xref: /titanic_51/usr/src/uts/common/io/bge/bge_mii.c (revision 261a51afbf7133d9f7c89f1388050677f56b7d1a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include "bge_impl.h"
30 
31 /*
32  * Bit test macros, returning boolean_t values
33  */
34 #define	BIS(w, b)	(((w) & (b)) ? B_TRUE : B_FALSE)
35 #define	BIC(w, b)	(((w) & (b)) ? B_FALSE : B_TRUE)
36 #define	UPORDOWN(x)	((x) ? "up" : "down")
37 
38 /*
39  * ========== Copper (PHY) support ==========
40  */
41 
42 #define	BGE_DBG		BGE_DBG_PHY	/* debug flag for this code	*/
43 
44 /*
45  * #defines:
46  *	BGE_COPPER_WIRESPEED controls whether the Broadcom WireSpeed(tm)
47  *	feature is enabled.  We need to recheck whether this can be
48  *	enabled; at one time it seemed to interact unpleasantly with the
49  *	loopback modes.
50  *
51  *	BGE_COPPER_IDLEOFF controls whether the (copper) PHY power is
52  *	turned off when the PHY is idled i.e. during driver suspend().
53  *	For now this is disabled because the chip doesn't seem to
54  *	resume cleanly if the PHY power is turned off.
55  */
56 #define	BGE_COPPER_WIRESPEED	B_TRUE
57 #define	BGE_COPPER_IDLEOFF	B_FALSE
58 
59 /*
60  * The arrays below can be indexed by the MODE bits from the Auxiliary
61  * Status register to determine the current speed/duplex settings.
62  */
63 static const int16_t bge_copper_link_speed[] = {
64 	0,				/* MII_AUX_STATUS_MODE_NONE	*/
65 	10,				/* MII_AUX_STATUS_MODE_10_H	*/
66 	10,				/* MII_AUX_STATUS_MODE_10_F	*/
67 	100,				/* MII_AUX_STATUS_MODE_100_H	*/
68 	0,				/* MII_AUX_STATUS_MODE_100_4	*/
69 	100,				/* MII_AUX_STATUS_MODE_100_F	*/
70 	1000,				/* MII_AUX_STATUS_MODE_1000_H	*/
71 	1000				/* MII_AUX_STATUS_MODE_1000_F	*/
72 };
73 
74 static const int8_t bge_copper_link_duplex[] = {
75 	LINK_DUPLEX_UNKNOWN,		/* MII_AUX_STATUS_MODE_NONE	*/
76 	LINK_DUPLEX_HALF,		/* MII_AUX_STATUS_MODE_10_H	*/
77 	LINK_DUPLEX_FULL,		/* MII_AUX_STATUS_MODE_10_F	*/
78 	LINK_DUPLEX_HALF,		/* MII_AUX_STATUS_MODE_100_H	*/
79 	LINK_DUPLEX_UNKNOWN,		/* MII_AUX_STATUS_MODE_100_4	*/
80 	LINK_DUPLEX_FULL,		/* MII_AUX_STATUS_MODE_100_F	*/
81 	LINK_DUPLEX_HALF,		/* MII_AUX_STATUS_MODE_1000_H	*/
82 	LINK_DUPLEX_FULL		/* MII_AUX_STATUS_MODE_1000_F	*/
83 };
84 
85 static const char * const bge_copper_link_text[] = {
86 	"down",				/* MII_AUX_STATUS_MODE_NONE	*/
87 	"up 10Mbps Half-Duplex",	/* MII_AUX_STATUS_MODE_10_H	*/
88 	"up 10Mbps Full-Duplex",	/* MII_AUX_STATUS_MODE_10_F	*/
89 	"up 100Mbps Half-Duplex",	/* MII_AUX_STATUS_MODE_100_H	*/
90 	"down",				/* MII_AUX_STATUS_MODE_100_4	*/
91 	"up 100Mbps Full-Duplex",	/* MII_AUX_STATUS_MODE_100_F	*/
92 	"up 1000Mbps Half-Duplex",	/* MII_AUX_STATUS_MODE_1000_H	*/
93 	"up 1000Mbps Full-Duplex"	/* MII_AUX_STATUS_MODE_1000_F	*/
94 };
95 
96 #if	BGE_DEBUGGING
97 
98 static void
99 bge_phydump(bge_t *bgep, uint16_t mii_status, uint16_t aux)
100 {
101 	uint16_t regs[32];
102 	int i;
103 
104 	ASSERT(mutex_owned(bgep->genlock));
105 
106 	for (i = 0; i < 32; ++i)
107 		switch (i) {
108 		default:
109 			regs[i] = bge_mii_get16(bgep, i);
110 			break;
111 
112 		case MII_STATUS:
113 			regs[i] = mii_status;
114 			break;
115 
116 		case MII_AUX_STATUS:
117 			regs[i] = aux;
118 			break;
119 
120 		case 0x0b: case 0x0c: case 0x0d: case 0x0e:
121 		case 0x15: case 0x16: case 0x17:
122 		case 0x1c:
123 		case 0x1f:
124 			/* reserved registers -- don't read these */
125 			regs[i] = 0;
126 			break;
127 		}
128 
129 	for (i = 0; i < 32; i += 8)
130 		BGE_DEBUG(("bge_phydump: "
131 				"0x%04x %04x %04x %04x %04x %04x %04x %04x",
132 			regs[i+0], regs[i+1], regs[i+2], regs[i+3],
133 			regs[i+4], regs[i+5], regs[i+6], regs[i+7]));
134 }
135 
136 #endif	/* BGE_DEBUGGING */
137 
138 /*
139  * Basic low-level function to probe for a PHY
140  *
141  * Returns TRUE if the PHY responds with valid data, FALSE otherwise
142  */
143 static boolean_t
144 bge_phy_probe(bge_t *bgep)
145 {
146 	uint16_t phy_status;
147 
148 	BGE_TRACE(("bge_phy_probe($%p)", (void *)bgep));
149 
150 	ASSERT(mutex_owned(bgep->genlock));
151 
152 	/*
153 	 * Read the MII_STATUS register twice, in
154 	 * order to clear any sticky bits (but they should
155 	 * have been cleared by the RESET, I think).
156 	 */
157 	phy_status = bge_mii_get16(bgep, MII_STATUS);
158 	phy_status = bge_mii_get16(bgep, MII_STATUS);
159 	BGE_DEBUG(("bge_phy_probe: status 0x%x", phy_status));
160 
161 	/*
162 	 * Now check the value read; it should have at least one bit set
163 	 * (for the device capabilities) and at least one clear (one of
164 	 * the error bits). So if we see all 0s or all 1s, there's a
165 	 * problem.  In particular, bge_mii_get16() returns all 1s if
166 	 * communications fails ...
167 	 */
168 	switch (phy_status) {
169 	case 0x0000:
170 	case 0xffff:
171 		return (B_FALSE);
172 
173 	default :
174 		return (B_TRUE);
175 	}
176 }
177 
178 /*
179  * Basic low-level function to reset the PHY.
180  * Doesn't incorporate any special-case workarounds.
181  *
182  * Returns TRUE on success, FALSE if the RESET bit doesn't clear
183  */
184 static boolean_t
185 bge_phy_reset(bge_t *bgep)
186 {
187 	uint16_t control;
188 	uint_t count;
189 
190 	BGE_TRACE(("bge_phy_reset($%p)", (void *)bgep));
191 
192 	ASSERT(mutex_owned(bgep->genlock));
193 
194 	/*
195 	 * Set the PHY RESET bit, then wait up to 5 ms for it to self-clear
196 	 */
197 	bge_mii_put16(bgep, MII_CONTROL, MII_CONTROL_RESET);
198 	for (count = 0; ++count < 1000; ) {
199 		drv_usecwait(5);
200 		control = bge_mii_get16(bgep, MII_CONTROL);
201 		if (BIC(control, MII_CONTROL_RESET))
202 			return (B_TRUE);
203 	}
204 
205 	BGE_DEBUG(("bge_phy_reset: FAILED, control now 0x%x", control));
206 
207 	return (B_FALSE);
208 }
209 
210 /*
211  * Basic low-level function to powerdown the PHY, if supported
212  * If powerdown support is compiled out, this function does nothing.
213  */
214 static void
215 bge_phy_powerdown(bge_t *bgep)
216 {
217 	BGE_TRACE(("bge_phy_powerdown"));
218 #if	BGE_COPPER_IDLEOFF
219 	bge_mii_put16(bgep, MII_CONTROL, MII_CONTROL_PWRDN);
220 #endif	/* BGE_COPPER_IDLEOFF */
221 }
222 
223 /*
224  * The following functions are based on sample code provided by
225  * Broadcom (20-June-2003), and implement workarounds said to be
226  * required on the early revisions of the BCM5703/4C.
227  *
228  * The registers and values used are mostly UNDOCUMENTED, and
229  * therefore don't have symbolic names ;-(
230  *
231  * Many of the comments are straight out of the Broadcom code:
232  * even where the code has been restructured, the original
233  * comments have been preserved in order to explain what these
234  * undocumented registers & values are all about ...
235  */
236 
237 static void
238 bge_phy_macro_wait(bge_t *bgep)
239 {
240 	uint_t count;
241 
242 	for (count = 100; --count; )
243 		if ((bge_mii_get16(bgep, 0x16) & 0x1000) == 0)
244 			break;
245 }
246 
247 /*
248  * PHY test data pattern:
249  *
250  * For 5703/04, each DFE TAP has 21-bits (low word 15, hi word 6)
251  * For 5705,    each DFE TAP has 19-bits (low word 15, hi word 4)
252  * For simplicity, we check only 19-bits, so we don't have to
253  * distinguish which chip it is.
254  * the LO word contains 15 bits, make sure pattern data is < 0x7fff
255  * the HI word contains  6 bits, make sure pattern data is < 0x003f
256  */
257 #define	N_CHANNELS	4
258 #define	N_TAPS		3
259 
260 static struct {
261 	uint16_t	lo;
262 	uint16_t	hi;
263 } tap_data[N_CHANNELS][N_TAPS] = {
264 	{
265 		{ 0x5555, 0x0005 },	/* ch0, TAP 0, LO/HI pattern */
266 		{ 0x2aaa, 0x000a },	/* ch0, TAP 1, LO/HI pattern */
267 		{ 0x3456, 0x0003 }	/* ch0, TAP 2, LO/HI pattern */
268 	},
269 	{
270 		{ 0x2aaa, 0x000a },	/* ch1, TAP 0, LO/HI pattern */
271 		{ 0x3333, 0x0003 },	/* ch1, TAP 1, LO/HI pattern */
272 		{ 0x789a, 0x0005 }	/* ch1, TAP 2, LO/HI pattern */
273 	},
274 	{
275 		{ 0x5a5a, 0x0005 },	/* ch2, TAP 0, LO/HI pattern */
276 		{ 0x2a6a, 0x000a },	/* ch2, TAP 1, LO/HI pattern */
277 		{ 0x1bcd, 0x0003 }	/* ch2, TAP 2, LO/HI pattern */
278 	},
279 	{
280 		{ 0x2a5a, 0x000a },	/* ch3, TAP 0, LO/HI pattern */
281 		{ 0x33c3, 0x0003 },	/* ch3, TAP 1, LO/HI pattern */
282 		{ 0x2ef1, 0x0005 }	/* ch3, TAP 2, LO/HI pattern */
283 	}
284 };
285 
286 /*
287  * Check whether the PHY has locked up after a RESET.
288  *
289  * Returns TRUE if it did, FALSE is it's OK ;-)
290  */
291 static boolean_t
292 bge_phy_locked_up(bge_t *bgep)
293 {
294 	uint16_t dataLo;
295 	uint16_t dataHi;
296 	uint_t chan;
297 	uint_t tap;
298 
299 	/*
300 	 * Check TAPs for all 4 channels, as soon as we see a lockup
301 	 * we'll stop checking.
302 	 */
303 	for (chan = 0; chan < N_CHANNELS; ++chan) {
304 		/* Select channel and set TAP index to 0 */
305 		bge_mii_put16(bgep, 0x17, (chan << 13) | 0x0200);
306 		/* Freeze filter again just to be safe */
307 		bge_mii_put16(bgep, 0x16, 0x0002);
308 
309 		/*
310 		 * Write fixed pattern to the RAM, 3 TAPs for
311 		 * each channel, each TAP have 2 WORDs (LO/HI)
312 		 */
313 		for (tap = 0; tap < N_TAPS; ++tap) {
314 			bge_mii_put16(bgep, 0x15, tap_data[chan][tap].lo);
315 			bge_mii_put16(bgep, 0x15, tap_data[chan][tap].hi);
316 		}
317 
318 		/*
319 		 * Active PHY's Macro operation to write DFE
320 		 * TAP from RAM, and wait for Macro to complete.
321 		 */
322 		bge_mii_put16(bgep, 0x16, 0x0202);
323 		bge_phy_macro_wait(bgep);
324 
325 		/*
326 		 * Done with write phase, now begin read phase.
327 		 */
328 
329 		/* Select channel and set TAP index to 0 */
330 		bge_mii_put16(bgep, 0x17, (chan << 13) | 0x0200);
331 
332 		/*
333 		 * Active PHY's Macro operation to load DFE
334 		 * TAP to RAM, and wait for Macro to complete
335 		 */
336 		bge_mii_put16(bgep, 0x16, 0x0082);
337 		bge_phy_macro_wait(bgep);
338 
339 		/* Enable "pre-fetch" */
340 		bge_mii_put16(bgep, 0x16, 0x0802);
341 		bge_phy_macro_wait(bgep);
342 
343 		/*
344 		 * Read back the TAP values.  3 TAPs for each
345 		 * channel, each TAP have 2 WORDs (LO/HI)
346 		 */
347 		for (tap = 0; tap < N_TAPS; ++tap) {
348 			/*
349 			 * Read Lo/Hi then wait for 'done' is faster.
350 			 * For DFE TAP, the HI word contains 6 bits,
351 			 * LO word contains 15 bits
352 			 */
353 			dataLo = bge_mii_get16(bgep, 0x15) & 0x7fff;
354 			dataHi = bge_mii_get16(bgep, 0x15) & 0x003f;
355 			bge_phy_macro_wait(bgep);
356 
357 			/*
358 			 * Check if what we wrote is what we read back.
359 			 * If failed, then the PHY is locked up, we need
360 			 * to do PHY reset again
361 			 */
362 			if (dataLo != tap_data[chan][tap].lo)
363 				return (B_TRUE);	/* wedged!	*/
364 
365 			if (dataHi != tap_data[chan][tap].hi)
366 				return (B_TRUE);	/* wedged!	*/
367 		}
368 	}
369 
370 	/*
371 	 * The PHY isn't locked up ;-)
372 	 */
373 	return (B_FALSE);
374 }
375 
376 /*
377  * Special-case code to reset the PHY on the 5702/5703/5704C/5705/5782.
378  * Tries up to 5 times to recover from failure to reset or PHY lockup.
379  *
380  * Returns TRUE on success, FALSE if there's an unrecoverable problem
381  */
382 static boolean_t
383 bge_phy_reset_and_check(bge_t *bgep)
384 {
385 	boolean_t reset_success;
386 	boolean_t phy_locked;
387 	uint16_t extctrl;
388 	uint_t retries;
389 
390 	for (retries = 0; retries < 5; ++retries) {
391 		/* Issue a phy reset, and wait for reset to complete */
392 		/* Assuming reset is successful first */
393 		reset_success = bge_phy_reset(bgep);
394 
395 		/*
396 		 * Now go check the DFE TAPs to see if locked up, but
397 		 * first, we need to set up PHY so we can read DFE
398 		 * TAPs.
399 		 */
400 
401 		/*
402 		 * Disable Transmitter and Interrupt, while we play
403 		 * with the PHY registers, so the link partner won't
404 		 * see any strange data and the Driver won't see any
405 		 * interrupts.
406 		 */
407 		extctrl = bge_mii_get16(bgep, 0x10);
408 		bge_mii_put16(bgep, 0x10, extctrl | 0x3000);
409 
410 		/* Setup Full-Duplex, 1000 mbps */
411 		bge_mii_put16(bgep, 0x0, 0x0140);
412 
413 		/* Set to Master mode */
414 		bge_mii_put16(bgep, 0x9, 0x1800);
415 
416 		/* Enable SM_DSP_CLOCK & 6dB */
417 		bge_mii_put16(bgep, 0x18, 0x0c00);	/* "the ADC fix" */
418 
419 		/* Work-arounds */
420 		bge_mii_put16(bgep, 0x17, 0x201f);
421 		bge_mii_put16(bgep, 0x15, 0x2aaa);
422 
423 		/* More workarounds */
424 		bge_mii_put16(bgep, 0x17, 0x000a);
425 		bge_mii_put16(bgep, 0x15, 0x0323);	/* "the Gamma fix" */
426 
427 		/* Blocks the PHY control access */
428 		bge_mii_put16(bgep, 0x17, 0x8005);
429 		bge_mii_put16(bgep, 0x15, 0x0800);
430 
431 		/* Test whether PHY locked up ;-( */
432 		phy_locked = bge_phy_locked_up(bgep);
433 		if (reset_success && !phy_locked)
434 			break;
435 
436 		/*
437 		 * Some problem here ... log it & retry
438 		 */
439 		if (!reset_success)
440 			BGE_REPORT((bgep, "PHY didn't reset!"));
441 		if (phy_locked)
442 			BGE_REPORT((bgep, "PHY locked up!"));
443 	}
444 
445 	/* Remove block phy control */
446 	bge_mii_put16(bgep, 0x17, 0x8005);
447 	bge_mii_put16(bgep, 0x15, 0x0000);
448 
449 	/* Unfreeze DFE TAP filter for all channels */
450 	bge_mii_put16(bgep, 0x17, 0x8200);
451 	bge_mii_put16(bgep, 0x16, 0x0000);
452 
453 	/* Restore PHY back to operating state */
454 	bge_mii_put16(bgep, 0x18, 0x0400);
455 
456 	/* Enable transmitter and interrupt */
457 	extctrl = bge_mii_get16(bgep, 0x10);
458 	bge_mii_put16(bgep, 0x10, extctrl & ~0x3000);
459 
460 	if (!reset_success)
461 		bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE);
462 	else if (phy_locked)
463 		bge_fm_ereport(bgep, DDI_FM_DEVICE_INVAL_STATE);
464 	return (reset_success && !phy_locked);
465 }
466 
467 static void
468 bge_phy_tweak_gmii(bge_t *bgep)
469 {
470 	/* Tweak GMII timing */
471 	bge_mii_put16(bgep, 0x1c, 0x8d68);
472 	bge_mii_put16(bgep, 0x1c, 0x8d68);
473 }
474 
475 /* Bit Error Rate reduction fix */
476 static void
477 bge_phy_bit_err_fix(bge_t *bgep)
478 {
479 	bge_mii_put16(bgep, 0x18, 0x0c00);
480 	bge_mii_put16(bgep, 0x17, 0x000a);
481 	bge_mii_put16(bgep, 0x15, 0x310b);
482 	bge_mii_put16(bgep, 0x17, 0x201f);
483 	bge_mii_put16(bgep, 0x15, 0x9506);
484 	bge_mii_put16(bgep, 0x17, 0x401f);
485 	bge_mii_put16(bgep, 0x15, 0x14e2);
486 	bge_mii_put16(bgep, 0x18, 0x0400);
487 }
488 
489 /*
490  * End of Broadcom-derived workaround code				*
491  */
492 
493 static int
494 bge_restart_copper(bge_t *bgep, boolean_t powerdown)
495 {
496 	uint16_t phy_status;
497 	boolean_t reset_ok;
498 
499 	BGE_TRACE(("bge_restart_copper($%p, %d)", (void *)bgep, powerdown));
500 
501 	ASSERT(mutex_owned(bgep->genlock));
502 
503 	switch (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev)) {
504 	default:
505 		/*
506 		 * Shouldn't happen; it means we don't recognise this chip.
507 		 * It's probably a new one, so we'll try our best anyway ...
508 		 */
509 	case MHCR_CHIP_ASIC_REV_5703:
510 	case MHCR_CHIP_ASIC_REV_5704:
511 	case MHCR_CHIP_ASIC_REV_5705:
512 	case MHCR_CHIP_ASIC_REV_5721_5751:
513 	case MHCR_CHIP_ASIC_REV_5752:
514 	case MHCR_CHIP_ASIC_REV_5714:
515 	case MHCR_CHIP_ASIC_REV_5715:
516 		reset_ok = bge_phy_reset_and_check(bgep);
517 		break;
518 
519 	case MHCR_CHIP_ASIC_REV_5700:
520 	case MHCR_CHIP_ASIC_REV_5701:
521 		/*
522 		 * Just a plain reset; the "check" code breaks these chips
523 		 */
524 		reset_ok = bge_phy_reset(bgep);
525 		if (!reset_ok)
526 			bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE);
527 		break;
528 	}
529 	if (!reset_ok) {
530 		BGE_REPORT((bgep, "PHY failed to reset correctly"));
531 		return (DDI_FAILURE);
532 	}
533 
534 	/*
535 	 * Step 5: disable WOL (not required after RESET)
536 	 *
537 	 * Step 6: refer to errata
538 	 */
539 	switch (bgep->chipid.asic_rev) {
540 	default:
541 		break;
542 
543 	case MHCR_CHIP_REV_5704_A0:
544 		bge_phy_tweak_gmii(bgep);
545 		break;
546 	}
547 
548 	switch (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev)) {
549 	case MHCR_CHIP_ASIC_REV_5705:
550 	case MHCR_CHIP_ASIC_REV_5721_5751:
551 		bge_phy_bit_err_fix(bgep);
552 		break;
553 	}
554 
555 	/*
556 	 * Step 7: read the MII_INTR_STATUS register twice,
557 	 * in order to clear any sticky bits (but they should
558 	 * have been cleared by the RESET, I think), and we're
559 	 * not using PHY interrupts anyway.
560 	 *
561 	 * Step 8: enable the PHY to interrupt on link status
562 	 * change (not required)
563 	 *
564 	 * Step 9: configure PHY LED Mode - not applicable?
565 	 *
566 	 * Step 10: read the MII_STATUS register twice, in
567 	 * order to clear any sticky bits (but they should
568 	 * have been cleared by the RESET, I think).
569 	 */
570 	phy_status = bge_mii_get16(bgep, MII_STATUS);
571 	phy_status = bge_mii_get16(bgep, MII_STATUS);
572 	BGE_DEBUG(("bge_restart_copper: status 0x%x", phy_status));
573 
574 	/*
575 	 * Finally, shut down the PHY, if required
576 	 */
577 	if (powerdown)
578 		bge_phy_powerdown(bgep);
579 	return (DDI_SUCCESS);
580 }
581 
582 /*
583  * Synchronise the (copper) PHY's speed/duplex/autonegotiation capabilities
584  * and advertisements with the required settings as specified by the various
585  * param_* variables that can be poked via the NDD interface.
586  *
587  * We always reset the PHY and reprogram *all* the relevant registers,
588  * not just those changed.  This should cause the link to go down, and then
589  * back up again once the link is stable and autonegotiation (if enabled)
590  * is complete.  We should get a link state change interrupt somewhere along
591  * the way ...
592  *
593  * NOTE: <genlock> must already be held by the caller
594  */
595 static int
596 bge_update_copper(bge_t *bgep)
597 {
598 	boolean_t adv_autoneg;
599 	boolean_t adv_pause;
600 	boolean_t adv_asym_pause;
601 	boolean_t adv_1000fdx;
602 	boolean_t adv_1000hdx;
603 	boolean_t adv_100fdx;
604 	boolean_t adv_100hdx;
605 	boolean_t adv_10fdx;
606 	boolean_t adv_10hdx;
607 
608 	uint16_t control;
609 	uint16_t gigctrl;
610 	uint16_t auxctrl;
611 	uint16_t anar;
612 
613 	BGE_TRACE(("bge_update_copper($%p)", (void *)bgep));
614 
615 	ASSERT(mutex_owned(bgep->genlock));
616 
617 	BGE_DEBUG(("bge_update_copper: autoneg %d "
618 			"pause %d asym_pause %d "
619 			"1000fdx %d 1000hdx %d "
620 			"100fdx %d 100hdx %d "
621 			"10fdx %d 10hdx %d ",
622 		bgep->param_adv_autoneg,
623 		bgep->param_adv_pause, bgep->param_adv_asym_pause,
624 		bgep->param_adv_1000fdx, bgep->param_adv_1000hdx,
625 		bgep->param_adv_100fdx, bgep->param_adv_100hdx,
626 		bgep->param_adv_10fdx, bgep->param_adv_10hdx));
627 
628 	control = gigctrl = auxctrl = anar = 0;
629 
630 	/*
631 	 * PHY settings are normally based on the param_* variables,
632 	 * but if any loopback mode is in effect, that takes precedence.
633 	 *
634 	 * BGE supports MAC-internal loopback, PHY-internal loopback,
635 	 * and External loopback at a variety of speeds (with a special
636 	 * cable).  In all cases, autoneg is turned OFF, full-duplex
637 	 * is turned ON, and the speed/mastership is forced.
638 	 */
639 	switch (bgep->param_loop_mode) {
640 	case BGE_LOOP_NONE:
641 	default:
642 		adv_autoneg = bgep->param_adv_autoneg;
643 		adv_pause = bgep->param_adv_pause;
644 		adv_asym_pause = bgep->param_adv_asym_pause;
645 		adv_1000fdx = bgep->param_adv_1000fdx;
646 		adv_1000hdx = bgep->param_adv_1000hdx;
647 		adv_100fdx = bgep->param_adv_100fdx;
648 		adv_100hdx = bgep->param_adv_100hdx;
649 		adv_10fdx = bgep->param_adv_10fdx;
650 		adv_10hdx = bgep->param_adv_10hdx;
651 		break;
652 
653 	case BGE_LOOP_EXTERNAL_1000:
654 	case BGE_LOOP_EXTERNAL_100:
655 	case BGE_LOOP_EXTERNAL_10:
656 	case BGE_LOOP_INTERNAL_PHY:
657 	case BGE_LOOP_INTERNAL_MAC:
658 		adv_autoneg = adv_pause = adv_asym_pause = B_FALSE;
659 		adv_1000fdx = adv_100fdx = adv_10fdx = B_FALSE;
660 		adv_1000hdx = adv_100hdx = adv_10hdx = B_FALSE;
661 		bgep->param_link_duplex = LINK_DUPLEX_FULL;
662 
663 		switch (bgep->param_loop_mode) {
664 		case BGE_LOOP_EXTERNAL_1000:
665 			bgep->param_link_speed = 1000;
666 			adv_1000fdx = B_TRUE;
667 			auxctrl = MII_AUX_CTRL_NORM_EXT_LOOPBACK;
668 			gigctrl |= MII_1000BT_CTL_MASTER_CFG;
669 			gigctrl |= MII_1000BT_CTL_MASTER_SEL;
670 			break;
671 
672 		case BGE_LOOP_EXTERNAL_100:
673 			bgep->param_link_speed = 100;
674 			adv_100fdx = B_TRUE;
675 			auxctrl = MII_AUX_CTRL_NORM_EXT_LOOPBACK;
676 			break;
677 
678 		case BGE_LOOP_EXTERNAL_10:
679 			bgep->param_link_speed = 10;
680 			adv_10fdx = B_TRUE;
681 			auxctrl = MII_AUX_CTRL_NORM_EXT_LOOPBACK;
682 			break;
683 
684 		case BGE_LOOP_INTERNAL_PHY:
685 			bgep->param_link_speed = 1000;
686 			adv_1000fdx = B_TRUE;
687 			control = MII_CONTROL_LOOPBACK;
688 			break;
689 
690 		case BGE_LOOP_INTERNAL_MAC:
691 			bgep->param_link_speed = 1000;
692 			adv_1000fdx = B_TRUE;
693 			break;
694 		}
695 	}
696 
697 	BGE_DEBUG(("bge_update_copper: autoneg %d "
698 			"pause %d asym_pause %d "
699 			"1000fdx %d 1000hdx %d "
700 			"100fdx %d 100hdx %d "
701 			"10fdx %d 10hdx %d ",
702 		adv_autoneg,
703 		adv_pause, adv_asym_pause,
704 		adv_1000fdx, adv_1000hdx,
705 		adv_100fdx, adv_100hdx,
706 		adv_10fdx, adv_10hdx));
707 
708 	/*
709 	 * We should have at least one technology capability set;
710 	 * if not, we select a default of 1000Mb/s full-duplex
711 	 */
712 	if (!adv_1000fdx && !adv_100fdx && !adv_10fdx &&
713 	    !adv_1000hdx && !adv_100hdx && !adv_10hdx)
714 		adv_1000fdx = B_TRUE;
715 
716 	/*
717 	 * Now transform the adv_* variables into the proper settings
718 	 * of the PHY registers ...
719 	 *
720 	 * If autonegotiation is (now) enabled, we want to trigger
721 	 * a new autonegotiation cycle once the PHY has been
722 	 * programmed with the capabilities to be advertised.
723 	 */
724 	if (adv_autoneg)
725 		control |= MII_CONTROL_ANE|MII_CONTROL_RSAN;
726 
727 	if (adv_1000fdx)
728 		control |= MII_CONTROL_1000MB|MII_CONTROL_FDUPLEX;
729 	else if (adv_1000hdx)
730 		control |= MII_CONTROL_1000MB;
731 	else if (adv_100fdx)
732 		control |= MII_CONTROL_100MB|MII_CONTROL_FDUPLEX;
733 	else if (adv_100hdx)
734 		control |= MII_CONTROL_100MB;
735 	else if (adv_10fdx)
736 		control |= MII_CONTROL_FDUPLEX;
737 	else if (adv_10hdx)
738 		control |= 0;
739 	else
740 		{ _NOTE(EMPTY); }	/* Can't get here anyway ...	*/
741 
742 	if (adv_1000fdx)
743 		gigctrl |= MII_1000BT_CTL_ADV_FDX;
744 	if (adv_1000hdx)
745 		gigctrl |= MII_1000BT_CTL_ADV_HDX;
746 
747 	if (adv_100fdx)
748 		anar |= MII_ABILITY_100BASE_TX_FD;
749 	if (adv_100hdx)
750 		anar |= MII_ABILITY_100BASE_TX;
751 	if (adv_10fdx)
752 		anar |= MII_ABILITY_10BASE_T_FD;
753 	if (adv_10hdx)
754 		anar |= MII_ABILITY_10BASE_T;
755 
756 	if (adv_pause)
757 		anar |= MII_ABILITY_PAUSE;
758 	if (adv_asym_pause)
759 		anar |= MII_ABILITY_ASYM_PAUSE;
760 
761 	/*
762 	 * Munge in any other fixed bits we require ...
763 	 */
764 	anar |= MII_AN_SELECTOR_8023;
765 	auxctrl |= MII_AUX_CTRL_NORM_TX_MODE;
766 	auxctrl |= MII_AUX_CTRL_NORMAL;
767 
768 	/*
769 	 * Restart the PHY and write the new values.  Note the
770 	 * time, so that we can say whether subsequent link state
771 	 * changes can be attributed to our reprogramming the PHY
772 	 */
773 	bgep->phys_write_time = gethrtime();
774 	if ((*bgep->physops->phys_restart)(bgep, B_FALSE) == DDI_FAILURE)
775 		return (DDI_FAILURE);
776 	bge_mii_put16(bgep, MII_AN_ADVERT, anar);
777 	bge_mii_put16(bgep, MII_CONTROL, control);
778 	bge_mii_put16(bgep, MII_AUX_CONTROL, auxctrl);
779 	bge_mii_put16(bgep, MII_1000BASE_T_CONTROL, gigctrl);
780 
781 	BGE_DEBUG(("bge_update_copper: anar <- 0x%x", anar));
782 	BGE_DEBUG(("bge_update_copper: control <- 0x%x", control));
783 	BGE_DEBUG(("bge_update_copper: auxctrl <- 0x%x", auxctrl));
784 	BGE_DEBUG(("bge_update_copper: gigctrl <- 0x%x", gigctrl));
785 
786 #if	BGE_COPPER_WIRESPEED
787 	/*
788 	 * Enable the 'wire-speed' feature, if the chip supports it
789 	 * and we haven't got (any) loopback mode selected.
790 	 */
791 	switch (bgep->chipid.device) {
792 	case DEVICE_ID_5700:
793 	case DEVICE_ID_5700x:
794 	case DEVICE_ID_5705C:
795 	case DEVICE_ID_5782:
796 		/*
797 		 * These chips are known or assumed not to support it
798 		 */
799 		break;
800 
801 	default:
802 		/*
803 		 * All other Broadcom chips are expected to support it.
804 		 */
805 		if (bgep->param_loop_mode == BGE_LOOP_NONE)
806 			bge_mii_put16(bgep, MII_AUX_CONTROL,
807 					MII_AUX_CTRL_MISC_WRITE_ENABLE |
808 					MII_AUX_CTRL_MISC_WIRE_SPEED |
809 					MII_AUX_CTRL_MISC);
810 		break;
811 	}
812 #endif	/* BGE_COPPER_WIRESPEED */
813 	return (DDI_SUCCESS);
814 }
815 
816 static boolean_t
817 bge_check_copper(bge_t *bgep, boolean_t recheck)
818 {
819 	uint32_t emac_status;
820 	uint16_t mii_status;
821 	uint16_t aux;
822 	uint_t mode;
823 	boolean_t linkup;
824 
825 	/*
826 	 * Step 10: read the status from the PHY (which is self-clearing
827 	 * on read!); also read & clear the main (Ethernet) MAC status
828 	 * (the relevant bits of this are write-one-to-clear).
829 	 */
830 	mii_status = bge_mii_get16(bgep, MII_STATUS);
831 	emac_status = bge_reg_get32(bgep, ETHERNET_MAC_STATUS_REG);
832 	bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, emac_status);
833 
834 	BGE_DEBUG(("bge_check_copper: link %d/%s, MII status 0x%x "
835 			"(was 0x%x), Ethernet MAC status 0x%x",
836 		bgep->link_state, UPORDOWN(bgep->param_link_up), mii_status,
837 		bgep->phy_gen_status, emac_status));
838 
839 	/*
840 	 * If the PHY status hasn't changed since last we looked, and
841 	 * we not forcing a recheck (i.e. the link state was already
842 	 * known), there's nothing to do.
843 	 */
844 	if (mii_status == bgep->phy_gen_status && !recheck)
845 		return (B_FALSE);
846 
847 	do {
848 		/*
849 		 * If the PHY status changed, record the time
850 		 */
851 		if (mii_status != bgep->phy_gen_status)
852 			bgep->phys_event_time = gethrtime();
853 
854 		/*
855 		 * Step 11: read AUX STATUS register to find speed/duplex
856 		 */
857 		aux = bge_mii_get16(bgep, MII_AUX_STATUS);
858 		BGE_CDB(bge_phydump, (bgep, mii_status, aux));
859 
860 		/*
861 		 * We will only consider the link UP if all the readings
862 		 * are consistent and give meaningful results ...
863 		 */
864 		mode = aux & MII_AUX_STATUS_MODE_MASK;
865 		mode >>= MII_AUX_STATUS_MODE_SHIFT;
866 		linkup = bge_copper_link_speed[mode] > 0;
867 		linkup &= bge_copper_link_duplex[mode] != LINK_DUPLEX_UNKNOWN;
868 		linkup &= BIS(aux, MII_AUX_STATUS_LINKUP);
869 		linkup &= BIS(mii_status, MII_STATUS_LINKUP);
870 
871 		BGE_DEBUG(("bge_check_copper: MII status 0x%x aux 0x%x "
872 				"=> mode %d (%s)",
873 			mii_status, aux,
874 			mode, UPORDOWN(linkup)));
875 
876 		/*
877 		 * Record current register values, then reread status
878 		 * register & loop until it stabilises ...
879 		 */
880 		bgep->phy_aux_status = aux;
881 		bgep->phy_gen_status = mii_status;
882 		mii_status = bge_mii_get16(bgep, MII_STATUS);
883 	} while (mii_status != bgep->phy_gen_status);
884 
885 	/*
886 	 * Assume very little ...
887 	 */
888 	bgep->param_lp_autoneg = B_FALSE;
889 	bgep->param_lp_1000fdx = B_FALSE;
890 	bgep->param_lp_1000hdx = B_FALSE;
891 	bgep->param_lp_100fdx = B_FALSE;
892 	bgep->param_lp_100hdx = B_FALSE;
893 	bgep->param_lp_10fdx = B_FALSE;
894 	bgep->param_lp_10hdx = B_FALSE;
895 	bgep->param_lp_pause = B_FALSE;
896 	bgep->param_lp_asym_pause = B_FALSE;
897 	bgep->param_link_autoneg = B_FALSE;
898 	bgep->param_link_tx_pause = B_FALSE;
899 	if (bgep->param_adv_autoneg)
900 		bgep->param_link_rx_pause = B_FALSE;
901 	else
902 		bgep->param_link_rx_pause = bgep->param_adv_pause;
903 
904 	/*
905 	 * Discover all the link partner's abilities.
906 	 * These are scattered through various registers ...
907 	 */
908 	if (BIS(aux, MII_AUX_STATUS_LP_ANEG_ABLE)) {
909 		bgep->param_lp_autoneg = B_TRUE;
910 		bgep->param_link_autoneg = B_TRUE;
911 		bgep->param_link_tx_pause = BIS(aux, MII_AUX_STATUS_TX_PAUSE);
912 		bgep->param_link_rx_pause = BIS(aux, MII_AUX_STATUS_RX_PAUSE);
913 
914 		aux = bge_mii_get16(bgep, MII_1000BASE_T_STATUS);
915 		bgep->param_lp_1000fdx = BIS(aux, MII_1000BT_STAT_LP_FDX_CAP);
916 		bgep->param_lp_1000hdx = BIS(aux, MII_1000BT_STAT_LP_HDX_CAP);
917 
918 		aux = bge_mii_get16(bgep, MII_AN_LPABLE);
919 		bgep->param_lp_100fdx = BIS(aux, MII_ABILITY_100BASE_TX_FD);
920 		bgep->param_lp_100hdx = BIS(aux, MII_ABILITY_100BASE_TX);
921 		bgep->param_lp_10fdx = BIS(aux, MII_ABILITY_10BASE_T_FD);
922 		bgep->param_lp_10hdx = BIS(aux, MII_ABILITY_10BASE_T);
923 		bgep->param_lp_pause = BIS(aux, MII_ABILITY_PAUSE);
924 		bgep->param_lp_asym_pause = BIS(aux, MII_ABILITY_ASYM_PAUSE);
925 	}
926 
927 	/*
928 	 * Step 12: update ndd-visible state parameters, BUT!
929 	 * we don't transfer the new state to <link_state> just yet;
930 	 * instead we mark the <link_state> as UNKNOWN, and our caller
931 	 * will resolve it once the status has stopped changing and
932 	 * been stable for several seconds.
933 	 */
934 	BGE_DEBUG(("bge_check_copper: link was %s speed %d duplex %d",
935 		UPORDOWN(bgep->param_link_up),
936 		bgep->param_link_speed,
937 		bgep->param_link_duplex));
938 
939 	if (!linkup)
940 		mode = MII_AUX_STATUS_MODE_NONE;
941 	bgep->param_link_up = linkup;
942 	bgep->param_link_speed = bge_copper_link_speed[mode];
943 	bgep->param_link_duplex = bge_copper_link_duplex[mode];
944 	bgep->link_mode_msg = bge_copper_link_text[mode];
945 	bgep->link_state = LINK_STATE_UNKNOWN;
946 
947 	BGE_DEBUG(("bge_check_copper: link now %s speed %d duplex %d",
948 		UPORDOWN(bgep->param_link_up),
949 		bgep->param_link_speed,
950 		bgep->param_link_duplex));
951 
952 	return (B_TRUE);
953 }
954 
955 static const phys_ops_t copper_ops = {
956 	bge_restart_copper,
957 	bge_update_copper,
958 	bge_check_copper
959 };
960 
961 
962 /*
963  * ========== SerDes support ==========
964  */
965 
966 #undef	BGE_DBG
967 #define	BGE_DBG		BGE_DBG_SERDES	/* debug flag for this code	*/
968 
969 /*
970  * Reinitialise the SerDes interface.  Note that it normally powers
971  * up in the disabled state, so we need to explicitly activate it.
972  */
973 static int
974 bge_restart_serdes(bge_t *bgep, boolean_t powerdown)
975 {
976 	uint32_t macmode;
977 
978 	BGE_TRACE(("bge_restart_serdes($%p, %d)", (void *)bgep, powerdown));
979 
980 	ASSERT(mutex_owned(bgep->genlock));
981 
982 	/*
983 	 * Ensure that the main Ethernet MAC mode register is programmed
984 	 * appropriately for the SerDes interface ...
985 	 */
986 	macmode = bge_reg_get32(bgep, ETHERNET_MAC_MODE_REG);
987 	macmode &= ~ETHERNET_MODE_LINK_POLARITY;
988 	macmode &= ~ETHERNET_MODE_PORTMODE_MASK;
989 	macmode |= ETHERNET_MODE_PORTMODE_TBI;
990 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, macmode);
991 
992 	/*
993 	 * Ensure that loopback is OFF and comma detection is enabled.  Then
994 	 * disable the SerDes output (the first time through, it may/will
995 	 * already be disabled).  If we're shutting down, leave it disabled.
996 	 */
997 	bge_reg_clr32(bgep, SERDES_CONTROL_REG, SERDES_CONTROL_TBI_LOOPBACK);
998 	bge_reg_set32(bgep, SERDES_CONTROL_REG, SERDES_CONTROL_COMMA_DETECT);
999 	bge_reg_set32(bgep, SERDES_CONTROL_REG, SERDES_CONTROL_TX_DISABLE);
1000 	if (powerdown)
1001 		return (DDI_SUCCESS);
1002 
1003 	/*
1004 	 * Otherwise, pause, (re-)enable the SerDes output, and send
1005 	 * all-zero config words in order to force autoneg restart.
1006 	 * Invalidate the saved "link partners received configs", as
1007 	 * we're starting over ...
1008 	 */
1009 	drv_usecwait(10000);
1010 	bge_reg_clr32(bgep, SERDES_CONTROL_REG, SERDES_CONTROL_TX_DISABLE);
1011 	bge_reg_put32(bgep, TX_1000BASEX_AUTONEG_REG, 0);
1012 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG, ETHERNET_MODE_SEND_CFGS);
1013 	drv_usecwait(10);
1014 	bge_reg_clr32(bgep, ETHERNET_MAC_MODE_REG, ETHERNET_MODE_SEND_CFGS);
1015 	bgep->serdes_lpadv = AUTONEG_CODE_FAULT_ANEG_ERR;
1016 	bgep->serdes_status = ~0U;
1017 	return (DDI_SUCCESS);
1018 }
1019 
1020 /*
1021  * Synchronise the SerDes speed/duplex/autonegotiation capabilities and
1022  * advertisements with the required settings as specified by the various
1023  * param_* variables that can be poked via the NDD interface.
1024  *
1025  * We always reinitalise the SerDes; this should cause the link to go down,
1026  * and then back up again once the link is stable and autonegotiation
1027  * (if enabled) is complete.  We should get a link state change interrupt
1028  * somewhere along the way ...
1029  *
1030  * NOTE: SerDes only supports 1000FDX/HDX (with or without pause) so the
1031  * param_* variables relating to lower speeds are ignored.
1032  *
1033  * NOTE: <genlock> must already be held by the caller
1034  */
1035 static int
1036 bge_update_serdes(bge_t *bgep)
1037 {
1038 	boolean_t adv_autoneg;
1039 	boolean_t adv_pause;
1040 	boolean_t adv_asym_pause;
1041 	boolean_t adv_1000fdx;
1042 	boolean_t adv_1000hdx;
1043 
1044 	uint32_t serdes;
1045 	uint32_t advert;
1046 
1047 	BGE_TRACE(("bge_update_serdes($%p)", (void *)bgep));
1048 
1049 	ASSERT(mutex_owned(bgep->genlock));
1050 
1051 	BGE_DEBUG(("bge_update_serdes: autoneg %d "
1052 			"pause %d asym_pause %d "
1053 			"1000fdx %d 1000hdx %d "
1054 			"100fdx %d 100hdx %d "
1055 			"10fdx %d 10hdx %d ",
1056 		bgep->param_adv_autoneg,
1057 		bgep->param_adv_pause, bgep->param_adv_asym_pause,
1058 		bgep->param_adv_1000fdx, bgep->param_adv_1000hdx,
1059 		bgep->param_adv_100fdx, bgep->param_adv_100hdx,
1060 		bgep->param_adv_10fdx, bgep->param_adv_10hdx));
1061 
1062 	serdes = advert = 0;
1063 
1064 	/*
1065 	 * SerDes settings are normally based on the param_* variables,
1066 	 * but if any loopback mode is in effect, that takes precedence.
1067 	 *
1068 	 * BGE supports MAC-internal loopback, PHY-internal loopback,
1069 	 * and External loopback at a variety of speeds (with a special
1070 	 * cable).  In all cases, autoneg is turned OFF, full-duplex
1071 	 * is turned ON, and the speed/mastership is forced.
1072 	 *
1073 	 * Note: for the SerDes interface, "PHY" internal loopback is
1074 	 * interpreted as SerDes internal loopback, and all external
1075 	 * loopback modes are treated equivalently, as 1Gb/external.
1076 	 */
1077 	switch (bgep->param_loop_mode) {
1078 	case BGE_LOOP_NONE:
1079 	default:
1080 		adv_autoneg = bgep->param_adv_autoneg;
1081 		adv_pause = bgep->param_adv_pause;
1082 		adv_asym_pause = bgep->param_adv_asym_pause;
1083 		adv_1000fdx = bgep->param_adv_1000fdx;
1084 		adv_1000hdx = bgep->param_adv_1000hdx;
1085 		break;
1086 
1087 	case BGE_LOOP_INTERNAL_PHY:
1088 		serdes |= SERDES_CONTROL_TBI_LOOPBACK;
1089 		/* FALLTHRU */
1090 	case BGE_LOOP_INTERNAL_MAC:
1091 	case BGE_LOOP_EXTERNAL_1000:
1092 	case BGE_LOOP_EXTERNAL_100:
1093 	case BGE_LOOP_EXTERNAL_10:
1094 		adv_autoneg = adv_pause = adv_asym_pause = B_FALSE;
1095 		adv_1000fdx = B_TRUE;
1096 		adv_1000hdx = B_FALSE;
1097 		break;
1098 	}
1099 
1100 	BGE_DEBUG(("bge_update_serdes: autoneg %d "
1101 			"pause %d asym_pause %d "
1102 			"1000fdx %d 1000hdx %d ",
1103 		adv_autoneg,
1104 		adv_pause, adv_asym_pause,
1105 		adv_1000fdx, adv_1000hdx));
1106 
1107 	/*
1108 	 * We should have at least one gigabit technology capability
1109 	 * set; if not, we select a default of 1000Mb/s full-duplex
1110 	 */
1111 	if (!adv_1000fdx && !adv_1000hdx)
1112 		adv_1000fdx = B_TRUE;
1113 
1114 	/*
1115 	 * Now transform the adv_* variables into the proper settings
1116 	 * of the SerDes registers ...
1117 	 *
1118 	 * If autonegotiation is (now) not enabled, pretend it's been
1119 	 * done and failed ...
1120 	 */
1121 	if (!adv_autoneg)
1122 		advert |= AUTONEG_CODE_FAULT_ANEG_ERR;
1123 
1124 	if (adv_1000fdx) {
1125 		advert |= AUTONEG_CODE_FULL_DUPLEX;
1126 		bgep->param_adv_1000fdx = adv_1000fdx;
1127 		bgep->param_link_duplex = LINK_DUPLEX_FULL;
1128 		bgep->param_link_speed = 1000;
1129 	}
1130 	if (adv_1000hdx) {
1131 		advert |= AUTONEG_CODE_HALF_DUPLEX;
1132 		bgep->param_adv_1000hdx = adv_1000hdx;
1133 		bgep->param_link_duplex = LINK_DUPLEX_HALF;
1134 		bgep->param_link_speed = 1000;
1135 	}
1136 
1137 	if (adv_pause)
1138 		advert |= AUTONEG_CODE_PAUSE;
1139 	if (adv_asym_pause)
1140 		advert |= AUTONEG_CODE_ASYM_PAUSE;
1141 
1142 	/*
1143 	 * Restart the SerDes and write the new values.  Note the
1144 	 * time, so that we can say whether subsequent link state
1145 	 * changes can be attributed to our reprogramming the SerDes
1146 	 */
1147 	bgep->serdes_advert = advert;
1148 	bgep->phys_write_time = gethrtime();
1149 	(void) bge_restart_serdes(bgep, B_FALSE);
1150 	bge_reg_set32(bgep, SERDES_CONTROL_REG, serdes);
1151 
1152 	BGE_DEBUG(("bge_update_serdes: serdes |= 0x%x, advert 0x%x",
1153 		serdes, advert));
1154 	return (DDI_SUCCESS);
1155 }
1156 
1157 /*
1158  * Bare-minimum autoneg protocol
1159  *
1160  * This code is only called when the link is up and we're receiving config
1161  * words, which implies that the link partner wants to autonegotiate
1162  * (otherwise, we wouldn't see configs and wouldn't reach this code).
1163  */
1164 static void
1165 bge_autoneg_serdes(bge_t *bgep)
1166 {
1167 	boolean_t ack;
1168 
1169 	bgep->serdes_lpadv = bge_reg_get32(bgep, RX_1000BASEX_AUTONEG_REG);
1170 	ack = BIS(bgep->serdes_lpadv, AUTONEG_CODE_ACKNOWLEDGE);
1171 
1172 	if (!ack) {
1173 		/*
1174 		 * Phase 1: after SerDes reset, we send a few zero configs
1175 		 * but then stop.  Here the partner is sending configs, but
1176 		 * not ACKing ours; we assume that's 'cos we're not sending
1177 		 * any.  So here we send ours, with ACK already set.
1178 		 */
1179 		bge_reg_put32(bgep, TX_1000BASEX_AUTONEG_REG,
1180 			bgep->serdes_advert | AUTONEG_CODE_ACKNOWLEDGE);
1181 		bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
1182 			ETHERNET_MODE_SEND_CFGS);
1183 	} else {
1184 		/*
1185 		 * Phase 2: partner has ACKed our configs, so now we can
1186 		 * stop sending; once our partner also stops sending, we
1187 		 * can resolve the Tx/Rx configs.
1188 		 */
1189 		bge_reg_clr32(bgep, ETHERNET_MAC_MODE_REG,
1190 			ETHERNET_MODE_SEND_CFGS);
1191 	}
1192 
1193 	BGE_DEBUG(("bge_autoneg_serdes: Rx 0x%x %s Tx 0x%x",
1194 		bgep->serdes_lpadv,
1195 		ack ? "stop" : "send",
1196 		bgep->serdes_advert));
1197 }
1198 
1199 static boolean_t
1200 bge_check_serdes(bge_t *bgep, boolean_t recheck)
1201 {
1202 	uint32_t emac_status;
1203 	uint32_t lpadv;
1204 	boolean_t linkup;
1205 
1206 	for (;;) {
1207 		/*
1208 		 * Step 10: read & clear the main (Ethernet) MAC status
1209 		 * (the relevant bits of this are write-one-to-clear).
1210 		 */
1211 		emac_status = bge_reg_get32(bgep, ETHERNET_MAC_STATUS_REG);
1212 		bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, emac_status);
1213 
1214 		BGE_DEBUG(("bge_check_serdes: link %d/%s, "
1215 				"MAC status 0x%x (was 0x%x)",
1216 			bgep->link_state, UPORDOWN(bgep->param_link_up),
1217 			emac_status, bgep->serdes_status));
1218 
1219 		/*
1220 		 * We will only consider the link UP if all the readings
1221 		 * are consistent and give meaningful results ...
1222 		 */
1223 		bgep->serdes_status = emac_status;
1224 		linkup = BIS(emac_status, ETHERNET_STATUS_SIGNAL_DETECT);
1225 		linkup &= BIS(emac_status, ETHERNET_STATUS_PCS_SYNCHED);
1226 
1227 		/*
1228 		 * Now some fiddling with the interpretation:
1229 		 *	if there's been an error at the PCS level, treat
1230 		 *	it as a link change (the h/w doesn't do this)
1231 		 *
1232 		 *	if there's been a change, but it's only a PCS sync
1233 		 *	change (not a config change), AND the link already
1234 		 *	was & is still UP, then ignore the change
1235 		 */
1236 		if (BIS(emac_status, ETHERNET_STATUS_PCS_ERROR))
1237 			emac_status |= ETHERNET_STATUS_LINK_CHANGED;
1238 		else if (BIC(emac_status, ETHERNET_STATUS_CFG_CHANGED))
1239 			if (bgep->param_link_up && linkup)
1240 				emac_status &= ~ETHERNET_STATUS_LINK_CHANGED;
1241 
1242 		BGE_DEBUG(("bge_check_serdes: status 0x%x => 0x%x %s",
1243 			bgep->serdes_status, emac_status, UPORDOWN(linkup)));
1244 
1245 		/*
1246 		 * If we're receiving configs, run the autoneg protocol
1247 		 */
1248 		if (linkup && BIS(emac_status, ETHERNET_STATUS_RECEIVING_CFG))
1249 			bge_autoneg_serdes(bgep);
1250 
1251 		/*
1252 		 * If the SerDes status hasn't changed, we're done ...
1253 		 */
1254 		if (BIC(emac_status, ETHERNET_STATUS_LINK_CHANGED))
1255 			break;
1256 
1257 		/*
1258 		 * Record when the SerDes status changed, then go
1259 		 * round again until we no longer see a change ...
1260 		 */
1261 		bgep->phys_event_time = gethrtime();
1262 		recheck = B_TRUE;
1263 	}
1264 
1265 	/*
1266 	 * If we're not forcing a recheck (i.e. the link state was already
1267 	 * known), and we didn't see the hardware flag a change, there's
1268 	 * no more to do (and we tell the caller nothing happened).
1269 	 */
1270 	if (!recheck)
1271 		return (B_FALSE);
1272 
1273 	/*
1274 	 * Don't resolve autoneg until we're no longer receiving configs
1275 	 */
1276 	if (linkup && BIS(emac_status, ETHERNET_STATUS_RECEIVING_CFG))
1277 		return (B_FALSE);
1278 
1279 	/*
1280 	 * Assume very little ...
1281 	 */
1282 	bgep->param_lp_autoneg = B_FALSE;
1283 	bgep->param_lp_1000fdx = B_FALSE;
1284 	bgep->param_lp_1000hdx = B_FALSE;
1285 	bgep->param_lp_100fdx = B_FALSE;
1286 	bgep->param_lp_100hdx = B_FALSE;
1287 	bgep->param_lp_10fdx = B_FALSE;
1288 	bgep->param_lp_10hdx = B_FALSE;
1289 	bgep->param_lp_pause = B_FALSE;
1290 	bgep->param_lp_asym_pause = B_FALSE;
1291 	bgep->param_link_autoneg = B_FALSE;
1292 	bgep->param_link_tx_pause = B_FALSE;
1293 	if (bgep->param_adv_autoneg)
1294 		bgep->param_link_rx_pause = B_FALSE;
1295 	else
1296 		bgep->param_link_rx_pause = bgep->param_adv_pause;
1297 
1298 	/*
1299 	 * Discover all the link partner's abilities.
1300 	 */
1301 	lpadv = bgep->serdes_lpadv;
1302 	if (lpadv != 0 && BIC(lpadv, AUTONEG_CODE_FAULT_MASK)) {
1303 		/*
1304 		 * No fault, so derive partner's capabilities
1305 		 */
1306 		bgep->param_lp_autoneg = B_TRUE;
1307 		bgep->param_lp_1000fdx = BIS(lpadv, AUTONEG_CODE_FULL_DUPLEX);
1308 		bgep->param_lp_1000hdx = BIS(lpadv, AUTONEG_CODE_HALF_DUPLEX);
1309 		bgep->param_lp_pause = BIS(lpadv, AUTONEG_CODE_PAUSE);
1310 		bgep->param_lp_asym_pause = BIS(lpadv, AUTONEG_CODE_ASYM_PAUSE);
1311 
1312 		/*
1313 		 * Pause direction resolution
1314 		 */
1315 		bgep->param_link_autoneg = B_TRUE;
1316 		if (bgep->param_adv_pause &&
1317 		    bgep->param_lp_pause) {
1318 			bgep->param_link_tx_pause = B_TRUE;
1319 			bgep->param_link_rx_pause = B_TRUE;
1320 		}
1321 		if (bgep->param_adv_asym_pause &&
1322 		    bgep->param_lp_asym_pause) {
1323 			if (bgep->param_adv_pause)
1324 				bgep->param_link_rx_pause = B_TRUE;
1325 			if (bgep->param_lp_pause)
1326 				bgep->param_link_tx_pause = B_TRUE;
1327 		}
1328 	}
1329 
1330 	/*
1331 	 * Step 12: update ndd-visible state parameters, BUT!
1332 	 * we don't transfer the new state to <link_state> just yet;
1333 	 * instead we mark the <link_state> as UNKNOWN, and our caller
1334 	 * will resolve it once the status has stopped changing and
1335 	 * been stable for several seconds.
1336 	 */
1337 	BGE_DEBUG(("bge_check_serdes: link was %s speed %d duplex %d",
1338 		UPORDOWN(bgep->param_link_up),
1339 		bgep->param_link_speed,
1340 		bgep->param_link_duplex));
1341 
1342 	if (linkup) {
1343 		bgep->param_link_up = B_TRUE;
1344 		bgep->param_link_speed = 1000;
1345 		if (bgep->param_adv_1000fdx)
1346 			bgep->param_link_duplex = LINK_DUPLEX_FULL;
1347 		else
1348 			bgep->param_link_duplex = LINK_DUPLEX_HALF;
1349 		if (bgep->param_lp_autoneg && !bgep->param_lp_1000fdx)
1350 			bgep->param_link_duplex = LINK_DUPLEX_HALF;
1351 	} else {
1352 		bgep->param_link_up = B_FALSE;
1353 		bgep->param_link_speed = 0;
1354 		bgep->param_link_duplex = LINK_DUPLEX_UNKNOWN;
1355 	}
1356 	switch (bgep->param_link_duplex) {
1357 	default:
1358 	case LINK_DUPLEX_UNKNOWN:
1359 		bgep->link_mode_msg = "down";
1360 		break;
1361 
1362 	case LINK_DUPLEX_HALF:
1363 		bgep->link_mode_msg = "up 1000Mbps Half-Duplex";
1364 		break;
1365 
1366 	case LINK_DUPLEX_FULL:
1367 		bgep->link_mode_msg = "up 1000Mbps Full-Duplex";
1368 		break;
1369 	}
1370 	bgep->link_state = LINK_STATE_UNKNOWN;
1371 
1372 	BGE_DEBUG(("bge_check_serdes: link now %s speed %d duplex %d",
1373 		UPORDOWN(bgep->param_link_up),
1374 		bgep->param_link_speed,
1375 		bgep->param_link_duplex));
1376 
1377 	return (B_TRUE);
1378 }
1379 
1380 static const phys_ops_t serdes_ops = {
1381 	bge_restart_serdes,
1382 	bge_update_serdes,
1383 	bge_check_serdes
1384 };
1385 
1386 /*
1387  * ========== Exported physical layer control routines ==========
1388  */
1389 
1390 #undef	BGE_DBG
1391 #define	BGE_DBG		BGE_DBG_PHYS	/* debug flag for this code	*/
1392 
1393 /*
1394  * Here we have to determine which media we're using (copper or serdes).
1395  * Once that's done, we can initialise the physical layer appropriately.
1396  */
1397 int
1398 bge_phys_init(bge_t *bgep)
1399 {
1400 	BGE_TRACE(("bge_phys_init($%p)", (void *)bgep));
1401 
1402 	mutex_enter(bgep->genlock);
1403 
1404 	/*
1405 	 * Probe for the (internal) PHY.  If it's not there, we'll assume
1406 	 * that this is a 5703/4S, with a SerDes interface rather than
1407 	 * a PHY. BCM5714S/BCM5715S are not supported.It are based on
1408 	 * BCM800x PHY.
1409 	 */
1410 	bgep->phy_mii_addr = 1;
1411 	if (bge_phy_probe(bgep)) {
1412 		bgep->chipid.flags &= ~CHIP_FLAG_SERDES;
1413 		bgep->phys_delta_time = BGE_PHY_STABLE_TIME;
1414 		bgep->physops = &copper_ops;
1415 	} else {
1416 		bgep->chipid.flags |= CHIP_FLAG_SERDES;
1417 		bgep->phys_delta_time = BGE_SERDES_STABLE_TIME;
1418 		bgep->physops = &serdes_ops;
1419 	}
1420 
1421 	if ((*bgep->physops->phys_restart)(bgep, B_FALSE) != DDI_SUCCESS) {
1422 		mutex_exit(bgep->genlock);
1423 		return (EIO);
1424 	}
1425 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
1426 		mutex_exit(bgep->genlock);
1427 		return (EIO);
1428 	}
1429 	mutex_exit(bgep->genlock);
1430 	return (0);
1431 }
1432 
1433 /*
1434  * Reset the physical layer
1435  */
1436 void
1437 bge_phys_reset(bge_t *bgep)
1438 {
1439 	BGE_TRACE(("bge_phys_reset($%p)", (void *)bgep));
1440 
1441 	mutex_enter(bgep->genlock);
1442 	if ((*bgep->physops->phys_restart)(bgep, B_FALSE) != DDI_SUCCESS)
1443 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
1444 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
1445 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
1446 	mutex_exit(bgep->genlock);
1447 }
1448 
1449 /*
1450  * Reset and power off the physical layer.
1451  *
1452  * Another RESET should get it back to working, but it may take a few
1453  * seconds it may take a few moments to return to normal operation ...
1454  */
1455 int
1456 bge_phys_idle(bge_t *bgep)
1457 {
1458 	BGE_TRACE(("bge_phys_idle($%p)", (void *)bgep));
1459 
1460 	ASSERT(mutex_owned(bgep->genlock));
1461 	return ((*bgep->physops->phys_restart)(bgep, B_TRUE));
1462 }
1463 
1464 /*
1465  * Synchronise the PHYSICAL layer's speed/duplex/autonegotiation capabilities
1466  * and advertisements with the required settings as specified by the various
1467  * param_* variables that can be poked via the NDD interface.
1468  *
1469  * We always reset the PHYSICAL layer and reprogram *all* relevant registers.
1470  * This is expected to cause the link to go down, and then back up again once
1471  * the link is stable and autonegotiation (if enabled) is complete.  We should
1472  * get a link state change interrupt somewhere along the way ...
1473  *
1474  * NOTE: <genlock> must already be held by the caller
1475  */
1476 int
1477 bge_phys_update(bge_t *bgep)
1478 {
1479 	BGE_TRACE(("bge_phys_update($%p)", (void *)bgep));
1480 
1481 	ASSERT(mutex_owned(bgep->genlock));
1482 	return ((*bgep->physops->phys_update)(bgep));
1483 }
1484 
1485 #undef	BGE_DBG
1486 #define	BGE_DBG		BGE_DBG_LINK	/* debug flag for this code	*/
1487 
1488 /*
1489  * Read the link status and determine whether anything's changed ...
1490  *
1491  * This routine should be called whenever the chip flags a change
1492  * in the hardware link state.
1493  *
1494  * This routine returns B_FALSE if the link state has not changed,
1495  * returns B_TRUE when the change to the new state should be accepted.
1496  * In such a case, the param_* variables give the new hardware state,
1497  * which the caller should use to update link_state etc.
1498  *
1499  * The caller must already hold <genlock>
1500  */
1501 boolean_t
1502 bge_phys_check(bge_t *bgep)
1503 {
1504 	int32_t orig_state;
1505 	boolean_t recheck;
1506 
1507 	BGE_TRACE(("bge_phys_check($%p)", (void *)bgep));
1508 
1509 	ASSERT(mutex_owned(bgep->genlock));
1510 
1511 	orig_state = bgep->link_state;
1512 	recheck = orig_state == LINK_STATE_UNKNOWN;
1513 	recheck = (*bgep->physops->phys_check)(bgep, recheck);
1514 	if (!recheck)
1515 		return (B_FALSE);
1516 
1517 	return (B_TRUE);
1518 }
1519