xref: /titanic_51/usr/src/uts/common/io/bge/bge_chip2.c (revision cb15d5d96b3b2730714c28bfe06cfe7421758b8c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include "bge_impl.h"
28 
29 #define	PIO_ADDR(bgep, offset)	((void *)((caddr_t)(bgep)->io_regs+(offset)))
30 
31 /*
32  * Future features ... ?
33  */
34 #define	BGE_CFG_IO8	1	/* 8/16-bit cfg space BIS/BIC	*/
35 #define	BGE_IND_IO32	1	/* indirect access code		*/
36 #define	BGE_SEE_IO32	1	/* SEEPROM access code		*/
37 #define	BGE_FLASH_IO32	1	/* FLASH access code		*/
38 
39 /*
40  * BGE MSI tunable:
41  *
42  * By default MSI is enabled on all supported platforms but it is disabled
43  * for some Broadcom chips due to known MSI hardware issues. Currently MSI
44  * is enabled only for 5714C A2 and 5715C A2 broadcom chips.
45  */
46 boolean_t bge_enable_msi = B_TRUE;
47 
48 /*
49  * PCI-X/PCI-E relaxed ordering tunable for OS/Nexus driver
50  */
51 boolean_t bge_relaxed_ordering = B_TRUE;
52 
53 /*
54  * Property names
55  */
56 static char knownids_propname[] = "bge-known-subsystems";
57 
58 /*
59  * Patchable globals:
60  *
61  *	bge_autorecover
62  *		Enables/disables automatic recovery after fault detection
63  *
64  *	bge_mlcr_default
65  *		Value to program into the MLCR; controls the chip's GPIO pins
66  *
67  *	bge_dma_{rd,wr}prio
68  *		Relative priorities of DMA reads & DMA writes respectively.
69  *		These may each be patched to any value 0-3.  Equal values
70  *		will give "fair" (round-robin) arbitration for PCI access.
71  *		Unequal values will give one or the other function priority.
72  *
73  *	bge_dma_rwctrl
74  *		Value to put in the Read/Write DMA control register.  See
75  *	        the Broadcom PRM for things you can fiddle with in this
76  *		register ...
77  *
78  *	bge_{tx,rx}_{count,ticks}_{norm,intr}
79  *		Send/receive interrupt coalescing parameters.  Counts are
80  *		#s of descriptors, ticks are in microseconds.  *norm* values
81  *		apply between status updates/interrupts; the *intr* values
82  *		refer to the 'during-interrupt' versions - see the PRM.
83  *
84  *		NOTE: these values have been determined by measurement. They
85  *		differ significantly from the values recommended in the PRM.
86  */
87 static uint32_t bge_autorecover = 1;
88 static uint32_t bge_mlcr_default_5714 = MLCR_DEFAULT_5714;
89 
90 static uint32_t bge_dma_rdprio = 1;
91 static uint32_t bge_dma_wrprio = 0;
92 static uint32_t bge_dma_rwctrl = PDRWCR_VAR_DEFAULT;
93 static uint32_t bge_dma_rwctrl_5721 = PDRWCR_VAR_5721;
94 static uint32_t bge_dma_rwctrl_5714 = PDRWCR_VAR_5714;
95 static uint32_t bge_dma_rwctrl_5715 = PDRWCR_VAR_5715;
96 
97 uint32_t bge_rx_ticks_norm = 128;
98 uint32_t bge_tx_ticks_norm = 2048;		/* 8 for FJ2+ !?!?	*/
99 uint32_t bge_rx_count_norm = 8;
100 uint32_t bge_tx_count_norm = 128;
101 
102 static uint32_t bge_rx_ticks_intr = 128;
103 static uint32_t bge_tx_ticks_intr = 0;		/* 8 for FJ2+ !?!?	*/
104 static uint32_t bge_rx_count_intr = 2;
105 static uint32_t bge_tx_count_intr = 0;
106 
107 /*
108  * Memory pool configuration parameters.
109  *
110  * These are generally specific to each member of the chip family, since
111  * each one may have a different memory size/configuration.
112  *
113  * Setting the mbuf pool length for a specific type of chip to 0 inhibits
114  * the driver from programming the various registers; instead they are left
115  * at their hardware defaults.  This is the preferred option for later chips
116  * (5705+), whereas the older chips *required* these registers to be set,
117  * since the h/w default was 0 ;-(
118  */
119 static uint32_t bge_mbuf_pool_base	= MBUF_POOL_BASE_DEFAULT;
120 static uint32_t bge_mbuf_pool_base_5704	= MBUF_POOL_BASE_5704;
121 static uint32_t bge_mbuf_pool_base_5705	= MBUF_POOL_BASE_5705;
122 static uint32_t bge_mbuf_pool_base_5721 = MBUF_POOL_BASE_5721;
123 static uint32_t bge_mbuf_pool_len	= MBUF_POOL_LENGTH_DEFAULT;
124 static uint32_t bge_mbuf_pool_len_5704	= MBUF_POOL_LENGTH_5704;
125 static uint32_t bge_mbuf_pool_len_5705	= 0;	/* use h/w default	*/
126 static uint32_t bge_mbuf_pool_len_5721	= 0;
127 
128 /*
129  * Various high and low water marks, thresholds, etc ...
130  *
131  * Note: these are taken from revision 7 of the PRM, and some are different
132  * from both the values in earlier PRMs *and* those determined experimentally
133  * and used in earlier versions of this driver ...
134  */
135 static uint32_t bge_mbuf_hi_water	= MBUF_HIWAT_DEFAULT;
136 static uint32_t bge_mbuf_lo_water_rmac	= MAC_RX_MBUF_LOWAT_DEFAULT;
137 static uint32_t bge_mbuf_lo_water_rdma	= RDMA_MBUF_LOWAT_DEFAULT;
138 
139 static uint32_t bge_dmad_lo_water	= DMAD_POOL_LOWAT_DEFAULT;
140 static uint32_t bge_dmad_hi_water	= DMAD_POOL_HIWAT_DEFAULT;
141 static uint32_t bge_lowat_recv_frames	= LOWAT_MAX_RECV_FRAMES_DEFAULT;
142 
143 static uint32_t bge_replenish_std	= STD_RCV_BD_REPLENISH_DEFAULT;
144 static uint32_t bge_replenish_mini	= MINI_RCV_BD_REPLENISH_DEFAULT;
145 static uint32_t bge_replenish_jumbo	= JUMBO_RCV_BD_REPLENISH_DEFAULT;
146 
147 static uint32_t	bge_watchdog_count	= 1 << 16;
148 static uint16_t bge_dma_miss_limit	= 20;
149 
150 static uint32_t bge_stop_start_on_sync	= 0;
151 
152 /*
153  * bge_intr_max_loop controls the maximum loop number within bge_intr.
154  * When loading NIC with heavy network traffic, it is useful.
155  * Increasing this value could have positive effect to throughput,
156  * but it might also increase ticks of a bge ISR stick on CPU, which might
157  * lead to bad UI interactive experience. So tune this with caution.
158  */
159 static int bge_intr_max_loop = 1;
160 
161 /*
162  * ========== Low-level chip & ring buffer manipulation ==========
163  */
164 
165 #define	BGE_DBG		BGE_DBG_REGS	/* debug flag for this code	*/
166 
167 
168 /*
169  * Config space read-modify-write routines
170  */
171 
172 #if	BGE_CFG_IO8
173 
174 static void bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits);
175 #pragma	inline(bge_cfg_clr16)
176 
177 static void
178 bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits)
179 {
180 	uint16_t regval;
181 
182 	BGE_TRACE(("bge_cfg_clr16($%p, 0x%lx, 0x%x)",
183 	    (void *)bgep, regno, bits));
184 
185 	regval = pci_config_get16(bgep->cfg_handle, regno);
186 
187 	BGE_DEBUG(("bge_cfg_clr16($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
188 	    (void *)bgep, regno, bits, regval, regval & ~bits));
189 
190 	regval &= ~bits;
191 	pci_config_put16(bgep->cfg_handle, regno, regval);
192 }
193 
194 #endif	/* BGE_CFG_IO8 */
195 
196 static void bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
197 #pragma	inline(bge_cfg_clr32)
198 
199 static void
200 bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
201 {
202 	uint32_t regval;
203 
204 	BGE_TRACE(("bge_cfg_clr32($%p, 0x%lx, 0x%x)",
205 	    (void *)bgep, regno, bits));
206 
207 	regval = pci_config_get32(bgep->cfg_handle, regno);
208 
209 	BGE_DEBUG(("bge_cfg_clr32($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
210 	    (void *)bgep, regno, bits, regval, regval & ~bits));
211 
212 	regval &= ~bits;
213 	pci_config_put32(bgep->cfg_handle, regno, regval);
214 }
215 
216 #if	BGE_IND_IO32
217 
218 /*
219  * Indirect access to registers & RISC scratchpads, using config space
220  * accesses only.
221  *
222  * This isn't currently used, but someday we might want to use it for
223  * restoring the Subsystem Device/Vendor registers (which aren't directly
224  * writable in Config Space), or for downloading firmware into the RISCs
225  *
226  * In any case there are endian issues to be resolved before this code is
227  * enabled; the bizarre way that bytes get twisted by this chip AND by
228  * the PCI bridge in SPARC systems mean that we shouldn't enable it until
229  * it's been thoroughly tested for all access sizes on all supported
230  * architectures (SPARC *and* x86!).
231  */
232 uint32_t bge_ind_get32(bge_t *bgep, bge_regno_t regno);
233 #pragma	inline(bge_ind_get32)
234 
235 uint32_t
236 bge_ind_get32(bge_t *bgep, bge_regno_t regno)
237 {
238 	uint32_t val;
239 
240 	BGE_TRACE(("bge_ind_get32($%p, 0x%lx)", (void *)bgep, regno));
241 
242 #ifdef __sparc
243 	if (DEVICE_5717_SERIES_CHIPSETS(bgep))
244 		regno = LE_32(regno);
245 #endif
246 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
247 	val = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_RIADR);
248 
249 	BGE_DEBUG(("bge_ind_get32($%p, 0x%lx) => 0x%x",
250 	    (void *)bgep, regno, val));
251 
252 	val = LE_32(val);
253 
254 	return (val);
255 }
256 
257 void bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val);
258 #pragma	inline(bge_ind_put32)
259 
260 void
261 bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val)
262 {
263 	BGE_TRACE(("bge_ind_put32($%p, 0x%lx, 0x%x)",
264 	    (void *)bgep, regno, val));
265 
266 	val = LE_32(val);
267 #ifdef __sparc
268 	if (DEVICE_5717_SERIES_CHIPSETS(bgep))
269 		regno = LE_32(regno);
270 #endif
271 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
272 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIADR, val);
273 }
274 
275 #endif	/* BGE_IND_IO32 */
276 
277 #if	BGE_DEBUGGING
278 
279 static void bge_pci_check(bge_t *bgep);
280 #pragma	no_inline(bge_pci_check)
281 
282 static void
283 bge_pci_check(bge_t *bgep)
284 {
285 	uint16_t pcistatus;
286 
287 	pcistatus = pci_config_get16(bgep->cfg_handle, PCI_CONF_STAT);
288 	if ((pcistatus & (PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB)) != 0)
289 		BGE_DEBUG(("bge_pci_check($%p): PCI status 0x%x",
290 		    (void *)bgep, pcistatus));
291 }
292 
293 #endif	/* BGE_DEBUGGING */
294 
295 /*
296  * Perform first-stage chip (re-)initialisation, using only config-space
297  * accesses:
298  *
299  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
300  *   returning the data in the structure pointed to by <idp>.
301  * + Configure the target-mode endianness (swap) options.
302  * + Disable interrupts and enable Memory Space accesses.
303  * + Enable or disable Bus Mastering according to the <enable_dma> flag.
304  *
305  * This sequence is adapted from Broadcom document 570X-PG102-R,
306  * page 102, steps 1-3, 6-8 and 11-13.  The omitted parts of the sequence
307  * are 4 and 5 (Reset Core and wait) which are handled elsewhere.
308  *
309  * This function MUST be called before any non-config-space accesses
310  * are made; on this first call <enable_dma> is B_FALSE, and it
311  * effectively performs steps 3-1(!) of the initialisation sequence
312  * (the rest are not required but should be harmless).
313  *
314  * It MUST also be called after a chip reset, as this disables
315  * Memory Space cycles!  In this case, <enable_dma> is B_TRUE, and
316  * it is effectively performing steps 6-8.
317  */
318 void bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma);
319 #pragma	no_inline(bge_chip_cfg_init)
320 
321 void
322 bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma)
323 {
324 	ddi_acc_handle_t handle;
325 	uint16_t command;
326 	uint32_t mhcr;
327 	uint16_t value16;
328 	int i;
329 
330 	BGE_TRACE(("bge_chip_cfg_init($%p, $%p, %d)",
331 	    (void *)bgep, (void *)cidp, enable_dma));
332 
333 	/*
334 	 * Step 3: save PCI cache line size and subsystem vendor ID
335 	 *
336 	 * Read all the config-space registers that characterise the
337 	 * chip, specifically vendor/device/revision/subsystem vendor
338 	 * and subsystem device id.  We expect (but don't check) that
339 	 * (vendor == VENDOR_ID_BROADCOM) && (device == DEVICE_ID_5704)
340 	 *
341 	 * Also save all bus-transaction related registers (cache-line
342 	 * size, bus-grant/latency parameters, etc).  Some of these are
343 	 * cleared by reset, so we'll have to restore them later.  This
344 	 * comes from the Broadcom document 570X-PG102-R ...
345 	 *
346 	 * Note: Broadcom document 570X-PG102-R seems to be in error
347 	 * here w.r.t. the offsets of the Subsystem Vendor ID and
348 	 * Subsystem (Device) ID registers, which are the opposite way
349 	 * round according to the PCI standard.  For good measure, we
350 	 * save/restore both anyway.
351 	 */
352 	handle = bgep->cfg_handle;
353 
354 	/*
355 	 * For some chipsets (e.g., BCM5718), if MHCR_ENABLE_ENDIAN_BYTE_SWAP
356 	 * has been set in PCI_CONF_COMM already, we need to write the
357 	 * byte-swapped value to it. So we just write zero first for simplicity.
358 	 */
359 	cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
360 	if (DEVICE_5717_SERIES_CHIPSETS(bgep))
361 		pci_config_put32(handle, PCI_CONF_BGE_MHCR, 0);
362 	mhcr = pci_config_get32(handle, PCI_CONF_BGE_MHCR);
363 	cidp->asic_rev = mhcr & MHCR_CHIP_REV_MASK;
364 	cidp->businfo = pci_config_get32(handle, PCI_CONF_BGE_PCISTATE);
365 	cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
366 
367 	cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
368 	cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
369 	cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
370 	cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
371 	cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
372 	cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
373 
374 	BGE_DEBUG(("bge_chip_cfg_init: %s bus is %s and %s; #INTA is %s",
375 	    cidp->businfo & PCISTATE_BUS_IS_PCI ? "PCI" : "PCI-X",
376 	    cidp->businfo & PCISTATE_BUS_IS_FAST ? "fast" : "slow",
377 	    cidp->businfo & PCISTATE_BUS_IS_32_BIT ? "narrow" : "wide",
378 	    cidp->businfo & PCISTATE_INTA_STATE ? "high" : "low"));
379 	BGE_DEBUG(("bge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
380 	    cidp->vendor, cidp->device, cidp->revision));
381 	BGE_DEBUG(("bge_chip_cfg_init: subven 0x%x subdev 0x%x asic_rev 0x%x",
382 	    cidp->subven, cidp->subdev, cidp->asic_rev));
383 	BGE_DEBUG(("bge_chip_cfg_init: clsize %d latency %d command 0x%x",
384 	    cidp->clsize, cidp->latency, cidp->command));
385 
386 	/*
387 	 * Step 2 (also step 6): disable and clear interrupts.
388 	 * Steps 11-13: configure PIO endianness options, and enable
389 	 * indirect register access.  We'll also select any other
390 	 * options controlled by the MHCR (e.g. tagged status, mask
391 	 * interrupt mode) at this stage ...
392 	 *
393 	 * Note: internally, the chip is 64-bit and BIG-endian, but
394 	 * since it talks to the host over a (LITTLE-endian) PCI bus,
395 	 * it normally swaps bytes around at the PCI interface.
396 	 * However, the PCI host bridge on SPARC systems normally
397 	 * swaps the byte lanes around too, since SPARCs are also
398 	 * BIG-endian.  So it turns out that on SPARC, the right
399 	 * option is to tell the chip to swap (and the host bridge
400 	 * will swap back again), whereas on x86 we ask the chip
401 	 * NOT to swap, so the natural little-endianness of the
402 	 * PCI bus is assumed.  Then the only thing that doesn't
403 	 * automatically work right is access to an 8-byte register
404 	 * by a little-endian host; but we don't want to set the
405 	 * MHCR_ENABLE_REGISTER_WORD_SWAP bit because then 4-byte
406 	 * accesses don't go where expected ;-(  So we live with
407 	 * that, and perform word-swaps in software in the few cases
408 	 * where a chip register is defined as an 8-byte value --
409 	 * see the code below for details ...
410 	 *
411 	 * Note: the meaning of the 'MASK_INTERRUPT_MODE' bit isn't
412 	 * very clear in the register description in the PRM, but
413 	 * Broadcom document 570X-PG104-R page 248 explains a little
414 	 * more (under "Broadcom Mask Mode").  The bit changes the way
415 	 * the MASK_PCI_INT_OUTPUT bit works: with MASK_INTERRUPT_MODE
416 	 * clear, the chip interprets MASK_PCI_INT_OUTPUT in the same
417 	 * way as the 5700 did, which isn't very convenient.  Setting
418 	 * the MASK_INTERRUPT_MODE bit makes the MASK_PCI_INT_OUTPUT
419 	 * bit do just what its name says -- MASK the PCI #INTA output
420 	 * (i.e. deassert the signal at the pin) leaving all internal
421 	 * state unchanged.  This is much more convenient for our
422 	 * interrupt handler, so we set MASK_INTERRUPT_MODE here.
423 	 *
424 	 * Note: the inconvenient semantics of the interrupt mailbox
425 	 * (nonzero disables and acknowledges/clears the interrupt,
426 	 * zero enables AND CLEARS it) would make race conditions
427 	 * likely in the interrupt handler:
428 	 *
429 	 * (1)	acknowledge & disable interrupts
430 	 * (2)	while (more to do)
431 	 * 		process packets
432 	 * (3)	enable interrupts -- also clears pending
433 	 *
434 	 * If the chip received more packets and internally generated
435 	 * an interrupt between the check at (2) and the mbox write
436 	 * at (3), this interrupt would be lost :-(
437 	 *
438 	 * The best way to avoid this is to use TAGGED STATUS mode,
439 	 * where the chip includes a unique tag in each status block
440 	 * update, and the host, when re-enabling interrupts, passes
441 	 * the last tag it saw back to the chip; then the chip can
442 	 * see whether the host is truly up to date, and regenerate
443 	 * its interrupt if not.
444 	 */
445 	mhcr =	MHCR_ENABLE_INDIRECT_ACCESS |
446 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
447 	    MHCR_MASK_INTERRUPT_MODE |
448 	    MHCR_CLEAR_INTERRUPT_INTA;
449 
450 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
451 		mhcr |= MHCR_MASK_PCI_INT_OUTPUT;
452 
453 #ifdef	_BIG_ENDIAN
454 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
455 #endif	/* _BIG_ENDIAN */
456 
457 	if (DEVICE_5717_SERIES_CHIPSETS(bgep))
458 		pci_config_put32(handle, PCI_CONF_BGE_MHCR, 0);
459 	pci_config_put32(handle, PCI_CONF_BGE_MHCR, mhcr);
460 
461 #ifdef BGE_IPMI_ASF
462 	bgep->asf_wordswapped = B_FALSE;
463 #endif
464 	/*
465 	 * Step 1 (also step 7): Enable PCI Memory Space accesses
466 	 *			 Disable Memory Write/Invalidate
467 	 *			 Enable or disable Bus Mastering
468 	 *
469 	 * Note that all other bits are taken from the original value saved
470 	 * the first time through here, rather than from the current register
471 	 * value, 'cos that will have been cleared by a soft RESET since.
472 	 * In this way we preserve the OBP/nexus-parent's preferred settings
473 	 * of the parity-error and system-error enable bits across multiple
474 	 * chip RESETs.
475 	 */
476 	command = bgep->chipid.command | PCI_COMM_MAE;
477 	command &= ~(PCI_COMM_ME|PCI_COMM_MEMWR_INVAL);
478 	if (enable_dma)
479 		command |= PCI_COMM_ME;
480 	/*
481 	 * on BCM5714 revision A0, false parity error gets generated
482 	 * due to a logic bug. Provide a workaround by disabling parity
483 	 * error.
484 	 */
485 	if (((cidp->device == DEVICE_ID_5714C) ||
486 	    (cidp->device == DEVICE_ID_5714S)) &&
487 	    (cidp->revision == REVISION_ID_5714_A0)) {
488 		command &= ~PCI_COMM_PARITY_DETECT;
489 	}
490 	pci_config_put16(handle, PCI_CONF_COMM, command);
491 
492 	/*
493 	 * On some PCI-E device, there were instances when
494 	 * the device was still link training.
495 	 */
496 	if (bgep->chipid.pci_type == BGE_PCI_E) {
497 		i = 0;
498 		value16 = pci_config_get16(handle, PCI_CONF_COMM);
499 		while ((value16 != command) && (i < 100)) {
500 			drv_usecwait(200);
501 			value16 = pci_config_get16(handle, PCI_CONF_COMM);
502 			++i;
503 		}
504 	}
505 
506 	/*
507 	 * Clear any remaining error status bits
508 	 */
509 	pci_config_put16(handle, PCI_CONF_STAT, ~0);
510 
511 	/*
512 	 * Do following if and only if the device is NOT BCM5714C OR
513 	 * BCM5715C
514 	 */
515 	if (!((cidp->device == DEVICE_ID_5714C) ||
516 	    (cidp->device == DEVICE_ID_5715C))) {
517 		/*
518 		 * Make sure these indirect-access registers are sane
519 		 * rather than random after power-up or reset
520 		 */
521 		pci_config_put32(handle, PCI_CONF_BGE_RIAAR, 0);
522 		pci_config_put32(handle, PCI_CONF_BGE_MWBAR, 0);
523 	}
524 	/*
525 	 * Step 8: Disable PCI-X/PCI-E Relaxed Ordering
526 	 */
527 	bge_cfg_clr16(bgep, PCIX_CONF_COMM, PCIX_COMM_RELAXED);
528 
529 	if (cidp->pci_type == BGE_PCI_E) {
530 		if (DEVICE_5723_SERIES_CHIPSETS(bgep)) {
531 			bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL_5723,
532 			    DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
533 		} else
534 			bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL,
535 			    DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
536 	}
537 }
538 
539 #ifdef __amd64
540 /*
541  * Distinguish CPU types
542  *
543  * These use to  distinguish AMD64 or Intel EM64T of CPU running mode.
544  * If CPU runs on Intel EM64T mode,the 64bit operation cannot works fine
545  * for PCI-Express based network interface card. This is the work-around
546  * for those nics.
547  */
548 static boolean_t bge_get_em64t_type(void);
549 #pragma	inline(bge_get_em64t_type)
550 
551 static boolean_t
552 bge_get_em64t_type(void)
553 {
554 
555 	return (x86_vendor == X86_VENDOR_Intel);
556 }
557 #endif
558 
559 /*
560  * Operating register get/set access routines
561  */
562 
563 uint32_t bge_reg_get32(bge_t *bgep, bge_regno_t regno);
564 #pragma	inline(bge_reg_get32)
565 
566 uint32_t
567 bge_reg_get32(bge_t *bgep, bge_regno_t regno)
568 {
569 	BGE_TRACE(("bge_reg_get32($%p, 0x%lx)",
570 	    (void *)bgep, regno));
571 
572 	return (ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno)));
573 }
574 
575 void bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data);
576 #pragma	inline(bge_reg_put32)
577 
578 void
579 bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data)
580 {
581 	BGE_TRACE(("bge_reg_put32($%p, 0x%lx, 0x%x)",
582 	    (void *)bgep, regno, data));
583 
584 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), data);
585 	BGE_PCICHK(bgep);
586 }
587 
588 void bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
589 #pragma	inline(bge_reg_set32)
590 
591 void
592 bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
593 {
594 	uint32_t regval;
595 
596 	BGE_TRACE(("bge_reg_set32($%p, 0x%lx, 0x%x)",
597 	    (void *)bgep, regno, bits));
598 
599 	regval = bge_reg_get32(bgep, regno);
600 	regval |= bits;
601 	bge_reg_put32(bgep, regno, regval);
602 }
603 
604 void bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
605 #pragma	inline(bge_reg_clr32)
606 
607 void
608 bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
609 {
610 	uint32_t regval;
611 
612 	BGE_TRACE(("bge_reg_clr32($%p, 0x%lx, 0x%x)",
613 	    (void *)bgep, regno, bits));
614 
615 	regval = bge_reg_get32(bgep, regno);
616 	regval &= ~bits;
617 	bge_reg_put32(bgep, regno, regval);
618 }
619 
620 static uint64_t bge_reg_get64(bge_t *bgep, bge_regno_t regno);
621 #pragma	inline(bge_reg_get64)
622 
623 static uint64_t
624 bge_reg_get64(bge_t *bgep, bge_regno_t regno)
625 {
626 	uint64_t regval;
627 
628 #ifdef	__amd64
629 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) || bge_get_em64t_type() ||
630 	    DEVICE_5717_SERIES_CHIPSETS(bgep)) {
631 		regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4));
632 		regval <<= 32;
633 		regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
634 	} else {
635 		regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
636 	}
637 #elif defined(__sparc)
638 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
639 	    DEVICE_5717_SERIES_CHIPSETS(bgep)) {
640 		regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
641 		regval <<= 32;
642 		regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4));
643 	} else {
644 		regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
645 	}
646 #else
647 	regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
648 #endif
649 
650 #ifdef	_LITTLE_ENDIAN
651 	regval = (regval >> 32) | (regval << 32);
652 #endif	/* _LITTLE_ENDIAN */
653 
654 	BGE_TRACE(("bge_reg_get64($%p, 0x%lx) = 0x%016llx",
655 	    (void *)bgep, regno, regval));
656 
657 	return (regval);
658 }
659 
660 static void bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data);
661 #pragma	inline(bge_reg_put64)
662 
663 static void
664 bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data)
665 {
666 	BGE_TRACE(("bge_reg_put64($%p, 0x%lx, 0x%016llx)",
667 	    (void *)bgep, regno, data));
668 
669 #ifdef	_LITTLE_ENDIAN
670 	data = ((data >> 32) | (data << 32));
671 #endif	/* _LITTLE_ENDIAN */
672 
673 #ifdef	__amd64
674 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) || bge_get_em64t_type() ||
675 	    DEVICE_5717_SERIES_CHIPSETS(bgep)) {
676 		ddi_put32(bgep->io_handle,
677 		    PIO_ADDR(bgep, regno), (uint32_t)data);
678 		BGE_PCICHK(bgep);
679 		ddi_put32(bgep->io_handle,
680 		    PIO_ADDR(bgep, regno + 4), (uint32_t)(data >> 32));
681 
682 	} else {
683 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
684 	}
685 #elif defined(__sparc)
686 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
687 	    DEVICE_5717_SERIES_CHIPSETS(bgep)) {
688 		ddi_put32(bgep->io_handle,
689 		    PIO_ADDR(bgep, regno + 4), (uint32_t)data);
690 		BGE_PCICHK(bgep);
691 		ddi_put32(bgep->io_handle,
692 		    PIO_ADDR(bgep, regno), (uint32_t)(data >> 32));
693 	} else {
694 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
695 	}
696 #else
697 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
698 #endif
699 
700 	BGE_PCICHK(bgep);
701 }
702 
703 /*
704  * The DDI doesn't provide get/put functions for 128 bit data
705  * so we put RCBs out as two 64-bit chunks instead.
706  */
707 static void bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
708 #pragma	inline(bge_reg_putrcb)
709 
710 static void
711 bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
712 {
713 	uint64_t *p;
714 
715 	BGE_TRACE(("bge_reg_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
716 	    (void *)bgep, addr, rcbp->host_ring_addr,
717 	    rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
718 
719 	ASSERT((addr % sizeof (*rcbp)) == 0);
720 
721 	p = (void *)rcbp;
722 	bge_reg_put64(bgep, addr, *p++);
723 	bge_reg_put64(bgep, addr+8, *p);
724 }
725 
726 void bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data);
727 #pragma	inline(bge_mbx_put)
728 
729 void
730 bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data)
731 {
732 	if (DEVICE_5906_SERIES_CHIPSETS(bgep))
733 		regno += INTERRUPT_LP_MBOX_0_REG - INTERRUPT_MBOX_0_REG + 4;
734 
735 	BGE_TRACE(("bge_mbx_put($%p, 0x%lx, 0x%016llx)",
736 	    (void *)bgep, regno, data));
737 
738 	/*
739 	 * Mailbox registers are nominally 64 bits on the 5701, but
740 	 * the MSW isn't used.  On the 5703, they're only 32 bits
741 	 * anyway.  So here we just write the lower(!) 32 bits -
742 	 * remembering that the chip is big-endian, even though the
743 	 * PCI bus is little-endian ...
744 	 */
745 #ifdef	_BIG_ENDIAN
746 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno+4), (uint32_t)data);
747 #else
748 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), (uint32_t)data);
749 #endif	/* _BIG_ENDIAN */
750 	BGE_PCICHK(bgep);
751 }
752 
753 uint32_t bge_mbx_get(bge_t *bgep, bge_regno_t regno);
754 #pragma inline(bge_mbx_get)
755 
756 uint32_t
757 bge_mbx_get(bge_t *bgep, bge_regno_t regno)
758 {
759 	uint32_t val32;
760 
761 	if (DEVICE_5906_SERIES_CHIPSETS(bgep))
762 		regno += INTERRUPT_LP_MBOX_0_REG - INTERRUPT_MBOX_0_REG + 4;
763 
764 	BGE_TRACE(("bge_mbx_get($%p, 0x%lx)",
765 	    (void *)bgep, regno));
766 
767 #ifdef	_BIG_ENDIAN
768 	val32 = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno+4));
769 #else
770 	val32 = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
771 #endif	/* _BIG_ENDIAN */
772 	BGE_PCICHK(bgep);
773 
774 	BGE_DEBUG(("bge_mbx_get($%p, 0x%lx) => 0x%08x",
775 	    (void *)bgep, regno, val32));
776 
777 	return (val32);
778 }
779 
780 
781 #if	BGE_DEBUGGING
782 
783 void bge_led_mark(bge_t *bgep);
784 #pragma	no_inline(bge_led_mark)
785 
786 void
787 bge_led_mark(bge_t *bgep)
788 {
789 	uint32_t led_ctrl = LED_CONTROL_OVERRIDE_LINK |
790 	    LED_CONTROL_1000MBPS_LED |
791 	    LED_CONTROL_100MBPS_LED |
792 	    LED_CONTROL_10MBPS_LED;
793 
794 	/*
795 	 * Blink all three LINK LEDs on simultaneously, then all off,
796 	 * then restore to automatic hardware control.  This is used
797 	 * in laboratory testing to trigger a logic analyser or scope.
798 	 */
799 	bge_reg_set32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
800 	led_ctrl ^= LED_CONTROL_OVERRIDE_LINK;
801 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
802 	led_ctrl = LED_CONTROL_OVERRIDE_LINK;
803 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
804 }
805 
806 #endif	/* BGE_DEBUGGING */
807 
808 /*
809  * NIC on-chip memory access routines
810  *
811  * Only 32K of NIC memory is visible at a time, controlled by the
812  * Memory Window Base Address Register (in PCI config space).  Once
813  * this is set, the 32K region of NIC-local memory that it refers
814  * to can be directly addressed in the upper 32K of the 64K of PCI
815  * memory space used for the device.
816  */
817 
818 static void bge_nic_setwin(bge_t *bgep, bge_regno_t base);
819 #pragma	inline(bge_nic_setwin)
820 
821 static void
822 bge_nic_setwin(bge_t *bgep, bge_regno_t base)
823 {
824 	chip_id_t *cidp;
825 
826 	BGE_TRACE(("bge_nic_setwin($%p, 0x%lx)",
827 	    (void *)bgep, base));
828 
829 	ASSERT((base & MWBAR_GRANULE_MASK) == 0);
830 
831 	/*
832 	 * Don't do repeated zero data writes,
833 	 * if the device is BCM5714C/15C.
834 	 */
835 	cidp = &bgep->chipid;
836 	if ((cidp->device == DEVICE_ID_5714C) ||
837 	    (cidp->device == DEVICE_ID_5715C)) {
838 		if (bgep->lastWriteZeroData && (base == (bge_regno_t)0))
839 			return;
840 		/* Adjust lastWriteZeroData */
841 		bgep->lastWriteZeroData = ((base == (bge_regno_t)0) ?
842 		    B_TRUE : B_FALSE);
843 	}
844 #ifdef __sparc
845 	if (DEVICE_5717_SERIES_CHIPSETS(bgep))
846 		base = LE_32(base);
847 #endif
848 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, base);
849 }
850 
851 static uint32_t bge_nic_get32(bge_t *bgep, bge_regno_t addr);
852 #pragma	inline(bge_nic_get32)
853 
854 static uint32_t
855 bge_nic_get32(bge_t *bgep, bge_regno_t addr)
856 {
857 	uint32_t data;
858 
859 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
860 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
861 		/* workaround for word swap error */
862 		if (addr & 4)
863 			addr = addr - 4;
864 		else
865 			addr = addr + 4;
866 	}
867 #endif
868 
869 #ifdef __sparc
870 	data = bge_nic_read32(bgep, addr);
871 #else
872 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
873 	addr &= MWBAR_GRANULE_MASK;
874 	addr += NIC_MEM_WINDOW_OFFSET;
875 
876 	data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
877 #endif
878 
879 	BGE_TRACE(("bge_nic_get32($%p, 0x%lx) = 0x%08x",
880 	    (void *)bgep, addr, data));
881 
882 	return (data);
883 }
884 
885 void bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data);
886 #pragma inline(bge_nic_put32)
887 
888 void
889 bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data)
890 {
891 	BGE_TRACE(("bge_nic_put32($%p, 0x%lx, 0x%08x)",
892 	    (void *)bgep, addr, data));
893 
894 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
895 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
896 		/* workaround for word swap error */
897 		if (addr & 4)
898 			addr = addr - 4;
899 		else
900 			addr = addr + 4;
901 	}
902 #endif
903 
904 #ifdef __sparc
905 	if (DEVICE_5717_SERIES_CHIPSETS(bgep))
906 		addr = LE_32(addr);
907 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
908 	data = LE_32(data);
909 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR, data);
910 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
911 #else
912 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
913 	addr &= MWBAR_GRANULE_MASK;
914 	addr += NIC_MEM_WINDOW_OFFSET;
915 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr), data);
916 	BGE_PCICHK(bgep);
917 #endif
918 }
919 
920 static uint64_t bge_nic_get64(bge_t *bgep, bge_regno_t addr);
921 #pragma	inline(bge_nic_get64)
922 
923 static uint64_t
924 bge_nic_get64(bge_t *bgep, bge_regno_t addr)
925 {
926 	uint64_t data;
927 
928 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
929 	addr &= MWBAR_GRANULE_MASK;
930 	addr += NIC_MEM_WINDOW_OFFSET;
931 
932 #ifdef	__amd64
933 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) || bge_get_em64t_type() ||
934 	    DEVICE_5717_SERIES_CHIPSETS(bgep)) {
935 		data = ddi_get32(bgep->io_handle,
936 		    PIO_ADDR(bgep, addr + 4));
937 		data <<= 32;
938 		data |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
939 	} else {
940 			data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
941 	}
942 #elif defined(__sparc)
943 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
944 	    DEVICE_5717_SERIES_CHIPSETS(bgep)) {
945 		data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
946 		data <<= 32;
947 		data |= ddi_get32(bgep->io_handle,
948 		    PIO_ADDR(bgep, addr + 4));
949 	} else {
950 		data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
951 		}
952 #else
953 		data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
954 #endif
955 
956 	BGE_TRACE(("bge_nic_get64($%p, 0x%lx) = 0x%016llx",
957 	    (void *)bgep, addr, data));
958 
959 	return (data);
960 }
961 
962 static void bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data);
963 #pragma	inline(bge_nic_put64)
964 
965 static void
966 bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data)
967 {
968 	BGE_TRACE(("bge_nic_put64($%p, 0x%lx, 0x%016llx)",
969 	    (void *)bgep, addr, data));
970 
971 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
972 	addr &= MWBAR_GRANULE_MASK;
973 	addr += NIC_MEM_WINDOW_OFFSET;
974 
975 #ifdef	__amd64
976 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) || bge_get_em64t_type() ||
977 	    DEVICE_5717_SERIES_CHIPSETS(bgep)) {
978 		ddi_put32(bgep->io_handle,
979 		    PIO_ADDR(bgep, addr + 4), (uint32_t)data);
980 		BGE_PCICHK(bgep);
981 		ddi_put32(bgep->io_handle,
982 		    PIO_ADDR(bgep, addr), (uint32_t)(data >> 32));
983 	} else {
984 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
985 	}
986 #elif defined(__sparc)
987 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
988 	    DEVICE_5717_SERIES_CHIPSETS(bgep)) {
989 		ddi_put32(bgep->io_handle,
990 		    PIO_ADDR(bgep, addr + 4), (uint32_t)data);
991 		BGE_PCICHK(bgep);
992 		ddi_put32(bgep->io_handle,
993 		    PIO_ADDR(bgep, addr), (uint32_t)(data >> 32));
994 	} else {
995 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
996 	}
997 #else
998 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
999 #endif
1000 
1001 	BGE_PCICHK(bgep);
1002 }
1003 
1004 /*
1005  * The DDI doesn't provide get/put functions for 128 bit data
1006  * so we put RCBs out as two 64-bit chunks instead.
1007  */
1008 static void bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
1009 #pragma	inline(bge_nic_putrcb)
1010 
1011 static void
1012 bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
1013 {
1014 	uint64_t *p;
1015 
1016 	BGE_TRACE(("bge_nic_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
1017 	    (void *)bgep, addr, rcbp->host_ring_addr,
1018 	    rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
1019 
1020 	ASSERT((addr % sizeof (*rcbp)) == 0);
1021 
1022 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1023 	addr &= MWBAR_GRANULE_MASK;
1024 	addr += NIC_MEM_WINDOW_OFFSET;
1025 
1026 	p = (void *)rcbp;
1027 #ifdef	__amd64
1028 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) || bge_get_em64t_type() ||
1029 	    DEVICE_5717_SERIES_CHIPSETS(bgep)) {
1030 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr),
1031 		    (uint32_t)(*p));
1032 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4),
1033 		    (uint32_t)(*p++ >> 32));
1034 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8),
1035 		    (uint32_t)(*p));
1036 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12),
1037 		    (uint32_t)(*p >> 32));
1038 
1039 	} else {
1040 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1041 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr+8), *p);
1042 	}
1043 #elif defined(__sparc)
1044 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1045 	    DEVICE_5717_SERIES_CHIPSETS(bgep)) {
1046 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4),
1047 		    (uint32_t)(*p));
1048 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr),
1049 		    (uint32_t)(*p++ >> 32));
1050 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12),
1051 		    (uint32_t)(*p));
1052 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8),
1053 		    (uint32_t)(*p >> 32));
1054 	} else {
1055 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1056 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p);
1057 	}
1058 #else
1059 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1060 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p);
1061 #endif
1062 
1063 	BGE_PCICHK(bgep);
1064 }
1065 
1066 static void bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes);
1067 #pragma	inline(bge_nic_zero)
1068 
1069 static void
1070 bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes)
1071 {
1072 	BGE_TRACE(("bge_nic_zero($%p, 0x%lx, 0x%x)",
1073 	    (void *)bgep, addr, nbytes));
1074 
1075 	ASSERT((addr & ~MWBAR_GRANULE_MASK) ==
1076 	    ((addr+nbytes) & ~MWBAR_GRANULE_MASK));
1077 
1078 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1079 	addr &= MWBAR_GRANULE_MASK;
1080 	addr += NIC_MEM_WINDOW_OFFSET;
1081 
1082 	(void) ddi_device_zero(bgep->io_handle, PIO_ADDR(bgep, addr),
1083 	    nbytes, 1, DDI_DATA_SZ08_ACC);
1084 	BGE_PCICHK(bgep);
1085 }
1086 
1087 /*
1088  * MII (PHY) register get/set access routines
1089  *
1090  * These use the chip's MII auto-access method, controlled by the
1091  * MII Communication register at 0x044c, so the CPU doesn't have
1092  * to fiddle with the individual bits.
1093  */
1094 
1095 #undef	BGE_DBG
1096 #define	BGE_DBG		BGE_DBG_MII	/* debug flag for this code	*/
1097 
1098 static uint16_t bge_mii_access(bge_t *bgep, bge_regno_t regno,
1099 				uint16_t data, uint32_t cmd);
1100 #pragma	no_inline(bge_mii_access)
1101 
1102 static uint16_t
1103 bge_mii_access(bge_t *bgep, bge_regno_t regno, uint16_t data, uint32_t cmd)
1104 {
1105 	uint32_t timeout;
1106 	uint32_t regval1;
1107 	uint32_t regval2;
1108 
1109 	BGE_TRACE(("bge_mii_access($%p, 0x%lx, 0x%x, 0x%x)",
1110 	    (void *)bgep, regno, data, cmd));
1111 
1112 	ASSERT(mutex_owned(bgep->genlock));
1113 
1114 	/*
1115 	 * Assemble the command ...
1116 	 */
1117 	cmd |= data << MI_COMMS_DATA_SHIFT;
1118 	cmd |= regno << MI_COMMS_REGISTER_SHIFT;
1119 	cmd |= bgep->phy_mii_addr << MI_COMMS_ADDRESS_SHIFT;
1120 	cmd |= MI_COMMS_START;
1121 
1122 	/*
1123 	 * Wait for any command already in progress ...
1124 	 *
1125 	 * Note: this *shouldn't* ever find that there is a command
1126 	 * in progress, because we already hold the <genlock> mutex.
1127 	 * Nonetheless, we have sometimes seen the MI_COMMS_START
1128 	 * bit set here -- it seems that the chip can initiate MII
1129 	 * accesses internally, even with polling OFF.
1130 	 */
1131 	regval1 = regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1132 	for (timeout = 100; ; ) {
1133 		if ((regval2 & MI_COMMS_START) == 0) {
1134 			bge_reg_put32(bgep, MI_COMMS_REG, cmd);
1135 			break;
1136 		}
1137 		if (--timeout == 0)
1138 			break;
1139 		drv_usecwait(10);
1140 		regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1141 	}
1142 
1143 	if (timeout == 0)
1144 		return ((uint16_t)~0u);
1145 
1146 	if (timeout != 100)
1147 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1148 		    "MI_COMMS_START set for %d us; 0x%x->0x%x",
1149 		    cmd, 10*(100-timeout), regval1, regval2));
1150 
1151 	regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1152 	for (timeout = 1000; ; ) {
1153 		if ((regval1 & MI_COMMS_START) == 0)
1154 			break;
1155 		if (--timeout == 0)
1156 			break;
1157 		drv_usecwait(10);
1158 		regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1159 	}
1160 
1161 	/*
1162 	 * Drop out early if the READ FAILED bit is set -- this chip
1163 	 * could be a 5703/4S, with a SerDes instead of a PHY!
1164 	 */
1165 	if (regval2 & MI_COMMS_READ_FAILED)
1166 		return ((uint16_t)~0u);
1167 
1168 	if (timeout == 0)
1169 		return ((uint16_t)~0u);
1170 
1171 	/*
1172 	 * The PRM says to wait 5us after seeing the START bit clear
1173 	 * and then re-read the register to get the final value of the
1174 	 * data field, in order to avoid a race condition where the
1175 	 * START bit is clear but the data field isn't yet valid.
1176 	 *
1177 	 * Note: we don't actually seem to be encounter this race;
1178 	 * except when the START bit is seen set again (see below),
1179 	 * the data field doesn't change during this 5us interval.
1180 	 */
1181 	drv_usecwait(5);
1182 	regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1183 
1184 	/*
1185 	 * Unfortunately, when following the PRMs instructions above,
1186 	 * we have occasionally seen the START bit set again(!) in the
1187 	 * value read after the 5us delay. This seems to be due to the
1188 	 * chip autonomously starting another MII access internally.
1189 	 * In such cases, the command/data/etc fields relate to the
1190 	 * internal command, rather than the one that we thought had
1191 	 * just finished.  So in this case, we fall back to returning
1192 	 * the data from the original read that showed START clear.
1193 	 */
1194 	if (regval2 & MI_COMMS_START) {
1195 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1196 		    "MI_COMMS_START set after transaction; 0x%x->0x%x",
1197 		    cmd, regval1, regval2));
1198 		regval2 = regval1;
1199 	}
1200 
1201 	if (regval2 & MI_COMMS_START)
1202 		return ((uint16_t)~0u);
1203 
1204 	if (regval2 & MI_COMMS_READ_FAILED)
1205 		return ((uint16_t)~0u);
1206 
1207 	return ((regval2 & MI_COMMS_DATA_MASK) >> MI_COMMS_DATA_SHIFT);
1208 }
1209 
1210 uint16_t bge_mii_get16(bge_t *bgep, bge_regno_t regno);
1211 #pragma	no_inline(bge_mii_get16)
1212 
1213 uint16_t
1214 bge_mii_get16(bge_t *bgep, bge_regno_t regno)
1215 {
1216 	BGE_TRACE(("bge_mii_get16($%p, 0x%lx)",
1217 	    (void *)bgep, regno));
1218 
1219 	ASSERT(mutex_owned(bgep->genlock));
1220 
1221 	if (DEVICE_5906_SERIES_CHIPSETS(bgep) && ((regno == MII_AUX_CONTROL) ||
1222 	    (regno == MII_MSCONTROL)))
1223 		return (0);
1224 
1225 	return (bge_mii_access(bgep, regno, 0, MI_COMMS_COMMAND_READ));
1226 }
1227 
1228 void bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data);
1229 #pragma	no_inline(bge_mii_put16)
1230 
1231 void
1232 bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data)
1233 {
1234 	BGE_TRACE(("bge_mii_put16($%p, 0x%lx, 0x%x)",
1235 	    (void *)bgep, regno, data));
1236 
1237 	ASSERT(mutex_owned(bgep->genlock));
1238 
1239 	if (DEVICE_5906_SERIES_CHIPSETS(bgep) && ((regno == MII_AUX_CONTROL) ||
1240 	    (regno == MII_MSCONTROL)))
1241 		return;
1242 
1243 	(void) bge_mii_access(bgep, regno, data, MI_COMMS_COMMAND_WRITE);
1244 }
1245 
1246 #undef	BGE_DBG
1247 #define	BGE_DBG		BGE_DBG_SEEPROM	/* debug flag for this code	*/
1248 
1249 #if	BGE_SEE_IO32 || BGE_FLASH_IO32
1250 
1251 /*
1252  * Basic SEEPROM get/set access routine
1253  *
1254  * This uses the chip's SEEPROM auto-access method, controlled by the
1255  * Serial EEPROM Address/Data Registers at 0x6838/683c, so the CPU
1256  * doesn't have to fiddle with the individual bits.
1257  *
1258  * The caller should hold <genlock> and *also* have already acquired
1259  * the right to access the SEEPROM, via bge_nvmem_acquire() above.
1260  *
1261  * Return value:
1262  *	0 on success,
1263  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1264  *	EPROTO on other h/w or s/w errors.
1265  *
1266  * <*dp> is an input to a SEEPROM_ACCESS_WRITE operation, or an output
1267  * from a (successful) SEEPROM_ACCESS_READ.
1268  */
1269 static int bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1270 				uint32_t *dp);
1271 #pragma	no_inline(bge_seeprom_access)
1272 
1273 static int
1274 bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1275 {
1276 	uint32_t tries;
1277 	uint32_t regval;
1278 
1279 	ASSERT(mutex_owned(bgep->genlock));
1280 
1281 	/*
1282 	 * On the newer chips that support both SEEPROM & Flash, we need
1283 	 * to specifically enable SEEPROM access (Flash is the default).
1284 	 * On older chips, we don't; SEEPROM is the only NVtype supported,
1285 	 * and the NVM control registers don't exist ...
1286 	 */
1287 	switch (bgep->chipid.nvtype) {
1288 	case BGE_NVTYPE_NONE:
1289 	case BGE_NVTYPE_UNKNOWN:
1290 		_NOTE(NOTREACHED)
1291 	case BGE_NVTYPE_SEEPROM:
1292 		break;
1293 
1294 	case BGE_NVTYPE_LEGACY_SEEPROM:
1295 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1296 	case BGE_NVTYPE_BUFFERED_FLASH:
1297 	default:
1298 		bge_reg_set32(bgep, NVM_CONFIG1_REG,
1299 		    NVM_CFG1_LEGACY_SEEPROM_MODE);
1300 		break;
1301 	}
1302 
1303 	/*
1304 	 * Check there's no command in progress.
1305 	 *
1306 	 * Note: this *shouldn't* ever find that there is a command
1307 	 * in progress, because we already hold the <genlock> mutex.
1308 	 * Also, to ensure we don't have a conflict with the chip's
1309 	 * internal firmware or a process accessing the same (shared)
1310 	 * SEEPROM through the other port of a 5704, we've already
1311 	 * been through the "software arbitration" protocol.
1312 	 * So this is just a final consistency check: we shouldn't
1313 	 * see EITHER the START bit (command started but not complete)
1314 	 * OR the COMPLETE bit (command completed but not cleared).
1315 	 */
1316 	regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1317 	if (regval & SEEPROM_ACCESS_START)
1318 		return (EPROTO);
1319 	if (regval & SEEPROM_ACCESS_COMPLETE)
1320 		return (EPROTO);
1321 
1322 	/*
1323 	 * Assemble the command ...
1324 	 */
1325 	cmd |= addr & SEEPROM_ACCESS_ADDRESS_MASK;
1326 	addr >>= SEEPROM_ACCESS_ADDRESS_SIZE;
1327 	addr <<= SEEPROM_ACCESS_DEVID_SHIFT;
1328 	cmd |= addr & SEEPROM_ACCESS_DEVID_MASK;
1329 	cmd |= SEEPROM_ACCESS_START;
1330 	cmd |= SEEPROM_ACCESS_COMPLETE;
1331 	cmd |= regval & SEEPROM_ACCESS_HALFCLOCK_MASK;
1332 
1333 	bge_reg_put32(bgep, SERIAL_EEPROM_DATA_REG, *dp);
1334 	bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, cmd);
1335 
1336 	/*
1337 	 * By observation, a successful access takes ~20us on a 5703/4,
1338 	 * but apparently much longer (up to 1000us) on the obsolescent
1339 	 * BCM5700/BCM5701.  We want to be sure we don't get any false
1340 	 * timeouts here; but OTOH, we don't want a bogus access to lock
1341 	 * out interrupts for longer than necessary. So we'll allow up
1342 	 * to 1000us ...
1343 	 */
1344 	for (tries = 0; tries < 1000; ++tries) {
1345 		regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1346 		if (regval & SEEPROM_ACCESS_COMPLETE)
1347 			break;
1348 		drv_usecwait(1);
1349 	}
1350 
1351 	if (regval & SEEPROM_ACCESS_COMPLETE) {
1352 		/*
1353 		 * All OK; read the SEEPROM data register, then write back
1354 		 * the value read from the address register in order to
1355 		 * clear the <complete> bit and leave the SEEPROM access
1356 		 * state machine idle, ready for the next access ...
1357 		 */
1358 		BGE_DEBUG(("bge_seeprom_access: complete after %d us", tries));
1359 		*dp = bge_reg_get32(bgep, SERIAL_EEPROM_DATA_REG);
1360 		bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, regval);
1361 		return (0);
1362 	}
1363 
1364 	/*
1365 	 * Hmm ... what happened here?
1366 	 *
1367 	 * Most likely, the user addressed a non-existent SEEPROM. Or
1368 	 * maybe the SEEPROM was busy internally (e.g. processing a write)
1369 	 * and didn't respond to being addressed. Either way, it's left
1370 	 * the SEEPROM access state machine wedged. So we'll reset it
1371 	 * before we leave, so it's ready for next time ...
1372 	 */
1373 	BGE_DEBUG(("bge_seeprom_access: timed out after %d us", tries));
1374 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
1375 	return (ENODATA);
1376 }
1377 
1378 /*
1379  * Basic Flash get/set access routine
1380  *
1381  * These use the chip's Flash auto-access method, controlled by the
1382  * Flash Access Registers at 0x7000-701c, so the CPU doesn't have to
1383  * fiddle with the individual bits.
1384  *
1385  * The caller should hold <genlock> and *also* have already acquired
1386  * the right to access the Flash, via bge_nvmem_acquire() above.
1387  *
1388  * Return value:
1389  *	0 on success,
1390  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1391  *	ENODEV if the NVmem device is missing or otherwise unusable
1392  *
1393  * <*dp> is an input to a NVM_FLASH_CMD_WR operation, or an output
1394  * from a (successful) NVM_FLASH_CMD_RD.
1395  */
1396 static int bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1397 				uint32_t *dp);
1398 #pragma	no_inline(bge_flash_access)
1399 
1400 static int
1401 bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1402 {
1403 	uint32_t tries;
1404 	uint32_t regval;
1405 
1406 	ASSERT(mutex_owned(bgep->genlock));
1407 
1408 	/*
1409 	 * On the newer chips that support both SEEPROM & Flash, we need
1410 	 * to specifically disable SEEPROM access while accessing Flash.
1411 	 * The older chips don't support Flash, and the NVM registers don't
1412 	 * exist, so we shouldn't be here at all!
1413 	 */
1414 	switch (bgep->chipid.nvtype) {
1415 	case BGE_NVTYPE_NONE:
1416 	case BGE_NVTYPE_UNKNOWN:
1417 		_NOTE(NOTREACHED)
1418 	case BGE_NVTYPE_SEEPROM:
1419 		return (ENODEV);
1420 
1421 	case BGE_NVTYPE_LEGACY_SEEPROM:
1422 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1423 	case BGE_NVTYPE_BUFFERED_FLASH:
1424 	default:
1425 		bge_reg_clr32(bgep, NVM_CONFIG1_REG,
1426 		    NVM_CFG1_LEGACY_SEEPROM_MODE);
1427 		break;
1428 	}
1429 
1430 	/*
1431 	 * Assemble the command ...
1432 	 */
1433 	addr &= NVM_FLASH_ADDR_MASK;
1434 	cmd |= NVM_FLASH_CMD_DOIT;
1435 	cmd |= NVM_FLASH_CMD_FIRST;
1436 	cmd |= NVM_FLASH_CMD_LAST;
1437 	cmd |= NVM_FLASH_CMD_DONE;
1438 
1439 	bge_reg_put32(bgep, NVM_FLASH_WRITE_REG, *dp);
1440 	bge_reg_put32(bgep, NVM_FLASH_ADDR_REG, addr);
1441 	bge_reg_put32(bgep, NVM_FLASH_CMD_REG, cmd);
1442 
1443 	/*
1444 	 * Allow up to 1000ms ...
1445 	 */
1446 	for (tries = 0; tries < 1000; ++tries) {
1447 		regval = bge_reg_get32(bgep, NVM_FLASH_CMD_REG);
1448 		if (regval & NVM_FLASH_CMD_DONE)
1449 			break;
1450 		drv_usecwait(1);
1451 	}
1452 
1453 	if (regval & NVM_FLASH_CMD_DONE) {
1454 		/*
1455 		 * All OK; read the data from the Flash read register
1456 		 */
1457 		BGE_DEBUG(("bge_flash_access: complete after %d us", tries));
1458 		*dp = bge_reg_get32(bgep, NVM_FLASH_READ_REG);
1459 		return (0);
1460 	}
1461 
1462 	/*
1463 	 * Hmm ... what happened here?
1464 	 *
1465 	 * Most likely, the user addressed a non-existent Flash. Or
1466 	 * maybe the Flash was busy internally (e.g. processing a write)
1467 	 * and didn't respond to being addressed. Either way, there's
1468 	 * nothing we can here ...
1469 	 */
1470 	BGE_DEBUG(("bge_flash_access: timed out after %d us", tries));
1471 	return (ENODATA);
1472 }
1473 
1474 /*
1475  * The next two functions regulate access to the NVram (if fitted).
1476  *
1477  * On a 5704 (dual core) chip, there's only one SEEPROM and one Flash
1478  * (SPI) interface, but they can be accessed through either port. These
1479  * are managed by different instance of this driver and have no software
1480  * state in common.
1481  *
1482  * In addition (and even on a single core chip) the chip's internal
1483  * firmware can access the SEEPROM/Flash, most notably after a RESET
1484  * when it may download code to run internally.
1485  *
1486  * So we need to arbitrate between these various software agents.  For
1487  * this purpose, the chip provides the Software Arbitration Register,
1488  * which implements hardware(!) arbitration.
1489  *
1490  * This functionality didn't exist on older (5700/5701) chips, so there's
1491  * nothing we can do by way of arbitration on those; also, if there's no
1492  * SEEPROM/Flash fitted (or we couldn't determine what type), there's also
1493  * nothing to do.
1494  *
1495  * The internal firmware appears to use Request 0, which is the highest
1496  * priority.  So we'd like to use Request 2, leaving one higher and one
1497  * lower for any future developments ... but apparently this doesn't
1498  * always work.  So for now, the code uses Request 1 ;-(
1499  */
1500 
1501 #define	NVM_READ_REQ	NVM_READ_REQ1
1502 #define	NVM_RESET_REQ	NVM_RESET_REQ1
1503 #define	NVM_SET_REQ	NVM_SET_REQ1
1504 
1505 static void bge_nvmem_relinquish(bge_t *bgep);
1506 #pragma	no_inline(bge_nvmem_relinquish)
1507 
1508 static void
1509 bge_nvmem_relinquish(bge_t *bgep)
1510 {
1511 	ASSERT(mutex_owned(bgep->genlock));
1512 
1513 	switch (bgep->chipid.nvtype) {
1514 	case BGE_NVTYPE_NONE:
1515 	case BGE_NVTYPE_UNKNOWN:
1516 		_NOTE(NOTREACHED)
1517 		return;
1518 
1519 	case BGE_NVTYPE_SEEPROM:
1520 		/*
1521 		 * No arbitration performed, no release needed
1522 		 */
1523 		return;
1524 
1525 	case BGE_NVTYPE_LEGACY_SEEPROM:
1526 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1527 	case BGE_NVTYPE_BUFFERED_FLASH:
1528 	default:
1529 		break;
1530 	}
1531 
1532 	/*
1533 	 * Our own request should be present (whether or not granted) ...
1534 	 */
1535 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1536 
1537 	/*
1538 	 * ... this will make it go away.
1539 	 */
1540 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_RESET_REQ);
1541 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1542 }
1543 
1544 /*
1545  * Arbitrate for access to the NVmem, if necessary
1546  *
1547  * Return value:
1548  *	0 on success
1549  *	EAGAIN if the device is in use (retryable)
1550  *	ENODEV if the NVmem device is missing or otherwise unusable
1551  */
1552 static int bge_nvmem_acquire(bge_t *bgep);
1553 #pragma	no_inline(bge_nvmem_acquire)
1554 
1555 static int
1556 bge_nvmem_acquire(bge_t *bgep)
1557 {
1558 	uint32_t regval;
1559 	uint32_t tries;
1560 
1561 	ASSERT(mutex_owned(bgep->genlock));
1562 
1563 	switch (bgep->chipid.nvtype) {
1564 	case BGE_NVTYPE_NONE:
1565 	case BGE_NVTYPE_UNKNOWN:
1566 		/*
1567 		 * Access denied: no (recognisable) device fitted
1568 		 */
1569 		return (ENODEV);
1570 
1571 	case BGE_NVTYPE_SEEPROM:
1572 		/*
1573 		 * Access granted: no arbitration needed (or possible)
1574 		 */
1575 		return (0);
1576 
1577 	case BGE_NVTYPE_LEGACY_SEEPROM:
1578 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1579 	case BGE_NVTYPE_BUFFERED_FLASH:
1580 	default:
1581 		/*
1582 		 * Access conditional: conduct arbitration protocol
1583 		 */
1584 		break;
1585 	}
1586 
1587 	/*
1588 	 * We're holding the per-port mutex <genlock>, so no-one other
1589 	 * thread can be attempting to access the NVmem through *this*
1590 	 * port. But it could be in use by the *other* port (of a 5704),
1591 	 * or by the chip's internal firmware, so we have to go through
1592 	 * the full (hardware) arbitration protocol ...
1593 	 *
1594 	 * Note that *because* we're holding <genlock>, the interrupt handler
1595 	 * won't be able to progress.  So we're only willing to spin for a
1596 	 * fairly short time.  Specifically:
1597 	 *
1598 	 *	We *must* wait long enough for the hardware to resolve all
1599 	 *	requests and determine the winner.  Fortunately, this is
1600 	 *	"almost instantaneous", even as observed by GHz CPUs.
1601 	 *
1602 	 *	A successful access by another Solaris thread (via either
1603 	 *	port) typically takes ~20us.  So waiting a bit longer than
1604 	 *	that will give a good chance of success, if the other user
1605 	 *	*is* another thread on the other port.
1606 	 *
1607 	 *	However, the internal firmware can hold on to the NVmem
1608 	 *	for *much* longer: at least 10 milliseconds just after a
1609 	 *	RESET, and maybe even longer if the NVmem actually contains
1610 	 *	code to download and run on the internal CPUs.
1611 	 *
1612 	 * So, we'll allow 50us; if that's not enough then it's up to the
1613 	 * caller to retry later (hence the choice of return code EAGAIN).
1614 	 */
1615 	regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1616 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_SET_REQ);
1617 
1618 	for (tries = 0; tries < 50; ++tries) {
1619 		regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1620 		if (regval & NVM_WON_REQ1)
1621 			break;
1622 		drv_usecwait(1);
1623 	}
1624 
1625 	if (regval & NVM_WON_REQ1) {
1626 		BGE_DEBUG(("bge_nvmem_acquire: won after %d us", tries));
1627 		return (0);
1628 	}
1629 
1630 	/*
1631 	 * Somebody else must be accessing the NVmem, so abandon our
1632 	 * attempt take control of it.  The caller can try again later ...
1633 	 */
1634 	BGE_DEBUG(("bge_nvmem_acquire: lost after %d us", tries));
1635 	bge_nvmem_relinquish(bgep);
1636 	return (EAGAIN);
1637 }
1638 
1639 /*
1640  * This code assumes that the GPIO1 bit has been wired up to the NVmem
1641  * write protect line in such a way that the NVmem is protected when
1642  * GPIO1 is an input, or is an output but driven high.  Thus, to make the
1643  * NVmem writable we have to change GPIO1 to an output AND drive it low.
1644  *
1645  * Note: there's only one set of GPIO pins on a 5704, even though they
1646  * can be accessed through either port.  So the chip has to resolve what
1647  * happens if the two ports program a single pin differently ... the rule
1648  * it uses is that if the ports disagree about the *direction* of a pin,
1649  * "output" wins over "input", but if they disagree about its *value* as
1650  * an output, then the pin is TRISTATED instead!  In such a case, no-one
1651  * wins, and the external signal does whatever the external circuitry
1652  * defines as the default -- which we've assumed is the PROTECTED state.
1653  * So, we always change GPIO1 back to being an *input* whenever we're not
1654  * specifically using it to unprotect the NVmem. This allows either port
1655  * to update the NVmem, although obviously only one at a time!
1656  *
1657  * The caller should hold <genlock> and *also* have already acquired the
1658  * right to access the NVmem, via bge_nvmem_acquire() above.
1659  */
1660 static void bge_nvmem_protect(bge_t *bgep, boolean_t protect);
1661 #pragma	inline(bge_nvmem_protect)
1662 
1663 static void
1664 bge_nvmem_protect(bge_t *bgep, boolean_t protect)
1665 {
1666 	uint32_t regval;
1667 
1668 	ASSERT(mutex_owned(bgep->genlock));
1669 
1670 	regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
1671 	if (protect) {
1672 		regval |= MLCR_MISC_PINS_OUTPUT_1;
1673 		regval &= ~MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1674 	} else {
1675 		regval &= ~MLCR_MISC_PINS_OUTPUT_1;
1676 		regval |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1677 	}
1678 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG, regval);
1679 }
1680 
1681 /*
1682  * Now put it all together ...
1683  *
1684  * Try to acquire control of the NVmem; if successful, then:
1685  *	unprotect it (if we want to write to it)
1686  *	perform the requested access
1687  *	reprotect it (after a write)
1688  *	relinquish control
1689  *
1690  * Return value:
1691  *	0 on success,
1692  *	EAGAIN if the device is in use (retryable)
1693  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1694  *	ENODEV if the NVmem device is missing or otherwise unusable
1695  *	EPROTO on other h/w or s/w errors.
1696  */
1697 static int
1698 bge_nvmem_rw32(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1699 {
1700 	int err;
1701 
1702 	if ((err = bge_nvmem_acquire(bgep)) == 0) {
1703 		switch (cmd) {
1704 		case BGE_SEE_READ:
1705 			err = bge_seeprom_access(bgep,
1706 			    SEEPROM_ACCESS_READ, addr, dp);
1707 			break;
1708 
1709 		case BGE_SEE_WRITE:
1710 			bge_nvmem_protect(bgep, B_FALSE);
1711 			err = bge_seeprom_access(bgep,
1712 			    SEEPROM_ACCESS_WRITE, addr, dp);
1713 			bge_nvmem_protect(bgep, B_TRUE);
1714 			break;
1715 
1716 		case BGE_FLASH_READ:
1717 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1718 			    DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1719 			    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1720 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1721 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1722 				    NVM_ACCESS_ENABLE);
1723 			}
1724 			err = bge_flash_access(bgep,
1725 			    NVM_FLASH_CMD_RD, addr, dp);
1726 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1727 			    DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1728 			    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1729 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1730 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1731 				    NVM_ACCESS_ENABLE);
1732 			}
1733 			break;
1734 
1735 		case BGE_FLASH_WRITE:
1736 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1737 			    DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1738 			    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1739 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1740 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1741 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1742 			}
1743 			bge_nvmem_protect(bgep, B_FALSE);
1744 			err = bge_flash_access(bgep,
1745 			    NVM_FLASH_CMD_WR, addr, dp);
1746 			bge_nvmem_protect(bgep, B_TRUE);
1747 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1748 			    DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1749 			    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1750 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1751 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1752 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1753 			}
1754 
1755 			break;
1756 
1757 		default:
1758 			_NOTE(NOTREACHED)
1759 			break;
1760 		}
1761 		bge_nvmem_relinquish(bgep);
1762 	}
1763 
1764 	BGE_DEBUG(("bge_nvmem_rw32: err %d", err));
1765 	return (err);
1766 }
1767 
1768 /*
1769  * Attempt to get a MAC address from the SEEPROM or Flash, if any
1770  */
1771 static uint64_t bge_get_nvmac(bge_t *bgep);
1772 #pragma no_inline(bge_get_nvmac)
1773 
1774 static uint64_t
1775 bge_get_nvmac(bge_t *bgep)
1776 {
1777 	uint32_t mac_high;
1778 	uint32_t mac_low;
1779 	uint32_t addr;
1780 	uint32_t cmd;
1781 	uint64_t mac;
1782 
1783 	BGE_TRACE(("bge_get_nvmac($%p)",
1784 	    (void *)bgep));
1785 
1786 	switch (bgep->chipid.nvtype) {
1787 	case BGE_NVTYPE_NONE:
1788 	case BGE_NVTYPE_UNKNOWN:
1789 	default:
1790 		return (0ULL);
1791 
1792 	case BGE_NVTYPE_SEEPROM:
1793 	case BGE_NVTYPE_LEGACY_SEEPROM:
1794 		cmd = BGE_SEE_READ;
1795 		break;
1796 
1797 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1798 	case BGE_NVTYPE_BUFFERED_FLASH:
1799 		cmd = BGE_FLASH_READ;
1800 		break;
1801 	}
1802 
1803 	if (DEVICE_5906_SERIES_CHIPSETS(bgep))
1804 		addr = NVMEM_DATA_MAC_ADDRESS_5906;
1805 	else
1806 		addr = NVMEM_DATA_MAC_ADDRESS;
1807 
1808 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_high))
1809 		return (0ULL);
1810 	addr += 4;
1811 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_low))
1812 		return (0ULL);
1813 
1814 	/*
1815 	 * The Broadcom chip is natively BIG-endian, so that's how the
1816 	 * MAC address is represented in NVmem.  We may need to swap it
1817 	 * around on a little-endian host ...
1818 	 */
1819 #ifdef	_BIG_ENDIAN
1820 	mac = mac_high;
1821 	mac = mac << 32;
1822 	mac |= mac_low;
1823 #else
1824 	mac = BGE_BSWAP_32(mac_high);
1825 	mac = mac << 32;
1826 	mac |= BGE_BSWAP_32(mac_low);
1827 #endif	/* _BIG_ENDIAN */
1828 
1829 	return (mac);
1830 }
1831 
1832 #else	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1833 
1834 /*
1835  * Dummy version for when we're not supporting NVmem access
1836  */
1837 static uint64_t bge_get_nvmac(bge_t *bgep);
1838 #pragma inline(bge_get_nvmac)
1839 
1840 static uint64_t
1841 bge_get_nvmac(bge_t *bgep)
1842 {
1843 	_NOTE(ARGUNUSED(bgep))
1844 	return (0ULL);
1845 }
1846 
1847 #endif	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1848 
1849 /*
1850  * Determine the type of NVmem that is (or may be) attached to this chip,
1851  */
1852 static enum bge_nvmem_type bge_nvmem_id(bge_t *bgep);
1853 #pragma no_inline(bge_nvmem_id)
1854 
1855 static enum bge_nvmem_type
1856 bge_nvmem_id(bge_t *bgep)
1857 {
1858 	enum bge_nvmem_type nvtype;
1859 	uint32_t config1;
1860 
1861 	BGE_TRACE(("bge_nvmem_id($%p)",
1862 	    (void *)bgep));
1863 
1864 	switch (bgep->chipid.device) {
1865 	default:
1866 		/*
1867 		 * We shouldn't get here; it means we don't recognise
1868 		 * the chip, which means we don't know how to determine
1869 		 * what sort of NVmem (if any) it has.  So we'll say
1870 		 * NONE, to disable the NVmem access code ...
1871 		 */
1872 		nvtype = BGE_NVTYPE_NONE;
1873 		break;
1874 
1875 	case DEVICE_ID_5700:
1876 	case DEVICE_ID_5700x:
1877 	case DEVICE_ID_5701:
1878 		/*
1879 		 * These devices support *only* SEEPROMs
1880 		 */
1881 		nvtype = BGE_NVTYPE_SEEPROM;
1882 		break;
1883 
1884 	case DEVICE_ID_5702:
1885 	case DEVICE_ID_5702fe:
1886 	case DEVICE_ID_5703C:
1887 	case DEVICE_ID_5703S:
1888 	case DEVICE_ID_5704C:
1889 	case DEVICE_ID_5704S:
1890 	case DEVICE_ID_5704:
1891 	case DEVICE_ID_5705M:
1892 	case DEVICE_ID_5705C:
1893 	case DEVICE_ID_5705_2:
1894 	case DEVICE_ID_5718:
1895 	case DEVICE_ID_5780:
1896 	case DEVICE_ID_5782:
1897 	case DEVICE_ID_5785:
1898 	case DEVICE_ID_5787:
1899 	case DEVICE_ID_5787M:
1900 	case DEVICE_ID_5788:
1901 	case DEVICE_ID_5789:
1902 	case DEVICE_ID_5751:
1903 	case DEVICE_ID_5751M:
1904 	case DEVICE_ID_5752:
1905 	case DEVICE_ID_5752M:
1906 	case DEVICE_ID_5754:
1907 	case DEVICE_ID_5755:
1908 	case DEVICE_ID_5755M:
1909 	case DEVICE_ID_5756M:
1910 	case DEVICE_ID_5721:
1911 	case DEVICE_ID_5722:
1912 	case DEVICE_ID_5723:
1913 	case DEVICE_ID_5761:
1914 	case DEVICE_ID_5761E:
1915 	case DEVICE_ID_5764:
1916 	case DEVICE_ID_5714C:
1917 	case DEVICE_ID_5714S:
1918 	case DEVICE_ID_5715C:
1919 	case DEVICE_ID_5715S:
1920 		config1 = bge_reg_get32(bgep, NVM_CONFIG1_REG);
1921 		if (config1 & NVM_CFG1_FLASH_MODE)
1922 			if (config1 & NVM_CFG1_BUFFERED_MODE)
1923 				nvtype = BGE_NVTYPE_BUFFERED_FLASH;
1924 			else
1925 				nvtype = BGE_NVTYPE_UNBUFFERED_FLASH;
1926 		else
1927 			nvtype = BGE_NVTYPE_LEGACY_SEEPROM;
1928 		break;
1929 	case DEVICE_ID_5906:
1930 	case DEVICE_ID_5906M:
1931 		nvtype = BGE_NVTYPE_BUFFERED_FLASH;
1932 		break;
1933 	}
1934 
1935 	return (nvtype);
1936 }
1937 
1938 #undef	BGE_DBG
1939 #define	BGE_DBG		BGE_DBG_CHIP	/* debug flag for this code	*/
1940 
1941 static void
1942 bge_init_recv_rule(bge_t *bgep)
1943 {
1944 	bge_recv_rule_t *rulep = bgep->recv_rules;
1945 	uint32_t i;
1946 
1947 	/*
1948 	 * Initialize receive rule registers.
1949 	 * Note that rules may persist across each bge_m_start/stop() call.
1950 	 */
1951 	for (i = 0; i < RECV_RULES_NUM_MAX; i++, rulep++) {
1952 		bge_reg_put32(bgep, RECV_RULE_MASK_REG(i), rulep->mask_value);
1953 		bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(i), rulep->control);
1954 	}
1955 }
1956 
1957 /*
1958  * Using the values captured by bge_chip_cfg_init(), and additional probes
1959  * as required, characterise the chip fully: determine the label by which
1960  * to refer to this chip, the correct settings for various registers, and
1961  * of course whether the device and/or subsystem are supported!
1962  */
1963 int bge_chip_id_init(bge_t *bgep);
1964 #pragma	no_inline(bge_chip_id_init)
1965 
1966 int
1967 bge_chip_id_init(bge_t *bgep)
1968 {
1969 	char buf[MAXPATHLEN];		/* any risk of stack overflow?	*/
1970 	boolean_t sys_ok;
1971 	boolean_t dev_ok;
1972 	chip_id_t *cidp;
1973 	uint32_t subid;
1974 	char *devname;
1975 	char *sysname;
1976 	int *ids;
1977 	int err;
1978 	uint_t i;
1979 
1980 	sys_ok = dev_ok = B_FALSE;
1981 	cidp = &bgep->chipid;
1982 
1983 	/*
1984 	 * Check the PCI device ID to determine the generic chip type and
1985 	 * select parameters that depend on this.
1986 	 *
1987 	 * Note: because the SPARC platforms in general don't fit the
1988 	 * SEEPROM 'behind' the chip, the PCI revision ID register reads
1989 	 * as zero - which is why we use <asic_rev> rather than <revision>
1990 	 * below ...
1991 	 *
1992 	 * Note: in general we can't distinguish between the Copper/SerDes
1993 	 * versions by ID alone, as some Copper devices (e.g. some but not
1994 	 * all 5703Cs) have the same ID as the SerDes equivalents.  So we
1995 	 * treat them the same here, and the MII code works out the media
1996 	 * type later on ...
1997 	 */
1998 	cidp->mbuf_base = bge_mbuf_pool_base;
1999 	cidp->mbuf_length = bge_mbuf_pool_len;
2000 	cidp->recv_slots = BGE_RECV_SLOTS_USED;
2001 	cidp->bge_dma_rwctrl = bge_dma_rwctrl;
2002 	cidp->pci_type = BGE_PCI_X;
2003 	cidp->statistic_type = BGE_STAT_BLK;
2004 	cidp->mbuf_lo_water_rdma = bge_mbuf_lo_water_rdma;
2005 	cidp->mbuf_lo_water_rmac = bge_mbuf_lo_water_rmac;
2006 	cidp->mbuf_hi_water = bge_mbuf_hi_water;
2007 	cidp->rx_ticks_norm = bge_rx_ticks_norm;
2008 	cidp->rx_count_norm = bge_rx_count_norm;
2009 	cidp->tx_ticks_norm = bge_tx_ticks_norm;
2010 	cidp->tx_count_norm = bge_tx_count_norm;
2011 	cidp->mask_pci_int = MHCR_MASK_PCI_INT_OUTPUT;
2012 
2013 	if (cidp->rx_rings == 0 || cidp->rx_rings > BGE_RECV_RINGS_MAX)
2014 		cidp->rx_rings = BGE_RECV_RINGS_DEFAULT;
2015 	if (cidp->tx_rings == 0 || cidp->tx_rings > BGE_SEND_RINGS_MAX)
2016 		cidp->tx_rings = BGE_SEND_RINGS_DEFAULT;
2017 
2018 	cidp->msi_enabled = B_FALSE;
2019 
2020 	switch (cidp->device) {
2021 	case DEVICE_ID_5718:
2022 		cidp->chip_label = 5718;
2023 		cidp->msi_enabled = bge_enable_msi;
2024 #ifdef __sparc
2025 		cidp->mask_pci_int = LE_32(MHCR_MASK_PCI_INT_OUTPUT);
2026 #endif
2027 		cidp->bge_dma_rwctrl = LE_32(PDRWCR_VAR_5717);
2028 		cidp->pci_type = BGE_PCI_E;
2029 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2030 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5717;
2031 		cidp->mbuf_hi_water = MBUF_HIWAT_5717;
2032 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2033 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2034 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2035 		cidp->bge_mlcr_default = MLCR_DEFAULT_5717;
2036 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2037 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2038 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2039 		cidp->statistic_type = BGE_STAT_REG;
2040 		dev_ok = B_TRUE;
2041 		break;
2042 
2043 	case DEVICE_ID_5700:
2044 	case DEVICE_ID_5700x:
2045 		cidp->chip_label = 5700;
2046 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2047 		break;
2048 
2049 	case DEVICE_ID_5701:
2050 		cidp->chip_label = 5701;
2051 		dev_ok = B_TRUE;
2052 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2053 		break;
2054 
2055 	case DEVICE_ID_5702:
2056 	case DEVICE_ID_5702fe:
2057 		cidp->chip_label = 5702;
2058 		dev_ok = B_TRUE;
2059 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2060 		cidp->pci_type = BGE_PCI;
2061 		break;
2062 
2063 	case DEVICE_ID_5703C:
2064 	case DEVICE_ID_5703S:
2065 	case DEVICE_ID_5703:
2066 		/*
2067 		 * Revision A0 of the 5703/5793 had various errata
2068 		 * that we can't or don't work around, so it's not
2069 		 * supported, but all later versions are
2070 		 */
2071 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5793 : 5703;
2072 		if (bgep->chipid.asic_rev != MHCR_CHIP_REV_5703_A0)
2073 			dev_ok = B_TRUE;
2074 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2075 		break;
2076 
2077 	case DEVICE_ID_5704C:
2078 	case DEVICE_ID_5704S:
2079 	case DEVICE_ID_5704:
2080 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5794 : 5704;
2081 		cidp->mbuf_base = bge_mbuf_pool_base_5704;
2082 		cidp->mbuf_length = bge_mbuf_pool_len_5704;
2083 		dev_ok = B_TRUE;
2084 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2085 		break;
2086 
2087 	case DEVICE_ID_5705C:
2088 	case DEVICE_ID_5705M:
2089 	case DEVICE_ID_5705MA3:
2090 	case DEVICE_ID_5705F:
2091 	case DEVICE_ID_5705_2:
2092 	case DEVICE_ID_5754:
2093 		if (cidp->device == DEVICE_ID_5754) {
2094 			cidp->chip_label = 5754;
2095 			cidp->pci_type = BGE_PCI_E;
2096 		} else {
2097 			cidp->chip_label = 5705;
2098 			cidp->pci_type = BGE_PCI;
2099 			cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2100 		}
2101 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2102 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2103 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2104 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2105 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2106 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2107 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2108 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2109 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2110 		cidp->statistic_type = BGE_STAT_REG;
2111 		dev_ok = B_TRUE;
2112 		break;
2113 
2114 	case DEVICE_ID_5906:
2115 	case DEVICE_ID_5906M:
2116 		cidp->chip_label = 5906;
2117 		cidp->pci_type = BGE_PCI_E;
2118 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5906;
2119 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5906;
2120 		cidp->mbuf_hi_water = MBUF_HIWAT_5906;
2121 		cidp->mbuf_base = bge_mbuf_pool_base;
2122 		cidp->mbuf_length = bge_mbuf_pool_len;
2123 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2124 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2125 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2126 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2127 		cidp->statistic_type = BGE_STAT_REG;
2128 		dev_ok = B_TRUE;
2129 		break;
2130 
2131 	case DEVICE_ID_5753:
2132 		cidp->chip_label = 5753;
2133 		cidp->pci_type = BGE_PCI_E;
2134 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2135 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2136 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2137 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2138 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2139 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2140 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2141 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2142 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2143 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2144 		cidp->statistic_type = BGE_STAT_REG;
2145 		dev_ok = B_TRUE;
2146 		break;
2147 
2148 	case DEVICE_ID_5755:
2149 	case DEVICE_ID_5755M:
2150 		cidp->chip_label = 5755;
2151 		cidp->pci_type = BGE_PCI_E;
2152 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2153 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2154 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2155 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2156 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2157 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2158 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2159 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2160 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2161 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2162 		if (cidp->device == DEVICE_ID_5755M)
2163 			cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2164 		cidp->statistic_type = BGE_STAT_REG;
2165 		dev_ok = B_TRUE;
2166 		break;
2167 
2168 	case DEVICE_ID_5756M:
2169 		/*
2170 		 * This is nearly identical to the 5755M.
2171 		 * (Actually reports the 5755 chip ID.)
2172 		 */
2173 		cidp->chip_label = 5756;
2174 		cidp->pci_type = BGE_PCI_E;
2175 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2176 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2177 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2178 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2179 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2180 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2181 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2182 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2183 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2184 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2185 		cidp->statistic_type = BGE_STAT_REG;
2186 		dev_ok = B_TRUE;
2187 		break;
2188 
2189 	case DEVICE_ID_5787:
2190 	case DEVICE_ID_5787M:
2191 		cidp->chip_label = 5787;
2192 		cidp->pci_type = BGE_PCI_E;
2193 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2194 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2195 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2196 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2197 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2198 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2199 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2200 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2201 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2202 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2203 		cidp->statistic_type = BGE_STAT_REG;
2204 		dev_ok = B_TRUE;
2205 		break;
2206 
2207 	case DEVICE_ID_5723:
2208 	case DEVICE_ID_5761:
2209 	case DEVICE_ID_5761E:
2210 		cidp->msi_enabled = bge_enable_msi;
2211 		/*
2212 		 * We don't use MSI for BCM5764 and BCM5785, as the
2213 		 * status block may fail to update when the network
2214 		 * traffic is heavy.
2215 		 */
2216 		/* FALLTHRU */
2217 	case DEVICE_ID_5785:
2218 	case DEVICE_ID_5764:
2219 		if (cidp->device == DEVICE_ID_5723)
2220 			cidp->chip_label = 5723;
2221 		else if (cidp->device == DEVICE_ID_5764)
2222 			cidp->chip_label = 5764;
2223 		else if (cidp->device == DEVICE_ID_5785)
2224 			cidp->chip_label = 5785;
2225 		else
2226 			cidp->chip_label = 5761;
2227 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2228 		cidp->pci_type = BGE_PCI_E;
2229 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2230 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2231 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2232 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2233 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2234 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2235 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2236 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2237 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2238 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2239 		cidp->statistic_type = BGE_STAT_REG;
2240 		dev_ok = B_TRUE;
2241 		break;
2242 
2243 	/* PCI-X device, identical to 5714 */
2244 	case DEVICE_ID_5780:
2245 		cidp->chip_label = 5780;
2246 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2247 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2248 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2249 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2250 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2251 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2252 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2253 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2254 		cidp->statistic_type = BGE_STAT_REG;
2255 		dev_ok = B_TRUE;
2256 		break;
2257 
2258 	case DEVICE_ID_5782:
2259 		/*
2260 		 * Apart from the label, we treat this as a 5705(?)
2261 		 */
2262 		cidp->chip_label = 5782;
2263 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2264 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2265 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2266 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2267 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2268 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2269 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2270 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2271 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2272 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2273 		cidp->statistic_type = BGE_STAT_REG;
2274 		dev_ok = B_TRUE;
2275 		break;
2276 
2277 	case DEVICE_ID_5788:
2278 		/*
2279 		 * Apart from the label, we treat this as a 5705(?)
2280 		 */
2281 		cidp->chip_label = 5788;
2282 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2283 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2284 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2285 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2286 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2287 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2288 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2289 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2290 		cidp->statistic_type = BGE_STAT_REG;
2291 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2292 		dev_ok = B_TRUE;
2293 		break;
2294 
2295 	case DEVICE_ID_5714C:
2296 		if (cidp->revision >= REVISION_ID_5714_A2)
2297 			cidp->msi_enabled = bge_enable_msi;
2298 		/* FALLTHRU */
2299 	case DEVICE_ID_5714S:
2300 		cidp->chip_label = 5714;
2301 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2302 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2303 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2304 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2305 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2306 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2307 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5714;
2308 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2309 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2310 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2311 		cidp->pci_type = BGE_PCI_E;
2312 		cidp->statistic_type = BGE_STAT_REG;
2313 		dev_ok = B_TRUE;
2314 		break;
2315 
2316 	case DEVICE_ID_5715C:
2317 	case DEVICE_ID_5715S:
2318 		cidp->chip_label = 5715;
2319 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2320 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2321 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2322 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2323 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2324 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2325 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5715;
2326 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2327 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2328 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2329 		cidp->pci_type = BGE_PCI_E;
2330 		cidp->statistic_type = BGE_STAT_REG;
2331 		if (cidp->revision >= REVISION_ID_5715_A2)
2332 			cidp->msi_enabled = bge_enable_msi;
2333 		dev_ok = B_TRUE;
2334 		break;
2335 
2336 	case DEVICE_ID_5721:
2337 		cidp->chip_label = 5721;
2338 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2339 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2340 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2341 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2342 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2343 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2344 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2345 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2346 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2347 		cidp->pci_type = BGE_PCI_E;
2348 		cidp->statistic_type = BGE_STAT_REG;
2349 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2350 		dev_ok = B_TRUE;
2351 		break;
2352 
2353 	case DEVICE_ID_5722:
2354 		cidp->chip_label = 5722;
2355 		cidp->pci_type = BGE_PCI_E;
2356 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2357 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2358 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2359 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2360 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2361 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2362 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2363 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2364 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2365 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2366 		cidp->statistic_type = BGE_STAT_REG;
2367 		dev_ok = B_TRUE;
2368 		break;
2369 
2370 	case DEVICE_ID_5751:
2371 	case DEVICE_ID_5751M:
2372 		cidp->chip_label = 5751;
2373 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2374 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2375 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2376 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2377 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2378 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2379 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2380 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2381 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2382 		cidp->pci_type = BGE_PCI_E;
2383 		cidp->statistic_type = BGE_STAT_REG;
2384 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2385 		dev_ok = B_TRUE;
2386 		break;
2387 
2388 	case DEVICE_ID_5752:
2389 	case DEVICE_ID_5752M:
2390 		cidp->chip_label = 5752;
2391 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2392 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2393 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2394 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2395 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2396 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2397 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2398 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2399 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2400 		cidp->pci_type = BGE_PCI_E;
2401 		cidp->statistic_type = BGE_STAT_REG;
2402 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2403 		dev_ok = B_TRUE;
2404 		break;
2405 
2406 	case DEVICE_ID_5789:
2407 		cidp->chip_label = 5789;
2408 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2409 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2410 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2411 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2412 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2413 		cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
2414 		cidp->pci_type = BGE_PCI_E;
2415 		cidp->statistic_type = BGE_STAT_REG;
2416 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2417 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2418 		cidp->msi_enabled = B_TRUE;
2419 		dev_ok = B_TRUE;
2420 		break;
2421 
2422 	}
2423 
2424 	/*
2425 	 * Setup the default jumbo parameter.
2426 	 */
2427 	cidp->ethmax_size = ETHERMAX;
2428 	cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_DEFAULT;
2429 	cidp->std_buf_size = BGE_STD_BUFF_SIZE;
2430 
2431 	/*
2432 	 * If jumbo is enabled and this kind of chipset supports jumbo feature,
2433 	 * setup below jumbo specific parameters.
2434 	 *
2435 	 * For BCM5714/5715, there is only one standard receive ring. So the
2436 	 * std buffer size should be set to BGE_JUMBO_BUFF_SIZE when jumbo
2437 	 * feature is enabled.
2438 	 */
2439 	if (!(cidp->flags & CHIP_FLAG_NO_JUMBO) &&
2440 	    (cidp->default_mtu > BGE_DEFAULT_MTU)) {
2441 		if (DEVICE_5714_SERIES_CHIPSETS(bgep)) {
2442 			cidp->mbuf_lo_water_rdma =
2443 			    RDMA_MBUF_LOWAT_5714_JUMBO;
2444 			cidp->mbuf_lo_water_rmac =
2445 			    MAC_RX_MBUF_LOWAT_5714_JUMBO;
2446 			cidp->mbuf_hi_water = MBUF_HIWAT_5714_JUMBO;
2447 			cidp->jumbo_slots = 0;
2448 			cidp->std_buf_size = BGE_JUMBO_BUFF_SIZE;
2449 		} else {
2450 			cidp->mbuf_lo_water_rdma =
2451 			    RDMA_MBUF_LOWAT_JUMBO;
2452 			cidp->mbuf_lo_water_rmac =
2453 			    MAC_RX_MBUF_LOWAT_JUMBO;
2454 			cidp->mbuf_hi_water = MBUF_HIWAT_JUMBO;
2455 			cidp->jumbo_slots = BGE_JUMBO_SLOTS_USED;
2456 		}
2457 		cidp->recv_jumbo_size = BGE_JUMBO_BUFF_SIZE;
2458 		cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_JUMBO;
2459 		cidp->ethmax_size = cidp->default_mtu +
2460 		    sizeof (struct ether_header);
2461 	}
2462 
2463 	/*
2464 	 * Identify the NV memory type: SEEPROM or Flash?
2465 	 */
2466 	cidp->nvtype = bge_nvmem_id(bgep);
2467 
2468 	/*
2469 	 * Now, we want to check whether this device is part of a
2470 	 * supported subsystem (e.g., on the motherboard of a Sun
2471 	 * branded platform).
2472 	 *
2473 	 * Rule 1: If the Subsystem Vendor ID is "Sun", then it's OK ;-)
2474 	 */
2475 	if (cidp->subven == VENDOR_ID_SUN)
2476 		sys_ok = B_TRUE;
2477 
2478 	/*
2479 	 * Rule 2: If it's on the list on known subsystems, then it's OK.
2480 	 * Note: 0x14e41647 should *not* appear in the list, but the code
2481 	 * doesn't enforce that.
2482 	 */
2483 	err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo,
2484 	    DDI_PROP_DONTPASS, knownids_propname, &ids, &i);
2485 	if (err == DDI_PROP_SUCCESS) {
2486 		/*
2487 		 * Got the list; scan for a matching subsystem vendor/device
2488 		 */
2489 		subid = (cidp->subven << 16) | cidp->subdev;
2490 		while (i--)
2491 			if (ids[i] == subid)
2492 				sys_ok = B_TRUE;
2493 		ddi_prop_free(ids);
2494 	}
2495 
2496 	/*
2497 	 * Rule 3: If it's a Taco/ENWS motherboard device, then it's OK
2498 	 *
2499 	 * Unfortunately, early SunBlade 1500s and 2500s didn't reprogram
2500 	 * the Subsystem Vendor ID, so it defaults to Broadcom.  Therefore,
2501 	 * we have to check specially for the exact device paths to the
2502 	 * motherboard devices on those platforms ;-(
2503 	 *
2504 	 * Note: we can't just use the "supported-subsystems" mechanism
2505 	 * above, because the entry would have to be 0x14e41647 -- which
2506 	 * would then accept *any* plugin card that *didn't* contain a
2507 	 * (valid) SEEPROM ;-(
2508 	 */
2509 	sysname = ddi_node_name(ddi_root_node());
2510 	devname = ddi_pathname(bgep->devinfo, buf);
2511 	ASSERT(strlen(devname) > 0);
2512 	if (strcmp(sysname, "SUNW,Sun-Blade-1500") == 0)	/* Taco */
2513 		if (strcmp(devname, "/pci@1f,700000/network@2") == 0)
2514 			sys_ok = B_TRUE;
2515 	if (strcmp(sysname, "SUNW,Sun-Blade-2500") == 0)	/* ENWS */
2516 		if (strcmp(devname, "/pci@1c,600000/network@3") == 0)
2517 			sys_ok = B_TRUE;
2518 
2519 	/*
2520 	 * Now check what we've discovered: is this truly a supported
2521 	 * chip on (the motherboard of) a supported platform?
2522 	 *
2523 	 * Possible problems here:
2524 	 * 1)	it's a completely unheard-of chip
2525 	 * 2)	it's a recognised but unsupported chip (e.g. 5701, 5703C-A0)
2526 	 * 3)	it's a chip we would support if it were on the motherboard
2527 	 *	of a Sun platform, but this one isn't ;-(
2528 	 */
2529 	if (cidp->chip_label == 0)
2530 		bge_problem(bgep,
2531 		    "Device 'pci%04x,%04x' not recognized (%d?)",
2532 		    cidp->vendor, cidp->device, cidp->device);
2533 	else if (!dev_ok)
2534 		bge_problem(bgep,
2535 		    "Device 'pci%04x,%04x' (%d) revision %d not supported",
2536 		    cidp->vendor, cidp->device, cidp->chip_label,
2537 		    cidp->revision);
2538 #if	BGE_DEBUGGING
2539 	else if (!sys_ok)
2540 		bge_problem(bgep,
2541 		    "%d-based subsystem 'pci%04x,%04x' not validated",
2542 		    cidp->chip_label, cidp->subven, cidp->subdev);
2543 #endif
2544 	else
2545 		cidp->flags |= CHIP_FLAG_SUPPORTED;
2546 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
2547 		return (EIO);
2548 	return (0);
2549 }
2550 
2551 void
2552 bge_chip_msi_trig(bge_t *bgep)
2553 {
2554 	uint32_t	regval;
2555 
2556 	regval = bgep->param_msi_cnt<<4;
2557 	bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, regval);
2558 	BGE_DEBUG(("bge_chip_msi_trig:data = %d", regval));
2559 }
2560 
2561 /*
2562  * Various registers that control the chip's internal engines (state
2563  * machines) have a <reset> and <enable> bits (fortunately, in the
2564  * same place in each such register :-).
2565  *
2566  * To reset the state machine, the <reset> bit must be written with 1;
2567  * it will then read back as 1 while the reset is in progress, but
2568  * self-clear to 0 when the reset completes.
2569  *
2570  * To enable a state machine, one must set the <enable> bit, which
2571  * will continue to read back as 0 until the state machine is running.
2572  *
2573  * To disable a state machine, the <enable> bit must be cleared, but
2574  * it will continue to read back as 1 until the state machine actually
2575  * stops.
2576  *
2577  * This routine implements polling for completion of a reset, enable
2578  * or disable operation, returning B_TRUE on success (bit reached the
2579  * required state) or B_FALSE on timeout (200*100us == 20ms).
2580  */
2581 static boolean_t bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2582 					uint32_t mask, uint32_t val);
2583 #pragma	no_inline(bge_chip_poll_engine)
2584 
2585 static boolean_t
2586 bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2587 	uint32_t mask, uint32_t val)
2588 {
2589 	uint32_t regval;
2590 	uint32_t n;
2591 
2592 	BGE_TRACE(("bge_chip_poll_engine($%p, 0x%lx, 0x%x, 0x%x)",
2593 	    (void *)bgep, regno, mask, val));
2594 
2595 	for (n = 200; n; --n) {
2596 		regval = bge_reg_get32(bgep, regno);
2597 		if ((regval & mask) == val)
2598 			return (B_TRUE);
2599 		drv_usecwait(100);
2600 	}
2601 
2602 	bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE);
2603 	return (B_FALSE);
2604 }
2605 
2606 /*
2607  * Various registers that control the chip's internal engines (state
2608  * machines) have a <reset> bit (fortunately, in the same place in
2609  * each such register :-).  To reset the state machine, this bit must
2610  * be written with 1; it will then read back as 1 while the reset is
2611  * in progress, but self-clear to 0 when the reset completes.
2612  *
2613  * This code sets the bit, then polls for it to read back as zero.
2614  * The return value is B_TRUE on success (reset bit cleared itself),
2615  * or B_FALSE if the state machine didn't recover :(
2616  *
2617  * NOTE: the Core reset is similar to other resets, except that we
2618  * can't poll for completion, since the Core reset disables memory
2619  * access!  So we just have to assume that it will all complete in
2620  * 100us.  See Broadcom document 570X-PG102-R, p102, steps 4-5.
2621  */
2622 static boolean_t bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno);
2623 #pragma	no_inline(bge_chip_reset_engine)
2624 
2625 static boolean_t
2626 bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno)
2627 {
2628 	uint32_t regval;
2629 	uint32_t val32;
2630 
2631 	regval = bge_reg_get32(bgep, regno);
2632 
2633 	BGE_TRACE(("bge_chip_reset_engine($%p, 0x%lx)",
2634 	    (void *)bgep, regno));
2635 	BGE_DEBUG(("bge_chip_reset_engine: 0x%lx before reset = 0x%08x",
2636 	    regno, regval));
2637 
2638 	regval |= STATE_MACHINE_RESET_BIT;
2639 
2640 	switch (regno) {
2641 	case MISC_CONFIG_REG:
2642 		/*
2643 		 * BCM5714/5721/5751 pcie chip special case. In order to avoid
2644 		 * resetting PCIE block and bringing PCIE link down, bit 29
2645 		 * in the register needs to be set first, and then set it again
2646 		 * while the reset bit is written.
2647 		 * See:P500 of 57xx-PG102-RDS.pdf.
2648 		 */
2649 		if (DEVICE_5705_SERIES_CHIPSETS(bgep)||
2650 		    DEVICE_5717_SERIES_CHIPSETS(bgep)||
2651 		    DEVICE_5721_SERIES_CHIPSETS(bgep)||
2652 		    DEVICE_5723_SERIES_CHIPSETS(bgep)||
2653 		    DEVICE_5714_SERIES_CHIPSETS(bgep)||
2654 		    DEVICE_5906_SERIES_CHIPSETS(bgep)) {
2655 			regval |= MISC_CONFIG_GPHY_POWERDOWN_OVERRIDE;
2656 			if (bgep->chipid.pci_type == BGE_PCI_E) {
2657 				if (bgep->chipid.asic_rev ==
2658 				    MHCR_CHIP_REV_5751_A0 ||
2659 				    bgep->chipid.asic_rev ==
2660 				    MHCR_CHIP_REV_5721_A0 ||
2661 				    bgep->chipid.asic_rev ==
2662 				    MHCR_CHIP_REV_5755_A0) {
2663 					val32 = bge_reg_get32(bgep,
2664 					    PHY_TEST_CTRL_REG);
2665 					if (val32 == (PHY_PCIE_SCRAM_MODE |
2666 					    PHY_PCIE_LTASS_MODE))
2667 						bge_reg_put32(bgep,
2668 						    PHY_TEST_CTRL_REG,
2669 						    PHY_PCIE_SCRAM_MODE);
2670 					val32 = pci_config_get32
2671 					    (bgep->cfg_handle,
2672 					    PCI_CONF_BGE_CLKCTL);
2673 					val32 |= CLKCTL_PCIE_A0_FIX;
2674 					pci_config_put32(bgep->cfg_handle,
2675 					    PCI_CONF_BGE_CLKCTL, val32);
2676 				}
2677 				bge_reg_set32(bgep, regno,
2678 				    MISC_CONFIG_GRC_RESET_DISABLE);
2679 				regval |= MISC_CONFIG_GRC_RESET_DISABLE;
2680 			}
2681 		}
2682 
2683 		/*
2684 		 * Special case - causes Core reset
2685 		 *
2686 		 * On SPARC v9 we want to ensure that we don't start
2687 		 * timing until the I/O access has actually reached
2688 		 * the chip, otherwise we might make the next access
2689 		 * too early.  And we can't just force the write out
2690 		 * by following it with a read (even to config space)
2691 		 * because that would cause the fault we're trying
2692 		 * to avoid.  Hence the need for membar_sync() here.
2693 		 */
2694 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), regval);
2695 #ifdef	__sparcv9
2696 		membar_sync();
2697 #endif	/* __sparcv9 */
2698 		/*
2699 		 * On some platforms,system need about 300us for
2700 		 * link setup.
2701 		 */
2702 		drv_usecwait(300);
2703 		if (DEVICE_5906_SERIES_CHIPSETS(bgep)) {
2704 			bge_reg_set32(bgep, VCPU_STATUS_REG, VCPU_DRV_RESET);
2705 			bge_reg_clr32(
2706 			    bgep, VCPU_EXT_CTL, VCPU_EXT_CTL_HALF);
2707 		}
2708 
2709 		if (bgep->chipid.pci_type == BGE_PCI_E) {
2710 			/* PCI-E device need more reset time */
2711 			drv_usecwait(120000);
2712 
2713 			/* Set PCIE max payload size and clear error status. */
2714 			if ((bgep->chipid.chip_label == 5721) ||
2715 			    (bgep->chipid.chip_label == 5751) ||
2716 			    (bgep->chipid.chip_label == 5752) ||
2717 			    (bgep->chipid.chip_label == 5789) ||
2718 			    (bgep->chipid.chip_label == 5906)) {
2719 				pci_config_put16(bgep->cfg_handle,
2720 				    PCI_CONF_DEV_CTRL, READ_REQ_SIZE_MAX);
2721 				pci_config_put16(bgep->cfg_handle,
2722 				    PCI_CONF_DEV_STUS, DEVICE_ERROR_STUS);
2723 			}
2724 
2725 			if ((bgep->chipid.chip_label == 5723) ||
2726 			    (bgep->chipid.chip_label == 5761)) {
2727 				pci_config_put16(bgep->cfg_handle,
2728 				    PCI_CONF_DEV_CTRL_5723, READ_REQ_SIZE_MAX);
2729 				pci_config_put16(bgep->cfg_handle,
2730 				    PCI_CONF_DEV_STUS_5723, DEVICE_ERROR_STUS);
2731 			}
2732 		}
2733 
2734 		BGE_PCICHK(bgep);
2735 		return (B_TRUE);
2736 
2737 	default:
2738 		bge_reg_put32(bgep, regno, regval);
2739 		return (bge_chip_poll_engine(bgep, regno,
2740 		    STATE_MACHINE_RESET_BIT, 0));
2741 	}
2742 }
2743 
2744 /*
2745  * Various registers that control the chip's internal engines (state
2746  * machines) have an <enable> bit (fortunately, in the same place in
2747  * each such register :-).  To stop the state machine, this bit must
2748  * be written with 0, then polled to see when the state machine has
2749  * actually stopped.
2750  *
2751  * The return value is B_TRUE on success (enable bit cleared), or
2752  * B_FALSE if the state machine didn't stop :(
2753  */
2754 static boolean_t bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno,
2755 						uint32_t morebits);
2756 #pragma	no_inline(bge_chip_disable_engine)
2757 
2758 static boolean_t
2759 bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2760 {
2761 	uint32_t regval;
2762 
2763 	BGE_TRACE(("bge_chip_disable_engine($%p, 0x%lx, 0x%x)",
2764 	    (void *)bgep, regno, morebits));
2765 
2766 	switch (regno) {
2767 	case FTQ_RESET_REG:
2768 		/*
2769 		 * For Schumacher's bugfix CR6490108
2770 		 */
2771 #ifdef BGE_IPMI_ASF
2772 #ifdef BGE_NETCONSOLE
2773 		if (bgep->asf_enabled)
2774 			return (B_TRUE);
2775 #endif
2776 #endif
2777 		/*
2778 		 * Not quite like the others; it doesn't
2779 		 * have an <enable> bit, but instead we
2780 		 * have to set and then clear all the bits
2781 		 */
2782 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
2783 		drv_usecwait(100);
2784 		bge_reg_put32(bgep, regno, 0);
2785 		return (B_TRUE);
2786 
2787 	default:
2788 		regval = bge_reg_get32(bgep, regno);
2789 		regval &= ~STATE_MACHINE_ENABLE_BIT;
2790 		regval &= ~morebits;
2791 		bge_reg_put32(bgep, regno, regval);
2792 		return (bge_chip_poll_engine(bgep, regno,
2793 		    STATE_MACHINE_ENABLE_BIT, 0));
2794 	}
2795 }
2796 
2797 /*
2798  * Various registers that control the chip's internal engines (state
2799  * machines) have an <enable> bit (fortunately, in the same place in
2800  * each such register :-).  To start the state machine, this bit must
2801  * be written with 1, then polled to see when the state machine has
2802  * actually started.
2803  *
2804  * The return value is B_TRUE on success (enable bit set), or
2805  * B_FALSE if the state machine didn't start :(
2806  */
2807 static boolean_t bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno,
2808 					uint32_t morebits);
2809 #pragma	no_inline(bge_chip_enable_engine)
2810 
2811 static boolean_t
2812 bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2813 {
2814 	uint32_t regval;
2815 
2816 	BGE_TRACE(("bge_chip_enable_engine($%p, 0x%lx, 0x%x)",
2817 	    (void *)bgep, regno, morebits));
2818 
2819 	switch (regno) {
2820 	case FTQ_RESET_REG:
2821 #ifdef BGE_IPMI_ASF
2822 #ifdef BGE_NETCONSOLE
2823 		if (bgep->asf_enabled)
2824 			return (B_TRUE);
2825 #endif
2826 #endif
2827 		/*
2828 		 * Not quite like the others; it doesn't
2829 		 * have an <enable> bit, but instead we
2830 		 * have to set and then clear all the bits
2831 		 */
2832 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
2833 		drv_usecwait(100);
2834 		bge_reg_put32(bgep, regno, 0);
2835 		return (B_TRUE);
2836 
2837 	default:
2838 		regval = bge_reg_get32(bgep, regno);
2839 		regval |= STATE_MACHINE_ENABLE_BIT;
2840 		regval |= morebits;
2841 		bge_reg_put32(bgep, regno, regval);
2842 		return (bge_chip_poll_engine(bgep, regno,
2843 		    STATE_MACHINE_ENABLE_BIT, STATE_MACHINE_ENABLE_BIT));
2844 	}
2845 }
2846 
2847 /*
2848  * Reprogram the Ethernet, Transmit, and Receive MAC
2849  * modes to match the param_* variables
2850  */
2851 void bge_sync_mac_modes(bge_t *bgep);
2852 #pragma	no_inline(bge_sync_mac_modes)
2853 
2854 void
2855 bge_sync_mac_modes(bge_t *bgep)
2856 {
2857 	uint32_t macmode;
2858 	uint32_t regval;
2859 
2860 	ASSERT(mutex_owned(bgep->genlock));
2861 
2862 	/*
2863 	 * Reprogram the Ethernet MAC mode ...
2864 	 */
2865 	macmode = regval = bge_reg_get32(bgep, ETHERNET_MAC_MODE_REG);
2866 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2867 	    (bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC))
2868 		if (DEVICE_5714_SERIES_CHIPSETS(bgep))
2869 			macmode |= ETHERNET_MODE_LINK_POLARITY;
2870 		else
2871 			macmode &= ~ETHERNET_MODE_LINK_POLARITY;
2872 	else
2873 		macmode |= ETHERNET_MODE_LINK_POLARITY;
2874 	macmode &= ~ETHERNET_MODE_PORTMODE_MASK;
2875 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2876 	    (bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC)) {
2877 		if (DEVICE_5714_SERIES_CHIPSETS(bgep))
2878 			macmode |= ETHERNET_MODE_PORTMODE_GMII;
2879 		else
2880 			macmode |= ETHERNET_MODE_PORTMODE_TBI;
2881 	} else if (bgep->param_link_speed == 10 ||
2882 	    bgep->param_link_speed == 100)
2883 		macmode |= ETHERNET_MODE_PORTMODE_MII;
2884 	else
2885 		macmode |= ETHERNET_MODE_PORTMODE_GMII;
2886 	if (bgep->param_link_duplex == LINK_DUPLEX_HALF)
2887 		macmode |= ETHERNET_MODE_HALF_DUPLEX;
2888 	else
2889 		macmode &= ~ETHERNET_MODE_HALF_DUPLEX;
2890 	if (bgep->param_loop_mode == BGE_LOOP_INTERNAL_MAC)
2891 		macmode |= ETHERNET_MODE_MAC_LOOPBACK;
2892 	else
2893 		macmode &= ~ETHERNET_MODE_MAC_LOOPBACK;
2894 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, macmode);
2895 	BGE_DEBUG(("bge_sync_mac_modes($%p) Ethernet MAC mode 0x%x => 0x%x",
2896 	    (void *)bgep, regval, macmode));
2897 
2898 	/*
2899 	 * ... the Transmit MAC mode ...
2900 	 */
2901 	macmode = regval = bge_reg_get32(bgep, TRANSMIT_MAC_MODE_REG);
2902 	if (bgep->param_link_tx_pause)
2903 		macmode |= TRANSMIT_MODE_FLOW_CONTROL;
2904 	else
2905 		macmode &= ~TRANSMIT_MODE_FLOW_CONTROL;
2906 	bge_reg_put32(bgep, TRANSMIT_MAC_MODE_REG, macmode);
2907 	BGE_DEBUG(("bge_sync_mac_modes($%p) Transmit MAC mode 0x%x => 0x%x",
2908 	    (void *)bgep, regval, macmode));
2909 
2910 	/*
2911 	 * ... and the Receive MAC mode
2912 	 */
2913 	macmode = regval = bge_reg_get32(bgep, RECEIVE_MAC_MODE_REG);
2914 	if (bgep->param_link_rx_pause)
2915 		macmode |= RECEIVE_MODE_FLOW_CONTROL;
2916 	else
2917 		macmode &= ~RECEIVE_MODE_FLOW_CONTROL;
2918 	bge_reg_put32(bgep, RECEIVE_MAC_MODE_REG, macmode);
2919 	BGE_DEBUG(("bge_sync_mac_modes($%p) Receive MAC mode 0x%x => 0x%x",
2920 	    (void *)bgep, regval, macmode));
2921 
2922 	/*
2923 	 * For BCM5785, we need to configure the link status in the MI Status
2924 	 * register with a write command when auto-polling is disabled.
2925 	 */
2926 	if (bgep->chipid.device == DEVICE_ID_5785)
2927 		if (bgep->param_link_speed == 10)
2928 			bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK
2929 			    | MI_STATUS_10MBPS);
2930 		else
2931 			bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK);
2932 }
2933 
2934 /*
2935  * bge_chip_sync() -- program the chip with the unicast MAC address,
2936  * the multicast hash table, the required level of promiscuity, and
2937  * the current loopback mode ...
2938  */
2939 #ifdef BGE_IPMI_ASF
2940 int bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive);
2941 #else
2942 int bge_chip_sync(bge_t *bgep);
2943 #endif
2944 #pragma	no_inline(bge_chip_sync)
2945 
2946 int
2947 #ifdef BGE_IPMI_ASF
2948 bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive)
2949 #else
2950 bge_chip_sync(bge_t *bgep)
2951 #endif
2952 {
2953 	void (*opfn)(bge_t *bgep, bge_regno_t reg, uint32_t bits);
2954 	boolean_t promisc;
2955 	uint64_t macaddr;
2956 	uint32_t fill = 0;
2957 	int i, j;
2958 	int retval = DDI_SUCCESS;
2959 
2960 	BGE_TRACE(("bge_chip_sync($%p)",
2961 	    (void *)bgep));
2962 
2963 	ASSERT(mutex_owned(bgep->genlock));
2964 
2965 	promisc = B_FALSE;
2966 	fill = ~(uint32_t)0;
2967 
2968 	if (bgep->promisc)
2969 		promisc = B_TRUE;
2970 	else
2971 		fill = (uint32_t)0;
2972 
2973 	/*
2974 	 * If the TX/RX MAC engines are already running, we should stop
2975 	 * them (and reset the RX engine) before changing the parameters.
2976 	 * If they're not running, this will have no effect ...
2977 	 *
2978 	 * NOTE: this is currently disabled by default because stopping
2979 	 * and restarting the Tx engine may cause an outgoing packet in
2980 	 * transit to be truncated.  Also, stopping and restarting the
2981 	 * Rx engine seems to not work correctly on the 5705.  Testing
2982 	 * has not (yet!) revealed any problems with NOT stopping and
2983 	 * restarting these engines (and Broadcom say their drivers don't
2984 	 * do this), but if it is found to cause problems, this variable
2985 	 * can be patched to re-enable the old behaviour ...
2986 	 */
2987 	if (bge_stop_start_on_sync) {
2988 #ifdef BGE_IPMI_ASF
2989 		if (!bgep->asf_enabled) {
2990 			if (!bge_chip_disable_engine(bgep,
2991 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
2992 				retval = DDI_FAILURE;
2993 		} else {
2994 			if (!bge_chip_disable_engine(bgep,
2995 			    RECEIVE_MAC_MODE_REG, 0))
2996 				retval = DDI_FAILURE;
2997 		}
2998 #else
2999 		if (!bge_chip_disable_engine(bgep, RECEIVE_MAC_MODE_REG,
3000 		    RECEIVE_MODE_KEEP_VLAN_TAG))
3001 			retval = DDI_FAILURE;
3002 #endif
3003 		if (!bge_chip_disable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
3004 			retval = DDI_FAILURE;
3005 		if (!bge_chip_reset_engine(bgep, RECEIVE_MAC_MODE_REG))
3006 			retval = DDI_FAILURE;
3007 	}
3008 
3009 	/*
3010 	 * Reprogram the hashed multicast address table ...
3011 	 */
3012 	for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
3013 		bge_reg_put32(bgep, MAC_HASH_REG(i), 0);
3014 
3015 	for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
3016 		bge_reg_put32(bgep, MAC_HASH_REG(i),
3017 			bgep->mcast_hash[i] | fill);
3018 
3019 #ifdef BGE_IPMI_ASF
3020 	if (!bgep->asf_enabled || !asf_keeplive) {
3021 #endif
3022 		/*
3023 		 * Transform the MAC address(es) from host to chip format, then
3024 		 * reprogram the transmit random backoff seed and the unicast
3025 		 * MAC address(es) ...
3026 		 */
3027 		for (j = 0; j < MAC_ADDRESS_REGS_MAX; j++) {
3028 			for (i = 0, macaddr = 0ull;
3029 			    i < ETHERADDRL; ++i) {
3030 				macaddr <<= 8;
3031 				macaddr |= bgep->curr_addr[j].addr[i];
3032 			}
3033 			fill += (macaddr >> 16) + (macaddr & 0xffffffff);
3034 			bge_reg_put64(bgep, MAC_ADDRESS_REG(j), macaddr);
3035 
3036 			BGE_DEBUG(("bge_chip_sync($%p) "
3037 			    "setting MAC address %012llx",
3038 			    (void *)bgep, macaddr));
3039 		}
3040 #ifdef BGE_IPMI_ASF
3041 	}
3042 #endif
3043 	/*
3044 	 * Set random seed of backoff interval
3045 	 *   - Writing zero means no backoff interval
3046 	 */
3047 	fill = ((fill >> 20) + (fill >> 10) + fill) & 0x3ff;
3048 	if (fill == 0)
3049 		fill = 1;
3050 	bge_reg_put32(bgep, MAC_TX_RANDOM_BACKOFF_REG, fill);
3051 
3052 	/*
3053 	 * Set or clear the PROMISCUOUS mode bit
3054 	 */
3055 	opfn = promisc ? bge_reg_set32 : bge_reg_clr32;
3056 	(*opfn)(bgep, RECEIVE_MAC_MODE_REG, RECEIVE_MODE_PROMISCUOUS);
3057 
3058 	/*
3059 	 * Sync the rest of the MAC modes too ...
3060 	 */
3061 	bge_sync_mac_modes(bgep);
3062 
3063 	/*
3064 	 * Restart RX/TX MAC engines if required ...
3065 	 */
3066 	if (bgep->bge_chip_state == BGE_CHIP_RUNNING) {
3067 		if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
3068 			retval = DDI_FAILURE;
3069 #ifdef BGE_IPMI_ASF
3070 		if (!bgep->asf_enabled) {
3071 			if (!bge_chip_enable_engine(bgep,
3072 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
3073 				retval = DDI_FAILURE;
3074 		} else {
3075 			if (!bge_chip_enable_engine(bgep,
3076 			    RECEIVE_MAC_MODE_REG, 0))
3077 				retval = DDI_FAILURE;
3078 		}
3079 #else
3080 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3081 		    RECEIVE_MODE_KEEP_VLAN_TAG))
3082 			retval = DDI_FAILURE;
3083 #endif
3084 	}
3085 	return (retval);
3086 }
3087 
3088 /*
3089  * This array defines the sequence of state machine control registers
3090  * in which the <enable> bit must be cleared to bring the chip to a
3091  * clean stop.  Taken from Broadcom document 570X-PG102-R, p116.
3092  */
3093 static bge_regno_t shutdown_engine_regs[] = {
3094 	RECEIVE_MAC_MODE_REG,
3095 	RCV_BD_INITIATOR_MODE_REG,
3096 	RCV_LIST_PLACEMENT_MODE_REG,
3097 	RCV_LIST_SELECTOR_MODE_REG,		/* BCM5704 series only	*/
3098 	RCV_DATA_BD_INITIATOR_MODE_REG,
3099 	RCV_DATA_COMPLETION_MODE_REG,
3100 	RCV_BD_COMPLETION_MODE_REG,
3101 
3102 	SEND_BD_SELECTOR_MODE_REG,
3103 	SEND_BD_INITIATOR_MODE_REG,
3104 	SEND_DATA_INITIATOR_MODE_REG,
3105 	READ_DMA_MODE_REG,
3106 	SEND_DATA_COMPLETION_MODE_REG,
3107 	DMA_COMPLETION_MODE_REG,		/* BCM5704 series only	*/
3108 	SEND_BD_COMPLETION_MODE_REG,
3109 	TRANSMIT_MAC_MODE_REG,
3110 
3111 	HOST_COALESCE_MODE_REG,
3112 	WRITE_DMA_MODE_REG,
3113 	MBUF_CLUSTER_FREE_MODE_REG,		/* BCM5704 series only	*/
3114 	FTQ_RESET_REG,		/* special - see code	*/
3115 	BUFFER_MANAGER_MODE_REG,		/* BCM5704 series only	*/
3116 	MEMORY_ARBITER_MODE_REG,		/* BCM5704 series only	*/
3117 	BGE_REGNO_NONE		/* terminator		*/
3118 };
3119 
3120 #ifndef __sparc
3121 static bge_regno_t quiesce_regs[] = {
3122 	READ_DMA_MODE_REG,
3123 	DMA_COMPLETION_MODE_REG,
3124 	WRITE_DMA_MODE_REG,
3125 	BGE_REGNO_NONE
3126 };
3127 
3128 void bge_chip_stop_nonblocking(bge_t *bgep);
3129 #pragma no_inline(bge_chip_stop_nonblocking)
3130 
3131 /*
3132  * This function is called by bge_quiesce(). We
3133  * turn off all the DMA engines here.
3134  */
3135 void
3136 bge_chip_stop_nonblocking(bge_t *bgep)
3137 {
3138 	bge_regno_t *rbp;
3139 
3140 	/*
3141 	 * Flag that no more activity may be initiated
3142 	 */
3143 	bgep->progress &= ~PROGRESS_READY;
3144 
3145 	rbp = quiesce_regs;
3146 	while (*rbp != BGE_REGNO_NONE) {
3147 		(void) bge_chip_disable_engine(bgep, *rbp, 0);
3148 		++rbp;
3149 	}
3150 
3151 	bgep->bge_chip_state = BGE_CHIP_STOPPED;
3152 }
3153 
3154 #endif
3155 
3156 /*
3157  * bge_chip_stop() -- stop all chip processing
3158  *
3159  * If the <fault> parameter is B_TRUE, we're stopping the chip because
3160  * we've detected a problem internally; otherwise, this is a normal
3161  * (clean) stop (at user request i.e. the last STREAM has been closed).
3162  */
3163 void bge_chip_stop(bge_t *bgep, boolean_t fault);
3164 #pragma	no_inline(bge_chip_stop)
3165 
3166 void
3167 bge_chip_stop(bge_t *bgep, boolean_t fault)
3168 {
3169 	bge_regno_t regno;
3170 	bge_regno_t *rbp;
3171 	boolean_t ok;
3172 
3173 	BGE_TRACE(("bge_chip_stop($%p)",
3174 	    (void *)bgep));
3175 
3176 	ASSERT(mutex_owned(bgep->genlock));
3177 
3178 	rbp = shutdown_engine_regs;
3179 	/*
3180 	 * When driver try to shutdown the BCM5705/5788/5721/5751/
3181 	 * 5752/5714 and 5715 chipsets,the buffer manager and the mem
3182 	 * -ory arbiter should not be disabled.
3183 	 */
3184 	for (ok = B_TRUE; (regno = *rbp) != BGE_REGNO_NONE; ++rbp) {
3185 			if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3186 				ok &= bge_chip_disable_engine(bgep, regno, 0);
3187 			else if ((regno != RCV_LIST_SELECTOR_MODE_REG) &&
3188 			    (regno != DMA_COMPLETION_MODE_REG) &&
3189 			    (regno != MBUF_CLUSTER_FREE_MODE_REG)&&
3190 			    (regno != BUFFER_MANAGER_MODE_REG) &&
3191 			    (regno != MEMORY_ARBITER_MODE_REG))
3192 				ok &= bge_chip_disable_engine(bgep,
3193 				    regno, 0);
3194 	}
3195 
3196 	if (!ok && !fault)
3197 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
3198 
3199 	/*
3200 	 * Finally, disable (all) MAC events & clear the MAC status
3201 	 */
3202 	bge_reg_put32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG, 0);
3203 	bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, ~0);
3204 
3205 	/*
3206 	 * if we're stopping the chip because of a detected fault then do
3207 	 * appropriate actions
3208 	 */
3209 	if (fault) {
3210 		if (bgep->bge_chip_state != BGE_CHIP_FAULT) {
3211 			bgep->bge_chip_state = BGE_CHIP_FAULT;
3212 			if (!bgep->manual_reset)
3213 				ddi_fm_service_impact(bgep->devinfo,
3214 				    DDI_SERVICE_LOST);
3215 			if (bgep->bge_dma_error) {
3216 				/*
3217 				 * need to free buffers in case the fault was
3218 				 * due to a memory error in a buffer - got to
3219 				 * do a fair bit of tidying first
3220 				 */
3221 				if (bgep->progress & PROGRESS_KSTATS) {
3222 					bge_fini_kstats(bgep);
3223 					bgep->progress &= ~PROGRESS_KSTATS;
3224 				}
3225 				if (bgep->progress & PROGRESS_INTR) {
3226 					bge_intr_disable(bgep);
3227 					rw_enter(bgep->errlock, RW_WRITER);
3228 					bge_fini_rings(bgep);
3229 					rw_exit(bgep->errlock);
3230 					bgep->progress &= ~PROGRESS_INTR;
3231 				}
3232 				if (bgep->progress & PROGRESS_BUFS) {
3233 					bge_free_bufs(bgep);
3234 					bgep->progress &= ~PROGRESS_BUFS;
3235 				}
3236 				bgep->bge_dma_error = B_FALSE;
3237 			}
3238 		}
3239 	} else
3240 		bgep->bge_chip_state = BGE_CHIP_STOPPED;
3241 }
3242 
3243 /*
3244  * Poll for completion of chip's ROM firmware; also, at least on the
3245  * first time through, find and return the hardware MAC address, if any.
3246  */
3247 static uint64_t bge_poll_firmware(bge_t *bgep);
3248 #pragma	no_inline(bge_poll_firmware)
3249 
3250 static uint64_t
3251 bge_poll_firmware(bge_t *bgep)
3252 {
3253 	uint64_t magic;
3254 	uint64_t mac;
3255 	uint32_t gen, val;
3256 	uint32_t i;
3257 
3258 	/*
3259 	 * Step 19: poll for firmware completion (GENCOMM port set
3260 	 * to the ones complement of T3_MAGIC_NUMBER).
3261 	 *
3262 	 * While we're at it, we also read the MAC address register;
3263 	 * at some stage the firmware will load this with the
3264 	 * factory-set value.
3265 	 *
3266 	 * When both the magic number and the MAC address are set,
3267 	 * we're done; but we impose a time limit of one second
3268 	 * (1000*1000us) in case the firmware fails in some fashion
3269 	 * or the SEEPROM that provides that MAC address isn't fitted.
3270 	 *
3271 	 * After the first time through (chip state != INITIAL), we
3272 	 * don't need the MAC address to be set (we've already got it
3273 	 * or not, from the first time), so we don't wait for it, but
3274 	 * we still have to wait for the T3_MAGIC_NUMBER.
3275 	 *
3276 	 * Note: the magic number is only a 32-bit quantity, but the NIC
3277 	 * memory is 64-bit (and big-endian) internally.  Addressing the
3278 	 * GENCOMM word as "the upper half of a 64-bit quantity" makes
3279 	 * it work correctly on both big- and little-endian hosts.
3280 	 */
3281 	if (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev) ==
3282 	    MHCR_CHIP_ASIC_REV_5906) {
3283 		for (i = 0; i < 1000; ++i) {
3284 			drv_usecwait(1000);
3285 			val = bge_reg_get32(bgep, VCPU_STATUS_REG);
3286 			if (val & VCPU_INIT_DONE)
3287 				break;
3288 		}
3289 		BGE_DEBUG(("bge_poll_firmware($%p): return after %d loops",
3290 		    (void *)bgep, i));
3291 		mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
3292 	} else {
3293 		for (i = 0; i < 1000; ++i) {
3294 			drv_usecwait(1000);
3295 			gen = bge_nic_get64(bgep, NIC_MEM_GENCOMM) >> 32;
3296 			if (i == 0 && DEVICE_5704_SERIES_CHIPSETS(bgep))
3297 				drv_usecwait(100000);
3298 			mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
3299 #ifdef BGE_IPMI_ASF
3300 			if (!bgep->asf_enabled) {
3301 #endif
3302 				if (gen != ~T3_MAGIC_NUMBER)
3303 					continue;
3304 #ifdef BGE_IPMI_ASF
3305 			}
3306 #endif
3307 			if (mac != 0ULL)
3308 				break;
3309 			if (bgep->bge_chip_state != BGE_CHIP_INITIAL)
3310 				break;
3311 		}
3312 	}
3313 
3314 	magic = bge_nic_get64(bgep, NIC_MEM_GENCOMM);
3315 	BGE_DEBUG(("bge_poll_firmware($%p): PXE magic 0x%x after %d loops",
3316 	    (void *)bgep, gen, i));
3317 	BGE_DEBUG(("bge_poll_firmware: MAC %016llx, GENCOMM %016llx",
3318 	    mac, magic));
3319 
3320 	return (mac);
3321 }
3322 
3323 /*
3324  * Maximum times of trying to get the NVRAM access lock
3325  * by calling bge_nvmem_acquire()
3326  */
3327 #define	MAX_TRY_NVMEM_ACQUIRE	10000
3328 
3329 #ifdef BGE_IPMI_ASF
3330 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode);
3331 #else
3332 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma);
3333 #endif
3334 #pragma	no_inline(bge_chip_reset)
3335 
3336 int
3337 #ifdef BGE_IPMI_ASF
3338 bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode)
3339 #else
3340 bge_chip_reset(bge_t *bgep, boolean_t enable_dma)
3341 #endif
3342 {
3343 	chip_id_t chipid;
3344 	uint64_t mac;
3345 	uint64_t magic;
3346 	uint32_t modeflags;
3347 	uint32_t mhcr;
3348 	uint32_t sx0;
3349 	uint32_t i, tries;
3350 #ifdef BGE_IPMI_ASF
3351 	uint32_t mailbox;
3352 #endif
3353 	int retval = DDI_SUCCESS;
3354 
3355 	BGE_TRACE(("bge_chip_reset($%p, %d)",
3356 		(void *)bgep, enable_dma));
3357 
3358 	ASSERT(mutex_owned(bgep->genlock));
3359 
3360 	BGE_DEBUG(("bge_chip_reset($%p, %d): current state is %d",
3361 		(void *)bgep, enable_dma, bgep->bge_chip_state));
3362 
3363 	/*
3364 	 * Do we need to stop the chip cleanly before resetting?
3365 	 */
3366 	switch (bgep->bge_chip_state) {
3367 	default:
3368 		_NOTE(NOTREACHED)
3369 		return (DDI_FAILURE);
3370 
3371 	case BGE_CHIP_INITIAL:
3372 	case BGE_CHIP_STOPPED:
3373 	case BGE_CHIP_RESET:
3374 		break;
3375 
3376 	case BGE_CHIP_RUNNING:
3377 	case BGE_CHIP_ERROR:
3378 	case BGE_CHIP_FAULT:
3379 		bge_chip_stop(bgep, B_FALSE);
3380 		break;
3381 	}
3382 
3383 #ifdef BGE_IPMI_ASF
3384 	if (bgep->asf_enabled) {
3385 #ifdef __sparc
3386 		mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
3387 			MHCR_ENABLE_TAGGED_STATUS_MODE |
3388 			MHCR_MASK_INTERRUPT_MODE |
3389 			MHCR_MASK_PCI_INT_OUTPUT |
3390 			MHCR_CLEAR_INTERRUPT_INTA |
3391 			MHCR_ENABLE_ENDIAN_WORD_SWAP |
3392 			MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3393 		if (DEVICE_5717_SERIES_CHIPSETS(bgep))
3394 			pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR,
3395 					0);
3396 		pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3397 		bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
3398 			bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG) |
3399 			MEMORY_ARBITER_ENABLE);
3400 #endif
3401 		if (asf_mode == ASF_MODE_INIT) {
3402 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
3403 		} else if (asf_mode == ASF_MODE_SHUTDOWN) {
3404 			bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET);
3405 		}
3406 	}
3407 #endif
3408 	/*
3409 	 * Adapted from Broadcom document 570X-PG102-R, pp 102-116.
3410 	 * Updated to reflect Broadcom document 570X-PG104-R, pp 146-159.
3411 	 *
3412 	 * Before reset Core clock,it is
3413 	 * also required to initialize the Memory Arbiter as specified in step9
3414 	 * and Misc Host Control Register as specified in step-13
3415 	 * Step 4-5: reset Core clock & wait for completion
3416 	 * Steps 6-8: are done by bge_chip_cfg_init()
3417 	 * put the T3_MAGIC_NUMBER into the GENCOMM port before reset
3418 	 */
3419 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3420 		retval = DDI_FAILURE;
3421 
3422 	mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
3423 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
3424 	    MHCR_MASK_INTERRUPT_MODE |
3425 	    MHCR_MASK_PCI_INT_OUTPUT |
3426 	    MHCR_CLEAR_INTERRUPT_INTA;
3427 #ifdef  _BIG_ENDIAN
3428 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3429 #endif  /* _BIG_ENDIAN */
3430 	if (DEVICE_5717_SERIES_CHIPSETS(bgep))
3431 		pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, 0);
3432 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3433 #ifdef BGE_IPMI_ASF
3434 	if (bgep->asf_enabled)
3435 		bgep->asf_wordswapped = B_FALSE;
3436 #endif
3437 	/*
3438 	 * NVRAM Corruption Workaround
3439 	 */
3440 	for (tries = 0; tries < MAX_TRY_NVMEM_ACQUIRE; tries++)
3441 		if (bge_nvmem_acquire(bgep) != EAGAIN)
3442 			break;
3443 	if (tries >= MAX_TRY_NVMEM_ACQUIRE)
3444 		BGE_DEBUG(("%s: fail to acquire nvram lock",
3445 			bgep->ifname));
3446 
3447 #ifdef BGE_IPMI_ASF
3448 	if (!bgep->asf_enabled) {
3449 #endif
3450 		magic = (uint64_t)T3_MAGIC_NUMBER << 32;
3451 		bge_nic_put64(bgep, NIC_MEM_GENCOMM, magic);
3452 #ifdef BGE_IPMI_ASF
3453 	}
3454 #endif
3455 
3456 	if (!bge_chip_reset_engine(bgep, MISC_CONFIG_REG))
3457 		retval = DDI_FAILURE;
3458 	bge_chip_cfg_init(bgep, &chipid, enable_dma);
3459 
3460 	/*
3461 	 * Step 8a: This may belong elsewhere, but BCM5721 needs
3462 	 * a bit set to avoid a fifo overflow/underflow bug.
3463 	 */
3464 	if ((bgep->chipid.chip_label == 5721) ||
3465 		(bgep->chipid.chip_label == 5751) ||
3466 		(bgep->chipid.chip_label == 5752) ||
3467 		(bgep->chipid.chip_label == 5755) ||
3468 		(bgep->chipid.chip_label == 5756) ||
3469 		(bgep->chipid.chip_label == 5789) ||
3470 		(bgep->chipid.chip_label == 5906))
3471 		bge_reg_set32(bgep, TLP_CONTROL_REG, TLP_DATA_FIFO_PROTECT);
3472 
3473 
3474 	/*
3475 	 * Step 9: enable MAC memory arbiter,bit30 and bit31 of 5714/5715 should
3476 	 * not be changed.
3477 	 */
3478 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3479 		retval = DDI_FAILURE;
3480 
3481 	/*
3482 	 * Steps 10-11: configure PIO endianness options and
3483 	 * enable indirect register access -- already done
3484 	 * Steps 12-13: enable writing to the PCI state & clock
3485 	 * control registers -- not required; we aren't going to
3486 	 * use those features.
3487 	 * Steps 14-15: Configure DMA endianness options.  See
3488 	 * the comments on the setting of the MHCR above.
3489 	 */
3490 #ifdef	_BIG_ENDIAN
3491 	modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME |
3492 		    MODE_WORD_SWAP_NONFRAME | MODE_BYTE_SWAP_NONFRAME;
3493 #else
3494 	modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME;
3495 #endif	/* _BIG_ENDIAN */
3496 #ifdef BGE_IPMI_ASF
3497 	if (bgep->asf_enabled)
3498 		modeflags |= MODE_HOST_STACK_UP;
3499 #endif
3500 	bge_reg_put32(bgep, MODE_CONTROL_REG, modeflags);
3501 
3502 #ifdef BGE_IPMI_ASF
3503 	if (bgep->asf_enabled) {
3504 #ifdef __sparc
3505 		bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
3506 			MEMORY_ARBITER_ENABLE |
3507 			bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG));
3508 #endif
3509 
3510 #ifdef  BGE_NETCONSOLE
3511 		if (!bgep->asf_newhandshake) {
3512 			if ((asf_mode == ASF_MODE_INIT) ||
3513 			(asf_mode == ASF_MODE_POST_INIT)) {
3514 				bge_asf_post_reset_old_mode(bgep,
3515 					BGE_INIT_RESET);
3516 			} else {
3517 				bge_asf_post_reset_old_mode(bgep,
3518 					BGE_SHUTDOWN_RESET);
3519 			}
3520 		}
3521 #endif
3522 
3523 		/* Wait for NVRAM init */
3524 		i = 0;
3525 		drv_usecwait(5000);
3526 		mailbox = bge_nic_get32(bgep, BGE_FIRMWARE_MAILBOX);
3527 
3528 		while ((mailbox != (uint32_t)
3529 			~BGE_MAGIC_NUM_FIRMWARE_INIT_DONE) &&
3530 			(i < 10000)) {
3531 			drv_usecwait(100);
3532 			mailbox = bge_nic_get32(bgep,
3533 				BGE_FIRMWARE_MAILBOX);
3534 			i++;
3535 		}
3536 
3537 #ifndef BGE_NETCONSOLE
3538 		if (!bgep->asf_newhandshake) {
3539 			if ((asf_mode == ASF_MODE_INIT) ||
3540 				(asf_mode == ASF_MODE_POST_INIT)) {
3541 
3542 				bge_asf_post_reset_old_mode(bgep,
3543 					BGE_INIT_RESET);
3544 			} else {
3545 				bge_asf_post_reset_old_mode(bgep,
3546 					BGE_SHUTDOWN_RESET);
3547 			}
3548 		}
3549 #endif
3550 	}
3551 #endif
3552 	/*
3553 	 * Steps 16-17: poll for firmware completion
3554 	 */
3555 	mac = bge_poll_firmware(bgep);
3556 
3557 	/*
3558 	 * Step 18: enable external memory -- doesn't apply.
3559 	 *
3560 	 * However we take the opportunity to set the MLCR anyway, as
3561 	 * this register also controls the SEEPROM auto-access method
3562 	 * which we may want to use later ...
3563 	 *
3564 	 * The proper value here depends on the way the chip is wired
3565 	 * into the circuit board, as this register *also* controls which
3566 	 * of the "Miscellaneous I/O" pins are driven as outputs and the
3567 	 * values driven onto those pins!
3568 	 *
3569 	 * See also step 74 in the PRM ...
3570 	 */
3571 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG,
3572 	    bgep->chipid.bge_mlcr_default);
3573 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
3574 
3575 	/*
3576 	 * Step 20: clear the Ethernet MAC mode register
3577 	 */
3578 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, 0);
3579 
3580 	/*
3581 	 * Step 21: restore cache-line-size, latency timer, and
3582 	 * subsystem ID registers to their original values (not
3583 	 * those read into the local structure <chipid>, 'cos
3584 	 * that was after they were cleared by the RESET).
3585 	 *
3586 	 * Note: the Subsystem Vendor/Device ID registers are not
3587 	 * directly writable in config space, so we use the shadow
3588 	 * copy in "Page Zero" of register space to restore them
3589 	 * both in one go ...
3590 	 */
3591 	pci_config_put8(bgep->cfg_handle, PCI_CONF_CACHE_LINESZ,
3592 		bgep->chipid.clsize);
3593 	pci_config_put8(bgep->cfg_handle, PCI_CONF_LATENCY_TIMER,
3594 		bgep->chipid.latency);
3595 	bge_reg_put32(bgep, PCI_CONF_SUBVENID,
3596 		(bgep->chipid.subdev << 16) | bgep->chipid.subven);
3597 
3598 	/*
3599 	 * The SEND INDEX registers should be reset to zero by the
3600 	 * global chip reset; if they're not, there'll be trouble
3601 	 * later on.
3602 	 */
3603 	sx0 = bge_reg_get32(bgep, NIC_DIAG_SEND_INDEX_REG(0));
3604 	if (sx0 != 0) {
3605 		BGE_REPORT((bgep, "SEND INDEX - device didn't RESET"));
3606 		bge_fm_ereport(bgep, DDI_FM_DEVICE_INVAL_STATE);
3607 		retval = DDI_FAILURE;
3608 	}
3609 
3610 	/* Enable MSI code */
3611 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3612 		bge_reg_set32(bgep, MSI_MODE_REG,
3613 		    MSI_PRI_HIGHEST|MSI_MSI_ENABLE|MSI_ERROR_ATTENTION);
3614 
3615 	/*
3616 	 * On the first time through, save the factory-set MAC address
3617 	 * (if any).  If bge_poll_firmware() above didn't return one
3618 	 * (from a chip register) consider looking in the attached NV
3619 	 * memory device, if any.  Once we have it, we save it in both
3620 	 * register-image (64-bit) and byte-array forms.  All-zero and
3621 	 * all-one addresses are not valid, and we refuse to stash those.
3622 	 */
3623 	if (bgep->bge_chip_state == BGE_CHIP_INITIAL) {
3624 		if (mac == 0ULL)
3625 			mac = bge_get_nvmac(bgep);
3626 		if (mac != 0ULL && mac != ~0ULL) {
3627 			bgep->chipid.hw_mac_addr = mac;
3628 			for (i = ETHERADDRL; i-- != 0; ) {
3629 				bgep->chipid.vendor_addr.addr[i] = (uchar_t)mac;
3630 				mac >>= 8;
3631 			}
3632 			bgep->chipid.vendor_addr.set = B_TRUE;
3633 		}
3634 	}
3635 
3636 #ifdef BGE_IPMI_ASF
3637 	if (bgep->asf_enabled && bgep->asf_newhandshake) {
3638 		if (asf_mode != ASF_MODE_NONE) {
3639 			if ((asf_mode == ASF_MODE_INIT) ||
3640 				(asf_mode == ASF_MODE_POST_INIT)) {
3641 
3642 				bge_asf_post_reset_new_mode(bgep,
3643 					BGE_INIT_RESET);
3644 			} else {
3645 				bge_asf_post_reset_new_mode(bgep,
3646 					BGE_SHUTDOWN_RESET);
3647 			}
3648 		}
3649 	}
3650 #endif
3651 
3652 	/*
3653 	 * Record the new state
3654 	 */
3655 	bgep->chip_resets += 1;
3656 	bgep->bge_chip_state = BGE_CHIP_RESET;
3657 	return (retval);
3658 }
3659 
3660 /*
3661  * bge_chip_start() -- start the chip transmitting and/or receiving,
3662  * including enabling interrupts
3663  */
3664 int bge_chip_start(bge_t *bgep, boolean_t reset_phys);
3665 #pragma	no_inline(bge_chip_start)
3666 
3667 void
3668 bge_chip_coalesce_update(bge_t *bgep)
3669 {
3670 	bge_reg_put32(bgep, SEND_COALESCE_MAX_BD_REG,
3671 	    bgep->chipid.tx_count_norm);
3672 	bge_reg_put32(bgep, SEND_COALESCE_TICKS_REG,
3673 	    bgep->chipid.tx_ticks_norm);
3674 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG,
3675 	    bgep->chipid.rx_count_norm);
3676 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG,
3677 	    bgep->chipid.rx_ticks_norm);
3678 }
3679 
3680 int
3681 bge_chip_start(bge_t *bgep, boolean_t reset_phys)
3682 {
3683 	uint32_t coalmode;
3684 	uint32_t ledctl;
3685 	uint32_t mtu;
3686 	uint32_t maxring;
3687 	uint32_t stats_mask;
3688 	uint32_t dma_wrprio;
3689 	uint64_t ring;
3690 	uint32_t regval;
3691 	int retval = DDI_SUCCESS;
3692 
3693 	BGE_TRACE(("bge_chip_start($%p)",
3694 	    (void *)bgep));
3695 
3696 	ASSERT(mutex_owned(bgep->genlock));
3697 	ASSERT(bgep->bge_chip_state == BGE_CHIP_RESET);
3698 
3699 	/*
3700 	 * Taken from Broadcom document 570X-PG102-R, pp 102-116.
3701 	 * The document specifies 95 separate steps to fully
3702 	 * initialise the chip!!!!
3703 	 *
3704 	 * The reset code above has already got us as far as step
3705 	 * 21, so we continue with ...
3706 	 *
3707 	 * Step 22: clear the MAC statistics block
3708 	 * (0x0300-0x0aff in NIC-local memory)
3709 	 */
3710 	if (bgep->chipid.statistic_type == BGE_STAT_BLK)
3711 		bge_nic_zero(bgep, NIC_MEM_STATISTICS,
3712 		    NIC_MEM_STATISTICS_SIZE);
3713 
3714 	/*
3715 	 * Step 23: clear the status block (in host memory)
3716 	 */
3717 	DMA_ZERO(bgep->status_block);
3718 
3719 	/*
3720 	 * Step 24: set DMA read/write control register
3721 	 */
3722 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_PDRWCR,
3723 	    bgep->chipid.bge_dma_rwctrl);
3724 
3725 	/*
3726 	 * Step 25: Configure DMA endianness -- already done (16/17)
3727 	 * Step 26: Configure Host-Based Send Rings
3728 	 * Step 27: Indicate Host Stack Up
3729 	 */
3730 	bge_reg_set32(bgep, MODE_CONTROL_REG,
3731 	    MODE_HOST_SEND_BDS |
3732 	    MODE_HOST_STACK_UP);
3733 
3734 	/*
3735 	 * Step 28: Configure checksum options:
3736 	 *	Solaris supports the hardware default checksum options.
3737 	 *
3738 	 *	Workaround for Incorrect pseudo-header checksum calculation.
3739 	 */
3740 	if (bgep->chipid.flags & CHIP_FLAG_PARTIAL_CSUM)
3741 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3742 		    MODE_SEND_NO_PSEUDO_HDR_CSUM);
3743 
3744 	/*
3745 	 * Step 29: configure Timer Prescaler.  The value is always the
3746 	 * same: the Core Clock frequency in MHz (66), minus 1, shifted
3747 	 * into bits 7-1.  Don't set bit 0, 'cos that's the RESET bit
3748 	 * for the whole chip!
3749 	 */
3750 	regval = bge_reg_get32(bgep, MISC_CONFIG_REG);
3751 	regval = (regval & 0xffffff00) | MISC_CONFIG_DEFAULT;
3752 	bge_reg_put32(bgep, MISC_CONFIG_REG, regval);
3753 
3754 	if (DEVICE_5906_SERIES_CHIPSETS(bgep)) {
3755 		drv_usecwait(40);
3756 		/* put PHY into ready state */
3757 		bge_reg_clr32(bgep, MISC_CONFIG_REG, MISC_CONFIG_EPHY_IDDQ);
3758 		(void) bge_reg_get32(bgep, MISC_CONFIG_REG); /* flush */
3759 		drv_usecwait(40);
3760 	}
3761 
3762 	/*
3763 	 * Steps 30-31: Configure MAC local memory pool & DMA pool registers
3764 	 *
3765 	 * If the mbuf_length is specified as 0, we just leave these at
3766 	 * their hardware defaults, rather than explicitly setting them.
3767 	 * As the Broadcom HRM,driver better not change the parameters
3768 	 * when the chipsets is 5705/5788/5721/5751/5714 and 5715.
3769 	 */
3770 	if ((bgep->chipid.mbuf_length != 0) &&
3771 	    (DEVICE_5704_SERIES_CHIPSETS(bgep))) {
3772 			bge_reg_put32(bgep, MBUF_POOL_BASE_REG,
3773 			    bgep->chipid.mbuf_base);
3774 			bge_reg_put32(bgep, MBUF_POOL_LENGTH_REG,
3775 			    bgep->chipid.mbuf_length);
3776 			bge_reg_put32(bgep, DMAD_POOL_BASE_REG,
3777 			    DMAD_POOL_BASE_DEFAULT);
3778 			bge_reg_put32(bgep, DMAD_POOL_LENGTH_REG,
3779 			    DMAD_POOL_LENGTH_DEFAULT);
3780 	}
3781 
3782 	/*
3783 	 * Step 32: configure MAC memory pool watermarks
3784 	 */
3785 	bge_reg_put32(bgep, RDMA_MBUF_LOWAT_REG,
3786 	    bgep->chipid.mbuf_lo_water_rdma);
3787 	bge_reg_put32(bgep, MAC_RX_MBUF_LOWAT_REG,
3788 	    bgep->chipid.mbuf_lo_water_rmac);
3789 	bge_reg_put32(bgep, MBUF_HIWAT_REG,
3790 	    bgep->chipid.mbuf_hi_water);
3791 
3792 	/*
3793 	 * Step 33: configure DMA resource watermarks
3794 	 */
3795 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3796 		bge_reg_put32(bgep, DMAD_POOL_LOWAT_REG,
3797 		    bge_dmad_lo_water);
3798 		bge_reg_put32(bgep, DMAD_POOL_HIWAT_REG,
3799 		    bge_dmad_hi_water);
3800 	}
3801 	bge_reg_put32(bgep, LOWAT_MAX_RECV_FRAMES_REG, bge_lowat_recv_frames);
3802 
3803 	/*
3804 	 * Steps 34-36: enable buffer manager & internal h/w queues
3805 	 */
3806 	if (!bge_chip_enable_engine(bgep, BUFFER_MANAGER_MODE_REG,
3807 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3808 		retval = DDI_FAILURE;
3809 	if (!bge_chip_enable_engine(bgep, FTQ_RESET_REG, 0))
3810 		retval = DDI_FAILURE;
3811 
3812 	/*
3813 	 * Steps 37-39: initialise Receive Buffer (Producer) RCBs
3814 	 */
3815 	if (DEVICE_5717_SERIES_CHIPSETS(bgep)) {
3816 		buff_ring_t *brp = &bgep->buff[BGE_STD_BUFF_RING];
3817 		bge_reg_put64(bgep, STD_RCV_BD_RING_RCB_REG,
3818 		    brp->desc.cookie.dmac_laddress);
3819 		bge_reg_put32(bgep, STD_RCV_BD_RING_RCB_REG + 8,
3820 		    (brp->desc.nslots) << 16 | brp->buf[0].size << 2);
3821 		bge_reg_put32(bgep, STD_RCV_BD_RING_RCB_REG + 0xc,
3822 		    NIC_MEM_SHADOW_BUFF_STD_5717);
3823 	} else
3824 		bge_reg_putrcb(bgep, STD_RCV_BD_RING_RCB_REG,
3825 		    &bgep->buff[BGE_STD_BUFF_RING].hw_rcb);
3826 
3827 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3828 		bge_reg_putrcb(bgep, JUMBO_RCV_BD_RING_RCB_REG,
3829 		    &bgep->buff[BGE_JUMBO_BUFF_RING].hw_rcb);
3830 		bge_reg_putrcb(bgep, MINI_RCV_BD_RING_RCB_REG,
3831 		    &bgep->buff[BGE_MINI_BUFF_RING].hw_rcb);
3832 	}
3833 
3834 	/*
3835 	 * Step 40: set Receive Buffer Descriptor Ring replenish thresholds
3836 	 */
3837 	bge_reg_put32(bgep, STD_RCV_BD_REPLENISH_REG, bge_replenish_std);
3838 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3839 		bge_reg_put32(bgep, JUMBO_RCV_BD_REPLENISH_REG,
3840 		    bge_replenish_jumbo);
3841 		bge_reg_put32(bgep, MINI_RCV_BD_REPLENISH_REG,
3842 		    bge_replenish_mini);
3843 	}
3844 
3845 	/*
3846 	 * Steps 41-43: clear Send Ring Producer Indices and initialise
3847 	 * Send Producer Rings (0x0100-0x01ff in NIC-local memory)
3848 	 */
3849 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3850 		maxring = BGE_SEND_RINGS_MAX;
3851 	else
3852 		maxring = BGE_SEND_RINGS_MAX_5705;
3853 	for (ring = 0; ring < maxring; ++ring) {
3854 		bge_mbx_put(bgep, SEND_RING_HOST_INDEX_REG(ring), 0);
3855 		bge_mbx_put(bgep, SEND_RING_NIC_INDEX_REG(ring), 0);
3856 		bge_nic_putrcb(bgep, NIC_MEM_SEND_RING(ring),
3857 		    &bgep->send[ring].hw_rcb);
3858 	}
3859 
3860 	/*
3861 	 * Steps 44-45: initialise Receive Return Rings
3862 	 * (0x0200-0x02ff in NIC-local memory)
3863 	 */
3864 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3865 		maxring = BGE_RECV_RINGS_MAX;
3866 	else
3867 		maxring = BGE_RECV_RINGS_MAX_5705;
3868 	for (ring = 0; ring < maxring; ++ring)
3869 		bge_nic_putrcb(bgep, NIC_MEM_RECV_RING(ring),
3870 		    &bgep->recv[ring].hw_rcb);
3871 
3872 	/*
3873 	 * Step 46: initialise Receive Buffer (Producer) Ring indexes
3874 	 */
3875 	bge_mbx_put(bgep, RECV_STD_PROD_INDEX_REG, 0);
3876 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3877 		bge_mbx_put(bgep, RECV_JUMBO_PROD_INDEX_REG, 0);
3878 		bge_mbx_put(bgep, RECV_MINI_PROD_INDEX_REG, 0);
3879 	}
3880 	/*
3881 	 * Step 47: configure the MAC unicast address
3882 	 * Step 48: configure the random backoff seed
3883 	 * Step 96: set up multicast filters
3884 	 */
3885 #ifdef BGE_IPMI_ASF
3886 	if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE)
3887 #else
3888 	if (bge_chip_sync(bgep) == DDI_FAILURE)
3889 #endif
3890 		retval = DDI_FAILURE;
3891 
3892 	/*
3893 	 * Step 49: configure the MTU
3894 	 */
3895 	mtu = bgep->chipid.ethmax_size+ETHERFCSL+VLAN_TAGSZ;
3896 	bge_reg_put32(bgep, MAC_RX_MTU_SIZE_REG, mtu);
3897 
3898 	/*
3899 	 * Step 50: configure the IPG et al
3900 	 */
3901 	bge_reg_put32(bgep, MAC_TX_LENGTHS_REG, MAC_TX_LENGTHS_DEFAULT);
3902 
3903 	/*
3904 	 * Step 51: configure the default Rx Return Ring
3905 	 */
3906 	bge_reg_put32(bgep, RCV_RULES_CONFIG_REG, RCV_RULES_CONFIG_DEFAULT);
3907 
3908 	/*
3909 	 * Steps 52-54: configure Receive List Placement,
3910 	 * and enable Receive List Placement Statistics
3911 	 */
3912 	bge_reg_put32(bgep, RCV_LP_CONFIG_REG,
3913 	    RCV_LP_CONFIG(bgep->chipid.rx_rings));
3914 	switch (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev)) {
3915 	case MHCR_CHIP_ASIC_REV_5700:
3916 	case MHCR_CHIP_ASIC_REV_5701:
3917 	case MHCR_CHIP_ASIC_REV_5703:
3918 	case MHCR_CHIP_ASIC_REV_5704:
3919 		bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, ~0);
3920 		break;
3921 	case MHCR_CHIP_ASIC_REV_5705:
3922 		break;
3923 	default:
3924 		stats_mask = bge_reg_get32(bgep, RCV_LP_STATS_ENABLE_MASK_REG);
3925 		stats_mask &= ~RCV_LP_STATS_DISABLE_MACTQ;
3926 		bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, stats_mask);
3927 		break;
3928 	}
3929 	bge_reg_set32(bgep, RCV_LP_STATS_CONTROL_REG, RCV_LP_STATS_ENABLE);
3930 
3931 	if (bgep->chipid.rx_rings > 1)
3932 		bge_init_recv_rule(bgep);
3933 
3934 	/*
3935 	 * Steps 55-56: enable Send Data Initiator Statistics
3936 	 */
3937 	bge_reg_put32(bgep, SEND_INIT_STATS_ENABLE_MASK_REG, ~0);
3938 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3939 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3940 		    SEND_INIT_STATS_ENABLE | SEND_INIT_STATS_FASTER);
3941 	} else {
3942 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3943 		    SEND_INIT_STATS_ENABLE);
3944 	}
3945 	/*
3946 	 * Steps 57-58: stop (?) the Host Coalescing Engine
3947 	 */
3948 	if (!bge_chip_disable_engine(bgep, HOST_COALESCE_MODE_REG, ~0))
3949 		retval = DDI_FAILURE;
3950 
3951 	/*
3952 	 * Steps 59-62: initialise Host Coalescing parameters
3953 	 */
3954 	bge_chip_coalesce_update(bgep);
3955 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3956 		bge_reg_put32(bgep, SEND_COALESCE_INT_BD_REG,
3957 		    bge_tx_count_intr);
3958 		bge_reg_put32(bgep, SEND_COALESCE_INT_TICKS_REG,
3959 		    bge_tx_ticks_intr);
3960 		bge_reg_put32(bgep, RCV_COALESCE_INT_BD_REG,
3961 		    bge_rx_count_intr);
3962 		bge_reg_put32(bgep, RCV_COALESCE_INT_TICKS_REG,
3963 		    bge_rx_ticks_intr);
3964 	}
3965 
3966 	/*
3967 	 * Steps 63-64: initialise status block & statistics
3968 	 * host memory addresses
3969 	 * The statistic block does not exist in some chipsets
3970 	 * Step 65: initialise Statistics Coalescing Tick Counter
3971 	 */
3972 	bge_reg_put64(bgep, STATUS_BLOCK_HOST_ADDR_REG,
3973 	    bgep->status_block.cookie.dmac_laddress);
3974 
3975 	/*
3976 	 * Steps 66-67: initialise status block & statistics
3977 	 * NIC-local memory addresses
3978 	 */
3979 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3980 		bge_reg_put64(bgep, STATISTICS_HOST_ADDR_REG,
3981 		    bgep->statistics.cookie.dmac_laddress);
3982 		bge_reg_put32(bgep, STATISTICS_TICKS_REG,
3983 		    STATISTICS_TICKS_DEFAULT);
3984 		bge_reg_put32(bgep, STATUS_BLOCK_BASE_ADDR_REG,
3985 		    NIC_MEM_STATUS_BLOCK);
3986 		bge_reg_put32(bgep, STATISTICS_BASE_ADDR_REG,
3987 		    NIC_MEM_STATISTICS);
3988 	}
3989 
3990 	/*
3991 	 * Steps 68-71: start the Host Coalescing Engine, the Receive BD
3992 	 * Completion Engine, the Receive List Placement Engine, and the
3993 	 * Receive List selector.Pay attention:0x3400 is not exist in BCM5714
3994 	 * and BCM5715.
3995 	 */
3996 	if (bgep->chipid.tx_rings <= COALESCE_64_BYTE_RINGS &&
3997 	    bgep->chipid.rx_rings <= COALESCE_64_BYTE_RINGS)
3998 		coalmode = COALESCE_64_BYTE_STATUS;
3999 	else
4000 		coalmode = 0;
4001 	if (DEVICE_5717_SERIES_CHIPSETS(bgep))
4002 		coalmode = COALESCE_CLR_TICKS_RX;
4003 	if (!bge_chip_enable_engine(bgep, HOST_COALESCE_MODE_REG, coalmode))
4004 		retval = DDI_FAILURE;
4005 	if (!bge_chip_enable_engine(bgep, RCV_BD_COMPLETION_MODE_REG,
4006 	    STATE_MACHINE_ATTN_ENABLE_BIT))
4007 		retval = DDI_FAILURE;
4008 	if (!bge_chip_enable_engine(bgep, RCV_LIST_PLACEMENT_MODE_REG, 0))
4009 		retval = DDI_FAILURE;
4010 
4011 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4012 		if (!bge_chip_enable_engine(bgep, RCV_LIST_SELECTOR_MODE_REG,
4013 		    STATE_MACHINE_ATTN_ENABLE_BIT))
4014 			retval = DDI_FAILURE;
4015 
4016 	/*
4017 	 * Step 72: Enable MAC DMA engines
4018 	 * Step 73: Clear & enable MAC statistics
4019 	 */
4020 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
4021 	    ETHERNET_MODE_ENABLE_FHDE |
4022 	    ETHERNET_MODE_ENABLE_RDE |
4023 	    ETHERNET_MODE_ENABLE_TDE);
4024 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
4025 	    ETHERNET_MODE_ENABLE_TX_STATS |
4026 	    ETHERNET_MODE_ENABLE_RX_STATS |
4027 	    ETHERNET_MODE_CLEAR_TX_STATS |
4028 	    ETHERNET_MODE_CLEAR_RX_STATS);
4029 
4030 	/*
4031 	 * Step 74: configure the MLCR (Miscellaneous Local Control
4032 	 * Register); not required, as we set up the MLCR in step 10
4033 	 * (part of the reset code) above.
4034 	 *
4035 	 * Step 75: clear Interrupt Mailbox 0
4036 	 */
4037 	bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG, 0);
4038 
4039 	/*
4040 	 * Steps 76-87: Gentlemen, start your engines ...
4041 	 *
4042 	 * Enable the DMA Completion Engine, the Write DMA Engine,
4043 	 * the Read DMA Engine, Receive Data Completion Engine,
4044 	 * the MBuf Cluster Free Engine, the Send Data Completion Engine,
4045 	 * the Send BD Completion Engine, the Receive BD Initiator Engine,
4046 	 * the Receive Data Initiator Engine, the Send Data Initiator Engine,
4047 	 * the Send BD Initiator Engine, and the Send BD Selector Engine.
4048 	 *
4049 	 * Beware exhaust fumes?
4050 	 */
4051 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4052 		if (!bge_chip_enable_engine(bgep, DMA_COMPLETION_MODE_REG, 0))
4053 			retval = DDI_FAILURE;
4054 	dma_wrprio = (bge_dma_wrprio << DMA_PRIORITY_SHIFT) |
4055 	    ALL_DMA_ATTN_BITS;
4056 	if ((MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev) ==
4057 	    MHCR_CHIP_ASIC_REV_5755) ||
4058 	    (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev) ==
4059 	    MHCR_CHIP_ASIC_REV_5723) ||
4060 	    (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev) ==
4061 	    MHCR_CHIP_ASIC_REV_5906)) {
4062 		dma_wrprio |= DMA_STATUS_TAG_FIX_CQ12384;
4063 	}
4064 	if (!bge_chip_enable_engine(bgep, WRITE_DMA_MODE_REG,
4065 	    dma_wrprio))
4066 		retval = DDI_FAILURE;
4067 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
4068 	    DEVICE_5717_SERIES_CHIPSETS(bgep))
4069 		bge_dma_rdprio = 0;
4070 	if (!bge_chip_enable_engine(bgep, READ_DMA_MODE_REG,
4071 	    (bge_dma_rdprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS))
4072 		retval = DDI_FAILURE;
4073 	if (!bge_chip_enable_engine(bgep, RCV_DATA_COMPLETION_MODE_REG,
4074 	    STATE_MACHINE_ATTN_ENABLE_BIT))
4075 		retval = DDI_FAILURE;
4076 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4077 		if (!bge_chip_enable_engine(bgep,
4078 		    MBUF_CLUSTER_FREE_MODE_REG, 0))
4079 			retval = DDI_FAILURE;
4080 	if (!bge_chip_enable_engine(bgep, SEND_DATA_COMPLETION_MODE_REG, 0))
4081 		retval = DDI_FAILURE;
4082 	if (!bge_chip_enable_engine(bgep, SEND_BD_COMPLETION_MODE_REG,
4083 	    STATE_MACHINE_ATTN_ENABLE_BIT))
4084 		retval = DDI_FAILURE;
4085 	if (!bge_chip_enable_engine(bgep, RCV_BD_INITIATOR_MODE_REG,
4086 	    RCV_BD_DISABLED_RING_ATTN))
4087 		retval = DDI_FAILURE;
4088 	if (!bge_chip_enable_engine(bgep, RCV_DATA_BD_INITIATOR_MODE_REG,
4089 	    RCV_DATA_BD_ILL_RING_ATTN))
4090 		retval = DDI_FAILURE;
4091 	if (!bge_chip_enable_engine(bgep, SEND_DATA_INITIATOR_MODE_REG, 0))
4092 		retval = DDI_FAILURE;
4093 	if (!bge_chip_enable_engine(bgep, SEND_BD_INITIATOR_MODE_REG,
4094 	    STATE_MACHINE_ATTN_ENABLE_BIT))
4095 		retval = DDI_FAILURE;
4096 	if (!bge_chip_enable_engine(bgep, SEND_BD_SELECTOR_MODE_REG,
4097 	    STATE_MACHINE_ATTN_ENABLE_BIT))
4098 		retval = DDI_FAILURE;
4099 
4100 	/*
4101 	 * Step 88: download firmware -- doesn't apply
4102 	 * Steps 89-90: enable Transmit & Receive MAC Engines
4103 	 */
4104 	if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
4105 		retval = DDI_FAILURE;
4106 #ifdef BGE_IPMI_ASF
4107 	if (!bgep->asf_enabled) {
4108 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
4109 		    RECEIVE_MODE_KEEP_VLAN_TAG))
4110 			retval = DDI_FAILURE;
4111 	} else {
4112 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, 0))
4113 			retval = DDI_FAILURE;
4114 	}
4115 #else
4116 	if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
4117 	    RECEIVE_MODE_KEEP_VLAN_TAG))
4118 		retval = DDI_FAILURE;
4119 #endif
4120 
4121 	/*
4122 	 * Step 91: disable auto-polling of PHY status
4123 	 */
4124 	bge_reg_put32(bgep, MI_MODE_REG, MI_MODE_DEFAULT);
4125 
4126 	/*
4127 	 * Step 92: configure D0 power state (not required)
4128 	 * Step 93: initialise LED control register ()
4129 	 */
4130 	ledctl = LED_CONTROL_DEFAULT;
4131 	switch (bgep->chipid.device) {
4132 	case DEVICE_ID_5700:
4133 	case DEVICE_ID_5700x:
4134 	case DEVICE_ID_5701:
4135 		/*
4136 		 * Switch to 5700 (MAC) mode on these older chips
4137 		 */
4138 		ledctl &= ~LED_CONTROL_LED_MODE_MASK;
4139 		ledctl |= LED_CONTROL_LED_MODE_5700;
4140 		break;
4141 
4142 	default:
4143 		break;
4144 	}
4145 	bge_reg_put32(bgep, ETHERNET_MAC_LED_CONTROL_REG, ledctl);
4146 
4147 	/*
4148 	 * Step 94: activate link
4149 	 */
4150 	bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK);
4151 
4152 	/*
4153 	 * Step 95: set up physical layer (PHY/SerDes)
4154 	 * restart autoneg (if required)
4155 	 */
4156 	if (reset_phys)
4157 		if (bge_phys_update(bgep) == DDI_FAILURE)
4158 			retval = DDI_FAILURE;
4159 
4160 	/*
4161 	 * Extra step (DSG): hand over all the Receive Buffers to the chip
4162 	 */
4163 	for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring)
4164 		bge_mbx_put(bgep, bgep->buff[ring].chip_mbx_reg,
4165 		    bgep->buff[ring].rf_next);
4166 
4167 	/*
4168 	 * MSI bits:The least significant MSI 16-bit word.
4169 	 * ISR will be triggered different.
4170 	 */
4171 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
4172 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, 0x70);
4173 
4174 	/*
4175 	 * Extra step (DSG): select which interrupts are enabled
4176 	 *
4177 	 * Program the Ethernet MAC engine to signal attention on
4178 	 * Link Change events, then enable interrupts on MAC, DMA,
4179 	 * and FLOW attention signals.
4180 	 */
4181 	bge_reg_set32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG,
4182 	    ETHERNET_EVENT_LINK_INT |
4183 	    ETHERNET_STATUS_PCS_ERROR_INT);
4184 #ifdef BGE_IPMI_ASF
4185 	if (bgep->asf_enabled) {
4186 		bge_reg_set32(bgep, MODE_CONTROL_REG,
4187 		    MODE_INT_ON_FLOW_ATTN |
4188 		    MODE_INT_ON_DMA_ATTN |
4189 		    MODE_HOST_STACK_UP|
4190 		    MODE_INT_ON_MAC_ATTN);
4191 	} else {
4192 #endif
4193 		bge_reg_set32(bgep, MODE_CONTROL_REG,
4194 		    MODE_INT_ON_FLOW_ATTN |
4195 		    MODE_INT_ON_DMA_ATTN |
4196 		    MODE_INT_ON_MAC_ATTN);
4197 #ifdef BGE_IPMI_ASF
4198 	}
4199 #endif
4200 
4201 	/*
4202 	 * Step 97: enable PCI interrupts!!!
4203 	 */
4204 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
4205 		bge_cfg_clr32(bgep, PCI_CONF_BGE_MHCR,
4206 		    bgep->chipid.mask_pci_int);
4207 
4208 	/*
4209 	 * All done!
4210 	 */
4211 	bgep->bge_chip_state = BGE_CHIP_RUNNING;
4212 	return (retval);
4213 }
4214 
4215 
4216 /*
4217  * ========== Hardware interrupt handler ==========
4218  */
4219 
4220 #undef	BGE_DBG
4221 #define	BGE_DBG		BGE_DBG_INT	/* debug flag for this code	*/
4222 
4223 /*
4224  * Sync the status block, then atomically clear the specified bits in
4225  * the <flags-and-tag> field of the status block.
4226  * the <flags> word of the status block, returning the value of the
4227  * <tag> and the <flags> before the bits were cleared.
4228  */
4229 static int bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags);
4230 #pragma	inline(bge_status_sync)
4231 
4232 static int
4233 bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags)
4234 {
4235 	bge_status_t *bsp;
4236 	int retval;
4237 
4238 	BGE_TRACE(("bge_status_sync($%p, 0x%llx)",
4239 	    (void *)bgep, bits));
4240 
4241 	ASSERT(bgep->bge_guard == BGE_GUARD);
4242 
4243 	DMA_SYNC(bgep->status_block, DDI_DMA_SYNC_FORKERNEL);
4244 	retval = bge_check_dma_handle(bgep, bgep->status_block.dma_hdl);
4245 	if (retval != DDI_FM_OK)
4246 		return (retval);
4247 
4248 	bsp = DMA_VPTR(bgep->status_block);
4249 	*flags = bge_atomic_clr64(&bsp->flags_n_tag, bits);
4250 
4251 	BGE_DEBUG(("bge_status_sync($%p, 0x%llx) returning 0x%llx",
4252 	    (void *)bgep, bits, *flags));
4253 
4254 	return (retval);
4255 }
4256 
4257 void bge_wake_factotum(bge_t *bgep);
4258 #pragma	inline(bge_wake_factotum)
4259 
4260 void
4261 bge_wake_factotum(bge_t *bgep)
4262 {
4263 	mutex_enter(bgep->softintrlock);
4264 	if (bgep->factotum_flag == 0) {
4265 		bgep->factotum_flag = 1;
4266 		ddi_trigger_softintr(bgep->factotum_id);
4267 	}
4268 	mutex_exit(bgep->softintrlock);
4269 }
4270 
4271 /*
4272  *	bge_intr() -- handle chip interrupts
4273  */
4274 uint_t bge_intr(caddr_t arg1, caddr_t arg2);
4275 #pragma	no_inline(bge_intr)
4276 
4277 uint_t
4278 bge_intr(caddr_t arg1, caddr_t arg2)
4279 {
4280 	bge_t *bgep = (void *)arg1;		/* private device info	*/
4281 	bge_status_t *bsp;
4282 	uint64_t flags;
4283 	uint32_t regval;
4284 	uint_t result;
4285 	int retval, loop_cnt = 0;
4286 
4287 	BGE_TRACE(("bge_intr($%p) ($%p)", arg1, arg2));
4288 
4289 	/*
4290 	 * GLD v2 checks that s/w setup is complete before passing
4291 	 * interrupts to this routine, thus eliminating the old
4292 	 * (and well-known) race condition around ddi_add_intr()
4293 	 */
4294 	ASSERT(bgep->progress & PROGRESS_HWINT);
4295 
4296 	result = DDI_INTR_UNCLAIMED;
4297 	mutex_enter(bgep->genlock);
4298 
4299 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
4300 		/*
4301 		 * Check whether chip's says it's asserting #INTA;
4302 		 * if not, don't process or claim the interrupt.
4303 		 *
4304 		 * Note that the PCI signal is active low, so the
4305 		 * bit is *zero* when the interrupt is asserted.
4306 		 */
4307 		regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
4308 		if (!(DEVICE_5717_SERIES_CHIPSETS(bgep)) &&
4309 		    (regval & MLCR_INTA_STATE)) {
4310 			if (bge_check_acc_handle(bgep, bgep->io_handle)
4311 			    != DDI_FM_OK)
4312 				goto chip_stop;
4313 			mutex_exit(bgep->genlock);
4314 			return (result);
4315 		}
4316 
4317 		/*
4318 		 * Block further PCI interrupts ...
4319 		 */
4320 		bge_reg_set32(bgep, PCI_CONF_BGE_MHCR,
4321 		    bgep->chipid.mask_pci_int);
4322 
4323 	} else {
4324 		/*
4325 		 * Check MSI status
4326 		 */
4327 		regval = bge_reg_get32(bgep, MSI_STATUS_REG);
4328 		if (regval & MSI_ERROR_ATTENTION) {
4329 			BGE_REPORT((bgep, "msi error attention,"
4330 			    " status=0x%x", regval));
4331 			bge_reg_put32(bgep, MSI_STATUS_REG, regval);
4332 		}
4333 	}
4334 
4335 	result = DDI_INTR_CLAIMED;
4336 
4337 	BGE_DEBUG(("bge_intr($%p) ($%p) regval 0x%08x", arg1, arg2, regval));
4338 
4339 	/*
4340 	 * Sync the status block and grab the flags-n-tag from it.
4341 	 * We count the number of interrupts where there doesn't
4342 	 * seem to have been a DMA update of the status block; if
4343 	 * it *has* been updated, the counter will be cleared in
4344 	 * the while() loop below ...
4345 	 */
4346 	bgep->missed_dmas += 1;
4347 	bsp = DMA_VPTR(bgep->status_block);
4348 	for (loop_cnt = 0; loop_cnt < bge_intr_max_loop; loop_cnt++) {
4349 		if (bgep->bge_chip_state != BGE_CHIP_RUNNING) {
4350 			/*
4351 			 * bge_chip_stop() may have freed dma area etc
4352 			 * while we were in this interrupt handler -
4353 			 * better not call bge_status_sync()
4354 			 */
4355 			(void) bge_check_acc_handle(bgep,
4356 			    bgep->io_handle);
4357 			mutex_exit(bgep->genlock);
4358 			return (DDI_INTR_CLAIMED);
4359 		}
4360 		retval = bge_status_sync(bgep, STATUS_FLAG_UPDATED,
4361 		    &flags);
4362 		if (retval != DDI_FM_OK) {
4363 			bgep->bge_dma_error = B_TRUE;
4364 			goto chip_stop;
4365 		}
4366 
4367 		if (!(flags & STATUS_FLAG_UPDATED))
4368 			break;
4369 
4370 		/*
4371 		 * Tell the chip that we're processing the interrupt
4372 		 */
4373 		bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
4374 		    INTERRUPT_MBOX_DISABLE(flags));
4375 		if (bge_check_acc_handle(bgep, bgep->io_handle) !=
4376 		    DDI_FM_OK)
4377 			goto chip_stop;
4378 
4379 		/*
4380 		 * Drop the mutex while we:
4381 		 * 	Receive any newly-arrived packets
4382 		 *	Recycle any newly-finished send buffers
4383 		 */
4384 		bgep->bge_intr_running = B_TRUE;
4385 		mutex_exit(bgep->genlock);
4386 		bge_receive(bgep, bsp);
4387 		bge_recycle(bgep, bsp);
4388 		mutex_enter(bgep->genlock);
4389 		bgep->bge_intr_running = B_FALSE;
4390 
4391 		/*
4392 		 * Tell the chip we've finished processing, and
4393 		 * give it the tag that we got from the status
4394 		 * block earlier, so that it knows just how far
4395 		 * we've gone.  If it's got more for us to do,
4396 		 * it will now update the status block and try
4397 		 * to assert an interrupt (but we've got the
4398 		 * #INTA blocked at present).  If we see the
4399 		 * update, we'll loop around to do some more.
4400 		 * Eventually we'll get out of here ...
4401 		 */
4402 		bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
4403 		    INTERRUPT_MBOX_ENABLE(flags));
4404 		if (bgep->chipid.pci_type == BGE_PCI_E)
4405 			(void) bge_mbx_get(bgep, INTERRUPT_MBOX_0_REG);
4406 		bgep->missed_dmas = 0;
4407 	}
4408 
4409 	/*
4410 	 * Check for exceptional conditions that we need to handle
4411 	 *
4412 	 * Link status changed
4413 	 * Status block not updated
4414 	 */
4415 	if (flags & STATUS_FLAG_LINK_CHANGED)
4416 		bge_wake_factotum(bgep);
4417 
4418 	if (bgep->missed_dmas) {
4419 		/*
4420 		 * Probably due to the internal status tag not
4421 		 * being reset.  Force a status block update now;
4422 		 * this should ensure that we get an update and
4423 		 * a new interrupt.  After that, we should be in
4424 		 * sync again ...
4425 		 */
4426 		BGE_REPORT((bgep, "interrupt: flags 0x%llx - "
4427 		    "not updated?", flags));
4428 		bgep->missed_updates++;
4429 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG,
4430 		    COALESCE_NOW);
4431 
4432 		if (bgep->missed_dmas >= bge_dma_miss_limit) {
4433 			/*
4434 			 * If this happens multiple times in a row,
4435 			 * it means DMA is just not working.  Maybe
4436 			 * the chip's failed, or maybe there's a
4437 			 * problem on the PCI bus or in the host-PCI
4438 			 * bridge (Tomatillo).
4439 			 *
4440 			 * At all events, we want to stop further
4441 			 * interrupts and let the recovery code take
4442 			 * over to see whether anything can be done
4443 			 * about it ...
4444 			 */
4445 			bge_fm_ereport(bgep,
4446 			    DDI_FM_DEVICE_BADINT_LIMIT);
4447 			goto chip_stop;
4448 		}
4449 	}
4450 
4451 	/*
4452 	 * Reenable assertion of #INTA, unless there's a DMA fault
4453 	 */
4454 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
4455 		bge_reg_clr32(bgep, PCI_CONF_BGE_MHCR,
4456 		    bgep->chipid.mask_pci_int);
4457 		if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
4458 		    DDI_FM_OK)
4459 			goto chip_stop;
4460 	}
4461 
4462 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4463 		goto chip_stop;
4464 
4465 	mutex_exit(bgep->genlock);
4466 	return (result);
4467 
4468 chip_stop:
4469 #ifdef BGE_IPMI_ASF
4470 	if (bgep->asf_enabled && bgep->asf_status == ASF_STAT_RUN) {
4471 		/*
4472 		 * We must stop ASF heart beat before
4473 		 * bge_chip_stop(), otherwise some
4474 		 * computers (ex. IBM HS20 blade
4475 		 * server) may crash.
4476 		 */
4477 		bge_asf_update_status(bgep);
4478 		bge_asf_stop_timer(bgep);
4479 		bgep->asf_status = ASF_STAT_STOP;
4480 
4481 		bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4482 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
4483 	}
4484 #endif
4485 	bge_chip_stop(bgep, B_TRUE);
4486 	(void) bge_check_acc_handle(bgep, bgep->io_handle);
4487 	mutex_exit(bgep->genlock);
4488 	return (result);
4489 }
4490 
4491 /*
4492  * ========== Factotum, implemented as a softint handler ==========
4493  */
4494 
4495 #undef	BGE_DBG
4496 #define	BGE_DBG		BGE_DBG_FACT	/* debug flag for this code	*/
4497 
4498 static void bge_factotum_error_handler(bge_t *bgep);
4499 #pragma	no_inline(bge_factotum_error_handler)
4500 
4501 static void
4502 bge_factotum_error_handler(bge_t *bgep)
4503 {
4504 	uint32_t flow;
4505 	uint32_t rdma;
4506 	uint32_t wdma;
4507 	uint32_t tmac;
4508 	uint32_t rmac;
4509 	uint32_t rxrs;
4510 	uint32_t txrs = 0;
4511 
4512 	ASSERT(mutex_owned(bgep->genlock));
4513 
4514 	/*
4515 	 * Read all the registers that show the possible
4516 	 * reasons for the ERROR bit to be asserted
4517 	 */
4518 	flow = bge_reg_get32(bgep, FLOW_ATTN_REG);
4519 	rdma = bge_reg_get32(bgep, READ_DMA_STATUS_REG);
4520 	wdma = bge_reg_get32(bgep, WRITE_DMA_STATUS_REG);
4521 	tmac = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
4522 	rmac = bge_reg_get32(bgep, RECEIVE_MAC_STATUS_REG);
4523 	rxrs = bge_reg_get32(bgep, RX_RISC_STATE_REG);
4524 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4525 		txrs = bge_reg_get32(bgep, TX_RISC_STATE_REG);
4526 
4527 	BGE_DEBUG(("factotum($%p) flow 0x%x rdma 0x%x wdma 0x%x",
4528 	    (void *)bgep, flow, rdma, wdma));
4529 	BGE_DEBUG(("factotum($%p) tmac 0x%x rmac 0x%x rxrs 0x%08x txrs 0x%08x",
4530 	    (void *)bgep, tmac, rmac, rxrs, txrs));
4531 
4532 	/*
4533 	 * For now, just clear all the errors ...
4534 	 */
4535 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4536 		bge_reg_put32(bgep, TX_RISC_STATE_REG, ~0);
4537 	bge_reg_put32(bgep, RX_RISC_STATE_REG, ~0);
4538 	bge_reg_put32(bgep, RECEIVE_MAC_STATUS_REG, ~0);
4539 	bge_reg_put32(bgep, WRITE_DMA_STATUS_REG, ~0);
4540 	bge_reg_put32(bgep, READ_DMA_STATUS_REG, ~0);
4541 	bge_reg_put32(bgep, FLOW_ATTN_REG, ~0);
4542 }
4543 
4544 /*
4545  * Handler for hardware link state change.
4546  *
4547  * When this routine is called, the hardware link state has changed
4548  * and the new state is reflected in the param_* variables.  Here
4549  * we must update the softstate and reprogram the MAC to match.
4550  */
4551 static void bge_factotum_link_handler(bge_t *bgep);
4552 #pragma	no_inline(bge_factotum_link_handler)
4553 
4554 static void
4555 bge_factotum_link_handler(bge_t *bgep)
4556 {
4557 	ASSERT(mutex_owned(bgep->genlock));
4558 
4559 	/*
4560 	 * Update the s/w link_state
4561 	 */
4562 	if (bgep->param_link_up)
4563 		bgep->link_state = LINK_STATE_UP;
4564 	else
4565 		bgep->link_state = LINK_STATE_DOWN;
4566 
4567 	/*
4568 	 * Reprogram the MAC modes to match
4569 	 */
4570 	bge_sync_mac_modes(bgep);
4571 }
4572 
4573 static boolean_t bge_factotum_link_check(bge_t *bgep, int *dma_state);
4574 #pragma	no_inline(bge_factotum_link_check)
4575 
4576 static boolean_t
4577 bge_factotum_link_check(bge_t *bgep, int *dma_state)
4578 {
4579 	boolean_t check;
4580 	uint64_t flags;
4581 	uint32_t tmac_status;
4582 
4583 	ASSERT(mutex_owned(bgep->genlock));
4584 
4585 	/*
4586 	 * Get & clear the writable status bits in the Tx status register
4587 	 * (some bits are write-1-to-clear, others are just readonly).
4588 	 */
4589 	tmac_status = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
4590 	bge_reg_put32(bgep, TRANSMIT_MAC_STATUS_REG, tmac_status);
4591 
4592 	/*
4593 	 * Get & clear the ERROR and LINK_CHANGED bits from the status block
4594 	 */
4595 	*dma_state = bge_status_sync(bgep, STATUS_FLAG_ERROR |
4596 	    STATUS_FLAG_LINK_CHANGED, &flags);
4597 	if (*dma_state != DDI_FM_OK)
4598 		return (B_FALSE);
4599 
4600 	/*
4601 	 * Clear any errors flagged in the status block ...
4602 	 */
4603 	if (flags & STATUS_FLAG_ERROR)
4604 		bge_factotum_error_handler(bgep);
4605 
4606 	/*
4607 	 * We need to check the link status if:
4608 	 *	the status block says there's been a link change
4609 	 *	or there's any discrepancy between the various
4610 	 *	flags indicating the link state (link_state,
4611 	 *	param_link_up, and the LINK STATE bit in the
4612 	 *	Transmit MAC status register).
4613 	 */
4614 	check = (flags & STATUS_FLAG_LINK_CHANGED) != 0;
4615 	switch (bgep->link_state) {
4616 	case LINK_STATE_UP:
4617 		check |= (bgep->param_link_up == B_FALSE);
4618 		check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) == 0);
4619 		break;
4620 
4621 	case LINK_STATE_DOWN:
4622 		check |= (bgep->param_link_up != B_FALSE);
4623 		check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) != 0);
4624 		break;
4625 
4626 	default:
4627 		check = B_TRUE;
4628 		break;
4629 	}
4630 
4631 	/*
4632 	 * If <check> is false, we're sure the link hasn't changed.
4633 	 * If true, however, it's not yet definitive; we have to call
4634 	 * bge_phys_check() to determine whether the link has settled
4635 	 * into a new state yet ... and if it has, then call the link
4636 	 * state change handler.But when the chip is 5700 in Dell 6650
4637 	 * ,even if check is false, the link may have changed.So we
4638 	 * have to call bge_phys_check() to determine the link state.
4639 	 */
4640 	if (check || bgep->chipid.device == DEVICE_ID_5700) {
4641 		check = bge_phys_check(bgep);
4642 		if (check)
4643 			bge_factotum_link_handler(bgep);
4644 	}
4645 
4646 	return (check);
4647 }
4648 
4649 /*
4650  * Factotum routine to check for Tx stall, using the 'watchdog' counter
4651  */
4652 static boolean_t bge_factotum_stall_check(bge_t *bgep);
4653 #pragma	no_inline(bge_factotum_stall_check)
4654 
4655 static boolean_t
4656 bge_factotum_stall_check(bge_t *bgep)
4657 {
4658 	uint32_t dogval;
4659 
4660 	ASSERT(mutex_owned(bgep->genlock));
4661 
4662 	/*
4663 	 * Specific check for Tx stall ...
4664 	 *
4665 	 * The 'watchdog' counter is incremented whenever a packet
4666 	 * is queued, reset to 1 when some (but not all) buffers
4667 	 * are reclaimed, reset to 0 (disabled) when all buffers
4668 	 * are reclaimed, and shifted left here.  If it exceeds the
4669 	 * threshold value, the chip is assumed to have stalled and
4670 	 * is put into the ERROR state.  The factotum will then reset
4671 	 * it on the next pass.
4672 	 *
4673 	 * All of which should ensure that we don't get into a state
4674 	 * where packets are left pending indefinitely!
4675 	 */
4676 	dogval = bge_atomic_shl32(&bgep->watchdog, 1);
4677 	if (dogval < bge_watchdog_count)
4678 		return (B_FALSE);
4679 
4680 #if !defined(BGE_NETCONSOLE)
4681 	BGE_REPORT((bgep, "Tx stall detected, watchdog code 0x%x", dogval));
4682 #endif
4683 	bge_fm_ereport(bgep, DDI_FM_DEVICE_STALL);
4684 	return (B_TRUE);
4685 }
4686 
4687 /*
4688  * The factotum is woken up when there's something to do that we'd rather
4689  * not do from inside a hardware interrupt handler or high-level cyclic.
4690  * Its two main tasks are:
4691  *	reset & restart the chip after an error
4692  *	check the link status whenever necessary
4693  */
4694 uint_t bge_chip_factotum(caddr_t arg);
4695 #pragma	no_inline(bge_chip_factotum)
4696 
4697 uint_t
4698 bge_chip_factotum(caddr_t arg)
4699 {
4700 	bge_t *bgep;
4701 	uint_t result;
4702 	boolean_t error;
4703 	boolean_t linkchg;
4704 	int dma_state;
4705 
4706 	bgep = (void *)arg;
4707 
4708 	BGE_TRACE(("bge_chip_factotum($%p)", (void *)bgep));
4709 
4710 	mutex_enter(bgep->softintrlock);
4711 	if (bgep->factotum_flag == 0) {
4712 		mutex_exit(bgep->softintrlock);
4713 		return (DDI_INTR_UNCLAIMED);
4714 	}
4715 	bgep->factotum_flag = 0;
4716 	mutex_exit(bgep->softintrlock);
4717 
4718 	result = DDI_INTR_CLAIMED;
4719 	error = B_FALSE;
4720 	linkchg = B_FALSE;
4721 
4722 	mutex_enter(bgep->genlock);
4723 	switch (bgep->bge_chip_state) {
4724 	default:
4725 		break;
4726 
4727 	case BGE_CHIP_RUNNING:
4728 		linkchg = bge_factotum_link_check(bgep, &dma_state);
4729 		error = bge_factotum_stall_check(bgep);
4730 		if (dma_state != DDI_FM_OK) {
4731 			bgep->bge_dma_error = B_TRUE;
4732 			error = B_TRUE;
4733 		}
4734 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4735 			error = B_TRUE;
4736 		if (error)
4737 			bgep->bge_chip_state = BGE_CHIP_ERROR;
4738 		break;
4739 
4740 	case BGE_CHIP_ERROR:
4741 		error = B_TRUE;
4742 		break;
4743 
4744 	case BGE_CHIP_FAULT:
4745 		/*
4746 		 * Fault detected, time to reset ...
4747 		 */
4748 		if (bge_autorecover) {
4749 			if (!(bgep->progress & PROGRESS_BUFS)) {
4750 				/*
4751 				 * if we can't allocate the ring buffers,
4752 				 * try later
4753 				 */
4754 				if (bge_alloc_bufs(bgep) != DDI_SUCCESS) {
4755 					mutex_exit(bgep->genlock);
4756 					return (result);
4757 				}
4758 				bgep->progress |= PROGRESS_BUFS;
4759 			}
4760 			if (!(bgep->progress & PROGRESS_INTR)) {
4761 				bge_init_rings(bgep);
4762 				bge_intr_enable(bgep);
4763 				bgep->progress |= PROGRESS_INTR;
4764 			}
4765 			if (!(bgep->progress & PROGRESS_KSTATS)) {
4766 				bge_init_kstats(bgep,
4767 				    ddi_get_instance(bgep->devinfo));
4768 				bgep->progress |= PROGRESS_KSTATS;
4769 			}
4770 
4771 			BGE_REPORT((bgep, "automatic recovery activated"));
4772 
4773 			if (bge_restart(bgep, B_FALSE) != DDI_SUCCESS) {
4774 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4775 				error = B_TRUE;
4776 			}
4777 			if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
4778 			    DDI_FM_OK) {
4779 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4780 				error = B_TRUE;
4781 			}
4782 			if (bge_check_acc_handle(bgep, bgep->io_handle) !=
4783 			    DDI_FM_OK) {
4784 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4785 				error = B_TRUE;
4786 			}
4787 			if (error == B_FALSE) {
4788 #ifdef BGE_IPMI_ASF
4789 				if (bgep->asf_enabled &&
4790 				    bgep->asf_status != ASF_STAT_RUN) {
4791 					bgep->asf_timeout_id = timeout(
4792 					    bge_asf_heartbeat, (void *)bgep,
4793 					    drv_usectohz(
4794 					    BGE_ASF_HEARTBEAT_INTERVAL));
4795 					bgep->asf_status = ASF_STAT_RUN;
4796 				}
4797 #endif
4798 				if (!bgep->manual_reset) {
4799 					ddi_fm_service_impact(bgep->devinfo,
4800 					    DDI_SERVICE_RESTORED);
4801 				}
4802 			}
4803 		}
4804 		break;
4805 	}
4806 
4807 
4808 	/*
4809 	 * If an error is detected, stop the chip now, marking it as
4810 	 * faulty, so that it will be reset next time through ...
4811 	 *
4812 	 * Note that if intr_running is set, then bge_intr() has dropped
4813 	 * genlock to call bge_receive/bge_recycle. Can't stop the chip at
4814 	 * this point so have to wait until the next time the factotum runs.
4815 	 */
4816 	if (error && !bgep->bge_intr_running) {
4817 #ifdef BGE_IPMI_ASF
4818 		if (bgep->asf_enabled && (bgep->asf_status == ASF_STAT_RUN)) {
4819 			/*
4820 			 * We must stop ASF heart beat before bge_chip_stop(),
4821 			 * otherwise some computers (ex. IBM HS20 blade server)
4822 			 * may crash.
4823 			 */
4824 			bge_asf_update_status(bgep);
4825 			bge_asf_stop_timer(bgep);
4826 			bgep->asf_status = ASF_STAT_STOP;
4827 
4828 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4829 			(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
4830 		}
4831 #endif
4832 		bge_chip_stop(bgep, B_TRUE);
4833 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
4834 	}
4835 	mutex_exit(bgep->genlock);
4836 
4837 	/*
4838 	 * If the link state changed, tell the world about it.
4839 	 * Note: can't do this while still holding the mutex.
4840 	 */
4841 	if (bgep->link_update_timer == BGE_LINK_UPDATE_TIMEOUT &&
4842 	    bgep->link_state != LINK_STATE_UNKNOWN)
4843 		linkchg = B_TRUE;
4844 	else if (bgep->link_update_timer < BGE_LINK_UPDATE_TIMEOUT &&
4845 	    bgep->link_state == LINK_STATE_DOWN)
4846 		linkchg = B_FALSE;
4847 
4848 	if (linkchg) {
4849 		mac_link_update(bgep->mh, bgep->link_state);
4850 		bgep->link_update_timer = BGE_LINK_UPDATE_DONE;
4851 	}
4852 	if (bgep->manual_reset) {
4853 		bgep->manual_reset = B_FALSE;
4854 	}
4855 
4856 	return (result);
4857 }
4858 
4859 /*
4860  * High-level cyclic handler
4861  *
4862  * This routine schedules a (low-level) softint callback to the
4863  * factotum, and prods the chip to update the status block (which
4864  * will cause a hardware interrupt when complete).
4865  */
4866 void bge_chip_cyclic(void *arg);
4867 #pragma	no_inline(bge_chip_cyclic)
4868 
4869 void
4870 bge_chip_cyclic(void *arg)
4871 {
4872 	bge_t *bgep;
4873 
4874 	bgep = arg;
4875 
4876 	switch (bgep->bge_chip_state) {
4877 	default:
4878 		return;
4879 
4880 	case BGE_CHIP_RUNNING:
4881 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, COALESCE_NOW);
4882 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4883 			ddi_fm_service_impact(bgep->devinfo,
4884 			    DDI_SERVICE_UNAFFECTED);
4885 
4886 		if (bgep->link_update_timer < BGE_LINK_UPDATE_TIMEOUT)
4887 			bgep->link_update_timer++;
4888 
4889 		break;
4890 
4891 	case BGE_CHIP_FAULT:
4892 	case BGE_CHIP_ERROR:
4893 		break;
4894 	}
4895 
4896 	bge_wake_factotum(bgep);
4897 }
4898 
4899 
4900 /*
4901  * ========== Ioctl subfunctions ==========
4902  */
4903 
4904 #undef	BGE_DBG
4905 #define	BGE_DBG		BGE_DBG_PPIO	/* debug flag for this code	*/
4906 
4907 #if	BGE_DEBUGGING || BGE_DO_PPIO
4908 
4909 static void bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4910 #pragma	no_inline(bge_chip_peek_cfg)
4911 
4912 static void
4913 bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4914 {
4915 	uint64_t regval;
4916 	uint64_t regno;
4917 
4918 	BGE_TRACE(("bge_chip_peek_cfg($%p, $%p)",
4919 	    (void *)bgep, (void *)ppd));
4920 
4921 	regno = ppd->pp_acc_offset;
4922 
4923 	switch (ppd->pp_acc_size) {
4924 	case 1:
4925 		regval = pci_config_get8(bgep->cfg_handle, regno);
4926 		break;
4927 
4928 	case 2:
4929 		regval = pci_config_get16(bgep->cfg_handle, regno);
4930 		break;
4931 
4932 	case 4:
4933 		regval = pci_config_get32(bgep->cfg_handle, regno);
4934 		break;
4935 
4936 	case 8:
4937 		regval = pci_config_get64(bgep->cfg_handle, regno);
4938 		break;
4939 	}
4940 
4941 	ppd->pp_acc_data = regval;
4942 }
4943 
4944 static void bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4945 #pragma	no_inline(bge_chip_poke_cfg)
4946 
4947 static void
4948 bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4949 {
4950 	uint64_t regval;
4951 	uint64_t regno;
4952 
4953 	BGE_TRACE(("bge_chip_poke_cfg($%p, $%p)",
4954 	    (void *)bgep, (void *)ppd));
4955 
4956 	regno = ppd->pp_acc_offset;
4957 	regval = ppd->pp_acc_data;
4958 
4959 	switch (ppd->pp_acc_size) {
4960 	case 1:
4961 		pci_config_put8(bgep->cfg_handle, regno, regval);
4962 		break;
4963 
4964 	case 2:
4965 		pci_config_put16(bgep->cfg_handle, regno, regval);
4966 		break;
4967 
4968 	case 4:
4969 		pci_config_put32(bgep->cfg_handle, regno, regval);
4970 		break;
4971 
4972 	case 8:
4973 		pci_config_put64(bgep->cfg_handle, regno, regval);
4974 		break;
4975 	}
4976 }
4977 
4978 static void bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd);
4979 #pragma	no_inline(bge_chip_peek_reg)
4980 
4981 static void
4982 bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd)
4983 {
4984 	uint64_t regval;
4985 	void *regaddr;
4986 
4987 	BGE_TRACE(("bge_chip_peek_reg($%p, $%p)",
4988 	    (void *)bgep, (void *)ppd));
4989 
4990 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
4991 
4992 	switch (ppd->pp_acc_size) {
4993 	case 1:
4994 		regval = ddi_get8(bgep->io_handle, regaddr);
4995 		break;
4996 
4997 	case 2:
4998 		regval = ddi_get16(bgep->io_handle, regaddr);
4999 		break;
5000 
5001 	case 4:
5002 		regval = ddi_get32(bgep->io_handle, regaddr);
5003 		break;
5004 
5005 	case 8:
5006 		regval = ddi_get64(bgep->io_handle, regaddr);
5007 		break;
5008 	}
5009 
5010 	ppd->pp_acc_data = regval;
5011 }
5012 
5013 static void bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd);
5014 #pragma	no_inline(bge_chip_peek_reg)
5015 
5016 static void
5017 bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd)
5018 {
5019 	uint64_t regval;
5020 	void *regaddr;
5021 
5022 	BGE_TRACE(("bge_chip_poke_reg($%p, $%p)",
5023 	    (void *)bgep, (void *)ppd));
5024 
5025 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
5026 	regval = ppd->pp_acc_data;
5027 
5028 	switch (ppd->pp_acc_size) {
5029 	case 1:
5030 		ddi_put8(bgep->io_handle, regaddr, regval);
5031 		break;
5032 
5033 	case 2:
5034 		ddi_put16(bgep->io_handle, regaddr, regval);
5035 		break;
5036 
5037 	case 4:
5038 		ddi_put32(bgep->io_handle, regaddr, regval);
5039 		break;
5040 
5041 	case 8:
5042 		ddi_put64(bgep->io_handle, regaddr, regval);
5043 		break;
5044 	}
5045 	BGE_PCICHK(bgep);
5046 }
5047 
5048 static void bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd);
5049 #pragma	no_inline(bge_chip_peek_nic)
5050 
5051 static void
5052 bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd)
5053 {
5054 	uint64_t regoff;
5055 	uint64_t regval;
5056 	void *regaddr;
5057 
5058 	BGE_TRACE(("bge_chip_peek_nic($%p, $%p)",
5059 	    (void *)bgep, (void *)ppd));
5060 
5061 	regoff = ppd->pp_acc_offset;
5062 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
5063 	regoff &= MWBAR_GRANULE_MASK;
5064 	regoff += NIC_MEM_WINDOW_OFFSET;
5065 	regaddr = PIO_ADDR(bgep, regoff);
5066 
5067 	switch (ppd->pp_acc_size) {
5068 	case 1:
5069 		regval = ddi_get8(bgep->io_handle, regaddr);
5070 		break;
5071 
5072 	case 2:
5073 		regval = ddi_get16(bgep->io_handle, regaddr);
5074 		break;
5075 
5076 	case 4:
5077 		regval = ddi_get32(bgep->io_handle, regaddr);
5078 		break;
5079 
5080 	case 8:
5081 		regval = ddi_get64(bgep->io_handle, regaddr);
5082 		break;
5083 	}
5084 
5085 	ppd->pp_acc_data = regval;
5086 }
5087 
5088 static void bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd);
5089 #pragma	no_inline(bge_chip_poke_nic)
5090 
5091 static void
5092 bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd)
5093 {
5094 	uint64_t regoff;
5095 	uint64_t regval;
5096 	void *regaddr;
5097 
5098 	BGE_TRACE(("bge_chip_poke_nic($%p, $%p)",
5099 	    (void *)bgep, (void *)ppd));
5100 
5101 	regoff = ppd->pp_acc_offset;
5102 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
5103 	regoff &= MWBAR_GRANULE_MASK;
5104 	regoff += NIC_MEM_WINDOW_OFFSET;
5105 	regaddr = PIO_ADDR(bgep, regoff);
5106 	regval = ppd->pp_acc_data;
5107 
5108 	switch (ppd->pp_acc_size) {
5109 	case 1:
5110 		ddi_put8(bgep->io_handle, regaddr, regval);
5111 		break;
5112 
5113 	case 2:
5114 		ddi_put16(bgep->io_handle, regaddr, regval);
5115 		break;
5116 
5117 	case 4:
5118 		ddi_put32(bgep->io_handle, regaddr, regval);
5119 		break;
5120 
5121 	case 8:
5122 		ddi_put64(bgep->io_handle, regaddr, regval);
5123 		break;
5124 	}
5125 	BGE_PCICHK(bgep);
5126 }
5127 
5128 static void bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd);
5129 #pragma	no_inline(bge_chip_peek_mii)
5130 
5131 static void
5132 bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd)
5133 {
5134 	BGE_TRACE(("bge_chip_peek_mii($%p, $%p)",
5135 	    (void *)bgep, (void *)ppd));
5136 
5137 	ppd->pp_acc_data = bge_mii_get16(bgep, ppd->pp_acc_offset/2);
5138 }
5139 
5140 static void bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd);
5141 #pragma	no_inline(bge_chip_poke_mii)
5142 
5143 static void
5144 bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd)
5145 {
5146 	BGE_TRACE(("bge_chip_poke_mii($%p, $%p)",
5147 	    (void *)bgep, (void *)ppd));
5148 
5149 	bge_mii_put16(bgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
5150 }
5151 
5152 #if	BGE_SEE_IO32
5153 
5154 static void bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
5155 #pragma	no_inline(bge_chip_peek_seeprom)
5156 
5157 static void
5158 bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
5159 {
5160 	uint32_t data;
5161 	int err;
5162 
5163 	BGE_TRACE(("bge_chip_peek_seeprom($%p, $%p)",
5164 	    (void *)bgep, (void *)ppd));
5165 
5166 	err = bge_nvmem_rw32(bgep, BGE_SEE_READ, ppd->pp_acc_offset, &data);
5167 	ppd->pp_acc_data = err ? ~0ull : data;
5168 }
5169 
5170 static void bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
5171 #pragma	no_inline(bge_chip_poke_seeprom)
5172 
5173 static void
5174 bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
5175 {
5176 	uint32_t data;
5177 
5178 	BGE_TRACE(("bge_chip_poke_seeprom($%p, $%p)",
5179 	    (void *)bgep, (void *)ppd));
5180 
5181 	data = ppd->pp_acc_data;
5182 	(void) bge_nvmem_rw32(bgep, BGE_SEE_WRITE, ppd->pp_acc_offset, &data);
5183 }
5184 #endif	/* BGE_SEE_IO32 */
5185 
5186 #if	BGE_FLASH_IO32
5187 
5188 static void bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd);
5189 #pragma	no_inline(bge_chip_peek_flash)
5190 
5191 static void
5192 bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd)
5193 {
5194 	uint32_t data;
5195 	int err;
5196 
5197 	BGE_TRACE(("bge_chip_peek_flash($%p, $%p)",
5198 	    (void *)bgep, (void *)ppd));
5199 
5200 	err = bge_nvmem_rw32(bgep, BGE_FLASH_READ, ppd->pp_acc_offset, &data);
5201 	ppd->pp_acc_data = err ? ~0ull : data;
5202 }
5203 
5204 static void bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd);
5205 #pragma	no_inline(bge_chip_poke_flash)
5206 
5207 static void
5208 bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd)
5209 {
5210 	uint32_t data;
5211 
5212 	BGE_TRACE(("bge_chip_poke_flash($%p, $%p)",
5213 	    (void *)bgep, (void *)ppd));
5214 
5215 	data = ppd->pp_acc_data;
5216 	(void) bge_nvmem_rw32(bgep, BGE_FLASH_WRITE,
5217 	    ppd->pp_acc_offset, &data);
5218 }
5219 #endif	/* BGE_FLASH_IO32 */
5220 
5221 static void bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd);
5222 #pragma	no_inline(bge_chip_peek_mem)
5223 
5224 static void
5225 bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd)
5226 {
5227 	uint64_t regval;
5228 	void *vaddr;
5229 
5230 	BGE_TRACE(("bge_chip_peek_bge($%p, $%p)",
5231 	    (void *)bgep, (void *)ppd));
5232 
5233 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5234 
5235 	switch (ppd->pp_acc_size) {
5236 	case 1:
5237 		regval = *(uint8_t *)vaddr;
5238 		break;
5239 
5240 	case 2:
5241 		regval = *(uint16_t *)vaddr;
5242 		break;
5243 
5244 	case 4:
5245 		regval = *(uint32_t *)vaddr;
5246 		break;
5247 
5248 	case 8:
5249 		regval = *(uint64_t *)vaddr;
5250 		break;
5251 	}
5252 
5253 	BGE_DEBUG(("bge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
5254 	    (void *)bgep, (void *)ppd, regval, vaddr));
5255 
5256 	ppd->pp_acc_data = regval;
5257 }
5258 
5259 static void bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd);
5260 #pragma	no_inline(bge_chip_poke_mem)
5261 
5262 static void
5263 bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd)
5264 {
5265 	uint64_t regval;
5266 	void *vaddr;
5267 
5268 	BGE_TRACE(("bge_chip_poke_mem($%p, $%p)",
5269 	    (void *)bgep, (void *)ppd));
5270 
5271 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5272 	regval = ppd->pp_acc_data;
5273 
5274 	BGE_DEBUG(("bge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
5275 	    (void *)bgep, (void *)ppd, regval, vaddr));
5276 
5277 	switch (ppd->pp_acc_size) {
5278 	case 1:
5279 		*(uint8_t *)vaddr = (uint8_t)regval;
5280 		break;
5281 
5282 	case 2:
5283 		*(uint16_t *)vaddr = (uint16_t)regval;
5284 		break;
5285 
5286 	case 4:
5287 		*(uint32_t *)vaddr = (uint32_t)regval;
5288 		break;
5289 
5290 	case 8:
5291 		*(uint64_t *)vaddr = (uint64_t)regval;
5292 		break;
5293 	}
5294 }
5295 
5296 static enum ioc_reply bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5297 					struct iocblk *iocp);
5298 #pragma	no_inline(bge_pp_ioctl)
5299 
5300 static enum ioc_reply
5301 bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5302 {
5303 	void (*ppfn)(bge_t *bgep, bge_peekpoke_t *ppd);
5304 	bge_peekpoke_t *ppd;
5305 	dma_area_t *areap;
5306 	uint64_t sizemask;
5307 	uint64_t mem_va;
5308 	uint64_t maxoff;
5309 	boolean_t peek;
5310 
5311 	switch (cmd) {
5312 	default:
5313 		/* NOTREACHED */
5314 		bge_error(bgep, "bge_pp_ioctl: invalid cmd 0x%x", cmd);
5315 		return (IOC_INVAL);
5316 
5317 	case BGE_PEEK:
5318 		peek = B_TRUE;
5319 		break;
5320 
5321 	case BGE_POKE:
5322 		peek = B_FALSE;
5323 		break;
5324 	}
5325 
5326 	/*
5327 	 * Validate format of ioctl
5328 	 */
5329 	if (iocp->ioc_count != sizeof (bge_peekpoke_t))
5330 		return (IOC_INVAL);
5331 	if (mp->b_cont == NULL)
5332 		return (IOC_INVAL);
5333 	ppd = (void *)mp->b_cont->b_rptr;
5334 
5335 	/*
5336 	 * Validate request parameters
5337 	 */
5338 	switch (ppd->pp_acc_space) {
5339 	default:
5340 		return (IOC_INVAL);
5341 
5342 	case BGE_PP_SPACE_CFG:
5343 		/*
5344 		 * Config space
5345 		 */
5346 		sizemask = 8|4|2|1;
5347 		mem_va = 0;
5348 		maxoff = PCI_CONF_HDR_SIZE;
5349 		ppfn = peek ? bge_chip_peek_cfg : bge_chip_poke_cfg;
5350 		break;
5351 
5352 	case BGE_PP_SPACE_REG:
5353 		/*
5354 		 * Memory-mapped I/O space
5355 		 */
5356 		sizemask = 8|4|2|1;
5357 		mem_va = 0;
5358 		maxoff = RIAAR_REGISTER_MAX;
5359 		ppfn = peek ? bge_chip_peek_reg : bge_chip_poke_reg;
5360 		break;
5361 
5362 	case BGE_PP_SPACE_NIC:
5363 		/*
5364 		 * NIC on-chip memory
5365 		 */
5366 		sizemask = 8|4|2|1;
5367 		mem_va = 0;
5368 		maxoff = MWBAR_ONCHIP_MAX;
5369 		ppfn = peek ? bge_chip_peek_nic : bge_chip_poke_nic;
5370 		break;
5371 
5372 	case BGE_PP_SPACE_MII:
5373 		/*
5374 		 * PHY's MII registers
5375 		 * NB: all PHY registers are two bytes, but the
5376 		 * addresses increment in ones (word addressing).
5377 		 * So we scale the address here, then undo the
5378 		 * transformation inside the peek/poke functions.
5379 		 */
5380 		ppd->pp_acc_offset *= 2;
5381 		sizemask = 2;
5382 		mem_va = 0;
5383 		maxoff = (MII_MAXREG+1)*2;
5384 		ppfn = peek ? bge_chip_peek_mii : bge_chip_poke_mii;
5385 		break;
5386 
5387 #if	BGE_SEE_IO32
5388 	case BGE_PP_SPACE_SEEPROM:
5389 		/*
5390 		 * Attached SEEPROM(s), if any.
5391 		 * NB: we use the high-order bits of the 'address' as
5392 		 * a device select to accommodate multiple SEEPROMS,
5393 		 * If each one is the maximum size (64kbytes), this
5394 		 * makes them appear contiguous.  Otherwise, there may
5395 		 * be holes in the mapping.  ENxS doesn't have any
5396 		 * SEEPROMs anyway ...
5397 		 */
5398 		sizemask = 4;
5399 		mem_va = 0;
5400 		maxoff = SEEPROM_DEV_AND_ADDR_MASK;
5401 		ppfn = peek ? bge_chip_peek_seeprom : bge_chip_poke_seeprom;
5402 		break;
5403 #endif	/* BGE_SEE_IO32 */
5404 
5405 #if	BGE_FLASH_IO32
5406 	case BGE_PP_SPACE_FLASH:
5407 		/*
5408 		 * Attached Flash device (if any); a maximum of one device
5409 		 * is currently supported.  But it can be up to 1MB (unlike
5410 		 * the 64k limit on SEEPROMs) so why would you need more ;-)
5411 		 */
5412 		sizemask = 4;
5413 		mem_va = 0;
5414 		maxoff = NVM_FLASH_ADDR_MASK;
5415 		ppfn = peek ? bge_chip_peek_flash : bge_chip_poke_flash;
5416 		break;
5417 #endif	/* BGE_FLASH_IO32 */
5418 
5419 	case BGE_PP_SPACE_BGE:
5420 		/*
5421 		 * BGE data structure!
5422 		 */
5423 		sizemask = 8|4|2|1;
5424 		mem_va = (uintptr_t)bgep;
5425 		maxoff = sizeof (*bgep);
5426 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
5427 		break;
5428 
5429 	case BGE_PP_SPACE_STATUS:
5430 	case BGE_PP_SPACE_STATISTICS:
5431 	case BGE_PP_SPACE_TXDESC:
5432 	case BGE_PP_SPACE_TXBUFF:
5433 	case BGE_PP_SPACE_RXDESC:
5434 	case BGE_PP_SPACE_RXBUFF:
5435 		/*
5436 		 * Various DMA_AREAs
5437 		 */
5438 		switch (ppd->pp_acc_space) {
5439 		case BGE_PP_SPACE_TXDESC:
5440 			areap = &bgep->tx_desc;
5441 			break;
5442 		case BGE_PP_SPACE_TXBUFF:
5443 			areap = &bgep->tx_buff[0];
5444 			break;
5445 		case BGE_PP_SPACE_RXDESC:
5446 			areap = &bgep->rx_desc[0];
5447 			break;
5448 		case BGE_PP_SPACE_RXBUFF:
5449 			areap = &bgep->rx_buff[0];
5450 			break;
5451 		case BGE_PP_SPACE_STATUS:
5452 			areap = &bgep->status_block;
5453 			break;
5454 		case BGE_PP_SPACE_STATISTICS:
5455 			if (bgep->chipid.statistic_type == BGE_STAT_BLK)
5456 				areap = &bgep->statistics;
5457 			break;
5458 		}
5459 
5460 		sizemask = 8|4|2|1;
5461 		mem_va = (uintptr_t)areap->mem_va;
5462 		maxoff = areap->alength;
5463 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
5464 		break;
5465 	}
5466 
5467 	switch (ppd->pp_acc_size) {
5468 	default:
5469 		return (IOC_INVAL);
5470 
5471 	case 8:
5472 	case 4:
5473 	case 2:
5474 	case 1:
5475 		if ((ppd->pp_acc_size & sizemask) == 0)
5476 			return (IOC_INVAL);
5477 		break;
5478 	}
5479 
5480 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
5481 		return (IOC_INVAL);
5482 
5483 	if (ppd->pp_acc_offset >= maxoff)
5484 		return (IOC_INVAL);
5485 
5486 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
5487 		return (IOC_INVAL);
5488 
5489 	/*
5490 	 * All OK - go do it!
5491 	 */
5492 	ppd->pp_acc_offset += mem_va;
5493 	(*ppfn)(bgep, ppd);
5494 	return (peek ? IOC_REPLY : IOC_ACK);
5495 }
5496 
5497 static enum ioc_reply bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5498 					struct iocblk *iocp);
5499 #pragma	no_inline(bge_diag_ioctl)
5500 
5501 static enum ioc_reply
5502 bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5503 {
5504 	ASSERT(mutex_owned(bgep->genlock));
5505 
5506 	switch (cmd) {
5507 	default:
5508 		/* NOTREACHED */
5509 		bge_error(bgep, "bge_diag_ioctl: invalid cmd 0x%x", cmd);
5510 		return (IOC_INVAL);
5511 
5512 	case BGE_DIAG:
5513 		/*
5514 		 * Currently a no-op
5515 		 */
5516 		return (IOC_ACK);
5517 
5518 	case BGE_PEEK:
5519 	case BGE_POKE:
5520 		return (bge_pp_ioctl(bgep, cmd, mp, iocp));
5521 
5522 	case BGE_PHY_RESET:
5523 		return (IOC_RESTART_ACK);
5524 
5525 	case BGE_SOFT_RESET:
5526 	case BGE_HARD_RESET:
5527 		/*
5528 		 * Reset and reinitialise the 570x hardware
5529 		 */
5530 		bgep->bge_chip_state = BGE_CHIP_FAULT;
5531 		ddi_trigger_softintr(bgep->factotum_id);
5532 		(void) bge_restart(bgep, cmd == BGE_HARD_RESET);
5533 		return (IOC_ACK);
5534 	}
5535 
5536 	/* NOTREACHED */
5537 }
5538 
5539 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
5540 
5541 static enum ioc_reply bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5542 				    struct iocblk *iocp);
5543 #pragma	no_inline(bge_mii_ioctl)
5544 
5545 static enum ioc_reply
5546 bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5547 {
5548 	struct bge_mii_rw *miirwp;
5549 
5550 	/*
5551 	 * Validate format of ioctl
5552 	 */
5553 	if (iocp->ioc_count != sizeof (struct bge_mii_rw))
5554 		return (IOC_INVAL);
5555 	if (mp->b_cont == NULL)
5556 		return (IOC_INVAL);
5557 	miirwp = (void *)mp->b_cont->b_rptr;
5558 
5559 	/*
5560 	 * Validate request parameters ...
5561 	 */
5562 	if (miirwp->mii_reg > MII_MAXREG)
5563 		return (IOC_INVAL);
5564 
5565 	switch (cmd) {
5566 	default:
5567 		/* NOTREACHED */
5568 		bge_error(bgep, "bge_mii_ioctl: invalid cmd 0x%x", cmd);
5569 		return (IOC_INVAL);
5570 
5571 	case BGE_MII_READ:
5572 		miirwp->mii_data = bge_mii_get16(bgep, miirwp->mii_reg);
5573 		return (IOC_REPLY);
5574 
5575 	case BGE_MII_WRITE:
5576 		bge_mii_put16(bgep, miirwp->mii_reg, miirwp->mii_data);
5577 		return (IOC_ACK);
5578 	}
5579 
5580 	/* NOTREACHED */
5581 }
5582 
5583 #if	BGE_SEE_IO32
5584 
5585 static enum ioc_reply bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5586 				    struct iocblk *iocp);
5587 #pragma	no_inline(bge_see_ioctl)
5588 
5589 static enum ioc_reply
5590 bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5591 {
5592 	struct bge_see_rw *seerwp;
5593 
5594 	/*
5595 	 * Validate format of ioctl
5596 	 */
5597 	if (iocp->ioc_count != sizeof (struct bge_see_rw))
5598 		return (IOC_INVAL);
5599 	if (mp->b_cont == NULL)
5600 		return (IOC_INVAL);
5601 	seerwp = (void *)mp->b_cont->b_rptr;
5602 
5603 	/*
5604 	 * Validate request parameters ...
5605 	 */
5606 	if (seerwp->see_addr & ~SEEPROM_DEV_AND_ADDR_MASK)
5607 		return (IOC_INVAL);
5608 
5609 	switch (cmd) {
5610 	default:
5611 		/* NOTREACHED */
5612 		bge_error(bgep, "bge_see_ioctl: invalid cmd 0x%x", cmd);
5613 		return (IOC_INVAL);
5614 
5615 	case BGE_SEE_READ:
5616 	case BGE_SEE_WRITE:
5617 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
5618 		    seerwp->see_addr, &seerwp->see_data);
5619 		return (IOC_REPLY);
5620 	}
5621 
5622 	/* NOTREACHED */
5623 }
5624 
5625 #endif	/* BGE_SEE_IO32 */
5626 
5627 #if	BGE_FLASH_IO32
5628 
5629 static enum ioc_reply bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5630 				    struct iocblk *iocp);
5631 #pragma	no_inline(bge_flash_ioctl)
5632 
5633 static enum ioc_reply
5634 bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5635 {
5636 	struct bge_flash_rw *flashrwp;
5637 
5638 	/*
5639 	 * Validate format of ioctl
5640 	 */
5641 	if (iocp->ioc_count != sizeof (struct bge_flash_rw))
5642 		return (IOC_INVAL);
5643 	if (mp->b_cont == NULL)
5644 		return (IOC_INVAL);
5645 	flashrwp = (void *)mp->b_cont->b_rptr;
5646 
5647 	/*
5648 	 * Validate request parameters ...
5649 	 */
5650 	if (flashrwp->flash_addr & ~NVM_FLASH_ADDR_MASK)
5651 		return (IOC_INVAL);
5652 
5653 	switch (cmd) {
5654 	default:
5655 		/* NOTREACHED */
5656 		bge_error(bgep, "bge_flash_ioctl: invalid cmd 0x%x", cmd);
5657 		return (IOC_INVAL);
5658 
5659 	case BGE_FLASH_READ:
5660 	case BGE_FLASH_WRITE:
5661 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
5662 		    flashrwp->flash_addr, &flashrwp->flash_data);
5663 		return (IOC_REPLY);
5664 	}
5665 
5666 	/* NOTREACHED */
5667 }
5668 
5669 #endif	/* BGE_FLASH_IO32 */
5670 
5671 enum ioc_reply bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp,
5672 				struct iocblk *iocp);
5673 #pragma	no_inline(bge_chip_ioctl)
5674 
5675 enum ioc_reply
5676 bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
5677 {
5678 	int cmd;
5679 
5680 	BGE_TRACE(("bge_chip_ioctl($%p, $%p, $%p, $%p)",
5681 	    (void *)bgep, (void *)wq, (void *)mp, (void *)iocp));
5682 
5683 	ASSERT(mutex_owned(bgep->genlock));
5684 
5685 	cmd = iocp->ioc_cmd;
5686 	switch (cmd) {
5687 	default:
5688 		/* NOTREACHED */
5689 		bge_error(bgep, "bge_chip_ioctl: invalid cmd 0x%x", cmd);
5690 		return (IOC_INVAL);
5691 
5692 	case BGE_DIAG:
5693 	case BGE_PEEK:
5694 	case BGE_POKE:
5695 	case BGE_PHY_RESET:
5696 	case BGE_SOFT_RESET:
5697 	case BGE_HARD_RESET:
5698 #if	BGE_DEBUGGING || BGE_DO_PPIO
5699 		return (bge_diag_ioctl(bgep, cmd, mp, iocp));
5700 #else
5701 		return (IOC_INVAL);
5702 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
5703 
5704 	case BGE_MII_READ:
5705 	case BGE_MII_WRITE:
5706 		return (bge_mii_ioctl(bgep, cmd, mp, iocp));
5707 
5708 #if	BGE_SEE_IO32
5709 	case BGE_SEE_READ:
5710 	case BGE_SEE_WRITE:
5711 		return (bge_see_ioctl(bgep, cmd, mp, iocp));
5712 #endif	/* BGE_SEE_IO32 */
5713 
5714 #if	BGE_FLASH_IO32
5715 	case BGE_FLASH_READ:
5716 	case BGE_FLASH_WRITE:
5717 		return (bge_flash_ioctl(bgep, cmd, mp, iocp));
5718 #endif	/* BGE_FLASH_IO32 */
5719 	}
5720 
5721 	/* NOTREACHED */
5722 }
5723 
5724 /* ARGSUSED */
5725 void
5726 bge_chip_blank(void *arg, time_t ticks, uint_t count, int flag)
5727 {
5728 	recv_ring_t *rrp = arg;
5729 	bge_t *bgep = rrp->bgep;
5730 
5731 	mutex_enter(bgep->genlock);
5732 	rrp->poll_flag = flag;
5733 #ifdef NOT_YET
5734 	/*
5735 	 * XXX-Sunay: Since most broadcom cards support only one
5736 	 * interrupt but multiple rx rings, we can't disable the
5737 	 * physical interrupt. This need to be done via capability
5738 	 * negotiation depending on the NIC.
5739 	 */
5740 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, ticks);
5741 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, count);
5742 #endif
5743 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5744 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
5745 	mutex_exit(bgep->genlock);
5746 }
5747 
5748 #ifdef BGE_IPMI_ASF
5749 
5750 uint32_t
5751 bge_nic_read32(bge_t *bgep, bge_regno_t addr)
5752 {
5753 	uint32_t data;
5754 
5755 #ifndef __sparc
5756 	if (!bgep->asf_wordswapped) {
5757 		/* a workaround word swap error */
5758 		if (addr & 4)
5759 			addr = addr - 4;
5760 		else
5761 			addr = addr + 4;
5762 	}
5763 #else
5764 	if (DEVICE_5717_SERIES_CHIPSETS(bgep))
5765 		addr = LE_32(addr);
5766 #endif
5767 
5768 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
5769 	data = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR);
5770 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
5771 
5772 	data = LE_32(data);
5773 
5774 	BGE_DEBUG(("bge_nic_read32($%p, 0x%x) => 0x%x",
5775 	    (void *)bgep, addr, data));
5776 
5777 	return (data);
5778 }
5779 
5780 void
5781 bge_asf_update_status(bge_t *bgep)
5782 {
5783 	uint32_t event;
5784 
5785 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_ALIVE);
5786 	bge_nic_put32(bgep, BGE_CMD_LENGTH_MAILBOX, 4);
5787 	bge_nic_put32(bgep, BGE_CMD_DATA_MAILBOX,   3);
5788 
5789 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5790 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
5791 }
5792 
5793 
5794 /*
5795  * The driver is supposed to notify ASF that the OS is still running
5796  * every three seconds, otherwise the management server may attempt
5797  * to reboot the machine.  If it hasn't actually failed, this is
5798  * not a desirable result.  However, this isn't running as a real-time
5799  * thread, and even if it were, it might not be able to generate the
5800  * heartbeat in a timely manner due to system load.  As it isn't a
5801  * significant strain on the machine, we will set the interval to half
5802  * of the required value.
5803  */
5804 void
5805 bge_asf_heartbeat(void *arg)
5806 {
5807 	bge_t *bgep = (bge_t *)arg;
5808 
5809 	mutex_enter(bgep->genlock);
5810 	bge_asf_update_status((bge_t *)bgep);
5811 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5812 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
5813 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
5814 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
5815 	mutex_exit(bgep->genlock);
5816 	((bge_t *)bgep)->asf_timeout_id = timeout(bge_asf_heartbeat, bgep,
5817 	    drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
5818 }
5819 
5820 
5821 void
5822 bge_asf_stop_timer(bge_t *bgep)
5823 {
5824 	timeout_id_t tmp_id = 0;
5825 
5826 	while ((bgep->asf_timeout_id != 0) &&
5827 	    (tmp_id != bgep->asf_timeout_id)) {
5828 		tmp_id = bgep->asf_timeout_id;
5829 		(void) untimeout(tmp_id);
5830 	}
5831 	bgep->asf_timeout_id = 0;
5832 }
5833 
5834 
5835 
5836 /*
5837  * This function should be placed at the earliest position of bge_attach().
5838  */
5839 void
5840 bge_asf_get_config(bge_t *bgep)
5841 {
5842 	uint32_t nicsig;
5843 	uint32_t niccfg;
5844 
5845 	bgep->asf_enabled = B_FALSE;
5846 	nicsig = bge_nic_read32(bgep, BGE_NIC_DATA_SIG_ADDR);
5847 	if (nicsig == BGE_NIC_DATA_SIG) {
5848 		niccfg = bge_nic_read32(bgep, BGE_NIC_DATA_NIC_CFG_ADDR);
5849 		if (niccfg & BGE_NIC_CFG_ENABLE_ASF)
5850 			/*
5851 			 * Here, we don't consider BAXTER, because BGE haven't
5852 			 * supported BAXTER (that is 5752). Also, as I know,
5853 			 * BAXTER doesn't support ASF feature.
5854 			 */
5855 			bgep->asf_enabled = B_TRUE;
5856 		else
5857 			bgep->asf_enabled = B_FALSE;
5858 	} else
5859 		bgep->asf_enabled = B_FALSE;
5860 }
5861 
5862 
5863 void
5864 bge_asf_pre_reset_operations(bge_t *bgep, uint32_t mode)
5865 {
5866 	uint32_t tries;
5867 	uint32_t event;
5868 
5869 	ASSERT(bgep->asf_enabled);
5870 
5871 	/* Issues "pause firmware" command and wait for ACK */
5872 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_PAUSE_FW);
5873 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5874 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
5875 
5876 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5877 	tries = 0;
5878 	while ((event & RRER_ASF_EVENT) && (tries < 100)) {
5879 		drv_usecwait(1);
5880 		tries ++;
5881 		event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5882 	}
5883 
5884 	bge_nic_put32(bgep, BGE_FIRMWARE_MAILBOX,
5885 	    BGE_MAGIC_NUM_FIRMWARE_INIT_DONE);
5886 
5887 	if (bgep->asf_newhandshake) {
5888 		switch (mode) {
5889 		case BGE_INIT_RESET:
5890 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5891 			    BGE_DRV_STATE_START);
5892 			break;
5893 		case BGE_SHUTDOWN_RESET:
5894 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5895 			    BGE_DRV_STATE_UNLOAD);
5896 			break;
5897 		case BGE_SUSPEND_RESET:
5898 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5899 			    BGE_DRV_STATE_SUSPEND);
5900 			break;
5901 		default:
5902 			break;
5903 		}
5904 	}
5905 }
5906 
5907 
5908 void
5909 bge_asf_post_reset_old_mode(bge_t *bgep, uint32_t mode)
5910 {
5911 	switch (mode) {
5912 	case BGE_INIT_RESET:
5913 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5914 		    BGE_DRV_STATE_START);
5915 		break;
5916 	case BGE_SHUTDOWN_RESET:
5917 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5918 		    BGE_DRV_STATE_UNLOAD);
5919 		break;
5920 	case BGE_SUSPEND_RESET:
5921 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5922 		    BGE_DRV_STATE_SUSPEND);
5923 		break;
5924 	default:
5925 		break;
5926 	}
5927 }
5928 
5929 
5930 void
5931 bge_asf_post_reset_new_mode(bge_t *bgep, uint32_t mode)
5932 {
5933 	switch (mode) {
5934 	case BGE_INIT_RESET:
5935 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5936 		    BGE_DRV_STATE_START_DONE);
5937 		break;
5938 	case BGE_SHUTDOWN_RESET:
5939 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5940 		    BGE_DRV_STATE_UNLOAD_DONE);
5941 		break;
5942 	default:
5943 		break;
5944 	}
5945 }
5946 
5947 #endif /* BGE_IPMI_ASF */
5948