1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 const char udp_version[] = "%Z%%M% %I% %E% SMI"; 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/pattr.h> 35 #include <sys/stropts.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/time.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/timod.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/strsubr.h> 45 #include <sys/suntpi.h> 46 #include <sys/xti_inet.h> 47 #include <sys/cmn_err.h> 48 #include <sys/kmem.h> 49 #include <sys/policy.h> 50 #include <sys/ucred.h> 51 #include <sys/zone.h> 52 53 #include <sys/socket.h> 54 #include <sys/sockio.h> 55 #include <sys/vtrace.h> 56 #include <sys/sdt.h> 57 #include <sys/debug.h> 58 #include <sys/isa_defs.h> 59 #include <sys/random.h> 60 #include <netinet/in.h> 61 #include <netinet/ip6.h> 62 #include <netinet/icmp6.h> 63 #include <netinet/udp.h> 64 #include <net/if.h> 65 #include <net/route.h> 66 67 #include <inet/common.h> 68 #include <inet/ip.h> 69 #include <inet/ip_impl.h> 70 #include <inet/ip6.h> 71 #include <inet/ip_ire.h> 72 #include <inet/ip_if.h> 73 #include <inet/ip_multi.h> 74 #include <inet/ip_ndp.h> 75 #include <inet/mi.h> 76 #include <inet/mib2.h> 77 #include <inet/nd.h> 78 #include <inet/optcom.h> 79 #include <inet/snmpcom.h> 80 #include <inet/kstatcom.h> 81 #include <inet/udp_impl.h> 82 #include <inet/ipclassifier.h> 83 #include <inet/ipsec_impl.h> 84 #include <inet/ipp_common.h> 85 86 /* 87 * The ipsec_info.h header file is here since it has the definition for the 88 * M_CTL message types used by IP to convey information to the ULP. The 89 * ipsec_info.h needs the pfkeyv2.h, hence the latter's presence. 90 */ 91 #include <net/pfkeyv2.h> 92 #include <inet/ipsec_info.h> 93 94 #include <sys/tsol/label.h> 95 #include <sys/tsol/tnet.h> 96 #include <rpc/pmap_prot.h> 97 98 /* 99 * Synchronization notes: 100 * 101 * UDP is MT and uses the usual kernel synchronization primitives. There are 2 102 * locks, the fanout lock (uf_lock) and the udp endpoint lock udp_rwlock. 103 * We also use conn_lock when updating things that affect the IP classifier 104 * lookup. 105 * The lock order is udp_rwlock -> uf_lock and is udp_rwlock -> conn_lock. 106 * 107 * The fanout lock uf_lock: 108 * When a UDP endpoint is bound to a local port, it is inserted into 109 * a bind hash list. The list consists of an array of udp_fanout_t buckets. 110 * The size of the array is controlled by the udp_bind_fanout_size variable. 111 * This variable can be changed in /etc/system if the default value is 112 * not large enough. Each bind hash bucket is protected by a per bucket 113 * lock. It protects the udp_bind_hash and udp_ptpbhn fields in the udp_t 114 * structure and a few other fields in the udp_t. A UDP endpoint is removed 115 * from the bind hash list only when it is being unbound or being closed. 116 * The per bucket lock also protects a UDP endpoint's state changes. 117 * 118 * The udp_rwlock: 119 * This protects most of the other fields in the udp_t. The exact list of 120 * fields which are protected by each of the above locks is documented in 121 * the udp_t structure definition. 122 * 123 * Plumbing notes: 124 * UDP is always a device driver. For compatibility with mibopen() code 125 * it is possible to I_PUSH "udp", but that results in pushing a passthrough 126 * dummy module. 127 * 128 * The above implies that we don't support any intermediate module to 129 * reside in between /dev/ip and udp -- in fact, we never supported such 130 * scenario in the past as the inter-layer communication semantics have 131 * always been private. 132 */ 133 134 /* For /etc/system control */ 135 uint_t udp_bind_fanout_size = UDP_BIND_FANOUT_SIZE; 136 137 #define NDD_TOO_QUICK_MSG \ 138 "ndd get info rate too high for non-privileged users, try again " \ 139 "later.\n" 140 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 141 142 /* Option processing attrs */ 143 typedef struct udpattrs_s { 144 union { 145 ip6_pkt_t *udpattr_ipp6; /* For V6 */ 146 ip4_pkt_t *udpattr_ipp4; /* For V4 */ 147 } udpattr_ippu; 148 #define udpattr_ipp6 udpattr_ippu.udpattr_ipp6 149 #define udpattr_ipp4 udpattr_ippu.udpattr_ipp4 150 mblk_t *udpattr_mb; 151 boolean_t udpattr_credset; 152 } udpattrs_t; 153 154 static void udp_addr_req(queue_t *q, mblk_t *mp); 155 static void udp_bind(queue_t *q, mblk_t *mp); 156 static void udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp); 157 static void udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock); 158 static void udp_bind_result(conn_t *, mblk_t *); 159 static void udp_bind_ack(conn_t *, mblk_t *mp); 160 static void udp_bind_error(conn_t *, mblk_t *mp); 161 static int udp_build_hdrs(udp_t *udp); 162 static void udp_capability_req(queue_t *q, mblk_t *mp); 163 static int udp_close(queue_t *q); 164 static void udp_connect(queue_t *q, mblk_t *mp); 165 static void udp_disconnect(queue_t *q, mblk_t *mp); 166 static void udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, 167 int sys_error); 168 static void udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive, 169 t_scalar_t tlierr, int unixerr); 170 static int udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 171 cred_t *cr); 172 static int udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 173 char *value, caddr_t cp, cred_t *cr); 174 static int udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 175 char *value, caddr_t cp, cred_t *cr); 176 static void udp_icmp_error(queue_t *q, mblk_t *mp); 177 static void udp_icmp_error_ipv6(queue_t *q, mblk_t *mp); 178 static void udp_info_req(queue_t *q, mblk_t *mp); 179 static void udp_input(void *, mblk_t *, void *); 180 static mblk_t *udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim, 181 t_scalar_t addr_length); 182 static void udp_lrput(queue_t *, mblk_t *); 183 static void udp_lwput(queue_t *, mblk_t *); 184 static int udp_open(queue_t *q, dev_t *devp, int flag, int sflag, 185 cred_t *credp, boolean_t isv6); 186 static int udp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, 187 cred_t *credp); 188 static int udp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, 189 cred_t *credp); 190 static int udp_unitdata_opt_process(queue_t *q, mblk_t *mp, 191 int *errorp, udpattrs_t *udpattrs); 192 static boolean_t udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name); 193 static int udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 194 static boolean_t udp_param_register(IDP *ndp, udpparam_t *udppa, int cnt); 195 static int udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 196 cred_t *cr); 197 static void udp_report_item(mblk_t *mp, udp_t *udp); 198 static int udp_rinfop(queue_t *q, infod_t *dp); 199 static int udp_rrw(queue_t *q, struiod_t *dp); 200 static int udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 201 cred_t *cr); 202 static void udp_send_data(udp_t *, queue_t *, mblk_t *, ipha_t *); 203 static void udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr, 204 t_scalar_t destlen, t_scalar_t err); 205 static void udp_unbind(queue_t *q, mblk_t *mp); 206 static in_port_t udp_update_next_port(udp_t *udp, in_port_t port, 207 boolean_t random); 208 static mblk_t *udp_output_v4(conn_t *, mblk_t *, ipaddr_t, uint16_t, uint_t, 209 int *, boolean_t); 210 static mblk_t *udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6, 211 int *error); 212 static void udp_wput_other(queue_t *q, mblk_t *mp); 213 static void udp_wput_iocdata(queue_t *q, mblk_t *mp); 214 static size_t udp_set_rcv_hiwat(udp_t *udp, size_t size); 215 216 static void *udp_stack_init(netstackid_t stackid, netstack_t *ns); 217 static void udp_stack_fini(netstackid_t stackid, void *arg); 218 219 static void *udp_kstat_init(netstackid_t stackid); 220 static void udp_kstat_fini(netstackid_t stackid, kstat_t *ksp); 221 static void *udp_kstat2_init(netstackid_t, udp_stat_t *); 222 static void udp_kstat2_fini(netstackid_t, kstat_t *); 223 static int udp_kstat_update(kstat_t *kp, int rw); 224 225 static void udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp, 226 uint_t pkt_len); 227 static void udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing); 228 static void udp_xmit(queue_t *, mblk_t *, ire_t *ire, conn_t *, zoneid_t); 229 230 #define UDP_RECV_HIWATER (56 * 1024) 231 #define UDP_RECV_LOWATER 128 232 #define UDP_XMIT_HIWATER (56 * 1024) 233 #define UDP_XMIT_LOWATER 1024 234 235 static struct module_info udp_mod_info = { 236 UDP_MOD_ID, UDP_MOD_NAME, 1, INFPSZ, UDP_RECV_HIWATER, UDP_RECV_LOWATER 237 }; 238 239 /* 240 * Entry points for UDP as a device. 241 * We have separate open functions for the /dev/udp and /dev/udp6 devices. 242 */ 243 static struct qinit udp_rinitv4 = { 244 NULL, NULL, udp_openv4, udp_close, NULL, 245 &udp_mod_info, NULL, udp_rrw, udp_rinfop, STRUIOT_STANDARD 246 }; 247 248 static struct qinit udp_rinitv6 = { 249 NULL, NULL, udp_openv6, udp_close, NULL, 250 &udp_mod_info, NULL, udp_rrw, udp_rinfop, STRUIOT_STANDARD 251 }; 252 253 static struct qinit udp_winit = { 254 (pfi_t)udp_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 255 &udp_mod_info, NULL, NULL, NULL, STRUIOT_NONE 256 }; 257 258 /* 259 * UDP needs to handle I_LINK and I_PLINK since ifconfig 260 * likes to use it as a place to hang the various streams. 261 */ 262 static struct qinit udp_lrinit = { 263 (pfi_t)udp_lrput, NULL, udp_openv4, udp_close, NULL, 264 &udp_mod_info 265 }; 266 267 static struct qinit udp_lwinit = { 268 (pfi_t)udp_lwput, NULL, udp_openv4, udp_close, NULL, 269 &udp_mod_info 270 }; 271 272 /* For AF_INET aka /dev/udp */ 273 struct streamtab udpinfov4 = { 274 &udp_rinitv4, &udp_winit, &udp_lrinit, &udp_lwinit 275 }; 276 277 /* For AF_INET6 aka /dev/udp6 */ 278 struct streamtab udpinfov6 = { 279 &udp_rinitv6, &udp_winit, &udp_lrinit, &udp_lwinit 280 }; 281 282 static sin_t sin_null; /* Zero address for quick clears */ 283 static sin6_t sin6_null; /* Zero address for quick clears */ 284 285 #define UDP_MAXPACKET_IPV4 (IP_MAXPACKET - UDPH_SIZE - IP_SIMPLE_HDR_LENGTH) 286 287 /* Default structure copied into T_INFO_ACK messages */ 288 static struct T_info_ack udp_g_t_info_ack_ipv4 = { 289 T_INFO_ACK, 290 UDP_MAXPACKET_IPV4, /* TSDU_size. Excl. headers */ 291 T_INVALID, /* ETSU_size. udp does not support expedited data. */ 292 T_INVALID, /* CDATA_size. udp does not support connect data. */ 293 T_INVALID, /* DDATA_size. udp does not support disconnect data. */ 294 sizeof (sin_t), /* ADDR_size. */ 295 0, /* OPT_size - not initialized here */ 296 UDP_MAXPACKET_IPV4, /* TIDU_size. Excl. headers */ 297 T_CLTS, /* SERV_type. udp supports connection-less. */ 298 TS_UNBND, /* CURRENT_state. This is set from udp_state. */ 299 (XPG4_1|SENDZERO) /* PROVIDER_flag */ 300 }; 301 302 #define UDP_MAXPACKET_IPV6 (IP_MAXPACKET - UDPH_SIZE - IPV6_HDR_LEN) 303 304 static struct T_info_ack udp_g_t_info_ack_ipv6 = { 305 T_INFO_ACK, 306 UDP_MAXPACKET_IPV6, /* TSDU_size. Excl. headers */ 307 T_INVALID, /* ETSU_size. udp does not support expedited data. */ 308 T_INVALID, /* CDATA_size. udp does not support connect data. */ 309 T_INVALID, /* DDATA_size. udp does not support disconnect data. */ 310 sizeof (sin6_t), /* ADDR_size. */ 311 0, /* OPT_size - not initialized here */ 312 UDP_MAXPACKET_IPV6, /* TIDU_size. Excl. headers */ 313 T_CLTS, /* SERV_type. udp supports connection-less. */ 314 TS_UNBND, /* CURRENT_state. This is set from udp_state. */ 315 (XPG4_1|SENDZERO) /* PROVIDER_flag */ 316 }; 317 318 /* largest UDP port number */ 319 #define UDP_MAX_PORT 65535 320 321 /* 322 * Table of ND variables supported by udp. These are loaded into us_nd 323 * in udp_open. 324 * All of these are alterable, within the min/max values given, at run time. 325 */ 326 /* BEGIN CSTYLED */ 327 udpparam_t udp_param_arr[] = { 328 /*min max value name */ 329 { 0L, 256, 32, "udp_wroff_extra" }, 330 { 1L, 255, 255, "udp_ipv4_ttl" }, 331 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "udp_ipv6_hoplimit"}, 332 { 1024, (32 * 1024), 1024, "udp_smallest_nonpriv_port" }, 333 { 0, 1, 1, "udp_do_checksum" }, 334 { 1024, UDP_MAX_PORT, (32 * 1024), "udp_smallest_anon_port" }, 335 { 1024, UDP_MAX_PORT, UDP_MAX_PORT, "udp_largest_anon_port" }, 336 { UDP_XMIT_LOWATER, (1<<30), UDP_XMIT_HIWATER, "udp_xmit_hiwat"}, 337 { 0, (1<<30), UDP_XMIT_LOWATER, "udp_xmit_lowat"}, 338 { UDP_RECV_LOWATER, (1<<30), UDP_RECV_HIWATER, "udp_recv_hiwat"}, 339 { 65536, (1<<30), 2*1024*1024, "udp_max_buf"}, 340 { 100, 60000, 1000, "udp_ndd_get_info_interval"}, 341 }; 342 /* END CSTYLED */ 343 344 /* Setable in /etc/system */ 345 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 346 uint32_t udp_random_anon_port = 1; 347 348 /* 349 * Hook functions to enable cluster networking. 350 * On non-clustered systems these vectors must always be NULL 351 */ 352 353 void (*cl_inet_bind)(uchar_t protocol, sa_family_t addr_family, 354 uint8_t *laddrp, in_port_t lport) = NULL; 355 void (*cl_inet_unbind)(uint8_t protocol, sa_family_t addr_family, 356 uint8_t *laddrp, in_port_t lport) = NULL; 357 358 typedef union T_primitives *t_primp_t; 359 360 /* 361 * Return the next anonymous port in the privileged port range for 362 * bind checking. 363 * 364 * Trusted Extension (TX) notes: TX allows administrator to mark or 365 * reserve ports as Multilevel ports (MLP). MLP has special function 366 * on TX systems. Once a port is made MLP, it's not available as 367 * ordinary port. This creates "holes" in the port name space. It 368 * may be necessary to skip the "holes" find a suitable anon port. 369 */ 370 static in_port_t 371 udp_get_next_priv_port(udp_t *udp) 372 { 373 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 374 in_port_t nextport; 375 boolean_t restart = B_FALSE; 376 udp_stack_t *us = udp->udp_us; 377 378 retry: 379 if (next_priv_port < us->us_min_anonpriv_port || 380 next_priv_port >= IPPORT_RESERVED) { 381 next_priv_port = IPPORT_RESERVED - 1; 382 if (restart) 383 return (0); 384 restart = B_TRUE; 385 } 386 387 if (is_system_labeled() && 388 (nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred), 389 next_priv_port, IPPROTO_UDP, B_FALSE)) != 0) { 390 next_priv_port = nextport; 391 goto retry; 392 } 393 394 return (next_priv_port--); 395 } 396 397 /* UDP bind hash report triggered via the Named Dispatch mechanism. */ 398 /* ARGSUSED */ 399 static int 400 udp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 401 { 402 udp_fanout_t *udpf; 403 int i; 404 zoneid_t zoneid; 405 conn_t *connp; 406 udp_t *udp; 407 udp_stack_t *us; 408 409 connp = Q_TO_CONN(q); 410 udp = connp->conn_udp; 411 us = udp->udp_us; 412 413 /* Refer to comments in udp_status_report(). */ 414 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 415 if (ddi_get_lbolt() - us->us_last_ndd_get_info_time < 416 drv_usectohz(us->us_ndd_get_info_interval * 1000)) { 417 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 418 return (0); 419 } 420 } 421 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 422 /* The following may work even if we cannot get a large buf. */ 423 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 424 return (0); 425 } 426 427 (void) mi_mpprintf(mp, 428 "UDP " MI_COL_HDRPAD_STR 429 /* 12345678[89ABCDEF] */ 430 " zone lport src addr dest addr port state"); 431 /* 1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */ 432 433 zoneid = connp->conn_zoneid; 434 435 for (i = 0; i < us->us_bind_fanout_size; i++) { 436 udpf = &us->us_bind_fanout[i]; 437 mutex_enter(&udpf->uf_lock); 438 439 /* Print the hash index. */ 440 udp = udpf->uf_udp; 441 if (zoneid != GLOBAL_ZONEID) { 442 /* skip to first entry in this zone; might be none */ 443 while (udp != NULL && 444 udp->udp_connp->conn_zoneid != zoneid) 445 udp = udp->udp_bind_hash; 446 } 447 if (udp != NULL) { 448 uint_t print_len, buf_len; 449 450 buf_len = mp->b_cont->b_datap->db_lim - 451 mp->b_cont->b_wptr; 452 print_len = snprintf((char *)mp->b_cont->b_wptr, 453 buf_len, "%d\n", i); 454 if (print_len < buf_len) { 455 mp->b_cont->b_wptr += print_len; 456 } else { 457 mp->b_cont->b_wptr += buf_len; 458 } 459 for (; udp != NULL; udp = udp->udp_bind_hash) { 460 if (zoneid == GLOBAL_ZONEID || 461 zoneid == udp->udp_connp->conn_zoneid) 462 udp_report_item(mp->b_cont, udp); 463 } 464 } 465 mutex_exit(&udpf->uf_lock); 466 } 467 us->us_last_ndd_get_info_time = ddi_get_lbolt(); 468 return (0); 469 } 470 471 /* 472 * Hash list removal routine for udp_t structures. 473 */ 474 static void 475 udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock) 476 { 477 udp_t *udpnext; 478 kmutex_t *lockp; 479 udp_stack_t *us = udp->udp_us; 480 481 if (udp->udp_ptpbhn == NULL) 482 return; 483 484 /* 485 * Extract the lock pointer in case there are concurrent 486 * hash_remove's for this instance. 487 */ 488 ASSERT(udp->udp_port != 0); 489 if (!caller_holds_lock) { 490 lockp = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port, 491 us->us_bind_fanout_size)].uf_lock; 492 ASSERT(lockp != NULL); 493 mutex_enter(lockp); 494 } 495 if (udp->udp_ptpbhn != NULL) { 496 udpnext = udp->udp_bind_hash; 497 if (udpnext != NULL) { 498 udpnext->udp_ptpbhn = udp->udp_ptpbhn; 499 udp->udp_bind_hash = NULL; 500 } 501 *udp->udp_ptpbhn = udpnext; 502 udp->udp_ptpbhn = NULL; 503 } 504 if (!caller_holds_lock) { 505 mutex_exit(lockp); 506 } 507 } 508 509 static void 510 udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp) 511 { 512 udp_t **udpp; 513 udp_t *udpnext; 514 515 ASSERT(MUTEX_HELD(&uf->uf_lock)); 516 ASSERT(udp->udp_ptpbhn == NULL); 517 udpp = &uf->uf_udp; 518 udpnext = udpp[0]; 519 if (udpnext != NULL) { 520 /* 521 * If the new udp bound to the INADDR_ANY address 522 * and the first one in the list is not bound to 523 * INADDR_ANY we skip all entries until we find the 524 * first one bound to INADDR_ANY. 525 * This makes sure that applications binding to a 526 * specific address get preference over those binding to 527 * INADDR_ANY. 528 */ 529 if (V6_OR_V4_INADDR_ANY(udp->udp_bound_v6src) && 530 !V6_OR_V4_INADDR_ANY(udpnext->udp_bound_v6src)) { 531 while ((udpnext = udpp[0]) != NULL && 532 !V6_OR_V4_INADDR_ANY( 533 udpnext->udp_bound_v6src)) { 534 udpp = &(udpnext->udp_bind_hash); 535 } 536 if (udpnext != NULL) 537 udpnext->udp_ptpbhn = &udp->udp_bind_hash; 538 } else { 539 udpnext->udp_ptpbhn = &udp->udp_bind_hash; 540 } 541 } 542 udp->udp_bind_hash = udpnext; 543 udp->udp_ptpbhn = udpp; 544 udpp[0] = udp; 545 } 546 547 /* 548 * This routine is called to handle each O_T_BIND_REQ/T_BIND_REQ message 549 * passed to udp_wput. 550 * It associates a port number and local address with the stream. 551 * The O_T_BIND_REQ/T_BIND_REQ is passed downstream to ip with the UDP 552 * protocol type (IPPROTO_UDP) placed in the message following the address. 553 * A T_BIND_ACK message is passed upstream when ip acknowledges the request. 554 * (Called as writer.) 555 * 556 * Note that UDP over IPv4 and IPv6 sockets can use the same port number 557 * without setting SO_REUSEADDR. This is needed so that they 558 * can be viewed as two independent transport protocols. 559 * However, anonymouns ports are allocated from the same range to avoid 560 * duplicating the us->us_next_port_to_try. 561 */ 562 static void 563 udp_bind(queue_t *q, mblk_t *mp) 564 { 565 sin_t *sin; 566 sin6_t *sin6; 567 mblk_t *mp1; 568 in_port_t port; /* Host byte order */ 569 in_port_t requested_port; /* Host byte order */ 570 struct T_bind_req *tbr; 571 int count; 572 in6_addr_t v6src; 573 boolean_t bind_to_req_port_only; 574 int loopmax; 575 udp_fanout_t *udpf; 576 in_port_t lport; /* Network byte order */ 577 zoneid_t zoneid; 578 conn_t *connp; 579 udp_t *udp; 580 boolean_t is_inaddr_any; 581 mlp_type_t addrtype, mlptype; 582 udp_stack_t *us; 583 584 connp = Q_TO_CONN(q); 585 udp = connp->conn_udp; 586 us = udp->udp_us; 587 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 588 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 589 "udp_bind: bad req, len %u", 590 (uint_t)(mp->b_wptr - mp->b_rptr)); 591 udp_err_ack(q, mp, TPROTO, 0); 592 return; 593 } 594 if (udp->udp_state != TS_UNBND) { 595 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 596 "udp_bind: bad state, %u", udp->udp_state); 597 udp_err_ack(q, mp, TOUTSTATE, 0); 598 return; 599 } 600 /* 601 * Reallocate the message to make sure we have enough room for an 602 * address and the protocol type. 603 */ 604 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 605 if (!mp1) { 606 udp_err_ack(q, mp, TSYSERR, ENOMEM); 607 return; 608 } 609 610 mp = mp1; 611 tbr = (struct T_bind_req *)mp->b_rptr; 612 switch (tbr->ADDR_length) { 613 case 0: /* Request for a generic port */ 614 tbr->ADDR_offset = sizeof (struct T_bind_req); 615 if (udp->udp_family == AF_INET) { 616 tbr->ADDR_length = sizeof (sin_t); 617 sin = (sin_t *)&tbr[1]; 618 *sin = sin_null; 619 sin->sin_family = AF_INET; 620 mp->b_wptr = (uchar_t *)&sin[1]; 621 } else { 622 ASSERT(udp->udp_family == AF_INET6); 623 tbr->ADDR_length = sizeof (sin6_t); 624 sin6 = (sin6_t *)&tbr[1]; 625 *sin6 = sin6_null; 626 sin6->sin6_family = AF_INET6; 627 mp->b_wptr = (uchar_t *)&sin6[1]; 628 } 629 port = 0; 630 break; 631 632 case sizeof (sin_t): /* Complete IPv4 address */ 633 sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, 634 sizeof (sin_t)); 635 if (sin == NULL || !OK_32PTR((char *)sin)) { 636 udp_err_ack(q, mp, TSYSERR, EINVAL); 637 return; 638 } 639 if (udp->udp_family != AF_INET || 640 sin->sin_family != AF_INET) { 641 udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); 642 return; 643 } 644 port = ntohs(sin->sin_port); 645 break; 646 647 case sizeof (sin6_t): /* complete IPv6 address */ 648 sin6 = (sin6_t *)mi_offset_param(mp, tbr->ADDR_offset, 649 sizeof (sin6_t)); 650 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 651 udp_err_ack(q, mp, TSYSERR, EINVAL); 652 return; 653 } 654 if (udp->udp_family != AF_INET6 || 655 sin6->sin6_family != AF_INET6) { 656 udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); 657 return; 658 } 659 port = ntohs(sin6->sin6_port); 660 break; 661 662 default: /* Invalid request */ 663 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 664 "udp_bind: bad ADDR_length length %u", tbr->ADDR_length); 665 udp_err_ack(q, mp, TBADADDR, 0); 666 return; 667 } 668 669 requested_port = port; 670 671 if (requested_port == 0 || tbr->PRIM_type == O_T_BIND_REQ) 672 bind_to_req_port_only = B_FALSE; 673 else /* T_BIND_REQ and requested_port != 0 */ 674 bind_to_req_port_only = B_TRUE; 675 676 if (requested_port == 0) { 677 /* 678 * If the application passed in zero for the port number, it 679 * doesn't care which port number we bind to. Get one in the 680 * valid range. 681 */ 682 if (udp->udp_anon_priv_bind) { 683 port = udp_get_next_priv_port(udp); 684 } else { 685 port = udp_update_next_port(udp, 686 us->us_next_port_to_try, B_TRUE); 687 } 688 } else { 689 /* 690 * If the port is in the well-known privileged range, 691 * make sure the caller was privileged. 692 */ 693 int i; 694 boolean_t priv = B_FALSE; 695 696 if (port < us->us_smallest_nonpriv_port) { 697 priv = B_TRUE; 698 } else { 699 for (i = 0; i < us->us_num_epriv_ports; i++) { 700 if (port == us->us_epriv_ports[i]) { 701 priv = B_TRUE; 702 break; 703 } 704 } 705 } 706 707 if (priv) { 708 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 709 710 if (secpolicy_net_privaddr(cr, port) != 0) { 711 udp_err_ack(q, mp, TACCES, 0); 712 return; 713 } 714 } 715 } 716 717 if (port == 0) { 718 udp_err_ack(q, mp, TNOADDR, 0); 719 return; 720 } 721 722 /* 723 * The state must be TS_UNBND. TPI mandates that users must send 724 * TPI primitives only 1 at a time and wait for the response before 725 * sending the next primitive. 726 */ 727 rw_enter(&udp->udp_rwlock, RW_WRITER); 728 if (udp->udp_state != TS_UNBND || udp->udp_pending_op != -1) { 729 rw_exit(&udp->udp_rwlock); 730 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 731 "udp_bind: bad state, %u", udp->udp_state); 732 udp_err_ack(q, mp, TOUTSTATE, 0); 733 return; 734 } 735 udp->udp_pending_op = tbr->PRIM_type; 736 /* 737 * Copy the source address into our udp structure. This address 738 * may still be zero; if so, IP will fill in the correct address 739 * each time an outbound packet is passed to it. Since the udp is 740 * not yet in the bind hash list, we don't grab the uf_lock to 741 * change udp_ipversion 742 */ 743 if (udp->udp_family == AF_INET) { 744 ASSERT(sin != NULL); 745 ASSERT(udp->udp_ipversion == IPV4_VERSION); 746 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + 747 udp->udp_ip_snd_options_len; 748 IN6_IPADDR_TO_V4MAPPED(sin->sin_addr.s_addr, &v6src); 749 } else { 750 ASSERT(sin6 != NULL); 751 v6src = sin6->sin6_addr; 752 if (IN6_IS_ADDR_V4MAPPED(&v6src)) { 753 /* 754 * no need to hold the uf_lock to set the udp_ipversion 755 * since we are not yet in the fanout list 756 */ 757 udp->udp_ipversion = IPV4_VERSION; 758 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + 759 UDPH_SIZE + udp->udp_ip_snd_options_len; 760 } else { 761 udp->udp_ipversion = IPV6_VERSION; 762 udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len; 763 } 764 } 765 766 /* 767 * If udp_reuseaddr is not set, then we have to make sure that 768 * the IP address and port number the application requested 769 * (or we selected for the application) is not being used by 770 * another stream. If another stream is already using the 771 * requested IP address and port, the behavior depends on 772 * "bind_to_req_port_only". If set the bind fails; otherwise we 773 * search for any an unused port to bind to the the stream. 774 * 775 * As per the BSD semantics, as modified by the Deering multicast 776 * changes, if udp_reuseaddr is set, then we allow multiple binds 777 * to the same port independent of the local IP address. 778 * 779 * This is slightly different than in SunOS 4.X which did not 780 * support IP multicast. Note that the change implemented by the 781 * Deering multicast code effects all binds - not only binding 782 * to IP multicast addresses. 783 * 784 * Note that when binding to port zero we ignore SO_REUSEADDR in 785 * order to guarantee a unique port. 786 */ 787 788 count = 0; 789 if (udp->udp_anon_priv_bind) { 790 /* 791 * loopmax = (IPPORT_RESERVED-1) - 792 * us->us_min_anonpriv_port + 1 793 */ 794 loopmax = IPPORT_RESERVED - us->us_min_anonpriv_port; 795 } else { 796 loopmax = us->us_largest_anon_port - 797 us->us_smallest_anon_port + 1; 798 } 799 800 is_inaddr_any = V6_OR_V4_INADDR_ANY(v6src); 801 zoneid = connp->conn_zoneid; 802 803 for (;;) { 804 udp_t *udp1; 805 boolean_t found_exclbind = B_FALSE; 806 807 /* 808 * Walk through the list of udp streams bound to 809 * requested port with the same IP address. 810 */ 811 lport = htons(port); 812 udpf = &us->us_bind_fanout[UDP_BIND_HASH(lport, 813 us->us_bind_fanout_size)]; 814 mutex_enter(&udpf->uf_lock); 815 for (udp1 = udpf->uf_udp; udp1 != NULL; 816 udp1 = udp1->udp_bind_hash) { 817 if (lport != udp1->udp_port) 818 continue; 819 820 /* 821 * On a labeled system, we must treat bindings to ports 822 * on shared IP addresses by sockets with MAC exemption 823 * privilege as being in all zones, as there's 824 * otherwise no way to identify the right receiver. 825 */ 826 if (!(IPCL_ZONE_MATCH(udp1->udp_connp, zoneid) || 827 IPCL_ZONE_MATCH(connp, 828 udp1->udp_connp->conn_zoneid)) && 829 !udp->udp_mac_exempt && !udp1->udp_mac_exempt) 830 continue; 831 832 /* 833 * If UDP_EXCLBIND is set for either the bound or 834 * binding endpoint, the semantics of bind 835 * is changed according to the following chart. 836 * 837 * spec = specified address (v4 or v6) 838 * unspec = unspecified address (v4 or v6) 839 * A = specified addresses are different for endpoints 840 * 841 * bound bind to allowed? 842 * ------------------------------------- 843 * unspec unspec no 844 * unspec spec no 845 * spec unspec no 846 * spec spec yes if A 847 * 848 * For labeled systems, SO_MAC_EXEMPT behaves the same 849 * as UDP_EXCLBIND, except that zoneid is ignored. 850 */ 851 if (udp1->udp_exclbind || udp->udp_exclbind || 852 udp1->udp_mac_exempt || udp->udp_mac_exempt) { 853 if (V6_OR_V4_INADDR_ANY( 854 udp1->udp_bound_v6src) || 855 is_inaddr_any || 856 IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src, 857 &v6src)) { 858 found_exclbind = B_TRUE; 859 break; 860 } 861 continue; 862 } 863 864 /* 865 * Check ipversion to allow IPv4 and IPv6 sockets to 866 * have disjoint port number spaces. 867 */ 868 if (udp->udp_ipversion != udp1->udp_ipversion) { 869 870 /* 871 * On the first time through the loop, if the 872 * the user intentionally specified a 873 * particular port number, then ignore any 874 * bindings of the other protocol that may 875 * conflict. This allows the user to bind IPv6 876 * alone and get both v4 and v6, or bind both 877 * both and get each seperately. On subsequent 878 * times through the loop, we're checking a 879 * port that we chose (not the user) and thus 880 * we do not allow casual duplicate bindings. 881 */ 882 if (count == 0 && requested_port != 0) 883 continue; 884 } 885 886 /* 887 * No difference depending on SO_REUSEADDR. 888 * 889 * If existing port is bound to a 890 * non-wildcard IP address and 891 * the requesting stream is bound to 892 * a distinct different IP addresses 893 * (non-wildcard, also), keep going. 894 */ 895 if (!is_inaddr_any && 896 !V6_OR_V4_INADDR_ANY(udp1->udp_bound_v6src) && 897 !IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src, 898 &v6src)) { 899 continue; 900 } 901 break; 902 } 903 904 if (!found_exclbind && 905 (udp->udp_reuseaddr && requested_port != 0)) { 906 break; 907 } 908 909 if (udp1 == NULL) { 910 /* 911 * No other stream has this IP address 912 * and port number. We can use it. 913 */ 914 break; 915 } 916 mutex_exit(&udpf->uf_lock); 917 if (bind_to_req_port_only) { 918 /* 919 * We get here only when requested port 920 * is bound (and only first of the for() 921 * loop iteration). 922 * 923 * The semantics of this bind request 924 * require it to fail so we return from 925 * the routine (and exit the loop). 926 * 927 */ 928 udp->udp_pending_op = -1; 929 rw_exit(&udp->udp_rwlock); 930 udp_err_ack(q, mp, TADDRBUSY, 0); 931 return; 932 } 933 934 if (udp->udp_anon_priv_bind) { 935 port = udp_get_next_priv_port(udp); 936 } else { 937 if ((count == 0) && (requested_port != 0)) { 938 /* 939 * If the application wants us to find 940 * a port, get one to start with. Set 941 * requested_port to 0, so that we will 942 * update us->us_next_port_to_try below. 943 */ 944 port = udp_update_next_port(udp, 945 us->us_next_port_to_try, B_TRUE); 946 requested_port = 0; 947 } else { 948 port = udp_update_next_port(udp, port + 1, 949 B_FALSE); 950 } 951 } 952 953 if (port == 0 || ++count >= loopmax) { 954 /* 955 * We've tried every possible port number and 956 * there are none available, so send an error 957 * to the user. 958 */ 959 udp->udp_pending_op = -1; 960 rw_exit(&udp->udp_rwlock); 961 udp_err_ack(q, mp, TNOADDR, 0); 962 return; 963 } 964 } 965 966 /* 967 * Copy the source address into our udp structure. This address 968 * may still be zero; if so, ip will fill in the correct address 969 * each time an outbound packet is passed to it. 970 * If we are binding to a broadcast or multicast address then 971 * udp_bind_ack will clear the source address when it receives 972 * the T_BIND_ACK. 973 */ 974 udp->udp_v6src = udp->udp_bound_v6src = v6src; 975 udp->udp_port = lport; 976 /* 977 * Now reset the the next anonymous port if the application requested 978 * an anonymous port, or we handed out the next anonymous port. 979 */ 980 if ((requested_port == 0) && (!udp->udp_anon_priv_bind)) { 981 us->us_next_port_to_try = port + 1; 982 } 983 984 /* Initialize the O_T_BIND_REQ/T_BIND_REQ for ip. */ 985 if (udp->udp_family == AF_INET) { 986 sin->sin_port = udp->udp_port; 987 } else { 988 int error; 989 990 sin6->sin6_port = udp->udp_port; 991 /* Rebuild the header template */ 992 error = udp_build_hdrs(udp); 993 if (error != 0) { 994 udp->udp_pending_op = -1; 995 rw_exit(&udp->udp_rwlock); 996 mutex_exit(&udpf->uf_lock); 997 udp_err_ack(q, mp, TSYSERR, error); 998 return; 999 } 1000 } 1001 udp->udp_state = TS_IDLE; 1002 udp_bind_hash_insert(udpf, udp); 1003 mutex_exit(&udpf->uf_lock); 1004 rw_exit(&udp->udp_rwlock); 1005 1006 if (cl_inet_bind) { 1007 /* 1008 * Running in cluster mode - register bind information 1009 */ 1010 if (udp->udp_ipversion == IPV4_VERSION) { 1011 (*cl_inet_bind)(IPPROTO_UDP, AF_INET, 1012 (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)), 1013 (in_port_t)udp->udp_port); 1014 } else { 1015 (*cl_inet_bind)(IPPROTO_UDP, AF_INET6, 1016 (uint8_t *)&(udp->udp_v6src), 1017 (in_port_t)udp->udp_port); 1018 } 1019 1020 } 1021 1022 connp->conn_anon_port = (is_system_labeled() && requested_port == 0); 1023 if (is_system_labeled() && (!connp->conn_anon_port || 1024 connp->conn_anon_mlp)) { 1025 uint16_t mlpport; 1026 cred_t *cr = connp->conn_cred; 1027 zone_t *zone; 1028 1029 zone = crgetzone(cr); 1030 connp->conn_mlp_type = udp->udp_recvucred ? mlptBoth : 1031 mlptSingle; 1032 addrtype = tsol_mlp_addr_type(zone->zone_id, IPV6_VERSION, 1033 &v6src, us->us_netstack->netstack_ip); 1034 if (addrtype == mlptSingle) { 1035 rw_enter(&udp->udp_rwlock, RW_WRITER); 1036 udp->udp_pending_op = -1; 1037 rw_exit(&udp->udp_rwlock); 1038 udp_err_ack(q, mp, TNOADDR, 0); 1039 connp->conn_anon_port = B_FALSE; 1040 connp->conn_mlp_type = mlptSingle; 1041 return; 1042 } 1043 mlpport = connp->conn_anon_port ? PMAPPORT : port; 1044 mlptype = tsol_mlp_port_type(zone, IPPROTO_UDP, mlpport, 1045 addrtype); 1046 if (mlptype != mlptSingle && 1047 (connp->conn_mlp_type == mlptSingle || 1048 secpolicy_net_bindmlp(cr) != 0)) { 1049 if (udp->udp_debug) { 1050 (void) strlog(UDP_MOD_ID, 0, 1, 1051 SL_ERROR|SL_TRACE, 1052 "udp_bind: no priv for multilevel port %d", 1053 mlpport); 1054 } 1055 rw_enter(&udp->udp_rwlock, RW_WRITER); 1056 udp->udp_pending_op = -1; 1057 rw_exit(&udp->udp_rwlock); 1058 udp_err_ack(q, mp, TACCES, 0); 1059 connp->conn_anon_port = B_FALSE; 1060 connp->conn_mlp_type = mlptSingle; 1061 return; 1062 } 1063 1064 /* 1065 * If we're specifically binding a shared IP address and the 1066 * port is MLP on shared addresses, then check to see if this 1067 * zone actually owns the MLP. Reject if not. 1068 */ 1069 if (mlptype == mlptShared && addrtype == mlptShared) { 1070 /* 1071 * No need to handle exclusive-stack zones since 1072 * ALL_ZONES only applies to the shared stack. 1073 */ 1074 zoneid_t mlpzone; 1075 1076 mlpzone = tsol_mlp_findzone(IPPROTO_UDP, 1077 htons(mlpport)); 1078 if (connp->conn_zoneid != mlpzone) { 1079 if (udp->udp_debug) { 1080 (void) strlog(UDP_MOD_ID, 0, 1, 1081 SL_ERROR|SL_TRACE, 1082 "udp_bind: attempt to bind port " 1083 "%d on shared addr in zone %d " 1084 "(should be %d)", 1085 mlpport, connp->conn_zoneid, 1086 mlpzone); 1087 } 1088 rw_enter(&udp->udp_rwlock, RW_WRITER); 1089 udp->udp_pending_op = -1; 1090 rw_exit(&udp->udp_rwlock); 1091 udp_err_ack(q, mp, TACCES, 0); 1092 connp->conn_anon_port = B_FALSE; 1093 connp->conn_mlp_type = mlptSingle; 1094 return; 1095 } 1096 } 1097 if (connp->conn_anon_port) { 1098 int error; 1099 1100 error = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 1101 port, B_TRUE); 1102 if (error != 0) { 1103 if (udp->udp_debug) { 1104 (void) strlog(UDP_MOD_ID, 0, 1, 1105 SL_ERROR|SL_TRACE, 1106 "udp_bind: cannot establish anon " 1107 "MLP for port %d", port); 1108 } 1109 rw_enter(&udp->udp_rwlock, RW_WRITER); 1110 udp->udp_pending_op = -1; 1111 rw_exit(&udp->udp_rwlock); 1112 udp_err_ack(q, mp, TACCES, 0); 1113 connp->conn_anon_port = B_FALSE; 1114 connp->conn_mlp_type = mlptSingle; 1115 return; 1116 } 1117 } 1118 connp->conn_mlp_type = mlptype; 1119 } 1120 1121 /* Pass the protocol number in the message following the address. */ 1122 *mp->b_wptr++ = IPPROTO_UDP; 1123 if (!V6_OR_V4_INADDR_ANY(udp->udp_v6src)) { 1124 /* 1125 * Append a request for an IRE if udp_v6src not 1126 * zero (IPv4 - INADDR_ANY, or IPv6 - all-zeroes address). 1127 */ 1128 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 1129 if (!mp->b_cont) { 1130 rw_enter(&udp->udp_rwlock, RW_WRITER); 1131 udp->udp_pending_op = -1; 1132 rw_exit(&udp->udp_rwlock); 1133 udp_err_ack(q, mp, TSYSERR, ENOMEM); 1134 return; 1135 } 1136 mp->b_cont->b_wptr += sizeof (ire_t); 1137 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 1138 } 1139 if (udp->udp_family == AF_INET6) 1140 mp = ip_bind_v6(q, mp, connp, NULL); 1141 else 1142 mp = ip_bind_v4(q, mp, connp); 1143 1144 /* The above return NULL if the bind needs to be deferred */ 1145 if (mp != NULL) 1146 udp_bind_result(connp, mp); 1147 else 1148 CONN_INC_REF(connp); 1149 } 1150 1151 /* 1152 * This is called from ip_wput_nondata to handle the results of a 1153 * deferred UDP bind. It is called once the bind has been completed. 1154 */ 1155 void 1156 udp_resume_bind(conn_t *connp, mblk_t *mp) 1157 { 1158 ASSERT(connp != NULL && IPCL_IS_UDP(connp)); 1159 1160 udp_bind_result(connp, mp); 1161 1162 CONN_OPER_PENDING_DONE(connp); 1163 } 1164 1165 /* 1166 * This routine handles each T_CONN_REQ message passed to udp. It 1167 * associates a default destination address with the stream. 1168 * 1169 * This routine sends down a T_BIND_REQ to IP with the following mblks: 1170 * T_BIND_REQ - specifying local and remote address/port 1171 * IRE_DB_REQ_TYPE - to get an IRE back containing ire_type and src 1172 * T_OK_ACK - for the T_CONN_REQ 1173 * T_CONN_CON - to keep the TPI user happy 1174 * 1175 * The connect completes in udp_bind_result. 1176 * When a T_BIND_ACK is received information is extracted from the IRE 1177 * and the two appended messages are sent to the TPI user. 1178 * Should udp_bind_result receive T_ERROR_ACK for the T_BIND_REQ it will 1179 * convert it to an error ack for the appropriate primitive. 1180 */ 1181 static void 1182 udp_connect(queue_t *q, mblk_t *mp) 1183 { 1184 sin6_t *sin6; 1185 sin_t *sin; 1186 struct T_conn_req *tcr; 1187 in6_addr_t v6dst; 1188 ipaddr_t v4dst; 1189 uint16_t dstport; 1190 uint32_t flowinfo; 1191 mblk_t *mp1, *mp2; 1192 udp_fanout_t *udpf; 1193 udp_t *udp, *udp1; 1194 ushort_t ipversion; 1195 udp_stack_t *us; 1196 conn_t *connp = Q_TO_CONN(q); 1197 1198 udp = connp->conn_udp; 1199 tcr = (struct T_conn_req *)mp->b_rptr; 1200 us = udp->udp_us; 1201 1202 /* A bit of sanity checking */ 1203 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_req)) { 1204 udp_err_ack(q, mp, TPROTO, 0); 1205 return; 1206 } 1207 1208 if (tcr->OPT_length != 0) { 1209 udp_err_ack(q, mp, TBADOPT, 0); 1210 return; 1211 } 1212 1213 /* 1214 * Determine packet type based on type of address passed in 1215 * the request should contain an IPv4 or IPv6 address. 1216 * Make sure that address family matches the type of 1217 * family of the the address passed down 1218 */ 1219 switch (tcr->DEST_length) { 1220 default: 1221 udp_err_ack(q, mp, TBADADDR, 0); 1222 return; 1223 1224 case sizeof (sin_t): 1225 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 1226 sizeof (sin_t)); 1227 if (sin == NULL || !OK_32PTR((char *)sin)) { 1228 udp_err_ack(q, mp, TSYSERR, EINVAL); 1229 return; 1230 } 1231 if (udp->udp_family != AF_INET || 1232 sin->sin_family != AF_INET) { 1233 udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); 1234 return; 1235 } 1236 v4dst = sin->sin_addr.s_addr; 1237 dstport = sin->sin_port; 1238 IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst); 1239 ASSERT(udp->udp_ipversion == IPV4_VERSION); 1240 ipversion = IPV4_VERSION; 1241 break; 1242 1243 case sizeof (sin6_t): 1244 sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, 1245 sizeof (sin6_t)); 1246 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 1247 udp_err_ack(q, mp, TSYSERR, EINVAL); 1248 return; 1249 } 1250 if (udp->udp_family != AF_INET6 || 1251 sin6->sin6_family != AF_INET6) { 1252 udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); 1253 return; 1254 } 1255 v6dst = sin6->sin6_addr; 1256 dstport = sin6->sin6_port; 1257 if (IN6_IS_ADDR_V4MAPPED(&v6dst)) { 1258 IN6_V4MAPPED_TO_IPADDR(&v6dst, v4dst); 1259 ipversion = IPV4_VERSION; 1260 flowinfo = 0; 1261 } else { 1262 ipversion = IPV6_VERSION; 1263 flowinfo = sin6->sin6_flowinfo; 1264 } 1265 break; 1266 } 1267 if (dstport == 0) { 1268 udp_err_ack(q, mp, TBADADDR, 0); 1269 return; 1270 } 1271 1272 rw_enter(&udp->udp_rwlock, RW_WRITER); 1273 1274 /* 1275 * This UDP must have bound to a port already before doing a connect. 1276 * TPI mandates that users must send TPI primitives only 1 at a time 1277 * and wait for the response before sending the next primitive. 1278 */ 1279 if (udp->udp_state == TS_UNBND || udp->udp_pending_op != -1) { 1280 rw_exit(&udp->udp_rwlock); 1281 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 1282 "udp_connect: bad state, %u", udp->udp_state); 1283 udp_err_ack(q, mp, TOUTSTATE, 0); 1284 return; 1285 } 1286 udp->udp_pending_op = T_CONN_REQ; 1287 ASSERT(udp->udp_port != 0 && udp->udp_ptpbhn != NULL); 1288 1289 if (ipversion == IPV4_VERSION) { 1290 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + 1291 udp->udp_ip_snd_options_len; 1292 } else { 1293 udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len; 1294 } 1295 1296 udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port, 1297 us->us_bind_fanout_size)]; 1298 1299 mutex_enter(&udpf->uf_lock); 1300 if (udp->udp_state == TS_DATA_XFER) { 1301 /* Already connected - clear out state */ 1302 udp->udp_v6src = udp->udp_bound_v6src; 1303 udp->udp_state = TS_IDLE; 1304 } 1305 1306 /* 1307 * Create a default IP header with no IP options. 1308 */ 1309 udp->udp_dstport = dstport; 1310 udp->udp_ipversion = ipversion; 1311 if (ipversion == IPV4_VERSION) { 1312 /* 1313 * Interpret a zero destination to mean loopback. 1314 * Update the T_CONN_REQ (sin/sin6) since it is used to 1315 * generate the T_CONN_CON. 1316 */ 1317 if (v4dst == INADDR_ANY) { 1318 v4dst = htonl(INADDR_LOOPBACK); 1319 IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst); 1320 if (udp->udp_family == AF_INET) { 1321 sin->sin_addr.s_addr = v4dst; 1322 } else { 1323 sin6->sin6_addr = v6dst; 1324 } 1325 } 1326 udp->udp_v6dst = v6dst; 1327 udp->udp_flowinfo = 0; 1328 1329 /* 1330 * If the destination address is multicast and 1331 * an outgoing multicast interface has been set, 1332 * use the address of that interface as our 1333 * source address if no source address has been set. 1334 */ 1335 if (V4_PART_OF_V6(udp->udp_v6src) == INADDR_ANY && 1336 CLASSD(v4dst) && 1337 udp->udp_multicast_if_addr != INADDR_ANY) { 1338 IN6_IPADDR_TO_V4MAPPED(udp->udp_multicast_if_addr, 1339 &udp->udp_v6src); 1340 } 1341 } else { 1342 ASSERT(udp->udp_ipversion == IPV6_VERSION); 1343 /* 1344 * Interpret a zero destination to mean loopback. 1345 * Update the T_CONN_REQ (sin/sin6) since it is used to 1346 * generate the T_CONN_CON. 1347 */ 1348 if (IN6_IS_ADDR_UNSPECIFIED(&v6dst)) { 1349 v6dst = ipv6_loopback; 1350 sin6->sin6_addr = v6dst; 1351 } 1352 udp->udp_v6dst = v6dst; 1353 udp->udp_flowinfo = flowinfo; 1354 /* 1355 * If the destination address is multicast and 1356 * an outgoing multicast interface has been set, 1357 * then the ip bind logic will pick the correct source 1358 * address (i.e. matching the outgoing multicast interface). 1359 */ 1360 } 1361 1362 /* 1363 * Verify that the src/port/dst/port is unique for all 1364 * connections in TS_DATA_XFER 1365 */ 1366 for (udp1 = udpf->uf_udp; udp1 != NULL; udp1 = udp1->udp_bind_hash) { 1367 if (udp1->udp_state != TS_DATA_XFER) 1368 continue; 1369 if (udp->udp_port != udp1->udp_port || 1370 udp->udp_ipversion != udp1->udp_ipversion || 1371 dstport != udp1->udp_dstport || 1372 !IN6_ARE_ADDR_EQUAL(&udp->udp_v6src, &udp1->udp_v6src) || 1373 !IN6_ARE_ADDR_EQUAL(&v6dst, &udp1->udp_v6dst) || 1374 !(IPCL_ZONE_MATCH(udp->udp_connp, 1375 udp1->udp_connp->conn_zoneid) || 1376 IPCL_ZONE_MATCH(udp1->udp_connp, 1377 udp->udp_connp->conn_zoneid))) 1378 continue; 1379 mutex_exit(&udpf->uf_lock); 1380 udp->udp_pending_op = -1; 1381 rw_exit(&udp->udp_rwlock); 1382 udp_err_ack(q, mp, TBADADDR, 0); 1383 return; 1384 } 1385 udp->udp_state = TS_DATA_XFER; 1386 mutex_exit(&udpf->uf_lock); 1387 1388 /* 1389 * Send down bind to IP to verify that there is a route 1390 * and to determine the source address. 1391 * This will come back as T_BIND_ACK with an IRE_DB_TYPE in rput. 1392 */ 1393 if (udp->udp_family == AF_INET) 1394 mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa_conn_t)); 1395 else 1396 mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); 1397 if (mp1 == NULL) { 1398 bind_failed: 1399 mutex_enter(&udpf->uf_lock); 1400 udp->udp_state = TS_IDLE; 1401 udp->udp_pending_op = -1; 1402 mutex_exit(&udpf->uf_lock); 1403 rw_exit(&udp->udp_rwlock); 1404 udp_err_ack(q, mp, TSYSERR, ENOMEM); 1405 return; 1406 } 1407 1408 rw_exit(&udp->udp_rwlock); 1409 /* 1410 * We also have to send a connection confirmation to 1411 * keep TLI happy. Prepare it for udp_bind_result. 1412 */ 1413 if (udp->udp_family == AF_INET) 1414 mp2 = mi_tpi_conn_con(NULL, (char *)sin, 1415 sizeof (*sin), NULL, 0); 1416 else 1417 mp2 = mi_tpi_conn_con(NULL, (char *)sin6, 1418 sizeof (*sin6), NULL, 0); 1419 if (mp2 == NULL) { 1420 freemsg(mp1); 1421 rw_enter(&udp->udp_rwlock, RW_WRITER); 1422 goto bind_failed; 1423 } 1424 1425 mp = mi_tpi_ok_ack_alloc(mp); 1426 if (mp == NULL) { 1427 /* Unable to reuse the T_CONN_REQ for the ack. */ 1428 freemsg(mp2); 1429 rw_enter(&udp->udp_rwlock, RW_WRITER); 1430 mutex_enter(&udpf->uf_lock); 1431 udp->udp_state = TS_IDLE; 1432 udp->udp_pending_op = -1; 1433 mutex_exit(&udpf->uf_lock); 1434 rw_exit(&udp->udp_rwlock); 1435 udp_err_ack_prim(q, mp1, T_CONN_REQ, TSYSERR, ENOMEM); 1436 return; 1437 } 1438 1439 /* Hang onto the T_OK_ACK and T_CONN_CON for later. */ 1440 linkb(mp1, mp); 1441 linkb(mp1, mp2); 1442 1443 mblk_setcred(mp1, connp->conn_cred); 1444 if (udp->udp_family == AF_INET) 1445 mp1 = ip_bind_v4(q, mp1, connp); 1446 else 1447 mp1 = ip_bind_v6(q, mp1, connp, NULL); 1448 1449 /* The above return NULL if the bind needs to be deferred */ 1450 if (mp1 != NULL) 1451 udp_bind_result(connp, mp1); 1452 else 1453 CONN_INC_REF(connp); 1454 } 1455 1456 static int 1457 udp_close(queue_t *q) 1458 { 1459 conn_t *connp = (conn_t *)q->q_ptr; 1460 udp_t *udp; 1461 1462 ASSERT(connp != NULL && IPCL_IS_UDP(connp)); 1463 udp = connp->conn_udp; 1464 1465 udp_quiesce_conn(connp); 1466 ip_quiesce_conn(connp); 1467 /* 1468 * Disable read-side synchronous stream 1469 * interface and drain any queued data. 1470 */ 1471 udp_rcv_drain(q, udp, B_TRUE); 1472 ASSERT(!udp->udp_direct_sockfs); 1473 1474 qprocsoff(q); 1475 1476 ASSERT(udp->udp_rcv_cnt == 0); 1477 ASSERT(udp->udp_rcv_msgcnt == 0); 1478 ASSERT(udp->udp_rcv_list_head == NULL); 1479 ASSERT(udp->udp_rcv_list_tail == NULL); 1480 1481 udp_close_free(connp); 1482 1483 /* 1484 * Now we are truly single threaded on this stream, and can 1485 * delete the things hanging off the connp, and finally the connp. 1486 * We removed this connp from the fanout list, it cannot be 1487 * accessed thru the fanouts, and we already waited for the 1488 * conn_ref to drop to 0. We are already in close, so 1489 * there cannot be any other thread from the top. qprocsoff 1490 * has completed, and service has completed or won't run in 1491 * future. 1492 */ 1493 ASSERT(connp->conn_ref == 1); 1494 1495 inet_minor_free(ip_minor_arena, connp->conn_dev); 1496 1497 connp->conn_ref--; 1498 ipcl_conn_destroy(connp); 1499 1500 q->q_ptr = WR(q)->q_ptr = NULL; 1501 return (0); 1502 } 1503 1504 /* 1505 * Called in the close path to quiesce the conn 1506 */ 1507 void 1508 udp_quiesce_conn(conn_t *connp) 1509 { 1510 udp_t *udp = connp->conn_udp; 1511 1512 if (cl_inet_unbind != NULL && udp->udp_state == TS_IDLE) { 1513 /* 1514 * Running in cluster mode - register unbind information 1515 */ 1516 if (udp->udp_ipversion == IPV4_VERSION) { 1517 (*cl_inet_unbind)(IPPROTO_UDP, AF_INET, 1518 (uint8_t *)(&(V4_PART_OF_V6(udp->udp_v6src))), 1519 (in_port_t)udp->udp_port); 1520 } else { 1521 (*cl_inet_unbind)(IPPROTO_UDP, AF_INET6, 1522 (uint8_t *)(&(udp->udp_v6src)), 1523 (in_port_t)udp->udp_port); 1524 } 1525 } 1526 1527 udp_bind_hash_remove(udp, B_FALSE); 1528 1529 } 1530 1531 void 1532 udp_close_free(conn_t *connp) 1533 { 1534 udp_t *udp = connp->conn_udp; 1535 1536 /* If there are any options associated with the stream, free them. */ 1537 if (udp->udp_ip_snd_options != NULL) { 1538 mi_free((char *)udp->udp_ip_snd_options); 1539 udp->udp_ip_snd_options = NULL; 1540 udp->udp_ip_snd_options_len = 0; 1541 } 1542 1543 if (udp->udp_ip_rcv_options != NULL) { 1544 mi_free((char *)udp->udp_ip_rcv_options); 1545 udp->udp_ip_rcv_options = NULL; 1546 udp->udp_ip_rcv_options_len = 0; 1547 } 1548 1549 /* Free memory associated with sticky options */ 1550 if (udp->udp_sticky_hdrs_len != 0) { 1551 kmem_free(udp->udp_sticky_hdrs, 1552 udp->udp_sticky_hdrs_len); 1553 udp->udp_sticky_hdrs = NULL; 1554 udp->udp_sticky_hdrs_len = 0; 1555 } 1556 1557 ip6_pkt_free(&udp->udp_sticky_ipp); 1558 1559 /* 1560 * Clear any fields which the kmem_cache constructor clears. 1561 * Only udp_connp needs to be preserved. 1562 * TBD: We should make this more efficient to avoid clearing 1563 * everything. 1564 */ 1565 ASSERT(udp->udp_connp == connp); 1566 bzero(udp, sizeof (udp_t)); 1567 udp->udp_connp = connp; 1568 } 1569 1570 /* 1571 * This routine handles each T_DISCON_REQ message passed to udp 1572 * as an indicating that UDP is no longer connected. This results 1573 * in sending a T_BIND_REQ to IP to restore the binding to just 1574 * the local address/port. 1575 * 1576 * This routine sends down a T_BIND_REQ to IP with the following mblks: 1577 * T_BIND_REQ - specifying just the local address/port 1578 * T_OK_ACK - for the T_DISCON_REQ 1579 * 1580 * The disconnect completes in udp_bind_result. 1581 * When a T_BIND_ACK is received the appended T_OK_ACK is sent to the TPI user. 1582 * Should udp_bind_result receive T_ERROR_ACK for the T_BIND_REQ it will 1583 * convert it to an error ack for the appropriate primitive. 1584 */ 1585 static void 1586 udp_disconnect(queue_t *q, mblk_t *mp) 1587 { 1588 udp_t *udp; 1589 mblk_t *mp1; 1590 udp_fanout_t *udpf; 1591 udp_stack_t *us; 1592 conn_t *connp = Q_TO_CONN(q); 1593 1594 udp = connp->conn_udp; 1595 us = udp->udp_us; 1596 rw_enter(&udp->udp_rwlock, RW_WRITER); 1597 if (udp->udp_state != TS_DATA_XFER || udp->udp_pending_op != -1) { 1598 rw_exit(&udp->udp_rwlock); 1599 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 1600 "udp_disconnect: bad state, %u", udp->udp_state); 1601 udp_err_ack(q, mp, TOUTSTATE, 0); 1602 return; 1603 } 1604 udp->udp_pending_op = T_DISCON_REQ; 1605 udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port, 1606 us->us_bind_fanout_size)]; 1607 mutex_enter(&udpf->uf_lock); 1608 udp->udp_v6src = udp->udp_bound_v6src; 1609 udp->udp_state = TS_IDLE; 1610 mutex_exit(&udpf->uf_lock); 1611 1612 /* 1613 * Send down bind to IP to remove the full binding and revert 1614 * to the local address binding. 1615 */ 1616 if (udp->udp_family == AF_INET) 1617 mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin_t)); 1618 else 1619 mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin6_t)); 1620 if (mp1 == NULL) { 1621 udp->udp_pending_op = -1; 1622 rw_exit(&udp->udp_rwlock); 1623 udp_err_ack(q, mp, TSYSERR, ENOMEM); 1624 return; 1625 } 1626 mp = mi_tpi_ok_ack_alloc(mp); 1627 if (mp == NULL) { 1628 /* Unable to reuse the T_DISCON_REQ for the ack. */ 1629 udp->udp_pending_op = -1; 1630 rw_exit(&udp->udp_rwlock); 1631 udp_err_ack_prim(q, mp1, T_DISCON_REQ, TSYSERR, ENOMEM); 1632 return; 1633 } 1634 1635 if (udp->udp_family == AF_INET6) { 1636 int error; 1637 1638 /* Rebuild the header template */ 1639 error = udp_build_hdrs(udp); 1640 if (error != 0) { 1641 udp->udp_pending_op = -1; 1642 rw_exit(&udp->udp_rwlock); 1643 udp_err_ack_prim(q, mp, T_DISCON_REQ, TSYSERR, error); 1644 freemsg(mp1); 1645 return; 1646 } 1647 } 1648 1649 rw_exit(&udp->udp_rwlock); 1650 /* Append the T_OK_ACK to the T_BIND_REQ for udp_bind_ack */ 1651 linkb(mp1, mp); 1652 1653 if (udp->udp_family == AF_INET6) 1654 mp1 = ip_bind_v6(q, mp1, connp, NULL); 1655 else 1656 mp1 = ip_bind_v4(q, mp1, connp); 1657 1658 /* The above return NULL if the bind needs to be deferred */ 1659 if (mp1 != NULL) 1660 udp_bind_result(connp, mp1); 1661 else 1662 CONN_INC_REF(connp); 1663 } 1664 1665 /* This routine creates a T_ERROR_ACK message and passes it upstream. */ 1666 static void 1667 udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error) 1668 { 1669 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 1670 qreply(q, mp); 1671 } 1672 1673 /* Shorthand to generate and send TPI error acks to our client */ 1674 static void 1675 udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive, t_scalar_t t_error, 1676 int sys_error) 1677 { 1678 struct T_error_ack *teackp; 1679 1680 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 1681 M_PCPROTO, T_ERROR_ACK)) != NULL) { 1682 teackp = (struct T_error_ack *)mp->b_rptr; 1683 teackp->ERROR_prim = primitive; 1684 teackp->TLI_error = t_error; 1685 teackp->UNIX_error = sys_error; 1686 qreply(q, mp); 1687 } 1688 } 1689 1690 /*ARGSUSED*/ 1691 static int 1692 udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 1693 { 1694 int i; 1695 udp_t *udp = Q_TO_UDP(q); 1696 udp_stack_t *us = udp->udp_us; 1697 1698 for (i = 0; i < us->us_num_epriv_ports; i++) { 1699 if (us->us_epriv_ports[i] != 0) 1700 (void) mi_mpprintf(mp, "%d ", us->us_epriv_ports[i]); 1701 } 1702 return (0); 1703 } 1704 1705 /* ARGSUSED */ 1706 static int 1707 udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 1708 cred_t *cr) 1709 { 1710 long new_value; 1711 int i; 1712 udp_t *udp = Q_TO_UDP(q); 1713 udp_stack_t *us = udp->udp_us; 1714 1715 /* 1716 * Fail the request if the new value does not lie within the 1717 * port number limits. 1718 */ 1719 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 1720 new_value <= 0 || new_value >= 65536) { 1721 return (EINVAL); 1722 } 1723 1724 /* Check if the value is already in the list */ 1725 for (i = 0; i < us->us_num_epriv_ports; i++) { 1726 if (new_value == us->us_epriv_ports[i]) { 1727 return (EEXIST); 1728 } 1729 } 1730 /* Find an empty slot */ 1731 for (i = 0; i < us->us_num_epriv_ports; i++) { 1732 if (us->us_epriv_ports[i] == 0) 1733 break; 1734 } 1735 if (i == us->us_num_epriv_ports) { 1736 return (EOVERFLOW); 1737 } 1738 1739 /* Set the new value */ 1740 us->us_epriv_ports[i] = (in_port_t)new_value; 1741 return (0); 1742 } 1743 1744 /* ARGSUSED */ 1745 static int 1746 udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 1747 cred_t *cr) 1748 { 1749 long new_value; 1750 int i; 1751 udp_t *udp = Q_TO_UDP(q); 1752 udp_stack_t *us = udp->udp_us; 1753 1754 /* 1755 * Fail the request if the new value does not lie within the 1756 * port number limits. 1757 */ 1758 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 1759 new_value <= 0 || new_value >= 65536) { 1760 return (EINVAL); 1761 } 1762 1763 /* Check that the value is already in the list */ 1764 for (i = 0; i < us->us_num_epriv_ports; i++) { 1765 if (us->us_epriv_ports[i] == new_value) 1766 break; 1767 } 1768 if (i == us->us_num_epriv_ports) { 1769 return (ESRCH); 1770 } 1771 1772 /* Clear the value */ 1773 us->us_epriv_ports[i] = 0; 1774 return (0); 1775 } 1776 1777 /* At minimum we need 4 bytes of UDP header */ 1778 #define ICMP_MIN_UDP_HDR 4 1779 1780 /* 1781 * udp_icmp_error is called by udp_input to process ICMP msgs. passed up by IP. 1782 * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors. 1783 * Assumes that IP has pulled up everything up to and including the ICMP header. 1784 */ 1785 static void 1786 udp_icmp_error(queue_t *q, mblk_t *mp) 1787 { 1788 icmph_t *icmph; 1789 ipha_t *ipha; 1790 int iph_hdr_length; 1791 udpha_t *udpha; 1792 sin_t sin; 1793 sin6_t sin6; 1794 mblk_t *mp1; 1795 int error = 0; 1796 udp_t *udp = Q_TO_UDP(q); 1797 1798 ipha = (ipha_t *)mp->b_rptr; 1799 1800 ASSERT(OK_32PTR(mp->b_rptr)); 1801 1802 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) { 1803 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION); 1804 udp_icmp_error_ipv6(q, mp); 1805 return; 1806 } 1807 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 1808 1809 /* Skip past the outer IP and ICMP headers */ 1810 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1811 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1812 ipha = (ipha_t *)&icmph[1]; 1813 1814 /* Skip past the inner IP and find the ULP header */ 1815 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1816 udpha = (udpha_t *)((char *)ipha + iph_hdr_length); 1817 1818 switch (icmph->icmph_type) { 1819 case ICMP_DEST_UNREACHABLE: 1820 switch (icmph->icmph_code) { 1821 case ICMP_FRAGMENTATION_NEEDED: 1822 /* 1823 * IP has already adjusted the path MTU. 1824 */ 1825 break; 1826 case ICMP_PORT_UNREACHABLE: 1827 case ICMP_PROTOCOL_UNREACHABLE: 1828 error = ECONNREFUSED; 1829 break; 1830 default: 1831 /* Transient errors */ 1832 break; 1833 } 1834 break; 1835 default: 1836 /* Transient errors */ 1837 break; 1838 } 1839 if (error == 0) { 1840 freemsg(mp); 1841 return; 1842 } 1843 1844 /* 1845 * Deliver T_UDERROR_IND when the application has asked for it. 1846 * The socket layer enables this automatically when connected. 1847 */ 1848 if (!udp->udp_dgram_errind) { 1849 freemsg(mp); 1850 return; 1851 } 1852 1853 switch (udp->udp_family) { 1854 case AF_INET: 1855 sin = sin_null; 1856 sin.sin_family = AF_INET; 1857 sin.sin_addr.s_addr = ipha->ipha_dst; 1858 sin.sin_port = udpha->uha_dst_port; 1859 mp1 = mi_tpi_uderror_ind((char *)&sin, sizeof (sin_t), NULL, 0, 1860 error); 1861 break; 1862 case AF_INET6: 1863 sin6 = sin6_null; 1864 sin6.sin6_family = AF_INET6; 1865 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &sin6.sin6_addr); 1866 sin6.sin6_port = udpha->uha_dst_port; 1867 1868 mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), 1869 NULL, 0, error); 1870 break; 1871 } 1872 if (mp1) 1873 putnext(q, mp1); 1874 freemsg(mp); 1875 } 1876 1877 /* 1878 * udp_icmp_error_ipv6 is called by udp_icmp_error to process ICMP for IPv6. 1879 * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors. 1880 * Assumes that IP has pulled up all the extension headers as well as the 1881 * ICMPv6 header. 1882 */ 1883 static void 1884 udp_icmp_error_ipv6(queue_t *q, mblk_t *mp) 1885 { 1886 icmp6_t *icmp6; 1887 ip6_t *ip6h, *outer_ip6h; 1888 uint16_t iph_hdr_length; 1889 uint8_t *nexthdrp; 1890 udpha_t *udpha; 1891 sin6_t sin6; 1892 mblk_t *mp1; 1893 int error = 0; 1894 udp_t *udp = Q_TO_UDP(q); 1895 udp_stack_t *us = udp->udp_us; 1896 1897 outer_ip6h = (ip6_t *)mp->b_rptr; 1898 if (outer_ip6h->ip6_nxt != IPPROTO_ICMPV6) 1899 iph_hdr_length = ip_hdr_length_v6(mp, outer_ip6h); 1900 else 1901 iph_hdr_length = IPV6_HDR_LEN; 1902 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 1903 ip6h = (ip6_t *)&icmp6[1]; 1904 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) { 1905 freemsg(mp); 1906 return; 1907 } 1908 udpha = (udpha_t *)((char *)ip6h + iph_hdr_length); 1909 1910 switch (icmp6->icmp6_type) { 1911 case ICMP6_DST_UNREACH: 1912 switch (icmp6->icmp6_code) { 1913 case ICMP6_DST_UNREACH_NOPORT: 1914 error = ECONNREFUSED; 1915 break; 1916 case ICMP6_DST_UNREACH_ADMIN: 1917 case ICMP6_DST_UNREACH_NOROUTE: 1918 case ICMP6_DST_UNREACH_BEYONDSCOPE: 1919 case ICMP6_DST_UNREACH_ADDR: 1920 /* Transient errors */ 1921 break; 1922 default: 1923 break; 1924 } 1925 break; 1926 case ICMP6_PACKET_TOO_BIG: { 1927 struct T_unitdata_ind *tudi; 1928 struct T_opthdr *toh; 1929 size_t udi_size; 1930 mblk_t *newmp; 1931 t_scalar_t opt_length = sizeof (struct T_opthdr) + 1932 sizeof (struct ip6_mtuinfo); 1933 sin6_t *sin6; 1934 struct ip6_mtuinfo *mtuinfo; 1935 1936 /* 1937 * If the application has requested to receive path mtu 1938 * information, send up an empty message containing an 1939 * IPV6_PATHMTU ancillary data item. 1940 */ 1941 if (!udp->udp_ipv6_recvpathmtu) 1942 break; 1943 1944 udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t) + 1945 opt_length; 1946 if ((newmp = allocb(udi_size, BPRI_MED)) == NULL) { 1947 BUMP_MIB(&us->us_udp_mib, udpInErrors); 1948 break; 1949 } 1950 1951 /* 1952 * newmp->b_cont is left to NULL on purpose. This is an 1953 * empty message containing only ancillary data. 1954 */ 1955 newmp->b_datap->db_type = M_PROTO; 1956 tudi = (struct T_unitdata_ind *)newmp->b_rptr; 1957 newmp->b_wptr = (uchar_t *)tudi + udi_size; 1958 tudi->PRIM_type = T_UNITDATA_IND; 1959 tudi->SRC_length = sizeof (sin6_t); 1960 tudi->SRC_offset = sizeof (struct T_unitdata_ind); 1961 tudi->OPT_offset = tudi->SRC_offset + sizeof (sin6_t); 1962 tudi->OPT_length = opt_length; 1963 1964 sin6 = (sin6_t *)&tudi[1]; 1965 bzero(sin6, sizeof (sin6_t)); 1966 sin6->sin6_family = AF_INET6; 1967 sin6->sin6_addr = udp->udp_v6dst; 1968 1969 toh = (struct T_opthdr *)&sin6[1]; 1970 toh->level = IPPROTO_IPV6; 1971 toh->name = IPV6_PATHMTU; 1972 toh->len = opt_length; 1973 toh->status = 0; 1974 1975 mtuinfo = (struct ip6_mtuinfo *)&toh[1]; 1976 bzero(mtuinfo, sizeof (struct ip6_mtuinfo)); 1977 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 1978 mtuinfo->ip6m_addr.sin6_addr = ip6h->ip6_dst; 1979 mtuinfo->ip6m_mtu = icmp6->icmp6_mtu; 1980 /* 1981 * We've consumed everything we need from the original 1982 * message. Free it, then send our empty message. 1983 */ 1984 freemsg(mp); 1985 putnext(q, newmp); 1986 return; 1987 } 1988 case ICMP6_TIME_EXCEEDED: 1989 /* Transient errors */ 1990 break; 1991 case ICMP6_PARAM_PROB: 1992 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 1993 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 1994 (uchar_t *)ip6h + icmp6->icmp6_pptr == 1995 (uchar_t *)nexthdrp) { 1996 error = ECONNREFUSED; 1997 break; 1998 } 1999 break; 2000 } 2001 if (error == 0) { 2002 freemsg(mp); 2003 return; 2004 } 2005 2006 /* 2007 * Deliver T_UDERROR_IND when the application has asked for it. 2008 * The socket layer enables this automatically when connected. 2009 */ 2010 if (!udp->udp_dgram_errind) { 2011 freemsg(mp); 2012 return; 2013 } 2014 2015 sin6 = sin6_null; 2016 sin6.sin6_family = AF_INET6; 2017 sin6.sin6_addr = ip6h->ip6_dst; 2018 sin6.sin6_port = udpha->uha_dst_port; 2019 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 2020 2021 mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), NULL, 0, 2022 error); 2023 if (mp1) 2024 putnext(q, mp1); 2025 freemsg(mp); 2026 } 2027 2028 /* 2029 * This routine responds to T_ADDR_REQ messages. It is called by udp_wput. 2030 * The local address is filled in if endpoint is bound. The remote address 2031 * is filled in if remote address has been precified ("connected endpoint") 2032 * (The concept of connected CLTS sockets is alien to published TPI 2033 * but we support it anyway). 2034 */ 2035 static void 2036 udp_addr_req(queue_t *q, mblk_t *mp) 2037 { 2038 sin_t *sin; 2039 sin6_t *sin6; 2040 mblk_t *ackmp; 2041 struct T_addr_ack *taa; 2042 udp_t *udp = Q_TO_UDP(q); 2043 2044 /* Make it large enough for worst case */ 2045 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 2046 2 * sizeof (sin6_t), 1); 2047 if (ackmp == NULL) { 2048 udp_err_ack(q, mp, TSYSERR, ENOMEM); 2049 return; 2050 } 2051 taa = (struct T_addr_ack *)ackmp->b_rptr; 2052 2053 bzero(taa, sizeof (struct T_addr_ack)); 2054 ackmp->b_wptr = (uchar_t *)&taa[1]; 2055 2056 taa->PRIM_type = T_ADDR_ACK; 2057 ackmp->b_datap->db_type = M_PCPROTO; 2058 rw_enter(&udp->udp_rwlock, RW_READER); 2059 /* 2060 * Note: Following code assumes 32 bit alignment of basic 2061 * data structures like sin_t and struct T_addr_ack. 2062 */ 2063 if (udp->udp_state != TS_UNBND) { 2064 /* 2065 * Fill in local address first 2066 */ 2067 taa->LOCADDR_offset = sizeof (*taa); 2068 if (udp->udp_family == AF_INET) { 2069 taa->LOCADDR_length = sizeof (sin_t); 2070 sin = (sin_t *)&taa[1]; 2071 /* Fill zeroes and then initialize non-zero fields */ 2072 *sin = sin_null; 2073 sin->sin_family = AF_INET; 2074 if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) && 2075 !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { 2076 IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src, 2077 sin->sin_addr.s_addr); 2078 } else { 2079 /* 2080 * INADDR_ANY 2081 * udp_v6src is not set, we might be bound to 2082 * broadcast/multicast. Use udp_bound_v6src as 2083 * local address instead (that could 2084 * also still be INADDR_ANY) 2085 */ 2086 IN6_V4MAPPED_TO_IPADDR(&udp->udp_bound_v6src, 2087 sin->sin_addr.s_addr); 2088 } 2089 sin->sin_port = udp->udp_port; 2090 ackmp->b_wptr = (uchar_t *)&sin[1]; 2091 if (udp->udp_state == TS_DATA_XFER) { 2092 /* 2093 * connected, fill remote address too 2094 */ 2095 taa->REMADDR_length = sizeof (sin_t); 2096 /* assumed 32-bit alignment */ 2097 taa->REMADDR_offset = taa->LOCADDR_offset + 2098 taa->LOCADDR_length; 2099 2100 sin = (sin_t *)(ackmp->b_rptr + 2101 taa->REMADDR_offset); 2102 /* initialize */ 2103 *sin = sin_null; 2104 sin->sin_family = AF_INET; 2105 sin->sin_addr.s_addr = 2106 V4_PART_OF_V6(udp->udp_v6dst); 2107 sin->sin_port = udp->udp_dstport; 2108 ackmp->b_wptr = (uchar_t *)&sin[1]; 2109 } 2110 } else { 2111 taa->LOCADDR_length = sizeof (sin6_t); 2112 sin6 = (sin6_t *)&taa[1]; 2113 /* Fill zeroes and then initialize non-zero fields */ 2114 *sin6 = sin6_null; 2115 sin6->sin6_family = AF_INET6; 2116 if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { 2117 sin6->sin6_addr = udp->udp_v6src; 2118 } else { 2119 /* 2120 * UNSPECIFIED 2121 * udp_v6src is not set, we might be bound to 2122 * broadcast/multicast. Use udp_bound_v6src as 2123 * local address instead (that could 2124 * also still be UNSPECIFIED) 2125 */ 2126 sin6->sin6_addr = 2127 udp->udp_bound_v6src; 2128 } 2129 sin6->sin6_port = udp->udp_port; 2130 ackmp->b_wptr = (uchar_t *)&sin6[1]; 2131 if (udp->udp_state == TS_DATA_XFER) { 2132 /* 2133 * connected, fill remote address too 2134 */ 2135 taa->REMADDR_length = sizeof (sin6_t); 2136 /* assumed 32-bit alignment */ 2137 taa->REMADDR_offset = taa->LOCADDR_offset + 2138 taa->LOCADDR_length; 2139 2140 sin6 = (sin6_t *)(ackmp->b_rptr + 2141 taa->REMADDR_offset); 2142 /* initialize */ 2143 *sin6 = sin6_null; 2144 sin6->sin6_family = AF_INET6; 2145 sin6->sin6_addr = udp->udp_v6dst; 2146 sin6->sin6_port = udp->udp_dstport; 2147 ackmp->b_wptr = (uchar_t *)&sin6[1]; 2148 } 2149 ackmp->b_wptr = (uchar_t *)&sin6[1]; 2150 } 2151 } 2152 rw_exit(&udp->udp_rwlock); 2153 ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim); 2154 qreply(q, ackmp); 2155 } 2156 2157 static void 2158 udp_copy_info(struct T_info_ack *tap, udp_t *udp) 2159 { 2160 if (udp->udp_family == AF_INET) { 2161 *tap = udp_g_t_info_ack_ipv4; 2162 } else { 2163 *tap = udp_g_t_info_ack_ipv6; 2164 } 2165 tap->CURRENT_state = udp->udp_state; 2166 tap->OPT_size = udp_max_optsize; 2167 } 2168 2169 /* 2170 * This routine responds to T_CAPABILITY_REQ messages. It is called by 2171 * udp_wput. Much of the T_CAPABILITY_ACK information is copied from 2172 * udp_g_t_info_ack. The current state of the stream is copied from 2173 * udp_state. 2174 */ 2175 static void 2176 udp_capability_req(queue_t *q, mblk_t *mp) 2177 { 2178 t_uscalar_t cap_bits1; 2179 struct T_capability_ack *tcap; 2180 udp_t *udp = Q_TO_UDP(q); 2181 2182 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 2183 2184 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 2185 mp->b_datap->db_type, T_CAPABILITY_ACK); 2186 if (!mp) 2187 return; 2188 2189 tcap = (struct T_capability_ack *)mp->b_rptr; 2190 tcap->CAP_bits1 = 0; 2191 2192 if (cap_bits1 & TC1_INFO) { 2193 udp_copy_info(&tcap->INFO_ack, udp); 2194 tcap->CAP_bits1 |= TC1_INFO; 2195 } 2196 2197 qreply(q, mp); 2198 } 2199 2200 /* 2201 * This routine responds to T_INFO_REQ messages. It is called by udp_wput. 2202 * Most of the T_INFO_ACK information is copied from udp_g_t_info_ack. 2203 * The current state of the stream is copied from udp_state. 2204 */ 2205 static void 2206 udp_info_req(queue_t *q, mblk_t *mp) 2207 { 2208 udp_t *udp = Q_TO_UDP(q); 2209 2210 /* Create a T_INFO_ACK message. */ 2211 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 2212 T_INFO_ACK); 2213 if (!mp) 2214 return; 2215 udp_copy_info((struct T_info_ack *)mp->b_rptr, udp); 2216 qreply(q, mp); 2217 } 2218 2219 /* 2220 * IP recognizes seven kinds of bind requests: 2221 * 2222 * - A zero-length address binds only to the protocol number. 2223 * 2224 * - A 4-byte address is treated as a request to 2225 * validate that the address is a valid local IPv4 2226 * address, appropriate for an application to bind to. 2227 * IP does the verification, but does not make any note 2228 * of the address at this time. 2229 * 2230 * - A 16-byte address contains is treated as a request 2231 * to validate a local IPv6 address, as the 4-byte 2232 * address case above. 2233 * 2234 * - A 16-byte sockaddr_in to validate the local IPv4 address and also 2235 * use it for the inbound fanout of packets. 2236 * 2237 * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also 2238 * use it for the inbound fanout of packets. 2239 * 2240 * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout 2241 * information consisting of local and remote addresses 2242 * and ports. In this case, the addresses are both 2243 * validated as appropriate for this operation, and, if 2244 * so, the information is retained for use in the 2245 * inbound fanout. 2246 * 2247 * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 2248 * fanout information, like the 12-byte case above. 2249 * 2250 * IP will also fill in the IRE request mblk with information 2251 * regarding our peer. In all cases, we notify IP of our protocol 2252 * type by appending a single protocol byte to the bind request. 2253 */ 2254 static mblk_t * 2255 udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim, t_scalar_t addr_length) 2256 { 2257 char *cp; 2258 mblk_t *mp; 2259 struct T_bind_req *tbr; 2260 ipa_conn_t *ac; 2261 ipa6_conn_t *ac6; 2262 sin_t *sin; 2263 sin6_t *sin6; 2264 2265 ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); 2266 ASSERT(RW_LOCK_HELD(&udp->udp_rwlock)); 2267 mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); 2268 if (!mp) 2269 return (mp); 2270 mp->b_datap->db_type = M_PROTO; 2271 tbr = (struct T_bind_req *)mp->b_rptr; 2272 tbr->PRIM_type = bind_prim; 2273 tbr->ADDR_offset = sizeof (*tbr); 2274 tbr->CONIND_number = 0; 2275 tbr->ADDR_length = addr_length; 2276 cp = (char *)&tbr[1]; 2277 switch (addr_length) { 2278 case sizeof (ipa_conn_t): 2279 ASSERT(udp->udp_family == AF_INET); 2280 /* Append a request for an IRE */ 2281 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 2282 if (!mp->b_cont) { 2283 freemsg(mp); 2284 return (NULL); 2285 } 2286 mp->b_cont->b_wptr += sizeof (ire_t); 2287 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 2288 2289 /* cp known to be 32 bit aligned */ 2290 ac = (ipa_conn_t *)cp; 2291 ac->ac_laddr = V4_PART_OF_V6(udp->udp_v6src); 2292 ac->ac_faddr = V4_PART_OF_V6(udp->udp_v6dst); 2293 ac->ac_fport = udp->udp_dstport; 2294 ac->ac_lport = udp->udp_port; 2295 break; 2296 2297 case sizeof (ipa6_conn_t): 2298 ASSERT(udp->udp_family == AF_INET6); 2299 /* Append a request for an IRE */ 2300 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 2301 if (!mp->b_cont) { 2302 freemsg(mp); 2303 return (NULL); 2304 } 2305 mp->b_cont->b_wptr += sizeof (ire_t); 2306 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 2307 2308 /* cp known to be 32 bit aligned */ 2309 ac6 = (ipa6_conn_t *)cp; 2310 ac6->ac6_laddr = udp->udp_v6src; 2311 ac6->ac6_faddr = udp->udp_v6dst; 2312 ac6->ac6_fport = udp->udp_dstport; 2313 ac6->ac6_lport = udp->udp_port; 2314 break; 2315 2316 case sizeof (sin_t): 2317 ASSERT(udp->udp_family == AF_INET); 2318 /* Append a request for an IRE */ 2319 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 2320 if (!mp->b_cont) { 2321 freemsg(mp); 2322 return (NULL); 2323 } 2324 mp->b_cont->b_wptr += sizeof (ire_t); 2325 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 2326 2327 sin = (sin_t *)cp; 2328 *sin = sin_null; 2329 sin->sin_family = AF_INET; 2330 sin->sin_addr.s_addr = V4_PART_OF_V6(udp->udp_bound_v6src); 2331 sin->sin_port = udp->udp_port; 2332 break; 2333 2334 case sizeof (sin6_t): 2335 ASSERT(udp->udp_family == AF_INET6); 2336 /* Append a request for an IRE */ 2337 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 2338 if (!mp->b_cont) { 2339 freemsg(mp); 2340 return (NULL); 2341 } 2342 mp->b_cont->b_wptr += sizeof (ire_t); 2343 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 2344 2345 sin6 = (sin6_t *)cp; 2346 *sin6 = sin6_null; 2347 sin6->sin6_family = AF_INET6; 2348 sin6->sin6_addr = udp->udp_bound_v6src; 2349 sin6->sin6_port = udp->udp_port; 2350 break; 2351 } 2352 /* Add protocol number to end */ 2353 cp[addr_length] = (char)IPPROTO_UDP; 2354 mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; 2355 return (mp); 2356 } 2357 2358 /* For /dev/udp aka AF_INET open */ 2359 static int 2360 udp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2361 { 2362 return (udp_open(q, devp, flag, sflag, credp, B_FALSE)); 2363 } 2364 2365 /* For /dev/udp6 aka AF_INET6 open */ 2366 static int 2367 udp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2368 { 2369 return (udp_open(q, devp, flag, sflag, credp, B_TRUE)); 2370 } 2371 2372 /* 2373 * This is the open routine for udp. It allocates a udp_t structure for 2374 * the stream and, on the first open of the module, creates an ND table. 2375 */ 2376 /*ARGSUSED2*/ 2377 static int 2378 udp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 2379 boolean_t isv6) 2380 { 2381 int err; 2382 udp_t *udp; 2383 conn_t *connp; 2384 dev_t conn_dev; 2385 zoneid_t zoneid; 2386 netstack_t *ns; 2387 udp_stack_t *us; 2388 2389 TRACE_1(TR_FAC_UDP, TR_UDP_OPEN, "udp_open: q %p", q); 2390 2391 /* If the stream is already open, return immediately. */ 2392 if (q->q_ptr != NULL) 2393 return (0); 2394 2395 if (sflag == MODOPEN) 2396 return (EINVAL); 2397 2398 ns = netstack_find_by_cred(credp); 2399 ASSERT(ns != NULL); 2400 us = ns->netstack_udp; 2401 ASSERT(us != NULL); 2402 2403 /* 2404 * For exclusive stacks we set the zoneid to zero 2405 * to make UDP operate as if in the global zone. 2406 */ 2407 if (ns->netstack_stackid != GLOBAL_NETSTACKID) 2408 zoneid = GLOBAL_ZONEID; 2409 else 2410 zoneid = crgetzoneid(credp); 2411 2412 if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 2413 netstack_rele(ns); 2414 return (EBUSY); 2415 } 2416 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 2417 2418 connp = ipcl_conn_create(IPCL_UDPCONN, KM_SLEEP, ns); 2419 connp->conn_dev = conn_dev; 2420 udp = connp->conn_udp; 2421 2422 /* 2423 * ipcl_conn_create did a netstack_hold. Undo the hold that was 2424 * done by netstack_find_by_cred() 2425 */ 2426 netstack_rele(ns); 2427 2428 /* 2429 * Initialize the udp_t structure for this stream. 2430 */ 2431 q->q_ptr = connp; 2432 WR(q)->q_ptr = connp; 2433 connp->conn_rq = q; 2434 connp->conn_wq = WR(q); 2435 2436 rw_enter(&udp->udp_rwlock, RW_WRITER); 2437 ASSERT(connp->conn_ulp == IPPROTO_UDP); 2438 ASSERT(connp->conn_udp == udp); 2439 ASSERT(udp->udp_connp == connp); 2440 2441 /* Set the initial state of the stream and the privilege status. */ 2442 udp->udp_state = TS_UNBND; 2443 if (isv6) { 2444 udp->udp_family = AF_INET6; 2445 udp->udp_ipversion = IPV6_VERSION; 2446 udp->udp_max_hdr_len = IPV6_HDR_LEN + UDPH_SIZE; 2447 udp->udp_ttl = us->us_ipv6_hoplimit; 2448 connp->conn_af_isv6 = B_TRUE; 2449 connp->conn_flags |= IPCL_ISV6; 2450 } else { 2451 udp->udp_family = AF_INET; 2452 udp->udp_ipversion = IPV4_VERSION; 2453 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE; 2454 udp->udp_ttl = us->us_ipv4_ttl; 2455 connp->conn_af_isv6 = B_FALSE; 2456 connp->conn_flags &= ~IPCL_ISV6; 2457 } 2458 2459 udp->udp_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 2460 udp->udp_pending_op = -1; 2461 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 2462 connp->conn_zoneid = zoneid; 2463 2464 udp->udp_open_time = lbolt64; 2465 udp->udp_open_pid = curproc->p_pid; 2466 2467 /* 2468 * If the caller has the process-wide flag set, then default to MAC 2469 * exempt mode. This allows read-down to unlabeled hosts. 2470 */ 2471 if (getpflags(NET_MAC_AWARE, credp) != 0) 2472 udp->udp_mac_exempt = B_TRUE; 2473 2474 if (flag & SO_SOCKSTR) { 2475 connp->conn_flags |= IPCL_SOCKET; 2476 udp->udp_issocket = B_TRUE; 2477 udp->udp_direct_sockfs = B_TRUE; 2478 } 2479 2480 connp->conn_ulp_labeled = is_system_labeled(); 2481 2482 udp->udp_us = us; 2483 2484 q->q_hiwat = us->us_recv_hiwat; 2485 WR(q)->q_hiwat = us->us_xmit_hiwat; 2486 WR(q)->q_lowat = us->us_xmit_lowat; 2487 2488 connp->conn_recv = udp_input; 2489 crhold(credp); 2490 connp->conn_cred = credp; 2491 2492 mutex_enter(&connp->conn_lock); 2493 connp->conn_state_flags &= ~CONN_INCIPIENT; 2494 mutex_exit(&connp->conn_lock); 2495 2496 qprocson(q); 2497 2498 if (udp->udp_family == AF_INET6) { 2499 /* Build initial header template for transmit */ 2500 if ((err = udp_build_hdrs(udp)) != 0) { 2501 rw_exit(&udp->udp_rwlock); 2502 qprocsoff(q); 2503 ipcl_conn_destroy(connp); 2504 return (err); 2505 } 2506 } 2507 rw_exit(&udp->udp_rwlock); 2508 2509 /* Set the Stream head write offset and high watermark. */ 2510 (void) mi_set_sth_wroff(q, 2511 udp->udp_max_hdr_len + us->us_wroff_extra); 2512 (void) mi_set_sth_hiwat(q, udp_set_rcv_hiwat(udp, q->q_hiwat)); 2513 2514 return (0); 2515 } 2516 2517 /* 2518 * Which UDP options OK to set through T_UNITDATA_REQ... 2519 */ 2520 /* ARGSUSED */ 2521 static boolean_t 2522 udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name) 2523 { 2524 return (B_TRUE); 2525 } 2526 2527 /* 2528 * This routine gets default values of certain options whose default 2529 * values are maintained by protcol specific code 2530 */ 2531 /* ARGSUSED */ 2532 int 2533 udp_opt_default(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr) 2534 { 2535 udp_t *udp = Q_TO_UDP(q); 2536 udp_stack_t *us = udp->udp_us; 2537 int *i1 = (int *)ptr; 2538 2539 switch (level) { 2540 case IPPROTO_IP: 2541 switch (name) { 2542 case IP_MULTICAST_TTL: 2543 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 2544 return (sizeof (uchar_t)); 2545 case IP_MULTICAST_LOOP: 2546 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 2547 return (sizeof (uchar_t)); 2548 } 2549 break; 2550 case IPPROTO_IPV6: 2551 switch (name) { 2552 case IPV6_MULTICAST_HOPS: 2553 *i1 = IP_DEFAULT_MULTICAST_TTL; 2554 return (sizeof (int)); 2555 case IPV6_MULTICAST_LOOP: 2556 *i1 = IP_DEFAULT_MULTICAST_LOOP; 2557 return (sizeof (int)); 2558 case IPV6_UNICAST_HOPS: 2559 *i1 = us->us_ipv6_hoplimit; 2560 return (sizeof (int)); 2561 } 2562 break; 2563 } 2564 return (-1); 2565 } 2566 2567 /* 2568 * This routine retrieves the current status of socket options. 2569 * It returns the size of the option retrieved. 2570 */ 2571 int 2572 udp_opt_get_locked(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr) 2573 { 2574 int *i1 = (int *)ptr; 2575 conn_t *connp; 2576 udp_t *udp; 2577 ip6_pkt_t *ipp; 2578 int len; 2579 udp_stack_t *us; 2580 2581 connp = Q_TO_CONN(q); 2582 udp = connp->conn_udp; 2583 ipp = &udp->udp_sticky_ipp; 2584 us = udp->udp_us; 2585 2586 switch (level) { 2587 case SOL_SOCKET: 2588 switch (name) { 2589 case SO_DEBUG: 2590 *i1 = udp->udp_debug; 2591 break; /* goto sizeof (int) option return */ 2592 case SO_REUSEADDR: 2593 *i1 = udp->udp_reuseaddr; 2594 break; /* goto sizeof (int) option return */ 2595 case SO_TYPE: 2596 *i1 = SOCK_DGRAM; 2597 break; /* goto sizeof (int) option return */ 2598 2599 /* 2600 * The following three items are available here, 2601 * but are only meaningful to IP. 2602 */ 2603 case SO_DONTROUTE: 2604 *i1 = udp->udp_dontroute; 2605 break; /* goto sizeof (int) option return */ 2606 case SO_USELOOPBACK: 2607 *i1 = udp->udp_useloopback; 2608 break; /* goto sizeof (int) option return */ 2609 case SO_BROADCAST: 2610 *i1 = udp->udp_broadcast; 2611 break; /* goto sizeof (int) option return */ 2612 2613 case SO_SNDBUF: 2614 *i1 = q->q_hiwat; 2615 break; /* goto sizeof (int) option return */ 2616 case SO_RCVBUF: 2617 *i1 = RD(q)->q_hiwat; 2618 break; /* goto sizeof (int) option return */ 2619 case SO_DGRAM_ERRIND: 2620 *i1 = udp->udp_dgram_errind; 2621 break; /* goto sizeof (int) option return */ 2622 case SO_RECVUCRED: 2623 *i1 = udp->udp_recvucred; 2624 break; /* goto sizeof (int) option return */ 2625 case SO_TIMESTAMP: 2626 *i1 = udp->udp_timestamp; 2627 break; /* goto sizeof (int) option return */ 2628 case SO_ANON_MLP: 2629 *i1 = udp->udp_anon_mlp; 2630 break; /* goto sizeof (int) option return */ 2631 case SO_MAC_EXEMPT: 2632 *i1 = udp->udp_mac_exempt; 2633 break; /* goto sizeof (int) option return */ 2634 case SO_ALLZONES: 2635 *i1 = connp->conn_allzones; 2636 break; /* goto sizeof (int) option return */ 2637 case SO_EXCLBIND: 2638 *i1 = udp->udp_exclbind ? SO_EXCLBIND : 0; 2639 break; 2640 case SO_PROTOTYPE: 2641 *i1 = IPPROTO_UDP; 2642 break; 2643 case SO_DOMAIN: 2644 *i1 = udp->udp_family; 2645 break; 2646 default: 2647 return (-1); 2648 } 2649 break; 2650 case IPPROTO_IP: 2651 if (udp->udp_family != AF_INET) 2652 return (-1); 2653 switch (name) { 2654 case IP_OPTIONS: 2655 case T_IP_OPTIONS: 2656 len = udp->udp_ip_rcv_options_len - udp->udp_label_len; 2657 if (len > 0) { 2658 bcopy(udp->udp_ip_rcv_options + 2659 udp->udp_label_len, ptr, len); 2660 } 2661 return (len); 2662 case IP_TOS: 2663 case T_IP_TOS: 2664 *i1 = (int)udp->udp_type_of_service; 2665 break; /* goto sizeof (int) option return */ 2666 case IP_TTL: 2667 *i1 = (int)udp->udp_ttl; 2668 break; /* goto sizeof (int) option return */ 2669 case IP_DHCPINIT_IF: 2670 return (-EINVAL); 2671 case IP_NEXTHOP: 2672 case IP_RECVPKTINFO: 2673 /* 2674 * This also handles IP_PKTINFO. 2675 * IP_PKTINFO and IP_RECVPKTINFO have the same value. 2676 * Differentiation is based on the size of the argument 2677 * passed in. 2678 * This option is handled in IP which will return an 2679 * error for IP_PKTINFO as it's not supported as a 2680 * sticky option. 2681 */ 2682 return (-EINVAL); 2683 case IP_MULTICAST_IF: 2684 /* 0 address if not set */ 2685 *(ipaddr_t *)ptr = udp->udp_multicast_if_addr; 2686 return (sizeof (ipaddr_t)); 2687 case IP_MULTICAST_TTL: 2688 *(uchar_t *)ptr = udp->udp_multicast_ttl; 2689 return (sizeof (uchar_t)); 2690 case IP_MULTICAST_LOOP: 2691 *ptr = connp->conn_multicast_loop; 2692 return (sizeof (uint8_t)); 2693 case IP_RECVOPTS: 2694 *i1 = udp->udp_recvopts; 2695 break; /* goto sizeof (int) option return */ 2696 case IP_RECVDSTADDR: 2697 *i1 = udp->udp_recvdstaddr; 2698 break; /* goto sizeof (int) option return */ 2699 case IP_RECVIF: 2700 *i1 = udp->udp_recvif; 2701 break; /* goto sizeof (int) option return */ 2702 case IP_RECVSLLA: 2703 *i1 = udp->udp_recvslla; 2704 break; /* goto sizeof (int) option return */ 2705 case IP_RECVTTL: 2706 *i1 = udp->udp_recvttl; 2707 break; /* goto sizeof (int) option return */ 2708 case IP_ADD_MEMBERSHIP: 2709 case IP_DROP_MEMBERSHIP: 2710 case IP_BLOCK_SOURCE: 2711 case IP_UNBLOCK_SOURCE: 2712 case IP_ADD_SOURCE_MEMBERSHIP: 2713 case IP_DROP_SOURCE_MEMBERSHIP: 2714 case MCAST_JOIN_GROUP: 2715 case MCAST_LEAVE_GROUP: 2716 case MCAST_BLOCK_SOURCE: 2717 case MCAST_UNBLOCK_SOURCE: 2718 case MCAST_JOIN_SOURCE_GROUP: 2719 case MCAST_LEAVE_SOURCE_GROUP: 2720 case IP_DONTFAILOVER_IF: 2721 /* cannot "get" the value for these */ 2722 return (-1); 2723 case IP_BOUND_IF: 2724 /* Zero if not set */ 2725 *i1 = udp->udp_bound_if; 2726 break; /* goto sizeof (int) option return */ 2727 case IP_UNSPEC_SRC: 2728 *i1 = udp->udp_unspec_source; 2729 break; /* goto sizeof (int) option return */ 2730 default: 2731 return (-1); 2732 } 2733 break; 2734 case IPPROTO_IPV6: 2735 if (udp->udp_family != AF_INET6) 2736 return (-1); 2737 switch (name) { 2738 case IPV6_UNICAST_HOPS: 2739 *i1 = (unsigned int)udp->udp_ttl; 2740 break; /* goto sizeof (int) option return */ 2741 case IPV6_MULTICAST_IF: 2742 /* 0 index if not set */ 2743 *i1 = udp->udp_multicast_if_index; 2744 break; /* goto sizeof (int) option return */ 2745 case IPV6_MULTICAST_HOPS: 2746 *i1 = udp->udp_multicast_ttl; 2747 break; /* goto sizeof (int) option return */ 2748 case IPV6_MULTICAST_LOOP: 2749 *i1 = connp->conn_multicast_loop; 2750 break; /* goto sizeof (int) option return */ 2751 case IPV6_JOIN_GROUP: 2752 case IPV6_LEAVE_GROUP: 2753 case MCAST_JOIN_GROUP: 2754 case MCAST_LEAVE_GROUP: 2755 case MCAST_BLOCK_SOURCE: 2756 case MCAST_UNBLOCK_SOURCE: 2757 case MCAST_JOIN_SOURCE_GROUP: 2758 case MCAST_LEAVE_SOURCE_GROUP: 2759 /* cannot "get" the value for these */ 2760 return (-1); 2761 case IPV6_BOUND_IF: 2762 /* Zero if not set */ 2763 *i1 = udp->udp_bound_if; 2764 break; /* goto sizeof (int) option return */ 2765 case IPV6_UNSPEC_SRC: 2766 *i1 = udp->udp_unspec_source; 2767 break; /* goto sizeof (int) option return */ 2768 case IPV6_RECVPKTINFO: 2769 *i1 = udp->udp_ip_recvpktinfo; 2770 break; /* goto sizeof (int) option return */ 2771 case IPV6_RECVTCLASS: 2772 *i1 = udp->udp_ipv6_recvtclass; 2773 break; /* goto sizeof (int) option return */ 2774 case IPV6_RECVPATHMTU: 2775 *i1 = udp->udp_ipv6_recvpathmtu; 2776 break; /* goto sizeof (int) option return */ 2777 case IPV6_RECVHOPLIMIT: 2778 *i1 = udp->udp_ipv6_recvhoplimit; 2779 break; /* goto sizeof (int) option return */ 2780 case IPV6_RECVHOPOPTS: 2781 *i1 = udp->udp_ipv6_recvhopopts; 2782 break; /* goto sizeof (int) option return */ 2783 case IPV6_RECVDSTOPTS: 2784 *i1 = udp->udp_ipv6_recvdstopts; 2785 break; /* goto sizeof (int) option return */ 2786 case _OLD_IPV6_RECVDSTOPTS: 2787 *i1 = udp->udp_old_ipv6_recvdstopts; 2788 break; /* goto sizeof (int) option return */ 2789 case IPV6_RECVRTHDRDSTOPTS: 2790 *i1 = udp->udp_ipv6_recvrthdrdstopts; 2791 break; /* goto sizeof (int) option return */ 2792 case IPV6_RECVRTHDR: 2793 *i1 = udp->udp_ipv6_recvrthdr; 2794 break; /* goto sizeof (int) option return */ 2795 case IPV6_PKTINFO: { 2796 /* XXX assumes that caller has room for max size! */ 2797 struct in6_pktinfo *pkti; 2798 2799 pkti = (struct in6_pktinfo *)ptr; 2800 if (ipp->ipp_fields & IPPF_IFINDEX) 2801 pkti->ipi6_ifindex = ipp->ipp_ifindex; 2802 else 2803 pkti->ipi6_ifindex = 0; 2804 if (ipp->ipp_fields & IPPF_ADDR) 2805 pkti->ipi6_addr = ipp->ipp_addr; 2806 else 2807 pkti->ipi6_addr = ipv6_all_zeros; 2808 return (sizeof (struct in6_pktinfo)); 2809 } 2810 case IPV6_TCLASS: 2811 if (ipp->ipp_fields & IPPF_TCLASS) 2812 *i1 = ipp->ipp_tclass; 2813 else 2814 *i1 = IPV6_FLOW_TCLASS( 2815 IPV6_DEFAULT_VERS_AND_FLOW); 2816 break; /* goto sizeof (int) option return */ 2817 case IPV6_NEXTHOP: { 2818 sin6_t *sin6 = (sin6_t *)ptr; 2819 2820 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 2821 return (0); 2822 *sin6 = sin6_null; 2823 sin6->sin6_family = AF_INET6; 2824 sin6->sin6_addr = ipp->ipp_nexthop; 2825 return (sizeof (sin6_t)); 2826 } 2827 case IPV6_HOPOPTS: 2828 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 2829 return (0); 2830 if (ipp->ipp_hopoptslen <= udp->udp_label_len_v6) 2831 return (0); 2832 /* 2833 * The cipso/label option is added by kernel. 2834 * User is not usually aware of this option. 2835 * We copy out the hbh opt after the label option. 2836 */ 2837 bcopy((char *)ipp->ipp_hopopts + udp->udp_label_len_v6, 2838 ptr, ipp->ipp_hopoptslen - udp->udp_label_len_v6); 2839 if (udp->udp_label_len_v6 > 0) { 2840 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 2841 ptr[1] = (ipp->ipp_hopoptslen - 2842 udp->udp_label_len_v6 + 7) / 8 - 1; 2843 } 2844 return (ipp->ipp_hopoptslen - udp->udp_label_len_v6); 2845 case IPV6_RTHDRDSTOPTS: 2846 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 2847 return (0); 2848 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 2849 return (ipp->ipp_rtdstoptslen); 2850 case IPV6_RTHDR: 2851 if (!(ipp->ipp_fields & IPPF_RTHDR)) 2852 return (0); 2853 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 2854 return (ipp->ipp_rthdrlen); 2855 case IPV6_DSTOPTS: 2856 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 2857 return (0); 2858 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 2859 return (ipp->ipp_dstoptslen); 2860 case IPV6_PATHMTU: 2861 return (ip_fill_mtuinfo(&udp->udp_v6dst, 2862 udp->udp_dstport, (struct ip6_mtuinfo *)ptr, 2863 us->us_netstack)); 2864 default: 2865 return (-1); 2866 } 2867 break; 2868 case IPPROTO_UDP: 2869 switch (name) { 2870 case UDP_ANONPRIVBIND: 2871 *i1 = udp->udp_anon_priv_bind; 2872 break; 2873 case UDP_EXCLBIND: 2874 *i1 = udp->udp_exclbind ? UDP_EXCLBIND : 0; 2875 break; 2876 case UDP_RCVHDR: 2877 *i1 = udp->udp_rcvhdr ? 1 : 0; 2878 break; 2879 case UDP_NAT_T_ENDPOINT: 2880 *i1 = udp->udp_nat_t_endpoint; 2881 break; 2882 default: 2883 return (-1); 2884 } 2885 break; 2886 default: 2887 return (-1); 2888 } 2889 return (sizeof (int)); 2890 } 2891 2892 int 2893 udp_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr) 2894 { 2895 udp_t *udp; 2896 int err; 2897 2898 udp = Q_TO_UDP(q); 2899 2900 rw_enter(&udp->udp_rwlock, RW_READER); 2901 err = udp_opt_get_locked(q, level, name, ptr); 2902 rw_exit(&udp->udp_rwlock); 2903 return (err); 2904 } 2905 2906 /* 2907 * This routine sets socket options. 2908 */ 2909 /* ARGSUSED */ 2910 int 2911 udp_opt_set_locked(queue_t *q, uint_t optset_context, int level, 2912 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 2913 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 2914 { 2915 udpattrs_t *attrs = thisdg_attrs; 2916 int *i1 = (int *)invalp; 2917 boolean_t onoff = (*i1 == 0) ? 0 : 1; 2918 boolean_t checkonly; 2919 int error; 2920 conn_t *connp; 2921 udp_t *udp; 2922 uint_t newlen; 2923 udp_stack_t *us; 2924 size_t sth_wroff; 2925 2926 connp = Q_TO_CONN(q); 2927 udp = connp->conn_udp; 2928 us = udp->udp_us; 2929 2930 switch (optset_context) { 2931 case SETFN_OPTCOM_CHECKONLY: 2932 checkonly = B_TRUE; 2933 /* 2934 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 2935 * inlen != 0 implies value supplied and 2936 * we have to "pretend" to set it. 2937 * inlen == 0 implies that there is no 2938 * value part in T_CHECK request and just validation 2939 * done elsewhere should be enough, we just return here. 2940 */ 2941 if (inlen == 0) { 2942 *outlenp = 0; 2943 return (0); 2944 } 2945 break; 2946 case SETFN_OPTCOM_NEGOTIATE: 2947 checkonly = B_FALSE; 2948 break; 2949 case SETFN_UD_NEGOTIATE: 2950 case SETFN_CONN_NEGOTIATE: 2951 checkonly = B_FALSE; 2952 /* 2953 * Negotiating local and "association-related" options 2954 * through T_UNITDATA_REQ. 2955 * 2956 * Following routine can filter out ones we do not 2957 * want to be "set" this way. 2958 */ 2959 if (!udp_opt_allow_udr_set(level, name)) { 2960 *outlenp = 0; 2961 return (EINVAL); 2962 } 2963 break; 2964 default: 2965 /* 2966 * We should never get here 2967 */ 2968 *outlenp = 0; 2969 return (EINVAL); 2970 } 2971 2972 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 2973 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 2974 2975 /* 2976 * For fixed length options, no sanity check 2977 * of passed in length is done. It is assumed *_optcom_req() 2978 * routines do the right thing. 2979 */ 2980 2981 switch (level) { 2982 case SOL_SOCKET: 2983 switch (name) { 2984 case SO_REUSEADDR: 2985 if (!checkonly) 2986 udp->udp_reuseaddr = onoff; 2987 break; 2988 case SO_DEBUG: 2989 if (!checkonly) 2990 udp->udp_debug = onoff; 2991 break; 2992 /* 2993 * The following three items are available here, 2994 * but are only meaningful to IP. 2995 */ 2996 case SO_DONTROUTE: 2997 if (!checkonly) 2998 udp->udp_dontroute = onoff; 2999 break; 3000 case SO_USELOOPBACK: 3001 if (!checkonly) 3002 udp->udp_useloopback = onoff; 3003 break; 3004 case SO_BROADCAST: 3005 if (!checkonly) 3006 udp->udp_broadcast = onoff; 3007 break; 3008 3009 case SO_SNDBUF: 3010 if (*i1 > us->us_max_buf) { 3011 *outlenp = 0; 3012 return (ENOBUFS); 3013 } 3014 if (!checkonly) { 3015 q->q_hiwat = *i1; 3016 } 3017 break; 3018 case SO_RCVBUF: 3019 if (*i1 > us->us_max_buf) { 3020 *outlenp = 0; 3021 return (ENOBUFS); 3022 } 3023 if (!checkonly) { 3024 RD(q)->q_hiwat = *i1; 3025 rw_exit(&udp->udp_rwlock); 3026 (void) mi_set_sth_hiwat(RD(q), 3027 udp_set_rcv_hiwat(udp, *i1)); 3028 rw_enter(&udp->udp_rwlock, RW_WRITER); 3029 } 3030 break; 3031 case SO_DGRAM_ERRIND: 3032 if (!checkonly) 3033 udp->udp_dgram_errind = onoff; 3034 break; 3035 case SO_RECVUCRED: 3036 if (!checkonly) 3037 udp->udp_recvucred = onoff; 3038 break; 3039 case SO_ALLZONES: 3040 /* 3041 * "soft" error (negative) 3042 * option not handled at this level 3043 * Do not modify *outlenp. 3044 */ 3045 return (-EINVAL); 3046 case SO_TIMESTAMP: 3047 if (!checkonly) 3048 udp->udp_timestamp = onoff; 3049 break; 3050 case SO_ANON_MLP: 3051 if (!checkonly) 3052 udp->udp_anon_mlp = onoff; 3053 break; 3054 case SO_MAC_EXEMPT: 3055 if (secpolicy_net_mac_aware(cr) != 0 || 3056 udp->udp_state != TS_UNBND) 3057 return (EACCES); 3058 if (!checkonly) 3059 udp->udp_mac_exempt = onoff; 3060 break; 3061 case SCM_UCRED: { 3062 struct ucred_s *ucr; 3063 cred_t *cr, *newcr; 3064 ts_label_t *tsl; 3065 3066 /* 3067 * Only sockets that have proper privileges and are 3068 * bound to MLPs will have any other value here, so 3069 * this implicitly tests for privilege to set label. 3070 */ 3071 if (connp->conn_mlp_type == mlptSingle) 3072 break; 3073 ucr = (struct ucred_s *)invalp; 3074 if (inlen != ucredsize || 3075 ucr->uc_labeloff < sizeof (*ucr) || 3076 ucr->uc_labeloff + sizeof (bslabel_t) > inlen) 3077 return (EINVAL); 3078 if (!checkonly) { 3079 mblk_t *mb; 3080 3081 if (attrs == NULL || 3082 (mb = attrs->udpattr_mb) == NULL) 3083 return (EINVAL); 3084 if ((cr = DB_CRED(mb)) == NULL) 3085 cr = udp->udp_connp->conn_cred; 3086 ASSERT(cr != NULL); 3087 if ((tsl = crgetlabel(cr)) == NULL) 3088 return (EINVAL); 3089 newcr = copycred_from_bslabel(cr, UCLABEL(ucr), 3090 tsl->tsl_doi, KM_NOSLEEP); 3091 if (newcr == NULL) 3092 return (ENOSR); 3093 mblk_setcred(mb, newcr); 3094 attrs->udpattr_credset = B_TRUE; 3095 crfree(newcr); 3096 } 3097 break; 3098 } 3099 case SO_EXCLBIND: 3100 if (!checkonly) 3101 udp->udp_exclbind = onoff; 3102 break; 3103 default: 3104 *outlenp = 0; 3105 return (EINVAL); 3106 } 3107 break; 3108 case IPPROTO_IP: 3109 if (udp->udp_family != AF_INET) { 3110 *outlenp = 0; 3111 return (ENOPROTOOPT); 3112 } 3113 switch (name) { 3114 case IP_OPTIONS: 3115 case T_IP_OPTIONS: 3116 /* Save options for use by IP. */ 3117 newlen = inlen + udp->udp_label_len; 3118 if ((inlen & 0x3) || newlen > IP_MAX_OPT_LENGTH) { 3119 *outlenp = 0; 3120 return (EINVAL); 3121 } 3122 if (checkonly) 3123 break; 3124 3125 /* 3126 * Update the stored options taking into account 3127 * any CIPSO option which we should not overwrite. 3128 */ 3129 if (!tsol_option_set(&udp->udp_ip_snd_options, 3130 &udp->udp_ip_snd_options_len, 3131 udp->udp_label_len, invalp, inlen)) { 3132 *outlenp = 0; 3133 return (ENOMEM); 3134 } 3135 3136 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + 3137 UDPH_SIZE + udp->udp_ip_snd_options_len; 3138 sth_wroff = udp->udp_max_hdr_len + us->us_wroff_extra; 3139 rw_exit(&udp->udp_rwlock); 3140 (void) mi_set_sth_wroff(RD(q), sth_wroff); 3141 rw_enter(&udp->udp_rwlock, RW_WRITER); 3142 break; 3143 3144 case IP_TTL: 3145 if (!checkonly) { 3146 udp->udp_ttl = (uchar_t)*i1; 3147 } 3148 break; 3149 case IP_TOS: 3150 case T_IP_TOS: 3151 if (!checkonly) { 3152 udp->udp_type_of_service = (uchar_t)*i1; 3153 } 3154 break; 3155 case IP_MULTICAST_IF: { 3156 /* 3157 * TODO should check OPTMGMT reply and undo this if 3158 * there is an error. 3159 */ 3160 struct in_addr *inap = (struct in_addr *)invalp; 3161 if (!checkonly) { 3162 udp->udp_multicast_if_addr = 3163 inap->s_addr; 3164 } 3165 break; 3166 } 3167 case IP_MULTICAST_TTL: 3168 if (!checkonly) 3169 udp->udp_multicast_ttl = *invalp; 3170 break; 3171 case IP_MULTICAST_LOOP: 3172 if (!checkonly) 3173 connp->conn_multicast_loop = *invalp; 3174 break; 3175 case IP_RECVOPTS: 3176 if (!checkonly) 3177 udp->udp_recvopts = onoff; 3178 break; 3179 case IP_RECVDSTADDR: 3180 if (!checkonly) 3181 udp->udp_recvdstaddr = onoff; 3182 break; 3183 case IP_RECVIF: 3184 if (!checkonly) 3185 udp->udp_recvif = onoff; 3186 break; 3187 case IP_RECVSLLA: 3188 if (!checkonly) 3189 udp->udp_recvslla = onoff; 3190 break; 3191 case IP_RECVTTL: 3192 if (!checkonly) 3193 udp->udp_recvttl = onoff; 3194 break; 3195 case IP_PKTINFO: { 3196 /* 3197 * This also handles IP_RECVPKTINFO. 3198 * IP_PKTINFO and IP_RECVPKTINFO have same value. 3199 * Differentiation is based on the size of the 3200 * argument passed in. 3201 */ 3202 struct in_pktinfo *pktinfop; 3203 ip4_pkt_t *attr_pktinfop; 3204 3205 if (checkonly) 3206 break; 3207 3208 if (inlen == sizeof (int)) { 3209 /* 3210 * This is IP_RECVPKTINFO option. 3211 * Keep a local copy of whether this option is 3212 * set or not and pass it down to IP for 3213 * processing. 3214 */ 3215 3216 udp->udp_ip_recvpktinfo = onoff; 3217 return (-EINVAL); 3218 } 3219 3220 if (attrs == NULL || 3221 (attr_pktinfop = attrs->udpattr_ipp4) == NULL) { 3222 /* 3223 * sticky option or no buffer to return 3224 * the results. 3225 */ 3226 return (EINVAL); 3227 } 3228 3229 if (inlen != sizeof (struct in_pktinfo)) 3230 return (EINVAL); 3231 3232 pktinfop = (struct in_pktinfo *)invalp; 3233 3234 /* 3235 * At least one of the values should be specified 3236 */ 3237 if (pktinfop->ipi_ifindex == 0 && 3238 pktinfop->ipi_spec_dst.s_addr == INADDR_ANY) { 3239 return (EINVAL); 3240 } 3241 3242 attr_pktinfop->ip4_addr = pktinfop->ipi_spec_dst.s_addr; 3243 attr_pktinfop->ip4_ill_index = pktinfop->ipi_ifindex; 3244 3245 break; 3246 } 3247 case IP_ADD_MEMBERSHIP: 3248 case IP_DROP_MEMBERSHIP: 3249 case IP_BLOCK_SOURCE: 3250 case IP_UNBLOCK_SOURCE: 3251 case IP_ADD_SOURCE_MEMBERSHIP: 3252 case IP_DROP_SOURCE_MEMBERSHIP: 3253 case MCAST_JOIN_GROUP: 3254 case MCAST_LEAVE_GROUP: 3255 case MCAST_BLOCK_SOURCE: 3256 case MCAST_UNBLOCK_SOURCE: 3257 case MCAST_JOIN_SOURCE_GROUP: 3258 case MCAST_LEAVE_SOURCE_GROUP: 3259 case IP_SEC_OPT: 3260 case IP_NEXTHOP: 3261 case IP_DHCPINIT_IF: 3262 /* 3263 * "soft" error (negative) 3264 * option not handled at this level 3265 * Do not modify *outlenp. 3266 */ 3267 return (-EINVAL); 3268 case IP_BOUND_IF: 3269 if (!checkonly) 3270 udp->udp_bound_if = *i1; 3271 break; 3272 case IP_UNSPEC_SRC: 3273 if (!checkonly) 3274 udp->udp_unspec_source = onoff; 3275 break; 3276 default: 3277 *outlenp = 0; 3278 return (EINVAL); 3279 } 3280 break; 3281 case IPPROTO_IPV6: { 3282 ip6_pkt_t *ipp; 3283 boolean_t sticky; 3284 3285 if (udp->udp_family != AF_INET6) { 3286 *outlenp = 0; 3287 return (ENOPROTOOPT); 3288 } 3289 /* 3290 * Deal with both sticky options and ancillary data 3291 */ 3292 sticky = B_FALSE; 3293 if (attrs == NULL || (ipp = attrs->udpattr_ipp6) == 3294 NULL) { 3295 /* sticky options, or none */ 3296 ipp = &udp->udp_sticky_ipp; 3297 sticky = B_TRUE; 3298 } 3299 3300 switch (name) { 3301 case IPV6_MULTICAST_IF: 3302 if (!checkonly) 3303 udp->udp_multicast_if_index = *i1; 3304 break; 3305 case IPV6_UNICAST_HOPS: 3306 /* -1 means use default */ 3307 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 3308 *outlenp = 0; 3309 return (EINVAL); 3310 } 3311 if (!checkonly) { 3312 if (*i1 == -1) { 3313 udp->udp_ttl = ipp->ipp_unicast_hops = 3314 us->us_ipv6_hoplimit; 3315 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 3316 /* Pass modified value to IP. */ 3317 *i1 = udp->udp_ttl; 3318 } else { 3319 udp->udp_ttl = ipp->ipp_unicast_hops = 3320 (uint8_t)*i1; 3321 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 3322 } 3323 /* Rebuild the header template */ 3324 error = udp_build_hdrs(udp); 3325 if (error != 0) { 3326 *outlenp = 0; 3327 return (error); 3328 } 3329 } 3330 break; 3331 case IPV6_MULTICAST_HOPS: 3332 /* -1 means use default */ 3333 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 3334 *outlenp = 0; 3335 return (EINVAL); 3336 } 3337 if (!checkonly) { 3338 if (*i1 == -1) { 3339 udp->udp_multicast_ttl = 3340 ipp->ipp_multicast_hops = 3341 IP_DEFAULT_MULTICAST_TTL; 3342 ipp->ipp_fields &= ~IPPF_MULTICAST_HOPS; 3343 /* Pass modified value to IP. */ 3344 *i1 = udp->udp_multicast_ttl; 3345 } else { 3346 udp->udp_multicast_ttl = 3347 ipp->ipp_multicast_hops = 3348 (uint8_t)*i1; 3349 ipp->ipp_fields |= IPPF_MULTICAST_HOPS; 3350 } 3351 } 3352 break; 3353 case IPV6_MULTICAST_LOOP: 3354 if (*i1 != 0 && *i1 != 1) { 3355 *outlenp = 0; 3356 return (EINVAL); 3357 } 3358 if (!checkonly) 3359 connp->conn_multicast_loop = *i1; 3360 break; 3361 case IPV6_JOIN_GROUP: 3362 case IPV6_LEAVE_GROUP: 3363 case MCAST_JOIN_GROUP: 3364 case MCAST_LEAVE_GROUP: 3365 case MCAST_BLOCK_SOURCE: 3366 case MCAST_UNBLOCK_SOURCE: 3367 case MCAST_JOIN_SOURCE_GROUP: 3368 case MCAST_LEAVE_SOURCE_GROUP: 3369 /* 3370 * "soft" error (negative) 3371 * option not handled at this level 3372 * Note: Do not modify *outlenp 3373 */ 3374 return (-EINVAL); 3375 case IPV6_BOUND_IF: 3376 if (!checkonly) 3377 udp->udp_bound_if = *i1; 3378 break; 3379 case IPV6_UNSPEC_SRC: 3380 if (!checkonly) 3381 udp->udp_unspec_source = onoff; 3382 break; 3383 /* 3384 * Set boolean switches for ancillary data delivery 3385 */ 3386 case IPV6_RECVPKTINFO: 3387 if (!checkonly) 3388 udp->udp_ip_recvpktinfo = onoff; 3389 break; 3390 case IPV6_RECVTCLASS: 3391 if (!checkonly) { 3392 udp->udp_ipv6_recvtclass = onoff; 3393 } 3394 break; 3395 case IPV6_RECVPATHMTU: 3396 if (!checkonly) { 3397 udp->udp_ipv6_recvpathmtu = onoff; 3398 } 3399 break; 3400 case IPV6_RECVHOPLIMIT: 3401 if (!checkonly) 3402 udp->udp_ipv6_recvhoplimit = onoff; 3403 break; 3404 case IPV6_RECVHOPOPTS: 3405 if (!checkonly) 3406 udp->udp_ipv6_recvhopopts = onoff; 3407 break; 3408 case IPV6_RECVDSTOPTS: 3409 if (!checkonly) 3410 udp->udp_ipv6_recvdstopts = onoff; 3411 break; 3412 case _OLD_IPV6_RECVDSTOPTS: 3413 if (!checkonly) 3414 udp->udp_old_ipv6_recvdstopts = onoff; 3415 break; 3416 case IPV6_RECVRTHDRDSTOPTS: 3417 if (!checkonly) 3418 udp->udp_ipv6_recvrthdrdstopts = onoff; 3419 break; 3420 case IPV6_RECVRTHDR: 3421 if (!checkonly) 3422 udp->udp_ipv6_recvrthdr = onoff; 3423 break; 3424 /* 3425 * Set sticky options or ancillary data. 3426 * If sticky options, (re)build any extension headers 3427 * that might be needed as a result. 3428 */ 3429 case IPV6_PKTINFO: 3430 /* 3431 * The source address and ifindex are verified 3432 * in ip_opt_set(). For ancillary data the 3433 * source address is checked in ip_wput_v6. 3434 */ 3435 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 3436 return (EINVAL); 3437 if (checkonly) 3438 break; 3439 3440 if (inlen == 0) { 3441 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 3442 ipp->ipp_sticky_ignored |= 3443 (IPPF_IFINDEX|IPPF_ADDR); 3444 } else { 3445 struct in6_pktinfo *pkti; 3446 3447 pkti = (struct in6_pktinfo *)invalp; 3448 ipp->ipp_ifindex = pkti->ipi6_ifindex; 3449 ipp->ipp_addr = pkti->ipi6_addr; 3450 if (ipp->ipp_ifindex != 0) 3451 ipp->ipp_fields |= IPPF_IFINDEX; 3452 else 3453 ipp->ipp_fields &= ~IPPF_IFINDEX; 3454 if (!IN6_IS_ADDR_UNSPECIFIED( 3455 &ipp->ipp_addr)) 3456 ipp->ipp_fields |= IPPF_ADDR; 3457 else 3458 ipp->ipp_fields &= ~IPPF_ADDR; 3459 } 3460 if (sticky) { 3461 error = udp_build_hdrs(udp); 3462 if (error != 0) 3463 return (error); 3464 } 3465 break; 3466 case IPV6_HOPLIMIT: 3467 if (sticky) 3468 return (EINVAL); 3469 if (inlen != 0 && inlen != sizeof (int)) 3470 return (EINVAL); 3471 if (checkonly) 3472 break; 3473 3474 if (inlen == 0) { 3475 ipp->ipp_fields &= ~IPPF_HOPLIMIT; 3476 ipp->ipp_sticky_ignored |= IPPF_HOPLIMIT; 3477 } else { 3478 if (*i1 > 255 || *i1 < -1) 3479 return (EINVAL); 3480 if (*i1 == -1) 3481 ipp->ipp_hoplimit = 3482 us->us_ipv6_hoplimit; 3483 else 3484 ipp->ipp_hoplimit = *i1; 3485 ipp->ipp_fields |= IPPF_HOPLIMIT; 3486 } 3487 break; 3488 case IPV6_TCLASS: 3489 if (inlen != 0 && inlen != sizeof (int)) 3490 return (EINVAL); 3491 if (checkonly) 3492 break; 3493 3494 if (inlen == 0) { 3495 ipp->ipp_fields &= ~IPPF_TCLASS; 3496 ipp->ipp_sticky_ignored |= IPPF_TCLASS; 3497 } else { 3498 if (*i1 > 255 || *i1 < -1) 3499 return (EINVAL); 3500 if (*i1 == -1) 3501 ipp->ipp_tclass = 0; 3502 else 3503 ipp->ipp_tclass = *i1; 3504 ipp->ipp_fields |= IPPF_TCLASS; 3505 } 3506 if (sticky) { 3507 error = udp_build_hdrs(udp); 3508 if (error != 0) 3509 return (error); 3510 } 3511 break; 3512 case IPV6_NEXTHOP: 3513 /* 3514 * IP will verify that the nexthop is reachable 3515 * and fail for sticky options. 3516 */ 3517 if (inlen != 0 && inlen != sizeof (sin6_t)) 3518 return (EINVAL); 3519 if (checkonly) 3520 break; 3521 3522 if (inlen == 0) { 3523 ipp->ipp_fields &= ~IPPF_NEXTHOP; 3524 ipp->ipp_sticky_ignored |= IPPF_NEXTHOP; 3525 } else { 3526 sin6_t *sin6 = (sin6_t *)invalp; 3527 3528 if (sin6->sin6_family != AF_INET6) 3529 return (EAFNOSUPPORT); 3530 if (IN6_IS_ADDR_V4MAPPED( 3531 &sin6->sin6_addr)) 3532 return (EADDRNOTAVAIL); 3533 ipp->ipp_nexthop = sin6->sin6_addr; 3534 if (!IN6_IS_ADDR_UNSPECIFIED( 3535 &ipp->ipp_nexthop)) 3536 ipp->ipp_fields |= IPPF_NEXTHOP; 3537 else 3538 ipp->ipp_fields &= ~IPPF_NEXTHOP; 3539 } 3540 if (sticky) { 3541 error = udp_build_hdrs(udp); 3542 if (error != 0) 3543 return (error); 3544 } 3545 break; 3546 case IPV6_HOPOPTS: { 3547 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 3548 /* 3549 * Sanity checks - minimum size, size a multiple of 3550 * eight bytes, and matching size passed in. 3551 */ 3552 if (inlen != 0 && 3553 inlen != (8 * (hopts->ip6h_len + 1))) 3554 return (EINVAL); 3555 3556 if (checkonly) 3557 break; 3558 3559 error = optcom_pkt_set(invalp, inlen, sticky, 3560 (uchar_t **)&ipp->ipp_hopopts, 3561 &ipp->ipp_hopoptslen, 3562 sticky ? udp->udp_label_len_v6 : 0); 3563 if (error != 0) 3564 return (error); 3565 if (ipp->ipp_hopoptslen == 0) { 3566 ipp->ipp_fields &= ~IPPF_HOPOPTS; 3567 ipp->ipp_sticky_ignored |= IPPF_HOPOPTS; 3568 } else { 3569 ipp->ipp_fields |= IPPF_HOPOPTS; 3570 } 3571 if (sticky) { 3572 error = udp_build_hdrs(udp); 3573 if (error != 0) 3574 return (error); 3575 } 3576 break; 3577 } 3578 case IPV6_RTHDRDSTOPTS: { 3579 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 3580 3581 /* 3582 * Sanity checks - minimum size, size a multiple of 3583 * eight bytes, and matching size passed in. 3584 */ 3585 if (inlen != 0 && 3586 inlen != (8 * (dopts->ip6d_len + 1))) 3587 return (EINVAL); 3588 3589 if (checkonly) 3590 break; 3591 3592 if (inlen == 0) { 3593 if (sticky && 3594 (ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) { 3595 kmem_free(ipp->ipp_rtdstopts, 3596 ipp->ipp_rtdstoptslen); 3597 ipp->ipp_rtdstopts = NULL; 3598 ipp->ipp_rtdstoptslen = 0; 3599 } 3600 3601 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 3602 ipp->ipp_sticky_ignored |= IPPF_RTDSTOPTS; 3603 } else { 3604 error = optcom_pkt_set(invalp, inlen, sticky, 3605 (uchar_t **)&ipp->ipp_rtdstopts, 3606 &ipp->ipp_rtdstoptslen, 0); 3607 if (error != 0) 3608 return (error); 3609 ipp->ipp_fields |= IPPF_RTDSTOPTS; 3610 } 3611 if (sticky) { 3612 error = udp_build_hdrs(udp); 3613 if (error != 0) 3614 return (error); 3615 } 3616 break; 3617 } 3618 case IPV6_DSTOPTS: { 3619 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 3620 3621 /* 3622 * Sanity checks - minimum size, size a multiple of 3623 * eight bytes, and matching size passed in. 3624 */ 3625 if (inlen != 0 && 3626 inlen != (8 * (dopts->ip6d_len + 1))) 3627 return (EINVAL); 3628 3629 if (checkonly) 3630 break; 3631 3632 if (inlen == 0) { 3633 if (sticky && 3634 (ipp->ipp_fields & IPPF_DSTOPTS) != 0) { 3635 kmem_free(ipp->ipp_dstopts, 3636 ipp->ipp_dstoptslen); 3637 ipp->ipp_dstopts = NULL; 3638 ipp->ipp_dstoptslen = 0; 3639 } 3640 ipp->ipp_fields &= ~IPPF_DSTOPTS; 3641 ipp->ipp_sticky_ignored |= IPPF_DSTOPTS; 3642 } else { 3643 error = optcom_pkt_set(invalp, inlen, sticky, 3644 (uchar_t **)&ipp->ipp_dstopts, 3645 &ipp->ipp_dstoptslen, 0); 3646 if (error != 0) 3647 return (error); 3648 ipp->ipp_fields |= IPPF_DSTOPTS; 3649 } 3650 if (sticky) { 3651 error = udp_build_hdrs(udp); 3652 if (error != 0) 3653 return (error); 3654 } 3655 break; 3656 } 3657 case IPV6_RTHDR: { 3658 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 3659 3660 /* 3661 * Sanity checks - minimum size, size a multiple of 3662 * eight bytes, and matching size passed in. 3663 */ 3664 if (inlen != 0 && 3665 inlen != (8 * (rt->ip6r_len + 1))) 3666 return (EINVAL); 3667 3668 if (checkonly) 3669 break; 3670 3671 if (inlen == 0) { 3672 if (sticky && 3673 (ipp->ipp_fields & IPPF_RTHDR) != 0) { 3674 kmem_free(ipp->ipp_rthdr, 3675 ipp->ipp_rthdrlen); 3676 ipp->ipp_rthdr = NULL; 3677 ipp->ipp_rthdrlen = 0; 3678 } 3679 ipp->ipp_fields &= ~IPPF_RTHDR; 3680 ipp->ipp_sticky_ignored |= IPPF_RTHDR; 3681 } else { 3682 error = optcom_pkt_set(invalp, inlen, sticky, 3683 (uchar_t **)&ipp->ipp_rthdr, 3684 &ipp->ipp_rthdrlen, 0); 3685 if (error != 0) 3686 return (error); 3687 ipp->ipp_fields |= IPPF_RTHDR; 3688 } 3689 if (sticky) { 3690 error = udp_build_hdrs(udp); 3691 if (error != 0) 3692 return (error); 3693 } 3694 break; 3695 } 3696 3697 case IPV6_DONTFRAG: 3698 if (checkonly) 3699 break; 3700 3701 if (onoff) { 3702 ipp->ipp_fields |= IPPF_DONTFRAG; 3703 } else { 3704 ipp->ipp_fields &= ~IPPF_DONTFRAG; 3705 } 3706 break; 3707 3708 case IPV6_USE_MIN_MTU: 3709 if (inlen != sizeof (int)) 3710 return (EINVAL); 3711 3712 if (*i1 < -1 || *i1 > 1) 3713 return (EINVAL); 3714 3715 if (checkonly) 3716 break; 3717 3718 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 3719 ipp->ipp_use_min_mtu = *i1; 3720 break; 3721 3722 case IPV6_BOUND_PIF: 3723 case IPV6_SEC_OPT: 3724 case IPV6_DONTFAILOVER_IF: 3725 case IPV6_SRC_PREFERENCES: 3726 case IPV6_V6ONLY: 3727 /* Handled at the IP level */ 3728 return (-EINVAL); 3729 default: 3730 *outlenp = 0; 3731 return (EINVAL); 3732 } 3733 break; 3734 } /* end IPPROTO_IPV6 */ 3735 case IPPROTO_UDP: 3736 switch (name) { 3737 case UDP_ANONPRIVBIND: 3738 if ((error = secpolicy_net_privaddr(cr, 0)) != 0) { 3739 *outlenp = 0; 3740 return (error); 3741 } 3742 if (!checkonly) { 3743 udp->udp_anon_priv_bind = onoff; 3744 } 3745 break; 3746 case UDP_EXCLBIND: 3747 if (!checkonly) 3748 udp->udp_exclbind = onoff; 3749 break; 3750 case UDP_RCVHDR: 3751 if (!checkonly) 3752 udp->udp_rcvhdr = onoff; 3753 break; 3754 case UDP_NAT_T_ENDPOINT: 3755 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 3756 *outlenp = 0; 3757 return (error); 3758 } 3759 3760 /* 3761 * Use udp_family instead so we can avoid ambiguitites 3762 * with AF_INET6 sockets that may switch from IPv4 3763 * to IPv6. 3764 */ 3765 if (udp->udp_family != AF_INET) { 3766 *outlenp = 0; 3767 return (EAFNOSUPPORT); 3768 } 3769 3770 if (!checkonly) { 3771 udp->udp_nat_t_endpoint = onoff; 3772 3773 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + 3774 UDPH_SIZE + udp->udp_ip_snd_options_len; 3775 3776 /* Also, adjust wroff */ 3777 if (onoff) { 3778 udp->udp_max_hdr_len += 3779 sizeof (uint32_t); 3780 } 3781 (void) mi_set_sth_wroff(RD(q), 3782 udp->udp_max_hdr_len + us->us_wroff_extra); 3783 } 3784 break; 3785 default: 3786 *outlenp = 0; 3787 return (EINVAL); 3788 } 3789 break; 3790 default: 3791 *outlenp = 0; 3792 return (EINVAL); 3793 } 3794 /* 3795 * Common case of OK return with outval same as inval. 3796 */ 3797 if (invalp != outvalp) { 3798 /* don't trust bcopy for identical src/dst */ 3799 (void) bcopy(invalp, outvalp, inlen); 3800 } 3801 *outlenp = inlen; 3802 return (0); 3803 } 3804 3805 int 3806 udp_opt_set(queue_t *q, uint_t optset_context, int level, 3807 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 3808 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 3809 { 3810 udp_t *udp; 3811 int err; 3812 3813 udp = Q_TO_UDP(q); 3814 3815 rw_enter(&udp->udp_rwlock, RW_WRITER); 3816 err = udp_opt_set_locked(q, optset_context, level, name, inlen, invalp, 3817 outlenp, outvalp, thisdg_attrs, cr, mblk); 3818 rw_exit(&udp->udp_rwlock); 3819 return (err); 3820 } 3821 3822 /* 3823 * Update udp_sticky_hdrs based on udp_sticky_ipp, udp_v6src, and udp_ttl. 3824 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 3825 * headers, and the udp header. 3826 * Returns failure if can't allocate memory. 3827 */ 3828 static int 3829 udp_build_hdrs(udp_t *udp) 3830 { 3831 udp_stack_t *us = udp->udp_us; 3832 uchar_t *hdrs; 3833 uint_t hdrs_len; 3834 ip6_t *ip6h; 3835 ip6i_t *ip6i; 3836 udpha_t *udpha; 3837 ip6_pkt_t *ipp = &udp->udp_sticky_ipp; 3838 size_t sth_wroff; 3839 3840 ASSERT(RW_WRITE_HELD(&udp->udp_rwlock)); 3841 hdrs_len = ip_total_hdrs_len_v6(ipp) + UDPH_SIZE; 3842 ASSERT(hdrs_len != 0); 3843 if (hdrs_len != udp->udp_sticky_hdrs_len) { 3844 /* Need to reallocate */ 3845 hdrs = kmem_alloc(hdrs_len, KM_NOSLEEP); 3846 if (hdrs == NULL) 3847 return (ENOMEM); 3848 3849 if (udp->udp_sticky_hdrs_len != 0) { 3850 kmem_free(udp->udp_sticky_hdrs, 3851 udp->udp_sticky_hdrs_len); 3852 } 3853 udp->udp_sticky_hdrs = hdrs; 3854 udp->udp_sticky_hdrs_len = hdrs_len; 3855 } 3856 ip_build_hdrs_v6(udp->udp_sticky_hdrs, 3857 udp->udp_sticky_hdrs_len - UDPH_SIZE, ipp, IPPROTO_UDP); 3858 3859 /* Set header fields not in ipp */ 3860 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 3861 ip6i = (ip6i_t *)udp->udp_sticky_hdrs; 3862 ip6h = (ip6_t *)&ip6i[1]; 3863 } else { 3864 ip6h = (ip6_t *)udp->udp_sticky_hdrs; 3865 } 3866 3867 if (!(ipp->ipp_fields & IPPF_ADDR)) 3868 ip6h->ip6_src = udp->udp_v6src; 3869 3870 udpha = (udpha_t *)(udp->udp_sticky_hdrs + hdrs_len - UDPH_SIZE); 3871 udpha->uha_src_port = udp->udp_port; 3872 3873 /* Try to get everything in a single mblk */ 3874 if (hdrs_len > udp->udp_max_hdr_len) { 3875 udp->udp_max_hdr_len = hdrs_len; 3876 sth_wroff = udp->udp_max_hdr_len + us->us_wroff_extra; 3877 rw_exit(&udp->udp_rwlock); 3878 (void) mi_set_sth_wroff(udp->udp_connp->conn_rq, sth_wroff); 3879 rw_enter(&udp->udp_rwlock, RW_WRITER); 3880 } 3881 return (0); 3882 } 3883 3884 /* 3885 * This routine retrieves the value of an ND variable in a udpparam_t 3886 * structure. It is called through nd_getset when a user reads the 3887 * variable. 3888 */ 3889 /* ARGSUSED */ 3890 static int 3891 udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 3892 { 3893 udpparam_t *udppa = (udpparam_t *)cp; 3894 3895 (void) mi_mpprintf(mp, "%d", udppa->udp_param_value); 3896 return (0); 3897 } 3898 3899 /* 3900 * Walk through the param array specified registering each element with the 3901 * named dispatch (ND) handler. 3902 */ 3903 static boolean_t 3904 udp_param_register(IDP *ndp, udpparam_t *udppa, int cnt) 3905 { 3906 for (; cnt-- > 0; udppa++) { 3907 if (udppa->udp_param_name && udppa->udp_param_name[0]) { 3908 if (!nd_load(ndp, udppa->udp_param_name, 3909 udp_param_get, udp_param_set, 3910 (caddr_t)udppa)) { 3911 nd_free(ndp); 3912 return (B_FALSE); 3913 } 3914 } 3915 } 3916 if (!nd_load(ndp, "udp_extra_priv_ports", 3917 udp_extra_priv_ports_get, NULL, NULL)) { 3918 nd_free(ndp); 3919 return (B_FALSE); 3920 } 3921 if (!nd_load(ndp, "udp_extra_priv_ports_add", 3922 NULL, udp_extra_priv_ports_add, NULL)) { 3923 nd_free(ndp); 3924 return (B_FALSE); 3925 } 3926 if (!nd_load(ndp, "udp_extra_priv_ports_del", 3927 NULL, udp_extra_priv_ports_del, NULL)) { 3928 nd_free(ndp); 3929 return (B_FALSE); 3930 } 3931 if (!nd_load(ndp, "udp_status", udp_status_report, NULL, 3932 NULL)) { 3933 nd_free(ndp); 3934 return (B_FALSE); 3935 } 3936 if (!nd_load(ndp, "udp_bind_hash", udp_bind_hash_report, NULL, 3937 NULL)) { 3938 nd_free(ndp); 3939 return (B_FALSE); 3940 } 3941 return (B_TRUE); 3942 } 3943 3944 /* This routine sets an ND variable in a udpparam_t structure. */ 3945 /* ARGSUSED */ 3946 static int 3947 udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 3948 { 3949 long new_value; 3950 udpparam_t *udppa = (udpparam_t *)cp; 3951 3952 /* 3953 * Fail the request if the new value does not lie within the 3954 * required bounds. 3955 */ 3956 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 3957 new_value < udppa->udp_param_min || 3958 new_value > udppa->udp_param_max) { 3959 return (EINVAL); 3960 } 3961 3962 /* Set the new value */ 3963 udppa->udp_param_value = new_value; 3964 return (0); 3965 } 3966 3967 /* 3968 * Copy hop-by-hop option from ipp->ipp_hopopts to the buffer provided (with 3969 * T_opthdr) and return the number of bytes copied. 'dbuf' may be NULL to 3970 * just count the length needed for allocation. If 'dbuf' is non-NULL, 3971 * then it's assumed to be allocated to be large enough. 3972 * 3973 * Returns zero if trimming of the security option causes all options to go 3974 * away. 3975 */ 3976 static size_t 3977 copy_hop_opts(const ip6_pkt_t *ipp, uchar_t *dbuf) 3978 { 3979 struct T_opthdr *toh; 3980 size_t hol = ipp->ipp_hopoptslen; 3981 ip6_hbh_t *dstopt = NULL; 3982 const ip6_hbh_t *srcopt = ipp->ipp_hopopts; 3983 size_t tlen, olen, plen; 3984 boolean_t deleting; 3985 const struct ip6_opt *sopt, *lastpad; 3986 struct ip6_opt *dopt; 3987 3988 if ((toh = (struct T_opthdr *)dbuf) != NULL) { 3989 toh->level = IPPROTO_IPV6; 3990 toh->name = IPV6_HOPOPTS; 3991 toh->status = 0; 3992 dstopt = (ip6_hbh_t *)(toh + 1); 3993 } 3994 3995 /* 3996 * If labeling is enabled, then skip the label option 3997 * but get other options if there are any. 3998 */ 3999 if (is_system_labeled()) { 4000 dopt = NULL; 4001 if (dstopt != NULL) { 4002 /* will fill in ip6h_len later */ 4003 dstopt->ip6h_nxt = srcopt->ip6h_nxt; 4004 dopt = (struct ip6_opt *)(dstopt + 1); 4005 } 4006 sopt = (const struct ip6_opt *)(srcopt + 1); 4007 hol -= sizeof (*srcopt); 4008 tlen = sizeof (*dstopt); 4009 lastpad = NULL; 4010 deleting = B_FALSE; 4011 /* 4012 * This loop finds the first (lastpad pointer) of any number of 4013 * pads that preceeds the security option, then treats the 4014 * security option as though it were a pad, and then finds the 4015 * next non-pad option (or end of list). 4016 * 4017 * It then treats the entire block as one big pad. To preserve 4018 * alignment of any options that follow, or just the end of the 4019 * list, it computes a minimal new padding size that keeps the 4020 * same alignment for the next option. 4021 * 4022 * If it encounters just a sequence of pads with no security 4023 * option, those are copied as-is rather than collapsed. 4024 * 4025 * Note that to handle the end of list case, the code makes one 4026 * loop with 'hol' set to zero. 4027 */ 4028 for (;;) { 4029 if (hol > 0) { 4030 if (sopt->ip6o_type == IP6OPT_PAD1) { 4031 if (lastpad == NULL) 4032 lastpad = sopt; 4033 sopt = (const struct ip6_opt *) 4034 &sopt->ip6o_len; 4035 hol--; 4036 continue; 4037 } 4038 olen = sopt->ip6o_len + sizeof (*sopt); 4039 if (olen > hol) 4040 olen = hol; 4041 if (sopt->ip6o_type == IP6OPT_PADN || 4042 sopt->ip6o_type == ip6opt_ls) { 4043 if (sopt->ip6o_type == ip6opt_ls) 4044 deleting = B_TRUE; 4045 if (lastpad == NULL) 4046 lastpad = sopt; 4047 sopt = (const struct ip6_opt *) 4048 ((const char *)sopt + olen); 4049 hol -= olen; 4050 continue; 4051 } 4052 } else { 4053 /* if nothing was copied at all, then delete */ 4054 if (tlen == sizeof (*dstopt)) 4055 return (0); 4056 /* last pass; pick up any trailing padding */ 4057 olen = 0; 4058 } 4059 if (deleting) { 4060 /* 4061 * compute aligning effect of deleted material 4062 * to reproduce with pad. 4063 */ 4064 plen = ((const char *)sopt - 4065 (const char *)lastpad) & 7; 4066 tlen += plen; 4067 if (dopt != NULL) { 4068 if (plen == 1) { 4069 dopt->ip6o_type = IP6OPT_PAD1; 4070 } else if (plen > 1) { 4071 plen -= sizeof (*dopt); 4072 dopt->ip6o_type = IP6OPT_PADN; 4073 dopt->ip6o_len = plen; 4074 if (plen > 0) 4075 bzero(dopt + 1, plen); 4076 } 4077 dopt = (struct ip6_opt *) 4078 ((char *)dopt + plen); 4079 } 4080 deleting = B_FALSE; 4081 lastpad = NULL; 4082 } 4083 /* if there's uncopied padding, then copy that now */ 4084 if (lastpad != NULL) { 4085 olen += (const char *)sopt - 4086 (const char *)lastpad; 4087 sopt = lastpad; 4088 lastpad = NULL; 4089 } 4090 if (dopt != NULL && olen > 0) { 4091 bcopy(sopt, dopt, olen); 4092 dopt = (struct ip6_opt *)((char *)dopt + olen); 4093 } 4094 if (hol == 0) 4095 break; 4096 tlen += olen; 4097 sopt = (const struct ip6_opt *) 4098 ((const char *)sopt + olen); 4099 hol -= olen; 4100 } 4101 /* go back and patch up the length value, rounded upward */ 4102 if (dstopt != NULL) 4103 dstopt->ip6h_len = (tlen - 1) >> 3; 4104 } else { 4105 tlen = hol; 4106 if (dstopt != NULL) 4107 bcopy(srcopt, dstopt, hol); 4108 } 4109 4110 tlen += sizeof (*toh); 4111 if (toh != NULL) 4112 toh->len = tlen; 4113 4114 return (tlen); 4115 } 4116 4117 /* 4118 * Update udp_rcv_opt_len from the packet. 4119 * Called when options received, and when no options received but 4120 * udp_ip_recv_opt_len has previously recorded options. 4121 */ 4122 static void 4123 udp_save_ip_rcv_opt(udp_t *udp, void *opt, int opt_len) 4124 { 4125 /* Save the options if any */ 4126 if (opt_len > 0) { 4127 if (opt_len > udp->udp_ip_rcv_options_len) { 4128 /* Need to allocate larger buffer */ 4129 if (udp->udp_ip_rcv_options_len != 0) 4130 mi_free((char *)udp->udp_ip_rcv_options); 4131 udp->udp_ip_rcv_options_len = 0; 4132 udp->udp_ip_rcv_options = 4133 (uchar_t *)mi_alloc(opt_len, BPRI_HI); 4134 if (udp->udp_ip_rcv_options != NULL) 4135 udp->udp_ip_rcv_options_len = opt_len; 4136 } 4137 if (udp->udp_ip_rcv_options_len != 0) { 4138 bcopy(opt, udp->udp_ip_rcv_options, opt_len); 4139 /* Adjust length if we are resusing the space */ 4140 udp->udp_ip_rcv_options_len = opt_len; 4141 } 4142 } else if (udp->udp_ip_rcv_options_len != 0) { 4143 /* Clear out previously recorded options */ 4144 mi_free((char *)udp->udp_ip_rcv_options); 4145 udp->udp_ip_rcv_options = NULL; 4146 udp->udp_ip_rcv_options_len = 0; 4147 } 4148 } 4149 4150 /* ARGSUSED2 */ 4151 static void 4152 udp_input(void *arg1, mblk_t *mp, void *arg2) 4153 { 4154 conn_t *connp = (conn_t *)arg1; 4155 struct T_unitdata_ind *tudi; 4156 uchar_t *rptr; /* Pointer to IP header */ 4157 int hdr_length; /* Length of IP+UDP headers */ 4158 int opt_len; 4159 int udi_size; /* Size of T_unitdata_ind */ 4160 int mp_len; 4161 udp_t *udp; 4162 udpha_t *udpha; 4163 int ipversion; 4164 ip6_pkt_t ipp; 4165 ip6_t *ip6h; 4166 ip6i_t *ip6i; 4167 mblk_t *mp1; 4168 mblk_t *options_mp = NULL; 4169 ip_pktinfo_t *pinfo = NULL; 4170 cred_t *cr = NULL; 4171 pid_t cpid; 4172 uint32_t udp_ip_rcv_options_len; 4173 udp_bits_t udp_bits; 4174 cred_t *rcr = connp->conn_cred; 4175 udp_stack_t *us; 4176 4177 ASSERT(connp->conn_flags & IPCL_UDPCONN); 4178 4179 udp = connp->conn_udp; 4180 us = udp->udp_us; 4181 rptr = mp->b_rptr; 4182 ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_CTL); 4183 ASSERT(OK_32PTR(rptr)); 4184 4185 /* 4186 * IP should have prepended the options data in an M_CTL 4187 * Check M_CTL "type" to make sure are not here bcos of 4188 * a valid ICMP message 4189 */ 4190 if (DB_TYPE(mp) == M_CTL) { 4191 if (MBLKL(mp) == sizeof (ip_pktinfo_t) && 4192 ((ip_pktinfo_t *)mp->b_rptr)->ip_pkt_ulp_type == 4193 IN_PKTINFO) { 4194 /* 4195 * IP_RECVIF or IP_RECVSLLA or IPF_RECVADDR information 4196 * has been prepended to the packet by IP. We need to 4197 * extract the mblk and adjust the rptr 4198 */ 4199 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4200 options_mp = mp; 4201 mp = mp->b_cont; 4202 rptr = mp->b_rptr; 4203 UDP_STAT(us, udp_in_pktinfo); 4204 } else { 4205 /* 4206 * ICMP messages. 4207 */ 4208 udp_icmp_error(connp->conn_rq, mp); 4209 return; 4210 } 4211 } 4212 4213 mp_len = msgdsize(mp); 4214 /* 4215 * This is the inbound data path. 4216 * First, we check to make sure the IP version number is correct, 4217 * and then pull the IP and UDP headers into the first mblk. 4218 */ 4219 4220 /* Initialize regardless if ipversion is IPv4 or IPv6 */ 4221 ipp.ipp_fields = 0; 4222 4223 ipversion = IPH_HDR_VERSION(rptr); 4224 4225 rw_enter(&udp->udp_rwlock, RW_READER); 4226 udp_ip_rcv_options_len = udp->udp_ip_rcv_options_len; 4227 udp_bits = udp->udp_bits; 4228 rw_exit(&udp->udp_rwlock); 4229 4230 switch (ipversion) { 4231 case IPV4_VERSION: 4232 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 4233 ASSERT(((ipha_t *)rptr)->ipha_protocol == IPPROTO_UDP); 4234 hdr_length = IPH_HDR_LENGTH(rptr) + UDPH_SIZE; 4235 opt_len = hdr_length - (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE); 4236 if ((opt_len > 0 || udp_ip_rcv_options_len > 0) && 4237 udp->udp_family == AF_INET) { 4238 /* 4239 * Record/update udp_ip_rcv_options with the lock 4240 * held. Not needed for AF_INET6 sockets 4241 * since they don't support a getsockopt of IP_OPTIONS. 4242 */ 4243 rw_enter(&udp->udp_rwlock, RW_WRITER); 4244 udp_save_ip_rcv_opt(udp, rptr + IP_SIMPLE_HDR_LENGTH, 4245 opt_len); 4246 rw_exit(&udp->udp_rwlock); 4247 } 4248 /* Handle IPV6_RECVPKTINFO even for IPv4 packet. */ 4249 if ((udp->udp_family == AF_INET6) && (pinfo != NULL) && 4250 udp->udp_ip_recvpktinfo) { 4251 if (pinfo->ip_pkt_flags & IPF_RECVIF) { 4252 ipp.ipp_fields |= IPPF_IFINDEX; 4253 ipp.ipp_ifindex = pinfo->ip_pkt_ifindex; 4254 } 4255 } 4256 break; 4257 case IPV6_VERSION: 4258 /* 4259 * IPv6 packets can only be received by applications 4260 * that are prepared to receive IPv6 addresses. 4261 * The IP fanout must ensure this. 4262 */ 4263 ASSERT(udp->udp_family == AF_INET6); 4264 4265 ip6h = (ip6_t *)rptr; 4266 ASSERT((uchar_t *)&ip6h[1] <= mp->b_wptr); 4267 4268 if (ip6h->ip6_nxt != IPPROTO_UDP) { 4269 uint8_t nexthdrp; 4270 /* Look for ifindex information */ 4271 if (ip6h->ip6_nxt == IPPROTO_RAW) { 4272 ip6i = (ip6i_t *)ip6h; 4273 if ((uchar_t *)&ip6i[1] > mp->b_wptr) 4274 goto tossit; 4275 4276 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 4277 ASSERT(ip6i->ip6i_ifindex != 0); 4278 ipp.ipp_fields |= IPPF_IFINDEX; 4279 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 4280 } 4281 rptr = (uchar_t *)&ip6i[1]; 4282 mp->b_rptr = rptr; 4283 if (rptr == mp->b_wptr) { 4284 mp1 = mp->b_cont; 4285 freeb(mp); 4286 mp = mp1; 4287 rptr = mp->b_rptr; 4288 } 4289 if (MBLKL(mp) < (IPV6_HDR_LEN + UDPH_SIZE)) 4290 goto tossit; 4291 ip6h = (ip6_t *)rptr; 4292 mp_len = msgdsize(mp); 4293 } 4294 /* 4295 * Find any potentially interesting extension headers 4296 * as well as the length of the IPv6 + extension 4297 * headers. 4298 */ 4299 hdr_length = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp) + 4300 UDPH_SIZE; 4301 ASSERT(nexthdrp == IPPROTO_UDP); 4302 } else { 4303 hdr_length = IPV6_HDR_LEN + UDPH_SIZE; 4304 ip6i = NULL; 4305 } 4306 break; 4307 default: 4308 ASSERT(0); 4309 } 4310 4311 /* 4312 * IP inspected the UDP header thus all of it must be in the mblk. 4313 * UDP length check is performed for IPv6 packets and IPv4 packets 4314 * to check if the size of the packet as specified 4315 * by the header is the same as the physical size of the packet. 4316 * FIXME? Didn't IP already check this? 4317 */ 4318 udpha = (udpha_t *)(rptr + (hdr_length - UDPH_SIZE)); 4319 if ((MBLKL(mp) < hdr_length) || 4320 (mp_len != (ntohs(udpha->uha_length) + hdr_length - UDPH_SIZE))) { 4321 goto tossit; 4322 } 4323 4324 4325 /* Walk past the headers unless IP_RECVHDR was set. */ 4326 if (!udp_bits.udpb_rcvhdr) { 4327 mp->b_rptr = rptr + hdr_length; 4328 mp_len -= hdr_length; 4329 } 4330 4331 /* 4332 * This is the inbound data path. Packets are passed upstream as 4333 * T_UNITDATA_IND messages with full IP headers still attached. 4334 */ 4335 if (udp->udp_family == AF_INET) { 4336 sin_t *sin; 4337 4338 ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION); 4339 4340 /* 4341 * Normally only send up the source address. 4342 * If IP_RECVDSTADDR is set we include the destination IP 4343 * address as an option. With IP_RECVOPTS we include all 4344 * the IP options. 4345 */ 4346 udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t); 4347 if (udp_bits.udpb_recvdstaddr) { 4348 udi_size += sizeof (struct T_opthdr) + 4349 sizeof (struct in_addr); 4350 UDP_STAT(us, udp_in_recvdstaddr); 4351 } 4352 4353 if (udp_bits.udpb_ip_recvpktinfo && (pinfo != NULL) && 4354 (pinfo->ip_pkt_flags & IPF_RECVADDR)) { 4355 udi_size += sizeof (struct T_opthdr) + 4356 sizeof (struct in_pktinfo); 4357 UDP_STAT(us, udp_ip_rcvpktinfo); 4358 } 4359 4360 if ((udp_bits.udpb_recvopts) && opt_len > 0) { 4361 udi_size += sizeof (struct T_opthdr) + opt_len; 4362 UDP_STAT(us, udp_in_recvopts); 4363 } 4364 4365 /* 4366 * If the IP_RECVSLLA or the IP_RECVIF is set then allocate 4367 * space accordingly 4368 */ 4369 if ((udp_bits.udpb_recvif) && (pinfo != NULL) && 4370 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 4371 udi_size += sizeof (struct T_opthdr) + sizeof (uint_t); 4372 UDP_STAT(us, udp_in_recvif); 4373 } 4374 4375 if ((udp_bits.udpb_recvslla) && (pinfo != NULL) && 4376 (pinfo->ip_pkt_flags & IPF_RECVSLLA)) { 4377 udi_size += sizeof (struct T_opthdr) + 4378 sizeof (struct sockaddr_dl); 4379 UDP_STAT(us, udp_in_recvslla); 4380 } 4381 4382 if ((udp_bits.udpb_recvucred) && 4383 (cr = DB_CRED(mp)) != NULL) { 4384 udi_size += sizeof (struct T_opthdr) + ucredsize; 4385 cpid = DB_CPID(mp); 4386 UDP_STAT(us, udp_in_recvucred); 4387 } 4388 4389 /* 4390 * If SO_TIMESTAMP is set allocate the appropriate sized 4391 * buffer. Since gethrestime() expects a pointer aligned 4392 * argument, we allocate space necessary for extra 4393 * alignment (even though it might not be used). 4394 */ 4395 if (udp_bits.udpb_timestamp) { 4396 udi_size += sizeof (struct T_opthdr) + 4397 sizeof (timestruc_t) + _POINTER_ALIGNMENT; 4398 UDP_STAT(us, udp_in_timestamp); 4399 } 4400 4401 /* 4402 * If IP_RECVTTL is set allocate the appropriate sized buffer 4403 */ 4404 if (udp_bits.udpb_recvttl) { 4405 udi_size += sizeof (struct T_opthdr) + sizeof (uint8_t); 4406 UDP_STAT(us, udp_in_recvttl); 4407 } 4408 4409 /* Allocate a message block for the T_UNITDATA_IND structure. */ 4410 mp1 = allocb(udi_size, BPRI_MED); 4411 if (mp1 == NULL) { 4412 freemsg(mp); 4413 if (options_mp != NULL) 4414 freeb(options_mp); 4415 BUMP_MIB(&us->us_udp_mib, udpInErrors); 4416 return; 4417 } 4418 mp1->b_cont = mp; 4419 mp = mp1; 4420 mp->b_datap->db_type = M_PROTO; 4421 tudi = (struct T_unitdata_ind *)mp->b_rptr; 4422 mp->b_wptr = (uchar_t *)tudi + udi_size; 4423 tudi->PRIM_type = T_UNITDATA_IND; 4424 tudi->SRC_length = sizeof (sin_t); 4425 tudi->SRC_offset = sizeof (struct T_unitdata_ind); 4426 tudi->OPT_offset = sizeof (struct T_unitdata_ind) + 4427 sizeof (sin_t); 4428 udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t)); 4429 tudi->OPT_length = udi_size; 4430 sin = (sin_t *)&tudi[1]; 4431 sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src; 4432 sin->sin_port = udpha->uha_src_port; 4433 sin->sin_family = udp->udp_family; 4434 *(uint32_t *)&sin->sin_zero[0] = 0; 4435 *(uint32_t *)&sin->sin_zero[4] = 0; 4436 4437 /* 4438 * Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or 4439 * IP_RECVTTL has been set. 4440 */ 4441 if (udi_size != 0) { 4442 /* 4443 * Copy in destination address before options to avoid 4444 * any padding issues. 4445 */ 4446 char *dstopt; 4447 4448 dstopt = (char *)&sin[1]; 4449 if (udp_bits.udpb_recvdstaddr) { 4450 struct T_opthdr *toh; 4451 ipaddr_t *dstptr; 4452 4453 toh = (struct T_opthdr *)dstopt; 4454 toh->level = IPPROTO_IP; 4455 toh->name = IP_RECVDSTADDR; 4456 toh->len = sizeof (struct T_opthdr) + 4457 sizeof (ipaddr_t); 4458 toh->status = 0; 4459 dstopt += sizeof (struct T_opthdr); 4460 dstptr = (ipaddr_t *)dstopt; 4461 *dstptr = ((ipha_t *)rptr)->ipha_dst; 4462 dstopt += sizeof (ipaddr_t); 4463 udi_size -= toh->len; 4464 } 4465 4466 if (udp_bits.udpb_recvopts && opt_len > 0) { 4467 struct T_opthdr *toh; 4468 4469 toh = (struct T_opthdr *)dstopt; 4470 toh->level = IPPROTO_IP; 4471 toh->name = IP_RECVOPTS; 4472 toh->len = sizeof (struct T_opthdr) + opt_len; 4473 toh->status = 0; 4474 dstopt += sizeof (struct T_opthdr); 4475 bcopy(rptr + IP_SIMPLE_HDR_LENGTH, dstopt, 4476 opt_len); 4477 dstopt += opt_len; 4478 udi_size -= toh->len; 4479 } 4480 4481 if ((udp_bits.udpb_ip_recvpktinfo) && (pinfo != NULL) && 4482 (pinfo->ip_pkt_flags & IPF_RECVADDR)) { 4483 struct T_opthdr *toh; 4484 struct in_pktinfo *pktinfop; 4485 4486 toh = (struct T_opthdr *)dstopt; 4487 toh->level = IPPROTO_IP; 4488 toh->name = IP_PKTINFO; 4489 toh->len = sizeof (struct T_opthdr) + 4490 sizeof (*pktinfop); 4491 toh->status = 0; 4492 dstopt += sizeof (struct T_opthdr); 4493 pktinfop = (struct in_pktinfo *)dstopt; 4494 pktinfop->ipi_ifindex = pinfo->ip_pkt_ifindex; 4495 pktinfop->ipi_spec_dst = 4496 pinfo->ip_pkt_match_addr; 4497 pktinfop->ipi_addr.s_addr = 4498 ((ipha_t *)rptr)->ipha_dst; 4499 4500 dstopt += sizeof (struct in_pktinfo); 4501 udi_size -= toh->len; 4502 } 4503 4504 if ((udp_bits.udpb_recvslla) && (pinfo != NULL) && 4505 (pinfo->ip_pkt_flags & IPF_RECVSLLA)) { 4506 4507 struct T_opthdr *toh; 4508 struct sockaddr_dl *dstptr; 4509 4510 toh = (struct T_opthdr *)dstopt; 4511 toh->level = IPPROTO_IP; 4512 toh->name = IP_RECVSLLA; 4513 toh->len = sizeof (struct T_opthdr) + 4514 sizeof (struct sockaddr_dl); 4515 toh->status = 0; 4516 dstopt += sizeof (struct T_opthdr); 4517 dstptr = (struct sockaddr_dl *)dstopt; 4518 bcopy(&pinfo->ip_pkt_slla, dstptr, 4519 sizeof (struct sockaddr_dl)); 4520 dstopt += sizeof (struct sockaddr_dl); 4521 udi_size -= toh->len; 4522 } 4523 4524 if ((udp_bits.udpb_recvif) && (pinfo != NULL) && 4525 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 4526 4527 struct T_opthdr *toh; 4528 uint_t *dstptr; 4529 4530 toh = (struct T_opthdr *)dstopt; 4531 toh->level = IPPROTO_IP; 4532 toh->name = IP_RECVIF; 4533 toh->len = sizeof (struct T_opthdr) + 4534 sizeof (uint_t); 4535 toh->status = 0; 4536 dstopt += sizeof (struct T_opthdr); 4537 dstptr = (uint_t *)dstopt; 4538 *dstptr = pinfo->ip_pkt_ifindex; 4539 dstopt += sizeof (uint_t); 4540 udi_size -= toh->len; 4541 } 4542 4543 if (cr != NULL) { 4544 struct T_opthdr *toh; 4545 4546 toh = (struct T_opthdr *)dstopt; 4547 toh->level = SOL_SOCKET; 4548 toh->name = SCM_UCRED; 4549 toh->len = sizeof (struct T_opthdr) + ucredsize; 4550 toh->status = 0; 4551 dstopt += sizeof (struct T_opthdr); 4552 (void) cred2ucred(cr, cpid, dstopt, rcr); 4553 dstopt += ucredsize; 4554 udi_size -= toh->len; 4555 } 4556 4557 if (udp_bits.udpb_timestamp) { 4558 struct T_opthdr *toh; 4559 4560 toh = (struct T_opthdr *)dstopt; 4561 toh->level = SOL_SOCKET; 4562 toh->name = SCM_TIMESTAMP; 4563 toh->len = sizeof (struct T_opthdr) + 4564 sizeof (timestruc_t) + _POINTER_ALIGNMENT; 4565 toh->status = 0; 4566 dstopt += sizeof (struct T_opthdr); 4567 /* Align for gethrestime() */ 4568 dstopt = (char *)P2ROUNDUP((intptr_t)dstopt, 4569 sizeof (intptr_t)); 4570 gethrestime((timestruc_t *)dstopt); 4571 dstopt = (char *)toh + toh->len; 4572 udi_size -= toh->len; 4573 } 4574 4575 /* 4576 * CAUTION: 4577 * Due to aligment issues 4578 * Processing of IP_RECVTTL option 4579 * should always be the last. Adding 4580 * any option processing after this will 4581 * cause alignment panic. 4582 */ 4583 if (udp_bits.udpb_recvttl) { 4584 struct T_opthdr *toh; 4585 uint8_t *dstptr; 4586 4587 toh = (struct T_opthdr *)dstopt; 4588 toh->level = IPPROTO_IP; 4589 toh->name = IP_RECVTTL; 4590 toh->len = sizeof (struct T_opthdr) + 4591 sizeof (uint8_t); 4592 toh->status = 0; 4593 dstopt += sizeof (struct T_opthdr); 4594 dstptr = (uint8_t *)dstopt; 4595 *dstptr = ((ipha_t *)rptr)->ipha_ttl; 4596 dstopt += sizeof (uint8_t); 4597 udi_size -= toh->len; 4598 } 4599 4600 /* Consumed all of allocated space */ 4601 ASSERT(udi_size == 0); 4602 } 4603 } else { 4604 sin6_t *sin6; 4605 4606 /* 4607 * Handle both IPv4 and IPv6 packets for IPv6 sockets. 4608 * 4609 * Normally we only send up the address. If receiving of any 4610 * optional receive side information is enabled, we also send 4611 * that up as options. 4612 */ 4613 udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t); 4614 4615 if (ipp.ipp_fields & (IPPF_HOPOPTS|IPPF_DSTOPTS|IPPF_RTDSTOPTS| 4616 IPPF_RTHDR|IPPF_IFINDEX)) { 4617 if ((udp_bits.udpb_ipv6_recvhopopts) && 4618 (ipp.ipp_fields & IPPF_HOPOPTS)) { 4619 size_t hlen; 4620 4621 UDP_STAT(us, udp_in_recvhopopts); 4622 hlen = copy_hop_opts(&ipp, NULL); 4623 if (hlen == 0) 4624 ipp.ipp_fields &= ~IPPF_HOPOPTS; 4625 udi_size += hlen; 4626 } 4627 if (((udp_bits.udpb_ipv6_recvdstopts) || 4628 udp_bits.udpb_old_ipv6_recvdstopts) && 4629 (ipp.ipp_fields & IPPF_DSTOPTS)) { 4630 udi_size += sizeof (struct T_opthdr) + 4631 ipp.ipp_dstoptslen; 4632 UDP_STAT(us, udp_in_recvdstopts); 4633 } 4634 if ((((udp_bits.udpb_ipv6_recvdstopts) && 4635 udp_bits.udpb_ipv6_recvrthdr && 4636 (ipp.ipp_fields & IPPF_RTHDR)) || 4637 (udp_bits.udpb_ipv6_recvrthdrdstopts)) && 4638 (ipp.ipp_fields & IPPF_RTDSTOPTS)) { 4639 udi_size += sizeof (struct T_opthdr) + 4640 ipp.ipp_rtdstoptslen; 4641 UDP_STAT(us, udp_in_recvrtdstopts); 4642 } 4643 if ((udp_bits.udpb_ipv6_recvrthdr) && 4644 (ipp.ipp_fields & IPPF_RTHDR)) { 4645 udi_size += sizeof (struct T_opthdr) + 4646 ipp.ipp_rthdrlen; 4647 UDP_STAT(us, udp_in_recvrthdr); 4648 } 4649 if ((udp_bits.udpb_ip_recvpktinfo) && 4650 (ipp.ipp_fields & IPPF_IFINDEX)) { 4651 udi_size += sizeof (struct T_opthdr) + 4652 sizeof (struct in6_pktinfo); 4653 UDP_STAT(us, udp_in_recvpktinfo); 4654 } 4655 4656 } 4657 if ((udp_bits.udpb_recvucred) && 4658 (cr = DB_CRED(mp)) != NULL) { 4659 udi_size += sizeof (struct T_opthdr) + ucredsize; 4660 cpid = DB_CPID(mp); 4661 UDP_STAT(us, udp_in_recvucred); 4662 } 4663 4664 /* 4665 * If SO_TIMESTAMP is set allocate the appropriate sized 4666 * buffer. Since gethrestime() expects a pointer aligned 4667 * argument, we allocate space necessary for extra 4668 * alignment (even though it might not be used). 4669 */ 4670 if (udp_bits.udpb_timestamp) { 4671 udi_size += sizeof (struct T_opthdr) + 4672 sizeof (timestruc_t) + _POINTER_ALIGNMENT; 4673 UDP_STAT(us, udp_in_timestamp); 4674 } 4675 4676 if (udp_bits.udpb_ipv6_recvhoplimit) { 4677 udi_size += sizeof (struct T_opthdr) + sizeof (int); 4678 UDP_STAT(us, udp_in_recvhoplimit); 4679 } 4680 4681 if (udp_bits.udpb_ipv6_recvtclass) { 4682 udi_size += sizeof (struct T_opthdr) + sizeof (int); 4683 UDP_STAT(us, udp_in_recvtclass); 4684 } 4685 4686 mp1 = allocb(udi_size, BPRI_MED); 4687 if (mp1 == NULL) { 4688 freemsg(mp); 4689 if (options_mp != NULL) 4690 freeb(options_mp); 4691 BUMP_MIB(&us->us_udp_mib, udpInErrors); 4692 return; 4693 } 4694 mp1->b_cont = mp; 4695 mp = mp1; 4696 mp->b_datap->db_type = M_PROTO; 4697 tudi = (struct T_unitdata_ind *)mp->b_rptr; 4698 mp->b_wptr = (uchar_t *)tudi + udi_size; 4699 tudi->PRIM_type = T_UNITDATA_IND; 4700 tudi->SRC_length = sizeof (sin6_t); 4701 tudi->SRC_offset = sizeof (struct T_unitdata_ind); 4702 tudi->OPT_offset = sizeof (struct T_unitdata_ind) + 4703 sizeof (sin6_t); 4704 udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin6_t)); 4705 tudi->OPT_length = udi_size; 4706 sin6 = (sin6_t *)&tudi[1]; 4707 if (ipversion == IPV4_VERSION) { 4708 in6_addr_t v6dst; 4709 4710 IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_src, 4711 &sin6->sin6_addr); 4712 IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_dst, 4713 &v6dst); 4714 sin6->sin6_flowinfo = 0; 4715 sin6->sin6_scope_id = 0; 4716 sin6->__sin6_src_id = ip_srcid_find_addr(&v6dst, 4717 connp->conn_zoneid, us->us_netstack); 4718 } else { 4719 sin6->sin6_addr = ip6h->ip6_src; 4720 /* No sin6_flowinfo per API */ 4721 sin6->sin6_flowinfo = 0; 4722 /* For link-scope source pass up scope id */ 4723 if ((ipp.ipp_fields & IPPF_IFINDEX) && 4724 IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) 4725 sin6->sin6_scope_id = ipp.ipp_ifindex; 4726 else 4727 sin6->sin6_scope_id = 0; 4728 sin6->__sin6_src_id = ip_srcid_find_addr( 4729 &ip6h->ip6_dst, connp->conn_zoneid, 4730 us->us_netstack); 4731 } 4732 sin6->sin6_port = udpha->uha_src_port; 4733 sin6->sin6_family = udp->udp_family; 4734 4735 if (udi_size != 0) { 4736 uchar_t *dstopt; 4737 4738 dstopt = (uchar_t *)&sin6[1]; 4739 if ((udp_bits.udpb_ip_recvpktinfo) && 4740 (ipp.ipp_fields & IPPF_IFINDEX)) { 4741 struct T_opthdr *toh; 4742 struct in6_pktinfo *pkti; 4743 4744 toh = (struct T_opthdr *)dstopt; 4745 toh->level = IPPROTO_IPV6; 4746 toh->name = IPV6_PKTINFO; 4747 toh->len = sizeof (struct T_opthdr) + 4748 sizeof (*pkti); 4749 toh->status = 0; 4750 dstopt += sizeof (struct T_opthdr); 4751 pkti = (struct in6_pktinfo *)dstopt; 4752 if (ipversion == IPV6_VERSION) 4753 pkti->ipi6_addr = ip6h->ip6_dst; 4754 else 4755 IN6_IPADDR_TO_V4MAPPED( 4756 ((ipha_t *)rptr)->ipha_dst, 4757 &pkti->ipi6_addr); 4758 pkti->ipi6_ifindex = ipp.ipp_ifindex; 4759 dstopt += sizeof (*pkti); 4760 udi_size -= toh->len; 4761 } 4762 if (udp_bits.udpb_ipv6_recvhoplimit) { 4763 struct T_opthdr *toh; 4764 4765 toh = (struct T_opthdr *)dstopt; 4766 toh->level = IPPROTO_IPV6; 4767 toh->name = IPV6_HOPLIMIT; 4768 toh->len = sizeof (struct T_opthdr) + 4769 sizeof (uint_t); 4770 toh->status = 0; 4771 dstopt += sizeof (struct T_opthdr); 4772 if (ipversion == IPV6_VERSION) 4773 *(uint_t *)dstopt = ip6h->ip6_hops; 4774 else 4775 *(uint_t *)dstopt = 4776 ((ipha_t *)rptr)->ipha_ttl; 4777 dstopt += sizeof (uint_t); 4778 udi_size -= toh->len; 4779 } 4780 if (udp_bits.udpb_ipv6_recvtclass) { 4781 struct T_opthdr *toh; 4782 4783 toh = (struct T_opthdr *)dstopt; 4784 toh->level = IPPROTO_IPV6; 4785 toh->name = IPV6_TCLASS; 4786 toh->len = sizeof (struct T_opthdr) + 4787 sizeof (uint_t); 4788 toh->status = 0; 4789 dstopt += sizeof (struct T_opthdr); 4790 if (ipversion == IPV6_VERSION) { 4791 *(uint_t *)dstopt = 4792 IPV6_FLOW_TCLASS(ip6h->ip6_flow); 4793 } else { 4794 ipha_t *ipha = (ipha_t *)rptr; 4795 *(uint_t *)dstopt = 4796 ipha->ipha_type_of_service; 4797 } 4798 dstopt += sizeof (uint_t); 4799 udi_size -= toh->len; 4800 } 4801 if ((udp_bits.udpb_ipv6_recvhopopts) && 4802 (ipp.ipp_fields & IPPF_HOPOPTS)) { 4803 size_t hlen; 4804 4805 hlen = copy_hop_opts(&ipp, dstopt); 4806 dstopt += hlen; 4807 udi_size -= hlen; 4808 } 4809 if ((udp_bits.udpb_ipv6_recvdstopts) && 4810 (udp_bits.udpb_ipv6_recvrthdr) && 4811 (ipp.ipp_fields & IPPF_RTHDR) && 4812 (ipp.ipp_fields & IPPF_RTDSTOPTS)) { 4813 struct T_opthdr *toh; 4814 4815 toh = (struct T_opthdr *)dstopt; 4816 toh->level = IPPROTO_IPV6; 4817 toh->name = IPV6_DSTOPTS; 4818 toh->len = sizeof (struct T_opthdr) + 4819 ipp.ipp_rtdstoptslen; 4820 toh->status = 0; 4821 dstopt += sizeof (struct T_opthdr); 4822 bcopy(ipp.ipp_rtdstopts, dstopt, 4823 ipp.ipp_rtdstoptslen); 4824 dstopt += ipp.ipp_rtdstoptslen; 4825 udi_size -= toh->len; 4826 } 4827 if ((udp_bits.udpb_ipv6_recvrthdr) && 4828 (ipp.ipp_fields & IPPF_RTHDR)) { 4829 struct T_opthdr *toh; 4830 4831 toh = (struct T_opthdr *)dstopt; 4832 toh->level = IPPROTO_IPV6; 4833 toh->name = IPV6_RTHDR; 4834 toh->len = sizeof (struct T_opthdr) + 4835 ipp.ipp_rthdrlen; 4836 toh->status = 0; 4837 dstopt += sizeof (struct T_opthdr); 4838 bcopy(ipp.ipp_rthdr, dstopt, ipp.ipp_rthdrlen); 4839 dstopt += ipp.ipp_rthdrlen; 4840 udi_size -= toh->len; 4841 } 4842 if ((udp_bits.udpb_ipv6_recvdstopts) && 4843 (ipp.ipp_fields & IPPF_DSTOPTS)) { 4844 struct T_opthdr *toh; 4845 4846 toh = (struct T_opthdr *)dstopt; 4847 toh->level = IPPROTO_IPV6; 4848 toh->name = IPV6_DSTOPTS; 4849 toh->len = sizeof (struct T_opthdr) + 4850 ipp.ipp_dstoptslen; 4851 toh->status = 0; 4852 dstopt += sizeof (struct T_opthdr); 4853 bcopy(ipp.ipp_dstopts, dstopt, 4854 ipp.ipp_dstoptslen); 4855 dstopt += ipp.ipp_dstoptslen; 4856 udi_size -= toh->len; 4857 } 4858 4859 if (cr != NULL) { 4860 struct T_opthdr *toh; 4861 4862 toh = (struct T_opthdr *)dstopt; 4863 toh->level = SOL_SOCKET; 4864 toh->name = SCM_UCRED; 4865 toh->len = sizeof (struct T_opthdr) + ucredsize; 4866 toh->status = 0; 4867 (void) cred2ucred(cr, cpid, &toh[1], rcr); 4868 dstopt += toh->len; 4869 udi_size -= toh->len; 4870 } 4871 if (udp_bits.udpb_timestamp) { 4872 struct T_opthdr *toh; 4873 4874 toh = (struct T_opthdr *)dstopt; 4875 toh->level = SOL_SOCKET; 4876 toh->name = SCM_TIMESTAMP; 4877 toh->len = sizeof (struct T_opthdr) + 4878 sizeof (timestruc_t) + _POINTER_ALIGNMENT; 4879 toh->status = 0; 4880 dstopt += sizeof (struct T_opthdr); 4881 /* Align for gethrestime() */ 4882 dstopt = (uchar_t *)P2ROUNDUP((intptr_t)dstopt, 4883 sizeof (intptr_t)); 4884 gethrestime((timestruc_t *)dstopt); 4885 dstopt = (uchar_t *)toh + toh->len; 4886 udi_size -= toh->len; 4887 } 4888 4889 /* Consumed all of allocated space */ 4890 ASSERT(udi_size == 0); 4891 } 4892 #undef sin6 4893 /* No IP_RECVDSTADDR for IPv6. */ 4894 } 4895 4896 BUMP_MIB(&us->us_udp_mib, udpHCInDatagrams); 4897 if (options_mp != NULL) 4898 freeb(options_mp); 4899 4900 if (udp_bits.udpb_direct_sockfs) { 4901 /* 4902 * There is nothing above us except for the stream head; 4903 * use the read-side synchronous stream interface in 4904 * order to reduce the time spent in interrupt thread. 4905 */ 4906 ASSERT(udp->udp_issocket); 4907 udp_rcv_enqueue(connp->conn_rq, udp, mp, mp_len); 4908 } else { 4909 /* 4910 * Use regular STREAMS interface to pass data upstream 4911 * if this is not a socket endpoint, or if we have 4912 * switched over to the slow mode due to sockmod being 4913 * popped or a module being pushed on top of us. 4914 */ 4915 putnext(connp->conn_rq, mp); 4916 } 4917 return; 4918 4919 tossit: 4920 freemsg(mp); 4921 if (options_mp != NULL) 4922 freeb(options_mp); 4923 BUMP_MIB(&us->us_udp_mib, udpInErrors); 4924 } 4925 4926 /* 4927 * Handle the results of a T_BIND_REQ whether deferred by IP or handled 4928 * immediately. 4929 */ 4930 static void 4931 udp_bind_result(conn_t *connp, mblk_t *mp) 4932 { 4933 struct T_error_ack *tea; 4934 4935 switch (mp->b_datap->db_type) { 4936 case M_PROTO: 4937 case M_PCPROTO: 4938 /* M_PROTO messages contain some type of TPI message. */ 4939 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 4940 (uintptr_t)INT_MAX); 4941 if (mp->b_wptr - mp->b_rptr < sizeof (t_scalar_t)) { 4942 freemsg(mp); 4943 return; 4944 } 4945 tea = (struct T_error_ack *)mp->b_rptr; 4946 4947 switch (tea->PRIM_type) { 4948 case T_ERROR_ACK: 4949 switch (tea->ERROR_prim) { 4950 case O_T_BIND_REQ: 4951 case T_BIND_REQ: 4952 udp_bind_error(connp, mp); 4953 return; 4954 default: 4955 break; 4956 } 4957 ASSERT(0); 4958 freemsg(mp); 4959 return; 4960 4961 case T_BIND_ACK: 4962 udp_bind_ack(connp, mp); 4963 return; 4964 4965 default: 4966 break; 4967 } 4968 freemsg(mp); 4969 return; 4970 default: 4971 /* FIXME: other cases? */ 4972 ASSERT(0); 4973 freemsg(mp); 4974 return; 4975 } 4976 } 4977 4978 /* 4979 * Process a T_BIND_ACK 4980 */ 4981 static void 4982 udp_bind_ack(conn_t *connp, mblk_t *mp) 4983 { 4984 udp_t *udp = connp->conn_udp; 4985 mblk_t *mp1; 4986 ire_t *ire; 4987 struct T_bind_ack *tba; 4988 uchar_t *addrp; 4989 ipa_conn_t *ac; 4990 ipa6_conn_t *ac6; 4991 udp_fanout_t *udpf; 4992 udp_stack_t *us = udp->udp_us; 4993 4994 ASSERT(udp->udp_pending_op != -1); 4995 rw_enter(&udp->udp_rwlock, RW_WRITER); 4996 /* 4997 * If a broadcast/multicast address was bound set 4998 * the source address to 0. 4999 * This ensures no datagrams with broadcast address 5000 * as source address are emitted (which would violate 5001 * RFC1122 - Hosts requirements) 5002 * 5003 * Note that when connecting the returned IRE is 5004 * for the destination address and we only perform 5005 * the broadcast check for the source address (it 5006 * is OK to connect to a broadcast/multicast address.) 5007 */ 5008 mp1 = mp->b_cont; 5009 if (mp1 != NULL && mp1->b_datap->db_type == IRE_DB_TYPE) { 5010 ire = (ire_t *)mp1->b_rptr; 5011 5012 /* 5013 * Note: we get IRE_BROADCAST for IPv6 to "mark" a multicast 5014 * local address. 5015 */ 5016 udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port, 5017 us->us_bind_fanout_size)]; 5018 if (ire->ire_type == IRE_BROADCAST && 5019 udp->udp_state != TS_DATA_XFER) { 5020 ASSERT(udp->udp_pending_op == T_BIND_REQ || 5021 udp->udp_pending_op == O_T_BIND_REQ); 5022 /* This was just a local bind to a broadcast addr */ 5023 mutex_enter(&udpf->uf_lock); 5024 V6_SET_ZERO(udp->udp_v6src); 5025 mutex_exit(&udpf->uf_lock); 5026 if (udp->udp_family == AF_INET6) 5027 (void) udp_build_hdrs(udp); 5028 } else if (V6_OR_V4_INADDR_ANY(udp->udp_v6src)) { 5029 /* 5030 * Local address not yet set - pick it from the 5031 * T_bind_ack 5032 */ 5033 tba = (struct T_bind_ack *)mp->b_rptr; 5034 addrp = &mp->b_rptr[tba->ADDR_offset]; 5035 switch (udp->udp_family) { 5036 case AF_INET: 5037 if (tba->ADDR_length == sizeof (ipa_conn_t)) { 5038 ac = (ipa_conn_t *)addrp; 5039 } else { 5040 ASSERT(tba->ADDR_length == 5041 sizeof (ipa_conn_x_t)); 5042 ac = &((ipa_conn_x_t *)addrp)->acx_conn; 5043 } 5044 mutex_enter(&udpf->uf_lock); 5045 IN6_IPADDR_TO_V4MAPPED(ac->ac_laddr, 5046 &udp->udp_v6src); 5047 mutex_exit(&udpf->uf_lock); 5048 break; 5049 case AF_INET6: 5050 if (tba->ADDR_length == sizeof (ipa6_conn_t)) { 5051 ac6 = (ipa6_conn_t *)addrp; 5052 } else { 5053 ASSERT(tba->ADDR_length == 5054 sizeof (ipa6_conn_x_t)); 5055 ac6 = &((ipa6_conn_x_t *) 5056 addrp)->ac6x_conn; 5057 } 5058 mutex_enter(&udpf->uf_lock); 5059 udp->udp_v6src = ac6->ac6_laddr; 5060 mutex_exit(&udpf->uf_lock); 5061 (void) udp_build_hdrs(udp); 5062 break; 5063 } 5064 } 5065 mp1 = mp1->b_cont; 5066 } 5067 udp->udp_pending_op = -1; 5068 rw_exit(&udp->udp_rwlock); 5069 /* 5070 * Look for one or more appended ACK message added by 5071 * udp_connect or udp_disconnect. 5072 * If none found just send up the T_BIND_ACK. 5073 * udp_connect has appended a T_OK_ACK and a T_CONN_CON. 5074 * udp_disconnect has appended a T_OK_ACK. 5075 */ 5076 if (mp1 != NULL) { 5077 if (mp->b_cont == mp1) 5078 mp->b_cont = NULL; 5079 else { 5080 ASSERT(mp->b_cont->b_cont == mp1); 5081 mp->b_cont->b_cont = NULL; 5082 } 5083 freemsg(mp); 5084 mp = mp1; 5085 while (mp != NULL) { 5086 mp1 = mp->b_cont; 5087 mp->b_cont = NULL; 5088 putnext(connp->conn_rq, mp); 5089 mp = mp1; 5090 } 5091 return; 5092 } 5093 freemsg(mp->b_cont); 5094 mp->b_cont = NULL; 5095 putnext(connp->conn_rq, mp); 5096 } 5097 5098 static void 5099 udp_bind_error(conn_t *connp, mblk_t *mp) 5100 { 5101 udp_t *udp = connp->conn_udp; 5102 struct T_error_ack *tea; 5103 udp_fanout_t *udpf; 5104 udp_stack_t *us = udp->udp_us; 5105 5106 tea = (struct T_error_ack *)mp->b_rptr; 5107 5108 /* 5109 * If our O_T_BIND_REQ/T_BIND_REQ fails, 5110 * clear out the associated port and source 5111 * address before passing the message 5112 * upstream. If this was caused by a T_CONN_REQ 5113 * revert back to bound state. 5114 */ 5115 5116 rw_enter(&udp->udp_rwlock, RW_WRITER); 5117 ASSERT(udp->udp_pending_op != -1); 5118 tea->ERROR_prim = udp->udp_pending_op; 5119 udp->udp_pending_op = -1; 5120 udpf = &us->us_bind_fanout[ 5121 UDP_BIND_HASH(udp->udp_port, 5122 us->us_bind_fanout_size)]; 5123 mutex_enter(&udpf->uf_lock); 5124 5125 switch (tea->ERROR_prim) { 5126 case T_CONN_REQ: 5127 ASSERT(udp->udp_state == TS_DATA_XFER); 5128 /* Connect failed */ 5129 /* Revert back to the bound source */ 5130 udp->udp_v6src = udp->udp_bound_v6src; 5131 udp->udp_state = TS_IDLE; 5132 mutex_exit(&udpf->uf_lock); 5133 if (udp->udp_family == AF_INET6) 5134 (void) udp_build_hdrs(udp); 5135 rw_exit(&udp->udp_rwlock); 5136 break; 5137 5138 case T_DISCON_REQ: 5139 case T_BIND_REQ: 5140 case O_T_BIND_REQ: 5141 V6_SET_ZERO(udp->udp_v6src); 5142 V6_SET_ZERO(udp->udp_bound_v6src); 5143 udp->udp_state = TS_UNBND; 5144 udp_bind_hash_remove(udp, B_TRUE); 5145 udp->udp_port = 0; 5146 mutex_exit(&udpf->uf_lock); 5147 if (udp->udp_family == AF_INET6) 5148 (void) udp_build_hdrs(udp); 5149 rw_exit(&udp->udp_rwlock); 5150 break; 5151 5152 default: 5153 mutex_exit(&udpf->uf_lock); 5154 rw_exit(&udp->udp_rwlock); 5155 (void) mi_strlog(connp->conn_rq, 1, 5156 SL_ERROR|SL_TRACE, 5157 "udp_input_other: bad ERROR_prim, " 5158 "len %d", tea->ERROR_prim); 5159 } 5160 putnext(connp->conn_rq, mp); 5161 } 5162 5163 /* 5164 * return SNMP stuff in buffer in mpdata. We don't hold any lock and report 5165 * information that can be changing beneath us. 5166 */ 5167 mblk_t * 5168 udp_snmp_get(queue_t *q, mblk_t *mpctl) 5169 { 5170 mblk_t *mpdata; 5171 mblk_t *mp_conn_ctl; 5172 mblk_t *mp_attr_ctl; 5173 mblk_t *mp6_conn_ctl; 5174 mblk_t *mp6_attr_ctl; 5175 mblk_t *mp_conn_tail; 5176 mblk_t *mp_attr_tail; 5177 mblk_t *mp6_conn_tail; 5178 mblk_t *mp6_attr_tail; 5179 struct opthdr *optp; 5180 mib2_udpEntry_t ude; 5181 mib2_udp6Entry_t ude6; 5182 mib2_transportMLPEntry_t mlp; 5183 int state; 5184 zoneid_t zoneid; 5185 int i; 5186 connf_t *connfp; 5187 conn_t *connp = Q_TO_CONN(q); 5188 int v4_conn_idx; 5189 int v6_conn_idx; 5190 boolean_t needattr; 5191 udp_t *udp; 5192 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 5193 udp_stack_t *us = connp->conn_netstack->netstack_udp; 5194 mblk_t *mp2ctl; 5195 5196 /* 5197 * make a copy of the original message 5198 */ 5199 mp2ctl = copymsg(mpctl); 5200 5201 mp_conn_ctl = mp_attr_ctl = mp6_conn_ctl = NULL; 5202 if (mpctl == NULL || 5203 (mpdata = mpctl->b_cont) == NULL || 5204 (mp_conn_ctl = copymsg(mpctl)) == NULL || 5205 (mp_attr_ctl = copymsg(mpctl)) == NULL || 5206 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 5207 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 5208 freemsg(mp_conn_ctl); 5209 freemsg(mp_attr_ctl); 5210 freemsg(mp6_conn_ctl); 5211 freemsg(mpctl); 5212 freemsg(mp2ctl); 5213 return (0); 5214 } 5215 5216 zoneid = connp->conn_zoneid; 5217 5218 /* fixed length structure for IPv4 and IPv6 counters */ 5219 SET_MIB(us->us_udp_mib.udpEntrySize, sizeof (mib2_udpEntry_t)); 5220 SET_MIB(us->us_udp_mib.udp6EntrySize, sizeof (mib2_udp6Entry_t)); 5221 /* synchronize 64- and 32-bit counters */ 5222 SYNC32_MIB(&us->us_udp_mib, udpInDatagrams, udpHCInDatagrams); 5223 SYNC32_MIB(&us->us_udp_mib, udpOutDatagrams, udpHCOutDatagrams); 5224 5225 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 5226 optp->level = MIB2_UDP; 5227 optp->name = 0; 5228 (void) snmp_append_data(mpdata, (char *)&us->us_udp_mib, 5229 sizeof (us->us_udp_mib)); 5230 optp->len = msgdsize(mpdata); 5231 qreply(q, mpctl); 5232 5233 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 5234 v4_conn_idx = v6_conn_idx = 0; 5235 5236 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 5237 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 5238 connp = NULL; 5239 5240 while ((connp = ipcl_get_next_conn(connfp, connp, 5241 IPCL_UDPCONN))) { 5242 udp = connp->conn_udp; 5243 if (zoneid != connp->conn_zoneid) 5244 continue; 5245 5246 /* 5247 * Note that the port numbers are sent in 5248 * host byte order 5249 */ 5250 5251 if (udp->udp_state == TS_UNBND) 5252 state = MIB2_UDP_unbound; 5253 else if (udp->udp_state == TS_IDLE) 5254 state = MIB2_UDP_idle; 5255 else if (udp->udp_state == TS_DATA_XFER) 5256 state = MIB2_UDP_connected; 5257 else 5258 state = MIB2_UDP_unknown; 5259 5260 needattr = B_FALSE; 5261 bzero(&mlp, sizeof (mlp)); 5262 if (connp->conn_mlp_type != mlptSingle) { 5263 if (connp->conn_mlp_type == mlptShared || 5264 connp->conn_mlp_type == mlptBoth) 5265 mlp.tme_flags |= MIB2_TMEF_SHARED; 5266 if (connp->conn_mlp_type == mlptPrivate || 5267 connp->conn_mlp_type == mlptBoth) 5268 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 5269 needattr = B_TRUE; 5270 } 5271 5272 /* 5273 * Create an IPv4 table entry for IPv4 entries and also 5274 * any IPv6 entries which are bound to in6addr_any 5275 * (i.e. anything a IPv4 peer could connect/send to). 5276 */ 5277 if (udp->udp_ipversion == IPV4_VERSION || 5278 (udp->udp_state <= TS_IDLE && 5279 IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src))) { 5280 ude.udpEntryInfo.ue_state = state; 5281 /* 5282 * If in6addr_any this will set it to 5283 * INADDR_ANY 5284 */ 5285 ude.udpLocalAddress = 5286 V4_PART_OF_V6(udp->udp_v6src); 5287 ude.udpLocalPort = ntohs(udp->udp_port); 5288 if (udp->udp_state == TS_DATA_XFER) { 5289 /* 5290 * Can potentially get here for 5291 * v6 socket if another process 5292 * (say, ping) has just done a 5293 * sendto(), changing the state 5294 * from the TS_IDLE above to 5295 * TS_DATA_XFER by the time we hit 5296 * this part of the code. 5297 */ 5298 ude.udpEntryInfo.ue_RemoteAddress = 5299 V4_PART_OF_V6(udp->udp_v6dst); 5300 ude.udpEntryInfo.ue_RemotePort = 5301 ntohs(udp->udp_dstport); 5302 } else { 5303 ude.udpEntryInfo.ue_RemoteAddress = 0; 5304 ude.udpEntryInfo.ue_RemotePort = 0; 5305 } 5306 5307 /* 5308 * We make the assumption that all udp_t 5309 * structs will be created within an address 5310 * region no larger than 32-bits. 5311 */ 5312 ude.udpInstance = (uint32_t)(uintptr_t)udp; 5313 ude.udpCreationProcess = 5314 (udp->udp_open_pid < 0) ? 5315 MIB2_UNKNOWN_PROCESS : 5316 udp->udp_open_pid; 5317 ude.udpCreationTime = udp->udp_open_time; 5318 5319 (void) snmp_append_data2(mp_conn_ctl->b_cont, 5320 &mp_conn_tail, (char *)&ude, sizeof (ude)); 5321 mlp.tme_connidx = v4_conn_idx++; 5322 if (needattr) 5323 (void) snmp_append_data2( 5324 mp_attr_ctl->b_cont, &mp_attr_tail, 5325 (char *)&mlp, sizeof (mlp)); 5326 } 5327 if (udp->udp_ipversion == IPV6_VERSION) { 5328 ude6.udp6EntryInfo.ue_state = state; 5329 ude6.udp6LocalAddress = udp->udp_v6src; 5330 ude6.udp6LocalPort = ntohs(udp->udp_port); 5331 ude6.udp6IfIndex = udp->udp_bound_if; 5332 if (udp->udp_state == TS_DATA_XFER) { 5333 ude6.udp6EntryInfo.ue_RemoteAddress = 5334 udp->udp_v6dst; 5335 ude6.udp6EntryInfo.ue_RemotePort = 5336 ntohs(udp->udp_dstport); 5337 } else { 5338 ude6.udp6EntryInfo.ue_RemoteAddress = 5339 sin6_null.sin6_addr; 5340 ude6.udp6EntryInfo.ue_RemotePort = 0; 5341 } 5342 /* 5343 * We make the assumption that all udp_t 5344 * structs will be created within an address 5345 * region no larger than 32-bits. 5346 */ 5347 ude6.udp6Instance = (uint32_t)(uintptr_t)udp; 5348 ude6.udp6CreationProcess = 5349 (udp->udp_open_pid < 0) ? 5350 MIB2_UNKNOWN_PROCESS : 5351 udp->udp_open_pid; 5352 ude6.udp6CreationTime = udp->udp_open_time; 5353 5354 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 5355 &mp6_conn_tail, (char *)&ude6, 5356 sizeof (ude6)); 5357 mlp.tme_connidx = v6_conn_idx++; 5358 if (needattr) 5359 (void) snmp_append_data2( 5360 mp6_attr_ctl->b_cont, 5361 &mp6_attr_tail, (char *)&mlp, 5362 sizeof (mlp)); 5363 } 5364 } 5365 } 5366 5367 /* IPv4 UDP endpoints */ 5368 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 5369 sizeof (struct T_optmgmt_ack)]; 5370 optp->level = MIB2_UDP; 5371 optp->name = MIB2_UDP_ENTRY; 5372 optp->len = msgdsize(mp_conn_ctl->b_cont); 5373 qreply(q, mp_conn_ctl); 5374 5375 /* table of MLP attributes... */ 5376 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 5377 sizeof (struct T_optmgmt_ack)]; 5378 optp->level = MIB2_UDP; 5379 optp->name = EXPER_XPORT_MLP; 5380 optp->len = msgdsize(mp_attr_ctl->b_cont); 5381 if (optp->len == 0) 5382 freemsg(mp_attr_ctl); 5383 else 5384 qreply(q, mp_attr_ctl); 5385 5386 /* IPv6 UDP endpoints */ 5387 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 5388 sizeof (struct T_optmgmt_ack)]; 5389 optp->level = MIB2_UDP6; 5390 optp->name = MIB2_UDP6_ENTRY; 5391 optp->len = msgdsize(mp6_conn_ctl->b_cont); 5392 qreply(q, mp6_conn_ctl); 5393 5394 /* table of MLP attributes... */ 5395 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 5396 sizeof (struct T_optmgmt_ack)]; 5397 optp->level = MIB2_UDP6; 5398 optp->name = EXPER_XPORT_MLP; 5399 optp->len = msgdsize(mp6_attr_ctl->b_cont); 5400 if (optp->len == 0) 5401 freemsg(mp6_attr_ctl); 5402 else 5403 qreply(q, mp6_attr_ctl); 5404 5405 return (mp2ctl); 5406 } 5407 5408 /* 5409 * Return 0 if invalid set request, 1 otherwise, including non-udp requests. 5410 * NOTE: Per MIB-II, UDP has no writable data. 5411 * TODO: If this ever actually tries to set anything, it needs to be 5412 * to do the appropriate locking. 5413 */ 5414 /* ARGSUSED */ 5415 int 5416 udp_snmp_set(queue_t *q, t_scalar_t level, t_scalar_t name, 5417 uchar_t *ptr, int len) 5418 { 5419 switch (level) { 5420 case MIB2_UDP: 5421 return (0); 5422 default: 5423 return (1); 5424 } 5425 } 5426 5427 static void 5428 udp_report_item(mblk_t *mp, udp_t *udp) 5429 { 5430 char *state; 5431 char addrbuf1[INET6_ADDRSTRLEN]; 5432 char addrbuf2[INET6_ADDRSTRLEN]; 5433 uint_t print_len, buf_len; 5434 5435 buf_len = mp->b_datap->db_lim - mp->b_wptr; 5436 ASSERT(buf_len >= 0); 5437 if (buf_len == 0) 5438 return; 5439 5440 if (udp->udp_state == TS_UNBND) 5441 state = "UNBOUND"; 5442 else if (udp->udp_state == TS_IDLE) 5443 state = "IDLE"; 5444 else if (udp->udp_state == TS_DATA_XFER) 5445 state = "CONNECTED"; 5446 else 5447 state = "UnkState"; 5448 print_len = snprintf((char *)mp->b_wptr, buf_len, 5449 MI_COL_PTRFMT_STR "%4d %5u %s %s %5u %s\n", 5450 (void *)udp, udp->udp_connp->conn_zoneid, ntohs(udp->udp_port), 5451 inet_ntop(AF_INET6, &udp->udp_v6src, addrbuf1, sizeof (addrbuf1)), 5452 inet_ntop(AF_INET6, &udp->udp_v6dst, addrbuf2, sizeof (addrbuf2)), 5453 ntohs(udp->udp_dstport), state); 5454 if (print_len < buf_len) { 5455 mp->b_wptr += print_len; 5456 } else { 5457 mp->b_wptr += buf_len; 5458 } 5459 } 5460 5461 /* Report for ndd "udp_status" */ 5462 /* ARGSUSED */ 5463 static int 5464 udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 5465 { 5466 zoneid_t zoneid; 5467 connf_t *connfp; 5468 conn_t *connp = Q_TO_CONN(q); 5469 udp_t *udp = connp->conn_udp; 5470 int i; 5471 udp_stack_t *us = udp->udp_us; 5472 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 5473 5474 /* 5475 * Because of the ndd constraint, at most we can have 64K buffer 5476 * to put in all UDP info. So to be more efficient, just 5477 * allocate a 64K buffer here, assuming we need that large buffer. 5478 * This may be a problem as any user can read udp_status. Therefore 5479 * we limit the rate of doing this using us_ndd_get_info_interval. 5480 * This should be OK as normal users should not do this too often. 5481 */ 5482 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 5483 if (ddi_get_lbolt() - us->us_last_ndd_get_info_time < 5484 drv_usectohz(us->us_ndd_get_info_interval * 1000)) { 5485 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 5486 return (0); 5487 } 5488 } 5489 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 5490 /* The following may work even if we cannot get a large buf. */ 5491 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 5492 return (0); 5493 } 5494 (void) mi_mpprintf(mp, 5495 "UDP " MI_COL_HDRPAD_STR 5496 /* 12345678[89ABCDEF] */ 5497 " zone lport src addr dest addr port state"); 5498 /* 1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */ 5499 5500 zoneid = connp->conn_zoneid; 5501 5502 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 5503 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 5504 connp = NULL; 5505 5506 while ((connp = ipcl_get_next_conn(connfp, connp, 5507 IPCL_UDPCONN))) { 5508 udp = connp->conn_udp; 5509 if (zoneid != GLOBAL_ZONEID && 5510 zoneid != connp->conn_zoneid) 5511 continue; 5512 5513 udp_report_item(mp->b_cont, udp); 5514 } 5515 } 5516 us->us_last_ndd_get_info_time = ddi_get_lbolt(); 5517 return (0); 5518 } 5519 5520 /* 5521 * This routine creates a T_UDERROR_IND message and passes it upstream. 5522 * The address and options are copied from the T_UNITDATA_REQ message 5523 * passed in mp. This message is freed. 5524 */ 5525 static void 5526 udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr, t_scalar_t destlen, 5527 t_scalar_t err) 5528 { 5529 struct T_unitdata_req *tudr; 5530 mblk_t *mp1; 5531 uchar_t *optaddr; 5532 t_scalar_t optlen; 5533 5534 if (DB_TYPE(mp) == M_DATA) { 5535 ASSERT(destaddr != NULL && destlen != 0); 5536 optaddr = NULL; 5537 optlen = 0; 5538 } else { 5539 if ((mp->b_wptr < mp->b_rptr) || 5540 (MBLKL(mp)) < sizeof (struct T_unitdata_req)) { 5541 goto done; 5542 } 5543 tudr = (struct T_unitdata_req *)mp->b_rptr; 5544 destaddr = mp->b_rptr + tudr->DEST_offset; 5545 if (destaddr < mp->b_rptr || destaddr >= mp->b_wptr || 5546 destaddr + tudr->DEST_length < mp->b_rptr || 5547 destaddr + tudr->DEST_length > mp->b_wptr) { 5548 goto done; 5549 } 5550 optaddr = mp->b_rptr + tudr->OPT_offset; 5551 if (optaddr < mp->b_rptr || optaddr >= mp->b_wptr || 5552 optaddr + tudr->OPT_length < mp->b_rptr || 5553 optaddr + tudr->OPT_length > mp->b_wptr) { 5554 goto done; 5555 } 5556 destlen = tudr->DEST_length; 5557 optlen = tudr->OPT_length; 5558 } 5559 5560 mp1 = mi_tpi_uderror_ind((char *)destaddr, destlen, 5561 (char *)optaddr, optlen, err); 5562 if (mp1 != NULL) 5563 qreply(q, mp1); 5564 5565 done: 5566 freemsg(mp); 5567 } 5568 5569 /* 5570 * This routine removes a port number association from a stream. It 5571 * is called by udp_wput to handle T_UNBIND_REQ messages. 5572 */ 5573 static void 5574 udp_unbind(queue_t *q, mblk_t *mp) 5575 { 5576 udp_t *udp = Q_TO_UDP(q); 5577 udp_fanout_t *udpf; 5578 udp_stack_t *us = udp->udp_us; 5579 5580 if (cl_inet_unbind != NULL) { 5581 /* 5582 * Running in cluster mode - register unbind information 5583 */ 5584 if (udp->udp_ipversion == IPV4_VERSION) { 5585 (*cl_inet_unbind)(IPPROTO_UDP, AF_INET, 5586 (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)), 5587 (in_port_t)udp->udp_port); 5588 } else { 5589 (*cl_inet_unbind)(IPPROTO_UDP, AF_INET6, 5590 (uint8_t *)&(udp->udp_v6src), 5591 (in_port_t)udp->udp_port); 5592 } 5593 } 5594 5595 rw_enter(&udp->udp_rwlock, RW_WRITER); 5596 if (udp->udp_state == TS_UNBND || udp->udp_pending_op != -1) { 5597 rw_exit(&udp->udp_rwlock); 5598 udp_err_ack(q, mp, TOUTSTATE, 0); 5599 return; 5600 } 5601 udp->udp_pending_op = T_UNBIND_REQ; 5602 rw_exit(&udp->udp_rwlock); 5603 5604 /* 5605 * Pass the unbind to IP; T_UNBIND_REQ is larger than T_OK_ACK 5606 * and therefore ip_unbind must never return NULL. 5607 */ 5608 mp = ip_unbind(q, mp); 5609 ASSERT(mp != NULL); 5610 ASSERT(((struct T_ok_ack *)mp->b_rptr)->PRIM_type == T_OK_ACK); 5611 5612 /* 5613 * Once we're unbound from IP, the pending operation may be cleared 5614 * here. 5615 */ 5616 rw_enter(&udp->udp_rwlock, RW_WRITER); 5617 udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port, 5618 us->us_bind_fanout_size)]; 5619 mutex_enter(&udpf->uf_lock); 5620 udp_bind_hash_remove(udp, B_TRUE); 5621 V6_SET_ZERO(udp->udp_v6src); 5622 V6_SET_ZERO(udp->udp_bound_v6src); 5623 udp->udp_port = 0; 5624 mutex_exit(&udpf->uf_lock); 5625 5626 udp->udp_pending_op = -1; 5627 udp->udp_state = TS_UNBND; 5628 if (udp->udp_family == AF_INET6) 5629 (void) udp_build_hdrs(udp); 5630 rw_exit(&udp->udp_rwlock); 5631 5632 qreply(q, mp); 5633 } 5634 5635 /* 5636 * Don't let port fall into the privileged range. 5637 * Since the extra privileged ports can be arbitrary we also 5638 * ensure that we exclude those from consideration. 5639 * us->us_epriv_ports is not sorted thus we loop over it until 5640 * there are no changes. 5641 */ 5642 static in_port_t 5643 udp_update_next_port(udp_t *udp, in_port_t port, boolean_t random) 5644 { 5645 int i; 5646 in_port_t nextport; 5647 boolean_t restart = B_FALSE; 5648 udp_stack_t *us = udp->udp_us; 5649 5650 if (random && udp_random_anon_port != 0) { 5651 (void) random_get_pseudo_bytes((uint8_t *)&port, 5652 sizeof (in_port_t)); 5653 /* 5654 * Unless changed by a sys admin, the smallest anon port 5655 * is 32768 and the largest anon port is 65535. It is 5656 * very likely (50%) for the random port to be smaller 5657 * than the smallest anon port. When that happens, 5658 * add port % (anon port range) to the smallest anon 5659 * port to get the random port. It should fall into the 5660 * valid anon port range. 5661 */ 5662 if (port < us->us_smallest_anon_port) { 5663 port = us->us_smallest_anon_port + 5664 port % (us->us_largest_anon_port - 5665 us->us_smallest_anon_port); 5666 } 5667 } 5668 5669 retry: 5670 if (port < us->us_smallest_anon_port) 5671 port = us->us_smallest_anon_port; 5672 5673 if (port > us->us_largest_anon_port) { 5674 port = us->us_smallest_anon_port; 5675 if (restart) 5676 return (0); 5677 restart = B_TRUE; 5678 } 5679 5680 if (port < us->us_smallest_nonpriv_port) 5681 port = us->us_smallest_nonpriv_port; 5682 5683 for (i = 0; i < us->us_num_epriv_ports; i++) { 5684 if (port == us->us_epriv_ports[i]) { 5685 port++; 5686 /* 5687 * Make sure that the port is in the 5688 * valid range. 5689 */ 5690 goto retry; 5691 } 5692 } 5693 5694 if (is_system_labeled() && 5695 (nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred), 5696 port, IPPROTO_UDP, B_TRUE)) != 0) { 5697 port = nextport; 5698 goto retry; 5699 } 5700 5701 return (port); 5702 } 5703 5704 static int 5705 udp_update_label(queue_t *wq, mblk_t *mp, ipaddr_t dst) 5706 { 5707 int err; 5708 uchar_t opt_storage[IP_MAX_OPT_LENGTH]; 5709 udp_t *udp = Q_TO_UDP(wq); 5710 udp_stack_t *us = udp->udp_us; 5711 5712 err = tsol_compute_label(DB_CREDDEF(mp, udp->udp_connp->conn_cred), dst, 5713 opt_storage, udp->udp_mac_exempt, 5714 us->us_netstack->netstack_ip); 5715 if (err == 0) { 5716 err = tsol_update_options(&udp->udp_ip_snd_options, 5717 &udp->udp_ip_snd_options_len, &udp->udp_label_len, 5718 opt_storage); 5719 } 5720 if (err != 0) { 5721 DTRACE_PROBE4( 5722 tx__ip__log__info__updatelabel__udp, 5723 char *, "queue(1) failed to update options(2) on mp(3)", 5724 queue_t *, wq, char *, opt_storage, mblk_t *, mp); 5725 } else { 5726 IN6_IPADDR_TO_V4MAPPED(dst, &udp->udp_v6lastdst); 5727 } 5728 return (err); 5729 } 5730 5731 static mblk_t * 5732 udp_output_v4(conn_t *connp, mblk_t *mp, ipaddr_t v4dst, uint16_t port, 5733 uint_t srcid, int *error, boolean_t insert_spi) 5734 { 5735 udp_t *udp = connp->conn_udp; 5736 queue_t *q = connp->conn_wq; 5737 mblk_t *mp1 = mp; 5738 mblk_t *mp2; 5739 ipha_t *ipha; 5740 int ip_hdr_length; 5741 uint32_t ip_len; 5742 udpha_t *udpha; 5743 boolean_t lock_held = B_FALSE; 5744 in_port_t uha_src_port; 5745 udpattrs_t attrs; 5746 uchar_t ip_snd_opt[IP_MAX_OPT_LENGTH]; 5747 uint32_t ip_snd_opt_len = 0; 5748 ip4_pkt_t pktinfo; 5749 ip4_pkt_t *pktinfop = &pktinfo; 5750 ip_opt_info_t optinfo; 5751 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 5752 udp_stack_t *us = udp->udp_us; 5753 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5754 5755 5756 *error = 0; 5757 pktinfop->ip4_ill_index = 0; 5758 pktinfop->ip4_addr = INADDR_ANY; 5759 optinfo.ip_opt_flags = 0; 5760 optinfo.ip_opt_ill_index = 0; 5761 5762 if (v4dst == INADDR_ANY) 5763 v4dst = htonl(INADDR_LOOPBACK); 5764 5765 /* 5766 * If options passed in, feed it for verification and handling 5767 */ 5768 attrs.udpattr_credset = B_FALSE; 5769 if (DB_TYPE(mp) != M_DATA) { 5770 mp1 = mp->b_cont; 5771 if (((struct T_unitdata_req *)mp->b_rptr)->OPT_length != 0) { 5772 attrs.udpattr_ipp4 = pktinfop; 5773 attrs.udpattr_mb = mp; 5774 if (udp_unitdata_opt_process(q, mp, error, &attrs) < 0) 5775 goto done; 5776 /* 5777 * Note: success in processing options. 5778 * mp option buffer represented by 5779 * OPT_length/offset now potentially modified 5780 * and contain option setting results 5781 */ 5782 ASSERT(*error == 0); 5783 } 5784 } 5785 5786 /* mp1 points to the M_DATA mblk carrying the packet */ 5787 ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA); 5788 5789 rw_enter(&udp->udp_rwlock, RW_READER); 5790 lock_held = B_TRUE; 5791 /* 5792 * Check if our saved options are valid; update if not. 5793 * TSOL Note: Since we are not in WRITER mode, UDP packets 5794 * to different destination may require different labels, 5795 * or worse, UDP packets to same IP address may require 5796 * different labels due to use of shared all-zones address. 5797 * We use conn_lock to ensure that lastdst, ip_snd_options, 5798 * and ip_snd_options_len are consistent for the current 5799 * destination and are updated atomically. 5800 */ 5801 mutex_enter(&connp->conn_lock); 5802 if (is_system_labeled()) { 5803 /* Using UDP MLP requires SCM_UCRED from user */ 5804 if (connp->conn_mlp_type != mlptSingle && 5805 !attrs.udpattr_credset) { 5806 mutex_exit(&connp->conn_lock); 5807 DTRACE_PROBE4( 5808 tx__ip__log__info__output__udp, 5809 char *, "MLP mp(1) lacks SCM_UCRED attr(2) on q(3)", 5810 mblk_t *, mp1, udpattrs_t *, &attrs, queue_t *, q); 5811 *error = ECONNREFUSED; 5812 goto done; 5813 } 5814 /* 5815 * update label option for this UDP socket if 5816 * - the destination has changed, or 5817 * - the UDP socket is MLP 5818 */ 5819 if ((!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6lastdst) || 5820 V4_PART_OF_V6(udp->udp_v6lastdst) != v4dst || 5821 connp->conn_mlp_type != mlptSingle) && 5822 (*error = udp_update_label(q, mp, v4dst)) != 0) { 5823 mutex_exit(&connp->conn_lock); 5824 goto done; 5825 } 5826 } 5827 if (udp->udp_ip_snd_options_len > 0) { 5828 ip_snd_opt_len = udp->udp_ip_snd_options_len; 5829 bcopy(udp->udp_ip_snd_options, ip_snd_opt, ip_snd_opt_len); 5830 } 5831 mutex_exit(&connp->conn_lock); 5832 5833 /* Add an IP header */ 5834 ip_hdr_length = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + ip_snd_opt_len + 5835 (insert_spi ? sizeof (uint32_t) : 0); 5836 ipha = (ipha_t *)&mp1->b_rptr[-ip_hdr_length]; 5837 if (DB_REF(mp1) != 1 || (uchar_t *)ipha < DB_BASE(mp1) || 5838 !OK_32PTR(ipha)) { 5839 mp2 = allocb(ip_hdr_length + us->us_wroff_extra, BPRI_LO); 5840 if (mp2 == NULL) { 5841 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 5842 "udp_wput_end: q %p (%S)", q, "allocbfail2"); 5843 *error = ENOMEM; 5844 goto done; 5845 } 5846 mp2->b_wptr = DB_LIM(mp2); 5847 mp2->b_cont = mp1; 5848 mp1 = mp2; 5849 if (DB_TYPE(mp) != M_DATA) 5850 mp->b_cont = mp1; 5851 else 5852 mp = mp1; 5853 5854 ipha = (ipha_t *)(mp1->b_wptr - ip_hdr_length); 5855 } 5856 ip_hdr_length -= (UDPH_SIZE + (insert_spi ? sizeof (uint32_t) : 0)); 5857 #ifdef _BIG_ENDIAN 5858 /* Set version, header length, and tos */ 5859 *(uint16_t *)&ipha->ipha_version_and_hdr_length = 5860 ((((IP_VERSION << 4) | (ip_hdr_length>>2)) << 8) | 5861 udp->udp_type_of_service); 5862 /* Set ttl and protocol */ 5863 *(uint16_t *)&ipha->ipha_ttl = (udp->udp_ttl << 8) | IPPROTO_UDP; 5864 #else 5865 /* Set version, header length, and tos */ 5866 *(uint16_t *)&ipha->ipha_version_and_hdr_length = 5867 ((udp->udp_type_of_service << 8) | 5868 ((IP_VERSION << 4) | (ip_hdr_length>>2))); 5869 /* Set ttl and protocol */ 5870 *(uint16_t *)&ipha->ipha_ttl = (IPPROTO_UDP << 8) | udp->udp_ttl; 5871 #endif 5872 if (pktinfop->ip4_addr != INADDR_ANY) { 5873 ipha->ipha_src = pktinfop->ip4_addr; 5874 optinfo.ip_opt_flags = IP_VERIFY_SRC; 5875 } else { 5876 /* 5877 * Copy our address into the packet. If this is zero, 5878 * first look at __sin6_src_id for a hint. If we leave the 5879 * source as INADDR_ANY then ip will fill in the real source 5880 * address. 5881 */ 5882 IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src, ipha->ipha_src); 5883 if (srcid != 0 && ipha->ipha_src == INADDR_ANY) { 5884 in6_addr_t v6src; 5885 5886 ip_srcid_find_id(srcid, &v6src, connp->conn_zoneid, 5887 us->us_netstack); 5888 IN6_V4MAPPED_TO_IPADDR(&v6src, ipha->ipha_src); 5889 } 5890 } 5891 uha_src_port = udp->udp_port; 5892 if (ip_hdr_length == IP_SIMPLE_HDR_LENGTH) { 5893 rw_exit(&udp->udp_rwlock); 5894 lock_held = B_FALSE; 5895 } 5896 5897 if (pktinfop->ip4_ill_index != 0) { 5898 optinfo.ip_opt_ill_index = pktinfop->ip4_ill_index; 5899 } 5900 5901 ipha->ipha_fragment_offset_and_flags = 0; 5902 ipha->ipha_ident = 0; 5903 5904 mp1->b_rptr = (uchar_t *)ipha; 5905 5906 ASSERT((uintptr_t)(mp1->b_wptr - (uchar_t *)ipha) <= 5907 (uintptr_t)UINT_MAX); 5908 5909 /* Determine length of packet */ 5910 ip_len = (uint32_t)(mp1->b_wptr - (uchar_t *)ipha); 5911 if ((mp2 = mp1->b_cont) != NULL) { 5912 do { 5913 ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX); 5914 ip_len += (uint32_t)MBLKL(mp2); 5915 } while ((mp2 = mp2->b_cont) != NULL); 5916 } 5917 /* 5918 * If the size of the packet is greater than the maximum allowed by 5919 * ip, return an error. Passing this down could cause panics because 5920 * the size will have wrapped and be inconsistent with the msg size. 5921 */ 5922 if (ip_len > IP_MAXPACKET) { 5923 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 5924 "udp_wput_end: q %p (%S)", q, "IP length exceeded"); 5925 *error = EMSGSIZE; 5926 goto done; 5927 } 5928 ipha->ipha_length = htons((uint16_t)ip_len); 5929 ip_len -= ip_hdr_length; 5930 ip_len = htons((uint16_t)ip_len); 5931 udpha = (udpha_t *)(((uchar_t *)ipha) + ip_hdr_length); 5932 5933 /* Insert all-0s SPI now. */ 5934 if (insert_spi) 5935 *((uint32_t *)(udpha + 1)) = 0; 5936 5937 /* 5938 * Copy in the destination address 5939 */ 5940 ipha->ipha_dst = v4dst; 5941 5942 /* 5943 * Set ttl based on IP_MULTICAST_TTL to match IPv6 logic. 5944 */ 5945 if (CLASSD(v4dst)) 5946 ipha->ipha_ttl = udp->udp_multicast_ttl; 5947 5948 udpha->uha_dst_port = port; 5949 udpha->uha_src_port = uha_src_port; 5950 5951 if (ip_snd_opt_len > 0) { 5952 uint32_t cksum; 5953 5954 bcopy(ip_snd_opt, &ipha[1], ip_snd_opt_len); 5955 lock_held = B_FALSE; 5956 rw_exit(&udp->udp_rwlock); 5957 /* 5958 * Massage source route putting first source route in ipha_dst. 5959 * Ignore the destination in T_unitdata_req. 5960 * Create a checksum adjustment for a source route, if any. 5961 */ 5962 cksum = ip_massage_options(ipha, us->us_netstack); 5963 cksum = (cksum & 0xFFFF) + (cksum >> 16); 5964 cksum -= ((ipha->ipha_dst >> 16) & 0xFFFF) + 5965 (ipha->ipha_dst & 0xFFFF); 5966 if ((int)cksum < 0) 5967 cksum--; 5968 cksum = (cksum & 0xFFFF) + (cksum >> 16); 5969 /* 5970 * IP does the checksum if uha_checksum is non-zero, 5971 * We make it easy for IP to include our pseudo header 5972 * by putting our length in uha_checksum. 5973 */ 5974 cksum += ip_len; 5975 cksum = (cksum & 0xFFFF) + (cksum >> 16); 5976 /* There might be a carry. */ 5977 cksum = (cksum & 0xFFFF) + (cksum >> 16); 5978 #ifdef _LITTLE_ENDIAN 5979 if (us->us_do_checksum) 5980 ip_len = (cksum << 16) | ip_len; 5981 #else 5982 if (us->us_do_checksum) 5983 ip_len = (ip_len << 16) | cksum; 5984 else 5985 ip_len <<= 16; 5986 #endif 5987 } else { 5988 /* 5989 * IP does the checksum if uha_checksum is non-zero, 5990 * We make it easy for IP to include our pseudo header 5991 * by putting our length in uha_checksum. 5992 */ 5993 if (us->us_do_checksum) 5994 ip_len |= (ip_len << 16); 5995 #ifndef _LITTLE_ENDIAN 5996 else 5997 ip_len <<= 16; 5998 #endif 5999 } 6000 ASSERT(!lock_held); 6001 /* Set UDP length and checksum */ 6002 *((uint32_t *)&udpha->uha_length) = ip_len; 6003 if (DB_CRED(mp) != NULL) 6004 mblk_setcred(mp1, DB_CRED(mp)); 6005 6006 if (DB_TYPE(mp) != M_DATA) { 6007 ASSERT(mp != mp1); 6008 freeb(mp); 6009 } 6010 6011 /* mp has been consumed and we'll return success */ 6012 ASSERT(*error == 0); 6013 mp = NULL; 6014 6015 /* We're done. Pass the packet to ip. */ 6016 BUMP_MIB(&us->us_udp_mib, udpHCOutDatagrams); 6017 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6018 "udp_wput_end: q %p (%S)", q, "end"); 6019 6020 if ((connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 6021 CONN_OUTBOUND_POLICY_PRESENT(connp, ipss) || 6022 connp->conn_dontroute || 6023 connp->conn_nofailover_ill != NULL || 6024 connp->conn_outgoing_ill != NULL || optinfo.ip_opt_flags != 0 || 6025 optinfo.ip_opt_ill_index != 0 || 6026 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 6027 IPP_ENABLED(IPP_LOCAL_OUT, ipst) || 6028 ipst->ips_ip_g_mrouter != NULL) { 6029 UDP_STAT(us, udp_ip_send); 6030 ip_output_options(connp, mp1, connp->conn_wq, IP_WPUT, 6031 &optinfo); 6032 } else { 6033 udp_send_data(udp, connp->conn_wq, mp1, ipha); 6034 } 6035 6036 done: 6037 if (lock_held) 6038 rw_exit(&udp->udp_rwlock); 6039 if (*error != 0) { 6040 ASSERT(mp != NULL); 6041 BUMP_MIB(&us->us_udp_mib, udpOutErrors); 6042 } 6043 return (mp); 6044 } 6045 6046 static void 6047 udp_send_data(udp_t *udp, queue_t *q, mblk_t *mp, ipha_t *ipha) 6048 { 6049 conn_t *connp = udp->udp_connp; 6050 ipaddr_t src, dst; 6051 ire_t *ire; 6052 ipif_t *ipif = NULL; 6053 mblk_t *ire_fp_mp; 6054 boolean_t retry_caching; 6055 udp_stack_t *us = udp->udp_us; 6056 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6057 6058 dst = ipha->ipha_dst; 6059 src = ipha->ipha_src; 6060 ASSERT(ipha->ipha_ident == 0); 6061 6062 if (CLASSD(dst)) { 6063 int err; 6064 6065 ipif = conn_get_held_ipif(connp, 6066 &connp->conn_multicast_ipif, &err); 6067 6068 if (ipif == NULL || ipif->ipif_isv6 || 6069 (ipif->ipif_ill->ill_phyint->phyint_flags & 6070 PHYI_LOOPBACK)) { 6071 if (ipif != NULL) 6072 ipif_refrele(ipif); 6073 UDP_STAT(us, udp_ip_send); 6074 ip_output(connp, mp, q, IP_WPUT); 6075 return; 6076 } 6077 } 6078 6079 retry_caching = B_FALSE; 6080 mutex_enter(&connp->conn_lock); 6081 ire = connp->conn_ire_cache; 6082 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 6083 6084 if (ire == NULL || ire->ire_addr != dst || 6085 (ire->ire_marks & IRE_MARK_CONDEMNED)) { 6086 retry_caching = B_TRUE; 6087 } else if (CLASSD(dst) && (ire->ire_type & IRE_CACHE)) { 6088 ill_t *stq_ill = (ill_t *)ire->ire_stq->q_ptr; 6089 6090 ASSERT(ipif != NULL); 6091 if (stq_ill != ipif->ipif_ill && (stq_ill->ill_group == NULL || 6092 stq_ill->ill_group != ipif->ipif_ill->ill_group)) 6093 retry_caching = B_TRUE; 6094 } 6095 6096 if (!retry_caching) { 6097 ASSERT(ire != NULL); 6098 IRE_REFHOLD(ire); 6099 mutex_exit(&connp->conn_lock); 6100 } else { 6101 boolean_t cached = B_FALSE; 6102 6103 connp->conn_ire_cache = NULL; 6104 mutex_exit(&connp->conn_lock); 6105 6106 /* Release the old ire */ 6107 if (ire != NULL) { 6108 IRE_REFRELE_NOTR(ire); 6109 ire = NULL; 6110 } 6111 6112 if (CLASSD(dst)) { 6113 ASSERT(ipif != NULL); 6114 ire = ire_ctable_lookup(dst, 0, 0, ipif, 6115 connp->conn_zoneid, MBLK_GETLABEL(mp), 6116 MATCH_IRE_ILL_GROUP, ipst); 6117 } else { 6118 ASSERT(ipif == NULL); 6119 ire = ire_cache_lookup(dst, connp->conn_zoneid, 6120 MBLK_GETLABEL(mp), ipst); 6121 } 6122 6123 if (ire == NULL) { 6124 if (ipif != NULL) 6125 ipif_refrele(ipif); 6126 UDP_STAT(us, udp_ire_null); 6127 ip_output(connp, mp, q, IP_WPUT); 6128 return; 6129 } 6130 IRE_REFHOLD_NOTR(ire); 6131 6132 mutex_enter(&connp->conn_lock); 6133 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL && 6134 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 6135 irb_t *irb = ire->ire_bucket; 6136 6137 /* 6138 * IRE's created for non-connection oriented transports 6139 * are normally initialized with IRE_MARK_TEMPORARY set 6140 * in the ire_marks. These IRE's are preferentially 6141 * reaped when the hash chain length in the cache 6142 * bucket exceeds the maximum value specified in 6143 * ip[6]_ire_max_bucket_cnt. This can severely affect 6144 * UDP performance if IRE cache entries that we need 6145 * to reuse are continually removed. To remedy this, 6146 * when we cache the IRE in the conn_t, we remove the 6147 * IRE_MARK_TEMPORARY bit from the ire_marks if it was 6148 * set. 6149 */ 6150 if (ire->ire_marks & IRE_MARK_TEMPORARY) { 6151 rw_enter(&irb->irb_lock, RW_WRITER); 6152 if (ire->ire_marks & IRE_MARK_TEMPORARY) { 6153 ire->ire_marks &= ~IRE_MARK_TEMPORARY; 6154 irb->irb_tmp_ire_cnt--; 6155 } 6156 rw_exit(&irb->irb_lock); 6157 } 6158 connp->conn_ire_cache = ire; 6159 cached = B_TRUE; 6160 } 6161 mutex_exit(&connp->conn_lock); 6162 6163 /* 6164 * We can continue to use the ire but since it was not 6165 * cached, we should drop the extra reference. 6166 */ 6167 if (!cached) 6168 IRE_REFRELE_NOTR(ire); 6169 } 6170 ASSERT(ire != NULL && ire->ire_ipversion == IPV4_VERSION); 6171 ASSERT(!CLASSD(dst) || ipif != NULL); 6172 6173 /* 6174 * Check if we can take the fast-path. 6175 * Note that "incomplete" ire's (where the link-layer for next hop 6176 * is not resolved, or where the fast-path header in nce_fp_mp is not 6177 * available yet) are sent down the legacy (slow) path 6178 */ 6179 if ((ire->ire_type & (IRE_BROADCAST|IRE_LOCAL|IRE_LOOPBACK)) || 6180 (ire->ire_flags & RTF_MULTIRT) || (ire->ire_stq == NULL) || 6181 (ire->ire_max_frag < ntohs(ipha->ipha_length)) || 6182 ((ire->ire_nce == NULL) || 6183 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL)) || 6184 connp->conn_nexthop_set || (MBLKL(ire_fp_mp) > MBLKHEAD(mp))) { 6185 if (ipif != NULL) 6186 ipif_refrele(ipif); 6187 UDP_STAT(us, udp_ip_ire_send); 6188 IRE_REFRELE(ire); 6189 ip_output(connp, mp, q, IP_WPUT); 6190 return; 6191 } 6192 6193 if (src == INADDR_ANY && !connp->conn_unspec_src) { 6194 if (CLASSD(dst) && !(ire->ire_flags & RTF_SETSRC)) 6195 ipha->ipha_src = ipif->ipif_src_addr; 6196 else 6197 ipha->ipha_src = ire->ire_src_addr; 6198 } 6199 6200 if (ipif != NULL) 6201 ipif_refrele(ipif); 6202 6203 udp_xmit(connp->conn_wq, mp, ire, connp, connp->conn_zoneid); 6204 } 6205 6206 static void 6207 udp_xmit(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, zoneid_t zoneid) 6208 { 6209 ipaddr_t src, dst; 6210 ill_t *ill; 6211 mblk_t *ire_fp_mp; 6212 uint_t ire_fp_mp_len; 6213 uint16_t *up; 6214 uint32_t cksum, hcksum_txflags; 6215 queue_t *dev_q; 6216 udp_t *udp = connp->conn_udp; 6217 ipha_t *ipha = (ipha_t *)mp->b_rptr; 6218 udp_stack_t *us = udp->udp_us; 6219 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6220 6221 dev_q = ire->ire_stq->q_next; 6222 ASSERT(dev_q != NULL); 6223 6224 6225 if (DEV_Q_IS_FLOW_CTLED(dev_q)) { 6226 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsHCOutRequests); 6227 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 6228 if (ipst->ips_ip_output_queue) 6229 (void) putq(connp->conn_wq, mp); 6230 else 6231 freemsg(mp); 6232 ire_refrele(ire); 6233 return; 6234 } 6235 6236 ire_fp_mp = ire->ire_nce->nce_fp_mp; 6237 ire_fp_mp_len = MBLKL(ire_fp_mp); 6238 ASSERT(MBLKHEAD(mp) >= ire_fp_mp_len); 6239 6240 dst = ipha->ipha_dst; 6241 src = ipha->ipha_src; 6242 6243 ill = ire_to_ill(ire); 6244 ASSERT(ill != NULL); 6245 6246 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 6247 6248 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 6249 #ifndef _BIG_ENDIAN 6250 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 6251 #endif 6252 6253 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 6254 ASSERT(ill->ill_hcksum_capab != NULL); 6255 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 6256 } else { 6257 hcksum_txflags = 0; 6258 } 6259 6260 /* pseudo-header checksum (do it in parts for IP header checksum) */ 6261 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 6262 6263 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 6264 up = IPH_UDPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 6265 if (*up != 0) { 6266 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, 6267 mp, ipha, up, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 6268 ntohs(ipha->ipha_length), cksum); 6269 6270 /* Software checksum? */ 6271 if (DB_CKSUMFLAGS(mp) == 0) { 6272 UDP_STAT(us, udp_out_sw_cksum); 6273 UDP_STAT_UPDATE(us, udp_out_sw_cksum_bytes, 6274 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 6275 } 6276 } 6277 6278 if (!CLASSD(dst)) { 6279 ipha->ipha_fragment_offset_and_flags |= 6280 (uint32_t)htons(ire->ire_frag_flag); 6281 } 6282 6283 /* Calculate IP header checksum if hardware isn't capable */ 6284 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 6285 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 6286 ((uint16_t *)ipha)[4]); 6287 } 6288 6289 if (CLASSD(dst)) { 6290 ilm_t *ilm; 6291 6292 ILM_WALKER_HOLD(ill); 6293 ilm = ilm_lookup_ill(ill, dst, ALL_ZONES); 6294 ILM_WALKER_RELE(ill); 6295 if (ilm != NULL) { 6296 ip_multicast_loopback(q, ill, mp, 6297 connp->conn_multicast_loop ? 0 : 6298 IP_FF_NO_MCAST_LOOP, zoneid); 6299 } 6300 6301 /* If multicast TTL is 0 then we are done */ 6302 if (ipha->ipha_ttl == 0) { 6303 freemsg(mp); 6304 ire_refrele(ire); 6305 return; 6306 } 6307 } 6308 6309 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 6310 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 6311 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 6312 6313 UPDATE_OB_PKT_COUNT(ire); 6314 ire->ire_last_used_time = lbolt; 6315 6316 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 6317 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 6318 ntohs(ipha->ipha_length)); 6319 6320 if (ILL_DLS_CAPABLE(ill)) { 6321 /* 6322 * Send the packet directly to DLD, where it may be queued 6323 * depending on the availability of transmit resources at 6324 * the media layer. 6325 */ 6326 IP_DLS_ILL_TX(ill, ipha, mp, ipst); 6327 } else { 6328 DTRACE_PROBE4(ip4__physical__out__start, 6329 ill_t *, NULL, ill_t *, ill, 6330 ipha_t *, ipha, mblk_t *, mp); 6331 FW_HOOKS(ipst->ips_ip4_physical_out_event, 6332 ipst->ips_ipv4firewall_physical_out, 6333 NULL, ill, ipha, mp, mp, ipst); 6334 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 6335 if (mp != NULL) 6336 putnext(ire->ire_stq, mp); 6337 } 6338 6339 IRE_REFRELE(ire); 6340 } 6341 6342 static boolean_t 6343 udp_update_label_v6(queue_t *wq, mblk_t *mp, in6_addr_t *dst) 6344 { 6345 udp_t *udp = Q_TO_UDP(wq); 6346 int err; 6347 uchar_t opt_storage[TSOL_MAX_IPV6_OPTION]; 6348 udp_stack_t *us = udp->udp_us; 6349 6350 err = tsol_compute_label_v6(DB_CREDDEF(mp, udp->udp_connp->conn_cred), 6351 dst, opt_storage, udp->udp_mac_exempt, 6352 us->us_netstack->netstack_ip); 6353 if (err == 0) { 6354 err = tsol_update_sticky(&udp->udp_sticky_ipp, 6355 &udp->udp_label_len_v6, opt_storage); 6356 } 6357 if (err != 0) { 6358 DTRACE_PROBE4( 6359 tx__ip__log__drop__updatelabel__udp6, 6360 char *, "queue(1) failed to update options(2) on mp(3)", 6361 queue_t *, wq, char *, opt_storage, mblk_t *, mp); 6362 } else { 6363 udp->udp_v6lastdst = *dst; 6364 } 6365 return (err); 6366 } 6367 6368 void 6369 udp_output_connected(void *arg, mblk_t *mp) 6370 { 6371 conn_t *connp = (conn_t *)arg; 6372 udp_t *udp = connp->conn_udp; 6373 udp_stack_t *us = udp->udp_us; 6374 ipaddr_t v4dst; 6375 in_port_t dstport; 6376 boolean_t mapped_addr; 6377 struct sockaddr_storage ss; 6378 sin_t *sin; 6379 sin6_t *sin6; 6380 struct sockaddr *addr; 6381 socklen_t addrlen; 6382 int error; 6383 boolean_t insert_spi = udp->udp_nat_t_endpoint; 6384 6385 /* M_DATA for connected socket */ 6386 6387 ASSERT(udp->udp_issocket); 6388 UDP_DBGSTAT(us, udp_data_conn); 6389 6390 mutex_enter(&connp->conn_lock); 6391 if (udp->udp_state != TS_DATA_XFER) { 6392 mutex_exit(&connp->conn_lock); 6393 BUMP_MIB(&us->us_udp_mib, udpOutErrors); 6394 UDP_STAT(us, udp_out_err_notconn); 6395 freemsg(mp); 6396 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6397 "udp_wput_end: connp %p (%S)", connp, 6398 "not-connected; address required"); 6399 return; 6400 } 6401 6402 mapped_addr = IN6_IS_ADDR_V4MAPPED(&udp->udp_v6dst); 6403 if (mapped_addr) 6404 IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6dst, v4dst); 6405 6406 /* Initialize addr and addrlen as if they're passed in */ 6407 if (udp->udp_family == AF_INET) { 6408 sin = (sin_t *)&ss; 6409 sin->sin_family = AF_INET; 6410 dstport = sin->sin_port = udp->udp_dstport; 6411 ASSERT(mapped_addr); 6412 sin->sin_addr.s_addr = v4dst; 6413 addr = (struct sockaddr *)sin; 6414 addrlen = sizeof (*sin); 6415 } else { 6416 sin6 = (sin6_t *)&ss; 6417 sin6->sin6_family = AF_INET6; 6418 dstport = sin6->sin6_port = udp->udp_dstport; 6419 sin6->sin6_flowinfo = udp->udp_flowinfo; 6420 sin6->sin6_addr = udp->udp_v6dst; 6421 sin6->sin6_scope_id = 0; 6422 sin6->__sin6_src_id = 0; 6423 addr = (struct sockaddr *)sin6; 6424 addrlen = sizeof (*sin6); 6425 } 6426 mutex_exit(&connp->conn_lock); 6427 6428 if (mapped_addr) { 6429 /* 6430 * Handle both AF_INET and AF_INET6; the latter 6431 * for IPV4 mapped destination addresses. Note 6432 * here that both addr and addrlen point to the 6433 * corresponding struct depending on the address 6434 * family of the socket. 6435 */ 6436 mp = udp_output_v4(connp, mp, v4dst, dstport, 0, &error, 6437 insert_spi); 6438 } else { 6439 mp = udp_output_v6(connp, mp, sin6, &error); 6440 } 6441 if (error == 0) { 6442 ASSERT(mp == NULL); 6443 return; 6444 } 6445 6446 UDP_STAT(us, udp_out_err_output); 6447 ASSERT(mp != NULL); 6448 /* mp is freed by the following routine */ 6449 udp_ud_err(connp->conn_wq, mp, (uchar_t *)addr, (t_scalar_t)addrlen, 6450 (t_scalar_t)error); 6451 } 6452 6453 /* 6454 * This routine handles all messages passed downstream. It either 6455 * consumes the message or passes it downstream; it never queues a 6456 * a message. 6457 * 6458 * Also entry point for sockfs when udp is in "direct sockfs" mode. This mode 6459 * is valid when we are directly beneath the stream head, and thus sockfs 6460 * is able to bypass STREAMS and directly call us, passing along the sockaddr 6461 * structure without the cumbersome T_UNITDATA_REQ interface for the case of 6462 * connected endpoints. 6463 */ 6464 void 6465 udp_wput(queue_t *q, mblk_t *mp) 6466 { 6467 sin6_t *sin6; 6468 sin_t *sin; 6469 ipaddr_t v4dst; 6470 uint16_t port; 6471 uint_t srcid; 6472 conn_t *connp = Q_TO_CONN(q); 6473 udp_t *udp = connp->conn_udp; 6474 int error = 0; 6475 struct sockaddr *addr; 6476 socklen_t addrlen; 6477 udp_stack_t *us = udp->udp_us; 6478 boolean_t insert_spi = udp->udp_nat_t_endpoint; 6479 6480 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_START, 6481 "udp_wput_start: queue %p mp %p", q, mp); 6482 6483 /* 6484 * We directly handle several cases here: T_UNITDATA_REQ message 6485 * coming down as M_PROTO/M_PCPROTO and M_DATA messages for connected 6486 * socket. 6487 */ 6488 switch (DB_TYPE(mp)) { 6489 case M_DATA: 6490 /* 6491 * Quick check for error cases. Checks will be done again 6492 * under the lock later on 6493 */ 6494 if (!udp->udp_direct_sockfs || udp->udp_state != TS_DATA_XFER) { 6495 /* Not connected; address is required */ 6496 BUMP_MIB(&us->us_udp_mib, udpOutErrors); 6497 UDP_STAT(us, udp_out_err_notconn); 6498 freemsg(mp); 6499 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6500 "udp_wput_end: connp %p (%S)", connp, 6501 "not-connected; address required"); 6502 return; 6503 } 6504 udp_output_connected(connp, mp); 6505 return; 6506 6507 case M_PROTO: 6508 case M_PCPROTO: { 6509 struct T_unitdata_req *tudr; 6510 6511 ASSERT((uintptr_t)MBLKL(mp) <= (uintptr_t)INT_MAX); 6512 tudr = (struct T_unitdata_req *)mp->b_rptr; 6513 6514 /* Handle valid T_UNITDATA_REQ here */ 6515 if (MBLKL(mp) >= sizeof (*tudr) && 6516 ((t_primp_t)mp->b_rptr)->type == T_UNITDATA_REQ) { 6517 if (mp->b_cont == NULL) { 6518 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6519 "udp_wput_end: q %p (%S)", q, "badaddr"); 6520 error = EPROTO; 6521 goto ud_error; 6522 } 6523 6524 if (!MBLKIN(mp, 0, tudr->DEST_offset + 6525 tudr->DEST_length)) { 6526 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6527 "udp_wput_end: q %p (%S)", q, "badaddr"); 6528 error = EADDRNOTAVAIL; 6529 goto ud_error; 6530 } 6531 /* 6532 * If a port has not been bound to the stream, fail. 6533 * This is not a problem when sockfs is directly 6534 * above us, because it will ensure that the socket 6535 * is first bound before allowing data to be sent. 6536 */ 6537 if (udp->udp_state == TS_UNBND) { 6538 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6539 "udp_wput_end: q %p (%S)", q, "outstate"); 6540 error = EPROTO; 6541 goto ud_error; 6542 } 6543 addr = (struct sockaddr *) 6544 &mp->b_rptr[tudr->DEST_offset]; 6545 addrlen = tudr->DEST_length; 6546 if (tudr->OPT_length != 0) 6547 UDP_STAT(us, udp_out_opt); 6548 break; 6549 } 6550 /* FALLTHRU */ 6551 } 6552 default: 6553 udp_wput_other(q, mp); 6554 return; 6555 } 6556 ASSERT(addr != NULL); 6557 6558 switch (udp->udp_family) { 6559 case AF_INET6: 6560 sin6 = (sin6_t *)addr; 6561 if (!OK_32PTR((char *)sin6) || (addrlen != sizeof (sin6_t)) || 6562 (sin6->sin6_family != AF_INET6)) { 6563 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6564 "udp_wput_end: q %p (%S)", q, "badaddr"); 6565 error = EADDRNOTAVAIL; 6566 goto ud_error; 6567 } 6568 6569 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6570 /* 6571 * Destination is a non-IPv4-compatible IPv6 address. 6572 * Send out an IPv6 format packet. 6573 */ 6574 mp = udp_output_v6(connp, mp, sin6, &error); 6575 if (error != 0) 6576 goto ud_error; 6577 6578 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6579 "udp_wput_end: q %p (%S)", q, "udp_output_v6"); 6580 return; 6581 } 6582 /* 6583 * If the local address is not zero or a mapped address 6584 * return an error. It would be possible to send an IPv4 6585 * packet but the response would never make it back to the 6586 * application since it is bound to a non-mapped address. 6587 */ 6588 if (!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src) && 6589 !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { 6590 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6591 "udp_wput_end: q %p (%S)", q, "badaddr"); 6592 error = EADDRNOTAVAIL; 6593 goto ud_error; 6594 } 6595 /* Send IPv4 packet without modifying udp_ipversion */ 6596 /* Extract port and ipaddr */ 6597 port = sin6->sin6_port; 6598 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, v4dst); 6599 srcid = sin6->__sin6_src_id; 6600 break; 6601 6602 case AF_INET: 6603 sin = (sin_t *)addr; 6604 if ((!OK_32PTR((char *)sin) || addrlen != sizeof (sin_t)) || 6605 (sin->sin_family != AF_INET)) { 6606 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6607 "udp_wput_end: q %p (%S)", q, "badaddr"); 6608 error = EADDRNOTAVAIL; 6609 goto ud_error; 6610 } 6611 /* Extract port and ipaddr */ 6612 port = sin->sin_port; 6613 v4dst = sin->sin_addr.s_addr; 6614 srcid = 0; 6615 break; 6616 } 6617 6618 mp = udp_output_v4(connp, mp, v4dst, port, srcid, &error, insert_spi); 6619 if (error != 0) { 6620 ud_error: 6621 UDP_STAT(us, udp_out_err_output); 6622 ASSERT(mp != NULL); 6623 /* mp is freed by the following routine */ 6624 udp_ud_err(q, mp, (uchar_t *)addr, (t_scalar_t)addrlen, 6625 (t_scalar_t)error); 6626 } 6627 } 6628 6629 /* 6630 * udp_output_v6(): 6631 * Assumes that udp_wput did some sanity checking on the destination 6632 * address. 6633 */ 6634 static mblk_t * 6635 udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6, int *error) 6636 { 6637 ip6_t *ip6h; 6638 ip6i_t *ip6i; /* mp1->b_rptr even if no ip6i_t */ 6639 mblk_t *mp1 = mp; 6640 mblk_t *mp2; 6641 int udp_ip_hdr_len = IPV6_HDR_LEN + UDPH_SIZE; 6642 size_t ip_len; 6643 udpha_t *udph; 6644 udp_t *udp = connp->conn_udp; 6645 queue_t *q = connp->conn_wq; 6646 ip6_pkt_t ipp_s; /* For ancillary data options */ 6647 ip6_pkt_t *ipp = &ipp_s; 6648 ip6_pkt_t *tipp; /* temporary ipp */ 6649 uint32_t csum = 0; 6650 uint_t ignore = 0; 6651 uint_t option_exists = 0, is_sticky = 0; 6652 uint8_t *cp; 6653 uint8_t *nxthdr_ptr; 6654 in6_addr_t ip6_dst; 6655 udpattrs_t attrs; 6656 boolean_t opt_present; 6657 ip6_hbh_t *hopoptsptr = NULL; 6658 uint_t hopoptslen = 0; 6659 boolean_t is_ancillary = B_FALSE; 6660 udp_stack_t *us = udp->udp_us; 6661 size_t sth_wroff = 0; 6662 6663 *error = 0; 6664 6665 /* 6666 * If the local address is a mapped address return 6667 * an error. 6668 * It would be possible to send an IPv6 packet but the 6669 * response would never make it back to the application 6670 * since it is bound to a mapped address. 6671 */ 6672 if (IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src)) { 6673 *error = EADDRNOTAVAIL; 6674 goto done; 6675 } 6676 6677 ipp->ipp_fields = 0; 6678 ipp->ipp_sticky_ignored = 0; 6679 6680 /* 6681 * If TPI options passed in, feed it for verification and handling 6682 */ 6683 attrs.udpattr_credset = B_FALSE; 6684 opt_present = B_FALSE; 6685 if (DB_TYPE(mp) != M_DATA) { 6686 mp1 = mp->b_cont; 6687 if (((struct T_unitdata_req *)mp->b_rptr)->OPT_length != 0) { 6688 attrs.udpattr_ipp6 = ipp; 6689 attrs.udpattr_mb = mp; 6690 if (udp_unitdata_opt_process(q, mp, error, 6691 &attrs) < 0) { 6692 goto done; 6693 } 6694 ASSERT(*error == 0); 6695 opt_present = B_TRUE; 6696 } 6697 } 6698 rw_enter(&udp->udp_rwlock, RW_READER); 6699 ignore = ipp->ipp_sticky_ignored; 6700 6701 /* mp1 points to the M_DATA mblk carrying the packet */ 6702 ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA); 6703 6704 if (sin6->sin6_scope_id != 0 && 6705 IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { 6706 /* 6707 * IPPF_SCOPE_ID is special. It's neither a sticky 6708 * option nor ancillary data. It needs to be 6709 * explicitly set in options_exists. 6710 */ 6711 option_exists |= IPPF_SCOPE_ID; 6712 } 6713 6714 /* 6715 * Compute the destination address 6716 */ 6717 ip6_dst = sin6->sin6_addr; 6718 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) 6719 ip6_dst = ipv6_loopback; 6720 6721 /* 6722 * If we're not going to the same destination as last time, then 6723 * recompute the label required. This is done in a separate routine to 6724 * avoid blowing up our stack here. 6725 * 6726 * TSOL Note: Since we are not in WRITER mode, UDP packets 6727 * to different destination may require different labels, 6728 * or worse, UDP packets to same IP address may require 6729 * different labels due to use of shared all-zones address. 6730 * We use conn_lock to ensure that lastdst, sticky ipp_hopopts, 6731 * and sticky ipp_hopoptslen are consistent for the current 6732 * destination and are updated atomically. 6733 */ 6734 mutex_enter(&connp->conn_lock); 6735 if (is_system_labeled()) { 6736 /* Using UDP MLP requires SCM_UCRED from user */ 6737 if (connp->conn_mlp_type != mlptSingle && 6738 !attrs.udpattr_credset) { 6739 DTRACE_PROBE4( 6740 tx__ip__log__info__output__udp6, 6741 char *, "MLP mp(1) lacks SCM_UCRED attr(2) on q(3)", 6742 mblk_t *, mp1, udpattrs_t *, &attrs, queue_t *, q); 6743 *error = ECONNREFUSED; 6744 rw_exit(&udp->udp_rwlock); 6745 mutex_exit(&connp->conn_lock); 6746 goto done; 6747 } 6748 /* 6749 * update label option for this UDP socket if 6750 * - the destination has changed, or 6751 * - the UDP socket is MLP 6752 */ 6753 if ((opt_present || 6754 !IN6_ARE_ADDR_EQUAL(&udp->udp_v6lastdst, &ip6_dst) || 6755 connp->conn_mlp_type != mlptSingle) && 6756 (*error = udp_update_label_v6(q, mp, &ip6_dst)) != 0) { 6757 rw_exit(&udp->udp_rwlock); 6758 mutex_exit(&connp->conn_lock); 6759 goto done; 6760 } 6761 } 6762 6763 /* 6764 * If there's a security label here, then we ignore any options the 6765 * user may try to set. We keep the peer's label as a hidden sticky 6766 * option. We make a private copy of this label before releasing the 6767 * lock so that label is kept consistent with the destination addr. 6768 */ 6769 if (udp->udp_label_len_v6 > 0) { 6770 ignore &= ~IPPF_HOPOPTS; 6771 ipp->ipp_fields &= ~IPPF_HOPOPTS; 6772 } 6773 6774 if ((udp->udp_sticky_ipp.ipp_fields == 0) && (ipp->ipp_fields == 0)) { 6775 /* No sticky options nor ancillary data. */ 6776 mutex_exit(&connp->conn_lock); 6777 goto no_options; 6778 } 6779 6780 /* 6781 * Go through the options figuring out where each is going to 6782 * come from and build two masks. The first mask indicates if 6783 * the option exists at all. The second mask indicates if the 6784 * option is sticky or ancillary. 6785 */ 6786 if (!(ignore & IPPF_HOPOPTS)) { 6787 if (ipp->ipp_fields & IPPF_HOPOPTS) { 6788 option_exists |= IPPF_HOPOPTS; 6789 udp_ip_hdr_len += ipp->ipp_hopoptslen; 6790 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_HOPOPTS) { 6791 option_exists |= IPPF_HOPOPTS; 6792 is_sticky |= IPPF_HOPOPTS; 6793 ASSERT(udp->udp_sticky_ipp.ipp_hopoptslen != 0); 6794 hopoptsptr = kmem_alloc( 6795 udp->udp_sticky_ipp.ipp_hopoptslen, KM_NOSLEEP); 6796 if (hopoptsptr == NULL) { 6797 *error = ENOMEM; 6798 mutex_exit(&connp->conn_lock); 6799 goto done; 6800 } 6801 hopoptslen = udp->udp_sticky_ipp.ipp_hopoptslen; 6802 bcopy(udp->udp_sticky_ipp.ipp_hopopts, hopoptsptr, 6803 hopoptslen); 6804 udp_ip_hdr_len += hopoptslen; 6805 } 6806 } 6807 mutex_exit(&connp->conn_lock); 6808 6809 if (!(ignore & IPPF_RTHDR)) { 6810 if (ipp->ipp_fields & IPPF_RTHDR) { 6811 option_exists |= IPPF_RTHDR; 6812 udp_ip_hdr_len += ipp->ipp_rthdrlen; 6813 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTHDR) { 6814 option_exists |= IPPF_RTHDR; 6815 is_sticky |= IPPF_RTHDR; 6816 udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rthdrlen; 6817 } 6818 } 6819 6820 if (!(ignore & IPPF_RTDSTOPTS) && (option_exists & IPPF_RTHDR)) { 6821 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 6822 option_exists |= IPPF_RTDSTOPTS; 6823 udp_ip_hdr_len += ipp->ipp_rtdstoptslen; 6824 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTDSTOPTS) { 6825 option_exists |= IPPF_RTDSTOPTS; 6826 is_sticky |= IPPF_RTDSTOPTS; 6827 udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rtdstoptslen; 6828 } 6829 } 6830 6831 if (!(ignore & IPPF_DSTOPTS)) { 6832 if (ipp->ipp_fields & IPPF_DSTOPTS) { 6833 option_exists |= IPPF_DSTOPTS; 6834 udp_ip_hdr_len += ipp->ipp_dstoptslen; 6835 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DSTOPTS) { 6836 option_exists |= IPPF_DSTOPTS; 6837 is_sticky |= IPPF_DSTOPTS; 6838 udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_dstoptslen; 6839 } 6840 } 6841 6842 if (!(ignore & IPPF_IFINDEX)) { 6843 if (ipp->ipp_fields & IPPF_IFINDEX) { 6844 option_exists |= IPPF_IFINDEX; 6845 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_IFINDEX) { 6846 option_exists |= IPPF_IFINDEX; 6847 is_sticky |= IPPF_IFINDEX; 6848 } 6849 } 6850 6851 if (!(ignore & IPPF_ADDR)) { 6852 if (ipp->ipp_fields & IPPF_ADDR) { 6853 option_exists |= IPPF_ADDR; 6854 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_ADDR) { 6855 option_exists |= IPPF_ADDR; 6856 is_sticky |= IPPF_ADDR; 6857 } 6858 } 6859 6860 if (!(ignore & IPPF_DONTFRAG)) { 6861 if (ipp->ipp_fields & IPPF_DONTFRAG) { 6862 option_exists |= IPPF_DONTFRAG; 6863 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DONTFRAG) { 6864 option_exists |= IPPF_DONTFRAG; 6865 is_sticky |= IPPF_DONTFRAG; 6866 } 6867 } 6868 6869 if (!(ignore & IPPF_USE_MIN_MTU)) { 6870 if (ipp->ipp_fields & IPPF_USE_MIN_MTU) { 6871 option_exists |= IPPF_USE_MIN_MTU; 6872 } else if (udp->udp_sticky_ipp.ipp_fields & 6873 IPPF_USE_MIN_MTU) { 6874 option_exists |= IPPF_USE_MIN_MTU; 6875 is_sticky |= IPPF_USE_MIN_MTU; 6876 } 6877 } 6878 6879 if (!(ignore & IPPF_HOPLIMIT) && (ipp->ipp_fields & IPPF_HOPLIMIT)) 6880 option_exists |= IPPF_HOPLIMIT; 6881 /* IPV6_HOPLIMIT can never be sticky */ 6882 ASSERT(!(udp->udp_sticky_ipp.ipp_fields & IPPF_HOPLIMIT)); 6883 6884 if (!(ignore & IPPF_UNICAST_HOPS) && 6885 (udp->udp_sticky_ipp.ipp_fields & IPPF_UNICAST_HOPS)) { 6886 option_exists |= IPPF_UNICAST_HOPS; 6887 is_sticky |= IPPF_UNICAST_HOPS; 6888 } 6889 6890 if (!(ignore & IPPF_MULTICAST_HOPS) && 6891 (udp->udp_sticky_ipp.ipp_fields & IPPF_MULTICAST_HOPS)) { 6892 option_exists |= IPPF_MULTICAST_HOPS; 6893 is_sticky |= IPPF_MULTICAST_HOPS; 6894 } 6895 6896 if (!(ignore & IPPF_TCLASS)) { 6897 if (ipp->ipp_fields & IPPF_TCLASS) { 6898 option_exists |= IPPF_TCLASS; 6899 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_TCLASS) { 6900 option_exists |= IPPF_TCLASS; 6901 is_sticky |= IPPF_TCLASS; 6902 } 6903 } 6904 6905 if (!(ignore & IPPF_NEXTHOP) && 6906 (udp->udp_sticky_ipp.ipp_fields & IPPF_NEXTHOP)) { 6907 option_exists |= IPPF_NEXTHOP; 6908 is_sticky |= IPPF_NEXTHOP; 6909 } 6910 6911 no_options: 6912 6913 /* 6914 * If any options carried in the ip6i_t were specified, we 6915 * need to account for the ip6i_t in the data we'll be sending 6916 * down. 6917 */ 6918 if (option_exists & IPPF_HAS_IP6I) 6919 udp_ip_hdr_len += sizeof (ip6i_t); 6920 6921 /* check/fix buffer config, setup pointers into it */ 6922 ip6h = (ip6_t *)&mp1->b_rptr[-udp_ip_hdr_len]; 6923 if (DB_REF(mp1) != 1 || ((unsigned char *)ip6h < DB_BASE(mp1)) || 6924 !OK_32PTR(ip6h)) { 6925 6926 /* Try to get everything in a single mblk next time */ 6927 if (udp_ip_hdr_len > udp->udp_max_hdr_len) { 6928 udp->udp_max_hdr_len = udp_ip_hdr_len; 6929 sth_wroff = udp->udp_max_hdr_len + us->us_wroff_extra; 6930 } 6931 6932 mp2 = allocb(udp_ip_hdr_len + us->us_wroff_extra, BPRI_LO); 6933 if (mp2 == NULL) { 6934 *error = ENOMEM; 6935 rw_exit(&udp->udp_rwlock); 6936 goto done; 6937 } 6938 mp2->b_wptr = DB_LIM(mp2); 6939 mp2->b_cont = mp1; 6940 mp1 = mp2; 6941 if (DB_TYPE(mp) != M_DATA) 6942 mp->b_cont = mp1; 6943 else 6944 mp = mp1; 6945 6946 ip6h = (ip6_t *)(mp1->b_wptr - udp_ip_hdr_len); 6947 } 6948 mp1->b_rptr = (unsigned char *)ip6h; 6949 ip6i = (ip6i_t *)ip6h; 6950 6951 #define ANCIL_OR_STICKY_PTR(f) ((is_sticky & f) ? &udp->udp_sticky_ipp : ipp) 6952 if (option_exists & IPPF_HAS_IP6I) { 6953 ip6h = (ip6_t *)&ip6i[1]; 6954 ip6i->ip6i_flags = 0; 6955 ip6i->ip6i_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 6956 6957 /* sin6_scope_id takes precendence over IPPF_IFINDEX */ 6958 if (option_exists & IPPF_SCOPE_ID) { 6959 ip6i->ip6i_flags |= IP6I_IFINDEX; 6960 ip6i->ip6i_ifindex = sin6->sin6_scope_id; 6961 } else if (option_exists & IPPF_IFINDEX) { 6962 tipp = ANCIL_OR_STICKY_PTR(IPPF_IFINDEX); 6963 ASSERT(tipp->ipp_ifindex != 0); 6964 ip6i->ip6i_flags |= IP6I_IFINDEX; 6965 ip6i->ip6i_ifindex = tipp->ipp_ifindex; 6966 } 6967 6968 if (option_exists & IPPF_ADDR) { 6969 /* 6970 * Enable per-packet source address verification if 6971 * IPV6_PKTINFO specified the source address. 6972 * ip6_src is set in the transport's _wput function. 6973 */ 6974 ip6i->ip6i_flags |= IP6I_VERIFY_SRC; 6975 } 6976 6977 if (option_exists & IPPF_DONTFRAG) { 6978 ip6i->ip6i_flags |= IP6I_DONTFRAG; 6979 } 6980 6981 if (option_exists & IPPF_USE_MIN_MTU) { 6982 ip6i->ip6i_flags = IP6I_API_USE_MIN_MTU( 6983 ip6i->ip6i_flags, ipp->ipp_use_min_mtu); 6984 } 6985 6986 if (option_exists & IPPF_NEXTHOP) { 6987 tipp = ANCIL_OR_STICKY_PTR(IPPF_NEXTHOP); 6988 ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_nexthop)); 6989 ip6i->ip6i_flags |= IP6I_NEXTHOP; 6990 ip6i->ip6i_nexthop = tipp->ipp_nexthop; 6991 } 6992 6993 /* 6994 * tell IP this is an ip6i_t private header 6995 */ 6996 ip6i->ip6i_nxt = IPPROTO_RAW; 6997 } 6998 6999 /* Initialize IPv6 header */ 7000 ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 7001 bzero(&ip6h->ip6_src, sizeof (ip6h->ip6_src)); 7002 7003 /* Set the hoplimit of the outgoing packet. */ 7004 if (option_exists & IPPF_HOPLIMIT) { 7005 /* IPV6_HOPLIMIT ancillary data overrides all other settings. */ 7006 ip6h->ip6_hops = ipp->ipp_hoplimit; 7007 ip6i->ip6i_flags |= IP6I_HOPLIMIT; 7008 } else if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) { 7009 ip6h->ip6_hops = udp->udp_multicast_ttl; 7010 if (option_exists & IPPF_MULTICAST_HOPS) 7011 ip6i->ip6i_flags |= IP6I_HOPLIMIT; 7012 } else { 7013 ip6h->ip6_hops = udp->udp_ttl; 7014 if (option_exists & IPPF_UNICAST_HOPS) 7015 ip6i->ip6i_flags |= IP6I_HOPLIMIT; 7016 } 7017 7018 if (option_exists & IPPF_ADDR) { 7019 tipp = ANCIL_OR_STICKY_PTR(IPPF_ADDR); 7020 ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_addr)); 7021 ip6h->ip6_src = tipp->ipp_addr; 7022 } else { 7023 /* 7024 * The source address was not set using IPV6_PKTINFO. 7025 * First look at the bound source. 7026 * If unspecified fallback to __sin6_src_id. 7027 */ 7028 ip6h->ip6_src = udp->udp_v6src; 7029 if (sin6->__sin6_src_id != 0 && 7030 IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src)) { 7031 ip_srcid_find_id(sin6->__sin6_src_id, 7032 &ip6h->ip6_src, connp->conn_zoneid, 7033 us->us_netstack); 7034 } 7035 } 7036 7037 nxthdr_ptr = (uint8_t *)&ip6h->ip6_nxt; 7038 cp = (uint8_t *)&ip6h[1]; 7039 7040 /* 7041 * Here's where we have to start stringing together 7042 * any extension headers in the right order: 7043 * Hop-by-hop, destination, routing, and final destination opts. 7044 */ 7045 if (option_exists & IPPF_HOPOPTS) { 7046 /* Hop-by-hop options */ 7047 ip6_hbh_t *hbh = (ip6_hbh_t *)cp; 7048 tipp = ANCIL_OR_STICKY_PTR(IPPF_HOPOPTS); 7049 if (hopoptslen == 0) { 7050 hopoptsptr = tipp->ipp_hopopts; 7051 hopoptslen = tipp->ipp_hopoptslen; 7052 is_ancillary = B_TRUE; 7053 } 7054 7055 *nxthdr_ptr = IPPROTO_HOPOPTS; 7056 nxthdr_ptr = &hbh->ip6h_nxt; 7057 7058 bcopy(hopoptsptr, cp, hopoptslen); 7059 cp += hopoptslen; 7060 7061 if (hopoptsptr != NULL && !is_ancillary) { 7062 kmem_free(hopoptsptr, hopoptslen); 7063 hopoptsptr = NULL; 7064 hopoptslen = 0; 7065 } 7066 } 7067 /* 7068 * En-route destination options 7069 * Only do them if there's a routing header as well 7070 */ 7071 if (option_exists & IPPF_RTDSTOPTS) { 7072 ip6_dest_t *dst = (ip6_dest_t *)cp; 7073 tipp = ANCIL_OR_STICKY_PTR(IPPF_RTDSTOPTS); 7074 7075 *nxthdr_ptr = IPPROTO_DSTOPTS; 7076 nxthdr_ptr = &dst->ip6d_nxt; 7077 7078 bcopy(tipp->ipp_rtdstopts, cp, tipp->ipp_rtdstoptslen); 7079 cp += tipp->ipp_rtdstoptslen; 7080 } 7081 /* 7082 * Routing header next 7083 */ 7084 if (option_exists & IPPF_RTHDR) { 7085 ip6_rthdr_t *rt = (ip6_rthdr_t *)cp; 7086 tipp = ANCIL_OR_STICKY_PTR(IPPF_RTHDR); 7087 7088 *nxthdr_ptr = IPPROTO_ROUTING; 7089 nxthdr_ptr = &rt->ip6r_nxt; 7090 7091 bcopy(tipp->ipp_rthdr, cp, tipp->ipp_rthdrlen); 7092 cp += tipp->ipp_rthdrlen; 7093 } 7094 /* 7095 * Do ultimate destination options 7096 */ 7097 if (option_exists & IPPF_DSTOPTS) { 7098 ip6_dest_t *dest = (ip6_dest_t *)cp; 7099 tipp = ANCIL_OR_STICKY_PTR(IPPF_DSTOPTS); 7100 7101 *nxthdr_ptr = IPPROTO_DSTOPTS; 7102 nxthdr_ptr = &dest->ip6d_nxt; 7103 7104 bcopy(tipp->ipp_dstopts, cp, tipp->ipp_dstoptslen); 7105 cp += tipp->ipp_dstoptslen; 7106 } 7107 /* 7108 * Now set the last header pointer to the proto passed in 7109 */ 7110 ASSERT((int)(cp - (uint8_t *)ip6i) == (udp_ip_hdr_len - UDPH_SIZE)); 7111 *nxthdr_ptr = IPPROTO_UDP; 7112 7113 /* Update UDP header */ 7114 udph = (udpha_t *)((uchar_t *)ip6i + udp_ip_hdr_len - UDPH_SIZE); 7115 udph->uha_dst_port = sin6->sin6_port; 7116 udph->uha_src_port = udp->udp_port; 7117 7118 /* 7119 * Copy in the destination address 7120 */ 7121 ip6h->ip6_dst = ip6_dst; 7122 7123 ip6h->ip6_vcf = 7124 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 7125 (sin6->sin6_flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 7126 7127 if (option_exists & IPPF_TCLASS) { 7128 tipp = ANCIL_OR_STICKY_PTR(IPPF_TCLASS); 7129 ip6h->ip6_vcf = IPV6_TCLASS_FLOW(ip6h->ip6_vcf, 7130 tipp->ipp_tclass); 7131 } 7132 rw_exit(&udp->udp_rwlock); 7133 7134 if (option_exists & IPPF_RTHDR) { 7135 ip6_rthdr_t *rth; 7136 7137 /* 7138 * Perform any processing needed for source routing. 7139 * We know that all extension headers will be in the same mblk 7140 * as the IPv6 header. 7141 */ 7142 rth = ip_find_rthdr_v6(ip6h, mp1->b_wptr); 7143 if (rth != NULL && rth->ip6r_segleft != 0) { 7144 if (rth->ip6r_type != IPV6_RTHDR_TYPE_0) { 7145 /* 7146 * Drop packet - only support Type 0 routing. 7147 * Notify the application as well. 7148 */ 7149 *error = EPROTO; 7150 goto done; 7151 } 7152 7153 /* 7154 * rth->ip6r_len is twice the number of 7155 * addresses in the header. Thus it must be even. 7156 */ 7157 if (rth->ip6r_len & 0x1) { 7158 *error = EPROTO; 7159 goto done; 7160 } 7161 /* 7162 * Shuffle the routing header and ip6_dst 7163 * addresses, and get the checksum difference 7164 * between the first hop (in ip6_dst) and 7165 * the destination (in the last routing hdr entry). 7166 */ 7167 csum = ip_massage_options_v6(ip6h, rth, 7168 us->us_netstack); 7169 /* 7170 * Verify that the first hop isn't a mapped address. 7171 * Routers along the path need to do this verification 7172 * for subsequent hops. 7173 */ 7174 if (IN6_IS_ADDR_V4MAPPED(&ip6h->ip6_dst)) { 7175 *error = EADDRNOTAVAIL; 7176 goto done; 7177 } 7178 7179 cp += (rth->ip6r_len + 1)*8; 7180 } 7181 } 7182 7183 /* count up length of UDP packet */ 7184 ip_len = (mp1->b_wptr - (unsigned char *)ip6h) - IPV6_HDR_LEN; 7185 if ((mp2 = mp1->b_cont) != NULL) { 7186 do { 7187 ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX); 7188 ip_len += (uint32_t)MBLKL(mp2); 7189 } while ((mp2 = mp2->b_cont) != NULL); 7190 } 7191 7192 /* 7193 * If the size of the packet is greater than the maximum allowed by 7194 * ip, return an error. Passing this down could cause panics because 7195 * the size will have wrapped and be inconsistent with the msg size. 7196 */ 7197 if (ip_len > IP_MAXPACKET) { 7198 *error = EMSGSIZE; 7199 goto done; 7200 } 7201 7202 /* Store the UDP length. Subtract length of extension hdrs */ 7203 udph->uha_length = htons(ip_len + IPV6_HDR_LEN - 7204 (int)((uchar_t *)udph - (uchar_t *)ip6h)); 7205 7206 /* 7207 * We make it easy for IP to include our pseudo header 7208 * by putting our length in uh_checksum, modified (if 7209 * we have a routing header) by the checksum difference 7210 * between the ultimate destination and first hop addresses. 7211 * Note: UDP over IPv6 must always checksum the packet. 7212 */ 7213 csum += udph->uha_length; 7214 csum = (csum & 0xFFFF) + (csum >> 16); 7215 udph->uha_checksum = (uint16_t)csum; 7216 7217 #ifdef _LITTLE_ENDIAN 7218 ip_len = htons(ip_len); 7219 #endif 7220 ip6h->ip6_plen = ip_len; 7221 if (DB_CRED(mp) != NULL) 7222 mblk_setcred(mp1, DB_CRED(mp)); 7223 7224 if (DB_TYPE(mp) != M_DATA) { 7225 ASSERT(mp != mp1); 7226 freeb(mp); 7227 } 7228 7229 /* mp has been consumed and we'll return success */ 7230 ASSERT(*error == 0); 7231 mp = NULL; 7232 7233 /* We're done. Pass the packet to IP */ 7234 BUMP_MIB(&us->us_udp_mib, udpHCOutDatagrams); 7235 ip_output_v6(connp, mp1, q, IP_WPUT); 7236 7237 done: 7238 if (sth_wroff != 0) { 7239 (void) mi_set_sth_wroff(RD(q), 7240 udp->udp_max_hdr_len + us->us_wroff_extra); 7241 } 7242 if (hopoptsptr != NULL && !is_ancillary) { 7243 kmem_free(hopoptsptr, hopoptslen); 7244 hopoptsptr = NULL; 7245 } 7246 if (*error != 0) { 7247 ASSERT(mp != NULL); 7248 BUMP_MIB(&us->us_udp_mib, udpOutErrors); 7249 } 7250 return (mp); 7251 } 7252 7253 static void 7254 udp_wput_other(queue_t *q, mblk_t *mp) 7255 { 7256 uchar_t *rptr = mp->b_rptr; 7257 struct datab *db; 7258 struct iocblk *iocp; 7259 cred_t *cr; 7260 conn_t *connp = Q_TO_CONN(q); 7261 udp_t *udp = connp->conn_udp; 7262 udp_stack_t *us; 7263 7264 TRACE_1(TR_FAC_UDP, TR_UDP_WPUT_OTHER_START, 7265 "udp_wput_other_start: q %p", q); 7266 7267 us = udp->udp_us; 7268 db = mp->b_datap; 7269 7270 cr = DB_CREDDEF(mp, connp->conn_cred); 7271 7272 switch (db->db_type) { 7273 case M_PROTO: 7274 case M_PCPROTO: 7275 if (mp->b_wptr - rptr < sizeof (t_scalar_t)) { 7276 freemsg(mp); 7277 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7278 "udp_wput_other_end: q %p (%S)", q, "protoshort"); 7279 return; 7280 } 7281 switch (((t_primp_t)rptr)->type) { 7282 case T_ADDR_REQ: 7283 udp_addr_req(q, mp); 7284 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7285 "udp_wput_other_end: q %p (%S)", q, "addrreq"); 7286 return; 7287 case O_T_BIND_REQ: 7288 case T_BIND_REQ: 7289 udp_bind(q, mp); 7290 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7291 "udp_wput_other_end: q %p (%S)", q, "bindreq"); 7292 return; 7293 case T_CONN_REQ: 7294 udp_connect(q, mp); 7295 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7296 "udp_wput_other_end: q %p (%S)", q, "connreq"); 7297 return; 7298 case T_CAPABILITY_REQ: 7299 udp_capability_req(q, mp); 7300 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7301 "udp_wput_other_end: q %p (%S)", q, "capabreq"); 7302 return; 7303 case T_INFO_REQ: 7304 udp_info_req(q, mp); 7305 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7306 "udp_wput_other_end: q %p (%S)", q, "inforeq"); 7307 return; 7308 case T_UNITDATA_REQ: 7309 /* 7310 * If a T_UNITDATA_REQ gets here, the address must 7311 * be bad. Valid T_UNITDATA_REQs are handled 7312 * in udp_wput. 7313 */ 7314 udp_ud_err(q, mp, NULL, 0, EADDRNOTAVAIL); 7315 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7316 "udp_wput_other_end: q %p (%S)", q, "unitdatareq"); 7317 return; 7318 case T_UNBIND_REQ: 7319 udp_unbind(q, mp); 7320 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7321 "udp_wput_other_end: q %p (%S)", q, "unbindreq"); 7322 return; 7323 case T_SVR4_OPTMGMT_REQ: 7324 if (!snmpcom_req(q, mp, udp_snmp_set, ip_snmp_get, 7325 cr)) { 7326 (void) svr4_optcom_req(q, 7327 mp, cr, &udp_opt_obj, B_TRUE); 7328 } 7329 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7330 "udp_wput_other_end: q %p (%S)", q, "optmgmtreq"); 7331 return; 7332 7333 case T_OPTMGMT_REQ: 7334 (void) tpi_optcom_req(q, mp, cr, &udp_opt_obj, B_TRUE); 7335 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7336 "udp_wput_other_end: q %p (%S)", q, "optmgmtreq"); 7337 return; 7338 7339 case T_DISCON_REQ: 7340 udp_disconnect(q, mp); 7341 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7342 "udp_wput_other_end: q %p (%S)", q, "disconreq"); 7343 return; 7344 7345 /* The following TPI message is not supported by udp. */ 7346 case O_T_CONN_RES: 7347 case T_CONN_RES: 7348 udp_err_ack(q, mp, TNOTSUPPORT, 0); 7349 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7350 "udp_wput_other_end: q %p (%S)", q, 7351 "connres/disconreq"); 7352 return; 7353 7354 /* The following 3 TPI messages are illegal for udp. */ 7355 case T_DATA_REQ: 7356 case T_EXDATA_REQ: 7357 case T_ORDREL_REQ: 7358 udp_err_ack(q, mp, TNOTSUPPORT, 0); 7359 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7360 "udp_wput_other_end: q %p (%S)", q, 7361 "data/exdata/ordrel"); 7362 return; 7363 default: 7364 break; 7365 } 7366 break; 7367 case M_FLUSH: 7368 if (*rptr & FLUSHW) 7369 flushq(q, FLUSHDATA); 7370 break; 7371 case M_IOCTL: 7372 iocp = (struct iocblk *)mp->b_rptr; 7373 switch (iocp->ioc_cmd) { 7374 case TI_GETPEERNAME: 7375 if (udp->udp_state != TS_DATA_XFER) { 7376 /* 7377 * If a default destination address has not 7378 * been associated with the stream, then we 7379 * don't know the peer's name. 7380 */ 7381 iocp->ioc_error = ENOTCONN; 7382 iocp->ioc_count = 0; 7383 mp->b_datap->db_type = M_IOCACK; 7384 qreply(q, mp); 7385 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7386 "udp_wput_other_end: q %p (%S)", q, 7387 "getpeername"); 7388 return; 7389 } 7390 /* FALLTHRU */ 7391 case TI_GETMYNAME: { 7392 /* 7393 * For TI_GETPEERNAME and TI_GETMYNAME, we first 7394 * need to copyin the user's strbuf structure. 7395 * Processing will continue in the M_IOCDATA case 7396 * below. 7397 */ 7398 mi_copyin(q, mp, NULL, 7399 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 7400 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7401 "udp_wput_other_end: q %p (%S)", q, "getmyname"); 7402 return; 7403 } 7404 case ND_SET: 7405 /* nd_getset performs the necessary checking */ 7406 case ND_GET: 7407 if (nd_getset(q, us->us_nd, mp)) { 7408 qreply(q, mp); 7409 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7410 "udp_wput_other_end: q %p (%S)", q, "get"); 7411 return; 7412 } 7413 break; 7414 case _SIOCSOCKFALLBACK: 7415 /* 7416 * Either sockmod is about to be popped and the 7417 * socket would now be treated as a plain stream, 7418 * or a module is about to be pushed so we could 7419 * no longer use read-side synchronous stream. 7420 * Drain any queued data and disable direct sockfs 7421 * interface from now on. 7422 */ 7423 if (!udp->udp_issocket) { 7424 DB_TYPE(mp) = M_IOCNAK; 7425 iocp->ioc_error = EINVAL; 7426 } else { 7427 udp->udp_issocket = B_FALSE; 7428 if (udp->udp_direct_sockfs) { 7429 /* 7430 * Disable read-side synchronous 7431 * stream interface and drain any 7432 * queued data. 7433 */ 7434 udp_rcv_drain(RD(q), udp, 7435 B_FALSE); 7436 ASSERT(!udp->udp_direct_sockfs); 7437 UDP_STAT(us, udp_sock_fallback); 7438 } 7439 DB_TYPE(mp) = M_IOCACK; 7440 iocp->ioc_error = 0; 7441 } 7442 iocp->ioc_count = 0; 7443 iocp->ioc_rval = 0; 7444 qreply(q, mp); 7445 return; 7446 default: 7447 break; 7448 } 7449 break; 7450 case M_IOCDATA: 7451 udp_wput_iocdata(q, mp); 7452 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7453 "udp_wput_other_end: q %p (%S)", q, "iocdata"); 7454 return; 7455 default: 7456 /* Unrecognized messages are passed through without change. */ 7457 break; 7458 } 7459 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7460 "udp_wput_other_end: q %p (%S)", q, "end"); 7461 ip_output(connp, mp, q, IP_WPUT); 7462 } 7463 7464 /* 7465 * udp_wput_iocdata is called by udp_wput_other to handle all M_IOCDATA 7466 * messages. 7467 */ 7468 static void 7469 udp_wput_iocdata(queue_t *q, mblk_t *mp) 7470 { 7471 mblk_t *mp1; 7472 STRUCT_HANDLE(strbuf, sb); 7473 uint16_t port; 7474 in6_addr_t v6addr; 7475 ipaddr_t v4addr; 7476 uint32_t flowinfo = 0; 7477 int addrlen; 7478 udp_t *udp = Q_TO_UDP(q); 7479 7480 /* Make sure it is one of ours. */ 7481 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 7482 case TI_GETMYNAME: 7483 case TI_GETPEERNAME: 7484 break; 7485 default: 7486 ip_output(udp->udp_connp, mp, q, IP_WPUT); 7487 return; 7488 } 7489 7490 switch (mi_copy_state(q, mp, &mp1)) { 7491 case -1: 7492 return; 7493 case MI_COPY_CASE(MI_COPY_IN, 1): 7494 break; 7495 case MI_COPY_CASE(MI_COPY_OUT, 1): 7496 /* 7497 * The address has been copied out, so now 7498 * copyout the strbuf. 7499 */ 7500 mi_copyout(q, mp); 7501 return; 7502 case MI_COPY_CASE(MI_COPY_OUT, 2): 7503 /* 7504 * The address and strbuf have been copied out. 7505 * We're done, so just acknowledge the original 7506 * M_IOCTL. 7507 */ 7508 mi_copy_done(q, mp, 0); 7509 return; 7510 default: 7511 /* 7512 * Something strange has happened, so acknowledge 7513 * the original M_IOCTL with an EPROTO error. 7514 */ 7515 mi_copy_done(q, mp, EPROTO); 7516 return; 7517 } 7518 7519 /* 7520 * Now we have the strbuf structure for TI_GETMYNAME 7521 * and TI_GETPEERNAME. Next we copyout the requested 7522 * address and then we'll copyout the strbuf. 7523 */ 7524 STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag, 7525 (void *)mp1->b_rptr); 7526 if (udp->udp_family == AF_INET) 7527 addrlen = sizeof (sin_t); 7528 else 7529 addrlen = sizeof (sin6_t); 7530 7531 if (STRUCT_FGET(sb, maxlen) < addrlen) { 7532 mi_copy_done(q, mp, EINVAL); 7533 return; 7534 } 7535 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 7536 case TI_GETMYNAME: 7537 if (udp->udp_family == AF_INET) { 7538 ASSERT(udp->udp_ipversion == IPV4_VERSION); 7539 if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) && 7540 !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { 7541 v4addr = V4_PART_OF_V6(udp->udp_v6src); 7542 } else { 7543 /* 7544 * INADDR_ANY 7545 * udp_v6src is not set, we might be bound to 7546 * broadcast/multicast. Use udp_bound_v6src as 7547 * local address instead (that could 7548 * also still be INADDR_ANY) 7549 */ 7550 v4addr = V4_PART_OF_V6(udp->udp_bound_v6src); 7551 } 7552 } else { 7553 /* udp->udp_family == AF_INET6 */ 7554 if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { 7555 v6addr = udp->udp_v6src; 7556 } else { 7557 /* 7558 * UNSPECIFIED 7559 * udp_v6src is not set, we might be bound to 7560 * broadcast/multicast. Use udp_bound_v6src as 7561 * local address instead (that could 7562 * also still be UNSPECIFIED) 7563 */ 7564 v6addr = udp->udp_bound_v6src; 7565 } 7566 } 7567 port = udp->udp_port; 7568 break; 7569 case TI_GETPEERNAME: 7570 if (udp->udp_state != TS_DATA_XFER) { 7571 mi_copy_done(q, mp, ENOTCONN); 7572 return; 7573 } 7574 if (udp->udp_family == AF_INET) { 7575 ASSERT(udp->udp_ipversion == IPV4_VERSION); 7576 v4addr = V4_PART_OF_V6(udp->udp_v6dst); 7577 } else { 7578 /* udp->udp_family == AF_INET6) */ 7579 v6addr = udp->udp_v6dst; 7580 flowinfo = udp->udp_flowinfo; 7581 } 7582 port = udp->udp_dstport; 7583 break; 7584 default: 7585 mi_copy_done(q, mp, EPROTO); 7586 return; 7587 } 7588 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 7589 if (!mp1) 7590 return; 7591 7592 if (udp->udp_family == AF_INET) { 7593 sin_t *sin; 7594 7595 STRUCT_FSET(sb, len, (int)sizeof (sin_t)); 7596 sin = (sin_t *)mp1->b_rptr; 7597 mp1->b_wptr = (uchar_t *)&sin[1]; 7598 *sin = sin_null; 7599 sin->sin_family = AF_INET; 7600 sin->sin_addr.s_addr = v4addr; 7601 sin->sin_port = port; 7602 } else { 7603 /* udp->udp_family == AF_INET6 */ 7604 sin6_t *sin6; 7605 7606 STRUCT_FSET(sb, len, (int)sizeof (sin6_t)); 7607 sin6 = (sin6_t *)mp1->b_rptr; 7608 mp1->b_wptr = (uchar_t *)&sin6[1]; 7609 *sin6 = sin6_null; 7610 sin6->sin6_family = AF_INET6; 7611 sin6->sin6_flowinfo = flowinfo; 7612 sin6->sin6_addr = v6addr; 7613 sin6->sin6_port = port; 7614 } 7615 /* Copy out the address */ 7616 mi_copyout(q, mp); 7617 } 7618 7619 7620 static int 7621 udp_unitdata_opt_process(queue_t *q, mblk_t *mp, int *errorp, 7622 udpattrs_t *udpattrs) 7623 { 7624 struct T_unitdata_req *udreqp; 7625 int is_absreq_failure; 7626 cred_t *cr; 7627 conn_t *connp = Q_TO_CONN(q); 7628 7629 ASSERT(((t_primp_t)mp->b_rptr)->type); 7630 7631 cr = DB_CREDDEF(mp, connp->conn_cred); 7632 7633 udreqp = (struct T_unitdata_req *)mp->b_rptr; 7634 7635 *errorp = tpi_optcom_buf(q, mp, &udreqp->OPT_length, 7636 udreqp->OPT_offset, cr, &udp_opt_obj, 7637 udpattrs, &is_absreq_failure); 7638 7639 if (*errorp != 0) { 7640 /* 7641 * Note: No special action needed in this 7642 * module for "is_absreq_failure" 7643 */ 7644 return (-1); /* failure */ 7645 } 7646 ASSERT(is_absreq_failure == 0); 7647 return (0); /* success */ 7648 } 7649 7650 void 7651 udp_ddi_init(void) 7652 { 7653 udp_max_optsize = optcom_max_optsize(udp_opt_obj.odb_opt_des_arr, 7654 udp_opt_obj.odb_opt_arr_cnt); 7655 7656 /* 7657 * We want to be informed each time a stack is created or 7658 * destroyed in the kernel, so we can maintain the 7659 * set of udp_stack_t's. 7660 */ 7661 netstack_register(NS_UDP, udp_stack_init, NULL, udp_stack_fini); 7662 } 7663 7664 void 7665 udp_ddi_destroy(void) 7666 { 7667 netstack_unregister(NS_UDP); 7668 } 7669 7670 /* 7671 * Initialize the UDP stack instance. 7672 */ 7673 static void * 7674 udp_stack_init(netstackid_t stackid, netstack_t *ns) 7675 { 7676 udp_stack_t *us; 7677 udpparam_t *pa; 7678 int i; 7679 7680 us = (udp_stack_t *)kmem_zalloc(sizeof (*us), KM_SLEEP); 7681 us->us_netstack = ns; 7682 7683 us->us_num_epriv_ports = UDP_NUM_EPRIV_PORTS; 7684 us->us_epriv_ports[0] = 2049; 7685 us->us_epriv_ports[1] = 4045; 7686 7687 /* 7688 * The smallest anonymous port in the priviledged port range which UDP 7689 * looks for free port. Use in the option UDP_ANONPRIVBIND. 7690 */ 7691 us->us_min_anonpriv_port = 512; 7692 7693 us->us_bind_fanout_size = udp_bind_fanout_size; 7694 7695 /* Roundup variable that might have been modified in /etc/system */ 7696 if (us->us_bind_fanout_size & (us->us_bind_fanout_size - 1)) { 7697 /* Not a power of two. Round up to nearest power of two */ 7698 for (i = 0; i < 31; i++) { 7699 if (us->us_bind_fanout_size < (1 << i)) 7700 break; 7701 } 7702 us->us_bind_fanout_size = 1 << i; 7703 } 7704 us->us_bind_fanout = kmem_zalloc(us->us_bind_fanout_size * 7705 sizeof (udp_fanout_t), KM_SLEEP); 7706 for (i = 0; i < us->us_bind_fanout_size; i++) { 7707 mutex_init(&us->us_bind_fanout[i].uf_lock, NULL, MUTEX_DEFAULT, 7708 NULL); 7709 } 7710 7711 pa = (udpparam_t *)kmem_alloc(sizeof (udp_param_arr), KM_SLEEP); 7712 7713 us->us_param_arr = pa; 7714 bcopy(udp_param_arr, us->us_param_arr, sizeof (udp_param_arr)); 7715 7716 (void) udp_param_register(&us->us_nd, 7717 us->us_param_arr, A_CNT(udp_param_arr)); 7718 7719 us->us_kstat = udp_kstat2_init(stackid, &us->us_statistics); 7720 us->us_mibkp = udp_kstat_init(stackid); 7721 return (us); 7722 } 7723 7724 /* 7725 * Free the UDP stack instance. 7726 */ 7727 static void 7728 udp_stack_fini(netstackid_t stackid, void *arg) 7729 { 7730 udp_stack_t *us = (udp_stack_t *)arg; 7731 int i; 7732 7733 for (i = 0; i < us->us_bind_fanout_size; i++) { 7734 mutex_destroy(&us->us_bind_fanout[i].uf_lock); 7735 } 7736 7737 kmem_free(us->us_bind_fanout, us->us_bind_fanout_size * 7738 sizeof (udp_fanout_t)); 7739 7740 us->us_bind_fanout = NULL; 7741 7742 nd_free(&us->us_nd); 7743 kmem_free(us->us_param_arr, sizeof (udp_param_arr)); 7744 us->us_param_arr = NULL; 7745 7746 udp_kstat_fini(stackid, us->us_mibkp); 7747 us->us_mibkp = NULL; 7748 7749 udp_kstat2_fini(stackid, us->us_kstat); 7750 us->us_kstat = NULL; 7751 bzero(&us->us_statistics, sizeof (us->us_statistics)); 7752 kmem_free(us, sizeof (*us)); 7753 } 7754 7755 static void * 7756 udp_kstat2_init(netstackid_t stackid, udp_stat_t *us_statisticsp) 7757 { 7758 kstat_t *ksp; 7759 7760 udp_stat_t template = { 7761 { "udp_ip_send", KSTAT_DATA_UINT64 }, 7762 { "udp_ip_ire_send", KSTAT_DATA_UINT64 }, 7763 { "udp_ire_null", KSTAT_DATA_UINT64 }, 7764 { "udp_drain", KSTAT_DATA_UINT64 }, 7765 { "udp_sock_fallback", KSTAT_DATA_UINT64 }, 7766 { "udp_rrw_busy", KSTAT_DATA_UINT64 }, 7767 { "udp_rrw_msgcnt", KSTAT_DATA_UINT64 }, 7768 { "udp_out_sw_cksum", KSTAT_DATA_UINT64 }, 7769 { "udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 7770 { "udp_out_opt", KSTAT_DATA_UINT64 }, 7771 { "udp_out_err_notconn", KSTAT_DATA_UINT64 }, 7772 { "udp_out_err_output", KSTAT_DATA_UINT64 }, 7773 { "udp_out_err_tudr", KSTAT_DATA_UINT64 }, 7774 { "udp_in_pktinfo", KSTAT_DATA_UINT64 }, 7775 { "udp_in_recvdstaddr", KSTAT_DATA_UINT64 }, 7776 { "udp_in_recvopts", KSTAT_DATA_UINT64 }, 7777 { "udp_in_recvif", KSTAT_DATA_UINT64 }, 7778 { "udp_in_recvslla", KSTAT_DATA_UINT64 }, 7779 { "udp_in_recvucred", KSTAT_DATA_UINT64 }, 7780 { "udp_in_recvttl", KSTAT_DATA_UINT64 }, 7781 { "udp_in_recvhopopts", KSTAT_DATA_UINT64 }, 7782 { "udp_in_recvhoplimit", KSTAT_DATA_UINT64 }, 7783 { "udp_in_recvdstopts", KSTAT_DATA_UINT64 }, 7784 { "udp_in_recvrtdstopts", KSTAT_DATA_UINT64 }, 7785 { "udp_in_recvrthdr", KSTAT_DATA_UINT64 }, 7786 { "udp_in_recvpktinfo", KSTAT_DATA_UINT64 }, 7787 { "udp_in_recvtclass", KSTAT_DATA_UINT64 }, 7788 { "udp_in_timestamp", KSTAT_DATA_UINT64 }, 7789 #ifdef DEBUG 7790 { "udp_data_conn", KSTAT_DATA_UINT64 }, 7791 { "udp_data_notconn", KSTAT_DATA_UINT64 }, 7792 #endif 7793 }; 7794 7795 ksp = kstat_create_netstack(UDP_MOD_NAME, 0, "udpstat", "net", 7796 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 7797 KSTAT_FLAG_VIRTUAL, stackid); 7798 7799 if (ksp == NULL) 7800 return (NULL); 7801 7802 bcopy(&template, us_statisticsp, sizeof (template)); 7803 ksp->ks_data = (void *)us_statisticsp; 7804 ksp->ks_private = (void *)(uintptr_t)stackid; 7805 7806 kstat_install(ksp); 7807 return (ksp); 7808 } 7809 7810 static void 7811 udp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 7812 { 7813 if (ksp != NULL) { 7814 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 7815 kstat_delete_netstack(ksp, stackid); 7816 } 7817 } 7818 7819 static void * 7820 udp_kstat_init(netstackid_t stackid) 7821 { 7822 kstat_t *ksp; 7823 7824 udp_named_kstat_t template = { 7825 { "inDatagrams", KSTAT_DATA_UINT64, 0 }, 7826 { "inErrors", KSTAT_DATA_UINT32, 0 }, 7827 { "outDatagrams", KSTAT_DATA_UINT64, 0 }, 7828 { "entrySize", KSTAT_DATA_INT32, 0 }, 7829 { "entry6Size", KSTAT_DATA_INT32, 0 }, 7830 { "outErrors", KSTAT_DATA_UINT32, 0 }, 7831 }; 7832 7833 ksp = kstat_create_netstack(UDP_MOD_NAME, 0, UDP_MOD_NAME, "mib2", 7834 KSTAT_TYPE_NAMED, 7835 NUM_OF_FIELDS(udp_named_kstat_t), 0, stackid); 7836 7837 if (ksp == NULL || ksp->ks_data == NULL) 7838 return (NULL); 7839 7840 template.entrySize.value.ui32 = sizeof (mib2_udpEntry_t); 7841 template.entry6Size.value.ui32 = sizeof (mib2_udp6Entry_t); 7842 7843 bcopy(&template, ksp->ks_data, sizeof (template)); 7844 ksp->ks_update = udp_kstat_update; 7845 ksp->ks_private = (void *)(uintptr_t)stackid; 7846 7847 kstat_install(ksp); 7848 return (ksp); 7849 } 7850 7851 static void 7852 udp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 7853 { 7854 if (ksp != NULL) { 7855 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 7856 kstat_delete_netstack(ksp, stackid); 7857 } 7858 } 7859 7860 static int 7861 udp_kstat_update(kstat_t *kp, int rw) 7862 { 7863 udp_named_kstat_t *udpkp; 7864 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 7865 netstack_t *ns; 7866 udp_stack_t *us; 7867 7868 if ((kp == NULL) || (kp->ks_data == NULL)) 7869 return (EIO); 7870 7871 if (rw == KSTAT_WRITE) 7872 return (EACCES); 7873 7874 ns = netstack_find_by_stackid(stackid); 7875 if (ns == NULL) 7876 return (-1); 7877 us = ns->netstack_udp; 7878 if (us == NULL) { 7879 netstack_rele(ns); 7880 return (-1); 7881 } 7882 udpkp = (udp_named_kstat_t *)kp->ks_data; 7883 7884 udpkp->inDatagrams.value.ui64 = us->us_udp_mib.udpHCInDatagrams; 7885 udpkp->inErrors.value.ui32 = us->us_udp_mib.udpInErrors; 7886 udpkp->outDatagrams.value.ui64 = us->us_udp_mib.udpHCOutDatagrams; 7887 udpkp->outErrors.value.ui32 = us->us_udp_mib.udpOutErrors; 7888 netstack_rele(ns); 7889 return (0); 7890 } 7891 7892 /* 7893 * Read-side synchronous stream info entry point, called as a 7894 * result of handling certain STREAMS ioctl operations. 7895 */ 7896 static int 7897 udp_rinfop(queue_t *q, infod_t *dp) 7898 { 7899 mblk_t *mp; 7900 uint_t cmd = dp->d_cmd; 7901 int res = 0; 7902 int error = 0; 7903 udp_t *udp = Q_TO_UDP(q); 7904 struct stdata *stp = STREAM(q); 7905 7906 mutex_enter(&udp->udp_drain_lock); 7907 /* If shutdown on read has happened, return nothing */ 7908 mutex_enter(&stp->sd_lock); 7909 if (stp->sd_flag & STREOF) { 7910 mutex_exit(&stp->sd_lock); 7911 goto done; 7912 } 7913 mutex_exit(&stp->sd_lock); 7914 7915 if ((mp = udp->udp_rcv_list_head) == NULL) 7916 goto done; 7917 7918 ASSERT(DB_TYPE(mp) != M_DATA && mp->b_cont != NULL); 7919 7920 if (cmd & INFOD_COUNT) { 7921 /* 7922 * Return the number of messages. 7923 */ 7924 dp->d_count += udp->udp_rcv_msgcnt; 7925 res |= INFOD_COUNT; 7926 } 7927 if (cmd & INFOD_BYTES) { 7928 /* 7929 * Return size of all data messages. 7930 */ 7931 dp->d_bytes += udp->udp_rcv_cnt; 7932 res |= INFOD_BYTES; 7933 } 7934 if (cmd & INFOD_FIRSTBYTES) { 7935 /* 7936 * Return size of first data message. 7937 */ 7938 dp->d_bytes = msgdsize(mp); 7939 res |= INFOD_FIRSTBYTES; 7940 dp->d_cmd &= ~INFOD_FIRSTBYTES; 7941 } 7942 if (cmd & INFOD_COPYOUT) { 7943 mblk_t *mp1 = mp->b_cont; 7944 int n; 7945 /* 7946 * Return data contents of first message. 7947 */ 7948 ASSERT(DB_TYPE(mp1) == M_DATA); 7949 while (mp1 != NULL && dp->d_uiop->uio_resid > 0) { 7950 n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1)); 7951 if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n, 7952 UIO_READ, dp->d_uiop)) != 0) { 7953 goto done; 7954 } 7955 mp1 = mp1->b_cont; 7956 } 7957 res |= INFOD_COPYOUT; 7958 dp->d_cmd &= ~INFOD_COPYOUT; 7959 } 7960 done: 7961 mutex_exit(&udp->udp_drain_lock); 7962 7963 dp->d_res |= res; 7964 7965 return (error); 7966 } 7967 7968 /* 7969 * Read-side synchronous stream entry point. This is called as a result 7970 * of recv/read operation done at sockfs, and is guaranteed to execute 7971 * outside of the interrupt thread context. It returns a single datagram 7972 * (b_cont chain of T_UNITDATA_IND plus data) to the upper layer. 7973 */ 7974 static int 7975 udp_rrw(queue_t *q, struiod_t *dp) 7976 { 7977 mblk_t *mp; 7978 udp_t *udp = Q_TO_UDP(q); 7979 udp_stack_t *us = udp->udp_us; 7980 7981 /* 7982 * Dequeue datagram from the head of the list and return 7983 * it to caller; also ensure that RSLEEP sd_wakeq flag is 7984 * set/cleared depending on whether or not there's data 7985 * remaining in the list. 7986 */ 7987 mutex_enter(&udp->udp_drain_lock); 7988 if (!udp->udp_direct_sockfs) { 7989 mutex_exit(&udp->udp_drain_lock); 7990 UDP_STAT(us, udp_rrw_busy); 7991 return (EBUSY); 7992 } 7993 if ((mp = udp->udp_rcv_list_head) != NULL) { 7994 uint_t size = msgdsize(mp); 7995 7996 /* Last datagram in the list? */ 7997 if ((udp->udp_rcv_list_head = mp->b_next) == NULL) 7998 udp->udp_rcv_list_tail = NULL; 7999 mp->b_next = NULL; 8000 8001 udp->udp_rcv_cnt -= size; 8002 udp->udp_rcv_msgcnt--; 8003 UDP_STAT(us, udp_rrw_msgcnt); 8004 8005 /* No longer flow-controlling? */ 8006 if (udp->udp_rcv_cnt < udp->udp_rcv_hiwat && 8007 udp->udp_rcv_msgcnt < udp->udp_rcv_hiwat) 8008 udp->udp_drain_qfull = B_FALSE; 8009 } 8010 if (udp->udp_rcv_list_head == NULL) { 8011 /* 8012 * Either we just dequeued the last datagram or 8013 * we get here from sockfs and have nothing to 8014 * return; in this case clear RSLEEP. 8015 */ 8016 ASSERT(udp->udp_rcv_cnt == 0); 8017 ASSERT(udp->udp_rcv_msgcnt == 0); 8018 ASSERT(udp->udp_rcv_list_tail == NULL); 8019 STR_WAKEUP_CLEAR(STREAM(q)); 8020 } else { 8021 /* 8022 * More data follows; we need udp_rrw() to be 8023 * called in future to pick up the rest. 8024 */ 8025 STR_WAKEUP_SET(STREAM(q)); 8026 } 8027 mutex_exit(&udp->udp_drain_lock); 8028 dp->d_mp = mp; 8029 return (0); 8030 } 8031 8032 /* 8033 * Enqueue a completely-built T_UNITDATA_IND message into the receive 8034 * list; this is typically executed within the interrupt thread context 8035 * and so we do things as quickly as possible. 8036 */ 8037 static void 8038 udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp, uint_t pkt_len) 8039 { 8040 ASSERT(q == RD(q)); 8041 ASSERT(pkt_len == msgdsize(mp)); 8042 ASSERT(mp->b_next == NULL && mp->b_cont != NULL); 8043 ASSERT(DB_TYPE(mp) == M_PROTO && DB_TYPE(mp->b_cont) == M_DATA); 8044 ASSERT(MBLKL(mp) >= sizeof (struct T_unitdata_ind)); 8045 8046 mutex_enter(&udp->udp_drain_lock); 8047 /* 8048 * Wake up and signal the receiving app; it is okay to do this 8049 * before enqueueing the mp because we are holding the drain lock. 8050 * One of the advantages of synchronous stream is the ability for 8051 * us to find out when the application performs a read on the 8052 * socket by way of udp_rrw() entry point being called. We need 8053 * to generate SIGPOLL/SIGIO for each received data in the case 8054 * of asynchronous socket just as in the strrput() case. However, 8055 * we only wake the application up when necessary, i.e. during the 8056 * first enqueue. When udp_rrw() is called, we send up a single 8057 * datagram upstream and call STR_WAKEUP_SET() again when there 8058 * are still data remaining in our receive queue. 8059 */ 8060 if (udp->udp_rcv_list_head == NULL) { 8061 STR_WAKEUP_SET(STREAM(q)); 8062 udp->udp_rcv_list_head = mp; 8063 } else { 8064 udp->udp_rcv_list_tail->b_next = mp; 8065 } 8066 udp->udp_rcv_list_tail = mp; 8067 udp->udp_rcv_cnt += pkt_len; 8068 udp->udp_rcv_msgcnt++; 8069 8070 /* Need to flow-control? */ 8071 if (udp->udp_rcv_cnt >= udp->udp_rcv_hiwat || 8072 udp->udp_rcv_msgcnt >= udp->udp_rcv_hiwat) 8073 udp->udp_drain_qfull = B_TRUE; 8074 8075 /* Update poll events and send SIGPOLL/SIGIO if necessary */ 8076 STR_SENDSIG(STREAM(q)); 8077 mutex_exit(&udp->udp_drain_lock); 8078 } 8079 8080 /* 8081 * Drain the contents of receive list to the module upstream; we do 8082 * this during close or when we fallback to the slow mode due to 8083 * sockmod being popped or a module being pushed on top of us. 8084 */ 8085 static void 8086 udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing) 8087 { 8088 mblk_t *mp; 8089 udp_stack_t *us = udp->udp_us; 8090 8091 ASSERT(q == RD(q)); 8092 8093 mutex_enter(&udp->udp_drain_lock); 8094 /* 8095 * There is no race with a concurrent udp_input() sending 8096 * up packets using putnext() after we have cleared the 8097 * udp_direct_sockfs flag but before we have completed 8098 * sending up the packets in udp_rcv_list, since we are 8099 * either a writer or we have quiesced the conn. 8100 */ 8101 udp->udp_direct_sockfs = B_FALSE; 8102 mutex_exit(&udp->udp_drain_lock); 8103 8104 if (udp->udp_rcv_list_head != NULL) 8105 UDP_STAT(us, udp_drain); 8106 8107 /* 8108 * Send up everything via putnext(); note here that we 8109 * don't need the udp_drain_lock to protect us since 8110 * nothing can enter udp_rrw() and that we currently 8111 * have exclusive access to this udp. 8112 */ 8113 while ((mp = udp->udp_rcv_list_head) != NULL) { 8114 udp->udp_rcv_list_head = mp->b_next; 8115 mp->b_next = NULL; 8116 udp->udp_rcv_cnt -= msgdsize(mp); 8117 udp->udp_rcv_msgcnt--; 8118 if (closing) { 8119 freemsg(mp); 8120 } else { 8121 putnext(q, mp); 8122 } 8123 } 8124 ASSERT(udp->udp_rcv_cnt == 0); 8125 ASSERT(udp->udp_rcv_msgcnt == 0); 8126 ASSERT(udp->udp_rcv_list_head == NULL); 8127 udp->udp_rcv_list_tail = NULL; 8128 udp->udp_drain_qfull = B_FALSE; 8129 } 8130 8131 static size_t 8132 udp_set_rcv_hiwat(udp_t *udp, size_t size) 8133 { 8134 udp_stack_t *us = udp->udp_us; 8135 8136 /* We add a bit of extra buffering */ 8137 size += size >> 1; 8138 if (size > us->us_max_buf) 8139 size = us->us_max_buf; 8140 8141 udp->udp_rcv_hiwat = size; 8142 return (size); 8143 } 8144 8145 /* 8146 * For the lower queue so that UDP can be a dummy mux. 8147 * Nobody should be sending 8148 * packets up this stream 8149 */ 8150 static void 8151 udp_lrput(queue_t *q, mblk_t *mp) 8152 { 8153 mblk_t *mp1; 8154 8155 switch (mp->b_datap->db_type) { 8156 case M_FLUSH: 8157 /* Turn around */ 8158 if (*mp->b_rptr & FLUSHW) { 8159 *mp->b_rptr &= ~FLUSHR; 8160 qreply(q, mp); 8161 return; 8162 } 8163 break; 8164 } 8165 /* Could receive messages that passed through ar_rput */ 8166 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 8167 mp1->b_prev = mp1->b_next = NULL; 8168 freemsg(mp); 8169 } 8170 8171 /* 8172 * For the lower queue so that UDP can be a dummy mux. 8173 * Nobody should be sending packets down this stream. 8174 */ 8175 /* ARGSUSED */ 8176 void 8177 udp_lwput(queue_t *q, mblk_t *mp) 8178 { 8179 freemsg(mp); 8180 } 8181