1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include "sys/bge_impl2.h" 30 #include <sys/sdt.h> 31 32 /* 33 * This is the string displayed by modinfo, etc. 34 * Make sure you keep the version ID up to date! 35 */ 36 static char bge_ident[] = "BCM579x driver v0.51"; 37 38 /* 39 * Property names 40 */ 41 static char debug_propname[] = "bge-debug-flags"; 42 static char clsize_propname[] = "cache-line-size"; 43 static char latency_propname[] = "latency-timer"; 44 static char localmac_boolname[] = "local-mac-address?"; 45 static char localmac_propname[] = "local-mac-address"; 46 static char macaddr_propname[] = "mac-address"; 47 static char subdev_propname[] = "subsystem-id"; 48 static char subven_propname[] = "subsystem-vendor-id"; 49 static char rxrings_propname[] = "bge-rx-rings"; 50 static char txrings_propname[] = "bge-tx-rings"; 51 static char fm_cap[] = "fm-capable"; 52 static char default_mtu[] = "default-mtu"; 53 54 static int bge_add_intrs(bge_t *, int); 55 static void bge_rem_intrs(bge_t *); 56 57 /* 58 * Describes the chip's DMA engine 59 */ 60 static ddi_dma_attr_t dma_attr = { 61 DMA_ATTR_V0, /* dma_attr version */ 62 0x0000000000000000ull, /* dma_attr_addr_lo */ 63 0xFFFFFFFFFFFFFFFFull, /* dma_attr_addr_hi */ 64 0x00000000FFFFFFFFull, /* dma_attr_count_max */ 65 0x0000000000000001ull, /* dma_attr_align */ 66 0x00000FFF, /* dma_attr_burstsizes */ 67 0x00000001, /* dma_attr_minxfer */ 68 0x000000000000FFFFull, /* dma_attr_maxxfer */ 69 0xFFFFFFFFFFFFFFFFull, /* dma_attr_seg */ 70 1, /* dma_attr_sgllen */ 71 0x00000001, /* dma_attr_granular */ 72 DDI_DMA_FLAGERR /* dma_attr_flags */ 73 }; 74 75 /* 76 * PIO access attributes for registers 77 */ 78 static ddi_device_acc_attr_t bge_reg_accattr = { 79 DDI_DEVICE_ATTR_V0, 80 DDI_NEVERSWAP_ACC, 81 DDI_STRICTORDER_ACC, 82 DDI_FLAGERR_ACC 83 }; 84 85 /* 86 * DMA access attributes for descriptors: NOT to be byte swapped. 87 */ 88 static ddi_device_acc_attr_t bge_desc_accattr = { 89 DDI_DEVICE_ATTR_V0, 90 DDI_NEVERSWAP_ACC, 91 DDI_STRICTORDER_ACC, 92 DDI_FLAGERR_ACC 93 }; 94 95 /* 96 * DMA access attributes for data: NOT to be byte swapped. 97 */ 98 static ddi_device_acc_attr_t bge_data_accattr = { 99 DDI_DEVICE_ATTR_V0, 100 DDI_NEVERSWAP_ACC, 101 DDI_STRICTORDER_ACC 102 }; 103 104 static ether_addr_t bge_broadcast_addr = { 105 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 106 }; 107 108 /* 109 * Versions of the O/S up to Solaris 8 didn't support network booting 110 * from any network interface except the first (NET0). Patching this 111 * flag to a non-zero value will tell the driver to work around this 112 * limitation by creating an extra (internal) pathname node. To do 113 * this, just add a line like the following to the CLIENT'S etc/system 114 * file ON THE ROOT FILESYSTEM SERVER before booting the client: 115 * 116 * set bge:bge_net1_boot_support = 1; 117 */ 118 static uint32_t bge_net1_boot_support = 1; 119 120 /* 121 * ========== Transmit and receive ring reinitialisation ========== 122 */ 123 124 /* 125 * These <reinit> routines each reset the specified ring to an initial 126 * state, assuming that the corresponding <init> routine has already 127 * been called exactly once. 128 */ 129 130 static void 131 bge_reinit_send_ring(send_ring_t *srp) 132 { 133 /* 134 * Reinitialise control variables ... 135 */ 136 ASSERT(srp->tx_flow == 0); 137 srp->tx_next = 0; 138 srp->tx_free = srp->desc.nslots; 139 140 ASSERT(mutex_owned(srp->tc_lock)); 141 srp->tc_next = 0; 142 143 /* 144 * Zero and sync all the h/w Send Buffer Descriptors 145 */ 146 DMA_ZERO(srp->desc); 147 DMA_SYNC(srp->desc, DDI_DMA_SYNC_FORDEV); 148 } 149 150 static void 151 bge_reinit_recv_ring(recv_ring_t *rrp) 152 { 153 /* 154 * Reinitialise control variables ... 155 */ 156 rrp->rx_next = 0; 157 } 158 159 static void 160 bge_reinit_buff_ring(buff_ring_t *brp, uint64_t ring) 161 { 162 bge_rbd_t *hw_rbd_p; 163 sw_rbd_t *srbdp; 164 uint32_t bufsize; 165 uint32_t nslots; 166 uint32_t slot; 167 168 static uint16_t ring_type_flag[BGE_BUFF_RINGS_MAX] = { 169 RBD_FLAG_STD_RING, 170 RBD_FLAG_JUMBO_RING, 171 RBD_FLAG_MINI_RING 172 }; 173 174 /* 175 * Zero, initialise and sync all the h/w Receive Buffer Descriptors 176 * Note: all the remaining fields (<type>, <flags>, <ip_cksum>, 177 * <tcp_udp_cksum>, <error_flag>, <vlan_tag>, and <reserved>) 178 * should be zeroed, and so don't need to be set up specifically 179 * once the whole area has been cleared. 180 */ 181 DMA_ZERO(brp->desc); 182 183 hw_rbd_p = DMA_VPTR(brp->desc); 184 nslots = brp->desc.nslots; 185 ASSERT(brp->buf[0].nslots == nslots/BGE_SPLIT); 186 bufsize = brp->buf[0].size; 187 srbdp = brp->sw_rbds; 188 for (slot = 0; slot < nslots; ++hw_rbd_p, ++srbdp, ++slot) { 189 hw_rbd_p->host_buf_addr = srbdp->pbuf.cookie.dmac_laddress; 190 hw_rbd_p->index = slot; 191 hw_rbd_p->len = bufsize; 192 hw_rbd_p->opaque = srbdp->pbuf.token; 193 hw_rbd_p->flags |= ring_type_flag[ring]; 194 } 195 196 DMA_SYNC(brp->desc, DDI_DMA_SYNC_FORDEV); 197 198 /* 199 * Finally, reinitialise the ring control variables ... 200 */ 201 brp->rf_next = (nslots != 0) ? (nslots-1) : 0; 202 } 203 204 /* 205 * Reinitialize all rings 206 */ 207 static void 208 bge_reinit_rings(bge_t *bgep) 209 { 210 uint64_t ring; 211 212 ASSERT(mutex_owned(bgep->genlock)); 213 214 /* 215 * Send Rings ... 216 */ 217 for (ring = 0; ring < bgep->chipid.tx_rings; ++ring) 218 bge_reinit_send_ring(&bgep->send[ring]); 219 220 /* 221 * Receive Return Rings ... 222 */ 223 for (ring = 0; ring < bgep->chipid.rx_rings; ++ring) 224 bge_reinit_recv_ring(&bgep->recv[ring]); 225 226 /* 227 * Receive Producer Rings ... 228 */ 229 for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring) 230 bge_reinit_buff_ring(&bgep->buff[ring], ring); 231 } 232 233 /* 234 * ========== Internal state management entry points ========== 235 */ 236 237 #undef BGE_DBG 238 #define BGE_DBG BGE_DBG_NEMO /* debug flag for this code */ 239 240 /* 241 * These routines provide all the functionality required by the 242 * corresponding GLD entry points, but don't update the GLD state 243 * so they can be called internally without disturbing our record 244 * of what GLD thinks we should be doing ... 245 */ 246 247 /* 248 * bge_reset() -- reset h/w & rings to initial state 249 */ 250 static int 251 #ifdef BGE_IPMI_ASF 252 bge_reset(bge_t *bgep, uint_t asf_mode) 253 #else 254 bge_reset(bge_t *bgep) 255 #endif 256 { 257 uint64_t ring; 258 int retval; 259 260 BGE_TRACE(("bge_reset($%p)", (void *)bgep)); 261 262 ASSERT(mutex_owned(bgep->genlock)); 263 264 /* 265 * Grab all the other mutexes in the world (this should 266 * ensure no other threads are manipulating driver state) 267 */ 268 for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring) 269 mutex_enter(bgep->recv[ring].rx_lock); 270 for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring) 271 mutex_enter(bgep->buff[ring].rf_lock); 272 rw_enter(bgep->errlock, RW_WRITER); 273 for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring) 274 mutex_enter(bgep->send[ring].tc_lock); 275 276 #ifdef BGE_IPMI_ASF 277 retval = bge_chip_reset(bgep, B_TRUE, asf_mode); 278 #else 279 retval = bge_chip_reset(bgep, B_TRUE); 280 #endif 281 bge_reinit_rings(bgep); 282 283 /* 284 * Free the world ... 285 */ 286 for (ring = BGE_SEND_RINGS_MAX; ring-- > 0; ) 287 mutex_exit(bgep->send[ring].tc_lock); 288 rw_exit(bgep->errlock); 289 for (ring = BGE_BUFF_RINGS_MAX; ring-- > 0; ) 290 mutex_exit(bgep->buff[ring].rf_lock); 291 for (ring = BGE_RECV_RINGS_MAX; ring-- > 0; ) 292 mutex_exit(bgep->recv[ring].rx_lock); 293 294 BGE_DEBUG(("bge_reset($%p) done", (void *)bgep)); 295 return (retval); 296 } 297 298 /* 299 * bge_stop() -- stop processing, don't reset h/w or rings 300 */ 301 static void 302 bge_stop(bge_t *bgep) 303 { 304 BGE_TRACE(("bge_stop($%p)", (void *)bgep)); 305 306 ASSERT(mutex_owned(bgep->genlock)); 307 308 #ifdef BGE_IPMI_ASF 309 if (bgep->asf_enabled) { 310 bgep->asf_pseudostop = B_TRUE; 311 } else { 312 #endif 313 bge_chip_stop(bgep, B_FALSE); 314 #ifdef BGE_IPMI_ASF 315 } 316 #endif 317 318 BGE_DEBUG(("bge_stop($%p) done", (void *)bgep)); 319 } 320 321 /* 322 * bge_start() -- start transmitting/receiving 323 */ 324 static int 325 bge_start(bge_t *bgep, boolean_t reset_phys) 326 { 327 int retval; 328 329 BGE_TRACE(("bge_start($%p, %d)", (void *)bgep, reset_phys)); 330 331 ASSERT(mutex_owned(bgep->genlock)); 332 333 /* 334 * Start chip processing, including enabling interrupts 335 */ 336 retval = bge_chip_start(bgep, reset_phys); 337 338 BGE_DEBUG(("bge_start($%p, %d) done", (void *)bgep, reset_phys)); 339 return (retval); 340 } 341 342 /* 343 * bge_restart - restart transmitting/receiving after error or suspend 344 */ 345 int 346 bge_restart(bge_t *bgep, boolean_t reset_phys) 347 { 348 int retval = DDI_SUCCESS; 349 ASSERT(mutex_owned(bgep->genlock)); 350 351 #ifdef BGE_IPMI_ASF 352 if (bgep->asf_enabled) { 353 if (bge_reset(bgep, ASF_MODE_POST_INIT) != DDI_SUCCESS) 354 retval = DDI_FAILURE; 355 } else 356 if (bge_reset(bgep, ASF_MODE_NONE) != DDI_SUCCESS) 357 retval = DDI_FAILURE; 358 #else 359 if (bge_reset(bgep) != DDI_SUCCESS) 360 retval = DDI_FAILURE; 361 #endif 362 if (bgep->bge_mac_state == BGE_MAC_STARTED) { 363 if (bge_start(bgep, reset_phys) != DDI_SUCCESS) 364 retval = DDI_FAILURE; 365 bgep->watchdog = 0; 366 ddi_trigger_softintr(bgep->resched_id); 367 } 368 369 BGE_DEBUG(("bge_restart($%p, %d) done", (void *)bgep, reset_phys)); 370 return (retval); 371 } 372 373 374 /* 375 * ========== Nemo-required management entry points ========== 376 */ 377 378 #undef BGE_DBG 379 #define BGE_DBG BGE_DBG_NEMO /* debug flag for this code */ 380 381 /* 382 * bge_m_stop() -- stop transmitting/receiving 383 */ 384 static void 385 bge_m_stop(void *arg) 386 { 387 bge_t *bgep = arg; /* private device info */ 388 389 BGE_TRACE(("bge_m_stop($%p)", arg)); 390 391 /* 392 * Just stop processing, then record new GLD state 393 */ 394 mutex_enter(bgep->genlock); 395 if (!(bgep->progress & PROGRESS_INTR)) { 396 /* can happen during autorecovery */ 397 mutex_exit(bgep->genlock); 398 return; 399 } 400 401 bgep->link_up_msg = bgep->link_down_msg = " (stopped)"; 402 bge_stop(bgep); 403 bgep->bge_mac_state = BGE_MAC_STOPPED; 404 BGE_DEBUG(("bge_m_stop($%p) done", arg)); 405 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) 406 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED); 407 mutex_exit(bgep->genlock); 408 } 409 410 /* 411 * bge_m_start() -- start transmitting/receiving 412 */ 413 static int 414 bge_m_start(void *arg) 415 { 416 bge_t *bgep = arg; /* private device info */ 417 418 BGE_TRACE(("bge_m_start($%p)", arg)); 419 420 /* 421 * Start processing and record new GLD state 422 */ 423 mutex_enter(bgep->genlock); 424 if (!(bgep->progress & PROGRESS_INTR)) { 425 /* can happen during autorecovery */ 426 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 427 mutex_exit(bgep->genlock); 428 return (EIO); 429 } 430 #ifdef BGE_IPMI_ASF 431 if (bgep->asf_enabled) { 432 if ((bgep->asf_status == ASF_STAT_RUN) && 433 (bgep->asf_pseudostop)) { 434 435 bgep->link_up_msg = bgep->link_down_msg 436 = " (initialized)"; 437 bgep->bge_mac_state = BGE_MAC_STARTED; 438 mutex_exit(bgep->genlock); 439 return (0); 440 } 441 } 442 if (bge_reset(bgep, ASF_MODE_INIT) != DDI_SUCCESS) { 443 #else 444 if (bge_reset(bgep) != DDI_SUCCESS) { 445 #endif 446 (void) bge_check_acc_handle(bgep, bgep->cfg_handle); 447 (void) bge_check_acc_handle(bgep, bgep->io_handle); 448 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 449 mutex_exit(bgep->genlock); 450 return (EIO); 451 } 452 bgep->link_up_msg = bgep->link_down_msg = " (initialized)"; 453 if (bge_start(bgep, B_TRUE) != DDI_SUCCESS) { 454 (void) bge_check_acc_handle(bgep, bgep->cfg_handle); 455 (void) bge_check_acc_handle(bgep, bgep->io_handle); 456 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 457 mutex_exit(bgep->genlock); 458 return (EIO); 459 } 460 bgep->bge_mac_state = BGE_MAC_STARTED; 461 BGE_DEBUG(("bge_m_start($%p) done", arg)); 462 463 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) { 464 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 465 mutex_exit(bgep->genlock); 466 return (EIO); 467 } 468 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) { 469 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 470 mutex_exit(bgep->genlock); 471 return (EIO); 472 } 473 #ifdef BGE_IPMI_ASF 474 if (bgep->asf_enabled) { 475 if (bgep->asf_status != ASF_STAT_RUN) { 476 /* start ASF heart beat */ 477 bgep->asf_timeout_id = timeout(bge_asf_heartbeat, 478 (void *)bgep, 479 drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL)); 480 bgep->asf_status = ASF_STAT_RUN; 481 } 482 } 483 #endif 484 mutex_exit(bgep->genlock); 485 486 return (0); 487 } 488 489 /* 490 * bge_m_unicst_set() -- set the physical network address 491 */ 492 static int 493 bge_m_unicst(void *arg, const uint8_t *macaddr) 494 { 495 bge_t *bgep = arg; /* private device info */ 496 497 BGE_TRACE(("bge_m_unicst_set($%p, %s)", arg, 498 ether_sprintf((void *)macaddr))); 499 500 /* 501 * Remember the new current address in the driver state 502 * Sync the chip's idea of the address too ... 503 */ 504 mutex_enter(bgep->genlock); 505 if (!(bgep->progress & PROGRESS_INTR)) { 506 /* can happen during autorecovery */ 507 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 508 mutex_exit(bgep->genlock); 509 return (EIO); 510 } 511 ethaddr_copy(macaddr, bgep->curr_addr.addr); 512 #ifdef BGE_IPMI_ASF 513 if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE) { 514 #else 515 if (bge_chip_sync(bgep) == DDI_FAILURE) { 516 #endif 517 (void) bge_check_acc_handle(bgep, bgep->cfg_handle); 518 (void) bge_check_acc_handle(bgep, bgep->io_handle); 519 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 520 mutex_exit(bgep->genlock); 521 return (EIO); 522 } 523 #ifdef BGE_IPMI_ASF 524 if (bgep->asf_enabled) { 525 /* 526 * The above bge_chip_sync() function wrote the ethernet MAC 527 * addresses registers which destroyed the IPMI/ASF sideband. 528 * Here, we have to reset chip to make IPMI/ASF sideband work. 529 */ 530 if (bgep->asf_status == ASF_STAT_RUN) { 531 /* 532 * We must stop ASF heart beat before bge_chip_stop(), 533 * otherwise some computers (ex. IBM HS20 blade server) 534 * may crash. 535 */ 536 bge_asf_update_status(bgep); 537 bge_asf_stop_timer(bgep); 538 bgep->asf_status = ASF_STAT_STOP; 539 540 bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET); 541 } 542 bge_chip_stop(bgep, B_FALSE); 543 544 if (bge_restart(bgep, B_FALSE) == DDI_FAILURE) { 545 (void) bge_check_acc_handle(bgep, bgep->cfg_handle); 546 (void) bge_check_acc_handle(bgep, bgep->io_handle); 547 ddi_fm_service_impact(bgep->devinfo, 548 DDI_SERVICE_DEGRADED); 549 mutex_exit(bgep->genlock); 550 return (EIO); 551 } 552 553 /* 554 * Start our ASF heartbeat counter as soon as possible. 555 */ 556 if (bgep->asf_status != ASF_STAT_RUN) { 557 /* start ASF heart beat */ 558 bgep->asf_timeout_id = timeout(bge_asf_heartbeat, 559 (void *)bgep, 560 drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL)); 561 bgep->asf_status = ASF_STAT_RUN; 562 } 563 } 564 #endif 565 BGE_DEBUG(("bge_m_unicst_set($%p) done", arg)); 566 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) { 567 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 568 mutex_exit(bgep->genlock); 569 return (EIO); 570 } 571 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) { 572 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 573 mutex_exit(bgep->genlock); 574 return (EIO); 575 } 576 mutex_exit(bgep->genlock); 577 578 return (0); 579 } 580 581 /* 582 * Compute the index of the required bit in the multicast hash map. 583 * This must mirror the way the hardware actually does it! 584 * See Broadcom document 570X-PG102-R page 125. 585 */ 586 static uint32_t 587 bge_hash_index(const uint8_t *mca) 588 { 589 uint32_t hash; 590 591 CRC32(hash, mca, ETHERADDRL, -1U, crc32_table); 592 593 return (hash); 594 } 595 596 /* 597 * bge_m_multicst_add() -- enable/disable a multicast address 598 */ 599 static int 600 bge_m_multicst(void *arg, boolean_t add, const uint8_t *mca) 601 { 602 bge_t *bgep = arg; /* private device info */ 603 uint32_t hash; 604 uint32_t index; 605 uint32_t word; 606 uint32_t bit; 607 uint8_t *refp; 608 609 BGE_TRACE(("bge_m_multicst($%p, %s, %s)", arg, 610 (add) ? "add" : "remove", ether_sprintf((void *)mca))); 611 612 /* 613 * Precalculate all required masks, pointers etc ... 614 */ 615 hash = bge_hash_index(mca); 616 index = hash % BGE_HASH_TABLE_SIZE; 617 word = index/32u; 618 bit = 1 << (index % 32u); 619 refp = &bgep->mcast_refs[index]; 620 621 BGE_DEBUG(("bge_m_multicst: hash 0x%x index %d (%d:0x%x) = %d", 622 hash, index, word, bit, *refp)); 623 624 /* 625 * We must set the appropriate bit in the hash map (and the 626 * corresponding h/w register) when the refcount goes from 0 627 * to >0, and clear it when the last ref goes away (refcount 628 * goes from >0 back to 0). If we change the hash map, we 629 * must also update the chip's hardware map registers. 630 */ 631 mutex_enter(bgep->genlock); 632 if (!(bgep->progress & PROGRESS_INTR)) { 633 /* can happen during autorecovery */ 634 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 635 mutex_exit(bgep->genlock); 636 return (EIO); 637 } 638 if (add) { 639 if ((*refp)++ == 0) { 640 bgep->mcast_hash[word] |= bit; 641 #ifdef BGE_IPMI_ASF 642 if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) { 643 #else 644 if (bge_chip_sync(bgep) == DDI_FAILURE) { 645 #endif 646 (void) bge_check_acc_handle(bgep, 647 bgep->cfg_handle); 648 (void) bge_check_acc_handle(bgep, 649 bgep->io_handle); 650 ddi_fm_service_impact(bgep->devinfo, 651 DDI_SERVICE_DEGRADED); 652 mutex_exit(bgep->genlock); 653 return (EIO); 654 } 655 } 656 } else { 657 if (--(*refp) == 0) { 658 bgep->mcast_hash[word] &= ~bit; 659 #ifdef BGE_IPMI_ASF 660 if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) { 661 #else 662 if (bge_chip_sync(bgep) == DDI_FAILURE) { 663 #endif 664 (void) bge_check_acc_handle(bgep, 665 bgep->cfg_handle); 666 (void) bge_check_acc_handle(bgep, 667 bgep->io_handle); 668 ddi_fm_service_impact(bgep->devinfo, 669 DDI_SERVICE_DEGRADED); 670 mutex_exit(bgep->genlock); 671 return (EIO); 672 } 673 } 674 } 675 BGE_DEBUG(("bge_m_multicst($%p) done", arg)); 676 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) { 677 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 678 mutex_exit(bgep->genlock); 679 return (EIO); 680 } 681 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) { 682 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 683 mutex_exit(bgep->genlock); 684 return (EIO); 685 } 686 mutex_exit(bgep->genlock); 687 688 return (0); 689 } 690 691 /* 692 * bge_m_promisc() -- set or reset promiscuous mode on the board 693 * 694 * Program the hardware to enable/disable promiscuous and/or 695 * receive-all-multicast modes. 696 */ 697 static int 698 bge_m_promisc(void *arg, boolean_t on) 699 { 700 bge_t *bgep = arg; 701 702 BGE_TRACE(("bge_m_promisc_set($%p, %d)", arg, on)); 703 704 /* 705 * Store MAC layer specified mode and pass to chip layer to update h/w 706 */ 707 mutex_enter(bgep->genlock); 708 if (!(bgep->progress & PROGRESS_INTR)) { 709 /* can happen during autorecovery */ 710 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 711 mutex_exit(bgep->genlock); 712 return (EIO); 713 } 714 bgep->promisc = on; 715 #ifdef BGE_IPMI_ASF 716 if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) { 717 #else 718 if (bge_chip_sync(bgep) == DDI_FAILURE) { 719 #endif 720 (void) bge_check_acc_handle(bgep, bgep->cfg_handle); 721 (void) bge_check_acc_handle(bgep, bgep->io_handle); 722 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 723 mutex_exit(bgep->genlock); 724 return (EIO); 725 } 726 BGE_DEBUG(("bge_m_promisc_set($%p) done", arg)); 727 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) { 728 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 729 mutex_exit(bgep->genlock); 730 return (EIO); 731 } 732 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) { 733 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 734 mutex_exit(bgep->genlock); 735 return (EIO); 736 } 737 mutex_exit(bgep->genlock); 738 return (0); 739 } 740 741 /* 742 * Loopback ioctl code 743 */ 744 745 static lb_property_t loopmodes[] = { 746 { normal, "normal", BGE_LOOP_NONE }, 747 { external, "1000Mbps", BGE_LOOP_EXTERNAL_1000 }, 748 { external, "100Mbps", BGE_LOOP_EXTERNAL_100 }, 749 { external, "10Mbps", BGE_LOOP_EXTERNAL_10 }, 750 { internal, "PHY", BGE_LOOP_INTERNAL_PHY }, 751 { internal, "MAC", BGE_LOOP_INTERNAL_MAC } 752 }; 753 754 static enum ioc_reply 755 bge_set_loop_mode(bge_t *bgep, uint32_t mode) 756 { 757 const char *msg; 758 759 /* 760 * If the mode isn't being changed, there's nothing to do ... 761 */ 762 if (mode == bgep->param_loop_mode) 763 return (IOC_ACK); 764 765 /* 766 * Validate the requested mode and prepare a suitable message 767 * to explain the link down/up cycle that the change will 768 * probably induce ... 769 */ 770 switch (mode) { 771 default: 772 return (IOC_INVAL); 773 774 case BGE_LOOP_NONE: 775 msg = " (loopback disabled)"; 776 break; 777 778 case BGE_LOOP_EXTERNAL_1000: 779 case BGE_LOOP_EXTERNAL_100: 780 case BGE_LOOP_EXTERNAL_10: 781 msg = " (external loopback selected)"; 782 break; 783 784 case BGE_LOOP_INTERNAL_PHY: 785 msg = " (PHY internal loopback selected)"; 786 break; 787 788 case BGE_LOOP_INTERNAL_MAC: 789 msg = " (MAC internal loopback selected)"; 790 break; 791 } 792 793 /* 794 * All OK; tell the caller to reprogram 795 * the PHY and/or MAC for the new mode ... 796 */ 797 bgep->link_down_msg = bgep->link_up_msg = msg; 798 bgep->param_loop_mode = mode; 799 return (IOC_RESTART_ACK); 800 } 801 802 static enum ioc_reply 803 bge_loop_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp) 804 { 805 lb_info_sz_t *lbsp; 806 lb_property_t *lbpp; 807 uint32_t *lbmp; 808 int cmd; 809 810 _NOTE(ARGUNUSED(wq)) 811 812 /* 813 * Validate format of ioctl 814 */ 815 if (mp->b_cont == NULL) 816 return (IOC_INVAL); 817 818 cmd = iocp->ioc_cmd; 819 switch (cmd) { 820 default: 821 /* NOTREACHED */ 822 bge_error(bgep, "bge_loop_ioctl: invalid cmd 0x%x", cmd); 823 return (IOC_INVAL); 824 825 case LB_GET_INFO_SIZE: 826 if (iocp->ioc_count != sizeof (lb_info_sz_t)) 827 return (IOC_INVAL); 828 lbsp = (lb_info_sz_t *)mp->b_cont->b_rptr; 829 *lbsp = sizeof (loopmodes); 830 return (IOC_REPLY); 831 832 case LB_GET_INFO: 833 if (iocp->ioc_count != sizeof (loopmodes)) 834 return (IOC_INVAL); 835 lbpp = (lb_property_t *)mp->b_cont->b_rptr; 836 bcopy(loopmodes, lbpp, sizeof (loopmodes)); 837 return (IOC_REPLY); 838 839 case LB_GET_MODE: 840 if (iocp->ioc_count != sizeof (uint32_t)) 841 return (IOC_INVAL); 842 lbmp = (uint32_t *)mp->b_cont->b_rptr; 843 *lbmp = bgep->param_loop_mode; 844 return (IOC_REPLY); 845 846 case LB_SET_MODE: 847 if (iocp->ioc_count != sizeof (uint32_t)) 848 return (IOC_INVAL); 849 lbmp = (uint32_t *)mp->b_cont->b_rptr; 850 return (bge_set_loop_mode(bgep, *lbmp)); 851 } 852 } 853 854 /* 855 * Specific bge IOCTLs, the gld module handles the generic ones. 856 */ 857 static void 858 bge_m_ioctl(void *arg, queue_t *wq, mblk_t *mp) 859 { 860 bge_t *bgep = arg; 861 struct iocblk *iocp; 862 enum ioc_reply status; 863 boolean_t need_privilege; 864 int err; 865 int cmd; 866 867 /* 868 * Validate the command before bothering with the mutex ... 869 */ 870 iocp = (struct iocblk *)mp->b_rptr; 871 iocp->ioc_error = 0; 872 need_privilege = B_TRUE; 873 cmd = iocp->ioc_cmd; 874 switch (cmd) { 875 default: 876 miocnak(wq, mp, 0, EINVAL); 877 return; 878 879 case BGE_MII_READ: 880 case BGE_MII_WRITE: 881 case BGE_SEE_READ: 882 case BGE_SEE_WRITE: 883 case BGE_DIAG: 884 case BGE_PEEK: 885 case BGE_POKE: 886 case BGE_PHY_RESET: 887 case BGE_SOFT_RESET: 888 case BGE_HARD_RESET: 889 break; 890 891 case LB_GET_INFO_SIZE: 892 case LB_GET_INFO: 893 case LB_GET_MODE: 894 need_privilege = B_FALSE; 895 /* FALLTHRU */ 896 case LB_SET_MODE: 897 break; 898 899 case ND_GET: 900 need_privilege = B_FALSE; 901 /* FALLTHRU */ 902 case ND_SET: 903 break; 904 } 905 906 if (need_privilege) { 907 /* 908 * Check for specific net_config privilege on Solaris 10+. 909 * Otherwise just check for root access ... 910 */ 911 if (secpolicy_net_config != NULL) 912 err = secpolicy_net_config(iocp->ioc_cr, B_FALSE); 913 else 914 err = drv_priv(iocp->ioc_cr); 915 if (err != 0) { 916 miocnak(wq, mp, 0, err); 917 return; 918 } 919 } 920 921 mutex_enter(bgep->genlock); 922 if (!(bgep->progress & PROGRESS_INTR)) { 923 /* can happen during autorecovery */ 924 mutex_exit(bgep->genlock); 925 miocnak(wq, mp, 0, EIO); 926 return; 927 } 928 929 switch (cmd) { 930 default: 931 _NOTE(NOTREACHED) 932 status = IOC_INVAL; 933 break; 934 935 case BGE_MII_READ: 936 case BGE_MII_WRITE: 937 case BGE_SEE_READ: 938 case BGE_SEE_WRITE: 939 case BGE_DIAG: 940 case BGE_PEEK: 941 case BGE_POKE: 942 case BGE_PHY_RESET: 943 case BGE_SOFT_RESET: 944 case BGE_HARD_RESET: 945 status = bge_chip_ioctl(bgep, wq, mp, iocp); 946 break; 947 948 case LB_GET_INFO_SIZE: 949 case LB_GET_INFO: 950 case LB_GET_MODE: 951 case LB_SET_MODE: 952 status = bge_loop_ioctl(bgep, wq, mp, iocp); 953 break; 954 955 case ND_GET: 956 case ND_SET: 957 status = bge_nd_ioctl(bgep, wq, mp, iocp); 958 break; 959 } 960 961 /* 962 * Do we need to reprogram the PHY and/or the MAC? 963 * Do it now, while we still have the mutex. 964 * 965 * Note: update the PHY first, 'cos it controls the 966 * speed/duplex parameters that the MAC code uses. 967 */ 968 switch (status) { 969 case IOC_RESTART_REPLY: 970 case IOC_RESTART_ACK: 971 if (bge_phys_update(bgep) != DDI_SUCCESS) { 972 ddi_fm_service_impact(bgep->devinfo, 973 DDI_SERVICE_DEGRADED); 974 status = IOC_INVAL; 975 } 976 #ifdef BGE_IPMI_ASF 977 if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE) { 978 #else 979 if (bge_chip_sync(bgep) == DDI_FAILURE) { 980 #endif 981 ddi_fm_service_impact(bgep->devinfo, 982 DDI_SERVICE_DEGRADED); 983 status = IOC_INVAL; 984 } 985 if (bgep->intr_type == DDI_INTR_TYPE_MSI) 986 bge_chip_msi_trig(bgep); 987 break; 988 } 989 990 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) { 991 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 992 status = IOC_INVAL; 993 } 994 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) { 995 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 996 status = IOC_INVAL; 997 } 998 mutex_exit(bgep->genlock); 999 1000 /* 1001 * Finally, decide how to reply 1002 */ 1003 switch (status) { 1004 default: 1005 case IOC_INVAL: 1006 /* 1007 * Error, reply with a NAK and EINVAL or the specified error 1008 */ 1009 miocnak(wq, mp, 0, iocp->ioc_error == 0 ? 1010 EINVAL : iocp->ioc_error); 1011 break; 1012 1013 case IOC_DONE: 1014 /* 1015 * OK, reply already sent 1016 */ 1017 break; 1018 1019 case IOC_RESTART_ACK: 1020 case IOC_ACK: 1021 /* 1022 * OK, reply with an ACK 1023 */ 1024 miocack(wq, mp, 0, 0); 1025 break; 1026 1027 case IOC_RESTART_REPLY: 1028 case IOC_REPLY: 1029 /* 1030 * OK, send prepared reply as ACK or NAK 1031 */ 1032 mp->b_datap->db_type = iocp->ioc_error == 0 ? 1033 M_IOCACK : M_IOCNAK; 1034 qreply(wq, mp); 1035 break; 1036 } 1037 } 1038 1039 static void 1040 bge_m_resources(void *arg) 1041 { 1042 bge_t *bgep = arg; 1043 recv_ring_t *rrp; 1044 mac_rx_fifo_t mrf; 1045 int ring; 1046 1047 mutex_enter(bgep->genlock); 1048 1049 /* 1050 * Register Rx rings as resources and save mac 1051 * resource id for future reference 1052 */ 1053 mrf.mrf_type = MAC_RX_FIFO; 1054 mrf.mrf_blank = bge_chip_blank; 1055 mrf.mrf_arg = (void *)bgep; 1056 mrf.mrf_normal_blank_time = bge_rx_ticks_norm; 1057 mrf.mrf_normal_pkt_count = bge_rx_count_norm; 1058 1059 for (ring = 0; ring < bgep->chipid.rx_rings; ring++) { 1060 rrp = &bgep->recv[ring]; 1061 rrp->handle = mac_resource_add(bgep->macp, 1062 (mac_resource_t *)&mrf); 1063 } 1064 1065 mutex_exit(bgep->genlock); 1066 } 1067 1068 /* 1069 * ========== Per-instance setup/teardown code ========== 1070 */ 1071 1072 #undef BGE_DBG 1073 #define BGE_DBG BGE_DBG_INIT /* debug flag for this code */ 1074 1075 /* 1076 * Utility routine to carve a slice off a chunk of allocated memory, 1077 * updating the chunk descriptor accordingly. The size of the slice 1078 * is given by the product of the <qty> and <size> parameters. 1079 */ 1080 static void 1081 bge_slice_chunk(dma_area_t *slice, dma_area_t *chunk, 1082 uint32_t qty, uint32_t size) 1083 { 1084 static uint32_t sequence = 0xbcd5704a; 1085 size_t totsize; 1086 1087 totsize = qty*size; 1088 ASSERT(size >= 0); 1089 ASSERT(totsize <= chunk->alength); 1090 1091 *slice = *chunk; 1092 slice->nslots = qty; 1093 slice->size = size; 1094 slice->alength = totsize; 1095 slice->token = ++sequence; 1096 1097 chunk->mem_va = (caddr_t)chunk->mem_va + totsize; 1098 chunk->alength -= totsize; 1099 chunk->offset += totsize; 1100 chunk->cookie.dmac_laddress += totsize; 1101 chunk->cookie.dmac_size -= totsize; 1102 } 1103 1104 /* 1105 * Initialise the specified Receive Producer (Buffer) Ring, using 1106 * the information in the <dma_area> descriptors that it contains 1107 * to set up all the other fields. This routine should be called 1108 * only once for each ring. 1109 */ 1110 static void 1111 bge_init_buff_ring(bge_t *bgep, uint64_t ring) 1112 { 1113 buff_ring_t *brp; 1114 bge_status_t *bsp; 1115 sw_rbd_t *srbdp; 1116 dma_area_t pbuf; 1117 uint32_t bufsize; 1118 uint32_t nslots; 1119 uint32_t slot; 1120 uint32_t split; 1121 1122 static bge_regno_t nic_ring_addrs[BGE_BUFF_RINGS_MAX] = { 1123 NIC_MEM_SHADOW_BUFF_STD, 1124 NIC_MEM_SHADOW_BUFF_JUMBO, 1125 NIC_MEM_SHADOW_BUFF_MINI 1126 }; 1127 static bge_regno_t mailbox_regs[BGE_BUFF_RINGS_MAX] = { 1128 RECV_STD_PROD_INDEX_REG, 1129 RECV_JUMBO_PROD_INDEX_REG, 1130 RECV_MINI_PROD_INDEX_REG 1131 }; 1132 static bge_regno_t buff_cons_xref[BGE_BUFF_RINGS_MAX] = { 1133 STATUS_STD_BUFF_CONS_INDEX, 1134 STATUS_JUMBO_BUFF_CONS_INDEX, 1135 STATUS_MINI_BUFF_CONS_INDEX 1136 }; 1137 1138 BGE_TRACE(("bge_init_buff_ring($%p, %d)", 1139 (void *)bgep, ring)); 1140 1141 brp = &bgep->buff[ring]; 1142 nslots = brp->desc.nslots; 1143 ASSERT(brp->buf[0].nslots == nslots/BGE_SPLIT); 1144 bufsize = brp->buf[0].size; 1145 1146 /* 1147 * Set up the copy of the h/w RCB 1148 * 1149 * Note: unlike Send & Receive Return Rings, (where the max_len 1150 * field holds the number of slots), in a Receive Buffer Ring 1151 * this field indicates the size of each buffer in the ring. 1152 */ 1153 brp->hw_rcb.host_ring_addr = brp->desc.cookie.dmac_laddress; 1154 brp->hw_rcb.max_len = bufsize; 1155 brp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED; 1156 brp->hw_rcb.nic_ring_addr = nic_ring_addrs[ring]; 1157 1158 /* 1159 * Other one-off initialisation of per-ring data 1160 */ 1161 brp->bgep = bgep; 1162 bsp = DMA_VPTR(bgep->status_block); 1163 brp->cons_index_p = &bsp->buff_cons_index[buff_cons_xref[ring]]; 1164 brp->chip_mbx_reg = mailbox_regs[ring]; 1165 mutex_init(brp->rf_lock, NULL, MUTEX_DRIVER, 1166 DDI_INTR_PRI(bgep->intr_pri)); 1167 1168 /* 1169 * Allocate the array of s/w Receive Buffer Descriptors 1170 */ 1171 srbdp = kmem_zalloc(nslots*sizeof (*srbdp), KM_SLEEP); 1172 brp->sw_rbds = srbdp; 1173 1174 /* 1175 * Now initialise each array element once and for all 1176 */ 1177 for (split = 0; split < BGE_SPLIT; ++split) { 1178 pbuf = brp->buf[split]; 1179 for (slot = 0; slot < nslots/BGE_SPLIT; ++srbdp, ++slot) 1180 bge_slice_chunk(&srbdp->pbuf, &pbuf, 1, bufsize); 1181 ASSERT(pbuf.alength == 0); 1182 } 1183 } 1184 1185 /* 1186 * Clean up initialisation done above before the memory is freed 1187 */ 1188 static void 1189 bge_fini_buff_ring(bge_t *bgep, uint64_t ring) 1190 { 1191 buff_ring_t *brp; 1192 sw_rbd_t *srbdp; 1193 1194 BGE_TRACE(("bge_fini_buff_ring($%p, %d)", 1195 (void *)bgep, ring)); 1196 1197 brp = &bgep->buff[ring]; 1198 srbdp = brp->sw_rbds; 1199 kmem_free(srbdp, brp->desc.nslots*sizeof (*srbdp)); 1200 1201 mutex_destroy(brp->rf_lock); 1202 } 1203 1204 /* 1205 * Initialise the specified Receive (Return) Ring, using the 1206 * information in the <dma_area> descriptors that it contains 1207 * to set up all the other fields. This routine should be called 1208 * only once for each ring. 1209 */ 1210 static void 1211 bge_init_recv_ring(bge_t *bgep, uint64_t ring) 1212 { 1213 recv_ring_t *rrp; 1214 bge_status_t *bsp; 1215 uint32_t nslots; 1216 1217 BGE_TRACE(("bge_init_recv_ring($%p, %d)", 1218 (void *)bgep, ring)); 1219 1220 /* 1221 * The chip architecture requires that receive return rings have 1222 * 512 or 1024 or 2048 elements per ring. See 570X-PG108-R page 103. 1223 */ 1224 rrp = &bgep->recv[ring]; 1225 nslots = rrp->desc.nslots; 1226 ASSERT(nslots == 0 || nslots == 512 || 1227 nslots == 1024 || nslots == 2048); 1228 1229 /* 1230 * Set up the copy of the h/w RCB 1231 */ 1232 rrp->hw_rcb.host_ring_addr = rrp->desc.cookie.dmac_laddress; 1233 rrp->hw_rcb.max_len = nslots; 1234 rrp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED; 1235 rrp->hw_rcb.nic_ring_addr = 0; 1236 1237 /* 1238 * Other one-off initialisation of per-ring data 1239 */ 1240 rrp->bgep = bgep; 1241 bsp = DMA_VPTR(bgep->status_block); 1242 rrp->prod_index_p = RECV_INDEX_P(bsp, ring); 1243 rrp->chip_mbx_reg = RECV_RING_CONS_INDEX_REG(ring); 1244 mutex_init(rrp->rx_lock, NULL, MUTEX_DRIVER, 1245 DDI_INTR_PRI(bgep->intr_pri)); 1246 } 1247 1248 1249 /* 1250 * Clean up initialisation done above before the memory is freed 1251 */ 1252 static void 1253 bge_fini_recv_ring(bge_t *bgep, uint64_t ring) 1254 { 1255 recv_ring_t *rrp; 1256 1257 BGE_TRACE(("bge_fini_recv_ring($%p, %d)", 1258 (void *)bgep, ring)); 1259 1260 rrp = &bgep->recv[ring]; 1261 if (rrp->rx_softint) 1262 ddi_remove_softintr(rrp->rx_softint); 1263 mutex_destroy(rrp->rx_lock); 1264 } 1265 1266 /* 1267 * Initialise the specified Send Ring, using the information in the 1268 * <dma_area> descriptors that it contains to set up all the other 1269 * fields. This routine should be called only once for each ring. 1270 */ 1271 static void 1272 bge_init_send_ring(bge_t *bgep, uint64_t ring) 1273 { 1274 send_ring_t *srp; 1275 bge_status_t *bsp; 1276 sw_sbd_t *ssbdp; 1277 dma_area_t desc; 1278 dma_area_t pbuf; 1279 uint32_t nslots; 1280 uint32_t slot; 1281 uint32_t split; 1282 1283 BGE_TRACE(("bge_init_send_ring($%p, %d)", 1284 (void *)bgep, ring)); 1285 1286 /* 1287 * The chip architecture requires that host-based send rings 1288 * have 512 elements per ring. See 570X-PG102-R page 56. 1289 */ 1290 srp = &bgep->send[ring]; 1291 nslots = srp->desc.nslots; 1292 ASSERT(nslots == 0 || nslots == 512); 1293 1294 /* 1295 * Set up the copy of the h/w RCB 1296 */ 1297 srp->hw_rcb.host_ring_addr = srp->desc.cookie.dmac_laddress; 1298 srp->hw_rcb.max_len = nslots; 1299 srp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED; 1300 srp->hw_rcb.nic_ring_addr = NIC_MEM_SHADOW_SEND_RING(ring, nslots); 1301 1302 /* 1303 * Other one-off initialisation of per-ring data 1304 */ 1305 srp->bgep = bgep; 1306 bsp = DMA_VPTR(bgep->status_block); 1307 srp->cons_index_p = SEND_INDEX_P(bsp, ring); 1308 srp->chip_mbx_reg = SEND_RING_HOST_INDEX_REG(ring); 1309 mutex_init(srp->tx_lock, NULL, MUTEX_DRIVER, 1310 DDI_INTR_PRI(bgep->intr_pri)); 1311 mutex_init(srp->tc_lock, NULL, MUTEX_DRIVER, 1312 DDI_INTR_PRI(bgep->intr_pri)); 1313 1314 /* 1315 * Allocate the array of s/w Send Buffer Descriptors 1316 */ 1317 ssbdp = kmem_zalloc(nslots*sizeof (*ssbdp), KM_SLEEP); 1318 srp->sw_sbds = ssbdp; 1319 1320 /* 1321 * Now initialise each array element once and for all 1322 */ 1323 desc = srp->desc; 1324 for (split = 0; split < BGE_SPLIT; ++split) { 1325 pbuf = srp->buf[split]; 1326 for (slot = 0; slot < nslots/BGE_SPLIT; ++ssbdp, ++slot) { 1327 bge_slice_chunk(&ssbdp->desc, &desc, 1, 1328 sizeof (bge_sbd_t)); 1329 bge_slice_chunk(&ssbdp->pbuf, &pbuf, 1, 1330 bgep->chipid.snd_buff_size); 1331 } 1332 ASSERT(pbuf.alength == 0); 1333 } 1334 ASSERT(desc.alength == 0); 1335 } 1336 1337 /* 1338 * Clean up initialisation done above before the memory is freed 1339 */ 1340 static void 1341 bge_fini_send_ring(bge_t *bgep, uint64_t ring) 1342 { 1343 send_ring_t *srp; 1344 sw_sbd_t *ssbdp; 1345 1346 BGE_TRACE(("bge_fini_send_ring($%p, %d)", 1347 (void *)bgep, ring)); 1348 1349 srp = &bgep->send[ring]; 1350 ssbdp = srp->sw_sbds; 1351 kmem_free(ssbdp, srp->desc.nslots*sizeof (*ssbdp)); 1352 1353 mutex_destroy(srp->tx_lock); 1354 mutex_destroy(srp->tc_lock); 1355 } 1356 1357 /* 1358 * Initialise all transmit, receive, and buffer rings. 1359 */ 1360 void 1361 bge_init_rings(bge_t *bgep) 1362 { 1363 uint64_t ring; 1364 1365 BGE_TRACE(("bge_init_rings($%p)", (void *)bgep)); 1366 1367 /* 1368 * Perform one-off initialisation of each ring ... 1369 */ 1370 for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring) 1371 bge_init_send_ring(bgep, ring); 1372 for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring) 1373 bge_init_recv_ring(bgep, ring); 1374 for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring) 1375 bge_init_buff_ring(bgep, ring); 1376 } 1377 1378 /* 1379 * Undo the work of bge_init_rings() above before the memory is freed 1380 */ 1381 void 1382 bge_fini_rings(bge_t *bgep) 1383 { 1384 uint64_t ring; 1385 1386 BGE_TRACE(("bge_fini_rings($%p)", (void *)bgep)); 1387 1388 for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring) 1389 bge_fini_buff_ring(bgep, ring); 1390 for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring) 1391 bge_fini_recv_ring(bgep, ring); 1392 for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring) 1393 bge_fini_send_ring(bgep, ring); 1394 } 1395 1396 /* 1397 * Allocate an area of memory and a DMA handle for accessing it 1398 */ 1399 static int 1400 bge_alloc_dma_mem(bge_t *bgep, size_t memsize, ddi_device_acc_attr_t *attr_p, 1401 uint_t dma_flags, dma_area_t *dma_p) 1402 { 1403 caddr_t va; 1404 int err; 1405 1406 BGE_TRACE(("bge_alloc_dma_mem($%p, %ld, $%p, 0x%x, $%p)", 1407 (void *)bgep, memsize, attr_p, dma_flags, dma_p)); 1408 1409 /* 1410 * Allocate handle 1411 */ 1412 err = ddi_dma_alloc_handle(bgep->devinfo, &dma_attr, 1413 DDI_DMA_SLEEP, NULL, &dma_p->dma_hdl); 1414 if (err != DDI_SUCCESS) 1415 return (DDI_FAILURE); 1416 1417 /* 1418 * Allocate memory 1419 */ 1420 err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, attr_p, 1421 dma_flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING), 1422 DDI_DMA_SLEEP, NULL, &va, &dma_p->alength, &dma_p->acc_hdl); 1423 if (err != DDI_SUCCESS) 1424 return (DDI_FAILURE); 1425 1426 /* 1427 * Bind the two together 1428 */ 1429 dma_p->mem_va = va; 1430 err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL, 1431 va, dma_p->alength, dma_flags, DDI_DMA_SLEEP, NULL, 1432 &dma_p->cookie, &dma_p->ncookies); 1433 1434 BGE_DEBUG(("bge_alloc_dma_mem(): bind %d bytes; err %d, %d cookies", 1435 dma_p->alength, err, dma_p->ncookies)); 1436 1437 if (err != DDI_DMA_MAPPED || dma_p->ncookies != 1) 1438 return (DDI_FAILURE); 1439 1440 dma_p->nslots = ~0U; 1441 dma_p->size = ~0U; 1442 dma_p->token = ~0U; 1443 dma_p->offset = 0; 1444 return (DDI_SUCCESS); 1445 } 1446 1447 /* 1448 * Free one allocated area of DMAable memory 1449 */ 1450 static void 1451 bge_free_dma_mem(dma_area_t *dma_p) 1452 { 1453 if (dma_p->dma_hdl != NULL) { 1454 if (dma_p->ncookies) { 1455 (void) ddi_dma_unbind_handle(dma_p->dma_hdl); 1456 dma_p->ncookies = 0; 1457 } 1458 ddi_dma_free_handle(&dma_p->dma_hdl); 1459 dma_p->dma_hdl = NULL; 1460 } 1461 1462 if (dma_p->acc_hdl != NULL) { 1463 ddi_dma_mem_free(&dma_p->acc_hdl); 1464 dma_p->acc_hdl = NULL; 1465 } 1466 } 1467 1468 /* 1469 * This function allocates all the transmit and receive buffers 1470 * and descriptors, in four chunks (or one, if MONOLITHIC). 1471 */ 1472 int 1473 bge_alloc_bufs(bge_t *bgep) 1474 { 1475 dma_area_t area; 1476 size_t rxbuffsize; 1477 size_t txbuffsize; 1478 size_t rxbuffdescsize; 1479 size_t rxdescsize; 1480 size_t txdescsize; 1481 uint64_t ring; 1482 uint64_t rx_rings = bgep->chipid.rx_rings; 1483 uint64_t tx_rings = bgep->chipid.tx_rings; 1484 int split; 1485 int err; 1486 1487 BGE_TRACE(("bge_alloc_bufs($%p)", 1488 (void *)bgep)); 1489 1490 rxbuffsize = BGE_STD_SLOTS_USED*BGE_STD_BUFF_SIZE; 1491 rxbuffsize += bgep->chipid.jumbo_slots*bgep->chipid.recv_jumbo_size; 1492 rxbuffsize += BGE_MINI_SLOTS_USED*BGE_MINI_BUFF_SIZE; 1493 1494 txbuffsize = BGE_SEND_SLOTS_USED*bgep->chipid.snd_buff_size; 1495 txbuffsize *= tx_rings; 1496 1497 rxdescsize = rx_rings*bgep->chipid.recv_slots; 1498 rxdescsize *= sizeof (bge_rbd_t); 1499 1500 rxbuffdescsize = BGE_STD_SLOTS_USED; 1501 rxbuffdescsize += bgep->chipid.jumbo_slots; 1502 rxbuffdescsize += BGE_MINI_SLOTS_USED; 1503 rxbuffdescsize *= sizeof (bge_rbd_t); 1504 1505 txdescsize = tx_rings*BGE_SEND_SLOTS_USED; 1506 txdescsize *= sizeof (bge_sbd_t); 1507 txdescsize += sizeof (bge_statistics_t); 1508 txdescsize += sizeof (bge_status_t); 1509 txdescsize += BGE_STATUS_PADDING; 1510 1511 #if BGE_MONOLITHIC 1512 1513 err = bge_alloc_dma_mem(bgep, 1514 rxbuffsize+txbuffsize+rxbuffdescsize+rxdescsize+txdescsize, 1515 &bge_data_accattr, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &area); 1516 if (err != DDI_SUCCESS) 1517 return (DDI_FAILURE); 1518 1519 BGE_DEBUG(("allocated range $%p-$%p (0x%lx-0x%lx)", 1520 DMA_VPTR(area), 1521 (caddr_t)DMA_VPTR(area)+area.alength, 1522 area.cookie.dmac_laddress, 1523 area.cookie.dmac_laddress+area.alength)); 1524 1525 bge_slice_chunk(&bgep->rx_buff[0], &area, 1, rxbuffsize); 1526 bge_slice_chunk(&bgep->tx_buff[0], &area, 1, txbuffsize); 1527 bge_slice_chunk(&bgep->rx_desc[0], &area, 1, rxdescsize); 1528 bge_slice_chunk(&bgep->tx_desc, &area, 1, txdescsize); 1529 1530 #else 1531 /* 1532 * Allocate memory & handles for RX buffers 1533 */ 1534 ASSERT((rxbuffsize % BGE_SPLIT) == 0); 1535 for (split = 0; split < BGE_SPLIT; ++split) { 1536 err = bge_alloc_dma_mem(bgep, rxbuffsize/BGE_SPLIT, 1537 &bge_data_accattr, DDI_DMA_READ | BGE_DMA_MODE, 1538 &bgep->rx_buff[split]); 1539 if (err != DDI_SUCCESS) 1540 return (DDI_FAILURE); 1541 } 1542 1543 /* 1544 * Allocate memory & handles for TX buffers 1545 */ 1546 ASSERT((txbuffsize % BGE_SPLIT) == 0); 1547 for (split = 0; split < BGE_SPLIT; ++split) { 1548 err = bge_alloc_dma_mem(bgep, txbuffsize/BGE_SPLIT, 1549 &bge_data_accattr, DDI_DMA_WRITE | BGE_DMA_MODE, 1550 &bgep->tx_buff[split]); 1551 if (err != DDI_SUCCESS) 1552 return (DDI_FAILURE); 1553 } 1554 1555 /* 1556 * Allocate memory & handles for receive return rings 1557 */ 1558 ASSERT((rxdescsize % rx_rings) == 0); 1559 for (split = 0; split < rx_rings; ++split) { 1560 err = bge_alloc_dma_mem(bgep, rxdescsize/rx_rings, 1561 &bge_desc_accattr, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, 1562 &bgep->rx_desc[split]); 1563 if (err != DDI_SUCCESS) 1564 return (DDI_FAILURE); 1565 } 1566 1567 /* 1568 * Allocate memory & handles for buffer (producer) descriptor rings 1569 */ 1570 err = bge_alloc_dma_mem(bgep, rxbuffdescsize, &bge_desc_accattr, 1571 DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &bgep->rx_desc[split]); 1572 if (err != DDI_SUCCESS) 1573 return (DDI_FAILURE); 1574 1575 /* 1576 * Allocate memory & handles for TX descriptor rings, 1577 * status block, and statistics area 1578 */ 1579 err = bge_alloc_dma_mem(bgep, txdescsize, &bge_desc_accattr, 1580 DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &bgep->tx_desc); 1581 if (err != DDI_SUCCESS) 1582 return (DDI_FAILURE); 1583 1584 #endif /* BGE_MONOLITHIC */ 1585 1586 /* 1587 * Now carve up each of the allocated areas ... 1588 */ 1589 for (split = 0; split < BGE_SPLIT; ++split) { 1590 area = bgep->rx_buff[split]; 1591 bge_slice_chunk(&bgep->buff[BGE_STD_BUFF_RING].buf[split], 1592 &area, BGE_STD_SLOTS_USED/BGE_SPLIT, 1593 BGE_STD_BUFF_SIZE); 1594 bge_slice_chunk(&bgep->buff[BGE_JUMBO_BUFF_RING].buf[split], 1595 &area, bgep->chipid.jumbo_slots/BGE_SPLIT, 1596 bgep->chipid.recv_jumbo_size); 1597 bge_slice_chunk(&bgep->buff[BGE_MINI_BUFF_RING].buf[split], 1598 &area, BGE_MINI_SLOTS_USED/BGE_SPLIT, 1599 BGE_MINI_BUFF_SIZE); 1600 ASSERT(area.alength >= 0); 1601 } 1602 1603 for (split = 0; split < BGE_SPLIT; ++split) { 1604 area = bgep->tx_buff[split]; 1605 for (ring = 0; ring < tx_rings; ++ring) 1606 bge_slice_chunk(&bgep->send[ring].buf[split], 1607 &area, BGE_SEND_SLOTS_USED/BGE_SPLIT, 1608 bgep->chipid.snd_buff_size); 1609 for (; ring < BGE_SEND_RINGS_MAX; ++ring) 1610 bge_slice_chunk(&bgep->send[ring].buf[split], 1611 &area, 0/BGE_SPLIT, 1612 bgep->chipid.snd_buff_size); 1613 ASSERT(area.alength >= 0); 1614 } 1615 1616 for (ring = 0; ring < rx_rings; ++ring) 1617 bge_slice_chunk(&bgep->recv[ring].desc, &bgep->rx_desc[ring], 1618 bgep->chipid.recv_slots, sizeof (bge_rbd_t)); 1619 1620 area = bgep->rx_desc[rx_rings]; 1621 for (; ring < BGE_RECV_RINGS_MAX; ++ring) 1622 bge_slice_chunk(&bgep->recv[ring].desc, &area, 1623 0, sizeof (bge_rbd_t)); 1624 bge_slice_chunk(&bgep->buff[BGE_STD_BUFF_RING].desc, &area, 1625 BGE_STD_SLOTS_USED, sizeof (bge_rbd_t)); 1626 bge_slice_chunk(&bgep->buff[BGE_JUMBO_BUFF_RING].desc, &area, 1627 bgep->chipid.jumbo_slots, sizeof (bge_rbd_t)); 1628 bge_slice_chunk(&bgep->buff[BGE_MINI_BUFF_RING].desc, &area, 1629 BGE_MINI_SLOTS_USED, sizeof (bge_rbd_t)); 1630 ASSERT(area.alength == 0); 1631 1632 area = bgep->tx_desc; 1633 for (ring = 0; ring < tx_rings; ++ring) 1634 bge_slice_chunk(&bgep->send[ring].desc, &area, 1635 BGE_SEND_SLOTS_USED, sizeof (bge_sbd_t)); 1636 for (; ring < BGE_SEND_RINGS_MAX; ++ring) 1637 bge_slice_chunk(&bgep->send[ring].desc, &area, 1638 0, sizeof (bge_sbd_t)); 1639 bge_slice_chunk(&bgep->statistics, &area, 1, sizeof (bge_statistics_t)); 1640 bge_slice_chunk(&bgep->status_block, &area, 1, sizeof (bge_status_t)); 1641 ASSERT(area.alength == BGE_STATUS_PADDING); 1642 DMA_ZERO(bgep->status_block); 1643 1644 return (DDI_SUCCESS); 1645 } 1646 1647 /* 1648 * This routine frees the transmit and receive buffers and descriptors. 1649 * Make sure the chip is stopped before calling it! 1650 */ 1651 void 1652 bge_free_bufs(bge_t *bgep) 1653 { 1654 int split; 1655 1656 BGE_TRACE(("bge_free_bufs($%p)", 1657 (void *)bgep)); 1658 1659 #if BGE_MONOLITHIC 1660 bge_free_dma_mem(&bgep->rx_buff[0]); 1661 #else 1662 bge_free_dma_mem(&bgep->tx_desc); 1663 for (split = 0; split < BGE_RECV_RINGS_SPLIT; ++split) 1664 bge_free_dma_mem(&bgep->rx_desc[split]); 1665 for (split = 0; split < BGE_SPLIT; ++split) 1666 bge_free_dma_mem(&bgep->tx_buff[split]); 1667 for (split = 0; split < BGE_SPLIT; ++split) 1668 bge_free_dma_mem(&bgep->rx_buff[split]); 1669 #endif /* BGE_MONOLITHIC */ 1670 } 1671 1672 /* 1673 * Determine (initial) MAC address ("BIA") to use for this interface 1674 */ 1675 1676 static void 1677 bge_find_mac_address(bge_t *bgep, chip_id_t *cidp) 1678 { 1679 struct ether_addr sysaddr; 1680 char propbuf[8]; /* "true" or "false", plus NUL */ 1681 uchar_t *bytes; 1682 int *ints; 1683 uint_t nelts; 1684 int err; 1685 1686 BGE_TRACE(("bge_find_mac_address($%p)", 1687 (void *)bgep)); 1688 1689 BGE_DEBUG(("bge_find_mac_address: hw_mac_addr %012llx, => %s (%sset)", 1690 cidp->hw_mac_addr, 1691 ether_sprintf((void *)cidp->vendor_addr.addr), 1692 cidp->vendor_addr.set ? "" : "not ")); 1693 1694 /* 1695 * The "vendor's factory-set address" may already have 1696 * been extracted from the chip, but if the property 1697 * "local-mac-address" is set we use that instead. It 1698 * will normally be set by OBP, but it could also be 1699 * specified in a .conf file(!) 1700 * 1701 * There doesn't seem to be a way to define byte-array 1702 * properties in a .conf, so we check whether it looks 1703 * like an array of 6 ints instead. 1704 * 1705 * Then, we check whether it looks like an array of 6 1706 * bytes (which it should, if OBP set it). If we can't 1707 * make sense of it either way, we'll ignore it. 1708 */ 1709 err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo, 1710 DDI_PROP_DONTPASS, localmac_propname, &ints, &nelts); 1711 if (err == DDI_PROP_SUCCESS) { 1712 if (nelts == ETHERADDRL) { 1713 while (nelts--) 1714 cidp->vendor_addr.addr[nelts] = ints[nelts]; 1715 cidp->vendor_addr.set = 1; 1716 } 1717 ddi_prop_free(ints); 1718 } 1719 1720 err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, bgep->devinfo, 1721 DDI_PROP_DONTPASS, localmac_propname, &bytes, &nelts); 1722 if (err == DDI_PROP_SUCCESS) { 1723 if (nelts == ETHERADDRL) { 1724 while (nelts--) 1725 cidp->vendor_addr.addr[nelts] = bytes[nelts]; 1726 cidp->vendor_addr.set = 1; 1727 } 1728 ddi_prop_free(bytes); 1729 } 1730 1731 BGE_DEBUG(("bge_find_mac_address: +local %s (%sset)", 1732 ether_sprintf((void *)cidp->vendor_addr.addr), 1733 cidp->vendor_addr.set ? "" : "not ")); 1734 1735 /* 1736 * Look up the OBP property "local-mac-address?". Note that even 1737 * though its value is a string (which should be "true" or "false"), 1738 * it can't be decoded by ddi_prop_lookup_string(9F). So, we zero 1739 * the buffer first and then fetch the property as an untyped array; 1740 * this may or may not include a final NUL, but since there will 1741 * always be one left at the end of the buffer we can now treat it 1742 * as a string anyway. 1743 */ 1744 nelts = sizeof (propbuf); 1745 bzero(propbuf, nelts--); 1746 err = ddi_getlongprop_buf(DDI_DEV_T_ANY, bgep->devinfo, 1747 DDI_PROP_CANSLEEP, localmac_boolname, propbuf, (int *)&nelts); 1748 1749 /* 1750 * Now, if the address still isn't set from the hardware (SEEPROM) 1751 * or the OBP or .conf property, OR if the user has foolishly set 1752 * 'local-mac-address? = false', use "the system address" instead 1753 * (but only if it's non-null i.e. has been set from the IDPROM). 1754 */ 1755 if (cidp->vendor_addr.set == 0 || strcmp(propbuf, "false") == 0) 1756 if (localetheraddr(NULL, &sysaddr) != 0) { 1757 ethaddr_copy(&sysaddr, cidp->vendor_addr.addr); 1758 cidp->vendor_addr.set = 1; 1759 } 1760 1761 BGE_DEBUG(("bge_find_mac_address: +system %s (%sset)", 1762 ether_sprintf((void *)cidp->vendor_addr.addr), 1763 cidp->vendor_addr.set ? "" : "not ")); 1764 1765 /* 1766 * Finally(!), if there's a valid "mac-address" property (created 1767 * if we netbooted from this interface), we must use this instead 1768 * of any of the above to ensure that the NFS/install server doesn't 1769 * get confused by the address changing as Solaris takes over! 1770 */ 1771 err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, bgep->devinfo, 1772 DDI_PROP_DONTPASS, macaddr_propname, &bytes, &nelts); 1773 if (err == DDI_PROP_SUCCESS) { 1774 if (nelts == ETHERADDRL) { 1775 while (nelts--) 1776 cidp->vendor_addr.addr[nelts] = bytes[nelts]; 1777 cidp->vendor_addr.set = 1; 1778 } 1779 ddi_prop_free(bytes); 1780 } 1781 1782 BGE_DEBUG(("bge_find_mac_address: =final %s (%sset)", 1783 ether_sprintf((void *)cidp->vendor_addr.addr), 1784 cidp->vendor_addr.set ? "" : "not ")); 1785 } 1786 1787 1788 /*ARGSUSED*/ 1789 int 1790 bge_check_acc_handle(bge_t *bgep, ddi_acc_handle_t handle) 1791 { 1792 ddi_fm_error_t de; 1793 1794 ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION); 1795 ddi_fm_acc_err_clear(handle, DDI_FME_VERSION); 1796 return (de.fme_status); 1797 } 1798 1799 /*ARGSUSED*/ 1800 int 1801 bge_check_dma_handle(bge_t *bgep, ddi_dma_handle_t handle) 1802 { 1803 ddi_fm_error_t de; 1804 1805 ASSERT(bgep->progress & PROGRESS_BUFS); 1806 ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION); 1807 return (de.fme_status); 1808 } 1809 1810 /* 1811 * The IO fault service error handling callback function 1812 */ 1813 /*ARGSUSED*/ 1814 static int 1815 bge_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data) 1816 { 1817 /* 1818 * as the driver can always deal with an error in any dma or 1819 * access handle, we can just return the fme_status value. 1820 */ 1821 pci_ereport_post(dip, err, NULL); 1822 return (err->fme_status); 1823 } 1824 1825 static void 1826 bge_fm_init(bge_t *bgep) 1827 { 1828 ddi_iblock_cookie_t iblk; 1829 1830 /* Only register with IO Fault Services if we have some capability */ 1831 if (bgep->fm_capabilities) { 1832 bge_reg_accattr.devacc_attr_access = DDI_FLAGERR_ACC; 1833 bge_desc_accattr.devacc_attr_access = DDI_FLAGERR_ACC; 1834 dma_attr.dma_attr_flags = DDI_DMA_FLAGERR; 1835 1836 /* Register capabilities with IO Fault Services */ 1837 ddi_fm_init(bgep->devinfo, &bgep->fm_capabilities, &iblk); 1838 1839 /* 1840 * Initialize pci ereport capabilities if ereport capable 1841 */ 1842 if (DDI_FM_EREPORT_CAP(bgep->fm_capabilities) || 1843 DDI_FM_ERRCB_CAP(bgep->fm_capabilities)) 1844 pci_ereport_setup(bgep->devinfo); 1845 1846 /* 1847 * Register error callback if error callback capable 1848 */ 1849 if (DDI_FM_ERRCB_CAP(bgep->fm_capabilities)) 1850 ddi_fm_handler_register(bgep->devinfo, 1851 bge_fm_error_cb, (void*) bgep); 1852 } else { 1853 /* 1854 * These fields have to be cleared of FMA if there are no 1855 * FMA capabilities at runtime. 1856 */ 1857 bge_reg_accattr.devacc_attr_access = DDI_DEFAULT_ACC; 1858 bge_desc_accattr.devacc_attr_access = DDI_DEFAULT_ACC; 1859 dma_attr.dma_attr_flags = 0; 1860 } 1861 } 1862 1863 static void 1864 bge_fm_fini(bge_t *bgep) 1865 { 1866 /* Only unregister FMA capabilities if we registered some */ 1867 if (bgep->fm_capabilities) { 1868 1869 /* 1870 * Release any resources allocated by pci_ereport_setup() 1871 */ 1872 if (DDI_FM_EREPORT_CAP(bgep->fm_capabilities) || 1873 DDI_FM_ERRCB_CAP(bgep->fm_capabilities)) 1874 pci_ereport_teardown(bgep->devinfo); 1875 1876 /* 1877 * Un-register error callback if error callback capable 1878 */ 1879 if (DDI_FM_ERRCB_CAP(bgep->fm_capabilities)) 1880 ddi_fm_handler_unregister(bgep->devinfo); 1881 1882 /* Unregister from IO Fault Services */ 1883 ddi_fm_fini(bgep->devinfo); 1884 } 1885 } 1886 1887 static void 1888 #ifdef BGE_IPMI_ASF 1889 bge_unattach(bge_t *bgep, uint_t asf_mode) 1890 #else 1891 bge_unattach(bge_t *bgep) 1892 #endif 1893 { 1894 mac_t *macp; 1895 1896 BGE_TRACE(("bge_unattach($%p)", 1897 (void *)bgep)); 1898 1899 /* 1900 * Flag that no more activity may be initiated 1901 */ 1902 bgep->progress &= ~PROGRESS_READY; 1903 1904 /* 1905 * Quiesce the PHY and MAC (leave it reset but still powered). 1906 * Clean up and free all BGE data structures 1907 */ 1908 if (bgep->cyclic_id) { 1909 mutex_enter(&cpu_lock); 1910 cyclic_remove(bgep->cyclic_id); 1911 mutex_exit(&cpu_lock); 1912 } 1913 if (bgep->progress & PROGRESS_KSTATS) 1914 bge_fini_kstats(bgep); 1915 if (bgep->progress & PROGRESS_NDD) 1916 bge_nd_cleanup(bgep); 1917 if (bgep->progress & PROGRESS_PHY) 1918 bge_phys_reset(bgep); 1919 if (bgep->progress & PROGRESS_HWINT) { 1920 mutex_enter(bgep->genlock); 1921 #ifdef BGE_IPMI_ASF 1922 if (bge_chip_reset(bgep, B_FALSE, asf_mode) != DDI_SUCCESS) 1923 #else 1924 if (bge_chip_reset(bgep, B_FALSE) != DDI_SUCCESS) 1925 #endif 1926 ddi_fm_service_impact(bgep->devinfo, 1927 DDI_SERVICE_UNAFFECTED); 1928 #ifdef BGE_IPMI_ASF 1929 if (bgep->asf_enabled) { 1930 /* 1931 * This register has been overlaid. We restore its 1932 * initial value here. 1933 */ 1934 bge_nic_put32(bgep, BGE_NIC_DATA_SIG_ADDR, 1935 BGE_NIC_DATA_SIG); 1936 } 1937 #endif 1938 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) 1939 ddi_fm_service_impact(bgep->devinfo, 1940 DDI_SERVICE_UNAFFECTED); 1941 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) 1942 ddi_fm_service_impact(bgep->devinfo, 1943 DDI_SERVICE_UNAFFECTED); 1944 mutex_exit(bgep->genlock); 1945 } 1946 if (bgep->progress & PROGRESS_INTR) { 1947 bge_intr_disable(bgep); 1948 bge_fini_rings(bgep); 1949 } 1950 if (bgep->progress & PROGRESS_HWINT) { 1951 bge_rem_intrs(bgep); 1952 rw_destroy(bgep->errlock); 1953 mutex_destroy(bgep->softintrlock); 1954 mutex_destroy(bgep->genlock); 1955 } 1956 if (bgep->progress & PROGRESS_FACTOTUM) 1957 ddi_remove_softintr(bgep->factotum_id); 1958 if (bgep->progress & PROGRESS_RESCHED) 1959 ddi_remove_softintr(bgep->resched_id); 1960 if (bgep->progress & PROGRESS_BUFS) 1961 bge_free_bufs(bgep); 1962 if (bgep->progress & PROGRESS_REGS) 1963 ddi_regs_map_free(&bgep->io_handle); 1964 if (bgep->progress & PROGRESS_CFG) 1965 pci_config_teardown(&bgep->cfg_handle); 1966 1967 bge_fm_fini(bgep); 1968 1969 ddi_remove_minor_node(bgep->devinfo, NULL); 1970 macp = bgep->macp; 1971 kmem_free(macp, sizeof (*macp)); 1972 kmem_free(bgep, sizeof (*bgep)); 1973 } 1974 1975 static int 1976 bge_resume(dev_info_t *devinfo) 1977 { 1978 bge_t *bgep; /* Our private data */ 1979 chip_id_t *cidp; 1980 chip_id_t chipid; 1981 1982 bgep = ddi_get_driver_private(devinfo); 1983 if (bgep == NULL) 1984 return (DDI_FAILURE); 1985 1986 /* 1987 * Refuse to resume if the data structures aren't consistent 1988 */ 1989 if (bgep->devinfo != devinfo) 1990 return (DDI_FAILURE); 1991 1992 #ifdef BGE_IPMI_ASF 1993 /* 1994 * Power management hasn't been supported in BGE now. If you 1995 * want to implement it, please add the ASF/IPMI related 1996 * code here. 1997 */ 1998 1999 #endif 2000 2001 /* 2002 * Read chip ID & set up config space command register(s) 2003 * Refuse to resume if the chip has changed its identity! 2004 */ 2005 cidp = &bgep->chipid; 2006 mutex_enter(bgep->genlock); 2007 bge_chip_cfg_init(bgep, &chipid, B_FALSE); 2008 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) { 2009 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST); 2010 mutex_exit(bgep->genlock); 2011 return (DDI_FAILURE); 2012 } 2013 mutex_exit(bgep->genlock); 2014 if (chipid.vendor != cidp->vendor) 2015 return (DDI_FAILURE); 2016 if (chipid.device != cidp->device) 2017 return (DDI_FAILURE); 2018 if (chipid.revision != cidp->revision) 2019 return (DDI_FAILURE); 2020 if (chipid.asic_rev != cidp->asic_rev) 2021 return (DDI_FAILURE); 2022 2023 /* 2024 * All OK, reinitialise h/w & kick off GLD scheduling 2025 */ 2026 mutex_enter(bgep->genlock); 2027 if (bge_restart(bgep, B_TRUE) != DDI_SUCCESS) { 2028 (void) bge_check_acc_handle(bgep, bgep->cfg_handle); 2029 (void) bge_check_acc_handle(bgep, bgep->io_handle); 2030 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST); 2031 mutex_exit(bgep->genlock); 2032 return (DDI_FAILURE); 2033 } 2034 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) { 2035 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST); 2036 mutex_exit(bgep->genlock); 2037 return (DDI_FAILURE); 2038 } 2039 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) { 2040 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST); 2041 mutex_exit(bgep->genlock); 2042 return (DDI_FAILURE); 2043 } 2044 mutex_exit(bgep->genlock); 2045 return (DDI_SUCCESS); 2046 } 2047 2048 static uint8_t ether_brdcst[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 2049 2050 /* 2051 * attach(9E) -- Attach a device to the system 2052 * 2053 * Called once for each board successfully probed. 2054 */ 2055 static int 2056 bge_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd) 2057 { 2058 bge_t *bgep; /* Our private data */ 2059 mac_t *macp; 2060 chip_id_t *cidp; 2061 cyc_handler_t cychand; 2062 cyc_time_t cyctime; 2063 caddr_t regs; 2064 int instance; 2065 int err; 2066 mac_info_t *mip; 2067 int intr_types; 2068 #ifdef BGE_IPMI_ASF 2069 uint32_t mhcrValue; 2070 #endif 2071 2072 instance = ddi_get_instance(devinfo); 2073 2074 BGE_GTRACE(("bge_attach($%p, %d) instance %d", 2075 (void *)devinfo, cmd, instance)); 2076 BGE_BRKPT(NULL, "bge_attach"); 2077 2078 switch (cmd) { 2079 default: 2080 return (DDI_FAILURE); 2081 2082 case DDI_RESUME: 2083 return (bge_resume(devinfo)); 2084 2085 case DDI_ATTACH: 2086 break; 2087 } 2088 2089 /* 2090 * Allocate mac_t and BGE private structures, and 2091 * cross-link them so that given either one of these or 2092 * the devinfo the others can be derived. 2093 */ 2094 macp = kmem_zalloc(sizeof (*macp), KM_SLEEP); 2095 bgep = kmem_zalloc(sizeof (*bgep), KM_SLEEP); 2096 ddi_set_driver_private(devinfo, bgep); 2097 bgep->bge_guard = BGE_GUARD; 2098 bgep->devinfo = devinfo; 2099 bgep->macp = macp; 2100 macp->m_driver = bgep; 2101 2102 /* 2103 * Initialize more fields in BGE private data 2104 */ 2105 bgep->debug = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 2106 DDI_PROP_DONTPASS, debug_propname, bge_debug); 2107 (void) snprintf(bgep->ifname, sizeof (bgep->ifname), "%s%d", 2108 BGE_DRIVER_NAME, instance); 2109 2110 /* 2111 * Initialize for fma support 2112 */ 2113 bgep->fm_capabilities = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 2114 DDI_PROP_DONTPASS, fm_cap, 2115 DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE | 2116 DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE); 2117 BGE_DEBUG(("bgep->fm_capabilities = %d", bgep->fm_capabilities)); 2118 bge_fm_init(bgep); 2119 2120 /* 2121 * Look up the IOMMU's page size for DVMA mappings (must be 2122 * a power of 2) and convert to a mask. This can be used to 2123 * determine whether a message buffer crosses a page boundary. 2124 * Note: in 2s complement binary notation, if X is a power of 2125 * 2, then -X has the representation "11...1100...00". 2126 */ 2127 bgep->pagemask = dvma_pagesize(devinfo); 2128 ASSERT(ddi_ffs(bgep->pagemask) == ddi_fls(bgep->pagemask)); 2129 bgep->pagemask = -bgep->pagemask; 2130 2131 /* 2132 * Map config space registers 2133 * Read chip ID & set up config space command register(s) 2134 * 2135 * Note: this leaves the chip accessible by Memory Space 2136 * accesses, but with interrupts and Bus Mastering off. 2137 * This should ensure that nothing untoward will happen 2138 * if it has been left active by the (net-)bootloader. 2139 * We'll re-enable Bus Mastering once we've reset the chip, 2140 * and allow interrupts only when everything else is set up. 2141 */ 2142 err = pci_config_setup(devinfo, &bgep->cfg_handle); 2143 #ifdef BGE_IPMI_ASF 2144 mhcrValue = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MHCR); 2145 if (mhcrValue & MHCR_ENABLE_ENDIAN_WORD_SWAP) { 2146 bgep->asf_wordswapped = B_TRUE; 2147 } else { 2148 bgep->asf_wordswapped = B_FALSE; 2149 } 2150 bge_asf_get_config(bgep); 2151 #endif 2152 if (err != DDI_SUCCESS) { 2153 bge_problem(bgep, "pci_config_setup() failed"); 2154 goto attach_fail; 2155 } 2156 bgep->progress |= PROGRESS_CFG; 2157 cidp = &bgep->chipid; 2158 bzero(cidp, sizeof (*cidp)); 2159 bge_chip_cfg_init(bgep, cidp, B_FALSE); 2160 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) { 2161 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST); 2162 goto attach_fail; 2163 } 2164 2165 #ifdef BGE_IPMI_ASF 2166 if (DEVICE_5721_SERIES_CHIPSETS(bgep) || 2167 DEVICE_5714_SERIES_CHIPSETS(bgep)) { 2168 bgep->asf_newhandshake = B_TRUE; 2169 } else { 2170 bgep->asf_newhandshake = B_FALSE; 2171 } 2172 #endif 2173 2174 /* 2175 * Update those parts of the chip ID derived from volatile 2176 * registers with the values seen by OBP (in case the chip 2177 * has been reset externally and therefore lost them). 2178 */ 2179 cidp->subven = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 2180 DDI_PROP_DONTPASS, subven_propname, cidp->subven); 2181 cidp->subdev = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 2182 DDI_PROP_DONTPASS, subdev_propname, cidp->subdev); 2183 cidp->clsize = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 2184 DDI_PROP_DONTPASS, clsize_propname, cidp->clsize); 2185 cidp->latency = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 2186 DDI_PROP_DONTPASS, latency_propname, cidp->latency); 2187 cidp->rx_rings = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 2188 DDI_PROP_DONTPASS, rxrings_propname, cidp->rx_rings); 2189 cidp->tx_rings = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 2190 DDI_PROP_DONTPASS, txrings_propname, cidp->tx_rings); 2191 2192 if (bge_jumbo_enable == B_TRUE) { 2193 cidp->default_mtu = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 2194 DDI_PROP_DONTPASS, default_mtu, BGE_DEFAULT_MTU); 2195 if ((cidp->default_mtu < BGE_DEFAULT_MTU)|| 2196 (cidp->default_mtu > BGE_MAXIMUM_MTU)) { 2197 cidp->default_mtu = BGE_DEFAULT_MTU; 2198 } 2199 } 2200 /* 2201 * Map operating registers 2202 */ 2203 err = ddi_regs_map_setup(devinfo, BGE_PCI_OPREGS_RNUMBER, 2204 ®s, 0, 0, &bge_reg_accattr, &bgep->io_handle); 2205 if (err != DDI_SUCCESS) { 2206 bge_problem(bgep, "ddi_regs_map_setup() failed"); 2207 goto attach_fail; 2208 } 2209 bgep->io_regs = regs; 2210 bgep->progress |= PROGRESS_REGS; 2211 2212 /* 2213 * Characterise the device, so we know its requirements. 2214 * Then allocate the appropriate TX and RX descriptors & buffers. 2215 */ 2216 if (bge_chip_id_init(bgep) == EIO) { 2217 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST); 2218 goto attach_fail; 2219 } 2220 err = bge_alloc_bufs(bgep); 2221 if (err != DDI_SUCCESS) { 2222 bge_problem(bgep, "DMA buffer allocation failed"); 2223 goto attach_fail; 2224 } 2225 bgep->progress |= PROGRESS_BUFS; 2226 2227 /* 2228 * Add the softint handlers: 2229 * 2230 * Both of these handlers are used to avoid restrictions on the 2231 * context and/or mutexes required for some operations. In 2232 * particular, the hardware interrupt handler and its subfunctions 2233 * can detect a number of conditions that we don't want to handle 2234 * in that context or with that set of mutexes held. So, these 2235 * softints are triggered instead: 2236 * 2237 * the <resched> softint is triggered if if we have previously 2238 * had to refuse to send a packet because of resource shortage 2239 * (we've run out of transmit buffers), but the send completion 2240 * interrupt handler has now detected that more buffers have 2241 * become available. 2242 * 2243 * the <factotum> is triggered if the h/w interrupt handler 2244 * sees the <link state changed> or <error> bits in the status 2245 * block. It's also triggered periodically to poll the link 2246 * state, just in case we aren't getting link status change 2247 * interrupts ... 2248 */ 2249 err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW, &bgep->resched_id, 2250 NULL, NULL, bge_reschedule, (caddr_t)bgep); 2251 if (err != DDI_SUCCESS) { 2252 bge_problem(bgep, "ddi_add_softintr() failed"); 2253 goto attach_fail; 2254 } 2255 bgep->progress |= PROGRESS_RESCHED; 2256 err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW, &bgep->factotum_id, 2257 NULL, NULL, bge_chip_factotum, (caddr_t)bgep); 2258 if (err != DDI_SUCCESS) { 2259 bge_problem(bgep, "ddi_add_softintr() failed"); 2260 goto attach_fail; 2261 } 2262 bgep->progress |= PROGRESS_FACTOTUM; 2263 2264 /* Get supported interrupt types */ 2265 if (ddi_intr_get_supported_types(devinfo, &intr_types) != DDI_SUCCESS) { 2266 bge_error(bgep, "ddi_intr_get_supported_types failed\n"); 2267 2268 goto attach_fail; 2269 } 2270 2271 bge_log(bgep, "ddi_intr_get_supported_types() returned: %x", 2272 intr_types); 2273 2274 if ((intr_types & DDI_INTR_TYPE_MSI) && bgep->chipid.msi_enabled) { 2275 if (bge_add_intrs(bgep, DDI_INTR_TYPE_MSI) != DDI_SUCCESS) { 2276 bge_error(bgep, "MSI registration failed, " 2277 "trying FIXED interrupt type\n"); 2278 } else { 2279 bge_log(bgep, "Using MSI interrupt type\n"); 2280 2281 bgep->intr_type = DDI_INTR_TYPE_MSI; 2282 bgep->progress |= PROGRESS_HWINT; 2283 } 2284 } 2285 2286 if (!(bgep->progress & PROGRESS_HWINT) && 2287 (intr_types & DDI_INTR_TYPE_FIXED)) { 2288 if (bge_add_intrs(bgep, DDI_INTR_TYPE_FIXED) != DDI_SUCCESS) { 2289 bge_error(bgep, "FIXED interrupt " 2290 "registration failed\n"); 2291 goto attach_fail; 2292 } 2293 2294 bge_log(bgep, "Using FIXED interrupt type\n"); 2295 2296 bgep->intr_type = DDI_INTR_TYPE_FIXED; 2297 bgep->progress |= PROGRESS_HWINT; 2298 } 2299 2300 if (!(bgep->progress & PROGRESS_HWINT)) { 2301 bge_error(bgep, "No interrupts registered\n"); 2302 goto attach_fail; 2303 } 2304 2305 /* 2306 * Note that interrupts are not enabled yet as 2307 * mutex locks are not initialized. Initialize mutex locks. 2308 */ 2309 mutex_init(bgep->genlock, NULL, MUTEX_DRIVER, 2310 DDI_INTR_PRI(bgep->intr_pri)); 2311 mutex_init(bgep->softintrlock, NULL, MUTEX_DRIVER, 2312 DDI_INTR_PRI(bgep->intr_pri)); 2313 rw_init(bgep->errlock, NULL, RW_DRIVER, 2314 DDI_INTR_PRI(bgep->intr_pri)); 2315 2316 /* 2317 * Initialize rings. 2318 */ 2319 bge_init_rings(bgep); 2320 2321 /* 2322 * Now that mutex locks are initialized, enable interrupts. 2323 */ 2324 bge_intr_enable(bgep); 2325 bgep->progress |= PROGRESS_INTR; 2326 2327 /* 2328 * Initialise link state variables 2329 * Stop, reset & reinitialise the chip. 2330 * Initialise the (internal) PHY. 2331 */ 2332 bgep->link_state = LINK_STATE_UNKNOWN; 2333 bgep->link_up_msg = bgep->link_down_msg = " (initialized)"; 2334 2335 mutex_enter(bgep->genlock); 2336 2337 /* 2338 * Reset chip & rings to initial state; also reset address 2339 * filtering, promiscuity, loopback mode. 2340 */ 2341 #ifdef BGE_IPMI_ASF 2342 if (bge_reset(bgep, ASF_MODE_SHUTDOWN) != DDI_SUCCESS) { 2343 #else 2344 if (bge_reset(bgep) != DDI_SUCCESS) { 2345 #endif 2346 (void) bge_check_acc_handle(bgep, bgep->cfg_handle); 2347 (void) bge_check_acc_handle(bgep, bgep->io_handle); 2348 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST); 2349 mutex_exit(bgep->genlock); 2350 goto attach_fail; 2351 } 2352 2353 bzero(bgep->mcast_hash, sizeof (bgep->mcast_hash)); 2354 bzero(bgep->mcast_refs, sizeof (bgep->mcast_refs)); 2355 bgep->promisc = B_FALSE; 2356 bgep->param_loop_mode = BGE_LOOP_NONE; 2357 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) { 2358 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST); 2359 mutex_exit(bgep->genlock); 2360 goto attach_fail; 2361 } 2362 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) { 2363 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST); 2364 mutex_exit(bgep->genlock); 2365 goto attach_fail; 2366 } 2367 2368 mutex_exit(bgep->genlock); 2369 2370 if (bge_phys_init(bgep) == EIO) { 2371 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST); 2372 goto attach_fail; 2373 } 2374 bgep->progress |= PROGRESS_PHY; 2375 2376 /* 2377 * Register NDD-tweakable parameters 2378 */ 2379 if (bge_nd_init(bgep)) { 2380 bge_problem(bgep, "bge_nd_init() failed"); 2381 goto attach_fail; 2382 } 2383 bgep->progress |= PROGRESS_NDD; 2384 2385 /* 2386 * Create & initialise named kstats 2387 */ 2388 bge_init_kstats(bgep, instance); 2389 bgep->progress |= PROGRESS_KSTATS; 2390 2391 /* 2392 * Determine whether to override the chip's own MAC address 2393 */ 2394 bge_find_mac_address(bgep, cidp); 2395 ethaddr_copy(cidp->vendor_addr.addr, bgep->curr_addr.addr); 2396 bgep->curr_addr.set = 1; 2397 2398 /* 2399 * Initialize pointers to device specific functions which 2400 * will be used by the generic layer. 2401 */ 2402 mip = &(macp->m_info); 2403 mip->mi_media = DL_ETHER; 2404 mip->mi_sdu_min = 0; 2405 mip->mi_sdu_max = cidp->ethmax_size - sizeof (struct ether_header); 2406 mip->mi_poll = DL_CAPAB_POLL; 2407 2408 /* 2409 * Workaround for Incorrect pseudo-header checksum calculation. 2410 * Use partial checksum offload for all affected chips. 2411 */ 2412 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) 2413 mip->mi_cksum = HCKSUM_INET_PARTIAL | HCKSUM_IPHDRCKSUM; 2414 else 2415 mip->mi_cksum = HCKSUM_INET_FULL_V4 | HCKSUM_IPHDRCKSUM; 2416 2417 mip->mi_addr_length = ETHERADDRL; 2418 bcopy(ether_brdcst, mip->mi_brdcst_addr, ETHERADDRL); 2419 bcopy(bgep->curr_addr.addr, mip->mi_unicst_addr, ETHERADDRL); 2420 2421 MAC_STAT_MIB(mip->mi_stat); 2422 mip->mi_stat[MAC_STAT_UNKNOWNS] = B_FALSE; 2423 MAC_STAT_ETHER(mip->mi_stat); 2424 mip->mi_stat[MAC_STAT_SQE_ERRORS] = B_FALSE; 2425 mip->mi_stat[MAC_STAT_MACRCV_ERRORS] = B_FALSE; 2426 if (!(bgep->chipid.flags & CHIP_FLAG_SERDES)) 2427 MAC_STAT_MII(mip->mi_stat); 2428 2429 macp->m_stat = bge_m_stat; 2430 macp->m_stop = bge_m_stop; 2431 macp->m_start = bge_m_start; 2432 macp->m_unicst = bge_m_unicst; 2433 macp->m_multicst = bge_m_multicst; 2434 macp->m_promisc = bge_m_promisc; 2435 macp->m_tx = bge_m_tx; 2436 macp->m_resources = bge_m_resources; 2437 macp->m_ioctl = bge_m_ioctl; 2438 2439 macp->m_dip = devinfo; 2440 macp->m_ident = MAC_IDENT; 2441 2442 /* 2443 * Finally, we're ready to register ourselves with the MAC layer 2444 * interface; if this succeeds, we're all ready to start() 2445 */ 2446 if (mac_register(macp) != 0) 2447 goto attach_fail; 2448 2449 cychand.cyh_func = bge_chip_cyclic; 2450 cychand.cyh_arg = bgep; 2451 cychand.cyh_level = CY_LOCK_LEVEL; 2452 cyctime.cyt_when = 0; 2453 cyctime.cyt_interval = BGE_CYCLIC_PERIOD; 2454 mutex_enter(&cpu_lock); 2455 bgep->cyclic_id = cyclic_add(&cychand, &cyctime); 2456 mutex_exit(&cpu_lock); 2457 2458 bgep->progress |= PROGRESS_READY; 2459 ASSERT(bgep->bge_guard == BGE_GUARD); 2460 return (DDI_SUCCESS); 2461 2462 attach_fail: 2463 #ifdef BGE_IPMI_ASF 2464 bge_unattach(bgep, ASF_MODE_NONE); 2465 #else 2466 bge_unattach(bgep); 2467 #endif 2468 return (DDI_FAILURE); 2469 } 2470 2471 /* 2472 * bge_suspend() -- suspend transmit/receive for powerdown 2473 */ 2474 static int 2475 bge_suspend(bge_t *bgep) 2476 { 2477 /* 2478 * Stop processing and idle (powerdown) the PHY ... 2479 */ 2480 mutex_enter(bgep->genlock); 2481 #ifdef BGE_IPMI_ASF 2482 /* 2483 * Power management hasn't been supported in BGE now. If you 2484 * want to implement it, please add the ASF/IPMI related 2485 * code here. 2486 */ 2487 #endif 2488 bge_stop(bgep); 2489 if (bge_phys_idle(bgep) != DDI_SUCCESS) { 2490 (void) bge_check_acc_handle(bgep, bgep->io_handle); 2491 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 2492 mutex_exit(bgep->genlock); 2493 return (DDI_FAILURE); 2494 } 2495 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) { 2496 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 2497 mutex_exit(bgep->genlock); 2498 return (DDI_FAILURE); 2499 } 2500 mutex_exit(bgep->genlock); 2501 2502 return (DDI_SUCCESS); 2503 } 2504 2505 /* 2506 * detach(9E) -- Detach a device from the system 2507 */ 2508 static int 2509 bge_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd) 2510 { 2511 bge_t *bgep; 2512 #ifdef BGE_IPMI_ASF 2513 uint_t asf_mode; 2514 asf_mode = ASF_MODE_NONE; 2515 #endif 2516 2517 BGE_GTRACE(("bge_detach($%p, %d)", (void *)devinfo, cmd)); 2518 2519 bgep = ddi_get_driver_private(devinfo); 2520 2521 switch (cmd) { 2522 default: 2523 return (DDI_FAILURE); 2524 2525 case DDI_SUSPEND: 2526 return (bge_suspend(bgep)); 2527 2528 case DDI_DETACH: 2529 break; 2530 } 2531 2532 #ifdef BGE_IPMI_ASF 2533 mutex_enter(bgep->genlock); 2534 if (bgep->asf_enabled && (bgep->asf_status == ASF_STAT_RUN)) { 2535 2536 bge_asf_update_status(bgep); 2537 bge_asf_stop_timer(bgep); 2538 bgep->asf_status = ASF_STAT_STOP; 2539 2540 bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET); 2541 2542 if (bgep->asf_pseudostop) { 2543 bgep->link_up_msg = bgep->link_down_msg = " (stopped)"; 2544 bge_chip_stop(bgep, B_FALSE); 2545 bgep->bge_mac_state = BGE_MAC_STOPPED; 2546 bgep->asf_pseudostop = B_FALSE; 2547 } 2548 2549 asf_mode = ASF_MODE_POST_SHUTDOWN; 2550 2551 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) 2552 ddi_fm_service_impact(bgep->devinfo, 2553 DDI_SERVICE_UNAFFECTED); 2554 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) 2555 ddi_fm_service_impact(bgep->devinfo, 2556 DDI_SERVICE_UNAFFECTED); 2557 } 2558 mutex_exit(bgep->genlock); 2559 #endif 2560 2561 /* 2562 * Unregister from the GLD subsystem. This can fail, in 2563 * particular if there are DLPI style-2 streams still open - 2564 * in which case we just return failure without shutting 2565 * down chip operations. 2566 */ 2567 if (mac_unregister(bgep->macp) != 0) 2568 return (DDI_FAILURE); 2569 2570 /* 2571 * All activity stopped, so we can clean up & exit 2572 */ 2573 #ifdef BGE_IPMI_ASF 2574 bge_unattach(bgep, asf_mode); 2575 #else 2576 bge_unattach(bgep); 2577 #endif 2578 return (DDI_SUCCESS); 2579 } 2580 2581 2582 /* 2583 * ========== Module Loading Data & Entry Points ========== 2584 */ 2585 2586 #undef BGE_DBG 2587 #define BGE_DBG BGE_DBG_INIT /* debug flag for this code */ 2588 2589 DDI_DEFINE_STREAM_OPS(bge_dev_ops, nulldev, nulldev, bge_attach, bge_detach, 2590 nodev, NULL, D_MP, NULL); 2591 2592 static struct modldrv bge_modldrv = { 2593 &mod_driverops, /* Type of module. This one is a driver */ 2594 bge_ident, /* short description */ 2595 &bge_dev_ops /* driver specific ops */ 2596 }; 2597 2598 static struct modlinkage modlinkage = { 2599 MODREV_1, (void *)&bge_modldrv, NULL 2600 }; 2601 2602 2603 int 2604 _info(struct modinfo *modinfop) 2605 { 2606 return (mod_info(&modlinkage, modinfop)); 2607 } 2608 2609 int 2610 _init(void) 2611 { 2612 int status; 2613 2614 mac_init_ops(&bge_dev_ops, "bge"); 2615 status = mod_install(&modlinkage); 2616 if (status == DDI_SUCCESS) 2617 mutex_init(bge_log_mutex, NULL, MUTEX_DRIVER, NULL); 2618 else 2619 mac_fini_ops(&bge_dev_ops); 2620 return (status); 2621 } 2622 2623 int 2624 _fini(void) 2625 { 2626 int status; 2627 2628 status = mod_remove(&modlinkage); 2629 if (status == DDI_SUCCESS) { 2630 mac_fini_ops(&bge_dev_ops); 2631 mutex_destroy(bge_log_mutex); 2632 } 2633 return (status); 2634 } 2635 2636 2637 /* 2638 * bge_add_intrs: 2639 * 2640 * Register FIXED or MSI interrupts. 2641 */ 2642 static int 2643 bge_add_intrs(bge_t *bgep, int intr_type) 2644 { 2645 dev_info_t *dip = bgep->devinfo; 2646 int avail, actual, intr_size, count = 0; 2647 int i, flag, ret; 2648 2649 bge_log(bgep, "bge_add_intrs: interrupt type 0x%x\n", intr_type); 2650 2651 /* Get number of interrupts */ 2652 ret = ddi_intr_get_nintrs(dip, intr_type, &count); 2653 if ((ret != DDI_SUCCESS) || (count == 0)) { 2654 bge_error(bgep, "ddi_intr_get_nintrs() failure, ret: %d, " 2655 "count: %d", ret, count); 2656 2657 return (DDI_FAILURE); 2658 } 2659 2660 /* Get number of available interrupts */ 2661 ret = ddi_intr_get_navail(dip, intr_type, &avail); 2662 if ((ret != DDI_SUCCESS) || (avail == 0)) { 2663 bge_error(bgep, "ddi_intr_get_navail() failure, " 2664 "ret: %d, avail: %d\n", ret, avail); 2665 2666 return (DDI_FAILURE); 2667 } 2668 2669 if (avail < count) { 2670 bge_log(bgep, "nitrs() returned %d, navail returned %d\n", 2671 count, avail); 2672 } 2673 2674 /* 2675 * BGE hardware generates only single MSI even though it claims 2676 * to support multiple MSIs. So, hard code MSI count value to 1. 2677 */ 2678 if (intr_type == DDI_INTR_TYPE_MSI) { 2679 count = 1; 2680 flag = DDI_INTR_ALLOC_STRICT; 2681 } else { 2682 flag = DDI_INTR_ALLOC_NORMAL; 2683 } 2684 2685 /* Allocate an array of interrupt handles */ 2686 intr_size = count * sizeof (ddi_intr_handle_t); 2687 bgep->htable = kmem_alloc(intr_size, KM_SLEEP); 2688 2689 /* Call ddi_intr_alloc() */ 2690 ret = ddi_intr_alloc(dip, bgep->htable, intr_type, 0, 2691 count, &actual, flag); 2692 2693 if ((ret != DDI_SUCCESS) || (actual == 0)) { 2694 bge_error(bgep, "ddi_intr_alloc() failed %d\n", ret); 2695 2696 kmem_free(bgep->htable, intr_size); 2697 return (DDI_FAILURE); 2698 } 2699 2700 if (actual < count) { 2701 bge_log(bgep, "Requested: %d, Received: %d\n", count, actual); 2702 } 2703 2704 bgep->intr_cnt = actual; 2705 2706 /* 2707 * Get priority for first msi, assume remaining are all the same 2708 */ 2709 if ((ret = ddi_intr_get_pri(bgep->htable[0], &bgep->intr_pri)) != 2710 DDI_SUCCESS) { 2711 bge_error(bgep, "ddi_intr_get_pri() failed %d\n", ret); 2712 2713 /* Free already allocated intr */ 2714 for (i = 0; i < actual; i++) { 2715 (void) ddi_intr_free(bgep->htable[i]); 2716 } 2717 2718 kmem_free(bgep->htable, intr_size); 2719 return (DDI_FAILURE); 2720 } 2721 2722 /* Call ddi_intr_add_handler() */ 2723 for (i = 0; i < actual; i++) { 2724 if ((ret = ddi_intr_add_handler(bgep->htable[i], bge_intr, 2725 (caddr_t)bgep, (caddr_t)(uintptr_t)i)) != DDI_SUCCESS) { 2726 bge_error(bgep, "ddi_intr_add_handler() " 2727 "failed %d\n", ret); 2728 2729 /* Free already allocated intr */ 2730 for (i = 0; i < actual; i++) { 2731 (void) ddi_intr_free(bgep->htable[i]); 2732 } 2733 2734 kmem_free(bgep->htable, intr_size); 2735 return (DDI_FAILURE); 2736 } 2737 } 2738 2739 if ((ret = ddi_intr_get_cap(bgep->htable[0], &bgep->intr_cap)) 2740 != DDI_SUCCESS) { 2741 bge_error(bgep, "ddi_intr_get_cap() failed %d\n", ret); 2742 2743 for (i = 0; i < actual; i++) { 2744 (void) ddi_intr_remove_handler(bgep->htable[i]); 2745 (void) ddi_intr_free(bgep->htable[i]); 2746 } 2747 2748 kmem_free(bgep->htable, intr_size); 2749 return (DDI_FAILURE); 2750 } 2751 2752 return (DDI_SUCCESS); 2753 } 2754 2755 /* 2756 * bge_rem_intrs: 2757 * 2758 * Unregister FIXED or MSI interrupts 2759 */ 2760 static void 2761 bge_rem_intrs(bge_t *bgep) 2762 { 2763 int i; 2764 2765 bge_log(bgep, "bge_rem_intrs\n"); 2766 2767 /* Call ddi_intr_remove_handler() */ 2768 for (i = 0; i < bgep->intr_cnt; i++) { 2769 (void) ddi_intr_remove_handler(bgep->htable[i]); 2770 (void) ddi_intr_free(bgep->htable[i]); 2771 } 2772 2773 kmem_free(bgep->htable, bgep->intr_cnt * sizeof (ddi_intr_handle_t)); 2774 } 2775 2776 2777 void 2778 bge_intr_enable(bge_t *bgep) 2779 { 2780 int i; 2781 2782 if (bgep->intr_cap & DDI_INTR_FLAG_BLOCK) { 2783 /* Call ddi_intr_block_enable() for MSI interrupts */ 2784 (void) ddi_intr_block_enable(bgep->htable, bgep->intr_cnt); 2785 } else { 2786 /* Call ddi_intr_enable for MSI or FIXED interrupts */ 2787 for (i = 0; i < bgep->intr_cnt; i++) { 2788 (void) ddi_intr_enable(bgep->htable[i]); 2789 } 2790 } 2791 } 2792 2793 2794 void 2795 bge_intr_disable(bge_t *bgep) 2796 { 2797 int i; 2798 2799 if (bgep->intr_cap & DDI_INTR_FLAG_BLOCK) { 2800 /* Call ddi_intr_block_disable() */ 2801 (void) ddi_intr_block_disable(bgep->htable, bgep->intr_cnt); 2802 } else { 2803 for (i = 0; i < bgep->intr_cnt; i++) { 2804 (void) ddi_intr_disable(bgep->htable[i]); 2805 } 2806 } 2807 } 2808