xref: /titanic_51/usr/src/uts/common/io/bge/bge_send.c (revision bfe60e20c2f727eab7a71b13a2183a856ae0c22f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include "bge_impl.h"
30 
31 
32 /*
33  * The transmit-side code uses an allocation process which is similar
34  * to some theme park roller-coaster rides, where riders sit in cars
35  * that can go individually, but work better in a train.
36  *
37  * 1)	RESERVE a place - this doesn't refer to any specific car or
38  *	seat, just that you will get a ride.  The attempt to RESERVE a
39  *	place can fail if all spaces in all cars are already committed.
40  *
41  * 2)	Prepare yourself; this may take an arbitrary (but not unbounded)
42  *	time, and you can back out at this stage, in which case you must
43  *	give up (RENOUNCE) your place.
44  *
45  * 3)	CLAIM your space - a specific car (the next sequentially
46  *	numbered one) is allocated at this stage, and is guaranteed
47  *	to be part of the next train to depart.  Once you've done
48  *	this, you can't back out, nor wait for any external event
49  *	or resource.
50  *
51  * 4)	Occupy your car - when all CLAIMED cars are OCCUPIED, they
52  *	all depart together as a single train!
53  *
54  * 5)	At the end of the ride, you climb out of the car and RENOUNCE
55  *	your right to it, so that it can be recycled for another rider.
56  *
57  * For each rider, these have to occur in this order, but the riders
58  * don't have to stay in the same order at each stage.  In particular,
59  * they may overtake each other between RESERVING a place and CLAIMING
60  * it, or between CLAIMING and OCCUPYING a space.
61  *
62  * Once a car is CLAIMED, the train currently being assembled can't go
63  * without that car (this guarantees that the cars in a single train
64  * make up a consecutively-numbered set).  Therefore, when any train
65  * leaves, we know there can't be any riders in transit between CLAIMING
66  * and OCCUPYING their cars.  There can be some who have RESERVED but
67  * not yet CLAIMED their places.  That's OK, though, because they'll go
68  * into the next train.
69  */
70 
71 #define	BGE_DBG		BGE_DBG_SEND	/* debug flag for this code	*/
72 
73 /*
74  * ========== Send-side recycle routines ==========
75  */
76 
77 /*
78  * Recycle all the completed buffers in the specified send ring up to
79  * (but not including) the consumer index in the status block.
80  *
81  * This function must advance (srp->tc_next) AND adjust (srp->tx_free)
82  * to account for the packets it has recycled.
83  *
84  * This is a trivial version that just does that and nothing more, but
85  * it suffices while there's only one method for sending messages (by
86  * copying) and that method doesn't need any special per-buffer action
87  * for recycling.
88  */
89 static void bge_recycle_ring(bge_t *bgep, send_ring_t *srp);
90 #pragma	inline(bge_recycle_ring)
91 
92 static void
93 bge_recycle_ring(bge_t *bgep, send_ring_t *srp)
94 {
95 	sw_sbd_t *ssbdp;
96 	bge_queue_item_t *buf_item;
97 	bge_queue_item_t *buf_item_head;
98 	bge_queue_item_t *buf_item_tail;
99 	bge_queue_t *txbuf_queue;
100 	uint64_t slot;
101 	uint64_t n;
102 
103 	ASSERT(mutex_owned(srp->tc_lock));
104 
105 	/*
106 	 * We're about to release one or more places :-)
107 	 * These ASSERTions check that our invariants still hold:
108 	 *	there must always be at least one free place
109 	 *	at this point, there must be at least one place NOT free
110 	 *	we're not about to free more places than were claimed!
111 	 */
112 	ASSERT(srp->tx_free > 0);
113 	ASSERT(srp->tx_free < srp->desc.nslots);
114 
115 	buf_item_head = buf_item_tail = NULL;
116 	for (n = 0, slot = srp->tc_next; slot != *srp->cons_index_p;
117 	    slot = NEXT(slot, srp->desc.nslots)) {
118 		ssbdp = &srp->sw_sbds[slot];
119 		ASSERT(ssbdp->pbuf != NULL);
120 		buf_item = ssbdp->pbuf;
121 		if (buf_item_head == NULL)
122 			buf_item_head = buf_item_tail = buf_item;
123 		else {
124 			buf_item_tail->next = buf_item;
125 			buf_item_tail = buf_item;
126 		}
127 		ssbdp->pbuf = NULL;
128 		n++;
129 	}
130 	if (n == 0)
131 		return;
132 
133 	/*
134 	 * Update recycle index and free tx BD number
135 	 */
136 	srp->tc_next = slot;
137 	ASSERT(srp->tx_free + n <= srp->desc.nslots);
138 	bge_atomic_renounce(&srp->tx_free, n);
139 
140 	/*
141 	 * Reset the watchdog count: to 0 if all buffers are
142 	 * now free, or to 1 if some are still outstanding.
143 	 * Note: non-synchonised access here means we may get
144 	 * the "wrong" answer, but only in a harmless fashion
145 	 * (i.e. we deactivate the watchdog because all buffers
146 	 * are apparently free, even though another thread may
147 	 * have claimed one before we leave here; in this case
148 	 * the watchdog will restart on the next send() call).
149 	 */
150 	bgep->watchdog = srp->tx_free == srp->desc.nslots ? 0 : 1;
151 
152 	/*
153 	 * Return tx buffers to buffer push queue
154 	 */
155 	txbuf_queue = srp->txbuf_push_queue;
156 	mutex_enter(txbuf_queue->lock);
157 	buf_item_tail->next = txbuf_queue->head;
158 	txbuf_queue->head = buf_item_head;
159 	txbuf_queue->count += n;
160 	mutex_exit(txbuf_queue->lock);
161 
162 	/*
163 	 * Check if we need exchange the tx buffer push and pop queue
164 	 */
165 	if ((srp->txbuf_pop_queue->count < srp->tx_buffers_low) &&
166 	    (srp->txbuf_pop_queue->count < txbuf_queue->count)) {
167 		srp->txbuf_push_queue = srp->txbuf_pop_queue;
168 		srp->txbuf_pop_queue = txbuf_queue;
169 	}
170 
171 	if (bgep->tx_resched_needed)
172 		ddi_trigger_softintr(bgep->drain_id);
173 }
174 
175 /*
176  * Recycle all returned slots in all rings.
177  *
178  * To give priority to low-numbered rings, whenever we have recycled any
179  * slots in any ring except 0, we restart scanning again from ring 0.
180  * Thus, for example, if rings 0, 3, and 10 are carrying traffic, the
181  * pattern of recycles might go 0, 3, 10, 3, 0, 10, 0:
182  *
183  *	0	found some - recycle them
184  *	1..2					none found
185  *	3	found some - recycle them	and restart scan
186  *	0..9					none found
187  *	10	found some - recycle them	and restart scan
188  *	0..2					none found
189  *	3	found some more - recycle them	and restart scan
190  *	0	found some more - recycle them
191  *	0..9					none found
192  *	10	found some more - recycle them	and restart scan
193  *	0	found some more - recycle them
194  *	1..15					none found
195  *
196  * The routine returns only when a complete scan has been performed
197  * without finding any slots to recycle.
198  *
199  * Note: the expression (BGE_SEND_RINGS_USED > 1) yields a compile-time
200  * constant and allows the compiler to optimise away the outer do-loop
201  * if only one send ring is being used.
202  */
203 void bge_recycle(bge_t *bgep, bge_status_t *bsp);
204 #pragma	no_inline(bge_recycle)
205 
206 void
207 bge_recycle(bge_t *bgep, bge_status_t *bsp)
208 {
209 	send_ring_t *srp;
210 	uint64_t ring;
211 	uint64_t tx_rings = bgep->chipid.tx_rings;
212 
213 restart:
214 	ring = 0;
215 	srp = &bgep->send[ring];
216 	do {
217 		/*
218 		 * For each ring, (srp->cons_index_p) points to the
219 		 * proper index within the status block (which has
220 		 * already been sync'd by the caller).
221 		 */
222 		ASSERT(srp->cons_index_p == SEND_INDEX_P(bsp, ring));
223 
224 		if (*srp->cons_index_p == srp->tc_next)
225 			continue;		/* no slots to recycle	*/
226 		if (mutex_tryenter(srp->tc_lock) == 0)
227 			continue;		/* already in process	*/
228 		bge_recycle_ring(bgep, srp);
229 		mutex_exit(srp->tc_lock);
230 
231 		/*
232 		 * Restart from ring 0, if we're not on ring 0 already.
233 		 * As H/W selects send BDs totally based on priority and
234 		 * available BDs on the higher priority ring are always
235 		 * selected first, driver should keep consistence with H/W
236 		 * and gives lower-numbered ring with higher priority.
237 		 */
238 		if (tx_rings > 1 && ring > 0)
239 			goto restart;
240 
241 		/*
242 		 * Loop over all rings (if there *are* multiple rings)
243 		 */
244 	} while (++srp, ++ring < tx_rings);
245 }
246 
247 
248 /*
249  * ========== Send-side transmit routines ==========
250  */
251 #define	TCP_CKSUM_OFFSET	16
252 #define	UDP_CKSUM_OFFSET	6
253 
254 static void
255 bge_pseudo_cksum(uint8_t *buf)
256 {
257 	uint32_t cksum;
258 	uint16_t iphl;
259 	uint16_t proto;
260 
261 	/*
262 	 * Point it to the ip header.
263 	 */
264 	buf += sizeof (struct ether_header);
265 
266 	/*
267 	 * Calculate the pseudo-header checksum.
268 	 */
269 	iphl = 4 * (buf[0] & 0xF);
270 	cksum = (((uint16_t)buf[2])<<8) + buf[3] - iphl;
271 	cksum += proto = buf[9];
272 	cksum += (((uint16_t)buf[12])<<8) + buf[13];
273 	cksum += (((uint16_t)buf[14])<<8) + buf[15];
274 	cksum += (((uint16_t)buf[16])<<8) + buf[17];
275 	cksum += (((uint16_t)buf[18])<<8) + buf[19];
276 	cksum = (cksum>>16) + (cksum & 0xFFFF);
277 	cksum = (cksum>>16) + (cksum & 0xFFFF);
278 
279 	/*
280 	 * Point it to the TCP/UDP header, and
281 	 * update the checksum field.
282 	 */
283 	buf += iphl + ((proto == IPPROTO_TCP) ?
284 		TCP_CKSUM_OFFSET : UDP_CKSUM_OFFSET);
285 
286 	*(uint16_t *)buf = htons((uint16_t)cksum);
287 }
288 
289 static bge_queue_item_t *
290 bge_get_txbuf(bge_t *bgep, send_ring_t *srp)
291 {
292 	bge_queue_item_t *txbuf_item;
293 	bge_queue_t *txbuf_queue;
294 
295 	txbuf_queue = srp->txbuf_pop_queue;
296 	mutex_enter(txbuf_queue->lock);
297 	if (txbuf_queue->count == 0) {
298 		mutex_exit(txbuf_queue->lock);
299 		txbuf_queue = srp->txbuf_push_queue;
300 		mutex_enter(txbuf_queue->lock);
301 		if (txbuf_queue->count == 0) {
302 			mutex_exit(txbuf_queue->lock);
303 			/* Try to allocate more tx buffers */
304 			if (srp->tx_array < srp->tx_array_max) {
305 				mutex_enter(srp->tx_lock);
306 				txbuf_item = bge_alloc_txbuf_array(bgep, srp);
307 				mutex_exit(srp->tx_lock);
308 			} else
309 				txbuf_item = NULL;
310 			return (txbuf_item);
311 		}
312 	}
313 	txbuf_item = txbuf_queue->head;
314 	txbuf_queue->head = (bge_queue_item_t *)txbuf_item->next;
315 	txbuf_queue->count--;
316 	mutex_exit(txbuf_queue->lock);
317 	txbuf_item->next = NULL;
318 
319 	return (txbuf_item);
320 }
321 
322 static void bge_send_fill_txbd(send_ring_t *srp, send_pkt_t *pktp);
323 #pragma	inline(bge_send_fill_txbd)
324 
325 static void
326 bge_send_fill_txbd(send_ring_t *srp, send_pkt_t *pktp)
327 {
328 	bge_sbd_t *hw_sbd_p;
329 	sw_sbd_t *ssbdp;
330 	bge_queue_item_t *txbuf_item;
331 	sw_txbuf_t *txbuf;
332 	uint64_t slot;
333 
334 	ASSERT(mutex_owned(srp->tx_lock));
335 
336 	/*
337 	 * Go straight to claiming our already-reserved places
338 	 * on the train!
339 	 */
340 	ASSERT(pktp->txbuf_item != NULL);
341 	txbuf_item = pktp->txbuf_item;
342 	txbuf = txbuf_item->item;
343 	slot = srp->tx_next;
344 	ssbdp = &srp->sw_sbds[slot];
345 	hw_sbd_p = DMA_VPTR(ssbdp->desc);
346 	hw_sbd_p->flags = 0;
347 	ASSERT(txbuf->copy_len != 0);
348 	(void) ddi_dma_sync(txbuf->buf.dma_hdl,  0,
349 	    txbuf->copy_len, DDI_DMA_SYNC_FORDEV);
350 	ASSERT(ssbdp->pbuf == NULL);
351 	ssbdp->pbuf = txbuf_item;
352 	srp->tx_next = NEXT(slot, srp->desc.nslots);
353 	pktp->txbuf_item = NULL;
354 
355 	/*
356 	 * Setting hardware send buffer descriptor
357 	 */
358 	hw_sbd_p->host_buf_addr = txbuf->buf.cookie.dmac_laddress;
359 	hw_sbd_p->len = txbuf->copy_len;
360 	if (pktp->vlan_tci != 0) {
361 		hw_sbd_p->vlan_tci = pktp->vlan_tci;
362 		hw_sbd_p->flags |= SBD_FLAG_VLAN_TAG;
363 	}
364 	if (pktp->pflags & HCK_IPV4_HDRCKSUM)
365 		hw_sbd_p->flags |= SBD_FLAG_IP_CKSUM;
366 	if (pktp->pflags & HCK_FULLCKSUM)
367 		hw_sbd_p->flags |= SBD_FLAG_TCP_UDP_CKSUM;
368 	hw_sbd_p->flags |= SBD_FLAG_PACKET_END;
369 }
370 
371 /*
372  * Send a message by copying it into a preallocated (and premapped) buffer
373  */
374 static void bge_send_copy(bge_t *bgep, sw_txbuf_t *txbuf, mblk_t *mp,
375     uint16_t tci);
376 #pragma	inline(bge_send_copy)
377 
378 static void
379 bge_send_copy(bge_t *bgep, sw_txbuf_t *txbuf, mblk_t *mp, uint16_t tci)
380 {
381 	mblk_t *bp;
382 	uint32_t mblen;
383 	char *pbuf;
384 
385 	txbuf->copy_len = 0;
386 	pbuf = DMA_VPTR(txbuf->buf);
387 	bp = mp;
388 	if (tci != 0) {
389 		mblen = MBLKL(bp);
390 		ASSERT(mblen >= 2 * ETHERADDRL + VLAN_TAGSZ);
391 		bcopy(bp->b_rptr, pbuf, 2 * ETHERADDRL);
392 		pbuf += 2 * ETHERADDRL;
393 		txbuf->copy_len += 2 * ETHERADDRL;
394 		mblen -= 2 * ETHERADDRL + VLAN_TAGSZ;
395 		if ((txbuf->copy_len += mblen) <= bgep->chipid.ethmax_size) {
396 			bcopy(bp->b_wptr - mblen, pbuf, mblen);
397 			pbuf += mblen;
398 		}
399 		bp = bp->b_cont;
400 	}
401 	for (; bp != NULL; bp = bp->b_cont) {
402 		if ((mblen = MBLKL(bp)) == 0)
403 			continue;
404 		if ((txbuf->copy_len += mblen) <= bgep->chipid.ethmax_size) {
405 			bcopy(bp->b_rptr, pbuf, mblen);
406 			pbuf += mblen;
407 		}
408 	}
409 }
410 
411 /*
412  * Fill the Tx buffer descriptors and trigger the h/w transmission
413  */
414 static void
415 bge_send_serial(bge_t *bgep, send_ring_t *srp)
416 {
417 	send_pkt_t *pktp;
418 	uint64_t txfill_next;
419 	uint32_t count;
420 	uint32_t tx_next;
421 	sw_sbd_t *ssbdp;
422 	bge_status_t *bsp;
423 
424 	/*
425 	 * Try to hold the tx lock:
426 	 *	If we are in an interrupt context, use mutex_enter() to
427 	 *	ensure quick response for tx in interrupt context;
428 	 *	Otherwise, use mutex_tryenter() to serialize this h/w tx
429 	 *	BD filling and transmission triggering task.
430 	 */
431 	if (servicing_interrupt() != 0)
432 		mutex_enter(srp->tx_lock);
433 	else if (mutex_tryenter(srp->tx_lock) == 0)
434 		return;		/* already in process	*/
435 
436 	bsp = DMA_VPTR(bgep->status_block);
437 	txfill_next = srp->txfill_next;
438 	tx_next = srp->tx_next;
439 	ssbdp = &srp->sw_sbds[tx_next];
440 	for (count = 0; count < bgep->param_drain_max; ++count) {
441 		pktp = &srp->pktp[txfill_next];
442 		if (!pktp->tx_ready) {
443 			if (count == 0)
444 				srp->tx_block++;
445 			break;
446 		}
447 
448 		/*
449 		 * If there are no enough BDs: try to recycle more
450 		 */
451 		if (srp->tx_free <= 1)
452 			bge_recycle(bgep, bsp);
453 
454 		/*
455 		 * Reserved required BDs: 1 is enough
456 		 */
457 		if (!bge_atomic_reserve(&srp->tx_free, 1)) {
458 			srp->tx_nobd++;
459 			break;
460 		}
461 
462 		/*
463 		 * Filling the tx BD
464 		 */
465 		bge_send_fill_txbd(srp, pktp);
466 		txfill_next = NEXT(txfill_next, BGE_SEND_BUF_MAX);
467 		pktp->tx_ready = B_FALSE;
468 	}
469 
470 	/*
471 	 * Trigger h/w to start transmission.
472 	 */
473 	if (count != 0) {
474 		bge_atomic_sub64(&srp->tx_flow, count);
475 		if (tx_next + count > srp->desc.nslots) {
476 			(void) ddi_dma_sync(ssbdp->desc.dma_hdl,  0,
477 			    (srp->desc.nslots - tx_next) * sizeof (bge_sbd_t),
478 			    DDI_DMA_SYNC_FORDEV);
479 			count -= srp->desc.nslots - tx_next;
480 			ssbdp = &srp->sw_sbds[0];
481 		}
482 		(void) ddi_dma_sync(ssbdp->desc.dma_hdl,  0,
483 		    count*sizeof (bge_sbd_t), DDI_DMA_SYNC_FORDEV);
484 		bge_mbx_put(bgep, srp->chip_mbx_reg, srp->tx_next);
485 		srp->txfill_next = txfill_next;
486 		bgep->watchdog++;
487 	}
488 
489 	mutex_exit(srp->tx_lock);
490 }
491 
492 static boolean_t
493 bge_send(bge_t *bgep, mblk_t *mp)
494 {
495 	uint_t ring = 0;	/* use ring 0 */
496 	send_ring_t *srp;
497 	struct ether_vlan_header *ehp;
498 	bge_queue_item_t *txbuf_item;
499 	sw_txbuf_t *txbuf;
500 	send_pkt_t *pktp;
501 	uint64_t pkt_slot;
502 	uint16_t vlan_tci;
503 	uint32_t pflags;
504 
505 	ASSERT(mp->b_next == NULL);
506 	srp = &bgep->send[ring];
507 
508 	/*
509 	 * Get a s/w tx buffer first
510 	 */
511 	txbuf_item = bge_get_txbuf(bgep, srp);
512 	if (txbuf_item == NULL) {
513 		/* no tx buffer available */
514 		srp->tx_nobuf++;
515 		bgep->tx_resched_needed = B_TRUE;
516 		bge_send_serial(bgep, srp);
517 		return (B_FALSE);
518 	}
519 
520 	/*
521 	 * Determine if the packet is VLAN tagged.
522 	 */
523 	ASSERT(MBLKL(mp) >= sizeof (struct ether_header));
524 	ehp = (struct ether_vlan_header *)mp->b_rptr;
525 	if (ehp->ether_tpid == htons(ETHERTYPE_VLAN))
526 		vlan_tci  = ntohs(ehp->ether_tci);
527 	else
528 		vlan_tci = 0;
529 
530 	/*
531 	 * Copy all mp fragments to the pkt buffer
532 	 */
533 	txbuf = txbuf_item->item;
534 	bge_send_copy(bgep, txbuf, mp, vlan_tci);
535 	ASSERT(txbuf->copy_len <= bgep->chipid.ethmax_size);
536 
537 	/*
538 	 * Retrieve checksum offloading info.
539 	 */
540 	hcksum_retrieve(mp, NULL, NULL, NULL, NULL, NULL, NULL, &pflags);
541 
542 	/*
543 	 * Calculate pseudo checksum if needed.
544 	 */
545 	if ((pflags & HCK_FULLCKSUM) &&
546 	    (bgep->chipid.flags & CHIP_FLAG_PARTIAL_CSUM))
547 		bge_pseudo_cksum((uint8_t *)DMA_VPTR(txbuf->buf));
548 
549 	/*
550 	 * Packet buffer is ready to send: get and fill pkt info
551 	 */
552 	pkt_slot = bge_atomic_next(&srp->txpkt_next, BGE_SEND_BUF_MAX);
553 	pktp = &srp->pktp[pkt_slot];
554 	ASSERT(pktp->txbuf_item == NULL);
555 	pktp->txbuf_item = txbuf_item;
556 	pktp->vlan_tci = vlan_tci;
557 	pktp->pflags = pflags;
558 	atomic_inc_64(&srp->tx_flow);
559 	ASSERT(pktp->tx_ready == B_FALSE);
560 	pktp->tx_ready = B_TRUE;
561 
562 	/*
563 	 * Filling the h/w bd and trigger the h/w to start transmission
564 	 */
565 	bge_send_serial(bgep, srp);
566 
567 	/*
568 	 * We've copied the contents, the message can be freed right away
569 	 */
570 	freemsg(mp);
571 
572 	return (B_TRUE);
573 }
574 
575 uint_t
576 bge_send_drain(caddr_t arg)
577 {
578 	uint_t ring = 0;	/* use ring 0 */
579 	bge_t *bgep;
580 	send_ring_t *srp;
581 
582 	bgep = (bge_t *)arg;
583 	BGE_TRACE(("bge_send_drain($%p)", (void *)bgep));
584 
585 	srp = &bgep->send[ring];
586 	bge_send_serial(bgep, srp);
587 
588 	if (bgep->tx_resched_needed &&
589 	    (srp->tx_flow < srp->tx_buffers_low) &&
590 	    (bgep->bge_mac_state == BGE_MAC_STARTED)) {
591 		mac_tx_update(bgep->mh);
592 		bgep->tx_resched_needed = B_FALSE;
593 		bgep->tx_resched++;
594 	}
595 
596 	return (DDI_INTR_CLAIMED);
597 }
598 
599 /*
600  * bge_m_tx() - send a chain of packets
601  */
602 mblk_t *
603 bge_m_tx(void *arg, mblk_t *mp)
604 {
605 	bge_t *bgep = arg;		/* private device info	*/
606 	mblk_t *next;
607 
608 	BGE_TRACE(("bge_m_tx($%p, $%p)", arg, (void *)mp));
609 
610 	ASSERT(mp != NULL);
611 	ASSERT(bgep->bge_mac_state == BGE_MAC_STARTED);
612 
613 	rw_enter(bgep->errlock, RW_READER);
614 	if (bgep->bge_chip_state != BGE_CHIP_RUNNING) {
615 		BGE_DEBUG(("bge_m_tx: chip not running"));
616 		freemsgchain(mp);
617 		mp = NULL;
618 	}
619 
620 	while (mp != NULL) {
621 		next = mp->b_next;
622 		mp->b_next = NULL;
623 
624 		if (!bge_send(bgep, mp)) {
625 			mp->b_next = next;
626 			break;
627 		}
628 
629 		mp = next;
630 	}
631 	rw_exit(bgep->errlock);
632 
633 	return (mp);
634 }
635