;
188 
189 	int		spec_type;	/* block or char access type */
190 	struct i_lnode	*src_lnode;	/* src i_lnode */
191 	struct i_lnode	*tgt_lnode;	/* tgt i_lnode */
192 	struct i_link	*src_link_next;	/* next src i_link /w same i_lnode */
193 	struct i_link	*tgt_link_next;	/* next tgt i_link /w same i_lnode */
194 } i_link_t;
195 
196 typedef struct i_lnode {
197 	/*
198 	 * If a di_lnode struct representing this i_lnode struct makes it
199 	 * into the snapshot, then self will point to the offset of
200 	 * the di_lnode struct in the snapshot
201 	 */
202 	di_off_t	self;
203 
204 	/*
205 	 * used for hashing and comparing i_lnodes
206 	 */
207 	int		modid;
208 
209 	/*
210 	 * public information describing a link endpoint
211 	 */
212 	struct di_node	*di_node;	/* di_node in snapshot */
213 	dev_t		devt;		/* devt */
214 
215 	/*
216 	 * i_link ptr to links coming into this i_lnode node
217 	 * (this i_lnode is the target of these i_links)
218 	 */
219 	i_link_t	*link_in;
220 
221 	/*
222 	 * i_link ptr to links going out of this i_lnode node
223 	 * (this i_lnode is the source of these i_links)
224 	 */
225 	i_link_t	*link_out;
226 } i_lnode_t;
227 
228 /*
229  * Soft state associated with each instance of driver open.
230  */
231 static struct di_state {
232 	di_off_t mem_size;	/* total # bytes in memlist	*/
233 	struct di_mem *memlist;	/* head of memlist		*/
234 	uint_t command;		/* command from ioctl		*/
235 	int di_iocstate;	/* snapshot ioctl state		*/
236 	mod_hash_t *reg_dip_hash;
237 	mod_hash_t *reg_pip_hash;
238 	int lnode_count;
239 	int link_count;
240 
241 	mod_hash_t *lnode_hash;
242 	mod_hash_t *link_hash;
243 } **di_states;
244 
245 static kmutex_t di_lock;	/* serialize instance assignment */
246 
247 typedef enum {
248 	DI_QUIET = 0,	/* DI_QUIET must always be 0 */
249 	DI_ERR,
250 	DI_INFO,
251 	DI_TRACE,
252 	DI_TRACE1,
253 	DI_TRACE2
254 } di_cache_debug_t;
255 
256 static uint_t	di_chunk = 32;		/* I/O chunk size in pages */
257 
258 #define	DI_CACHE_LOCK(c)	(mutex_enter(&(c).cache_lock))
259 #define	DI_CACHE_UNLOCK(c)	(mutex_exit(&(c).cache_lock))
260 #define	DI_CACHE_LOCKED(c)	(mutex_owned(&(c).cache_lock))
261 
262 /*
263  * Check that whole device tree is being configured as a pre-condition for
264  * cleaning up /etc/devices files.
265  */
266 #define	DEVICES_FILES_CLEANABLE(st)	\
267 	(((st)->command & DINFOSUBTREE) && ((st)->command & DINFOFORCE) && \
268 	strcmp(DI_ALL_PTR(st)->root_path, "/") == 0)
269 
270 #define	CACHE_DEBUG(args)	\
271 	{ if (di_cache_debug != DI_QUIET) di_cache_print args; }
272 
273 static struct phci_walk_arg {
274 	di_off_t	off;
275 	struct di_state	*st;
276 } phci_walk_arg_t;
277 
278 static int di_open(dev_t *, int, int, cred_t *);
279 static int di_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
280 static int di_close(dev_t, int, int, cred_t *);
281 static int di_info(dev_info_t *, ddi_info_cmd_t, void *, void **);
282 static int di_attach(dev_info_t *, ddi_attach_cmd_t);
283 static int di_detach(dev_info_t *, ddi_detach_cmd_t);
284 
285 static di_off_t di_copyformat(di_off_t, struct di_state *, intptr_t, int);
286 static di_off_t di_snapshot_and_clean(struct di_state *);
287 static di_off_t di_copydevnm(di_off_t *, struct di_state *);
288 static di_off_t di_copytree(struct dev_info *, di_off_t *, struct di_state *);
289 static di_off_t di_copynode(struct di_stack *, struct di_state *);
290 static di_off_t di_getmdata(struct ddi_minor_data *, di_off_t *, di_off_t,
291     struct di_state *);
292 static di_off_t di_getppdata(struct dev_info *, di_off_t *, struct di_state *);
293 static di_off_t di_getdpdata(struct dev_info *, di_off_t *, struct di_state *);
294 static di_off_t di_getprop(struct ddi_prop *, di_off_t *,
295     struct di_state *, struct dev_info *, int);
296 static void di_allocmem(struct di_state *, size_t);
297 static void di_freemem(struct di_state *);
298 static void di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz);
299 static di_off_t di_checkmem(struct di_state *, di_off_t, size_t);
300 static caddr_t di_mem_addr(struct di_state *, di_off_t);
301 static int di_setstate(struct di_state *, int);
302 static void di_register_dip(struct di_state *, dev_info_t *, di_off_t);
303 static void di_register_pip(struct di_state *, mdi_pathinfo_t *, di_off_t);
304 static di_off_t di_getpath_data(dev_info_t *, di_off_t *, di_off_t,
305     struct di_state *, int);
306 static di_off_t di_getlink_data(di_off_t, struct di_state *);
307 static int di_dip_find(struct di_state *st, dev_info_t *node, di_off_t *off_p);
308 
309 static int cache_args_valid(struct di_state *st, int *error);
310 static int snapshot_is_cacheable(struct di_state *st);
311 static int di_cache_lookup(struct di_state *st);
312 static int di_cache_update(struct di_state *st);
313 static void di_cache_print(di_cache_debug_t msglevel, char *fmt, ...);
314 int build_vhci_list(dev_info_t *vh_devinfo, void *arg);
315 int build_phci_list(dev_info_t *ph_devinfo, void *arg);
316 
317 static struct cb_ops di_cb_ops = {
318 	di_open,		/* open */
319 	di_close,		/* close */
320 	nodev,			/* strategy */
321 	nodev,			/* print */
322 	nodev,			/* dump */
323 	nodev,			/* read */
324 	nodev,			/* write */
325 	di_ioctl,		/* ioctl */
326 	nodev,			/* devmap */
327 	nodev,			/* mmap */
328 	nodev,			/* segmap */
329 	nochpoll,		/* poll */
330 	ddi_prop_op,		/* prop_op */
331 	NULL,			/* streamtab  */
332 	D_NEW | D_MP		/* Driver compatibility flag */
333 };
334 
335 static struct dev_ops di_ops = {
336 	DEVO_REV,		/* devo_rev, */
337 	0,			/* refcnt  */
338 	di_info,		/* info */
339 	nulldev,		/* identify */
340 	nulldev,		/* probe */
341 	di_attach,		/* attach */
342 	di_detach,		/* detach */
343 	nodev,			/* reset */
344 	&di_cb_ops,		/* driver operations */
345 	NULL			/* bus operations */
346 };
347 
348 /*
349  * Module linkage information for the kernel.
350  */
351 static struct modldrv modldrv = {
352 	&mod_driverops,
353 	"DEVINFO Driver %I%",
354 	&di_ops
355 };
356 
357 static struct modlinkage modlinkage = {
358 	MODREV_1,
359 	&modldrv,
360 	NULL
361 };
362 
363 int
364 _init(void)
365 {
366 	int	error;
367 
368 	mutex_init(&di_lock, NULL, MUTEX_DRIVER, NULL);
369 
370 	error = mod_install(&modlinkage);
371 	if (error != 0) {
372 		mutex_destroy(&di_lock);
373 		return (error);
374 	}
375 
376 	return (0);
377 }
378 
379 int
380 _info(struct modinfo *modinfop)
381 {
382 	return (mod_info(&modlinkage, modinfop));
383 }
384 
385 int
386 _fini(void)
387 {
388 	int	error;
389 
390 	error = mod_remove(&modlinkage);
391 	if (error != 0) {
392 		return (error);
393 	}
394 
395 	mutex_destroy(&di_lock);
396 	return (0);
397 }
398 
399 static dev_info_t *di_dip;
400 
401 /*ARGSUSED*/
402 static int
403 di_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
404 {
405 	int error = DDI_FAILURE;
406 
407 	switch (infocmd) {
408 	case DDI_INFO_DEVT2DEVINFO:
409 		*result = (void *)di_dip;
410 		error = DDI_SUCCESS;
411 		break;
412 	case DDI_INFO_DEVT2INSTANCE:
413 		/*
414 		 * All dev_t's map to the same, single instance.
415 		 */
416 		*result = (void *)0;
417 		error = DDI_SUCCESS;
418 		break;
419 	default:
420 		break;
421 	}
422 
423 	return (error);
424 }
425 
426 static int
427 di_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
428 {
429 	int error = DDI_FAILURE;
430 
431 	switch (cmd) {
432 	case DDI_ATTACH:
433 		di_states = kmem_zalloc(
434 		    di_max_opens * sizeof (struct di_state *), KM_SLEEP);
435 
436 		if (ddi_create_minor_node(dip, "devinfo", S_IFCHR,
437 		    DI_FULL_PARENT, DDI_PSEUDO, NULL) == DDI_FAILURE ||
438 		    ddi_create_minor_node(dip, "devinfo,ro", S_IFCHR,
439 		    DI_READONLY_PARENT, DDI_PSEUDO, NULL) == DDI_FAILURE) {
440 			kmem_free(di_states,
441 			    di_max_opens * sizeof (struct di_state *));
442 			ddi_remove_minor_node(dip, NULL);
443 			error = DDI_FAILURE;
444 		} else {
445 			di_dip = dip;
446 			ddi_report_dev(dip);
447 
448 			error = DDI_SUCCESS;
449 		}
450 		break;
451 	default:
452 		error = DDI_FAILURE;
453 		break;
454 	}
455 
456 	return (error);
457 }
458 
459 static int
460 di_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
461 {
462 	int error = DDI_FAILURE;
463 
464 	switch (cmd) {
465 	case DDI_DETACH:
466 		ddi_remove_minor_node(dip, NULL);
467 		di_dip = NULL;
468 		kmem_free(di_states, di_max_opens * sizeof (struct di_state *));
469 
470 		error = DDI_SUCCESS;
471 		break;
472 	default:
473 		error = DDI_FAILURE;
474 		break;
475 	}
476 
477 	return (error);
478 }
479 
480 /*
481  * Allow multiple opens by tweaking the dev_t such that it looks like each
482  * open is getting a different minor device.  Each minor gets a separate
483  * entry in the di_states[] table.  Based on the original minor number, we
484  * discriminate opens of the full and read-only nodes.  If all of the instances
485  * of the selected minor node are currently open, we return EAGAIN.
486  */
487 /*ARGSUSED*/
488 static int
489 di_open(dev_t *devp, int flag, int otyp, cred_t *credp)
490 {
491 	int m;
492 	minor_t minor_parent = getminor(*devp);
493 
494 	if (minor_parent != DI_FULL_PARENT &&
495 	    minor_parent != DI_READONLY_PARENT)
496 		return (ENXIO);
497 
498 	mutex_enter(&di_lock);
499 
500 	for (m = minor_parent; m < di_max_opens; m += DI_NODE_SPECIES) {
501 		if (di_states[m] != NULL)
502 			continue;
503 
504 		di_states[m] = kmem_zalloc(sizeof (struct di_state), KM_SLEEP);
505 		break;	/* It's ours. */
506 	}
507 
508 	if (m >= di_max_opens) {
509 		/*
510 		 * maximum open instance for device reached
511 		 */
512 		mutex_exit(&di_lock);
513 		dcmn_err((CE_WARN, "devinfo: maximum devinfo open reached"));
514 		return (EAGAIN);
515 	}
516 	mutex_exit(&di_lock);
517 
518 	ASSERT(m < di_max_opens);
519 	*devp = makedevice(getmajor(*devp), (minor_t)(m + DI_NODE_SPECIES));
520 
521 	dcmn_err((CE_CONT, "di_open: thread = %p, assigned minor = %d\n",
522 		(void *)curthread, m + DI_NODE_SPECIES));
523 
524 	return (0);
525 }
526 
527 /*ARGSUSED*/
528 static int
529 di_close(dev_t dev, int flag, int otype, cred_t *cred_p)
530 {
531 	struct di_state *st;
532 	int m = (int)getminor(dev) - DI_NODE_SPECIES;
533 
534 	if (m < 0) {
535 		cmn_err(CE_WARN, "closing non-existent devinfo minor %d",
536 		    m + DI_NODE_SPECIES);
537 		return (ENXIO);
538 	}
539 
540 	st = di_states[m];
541 	ASSERT(m < di_max_opens && st != NULL);
542 
543 	di_freemem(st);
544 	kmem_free(st, sizeof (struct di_state));
545 
546 	/*
547 	 * empty slot in state table
548 	 */
549 	mutex_enter(&di_lock);
550 	di_states[m] = NULL;
551 	dcmn_err((CE_CONT, "di_close: thread = %p, assigned minor = %d\n",
552 		(void *)curthread, m + DI_NODE_SPECIES));
553 	mutex_exit(&di_lock);
554 
555 	return (0);
556 }
557 
558 
559 /*ARGSUSED*/
560 static int
561 di_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp)
562 {
563 	int rv, error;
564 	di_off_t off;
565 	struct di_all *all;
566 	struct di_state *st;
567 	int m = (int)getminor(dev) - DI_NODE_SPECIES;
568 
569 	major_t i;
570 	char *drv_name;
571 	size_t map_size, size;
572 	struct di_mem *dcp;
573 	int ndi_flags;
574 
575 	if (m < 0 || m >= di_max_opens) {
576 		return (ENXIO);
577 	}
578 
579 	st = di_states[m];
580 	ASSERT(st != NULL);
581 
582 	dcmn_err2((CE_CONT, "di_ioctl: mode = %x, cmd = %x\n", mode, cmd));
583 
584 	switch (cmd) {
585 	case DINFOIDENT:
586 		/*
587 		 * This is called from di_init to verify that the driver
588 		 * opened is indeed devinfo. The purpose is to guard against
589 		 * sending ioctl to an unknown driver in case of an
590 		 * unresolved major number conflict during bfu.
591 		 */
592 		*rvalp = DI_MAGIC;
593 		return (0);
594 
595 	case DINFOLODRV:
596 		/*
597 		 * Hold an installed driver and return the result
598 		 */
599 		if (DI_UNPRIVILEGED_NODE(m)) {
600 			/*
601 			 * Only the fully enabled instances may issue
602 			 * DINFOLDDRV.
603 			 */
604 			return (EACCES);
605 		}
606 
607 		drv_name = kmem_alloc(MAXNAMELEN, KM_SLEEP);
608 		if (ddi_copyin((void *)arg, drv_name, MAXNAMELEN, mode) != 0) {
609 			kmem_free(drv_name, MAXNAMELEN);
610 			return (EFAULT);
611 		}
612 
613 		/*
614 		 * Some 3rd party driver's _init() walks the device tree,
615 		 * so we load the driver module before configuring driver.
616 		 */
617 		i = ddi_name_to_major(drv_name);
618 		if (ddi_hold_driver(i) == NULL) {
619 			kmem_free(drv_name, MAXNAMELEN);
620 			return (ENXIO);
621 		}
622 
623 		ndi_flags = NDI_DEVI_PERSIST | NDI_CONFIG | NDI_NO_EVENT;
624 
625 		/*
626 		 * i_ddi_load_drvconf() below will trigger a reprobe
627 		 * via reset_nexus_flags(). NDI_DRV_CONF_REPROBE isn't
628 		 * needed here.
629 		 */
630 		modunload_disable();
631 		(void) i_ddi_load_drvconf(i);
632 		(void) ndi_devi_config_driver(ddi_root_node(), ndi_flags, i);
633 		kmem_free(drv_name, MAXNAMELEN);
634 		ddi_rele_driver(i);
635 		rv = i_ddi_devs_attached(i);
636 		modunload_enable();
637 
638 		i_ddi_di_cache_invalidate(KM_SLEEP);
639 
640 		return ((rv == DDI_SUCCESS)? 0 : ENXIO);
641 
642 	case DINFOUSRLD:
643 		/*
644 		 * The case for copying snapshot to userland
645 		 */
646 		if (di_setstate(st, IOC_COPY) == -1)
647 			return (EBUSY);
648 
649 		map_size = ((struct di_all *)di_mem_addr(st, 0))->map_size;
650 		if (map_size == 0) {
651 			(void) di_setstate(st, IOC_DONE);
652 			return (EFAULT);
653 		}
654 
655 		/*
656 		 * copyout the snapshot
657 		 */
658 		map_size = (map_size + PAGEOFFSET) & PAGEMASK;
659 
660 		/*
661 		 * Return the map size, so caller may do a sanity
662 		 * check against the return value of snapshot ioctl()
663 		 */
664 		*rvalp = (int)map_size;
665 
666 		/*
667 		 * Copy one chunk at a time
668 		 */
669 		off = 0;
670 		dcp = st->memlist;
671 		while (map_size) {
672 			size = dcp->buf_size;
673 			if (map_size <= size) {
674 				size = map_size;
675 			}
676 
677 			if (ddi_copyout(di_mem_addr(st, off),
678 			    (void *)(arg + off), size, mode) != 0) {
679 				(void) di_setstate(st, IOC_DONE);
680 				return (EFAULT);
681 			}
682 
683 			map_size -= size;
684 			off += size;
685 			dcp = dcp->next;
686 		}
687 
688 		di_freemem(st);
689 		(void) di_setstate(st, IOC_IDLE);
690 		return (0);
691 
692 	default:
693 		if ((cmd & ~DIIOC_MASK) != DIIOC) {
694 			/*
695 			 * Invalid ioctl command
696 			 */
697 			return (ENOTTY);
698 		}
699 		/*
700 		 * take a snapshot
701 		 */
702 		st->command = cmd & DIIOC_MASK;
703 		/*FALLTHROUGH*/
704 	}
705 
706 	/*
707 	 * Obtain enough memory to hold header + rootpath.  We prevent kernel
708 	 * memory exhaustion by freeing any previously allocated snapshot and
709 	 * refusing the operation; otherwise we would be allowing ioctl(),
710 	 * ioctl(), ioctl(), ..., panic.
711 	 */
712 	if (di_setstate(st, IOC_SNAP) == -1)
713 		return (EBUSY);
714 
715 	size = sizeof (struct di_all) +
716 	    sizeof (((struct dinfo_io *)(NULL))->root_path);
717 	if (size < PAGESIZE)
718 		size = PAGESIZE;
719 	di_allocmem(st, size);
720 
721 	all = (struct di_all *)di_mem_addr(st, 0);
722 	all->devcnt = devcnt;
723 	all->command = st->command;
724 	all->version = DI_SNAPSHOT_VERSION;
725 	all->top_vhci_devinfo = 0;	/* filled up by build_vhci_list. */
726 
727 	/*
728 	 * Note the endianness in case we need to transport snapshot
729 	 * over the network.
730 	 */
731 #if defined(_LITTLE_ENDIAN)
732 	all->endianness = DI_LITTLE_ENDIAN;
733 #else
734 	all->endianness = DI_BIG_ENDIAN;
735 #endif
736 
737 	/* Copyin ioctl args, store in the snapshot. */
738 	if (copyinstr((void *)arg, all->root_path,
739 	    sizeof (((struct dinfo_io *)(NULL))->root_path), &size) != 0) {
740 		di_freemem(st);
741 		(void) di_setstate(st, IOC_IDLE);
742 		return (EFAULT);
743 	}
744 
745 	if ((st->command & DINFOCLEANUP) && !DEVICES_FILES_CLEANABLE(st)) {
746 		di_freemem(st);
747 		(void) di_setstate(st, IOC_IDLE);
748 		return (EINVAL);
749 	}
750 
751 	error = 0;
752 	if ((st->command & DINFOCACHE) && !cache_args_valid(st, &error)) {
753 		di_freemem(st);
754 		(void) di_setstate(st, IOC_IDLE);
755 		return (error);
756 	}
757 
758 	off = DI_ALIGN(sizeof (struct di_all) + size);
759 
760 	/*
761 	 * Only the fully enabled version may force load drivers or read
762 	 * the parent private data from a driver.
763 	 */
764 	if ((st->command & (DINFOPRIVDATA | DINFOFORCE)) != 0 &&
765 	    DI_UNPRIVILEGED_NODE(m)) {
766 		di_freemem(st);
767 		(void) di_setstate(st, IOC_IDLE);
768 		return (EACCES);
769 	}
770 
771 	/* Do we need private data? */
772 	if (st->command & DINFOPRIVDATA) {
773 		arg += sizeof (((struct dinfo_io *)(NULL))->root_path);
774 
775 #ifdef _MULTI_DATAMODEL
776 		switch (ddi_model_convert_from(mode & FMODELS)) {
777 		case DDI_MODEL_ILP32: {
778 			/*
779 			 * Cannot copy private data from 64-bit kernel
780 			 * to 32-bit app
781 			 */
782 			di_freemem(st);
783 			(void) di_setstate(st, IOC_IDLE);
784 			return (EINVAL);
785 		}
786 		case DDI_MODEL_NONE:
787 			if ((off = di_copyformat(off, st, arg, mode)) == 0) {
788 				di_freemem(st);
789 				(void) di_setstate(st, IOC_IDLE);
790 				return (EFAULT);
791 			}
792 			break;
793 		}
794 #else /* !_MULTI_DATAMODEL */
795 		if ((off = di_copyformat(off, st, arg, mode)) == 0) {
796 			di_freemem(st);
797 			(void) di_setstate(st, IOC_IDLE);
798 			return (EFAULT);
799 		}
800 #endif /* _MULTI_DATAMODEL */
801 	}
802 
803 	all->top_devinfo = DI_ALIGN(off);
804 
805 	/*
806 	 * For cache lookups we reallocate memory from scratch,
807 	 * so the value of "all" is no longer valid.
808 	 */
809 	all = NULL;
810 
811 	if (st->command & DINFOCACHE) {
812 		*rvalp = di_cache_lookup(st);
813 	} else if (snapshot_is_cacheable(st)) {
814 		DI_CACHE_LOCK(di_cache);
815 		*rvalp = di_cache_update(st);
816 		DI_CACHE_UNLOCK(di_cache);
817 	} else
818 		*rvalp = di_snapshot_and_clean(st);
819 
820 	if (*rvalp) {
821 		DI_ALL_PTR(st)->map_size = *rvalp;
822 		(void) di_setstate(st, IOC_DONE);
823 	} else {
824 		di_freemem(st);
825 		(void) di_setstate(st, IOC_IDLE);
826 	}
827 
828 	return (0);
829 }
830 
831 /*
832  * Get a chunk of memory >= size, for the snapshot
833  */
834 static void
835 di_allocmem(struct di_state *st, size_t size)
836 {
837 	struct di_mem *mem = kmem_zalloc(sizeof (struct di_mem),
838 	    KM_SLEEP);
839 	/*
840 	 * Round up size to nearest power of 2. If it is less
841 	 * than st->mem_size, set it to st->mem_size (i.e.,
842 	 * the mem_size is doubled every time) to reduce the
843 	 * number of memory allocations.
844 	 */
845 	size_t tmp = 1;
846 	while (tmp < size) {
847 		tmp <<= 1;
848 	}
849 	size = (tmp > st->mem_size) ? tmp : st->mem_size;
850 
851 	mem->buf = ddi_umem_alloc(size, DDI_UMEM_SLEEP, &mem->cook);
852 	mem->buf_size = size;
853 
854 	dcmn_err2((CE_CONT, "di_allocmem: mem_size=%x\n", st->mem_size));
855 
856 	if (st->mem_size == 0) {	/* first chunk */
857 		st->memlist = mem;
858 	} else {
859 		/*
860 		 * locate end of linked list and add a chunk at the end
861 		 */
862 		struct di_mem *dcp = st->memlist;
863 		while (dcp->next != NULL) {
864 			dcp = dcp->next;
865 		}
866 
867 		dcp->next = mem;
868 	}
869 
870 	st->mem_size += size;
871 }
872 
873 /*
874  * Copy upto bufsiz bytes of the memlist to buf
875  */
876 static void
877 di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz)
878 {
879 	struct di_mem *dcp;
880 	size_t copysz;
881 
882 	if (st->mem_size == 0) {
883 		ASSERT(st->memlist == NULL);
884 		return;
885 	}
886 
887 	copysz = 0;
888 	for (dcp = st->memlist; dcp; dcp = dcp->next) {
889 
890 		ASSERT(bufsiz > 0);
891 
892 		if (bufsiz <= dcp->buf_size)
893 			copysz = bufsiz;
894 		else
895 			copysz = dcp->buf_size;
896 
897 		bcopy(dcp->buf, buf, copysz);
898 
899 		buf += copysz;
900 		bufsiz -= copysz;
901 
902 		if (bufsiz == 0)
903 			break;
904 	}
905 }
906 
907 /*
908  * Free all memory for the snapshot
909  */
910 static void
911 di_freemem(struct di_state *st)
912 {
913 	struct di_mem *dcp, *tmp;
914 
915 	dcmn_err2((CE_CONT, "di_freemem\n"));
916 
917 	if (st->mem_size) {
918 		dcp = st->memlist;
919 		while (dcp) {	/* traverse the linked list */
920 			tmp = dcp;
921 			dcp = dcp->next;
922 			ddi_umem_free(tmp->cook);
923 			kmem_free(tmp, sizeof (struct di_mem));
924 		}
925 		st->mem_size = 0;
926 		st->memlist = NULL;
927 	}
928 
929 	ASSERT(st->mem_size == 0);
930 	ASSERT(st->memlist == NULL);
931 }
932 
933 /*
934  * Copies cached data to the di_state structure.
935  * Returns:
936  *	- size of data copied, on SUCCESS
937  *	- 0 on failure
938  */
939 static int
940 di_cache2mem(struct di_cache *cache, struct di_state *st)
941 {
942 	caddr_t	pa;
943 
944 	ASSERT(st->mem_size == 0);
945 	ASSERT(st->memlist == NULL);
946 	ASSERT(!servicing_interrupt());
947 	ASSERT(DI_CACHE_LOCKED(*cache));
948 
949 	if (cache->cache_size == 0) {
950 		ASSERT(cache->cache_data == NULL);
951 		CACHE_DEBUG((DI_ERR, "Empty cache. Skipping copy"));
952 		return (0);
953 	}
954 
955 	ASSERT(cache->cache_data);
956 
957 	di_allocmem(st, cache->cache_size);
958 
959 	pa = di_mem_addr(st, 0);
960 
961 	ASSERT(pa);
962 
963 	/*
964 	 * Verify that di_allocmem() allocates contiguous memory,
965 	 * so that it is safe to do straight bcopy()
966 	 */
967 	ASSERT(st->memlist != NULL);
968 	ASSERT(st->memlist->next == NULL);
969 	bcopy(cache->cache_data, pa, cache->cache_size);
970 
971 	return (cache->cache_size);
972 }
973 
974 /*
975  * Copies a snapshot from di_state to the cache
976  * Returns:
977  *	- 0 on failure
978  *	- size of copied data on success
979  */
980 static int
981 di_mem2cache(struct di_state *st, struct di_cache *cache)
982 {
983 	size_t map_size;
984 
985 	ASSERT(cache->cache_size == 0);
986 	ASSERT(cache->cache_data == NULL);
987 	ASSERT(!servicing_interrupt());
988 	ASSERT(DI_CACHE_LOCKED(*cache));
989 
990 	if (st->mem_size == 0) {
991 		ASSERT(st->memlist == NULL);
992 		CACHE_DEBUG((DI_ERR, "Empty memlist. Skipping copy"));
993 		return (0);
994 	}
995 
996 	ASSERT(st->memlist);
997 
998 	/*
999 	 * The size of the memory list may be much larger than the
1000 	 * size of valid data (map_size). Cache only the valid data
1001 	 */
1002 	map_size = DI_ALL_PTR(st)->map_size;
1003 	if (map_size == 0 || map_size < sizeof (struct di_all) ||
1004 	    map_size > st->mem_size) {
1005 		CACHE_DEBUG((DI_ERR, "cannot cache: bad size: 0x%x", map_size));
1006 		return (0);
1007 	}
1008 
1009 	cache->cache_data = kmem_alloc(map_size, KM_SLEEP);
1010 	cache->cache_size = map_size;
1011 	di_copymem(st, cache->cache_data, cache->cache_size);
1012 
1013 	return (map_size);
1014 }
1015 
1016 /*
1017  * Make sure there is at least "size" bytes memory left before
1018  * going on. Otherwise, start on a new chunk.
1019  */
1020 static di_off_t
1021 di_checkmem(struct di_state *st, di_off_t off, size_t size)
1022 {
1023 	dcmn_err3((CE_CONT, "di_checkmem: off=%x size=%x\n",
1024 			off, (int)size));
1025 
1026 	/*
1027 	 * di_checkmem() shouldn't be called with a size of zero.
1028 	 * But in case it is, we want to make sure we return a valid
1029 	 * offset within the memlist and not an offset that points us
1030 	 * at the end of the memlist.
1031 	 */
1032 	if (size == 0) {
1033 		dcmn_err((CE_WARN, "di_checkmem: invalid zero size used"));
1034 		size = 1;
1035 	}
1036 
1037 	off = DI_ALIGN(off);
1038 	if ((st->mem_size - off) < size) {
1039 		off = st->mem_size;
1040 		di_allocmem(st, size);
1041 	}
1042 
1043 	return (off);
1044 }
1045 
1046 /*
1047  * Copy the private data format from ioctl arg.
1048  * On success, the ending offset is returned. On error 0 is returned.
1049  */
1050 static di_off_t
1051 di_copyformat(di_off_t off, struct di_state *st, intptr_t arg, int mode)
1052 {
1053 	di_off_t size;
1054 	struct di_priv_data *priv;
1055 	struct di_all *all = (struct di_all *)di_mem_addr(st, 0);
1056 
1057 	dcmn_err2((CE_CONT, "di_copyformat: off=%x, arg=%p mode=%x\n",
1058 		off, (void *)arg, mode));
1059 
1060 	/*
1061 	 * Copyin data and check version.
1062 	 * We only handle private data version 0.
1063 	 */
1064 	priv = kmem_alloc(sizeof (struct di_priv_data), KM_SLEEP);
1065 	if ((ddi_copyin((void *)arg, priv, sizeof (struct di_priv_data),
1066 	    mode) != 0) || (priv->version != DI_PRIVDATA_VERSION_0)) {
1067 		kmem_free(priv, sizeof (struct di_priv_data));
1068 		return (0);
1069 	}
1070 
1071 	/*
1072 	 * Save di_priv_data copied from userland in snapshot.
1073 	 */
1074 	all->pd_version = priv->version;
1075 	all->n_ppdata = priv->n_parent;
1076 	all->n_dpdata = priv->n_driver;
1077 
1078 	/*
1079 	 * copyin private data format, modify offset accordingly
1080 	 */
1081 	if (all->n_ppdata) {	/* parent private data format */
1082 		/*
1083 		 * check memory
1084 		 */
1085 		size = all->n_ppdata * sizeof (struct di_priv_format);
1086 		off = di_checkmem(st, off, size);
1087 		all->ppdata_format = off;
1088 		if (ddi_copyin(priv->parent, di_mem_addr(st, off), size,
1089 		    mode) != 0) {
1090 			kmem_free(priv, sizeof (struct di_priv_data));
1091 			return (0);
1092 		}
1093 
1094 		off += size;
1095 	}
1096 
1097 	if (all->n_dpdata) {	/* driver private data format */
1098 		/*
1099 		 * check memory
1100 		 */
1101 		size = all->n_dpdata * sizeof (struct di_priv_format);
1102 		off = di_checkmem(st, off, size);
1103 		all->dpdata_format = off;
1104 		if (ddi_copyin(priv->driver, di_mem_addr(st, off), size,
1105 		    mode) != 0) {
1106 			kmem_free(priv, sizeof (struct di_priv_data));
1107 			return (0);
1108 		}
1109 
1110 		off += size;
1111 	}
1112 
1113 	kmem_free(priv, sizeof (struct di_priv_data));
1114 	return (off);
1115 }
1116 
1117 /*
1118  * Return the real address based on the offset (off) within snapshot
1119  */
1120 static caddr_t
1121 di_mem_addr(struct di_state *st, di_off_t off)
1122 {
1123 	struct di_mem *dcp = st->memlist;
1124 
1125 	dcmn_err3((CE_CONT, "di_mem_addr: dcp=%p off=%x\n",
1126 		(void *)dcp, off));
1127 
1128 	ASSERT(off < st->mem_size);
1129 
1130 	while (off >= dcp->buf_size) {
1131 		off -= dcp->buf_size;
1132 		dcp = dcp->next;
1133 	}
1134 
1135 	dcmn_err3((CE_CONT, "di_mem_addr: new off=%x, return = %p\n",
1136 		off, (void *)(dcp->buf + off)));
1137 
1138 	return (dcp->buf + off);
1139 }
1140 
1141 /*
1142  * Ideally we would use the whole key to derive the hash
1143  * value. However, the probability that two keys will
1144  * have the same dip (or pip) is very low, so
1145  * hashing by dip (or pip) pointer should suffice.
1146  */
1147 static uint_t
1148 di_hash_byptr(void *arg, mod_hash_key_t key)
1149 {
1150 	struct di_key *dik = key;
1151 	size_t rshift;
1152 	void *ptr;
1153 
1154 	ASSERT(arg == NULL);
1155 
1156 	switch (dik->k_type) {
1157 	case DI_DKEY:
1158 		ptr = dik->k_u.dkey.dk_dip;
1159 		rshift = highbit(sizeof (struct dev_info));
1160 		break;
1161 	case DI_PKEY:
1162 		ptr = dik->k_u.pkey.pk_pip;
1163 		rshift = highbit(sizeof (struct mdi_pathinfo));
1164 		break;
1165 	default:
1166 		panic("devinfo: unknown key type");
1167 		/*NOTREACHED*/
1168 	}
1169 	return (mod_hash_byptr((void *)rshift, ptr));
1170 }
1171 
1172 static void
1173 di_key_dtor(mod_hash_key_t key)
1174 {
1175 	char		*path_addr;
1176 	struct di_key	*dik = key;
1177 
1178 	switch (dik->k_type) {
1179 	case DI_DKEY:
1180 		break;
1181 	case DI_PKEY:
1182 		path_addr = dik->k_u.pkey.pk_path_addr;
1183 		if (path_addr)
1184 			kmem_free(path_addr, strlen(path_addr) + 1);
1185 		break;
1186 	default:
1187 		panic("devinfo: unknown key type");
1188 		/*NOTREACHED*/
1189 	}
1190 
1191 	kmem_free(dik, sizeof (struct di_key));
1192 }
1193 
1194 static int
1195 di_dkey_cmp(struct di_dkey *dk1, struct di_dkey *dk2)
1196 {
1197 	if (dk1->dk_dip !=  dk2->dk_dip)
1198 		return (dk1->dk_dip > dk2->dk_dip ? 1 : -1);
1199 
1200 	if (dk1->dk_major != -1 && dk2->dk_major != -1) {
1201 		if (dk1->dk_major !=  dk2->dk_major)
1202 			return (dk1->dk_major > dk2->dk_major ? 1 : -1);
1203 
1204 		if (dk1->dk_inst !=  dk2->dk_inst)
1205 			return (dk1->dk_inst > dk2->dk_inst ? 1 : -1);
1206 	}
1207 
1208 	if (dk1->dk_nodeid != dk2->dk_nodeid)
1209 		return (dk1->dk_nodeid > dk2->dk_nodeid ? 1 : -1);
1210 
1211 	return (0);
1212 }
1213 
1214 static int
1215 di_pkey_cmp(struct di_pkey *pk1, struct di_pkey *pk2)
1216 {
1217 	char *p1, *p2;
1218 	int rv;
1219 
1220 	if (pk1->pk_pip !=  pk2->pk_pip)
1221 		return (pk1->pk_pip > pk2->pk_pip ? 1 : -1);
1222 
1223 	p1 = pk1->pk_path_addr;
1224 	p2 = pk2->pk_path_addr;
1225 
1226 	p1 = p1 ? p1 : "";
1227 	p2 = p2 ? p2 : "";
1228 
1229 	rv = strcmp(p1, p2);
1230 	if (rv)
1231 		return (rv > 0  ? 1 : -1);
1232 
1233 	if (pk1->pk_client !=  pk2->pk_client)
1234 		return (pk1->pk_client > pk2->pk_client ? 1 : -1);
1235 
1236 	if (pk1->pk_phci !=  pk2->pk_phci)
1237 		return (pk1->pk_phci > pk2->pk_phci ? 1 : -1);
1238 
1239 	return (0);
1240 }
1241 
1242 static int
1243 di_key_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
1244 {
1245 	struct di_key *dik1, *dik2;
1246 
1247 	dik1 = key1;
1248 	dik2 = key2;
1249 
1250 	if (dik1->k_type != dik2->k_type) {
1251 		panic("devinfo: mismatched keys");
1252 		/*NOTREACHED*/
1253 	}
1254 
1255 	switch (dik1->k_type) {
1256 	case DI_DKEY:
1257 		return (di_dkey_cmp(&(dik1->k_u.dkey), &(dik2->k_u.dkey)));
1258 	case DI_PKEY:
1259 		return (di_pkey_cmp(&(dik1->k_u.pkey), &(dik2->k_u.pkey)));
1260 	default:
1261 		panic("devinfo: unknown key type");
1262 		/*NOTREACHED*/
1263 	}
1264 }
1265 
1266 /*
1267  * This is the main function that takes a snapshot
1268  */
1269 static di_off_t
1270 di_snapshot(struct di_state *st)
1271 {
1272 	di_off_t off;
1273 	struct di_all *all;
1274 	dev_info_t *rootnode;
1275 	char buf[80];
1276 	int plen;
1277 	char *path;
1278 	vnode_t *vp;
1279 
1280 	all = (struct di_all *)di_mem_addr(st, 0);
1281 	dcmn_err((CE_CONT, "Taking a snapshot of devinfo tree...\n"));
1282 
1283 	/*
1284 	 * Verify path before entrusting it to e_ddi_hold_devi_by_path because
1285 	 * some platforms have OBP bugs where executing the NDI_PROMNAME code
1286 	 * path against an invalid path results in panic.  The lookupnameat
1287 	 * is done relative to rootdir without a leading '/' on "devices/"
1288 	 * to force the lookup to occur in the global zone.
1289 	 */
1290 	plen = strlen("devices/") + strlen(all->root_path) + 1;
1291 	path = kmem_alloc(plen, KM_SLEEP);
1292 	(void) snprintf(path, plen, "devices/%s", all->root_path);
1293 	if (lookupnameat(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp, rootdir)) {
1294 		dcmn_err((CE_CONT, "Devinfo node %s not found\n",
1295 		    all->root_path));
1296 		kmem_free(path, plen);
1297 		return (0);
1298 	}
1299 	kmem_free(path, plen);
1300 	VN_RELE(vp);
1301 
1302 	/*
1303 	 * Hold the devinfo node referred by the path.
1304 	 */
1305 	rootnode = e_ddi_hold_devi_by_path(all->root_path, 0);
1306 	if (rootnode == NULL) {
1307 		dcmn_err((CE_CONT, "Devinfo node %s not found\n",
1308 		    all->root_path));
1309 		return (0);
1310 	}
1311 
1312 	(void) snprintf(buf, sizeof (buf),
1313 	    "devinfo registered dips (statep=%p)", (void *)st);
1314 
1315 	st->reg_dip_hash = mod_hash_create_extended(buf, 64,
1316 	    di_key_dtor, mod_hash_null_valdtor, di_hash_byptr,
1317 	    NULL, di_key_cmp, KM_SLEEP);
1318 
1319 
1320 	(void) snprintf(buf, sizeof (buf),
1321 	    "devinfo registered pips (statep=%p)", (void *)st);
1322 
1323 	st->reg_pip_hash = mod_hash_create_extended(buf, 64,
1324 	    di_key_dtor, mod_hash_null_valdtor, di_hash_byptr,
1325 	    NULL, di_key_cmp, KM_SLEEP);
1326 
1327 	/*
1328 	 * copy the device tree
1329 	 */
1330 	off = di_copytree(DEVI(rootnode), &all->top_devinfo, st);
1331 
1332 	if (DINFOPATH & st->command) {
1333 		mdi_walk_vhcis(build_vhci_list, st);
1334 	}
1335 
1336 	ddi_release_devi(rootnode);
1337 
1338 	/*
1339 	 * copy the devnames array
1340 	 */
1341 	all->devnames = off;
1342 	off = di_copydevnm(&all->devnames, st);
1343 
1344 
1345 	/* initialize the hash tables */
1346 	st->lnode_count = 0;
1347 	st->link_count = 0;
1348 
1349 	if (DINFOLYR & st->command) {
1350 		off = di_getlink_data(off, st);
1351 	}
1352 
1353 	/*
1354 	 * Free up hash tables
1355 	 */
1356 	mod_hash_destroy_hash(st->reg_dip_hash);
1357 	mod_hash_destroy_hash(st->reg_pip_hash);
1358 
1359 	/*
1360 	 * Record the timestamp now that we are done with snapshot.
1361 	 *
1362 	 * We compute the checksum later and then only if we cache
1363 	 * the snapshot, since checksumming adds some overhead.
1364 	 * The checksum is checked later if we read the cache file.
1365 	 * from disk.
1366 	 *
1367 	 * Set checksum field to 0 as CRC is calculated with that
1368 	 * field set to 0.
1369 	 */
1370 	all->snapshot_time = ddi_get_time();
1371 	all->cache_checksum = 0;
1372 
1373 	return (off);
1374 }
1375 
1376 /*
1377  * Take a snapshot and clean /etc/devices files if DINFOCLEANUP is set
1378  */
1379 static di_off_t
1380 di_snapshot_and_clean(struct di_state *st)
1381 {
1382 	di_off_t	off;
1383 
1384 	modunload_disable();
1385 	off = di_snapshot(st);
1386 	if (off != 0 && (st->command & DINFOCLEANUP)) {
1387 		ASSERT(DEVICES_FILES_CLEANABLE(st));
1388 		/*
1389 		 * Cleanup /etc/devices files:
1390 		 * In order to accurately account for the system configuration
1391 		 * in /etc/devices files, the appropriate drivers must be
1392 		 * fully configured before the cleanup starts.
1393 		 * So enable modunload only after the cleanup.
1394 		 */
1395 		i_ddi_clean_devices_files();
1396 	}
1397 	modunload_enable();
1398 
1399 	return (off);
1400 }
1401 
1402 /*
1403  * construct vhci linkage in the snapshot.
1404  */
1405 int
1406 build_vhci_list(dev_info_t *vh_devinfo, void *arg)
1407 {
1408 	struct di_all *all;
1409 	struct di_node *me;
1410 	struct di_state *st;
1411 	di_off_t off;
1412 	struct phci_walk_arg pwa;
1413 
1414 	dcmn_err3((CE_CONT, "build_vhci list\n"));
1415 
1416 	dcmn_err3((CE_CONT, "vhci node %s, instance #%d\n",
1417 		DEVI(vh_devinfo)->devi_node_name,
1418 		DEVI(vh_devinfo)->devi_instance));
1419 
1420 	st = (struct di_state *)arg;
1421 	if (di_dip_find(st, vh_devinfo, &off) != 0) {
1422 		dcmn_err((CE_WARN, "di_dip_find error for the given node\n"));
1423 		return (DDI_WALK_TERMINATE);
1424 	}
1425 
1426 	dcmn_err3((CE_CONT, "st->mem_size: %d vh_devinfo off: 0x%x\n",
1427 		st->mem_size, off));
1428 
1429 	all = (struct di_all *)di_mem_addr(st, 0);
1430 	if (all->top_vhci_devinfo == 0) {
1431 		all->top_vhci_devinfo = off;
1432 	} else {
1433 		me = (struct di_node *)di_mem_addr(st, all->top_vhci_devinfo);
1434 
1435 		while (me->next_vhci != 0) {
1436 			me = (struct di_node *)di_mem_addr(st, me->next_vhci);
1437 		}
1438 
1439 		me->next_vhci = off;
1440 	}
1441 
1442 	pwa.off = off;
1443 	pwa.st = st;
1444 	mdi_vhci_walk_phcis(vh_devinfo, build_phci_list, &pwa);
1445 
1446 	return (DDI_WALK_CONTINUE);
1447 }
1448 
1449 /*
1450  * construct phci linkage for the given vhci in the snapshot.
1451  */
1452 int
1453 build_phci_list(dev_info_t *ph_devinfo, void *arg)
1454 {
1455 	struct di_node *vh_di_node;
1456 	struct di_node *me;
1457 	struct phci_walk_arg *pwa;
1458 	di_off_t off;
1459 
1460 	pwa = (struct phci_walk_arg *)arg;
1461 
1462 	dcmn_err3((CE_CONT, "build_phci list for vhci at offset: 0x%x\n",
1463 		pwa->off));
1464 
1465 	vh_di_node = (struct di_node *)di_mem_addr(pwa->st, pwa->off);
1466 
1467 	if (di_dip_find(pwa->st, ph_devinfo, &off) != 0) {
1468 		dcmn_err((CE_WARN, "di_dip_find error for the given node\n"));
1469 		return (DDI_WALK_TERMINATE);
1470 	}
1471 
1472 	dcmn_err3((CE_CONT, "phci node %s, instance #%d, at offset 0x%x\n",
1473 		DEVI(ph_devinfo)->devi_node_name,
1474 		DEVI(ph_devinfo)->devi_instance, off));
1475 
1476 	if (vh_di_node->top_phci == 0) {
1477 		vh_di_node->top_phci = off;
1478 		return (DDI_WALK_CONTINUE);
1479 	}
1480 
1481 	me = (struct di_node *)di_mem_addr(pwa->st, vh_di_node->top_phci);
1482 
1483 	while (me->next_phci != 0) {
1484 		me = (struct di_node *)di_mem_addr(pwa->st, me->next_phci);
1485 	}
1486 	me->next_phci = off;
1487 
1488 	return (DDI_WALK_CONTINUE);
1489 }
1490 
1491 /*
1492  * Assumes all devinfo nodes in device tree have been snapshotted
1493  */
1494 static void
1495 snap_driver_list(struct di_state *st, struct devnames *dnp, di_off_t *poff_p)
1496 {
1497 	struct dev_info *node;
1498 	struct di_node *me;
1499 	di_off_t off;
1500 
1501 	ASSERT(mutex_owned(&dnp->dn_lock));
1502 
1503 	node = DEVI(dnp->dn_head);
1504 	for (; node; node = node->devi_next) {
1505 		if (di_dip_find(st, (dev_info_t *)node, &off) != 0)
1506 			continue;
1507 
1508 		ASSERT(off > 0);
1509 		me = (struct di_node *)di_mem_addr(st, off);
1510 		ASSERT(me->next == 0 || me->next == -1);
1511 		/*
1512 		 * Only nodes which were BOUND when they were
1513 		 * snapshotted will be added to per-driver list.
1514 		 */
1515 		if (me->next != -1)
1516 			continue;
1517 
1518 		*poff_p = off;
1519 		poff_p = &me->next;
1520 	}
1521 
1522 	*poff_p = 0;
1523 }
1524 
1525 /*
1526  * Copy the devnames array, so we have a list of drivers in the snapshot.
1527  * Also makes it possible to locate the per-driver devinfo nodes.
1528  */
1529 static di_off_t
1530 di_copydevnm(di_off_t *off_p, struct di_state *st)
1531 {
1532 	int i;
1533 	di_off_t off;
1534 	size_t size;
1535 	struct di_devnm *dnp;
1536 
1537 	dcmn_err2((CE_CONT, "di_copydevnm: *off_p = %p\n", (void *)off_p));
1538 
1539 	/*
1540 	 * make sure there is some allocated memory
1541 	 */
1542 	size = devcnt * sizeof (struct di_devnm);
1543 	off = di_checkmem(st, *off_p, size);
1544 	*off_p = off;
1545 
1546 	dcmn_err((CE_CONT, "Start copying devnamesp[%d] at offset 0x%x\n",
1547 		devcnt, off));
1548 
1549 	dnp = (struct di_devnm *)di_mem_addr(st, off);
1550 	off += size;
1551 
1552 	for (i = 0; i < devcnt; i++) {
1553 		if (devnamesp[i].dn_name == NULL) {
1554 			continue;
1555 		}
1556 
1557 		/*
1558 		 * dn_name is not freed during driver unload or removal.
1559 		 *
1560 		 * There is a race condition when make_devname() changes
1561 		 * dn_name during our strcpy. This should be rare since
1562 		 * only add_drv does this. At any rate, we never had a
1563 		 * problem with ddi_name_to_major(), which should have
1564 		 * the same problem.
1565 		 */
1566 		dcmn_err2((CE_CONT, "di_copydevnm: %s%d, off=%x\n",
1567 			devnamesp[i].dn_name, devnamesp[i].dn_instance,
1568 			off));
1569 
1570 		off = di_checkmem(st, off, strlen(devnamesp[i].dn_name) + 1);
1571 		dnp[i].name = off;
1572 		(void) strcpy((char *)di_mem_addr(st, off),
1573 			devnamesp[i].dn_name);
1574 		off += DI_ALIGN(strlen(devnamesp[i].dn_name) + 1);
1575 
1576 		mutex_enter(&devnamesp[i].dn_lock);
1577 
1578 		/*
1579 		 * Snapshot per-driver node list
1580 		 */
1581 		snap_driver_list(st, &devnamesp[i], &dnp[i].head);
1582 
1583 		/*
1584 		 * This is not used by libdevinfo, leave it for now
1585 		 */
1586 		dnp[i].flags = devnamesp[i].dn_flags;
1587 		dnp[i].instance = devnamesp[i].dn_instance;
1588 
1589 		/*
1590 		 * get global properties
1591 		 */
1592 		if ((DINFOPROP & st->command) &&
1593 		    devnamesp[i].dn_global_prop_ptr) {
1594 			dnp[i].global_prop = off;
1595 			off = di_getprop(
1596 			    devnamesp[i].dn_global_prop_ptr->prop_list,
1597 			    &dnp[i].global_prop, st, NULL, DI_PROP_GLB_LIST);
1598 		}
1599 
1600 		/*
1601 		 * Bit encode driver ops: & bus_ops, cb_ops, & cb_ops->cb_str
1602 		 */
1603 		if (CB_DRV_INSTALLED(devopsp[i])) {
1604 			if (devopsp[i]->devo_cb_ops) {
1605 				dnp[i].ops |= DI_CB_OPS;
1606 				if (devopsp[i]->devo_cb_ops->cb_str)
1607 					dnp[i].ops |= DI_STREAM_OPS;
1608 			}
1609 			if (NEXUS_DRV(devopsp[i])) {
1610 				dnp[i].ops |= DI_BUS_OPS;
1611 			}
1612 		}
1613 
1614 		mutex_exit(&devnamesp[i].dn_lock);
1615 	}
1616 
1617 	dcmn_err((CE_CONT, "End copying devnamesp at offset 0x%x\n", off));
1618 
1619 	return (off);
1620 }
1621 
1622 /*
1623  * Copy the kernel devinfo tree. The tree and the devnames array forms
1624  * the entire snapshot (see also di_copydevnm).
1625  */
1626 static di_off_t
1627 di_copytree(struct dev_info *root, di_off_t *off_p, struct di_state *st)
1628 {
1629 	di_off_t off;
1630 	struct di_stack *dsp = kmem_zalloc(sizeof (struct di_stack), KM_SLEEP);
1631 
1632 	dcmn_err((CE_CONT, "di_copytree: root = %p, *off_p = %x\n",
1633 		(void *)root, *off_p));
1634 
1635 	/* force attach drivers */
1636 	if ((i_ddi_node_state((dev_info_t *)root) == DS_READY) &&
1637 	    (st->command & DINFOSUBTREE) && (st->command & DINFOFORCE)) {
1638 		(void) ndi_devi_config((dev_info_t *)root,
1639 		    NDI_CONFIG | NDI_DEVI_PERSIST | NDI_NO_EVENT |
1640 		    NDI_DRV_CONF_REPROBE);
1641 	}
1642 
1643 	/*
1644 	 * Push top_devinfo onto a stack
1645 	 *
1646 	 * The stack is necessary to avoid recursion, which can overrun
1647 	 * the kernel stack.
1648 	 */
1649 	PUSH_STACK(dsp, root, off_p);
1650 
1651 	/*
1652 	 * As long as there is a node on the stack, copy the node.
1653 	 * di_copynode() is responsible for pushing and popping
1654 	 * child and sibling nodes on the stack.
1655 	 */
1656 	while (!EMPTY_STACK(dsp)) {
1657 		off = di_copynode(dsp, st);
1658 	}
1659 
1660 	/*
1661 	 * Free the stack structure
1662 	 */
1663 	kmem_free(dsp, sizeof (struct di_stack));
1664 
1665 	return (off);
1666 }
1667 
1668 /*
1669  * This is the core function, which copies all data associated with a single
1670  * node into the snapshot. The amount of information is determined by the
1671  * ioctl command.
1672  */
1673 static di_off_t
1674 di_copynode(struct di_stack *dsp, struct di_state *st)
1675 {
1676 	di_off_t off;
1677 	struct di_node *me;
1678 	struct dev_info *node;
1679 
1680 	dcmn_err2((CE_CONT, "di_copynode: depth = %x\n",
1681 			dsp->depth));
1682 
1683 	node = TOP_NODE(dsp);
1684 
1685 	ASSERT(node != NULL);
1686 
1687 	/*
1688 	 * check memory usage, and fix offsets accordingly.
1689 	 */
1690 	off = di_checkmem(st, *(TOP_OFFSET(dsp)), sizeof (struct di_node));
1691 	*(TOP_OFFSET(dsp)) = off;
1692 	me = DI_NODE(di_mem_addr(st, off));
1693 
1694 	dcmn_err((CE_CONT, "copy node %s, instance #%d, at offset 0x%x\n",
1695 			node->devi_node_name, node->devi_instance, off));
1696 
1697 	/*
1698 	 * Node parameters:
1699 	 * self		-- offset of current node within snapshot
1700 	 * nodeid	-- pointer to PROM node (tri-valued)
1701 	 * state	-- hot plugging device state
1702 	 * node_state	-- devinfo node state (CF1, CF2, etc.)
1703 	 */
1704 	me->self = off;
1705 	me->instance = node->devi_instance;
1706 	me->nodeid = node->devi_nodeid;
1707 	me->node_class = node->devi_node_class;
1708 	me->attributes = node->devi_node_attributes;
1709 	me->state = node->devi_state;
1710 	me->node_state = node->devi_node_state;
1711 	me->next_vhci = 0;		/* Filled up by build_vhci_list. */
1712 	me->top_phci = 0;		/* Filled up by build_phci_list. */
1713 	me->next_phci = 0;		/* Filled up by build_phci_list. */
1714 	me->multipath_component = MULTIPATH_COMPONENT_NONE; /* set default. */
1715 	me->user_private_data = NULL;
1716 
1717 	/*
1718 	 * Get parent's offset in snapshot from the stack
1719 	 * and store it in the current node
1720 	 */
1721 	if (dsp->depth > 1) {
1722 		me->parent = *(PARENT_OFFSET(dsp));
1723 	}
1724 
1725 	/*
1726 	 * Save the offset of this di_node in a hash table.
1727 	 * This is used later to resolve references to this
1728 	 * dip from other parts of the tree (per-driver list,
1729 	 * multipathing linkages, layered usage linkages).
1730 	 * The key used for the hash table is derived from
1731 	 * information in the dip.
1732 	 */
1733 	di_register_dip(st, (dev_info_t *)node, me->self);
1734 
1735 	/*
1736 	 * increment offset
1737 	 */
1738 	off += sizeof (struct di_node);
1739 
1740 #ifdef	DEVID_COMPATIBILITY
1741 	/* check for devid as property marker */
1742 	if (node->devi_devid) {
1743 		ddi_devid_t	devid;
1744 		char 		*devidstr;
1745 		int		devid_size;
1746 
1747 		/*
1748 		 * The devid is now represented as a property.
1749 		 * For micro release compatibility with di_devid interface
1750 		 * in libdevinfo we must return it as a binary structure in'
1751 		 * the snapshot.  When di_devid is removed from libdevinfo
1752 		 * in a future release (and devi_devid is deleted) then
1753 		 * code related to DEVID_COMPATIBILITY can be removed.
1754 		 */
1755 		ASSERT(node->devi_devid == DEVID_COMPATIBILITY);
1756 /* XXX should be DDI_DEV_T_NONE! */
1757 		if (ddi_prop_lookup_string(DDI_DEV_T_ANY, (dev_info_t *)node,
1758 		    DDI_PROP_DONTPASS, DEVID_PROP_NAME, &devidstr) ==
1759 		    DDI_PROP_SUCCESS) {
1760 			if (ddi_devid_str_decode(devidstr, &devid, NULL) ==
1761 			    DDI_SUCCESS) {
1762 				devid_size = ddi_devid_sizeof(devid);
1763 				off = di_checkmem(st, off, devid_size);
1764 				me->devid = off;
1765 				bcopy(devid,
1766 				    di_mem_addr(st, off), devid_size);
1767 				off += devid_size;
1768 				ddi_devid_free(devid);
1769 			}
1770 			ddi_prop_free(devidstr);
1771 		}
1772 	}
1773 #endif	/* DEVID_COMPATIBILITY */
1774 
1775 	if (node->devi_node_name) {
1776 		off = di_checkmem(st, off, strlen(node->devi_node_name) + 1);
1777 		me->node_name = off;
1778 		(void) strcpy(di_mem_addr(st, off), node->devi_node_name);
1779 		off += strlen(node->devi_node_name) + 1;
1780 	}
1781 
1782 	if (node->devi_compat_names && (node->devi_compat_length > 1)) {
1783 		off = di_checkmem(st, off, node->devi_compat_length);
1784 		me->compat_names = off;
1785 		me->compat_length = node->devi_compat_length;
1786 		bcopy(node->devi_compat_names, di_mem_addr(st, off),
1787 			node->devi_compat_length);
1788 		off += node->devi_compat_length;
1789 	}
1790 
1791 	if (node->devi_addr) {
1792 		off = di_checkmem(st, off, strlen(node->devi_addr) + 1);
1793 		me->address = off;
1794 		(void) strcpy(di_mem_addr(st, off), node->devi_addr);
1795 		off += strlen(node->devi_addr) + 1;
1796 	}
1797 
1798 	if (node->devi_binding_name) {
1799 		off = di_checkmem(st, off, strlen(node->devi_binding_name) + 1);
1800 		me->bind_name = off;
1801 		(void) strcpy(di_mem_addr(st, off), node->devi_binding_name);
1802 		off += strlen(node->devi_binding_name) + 1;
1803 	}
1804 
1805 	me->drv_major = node->devi_major;
1806 
1807 	/*
1808 	 * If the dip is BOUND, set the next pointer of the
1809 	 * per-instance list to -1, indicating that it is yet to be resolved.
1810 	 * This will be resolved later in snap_driver_list().
1811 	 */
1812 	if (me->drv_major != -1) {
1813 		me->next = -1;
1814 	} else {
1815 		me->next = 0;
1816 	}
1817 
1818 	/*
1819 	 * An optimization to skip mutex_enter when not needed.
1820 	 */
1821 	if (!((DINFOMINOR | DINFOPROP | DINFOPATH) & st->command)) {
1822 		goto priv_data;
1823 	}
1824 
1825 	/*
1826 	 * Grab current per dev_info node lock to
1827 	 * get minor data and properties.
1828 	 */
1829 	mutex_enter(&(node->devi_lock));
1830 
1831 	if (!(DINFOMINOR & st->command)) {
1832 		goto path;
1833 	}
1834 
1835 	if (node->devi_minor) {		/* minor data */
1836 		me->minor_data = DI_ALIGN(off);
1837 		off = di_getmdata(node->devi_minor, &me->minor_data,
1838 		    me->self, st);
1839 	}
1840 
1841 path:
1842 	if (!(DINFOPATH & st->command)) {
1843 		goto property;
1844 	}
1845 
1846 	if (MDI_VHCI(node)) {
1847 		me->multipath_component = MULTIPATH_COMPONENT_VHCI;
1848 	}
1849 
1850 	if (MDI_CLIENT(node)) {
1851 		me->multipath_component = MULTIPATH_COMPONENT_CLIENT;
1852 		me->multipath_client = DI_ALIGN(off);
1853 		off = di_getpath_data((dev_info_t *)node, &me->multipath_client,
1854 		    me->self, st, 1);
1855 		dcmn_err((CE_WARN, "me->multipath_client = %x for node %p "
1856 		    "component type = %d.  off=%d",
1857 		    me->multipath_client,
1858 		    (void *)node, node->devi_mdi_component, off));
1859 	}
1860 
1861 	if (MDI_PHCI(node)) {
1862 		me->multipath_component = MULTIPATH_COMPONENT_PHCI;
1863 		me->multipath_phci = DI_ALIGN(off);
1864 		off = di_getpath_data((dev_info_t *)node, &me->multipath_phci,
1865 		    me->self, st, 0);
1866 		dcmn_err((CE_WARN, "me->multipath_phci = %x for node %p "
1867 		    "component type = %d.  off=%d",
1868 		    me->multipath_phci,
1869 		    (void *)node, node->devi_mdi_component, off));
1870 	}
1871 
1872 property:
1873 	if (!(DINFOPROP & st->command)) {
1874 		goto unlock;
1875 	}
1876 
1877 	if (node->devi_drv_prop_ptr) {	/* driver property list */
1878 		me->drv_prop = DI_ALIGN(off);
1879 		off = di_getprop(node->devi_drv_prop_ptr, &me->drv_prop, st,
1880 			node, DI_PROP_DRV_LIST);
1881 	}
1882 
1883 	if (node->devi_sys_prop_ptr) {	/* system property list */
1884 		me->sys_prop = DI_ALIGN(off);
1885 		off = di_getprop(node->devi_sys_prop_ptr, &me->sys_prop, st,
1886 			node, DI_PROP_SYS_LIST);
1887 	}
1888 
1889 	if (node->devi_hw_prop_ptr) {	/* hardware property list */
1890 		me->hw_prop = DI_ALIGN(off);
1891 		off = di_getprop(node->devi_hw_prop_ptr, &me->hw_prop, st,
1892 			node, DI_PROP_HW_LIST);
1893 	}
1894 
1895 	if (node->devi_global_prop_list == NULL) {
1896 		me->glob_prop = (di_off_t)-1;	/* not global property */
1897 	} else {
1898 		/*
1899 		 * Make copy of global property list if this devinfo refers
1900 		 * global properties different from what's on the devnames
1901 		 * array. It can happen if there has been a forced
1902 		 * driver.conf update. See mod_drv(1M).
1903 		 */
1904 		ASSERT(me->drv_major != -1);
1905 		if (node->devi_global_prop_list !=
1906 		    devnamesp[me->drv_major].dn_global_prop_ptr) {
1907 			me->glob_prop = DI_ALIGN(off);
1908 			off = di_getprop(node->devi_global_prop_list->prop_list,
1909 			    &me->glob_prop, st, node, DI_PROP_GLB_LIST);
1910 		}
1911 	}
1912 
1913 unlock:
1914 	/*
1915 	 * release current per dev_info node lock
1916 	 */
1917 	mutex_exit(&(node->devi_lock));
1918 
1919 priv_data:
1920 	if (!(DINFOPRIVDATA & st->command)) {
1921 		goto pm_info;
1922 	}
1923 
1924 	if (ddi_get_parent_data((dev_info_t *)node) != NULL) {
1925 		me->parent_data = DI_ALIGN(off);
1926 		off = di_getppdata(node, &me->parent_data, st);
1927 	}
1928 
1929 	if (ddi_get_driver_private((dev_info_t *)node) != NULL) {
1930 		me->driver_data = DI_ALIGN(off);
1931 		off = di_getdpdata(node, &me->driver_data, st);
1932 	}
1933 
1934 pm_info: /* NOT implemented */
1935 
1936 subtree:
1937 	if (!(DINFOSUBTREE & st->command)) {
1938 		POP_STACK(dsp);
1939 		return (DI_ALIGN(off));
1940 	}
1941 
1942 child:
1943 	/*
1944 	 * If there is a child--push child onto stack.
1945 	 * Hold the parent busy while doing so.
1946 	 */
1947 	if (node->devi_child) {
1948 		me->child = DI_ALIGN(off);
1949 		PUSH_STACK(dsp, node->devi_child, &me->child);
1950 		return (me->child);
1951 	}
1952 
1953 sibling:
1954 	/*
1955 	 * no child node, unroll the stack till a sibling of
1956 	 * a parent node is found or root node is reached
1957 	 */
1958 	POP_STACK(dsp);
1959 	while (!EMPTY_STACK(dsp) && (node->devi_sibling == NULL)) {
1960 		node = TOP_NODE(dsp);
1961 		me = DI_NODE(di_mem_addr(st, *(TOP_OFFSET(dsp))));
1962 		POP_STACK(dsp);
1963 	}
1964 
1965 	if (!EMPTY_STACK(dsp)) {
1966 		/*
1967 		 * a sibling is found, replace top of stack by its sibling
1968 		 */
1969 		me->sibling = DI_ALIGN(off);
1970 		PUSH_STACK(dsp, node->devi_sibling, &me->sibling);
1971 		return (me->sibling);
1972 	}
1973 
1974 	/*
1975 	 * DONE with all nodes
1976 	 */
1977 	return (DI_ALIGN(off));
1978 }
1979 
1980 static i_lnode_t *
1981 i_lnode_alloc(int modid)
1982 {
1983 	i_lnode_t	*i_lnode;
1984 
1985 	i_lnode = kmem_zalloc(sizeof (i_lnode_t), KM_SLEEP);
1986 
1987 	ASSERT(modid != -1);
1988 	i_lnode->modid = modid;
1989 
1990 	return (i_lnode);
1991 }
1992 
1993 static void
1994 i_lnode_free(i_lnode_t *i_lnode)
1995 {
1996 	kmem_free(i_lnode, sizeof (i_lnode_t));
1997 }
1998 
1999 static void
2000 i_lnode_check_free(i_lnode_t *i_lnode)
2001 {
2002 	/* This lnode and its dip must have been snapshotted */
2003 	ASSERT(i_lnode->self > 0);
2004 	ASSERT(i_lnode->di_node->self > 0);
2005 
2006 	/* at least 1 link (in or out) must exist for this lnode */
2007 	ASSERT(i_lnode->link_in || i_lnode->link_out);
2008 
2009 	i_lnode_free(i_lnode);
2010 }
2011 
2012 static i_link_t *
2013 i_link_alloc(int spec_type)
2014 {
2015 	i_link_t *i_link;
2016 
2017 	i_link = kmem_zalloc(sizeof (i_link_t), KM_SLEEP);
2018 	i_link->spec_type = spec_type;
2019 
2020 	return (i_link);
2021 }
2022 
2023 static void
2024 i_link_check_free(i_link_t *i_link)
2025 {
2026 	/* This link must have been snapshotted */
2027 	ASSERT(i_link->self > 0);
2028 
2029 	/* Both endpoint lnodes must exist for this link */
2030 	ASSERT(i_link->src_lnode);
2031 	ASSERT(i_link->tgt_lnode);
2032 
2033 	kmem_free(i_link, sizeof (i_link_t));
2034 }
2035 
2036 /*ARGSUSED*/
2037 static uint_t
2038 i_lnode_hashfunc(void *arg, mod_hash_key_t key)
2039 {
2040 	i_lnode_t	*i_lnode = (i_lnode_t *)key;
2041 	struct di_node	*ptr;
2042 	dev_t		dev;
2043 
2044 	dev = i_lnode->devt;
2045 	if (dev != DDI_DEV_T_NONE)
2046 		return (i_lnode->modid + getminor(dev) + getmajor(dev));
2047 
2048 	ptr = i_lnode->di_node;
2049 	ASSERT(ptr->self > 0);
2050 	if (ptr) {
2051 		uintptr_t k = (uintptr_t)ptr;
2052 		k >>= (int)highbit(sizeof (struct di_node));
2053 		return ((uint_t)k);
2054 	}
2055 
2056 	return (i_lnode->modid);
2057 }
2058 
2059 static int
2060 i_lnode_cmp(void *arg1, void *arg2)
2061 {
2062 	i_lnode_t	*i_lnode1 = (i_lnode_t *)arg1;
2063 	i_lnode_t	*i_lnode2 = (i_lnode_t *)arg2;
2064 
2065 	if (i_lnode1->modid != i_lnode2->modid) {
2066 		return ((i_lnode1->modid < i_lnode2->modid) ? -1 : 1);
2067 	}
2068 
2069 	if (i_lnode1->di_node != i_lnode2->di_node)
2070 		return ((i_lnode1->di_node < i_lnode2->di_node) ? -1 : 1);
2071 
2072 	if (i_lnode1->devt != i_lnode2->devt)
2073 		return ((i_lnode1->devt < i_lnode2->devt) ? -1 : 1);
2074 
2075 	return (0);
2076 }
2077 
2078 /*
2079  * An lnode represents a {dip, dev_t} tuple. A link represents a
2080  * {src_lnode, tgt_lnode, spec_type} tuple.
2081  * The following callback assumes that LDI framework ref-counts the
2082  * src_dip and tgt_dip while invoking this callback.
2083  */
2084 static int
2085 di_ldi_callback(const ldi_usage_t *ldi_usage, void *arg)
2086 {
2087 	struct di_state	*st = (struct di_state *)arg;
2088 	i_lnode_t	*src_lnode, *tgt_lnode, *i_lnode;
2089 	i_link_t	**i_link_next, *i_link;
2090 	di_off_t	soff, toff;
2091 	mod_hash_val_t	nodep = NULL;
2092 	int		res;
2093 
2094 	/*
2095 	 * if the source or target of this device usage information doesn't
2096 	 * corrospond to a device node then we don't report it via
2097 	 * libdevinfo so return.
2098 	 */
2099 	if ((ldi_usage->src_dip == NULL) || (ldi_usage->tgt_dip == NULL))
2100 		return (LDI_USAGE_CONTINUE);
2101 
2102 	ASSERT(e_ddi_devi_holdcnt(ldi_usage->src_dip));
2103 	ASSERT(e_ddi_devi_holdcnt(ldi_usage->tgt_dip));
2104 
2105 	/*
2106 	 * Skip the ldi_usage if either src or tgt dip is not in the
2107 	 * snapshot. This saves us from pruning bad lnodes/links later.
2108 	 */
2109 	if (di_dip_find(st, ldi_usage->src_dip, &soff) != 0)
2110 		return (LDI_USAGE_CONTINUE);
2111 	if (di_dip_find(st, ldi_usage->tgt_dip, &toff) != 0)
2112 		return (LDI_USAGE_CONTINUE);
2113 
2114 	ASSERT(soff > 0);
2115 	ASSERT(toff > 0);
2116 
2117 	/*
2118 	 * allocate an i_lnode and add it to the lnode hash
2119 	 * if it is not already present. For this particular
2120 	 * link the lnode is a source, but it may
2121 	 * participate as tgt or src in any number of layered
2122 	 * operations - so it may already be in the hash.
2123 	 */
2124 	i_lnode = i_lnode_alloc(ldi_usage->src_modid);
2125 	i_lnode->di_node = (struct di_node *)di_mem_addr(st, soff);
2126 	i_lnode->devt = ldi_usage->src_devt;
2127 
2128 	res = mod_hash_find(st->lnode_hash, i_lnode, &nodep);
2129 	if (res == MH_ERR_NOTFOUND) {
2130 		/*
2131 		 * new i_lnode
2132 		 * add it to the hash and increment the lnode count
2133 		 */
2134 		res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode);
2135 		ASSERT(res == 0);
2136 		st->lnode_count++;
2137 		src_lnode = i_lnode;
2138 	} else {
2139 		/* this i_lnode already exists in the lnode_hash */
2140 		i_lnode_free(i_lnode);
2141 		src_lnode = (i_lnode_t *)nodep;
2142 	}
2143 
2144 	/*
2145 	 * allocate a tgt i_lnode and add it to the lnode hash
2146 	 */
2147 	i_lnode = i_lnode_alloc(ldi_usage->tgt_modid);
2148 	i_lnode->di_node = (struct di_node *)di_mem_addr(st, toff);
2149 	i_lnode->devt = ldi_usage->tgt_devt;
2150 
2151 	res = mod_hash_find(st->lnode_hash, i_lnode, &nodep);
2152 	if (res == MH_ERR_NOTFOUND) {
2153 		/*
2154 		 * new i_lnode
2155 		 * add it to the hash and increment the lnode count
2156 		 */
2157 		res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode);
2158 		ASSERT(res == 0);
2159 		st->lnode_count++;
2160 		tgt_lnode = i_lnode;
2161 	} else {
2162 		/* this i_lnode already exists in the lnode_hash */
2163 		i_lnode_free(i_lnode);
2164 		tgt_lnode = (i_lnode_t *)nodep;
2165 	}
2166 
2167 	/*
2168 	 * allocate a i_link
2169 	 */
2170 	i_link = i_link_alloc(ldi_usage->tgt_spec_type);
2171 	i_link->src_lnode = src_lnode;
2172 	i_link->tgt_lnode = tgt_lnode;
2173 
2174 	/*
2175 	 * add this link onto the src i_lnodes outbound i_link list
2176 	 */
2177 	i_link_next = &(src_lnode->link_out);
2178 	while (*i_link_next != NULL) {
2179 		if ((i_lnode_cmp(tgt_lnode, (*i_link_next)->tgt_lnode) == 0) &&
2180 		    (i_link->spec_type == (*i_link_next)->spec_type)) {
2181 			/* this link already exists */
2182 			kmem_free(i_link, sizeof (i_link_t));
2183 			return (LDI_USAGE_CONTINUE);
2184 		}
2185 		i_link_next = &((*i_link_next)->src_link_next);
2186 	}
2187 	*i_link_next = i_link;
2188 
2189 	/*
2190 	 * add this link onto the tgt i_lnodes inbound i_link list
2191 	 */
2192 	i_link_next = &(tgt_lnode->link_in);
2193 	while (*i_link_next != NULL) {
2194 		ASSERT(i_lnode_cmp(src_lnode, (*i_link_next)->src_lnode) != 0);
2195 		i_link_next = &((*i_link_next)->tgt_link_next);
2196 	}
2197 	*i_link_next = i_link;
2198 
2199 	/*
2200 	 * add this i_link to the link hash
2201 	 */
2202 	res = mod_hash_insert(st->link_hash, i_link, i_link);
2203 	ASSERT(res == 0);
2204 	st->link_count++;
2205 
2206 	return (LDI_USAGE_CONTINUE);
2207 }
2208 
2209 struct i_layer_data {
2210 	struct di_state	*st;
2211 	int		lnode_count;
2212 	int		link_count;
2213 	di_off_t	lnode_off;
2214 	di_off_t 	link_off;
2215 };
2216 
2217 /*ARGSUSED*/
2218 static uint_t
2219 i_link_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
2220 {
2221 	i_link_t		*i_link  = (i_link_t *)key;
2222 	struct i_layer_data	*data = arg;
2223 	struct di_link		*me;
2224 	struct di_lnode		*melnode;
2225 	struct di_node		*medinode;
2226 
2227 	ASSERT(i_link->self == 0);
2228 
2229 	i_link->self = data->link_off +
2230 	    (data->link_count * sizeof (struct di_link));
2231 	data->link_count++;
2232 
2233 	ASSERT(data->link_off > 0 && data->link_count > 0);
2234 	ASSERT(data->lnode_count == data->st->lnode_count); /* lnodes done */
2235 	ASSERT(data->link_count <= data->st->link_count);
2236 
2237 	/* fill in fields for the di_link snapshot */
2238 	me = (struct di_link *)di_mem_addr(data->st, i_link->self);
2239 	me->self = i_link->self;
2240 	me->spec_type = i_link->spec_type;
2241 
2242 	/*
2243 	 * The src_lnode and tgt_lnode i_lnode_t for this i_link_t
2244 	 * are created during the LDI table walk. Since we are
2245 	 * walking the link hash, the lnode hash has already been
2246 	 * walked and the lnodes have been snapshotted. Save lnode
2247 	 * offsets.
2248 	 */
2249 	me->src_lnode = i_link->src_lnode->self;
2250 	me->tgt_lnode = i_link->tgt_lnode->self;
2251 
2252 	/*
2253 	 * Save this link's offset in the src_lnode snapshot's link_out
2254 	 * field
2255 	 */
2256 	melnode = (struct di_lnode *)di_mem_addr(data->st, me->src_lnode);
2257 	me->src_link_next = melnode->link_out;
2258 	melnode->link_out = me->self;
2259 
2260 	/*
2261 	 * Put this link on the tgt_lnode's link_in field
2262 	 */
2263 	melnode = (struct di_lnode *)di_mem_addr(data->st, me->tgt_lnode);
2264 	me->tgt_link_next = melnode->link_in;
2265 	melnode->link_in = me->self;
2266 
2267 	/*
2268 	 * An i_lnode_t is only created if the corresponding dip exists
2269 	 * in the snapshot. A pointer to the di_node is saved in the
2270 	 * i_lnode_t when it is allocated. For this link, get the di_node
2271 	 * for the source lnode. Then put the link on the di_node's list
2272 	 * of src links
2273 	 */
2274 	medinode = i_link->src_lnode->di_node;
2275 	me->src_node_next = medinode->src_links;
2276 	medinode->src_links = me->self;
2277 
2278 	/*
2279 	 * Put this link on the tgt_links list of the target
2280 	 * dip.
2281 	 */
2282 	medinode = i_link->tgt_lnode->di_node;
2283 	me->tgt_node_next = medinode->tgt_links;
2284 	medinode->tgt_links = me->self;
2285 
2286 	return (MH_WALK_CONTINUE);
2287 }
2288 
2289 /*ARGSUSED*/
2290 static uint_t
2291 i_lnode_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
2292 {
2293 	i_lnode_t		*i_lnode = (i_lnode_t *)key;
2294 	struct i_layer_data	*data = arg;
2295 	struct di_lnode		*me;
2296 	struct di_node		*medinode;
2297 
2298 	ASSERT(i_lnode->self == 0);
2299 
2300 	i_lnode->self = data->lnode_off +
2301 	    (data->lnode_count * sizeof (struct di_lnode));
2302 	data->lnode_count++;
2303 
2304 	ASSERT(data->lnode_off > 0 && data->lnode_count > 0);
2305 	ASSERT(data->link_count == 0); /* links not done yet */
2306 	ASSERT(data->lnode_count <= data->st->lnode_count);
2307 
2308 	/* fill in fields for the di_lnode snapshot */
2309 	me = (struct di_lnode *)di_mem_addr(data->st, i_lnode->self);
2310 	me->self = i_lnode->self;
2311 
2312 	if (i_lnode->devt == DDI_DEV_T_NONE) {
2313 		me->dev_major = (major_t)-1;
2314 		me->dev_minor = (minor_t)-1;
2315 	} else {
2316 		me->dev_major = getmajor(i_lnode->devt);
2317 		me->dev_minor = getminor(i_lnode->devt);
2318 	}
2319 
2320 	/*
2321 	 * The dip corresponding to this lnode must exist in
2322 	 * the snapshot or we wouldn't have created the i_lnode_t
2323 	 * during LDI walk. Save the offset of the dip.
2324 	 */
2325 	ASSERT(i_lnode->di_node && i_lnode->di_node->self > 0);
2326 	me->node = i_lnode->di_node->self;
2327 
2328 	/*
2329 	 * There must be at least one link in or out of this lnode
2330 	 * or we wouldn't have created it. These fields will be set
2331 	 * during the link hash walk.
2332 	 */
2333 	ASSERT((i_lnode->link_in != NULL) || (i_lnode->link_out != NULL));
2334 
2335 	/*
2336 	 * set the offset of the devinfo node associated with this
2337 	 * lnode. Also update the node_next next pointer.  this pointer
2338 	 * is set if there are multiple lnodes associated with the same
2339 	 * devinfo node.  (could occure when multiple minor nodes
2340 	 * are open for one device, etc.)
2341 	 */
2342 	medinode = i_lnode->di_node;
2343 	me->node_next = medinode->lnodes;
2344 	medinode->lnodes = me->self;
2345 
2346 	return (MH_WALK_CONTINUE);
2347 }
2348 
2349 static di_off_t
2350 di_getlink_data(di_off_t off, struct di_state *st)
2351 {
2352 	struct i_layer_data data = {0};
2353 	size_t size;
2354 
2355 	dcmn_err2((CE_CONT, "di_copylyr: off = %x\n", off));
2356 
2357 	st->lnode_hash = mod_hash_create_extended("di_lnode_hash", 32,
2358 	    mod_hash_null_keydtor, (void (*)(mod_hash_val_t))i_lnode_check_free,
2359 	    i_lnode_hashfunc, NULL, i_lnode_cmp, KM_SLEEP);
2360 
2361 	st->link_hash = mod_hash_create_ptrhash("di_link_hash", 32,
2362 	    (void (*)(mod_hash_val_t))i_link_check_free, sizeof (i_link_t));
2363 
2364 	/* get driver layering information */
2365 	(void) ldi_usage_walker(st, di_ldi_callback);
2366 
2367 	/* check if there is any link data to include in the snapshot */
2368 	if (st->lnode_count == 0) {
2369 		ASSERT(st->link_count == 0);
2370 		goto out;
2371 	}
2372 
2373 	ASSERT(st->link_count != 0);
2374 
2375 	/* get a pointer to snapshot memory for all the di_lnodes */
2376 	size = sizeof (struct di_lnode) * st->lnode_count;
2377 	data.lnode_off = off = di_checkmem(st, off, size);
2378 	off += DI_ALIGN(size);
2379 
2380 	/* get a pointer to snapshot memory for all the di_links */
2381 	size = sizeof (struct di_link) * st->link_count;
2382 	data.link_off = off = di_checkmem(st, off, size);
2383 	off += DI_ALIGN(size);
2384 
2385 	data.lnode_count = data.link_count = 0;
2386 	data.st = st;
2387 
2388 	/*
2389 	 * We have lnodes and links that will go into the
2390 	 * snapshot, so let's walk the respective hashes
2391 	 * and snapshot them. The various linkages are
2392 	 * also set up during the walk.
2393 	 */
2394 	mod_hash_walk(st->lnode_hash, i_lnode_walker, (void *)&data);
2395 	ASSERT(data.lnode_count == st->lnode_count);
2396 
2397 	mod_hash_walk(st->link_hash, i_link_walker, (void *)&data);
2398 	ASSERT(data.link_count == st->link_count);
2399 
2400 out:
2401 	/* free up the i_lnodes and i_links used to create the snapshot */
2402 	mod_hash_destroy_hash(st->lnode_hash);
2403 	mod_hash_destroy_hash(st->link_hash);
2404 	st->lnode_count = 0;
2405 	st->link_count = 0;
2406 
2407 	return (off);
2408 }
2409 
2410 
2411 /*
2412  * Copy all minor data nodes attached to a devinfo node into the snapshot.
2413  * It is called from di_copynode with devi_lock held.
2414  */
2415 static di_off_t
2416 di_getmdata(struct ddi_minor_data *mnode, di_off_t *off_p, di_off_t node,
2417 	struct di_state *st)
2418 {
2419 	di_off_t off;
2420 	struct di_minor *me;
2421 
2422 	dcmn_err2((CE_CONT, "di_getmdata:\n"));
2423 
2424 	/*
2425 	 * check memory first
2426 	 */
2427 	off = di_checkmem(st, *off_p, sizeof (struct di_minor));
2428 	*off_p = off;
2429 
2430 	do {
2431 		me = (struct di_minor *)di_mem_addr(st, off);
2432 		me->self = off;
2433 		me->type = mnode->type;
2434 		me->node = node;
2435 		me->user_private_data = NULL;
2436 
2437 		off += DI_ALIGN(sizeof (struct di_minor));
2438 
2439 		/*
2440 		 * Split dev_t to major/minor, so it works for
2441 		 * both ILP32 and LP64 model
2442 		 */
2443 		me->dev_major = getmajor(mnode->ddm_dev);
2444 		me->dev_minor = getminor(mnode->ddm_dev);
2445 		me->spec_type = mnode->ddm_spec_type;
2446 
2447 		if (mnode->ddm_name) {
2448 			off = di_checkmem(st, off,
2449 				strlen(mnode->ddm_name) + 1);
2450 			me->name = off;
2451 			(void) strcpy(di_mem_addr(st, off), mnode->ddm_name);
2452 			off += DI_ALIGN(strlen(mnode->ddm_name) + 1);
2453 		}
2454 
2455 		if (mnode->ddm_node_type) {
2456 			off = di_checkmem(st, off,
2457 				strlen(mnode->ddm_node_type) + 1);
2458 			me->node_type = off;
2459 			(void) strcpy(di_mem_addr(st, off),
2460 					mnode->ddm_node_type);
2461 			off += DI_ALIGN(strlen(mnode->ddm_node_type) + 1);
2462 		}
2463 
2464 		off = di_checkmem(st, off, sizeof (struct di_minor));
2465 		me->next = off;
2466 		mnode = mnode->next;
2467 	} while (mnode);
2468 
2469 	me->next = 0;
2470 
2471 	return (off);
2472 }
2473 
2474 /*
2475  * di_register_dip(), di_find_dip(): The dip must be protected
2476  * from deallocation when using these routines - this can either
2477  * be a reference count, a busy hold or a per-driver lock.
2478  */
2479 
2480 static void
2481 di_register_dip(struct di_state *st, dev_info_t *dip, di_off_t off)
2482 {
2483 	struct dev_info *node = DEVI(dip);
2484 	struct di_key *key = kmem_zalloc(sizeof (*key), KM_SLEEP);
2485 	struct di_dkey *dk;
2486 
2487 	ASSERT(dip);
2488 	ASSERT(off > 0);
2489 
2490 	key->k_type = DI_DKEY;
2491 	dk = &(key->k_u.dkey);
2492 
2493 	dk->dk_dip = dip;
2494 	dk->dk_major = node->devi_major;
2495 	dk->dk_inst = node->devi_instance;
2496 	dk->dk_nodeid = node->devi_nodeid;
2497 
2498 	if (mod_hash_insert(st->reg_dip_hash, (mod_hash_key_t)key,
2499 	    (mod_hash_val_t)(uintptr_t)off) != 0) {
2500 		panic(
2501 		    "duplicate devinfo (%p) registered during device "
2502 		    "tree walk", (void *)dip);
2503 	}
2504 }
2505 
2506 
2507 static int
2508 di_dip_find(struct di_state *st, dev_info_t *dip, di_off_t *off_p)
2509 {
2510 	/*
2511 	 * uintptr_t must be used because it matches the size of void *;
2512 	 * mod_hash expects clients to place results into pointer-size
2513 	 * containers; since di_off_t is always a 32-bit offset, alignment
2514 	 * would otherwise be broken on 64-bit kernels.
2515 	 */
2516 	uintptr_t	offset;
2517 	struct		di_key key = {0};
2518 	struct		di_dkey *dk;
2519 
2520 	ASSERT(st->reg_dip_hash);
2521 	ASSERT(dip);
2522 	ASSERT(off_p);
2523 
2524 
2525 	key.k_type = DI_DKEY;
2526 	dk = &(key.k_u.dkey);
2527 
2528 	dk->dk_dip = dip;
2529 	dk->dk_major = DEVI(dip)->devi_major;
2530 	dk->dk_inst = DEVI(dip)->devi_instance;
2531 	dk->dk_nodeid = DEVI(dip)->devi_nodeid;
2532 
2533 	if (mod_hash_find(st->reg_dip_hash, (mod_hash_key_t)&key,
2534 	    (mod_hash_val_t *)&offset) == 0) {
2535 		*off_p = (di_off_t)offset;
2536 		return (0);
2537 	} else {
2538 		return (-1);
2539 	}
2540 }
2541 
2542 /*
2543  * di_register_pip(), di_find_pip(): The pip must be protected from deallocation
2544  * when using these routines. The caller must do this by protecting the
2545  * client(or phci)<->pip linkage while traversing the list and then holding the
2546  * pip when it is found in the list.
2547  */
2548 
2549 static void
2550 di_register_pip(struct di_state *st, mdi_pathinfo_t *pip, di_off_t off)
2551 {
2552 	struct di_key	*key = kmem_zalloc(sizeof (*key), KM_SLEEP);
2553 	char		*path_addr;
2554 	struct di_pkey	*pk;
2555 
2556 	ASSERT(pip);
2557 	ASSERT(off > 0);
2558 
2559 	key->k_type = DI_PKEY;
2560 	pk = &(key->k_u.pkey);
2561 
2562 	pk->pk_pip = pip;
2563 	path_addr = mdi_pi_get_addr(pip);
2564 	if (path_addr)
2565 		pk->pk_path_addr = i_ddi_strdup(path_addr, KM_SLEEP);
2566 	pk->pk_client = mdi_pi_get_client(pip);
2567 	pk->pk_phci = mdi_pi_get_phci(pip);
2568 
2569 	if (mod_hash_insert(st->reg_pip_hash, (mod_hash_key_t)key,
2570 	    (mod_hash_val_t)(uintptr_t)off) != 0) {
2571 		panic(
2572 		    "duplicate pathinfo (%p) registered during device "
2573 		    "tree walk", (void *)pip);
2574 	}
2575 }
2576 
2577 /*
2578  * As with di_register_pip, the caller must hold or lock the pip
2579  */
2580 static int
2581 di_pip_find(struct di_state *st, mdi_pathinfo_t *pip, di_off_t *off_p)
2582 {
2583 	/*
2584 	 * uintptr_t must be used because it matches the size of void *;
2585 	 * mod_hash expects clients to place results into pointer-size
2586 	 * containers; since di_off_t is always a 32-bit offset, alignment
2587 	 * would otherwise be broken on 64-bit kernels.
2588 	 */
2589 	uintptr_t	offset;
2590 	struct di_key	key = {0};
2591 	struct di_pkey	*pk;
2592 
2593 	ASSERT(st->reg_pip_hash);
2594 	ASSERT(off_p);
2595 
2596 	if (pip == NULL) {
2597 		*off_p = 0;
2598 		return (0);
2599 	}
2600 
2601 	key.k_type = DI_PKEY;
2602 	pk = &(key.k_u.pkey);
2603 
2604 	pk->pk_pip = pip;
2605 	pk->pk_path_addr = mdi_pi_get_addr(pip);
2606 	pk->pk_client = mdi_pi_get_client(pip);
2607 	pk->pk_phci = mdi_pi_get_phci(pip);
2608 
2609 	if (mod_hash_find(st->reg_pip_hash, (mod_hash_key_t)&key,
2610 	    (mod_hash_val_t *)&offset) == 0) {
2611 		*off_p = (di_off_t)offset;
2612 		return (0);
2613 	} else {
2614 		return (-1);
2615 	}
2616 }
2617 
2618 static di_path_state_t
2619 path_state_convert(mdi_pathinfo_state_t st)
2620 {
2621 	switch (st) {
2622 	case MDI_PATHINFO_STATE_ONLINE:
2623 		return (DI_PATH_STATE_ONLINE);
2624 	case MDI_PATHINFO_STATE_STANDBY:
2625 		return (DI_PATH_STATE_STANDBY);
2626 	case MDI_PATHINFO_STATE_OFFLINE:
2627 		return (DI_PATH_STATE_OFFLINE);
2628 	case MDI_PATHINFO_STATE_FAULT:
2629 		return (DI_PATH_STATE_FAULT);
2630 	default:
2631 		return (DI_PATH_STATE_UNKNOWN);
2632 	}
2633 }
2634 
2635 
2636 static di_off_t
2637 di_path_getprop(mdi_pathinfo_t *pip, di_off_t off, di_off_t *off_p,
2638     struct di_state *st)
2639 {
2640 	nvpair_t *prop = NULL;
2641 	struct di_path_prop *me;
2642 
2643 	if (mdi_pi_get_next_prop(pip, NULL) == NULL) {
2644 		*off_p = 0;
2645 		return (off);
2646 	}
2647 
2648 	off = di_checkmem(st, off, sizeof (struct di_path_prop));
2649 	*off_p = off;
2650 
2651 	while (prop = mdi_pi_get_next_prop(pip, prop)) {
2652 		int delta = 0;
2653 
2654 		me = (struct di_path_prop *)di_mem_addr(st, off);
2655 		me->self = off;
2656 		off += sizeof (struct di_path_prop);
2657 
2658 		/*
2659 		 * property name
2660 		 */
2661 		off = di_checkmem(st, off, strlen(nvpair_name(prop)) + 1);
2662 		me->prop_name = off;
2663 		(void) strcpy(di_mem_addr(st, off), nvpair_name(prop));
2664 		off += strlen(nvpair_name(prop)) + 1;
2665 
2666 		switch (nvpair_type(prop)) {
2667 		case DATA_TYPE_BYTE:
2668 		case DATA_TYPE_INT16:
2669 		case DATA_TYPE_UINT16:
2670 		case DATA_TYPE_INT32:
2671 		case DATA_TYPE_UINT32:
2672 			delta = sizeof (int32_t);
2673 			me->prop_type = DDI_PROP_TYPE_INT;
2674 			off = di_checkmem(st, off, delta);
2675 			(void) nvpair_value_int32(prop,
2676 			    (int32_t *)di_mem_addr(st, off));
2677 			break;
2678 
2679 		case DATA_TYPE_INT64:
2680 		case DATA_TYPE_UINT64:
2681 			delta = sizeof (int64_t);
2682 			me->prop_type = DDI_PROP_TYPE_INT64;
2683 			off = di_checkmem(st, off, delta);
2684 			(void) nvpair_value_int64(prop,
2685 			    (int64_t *)di_mem_addr(st, off));
2686 			break;
2687 
2688 		case DATA_TYPE_STRING:
2689 		{
2690 			char *str;
2691 			(void) nvpair_value_string(prop, &str);
2692 			delta = strlen(str) + 1;
2693 			me->prop_type = DDI_PROP_TYPE_STRING;
2694 			off = di_checkmem(st, off, delta);
2695 			(void) strcpy(di_mem_addr(st, off), str);
2696 			break;
2697 		}
2698 		case DATA_TYPE_BYTE_ARRAY:
2699 		case DATA_TYPE_INT16_ARRAY:
2700 		case DATA_TYPE_UINT16_ARRAY:
2701 		case DATA_TYPE_INT32_ARRAY:
2702 		case DATA_TYPE_UINT32_ARRAY:
2703 		case DATA_TYPE_INT64_ARRAY:
2704 		case DATA_TYPE_UINT64_ARRAY:
2705 		{
2706 			uchar_t *buf;
2707 			uint_t nelems;
2708 			(void) nvpair_value_byte_array(prop, &buf, &nelems);
2709 			delta = nelems;
2710 			me->prop_type = DDI_PROP_TYPE_BYTE;
2711 			if (nelems != 0) {
2712 				off = di_checkmem(st, off, delta);
2713 				bcopy(buf, di_mem_addr(st, off), nelems);
2714 			}
2715 			break;
2716 		}
2717 
2718 		default:	/* Unknown or unhandled type; skip it */
2719 			delta = 0;
2720 			break;
2721 		}
2722 
2723 		if (delta > 0) {
2724 			me->prop_data = off;
2725 		}
2726 
2727 		me->prop_len = delta;
2728 		off += delta;
2729 
2730 		off = di_checkmem(st, off, sizeof (struct di_path_prop));
2731 		me->prop_next = off;
2732 	}
2733 
2734 	me->prop_next = 0;
2735 	return (off);
2736 }
2737 
2738 
2739 static void
2740 di_path_one_endpoint(struct di_path *me, di_off_t noff, di_off_t **off_pp,
2741     int get_client)
2742 {
2743 	if (get_client) {
2744 		ASSERT(me->path_client == 0);
2745 		me->path_client = noff;
2746 		ASSERT(me->path_c_link == 0);
2747 		*off_pp = &me->path_c_link;
2748 		me->path_snap_state &=
2749 		    ~(DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOCLINK);
2750 	} else {
2751 		ASSERT(me->path_phci == 0);
2752 		me->path_phci = noff;
2753 		ASSERT(me->path_p_link == 0);
2754 		*off_pp = &me->path_p_link;
2755 		me->path_snap_state &=
2756 		    ~(DI_PATH_SNAP_NOPHCI | DI_PATH_SNAP_NOPLINK);
2757 	}
2758 }
2759 
2760 /*
2761  * poff_p: pointer to the linkage field. This links pips along the client|phci
2762  *	   linkage list.
2763  * noff  : Offset for the endpoint dip snapshot.
2764  */
2765 static di_off_t
2766 di_getpath_data(dev_info_t *dip, di_off_t *poff_p, di_off_t noff,
2767     struct di_state *st, int get_client)
2768 {
2769 	di_off_t off;
2770 	mdi_pathinfo_t *pip;
2771 	struct di_path *me;
2772 	mdi_pathinfo_t *(*next_pip)(dev_info_t *, mdi_pathinfo_t *);
2773 
2774 	dcmn_err2((CE_WARN, "di_getpath_data: client = %d", get_client));
2775 
2776 	/*
2777 	 * The naming of the following mdi_xyz() is unfortunately
2778 	 * non-intuitive. mdi_get_next_phci_path() follows the
2779 	 * client_link i.e. the list of pip's belonging to the
2780 	 * given client dip.
2781 	 */
2782 	if (get_client)
2783 		next_pip = &mdi_get_next_phci_path;
2784 	else
2785 		next_pip = &mdi_get_next_client_path;
2786 
2787 	off = *poff_p;
2788 
2789 	pip = NULL;
2790 	while (pip = (*next_pip)(dip, pip)) {
2791 		mdi_pathinfo_state_t state;
2792 		di_off_t stored_offset;
2793 
2794 		dcmn_err((CE_WARN, "marshalling pip = %p", (void *)pip));
2795 
2796 		mdi_pi_lock(pip);
2797 
2798 		if (di_pip_find(st, pip, &stored_offset) != -1) {
2799 			/*
2800 			 * We've already seen this pathinfo node so we need to
2801 			 * take care not to snap it again; However, one endpoint
2802 			 * and linkage will be set here. The other endpoint
2803 			 * and linkage has already been set when the pip was
2804 			 * first snapshotted i.e. when the other endpoint dip
2805 			 * was snapshotted.
2806 			 */
2807 			me = (struct di_path *)di_mem_addr(st, stored_offset);
2808 
2809 			*poff_p = stored_offset;
2810 
2811 			di_path_one_endpoint(me, noff, &poff_p, get_client);
2812 
2813 			/*
2814 			 * The other endpoint and linkage were set when this
2815 			 * pip was snapshotted. So we are done with both
2816 			 * endpoints and linkages.
2817 			 */
2818 			ASSERT(!(me->path_snap_state &
2819 			    (DI_PATH_SNAP_NOCLIENT|DI_PATH_SNAP_NOPHCI)));
2820 			ASSERT(!(me->path_snap_state &
2821 			    (DI_PATH_SNAP_NOCLINK|DI_PATH_SNAP_NOPLINK)));
2822 
2823 			mdi_pi_unlock(pip);
2824 			continue;
2825 		}
2826 
2827 		/*
2828 		 * Now that we need to snapshot this pip, check memory
2829 		 */
2830 		off = di_checkmem(st, off, sizeof (struct di_path));
2831 		me = (struct di_path *)di_mem_addr(st, off);
2832 		me->self = off;
2833 		*poff_p = off;
2834 		off += sizeof (struct di_path);
2835 
2836 		me->path_snap_state =
2837 		    DI_PATH_SNAP_NOCLINK | DI_PATH_SNAP_NOPLINK;
2838 		me->path_snap_state |=
2839 		    DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOPHCI;
2840 
2841 		/*
2842 		 * Zero out fields as di_checkmem() doesn't guarantee
2843 		 * zero-filled memory
2844 		 */
2845 		me->path_client = me->path_phci = 0;
2846 		me->path_c_link = me->path_p_link = 0;
2847 
2848 		di_path_one_endpoint(me, noff, &poff_p, get_client);
2849 
2850 		/*
2851 		 * Note the existence of this pathinfo
2852 		 */
2853 		di_register_pip(st, pip, me->self);
2854 
2855 		state = mdi_pi_get_state(pip);
2856 		me->path_state = path_state_convert(state);
2857 
2858 		/*
2859 		 * Get intermediate addressing info.
2860 		 */
2861 		off = di_checkmem(st, off, strlen(mdi_pi_get_addr(pip)) + 1);
2862 		me->path_addr = off;
2863 		(void) strcpy(di_mem_addr(st, off), mdi_pi_get_addr(pip));
2864 		off += strlen(mdi_pi_get_addr(pip)) + 1;
2865 
2866 		/*
2867 		 * Get path properties if props are to be included in the
2868 		 * snapshot
2869 		 */
2870 		if (DINFOPROP & st->command) {
2871 			off = di_path_getprop(pip, off, &me->path_prop, st);
2872 		} else {
2873 			me->path_prop = 0;
2874 		}
2875 
2876 		mdi_pi_unlock(pip);
2877 	}
2878 
2879 	*poff_p = 0;
2880 
2881 	return (off);
2882 }
2883 
2884 /*
2885  * Copy a list of properties attached to a devinfo node. Called from
2886  * di_copynode with devi_lock held. The major number is passed in case
2887  * we need to call driver's prop_op entry. The value of list indicates
2888  * which list we are copying. Possible values are:
2889  * DI_PROP_DRV_LIST, DI_PROP_SYS_LIST, DI_PROP_GLB_LIST, DI_PROP_HW_LIST
2890  */
2891 static di_off_t
2892 di_getprop(struct ddi_prop *prop, di_off_t *off_p, struct di_state *st,
2893 	struct dev_info *dip, int list)
2894 {
2895 	dev_t dev;
2896 	int (*prop_op)();
2897 	int off, need_prop_op = 0;
2898 	int prop_op_fail = 0;
2899 	ddi_prop_t *propp = NULL;
2900 	struct di_prop *pp;
2901 	struct dev_ops *ops = NULL;
2902 	int prop_len;
2903 	caddr_t prop_val;
2904 
2905 
2906 	dcmn_err2((CE_CONT, "di_getprop:\n"));
2907 
2908 	ASSERT(st != NULL);
2909 
2910 	dcmn_err((CE_CONT, "copy property list at addr %p\n", (void *)prop));
2911 
2912 	/*
2913 	 * Figure out if we need to call driver's prop_op entry point.
2914 	 * The conditions are:
2915 	 *	-- driver property list
2916 	 *	-- driver must be attached and held
2917 	 *	-- driver's cb_prop_op != ddi_prop_op
2918 	 *		or parent's bus_prop_op != ddi_bus_prop_op
2919 	 */
2920 
2921 	if (list != DI_PROP_DRV_LIST) {
2922 		goto getprop;
2923 	}
2924 
2925 	/*
2926 	 * If driver is not attached or if major is -1, we ignore
2927 	 * the driver property list. No one should rely on such
2928 	 * properties.
2929 	 */
2930 	if (i_ddi_node_state((dev_info_t *)dip) < DS_ATTACHED) {
2931 		off = *off_p;
2932 		*off_p = 0;
2933 		return (off);
2934 	}
2935 
2936 	/*
2937 	 * Now we have a driver which is held. We can examine entry points
2938 	 * and check the condition listed above.
2939 	 */
2940 	ops = dip->devi_ops;
2941 
2942 	/*
2943 	 * Some nexus drivers incorrectly set cb_prop_op to nodev,
2944 	 * nulldev or even NULL.
2945 	 */
2946 	if (ops && ops->devo_cb_ops &&
2947 	    (ops->devo_cb_ops->cb_prop_op != ddi_prop_op) &&
2948 	    (ops->devo_cb_ops->cb_prop_op != nodev) &&
2949 	    (ops->devo_cb_ops->cb_prop_op != nulldev) &&
2950 	    (ops->devo_cb_ops->cb_prop_op != NULL)) {
2951 		need_prop_op = 1;
2952 	}
2953 
2954 getprop:
2955 	/*
2956 	 * check memory availability
2957 	 */
2958 	off = di_checkmem(st, *off_p, sizeof (struct di_prop));
2959 	*off_p = off;
2960 	/*
2961 	 * Now copy properties
2962 	 */
2963 	do {
2964 		pp = (struct di_prop *)di_mem_addr(st, off);
2965 		pp->self = off;
2966 		/*
2967 		 * Split dev_t to major/minor, so it works for
2968 		 * both ILP32 and LP64 model
2969 		 */
2970 		pp->dev_major = getmajor(prop->prop_dev);
2971 		pp->dev_minor = getminor(prop->prop_dev);
2972 		pp->prop_flags = prop->prop_flags;
2973 		pp->prop_list = list;
2974 
2975 		/*
2976 		 * property name
2977 		 */
2978 		off += sizeof (struct di_prop);
2979 		if (prop->prop_name) {
2980 			off = di_checkmem(st, off, strlen(prop->prop_name)
2981 			    + 1);
2982 			pp->prop_name = off;
2983 			(void) strcpy(di_mem_addr(st, off), prop->prop_name);
2984 			off += strlen(prop->prop_name) + 1;
2985 		}
2986 
2987 		/*
2988 		 * Set prop_len here. This may change later
2989 		 * if cb_prop_op returns a different length.
2990 		 */
2991 		pp->prop_len = prop->prop_len;
2992 		if (!need_prop_op) {
2993 			if (prop->prop_val == NULL) {
2994 				dcmn_err((CE_WARN,
2995 				    "devinfo: property fault at %p",
2996 				    (void *)prop));
2997 				pp->prop_data = -1;
2998 			} else if (prop->prop_len != 0) {
2999 				off = di_checkmem(st, off, prop->prop_len);
3000 				pp->prop_data = off;
3001 				bcopy(prop->prop_val, di_mem_addr(st, off),
3002 				    prop->prop_len);
3003 				off += DI_ALIGN(pp->prop_len);
3004 			}
3005 		}
3006 
3007 		off = di_checkmem(st, off, sizeof (struct di_prop));
3008 		pp->next = off;
3009 		prop = prop->prop_next;
3010 	} while (prop);
3011 
3012 	pp->next = 0;
3013 
3014 	if (!need_prop_op) {
3015 		dcmn_err((CE_CONT, "finished property "
3016 		    "list at offset 0x%x\n", off));
3017 		return (off);
3018 	}
3019 
3020 	/*
3021 	 * If there is a need to call driver's prop_op entry,
3022 	 * we must release driver's devi_lock, because the
3023 	 * cb_prop_op entry point will grab it.
3024 	 *
3025 	 * The snapshot memory has already been allocated above,
3026 	 * which means the length of an active property should
3027 	 * remain fixed for this implementation to work.
3028 	 */
3029 
3030 
3031 	prop_op = ops->devo_cb_ops->cb_prop_op;
3032 	pp = (struct di_prop *)di_mem_addr(st, *off_p);
3033 
3034 	mutex_exit(&dip->devi_lock);
3035 
3036 	do {
3037 		int err;
3038 		struct di_prop *tmp;
3039 
3040 		if (pp->next) {
3041 			tmp = (struct di_prop *)
3042 			    di_mem_addr(st, pp->next);
3043 		} else {
3044 			tmp = NULL;
3045 		}
3046 
3047 		/*
3048 		 * call into driver's prop_op entry point
3049 		 *
3050 		 * Must search DDI_DEV_T_NONE with DDI_DEV_T_ANY
3051 		 */
3052 		dev = makedevice(pp->dev_major, pp->dev_minor);
3053 		if (dev == DDI_DEV_T_NONE)
3054 			dev = DDI_DEV_T_ANY;
3055 
3056 		dcmn_err((CE_CONT, "call prop_op"
3057 		    "(%lx, %p, PROP_LEN_AND_VAL_BUF, "
3058 		    "DDI_PROP_DONTPASS, \"%s\", %p, &%d)\n",
3059 		    dev,
3060 		    (void *)dip,
3061 		    (char *)di_mem_addr(st, pp->prop_name),
3062 		    (void *)di_mem_addr(st, pp->prop_data),
3063 		    pp->prop_len));
3064 
3065 		if ((err = (*prop_op)(dev, (dev_info_t)dip,
3066 		    PROP_LEN_AND_VAL_ALLOC, DDI_PROP_DONTPASS,
3067 		    (char *)di_mem_addr(st, pp->prop_name),
3068 		    &prop_val, &prop_len)) != DDI_PROP_SUCCESS) {
3069 			if ((propp = i_ddi_prop_search(dev,
3070 			    (char *)di_mem_addr(st, pp->prop_name),
3071 			    (uint_t)pp->prop_flags,
3072 			    &(DEVI(dip)->devi_drv_prop_ptr))) != NULL) {
3073 				pp->prop_len = propp->prop_len;
3074 				if (pp->prop_len != 0) {
3075 					off = di_checkmem(st, off,
3076 					    pp->prop_len);
3077 					pp->prop_data = off;
3078 					bcopy(propp->prop_val, di_mem_addr(st,
3079 					    pp->prop_data), propp->prop_len);
3080 					off += DI_ALIGN(pp->prop_len);
3081 				}
3082 			} else {
3083 				prop_op_fail = 1;
3084 			}
3085 		} else if (prop_len != 0) {
3086 			pp->prop_len = prop_len;
3087 			off = di_checkmem(st, off, prop_len);
3088 			pp->prop_data = off;
3089 			bcopy(prop_val, di_mem_addr(st, off), prop_len);
3090 			off += DI_ALIGN(prop_len);
3091 			kmem_free(prop_val, prop_len);
3092 		}
3093 
3094 		if (prop_op_fail) {
3095 			pp->prop_data = -1;
3096 			dcmn_err((CE_WARN, "devinfo: prop_op failure "
3097 			    "for \"%s\" err %d",
3098 			    di_mem_addr(st, pp->prop_name), err));
3099 		}
3100 
3101 		pp = tmp;
3102 
3103 	} while (pp);
3104 
3105 	mutex_enter(&dip->devi_lock);
3106 	dcmn_err((CE_CONT, "finished property list at offset 0x%x\n", off));
3107 	return (off);
3108 }
3109 
3110 /*
3111  * find private data format attached to a dip
3112  * parent = 1 to match driver name of parent dip (for parent private data)
3113  *	0 to match driver name of current dip (for driver private data)
3114  */
3115 #define	DI_MATCH_DRIVER	0
3116 #define	DI_MATCH_PARENT	1
3117 
3118 struct di_priv_format *
3119 di_match_drv_name(struct dev_info *node, struct di_state *st, int match)
3120 {
3121 	int i, count, len;
3122 	char *drv_name;
3123 	major_t major;
3124 	struct di_all *all;
3125 	struct di_priv_format *form;
3126 
3127 	dcmn_err2((CE_CONT, "di_match_drv_name: node = %s, match = %x\n",
3128 		node->devi_node_name, match));
3129 
3130 	if (match == DI_MATCH_PARENT) {
3131 		node = DEVI(node->devi_parent);
3132 	}
3133 
3134 	if (node == NULL) {
3135 		return (NULL);
3136 	}
3137 
3138 	major = ddi_name_to_major(node->devi_binding_name);
3139 	if (major == (major_t)(-1)) {
3140 		return (NULL);
3141 	}
3142 
3143 	/*
3144 	 * Match the driver name.
3145 	 */
3146 	drv_name = ddi_major_to_name(major);
3147 	if ((drv_name == NULL) || *drv_name == '\0') {
3148 		return (NULL);
3149 	}
3150 
3151 	/* Now get the di_priv_format array */
3152 	all = (struct di_all *)di_mem_addr(st, 0);
3153 
3154 	if (match == DI_MATCH_PARENT) {
3155 		count = all->n_ppdata;
3156 		form = (struct di_priv_format *)
3157 			(di_mem_addr(st, 0) + all->ppdata_format);
3158 	} else {
3159 		count = all->n_dpdata;
3160 		form = (struct di_priv_format *)
3161 			((caddr_t)all + all->dpdata_format);
3162 	}
3163 
3164 	len = strlen(drv_name);
3165 	for (i = 0; i < count; i++) {
3166 		char *tmp;
3167 
3168 		tmp = form[i].drv_name;
3169 		while (tmp && (*tmp != '\0')) {
3170 			if (strncmp(drv_name, tmp, len) == 0) {
3171 				return (&form[i]);
3172 			}
3173 			/*
3174 			 * Move to next driver name, skipping a white space
3175 			 */
3176 			if (tmp = strchr(tmp, ' ')) {
3177 				tmp++;
3178 			}
3179 		}
3180 	}
3181 
3182 	return (NULL);
3183 }
3184 
3185 /*
3186  * The following functions copy data as specified by the format passed in.
3187  * To prevent invalid format from panicing the system, we call on_fault().
3188  * A return value of 0 indicates an error. Otherwise, the total offset
3189  * is returned.
3190  */
3191 #define	DI_MAX_PRIVDATA	(PAGESIZE >> 1)	/* max private data size */
3192 
3193 static di_off_t
3194 di_getprvdata(struct di_priv_format *pdp, void *data, di_off_t *off_p,
3195 	struct di_state *st)
3196 {
3197 	caddr_t pa;
3198 	void *ptr;
3199 	int i, size, repeat;
3200 	di_off_t off, off0, *tmp;
3201 
3202 	label_t ljb;
3203 
3204 	dcmn_err2((CE_CONT, "di_getprvdata:\n"));
3205 
3206 	/*
3207 	 * check memory availability. Private data size is
3208 	 * limited to DI_MAX_PRIVDATA.
3209 	 */
3210 	off = di_checkmem(st, *off_p, DI_MAX_PRIVDATA);
3211 
3212 	if ((pdp->bytes <= 0) || pdp->bytes > DI_MAX_PRIVDATA) {
3213 		goto failure;
3214 	}
3215 
3216 	if (!on_fault(&ljb)) {
3217 		/* copy the struct */
3218 		bcopy(data, di_mem_addr(st, off), pdp->bytes);
3219 		off0 = DI_ALIGN(pdp->bytes);
3220 
3221 		/* dereferencing pointers */
3222 		for (i = 0; i < MAX_PTR_IN_PRV; i++) {
3223 
3224 			if (pdp->ptr[i].size == 0) {
3225 				goto success;	/* no more ptrs */
3226 			}
3227 
3228 			/*
3229 			 * first, get the pointer content
3230 			 */
3231 			if ((pdp->ptr[i].offset < 0) ||
3232 				(pdp->ptr[i].offset >
3233 				pdp->bytes - sizeof (char *)))
3234 				goto failure;	/* wrong offset */
3235 
3236 			pa = di_mem_addr(st, off + pdp->ptr[i].offset);
3237 			tmp = (di_off_t *)pa;	/* to store off_t later */
3238 
3239 			ptr = *((void **) pa);	/* get pointer value */
3240 			if (ptr == NULL) {	/* if NULL pointer, go on */
3241 				continue;
3242 			}
3243 
3244 			/*
3245 			 * next, find the repeat count (array dimension)
3246 			 */
3247 			repeat = pdp->ptr[i].len_offset;
3248 
3249 			/*
3250 			 * Positive value indicates a fixed sized array.
3251 			 * 0 or negative value indicates variable sized array.
3252 			 *
3253 			 * For variable sized array, the variable must be
3254 			 * an int member of the structure, with an offset
3255 			 * equal to the absolution value of struct member.
3256 			 */
3257 			if (repeat > pdp->bytes - sizeof (int)) {
3258 				goto failure;	/* wrong offset */
3259 			}
3260 
3261 			if (repeat >= 0) {
3262 				repeat = *((int *)((caddr_t)data + repeat));
3263 			} else {
3264 				repeat = -repeat;
3265 			}
3266 
3267 			/*
3268 			 * next, get the size of the object to be copied
3269 			 */
3270 			size = pdp->ptr[i].size * repeat;
3271 
3272 			/*
3273 			 * Arbitrarily limit the total size of object to be
3274 			 * copied (1 byte to 1/4 page).
3275 			 */
3276 			if ((size <= 0) || (size > (DI_MAX_PRIVDATA - off0))) {
3277 				goto failure;	/* wrong size or too big */
3278 			}
3279 
3280 			/*
3281 			 * Now copy the data
3282 			 */
3283 			*tmp = off0;
3284 			bcopy(ptr, di_mem_addr(st, off + off0), size);
3285 			off0 += DI_ALIGN(size);
3286 		}
3287 	} else {
3288 		goto failure;
3289 	}
3290 
3291 success:
3292 	/*
3293 	 * success if reached here
3294 	 */
3295 	no_fault();
3296 	*off_p = off;
3297 
3298 	return (off + off0);
3299 	/*NOTREACHED*/
3300 
3301 failure:
3302 	/*
3303 	 * fault occurred
3304 	 */
3305 	no_fault();
3306 	cmn_err(CE_WARN, "devinfo: fault in private data at %p", data);
3307 	*off_p = -1;	/* set private data to indicate error */
3308 
3309 	return (off);
3310 }
3311 
3312 /*
3313  * get parent private data; on error, returns original offset
3314  */
3315 static di_off_t
3316 di_getppdata(struct dev_info *node, di_off_t *off_p, struct di_state *st)
3317 {
3318 	int off;
3319 	struct di_priv_format *ppdp;
3320 
3321 	dcmn_err2((CE_CONT, "di_getppdata:\n"));
3322 
3323 	/* find the parent data format */
3324 	if ((ppdp = di_match_drv_name(node, st, DI_MATCH_PARENT)) == NULL) {
3325 		off = *off_p;
3326 		*off_p = 0;	/* set parent data to none */
3327 		return (off);
3328 	}
3329 
3330 	return (di_getprvdata(ppdp, ddi_get_parent_data((dev_info_t *)node),
3331 	    off_p, st));
3332 }
3333 
3334 /*
3335  * get parent private data; returns original offset
3336  */
3337 static di_off_t
3338 di_getdpdata(struct dev_info *node, di_off_t *off_p, struct di_state *st)
3339 {
3340 	int off;
3341 	struct di_priv_format *dpdp;
3342 
3343 	dcmn_err2((CE_CONT, "di_getdpdata:"));
3344 
3345 	/* find the parent data format */
3346 	if ((dpdp = di_match_drv_name(node, st, DI_MATCH_DRIVER)) == NULL) {
3347 		off = *off_p;
3348 		*off_p = 0;	/* set driver data to none */
3349 		return (off);
3350 	}
3351 
3352 	return (di_getprvdata(dpdp, ddi_get_driver_private((dev_info_t *)node),
3353 	    off_p, st));
3354 }
3355 
3356 /*
3357  * The driver is stateful across DINFOCPYALL and DINFOUSRLD.
3358  * This function encapsulates the state machine:
3359  *
3360  *	-> IOC_IDLE -> IOC_SNAP -> IOC_DONE -> IOC_COPY ->
3361  *	|		SNAPSHOT		USRLD	 |
3362  *	--------------------------------------------------
3363  *
3364  * Returns 0 on success and -1 on failure
3365  */
3366 static int
3367 di_setstate(struct di_state *st, int new_state)
3368 {
3369 	int ret = 0;
3370 
3371 	mutex_enter(&di_lock);
3372 	switch (new_state) {
3373 	case IOC_IDLE:
3374 	case IOC_DONE:
3375 		break;
3376 	case IOC_SNAP:
3377 		if (st->di_iocstate != IOC_IDLE)
3378 			ret = -1;
3379 		break;
3380 	case IOC_COPY:
3381 		if (st->di_iocstate != IOC_DONE)
3382 			ret = -1;
3383 		break;
3384 	default:
3385 		ret = -1;
3386 	}
3387 
3388 	if (ret == 0)
3389 		st->di_iocstate = new_state;
3390 	else
3391 		cmn_err(CE_NOTE, "incorrect state transition from %d to %d",
3392 		    st->di_iocstate, new_state);
3393 	mutex_exit(&di_lock);
3394 	return (ret);
3395 }
3396 
3397 /*
3398  * We cannot assume the presence of the entire
3399  * snapshot in this routine. All we are guaranteed
3400  * is the di_all struct + 1 byte (for root_path)
3401  */
3402 static int
3403 header_plus_one_ok(struct di_all *all)
3404 {
3405 	/*
3406 	 * Refuse to read old versions
3407 	 */
3408 	if (all->version != DI_SNAPSHOT_VERSION) {
3409 		CACHE_DEBUG((DI_ERR, "bad version: 0x%x", all->version));
3410 		return (0);
3411 	}
3412 
3413 	if (all->cache_magic != DI_CACHE_MAGIC) {
3414 		CACHE_DEBUG((DI_ERR, "bad magic #: 0x%x", all->cache_magic));
3415 		return (0);
3416 	}
3417 
3418 	if (all->snapshot_time <= 0) {
3419 		CACHE_DEBUG((DI_ERR, "bad timestamp: %ld", all->snapshot_time));
3420 		return (0);
3421 	}
3422 
3423 	if (all->top_devinfo == 0) {
3424 		CACHE_DEBUG((DI_ERR, "NULL top devinfo"));
3425 		return (0);
3426 	}
3427 
3428 	if (all->map_size < sizeof (*all) + 1) {
3429 		CACHE_DEBUG((DI_ERR, "bad map size: %u", all->map_size));
3430 		return (0);
3431 	}
3432 
3433 	if (all->root_path[0] != '/' || all->root_path[1] != '\0') {
3434 		CACHE_DEBUG((DI_ERR, "bad rootpath: %c%c",
3435 		    all->root_path[0], all->root_path[1]));
3436 		return (0);
3437 	}
3438 
3439 	/*
3440 	 * We can't check checksum here as we just have the header
3441 	 */
3442 
3443 	return (1);
3444 }
3445 
3446 static int
3447 chunk_write(struct vnode *vp, offset_t off, caddr_t buf, size_t len)
3448 {
3449 	rlim64_t	rlimit;
3450 	ssize_t		resid;
3451 	int		error = 0;
3452 
3453 
3454 	rlimit = RLIM64_INFINITY;
3455 
3456 	while (len) {
3457 		resid = 0;
3458 		error = vn_rdwr(UIO_WRITE, vp, buf, len, off,
3459 		    UIO_SYSSPACE, FSYNC, rlimit, kcred, &resid);
3460 
3461 		if (error || resid < 0) {
3462 			error = error ? error : EIO;
3463 			CACHE_DEBUG((DI_ERR, "write error: %d", error));
3464 			break;
3465 		}
3466 
3467 		/*
3468 		 * Check if we are making progress
3469 		 */
3470 		if (resid >= len) {
3471 			error = ENOSPC;
3472 			break;
3473 		}
3474 		buf += len - resid;
3475 		off += len - resid;
3476 		len = resid;
3477 	}
3478 
3479 	return (error);
3480 }
3481 
3482 extern int modrootloaded;
3483 extern void mdi_walk_vhcis(int (*)(dev_info_t *, void *), void *);
3484 extern void mdi_vhci_walk_phcis(dev_info_t *,
3485 	int (*)(dev_info_t *, void *), void *);
3486 
3487 static void
3488 di_cache_write(struct di_cache *cache)
3489 {
3490 	struct di_all	*all;
3491 	struct vnode	*vp;
3492 	int		oflags;
3493 	size_t		map_size;
3494 	size_t		chunk;
3495 	offset_t	off;
3496 	int		error;
3497 	char		*buf;
3498 
3499 	ASSERT(DI_CACHE_LOCKED(*cache));
3500 	ASSERT(!servicing_interrupt());
3501 
3502 	if (cache->cache_size == 0) {
3503 		ASSERT(cache->cache_data == NULL);
3504 		CACHE_DEBUG((DI_ERR, "Empty cache. Skipping write"));
3505 		return;
3506 	}
3507 
3508 	ASSERT(cache->cache_size > 0);
3509 	ASSERT(cache->cache_data);
3510 
3511 	if (!modrootloaded || rootvp == NULL || vn_is_readonly(rootvp)) {
3512 		CACHE_DEBUG((DI_ERR, "Can't write to rootFS. Skipping write"));
3513 		return;
3514 	}
3515 
3516 	all = (struct di_all *)cache->cache_data;
3517 
3518 	if (!header_plus_one_ok(all)) {
3519 		CACHE_DEBUG((DI_ERR, "Invalid header. Skipping write"));
3520 		return;
3521 	}
3522 
3523 	ASSERT(strcmp(all->root_path, "/") == 0);
3524 
3525 	/*
3526 	 * The cache_size is the total allocated memory for the cache.
3527 	 * The map_size is the actual size of valid data in the cache.
3528 	 * map_size may be smaller than cache_size but cannot exceed
3529 	 * cache_size.
3530 	 */
3531 	if (all->map_size > cache->cache_size) {
3532 		CACHE_DEBUG((DI_ERR, "map_size (0x%x) > cache_size (0x%x)."
3533 		    " Skipping write", all->map_size, cache->cache_size));
3534 		return;
3535 	}
3536 
3537 	/*
3538 	 * First unlink the temp file
3539 	 */
3540 	error = vn_remove(DI_CACHE_TEMP, UIO_SYSSPACE, RMFILE);
3541 	if (error && error != ENOENT) {
3542 		CACHE_DEBUG((DI_ERR, "%s: unlink failed: %d",
3543 		    DI_CACHE_TEMP, error));
3544 	}
3545 
3546 	if (error == EROFS) {
3547 		CACHE_DEBUG((DI_ERR, "RDONLY FS. Skipping write"));
3548 		return;
3549 	}
3550 
3551 	vp = NULL;
3552 	oflags = (FCREAT|FWRITE);
3553 	if (error = vn_open(DI_CACHE_TEMP, UIO_SYSSPACE, oflags,
3554 	    DI_CACHE_PERMS, &vp, CRCREAT, 0)) {
3555 		CACHE_DEBUG((DI_ERR, "%s: create failed: %d",
3556 		    DI_CACHE_TEMP, error));
3557 		return;
3558 	}
3559 
3560 	ASSERT(vp);
3561 
3562 	/*
3563 	 * Paranoid: Check if the file is on a read-only FS
3564 	 */
3565 	if (vn_is_readonly(vp)) {
3566 		CACHE_DEBUG((DI_ERR, "cannot write: readonly FS"));
3567 		goto fail;
3568 	}
3569 
3570 	/*
3571 	 * Note that we only write map_size bytes to disk - this saves
3572 	 * space as the actual cache size may be larger than size of
3573 	 * valid data in the cache.
3574 	 * Another advantage is that it makes verification of size
3575 	 * easier when the file is read later.
3576 	 */
3577 	map_size = all->map_size;
3578 	off = 0;
3579 	buf = cache->cache_data;
3580 
3581 	while (map_size) {
3582 		ASSERT(map_size > 0);
3583 		/*
3584 		 * Write in chunks so that VM system
3585 		 * is not overwhelmed
3586 		 */
3587 		if (map_size > di_chunk * PAGESIZE)
3588 			chunk = di_chunk * PAGESIZE;
3589 		else
3590 			chunk = map_size;
3591 
3592 		error = chunk_write(vp, off, buf, chunk);
3593 		if (error) {
3594 			CACHE_DEBUG((DI_ERR, "write failed: off=0x%x: %d",
3595 			    off, error));
3596 			goto fail;
3597 		}
3598 
3599 		off += chunk;
3600 		buf += chunk;
3601 		map_size -= chunk;
3602 
3603 		/* Give pageout a chance to run */
3604 		delay(1);
3605 	}
3606 
3607 	/*
3608 	 * Now sync the file and close it
3609 	 */
3610 	if (error = VOP_FSYNC(vp, FSYNC, kcred)) {
3611 		CACHE_DEBUG((DI_ERR, "FSYNC failed: %d", error));
3612 	}
3613 
3614 	if (error = VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred)) {
3615 		CACHE_DEBUG((DI_ERR, "close() failed: %d", error));
3616 		VN_RELE(vp);
3617 		return;
3618 	}
3619 
3620 	VN_RELE(vp);
3621 
3622 	/*
3623 	 * Now do the rename
3624 	 */
3625 	if (error = vn_rename(DI_CACHE_TEMP, DI_CACHE_FILE, UIO_SYSSPACE)) {
3626 		CACHE_DEBUG((DI_ERR, "rename failed: %d", error));
3627 		return;
3628 	}
3629 
3630 	CACHE_DEBUG((DI_INFO, "Cache write successful."));
3631 
3632 	return;
3633 
3634 fail:
3635 	(void) VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred);
3636 	VN_RELE(vp);
3637 }
3638 
3639 
3640 /*
3641  * Since we could be called early in boot,
3642  * use kobj_read_file()
3643  */
3644 static void
3645 di_cache_read(struct di_cache *cache)
3646 {
3647 	struct _buf	*file;
3648 	struct di_all	*all;
3649 	int		n;
3650 	size_t		map_size, sz, chunk;
3651 	offset_t	off;
3652 	caddr_t		buf;
3653 	uint32_t	saved_crc, crc;
3654 
3655 	ASSERT(modrootloaded);
3656 	ASSERT(DI_CACHE_LOCKED(*cache));
3657 	ASSERT(cache->cache_data == NULL);
3658 	ASSERT(cache->cache_size == 0);
3659 	ASSERT(!servicing_interrupt());
3660 
3661 	file = kobj_open_file(DI_CACHE_FILE);
3662 	if (file == (struct _buf *)-1) {
3663 		CACHE_DEBUG((DI_ERR, "%s: open failed: %d",
3664 		    DI_CACHE_FILE, ENOENT));
3665 		return;
3666 	}
3667 
3668 	/*
3669 	 * Read in the header+root_path first. The root_path must be "/"
3670 	 */
3671 	all = kmem_zalloc(sizeof (*all) + 1, KM_SLEEP);
3672 	n = kobj_read_file(file, (caddr_t)all, sizeof (*all) + 1, 0);
3673 
3674 	if ((n != sizeof (*all) + 1) || !header_plus_one_ok(all)) {
3675 		kmem_free(all, sizeof (*all) + 1);
3676 		kobj_close_file(file);
3677 		CACHE_DEBUG((DI_ERR, "cache header: read error or invalid"));
3678 		return;
3679 	}
3680 
3681 	map_size = all->map_size;
3682 
3683 	kmem_free(all, sizeof (*all) + 1);
3684 
3685 	ASSERT(map_size >= sizeof (*all) + 1);
3686 
3687 	buf = di_cache.cache_data = kmem_alloc(map_size, KM_SLEEP);
3688 	sz = map_size;
3689 	off = 0;
3690 	while (sz) {
3691 		/* Don't overload VM with large reads */
3692 		chunk = (sz > di_chunk * PAGESIZE) ? di_chunk * PAGESIZE : sz;
3693 		n = kobj_read_file(file, buf, chunk, off);
3694 		if (n != chunk) {
3695 			CACHE_DEBUG((DI_ERR, "%s: read error at offset: %lld",
3696 			    DI_CACHE_FILE, off));
3697 			goto fail;
3698 		}
3699 		off += chunk;
3700 		buf += chunk;
3701 		sz -= chunk;
3702 	}
3703 
3704 	ASSERT(off == map_size);
3705 
3706 	/*
3707 	 * Read past expected EOF to verify size.
3708 	 */
3709 	if (kobj_read_file(file, (caddr_t)&sz, 1, off) > 0) {
3710 		CACHE_DEBUG((DI_ERR, "%s: file size changed", DI_CACHE_FILE));
3711 		goto fail;
3712 	}
3713 
3714 	all = (struct di_all *)di_cache.cache_data;
3715 	if (!header_plus_one_ok(all)) {
3716 		CACHE_DEBUG((DI_ERR, "%s: file header changed", DI_CACHE_FILE));
3717 		goto fail;
3718 	}
3719 
3720 	/*
3721 	 * Compute CRC with checksum field in the cache data set to 0
3722 	 */
3723 	saved_crc = all->cache_checksum;
3724 	all->cache_checksum = 0;
3725 	CRC32(crc, di_cache.cache_data, map_size, -1U, crc32_table);
3726 	all->cache_checksum = saved_crc;
3727 
3728 	if (crc != all->cache_checksum) {
3729 		CACHE_DEBUG((DI_ERR,
3730 		    "%s: checksum error: expected=0x%x actual=0x%x",
3731 		    DI_CACHE_FILE, all->cache_checksum, crc));
3732 		goto fail;
3733 	}
3734 
3735 	if (all->map_size != map_size) {
3736 		CACHE_DEBUG((DI_ERR, "%s: map size changed", DI_CACHE_FILE));
3737 		goto fail;
3738 	}
3739 
3740 	kobj_close_file(file);
3741 
3742 	di_cache.cache_size = map_size;
3743 
3744 	return;
3745 
3746 fail:
3747 	kmem_free(di_cache.cache_data, map_size);
3748 	kobj_close_file(file);
3749 	di_cache.cache_data = NULL;
3750 	di_cache.cache_size = 0;
3751 }
3752 
3753 
3754 /*
3755  * Checks if arguments are valid for using the cache.
3756  */
3757 static int
3758 cache_args_valid(struct di_state *st, int *error)
3759 {
3760 	ASSERT(error);
3761 	ASSERT(st->mem_size > 0);
3762 	ASSERT(st->memlist != NULL);
3763 
3764 	if (!modrootloaded || !i_ddi_io_initialized()) {
3765 		CACHE_DEBUG((DI_ERR,
3766 		    "cache lookup failure: I/O subsystem not inited"));
3767 		*error = ENOTACTIVE;
3768 		return (0);
3769 	}
3770 
3771 	/*
3772 	 * No other flags allowed with DINFOCACHE
3773 	 */
3774 	if (st->command != (DINFOCACHE & DIIOC_MASK)) {
3775 		CACHE_DEBUG((DI_ERR,
3776 		    "cache lookup failure: bad flags: 0x%x",
3777 		    st->command));
3778 		*error = EINVAL;
3779 		return (0);
3780 	}
3781 
3782 	if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) {
3783 		CACHE_DEBUG((DI_ERR,
3784 		    "cache lookup failure: bad root: %s",
3785 		    DI_ALL_PTR(st)->root_path));
3786 		*error = EINVAL;
3787 		return (0);
3788 	}
3789 
3790 	CACHE_DEBUG((DI_INFO, "cache lookup args ok: 0x%x", st->command));
3791 
3792 	*error = 0;
3793 
3794 	return (1);
3795 }
3796 
3797 static int
3798 snapshot_is_cacheable(struct di_state *st)
3799 {
3800 	ASSERT(st->mem_size > 0);
3801 	ASSERT(st->memlist != NULL);
3802 
3803 	if ((st->command & DI_CACHE_SNAPSHOT_FLAGS) !=
3804 	    (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK)) {
3805 		CACHE_DEBUG((DI_INFO,
3806 		    "not cacheable: incompatible flags: 0x%x",
3807 		    st->command));
3808 		return (0);
3809 	}
3810 
3811 	if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) {
3812 		CACHE_DEBUG((DI_INFO,
3813 		    "not cacheable: incompatible root path: %s",
3814 		    DI_ALL_PTR(st)->root_path));
3815 		return (0);
3816 	}
3817 
3818 	CACHE_DEBUG((DI_INFO, "cacheable snapshot request: 0x%x", st->command));
3819 
3820 	return (1);
3821 }
3822 
3823 static int
3824 di_cache_lookup(struct di_state *st)
3825 {
3826 	size_t	rval;
3827 	int	cache_valid;
3828 
3829 	ASSERT(cache_args_valid(st, &cache_valid));
3830 	ASSERT(modrootloaded);
3831 
3832 	DI_CACHE_LOCK(di_cache);
3833 
3834 	/*
3835 	 * The following assignment determines the validity
3836 	 * of the cache as far as this snapshot is concerned.
3837 	 */
3838 	cache_valid = di_cache.cache_valid;
3839 
3840 	if (cache_valid && di_cache.cache_data == NULL) {
3841 		di_cache_read(&di_cache);
3842 		/* check for read or file error */
3843 		if (di_cache.cache_data == NULL)
3844 			cache_valid = 0;
3845 	}
3846 
3847 	if (cache_valid) {
3848 		/*
3849 		 * Ok, the cache was valid as of this particular
3850 		 * snapshot. Copy the cached snapshot. This is safe
3851 		 * to do as the cache cannot be freed (we hold the
3852 		 * cache lock). Free the memory allocated in di_state
3853 		 * up until this point - we will simply copy everything
3854 		 * in the cache.
3855 		 */
3856 
3857 		ASSERT(di_cache.cache_data != NULL);
3858 		ASSERT(di_cache.cache_size > 0);
3859 
3860 		di_freemem(st);
3861 
3862 		rval = 0;
3863 		if (di_cache2mem(&di_cache, st) > 0) {
3864 
3865 			ASSERT(DI_ALL_PTR(st));
3866 
3867 			/*
3868 			 * map_size is size of valid data in the
3869 			 * cached snapshot and may be less than
3870 			 * size of the cache.
3871 			 */
3872 			rval = DI_ALL_PTR(st)->map_size;
3873 
3874 			ASSERT(rval >= sizeof (struct di_all));
3875 			ASSERT(rval <= di_cache.cache_size);
3876 		}
3877 	} else {
3878 		/*
3879 		 * The cache isn't valid, we need to take a snapshot.
3880 		 * Set the command flags appropriately
3881 		 */
3882 		ASSERT(st->command == (DINFOCACHE & DIIOC_MASK));
3883 		st->command = (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK);
3884 		rval = di_cache_update(st);
3885 		st->command = (DINFOCACHE & DIIOC_MASK);
3886 	}
3887 
3888 	DI_CACHE_UNLOCK(di_cache);
3889 
3890 	/*
3891 	 * For cached snapshots, the devinfo driver always returns
3892 	 * a snapshot rooted at "/".
3893 	 */
3894 	ASSERT(rval == 0 || strcmp(DI_ALL_PTR(st)->root_path, "/") == 0);
3895 
3896 	return (rval);
3897 }
3898 
3899 /*
3900  * This is a forced update of the cache  - the previous state of the cache
3901  * may be:
3902  *	- unpopulated
3903  *	- populated and invalid
3904  *	- populated and valid
3905  */
3906 static int
3907 di_cache_update(struct di_state *st)
3908 {
3909 	int rval;
3910 	uint32_t crc;
3911 	struct di_all *all;
3912 
3913 	ASSERT(DI_CACHE_LOCKED(di_cache));
3914 	ASSERT(snapshot_is_cacheable(st));
3915 
3916 	/*
3917 	 * Free the in-core cache and the on-disk file (if they exist)
3918 	 */
3919 	i_ddi_di_cache_free(&di_cache);
3920 
3921 	/*
3922 	 * Set valid flag before taking the snapshot,
3923 	 * so that any invalidations that arrive
3924 	 * during or after the snapshot are not
3925 	 * removed by us.
3926 	 */
3927 	atomic_or_32(&di_cache.cache_valid, 1);
3928 
3929 	rval = di_snapshot_and_clean(st);
3930 
3931 	if (rval == 0) {
3932 		CACHE_DEBUG((DI_ERR, "can't update cache: bad snapshot"));
3933 		return (0);
3934 	}
3935 
3936 	DI_ALL_PTR(st)->map_size = rval;
3937 
3938 	if (di_mem2cache(st, &di_cache) == 0) {
3939 		CACHE_DEBUG((DI_ERR, "can't update cache: copy failed"));
3940 		return (0);
3941 	}
3942 
3943 	ASSERT(di_cache.cache_data);
3944 	ASSERT(di_cache.cache_size > 0);
3945 
3946 	/*
3947 	 * Now that we have cached the snapshot, compute its checksum.
3948 	 * The checksum is only computed over the valid data in the
3949 	 * cache, not the entire cache.
3950 	 * Also, set all the fields (except checksum) before computing
3951 	 * checksum.
3952 	 */
3953 	all = (struct di_all *)di_cache.cache_data;
3954 	all->cache_magic = DI_CACHE_MAGIC;
3955 	all->map_size = rval;
3956 
3957 	ASSERT(all->cache_checksum == 0);
3958 	CRC32(crc, di_cache.cache_data, all->map_size, -1U, crc32_table);
3959 	all->cache_checksum = crc;
3960 
3961 	di_cache_write(&di_cache);
3962 
3963 	return (rval);
3964 }
3965 
3966 static void
3967 di_cache_print(di_cache_debug_t msglevel, char *fmt, ...)
3968 {
3969 	va_list	ap;
3970 
3971 	if (di_cache_debug <= DI_QUIET)
3972 		return;
3973 
3974 	if (di_cache_debug < msglevel)
3975 		return;
3976 
3977 	switch (msglevel) {
3978 		case DI_ERR:
3979 			msglevel = CE_WARN;
3980 			break;
3981 		case DI_INFO:
3982 		case DI_TRACE:
3983 		default:
3984 			msglevel = CE_NOTE;
3985 			break;
3986 	}
3987 
3988 	va_start(ap, fmt);
3989 	vcmn_err(msglevel, fmt, ap);
3990 	va_end(ap);
3991 }
3992