xref: /titanic_51/usr/src/uts/common/io/arn/arn_main.c (revision 505c7a699305ccafcfecc1ab0e7d4a25e2bfd1c2)
1 /*
2  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * Copyright (c) 2008 Atheros Communications Inc.
8  *
9  * Permission to use, copy, modify, and/or distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 #include <sys/param.h>
23 #include <sys/types.h>
24 #include <sys/signal.h>
25 #include <sys/stream.h>
26 #include <sys/termio.h>
27 #include <sys/errno.h>
28 #include <sys/file.h>
29 #include <sys/cmn_err.h>
30 #include <sys/stropts.h>
31 #include <sys/strsubr.h>
32 #include <sys/strtty.h>
33 #include <sys/kbio.h>
34 #include <sys/cred.h>
35 #include <sys/stat.h>
36 #include <sys/consdev.h>
37 #include <sys/kmem.h>
38 #include <sys/modctl.h>
39 #include <sys/ddi.h>
40 #include <sys/sunddi.h>
41 #include <sys/pci.h>
42 #include <sys/errno.h>
43 #include <sys/mac_provider.h>
44 #include <sys/dlpi.h>
45 #include <sys/ethernet.h>
46 #include <sys/list.h>
47 #include <sys/byteorder.h>
48 #include <sys/strsun.h>
49 #include <sys/policy.h>
50 #include <inet/common.h>
51 #include <inet/nd.h>
52 #include <inet/mi.h>
53 #include <inet/wifi_ioctl.h>
54 #include <sys/mac_wifi.h>
55 
56 #include "ath9k.h"
57 #include "core.h"
58 #include "reg.h"
59 #include "hw.h"
60 
61 #define	ARN_MAX_RSSI	63	/* max rssi */
62 
63 /*
64  * PIO access attributes for registers
65  */
66 static ddi_device_acc_attr_t arn_reg_accattr = {
67 	DDI_DEVICE_ATTR_V0,
68 	DDI_STRUCTURE_LE_ACC,
69 	DDI_STRICTORDER_ACC
70 };
71 
72 /*
73  * DMA access attributes for descriptors: NOT to be byte swapped.
74  */
75 static ddi_device_acc_attr_t arn_desc_accattr = {
76 	DDI_DEVICE_ATTR_V0,
77 	DDI_STRUCTURE_LE_ACC,
78 	DDI_STRICTORDER_ACC
79 };
80 
81 /*
82  * Describes the chip's DMA engine
83  */
84 static ddi_dma_attr_t arn_dma_attr = {
85 	DMA_ATTR_V0,	/* version number */
86 	0,				/* low address */
87 	0xffffffffU,	/* high address */
88 	0x3ffffU,		/* counter register max */
89 	1,				/* alignment */
90 	0xFFF,			/* burst sizes */
91 	1,				/* minimum transfer size */
92 	0x3ffffU,		/* max transfer size */
93 	0xffffffffU,	/* address register max */
94 	1,				/* no scatter-gather */
95 	1,				/* granularity of device */
96 	0,				/* DMA flags */
97 };
98 
99 static ddi_dma_attr_t arn_desc_dma_attr = {
100 	DMA_ATTR_V0,	/* version number */
101 	0,				/* low address */
102 	0xffffffffU,	/* high address */
103 	0xffffffffU,	/* counter register max */
104 	0x1000,			/* alignment */
105 	0xFFF,			/* burst sizes */
106 	1,				/* minimum transfer size */
107 	0xffffffffU,	/* max transfer size */
108 	0xffffffffU,	/* address register max */
109 	1,				/* no scatter-gather */
110 	1,				/* granularity of device */
111 	0,				/* DMA flags */
112 };
113 
114 #define	ATH_DEF_CACHE_BYTES	32 /* default cache line size */
115 
116 static kmutex_t arn_loglock;
117 static void *arn_soft_state_p = NULL;
118 /* scan interval, ms? */
119 static int arn_dwelltime = 200; /* 150 */
120 
121 static int	arn_m_stat(void *,  uint_t, uint64_t *);
122 static int	arn_m_start(void *);
123 static void	arn_m_stop(void *);
124 static int	arn_m_promisc(void *, boolean_t);
125 static int	arn_m_multicst(void *, boolean_t, const uint8_t *);
126 static int	arn_m_unicst(void *, const uint8_t *);
127 static mblk_t	*arn_m_tx(void *, mblk_t *);
128 static void	arn_m_ioctl(void *, queue_t *, mblk_t *);
129 static int	arn_m_setprop(void *, const char *, mac_prop_id_t,
130     uint_t, const void *);
131 static int	arn_m_getprop(void *, const char *, mac_prop_id_t,
132     uint_t, uint_t, void *, uint_t *);
133 
134 /* MAC Callcack Functions */
135 static mac_callbacks_t arn_m_callbacks = {
136 	MC_IOCTL | MC_SETPROP | MC_GETPROP,
137 	arn_m_stat,
138 	arn_m_start,
139 	arn_m_stop,
140 	arn_m_promisc,
141 	arn_m_multicst,
142 	arn_m_unicst,
143 	arn_m_tx,
144 	arn_m_ioctl,
145 	NULL,
146 	NULL,
147 	NULL,
148 	arn_m_setprop,
149 	arn_m_getprop
150 };
151 
152 /*
153  * ARN_DBG_HW
154  * ARN_DBG_REG_IO
155  * ARN_DBG_QUEUE
156  * ARN_DBG_EEPROM
157  * ARN_DBG_XMIT
158  * ARN_DBG_RECV
159  * ARN_DBG_CALIBRATE
160  * ARN_DBG_CHANNEL
161  * ARN_DBG_INTERRUPT
162  * ARN_DBG_REGULATORY
163  * ARN_DBG_ANI
164  * ARN_DBG_POWER_MGMT
165  * ARN_DBG_KEYCACHE
166  * ARN_DBG_BEACON
167  * ARN_DBG_RATE
168  * ARN_DBG_INIT
169  * ARN_DBG_ATTACH
170  * ARN_DBG_DEATCH
171  * ARN_DBG_AGGR
172  * ARN_DBG_RESET
173  * ARN_DBG_FATAL
174  * ARN_DBG_ANY
175  * ARN_DBG_ALL
176  */
177 uint32_t arn_dbg_mask = 0;
178 
179 /*
180  * Exception/warning cases not leading to panic.
181  */
182 void
183 arn_problem(const int8_t *fmt, ...)
184 {
185 	va_list args;
186 
187 	mutex_enter(&arn_loglock);
188 
189 	va_start(args, fmt);
190 	vcmn_err(CE_WARN, fmt, args);
191 	va_end(args);
192 
193 	mutex_exit(&arn_loglock);
194 }
195 
196 /*
197  * Normal log information independent of debug.
198  */
199 void
200 arn_log(const int8_t *fmt, ...)
201 {
202 	va_list args;
203 
204 	mutex_enter(&arn_loglock);
205 
206 	va_start(args, fmt);
207 	vcmn_err(CE_CONT, fmt, args);
208 	va_end(args);
209 
210 	mutex_exit(&arn_loglock);
211 }
212 
213 void
214 arn_dbg(uint32_t dbg_flags, const int8_t *fmt, ...)
215 {
216 	va_list args;
217 
218 	if (dbg_flags & arn_dbg_mask) {
219 		mutex_enter(&arn_loglock);
220 		va_start(args, fmt);
221 		vcmn_err(CE_CONT, fmt, args);
222 		va_end(args);
223 		mutex_exit(&arn_loglock);
224 	}
225 }
226 
227 /*
228  * Read and write, they both share the same lock. We do this to serialize
229  * reads and writes on Atheros 802.11n PCI devices only. This is required
230  * as the FIFO on these devices can only accept sanely 2 requests. After
231  * that the device goes bananas. Serializing the reads/writes prevents this
232  * from happening.
233  */
234 void
235 arn_iowrite32(struct ath_hal *ah, uint32_t reg_offset, uint32_t val)
236 {
237 	struct arn_softc *sc = ah->ah_sc;
238 	if (ah->ah_config.serialize_regmode == SER_REG_MODE_ON) {
239 		mutex_enter(&sc->sc_serial_rw);
240 		ddi_put32(sc->sc_io_handle,
241 		    (uint32_t *)((uintptr_t)(sc->mem) + (reg_offset)), val);
242 		mutex_exit(&sc->sc_serial_rw);
243 	} else {
244 		ddi_put32(sc->sc_io_handle,
245 		    (uint32_t *)((uintptr_t)(sc->mem) + (reg_offset)), val);
246 	}
247 }
248 
249 unsigned int
250 arn_ioread32(struct ath_hal *ah, uint32_t reg_offset)
251 {
252 	uint32_t val;
253 	struct arn_softc *sc = ah->ah_sc;
254 	if (ah->ah_config.serialize_regmode == SER_REG_MODE_ON) {
255 		mutex_enter(&sc->sc_serial_rw);
256 		val = ddi_get32(sc->sc_io_handle,
257 		    (uint32_t *)((uintptr_t)(sc->mem) + (reg_offset)));
258 		mutex_exit(&sc->sc_serial_rw);
259 	} else {
260 		val = ddi_get32(sc->sc_io_handle,
261 		    (uint32_t *)((uintptr_t)(sc->mem) + (reg_offset)));
262 	}
263 
264 	return (val);
265 }
266 
267 void
268 arn_rx_buf_link(struct arn_softc *sc, struct ath_buf *bf)
269 {
270 	struct ath_desc *ds;
271 
272 	ds = bf->bf_desc;
273 	ds->ds_link = bf->bf_daddr;
274 	ds->ds_data = bf->bf_dma.cookie.dmac_address;
275 	/* virtual addr of the beginning of the buffer. */
276 	ds->ds_vdata = bf->bf_dma.mem_va;
277 
278 	/*
279 	 * setup rx descriptors. The bf_dma.alength here tells the H/W
280 	 * how much data it can DMA to us and that we are prepared
281 	 * to process
282 	 */
283 	(void) ath9k_hw_setuprxdesc(sc->sc_ah, ds,
284 	    bf->bf_dma.alength, /* buffer size */
285 	    0);
286 
287 	if (sc->sc_rxlink != NULL)
288 		*sc->sc_rxlink = bf->bf_daddr;
289 	sc->sc_rxlink = &ds->ds_link;
290 }
291 
292 /*
293  * Allocate an area of memory and a DMA handle for accessing it
294  */
295 static int
296 arn_alloc_dma_mem(dev_info_t *devinfo, ddi_dma_attr_t *dma_attr, size_t memsize,
297     ddi_device_acc_attr_t *attr_p, uint_t alloc_flags,
298     uint_t bind_flags, dma_area_t *dma_p)
299 {
300 	int err;
301 
302 	/*
303 	 * Allocate handle
304 	 */
305 	err = ddi_dma_alloc_handle(devinfo, dma_attr,
306 	    DDI_DMA_SLEEP, NULL, &dma_p->dma_hdl);
307 	if (err != DDI_SUCCESS)
308 		return (DDI_FAILURE);
309 
310 	/*
311 	 * Allocate memory
312 	 */
313 	err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, attr_p,
314 	    alloc_flags, DDI_DMA_SLEEP, NULL, &dma_p->mem_va,
315 	    &dma_p->alength, &dma_p->acc_hdl);
316 	if (err != DDI_SUCCESS)
317 		return (DDI_FAILURE);
318 
319 	/*
320 	 * Bind the two together
321 	 */
322 	err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
323 	    dma_p->mem_va, dma_p->alength, bind_flags,
324 	    DDI_DMA_SLEEP, NULL, &dma_p->cookie, &dma_p->ncookies);
325 	if (err != DDI_DMA_MAPPED)
326 		return (DDI_FAILURE);
327 
328 	dma_p->nslots = ~0U;
329 	dma_p->size = ~0U;
330 	dma_p->token = ~0U;
331 	dma_p->offset = 0;
332 	return (DDI_SUCCESS);
333 }
334 
335 /*
336  * Free one allocated area of DMAable memory
337  */
338 static void
339 arn_free_dma_mem(dma_area_t *dma_p)
340 {
341 	if (dma_p->dma_hdl != NULL) {
342 		(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
343 		if (dma_p->acc_hdl != NULL) {
344 			ddi_dma_mem_free(&dma_p->acc_hdl);
345 			dma_p->acc_hdl = NULL;
346 		}
347 		ddi_dma_free_handle(&dma_p->dma_hdl);
348 		dma_p->ncookies = 0;
349 		dma_p->dma_hdl = NULL;
350 	}
351 }
352 
353 /*
354  * Initialize tx, rx. or beacon buffer list. Allocate DMA memory for
355  * each buffer.
356  */
357 static int
358 arn_buflist_setup(dev_info_t *devinfo, struct arn_softc *sc, list_t *bflist,
359     struct ath_buf **pbf, struct ath_desc **pds, int nbuf, uint_t dmabflags)
360 {
361 	int i, err;
362 	struct ath_buf *bf = *pbf;
363 	struct ath_desc *ds = *pds;
364 
365 	list_create(bflist, sizeof (struct ath_buf),
366 	    offsetof(struct ath_buf, bf_node));
367 	for (i = 0; i < nbuf; i++, bf++, ds++) {
368 		bf->bf_desc = ds;
369 		bf->bf_daddr = sc->sc_desc_dma.cookie.dmac_address +
370 		    ((uintptr_t)ds - (uintptr_t)sc->sc_desc);
371 		list_insert_tail(bflist, bf);
372 
373 		/* alloc DMA memory */
374 		err = arn_alloc_dma_mem(devinfo, &arn_dma_attr,
375 		    sc->sc_dmabuf_size, &arn_desc_accattr, DDI_DMA_STREAMING,
376 		    dmabflags, &bf->bf_dma);
377 		if (err != DDI_SUCCESS)
378 			return (err);
379 	}
380 	*pbf = bf;
381 	*pds = ds;
382 
383 	return (DDI_SUCCESS);
384 }
385 
386 /*
387  * Destroy tx, rx or beacon buffer list. Free DMA memory.
388  */
389 static void
390 arn_buflist_cleanup(list_t *buflist)
391 {
392 	struct ath_buf *bf;
393 
394 	if (!buflist)
395 		return;
396 
397 	bf = list_head(buflist);
398 	while (bf != NULL) {
399 		if (bf->bf_m != NULL) {
400 			freemsg(bf->bf_m);
401 			bf->bf_m = NULL;
402 		}
403 		/* Free DMA buffer */
404 		arn_free_dma_mem(&bf->bf_dma);
405 		if (bf->bf_in != NULL) {
406 			ieee80211_free_node(bf->bf_in);
407 			bf->bf_in = NULL;
408 		}
409 		list_remove(buflist, bf);
410 		bf = list_head(buflist);
411 	}
412 	list_destroy(buflist);
413 }
414 
415 static void
416 arn_desc_free(struct arn_softc *sc)
417 {
418 	arn_buflist_cleanup(&sc->sc_txbuf_list);
419 	arn_buflist_cleanup(&sc->sc_rxbuf_list);
420 #ifdef ARN_IBSS
421 	arn_buflist_cleanup(&sc->sc_bcbuf_list);
422 #endif
423 
424 	/* Free descriptor DMA buffer */
425 	arn_free_dma_mem(&sc->sc_desc_dma);
426 
427 	kmem_free((void *)sc->sc_vbufptr, sc->sc_vbuflen);
428 	sc->sc_vbufptr = NULL;
429 }
430 
431 static int
432 arn_desc_alloc(dev_info_t *devinfo, struct arn_softc *sc)
433 {
434 	int err;
435 	size_t size;
436 	struct ath_desc *ds;
437 	struct ath_buf *bf;
438 
439 #ifdef ARN_IBSS
440 	size = sizeof (struct ath_desc) * (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF);
441 #else
442 	size = sizeof (struct ath_desc) * (ATH_TXBUF + ATH_RXBUF);
443 #endif
444 
445 	err = arn_alloc_dma_mem(devinfo, &arn_desc_dma_attr, size,
446 	    &arn_desc_accattr, DDI_DMA_CONSISTENT,
447 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &sc->sc_desc_dma);
448 
449 	/* virtual address of the first descriptor */
450 	sc->sc_desc = (struct ath_desc *)sc->sc_desc_dma.mem_va;
451 
452 	ds = sc->sc_desc;
453 	ARN_DBG((ARN_DBG_INIT, "arn: arn_desc_alloc(): DMA map: "
454 	    "%p (%d) -> %p\n",
455 	    sc->sc_desc, sc->sc_desc_dma.alength,
456 	    sc->sc_desc_dma.cookie.dmac_address));
457 
458 	/* allocate data structures to describe TX/RX DMA buffers */
459 #ifdef ARN_IBSS
460 	sc->sc_vbuflen = sizeof (struct ath_buf) * (ATH_TXBUF + ATH_RXBUF +
461 	    ATH_BCBUF);
462 #else
463 	sc->sc_vbuflen = sizeof (struct ath_buf) * (ATH_TXBUF + ATH_RXBUF);
464 #endif
465 	bf = (struct ath_buf *)kmem_zalloc(sc->sc_vbuflen, KM_SLEEP);
466 	sc->sc_vbufptr = bf;
467 
468 	/* DMA buffer size for each TX/RX packet */
469 	sc->sc_dmabuf_size = roundup(1000 + sizeof (struct ieee80211_frame) +
470 	    IEEE80211_MTU + IEEE80211_CRC_LEN +
471 	    (IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
472 	    IEEE80211_WEP_CRCLEN), sc->sc_cachelsz);
473 
474 	/* create RX buffer list */
475 	err = arn_buflist_setup(devinfo, sc, &sc->sc_rxbuf_list, &bf, &ds,
476 	    ATH_RXBUF, DDI_DMA_READ | DDI_DMA_STREAMING);
477 	if (err != DDI_SUCCESS) {
478 		arn_desc_free(sc);
479 		return (err);
480 	}
481 
482 	/* create TX buffer list */
483 	err = arn_buflist_setup(devinfo, sc, &sc->sc_txbuf_list, &bf, &ds,
484 	    ATH_TXBUF, DDI_DMA_STREAMING);
485 	if (err != DDI_SUCCESS) {
486 		arn_desc_free(sc);
487 		return (err);
488 	}
489 
490 	/* create beacon buffer list */
491 #ifdef ARN_IBSS
492 	err = arn_buflist_setup(devinfo, sc, &sc->sc_bcbuf_list, &bf, &ds,
493 	    ATH_BCBUF, DDI_DMA_STREAMING);
494 	if (err != DDI_SUCCESS) {
495 		arn_desc_free(sc);
496 		return (err);
497 	}
498 #endif
499 
500 	return (DDI_SUCCESS);
501 }
502 
503 static struct ath_rate_table *
504 /* LINTED E_STATIC_UNUSED */
505 arn_get_ratetable(struct arn_softc *sc, uint32_t mode)
506 {
507 	struct ath_rate_table *rate_table = NULL;
508 
509 	switch (mode) {
510 	case IEEE80211_MODE_11A:
511 		rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
512 		break;
513 	case IEEE80211_MODE_11B:
514 		rate_table = sc->hw_rate_table[ATH9K_MODE_11B];
515 		break;
516 	case IEEE80211_MODE_11G:
517 		rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
518 		break;
519 #ifdef ARB_11N
520 	case IEEE80211_MODE_11NA_HT20:
521 		rate_table = sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
522 		break;
523 	case IEEE80211_MODE_11NG_HT20:
524 		rate_table = sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
525 		break;
526 	case IEEE80211_MODE_11NA_HT40PLUS:
527 		rate_table = sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
528 		break;
529 	case IEEE80211_MODE_11NA_HT40MINUS:
530 		rate_table = sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
531 		break;
532 	case IEEE80211_MODE_11NG_HT40PLUS:
533 		rate_table = sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
534 		break;
535 	case IEEE80211_MODE_11NG_HT40MINUS:
536 		rate_table = sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
537 		break;
538 #endif
539 	default:
540 		ARN_DBG((ARN_DBG_FATAL, "arn: arn_get_ratetable(): "
541 		    "invalid mode %u\n", mode));
542 		return (NULL);
543 	}
544 
545 	return (rate_table);
546 
547 }
548 
549 static void
550 arn_setcurmode(struct arn_softc *sc, enum wireless_mode mode)
551 {
552 	struct ath_rate_table *rt;
553 	int i;
554 
555 	for (i = 0; i < sizeof (sc->asc_rixmap); i++)
556 		sc->asc_rixmap[i] = 0xff;
557 
558 	rt = sc->hw_rate_table[mode];
559 	ASSERT(rt != NULL);
560 
561 	for (i = 0; i < rt->rate_cnt; i++)
562 		sc->asc_rixmap[rt->info[i].dot11rate &
563 		    IEEE80211_RATE_VAL] = (uint8_t)i; /* LINT */
564 
565 	sc->sc_currates = rt;
566 	sc->sc_curmode = mode;
567 
568 	/*
569 	 * All protection frames are transmited at 2Mb/s for
570 	 * 11g, otherwise at 1Mb/s.
571 	 * XXX select protection rate index from rate table.
572 	 */
573 	sc->sc_protrix = (mode == ATH9K_MODE_11G ? 1 : 0);
574 }
575 
576 static enum wireless_mode
577 arn_chan2mode(struct ath9k_channel *chan)
578 {
579 	if (chan->chanmode == CHANNEL_A)
580 		return (ATH9K_MODE_11A);
581 	else if (chan->chanmode == CHANNEL_G)
582 		return (ATH9K_MODE_11G);
583 	else if (chan->chanmode == CHANNEL_B)
584 		return (ATH9K_MODE_11B);
585 	else if (chan->chanmode == CHANNEL_A_HT20)
586 		return (ATH9K_MODE_11NA_HT20);
587 	else if (chan->chanmode == CHANNEL_G_HT20)
588 		return (ATH9K_MODE_11NG_HT20);
589 	else if (chan->chanmode == CHANNEL_A_HT40PLUS)
590 		return (ATH9K_MODE_11NA_HT40PLUS);
591 	else if (chan->chanmode == CHANNEL_A_HT40MINUS)
592 		return (ATH9K_MODE_11NA_HT40MINUS);
593 	else if (chan->chanmode == CHANNEL_G_HT40PLUS)
594 		return (ATH9K_MODE_11NG_HT40PLUS);
595 	else if (chan->chanmode == CHANNEL_G_HT40MINUS)
596 		return (ATH9K_MODE_11NG_HT40MINUS);
597 
598 	return (ATH9K_MODE_11B);
599 }
600 
601 static void
602 arn_update_txpow(struct arn_softc *sc)
603 {
604 	struct ath_hal 	*ah = sc->sc_ah;
605 	uint32_t txpow;
606 
607 	if (sc->sc_curtxpow != sc->sc_config.txpowlimit) {
608 		(void) ath9k_hw_set_txpowerlimit(ah, sc->sc_config.txpowlimit);
609 		/* read back in case value is clamped */
610 		(void) ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
611 		sc->sc_curtxpow = (uint32_t)txpow;
612 	}
613 }
614 
615 static void
616 arn_setup_rates(struct arn_softc *sc, uint32_t mode)
617 {
618 	int i, maxrates;
619 	struct ath_rate_table *rate_table = NULL;
620 	struct ieee80211_rateset *rateset;
621 	ieee80211com_t *ic = (ieee80211com_t *)sc;
622 
623 	/* rate_table = arn_get_ratetable(sc, mode); */
624 	switch (mode) {
625 	case IEEE80211_MODE_11A:
626 		rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
627 		break;
628 	case IEEE80211_MODE_11B:
629 		rate_table = sc->hw_rate_table[ATH9K_MODE_11B];
630 		break;
631 	case IEEE80211_MODE_11G:
632 		rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
633 		break;
634 #ifdef ARN_11N
635 	case IEEE80211_MODE_11NA_HT20:
636 		rate_table = sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
637 		break;
638 	case IEEE80211_MODE_11NG_HT20:
639 		rate_table = sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
640 		break;
641 	case IEEE80211_MODE_11NA_HT40PLUS:
642 		rate_table = sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
643 		break;
644 	case IEEE80211_MODE_11NA_HT40MINUS:
645 		rate_table = sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
646 		break;
647 	case IEEE80211_MODE_11NG_HT40PLUS:
648 		rate_table = sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
649 		break;
650 	case IEEE80211_MODE_11NG_HT40MINUS:
651 		rate_table = sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
652 		break;
653 #endif
654 	default:
655 		ARN_DBG((ARN_DBG_RATE, "arn: arn_get_ratetable(): "
656 		    "invalid mode %u\n", mode));
657 		break;
658 	}
659 	if (rate_table == NULL)
660 		return;
661 	if (rate_table->rate_cnt > ATH_RATE_MAX) {
662 		ARN_DBG((ARN_DBG_RATE, "arn: arn_rate_setup(): "
663 		    "rate table too small (%u > %u)\n",
664 		    rate_table->rate_cnt, IEEE80211_RATE_MAXSIZE));
665 		maxrates = ATH_RATE_MAX;
666 	} else
667 		maxrates = rate_table->rate_cnt;
668 
669 	ARN_DBG((ARN_DBG_RATE, "arn: arn_rate_setup(): "
670 	    "maxrates is %d\n", maxrates));
671 
672 	rateset = &ic->ic_sup_rates[mode];
673 	for (i = 0; i < maxrates; i++) {
674 		rateset->ir_rates[i] = rate_table->info[i].dot11rate;
675 		ARN_DBG((ARN_DBG_RATE, "arn: arn_rate_setup(): "
676 		    "%d\n", rate_table->info[i].dot11rate));
677 	}
678 	rateset->ir_nrates = (uint8_t)maxrates; /* ??? */
679 }
680 
681 static int
682 arn_setup_channels(struct arn_softc *sc)
683 {
684 	struct ath_hal *ah = sc->sc_ah;
685 	ieee80211com_t *ic = (ieee80211com_t *)sc;
686 	int nchan, i, index;
687 	uint8_t regclassids[ATH_REGCLASSIDS_MAX];
688 	uint32_t nregclass = 0;
689 	struct ath9k_channel *c;
690 
691 	/* Fill in ah->ah_channels */
692 	if (!ath9k_regd_init_channels(ah, ATH_CHAN_MAX, (uint32_t *)&nchan,
693 	    regclassids, ATH_REGCLASSIDS_MAX, &nregclass, CTRY_DEFAULT,
694 	    B_FALSE, 1)) {
695 		uint32_t rd = ah->ah_currentRD;
696 		ARN_DBG((ARN_DBG_CHANNEL, "arn: arn_setup_channels(): "
697 		    "unable to collect channel list; "
698 		    "regdomain likely %u country code %u\n",
699 		    rd, CTRY_DEFAULT));
700 		return (EINVAL);
701 	}
702 
703 	ARN_DBG((ARN_DBG_CHANNEL, "arn: arn_setup_channels(): "
704 	    "number of channel is %d\n", nchan));
705 
706 	for (i = 0; i < nchan; i++) {
707 		c = &ah->ah_channels[i];
708 		uint16_t flags;
709 		index = ath9k_hw_mhz2ieee(ah, c->channel, c->channelFlags);
710 
711 		if (index > IEEE80211_CHAN_MAX) {
712 			ARN_DBG((ARN_DBG_CHANNEL,
713 			    "arn: arn_setup_channels(): "
714 			    "bad hal channel %d (%u/%x) ignored\n",
715 			    index, c->channel, c->channelFlags));
716 			continue;
717 		}
718 		/* NB: flags are known to be compatible */
719 		if (index < 0) {
720 			/*
721 			 * can't handle frequency <2400MHz (negative
722 			 * channels) right now
723 			 */
724 			ARN_DBG((ARN_DBG_CHANNEL,
725 			    "arn: arn_setup_channels(): "
726 			    "hal channel %d (%u/%x) "
727 			    "cannot be handled, ignored\n",
728 			    index, c->channel, c->channelFlags));
729 			continue;
730 		}
731 
732 		/*
733 		 * Calculate net80211 flags; most are compatible
734 		 * but some need massaging.  Note the static turbo
735 		 * conversion can be removed once net80211 is updated
736 		 * to understand static vs. dynamic turbo.
737 		 */
738 
739 		flags = c->channelFlags & (CHANNEL_ALL | CHANNEL_PASSIVE);
740 
741 		if (ic->ic_sup_channels[index].ich_freq == 0) {
742 			ic->ic_sup_channels[index].ich_freq = c->channel;
743 			ic->ic_sup_channels[index].ich_flags = flags;
744 		} else {
745 			/* channels overlap; e.g. 11g and 11b */
746 			ic->ic_sup_channels[index].ich_flags |= flags;
747 		}
748 		if ((c->channelFlags & CHANNEL_G) == CHANNEL_G) {
749 			sc->sc_have11g = 1;
750 			ic->ic_caps |= IEEE80211_C_SHPREAMBLE |
751 			    IEEE80211_C_SHSLOT;	/* short slot time */
752 		}
753 	}
754 
755 	return (0);
756 }
757 
758 uint32_t
759 arn_chan2flags(ieee80211com_t *isc, struct ieee80211_channel *chan)
760 {
761 	static const uint32_t modeflags[] = {
762 	    0,				/* IEEE80211_MODE_AUTO */
763 	    CHANNEL_A,			/* IEEE80211_MODE_11A */
764 	    CHANNEL_B,			/* IEEE80211_MODE_11B */
765 	    CHANNEL_G,		/* IEEE80211_MODE_11G */
766 	    0,				/*  */
767 	    0,		/*  */
768 	    0		/*  */
769 	};
770 	return (modeflags[ieee80211_chan2mode(isc, chan)]);
771 }
772 
773 /*
774  * Update internal state after a channel change.
775  */
776 void
777 arn_chan_change(struct arn_softc *sc, struct ieee80211_channel *chan)
778 {
779 	struct ieee80211com *ic = &sc->sc_isc;
780 	enum ieee80211_phymode mode;
781 	enum wireless_mode wlmode;
782 
783 	/*
784 	 * Change channels and update the h/w rate map
785 	 * if we're switching; e.g. 11a to 11b/g.
786 	 */
787 	mode = ieee80211_chan2mode(ic, chan);
788 	switch (mode) {
789 	case IEEE80211_MODE_11A:
790 		wlmode = ATH9K_MODE_11A;
791 		break;
792 	case IEEE80211_MODE_11B:
793 		wlmode = ATH9K_MODE_11B;
794 		break;
795 	case IEEE80211_MODE_11G:
796 		wlmode = ATH9K_MODE_11B;
797 		break;
798 	default:
799 		break;
800 	}
801 	if (wlmode != sc->sc_curmode)
802 		arn_setcurmode(sc, wlmode);
803 
804 }
805 
806 /*
807  * Set/change channels.  If the channel is really being changed, it's done
808  * by reseting the chip.  To accomplish this we must first cleanup any pending
809  * DMA, then restart stuff.
810  */
811 static int
812 arn_set_channel(struct arn_softc *sc, struct ath9k_channel *hchan)
813 {
814 	struct ath_hal *ah = sc->sc_ah;
815 	ieee80211com_t *ic = &sc->sc_isc;
816 	boolean_t fastcc = B_TRUE;
817 	boolean_t  stopped;
818 	struct ieee80211_channel chan;
819 	enum wireless_mode curmode;
820 
821 	if (sc->sc_flags & SC_OP_INVALID)
822 		return (EIO);
823 
824 	if (hchan->channel != sc->sc_ah->ah_curchan->channel ||
825 	    hchan->channelFlags != sc->sc_ah->ah_curchan->channelFlags ||
826 	    (sc->sc_flags & SC_OP_CHAINMASK_UPDATE) ||
827 	    (sc->sc_flags & SC_OP_FULL_RESET)) {
828 		int status;
829 
830 		/*
831 		 * This is only performed if the channel settings have
832 		 * actually changed.
833 		 *
834 		 * To switch channels clear any pending DMA operations;
835 		 * wait long enough for the RX fifo to drain, reset the
836 		 * hardware at the new frequency, and then re-enable
837 		 * the relevant bits of the h/w.
838 		 */
839 		(void) ath9k_hw_set_interrupts(ah, 0);	/* disable interrupts */
840 		arn_draintxq(sc, B_FALSE);	/* clear pending tx frames */
841 		stopped = arn_stoprecv(sc);	/* turn off frame recv */
842 
843 		/*
844 		 * XXX: do not flush receive queue here. We don't want
845 		 * to flush data frames already in queue because of
846 		 * changing channel.
847 		 */
848 
849 		if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
850 			fastcc = B_FALSE;
851 
852 		ARN_DBG((ARN_DBG_CHANNEL, "arn: arn_set_channel(): "
853 		    "(%u MHz) -> (%u MHz), cflags:%x, chanwidth: %d\n",
854 		    sc->sc_ah->ah_curchan->channel,
855 		    hchan->channel, hchan->channelFlags, sc->tx_chan_width));
856 
857 		if (!ath9k_hw_reset(ah, hchan, sc->tx_chan_width,
858 		    sc->sc_tx_chainmask, sc->sc_rx_chainmask,
859 		    sc->sc_ht_extprotspacing, fastcc, &status)) {
860 			ARN_DBG((ARN_DBG_FATAL, "arn: arn_set_channel(): "
861 			    "unable to reset channel %u (%uMhz) "
862 			    "flags 0x%x hal status %u\n",
863 			    ath9k_hw_mhz2ieee(ah, hchan->channel,
864 			    hchan->channelFlags),
865 			    hchan->channel, hchan->channelFlags, status));
866 			return (EIO);
867 		}
868 
869 		sc->sc_curchan = *hchan;
870 
871 		sc->sc_flags &= ~SC_OP_CHAINMASK_UPDATE;
872 		sc->sc_flags &= ~SC_OP_FULL_RESET;
873 
874 		if (arn_startrecv(sc) != 0) {
875 			arn_problem("arn: arn_set_channel(): "
876 			    "unable to restart recv logic\n");
877 			return (EIO);
878 		}
879 
880 		chan.ich_freq = hchan->channel;
881 		chan.ich_flags = hchan->channelFlags;
882 		ic->ic_ibss_chan = &chan;
883 
884 		/*
885 		 * Change channels and update the h/w rate map
886 		 * if we're switching; e.g. 11a to 11b/g.
887 		 */
888 		curmode = arn_chan2mode(hchan);
889 		if (curmode != sc->sc_curmode)
890 			arn_setcurmode(sc, arn_chan2mode(hchan));
891 
892 		arn_update_txpow(sc);
893 
894 		(void) ath9k_hw_set_interrupts(ah, sc->sc_imask);
895 	}
896 
897 	return (0);
898 }
899 
900 /*
901  *  This routine performs the periodic noise floor calibration function
902  *  that is used to adjust and optimize the chip performance.  This
903  *  takes environmental changes (location, temperature) into account.
904  *  When the task is complete, it reschedules itself depending on the
905  *  appropriate interval that was calculated.
906  */
907 static void
908 arn_ani_calibrate(void *arg)
909 
910 {
911 	ieee80211com_t *ic = (ieee80211com_t *)arg;
912 	struct arn_softc *sc = (struct arn_softc *)ic;
913 	struct ath_hal *ah = sc->sc_ah;
914 	boolean_t longcal = B_FALSE;
915 	boolean_t shortcal = B_FALSE;
916 	boolean_t aniflag = B_FALSE;
917 	unsigned int timestamp = drv_hztousec(ddi_get_lbolt())/1000;
918 	uint32_t cal_interval;
919 
920 	/*
921 	 * don't calibrate when we're scanning.
922 	 * we are most likely not on our home channel.
923 	 */
924 	if (ic->ic_state != IEEE80211_S_RUN)
925 		goto settimer;
926 
927 	/* Long calibration runs independently of short calibration. */
928 	if ((timestamp - sc->sc_ani.sc_longcal_timer) >= ATH_LONG_CALINTERVAL) {
929 		longcal = B_TRUE;
930 		ARN_DBG((ARN_DBG_CALIBRATE, "arn: "
931 		    "%s: longcal @%lu\n", __func__, drv_hztousec));
932 		sc->sc_ani.sc_longcal_timer = timestamp;
933 	}
934 
935 	/* Short calibration applies only while sc_caldone is FALSE */
936 	if (!sc->sc_ani.sc_caldone) {
937 		if ((timestamp - sc->sc_ani.sc_shortcal_timer) >=
938 		    ATH_SHORT_CALINTERVAL) {
939 			shortcal = B_TRUE;
940 			ARN_DBG((ARN_DBG_CALIBRATE, "arn: "
941 			    "%s: shortcal @%lu\n",
942 			    __func__, drv_hztousec));
943 			sc->sc_ani.sc_shortcal_timer = timestamp;
944 			sc->sc_ani.sc_resetcal_timer = timestamp;
945 		}
946 	} else {
947 		if ((timestamp - sc->sc_ani.sc_resetcal_timer) >=
948 		    ATH_RESTART_CALINTERVAL) {
949 			ath9k_hw_reset_calvalid(ah, ah->ah_curchan,
950 						&sc->sc_ani.sc_caldone);
951 			if (sc->sc_ani.sc_caldone)
952 				sc->sc_ani.sc_resetcal_timer = timestamp;
953 		}
954 	}
955 
956 	/* Verify whether we must check ANI */
957 	if ((timestamp - sc->sc_ani.sc_checkani_timer) >=
958 	    ATH_ANI_POLLINTERVAL) {
959 		aniflag = B_TRUE;
960 		sc->sc_ani.sc_checkani_timer = timestamp;
961 	}
962 
963 	/* Skip all processing if there's nothing to do. */
964 	if (longcal || shortcal || aniflag) {
965 		/* Call ANI routine if necessary */
966 		if (aniflag)
967 			ath9k_hw_ani_monitor(ah, &sc->sc_halstats,
968 			    ah->ah_curchan);
969 
970 		/* Perform calibration if necessary */
971 		if (longcal || shortcal) {
972 			boolean_t iscaldone = B_FALSE;
973 
974 			if (ath9k_hw_calibrate(ah, ah->ah_curchan,
975 			    sc->sc_rx_chainmask, longcal, &iscaldone)) {
976 				if (longcal)
977 					sc->sc_ani.sc_noise_floor =
978 					    ath9k_hw_getchan_noise(ah,
979 					    ah->ah_curchan);
980 
981 				ARN_DBG((ARN_DBG_CALIBRATE, "arn: "
982 				    "%s: calibrate chan %u/%x nf: %d\n",
983 				    __func__,
984 				    ah->ah_curchan->channel,
985 				    ah->ah_curchan->channelFlags,
986 				    sc->sc_ani.sc_noise_floor));
987 			} else {
988 				ARN_DBG((ARN_DBG_CALIBRATE, "arn: "
989 				    "%s: calibrate chan %u/%x failed\n",
990 				    __func__,
991 				    ah->ah_curchan->channel,
992 				    ah->ah_curchan->channelFlags));
993 			}
994 			sc->sc_ani.sc_caldone = iscaldone;
995 		}
996 	}
997 
998 settimer:
999 	/*
1000 	 * Set timer interval based on previous results.
1001 	 * The interval must be the shortest necessary to satisfy ANI,
1002 	 * short calibration and long calibration.
1003 	 */
1004 	cal_interval = ATH_LONG_CALINTERVAL;
1005 	if (sc->sc_ah->ah_config.enable_ani)
1006 		cal_interval =
1007 		    min(cal_interval, (uint32_t)ATH_ANI_POLLINTERVAL);
1008 
1009 	if (!sc->sc_ani.sc_caldone)
1010 		cal_interval = min(cal_interval,
1011 		    (uint32_t)ATH_SHORT_CALINTERVAL);
1012 
1013 	sc->sc_scan_timer = 0;
1014 	sc->sc_scan_timer = timeout(arn_ani_calibrate, (void *)sc,
1015 	    drv_usectohz(cal_interval * 1000));
1016 }
1017 
1018 static void
1019 arn_stop_caltimer(struct arn_softc *sc)
1020 {
1021 	timeout_id_t tmp_id = 0;
1022 
1023 	while ((sc->sc_cal_timer != 0) && (tmp_id != sc->sc_cal_timer)) {
1024 		tmp_id = sc->sc_cal_timer;
1025 		(void) untimeout(tmp_id);
1026 	}
1027 	sc->sc_cal_timer = 0;
1028 }
1029 
1030 static uint_t
1031 arn_isr(caddr_t arg)
1032 {
1033 	/* LINTED E_BAD_PTR_CAST_ALIGN */
1034 	struct arn_softc *sc = (struct arn_softc *)arg;
1035 	struct ath_hal *ah = sc->sc_ah;
1036 	enum ath9k_int status;
1037 	ieee80211com_t *ic = (ieee80211com_t *)sc;
1038 
1039 	ARN_LOCK(sc);
1040 
1041 	if (sc->sc_flags & SC_OP_INVALID) {
1042 		/*
1043 		 * The hardware is not ready/present, don't
1044 		 * touch anything. Note this can happen early
1045 		 * on if the IRQ is shared.
1046 		 */
1047 		ARN_UNLOCK(sc);
1048 		return (DDI_INTR_UNCLAIMED);
1049 	}
1050 	if (!ath9k_hw_intrpend(ah)) {	/* shared irq, not for us */
1051 		ARN_UNLOCK(sc);
1052 		return (DDI_INTR_UNCLAIMED);
1053 	}
1054 
1055 	/*
1056 	 * Figure out the reason(s) for the interrupt. Note
1057 	 * that the hal returns a pseudo-ISR that may include
1058 	 * bits we haven't explicitly enabled so we mask the
1059 	 * value to insure we only process bits we requested.
1060 	 */
1061 	(void) ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
1062 
1063 	status &= sc->sc_imask; /* discard unasked-for bits */
1064 
1065 	/*
1066 	 * If there are no status bits set, then this interrupt was not
1067 	 * for me (should have been caught above).
1068 	 */
1069 	if (!status)
1070 		return (DDI_INTR_UNCLAIMED);
1071 
1072 	sc->sc_intrstatus = status;
1073 
1074 	if (status & ATH9K_INT_FATAL) {
1075 		/* need a chip reset */
1076 		ARN_DBG((ARN_DBG_INTERRUPT, "arn: arn_isr(): "
1077 		    "ATH9K_INT_FATAL\n"));
1078 		goto reset;
1079 	} else if (status & ATH9K_INT_RXORN) {
1080 		/* need a chip reset */
1081 		ARN_DBG((ARN_DBG_INTERRUPT, "arn: arn_isr(): "
1082 		    "ATH9K_INT_RXORN\n"));
1083 		goto reset;
1084 	} else {
1085 		if (status & ATH9K_INT_RXEOL) {
1086 			/*
1087 			 * NB: the hardware should re-read the link when
1088 			 * RXE bit is written, but it doesn't work
1089 			 * at least on older hardware revs.
1090 			 */
1091 			ARN_DBG((ARN_DBG_INTERRUPT, "arn: arn_isr(): "
1092 			    "ATH9K_INT_RXEOL\n"));
1093 			sc->sc_rxlink = NULL;
1094 		}
1095 		if (status & ATH9K_INT_TXURN) {
1096 			/* bump tx trigger level */
1097 			ARN_DBG((ARN_DBG_INTERRUPT, "arn: arn_isr(): "
1098 			    "ATH9K_INT_TXURN\n"));
1099 			(void) ath9k_hw_updatetxtriglevel(ah, B_TRUE);
1100 		}
1101 		/* XXX: optimize this */
1102 		if (status & ATH9K_INT_RX) {
1103 			ARN_DBG((ARN_DBG_INTERRUPT, "arn: arn_isr(): "
1104 			    "ATH9K_INT_RX\n"));
1105 			sc->sc_rx_pend = 1;
1106 			ddi_trigger_softintr(sc->sc_softint_id);
1107 		}
1108 		if (status & ATH9K_INT_TX) {
1109 			ARN_DBG((ARN_DBG_INTERRUPT, "arn: arn_isr(): "
1110 			    "ATH9K_INT_TX\n"));
1111 			if (ddi_taskq_dispatch(sc->sc_tq,
1112 			    arn_tx_int_proc, sc, DDI_NOSLEEP) !=
1113 			    DDI_SUCCESS) {
1114 				arn_problem("arn: arn_isr(): "
1115 				    "No memory for tx taskq\n");
1116 				}
1117 			}
1118 #ifdef ARN_ATH9K_INT_MIB
1119 		if (status & ATH9K_INT_MIB) {
1120 			/*
1121 			 * Disable interrupts until we service the MIB
1122 			 * interrupt; otherwise it will continue to
1123 			 * fire.
1124 			 */
1125 			(void) ath9k_hw_set_interrupts(ah, 0);
1126 			/*
1127 			 * Let the hal handle the event. We assume
1128 			 * it will clear whatever condition caused
1129 			 * the interrupt.
1130 			 */
1131 			ath9k_hw_procmibevent(ah, &sc->sc_halstats);
1132 			(void) ath9k_hw_set_interrupts(ah, sc->sc_imask);
1133 			ARN_DBG((ARN_DBG_INTERRUPT, "arn: arn_isr(): "
1134 			    "ATH9K_INT_MIB\n"));
1135 		}
1136 #endif
1137 
1138 #ifdef ARN_ATH9K_INT_TIM_TIMER
1139 		if (status & ATH9K_INT_TIM_TIMER) {
1140 			ARN_DBG((ARN_DBG_INTERRUPT, "arn: arn_isr(): "
1141 			    "ATH9K_INT_TIM_TIMER\n"));
1142 			if (!(ah->ah_caps.hw_caps &
1143 			    ATH9K_HW_CAP_AUTOSLEEP)) {
1144 				/*
1145 				 * Clear RxAbort bit so that we can
1146 				 * receive frames
1147 				 */
1148 				ath9k_hw_setrxabort(ah, 0);
1149 				goto reset;
1150 			}
1151 		}
1152 #endif
1153 
1154 		if (status & ATH9K_INT_BMISS) {
1155 			ARN_DBG((ARN_DBG_INTERRUPT, "arn: arn_isr(): "
1156 			    "ATH9K_INT_BMISS\n"));
1157 
1158 			if (ddi_taskq_dispatch(sc->sc_tq, arn_bmiss_proc,
1159 			    sc, DDI_NOSLEEP) != DDI_SUCCESS) {
1160 				arn_problem("arn: arn_isr(): "
1161 				    "No memory available for bmiss taskq\n");
1162 			}
1163 		}
1164 
1165 #ifdef ARN_ATH9K_INT_CST
1166 		/* carrier sense timeout */
1167 		if (status & ATH9K_INT_CST) {
1168 			ARN_DBG((ARN_DBG_INTERRUPT, "arn: arn_isr(): "
1169 			    "ATH9K_INT_CST\n"));
1170 		}
1171 #endif
1172 
1173 		ARN_UNLOCK(sc);
1174 
1175 		if (status & ATH9K_INT_SWBA) {
1176 			ARN_DBG((ARN_DBG_INTERRUPT, "arn: arn_isr(): "
1177 			    "ATH9K_INT_SWBA\n"));
1178 			/* This will occur only in Host-AP or Ad-Hoc mode */
1179 			return (DDI_INTR_CLAIMED);
1180 		}
1181 	}
1182 
1183 	return (DDI_INTR_CLAIMED);
1184 reset:
1185 	ARN_DBG((ARN_DBG_INTERRUPT, "Rset for fatal err\n"));
1186 	(void) arn_reset(ic);
1187 	ARN_UNLOCK(sc);
1188 	return (DDI_INTR_CLAIMED);
1189 }
1190 
1191 static int
1192 arn_get_channel(struct arn_softc *sc, struct ieee80211_channel *chan)
1193 {
1194 	int i;
1195 
1196 	for (i = 0; i < sc->sc_ah->ah_nchan; i++) {
1197 		if (sc->sc_ah->ah_channels[i].channel == chan->ich_freq)
1198 			return (i);
1199 	}
1200 
1201 	return (-1);
1202 }
1203 
1204 int
1205 arn_reset(ieee80211com_t *ic)
1206 {
1207 	struct arn_softc *sc = (struct arn_softc *)ic;
1208 	struct ath_hal *ah = sc->sc_ah;
1209 	int status;
1210 	int error = 0;
1211 
1212 	(void) ath9k_hw_set_interrupts(ah, 0);
1213 	arn_draintxq(sc, 0);
1214 	(void) arn_stoprecv(sc);
1215 
1216 	if (!ath9k_hw_reset(ah, sc->sc_ah->ah_curchan, sc->tx_chan_width,
1217 	    sc->sc_tx_chainmask, sc->sc_rx_chainmask,
1218 	    sc->sc_ht_extprotspacing, B_FALSE, &status)) {
1219 		ARN_DBG((ARN_DBG_RESET, "arn: arn_reset(): "
1220 		    "unable to reset hardware; hal status %u\n", status));
1221 		error = EIO;
1222 	}
1223 
1224 	if (arn_startrecv(sc) != 0)
1225 		ARN_DBG((ARN_DBG_RESET, "arn: arn_reset(): "
1226 		    "unable to start recv logic\n"));
1227 
1228 	/*
1229 	 * We may be doing a reset in response to a request
1230 	 * that changes the channel so update any state that
1231 	 * might change as a result.
1232 	 */
1233 	arn_setcurmode(sc, arn_chan2mode(sc->sc_ah->ah_curchan));
1234 
1235 	arn_update_txpow(sc);
1236 
1237 	if (sc->sc_flags & SC_OP_BEACONS)
1238 		arn_beacon_config(sc);	/* restart beacons */
1239 
1240 	(void) ath9k_hw_set_interrupts(ah, sc->sc_imask);
1241 
1242 	return (error);
1243 }
1244 
1245 int
1246 arn_get_hal_qnum(uint16_t queue, struct arn_softc *sc)
1247 {
1248 	int qnum;
1249 
1250 	switch (queue) {
1251 	case WME_AC_VO:
1252 		qnum = sc->sc_haltype2q[ATH9K_WME_AC_VO];
1253 		break;
1254 	case WME_AC_VI:
1255 		qnum = sc->sc_haltype2q[ATH9K_WME_AC_VI];
1256 		break;
1257 	case WME_AC_BE:
1258 		qnum = sc->sc_haltype2q[ATH9K_WME_AC_BE];
1259 		break;
1260 	case WME_AC_BK:
1261 		qnum = sc->sc_haltype2q[ATH9K_WME_AC_BK];
1262 		break;
1263 	default:
1264 		qnum = sc->sc_haltype2q[ATH9K_WME_AC_BE];
1265 		break;
1266 	}
1267 
1268 	return (qnum);
1269 }
1270 
1271 static struct {
1272 	uint32_t version;
1273 	const char *name;
1274 } ath_mac_bb_names[] = {
1275 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
1276 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
1277 	{ AR_SREV_VERSION_9100,		"9100" },
1278 	{ AR_SREV_VERSION_9160,		"9160" },
1279 	{ AR_SREV_VERSION_9280,		"9280" },
1280 	{ AR_SREV_VERSION_9285,		"9285" }
1281 };
1282 
1283 static struct {
1284 	uint16_t version;
1285 	const char *name;
1286 } ath_rf_names[] = {
1287 	{ 0,				"5133" },
1288 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
1289 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
1290 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
1291 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
1292 };
1293 
1294 /*
1295  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
1296  */
1297 
1298 static const char *
1299 arn_mac_bb_name(uint32_t mac_bb_version)
1300 {
1301 	int i;
1302 
1303 	for (i = 0; i < ARRAY_SIZE(ath_mac_bb_names); i++) {
1304 		if (ath_mac_bb_names[i].version == mac_bb_version) {
1305 			return (ath_mac_bb_names[i].name);
1306 		}
1307 	}
1308 
1309 	return ("????");
1310 }
1311 
1312 /*
1313  * Return the RF name. "????" is returned if the RF is unknown.
1314  */
1315 
1316 static const char *
1317 arn_rf_name(uint16_t rf_version)
1318 {
1319 	int i;
1320 
1321 	for (i = 0; i < ARRAY_SIZE(ath_rf_names); i++) {
1322 		if (ath_rf_names[i].version == rf_version) {
1323 			return (ath_rf_names[i].name);
1324 		}
1325 	}
1326 
1327 	return ("????");
1328 }
1329 
1330 static void
1331 arn_next_scan(void *arg)
1332 {
1333 	ieee80211com_t *ic = arg;
1334 	struct arn_softc *sc = (struct arn_softc *)ic;
1335 
1336 	sc->sc_scan_timer = 0;
1337 	if (ic->ic_state == IEEE80211_S_SCAN) {
1338 		sc->sc_scan_timer = timeout(arn_next_scan, (void *)sc,
1339 		    drv_usectohz(arn_dwelltime * 1000));
1340 		ieee80211_next_scan(ic);
1341 	}
1342 }
1343 
1344 static void
1345 arn_stop_scantimer(struct arn_softc *sc)
1346 {
1347 	timeout_id_t tmp_id = 0;
1348 
1349 	while ((sc->sc_scan_timer != 0) && (tmp_id != sc->sc_scan_timer)) {
1350 		tmp_id = sc->sc_scan_timer;
1351 		(void) untimeout(tmp_id);
1352 	}
1353 	sc->sc_scan_timer = 0;
1354 }
1355 
1356 static int32_t
1357 arn_newstate(ieee80211com_t *ic, enum ieee80211_state nstate, int arg)
1358 {
1359 	struct arn_softc *sc = (struct arn_softc *)ic;
1360 	struct ath_hal *ah = sc->sc_ah;
1361 	struct ieee80211_node *in;
1362 	int32_t i, error;
1363 	uint8_t *bssid;
1364 	uint32_t rfilt;
1365 	enum ieee80211_state ostate;
1366 	struct ath9k_channel *channel;
1367 	int pos;
1368 
1369 	/* Should set up & init LED here */
1370 
1371 	if (sc->sc_flags & SC_OP_INVALID)
1372 		return (0);
1373 
1374 	ostate = ic->ic_state;
1375 	ARN_DBG((ARN_DBG_INIT, "arn: arn_newstate(): "
1376 	    "%x -> %x!\n", ostate, nstate));
1377 
1378 	ARN_LOCK(sc);
1379 
1380 	if (nstate != IEEE80211_S_SCAN)
1381 		arn_stop_scantimer(sc);
1382 	if (nstate != IEEE80211_S_RUN)
1383 		arn_stop_caltimer(sc);
1384 
1385 	/* Should set LED here */
1386 
1387 	if (nstate == IEEE80211_S_INIT) {
1388 		sc->sc_imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
1389 		/*
1390 		 * Disable interrupts.
1391 		 */
1392 		(void) ath9k_hw_set_interrupts
1393 		    (ah, sc->sc_imask &~ ATH9K_INT_GLOBAL);
1394 
1395 #ifdef ARN_IBSS
1396 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
1397 			(void) ath9k_hw_stoptxdma(ah, sc->sc_beaconq);
1398 			arn_beacon_return(sc);
1399 		}
1400 #endif
1401 		ARN_UNLOCK(sc);
1402 		ieee80211_stop_watchdog(ic);
1403 		goto done;
1404 	}
1405 	in = ic->ic_bss;
1406 
1407 	pos = arn_get_channel(sc, ic->ic_curchan);
1408 
1409 	if (pos == -1) {
1410 		ARN_DBG((ARN_DBG_FATAL, "arn: "
1411 		    "%s: Invalid channel\n", __func__));
1412 		error = EINVAL;
1413 		ARN_UNLOCK(sc);
1414 		goto bad;
1415 	}
1416 	sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1417 	sc->sc_ah->ah_channels[pos].chanmode =
1418 	    arn_chan2flags(ic, ic->ic_curchan);
1419 	channel = &sc->sc_ah->ah_channels[pos];
1420 	if (channel == NULL) {
1421 		arn_problem("arn_newstate(): channel == NULL");
1422 		ARN_UNLOCK(sc);
1423 		goto bad;
1424 	}
1425 	error = arn_set_channel(sc, channel);
1426 	if (error != 0) {
1427 		if (nstate != IEEE80211_S_SCAN) {
1428 			ARN_UNLOCK(sc);
1429 			ieee80211_reset_chan(ic);
1430 			goto bad;
1431 		}
1432 	}
1433 
1434 	/*
1435 	 * Get the receive filter according to the
1436 	 * operating mode and state
1437 	 */
1438 	rfilt = arn_calcrxfilter(sc);
1439 
1440 	if (nstate == IEEE80211_S_SCAN)
1441 		bssid = ic->ic_macaddr;
1442 	else
1443 		bssid = in->in_bssid;
1444 
1445 	ath9k_hw_setrxfilter(ah, rfilt);
1446 
1447 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode != IEEE80211_M_IBSS)
1448 		ath9k_hw_write_associd(ah, bssid, in->in_associd);
1449 	else
1450 		ath9k_hw_write_associd(ah, bssid, 0);
1451 
1452 	/* Check for WLAN_CAPABILITY_PRIVACY ? */
1453 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
1454 		for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1455 			if (ath9k_hw_keyisvalid(ah, (uint16_t)i))
1456 				(void) ath9k_hw_keysetmac(ah, (uint16_t)i,
1457 				    bssid);
1458 		}
1459 	}
1460 
1461 	if (nstate == IEEE80211_S_RUN) {
1462 		switch (ic->ic_opmode) {
1463 #ifdef ARN_IBSS
1464 		case IEEE80211_M_IBSS:
1465 			/*
1466 			 * Allocate and setup the beacon frame.
1467 			 * Stop any previous beacon DMA.
1468 			 */
1469 			(void) ath9k_hw_stoptxdma(ah, sc->sc_beaconq);
1470 			arn_beacon_return(sc);
1471 			error = arn_beacon_alloc(sc, in);
1472 			if (error != 0) {
1473 				ARN_UNLOCK(sc);
1474 				goto bad;
1475 			}
1476 			/*
1477 			 * If joining an adhoc network defer beacon timer
1478 			 * configuration to the next beacon frame so we
1479 			 * have a current TSF to use.  Otherwise we're
1480 			 * starting an ibss/bss so there's no need to delay.
1481 			 */
1482 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
1483 			    ic->ic_bss->in_tstamp.tsf != 0) {
1484 				sc->sc_bsync = 1;
1485 			} else {
1486 				arn_beacon_config(sc);
1487 			}
1488 			break;
1489 #endif /* ARN_IBSS */
1490 		case IEEE80211_M_STA:
1491 			if (ostate != IEEE80211_S_RUN) {
1492 				/*
1493 				 * Defer beacon timer configuration to the next
1494 				 * beacon frame so we have a current TSF to use.
1495 				 * Any TSF collected when scanning is likely old
1496 				 */
1497 #ifdef ARN_IBSS
1498 				sc->sc_bsync = 1;
1499 #else
1500 				/* Configure the beacon and sleep timers. */
1501 				arn_beacon_config(sc);
1502 #endif /* ARN_IBSS */
1503 			}
1504 			break;
1505 		default:
1506 			break;
1507 		}
1508 	} else {
1509 		sc->sc_imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
1510 		(void) ath9k_hw_set_interrupts(ah, sc->sc_imask);
1511 	}
1512 
1513 	/*
1514 	 * Reset the rate control state.
1515 	 */
1516 	arn_rate_ctl_reset(sc, nstate);
1517 
1518 	ARN_UNLOCK(sc);
1519 done:
1520 	/*
1521 	 * Invoke the parent method to complete the work.
1522 	 */
1523 	error = sc->sc_newstate(ic, nstate, arg);
1524 
1525 	/*
1526 	 * Finally, start any timers.
1527 	 */
1528 	if (nstate == IEEE80211_S_RUN) {
1529 		ieee80211_start_watchdog(ic, 1);
1530 		ASSERT(sc->sc_cal_timer == 0);
1531 		sc->sc_cal_timer = timeout(arn_ani_calibrate, (void *)sc,
1532 		    drv_usectohz(100 * 1000));
1533 	} else if ((nstate == IEEE80211_S_SCAN) && (ostate != nstate)) {
1534 		/* start ap/neighbor scan timer */
1535 		/* ASSERT(sc->sc_scan_timer == 0); */
1536 		if (sc->sc_scan_timer != 0) {
1537 			(void) untimeout(sc->sc_scan_timer);
1538 			sc->sc_scan_timer = 0;
1539 		}
1540 		sc->sc_scan_timer = timeout(arn_next_scan, (void *)sc,
1541 		    drv_usectohz(arn_dwelltime * 1000));
1542 	}
1543 
1544 bad:
1545 	return (error);
1546 }
1547 
1548 static void
1549 arn_watchdog(void *arg)
1550 {
1551 	struct arn_softc *sc = arg;
1552 	ieee80211com_t *ic = &sc->sc_isc;
1553 	int ntimer = 0;
1554 
1555 	ARN_LOCK(sc);
1556 	ic->ic_watchdog_timer = 0;
1557 	if (sc->sc_flags & SC_OP_INVALID) {
1558 		ARN_UNLOCK(sc);
1559 		return;
1560 	}
1561 
1562 	if (ic->ic_state == IEEE80211_S_RUN) {
1563 		/*
1564 		 * Start the background rate control thread if we
1565 		 * are not configured to use a fixed xmit rate.
1566 		 */
1567 		if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1568 			sc->sc_stats.ast_rate_calls ++;
1569 			if (ic->ic_opmode == IEEE80211_M_STA)
1570 				arn_rate_ctl(ic, ic->ic_bss);
1571 			else
1572 				ieee80211_iterate_nodes(&ic->ic_sta,
1573 				    arn_rate_ctl, sc);
1574 		}
1575 
1576 		ntimer = 1;
1577 	}
1578 	ARN_UNLOCK(sc);
1579 
1580 	ieee80211_watchdog(ic);
1581 	if (ntimer != 0)
1582 		ieee80211_start_watchdog(ic, ntimer);
1583 }
1584 
1585 static struct ieee80211_node *
1586 arn_node_alloc(ieee80211com_t *ic)
1587 {
1588 	struct ath_node *an;
1589 	struct arn_softc *sc = (struct arn_softc *)ic;
1590 
1591 	an = kmem_zalloc(sizeof (struct ath_node), KM_SLEEP);
1592 	arn_rate_update(sc, &an->an_node, 0);
1593 
1594 	return ((an != NULL) ? &an->an_node : NULL);
1595 }
1596 
1597 static void
1598 arn_node_free(struct ieee80211_node *in)
1599 {
1600 	ieee80211com_t *ic = in->in_ic;
1601 	struct arn_softc *sc = (struct arn_softc *)ic;
1602 	struct ath_buf *bf;
1603 	struct ath_txq *txq;
1604 	int32_t i;
1605 
1606 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1607 		if (ARN_TXQ_SETUP(sc, i)) {
1608 			txq = &sc->sc_txq[i];
1609 			mutex_enter(&txq->axq_lock);
1610 			bf = list_head(&txq->axq_list);
1611 			while (bf != NULL) {
1612 				if (bf->bf_in == in) {
1613 					bf->bf_in = NULL;
1614 				}
1615 				bf = list_next(&txq->axq_list, bf);
1616 			}
1617 			mutex_exit(&txq->axq_lock);
1618 		}
1619 	}
1620 
1621 	ic->ic_node_cleanup(in);
1622 	if (in->in_wpa_ie != NULL)
1623 		ieee80211_free(in->in_wpa_ie);
1624 	kmem_free(in, sizeof (struct ath_node));
1625 }
1626 
1627 /*
1628  * Allocate tx/rx key slots for TKIP.  We allocate one slot for
1629  * each key. MIC is right after the decrypt/encrypt key.
1630  */
1631 static uint16_t
1632 arn_key_alloc_pair(struct arn_softc *sc, ieee80211_keyix *txkeyix,
1633     ieee80211_keyix *rxkeyix)
1634 {
1635 	uint16_t i, keyix;
1636 
1637 	ASSERT(!sc->sc_splitmic);
1638 	for (i = 0; i < ARRAY_SIZE(sc->sc_keymap)/4; i++) {
1639 		uint8_t b = sc->sc_keymap[i];
1640 		if (b == 0xff)
1641 			continue;
1642 		for (keyix = i * NBBY; keyix < (i + 1) * NBBY;
1643 		    keyix++, b >>= 1) {
1644 			if ((b & 1) || is_set(keyix+64, sc->sc_keymap)) {
1645 				/* full pair unavailable */
1646 				continue;
1647 			}
1648 			set_bit(keyix, sc->sc_keymap);
1649 			set_bit(keyix+64, sc->sc_keymap);
1650 			ARN_DBG((ARN_DBG_KEYCACHE,
1651 			    "arn_key_alloc_pair(): key pair %u,%u\n",
1652 			    keyix, keyix+64));
1653 			*txkeyix = *rxkeyix = keyix;
1654 			return (1);
1655 		}
1656 	}
1657 	ARN_DBG((ARN_DBG_KEYCACHE, "arn_key_alloc_pair():"
1658 	    " out of pair space\n"));
1659 
1660 	return (0);
1661 }
1662 
1663 /*
1664  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1665  * each key, one for decrypt/encrypt and the other for the MIC.
1666  */
1667 static int
1668 arn_key_alloc_2pair(struct arn_softc *sc, ieee80211_keyix *txkeyix,
1669     ieee80211_keyix *rxkeyix)
1670 {
1671 	uint16_t i, keyix;
1672 
1673 	ASSERT(sc->sc_splitmic);
1674 	for (i = 0; i < ARRAY_SIZE(sc->sc_keymap)/4; i++) {
1675 		uint8_t b = sc->sc_keymap[i];
1676 		if (b != 0xff) {
1677 			/*
1678 			 * One or more slots in this byte are free.
1679 			 */
1680 			keyix = i*NBBY;
1681 			while (b & 1) {
1682 		again:
1683 				keyix++;
1684 				b >>= 1;
1685 			}
1686 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1687 			if (is_set(keyix+32, sc->sc_keymap) ||
1688 			    is_set(keyix+64, sc->sc_keymap) ||
1689 			    is_set(keyix+32+64, sc->sc_keymap)) {
1690 				/* full pair unavailable */
1691 				if (keyix == (i+1)*NBBY) {
1692 					/* no slots were appropriate, advance */
1693 					continue;
1694 				}
1695 				goto again;
1696 			}
1697 			set_bit(keyix, sc->sc_keymap);
1698 			set_bit(keyix+64, sc->sc_keymap);
1699 			set_bit(keyix+32, sc->sc_keymap);
1700 			set_bit(keyix+32+64, sc->sc_keymap);
1701 			ARN_DBG((ARN_DBG_KEYCACHE,
1702 			    "arn_key_alloc_2pair(): key pair %u,%u %u,%u\n",
1703 			    keyix, keyix+64,
1704 			    keyix+32, keyix+32+64));
1705 			*txkeyix = *rxkeyix = keyix;
1706 			return (1);
1707 		}
1708 	}
1709 	ARN_DBG((ARN_DBG_KEYCACHE, "arn_key_alloc_2pair(): "
1710 	    " out of pair space\n"));
1711 
1712 	return (0);
1713 }
1714 /*
1715  * Allocate a single key cache slot.
1716  */
1717 static int
1718 arn_key_alloc_single(struct arn_softc *sc, ieee80211_keyix *txkeyix,
1719     ieee80211_keyix *rxkeyix)
1720 {
1721 	uint16_t i, keyix;
1722 
1723 	/* try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1724 	for (i = 0; i < ARRAY_SIZE(sc->sc_keymap); i++) {
1725 		uint8_t b = sc->sc_keymap[i];
1726 
1727 		if (b != 0xff) {
1728 			/*
1729 			 * One or more slots are free.
1730 			 */
1731 			keyix = i*NBBY;
1732 			while (b & 1)
1733 				keyix++, b >>= 1;
1734 			set_bit(keyix, sc->sc_keymap);
1735 			ARN_DBG((ARN_DBG_KEYCACHE, "arn_key_alloc_single(): "
1736 			    "key %u\n", keyix));
1737 			*txkeyix = *rxkeyix = keyix;
1738 			return (1);
1739 		}
1740 	}
1741 	return (0);
1742 }
1743 
1744 /*
1745  * Allocate one or more key cache slots for a unicast key.  The
1746  * key itself is needed only to identify the cipher.  For hardware
1747  * TKIP with split cipher+MIC keys we allocate two key cache slot
1748  * pairs so that we can setup separate TX and RX MIC keys.  Note
1749  * that the MIC key for a TKIP key at slot i is assumed by the
1750  * hardware to be at slot i+64.  This limits TKIP keys to the first
1751  * 64 entries.
1752  */
1753 /* ARGSUSED */
1754 int
1755 arn_key_alloc(ieee80211com_t *ic, const struct ieee80211_key *k,
1756     ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1757 {
1758 	struct arn_softc *sc = (struct arn_softc *)ic;
1759 
1760 	/*
1761 	 * We allocate two pair for TKIP when using the h/w to do
1762 	 * the MIC.  For everything else, including software crypto,
1763 	 * we allocate a single entry.  Note that s/w crypto requires
1764 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1765 	 * not support pass-through cache entries and we map all
1766 	 * those requests to slot 0.
1767 	 */
1768 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1769 		return (arn_key_alloc_single(sc, keyix, rxkeyix));
1770 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1771 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1772 		if (sc->sc_splitmic)
1773 			return (arn_key_alloc_2pair(sc, keyix, rxkeyix));
1774 		else
1775 			return (arn_key_alloc_pair(sc, keyix, rxkeyix));
1776 	} else {
1777 		return (arn_key_alloc_single(sc, keyix, rxkeyix));
1778 	}
1779 }
1780 
1781 /*
1782  * Delete an entry in the key cache allocated by ath_key_alloc.
1783  */
1784 int
1785 arn_key_delete(ieee80211com_t *ic, const struct ieee80211_key *k)
1786 {
1787 	struct arn_softc *sc = (struct arn_softc *)ic;
1788 	struct ath_hal *ah = sc->sc_ah;
1789 	const struct ieee80211_cipher *cip = k->wk_cipher;
1790 	ieee80211_keyix keyix = k->wk_keyix;
1791 
1792 	ARN_DBG((ARN_DBG_KEYCACHE, "arn_key_delete():"
1793 	    " delete key %u ic_cipher=0x%x\n", keyix, cip->ic_cipher));
1794 
1795 	(void) ath9k_hw_keyreset(ah, keyix);
1796 	/*
1797 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1798 	 */
1799 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1800 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1801 		(void) ath9k_hw_keyreset(ah, keyix+32);		/* RX key */
1802 
1803 	if (keyix >= IEEE80211_WEP_NKID) {
1804 		/*
1805 		 * Don't touch keymap entries for global keys so
1806 		 * they are never considered for dynamic allocation.
1807 		 */
1808 		clr_bit(keyix, sc->sc_keymap);
1809 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1810 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1811 			/*
1812 			 * If splitmic is true +64 is TX key MIC,
1813 			 * else +64 is RX key + RX key MIC.
1814 			 */
1815 			clr_bit(keyix+64, sc->sc_keymap);
1816 			if (sc->sc_splitmic) {
1817 				/* Rx key */
1818 				clr_bit(keyix+32, sc->sc_keymap);
1819 				/* RX key MIC */
1820 				clr_bit(keyix+32+64, sc->sc_keymap);
1821 			}
1822 		}
1823 	}
1824 	return (1);
1825 }
1826 
1827 /*
1828  * Set a TKIP key into the hardware.  This handles the
1829  * potential distribution of key state to multiple key
1830  * cache slots for TKIP.
1831  */
1832 static int
1833 arn_keyset_tkip(struct arn_softc *sc, const struct ieee80211_key *k,
1834     struct ath9k_keyval *hk, const uint8_t mac[IEEE80211_ADDR_LEN])
1835 {
1836 	uint8_t *key_rxmic = NULL;
1837 	uint8_t *key_txmic = NULL;
1838 	uint8_t  *key = (uint8_t *)&(k->wk_key[0]);
1839 	struct ath_hal *ah = sc->sc_ah;
1840 
1841 	key_txmic = key + 16;
1842 	key_rxmic = key + 24;
1843 
1844 	if (mac == NULL) {
1845 		/* Group key installation */
1846 		(void) memcpy(hk->kv_mic,  key_rxmic, sizeof (hk->kv_mic));
1847 		return (ath9k_hw_set_keycache_entry(ah, k->wk_keyix, hk,
1848 		    mac, B_FALSE));
1849 	}
1850 	if (!sc->sc_splitmic) {
1851 		/*
1852 		 * data key goes at first index,
1853 		 * the hal handles the MIC keys at index+64.
1854 		 */
1855 		(void) memcpy(hk->kv_mic, key_rxmic, sizeof (hk->kv_mic));
1856 		(void) memcpy(hk->kv_txmic, key_txmic, sizeof (hk->kv_txmic));
1857 		return (ath9k_hw_set_keycache_entry(ah, k->wk_keyix, hk,
1858 		    mac, B_FALSE));
1859 	}
1860 	/*
1861 	 * TX key goes at first index, RX key at +32.
1862 	 * The hal handles the MIC keys at index+64.
1863 	 */
1864 	(void) memcpy(hk->kv_mic, key_txmic, sizeof (hk->kv_mic));
1865 	if (!(ath9k_hw_set_keycache_entry(ah, k->wk_keyix, hk, NULL,
1866 	    B_FALSE))) {
1867 		/* Txmic entry failed. No need to proceed further */
1868 		ARN_DBG((ARN_DBG_KEYCACHE,
1869 		    "%s Setting TX MIC Key Failed\n", __func__));
1870 		return (0);
1871 	}
1872 
1873 	(void) memcpy(hk->kv_mic, key_rxmic, sizeof (hk->kv_mic));
1874 
1875 	/* XXX delete tx key on failure? */
1876 	return (ath9k_hw_set_keycache_entry(ah, k->wk_keyix, hk, mac, B_FALSE));
1877 
1878 }
1879 
1880 int
1881 arn_key_set(ieee80211com_t *ic, const struct ieee80211_key *k,
1882     const uint8_t mac[IEEE80211_ADDR_LEN])
1883 {
1884 	struct arn_softc *sc = (struct arn_softc *)ic;
1885 	const struct ieee80211_cipher *cip = k->wk_cipher;
1886 	struct ath9k_keyval hk;
1887 
1888 	/* cipher table */
1889 	static const uint8_t ciphermap[] = {
1890 		ATH9K_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1891 		ATH9K_CIPHER_TKIP,		/* IEEE80211_CIPHER_TKIP */
1892 		ATH9K_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1893 		ATH9K_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1894 		ATH9K_CIPHER_CKIP,		/* IEEE80211_CIPHER_CKIP */
1895 		ATH9K_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1896 	};
1897 
1898 	bzero(&hk, sizeof (hk));
1899 
1900 	/*
1901 	 * Software crypto uses a "clear key" so non-crypto
1902 	 * state kept in the key cache are maintainedd so that
1903 	 * rx frames have an entry to match.
1904 	 */
1905 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1906 		ASSERT(cip->ic_cipher < 6);
1907 		hk.kv_type = ciphermap[cip->ic_cipher];
1908 		hk.kv_len = k->wk_keylen;
1909 		bcopy(k->wk_key, hk.kv_val, k->wk_keylen);
1910 	} else {
1911 		hk.kv_type = ATH9K_CIPHER_CLR;
1912 	}
1913 
1914 	if (hk.kv_type == ATH9K_CIPHER_TKIP &&
1915 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1916 		return (arn_keyset_tkip(sc, k, &hk, mac));
1917 	} else {
1918 		return (ath9k_hw_set_keycache_entry(sc->sc_ah,
1919 		    k->wk_keyix, &hk, mac, B_FALSE));
1920 	}
1921 }
1922 
1923 /*
1924  * Enable/Disable short slot timing
1925  */
1926 void
1927 arn_set_shortslot(ieee80211com_t *ic, int onoff)
1928 {
1929 	struct ath_hal *ah = ((struct arn_softc *)ic)->sc_ah;
1930 
1931 	if (onoff)
1932 		(void) ath9k_hw_setslottime(ah, ATH9K_SLOT_TIME_9);
1933 	else
1934 		(void) ath9k_hw_setslottime(ah, ATH9K_SLOT_TIME_20);
1935 }
1936 
1937 static int
1938 arn_open(struct arn_softc *sc)
1939 {
1940 	ieee80211com_t *ic = (ieee80211com_t *)sc;
1941 	struct ieee80211_channel *curchan = ic->ic_curchan;
1942 	struct ath9k_channel *init_channel;
1943 	int error = 0, pos, status;
1944 
1945 	ARN_LOCK_ASSERT(sc);
1946 
1947 	pos = arn_get_channel(sc, curchan);
1948 	if (pos == -1) {
1949 		ARN_DBG((ARN_DBG_FATAL, "arn: "
1950 		    "%s: Invalid channel\n", __func__));
1951 		error = EINVAL;
1952 		goto error;
1953 	}
1954 
1955 	sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1956 
1957 	if (sc->sc_curmode == ATH9K_MODE_11A) {
1958 		sc->sc_ah->ah_channels[pos].chanmode = CHANNEL_A;
1959 	} else {
1960 		sc->sc_ah->ah_channels[pos].chanmode = CHANNEL_G;
1961 	}
1962 
1963 	init_channel = &sc->sc_ah->ah_channels[pos];
1964 
1965 	/* Reset SERDES registers */
1966 	ath9k_hw_configpcipowersave(sc->sc_ah, 0);
1967 
1968 	/*
1969 	 * The basic interface to setting the hardware in a good
1970 	 * state is ``reset''.	On return the hardware is known to
1971 	 * be powered up and with interrupts disabled.	This must
1972 	 * be followed by initialization of the appropriate bits
1973 	 * and then setup of the interrupt mask.
1974 	 */
1975 	if (!ath9k_hw_reset(sc->sc_ah, init_channel,
1976 	    sc->tx_chan_width, sc->sc_tx_chainmask,
1977 	    sc->sc_rx_chainmask, sc->sc_ht_extprotspacing,
1978 	    B_FALSE, &status)) {
1979 		ARN_DBG((ARN_DBG_FATAL, "arn: "
1980 		    "%s: unable to reset hardware; hal status %u "
1981 		    "(freq %u flags 0x%x)\n", __func__, status,
1982 		    init_channel->channel, init_channel->channelFlags));
1983 
1984 		error = EIO;
1985 		goto error;
1986 	}
1987 
1988 	/*
1989 	 * This is needed only to setup initial state
1990 	 * but it's best done after a reset.
1991 	 */
1992 	arn_update_txpow(sc);
1993 
1994 	/*
1995 	 * Setup the hardware after reset:
1996 	 * The receive engine is set going.
1997 	 * Frame transmit is handled entirely
1998 	 * in the frame output path; there's nothing to do
1999 	 * here except setup the interrupt mask.
2000 	 */
2001 	if (arn_startrecv(sc) != 0) {
2002 		ARN_DBG((ARN_DBG_INIT, "arn: "
2003 		    "%s: unable to start recv logic\n", __func__));
2004 		error = EIO;
2005 		goto error;
2006 	}
2007 
2008 	/* Setup our intr mask. */
2009 	sc->sc_imask = ATH9K_INT_RX | ATH9K_INT_TX |
2010 	    ATH9K_INT_RXEOL | ATH9K_INT_RXORN |
2011 	    ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
2012 #ifdef ARN_ATH9K_HW_CAP_GTT
2013 	if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_GTT)
2014 		sc->sc_imask |= ATH9K_INT_GTT;
2015 #endif
2016 
2017 #ifdef ARN_ATH9K_HW_CAP_GTT
2018 	if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)
2019 		sc->sc_imask |= ATH9K_INT_CST;
2020 #endif
2021 
2022 	/*
2023 	 * Enable MIB interrupts when there are hardware phy counters.
2024 	 * Note we only do this (at the moment) for station mode.
2025 	 */
2026 #ifdef ARN_ATH9K_INT_MIB
2027 	if (ath9k_hw_phycounters(sc->sc_ah) &&
2028 	    ((sc->sc_ah->ah_opmode == ATH9K_M_STA) ||
2029 	    (sc->sc_ah->ah_opmode == ATH9K_M_IBSS)))
2030 		sc->sc_imask |= ATH9K_INT_MIB;
2031 #endif
2032 	/*
2033 	 * Some hardware processes the TIM IE and fires an
2034 	 * interrupt when the TIM bit is set.  For hardware
2035 	 * that does, if not overridden by configuration,
2036 	 * enable the TIM interrupt when operating as station.
2037 	 */
2038 #ifdef ARN_ATH9K_INT_TIM
2039 	if ((sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_ENHANCEDPM) &&
2040 	    (sc->sc_ah->ah_opmode == ATH9K_M_STA) &&
2041 	    !sc->sc_config.swBeaconProcess)
2042 		sc->sc_imask |= ATH9K_INT_TIM;
2043 #endif
2044 	if (arn_chan2mode(init_channel) != sc->sc_curmode)
2045 		arn_setcurmode(sc, arn_chan2mode(init_channel));
2046 	ARN_DBG((ARN_DBG_INIT, "arn: "
2047 	    "%s: current mode after arn_setcurmode is %d\n",
2048 	    __func__, sc->sc_curmode));
2049 
2050 	sc->sc_isrunning = 1;
2051 
2052 	/* Disable BMISS interrupt when we're not associated */
2053 	sc->sc_imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
2054 	(void) ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
2055 
2056 	return (0);
2057 
2058 error:
2059 	return (error);
2060 }
2061 
2062 static void
2063 arn_close(struct arn_softc *sc)
2064 {
2065 	ieee80211com_t *ic = (ieee80211com_t *)sc;
2066 	struct ath_hal *ah = sc->sc_ah;
2067 
2068 	ARN_LOCK_ASSERT(sc);
2069 
2070 	if (!sc->sc_isrunning)
2071 		return;
2072 
2073 	/*
2074 	 * Shutdown the hardware and driver
2075 	 * Note that some of this work is not possible if the
2076 	 * hardware is gone (invalid).
2077 	 */
2078 	ARN_UNLOCK(sc);
2079 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2080 	ieee80211_stop_watchdog(ic);
2081 	ARN_LOCK(sc);
2082 
2083 	/*
2084 	 * make sure h/w will not generate any interrupt
2085 	 * before setting the invalid flag.
2086 	 */
2087 	(void) ath9k_hw_set_interrupts(ah, 0);
2088 
2089 	if (!(sc->sc_flags & SC_OP_INVALID)) {
2090 		arn_draintxq(sc, 0);
2091 		(void) arn_stoprecv(sc);
2092 		(void) ath9k_hw_phy_disable(ah);
2093 	} else {
2094 		sc->sc_rxlink = NULL;
2095 	}
2096 
2097 	sc->sc_isrunning = 0;
2098 }
2099 
2100 /*
2101  * MAC callback functions
2102  */
2103 static int
2104 arn_m_stat(void *arg, uint_t stat, uint64_t *val)
2105 {
2106 	struct arn_softc *sc = arg;
2107 	ieee80211com_t *ic = (ieee80211com_t *)sc;
2108 	struct ieee80211_node *in;
2109 	struct ieee80211_rateset *rs;
2110 
2111 	ARN_LOCK(sc);
2112 	switch (stat) {
2113 	case MAC_STAT_IFSPEED:
2114 		in = ic->ic_bss;
2115 		rs = &in->in_rates;
2116 		*val = (rs->ir_rates[in->in_txrate] & IEEE80211_RATE_VAL) / 2 *
2117 		    1000000ull;
2118 		break;
2119 	case MAC_STAT_NOXMTBUF:
2120 		*val = sc->sc_stats.ast_tx_nobuf +
2121 		    sc->sc_stats.ast_tx_nobufmgt;
2122 		break;
2123 	case MAC_STAT_IERRORS:
2124 		*val = sc->sc_stats.ast_rx_tooshort;
2125 		break;
2126 	case MAC_STAT_RBYTES:
2127 		*val = ic->ic_stats.is_rx_bytes;
2128 		break;
2129 	case MAC_STAT_IPACKETS:
2130 		*val = ic->ic_stats.is_rx_frags;
2131 		break;
2132 	case MAC_STAT_OBYTES:
2133 		*val = ic->ic_stats.is_tx_bytes;
2134 		break;
2135 	case MAC_STAT_OPACKETS:
2136 		*val = ic->ic_stats.is_tx_frags;
2137 		break;
2138 	case MAC_STAT_OERRORS:
2139 	case WIFI_STAT_TX_FAILED:
2140 		*val = sc->sc_stats.ast_tx_fifoerr +
2141 		    sc->sc_stats.ast_tx_xretries +
2142 		    sc->sc_stats.ast_tx_discard;
2143 		break;
2144 	case WIFI_STAT_TX_RETRANS:
2145 		*val = sc->sc_stats.ast_tx_xretries;
2146 		break;
2147 	case WIFI_STAT_FCS_ERRORS:
2148 		*val = sc->sc_stats.ast_rx_crcerr;
2149 		break;
2150 	case WIFI_STAT_WEP_ERRORS:
2151 		*val = sc->sc_stats.ast_rx_badcrypt;
2152 		break;
2153 	case WIFI_STAT_TX_FRAGS:
2154 	case WIFI_STAT_MCAST_TX:
2155 	case WIFI_STAT_RTS_SUCCESS:
2156 	case WIFI_STAT_RTS_FAILURE:
2157 	case WIFI_STAT_ACK_FAILURE:
2158 	case WIFI_STAT_RX_FRAGS:
2159 	case WIFI_STAT_MCAST_RX:
2160 	case WIFI_STAT_RX_DUPS:
2161 		ARN_UNLOCK(sc);
2162 		return (ieee80211_stat(ic, stat, val));
2163 	default:
2164 		ARN_UNLOCK(sc);
2165 		return (ENOTSUP);
2166 	}
2167 	ARN_UNLOCK(sc);
2168 
2169 	return (0);
2170 }
2171 
2172 int
2173 arn_m_start(void *arg)
2174 {
2175 	struct arn_softc *sc = arg;
2176 	int err = 0;
2177 
2178 	ARN_LOCK(sc);
2179 
2180 	/*
2181 	 * Stop anything previously setup.  This is safe
2182 	 * whether this is the first time through or not.
2183 	 */
2184 
2185 	arn_close(sc);
2186 
2187 	if ((err = arn_open(sc)) != 0) {
2188 		ARN_UNLOCK(sc);
2189 		return (err);
2190 	}
2191 
2192 	/* H/W is reday now */
2193 	sc->sc_flags &= ~SC_OP_INVALID;
2194 
2195 	ARN_UNLOCK(sc);
2196 
2197 	return (0);
2198 }
2199 
2200 static void
2201 arn_m_stop(void *arg)
2202 {
2203 	struct arn_softc *sc = arg;
2204 
2205 	ARN_LOCK(sc);
2206 	arn_close(sc);
2207 
2208 	/* disable HAL and put h/w to sleep */
2209 	(void) ath9k_hw_disable(sc->sc_ah);
2210 	ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2211 
2212 	/* XXX: hardware will not be ready in suspend state */
2213 	sc->sc_flags |= SC_OP_INVALID;
2214 	ARN_UNLOCK(sc);
2215 }
2216 
2217 static int
2218 arn_m_promisc(void *arg, boolean_t on)
2219 {
2220 	struct arn_softc *sc = arg;
2221 	struct ath_hal *ah = sc->sc_ah;
2222 	uint32_t rfilt;
2223 
2224 	ARN_LOCK(sc);
2225 
2226 	rfilt = ath9k_hw_getrxfilter(ah);
2227 	if (on)
2228 		rfilt |= ATH9K_RX_FILTER_PROM;
2229 	else
2230 		rfilt &= ~ATH9K_RX_FILTER_PROM;
2231 	sc->sc_promisc = on;
2232 	ath9k_hw_setrxfilter(ah, rfilt);
2233 
2234 	ARN_UNLOCK(sc);
2235 
2236 	return (0);
2237 }
2238 
2239 static int
2240 arn_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
2241 {
2242 	struct arn_softc *sc = arg;
2243 	struct ath_hal *ah = sc->sc_ah;
2244 	uint32_t val, index, bit;
2245 	uint8_t pos;
2246 	uint32_t *mfilt = sc->sc_mcast_hash;
2247 
2248 	ARN_LOCK(sc);
2249 
2250 	/* calculate XOR of eight 6bit values */
2251 	val = ARN_LE_READ_32(mca + 0);
2252 	pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2253 	val = ARN_LE_READ_32(mca + 3);
2254 	pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2255 	pos &= 0x3f;
2256 	index = pos / 32;
2257 	bit = 1 << (pos % 32);
2258 
2259 	if (add) {	/* enable multicast */
2260 		sc->sc_mcast_refs[pos]++;
2261 		mfilt[index] |= bit;
2262 	} else {	/* disable multicast */
2263 		if (--sc->sc_mcast_refs[pos] == 0)
2264 			mfilt[index] &= ~bit;
2265 	}
2266 	ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
2267 
2268 	ARN_UNLOCK(sc);
2269 	return (0);
2270 }
2271 
2272 static int
2273 arn_m_unicst(void *arg, const uint8_t *macaddr)
2274 {
2275 	struct arn_softc *sc = arg;
2276 	struct ath_hal *ah = sc->sc_ah;
2277 	ieee80211com_t *ic = (ieee80211com_t *)sc;
2278 
2279 	ARN_DBG((ARN_DBG_XMIT, "ath: ath_gld_saddr(): "
2280 	    "%.2x:%.2x:%.2x:%.2x:%.2x:%.2x\n",
2281 	    macaddr[0], macaddr[1], macaddr[2],
2282 	    macaddr[3], macaddr[4], macaddr[5]));
2283 
2284 	ARN_LOCK(sc);
2285 	IEEE80211_ADDR_COPY(sc->sc_isc.ic_macaddr, macaddr);
2286 	(void) ath9k_hw_setmac(ah, sc->sc_isc.ic_macaddr);
2287 	(void) arn_reset(ic);
2288 	ARN_UNLOCK(sc);
2289 	return (0);
2290 }
2291 
2292 static mblk_t *
2293 arn_m_tx(void *arg, mblk_t *mp)
2294 {
2295 	struct arn_softc *sc = arg;
2296 	int error = 0;
2297 	mblk_t *next;
2298 	ieee80211com_t *ic = (ieee80211com_t *)sc;
2299 
2300 	/*
2301 	 * No data frames go out unless we're associated; this
2302 	 * should not happen as the 802.11 layer does not enable
2303 	 * the xmit queue until we enter the RUN state.
2304 	 */
2305 	if (ic->ic_state != IEEE80211_S_RUN) {
2306 		ARN_DBG((ARN_DBG_XMIT, "arn: arn_m_tx(): "
2307 		    "discard, state %u\n", ic->ic_state));
2308 		sc->sc_stats.ast_tx_discard++;
2309 		freemsgchain(mp);
2310 		return (NULL);
2311 	}
2312 
2313 	while (mp != NULL) {
2314 		next = mp->b_next;
2315 		mp->b_next = NULL;
2316 		error = arn_tx(ic, mp, IEEE80211_FC0_TYPE_DATA);
2317 		if (error != 0) {
2318 			mp->b_next = next;
2319 			if (error == ENOMEM) {
2320 				break;
2321 			} else {
2322 				freemsgchain(mp);
2323 				return (NULL);
2324 			}
2325 		}
2326 		mp = next;
2327 	}
2328 
2329 	return (mp);
2330 }
2331 
2332 static void
2333 arn_m_ioctl(void *arg, queue_t *wq, mblk_t *mp)
2334 {
2335 	struct arn_softc *sc = arg;
2336 	int32_t err;
2337 
2338 	err = ieee80211_ioctl(&sc->sc_isc, wq, mp);
2339 
2340 	ARN_LOCK(sc);
2341 	if (err == ENETRESET) {
2342 		if (!(sc->sc_flags & SC_OP_INVALID)) {
2343 			ARN_UNLOCK(sc);
2344 
2345 			(void) arn_m_start(sc);
2346 
2347 			(void) ieee80211_new_state(&sc->sc_isc,
2348 			    IEEE80211_S_SCAN, -1);
2349 			ARN_LOCK(sc);
2350 		}
2351 	}
2352 	ARN_UNLOCK(sc);
2353 }
2354 
2355 static int
2356 arn_m_setprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
2357     uint_t wldp_length, const void *wldp_buf)
2358 {
2359 	struct arn_softc *sc = arg;
2360 	int	err;
2361 
2362 	err = ieee80211_setprop(&sc->sc_isc, pr_name, wldp_pr_num,
2363 	    wldp_length, wldp_buf);
2364 
2365 	ARN_LOCK(sc);
2366 
2367 	if (err == ENETRESET) {
2368 		if (!(sc->sc_flags & SC_OP_INVALID)) {
2369 			ARN_UNLOCK(sc);
2370 			(void) arn_m_start(sc);
2371 			(void) ieee80211_new_state(&sc->sc_isc,
2372 			    IEEE80211_S_SCAN, -1);
2373 			ARN_LOCK(sc);
2374 		}
2375 		err = 0;
2376 	}
2377 
2378 	ARN_UNLOCK(sc);
2379 
2380 	return (err);
2381 }
2382 
2383 /* ARGSUSED */
2384 static int
2385 arn_m_getprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
2386     uint_t pr_flags, uint_t wldp_length, void *wldp_buf, uint_t *perm)
2387 {
2388 	struct arn_softc *sc = arg;
2389 	int	err = 0;
2390 
2391 	err = ieee80211_getprop(&sc->sc_isc, pr_name, wldp_pr_num,
2392 	    pr_flags, wldp_length, wldp_buf, perm);
2393 
2394 	return (err);
2395 }
2396 
2397 /* return bus cachesize in 4B word units */
2398 static void
2399 arn_pci_config_cachesize(struct arn_softc *sc)
2400 {
2401 	uint8_t csz;
2402 
2403 	/*
2404 	 * Cache line size is used to size and align various
2405 	 * structures used to communicate with the hardware.
2406 	 */
2407 	csz = pci_config_get8(sc->sc_cfg_handle, PCI_CONF_CACHE_LINESZ);
2408 	if (csz == 0) {
2409 		/*
2410 		 * We must have this setup properly for rx buffer
2411 		 * DMA to work so force a reasonable value here if it
2412 		 * comes up zero.
2413 		 */
2414 		csz = ATH_DEF_CACHE_BYTES / sizeof (uint32_t);
2415 		pci_config_put8(sc->sc_cfg_handle, PCI_CONF_CACHE_LINESZ,
2416 		    csz);
2417 	}
2418 	sc->sc_cachelsz = csz << 2;
2419 }
2420 
2421 static int
2422 arn_pci_setup(struct arn_softc *sc)
2423 {
2424 	uint16_t command;
2425 
2426 	/*
2427 	 * Enable memory mapping and bus mastering
2428 	 */
2429 	ASSERT(sc != NULL);
2430 	command = pci_config_get16(sc->sc_cfg_handle, PCI_CONF_COMM);
2431 	command	|= PCI_COMM_MAE | PCI_COMM_ME;
2432 	pci_config_put16(sc->sc_cfg_handle, PCI_CONF_COMM, command);
2433 	command = pci_config_get16(sc->sc_cfg_handle, PCI_CONF_COMM);
2434 	if ((command & PCI_COMM_MAE) == 0) {
2435 		arn_problem("arn: arn_pci_setup(): "
2436 		    "failed to enable memory mapping\n");
2437 		return (EIO);
2438 	}
2439 	if ((command & PCI_COMM_ME) == 0) {
2440 		arn_problem("arn: arn_pci_setup(): "
2441 		    "failed to enable bus mastering\n");
2442 		return (EIO);
2443 	}
2444 	ARN_DBG((ARN_DBG_INIT, "arn: arn_pci_setup(): "
2445 	    "set command reg to 0x%x \n", command));
2446 
2447 	return (0);
2448 }
2449 
2450 static void
2451 arn_get_hw_encap(struct arn_softc *sc)
2452 {
2453 	ieee80211com_t *ic;
2454 	struct ath_hal *ah;
2455 
2456 	ic = (ieee80211com_t *)sc;
2457 	ah = sc->sc_ah;
2458 
2459 	if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
2460 	    ATH9K_CIPHER_AES_CCM, NULL))
2461 		ic->ic_caps |= IEEE80211_C_AES_CCM;
2462 	if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
2463 	    ATH9K_CIPHER_AES_OCB, NULL))
2464 		ic->ic_caps |= IEEE80211_C_AES;
2465 	if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
2466 	    ATH9K_CIPHER_TKIP, NULL))
2467 		ic->ic_caps |= IEEE80211_C_TKIP;
2468 	if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
2469 	    ATH9K_CIPHER_WEP, NULL))
2470 		ic->ic_caps |= IEEE80211_C_WEP;
2471 	if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
2472 	    ATH9K_CIPHER_MIC, NULL))
2473 		ic->ic_caps |= IEEE80211_C_TKIPMIC;
2474 }
2475 
2476 static int
2477 arn_resume(dev_info_t *devinfo)
2478 {
2479 	struct arn_softc *sc;
2480 	int ret = DDI_SUCCESS;
2481 
2482 	sc = ddi_get_soft_state(arn_soft_state_p, ddi_get_instance(devinfo));
2483 	if (sc == NULL) {
2484 		ARN_DBG((ARN_DBG_INIT, "ath: ath_resume(): "
2485 		    "failed to get soft state\n"));
2486 		return (DDI_FAILURE);
2487 	}
2488 
2489 	ARN_LOCK(sc);
2490 	/*
2491 	 * Set up config space command register(s). Refuse
2492 	 * to resume on failure.
2493 	 */
2494 	if (arn_pci_setup(sc) != 0) {
2495 		ARN_DBG((ARN_DBG_INIT, "ath: ath_resume(): "
2496 		    "ath_pci_setup() failed\n"));
2497 		ARN_UNLOCK(sc);
2498 		return (DDI_FAILURE);
2499 	}
2500 
2501 	if (!(sc->sc_flags & SC_OP_INVALID))
2502 		ret = arn_open(sc);
2503 	ARN_UNLOCK(sc);
2504 
2505 	return (ret);
2506 }
2507 
2508 static int
2509 arn_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
2510 {
2511 	struct arn_softc *sc;
2512 	int		instance;
2513 	int		status;
2514 	int32_t		err;
2515 	uint16_t	vendor_id;
2516 	uint16_t	device_id;
2517 	uint32_t	i;
2518 	uint32_t	val;
2519 	char		strbuf[32];
2520 	ieee80211com_t *ic;
2521 	struct ath_hal *ah;
2522 	wifi_data_t wd = { 0 };
2523 	mac_register_t *macp;
2524 
2525 	switch (cmd) {
2526 	case DDI_ATTACH:
2527 		break;
2528 	case DDI_RESUME:
2529 		return (arn_resume(devinfo));
2530 	default:
2531 		return (DDI_FAILURE);
2532 	}
2533 
2534 	instance = ddi_get_instance(devinfo);
2535 	if (ddi_soft_state_zalloc(arn_soft_state_p, instance) != DDI_SUCCESS) {
2536 		ARN_DBG((ARN_DBG_ATTACH, "arn: "
2537 		    "%s: Unable to alloc softstate\n", __func__));
2538 		return (DDI_FAILURE);
2539 	}
2540 
2541 	sc = ddi_get_soft_state(arn_soft_state_p, ddi_get_instance(devinfo));
2542 	ic = (ieee80211com_t *)sc;
2543 	sc->sc_dev = devinfo;
2544 
2545 	mutex_init(&sc->sc_genlock, NULL, MUTEX_DRIVER, NULL);
2546 	mutex_init(&sc->sc_serial_rw, NULL, MUTEX_DRIVER, NULL);
2547 	mutex_init(&sc->sc_txbuflock, NULL, MUTEX_DRIVER, NULL);
2548 	mutex_init(&sc->sc_rxbuflock, NULL, MUTEX_DRIVER, NULL);
2549 	mutex_init(&sc->sc_resched_lock, NULL, MUTEX_DRIVER, NULL);
2550 #ifdef ARN_IBSS
2551 	mutex_init(&sc->sc_bcbuflock, NULL, MUTEX_DRIVER, NULL);
2552 #endif
2553 
2554 	sc->sc_flags |= SC_OP_INVALID;
2555 
2556 	err = pci_config_setup(devinfo, &sc->sc_cfg_handle);
2557 	if (err != DDI_SUCCESS) {
2558 		ARN_DBG((ARN_DBG_ATTACH, "arn: arn_attach(): "
2559 		    "pci_config_setup() failed"));
2560 		goto attach_fail0;
2561 	}
2562 
2563 	if (arn_pci_setup(sc) != 0)
2564 		goto attach_fail1;
2565 
2566 	/* Cache line size set up */
2567 	arn_pci_config_cachesize(sc);
2568 
2569 	vendor_id = pci_config_get16(sc->sc_cfg_handle, PCI_CONF_VENID);
2570 	device_id = pci_config_get16(sc->sc_cfg_handle, PCI_CONF_DEVID);
2571 	ARN_DBG((ARN_DBG_ATTACH, "arn: arn_attach(): vendor 0x%x, "
2572 	    "device id 0x%x, cache size %d\n",
2573 	    vendor_id, device_id,
2574 	    pci_config_get8(sc->sc_cfg_handle, PCI_CONF_CACHE_LINESZ)));
2575 
2576 	pci_config_put8(sc->sc_cfg_handle, PCI_CONF_LATENCY_TIMER, 0xa8);
2577 	val = pci_config_get32(sc->sc_cfg_handle, 0x40);
2578 	if ((val & 0x0000ff00) != 0)
2579 		pci_config_put32(sc->sc_cfg_handle, 0x40, val & 0xffff00ff);
2580 
2581 	err = ddi_regs_map_setup(devinfo, 1,
2582 	    &sc->mem, 0, 0, &arn_reg_accattr, &sc->sc_io_handle);
2583 	ARN_DBG((ARN_DBG_ATTACH, "arn: arn_attach(): "
2584 	    "regs map1 = %x err=%d\n", sc->mem, err));
2585 	if (err != DDI_SUCCESS) {
2586 		ARN_DBG((ARN_DBG_ATTACH, "arn: arn_attach(): "
2587 		    "ddi_regs_map_setup() failed"));
2588 		goto attach_fail1;
2589 	}
2590 
2591 	ah = ath9k_hw_attach(device_id, sc, sc->mem, &status);
2592 	if (ah == NULL) {
2593 		ARN_DBG((ARN_DBG_ATTACH, "arn: arn_attach(): "
2594 		    "unable to attach hw: H/W status %u\n",
2595 		    status));
2596 		goto attach_fail2;
2597 	}
2598 	sc->sc_ah = ah;
2599 
2600 	ath9k_hw_getmac(ah, ic->ic_macaddr);
2601 
2602 	/* Get the hardware key cache size. */
2603 	sc->sc_keymax = ah->ah_caps.keycache_size;
2604 	if (sc->sc_keymax > ATH_KEYMAX) {
2605 		ARN_DBG((ARN_DBG_ATTACH, "arn: arn_attach(): "
2606 		    "Warning, using only %u entries in %u key cache\n",
2607 		    ATH_KEYMAX, sc->sc_keymax));
2608 		sc->sc_keymax = ATH_KEYMAX;
2609 	}
2610 
2611 	/*
2612 	 * Reset the key cache since some parts do not
2613 	 * reset the contents on initial power up.
2614 	 */
2615 	for (i = 0; i < sc->sc_keymax; i++)
2616 		(void) ath9k_hw_keyreset(ah, (uint16_t)i);
2617 	/*
2618 	 * Mark key cache slots associated with global keys
2619 	 * as in use.  If we knew TKIP was not to be used we
2620 	 * could leave the +32, +64, and +32+64 slots free.
2621 	 * XXX only for splitmic.
2622 	 */
2623 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2624 		set_bit(i, sc->sc_keymap);
2625 		set_bit(i + 32, sc->sc_keymap);
2626 		set_bit(i + 64, sc->sc_keymap);
2627 		set_bit(i + 32 + 64, sc->sc_keymap);
2628 	}
2629 
2630 	/* Collect the channel list using the default country code */
2631 	err = arn_setup_channels(sc);
2632 	if (err == EINVAL) {
2633 		ARN_DBG((ARN_DBG_ATTACH, "arn: arn_attach(): "
2634 		    "ERR:arn_setup_channels\n"));
2635 		goto attach_fail3;
2636 	}
2637 
2638 	/* default to STA mode */
2639 	sc->sc_ah->ah_opmode = ATH9K_M_STA;
2640 
2641 	/* Setup rate tables */
2642 	arn_rate_attach(sc);
2643 	arn_setup_rates(sc, IEEE80211_MODE_11A);
2644 	arn_setup_rates(sc, IEEE80211_MODE_11B);
2645 	arn_setup_rates(sc, IEEE80211_MODE_11G);
2646 
2647 	/* Setup current mode here */
2648 	arn_setcurmode(sc, ATH9K_MODE_11G);
2649 
2650 	/* 802.11g features */
2651 	if (sc->sc_have11g)
2652 		ic->ic_caps |= IEEE80211_C_SHPREAMBLE |
2653 		    IEEE80211_C_SHSLOT;		/* short slot time */
2654 
2655 	/* temp workaround */
2656 	sc->sc_mrretry = 1;
2657 
2658 	/* Setup tx/rx descriptors */
2659 	err = arn_desc_alloc(devinfo, sc);
2660 	if (err != DDI_SUCCESS) {
2661 		ARN_DBG((ARN_DBG_ATTACH, "arn: arn_attach(): "
2662 		    "failed to allocate descriptors: %d\n", err));
2663 		goto attach_fail3;
2664 	}
2665 
2666 	if ((sc->sc_tq = ddi_taskq_create(devinfo, "ath_taskq", 1,
2667 	    TASKQ_DEFAULTPRI, 0)) == NULL) {
2668 		ARN_DBG((ARN_DBG_ATTACH, "arn: arn_attach(): "
2669 		    "ERR:ddi_taskq_create\n"));
2670 		goto attach_fail4;
2671 	}
2672 
2673 	/*
2674 	 * Allocate hardware transmit queues: one queue for
2675 	 * beacon frames and one data queue for each QoS
2676 	 * priority.  Note that the hal handles reseting
2677 	 * these queues at the needed time.
2678 	 */
2679 #ifdef ARN_IBSS
2680 	sc->sc_beaconq = arn_beaconq_setup(ah);
2681 	if (sc->sc_beaconq == (-1)) {
2682 		ARN_DBG((ARN_DBG_ATTACH, "arn: arn_attach(): "
2683 		    "unable to setup a beacon xmit queue\n"));
2684 		goto attach_fail4;
2685 	}
2686 #endif
2687 #ifdef ARN_HOSTAP
2688 	sc->sc_cabq = arn_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
2689 	if (sc->sc_cabq == NULL) {
2690 		ARN_DBG((ARN_DBG_ATTACH, "arn: arn_attach(): "
2691 		    "unable to setup CAB xmit queue\n"));
2692 		goto attach_fail4;
2693 	}
2694 
2695 	sc->sc_config.cabqReadytime = ATH_CABQ_READY_TIME;
2696 	ath_cabq_update(sc);
2697 #endif
2698 
2699 	for (i = 0; i < ARRAY_SIZE(sc->sc_haltype2q); i++)
2700 		sc->sc_haltype2q[i] = -1;
2701 
2702 	/* Setup data queues */
2703 	/* NB: ensure BK queue is the lowest priority h/w queue */
2704 	if (!arn_tx_setup(sc, ATH9K_WME_AC_BK)) {
2705 		ARN_DBG((ARN_DBG_ATTACH, "arn: arn_attach(): "
2706 		    "unable to setup xmit queue for BK traffic\n"));
2707 		goto attach_fail4;
2708 	}
2709 	if (!arn_tx_setup(sc, ATH9K_WME_AC_BE)) {
2710 		ARN_DBG((ARN_DBG_ATTACH, "arn: arn_attach(): "
2711 		    "unable to setup xmit queue for BE traffic\n"));
2712 		goto attach_fail4;
2713 	}
2714 	if (!arn_tx_setup(sc, ATH9K_WME_AC_VI)) {
2715 		ARN_DBG((ARN_DBG_ATTACH, "arn: arn_attach(): "
2716 		    "unable to setup xmit queue for VI traffic\n"));
2717 		goto attach_fail4;
2718 	}
2719 	if (!arn_tx_setup(sc, ATH9K_WME_AC_VO)) {
2720 		ARN_DBG((ARN_DBG_ATTACH, "arn: arn_attach(): "
2721 		    "unable to setup xmit queue for VO traffic\n"));
2722 		goto attach_fail4;
2723 	}
2724 
2725 	/*
2726 	 * Initializes the noise floor to a reasonable default value.
2727 	 * Later on this will be updated during ANI processing.
2728 	 */
2729 
2730 	sc->sc_ani.sc_noise_floor = ATH_DEFAULT_NOISE_FLOOR;
2731 
2732 
2733 	if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
2734 	    ATH9K_CIPHER_TKIP, NULL)) {
2735 		/*
2736 		 * Whether we should enable h/w TKIP MIC.
2737 		 * XXX: if we don't support WME TKIP MIC, then we wouldn't
2738 		 * report WMM capable, so it's always safe to turn on
2739 		 * TKIP MIC in this case.
2740 		 */
2741 		(void) ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
2742 		    0, 1, NULL);
2743 	}
2744 
2745 	/* Get cipher releated capability information */
2746 	arn_get_hw_encap(sc);
2747 
2748 	/*
2749 	 * Check whether the separate key cache entries
2750 	 * are required to handle both tx+rx MIC keys.
2751 	 * With split mic keys the number of stations is limited
2752 	 * to 27 otherwise 59.
2753 	 */
2754 	if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
2755 	    ATH9K_CIPHER_TKIP, NULL) &&
2756 	    ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
2757 	    ATH9K_CIPHER_MIC, NULL) &&
2758 	    ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
2759 	    0, NULL))
2760 		sc->sc_splitmic = 1;
2761 
2762 	/* turn on mcast key search if possible */
2763 	if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
2764 		(void) ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
2765 		    1, NULL);
2766 
2767 	sc->sc_config.txpowlimit = ATH_TXPOWER_MAX;
2768 	sc->sc_config.txpowlimit_override = 0;
2769 
2770 #ifdef ARN_11N
2771 	/* 11n Capabilities */
2772 	if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
2773 		sc->sc_flags |= SC_OP_TXAGGR;
2774 		sc->sc_flags |= SC_OP_RXAGGR;
2775 	}
2776 #endif
2777 
2778 #ifdef ARN_11N
2779 	sc->sc_tx_chainmask = ah->ah_caps.tx_chainmask;
2780 	sc->sc_rx_chainmask = ah->ah_caps.rx_chainmask;
2781 #else
2782 	sc->sc_tx_chainmask = 1;
2783 	sc->sc_rx_chainmask = 1;
2784 #endif
2785 	ARN_DBG((ARN_DBG_ATTACH, "arn: arn_attach(): "
2786 	    "tx_chainmask = %d, rx_chainmask = %d\n",
2787 	    sc->sc_tx_chainmask, sc->sc_rx_chainmask));
2788 
2789 	(void) ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, B_TRUE, NULL);
2790 	sc->sc_defant = ath9k_hw_getdefantenna(ah);
2791 
2792 	ath9k_hw_getmac(ah, sc->sc_myaddr);
2793 	if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) {
2794 		ath9k_hw_getbssidmask(ah, sc->sc_bssidmask);
2795 		ATH_SET_VAP_BSSID_MASK(sc->sc_bssidmask);
2796 		(void) ath9k_hw_setbssidmask(ah, sc->sc_bssidmask);
2797 	}
2798 
2799 	/* set default value to short slot time */
2800 	sc->sc_slottime = ATH9K_SLOT_TIME_9;
2801 	(void) ath9k_hw_setslottime(ah, ATH9K_SLOT_TIME_9);
2802 
2803 	/* initialize beacon slots */
2804 	for (i = 0; i < ARRAY_SIZE(sc->sc_bslot); i++)
2805 		sc->sc_bslot[i] = ATH_IF_ID_ANY;
2806 
2807 	/* save MISC configurations */
2808 	sc->sc_config.swBeaconProcess = 1;
2809 
2810 
2811 	ic->ic_caps |= IEEE80211_C_WPA;	/* Support WPA/WPA2 */
2812 	ic->ic_phytype = IEEE80211_T_OFDM;
2813 	ic->ic_opmode = IEEE80211_M_STA;
2814 	ic->ic_state = IEEE80211_S_INIT;
2815 	ic->ic_maxrssi = ARN_MAX_RSSI;
2816 	ic->ic_set_shortslot = arn_set_shortslot;
2817 	ic->ic_xmit = arn_tx;
2818 	ieee80211_attach(ic);
2819 
2820 	ARN_DBG((ARN_DBG_ATTACH, "arn: arn_attach(): "
2821 	    "ic->ic_curchan->ich_freq: %d\n", ic->ic_curchan->ich_freq));
2822 
2823 	/* different instance has different WPA door */
2824 	(void) snprintf(ic->ic_wpadoor, MAX_IEEE80211STR, "%s_%s%d", WPA_DOOR,
2825 	    ddi_driver_name(devinfo),
2826 	    ddi_get_instance(devinfo));
2827 
2828 	/* Override 80211 default routines */
2829 	ic->ic_reset = arn_reset;
2830 	sc->sc_newstate = ic->ic_newstate;
2831 	ic->ic_newstate = arn_newstate;
2832 #ifdef ARN_IBSS
2833 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
2834 	ic->ic_recv_mgmt = arn_recv_mgmt;
2835 #endif
2836 	ic->ic_watchdog = arn_watchdog;
2837 	ic->ic_node_alloc = arn_node_alloc;
2838 	ic->ic_node_free = arn_node_free;
2839 	ic->ic_crypto.cs_key_alloc = arn_key_alloc;
2840 	ic->ic_crypto.cs_key_delete = arn_key_delete;
2841 	ic->ic_crypto.cs_key_set = arn_key_set;
2842 
2843 	ieee80211_media_init(ic);
2844 
2845 	/*
2846 	 * initialize default tx key
2847 	 */
2848 	ic->ic_def_txkey = 0;
2849 
2850 	sc->sc_rx_pend = 0;
2851 	(void) ath9k_hw_set_interrupts(sc->sc_ah, 0);
2852 	err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW,
2853 	    &sc->sc_softint_id, NULL, 0, arn_softint_handler, (caddr_t)sc);
2854 	if (err != DDI_SUCCESS) {
2855 		ARN_DBG((ARN_DBG_ATTACH, "arn: arn_attach(): "
2856 		    "ddi_add_softintr() failed....\n"));
2857 		goto attach_fail5;
2858 	}
2859 
2860 	if (ddi_get_iblock_cookie(devinfo, 0, &sc->sc_iblock)
2861 	    != DDI_SUCCESS) {
2862 		ARN_DBG((ARN_DBG_ATTACH, "arn: arn_attach(): "
2863 		    "Can not get iblock cookie for INT\n"));
2864 		goto attach_fail6;
2865 	}
2866 
2867 	if (ddi_add_intr(devinfo, 0, NULL, NULL, arn_isr,
2868 	    (caddr_t)sc) != DDI_SUCCESS) {
2869 		ARN_DBG((ARN_DBG_ATTACH, "arn: arn_attach(): "
2870 		    "Can not set intr for ARN driver\n"));
2871 		goto attach_fail6;
2872 	}
2873 
2874 	/*
2875 	 * Provide initial settings for the WiFi plugin; whenever this
2876 	 * information changes, we need to call mac_plugindata_update()
2877 	 */
2878 	wd.wd_opmode = ic->ic_opmode;
2879 	wd.wd_secalloc = WIFI_SEC_NONE;
2880 	IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_bss->in_bssid);
2881 
2882 	ARN_DBG((ARN_DBG_ATTACH, "arn: arn_attach(): "
2883 	    "IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_bss->in_bssid)"
2884 	    "%.2x:%.2x:%.2x:%.2x:%.2x:%.2x\n",
2885 	    wd.wd_bssid[0], wd.wd_bssid[1], wd.wd_bssid[2],
2886 	    wd.wd_bssid[3], wd.wd_bssid[4], wd.wd_bssid[5]));
2887 
2888 	if ((macp = mac_alloc(MAC_VERSION)) == NULL) {
2889 		ARN_DBG((ARN_DBG_ATTACH, "arn: arn_attach(): "
2890 		    "MAC version mismatch\n"));
2891 		goto attach_fail7;
2892 	}
2893 
2894 	macp->m_type_ident	= MAC_PLUGIN_IDENT_WIFI;
2895 	macp->m_driver		= sc;
2896 	macp->m_dip		= devinfo;
2897 	macp->m_src_addr	= ic->ic_macaddr;
2898 	macp->m_callbacks	= &arn_m_callbacks;
2899 	macp->m_min_sdu		= 0;
2900 	macp->m_max_sdu		= IEEE80211_MTU;
2901 	macp->m_pdata		= &wd;
2902 	macp->m_pdata_size	= sizeof (wd);
2903 
2904 	err = mac_register(macp, &ic->ic_mach);
2905 	mac_free(macp);
2906 	if (err != 0) {
2907 		ARN_DBG((ARN_DBG_ATTACH, "arn: arn_attach(): "
2908 		    "mac_register err %x\n", err));
2909 		goto attach_fail7;
2910 	}
2911 
2912 	/* Create minor node of type DDI_NT_NET_WIFI */
2913 	(void) snprintf(strbuf, sizeof (strbuf), "%s%d",
2914 	    ARN_NODENAME, instance);
2915 	err = ddi_create_minor_node(devinfo, strbuf, S_IFCHR,
2916 	    instance + 1, DDI_NT_NET_WIFI, 0);
2917 	if (err != DDI_SUCCESS)
2918 		ARN_DBG((ARN_DBG_ATTACH, "WARN: arn: arn_attach(): "
2919 		    "Create minor node failed - %d\n", err));
2920 
2921 	mac_link_update(ic->ic_mach, LINK_STATE_DOWN);
2922 
2923 	sc->sc_promisc = B_FALSE;
2924 	bzero(sc->sc_mcast_refs, sizeof (sc->sc_mcast_refs));
2925 	bzero(sc->sc_mcast_hash, sizeof (sc->sc_mcast_hash));
2926 
2927 	ARN_DBG((ARN_DBG_ATTACH, "arn: arn_attach(): "
2928 	    "Atheros AR%s MAC/BB Rev:%x "
2929 	    "AR%s RF Rev:%x: mem=0x%lx\n",
2930 	    arn_mac_bb_name(ah->ah_macVersion),
2931 	    ah->ah_macRev,
2932 	    arn_rf_name((ah->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR)),
2933 	    ah->ah_phyRev,
2934 	    (unsigned long)sc->mem));
2935 
2936 	/* XXX: hardware will not be ready until arn_open() being called */
2937 	sc->sc_flags |= SC_OP_INVALID;
2938 	sc->sc_isrunning = 0;
2939 
2940 	return (DDI_SUCCESS);
2941 
2942 attach_fail7:
2943 	ddi_remove_intr(devinfo, 0, sc->sc_iblock);
2944 attach_fail6:
2945 	ddi_remove_softintr(sc->sc_softint_id);
2946 attach_fail5:
2947 	(void) ieee80211_detach(ic);
2948 attach_fail4:
2949 	arn_desc_free(sc);
2950 	if (sc->sc_tq)
2951 		ddi_taskq_destroy(sc->sc_tq);
2952 attach_fail3:
2953 	ath9k_hw_detach(ah);
2954 attach_fail2:
2955 	ddi_regs_map_free(&sc->sc_io_handle);
2956 attach_fail1:
2957 	pci_config_teardown(&sc->sc_cfg_handle);
2958 attach_fail0:
2959 	sc->sc_flags |= SC_OP_INVALID;
2960 	/* cleanup tx queues */
2961 	mutex_destroy(&sc->sc_txbuflock);
2962 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2963 		if (ARN_TXQ_SETUP(sc, i)) {
2964 			/* arn_tx_cleanupq(asc, &asc->sc_txq[i]); */
2965 			mutex_destroy(&((&sc->sc_txq[i])->axq_lock));
2966 		}
2967 	}
2968 	mutex_destroy(&sc->sc_rxbuflock);
2969 	mutex_destroy(&sc->sc_serial_rw);
2970 	mutex_destroy(&sc->sc_genlock);
2971 	mutex_destroy(&sc->sc_resched_lock);
2972 #ifdef ARN_IBSS
2973 	mutex_destroy(&sc->sc_bcbuflock);
2974 #endif
2975 
2976 	ddi_soft_state_free(arn_soft_state_p, instance);
2977 
2978 	return (DDI_FAILURE);
2979 
2980 }
2981 
2982 /*
2983  * Suspend transmit/receive for powerdown
2984  */
2985 static int
2986 arn_suspend(struct arn_softc *sc)
2987 {
2988 	ARN_LOCK(sc);
2989 	arn_close(sc);
2990 	ARN_UNLOCK(sc);
2991 
2992 	return (DDI_SUCCESS);
2993 }
2994 
2995 static int32_t
2996 arn_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
2997 {
2998 	struct arn_softc *sc;
2999 	int i;
3000 
3001 	sc = ddi_get_soft_state(arn_soft_state_p, ddi_get_instance(devinfo));
3002 	ASSERT(sc != NULL);
3003 
3004 	switch (cmd) {
3005 	case DDI_DETACH:
3006 		break;
3007 
3008 	case DDI_SUSPEND:
3009 		return (arn_suspend(sc));
3010 
3011 	default:
3012 		return (DDI_FAILURE);
3013 	}
3014 
3015 	if (mac_disable(sc->sc_isc.ic_mach) != 0)
3016 		return (DDI_FAILURE);
3017 
3018 	arn_stop_scantimer(sc);
3019 	arn_stop_caltimer(sc);
3020 
3021 	/* disable interrupts */
3022 	(void) ath9k_hw_set_interrupts(sc->sc_ah, 0);
3023 
3024 	/*
3025 	 * Unregister from the MAC layer subsystem
3026 	 */
3027 	(void) mac_unregister(sc->sc_isc.ic_mach);
3028 
3029 	/* free intterrupt resources */
3030 	ddi_remove_intr(devinfo, 0, sc->sc_iblock);
3031 	ddi_remove_softintr(sc->sc_softint_id);
3032 
3033 	/*
3034 	 * NB: the order of these is important:
3035 	 * o call the 802.11 layer before detaching the hal to
3036 	 *   insure callbacks into the driver to delete global
3037 	 *   key cache entries can be handled
3038 	 * o reclaim the tx queue data structures after calling
3039 	 *   the 802.11 layer as we'll get called back to reclaim
3040 	 *   node state and potentially want to use them
3041 	 * o to cleanup the tx queues the hal is called, so detach
3042 	 *   it last
3043 	 */
3044 	ieee80211_detach(&sc->sc_isc);
3045 
3046 	arn_desc_free(sc);
3047 
3048 	ddi_taskq_destroy(sc->sc_tq);
3049 
3050 	if (!(sc->sc_flags & SC_OP_INVALID))
3051 		(void) ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
3052 
3053 	/* cleanup tx queues */
3054 	mutex_destroy(&sc->sc_txbuflock);
3055 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
3056 		if (ARN_TXQ_SETUP(sc, i)) {
3057 			arn_tx_cleanupq(sc, &sc->sc_txq[i]);
3058 			mutex_destroy(&((&sc->sc_txq[i])->axq_lock));
3059 		}
3060 	}
3061 
3062 	ath9k_hw_detach(sc->sc_ah);
3063 
3064 	/* free io handle */
3065 	ddi_regs_map_free(&sc->sc_io_handle);
3066 	pci_config_teardown(&sc->sc_cfg_handle);
3067 
3068 	/* destroy locks */
3069 	mutex_destroy(&sc->sc_genlock);
3070 	mutex_destroy(&sc->sc_serial_rw);
3071 	mutex_destroy(&sc->sc_rxbuflock);
3072 	mutex_destroy(&sc->sc_resched_lock);
3073 #ifdef ARN_IBSS
3074 	mutex_destroy(&sc->sc_bcbuflock);
3075 #endif
3076 
3077 	ddi_remove_minor_node(devinfo, NULL);
3078 	ddi_soft_state_free(arn_soft_state_p, ddi_get_instance(devinfo));
3079 
3080 	return (DDI_SUCCESS);
3081 }
3082 
3083 /*
3084  * quiesce(9E) entry point.
3085  *
3086  * This function is called when the system is single-threaded at high
3087  * PIL with preemption disabled. Therefore, this function must not be
3088  * blocked.
3089  *
3090  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
3091  * DDI_FAILURE indicates an error condition and should almost never happen.
3092  */
3093 static int32_t
3094 arn_quiesce(dev_info_t *devinfo)
3095 {
3096 	struct arn_softc *sc;
3097 	int i;
3098 	struct ath_hal *ah;
3099 
3100 	sc = ddi_get_soft_state(arn_soft_state_p, ddi_get_instance(devinfo));
3101 
3102 	if (sc == NULL || (ah = sc->sc_ah) == NULL)
3103 		return (DDI_FAILURE);
3104 
3105 	/*
3106 	 * Disable interrupts
3107 	 */
3108 	(void) ath9k_hw_set_interrupts(ah, 0);
3109 
3110 	/*
3111 	 * Disable TX HW
3112 	 */
3113 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
3114 		if (ARN_TXQ_SETUP(sc, i))
3115 			(void) ath9k_hw_stoptxdma(ah, sc->sc_txq[i].axq_qnum);
3116 	}
3117 
3118 	/*
3119 	 * Disable RX HW
3120 	 */
3121 	ath9k_hw_stoppcurecv(ah);
3122 	ath9k_hw_setrxfilter(ah, 0);
3123 	(void) ath9k_hw_stopdmarecv(ah);
3124 	drv_usecwait(3000);
3125 
3126 	/*
3127 	 * Power down HW
3128 	 */
3129 	(void) ath9k_hw_phy_disable(ah);
3130 
3131 	return (DDI_SUCCESS);
3132 }
3133 
3134 DDI_DEFINE_STREAM_OPS(arn_dev_ops, nulldev, nulldev, arn_attach, arn_detach,
3135     nodev, NULL, D_MP, NULL, arn_quiesce);
3136 
3137 static struct modldrv arn_modldrv = {
3138 	&mod_driverops, /* Type of module.  This one is a driver */
3139 	"arn-Atheros 9000 series driver:vertion 1.0", /* short description */
3140 	&arn_dev_ops /* driver specific ops */
3141 };
3142 
3143 static struct modlinkage modlinkage = {
3144 	MODREV_1, (void *)&arn_modldrv, NULL
3145 };
3146 
3147 int
3148 _info(struct modinfo *modinfop)
3149 {
3150 	return (mod_info(&modlinkage, modinfop));
3151 }
3152 
3153 int
3154 _init(void)
3155 {
3156 	int status;
3157 
3158 	status = ddi_soft_state_init
3159 	    (&arn_soft_state_p, sizeof (struct arn_softc), 1);
3160 	if (status != 0)
3161 		return (status);
3162 
3163 	mutex_init(&arn_loglock, NULL, MUTEX_DRIVER, NULL);
3164 	mac_init_ops(&arn_dev_ops, "arn");
3165 	status = mod_install(&modlinkage);
3166 	if (status != 0) {
3167 		mac_fini_ops(&arn_dev_ops);
3168 		mutex_destroy(&arn_loglock);
3169 		ddi_soft_state_fini(&arn_soft_state_p);
3170 	}
3171 
3172 	return (status);
3173 }
3174 
3175 int
3176 _fini(void)
3177 {
3178 	int status;
3179 
3180 	status = mod_remove(&modlinkage);
3181 	if (status == 0) {
3182 		mac_fini_ops(&arn_dev_ops);
3183 		mutex_destroy(&arn_loglock);
3184 		ddi_soft_state_fini(&arn_soft_state_p);
3185 	}
3186 	return (status);
3187 }
3188