xref: /titanic_51/usr/src/uts/common/io/bge/bge_chip2.c (revision 82d15aec0ec806306291ef7cf6b85485d8645a69)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2010-2013, by Broadcom, Inc.
24  * All Rights Reserved.
25  */
26 
27 /*
28  * Copyright (c) 2002, 2010, Oracle and/or its affiliates.
29  * All rights reserved.
30  */
31 
32 #include "bge_impl.h"
33 
34 #define	PIO_ADDR(bgep, offset)	((void *)((caddr_t)(bgep)->io_regs+(offset)))
35 #define	APE_ADDR(bgep, offset)	((void *)((caddr_t)(bgep)->ape_regs+(offset)))
36 
37 /*
38  * Future features ... ?
39  */
40 #define	BGE_CFG_IO8	1	/* 8/16-bit cfg space BIS/BIC	*/
41 #define	BGE_IND_IO32	1	/* indirect access code		*/
42 #define	BGE_SEE_IO32	1	/* SEEPROM access code		*/
43 #define	BGE_FLASH_IO32	1	/* FLASH access code		*/
44 
45 /*
46  * BGE MSI tunable:
47  *
48  * By default MSI is enabled on all supported platforms but it is disabled
49  * for some Broadcom chips due to known MSI hardware issues. Currently MSI
50  * is enabled only for 5714C A2 and 5715C A2 broadcom chips.
51  */
52 boolean_t bge_enable_msi = B_TRUE;
53 
54 /*
55  * PCI-X/PCI-E relaxed ordering tunable for OS/Nexus driver
56  */
57 boolean_t bge_relaxed_ordering = B_TRUE;
58 
59 /*
60  * Patchable globals:
61  *
62  *	bge_autorecover
63  *		Enables/disables automatic recovery after fault detection
64  *
65  *	bge_mlcr_default
66  *		Value to program into the MLCR; controls the chip's GPIO pins
67  *
68  *	bge_dma_{rd,wr}prio
69  *		Relative priorities of DMA reads & DMA writes respectively.
70  *		These may each be patched to any value 0-3.  Equal values
71  *		will give "fair" (round-robin) arbitration for PCI access.
72  *		Unequal values will give one or the other function priority.
73  *
74  *	bge_dma_rwctrl
75  *		Value to put in the Read/Write DMA control register.  See
76  *	        the Broadcom PRM for things you can fiddle with in this
77  *		register ...
78  *
79  *	bge_{tx,rx}_{count,ticks}_{norm,intr}
80  *		Send/receive interrupt coalescing parameters.  Counts are
81  *		#s of descriptors, ticks are in microseconds.  *norm* values
82  *		apply between status updates/interrupts; the *intr* values
83  *		refer to the 'during-interrupt' versions - see the PRM.
84  *
85  *		NOTE: these values have been determined by measurement. They
86  *		differ significantly from the values recommended in the PRM.
87  */
88 static uint32_t bge_autorecover = 1;
89 static uint32_t bge_mlcr_default_5714 = MLCR_DEFAULT_5714;
90 
91 static uint32_t bge_dma_rdprio = 1;
92 static uint32_t bge_dma_wrprio = 0;
93 static uint32_t bge_dma_rwctrl = PDRWCR_VAR_DEFAULT;
94 static uint32_t bge_dma_rwctrl_5721 = PDRWCR_VAR_5721;
95 static uint32_t bge_dma_rwctrl_5714 = PDRWCR_VAR_5714;
96 static uint32_t bge_dma_rwctrl_5715 = PDRWCR_VAR_5715;
97 
98 uint32_t bge_rx_ticks_norm = 128;
99 uint32_t bge_tx_ticks_norm = 512;
100 uint32_t bge_rx_count_norm = 8;
101 uint32_t bge_tx_count_norm = 128;
102 
103 static uint32_t bge_rx_ticks_intr = 128;
104 static uint32_t bge_tx_ticks_intr = 0;		/* 8 for FJ2+ !?!?	*/
105 static uint32_t bge_rx_count_intr = 2;
106 static uint32_t bge_tx_count_intr = 0;
107 
108 /*
109  * Memory pool configuration parameters.
110  *
111  * These are generally specific to each member of the chip family, since
112  * each one may have a different memory size/configuration.
113  *
114  * Setting the mbuf pool length for a specific type of chip to 0 inhibits
115  * the driver from programming the various registers; instead they are left
116  * at their hardware defaults.  This is the preferred option for later chips
117  * (5705+), whereas the older chips *required* these registers to be set,
118  * since the h/w default was 0 ;-(
119  */
120 static uint32_t bge_mbuf_pool_base	= MBUF_POOL_BASE_DEFAULT;
121 static uint32_t bge_mbuf_pool_base_5704	= MBUF_POOL_BASE_5704;
122 static uint32_t bge_mbuf_pool_base_5705	= MBUF_POOL_BASE_5705;
123 static uint32_t bge_mbuf_pool_base_5721 = MBUF_POOL_BASE_5721;
124 static uint32_t bge_mbuf_pool_len	= MBUF_POOL_LENGTH_DEFAULT;
125 static uint32_t bge_mbuf_pool_len_5704	= MBUF_POOL_LENGTH_5704;
126 static uint32_t bge_mbuf_pool_len_5705	= 0;	/* use h/w default	*/
127 static uint32_t bge_mbuf_pool_len_5721	= 0;
128 
129 /*
130  * Various high and low water marks, thresholds, etc ...
131  *
132  * Note: these are taken from revision 7 of the PRM, and some are different
133  * from both the values in earlier PRMs *and* those determined experimentally
134  * and used in earlier versions of this driver ...
135  */
136 static uint32_t bge_mbuf_hi_water	= MBUF_HIWAT_DEFAULT;
137 static uint32_t bge_mbuf_lo_water_rmac	= MAC_RX_MBUF_LOWAT_DEFAULT;
138 static uint32_t bge_mbuf_lo_water_rdma	= RDMA_MBUF_LOWAT_DEFAULT;
139 
140 static uint32_t bge_dmad_lo_water	= DMAD_POOL_LOWAT_DEFAULT;
141 static uint32_t bge_dmad_hi_water	= DMAD_POOL_HIWAT_DEFAULT;
142 static uint32_t bge_lowat_recv_frames	= LOWAT_MAX_RECV_FRAMES_DEFAULT;
143 
144 static uint32_t bge_replenish_std	= STD_RCV_BD_REPLENISH_DEFAULT;
145 static uint32_t bge_replenish_mini	= MINI_RCV_BD_REPLENISH_DEFAULT;
146 static uint32_t bge_replenish_jumbo	= JUMBO_RCV_BD_REPLENISH_DEFAULT;
147 
148 static uint32_t	bge_watchdog_count	= 1 << 16;
149 static uint16_t bge_dma_miss_limit	= 20;
150 
151 static uint32_t bge_stop_start_on_sync	= 0;
152 
153 /*
154  * bge_intr_max_loop controls the maximum loop number within bge_intr.
155  * When loading NIC with heavy network traffic, it is useful.
156  * Increasing this value could have positive effect to throughput,
157  * but it might also increase ticks of a bge ISR stick on CPU, which might
158  * lead to bad UI interactive experience. So tune this with caution.
159  */
160 static int bge_intr_max_loop = 1;
161 
162 /*
163  * ========== Low-level chip & ring buffer manipulation ==========
164  */
165 
166 #define	BGE_DBG		BGE_DBG_REGS	/* debug flag for this code	*/
167 
168 
169 /*
170  * Config space read-modify-write routines
171  */
172 
173 #if	BGE_CFG_IO8
174 
175 static void bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits);
176 #pragma	inline(bge_cfg_clr16)
177 
178 static void
179 bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits)
180 {
181 	uint16_t regval;
182 
183 	BGE_TRACE(("bge_cfg_clr16($%p, 0x%lx, 0x%x)",
184 	    (void *)bgep, regno, bits));
185 
186 	regval = pci_config_get16(bgep->cfg_handle, regno);
187 
188 	BGE_DEBUG(("bge_cfg_clr16($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
189 	    (void *)bgep, regno, bits, regval, regval & ~bits));
190 
191 	regval &= ~bits;
192 	pci_config_put16(bgep->cfg_handle, regno, regval);
193 }
194 
195 #endif	/* BGE_CFG_IO8 */
196 
197 static void bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
198 #pragma	inline(bge_cfg_clr32)
199 
200 static void
201 bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
202 {
203 	uint32_t regval;
204 
205 	BGE_TRACE(("bge_cfg_clr32($%p, 0x%lx, 0x%x)",
206 	    (void *)bgep, regno, bits));
207 
208 	regval = pci_config_get32(bgep->cfg_handle, regno);
209 
210 	BGE_DEBUG(("bge_cfg_clr32($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
211 	    (void *)bgep, regno, bits, regval, regval & ~bits));
212 
213 	regval &= ~bits;
214 	pci_config_put32(bgep->cfg_handle, regno, regval);
215 }
216 
217 #if	BGE_IND_IO32
218 
219 /*
220  * Indirect access to registers & RISC scratchpads, using config space
221  * accesses only.
222  *
223  * This isn't currently used, but someday we might want to use it for
224  * restoring the Subsystem Device/Vendor registers (which aren't directly
225  * writable in Config Space), or for downloading firmware into the RISCs
226  *
227  * In any case there are endian issues to be resolved before this code is
228  * enabled; the bizarre way that bytes get twisted by this chip AND by
229  * the PCI bridge in SPARC systems mean that we shouldn't enable it until
230  * it's been thoroughly tested for all access sizes on all supported
231  * architectures (SPARC *and* x86!).
232  */
233 uint32_t bge_ind_get32(bge_t *bgep, bge_regno_t regno);
234 #pragma	inline(bge_ind_get32)
235 
236 uint32_t
237 bge_ind_get32(bge_t *bgep, bge_regno_t regno)
238 {
239 	uint32_t val;
240 
241 	BGE_TRACE(("bge_ind_get32($%p, 0x%lx)", (void *)bgep, regno));
242 
243 #ifdef __sparc
244 	if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
245 	    DEVICE_5725_SERIES_CHIPSETS(bgep)) {
246 		regno = LE_32(regno);
247 	}
248 #endif
249 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
250 	val = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_RIADR);
251 
252 	BGE_DEBUG(("bge_ind_get32($%p, 0x%lx) => 0x%x",
253 	    (void *)bgep, regno, val));
254 
255 	val = LE_32(val);
256 
257 	return (val);
258 }
259 
260 void bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val);
261 #pragma	inline(bge_ind_put32)
262 
263 void
264 bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val)
265 {
266 	BGE_TRACE(("bge_ind_put32($%p, 0x%lx, 0x%x)",
267 	    (void *)bgep, regno, val));
268 
269 	val = LE_32(val);
270 #ifdef __sparc
271 	if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
272 	    DEVICE_5725_SERIES_CHIPSETS(bgep)) {
273 		regno = LE_32(regno);
274 	}
275 #endif
276 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
277 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIADR, val);
278 }
279 
280 #endif	/* BGE_IND_IO32 */
281 
282 #if	BGE_DEBUGGING
283 
284 static void bge_pci_check(bge_t *bgep);
285 #pragma	no_inline(bge_pci_check)
286 
287 static void
288 bge_pci_check(bge_t *bgep)
289 {
290 	uint16_t pcistatus;
291 
292 	pcistatus = pci_config_get16(bgep->cfg_handle, PCI_CONF_STAT);
293 	if ((pcistatus & (PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB)) != 0)
294 		BGE_DEBUG(("bge_pci_check($%p): PCI status 0x%x",
295 		    (void *)bgep, pcistatus));
296 }
297 
298 #endif	/* BGE_DEBUGGING */
299 
300 /*
301  * Perform first-stage chip (re-)initialisation, using only config-space
302  * accesses:
303  *
304  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
305  *   returning the data in the structure pointed to by <idp>.
306  * + Configure the target-mode endianness (swap) options.
307  * + Disable interrupts and enable Memory Space accesses.
308  * + Enable or disable Bus Mastering according to the <enable_dma> flag.
309  *
310  * This sequence is adapted from Broadcom document 570X-PG102-R,
311  * page 102, steps 1-3, 6-8 and 11-13.  The omitted parts of the sequence
312  * are 4 and 5 (Reset Core and wait) which are handled elsewhere.
313  *
314  * This function MUST be called before any non-config-space accesses
315  * are made; on this first call <enable_dma> is B_FALSE, and it
316  * effectively performs steps 3-1(!) of the initialisation sequence
317  * (the rest are not required but should be harmless).
318  *
319  * It MUST also be called after a chip reset, as this disables
320  * Memory Space cycles!  In this case, <enable_dma> is B_TRUE, and
321  * it is effectively performing steps 6-8.
322  */
323 void bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma);
324 #pragma	no_inline(bge_chip_cfg_init)
325 
326 void
327 bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma)
328 {
329 	ddi_acc_handle_t handle;
330 	uint16_t command;
331 	uint32_t mhcr;
332 	uint32_t prodid;
333 	uint32_t pci_state;
334 	uint16_t value16;
335 	int i;
336 
337 	BGE_TRACE(("bge_chip_cfg_init($%p, $%p, %d)",
338 	    (void *)bgep, (void *)cidp, enable_dma));
339 
340 	/*
341 	 * Step 3: save PCI cache line size and subsystem vendor ID
342 	 *
343 	 * Read all the config-space registers that characterise the
344 	 * chip, specifically vendor/device/revision/subsystem vendor
345 	 * and subsystem device id.  We expect (but don't check) that
346 	 * (vendor == VENDOR_ID_BROADCOM) && (device == DEVICE_ID_5704)
347 	 *
348 	 * Also save all bus-transaction related registers (cache-line
349 	 * size, bus-grant/latency parameters, etc).  Some of these are
350 	 * cleared by reset, so we'll have to restore them later.  This
351 	 * comes from the Broadcom document 570X-PG102-R ...
352 	 *
353 	 * Note: Broadcom document 570X-PG102-R seems to be in error
354 	 * here w.r.t. the offsets of the Subsystem Vendor ID and
355 	 * Subsystem (Device) ID registers, which are the opposite way
356 	 * round according to the PCI standard.  For good measure, we
357 	 * save/restore both anyway.
358 	 */
359 	handle = bgep->cfg_handle;
360 
361 	/*
362 	 * For some chipsets (e.g., BCM5718), if MHCR_ENABLE_ENDIAN_BYTE_SWAP
363 	 * has been set in PCI_CONF_COMM already, we need to write the
364 	 * byte-swapped value to it. So we just write zero first for simplicity.
365 	 */
366 	cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
367 	if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
368 	    DEVICE_5725_SERIES_CHIPSETS(bgep)) {
369 		pci_config_put32(handle, PCI_CONF_BGE_MHCR, 0);
370 	}
371 
372 	mhcr = pci_config_get32(handle, PCI_CONF_BGE_MHCR);
373 	cidp->asic_rev = (mhcr & MHCR_CHIP_REV_MASK);
374 	cidp->asic_rev_prod_id = 0;
375 	if ((cidp->asic_rev & 0xf0000000) == CHIP_ASIC_REV_USE_PROD_ID_REG) {
376 		prodid = CHIP_ASIC_REV_PROD_ID_REG;
377 		if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
378 		    DEVICE_5725_SERIES_CHIPSETS(bgep)) {
379 			prodid = CHIP_ASIC_REV_PROD_ID_GEN2_REG;
380 		}
381 		cidp->asic_rev_prod_id = pci_config_get32(handle, prodid);
382 	}
383 
384 	cidp->businfo = pci_config_get32(handle, PCI_CONF_BGE_PCISTATE);
385 	cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
386 
387 	cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
388 	cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
389 	cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
390 	cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
391 	cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
392 	cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
393 
394 	/* 5717 C0 is treated just like 5720 A0 */
395 	if (pci_config_get16(bgep->cfg_handle, PCI_CONF_DEVID) ==
396 	    DEVICE_ID_5717_C0) {
397 		cidp->device = DEVICE_ID_5720;
398 	}
399 
400 	BGE_DEBUG(("bge_chip_cfg_init: %s bus is %s and %s; #INTA is %s",
401 	    cidp->businfo & PCISTATE_BUS_IS_PCI ? "PCI" : "PCI-X",
402 	    cidp->businfo & PCISTATE_BUS_IS_FAST ? "fast" : "slow",
403 	    cidp->businfo & PCISTATE_BUS_IS_32_BIT ? "narrow" : "wide",
404 	    cidp->businfo & PCISTATE_INTA_STATE ? "high" : "low"));
405 	BGE_DEBUG(("bge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
406 	    cidp->vendor, cidp->device, cidp->revision));
407 	BGE_DEBUG(("bge_chip_cfg_init: subven 0x%x subdev 0x%x asic_rev 0x%x",
408 	    cidp->subven, cidp->subdev, cidp->asic_rev));
409 	BGE_DEBUG(("bge_chip_cfg_init: clsize %d latency %d command 0x%x",
410 	    cidp->clsize, cidp->latency, cidp->command));
411 
412 	/*
413 	 * Step 2 (also step 6): disable and clear interrupts.
414 	 * Steps 11-13: configure PIO endianness options, and enable
415 	 * indirect register access.  We'll also select any other
416 	 * options controlled by the MHCR (e.g. tagged status, mask
417 	 * interrupt mode) at this stage ...
418 	 *
419 	 * Note: internally, the chip is 64-bit and BIG-endian, but
420 	 * since it talks to the host over a (LITTLE-endian) PCI bus,
421 	 * it normally swaps bytes around at the PCI interface.
422 	 * However, the PCI host bridge on SPARC systems normally
423 	 * swaps the byte lanes around too, since SPARCs are also
424 	 * BIG-endian.  So it turns out that on SPARC, the right
425 	 * option is to tell the chip to swap (and the host bridge
426 	 * will swap back again), whereas on x86 we ask the chip
427 	 * NOT to swap, so the natural little-endianness of the
428 	 * PCI bus is assumed.  Then the only thing that doesn't
429 	 * automatically work right is access to an 8-byte register
430 	 * by a little-endian host; but we don't want to set the
431 	 * MHCR_ENABLE_REGISTER_WORD_SWAP bit because then 4-byte
432 	 * accesses don't go where expected ;-(  So we live with
433 	 * that, and perform word-swaps in software in the few cases
434 	 * where a chip register is defined as an 8-byte value --
435 	 * see the code below for details ...
436 	 *
437 	 * Note: the meaning of the 'MASK_INTERRUPT_MODE' bit isn't
438 	 * very clear in the register description in the PRM, but
439 	 * Broadcom document 570X-PG104-R page 248 explains a little
440 	 * more (under "Broadcom Mask Mode").  The bit changes the way
441 	 * the MASK_PCI_INT_OUTPUT bit works: with MASK_INTERRUPT_MODE
442 	 * clear, the chip interprets MASK_PCI_INT_OUTPUT in the same
443 	 * way as the 5700 did, which isn't very convenient.  Setting
444 	 * the MASK_INTERRUPT_MODE bit makes the MASK_PCI_INT_OUTPUT
445 	 * bit do just what its name says -- MASK the PCI #INTA output
446 	 * (i.e. deassert the signal at the pin) leaving all internal
447 	 * state unchanged.  This is much more convenient for our
448 	 * interrupt handler, so we set MASK_INTERRUPT_MODE here.
449 	 *
450 	 * Note: the inconvenient semantics of the interrupt mailbox
451 	 * (nonzero disables and acknowledges/clears the interrupt,
452 	 * zero enables AND CLEARS it) would make race conditions
453 	 * likely in the interrupt handler:
454 	 *
455 	 * (1)	acknowledge & disable interrupts
456 	 * (2)	while (more to do)
457 	 * 		process packets
458 	 * (3)	enable interrupts -- also clears pending
459 	 *
460 	 * If the chip received more packets and internally generated
461 	 * an interrupt between the check at (2) and the mbox write
462 	 * at (3), this interrupt would be lost :-(
463 	 *
464 	 * The best way to avoid this is to use TAGGED STATUS mode,
465 	 * where the chip includes a unique tag in each status block
466 	 * update, and the host, when re-enabling interrupts, passes
467 	 * the last tag it saw back to the chip; then the chip can
468 	 * see whether the host is truly up to date, and regenerate
469 	 * its interrupt if not.
470 	 */
471 	mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
472 	       MHCR_ENABLE_PCI_STATE_RW |
473 	       MHCR_ENABLE_TAGGED_STATUS_MODE |
474 	       MHCR_MASK_INTERRUPT_MODE |
475 	       MHCR_CLEAR_INTERRUPT_INTA;
476 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
477 		mhcr |= MHCR_MASK_PCI_INT_OUTPUT;
478 
479 #ifdef	_BIG_ENDIAN
480 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
481 #endif	/* _BIG_ENDIAN */
482 	pci_config_put32(handle, PCI_CONF_BGE_MHCR, mhcr);
483 
484 #ifdef BGE_IPMI_ASF
485 	bgep->asf_wordswapped = B_FALSE;
486 #endif
487 
488 	pci_state = (PCISTATE_EXT_ROM_ENABLE | PCISTATE_EXT_ROM_RETRY);
489 	/* allow reads and writes to the APE register and memory space */
490 	if (bgep->ape_enabled) {
491 		pci_state |= PCISTATE_ALLOW_APE_CTLSPC_WR |
492 		    PCISTATE_ALLOW_APE_SHMEM_WR | PCISTATE_ALLOW_APE_PSPACE_WR;
493 	}
494 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_PCISTATE, pci_state);
495 
496 	/*
497 	 * Step 1 (also step 7): Enable PCI Memory Space accesses
498 	 *			 Disable Memory Write/Invalidate
499 	 *			 Enable or disable Bus Mastering
500 	 *
501 	 * Note that all other bits are taken from the original value saved
502 	 * the first time through here, rather than from the current register
503 	 * value, 'cos that will have been cleared by a soft RESET since.
504 	 * In this way we preserve the OBP/nexus-parent's preferred settings
505 	 * of the parity-error and system-error enable bits across multiple
506 	 * chip RESETs.
507 	 */
508 	command = bgep->chipid.command | PCI_COMM_MAE;
509 	command &= ~(PCI_COMM_ME|PCI_COMM_MEMWR_INVAL);
510 	if (enable_dma)
511 		command |= PCI_COMM_ME;
512 	/*
513 	 * on BCM5714 revision A0, false parity error gets generated
514 	 * due to a logic bug. Provide a workaround by disabling parity
515 	 * error.
516 	 */
517 	if (((cidp->device == DEVICE_ID_5714C) ||
518 	    (cidp->device == DEVICE_ID_5714S)) &&
519 	    (cidp->revision == REVISION_ID_5714_A0)) {
520 		command &= ~PCI_COMM_PARITY_DETECT;
521 	}
522 	pci_config_put16(handle, PCI_CONF_COMM, command);
523 
524 	/*
525 	 * On some PCI-E device, there were instances when
526 	 * the device was still link training.
527 	 */
528 	if (bgep->chipid.pci_type == BGE_PCI_E) {
529 		i = 0;
530 		value16 = pci_config_get16(handle, PCI_CONF_COMM);
531 		while ((value16 != command) && (i < 100)) {
532 			drv_usecwait(200);
533 			value16 = pci_config_get16(handle, PCI_CONF_COMM);
534 			++i;
535 		}
536 	}
537 
538 	/*
539 	 * Clear any remaining error status bits
540 	 */
541 	pci_config_put16(handle, PCI_CONF_STAT, ~0);
542 
543 	/*
544 	 * Do following if and only if the device is NOT BCM5714C OR
545 	 * BCM5715C
546 	 */
547 	if (!((cidp->device == DEVICE_ID_5714C) ||
548 	    (cidp->device == DEVICE_ID_5715C))) {
549 		/*
550 		 * Make sure these indirect-access registers are sane
551 		 * rather than random after power-up or reset
552 		 */
553 		pci_config_put32(handle, PCI_CONF_BGE_RIAAR, 0);
554 		pci_config_put32(handle, PCI_CONF_BGE_MWBAR, 0);
555 	}
556 	/*
557 	 * Step 8: Disable PCI-X/PCI-E Relaxed Ordering
558 	 */
559 	bge_cfg_clr16(bgep, PCIX_CONF_COMM, PCIX_COMM_RELAXED);
560 
561 	if (cidp->pci_type == BGE_PCI_E) {
562 		if (DEVICE_5723_SERIES_CHIPSETS(bgep)) {
563 			bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL_5723,
564 			    DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
565 		} else if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
566 		           DEVICE_5725_SERIES_CHIPSETS(bgep)) {
567 			bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL_5717,
568 			    DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
569 		} else {
570 			bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL,
571 			    DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
572 		}
573 	}
574 }
575 
576 #ifdef __amd64
577 /*
578  * Distinguish CPU types
579  *
580  * These use to  distinguish AMD64 or Intel EM64T of CPU running mode.
581  * If CPU runs on Intel EM64T mode,the 64bit operation cannot works fine
582  * for PCI-Express based network interface card. This is the work-around
583  * for those nics.
584  */
585 static boolean_t bge_get_em64t_type(void);
586 #pragma	inline(bge_get_em64t_type)
587 
588 static boolean_t
589 bge_get_em64t_type(void)
590 {
591 
592 	return (x86_vendor == X86_VENDOR_Intel);
593 }
594 #endif
595 
596 /*
597  * Operating register get/set access routines
598  */
599 
600 uint32_t bge_reg_get32(bge_t *bgep, bge_regno_t regno);
601 #pragma	inline(bge_reg_get32)
602 
603 uint32_t
604 bge_reg_get32(bge_t *bgep, bge_regno_t regno)
605 {
606 	BGE_TRACE(("bge_reg_get32($%p, 0x%lx)",
607 	    (void *)bgep, regno));
608 
609 	return (ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno)));
610 }
611 
612 void bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data);
613 #pragma	inline(bge_reg_put32)
614 
615 void
616 bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data)
617 {
618 	BGE_TRACE(("bge_reg_put32($%p, 0x%lx, 0x%x)",
619 	    (void *)bgep, regno, data));
620 
621 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), data);
622 	BGE_PCICHK(bgep);
623 }
624 
625 void bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
626 #pragma	inline(bge_reg_set32)
627 
628 void
629 bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
630 {
631 	uint32_t regval;
632 
633 	BGE_TRACE(("bge_reg_set32($%p, 0x%lx, 0x%x)",
634 	    (void *)bgep, regno, bits));
635 
636 	regval = bge_reg_get32(bgep, regno);
637 	regval |= bits;
638 	bge_reg_put32(bgep, regno, regval);
639 }
640 
641 void bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
642 #pragma	inline(bge_reg_clr32)
643 
644 void
645 bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
646 {
647 	uint32_t regval;
648 
649 	BGE_TRACE(("bge_reg_clr32($%p, 0x%lx, 0x%x)",
650 	    (void *)bgep, regno, bits));
651 
652 	regval = bge_reg_get32(bgep, regno);
653 	regval &= ~bits;
654 	bge_reg_put32(bgep, regno, regval);
655 }
656 
657 static uint64_t bge_reg_get64(bge_t *bgep, bge_regno_t regno);
658 #pragma	inline(bge_reg_get64)
659 
660 static uint64_t
661 bge_reg_get64(bge_t *bgep, bge_regno_t regno)
662 {
663 	uint64_t regval;
664 
665 #ifdef	__amd64
666 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
667 	    bge_get_em64t_type() ||
668 	    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
669 	    DEVICE_5725_SERIES_CHIPSETS(bgep)) {
670 		regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4));
671 		regval <<= 32;
672 		regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
673 	} else {
674 		regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
675 	}
676 #elif defined(__sparc)
677 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
678 	    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
679 	    DEVICE_5725_SERIES_CHIPSETS(bgep)) {
680 		regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
681 		regval <<= 32;
682 		regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4));
683 	} else {
684 		regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
685 	}
686 #else
687 	regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
688 #endif
689 
690 #ifdef	_LITTLE_ENDIAN
691 	regval = (regval >> 32) | (regval << 32);
692 #endif	/* _LITTLE_ENDIAN */
693 
694 	BGE_TRACE(("bge_reg_get64($%p, 0x%lx) = 0x%016llx",
695 	    (void *)bgep, regno, regval));
696 
697 	return (regval);
698 }
699 
700 static void bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data);
701 #pragma	inline(bge_reg_put64)
702 
703 static void
704 bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data)
705 {
706 	BGE_TRACE(("bge_reg_put64($%p, 0x%lx, 0x%016llx)",
707 	    (void *)bgep, regno, data));
708 
709 #ifdef	_LITTLE_ENDIAN
710 	data = ((data >> 32) | (data << 32));
711 #endif	/* _LITTLE_ENDIAN */
712 
713 #ifdef	__amd64
714 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
715 	    bge_get_em64t_type() ||
716 	    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
717 	    DEVICE_5725_SERIES_CHIPSETS(bgep)) {
718 		ddi_put32(bgep->io_handle,
719 		    PIO_ADDR(bgep, regno), (uint32_t)data);
720 		BGE_PCICHK(bgep);
721 		ddi_put32(bgep->io_handle,
722 		    PIO_ADDR(bgep, regno + 4), (uint32_t)(data >> 32));
723 
724 	} else {
725 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
726 	}
727 #elif defined(__sparc)
728 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
729 	    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
730 	    DEVICE_5725_SERIES_CHIPSETS(bgep)) {
731 		ddi_put32(bgep->io_handle,
732 		    PIO_ADDR(bgep, regno + 4), (uint32_t)data);
733 		BGE_PCICHK(bgep);
734 		ddi_put32(bgep->io_handle,
735 		    PIO_ADDR(bgep, regno), (uint32_t)(data >> 32));
736 	} else {
737 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
738 	}
739 #else
740 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
741 #endif
742 
743 	BGE_PCICHK(bgep);
744 }
745 
746 /*
747  * The DDI doesn't provide get/put functions for 128 bit data
748  * so we put RCBs out as two 64-bit chunks instead.
749  */
750 static void bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
751 #pragma	inline(bge_reg_putrcb)
752 
753 static void
754 bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
755 {
756 	uint64_t *p;
757 
758 	BGE_TRACE(("bge_reg_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
759 	    (void *)bgep, addr, rcbp->host_ring_addr,
760 	    rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
761 
762 	ASSERT((addr % sizeof (*rcbp)) == 0);
763 
764 	p = (void *)rcbp;
765 	bge_reg_put64(bgep, addr, *p++);
766 	bge_reg_put64(bgep, addr+8, *p);
767 }
768 
769 void bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data);
770 #pragma	inline(bge_mbx_put)
771 
772 void
773 bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data)
774 {
775 	if (DEVICE_5906_SERIES_CHIPSETS(bgep))
776 		regno += INTERRUPT_LP_MBOX_0_REG - INTERRUPT_MBOX_0_REG + 4;
777 
778 	BGE_TRACE(("bge_mbx_put($%p, 0x%lx, 0x%016llx)",
779 	    (void *)bgep, regno, data));
780 
781 	/*
782 	 * Mailbox registers are nominally 64 bits on the 5701, but
783 	 * the MSW isn't used.  On the 5703, they're only 32 bits
784 	 * anyway.  So here we just write the lower(!) 32 bits -
785 	 * remembering that the chip is big-endian, even though the
786 	 * PCI bus is little-endian ...
787 	 */
788 #ifdef	_BIG_ENDIAN
789 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno+4), (uint32_t)data);
790 #else
791 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), (uint32_t)data);
792 #endif	/* _BIG_ENDIAN */
793 	BGE_PCICHK(bgep);
794 }
795 
796 uint32_t bge_mbx_get(bge_t *bgep, bge_regno_t regno);
797 #pragma inline(bge_mbx_get)
798 
799 uint32_t
800 bge_mbx_get(bge_t *bgep, bge_regno_t regno)
801 {
802 	uint32_t val32;
803 
804 	if (DEVICE_5906_SERIES_CHIPSETS(bgep))
805 		regno += INTERRUPT_LP_MBOX_0_REG - INTERRUPT_MBOX_0_REG + 4;
806 
807 	BGE_TRACE(("bge_mbx_get($%p, 0x%lx)",
808 	    (void *)bgep, regno));
809 
810 #ifdef	_BIG_ENDIAN
811 	val32 = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno+4));
812 #else
813 	val32 = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
814 #endif	/* _BIG_ENDIAN */
815 	BGE_PCICHK(bgep);
816 
817 	BGE_DEBUG(("bge_mbx_get($%p, 0x%lx) => 0x%08x",
818 	    (void *)bgep, regno, val32));
819 
820 	return (val32);
821 }
822 
823 
824 #if	BGE_DEBUGGING
825 
826 void bge_led_mark(bge_t *bgep);
827 #pragma	no_inline(bge_led_mark)
828 
829 void
830 bge_led_mark(bge_t *bgep)
831 {
832 	uint32_t led_ctrl = LED_CONTROL_OVERRIDE_LINK |
833 	    LED_CONTROL_1000MBPS_LED |
834 	    LED_CONTROL_100MBPS_LED |
835 	    LED_CONTROL_10MBPS_LED;
836 
837 	/*
838 	 * Blink all three LINK LEDs on simultaneously, then all off,
839 	 * then restore to automatic hardware control.  This is used
840 	 * in laboratory testing to trigger a logic analyser or scope.
841 	 */
842 	bge_reg_set32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
843 	led_ctrl ^= LED_CONTROL_OVERRIDE_LINK;
844 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
845 	led_ctrl = LED_CONTROL_OVERRIDE_LINK;
846 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
847 }
848 
849 #endif	/* BGE_DEBUGGING */
850 
851 /*
852  * NIC on-chip memory access routines
853  *
854  * Only 32K of NIC memory is visible at a time, controlled by the
855  * Memory Window Base Address Register (in PCI config space).  Once
856  * this is set, the 32K region of NIC-local memory that it refers
857  * to can be directly addressed in the upper 32K of the 64K of PCI
858  * memory space used for the device.
859  */
860 
861 static void bge_nic_setwin(bge_t *bgep, bge_regno_t base);
862 #pragma	inline(bge_nic_setwin)
863 
864 static void
865 bge_nic_setwin(bge_t *bgep, bge_regno_t base)
866 {
867 	chip_id_t *cidp;
868 
869 	BGE_TRACE(("bge_nic_setwin($%p, 0x%lx)",
870 	    (void *)bgep, base));
871 
872 	ASSERT((base & MWBAR_GRANULE_MASK) == 0);
873 
874 	/*
875 	 * Don't do repeated zero data writes,
876 	 * if the device is BCM5714C/15C.
877 	 */
878 	cidp = &bgep->chipid;
879 	if ((cidp->device == DEVICE_ID_5714C) ||
880 	    (cidp->device == DEVICE_ID_5715C)) {
881 		if (bgep->lastWriteZeroData && (base == (bge_regno_t)0))
882 			return;
883 		/* Adjust lastWriteZeroData */
884 		bgep->lastWriteZeroData = ((base == (bge_regno_t)0) ?
885 		    B_TRUE : B_FALSE);
886 	}
887 #ifdef __sparc
888 	if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
889 	    DEVICE_5725_SERIES_CHIPSETS(bgep)) {
890 		base = LE_32(base);
891 	}
892 #endif
893 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, base);
894 }
895 
896 static uint32_t bge_nic_get32(bge_t *bgep, bge_regno_t addr);
897 #pragma	inline(bge_nic_get32)
898 
899 static uint32_t
900 bge_nic_get32(bge_t *bgep, bge_regno_t addr)
901 {
902 	uint32_t data;
903 
904 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
905 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
906 		/* workaround for word swap error */
907 		if (addr & 4)
908 			addr = addr - 4;
909 		else
910 			addr = addr + 4;
911 	}
912 #endif
913 
914 #ifdef __sparc
915 	data = bge_nic_read32(bgep, addr);
916 #else
917 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
918 	addr &= MWBAR_GRANULE_MASK;
919 	addr += NIC_MEM_WINDOW_OFFSET;
920 
921 	data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
922 #endif
923 
924 	BGE_TRACE(("bge_nic_get32($%p, 0x%lx) = 0x%08x",
925 	    (void *)bgep, addr, data));
926 
927 	return (data);
928 }
929 
930 void bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data);
931 #pragma inline(bge_nic_put32)
932 
933 void
934 bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data)
935 {
936 	BGE_TRACE(("bge_nic_put32($%p, 0x%lx, 0x%08x)",
937 	    (void *)bgep, addr, data));
938 
939 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
940 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
941 		/* workaround for word swap error */
942 		if (addr & 4)
943 			addr = addr - 4;
944 		else
945 			addr = addr + 4;
946 	}
947 #endif
948 
949 #ifdef __sparc
950 	if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
951 	    DEVICE_5725_SERIES_CHIPSETS(bgep)) {
952 		addr = LE_32(addr);
953 	}
954 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
955 	data = LE_32(data);
956 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR, data);
957 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
958 #else
959 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
960 	addr &= MWBAR_GRANULE_MASK;
961 	addr += NIC_MEM_WINDOW_OFFSET;
962 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr), data);
963 	BGE_PCICHK(bgep);
964 #endif
965 }
966 
967 static uint64_t bge_nic_get64(bge_t *bgep, bge_regno_t addr);
968 #pragma	inline(bge_nic_get64)
969 
970 static uint64_t
971 bge_nic_get64(bge_t *bgep, bge_regno_t addr)
972 {
973 	uint64_t data;
974 
975 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
976 	addr &= MWBAR_GRANULE_MASK;
977 	addr += NIC_MEM_WINDOW_OFFSET;
978 
979 #ifdef	__amd64
980 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
981 	    bge_get_em64t_type() ||
982 	    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
983 	    DEVICE_5725_SERIES_CHIPSETS(bgep)) {
984 		data = ddi_get32(bgep->io_handle,
985 		    PIO_ADDR(bgep, addr + 4));
986 		data <<= 32;
987 		data |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
988 	} else {
989 		data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
990 	}
991 #elif defined(__sparc)
992 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
993 	    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
994 	    DEVICE_5725_SERIES_CHIPSETS(bgep)) {
995 		data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
996 		data <<= 32;
997 		data |= ddi_get32(bgep->io_handle,
998 		    PIO_ADDR(bgep, addr + 4));
999 	} else {
1000 		data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
1001 	}
1002 #else
1003 	data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
1004 #endif
1005 
1006 	BGE_TRACE(("bge_nic_get64($%p, 0x%lx) = 0x%016llx",
1007 	    (void *)bgep, addr, data));
1008 
1009 	return (data);
1010 }
1011 
1012 static void bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data);
1013 #pragma	inline(bge_nic_put64)
1014 
1015 static void
1016 bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data)
1017 {
1018 	BGE_TRACE(("bge_nic_put64($%p, 0x%lx, 0x%016llx)",
1019 	    (void *)bgep, addr, data));
1020 
1021 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1022 	addr &= MWBAR_GRANULE_MASK;
1023 	addr += NIC_MEM_WINDOW_OFFSET;
1024 
1025 #ifdef	__amd64
1026 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1027 	    bge_get_em64t_type() ||
1028 	    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1029 	    DEVICE_5725_SERIES_CHIPSETS(bgep)) {
1030 		ddi_put32(bgep->io_handle,
1031 		    PIO_ADDR(bgep, addr + 4), (uint32_t)data);
1032 		BGE_PCICHK(bgep);
1033 		ddi_put32(bgep->io_handle,
1034 		    PIO_ADDR(bgep, addr), (uint32_t)(data >> 32));
1035 	} else {
1036 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
1037 	}
1038 #elif defined(__sparc)
1039 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1040 	    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1041 	    DEVICE_5725_SERIES_CHIPSETS(bgep)) {
1042 		ddi_put32(bgep->io_handle,
1043 		    PIO_ADDR(bgep, addr + 4), (uint32_t)data);
1044 		BGE_PCICHK(bgep);
1045 		ddi_put32(bgep->io_handle,
1046 		    PIO_ADDR(bgep, addr), (uint32_t)(data >> 32));
1047 	} else {
1048 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
1049 	}
1050 #else
1051 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
1052 #endif
1053 
1054 	BGE_PCICHK(bgep);
1055 }
1056 
1057 /*
1058  * The DDI doesn't provide get/put functions for 128 bit data
1059  * so we put RCBs out as two 64-bit chunks instead.
1060  */
1061 static void bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
1062 #pragma	inline(bge_nic_putrcb)
1063 
1064 static void
1065 bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
1066 {
1067 	uint64_t *p;
1068 
1069 	BGE_TRACE(("bge_nic_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
1070 	    (void *)bgep, addr, rcbp->host_ring_addr,
1071 	    rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
1072 
1073 	ASSERT((addr % sizeof (*rcbp)) == 0);
1074 
1075 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1076 	addr &= MWBAR_GRANULE_MASK;
1077 	addr += NIC_MEM_WINDOW_OFFSET;
1078 
1079 	p = (void *)rcbp;
1080 #ifdef	__amd64
1081 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1082 	    bge_get_em64t_type() ||
1083 	    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1084 	    DEVICE_5725_SERIES_CHIPSETS(bgep)) {
1085 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr),
1086 		    (uint32_t)(*p));
1087 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4),
1088 		    (uint32_t)(*p++ >> 32));
1089 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8),
1090 		    (uint32_t)(*p));
1091 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12),
1092 		    (uint32_t)(*p >> 32));
1093 
1094 	} else {
1095 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1096 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr+8), *p);
1097 	}
1098 #elif defined(__sparc)
1099 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1100 	    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1101 	    DEVICE_5725_SERIES_CHIPSETS(bgep)) {
1102 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4),
1103 		    (uint32_t)(*p));
1104 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr),
1105 		    (uint32_t)(*p++ >> 32));
1106 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12),
1107 		    (uint32_t)(*p));
1108 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8),
1109 		    (uint32_t)(*p >> 32));
1110 	} else {
1111 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1112 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p);
1113 	}
1114 #else
1115 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1116 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p);
1117 #endif
1118 
1119 	BGE_PCICHK(bgep);
1120 }
1121 
1122 static void bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes);
1123 #pragma	inline(bge_nic_zero)
1124 
1125 static void
1126 bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes)
1127 {
1128 	BGE_TRACE(("bge_nic_zero($%p, 0x%lx, 0x%x)",
1129 	    (void *)bgep, addr, nbytes));
1130 
1131 	ASSERT((addr & ~MWBAR_GRANULE_MASK) ==
1132 	    ((addr+nbytes) & ~MWBAR_GRANULE_MASK));
1133 
1134 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1135 	addr &= MWBAR_GRANULE_MASK;
1136 	addr += NIC_MEM_WINDOW_OFFSET;
1137 
1138 	(void) ddi_device_zero(bgep->io_handle, PIO_ADDR(bgep, addr),
1139 	    nbytes, 1, DDI_DATA_SZ08_ACC);
1140 	BGE_PCICHK(bgep);
1141 }
1142 
1143 /*
1144  * MII (PHY) register get/set access routines
1145  *
1146  * These use the chip's MII auto-access method, controlled by the
1147  * MII Communication register at 0x044c, so the CPU doesn't have
1148  * to fiddle with the individual bits.
1149  */
1150 
1151 #undef	BGE_DBG
1152 #define	BGE_DBG		BGE_DBG_MII	/* debug flag for this code	*/
1153 
1154 static uint16_t bge_mii_access(bge_t *bgep, bge_regno_t regno,
1155 				uint16_t data, uint32_t cmd);
1156 #pragma	no_inline(bge_mii_access)
1157 
1158 static uint16_t
1159 bge_mii_access(bge_t *bgep, bge_regno_t regno, uint16_t data, uint32_t cmd)
1160 {
1161 	uint32_t timeout;
1162 	uint32_t regval1;
1163 	uint32_t regval2;
1164 
1165 	BGE_TRACE(("bge_mii_access($%p, 0x%lx, 0x%x, 0x%x)",
1166 	    (void *)bgep, regno, data, cmd));
1167 
1168 	ASSERT(mutex_owned(bgep->genlock));
1169 
1170 	/*
1171 	 * Assemble the command ...
1172 	 */
1173 	cmd |= data << MI_COMMS_DATA_SHIFT;
1174 	cmd |= regno << MI_COMMS_REGISTER_SHIFT;
1175 	cmd |= bgep->phy_mii_addr << MI_COMMS_ADDRESS_SHIFT;
1176 	cmd |= MI_COMMS_START;
1177 
1178 	/*
1179 	 * Wait for any command already in progress ...
1180 	 *
1181 	 * Note: this *shouldn't* ever find that there is a command
1182 	 * in progress, because we already hold the <genlock> mutex.
1183 	 * Nonetheless, we have sometimes seen the MI_COMMS_START
1184 	 * bit set here -- it seems that the chip can initiate MII
1185 	 * accesses internally, even with polling OFF.
1186 	 */
1187 	regval1 = regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1188 	for (timeout = 100; ; ) {
1189 		if ((regval2 & MI_COMMS_START) == 0) {
1190 			bge_reg_put32(bgep, MI_COMMS_REG, cmd);
1191 			break;
1192 		}
1193 		if (--timeout == 0)
1194 			break;
1195 		drv_usecwait(10);
1196 		regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1197 	}
1198 
1199 	if (timeout == 0)
1200 		return ((uint16_t)~0u);
1201 
1202 	if (timeout != 100)
1203 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1204 		    "MI_COMMS_START set for %d us; 0x%x->0x%x",
1205 		    cmd, 10*(100-timeout), regval1, regval2));
1206 
1207 	regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1208 	for (timeout = 1000; ; ) {
1209 		if ((regval1 & MI_COMMS_START) == 0)
1210 			break;
1211 		if (--timeout == 0)
1212 			break;
1213 		drv_usecwait(10);
1214 		regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1215 	}
1216 
1217 	/*
1218 	 * Drop out early if the READ FAILED bit is set -- this chip
1219 	 * could be a 5703/4S, with a SerDes instead of a PHY!
1220 	 */
1221 	if (regval2 & MI_COMMS_READ_FAILED)
1222 		return ((uint16_t)~0u);
1223 
1224 	if (timeout == 0)
1225 		return ((uint16_t)~0u);
1226 
1227 	/*
1228 	 * The PRM says to wait 5us after seeing the START bit clear
1229 	 * and then re-read the register to get the final value of the
1230 	 * data field, in order to avoid a race condition where the
1231 	 * START bit is clear but the data field isn't yet valid.
1232 	 *
1233 	 * Note: we don't actually seem to be encounter this race;
1234 	 * except when the START bit is seen set again (see below),
1235 	 * the data field doesn't change during this 5us interval.
1236 	 */
1237 	drv_usecwait(5);
1238 	regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1239 
1240 	/*
1241 	 * Unfortunately, when following the PRMs instructions above,
1242 	 * we have occasionally seen the START bit set again(!) in the
1243 	 * value read after the 5us delay. This seems to be due to the
1244 	 * chip autonomously starting another MII access internally.
1245 	 * In such cases, the command/data/etc fields relate to the
1246 	 * internal command, rather than the one that we thought had
1247 	 * just finished.  So in this case, we fall back to returning
1248 	 * the data from the original read that showed START clear.
1249 	 */
1250 	if (regval2 & MI_COMMS_START) {
1251 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1252 		    "MI_COMMS_START set after transaction; 0x%x->0x%x",
1253 		    cmd, regval1, regval2));
1254 		regval2 = regval1;
1255 	}
1256 
1257 	if (regval2 & MI_COMMS_START)
1258 		return ((uint16_t)~0u);
1259 
1260 	if (regval2 & MI_COMMS_READ_FAILED)
1261 		return ((uint16_t)~0u);
1262 
1263 	return ((regval2 & MI_COMMS_DATA_MASK) >> MI_COMMS_DATA_SHIFT);
1264 }
1265 
1266 uint16_t bge_mii_get16(bge_t *bgep, bge_regno_t regno);
1267 #pragma	no_inline(bge_mii_get16)
1268 
1269 uint16_t
1270 bge_mii_get16(bge_t *bgep, bge_regno_t regno)
1271 {
1272 	BGE_TRACE(("bge_mii_get16($%p, 0x%lx)",
1273 	    (void *)bgep, regno));
1274 
1275 	ASSERT(mutex_owned(bgep->genlock));
1276 
1277 	if (DEVICE_5906_SERIES_CHIPSETS(bgep) && ((regno == MII_AUX_CONTROL) ||
1278 	    (regno == MII_MSCONTROL)))
1279 		return (0);
1280 
1281 	return (bge_mii_access(bgep, regno, 0, MI_COMMS_COMMAND_READ));
1282 }
1283 
1284 void bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data);
1285 #pragma	no_inline(bge_mii_put16)
1286 
1287 void
1288 bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data)
1289 {
1290 	BGE_TRACE(("bge_mii_put16($%p, 0x%lx, 0x%x)",
1291 	    (void *)bgep, regno, data));
1292 
1293 	ASSERT(mutex_owned(bgep->genlock));
1294 
1295 	if (DEVICE_5906_SERIES_CHIPSETS(bgep) && ((regno == MII_AUX_CONTROL) ||
1296 	    (regno == MII_MSCONTROL)))
1297 		return;
1298 
1299 	(void) bge_mii_access(bgep, regno, data, MI_COMMS_COMMAND_WRITE);
1300 }
1301 
1302 uint16_t
1303 bge_phydsp_read(bge_t *bgep, bge_regno_t regno)
1304 {
1305 	BGE_TRACE(("bge_phydsp_read($%p, 0x%lx)",
1306 	          (void *)bgep, regno));
1307 
1308 	ASSERT(mutex_owned(bgep->genlock));
1309 
1310 	bge_mii_put16(bgep, MII_DSP_ADDRESS, regno);
1311 	return bge_mii_get16(bgep, MII_DSP_RW_PORT);
1312 }
1313 
1314 #pragma	no_inline(bge_phydsp_write)
1315 
1316 void
1317 bge_phydsp_write(bge_t *bgep, bge_regno_t regno, uint16_t data)
1318 {
1319 	BGE_TRACE(("bge_phydsp_write($%p, 0x%lx, 0x%x)",
1320 	          (void *)bgep, regno, data));
1321 
1322 	ASSERT(mutex_owned(bgep->genlock));
1323 
1324 	bge_mii_put16(bgep, MII_DSP_ADDRESS, regno);
1325 	bge_mii_put16(bgep, MII_DSP_RW_PORT, data);
1326 }
1327 
1328 #undef	BGE_DBG
1329 #define	BGE_DBG		BGE_DBG_SEEPROM	/* debug flag for this code	*/
1330 
1331 #if	BGE_SEE_IO32 || BGE_FLASH_IO32
1332 
1333 /*
1334  * Basic SEEPROM get/set access routine
1335  *
1336  * This uses the chip's SEEPROM auto-access method, controlled by the
1337  * Serial EEPROM Address/Data Registers at 0x6838/683c, so the CPU
1338  * doesn't have to fiddle with the individual bits.
1339  *
1340  * The caller should hold <genlock> and *also* have already acquired
1341  * the right to access the SEEPROM, via bge_nvmem_acquire() above.
1342  *
1343  * Return value:
1344  *	0 on success,
1345  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1346  *	EPROTO on other h/w or s/w errors.
1347  *
1348  * <*dp> is an input to a SEEPROM_ACCESS_WRITE operation, or an output
1349  * from a (successful) SEEPROM_ACCESS_READ.
1350  */
1351 static int bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1352 				uint32_t *dp);
1353 #pragma	no_inline(bge_seeprom_access)
1354 
1355 static int
1356 bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1357 {
1358 	uint32_t tries;
1359 	uint32_t regval;
1360 
1361 	ASSERT(mutex_owned(bgep->genlock));
1362 
1363 	/*
1364 	 * On the newer chips that support both SEEPROM & Flash, we need
1365 	 * to specifically enable SEEPROM access (Flash is the default).
1366 	 * On older chips, we don't; SEEPROM is the only NVtype supported,
1367 	 * and the NVM control registers don't exist ...
1368 	 */
1369 	switch (bgep->chipid.nvtype) {
1370 	case BGE_NVTYPE_NONE:
1371 	case BGE_NVTYPE_UNKNOWN:
1372 		_NOTE(NOTREACHED)
1373 	case BGE_NVTYPE_SEEPROM:
1374 		break;
1375 
1376 	case BGE_NVTYPE_LEGACY_SEEPROM:
1377 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1378 	case BGE_NVTYPE_BUFFERED_FLASH:
1379 	default:
1380 		bge_reg_set32(bgep, NVM_CONFIG1_REG,
1381 		    NVM_CFG1_LEGACY_SEEPROM_MODE);
1382 		break;
1383 	}
1384 
1385 	/*
1386 	 * Check there's no command in progress.
1387 	 *
1388 	 * Note: this *shouldn't* ever find that there is a command
1389 	 * in progress, because we already hold the <genlock> mutex.
1390 	 * Also, to ensure we don't have a conflict with the chip's
1391 	 * internal firmware or a process accessing the same (shared)
1392 	 * SEEPROM through the other port of a 5704, we've already
1393 	 * been through the "software arbitration" protocol.
1394 	 * So this is just a final consistency check: we shouldn't
1395 	 * see EITHER the START bit (command started but not complete)
1396 	 * OR the COMPLETE bit (command completed but not cleared).
1397 	 */
1398 	regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1399 	if (regval & SEEPROM_ACCESS_START)
1400 		return (EPROTO);
1401 	if (regval & SEEPROM_ACCESS_COMPLETE)
1402 		return (EPROTO);
1403 
1404 	/*
1405 	 * Assemble the command ...
1406 	 */
1407 	cmd |= addr & SEEPROM_ACCESS_ADDRESS_MASK;
1408 	addr >>= SEEPROM_ACCESS_ADDRESS_SIZE;
1409 	addr <<= SEEPROM_ACCESS_DEVID_SHIFT;
1410 	cmd |= addr & SEEPROM_ACCESS_DEVID_MASK;
1411 	cmd |= SEEPROM_ACCESS_START;
1412 	cmd |= SEEPROM_ACCESS_COMPLETE;
1413 	cmd |= regval & SEEPROM_ACCESS_HALFCLOCK_MASK;
1414 
1415 	bge_reg_put32(bgep, SERIAL_EEPROM_DATA_REG, *dp);
1416 	bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, cmd);
1417 
1418 	/*
1419 	 * By observation, a successful access takes ~20us on a 5703/4,
1420 	 * but apparently much longer (up to 1000us) on the obsolescent
1421 	 * BCM5700/BCM5701.  We want to be sure we don't get any false
1422 	 * timeouts here; but OTOH, we don't want a bogus access to lock
1423 	 * out interrupts for longer than necessary. So we'll allow up
1424 	 * to 1000us ...
1425 	 */
1426 	for (tries = 0; tries < 1000; ++tries) {
1427 		regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1428 		if (regval & SEEPROM_ACCESS_COMPLETE)
1429 			break;
1430 		drv_usecwait(1);
1431 	}
1432 
1433 	if (regval & SEEPROM_ACCESS_COMPLETE) {
1434 		/*
1435 		 * All OK; read the SEEPROM data register, then write back
1436 		 * the value read from the address register in order to
1437 		 * clear the <complete> bit and leave the SEEPROM access
1438 		 * state machine idle, ready for the next access ...
1439 		 */
1440 		BGE_DEBUG(("bge_seeprom_access: complete after %d us", tries));
1441 		*dp = bge_reg_get32(bgep, SERIAL_EEPROM_DATA_REG);
1442 		bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, regval);
1443 		return (0);
1444 	}
1445 
1446 	/*
1447 	 * Hmm ... what happened here?
1448 	 *
1449 	 * Most likely, the user addressed a non-existent SEEPROM. Or
1450 	 * maybe the SEEPROM was busy internally (e.g. processing a write)
1451 	 * and didn't respond to being addressed. Either way, it's left
1452 	 * the SEEPROM access state machine wedged. So we'll reset it
1453 	 * before we leave, so it's ready for next time ...
1454 	 */
1455 	BGE_DEBUG(("bge_seeprom_access: timed out after %d us", tries));
1456 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
1457 	return (ENODATA);
1458 }
1459 
1460 /*
1461  * Basic Flash get/set access routine
1462  *
1463  * These use the chip's Flash auto-access method, controlled by the
1464  * Flash Access Registers at 0x7000-701c, so the CPU doesn't have to
1465  * fiddle with the individual bits.
1466  *
1467  * The caller should hold <genlock> and *also* have already acquired
1468  * the right to access the Flash, via bge_nvmem_acquire() above.
1469  *
1470  * Return value:
1471  *	0 on success,
1472  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1473  *	ENODEV if the NVmem device is missing or otherwise unusable
1474  *
1475  * <*dp> is an input to a NVM_FLASH_CMD_WR operation, or an output
1476  * from a (successful) NVM_FLASH_CMD_RD.
1477  */
1478 static int bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1479 				uint32_t *dp);
1480 #pragma	no_inline(bge_flash_access)
1481 
1482 static int
1483 bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1484 {
1485 	uint32_t tries;
1486 	uint32_t regval;
1487 
1488 	ASSERT(mutex_owned(bgep->genlock));
1489 
1490 	/*
1491 	 * On the newer chips that support both SEEPROM & Flash, we need
1492 	 * to specifically disable SEEPROM access while accessing Flash.
1493 	 * The older chips don't support Flash, and the NVM registers don't
1494 	 * exist, so we shouldn't be here at all!
1495 	 */
1496 	switch (bgep->chipid.nvtype) {
1497 	case BGE_NVTYPE_NONE:
1498 	case BGE_NVTYPE_UNKNOWN:
1499 		_NOTE(NOTREACHED)
1500 	case BGE_NVTYPE_SEEPROM:
1501 		return (ENODEV);
1502 
1503 	case BGE_NVTYPE_LEGACY_SEEPROM:
1504 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1505 	case BGE_NVTYPE_BUFFERED_FLASH:
1506 	default:
1507 		bge_reg_clr32(bgep, NVM_CONFIG1_REG,
1508 		    NVM_CFG1_LEGACY_SEEPROM_MODE);
1509 		break;
1510 	}
1511 
1512 	/*
1513 	 * Assemble the command ...
1514 	 */
1515 	addr &= NVM_FLASH_ADDR_MASK;
1516 	cmd |= NVM_FLASH_CMD_DOIT;
1517 	cmd |= NVM_FLASH_CMD_FIRST;
1518 	cmd |= NVM_FLASH_CMD_LAST;
1519 	cmd |= NVM_FLASH_CMD_DONE;
1520 
1521 	bge_reg_put32(bgep, NVM_FLASH_WRITE_REG, *dp);
1522 	bge_reg_put32(bgep, NVM_FLASH_ADDR_REG, addr);
1523 	bge_reg_put32(bgep, NVM_FLASH_CMD_REG, cmd);
1524 
1525 	/*
1526 	 * Allow up to 1000ms ...
1527 	 */
1528 	for (tries = 0; tries < 1000; ++tries) {
1529 		regval = bge_reg_get32(bgep, NVM_FLASH_CMD_REG);
1530 		if (regval & NVM_FLASH_CMD_DONE)
1531 			break;
1532 		drv_usecwait(1);
1533 	}
1534 
1535 	if (regval & NVM_FLASH_CMD_DONE) {
1536 		/*
1537 		 * All OK; read the data from the Flash read register
1538 		 */
1539 		BGE_DEBUG(("bge_flash_access: complete after %d us", tries));
1540 		*dp = bge_reg_get32(bgep, NVM_FLASH_READ_REG);
1541 		return (0);
1542 	}
1543 
1544 	/*
1545 	 * Hmm ... what happened here?
1546 	 *
1547 	 * Most likely, the user addressed a non-existent Flash. Or
1548 	 * maybe the Flash was busy internally (e.g. processing a write)
1549 	 * and didn't respond to being addressed. Either way, there's
1550 	 * nothing we can here ...
1551 	 */
1552 	BGE_DEBUG(("bge_flash_access: timed out after %d us", tries));
1553 	return (ENODATA);
1554 }
1555 
1556 /*
1557  * The next two functions regulate access to the NVram (if fitted).
1558  *
1559  * On a 5704 (dual core) chip, there's only one SEEPROM and one Flash
1560  * (SPI) interface, but they can be accessed through either port. These
1561  * are managed by different instance of this driver and have no software
1562  * state in common.
1563  *
1564  * In addition (and even on a single core chip) the chip's internal
1565  * firmware can access the SEEPROM/Flash, most notably after a RESET
1566  * when it may download code to run internally.
1567  *
1568  * So we need to arbitrate between these various software agents.  For
1569  * this purpose, the chip provides the Software Arbitration Register,
1570  * which implements hardware(!) arbitration.
1571  *
1572  * This functionality didn't exist on older (5700/5701) chips, so there's
1573  * nothing we can do by way of arbitration on those; also, if there's no
1574  * SEEPROM/Flash fitted (or we couldn't determine what type), there's also
1575  * nothing to do.
1576  *
1577  * The internal firmware appears to use Request 0, which is the highest
1578  * priority.  So we'd like to use Request 2, leaving one higher and one
1579  * lower for any future developments ... but apparently this doesn't
1580  * always work.  So for now, the code uses Request 1 ;-(
1581  */
1582 
1583 #define	NVM_READ_REQ	NVM_READ_REQ1
1584 #define	NVM_RESET_REQ	NVM_RESET_REQ1
1585 #define	NVM_SET_REQ	NVM_SET_REQ1
1586 
1587 static void bge_nvmem_relinquish(bge_t *bgep);
1588 #pragma	no_inline(bge_nvmem_relinquish)
1589 
1590 static void
1591 bge_nvmem_relinquish(bge_t *bgep)
1592 {
1593 	ASSERT(mutex_owned(bgep->genlock));
1594 
1595 	switch (bgep->chipid.nvtype) {
1596 	case BGE_NVTYPE_NONE:
1597 	case BGE_NVTYPE_UNKNOWN:
1598 		_NOTE(NOTREACHED)
1599 		return;
1600 
1601 	case BGE_NVTYPE_SEEPROM:
1602 		/*
1603 		 * No arbitration performed, no release needed
1604 		 */
1605 		return;
1606 
1607 	case BGE_NVTYPE_LEGACY_SEEPROM:
1608 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1609 	case BGE_NVTYPE_BUFFERED_FLASH:
1610 	default:
1611 		break;
1612 	}
1613 
1614 	/*
1615 	 * Our own request should be present (whether or not granted) ...
1616 	 */
1617 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1618 
1619 	/*
1620 	 * ... this will make it go away.
1621 	 */
1622 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_RESET_REQ);
1623 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1624 }
1625 
1626 /*
1627  * Arbitrate for access to the NVmem, if necessary
1628  *
1629  * Return value:
1630  *	0 on success
1631  *	EAGAIN if the device is in use (retryable)
1632  *	ENODEV if the NVmem device is missing or otherwise unusable
1633  */
1634 static int bge_nvmem_acquire(bge_t *bgep);
1635 #pragma	no_inline(bge_nvmem_acquire)
1636 
1637 static int
1638 bge_nvmem_acquire(bge_t *bgep)
1639 {
1640 	uint32_t regval;
1641 	uint32_t tries;
1642 
1643 	ASSERT(mutex_owned(bgep->genlock));
1644 
1645 	switch (bgep->chipid.nvtype) {
1646 	case BGE_NVTYPE_NONE:
1647 	case BGE_NVTYPE_UNKNOWN:
1648 		/*
1649 		 * Access denied: no (recognisable) device fitted
1650 		 */
1651 		return (ENODEV);
1652 
1653 	case BGE_NVTYPE_SEEPROM:
1654 		/*
1655 		 * Access granted: no arbitration needed (or possible)
1656 		 */
1657 		return (0);
1658 
1659 	case BGE_NVTYPE_LEGACY_SEEPROM:
1660 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1661 	case BGE_NVTYPE_BUFFERED_FLASH:
1662 	default:
1663 		/*
1664 		 * Access conditional: conduct arbitration protocol
1665 		 */
1666 		break;
1667 	}
1668 
1669 	/*
1670 	 * We're holding the per-port mutex <genlock>, so no-one other
1671 	 * thread can be attempting to access the NVmem through *this*
1672 	 * port. But it could be in use by the *other* port (of a 5704),
1673 	 * or by the chip's internal firmware, so we have to go through
1674 	 * the full (hardware) arbitration protocol ...
1675 	 *
1676 	 * Note that *because* we're holding <genlock>, the interrupt handler
1677 	 * won't be able to progress.  So we're only willing to spin for a
1678 	 * fairly short time.  Specifically:
1679 	 *
1680 	 *	We *must* wait long enough for the hardware to resolve all
1681 	 *	requests and determine the winner.  Fortunately, this is
1682 	 *	"almost instantaneous", even as observed by GHz CPUs.
1683 	 *
1684 	 *	A successful access by another Solaris thread (via either
1685 	 *	port) typically takes ~20us.  So waiting a bit longer than
1686 	 *	that will give a good chance of success, if the other user
1687 	 *	*is* another thread on the other port.
1688 	 *
1689 	 *	However, the internal firmware can hold on to the NVmem
1690 	 *	for *much* longer: at least 10 milliseconds just after a
1691 	 *	RESET, and maybe even longer if the NVmem actually contains
1692 	 *	code to download and run on the internal CPUs.
1693 	 *
1694 	 * So, we'll allow 50us; if that's not enough then it's up to the
1695 	 * caller to retry later (hence the choice of return code EAGAIN).
1696 	 */
1697 	regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1698 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_SET_REQ);
1699 
1700 	for (tries = 0; tries < 50; ++tries) {
1701 		regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1702 		if (regval & NVM_WON_REQ1)
1703 			break;
1704 		drv_usecwait(1);
1705 	}
1706 
1707 	if (regval & NVM_WON_REQ1) {
1708 		BGE_DEBUG(("bge_nvmem_acquire: won after %d us", tries));
1709 		return (0);
1710 	}
1711 
1712 	/*
1713 	 * Somebody else must be accessing the NVmem, so abandon our
1714 	 * attempt take control of it.  The caller can try again later ...
1715 	 */
1716 	BGE_DEBUG(("bge_nvmem_acquire: lost after %d us", tries));
1717 	bge_nvmem_relinquish(bgep);
1718 	return (EAGAIN);
1719 }
1720 
1721 /*
1722  * This code assumes that the GPIO1 bit has been wired up to the NVmem
1723  * write protect line in such a way that the NVmem is protected when
1724  * GPIO1 is an input, or is an output but driven high.  Thus, to make the
1725  * NVmem writable we have to change GPIO1 to an output AND drive it low.
1726  *
1727  * Note: there's only one set of GPIO pins on a 5704, even though they
1728  * can be accessed through either port.  So the chip has to resolve what
1729  * happens if the two ports program a single pin differently ... the rule
1730  * it uses is that if the ports disagree about the *direction* of a pin,
1731  * "output" wins over "input", but if they disagree about its *value* as
1732  * an output, then the pin is TRISTATED instead!  In such a case, no-one
1733  * wins, and the external signal does whatever the external circuitry
1734  * defines as the default -- which we've assumed is the PROTECTED state.
1735  * So, we always change GPIO1 back to being an *input* whenever we're not
1736  * specifically using it to unprotect the NVmem. This allows either port
1737  * to update the NVmem, although obviously only one at a time!
1738  *
1739  * The caller should hold <genlock> and *also* have already acquired the
1740  * right to access the NVmem, via bge_nvmem_acquire() above.
1741  */
1742 static void bge_nvmem_protect(bge_t *bgep, boolean_t protect);
1743 #pragma	inline(bge_nvmem_protect)
1744 
1745 static void
1746 bge_nvmem_protect(bge_t *bgep, boolean_t protect)
1747 {
1748 	uint32_t regval;
1749 
1750 	ASSERT(mutex_owned(bgep->genlock));
1751 
1752 	regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
1753 	if (protect) {
1754 		regval |= MLCR_MISC_PINS_OUTPUT_1;
1755 		regval &= ~MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1756 	} else {
1757 		regval &= ~MLCR_MISC_PINS_OUTPUT_1;
1758 		regval |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1759 	}
1760 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG, regval);
1761 }
1762 
1763 /*
1764  * Now put it all together ...
1765  *
1766  * Try to acquire control of the NVmem; if successful, then:
1767  *	unprotect it (if we want to write to it)
1768  *	perform the requested access
1769  *	reprotect it (after a write)
1770  *	relinquish control
1771  *
1772  * Return value:
1773  *	0 on success,
1774  *	EAGAIN if the device is in use (retryable)
1775  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1776  *	ENODEV if the NVmem device is missing or otherwise unusable
1777  *	EPROTO on other h/w or s/w errors.
1778  */
1779 static int
1780 bge_nvmem_rw32(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1781 {
1782 	int err;
1783 
1784 	if ((err = bge_nvmem_acquire(bgep)) == 0) {
1785 		switch (cmd) {
1786 		case BGE_SEE_READ:
1787 			err = bge_seeprom_access(bgep,
1788 			    SEEPROM_ACCESS_READ, addr, dp);
1789 			break;
1790 
1791 		case BGE_SEE_WRITE:
1792 			bge_nvmem_protect(bgep, B_FALSE);
1793 			err = bge_seeprom_access(bgep,
1794 			    SEEPROM_ACCESS_WRITE, addr, dp);
1795 			bge_nvmem_protect(bgep, B_TRUE);
1796 			break;
1797 
1798 		case BGE_FLASH_READ:
1799 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1800 			    DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1801 			    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1802 			    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
1803 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1804 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1805 				    NVM_ACCESS_ENABLE);
1806 			}
1807 			err = bge_flash_access(bgep,
1808 			    NVM_FLASH_CMD_RD, addr, dp);
1809 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1810 			    DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1811 			    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1812 			    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
1813 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1814 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1815 				    NVM_ACCESS_ENABLE);
1816 			}
1817 			break;
1818 
1819 		case BGE_FLASH_WRITE:
1820 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1821 			    DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1822 			    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1823 			    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
1824 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1825 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1826 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1827 			}
1828 			bge_nvmem_protect(bgep, B_FALSE);
1829 			err = bge_flash_access(bgep,
1830 			    NVM_FLASH_CMD_WR, addr, dp);
1831 			bge_nvmem_protect(bgep, B_TRUE);
1832 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1833 			    DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1834 			    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1835 			    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
1836 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1837 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1838 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1839 			}
1840 
1841 			break;
1842 
1843 		default:
1844 			_NOTE(NOTREACHED)
1845 			break;
1846 		}
1847 		bge_nvmem_relinquish(bgep);
1848 	}
1849 
1850 	BGE_DEBUG(("bge_nvmem_rw32: err %d", err));
1851 	return (err);
1852 }
1853 
1854 static uint32_t
1855 bge_nvmem_access_cmd(bge_t *bgep, boolean_t read)
1856 {
1857 	switch (bgep->chipid.nvtype) {
1858 	case BGE_NVTYPE_NONE:
1859 	case BGE_NVTYPE_UNKNOWN:
1860 	default:
1861 		return 0;
1862 
1863 	case BGE_NVTYPE_SEEPROM:
1864 	case BGE_NVTYPE_LEGACY_SEEPROM:
1865 		return (read ? BGE_SEE_READ : BGE_SEE_WRITE);
1866 
1867 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1868 	case BGE_NVTYPE_BUFFERED_FLASH:
1869 		return (read ? BGE_FLASH_READ : BGE_FLASH_WRITE);
1870 	}
1871 }
1872 
1873 
1874 int
1875 bge_nvmem_read32(bge_t *bgep, bge_regno_t addr, uint32_t *dp)
1876 {
1877 	return (bge_nvmem_rw32(bgep, bge_nvmem_access_cmd(bgep, B_TRUE),
1878 	    addr, dp));
1879 }
1880 
1881 
1882 int
1883 bge_nvmem_write32(bge_t *bgep, bge_regno_t addr, uint32_t *dp)
1884 {
1885 	return (bge_nvmem_rw32(bgep, bge_nvmem_access_cmd(bgep, B_FALSE),
1886 	    addr, dp));
1887 }
1888 
1889 
1890 /*
1891  * Attempt to get a MAC address from the SEEPROM or Flash, if any
1892  */
1893 static uint64_t bge_get_nvmac(bge_t *bgep);
1894 #pragma no_inline(bge_get_nvmac)
1895 
1896 static uint64_t
1897 bge_get_nvmac(bge_t *bgep)
1898 {
1899 	uint32_t mac_high;
1900 	uint32_t mac_low;
1901 	uint32_t addr;
1902 	uint32_t cmd;
1903 	uint64_t mac;
1904 
1905 	BGE_TRACE(("bge_get_nvmac($%p)",
1906 	    (void *)bgep));
1907 
1908 	switch (bgep->chipid.nvtype) {
1909 	case BGE_NVTYPE_NONE:
1910 	case BGE_NVTYPE_UNKNOWN:
1911 	default:
1912 		return (0ULL);
1913 
1914 	case BGE_NVTYPE_SEEPROM:
1915 	case BGE_NVTYPE_LEGACY_SEEPROM:
1916 		cmd = BGE_SEE_READ;
1917 		break;
1918 
1919 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1920 	case BGE_NVTYPE_BUFFERED_FLASH:
1921 		cmd = BGE_FLASH_READ;
1922 		break;
1923 	}
1924 
1925 	if (DEVICE_5906_SERIES_CHIPSETS(bgep))
1926 		addr = NVMEM_DATA_MAC_ADDRESS_5906;
1927 	else
1928 		addr = NVMEM_DATA_MAC_ADDRESS;
1929 
1930 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_high))
1931 		return (0ULL);
1932 	addr += 4;
1933 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_low))
1934 		return (0ULL);
1935 
1936 	/*
1937 	 * The Broadcom chip is natively BIG-endian, so that's how the
1938 	 * MAC address is represented in NVmem.  We may need to swap it
1939 	 * around on a little-endian host ...
1940 	 */
1941 #ifdef	_BIG_ENDIAN
1942 	mac = mac_high;
1943 	mac = mac << 32;
1944 	mac |= mac_low;
1945 #else
1946 	mac = BGE_BSWAP_32(mac_high);
1947 	mac = mac << 32;
1948 	mac |= BGE_BSWAP_32(mac_low);
1949 #endif	/* _BIG_ENDIAN */
1950 
1951 	return (mac);
1952 }
1953 
1954 #else	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1955 
1956 /*
1957  * Dummy version for when we're not supporting NVmem access
1958  */
1959 static uint64_t bge_get_nvmac(bge_t *bgep);
1960 #pragma inline(bge_get_nvmac)
1961 
1962 static uint64_t
1963 bge_get_nvmac(bge_t *bgep)
1964 {
1965 	_NOTE(ARGUNUSED(bgep))
1966 	return (0ULL);
1967 }
1968 
1969 #endif	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1970 
1971 /*
1972  * Determine the type of NVmem that is (or may be) attached to this chip,
1973  */
1974 static enum bge_nvmem_type bge_nvmem_id(bge_t *bgep);
1975 #pragma no_inline(bge_nvmem_id)
1976 
1977 static enum bge_nvmem_type
1978 bge_nvmem_id(bge_t *bgep)
1979 {
1980 	enum bge_nvmem_type nvtype;
1981 	uint32_t config1;
1982 
1983 	BGE_TRACE(("bge_nvmem_id($%p)",
1984 	    (void *)bgep));
1985 
1986 	switch (bgep->chipid.device) {
1987 	default:
1988 		/*
1989 		 * We shouldn't get here; it means we don't recognise
1990 		 * the chip, which means we don't know how to determine
1991 		 * what sort of NVmem (if any) it has.  So we'll say
1992 		 * NONE, to disable the NVmem access code ...
1993 		 */
1994 		nvtype = BGE_NVTYPE_NONE;
1995 		break;
1996 
1997 	case DEVICE_ID_5700:
1998 	case DEVICE_ID_5700x:
1999 	case DEVICE_ID_5701:
2000 		/*
2001 		 * These devices support *only* SEEPROMs
2002 		 */
2003 		nvtype = BGE_NVTYPE_SEEPROM;
2004 		break;
2005 
2006 	case DEVICE_ID_5702:
2007 	case DEVICE_ID_5702fe:
2008 	case DEVICE_ID_5703C:
2009 	case DEVICE_ID_5703S:
2010 	case DEVICE_ID_5704C:
2011 	case DEVICE_ID_5704S:
2012 	case DEVICE_ID_5704:
2013 	case DEVICE_ID_5705M:
2014 	case DEVICE_ID_5705C:
2015 	case DEVICE_ID_5705_2:
2016 	case DEVICE_ID_5717:
2017 	case DEVICE_ID_5718:
2018 	case DEVICE_ID_5719:
2019 	case DEVICE_ID_5720:
2020 	case DEVICE_ID_5724:
2021 	case DEVICE_ID_5725:
2022 	case DEVICE_ID_5727:
2023 	case DEVICE_ID_57780:
2024 	case DEVICE_ID_5780:
2025 	case DEVICE_ID_5782:
2026 	case DEVICE_ID_5785:
2027 	case DEVICE_ID_5787:
2028 	case DEVICE_ID_5787M:
2029 	case DEVICE_ID_5788:
2030 	case DEVICE_ID_5789:
2031 	case DEVICE_ID_5751:
2032 	case DEVICE_ID_5751M:
2033 	case DEVICE_ID_5752:
2034 	case DEVICE_ID_5752M:
2035 	case DEVICE_ID_5754:
2036 	case DEVICE_ID_5755:
2037 	case DEVICE_ID_5755M:
2038 	case DEVICE_ID_5756M:
2039 	case DEVICE_ID_5721:
2040 	case DEVICE_ID_5722:
2041 	case DEVICE_ID_5723:
2042 	case DEVICE_ID_5761:
2043 	case DEVICE_ID_5761E:
2044 	case DEVICE_ID_5764:
2045 	case DEVICE_ID_5714C:
2046 	case DEVICE_ID_5714S:
2047 	case DEVICE_ID_5715C:
2048 	case DEVICE_ID_5715S:
2049 		config1 = bge_reg_get32(bgep, NVM_CONFIG1_REG);
2050 		if (config1 & NVM_CFG1_FLASH_MODE)
2051 			if (config1 & NVM_CFG1_BUFFERED_MODE)
2052 				nvtype = BGE_NVTYPE_BUFFERED_FLASH;
2053 			else
2054 				nvtype = BGE_NVTYPE_UNBUFFERED_FLASH;
2055 		else
2056 			nvtype = BGE_NVTYPE_LEGACY_SEEPROM;
2057 		break;
2058 	case DEVICE_ID_5906:
2059 	case DEVICE_ID_5906M:
2060 		nvtype = BGE_NVTYPE_BUFFERED_FLASH;
2061 		break;
2062 	}
2063 
2064 	return (nvtype);
2065 }
2066 
2067 #undef	BGE_DBG
2068 #define	BGE_DBG		BGE_DBG_APE	/* debug flag for this code	*/
2069 
2070 uint32_t bge_ape_get32(bge_t *bgep, bge_regno_t regno);
2071 #pragma	inline(bge_ape_get32)
2072 
2073 uint32_t
2074 bge_ape_get32(bge_t *bgep, bge_regno_t regno)
2075 {
2076 	BGE_TRACE(("bge_ape_get32($%p, 0x%lx)",
2077 	    (void *)bgep, regno));
2078 
2079 	return (ddi_get32(bgep->ape_handle, APE_ADDR(bgep, regno)));
2080 }
2081 
2082 void bge_ape_put32(bge_t *bgep, bge_regno_t regno, uint32_t data);
2083 #pragma	inline(bge_ape_put32)
2084 
2085 void
2086 bge_ape_put32(bge_t *bgep, bge_regno_t regno, uint32_t data)
2087 {
2088 	BGE_TRACE(("bge_ape_put32($%p, 0x%lx, 0x%x)",
2089 	    (void *)bgep, regno, data));
2090 
2091 	ddi_put32(bgep->ape_handle, APE_ADDR(bgep, regno), data);
2092 	BGE_PCICHK(bgep);
2093 }
2094 
2095 void
2096 bge_ape_lock_init(bge_t *bgep)
2097 {
2098 	int i;
2099 	uint32_t regbase;
2100 	uint32_t bit;
2101 
2102 	BGE_TRACE(("bge_ape_lock_init($%p)", (void *)bgep));
2103 
2104 	if (bgep->chipid.device == DEVICE_ID_5761)
2105 		regbase = BGE_APE_LOCK_GRANT;
2106 	else
2107 		regbase = BGE_APE_PER_LOCK_GRANT;
2108 
2109 	/* Make sure the driver hasn't any stale locks. */
2110 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
2111 		switch (i) {
2112 		case BGE_APE_LOCK_PHY0:
2113 		case BGE_APE_LOCK_PHY1:
2114 		case BGE_APE_LOCK_PHY2:
2115 		case BGE_APE_LOCK_PHY3:
2116 			bit = APE_LOCK_GRANT_DRIVER;
2117 			break;
2118 		default:
2119 			if (!bgep->pci_func)
2120 				bit = APE_LOCK_GRANT_DRIVER;
2121 			else
2122 				bit = 1 << bgep->pci_func;
2123 		}
2124 		bge_ape_put32(bgep, regbase + 4 * i, bit);
2125 	}
2126 }
2127 
2128 static int
2129 bge_ape_lock(bge_t *bgep, int locknum)
2130 {
2131 	int i, off;
2132 	int ret = 0;
2133 	uint32_t status;
2134 	uint32_t req;
2135 	uint32_t gnt;
2136 	uint32_t bit;
2137 
2138 	BGE_TRACE(("bge_ape_lock($%p, 0x%x)", (void *)bgep, locknum));
2139 
2140 	if (!bgep->ape_enabled)
2141 		return (0);
2142 
2143 	switch (locknum) {
2144 	case BGE_APE_LOCK_GPIO:
2145 		if (bgep->chipid.device == DEVICE_ID_5761)
2146 			return (0);
2147 	case BGE_APE_LOCK_GRC:
2148 	case BGE_APE_LOCK_MEM:
2149 		if (!bgep->pci_func)
2150 			bit = APE_LOCK_REQ_DRIVER;
2151 		else
2152 			bit = 1 << bgep->pci_func;
2153 		break;
2154 	case BGE_APE_LOCK_PHY0:
2155 	case BGE_APE_LOCK_PHY1:
2156 	case BGE_APE_LOCK_PHY2:
2157 	case BGE_APE_LOCK_PHY3:
2158 		bit = APE_LOCK_REQ_DRIVER;
2159 		break;
2160 	default:
2161 		return (-1);
2162 	}
2163 
2164 	if (bgep->chipid.device == DEVICE_ID_5761) {
2165 		req = BGE_APE_LOCK_REQ;
2166 		gnt = BGE_APE_LOCK_GRANT;
2167 	} else {
2168 		req = BGE_APE_PER_LOCK_REQ;
2169 		gnt = BGE_APE_PER_LOCK_GRANT;
2170 	}
2171 
2172 	off = 4 * locknum;
2173 
2174 	bge_ape_put32(bgep, req + off, bit);
2175 
2176 	/* Wait for up to 1 millisecond to acquire lock. */
2177 	for (i = 0; i < 100; i++) {
2178 		status = bge_ape_get32(bgep, gnt + off);
2179 		if (status == bit)
2180 			break;
2181 		drv_usecwait(10);
2182 	}
2183 
2184 	if (status != bit) {
2185 		/* Revoke the lock request. */
2186 		bge_ape_put32(bgep, gnt + off, bit);
2187 		ret = -1;
2188 	}
2189 
2190 	return (ret);
2191 }
2192 
2193 static void
2194 bge_ape_unlock(bge_t *bgep, int locknum)
2195 {
2196 	uint32_t gnt;
2197 	uint32_t bit;
2198 
2199 	BGE_TRACE(("bge_ape_unlock($%p, 0x%x)", (void *)bgep, locknum));
2200 
2201 	if (!bgep->ape_enabled)
2202 		return;
2203 
2204 	switch (locknum) {
2205 	case BGE_APE_LOCK_GPIO:
2206 		if (bgep->chipid.device == DEVICE_ID_5761)
2207 			return;
2208 	case BGE_APE_LOCK_GRC:
2209 	case BGE_APE_LOCK_MEM:
2210 		if (!bgep->pci_func)
2211 			bit = APE_LOCK_GRANT_DRIVER;
2212 		else
2213 			bit = 1 << bgep->pci_func;
2214 		break;
2215 	case BGE_APE_LOCK_PHY0:
2216 	case BGE_APE_LOCK_PHY1:
2217 	case BGE_APE_LOCK_PHY2:
2218 	case BGE_APE_LOCK_PHY3:
2219 		bit = APE_LOCK_GRANT_DRIVER;
2220 		break;
2221 	default:
2222 		return;
2223 	}
2224 
2225 	if (bgep->chipid.device == DEVICE_ID_5761)
2226 		gnt = BGE_APE_LOCK_GRANT;
2227 	else
2228 		gnt = BGE_APE_PER_LOCK_GRANT;
2229 
2230 	bge_ape_put32(bgep, gnt + 4 * locknum, bit);
2231 }
2232 
2233 /* wait for pending event to finish, if successful returns with MEM locked */
2234 static int
2235 bge_ape_event_lock(bge_t *bgep, uint32_t timeout_us)
2236 {
2237 	uint32_t apedata;
2238 
2239 	BGE_TRACE(("bge_ape_event_lock($%p, %d)", (void *)bgep, timeout_us));
2240 
2241 	ASSERT(timeout_us > 0);
2242 
2243 	while (timeout_us) {
2244 		if (bge_ape_lock(bgep, BGE_APE_LOCK_MEM))
2245 			return (-1);
2246 
2247 		apedata = bge_ape_get32(bgep, BGE_APE_EVENT_STATUS);
2248 		if (!(apedata & APE_EVENT_STATUS_EVENT_PENDING))
2249 			break;
2250 
2251 		bge_ape_unlock(bgep, BGE_APE_LOCK_MEM);
2252 
2253 		drv_usecwait(10);
2254 		timeout_us -= (timeout_us > 10) ? 10 : timeout_us;
2255 	}
2256 
2257 	return (timeout_us ? 0 : -1);
2258 }
2259 
2260 /* wait for pending event to finish, returns non-zero if not finished */
2261 static int
2262 bge_ape_wait_for_event(bge_t *bgep, uint32_t timeout_us)
2263 {
2264 	uint32_t i;
2265 	uint32_t apedata;
2266 
2267 	BGE_TRACE(("bge_ape_wait_for_event($%p, %d)", (void *)bgep, timeout_us));
2268 
2269 	ASSERT(timeout_us > 0);
2270 
2271 	for (i = 0; i < timeout_us / 10; i++) {
2272 		apedata = bge_ape_get32(bgep, BGE_APE_EVENT_STATUS);
2273 
2274 		if (!(apedata & APE_EVENT_STATUS_EVENT_PENDING))
2275 			break;
2276 
2277 		drv_usecwait(10);
2278 	}
2279 
2280 	return (i == timeout_us / 10);
2281 }
2282 
2283 int
2284 bge_ape_scratchpad_read(bge_t *bgep, uint32_t *data, uint32_t base_off,
2285     uint32_t lenToRead)
2286 {
2287 	int err;
2288 	uint32_t i;
2289 	uint32_t bufoff;
2290 	uint32_t msgoff;
2291 	uint32_t maxlen;
2292 	uint32_t apedata;
2293 
2294 	BGE_TRACE(("bge_ape_scratchpad_read($%p, %p, 0x%0x, %d)",
2295 	    (void *)bgep, (void*)data, base_off, lenToRead));
2296 
2297 	if (!bgep->ape_has_ncsi)
2298 		return (0);
2299 
2300 	apedata = bge_ape_get32(bgep, BGE_APE_SEG_SIG);
2301 	if (apedata != APE_SEG_SIG_MAGIC)
2302 		return (-1);
2303 
2304 	apedata = bge_ape_get32(bgep, BGE_APE_FW_STATUS);
2305 	if (!(apedata & APE_FW_STATUS_READY))
2306 		return (-1);
2307 
2308 	bufoff = (bge_ape_get32(bgep, BGE_APE_SEG_MSG_BUF_OFF) +
2309 	          BGE_APE_SHMEM_BASE);
2310 	msgoff = bufoff + 2 * sizeof(uint32_t);
2311 	maxlen = bge_ape_get32(bgep, BGE_APE_SEG_MSG_BUF_LEN);
2312 
2313 	while (lenToRead) {
2314 		uint32_t transferLen;
2315 
2316 		/* Cap xfer sizes to scratchpad limits. */
2317 		transferLen = (lenToRead > maxlen) ? maxlen : lenToRead;
2318 		lenToRead -= transferLen;
2319 
2320 		apedata = bge_ape_get32(bgep, BGE_APE_FW_STATUS);
2321 		if (!(apedata & APE_FW_STATUS_READY))
2322 			return (-1);
2323 
2324 		/* Wait for up to 1 millisecond for APE to service previous event. */
2325 		err = bge_ape_event_lock(bgep, 1000);
2326 		if (err)
2327 			return (err);
2328 
2329 		apedata = (APE_EVENT_STATUS_DRIVER_EVNT |
2330 		           APE_EVENT_STATUS_SCRTCHPD_READ |
2331 		           APE_EVENT_STATUS_EVENT_PENDING);
2332 		bge_ape_put32(bgep, BGE_APE_EVENT_STATUS, apedata);
2333 
2334 		bge_ape_put32(bgep, bufoff, base_off);
2335 		bge_ape_put32(bgep, bufoff + sizeof(uint32_t), transferLen);
2336 
2337 		bge_ape_unlock(bgep, BGE_APE_LOCK_MEM);
2338 		bge_ape_put32(bgep, BGE_APE_EVENT, APE_EVENT_1);
2339 
2340 		base_off += transferLen;
2341 
2342 		if (bge_ape_wait_for_event(bgep, 30000))
2343 			return (-1);
2344 
2345 		for (i = 0; transferLen; i += 4, transferLen -= 4) {
2346 			uint32_t val = bge_ape_get32(bgep, msgoff + i);
2347 			memcpy(data, &val, sizeof(uint32_t));
2348 			data++;
2349 		}
2350 	}
2351 
2352 	return (0);
2353 }
2354 
2355 int
2356 bge_ape_scratchpad_write(bge_t *bgep, uint32_t dstoff, uint32_t *data,
2357     uint32_t lenToWrite)
2358 {
2359 	int err;
2360 	uint32_t i;
2361 	uint32_t bufoff;
2362 	uint32_t msgoff;
2363 	uint32_t maxlen;
2364 	uint32_t apedata;
2365 
2366 	BGE_TRACE(("bge_ape_scratchpad_write($%p, %d, %p, %d)",
2367 	    (void *)bgep, dstoff, data, lenToWrite));
2368 
2369 	if (!bgep->ape_has_ncsi)
2370 		return (0);
2371 
2372 	apedata = bge_ape_get32(bgep, BGE_APE_SEG_SIG);
2373 	if (apedata != APE_SEG_SIG_MAGIC)
2374 		return (-1);
2375 
2376 	apedata = bge_ape_get32(bgep, BGE_APE_FW_STATUS);
2377 	if (!(apedata & APE_FW_STATUS_READY))
2378 		return (-1);
2379 
2380 	bufoff = (bge_ape_get32(bgep, BGE_APE_SEG_MSG_BUF_OFF) +
2381 	          BGE_APE_SHMEM_BASE);
2382 	msgoff = bufoff + 2 * sizeof(uint32_t);
2383 	maxlen = bge_ape_get32(bgep, BGE_APE_SEG_MSG_BUF_LEN);
2384 
2385 	while (lenToWrite) {
2386 		uint32_t transferLen;
2387 
2388 		/* Cap xfer sizes to scratchpad limits. */
2389 		transferLen = (lenToWrite > maxlen) ? maxlen : lenToWrite;
2390 		lenToWrite -= transferLen;
2391 
2392 		/* Wait for up to 1 millisecond for
2393 		 * APE to service previous event.
2394 		 */
2395 		err = bge_ape_event_lock(bgep, 1000);
2396 		if (err)
2397 			return (err);
2398 
2399 		bge_ape_put32(bgep, bufoff, dstoff);
2400 		bge_ape_put32(bgep, bufoff + sizeof(uint32_t), transferLen);
2401 		apedata = msgoff;
2402 
2403 		dstoff += transferLen;
2404 
2405 		for (i = 0; transferLen; i += 4, transferLen -= 4) {
2406 			bge_ape_put32(bgep, apedata, *data++);
2407 			apedata += sizeof(uint32_t);
2408 		}
2409 
2410 		apedata = (APE_EVENT_STATUS_DRIVER_EVNT |
2411 		           APE_EVENT_STATUS_SCRTCHPD_WRITE |
2412 		           APE_EVENT_STATUS_EVENT_PENDING);
2413 		bge_ape_put32(bgep, BGE_APE_EVENT_STATUS, apedata);
2414 
2415 		bge_ape_unlock(bgep, BGE_APE_LOCK_MEM);
2416 		bge_ape_put32(bgep, BGE_APE_EVENT, APE_EVENT_1);
2417 	}
2418 
2419 	return (0);
2420 }
2421 
2422 static int
2423 bge_ape_send_event(bge_t *bgep, uint32_t event)
2424 {
2425 	int err;
2426 	uint32_t apedata;
2427 
2428 	BGE_TRACE(("bge_ape_send_event($%p, %d)", (void *)bgep, event));
2429 
2430 	apedata = bge_ape_get32(bgep, BGE_APE_SEG_SIG);
2431 	if (apedata != APE_SEG_SIG_MAGIC)
2432 		return (-1);
2433 
2434 	apedata = bge_ape_get32(bgep, BGE_APE_FW_STATUS);
2435 	if (!(apedata & APE_FW_STATUS_READY))
2436 		return (-1);
2437 
2438 	/* Wait for up to 1 millisecond for APE to service previous event. */
2439 	err = bge_ape_event_lock(bgep, 1000);
2440 	if (err)
2441 		return (err);
2442 
2443 	bge_ape_put32(bgep, BGE_APE_EVENT_STATUS,
2444 	              event | APE_EVENT_STATUS_EVENT_PENDING);
2445 
2446 	bge_ape_unlock(bgep, BGE_APE_LOCK_MEM);
2447 	bge_ape_put32(bgep, BGE_APE_EVENT, APE_EVENT_1);
2448 
2449 	return 0;
2450 }
2451 
2452 static void
2453 bge_ape_driver_state_change(bge_t *bgep, int mode)
2454 {
2455 	uint32_t event;
2456 	uint32_t apedata;
2457 
2458 	BGE_TRACE(("bge_ape_driver_state_change($%p, %d)",
2459 	    (void *)bgep, mode));
2460 
2461 	if (!bgep->ape_enabled)
2462 		return;
2463 
2464 	switch (mode) {
2465 	case BGE_INIT_RESET:
2466 		bge_ape_put32(bgep, BGE_APE_HOST_SEG_SIG,
2467 		              APE_HOST_SEG_SIG_MAGIC);
2468 		bge_ape_put32(bgep, BGE_APE_HOST_SEG_LEN,
2469 		              APE_HOST_SEG_LEN_MAGIC);
2470 		apedata = bge_ape_get32(bgep, BGE_APE_HOST_INIT_COUNT);
2471 		bge_ape_put32(bgep, BGE_APE_HOST_INIT_COUNT, ++apedata);
2472 		bge_ape_put32(bgep, BGE_APE_HOST_DRIVER_ID,
2473 		              APE_HOST_DRIVER_ID_MAGIC(1, 0));
2474 		bge_ape_put32(bgep, BGE_APE_HOST_BEHAVIOR,
2475 		              APE_HOST_BEHAV_NO_PHYLOCK);
2476 		bge_ape_put32(bgep, BGE_APE_HOST_DRVR_STATE,
2477 		              BGE_APE_HOST_DRVR_STATE_START);
2478 
2479 		event = APE_EVENT_STATUS_STATE_START;
2480 		break;
2481 	case BGE_SHUTDOWN_RESET:
2482 		/* With the interface we are currently using,
2483 		 * APE does not track driver state.  Wiping
2484 		 * out the HOST SEGMENT SIGNATURE forces
2485 		 * the APE to assume OS absent status.
2486 		 */
2487 		bge_ape_put32(bgep, BGE_APE_HOST_SEG_SIG, 0x0);
2488 
2489 #if 0
2490 		if (WOL supported) {
2491 			bge_ape_put32(bgep, BGE_APE_HOST_WOL_SPEED,
2492 			              BGE_APE_HOST_WOL_SPEED_AUTO);
2493 			apedata = BGE_APE_HOST_DRVR_STATE_WOL;
2494 		} else
2495 #endif
2496 			apedata = BGE_APE_HOST_DRVR_STATE_UNLOAD;
2497 
2498 		bge_ape_put32(bgep, BGE_APE_HOST_DRVR_STATE, apedata);
2499 
2500 		event = APE_EVENT_STATUS_STATE_UNLOAD;
2501 		break;
2502 	case BGE_SUSPEND_RESET:
2503 		event = APE_EVENT_STATUS_STATE_SUSPEND;
2504 		break;
2505 	default:
2506 		return;
2507 	}
2508 
2509 	event |= APE_EVENT_STATUS_DRIVER_EVNT | APE_EVENT_STATUS_STATE_CHNGE;
2510 
2511 	bge_ape_send_event(bgep, event);
2512 }
2513 
2514 #undef	BGE_DBG
2515 #define	BGE_DBG		BGE_DBG_CHIP	/* debug flag for this code	*/
2516 
2517 static void
2518 bge_init_recv_rule(bge_t *bgep)
2519 {
2520 	bge_recv_rule_t *rulep = bgep->recv_rules;
2521 	uint32_t i;
2522 
2523 	/*
2524 	 * Initialize receive rule registers.
2525 	 * Note that rules may persist across each bge_m_start/stop() call.
2526 	 */
2527 	for (i = 0; i < RECV_RULES_NUM_MAX; i++, rulep++) {
2528 		bge_reg_put32(bgep, RECV_RULE_MASK_REG(i), rulep->mask_value);
2529 		bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(i), rulep->control);
2530 	}
2531 }
2532 
2533 /*
2534  * Using the values captured by bge_chip_cfg_init(), and additional probes
2535  * as required, characterise the chip fully: determine the label by which
2536  * to refer to this chip, the correct settings for various registers, and
2537  * of course whether the device and/or subsystem are supported!
2538  */
2539 int bge_chip_id_init(bge_t *bgep);
2540 #pragma	no_inline(bge_chip_id_init)
2541 
2542 int
2543 bge_chip_id_init(bge_t *bgep)
2544 {
2545 	char buf[MAXPATHLEN];		/* any risk of stack overflow?	*/
2546 	boolean_t dev_ok;
2547 	chip_id_t *cidp;
2548 	uint32_t subid;
2549 	char *devname;
2550 	char *sysname;
2551 	int *ids;
2552 	int err;
2553 	uint_t i;
2554 
2555 	dev_ok = B_FALSE;
2556 	cidp = &bgep->chipid;
2557 
2558 	/*
2559 	 * Check the PCI device ID to determine the generic chip type and
2560 	 * select parameters that depend on this.
2561 	 *
2562 	 * Note: because the SPARC platforms in general don't fit the
2563 	 * SEEPROM 'behind' the chip, the PCI revision ID register reads
2564 	 * as zero - which is why we use <asic_rev> rather than <revision>
2565 	 * below ...
2566 	 *
2567 	 * Note: in general we can't distinguish between the Copper/SerDes
2568 	 * versions by ID alone, as some Copper devices (e.g. some but not
2569 	 * all 5703Cs) have the same ID as the SerDes equivalents.  So we
2570 	 * treat them the same here, and the MII code works out the media
2571 	 * type later on ...
2572 	 */
2573 	cidp->mbuf_base = bge_mbuf_pool_base;
2574 	cidp->mbuf_length = bge_mbuf_pool_len;
2575 	cidp->recv_slots = BGE_RECV_SLOTS_USED;
2576 	cidp->bge_dma_rwctrl = bge_dma_rwctrl;
2577 	cidp->pci_type = BGE_PCI_X;
2578 	cidp->statistic_type = BGE_STAT_BLK;
2579 	cidp->mbuf_lo_water_rdma = bge_mbuf_lo_water_rdma;
2580 	cidp->mbuf_lo_water_rmac = bge_mbuf_lo_water_rmac;
2581 	cidp->mbuf_hi_water = bge_mbuf_hi_water;
2582 	cidp->rx_ticks_norm = bge_rx_ticks_norm;
2583 	cidp->rx_count_norm = bge_rx_count_norm;
2584 	cidp->tx_ticks_norm = bge_tx_ticks_norm;
2585 	cidp->tx_count_norm = bge_tx_count_norm;
2586 	cidp->mask_pci_int = MHCR_MASK_PCI_INT_OUTPUT;
2587 
2588 	if (cidp->rx_rings == 0 || cidp->rx_rings > BGE_RECV_RINGS_MAX)
2589 		cidp->rx_rings = BGE_RECV_RINGS_DEFAULT;
2590 	if (cidp->tx_rings == 0 || cidp->tx_rings > BGE_SEND_RINGS_MAX)
2591 		cidp->tx_rings = BGE_SEND_RINGS_DEFAULT;
2592 
2593 	cidp->msi_enabled = B_FALSE;
2594 
2595 	switch (cidp->device) {
2596 	case DEVICE_ID_5717:
2597 	case DEVICE_ID_5718:
2598 	case DEVICE_ID_5719:
2599 	case DEVICE_ID_5720:
2600 	case DEVICE_ID_5724:
2601 	case DEVICE_ID_5725:
2602 	case DEVICE_ID_5727:
2603 		if (cidp->device == DEVICE_ID_5717) {
2604 			cidp->chip_label = 5717;
2605 		} else if (cidp->device == DEVICE_ID_5718) {
2606 			cidp->chip_label = 5718;
2607 		} else if (cidp->device == DEVICE_ID_5719) {
2608 			cidp->chip_label = 5719;
2609 		} else if (cidp->device == DEVICE_ID_5720) {
2610 			if (pci_config_get16(bgep->cfg_handle, PCI_CONF_DEVID) ==
2611 			    DEVICE_ID_5717_C0) {
2612 				cidp->chip_label = 5717;
2613 			} else {
2614 				cidp->chip_label = 5720;
2615 			}
2616 		} else if (cidp->device == DEVICE_ID_5724) {
2617 			cidp->chip_label = 5724;
2618 		} else if (cidp->device == DEVICE_ID_5725) {
2619 			cidp->chip_label = 5725;
2620 		} else /* (cidp->device == DEVICE_ID_5727) */ {
2621 			cidp->chip_label = 5727;
2622 		}
2623 		cidp->msi_enabled = bge_enable_msi;
2624 #ifdef __sparc
2625 		cidp->mask_pci_int = LE_32(MHCR_MASK_PCI_INT_OUTPUT);
2626 #endif
2627 		cidp->bge_dma_rwctrl = LE_32(PDRWCR_VAR_5717);
2628 		cidp->pci_type = BGE_PCI_E;
2629 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2630 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5717;
2631 		cidp->mbuf_hi_water = MBUF_HIWAT_5717;
2632 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2633 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2634 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2635 		cidp->bge_mlcr_default = MLCR_DEFAULT_5717;
2636 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2637 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2638 		cidp->statistic_type = BGE_STAT_REG;
2639 		dev_ok = B_TRUE;
2640 		break;
2641 
2642 	case DEVICE_ID_5700:
2643 	case DEVICE_ID_5700x:
2644 		cidp->chip_label = 5700;
2645 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2646 		break;
2647 
2648 	case DEVICE_ID_5701:
2649 		cidp->chip_label = 5701;
2650 		dev_ok = B_TRUE;
2651 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2652 		break;
2653 
2654 	case DEVICE_ID_5702:
2655 	case DEVICE_ID_5702fe:
2656 		cidp->chip_label = 5702;
2657 		dev_ok = B_TRUE;
2658 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2659 		cidp->pci_type = BGE_PCI;
2660 		break;
2661 
2662 	case DEVICE_ID_5703C:
2663 	case DEVICE_ID_5703S:
2664 	case DEVICE_ID_5703:
2665 		/*
2666 		 * Revision A0 of the 5703/5793 had various errata
2667 		 * that we can't or don't work around, so it's not
2668 		 * supported, but all later versions are
2669 		 */
2670 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5793 : 5703;
2671 		if (bgep->chipid.asic_rev != MHCR_CHIP_REV_5703_A0)
2672 			dev_ok = B_TRUE;
2673 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2674 		break;
2675 
2676 	case DEVICE_ID_5704C:
2677 	case DEVICE_ID_5704S:
2678 	case DEVICE_ID_5704:
2679 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5794 : 5704;
2680 		cidp->mbuf_base = bge_mbuf_pool_base_5704;
2681 		cidp->mbuf_length = bge_mbuf_pool_len_5704;
2682 		dev_ok = B_TRUE;
2683 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2684 		break;
2685 
2686 	case DEVICE_ID_5705C:
2687 	case DEVICE_ID_5705M:
2688 	case DEVICE_ID_5705MA3:
2689 	case DEVICE_ID_5705F:
2690 	case DEVICE_ID_5705_2:
2691 	case DEVICE_ID_5754:
2692 		if (cidp->device == DEVICE_ID_5754) {
2693 			cidp->chip_label = 5754;
2694 			cidp->pci_type = BGE_PCI_E;
2695 		} else {
2696 			cidp->chip_label = 5705;
2697 			cidp->pci_type = BGE_PCI;
2698 			cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2699 		}
2700 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2701 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2702 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2703 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2704 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2705 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2706 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2707 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2708 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2709 		cidp->statistic_type = BGE_STAT_REG;
2710 		dev_ok = B_TRUE;
2711 		break;
2712 
2713 	case DEVICE_ID_5906:
2714 	case DEVICE_ID_5906M:
2715 		cidp->chip_label = 5906;
2716 		cidp->pci_type = BGE_PCI_E;
2717 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5906;
2718 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5906;
2719 		cidp->mbuf_hi_water = MBUF_HIWAT_5906;
2720 		cidp->mbuf_base = bge_mbuf_pool_base;
2721 		cidp->mbuf_length = bge_mbuf_pool_len;
2722 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2723 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2724 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2725 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2726 		cidp->statistic_type = BGE_STAT_REG;
2727 		dev_ok = B_TRUE;
2728 		break;
2729 
2730 	case DEVICE_ID_5753:
2731 		cidp->chip_label = 5753;
2732 		cidp->pci_type = BGE_PCI_E;
2733 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2734 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2735 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2736 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2737 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2738 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2739 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2740 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2741 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2742 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2743 		cidp->statistic_type = BGE_STAT_REG;
2744 		dev_ok = B_TRUE;
2745 		break;
2746 
2747 	case DEVICE_ID_5755:
2748 	case DEVICE_ID_5755M:
2749 		cidp->chip_label = 5755;
2750 		cidp->pci_type = BGE_PCI_E;
2751 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2752 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2753 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2754 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2755 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2756 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2757 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2758 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2759 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2760 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2761 		if (cidp->device == DEVICE_ID_5755M)
2762 			cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2763 		cidp->statistic_type = BGE_STAT_REG;
2764 		dev_ok = B_TRUE;
2765 		break;
2766 
2767 	case DEVICE_ID_5756M:
2768 		/*
2769 		 * This is nearly identical to the 5755M.
2770 		 * (Actually reports the 5755 chip ID.)
2771 		 */
2772 		cidp->chip_label = 5756;
2773 		cidp->pci_type = BGE_PCI_E;
2774 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2775 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2776 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2777 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2778 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2779 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2780 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2781 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2782 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2783 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2784 		cidp->statistic_type = BGE_STAT_REG;
2785 		dev_ok = B_TRUE;
2786 		break;
2787 
2788 	case DEVICE_ID_5787:
2789 	case DEVICE_ID_5787M:
2790 		cidp->chip_label = 5787;
2791 		cidp->pci_type = BGE_PCI_E;
2792 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2793 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2794 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2795 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2796 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2797 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2798 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2799 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2800 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2801 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2802 		cidp->statistic_type = BGE_STAT_REG;
2803 		dev_ok = B_TRUE;
2804 		break;
2805 
2806 	case DEVICE_ID_5723:
2807 	case DEVICE_ID_5761:
2808 	case DEVICE_ID_5761E:
2809 	case DEVICE_ID_57780:
2810 		cidp->msi_enabled = bge_enable_msi;
2811 		/*
2812 		 * We don't use MSI for BCM5764 and BCM5785, as the
2813 		 * status block may fail to update when the network
2814 		 * traffic is heavy.
2815 		 */
2816 		/* FALLTHRU */
2817 	case DEVICE_ID_5785:
2818 	case DEVICE_ID_5764:
2819 		if (cidp->device == DEVICE_ID_5723)
2820 			cidp->chip_label = 5723;
2821 		else if (cidp->device == DEVICE_ID_5764)
2822 			cidp->chip_label = 5764;
2823 		else if (cidp->device == DEVICE_ID_5785)
2824 			cidp->chip_label = 5785;
2825 		else if (cidp->device == DEVICE_ID_57780)
2826 			cidp->chip_label = 57780;
2827 		else
2828 			cidp->chip_label = 5761;
2829 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2830 		cidp->pci_type = BGE_PCI_E;
2831 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2832 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2833 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2834 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2835 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2836 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2837 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2838 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2839 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2840 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2841 		cidp->statistic_type = BGE_STAT_REG;
2842 		dev_ok = B_TRUE;
2843 		break;
2844 
2845 	/* PCI-X device, identical to 5714 */
2846 	case DEVICE_ID_5780:
2847 		cidp->chip_label = 5780;
2848 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2849 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2850 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2851 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2852 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2853 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2854 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2855 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2856 		cidp->statistic_type = BGE_STAT_REG;
2857 		dev_ok = B_TRUE;
2858 		break;
2859 
2860 	case DEVICE_ID_5782:
2861 		/*
2862 		 * Apart from the label, we treat this as a 5705(?)
2863 		 */
2864 		cidp->chip_label = 5782;
2865 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2866 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2867 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2868 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2869 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2870 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2871 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2872 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2873 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2874 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2875 		cidp->statistic_type = BGE_STAT_REG;
2876 		dev_ok = B_TRUE;
2877 		break;
2878 
2879 	case DEVICE_ID_5788:
2880 		/*
2881 		 * Apart from the label, we treat this as a 5705(?)
2882 		 */
2883 		cidp->chip_label = 5788;
2884 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2885 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2886 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2887 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2888 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2889 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2890 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2891 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2892 		cidp->statistic_type = BGE_STAT_REG;
2893 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2894 		dev_ok = B_TRUE;
2895 		break;
2896 
2897 	case DEVICE_ID_5714C:
2898 		if (cidp->revision >= REVISION_ID_5714_A2)
2899 			cidp->msi_enabled = bge_enable_msi;
2900 		/* FALLTHRU */
2901 	case DEVICE_ID_5714S:
2902 		cidp->chip_label = 5714;
2903 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2904 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2905 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2906 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2907 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2908 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2909 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5714;
2910 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2911 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2912 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2913 		cidp->pci_type = BGE_PCI_E;
2914 		cidp->statistic_type = BGE_STAT_REG;
2915 		dev_ok = B_TRUE;
2916 		break;
2917 
2918 	case DEVICE_ID_5715C:
2919 	case DEVICE_ID_5715S:
2920 		cidp->chip_label = 5715;
2921 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2922 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2923 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2924 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2925 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2926 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2927 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5715;
2928 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2929 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2930 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2931 		cidp->pci_type = BGE_PCI_E;
2932 		cidp->statistic_type = BGE_STAT_REG;
2933 		if (cidp->revision >= REVISION_ID_5715_A2)
2934 			cidp->msi_enabled = bge_enable_msi;
2935 		dev_ok = B_TRUE;
2936 		break;
2937 
2938 	case DEVICE_ID_5721:
2939 		cidp->chip_label = 5721;
2940 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2941 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2942 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2943 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2944 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2945 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2946 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2947 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2948 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2949 		cidp->pci_type = BGE_PCI_E;
2950 		cidp->statistic_type = BGE_STAT_REG;
2951 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2952 		dev_ok = B_TRUE;
2953 		break;
2954 
2955 	case DEVICE_ID_5722:
2956 		cidp->chip_label = 5722;
2957 		cidp->pci_type = BGE_PCI_E;
2958 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2959 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2960 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2961 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2962 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2963 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2964 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2965 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2966 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2967 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2968 		cidp->statistic_type = BGE_STAT_REG;
2969 		dev_ok = B_TRUE;
2970 		break;
2971 
2972 	case DEVICE_ID_5751:
2973 	case DEVICE_ID_5751M:
2974 		cidp->chip_label = 5751;
2975 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2976 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2977 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2978 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2979 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2980 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2981 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2982 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2983 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2984 		cidp->pci_type = BGE_PCI_E;
2985 		cidp->statistic_type = BGE_STAT_REG;
2986 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2987 		dev_ok = B_TRUE;
2988 		break;
2989 
2990 	case DEVICE_ID_5752:
2991 	case DEVICE_ID_5752M:
2992 		cidp->chip_label = 5752;
2993 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2994 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2995 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2996 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2997 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2998 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2999 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
3000 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
3001 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
3002 		cidp->pci_type = BGE_PCI_E;
3003 		cidp->statistic_type = BGE_STAT_REG;
3004 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
3005 		dev_ok = B_TRUE;
3006 		break;
3007 
3008 	case DEVICE_ID_5789:
3009 		cidp->chip_label = 5789;
3010 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
3011 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
3012 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
3013 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
3014 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
3015 		cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
3016 		cidp->pci_type = BGE_PCI_E;
3017 		cidp->statistic_type = BGE_STAT_REG;
3018 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
3019 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
3020 		cidp->msi_enabled = B_TRUE;
3021 		dev_ok = B_TRUE;
3022 		break;
3023 
3024 	}
3025 
3026 	/*
3027 	 * Setup the default jumbo parameter.
3028 	 */
3029 	cidp->ethmax_size = ETHERMAX;
3030 	cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_DEFAULT;
3031 	cidp->std_buf_size = BGE_STD_BUFF_SIZE;
3032 
3033 	/*
3034 	 * If jumbo is enabled and this kind of chipset supports jumbo feature,
3035 	 * setup below jumbo specific parameters.
3036 	 *
3037 	 * For BCM5714/5715, there is only one standard receive ring. So the
3038 	 * std buffer size should be set to BGE_JUMBO_BUFF_SIZE when jumbo
3039 	 * feature is enabled.
3040 	 *
3041 	 * For the BCM5718 family we hijack the standard receive ring for
3042 	 * the jumboframe traffic, keeps it simple.
3043 	 */
3044 	if (!(cidp->flags & CHIP_FLAG_NO_JUMBO) &&
3045 	    (cidp->default_mtu > BGE_DEFAULT_MTU)) {
3046 		if (DEVICE_5714_SERIES_CHIPSETS(bgep) ||
3047 		    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
3048 		    DEVICE_5725_SERIES_CHIPSETS(bgep)) {
3049 			cidp->mbuf_lo_water_rdma =
3050 			    RDMA_MBUF_LOWAT_5714_JUMBO;
3051 			cidp->mbuf_lo_water_rmac =
3052 			    MAC_RX_MBUF_LOWAT_5714_JUMBO;
3053 			cidp->mbuf_hi_water = MBUF_HIWAT_5714_JUMBO;
3054 			cidp->jumbo_slots = 0;
3055 			cidp->std_buf_size = BGE_JUMBO_BUFF_SIZE;
3056 		} else {
3057 			cidp->mbuf_lo_water_rdma =
3058 			    RDMA_MBUF_LOWAT_JUMBO;
3059 			cidp->mbuf_lo_water_rmac =
3060 			    MAC_RX_MBUF_LOWAT_JUMBO;
3061 			cidp->mbuf_hi_water = MBUF_HIWAT_JUMBO;
3062 			cidp->jumbo_slots = BGE_JUMBO_SLOTS_USED;
3063 		}
3064 		cidp->recv_jumbo_size = BGE_JUMBO_BUFF_SIZE;
3065 		cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_JUMBO;
3066 		cidp->ethmax_size = cidp->default_mtu +
3067 		    sizeof (struct ether_header);
3068 	}
3069 
3070 	/*
3071 	 * Identify the NV memory type: SEEPROM or Flash?
3072 	 */
3073 	cidp->nvtype = bge_nvmem_id(bgep);
3074 
3075 	/*
3076 	 * Now check what we've discovered: is this truly a supported
3077 	 * chip on (the motherboard of) a supported platform?
3078 	 *
3079 	 * Possible problems here:
3080 	 * 1)	it's a completely unheard-of chip
3081 	 * 2)	it's a recognised but unsupported chip (e.g. 5701, 5703C-A0)
3082 	 * 3)	it's a chip we would support if it were on the motherboard
3083 	 *	of a Sun platform, but this one isn't ;-(
3084 	 */
3085 	if (cidp->chip_label == 0)
3086 		bge_problem(bgep,
3087 		    "Device 'pci%04x,%04x' not recognized (%d?)",
3088 		    cidp->vendor, cidp->device, cidp->device);
3089 	else if (!dev_ok)
3090 		bge_problem(bgep,
3091 		    "Device 'pci%04x,%04x' (%d) revision %d not supported",
3092 		    cidp->vendor, cidp->device, cidp->chip_label,
3093 		    cidp->revision);
3094 	else
3095 		cidp->flags |= CHIP_FLAG_SUPPORTED;
3096 
3097 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
3098 		return (EIO);
3099 
3100 	return (0);
3101 }
3102 
3103 void
3104 bge_chip_msi_trig(bge_t *bgep)
3105 {
3106 	uint32_t	regval;
3107 
3108 	regval = bgep->param_msi_cnt<<4;
3109 	bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, regval);
3110 	BGE_DEBUG(("bge_chip_msi_trig:data = %d", regval));
3111 }
3112 
3113 /*
3114  * Various registers that control the chip's internal engines (state
3115  * machines) have a <reset> and <enable> bits (fortunately, in the
3116  * same place in each such register :-).
3117  *
3118  * To reset the state machine, the <reset> bit must be written with 1;
3119  * it will then read back as 1 while the reset is in progress, but
3120  * self-clear to 0 when the reset completes.
3121  *
3122  * To enable a state machine, one must set the <enable> bit, which
3123  * will continue to read back as 0 until the state machine is running.
3124  *
3125  * To disable a state machine, the <enable> bit must be cleared, but
3126  * it will continue to read back as 1 until the state machine actually
3127  * stops.
3128  *
3129  * This routine implements polling for completion of a reset, enable
3130  * or disable operation, returning B_TRUE on success (bit reached the
3131  * required state) or B_FALSE on timeout (200*100us == 20ms).
3132  */
3133 static boolean_t bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
3134 					uint32_t mask, uint32_t val);
3135 #pragma	no_inline(bge_chip_poll_engine)
3136 
3137 static boolean_t
3138 bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
3139 	uint32_t mask, uint32_t val)
3140 {
3141 	uint32_t regval;
3142 	uint32_t n;
3143 
3144 	BGE_TRACE(("bge_chip_poll_engine($%p, 0x%lx, 0x%x, 0x%x)",
3145 	    (void *)bgep, regno, mask, val));
3146 
3147 	for (n = 200; n; --n) {
3148 		regval = bge_reg_get32(bgep, regno);
3149 		if ((regval & mask) == val)
3150 			return (B_TRUE);
3151 		drv_usecwait(100);
3152 	}
3153 
3154 	bge_problem(bgep, "bge_chip_poll_engine failed: regno = 0x%lx", regno);
3155 	bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE);
3156 	return (B_FALSE);
3157 }
3158 
3159 /*
3160  * Various registers that control the chip's internal engines (state
3161  * machines) have a <reset> bit (fortunately, in the same place in
3162  * each such register :-).  To reset the state machine, this bit must
3163  * be written with 1; it will then read back as 1 while the reset is
3164  * in progress, but self-clear to 0 when the reset completes.
3165  *
3166  * This code sets the bit, then polls for it to read back as zero.
3167  * The return value is B_TRUE on success (reset bit cleared itself),
3168  * or B_FALSE if the state machine didn't recover :(
3169  *
3170  * NOTE: the Core reset is similar to other resets, except that we
3171  * can't poll for completion, since the Core reset disables memory
3172  * access!  So we just have to assume that it will all complete in
3173  * 100us.  See Broadcom document 570X-PG102-R, p102, steps 4-5.
3174  */
3175 static boolean_t bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno);
3176 #pragma	no_inline(bge_chip_reset_engine)
3177 
3178 static boolean_t
3179 bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno)
3180 {
3181 	uint32_t regval;
3182 	uint16_t val16;
3183 	uint32_t val32;
3184 	uint32_t mhcr;
3185 
3186 	regval = bge_reg_get32(bgep, regno);
3187 
3188 	BGE_TRACE(("bge_chip_reset_engine($%p, 0x%lx)",
3189 	    (void *)bgep, regno));
3190 	BGE_DEBUG(("bge_chip_reset_engine: 0x%lx before reset = 0x%08x",
3191 	    regno, regval));
3192 
3193 	regval |= STATE_MACHINE_RESET_BIT;
3194 
3195 	switch (regno) {
3196 	case MISC_CONFIG_REG:
3197 		/*
3198 		 * BCM5714/5721/5751 pcie chip special case. In order to avoid
3199 		 * resetting PCIE block and bringing PCIE link down, bit 29
3200 		 * in the register needs to be set first, and then set it again
3201 		 * while the reset bit is written.
3202 		 * See:P500 of 57xx-PG102-RDS.pdf.
3203 		 */
3204 		if (DEVICE_5705_SERIES_CHIPSETS(bgep) ||
3205 		    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
3206 		    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
3207 		    DEVICE_5721_SERIES_CHIPSETS(bgep) ||
3208 		    DEVICE_5723_SERIES_CHIPSETS(bgep) ||
3209 		    DEVICE_5714_SERIES_CHIPSETS(bgep) ||
3210 		    DEVICE_5906_SERIES_CHIPSETS(bgep)) {
3211 			regval |= MISC_CONFIG_GPHY_POWERDOWN_OVERRIDE;
3212 			if (bgep->chipid.pci_type == BGE_PCI_E) {
3213 				if (bgep->chipid.asic_rev ==
3214 				    MHCR_CHIP_REV_5751_A0 ||
3215 				    bgep->chipid.asic_rev ==
3216 				    MHCR_CHIP_REV_5721_A0 ||
3217 				    bgep->chipid.asic_rev ==
3218 				    MHCR_CHIP_REV_5755_A0) {
3219 					val32 = bge_reg_get32(bgep,
3220 					    PHY_TEST_CTRL_REG);
3221 					if (val32 == (PHY_PCIE_SCRAM_MODE |
3222 					    PHY_PCIE_LTASS_MODE))
3223 						bge_reg_put32(bgep,
3224 						    PHY_TEST_CTRL_REG,
3225 						    PHY_PCIE_SCRAM_MODE);
3226 					val32 = pci_config_get32
3227 					    (bgep->cfg_handle,
3228 					    PCI_CONF_BGE_CLKCTL);
3229 					val32 |= CLKCTL_PCIE_A0_FIX;
3230 					pci_config_put32(bgep->cfg_handle,
3231 					    PCI_CONF_BGE_CLKCTL, val32);
3232 				}
3233 				bge_reg_set32(bgep, regno,
3234 				    MISC_CONFIG_GRC_RESET_DISABLE);
3235 				regval |= MISC_CONFIG_GRC_RESET_DISABLE;
3236 			}
3237 		}
3238 
3239 		/*
3240 		 * Special case - causes Core reset
3241 		 *
3242 		 * On SPARC v9 we want to ensure that we don't start
3243 		 * timing until the I/O access has actually reached
3244 		 * the chip, otherwise we might make the next access
3245 		 * too early.  And we can't just force the write out
3246 		 * by following it with a read (even to config space)
3247 		 * because that would cause the fault we're trying
3248 		 * to avoid.  Hence the need for membar_sync() here.
3249 		 */
3250 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), regval);
3251 #ifdef	__sparcv9
3252 		membar_sync();
3253 #endif	/* __sparcv9 */
3254 		/*
3255 		 * On some platforms,system need about 300us for
3256 		 * link setup.
3257 		 */
3258 		drv_usecwait(300);
3259 		if (DEVICE_5906_SERIES_CHIPSETS(bgep)) {
3260 			bge_reg_set32(bgep, VCPU_STATUS_REG, VCPU_DRV_RESET);
3261 			bge_reg_clr32(
3262 			    bgep, VCPU_EXT_CTL, VCPU_EXT_CTL_HALF);
3263 		}
3264 
3265 		if (bgep->chipid.pci_type == BGE_PCI_E) {
3266 			/* PCI-E device need more reset time */
3267 			drv_usecwait(120000);
3268 
3269 			/*
3270 			 * (re)Disable interrupts as the bit can be reset after a
3271 			 * core clock reset.
3272 			 */
3273 			mhcr = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MHCR);
3274 			pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR,
3275 			    mhcr | MHCR_MASK_PCI_INT_OUTPUT);
3276 
3277 			/* Set PCIE max payload size and clear error status. */
3278 			if ((bgep->chipid.chip_label == 5721) ||
3279 			    (bgep->chipid.chip_label == 5751) ||
3280 			    (bgep->chipid.chip_label == 5752) ||
3281 			    (bgep->chipid.chip_label == 5789) ||
3282 			    (bgep->chipid.chip_label == 5906)) {
3283 				pci_config_put16(bgep->cfg_handle,
3284 				    PCI_CONF_DEV_CTRL, READ_REQ_SIZE_MAX);
3285 				pci_config_put16(bgep->cfg_handle,
3286 				    PCI_CONF_DEV_STUS, DEVICE_ERROR_STUS);
3287 			}
3288 
3289 			if ((bgep->chipid.chip_label == 5723) ||
3290 			    (bgep->chipid.chip_label == 5761)) {
3291 				pci_config_put16(bgep->cfg_handle,
3292 				    PCI_CONF_DEV_CTRL_5723, READ_REQ_SIZE_MAX);
3293 				pci_config_put16(bgep->cfg_handle,
3294 				    PCI_CONF_DEV_STUS_5723, DEVICE_ERROR_STUS);
3295 			}
3296 
3297 			if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
3298 			    DEVICE_5725_SERIES_CHIPSETS(bgep)) {
3299 				val16 = pci_config_get16(bgep->cfg_handle,
3300 				                         PCI_CONF_DEV_CTRL_5717);
3301 				val16 &= ~READ_REQ_SIZE_MASK;
3302 				val16 |= READ_REQ_SIZE_2K;
3303 				pci_config_put16(bgep->cfg_handle,
3304 				    PCI_CONF_DEV_CTRL_5717, val16);
3305 			}
3306 		}
3307 
3308 		BGE_PCICHK(bgep);
3309 		return (B_TRUE);
3310 
3311 	default:
3312 		bge_reg_put32(bgep, regno, regval);
3313 		return (bge_chip_poll_engine(bgep, regno,
3314 		    STATE_MACHINE_RESET_BIT, 0));
3315 	}
3316 }
3317 
3318 /*
3319  * Various registers that control the chip's internal engines (state
3320  * machines) have an <enable> bit (fortunately, in the same place in
3321  * each such register :-).  To stop the state machine, this bit must
3322  * be written with 0, then polled to see when the state machine has
3323  * actually stopped.
3324  *
3325  * The return value is B_TRUE on success (enable bit cleared), or
3326  * B_FALSE if the state machine didn't stop :(
3327  */
3328 static boolean_t bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno,
3329 						uint32_t morebits);
3330 #pragma	no_inline(bge_chip_disable_engine)
3331 
3332 static boolean_t
3333 bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
3334 {
3335 	uint32_t regval;
3336 
3337 	BGE_TRACE(("bge_chip_disable_engine($%p, 0x%lx, 0x%x)",
3338 	    (void *)bgep, regno, morebits));
3339 
3340 	switch (regno) {
3341 	case FTQ_RESET_REG:
3342 		/*
3343 		 * For Schumacher's bugfix CR6490108
3344 		 */
3345 #ifdef BGE_IPMI_ASF
3346 #ifdef BGE_NETCONSOLE
3347 		if (bgep->asf_enabled)
3348 			return (B_TRUE);
3349 #endif
3350 #endif
3351 		/*
3352 		 * Not quite like the others; it doesn't
3353 		 * have an <enable> bit, but instead we
3354 		 * have to set and then clear all the bits
3355 		 */
3356 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
3357 		drv_usecwait(100);
3358 		bge_reg_put32(bgep, regno, 0);
3359 		return (B_TRUE);
3360 
3361 	default:
3362 		if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3363 			break;
3364 		}
3365 
3366 		if ((regno == RCV_LIST_SELECTOR_MODE_REG) ||
3367 		    (regno == DMA_COMPLETION_MODE_REG) ||
3368 		    (regno == MBUF_CLUSTER_FREE_MODE_REG) ||
3369 		    (regno == BUFFER_MANAGER_MODE_REG) ||
3370 		    (regno == MEMORY_ARBITER_MODE_REG)) {
3371 			return B_TRUE;
3372 		}
3373 
3374 		break;
3375 	}
3376 
3377 	regval = bge_reg_get32(bgep, regno);
3378 	regval &= ~STATE_MACHINE_ENABLE_BIT;
3379 	regval &= ~morebits;
3380 	bge_reg_put32(bgep, regno, regval);
3381 
3382 	return bge_chip_poll_engine(bgep, regno, STATE_MACHINE_ENABLE_BIT, 0);
3383 }
3384 
3385 /*
3386  * Various registers that control the chip's internal engines (state
3387  * machines) have an <enable> bit (fortunately, in the same place in
3388  * each such register :-).  To start the state machine, this bit must
3389  * be written with 1, then polled to see when the state machine has
3390  * actually started.
3391  *
3392  * The return value is B_TRUE on success (enable bit set), or
3393  * B_FALSE if the state machine didn't start :(
3394  */
3395 static boolean_t bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno,
3396 					uint32_t morebits);
3397 #pragma	no_inline(bge_chip_enable_engine)
3398 
3399 static boolean_t
3400 bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
3401 {
3402 	uint32_t regval;
3403 
3404 	BGE_TRACE(("bge_chip_enable_engine($%p, 0x%lx, 0x%x)",
3405 	    (void *)bgep, regno, morebits));
3406 
3407 	switch (regno) {
3408 	case FTQ_RESET_REG:
3409 #ifdef BGE_IPMI_ASF
3410 #ifdef BGE_NETCONSOLE
3411 		if (bgep->asf_enabled)
3412 			return (B_TRUE);
3413 #endif
3414 #endif
3415 		/*
3416 		 * Not quite like the others; it doesn't
3417 		 * have an <enable> bit, but instead we
3418 		 * have to set and then clear all the bits
3419 		 */
3420 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
3421 		drv_usecwait(100);
3422 		bge_reg_put32(bgep, regno, 0);
3423 		return (B_TRUE);
3424 
3425 	default:
3426 		regval = bge_reg_get32(bgep, regno);
3427 		regval |= STATE_MACHINE_ENABLE_BIT;
3428 		regval |= morebits;
3429 		bge_reg_put32(bgep, regno, regval);
3430 		return (bge_chip_poll_engine(bgep, regno,
3431 		    STATE_MACHINE_ENABLE_BIT, STATE_MACHINE_ENABLE_BIT));
3432 	}
3433 }
3434 
3435 /*
3436  * Reprogram the Ethernet, Transmit, and Receive MAC
3437  * modes to match the param_* variables
3438  */
3439 void bge_sync_mac_modes(bge_t *bgep);
3440 #pragma	no_inline(bge_sync_mac_modes)
3441 
3442 void
3443 bge_sync_mac_modes(bge_t *bgep)
3444 {
3445 	uint32_t macmode;
3446 	uint32_t regval;
3447 
3448 	ASSERT(mutex_owned(bgep->genlock));
3449 
3450 	/*
3451 	 * Reprogram the Ethernet MAC mode ...
3452 	 */
3453 	macmode = regval = bge_reg_get32(bgep, ETHERNET_MAC_MODE_REG);
3454 	macmode &= ~ETHERNET_MODE_LINK_POLARITY;
3455 	macmode &= ~ETHERNET_MODE_PORTMODE_MASK;
3456 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
3457 	    (bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC)) {
3458 		if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
3459 		    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
3460 		    DEVICE_5714_SERIES_CHIPSETS(bgep))
3461 			macmode |= ETHERNET_MODE_PORTMODE_GMII;
3462 		else
3463 			macmode |= ETHERNET_MODE_PORTMODE_TBI;
3464 	} else if (bgep->param_link_speed == 10 ||
3465 	    bgep->param_link_speed == 100)
3466 		macmode |= ETHERNET_MODE_PORTMODE_MII;
3467 	else
3468 		macmode |= ETHERNET_MODE_PORTMODE_GMII;
3469 	if (bgep->param_link_duplex == LINK_DUPLEX_HALF)
3470 		macmode |= ETHERNET_MODE_HALF_DUPLEX;
3471 	else
3472 		macmode &= ~ETHERNET_MODE_HALF_DUPLEX;
3473 	if (bgep->param_loop_mode == BGE_LOOP_INTERNAL_MAC)
3474 		macmode |= ETHERNET_MODE_MAC_LOOPBACK;
3475 	else
3476 		macmode &= ~ETHERNET_MODE_MAC_LOOPBACK;
3477 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, macmode);
3478 	BGE_DEBUG(("bge_sync_mac_modes($%p) Ethernet MAC mode 0x%x => 0x%x",
3479 	    (void *)bgep, regval, macmode));
3480 
3481 	/*
3482 	 * ... the Transmit MAC mode ...
3483 	 */
3484 	macmode = regval = bge_reg_get32(bgep, TRANSMIT_MAC_MODE_REG);
3485 	if (bgep->param_link_tx_pause)
3486 		macmode |= TRANSMIT_MODE_FLOW_CONTROL;
3487 	else
3488 		macmode &= ~TRANSMIT_MODE_FLOW_CONTROL;
3489 	bge_reg_put32(bgep, TRANSMIT_MAC_MODE_REG, macmode);
3490 	BGE_DEBUG(("bge_sync_mac_modes($%p) Transmit MAC mode 0x%x => 0x%x",
3491 	    (void *)bgep, regval, macmode));
3492 
3493 	/*
3494 	 * ... and the Receive MAC mode
3495 	 */
3496 	macmode = regval = bge_reg_get32(bgep, RECEIVE_MAC_MODE_REG);
3497 	if (bgep->param_link_rx_pause)
3498 		macmode |= RECEIVE_MODE_FLOW_CONTROL;
3499 	else
3500 		macmode &= ~RECEIVE_MODE_FLOW_CONTROL;
3501 	bge_reg_put32(bgep, RECEIVE_MAC_MODE_REG, macmode);
3502 	BGE_DEBUG(("bge_sync_mac_modes($%p) Receive MAC mode 0x%x => 0x%x",
3503 	    (void *)bgep, regval, macmode));
3504 
3505 	/*
3506 	 * For BCM5785, we need to configure the link status in the MI Status
3507 	 * register with a write command when auto-polling is disabled.
3508 	 */
3509 	if (bgep->chipid.device == DEVICE_ID_5785)
3510 		if (bgep->param_link_speed == 10)
3511 			bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK
3512 			    | MI_STATUS_10MBPS);
3513 		else
3514 			bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK);
3515 }
3516 
3517 /*
3518  * bge_chip_sync() -- program the chip with the unicast MAC address,
3519  * the multicast hash table, the required level of promiscuity, and
3520  * the current loopback mode ...
3521  */
3522 #ifdef BGE_IPMI_ASF
3523 int bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive);
3524 #else
3525 int bge_chip_sync(bge_t *bgep);
3526 #endif
3527 #pragma	no_inline(bge_chip_sync)
3528 
3529 int
3530 #ifdef BGE_IPMI_ASF
3531 bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive)
3532 #else
3533 bge_chip_sync(bge_t *bgep)
3534 #endif
3535 {
3536 	void (*opfn)(bge_t *bgep, bge_regno_t reg, uint32_t bits);
3537 	boolean_t promisc;
3538 	uint64_t macaddr;
3539 	uint32_t fill = 0;
3540 	int i, j;
3541 	int retval = DDI_SUCCESS;
3542 
3543 	BGE_TRACE(("bge_chip_sync($%p)",
3544 	    (void *)bgep));
3545 
3546 	ASSERT(mutex_owned(bgep->genlock));
3547 
3548 	promisc = B_FALSE;
3549 	fill = ~(uint32_t)0;
3550 
3551 	if (bgep->promisc)
3552 		promisc = B_TRUE;
3553 	else
3554 		fill = (uint32_t)0;
3555 
3556 	/*
3557 	 * If the TX/RX MAC engines are already running, we should stop
3558 	 * them (and reset the RX engine) before changing the parameters.
3559 	 * If they're not running, this will have no effect ...
3560 	 *
3561 	 * NOTE: this is currently disabled by default because stopping
3562 	 * and restarting the Tx engine may cause an outgoing packet in
3563 	 * transit to be truncated.  Also, stopping and restarting the
3564 	 * Rx engine seems to not work correctly on the 5705.  Testing
3565 	 * has not (yet!) revealed any problems with NOT stopping and
3566 	 * restarting these engines (and Broadcom say their drivers don't
3567 	 * do this), but if it is found to cause problems, this variable
3568 	 * can be patched to re-enable the old behaviour ...
3569 	 */
3570 	if (bge_stop_start_on_sync) {
3571 #ifdef BGE_IPMI_ASF
3572 		if (!bgep->asf_enabled) {
3573 			if (!bge_chip_disable_engine(bgep,
3574 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
3575 				retval = DDI_FAILURE;
3576 		} else {
3577 			if (!bge_chip_disable_engine(bgep,
3578 			    RECEIVE_MAC_MODE_REG, 0))
3579 				retval = DDI_FAILURE;
3580 		}
3581 #else
3582 		if (!bge_chip_disable_engine(bgep, RECEIVE_MAC_MODE_REG,
3583 		    RECEIVE_MODE_KEEP_VLAN_TAG))
3584 			retval = DDI_FAILURE;
3585 #endif
3586 		if (!bge_chip_disable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
3587 			retval = DDI_FAILURE;
3588 		if (!bge_chip_reset_engine(bgep, RECEIVE_MAC_MODE_REG))
3589 			retval = DDI_FAILURE;
3590 	}
3591 
3592 	/*
3593 	 * Reprogram the hashed multicast address table ...
3594 	 */
3595 	for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
3596 		bge_reg_put32(bgep, MAC_HASH_REG(i), 0);
3597 
3598 	for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
3599 		bge_reg_put32(bgep, MAC_HASH_REG(i),
3600 			bgep->mcast_hash[i] | fill);
3601 
3602 #ifdef BGE_IPMI_ASF
3603 	if (!bgep->asf_enabled || !asf_keeplive) {
3604 #endif
3605 		/*
3606 		 * Transform the MAC address(es) from host to chip format, then
3607 		 * reprogram the transmit random backoff seed and the unicast
3608 		 * MAC address(es) ...
3609 		 */
3610 		for (j = 0; j < MAC_ADDRESS_REGS_MAX; j++) {
3611 			for (i = 0, macaddr = 0ull;
3612 			    i < ETHERADDRL; ++i) {
3613 				macaddr <<= 8;
3614 				macaddr |= bgep->curr_addr[j].addr[i];
3615 			}
3616 			fill += (macaddr >> 16) + (macaddr & 0xffffffff);
3617 			bge_reg_put64(bgep, MAC_ADDRESS_REG(j), macaddr);
3618 
3619 			BGE_DEBUG(("bge_chip_sync($%p) "
3620 			    "setting MAC address %012llx",
3621 			    (void *)bgep, macaddr));
3622 		}
3623 #ifdef BGE_IPMI_ASF
3624 	}
3625 #endif
3626 	/*
3627 	 * Set random seed of backoff interval
3628 	 *   - Writing zero means no backoff interval
3629 	 */
3630 	fill = ((fill >> 20) + (fill >> 10) + fill) & 0x3ff;
3631 	if (fill == 0)
3632 		fill = 1;
3633 	bge_reg_put32(bgep, MAC_TX_RANDOM_BACKOFF_REG, fill);
3634 
3635 	/*
3636 	 * Set or clear the PROMISCUOUS mode bit
3637 	 */
3638 	opfn = promisc ? bge_reg_set32 : bge_reg_clr32;
3639 	(*opfn)(bgep, RECEIVE_MAC_MODE_REG, RECEIVE_MODE_PROMISCUOUS);
3640 
3641 	/*
3642 	 * Sync the rest of the MAC modes too ...
3643 	 */
3644 	bge_sync_mac_modes(bgep);
3645 
3646 	/*
3647 	 * Restart RX/TX MAC engines if required ...
3648 	 */
3649 	if (bgep->bge_chip_state == BGE_CHIP_RUNNING) {
3650 		if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
3651 			retval = DDI_FAILURE;
3652 #ifdef BGE_IPMI_ASF
3653 		if (!bgep->asf_enabled) {
3654 			if (!bge_chip_enable_engine(bgep,
3655 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
3656 				retval = DDI_FAILURE;
3657 		} else {
3658 			if (!bge_chip_enable_engine(bgep,
3659 			    RECEIVE_MAC_MODE_REG, 0))
3660 				retval = DDI_FAILURE;
3661 		}
3662 #else
3663 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3664 		    RECEIVE_MODE_KEEP_VLAN_TAG))
3665 			retval = DDI_FAILURE;
3666 #endif
3667 	}
3668 	return (retval);
3669 }
3670 
3671 #ifndef __sparc
3672 static bge_regno_t quiesce_regs[] = {
3673 	READ_DMA_MODE_REG,
3674 	DMA_COMPLETION_MODE_REG,
3675 	WRITE_DMA_MODE_REG,
3676 	BGE_REGNO_NONE
3677 };
3678 
3679 void bge_chip_stop_nonblocking(bge_t *bgep);
3680 #pragma no_inline(bge_chip_stop_nonblocking)
3681 
3682 /*
3683  * This function is called by bge_quiesce(). We
3684  * turn off all the DMA engines here.
3685  */
3686 void
3687 bge_chip_stop_nonblocking(bge_t *bgep)
3688 {
3689 	bge_regno_t *rbp;
3690 
3691 	/*
3692 	 * Flag that no more activity may be initiated
3693 	 */
3694 	bgep->progress &= ~PROGRESS_READY;
3695 
3696 	rbp = quiesce_regs;
3697 	while (*rbp != BGE_REGNO_NONE) {
3698 		(void) bge_chip_disable_engine(bgep, *rbp, 0);
3699 		++rbp;
3700 	}
3701 
3702 	bgep->bge_chip_state = BGE_CHIP_STOPPED;
3703 }
3704 
3705 #endif
3706 
3707 /*
3708  * bge_chip_stop() -- stop all chip processing
3709  *
3710  * If the <fault> parameter is B_TRUE, we're stopping the chip because
3711  * we've detected a problem internally; otherwise, this is a normal
3712  * (clean) stop (at user request i.e. the last STREAM has been closed).
3713  */
3714 void bge_chip_stop(bge_t *bgep, boolean_t fault);
3715 #pragma	no_inline(bge_chip_stop)
3716 
3717 void
3718 bge_chip_stop(bge_t *bgep, boolean_t fault)
3719 {
3720 	bge_regno_t regno;
3721 	bge_regno_t *rbp;
3722 	boolean_t ok = B_TRUE;
3723 
3724 	BGE_TRACE(("bge_chip_stop($%p)",
3725 	    (void *)bgep));
3726 
3727 	ASSERT(mutex_owned(bgep->genlock));
3728 
3729 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR,
3730 	    (pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MHCR) |
3731 	     MHCR_MASK_PCI_INT_OUTPUT));
3732 
3733 	ok &= bge_chip_disable_engine(bgep, RECEIVE_MAC_MODE_REG, 0);
3734 	ok &= bge_chip_disable_engine(bgep, RCV_BD_INITIATOR_MODE_REG, 0);
3735 	ok &= bge_chip_disable_engine(bgep, RCV_LIST_PLACEMENT_MODE_REG, 0);
3736 	ok &= bge_chip_disable_engine(bgep, RCV_LIST_SELECTOR_MODE_REG, 0);
3737 	ok &= bge_chip_disable_engine(bgep, RCV_DATA_BD_INITIATOR_MODE_REG, 0);
3738 	ok &= bge_chip_disable_engine(bgep, RCV_DATA_COMPLETION_MODE_REG, 0);
3739 	ok &= bge_chip_disable_engine(bgep, RCV_BD_COMPLETION_MODE_REG, 0);
3740 
3741 	ok &= bge_chip_disable_engine(bgep, SEND_BD_SELECTOR_MODE_REG, 0);
3742 	ok &= bge_chip_disable_engine(bgep, SEND_BD_INITIATOR_MODE_REG, 0);
3743 	ok &= bge_chip_disable_engine(bgep, SEND_DATA_INITIATOR_MODE_REG, 0);
3744 	ok &= bge_chip_disable_engine(bgep, READ_DMA_MODE_REG, 0);
3745 	ok &= bge_chip_disable_engine(bgep, SEND_DATA_COMPLETION_MODE_REG, 0);
3746 	ok &= bge_chip_disable_engine(bgep, DMA_COMPLETION_MODE_REG, 0);
3747 	ok &= bge_chip_disable_engine(bgep, SEND_BD_COMPLETION_MODE_REG, 0);
3748 	ok &= bge_chip_disable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0);
3749 
3750 	bge_reg_clr32(bgep, ETHERNET_MAC_MODE_REG, ETHERNET_MODE_ENABLE_TDE);
3751 	drv_usecwait(40);
3752 
3753 	ok &= bge_chip_disable_engine(bgep, HOST_COALESCE_MODE_REG, 0);
3754 	ok &= bge_chip_disable_engine(bgep, WRITE_DMA_MODE_REG, 0);
3755 	ok &= bge_chip_disable_engine(bgep, MBUF_CLUSTER_FREE_MODE_REG, 0);
3756 	ok &= bge_chip_disable_engine(bgep, FTQ_RESET_REG, 0);
3757 	ok &= bge_chip_disable_engine(bgep, BUFFER_MANAGER_MODE_REG, 0);
3758 	ok &= bge_chip_disable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0);
3759 	ok &= bge_chip_disable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0);
3760 
3761 	if (!ok && !fault)
3762 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
3763 
3764 	/*
3765 	 * Finally, disable (all) MAC events & clear the MAC status
3766 	 */
3767 	bge_reg_put32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG, 0);
3768 	bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, ~0);
3769 
3770 	/*
3771 	 * if we're stopping the chip because of a detected fault then do
3772 	 * appropriate actions
3773 	 */
3774 	if (fault) {
3775 		if (bgep->bge_chip_state != BGE_CHIP_FAULT) {
3776 			bgep->bge_chip_state = BGE_CHIP_FAULT;
3777 			if (!bgep->manual_reset)
3778 				ddi_fm_service_impact(bgep->devinfo,
3779 				    DDI_SERVICE_LOST);
3780 			if (bgep->bge_dma_error) {
3781 				/*
3782 				 * need to free buffers in case the fault was
3783 				 * due to a memory error in a buffer - got to
3784 				 * do a fair bit of tidying first
3785 				 */
3786 				if (bgep->progress & PROGRESS_KSTATS) {
3787 					bge_fini_kstats(bgep);
3788 					bgep->progress &= ~PROGRESS_KSTATS;
3789 				}
3790 				if (bgep->progress & PROGRESS_INTR) {
3791 					bge_intr_disable(bgep);
3792 					rw_enter(bgep->errlock, RW_WRITER);
3793 					bge_fini_rings(bgep);
3794 					rw_exit(bgep->errlock);
3795 					bgep->progress &= ~PROGRESS_INTR;
3796 				}
3797 				if (bgep->progress & PROGRESS_BUFS) {
3798 					bge_free_bufs(bgep);
3799 					bgep->progress &= ~PROGRESS_BUFS;
3800 				}
3801 				bgep->bge_dma_error = B_FALSE;
3802 			}
3803 		}
3804 	} else
3805 		bgep->bge_chip_state = BGE_CHIP_STOPPED;
3806 }
3807 
3808 /*
3809  * Poll for completion of chip's ROM firmware; also, at least on the
3810  * first time through, find and return the hardware MAC address, if any.
3811  */
3812 static uint64_t bge_poll_firmware(bge_t *bgep);
3813 #pragma	no_inline(bge_poll_firmware)
3814 
3815 static uint64_t
3816 bge_poll_firmware(bge_t *bgep)
3817 {
3818 	uint64_t magic;
3819 	uint64_t mac;
3820 	uint32_t gen, val;
3821 	uint32_t i;
3822 
3823 	/*
3824 	 * Step 19: poll for firmware completion (GENCOMM port set
3825 	 * to the ones complement of T3_MAGIC_NUMBER).
3826 	 *
3827 	 * While we're at it, we also read the MAC address register;
3828 	 * at some stage the firmware will load this with the
3829 	 * factory-set value.
3830 	 *
3831 	 * When both the magic number and the MAC address are set,
3832 	 * we're done; but we impose a time limit of one second
3833 	 * (1000*1000us) in case the firmware fails in some fashion
3834 	 * or the SEEPROM that provides that MAC address isn't fitted.
3835 	 *
3836 	 * After the first time through (chip state != INITIAL), we
3837 	 * don't need the MAC address to be set (we've already got it
3838 	 * or not, from the first time), so we don't wait for it, but
3839 	 * we still have to wait for the T3_MAGIC_NUMBER.
3840 	 *
3841 	 * Note: the magic number is only a 32-bit quantity, but the NIC
3842 	 * memory is 64-bit (and big-endian) internally.  Addressing the
3843 	 * GENCOMM word as "the upper half of a 64-bit quantity" makes
3844 	 * it work correctly on both big- and little-endian hosts.
3845 	 */
3846 	if (MHCR_CHIP_ASIC_REV(bgep) == MHCR_CHIP_ASIC_REV_5906) {
3847 		for (i = 0; i < 1000; ++i) {
3848 			drv_usecwait(1000);
3849 			val = bge_reg_get32(bgep, VCPU_STATUS_REG);
3850 			if (val & VCPU_INIT_DONE)
3851 				break;
3852 		}
3853 		BGE_DEBUG(("bge_poll_firmware($%p): return after %d loops",
3854 		    (void *)bgep, i));
3855 		mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
3856 	} else {
3857 		for (i = 0; i < 1000; ++i) {
3858 			drv_usecwait(1000);
3859 			gen = bge_nic_get64(bgep, NIC_MEM_GENCOMM) >> 32;
3860 			if (i == 0 && DEVICE_5704_SERIES_CHIPSETS(bgep))
3861 				drv_usecwait(100000);
3862 			mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
3863 #ifdef BGE_IPMI_ASF
3864 			if (!bgep->asf_enabled) {
3865 #endif
3866 				if (gen != ~T3_MAGIC_NUMBER)
3867 					continue;
3868 #ifdef BGE_IPMI_ASF
3869 			}
3870 #endif
3871 			if (mac != 0ULL)
3872 				break;
3873 			if (bgep->bge_chip_state != BGE_CHIP_INITIAL)
3874 				break;
3875 		}
3876 	}
3877 
3878 	magic = bge_nic_get64(bgep, NIC_MEM_GENCOMM);
3879 	BGE_DEBUG(("bge_poll_firmware($%p): PXE magic 0x%x after %d loops",
3880 	    (void *)bgep, gen, i));
3881 	BGE_DEBUG(("bge_poll_firmware: MAC %016llx, GENCOMM %016llx",
3882 	    mac, magic));
3883 
3884 	return (mac);
3885 }
3886 
3887 /*
3888  * Maximum times of trying to get the NVRAM access lock
3889  * by calling bge_nvmem_acquire()
3890  */
3891 #define	MAX_TRY_NVMEM_ACQUIRE	10000
3892 
3893 #ifdef BGE_IPMI_ASF
3894 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode);
3895 #else
3896 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma);
3897 #endif
3898 #pragma	no_inline(bge_chip_reset)
3899 
3900 int
3901 #ifdef BGE_IPMI_ASF
3902 bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode)
3903 #else
3904 bge_chip_reset(bge_t *bgep, boolean_t enable_dma)
3905 #endif
3906 {
3907 	chip_id_t chipid;
3908 	uint64_t mac;
3909 	uint64_t magic;
3910 	uint32_t tmp;
3911 	uint32_t mhcr_base;
3912 	uint32_t mhcr;
3913 	uint32_t sx0;
3914 	uint32_t i, tries;
3915 #ifdef BGE_IPMI_ASF
3916 	uint32_t mailbox;
3917 #endif
3918 	int retval = DDI_SUCCESS;
3919 
3920 	BGE_TRACE(("bge_chip_reset($%p, %d)",
3921 		(void *)bgep, enable_dma));
3922 
3923 	ASSERT(mutex_owned(bgep->genlock));
3924 
3925 	BGE_DEBUG(("bge_chip_reset($%p, %d): current state is %d",
3926 		(void *)bgep, enable_dma, bgep->bge_chip_state));
3927 
3928 	/*
3929 	 * Do we need to stop the chip cleanly before resetting?
3930 	 */
3931 	switch (bgep->bge_chip_state) {
3932 	default:
3933 		_NOTE(NOTREACHED)
3934 		return (DDI_FAILURE);
3935 
3936 	case BGE_CHIP_INITIAL:
3937 	case BGE_CHIP_STOPPED:
3938 	case BGE_CHIP_RESET:
3939 		break;
3940 
3941 	case BGE_CHIP_RUNNING:
3942 	case BGE_CHIP_ERROR:
3943 	case BGE_CHIP_FAULT:
3944 		bge_chip_stop(bgep, B_FALSE);
3945 		break;
3946 	}
3947 
3948 	mhcr_base = MHCR_ENABLE_INDIRECT_ACCESS |
3949 	            MHCR_ENABLE_PCI_STATE_RW |
3950 	            MHCR_ENABLE_TAGGED_STATUS_MODE |
3951 	            MHCR_MASK_INTERRUPT_MODE |
3952 	            MHCR_MASK_PCI_INT_OUTPUT |
3953 	            MHCR_CLEAR_INTERRUPT_INTA;
3954 
3955 #ifdef BGE_IPMI_ASF
3956 	if (bgep->asf_enabled) {
3957 		mhcr = mhcr_base;
3958 #ifdef _BIG_ENDIAN
3959 		mhcr |= (MHCR_ENABLE_ENDIAN_WORD_SWAP |
3960 		         MHCR_ENABLE_ENDIAN_BYTE_SWAP);
3961 #endif
3962 		pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3963 
3964 		bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
3965 			bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG) |
3966 			MEMORY_ARBITER_ENABLE);
3967 
3968 		if (asf_mode == ASF_MODE_INIT) {
3969 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
3970 		} else if (asf_mode == ASF_MODE_SHUTDOWN) {
3971 			bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET);
3972 		}
3973 	}
3974 #endif
3975 
3976 	/*
3977 	 * Adapted from Broadcom document 570X-PG102-R, pp 102-116.
3978 	 * Updated to reflect Broadcom document 570X-PG104-R, pp 146-159.
3979 	 *
3980 	 * Before reset Core clock,it is
3981 	 * also required to initialize the Memory Arbiter as specified in step9
3982 	 * and Misc Host Control Register as specified in step-13
3983 	 * Step 4-5: reset Core clock & wait for completion
3984 	 * Steps 6-8: are done by bge_chip_cfg_init()
3985 	 * put the T3_MAGIC_NUMBER into the GENCOMM port before reset
3986 	 */
3987 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3988 		retval = DDI_FAILURE;
3989 
3990 	mhcr = mhcr_base;
3991 #ifdef _BIG_ENDIAN
3992 	mhcr |= (MHCR_ENABLE_ENDIAN_WORD_SWAP |
3993 	         MHCR_ENABLE_ENDIAN_BYTE_SWAP);
3994 #endif
3995 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3996 
3997 #ifdef BGE_IPMI_ASF
3998 	if (bgep->asf_enabled)
3999 		bgep->asf_wordswapped = B_FALSE;
4000 #endif
4001 	/*
4002 	 * NVRAM Corruption Workaround
4003 	 */
4004 	for (tries = 0; tries < MAX_TRY_NVMEM_ACQUIRE; tries++)
4005 		if (bge_nvmem_acquire(bgep) != EAGAIN)
4006 			break;
4007 	if (tries >= MAX_TRY_NVMEM_ACQUIRE)
4008 		BGE_DEBUG(("%s: fail to acquire nvram lock",
4009 			bgep->ifname));
4010 
4011 	bge_ape_lock(bgep, BGE_APE_LOCK_GRC);
4012 
4013 #ifdef BGE_IPMI_ASF
4014 	if (!bgep->asf_enabled) {
4015 #endif
4016 		magic = (uint64_t)T3_MAGIC_NUMBER << 32;
4017 		bge_nic_put64(bgep, NIC_MEM_GENCOMM, magic);
4018 #ifdef BGE_IPMI_ASF
4019 	}
4020 #endif
4021 
4022 	if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4023 	    DEVICE_5725_SERIES_CHIPSETS(bgep)) {
4024 		bge_reg_set32(bgep, FAST_BOOT_PC, 0);
4025 		if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
4026 			retval = DDI_FAILURE;
4027 	}
4028 
4029 	mhcr = mhcr_base;
4030 #ifdef _BIG_ENDIAN
4031 	mhcr |= (MHCR_ENABLE_ENDIAN_WORD_SWAP |
4032 	         MHCR_ENABLE_ENDIAN_BYTE_SWAP);
4033 #endif
4034 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
4035 
4036 	if (!bge_chip_reset_engine(bgep, MISC_CONFIG_REG))
4037 		retval = DDI_FAILURE;
4038 
4039 	bge_chip_cfg_init(bgep, &chipid, enable_dma);
4040 
4041 	/*
4042 	 * Step 8a: This may belong elsewhere, but BCM5721 needs
4043 	 * a bit set to avoid a fifo overflow/underflow bug.
4044 	 */
4045 	if ((bgep->chipid.chip_label == 5721) ||
4046 		(bgep->chipid.chip_label == 5751) ||
4047 		(bgep->chipid.chip_label == 5752) ||
4048 		(bgep->chipid.chip_label == 5755) ||
4049 		(bgep->chipid.chip_label == 5756) ||
4050 		(bgep->chipid.chip_label == 5789) ||
4051 		(bgep->chipid.chip_label == 5906))
4052 		bge_reg_set32(bgep, TLP_CONTROL_REG, TLP_DATA_FIFO_PROTECT);
4053 
4054 	/*
4055 	 * Step 9: enable MAC memory arbiter,bit30 and bit31 of 5714/5715 should
4056 	 * not be changed.
4057 	 */
4058 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
4059 		retval = DDI_FAILURE;
4060 
4061 	/*
4062 	 * Steps 10-11: configure PIO endianness options and
4063 	 * enable indirect register access -- already done
4064 	 * Steps 12-13: enable writing to the PCI state & clock
4065 	 * control registers -- not required; we aren't going to
4066 	 * use those features.
4067 	 * Steps 14-15: Configure DMA endianness options.  See
4068 	 * the comments on the setting of the MHCR above.
4069 	 */
4070 	tmp = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME;
4071 #ifdef _BIG_ENDIAN
4072 	tmp |= (MODE_WORD_SWAP_NONFRAME | MODE_BYTE_SWAP_NONFRAME);
4073 #endif
4074 #ifdef BGE_IPMI_ASF
4075 	if (bgep->asf_enabled)
4076 		tmp |= MODE_HOST_STACK_UP;
4077 #endif
4078 	bge_reg_put32(bgep, MODE_CONTROL_REG, tmp);
4079 
4080 #ifdef BGE_IPMI_ASF
4081 	if (bgep->asf_enabled) {
4082 #ifdef __sparc
4083 		bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
4084 			MEMORY_ARBITER_ENABLE |
4085 			bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG));
4086 #endif
4087 
4088 #ifdef  BGE_NETCONSOLE
4089 		if (!bgep->asf_newhandshake) {
4090 			if ((asf_mode == ASF_MODE_INIT) ||
4091 			(asf_mode == ASF_MODE_POST_INIT)) {
4092 				bge_asf_post_reset_old_mode(bgep,
4093 					BGE_INIT_RESET);
4094 			} else {
4095 				bge_asf_post_reset_old_mode(bgep,
4096 					BGE_SHUTDOWN_RESET);
4097 			}
4098 		}
4099 #endif
4100 
4101 		/* Wait for NVRAM init */
4102 		i = 0;
4103 		drv_usecwait(5000);
4104 		mailbox = bge_nic_get32(bgep, BGE_FIRMWARE_MAILBOX);
4105 
4106 		while ((mailbox != (uint32_t)
4107 			~BGE_MAGIC_NUM_FIRMWARE_INIT_DONE) &&
4108 			(i < 10000)) {
4109 			drv_usecwait(100);
4110 			mailbox = bge_nic_get32(bgep,
4111 				BGE_FIRMWARE_MAILBOX);
4112 			i++;
4113 		}
4114 
4115 #ifndef BGE_NETCONSOLE
4116 		if (!bgep->asf_newhandshake) {
4117 			if ((asf_mode == ASF_MODE_INIT) ||
4118 				(asf_mode == ASF_MODE_POST_INIT)) {
4119 
4120 				bge_asf_post_reset_old_mode(bgep,
4121 					BGE_INIT_RESET);
4122 			} else {
4123 				bge_asf_post_reset_old_mode(bgep,
4124 					BGE_SHUTDOWN_RESET);
4125 			}
4126 		}
4127 #endif
4128 	}
4129 #endif
4130 
4131 	bge_ape_unlock(bgep, BGE_APE_LOCK_GRC);
4132 
4133 	/*
4134 	 * Steps 16-17: poll for firmware completion
4135 	 */
4136 	mac = bge_poll_firmware(bgep);
4137 
4138 	if (bgep->chipid.device == DEVICE_ID_5720) {
4139 		tmp = bge_reg_get32(bgep, CPMU_CLCK_ORIDE_REG);
4140 		bge_reg_put32(bgep, CPMU_CLCK_ORIDE_REG,
4141 		              (tmp & ~CPMU_CLCK_ORIDE_MAC_ORIDE_EN));
4142 	}
4143 
4144 	/*
4145 	 * Step 18: enable external memory -- doesn't apply.
4146 	 *
4147 	 * However we take the opportunity to set the MLCR anyway, as
4148 	 * this register also controls the SEEPROM auto-access method
4149 	 * which we may want to use later ...
4150 	 *
4151 	 * The proper value here depends on the way the chip is wired
4152 	 * into the circuit board, as this register *also* controls which
4153 	 * of the "Miscellaneous I/O" pins are driven as outputs and the
4154 	 * values driven onto those pins!
4155 	 *
4156 	 * See also step 74 in the PRM ...
4157 	 */
4158 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG,
4159 	    bgep->chipid.bge_mlcr_default);
4160 
4161 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
4162 	    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
4163 		tmp = bge_reg_get32(bgep, SERDES_RX_CONTROL);
4164 		tmp |= SERDES_RX_CONTROL_SIG_DETECT;
4165 		bge_reg_put32(bgep, SERDES_RX_CONTROL, tmp);
4166 	}
4167 
4168 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
4169 
4170 	/*
4171 	 * Step 20: clear the Ethernet MAC mode register
4172 	 */
4173 	if (bgep->ape_enabled)
4174 		bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG,
4175 		    ETHERNET_MODE_APE_TX_EN | ETHERNET_MODE_APE_RX_EN);
4176 	else
4177 		bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, 0);
4178 
4179 	/*
4180 	 * Step 21: restore cache-line-size, latency timer, and
4181 	 * subsystem ID registers to their original values (not
4182 	 * those read into the local structure <chipid>, 'cos
4183 	 * that was after they were cleared by the RESET).
4184 	 *
4185 	 * Note: the Subsystem Vendor/Device ID registers are not
4186 	 * directly writable in config space, so we use the shadow
4187 	 * copy in "Page Zero" of register space to restore them
4188 	 * both in one go ...
4189 	 */
4190 	pci_config_put8(bgep->cfg_handle, PCI_CONF_CACHE_LINESZ,
4191 		bgep->chipid.clsize);
4192 	pci_config_put8(bgep->cfg_handle, PCI_CONF_LATENCY_TIMER,
4193 		bgep->chipid.latency);
4194 	bge_reg_put32(bgep, PCI_CONF_SUBVENID,
4195 		(bgep->chipid.subdev << 16) | bgep->chipid.subven);
4196 
4197 	/*
4198 	 * The SEND INDEX registers should be reset to zero by the
4199 	 * global chip reset; if they're not, there'll be trouble
4200 	 * later on.
4201 	 */
4202 	sx0 = bge_reg_get32(bgep, NIC_DIAG_SEND_INDEX_REG(0));
4203 	if (sx0 != 0) {
4204 		BGE_REPORT((bgep, "SEND INDEX - device didn't RESET"));
4205 		bge_fm_ereport(bgep, DDI_FM_DEVICE_INVAL_STATE);
4206 		retval = DDI_FAILURE;
4207 	}
4208 
4209 	/* Enable MSI code */
4210 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
4211 		bge_reg_set32(bgep, MSI_MODE_REG,
4212 		    MSI_PRI_HIGHEST|MSI_MSI_ENABLE|MSI_ERROR_ATTENTION);
4213 
4214 	/*
4215 	 * On the first time through, save the factory-set MAC address
4216 	 * (if any).  If bge_poll_firmware() above didn't return one
4217 	 * (from a chip register) consider looking in the attached NV
4218 	 * memory device, if any.  Once we have it, we save it in both
4219 	 * register-image (64-bit) and byte-array forms.  All-zero and
4220 	 * all-one addresses are not valid, and we refuse to stash those.
4221 	 */
4222 	if (bgep->bge_chip_state == BGE_CHIP_INITIAL) {
4223 		if (mac == 0ULL)
4224 			mac = bge_get_nvmac(bgep);
4225 		if (mac != 0ULL && mac != ~0ULL) {
4226 			bgep->chipid.hw_mac_addr = mac;
4227 			for (i = ETHERADDRL; i-- != 0; ) {
4228 				bgep->chipid.vendor_addr.addr[i] = (uchar_t)mac;
4229 				mac >>= 8;
4230 			}
4231 			bgep->chipid.vendor_addr.set = B_TRUE;
4232 		}
4233 	}
4234 
4235 #ifdef BGE_IPMI_ASF
4236 	if (bgep->asf_enabled && bgep->asf_newhandshake) {
4237 		if (asf_mode != ASF_MODE_NONE) {
4238 			if ((asf_mode == ASF_MODE_INIT) ||
4239 				(asf_mode == ASF_MODE_POST_INIT)) {
4240 
4241 				bge_asf_post_reset_new_mode(bgep,
4242 					BGE_INIT_RESET);
4243 			} else {
4244 				bge_asf_post_reset_new_mode(bgep,
4245 					BGE_SHUTDOWN_RESET);
4246 			}
4247 		}
4248 	}
4249 #endif
4250 
4251 	/*
4252 	 * Record the new state
4253 	 */
4254 	bgep->chip_resets += 1;
4255 	bgep->bge_chip_state = BGE_CHIP_RESET;
4256 	return (retval);
4257 }
4258 
4259 /*
4260  * bge_chip_start() -- start the chip transmitting and/or receiving,
4261  * including enabling interrupts
4262  */
4263 int bge_chip_start(bge_t *bgep, boolean_t reset_phys);
4264 #pragma	no_inline(bge_chip_start)
4265 
4266 void
4267 bge_chip_coalesce_update(bge_t *bgep)
4268 {
4269 	bge_reg_put32(bgep, SEND_COALESCE_MAX_BD_REG,
4270 	    bgep->chipid.tx_count_norm);
4271 	bge_reg_put32(bgep, SEND_COALESCE_TICKS_REG,
4272 	    bgep->chipid.tx_ticks_norm);
4273 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG,
4274 	    bgep->chipid.rx_count_norm);
4275 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG,
4276 	    bgep->chipid.rx_ticks_norm);
4277 }
4278 
4279 int
4280 bge_chip_start(bge_t *bgep, boolean_t reset_phys)
4281 {
4282 	uint32_t coalmode;
4283 	uint32_t ledctl;
4284 	uint32_t mtu;
4285 	uint32_t maxring;
4286 	uint32_t stats_mask;
4287 	uint32_t dma_wrprio;
4288 	uint64_t ring;
4289 	uint32_t reg;
4290 	uint32_t regval;
4291 	uint32_t mhcr;
4292 	int retval = DDI_SUCCESS;
4293 	int i;
4294 
4295 	BGE_TRACE(("bge_chip_start($%p)",
4296 	    (void *)bgep));
4297 
4298 	ASSERT(mutex_owned(bgep->genlock));
4299 	ASSERT(bgep->bge_chip_state == BGE_CHIP_RESET);
4300 
4301 	/* Initialize EEE, enable MAC control of LPI */
4302 	bge_eee_init(bgep);
4303 
4304 	if (bgep->ape_enabled) {
4305 		/*
4306 		 * Allow reads and writes to the
4307 		 * APE register and memory space.
4308 		 */
4309 		regval = pci_config_get32(bgep->cfg_handle,
4310 		    PCI_CONF_BGE_PCISTATE);
4311 		regval |= PCISTATE_ALLOW_APE_CTLSPC_WR |
4312 		    PCISTATE_ALLOW_APE_SHMEM_WR | PCISTATE_ALLOW_APE_PSPACE_WR;
4313 		pci_config_put32(bgep->cfg_handle,
4314 		    PCI_CONF_BGE_PCISTATE, regval);
4315 	}
4316 
4317 	/*
4318 	 * Taken from Broadcom document 570X-PG102-R, pp 102-116.
4319 	 * The document specifies 95 separate steps to fully
4320 	 * initialise the chip!!!!
4321 	 *
4322 	 * The reset code above has already got us as far as step
4323 	 * 21, so we continue with ...
4324 	 *
4325 	 * Step 22: clear the MAC statistics block
4326 	 * (0x0300-0x0aff in NIC-local memory)
4327 	 */
4328 	if (bgep->chipid.statistic_type == BGE_STAT_BLK)
4329 		bge_nic_zero(bgep, NIC_MEM_STATISTICS,
4330 		    NIC_MEM_STATISTICS_SIZE);
4331 
4332 	/*
4333 	 * Step 23: clear the status block (in host memory)
4334 	 */
4335 	DMA_ZERO(bgep->status_block);
4336 
4337 	/*
4338 	 * Step 24: set DMA read/write control register
4339 	 */
4340 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_PDRWCR,
4341 	    bgep->chipid.bge_dma_rwctrl);
4342 
4343 	/*
4344 	 * Step 25: Configure DMA endianness -- already done (16/17)
4345 	 * Step 26: Configure Host-Based Send Rings
4346 	 * Step 27: Indicate Host Stack Up
4347 	 */
4348 	bge_reg_set32(bgep, MODE_CONTROL_REG,
4349 	    MODE_HOST_SEND_BDS |
4350 	    MODE_HOST_STACK_UP);
4351 
4352 	if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4353 	    DEVICE_5725_SERIES_CHIPSETS(bgep)) {
4354 		reg = (CHIP_ASIC_REV(bgep) == CHIP_ASIC_REV_5762)
4355 		          ? RDMA_RSRV_CTRL_REG2 : RDMA_RSRV_CTRL_REG;
4356 		regval = bge_reg_get32(bgep, reg);
4357 		if ((bgep->chipid.device == DEVICE_ID_5719) ||
4358 		    (bgep->chipid.device == DEVICE_ID_5720) ||
4359 		    (CHIP_ASIC_REV(bgep) == CHIP_ASIC_REV_5762)) {
4360 			regval &= ~(RDMA_RSRV_CTRL_TXMRGN_MASK |
4361 			            RDMA_RSRV_CTRL_FIFO_LWM_MASK |
4362 			            RDMA_RSRV_CTRL_FIFO_HWM_MASK);
4363 			regval |= (RDMA_RSRV_CTRL_TXMRGN_320B |
4364 			           RDMA_RSRV_CTRL_FIFO_LWM_1_5K |
4365 			           RDMA_RSRV_CTRL_FIFO_HWM_1_5K);
4366 		}
4367 		/* Enable the DMA FIFO Overrun fix. */
4368 		bge_reg_put32(bgep, reg,
4369 		    (regval | RDMA_RSRV_CTRL_FIFO_OFLW_FIX));
4370 
4371 		if ((CHIP_ASIC_REV(bgep) == CHIP_ASIC_REV_5719) ||
4372 		    (CHIP_ASIC_REV(bgep) == CHIP_ASIC_REV_5720) ||
4373 		    (CHIP_ASIC_REV(bgep) == CHIP_ASIC_REV_5762)) {
4374 			reg = (CHIP_ASIC_REV(bgep) == CHIP_ASIC_REV_5762)
4375 			          ? RDMA_CORR_CTRL_REG2 : RDMA_CORR_CTRL_REG;
4376 			regval = bge_reg_get32(bgep, reg);
4377 			bge_reg_put32(bgep, reg, (regval |
4378 			                          RDMA_CORR_CTRL_BLEN_BD_4K |
4379 			                          RDMA_CORR_CTRL_BLEN_LSO_4K));
4380 		}
4381 	}
4382 
4383 	/*
4384 	 * Step 28: Configure checksum options:
4385 	 *	Solaris supports the hardware default checksum options.
4386 	 *
4387 	 *	Workaround for Incorrect pseudo-header checksum calculation.
4388 	 */
4389 	if (bgep->chipid.flags & CHIP_FLAG_PARTIAL_CSUM)
4390 		bge_reg_set32(bgep, MODE_CONTROL_REG,
4391 		    MODE_SEND_NO_PSEUDO_HDR_CSUM);
4392 
4393 	/*
4394 	 * Step 29: configure Timer Prescaler.  The value is always the
4395 	 * same: the Core Clock frequency in MHz (66), minus 1, shifted
4396 	 * into bits 7-1.  Don't set bit 0, 'cos that's the RESET bit
4397 	 * for the whole chip!
4398 	 */
4399 	regval = bge_reg_get32(bgep, MISC_CONFIG_REG);
4400 	regval = (regval & 0xffffff00) | MISC_CONFIG_DEFAULT;
4401 	bge_reg_put32(bgep, MISC_CONFIG_REG, regval);
4402 
4403 	if (DEVICE_5906_SERIES_CHIPSETS(bgep)) {
4404 		drv_usecwait(40);
4405 		/* put PHY into ready state */
4406 		bge_reg_clr32(bgep, MISC_CONFIG_REG, MISC_CONFIG_EPHY_IDDQ);
4407 		(void) bge_reg_get32(bgep, MISC_CONFIG_REG); /* flush */
4408 		drv_usecwait(40);
4409 	}
4410 
4411 	/*
4412 	 * Steps 30-31: Configure MAC local memory pool & DMA pool registers
4413 	 *
4414 	 * If the mbuf_length is specified as 0, we just leave these at
4415 	 * their hardware defaults, rather than explicitly setting them.
4416 	 * As the Broadcom HRM,driver better not change the parameters
4417 	 * when the chipsets is 5705/5788/5721/5751/5714 and 5715.
4418 	 */
4419 	if ((bgep->chipid.mbuf_length != 0) &&
4420 	    (DEVICE_5704_SERIES_CHIPSETS(bgep))) {
4421 			bge_reg_put32(bgep, MBUF_POOL_BASE_REG,
4422 			    bgep->chipid.mbuf_base);
4423 			bge_reg_put32(bgep, MBUF_POOL_LENGTH_REG,
4424 			    bgep->chipid.mbuf_length);
4425 			bge_reg_put32(bgep, DMAD_POOL_BASE_REG,
4426 			    DMAD_POOL_BASE_DEFAULT);
4427 			bge_reg_put32(bgep, DMAD_POOL_LENGTH_REG,
4428 			    DMAD_POOL_LENGTH_DEFAULT);
4429 	}
4430 
4431 	/*
4432 	 * Step 32: configure MAC memory pool watermarks
4433 	 */
4434 	bge_reg_put32(bgep, RDMA_MBUF_LOWAT_REG,
4435 	    bgep->chipid.mbuf_lo_water_rdma);
4436 	bge_reg_put32(bgep, MAC_RX_MBUF_LOWAT_REG,
4437 	    bgep->chipid.mbuf_lo_water_rmac);
4438 	bge_reg_put32(bgep, MBUF_HIWAT_REG,
4439 	    bgep->chipid.mbuf_hi_water);
4440 
4441 	/*
4442 	 * Step 33: configure DMA resource watermarks
4443 	 */
4444 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4445 		bge_reg_put32(bgep, DMAD_POOL_LOWAT_REG,
4446 		    bge_dmad_lo_water);
4447 		bge_reg_put32(bgep, DMAD_POOL_HIWAT_REG,
4448 		    bge_dmad_hi_water);
4449 	}
4450 	bge_reg_put32(bgep, LOWAT_MAX_RECV_FRAMES_REG, bge_lowat_recv_frames);
4451 
4452 	/*
4453 	 * Steps 34-36: enable buffer manager & internal h/w queues
4454 	 */
4455 	regval = STATE_MACHINE_ATTN_ENABLE_BIT;
4456 	if (bgep->chipid.device == DEVICE_ID_5719)
4457 		regval |= BUFFER_MANAGER_MODE_NO_TX_UNDERRUN;
4458 	if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4459 	    DEVICE_5725_SERIES_CHIPSETS(bgep))
4460 		regval |= BUFFER_MANAGER_MODE_MBLOW_ATTN_ENABLE;
4461 	if (!bge_chip_enable_engine(bgep, BUFFER_MANAGER_MODE_REG, regval))
4462 		retval = DDI_FAILURE;
4463 
4464 	if (!bge_chip_enable_engine(bgep, FTQ_RESET_REG, 0))
4465 		retval = DDI_FAILURE;
4466 
4467 	/*
4468 	 * Steps 37-39: initialise Receive Buffer (Producer) RCBs
4469 	 */
4470 	if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4471 	    DEVICE_5725_SERIES_CHIPSETS(bgep)) {
4472 		buff_ring_t *brp = &bgep->buff[BGE_STD_BUFF_RING];
4473 		bge_reg_put64(bgep, STD_RCV_BD_RING_RCB_REG,
4474 		    brp->desc.cookie.dmac_laddress);
4475 		bge_reg_put32(bgep, STD_RCV_BD_RING_RCB_REG + 8,
4476 		    (brp->desc.nslots) << 16 | brp->buf[0].size << 2);
4477 		bge_reg_put32(bgep, STD_RCV_BD_RING_RCB_REG + 0xc,
4478 		    NIC_MEM_SHADOW_BUFF_STD_5717);
4479 	} else
4480 		bge_reg_putrcb(bgep, STD_RCV_BD_RING_RCB_REG,
4481 		    &bgep->buff[BGE_STD_BUFF_RING].hw_rcb);
4482 
4483 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4484 		bge_reg_putrcb(bgep, JUMBO_RCV_BD_RING_RCB_REG,
4485 		    &bgep->buff[BGE_JUMBO_BUFF_RING].hw_rcb);
4486 		bge_reg_putrcb(bgep, MINI_RCV_BD_RING_RCB_REG,
4487 		    &bgep->buff[BGE_MINI_BUFF_RING].hw_rcb);
4488 	}
4489 
4490 	/*
4491 	 * Step 40: set Receive Buffer Descriptor Ring replenish thresholds
4492 	 */
4493 	bge_reg_put32(bgep, STD_RCV_BD_REPLENISH_REG, bge_replenish_std);
4494 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4495 		bge_reg_put32(bgep, JUMBO_RCV_BD_REPLENISH_REG,
4496 		    bge_replenish_jumbo);
4497 		bge_reg_put32(bgep, MINI_RCV_BD_REPLENISH_REG,
4498 		    bge_replenish_mini);
4499 	}
4500 
4501 	/*
4502 	 * Steps 41-43: clear Send Ring Producer Indices and initialise
4503 	 * Send Producer Rings (0x0100-0x01ff in NIC-local memory)
4504 	 */
4505 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4506 		maxring = BGE_SEND_RINGS_MAX;
4507 	else
4508 		maxring = BGE_SEND_RINGS_MAX_5705;
4509 	for (ring = 0; ring < maxring; ++ring) {
4510 		bge_mbx_put(bgep, SEND_RING_HOST_INDEX_REG(ring), 0);
4511 		bge_mbx_put(bgep, SEND_RING_NIC_INDEX_REG(ring), 0);
4512 		bge_nic_putrcb(bgep, NIC_MEM_SEND_RING(ring),
4513 		    &bgep->send[ring].hw_rcb);
4514 	}
4515 
4516 	/*
4517 	 * Steps 44-45: initialise Receive Return Rings
4518 	 * (0x0200-0x02ff in NIC-local memory)
4519 	 */
4520 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4521 		maxring = BGE_RECV_RINGS_MAX;
4522 	else
4523 		maxring = BGE_RECV_RINGS_MAX_5705;
4524 	for (ring = 0; ring < maxring; ++ring)
4525 		bge_nic_putrcb(bgep, NIC_MEM_RECV_RING(ring),
4526 		    &bgep->recv[ring].hw_rcb);
4527 
4528 	/*
4529 	 * Step 46: initialise Receive Buffer (Producer) Ring indexes
4530 	 */
4531 	bge_mbx_put(bgep, RECV_STD_PROD_INDEX_REG, 0);
4532 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4533 		bge_mbx_put(bgep, RECV_JUMBO_PROD_INDEX_REG, 0);
4534 		bge_mbx_put(bgep, RECV_MINI_PROD_INDEX_REG, 0);
4535 	}
4536 	/*
4537 	 * Step 47: configure the MAC unicast address
4538 	 * Step 48: configure the random backoff seed
4539 	 * Step 96: set up multicast filters
4540 	 */
4541 #ifdef BGE_IPMI_ASF
4542 	if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE)
4543 #else
4544 	if (bge_chip_sync(bgep) == DDI_FAILURE)
4545 #endif
4546 		retval = DDI_FAILURE;
4547 
4548 	/*
4549 	 * Step 49: configure the MTU
4550 	 */
4551 	mtu = bgep->chipid.ethmax_size+ETHERFCSL+VLAN_TAGSZ;
4552 	bge_reg_put32(bgep, MAC_RX_MTU_SIZE_REG, mtu);
4553 
4554 	/*
4555 	 * Step 50: configure the IPG et al
4556 	 */
4557 	bge_reg_put32(bgep, MAC_TX_LENGTHS_REG, MAC_TX_LENGTHS_DEFAULT);
4558 
4559 	/*
4560 	 * Step 51: configure the default Rx Return Ring
4561 	 */
4562 	bge_reg_put32(bgep, RCV_RULES_CONFIG_REG, RCV_RULES_CONFIG_DEFAULT);
4563 
4564 	/*
4565 	 * Steps 52-54: configure Receive List Placement,
4566 	 * and enable Receive List Placement Statistics
4567 	 */
4568 	bge_reg_put32(bgep, RCV_LP_CONFIG_REG,
4569 	    RCV_LP_CONFIG(bgep->chipid.rx_rings));
4570 	switch (MHCR_CHIP_ASIC_REV(bgep)) {
4571 	case MHCR_CHIP_ASIC_REV_5700:
4572 	case MHCR_CHIP_ASIC_REV_5701:
4573 	case MHCR_CHIP_ASIC_REV_5703:
4574 	case MHCR_CHIP_ASIC_REV_5704:
4575 		bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, ~0);
4576 		break;
4577 	case MHCR_CHIP_ASIC_REV_5705:
4578 		break;
4579 	default:
4580 		stats_mask = bge_reg_get32(bgep, RCV_LP_STATS_ENABLE_MASK_REG);
4581 		stats_mask &= ~RCV_LP_STATS_DISABLE_MACTQ;
4582 		bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, stats_mask);
4583 		break;
4584 	}
4585 	bge_reg_set32(bgep, RCV_LP_STATS_CONTROL_REG, RCV_LP_STATS_ENABLE);
4586 
4587 	if (bgep->chipid.rx_rings > 1)
4588 		bge_init_recv_rule(bgep);
4589 
4590 	/*
4591 	 * Steps 55-56: enable Send Data Initiator Statistics
4592 	 */
4593 	bge_reg_put32(bgep, SEND_INIT_STATS_ENABLE_MASK_REG, ~0);
4594 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4595 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
4596 		    SEND_INIT_STATS_ENABLE | SEND_INIT_STATS_FASTER);
4597 	} else {
4598 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
4599 		    SEND_INIT_STATS_ENABLE);
4600 	}
4601 	/*
4602 	 * Steps 57-58: stop (?) the Host Coalescing Engine
4603 	 */
4604 	if (!bge_chip_disable_engine(bgep, HOST_COALESCE_MODE_REG, ~0))
4605 		retval = DDI_FAILURE;
4606 
4607 	/*
4608 	 * Steps 59-62: initialise Host Coalescing parameters
4609 	 */
4610 	bge_chip_coalesce_update(bgep);
4611 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4612 		bge_reg_put32(bgep, SEND_COALESCE_INT_BD_REG,
4613 		    bge_tx_count_intr);
4614 		bge_reg_put32(bgep, SEND_COALESCE_INT_TICKS_REG,
4615 		    bge_tx_ticks_intr);
4616 		bge_reg_put32(bgep, RCV_COALESCE_INT_BD_REG,
4617 		    bge_rx_count_intr);
4618 		bge_reg_put32(bgep, RCV_COALESCE_INT_TICKS_REG,
4619 		    bge_rx_ticks_intr);
4620 	}
4621 
4622 	/*
4623 	 * Steps 63-64: initialise status block & statistics
4624 	 * host memory addresses
4625 	 * The statistic block does not exist in some chipsets
4626 	 * Step 65: initialise Statistics Coalescing Tick Counter
4627 	 */
4628 	bge_reg_put64(bgep, STATUS_BLOCK_HOST_ADDR_REG,
4629 	    bgep->status_block.cookie.dmac_laddress);
4630 
4631 	/*
4632 	 * Steps 66-67: initialise status block & statistics
4633 	 * NIC-local memory addresses
4634 	 */
4635 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4636 		bge_reg_put64(bgep, STATISTICS_HOST_ADDR_REG,
4637 		    bgep->statistics.cookie.dmac_laddress);
4638 		bge_reg_put32(bgep, STATISTICS_TICKS_REG,
4639 		    STATISTICS_TICKS_DEFAULT);
4640 		bge_reg_put32(bgep, STATUS_BLOCK_BASE_ADDR_REG,
4641 		    NIC_MEM_STATUS_BLOCK);
4642 		bge_reg_put32(bgep, STATISTICS_BASE_ADDR_REG,
4643 		    NIC_MEM_STATISTICS);
4644 	}
4645 
4646 	/*
4647 	 * Steps 68-71: start the Host Coalescing Engine, the Receive BD
4648 	 * Completion Engine, the Receive List Placement Engine, and the
4649 	 * Receive List selector.Pay attention:0x3400 is not exist in BCM5714
4650 	 * and BCM5715.
4651 	 */
4652 
4653 	if (bgep->chipid.device == DEVICE_ID_5719) {
4654 		for (i = 0; i < BGE_NUM_RDMA_CHANNELS; i++) {
4655 			if (bge_reg_get32(bgep, (BGE_RDMA_LENGTH + (i << 2))) >
4656 			    bgep->chipid.default_mtu)
4657 				break;
4658 		}
4659 		if (i < BGE_NUM_RDMA_CHANNELS) {
4660 			regval = bge_reg_get32(bgep, RDMA_CORR_CTRL_REG);
4661 			regval |= RDMA_CORR_CTRL_TX_LENGTH_WA;
4662 			bge_reg_put32(bgep, RDMA_CORR_CTRL_REG, regval);
4663 			bgep->rdma_length_bug_on_5719 = B_TRUE;
4664 		}
4665 	}
4666 
4667 	if (bgep->chipid.tx_rings <= COALESCE_64_BYTE_RINGS &&
4668 	    bgep->chipid.rx_rings <= COALESCE_64_BYTE_RINGS)
4669 		coalmode = COALESCE_64_BYTE_STATUS;
4670 	else
4671 		coalmode = 0;
4672 	if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4673 	    DEVICE_5725_SERIES_CHIPSETS(bgep))
4674 		coalmode = COALESCE_CLR_TICKS_RX;
4675 	if (!bge_chip_enable_engine(bgep, HOST_COALESCE_MODE_REG, coalmode))
4676 		retval = DDI_FAILURE;
4677 	if (!bge_chip_enable_engine(bgep, RCV_BD_COMPLETION_MODE_REG,
4678 	    STATE_MACHINE_ATTN_ENABLE_BIT))
4679 		retval = DDI_FAILURE;
4680 	if (!bge_chip_enable_engine(bgep, RCV_LIST_PLACEMENT_MODE_REG, 0))
4681 		retval = DDI_FAILURE;
4682 
4683 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4684 		if (!bge_chip_enable_engine(bgep, RCV_LIST_SELECTOR_MODE_REG,
4685 		    STATE_MACHINE_ATTN_ENABLE_BIT))
4686 			retval = DDI_FAILURE;
4687 
4688 	/*
4689 	 * Step 72: Enable MAC DMA engines
4690 	 * Step 73: Clear & enable MAC statistics
4691 	 */
4692 	if (bgep->ape_enabled) {
4693 		/* XXX put32 instead of set32 ? */
4694 		bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG,
4695 		    ETHERNET_MODE_APE_TX_EN | ETHERNET_MODE_APE_RX_EN);
4696 	}
4697 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
4698 	    ETHERNET_MODE_ENABLE_FHDE |
4699 	    ETHERNET_MODE_ENABLE_RDE |
4700 	    ETHERNET_MODE_ENABLE_TDE);
4701 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
4702 	    ETHERNET_MODE_ENABLE_TX_STATS |
4703 	    ETHERNET_MODE_ENABLE_RX_STATS |
4704 	    ETHERNET_MODE_CLEAR_TX_STATS |
4705 	    ETHERNET_MODE_CLEAR_RX_STATS);
4706 
4707 	drv_usecwait(140);
4708 
4709 	if (bgep->ape_enabled) {
4710 		/* Write our heartbeat update interval to APE. */
4711 		bge_ape_put32(bgep, BGE_APE_HOST_HEARTBEAT_INT_MS,
4712 		    APE_HOST_HEARTBEAT_INT_DISABLE);
4713 	}
4714 
4715 	/*
4716 	 * Step 74: configure the MLCR (Miscellaneous Local Control
4717 	 * Register); not required, as we set up the MLCR in step 10
4718 	 * (part of the reset code) above.
4719 	 *
4720 	 * Step 75: clear Interrupt Mailbox 0
4721 	 */
4722 	bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG, 0);
4723 
4724 	/*
4725 	 * Steps 76-87: Gentlemen, start your engines ...
4726 	 *
4727 	 * Enable the DMA Completion Engine, the Write DMA Engine,
4728 	 * the Read DMA Engine, Receive Data Completion Engine,
4729 	 * the MBuf Cluster Free Engine, the Send Data Completion Engine,
4730 	 * the Send BD Completion Engine, the Receive BD Initiator Engine,
4731 	 * the Receive Data Initiator Engine, the Send Data Initiator Engine,
4732 	 * the Send BD Initiator Engine, and the Send BD Selector Engine.
4733 	 *
4734 	 * Beware exhaust fumes?
4735 	 */
4736 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4737 		if (!bge_chip_enable_engine(bgep, DMA_COMPLETION_MODE_REG, 0))
4738 			retval = DDI_FAILURE;
4739 	dma_wrprio = (bge_dma_wrprio << DMA_PRIORITY_SHIFT) |
4740 	    ALL_DMA_ATTN_BITS;
4741 	/* the 5723 check here covers all newer chip families (OK) */
4742 	if ((MHCR_CHIP_ASIC_REV(bgep) == MHCR_CHIP_ASIC_REV_5755) ||
4743 	    (MHCR_CHIP_ASIC_REV(bgep) == MHCR_CHIP_ASIC_REV_5723) ||
4744 	    (MHCR_CHIP_ASIC_REV(bgep) == MHCR_CHIP_ASIC_REV_5906)) {
4745 		dma_wrprio |= DMA_STATUS_TAG_FIX_CQ12384;
4746 	}
4747 	if (!bge_chip_enable_engine(bgep, WRITE_DMA_MODE_REG,
4748 	    dma_wrprio))
4749 		retval = DDI_FAILURE;
4750 
4751 	drv_usecwait(40);
4752 
4753 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
4754 	    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4755 	    DEVICE_5725_SERIES_CHIPSETS(bgep))
4756 		bge_dma_rdprio = 0;
4757 	if (!bge_chip_enable_engine(bgep, READ_DMA_MODE_REG,
4758 	    (bge_dma_rdprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS))
4759 		retval = DDI_FAILURE;
4760 
4761 	drv_usecwait(40);
4762 
4763 	if (!bge_chip_enable_engine(bgep, RCV_DATA_COMPLETION_MODE_REG,
4764 	    STATE_MACHINE_ATTN_ENABLE_BIT))
4765 		retval = DDI_FAILURE;
4766 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4767 		if (!bge_chip_enable_engine(bgep,
4768 		    MBUF_CLUSTER_FREE_MODE_REG, 0))
4769 			retval = DDI_FAILURE;
4770 	if (!bge_chip_enable_engine(bgep, SEND_DATA_COMPLETION_MODE_REG, 0))
4771 		retval = DDI_FAILURE;
4772 	if (!bge_chip_enable_engine(bgep, SEND_BD_COMPLETION_MODE_REG,
4773 	    STATE_MACHINE_ATTN_ENABLE_BIT))
4774 		retval = DDI_FAILURE;
4775 	if (!bge_chip_enable_engine(bgep, RCV_BD_INITIATOR_MODE_REG,
4776 	    RCV_BD_DISABLED_RING_ATTN))
4777 		retval = DDI_FAILURE;
4778 	if (!bge_chip_enable_engine(bgep, RCV_DATA_BD_INITIATOR_MODE_REG,
4779 	    RCV_DATA_BD_ILL_RING_ATTN))
4780 		retval = DDI_FAILURE;
4781 	if (!bge_chip_enable_engine(bgep, SEND_DATA_INITIATOR_MODE_REG, 0))
4782 		retval = DDI_FAILURE;
4783 	if (!bge_chip_enable_engine(bgep, SEND_BD_INITIATOR_MODE_REG,
4784 	    STATE_MACHINE_ATTN_ENABLE_BIT))
4785 		retval = DDI_FAILURE;
4786 	if (!bge_chip_enable_engine(bgep, SEND_BD_SELECTOR_MODE_REG,
4787 	    STATE_MACHINE_ATTN_ENABLE_BIT))
4788 		retval = DDI_FAILURE;
4789 
4790 	drv_usecwait(40);
4791 
4792 	/*
4793 	 * Step 88: download firmware -- doesn't apply
4794 	 * Steps 89-90: enable Transmit & Receive MAC Engines
4795 	 */
4796 	regval = 0;
4797 	if (DEVICE_5717_SERIES_CHIPSETS(bgep)) {
4798 		regval |= TRANSMIT_MODE_MBUF_LOCKUP_FIX;
4799 	}
4800 	if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, regval))
4801 		retval = DDI_FAILURE;
4802 
4803 	drv_usecwait(100);
4804 
4805 #ifdef BGE_IPMI_ASF
4806 	if (!bgep->asf_enabled) {
4807 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
4808 		    RECEIVE_MODE_KEEP_VLAN_TAG))
4809 			retval = DDI_FAILURE;
4810 	} else {
4811 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, 0))
4812 			retval = DDI_FAILURE;
4813 	}
4814 #else
4815 	if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
4816 	    RECEIVE_MODE_KEEP_VLAN_TAG))
4817 		retval = DDI_FAILURE;
4818 #endif
4819 
4820 	drv_usecwait(100);
4821 
4822 	/*
4823 	 * Step 91: disable auto-polling of PHY status
4824 	 */
4825 	bge_reg_put32(bgep, MI_MODE_REG, MI_MODE_DEFAULT);
4826 
4827 	/*
4828 	 * Step 92: configure D0 power state (not required)
4829 	 * Step 93: initialise LED control register ()
4830 	 */
4831 	ledctl = LED_CONTROL_DEFAULT;
4832 	switch (bgep->chipid.device) {
4833 	case DEVICE_ID_5700:
4834 	case DEVICE_ID_5700x:
4835 	case DEVICE_ID_5701:
4836 		/*
4837 		 * Switch to 5700 (MAC) mode on these older chips
4838 		 */
4839 		ledctl &= ~LED_CONTROL_LED_MODE_MASK;
4840 		ledctl |= LED_CONTROL_LED_MODE_5700;
4841 		break;
4842 
4843 	default:
4844 		break;
4845 	}
4846 	bge_reg_put32(bgep, ETHERNET_MAC_LED_CONTROL_REG, ledctl);
4847 
4848 	/*
4849 	 * Step 94: activate link
4850 	 */
4851 	bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK);
4852 
4853 	/*
4854 	 * Step 95: set up physical layer (PHY/SerDes)
4855 	 * restart autoneg (if required)
4856 	 */
4857 	if (reset_phys)
4858 	{
4859 		if (bge_phys_update(bgep) == DDI_FAILURE)
4860 			retval = DDI_FAILURE;
4861 		/* forcing a mac link update here */
4862 		bge_phys_check(bgep);
4863 		bgep->link_state = (bgep->param_link_up) ? LINK_STATE_UP :
4864 		                                           LINK_STATE_DOWN;
4865 		bge_sync_mac_modes(bgep);
4866 		mac_link_update(bgep->mh, bgep->link_state);
4867 	}
4868 
4869 	/*
4870 	 * Extra step (DSG): hand over all the Receive Buffers to the chip
4871 	 */
4872 	for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring)
4873 		bge_mbx_put(bgep, bgep->buff[ring].chip_mbx_reg,
4874 		    bgep->buff[ring].rf_next);
4875 
4876 	/*
4877 	 * MSI bits:The least significant MSI 16-bit word.
4878 	 * ISR will be triggered different.
4879 	 */
4880 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
4881 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, 0x70);
4882 
4883 	/*
4884 	 * Extra step (DSG): select which interrupts are enabled
4885 	 *
4886 	 * Program the Ethernet MAC engine to signal attention on
4887 	 * Link Change events, then enable interrupts on MAC, DMA,
4888 	 * and FLOW attention signals.
4889 	 */
4890 	bge_reg_set32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG,
4891 	    ETHERNET_EVENT_LINK_INT |
4892 	    ETHERNET_STATUS_PCS_ERROR_INT);
4893 #ifdef BGE_IPMI_ASF
4894 	if (bgep->asf_enabled) {
4895 		bge_reg_set32(bgep, MODE_CONTROL_REG,
4896 		    MODE_INT_ON_FLOW_ATTN |
4897 		    MODE_INT_ON_DMA_ATTN |
4898 		    MODE_HOST_STACK_UP|
4899 		    MODE_INT_ON_MAC_ATTN);
4900 	} else {
4901 #endif
4902 		bge_reg_set32(bgep, MODE_CONTROL_REG,
4903 		    MODE_INT_ON_FLOW_ATTN |
4904 		    MODE_INT_ON_DMA_ATTN |
4905 		    MODE_INT_ON_MAC_ATTN);
4906 #ifdef BGE_IPMI_ASF
4907 	}
4908 #endif
4909 
4910 	if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4911 	    DEVICE_5725_SERIES_CHIPSETS(bgep)) {
4912 		bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL_5717,
4913 		    DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
4914 #if 0
4915 		mhcr = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MHCR);
4916 		pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR,
4917 		                 (mhcr | MHCR_TLP_MINOR_ERR_TOLERANCE));
4918 #endif
4919 	}
4920 
4921 	/*
4922 	 * Step 97: enable PCI interrupts!!!
4923 	 */
4924 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
4925 		bge_cfg_clr32(bgep, PCI_CONF_BGE_MHCR,
4926 		    bgep->chipid.mask_pci_int);
4927 
4928 	/*
4929 	 * All done!
4930 	 */
4931 	bgep->bge_chip_state = BGE_CHIP_RUNNING;
4932 	return (retval);
4933 }
4934 
4935 
4936 /*
4937  * ========== Hardware interrupt handler ==========
4938  */
4939 
4940 #undef	BGE_DBG
4941 #define	BGE_DBG		BGE_DBG_INT	/* debug flag for this code	*/
4942 
4943 /*
4944  * Sync the status block, then atomically clear the specified bits in
4945  * the <flags-and-tag> field of the status block.
4946  * the <flags> word of the status block, returning the value of the
4947  * <tag> and the <flags> before the bits were cleared.
4948  */
4949 static int bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags);
4950 #pragma	inline(bge_status_sync)
4951 
4952 static int
4953 bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags)
4954 {
4955 	bge_status_t *bsp;
4956 	int retval;
4957 
4958 	BGE_TRACE(("bge_status_sync($%p, 0x%llx)",
4959 	    (void *)bgep, bits));
4960 
4961 	ASSERT(bgep->bge_guard == BGE_GUARD);
4962 
4963 	DMA_SYNC(bgep->status_block, DDI_DMA_SYNC_FORKERNEL);
4964 	retval = bge_check_dma_handle(bgep, bgep->status_block.dma_hdl);
4965 	if (retval != DDI_FM_OK)
4966 		return (retval);
4967 
4968 	bsp = DMA_VPTR(bgep->status_block);
4969 	*flags = bge_atomic_clr64(&bsp->flags_n_tag, bits);
4970 
4971 	BGE_DEBUG(("bge_status_sync($%p, 0x%llx) returning 0x%llx",
4972 	    (void *)bgep, bits, *flags));
4973 
4974 	return (retval);
4975 }
4976 
4977 void bge_wake_factotum(bge_t *bgep);
4978 #pragma	inline(bge_wake_factotum)
4979 
4980 void
4981 bge_wake_factotum(bge_t *bgep)
4982 {
4983 	mutex_enter(bgep->softintrlock);
4984 	if (bgep->factotum_flag == 0) {
4985 		bgep->factotum_flag = 1;
4986 		ddi_trigger_softintr(bgep->factotum_id);
4987 	}
4988 	mutex_exit(bgep->softintrlock);
4989 }
4990 
4991 static void
4992 bge_intr_error_handler(bge_t *bgep)
4993 {
4994 	uint32_t flow;
4995 	uint32_t rdma;
4996 	uint32_t wdma;
4997 	uint32_t tmac;
4998 	uint32_t rmac;
4999 	uint32_t rxrs;
5000 	uint32_t emac;
5001 	uint32_t msis;
5002 	uint32_t txrs = 0;
5003 
5004 	ASSERT(mutex_owned(bgep->genlock));
5005 
5006 	/*
5007 	 * Read all the registers that show the possible
5008 	 * reasons for the ERROR bit to be asserted
5009 	 */
5010 	flow = bge_reg_get32(bgep, FLOW_ATTN_REG);
5011 	rdma = bge_reg_get32(bgep, READ_DMA_STATUS_REG);
5012 	wdma = bge_reg_get32(bgep, WRITE_DMA_STATUS_REG);
5013 	tmac = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
5014 	rmac = bge_reg_get32(bgep, RECEIVE_MAC_STATUS_REG);
5015 	rxrs = bge_reg_get32(bgep, RX_RISC_STATE_REG);
5016 	emac = bge_reg_get32(bgep, ETHERNET_MAC_STATUS_REG);
5017 	msis = bge_reg_get32(bgep, MSI_STATUS_REG);
5018 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
5019 		txrs = bge_reg_get32(bgep, TX_RISC_STATE_REG);
5020 
5021 	BGE_DEBUG(("factotum($%p) flow 0x%x rdma 0x%x wdma 0x%x emac 0x%x msis 0x%x",
5022 	    (void *)bgep, flow, rdma, wdma, emac, msis));
5023 	BGE_DEBUG(("factotum($%p) tmac 0x%x rmac 0x%x rxrs 0x%08x txrs 0x%08x",
5024 	    (void *)bgep, tmac, rmac, rxrs, txrs));
5025 
5026 	/*
5027 	 * For now, just clear all the errors ...
5028 	 */
5029 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
5030 		bge_reg_put32(bgep, TX_RISC_STATE_REG, ~0);
5031 	bge_reg_put32(bgep, RX_RISC_STATE_REG, ~0);
5032 	bge_reg_put32(bgep, RECEIVE_MAC_STATUS_REG, ~0);
5033 	bge_reg_put32(bgep, WRITE_DMA_STATUS_REG, ~0);
5034 	bge_reg_put32(bgep, READ_DMA_STATUS_REG, ~0);
5035 	bge_reg_put32(bgep, FLOW_ATTN_REG, ~0);
5036 }
5037 
5038 /*
5039  *	bge_intr() -- handle chip interrupts
5040  */
5041 uint_t bge_intr(caddr_t arg1, caddr_t arg2);
5042 #pragma	no_inline(bge_intr)
5043 
5044 uint_t
5045 bge_intr(caddr_t arg1, caddr_t arg2)
5046 {
5047 	bge_t *bgep = (void *)arg1;		/* private device info	*/
5048 	bge_status_t *bsp;
5049 	uint64_t flags;
5050 	uint32_t regval;
5051 	uint_t result;
5052 	int retval, loop_cnt = 0;
5053 
5054 	BGE_TRACE(("bge_intr($%p) ($%p)", arg1, arg2));
5055 
5056 	/*
5057 	 * GLD v2 checks that s/w setup is complete before passing
5058 	 * interrupts to this routine, thus eliminating the old
5059 	 * (and well-known) race condition around ddi_add_intr()
5060 	 */
5061 	ASSERT(bgep->progress & PROGRESS_HWINT);
5062 
5063 	result = DDI_INTR_UNCLAIMED;
5064 	mutex_enter(bgep->genlock);
5065 
5066 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
5067 		/*
5068 		 * Check whether chip's says it's asserting #INTA;
5069 		 * if not, don't process or claim the interrupt.
5070 		 *
5071 		 * Note that the PCI signal is active low, so the
5072 		 * bit is *zero* when the interrupt is asserted.
5073 		 */
5074 		regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
5075 		if (!(DEVICE_5717_SERIES_CHIPSETS(bgep) ||
5076 		      DEVICE_5725_SERIES_CHIPSETS(bgep)) &&
5077 		    (regval & MLCR_INTA_STATE)) {
5078 			if (bge_check_acc_handle(bgep, bgep->io_handle)
5079 			    != DDI_FM_OK)
5080 				goto chip_stop;
5081 			mutex_exit(bgep->genlock);
5082 			return (result);
5083 		}
5084 
5085 		/*
5086 		 * Block further PCI interrupts ...
5087 		 */
5088 		bge_reg_set32(bgep, PCI_CONF_BGE_MHCR,
5089 		    bgep->chipid.mask_pci_int);
5090 
5091 	} else {
5092 		/*
5093 		 * Check MSI status
5094 		 */
5095 		regval = bge_reg_get32(bgep, MSI_STATUS_REG);
5096 		if (regval & MSI_ERROR_ATTENTION) {
5097 			BGE_REPORT((bgep, "msi error attention,"
5098 			    " status=0x%x", regval));
5099 			bge_reg_put32(bgep, MSI_STATUS_REG, regval);
5100 		}
5101 	}
5102 
5103 	result = DDI_INTR_CLAIMED;
5104 
5105 	BGE_DEBUG(("bge_intr($%p) ($%p) regval 0x%08x", arg1, arg2, regval));
5106 
5107 	/*
5108 	 * Sync the status block and grab the flags-n-tag from it.
5109 	 * We count the number of interrupts where there doesn't
5110 	 * seem to have been a DMA update of the status block; if
5111 	 * it *has* been updated, the counter will be cleared in
5112 	 * the while() loop below ...
5113 	 */
5114 	bgep->missed_dmas += 1;
5115 	bsp = DMA_VPTR(bgep->status_block);
5116 	for (loop_cnt = 0; loop_cnt < bge_intr_max_loop; loop_cnt++) {
5117 		if (bgep->bge_chip_state != BGE_CHIP_RUNNING) {
5118 			/*
5119 			 * bge_chip_stop() may have freed dma area etc
5120 			 * while we were in this interrupt handler -
5121 			 * better not call bge_status_sync()
5122 			 */
5123 			(void) bge_check_acc_handle(bgep,
5124 			    bgep->io_handle);
5125 			mutex_exit(bgep->genlock);
5126 			return (DDI_INTR_CLAIMED);
5127 		}
5128 
5129 		retval = bge_status_sync(bgep, STATUS_FLAG_UPDATED |
5130 		    STATUS_FLAG_LINK_CHANGED | STATUS_FLAG_ERROR, &flags);
5131 		if (retval != DDI_FM_OK) {
5132 			bgep->bge_dma_error = B_TRUE;
5133 			goto chip_stop;
5134 		}
5135 
5136 		if (!(flags & STATUS_FLAG_UPDATED))
5137 			break;
5138 
5139 		/*
5140 		 * Tell the chip that we're processing the interrupt
5141 		 */
5142 		bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
5143 		    INTERRUPT_MBOX_DISABLE(flags));
5144 		if (bge_check_acc_handle(bgep, bgep->io_handle) !=
5145 		    DDI_FM_OK)
5146 			goto chip_stop;
5147 
5148 		if (flags & STATUS_FLAG_LINK_CHANGED) {
5149 			BGE_DEBUG(("bge_intr($%p) ($%p) link event", arg1, arg2));
5150 			if (bge_phys_check(bgep)) {
5151 				bgep->link_state = bgep->param_link_up ?
5152 				    LINK_STATE_UP : LINK_STATE_DOWN;
5153 				bge_sync_mac_modes(bgep);
5154 				mac_link_update(bgep->mh, bgep->link_state);
5155 			}
5156 
5157 			if (bge_check_acc_handle(bgep, bgep->io_handle) !=
5158 			    DDI_FM_OK)
5159 				goto chip_stop;
5160 		}
5161 
5162 		if (flags & STATUS_FLAG_ERROR) {
5163 			bge_intr_error_handler(bgep);
5164 
5165 			if (bge_check_acc_handle(bgep, bgep->io_handle) !=
5166 			    DDI_FM_OK)
5167 				goto chip_stop;
5168 		}
5169 
5170 		/*
5171 		 * Drop the mutex while we:
5172 		 * 	Receive any newly-arrived packets
5173 		 *	Recycle any newly-finished send buffers
5174 		 */
5175 		bgep->bge_intr_running = B_TRUE;
5176 		mutex_exit(bgep->genlock);
5177 		bge_receive(bgep, bsp);
5178 		(void) bge_recycle(bgep, bsp);
5179 		mutex_enter(bgep->genlock);
5180 		bgep->bge_intr_running = B_FALSE;
5181 
5182 		/*
5183 		 * Tell the chip we've finished processing, and
5184 		 * give it the tag that we got from the status
5185 		 * block earlier, so that it knows just how far
5186 		 * we've gone.  If it's got more for us to do,
5187 		 * it will now update the status block and try
5188 		 * to assert an interrupt (but we've got the
5189 		 * #INTA blocked at present).  If we see the
5190 		 * update, we'll loop around to do some more.
5191 		 * Eventually we'll get out of here ...
5192 		 */
5193 		bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
5194 		    INTERRUPT_MBOX_ENABLE(flags));
5195 		if (bgep->chipid.pci_type == BGE_PCI_E)
5196 			(void) bge_mbx_get(bgep, INTERRUPT_MBOX_0_REG);
5197 		bgep->missed_dmas = 0;
5198 	}
5199 
5200 	if (bgep->missed_dmas) {
5201 		/*
5202 		 * Probably due to the internal status tag not
5203 		 * being reset.  Force a status block update now;
5204 		 * this should ensure that we get an update and
5205 		 * a new interrupt.  After that, we should be in
5206 		 * sync again ...
5207 		 */
5208 		BGE_REPORT((bgep, "interrupt: flags 0x%llx - "
5209 		    "not updated?", flags));
5210 		bgep->missed_updates++;
5211 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG,
5212 		    COALESCE_NOW);
5213 
5214 		if (bgep->missed_dmas >= bge_dma_miss_limit) {
5215 			/*
5216 			 * If this happens multiple times in a row,
5217 			 * it means DMA is just not working.  Maybe
5218 			 * the chip's failed, or maybe there's a
5219 			 * problem on the PCI bus or in the host-PCI
5220 			 * bridge (Tomatillo).
5221 			 *
5222 			 * At all events, we want to stop further
5223 			 * interrupts and let the recovery code take
5224 			 * over to see whether anything can be done
5225 			 * about it ...
5226 			 */
5227 			bge_fm_ereport(bgep,
5228 			    DDI_FM_DEVICE_BADINT_LIMIT);
5229 			goto chip_stop;
5230 		}
5231 	}
5232 
5233 	/*
5234 	 * Reenable assertion of #INTA, unless there's a DMA fault
5235 	 */
5236 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
5237 		bge_reg_clr32(bgep, PCI_CONF_BGE_MHCR,
5238 		    bgep->chipid.mask_pci_int);
5239 		if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
5240 		    DDI_FM_OK)
5241 			goto chip_stop;
5242 	}
5243 
5244 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5245 		goto chip_stop;
5246 
5247 	mutex_exit(bgep->genlock);
5248 	return (result);
5249 
5250 chip_stop:
5251 
5252 #ifdef BGE_IPMI_ASF
5253 	if (bgep->asf_enabled && bgep->asf_status == ASF_STAT_RUN) {
5254 		/*
5255 		 * We must stop ASF heart beat before
5256 		 * bge_chip_stop(), otherwise some
5257 		 * computers (ex. IBM HS20 blade
5258 		 * server) may crash.
5259 		 */
5260 		bge_asf_update_status(bgep);
5261 		bge_asf_stop_timer(bgep);
5262 		bgep->asf_status = ASF_STAT_STOP;
5263 
5264 		bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
5265 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
5266 	}
5267 #endif
5268 	bge_chip_stop(bgep, B_TRUE);
5269 	(void) bge_check_acc_handle(bgep, bgep->io_handle);
5270 	mutex_exit(bgep->genlock);
5271 	return (result);
5272 }
5273 
5274 /*
5275  * ========== Factotum, implemented as a softint handler ==========
5276  */
5277 
5278 #undef	BGE_DBG
5279 #define	BGE_DBG		BGE_DBG_FACT	/* debug flag for this code	*/
5280 
5281 /*
5282  * Factotum routine to check for Tx stall, using the 'watchdog' counter
5283  */
5284 static boolean_t bge_factotum_stall_check(bge_t *bgep);
5285 #pragma	no_inline(bge_factotum_stall_check)
5286 
5287 static boolean_t
5288 bge_factotum_stall_check(bge_t *bgep)
5289 {
5290 	uint32_t dogval;
5291 	bge_status_t *bsp;
5292 	uint64_t now = gethrtime();
5293 
5294 	if ((now - bgep->timestamp) < BGE_CYCLIC_PERIOD)
5295 		return (B_FALSE);
5296 
5297 	bgep->timestamp = now;
5298 
5299 	ASSERT(mutex_owned(bgep->genlock));
5300 
5301 	/*
5302 	 * Specific check for Tx stall ...
5303 	 *
5304 	 * The 'watchdog' counter is incremented whenever a packet
5305 	 * is queued, reset to 1 when some (but not all) buffers
5306 	 * are reclaimed, reset to 0 (disabled) when all buffers
5307 	 * are reclaimed, and shifted left here.  If it exceeds the
5308 	 * threshold value, the chip is assumed to have stalled and
5309 	 * is put into the ERROR state.  The factotum will then reset
5310 	 * it on the next pass.
5311 	 *
5312 	 * All of which should ensure that we don't get into a state
5313 	 * where packets are left pending indefinitely!
5314 	 */
5315 	dogval = bge_atomic_shl32(&bgep->watchdog, 1);
5316 	bsp = DMA_VPTR(bgep->status_block);
5317 	if (dogval < bge_watchdog_count || bge_recycle(bgep, bsp))
5318 		return (B_FALSE);
5319 
5320 #if !defined(BGE_NETCONSOLE)
5321 	BGE_REPORT((bgep, "Tx stall detected, watchdog code 0x%x", dogval));
5322 #endif
5323 	bge_fm_ereport(bgep, DDI_FM_DEVICE_STALL);
5324 	return (B_TRUE);
5325 }
5326 
5327 /*
5328  * The factotum is woken up when there's something to do that we'd rather
5329  * not do from inside a hardware interrupt handler or high-level cyclic.
5330  * Its main task is to reset & restart the chip after an error.
5331  */
5332 uint_t bge_chip_factotum(caddr_t arg);
5333 #pragma	no_inline(bge_chip_factotum)
5334 
5335 uint_t
5336 bge_chip_factotum(caddr_t arg)
5337 {
5338 	bge_t *bgep;
5339 	uint_t result;
5340 	boolean_t error;
5341 	int dma_state;
5342 
5343 	bgep = (void *)arg;
5344 
5345 	BGE_TRACE(("bge_chip_factotum($%p)", (void *)bgep));
5346 
5347 	mutex_enter(bgep->softintrlock);
5348 	if (bgep->factotum_flag == 0) {
5349 		mutex_exit(bgep->softintrlock);
5350 		return (DDI_INTR_UNCLAIMED);
5351 	}
5352 	bgep->factotum_flag = 0;
5353 	mutex_exit(bgep->softintrlock);
5354 
5355 	result = DDI_INTR_CLAIMED;
5356 	error = B_FALSE;
5357 
5358 	mutex_enter(bgep->genlock);
5359 	switch (bgep->bge_chip_state) {
5360 	default:
5361 		break;
5362 
5363 	case BGE_CHIP_RUNNING:
5364 
5365 		if (bgep->chipid.device == DEVICE_ID_5700) {
5366 			if (bge_phys_check(bgep)) {
5367 				bgep->link_state = (bgep->param_link_up) ?
5368 				    LINK_STATE_UP : LINK_STATE_DOWN;
5369 				bge_sync_mac_modes(bgep);
5370 				mac_link_update(bgep->mh, bgep->link_state);
5371 			}
5372 		}
5373 
5374 		error = bge_factotum_stall_check(bgep);
5375 		if (dma_state != DDI_FM_OK) {
5376 			bgep->bge_dma_error = B_TRUE;
5377 			error = B_TRUE;
5378 		}
5379 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5380 			error = B_TRUE;
5381 		if (error)
5382 			bgep->bge_chip_state = BGE_CHIP_ERROR;
5383 		break;
5384 
5385 	case BGE_CHIP_ERROR:
5386 		error = B_TRUE;
5387 		break;
5388 
5389 	case BGE_CHIP_FAULT:
5390 		/*
5391 		 * Fault detected, time to reset ...
5392 		 */
5393 		if (bge_autorecover) {
5394 			if (!(bgep->progress & PROGRESS_BUFS)) {
5395 				/*
5396 				 * if we can't allocate the ring buffers,
5397 				 * try later
5398 				 */
5399 				if (bge_alloc_bufs(bgep) != DDI_SUCCESS) {
5400 					mutex_exit(bgep->genlock);
5401 					return (result);
5402 				}
5403 				bgep->progress |= PROGRESS_BUFS;
5404 			}
5405 			if (!(bgep->progress & PROGRESS_INTR)) {
5406 				bge_init_rings(bgep);
5407 				bge_intr_enable(bgep);
5408 				bgep->progress |= PROGRESS_INTR;
5409 			}
5410 			if (!(bgep->progress & PROGRESS_KSTATS)) {
5411 				bge_init_kstats(bgep,
5412 				    ddi_get_instance(bgep->devinfo));
5413 				bgep->progress |= PROGRESS_KSTATS;
5414 			}
5415 
5416 			BGE_REPORT((bgep, "automatic recovery activated"));
5417 
5418 			if (bge_restart(bgep, B_FALSE) != DDI_SUCCESS) {
5419 				bgep->bge_chip_state = BGE_CHIP_ERROR;
5420 				error = B_TRUE;
5421 			}
5422 			if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
5423 			    DDI_FM_OK) {
5424 				bgep->bge_chip_state = BGE_CHIP_ERROR;
5425 				error = B_TRUE;
5426 			}
5427 			if (bge_check_acc_handle(bgep, bgep->io_handle) !=
5428 			    DDI_FM_OK) {
5429 				bgep->bge_chip_state = BGE_CHIP_ERROR;
5430 				error = B_TRUE;
5431 			}
5432 			if (error == B_FALSE) {
5433 #ifdef BGE_IPMI_ASF
5434 				if (bgep->asf_enabled &&
5435 				    bgep->asf_status != ASF_STAT_RUN) {
5436 					bgep->asf_timeout_id = timeout(
5437 					    bge_asf_heartbeat, (void *)bgep,
5438 					    drv_usectohz(
5439 					    BGE_ASF_HEARTBEAT_INTERVAL));
5440 					bgep->asf_status = ASF_STAT_RUN;
5441 				}
5442 #endif
5443 				if (!bgep->manual_reset) {
5444 					ddi_fm_service_impact(bgep->devinfo,
5445 					    DDI_SERVICE_RESTORED);
5446 				}
5447 			}
5448 		}
5449 		break;
5450 	}
5451 
5452 	/*
5453 	 * If an error is detected, stop the chip now, marking it as
5454 	 * faulty, so that it will be reset next time through ...
5455 	 *
5456 	 * Note that if intr_running is set, then bge_intr() has dropped
5457 	 * genlock to call bge_receive/bge_recycle. Can't stop the chip at
5458 	 * this point so have to wait until the next time the factotum runs.
5459 	 */
5460 	if (error && !bgep->bge_intr_running) {
5461 #ifdef BGE_IPMI_ASF
5462 		if (bgep->asf_enabled && (bgep->asf_status == ASF_STAT_RUN)) {
5463 			/*
5464 			 * We must stop ASF heart beat before bge_chip_stop(),
5465 			 * otherwise some computers (ex. IBM HS20 blade server)
5466 			 * may crash.
5467 			 */
5468 			bge_asf_update_status(bgep);
5469 			bge_asf_stop_timer(bgep);
5470 			bgep->asf_status = ASF_STAT_STOP;
5471 
5472 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
5473 			(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
5474 		}
5475 #endif
5476 		bge_chip_stop(bgep, B_TRUE);
5477 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
5478 	}
5479 	mutex_exit(bgep->genlock);
5480 
5481 	return (result);
5482 }
5483 
5484 /*
5485  * High-level cyclic handler
5486  *
5487  * This routine schedules a (low-level) softint callback to the
5488  * factotum, and prods the chip to update the status block (which
5489  * will cause a hardware interrupt when complete).
5490  */
5491 void bge_chip_cyclic(void *arg);
5492 #pragma	no_inline(bge_chip_cyclic)
5493 
5494 void
5495 bge_chip_cyclic(void *arg)
5496 {
5497 	bge_t *bgep;
5498 	uint32_t regval;
5499 
5500 	bgep = arg;
5501 
5502 	switch (bgep->bge_chip_state) {
5503 	default:
5504 		return;
5505 
5506 	case BGE_CHIP_RUNNING:
5507 
5508 		/* XXX I really don't like this forced interrupt... */
5509 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, COALESCE_NOW);
5510 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5511 			ddi_fm_service_impact(bgep->devinfo,
5512 			    DDI_SERVICE_UNAFFECTED);
5513 
5514 		break;
5515 
5516 	case BGE_CHIP_FAULT:
5517 	case BGE_CHIP_ERROR:
5518 
5519 		break;
5520 	}
5521 
5522 	mutex_enter(bgep->genlock);
5523 
5524 	if (bgep->eee_lpi_wait && !--bgep->eee_lpi_wait) {
5525 		BGE_DEBUG(("eee cyclic, lpi enabled"));
5526 		bge_eee_enable(bgep);
5527 	}
5528 
5529 	if (bgep->rdma_length_bug_on_5719) {
5530 		if ((bge_reg_get32(bgep, STAT_IFHCOUT_UPKGS_REG) +
5531 		     bge_reg_get32(bgep, STAT_IFHCOUT_MPKGS_REG) +
5532 		     bge_reg_get32(bgep, STAT_IFHCOUT_BPKGS_REG)) >
5533 		    BGE_NUM_RDMA_CHANNELS) {
5534 			regval = bge_reg_get32(bgep, RDMA_CORR_CTRL_REG);
5535 			regval &= ~RDMA_CORR_CTRL_TX_LENGTH_WA;
5536 			bge_reg_put32(bgep, RDMA_CORR_CTRL_REG, regval);
5537 			bgep->rdma_length_bug_on_5719 = B_FALSE;
5538 		}
5539 	}
5540 
5541 	mutex_exit(bgep->genlock);
5542 
5543 	bge_wake_factotum(bgep);
5544 
5545 }
5546 
5547 
5548 /*
5549  * ========== Ioctl subfunctions ==========
5550  */
5551 
5552 #undef	BGE_DBG
5553 #define	BGE_DBG		BGE_DBG_PPIO	/* debug flag for this code	*/
5554 
5555 #if	BGE_DEBUGGING || BGE_DO_PPIO
5556 
5557 static void bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
5558 #pragma	no_inline(bge_chip_peek_cfg)
5559 
5560 static void
5561 bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
5562 {
5563 	uint64_t regval;
5564 	uint64_t regno;
5565 
5566 	BGE_TRACE(("bge_chip_peek_cfg($%p, $%p)",
5567 	    (void *)bgep, (void *)ppd));
5568 
5569 	regno = ppd->pp_acc_offset;
5570 
5571 	switch (ppd->pp_acc_size) {
5572 	case 1:
5573 		regval = pci_config_get8(bgep->cfg_handle, regno);
5574 		break;
5575 
5576 	case 2:
5577 		regval = pci_config_get16(bgep->cfg_handle, regno);
5578 		break;
5579 
5580 	case 4:
5581 		regval = pci_config_get32(bgep->cfg_handle, regno);
5582 		break;
5583 
5584 	case 8:
5585 		regval = pci_config_get64(bgep->cfg_handle, regno);
5586 		break;
5587 	}
5588 
5589 	ppd->pp_acc_data = regval;
5590 }
5591 
5592 static void bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
5593 #pragma	no_inline(bge_chip_poke_cfg)
5594 
5595 static void
5596 bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
5597 {
5598 	uint64_t regval;
5599 	uint64_t regno;
5600 
5601 	BGE_TRACE(("bge_chip_poke_cfg($%p, $%p)",
5602 	    (void *)bgep, (void *)ppd));
5603 
5604 	regno = ppd->pp_acc_offset;
5605 	regval = ppd->pp_acc_data;
5606 
5607 	switch (ppd->pp_acc_size) {
5608 	case 1:
5609 		pci_config_put8(bgep->cfg_handle, regno, regval);
5610 		break;
5611 
5612 	case 2:
5613 		pci_config_put16(bgep->cfg_handle, regno, regval);
5614 		break;
5615 
5616 	case 4:
5617 		pci_config_put32(bgep->cfg_handle, regno, regval);
5618 		break;
5619 
5620 	case 8:
5621 		pci_config_put64(bgep->cfg_handle, regno, regval);
5622 		break;
5623 	}
5624 }
5625 
5626 static void bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd);
5627 #pragma	no_inline(bge_chip_peek_reg)
5628 
5629 static void
5630 bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd)
5631 {
5632 	uint64_t regval;
5633 	void *regaddr;
5634 
5635 	BGE_TRACE(("bge_chip_peek_reg($%p, $%p)",
5636 	    (void *)bgep, (void *)ppd));
5637 
5638 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
5639 
5640 	switch (ppd->pp_acc_size) {
5641 	case 1:
5642 		regval = ddi_get8(bgep->io_handle, regaddr);
5643 		break;
5644 
5645 	case 2:
5646 		regval = ddi_get16(bgep->io_handle, regaddr);
5647 		break;
5648 
5649 	case 4:
5650 		regval = ddi_get32(bgep->io_handle, regaddr);
5651 		break;
5652 
5653 	case 8:
5654 		regval = ddi_get64(bgep->io_handle, regaddr);
5655 		break;
5656 	}
5657 
5658 	ppd->pp_acc_data = regval;
5659 }
5660 
5661 static void bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd);
5662 #pragma	no_inline(bge_chip_peek_reg)
5663 
5664 static void
5665 bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd)
5666 {
5667 	uint64_t regval;
5668 	void *regaddr;
5669 
5670 	BGE_TRACE(("bge_chip_poke_reg($%p, $%p)",
5671 	    (void *)bgep, (void *)ppd));
5672 
5673 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
5674 	regval = ppd->pp_acc_data;
5675 
5676 	switch (ppd->pp_acc_size) {
5677 	case 1:
5678 		ddi_put8(bgep->io_handle, regaddr, regval);
5679 		break;
5680 
5681 	case 2:
5682 		ddi_put16(bgep->io_handle, regaddr, regval);
5683 		break;
5684 
5685 	case 4:
5686 		ddi_put32(bgep->io_handle, regaddr, regval);
5687 		break;
5688 
5689 	case 8:
5690 		ddi_put64(bgep->io_handle, regaddr, regval);
5691 		break;
5692 	}
5693 	BGE_PCICHK(bgep);
5694 }
5695 
5696 static void bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd);
5697 #pragma	no_inline(bge_chip_peek_nic)
5698 
5699 static void
5700 bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd)
5701 {
5702 	uint64_t regoff;
5703 	uint64_t regval;
5704 	void *regaddr;
5705 
5706 	BGE_TRACE(("bge_chip_peek_nic($%p, $%p)",
5707 	    (void *)bgep, (void *)ppd));
5708 
5709 	regoff = ppd->pp_acc_offset;
5710 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
5711 	regoff &= MWBAR_GRANULE_MASK;
5712 	regoff += NIC_MEM_WINDOW_OFFSET;
5713 	regaddr = PIO_ADDR(bgep, regoff);
5714 
5715 	switch (ppd->pp_acc_size) {
5716 	case 1:
5717 		regval = ddi_get8(bgep->io_handle, regaddr);
5718 		break;
5719 
5720 	case 2:
5721 		regval = ddi_get16(bgep->io_handle, regaddr);
5722 		break;
5723 
5724 	case 4:
5725 		regval = ddi_get32(bgep->io_handle, regaddr);
5726 		break;
5727 
5728 	case 8:
5729 		regval = ddi_get64(bgep->io_handle, regaddr);
5730 		break;
5731 	}
5732 
5733 	ppd->pp_acc_data = regval;
5734 }
5735 
5736 static void bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd);
5737 #pragma	no_inline(bge_chip_poke_nic)
5738 
5739 static void
5740 bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd)
5741 {
5742 	uint64_t regoff;
5743 	uint64_t regval;
5744 	void *regaddr;
5745 
5746 	BGE_TRACE(("bge_chip_poke_nic($%p, $%p)",
5747 	    (void *)bgep, (void *)ppd));
5748 
5749 	regoff = ppd->pp_acc_offset;
5750 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
5751 	regoff &= MWBAR_GRANULE_MASK;
5752 	regoff += NIC_MEM_WINDOW_OFFSET;
5753 	regaddr = PIO_ADDR(bgep, regoff);
5754 	regval = ppd->pp_acc_data;
5755 
5756 	switch (ppd->pp_acc_size) {
5757 	case 1:
5758 		ddi_put8(bgep->io_handle, regaddr, regval);
5759 		break;
5760 
5761 	case 2:
5762 		ddi_put16(bgep->io_handle, regaddr, regval);
5763 		break;
5764 
5765 	case 4:
5766 		ddi_put32(bgep->io_handle, regaddr, regval);
5767 		break;
5768 
5769 	case 8:
5770 		ddi_put64(bgep->io_handle, regaddr, regval);
5771 		break;
5772 	}
5773 	BGE_PCICHK(bgep);
5774 }
5775 
5776 static void bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd);
5777 #pragma	no_inline(bge_chip_peek_mii)
5778 
5779 static void
5780 bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd)
5781 {
5782 	BGE_TRACE(("bge_chip_peek_mii($%p, $%p)",
5783 	    (void *)bgep, (void *)ppd));
5784 
5785 	ppd->pp_acc_data = bge_mii_get16(bgep, ppd->pp_acc_offset/2);
5786 }
5787 
5788 static void bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd);
5789 #pragma	no_inline(bge_chip_poke_mii)
5790 
5791 static void
5792 bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd)
5793 {
5794 	BGE_TRACE(("bge_chip_poke_mii($%p, $%p)",
5795 	    (void *)bgep, (void *)ppd));
5796 
5797 	bge_mii_put16(bgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
5798 }
5799 
5800 #if	BGE_SEE_IO32
5801 
5802 static void bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
5803 #pragma	no_inline(bge_chip_peek_seeprom)
5804 
5805 static void
5806 bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
5807 {
5808 	uint32_t data;
5809 	int err;
5810 
5811 	BGE_TRACE(("bge_chip_peek_seeprom($%p, $%p)",
5812 	    (void *)bgep, (void *)ppd));
5813 
5814 	err = bge_nvmem_rw32(bgep, BGE_SEE_READ, ppd->pp_acc_offset, &data);
5815 	ppd->pp_acc_data = err ? ~0ull : data;
5816 }
5817 
5818 static void bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
5819 #pragma	no_inline(bge_chip_poke_seeprom)
5820 
5821 static void
5822 bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
5823 {
5824 	uint32_t data;
5825 
5826 	BGE_TRACE(("bge_chip_poke_seeprom($%p, $%p)",
5827 	    (void *)bgep, (void *)ppd));
5828 
5829 	data = ppd->pp_acc_data;
5830 	(void) bge_nvmem_rw32(bgep, BGE_SEE_WRITE, ppd->pp_acc_offset, &data);
5831 }
5832 #endif	/* BGE_SEE_IO32 */
5833 
5834 #if	BGE_FLASH_IO32
5835 
5836 static void bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd);
5837 #pragma	no_inline(bge_chip_peek_flash)
5838 
5839 static void
5840 bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd)
5841 {
5842 	uint32_t data;
5843 	int err;
5844 
5845 	BGE_TRACE(("bge_chip_peek_flash($%p, $%p)",
5846 	    (void *)bgep, (void *)ppd));
5847 
5848 	err = bge_nvmem_rw32(bgep, BGE_FLASH_READ, ppd->pp_acc_offset, &data);
5849 	ppd->pp_acc_data = err ? ~0ull : data;
5850 }
5851 
5852 static void bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd);
5853 #pragma	no_inline(bge_chip_poke_flash)
5854 
5855 static void
5856 bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd)
5857 {
5858 	uint32_t data;
5859 
5860 	BGE_TRACE(("bge_chip_poke_flash($%p, $%p)",
5861 	    (void *)bgep, (void *)ppd));
5862 
5863 	data = ppd->pp_acc_data;
5864 	(void) bge_nvmem_rw32(bgep, BGE_FLASH_WRITE,
5865 	    ppd->pp_acc_offset, &data);
5866 }
5867 #endif	/* BGE_FLASH_IO32 */
5868 
5869 static void bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd);
5870 #pragma	no_inline(bge_chip_peek_mem)
5871 
5872 static void
5873 bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd)
5874 {
5875 	uint64_t regval;
5876 	void *vaddr;
5877 
5878 	BGE_TRACE(("bge_chip_peek_bge($%p, $%p)",
5879 	    (void *)bgep, (void *)ppd));
5880 
5881 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5882 
5883 	switch (ppd->pp_acc_size) {
5884 	case 1:
5885 		regval = *(uint8_t *)vaddr;
5886 		break;
5887 
5888 	case 2:
5889 		regval = *(uint16_t *)vaddr;
5890 		break;
5891 
5892 	case 4:
5893 		regval = *(uint32_t *)vaddr;
5894 		break;
5895 
5896 	case 8:
5897 		regval = *(uint64_t *)vaddr;
5898 		break;
5899 	}
5900 
5901 	BGE_DEBUG(("bge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
5902 	    (void *)bgep, (void *)ppd, regval, vaddr));
5903 
5904 	ppd->pp_acc_data = regval;
5905 }
5906 
5907 static void bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd);
5908 #pragma	no_inline(bge_chip_poke_mem)
5909 
5910 static void
5911 bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd)
5912 {
5913 	uint64_t regval;
5914 	void *vaddr;
5915 
5916 	BGE_TRACE(("bge_chip_poke_mem($%p, $%p)",
5917 	    (void *)bgep, (void *)ppd));
5918 
5919 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5920 	regval = ppd->pp_acc_data;
5921 
5922 	BGE_DEBUG(("bge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
5923 	    (void *)bgep, (void *)ppd, regval, vaddr));
5924 
5925 	switch (ppd->pp_acc_size) {
5926 	case 1:
5927 		*(uint8_t *)vaddr = (uint8_t)regval;
5928 		break;
5929 
5930 	case 2:
5931 		*(uint16_t *)vaddr = (uint16_t)regval;
5932 		break;
5933 
5934 	case 4:
5935 		*(uint32_t *)vaddr = (uint32_t)regval;
5936 		break;
5937 
5938 	case 8:
5939 		*(uint64_t *)vaddr = (uint64_t)regval;
5940 		break;
5941 	}
5942 }
5943 
5944 static enum ioc_reply bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5945 					struct iocblk *iocp);
5946 #pragma	no_inline(bge_pp_ioctl)
5947 
5948 static enum ioc_reply
5949 bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5950 {
5951 	void (*ppfn)(bge_t *bgep, bge_peekpoke_t *ppd);
5952 	bge_peekpoke_t *ppd;
5953 	dma_area_t *areap;
5954 	uint64_t sizemask;
5955 	uint64_t mem_va;
5956 	uint64_t maxoff;
5957 	boolean_t peek;
5958 
5959 	switch (cmd) {
5960 	default:
5961 		/* NOTREACHED */
5962 		bge_error(bgep, "bge_pp_ioctl: invalid cmd 0x%x", cmd);
5963 		return (IOC_INVAL);
5964 
5965 	case BGE_PEEK:
5966 		peek = B_TRUE;
5967 		break;
5968 
5969 	case BGE_POKE:
5970 		peek = B_FALSE;
5971 		break;
5972 	}
5973 
5974 	/*
5975 	 * Validate format of ioctl
5976 	 */
5977 	if (iocp->ioc_count != sizeof (bge_peekpoke_t))
5978 		return (IOC_INVAL);
5979 	if (mp->b_cont == NULL)
5980 		return (IOC_INVAL);
5981 	ppd = (void *)mp->b_cont->b_rptr;
5982 
5983 	/*
5984 	 * Validate request parameters
5985 	 */
5986 	switch (ppd->pp_acc_space) {
5987 	default:
5988 		return (IOC_INVAL);
5989 
5990 	case BGE_PP_SPACE_CFG:
5991 		/*
5992 		 * Config space
5993 		 */
5994 		sizemask = 8|4|2|1;
5995 		mem_va = 0;
5996 		maxoff = PCI_CONF_HDR_SIZE;
5997 		ppfn = peek ? bge_chip_peek_cfg : bge_chip_poke_cfg;
5998 		break;
5999 
6000 	case BGE_PP_SPACE_REG:
6001 		/*
6002 		 * Memory-mapped I/O space
6003 		 */
6004 		sizemask = 8|4|2|1;
6005 		mem_va = 0;
6006 		maxoff = RIAAR_REGISTER_MAX;
6007 		ppfn = peek ? bge_chip_peek_reg : bge_chip_poke_reg;
6008 		break;
6009 
6010 	case BGE_PP_SPACE_NIC:
6011 		/*
6012 		 * NIC on-chip memory
6013 		 */
6014 		sizemask = 8|4|2|1;
6015 		mem_va = 0;
6016 		maxoff = MWBAR_ONCHIP_MAX;
6017 		ppfn = peek ? bge_chip_peek_nic : bge_chip_poke_nic;
6018 		break;
6019 
6020 	case BGE_PP_SPACE_MII:
6021 		/*
6022 		 * PHY's MII registers
6023 		 * NB: all PHY registers are two bytes, but the
6024 		 * addresses increment in ones (word addressing).
6025 		 * So we scale the address here, then undo the
6026 		 * transformation inside the peek/poke functions.
6027 		 */
6028 		ppd->pp_acc_offset *= 2;
6029 		sizemask = 2;
6030 		mem_va = 0;
6031 		maxoff = (MII_MAXREG+1)*2;
6032 		ppfn = peek ? bge_chip_peek_mii : bge_chip_poke_mii;
6033 		break;
6034 
6035 #if	BGE_SEE_IO32
6036 	case BGE_PP_SPACE_SEEPROM:
6037 		/*
6038 		 * Attached SEEPROM(s), if any.
6039 		 * NB: we use the high-order bits of the 'address' as
6040 		 * a device select to accommodate multiple SEEPROMS,
6041 		 * If each one is the maximum size (64kbytes), this
6042 		 * makes them appear contiguous.  Otherwise, there may
6043 		 * be holes in the mapping.  ENxS doesn't have any
6044 		 * SEEPROMs anyway ...
6045 		 */
6046 		sizemask = 4;
6047 		mem_va = 0;
6048 		maxoff = SEEPROM_DEV_AND_ADDR_MASK;
6049 		ppfn = peek ? bge_chip_peek_seeprom : bge_chip_poke_seeprom;
6050 		break;
6051 #endif	/* BGE_SEE_IO32 */
6052 
6053 #if	BGE_FLASH_IO32
6054 	case BGE_PP_SPACE_FLASH:
6055 		/*
6056 		 * Attached Flash device (if any); a maximum of one device
6057 		 * is currently supported.  But it can be up to 1MB (unlike
6058 		 * the 64k limit on SEEPROMs) so why would you need more ;-)
6059 		 */
6060 		sizemask = 4;
6061 		mem_va = 0;
6062 		maxoff = NVM_FLASH_ADDR_MASK;
6063 		ppfn = peek ? bge_chip_peek_flash : bge_chip_poke_flash;
6064 		break;
6065 #endif	/* BGE_FLASH_IO32 */
6066 
6067 	case BGE_PP_SPACE_BGE:
6068 		/*
6069 		 * BGE data structure!
6070 		 */
6071 		sizemask = 8|4|2|1;
6072 		mem_va = (uintptr_t)bgep;
6073 		maxoff = sizeof (*bgep);
6074 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
6075 		break;
6076 
6077 	case BGE_PP_SPACE_STATUS:
6078 	case BGE_PP_SPACE_STATISTICS:
6079 	case BGE_PP_SPACE_TXDESC:
6080 	case BGE_PP_SPACE_TXBUFF:
6081 	case BGE_PP_SPACE_RXDESC:
6082 	case BGE_PP_SPACE_RXBUFF:
6083 		/*
6084 		 * Various DMA_AREAs
6085 		 */
6086 		switch (ppd->pp_acc_space) {
6087 		case BGE_PP_SPACE_TXDESC:
6088 			areap = &bgep->tx_desc;
6089 			break;
6090 		case BGE_PP_SPACE_TXBUFF:
6091 			areap = &bgep->tx_buff[0];
6092 			break;
6093 		case BGE_PP_SPACE_RXDESC:
6094 			areap = &bgep->rx_desc[0];
6095 			break;
6096 		case BGE_PP_SPACE_RXBUFF:
6097 			areap = &bgep->rx_buff[0];
6098 			break;
6099 		case BGE_PP_SPACE_STATUS:
6100 			areap = &bgep->status_block;
6101 			break;
6102 		case BGE_PP_SPACE_STATISTICS:
6103 			if (bgep->chipid.statistic_type == BGE_STAT_BLK)
6104 				areap = &bgep->statistics;
6105 			break;
6106 		}
6107 
6108 		sizemask = 8|4|2|1;
6109 		mem_va = (uintptr_t)areap->mem_va;
6110 		maxoff = areap->alength;
6111 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
6112 		break;
6113 	}
6114 
6115 	switch (ppd->pp_acc_size) {
6116 	default:
6117 		return (IOC_INVAL);
6118 
6119 	case 8:
6120 	case 4:
6121 	case 2:
6122 	case 1:
6123 		if ((ppd->pp_acc_size & sizemask) == 0)
6124 			return (IOC_INVAL);
6125 		break;
6126 	}
6127 
6128 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
6129 		return (IOC_INVAL);
6130 
6131 	if (ppd->pp_acc_offset >= maxoff)
6132 		return (IOC_INVAL);
6133 
6134 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
6135 		return (IOC_INVAL);
6136 
6137 	/*
6138 	 * All OK - go do it!
6139 	 */
6140 	ppd->pp_acc_offset += mem_va;
6141 	(*ppfn)(bgep, ppd);
6142 	return (peek ? IOC_REPLY : IOC_ACK);
6143 }
6144 
6145 static enum ioc_reply bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
6146 					struct iocblk *iocp);
6147 #pragma	no_inline(bge_diag_ioctl)
6148 
6149 static enum ioc_reply
6150 bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
6151 {
6152 	ASSERT(mutex_owned(bgep->genlock));
6153 
6154 	switch (cmd) {
6155 	default:
6156 		/* NOTREACHED */
6157 		bge_error(bgep, "bge_diag_ioctl: invalid cmd 0x%x", cmd);
6158 		return (IOC_INVAL);
6159 
6160 	case BGE_DIAG:
6161 		/*
6162 		 * Currently a no-op
6163 		 */
6164 		return (IOC_ACK);
6165 
6166 	case BGE_PEEK:
6167 	case BGE_POKE:
6168 		return (bge_pp_ioctl(bgep, cmd, mp, iocp));
6169 
6170 	case BGE_PHY_RESET:
6171 		return (IOC_RESTART_ACK);
6172 
6173 	case BGE_SOFT_RESET:
6174 	case BGE_HARD_RESET:
6175 		/*
6176 		 * Reset and reinitialise the 570x hardware
6177 		 */
6178 		bgep->bge_chip_state = BGE_CHIP_FAULT;
6179 		ddi_trigger_softintr(bgep->factotum_id);
6180 		(void) bge_restart(bgep, cmd == BGE_HARD_RESET);
6181 		return (IOC_ACK);
6182 	}
6183 
6184 	/* NOTREACHED */
6185 }
6186 
6187 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
6188 
6189 static enum ioc_reply bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
6190 				    struct iocblk *iocp);
6191 #pragma	no_inline(bge_mii_ioctl)
6192 
6193 static enum ioc_reply
6194 bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
6195 {
6196 	struct bge_mii_rw *miirwp;
6197 
6198 	/*
6199 	 * Validate format of ioctl
6200 	 */
6201 	if (iocp->ioc_count != sizeof (struct bge_mii_rw))
6202 		return (IOC_INVAL);
6203 	if (mp->b_cont == NULL)
6204 		return (IOC_INVAL);
6205 	miirwp = (void *)mp->b_cont->b_rptr;
6206 
6207 	/*
6208 	 * Validate request parameters ...
6209 	 */
6210 	if (miirwp->mii_reg > MII_MAXREG)
6211 		return (IOC_INVAL);
6212 
6213 	switch (cmd) {
6214 	default:
6215 		/* NOTREACHED */
6216 		bge_error(bgep, "bge_mii_ioctl: invalid cmd 0x%x", cmd);
6217 		return (IOC_INVAL);
6218 
6219 	case BGE_MII_READ:
6220 		miirwp->mii_data = bge_mii_get16(bgep, miirwp->mii_reg);
6221 		return (IOC_REPLY);
6222 
6223 	case BGE_MII_WRITE:
6224 		bge_mii_put16(bgep, miirwp->mii_reg, miirwp->mii_data);
6225 		return (IOC_ACK);
6226 	}
6227 
6228 	/* NOTREACHED */
6229 }
6230 
6231 #if	BGE_SEE_IO32
6232 
6233 static enum ioc_reply bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
6234 				    struct iocblk *iocp);
6235 #pragma	no_inline(bge_see_ioctl)
6236 
6237 static enum ioc_reply
6238 bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
6239 {
6240 	struct bge_see_rw *seerwp;
6241 
6242 	/*
6243 	 * Validate format of ioctl
6244 	 */
6245 	if (iocp->ioc_count != sizeof (struct bge_see_rw))
6246 		return (IOC_INVAL);
6247 	if (mp->b_cont == NULL)
6248 		return (IOC_INVAL);
6249 	seerwp = (void *)mp->b_cont->b_rptr;
6250 
6251 	/*
6252 	 * Validate request parameters ...
6253 	 */
6254 	if (seerwp->see_addr & ~SEEPROM_DEV_AND_ADDR_MASK)
6255 		return (IOC_INVAL);
6256 
6257 	switch (cmd) {
6258 	default:
6259 		/* NOTREACHED */
6260 		bge_error(bgep, "bge_see_ioctl: invalid cmd 0x%x", cmd);
6261 		return (IOC_INVAL);
6262 
6263 	case BGE_SEE_READ:
6264 	case BGE_SEE_WRITE:
6265 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
6266 		    seerwp->see_addr, &seerwp->see_data);
6267 		return (IOC_REPLY);
6268 	}
6269 
6270 	/* NOTREACHED */
6271 }
6272 
6273 #endif	/* BGE_SEE_IO32 */
6274 
6275 #if	BGE_FLASH_IO32
6276 
6277 static enum ioc_reply bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
6278 				    struct iocblk *iocp);
6279 #pragma	no_inline(bge_flash_ioctl)
6280 
6281 static enum ioc_reply
6282 bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
6283 {
6284 	struct bge_flash_rw *flashrwp;
6285 
6286 	/*
6287 	 * Validate format of ioctl
6288 	 */
6289 	if (iocp->ioc_count != sizeof (struct bge_flash_rw))
6290 		return (IOC_INVAL);
6291 	if (mp->b_cont == NULL)
6292 		return (IOC_INVAL);
6293 	flashrwp = (void *)mp->b_cont->b_rptr;
6294 
6295 	/*
6296 	 * Validate request parameters ...
6297 	 */
6298 	if (flashrwp->flash_addr & ~NVM_FLASH_ADDR_MASK)
6299 		return (IOC_INVAL);
6300 
6301 	switch (cmd) {
6302 	default:
6303 		/* NOTREACHED */
6304 		bge_error(bgep, "bge_flash_ioctl: invalid cmd 0x%x", cmd);
6305 		return (IOC_INVAL);
6306 
6307 	case BGE_FLASH_READ:
6308 	case BGE_FLASH_WRITE:
6309 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
6310 		    flashrwp->flash_addr, &flashrwp->flash_data);
6311 		return (IOC_REPLY);
6312 	}
6313 
6314 	/* NOTREACHED */
6315 }
6316 
6317 #endif	/* BGE_FLASH_IO32 */
6318 
6319 enum ioc_reply bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp,
6320 				struct iocblk *iocp);
6321 #pragma	no_inline(bge_chip_ioctl)
6322 
6323 enum ioc_reply
6324 bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
6325 {
6326 	int cmd;
6327 
6328 	BGE_TRACE(("bge_chip_ioctl($%p, $%p, $%p, $%p)",
6329 	    (void *)bgep, (void *)wq, (void *)mp, (void *)iocp));
6330 
6331 	ASSERT(mutex_owned(bgep->genlock));
6332 
6333 	cmd = iocp->ioc_cmd;
6334 	switch (cmd) {
6335 	default:
6336 		/* NOTREACHED */
6337 		bge_error(bgep, "bge_chip_ioctl: invalid cmd 0x%x", cmd);
6338 		return (IOC_INVAL);
6339 
6340 	case BGE_DIAG:
6341 	case BGE_PEEK:
6342 	case BGE_POKE:
6343 	case BGE_PHY_RESET:
6344 	case BGE_SOFT_RESET:
6345 	case BGE_HARD_RESET:
6346 #if	BGE_DEBUGGING || BGE_DO_PPIO
6347 		return (bge_diag_ioctl(bgep, cmd, mp, iocp));
6348 #else
6349 		return (IOC_INVAL);
6350 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
6351 
6352 	case BGE_MII_READ:
6353 	case BGE_MII_WRITE:
6354 		return (bge_mii_ioctl(bgep, cmd, mp, iocp));
6355 
6356 #if	BGE_SEE_IO32
6357 	case BGE_SEE_READ:
6358 	case BGE_SEE_WRITE:
6359 		return (bge_see_ioctl(bgep, cmd, mp, iocp));
6360 #endif	/* BGE_SEE_IO32 */
6361 
6362 #if	BGE_FLASH_IO32
6363 	case BGE_FLASH_READ:
6364 	case BGE_FLASH_WRITE:
6365 		return (bge_flash_ioctl(bgep, cmd, mp, iocp));
6366 #endif	/* BGE_FLASH_IO32 */
6367 	}
6368 
6369 	/* NOTREACHED */
6370 }
6371 
6372 /* ARGSUSED */
6373 void
6374 bge_chip_blank(void *arg, time_t ticks, uint_t count, int flag)
6375 {
6376 	recv_ring_t *rrp = arg;
6377 	bge_t *bgep = rrp->bgep;
6378 
6379 	mutex_enter(bgep->genlock);
6380 	rrp->poll_flag = flag;
6381 #ifdef NOT_YET
6382 	/*
6383 	 * XXX-Sunay: Since most broadcom cards support only one
6384 	 * interrupt but multiple rx rings, we can't disable the
6385 	 * physical interrupt. This need to be done via capability
6386 	 * negotiation depending on the NIC.
6387 	 */
6388 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, ticks);
6389 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, count);
6390 #endif
6391 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
6392 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
6393 	mutex_exit(bgep->genlock);
6394 }
6395 
6396 #ifdef BGE_IPMI_ASF
6397 
6398 uint32_t
6399 bge_nic_read32(bge_t *bgep, bge_regno_t addr)
6400 {
6401 	uint32_t data;
6402 
6403 #ifndef __sparc
6404 	if (!bgep->asf_wordswapped) {
6405 		/* a workaround word swap error */
6406 		if (addr & 4)
6407 			addr = addr - 4;
6408 		else
6409 			addr = addr + 4;
6410 	}
6411 #else
6412 	if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
6413 	    DEVICE_5725_SERIES_CHIPSETS(bgep)) {
6414 		addr = LE_32(addr);
6415 	}
6416 #endif
6417 
6418 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
6419 	data = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR);
6420 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
6421 
6422 	data = LE_32(data);
6423 
6424 	BGE_DEBUG(("bge_nic_read32($%p, 0x%x) => 0x%x",
6425 	    (void *)bgep, addr, data));
6426 
6427 	return (data);
6428 }
6429 
6430 void
6431 bge_asf_update_status(bge_t *bgep)
6432 {
6433 	uint32_t event;
6434 
6435 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_ALIVE);
6436 	bge_nic_put32(bgep, BGE_CMD_LENGTH_MAILBOX, 4);
6437 	bge_nic_put32(bgep, BGE_CMD_DATA_MAILBOX,   3);
6438 
6439 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
6440 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
6441 }
6442 
6443 
6444 /*
6445  * The driver is supposed to notify ASF that the OS is still running
6446  * every three seconds, otherwise the management server may attempt
6447  * to reboot the machine.  If it hasn't actually failed, this is
6448  * not a desirable result.  However, this isn't running as a real-time
6449  * thread, and even if it were, it might not be able to generate the
6450  * heartbeat in a timely manner due to system load.  As it isn't a
6451  * significant strain on the machine, we will set the interval to half
6452  * of the required value.
6453  */
6454 void
6455 bge_asf_heartbeat(void *arg)
6456 {
6457 	bge_t *bgep = (bge_t *)arg;
6458 
6459 	mutex_enter(bgep->genlock);
6460 	bge_asf_update_status((bge_t *)bgep);
6461 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
6462 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
6463 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
6464 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
6465 	mutex_exit(bgep->genlock);
6466 	((bge_t *)bgep)->asf_timeout_id = timeout(bge_asf_heartbeat, bgep,
6467 	    drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
6468 }
6469 
6470 
6471 void
6472 bge_asf_stop_timer(bge_t *bgep)
6473 {
6474 	timeout_id_t tmp_id = 0;
6475 
6476 	while ((bgep->asf_timeout_id != 0) &&
6477 	    (tmp_id != bgep->asf_timeout_id)) {
6478 		tmp_id = bgep->asf_timeout_id;
6479 		(void) untimeout(tmp_id);
6480 	}
6481 	bgep->asf_timeout_id = 0;
6482 }
6483 
6484 
6485 
6486 /*
6487  * This function should be placed at the earliest position of bge_attach().
6488  */
6489 void
6490 bge_asf_get_config(bge_t *bgep)
6491 {
6492 	uint32_t nicsig;
6493 	uint32_t niccfg;
6494 
6495 	bgep->asf_enabled = B_FALSE;
6496 	nicsig = bge_nic_read32(bgep, BGE_NIC_DATA_SIG_ADDR);
6497 	if (nicsig == BGE_NIC_DATA_SIG) {
6498 		niccfg = bge_nic_read32(bgep, BGE_NIC_DATA_NIC_CFG_ADDR);
6499 		if (niccfg & BGE_NIC_CFG_ENABLE_ASF)
6500 			/*
6501 			 * Here, we don't consider BAXTER, because BGE haven't
6502 			 * supported BAXTER (that is 5752). Also, as I know,
6503 			 * BAXTER doesn't support ASF feature.
6504 			 */
6505 			bgep->asf_enabled = B_TRUE;
6506 		else
6507 			bgep->asf_enabled = B_FALSE;
6508 	} else
6509 		bgep->asf_enabled = B_FALSE;
6510 }
6511 
6512 
6513 void
6514 bge_asf_pre_reset_operations(bge_t *bgep, uint32_t mode)
6515 {
6516 	uint32_t tries;
6517 	uint32_t event;
6518 
6519 	ASSERT(bgep->asf_enabled);
6520 
6521 	/* Issues "pause firmware" command and wait for ACK */
6522 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_PAUSE_FW);
6523 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
6524 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
6525 
6526 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
6527 	tries = 0;
6528 	while ((event & RRER_ASF_EVENT) && (tries < 100)) {
6529 		drv_usecwait(1);
6530 		tries ++;
6531 		event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
6532 	}
6533 
6534 	bge_nic_put32(bgep, BGE_FIRMWARE_MAILBOX,
6535 	    BGE_MAGIC_NUM_FIRMWARE_INIT_DONE);
6536 
6537 	if (bgep->asf_newhandshake) {
6538 		switch (mode) {
6539 		case BGE_INIT_RESET:
6540 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6541 			    BGE_DRV_STATE_START);
6542 			break;
6543 		case BGE_SHUTDOWN_RESET:
6544 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6545 			    BGE_DRV_STATE_UNLOAD);
6546 			break;
6547 		case BGE_SUSPEND_RESET:
6548 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6549 			    BGE_DRV_STATE_SUSPEND);
6550 			break;
6551 		default:
6552 			break;
6553 		}
6554 	}
6555 
6556 	if (mode == BGE_INIT_RESET ||
6557 	    mode == BGE_SUSPEND_RESET)
6558 		bge_ape_driver_state_change(bgep, mode);
6559 }
6560 
6561 
6562 void
6563 bge_asf_post_reset_old_mode(bge_t *bgep, uint32_t mode)
6564 {
6565 	switch (mode) {
6566 	case BGE_INIT_RESET:
6567 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6568 		    BGE_DRV_STATE_START);
6569 		break;
6570 	case BGE_SHUTDOWN_RESET:
6571 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6572 		    BGE_DRV_STATE_UNLOAD);
6573 		break;
6574 	case BGE_SUSPEND_RESET:
6575 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6576 		    BGE_DRV_STATE_SUSPEND);
6577 		break;
6578 	default:
6579 		break;
6580 	}
6581 }
6582 
6583 
6584 void
6585 bge_asf_post_reset_new_mode(bge_t *bgep, uint32_t mode)
6586 {
6587 	switch (mode) {
6588 	case BGE_INIT_RESET:
6589 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6590 		    BGE_DRV_STATE_START_DONE);
6591 		break;
6592 	case BGE_SHUTDOWN_RESET:
6593 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6594 		    BGE_DRV_STATE_UNLOAD_DONE);
6595 		break;
6596 	default:
6597 		break;
6598 	}
6599 
6600 	if (mode == BGE_SHUTDOWN_RESET)
6601 		bge_ape_driver_state_change(bgep, mode);
6602 }
6603 
6604 #endif /* BGE_IPMI_ASF */
6605