xref: /titanic_51/usr/src/uts/common/io/afe/afe.c (revision fc51f9bbbff02dbd8c3adf640b1a184ceeb58fa5)
1 /*
2  * Solaris driver for ethernet cards based on the ADMtek Centaur
3  *
4  * Copyright (c) 2007 by Garrett D'Amore <garrett@damore.org>.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the author nor the names of any co-contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS ``AS IS''
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 /*
32  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
33  * Use is subject to license terms.
34  */
35 
36 
37 #include <sys/varargs.h>
38 #include <sys/types.h>
39 #include <sys/modctl.h>
40 #include <sys/conf.h>
41 #include <sys/devops.h>
42 #include <sys/stream.h>
43 #include <sys/strsun.h>
44 #include <sys/cmn_err.h>
45 #include <sys/ethernet.h>
46 #include <sys/kmem.h>
47 #include <sys/time.h>
48 #include <sys/crc32.h>
49 #include <sys/miiregs.h>
50 #include <sys/mac.h>
51 #include <sys/mac_ether.h>
52 #include <sys/ddi.h>
53 #include <sys/sunddi.h>
54 #include <sys/vlan.h>
55 
56 #include "afe.h"
57 #include "afeimpl.h"
58 
59 /*
60  * Driver globals.
61  */
62 
63 /* patchable debug flag ... must not be static! */
64 #ifdef	DEBUG
65 unsigned		afe_debug = DWARN;
66 #endif
67 
68 /* table of supported devices */
69 static afe_card_t afe_cards[] = {
70 
71 	/*
72 	 * ADMtek Centaur and Comet
73 	 */
74 	{ 0x1317, 0x0981, "ADMtek AL981", MODEL_COMET },
75 	{ 0x1317, 0x0985, "ADMtek AN983", MODEL_CENTAUR },
76 	{ 0x1317, 0x1985, "ADMtek AN985", MODEL_CENTAUR },
77 	{ 0x1317, 0x9511, "ADMtek ADM9511", MODEL_CENTAUR },
78 	{ 0x1317, 0x9513, "ADMtek ADM9513", MODEL_CENTAUR },
79 	/*
80 	 * Accton just relabels other companies' controllers
81 	 */
82 	{ 0x1113, 0x1216, "Accton EN5251", MODEL_CENTAUR },
83 	/*
84 	 * Models listed here.
85 	 */
86 	{ 0x10b7, 0x9300, "3Com 3CSOHO100B-TX", MODEL_CENTAUR },
87 	{ 0x1113, 0xec02, "SMC SMC1244TX", MODEL_CENTAUR },
88 	{ 0x10b8, 0x1255, "SMC SMC1255TX", MODEL_CENTAUR },
89 	{ 0x111a, 0x1020, "Siemens SpeedStream PCI 10/100", MODEL_CENTAUR },
90 	{ 0x1113, 0x1207, "Accton EN1207F", MODEL_CENTAUR },
91 	{ 0x1113, 0x2242, "Accton EN2242", MODEL_CENTAUR },
92 	{ 0x1113, 0x2220, "Accton EN2220", MODEL_CENTAUR },
93 	{ 0x1113, 0x9216, "3M VOL-N100VF+TX", MODEL_CENTAUR },
94 	{ 0x1317, 0x0574, "Linksys LNE100TX", MODEL_CENTAUR },
95 	{ 0x1317, 0x0570, "Linksys NC100", MODEL_CENTAUR },
96 	{ 0x1385, 0x511a, "Netgear FA511", MODEL_CENTAUR },
97 	{ 0x13d1, 0xab02, "AboCom FE2500", MODEL_CENTAUR },
98 	{ 0x13d1, 0xab03, "AboCom PCM200", MODEL_CENTAUR },
99 	{ 0x13d1, 0xab08, "AboCom FE2500MX", MODEL_CENTAUR },
100 	{ 0x1414, 0x0001, "Microsoft MN-120", MODEL_CENTAUR },
101 	{ 0x16ec, 0x00ed, "U.S. Robotics USR997900", MODEL_CENTAUR },
102 	{ 0x1734, 0x100c, "Fujitsu-Siemens D1961", MODEL_CENTAUR },
103 	{ 0x1737, 0xab08, "Linksys PCMPC200", MODEL_CENTAUR },
104 	{ 0x1737, 0xab09, "Linksys PCM200", MODEL_CENTAUR },
105 	{ 0x17b3, 0xab08, "Hawking PN672TX", MODEL_CENTAUR },
106 };
107 
108 #define	ETHERVLANMTU	(ETHERMAX + 4)
109 
110 /*
111  * Function prototypes
112  */
113 static int	afe_attach(dev_info_t *, ddi_attach_cmd_t);
114 static int	afe_detach(dev_info_t *, ddi_detach_cmd_t);
115 static int	afe_resume(dev_info_t *);
116 static int	afe_quiesce(dev_info_t *);
117 static int	afe_m_unicst(void *, const uint8_t *);
118 static int	afe_m_multicst(void *, boolean_t, const uint8_t *);
119 static int	afe_m_promisc(void *, boolean_t);
120 static mblk_t	*afe_m_tx(void *, mblk_t *);
121 static int	afe_m_stat(void *, uint_t, uint64_t *);
122 static int	afe_m_start(void *);
123 static void	afe_m_stop(void *);
124 static int	afe_m_getprop(void *, const char *, mac_prop_id_t, uint_t,
125     uint_t, void *, uint_t *);
126 static int	afe_m_setprop(void *, const char *, mac_prop_id_t, uint_t,
127     const void *);
128 static unsigned	afe_intr(caddr_t);
129 static void	afe_startmac(afe_t *);
130 static void	afe_stopmac(afe_t *);
131 static void	afe_resetrings(afe_t *);
132 static boolean_t	afe_initialize(afe_t *);
133 static void	afe_startall(afe_t *);
134 static void	afe_stopall(afe_t *);
135 static void	afe_resetall(afe_t *);
136 static afe_txbuf_t *afe_alloctxbuf(afe_t *);
137 static void	afe_destroytxbuf(afe_txbuf_t *);
138 static afe_rxbuf_t *afe_allocrxbuf(afe_t *);
139 static void	afe_destroyrxbuf(afe_rxbuf_t *);
140 static boolean_t	afe_send(afe_t *, mblk_t *);
141 static int	afe_allocrxring(afe_t *);
142 static void	afe_freerxring(afe_t *);
143 static int	afe_alloctxring(afe_t *);
144 static void	afe_freetxring(afe_t *);
145 static void	afe_error(dev_info_t *, char *, ...);
146 static void	afe_setrxfilt(afe_t *);
147 static uint8_t	afe_sromwidth(afe_t *);
148 static uint16_t	afe_readsromword(afe_t *, unsigned);
149 static void	afe_readsrom(afe_t *, unsigned, unsigned, char *);
150 static void	afe_getfactaddr(afe_t *, uchar_t *);
151 static uint8_t	afe_miireadbit(afe_t *);
152 static void	afe_miiwritebit(afe_t *, uint8_t);
153 static void	afe_miitristate(afe_t *);
154 static uint16_t	afe_miiread(afe_t *, int, int);
155 static void	afe_miiwrite(afe_t *, int, int, uint16_t);
156 static uint16_t	afe_miireadgeneral(afe_t *, int, int);
157 static void	afe_miiwritegeneral(afe_t *, int, int, uint16_t);
158 static uint16_t	afe_miireadcomet(afe_t *, int, int);
159 static void	afe_miiwritecomet(afe_t *, int, int, uint16_t);
160 static int	afe_getmiibit(afe_t *, uint16_t, uint16_t);
161 static void	afe_startphy(afe_t *);
162 static void	afe_stopphy(afe_t *);
163 static void	afe_reportlink(afe_t *);
164 static void	afe_checklink(afe_t *);
165 static void	afe_checklinkcomet(afe_t *);
166 static void	afe_checklinkcentaur(afe_t *);
167 static void	afe_checklinkmii(afe_t *);
168 static void	afe_disableinterrupts(afe_t *);
169 static void	afe_enableinterrupts(afe_t *);
170 static void	afe_reclaim(afe_t *);
171 static mblk_t	*afe_receive(afe_t *);
172 
173 #ifdef	DEBUG
174 static void	afe_dprintf(afe_t *, const char *, int, char *, ...);
175 #endif
176 
177 #define	KIOIP	KSTAT_INTR_PTR(afep->afe_intrstat)
178 
179 static mac_callbacks_t afe_m_callbacks = {
180 	MC_SETPROP | MC_GETPROP,
181 	afe_m_stat,
182 	afe_m_start,
183 	afe_m_stop,
184 	afe_m_promisc,
185 	afe_m_multicst,
186 	afe_m_unicst,
187 	afe_m_tx,
188 	NULL,		/* mc_ioctl */
189 	NULL,		/* mc_getcapab */
190 	NULL,		/* mc_open */
191 	NULL,		/* mc_close */
192 	afe_m_setprop,
193 	afe_m_getprop,
194 };
195 
196 
197 /*
198  * Stream information
199  */
200 DDI_DEFINE_STREAM_OPS(afe_devops, nulldev, nulldev, afe_attach, afe_detach,
201     nodev, NULL, D_MP, NULL, afe_quiesce);
202 
203 /*
204  * Module linkage information.
205  */
206 
207 static struct modldrv afe_modldrv = {
208 	&mod_driverops,			/* drv_modops */
209 	"ADMtek Fast Ethernet",		/* drv_linkinfo */
210 	&afe_devops			/* drv_dev_ops */
211 };
212 
213 static struct modlinkage afe_modlinkage = {
214 	MODREV_1,		/* ml_rev */
215 	{ &afe_modldrv, NULL }	/* ml_linkage */
216 };
217 
218 /*
219  * Device attributes.
220  */
221 static ddi_device_acc_attr_t afe_devattr = {
222 	DDI_DEVICE_ATTR_V0,
223 	DDI_STRUCTURE_LE_ACC,
224 	DDI_STRICTORDER_ACC
225 };
226 
227 static ddi_device_acc_attr_t afe_bufattr = {
228 	DDI_DEVICE_ATTR_V0,
229 	DDI_NEVERSWAP_ACC,
230 	DDI_STRICTORDER_ACC
231 };
232 
233 static ddi_dma_attr_t afe_dma_attr = {
234 	DMA_ATTR_V0,		/* dma_attr_version */
235 	0,			/* dma_attr_addr_lo */
236 	0xFFFFFFFFU,		/* dma_attr_addr_hi */
237 	0x7FFFFFFFU,		/* dma_attr_count_max */
238 	4,			/* dma_attr_align */
239 	0x3F,			/* dma_attr_burstsizes */
240 	1,			/* dma_attr_minxfer */
241 	0xFFFFFFFFU,		/* dma_attr_maxxfer */
242 	0xFFFFFFFFU,		/* dma_attr_seg */
243 	1,			/* dma_attr_sgllen */
244 	1,			/* dma_attr_granular */
245 	0			/* dma_attr_flags */
246 };
247 
248 /*
249  * Tx buffers can be arbitrarily aligned.  Additionally, they can
250  * cross a page boundary, so we use the two buffer addresses of the
251  * chip to provide a two-entry scatter-gather list.
252  */
253 static ddi_dma_attr_t afe_dma_txattr = {
254 	DMA_ATTR_V0,		/* dma_attr_version */
255 	0,			/* dma_attr_addr_lo */
256 	0xFFFFFFFFU,		/* dma_attr_addr_hi */
257 	0x7FFFFFFFU,		/* dma_attr_count_max */
258 	1,			/* dma_attr_align */
259 	0x3F,			/* dma_attr_burstsizes */
260 	1,			/* dma_attr_minxfer */
261 	0xFFFFFFFFU,		/* dma_attr_maxxfer */
262 	0xFFFFFFFFU,		/* dma_attr_seg */
263 	2,			/* dma_attr_sgllen */
264 	1,			/* dma_attr_granular */
265 	0			/* dma_attr_flags */
266 };
267 
268 /*
269  * Ethernet addresses.
270  */
271 static uchar_t afe_broadcast[ETHERADDRL] = {
272 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff
273 };
274 
275 /*
276  * DDI entry points.
277  */
278 int
279 _init(void)
280 {
281 	int	rv;
282 	mac_init_ops(&afe_devops, "afe");
283 	if ((rv = mod_install(&afe_modlinkage)) != DDI_SUCCESS) {
284 		mac_fini_ops(&afe_devops);
285 	}
286 	return (rv);
287 }
288 
289 int
290 _fini(void)
291 {
292 	int	rv;
293 	if ((rv = mod_remove(&afe_modlinkage)) == DDI_SUCCESS) {
294 		mac_fini_ops(&afe_devops);
295 	}
296 	return (rv);
297 }
298 
299 int
300 _info(struct modinfo *modinfop)
301 {
302 	return (mod_info(&afe_modlinkage, modinfop));
303 }
304 
305 int
306 afe_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
307 {
308 	afe_t			*afep;
309 	mac_register_t		*macp;
310 	int			inst = ddi_get_instance(dip);
311 	ddi_acc_handle_t	pci;
312 	uint16_t		venid;
313 	uint16_t		devid;
314 	uint16_t		svid;
315 	uint16_t		ssid;
316 	uint16_t		cachesize;
317 	afe_card_t		*cardp;
318 	int			i;
319 
320 	switch (cmd) {
321 	case DDI_RESUME:
322 		return (afe_resume(dip));
323 
324 	case DDI_ATTACH:
325 		break;
326 
327 	default:
328 		return (DDI_FAILURE);
329 	}
330 
331 	/* this card is a bus master, reject any slave-only slot */
332 	if (ddi_slaveonly(dip) == DDI_SUCCESS) {
333 		afe_error(dip, "slot does not support PCI bus-master");
334 		return (DDI_FAILURE);
335 	}
336 	/* PCI devices shouldn't generate hilevel interrupts */
337 	if (ddi_intr_hilevel(dip, 0) != 0) {
338 		afe_error(dip, "hilevel interrupts not supported");
339 		return (DDI_FAILURE);
340 	}
341 	if (pci_config_setup(dip, &pci) != DDI_SUCCESS) {
342 		afe_error(dip, "unable to setup PCI config handle");
343 		return (DDI_FAILURE);
344 	}
345 
346 	venid = pci_config_get16(pci, PCI_VID);
347 	devid = pci_config_get16(pci, PCI_DID);
348 	svid = pci_config_get16(pci, PCI_SVID);
349 	ssid = pci_config_get16(pci, PCI_SSID);
350 
351 	/*
352 	 * Note: ADMtek boards seem to misprogram themselves with bogus
353 	 * timings, which do not seem to work properly on SPARC.  We
354 	 * reprogram them zero (but only if they appear to be broken),
355 	 * which seems to at least work.  Its unclear that this is a
356 	 * legal or wise practice to me, but it certainly works better
357 	 * than the original values.  (I would love to hear
358 	 * suggestions for better values, or a better strategy.)
359 	 */
360 	if ((pci_config_get8(pci, PCI_MINGNT) == 0xff) &&
361 	    (pci_config_get8(pci, PCI_MAXLAT) == 0xff)) {
362 		pci_config_put8(pci, PCI_MINGNT, 0);
363 		pci_config_put8(pci, PCI_MAXLAT, 0);
364 	}
365 
366 	/*
367 	 * the last entry in the card table matches every possible
368 	 * card, so the for-loop always terminates properly.
369 	 */
370 	cardp = NULL;
371 	for (i = 0; i < (sizeof (afe_cards) / sizeof (afe_card_t)); i++) {
372 		if ((venid == afe_cards[i].card_venid) &&
373 		    (devid == afe_cards[i].card_devid)) {
374 			cardp = &afe_cards[i];
375 		}
376 		if ((svid == afe_cards[i].card_venid) &&
377 		    (ssid == afe_cards[i].card_devid)) {
378 			cardp = &afe_cards[i];
379 			break;
380 		}
381 	}
382 
383 	if (cardp == NULL) {
384 		pci_config_teardown(&pci);
385 		afe_error(dip, "Unable to identify PCI card");
386 		return (DDI_FAILURE);
387 	}
388 
389 	if (ddi_prop_update_string(DDI_DEV_T_NONE, dip, "model",
390 	    cardp->card_cardname) != DDI_PROP_SUCCESS) {
391 		pci_config_teardown(&pci);
392 		afe_error(dip, "Unable to create model property");
393 		return (DDI_FAILURE);
394 	}
395 
396 	/*
397 	 * Grab the PCI cachesize -- we use this to program the
398 	 * cache-optimization bus access bits.
399 	 */
400 	cachesize = pci_config_get8(pci, PCI_CLS);
401 
402 	/* this cannot fail */
403 	afep = kmem_zalloc(sizeof (afe_t), KM_SLEEP);
404 	ddi_set_driver_private(dip, afep);
405 
406 	/* get the interrupt block cookie */
407 	if (ddi_get_iblock_cookie(dip, 0, &afep->afe_icookie) != DDI_SUCCESS) {
408 		afe_error(dip, "ddi_get_iblock_cookie failed");
409 		pci_config_teardown(&pci);
410 		kmem_free(afep, sizeof (afe_t));
411 		return (DDI_FAILURE);
412 	}
413 
414 	afep->afe_dip = dip;
415 	afep->afe_cardp = cardp;
416 	afep->afe_phyaddr = -1;
417 	afep->afe_cachesize = cachesize;
418 
419 	/* default properties */
420 	afep->afe_adv_aneg = !!ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
421 	    "adv_autoneg_cap", 1);
422 	afep->afe_adv_100T4 = !!ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
423 	    "adv_100T4_cap", 1);
424 	afep->afe_adv_100fdx = !!ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
425 	    "adv_100fdx_cap", 1);
426 	afep->afe_adv_100hdx = !!ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
427 	    "adv_100hdx_cap", 1);
428 	afep->afe_adv_10fdx = !!ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
429 	    "adv_10fdx_cap", 1);
430 	afep->afe_adv_10hdx = !!ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
431 	    "adv_10hdx_cap", 1);
432 
433 	afep->afe_forcefiber = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
434 	    "fiber", 0);
435 
436 	DBG(DPCI, "PCI vendor id = %x", venid);
437 	DBG(DPCI, "PCI device id = %x", devid);
438 	DBG(DPCI, "PCI cachesize = %d", cachesize);
439 	DBG(DPCI, "PCI COMM = %x", pci_config_get8(pci, PCI_CMD));
440 	DBG(DPCI, "PCI STAT = %x", pci_config_get8(pci, PCI_STAT));
441 
442 	mutex_init(&afep->afe_xmtlock, NULL, MUTEX_DRIVER, afep->afe_icookie);
443 	mutex_init(&afep->afe_intrlock, NULL, MUTEX_DRIVER, afep->afe_icookie);
444 
445 	/*
446 	 * Enable bus master, IO space, and memory space accesses.
447 	 */
448 	pci_config_put16(pci, PCI_CMD,
449 	    pci_config_get16(pci, PCI_CMD) | PCI_CMD_BME | PCI_CMD_MAE);
450 
451 	/* we're done with this now, drop it */
452 	pci_config_teardown(&pci);
453 
454 	/*
455 	 * Initialize interrupt kstat.  This should not normally fail, since
456 	 * we don't use a persistent stat.  We do it this way to avoid having
457 	 * to test for it at run time on the hot path.
458 	 */
459 	afep->afe_intrstat = kstat_create("afe", inst, "intr", "controller",
460 	    KSTAT_TYPE_INTR, 1, 0);
461 	if (afep->afe_intrstat == NULL) {
462 		afe_error(dip, "kstat_create failed");
463 		goto failed;
464 	}
465 	kstat_install(afep->afe_intrstat);
466 
467 	/*
468 	 * Map in the device registers.
469 	 */
470 	if (ddi_regs_map_setup(dip, 1, (caddr_t *)&afep->afe_regs,
471 	    0, 0, &afe_devattr, &afep->afe_regshandle)) {
472 		afe_error(dip, "ddi_regs_map_setup failed");
473 		goto failed;
474 	}
475 
476 	/*
477 	 * Allocate DMA resources (descriptor rings and buffers).
478 	 */
479 	if ((afe_allocrxring(afep) != DDI_SUCCESS) ||
480 	    (afe_alloctxring(afep) != DDI_SUCCESS)) {
481 		afe_error(dip, "unable to allocate DMA resources");
482 		goto failed;
483 	}
484 
485 	/* Initialize the chip. */
486 	mutex_enter(&afep->afe_intrlock);
487 	mutex_enter(&afep->afe_xmtlock);
488 	if (!afe_initialize(afep)) {
489 		mutex_exit(&afep->afe_xmtlock);
490 		mutex_exit(&afep->afe_intrlock);
491 		goto failed;
492 	}
493 	mutex_exit(&afep->afe_xmtlock);
494 	mutex_exit(&afep->afe_intrlock);
495 
496 	/* Determine the number of address bits to our EEPROM. */
497 	afep->afe_sromwidth = afe_sromwidth(afep);
498 
499 	/*
500 	 * Get the factory ethernet address.  This becomes the current
501 	 * ethernet address (it can be overridden later via ifconfig).
502 	 */
503 	afe_getfactaddr(afep, afep->afe_curraddr);
504 	afep->afe_promisc = B_FALSE;
505 
506 	/* make sure we add configure the initial filter */
507 	(void) afe_m_unicst(afep, afep->afe_curraddr);
508 	(void) afe_m_multicst(afep, B_TRUE, afe_broadcast);
509 
510 	/*
511 	 * Establish interrupt handler.
512 	 */
513 	if (ddi_add_intr(dip, 0, NULL, NULL, afe_intr, (caddr_t)afep) !=
514 	    DDI_SUCCESS) {
515 		afe_error(dip, "unable to add interrupt");
516 		goto failed;
517 	}
518 
519 	/* TODO: do the power management stuff */
520 
521 	if ((macp = mac_alloc(MAC_VERSION)) == NULL) {
522 		afe_error(dip, "mac_alloc failed");
523 		goto failed;
524 	}
525 
526 	macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
527 	macp->m_driver = afep;
528 	macp->m_dip = dip;
529 	macp->m_src_addr = afep->afe_curraddr;
530 	macp->m_callbacks = &afe_m_callbacks;
531 	macp->m_min_sdu = 0;
532 	macp->m_max_sdu = ETHERMTU;
533 	macp->m_margin = VLAN_TAGSZ;
534 
535 	if (mac_register(macp, &afep->afe_mh) == DDI_SUCCESS) {
536 		mac_free(macp);
537 		return (DDI_SUCCESS);
538 	}
539 
540 	/* failed to register with MAC */
541 	mac_free(macp);
542 failed:
543 	if (afep->afe_icookie != NULL) {
544 		ddi_remove_intr(dip, 0, afep->afe_icookie);
545 	}
546 	if (afep->afe_intrstat) {
547 		kstat_delete(afep->afe_intrstat);
548 	}
549 	mutex_destroy(&afep->afe_intrlock);
550 	mutex_destroy(&afep->afe_xmtlock);
551 
552 	afe_freerxring(afep);
553 	afe_freetxring(afep);
554 
555 	if (afep->afe_regshandle != NULL) {
556 		ddi_regs_map_free(&afep->afe_regshandle);
557 	}
558 	kmem_free(afep, sizeof (afe_t));
559 	return (DDI_FAILURE);
560 }
561 
562 int
563 afe_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
564 {
565 	afe_t		*afep;
566 
567 	afep = ddi_get_driver_private(dip);
568 	if (afep == NULL) {
569 		afe_error(dip, "no soft state in detach!");
570 		return (DDI_FAILURE);
571 	}
572 
573 	switch (cmd) {
574 	case DDI_DETACH:
575 
576 		if (mac_unregister(afep->afe_mh) != 0) {
577 			return (DDI_FAILURE);
578 		}
579 
580 		/* make sure hardware is quiesced */
581 		mutex_enter(&afep->afe_intrlock);
582 		mutex_enter(&afep->afe_xmtlock);
583 		afep->afe_flags &= ~AFE_RUNNING;
584 		afe_stopall(afep);
585 		mutex_exit(&afep->afe_xmtlock);
586 		mutex_exit(&afep->afe_intrlock);
587 
588 		/* clean up and shut down device */
589 		ddi_remove_intr(dip, 0, afep->afe_icookie);
590 
591 		/* clean up kstats */
592 		kstat_delete(afep->afe_intrstat);
593 
594 		ddi_prop_remove_all(dip);
595 
596 		/* free up any left over buffers or DMA resources */
597 		afe_freerxring(afep);
598 		afe_freetxring(afep);
599 
600 		ddi_regs_map_free(&afep->afe_regshandle);
601 		mutex_destroy(&afep->afe_intrlock);
602 		mutex_destroy(&afep->afe_xmtlock);
603 
604 		kmem_free(afep, sizeof (afe_t));
605 		return (DDI_SUCCESS);
606 
607 	case DDI_SUSPEND:
608 		/* quiesce the hardware */
609 		mutex_enter(&afep->afe_intrlock);
610 		mutex_enter(&afep->afe_xmtlock);
611 		afep->afe_flags |= AFE_SUSPENDED;
612 		afe_stopall(afep);
613 		mutex_exit(&afep->afe_xmtlock);
614 		mutex_exit(&afep->afe_intrlock);
615 		return (DDI_SUCCESS);
616 	default:
617 		return (DDI_FAILURE);
618 	}
619 }
620 
621 int
622 afe_resume(dev_info_t *dip)
623 {
624 	afe_t	*afep;
625 
626 	if ((afep = ddi_get_driver_private(dip)) == NULL) {
627 		return (DDI_FAILURE);
628 	}
629 
630 	mutex_enter(&afep->afe_intrlock);
631 	mutex_enter(&afep->afe_xmtlock);
632 
633 	afep->afe_flags &= ~AFE_SUSPENDED;
634 
635 	/* re-initialize chip */
636 	if (!afe_initialize(afep)) {
637 		afe_error(afep->afe_dip, "unable to resume chip!");
638 		afep->afe_flags |= AFE_SUSPENDED;
639 		mutex_exit(&afep->afe_intrlock);
640 		mutex_exit(&afep->afe_xmtlock);
641 		return (DDI_SUCCESS);
642 	}
643 
644 	/* start the chip */
645 	if (afep->afe_flags & AFE_RUNNING) {
646 		afe_startall(afep);
647 	}
648 
649 	/* drop locks */
650 	mutex_exit(&afep->afe_xmtlock);
651 	mutex_exit(&afep->afe_intrlock);
652 
653 	return (DDI_SUCCESS);
654 }
655 
656 int
657 afe_quiesce(dev_info_t *dip)
658 {
659 	afe_t	*afep;
660 
661 	if ((afep = ddi_get_driver_private(dip)) == NULL) {
662 		return (DDI_FAILURE);
663 	}
664 
665 	SETBIT(afep, CSR_PAR, PAR_RESET);
666 	/*
667 	 * At 66 MHz it is 16 nsec per access or more (always more)
668 	 * So we need 3,333 times to retry for 50 usec.  We just
669 	 * round up to 5000 times.  Unless the hardware is horked,
670 	 * it will always terminate *well* before that anyway.
671 	 */
672 	for (int i = 0; i < 5000; i++) {
673 		if ((GETCSR(afep, CSR_PAR) & PAR_RESET) == 0) {
674 			return (DDI_SUCCESS);
675 		}
676 	}
677 
678 	/* hardware didn't quiesce - force a full reboot (PCI reset) */
679 	return (DDI_FAILURE);
680 }
681 
682 void
683 afe_setrxfilt(afe_t *afep)
684 {
685 	unsigned rxen, pa0, pa1;
686 
687 	if (afep->afe_flags & AFE_SUSPENDED) {
688 		/* don't touch a suspended interface */
689 		return;
690 	}
691 
692 	rxen = GETCSR(afep, CSR_NAR) & NAR_RX_ENABLE;
693 
694 	/* stop receiver */
695 	if (rxen) {
696 		afe_stopmac(afep);
697 	}
698 
699 	/* program promiscuous mode */
700 	if (afep->afe_promisc)
701 		SETBIT(afep, CSR_NAR, NAR_RX_PROMISC);
702 	else
703 		CLRBIT(afep, CSR_NAR, NAR_RX_PROMISC);
704 
705 	/* program mac address */
706 	pa0 = (afep->afe_curraddr[3] << 24) | (afep->afe_curraddr[2] << 16) |
707 	    (afep->afe_curraddr[1] << 8) | afep->afe_curraddr[0];
708 	pa1 = (afep->afe_curraddr[5] << 8) | afep->afe_curraddr[4];
709 
710 	DBG(DMACID, "programming PAR0 with %x", pa0);
711 	DBG(DMACID, "programming PAR1 with %x", pa1);
712 	PUTCSR(afep, CSR_PAR0, pa0);
713 	PUTCSR(afep, CSR_PAR1, pa1);
714 	if (rxen) {
715 		SETBIT(afep, CSR_NAR, rxen);
716 	}
717 
718 	DBG(DMACID, "programming MAR0 = %x", afep->afe_mctab[0]);
719 	DBG(DMACID, "programming MAR1 = %x", afep->afe_mctab[1]);
720 
721 	/* program multicast filter */
722 	if (AFE_MODEL(afep) == MODEL_COMET) {
723 		if (afep->afe_mctab[0] || afep->afe_mctab[1]) {
724 			SETBIT(afep, CSR_NAR, NAR_RX_MULTI);
725 		} else {
726 			CLRBIT(afep, CSR_NAR, NAR_RX_MULTI);
727 		}
728 	} else {
729 		CLRBIT(afep, CSR_NAR, NAR_RX_MULTI);
730 		PUTCSR(afep, CSR_MAR0, afep->afe_mctab[0]);
731 		PUTCSR(afep, CSR_MAR1, afep->afe_mctab[1]);
732 	}
733 
734 	/* restart receiver */
735 	if (rxen) {
736 		afe_startmac(afep);
737 	}
738 }
739 
740 int
741 afe_m_multicst(void *arg, boolean_t add, const uint8_t *macaddr)
742 {
743 	afe_t		*afep = arg;
744 	int		index;
745 	uint32_t	crc;
746 	uint32_t	bit;
747 	uint32_t	newval, oldval;
748 
749 	CRC32(crc, macaddr, ETHERADDRL, -1U, crc32_table);
750 	crc %= AFE_MCHASH;
751 
752 	/* bit within a 32-bit word */
753 	index = crc / 32;
754 	bit = (1 << (crc % 32));
755 
756 	mutex_enter(&afep->afe_intrlock);
757 	mutex_enter(&afep->afe_xmtlock);
758 	newval = oldval = afep->afe_mctab[index];
759 
760 	if (add) {
761 		afep->afe_mccount[crc]++;
762 		if (afep->afe_mccount[crc] == 1)
763 			newval |= bit;
764 	} else {
765 		afep->afe_mccount[crc]--;
766 		if (afep->afe_mccount[crc] == 0)
767 			newval &= ~bit;
768 	}
769 	if (newval != oldval) {
770 		afep->afe_mctab[index] = newval;
771 		afe_setrxfilt(afep);
772 	}
773 
774 	mutex_exit(&afep->afe_xmtlock);
775 	mutex_exit(&afep->afe_intrlock);
776 
777 	return (0);
778 }
779 
780 int
781 afe_m_promisc(void *arg, boolean_t on)
782 {
783 	afe_t		*afep = arg;
784 
785 	/* exclusive access to the card while we reprogram it */
786 	mutex_enter(&afep->afe_intrlock);
787 	mutex_enter(&afep->afe_xmtlock);
788 	/* save current promiscuous mode state for replay in resume */
789 	afep->afe_promisc = on;
790 
791 	afe_setrxfilt(afep);
792 	mutex_exit(&afep->afe_xmtlock);
793 	mutex_exit(&afep->afe_intrlock);
794 
795 	return (0);
796 }
797 
798 int
799 afe_m_unicst(void *arg, const uint8_t *macaddr)
800 {
801 	afe_t		*afep = arg;
802 
803 	/* exclusive access to the card while we reprogram it */
804 	mutex_enter(&afep->afe_intrlock);
805 	mutex_enter(&afep->afe_xmtlock);
806 
807 	bcopy(macaddr, afep->afe_curraddr, ETHERADDRL);
808 	afe_setrxfilt(afep);
809 
810 	mutex_exit(&afep->afe_xmtlock);
811 	mutex_exit(&afep->afe_intrlock);
812 
813 	return (0);
814 }
815 
816 mblk_t *
817 afe_m_tx(void *arg, mblk_t *mp)
818 {
819 	afe_t	*afep = arg;
820 	mblk_t	*nmp;
821 
822 	mutex_enter(&afep->afe_xmtlock);
823 
824 	if (afep->afe_flags & AFE_SUSPENDED) {
825 		while ((nmp = mp) != NULL) {
826 			afep->afe_carrier_errors++;
827 			mp = mp->b_next;
828 			freemsg(nmp);
829 		}
830 		mutex_exit(&afep->afe_xmtlock);
831 		return (NULL);
832 	}
833 
834 	while (mp != NULL) {
835 		nmp = mp->b_next;
836 		mp->b_next = NULL;
837 
838 		if (!afe_send(afep, mp)) {
839 			mp->b_next = nmp;
840 			break;
841 		}
842 		mp = nmp;
843 	}
844 	mutex_exit(&afep->afe_xmtlock);
845 
846 	return (mp);
847 }
848 
849 /*
850  * Hardware management.
851  */
852 static boolean_t
853 afe_initialize(afe_t *afep)
854 {
855 	int		i;
856 	unsigned	val;
857 	uint32_t	par, nar;
858 
859 	ASSERT(mutex_owned(&afep->afe_intrlock));
860 	ASSERT(mutex_owned(&afep->afe_xmtlock));
861 
862 	DBG(DCHATTY, "resetting!");
863 	SETBIT(afep, CSR_PAR, PAR_RESET);
864 	for (i = 1; i < 10; i++) {
865 		drv_usecwait(5);
866 		val = GETCSR(afep, CSR_PAR);
867 		if (!(val & PAR_RESET)) {
868 			break;
869 		}
870 	}
871 	if (i == 10) {
872 		afe_error(afep->afe_dip, "timed out waiting for reset!");
873 		return (B_FALSE);
874 	}
875 
876 	/*
877 	 * Updated Centaur data sheets show that the Comet and Centaur are
878 	 * alike here (contrary to earlier versions of the data sheet).
879 	 */
880 	/* XXX:? chip problems */
881 	/* par = PAR_MRLE | PAR_MRME | PAR_MWIE; */
882 	par = 0;
883 	switch (afep->afe_cachesize) {
884 	case 8:
885 		par |= PAR_CALIGN_8 | PAR_BURST_8;
886 		break;
887 	case 16:
888 		par |= PAR_CALIGN_16 | PAR_BURST_16;
889 		break;
890 	case 32:
891 		par |= PAR_CALIGN_32 | PAR_BURST_32;
892 		break;
893 	default:
894 		par |= PAR_BURST_32;
895 		par &= ~(PAR_MWIE | PAR_MRLE | PAR_MRME);
896 		break;
897 
898 	}
899 
900 	PUTCSR(afep, CSR_PAR, par);
901 
902 	/* enable transmit underrun auto-recovery */
903 	SETBIT(afep, CSR_CR, CR_TXURAUTOR);
904 
905 	afe_resetrings(afep);
906 
907 	/* clear the lost packet counter (cleared on read) */
908 	(void) GETCSR(afep, CSR_LPC);
909 
910 	nar = GETCSR(afep, CSR_NAR);
911 	nar &= ~NAR_TR;		/* clear tx threshold */
912 	nar |= NAR_SF;		/* store-and-forward */
913 	nar |= NAR_HBD;		/* disable SQE test */
914 	PUTCSR(afep, CSR_NAR, nar);
915 
916 	afe_setrxfilt(afep);
917 
918 	return (B_TRUE);
919 }
920 
921 /*
922  * Serial EEPROM access - inspired by the FreeBSD implementation.
923  */
924 
925 uint8_t
926 afe_sromwidth(afe_t *afep)
927 {
928 	int		i;
929 	uint32_t	eeread;
930 	uint8_t		addrlen = 8;
931 
932 	eeread = SPR_SROM_READ | SPR_SROM_SEL | SPR_SROM_CHIP;
933 
934 	PUTCSR(afep, CSR_SPR, eeread & ~SPR_SROM_CHIP);
935 	drv_usecwait(1);
936 	PUTCSR(afep, CSR_SPR, eeread);
937 
938 	/* command bits first */
939 	for (i = 4; i != 0; i >>= 1) {
940 		unsigned val = (SROM_READCMD & i) ? SPR_SROM_DIN : 0;
941 
942 		PUTCSR(afep, CSR_SPR, eeread | val);
943 		drv_usecwait(1);
944 		PUTCSR(afep, CSR_SPR, eeread | val | SPR_SROM_CLOCK);
945 		drv_usecwait(1);
946 	}
947 
948 	PUTCSR(afep, CSR_SPR, eeread);
949 
950 	for (addrlen = 1; addrlen <= 12; addrlen++) {
951 		PUTCSR(afep, CSR_SPR, eeread | SPR_SROM_CLOCK);
952 		drv_usecwait(1);
953 		if (!(GETCSR(afep, CSR_SPR) & SPR_SROM_DOUT)) {
954 			PUTCSR(afep, CSR_SPR, eeread);
955 			drv_usecwait(1);
956 			break;
957 		}
958 		PUTCSR(afep, CSR_SPR, eeread);
959 		drv_usecwait(1);
960 	}
961 
962 	/* turn off accesses to the EEPROM */
963 	PUTCSR(afep, CSR_SPR, eeread &~ SPR_SROM_CHIP);
964 
965 	DBG(DSROM, "detected srom width = %d bits", addrlen);
966 
967 	return ((addrlen < 4 || addrlen > 12) ? 6 : addrlen);
968 }
969 
970 /*
971  * The words in EEPROM are stored in little endian order.  We
972  * shift bits out in big endian order, though.  This requires
973  * a byte swap on some platforms.
974  */
975 uint16_t
976 afe_readsromword(afe_t *afep, unsigned romaddr)
977 {
978 	int		i;
979 	uint16_t	word = 0;
980 	uint16_t	retval;
981 	int		eeread;
982 	uint8_t		addrlen;
983 	int		readcmd;
984 	uchar_t		*ptr;
985 
986 	eeread = SPR_SROM_READ | SPR_SROM_SEL | SPR_SROM_CHIP;
987 	addrlen = afep->afe_sromwidth;
988 	readcmd = (SROM_READCMD << addrlen) | romaddr;
989 
990 	if (romaddr >= (1 << addrlen)) {
991 		/* too big to fit! */
992 		return (0);
993 	}
994 
995 	PUTCSR(afep, CSR_SPR, eeread & ~SPR_SROM_CHIP);
996 	PUTCSR(afep, CSR_SPR, eeread);
997 
998 	/* command and address bits */
999 	for (i = 4 + addrlen; i >= 0; i--) {
1000 		short val = (readcmd & (1 << i)) ? SPR_SROM_DIN : 0;
1001 
1002 		PUTCSR(afep, CSR_SPR, eeread | val);
1003 		drv_usecwait(1);
1004 		PUTCSR(afep, CSR_SPR, eeread | val | SPR_SROM_CLOCK);
1005 		drv_usecwait(1);
1006 	}
1007 
1008 	PUTCSR(afep, CSR_SPR, eeread);
1009 
1010 	for (i = 0; i < 16; i++) {
1011 		PUTCSR(afep, CSR_SPR, eeread | SPR_SROM_CLOCK);
1012 		drv_usecwait(1);
1013 		word <<= 1;
1014 		if (GETCSR(afep, CSR_SPR) & SPR_SROM_DOUT) {
1015 			word |= 1;
1016 		}
1017 		PUTCSR(afep, CSR_SPR, eeread);
1018 		drv_usecwait(1);
1019 	}
1020 
1021 	/* turn off accesses to the EEPROM */
1022 	PUTCSR(afep, CSR_SPR, eeread &~ SPR_SROM_CHIP);
1023 
1024 	/*
1025 	 * Fix up the endianness thing.  Note that the values
1026 	 * are stored in little endian format on the SROM.
1027 	 */
1028 	ptr = (uchar_t *)&word;
1029 	retval = (ptr[1] << 8) | ptr[0];
1030 	return (retval);
1031 }
1032 
1033 void
1034 afe_readsrom(afe_t *afep, unsigned romaddr, unsigned len, char *dest)
1035 {
1036 	int	i;
1037 	uint16_t	word;
1038 	uint16_t	*ptr = (uint16_t *)((void *)dest);
1039 	for (i = 0; i < len; i++) {
1040 		word = afe_readsromword(afep, romaddr + i);
1041 		*ptr = word;
1042 		ptr++;
1043 	}
1044 }
1045 
1046 void
1047 afe_getfactaddr(afe_t *afep, uchar_t *eaddr)
1048 {
1049 	afe_readsrom(afep, SROM_ENADDR, ETHERADDRL / 2, (char *)eaddr);
1050 
1051 	DBG(DMACID,
1052 	    "factory ethernet address = %02x:%02x:%02x:%02x:%02x:%02x",
1053 	    eaddr[0], eaddr[1], eaddr[2], eaddr[3], eaddr[4], eaddr[5]);
1054 }
1055 
1056 /*
1057  * MII management.
1058  */
1059 void
1060 afe_startphy(afe_t *afep)
1061 {
1062 	unsigned	phyaddr;
1063 	unsigned	bmcr;
1064 	unsigned	bmsr;
1065 	unsigned	anar;
1066 	unsigned	phyidr1;
1067 	unsigned	phyidr2;
1068 	unsigned	nosqe = 0;
1069 	int		retries;
1070 	int		fiber;
1071 	int		cnt;
1072 
1073 	/* ADMtek devices just use the PHY at address 1 */
1074 	afep->afe_phyaddr = phyaddr = 1;
1075 
1076 	phyidr1 = afe_miiread(afep, phyaddr, MII_PHYIDH);
1077 	phyidr2 = afe_miiread(afep, phyaddr, MII_PHYIDL);
1078 	if ((phyidr1 == 0x0022) &&
1079 	    ((phyidr2 & 0xfff0) ==  0x5410)) {
1080 		nosqe = 1;
1081 		/* only 983B has fiber support */
1082 		afep->afe_flags |= AFE_HASFIBER;
1083 	}
1084 	afep->afe_phyid = (phyidr1 << 16) | phyidr2;
1085 
1086 	DBG(DPHY, "phy at %d: %x,%x", phyaddr, phyidr1, phyidr2);
1087 	DBG(DPHY, "bmsr = %x", afe_miiread(afep,
1088 	    afep->afe_phyaddr, MII_STATUS));
1089 	DBG(DPHY, "anar = %x", afe_miiread(afep,
1090 	    afep->afe_phyaddr, MII_AN_ADVERT));
1091 	DBG(DPHY, "anlpar = %x", afe_miiread(afep,
1092 	    afep->afe_phyaddr, MII_AN_LPABLE));
1093 	DBG(DPHY, "aner = %x", afe_miiread(afep,
1094 	    afep->afe_phyaddr, MII_AN_EXPANSION));
1095 
1096 	DBG(DPHY, "resetting phy");
1097 
1098 	/* we reset the phy block */
1099 	afe_miiwrite(afep, phyaddr, MII_CONTROL, MII_CONTROL_RESET);
1100 	/*
1101 	 * wait for it to complete -- 500usec is still to short to
1102 	 * bother getting the system clock involved.
1103 	 */
1104 	drv_usecwait(500);
1105 	for (retries = 0; retries < 10; retries++) {
1106 		if (afe_miiread(afep, phyaddr, MII_CONTROL) &
1107 		    MII_CONTROL_RESET) {
1108 			drv_usecwait(500);
1109 			continue;
1110 		}
1111 		break;
1112 	}
1113 	if (retries == 100) {
1114 		afe_error(afep->afe_dip, "timeout waiting on phy to reset");
1115 		return;
1116 	}
1117 
1118 	DBG(DPHY, "phy reset complete");
1119 
1120 	bmsr = afe_miiread(afep, phyaddr, MII_STATUS);
1121 	anar = afe_miiread(afep, phyaddr, MII_AN_ADVERT);
1122 
1123 	anar &= ~(MII_ABILITY_100BASE_T4 |
1124 	    MII_ABILITY_100BASE_TX_FD | MII_ABILITY_100BASE_TX |
1125 	    MII_ABILITY_10BASE_T_FD | MII_ABILITY_10BASE_T);
1126 
1127 	fiber = 0;
1128 
1129 	/* if fiber is being forced, and device supports fiber... */
1130 	if (afep->afe_flags & AFE_HASFIBER) {
1131 
1132 		uint16_t	mcr;
1133 
1134 		DBG(DPHY, "device supports 100BaseFX");
1135 		mcr = afe_miiread(afep, phyaddr, PHY_MCR);
1136 		switch (afep->afe_forcefiber) {
1137 		case 0:
1138 			/* UTP Port */
1139 			DBG(DPHY, "forcing twpair");
1140 			mcr &= ~MCR_FIBER;
1141 			fiber = 0;
1142 			break;
1143 		case 1:
1144 			/* Fiber Port */
1145 			DBG(DPHY, "forcing 100BaseFX");
1146 			mcr |= MCR_FIBER;
1147 			bmcr = (MII_CONTROL_100MB | MII_CONTROL_FDUPLEX);
1148 			fiber = 1;
1149 			break;
1150 		default:
1151 			DBG(DPHY, "checking for 100BaseFX link");
1152 			/* fiber is 100 Mb FDX */
1153 			afe_miiwrite(afep, phyaddr, MII_CONTROL,
1154 			    MII_CONTROL_100MB | MII_CONTROL_FDUPLEX);
1155 			drv_usecwait(50);
1156 
1157 			mcr = afe_miiread(afep, phyaddr, PHY_MCR);
1158 			mcr |= MCR_FIBER;
1159 			afe_miiwrite(afep, phyaddr, PHY_MCR, mcr);
1160 			drv_usecwait(500);
1161 
1162 			/* if fiber is active, use it */
1163 			if ((afe_miiread(afep, phyaddr, MII_STATUS) &
1164 			    MII_STATUS_LINKUP)) {
1165 				bmcr = MII_CONTROL_100MB | MII_CONTROL_FDUPLEX;
1166 				fiber = 1;
1167 			} else {
1168 				mcr &= ~MCR_FIBER;
1169 				fiber = 0;
1170 			}
1171 			break;
1172 		}
1173 		afe_miiwrite(afep, phyaddr, PHY_MCR, mcr);
1174 		drv_usecwait(500);
1175 	}
1176 
1177 	if (fiber) {
1178 		/* fiber only supports 100FDX(?) */
1179 		bmsr &= ~(MII_STATUS_100_BASE_T4 |
1180 		    MII_STATUS_100_BASEX | MII_STATUS_10_FD | MII_STATUS_10);
1181 		bmsr |= MII_STATUS_100_BASEX_FD;
1182 	}
1183 
1184 	/* assume full support for everything to start */
1185 	afep->afe_cap_aneg = afep->afe_cap_100T4 =
1186 	    afep->afe_cap_100fdx = afep->afe_cap_100hdx =
1187 	    afep->afe_cap_10fdx = afep->afe_cap_10hdx = 1;
1188 
1189 	/* disable modes not supported in hardware */
1190 	if (!(bmsr & MII_STATUS_100_BASEX_FD)) {
1191 		afep->afe_adv_100fdx = 0;
1192 		afep->afe_cap_100fdx = 0;
1193 	}
1194 	if (!(bmsr & MII_STATUS_100_BASE_T4)) {
1195 		afep->afe_adv_100T4 = 0;
1196 		afep->afe_cap_100T4 = 0;
1197 	}
1198 	if (!(bmsr & MII_STATUS_100_BASEX)) {
1199 		afep->afe_adv_100hdx = 0;
1200 		afep->afe_cap_100hdx = 0;
1201 	}
1202 	if (!(bmsr & MII_STATUS_10_FD)) {
1203 		afep->afe_adv_10fdx = 0;
1204 		afep->afe_cap_10fdx = 0;
1205 	}
1206 	if (!(bmsr & MII_STATUS_10)) {
1207 		afep->afe_adv_10hdx = 0;
1208 		afep->afe_cap_10hdx = 0;
1209 	}
1210 	if (!(bmsr & MII_STATUS_CANAUTONEG)) {
1211 		afep->afe_adv_aneg = 0;
1212 		afep->afe_cap_aneg = 0;
1213 	}
1214 
1215 	cnt = 0;
1216 	if (afep->afe_adv_100fdx) {
1217 		anar |= MII_ABILITY_100BASE_TX_FD;
1218 		cnt++;
1219 	}
1220 	if (afep->afe_adv_100T4) {
1221 		anar |= MII_ABILITY_100BASE_T4;
1222 		cnt++;
1223 	}
1224 	if (afep->afe_adv_100hdx) {
1225 		anar |= MII_ABILITY_100BASE_TX;
1226 		cnt++;
1227 	}
1228 	if (afep->afe_adv_10fdx) {
1229 		anar |= MII_ABILITY_10BASE_T_FD;
1230 		cnt++;
1231 	}
1232 	if (afep->afe_adv_10hdx) {
1233 		anar |= MII_ABILITY_10BASE_T;
1234 		cnt++;
1235 	}
1236 
1237 	/*
1238 	 * Make certain at least one valid link mode is selected.
1239 	 */
1240 	if (!cnt) {
1241 		afe_error(afep->afe_dip, "No valid link mode selected.");
1242 		afe_error(afep->afe_dip, "Powering down PHY.");
1243 		afe_stopphy(afep);
1244 		afep->afe_linkup = LINK_STATE_DOWN;
1245 		if (afep->afe_flags & AFE_RUNNING)
1246 			afe_reportlink(afep);
1247 		return;
1248 	}
1249 
1250 	if (fiber) {
1251 		bmcr = MII_CONTROL_100MB | MII_CONTROL_FDUPLEX;
1252 	} else if ((afep->afe_adv_aneg) && (bmsr & MII_STATUS_CANAUTONEG)) {
1253 		DBG(DPHY, "using autoneg mode");
1254 		bmcr = (MII_CONTROL_ANE | MII_CONTROL_RSAN);
1255 	} else {
1256 		DBG(DPHY, "using forced mode");
1257 		if (afep->afe_adv_100fdx) {
1258 			bmcr = (MII_CONTROL_100MB | MII_CONTROL_FDUPLEX);
1259 		} else if (afep->afe_adv_100hdx) {
1260 			bmcr = MII_CONTROL_100MB;
1261 		} else if (afep->afe_adv_10fdx) {
1262 			bmcr = MII_CONTROL_FDUPLEX;
1263 		} else {
1264 			/* 10HDX */
1265 			bmcr = 0;
1266 		}
1267 	}
1268 
1269 	DBG(DPHY, "programming anar to 0x%x", anar);
1270 	afe_miiwrite(afep, phyaddr, MII_AN_ADVERT, anar);
1271 	DBG(DPHY, "programming bmcr to 0x%x", bmcr);
1272 	afe_miiwrite(afep, phyaddr, MII_CONTROL, bmcr);
1273 
1274 	if (nosqe) {
1275 		uint16_t	pilr;
1276 		/*
1277 		 * work around for errata 983B_0416 -- duplex light flashes
1278 		 * in 10 HDX.  we just disable SQE testing on the device.
1279 		 */
1280 		pilr = afe_miiread(afep, phyaddr, PHY_PILR);
1281 		pilr |= PILR_NOSQE;
1282 		afe_miiwrite(afep, phyaddr, PHY_PILR, pilr);
1283 	}
1284 
1285 	/*
1286 	 * schedule a query of the link status
1287 	 */
1288 	PUTCSR(afep, CSR_TIMER, TIMER_LOOP |
1289 	    (AFE_LINKTIMER * 1000 / TIMER_USEC));
1290 }
1291 
1292 void
1293 afe_stopphy(afe_t *afep)
1294 {
1295 	/* stop the phy timer */
1296 	PUTCSR(afep, CSR_TIMER, 0);
1297 
1298 	/*
1299 	 * phy in isolate & powerdown mode...
1300 	 */
1301 	afe_miiwrite(afep, afep->afe_phyaddr, MII_CONTROL,
1302 	    MII_CONTROL_PWRDN | MII_CONTROL_ISOLATE);
1303 
1304 	/*
1305 	 * mark the link state unknown
1306 	 */
1307 	if (!afep->afe_resetting) {
1308 		afep->afe_linkup = LINK_STATE_UNKNOWN;
1309 		afep->afe_ifspeed = 0;
1310 		afep->afe_duplex = LINK_DUPLEX_UNKNOWN;
1311 		if (afep->afe_flags & AFE_RUNNING)
1312 			afe_reportlink(afep);
1313 	}
1314 }
1315 
1316 void
1317 afe_reportlink(afe_t *afep)
1318 {
1319 	int changed = 0;
1320 
1321 	if (afep->afe_ifspeed != afep->afe_lastifspeed) {
1322 		afep->afe_lastifspeed = afep->afe_ifspeed;
1323 		changed++;
1324 	}
1325 	if (afep->afe_duplex != afep->afe_lastduplex) {
1326 		afep->afe_lastduplex = afep->afe_duplex;
1327 		changed++;
1328 	}
1329 	if (changed)
1330 		mac_link_update(afep->afe_mh, afep->afe_linkup);
1331 }
1332 
1333 void
1334 afe_checklink(afe_t *afep)
1335 {
1336 	if ((afep->afe_flags & AFE_RUNNING) == 0)
1337 		return;
1338 
1339 	if ((afep->afe_txstall_time != 0) &&
1340 	    (gethrtime() > afep->afe_txstall_time) &&
1341 	    (afep->afe_txavail != AFE_TXRING)) {
1342 		afep->afe_txstall_time = 0;
1343 		afe_error(afep->afe_dip, "TX stall detected!");
1344 		afe_resetall(afep);
1345 		return;
1346 	}
1347 
1348 	switch (AFE_MODEL(afep)) {
1349 	case MODEL_COMET:
1350 		afe_checklinkcomet(afep);
1351 		break;
1352 	case MODEL_CENTAUR:
1353 		afe_checklinkcentaur(afep);
1354 		break;
1355 	}
1356 }
1357 
1358 void
1359 afe_checklinkcomet(afe_t *afep)
1360 {
1361 	uint16_t	xciis;
1362 	int		reinit = 0;
1363 
1364 	xciis = GETCSR16(afep, CSR_XCIIS);
1365 	if (xciis & XCIIS_PDF) {
1366 		afe_error(afep->afe_dip, "Parallel detection fault detected!");
1367 	}
1368 	if (xciis & XCIIS_RF) {
1369 		afe_error(afep->afe_dip, "Remote fault detected.");
1370 	}
1371 	if (xciis & XCIIS_LFAIL) {
1372 		if (afep->afe_linkup == LINK_STATE_UP) {
1373 			reinit++;
1374 		}
1375 		afep->afe_ifspeed = 0;
1376 		afep->afe_linkup = LINK_STATE_DOWN;
1377 		afep->afe_duplex = LINK_DUPLEX_UNKNOWN;
1378 		afe_reportlink(afep);
1379 		if (reinit) {
1380 			afe_startphy(afep);
1381 		}
1382 		return;
1383 	}
1384 
1385 	afep->afe_linkup = LINK_STATE_UP;
1386 	afep->afe_ifspeed = (xciis & XCIIS_SPEED) ? 100000000 : 10000000;
1387 	if (xciis & XCIIS_DUPLEX) {
1388 		afep->afe_duplex = LINK_DUPLEX_FULL;
1389 	} else {
1390 		afep->afe_duplex = LINK_DUPLEX_HALF;
1391 	}
1392 
1393 	afe_reportlink(afep);
1394 }
1395 
1396 void
1397 afe_checklinkcentaur(afe_t *afep)
1398 {
1399 	unsigned	opmode;
1400 	int		reinit = 0;
1401 
1402 	opmode = GETCSR(afep, CSR_OPM);
1403 	if ((opmode & OPM_MODE) == OPM_MACONLY) {
1404 		DBG(DPHY, "Centaur running in MAC-only mode");
1405 		afe_checklinkmii(afep);
1406 		return;
1407 	}
1408 	DBG(DPHY, "Centaur running in single chip mode");
1409 	if ((opmode & OPM_LINK) == 0) {
1410 		if (afep->afe_linkup == LINK_STATE_UP) {
1411 			reinit++;
1412 		}
1413 		afep->afe_ifspeed = 0;
1414 		afep->afe_duplex = LINK_DUPLEX_UNKNOWN;
1415 		afep->afe_linkup = LINK_STATE_DOWN;
1416 		afe_reportlink(afep);
1417 		if (reinit) {
1418 			afe_startphy(afep);
1419 		}
1420 		return;
1421 	}
1422 
1423 	afep->afe_linkup = LINK_STATE_UP;
1424 	afep->afe_ifspeed = (opmode & OPM_SPEED) ? 100000000 : 10000000;
1425 	if (opmode & OPM_DUPLEX) {
1426 		afep->afe_duplex = LINK_DUPLEX_FULL;
1427 	} else {
1428 		afep->afe_duplex = LINK_DUPLEX_HALF;
1429 	}
1430 	afe_reportlink(afep);
1431 }
1432 
1433 void
1434 afe_checklinkmii(afe_t *afep)
1435 {
1436 	/* read MII state registers */
1437 	uint16_t	bmsr;
1438 	uint16_t	bmcr;
1439 	uint16_t	anar;
1440 	uint16_t	anlpar;
1441 	int			reinit = 0;
1442 
1443 	/* read this twice, to clear latched link state */
1444 	bmsr = afe_miiread(afep, afep->afe_phyaddr, MII_STATUS);
1445 	bmsr = afe_miiread(afep, afep->afe_phyaddr, MII_STATUS);
1446 	bmcr = afe_miiread(afep, afep->afe_phyaddr, MII_CONTROL);
1447 	anar = afe_miiread(afep, afep->afe_phyaddr, MII_AN_ADVERT);
1448 	anlpar = afe_miiread(afep, afep->afe_phyaddr, MII_AN_LPABLE);
1449 
1450 	if (bmsr & MII_STATUS_REMFAULT) {
1451 		afe_error(afep->afe_dip, "Remote fault detected.");
1452 	}
1453 	if (bmsr & MII_STATUS_JABBERING) {
1454 		afe_error(afep->afe_dip, "Jabber condition detected.");
1455 	}
1456 	if ((bmsr & MII_STATUS_LINKUP) == 0) {
1457 		/* no link */
1458 		if (afep->afe_linkup == LINK_STATE_UP) {
1459 			reinit = 1;
1460 		}
1461 		afep->afe_ifspeed = 0;
1462 		afep->afe_duplex = LINK_DUPLEX_UNKNOWN;
1463 		afep->afe_linkup = LINK_STATE_DOWN;
1464 		afe_reportlink(afep);
1465 		if (reinit) {
1466 			afe_startphy(afep);
1467 		}
1468 		return;
1469 	}
1470 
1471 	DBG(DCHATTY, "link up!");
1472 	afep->afe_linkup = LINK_STATE_UP;
1473 
1474 	if (!(bmcr & MII_CONTROL_ANE)) {
1475 		/* forced mode */
1476 		if (bmcr & MII_CONTROL_100MB) {
1477 			afep->afe_ifspeed = 100000000;
1478 		} else {
1479 			afep->afe_ifspeed = 10000000;
1480 		}
1481 		if (bmcr & MII_CONTROL_FDUPLEX) {
1482 			afep->afe_duplex = LINK_DUPLEX_FULL;
1483 		} else {
1484 			afep->afe_duplex = LINK_DUPLEX_HALF;
1485 		}
1486 	} else if ((!(bmsr & MII_STATUS_CANAUTONEG)) ||
1487 	    (!(bmsr & MII_STATUS_ANDONE))) {
1488 		afep->afe_ifspeed = 0;
1489 		afep->afe_duplex = LINK_DUPLEX_UNKNOWN;
1490 	} else if (anar & anlpar & MII_ABILITY_100BASE_TX_FD) {
1491 		afep->afe_ifspeed = 100000000;
1492 		afep->afe_duplex = LINK_DUPLEX_FULL;
1493 	} else if (anar & anlpar & MII_ABILITY_100BASE_T4) {
1494 		afep->afe_ifspeed = 100000000;
1495 		afep->afe_duplex = LINK_DUPLEX_HALF;
1496 	} else if (anar & anlpar & MII_ABILITY_100BASE_TX) {
1497 		afep->afe_ifspeed = 100000000;
1498 		afep->afe_duplex = LINK_DUPLEX_HALF;
1499 	} else if (anar & anlpar & MII_ABILITY_10BASE_T_FD) {
1500 		afep->afe_ifspeed = 10000000;
1501 		afep->afe_duplex = LINK_DUPLEX_FULL;
1502 	} else if (anar & anlpar & MII_ABILITY_10BASE_T) {
1503 		afep->afe_ifspeed = 10000000;
1504 		afep->afe_duplex = LINK_DUPLEX_HALF;
1505 	} else {
1506 		afep->afe_ifspeed = 0;
1507 		afep->afe_duplex = LINK_DUPLEX_UNKNOWN;
1508 	}
1509 
1510 	afe_reportlink(afep);
1511 }
1512 
1513 void
1514 afe_miitristate(afe_t *afep)
1515 {
1516 	uint32_t val = SPR_SROM_WRITE | SPR_MII_CTRL;
1517 
1518 	PUTCSR(afep, CSR_SPR, val);
1519 	drv_usecwait(1);
1520 	PUTCSR(afep, CSR_SPR, val | SPR_MII_CLOCK);
1521 	drv_usecwait(1);
1522 }
1523 
1524 void
1525 afe_miiwritebit(afe_t *afep, uint8_t bit)
1526 {
1527 	uint32_t val = bit ? SPR_MII_DOUT : 0;
1528 
1529 	PUTCSR(afep, CSR_SPR, val);
1530 	drv_usecwait(1);
1531 	PUTCSR(afep, CSR_SPR, val | SPR_MII_CLOCK);
1532 	drv_usecwait(1);
1533 }
1534 
1535 uint8_t
1536 afe_miireadbit(afe_t *afep)
1537 {
1538 	uint32_t	val = SPR_MII_CTRL | SPR_SROM_READ;
1539 	uint8_t		bit;
1540 
1541 	PUTCSR(afep, CSR_SPR, val);
1542 	drv_usecwait(1);
1543 	bit = (GETCSR(afep, CSR_SPR) & SPR_MII_DIN) ? 1 : 0;
1544 	PUTCSR(afep, CSR_SPR, val | SPR_MII_CLOCK);
1545 	drv_usecwait(1);
1546 	return (bit);
1547 }
1548 
1549 uint16_t
1550 afe_miiread(afe_t *afep, int phy, int reg)
1551 {
1552 	/*
1553 	 * ADMtek bugs ignore address decode bits -- they only
1554 	 * support PHY at 1.
1555 	 */
1556 	if (phy != 1) {
1557 		return (0xffff);
1558 	}
1559 	switch (AFE_MODEL(afep)) {
1560 	case MODEL_COMET:
1561 		return (afe_miireadcomet(afep, phy, reg));
1562 	case MODEL_CENTAUR:
1563 		return (afe_miireadgeneral(afep, phy, reg));
1564 	}
1565 	return (0xffff);
1566 }
1567 
1568 uint16_t
1569 afe_miireadgeneral(afe_t *afep, int phy, int reg)
1570 {
1571 	uint16_t	value = 0;
1572 	int		i;
1573 
1574 	/* send the 32 bit preamble */
1575 	for (i = 0; i < 32; i++) {
1576 		afe_miiwritebit(afep, 1);
1577 	}
1578 
1579 	/* send the start code - 01b */
1580 	afe_miiwritebit(afep, 0);
1581 	afe_miiwritebit(afep, 1);
1582 
1583 	/* send the opcode for read, - 10b */
1584 	afe_miiwritebit(afep, 1);
1585 	afe_miiwritebit(afep, 0);
1586 
1587 	/* next we send the 5 bit phy address */
1588 	for (i = 0x10; i > 0; i >>= 1) {
1589 		afe_miiwritebit(afep, (phy & i) ? 1 : 0);
1590 	}
1591 
1592 	/* the 5 bit register address goes next */
1593 	for (i = 0x10; i > 0; i >>= 1) {
1594 		afe_miiwritebit(afep, (reg & i) ? 1 : 0);
1595 	}
1596 
1597 	/* turnaround - tristate followed by logic 0 */
1598 	afe_miitristate(afep);
1599 	afe_miiwritebit(afep, 0);
1600 
1601 	/* read the 16 bit register value */
1602 	for (i = 0x8000; i > 0; i >>= 1) {
1603 		value <<= 1;
1604 		value |= afe_miireadbit(afep);
1605 	}
1606 	afe_miitristate(afep);
1607 	return (value);
1608 }
1609 
1610 uint16_t
1611 afe_miireadcomet(afe_t *afep, int phy, int reg)
1612 {
1613 	if (phy != 1) {
1614 		return (0xffff);
1615 	}
1616 	switch (reg) {
1617 	case MII_CONTROL:
1618 		reg = CSR_BMCR;
1619 		break;
1620 	case MII_STATUS:
1621 		reg = CSR_BMSR;
1622 		break;
1623 	case MII_PHYIDH:
1624 		reg = CSR_PHYIDR1;
1625 		break;
1626 	case MII_PHYIDL:
1627 		reg = CSR_PHYIDR2;
1628 		break;
1629 	case MII_AN_ADVERT:
1630 		reg = CSR_ANAR;
1631 		break;
1632 	case MII_AN_LPABLE:
1633 		reg = CSR_ANLPAR;
1634 		break;
1635 	case MII_AN_EXPANSION:
1636 		reg = CSR_ANER;
1637 		break;
1638 	default:
1639 		return (0);
1640 	}
1641 	return (GETCSR16(afep, reg) & 0xFFFF);
1642 }
1643 
1644 void
1645 afe_miiwrite(afe_t *afep, int phy, int reg, uint16_t val)
1646 {
1647 	/*
1648 	 * ADMtek bugs ignore address decode bits -- they only
1649 	 * support PHY at 1.
1650 	 */
1651 	if (phy != 1) {
1652 		return;
1653 	}
1654 	switch (AFE_MODEL(afep)) {
1655 	case MODEL_COMET:
1656 		afe_miiwritecomet(afep, phy, reg, val);
1657 		break;
1658 	case MODEL_CENTAUR:
1659 		afe_miiwritegeneral(afep, phy, reg, val);
1660 		break;
1661 	}
1662 }
1663 
1664 void
1665 afe_miiwritegeneral(afe_t *afep, int phy, int reg, uint16_t val)
1666 {
1667 	int i;
1668 
1669 	/* send the 32 bit preamble */
1670 	for (i = 0; i < 32; i++) {
1671 		afe_miiwritebit(afep, 1);
1672 	}
1673 
1674 	/* send the start code - 01b */
1675 	afe_miiwritebit(afep, 0);
1676 	afe_miiwritebit(afep, 1);
1677 
1678 	/* send the opcode for write, - 01b */
1679 	afe_miiwritebit(afep, 0);
1680 	afe_miiwritebit(afep, 1);
1681 
1682 	/* next we send the 5 bit phy address */
1683 	for (i = 0x10; i > 0; i >>= 1) {
1684 		afe_miiwritebit(afep, (phy & i) ? 1 : 0);
1685 	}
1686 
1687 	/* the 5 bit register address goes next */
1688 	for (i = 0x10; i > 0; i >>= 1) {
1689 		afe_miiwritebit(afep, (reg & i) ? 1 : 0);
1690 	}
1691 
1692 	/* turnaround - tristate followed by logic 0 */
1693 	afe_miitristate(afep);
1694 	afe_miiwritebit(afep, 0);
1695 
1696 	/* now write out our data (16 bits) */
1697 	for (i = 0x8000; i > 0; i >>= 1) {
1698 		afe_miiwritebit(afep, (val & i) ? 1 : 0);
1699 	}
1700 
1701 	/* idle mode */
1702 	afe_miitristate(afep);
1703 }
1704 
1705 void
1706 afe_miiwritecomet(afe_t *afep, int phy, int reg, uint16_t val)
1707 {
1708 	if (phy != 1) {
1709 		return;
1710 	}
1711 	switch (reg) {
1712 	case MII_CONTROL:
1713 		reg = CSR_BMCR;
1714 		break;
1715 	case MII_STATUS:
1716 		reg = CSR_BMSR;
1717 		break;
1718 	case MII_PHYIDH:
1719 		reg = CSR_PHYIDR1;
1720 		break;
1721 	case MII_PHYIDL:
1722 		reg = CSR_PHYIDR2;
1723 		break;
1724 	case MII_AN_ADVERT:
1725 		reg = CSR_ANAR;
1726 		break;
1727 	case MII_AN_LPABLE:
1728 		reg = CSR_ANLPAR;
1729 		break;
1730 	case MII_AN_EXPANSION:
1731 		reg = CSR_ANER;
1732 		break;
1733 	default:
1734 		return;
1735 	}
1736 	PUTCSR16(afep, reg, val);
1737 }
1738 
1739 int
1740 afe_m_start(void *arg)
1741 {
1742 	afe_t	*afep = arg;
1743 
1744 	/* grab exclusive access to the card */
1745 	mutex_enter(&afep->afe_intrlock);
1746 	mutex_enter(&afep->afe_xmtlock);
1747 
1748 	afe_startall(afep);
1749 	afep->afe_flags |= AFE_RUNNING;
1750 
1751 	mutex_exit(&afep->afe_xmtlock);
1752 	mutex_exit(&afep->afe_intrlock);
1753 	return (0);
1754 }
1755 
1756 void
1757 afe_m_stop(void *arg)
1758 {
1759 	afe_t	*afep = arg;
1760 
1761 	/* exclusive access to the hardware! */
1762 	mutex_enter(&afep->afe_intrlock);
1763 	mutex_enter(&afep->afe_xmtlock);
1764 
1765 	afe_stopall(afep);
1766 	afep->afe_flags &= ~AFE_RUNNING;
1767 
1768 	mutex_exit(&afep->afe_xmtlock);
1769 	mutex_exit(&afep->afe_intrlock);
1770 }
1771 
1772 void
1773 afe_startmac(afe_t *afep)
1774 {
1775 	/* verify exclusive access to the card */
1776 	ASSERT(mutex_owned(&afep->afe_intrlock));
1777 	ASSERT(mutex_owned(&afep->afe_xmtlock));
1778 
1779 	/* start the card */
1780 	SETBIT(afep, CSR_NAR, NAR_TX_ENABLE | NAR_RX_ENABLE);
1781 
1782 	if (afep->afe_txavail != AFE_TXRING)
1783 		PUTCSR(afep, CSR_TDR, 0);
1784 
1785 	/* tell the mac that we are ready to go! */
1786 	if (afep->afe_flags & AFE_RUNNING)
1787 		mac_tx_update(afep->afe_mh);
1788 }
1789 
1790 void
1791 afe_stopmac(afe_t *afep)
1792 {
1793 	int		i;
1794 
1795 	/* exclusive access to the hardware! */
1796 	ASSERT(mutex_owned(&afep->afe_intrlock));
1797 	ASSERT(mutex_owned(&afep->afe_xmtlock));
1798 
1799 	CLRBIT(afep, CSR_NAR, NAR_TX_ENABLE | NAR_RX_ENABLE);
1800 
1801 	/*
1802 	 * A 1518 byte frame at 10Mbps takes about 1.2 msec to drain.
1803 	 * We just add up to the nearest msec (2), which should be
1804 	 * plenty to complete.
1805 	 *
1806 	 * Note that some chips never seem to indicate the transition to
1807 	 * the stopped state properly.  Experience shows that we can safely
1808 	 * proceed anyway, after waiting the requisite timeout.
1809 	 */
1810 	for (i = 2000; i != 0; i -= 10) {
1811 		if ((GETCSR(afep, CSR_SR) & (SR_TX_STATE | SR_RX_STATE)) == 0)
1812 			break;
1813 		drv_usecwait(10);
1814 	}
1815 
1816 	/* prevent an interrupt */
1817 	PUTCSR(afep, CSR_SR2, INT_RXSTOPPED | INT_TXSTOPPED);
1818 }
1819 
1820 void
1821 afe_resetrings(afe_t *afep)
1822 {
1823 	int	i;
1824 
1825 	/* now we need to reset the pointers... */
1826 	PUTCSR(afep, CSR_RDB, 0);
1827 	PUTCSR(afep, CSR_TDB, 0);
1828 
1829 	/* reset the descriptor ring pointers */
1830 	afep->afe_rxhead = 0;
1831 	afep->afe_txreclaim = 0;
1832 	afep->afe_txsend = 0;
1833 	afep->afe_txavail = AFE_TXRING;
1834 
1835 	/* set up transmit descriptor ring */
1836 	for (i = 0; i < AFE_TXRING; i++) {
1837 		afe_desc_t	*tmdp = &afep->afe_txdescp[i];
1838 		unsigned	control = 0;
1839 		if (i == (AFE_TXRING - 1)) {
1840 			control |= TXCTL_ENDRING;
1841 		}
1842 		PUTTXDESC(afep, tmdp->desc_status, 0);
1843 		PUTTXDESC(afep, tmdp->desc_control, control);
1844 		PUTTXDESC(afep, tmdp->desc_buffer1, 0);
1845 		PUTTXDESC(afep, tmdp->desc_buffer2, 0);
1846 		SYNCTXDESC(afep, i, DDI_DMA_SYNC_FORDEV);
1847 	}
1848 	PUTCSR(afep, CSR_TDB, afep->afe_txdesc_paddr);
1849 
1850 	/* make the receive buffers available */
1851 	for (i = 0; i < AFE_RXRING; i++) {
1852 		afe_rxbuf_t	*rxb = afep->afe_rxbufs[i];
1853 		afe_desc_t	*rmdp = &afep->afe_rxdescp[i];
1854 		unsigned	control;
1855 
1856 		control = AFE_BUFSZ & RXCTL_BUFLEN1;
1857 		if (i == (AFE_RXRING - 1)) {
1858 			control |= RXCTL_ENDRING;
1859 		}
1860 		PUTRXDESC(afep, rmdp->desc_buffer1, rxb->rxb_paddr);
1861 		PUTRXDESC(afep, rmdp->desc_buffer2, 0);
1862 		PUTRXDESC(afep, rmdp->desc_control, control);
1863 		PUTRXDESC(afep, rmdp->desc_status, RXSTAT_OWN);
1864 		SYNCRXDESC(afep, i, DDI_DMA_SYNC_FORDEV);
1865 	}
1866 	PUTCSR(afep, CSR_RDB, afep->afe_rxdesc_paddr);
1867 }
1868 
1869 void
1870 afe_stopall(afe_t *afep)
1871 {
1872 	afe_disableinterrupts(afep);
1873 
1874 	afe_stopmac(afep);
1875 
1876 	/* stop the phy */
1877 	afe_stopphy(afep);
1878 }
1879 
1880 void
1881 afe_startall(afe_t *afep)
1882 {
1883 	ASSERT(mutex_owned(&afep->afe_intrlock));
1884 	ASSERT(mutex_owned(&afep->afe_xmtlock));
1885 
1886 	/* make sure interrupts are disabled to begin */
1887 	afe_disableinterrupts(afep);
1888 
1889 	/* initialize the chip */
1890 	(void) afe_initialize(afep);
1891 
1892 	/* now we can enable interrupts */
1893 	afe_enableinterrupts(afep);
1894 
1895 	/* start up the phy */
1896 	afe_startphy(afep);
1897 
1898 	/* start up the mac */
1899 	afe_startmac(afep);
1900 }
1901 
1902 void
1903 afe_resetall(afe_t *afep)
1904 {
1905 	afep->afe_resetting = B_TRUE;
1906 	afe_stopall(afep);
1907 	afep->afe_resetting = B_FALSE;
1908 	afe_startall(afep);
1909 }
1910 
1911 afe_txbuf_t *
1912 afe_alloctxbuf(afe_t *afep)
1913 {
1914 	ddi_dma_cookie_t	dmac;
1915 	unsigned		ncookies;
1916 	afe_txbuf_t		*txb;
1917 	size_t			len;
1918 
1919 	txb = kmem_zalloc(sizeof (*txb), KM_SLEEP);
1920 
1921 	if (ddi_dma_alloc_handle(afep->afe_dip, &afe_dma_txattr,
1922 	    DDI_DMA_SLEEP, NULL, &txb->txb_dmah) != DDI_SUCCESS) {
1923 		return (NULL);
1924 	}
1925 
1926 	if (ddi_dma_mem_alloc(txb->txb_dmah, AFE_BUFSZ, &afe_bufattr,
1927 	    DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL, &txb->txb_buf, &len,
1928 	    &txb->txb_acch) != DDI_SUCCESS) {
1929 		return (NULL);
1930 	}
1931 	if (ddi_dma_addr_bind_handle(txb->txb_dmah, NULL, txb->txb_buf,
1932 	    len, DDI_DMA_WRITE | DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL,
1933 	    &dmac, &ncookies) != DDI_DMA_MAPPED) {
1934 		return (NULL);
1935 	}
1936 	txb->txb_paddr = dmac.dmac_address;
1937 
1938 	return (txb);
1939 }
1940 
1941 void
1942 afe_destroytxbuf(afe_txbuf_t *txb)
1943 {
1944 	if (txb != NULL) {
1945 		if (txb->txb_paddr)
1946 			(void) ddi_dma_unbind_handle(txb->txb_dmah);
1947 		if (txb->txb_acch)
1948 			ddi_dma_mem_free(&txb->txb_acch);
1949 		if (txb->txb_dmah)
1950 			ddi_dma_free_handle(&txb->txb_dmah);
1951 		kmem_free(txb, sizeof (*txb));
1952 	}
1953 }
1954 
1955 afe_rxbuf_t *
1956 afe_allocrxbuf(afe_t *afep)
1957 {
1958 	afe_rxbuf_t		*rxb;
1959 	size_t			len;
1960 	unsigned		ccnt;
1961 	ddi_dma_cookie_t	dmac;
1962 
1963 	rxb = kmem_zalloc(sizeof (*rxb), KM_SLEEP);
1964 
1965 	if (ddi_dma_alloc_handle(afep->afe_dip, &afe_dma_attr,
1966 	    DDI_DMA_SLEEP, NULL, &rxb->rxb_dmah) != DDI_SUCCESS) {
1967 		kmem_free(rxb, sizeof (*rxb));
1968 		return (NULL);
1969 	}
1970 	if (ddi_dma_mem_alloc(rxb->rxb_dmah, AFE_BUFSZ, &afe_bufattr,
1971 	    DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL, &rxb->rxb_buf, &len,
1972 	    &rxb->rxb_acch) != DDI_SUCCESS) {
1973 		ddi_dma_free_handle(&rxb->rxb_dmah);
1974 		kmem_free(rxb, sizeof (*rxb));
1975 		return (NULL);
1976 	}
1977 	if (ddi_dma_addr_bind_handle(rxb->rxb_dmah, NULL, rxb->rxb_buf, len,
1978 	    DDI_DMA_READ | DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL, &dmac,
1979 	    &ccnt) != DDI_DMA_MAPPED) {
1980 		ddi_dma_mem_free(&rxb->rxb_acch);
1981 		ddi_dma_free_handle(&rxb->rxb_dmah);
1982 		kmem_free(rxb, sizeof (*rxb));
1983 		return (NULL);
1984 	}
1985 	rxb->rxb_paddr = dmac.dmac_address;
1986 
1987 	return (rxb);
1988 }
1989 
1990 void
1991 afe_destroyrxbuf(afe_rxbuf_t *rxb)
1992 {
1993 	if (rxb) {
1994 		(void) ddi_dma_unbind_handle(rxb->rxb_dmah);
1995 		ddi_dma_mem_free(&rxb->rxb_acch);
1996 		ddi_dma_free_handle(&rxb->rxb_dmah);
1997 		kmem_free(rxb, sizeof (*rxb));
1998 	}
1999 }
2000 
2001 /*
2002  * Allocate receive resources.
2003  */
2004 int
2005 afe_allocrxring(afe_t *afep)
2006 {
2007 	int			rval;
2008 	int			i;
2009 	size_t			size;
2010 	size_t			len;
2011 	ddi_dma_cookie_t	dmac;
2012 	unsigned		ncookies;
2013 	caddr_t			kaddr;
2014 
2015 	size = AFE_RXRING * sizeof (afe_desc_t);
2016 
2017 	rval = ddi_dma_alloc_handle(afep->afe_dip, &afe_dma_attr,
2018 	    DDI_DMA_SLEEP, NULL, &afep->afe_rxdesc_dmah);
2019 	if (rval != DDI_SUCCESS) {
2020 		afe_error(afep->afe_dip,
2021 		    "unable to allocate DMA handle for rx descriptors");
2022 		return (DDI_FAILURE);
2023 	}
2024 
2025 	rval = ddi_dma_mem_alloc(afep->afe_rxdesc_dmah, size, &afe_devattr,
2026 	    DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &kaddr, &len,
2027 	    &afep->afe_rxdesc_acch);
2028 	if (rval != DDI_SUCCESS) {
2029 		afe_error(afep->afe_dip,
2030 		    "unable to allocate DMA memory for rx descriptors");
2031 		return (DDI_FAILURE);
2032 	}
2033 
2034 	rval = ddi_dma_addr_bind_handle(afep->afe_rxdesc_dmah, NULL, kaddr,
2035 	    size, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
2036 	    &dmac, &ncookies);
2037 	if (rval != DDI_DMA_MAPPED) {
2038 		afe_error(afep->afe_dip,
2039 		    "unable to bind DMA for rx descriptors");
2040 		return (DDI_FAILURE);
2041 	}
2042 
2043 	/* because of afe_dma_attr */
2044 	ASSERT(ncookies == 1);
2045 
2046 	/* we take the 32-bit physical address out of the cookie */
2047 	afep->afe_rxdesc_paddr = dmac.dmac_address;
2048 	afep->afe_rxdescp = (void *)kaddr;
2049 
2050 	/* allocate buffer pointers (not the buffers themselves, yet) */
2051 	afep->afe_rxbufs = kmem_zalloc(AFE_RXRING * sizeof (afe_rxbuf_t *),
2052 	    KM_SLEEP);
2053 
2054 	/* now allocate rx buffers */
2055 	for (i = 0; i < AFE_RXRING; i++) {
2056 		afe_rxbuf_t *rxb = afe_allocrxbuf(afep);
2057 		if (rxb == NULL)
2058 			return (DDI_FAILURE);
2059 		afep->afe_rxbufs[i] = rxb;
2060 	}
2061 
2062 	return (DDI_SUCCESS);
2063 }
2064 
2065 /*
2066  * Allocate transmit resources.
2067  */
2068 int
2069 afe_alloctxring(afe_t *afep)
2070 {
2071 	int			rval;
2072 	int			i;
2073 	size_t			size;
2074 	size_t			len;
2075 	ddi_dma_cookie_t	dmac;
2076 	unsigned		ncookies;
2077 	caddr_t			kaddr;
2078 
2079 	size = AFE_TXRING * sizeof (afe_desc_t);
2080 
2081 	rval = ddi_dma_alloc_handle(afep->afe_dip, &afe_dma_attr,
2082 	    DDI_DMA_SLEEP, NULL, &afep->afe_txdesc_dmah);
2083 	if (rval != DDI_SUCCESS) {
2084 		afe_error(afep->afe_dip,
2085 		    "unable to allocate DMA handle for tx descriptors");
2086 		return (DDI_FAILURE);
2087 	}
2088 
2089 	rval = ddi_dma_mem_alloc(afep->afe_txdesc_dmah, size, &afe_devattr,
2090 	    DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &kaddr, &len,
2091 	    &afep->afe_txdesc_acch);
2092 	if (rval != DDI_SUCCESS) {
2093 		afe_error(afep->afe_dip,
2094 		    "unable to allocate DMA memory for tx descriptors");
2095 		return (DDI_FAILURE);
2096 	}
2097 
2098 	rval = ddi_dma_addr_bind_handle(afep->afe_txdesc_dmah, NULL, kaddr,
2099 	    size, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
2100 	    &dmac, &ncookies);
2101 	if (rval != DDI_DMA_MAPPED) {
2102 		afe_error(afep->afe_dip,
2103 		    "unable to bind DMA for tx descriptors");
2104 		return (DDI_FAILURE);
2105 	}
2106 
2107 	/* because of afe_dma_attr */
2108 	ASSERT(ncookies == 1);
2109 
2110 	/* we take the 32-bit physical address out of the cookie */
2111 	afep->afe_txdesc_paddr = dmac.dmac_address;
2112 	afep->afe_txdescp = (void *)kaddr;
2113 
2114 	/* allocate buffer pointers (not the buffers themselves, yet) */
2115 	afep->afe_txbufs = kmem_zalloc(AFE_TXRING * sizeof (afe_txbuf_t *),
2116 	    KM_SLEEP);
2117 
2118 	/* now allocate tx buffers */
2119 	for (i = 0; i < AFE_TXRING; i++) {
2120 		afe_txbuf_t *txb = afe_alloctxbuf(afep);
2121 		if (txb == NULL)
2122 			return (DDI_FAILURE);
2123 		afep->afe_txbufs[i] = txb;
2124 	}
2125 
2126 	return (DDI_SUCCESS);
2127 }
2128 
2129 void
2130 afe_freerxring(afe_t *afep)
2131 {
2132 	int		i;
2133 
2134 	for (i = 0; i < AFE_RXRING; i++) {
2135 		afe_destroyrxbuf(afep->afe_rxbufs[i]);
2136 	}
2137 
2138 	if (afep->afe_rxbufs) {
2139 		kmem_free(afep->afe_rxbufs,
2140 		    AFE_RXRING * sizeof (afe_rxbuf_t *));
2141 	}
2142 
2143 	if (afep->afe_rxdesc_paddr)
2144 		(void) ddi_dma_unbind_handle(afep->afe_rxdesc_dmah);
2145 	if (afep->afe_rxdesc_acch)
2146 		ddi_dma_mem_free(&afep->afe_rxdesc_acch);
2147 	if (afep->afe_rxdesc_dmah)
2148 		ddi_dma_free_handle(&afep->afe_rxdesc_dmah);
2149 }
2150 
2151 void
2152 afe_freetxring(afe_t *afep)
2153 {
2154 	int			i;
2155 
2156 	for (i = 0; i < AFE_TXRING; i++) {
2157 		afe_destroytxbuf(afep->afe_txbufs[i]);
2158 	}
2159 
2160 	if (afep->afe_txbufs) {
2161 		kmem_free(afep->afe_txbufs,
2162 		    AFE_TXRING * sizeof (afe_txbuf_t *));
2163 	}
2164 	if (afep->afe_txdesc_paddr)
2165 		(void) ddi_dma_unbind_handle(afep->afe_txdesc_dmah);
2166 	if (afep->afe_txdesc_acch)
2167 		ddi_dma_mem_free(&afep->afe_txdesc_acch);
2168 	if (afep->afe_txdesc_dmah)
2169 		ddi_dma_free_handle(&afep->afe_txdesc_dmah);
2170 }
2171 
2172 /*
2173  * Interrupt service routine.
2174  */
2175 unsigned
2176 afe_intr(caddr_t arg)
2177 {
2178 	afe_t		*afep = (void *)arg;
2179 	uint32_t	status;
2180 	mblk_t		*mp = NULL;
2181 
2182 	mutex_enter(&afep->afe_intrlock);
2183 
2184 	if (afep->afe_flags & AFE_SUSPENDED) {
2185 		/* we cannot receive interrupts! */
2186 		mutex_exit(&afep->afe_intrlock);
2187 		return (DDI_INTR_UNCLAIMED);
2188 	}
2189 
2190 	/* check interrupt status bits, did we interrupt? */
2191 	status = GETCSR(afep, CSR_SR2) & INT_ALL;
2192 
2193 	if (status == 0) {
2194 		KIOIP->intrs[KSTAT_INTR_SPURIOUS]++;
2195 		mutex_exit(&afep->afe_intrlock);
2196 		return (DDI_INTR_UNCLAIMED);
2197 	}
2198 	/* ack the interrupt */
2199 	PUTCSR(afep, CSR_SR2, status);
2200 	KIOIP->intrs[KSTAT_INTR_HARD]++;
2201 
2202 	if (!(afep->afe_flags & AFE_RUNNING)) {
2203 		/* not running, don't touch anything */
2204 		mutex_exit(&afep->afe_intrlock);
2205 		return (DDI_INTR_CLAIMED);
2206 	}
2207 
2208 	if (status & (INT_RXOK|INT_RXNOBUF)) {
2209 		/* receive packets */
2210 		mp = afe_receive(afep);
2211 		if (status & INT_RXNOBUF)
2212 			PUTCSR(afep, CSR_RDR, 0);	/* wake up chip */
2213 	}
2214 
2215 	if (status & INT_TXOK) {
2216 		/* transmit completed */
2217 		mutex_enter(&afep->afe_xmtlock);
2218 		afe_reclaim(afep);
2219 		mutex_exit(&afep->afe_xmtlock);
2220 	}
2221 
2222 	if (status & (INT_LINKCHG|INT_TIMER)) {
2223 		mutex_enter(&afep->afe_xmtlock);
2224 		afe_checklink(afep);
2225 		mutex_exit(&afep->afe_xmtlock);
2226 	}
2227 
2228 	if (status & (INT_RXSTOPPED|INT_TXSTOPPED|
2229 	    INT_RXJABBER|INT_TXJABBER|INT_TXUNDERFLOW)) {
2230 
2231 		if (status & (INT_RXJABBER | INT_TXJABBER)) {
2232 			afep->afe_jabber++;
2233 		}
2234 		DBG(DWARN, "resetting mac, status %x", status);
2235 		mutex_enter(&afep->afe_xmtlock);
2236 		afe_resetall(afep);
2237 		mutex_exit(&afep->afe_xmtlock);
2238 	}
2239 
2240 	if (status & INT_BUSERR) {
2241 		switch (GETCSR(afep, CSR_SR) & SR_BERR_TYPE) {
2242 		case SR_BERR_PARITY:
2243 			afe_error(afep->afe_dip, "PCI parity error");
2244 			break;
2245 		case SR_BERR_TARGET_ABORT:
2246 			afe_error(afep->afe_dip, "PCI target abort");
2247 			break;
2248 		case SR_BERR_MASTER_ABORT:
2249 			afe_error(afep->afe_dip, "PCI master abort");
2250 			break;
2251 		default:
2252 			afe_error(afep->afe_dip, "Unknown PCI error");
2253 			break;
2254 		}
2255 
2256 		/* reset the chip in an attempt to fix things */
2257 		mutex_enter(&afep->afe_xmtlock);
2258 		afe_resetall(afep);
2259 		mutex_exit(&afep->afe_xmtlock);
2260 	}
2261 
2262 	mutex_exit(&afep->afe_intrlock);
2263 
2264 	/*
2265 	 * Send up packets.  We do this outside of the intrlock.
2266 	 */
2267 	if (mp) {
2268 		mac_rx(afep->afe_mh, NULL, mp);
2269 	}
2270 
2271 	return (DDI_INTR_CLAIMED);
2272 }
2273 
2274 void
2275 afe_enableinterrupts(afe_t *afep)
2276 {
2277 	unsigned mask = INT_WANTED;
2278 
2279 	if (afep->afe_wantw)
2280 		mask |= INT_TXOK;
2281 
2282 	PUTCSR(afep, CSR_IER2, mask);
2283 
2284 	if (AFE_MODEL(afep) == MODEL_COMET) {
2285 		/*
2286 		 * On the Comet, this is the internal transceiver
2287 		 * interrupt.  We program the Comet's built-in PHY to
2288 		 * enable certain interrupts.
2289 		 */
2290 		PUTCSR16(afep, CSR_XIE, XIE_LDE | XIE_ANCE);
2291 	}
2292 }
2293 
2294 void
2295 afe_disableinterrupts(afe_t *afep)
2296 {
2297 	/* disable further interrupts */
2298 	PUTCSR(afep, CSR_IER2, INT_NONE);
2299 
2300 	/* clear any pending interrupts */
2301 	PUTCSR(afep, CSR_SR2, INT_ALL);
2302 }
2303 
2304 boolean_t
2305 afe_send(afe_t *afep, mblk_t *mp)
2306 {
2307 	size_t			len;
2308 	afe_txbuf_t		*txb;
2309 	afe_desc_t		*tmd;
2310 	uint32_t		control;
2311 	int			txsend;
2312 
2313 	ASSERT(mutex_owned(&afep->afe_xmtlock));
2314 	ASSERT(mp != NULL);
2315 
2316 	len = msgsize(mp);
2317 	if (len > ETHERVLANMTU) {
2318 		DBG(DXMIT, "frame too long: %d", len);
2319 		afep->afe_macxmt_errors++;
2320 		freemsg(mp);
2321 		return (B_TRUE);
2322 	}
2323 
2324 	if (afep->afe_txavail < AFE_TXRECLAIM)
2325 		afe_reclaim(afep);
2326 
2327 	if (afep->afe_txavail == 0) {
2328 		/* no more tmds */
2329 		afep->afe_wantw = B_TRUE;
2330 		/* enable TX interrupt */
2331 		afe_enableinterrupts(afep);
2332 		return (B_FALSE);
2333 	}
2334 
2335 	txsend = afep->afe_txsend;
2336 
2337 	/*
2338 	 * For simplicity, we just do a copy into a preallocated
2339 	 * DMA buffer.
2340 	 */
2341 
2342 	txb = afep->afe_txbufs[txsend];
2343 	mcopymsg(mp, txb->txb_buf);	/* frees mp! */
2344 
2345 	/*
2346 	 * Statistics.
2347 	 */
2348 	afep->afe_opackets++;
2349 	afep->afe_obytes += len;
2350 	if (txb->txb_buf[0] & 0x1) {
2351 		if (bcmp(txb->txb_buf, afe_broadcast, ETHERADDRL) != 0)
2352 			afep->afe_multixmt++;
2353 		else
2354 			afep->afe_brdcstxmt++;
2355 	}
2356 
2357 	/* note len is already known to be a small unsigned */
2358 	control = len | TXCTL_FIRST | TXCTL_LAST | TXCTL_INTCMPLTE;
2359 
2360 	if (txsend == (AFE_TXRING - 1))
2361 		control |= TXCTL_ENDRING;
2362 
2363 	tmd = &afep->afe_txdescp[txsend];
2364 
2365 	SYNCTXBUF(txb, len, DDI_DMA_SYNC_FORDEV);
2366 	PUTTXDESC(afep, tmd->desc_control, control);
2367 	PUTTXDESC(afep, tmd->desc_buffer1, txb->txb_paddr);
2368 	PUTTXDESC(afep, tmd->desc_buffer2, 0);
2369 	PUTTXDESC(afep, tmd->desc_status, TXSTAT_OWN);
2370 	/* sync the descriptor out to the device */
2371 	SYNCTXDESC(afep, txsend, DDI_DMA_SYNC_FORDEV);
2372 
2373 	/*
2374 	 * Note the new values of txavail and txsend.
2375 	 */
2376 	afep->afe_txavail--;
2377 	afep->afe_txsend = (txsend + 1) % AFE_TXRING;
2378 
2379 	/*
2380 	 * It should never, ever take more than 5 seconds to drain
2381 	 * the ring.  If it happens, then we are stuck!
2382 	 */
2383 	afep->afe_txstall_time = gethrtime() + (5 * 1000000000ULL);
2384 
2385 	/*
2386 	 * wake up the chip ... inside the lock to protect against DR suspend,
2387 	 * etc.
2388 	 */
2389 	PUTCSR(afep, CSR_TDR, 0);
2390 
2391 	return (B_TRUE);
2392 }
2393 
2394 /*
2395  * Reclaim buffers that have completed transmission.
2396  */
2397 void
2398 afe_reclaim(afe_t *afep)
2399 {
2400 	afe_desc_t	*tmdp;
2401 
2402 	while (afep->afe_txavail != AFE_TXRING) {
2403 		uint32_t	status;
2404 		uint32_t	control;
2405 		int		index = afep->afe_txreclaim;
2406 
2407 		tmdp = &afep->afe_txdescp[index];
2408 
2409 		/* sync it before we read it */
2410 		SYNCTXDESC(afep, index, DDI_DMA_SYNC_FORKERNEL);
2411 
2412 		control = GETTXDESC(afep, tmdp->desc_control);
2413 		status = GETTXDESC(afep, tmdp->desc_status);
2414 
2415 		if (status & TXSTAT_OWN) {
2416 			/* chip is still working on it, we're done */
2417 			break;
2418 		}
2419 
2420 		afep->afe_txavail++;
2421 		afep->afe_txreclaim = (index + 1) % AFE_TXRING;
2422 
2423 		/* in the most common successful case, all bits are clear */
2424 		if (status == 0)
2425 			continue;
2426 
2427 		if ((control & TXCTL_LAST) == 0)
2428 			continue;
2429 
2430 		if (status & TXSTAT_TXERR) {
2431 			afep->afe_errxmt++;
2432 
2433 			if (status & TXSTAT_JABBER) {
2434 				/* transmit jabber timeout */
2435 				afep->afe_macxmt_errors++;
2436 			}
2437 			if (status &
2438 			    (TXSTAT_CARRLOST | TXSTAT_NOCARR)) {
2439 				afep->afe_carrier_errors++;
2440 			}
2441 			if (status & TXSTAT_UFLOW) {
2442 				afep->afe_underflow++;
2443 			}
2444 			if (status & TXSTAT_LATECOL) {
2445 				afep->afe_tx_late_collisions++;
2446 			}
2447 			if (status & TXSTAT_EXCOLL) {
2448 				afep->afe_ex_collisions++;
2449 				afep->afe_collisions += 16;
2450 			}
2451 		}
2452 
2453 		if (status & TXSTAT_DEFER) {
2454 			afep->afe_defer_xmts++;
2455 		}
2456 
2457 		/* collision counting */
2458 		if (TXCOLLCNT(status) == 1) {
2459 			afep->afe_collisions++;
2460 			afep->afe_first_collisions++;
2461 		} else if (TXCOLLCNT(status)) {
2462 			afep->afe_collisions += TXCOLLCNT(status);
2463 			afep->afe_multi_collisions += TXCOLLCNT(status);
2464 		}
2465 	}
2466 
2467 	if (afep->afe_txavail >= AFE_TXRESCHED) {
2468 		if (afep->afe_wantw) {
2469 			/*
2470 			 * we were able to reclaim some packets, so
2471 			 * disable tx interrupts
2472 			 */
2473 			afep->afe_wantw = B_FALSE;
2474 			afe_enableinterrupts(afep);
2475 			mac_tx_update(afep->afe_mh);
2476 		}
2477 	}
2478 }
2479 
2480 mblk_t *
2481 afe_receive(afe_t *afep)
2482 {
2483 	unsigned		len;
2484 	afe_rxbuf_t		*rxb;
2485 	afe_desc_t		*rmd;
2486 	uint32_t		status;
2487 	mblk_t			*mpchain, **mpp, *mp;
2488 	int			head, cnt;
2489 
2490 	mpchain = NULL;
2491 	mpp = &mpchain;
2492 	head = afep->afe_rxhead;
2493 
2494 	/* limit the number of packets we process to a half ring size */
2495 	for (cnt = 0; cnt < AFE_RXRING / 2; cnt++) {
2496 
2497 		DBG(DRECV, "receive at index %d", head);
2498 
2499 		rmd = &afep->afe_rxdescp[head];
2500 		rxb = afep->afe_rxbufs[head];
2501 
2502 		SYNCRXDESC(afep, head, DDI_DMA_SYNC_FORKERNEL);
2503 		status = GETRXDESC(afep, rmd->desc_status);
2504 		if (status & RXSTAT_OWN) {
2505 			/* chip is still chewing on it */
2506 			break;
2507 		}
2508 
2509 		/* discard the ethernet frame checksum */
2510 		len = RXLENGTH(status) - ETHERFCSL;
2511 
2512 		DBG(DRECV, "recv length %d, status %x", len, status);
2513 
2514 		if ((status & (RXSTAT_ERRS | RXSTAT_FIRST | RXSTAT_LAST)) !=
2515 		    (RXSTAT_FIRST | RXSTAT_LAST)) {
2516 
2517 			afep->afe_errrcv++;
2518 
2519 			/*
2520 			 * Abnormal status bits detected, analyze further.
2521 			 */
2522 			if ((status & (RXSTAT_LAST|RXSTAT_FIRST)) !=
2523 			    (RXSTAT_LAST|RXSTAT_FIRST)) {
2524 				DBG(DRECV, "rx packet overspill");
2525 				if (status & RXSTAT_FIRST) {
2526 					afep->afe_toolong_errors++;
2527 				}
2528 			} else if (status & RXSTAT_DESCERR) {
2529 				afep->afe_macrcv_errors++;
2530 
2531 			} else if (status & RXSTAT_RUNT) {
2532 				afep->afe_runt++;
2533 
2534 			} else if (status & RXSTAT_COLLSEEN) {
2535 				/* this should really be rx_late_collisions */
2536 				afep->afe_macrcv_errors++;
2537 
2538 			} else if (status & RXSTAT_DRIBBLE) {
2539 				afep->afe_align_errors++;
2540 
2541 			} else if (status & RXSTAT_CRCERR) {
2542 				afep->afe_fcs_errors++;
2543 
2544 			} else if (status & RXSTAT_OFLOW) {
2545 				afep->afe_overflow++;
2546 			}
2547 		}
2548 
2549 		else if (len > ETHERVLANMTU) {
2550 			afep->afe_errrcv++;
2551 			afep->afe_toolong_errors++;
2552 		}
2553 
2554 		/*
2555 		 * At this point, the chip thinks the packet is OK.
2556 		 */
2557 		else {
2558 			mp = allocb(len + AFE_HEADROOM, 0);
2559 			if (mp == NULL) {
2560 				afep->afe_errrcv++;
2561 				afep->afe_norcvbuf++;
2562 				goto skip;
2563 			}
2564 
2565 			/* sync the buffer before we look at it */
2566 			SYNCRXBUF(rxb, len, DDI_DMA_SYNC_FORKERNEL);
2567 			mp->b_rptr += AFE_HEADROOM;
2568 			mp->b_wptr = mp->b_rptr + len;
2569 			bcopy((char *)rxb->rxb_buf, mp->b_rptr, len);
2570 
2571 			afep->afe_ipackets++;
2572 			afep->afe_rbytes += len;
2573 			if (status & RXSTAT_GROUP) {
2574 				if (bcmp(mp->b_rptr, afe_broadcast,
2575 				    ETHERADDRL) == 0)
2576 					afep->afe_brdcstrcv++;
2577 				else
2578 					afep->afe_multircv++;
2579 			}
2580 			*mpp = mp;
2581 			mpp = &mp->b_next;
2582 		}
2583 
2584 skip:
2585 		/* return ring entry to the hardware */
2586 		PUTRXDESC(afep, rmd->desc_status, RXSTAT_OWN);
2587 		SYNCRXDESC(afep, head, DDI_DMA_SYNC_FORDEV);
2588 
2589 		/* advance to next RMD */
2590 		head = (head + 1) % AFE_RXRING;
2591 	}
2592 
2593 	afep->afe_rxhead = head;
2594 
2595 	return (mpchain);
2596 }
2597 
2598 int
2599 afe_getmiibit(afe_t *afep, uint16_t reg, uint16_t bit)
2600 {
2601 	unsigned	val;
2602 
2603 	mutex_enter(&afep->afe_xmtlock);
2604 	if (afep->afe_flags & AFE_SUSPENDED) {
2605 		mutex_exit(&afep->afe_xmtlock);
2606 		/* device is suspended */
2607 		return (0);
2608 	}
2609 	val = afe_miiread(afep, afep->afe_phyaddr, reg);
2610 	mutex_exit(&afep->afe_xmtlock);
2611 
2612 	return (val & bit ? 1 : 0);
2613 }
2614 #define	GETMIIBIT(reg, bit) afe_getmiibit(afep, reg, bit)
2615 
2616 int
2617 afe_m_stat(void *arg, uint_t stat, uint64_t *val)
2618 {
2619 	afe_t	*afep = arg;
2620 
2621 	mutex_enter(&afep->afe_xmtlock);
2622 	if ((afep->afe_flags & (AFE_RUNNING|AFE_SUSPENDED)) == AFE_RUNNING)
2623 		afe_reclaim(afep);
2624 	mutex_exit(&afep->afe_xmtlock);
2625 
2626 	switch (stat) {
2627 	case MAC_STAT_IFSPEED:
2628 		*val = afep->afe_ifspeed;
2629 		break;
2630 
2631 	case MAC_STAT_MULTIRCV:
2632 		*val = afep->afe_multircv;
2633 		break;
2634 
2635 	case MAC_STAT_BRDCSTRCV:
2636 		*val = afep->afe_brdcstrcv;
2637 		break;
2638 
2639 	case MAC_STAT_MULTIXMT:
2640 		*val = afep->afe_multixmt;
2641 		break;
2642 
2643 	case MAC_STAT_BRDCSTXMT:
2644 		*val = afep->afe_brdcstxmt;
2645 		break;
2646 
2647 	case MAC_STAT_IPACKETS:
2648 		*val = afep->afe_ipackets;
2649 		break;
2650 
2651 	case MAC_STAT_RBYTES:
2652 		*val = afep->afe_rbytes;
2653 		break;
2654 
2655 	case MAC_STAT_OPACKETS:
2656 		*val = afep->afe_opackets;
2657 		break;
2658 
2659 	case MAC_STAT_OBYTES:
2660 		*val = afep->afe_obytes;
2661 		break;
2662 
2663 	case MAC_STAT_NORCVBUF:
2664 		*val = afep->afe_norcvbuf;
2665 		break;
2666 
2667 	case MAC_STAT_NOXMTBUF:
2668 		*val = 0;
2669 		break;
2670 
2671 	case MAC_STAT_COLLISIONS:
2672 		*val = afep->afe_collisions;
2673 		break;
2674 
2675 	case MAC_STAT_IERRORS:
2676 		*val = afep->afe_errrcv;
2677 		break;
2678 
2679 	case MAC_STAT_OERRORS:
2680 		*val = afep->afe_errxmt;
2681 		break;
2682 
2683 	case ETHER_STAT_LINK_DUPLEX:
2684 		*val = afep->afe_duplex;
2685 		break;
2686 
2687 	case ETHER_STAT_ALIGN_ERRORS:
2688 		*val = afep->afe_align_errors;
2689 		break;
2690 
2691 	case ETHER_STAT_FCS_ERRORS:
2692 		*val = afep->afe_fcs_errors;
2693 		break;
2694 
2695 	case ETHER_STAT_SQE_ERRORS:
2696 		*val = afep->afe_sqe_errors;
2697 		break;
2698 
2699 	case ETHER_STAT_DEFER_XMTS:
2700 		*val = afep->afe_defer_xmts;
2701 		break;
2702 
2703 	case ETHER_STAT_FIRST_COLLISIONS:
2704 		*val = afep->afe_first_collisions;
2705 		break;
2706 
2707 	case ETHER_STAT_MULTI_COLLISIONS:
2708 		*val = afep->afe_multi_collisions;
2709 		break;
2710 
2711 	case ETHER_STAT_TX_LATE_COLLISIONS:
2712 		*val = afep->afe_tx_late_collisions;
2713 		break;
2714 
2715 	case ETHER_STAT_EX_COLLISIONS:
2716 		*val = afep->afe_ex_collisions;
2717 		break;
2718 
2719 	case ETHER_STAT_MACXMT_ERRORS:
2720 		*val = afep->afe_macxmt_errors;
2721 		break;
2722 
2723 	case ETHER_STAT_CARRIER_ERRORS:
2724 		*val = afep->afe_carrier_errors;
2725 		break;
2726 
2727 	case ETHER_STAT_TOOLONG_ERRORS:
2728 		*val = afep->afe_toolong_errors;
2729 		break;
2730 
2731 	case ETHER_STAT_MACRCV_ERRORS:
2732 		*val = afep->afe_macrcv_errors;
2733 		break;
2734 
2735 	case MAC_STAT_OVERFLOWS:
2736 		*val = afep->afe_overflow;
2737 		break;
2738 
2739 	case MAC_STAT_UNDERFLOWS:
2740 		*val = afep->afe_underflow;
2741 		break;
2742 
2743 	case ETHER_STAT_TOOSHORT_ERRORS:
2744 		*val = afep->afe_runt;
2745 		break;
2746 
2747 	case ETHER_STAT_JABBER_ERRORS:
2748 		*val = afep->afe_jabber;
2749 		break;
2750 
2751 	case ETHER_STAT_CAP_100T4:
2752 		*val = afep->afe_cap_100T4;
2753 		break;
2754 
2755 	case ETHER_STAT_CAP_100FDX:
2756 		*val = afep->afe_cap_100fdx;
2757 		break;
2758 
2759 	case ETHER_STAT_CAP_100HDX:
2760 		*val = afep->afe_cap_100hdx;
2761 		break;
2762 
2763 	case ETHER_STAT_CAP_10FDX:
2764 		*val = afep->afe_cap_10fdx;
2765 		break;
2766 
2767 	case ETHER_STAT_CAP_10HDX:
2768 		*val = afep->afe_cap_10hdx;
2769 		break;
2770 
2771 	case ETHER_STAT_CAP_AUTONEG:
2772 		*val = afep->afe_cap_aneg;
2773 		break;
2774 
2775 	case ETHER_STAT_LINK_AUTONEG:
2776 		*val = ((afep->afe_adv_aneg != 0) &&
2777 		    (GETMIIBIT(MII_AN_LPABLE, MII_AN_EXP_LPCANAN) != 0));
2778 		break;
2779 
2780 	case ETHER_STAT_ADV_CAP_100T4:
2781 		*val = afep->afe_adv_100T4;
2782 		break;
2783 
2784 	case ETHER_STAT_ADV_CAP_100FDX:
2785 		*val = afep->afe_adv_100fdx;
2786 		break;
2787 
2788 	case ETHER_STAT_ADV_CAP_100HDX:
2789 		*val = afep->afe_adv_100hdx;
2790 		break;
2791 
2792 	case ETHER_STAT_ADV_CAP_10FDX:
2793 		*val = afep->afe_adv_10fdx;
2794 		break;
2795 
2796 	case ETHER_STAT_ADV_CAP_10HDX:
2797 		*val = afep->afe_adv_10hdx;
2798 		break;
2799 
2800 	case ETHER_STAT_ADV_CAP_AUTONEG:
2801 		*val = afep->afe_adv_aneg;
2802 		break;
2803 
2804 	case ETHER_STAT_LP_CAP_100T4:
2805 		*val = GETMIIBIT(MII_AN_LPABLE, MII_ABILITY_100BASE_T4);
2806 		break;
2807 
2808 	case ETHER_STAT_LP_CAP_100FDX:
2809 		*val = GETMIIBIT(MII_AN_LPABLE, MII_ABILITY_100BASE_TX_FD);
2810 		break;
2811 
2812 	case ETHER_STAT_LP_CAP_100HDX:
2813 		*val = GETMIIBIT(MII_AN_LPABLE, MII_ABILITY_100BASE_TX);
2814 		break;
2815 
2816 	case ETHER_STAT_LP_CAP_10FDX:
2817 		*val = GETMIIBIT(MII_AN_LPABLE, MII_ABILITY_10BASE_T_FD);
2818 		break;
2819 
2820 	case ETHER_STAT_LP_CAP_10HDX:
2821 		*val = GETMIIBIT(MII_AN_LPABLE, MII_ABILITY_10BASE_T);
2822 		break;
2823 
2824 	case ETHER_STAT_LP_CAP_AUTONEG:
2825 		*val = GETMIIBIT(MII_AN_EXPANSION, MII_AN_EXP_LPCANAN);
2826 		break;
2827 
2828 	case ETHER_STAT_XCVR_ADDR:
2829 		*val = afep->afe_phyaddr;
2830 		break;
2831 
2832 	case ETHER_STAT_XCVR_ID:
2833 		*val = afep->afe_phyid;
2834 		break;
2835 
2836 	default:
2837 		return (ENOTSUP);
2838 	}
2839 	return (0);
2840 }
2841 
2842 /*ARGSUSED*/
2843 int
2844 afe_m_getprop(void *arg, const char *name, mac_prop_id_t num, uint_t flags,
2845     uint_t sz, void *val, uint_t *perm)
2846 {
2847 	afe_t		*afep = arg;
2848 	int		err = 0;
2849 	boolean_t	dfl = flags & MAC_PROP_DEFAULT;
2850 
2851 	if (sz == 0)
2852 		return (EINVAL);
2853 
2854 	*perm = MAC_PROP_PERM_RW;
2855 	switch (num) {
2856 	case MAC_PROP_DUPLEX:
2857 		*perm = MAC_PROP_PERM_READ;
2858 		if (sz >= sizeof (link_duplex_t)) {
2859 			bcopy(&afep->afe_duplex, val, sizeof (link_duplex_t));
2860 		} else {
2861 			err = EINVAL;
2862 		}
2863 		break;
2864 
2865 	case MAC_PROP_SPEED:
2866 		*perm = MAC_PROP_PERM_READ;
2867 		if (sz >= sizeof (uint64_t)) {
2868 			bcopy(&afep->afe_ifspeed, val, sizeof (uint64_t));
2869 		} else {
2870 			err = EINVAL;
2871 		}
2872 		break;
2873 
2874 	case MAC_PROP_AUTONEG:
2875 		*(uint8_t *)val =
2876 		    dfl ? afep->afe_cap_aneg : afep->afe_adv_aneg;
2877 		break;
2878 
2879 #if 0
2880 	case MAC_PROP_ADV_1000FDX_CAP:
2881 	case MAC_PROP_EN_1000FDX_CAP:
2882 	case MAC_PROP_ADV_1000HDX_CAP:
2883 	case MAC_PROP_EN_1000HDX_CAP:
2884 		/* We don't support gigabit! */
2885 		*(uint8_t *)val = 0;
2886 		break;
2887 #endif
2888 
2889 	case MAC_PROP_ADV_100FDX_CAP:
2890 		*perm = MAC_PROP_PERM_READ;
2891 		*(uint8_t *)val =
2892 		    dfl ? afep->afe_cap_100fdx : afep->afe_adv_100fdx;
2893 		break;
2894 	case MAC_PROP_EN_100FDX_CAP:
2895 		*(uint8_t *)val =
2896 		    dfl ? afep->afe_cap_100fdx : afep->afe_adv_100fdx;
2897 		break;
2898 
2899 	case MAC_PROP_ADV_100HDX_CAP:
2900 		*perm = MAC_PROP_PERM_READ;
2901 		*(uint8_t *)val =
2902 		    dfl ? afep->afe_cap_100hdx : afep->afe_adv_100hdx;
2903 		break;
2904 	case MAC_PROP_EN_100HDX_CAP:
2905 		*(uint8_t *)val =
2906 		    dfl ? afep->afe_cap_100hdx : afep->afe_adv_100hdx;
2907 		break;
2908 
2909 	case MAC_PROP_ADV_10FDX_CAP:
2910 		*perm = MAC_PROP_PERM_READ;
2911 		*(uint8_t *)val =
2912 		    dfl ? afep->afe_cap_10fdx : afep->afe_adv_10fdx;
2913 		break;
2914 	case MAC_PROP_EN_10FDX_CAP:
2915 		*(uint8_t *)val =
2916 		    dfl ? afep->afe_cap_10fdx : afep->afe_adv_10fdx;
2917 		break;
2918 
2919 	case MAC_PROP_ADV_10HDX_CAP:
2920 		*perm = MAC_PROP_PERM_READ;
2921 		*(uint8_t *)val =
2922 		    dfl ? afep->afe_cap_10hdx : afep->afe_adv_10hdx;
2923 		break;
2924 	case MAC_PROP_EN_10HDX_CAP:
2925 		*(uint8_t *)val =
2926 		    dfl ? afep->afe_cap_10hdx : afep->afe_adv_10hdx;
2927 		break;
2928 
2929 	case MAC_PROP_ADV_100T4_CAP:
2930 		*perm = MAC_PROP_PERM_READ;
2931 		*(uint8_t *)val =
2932 		    dfl ? afep->afe_cap_100T4 : afep->afe_adv_100T4;
2933 		break;
2934 	case MAC_PROP_EN_100T4_CAP:
2935 		*(uint8_t *)val =
2936 		    dfl ? afep->afe_cap_100T4 : afep->afe_adv_100T4;
2937 		break;
2938 
2939 	default:
2940 		err = ENOTSUP;
2941 	}
2942 
2943 	return (err);
2944 }
2945 
2946 /*ARGSUSED*/
2947 int
2948 afe_m_setprop(void *arg, const char *name, mac_prop_id_t num, uint_t sz,
2949     const void *val)
2950 {
2951 	afe_t		*afep = arg;
2952 	uint8_t		*advp;
2953 	uint8_t		*capp;
2954 
2955 	switch (num) {
2956 	case MAC_PROP_EN_100FDX_CAP:
2957 		advp = &afep->afe_adv_100fdx;
2958 		capp = &afep->afe_cap_100fdx;
2959 		break;
2960 
2961 	case MAC_PROP_EN_100HDX_CAP:
2962 		advp = &afep->afe_adv_100hdx;
2963 		capp = &afep->afe_cap_100hdx;
2964 		break;
2965 
2966 	case MAC_PROP_EN_10FDX_CAP:
2967 		advp = &afep->afe_adv_10fdx;
2968 		capp = &afep->afe_cap_10fdx;
2969 		break;
2970 
2971 	case MAC_PROP_EN_10HDX_CAP:
2972 		advp = &afep->afe_adv_10hdx;
2973 		capp = &afep->afe_cap_10hdx;
2974 		break;
2975 
2976 	case MAC_PROP_EN_100T4_CAP:
2977 		advp = &afep->afe_adv_100T4;
2978 		capp = &afep->afe_cap_100T4;
2979 		break;
2980 
2981 	case MAC_PROP_AUTONEG:
2982 		advp = &afep->afe_adv_aneg;
2983 		capp = &afep->afe_cap_aneg;
2984 		break;
2985 
2986 	default:
2987 		return (ENOTSUP);
2988 	}
2989 
2990 	if (*capp == 0)		/* ensure phy can support value */
2991 		return (ENOTSUP);
2992 
2993 	mutex_enter(&afep->afe_intrlock);
2994 	mutex_enter(&afep->afe_xmtlock);
2995 
2996 	if (*advp != *(const uint8_t *)val) {
2997 		*advp = *(const uint8_t *)val;
2998 
2999 		if ((afep->afe_flags & (AFE_RUNNING|AFE_SUSPENDED)) ==
3000 		    AFE_RUNNING) {
3001 			/*
3002 			 * This re-initializes the phy, but it also
3003 			 * restarts transmit and receive rings.
3004 			 * Needless to say, changing the link
3005 			 * parameters is destructive to traffic in
3006 			 * progress.
3007 			 */
3008 			afe_resetall(afep);
3009 		}
3010 	}
3011 	mutex_exit(&afep->afe_xmtlock);
3012 	mutex_exit(&afep->afe_intrlock);
3013 
3014 	return (0);
3015 }
3016 
3017 /*
3018  * Debugging and error reporting.
3019  */
3020 void
3021 afe_error(dev_info_t *dip, char *fmt, ...)
3022 {
3023 	va_list	ap;
3024 	char	buf[256];
3025 
3026 	va_start(ap, fmt);
3027 	(void) vsnprintf(buf, sizeof (buf), fmt, ap);
3028 	va_end(ap);
3029 
3030 	if (dip) {
3031 		cmn_err(CE_WARN, "%s%d: %s",
3032 		    ddi_driver_name(dip), ddi_get_instance(dip), buf);
3033 	} else {
3034 		cmn_err(CE_WARN, "afe: %s", buf);
3035 	}
3036 }
3037 
3038 #ifdef	DEBUG
3039 
3040 void
3041 afe_dprintf(afe_t *afep, const char *func, int level, char *fmt, ...)
3042 {
3043 	va_list	ap;
3044 
3045 	va_start(ap, fmt);
3046 	if (afe_debug & level) {
3047 		char	tag[64];
3048 		char	buf[256];
3049 
3050 		if (afep && afep->afe_dip) {
3051 			(void) snprintf(tag, sizeof (tag), "%s%d",
3052 			    ddi_driver_name(afep->afe_dip),
3053 			    ddi_get_instance(afep->afe_dip));
3054 		} else {
3055 			(void) snprintf(tag, sizeof (tag), "afe");
3056 		}
3057 
3058 		(void) snprintf(buf, sizeof (buf), "%s: %s: %s\n",
3059 		    tag, func, fmt);
3060 
3061 		vcmn_err(CE_CONT, buf, ap);
3062 	}
3063 	va_end(ap);
3064 }
3065 
3066 #endif
3067