xref: /titanic_51/usr/src/uts/common/inet/udp/udp.c (revision 20c794b39650d115e17a15983b6b82e46238cf45)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 const char udp_version[] = "%Z%%M%	%I%	%E% SMI";
30 
31 #include <sys/types.h>
32 #include <sys/stream.h>
33 #include <sys/dlpi.h>
34 #include <sys/pattr.h>
35 #include <sys/stropts.h>
36 #include <sys/strlog.h>
37 #include <sys/strsun.h>
38 #include <sys/time.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/timod.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/strsubr.h>
45 #include <sys/suntpi.h>
46 #include <sys/xti_inet.h>
47 #include <sys/cmn_err.h>
48 #include <sys/kmem.h>
49 #include <sys/policy.h>
50 #include <sys/ucred.h>
51 #include <sys/zone.h>
52 
53 #include <sys/socket.h>
54 #include <sys/sockio.h>
55 #include <sys/vtrace.h>
56 #include <sys/sdt.h>
57 #include <sys/debug.h>
58 #include <sys/isa_defs.h>
59 #include <sys/random.h>
60 #include <netinet/in.h>
61 #include <netinet/ip6.h>
62 #include <netinet/icmp6.h>
63 #include <netinet/udp.h>
64 #include <net/if.h>
65 #include <net/route.h>
66 
67 #include <inet/common.h>
68 #include <inet/ip.h>
69 #include <inet/ip_impl.h>
70 #include <inet/ip6.h>
71 #include <inet/ip_ire.h>
72 #include <inet/ip_if.h>
73 #include <inet/ip_multi.h>
74 #include <inet/ip_ndp.h>
75 #include <inet/mi.h>
76 #include <inet/mib2.h>
77 #include <inet/nd.h>
78 #include <inet/optcom.h>
79 #include <inet/snmpcom.h>
80 #include <inet/kstatcom.h>
81 #include <inet/udp_impl.h>
82 #include <inet/ipclassifier.h>
83 #include <inet/ipsec_impl.h>
84 #include <inet/ipp_common.h>
85 
86 /*
87  * The ipsec_info.h header file is here since it has the definition for the
88  * M_CTL message types used by IP to convey information to the ULP. The
89  * ipsec_info.h needs the pfkeyv2.h, hence the latter's presence.
90  */
91 #include <net/pfkeyv2.h>
92 #include <inet/ipsec_info.h>
93 
94 #include <sys/tsol/label.h>
95 #include <sys/tsol/tnet.h>
96 #include <rpc/pmap_prot.h>
97 
98 /*
99  * Synchronization notes:
100  *
101  * UDP is MT and uses the usual kernel synchronization primitives. There are 2
102  * locks, the fanout lock (uf_lock) and the udp endpoint lock udp_rwlock.
103  * We also use conn_lock when updating things that affect the IP classifier
104  * lookup.
105  * The lock order is udp_rwlock -> uf_lock and is udp_rwlock -> conn_lock.
106  *
107  * The fanout lock uf_lock:
108  * When a UDP endpoint is bound to a local port, it is inserted into
109  * a bind hash list.  The list consists of an array of udp_fanout_t buckets.
110  * The size of the array is controlled by the udp_bind_fanout_size variable.
111  * This variable can be changed in /etc/system if the default value is
112  * not large enough.  Each bind hash bucket is protected by a per bucket
113  * lock.  It protects the udp_bind_hash and udp_ptpbhn fields in the udp_t
114  * structure and a few other fields in the udp_t. A UDP endpoint is removed
115  * from the bind hash list only when it is being unbound or being closed.
116  * The per bucket lock also protects a UDP endpoint's state changes.
117  *
118  * The udp_rwlock:
119  * This protects most of the other fields in the udp_t. The exact list of
120  * fields which are protected by each of the above locks is documented in
121  * the udp_t structure definition.
122  *
123  * Plumbing notes:
124  * UDP is always a device driver. For compatibility with mibopen() code
125  * it is possible to I_PUSH "udp", but that results in pushing a passthrough
126  * dummy module.
127  *
128  * The above implies that we don't support any intermediate module to
129  * reside in between /dev/ip and udp -- in fact, we never supported such
130  * scenario in the past as the inter-layer communication semantics have
131  * always been private.
132  */
133 
134 /* For /etc/system control */
135 uint_t udp_bind_fanout_size = UDP_BIND_FANOUT_SIZE;
136 
137 #define	NDD_TOO_QUICK_MSG \
138 	"ndd get info rate too high for non-privileged users, try again " \
139 	"later.\n"
140 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
141 
142 /* Option processing attrs */
143 typedef struct udpattrs_s {
144 	union {
145 		ip6_pkt_t	*udpattr_ipp6;	/* For V6 */
146 		ip4_pkt_t 	*udpattr_ipp4;	/* For V4 */
147 	} udpattr_ippu;
148 #define	udpattr_ipp6 udpattr_ippu.udpattr_ipp6
149 #define	udpattr_ipp4 udpattr_ippu.udpattr_ipp4
150 	mblk_t		*udpattr_mb;
151 	boolean_t	udpattr_credset;
152 } udpattrs_t;
153 
154 static void	udp_addr_req(queue_t *q, mblk_t *mp);
155 static void	udp_bind(queue_t *q, mblk_t *mp);
156 static void	udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp);
157 static void	udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock);
158 static void	udp_bind_result(conn_t *, mblk_t *);
159 static void	udp_bind_ack(conn_t *, mblk_t *mp);
160 static void	udp_bind_error(conn_t *, mblk_t *mp);
161 static int	udp_build_hdrs(udp_t *udp);
162 static void	udp_capability_req(queue_t *q, mblk_t *mp);
163 static int	udp_close(queue_t *q);
164 static void	udp_connect(queue_t *q, mblk_t *mp);
165 static void	udp_disconnect(queue_t *q, mblk_t *mp);
166 static void	udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error,
167 		    int sys_error);
168 static void	udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive,
169 		    t_scalar_t tlierr, int unixerr);
170 static int	udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
171 		    cred_t *cr);
172 static int	udp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
173 		    char *value, caddr_t cp, cred_t *cr);
174 static int	udp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
175 		    char *value, caddr_t cp, cred_t *cr);
176 static void	udp_icmp_error(queue_t *q, mblk_t *mp);
177 static void	udp_icmp_error_ipv6(queue_t *q, mblk_t *mp);
178 static void	udp_info_req(queue_t *q, mblk_t *mp);
179 static void	udp_input(void *, mblk_t *, void *);
180 static mblk_t	*udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim,
181 		    t_scalar_t addr_length);
182 static void	udp_lrput(queue_t *, mblk_t *);
183 static void	udp_lwput(queue_t *, mblk_t *);
184 static int	udp_open(queue_t *q, dev_t *devp, int flag, int sflag,
185 		    cred_t *credp, boolean_t isv6);
186 static int	udp_openv4(queue_t *q, dev_t *devp, int flag, int sflag,
187 		    cred_t *credp);
188 static int	udp_openv6(queue_t *q, dev_t *devp, int flag, int sflag,
189 		    cred_t *credp);
190 static  int	udp_unitdata_opt_process(queue_t *q, mblk_t *mp,
191 		    int *errorp, udpattrs_t *udpattrs);
192 static boolean_t udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name);
193 static int	udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
194 static boolean_t udp_param_register(IDP *ndp, udpparam_t *udppa, int cnt);
195 static int	udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
196 		    cred_t *cr);
197 static void	udp_report_item(mblk_t *mp, udp_t *udp);
198 static int	udp_rinfop(queue_t *q, infod_t *dp);
199 static int	udp_rrw(queue_t *q, struiod_t *dp);
200 static int	udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
201 		    cred_t *cr);
202 static void	udp_send_data(udp_t *, queue_t *, mblk_t *, ipha_t *);
203 static void	udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr,
204 		    t_scalar_t destlen, t_scalar_t err);
205 static void	udp_unbind(queue_t *q, mblk_t *mp);
206 static in_port_t udp_update_next_port(udp_t *udp, in_port_t port,
207     boolean_t random);
208 static mblk_t	*udp_output_v4(conn_t *, mblk_t *, ipaddr_t, uint16_t, uint_t,
209 		    int *, boolean_t);
210 static mblk_t	*udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6,
211 		    int *error);
212 static void	udp_wput_other(queue_t *q, mblk_t *mp);
213 static void	udp_wput_iocdata(queue_t *q, mblk_t *mp);
214 static size_t	udp_set_rcv_hiwat(udp_t *udp, size_t size);
215 
216 static void	*udp_stack_init(netstackid_t stackid, netstack_t *ns);
217 static void	udp_stack_fini(netstackid_t stackid, void *arg);
218 
219 static void	*udp_kstat_init(netstackid_t stackid);
220 static void	udp_kstat_fini(netstackid_t stackid, kstat_t *ksp);
221 static void	*udp_kstat2_init(netstackid_t, udp_stat_t *);
222 static void	udp_kstat2_fini(netstackid_t, kstat_t *);
223 static int	udp_kstat_update(kstat_t *kp, int rw);
224 
225 static void	udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp,
226 		    uint_t pkt_len);
227 static void	udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing);
228 static void	udp_xmit(queue_t *, mblk_t *, ire_t *ire, conn_t *, zoneid_t);
229 
230 #define	UDP_RECV_HIWATER	(56 * 1024)
231 #define	UDP_RECV_LOWATER	128
232 #define	UDP_XMIT_HIWATER	(56 * 1024)
233 #define	UDP_XMIT_LOWATER	1024
234 
235 static struct module_info udp_mod_info =  {
236 	UDP_MOD_ID, UDP_MOD_NAME, 1, INFPSZ, UDP_RECV_HIWATER, UDP_RECV_LOWATER
237 };
238 
239 /*
240  * Entry points for UDP as a device.
241  * We have separate open functions for the /dev/udp and /dev/udp6 devices.
242  */
243 static struct qinit udp_rinitv4 = {
244 	NULL, NULL, udp_openv4, udp_close, NULL,
245 	&udp_mod_info, NULL, udp_rrw, udp_rinfop, STRUIOT_STANDARD
246 };
247 
248 static struct qinit udp_rinitv6 = {
249 	NULL, NULL, udp_openv6, udp_close, NULL,
250 	&udp_mod_info, NULL, udp_rrw, udp_rinfop, STRUIOT_STANDARD
251 };
252 
253 static struct qinit udp_winit = {
254 	(pfi_t)udp_wput, NULL, NULL, NULL, NULL,
255 	&udp_mod_info, NULL, NULL, NULL, STRUIOT_NONE
256 };
257 
258 /*
259  * UDP needs to handle I_LINK and I_PLINK since ifconfig
260  * likes to use it as a place to hang the various streams.
261  */
262 static struct qinit udp_lrinit = {
263 	(pfi_t)udp_lrput, NULL, udp_openv4, udp_close, NULL,
264 	&udp_mod_info
265 };
266 
267 static struct qinit udp_lwinit = {
268 	(pfi_t)udp_lwput, NULL, udp_openv4, udp_close, NULL,
269 	&udp_mod_info
270 };
271 
272 /* For AF_INET aka /dev/udp */
273 struct streamtab udpinfov4 = {
274 	&udp_rinitv4, &udp_winit, &udp_lrinit, &udp_lwinit
275 };
276 
277 /* For AF_INET6 aka /dev/udp6 */
278 struct streamtab udpinfov6 = {
279 	&udp_rinitv6, &udp_winit, &udp_lrinit, &udp_lwinit
280 };
281 
282 static	sin_t	sin_null;	/* Zero address for quick clears */
283 static	sin6_t	sin6_null;	/* Zero address for quick clears */
284 
285 #define	UDP_MAXPACKET_IPV4 (IP_MAXPACKET - UDPH_SIZE - IP_SIMPLE_HDR_LENGTH)
286 
287 /* Default structure copied into T_INFO_ACK messages */
288 static struct T_info_ack udp_g_t_info_ack_ipv4 = {
289 	T_INFO_ACK,
290 	UDP_MAXPACKET_IPV4,	/* TSDU_size. Excl. headers */
291 	T_INVALID,	/* ETSU_size.  udp does not support expedited data. */
292 	T_INVALID,	/* CDATA_size. udp does not support connect data. */
293 	T_INVALID,	/* DDATA_size. udp does not support disconnect data. */
294 	sizeof (sin_t),	/* ADDR_size. */
295 	0,		/* OPT_size - not initialized here */
296 	UDP_MAXPACKET_IPV4,	/* TIDU_size.  Excl. headers */
297 	T_CLTS,		/* SERV_type.  udp supports connection-less. */
298 	TS_UNBND,	/* CURRENT_state.  This is set from udp_state. */
299 	(XPG4_1|SENDZERO) /* PROVIDER_flag */
300 };
301 
302 #define	UDP_MAXPACKET_IPV6 (IP_MAXPACKET - UDPH_SIZE - IPV6_HDR_LEN)
303 
304 static	struct T_info_ack udp_g_t_info_ack_ipv6 = {
305 	T_INFO_ACK,
306 	UDP_MAXPACKET_IPV6,	/* TSDU_size.  Excl. headers */
307 	T_INVALID,	/* ETSU_size.  udp does not support expedited data. */
308 	T_INVALID,	/* CDATA_size. udp does not support connect data. */
309 	T_INVALID,	/* DDATA_size. udp does not support disconnect data. */
310 	sizeof (sin6_t), /* ADDR_size. */
311 	0,		/* OPT_size - not initialized here */
312 	UDP_MAXPACKET_IPV6,	/* TIDU_size. Excl. headers */
313 	T_CLTS,		/* SERV_type.  udp supports connection-less. */
314 	TS_UNBND,	/* CURRENT_state.  This is set from udp_state. */
315 	(XPG4_1|SENDZERO) /* PROVIDER_flag */
316 };
317 
318 /* largest UDP port number */
319 #define	UDP_MAX_PORT	65535
320 
321 /*
322  * Table of ND variables supported by udp.  These are loaded into us_nd
323  * in udp_open.
324  * All of these are alterable, within the min/max values given, at run time.
325  */
326 /* BEGIN CSTYLED */
327 udpparam_t udp_param_arr[] = {
328  /*min		max		value		name */
329  { 0L,		256,		32,		"udp_wroff_extra" },
330  { 1L,		255,		255,		"udp_ipv4_ttl" },
331  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS, "udp_ipv6_hoplimit"},
332  { 1024,	(32 * 1024),	1024,		"udp_smallest_nonpriv_port" },
333  { 0,		1,		1,		"udp_do_checksum" },
334  { 1024,	UDP_MAX_PORT,	(32 * 1024),	"udp_smallest_anon_port" },
335  { 1024,	UDP_MAX_PORT,	UDP_MAX_PORT,	"udp_largest_anon_port" },
336  { UDP_XMIT_LOWATER, (1<<30), UDP_XMIT_HIWATER,	"udp_xmit_hiwat"},
337  { 0,		     (1<<30), UDP_XMIT_LOWATER, "udp_xmit_lowat"},
338  { UDP_RECV_LOWATER, (1<<30), UDP_RECV_HIWATER,	"udp_recv_hiwat"},
339  { 65536,	(1<<30),	2*1024*1024,	"udp_max_buf"},
340  { 100,		60000,		1000,		"udp_ndd_get_info_interval"},
341 };
342 /* END CSTYLED */
343 
344 /* Setable in /etc/system */
345 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
346 uint32_t udp_random_anon_port = 1;
347 
348 /*
349  * Hook functions to enable cluster networking.
350  * On non-clustered systems these vectors must always be NULL
351  */
352 
353 void (*cl_inet_bind)(uchar_t protocol, sa_family_t addr_family,
354     uint8_t *laddrp, in_port_t lport) = NULL;
355 void (*cl_inet_unbind)(uint8_t protocol, sa_family_t addr_family,
356     uint8_t *laddrp, in_port_t lport) = NULL;
357 
358 typedef union T_primitives *t_primp_t;
359 
360 /*
361  * Return the next anonymous port in the privileged port range for
362  * bind checking.
363  *
364  * Trusted Extension (TX) notes: TX allows administrator to mark or
365  * reserve ports as Multilevel ports (MLP). MLP has special function
366  * on TX systems. Once a port is made MLP, it's not available as
367  * ordinary port. This creates "holes" in the port name space. It
368  * may be necessary to skip the "holes" find a suitable anon port.
369  */
370 static in_port_t
371 udp_get_next_priv_port(udp_t *udp)
372 {
373 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
374 	in_port_t nextport;
375 	boolean_t restart = B_FALSE;
376 	udp_stack_t *us = udp->udp_us;
377 
378 retry:
379 	if (next_priv_port < us->us_min_anonpriv_port ||
380 	    next_priv_port >= IPPORT_RESERVED) {
381 		next_priv_port = IPPORT_RESERVED - 1;
382 		if (restart)
383 			return (0);
384 		restart = B_TRUE;
385 	}
386 
387 	if (is_system_labeled() &&
388 	    (nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred),
389 	    next_priv_port, IPPROTO_UDP, B_FALSE)) != 0) {
390 		next_priv_port = nextport;
391 		goto retry;
392 	}
393 
394 	return (next_priv_port--);
395 }
396 
397 /* UDP bind hash report triggered via the Named Dispatch mechanism. */
398 /* ARGSUSED */
399 static int
400 udp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
401 {
402 	udp_fanout_t	*udpf;
403 	int		i;
404 	zoneid_t	zoneid;
405 	conn_t		*connp;
406 	udp_t		*udp;
407 	udp_stack_t	*us;
408 
409 	connp = Q_TO_CONN(q);
410 	udp = connp->conn_udp;
411 	us = udp->udp_us;
412 
413 	/* Refer to comments in udp_status_report(). */
414 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
415 		if (ddi_get_lbolt() - us->us_last_ndd_get_info_time <
416 		    drv_usectohz(us->us_ndd_get_info_interval * 1000)) {
417 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
418 			return (0);
419 		}
420 	}
421 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
422 		/* The following may work even if we cannot get a large buf. */
423 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
424 		return (0);
425 	}
426 
427 	(void) mi_mpprintf(mp,
428 	    "UDP     " MI_COL_HDRPAD_STR
429 	/*   12345678[89ABCDEF] */
430 	    " zone lport src addr        dest addr       port  state");
431 	/*    1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */
432 
433 	zoneid = connp->conn_zoneid;
434 
435 	for (i = 0; i < us->us_bind_fanout_size; i++) {
436 		udpf = &us->us_bind_fanout[i];
437 		mutex_enter(&udpf->uf_lock);
438 
439 		/* Print the hash index. */
440 		udp = udpf->uf_udp;
441 		if (zoneid != GLOBAL_ZONEID) {
442 			/* skip to first entry in this zone; might be none */
443 			while (udp != NULL &&
444 			    udp->udp_connp->conn_zoneid != zoneid)
445 				udp = udp->udp_bind_hash;
446 		}
447 		if (udp != NULL) {
448 			uint_t print_len, buf_len;
449 
450 			buf_len = mp->b_cont->b_datap->db_lim -
451 			    mp->b_cont->b_wptr;
452 			print_len = snprintf((char *)mp->b_cont->b_wptr,
453 			    buf_len, "%d\n", i);
454 			if (print_len < buf_len) {
455 				mp->b_cont->b_wptr += print_len;
456 			} else {
457 				mp->b_cont->b_wptr += buf_len;
458 			}
459 			for (; udp != NULL; udp = udp->udp_bind_hash) {
460 				if (zoneid == GLOBAL_ZONEID ||
461 				    zoneid == udp->udp_connp->conn_zoneid)
462 					udp_report_item(mp->b_cont, udp);
463 			}
464 		}
465 		mutex_exit(&udpf->uf_lock);
466 	}
467 	us->us_last_ndd_get_info_time = ddi_get_lbolt();
468 	return (0);
469 }
470 
471 /*
472  * Hash list removal routine for udp_t structures.
473  */
474 static void
475 udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock)
476 {
477 	udp_t	*udpnext;
478 	kmutex_t *lockp;
479 	udp_stack_t *us = udp->udp_us;
480 
481 	if (udp->udp_ptpbhn == NULL)
482 		return;
483 
484 	/*
485 	 * Extract the lock pointer in case there are concurrent
486 	 * hash_remove's for this instance.
487 	 */
488 	ASSERT(udp->udp_port != 0);
489 	if (!caller_holds_lock) {
490 		lockp = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port,
491 		    us->us_bind_fanout_size)].uf_lock;
492 		ASSERT(lockp != NULL);
493 		mutex_enter(lockp);
494 	}
495 	if (udp->udp_ptpbhn != NULL) {
496 		udpnext = udp->udp_bind_hash;
497 		if (udpnext != NULL) {
498 			udpnext->udp_ptpbhn = udp->udp_ptpbhn;
499 			udp->udp_bind_hash = NULL;
500 		}
501 		*udp->udp_ptpbhn = udpnext;
502 		udp->udp_ptpbhn = NULL;
503 	}
504 	if (!caller_holds_lock) {
505 		mutex_exit(lockp);
506 	}
507 }
508 
509 static void
510 udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp)
511 {
512 	udp_t	**udpp;
513 	udp_t	*udpnext;
514 
515 	ASSERT(MUTEX_HELD(&uf->uf_lock));
516 	ASSERT(udp->udp_ptpbhn == NULL);
517 	udpp = &uf->uf_udp;
518 	udpnext = udpp[0];
519 	if (udpnext != NULL) {
520 		/*
521 		 * If the new udp bound to the INADDR_ANY address
522 		 * and the first one in the list is not bound to
523 		 * INADDR_ANY we skip all entries until we find the
524 		 * first one bound to INADDR_ANY.
525 		 * This makes sure that applications binding to a
526 		 * specific address get preference over those binding to
527 		 * INADDR_ANY.
528 		 */
529 		if (V6_OR_V4_INADDR_ANY(udp->udp_bound_v6src) &&
530 		    !V6_OR_V4_INADDR_ANY(udpnext->udp_bound_v6src)) {
531 			while ((udpnext = udpp[0]) != NULL &&
532 			    !V6_OR_V4_INADDR_ANY(
533 			    udpnext->udp_bound_v6src)) {
534 				udpp = &(udpnext->udp_bind_hash);
535 			}
536 			if (udpnext != NULL)
537 				udpnext->udp_ptpbhn = &udp->udp_bind_hash;
538 		} else {
539 			udpnext->udp_ptpbhn = &udp->udp_bind_hash;
540 		}
541 	}
542 	udp->udp_bind_hash = udpnext;
543 	udp->udp_ptpbhn = udpp;
544 	udpp[0] = udp;
545 }
546 
547 /*
548  * This routine is called to handle each O_T_BIND_REQ/T_BIND_REQ message
549  * passed to udp_wput.
550  * It associates a port number and local address with the stream.
551  * The O_T_BIND_REQ/T_BIND_REQ is passed downstream to ip with the UDP
552  * protocol type (IPPROTO_UDP) placed in the message following the address.
553  * A T_BIND_ACK message is passed upstream when ip acknowledges the request.
554  * (Called as writer.)
555  *
556  * Note that UDP over IPv4 and IPv6 sockets can use the same port number
557  * without setting SO_REUSEADDR. This is needed so that they
558  * can be viewed as two independent transport protocols.
559  * However, anonymouns ports are allocated from the same range to avoid
560  * duplicating the us->us_next_port_to_try.
561  */
562 static void
563 udp_bind(queue_t *q, mblk_t *mp)
564 {
565 	sin_t		*sin;
566 	sin6_t		*sin6;
567 	mblk_t		*mp1;
568 	in_port_t	port;		/* Host byte order */
569 	in_port_t	requested_port;	/* Host byte order */
570 	struct T_bind_req *tbr;
571 	int		count;
572 	in6_addr_t	v6src;
573 	boolean_t	bind_to_req_port_only;
574 	int		loopmax;
575 	udp_fanout_t	*udpf;
576 	in_port_t	lport;		/* Network byte order */
577 	zoneid_t	zoneid;
578 	conn_t		*connp;
579 	udp_t		*udp;
580 	boolean_t	is_inaddr_any;
581 	mlp_type_t	addrtype, mlptype;
582 	udp_stack_t	*us;
583 
584 	connp = Q_TO_CONN(q);
585 	udp = connp->conn_udp;
586 	us = udp->udp_us;
587 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
588 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
589 		    "udp_bind: bad req, len %u",
590 		    (uint_t)(mp->b_wptr - mp->b_rptr));
591 		udp_err_ack(q, mp, TPROTO, 0);
592 		return;
593 	}
594 	if (udp->udp_state != TS_UNBND) {
595 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
596 		    "udp_bind: bad state, %u", udp->udp_state);
597 		udp_err_ack(q, mp, TOUTSTATE, 0);
598 		return;
599 	}
600 	/*
601 	 * Reallocate the message to make sure we have enough room for an
602 	 * address and the protocol type.
603 	 */
604 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
605 	if (!mp1) {
606 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
607 		return;
608 	}
609 
610 	mp = mp1;
611 	tbr = (struct T_bind_req *)mp->b_rptr;
612 	switch (tbr->ADDR_length) {
613 	case 0:			/* Request for a generic port */
614 		tbr->ADDR_offset = sizeof (struct T_bind_req);
615 		if (udp->udp_family == AF_INET) {
616 			tbr->ADDR_length = sizeof (sin_t);
617 			sin = (sin_t *)&tbr[1];
618 			*sin = sin_null;
619 			sin->sin_family = AF_INET;
620 			mp->b_wptr = (uchar_t *)&sin[1];
621 		} else {
622 			ASSERT(udp->udp_family == AF_INET6);
623 			tbr->ADDR_length = sizeof (sin6_t);
624 			sin6 = (sin6_t *)&tbr[1];
625 			*sin6 = sin6_null;
626 			sin6->sin6_family = AF_INET6;
627 			mp->b_wptr = (uchar_t *)&sin6[1];
628 		}
629 		port = 0;
630 		break;
631 
632 	case sizeof (sin_t):	/* Complete IPv4 address */
633 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
634 		    sizeof (sin_t));
635 		if (sin == NULL || !OK_32PTR((char *)sin)) {
636 			udp_err_ack(q, mp, TSYSERR, EINVAL);
637 			return;
638 		}
639 		if (udp->udp_family != AF_INET ||
640 		    sin->sin_family != AF_INET) {
641 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
642 			return;
643 		}
644 		port = ntohs(sin->sin_port);
645 		break;
646 
647 	case sizeof (sin6_t):	/* complete IPv6 address */
648 		sin6 = (sin6_t *)mi_offset_param(mp, tbr->ADDR_offset,
649 		    sizeof (sin6_t));
650 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
651 			udp_err_ack(q, mp, TSYSERR, EINVAL);
652 			return;
653 		}
654 		if (udp->udp_family != AF_INET6 ||
655 		    sin6->sin6_family != AF_INET6) {
656 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
657 			return;
658 		}
659 		port = ntohs(sin6->sin6_port);
660 		break;
661 
662 	default:		/* Invalid request */
663 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
664 		    "udp_bind: bad ADDR_length length %u", tbr->ADDR_length);
665 		udp_err_ack(q, mp, TBADADDR, 0);
666 		return;
667 	}
668 
669 	requested_port = port;
670 
671 	if (requested_port == 0 || tbr->PRIM_type == O_T_BIND_REQ)
672 		bind_to_req_port_only = B_FALSE;
673 	else			/* T_BIND_REQ and requested_port != 0 */
674 		bind_to_req_port_only = B_TRUE;
675 
676 	if (requested_port == 0) {
677 		/*
678 		 * If the application passed in zero for the port number, it
679 		 * doesn't care which port number we bind to. Get one in the
680 		 * valid range.
681 		 */
682 		if (udp->udp_anon_priv_bind) {
683 			port = udp_get_next_priv_port(udp);
684 		} else {
685 			port = udp_update_next_port(udp,
686 			    us->us_next_port_to_try, B_TRUE);
687 		}
688 	} else {
689 		/*
690 		 * If the port is in the well-known privileged range,
691 		 * make sure the caller was privileged.
692 		 */
693 		int i;
694 		boolean_t priv = B_FALSE;
695 
696 		if (port < us->us_smallest_nonpriv_port) {
697 			priv = B_TRUE;
698 		} else {
699 			for (i = 0; i < us->us_num_epriv_ports; i++) {
700 				if (port == us->us_epriv_ports[i]) {
701 					priv = B_TRUE;
702 					break;
703 				}
704 			}
705 		}
706 
707 		if (priv) {
708 			cred_t *cr = DB_CREDDEF(mp, connp->conn_cred);
709 
710 			if (secpolicy_net_privaddr(cr, port) != 0) {
711 				udp_err_ack(q, mp, TACCES, 0);
712 				return;
713 			}
714 		}
715 	}
716 
717 	if (port == 0) {
718 		udp_err_ack(q, mp, TNOADDR, 0);
719 		return;
720 	}
721 
722 	/*
723 	 * The state must be TS_UNBND. TPI mandates that users must send
724 	 * TPI primitives only 1 at a time and wait for the response before
725 	 * sending the next primitive.
726 	 */
727 	rw_enter(&udp->udp_rwlock, RW_WRITER);
728 	if (udp->udp_state != TS_UNBND || udp->udp_pending_op != -1) {
729 		rw_exit(&udp->udp_rwlock);
730 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
731 		    "udp_bind: bad state, %u", udp->udp_state);
732 		udp_err_ack(q, mp, TOUTSTATE, 0);
733 		return;
734 	}
735 	udp->udp_pending_op = tbr->PRIM_type;
736 	/*
737 	 * Copy the source address into our udp structure. This address
738 	 * may still be zero; if so, IP will fill in the correct address
739 	 * each time an outbound packet is passed to it. Since the udp is
740 	 * not yet in the bind hash list, we don't grab the uf_lock to
741 	 * change udp_ipversion
742 	 */
743 	if (udp->udp_family == AF_INET) {
744 		ASSERT(sin != NULL);
745 		ASSERT(udp->udp_ipversion == IPV4_VERSION);
746 		udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE +
747 		    udp->udp_ip_snd_options_len;
748 		IN6_IPADDR_TO_V4MAPPED(sin->sin_addr.s_addr, &v6src);
749 	} else {
750 		ASSERT(sin6 != NULL);
751 		v6src = sin6->sin6_addr;
752 		if (IN6_IS_ADDR_V4MAPPED(&v6src)) {
753 			/*
754 			 * no need to hold the uf_lock to set the udp_ipversion
755 			 * since we are not yet in the fanout list
756 			 */
757 			udp->udp_ipversion = IPV4_VERSION;
758 			udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
759 			    UDPH_SIZE + udp->udp_ip_snd_options_len;
760 		} else {
761 			udp->udp_ipversion = IPV6_VERSION;
762 			udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len;
763 		}
764 	}
765 
766 	/*
767 	 * If udp_reuseaddr is not set, then we have to make sure that
768 	 * the IP address and port number the application requested
769 	 * (or we selected for the application) is not being used by
770 	 * another stream.  If another stream is already using the
771 	 * requested IP address and port, the behavior depends on
772 	 * "bind_to_req_port_only". If set the bind fails; otherwise we
773 	 * search for any an unused port to bind to the the stream.
774 	 *
775 	 * As per the BSD semantics, as modified by the Deering multicast
776 	 * changes, if udp_reuseaddr is set, then we allow multiple binds
777 	 * to the same port independent of the local IP address.
778 	 *
779 	 * This is slightly different than in SunOS 4.X which did not
780 	 * support IP multicast. Note that the change implemented by the
781 	 * Deering multicast code effects all binds - not only binding
782 	 * to IP multicast addresses.
783 	 *
784 	 * Note that when binding to port zero we ignore SO_REUSEADDR in
785 	 * order to guarantee a unique port.
786 	 */
787 
788 	count = 0;
789 	if (udp->udp_anon_priv_bind) {
790 		/*
791 		 * loopmax = (IPPORT_RESERVED-1) -
792 		 *    us->us_min_anonpriv_port + 1
793 		 */
794 		loopmax = IPPORT_RESERVED - us->us_min_anonpriv_port;
795 	} else {
796 		loopmax = us->us_largest_anon_port -
797 		    us->us_smallest_anon_port + 1;
798 	}
799 
800 	is_inaddr_any = V6_OR_V4_INADDR_ANY(v6src);
801 	zoneid = connp->conn_zoneid;
802 
803 	for (;;) {
804 		udp_t		*udp1;
805 		boolean_t	found_exclbind = B_FALSE;
806 
807 		/*
808 		 * Walk through the list of udp streams bound to
809 		 * requested port with the same IP address.
810 		 */
811 		lport = htons(port);
812 		udpf = &us->us_bind_fanout[UDP_BIND_HASH(lport,
813 		    us->us_bind_fanout_size)];
814 		mutex_enter(&udpf->uf_lock);
815 		for (udp1 = udpf->uf_udp; udp1 != NULL;
816 		    udp1 = udp1->udp_bind_hash) {
817 			if (lport != udp1->udp_port)
818 				continue;
819 
820 			/*
821 			 * On a labeled system, we must treat bindings to ports
822 			 * on shared IP addresses by sockets with MAC exemption
823 			 * privilege as being in all zones, as there's
824 			 * otherwise no way to identify the right receiver.
825 			 */
826 			if (!(IPCL_ZONE_MATCH(udp1->udp_connp, zoneid) ||
827 			    IPCL_ZONE_MATCH(connp,
828 			    udp1->udp_connp->conn_zoneid)) &&
829 			    !udp->udp_mac_exempt && !udp1->udp_mac_exempt)
830 				continue;
831 
832 			/*
833 			 * If UDP_EXCLBIND is set for either the bound or
834 			 * binding endpoint, the semantics of bind
835 			 * is changed according to the following chart.
836 			 *
837 			 * spec = specified address (v4 or v6)
838 			 * unspec = unspecified address (v4 or v6)
839 			 * A = specified addresses are different for endpoints
840 			 *
841 			 * bound	bind to		allowed?
842 			 * -------------------------------------
843 			 * unspec	unspec		no
844 			 * unspec	spec		no
845 			 * spec		unspec		no
846 			 * spec		spec		yes if A
847 			 *
848 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
849 			 * as UDP_EXCLBIND, except that zoneid is ignored.
850 			 */
851 			if (udp1->udp_exclbind || udp->udp_exclbind ||
852 			    udp1->udp_mac_exempt || udp->udp_mac_exempt) {
853 				if (V6_OR_V4_INADDR_ANY(
854 				    udp1->udp_bound_v6src) ||
855 				    is_inaddr_any ||
856 				    IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src,
857 				    &v6src)) {
858 					found_exclbind = B_TRUE;
859 					break;
860 				}
861 				continue;
862 			}
863 
864 			/*
865 			 * Check ipversion to allow IPv4 and IPv6 sockets to
866 			 * have disjoint port number spaces.
867 			 */
868 			if (udp->udp_ipversion != udp1->udp_ipversion) {
869 
870 				/*
871 				 * On the first time through the loop, if the
872 				 * the user intentionally specified a
873 				 * particular port number, then ignore any
874 				 * bindings of the other protocol that may
875 				 * conflict. This allows the user to bind IPv6
876 				 * alone and get both v4 and v6, or bind both
877 				 * both and get each seperately. On subsequent
878 				 * times through the loop, we're checking a
879 				 * port that we chose (not the user) and thus
880 				 * we do not allow casual duplicate bindings.
881 				 */
882 				if (count == 0 && requested_port != 0)
883 					continue;
884 			}
885 
886 			/*
887 			 * No difference depending on SO_REUSEADDR.
888 			 *
889 			 * If existing port is bound to a
890 			 * non-wildcard IP address and
891 			 * the requesting stream is bound to
892 			 * a distinct different IP addresses
893 			 * (non-wildcard, also), keep going.
894 			 */
895 			if (!is_inaddr_any &&
896 			    !V6_OR_V4_INADDR_ANY(udp1->udp_bound_v6src) &&
897 			    !IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src,
898 			    &v6src)) {
899 				continue;
900 			}
901 			break;
902 		}
903 
904 		if (!found_exclbind &&
905 		    (udp->udp_reuseaddr && requested_port != 0)) {
906 			break;
907 		}
908 
909 		if (udp1 == NULL) {
910 			/*
911 			 * No other stream has this IP address
912 			 * and port number. We can use it.
913 			 */
914 			break;
915 		}
916 		mutex_exit(&udpf->uf_lock);
917 		if (bind_to_req_port_only) {
918 			/*
919 			 * We get here only when requested port
920 			 * is bound (and only first  of the for()
921 			 * loop iteration).
922 			 *
923 			 * The semantics of this bind request
924 			 * require it to fail so we return from
925 			 * the routine (and exit the loop).
926 			 *
927 			 */
928 			udp->udp_pending_op = -1;
929 			rw_exit(&udp->udp_rwlock);
930 			udp_err_ack(q, mp, TADDRBUSY, 0);
931 			return;
932 		}
933 
934 		if (udp->udp_anon_priv_bind) {
935 			port = udp_get_next_priv_port(udp);
936 		} else {
937 			if ((count == 0) && (requested_port != 0)) {
938 				/*
939 				 * If the application wants us to find
940 				 * a port, get one to start with. Set
941 				 * requested_port to 0, so that we will
942 				 * update us->us_next_port_to_try below.
943 				 */
944 				port = udp_update_next_port(udp,
945 				    us->us_next_port_to_try, B_TRUE);
946 				requested_port = 0;
947 			} else {
948 				port = udp_update_next_port(udp, port + 1,
949 				    B_FALSE);
950 			}
951 		}
952 
953 		if (port == 0 || ++count >= loopmax) {
954 			/*
955 			 * We've tried every possible port number and
956 			 * there are none available, so send an error
957 			 * to the user.
958 			 */
959 			udp->udp_pending_op = -1;
960 			rw_exit(&udp->udp_rwlock);
961 			udp_err_ack(q, mp, TNOADDR, 0);
962 			return;
963 		}
964 	}
965 
966 	/*
967 	 * Copy the source address into our udp structure.  This address
968 	 * may still be zero; if so, ip will fill in the correct address
969 	 * each time an outbound packet is passed to it.
970 	 * If we are binding to a broadcast or multicast address then
971 	 * udp_bind_ack will clear the source address when it receives
972 	 * the T_BIND_ACK.
973 	 */
974 	udp->udp_v6src = udp->udp_bound_v6src = v6src;
975 	udp->udp_port = lport;
976 	/*
977 	 * Now reset the the next anonymous port if the application requested
978 	 * an anonymous port, or we handed out the next anonymous port.
979 	 */
980 	if ((requested_port == 0) && (!udp->udp_anon_priv_bind)) {
981 		us->us_next_port_to_try = port + 1;
982 	}
983 
984 	/* Initialize the O_T_BIND_REQ/T_BIND_REQ for ip. */
985 	if (udp->udp_family == AF_INET) {
986 		sin->sin_port = udp->udp_port;
987 	} else {
988 		int error;
989 
990 		sin6->sin6_port = udp->udp_port;
991 		/* Rebuild the header template */
992 		error = udp_build_hdrs(udp);
993 		if (error != 0) {
994 			udp->udp_pending_op = -1;
995 			rw_exit(&udp->udp_rwlock);
996 			mutex_exit(&udpf->uf_lock);
997 			udp_err_ack(q, mp, TSYSERR, error);
998 			return;
999 		}
1000 	}
1001 	udp->udp_state = TS_IDLE;
1002 	udp_bind_hash_insert(udpf, udp);
1003 	mutex_exit(&udpf->uf_lock);
1004 	rw_exit(&udp->udp_rwlock);
1005 
1006 	if (cl_inet_bind) {
1007 		/*
1008 		 * Running in cluster mode - register bind information
1009 		 */
1010 		if (udp->udp_ipversion == IPV4_VERSION) {
1011 			(*cl_inet_bind)(IPPROTO_UDP, AF_INET,
1012 			    (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)),
1013 			    (in_port_t)udp->udp_port);
1014 		} else {
1015 			(*cl_inet_bind)(IPPROTO_UDP, AF_INET6,
1016 			    (uint8_t *)&(udp->udp_v6src),
1017 			    (in_port_t)udp->udp_port);
1018 		}
1019 
1020 	}
1021 
1022 	connp->conn_anon_port = (is_system_labeled() && requested_port == 0);
1023 	if (is_system_labeled() && (!connp->conn_anon_port ||
1024 	    connp->conn_anon_mlp)) {
1025 		uint16_t mlpport;
1026 		cred_t *cr = connp->conn_cred;
1027 		zone_t *zone;
1028 
1029 		zone = crgetzone(cr);
1030 		connp->conn_mlp_type = udp->udp_recvucred ? mlptBoth :
1031 		    mlptSingle;
1032 		addrtype = tsol_mlp_addr_type(zone->zone_id, IPV6_VERSION,
1033 		    &v6src, us->us_netstack->netstack_ip);
1034 		if (addrtype == mlptSingle) {
1035 			rw_enter(&udp->udp_rwlock, RW_WRITER);
1036 			udp->udp_pending_op = -1;
1037 			rw_exit(&udp->udp_rwlock);
1038 			udp_err_ack(q, mp, TNOADDR, 0);
1039 			connp->conn_anon_port = B_FALSE;
1040 			connp->conn_mlp_type = mlptSingle;
1041 			return;
1042 		}
1043 		mlpport = connp->conn_anon_port ? PMAPPORT : port;
1044 		mlptype = tsol_mlp_port_type(zone, IPPROTO_UDP, mlpport,
1045 		    addrtype);
1046 		if (mlptype != mlptSingle &&
1047 		    (connp->conn_mlp_type == mlptSingle ||
1048 		    secpolicy_net_bindmlp(cr) != 0)) {
1049 			if (udp->udp_debug) {
1050 				(void) strlog(UDP_MOD_ID, 0, 1,
1051 				    SL_ERROR|SL_TRACE,
1052 				    "udp_bind: no priv for multilevel port %d",
1053 				    mlpport);
1054 			}
1055 			rw_enter(&udp->udp_rwlock, RW_WRITER);
1056 			udp->udp_pending_op = -1;
1057 			rw_exit(&udp->udp_rwlock);
1058 			udp_err_ack(q, mp, TACCES, 0);
1059 			connp->conn_anon_port = B_FALSE;
1060 			connp->conn_mlp_type = mlptSingle;
1061 			return;
1062 		}
1063 
1064 		/*
1065 		 * If we're specifically binding a shared IP address and the
1066 		 * port is MLP on shared addresses, then check to see if this
1067 		 * zone actually owns the MLP.  Reject if not.
1068 		 */
1069 		if (mlptype == mlptShared && addrtype == mlptShared) {
1070 			/*
1071 			 * No need to handle exclusive-stack zones since
1072 			 * ALL_ZONES only applies to the shared stack.
1073 			 */
1074 			zoneid_t mlpzone;
1075 
1076 			mlpzone = tsol_mlp_findzone(IPPROTO_UDP,
1077 			    htons(mlpport));
1078 			if (connp->conn_zoneid != mlpzone) {
1079 				if (udp->udp_debug) {
1080 					(void) strlog(UDP_MOD_ID, 0, 1,
1081 					    SL_ERROR|SL_TRACE,
1082 					    "udp_bind: attempt to bind port "
1083 					    "%d on shared addr in zone %d "
1084 					    "(should be %d)",
1085 					    mlpport, connp->conn_zoneid,
1086 					    mlpzone);
1087 				}
1088 				rw_enter(&udp->udp_rwlock, RW_WRITER);
1089 				udp->udp_pending_op = -1;
1090 				rw_exit(&udp->udp_rwlock);
1091 				udp_err_ack(q, mp, TACCES, 0);
1092 				connp->conn_anon_port = B_FALSE;
1093 				connp->conn_mlp_type = mlptSingle;
1094 				return;
1095 			}
1096 		}
1097 		if (connp->conn_anon_port) {
1098 			int error;
1099 
1100 			error = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
1101 			    port, B_TRUE);
1102 			if (error != 0) {
1103 				if (udp->udp_debug) {
1104 					(void) strlog(UDP_MOD_ID, 0, 1,
1105 					    SL_ERROR|SL_TRACE,
1106 					    "udp_bind: cannot establish anon "
1107 					    "MLP for port %d", port);
1108 				}
1109 				rw_enter(&udp->udp_rwlock, RW_WRITER);
1110 				udp->udp_pending_op = -1;
1111 				rw_exit(&udp->udp_rwlock);
1112 				udp_err_ack(q, mp, TACCES, 0);
1113 				connp->conn_anon_port = B_FALSE;
1114 				connp->conn_mlp_type = mlptSingle;
1115 				return;
1116 			}
1117 		}
1118 		connp->conn_mlp_type = mlptype;
1119 	}
1120 
1121 	/* Pass the protocol number in the message following the address. */
1122 	*mp->b_wptr++ = IPPROTO_UDP;
1123 	if (!V6_OR_V4_INADDR_ANY(udp->udp_v6src)) {
1124 		/*
1125 		 * Append a request for an IRE if udp_v6src not
1126 		 * zero (IPv4 - INADDR_ANY, or IPv6 - all-zeroes address).
1127 		 */
1128 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
1129 		if (!mp->b_cont) {
1130 			rw_enter(&udp->udp_rwlock, RW_WRITER);
1131 			udp->udp_pending_op = -1;
1132 			rw_exit(&udp->udp_rwlock);
1133 			udp_err_ack(q, mp, TSYSERR, ENOMEM);
1134 			return;
1135 		}
1136 		mp->b_cont->b_wptr += sizeof (ire_t);
1137 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
1138 	}
1139 	if (udp->udp_family == AF_INET6)
1140 		mp = ip_bind_v6(q, mp, connp, NULL);
1141 	else
1142 		mp = ip_bind_v4(q, mp, connp);
1143 
1144 	/* The above return NULL if the bind needs to be deferred */
1145 	if (mp != NULL)
1146 		udp_bind_result(connp, mp);
1147 	else
1148 		CONN_INC_REF(connp);
1149 }
1150 
1151 /*
1152  * This is called from ip_wput_nondata to handle the results of a
1153  * deferred UDP bind. It is called once the bind has been completed.
1154  */
1155 void
1156 udp_resume_bind(conn_t *connp, mblk_t *mp)
1157 {
1158 	ASSERT(connp != NULL && IPCL_IS_UDP(connp));
1159 
1160 	udp_bind_result(connp, mp);
1161 
1162 	CONN_OPER_PENDING_DONE(connp);
1163 }
1164 
1165 /*
1166  * This routine handles each T_CONN_REQ message passed to udp.  It
1167  * associates a default destination address with the stream.
1168  *
1169  * This routine sends down a T_BIND_REQ to IP with the following mblks:
1170  *	T_BIND_REQ	- specifying local and remote address/port
1171  *	IRE_DB_REQ_TYPE	- to get an IRE back containing ire_type and src
1172  *	T_OK_ACK	- for the T_CONN_REQ
1173  *	T_CONN_CON	- to keep the TPI user happy
1174  *
1175  * The connect completes in udp_bind_result.
1176  * When a T_BIND_ACK is received information is extracted from the IRE
1177  * and the two appended messages are sent to the TPI user.
1178  * Should udp_bind_result receive T_ERROR_ACK for the T_BIND_REQ it will
1179  * convert it to an error ack for the appropriate primitive.
1180  */
1181 static void
1182 udp_connect(queue_t *q, mblk_t *mp)
1183 {
1184 	sin6_t	*sin6;
1185 	sin_t	*sin;
1186 	struct T_conn_req	*tcr;
1187 	in6_addr_t v6dst;
1188 	ipaddr_t v4dst;
1189 	uint16_t dstport;
1190 	uint32_t flowinfo;
1191 	mblk_t	*mp1, *mp2;
1192 	udp_fanout_t	*udpf;
1193 	udp_t	*udp, *udp1;
1194 	ushort_t	ipversion;
1195 	udp_stack_t	*us;
1196 	conn_t		*connp = Q_TO_CONN(q);
1197 
1198 	udp = connp->conn_udp;
1199 	tcr = (struct T_conn_req *)mp->b_rptr;
1200 	us = udp->udp_us;
1201 
1202 	/* A bit of sanity checking */
1203 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_req)) {
1204 		udp_err_ack(q, mp, TPROTO, 0);
1205 		return;
1206 	}
1207 
1208 	if (tcr->OPT_length != 0) {
1209 		udp_err_ack(q, mp, TBADOPT, 0);
1210 		return;
1211 	}
1212 
1213 	/*
1214 	 * Determine packet type based on type of address passed in
1215 	 * the request should contain an IPv4 or IPv6 address.
1216 	 * Make sure that address family matches the type of
1217 	 * family of the the address passed down
1218 	 */
1219 	switch (tcr->DEST_length) {
1220 	default:
1221 		udp_err_ack(q, mp, TBADADDR, 0);
1222 		return;
1223 
1224 	case sizeof (sin_t):
1225 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
1226 		    sizeof (sin_t));
1227 		if (sin == NULL || !OK_32PTR((char *)sin)) {
1228 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1229 			return;
1230 		}
1231 		if (udp->udp_family != AF_INET ||
1232 		    sin->sin_family != AF_INET) {
1233 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1234 			return;
1235 		}
1236 		v4dst = sin->sin_addr.s_addr;
1237 		dstport = sin->sin_port;
1238 		IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst);
1239 		ASSERT(udp->udp_ipversion == IPV4_VERSION);
1240 		ipversion = IPV4_VERSION;
1241 		break;
1242 
1243 	case sizeof (sin6_t):
1244 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
1245 		    sizeof (sin6_t));
1246 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
1247 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1248 			return;
1249 		}
1250 		if (udp->udp_family != AF_INET6 ||
1251 		    sin6->sin6_family != AF_INET6) {
1252 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1253 			return;
1254 		}
1255 		v6dst = sin6->sin6_addr;
1256 		dstport = sin6->sin6_port;
1257 		if (IN6_IS_ADDR_V4MAPPED(&v6dst)) {
1258 			IN6_V4MAPPED_TO_IPADDR(&v6dst, v4dst);
1259 			ipversion = IPV4_VERSION;
1260 			flowinfo = 0;
1261 		} else {
1262 			ipversion = IPV6_VERSION;
1263 			flowinfo = sin6->sin6_flowinfo;
1264 		}
1265 		break;
1266 	}
1267 	if (dstport == 0) {
1268 		udp_err_ack(q, mp, TBADADDR, 0);
1269 		return;
1270 	}
1271 
1272 	rw_enter(&udp->udp_rwlock, RW_WRITER);
1273 
1274 	/*
1275 	 * This UDP must have bound to a port already before doing a connect.
1276 	 * TPI mandates that users must send TPI primitives only 1 at a time
1277 	 * and wait for the response before sending the next primitive.
1278 	 */
1279 	if (udp->udp_state == TS_UNBND || udp->udp_pending_op != -1) {
1280 		rw_exit(&udp->udp_rwlock);
1281 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1282 		    "udp_connect: bad state, %u", udp->udp_state);
1283 		udp_err_ack(q, mp, TOUTSTATE, 0);
1284 		return;
1285 	}
1286 	udp->udp_pending_op = T_CONN_REQ;
1287 	ASSERT(udp->udp_port != 0 && udp->udp_ptpbhn != NULL);
1288 
1289 	if (ipversion == IPV4_VERSION) {
1290 		udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE +
1291 		    udp->udp_ip_snd_options_len;
1292 	} else {
1293 		udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len;
1294 	}
1295 
1296 	udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port,
1297 	    us->us_bind_fanout_size)];
1298 
1299 	mutex_enter(&udpf->uf_lock);
1300 	if (udp->udp_state == TS_DATA_XFER) {
1301 		/* Already connected - clear out state */
1302 		udp->udp_v6src = udp->udp_bound_v6src;
1303 		udp->udp_state = TS_IDLE;
1304 	}
1305 
1306 	/*
1307 	 * Create a default IP header with no IP options.
1308 	 */
1309 	udp->udp_dstport = dstport;
1310 	udp->udp_ipversion = ipversion;
1311 	if (ipversion == IPV4_VERSION) {
1312 		/*
1313 		 * Interpret a zero destination to mean loopback.
1314 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1315 		 * generate the T_CONN_CON.
1316 		 */
1317 		if (v4dst == INADDR_ANY) {
1318 			v4dst = htonl(INADDR_LOOPBACK);
1319 			IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst);
1320 			if (udp->udp_family == AF_INET) {
1321 				sin->sin_addr.s_addr = v4dst;
1322 			} else {
1323 				sin6->sin6_addr = v6dst;
1324 			}
1325 		}
1326 		udp->udp_v6dst = v6dst;
1327 		udp->udp_flowinfo = 0;
1328 
1329 		/*
1330 		 * If the destination address is multicast and
1331 		 * an outgoing multicast interface has been set,
1332 		 * use the address of that interface as our
1333 		 * source address if no source address has been set.
1334 		 */
1335 		if (V4_PART_OF_V6(udp->udp_v6src) == INADDR_ANY &&
1336 		    CLASSD(v4dst) &&
1337 		    udp->udp_multicast_if_addr != INADDR_ANY) {
1338 			IN6_IPADDR_TO_V4MAPPED(udp->udp_multicast_if_addr,
1339 			    &udp->udp_v6src);
1340 		}
1341 	} else {
1342 		ASSERT(udp->udp_ipversion == IPV6_VERSION);
1343 		/*
1344 		 * Interpret a zero destination to mean loopback.
1345 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1346 		 * generate the T_CONN_CON.
1347 		 */
1348 		if (IN6_IS_ADDR_UNSPECIFIED(&v6dst)) {
1349 			v6dst = ipv6_loopback;
1350 			sin6->sin6_addr = v6dst;
1351 		}
1352 		udp->udp_v6dst = v6dst;
1353 		udp->udp_flowinfo = flowinfo;
1354 		/*
1355 		 * If the destination address is multicast and
1356 		 * an outgoing multicast interface has been set,
1357 		 * then the ip bind logic will pick the correct source
1358 		 * address (i.e. matching the outgoing multicast interface).
1359 		 */
1360 	}
1361 
1362 	/*
1363 	 * Verify that the src/port/dst/port is unique for all
1364 	 * connections in TS_DATA_XFER
1365 	 */
1366 	for (udp1 = udpf->uf_udp; udp1 != NULL; udp1 = udp1->udp_bind_hash) {
1367 		if (udp1->udp_state != TS_DATA_XFER)
1368 			continue;
1369 		if (udp->udp_port != udp1->udp_port ||
1370 		    udp->udp_ipversion != udp1->udp_ipversion ||
1371 		    dstport != udp1->udp_dstport ||
1372 		    !IN6_ARE_ADDR_EQUAL(&udp->udp_v6src, &udp1->udp_v6src) ||
1373 		    !IN6_ARE_ADDR_EQUAL(&v6dst, &udp1->udp_v6dst) ||
1374 		    !(IPCL_ZONE_MATCH(udp->udp_connp,
1375 		    udp1->udp_connp->conn_zoneid) ||
1376 		    IPCL_ZONE_MATCH(udp1->udp_connp,
1377 		    udp->udp_connp->conn_zoneid)))
1378 			continue;
1379 		mutex_exit(&udpf->uf_lock);
1380 		udp->udp_pending_op = -1;
1381 		rw_exit(&udp->udp_rwlock);
1382 		udp_err_ack(q, mp, TBADADDR, 0);
1383 		return;
1384 	}
1385 	udp->udp_state = TS_DATA_XFER;
1386 	mutex_exit(&udpf->uf_lock);
1387 
1388 	/*
1389 	 * Send down bind to IP to verify that there is a route
1390 	 * and to determine the source address.
1391 	 * This will come back as T_BIND_ACK with an IRE_DB_TYPE in rput.
1392 	 */
1393 	if (udp->udp_family == AF_INET)
1394 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa_conn_t));
1395 	else
1396 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
1397 	if (mp1 == NULL) {
1398 bind_failed:
1399 		mutex_enter(&udpf->uf_lock);
1400 		udp->udp_state = TS_IDLE;
1401 		udp->udp_pending_op = -1;
1402 		mutex_exit(&udpf->uf_lock);
1403 		rw_exit(&udp->udp_rwlock);
1404 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
1405 		return;
1406 	}
1407 
1408 	rw_exit(&udp->udp_rwlock);
1409 	/*
1410 	 * We also have to send a connection confirmation to
1411 	 * keep TLI happy. Prepare it for udp_bind_result.
1412 	 */
1413 	if (udp->udp_family == AF_INET)
1414 		mp2 = mi_tpi_conn_con(NULL, (char *)sin,
1415 		    sizeof (*sin), NULL, 0);
1416 	else
1417 		mp2 = mi_tpi_conn_con(NULL, (char *)sin6,
1418 		    sizeof (*sin6), NULL, 0);
1419 	if (mp2 == NULL) {
1420 		freemsg(mp1);
1421 		rw_enter(&udp->udp_rwlock, RW_WRITER);
1422 		goto bind_failed;
1423 	}
1424 
1425 	mp = mi_tpi_ok_ack_alloc(mp);
1426 	if (mp == NULL) {
1427 		/* Unable to reuse the T_CONN_REQ for the ack. */
1428 		freemsg(mp2);
1429 		rw_enter(&udp->udp_rwlock, RW_WRITER);
1430 		mutex_enter(&udpf->uf_lock);
1431 		udp->udp_state = TS_IDLE;
1432 		udp->udp_pending_op = -1;
1433 		mutex_exit(&udpf->uf_lock);
1434 		rw_exit(&udp->udp_rwlock);
1435 		udp_err_ack_prim(q, mp1, T_CONN_REQ, TSYSERR, ENOMEM);
1436 		return;
1437 	}
1438 
1439 	/* Hang onto the T_OK_ACK and T_CONN_CON for later. */
1440 	linkb(mp1, mp);
1441 	linkb(mp1, mp2);
1442 
1443 	mblk_setcred(mp1, connp->conn_cred);
1444 	if (udp->udp_family == AF_INET)
1445 		mp1 = ip_bind_v4(q, mp1, connp);
1446 	else
1447 		mp1 = ip_bind_v6(q, mp1, connp, NULL);
1448 
1449 	/* The above return NULL if the bind needs to be deferred */
1450 	if (mp1 != NULL)
1451 		udp_bind_result(connp, mp1);
1452 	else
1453 		CONN_INC_REF(connp);
1454 }
1455 
1456 static int
1457 udp_close(queue_t *q)
1458 {
1459 	conn_t	*connp = (conn_t *)q->q_ptr;
1460 	udp_t	*udp;
1461 
1462 	ASSERT(connp != NULL && IPCL_IS_UDP(connp));
1463 	udp = connp->conn_udp;
1464 
1465 	udp_quiesce_conn(connp);
1466 	ip_quiesce_conn(connp);
1467 	/*
1468 	 * Disable read-side synchronous stream
1469 	 * interface and drain any queued data.
1470 	 */
1471 	udp_rcv_drain(q, udp, B_TRUE);
1472 	ASSERT(!udp->udp_direct_sockfs);
1473 
1474 	qprocsoff(q);
1475 
1476 	ASSERT(udp->udp_rcv_cnt == 0);
1477 	ASSERT(udp->udp_rcv_msgcnt == 0);
1478 	ASSERT(udp->udp_rcv_list_head == NULL);
1479 	ASSERT(udp->udp_rcv_list_tail == NULL);
1480 
1481 	udp_close_free(connp);
1482 
1483 	/*
1484 	 * Now we are truly single threaded on this stream, and can
1485 	 * delete the things hanging off the connp, and finally the connp.
1486 	 * We removed this connp from the fanout list, it cannot be
1487 	 * accessed thru the fanouts, and we already waited for the
1488 	 * conn_ref to drop to 0. We are already in close, so
1489 	 * there cannot be any other thread from the top. qprocsoff
1490 	 * has completed, and service has completed or won't run in
1491 	 * future.
1492 	 */
1493 	ASSERT(connp->conn_ref == 1);
1494 
1495 	inet_minor_free(ip_minor_arena, connp->conn_dev);
1496 
1497 	connp->conn_ref--;
1498 	ipcl_conn_destroy(connp);
1499 
1500 	q->q_ptr = WR(q)->q_ptr = NULL;
1501 	return (0);
1502 }
1503 
1504 /*
1505  * Called in the close path to quiesce the conn
1506  */
1507 void
1508 udp_quiesce_conn(conn_t *connp)
1509 {
1510 	udp_t	*udp = connp->conn_udp;
1511 
1512 	if (cl_inet_unbind != NULL && udp->udp_state == TS_IDLE) {
1513 		/*
1514 		 * Running in cluster mode - register unbind information
1515 		 */
1516 		if (udp->udp_ipversion == IPV4_VERSION) {
1517 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET,
1518 			    (uint8_t *)(&(V4_PART_OF_V6(udp->udp_v6src))),
1519 			    (in_port_t)udp->udp_port);
1520 		} else {
1521 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET6,
1522 			    (uint8_t *)(&(udp->udp_v6src)),
1523 			    (in_port_t)udp->udp_port);
1524 		}
1525 	}
1526 
1527 	udp_bind_hash_remove(udp, B_FALSE);
1528 
1529 }
1530 
1531 void
1532 udp_close_free(conn_t *connp)
1533 {
1534 	udp_t *udp = connp->conn_udp;
1535 
1536 	/* If there are any options associated with the stream, free them. */
1537 	if (udp->udp_ip_snd_options) {
1538 		mi_free((char *)udp->udp_ip_snd_options);
1539 		udp->udp_ip_snd_options = NULL;
1540 	}
1541 
1542 	if (udp->udp_ip_rcv_options) {
1543 		mi_free((char *)udp->udp_ip_rcv_options);
1544 		udp->udp_ip_rcv_options = NULL;
1545 	}
1546 
1547 	/* Free memory associated with sticky options */
1548 	if (udp->udp_sticky_hdrs_len != 0) {
1549 		kmem_free(udp->udp_sticky_hdrs,
1550 		    udp->udp_sticky_hdrs_len);
1551 		udp->udp_sticky_hdrs = NULL;
1552 		udp->udp_sticky_hdrs_len = 0;
1553 	}
1554 
1555 	ip6_pkt_free(&udp->udp_sticky_ipp);
1556 }
1557 
1558 /*
1559  * This routine handles each T_DISCON_REQ message passed to udp
1560  * as an indicating that UDP is no longer connected. This results
1561  * in sending a T_BIND_REQ to IP to restore the binding to just
1562  * the local address/port.
1563  *
1564  * This routine sends down a T_BIND_REQ to IP with the following mblks:
1565  *	T_BIND_REQ	- specifying just the local address/port
1566  *	T_OK_ACK	- for the T_DISCON_REQ
1567  *
1568  * The disconnect completes in udp_bind_result.
1569  * When a T_BIND_ACK is received the appended T_OK_ACK is sent to the TPI user.
1570  * Should udp_bind_result receive T_ERROR_ACK for the T_BIND_REQ it will
1571  * convert it to an error ack for the appropriate primitive.
1572  */
1573 static void
1574 udp_disconnect(queue_t *q, mblk_t *mp)
1575 {
1576 	udp_t	*udp;
1577 	mblk_t	*mp1;
1578 	udp_fanout_t *udpf;
1579 	udp_stack_t *us;
1580 	conn_t	*connp = Q_TO_CONN(q);
1581 
1582 	udp = connp->conn_udp;
1583 	us = udp->udp_us;
1584 	rw_enter(&udp->udp_rwlock, RW_WRITER);
1585 	if (udp->udp_state != TS_DATA_XFER || udp->udp_pending_op != -1) {
1586 		rw_exit(&udp->udp_rwlock);
1587 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1588 		    "udp_disconnect: bad state, %u", udp->udp_state);
1589 		udp_err_ack(q, mp, TOUTSTATE, 0);
1590 		return;
1591 	}
1592 	udp->udp_pending_op = T_DISCON_REQ;
1593 	udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port,
1594 	    us->us_bind_fanout_size)];
1595 	mutex_enter(&udpf->uf_lock);
1596 	udp->udp_v6src = udp->udp_bound_v6src;
1597 	udp->udp_state = TS_IDLE;
1598 	mutex_exit(&udpf->uf_lock);
1599 
1600 	/*
1601 	 * Send down bind to IP to remove the full binding and revert
1602 	 * to the local address binding.
1603 	 */
1604 	if (udp->udp_family == AF_INET)
1605 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin_t));
1606 	else
1607 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin6_t));
1608 	if (mp1 == NULL) {
1609 		udp->udp_pending_op = -1;
1610 		rw_exit(&udp->udp_rwlock);
1611 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
1612 		return;
1613 	}
1614 	mp = mi_tpi_ok_ack_alloc(mp);
1615 	if (mp == NULL) {
1616 		/* Unable to reuse the T_DISCON_REQ for the ack. */
1617 		udp->udp_pending_op = -1;
1618 		rw_exit(&udp->udp_rwlock);
1619 		udp_err_ack_prim(q, mp1, T_DISCON_REQ, TSYSERR, ENOMEM);
1620 		return;
1621 	}
1622 
1623 	if (udp->udp_family == AF_INET6) {
1624 		int error;
1625 
1626 		/* Rebuild the header template */
1627 		error = udp_build_hdrs(udp);
1628 		if (error != 0) {
1629 			udp->udp_pending_op = -1;
1630 			rw_exit(&udp->udp_rwlock);
1631 			udp_err_ack_prim(q, mp, T_DISCON_REQ, TSYSERR, error);
1632 			freemsg(mp1);
1633 			return;
1634 		}
1635 	}
1636 
1637 	rw_exit(&udp->udp_rwlock);
1638 	/* Append the T_OK_ACK to the T_BIND_REQ for udp_bind_ack */
1639 	linkb(mp1, mp);
1640 
1641 	if (udp->udp_family == AF_INET6)
1642 		mp1 = ip_bind_v6(q, mp1, connp, NULL);
1643 	else
1644 		mp1 = ip_bind_v4(q, mp1, connp);
1645 
1646 	/* The above return NULL if the bind needs to be deferred */
1647 	if (mp1 != NULL)
1648 		udp_bind_result(connp, mp1);
1649 	else
1650 		CONN_INC_REF(connp);
1651 }
1652 
1653 /* This routine creates a T_ERROR_ACK message and passes it upstream. */
1654 static void
1655 udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error)
1656 {
1657 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
1658 		qreply(q, mp);
1659 }
1660 
1661 /* Shorthand to generate and send TPI error acks to our client */
1662 static void
1663 udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive, t_scalar_t t_error,
1664     int sys_error)
1665 {
1666 	struct T_error_ack	*teackp;
1667 
1668 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
1669 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
1670 		teackp = (struct T_error_ack *)mp->b_rptr;
1671 		teackp->ERROR_prim = primitive;
1672 		teackp->TLI_error = t_error;
1673 		teackp->UNIX_error = sys_error;
1674 		qreply(q, mp);
1675 	}
1676 }
1677 
1678 /*ARGSUSED*/
1679 static int
1680 udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
1681 {
1682 	int i;
1683 	udp_t		*udp = Q_TO_UDP(q);
1684 	udp_stack_t *us = udp->udp_us;
1685 
1686 	for (i = 0; i < us->us_num_epriv_ports; i++) {
1687 		if (us->us_epriv_ports[i] != 0)
1688 			(void) mi_mpprintf(mp, "%d ", us->us_epriv_ports[i]);
1689 	}
1690 	return (0);
1691 }
1692 
1693 /* ARGSUSED */
1694 static int
1695 udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
1696     cred_t *cr)
1697 {
1698 	long	new_value;
1699 	int	i;
1700 	udp_t		*udp = Q_TO_UDP(q);
1701 	udp_stack_t *us = udp->udp_us;
1702 
1703 	/*
1704 	 * Fail the request if the new value does not lie within the
1705 	 * port number limits.
1706 	 */
1707 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
1708 	    new_value <= 0 || new_value >= 65536) {
1709 		return (EINVAL);
1710 	}
1711 
1712 	/* Check if the value is already in the list */
1713 	for (i = 0; i < us->us_num_epriv_ports; i++) {
1714 		if (new_value == us->us_epriv_ports[i]) {
1715 			return (EEXIST);
1716 		}
1717 	}
1718 	/* Find an empty slot */
1719 	for (i = 0; i < us->us_num_epriv_ports; i++) {
1720 		if (us->us_epriv_ports[i] == 0)
1721 			break;
1722 	}
1723 	if (i == us->us_num_epriv_ports) {
1724 		return (EOVERFLOW);
1725 	}
1726 
1727 	/* Set the new value */
1728 	us->us_epriv_ports[i] = (in_port_t)new_value;
1729 	return (0);
1730 }
1731 
1732 /* ARGSUSED */
1733 static int
1734 udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
1735     cred_t *cr)
1736 {
1737 	long	new_value;
1738 	int	i;
1739 	udp_t		*udp = Q_TO_UDP(q);
1740 	udp_stack_t *us = udp->udp_us;
1741 
1742 	/*
1743 	 * Fail the request if the new value does not lie within the
1744 	 * port number limits.
1745 	 */
1746 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
1747 	    new_value <= 0 || new_value >= 65536) {
1748 		return (EINVAL);
1749 	}
1750 
1751 	/* Check that the value is already in the list */
1752 	for (i = 0; i < us->us_num_epriv_ports; i++) {
1753 		if (us->us_epriv_ports[i] == new_value)
1754 			break;
1755 	}
1756 	if (i == us->us_num_epriv_ports) {
1757 		return (ESRCH);
1758 	}
1759 
1760 	/* Clear the value */
1761 	us->us_epriv_ports[i] = 0;
1762 	return (0);
1763 }
1764 
1765 /* At minimum we need 4 bytes of UDP header */
1766 #define	ICMP_MIN_UDP_HDR	4
1767 
1768 /*
1769  * udp_icmp_error is called by udp_input to process ICMP msgs. passed up by IP.
1770  * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors.
1771  * Assumes that IP has pulled up everything up to and including the ICMP header.
1772  */
1773 static void
1774 udp_icmp_error(queue_t *q, mblk_t *mp)
1775 {
1776 	icmph_t *icmph;
1777 	ipha_t	*ipha;
1778 	int	iph_hdr_length;
1779 	udpha_t	*udpha;
1780 	sin_t	sin;
1781 	sin6_t	sin6;
1782 	mblk_t	*mp1;
1783 	int	error = 0;
1784 	udp_t	*udp = Q_TO_UDP(q);
1785 
1786 	ipha = (ipha_t *)mp->b_rptr;
1787 
1788 	ASSERT(OK_32PTR(mp->b_rptr));
1789 
1790 	if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) {
1791 		ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
1792 		udp_icmp_error_ipv6(q, mp);
1793 		return;
1794 	}
1795 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
1796 
1797 	/* Skip past the outer IP and ICMP headers */
1798 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
1799 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
1800 	ipha = (ipha_t *)&icmph[1];
1801 
1802 	/* Skip past the inner IP and find the ULP header */
1803 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
1804 	udpha = (udpha_t *)((char *)ipha + iph_hdr_length);
1805 
1806 	switch (icmph->icmph_type) {
1807 	case ICMP_DEST_UNREACHABLE:
1808 		switch (icmph->icmph_code) {
1809 		case ICMP_FRAGMENTATION_NEEDED:
1810 			/*
1811 			 * IP has already adjusted the path MTU.
1812 			 */
1813 			break;
1814 		case ICMP_PORT_UNREACHABLE:
1815 		case ICMP_PROTOCOL_UNREACHABLE:
1816 			error = ECONNREFUSED;
1817 			break;
1818 		default:
1819 			/* Transient errors */
1820 			break;
1821 		}
1822 		break;
1823 	default:
1824 		/* Transient errors */
1825 		break;
1826 	}
1827 	if (error == 0) {
1828 		freemsg(mp);
1829 		return;
1830 	}
1831 
1832 	/*
1833 	 * Deliver T_UDERROR_IND when the application has asked for it.
1834 	 * The socket layer enables this automatically when connected.
1835 	 */
1836 	if (!udp->udp_dgram_errind) {
1837 		freemsg(mp);
1838 		return;
1839 	}
1840 
1841 	switch (udp->udp_family) {
1842 	case AF_INET:
1843 		sin = sin_null;
1844 		sin.sin_family = AF_INET;
1845 		sin.sin_addr.s_addr = ipha->ipha_dst;
1846 		sin.sin_port = udpha->uha_dst_port;
1847 		mp1 = mi_tpi_uderror_ind((char *)&sin, sizeof (sin_t), NULL, 0,
1848 		    error);
1849 		break;
1850 	case AF_INET6:
1851 		sin6 = sin6_null;
1852 		sin6.sin6_family = AF_INET6;
1853 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &sin6.sin6_addr);
1854 		sin6.sin6_port = udpha->uha_dst_port;
1855 
1856 		mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t),
1857 		    NULL, 0, error);
1858 		break;
1859 	}
1860 	if (mp1)
1861 		putnext(q, mp1);
1862 	freemsg(mp);
1863 }
1864 
1865 /*
1866  * udp_icmp_error_ipv6 is called by udp_icmp_error to process ICMP for IPv6.
1867  * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors.
1868  * Assumes that IP has pulled up all the extension headers as well as the
1869  * ICMPv6 header.
1870  */
1871 static void
1872 udp_icmp_error_ipv6(queue_t *q, mblk_t *mp)
1873 {
1874 	icmp6_t		*icmp6;
1875 	ip6_t		*ip6h, *outer_ip6h;
1876 	uint16_t	iph_hdr_length;
1877 	uint8_t		*nexthdrp;
1878 	udpha_t		*udpha;
1879 	sin6_t		sin6;
1880 	mblk_t		*mp1;
1881 	int		error = 0;
1882 	udp_t		*udp = Q_TO_UDP(q);
1883 	udp_stack_t	*us = udp->udp_us;
1884 
1885 	outer_ip6h = (ip6_t *)mp->b_rptr;
1886 	if (outer_ip6h->ip6_nxt != IPPROTO_ICMPV6)
1887 		iph_hdr_length = ip_hdr_length_v6(mp, outer_ip6h);
1888 	else
1889 		iph_hdr_length = IPV6_HDR_LEN;
1890 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
1891 	ip6h = (ip6_t *)&icmp6[1];
1892 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) {
1893 		freemsg(mp);
1894 		return;
1895 	}
1896 	udpha = (udpha_t *)((char *)ip6h + iph_hdr_length);
1897 
1898 	switch (icmp6->icmp6_type) {
1899 	case ICMP6_DST_UNREACH:
1900 		switch (icmp6->icmp6_code) {
1901 		case ICMP6_DST_UNREACH_NOPORT:
1902 			error = ECONNREFUSED;
1903 			break;
1904 		case ICMP6_DST_UNREACH_ADMIN:
1905 		case ICMP6_DST_UNREACH_NOROUTE:
1906 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
1907 		case ICMP6_DST_UNREACH_ADDR:
1908 			/* Transient errors */
1909 			break;
1910 		default:
1911 			break;
1912 		}
1913 		break;
1914 	case ICMP6_PACKET_TOO_BIG: {
1915 		struct T_unitdata_ind	*tudi;
1916 		struct T_opthdr		*toh;
1917 		size_t			udi_size;
1918 		mblk_t			*newmp;
1919 		t_scalar_t		opt_length = sizeof (struct T_opthdr) +
1920 		    sizeof (struct ip6_mtuinfo);
1921 		sin6_t			*sin6;
1922 		struct ip6_mtuinfo	*mtuinfo;
1923 
1924 		/*
1925 		 * If the application has requested to receive path mtu
1926 		 * information, send up an empty message containing an
1927 		 * IPV6_PATHMTU ancillary data item.
1928 		 */
1929 		if (!udp->udp_ipv6_recvpathmtu)
1930 			break;
1931 
1932 		udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t) +
1933 		    opt_length;
1934 		if ((newmp = allocb(udi_size, BPRI_MED)) == NULL) {
1935 			BUMP_MIB(&us->us_udp_mib, udpInErrors);
1936 			break;
1937 		}
1938 
1939 		/*
1940 		 * newmp->b_cont is left to NULL on purpose.  This is an
1941 		 * empty message containing only ancillary data.
1942 		 */
1943 		newmp->b_datap->db_type = M_PROTO;
1944 		tudi = (struct T_unitdata_ind *)newmp->b_rptr;
1945 		newmp->b_wptr = (uchar_t *)tudi + udi_size;
1946 		tudi->PRIM_type = T_UNITDATA_IND;
1947 		tudi->SRC_length = sizeof (sin6_t);
1948 		tudi->SRC_offset = sizeof (struct T_unitdata_ind);
1949 		tudi->OPT_offset = tudi->SRC_offset + sizeof (sin6_t);
1950 		tudi->OPT_length = opt_length;
1951 
1952 		sin6 = (sin6_t *)&tudi[1];
1953 		bzero(sin6, sizeof (sin6_t));
1954 		sin6->sin6_family = AF_INET6;
1955 		sin6->sin6_addr = udp->udp_v6dst;
1956 
1957 		toh = (struct T_opthdr *)&sin6[1];
1958 		toh->level = IPPROTO_IPV6;
1959 		toh->name = IPV6_PATHMTU;
1960 		toh->len = opt_length;
1961 		toh->status = 0;
1962 
1963 		mtuinfo = (struct ip6_mtuinfo *)&toh[1];
1964 		bzero(mtuinfo, sizeof (struct ip6_mtuinfo));
1965 		mtuinfo->ip6m_addr.sin6_family = AF_INET6;
1966 		mtuinfo->ip6m_addr.sin6_addr = ip6h->ip6_dst;
1967 		mtuinfo->ip6m_mtu = icmp6->icmp6_mtu;
1968 		/*
1969 		 * We've consumed everything we need from the original
1970 		 * message.  Free it, then send our empty message.
1971 		 */
1972 		freemsg(mp);
1973 		putnext(q, newmp);
1974 		return;
1975 	}
1976 	case ICMP6_TIME_EXCEEDED:
1977 		/* Transient errors */
1978 		break;
1979 	case ICMP6_PARAM_PROB:
1980 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
1981 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
1982 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
1983 		    (uchar_t *)nexthdrp) {
1984 			error = ECONNREFUSED;
1985 			break;
1986 		}
1987 		break;
1988 	}
1989 	if (error == 0) {
1990 		freemsg(mp);
1991 		return;
1992 	}
1993 
1994 	/*
1995 	 * Deliver T_UDERROR_IND when the application has asked for it.
1996 	 * The socket layer enables this automatically when connected.
1997 	 */
1998 	if (!udp->udp_dgram_errind) {
1999 		freemsg(mp);
2000 		return;
2001 	}
2002 
2003 	sin6 = sin6_null;
2004 	sin6.sin6_family = AF_INET6;
2005 	sin6.sin6_addr = ip6h->ip6_dst;
2006 	sin6.sin6_port = udpha->uha_dst_port;
2007 	sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
2008 
2009 	mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), NULL, 0,
2010 	    error);
2011 	if (mp1)
2012 		putnext(q, mp1);
2013 	freemsg(mp);
2014 }
2015 
2016 /*
2017  * This routine responds to T_ADDR_REQ messages.  It is called by udp_wput.
2018  * The local address is filled in if endpoint is bound. The remote address
2019  * is filled in if remote address has been precified ("connected endpoint")
2020  * (The concept of connected CLTS sockets is alien to published TPI
2021  *  but we support it anyway).
2022  */
2023 static void
2024 udp_addr_req(queue_t *q, mblk_t *mp)
2025 {
2026 	sin_t	*sin;
2027 	sin6_t	*sin6;
2028 	mblk_t	*ackmp;
2029 	struct T_addr_ack *taa;
2030 	udp_t	*udp = Q_TO_UDP(q);
2031 
2032 	/* Make it large enough for worst case */
2033 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
2034 	    2 * sizeof (sin6_t), 1);
2035 	if (ackmp == NULL) {
2036 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
2037 		return;
2038 	}
2039 	taa = (struct T_addr_ack *)ackmp->b_rptr;
2040 
2041 	bzero(taa, sizeof (struct T_addr_ack));
2042 	ackmp->b_wptr = (uchar_t *)&taa[1];
2043 
2044 	taa->PRIM_type = T_ADDR_ACK;
2045 	ackmp->b_datap->db_type = M_PCPROTO;
2046 	rw_enter(&udp->udp_rwlock, RW_READER);
2047 	/*
2048 	 * Note: Following code assumes 32 bit alignment of basic
2049 	 * data structures like sin_t and struct T_addr_ack.
2050 	 */
2051 	if (udp->udp_state != TS_UNBND) {
2052 		/*
2053 		 * Fill in local address first
2054 		 */
2055 		taa->LOCADDR_offset = sizeof (*taa);
2056 		if (udp->udp_family == AF_INET) {
2057 			taa->LOCADDR_length = sizeof (sin_t);
2058 			sin = (sin_t *)&taa[1];
2059 			/* Fill zeroes and then initialize non-zero fields */
2060 			*sin = sin_null;
2061 			sin->sin_family = AF_INET;
2062 			if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) &&
2063 			    !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
2064 				IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src,
2065 				    sin->sin_addr.s_addr);
2066 			} else {
2067 				/*
2068 				 * INADDR_ANY
2069 				 * udp_v6src is not set, we might be bound to
2070 				 * broadcast/multicast. Use udp_bound_v6src as
2071 				 * local address instead (that could
2072 				 * also still be INADDR_ANY)
2073 				 */
2074 				IN6_V4MAPPED_TO_IPADDR(&udp->udp_bound_v6src,
2075 				    sin->sin_addr.s_addr);
2076 			}
2077 			sin->sin_port = udp->udp_port;
2078 			ackmp->b_wptr = (uchar_t *)&sin[1];
2079 			if (udp->udp_state == TS_DATA_XFER) {
2080 				/*
2081 				 * connected, fill remote address too
2082 				 */
2083 				taa->REMADDR_length = sizeof (sin_t);
2084 				/* assumed 32-bit alignment */
2085 				taa->REMADDR_offset = taa->LOCADDR_offset +
2086 				    taa->LOCADDR_length;
2087 
2088 				sin = (sin_t *)(ackmp->b_rptr +
2089 				    taa->REMADDR_offset);
2090 				/* initialize */
2091 				*sin = sin_null;
2092 				sin->sin_family = AF_INET;
2093 				sin->sin_addr.s_addr =
2094 				    V4_PART_OF_V6(udp->udp_v6dst);
2095 				sin->sin_port = udp->udp_dstport;
2096 				ackmp->b_wptr = (uchar_t *)&sin[1];
2097 			}
2098 		} else {
2099 			taa->LOCADDR_length = sizeof (sin6_t);
2100 			sin6 = (sin6_t *)&taa[1];
2101 			/* Fill zeroes and then initialize non-zero fields */
2102 			*sin6 = sin6_null;
2103 			sin6->sin6_family = AF_INET6;
2104 			if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
2105 				sin6->sin6_addr = udp->udp_v6src;
2106 			} else {
2107 				/*
2108 				 * UNSPECIFIED
2109 				 * udp_v6src is not set, we might be bound to
2110 				 * broadcast/multicast. Use udp_bound_v6src as
2111 				 * local address instead (that could
2112 				 * also still be UNSPECIFIED)
2113 				 */
2114 				sin6->sin6_addr =
2115 				    udp->udp_bound_v6src;
2116 			}
2117 			sin6->sin6_port = udp->udp_port;
2118 			ackmp->b_wptr = (uchar_t *)&sin6[1];
2119 			if (udp->udp_state == TS_DATA_XFER) {
2120 				/*
2121 				 * connected, fill remote address too
2122 				 */
2123 				taa->REMADDR_length = sizeof (sin6_t);
2124 				/* assumed 32-bit alignment */
2125 				taa->REMADDR_offset = taa->LOCADDR_offset +
2126 				    taa->LOCADDR_length;
2127 
2128 				sin6 = (sin6_t *)(ackmp->b_rptr +
2129 				    taa->REMADDR_offset);
2130 				/* initialize */
2131 				*sin6 = sin6_null;
2132 				sin6->sin6_family = AF_INET6;
2133 				sin6->sin6_addr = udp->udp_v6dst;
2134 				sin6->sin6_port =  udp->udp_dstport;
2135 				ackmp->b_wptr = (uchar_t *)&sin6[1];
2136 			}
2137 			ackmp->b_wptr = (uchar_t *)&sin6[1];
2138 		}
2139 	}
2140 	rw_exit(&udp->udp_rwlock);
2141 	ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim);
2142 	qreply(q, ackmp);
2143 }
2144 
2145 static void
2146 udp_copy_info(struct T_info_ack *tap, udp_t *udp)
2147 {
2148 	if (udp->udp_family == AF_INET) {
2149 		*tap = udp_g_t_info_ack_ipv4;
2150 	} else {
2151 		*tap = udp_g_t_info_ack_ipv6;
2152 	}
2153 	tap->CURRENT_state = udp->udp_state;
2154 	tap->OPT_size = udp_max_optsize;
2155 }
2156 
2157 /*
2158  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
2159  * udp_wput.  Much of the T_CAPABILITY_ACK information is copied from
2160  * udp_g_t_info_ack.  The current state of the stream is copied from
2161  * udp_state.
2162  */
2163 static void
2164 udp_capability_req(queue_t *q, mblk_t *mp)
2165 {
2166 	t_uscalar_t		cap_bits1;
2167 	struct T_capability_ack	*tcap;
2168 	udp_t	*udp = Q_TO_UDP(q);
2169 
2170 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
2171 
2172 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
2173 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
2174 	if (!mp)
2175 		return;
2176 
2177 	tcap = (struct T_capability_ack *)mp->b_rptr;
2178 	tcap->CAP_bits1 = 0;
2179 
2180 	if (cap_bits1 & TC1_INFO) {
2181 		udp_copy_info(&tcap->INFO_ack, udp);
2182 		tcap->CAP_bits1 |= TC1_INFO;
2183 	}
2184 
2185 	qreply(q, mp);
2186 }
2187 
2188 /*
2189  * This routine responds to T_INFO_REQ messages.  It is called by udp_wput.
2190  * Most of the T_INFO_ACK information is copied from udp_g_t_info_ack.
2191  * The current state of the stream is copied from udp_state.
2192  */
2193 static void
2194 udp_info_req(queue_t *q, mblk_t *mp)
2195 {
2196 	udp_t *udp = Q_TO_UDP(q);
2197 
2198 	/* Create a T_INFO_ACK message. */
2199 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
2200 	    T_INFO_ACK);
2201 	if (!mp)
2202 		return;
2203 	udp_copy_info((struct T_info_ack *)mp->b_rptr, udp);
2204 	qreply(q, mp);
2205 }
2206 
2207 /*
2208  * IP recognizes seven kinds of bind requests:
2209  *
2210  * - A zero-length address binds only to the protocol number.
2211  *
2212  * - A 4-byte address is treated as a request to
2213  * validate that the address is a valid local IPv4
2214  * address, appropriate for an application to bind to.
2215  * IP does the verification, but does not make any note
2216  * of the address at this time.
2217  *
2218  * - A 16-byte address contains is treated as a request
2219  * to validate a local IPv6 address, as the 4-byte
2220  * address case above.
2221  *
2222  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
2223  * use it for the inbound fanout of packets.
2224  *
2225  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
2226  * use it for the inbound fanout of packets.
2227  *
2228  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
2229  * information consisting of local and remote addresses
2230  * and ports.  In this case, the addresses are both
2231  * validated as appropriate for this operation, and, if
2232  * so, the information is retained for use in the
2233  * inbound fanout.
2234  *
2235  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
2236  * fanout information, like the 12-byte case above.
2237  *
2238  * IP will also fill in the IRE request mblk with information
2239  * regarding our peer.  In all cases, we notify IP of our protocol
2240  * type by appending a single protocol byte to the bind request.
2241  */
2242 static mblk_t *
2243 udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim, t_scalar_t addr_length)
2244 {
2245 	char	*cp;
2246 	mblk_t	*mp;
2247 	struct T_bind_req *tbr;
2248 	ipa_conn_t	*ac;
2249 	ipa6_conn_t	*ac6;
2250 	sin_t		*sin;
2251 	sin6_t		*sin6;
2252 
2253 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
2254 	ASSERT(RW_LOCK_HELD(&udp->udp_rwlock));
2255 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
2256 	if (!mp)
2257 		return (mp);
2258 	mp->b_datap->db_type = M_PROTO;
2259 	tbr = (struct T_bind_req *)mp->b_rptr;
2260 	tbr->PRIM_type = bind_prim;
2261 	tbr->ADDR_offset = sizeof (*tbr);
2262 	tbr->CONIND_number = 0;
2263 	tbr->ADDR_length = addr_length;
2264 	cp = (char *)&tbr[1];
2265 	switch (addr_length) {
2266 	case sizeof (ipa_conn_t):
2267 		ASSERT(udp->udp_family == AF_INET);
2268 		/* Append a request for an IRE */
2269 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2270 		if (!mp->b_cont) {
2271 			freemsg(mp);
2272 			return (NULL);
2273 		}
2274 		mp->b_cont->b_wptr += sizeof (ire_t);
2275 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2276 
2277 		/* cp known to be 32 bit aligned */
2278 		ac = (ipa_conn_t *)cp;
2279 		ac->ac_laddr = V4_PART_OF_V6(udp->udp_v6src);
2280 		ac->ac_faddr = V4_PART_OF_V6(udp->udp_v6dst);
2281 		ac->ac_fport = udp->udp_dstport;
2282 		ac->ac_lport = udp->udp_port;
2283 		break;
2284 
2285 	case sizeof (ipa6_conn_t):
2286 		ASSERT(udp->udp_family == AF_INET6);
2287 		/* Append a request for an IRE */
2288 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2289 		if (!mp->b_cont) {
2290 			freemsg(mp);
2291 			return (NULL);
2292 		}
2293 		mp->b_cont->b_wptr += sizeof (ire_t);
2294 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2295 
2296 		/* cp known to be 32 bit aligned */
2297 		ac6 = (ipa6_conn_t *)cp;
2298 		ac6->ac6_laddr = udp->udp_v6src;
2299 		ac6->ac6_faddr = udp->udp_v6dst;
2300 		ac6->ac6_fport = udp->udp_dstport;
2301 		ac6->ac6_lport = udp->udp_port;
2302 		break;
2303 
2304 	case sizeof (sin_t):
2305 		ASSERT(udp->udp_family == AF_INET);
2306 		/* Append a request for an IRE */
2307 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2308 		if (!mp->b_cont) {
2309 			freemsg(mp);
2310 			return (NULL);
2311 		}
2312 		mp->b_cont->b_wptr += sizeof (ire_t);
2313 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2314 
2315 		sin = (sin_t *)cp;
2316 		*sin = sin_null;
2317 		sin->sin_family = AF_INET;
2318 		sin->sin_addr.s_addr = V4_PART_OF_V6(udp->udp_bound_v6src);
2319 		sin->sin_port = udp->udp_port;
2320 		break;
2321 
2322 	case sizeof (sin6_t):
2323 		ASSERT(udp->udp_family == AF_INET6);
2324 		/* Append a request for an IRE */
2325 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2326 		if (!mp->b_cont) {
2327 			freemsg(mp);
2328 			return (NULL);
2329 		}
2330 		mp->b_cont->b_wptr += sizeof (ire_t);
2331 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2332 
2333 		sin6 = (sin6_t *)cp;
2334 		*sin6 = sin6_null;
2335 		sin6->sin6_family = AF_INET6;
2336 		sin6->sin6_addr = udp->udp_bound_v6src;
2337 		sin6->sin6_port = udp->udp_port;
2338 		break;
2339 	}
2340 	/* Add protocol number to end */
2341 	cp[addr_length] = (char)IPPROTO_UDP;
2342 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
2343 	return (mp);
2344 }
2345 
2346 /* For /dev/udp aka AF_INET open */
2347 static int
2348 udp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2349 {
2350 	return (udp_open(q, devp, flag, sflag, credp, B_FALSE));
2351 }
2352 
2353 /* For /dev/udp6 aka AF_INET6 open */
2354 static int
2355 udp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2356 {
2357 	return (udp_open(q, devp, flag, sflag, credp, B_TRUE));
2358 }
2359 
2360 /*
2361  * This is the open routine for udp.  It allocates a udp_t structure for
2362  * the stream and, on the first open of the module, creates an ND table.
2363  */
2364 /*ARGSUSED2*/
2365 static int
2366 udp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
2367     boolean_t isv6)
2368 {
2369 	int	err;
2370 	udp_t	*udp;
2371 	conn_t *connp;
2372 	dev_t	conn_dev;
2373 	zoneid_t zoneid;
2374 	netstack_t *ns;
2375 	udp_stack_t *us;
2376 
2377 	TRACE_1(TR_FAC_UDP, TR_UDP_OPEN, "udp_open: q %p", q);
2378 
2379 	/* If the stream is already open, return immediately. */
2380 	if (q->q_ptr != NULL)
2381 		return (0);
2382 
2383 	if (sflag == MODOPEN)
2384 		return (EINVAL);
2385 
2386 	ns = netstack_find_by_cred(credp);
2387 	ASSERT(ns != NULL);
2388 	us = ns->netstack_udp;
2389 	ASSERT(us != NULL);
2390 
2391 	/*
2392 	 * For exclusive stacks we set the zoneid to zero
2393 	 * to make UDP operate as if in the global zone.
2394 	 */
2395 	if (ns->netstack_stackid != GLOBAL_NETSTACKID)
2396 		zoneid = GLOBAL_ZONEID;
2397 	else
2398 		zoneid = crgetzoneid(credp);
2399 
2400 	if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) {
2401 		netstack_rele(ns);
2402 		return (EBUSY);
2403 	}
2404 	*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
2405 
2406 	connp = ipcl_conn_create(IPCL_UDPCONN, KM_SLEEP, ns);
2407 	connp->conn_dev = conn_dev;
2408 	udp = connp->conn_udp;
2409 
2410 	/*
2411 	 * ipcl_conn_create did a netstack_hold. Undo the hold that was
2412 	 * done by netstack_find_by_cred()
2413 	 */
2414 	netstack_rele(ns);
2415 
2416 	/*
2417 	 * Initialize the udp_t structure for this stream.
2418 	 */
2419 	q->q_ptr = connp;
2420 	WR(q)->q_ptr = connp;
2421 	connp->conn_rq = q;
2422 	connp->conn_wq = WR(q);
2423 
2424 	rw_enter(&udp->udp_rwlock, RW_WRITER);
2425 	ASSERT(connp->conn_ulp == IPPROTO_UDP);
2426 	ASSERT(connp->conn_udp == udp);
2427 	ASSERT(udp->udp_connp == connp);
2428 
2429 	/* Set the initial state of the stream and the privilege status. */
2430 	udp->udp_state = TS_UNBND;
2431 	if (isv6) {
2432 		udp->udp_family = AF_INET6;
2433 		udp->udp_ipversion = IPV6_VERSION;
2434 		udp->udp_max_hdr_len = IPV6_HDR_LEN + UDPH_SIZE;
2435 		udp->udp_ttl = us->us_ipv6_hoplimit;
2436 		connp->conn_af_isv6 = B_TRUE;
2437 		connp->conn_flags |= IPCL_ISV6;
2438 	} else {
2439 		udp->udp_family = AF_INET;
2440 		udp->udp_ipversion = IPV4_VERSION;
2441 		udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE;
2442 		udp->udp_ttl = us->us_ipv4_ttl;
2443 		connp->conn_af_isv6 = B_FALSE;
2444 		connp->conn_flags &= ~IPCL_ISV6;
2445 	}
2446 
2447 	udp->udp_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
2448 	udp->udp_pending_op = -1;
2449 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
2450 	connp->conn_zoneid = zoneid;
2451 
2452 	udp->udp_open_time = lbolt64;
2453 	udp->udp_open_pid = curproc->p_pid;
2454 
2455 	/*
2456 	 * If the caller has the process-wide flag set, then default to MAC
2457 	 * exempt mode.  This allows read-down to unlabeled hosts.
2458 	 */
2459 	if (getpflags(NET_MAC_AWARE, credp) != 0)
2460 		udp->udp_mac_exempt = B_TRUE;
2461 
2462 	if (flag & SO_SOCKSTR) {
2463 		connp->conn_flags |= IPCL_SOCKET;
2464 		udp->udp_issocket = B_TRUE;
2465 		udp->udp_direct_sockfs = B_TRUE;
2466 	}
2467 
2468 	connp->conn_ulp_labeled = is_system_labeled();
2469 
2470 	udp->udp_us = us;
2471 
2472 	q->q_hiwat = us->us_recv_hiwat;
2473 	WR(q)->q_hiwat = us->us_xmit_hiwat;
2474 	WR(q)->q_lowat = us->us_xmit_lowat;
2475 
2476 	connp->conn_recv = udp_input;
2477 	crhold(credp);
2478 	connp->conn_cred = credp;
2479 
2480 	mutex_enter(&connp->conn_lock);
2481 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2482 	mutex_exit(&connp->conn_lock);
2483 
2484 	qprocson(q);
2485 
2486 	if (udp->udp_family == AF_INET6) {
2487 		/* Build initial header template for transmit */
2488 		if ((err = udp_build_hdrs(udp)) != 0) {
2489 			rw_exit(&udp->udp_rwlock);
2490 			qprocsoff(q);
2491 			ipcl_conn_destroy(connp);
2492 			return (err);
2493 		}
2494 	}
2495 	rw_exit(&udp->udp_rwlock);
2496 
2497 	/* Set the Stream head write offset and high watermark. */
2498 	(void) mi_set_sth_wroff(q,
2499 	    udp->udp_max_hdr_len + us->us_wroff_extra);
2500 	(void) mi_set_sth_hiwat(q, udp_set_rcv_hiwat(udp, q->q_hiwat));
2501 
2502 	return (0);
2503 }
2504 
2505 /*
2506  * Which UDP options OK to set through T_UNITDATA_REQ...
2507  */
2508 /* ARGSUSED */
2509 static boolean_t
2510 udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name)
2511 {
2512 	return (B_TRUE);
2513 }
2514 
2515 /*
2516  * This routine gets default values of certain options whose default
2517  * values are maintained by protcol specific code
2518  */
2519 /* ARGSUSED */
2520 int
2521 udp_opt_default(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
2522 {
2523 	udp_t		*udp = Q_TO_UDP(q);
2524 	udp_stack_t *us = udp->udp_us;
2525 	int *i1 = (int *)ptr;
2526 
2527 	switch (level) {
2528 	case IPPROTO_IP:
2529 		switch (name) {
2530 		case IP_MULTICAST_TTL:
2531 			*ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL;
2532 			return (sizeof (uchar_t));
2533 		case IP_MULTICAST_LOOP:
2534 			*ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP;
2535 			return (sizeof (uchar_t));
2536 		}
2537 		break;
2538 	case IPPROTO_IPV6:
2539 		switch (name) {
2540 		case IPV6_MULTICAST_HOPS:
2541 			*i1 = IP_DEFAULT_MULTICAST_TTL;
2542 			return (sizeof (int));
2543 		case IPV6_MULTICAST_LOOP:
2544 			*i1 = IP_DEFAULT_MULTICAST_LOOP;
2545 			return (sizeof (int));
2546 		case IPV6_UNICAST_HOPS:
2547 			*i1 = us->us_ipv6_hoplimit;
2548 			return (sizeof (int));
2549 		}
2550 		break;
2551 	}
2552 	return (-1);
2553 }
2554 
2555 /*
2556  * This routine retrieves the current status of socket options.
2557  * It returns the size of the option retrieved.
2558  */
2559 int
2560 udp_opt_get_locked(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
2561 {
2562 	int	*i1 = (int *)ptr;
2563 	conn_t	*connp;
2564 	udp_t	*udp;
2565 	ip6_pkt_t *ipp;
2566 	int	len;
2567 	udp_stack_t	*us;
2568 
2569 	connp = Q_TO_CONN(q);
2570 	udp = connp->conn_udp;
2571 	ipp = &udp->udp_sticky_ipp;
2572 	us = udp->udp_us;
2573 
2574 	switch (level) {
2575 	case SOL_SOCKET:
2576 		switch (name) {
2577 		case SO_DEBUG:
2578 			*i1 = udp->udp_debug;
2579 			break;	/* goto sizeof (int) option return */
2580 		case SO_REUSEADDR:
2581 			*i1 = udp->udp_reuseaddr;
2582 			break;	/* goto sizeof (int) option return */
2583 		case SO_TYPE:
2584 			*i1 = SOCK_DGRAM;
2585 			break;	/* goto sizeof (int) option return */
2586 
2587 		/*
2588 		 * The following three items are available here,
2589 		 * but are only meaningful to IP.
2590 		 */
2591 		case SO_DONTROUTE:
2592 			*i1 = udp->udp_dontroute;
2593 			break;	/* goto sizeof (int) option return */
2594 		case SO_USELOOPBACK:
2595 			*i1 = udp->udp_useloopback;
2596 			break;	/* goto sizeof (int) option return */
2597 		case SO_BROADCAST:
2598 			*i1 = udp->udp_broadcast;
2599 			break;	/* goto sizeof (int) option return */
2600 
2601 		case SO_SNDBUF:
2602 			*i1 = q->q_hiwat;
2603 			break;	/* goto sizeof (int) option return */
2604 		case SO_RCVBUF:
2605 			*i1 = RD(q)->q_hiwat;
2606 			break;	/* goto sizeof (int) option return */
2607 		case SO_DGRAM_ERRIND:
2608 			*i1 = udp->udp_dgram_errind;
2609 			break;	/* goto sizeof (int) option return */
2610 		case SO_RECVUCRED:
2611 			*i1 = udp->udp_recvucred;
2612 			break;	/* goto sizeof (int) option return */
2613 		case SO_TIMESTAMP:
2614 			*i1 = udp->udp_timestamp;
2615 			break;	/* goto sizeof (int) option return */
2616 		case SO_ANON_MLP:
2617 			*i1 = udp->udp_anon_mlp;
2618 			break;	/* goto sizeof (int) option return */
2619 		case SO_MAC_EXEMPT:
2620 			*i1 = udp->udp_mac_exempt;
2621 			break;	/* goto sizeof (int) option return */
2622 		case SO_ALLZONES:
2623 			*i1 = connp->conn_allzones;
2624 			break;	/* goto sizeof (int) option return */
2625 		case SO_EXCLBIND:
2626 			*i1 = udp->udp_exclbind ? SO_EXCLBIND : 0;
2627 			break;
2628 		case SO_PROTOTYPE:
2629 			*i1 = IPPROTO_UDP;
2630 			break;
2631 		case SO_DOMAIN:
2632 			*i1 = udp->udp_family;
2633 			break;
2634 		default:
2635 			return (-1);
2636 		}
2637 		break;
2638 	case IPPROTO_IP:
2639 		if (udp->udp_family != AF_INET)
2640 			return (-1);
2641 		switch (name) {
2642 		case IP_OPTIONS:
2643 		case T_IP_OPTIONS:
2644 			len = udp->udp_ip_rcv_options_len - udp->udp_label_len;
2645 			if (len > 0) {
2646 				bcopy(udp->udp_ip_rcv_options +
2647 				    udp->udp_label_len, ptr, len);
2648 			}
2649 			return (len);
2650 		case IP_TOS:
2651 		case T_IP_TOS:
2652 			*i1 = (int)udp->udp_type_of_service;
2653 			break;	/* goto sizeof (int) option return */
2654 		case IP_TTL:
2655 			*i1 = (int)udp->udp_ttl;
2656 			break;	/* goto sizeof (int) option return */
2657 		case IP_NEXTHOP:
2658 		case IP_RECVPKTINFO:
2659 			/*
2660 			 * This also handles IP_PKTINFO.
2661 			 * IP_PKTINFO and IP_RECVPKTINFO have the same value.
2662 			 * Differentiation is based on the size of the argument
2663 			 * passed in.
2664 			 * This option is handled in IP which will return an
2665 			 * error for IP_PKTINFO as it's not supported as a
2666 			 * sticky option.
2667 			 */
2668 			return (-EINVAL);
2669 		case IP_MULTICAST_IF:
2670 			/* 0 address if not set */
2671 			*(ipaddr_t *)ptr = udp->udp_multicast_if_addr;
2672 			return (sizeof (ipaddr_t));
2673 		case IP_MULTICAST_TTL:
2674 			*(uchar_t *)ptr = udp->udp_multicast_ttl;
2675 			return (sizeof (uchar_t));
2676 		case IP_MULTICAST_LOOP:
2677 			*ptr = connp->conn_multicast_loop;
2678 			return (sizeof (uint8_t));
2679 		case IP_RECVOPTS:
2680 			*i1 = udp->udp_recvopts;
2681 			break;	/* goto sizeof (int) option return */
2682 		case IP_RECVDSTADDR:
2683 			*i1 = udp->udp_recvdstaddr;
2684 			break;	/* goto sizeof (int) option return */
2685 		case IP_RECVIF:
2686 			*i1 = udp->udp_recvif;
2687 			break;	/* goto sizeof (int) option return */
2688 		case IP_RECVSLLA:
2689 			*i1 = udp->udp_recvslla;
2690 			break;	/* goto sizeof (int) option return */
2691 		case IP_RECVTTL:
2692 			*i1 = udp->udp_recvttl;
2693 			break;	/* goto sizeof (int) option return */
2694 		case IP_ADD_MEMBERSHIP:
2695 		case IP_DROP_MEMBERSHIP:
2696 		case IP_BLOCK_SOURCE:
2697 		case IP_UNBLOCK_SOURCE:
2698 		case IP_ADD_SOURCE_MEMBERSHIP:
2699 		case IP_DROP_SOURCE_MEMBERSHIP:
2700 		case MCAST_JOIN_GROUP:
2701 		case MCAST_LEAVE_GROUP:
2702 		case MCAST_BLOCK_SOURCE:
2703 		case MCAST_UNBLOCK_SOURCE:
2704 		case MCAST_JOIN_SOURCE_GROUP:
2705 		case MCAST_LEAVE_SOURCE_GROUP:
2706 		case IP_DONTFAILOVER_IF:
2707 			/* cannot "get" the value for these */
2708 			return (-1);
2709 		case IP_BOUND_IF:
2710 			/* Zero if not set */
2711 			*i1 = udp->udp_bound_if;
2712 			break;	/* goto sizeof (int) option return */
2713 		case IP_UNSPEC_SRC:
2714 			*i1 = udp->udp_unspec_source;
2715 			break;	/* goto sizeof (int) option return */
2716 		case IP_XMIT_IF:
2717 			*i1 = udp->udp_xmit_if;
2718 			break; /* goto sizeof (int) option return */
2719 		default:
2720 			return (-1);
2721 		}
2722 		break;
2723 	case IPPROTO_IPV6:
2724 		if (udp->udp_family != AF_INET6)
2725 			return (-1);
2726 		switch (name) {
2727 		case IPV6_UNICAST_HOPS:
2728 			*i1 = (unsigned int)udp->udp_ttl;
2729 			break;	/* goto sizeof (int) option return */
2730 		case IPV6_MULTICAST_IF:
2731 			/* 0 index if not set */
2732 			*i1 = udp->udp_multicast_if_index;
2733 			break;	/* goto sizeof (int) option return */
2734 		case IPV6_MULTICAST_HOPS:
2735 			*i1 = udp->udp_multicast_ttl;
2736 			break;	/* goto sizeof (int) option return */
2737 		case IPV6_MULTICAST_LOOP:
2738 			*i1 = connp->conn_multicast_loop;
2739 			break;	/* goto sizeof (int) option return */
2740 		case IPV6_JOIN_GROUP:
2741 		case IPV6_LEAVE_GROUP:
2742 		case MCAST_JOIN_GROUP:
2743 		case MCAST_LEAVE_GROUP:
2744 		case MCAST_BLOCK_SOURCE:
2745 		case MCAST_UNBLOCK_SOURCE:
2746 		case MCAST_JOIN_SOURCE_GROUP:
2747 		case MCAST_LEAVE_SOURCE_GROUP:
2748 			/* cannot "get" the value for these */
2749 			return (-1);
2750 		case IPV6_BOUND_IF:
2751 			/* Zero if not set */
2752 			*i1 = udp->udp_bound_if;
2753 			break;	/* goto sizeof (int) option return */
2754 		case IPV6_UNSPEC_SRC:
2755 			*i1 = udp->udp_unspec_source;
2756 			break;	/* goto sizeof (int) option return */
2757 		case IPV6_RECVPKTINFO:
2758 			*i1 = udp->udp_ip_recvpktinfo;
2759 			break;	/* goto sizeof (int) option return */
2760 		case IPV6_RECVTCLASS:
2761 			*i1 = udp->udp_ipv6_recvtclass;
2762 			break;	/* goto sizeof (int) option return */
2763 		case IPV6_RECVPATHMTU:
2764 			*i1 = udp->udp_ipv6_recvpathmtu;
2765 			break;	/* goto sizeof (int) option return */
2766 		case IPV6_RECVHOPLIMIT:
2767 			*i1 = udp->udp_ipv6_recvhoplimit;
2768 			break;	/* goto sizeof (int) option return */
2769 		case IPV6_RECVHOPOPTS:
2770 			*i1 = udp->udp_ipv6_recvhopopts;
2771 			break;	/* goto sizeof (int) option return */
2772 		case IPV6_RECVDSTOPTS:
2773 			*i1 = udp->udp_ipv6_recvdstopts;
2774 			break;	/* goto sizeof (int) option return */
2775 		case _OLD_IPV6_RECVDSTOPTS:
2776 			*i1 = udp->udp_old_ipv6_recvdstopts;
2777 			break;	/* goto sizeof (int) option return */
2778 		case IPV6_RECVRTHDRDSTOPTS:
2779 			*i1 = udp->udp_ipv6_recvrthdrdstopts;
2780 			break;	/* goto sizeof (int) option return */
2781 		case IPV6_RECVRTHDR:
2782 			*i1 = udp->udp_ipv6_recvrthdr;
2783 			break;	/* goto sizeof (int) option return */
2784 		case IPV6_PKTINFO: {
2785 			/* XXX assumes that caller has room for max size! */
2786 			struct in6_pktinfo *pkti;
2787 
2788 			pkti = (struct in6_pktinfo *)ptr;
2789 			if (ipp->ipp_fields & IPPF_IFINDEX)
2790 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
2791 			else
2792 				pkti->ipi6_ifindex = 0;
2793 			if (ipp->ipp_fields & IPPF_ADDR)
2794 				pkti->ipi6_addr = ipp->ipp_addr;
2795 			else
2796 				pkti->ipi6_addr = ipv6_all_zeros;
2797 			return (sizeof (struct in6_pktinfo));
2798 		}
2799 		case IPV6_TCLASS:
2800 			if (ipp->ipp_fields & IPPF_TCLASS)
2801 				*i1 = ipp->ipp_tclass;
2802 			else
2803 				*i1 = IPV6_FLOW_TCLASS(
2804 				    IPV6_DEFAULT_VERS_AND_FLOW);
2805 			break;	/* goto sizeof (int) option return */
2806 		case IPV6_NEXTHOP: {
2807 			sin6_t *sin6 = (sin6_t *)ptr;
2808 
2809 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
2810 				return (0);
2811 			*sin6 = sin6_null;
2812 			sin6->sin6_family = AF_INET6;
2813 			sin6->sin6_addr = ipp->ipp_nexthop;
2814 			return (sizeof (sin6_t));
2815 		}
2816 		case IPV6_HOPOPTS:
2817 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
2818 				return (0);
2819 			if (ipp->ipp_hopoptslen <= udp->udp_label_len_v6)
2820 				return (0);
2821 			/*
2822 			 * The cipso/label option is added by kernel.
2823 			 * User is not usually aware of this option.
2824 			 * We copy out the hbh opt after the label option.
2825 			 */
2826 			bcopy((char *)ipp->ipp_hopopts + udp->udp_label_len_v6,
2827 			    ptr, ipp->ipp_hopoptslen - udp->udp_label_len_v6);
2828 			if (udp->udp_label_len_v6 > 0) {
2829 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
2830 				ptr[1] = (ipp->ipp_hopoptslen -
2831 				    udp->udp_label_len_v6 + 7) / 8 - 1;
2832 			}
2833 			return (ipp->ipp_hopoptslen - udp->udp_label_len_v6);
2834 		case IPV6_RTHDRDSTOPTS:
2835 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
2836 				return (0);
2837 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
2838 			return (ipp->ipp_rtdstoptslen);
2839 		case IPV6_RTHDR:
2840 			if (!(ipp->ipp_fields & IPPF_RTHDR))
2841 				return (0);
2842 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
2843 			return (ipp->ipp_rthdrlen);
2844 		case IPV6_DSTOPTS:
2845 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
2846 				return (0);
2847 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
2848 			return (ipp->ipp_dstoptslen);
2849 		case IPV6_PATHMTU:
2850 			return (ip_fill_mtuinfo(&udp->udp_v6dst,
2851 			    udp->udp_dstport, (struct ip6_mtuinfo *)ptr,
2852 			    us->us_netstack));
2853 		default:
2854 			return (-1);
2855 		}
2856 		break;
2857 	case IPPROTO_UDP:
2858 		switch (name) {
2859 		case UDP_ANONPRIVBIND:
2860 			*i1 = udp->udp_anon_priv_bind;
2861 			break;
2862 		case UDP_EXCLBIND:
2863 			*i1 = udp->udp_exclbind ? UDP_EXCLBIND : 0;
2864 			break;
2865 		case UDP_RCVHDR:
2866 			*i1 = udp->udp_rcvhdr ? 1 : 0;
2867 			break;
2868 		case UDP_NAT_T_ENDPOINT:
2869 			*i1 = udp->udp_nat_t_endpoint;
2870 			break;
2871 		default:
2872 			return (-1);
2873 		}
2874 		break;
2875 	default:
2876 		return (-1);
2877 	}
2878 	return (sizeof (int));
2879 }
2880 
2881 int
2882 udp_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
2883 {
2884 	udp_t	*udp;
2885 	int	err;
2886 
2887 	udp = Q_TO_UDP(q);
2888 
2889 	rw_enter(&udp->udp_rwlock, RW_READER);
2890 	err = udp_opt_get_locked(q, level, name, ptr);
2891 	rw_exit(&udp->udp_rwlock);
2892 	return (err);
2893 }
2894 
2895 /*
2896  * This routine sets socket options.
2897  */
2898 /* ARGSUSED */
2899 int
2900 udp_opt_set_locked(queue_t *q, uint_t optset_context, int level,
2901     int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
2902     uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
2903 {
2904 	udpattrs_t *attrs = thisdg_attrs;
2905 	int	*i1 = (int *)invalp;
2906 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
2907 	boolean_t checkonly;
2908 	int	error;
2909 	conn_t	*connp;
2910 	udp_t	*udp;
2911 	uint_t	newlen;
2912 	udp_stack_t *us;
2913 	size_t	sth_wroff;
2914 
2915 	connp = Q_TO_CONN(q);
2916 	udp = connp->conn_udp;
2917 	us = udp->udp_us;
2918 
2919 	switch (optset_context) {
2920 	case SETFN_OPTCOM_CHECKONLY:
2921 		checkonly = B_TRUE;
2922 		/*
2923 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
2924 		 * inlen != 0 implies value supplied and
2925 		 * 	we have to "pretend" to set it.
2926 		 * inlen == 0 implies that there is no
2927 		 * 	value part in T_CHECK request and just validation
2928 		 * done elsewhere should be enough, we just return here.
2929 		 */
2930 		if (inlen == 0) {
2931 			*outlenp = 0;
2932 			return (0);
2933 		}
2934 		break;
2935 	case SETFN_OPTCOM_NEGOTIATE:
2936 		checkonly = B_FALSE;
2937 		break;
2938 	case SETFN_UD_NEGOTIATE:
2939 	case SETFN_CONN_NEGOTIATE:
2940 		checkonly = B_FALSE;
2941 		/*
2942 		 * Negotiating local and "association-related" options
2943 		 * through T_UNITDATA_REQ.
2944 		 *
2945 		 * Following routine can filter out ones we do not
2946 		 * want to be "set" this way.
2947 		 */
2948 		if (!udp_opt_allow_udr_set(level, name)) {
2949 			*outlenp = 0;
2950 			return (EINVAL);
2951 		}
2952 		break;
2953 	default:
2954 		/*
2955 		 * We should never get here
2956 		 */
2957 		*outlenp = 0;
2958 		return (EINVAL);
2959 	}
2960 
2961 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
2962 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
2963 
2964 	/*
2965 	 * For fixed length options, no sanity check
2966 	 * of passed in length is done. It is assumed *_optcom_req()
2967 	 * routines do the right thing.
2968 	 */
2969 
2970 	switch (level) {
2971 	case SOL_SOCKET:
2972 		switch (name) {
2973 		case SO_REUSEADDR:
2974 			if (!checkonly)
2975 				udp->udp_reuseaddr = onoff;
2976 			break;
2977 		case SO_DEBUG:
2978 			if (!checkonly)
2979 				udp->udp_debug = onoff;
2980 			break;
2981 		/*
2982 		 * The following three items are available here,
2983 		 * but are only meaningful to IP.
2984 		 */
2985 		case SO_DONTROUTE:
2986 			if (!checkonly)
2987 				udp->udp_dontroute = onoff;
2988 			break;
2989 		case SO_USELOOPBACK:
2990 			if (!checkonly)
2991 				udp->udp_useloopback = onoff;
2992 			break;
2993 		case SO_BROADCAST:
2994 			if (!checkonly)
2995 				udp->udp_broadcast = onoff;
2996 			break;
2997 
2998 		case SO_SNDBUF:
2999 			if (*i1 > us->us_max_buf) {
3000 				*outlenp = 0;
3001 				return (ENOBUFS);
3002 			}
3003 			if (!checkonly) {
3004 				q->q_hiwat = *i1;
3005 			}
3006 			break;
3007 		case SO_RCVBUF:
3008 			if (*i1 > us->us_max_buf) {
3009 				*outlenp = 0;
3010 				return (ENOBUFS);
3011 			}
3012 			if (!checkonly) {
3013 				RD(q)->q_hiwat = *i1;
3014 				rw_exit(&udp->udp_rwlock);
3015 				(void) mi_set_sth_hiwat(RD(q),
3016 				    udp_set_rcv_hiwat(udp, *i1));
3017 				rw_enter(&udp->udp_rwlock, RW_WRITER);
3018 			}
3019 			break;
3020 		case SO_DGRAM_ERRIND:
3021 			if (!checkonly)
3022 				udp->udp_dgram_errind = onoff;
3023 			break;
3024 		case SO_RECVUCRED:
3025 			if (!checkonly)
3026 				udp->udp_recvucred = onoff;
3027 			break;
3028 		case SO_ALLZONES:
3029 			/*
3030 			 * "soft" error (negative)
3031 			 * option not handled at this level
3032 			 * Do not modify *outlenp.
3033 			 */
3034 			return (-EINVAL);
3035 		case SO_TIMESTAMP:
3036 			if (!checkonly)
3037 				udp->udp_timestamp = onoff;
3038 			break;
3039 		case SO_ANON_MLP:
3040 			if (!checkonly)
3041 				udp->udp_anon_mlp = onoff;
3042 			break;
3043 		case SO_MAC_EXEMPT:
3044 			if (secpolicy_net_mac_aware(cr) != 0 ||
3045 			    udp->udp_state != TS_UNBND)
3046 				return (EACCES);
3047 			if (!checkonly)
3048 				udp->udp_mac_exempt = onoff;
3049 			break;
3050 		case SCM_UCRED: {
3051 			struct ucred_s *ucr;
3052 			cred_t *cr, *newcr;
3053 			ts_label_t *tsl;
3054 
3055 			/*
3056 			 * Only sockets that have proper privileges and are
3057 			 * bound to MLPs will have any other value here, so
3058 			 * this implicitly tests for privilege to set label.
3059 			 */
3060 			if (connp->conn_mlp_type == mlptSingle)
3061 				break;
3062 			ucr = (struct ucred_s *)invalp;
3063 			if (inlen != ucredsize ||
3064 			    ucr->uc_labeloff < sizeof (*ucr) ||
3065 			    ucr->uc_labeloff + sizeof (bslabel_t) > inlen)
3066 				return (EINVAL);
3067 			if (!checkonly) {
3068 				mblk_t *mb;
3069 
3070 				if (attrs == NULL ||
3071 				    (mb = attrs->udpattr_mb) == NULL)
3072 					return (EINVAL);
3073 				if ((cr = DB_CRED(mb)) == NULL)
3074 					cr = udp->udp_connp->conn_cred;
3075 				ASSERT(cr != NULL);
3076 				if ((tsl = crgetlabel(cr)) == NULL)
3077 					return (EINVAL);
3078 				newcr = copycred_from_bslabel(cr, UCLABEL(ucr),
3079 				    tsl->tsl_doi, KM_NOSLEEP);
3080 				if (newcr == NULL)
3081 					return (ENOSR);
3082 				mblk_setcred(mb, newcr);
3083 				attrs->udpattr_credset = B_TRUE;
3084 				crfree(newcr);
3085 			}
3086 			break;
3087 		}
3088 		case SO_EXCLBIND:
3089 			if (!checkonly)
3090 				udp->udp_exclbind = onoff;
3091 			break;
3092 		default:
3093 			*outlenp = 0;
3094 			return (EINVAL);
3095 		}
3096 		break;
3097 	case IPPROTO_IP:
3098 		if (udp->udp_family != AF_INET) {
3099 			*outlenp = 0;
3100 			return (ENOPROTOOPT);
3101 		}
3102 		switch (name) {
3103 		case IP_OPTIONS:
3104 		case T_IP_OPTIONS:
3105 			/* Save options for use by IP. */
3106 			newlen = inlen + udp->udp_label_len;
3107 			if ((inlen & 0x3) || newlen > IP_MAX_OPT_LENGTH) {
3108 				*outlenp = 0;
3109 				return (EINVAL);
3110 			}
3111 			if (checkonly)
3112 				break;
3113 
3114 			/*
3115 			 * Update the stored options taking into account
3116 			 * any CIPSO option which we should not overwrite.
3117 			 */
3118 			if (!tsol_option_set(&udp->udp_ip_snd_options,
3119 			    &udp->udp_ip_snd_options_len,
3120 			    udp->udp_label_len, invalp, inlen)) {
3121 				*outlenp = 0;
3122 				return (ENOMEM);
3123 			}
3124 
3125 			udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
3126 			    UDPH_SIZE + udp->udp_ip_snd_options_len;
3127 			sth_wroff = udp->udp_max_hdr_len + us->us_wroff_extra;
3128 			rw_exit(&udp->udp_rwlock);
3129 			(void) mi_set_sth_wroff(RD(q), sth_wroff);
3130 			rw_enter(&udp->udp_rwlock, RW_WRITER);
3131 			break;
3132 
3133 		case IP_TTL:
3134 			if (!checkonly) {
3135 				udp->udp_ttl = (uchar_t)*i1;
3136 			}
3137 			break;
3138 		case IP_TOS:
3139 		case T_IP_TOS:
3140 			if (!checkonly) {
3141 				udp->udp_type_of_service = (uchar_t)*i1;
3142 			}
3143 			break;
3144 		case IP_MULTICAST_IF: {
3145 			/*
3146 			 * TODO should check OPTMGMT reply and undo this if
3147 			 * there is an error.
3148 			 */
3149 			struct in_addr *inap = (struct in_addr *)invalp;
3150 			if (!checkonly) {
3151 				udp->udp_multicast_if_addr =
3152 				    inap->s_addr;
3153 			}
3154 			break;
3155 		}
3156 		case IP_MULTICAST_TTL:
3157 			if (!checkonly)
3158 				udp->udp_multicast_ttl = *invalp;
3159 			break;
3160 		case IP_MULTICAST_LOOP:
3161 			if (!checkonly)
3162 				connp->conn_multicast_loop = *invalp;
3163 			break;
3164 		case IP_RECVOPTS:
3165 			if (!checkonly)
3166 				udp->udp_recvopts = onoff;
3167 			break;
3168 		case IP_RECVDSTADDR:
3169 			if (!checkonly)
3170 				udp->udp_recvdstaddr = onoff;
3171 			break;
3172 		case IP_RECVIF:
3173 			if (!checkonly)
3174 				udp->udp_recvif = onoff;
3175 			break;
3176 		case IP_RECVSLLA:
3177 			if (!checkonly)
3178 				udp->udp_recvslla = onoff;
3179 			break;
3180 		case IP_RECVTTL:
3181 			if (!checkonly)
3182 				udp->udp_recvttl = onoff;
3183 			break;
3184 		case IP_PKTINFO: {
3185 			/*
3186 			 * This also handles IP_RECVPKTINFO.
3187 			 * IP_PKTINFO and IP_RECVPKTINFO have same value.
3188 			 * Differentiation is based on the size of the
3189 			 * argument passed in.
3190 			 */
3191 			struct in_pktinfo *pktinfop;
3192 			ip4_pkt_t *attr_pktinfop;
3193 
3194 			if (checkonly)
3195 				break;
3196 
3197 			if (inlen == sizeof (int)) {
3198 				/*
3199 				 * This is IP_RECVPKTINFO option.
3200 				 * Keep a local copy of whether this option is
3201 				 * set or not and pass it down to IP for
3202 				 * processing.
3203 				 */
3204 
3205 				udp->udp_ip_recvpktinfo = onoff;
3206 				return (-EINVAL);
3207 			}
3208 
3209 			if (attrs == NULL ||
3210 			    (attr_pktinfop = attrs->udpattr_ipp4) == NULL) {
3211 				/*
3212 				 * sticky option or no buffer to return
3213 				 * the results.
3214 				 */
3215 				return (EINVAL);
3216 			}
3217 
3218 			if (inlen != sizeof (struct in_pktinfo))
3219 				return (EINVAL);
3220 
3221 			pktinfop = (struct in_pktinfo *)invalp;
3222 
3223 			/*
3224 			 * At least one of the values should be specified
3225 			 */
3226 			if (pktinfop->ipi_ifindex == 0 &&
3227 			    pktinfop->ipi_spec_dst.s_addr == INADDR_ANY) {
3228 				return (EINVAL);
3229 			}
3230 
3231 			attr_pktinfop->ip4_addr = pktinfop->ipi_spec_dst.s_addr;
3232 			attr_pktinfop->ip4_ill_index = pktinfop->ipi_ifindex;
3233 
3234 			break;
3235 		}
3236 		case IP_ADD_MEMBERSHIP:
3237 		case IP_DROP_MEMBERSHIP:
3238 		case IP_BLOCK_SOURCE:
3239 		case IP_UNBLOCK_SOURCE:
3240 		case IP_ADD_SOURCE_MEMBERSHIP:
3241 		case IP_DROP_SOURCE_MEMBERSHIP:
3242 		case MCAST_JOIN_GROUP:
3243 		case MCAST_LEAVE_GROUP:
3244 		case MCAST_BLOCK_SOURCE:
3245 		case MCAST_UNBLOCK_SOURCE:
3246 		case MCAST_JOIN_SOURCE_GROUP:
3247 		case MCAST_LEAVE_SOURCE_GROUP:
3248 		case IP_SEC_OPT:
3249 		case IP_NEXTHOP:
3250 			/*
3251 			 * "soft" error (negative)
3252 			 * option not handled at this level
3253 			 * Do not modify *outlenp.
3254 			 */
3255 			return (-EINVAL);
3256 		case IP_BOUND_IF:
3257 			if (!checkonly)
3258 				udp->udp_bound_if = *i1;
3259 			break;
3260 		case IP_UNSPEC_SRC:
3261 			if (!checkonly)
3262 				udp->udp_unspec_source = onoff;
3263 			break;
3264 		case IP_XMIT_IF:
3265 			if (!checkonly)
3266 				udp->udp_xmit_if = *i1;
3267 			break;
3268 		default:
3269 			*outlenp = 0;
3270 			return (EINVAL);
3271 		}
3272 		break;
3273 	case IPPROTO_IPV6: {
3274 		ip6_pkt_t		*ipp;
3275 		boolean_t		sticky;
3276 
3277 		if (udp->udp_family != AF_INET6) {
3278 			*outlenp = 0;
3279 			return (ENOPROTOOPT);
3280 		}
3281 		/*
3282 		 * Deal with both sticky options and ancillary data
3283 		 */
3284 		sticky = B_FALSE;
3285 		if (attrs == NULL || (ipp = attrs->udpattr_ipp6) ==
3286 		    NULL) {
3287 			/* sticky options, or none */
3288 			ipp = &udp->udp_sticky_ipp;
3289 			sticky = B_TRUE;
3290 		}
3291 
3292 		switch (name) {
3293 		case IPV6_MULTICAST_IF:
3294 			if (!checkonly)
3295 				udp->udp_multicast_if_index = *i1;
3296 			break;
3297 		case IPV6_UNICAST_HOPS:
3298 			/* -1 means use default */
3299 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
3300 				*outlenp = 0;
3301 				return (EINVAL);
3302 			}
3303 			if (!checkonly) {
3304 				if (*i1 == -1) {
3305 					udp->udp_ttl = ipp->ipp_unicast_hops =
3306 					    us->us_ipv6_hoplimit;
3307 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
3308 					/* Pass modified value to IP. */
3309 					*i1 = udp->udp_ttl;
3310 				} else {
3311 					udp->udp_ttl = ipp->ipp_unicast_hops =
3312 					    (uint8_t)*i1;
3313 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
3314 				}
3315 				/* Rebuild the header template */
3316 				error = udp_build_hdrs(udp);
3317 				if (error != 0) {
3318 					*outlenp = 0;
3319 					return (error);
3320 				}
3321 			}
3322 			break;
3323 		case IPV6_MULTICAST_HOPS:
3324 			/* -1 means use default */
3325 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
3326 				*outlenp = 0;
3327 				return (EINVAL);
3328 			}
3329 			if (!checkonly) {
3330 				if (*i1 == -1) {
3331 					udp->udp_multicast_ttl =
3332 					    ipp->ipp_multicast_hops =
3333 					    IP_DEFAULT_MULTICAST_TTL;
3334 					ipp->ipp_fields &= ~IPPF_MULTICAST_HOPS;
3335 					/* Pass modified value to IP. */
3336 					*i1 = udp->udp_multicast_ttl;
3337 				} else {
3338 					udp->udp_multicast_ttl =
3339 					    ipp->ipp_multicast_hops =
3340 					    (uint8_t)*i1;
3341 					ipp->ipp_fields |= IPPF_MULTICAST_HOPS;
3342 				}
3343 			}
3344 			break;
3345 		case IPV6_MULTICAST_LOOP:
3346 			if (*i1 != 0 && *i1 != 1) {
3347 				*outlenp = 0;
3348 				return (EINVAL);
3349 			}
3350 			if (!checkonly)
3351 				connp->conn_multicast_loop = *i1;
3352 			break;
3353 		case IPV6_JOIN_GROUP:
3354 		case IPV6_LEAVE_GROUP:
3355 		case MCAST_JOIN_GROUP:
3356 		case MCAST_LEAVE_GROUP:
3357 		case MCAST_BLOCK_SOURCE:
3358 		case MCAST_UNBLOCK_SOURCE:
3359 		case MCAST_JOIN_SOURCE_GROUP:
3360 		case MCAST_LEAVE_SOURCE_GROUP:
3361 			/*
3362 			 * "soft" error (negative)
3363 			 * option not handled at this level
3364 			 * Note: Do not modify *outlenp
3365 			 */
3366 			return (-EINVAL);
3367 		case IPV6_BOUND_IF:
3368 			if (!checkonly)
3369 				udp->udp_bound_if = *i1;
3370 			break;
3371 		case IPV6_UNSPEC_SRC:
3372 			if (!checkonly)
3373 				udp->udp_unspec_source = onoff;
3374 			break;
3375 		/*
3376 		 * Set boolean switches for ancillary data delivery
3377 		 */
3378 		case IPV6_RECVPKTINFO:
3379 			if (!checkonly)
3380 				udp->udp_ip_recvpktinfo = onoff;
3381 			break;
3382 		case IPV6_RECVTCLASS:
3383 			if (!checkonly) {
3384 				udp->udp_ipv6_recvtclass = onoff;
3385 			}
3386 			break;
3387 		case IPV6_RECVPATHMTU:
3388 			if (!checkonly) {
3389 				udp->udp_ipv6_recvpathmtu = onoff;
3390 			}
3391 			break;
3392 		case IPV6_RECVHOPLIMIT:
3393 			if (!checkonly)
3394 				udp->udp_ipv6_recvhoplimit = onoff;
3395 			break;
3396 		case IPV6_RECVHOPOPTS:
3397 			if (!checkonly)
3398 				udp->udp_ipv6_recvhopopts = onoff;
3399 			break;
3400 		case IPV6_RECVDSTOPTS:
3401 			if (!checkonly)
3402 				udp->udp_ipv6_recvdstopts = onoff;
3403 			break;
3404 		case _OLD_IPV6_RECVDSTOPTS:
3405 			if (!checkonly)
3406 				udp->udp_old_ipv6_recvdstopts = onoff;
3407 			break;
3408 		case IPV6_RECVRTHDRDSTOPTS:
3409 			if (!checkonly)
3410 				udp->udp_ipv6_recvrthdrdstopts = onoff;
3411 			break;
3412 		case IPV6_RECVRTHDR:
3413 			if (!checkonly)
3414 				udp->udp_ipv6_recvrthdr = onoff;
3415 			break;
3416 		/*
3417 		 * Set sticky options or ancillary data.
3418 		 * If sticky options, (re)build any extension headers
3419 		 * that might be needed as a result.
3420 		 */
3421 		case IPV6_PKTINFO:
3422 			/*
3423 			 * The source address and ifindex are verified
3424 			 * in ip_opt_set(). For ancillary data the
3425 			 * source address is checked in ip_wput_v6.
3426 			 */
3427 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
3428 				return (EINVAL);
3429 			if (checkonly)
3430 				break;
3431 
3432 			if (inlen == 0) {
3433 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
3434 				ipp->ipp_sticky_ignored |=
3435 				    (IPPF_IFINDEX|IPPF_ADDR);
3436 			} else {
3437 				struct in6_pktinfo *pkti;
3438 
3439 				pkti = (struct in6_pktinfo *)invalp;
3440 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
3441 				ipp->ipp_addr = pkti->ipi6_addr;
3442 				if (ipp->ipp_ifindex != 0)
3443 					ipp->ipp_fields |= IPPF_IFINDEX;
3444 				else
3445 					ipp->ipp_fields &= ~IPPF_IFINDEX;
3446 				if (!IN6_IS_ADDR_UNSPECIFIED(
3447 				    &ipp->ipp_addr))
3448 					ipp->ipp_fields |= IPPF_ADDR;
3449 				else
3450 					ipp->ipp_fields &= ~IPPF_ADDR;
3451 			}
3452 			if (sticky) {
3453 				error = udp_build_hdrs(udp);
3454 				if (error != 0)
3455 					return (error);
3456 			}
3457 			break;
3458 		case IPV6_HOPLIMIT:
3459 			if (sticky)
3460 				return (EINVAL);
3461 			if (inlen != 0 && inlen != sizeof (int))
3462 				return (EINVAL);
3463 			if (checkonly)
3464 				break;
3465 
3466 			if (inlen == 0) {
3467 				ipp->ipp_fields &= ~IPPF_HOPLIMIT;
3468 				ipp->ipp_sticky_ignored |= IPPF_HOPLIMIT;
3469 			} else {
3470 				if (*i1 > 255 || *i1 < -1)
3471 					return (EINVAL);
3472 				if (*i1 == -1)
3473 					ipp->ipp_hoplimit =
3474 					    us->us_ipv6_hoplimit;
3475 				else
3476 					ipp->ipp_hoplimit = *i1;
3477 				ipp->ipp_fields |= IPPF_HOPLIMIT;
3478 			}
3479 			break;
3480 		case IPV6_TCLASS:
3481 			if (inlen != 0 && inlen != sizeof (int))
3482 				return (EINVAL);
3483 			if (checkonly)
3484 				break;
3485 
3486 			if (inlen == 0) {
3487 				ipp->ipp_fields &= ~IPPF_TCLASS;
3488 				ipp->ipp_sticky_ignored |= IPPF_TCLASS;
3489 			} else {
3490 				if (*i1 > 255 || *i1 < -1)
3491 					return (EINVAL);
3492 				if (*i1 == -1)
3493 					ipp->ipp_tclass = 0;
3494 				else
3495 					ipp->ipp_tclass = *i1;
3496 				ipp->ipp_fields |= IPPF_TCLASS;
3497 			}
3498 			if (sticky) {
3499 				error = udp_build_hdrs(udp);
3500 				if (error != 0)
3501 					return (error);
3502 			}
3503 			break;
3504 		case IPV6_NEXTHOP:
3505 			/*
3506 			 * IP will verify that the nexthop is reachable
3507 			 * and fail for sticky options.
3508 			 */
3509 			if (inlen != 0 && inlen != sizeof (sin6_t))
3510 				return (EINVAL);
3511 			if (checkonly)
3512 				break;
3513 
3514 			if (inlen == 0) {
3515 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
3516 				ipp->ipp_sticky_ignored |= IPPF_NEXTHOP;
3517 			} else {
3518 				sin6_t *sin6 = (sin6_t *)invalp;
3519 
3520 				if (sin6->sin6_family != AF_INET6)
3521 					return (EAFNOSUPPORT);
3522 				if (IN6_IS_ADDR_V4MAPPED(
3523 				    &sin6->sin6_addr))
3524 					return (EADDRNOTAVAIL);
3525 				ipp->ipp_nexthop = sin6->sin6_addr;
3526 				if (!IN6_IS_ADDR_UNSPECIFIED(
3527 				    &ipp->ipp_nexthop))
3528 					ipp->ipp_fields |= IPPF_NEXTHOP;
3529 				else
3530 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
3531 			}
3532 			if (sticky) {
3533 				error = udp_build_hdrs(udp);
3534 				if (error != 0)
3535 					return (error);
3536 			}
3537 			break;
3538 		case IPV6_HOPOPTS: {
3539 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
3540 			/*
3541 			 * Sanity checks - minimum size, size a multiple of
3542 			 * eight bytes, and matching size passed in.
3543 			 */
3544 			if (inlen != 0 &&
3545 			    inlen != (8 * (hopts->ip6h_len + 1)))
3546 				return (EINVAL);
3547 
3548 			if (checkonly)
3549 				break;
3550 
3551 			error = optcom_pkt_set(invalp, inlen, sticky,
3552 			    (uchar_t **)&ipp->ipp_hopopts,
3553 			    &ipp->ipp_hopoptslen,
3554 			    sticky ? udp->udp_label_len_v6 : 0);
3555 			if (error != 0)
3556 				return (error);
3557 			if (ipp->ipp_hopoptslen == 0) {
3558 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
3559 				ipp->ipp_sticky_ignored |= IPPF_HOPOPTS;
3560 			} else {
3561 				ipp->ipp_fields |= IPPF_HOPOPTS;
3562 			}
3563 			if (sticky) {
3564 				error = udp_build_hdrs(udp);
3565 				if (error != 0)
3566 					return (error);
3567 			}
3568 			break;
3569 		}
3570 		case IPV6_RTHDRDSTOPTS: {
3571 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
3572 
3573 			/*
3574 			 * Sanity checks - minimum size, size a multiple of
3575 			 * eight bytes, and matching size passed in.
3576 			 */
3577 			if (inlen != 0 &&
3578 			    inlen != (8 * (dopts->ip6d_len + 1)))
3579 				return (EINVAL);
3580 
3581 			if (checkonly)
3582 				break;
3583 
3584 			if (inlen == 0) {
3585 				if (sticky &&
3586 				    (ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) {
3587 					kmem_free(ipp->ipp_rtdstopts,
3588 					    ipp->ipp_rtdstoptslen);
3589 					ipp->ipp_rtdstopts = NULL;
3590 					ipp->ipp_rtdstoptslen = 0;
3591 				}
3592 
3593 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
3594 				ipp->ipp_sticky_ignored |= IPPF_RTDSTOPTS;
3595 			} else {
3596 				error = optcom_pkt_set(invalp, inlen, sticky,
3597 				    (uchar_t **)&ipp->ipp_rtdstopts,
3598 				    &ipp->ipp_rtdstoptslen, 0);
3599 				if (error != 0)
3600 					return (error);
3601 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
3602 			}
3603 			if (sticky) {
3604 				error = udp_build_hdrs(udp);
3605 				if (error != 0)
3606 					return (error);
3607 			}
3608 			break;
3609 		}
3610 		case IPV6_DSTOPTS: {
3611 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
3612 
3613 			/*
3614 			 * Sanity checks - minimum size, size a multiple of
3615 			 * eight bytes, and matching size passed in.
3616 			 */
3617 			if (inlen != 0 &&
3618 			    inlen != (8 * (dopts->ip6d_len + 1)))
3619 				return (EINVAL);
3620 
3621 			if (checkonly)
3622 				break;
3623 
3624 			if (inlen == 0) {
3625 				if (sticky &&
3626 				    (ipp->ipp_fields & IPPF_DSTOPTS) != 0) {
3627 					kmem_free(ipp->ipp_dstopts,
3628 					    ipp->ipp_dstoptslen);
3629 					ipp->ipp_dstopts = NULL;
3630 					ipp->ipp_dstoptslen = 0;
3631 				}
3632 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
3633 				ipp->ipp_sticky_ignored |= IPPF_DSTOPTS;
3634 			} else {
3635 				error = optcom_pkt_set(invalp, inlen, sticky,
3636 				    (uchar_t **)&ipp->ipp_dstopts,
3637 				    &ipp->ipp_dstoptslen, 0);
3638 				if (error != 0)
3639 					return (error);
3640 				ipp->ipp_fields |= IPPF_DSTOPTS;
3641 			}
3642 			if (sticky) {
3643 				error = udp_build_hdrs(udp);
3644 				if (error != 0)
3645 					return (error);
3646 			}
3647 			break;
3648 		}
3649 		case IPV6_RTHDR: {
3650 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
3651 
3652 			/*
3653 			 * Sanity checks - minimum size, size a multiple of
3654 			 * eight bytes, and matching size passed in.
3655 			 */
3656 			if (inlen != 0 &&
3657 			    inlen != (8 * (rt->ip6r_len + 1)))
3658 				return (EINVAL);
3659 
3660 			if (checkonly)
3661 				break;
3662 
3663 			if (inlen == 0) {
3664 				if (sticky &&
3665 				    (ipp->ipp_fields & IPPF_RTHDR) != 0) {
3666 					kmem_free(ipp->ipp_rthdr,
3667 					    ipp->ipp_rthdrlen);
3668 					ipp->ipp_rthdr = NULL;
3669 					ipp->ipp_rthdrlen = 0;
3670 				}
3671 				ipp->ipp_fields &= ~IPPF_RTHDR;
3672 				ipp->ipp_sticky_ignored |= IPPF_RTHDR;
3673 			} else {
3674 				error = optcom_pkt_set(invalp, inlen, sticky,
3675 				    (uchar_t **)&ipp->ipp_rthdr,
3676 				    &ipp->ipp_rthdrlen, 0);
3677 				if (error != 0)
3678 					return (error);
3679 				ipp->ipp_fields |= IPPF_RTHDR;
3680 			}
3681 			if (sticky) {
3682 				error = udp_build_hdrs(udp);
3683 				if (error != 0)
3684 					return (error);
3685 			}
3686 			break;
3687 		}
3688 
3689 		case IPV6_DONTFRAG:
3690 			if (checkonly)
3691 				break;
3692 
3693 			if (onoff) {
3694 				ipp->ipp_fields |= IPPF_DONTFRAG;
3695 			} else {
3696 				ipp->ipp_fields &= ~IPPF_DONTFRAG;
3697 			}
3698 			break;
3699 
3700 		case IPV6_USE_MIN_MTU:
3701 			if (inlen != sizeof (int))
3702 				return (EINVAL);
3703 
3704 			if (*i1 < -1 || *i1 > 1)
3705 				return (EINVAL);
3706 
3707 			if (checkonly)
3708 				break;
3709 
3710 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
3711 			ipp->ipp_use_min_mtu = *i1;
3712 			break;
3713 
3714 		case IPV6_BOUND_PIF:
3715 		case IPV6_SEC_OPT:
3716 		case IPV6_DONTFAILOVER_IF:
3717 		case IPV6_SRC_PREFERENCES:
3718 		case IPV6_V6ONLY:
3719 			/* Handled at the IP level */
3720 			return (-EINVAL);
3721 		default:
3722 			*outlenp = 0;
3723 			return (EINVAL);
3724 		}
3725 		break;
3726 		}		/* end IPPROTO_IPV6 */
3727 	case IPPROTO_UDP:
3728 		switch (name) {
3729 		case UDP_ANONPRIVBIND:
3730 			if ((error = secpolicy_net_privaddr(cr, 0)) != 0) {
3731 				*outlenp = 0;
3732 				return (error);
3733 			}
3734 			if (!checkonly) {
3735 				udp->udp_anon_priv_bind = onoff;
3736 			}
3737 			break;
3738 		case UDP_EXCLBIND:
3739 			if (!checkonly)
3740 				udp->udp_exclbind = onoff;
3741 			break;
3742 		case UDP_RCVHDR:
3743 			if (!checkonly)
3744 				udp->udp_rcvhdr = onoff;
3745 			break;
3746 		case UDP_NAT_T_ENDPOINT:
3747 			if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) {
3748 				*outlenp = 0;
3749 				return (error);
3750 			}
3751 
3752 			/*
3753 			 * Use udp_family instead so we can avoid ambiguitites
3754 			 * with AF_INET6 sockets that may switch from IPv4
3755 			 * to IPv6.
3756 			 */
3757 			if (udp->udp_family != AF_INET) {
3758 				*outlenp = 0;
3759 				return (EAFNOSUPPORT);
3760 			}
3761 
3762 			if (!checkonly) {
3763 				udp->udp_nat_t_endpoint = onoff;
3764 
3765 				udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
3766 				    UDPH_SIZE + udp->udp_ip_snd_options_len;
3767 
3768 				/* Also, adjust wroff */
3769 				if (onoff) {
3770 					udp->udp_max_hdr_len +=
3771 					    sizeof (uint32_t);
3772 				}
3773 				(void) mi_set_sth_wroff(RD(q),
3774 				    udp->udp_max_hdr_len + us->us_wroff_extra);
3775 			}
3776 			break;
3777 		default:
3778 			*outlenp = 0;
3779 			return (EINVAL);
3780 		}
3781 		break;
3782 	default:
3783 		*outlenp = 0;
3784 		return (EINVAL);
3785 	}
3786 	/*
3787 	 * Common case of OK return with outval same as inval.
3788 	 */
3789 	if (invalp != outvalp) {
3790 		/* don't trust bcopy for identical src/dst */
3791 		(void) bcopy(invalp, outvalp, inlen);
3792 	}
3793 	*outlenp = inlen;
3794 	return (0);
3795 }
3796 
3797 int
3798 udp_opt_set(queue_t *q, uint_t optset_context, int level,
3799     int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
3800     uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
3801 {
3802 	udp_t	*udp;
3803 	int	err;
3804 
3805 	udp = Q_TO_UDP(q);
3806 
3807 	rw_enter(&udp->udp_rwlock, RW_WRITER);
3808 	err = udp_opt_set_locked(q, optset_context, level, name, inlen, invalp,
3809 	    outlenp, outvalp, thisdg_attrs, cr, mblk);
3810 	rw_exit(&udp->udp_rwlock);
3811 	return (err);
3812 }
3813 
3814 /*
3815  * Update udp_sticky_hdrs based on udp_sticky_ipp, udp_v6src, and udp_ttl.
3816  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
3817  * headers, and the udp header.
3818  * Returns failure if can't allocate memory.
3819  */
3820 static int
3821 udp_build_hdrs(udp_t *udp)
3822 {
3823 	udp_stack_t *us = udp->udp_us;
3824 	uchar_t	*hdrs;
3825 	uint_t	hdrs_len;
3826 	ip6_t	*ip6h;
3827 	ip6i_t	*ip6i;
3828 	udpha_t	*udpha;
3829 	ip6_pkt_t *ipp = &udp->udp_sticky_ipp;
3830 	size_t	sth_wroff;
3831 
3832 	ASSERT(RW_WRITE_HELD(&udp->udp_rwlock));
3833 	hdrs_len = ip_total_hdrs_len_v6(ipp) + UDPH_SIZE;
3834 	ASSERT(hdrs_len != 0);
3835 	if (hdrs_len != udp->udp_sticky_hdrs_len) {
3836 		/* Need to reallocate */
3837 		hdrs = kmem_alloc(hdrs_len, KM_NOSLEEP);
3838 		if (hdrs == NULL)
3839 			return (ENOMEM);
3840 
3841 		if (udp->udp_sticky_hdrs_len != 0) {
3842 			kmem_free(udp->udp_sticky_hdrs,
3843 			    udp->udp_sticky_hdrs_len);
3844 		}
3845 		udp->udp_sticky_hdrs = hdrs;
3846 		udp->udp_sticky_hdrs_len = hdrs_len;
3847 	}
3848 	ip_build_hdrs_v6(udp->udp_sticky_hdrs,
3849 	    udp->udp_sticky_hdrs_len - UDPH_SIZE, ipp, IPPROTO_UDP);
3850 
3851 	/* Set header fields not in ipp */
3852 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
3853 		ip6i = (ip6i_t *)udp->udp_sticky_hdrs;
3854 		ip6h = (ip6_t *)&ip6i[1];
3855 	} else {
3856 		ip6h = (ip6_t *)udp->udp_sticky_hdrs;
3857 	}
3858 
3859 	if (!(ipp->ipp_fields & IPPF_ADDR))
3860 		ip6h->ip6_src = udp->udp_v6src;
3861 
3862 	udpha = (udpha_t *)(udp->udp_sticky_hdrs + hdrs_len - UDPH_SIZE);
3863 	udpha->uha_src_port = udp->udp_port;
3864 
3865 	/* Try to get everything in a single mblk */
3866 	if (hdrs_len > udp->udp_max_hdr_len) {
3867 		udp->udp_max_hdr_len = hdrs_len;
3868 		sth_wroff = udp->udp_max_hdr_len + us->us_wroff_extra;
3869 		rw_exit(&udp->udp_rwlock);
3870 		(void) mi_set_sth_wroff(udp->udp_connp->conn_rq, sth_wroff);
3871 		rw_enter(&udp->udp_rwlock, RW_WRITER);
3872 	}
3873 	return (0);
3874 }
3875 
3876 /*
3877  * This routine retrieves the value of an ND variable in a udpparam_t
3878  * structure.  It is called through nd_getset when a user reads the
3879  * variable.
3880  */
3881 /* ARGSUSED */
3882 static int
3883 udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
3884 {
3885 	udpparam_t *udppa = (udpparam_t *)cp;
3886 
3887 	(void) mi_mpprintf(mp, "%d", udppa->udp_param_value);
3888 	return (0);
3889 }
3890 
3891 /*
3892  * Walk through the param array specified registering each element with the
3893  * named dispatch (ND) handler.
3894  */
3895 static boolean_t
3896 udp_param_register(IDP *ndp, udpparam_t *udppa, int cnt)
3897 {
3898 	for (; cnt-- > 0; udppa++) {
3899 		if (udppa->udp_param_name && udppa->udp_param_name[0]) {
3900 			if (!nd_load(ndp, udppa->udp_param_name,
3901 			    udp_param_get, udp_param_set,
3902 			    (caddr_t)udppa)) {
3903 				nd_free(ndp);
3904 				return (B_FALSE);
3905 			}
3906 		}
3907 	}
3908 	if (!nd_load(ndp, "udp_extra_priv_ports",
3909 	    udp_extra_priv_ports_get, NULL, NULL)) {
3910 		nd_free(ndp);
3911 		return (B_FALSE);
3912 	}
3913 	if (!nd_load(ndp, "udp_extra_priv_ports_add",
3914 	    NULL, udp_extra_priv_ports_add, NULL)) {
3915 		nd_free(ndp);
3916 		return (B_FALSE);
3917 	}
3918 	if (!nd_load(ndp, "udp_extra_priv_ports_del",
3919 	    NULL, udp_extra_priv_ports_del, NULL)) {
3920 		nd_free(ndp);
3921 		return (B_FALSE);
3922 	}
3923 	if (!nd_load(ndp, "udp_status", udp_status_report, NULL,
3924 	    NULL)) {
3925 		nd_free(ndp);
3926 		return (B_FALSE);
3927 	}
3928 	if (!nd_load(ndp, "udp_bind_hash", udp_bind_hash_report, NULL,
3929 	    NULL)) {
3930 		nd_free(ndp);
3931 		return (B_FALSE);
3932 	}
3933 	return (B_TRUE);
3934 }
3935 
3936 /* This routine sets an ND variable in a udpparam_t structure. */
3937 /* ARGSUSED */
3938 static int
3939 udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
3940 {
3941 	long		new_value;
3942 	udpparam_t	*udppa = (udpparam_t *)cp;
3943 
3944 	/*
3945 	 * Fail the request if the new value does not lie within the
3946 	 * required bounds.
3947 	 */
3948 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
3949 	    new_value < udppa->udp_param_min ||
3950 	    new_value > udppa->udp_param_max) {
3951 		return (EINVAL);
3952 	}
3953 
3954 	/* Set the new value */
3955 	udppa->udp_param_value = new_value;
3956 	return (0);
3957 }
3958 
3959 /*
3960  * Copy hop-by-hop option from ipp->ipp_hopopts to the buffer provided (with
3961  * T_opthdr) and return the number of bytes copied.  'dbuf' may be NULL to
3962  * just count the length needed for allocation.  If 'dbuf' is non-NULL,
3963  * then it's assumed to be allocated to be large enough.
3964  *
3965  * Returns zero if trimming of the security option causes all options to go
3966  * away.
3967  */
3968 static size_t
3969 copy_hop_opts(const ip6_pkt_t *ipp, uchar_t *dbuf)
3970 {
3971 	struct T_opthdr *toh;
3972 	size_t hol = ipp->ipp_hopoptslen;
3973 	ip6_hbh_t *dstopt = NULL;
3974 	const ip6_hbh_t *srcopt = ipp->ipp_hopopts;
3975 	size_t tlen, olen, plen;
3976 	boolean_t deleting;
3977 	const struct ip6_opt *sopt, *lastpad;
3978 	struct ip6_opt *dopt;
3979 
3980 	if ((toh = (struct T_opthdr *)dbuf) != NULL) {
3981 		toh->level = IPPROTO_IPV6;
3982 		toh->name = IPV6_HOPOPTS;
3983 		toh->status = 0;
3984 		dstopt = (ip6_hbh_t *)(toh + 1);
3985 	}
3986 
3987 	/*
3988 	 * If labeling is enabled, then skip the label option
3989 	 * but get other options if there are any.
3990 	 */
3991 	if (is_system_labeled()) {
3992 		dopt = NULL;
3993 		if (dstopt != NULL) {
3994 			/* will fill in ip6h_len later */
3995 			dstopt->ip6h_nxt = srcopt->ip6h_nxt;
3996 			dopt = (struct ip6_opt *)(dstopt + 1);
3997 		}
3998 		sopt = (const struct ip6_opt *)(srcopt + 1);
3999 		hol -= sizeof (*srcopt);
4000 		tlen = sizeof (*dstopt);
4001 		lastpad = NULL;
4002 		deleting = B_FALSE;
4003 		/*
4004 		 * This loop finds the first (lastpad pointer) of any number of
4005 		 * pads that preceeds the security option, then treats the
4006 		 * security option as though it were a pad, and then finds the
4007 		 * next non-pad option (or end of list).
4008 		 *
4009 		 * It then treats the entire block as one big pad.  To preserve
4010 		 * alignment of any options that follow, or just the end of the
4011 		 * list, it computes a minimal new padding size that keeps the
4012 		 * same alignment for the next option.
4013 		 *
4014 		 * If it encounters just a sequence of pads with no security
4015 		 * option, those are copied as-is rather than collapsed.
4016 		 *
4017 		 * Note that to handle the end of list case, the code makes one
4018 		 * loop with 'hol' set to zero.
4019 		 */
4020 		for (;;) {
4021 			if (hol > 0) {
4022 				if (sopt->ip6o_type == IP6OPT_PAD1) {
4023 					if (lastpad == NULL)
4024 						lastpad = sopt;
4025 					sopt = (const struct ip6_opt *)
4026 					    &sopt->ip6o_len;
4027 					hol--;
4028 					continue;
4029 				}
4030 				olen = sopt->ip6o_len + sizeof (*sopt);
4031 				if (olen > hol)
4032 					olen = hol;
4033 				if (sopt->ip6o_type == IP6OPT_PADN ||
4034 				    sopt->ip6o_type == ip6opt_ls) {
4035 					if (sopt->ip6o_type == ip6opt_ls)
4036 						deleting = B_TRUE;
4037 					if (lastpad == NULL)
4038 						lastpad = sopt;
4039 					sopt = (const struct ip6_opt *)
4040 					    ((const char *)sopt + olen);
4041 					hol -= olen;
4042 					continue;
4043 				}
4044 			} else {
4045 				/* if nothing was copied at all, then delete */
4046 				if (tlen == sizeof (*dstopt))
4047 					return (0);
4048 				/* last pass; pick up any trailing padding */
4049 				olen = 0;
4050 			}
4051 			if (deleting) {
4052 				/*
4053 				 * compute aligning effect of deleted material
4054 				 * to reproduce with pad.
4055 				 */
4056 				plen = ((const char *)sopt -
4057 				    (const char *)lastpad) & 7;
4058 				tlen += plen;
4059 				if (dopt != NULL) {
4060 					if (plen == 1) {
4061 						dopt->ip6o_type = IP6OPT_PAD1;
4062 					} else if (plen > 1) {
4063 						plen -= sizeof (*dopt);
4064 						dopt->ip6o_type = IP6OPT_PADN;
4065 						dopt->ip6o_len = plen;
4066 						if (plen > 0)
4067 							bzero(dopt + 1, plen);
4068 					}
4069 					dopt = (struct ip6_opt *)
4070 					    ((char *)dopt + plen);
4071 				}
4072 				deleting = B_FALSE;
4073 				lastpad = NULL;
4074 			}
4075 			/* if there's uncopied padding, then copy that now */
4076 			if (lastpad != NULL) {
4077 				olen += (const char *)sopt -
4078 				    (const char *)lastpad;
4079 				sopt = lastpad;
4080 				lastpad = NULL;
4081 			}
4082 			if (dopt != NULL && olen > 0) {
4083 				bcopy(sopt, dopt, olen);
4084 				dopt = (struct ip6_opt *)((char *)dopt + olen);
4085 			}
4086 			if (hol == 0)
4087 				break;
4088 			tlen += olen;
4089 			sopt = (const struct ip6_opt *)
4090 			    ((const char *)sopt + olen);
4091 			hol -= olen;
4092 		}
4093 		/* go back and patch up the length value, rounded upward */
4094 		if (dstopt != NULL)
4095 			dstopt->ip6h_len = (tlen - 1) >> 3;
4096 	} else {
4097 		tlen = hol;
4098 		if (dstopt != NULL)
4099 			bcopy(srcopt, dstopt, hol);
4100 	}
4101 
4102 	tlen += sizeof (*toh);
4103 	if (toh != NULL)
4104 		toh->len = tlen;
4105 
4106 	return (tlen);
4107 }
4108 
4109 /*
4110  * Update udp_rcv_opt_len from the packet.
4111  * Called when options received, and when no options received but
4112  * udp_ip_recv_opt_len has previously recorded options.
4113  */
4114 static void
4115 udp_save_ip_rcv_opt(udp_t *udp, void *opt, int opt_len)
4116 {
4117 	/* Save the options if any */
4118 	if (opt_len > 0) {
4119 		if (opt_len > udp->udp_ip_rcv_options_len) {
4120 			/* Need to allocate larger buffer */
4121 			if (udp->udp_ip_rcv_options_len != 0)
4122 				mi_free((char *)udp->udp_ip_rcv_options);
4123 			udp->udp_ip_rcv_options_len = 0;
4124 			udp->udp_ip_rcv_options =
4125 			    (uchar_t *)mi_alloc(opt_len, BPRI_HI);
4126 			if (udp->udp_ip_rcv_options != NULL)
4127 				udp->udp_ip_rcv_options_len = opt_len;
4128 		}
4129 		if (udp->udp_ip_rcv_options_len != 0) {
4130 			bcopy(opt, udp->udp_ip_rcv_options, opt_len);
4131 			/* Adjust length if we are resusing the space */
4132 			udp->udp_ip_rcv_options_len = opt_len;
4133 		}
4134 	} else if (udp->udp_ip_rcv_options_len != 0) {
4135 		/* Clear out previously recorded options */
4136 		mi_free((char *)udp->udp_ip_rcv_options);
4137 		udp->udp_ip_rcv_options = NULL;
4138 		udp->udp_ip_rcv_options_len = 0;
4139 	}
4140 }
4141 
4142 /* ARGSUSED2 */
4143 static void
4144 udp_input(void *arg1, mblk_t *mp, void *arg2)
4145 {
4146 	conn_t *connp = (conn_t *)arg1;
4147 	struct T_unitdata_ind	*tudi;
4148 	uchar_t			*rptr;		/* Pointer to IP header */
4149 	int			hdr_length;	/* Length of IP+UDP headers */
4150 	int			opt_len;
4151 	int			udi_size;	/* Size of T_unitdata_ind */
4152 	int			mp_len;
4153 	udp_t			*udp;
4154 	udpha_t			*udpha;
4155 	int			ipversion;
4156 	ip6_pkt_t		ipp;
4157 	ip6_t			*ip6h;
4158 	ip6i_t			*ip6i;
4159 	mblk_t			*mp1;
4160 	mblk_t			*options_mp = NULL;
4161 	ip_pktinfo_t		*pinfo = NULL;
4162 	cred_t			*cr = NULL;
4163 	pid_t			cpid;
4164 	uint32_t		udp_ip_rcv_options_len;
4165 	udp_bits_t		udp_bits;
4166 	cred_t			*rcr = connp->conn_cred;
4167 	udp_stack_t *us;
4168 
4169 	ASSERT(connp->conn_flags & IPCL_UDPCONN);
4170 
4171 	udp = connp->conn_udp;
4172 	us = udp->udp_us;
4173 	rptr = mp->b_rptr;
4174 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_CTL);
4175 	ASSERT(OK_32PTR(rptr));
4176 
4177 	/*
4178 	 * IP should have prepended the options data in an M_CTL
4179 	 * Check M_CTL "type" to make sure are not here bcos of
4180 	 * a valid ICMP message
4181 	 */
4182 	if (DB_TYPE(mp) == M_CTL) {
4183 		if (MBLKL(mp) == sizeof (ip_pktinfo_t) &&
4184 		    ((ip_pktinfo_t *)mp->b_rptr)->ip_pkt_ulp_type ==
4185 		    IN_PKTINFO) {
4186 			/*
4187 			 * IP_RECVIF or IP_RECVSLLA or IPF_RECVADDR information
4188 			 * has been prepended to the packet by IP. We need to
4189 			 * extract the mblk and adjust the rptr
4190 			 */
4191 			pinfo = (ip_pktinfo_t *)mp->b_rptr;
4192 			options_mp = mp;
4193 			mp = mp->b_cont;
4194 			rptr = mp->b_rptr;
4195 			UDP_STAT(us, udp_in_pktinfo);
4196 		} else {
4197 			/*
4198 			 * ICMP messages.
4199 			 */
4200 			udp_icmp_error(connp->conn_rq, mp);
4201 			return;
4202 		}
4203 	}
4204 
4205 	mp_len = msgdsize(mp);
4206 	/*
4207 	 * This is the inbound data path.
4208 	 * First, we check to make sure the IP version number is correct,
4209 	 * and then pull the IP and UDP headers into the first mblk.
4210 	 */
4211 
4212 	/* Initialize regardless if ipversion is IPv4 or IPv6 */
4213 	ipp.ipp_fields = 0;
4214 
4215 	ipversion = IPH_HDR_VERSION(rptr);
4216 
4217 	rw_enter(&udp->udp_rwlock, RW_READER);
4218 	udp_ip_rcv_options_len = udp->udp_ip_rcv_options_len;
4219 	udp_bits = udp->udp_bits;
4220 	rw_exit(&udp->udp_rwlock);
4221 
4222 	switch (ipversion) {
4223 	case IPV4_VERSION:
4224 		ASSERT(MBLKL(mp) >= sizeof (ipha_t));
4225 		ASSERT(((ipha_t *)rptr)->ipha_protocol == IPPROTO_UDP);
4226 		hdr_length = IPH_HDR_LENGTH(rptr) + UDPH_SIZE;
4227 		opt_len = hdr_length - (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE);
4228 		if ((opt_len > 0 || udp_ip_rcv_options_len > 0) &&
4229 		    udp->udp_family == AF_INET) {
4230 			/*
4231 			 * Record/update udp_ip_rcv_options with the lock
4232 			 * held. Not needed for AF_INET6 sockets
4233 			 * since they don't support a getsockopt of IP_OPTIONS.
4234 			 */
4235 			rw_enter(&udp->udp_rwlock, RW_WRITER);
4236 			udp_save_ip_rcv_opt(udp, rptr + IP_SIMPLE_HDR_LENGTH,
4237 			    opt_len);
4238 			rw_exit(&udp->udp_rwlock);
4239 		}
4240 		/* Handle IPV6_RECVPKTINFO even for IPv4 packet. */
4241 		if ((udp->udp_family == AF_INET6) && (pinfo != NULL) &&
4242 		    udp->udp_ip_recvpktinfo) {
4243 			if (pinfo->ip_pkt_flags & IPF_RECVIF) {
4244 				ipp.ipp_fields |= IPPF_IFINDEX;
4245 				ipp.ipp_ifindex = pinfo->ip_pkt_ifindex;
4246 			}
4247 		}
4248 		break;
4249 	case IPV6_VERSION:
4250 		/*
4251 		 * IPv6 packets can only be received by applications
4252 		 * that are prepared to receive IPv6 addresses.
4253 		 * The IP fanout must ensure this.
4254 		 */
4255 		ASSERT(udp->udp_family == AF_INET6);
4256 
4257 		ip6h = (ip6_t *)rptr;
4258 		ASSERT((uchar_t *)&ip6h[1] <= mp->b_wptr);
4259 
4260 		if (ip6h->ip6_nxt != IPPROTO_UDP) {
4261 			uint8_t nexthdrp;
4262 			/* Look for ifindex information */
4263 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
4264 				ip6i = (ip6i_t *)ip6h;
4265 				if ((uchar_t *)&ip6i[1] > mp->b_wptr)
4266 					goto tossit;
4267 
4268 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
4269 					ASSERT(ip6i->ip6i_ifindex != 0);
4270 					ipp.ipp_fields |= IPPF_IFINDEX;
4271 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
4272 				}
4273 				rptr = (uchar_t *)&ip6i[1];
4274 				mp->b_rptr = rptr;
4275 				if (rptr == mp->b_wptr) {
4276 					mp1 = mp->b_cont;
4277 					freeb(mp);
4278 					mp = mp1;
4279 					rptr = mp->b_rptr;
4280 				}
4281 				if (MBLKL(mp) < (IPV6_HDR_LEN + UDPH_SIZE))
4282 					goto tossit;
4283 				ip6h = (ip6_t *)rptr;
4284 				mp_len = msgdsize(mp);
4285 			}
4286 			/*
4287 			 * Find any potentially interesting extension headers
4288 			 * as well as the length of the IPv6 + extension
4289 			 * headers.
4290 			 */
4291 			hdr_length = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp) +
4292 			    UDPH_SIZE;
4293 			ASSERT(nexthdrp == IPPROTO_UDP);
4294 		} else {
4295 			hdr_length = IPV6_HDR_LEN + UDPH_SIZE;
4296 			ip6i = NULL;
4297 		}
4298 		break;
4299 	default:
4300 		ASSERT(0);
4301 	}
4302 
4303 	/*
4304 	 * IP inspected the UDP header thus all of it must be in the mblk.
4305 	 * UDP length check is performed for IPv6 packets and IPv4 packets
4306 	 * to check if the size of the packet as specified
4307 	 * by the header is the same as the physical size of the packet.
4308 	 * FIXME? Didn't IP already check this?
4309 	 */
4310 	udpha = (udpha_t *)(rptr + (hdr_length - UDPH_SIZE));
4311 	if ((MBLKL(mp) < hdr_length) ||
4312 	    (mp_len != (ntohs(udpha->uha_length) + hdr_length - UDPH_SIZE))) {
4313 		goto tossit;
4314 	}
4315 
4316 
4317 	/* Walk past the headers unless IP_RECVHDR was set. */
4318 	if (!udp_bits.udpb_rcvhdr) {
4319 		mp->b_rptr = rptr + hdr_length;
4320 		mp_len -= hdr_length;
4321 	}
4322 
4323 	/*
4324 	 * This is the inbound data path.  Packets are passed upstream as
4325 	 * T_UNITDATA_IND messages with full IP headers still attached.
4326 	 */
4327 	if (udp->udp_family == AF_INET) {
4328 		sin_t *sin;
4329 
4330 		ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION);
4331 
4332 		/*
4333 		 * Normally only send up the source address.
4334 		 * If IP_RECVDSTADDR is set we include the destination IP
4335 		 * address as an option. With IP_RECVOPTS we include all
4336 		 * the IP options.
4337 		 */
4338 		udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t);
4339 		if (udp_bits.udpb_recvdstaddr) {
4340 			udi_size += sizeof (struct T_opthdr) +
4341 			    sizeof (struct in_addr);
4342 			UDP_STAT(us, udp_in_recvdstaddr);
4343 		}
4344 
4345 		if (udp_bits.udpb_ip_recvpktinfo && (pinfo != NULL) &&
4346 		    (pinfo->ip_pkt_flags & IPF_RECVADDR)) {
4347 			udi_size += sizeof (struct T_opthdr) +
4348 			    sizeof (struct in_pktinfo);
4349 			UDP_STAT(us, udp_ip_rcvpktinfo);
4350 		}
4351 
4352 		if ((udp_bits.udpb_recvopts) && opt_len > 0) {
4353 			udi_size += sizeof (struct T_opthdr) + opt_len;
4354 			UDP_STAT(us, udp_in_recvopts);
4355 		}
4356 
4357 		/*
4358 		 * If the IP_RECVSLLA or the IP_RECVIF is set then allocate
4359 		 * space accordingly
4360 		 */
4361 		if ((udp_bits.udpb_recvif) && (pinfo != NULL) &&
4362 		    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
4363 			udi_size += sizeof (struct T_opthdr) + sizeof (uint_t);
4364 			UDP_STAT(us, udp_in_recvif);
4365 		}
4366 
4367 		if ((udp_bits.udpb_recvslla) && (pinfo != NULL) &&
4368 		    (pinfo->ip_pkt_flags & IPF_RECVSLLA)) {
4369 			udi_size += sizeof (struct T_opthdr) +
4370 			    sizeof (struct sockaddr_dl);
4371 			UDP_STAT(us, udp_in_recvslla);
4372 		}
4373 
4374 		if ((udp_bits.udpb_recvucred) &&
4375 		    (cr = DB_CRED(mp)) != NULL) {
4376 			udi_size += sizeof (struct T_opthdr) + ucredsize;
4377 			cpid = DB_CPID(mp);
4378 			UDP_STAT(us, udp_in_recvucred);
4379 		}
4380 
4381 		/* XXX FIXME: apply to AF_INET6 as well */
4382 		/*
4383 		 * If SO_TIMESTAMP is set allocate the appropriate sized
4384 		 * buffer. Since gethrestime() expects a pointer aligned
4385 		 * argument, we allocate space necessary for extra
4386 		 * alignment (even though it might not be used).
4387 		 */
4388 		if (udp_bits.udpb_timestamp) {
4389 			udi_size += sizeof (struct T_opthdr) +
4390 			    sizeof (timestruc_t) + _POINTER_ALIGNMENT;
4391 			UDP_STAT(us, udp_in_timestamp);
4392 		}
4393 
4394 		/*
4395 		 * If IP_RECVTTL is set allocate the appropriate sized buffer
4396 		 */
4397 		if (udp_bits.udpb_recvttl) {
4398 			udi_size += sizeof (struct T_opthdr) + sizeof (uint8_t);
4399 			UDP_STAT(us, udp_in_recvttl);
4400 		}
4401 
4402 		/* Allocate a message block for the T_UNITDATA_IND structure. */
4403 		mp1 = allocb(udi_size, BPRI_MED);
4404 		if (mp1 == NULL) {
4405 			freemsg(mp);
4406 			if (options_mp != NULL)
4407 				freeb(options_mp);
4408 			BUMP_MIB(&us->us_udp_mib, udpInErrors);
4409 			return;
4410 		}
4411 		mp1->b_cont = mp;
4412 		mp = mp1;
4413 		mp->b_datap->db_type = M_PROTO;
4414 		tudi = (struct T_unitdata_ind *)mp->b_rptr;
4415 		mp->b_wptr = (uchar_t *)tudi + udi_size;
4416 		tudi->PRIM_type = T_UNITDATA_IND;
4417 		tudi->SRC_length = sizeof (sin_t);
4418 		tudi->SRC_offset = sizeof (struct T_unitdata_ind);
4419 		tudi->OPT_offset = sizeof (struct T_unitdata_ind) +
4420 		    sizeof (sin_t);
4421 		udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t));
4422 		tudi->OPT_length = udi_size;
4423 		sin = (sin_t *)&tudi[1];
4424 		sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src;
4425 		sin->sin_port =	udpha->uha_src_port;
4426 		sin->sin_family = udp->udp_family;
4427 		*(uint32_t *)&sin->sin_zero[0] = 0;
4428 		*(uint32_t *)&sin->sin_zero[4] = 0;
4429 
4430 		/*
4431 		 * Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or
4432 		 * IP_RECVTTL has been set.
4433 		 */
4434 		if (udi_size != 0) {
4435 			/*
4436 			 * Copy in destination address before options to avoid
4437 			 * any padding issues.
4438 			 */
4439 			char *dstopt;
4440 
4441 			dstopt = (char *)&sin[1];
4442 			if (udp_bits.udpb_recvdstaddr) {
4443 				struct T_opthdr *toh;
4444 				ipaddr_t *dstptr;
4445 
4446 				toh = (struct T_opthdr *)dstopt;
4447 				toh->level = IPPROTO_IP;
4448 				toh->name = IP_RECVDSTADDR;
4449 				toh->len = sizeof (struct T_opthdr) +
4450 				    sizeof (ipaddr_t);
4451 				toh->status = 0;
4452 				dstopt += sizeof (struct T_opthdr);
4453 				dstptr = (ipaddr_t *)dstopt;
4454 				*dstptr = ((ipha_t *)rptr)->ipha_dst;
4455 				dstopt += sizeof (ipaddr_t);
4456 				udi_size -= toh->len;
4457 			}
4458 
4459 			if (udp_bits.udpb_recvopts && opt_len > 0) {
4460 				struct T_opthdr *toh;
4461 
4462 				toh = (struct T_opthdr *)dstopt;
4463 				toh->level = IPPROTO_IP;
4464 				toh->name = IP_RECVOPTS;
4465 				toh->len = sizeof (struct T_opthdr) + opt_len;
4466 				toh->status = 0;
4467 				dstopt += sizeof (struct T_opthdr);
4468 				bcopy(rptr + IP_SIMPLE_HDR_LENGTH, dstopt,
4469 				    opt_len);
4470 				dstopt += opt_len;
4471 				udi_size -= toh->len;
4472 			}
4473 
4474 			if ((udp_bits.udpb_ip_recvpktinfo) && (pinfo != NULL) &&
4475 			    (pinfo->ip_pkt_flags & IPF_RECVADDR)) {
4476 				struct T_opthdr *toh;
4477 				struct in_pktinfo *pktinfop;
4478 
4479 				toh = (struct T_opthdr *)dstopt;
4480 				toh->level = IPPROTO_IP;
4481 				toh->name = IP_PKTINFO;
4482 				toh->len = sizeof (struct T_opthdr) +
4483 				    sizeof (*pktinfop);
4484 				toh->status = 0;
4485 				dstopt += sizeof (struct T_opthdr);
4486 				pktinfop = (struct in_pktinfo *)dstopt;
4487 				pktinfop->ipi_ifindex = pinfo->ip_pkt_ifindex;
4488 				pktinfop->ipi_spec_dst =
4489 				    pinfo->ip_pkt_match_addr;
4490 				pktinfop->ipi_addr.s_addr =
4491 				    ((ipha_t *)rptr)->ipha_dst;
4492 
4493 				dstopt += sizeof (struct in_pktinfo);
4494 				udi_size -= toh->len;
4495 			}
4496 
4497 			if ((udp_bits.udpb_recvslla) && (pinfo != NULL) &&
4498 			    (pinfo->ip_pkt_flags & IPF_RECVSLLA)) {
4499 
4500 				struct T_opthdr *toh;
4501 				struct sockaddr_dl	*dstptr;
4502 
4503 				toh = (struct T_opthdr *)dstopt;
4504 				toh->level = IPPROTO_IP;
4505 				toh->name = IP_RECVSLLA;
4506 				toh->len = sizeof (struct T_opthdr) +
4507 				    sizeof (struct sockaddr_dl);
4508 				toh->status = 0;
4509 				dstopt += sizeof (struct T_opthdr);
4510 				dstptr = (struct sockaddr_dl *)dstopt;
4511 				bcopy(&pinfo->ip_pkt_slla, dstptr,
4512 				    sizeof (struct sockaddr_dl));
4513 				dstopt += sizeof (struct sockaddr_dl);
4514 				udi_size -= toh->len;
4515 			}
4516 
4517 			if ((udp_bits.udpb_recvif) && (pinfo != NULL) &&
4518 			    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
4519 
4520 				struct T_opthdr *toh;
4521 				uint_t		*dstptr;
4522 
4523 				toh = (struct T_opthdr *)dstopt;
4524 				toh->level = IPPROTO_IP;
4525 				toh->name = IP_RECVIF;
4526 				toh->len = sizeof (struct T_opthdr) +
4527 				    sizeof (uint_t);
4528 				toh->status = 0;
4529 				dstopt += sizeof (struct T_opthdr);
4530 				dstptr = (uint_t *)dstopt;
4531 				*dstptr = pinfo->ip_pkt_ifindex;
4532 				dstopt += sizeof (uint_t);
4533 				udi_size -= toh->len;
4534 			}
4535 
4536 			if (cr != NULL) {
4537 				struct T_opthdr *toh;
4538 
4539 				toh = (struct T_opthdr *)dstopt;
4540 				toh->level = SOL_SOCKET;
4541 				toh->name = SCM_UCRED;
4542 				toh->len = sizeof (struct T_opthdr) + ucredsize;
4543 				toh->status = 0;
4544 				dstopt += sizeof (struct T_opthdr);
4545 				(void) cred2ucred(cr, cpid, dstopt, rcr);
4546 				dstopt += ucredsize;
4547 				udi_size -= toh->len;
4548 			}
4549 
4550 			if (udp_bits.udpb_timestamp) {
4551 				struct	T_opthdr *toh;
4552 
4553 				toh = (struct T_opthdr *)dstopt;
4554 				toh->level = SOL_SOCKET;
4555 				toh->name = SCM_TIMESTAMP;
4556 				toh->len = sizeof (struct T_opthdr) +
4557 				    sizeof (timestruc_t) + _POINTER_ALIGNMENT;
4558 				toh->status = 0;
4559 				dstopt += sizeof (struct T_opthdr);
4560 				/* Align for gethrestime() */
4561 				dstopt = (char *)P2ROUNDUP((intptr_t)dstopt,
4562 				    sizeof (intptr_t));
4563 				gethrestime((timestruc_t *)dstopt);
4564 				dstopt = (char *)toh + toh->len;
4565 				udi_size -= toh->len;
4566 			}
4567 
4568 			/*
4569 			 * CAUTION:
4570 			 * Due to aligment issues
4571 			 * Processing of IP_RECVTTL option
4572 			 * should always be the last. Adding
4573 			 * any option processing after this will
4574 			 * cause alignment panic.
4575 			 */
4576 			if (udp_bits.udpb_recvttl) {
4577 				struct	T_opthdr *toh;
4578 				uint8_t	*dstptr;
4579 
4580 				toh = (struct T_opthdr *)dstopt;
4581 				toh->level = IPPROTO_IP;
4582 				toh->name = IP_RECVTTL;
4583 				toh->len = sizeof (struct T_opthdr) +
4584 				    sizeof (uint8_t);
4585 				toh->status = 0;
4586 				dstopt += sizeof (struct T_opthdr);
4587 				dstptr = (uint8_t *)dstopt;
4588 				*dstptr = ((ipha_t *)rptr)->ipha_ttl;
4589 				dstopt += sizeof (uint8_t);
4590 				udi_size -= toh->len;
4591 			}
4592 
4593 			/* Consumed all of allocated space */
4594 			ASSERT(udi_size == 0);
4595 		}
4596 	} else {
4597 		sin6_t *sin6;
4598 
4599 		/*
4600 		 * Handle both IPv4 and IPv6 packets for IPv6 sockets.
4601 		 *
4602 		 * Normally we only send up the address. If receiving of any
4603 		 * optional receive side information is enabled, we also send
4604 		 * that up as options.
4605 		 */
4606 		udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t);
4607 
4608 		if (ipp.ipp_fields & (IPPF_HOPOPTS|IPPF_DSTOPTS|IPPF_RTDSTOPTS|
4609 		    IPPF_RTHDR|IPPF_IFINDEX)) {
4610 			if ((udp_bits.udpb_ipv6_recvhopopts) &&
4611 			    (ipp.ipp_fields & IPPF_HOPOPTS)) {
4612 				size_t hlen;
4613 
4614 				UDP_STAT(us, udp_in_recvhopopts);
4615 				hlen = copy_hop_opts(&ipp, NULL);
4616 				if (hlen == 0)
4617 					ipp.ipp_fields &= ~IPPF_HOPOPTS;
4618 				udi_size += hlen;
4619 			}
4620 			if (((udp_bits.udpb_ipv6_recvdstopts) ||
4621 			    udp_bits.udpb_old_ipv6_recvdstopts) &&
4622 			    (ipp.ipp_fields & IPPF_DSTOPTS)) {
4623 				udi_size += sizeof (struct T_opthdr) +
4624 				    ipp.ipp_dstoptslen;
4625 				UDP_STAT(us, udp_in_recvdstopts);
4626 			}
4627 			if ((((udp_bits.udpb_ipv6_recvdstopts) &&
4628 			    udp_bits.udpb_ipv6_recvrthdr &&
4629 			    (ipp.ipp_fields & IPPF_RTHDR)) ||
4630 			    (udp_bits.udpb_ipv6_recvrthdrdstopts)) &&
4631 			    (ipp.ipp_fields & IPPF_RTDSTOPTS)) {
4632 				udi_size += sizeof (struct T_opthdr) +
4633 				    ipp.ipp_rtdstoptslen;
4634 				UDP_STAT(us, udp_in_recvrtdstopts);
4635 			}
4636 			if ((udp_bits.udpb_ipv6_recvrthdr) &&
4637 			    (ipp.ipp_fields & IPPF_RTHDR)) {
4638 				udi_size += sizeof (struct T_opthdr) +
4639 				    ipp.ipp_rthdrlen;
4640 				UDP_STAT(us, udp_in_recvrthdr);
4641 			}
4642 			if ((udp_bits.udpb_ip_recvpktinfo) &&
4643 			    (ipp.ipp_fields & IPPF_IFINDEX)) {
4644 				udi_size += sizeof (struct T_opthdr) +
4645 				    sizeof (struct in6_pktinfo);
4646 				UDP_STAT(us, udp_in_recvpktinfo);
4647 			}
4648 
4649 		}
4650 		if ((udp_bits.udpb_recvucred) &&
4651 		    (cr = DB_CRED(mp)) != NULL) {
4652 			udi_size += sizeof (struct T_opthdr) + ucredsize;
4653 			cpid = DB_CPID(mp);
4654 			UDP_STAT(us, udp_in_recvucred);
4655 		}
4656 
4657 		if (udp_bits.udpb_ipv6_recvhoplimit) {
4658 			udi_size += sizeof (struct T_opthdr) + sizeof (int);
4659 			UDP_STAT(us, udp_in_recvhoplimit);
4660 		}
4661 
4662 		if (udp_bits.udpb_ipv6_recvtclass) {
4663 			udi_size += sizeof (struct T_opthdr) + sizeof (int);
4664 			UDP_STAT(us, udp_in_recvtclass);
4665 		}
4666 
4667 		mp1 = allocb(udi_size, BPRI_MED);
4668 		if (mp1 == NULL) {
4669 			freemsg(mp);
4670 			if (options_mp != NULL)
4671 				freeb(options_mp);
4672 			BUMP_MIB(&us->us_udp_mib, udpInErrors);
4673 			return;
4674 		}
4675 		mp1->b_cont = mp;
4676 		mp = mp1;
4677 		mp->b_datap->db_type = M_PROTO;
4678 		tudi = (struct T_unitdata_ind *)mp->b_rptr;
4679 		mp->b_wptr = (uchar_t *)tudi + udi_size;
4680 		tudi->PRIM_type = T_UNITDATA_IND;
4681 		tudi->SRC_length = sizeof (sin6_t);
4682 		tudi->SRC_offset = sizeof (struct T_unitdata_ind);
4683 		tudi->OPT_offset = sizeof (struct T_unitdata_ind) +
4684 		    sizeof (sin6_t);
4685 		udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin6_t));
4686 		tudi->OPT_length = udi_size;
4687 		sin6 = (sin6_t *)&tudi[1];
4688 		if (ipversion == IPV4_VERSION) {
4689 			in6_addr_t v6dst;
4690 
4691 			IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_src,
4692 			    &sin6->sin6_addr);
4693 			IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_dst,
4694 			    &v6dst);
4695 			sin6->sin6_flowinfo = 0;
4696 			sin6->sin6_scope_id = 0;
4697 			sin6->__sin6_src_id = ip_srcid_find_addr(&v6dst,
4698 			    connp->conn_zoneid, us->us_netstack);
4699 		} else {
4700 			sin6->sin6_addr = ip6h->ip6_src;
4701 			/* No sin6_flowinfo per API */
4702 			sin6->sin6_flowinfo = 0;
4703 			/* For link-scope source pass up scope id */
4704 			if ((ipp.ipp_fields & IPPF_IFINDEX) &&
4705 			    IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src))
4706 				sin6->sin6_scope_id = ipp.ipp_ifindex;
4707 			else
4708 				sin6->sin6_scope_id = 0;
4709 			sin6->__sin6_src_id = ip_srcid_find_addr(
4710 			    &ip6h->ip6_dst, connp->conn_zoneid,
4711 			    us->us_netstack);
4712 		}
4713 		sin6->sin6_port = udpha->uha_src_port;
4714 		sin6->sin6_family = udp->udp_family;
4715 
4716 		if (udi_size != 0) {
4717 			uchar_t *dstopt;
4718 
4719 			dstopt = (uchar_t *)&sin6[1];
4720 			if ((udp_bits.udpb_ip_recvpktinfo) &&
4721 			    (ipp.ipp_fields & IPPF_IFINDEX)) {
4722 				struct T_opthdr *toh;
4723 				struct in6_pktinfo *pkti;
4724 
4725 				toh = (struct T_opthdr *)dstopt;
4726 				toh->level = IPPROTO_IPV6;
4727 				toh->name = IPV6_PKTINFO;
4728 				toh->len = sizeof (struct T_opthdr) +
4729 				    sizeof (*pkti);
4730 				toh->status = 0;
4731 				dstopt += sizeof (struct T_opthdr);
4732 				pkti = (struct in6_pktinfo *)dstopt;
4733 				if (ipversion == IPV6_VERSION)
4734 					pkti->ipi6_addr = ip6h->ip6_dst;
4735 				else
4736 					IN6_IPADDR_TO_V4MAPPED(
4737 					    ((ipha_t *)rptr)->ipha_dst,
4738 					    &pkti->ipi6_addr);
4739 				pkti->ipi6_ifindex = ipp.ipp_ifindex;
4740 				dstopt += sizeof (*pkti);
4741 				udi_size -= toh->len;
4742 			}
4743 			if (udp_bits.udpb_ipv6_recvhoplimit) {
4744 				struct T_opthdr *toh;
4745 
4746 				toh = (struct T_opthdr *)dstopt;
4747 				toh->level = IPPROTO_IPV6;
4748 				toh->name = IPV6_HOPLIMIT;
4749 				toh->len = sizeof (struct T_opthdr) +
4750 				    sizeof (uint_t);
4751 				toh->status = 0;
4752 				dstopt += sizeof (struct T_opthdr);
4753 				if (ipversion == IPV6_VERSION)
4754 					*(uint_t *)dstopt = ip6h->ip6_hops;
4755 				else
4756 					*(uint_t *)dstopt =
4757 					    ((ipha_t *)rptr)->ipha_ttl;
4758 				dstopt += sizeof (uint_t);
4759 				udi_size -= toh->len;
4760 			}
4761 			if (udp_bits.udpb_ipv6_recvtclass) {
4762 				struct T_opthdr *toh;
4763 
4764 				toh = (struct T_opthdr *)dstopt;
4765 				toh->level = IPPROTO_IPV6;
4766 				toh->name = IPV6_TCLASS;
4767 				toh->len = sizeof (struct T_opthdr) +
4768 				    sizeof (uint_t);
4769 				toh->status = 0;
4770 				dstopt += sizeof (struct T_opthdr);
4771 				if (ipversion == IPV6_VERSION) {
4772 					*(uint_t *)dstopt =
4773 					    IPV6_FLOW_TCLASS(ip6h->ip6_flow);
4774 				} else {
4775 					ipha_t *ipha = (ipha_t *)rptr;
4776 					*(uint_t *)dstopt =
4777 					    ipha->ipha_type_of_service;
4778 				}
4779 				dstopt += sizeof (uint_t);
4780 				udi_size -= toh->len;
4781 			}
4782 			if ((udp_bits.udpb_ipv6_recvhopopts) &&
4783 			    (ipp.ipp_fields & IPPF_HOPOPTS)) {
4784 				size_t hlen;
4785 
4786 				hlen = copy_hop_opts(&ipp, dstopt);
4787 				dstopt += hlen;
4788 				udi_size -= hlen;
4789 			}
4790 			if ((udp_bits.udpb_ipv6_recvdstopts) &&
4791 			    (udp_bits.udpb_ipv6_recvrthdr) &&
4792 			    (ipp.ipp_fields & IPPF_RTHDR) &&
4793 			    (ipp.ipp_fields & IPPF_RTDSTOPTS)) {
4794 				struct T_opthdr *toh;
4795 
4796 				toh = (struct T_opthdr *)dstopt;
4797 				toh->level = IPPROTO_IPV6;
4798 				toh->name = IPV6_DSTOPTS;
4799 				toh->len = sizeof (struct T_opthdr) +
4800 				    ipp.ipp_rtdstoptslen;
4801 				toh->status = 0;
4802 				dstopt += sizeof (struct T_opthdr);
4803 				bcopy(ipp.ipp_rtdstopts, dstopt,
4804 				    ipp.ipp_rtdstoptslen);
4805 				dstopt += ipp.ipp_rtdstoptslen;
4806 				udi_size -= toh->len;
4807 			}
4808 			if ((udp_bits.udpb_ipv6_recvrthdr) &&
4809 			    (ipp.ipp_fields & IPPF_RTHDR)) {
4810 				struct T_opthdr *toh;
4811 
4812 				toh = (struct T_opthdr *)dstopt;
4813 				toh->level = IPPROTO_IPV6;
4814 				toh->name = IPV6_RTHDR;
4815 				toh->len = sizeof (struct T_opthdr) +
4816 				    ipp.ipp_rthdrlen;
4817 				toh->status = 0;
4818 				dstopt += sizeof (struct T_opthdr);
4819 				bcopy(ipp.ipp_rthdr, dstopt, ipp.ipp_rthdrlen);
4820 				dstopt += ipp.ipp_rthdrlen;
4821 				udi_size -= toh->len;
4822 			}
4823 			if ((udp_bits.udpb_ipv6_recvdstopts) &&
4824 			    (ipp.ipp_fields & IPPF_DSTOPTS)) {
4825 				struct T_opthdr *toh;
4826 
4827 				toh = (struct T_opthdr *)dstopt;
4828 				toh->level = IPPROTO_IPV6;
4829 				toh->name = IPV6_DSTOPTS;
4830 				toh->len = sizeof (struct T_opthdr) +
4831 				    ipp.ipp_dstoptslen;
4832 				toh->status = 0;
4833 				dstopt += sizeof (struct T_opthdr);
4834 				bcopy(ipp.ipp_dstopts, dstopt,
4835 				    ipp.ipp_dstoptslen);
4836 				dstopt += ipp.ipp_dstoptslen;
4837 				udi_size -= toh->len;
4838 			}
4839 
4840 			if (cr != NULL) {
4841 				struct T_opthdr *toh;
4842 
4843 				toh = (struct T_opthdr *)dstopt;
4844 				toh->level = SOL_SOCKET;
4845 				toh->name = SCM_UCRED;
4846 				toh->len = sizeof (struct T_opthdr) + ucredsize;
4847 				toh->status = 0;
4848 				(void) cred2ucred(cr, cpid, &toh[1], rcr);
4849 				dstopt += toh->len;
4850 				udi_size -= toh->len;
4851 			}
4852 			/* Consumed all of allocated space */
4853 			ASSERT(udi_size == 0);
4854 		}
4855 #undef	sin6
4856 		/* No IP_RECVDSTADDR for IPv6. */
4857 	}
4858 
4859 	BUMP_MIB(&us->us_udp_mib, udpHCInDatagrams);
4860 	if (options_mp != NULL)
4861 		freeb(options_mp);
4862 
4863 	if (udp_bits.udpb_direct_sockfs) {
4864 		/*
4865 		 * There is nothing above us except for the stream head;
4866 		 * use the read-side synchronous stream interface in
4867 		 * order to reduce the time spent in interrupt thread.
4868 		 */
4869 		ASSERT(udp->udp_issocket);
4870 		udp_rcv_enqueue(connp->conn_rq, udp, mp, mp_len);
4871 	} else {
4872 		/*
4873 		 * Use regular STREAMS interface to pass data upstream
4874 		 * if this is not a socket endpoint, or if we have
4875 		 * switched over to the slow mode due to sockmod being
4876 		 * popped or a module being pushed on top of us.
4877 		 */
4878 		putnext(connp->conn_rq, mp);
4879 	}
4880 	return;
4881 
4882 tossit:
4883 	freemsg(mp);
4884 	if (options_mp != NULL)
4885 		freeb(options_mp);
4886 	BUMP_MIB(&us->us_udp_mib, udpInErrors);
4887 }
4888 
4889 /*
4890  * Handle the results of a T_BIND_REQ whether deferred by IP or handled
4891  * immediately.
4892  */
4893 static void
4894 udp_bind_result(conn_t *connp, mblk_t *mp)
4895 {
4896 	struct T_error_ack	*tea;
4897 
4898 	switch (mp->b_datap->db_type) {
4899 	case M_PROTO:
4900 	case M_PCPROTO:
4901 		/* M_PROTO messages contain some type of TPI message. */
4902 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
4903 		    (uintptr_t)INT_MAX);
4904 		if (mp->b_wptr - mp->b_rptr < sizeof (t_scalar_t)) {
4905 			freemsg(mp);
4906 			return;
4907 		}
4908 		tea = (struct T_error_ack *)mp->b_rptr;
4909 
4910 		switch (tea->PRIM_type) {
4911 		case T_ERROR_ACK:
4912 			switch (tea->ERROR_prim) {
4913 			case O_T_BIND_REQ:
4914 			case T_BIND_REQ:
4915 				udp_bind_error(connp, mp);
4916 				return;
4917 			default:
4918 				break;
4919 			}
4920 			ASSERT(0);
4921 			freemsg(mp);
4922 			return;
4923 
4924 		case T_BIND_ACK:
4925 			udp_bind_ack(connp, mp);
4926 			return;
4927 
4928 		default:
4929 			break;
4930 		}
4931 		freemsg(mp);
4932 		return;
4933 	default:
4934 		/* FIXME: other cases? */
4935 		ASSERT(0);
4936 		freemsg(mp);
4937 		return;
4938 	}
4939 }
4940 
4941 /*
4942  * Process a T_BIND_ACK
4943  */
4944 static void
4945 udp_bind_ack(conn_t *connp, mblk_t *mp)
4946 {
4947 	udp_t	*udp = connp->conn_udp;
4948 	mblk_t	*mp1;
4949 	ire_t	*ire;
4950 	struct T_bind_ack *tba;
4951 	uchar_t *addrp;
4952 	ipa_conn_t	*ac;
4953 	ipa6_conn_t	*ac6;
4954 	udp_fanout_t	*udpf;
4955 	udp_stack_t	*us = udp->udp_us;
4956 
4957 	ASSERT(udp->udp_pending_op != -1);
4958 	rw_enter(&udp->udp_rwlock, RW_WRITER);
4959 	/*
4960 	 * If a broadcast/multicast address was bound set
4961 	 * the source address to 0.
4962 	 * This ensures no datagrams with broadcast address
4963 	 * as source address are emitted (which would violate
4964 	 * RFC1122 - Hosts requirements)
4965 	 *
4966 	 * Note that when connecting the returned IRE is
4967 	 * for the destination address and we only perform
4968 	 * the broadcast check for the source address (it
4969 	 * is OK to connect to a broadcast/multicast address.)
4970 	 */
4971 	mp1 = mp->b_cont;
4972 	if (mp1 != NULL && mp1->b_datap->db_type == IRE_DB_TYPE) {
4973 		ire = (ire_t *)mp1->b_rptr;
4974 
4975 		/*
4976 		 * Note: we get IRE_BROADCAST for IPv6 to "mark" a multicast
4977 		 * local address.
4978 		 */
4979 		udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port,
4980 		    us->us_bind_fanout_size)];
4981 		if (ire->ire_type == IRE_BROADCAST &&
4982 		    udp->udp_state != TS_DATA_XFER) {
4983 			ASSERT(udp->udp_pending_op == T_BIND_REQ ||
4984 			    udp->udp_pending_op == O_T_BIND_REQ);
4985 			/* This was just a local bind to a broadcast addr */
4986 			mutex_enter(&udpf->uf_lock);
4987 			V6_SET_ZERO(udp->udp_v6src);
4988 			mutex_exit(&udpf->uf_lock);
4989 			if (udp->udp_family == AF_INET6)
4990 				(void) udp_build_hdrs(udp);
4991 		} else if (V6_OR_V4_INADDR_ANY(udp->udp_v6src)) {
4992 			/*
4993 			 * Local address not yet set - pick it from the
4994 			 * T_bind_ack
4995 			 */
4996 			tba = (struct T_bind_ack *)mp->b_rptr;
4997 			addrp = &mp->b_rptr[tba->ADDR_offset];
4998 			switch (udp->udp_family) {
4999 			case AF_INET:
5000 				if (tba->ADDR_length == sizeof (ipa_conn_t)) {
5001 					ac = (ipa_conn_t *)addrp;
5002 				} else {
5003 					ASSERT(tba->ADDR_length ==
5004 					    sizeof (ipa_conn_x_t));
5005 					ac = &((ipa_conn_x_t *)addrp)->acx_conn;
5006 				}
5007 				mutex_enter(&udpf->uf_lock);
5008 				IN6_IPADDR_TO_V4MAPPED(ac->ac_laddr,
5009 				    &udp->udp_v6src);
5010 				mutex_exit(&udpf->uf_lock);
5011 				break;
5012 			case AF_INET6:
5013 				if (tba->ADDR_length == sizeof (ipa6_conn_t)) {
5014 					ac6 = (ipa6_conn_t *)addrp;
5015 				} else {
5016 					ASSERT(tba->ADDR_length ==
5017 					    sizeof (ipa6_conn_x_t));
5018 					ac6 = &((ipa6_conn_x_t *)
5019 					    addrp)->ac6x_conn;
5020 				}
5021 				mutex_enter(&udpf->uf_lock);
5022 				udp->udp_v6src = ac6->ac6_laddr;
5023 				mutex_exit(&udpf->uf_lock);
5024 				(void) udp_build_hdrs(udp);
5025 				break;
5026 			}
5027 		}
5028 		mp1 = mp1->b_cont;
5029 	}
5030 	udp->udp_pending_op = -1;
5031 	rw_exit(&udp->udp_rwlock);
5032 	/*
5033 	 * Look for one or more appended ACK message added by
5034 	 * udp_connect or udp_disconnect.
5035 	 * If none found just send up the T_BIND_ACK.
5036 	 * udp_connect has appended a T_OK_ACK and a T_CONN_CON.
5037 	 * udp_disconnect has appended a T_OK_ACK.
5038 	 */
5039 	if (mp1 != NULL) {
5040 		if (mp->b_cont == mp1)
5041 			mp->b_cont = NULL;
5042 		else {
5043 			ASSERT(mp->b_cont->b_cont == mp1);
5044 			mp->b_cont->b_cont = NULL;
5045 		}
5046 		freemsg(mp);
5047 		mp = mp1;
5048 		while (mp != NULL) {
5049 			mp1 = mp->b_cont;
5050 			mp->b_cont = NULL;
5051 			putnext(connp->conn_rq, mp);
5052 			mp = mp1;
5053 		}
5054 		return;
5055 	}
5056 	freemsg(mp->b_cont);
5057 	mp->b_cont = NULL;
5058 	putnext(connp->conn_rq, mp);
5059 }
5060 
5061 static void
5062 udp_bind_error(conn_t *connp, mblk_t *mp)
5063 {
5064 	udp_t	*udp = connp->conn_udp;
5065 	struct T_error_ack *tea;
5066 	udp_fanout_t	*udpf;
5067 	udp_stack_t	*us = udp->udp_us;
5068 
5069 	tea = (struct T_error_ack *)mp->b_rptr;
5070 
5071 	/*
5072 	 * If our O_T_BIND_REQ/T_BIND_REQ fails,
5073 	 * clear out the associated port and source
5074 	 * address before passing the message
5075 	 * upstream. If this was caused by a T_CONN_REQ
5076 	 * revert back to bound state.
5077 	 */
5078 
5079 	rw_enter(&udp->udp_rwlock, RW_WRITER);
5080 	ASSERT(udp->udp_pending_op != -1);
5081 	tea->ERROR_prim = udp->udp_pending_op;
5082 	udp->udp_pending_op = -1;
5083 	udpf = &us->us_bind_fanout[
5084 	    UDP_BIND_HASH(udp->udp_port,
5085 	    us->us_bind_fanout_size)];
5086 	mutex_enter(&udpf->uf_lock);
5087 
5088 	switch (tea->ERROR_prim) {
5089 	case T_CONN_REQ:
5090 		ASSERT(udp->udp_state == TS_DATA_XFER);
5091 		/* Connect failed */
5092 		/* Revert back to the bound source */
5093 		udp->udp_v6src = udp->udp_bound_v6src;
5094 		udp->udp_state = TS_IDLE;
5095 		mutex_exit(&udpf->uf_lock);
5096 		if (udp->udp_family == AF_INET6)
5097 			(void) udp_build_hdrs(udp);
5098 		rw_exit(&udp->udp_rwlock);
5099 		break;
5100 
5101 	case T_DISCON_REQ:
5102 	case T_BIND_REQ:
5103 	case O_T_BIND_REQ:
5104 		V6_SET_ZERO(udp->udp_v6src);
5105 		V6_SET_ZERO(udp->udp_bound_v6src);
5106 		udp->udp_state = TS_UNBND;
5107 		udp_bind_hash_remove(udp, B_TRUE);
5108 		udp->udp_port = 0;
5109 		mutex_exit(&udpf->uf_lock);
5110 		if (udp->udp_family == AF_INET6)
5111 			(void) udp_build_hdrs(udp);
5112 		rw_exit(&udp->udp_rwlock);
5113 		break;
5114 
5115 	default:
5116 		mutex_exit(&udpf->uf_lock);
5117 		rw_exit(&udp->udp_rwlock);
5118 		(void) mi_strlog(connp->conn_rq, 1,
5119 		    SL_ERROR|SL_TRACE,
5120 		    "udp_input_other: bad ERROR_prim, "
5121 		    "len %d", tea->ERROR_prim);
5122 	}
5123 	putnext(connp->conn_rq, mp);
5124 }
5125 
5126 /*
5127  * return SNMP stuff in buffer in mpdata. We don't hold any lock and report
5128  * information that can be changing beneath us.
5129  */
5130 mblk_t *
5131 udp_snmp_get(queue_t *q, mblk_t *mpctl)
5132 {
5133 	mblk_t			*mpdata;
5134 	mblk_t			*mp_conn_ctl;
5135 	mblk_t			*mp_attr_ctl;
5136 	mblk_t			*mp6_conn_ctl;
5137 	mblk_t			*mp6_attr_ctl;
5138 	mblk_t			*mp_conn_tail;
5139 	mblk_t			*mp_attr_tail;
5140 	mblk_t			*mp6_conn_tail;
5141 	mblk_t			*mp6_attr_tail;
5142 	struct opthdr		*optp;
5143 	mib2_udpEntry_t		ude;
5144 	mib2_udp6Entry_t	ude6;
5145 	mib2_transportMLPEntry_t mlp;
5146 	int			state;
5147 	zoneid_t		zoneid;
5148 	int			i;
5149 	connf_t			*connfp;
5150 	conn_t			*connp = Q_TO_CONN(q);
5151 	int			v4_conn_idx;
5152 	int			v6_conn_idx;
5153 	boolean_t		needattr;
5154 	udp_t			*udp;
5155 	ip_stack_t		*ipst = connp->conn_netstack->netstack_ip;
5156 	udp_stack_t		*us = connp->conn_netstack->netstack_udp;
5157 	mblk_t			*mp2ctl;
5158 
5159 	/*
5160 	 * make a copy of the original message
5161 	 */
5162 	mp2ctl = copymsg(mpctl);
5163 
5164 	mp_conn_ctl = mp_attr_ctl = mp6_conn_ctl = NULL;
5165 	if (mpctl == NULL ||
5166 	    (mpdata = mpctl->b_cont) == NULL ||
5167 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
5168 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
5169 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
5170 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
5171 		freemsg(mp_conn_ctl);
5172 		freemsg(mp_attr_ctl);
5173 		freemsg(mp6_conn_ctl);
5174 		freemsg(mpctl);
5175 		freemsg(mp2ctl);
5176 		return (0);
5177 	}
5178 
5179 	zoneid = connp->conn_zoneid;
5180 
5181 	/* fixed length structure for IPv4 and IPv6 counters */
5182 	SET_MIB(us->us_udp_mib.udpEntrySize, sizeof (mib2_udpEntry_t));
5183 	SET_MIB(us->us_udp_mib.udp6EntrySize, sizeof (mib2_udp6Entry_t));
5184 	/* synchronize 64- and 32-bit counters */
5185 	SYNC32_MIB(&us->us_udp_mib, udpInDatagrams, udpHCInDatagrams);
5186 	SYNC32_MIB(&us->us_udp_mib, udpOutDatagrams, udpHCOutDatagrams);
5187 
5188 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
5189 	optp->level = MIB2_UDP;
5190 	optp->name = 0;
5191 	(void) snmp_append_data(mpdata, (char *)&us->us_udp_mib,
5192 	    sizeof (us->us_udp_mib));
5193 	optp->len = msgdsize(mpdata);
5194 	qreply(q, mpctl);
5195 
5196 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
5197 	v4_conn_idx = v6_conn_idx = 0;
5198 
5199 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
5200 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
5201 		connp = NULL;
5202 
5203 		while ((connp = ipcl_get_next_conn(connfp, connp,
5204 		    IPCL_UDPCONN))) {
5205 			udp = connp->conn_udp;
5206 			if (zoneid != connp->conn_zoneid)
5207 				continue;
5208 
5209 			/*
5210 			 * Note that the port numbers are sent in
5211 			 * host byte order
5212 			 */
5213 
5214 			if (udp->udp_state == TS_UNBND)
5215 				state = MIB2_UDP_unbound;
5216 			else if (udp->udp_state == TS_IDLE)
5217 				state = MIB2_UDP_idle;
5218 			else if (udp->udp_state == TS_DATA_XFER)
5219 				state = MIB2_UDP_connected;
5220 			else
5221 				state = MIB2_UDP_unknown;
5222 
5223 			needattr = B_FALSE;
5224 			bzero(&mlp, sizeof (mlp));
5225 			if (connp->conn_mlp_type != mlptSingle) {
5226 				if (connp->conn_mlp_type == mlptShared ||
5227 				    connp->conn_mlp_type == mlptBoth)
5228 					mlp.tme_flags |= MIB2_TMEF_SHARED;
5229 				if (connp->conn_mlp_type == mlptPrivate ||
5230 				    connp->conn_mlp_type == mlptBoth)
5231 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
5232 				needattr = B_TRUE;
5233 			}
5234 
5235 			/*
5236 			 * Create an IPv4 table entry for IPv4 entries and also
5237 			 * any IPv6 entries which are bound to in6addr_any
5238 			 * (i.e. anything a IPv4 peer could connect/send to).
5239 			 */
5240 			if (udp->udp_ipversion == IPV4_VERSION ||
5241 			    (udp->udp_state <= TS_IDLE &&
5242 			    IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src))) {
5243 				ude.udpEntryInfo.ue_state = state;
5244 				/*
5245 				 * If in6addr_any this will set it to
5246 				 * INADDR_ANY
5247 				 */
5248 				ude.udpLocalAddress =
5249 				    V4_PART_OF_V6(udp->udp_v6src);
5250 				ude.udpLocalPort = ntohs(udp->udp_port);
5251 				if (udp->udp_state == TS_DATA_XFER) {
5252 					/*
5253 					 * Can potentially get here for
5254 					 * v6 socket if another process
5255 					 * (say, ping) has just done a
5256 					 * sendto(), changing the state
5257 					 * from the TS_IDLE above to
5258 					 * TS_DATA_XFER by the time we hit
5259 					 * this part of the code.
5260 					 */
5261 					ude.udpEntryInfo.ue_RemoteAddress =
5262 					    V4_PART_OF_V6(udp->udp_v6dst);
5263 					ude.udpEntryInfo.ue_RemotePort =
5264 					    ntohs(udp->udp_dstport);
5265 				} else {
5266 					ude.udpEntryInfo.ue_RemoteAddress = 0;
5267 					ude.udpEntryInfo.ue_RemotePort = 0;
5268 				}
5269 
5270 				/*
5271 				 * We make the assumption that all udp_t
5272 				 * structs will be created within an address
5273 				 * region no larger than 32-bits.
5274 				 */
5275 				ude.udpInstance = (uint32_t)(uintptr_t)udp;
5276 				ude.udpCreationProcess =
5277 				    (udp->udp_open_pid < 0) ?
5278 				    MIB2_UNKNOWN_PROCESS :
5279 				    udp->udp_open_pid;
5280 				ude.udpCreationTime = udp->udp_open_time;
5281 
5282 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
5283 				    &mp_conn_tail, (char *)&ude, sizeof (ude));
5284 				mlp.tme_connidx = v4_conn_idx++;
5285 				if (needattr)
5286 					(void) snmp_append_data2(
5287 					    mp_attr_ctl->b_cont, &mp_attr_tail,
5288 					    (char *)&mlp, sizeof (mlp));
5289 			}
5290 			if (udp->udp_ipversion == IPV6_VERSION) {
5291 				ude6.udp6EntryInfo.ue_state  = state;
5292 				ude6.udp6LocalAddress = udp->udp_v6src;
5293 				ude6.udp6LocalPort = ntohs(udp->udp_port);
5294 				ude6.udp6IfIndex = udp->udp_bound_if;
5295 				if (udp->udp_state == TS_DATA_XFER) {
5296 					ude6.udp6EntryInfo.ue_RemoteAddress =
5297 					    udp->udp_v6dst;
5298 					ude6.udp6EntryInfo.ue_RemotePort =
5299 					    ntohs(udp->udp_dstport);
5300 				} else {
5301 					ude6.udp6EntryInfo.ue_RemoteAddress =
5302 					    sin6_null.sin6_addr;
5303 					ude6.udp6EntryInfo.ue_RemotePort = 0;
5304 				}
5305 				/*
5306 				 * We make the assumption that all udp_t
5307 				 * structs will be created within an address
5308 				 * region no larger than 32-bits.
5309 				 */
5310 				ude6.udp6Instance = (uint32_t)(uintptr_t)udp;
5311 				ude6.udp6CreationProcess =
5312 				    (udp->udp_open_pid < 0) ?
5313 				    MIB2_UNKNOWN_PROCESS :
5314 				    udp->udp_open_pid;
5315 				ude6.udp6CreationTime = udp->udp_open_time;
5316 
5317 				(void) snmp_append_data2(mp6_conn_ctl->b_cont,
5318 				    &mp6_conn_tail, (char *)&ude6,
5319 				    sizeof (ude6));
5320 				mlp.tme_connidx = v6_conn_idx++;
5321 				if (needattr)
5322 					(void) snmp_append_data2(
5323 					    mp6_attr_ctl->b_cont,
5324 					    &mp6_attr_tail, (char *)&mlp,
5325 					    sizeof (mlp));
5326 			}
5327 		}
5328 	}
5329 
5330 	/* IPv4 UDP endpoints */
5331 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
5332 	    sizeof (struct T_optmgmt_ack)];
5333 	optp->level = MIB2_UDP;
5334 	optp->name = MIB2_UDP_ENTRY;
5335 	optp->len = msgdsize(mp_conn_ctl->b_cont);
5336 	qreply(q, mp_conn_ctl);
5337 
5338 	/* table of MLP attributes... */
5339 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
5340 	    sizeof (struct T_optmgmt_ack)];
5341 	optp->level = MIB2_UDP;
5342 	optp->name = EXPER_XPORT_MLP;
5343 	optp->len = msgdsize(mp_attr_ctl->b_cont);
5344 	if (optp->len == 0)
5345 		freemsg(mp_attr_ctl);
5346 	else
5347 		qreply(q, mp_attr_ctl);
5348 
5349 	/* IPv6 UDP endpoints */
5350 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
5351 	    sizeof (struct T_optmgmt_ack)];
5352 	optp->level = MIB2_UDP6;
5353 	optp->name = MIB2_UDP6_ENTRY;
5354 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
5355 	qreply(q, mp6_conn_ctl);
5356 
5357 	/* table of MLP attributes... */
5358 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
5359 	    sizeof (struct T_optmgmt_ack)];
5360 	optp->level = MIB2_UDP6;
5361 	optp->name = EXPER_XPORT_MLP;
5362 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
5363 	if (optp->len == 0)
5364 		freemsg(mp6_attr_ctl);
5365 	else
5366 		qreply(q, mp6_attr_ctl);
5367 
5368 	return (mp2ctl);
5369 }
5370 
5371 /*
5372  * Return 0 if invalid set request, 1 otherwise, including non-udp requests.
5373  * NOTE: Per MIB-II, UDP has no writable data.
5374  * TODO:  If this ever actually tries to set anything, it needs to be
5375  * to do the appropriate locking.
5376  */
5377 /* ARGSUSED */
5378 int
5379 udp_snmp_set(queue_t *q, t_scalar_t level, t_scalar_t name,
5380     uchar_t *ptr, int len)
5381 {
5382 	switch (level) {
5383 	case MIB2_UDP:
5384 		return (0);
5385 	default:
5386 		return (1);
5387 	}
5388 }
5389 
5390 static void
5391 udp_report_item(mblk_t *mp, udp_t *udp)
5392 {
5393 	char *state;
5394 	char addrbuf1[INET6_ADDRSTRLEN];
5395 	char addrbuf2[INET6_ADDRSTRLEN];
5396 	uint_t print_len, buf_len;
5397 
5398 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
5399 	ASSERT(buf_len >= 0);
5400 	if (buf_len == 0)
5401 		return;
5402 
5403 	if (udp->udp_state == TS_UNBND)
5404 		state = "UNBOUND";
5405 	else if (udp->udp_state == TS_IDLE)
5406 		state = "IDLE";
5407 	else if (udp->udp_state == TS_DATA_XFER)
5408 		state = "CONNECTED";
5409 	else
5410 		state = "UnkState";
5411 	print_len = snprintf((char *)mp->b_wptr, buf_len,
5412 	    MI_COL_PTRFMT_STR "%4d %5u %s %s %5u %s\n",
5413 	    (void *)udp, udp->udp_connp->conn_zoneid, ntohs(udp->udp_port),
5414 	    inet_ntop(AF_INET6, &udp->udp_v6src, addrbuf1, sizeof (addrbuf1)),
5415 	    inet_ntop(AF_INET6, &udp->udp_v6dst, addrbuf2, sizeof (addrbuf2)),
5416 	    ntohs(udp->udp_dstport), state);
5417 	if (print_len < buf_len) {
5418 		mp->b_wptr += print_len;
5419 	} else {
5420 		mp->b_wptr += buf_len;
5421 	}
5422 }
5423 
5424 /* Report for ndd "udp_status" */
5425 /* ARGSUSED */
5426 static int
5427 udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
5428 {
5429 	zoneid_t zoneid;
5430 	connf_t	*connfp;
5431 	conn_t	*connp = Q_TO_CONN(q);
5432 	udp_t	*udp = connp->conn_udp;
5433 	int	i;
5434 	udp_stack_t *us = udp->udp_us;
5435 	ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
5436 
5437 	/*
5438 	 * Because of the ndd constraint, at most we can have 64K buffer
5439 	 * to put in all UDP info.  So to be more efficient, just
5440 	 * allocate a 64K buffer here, assuming we need that large buffer.
5441 	 * This may be a problem as any user can read udp_status.  Therefore
5442 	 * we limit the rate of doing this using us_ndd_get_info_interval.
5443 	 * This should be OK as normal users should not do this too often.
5444 	 */
5445 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
5446 		if (ddi_get_lbolt() - us->us_last_ndd_get_info_time <
5447 		    drv_usectohz(us->us_ndd_get_info_interval * 1000)) {
5448 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
5449 			return (0);
5450 		}
5451 	}
5452 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
5453 		/* The following may work even if we cannot get a large buf. */
5454 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
5455 		return (0);
5456 	}
5457 	(void) mi_mpprintf(mp,
5458 	    "UDP     " MI_COL_HDRPAD_STR
5459 	/*   12345678[89ABCDEF] */
5460 	    " zone lport src addr        dest addr       port  state");
5461 	/*    1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */
5462 
5463 	zoneid = connp->conn_zoneid;
5464 
5465 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
5466 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
5467 		connp = NULL;
5468 
5469 		while ((connp = ipcl_get_next_conn(connfp, connp,
5470 		    IPCL_UDPCONN))) {
5471 			udp = connp->conn_udp;
5472 			if (zoneid != GLOBAL_ZONEID &&
5473 			    zoneid != connp->conn_zoneid)
5474 				continue;
5475 
5476 			udp_report_item(mp->b_cont, udp);
5477 		}
5478 	}
5479 	us->us_last_ndd_get_info_time = ddi_get_lbolt();
5480 	return (0);
5481 }
5482 
5483 /*
5484  * This routine creates a T_UDERROR_IND message and passes it upstream.
5485  * The address and options are copied from the T_UNITDATA_REQ message
5486  * passed in mp.  This message is freed.
5487  */
5488 static void
5489 udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr, t_scalar_t destlen,
5490     t_scalar_t err)
5491 {
5492 	struct T_unitdata_req *tudr;
5493 	mblk_t	*mp1;
5494 	uchar_t	*optaddr;
5495 	t_scalar_t optlen;
5496 
5497 	if (DB_TYPE(mp) == M_DATA) {
5498 		ASSERT(destaddr != NULL && destlen != 0);
5499 		optaddr = NULL;
5500 		optlen = 0;
5501 	} else {
5502 		if ((mp->b_wptr < mp->b_rptr) ||
5503 		    (MBLKL(mp)) < sizeof (struct T_unitdata_req)) {
5504 			goto done;
5505 		}
5506 		tudr = (struct T_unitdata_req *)mp->b_rptr;
5507 		destaddr = mp->b_rptr + tudr->DEST_offset;
5508 		if (destaddr < mp->b_rptr || destaddr >= mp->b_wptr ||
5509 		    destaddr + tudr->DEST_length < mp->b_rptr ||
5510 		    destaddr + tudr->DEST_length > mp->b_wptr) {
5511 			goto done;
5512 		}
5513 		optaddr = mp->b_rptr + tudr->OPT_offset;
5514 		if (optaddr < mp->b_rptr || optaddr >= mp->b_wptr ||
5515 		    optaddr + tudr->OPT_length < mp->b_rptr ||
5516 		    optaddr + tudr->OPT_length > mp->b_wptr) {
5517 			goto done;
5518 		}
5519 		destlen = tudr->DEST_length;
5520 		optlen = tudr->OPT_length;
5521 	}
5522 
5523 	mp1 = mi_tpi_uderror_ind((char *)destaddr, destlen,
5524 	    (char *)optaddr, optlen, err);
5525 	if (mp1 != NULL)
5526 		qreply(q, mp1);
5527 
5528 done:
5529 	freemsg(mp);
5530 }
5531 
5532 /*
5533  * This routine removes a port number association from a stream.  It
5534  * is called by udp_wput to handle T_UNBIND_REQ messages.
5535  */
5536 static void
5537 udp_unbind(queue_t *q, mblk_t *mp)
5538 {
5539 	udp_t *udp = Q_TO_UDP(q);
5540 	udp_fanout_t	*udpf;
5541 	udp_stack_t	*us = udp->udp_us;
5542 
5543 	if (cl_inet_unbind != NULL) {
5544 		/*
5545 		 * Running in cluster mode - register unbind information
5546 		 */
5547 		if (udp->udp_ipversion == IPV4_VERSION) {
5548 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET,
5549 			    (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)),
5550 			    (in_port_t)udp->udp_port);
5551 		} else {
5552 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET6,
5553 			    (uint8_t *)&(udp->udp_v6src),
5554 			    (in_port_t)udp->udp_port);
5555 		}
5556 	}
5557 
5558 	rw_enter(&udp->udp_rwlock, RW_WRITER);
5559 	if (udp->udp_state == TS_UNBND || udp->udp_pending_op != -1) {
5560 		rw_exit(&udp->udp_rwlock);
5561 		udp_err_ack(q, mp, TOUTSTATE, 0);
5562 		return;
5563 	}
5564 	udp->udp_pending_op = T_UNBIND_REQ;
5565 	rw_exit(&udp->udp_rwlock);
5566 
5567 	/*
5568 	 * Pass the unbind to IP; T_UNBIND_REQ is larger than T_OK_ACK
5569 	 * and therefore ip_unbind must never return NULL.
5570 	 */
5571 	mp = ip_unbind(q, mp);
5572 	ASSERT(mp != NULL);
5573 	ASSERT(((struct T_ok_ack *)mp->b_rptr)->PRIM_type == T_OK_ACK);
5574 
5575 	/*
5576 	 * Once we're unbound from IP, the pending operation may be cleared
5577 	 * here.
5578 	 */
5579 	rw_enter(&udp->udp_rwlock, RW_WRITER);
5580 	udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port,
5581 	    us->us_bind_fanout_size)];
5582 	mutex_enter(&udpf->uf_lock);
5583 	udp_bind_hash_remove(udp, B_TRUE);
5584 	V6_SET_ZERO(udp->udp_v6src);
5585 	V6_SET_ZERO(udp->udp_bound_v6src);
5586 	udp->udp_port = 0;
5587 	mutex_exit(&udpf->uf_lock);
5588 
5589 	udp->udp_pending_op = -1;
5590 	udp->udp_state = TS_UNBND;
5591 	if (udp->udp_family == AF_INET6)
5592 		(void) udp_build_hdrs(udp);
5593 	rw_exit(&udp->udp_rwlock);
5594 
5595 	qreply(q, mp);
5596 }
5597 
5598 /*
5599  * Don't let port fall into the privileged range.
5600  * Since the extra privileged ports can be arbitrary we also
5601  * ensure that we exclude those from consideration.
5602  * us->us_epriv_ports is not sorted thus we loop over it until
5603  * there are no changes.
5604  */
5605 static in_port_t
5606 udp_update_next_port(udp_t *udp, in_port_t port, boolean_t random)
5607 {
5608 	int i;
5609 	in_port_t nextport;
5610 	boolean_t restart = B_FALSE;
5611 	udp_stack_t *us = udp->udp_us;
5612 
5613 	if (random && udp_random_anon_port != 0) {
5614 		(void) random_get_pseudo_bytes((uint8_t *)&port,
5615 		    sizeof (in_port_t));
5616 		/*
5617 		 * Unless changed by a sys admin, the smallest anon port
5618 		 * is 32768 and the largest anon port is 65535.  It is
5619 		 * very likely (50%) for the random port to be smaller
5620 		 * than the smallest anon port.  When that happens,
5621 		 * add port % (anon port range) to the smallest anon
5622 		 * port to get the random port.  It should fall into the
5623 		 * valid anon port range.
5624 		 */
5625 		if (port < us->us_smallest_anon_port) {
5626 			port = us->us_smallest_anon_port +
5627 			    port % (us->us_largest_anon_port -
5628 			    us->us_smallest_anon_port);
5629 		}
5630 	}
5631 
5632 retry:
5633 	if (port < us->us_smallest_anon_port)
5634 		port = us->us_smallest_anon_port;
5635 
5636 	if (port > us->us_largest_anon_port) {
5637 		port = us->us_smallest_anon_port;
5638 		if (restart)
5639 			return (0);
5640 		restart = B_TRUE;
5641 	}
5642 
5643 	if (port < us->us_smallest_nonpriv_port)
5644 		port = us->us_smallest_nonpriv_port;
5645 
5646 	for (i = 0; i < us->us_num_epriv_ports; i++) {
5647 		if (port == us->us_epriv_ports[i]) {
5648 			port++;
5649 			/*
5650 			 * Make sure that the port is in the
5651 			 * valid range.
5652 			 */
5653 			goto retry;
5654 		}
5655 	}
5656 
5657 	if (is_system_labeled() &&
5658 	    (nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred),
5659 	    port, IPPROTO_UDP, B_TRUE)) != 0) {
5660 		port = nextport;
5661 		goto retry;
5662 	}
5663 
5664 	return (port);
5665 }
5666 
5667 static int
5668 udp_update_label(queue_t *wq, mblk_t *mp, ipaddr_t dst)
5669 {
5670 	int err;
5671 	uchar_t opt_storage[IP_MAX_OPT_LENGTH];
5672 	udp_t *udp = Q_TO_UDP(wq);
5673 	udp_stack_t	*us = udp->udp_us;
5674 
5675 	err = tsol_compute_label(DB_CREDDEF(mp, udp->udp_connp->conn_cred), dst,
5676 	    opt_storage, udp->udp_mac_exempt,
5677 	    us->us_netstack->netstack_ip);
5678 	if (err == 0) {
5679 		err = tsol_update_options(&udp->udp_ip_snd_options,
5680 		    &udp->udp_ip_snd_options_len, &udp->udp_label_len,
5681 		    opt_storage);
5682 	}
5683 	if (err != 0) {
5684 		DTRACE_PROBE4(
5685 		    tx__ip__log__info__updatelabel__udp,
5686 		    char *, "queue(1) failed to update options(2) on mp(3)",
5687 		    queue_t *, wq, char *, opt_storage, mblk_t *, mp);
5688 	} else {
5689 		IN6_IPADDR_TO_V4MAPPED(dst, &udp->udp_v6lastdst);
5690 	}
5691 	return (err);
5692 }
5693 
5694 static mblk_t *
5695 udp_output_v4(conn_t *connp, mblk_t *mp, ipaddr_t v4dst, uint16_t port,
5696     uint_t srcid, int *error, boolean_t insert_spi)
5697 {
5698 	udp_t	*udp = connp->conn_udp;
5699 	queue_t	*q = connp->conn_wq;
5700 	mblk_t	*mp1 = mp;
5701 	mblk_t	*mp2;
5702 	ipha_t	*ipha;
5703 	int	ip_hdr_length;
5704 	uint32_t ip_len;
5705 	udpha_t	*udpha;
5706 	boolean_t lock_held = B_FALSE;
5707 	in_port_t	uha_src_port;
5708 	udpattrs_t	attrs;
5709 	uchar_t	ip_snd_opt[IP_MAX_OPT_LENGTH];
5710 	uint32_t	ip_snd_opt_len = 0;
5711 	ip4_pkt_t  pktinfo;
5712 	ip4_pkt_t  *pktinfop = &pktinfo;
5713 	ip_opt_info_t optinfo;
5714 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
5715 	udp_stack_t	*us = udp->udp_us;
5716 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
5717 
5718 
5719 	*error = 0;
5720 	pktinfop->ip4_ill_index = 0;
5721 	pktinfop->ip4_addr = INADDR_ANY;
5722 	optinfo.ip_opt_flags = 0;
5723 	optinfo.ip_opt_ill_index = 0;
5724 
5725 	if (v4dst == INADDR_ANY)
5726 		v4dst = htonl(INADDR_LOOPBACK);
5727 
5728 	/*
5729 	 * If options passed in, feed it for verification and handling
5730 	 */
5731 	attrs.udpattr_credset = B_FALSE;
5732 	if (DB_TYPE(mp) != M_DATA) {
5733 		mp1 = mp->b_cont;
5734 		if (((struct T_unitdata_req *)mp->b_rptr)->OPT_length != 0) {
5735 			attrs.udpattr_ipp4 = pktinfop;
5736 			attrs.udpattr_mb = mp;
5737 			if (udp_unitdata_opt_process(q, mp, error, &attrs) < 0)
5738 				goto done;
5739 			/*
5740 			 * Note: success in processing options.
5741 			 * mp option buffer represented by
5742 			 * OPT_length/offset now potentially modified
5743 			 * and contain option setting results
5744 			 */
5745 			ASSERT(*error == 0);
5746 		}
5747 	}
5748 
5749 	/* mp1 points to the M_DATA mblk carrying the packet */
5750 	ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA);
5751 
5752 	rw_enter(&udp->udp_rwlock, RW_READER);
5753 	lock_held = B_TRUE;
5754 	/*
5755 	 * Check if our saved options are valid; update if not.
5756 	 * TSOL Note: Since we are not in WRITER mode, UDP packets
5757 	 * to different destination may require different labels,
5758 	 * or worse, UDP packets to same IP address may require
5759 	 * different labels due to use of shared all-zones address.
5760 	 * We use conn_lock to ensure that lastdst, ip_snd_options,
5761 	 * and ip_snd_options_len are consistent for the current
5762 	 * destination and are updated atomically.
5763 	 */
5764 	mutex_enter(&connp->conn_lock);
5765 	if (is_system_labeled()) {
5766 		/* Using UDP MLP requires SCM_UCRED from user */
5767 		if (connp->conn_mlp_type != mlptSingle &&
5768 		    !attrs.udpattr_credset) {
5769 			mutex_exit(&connp->conn_lock);
5770 			DTRACE_PROBE4(
5771 			    tx__ip__log__info__output__udp,
5772 			    char *, "MLP mp(1) lacks SCM_UCRED attr(2) on q(3)",
5773 			    mblk_t *, mp1, udpattrs_t *, &attrs, queue_t *, q);
5774 			*error = ECONNREFUSED;
5775 			goto done;
5776 		}
5777 		/*
5778 		 * update label option for this UDP socket if
5779 		 * - the destination has changed, or
5780 		 * - the UDP socket is MLP
5781 		 */
5782 		if ((!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6lastdst) ||
5783 		    V4_PART_OF_V6(udp->udp_v6lastdst) != v4dst ||
5784 		    connp->conn_mlp_type != mlptSingle) &&
5785 		    (*error = udp_update_label(q, mp, v4dst)) != 0) {
5786 			mutex_exit(&connp->conn_lock);
5787 			goto done;
5788 		}
5789 	}
5790 	if (udp->udp_ip_snd_options_len > 0) {
5791 		ip_snd_opt_len = udp->udp_ip_snd_options_len;
5792 		bcopy(udp->udp_ip_snd_options, ip_snd_opt, ip_snd_opt_len);
5793 	}
5794 	mutex_exit(&connp->conn_lock);
5795 
5796 	/* Add an IP header */
5797 	ip_hdr_length = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + ip_snd_opt_len +
5798 	    (insert_spi ? sizeof (uint32_t) : 0);
5799 	ipha = (ipha_t *)&mp1->b_rptr[-ip_hdr_length];
5800 	if (DB_REF(mp1) != 1 || (uchar_t *)ipha < DB_BASE(mp1) ||
5801 	    !OK_32PTR(ipha)) {
5802 		mp2 = allocb(ip_hdr_length + us->us_wroff_extra, BPRI_LO);
5803 		if (mp2 == NULL) {
5804 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
5805 			    "udp_wput_end: q %p (%S)", q, "allocbfail2");
5806 			*error = ENOMEM;
5807 			goto done;
5808 		}
5809 		mp2->b_wptr = DB_LIM(mp2);
5810 		mp2->b_cont = mp1;
5811 		mp1 = mp2;
5812 		if (DB_TYPE(mp) != M_DATA)
5813 			mp->b_cont = mp1;
5814 		else
5815 			mp = mp1;
5816 
5817 		ipha = (ipha_t *)(mp1->b_wptr - ip_hdr_length);
5818 	}
5819 	ip_hdr_length -= (UDPH_SIZE + (insert_spi ? sizeof (uint32_t) : 0));
5820 #ifdef	_BIG_ENDIAN
5821 	/* Set version, header length, and tos */
5822 	*(uint16_t *)&ipha->ipha_version_and_hdr_length =
5823 	    ((((IP_VERSION << 4) | (ip_hdr_length>>2)) << 8) |
5824 	    udp->udp_type_of_service);
5825 	/* Set ttl and protocol */
5826 	*(uint16_t *)&ipha->ipha_ttl = (udp->udp_ttl << 8) | IPPROTO_UDP;
5827 #else
5828 	/* Set version, header length, and tos */
5829 	*(uint16_t *)&ipha->ipha_version_and_hdr_length =
5830 	    ((udp->udp_type_of_service << 8) |
5831 	    ((IP_VERSION << 4) | (ip_hdr_length>>2)));
5832 	/* Set ttl and protocol */
5833 	*(uint16_t *)&ipha->ipha_ttl = (IPPROTO_UDP << 8) | udp->udp_ttl;
5834 #endif
5835 	if (pktinfop->ip4_addr != INADDR_ANY) {
5836 		ipha->ipha_src = pktinfop->ip4_addr;
5837 		optinfo.ip_opt_flags = IP_VERIFY_SRC;
5838 	} else {
5839 		/*
5840 		 * Copy our address into the packet.  If this is zero,
5841 		 * first look at __sin6_src_id for a hint. If we leave the
5842 		 * source as INADDR_ANY then ip will fill in the real source
5843 		 * address.
5844 		 */
5845 		IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src, ipha->ipha_src);
5846 		if (srcid != 0 && ipha->ipha_src == INADDR_ANY) {
5847 			in6_addr_t v6src;
5848 
5849 			ip_srcid_find_id(srcid, &v6src, connp->conn_zoneid,
5850 			    us->us_netstack);
5851 			IN6_V4MAPPED_TO_IPADDR(&v6src, ipha->ipha_src);
5852 		}
5853 	}
5854 	uha_src_port = udp->udp_port;
5855 	if (ip_hdr_length == IP_SIMPLE_HDR_LENGTH) {
5856 		rw_exit(&udp->udp_rwlock);
5857 		lock_held = B_FALSE;
5858 	}
5859 
5860 	if (pktinfop->ip4_ill_index != 0) {
5861 		optinfo.ip_opt_ill_index = pktinfop->ip4_ill_index;
5862 	}
5863 
5864 	ipha->ipha_fragment_offset_and_flags = 0;
5865 	ipha->ipha_ident = 0;
5866 
5867 	mp1->b_rptr = (uchar_t *)ipha;
5868 
5869 	ASSERT((uintptr_t)(mp1->b_wptr - (uchar_t *)ipha) <=
5870 	    (uintptr_t)UINT_MAX);
5871 
5872 	/* Determine length of packet */
5873 	ip_len = (uint32_t)(mp1->b_wptr - (uchar_t *)ipha);
5874 	if ((mp2 = mp1->b_cont) != NULL) {
5875 		do {
5876 			ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX);
5877 			ip_len += (uint32_t)MBLKL(mp2);
5878 		} while ((mp2 = mp2->b_cont) != NULL);
5879 	}
5880 	/*
5881 	 * If the size of the packet is greater than the maximum allowed by
5882 	 * ip, return an error. Passing this down could cause panics because
5883 	 * the size will have wrapped and be inconsistent with the msg size.
5884 	 */
5885 	if (ip_len > IP_MAXPACKET) {
5886 		TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
5887 		    "udp_wput_end: q %p (%S)", q, "IP length exceeded");
5888 		*error = EMSGSIZE;
5889 		goto done;
5890 	}
5891 	ipha->ipha_length = htons((uint16_t)ip_len);
5892 	ip_len -= ip_hdr_length;
5893 	ip_len = htons((uint16_t)ip_len);
5894 	udpha = (udpha_t *)(((uchar_t *)ipha) + ip_hdr_length);
5895 
5896 	/* Insert all-0s SPI now. */
5897 	if (insert_spi)
5898 		*((uint32_t *)(udpha + 1)) = 0;
5899 
5900 	/*
5901 	 * Copy in the destination address
5902 	 */
5903 	ipha->ipha_dst = v4dst;
5904 
5905 	/*
5906 	 * Set ttl based on IP_MULTICAST_TTL to match IPv6 logic.
5907 	 */
5908 	if (CLASSD(v4dst))
5909 		ipha->ipha_ttl = udp->udp_multicast_ttl;
5910 
5911 	udpha->uha_dst_port = port;
5912 	udpha->uha_src_port = uha_src_port;
5913 
5914 	if (ip_snd_opt_len > 0) {
5915 		uint32_t	cksum;
5916 
5917 		bcopy(ip_snd_opt, &ipha[1], ip_snd_opt_len);
5918 		lock_held = B_FALSE;
5919 		rw_exit(&udp->udp_rwlock);
5920 		/*
5921 		 * Massage source route putting first source route in ipha_dst.
5922 		 * Ignore the destination in T_unitdata_req.
5923 		 * Create a checksum adjustment for a source route, if any.
5924 		 */
5925 		cksum = ip_massage_options(ipha, us->us_netstack);
5926 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
5927 		cksum -= ((ipha->ipha_dst >> 16) & 0xFFFF) +
5928 		    (ipha->ipha_dst & 0xFFFF);
5929 		if ((int)cksum < 0)
5930 			cksum--;
5931 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
5932 		/*
5933 		 * IP does the checksum if uha_checksum is non-zero,
5934 		 * We make it easy for IP to include our pseudo header
5935 		 * by putting our length in uha_checksum.
5936 		 */
5937 		cksum += ip_len;
5938 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
5939 		/* There might be a carry. */
5940 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
5941 #ifdef _LITTLE_ENDIAN
5942 		if (us->us_do_checksum)
5943 			ip_len = (cksum << 16) | ip_len;
5944 #else
5945 		if (us->us_do_checksum)
5946 			ip_len = (ip_len << 16) | cksum;
5947 		else
5948 			ip_len <<= 16;
5949 #endif
5950 	} else {
5951 		/*
5952 		 * IP does the checksum if uha_checksum is non-zero,
5953 		 * We make it easy for IP to include our pseudo header
5954 		 * by putting our length in uha_checksum.
5955 		 */
5956 		if (us->us_do_checksum)
5957 			ip_len |= (ip_len << 16);
5958 #ifndef _LITTLE_ENDIAN
5959 		else
5960 			ip_len <<= 16;
5961 #endif
5962 	}
5963 	ASSERT(!lock_held);
5964 	/* Set UDP length and checksum */
5965 	*((uint32_t *)&udpha->uha_length) = ip_len;
5966 	if (DB_CRED(mp) != NULL)
5967 		mblk_setcred(mp1, DB_CRED(mp));
5968 
5969 	if (DB_TYPE(mp) != M_DATA) {
5970 		ASSERT(mp != mp1);
5971 		freeb(mp);
5972 	}
5973 
5974 	/* mp has been consumed and we'll return success */
5975 	ASSERT(*error == 0);
5976 	mp = NULL;
5977 
5978 	/* We're done.  Pass the packet to ip. */
5979 	BUMP_MIB(&us->us_udp_mib, udpHCOutDatagrams);
5980 	TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
5981 	    "udp_wput_end: q %p (%S)", q, "end");
5982 
5983 	if ((connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
5984 	    CONN_OUTBOUND_POLICY_PRESENT(connp, ipss) ||
5985 	    connp->conn_dontroute || connp->conn_xmit_if_ill != NULL ||
5986 	    connp->conn_nofailover_ill != NULL ||
5987 	    connp->conn_outgoing_ill != NULL || optinfo.ip_opt_flags != 0 ||
5988 	    optinfo.ip_opt_ill_index != 0 ||
5989 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
5990 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst) ||
5991 	    ipst->ips_ip_g_mrouter != NULL) {
5992 		UDP_STAT(us, udp_ip_send);
5993 		ip_output_options(connp, mp1, connp->conn_wq, IP_WPUT,
5994 		    &optinfo);
5995 	} else {
5996 		udp_send_data(udp, connp->conn_wq, mp1, ipha);
5997 	}
5998 
5999 done:
6000 	if (lock_held)
6001 		rw_exit(&udp->udp_rwlock);
6002 	if (*error != 0) {
6003 		ASSERT(mp != NULL);
6004 		BUMP_MIB(&us->us_udp_mib, udpOutErrors);
6005 	}
6006 	return (mp);
6007 }
6008 
6009 static void
6010 udp_send_data(udp_t *udp, queue_t *q, mblk_t *mp, ipha_t *ipha)
6011 {
6012 	conn_t	*connp = udp->udp_connp;
6013 	ipaddr_t src, dst;
6014 	ire_t	*ire;
6015 	ipif_t	*ipif = NULL;
6016 	mblk_t	*ire_fp_mp;
6017 	boolean_t retry_caching;
6018 	udp_stack_t *us = udp->udp_us;
6019 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
6020 
6021 	dst = ipha->ipha_dst;
6022 	src = ipha->ipha_src;
6023 	ASSERT(ipha->ipha_ident == 0);
6024 
6025 	if (CLASSD(dst)) {
6026 		int err;
6027 
6028 		ipif = conn_get_held_ipif(connp,
6029 		    &connp->conn_multicast_ipif, &err);
6030 
6031 		if (ipif == NULL || ipif->ipif_isv6 ||
6032 		    (ipif->ipif_ill->ill_phyint->phyint_flags &
6033 		    PHYI_LOOPBACK)) {
6034 			if (ipif != NULL)
6035 				ipif_refrele(ipif);
6036 			UDP_STAT(us, udp_ip_send);
6037 			ip_output(connp, mp, q, IP_WPUT);
6038 			return;
6039 		}
6040 	}
6041 
6042 	retry_caching = B_FALSE;
6043 	mutex_enter(&connp->conn_lock);
6044 	ire = connp->conn_ire_cache;
6045 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
6046 
6047 	if (ire == NULL || ire->ire_addr != dst ||
6048 	    (ire->ire_marks & IRE_MARK_CONDEMNED)) {
6049 		retry_caching = B_TRUE;
6050 	} else if (CLASSD(dst) && (ire->ire_type & IRE_CACHE)) {
6051 		ill_t *stq_ill = (ill_t *)ire->ire_stq->q_ptr;
6052 
6053 		ASSERT(ipif != NULL);
6054 		if (stq_ill != ipif->ipif_ill && (stq_ill->ill_group == NULL ||
6055 		    stq_ill->ill_group != ipif->ipif_ill->ill_group))
6056 			retry_caching = B_TRUE;
6057 	}
6058 
6059 	if (!retry_caching) {
6060 		ASSERT(ire != NULL);
6061 		IRE_REFHOLD(ire);
6062 		mutex_exit(&connp->conn_lock);
6063 	} else {
6064 		boolean_t cached = B_FALSE;
6065 
6066 		connp->conn_ire_cache = NULL;
6067 		mutex_exit(&connp->conn_lock);
6068 
6069 		/* Release the old ire */
6070 		if (ire != NULL) {
6071 			IRE_REFRELE_NOTR(ire);
6072 			ire = NULL;
6073 		}
6074 
6075 		if (CLASSD(dst)) {
6076 			ASSERT(ipif != NULL);
6077 			ire = ire_ctable_lookup(dst, 0, 0, ipif,
6078 			    connp->conn_zoneid, MBLK_GETLABEL(mp),
6079 			    MATCH_IRE_ILL_GROUP, ipst);
6080 		} else {
6081 			ASSERT(ipif == NULL);
6082 			ire = ire_cache_lookup(dst, connp->conn_zoneid,
6083 			    MBLK_GETLABEL(mp), ipst);
6084 		}
6085 
6086 		if (ire == NULL) {
6087 			if (ipif != NULL)
6088 				ipif_refrele(ipif);
6089 			UDP_STAT(us, udp_ire_null);
6090 			ip_output(connp, mp, q, IP_WPUT);
6091 			return;
6092 		}
6093 		IRE_REFHOLD_NOTR(ire);
6094 
6095 		mutex_enter(&connp->conn_lock);
6096 		if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) {
6097 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
6098 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
6099 				connp->conn_ire_cache = ire;
6100 				cached = B_TRUE;
6101 			}
6102 			rw_exit(&ire->ire_bucket->irb_lock);
6103 		}
6104 		mutex_exit(&connp->conn_lock);
6105 
6106 		/*
6107 		 * We can continue to use the ire but since it was not
6108 		 * cached, we should drop the extra reference.
6109 		 */
6110 		if (!cached)
6111 			IRE_REFRELE_NOTR(ire);
6112 	}
6113 	ASSERT(ire != NULL && ire->ire_ipversion == IPV4_VERSION);
6114 	ASSERT(!CLASSD(dst) || ipif != NULL);
6115 
6116 	/*
6117 	 * Check if we can take the fast-path.
6118 	 * Note that "incomplete" ire's (where the link-layer for next hop
6119 	 * is not resolved, or where the fast-path header in nce_fp_mp is not
6120 	 * available yet) are sent down the legacy (slow) path
6121 	 */
6122 	if ((ire->ire_type & (IRE_BROADCAST|IRE_LOCAL|IRE_LOOPBACK)) ||
6123 	    (ire->ire_flags & RTF_MULTIRT) || (ire->ire_stq == NULL) ||
6124 	    (ire->ire_max_frag < ntohs(ipha->ipha_length)) ||
6125 	    ((ire->ire_nce == NULL) ||
6126 	    ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL)) ||
6127 	    connp->conn_nexthop_set || (MBLKL(ire_fp_mp) > MBLKHEAD(mp))) {
6128 		if (ipif != NULL)
6129 			ipif_refrele(ipif);
6130 		UDP_STAT(us, udp_ip_ire_send);
6131 		IRE_REFRELE(ire);
6132 		ip_output(connp, mp, q, IP_WPUT);
6133 		return;
6134 	}
6135 
6136 	if (src == INADDR_ANY && !connp->conn_unspec_src) {
6137 		if (CLASSD(dst) && !(ire->ire_flags & RTF_SETSRC))
6138 			ipha->ipha_src = ipif->ipif_src_addr;
6139 		else
6140 			ipha->ipha_src = ire->ire_src_addr;
6141 	}
6142 
6143 	if (ipif != NULL)
6144 		ipif_refrele(ipif);
6145 
6146 	udp_xmit(connp->conn_wq, mp, ire, connp, connp->conn_zoneid);
6147 }
6148 
6149 static void
6150 udp_xmit(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, zoneid_t zoneid)
6151 {
6152 	ipaddr_t src, dst;
6153 	ill_t	*ill;
6154 	mblk_t	*ire_fp_mp;
6155 	uint_t	ire_fp_mp_len;
6156 	uint16_t *up;
6157 	uint32_t cksum, hcksum_txflags;
6158 	queue_t	*dev_q;
6159 	udp_t	*udp = connp->conn_udp;
6160 	ipha_t	*ipha = (ipha_t *)mp->b_rptr;
6161 	udp_stack_t	*us = udp->udp_us;
6162 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
6163 
6164 	dev_q = ire->ire_stq->q_next;
6165 	ASSERT(dev_q != NULL);
6166 
6167 
6168 	if (DEV_Q_IS_FLOW_CTLED(dev_q)) {
6169 		BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsHCOutRequests);
6170 		BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
6171 		ire_refrele(ire);
6172 		return;
6173 	}
6174 
6175 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
6176 	ire_fp_mp_len = MBLKL(ire_fp_mp);
6177 	ASSERT(MBLKHEAD(mp) >= ire_fp_mp_len);
6178 
6179 	dst = ipha->ipha_dst;
6180 	src = ipha->ipha_src;
6181 
6182 	ill = ire_to_ill(ire);
6183 	ASSERT(ill != NULL);
6184 
6185 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
6186 
6187 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
6188 #ifndef _BIG_ENDIAN
6189 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
6190 #endif
6191 
6192 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
6193 		ASSERT(ill->ill_hcksum_capab != NULL);
6194 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
6195 	} else {
6196 		hcksum_txflags = 0;
6197 	}
6198 
6199 	/* pseudo-header checksum (do it in parts for IP header checksum) */
6200 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
6201 
6202 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
6203 	up = IPH_UDPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
6204 	if (*up != 0) {
6205 		IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags,
6206 		    mp, ipha, up, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH,
6207 		    ntohs(ipha->ipha_length), cksum);
6208 
6209 		/* Software checksum? */
6210 		if (DB_CKSUMFLAGS(mp) == 0) {
6211 			UDP_STAT(us, udp_out_sw_cksum);
6212 			UDP_STAT_UPDATE(us, udp_out_sw_cksum_bytes,
6213 			    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
6214 		}
6215 	}
6216 
6217 	if (!CLASSD(dst)) {
6218 		ipha->ipha_fragment_offset_and_flags |=
6219 		    (uint32_t)htons(ire->ire_frag_flag);
6220 	}
6221 
6222 	/* Calculate IP header checksum if hardware isn't capable */
6223 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
6224 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
6225 		    ((uint16_t *)ipha)[4]);
6226 	}
6227 
6228 	if (CLASSD(dst)) {
6229 		ilm_t *ilm;
6230 
6231 		ILM_WALKER_HOLD(ill);
6232 		ilm = ilm_lookup_ill(ill, dst, ALL_ZONES);
6233 		ILM_WALKER_RELE(ill);
6234 		if (ilm != NULL) {
6235 			ip_multicast_loopback(q, ill, mp,
6236 			    connp->conn_multicast_loop ? 0 :
6237 			    IP_FF_NO_MCAST_LOOP, zoneid);
6238 		}
6239 
6240 		/* If multicast TTL is 0 then we are done */
6241 		if (ipha->ipha_ttl == 0) {
6242 			freemsg(mp);
6243 			ire_refrele(ire);
6244 			return;
6245 		}
6246 	}
6247 
6248 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
6249 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
6250 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
6251 
6252 	UPDATE_OB_PKT_COUNT(ire);
6253 	ire->ire_last_used_time = lbolt;
6254 
6255 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
6256 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
6257 	    ntohs(ipha->ipha_length));
6258 
6259 	if (ILL_DLS_CAPABLE(ill)) {
6260 		/*
6261 		 * Send the packet directly to DLD, where it may be queued
6262 		 * depending on the availability of transmit resources at
6263 		 * the media layer.
6264 		 */
6265 		IP_DLS_ILL_TX(ill, ipha, mp, ipst);
6266 	} else {
6267 		DTRACE_PROBE4(ip4__physical__out__start,
6268 		    ill_t *, NULL, ill_t *, ill,
6269 		    ipha_t *, ipha, mblk_t *, mp);
6270 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
6271 		    ipst->ips_ipv4firewall_physical_out,
6272 		    NULL, ill, ipha, mp, mp, ipst);
6273 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
6274 		if (mp != NULL)
6275 			putnext(ire->ire_stq, mp);
6276 	}
6277 
6278 	IRE_REFRELE(ire);
6279 }
6280 
6281 static boolean_t
6282 udp_update_label_v6(queue_t *wq, mblk_t *mp, in6_addr_t *dst)
6283 {
6284 	udp_t *udp = Q_TO_UDP(wq);
6285 	int err;
6286 	uchar_t opt_storage[TSOL_MAX_IPV6_OPTION];
6287 	udp_stack_t		*us = udp->udp_us;
6288 
6289 	err = tsol_compute_label_v6(DB_CREDDEF(mp, udp->udp_connp->conn_cred),
6290 	    dst, opt_storage, udp->udp_mac_exempt,
6291 	    us->us_netstack->netstack_ip);
6292 	if (err == 0) {
6293 		err = tsol_update_sticky(&udp->udp_sticky_ipp,
6294 		    &udp->udp_label_len_v6, opt_storage);
6295 	}
6296 	if (err != 0) {
6297 		DTRACE_PROBE4(
6298 		    tx__ip__log__drop__updatelabel__udp6,
6299 		    char *, "queue(1) failed to update options(2) on mp(3)",
6300 		    queue_t *, wq, char *, opt_storage, mblk_t *, mp);
6301 	} else {
6302 		udp->udp_v6lastdst = *dst;
6303 	}
6304 	return (err);
6305 }
6306 
6307 void
6308 udp_output_connected(void *arg, mblk_t *mp)
6309 {
6310 	conn_t	*connp = (conn_t *)arg;
6311 	udp_t	*udp = connp->conn_udp;
6312 	udp_stack_t	*us = udp->udp_us;
6313 	ipaddr_t	v4dst;
6314 	in_port_t	dstport;
6315 	boolean_t	mapped_addr;
6316 	struct sockaddr_storage ss;
6317 	sin_t		*sin;
6318 	sin6_t		*sin6;
6319 	struct sockaddr	*addr;
6320 	socklen_t	addrlen;
6321 	int		error;
6322 	boolean_t	insert_spi = udp->udp_nat_t_endpoint;
6323 
6324 	/* M_DATA for connected socket */
6325 
6326 	ASSERT(udp->udp_issocket);
6327 	UDP_DBGSTAT(us, udp_data_conn);
6328 
6329 	mutex_enter(&connp->conn_lock);
6330 	if (udp->udp_state != TS_DATA_XFER) {
6331 		mutex_exit(&connp->conn_lock);
6332 		BUMP_MIB(&us->us_udp_mib, udpOutErrors);
6333 		UDP_STAT(us, udp_out_err_notconn);
6334 		freemsg(mp);
6335 		TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6336 		    "udp_wput_end: connp %p (%S)", connp,
6337 		    "not-connected; address required");
6338 		return;
6339 	}
6340 
6341 	mapped_addr = IN6_IS_ADDR_V4MAPPED(&udp->udp_v6dst);
6342 	if (mapped_addr)
6343 		IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6dst, v4dst);
6344 
6345 	/* Initialize addr and addrlen as if they're passed in */
6346 	if (udp->udp_family == AF_INET) {
6347 		sin = (sin_t *)&ss;
6348 		sin->sin_family = AF_INET;
6349 		dstport = sin->sin_port = udp->udp_dstport;
6350 		ASSERT(mapped_addr);
6351 		sin->sin_addr.s_addr = v4dst;
6352 		addr = (struct sockaddr *)sin;
6353 		addrlen = sizeof (*sin);
6354 	} else {
6355 		sin6 = (sin6_t *)&ss;
6356 		sin6->sin6_family = AF_INET6;
6357 		dstport = sin6->sin6_port = udp->udp_dstport;
6358 		sin6->sin6_flowinfo = udp->udp_flowinfo;
6359 		sin6->sin6_addr = udp->udp_v6dst;
6360 		sin6->sin6_scope_id = 0;
6361 		sin6->__sin6_src_id = 0;
6362 		addr = (struct sockaddr *)sin6;
6363 		addrlen = sizeof (*sin6);
6364 	}
6365 	mutex_exit(&connp->conn_lock);
6366 
6367 	if (mapped_addr) {
6368 		/*
6369 		 * Handle both AF_INET and AF_INET6; the latter
6370 		 * for IPV4 mapped destination addresses.  Note
6371 		 * here that both addr and addrlen point to the
6372 		 * corresponding struct depending on the address
6373 		 * family of the socket.
6374 		 */
6375 		mp = udp_output_v4(connp, mp, v4dst, dstport, 0, &error,
6376 		    insert_spi);
6377 	} else {
6378 		mp = udp_output_v6(connp, mp, sin6, &error);
6379 	}
6380 	if (error == 0) {
6381 		ASSERT(mp == NULL);
6382 		return;
6383 	}
6384 
6385 	UDP_STAT(us, udp_out_err_output);
6386 	ASSERT(mp != NULL);
6387 	/* mp is freed by the following routine */
6388 	udp_ud_err(connp->conn_wq, mp, (uchar_t *)addr, (t_scalar_t)addrlen,
6389 	    (t_scalar_t)error);
6390 }
6391 
6392 /*
6393  * This routine handles all messages passed downstream.  It either
6394  * consumes the message or passes it downstream; it never queues a
6395  * a message.
6396  *
6397  * Also entry point for sockfs when udp is in "direct sockfs" mode.  This mode
6398  * is valid when we are directly beneath the stream head, and thus sockfs
6399  * is able to bypass STREAMS and directly call us, passing along the sockaddr
6400  * structure without the cumbersome T_UNITDATA_REQ interface for the case of
6401  * connected endpoints.
6402  */
6403 void
6404 udp_wput(queue_t *q, mblk_t *mp)
6405 {
6406 	sin6_t		*sin6;
6407 	sin_t		*sin;
6408 	ipaddr_t	v4dst;
6409 	uint16_t	port;
6410 	uint_t		srcid;
6411 	conn_t		*connp = Q_TO_CONN(q);
6412 	udp_t		*udp = connp->conn_udp;
6413 	int		error = 0;
6414 	struct sockaddr	*addr;
6415 	socklen_t	addrlen;
6416 	udp_stack_t *us = udp->udp_us;
6417 	boolean_t	insert_spi = udp->udp_nat_t_endpoint;
6418 
6419 	TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_START,
6420 	    "udp_wput_start: queue %p mp %p", q, mp);
6421 
6422 	/*
6423 	 * We directly handle several cases here: T_UNITDATA_REQ message
6424 	 * coming down as M_PROTO/M_PCPROTO and M_DATA messages for connected
6425 	 * socket.
6426 	 */
6427 	switch (DB_TYPE(mp)) {
6428 	case M_DATA:
6429 		/*
6430 		 * Quick check for error cases. Checks will be done again
6431 		 * under the lock later on
6432 		 */
6433 		if (!udp->udp_direct_sockfs || udp->udp_state != TS_DATA_XFER) {
6434 			/* Not connected; address is required */
6435 			BUMP_MIB(&us->us_udp_mib, udpOutErrors);
6436 			UDP_STAT(us, udp_out_err_notconn);
6437 			freemsg(mp);
6438 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6439 			    "udp_wput_end: connp %p (%S)", connp,
6440 			    "not-connected; address required");
6441 			return;
6442 		}
6443 		udp_output_connected(connp, mp);
6444 		return;
6445 
6446 	case M_PROTO:
6447 	case M_PCPROTO: {
6448 		struct T_unitdata_req *tudr;
6449 
6450 		ASSERT((uintptr_t)MBLKL(mp) <= (uintptr_t)INT_MAX);
6451 		tudr = (struct T_unitdata_req *)mp->b_rptr;
6452 
6453 		/* Handle valid T_UNITDATA_REQ here */
6454 		if (MBLKL(mp) >= sizeof (*tudr) &&
6455 		    ((t_primp_t)mp->b_rptr)->type == T_UNITDATA_REQ) {
6456 			if (mp->b_cont == NULL) {
6457 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6458 				    "udp_wput_end: q %p (%S)", q, "badaddr");
6459 				error = EPROTO;
6460 				goto ud_error;
6461 			}
6462 
6463 			if (!MBLKIN(mp, 0, tudr->DEST_offset +
6464 			    tudr->DEST_length)) {
6465 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6466 				    "udp_wput_end: q %p (%S)", q, "badaddr");
6467 				error = EADDRNOTAVAIL;
6468 				goto ud_error;
6469 			}
6470 			/*
6471 			 * If a port has not been bound to the stream, fail.
6472 			 * This is not a problem when sockfs is directly
6473 			 * above us, because it will ensure that the socket
6474 			 * is first bound before allowing data to be sent.
6475 			 */
6476 			if (udp->udp_state == TS_UNBND) {
6477 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6478 				    "udp_wput_end: q %p (%S)", q, "outstate");
6479 				error = EPROTO;
6480 				goto ud_error;
6481 			}
6482 			addr = (struct sockaddr *)
6483 			    &mp->b_rptr[tudr->DEST_offset];
6484 			addrlen = tudr->DEST_length;
6485 			if (tudr->OPT_length != 0)
6486 				UDP_STAT(us, udp_out_opt);
6487 			break;
6488 		}
6489 		/* FALLTHRU */
6490 	}
6491 	default:
6492 		udp_wput_other(q, mp);
6493 		return;
6494 	}
6495 	ASSERT(addr != NULL);
6496 
6497 	switch (udp->udp_family) {
6498 	case AF_INET6:
6499 		sin6 = (sin6_t *)addr;
6500 		if (!OK_32PTR((char *)sin6) || (addrlen != sizeof (sin6_t)) ||
6501 		    (sin6->sin6_family != AF_INET6)) {
6502 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6503 			    "udp_wput_end: q %p (%S)", q, "badaddr");
6504 			error = EADDRNOTAVAIL;
6505 			goto ud_error;
6506 		}
6507 
6508 		if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6509 			/*
6510 			 * Destination is a non-IPv4-compatible IPv6 address.
6511 			 * Send out an IPv6 format packet.
6512 			 */
6513 			mp = udp_output_v6(connp, mp, sin6, &error);
6514 			if (error != 0)
6515 				goto ud_error;
6516 
6517 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6518 			    "udp_wput_end: q %p (%S)", q, "udp_output_v6");
6519 			return;
6520 		}
6521 		/*
6522 		 * If the local address is not zero or a mapped address
6523 		 * return an error.  It would be possible to send an IPv4
6524 		 * packet but the response would never make it back to the
6525 		 * application since it is bound to a non-mapped address.
6526 		 */
6527 		if (!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src) &&
6528 		    !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
6529 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6530 			    "udp_wput_end: q %p (%S)", q, "badaddr");
6531 			error = EADDRNOTAVAIL;
6532 			goto ud_error;
6533 		}
6534 		/* Send IPv4 packet without modifying udp_ipversion */
6535 		/* Extract port and ipaddr */
6536 		port = sin6->sin6_port;
6537 		IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, v4dst);
6538 		srcid = sin6->__sin6_src_id;
6539 		break;
6540 
6541 	case AF_INET:
6542 		sin = (sin_t *)addr;
6543 		if ((!OK_32PTR((char *)sin) || addrlen != sizeof (sin_t)) ||
6544 		    (sin->sin_family != AF_INET)) {
6545 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6546 			    "udp_wput_end: q %p (%S)", q, "badaddr");
6547 			error = EADDRNOTAVAIL;
6548 			goto ud_error;
6549 		}
6550 		/* Extract port and ipaddr */
6551 		port = sin->sin_port;
6552 		v4dst = sin->sin_addr.s_addr;
6553 		srcid = 0;
6554 		break;
6555 	}
6556 
6557 	mp = udp_output_v4(connp, mp, v4dst, port, srcid, &error, insert_spi);
6558 	if (error != 0) {
6559 ud_error:
6560 		UDP_STAT(us, udp_out_err_output);
6561 		ASSERT(mp != NULL);
6562 		/* mp is freed by the following routine */
6563 		udp_ud_err(q, mp, (uchar_t *)addr, (t_scalar_t)addrlen,
6564 		    (t_scalar_t)error);
6565 	}
6566 }
6567 
6568 /*
6569  * udp_output_v6():
6570  * Assumes that udp_wput did some sanity checking on the destination
6571  * address.
6572  */
6573 static mblk_t *
6574 udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6, int *error)
6575 {
6576 	ip6_t		*ip6h;
6577 	ip6i_t		*ip6i;	/* mp1->b_rptr even if no ip6i_t */
6578 	mblk_t		*mp1 = mp;
6579 	mblk_t		*mp2;
6580 	int		udp_ip_hdr_len = IPV6_HDR_LEN + UDPH_SIZE;
6581 	size_t		ip_len;
6582 	udpha_t		*udph;
6583 	udp_t		*udp = connp->conn_udp;
6584 	queue_t		*q = connp->conn_wq;
6585 	ip6_pkt_t	ipp_s;	/* For ancillary data options */
6586 	ip6_pkt_t	*ipp = &ipp_s;
6587 	ip6_pkt_t	*tipp;	/* temporary ipp */
6588 	uint32_t	csum = 0;
6589 	uint_t		ignore = 0;
6590 	uint_t		option_exists = 0, is_sticky = 0;
6591 	uint8_t		*cp;
6592 	uint8_t		*nxthdr_ptr;
6593 	in6_addr_t	ip6_dst;
6594 	udpattrs_t	attrs;
6595 	boolean_t	opt_present;
6596 	ip6_hbh_t	*hopoptsptr = NULL;
6597 	uint_t		hopoptslen = 0;
6598 	boolean_t	is_ancillary = B_FALSE;
6599 	udp_stack_t	*us = udp->udp_us;
6600 	size_t		sth_wroff = 0;
6601 
6602 	*error = 0;
6603 
6604 	/*
6605 	 * If the local address is a mapped address return
6606 	 * an error.
6607 	 * It would be possible to send an IPv6 packet but the
6608 	 * response would never make it back to the application
6609 	 * since it is bound to a mapped address.
6610 	 */
6611 	if (IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src)) {
6612 		*error = EADDRNOTAVAIL;
6613 		goto done;
6614 	}
6615 
6616 	ipp->ipp_fields = 0;
6617 	ipp->ipp_sticky_ignored = 0;
6618 
6619 	/*
6620 	 * If TPI options passed in, feed it for verification and handling
6621 	 */
6622 	attrs.udpattr_credset = B_FALSE;
6623 	opt_present = B_FALSE;
6624 	if (DB_TYPE(mp) != M_DATA) {
6625 		mp1 = mp->b_cont;
6626 		if (((struct T_unitdata_req *)mp->b_rptr)->OPT_length != 0) {
6627 			attrs.udpattr_ipp6 = ipp;
6628 			attrs.udpattr_mb = mp;
6629 			if (udp_unitdata_opt_process(q, mp, error,
6630 			    &attrs) < 0) {
6631 				goto done;
6632 			}
6633 			ASSERT(*error == 0);
6634 			opt_present = B_TRUE;
6635 		}
6636 	}
6637 	rw_enter(&udp->udp_rwlock, RW_READER);
6638 	ignore = ipp->ipp_sticky_ignored;
6639 
6640 	/* mp1 points to the M_DATA mblk carrying the packet */
6641 	ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA);
6642 
6643 	if (sin6->sin6_scope_id != 0 &&
6644 	    IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) {
6645 		/*
6646 		 * IPPF_SCOPE_ID is special.  It's neither a sticky
6647 		 * option nor ancillary data.  It needs to be
6648 		 * explicitly set in options_exists.
6649 		 */
6650 		option_exists |= IPPF_SCOPE_ID;
6651 	}
6652 
6653 	/*
6654 	 * Compute the destination address
6655 	 */
6656 	ip6_dst = sin6->sin6_addr;
6657 	if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
6658 		ip6_dst = ipv6_loopback;
6659 
6660 	/*
6661 	 * If we're not going to the same destination as last time, then
6662 	 * recompute the label required.  This is done in a separate routine to
6663 	 * avoid blowing up our stack here.
6664 	 *
6665 	 * TSOL Note: Since we are not in WRITER mode, UDP packets
6666 	 * to different destination may require different labels,
6667 	 * or worse, UDP packets to same IP address may require
6668 	 * different labels due to use of shared all-zones address.
6669 	 * We use conn_lock to ensure that lastdst, sticky ipp_hopopts,
6670 	 * and sticky ipp_hopoptslen are consistent for the current
6671 	 * destination and are updated atomically.
6672 	 */
6673 	mutex_enter(&connp->conn_lock);
6674 	if (is_system_labeled()) {
6675 		/* Using UDP MLP requires SCM_UCRED from user */
6676 		if (connp->conn_mlp_type != mlptSingle &&
6677 		    !attrs.udpattr_credset) {
6678 			DTRACE_PROBE4(
6679 			    tx__ip__log__info__output__udp6,
6680 			    char *, "MLP mp(1) lacks SCM_UCRED attr(2) on q(3)",
6681 			    mblk_t *, mp1, udpattrs_t *, &attrs, queue_t *, q);
6682 			*error = ECONNREFUSED;
6683 			rw_exit(&udp->udp_rwlock);
6684 			mutex_exit(&connp->conn_lock);
6685 			goto done;
6686 		}
6687 		/*
6688 		 * update label option for this UDP socket if
6689 		 * - the destination has changed, or
6690 		 * - the UDP socket is MLP
6691 		 */
6692 		if ((opt_present ||
6693 		    !IN6_ARE_ADDR_EQUAL(&udp->udp_v6lastdst, &ip6_dst) ||
6694 		    connp->conn_mlp_type != mlptSingle) &&
6695 		    (*error = udp_update_label_v6(q, mp, &ip6_dst)) != 0) {
6696 			rw_exit(&udp->udp_rwlock);
6697 			mutex_exit(&connp->conn_lock);
6698 			goto done;
6699 		}
6700 	}
6701 
6702 	/*
6703 	 * If there's a security label here, then we ignore any options the
6704 	 * user may try to set.  We keep the peer's label as a hidden sticky
6705 	 * option. We make a private copy of this label before releasing the
6706 	 * lock so that label is kept consistent with the destination addr.
6707 	 */
6708 	if (udp->udp_label_len_v6 > 0) {
6709 		ignore &= ~IPPF_HOPOPTS;
6710 		ipp->ipp_fields &= ~IPPF_HOPOPTS;
6711 	}
6712 
6713 	if ((udp->udp_sticky_ipp.ipp_fields == 0) && (ipp->ipp_fields == 0)) {
6714 		/* No sticky options nor ancillary data. */
6715 		mutex_exit(&connp->conn_lock);
6716 		goto no_options;
6717 	}
6718 
6719 	/*
6720 	 * Go through the options figuring out where each is going to
6721 	 * come from and build two masks.  The first mask indicates if
6722 	 * the option exists at all.  The second mask indicates if the
6723 	 * option is sticky or ancillary.
6724 	 */
6725 	if (!(ignore & IPPF_HOPOPTS)) {
6726 		if (ipp->ipp_fields & IPPF_HOPOPTS) {
6727 			option_exists |= IPPF_HOPOPTS;
6728 			udp_ip_hdr_len += ipp->ipp_hopoptslen;
6729 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_HOPOPTS) {
6730 			option_exists |= IPPF_HOPOPTS;
6731 			is_sticky |= IPPF_HOPOPTS;
6732 			ASSERT(udp->udp_sticky_ipp.ipp_hopoptslen != 0);
6733 			hopoptsptr = kmem_alloc(
6734 			    udp->udp_sticky_ipp.ipp_hopoptslen, KM_NOSLEEP);
6735 			if (hopoptsptr == NULL) {
6736 				*error = ENOMEM;
6737 				mutex_exit(&connp->conn_lock);
6738 				goto done;
6739 			}
6740 			hopoptslen = udp->udp_sticky_ipp.ipp_hopoptslen;
6741 			bcopy(udp->udp_sticky_ipp.ipp_hopopts, hopoptsptr,
6742 			    hopoptslen);
6743 			udp_ip_hdr_len += hopoptslen;
6744 		}
6745 	}
6746 	mutex_exit(&connp->conn_lock);
6747 
6748 	if (!(ignore & IPPF_RTHDR)) {
6749 		if (ipp->ipp_fields & IPPF_RTHDR) {
6750 			option_exists |= IPPF_RTHDR;
6751 			udp_ip_hdr_len += ipp->ipp_rthdrlen;
6752 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTHDR) {
6753 			option_exists |= IPPF_RTHDR;
6754 			is_sticky |= IPPF_RTHDR;
6755 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rthdrlen;
6756 		}
6757 	}
6758 
6759 	if (!(ignore & IPPF_RTDSTOPTS) && (option_exists & IPPF_RTHDR)) {
6760 		if (ipp->ipp_fields & IPPF_RTDSTOPTS) {
6761 			option_exists |= IPPF_RTDSTOPTS;
6762 			udp_ip_hdr_len += ipp->ipp_rtdstoptslen;
6763 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTDSTOPTS) {
6764 			option_exists |= IPPF_RTDSTOPTS;
6765 			is_sticky |= IPPF_RTDSTOPTS;
6766 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rtdstoptslen;
6767 		}
6768 	}
6769 
6770 	if (!(ignore & IPPF_DSTOPTS)) {
6771 		if (ipp->ipp_fields & IPPF_DSTOPTS) {
6772 			option_exists |= IPPF_DSTOPTS;
6773 			udp_ip_hdr_len += ipp->ipp_dstoptslen;
6774 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DSTOPTS) {
6775 			option_exists |= IPPF_DSTOPTS;
6776 			is_sticky |= IPPF_DSTOPTS;
6777 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_dstoptslen;
6778 		}
6779 	}
6780 
6781 	if (!(ignore & IPPF_IFINDEX)) {
6782 		if (ipp->ipp_fields & IPPF_IFINDEX) {
6783 			option_exists |= IPPF_IFINDEX;
6784 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_IFINDEX) {
6785 			option_exists |= IPPF_IFINDEX;
6786 			is_sticky |= IPPF_IFINDEX;
6787 		}
6788 	}
6789 
6790 	if (!(ignore & IPPF_ADDR)) {
6791 		if (ipp->ipp_fields & IPPF_ADDR) {
6792 			option_exists |= IPPF_ADDR;
6793 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_ADDR) {
6794 			option_exists |= IPPF_ADDR;
6795 			is_sticky |= IPPF_ADDR;
6796 		}
6797 	}
6798 
6799 	if (!(ignore & IPPF_DONTFRAG)) {
6800 		if (ipp->ipp_fields & IPPF_DONTFRAG) {
6801 			option_exists |= IPPF_DONTFRAG;
6802 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DONTFRAG) {
6803 			option_exists |= IPPF_DONTFRAG;
6804 			is_sticky |= IPPF_DONTFRAG;
6805 		}
6806 	}
6807 
6808 	if (!(ignore & IPPF_USE_MIN_MTU)) {
6809 		if (ipp->ipp_fields & IPPF_USE_MIN_MTU) {
6810 			option_exists |= IPPF_USE_MIN_MTU;
6811 		} else if (udp->udp_sticky_ipp.ipp_fields &
6812 		    IPPF_USE_MIN_MTU) {
6813 			option_exists |= IPPF_USE_MIN_MTU;
6814 			is_sticky |= IPPF_USE_MIN_MTU;
6815 		}
6816 	}
6817 
6818 	if (!(ignore & IPPF_HOPLIMIT) && (ipp->ipp_fields & IPPF_HOPLIMIT))
6819 		option_exists |= IPPF_HOPLIMIT;
6820 	/* IPV6_HOPLIMIT can never be sticky */
6821 	ASSERT(!(udp->udp_sticky_ipp.ipp_fields & IPPF_HOPLIMIT));
6822 
6823 	if (!(ignore & IPPF_UNICAST_HOPS) &&
6824 	    (udp->udp_sticky_ipp.ipp_fields & IPPF_UNICAST_HOPS)) {
6825 		option_exists |= IPPF_UNICAST_HOPS;
6826 		is_sticky |= IPPF_UNICAST_HOPS;
6827 	}
6828 
6829 	if (!(ignore & IPPF_MULTICAST_HOPS) &&
6830 	    (udp->udp_sticky_ipp.ipp_fields & IPPF_MULTICAST_HOPS)) {
6831 		option_exists |= IPPF_MULTICAST_HOPS;
6832 		is_sticky |= IPPF_MULTICAST_HOPS;
6833 	}
6834 
6835 	if (!(ignore & IPPF_TCLASS)) {
6836 		if (ipp->ipp_fields & IPPF_TCLASS) {
6837 			option_exists |= IPPF_TCLASS;
6838 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_TCLASS) {
6839 			option_exists |= IPPF_TCLASS;
6840 			is_sticky |= IPPF_TCLASS;
6841 		}
6842 	}
6843 
6844 	if (!(ignore & IPPF_NEXTHOP) &&
6845 	    (udp->udp_sticky_ipp.ipp_fields & IPPF_NEXTHOP)) {
6846 		option_exists |= IPPF_NEXTHOP;
6847 		is_sticky |= IPPF_NEXTHOP;
6848 	}
6849 
6850 no_options:
6851 
6852 	/*
6853 	 * If any options carried in the ip6i_t were specified, we
6854 	 * need to account for the ip6i_t in the data we'll be sending
6855 	 * down.
6856 	 */
6857 	if (option_exists & IPPF_HAS_IP6I)
6858 		udp_ip_hdr_len += sizeof (ip6i_t);
6859 
6860 	/* check/fix buffer config, setup pointers into it */
6861 	ip6h = (ip6_t *)&mp1->b_rptr[-udp_ip_hdr_len];
6862 	if (DB_REF(mp1) != 1 || ((unsigned char *)ip6h < DB_BASE(mp1)) ||
6863 	    !OK_32PTR(ip6h)) {
6864 
6865 		/* Try to get everything in a single mblk next time */
6866 		if (udp_ip_hdr_len > udp->udp_max_hdr_len) {
6867 			udp->udp_max_hdr_len = udp_ip_hdr_len;
6868 			sth_wroff = udp->udp_max_hdr_len + us->us_wroff_extra;
6869 		}
6870 
6871 		mp2 = allocb(udp_ip_hdr_len + us->us_wroff_extra, BPRI_LO);
6872 		if (mp2 == NULL) {
6873 			*error = ENOMEM;
6874 			rw_exit(&udp->udp_rwlock);
6875 			goto done;
6876 		}
6877 		mp2->b_wptr = DB_LIM(mp2);
6878 		mp2->b_cont = mp1;
6879 		mp1 = mp2;
6880 		if (DB_TYPE(mp) != M_DATA)
6881 			mp->b_cont = mp1;
6882 		else
6883 			mp = mp1;
6884 
6885 		ip6h = (ip6_t *)(mp1->b_wptr - udp_ip_hdr_len);
6886 	}
6887 	mp1->b_rptr = (unsigned char *)ip6h;
6888 	ip6i = (ip6i_t *)ip6h;
6889 
6890 #define	ANCIL_OR_STICKY_PTR(f) ((is_sticky & f) ? &udp->udp_sticky_ipp : ipp)
6891 	if (option_exists & IPPF_HAS_IP6I) {
6892 		ip6h = (ip6_t *)&ip6i[1];
6893 		ip6i->ip6i_flags = 0;
6894 		ip6i->ip6i_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
6895 
6896 		/* sin6_scope_id takes precendence over IPPF_IFINDEX */
6897 		if (option_exists & IPPF_SCOPE_ID) {
6898 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6899 			ip6i->ip6i_ifindex = sin6->sin6_scope_id;
6900 		} else if (option_exists & IPPF_IFINDEX) {
6901 			tipp = ANCIL_OR_STICKY_PTR(IPPF_IFINDEX);
6902 			ASSERT(tipp->ipp_ifindex != 0);
6903 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6904 			ip6i->ip6i_ifindex = tipp->ipp_ifindex;
6905 		}
6906 
6907 		if (option_exists & IPPF_ADDR) {
6908 			/*
6909 			 * Enable per-packet source address verification if
6910 			 * IPV6_PKTINFO specified the source address.
6911 			 * ip6_src is set in the transport's _wput function.
6912 			 */
6913 			ip6i->ip6i_flags |= IP6I_VERIFY_SRC;
6914 		}
6915 
6916 		if (option_exists & IPPF_DONTFRAG) {
6917 			ip6i->ip6i_flags |= IP6I_DONTFRAG;
6918 		}
6919 
6920 		if (option_exists & IPPF_USE_MIN_MTU) {
6921 			ip6i->ip6i_flags = IP6I_API_USE_MIN_MTU(
6922 			    ip6i->ip6i_flags, ipp->ipp_use_min_mtu);
6923 		}
6924 
6925 		if (option_exists & IPPF_NEXTHOP) {
6926 			tipp = ANCIL_OR_STICKY_PTR(IPPF_NEXTHOP);
6927 			ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_nexthop));
6928 			ip6i->ip6i_flags |= IP6I_NEXTHOP;
6929 			ip6i->ip6i_nexthop = tipp->ipp_nexthop;
6930 		}
6931 
6932 		/*
6933 		 * tell IP this is an ip6i_t private header
6934 		 */
6935 		ip6i->ip6i_nxt = IPPROTO_RAW;
6936 	}
6937 
6938 	/* Initialize IPv6 header */
6939 	ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
6940 	bzero(&ip6h->ip6_src, sizeof (ip6h->ip6_src));
6941 
6942 	/* Set the hoplimit of the outgoing packet. */
6943 	if (option_exists & IPPF_HOPLIMIT) {
6944 		/* IPV6_HOPLIMIT ancillary data overrides all other settings. */
6945 		ip6h->ip6_hops = ipp->ipp_hoplimit;
6946 		ip6i->ip6i_flags |= IP6I_HOPLIMIT;
6947 	} else if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) {
6948 		ip6h->ip6_hops = udp->udp_multicast_ttl;
6949 		if (option_exists & IPPF_MULTICAST_HOPS)
6950 			ip6i->ip6i_flags |= IP6I_HOPLIMIT;
6951 	} else {
6952 		ip6h->ip6_hops = udp->udp_ttl;
6953 		if (option_exists & IPPF_UNICAST_HOPS)
6954 			ip6i->ip6i_flags |= IP6I_HOPLIMIT;
6955 	}
6956 
6957 	if (option_exists & IPPF_ADDR) {
6958 		tipp = ANCIL_OR_STICKY_PTR(IPPF_ADDR);
6959 		ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_addr));
6960 		ip6h->ip6_src = tipp->ipp_addr;
6961 	} else {
6962 		/*
6963 		 * The source address was not set using IPV6_PKTINFO.
6964 		 * First look at the bound source.
6965 		 * If unspecified fallback to __sin6_src_id.
6966 		 */
6967 		ip6h->ip6_src = udp->udp_v6src;
6968 		if (sin6->__sin6_src_id != 0 &&
6969 		    IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src)) {
6970 			ip_srcid_find_id(sin6->__sin6_src_id,
6971 			    &ip6h->ip6_src, connp->conn_zoneid,
6972 			    us->us_netstack);
6973 		}
6974 	}
6975 
6976 	nxthdr_ptr = (uint8_t *)&ip6h->ip6_nxt;
6977 	cp = (uint8_t *)&ip6h[1];
6978 
6979 	/*
6980 	 * Here's where we have to start stringing together
6981 	 * any extension headers in the right order:
6982 	 * Hop-by-hop, destination, routing, and final destination opts.
6983 	 */
6984 	if (option_exists & IPPF_HOPOPTS) {
6985 		/* Hop-by-hop options */
6986 		ip6_hbh_t *hbh = (ip6_hbh_t *)cp;
6987 		tipp = ANCIL_OR_STICKY_PTR(IPPF_HOPOPTS);
6988 		if (hopoptslen == 0) {
6989 			hopoptsptr = tipp->ipp_hopopts;
6990 			hopoptslen = tipp->ipp_hopoptslen;
6991 			is_ancillary = B_TRUE;
6992 		}
6993 
6994 		*nxthdr_ptr = IPPROTO_HOPOPTS;
6995 		nxthdr_ptr = &hbh->ip6h_nxt;
6996 
6997 		bcopy(hopoptsptr, cp, hopoptslen);
6998 		cp += hopoptslen;
6999 
7000 		if (hopoptsptr != NULL && !is_ancillary) {
7001 			kmem_free(hopoptsptr, hopoptslen);
7002 			hopoptsptr = NULL;
7003 			hopoptslen = 0;
7004 		}
7005 	}
7006 	/*
7007 	 * En-route destination options
7008 	 * Only do them if there's a routing header as well
7009 	 */
7010 	if (option_exists & IPPF_RTDSTOPTS) {
7011 		ip6_dest_t *dst = (ip6_dest_t *)cp;
7012 		tipp = ANCIL_OR_STICKY_PTR(IPPF_RTDSTOPTS);
7013 
7014 		*nxthdr_ptr = IPPROTO_DSTOPTS;
7015 		nxthdr_ptr = &dst->ip6d_nxt;
7016 
7017 		bcopy(tipp->ipp_rtdstopts, cp, tipp->ipp_rtdstoptslen);
7018 		cp += tipp->ipp_rtdstoptslen;
7019 	}
7020 	/*
7021 	 * Routing header next
7022 	 */
7023 	if (option_exists & IPPF_RTHDR) {
7024 		ip6_rthdr_t *rt = (ip6_rthdr_t *)cp;
7025 		tipp = ANCIL_OR_STICKY_PTR(IPPF_RTHDR);
7026 
7027 		*nxthdr_ptr = IPPROTO_ROUTING;
7028 		nxthdr_ptr = &rt->ip6r_nxt;
7029 
7030 		bcopy(tipp->ipp_rthdr, cp, tipp->ipp_rthdrlen);
7031 		cp += tipp->ipp_rthdrlen;
7032 	}
7033 	/*
7034 	 * Do ultimate destination options
7035 	 */
7036 	if (option_exists & IPPF_DSTOPTS) {
7037 		ip6_dest_t *dest = (ip6_dest_t *)cp;
7038 		tipp = ANCIL_OR_STICKY_PTR(IPPF_DSTOPTS);
7039 
7040 		*nxthdr_ptr = IPPROTO_DSTOPTS;
7041 		nxthdr_ptr = &dest->ip6d_nxt;
7042 
7043 		bcopy(tipp->ipp_dstopts, cp, tipp->ipp_dstoptslen);
7044 		cp += tipp->ipp_dstoptslen;
7045 	}
7046 	/*
7047 	 * Now set the last header pointer to the proto passed in
7048 	 */
7049 	ASSERT((int)(cp - (uint8_t *)ip6i) == (udp_ip_hdr_len - UDPH_SIZE));
7050 	*nxthdr_ptr = IPPROTO_UDP;
7051 
7052 	/* Update UDP header */
7053 	udph = (udpha_t *)((uchar_t *)ip6i + udp_ip_hdr_len - UDPH_SIZE);
7054 	udph->uha_dst_port = sin6->sin6_port;
7055 	udph->uha_src_port = udp->udp_port;
7056 
7057 	/*
7058 	 * Copy in the destination address
7059 	 */
7060 	ip6h->ip6_dst = ip6_dst;
7061 
7062 	ip6h->ip6_vcf =
7063 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
7064 	    (sin6->sin6_flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
7065 
7066 	if (option_exists & IPPF_TCLASS) {
7067 		tipp = ANCIL_OR_STICKY_PTR(IPPF_TCLASS);
7068 		ip6h->ip6_vcf = IPV6_TCLASS_FLOW(ip6h->ip6_vcf,
7069 		    tipp->ipp_tclass);
7070 	}
7071 	rw_exit(&udp->udp_rwlock);
7072 
7073 	if (option_exists & IPPF_RTHDR) {
7074 		ip6_rthdr_t	*rth;
7075 
7076 		/*
7077 		 * Perform any processing needed for source routing.
7078 		 * We know that all extension headers will be in the same mblk
7079 		 * as the IPv6 header.
7080 		 */
7081 		rth = ip_find_rthdr_v6(ip6h, mp1->b_wptr);
7082 		if (rth != NULL && rth->ip6r_segleft != 0) {
7083 			if (rth->ip6r_type != IPV6_RTHDR_TYPE_0) {
7084 				/*
7085 				 * Drop packet - only support Type 0 routing.
7086 				 * Notify the application as well.
7087 				 */
7088 				*error = EPROTO;
7089 				goto done;
7090 			}
7091 
7092 			/*
7093 			 * rth->ip6r_len is twice the number of
7094 			 * addresses in the header. Thus it must be even.
7095 			 */
7096 			if (rth->ip6r_len & 0x1) {
7097 				*error = EPROTO;
7098 				goto done;
7099 			}
7100 			/*
7101 			 * Shuffle the routing header and ip6_dst
7102 			 * addresses, and get the checksum difference
7103 			 * between the first hop (in ip6_dst) and
7104 			 * the destination (in the last routing hdr entry).
7105 			 */
7106 			csum = ip_massage_options_v6(ip6h, rth,
7107 			    us->us_netstack);
7108 			/*
7109 			 * Verify that the first hop isn't a mapped address.
7110 			 * Routers along the path need to do this verification
7111 			 * for subsequent hops.
7112 			 */
7113 			if (IN6_IS_ADDR_V4MAPPED(&ip6h->ip6_dst)) {
7114 				*error = EADDRNOTAVAIL;
7115 				goto done;
7116 			}
7117 
7118 			cp += (rth->ip6r_len + 1)*8;
7119 		}
7120 	}
7121 
7122 	/* count up length of UDP packet */
7123 	ip_len = (mp1->b_wptr - (unsigned char *)ip6h) - IPV6_HDR_LEN;
7124 	if ((mp2 = mp1->b_cont) != NULL) {
7125 		do {
7126 			ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX);
7127 			ip_len += (uint32_t)MBLKL(mp2);
7128 		} while ((mp2 = mp2->b_cont) != NULL);
7129 	}
7130 
7131 	/*
7132 	 * If the size of the packet is greater than the maximum allowed by
7133 	 * ip, return an error. Passing this down could cause panics because
7134 	 * the size will have wrapped and be inconsistent with the msg size.
7135 	 */
7136 	if (ip_len > IP_MAXPACKET) {
7137 		*error = EMSGSIZE;
7138 		goto done;
7139 	}
7140 
7141 	/* Store the UDP length. Subtract length of extension hdrs */
7142 	udph->uha_length = htons(ip_len + IPV6_HDR_LEN -
7143 	    (int)((uchar_t *)udph - (uchar_t *)ip6h));
7144 
7145 	/*
7146 	 * We make it easy for IP to include our pseudo header
7147 	 * by putting our length in uh_checksum, modified (if
7148 	 * we have a routing header) by the checksum difference
7149 	 * between the ultimate destination and first hop addresses.
7150 	 * Note: UDP over IPv6 must always checksum the packet.
7151 	 */
7152 	csum += udph->uha_length;
7153 	csum = (csum & 0xFFFF) + (csum >> 16);
7154 	udph->uha_checksum = (uint16_t)csum;
7155 
7156 #ifdef _LITTLE_ENDIAN
7157 	ip_len = htons(ip_len);
7158 #endif
7159 	ip6h->ip6_plen = ip_len;
7160 	if (DB_CRED(mp) != NULL)
7161 		mblk_setcred(mp1, DB_CRED(mp));
7162 
7163 	if (DB_TYPE(mp) != M_DATA) {
7164 		ASSERT(mp != mp1);
7165 		freeb(mp);
7166 	}
7167 
7168 	/* mp has been consumed and we'll return success */
7169 	ASSERT(*error == 0);
7170 	mp = NULL;
7171 
7172 	/* We're done. Pass the packet to IP */
7173 	BUMP_MIB(&us->us_udp_mib, udpHCOutDatagrams);
7174 	ip_output_v6(connp, mp1, q, IP_WPUT);
7175 
7176 done:
7177 	if (sth_wroff != 0) {
7178 		(void) mi_set_sth_wroff(RD(q),
7179 		    udp->udp_max_hdr_len + us->us_wroff_extra);
7180 	}
7181 	if (hopoptsptr != NULL && !is_ancillary) {
7182 		kmem_free(hopoptsptr, hopoptslen);
7183 		hopoptsptr = NULL;
7184 	}
7185 	if (*error != 0) {
7186 		ASSERT(mp != NULL);
7187 		BUMP_MIB(&us->us_udp_mib, udpOutErrors);
7188 	}
7189 	return (mp);
7190 }
7191 
7192 static void
7193 udp_wput_other(queue_t *q, mblk_t *mp)
7194 {
7195 	uchar_t	*rptr = mp->b_rptr;
7196 	struct datab *db;
7197 	struct iocblk *iocp;
7198 	cred_t	*cr;
7199 	conn_t	*connp = Q_TO_CONN(q);
7200 	udp_t	*udp = connp->conn_udp;
7201 	udp_stack_t *us;
7202 
7203 	TRACE_1(TR_FAC_UDP, TR_UDP_WPUT_OTHER_START,
7204 	    "udp_wput_other_start: q %p", q);
7205 
7206 	us = udp->udp_us;
7207 	db = mp->b_datap;
7208 
7209 	cr = DB_CREDDEF(mp, connp->conn_cred);
7210 
7211 	switch (db->db_type) {
7212 	case M_PROTO:
7213 	case M_PCPROTO:
7214 		if (mp->b_wptr - rptr < sizeof (t_scalar_t)) {
7215 			freemsg(mp);
7216 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7217 			    "udp_wput_other_end: q %p (%S)", q, "protoshort");
7218 			return;
7219 		}
7220 		switch (((t_primp_t)rptr)->type) {
7221 		case T_ADDR_REQ:
7222 			udp_addr_req(q, mp);
7223 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7224 			    "udp_wput_other_end: q %p (%S)", q, "addrreq");
7225 			return;
7226 		case O_T_BIND_REQ:
7227 		case T_BIND_REQ:
7228 			udp_bind(q, mp);
7229 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7230 			    "udp_wput_other_end: q %p (%S)", q, "bindreq");
7231 			return;
7232 		case T_CONN_REQ:
7233 			udp_connect(q, mp);
7234 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7235 			    "udp_wput_other_end: q %p (%S)", q, "connreq");
7236 			return;
7237 		case T_CAPABILITY_REQ:
7238 			udp_capability_req(q, mp);
7239 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7240 			    "udp_wput_other_end: q %p (%S)", q, "capabreq");
7241 			return;
7242 		case T_INFO_REQ:
7243 			udp_info_req(q, mp);
7244 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7245 			    "udp_wput_other_end: q %p (%S)", q, "inforeq");
7246 			return;
7247 		case T_UNITDATA_REQ:
7248 			/*
7249 			 * If a T_UNITDATA_REQ gets here, the address must
7250 			 * be bad.  Valid T_UNITDATA_REQs are handled
7251 			 * in udp_wput.
7252 			 */
7253 			udp_ud_err(q, mp, NULL, 0, EADDRNOTAVAIL);
7254 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7255 			    "udp_wput_other_end: q %p (%S)", q, "unitdatareq");
7256 			return;
7257 		case T_UNBIND_REQ:
7258 			udp_unbind(q, mp);
7259 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7260 			    "udp_wput_other_end: q %p (%S)", q, "unbindreq");
7261 			return;
7262 		case T_SVR4_OPTMGMT_REQ:
7263 			if (!snmpcom_req(q, mp, udp_snmp_set, ip_snmp_get,
7264 			    cr)) {
7265 				(void) svr4_optcom_req(q,
7266 				    mp, cr, &udp_opt_obj, B_TRUE);
7267 			}
7268 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7269 			    "udp_wput_other_end: q %p (%S)", q, "optmgmtreq");
7270 			return;
7271 
7272 		case T_OPTMGMT_REQ:
7273 			(void) tpi_optcom_req(q, mp, cr, &udp_opt_obj, B_TRUE);
7274 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7275 			    "udp_wput_other_end: q %p (%S)", q, "optmgmtreq");
7276 			return;
7277 
7278 		case T_DISCON_REQ:
7279 			udp_disconnect(q, mp);
7280 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7281 			    "udp_wput_other_end: q %p (%S)", q, "disconreq");
7282 			return;
7283 
7284 		/* The following TPI message is not supported by udp. */
7285 		case O_T_CONN_RES:
7286 		case T_CONN_RES:
7287 			udp_err_ack(q, mp, TNOTSUPPORT, 0);
7288 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7289 			    "udp_wput_other_end: q %p (%S)", q,
7290 			    "connres/disconreq");
7291 			return;
7292 
7293 		/* The following 3 TPI messages are illegal for udp. */
7294 		case T_DATA_REQ:
7295 		case T_EXDATA_REQ:
7296 		case T_ORDREL_REQ:
7297 			udp_err_ack(q, mp, TNOTSUPPORT, 0);
7298 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7299 			    "udp_wput_other_end: q %p (%S)", q,
7300 			    "data/exdata/ordrel");
7301 			return;
7302 		default:
7303 			break;
7304 		}
7305 		break;
7306 	case M_FLUSH:
7307 		if (*rptr & FLUSHW)
7308 			flushq(q, FLUSHDATA);
7309 		break;
7310 	case M_IOCTL:
7311 		iocp = (struct iocblk *)mp->b_rptr;
7312 		switch (iocp->ioc_cmd) {
7313 		case TI_GETPEERNAME:
7314 			if (udp->udp_state != TS_DATA_XFER) {
7315 				/*
7316 				 * If a default destination address has not
7317 				 * been associated with the stream, then we
7318 				 * don't know the peer's name.
7319 				 */
7320 				iocp->ioc_error = ENOTCONN;
7321 				iocp->ioc_count = 0;
7322 				mp->b_datap->db_type = M_IOCACK;
7323 				qreply(q, mp);
7324 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7325 				    "udp_wput_other_end: q %p (%S)", q,
7326 				    "getpeername");
7327 				return;
7328 			}
7329 			/* FALLTHRU */
7330 		case TI_GETMYNAME: {
7331 			/*
7332 			 * For TI_GETPEERNAME and TI_GETMYNAME, we first
7333 			 * need to copyin the user's strbuf structure.
7334 			 * Processing will continue in the M_IOCDATA case
7335 			 * below.
7336 			 */
7337 			mi_copyin(q, mp, NULL,
7338 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
7339 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7340 			    "udp_wput_other_end: q %p (%S)", q, "getmyname");
7341 			return;
7342 			}
7343 		case ND_SET:
7344 			/* nd_getset performs the necessary checking */
7345 		case ND_GET:
7346 			if (nd_getset(q, us->us_nd, mp)) {
7347 				qreply(q, mp);
7348 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7349 				    "udp_wput_other_end: q %p (%S)", q, "get");
7350 				return;
7351 			}
7352 			break;
7353 		case _SIOCSOCKFALLBACK:
7354 			/*
7355 			 * Either sockmod is about to be popped and the
7356 			 * socket would now be treated as a plain stream,
7357 			 * or a module is about to be pushed so we could
7358 			 * no longer use read-side synchronous stream.
7359 			 * Drain any queued data and disable direct sockfs
7360 			 * interface from now on.
7361 			 */
7362 			if (!udp->udp_issocket) {
7363 				DB_TYPE(mp) = M_IOCNAK;
7364 				iocp->ioc_error = EINVAL;
7365 			} else {
7366 				udp->udp_issocket = B_FALSE;
7367 				if (udp->udp_direct_sockfs) {
7368 					/*
7369 					 * Disable read-side synchronous
7370 					 * stream interface and drain any
7371 					 * queued data.
7372 					 */
7373 					udp_rcv_drain(RD(q), udp,
7374 					    B_FALSE);
7375 					ASSERT(!udp->udp_direct_sockfs);
7376 					UDP_STAT(us, udp_sock_fallback);
7377 				}
7378 				DB_TYPE(mp) = M_IOCACK;
7379 				iocp->ioc_error = 0;
7380 			}
7381 			iocp->ioc_count = 0;
7382 			iocp->ioc_rval = 0;
7383 			qreply(q, mp);
7384 			return;
7385 		default:
7386 			break;
7387 		}
7388 		break;
7389 	case M_IOCDATA:
7390 		udp_wput_iocdata(q, mp);
7391 		TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7392 		    "udp_wput_other_end: q %p (%S)", q, "iocdata");
7393 		return;
7394 	default:
7395 		/* Unrecognized messages are passed through without change. */
7396 		break;
7397 	}
7398 	TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7399 	    "udp_wput_other_end: q %p (%S)", q, "end");
7400 	ip_output(connp, mp, q, IP_WPUT);
7401 }
7402 
7403 /*
7404  * udp_wput_iocdata is called by udp_wput_other to handle all M_IOCDATA
7405  * messages.
7406  */
7407 static void
7408 udp_wput_iocdata(queue_t *q, mblk_t *mp)
7409 {
7410 	mblk_t	*mp1;
7411 	STRUCT_HANDLE(strbuf, sb);
7412 	uint16_t port;
7413 	in6_addr_t	v6addr;
7414 	ipaddr_t	v4addr;
7415 	uint32_t	flowinfo = 0;
7416 	int		addrlen;
7417 	udp_t		*udp = Q_TO_UDP(q);
7418 
7419 	/* Make sure it is one of ours. */
7420 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
7421 	case TI_GETMYNAME:
7422 	case TI_GETPEERNAME:
7423 		break;
7424 	default:
7425 		ip_output(udp->udp_connp, mp, q, IP_WPUT);
7426 		return;
7427 	}
7428 
7429 	switch (mi_copy_state(q, mp, &mp1)) {
7430 	case -1:
7431 		return;
7432 	case MI_COPY_CASE(MI_COPY_IN, 1):
7433 		break;
7434 	case MI_COPY_CASE(MI_COPY_OUT, 1):
7435 		/*
7436 		 * The address has been copied out, so now
7437 		 * copyout the strbuf.
7438 		 */
7439 		mi_copyout(q, mp);
7440 		return;
7441 	case MI_COPY_CASE(MI_COPY_OUT, 2):
7442 		/*
7443 		 * The address and strbuf have been copied out.
7444 		 * We're done, so just acknowledge the original
7445 		 * M_IOCTL.
7446 		 */
7447 		mi_copy_done(q, mp, 0);
7448 		return;
7449 	default:
7450 		/*
7451 		 * Something strange has happened, so acknowledge
7452 		 * the original M_IOCTL with an EPROTO error.
7453 		 */
7454 		mi_copy_done(q, mp, EPROTO);
7455 		return;
7456 	}
7457 
7458 	/*
7459 	 * Now we have the strbuf structure for TI_GETMYNAME
7460 	 * and TI_GETPEERNAME.  Next we copyout the requested
7461 	 * address and then we'll copyout the strbuf.
7462 	 */
7463 	STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag,
7464 	    (void *)mp1->b_rptr);
7465 	if (udp->udp_family == AF_INET)
7466 		addrlen = sizeof (sin_t);
7467 	else
7468 		addrlen = sizeof (sin6_t);
7469 
7470 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
7471 		mi_copy_done(q, mp, EINVAL);
7472 		return;
7473 	}
7474 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
7475 	case TI_GETMYNAME:
7476 		if (udp->udp_family == AF_INET) {
7477 			ASSERT(udp->udp_ipversion == IPV4_VERSION);
7478 			if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) &&
7479 			    !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
7480 				v4addr = V4_PART_OF_V6(udp->udp_v6src);
7481 			} else {
7482 				/*
7483 				 * INADDR_ANY
7484 				 * udp_v6src is not set, we might be bound to
7485 				 * broadcast/multicast. Use udp_bound_v6src as
7486 				 * local address instead (that could
7487 				 * also still be INADDR_ANY)
7488 				 */
7489 				v4addr = V4_PART_OF_V6(udp->udp_bound_v6src);
7490 			}
7491 		} else {
7492 			/* udp->udp_family == AF_INET6 */
7493 			if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
7494 				v6addr = udp->udp_v6src;
7495 			} else {
7496 				/*
7497 				 * UNSPECIFIED
7498 				 * udp_v6src is not set, we might be bound to
7499 				 * broadcast/multicast. Use udp_bound_v6src as
7500 				 * local address instead (that could
7501 				 * also still be UNSPECIFIED)
7502 				 */
7503 				v6addr = udp->udp_bound_v6src;
7504 			}
7505 		}
7506 		port = udp->udp_port;
7507 		break;
7508 	case TI_GETPEERNAME:
7509 		if (udp->udp_state != TS_DATA_XFER) {
7510 			mi_copy_done(q, mp, ENOTCONN);
7511 			return;
7512 		}
7513 		if (udp->udp_family == AF_INET) {
7514 			ASSERT(udp->udp_ipversion == IPV4_VERSION);
7515 			v4addr = V4_PART_OF_V6(udp->udp_v6dst);
7516 		} else {
7517 			/* udp->udp_family == AF_INET6) */
7518 			v6addr = udp->udp_v6dst;
7519 			flowinfo = udp->udp_flowinfo;
7520 		}
7521 		port = udp->udp_dstport;
7522 		break;
7523 	default:
7524 		mi_copy_done(q, mp, EPROTO);
7525 		return;
7526 	}
7527 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
7528 	if (!mp1)
7529 		return;
7530 
7531 	if (udp->udp_family == AF_INET) {
7532 		sin_t *sin;
7533 
7534 		STRUCT_FSET(sb, len, (int)sizeof (sin_t));
7535 		sin = (sin_t *)mp1->b_rptr;
7536 		mp1->b_wptr = (uchar_t *)&sin[1];
7537 		*sin = sin_null;
7538 		sin->sin_family = AF_INET;
7539 		sin->sin_addr.s_addr = v4addr;
7540 		sin->sin_port = port;
7541 	} else {
7542 		/* udp->udp_family == AF_INET6 */
7543 		sin6_t *sin6;
7544 
7545 		STRUCT_FSET(sb, len, (int)sizeof (sin6_t));
7546 		sin6 = (sin6_t *)mp1->b_rptr;
7547 		mp1->b_wptr = (uchar_t *)&sin6[1];
7548 		*sin6 = sin6_null;
7549 		sin6->sin6_family = AF_INET6;
7550 		sin6->sin6_flowinfo = flowinfo;
7551 		sin6->sin6_addr = v6addr;
7552 		sin6->sin6_port = port;
7553 	}
7554 	/* Copy out the address */
7555 	mi_copyout(q, mp);
7556 }
7557 
7558 
7559 static int
7560 udp_unitdata_opt_process(queue_t *q, mblk_t *mp, int *errorp,
7561     udpattrs_t *udpattrs)
7562 {
7563 	struct T_unitdata_req *udreqp;
7564 	int is_absreq_failure;
7565 	cred_t *cr;
7566 	conn_t	*connp = Q_TO_CONN(q);
7567 
7568 	ASSERT(((t_primp_t)mp->b_rptr)->type);
7569 
7570 	cr = DB_CREDDEF(mp, connp->conn_cred);
7571 
7572 	udreqp = (struct T_unitdata_req *)mp->b_rptr;
7573 
7574 	*errorp = tpi_optcom_buf(q, mp, &udreqp->OPT_length,
7575 	    udreqp->OPT_offset, cr, &udp_opt_obj,
7576 	    udpattrs, &is_absreq_failure);
7577 
7578 	if (*errorp != 0) {
7579 		/*
7580 		 * Note: No special action needed in this
7581 		 * module for "is_absreq_failure"
7582 		 */
7583 		return (-1);		/* failure */
7584 	}
7585 	ASSERT(is_absreq_failure == 0);
7586 	return (0);	/* success */
7587 }
7588 
7589 void
7590 udp_ddi_init(void)
7591 {
7592 	udp_max_optsize = optcom_max_optsize(udp_opt_obj.odb_opt_des_arr,
7593 	    udp_opt_obj.odb_opt_arr_cnt);
7594 
7595 	/*
7596 	 * We want to be informed each time a stack is created or
7597 	 * destroyed in the kernel, so we can maintain the
7598 	 * set of udp_stack_t's.
7599 	 */
7600 	netstack_register(NS_UDP, udp_stack_init, NULL, udp_stack_fini);
7601 }
7602 
7603 void
7604 udp_ddi_destroy(void)
7605 {
7606 	netstack_unregister(NS_UDP);
7607 }
7608 
7609 /*
7610  * Initialize the UDP stack instance.
7611  */
7612 static void *
7613 udp_stack_init(netstackid_t stackid, netstack_t *ns)
7614 {
7615 	udp_stack_t	*us;
7616 	udpparam_t	*pa;
7617 	int		i;
7618 
7619 	us = (udp_stack_t *)kmem_zalloc(sizeof (*us), KM_SLEEP);
7620 	us->us_netstack = ns;
7621 
7622 	us->us_num_epriv_ports = UDP_NUM_EPRIV_PORTS;
7623 	us->us_epriv_ports[0] = 2049;
7624 	us->us_epriv_ports[1] = 4045;
7625 
7626 	/*
7627 	 * The smallest anonymous port in the priviledged port range which UDP
7628 	 * looks for free port.  Use in the option UDP_ANONPRIVBIND.
7629 	 */
7630 	us->us_min_anonpriv_port = 512;
7631 
7632 	us->us_bind_fanout_size = udp_bind_fanout_size;
7633 
7634 	/* Roundup variable that might have been modified in /etc/system */
7635 	if (us->us_bind_fanout_size & (us->us_bind_fanout_size - 1)) {
7636 		/* Not a power of two. Round up to nearest power of two */
7637 		for (i = 0; i < 31; i++) {
7638 			if (us->us_bind_fanout_size < (1 << i))
7639 				break;
7640 		}
7641 		us->us_bind_fanout_size = 1 << i;
7642 	}
7643 	us->us_bind_fanout = kmem_zalloc(us->us_bind_fanout_size *
7644 	    sizeof (udp_fanout_t), KM_SLEEP);
7645 	for (i = 0; i < us->us_bind_fanout_size; i++) {
7646 		mutex_init(&us->us_bind_fanout[i].uf_lock, NULL, MUTEX_DEFAULT,
7647 		    NULL);
7648 	}
7649 
7650 	pa = (udpparam_t *)kmem_alloc(sizeof (udp_param_arr), KM_SLEEP);
7651 
7652 	us->us_param_arr = pa;
7653 	bcopy(udp_param_arr, us->us_param_arr, sizeof (udp_param_arr));
7654 
7655 	(void) udp_param_register(&us->us_nd,
7656 	    us->us_param_arr, A_CNT(udp_param_arr));
7657 
7658 	us->us_kstat = udp_kstat2_init(stackid, &us->us_statistics);
7659 	us->us_mibkp = udp_kstat_init(stackid);
7660 	return (us);
7661 }
7662 
7663 /*
7664  * Free the UDP stack instance.
7665  */
7666 static void
7667 udp_stack_fini(netstackid_t stackid, void *arg)
7668 {
7669 	udp_stack_t *us = (udp_stack_t *)arg;
7670 	int i;
7671 
7672 	for (i = 0; i < us->us_bind_fanout_size; i++) {
7673 		mutex_destroy(&us->us_bind_fanout[i].uf_lock);
7674 	}
7675 
7676 	kmem_free(us->us_bind_fanout, us->us_bind_fanout_size *
7677 	    sizeof (udp_fanout_t));
7678 
7679 	us->us_bind_fanout = NULL;
7680 
7681 	nd_free(&us->us_nd);
7682 	kmem_free(us->us_param_arr, sizeof (udp_param_arr));
7683 	us->us_param_arr = NULL;
7684 
7685 	udp_kstat_fini(stackid, us->us_mibkp);
7686 	us->us_mibkp = NULL;
7687 
7688 	udp_kstat2_fini(stackid, us->us_kstat);
7689 	us->us_kstat = NULL;
7690 	bzero(&us->us_statistics, sizeof (us->us_statistics));
7691 	kmem_free(us, sizeof (*us));
7692 }
7693 
7694 static void *
7695 udp_kstat2_init(netstackid_t stackid, udp_stat_t *us_statisticsp)
7696 {
7697 	kstat_t *ksp;
7698 
7699 	udp_stat_t template = {
7700 		{ "udp_ip_send",		KSTAT_DATA_UINT64 },
7701 		{ "udp_ip_ire_send",		KSTAT_DATA_UINT64 },
7702 		{ "udp_ire_null",		KSTAT_DATA_UINT64 },
7703 		{ "udp_drain",			KSTAT_DATA_UINT64 },
7704 		{ "udp_sock_fallback",		KSTAT_DATA_UINT64 },
7705 		{ "udp_rrw_busy",		KSTAT_DATA_UINT64 },
7706 		{ "udp_rrw_msgcnt",		KSTAT_DATA_UINT64 },
7707 		{ "udp_out_sw_cksum",		KSTAT_DATA_UINT64 },
7708 		{ "udp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
7709 		{ "udp_out_opt",		KSTAT_DATA_UINT64 },
7710 		{ "udp_out_err_notconn",	KSTAT_DATA_UINT64 },
7711 		{ "udp_out_err_output",		KSTAT_DATA_UINT64 },
7712 		{ "udp_out_err_tudr",		KSTAT_DATA_UINT64 },
7713 		{ "udp_in_pktinfo",		KSTAT_DATA_UINT64 },
7714 		{ "udp_in_recvdstaddr",		KSTAT_DATA_UINT64 },
7715 		{ "udp_in_recvopts",		KSTAT_DATA_UINT64 },
7716 		{ "udp_in_recvif",		KSTAT_DATA_UINT64 },
7717 		{ "udp_in_recvslla",		KSTAT_DATA_UINT64 },
7718 		{ "udp_in_recvucred",		KSTAT_DATA_UINT64 },
7719 		{ "udp_in_recvttl",		KSTAT_DATA_UINT64 },
7720 		{ "udp_in_recvhopopts",		KSTAT_DATA_UINT64 },
7721 		{ "udp_in_recvhoplimit",	KSTAT_DATA_UINT64 },
7722 		{ "udp_in_recvdstopts",		KSTAT_DATA_UINT64 },
7723 		{ "udp_in_recvrtdstopts",	KSTAT_DATA_UINT64 },
7724 		{ "udp_in_recvrthdr",		KSTAT_DATA_UINT64 },
7725 		{ "udp_in_recvpktinfo",		KSTAT_DATA_UINT64 },
7726 		{ "udp_in_recvtclass",		KSTAT_DATA_UINT64 },
7727 		{ "udp_in_timestamp",		KSTAT_DATA_UINT64 },
7728 #ifdef DEBUG
7729 		{ "udp_data_conn",		KSTAT_DATA_UINT64 },
7730 		{ "udp_data_notconn",		KSTAT_DATA_UINT64 },
7731 #endif
7732 	};
7733 
7734 	ksp = kstat_create_netstack(UDP_MOD_NAME, 0, "udpstat", "net",
7735 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
7736 	    KSTAT_FLAG_VIRTUAL, stackid);
7737 
7738 	if (ksp == NULL)
7739 		return (NULL);
7740 
7741 	bcopy(&template, us_statisticsp, sizeof (template));
7742 	ksp->ks_data = (void *)us_statisticsp;
7743 	ksp->ks_private = (void *)(uintptr_t)stackid;
7744 
7745 	kstat_install(ksp);
7746 	return (ksp);
7747 }
7748 
7749 static void
7750 udp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
7751 {
7752 	if (ksp != NULL) {
7753 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
7754 		kstat_delete_netstack(ksp, stackid);
7755 	}
7756 }
7757 
7758 static void *
7759 udp_kstat_init(netstackid_t stackid)
7760 {
7761 	kstat_t	*ksp;
7762 
7763 	udp_named_kstat_t template = {
7764 		{ "inDatagrams",	KSTAT_DATA_UINT64, 0 },
7765 		{ "inErrors",		KSTAT_DATA_UINT32, 0 },
7766 		{ "outDatagrams",	KSTAT_DATA_UINT64, 0 },
7767 		{ "entrySize",		KSTAT_DATA_INT32, 0 },
7768 		{ "entry6Size",		KSTAT_DATA_INT32, 0 },
7769 		{ "outErrors",		KSTAT_DATA_UINT32, 0 },
7770 	};
7771 
7772 	ksp = kstat_create_netstack(UDP_MOD_NAME, 0, UDP_MOD_NAME, "mib2",
7773 	    KSTAT_TYPE_NAMED,
7774 	    NUM_OF_FIELDS(udp_named_kstat_t), 0, stackid);
7775 
7776 	if (ksp == NULL || ksp->ks_data == NULL)
7777 		return (NULL);
7778 
7779 	template.entrySize.value.ui32 = sizeof (mib2_udpEntry_t);
7780 	template.entry6Size.value.ui32 = sizeof (mib2_udp6Entry_t);
7781 
7782 	bcopy(&template, ksp->ks_data, sizeof (template));
7783 	ksp->ks_update = udp_kstat_update;
7784 	ksp->ks_private = (void *)(uintptr_t)stackid;
7785 
7786 	kstat_install(ksp);
7787 	return (ksp);
7788 }
7789 
7790 static void
7791 udp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
7792 {
7793 	if (ksp != NULL) {
7794 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
7795 		kstat_delete_netstack(ksp, stackid);
7796 	}
7797 }
7798 
7799 static int
7800 udp_kstat_update(kstat_t *kp, int rw)
7801 {
7802 	udp_named_kstat_t *udpkp;
7803 	netstackid_t	stackid = (netstackid_t)(uintptr_t)kp->ks_private;
7804 	netstack_t	*ns;
7805 	udp_stack_t	*us;
7806 
7807 	if ((kp == NULL) || (kp->ks_data == NULL))
7808 		return (EIO);
7809 
7810 	if (rw == KSTAT_WRITE)
7811 		return (EACCES);
7812 
7813 	ns = netstack_find_by_stackid(stackid);
7814 	if (ns == NULL)
7815 		return (-1);
7816 	us = ns->netstack_udp;
7817 	if (us == NULL) {
7818 		netstack_rele(ns);
7819 		return (-1);
7820 	}
7821 	udpkp = (udp_named_kstat_t *)kp->ks_data;
7822 
7823 	udpkp->inDatagrams.value.ui64 =	us->us_udp_mib.udpHCInDatagrams;
7824 	udpkp->inErrors.value.ui32 =	us->us_udp_mib.udpInErrors;
7825 	udpkp->outDatagrams.value.ui64 = us->us_udp_mib.udpHCOutDatagrams;
7826 	udpkp->outErrors.value.ui32 =	us->us_udp_mib.udpOutErrors;
7827 	netstack_rele(ns);
7828 	return (0);
7829 }
7830 
7831 /*
7832  * Read-side synchronous stream info entry point, called as a
7833  * result of handling certain STREAMS ioctl operations.
7834  */
7835 static int
7836 udp_rinfop(queue_t *q, infod_t *dp)
7837 {
7838 	mblk_t	*mp;
7839 	uint_t	cmd = dp->d_cmd;
7840 	int	res = 0;
7841 	int	error = 0;
7842 	udp_t	*udp = Q_TO_UDP(q);
7843 	struct stdata *stp = STREAM(q);
7844 
7845 	mutex_enter(&udp->udp_drain_lock);
7846 	/* If shutdown on read has happened, return nothing */
7847 	mutex_enter(&stp->sd_lock);
7848 	if (stp->sd_flag & STREOF) {
7849 		mutex_exit(&stp->sd_lock);
7850 		goto done;
7851 	}
7852 	mutex_exit(&stp->sd_lock);
7853 
7854 	if ((mp = udp->udp_rcv_list_head) == NULL)
7855 		goto done;
7856 
7857 	ASSERT(DB_TYPE(mp) != M_DATA && mp->b_cont != NULL);
7858 
7859 	if (cmd & INFOD_COUNT) {
7860 		/*
7861 		 * Return the number of messages.
7862 		 */
7863 		dp->d_count += udp->udp_rcv_msgcnt;
7864 		res |= INFOD_COUNT;
7865 	}
7866 	if (cmd & INFOD_BYTES) {
7867 		/*
7868 		 * Return size of all data messages.
7869 		 */
7870 		dp->d_bytes += udp->udp_rcv_cnt;
7871 		res |= INFOD_BYTES;
7872 	}
7873 	if (cmd & INFOD_FIRSTBYTES) {
7874 		/*
7875 		 * Return size of first data message.
7876 		 */
7877 		dp->d_bytes = msgdsize(mp);
7878 		res |= INFOD_FIRSTBYTES;
7879 		dp->d_cmd &= ~INFOD_FIRSTBYTES;
7880 	}
7881 	if (cmd & INFOD_COPYOUT) {
7882 		mblk_t *mp1 = mp->b_cont;
7883 		int n;
7884 		/*
7885 		 * Return data contents of first message.
7886 		 */
7887 		ASSERT(DB_TYPE(mp1) == M_DATA);
7888 		while (mp1 != NULL && dp->d_uiop->uio_resid > 0) {
7889 			n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1));
7890 			if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n,
7891 			    UIO_READ, dp->d_uiop)) != 0) {
7892 				goto done;
7893 			}
7894 			mp1 = mp1->b_cont;
7895 		}
7896 		res |= INFOD_COPYOUT;
7897 		dp->d_cmd &= ~INFOD_COPYOUT;
7898 	}
7899 done:
7900 	mutex_exit(&udp->udp_drain_lock);
7901 
7902 	dp->d_res |= res;
7903 
7904 	return (error);
7905 }
7906 
7907 /*
7908  * Read-side synchronous stream entry point.  This is called as a result
7909  * of recv/read operation done at sockfs, and is guaranteed to execute
7910  * outside of the interrupt thread context.  It returns a single datagram
7911  * (b_cont chain of T_UNITDATA_IND plus data) to the upper layer.
7912  */
7913 static int
7914 udp_rrw(queue_t *q, struiod_t *dp)
7915 {
7916 	mblk_t	*mp;
7917 	udp_t	*udp = Q_TO_UDP(q);
7918 	udp_stack_t *us = udp->udp_us;
7919 
7920 	/*
7921 	 * Dequeue datagram from the head of the list and return
7922 	 * it to caller; also ensure that RSLEEP sd_wakeq flag is
7923 	 * set/cleared depending on whether or not there's data
7924 	 * remaining in the list.
7925 	 */
7926 	mutex_enter(&udp->udp_drain_lock);
7927 	if (!udp->udp_direct_sockfs) {
7928 		mutex_exit(&udp->udp_drain_lock);
7929 		UDP_STAT(us, udp_rrw_busy);
7930 		return (EBUSY);
7931 	}
7932 	if ((mp = udp->udp_rcv_list_head) != NULL) {
7933 		uint_t size = msgdsize(mp);
7934 
7935 		/* Last datagram in the list? */
7936 		if ((udp->udp_rcv_list_head = mp->b_next) == NULL)
7937 			udp->udp_rcv_list_tail = NULL;
7938 		mp->b_next = NULL;
7939 
7940 		udp->udp_rcv_cnt -= size;
7941 		udp->udp_rcv_msgcnt--;
7942 		UDP_STAT(us, udp_rrw_msgcnt);
7943 
7944 		/* No longer flow-controlling? */
7945 		if (udp->udp_rcv_cnt < udp->udp_rcv_hiwat &&
7946 		    udp->udp_rcv_msgcnt < udp->udp_rcv_hiwat)
7947 			udp->udp_drain_qfull = B_FALSE;
7948 	}
7949 	if (udp->udp_rcv_list_head == NULL) {
7950 		/*
7951 		 * Either we just dequeued the last datagram or
7952 		 * we get here from sockfs and have nothing to
7953 		 * return; in this case clear RSLEEP.
7954 		 */
7955 		ASSERT(udp->udp_rcv_cnt == 0);
7956 		ASSERT(udp->udp_rcv_msgcnt == 0);
7957 		ASSERT(udp->udp_rcv_list_tail == NULL);
7958 		STR_WAKEUP_CLEAR(STREAM(q));
7959 	} else {
7960 		/*
7961 		 * More data follows; we need udp_rrw() to be
7962 		 * called in future to pick up the rest.
7963 		 */
7964 		STR_WAKEUP_SET(STREAM(q));
7965 	}
7966 	mutex_exit(&udp->udp_drain_lock);
7967 	dp->d_mp = mp;
7968 	return (0);
7969 }
7970 
7971 /*
7972  * Enqueue a completely-built T_UNITDATA_IND message into the receive
7973  * list; this is typically executed within the interrupt thread context
7974  * and so we do things as quickly as possible.
7975  */
7976 static void
7977 udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp, uint_t pkt_len)
7978 {
7979 	ASSERT(q == RD(q));
7980 	ASSERT(pkt_len == msgdsize(mp));
7981 	ASSERT(mp->b_next == NULL && mp->b_cont != NULL);
7982 	ASSERT(DB_TYPE(mp) == M_PROTO && DB_TYPE(mp->b_cont) == M_DATA);
7983 	ASSERT(MBLKL(mp) >= sizeof (struct T_unitdata_ind));
7984 
7985 	mutex_enter(&udp->udp_drain_lock);
7986 	/*
7987 	 * Wake up and signal the receiving app; it is okay to do this
7988 	 * before enqueueing the mp because we are holding the drain lock.
7989 	 * One of the advantages of synchronous stream is the ability for
7990 	 * us to find out when the application performs a read on the
7991 	 * socket by way of udp_rrw() entry point being called.  We need
7992 	 * to generate SIGPOLL/SIGIO for each received data in the case
7993 	 * of asynchronous socket just as in the strrput() case.  However,
7994 	 * we only wake the application up when necessary, i.e. during the
7995 	 * first enqueue.  When udp_rrw() is called, we send up a single
7996 	 * datagram upstream and call STR_WAKEUP_SET() again when there
7997 	 * are still data remaining in our receive queue.
7998 	 */
7999 	if (udp->udp_rcv_list_head == NULL) {
8000 		STR_WAKEUP_SET(STREAM(q));
8001 		udp->udp_rcv_list_head = mp;
8002 	} else {
8003 		udp->udp_rcv_list_tail->b_next = mp;
8004 	}
8005 	udp->udp_rcv_list_tail = mp;
8006 	udp->udp_rcv_cnt += pkt_len;
8007 	udp->udp_rcv_msgcnt++;
8008 
8009 	/* Need to flow-control? */
8010 	if (udp->udp_rcv_cnt >= udp->udp_rcv_hiwat ||
8011 	    udp->udp_rcv_msgcnt >= udp->udp_rcv_hiwat)
8012 		udp->udp_drain_qfull = B_TRUE;
8013 
8014 	/* Update poll events and send SIGPOLL/SIGIO if necessary */
8015 	STR_SENDSIG(STREAM(q));
8016 	mutex_exit(&udp->udp_drain_lock);
8017 }
8018 
8019 /*
8020  * Drain the contents of receive list to the module upstream; we do
8021  * this during close or when we fallback to the slow mode due to
8022  * sockmod being popped or a module being pushed on top of us.
8023  */
8024 static void
8025 udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing)
8026 {
8027 	mblk_t *mp;
8028 	udp_stack_t *us = udp->udp_us;
8029 
8030 	ASSERT(q == RD(q));
8031 
8032 	mutex_enter(&udp->udp_drain_lock);
8033 	/*
8034 	 * There is no race with a concurrent udp_input() sending
8035 	 * up packets using putnext() after we have cleared the
8036 	 * udp_direct_sockfs flag but before we have completed
8037 	 * sending up the packets in udp_rcv_list, since we are
8038 	 * either a writer or we have quiesced the conn.
8039 	 */
8040 	udp->udp_direct_sockfs = B_FALSE;
8041 	mutex_exit(&udp->udp_drain_lock);
8042 
8043 	if (udp->udp_rcv_list_head != NULL)
8044 		UDP_STAT(us, udp_drain);
8045 
8046 	/*
8047 	 * Send up everything via putnext(); note here that we
8048 	 * don't need the udp_drain_lock to protect us since
8049 	 * nothing can enter udp_rrw() and that we currently
8050 	 * have exclusive access to this udp.
8051 	 */
8052 	while ((mp = udp->udp_rcv_list_head) != NULL) {
8053 		udp->udp_rcv_list_head = mp->b_next;
8054 		mp->b_next = NULL;
8055 		udp->udp_rcv_cnt -= msgdsize(mp);
8056 		udp->udp_rcv_msgcnt--;
8057 		if (closing) {
8058 			freemsg(mp);
8059 		} else {
8060 			putnext(q, mp);
8061 		}
8062 	}
8063 	ASSERT(udp->udp_rcv_cnt == 0);
8064 	ASSERT(udp->udp_rcv_msgcnt == 0);
8065 	ASSERT(udp->udp_rcv_list_head == NULL);
8066 	udp->udp_rcv_list_tail = NULL;
8067 	udp->udp_drain_qfull = B_FALSE;
8068 }
8069 
8070 static size_t
8071 udp_set_rcv_hiwat(udp_t *udp, size_t size)
8072 {
8073 	udp_stack_t *us = udp->udp_us;
8074 
8075 	/* We add a bit of extra buffering */
8076 	size += size >> 1;
8077 	if (size > us->us_max_buf)
8078 		size = us->us_max_buf;
8079 
8080 	udp->udp_rcv_hiwat = size;
8081 	return (size);
8082 }
8083 
8084 /*
8085  * For the lower queue so that UDP can be a dummy mux.
8086  * Nobody should be sending
8087  * packets up this stream
8088  */
8089 static void
8090 udp_lrput(queue_t *q, mblk_t *mp)
8091 {
8092 	mblk_t *mp1;
8093 
8094 	switch (mp->b_datap->db_type) {
8095 	case M_FLUSH:
8096 		/* Turn around */
8097 		if (*mp->b_rptr & FLUSHW) {
8098 			*mp->b_rptr &= ~FLUSHR;
8099 			qreply(q, mp);
8100 			return;
8101 		}
8102 		break;
8103 	}
8104 	/* Could receive messages that passed through ar_rput */
8105 	for (mp1 = mp; mp1; mp1 = mp1->b_cont)
8106 		mp1->b_prev = mp1->b_next = NULL;
8107 	freemsg(mp);
8108 }
8109 
8110 /*
8111  * For the lower queue so that UDP can be a dummy mux.
8112  * Nobody should be sending packets down this stream.
8113  */
8114 /* ARGSUSED */
8115 void
8116 udp_lwput(queue_t *q, mblk_t *mp)
8117 {
8118 	freemsg(mp);
8119 }
8120