1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2011 Joyent, Inc. All rights reserved. 26 */ 27 28 /* This file contains all TCP input processing functions. */ 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/strsun.h> 33 #include <sys/strsubr.h> 34 #include <sys/stropts.h> 35 #include <sys/strlog.h> 36 #define _SUN_TPI_VERSION 2 37 #include <sys/tihdr.h> 38 #include <sys/suntpi.h> 39 #include <sys/xti_inet.h> 40 #include <sys/squeue_impl.h> 41 #include <sys/squeue.h> 42 #include <sys/tsol/tnet.h> 43 44 #include <inet/common.h> 45 #include <inet/ip.h> 46 #include <inet/tcp.h> 47 #include <inet/tcp_impl.h> 48 #include <inet/tcp_cluster.h> 49 #include <inet/proto_set.h> 50 #include <inet/ipsec_impl.h> 51 52 /* 53 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 54 */ 55 56 #ifdef _BIG_ENDIAN 57 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 58 (TCPOPT_TSTAMP << 8) | 10) 59 #else 60 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 61 (TCPOPT_NOP << 8) | TCPOPT_NOP) 62 #endif 63 64 /* 65 * Flags returned from tcp_parse_options. 66 */ 67 #define TCP_OPT_MSS_PRESENT 1 68 #define TCP_OPT_WSCALE_PRESENT 2 69 #define TCP_OPT_TSTAMP_PRESENT 4 70 #define TCP_OPT_SACK_OK_PRESENT 8 71 #define TCP_OPT_SACK_PRESENT 16 72 73 /* 74 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 75 */ 76 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 77 78 /* 79 * Since tcp_listener is not cleared atomically with tcp_detached 80 * being cleared we need this extra bit to tell a detached connection 81 * apart from one that is in the process of being accepted. 82 */ 83 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 84 (TCP_IS_DETACHED(tcp) && \ 85 (!(tcp)->tcp_hard_binding)) 86 87 /* 88 * Steps to do when a tcp_t moves to TIME-WAIT state. 89 * 90 * This connection is done, we don't need to account for it. Decrement 91 * the listener connection counter if needed. 92 * 93 * Decrement the connection counter of the stack. Note that this counter 94 * is per CPU. So the total number of connections in a stack is the sum of all 95 * of them. Since there is no lock for handling all of them exclusively, the 96 * resulting sum is only an approximation. 97 * 98 * Unconditionally clear the exclusive binding bit so this TIME-WAIT 99 * connection won't interfere with new ones. 100 * 101 * Start the TIME-WAIT timer. If upper layer has not closed the connection, 102 * the timer is handled within the context of this tcp_t. When the timer 103 * fires, tcp_clean_death() is called. If upper layer closes the connection 104 * during this period, tcp_time_wait_append() will be called to add this 105 * tcp_t to the global TIME-WAIT list. Note that this means that the 106 * actual wait time in TIME-WAIT state will be longer than the 107 * tcps_time_wait_interval since the period before upper layer closes the 108 * connection is not accounted for when tcp_time_wait_append() is called. 109 * 110 * If uppser layer has closed the connection, call tcp_time_wait_append() 111 * directly. 112 * 113 */ 114 #define SET_TIME_WAIT(tcps, tcp, connp) \ 115 { \ 116 (tcp)->tcp_state = TCPS_TIME_WAIT; \ 117 if ((tcp)->tcp_listen_cnt != NULL) \ 118 TCP_DECR_LISTEN_CNT(tcp); \ 119 atomic_dec_64( \ 120 (uint64_t *)&(tcps)->tcps_sc[CPU->cpu_seqid]->tcp_sc_conn_cnt); \ 121 (connp)->conn_exclbind = 0; \ 122 if (!TCP_IS_DETACHED(tcp)) { \ 123 TCP_TIMER_RESTART(tcp, (tcps)->tcps_time_wait_interval); \ 124 } else { \ 125 tcp_time_wait_append(tcp); \ 126 TCP_DBGSTAT(tcps, tcp_rput_time_wait); \ 127 } \ 128 } 129 130 /* 131 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 132 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 133 * data, TCP will not respond with an ACK. RFC 793 requires that 134 * TCP responds with an ACK for such a bogus ACK. By not following 135 * the RFC, we prevent TCP from getting into an ACK storm if somehow 136 * an attacker successfully spoofs an acceptable segment to our 137 * peer; or when our peer is "confused." 138 */ 139 static uint32_t tcp_drop_ack_unsent_cnt = 10; 140 141 /* 142 * To protect TCP against attacker using a small window and requesting 143 * large amount of data (DoS attack by conuming memory), TCP checks the 144 * window advertised in the last ACK of the 3-way handshake. TCP uses 145 * the tcp_mss (the size of one packet) value for comparion. The window 146 * should be larger than tcp_mss. But while a sane TCP should advertise 147 * a receive window larger than or equal to 4*MSS to avoid stop and go 148 * tarrfic, not all TCP stacks do that. This is especially true when 149 * tcp_mss is a big value. 150 * 151 * To work around this issue, an additional fixed value for comparison 152 * is also used. If the advertised window is smaller than both tcp_mss 153 * and tcp_init_wnd_chk, the ACK is considered as invalid. So for large 154 * tcp_mss value (say, 8K), a window larger than tcp_init_wnd_chk but 155 * smaller than 8K is considered to be OK. 156 */ 157 static uint32_t tcp_init_wnd_chk = 4096; 158 159 /* Process ICMP source quench message or not. */ 160 static boolean_t tcp_icmp_source_quench = B_FALSE; 161 162 static boolean_t tcp_outbound_squeue_switch = B_FALSE; 163 164 static mblk_t *tcp_conn_create_v4(conn_t *, conn_t *, mblk_t *, 165 ip_recv_attr_t *); 166 static mblk_t *tcp_conn_create_v6(conn_t *, conn_t *, mblk_t *, 167 ip_recv_attr_t *); 168 static boolean_t tcp_drop_q0(tcp_t *); 169 static void tcp_icmp_error_ipv6(tcp_t *, mblk_t *, ip_recv_attr_t *); 170 static mblk_t *tcp_input_add_ancillary(tcp_t *, mblk_t *, ip_pkt_t *, 171 ip_recv_attr_t *); 172 static void tcp_input_listener(void *, mblk_t *, void *, ip_recv_attr_t *); 173 static int tcp_parse_options(tcpha_t *, tcp_opt_t *); 174 static void tcp_process_options(tcp_t *, tcpha_t *); 175 static mblk_t *tcp_reass(tcp_t *, mblk_t *, uint32_t); 176 static void tcp_reass_elim_overlap(tcp_t *, mblk_t *); 177 static void tcp_rsrv_input(void *, mblk_t *, void *, ip_recv_attr_t *); 178 static void tcp_set_rto(tcp_t *, time_t); 179 static void tcp_setcred_data(mblk_t *, ip_recv_attr_t *); 180 181 /* 182 * Set the MSS associated with a particular tcp based on its current value, 183 * and a new one passed in. Observe minimums and maximums, and reset other 184 * state variables that we want to view as multiples of MSS. 185 * 186 * The value of MSS could be either increased or descreased. 187 */ 188 void 189 tcp_mss_set(tcp_t *tcp, uint32_t mss) 190 { 191 uint32_t mss_max; 192 tcp_stack_t *tcps = tcp->tcp_tcps; 193 conn_t *connp = tcp->tcp_connp; 194 195 if (connp->conn_ipversion == IPV4_VERSION) 196 mss_max = tcps->tcps_mss_max_ipv4; 197 else 198 mss_max = tcps->tcps_mss_max_ipv6; 199 200 if (mss < tcps->tcps_mss_min) 201 mss = tcps->tcps_mss_min; 202 if (mss > mss_max) 203 mss = mss_max; 204 /* 205 * Unless naglim has been set by our client to 206 * a non-mss value, force naglim to track mss. 207 * This can help to aggregate small writes. 208 */ 209 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 210 tcp->tcp_naglim = mss; 211 /* 212 * TCP should be able to buffer at least 4 MSS data for obvious 213 * performance reason. 214 */ 215 if ((mss << 2) > connp->conn_sndbuf) 216 connp->conn_sndbuf = mss << 2; 217 218 /* 219 * Set the send lowater to at least twice of MSS. 220 */ 221 if ((mss << 1) > connp->conn_sndlowat) 222 connp->conn_sndlowat = mss << 1; 223 224 /* 225 * Update tcp_cwnd according to the new value of MSS. Keep the 226 * previous ratio to preserve the transmit rate. 227 */ 228 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 229 tcp->tcp_cwnd_cnt = 0; 230 231 tcp->tcp_mss = mss; 232 (void) tcp_maxpsz_set(tcp, B_TRUE); 233 } 234 235 /* 236 * Extract option values from a tcp header. We put any found values into the 237 * tcpopt struct and return a bitmask saying which options were found. 238 */ 239 static int 240 tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt) 241 { 242 uchar_t *endp; 243 int len; 244 uint32_t mss; 245 uchar_t *up = (uchar_t *)tcpha; 246 int found = 0; 247 int32_t sack_len; 248 tcp_seq sack_begin, sack_end; 249 tcp_t *tcp; 250 251 endp = up + TCP_HDR_LENGTH(tcpha); 252 up += TCP_MIN_HEADER_LENGTH; 253 while (up < endp) { 254 len = endp - up; 255 switch (*up) { 256 case TCPOPT_EOL: 257 break; 258 259 case TCPOPT_NOP: 260 up++; 261 continue; 262 263 case TCPOPT_MAXSEG: 264 if (len < TCPOPT_MAXSEG_LEN || 265 up[1] != TCPOPT_MAXSEG_LEN) 266 break; 267 268 mss = BE16_TO_U16(up+2); 269 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 270 tcpopt->tcp_opt_mss = mss; 271 found |= TCP_OPT_MSS_PRESENT; 272 273 up += TCPOPT_MAXSEG_LEN; 274 continue; 275 276 case TCPOPT_WSCALE: 277 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 278 break; 279 280 if (up[2] > TCP_MAX_WINSHIFT) 281 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 282 else 283 tcpopt->tcp_opt_wscale = up[2]; 284 found |= TCP_OPT_WSCALE_PRESENT; 285 286 up += TCPOPT_WS_LEN; 287 continue; 288 289 case TCPOPT_SACK_PERMITTED: 290 if (len < TCPOPT_SACK_OK_LEN || 291 up[1] != TCPOPT_SACK_OK_LEN) 292 break; 293 found |= TCP_OPT_SACK_OK_PRESENT; 294 up += TCPOPT_SACK_OK_LEN; 295 continue; 296 297 case TCPOPT_SACK: 298 if (len <= 2 || up[1] <= 2 || len < up[1]) 299 break; 300 301 /* If TCP is not interested in SACK blks... */ 302 if ((tcp = tcpopt->tcp) == NULL) { 303 up += up[1]; 304 continue; 305 } 306 sack_len = up[1] - TCPOPT_HEADER_LEN; 307 up += TCPOPT_HEADER_LEN; 308 309 /* 310 * If the list is empty, allocate one and assume 311 * nothing is sack'ed. 312 */ 313 if (tcp->tcp_notsack_list == NULL) { 314 tcp_notsack_update(&(tcp->tcp_notsack_list), 315 tcp->tcp_suna, tcp->tcp_snxt, 316 &(tcp->tcp_num_notsack_blk), 317 &(tcp->tcp_cnt_notsack_list)); 318 319 /* 320 * Make sure tcp_notsack_list is not NULL. 321 * This happens when kmem_alloc(KM_NOSLEEP) 322 * returns NULL. 323 */ 324 if (tcp->tcp_notsack_list == NULL) { 325 up += sack_len; 326 continue; 327 } 328 tcp->tcp_fack = tcp->tcp_suna; 329 } 330 331 while (sack_len > 0) { 332 if (up + 8 > endp) { 333 up = endp; 334 break; 335 } 336 sack_begin = BE32_TO_U32(up); 337 up += 4; 338 sack_end = BE32_TO_U32(up); 339 up += 4; 340 sack_len -= 8; 341 /* 342 * Bounds checking. Make sure the SACK 343 * info is within tcp_suna and tcp_snxt. 344 * If this SACK blk is out of bound, ignore 345 * it but continue to parse the following 346 * blks. 347 */ 348 if (SEQ_LEQ(sack_end, sack_begin) || 349 SEQ_LT(sack_begin, tcp->tcp_suna) || 350 SEQ_GT(sack_end, tcp->tcp_snxt)) { 351 continue; 352 } 353 tcp_notsack_insert(&(tcp->tcp_notsack_list), 354 sack_begin, sack_end, 355 &(tcp->tcp_num_notsack_blk), 356 &(tcp->tcp_cnt_notsack_list)); 357 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 358 tcp->tcp_fack = sack_end; 359 } 360 } 361 found |= TCP_OPT_SACK_PRESENT; 362 continue; 363 364 case TCPOPT_TSTAMP: 365 if (len < TCPOPT_TSTAMP_LEN || 366 up[1] != TCPOPT_TSTAMP_LEN) 367 break; 368 369 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 370 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 371 372 found |= TCP_OPT_TSTAMP_PRESENT; 373 374 up += TCPOPT_TSTAMP_LEN; 375 continue; 376 377 default: 378 if (len <= 1 || len < (int)up[1] || up[1] == 0) 379 break; 380 up += up[1]; 381 continue; 382 } 383 break; 384 } 385 return (found); 386 } 387 388 /* 389 * Process all TCP option in SYN segment. Note that this function should 390 * be called after tcp_set_destination() is called so that the necessary info 391 * from IRE is already set in the tcp structure. 392 * 393 * This function sets up the correct tcp_mss value according to the 394 * MSS option value and our header size. It also sets up the window scale 395 * and timestamp values, and initialize SACK info blocks. But it does not 396 * change receive window size after setting the tcp_mss value. The caller 397 * should do the appropriate change. 398 */ 399 static void 400 tcp_process_options(tcp_t *tcp, tcpha_t *tcpha) 401 { 402 int options; 403 tcp_opt_t tcpopt; 404 uint32_t mss_max; 405 char *tmp_tcph; 406 tcp_stack_t *tcps = tcp->tcp_tcps; 407 conn_t *connp = tcp->tcp_connp; 408 409 tcpopt.tcp = NULL; 410 options = tcp_parse_options(tcpha, &tcpopt); 411 412 /* 413 * Process MSS option. Note that MSS option value does not account 414 * for IP or TCP options. This means that it is equal to MTU - minimum 415 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 416 * IPv6. 417 */ 418 if (!(options & TCP_OPT_MSS_PRESENT)) { 419 if (connp->conn_ipversion == IPV4_VERSION) 420 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 421 else 422 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 423 } else { 424 if (connp->conn_ipversion == IPV4_VERSION) 425 mss_max = tcps->tcps_mss_max_ipv4; 426 else 427 mss_max = tcps->tcps_mss_max_ipv6; 428 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 429 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 430 else if (tcpopt.tcp_opt_mss > mss_max) 431 tcpopt.tcp_opt_mss = mss_max; 432 } 433 434 /* Process Window Scale option. */ 435 if (options & TCP_OPT_WSCALE_PRESENT) { 436 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 437 tcp->tcp_snd_ws_ok = B_TRUE; 438 } else { 439 tcp->tcp_snd_ws = B_FALSE; 440 tcp->tcp_snd_ws_ok = B_FALSE; 441 tcp->tcp_rcv_ws = B_FALSE; 442 } 443 444 /* Process Timestamp option. */ 445 if ((options & TCP_OPT_TSTAMP_PRESENT) && 446 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 447 tmp_tcph = (char *)tcp->tcp_tcpha; 448 449 tcp->tcp_snd_ts_ok = B_TRUE; 450 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 451 tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 452 ASSERT(OK_32PTR(tmp_tcph)); 453 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 454 455 /* Fill in our template header with basic timestamp option. */ 456 tmp_tcph += connp->conn_ht_ulp_len; 457 tmp_tcph[0] = TCPOPT_NOP; 458 tmp_tcph[1] = TCPOPT_NOP; 459 tmp_tcph[2] = TCPOPT_TSTAMP; 460 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 461 connp->conn_ht_iphc_len += TCPOPT_REAL_TS_LEN; 462 connp->conn_ht_ulp_len += TCPOPT_REAL_TS_LEN; 463 tcp->tcp_tcpha->tha_offset_and_reserved += (3 << 4); 464 } else { 465 tcp->tcp_snd_ts_ok = B_FALSE; 466 } 467 468 /* 469 * Process SACK options. If SACK is enabled for this connection, 470 * then allocate the SACK info structure. Note the following ways 471 * when tcp_snd_sack_ok is set to true. 472 * 473 * For active connection: in tcp_set_destination() called in 474 * tcp_connect(). 475 * 476 * For passive connection: in tcp_set_destination() called in 477 * tcp_input_listener(). 478 * 479 * That's the reason why the extra TCP_IS_DETACHED() check is there. 480 * That check makes sure that if we did not send a SACK OK option, 481 * we will not enable SACK for this connection even though the other 482 * side sends us SACK OK option. For active connection, the SACK 483 * info structure has already been allocated. So we need to free 484 * it if SACK is disabled. 485 */ 486 if ((options & TCP_OPT_SACK_OK_PRESENT) && 487 (tcp->tcp_snd_sack_ok || 488 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 489 ASSERT(tcp->tcp_num_sack_blk == 0); 490 ASSERT(tcp->tcp_notsack_list == NULL); 491 492 tcp->tcp_snd_sack_ok = B_TRUE; 493 if (tcp->tcp_snd_ts_ok) { 494 tcp->tcp_max_sack_blk = 3; 495 } else { 496 tcp->tcp_max_sack_blk = 4; 497 } 498 } else if (tcp->tcp_snd_sack_ok) { 499 /* 500 * Resetting tcp_snd_sack_ok to B_FALSE so that 501 * no SACK info will be used for this 502 * connection. This assumes that SACK usage 503 * permission is negotiated. This may need 504 * to be changed once this is clarified. 505 */ 506 ASSERT(tcp->tcp_num_sack_blk == 0); 507 ASSERT(tcp->tcp_notsack_list == NULL); 508 tcp->tcp_snd_sack_ok = B_FALSE; 509 } 510 511 /* 512 * Now we know the exact TCP/IP header length, subtract 513 * that from tcp_mss to get our side's MSS. 514 */ 515 tcp->tcp_mss -= connp->conn_ht_iphc_len; 516 517 /* 518 * Here we assume that the other side's header size will be equal to 519 * our header size. We calculate the real MSS accordingly. Need to 520 * take into additional stuffs IPsec puts in. 521 * 522 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 523 */ 524 tcpopt.tcp_opt_mss -= connp->conn_ht_iphc_len + 525 tcp->tcp_ipsec_overhead - 526 ((connp->conn_ipversion == IPV4_VERSION ? 527 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 528 529 /* 530 * Set MSS to the smaller one of both ends of the connection. 531 * We should not have called tcp_mss_set() before, but our 532 * side of the MSS should have been set to a proper value 533 * by tcp_set_destination(). tcp_mss_set() will also set up the 534 * STREAM head parameters properly. 535 * 536 * If we have a larger-than-16-bit window but the other side 537 * didn't want to do window scale, tcp_rwnd_set() will take 538 * care of that. 539 */ 540 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); 541 542 /* 543 * Initialize tcp_cwnd value. After tcp_mss_set(), tcp_mss has been 544 * updated properly. 545 */ 546 TCP_SET_INIT_CWND(tcp, tcp->tcp_mss, tcps->tcps_slow_start_initial); 547 } 548 549 /* 550 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 551 * is filled, return as much as we can. The message passed in may be 552 * multi-part, chained using b_cont. "start" is the starting sequence 553 * number for this piece. 554 */ 555 static mblk_t * 556 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 557 { 558 uint32_t end; 559 mblk_t *mp1; 560 mblk_t *mp2; 561 mblk_t *next_mp; 562 uint32_t u1; 563 tcp_stack_t *tcps = tcp->tcp_tcps; 564 565 566 /* Walk through all the new pieces. */ 567 do { 568 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 569 (uintptr_t)INT_MAX); 570 end = start + (int)(mp->b_wptr - mp->b_rptr); 571 next_mp = mp->b_cont; 572 if (start == end) { 573 /* Empty. Blast it. */ 574 freeb(mp); 575 continue; 576 } 577 mp->b_cont = NULL; 578 TCP_REASS_SET_SEQ(mp, start); 579 TCP_REASS_SET_END(mp, end); 580 mp1 = tcp->tcp_reass_tail; 581 if (!mp1) { 582 tcp->tcp_reass_tail = mp; 583 tcp->tcp_reass_head = mp; 584 TCPS_BUMP_MIB(tcps, tcpInDataUnorderSegs); 585 TCPS_UPDATE_MIB(tcps, tcpInDataUnorderBytes, 586 end - start); 587 continue; 588 } 589 /* New stuff completely beyond tail? */ 590 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 591 /* Link it on end. */ 592 mp1->b_cont = mp; 593 tcp->tcp_reass_tail = mp; 594 TCPS_BUMP_MIB(tcps, tcpInDataUnorderSegs); 595 TCPS_UPDATE_MIB(tcps, tcpInDataUnorderBytes, 596 end - start); 597 continue; 598 } 599 mp1 = tcp->tcp_reass_head; 600 u1 = TCP_REASS_SEQ(mp1); 601 /* New stuff at the front? */ 602 if (SEQ_LT(start, u1)) { 603 /* Yes... Check for overlap. */ 604 mp->b_cont = mp1; 605 tcp->tcp_reass_head = mp; 606 tcp_reass_elim_overlap(tcp, mp); 607 continue; 608 } 609 /* 610 * The new piece fits somewhere between the head and tail. 611 * We find our slot, where mp1 precedes us and mp2 trails. 612 */ 613 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 614 u1 = TCP_REASS_SEQ(mp2); 615 if (SEQ_LEQ(start, u1)) 616 break; 617 } 618 /* Link ourselves in */ 619 mp->b_cont = mp2; 620 mp1->b_cont = mp; 621 622 /* Trim overlap with following mblk(s) first */ 623 tcp_reass_elim_overlap(tcp, mp); 624 625 /* Trim overlap with preceding mblk */ 626 tcp_reass_elim_overlap(tcp, mp1); 627 628 } while (start = end, mp = next_mp); 629 mp1 = tcp->tcp_reass_head; 630 /* Anything ready to go? */ 631 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 632 return (NULL); 633 /* Eat what we can off the queue */ 634 for (;;) { 635 mp = mp1->b_cont; 636 end = TCP_REASS_END(mp1); 637 TCP_REASS_SET_SEQ(mp1, 0); 638 TCP_REASS_SET_END(mp1, 0); 639 if (!mp) { 640 tcp->tcp_reass_tail = NULL; 641 break; 642 } 643 if (end != TCP_REASS_SEQ(mp)) { 644 mp1->b_cont = NULL; 645 break; 646 } 647 mp1 = mp; 648 } 649 mp1 = tcp->tcp_reass_head; 650 tcp->tcp_reass_head = mp; 651 return (mp1); 652 } 653 654 /* Eliminate any overlap that mp may have over later mblks */ 655 static void 656 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 657 { 658 uint32_t end; 659 mblk_t *mp1; 660 uint32_t u1; 661 tcp_stack_t *tcps = tcp->tcp_tcps; 662 663 end = TCP_REASS_END(mp); 664 while ((mp1 = mp->b_cont) != NULL) { 665 u1 = TCP_REASS_SEQ(mp1); 666 if (!SEQ_GT(end, u1)) 667 break; 668 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 669 mp->b_wptr -= end - u1; 670 TCP_REASS_SET_END(mp, u1); 671 TCPS_BUMP_MIB(tcps, tcpInDataPartDupSegs); 672 TCPS_UPDATE_MIB(tcps, tcpInDataPartDupBytes, 673 end - u1); 674 break; 675 } 676 mp->b_cont = mp1->b_cont; 677 TCP_REASS_SET_SEQ(mp1, 0); 678 TCP_REASS_SET_END(mp1, 0); 679 freeb(mp1); 680 TCPS_BUMP_MIB(tcps, tcpInDataDupSegs); 681 TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes, end - u1); 682 } 683 if (!mp1) 684 tcp->tcp_reass_tail = mp; 685 } 686 687 /* 688 * This function does PAWS protection check. Returns B_TRUE if the 689 * segment passes the PAWS test, else returns B_FALSE. 690 */ 691 boolean_t 692 tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp) 693 { 694 uint8_t flags; 695 int options; 696 uint8_t *up; 697 conn_t *connp = tcp->tcp_connp; 698 699 flags = (unsigned int)tcpha->tha_flags & 0xFF; 700 /* 701 * If timestamp option is aligned nicely, get values inline, 702 * otherwise call general routine to parse. Only do that 703 * if timestamp is the only option. 704 */ 705 if (TCP_HDR_LENGTH(tcpha) == (uint32_t)TCP_MIN_HEADER_LENGTH + 706 TCPOPT_REAL_TS_LEN && 707 OK_32PTR((up = ((uint8_t *)tcpha) + 708 TCP_MIN_HEADER_LENGTH)) && 709 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 710 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 711 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 712 713 options = TCP_OPT_TSTAMP_PRESENT; 714 } else { 715 if (tcp->tcp_snd_sack_ok) { 716 tcpoptp->tcp = tcp; 717 } else { 718 tcpoptp->tcp = NULL; 719 } 720 options = tcp_parse_options(tcpha, tcpoptp); 721 } 722 723 if (options & TCP_OPT_TSTAMP_PRESENT) { 724 /* 725 * Do PAWS per RFC 1323 section 4.2. Accept RST 726 * regardless of the timestamp, page 18 RFC 1323.bis. 727 */ 728 if ((flags & TH_RST) == 0 && 729 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 730 tcp->tcp_ts_recent)) { 731 if (LBOLT_FASTPATH64 < 732 (tcp->tcp_last_rcv_lbolt + PAWS_TIMEOUT)) { 733 /* This segment is not acceptable. */ 734 return (B_FALSE); 735 } else { 736 /* 737 * Connection has been idle for 738 * too long. Reset the timestamp 739 * and assume the segment is valid. 740 */ 741 tcp->tcp_ts_recent = 742 tcpoptp->tcp_opt_ts_val; 743 } 744 } 745 } else { 746 /* 747 * If we don't get a timestamp on every packet, we 748 * figure we can't really trust 'em, so we stop sending 749 * and parsing them. 750 */ 751 tcp->tcp_snd_ts_ok = B_FALSE; 752 753 connp->conn_ht_iphc_len -= TCPOPT_REAL_TS_LEN; 754 connp->conn_ht_ulp_len -= TCPOPT_REAL_TS_LEN; 755 tcp->tcp_tcpha->tha_offset_and_reserved -= (3 << 4); 756 /* 757 * Adjust the tcp_mss and tcp_cwnd accordingly. We avoid 758 * doing a slow start here so as to not to lose on the 759 * transfer rate built up so far. 760 */ 761 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN); 762 if (tcp->tcp_snd_sack_ok) 763 tcp->tcp_max_sack_blk = 4; 764 } 765 return (B_TRUE); 766 } 767 768 /* 769 * Defense for the SYN attack - 770 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 771 * one from the list of droppable eagers. This list is a subset of q0. 772 * see comments before the definition of MAKE_DROPPABLE(). 773 * 2. Don't drop a SYN request before its first timeout. This gives every 774 * request at least til the first timeout to complete its 3-way handshake. 775 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 776 * requests currently on the queue that has timed out. This will be used 777 * as an indicator of whether an attack is under way, so that appropriate 778 * actions can be taken. (It's incremented in tcp_timer() and decremented 779 * either when eager goes into ESTABLISHED, or gets freed up.) 780 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 781 * # of timeout drops back to <= q0len/32 => SYN alert off 782 */ 783 static boolean_t 784 tcp_drop_q0(tcp_t *tcp) 785 { 786 tcp_t *eager; 787 mblk_t *mp; 788 tcp_stack_t *tcps = tcp->tcp_tcps; 789 790 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 791 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 792 793 /* Pick oldest eager from the list of droppable eagers */ 794 eager = tcp->tcp_eager_prev_drop_q0; 795 796 /* If list is empty. return B_FALSE */ 797 if (eager == tcp) { 798 return (B_FALSE); 799 } 800 801 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 802 if ((mp = allocb(0, BPRI_HI)) == NULL) 803 return (B_FALSE); 804 805 /* 806 * Take this eager out from the list of droppable eagers since we are 807 * going to drop it. 808 */ 809 MAKE_UNDROPPABLE(eager); 810 811 if (tcp->tcp_connp->conn_debug) { 812 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 813 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 814 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 815 tcp->tcp_conn_req_cnt_q0, 816 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 817 } 818 819 TCPS_BUMP_MIB(tcps, tcpHalfOpenDrop); 820 821 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 822 CONN_INC_REF(eager->tcp_connp); 823 824 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 825 tcp_clean_death_wrapper, eager->tcp_connp, NULL, 826 SQ_FILL, SQTAG_TCP_DROP_Q0); 827 828 return (B_TRUE); 829 } 830 831 /* 832 * Handle a SYN on an AF_INET6 socket; can be either IPv4 or IPv6 833 */ 834 static mblk_t * 835 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 836 ip_recv_attr_t *ira) 837 { 838 tcp_t *ltcp = lconnp->conn_tcp; 839 tcp_t *tcp = connp->conn_tcp; 840 mblk_t *tpi_mp; 841 ipha_t *ipha; 842 ip6_t *ip6h; 843 sin6_t sin6; 844 uint_t ifindex = ira->ira_ruifindex; 845 tcp_stack_t *tcps = tcp->tcp_tcps; 846 847 if (ira->ira_flags & IRAF_IS_IPV4) { 848 ipha = (ipha_t *)mp->b_rptr; 849 850 connp->conn_ipversion = IPV4_VERSION; 851 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 852 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 853 connp->conn_saddr_v6 = connp->conn_laddr_v6; 854 855 sin6 = sin6_null; 856 sin6.sin6_addr = connp->conn_faddr_v6; 857 sin6.sin6_port = connp->conn_fport; 858 sin6.sin6_family = AF_INET6; 859 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 860 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 861 862 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 863 sin6_t sin6d; 864 865 sin6d = sin6_null; 866 sin6d.sin6_addr = connp->conn_laddr_v6; 867 sin6d.sin6_port = connp->conn_lport; 868 sin6d.sin6_family = AF_INET; 869 tpi_mp = mi_tpi_extconn_ind(NULL, 870 (char *)&sin6d, sizeof (sin6_t), 871 (char *)&tcp, 872 (t_scalar_t)sizeof (intptr_t), 873 (char *)&sin6d, sizeof (sin6_t), 874 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 875 } else { 876 tpi_mp = mi_tpi_conn_ind(NULL, 877 (char *)&sin6, sizeof (sin6_t), 878 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 879 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 880 } 881 } else { 882 ip6h = (ip6_t *)mp->b_rptr; 883 884 connp->conn_ipversion = IPV6_VERSION; 885 connp->conn_laddr_v6 = ip6h->ip6_dst; 886 connp->conn_faddr_v6 = ip6h->ip6_src; 887 connp->conn_saddr_v6 = connp->conn_laddr_v6; 888 889 sin6 = sin6_null; 890 sin6.sin6_addr = connp->conn_faddr_v6; 891 sin6.sin6_port = connp->conn_fport; 892 sin6.sin6_family = AF_INET6; 893 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 894 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 895 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 896 897 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 898 /* Pass up the scope_id of remote addr */ 899 sin6.sin6_scope_id = ifindex; 900 } else { 901 sin6.sin6_scope_id = 0; 902 } 903 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 904 sin6_t sin6d; 905 906 sin6d = sin6_null; 907 sin6.sin6_addr = connp->conn_laddr_v6; 908 sin6d.sin6_port = connp->conn_lport; 909 sin6d.sin6_family = AF_INET6; 910 if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_laddr_v6)) 911 sin6d.sin6_scope_id = ifindex; 912 913 tpi_mp = mi_tpi_extconn_ind(NULL, 914 (char *)&sin6d, sizeof (sin6_t), 915 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 916 (char *)&sin6d, sizeof (sin6_t), 917 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 918 } else { 919 tpi_mp = mi_tpi_conn_ind(NULL, 920 (char *)&sin6, sizeof (sin6_t), 921 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 922 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 923 } 924 } 925 926 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 927 return (tpi_mp); 928 } 929 930 /* Handle a SYN on an AF_INET socket */ 931 static mblk_t * 932 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp, 933 ip_recv_attr_t *ira) 934 { 935 tcp_t *ltcp = lconnp->conn_tcp; 936 tcp_t *tcp = connp->conn_tcp; 937 sin_t sin; 938 mblk_t *tpi_mp = NULL; 939 tcp_stack_t *tcps = tcp->tcp_tcps; 940 ipha_t *ipha; 941 942 ASSERT(ira->ira_flags & IRAF_IS_IPV4); 943 ipha = (ipha_t *)mp->b_rptr; 944 945 connp->conn_ipversion = IPV4_VERSION; 946 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 947 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 948 connp->conn_saddr_v6 = connp->conn_laddr_v6; 949 950 sin = sin_null; 951 sin.sin_addr.s_addr = connp->conn_faddr_v4; 952 sin.sin_port = connp->conn_fport; 953 sin.sin_family = AF_INET; 954 if (lconnp->conn_recv_ancillary.crb_recvdstaddr) { 955 sin_t sind; 956 957 sind = sin_null; 958 sind.sin_addr.s_addr = connp->conn_laddr_v4; 959 sind.sin_port = connp->conn_lport; 960 sind.sin_family = AF_INET; 961 tpi_mp = mi_tpi_extconn_ind(NULL, 962 (char *)&sind, sizeof (sin_t), (char *)&tcp, 963 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 964 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 965 } else { 966 tpi_mp = mi_tpi_conn_ind(NULL, 967 (char *)&sin, sizeof (sin_t), 968 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 969 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 970 } 971 972 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 973 return (tpi_mp); 974 } 975 976 /* 977 * Called via squeue to get on to eager's perimeter. It sends a 978 * TH_RST if eager is in the fanout table. The listener wants the 979 * eager to disappear either by means of tcp_eager_blowoff() or 980 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 981 * called (via squeue) if the eager cannot be inserted in the 982 * fanout table in tcp_input_listener(). 983 */ 984 /* ARGSUSED */ 985 void 986 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 987 { 988 conn_t *econnp = (conn_t *)arg; 989 tcp_t *eager = econnp->conn_tcp; 990 tcp_t *listener = eager->tcp_listener; 991 992 /* 993 * We could be called because listener is closing. Since 994 * the eager was using listener's queue's, we avoid 995 * using the listeners queues from now on. 996 */ 997 ASSERT(eager->tcp_detached); 998 econnp->conn_rq = NULL; 999 econnp->conn_wq = NULL; 1000 1001 /* 1002 * An eager's conn_fanout will be NULL if it's a duplicate 1003 * for an existing 4-tuples in the conn fanout table. 1004 * We don't want to send an RST out in such case. 1005 */ 1006 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 1007 tcp_xmit_ctl("tcp_eager_kill, can't wait", 1008 eager, eager->tcp_snxt, 0, TH_RST); 1009 } 1010 1011 /* We are here because listener wants this eager gone */ 1012 if (listener != NULL) { 1013 mutex_enter(&listener->tcp_eager_lock); 1014 tcp_eager_unlink(eager); 1015 if (eager->tcp_tconnind_started) { 1016 /* 1017 * The eager has sent a conn_ind up to the 1018 * listener but listener decides to close 1019 * instead. We need to drop the extra ref 1020 * placed on eager in tcp_input_data() before 1021 * sending the conn_ind to listener. 1022 */ 1023 CONN_DEC_REF(econnp); 1024 } 1025 mutex_exit(&listener->tcp_eager_lock); 1026 CONN_DEC_REF(listener->tcp_connp); 1027 } 1028 1029 if (eager->tcp_state != TCPS_CLOSED) 1030 tcp_close_detached(eager); 1031 } 1032 1033 /* 1034 * Reset any eager connection hanging off this listener marked 1035 * with 'seqnum' and then reclaim it's resources. 1036 */ 1037 boolean_t 1038 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 1039 { 1040 tcp_t *eager; 1041 mblk_t *mp; 1042 1043 eager = listener; 1044 mutex_enter(&listener->tcp_eager_lock); 1045 do { 1046 eager = eager->tcp_eager_next_q; 1047 if (eager == NULL) { 1048 mutex_exit(&listener->tcp_eager_lock); 1049 return (B_FALSE); 1050 } 1051 } while (eager->tcp_conn_req_seqnum != seqnum); 1052 1053 if (eager->tcp_closemp_used) { 1054 mutex_exit(&listener->tcp_eager_lock); 1055 return (B_TRUE); 1056 } 1057 eager->tcp_closemp_used = B_TRUE; 1058 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 1059 CONN_INC_REF(eager->tcp_connp); 1060 mutex_exit(&listener->tcp_eager_lock); 1061 mp = &eager->tcp_closemp; 1062 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 1063 eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); 1064 return (B_TRUE); 1065 } 1066 1067 /* 1068 * Reset any eager connection hanging off this listener 1069 * and then reclaim it's resources. 1070 */ 1071 void 1072 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 1073 { 1074 tcp_t *eager; 1075 mblk_t *mp; 1076 tcp_stack_t *tcps = listener->tcp_tcps; 1077 1078 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 1079 1080 if (!q0_only) { 1081 /* First cleanup q */ 1082 TCP_STAT(tcps, tcp_eager_blowoff_q); 1083 eager = listener->tcp_eager_next_q; 1084 while (eager != NULL) { 1085 if (!eager->tcp_closemp_used) { 1086 eager->tcp_closemp_used = B_TRUE; 1087 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 1088 CONN_INC_REF(eager->tcp_connp); 1089 mp = &eager->tcp_closemp; 1090 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 1091 tcp_eager_kill, eager->tcp_connp, NULL, 1092 SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); 1093 } 1094 eager = eager->tcp_eager_next_q; 1095 } 1096 } 1097 /* Then cleanup q0 */ 1098 TCP_STAT(tcps, tcp_eager_blowoff_q0); 1099 eager = listener->tcp_eager_next_q0; 1100 while (eager != listener) { 1101 if (!eager->tcp_closemp_used) { 1102 eager->tcp_closemp_used = B_TRUE; 1103 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 1104 CONN_INC_REF(eager->tcp_connp); 1105 mp = &eager->tcp_closemp; 1106 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 1107 tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL, 1108 SQTAG_TCP_EAGER_CLEANUP_Q0); 1109 } 1110 eager = eager->tcp_eager_next_q0; 1111 } 1112 } 1113 1114 /* 1115 * If we are an eager connection hanging off a listener that hasn't 1116 * formally accepted the connection yet, get off his list and blow off 1117 * any data that we have accumulated. 1118 */ 1119 void 1120 tcp_eager_unlink(tcp_t *tcp) 1121 { 1122 tcp_t *listener = tcp->tcp_listener; 1123 1124 ASSERT(listener != NULL); 1125 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 1126 if (tcp->tcp_eager_next_q0 != NULL) { 1127 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 1128 1129 /* Remove the eager tcp from q0 */ 1130 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 1131 tcp->tcp_eager_prev_q0; 1132 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 1133 tcp->tcp_eager_next_q0; 1134 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 1135 listener->tcp_conn_req_cnt_q0--; 1136 1137 tcp->tcp_eager_next_q0 = NULL; 1138 tcp->tcp_eager_prev_q0 = NULL; 1139 1140 /* 1141 * Take the eager out, if it is in the list of droppable 1142 * eagers. 1143 */ 1144 MAKE_UNDROPPABLE(tcp); 1145 1146 if (tcp->tcp_syn_rcvd_timeout != 0) { 1147 /* we have timed out before */ 1148 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 1149 listener->tcp_syn_rcvd_timeout--; 1150 } 1151 } else { 1152 tcp_t **tcpp = &listener->tcp_eager_next_q; 1153 tcp_t *prev = NULL; 1154 1155 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 1156 if (tcpp[0] == tcp) { 1157 if (listener->tcp_eager_last_q == tcp) { 1158 /* 1159 * If we are unlinking the last 1160 * element on the list, adjust 1161 * tail pointer. Set tail pointer 1162 * to nil when list is empty. 1163 */ 1164 ASSERT(tcp->tcp_eager_next_q == NULL); 1165 if (listener->tcp_eager_last_q == 1166 listener->tcp_eager_next_q) { 1167 listener->tcp_eager_last_q = 1168 NULL; 1169 } else { 1170 /* 1171 * We won't get here if there 1172 * is only one eager in the 1173 * list. 1174 */ 1175 ASSERT(prev != NULL); 1176 listener->tcp_eager_last_q = 1177 prev; 1178 } 1179 } 1180 tcpp[0] = tcp->tcp_eager_next_q; 1181 tcp->tcp_eager_next_q = NULL; 1182 tcp->tcp_eager_last_q = NULL; 1183 ASSERT(listener->tcp_conn_req_cnt_q > 0); 1184 listener->tcp_conn_req_cnt_q--; 1185 break; 1186 } 1187 prev = tcpp[0]; 1188 } 1189 } 1190 tcp->tcp_listener = NULL; 1191 } 1192 1193 /* BEGIN CSTYLED */ 1194 /* 1195 * 1196 * The sockfs ACCEPT path: 1197 * ======================= 1198 * 1199 * The eager is now established in its own perimeter as soon as SYN is 1200 * received in tcp_input_listener(). When sockfs receives conn_ind, it 1201 * completes the accept processing on the acceptor STREAM. The sending 1202 * of conn_ind part is common for both sockfs listener and a TLI/XTI 1203 * listener but a TLI/XTI listener completes the accept processing 1204 * on the listener perimeter. 1205 * 1206 * Common control flow for 3 way handshake: 1207 * ---------------------------------------- 1208 * 1209 * incoming SYN (listener perimeter) -> tcp_input_listener() 1210 * 1211 * incoming SYN-ACK-ACK (eager perim) -> tcp_input_data() 1212 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 1213 * 1214 * Sockfs ACCEPT Path: 1215 * ------------------- 1216 * 1217 * open acceptor stream (tcp_open allocates tcp_tli_accept() 1218 * as STREAM entry point) 1219 * 1220 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_tli_accept() 1221 * 1222 * tcp_tli_accept() extracts the eager and makes the q->q_ptr <-> eager 1223 * association (we are not behind eager's squeue but sockfs is protecting us 1224 * and no one knows about this stream yet. The STREAMS entry point q->q_info 1225 * is changed to point at tcp_wput(). 1226 * 1227 * tcp_accept_common() sends any deferred eagers via tcp_send_pending() to 1228 * listener (done on listener's perimeter). 1229 * 1230 * tcp_tli_accept() calls tcp_accept_finish() on eagers perimeter to finish 1231 * accept. 1232 * 1233 * TLI/XTI client ACCEPT path: 1234 * --------------------------- 1235 * 1236 * soaccept() sends T_CONN_RES on the listener STREAM. 1237 * 1238 * tcp_tli_accept() -> tcp_accept_swap() complete the processing and send 1239 * a M_SETOPS mblk to eager perimeter to finish accept (tcp_accept_finish()). 1240 * 1241 * Locks: 1242 * ====== 1243 * 1244 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 1245 * and listeners->tcp_eager_next_q. 1246 * 1247 * Referencing: 1248 * ============ 1249 * 1250 * 1) We start out in tcp_input_listener by eager placing a ref on 1251 * listener and listener adding eager to listeners->tcp_eager_next_q0. 1252 * 1253 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 1254 * doing so we place a ref on the eager. This ref is finally dropped at the 1255 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 1256 * reference is dropped by the squeue framework. 1257 * 1258 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 1259 * 1260 * The reference must be released by the same entity that added the reference 1261 * In the above scheme, the eager is the entity that adds and releases the 1262 * references. Note that tcp_accept_finish executes in the squeue of the eager 1263 * (albeit after it is attached to the acceptor stream). Though 1. executes 1264 * in the listener's squeue, the eager is nascent at this point and the 1265 * reference can be considered to have been added on behalf of the eager. 1266 * 1267 * Eager getting a Reset or listener closing: 1268 * ========================================== 1269 * 1270 * Once the listener and eager are linked, the listener never does the unlink. 1271 * If the listener needs to close, tcp_eager_cleanup() is called which queues 1272 * a message on all eager perimeter. The eager then does the unlink, clears 1273 * any pointers to the listener's queue and drops the reference to the 1274 * listener. The listener waits in tcp_close outside the squeue until its 1275 * refcount has dropped to 1. This ensures that the listener has waited for 1276 * all eagers to clear their association with the listener. 1277 * 1278 * Similarly, if eager decides to go away, it can unlink itself and close. 1279 * When the T_CONN_RES comes down, we check if eager has closed. Note that 1280 * the reference to eager is still valid because of the extra ref we put 1281 * in tcp_send_conn_ind. 1282 * 1283 * Listener can always locate the eager under the protection 1284 * of the listener->tcp_eager_lock, and then do a refhold 1285 * on the eager during the accept processing. 1286 * 1287 * The acceptor stream accesses the eager in the accept processing 1288 * based on the ref placed on eager before sending T_conn_ind. 1289 * The only entity that can negate this refhold is a listener close 1290 * which is mutually exclusive with an active acceptor stream. 1291 * 1292 * Eager's reference on the listener 1293 * =================================== 1294 * 1295 * If the accept happens (even on a closed eager) the eager drops its 1296 * reference on the listener at the start of tcp_accept_finish. If the 1297 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 1298 * the reference is dropped in tcp_closei_local. If the listener closes, 1299 * the reference is dropped in tcp_eager_kill. In all cases the reference 1300 * is dropped while executing in the eager's context (squeue). 1301 */ 1302 /* END CSTYLED */ 1303 1304 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 1305 1306 /* 1307 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 1308 * tcp_input_data will not see any packets for listeners since the listener 1309 * has conn_recv set to tcp_input_listener. 1310 */ 1311 /* ARGSUSED */ 1312 static void 1313 tcp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 1314 { 1315 tcpha_t *tcpha; 1316 uint32_t seg_seq; 1317 tcp_t *eager; 1318 int err; 1319 conn_t *econnp = NULL; 1320 squeue_t *new_sqp; 1321 mblk_t *mp1; 1322 uint_t ip_hdr_len; 1323 conn_t *lconnp = (conn_t *)arg; 1324 tcp_t *listener = lconnp->conn_tcp; 1325 tcp_stack_t *tcps = listener->tcp_tcps; 1326 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 1327 uint_t flags; 1328 mblk_t *tpi_mp; 1329 uint_t ifindex = ira->ira_ruifindex; 1330 boolean_t tlc_set = B_FALSE; 1331 1332 ip_hdr_len = ira->ira_ip_hdr_length; 1333 tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len]; 1334 flags = (unsigned int)tcpha->tha_flags & 0xFF; 1335 1336 DTRACE_TCP5(receive, mblk_t *, NULL, ip_xmit_attr_t *, lconnp->conn_ixa, 1337 __dtrace_tcp_void_ip_t *, mp->b_rptr, tcp_t *, listener, 1338 __dtrace_tcp_tcph_t *, tcpha); 1339 1340 if (!(flags & TH_SYN)) { 1341 if ((flags & TH_RST) || (flags & TH_URG)) { 1342 freemsg(mp); 1343 return; 1344 } 1345 if (flags & TH_ACK) { 1346 /* Note this executes in listener's squeue */ 1347 tcp_xmit_listeners_reset(mp, ira, ipst, lconnp); 1348 return; 1349 } 1350 1351 freemsg(mp); 1352 return; 1353 } 1354 1355 if (listener->tcp_state != TCPS_LISTEN) 1356 goto error2; 1357 1358 ASSERT(IPCL_IS_BOUND(lconnp)); 1359 1360 mutex_enter(&listener->tcp_eager_lock); 1361 1362 /* 1363 * The system is under memory pressure, so we need to do our part 1364 * to relieve the pressure. So we only accept new request if there 1365 * is nothing waiting to be accepted or waiting to complete the 3-way 1366 * handshake. This means that busy listener will not get too many 1367 * new requests which they cannot handle in time while non-busy 1368 * listener is still functioning properly. 1369 */ 1370 if (tcps->tcps_reclaim && (listener->tcp_conn_req_cnt_q > 0 || 1371 listener->tcp_conn_req_cnt_q0 > 0)) { 1372 mutex_exit(&listener->tcp_eager_lock); 1373 TCP_STAT(tcps, tcp_listen_mem_drop); 1374 goto error2; 1375 } 1376 1377 if (listener->tcp_conn_req_cnt_q >= listener->tcp_conn_req_max) { 1378 mutex_exit(&listener->tcp_eager_lock); 1379 TCP_STAT(tcps, tcp_listendrop); 1380 TCPS_BUMP_MIB(tcps, tcpListenDrop); 1381 if (lconnp->conn_debug) { 1382 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 1383 "tcp_input_listener: listen backlog (max=%d) " 1384 "overflow (%d pending) on %s", 1385 listener->tcp_conn_req_max, 1386 listener->tcp_conn_req_cnt_q, 1387 tcp_display(listener, NULL, DISP_PORT_ONLY)); 1388 } 1389 goto error2; 1390 } 1391 1392 if (listener->tcp_conn_req_cnt_q0 >= 1393 listener->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 1394 /* 1395 * Q0 is full. Drop a pending half-open req from the queue 1396 * to make room for the new SYN req. Also mark the time we 1397 * drop a SYN. 1398 * 1399 * A more aggressive defense against SYN attack will 1400 * be to set the "tcp_syn_defense" flag now. 1401 */ 1402 TCP_STAT(tcps, tcp_listendropq0); 1403 listener->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 1404 if (!tcp_drop_q0(listener)) { 1405 mutex_exit(&listener->tcp_eager_lock); 1406 TCPS_BUMP_MIB(tcps, tcpListenDropQ0); 1407 if (lconnp->conn_debug) { 1408 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 1409 "tcp_input_listener: listen half-open " 1410 "queue (max=%d) full (%d pending) on %s", 1411 tcps->tcps_conn_req_max_q0, 1412 listener->tcp_conn_req_cnt_q0, 1413 tcp_display(listener, NULL, 1414 DISP_PORT_ONLY)); 1415 } 1416 goto error2; 1417 } 1418 } 1419 1420 /* 1421 * Enforce the limit set on the number of connections per listener. 1422 * Note that tlc_cnt starts with 1. So need to add 1 to tlc_max 1423 * for comparison. 1424 */ 1425 if (listener->tcp_listen_cnt != NULL) { 1426 tcp_listen_cnt_t *tlc = listener->tcp_listen_cnt; 1427 int64_t now; 1428 1429 if (atomic_inc_32_nv(&tlc->tlc_cnt) > tlc->tlc_max + 1) { 1430 mutex_exit(&listener->tcp_eager_lock); 1431 now = ddi_get_lbolt64(); 1432 atomic_dec_32(&tlc->tlc_cnt); 1433 TCP_STAT(tcps, tcp_listen_cnt_drop); 1434 tlc->tlc_drop++; 1435 if (now - tlc->tlc_report_time > 1436 MSEC_TO_TICK(TCP_TLC_REPORT_INTERVAL)) { 1437 zcmn_err(lconnp->conn_zoneid, CE_WARN, 1438 "Listener (port %d) connection max (%u) " 1439 "reached: %u attempts dropped total\n", 1440 ntohs(listener->tcp_connp->conn_lport), 1441 tlc->tlc_max, tlc->tlc_drop); 1442 tlc->tlc_report_time = now; 1443 } 1444 goto error2; 1445 } 1446 tlc_set = B_TRUE; 1447 } 1448 1449 mutex_exit(&listener->tcp_eager_lock); 1450 1451 /* 1452 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 1453 * or based on the ring (for packets from GLD). Otherwise it is 1454 * set based on lbolt i.e., a somewhat random number. 1455 */ 1456 ASSERT(ira->ira_sqp != NULL); 1457 new_sqp = ira->ira_sqp; 1458 1459 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 1460 if (econnp == NULL) 1461 goto error2; 1462 1463 ASSERT(econnp->conn_netstack == lconnp->conn_netstack); 1464 econnp->conn_sqp = new_sqp; 1465 econnp->conn_initial_sqp = new_sqp; 1466 econnp->conn_ixa->ixa_sqp = new_sqp; 1467 1468 econnp->conn_fport = tcpha->tha_lport; 1469 econnp->conn_lport = tcpha->tha_fport; 1470 1471 err = conn_inherit_parent(lconnp, econnp); 1472 if (err != 0) 1473 goto error3; 1474 1475 /* We already know the laddr of the new connection is ours */ 1476 econnp->conn_ixa->ixa_src_generation = ipst->ips_src_generation; 1477 1478 ASSERT(OK_32PTR(mp->b_rptr)); 1479 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION || 1480 IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 1481 1482 if (lconnp->conn_family == AF_INET) { 1483 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 1484 tpi_mp = tcp_conn_create_v4(lconnp, econnp, mp, ira); 1485 } else { 1486 tpi_mp = tcp_conn_create_v6(lconnp, econnp, mp, ira); 1487 } 1488 1489 if (tpi_mp == NULL) 1490 goto error3; 1491 1492 eager = econnp->conn_tcp; 1493 eager->tcp_detached = B_TRUE; 1494 SOCK_CONNID_INIT(eager->tcp_connid); 1495 1496 /* 1497 * Initialize the eager's tcp_t and inherit some parameters from 1498 * the listener. 1499 */ 1500 tcp_init_values(eager, listener); 1501 1502 ASSERT((econnp->conn_ixa->ixa_flags & 1503 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 1504 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)) == 1505 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 1506 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)); 1507 1508 if (!tcps->tcps_dev_flow_ctl) 1509 econnp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 1510 1511 /* Prepare for diffing against previous packets */ 1512 eager->tcp_recvifindex = 0; 1513 eager->tcp_recvhops = 0xffffffffU; 1514 1515 if (!(ira->ira_flags & IRAF_IS_IPV4) && econnp->conn_bound_if == 0) { 1516 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_faddr_v6) || 1517 IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6)) { 1518 econnp->conn_incoming_ifindex = ifindex; 1519 econnp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 1520 econnp->conn_ixa->ixa_scopeid = ifindex; 1521 } 1522 } 1523 1524 if ((ira->ira_flags & (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS)) == 1525 (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS) && 1526 tcps->tcps_rev_src_routes) { 1527 ipha_t *ipha = (ipha_t *)mp->b_rptr; 1528 ip_pkt_t *ipp = &econnp->conn_xmit_ipp; 1529 1530 /* Source routing option copyover (reverse it) */ 1531 err = ip_find_hdr_v4(ipha, ipp, B_TRUE); 1532 if (err != 0) { 1533 freemsg(tpi_mp); 1534 goto error3; 1535 } 1536 ip_pkt_source_route_reverse_v4(ipp); 1537 } 1538 1539 ASSERT(eager->tcp_conn.tcp_eager_conn_ind == NULL); 1540 ASSERT(!eager->tcp_tconnind_started); 1541 /* 1542 * If the SYN came with a credential, it's a loopback packet or a 1543 * labeled packet; attach the credential to the TPI message. 1544 */ 1545 if (ira->ira_cred != NULL) 1546 mblk_setcred(tpi_mp, ira->ira_cred, ira->ira_cpid); 1547 1548 eager->tcp_conn.tcp_eager_conn_ind = tpi_mp; 1549 ASSERT(eager->tcp_ordrel_mp == NULL); 1550 1551 /* Inherit the listener's non-STREAMS flag */ 1552 if (IPCL_IS_NONSTR(lconnp)) { 1553 econnp->conn_flags |= IPCL_NONSTR; 1554 /* All non-STREAMS tcp_ts are sockets */ 1555 eager->tcp_issocket = B_TRUE; 1556 } else { 1557 /* 1558 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that 1559 * at close time, we will always have that to send up. 1560 * Otherwise, we need to do special handling in case the 1561 * allocation fails at that time. 1562 */ 1563 if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 1564 goto error3; 1565 } 1566 /* 1567 * Now that the IP addresses and ports are setup in econnp we 1568 * can do the IPsec policy work. 1569 */ 1570 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 1571 if (lconnp->conn_policy != NULL) { 1572 /* 1573 * Inherit the policy from the listener; use 1574 * actions from ira 1575 */ 1576 if (!ip_ipsec_policy_inherit(econnp, lconnp, ira)) { 1577 CONN_DEC_REF(econnp); 1578 freemsg(mp); 1579 goto error3; 1580 } 1581 } 1582 } 1583 1584 /* 1585 * tcp_set_destination() may set tcp_rwnd according to the route 1586 * metrics. If it does not, the eager's receive window will be set 1587 * to the listener's receive window later in this function. 1588 */ 1589 eager->tcp_rwnd = 0; 1590 1591 if (is_system_labeled()) { 1592 ip_xmit_attr_t *ixa = econnp->conn_ixa; 1593 1594 ASSERT(ira->ira_tsl != NULL); 1595 /* Discard any old label */ 1596 if (ixa->ixa_free_flags & IXA_FREE_TSL) { 1597 ASSERT(ixa->ixa_tsl != NULL); 1598 label_rele(ixa->ixa_tsl); 1599 ixa->ixa_free_flags &= ~IXA_FREE_TSL; 1600 ixa->ixa_tsl = NULL; 1601 } 1602 if ((lconnp->conn_mlp_type != mlptSingle || 1603 lconnp->conn_mac_mode != CONN_MAC_DEFAULT) && 1604 ira->ira_tsl != NULL) { 1605 /* 1606 * If this is an MLP connection or a MAC-Exempt 1607 * connection with an unlabeled node, packets are to be 1608 * exchanged using the security label of the received 1609 * SYN packet instead of the server application's label. 1610 * tsol_check_dest called from ip_set_destination 1611 * might later update TSF_UNLABELED by replacing 1612 * ixa_tsl with a new label. 1613 */ 1614 label_hold(ira->ira_tsl); 1615 ip_xmit_attr_replace_tsl(ixa, ira->ira_tsl); 1616 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 1617 econnp, ts_label_t *, ixa->ixa_tsl) 1618 } else { 1619 ixa->ixa_tsl = crgetlabel(econnp->conn_cred); 1620 DTRACE_PROBE2(syn_accept, conn_t *, 1621 econnp, ts_label_t *, ixa->ixa_tsl) 1622 } 1623 /* 1624 * conn_connect() called from tcp_set_destination will verify 1625 * the destination is allowed to receive packets at the 1626 * security label of the SYN-ACK we are generating. As part of 1627 * that, tsol_check_dest() may create a new effective label for 1628 * this connection. 1629 * Finally conn_connect() will call conn_update_label. 1630 * All that remains for TCP to do is to call 1631 * conn_build_hdr_template which is done as part of 1632 * tcp_set_destination. 1633 */ 1634 } 1635 1636 /* 1637 * Since we will clear tcp_listener before we clear tcp_detached 1638 * in the accept code we need tcp_hard_binding aka tcp_accept_inprogress 1639 * so we can tell a TCP_IS_DETACHED_NONEAGER apart. 1640 */ 1641 eager->tcp_hard_binding = B_TRUE; 1642 1643 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 1644 TCP_BIND_HASH(econnp->conn_lport)], eager, 0); 1645 1646 CL_INET_CONNECT(econnp, B_FALSE, err); 1647 if (err != 0) { 1648 tcp_bind_hash_remove(eager); 1649 goto error3; 1650 } 1651 1652 SOCK_CONNID_BUMP(eager->tcp_connid); 1653 1654 /* 1655 * Adapt our mss, ttl, ... based on the remote address. 1656 */ 1657 1658 if (tcp_set_destination(eager) != 0) { 1659 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 1660 /* Undo the bind_hash_insert */ 1661 tcp_bind_hash_remove(eager); 1662 goto error3; 1663 } 1664 1665 /* Process all TCP options. */ 1666 tcp_process_options(eager, tcpha); 1667 1668 /* Is the other end ECN capable? */ 1669 if (tcps->tcps_ecn_permitted >= 1 && 1670 (tcpha->tha_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 1671 eager->tcp_ecn_ok = B_TRUE; 1672 } 1673 1674 /* 1675 * The listener's conn_rcvbuf should be the default window size or a 1676 * window size changed via SO_RCVBUF option. First round up the 1677 * eager's tcp_rwnd to the nearest MSS. Then find out the window 1678 * scale option value if needed. Call tcp_rwnd_set() to finish the 1679 * setting. 1680 * 1681 * Note if there is a rpipe metric associated with the remote host, 1682 * we should not inherit receive window size from listener. 1683 */ 1684 eager->tcp_rwnd = MSS_ROUNDUP( 1685 (eager->tcp_rwnd == 0 ? econnp->conn_rcvbuf : 1686 eager->tcp_rwnd), eager->tcp_mss); 1687 if (eager->tcp_snd_ws_ok) 1688 tcp_set_ws_value(eager); 1689 /* 1690 * Note that this is the only place tcp_rwnd_set() is called for 1691 * accepting a connection. We need to call it here instead of 1692 * after the 3-way handshake because we need to tell the other 1693 * side our rwnd in the SYN-ACK segment. 1694 */ 1695 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 1696 1697 ASSERT(eager->tcp_connp->conn_rcvbuf != 0 && 1698 eager->tcp_connp->conn_rcvbuf == eager->tcp_rwnd); 1699 1700 ASSERT(econnp->conn_rcvbuf != 0 && 1701 econnp->conn_rcvbuf == eager->tcp_rwnd); 1702 1703 /* Put a ref on the listener for the eager. */ 1704 CONN_INC_REF(lconnp); 1705 mutex_enter(&listener->tcp_eager_lock); 1706 listener->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 1707 eager->tcp_eager_next_q0 = listener->tcp_eager_next_q0; 1708 listener->tcp_eager_next_q0 = eager; 1709 eager->tcp_eager_prev_q0 = listener; 1710 1711 /* Set tcp_listener before adding it to tcp_conn_fanout */ 1712 eager->tcp_listener = listener; 1713 eager->tcp_saved_listener = listener; 1714 1715 /* 1716 * Set tcp_listen_cnt so that when the connection is done, the counter 1717 * is decremented. 1718 */ 1719 eager->tcp_listen_cnt = listener->tcp_listen_cnt; 1720 1721 /* 1722 * Tag this detached tcp vector for later retrieval 1723 * by our listener client in tcp_accept(). 1724 */ 1725 eager->tcp_conn_req_seqnum = listener->tcp_conn_req_seqnum; 1726 listener->tcp_conn_req_cnt_q0++; 1727 if (++listener->tcp_conn_req_seqnum == -1) { 1728 /* 1729 * -1 is "special" and defined in TPI as something 1730 * that should never be used in T_CONN_IND 1731 */ 1732 ++listener->tcp_conn_req_seqnum; 1733 } 1734 mutex_exit(&listener->tcp_eager_lock); 1735 1736 if (listener->tcp_syn_defense) { 1737 /* Don't drop the SYN that comes from a good IP source */ 1738 ipaddr_t *addr_cache; 1739 1740 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 1741 if (addr_cache != NULL && econnp->conn_faddr_v4 == 1742 addr_cache[IP_ADDR_CACHE_HASH(econnp->conn_faddr_v4)]) { 1743 eager->tcp_dontdrop = B_TRUE; 1744 } 1745 } 1746 1747 /* 1748 * We need to insert the eager in its own perimeter but as soon 1749 * as we do that, we expose the eager to the classifier and 1750 * should not touch any field outside the eager's perimeter. 1751 * So do all the work necessary before inserting the eager 1752 * in its own perimeter. Be optimistic that conn_connect() 1753 * will succeed but undo everything if it fails. 1754 */ 1755 seg_seq = ntohl(tcpha->tha_seq); 1756 eager->tcp_irs = seg_seq; 1757 eager->tcp_rack = seg_seq; 1758 eager->tcp_rnxt = seg_seq + 1; 1759 eager->tcp_tcpha->tha_ack = htonl(eager->tcp_rnxt); 1760 TCPS_BUMP_MIB(tcps, tcpPassiveOpens); 1761 eager->tcp_state = TCPS_SYN_RCVD; 1762 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1763 econnp->conn_ixa, void, NULL, tcp_t *, eager, void, NULL, 1764 int32_t, TCPS_LISTEN); 1765 1766 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 1767 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 1768 if (mp1 == NULL) { 1769 /* 1770 * Increment the ref count as we are going to 1771 * enqueueing an mp in squeue 1772 */ 1773 CONN_INC_REF(econnp); 1774 goto error; 1775 } 1776 1777 /* 1778 * We need to start the rto timer. In normal case, we start 1779 * the timer after sending the packet on the wire (or at 1780 * least believing that packet was sent by waiting for 1781 * conn_ip_output() to return). Since this is the first packet 1782 * being sent on the wire for the eager, our initial tcp_rto 1783 * is at least tcp_rexmit_interval_min which is a fairly 1784 * large value to allow the algorithm to adjust slowly to large 1785 * fluctuations of RTT during first few transmissions. 1786 * 1787 * Starting the timer first and then sending the packet in this 1788 * case shouldn't make much difference since tcp_rexmit_interval_min 1789 * is of the order of several 100ms and starting the timer 1790 * first and then sending the packet will result in difference 1791 * of few micro seconds. 1792 * 1793 * Without this optimization, we are forced to hold the fanout 1794 * lock across the ipcl_bind_insert() and sending the packet 1795 * so that we don't race against an incoming packet (maybe RST) 1796 * for this eager. 1797 * 1798 * It is necessary to acquire an extra reference on the eager 1799 * at this point and hold it until after tcp_send_data() to 1800 * ensure against an eager close race. 1801 */ 1802 1803 CONN_INC_REF(econnp); 1804 1805 TCP_TIMER_RESTART(eager, eager->tcp_rto); 1806 1807 /* 1808 * Insert the eager in its own perimeter now. We are ready to deal 1809 * with any packets on eager. 1810 */ 1811 if (ipcl_conn_insert(econnp) != 0) 1812 goto error; 1813 1814 ASSERT(econnp->conn_ixa->ixa_notify_cookie == econnp->conn_tcp); 1815 freemsg(mp); 1816 /* 1817 * Send the SYN-ACK. Use the right squeue so that conn_ixa is 1818 * only used by one thread at a time. 1819 */ 1820 if (econnp->conn_sqp == lconnp->conn_sqp) { 1821 DTRACE_TCP5(send, mblk_t *, NULL, ip_xmit_attr_t *, 1822 econnp->conn_ixa, __dtrace_tcp_void_ip_t *, mp1->b_rptr, 1823 tcp_t *, eager, __dtrace_tcp_tcph_t *, 1824 &mp1->b_rptr[econnp->conn_ixa->ixa_ip_hdr_length]); 1825 (void) conn_ip_output(mp1, econnp->conn_ixa); 1826 CONN_DEC_REF(econnp); 1827 } else { 1828 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_send_synack, 1829 econnp, NULL, SQ_PROCESS, SQTAG_TCP_SEND_SYNACK); 1830 } 1831 return; 1832 error: 1833 freemsg(mp1); 1834 eager->tcp_closemp_used = B_TRUE; 1835 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 1836 mp1 = &eager->tcp_closemp; 1837 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, 1838 econnp, NULL, SQ_FILL, SQTAG_TCP_CONN_REQ_2); 1839 1840 /* 1841 * If a connection already exists, send the mp to that connections so 1842 * that it can be appropriately dealt with. 1843 */ 1844 ipst = tcps->tcps_netstack->netstack_ip; 1845 1846 if ((econnp = ipcl_classify(mp, ira, ipst)) != NULL) { 1847 if (!IPCL_IS_CONNECTED(econnp)) { 1848 /* 1849 * Something bad happened. ipcl_conn_insert() 1850 * failed because a connection already existed 1851 * in connected hash but we can't find it 1852 * anymore (someone blew it away). Just 1853 * free this message and hopefully remote 1854 * will retransmit at which time the SYN can be 1855 * treated as a new connection or dealth with 1856 * a TH_RST if a connection already exists. 1857 */ 1858 CONN_DEC_REF(econnp); 1859 freemsg(mp); 1860 } else { 1861 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, tcp_input_data, 1862 econnp, ira, SQ_FILL, SQTAG_TCP_CONN_REQ_1); 1863 } 1864 } else { 1865 /* Nobody wants this packet */ 1866 freemsg(mp); 1867 } 1868 return; 1869 error3: 1870 CONN_DEC_REF(econnp); 1871 error2: 1872 freemsg(mp); 1873 if (tlc_set) 1874 atomic_dec_32(&listener->tcp_listen_cnt->tlc_cnt); 1875 } 1876 1877 /* 1878 * In an ideal case of vertical partition in NUMA architecture, its 1879 * beneficial to have the listener and all the incoming connections 1880 * tied to the same squeue. The other constraint is that incoming 1881 * connections should be tied to the squeue attached to interrupted 1882 * CPU for obvious locality reason so this leaves the listener to 1883 * be tied to the same squeue. Our only problem is that when listener 1884 * is binding, the CPU that will get interrupted by the NIC whose 1885 * IP address the listener is binding to is not even known. So 1886 * the code below allows us to change that binding at the time the 1887 * CPU is interrupted by virtue of incoming connection's squeue. 1888 * 1889 * This is usefull only in case of a listener bound to a specific IP 1890 * address. For other kind of listeners, they get bound the 1891 * very first time and there is no attempt to rebind them. 1892 */ 1893 void 1894 tcp_input_listener_unbound(void *arg, mblk_t *mp, void *arg2, 1895 ip_recv_attr_t *ira) 1896 { 1897 conn_t *connp = (conn_t *)arg; 1898 squeue_t *sqp = (squeue_t *)arg2; 1899 squeue_t *new_sqp; 1900 uint32_t conn_flags; 1901 1902 /* 1903 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 1904 * or based on the ring (for packets from GLD). Otherwise it is 1905 * set based on lbolt i.e., a somewhat random number. 1906 */ 1907 ASSERT(ira->ira_sqp != NULL); 1908 new_sqp = ira->ira_sqp; 1909 1910 if (connp->conn_fanout == NULL) 1911 goto done; 1912 1913 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 1914 mutex_enter(&connp->conn_fanout->connf_lock); 1915 mutex_enter(&connp->conn_lock); 1916 /* 1917 * No one from read or write side can access us now 1918 * except for already queued packets on this squeue. 1919 * But since we haven't changed the squeue yet, they 1920 * can't execute. If they are processed after we have 1921 * changed the squeue, they are sent back to the 1922 * correct squeue down below. 1923 * But a listner close can race with processing of 1924 * incoming SYN. If incoming SYN processing changes 1925 * the squeue then the listener close which is waiting 1926 * to enter the squeue would operate on the wrong 1927 * squeue. Hence we don't change the squeue here unless 1928 * the refcount is exactly the minimum refcount. The 1929 * minimum refcount of 4 is counted as - 1 each for 1930 * TCP and IP, 1 for being in the classifier hash, and 1931 * 1 for the mblk being processed. 1932 */ 1933 1934 if (connp->conn_ref != 4 || 1935 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 1936 mutex_exit(&connp->conn_lock); 1937 mutex_exit(&connp->conn_fanout->connf_lock); 1938 goto done; 1939 } 1940 if (connp->conn_sqp != new_sqp) { 1941 while (connp->conn_sqp != new_sqp) 1942 (void) atomic_cas_ptr(&connp->conn_sqp, sqp, 1943 new_sqp); 1944 /* No special MT issues for outbound ixa_sqp hint */ 1945 connp->conn_ixa->ixa_sqp = new_sqp; 1946 } 1947 1948 do { 1949 conn_flags = connp->conn_flags; 1950 conn_flags |= IPCL_FULLY_BOUND; 1951 (void) atomic_cas_32(&connp->conn_flags, 1952 connp->conn_flags, conn_flags); 1953 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 1954 1955 mutex_exit(&connp->conn_fanout->connf_lock); 1956 mutex_exit(&connp->conn_lock); 1957 1958 /* 1959 * Assume we have picked a good squeue for the listener. Make 1960 * subsequent SYNs not try to change the squeue. 1961 */ 1962 connp->conn_recv = tcp_input_listener; 1963 } 1964 1965 done: 1966 if (connp->conn_sqp != sqp) { 1967 CONN_INC_REF(connp); 1968 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 1969 ira, SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); 1970 } else { 1971 tcp_input_listener(connp, mp, sqp, ira); 1972 } 1973 } 1974 1975 /* 1976 * Send up all messages queued on tcp_rcv_list. 1977 */ 1978 uint_t 1979 tcp_rcv_drain(tcp_t *tcp) 1980 { 1981 mblk_t *mp; 1982 uint_t ret = 0; 1983 #ifdef DEBUG 1984 uint_t cnt = 0; 1985 #endif 1986 queue_t *q = tcp->tcp_connp->conn_rq; 1987 1988 /* Can't drain on an eager connection */ 1989 if (tcp->tcp_listener != NULL) 1990 return (ret); 1991 1992 /* Can't be a non-STREAMS connection */ 1993 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1994 1995 /* No need for the push timer now. */ 1996 if (tcp->tcp_push_tid != 0) { 1997 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 1998 tcp->tcp_push_tid = 0; 1999 } 2000 2001 /* 2002 * Handle two cases here: we are currently fused or we were 2003 * previously fused and have some urgent data to be delivered 2004 * upstream. The latter happens because we either ran out of 2005 * memory or were detached and therefore sending the SIGURG was 2006 * deferred until this point. In either case we pass control 2007 * over to tcp_fuse_rcv_drain() since it may need to complete 2008 * some work. 2009 */ 2010 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 2011 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 2012 &tcp->tcp_fused_sigurg_mp)) 2013 return (ret); 2014 } 2015 2016 while ((mp = tcp->tcp_rcv_list) != NULL) { 2017 tcp->tcp_rcv_list = mp->b_next; 2018 mp->b_next = NULL; 2019 #ifdef DEBUG 2020 cnt += msgdsize(mp); 2021 #endif 2022 putnext(q, mp); 2023 } 2024 #ifdef DEBUG 2025 ASSERT(cnt == tcp->tcp_rcv_cnt); 2026 #endif 2027 tcp->tcp_rcv_last_head = NULL; 2028 tcp->tcp_rcv_last_tail = NULL; 2029 tcp->tcp_rcv_cnt = 0; 2030 2031 if (canputnext(q)) 2032 return (tcp_rwnd_reopen(tcp)); 2033 2034 return (ret); 2035 } 2036 2037 /* 2038 * Queue data on tcp_rcv_list which is a b_next chain. 2039 * tcp_rcv_last_head/tail is the last element of this chain. 2040 * Each element of the chain is a b_cont chain. 2041 * 2042 * M_DATA messages are added to the current element. 2043 * Other messages are added as new (b_next) elements. 2044 */ 2045 void 2046 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len, cred_t *cr) 2047 { 2048 ASSERT(seg_len == msgdsize(mp)); 2049 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 2050 2051 if (is_system_labeled()) { 2052 ASSERT(cr != NULL || msg_getcred(mp, NULL) != NULL); 2053 /* 2054 * Provide for protocols above TCP such as RPC. NOPID leaves 2055 * db_cpid unchanged. 2056 * The cred could have already been set. 2057 */ 2058 if (cr != NULL) 2059 mblk_setcred(mp, cr, NOPID); 2060 } 2061 2062 if (tcp->tcp_rcv_list == NULL) { 2063 ASSERT(tcp->tcp_rcv_last_head == NULL); 2064 tcp->tcp_rcv_list = mp; 2065 tcp->tcp_rcv_last_head = mp; 2066 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 2067 tcp->tcp_rcv_last_tail->b_cont = mp; 2068 } else { 2069 tcp->tcp_rcv_last_head->b_next = mp; 2070 tcp->tcp_rcv_last_head = mp; 2071 } 2072 2073 while (mp->b_cont) 2074 mp = mp->b_cont; 2075 2076 tcp->tcp_rcv_last_tail = mp; 2077 tcp->tcp_rcv_cnt += seg_len; 2078 tcp->tcp_rwnd -= seg_len; 2079 } 2080 2081 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 2082 mblk_t * 2083 tcp_ack_mp(tcp_t *tcp) 2084 { 2085 uint32_t seq_no; 2086 tcp_stack_t *tcps = tcp->tcp_tcps; 2087 conn_t *connp = tcp->tcp_connp; 2088 2089 /* 2090 * There are a few cases to be considered while setting the sequence no. 2091 * Essentially, we can come here while processing an unacceptable pkt 2092 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 2093 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 2094 * If we are here for a zero window probe, stick with suna. In all 2095 * other cases, we check if suna + swnd encompasses snxt and set 2096 * the sequence number to snxt, if so. If snxt falls outside the 2097 * window (the receiver probably shrunk its window), we will go with 2098 * suna + swnd, otherwise the sequence no will be unacceptable to the 2099 * receiver. 2100 */ 2101 if (tcp->tcp_zero_win_probe) { 2102 seq_no = tcp->tcp_suna; 2103 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 2104 ASSERT(tcp->tcp_swnd == 0); 2105 seq_no = tcp->tcp_snxt; 2106 } else { 2107 seq_no = SEQ_GT(tcp->tcp_snxt, 2108 (tcp->tcp_suna + tcp->tcp_swnd)) ? 2109 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 2110 } 2111 2112 if (tcp->tcp_valid_bits) { 2113 /* 2114 * For the complex case where we have to send some 2115 * controls (FIN or SYN), let tcp_xmit_mp do it. 2116 */ 2117 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 2118 NULL, B_FALSE)); 2119 } else { 2120 /* Generate a simple ACK */ 2121 int data_length; 2122 uchar_t *rptr; 2123 tcpha_t *tcpha; 2124 mblk_t *mp1; 2125 int32_t total_hdr_len; 2126 int32_t tcp_hdr_len; 2127 int32_t num_sack_blk = 0; 2128 int32_t sack_opt_len; 2129 ip_xmit_attr_t *ixa = connp->conn_ixa; 2130 2131 /* 2132 * Allocate space for TCP + IP headers 2133 * and link-level header 2134 */ 2135 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 2136 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 2137 tcp->tcp_num_sack_blk); 2138 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 2139 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 2140 total_hdr_len = connp->conn_ht_iphc_len + sack_opt_len; 2141 tcp_hdr_len = connp->conn_ht_ulp_len + sack_opt_len; 2142 } else { 2143 total_hdr_len = connp->conn_ht_iphc_len; 2144 tcp_hdr_len = connp->conn_ht_ulp_len; 2145 } 2146 mp1 = allocb(total_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 2147 if (!mp1) 2148 return (NULL); 2149 2150 /* Update the latest receive window size in TCP header. */ 2151 tcp->tcp_tcpha->tha_win = 2152 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 2153 /* copy in prototype TCP + IP header */ 2154 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 2155 mp1->b_rptr = rptr; 2156 mp1->b_wptr = rptr + total_hdr_len; 2157 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len); 2158 2159 tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length]; 2160 2161 /* Set the TCP sequence number. */ 2162 tcpha->tha_seq = htonl(seq_no); 2163 2164 /* Set up the TCP flag field. */ 2165 tcpha->tha_flags = (uchar_t)TH_ACK; 2166 if (tcp->tcp_ecn_echo_on) 2167 tcpha->tha_flags |= TH_ECE; 2168 2169 tcp->tcp_rack = tcp->tcp_rnxt; 2170 tcp->tcp_rack_cnt = 0; 2171 2172 /* fill in timestamp option if in use */ 2173 if (tcp->tcp_snd_ts_ok) { 2174 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 2175 2176 U32_TO_BE32(llbolt, 2177 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 2178 U32_TO_BE32(tcp->tcp_ts_recent, 2179 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 2180 } 2181 2182 /* Fill in SACK options */ 2183 if (num_sack_blk > 0) { 2184 uchar_t *wptr = (uchar_t *)tcpha + 2185 connp->conn_ht_ulp_len; 2186 sack_blk_t *tmp; 2187 int32_t i; 2188 2189 wptr[0] = TCPOPT_NOP; 2190 wptr[1] = TCPOPT_NOP; 2191 wptr[2] = TCPOPT_SACK; 2192 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 2193 sizeof (sack_blk_t); 2194 wptr += TCPOPT_REAL_SACK_LEN; 2195 2196 tmp = tcp->tcp_sack_list; 2197 for (i = 0; i < num_sack_blk; i++) { 2198 U32_TO_BE32(tmp[i].begin, wptr); 2199 wptr += sizeof (tcp_seq); 2200 U32_TO_BE32(tmp[i].end, wptr); 2201 wptr += sizeof (tcp_seq); 2202 } 2203 tcpha->tha_offset_and_reserved += 2204 ((num_sack_blk * 2 + 1) << 4); 2205 } 2206 2207 ixa->ixa_pktlen = total_hdr_len; 2208 2209 if (ixa->ixa_flags & IXAF_IS_IPV4) { 2210 ((ipha_t *)rptr)->ipha_length = htons(total_hdr_len); 2211 } else { 2212 ip6_t *ip6 = (ip6_t *)rptr; 2213 2214 ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN); 2215 } 2216 2217 /* 2218 * Prime pump for checksum calculation in IP. Include the 2219 * adjustment for a source route if any. 2220 */ 2221 data_length = tcp_hdr_len + connp->conn_sum; 2222 data_length = (data_length >> 16) + (data_length & 0xFFFF); 2223 tcpha->tha_sum = htons(data_length); 2224 2225 if (tcp->tcp_ip_forward_progress) { 2226 tcp->tcp_ip_forward_progress = B_FALSE; 2227 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 2228 } else { 2229 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 2230 } 2231 return (mp1); 2232 } 2233 } 2234 2235 /* 2236 * Dummy socket upcalls for if/when the conn_t gets detached from a 2237 * direct-callback sonode via a user-driven close(). Easy to catch with 2238 * DTrace FBT, and should be mostly harmless. 2239 */ 2240 2241 /* ARGSUSED */ 2242 static sock_upper_handle_t 2243 tcp_dummy_newconn(sock_upper_handle_t x, sock_lower_handle_t y, 2244 sock_downcalls_t *z, cred_t *cr, pid_t pid, sock_upcalls_t **ignored) 2245 { 2246 ASSERT(0); /* Panic in debug, otherwise ignore. */ 2247 return (NULL); 2248 } 2249 2250 /* ARGSUSED */ 2251 static void 2252 tcp_dummy_connected(sock_upper_handle_t x, sock_connid_t y, cred_t *cr, 2253 pid_t pid) 2254 { 2255 ASSERT(x == NULL); 2256 /* Normally we'd crhold(cr) and attach it to socket state. */ 2257 /* LINTED */ 2258 } 2259 2260 /* ARGSUSED */ 2261 static int 2262 tcp_dummy_disconnected(sock_upper_handle_t x, sock_connid_t y, int blah) 2263 { 2264 ASSERT(0); /* Panic in debug, otherwise ignore. */ 2265 return (-1); 2266 } 2267 2268 /* ARGSUSED */ 2269 static void 2270 tcp_dummy_opctl(sock_upper_handle_t x, sock_opctl_action_t y, uintptr_t blah) 2271 { 2272 ASSERT(x == NULL); 2273 /* We really want this one to be a harmless NOP for now. */ 2274 /* LINTED */ 2275 } 2276 2277 /* ARGSUSED */ 2278 static ssize_t 2279 tcp_dummy_recv(sock_upper_handle_t x, mblk_t *mp, size_t len, int flags, 2280 int *error, boolean_t *push) 2281 { 2282 ASSERT(x == NULL); 2283 2284 /* 2285 * Consume the message, set ESHUTDOWN, and return an error. 2286 * Nobody's home! 2287 */ 2288 freemsg(mp); 2289 *error = ESHUTDOWN; 2290 return (-1); 2291 } 2292 2293 /* ARGSUSED */ 2294 static void 2295 tcp_dummy_set_proto_props(sock_upper_handle_t x, struct sock_proto_props *y) 2296 { 2297 ASSERT(0); /* Panic in debug, otherwise ignore. */ 2298 } 2299 2300 /* ARGSUSED */ 2301 static void 2302 tcp_dummy_txq_full(sock_upper_handle_t x, boolean_t y) 2303 { 2304 ASSERT(0); /* Panic in debug, otherwise ignore. */ 2305 } 2306 2307 /* ARGSUSED */ 2308 static void 2309 tcp_dummy_signal_oob(sock_upper_handle_t x, ssize_t len) 2310 { 2311 ASSERT(x == NULL); 2312 /* Otherwise, this would signal socket state about OOB data. */ 2313 } 2314 2315 /* ARGSUSED */ 2316 static void 2317 tcp_dummy_set_error(sock_upper_handle_t x, int err) 2318 { 2319 ASSERT(0); /* Panic in debug, otherwise ignore. */ 2320 } 2321 2322 /* ARGSUSED */ 2323 static void 2324 tcp_dummy_onearg(sock_upper_handle_t x) 2325 { 2326 ASSERT(0); /* Panic in debug, otherwise ignore. */ 2327 } 2328 2329 static sock_upcalls_t tcp_dummy_upcalls = { 2330 tcp_dummy_newconn, 2331 tcp_dummy_connected, 2332 tcp_dummy_disconnected, 2333 tcp_dummy_opctl, 2334 tcp_dummy_recv, 2335 tcp_dummy_set_proto_props, 2336 tcp_dummy_txq_full, 2337 tcp_dummy_signal_oob, 2338 tcp_dummy_onearg, 2339 tcp_dummy_set_error, 2340 tcp_dummy_onearg 2341 }; 2342 2343 /* 2344 * Handle M_DATA messages from IP. Its called directly from IP via 2345 * squeue for received IP packets. 2346 * 2347 * The first argument is always the connp/tcp to which the mp belongs. 2348 * There are no exceptions to this rule. The caller has already put 2349 * a reference on this connp/tcp and once tcp_input_data() returns, 2350 * the squeue will do the refrele. 2351 * 2352 * The TH_SYN for the listener directly go to tcp_input_listener via 2353 * squeue. ICMP errors go directly to tcp_icmp_input(). 2354 * 2355 * sqp: NULL = recursive, sqp != NULL means called from squeue 2356 */ 2357 void 2358 tcp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 2359 { 2360 int32_t bytes_acked; 2361 int32_t gap; 2362 mblk_t *mp1; 2363 uint_t flags; 2364 uint32_t new_swnd = 0; 2365 uchar_t *iphdr; 2366 uchar_t *rptr; 2367 int32_t rgap; 2368 uint32_t seg_ack; 2369 int seg_len; 2370 uint_t ip_hdr_len; 2371 uint32_t seg_seq; 2372 tcpha_t *tcpha; 2373 int urp; 2374 tcp_opt_t tcpopt; 2375 ip_pkt_t ipp; 2376 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 2377 uint32_t cwnd; 2378 uint32_t add; 2379 int npkt; 2380 int mss; 2381 conn_t *connp = (conn_t *)arg; 2382 squeue_t *sqp = (squeue_t *)arg2; 2383 tcp_t *tcp = connp->conn_tcp; 2384 tcp_stack_t *tcps = tcp->tcp_tcps; 2385 sock_upcalls_t *sockupcalls; 2386 2387 /* 2388 * RST from fused tcp loopback peer should trigger an unfuse. 2389 */ 2390 if (tcp->tcp_fused) { 2391 TCP_STAT(tcps, tcp_fusion_aborted); 2392 tcp_unfuse(tcp); 2393 } 2394 2395 iphdr = mp->b_rptr; 2396 rptr = mp->b_rptr; 2397 ASSERT(OK_32PTR(rptr)); 2398 2399 ip_hdr_len = ira->ira_ip_hdr_length; 2400 if (connp->conn_recv_ancillary.crb_all != 0) { 2401 /* 2402 * Record packet information in the ip_pkt_t 2403 */ 2404 ipp.ipp_fields = 0; 2405 if (ira->ira_flags & IRAF_IS_IPV4) { 2406 (void) ip_find_hdr_v4((ipha_t *)rptr, &ipp, 2407 B_FALSE); 2408 } else { 2409 uint8_t nexthdrp; 2410 2411 /* 2412 * IPv6 packets can only be received by applications 2413 * that are prepared to receive IPv6 addresses. 2414 * The IP fanout must ensure this. 2415 */ 2416 ASSERT(connp->conn_family == AF_INET6); 2417 2418 (void) ip_find_hdr_v6(mp, (ip6_t *)rptr, B_TRUE, &ipp, 2419 &nexthdrp); 2420 ASSERT(nexthdrp == IPPROTO_TCP); 2421 2422 /* Could have caused a pullup? */ 2423 iphdr = mp->b_rptr; 2424 rptr = mp->b_rptr; 2425 } 2426 } 2427 ASSERT(DB_TYPE(mp) == M_DATA); 2428 ASSERT(mp->b_next == NULL); 2429 2430 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 2431 seg_seq = ntohl(tcpha->tha_seq); 2432 seg_ack = ntohl(tcpha->tha_ack); 2433 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 2434 seg_len = (int)(mp->b_wptr - rptr) - 2435 (ip_hdr_len + TCP_HDR_LENGTH(tcpha)); 2436 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 2437 do { 2438 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 2439 (uintptr_t)INT_MAX); 2440 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 2441 } while ((mp1 = mp1->b_cont) != NULL && 2442 mp1->b_datap->db_type == M_DATA); 2443 } 2444 2445 DTRACE_TCP5(receive, mblk_t *, NULL, ip_xmit_attr_t *, connp->conn_ixa, 2446 __dtrace_tcp_void_ip_t *, iphdr, tcp_t *, tcp, 2447 __dtrace_tcp_tcph_t *, tcpha); 2448 2449 if (tcp->tcp_state == TCPS_TIME_WAIT) { 2450 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 2451 seg_len, tcpha, ira); 2452 return; 2453 } 2454 2455 if (sqp != NULL) { 2456 /* 2457 * This is the correct place to update tcp_last_recv_time. Note 2458 * that it is also updated for tcp structure that belongs to 2459 * global and listener queues which do not really need updating. 2460 * But that should not cause any harm. And it is updated for 2461 * all kinds of incoming segments, not only for data segments. 2462 */ 2463 tcp->tcp_last_recv_time = LBOLT_FASTPATH; 2464 } 2465 2466 flags = (unsigned int)tcpha->tha_flags & 0xFF; 2467 2468 BUMP_LOCAL(tcp->tcp_ibsegs); 2469 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 2470 2471 if ((flags & TH_URG) && sqp != NULL) { 2472 /* 2473 * TCP can't handle urgent pointers that arrive before 2474 * the connection has been accept()ed since it can't 2475 * buffer OOB data. Discard segment if this happens. 2476 * 2477 * We can't just rely on a non-null tcp_listener to indicate 2478 * that the accept() has completed since unlinking of the 2479 * eager and completion of the accept are not atomic. 2480 * tcp_detached, when it is not set (B_FALSE) indicates 2481 * that the accept() has completed. 2482 * 2483 * Nor can it reassemble urgent pointers, so discard 2484 * if it's not the next segment expected. 2485 * 2486 * Otherwise, collapse chain into one mblk (discard if 2487 * that fails). This makes sure the headers, retransmitted 2488 * data, and new data all are in the same mblk. 2489 */ 2490 ASSERT(mp != NULL); 2491 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 2492 freemsg(mp); 2493 return; 2494 } 2495 /* Update pointers into message */ 2496 iphdr = rptr = mp->b_rptr; 2497 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 2498 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 2499 /* 2500 * Since we can't handle any data with this urgent 2501 * pointer that is out of sequence, we expunge 2502 * the data. This allows us to still register 2503 * the urgent mark and generate the M_PCSIG, 2504 * which we can do. 2505 */ 2506 mp->b_wptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 2507 seg_len = 0; 2508 } 2509 } 2510 2511 sockupcalls = connp->conn_upcalls; 2512 /* A conn_t may have belonged to a now-closed socket. Be careful. */ 2513 if (sockupcalls == NULL) 2514 sockupcalls = &tcp_dummy_upcalls; 2515 2516 switch (tcp->tcp_state) { 2517 case TCPS_SYN_SENT: 2518 if (connp->conn_final_sqp == NULL && 2519 tcp_outbound_squeue_switch && sqp != NULL) { 2520 ASSERT(connp->conn_initial_sqp == connp->conn_sqp); 2521 connp->conn_final_sqp = sqp; 2522 if (connp->conn_final_sqp != connp->conn_sqp) { 2523 DTRACE_PROBE1(conn__final__sqp__switch, 2524 conn_t *, connp); 2525 CONN_INC_REF(connp); 2526 SQUEUE_SWITCH(connp, connp->conn_final_sqp); 2527 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 2528 tcp_input_data, connp, ira, ip_squeue_flag, 2529 SQTAG_CONNECT_FINISH); 2530 return; 2531 } 2532 DTRACE_PROBE1(conn__final__sqp__same, conn_t *, connp); 2533 } 2534 if (flags & TH_ACK) { 2535 /* 2536 * Note that our stack cannot send data before a 2537 * connection is established, therefore the 2538 * following check is valid. Otherwise, it has 2539 * to be changed. 2540 */ 2541 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 2542 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 2543 freemsg(mp); 2544 if (flags & TH_RST) 2545 return; 2546 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 2547 tcp, seg_ack, 0, TH_RST); 2548 return; 2549 } 2550 ASSERT(tcp->tcp_suna + 1 == seg_ack); 2551 } 2552 if (flags & TH_RST) { 2553 if (flags & TH_ACK) { 2554 DTRACE_TCP5(connect__refused, mblk_t *, NULL, 2555 ip_xmit_attr_t *, connp->conn_ixa, 2556 void_ip_t *, iphdr, tcp_t *, tcp, 2557 tcph_t *, tcpha); 2558 (void) tcp_clean_death(tcp, ECONNREFUSED); 2559 } 2560 freemsg(mp); 2561 return; 2562 } 2563 if (!(flags & TH_SYN)) { 2564 freemsg(mp); 2565 return; 2566 } 2567 2568 /* Process all TCP options. */ 2569 tcp_process_options(tcp, tcpha); 2570 /* 2571 * The following changes our rwnd to be a multiple of the 2572 * MIN(peer MSS, our MSS) for performance reason. 2573 */ 2574 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(connp->conn_rcvbuf, 2575 tcp->tcp_mss)); 2576 2577 /* Is the other end ECN capable? */ 2578 if (tcp->tcp_ecn_ok) { 2579 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 2580 tcp->tcp_ecn_ok = B_FALSE; 2581 } 2582 } 2583 /* 2584 * Clear ECN flags because it may interfere with later 2585 * processing. 2586 */ 2587 flags &= ~(TH_ECE|TH_CWR); 2588 2589 tcp->tcp_irs = seg_seq; 2590 tcp->tcp_rack = seg_seq; 2591 tcp->tcp_rnxt = seg_seq + 1; 2592 tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); 2593 if (!TCP_IS_DETACHED(tcp)) { 2594 /* Allocate room for SACK options if needed. */ 2595 connp->conn_wroff = connp->conn_ht_iphc_len; 2596 if (tcp->tcp_snd_sack_ok) 2597 connp->conn_wroff += TCPOPT_MAX_SACK_LEN; 2598 if (!tcp->tcp_loopback) 2599 connp->conn_wroff += tcps->tcps_wroff_xtra; 2600 2601 (void) proto_set_tx_wroff(connp->conn_rq, connp, 2602 connp->conn_wroff); 2603 } 2604 if (flags & TH_ACK) { 2605 /* 2606 * If we can't get the confirmation upstream, pretend 2607 * we didn't even see this one. 2608 * 2609 * XXX: how can we pretend we didn't see it if we 2610 * have updated rnxt et. al. 2611 * 2612 * For loopback we defer sending up the T_CONN_CON 2613 * until after some checks below. 2614 */ 2615 mp1 = NULL; 2616 /* 2617 * tcp_sendmsg() checks tcp_state without entering 2618 * the squeue so tcp_state should be updated before 2619 * sending up connection confirmation. Probe the 2620 * state change below when we are sure the connection 2621 * confirmation has been sent. 2622 */ 2623 tcp->tcp_state = TCPS_ESTABLISHED; 2624 if (!tcp_conn_con(tcp, iphdr, mp, 2625 tcp->tcp_loopback ? &mp1 : NULL, ira)) { 2626 tcp->tcp_state = TCPS_SYN_SENT; 2627 freemsg(mp); 2628 return; 2629 } 2630 TCPS_CONN_INC(tcps); 2631 /* SYN was acked - making progress */ 2632 tcp->tcp_ip_forward_progress = B_TRUE; 2633 2634 /* One for the SYN */ 2635 tcp->tcp_suna = tcp->tcp_iss + 1; 2636 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 2637 2638 /* 2639 * If SYN was retransmitted, need to reset all 2640 * retransmission info. This is because this 2641 * segment will be treated as a dup ACK. 2642 */ 2643 if (tcp->tcp_rexmit) { 2644 tcp->tcp_rexmit = B_FALSE; 2645 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 2646 tcp->tcp_rexmit_max = tcp->tcp_snxt; 2647 tcp->tcp_snd_burst = tcp->tcp_localnet ? 2648 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 2649 tcp->tcp_ms_we_have_waited = 0; 2650 2651 /* 2652 * Set tcp_cwnd back to 1 MSS, per 2653 * recommendation from 2654 * draft-floyd-incr-init-win-01.txt, 2655 * Increasing TCP's Initial Window. 2656 */ 2657 tcp->tcp_cwnd = tcp->tcp_mss; 2658 } 2659 2660 tcp->tcp_swl1 = seg_seq; 2661 tcp->tcp_swl2 = seg_ack; 2662 2663 new_swnd = ntohs(tcpha->tha_win); 2664 tcp->tcp_swnd = new_swnd; 2665 if (new_swnd > tcp->tcp_max_swnd) 2666 tcp->tcp_max_swnd = new_swnd; 2667 2668 /* 2669 * Always send the three-way handshake ack immediately 2670 * in order to make the connection complete as soon as 2671 * possible on the accepting host. 2672 */ 2673 flags |= TH_ACK_NEEDED; 2674 2675 /* 2676 * Trace connect-established here. 2677 */ 2678 DTRACE_TCP5(connect__established, mblk_t *, NULL, 2679 ip_xmit_attr_t *, tcp->tcp_connp->conn_ixa, 2680 void_ip_t *, iphdr, tcp_t *, tcp, tcph_t *, tcpha); 2681 2682 /* Trace change from SYN_SENT -> ESTABLISHED here */ 2683 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 2684 connp->conn_ixa, void, NULL, tcp_t *, tcp, 2685 void, NULL, int32_t, TCPS_SYN_SENT); 2686 2687 /* 2688 * Special case for loopback. At this point we have 2689 * received SYN-ACK from the remote endpoint. In 2690 * order to ensure that both endpoints reach the 2691 * fused state prior to any data exchange, the final 2692 * ACK needs to be sent before we indicate T_CONN_CON 2693 * to the module upstream. 2694 */ 2695 if (tcp->tcp_loopback) { 2696 mblk_t *ack_mp; 2697 2698 ASSERT(!tcp->tcp_unfusable); 2699 ASSERT(mp1 != NULL); 2700 /* 2701 * For loopback, we always get a pure SYN-ACK 2702 * and only need to send back the final ACK 2703 * with no data (this is because the other 2704 * tcp is ours and we don't do T/TCP). This 2705 * final ACK triggers the passive side to 2706 * perform fusion in ESTABLISHED state. 2707 */ 2708 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 2709 if (tcp->tcp_ack_tid != 0) { 2710 (void) TCP_TIMER_CANCEL(tcp, 2711 tcp->tcp_ack_tid); 2712 tcp->tcp_ack_tid = 0; 2713 } 2714 tcp_send_data(tcp, ack_mp); 2715 BUMP_LOCAL(tcp->tcp_obsegs); 2716 TCPS_BUMP_MIB(tcps, tcpOutAck); 2717 2718 if (!IPCL_IS_NONSTR(connp)) { 2719 /* Send up T_CONN_CON */ 2720 if (ira->ira_cred != NULL) { 2721 mblk_setcred(mp1, 2722 ira->ira_cred, 2723 ira->ira_cpid); 2724 } 2725 putnext(connp->conn_rq, mp1); 2726 } else { 2727 (*sockupcalls->su_connected) 2728 (connp->conn_upper_handle, 2729 tcp->tcp_connid, 2730 ira->ira_cred, 2731 ira->ira_cpid); 2732 freemsg(mp1); 2733 } 2734 2735 freemsg(mp); 2736 return; 2737 } 2738 /* 2739 * Forget fusion; we need to handle more 2740 * complex cases below. Send the deferred 2741 * T_CONN_CON message upstream and proceed 2742 * as usual. Mark this tcp as not capable 2743 * of fusion. 2744 */ 2745 TCP_STAT(tcps, tcp_fusion_unfusable); 2746 tcp->tcp_unfusable = B_TRUE; 2747 if (!IPCL_IS_NONSTR(connp)) { 2748 if (ira->ira_cred != NULL) { 2749 mblk_setcred(mp1, ira->ira_cred, 2750 ira->ira_cpid); 2751 } 2752 putnext(connp->conn_rq, mp1); 2753 } else { 2754 (*sockupcalls->su_connected) 2755 (connp->conn_upper_handle, 2756 tcp->tcp_connid, ira->ira_cred, 2757 ira->ira_cpid); 2758 freemsg(mp1); 2759 } 2760 } 2761 2762 /* 2763 * Check to see if there is data to be sent. If 2764 * yes, set the transmit flag. Then check to see 2765 * if received data processing needs to be done. 2766 * If not, go straight to xmit_check. This short 2767 * cut is OK as we don't support T/TCP. 2768 */ 2769 if (tcp->tcp_unsent) 2770 flags |= TH_XMIT_NEEDED; 2771 2772 if (seg_len == 0 && !(flags & TH_URG)) { 2773 freemsg(mp); 2774 goto xmit_check; 2775 } 2776 2777 flags &= ~TH_SYN; 2778 seg_seq++; 2779 break; 2780 } 2781 tcp->tcp_state = TCPS_SYN_RCVD; 2782 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 2783 connp->conn_ixa, void_ip_t *, NULL, tcp_t *, tcp, 2784 tcph_t *, NULL, int32_t, TCPS_SYN_SENT); 2785 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 2786 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 2787 if (mp1 != NULL) { 2788 tcp_send_data(tcp, mp1); 2789 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 2790 } 2791 freemsg(mp); 2792 return; 2793 case TCPS_SYN_RCVD: 2794 if (flags & TH_ACK) { 2795 uint32_t pinit_wnd; 2796 2797 /* 2798 * In this state, a SYN|ACK packet is either bogus 2799 * because the other side must be ACKing our SYN which 2800 * indicates it has seen the ACK for their SYN and 2801 * shouldn't retransmit it or we're crossing SYNs 2802 * on active open. 2803 */ 2804 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 2805 freemsg(mp); 2806 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 2807 tcp, seg_ack, 0, TH_RST); 2808 return; 2809 } 2810 /* 2811 * NOTE: RFC 793 pg. 72 says this should be 2812 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 2813 * but that would mean we have an ack that ignored 2814 * our SYN. 2815 */ 2816 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 2817 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 2818 freemsg(mp); 2819 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 2820 tcp, seg_ack, 0, TH_RST); 2821 return; 2822 } 2823 /* 2824 * No sane TCP stack will send such a small window 2825 * without receiving any data. Just drop this invalid 2826 * ACK. We also shorten the abort timeout in case 2827 * this is an attack. 2828 */ 2829 pinit_wnd = ntohs(tcpha->tha_win) << tcp->tcp_snd_ws; 2830 if (pinit_wnd < tcp->tcp_mss && 2831 pinit_wnd < tcp_init_wnd_chk) { 2832 freemsg(mp); 2833 TCP_STAT(tcps, tcp_zwin_ack_syn); 2834 tcp->tcp_second_ctimer_threshold = 2835 tcp_early_abort * SECONDS; 2836 return; 2837 } 2838 } 2839 break; 2840 case TCPS_LISTEN: 2841 /* 2842 * Only a TLI listener can come through this path when a 2843 * acceptor is going back to be a listener and a packet 2844 * for the acceptor hits the classifier. For a socket 2845 * listener, this can never happen because a listener 2846 * can never accept connection on itself and hence a 2847 * socket acceptor can not go back to being a listener. 2848 */ 2849 ASSERT(!TCP_IS_SOCKET(tcp)); 2850 /*FALLTHRU*/ 2851 case TCPS_CLOSED: 2852 case TCPS_BOUND: { 2853 conn_t *new_connp; 2854 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 2855 2856 /* 2857 * Don't accept any input on a closed tcp as this TCP logically 2858 * does not exist on the system. Don't proceed further with 2859 * this TCP. For instance, this packet could trigger another 2860 * close of this tcp which would be disastrous for tcp_refcnt. 2861 * tcp_close_detached / tcp_clean_death / tcp_closei_local must 2862 * be called at most once on a TCP. In this case we need to 2863 * refeed the packet into the classifier and figure out where 2864 * the packet should go. 2865 */ 2866 new_connp = ipcl_classify(mp, ira, ipst); 2867 if (new_connp != NULL) { 2868 /* Drops ref on new_connp */ 2869 tcp_reinput(new_connp, mp, ira, ipst); 2870 return; 2871 } 2872 /* We failed to classify. For now just drop the packet */ 2873 freemsg(mp); 2874 return; 2875 } 2876 case TCPS_IDLE: 2877 /* 2878 * Handle the case where the tcp_clean_death() has happened 2879 * on a connection (application hasn't closed yet) but a packet 2880 * was already queued on squeue before tcp_clean_death() 2881 * was processed. Calling tcp_clean_death() twice on same 2882 * connection can result in weird behaviour. 2883 */ 2884 freemsg(mp); 2885 return; 2886 default: 2887 break; 2888 } 2889 2890 /* 2891 * Already on the correct queue/perimeter. 2892 * If this is a detached connection and not an eager 2893 * connection hanging off a listener then new data 2894 * (past the FIN) will cause a reset. 2895 * We do a special check here where it 2896 * is out of the main line, rather than check 2897 * if we are detached every time we see new 2898 * data down below. 2899 */ 2900 if (TCP_IS_DETACHED_NONEAGER(tcp) && 2901 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 2902 TCPS_BUMP_MIB(tcps, tcpInClosed); 2903 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 2904 freemsg(mp); 2905 tcp_xmit_ctl("new data when detached", tcp, 2906 tcp->tcp_snxt, 0, TH_RST); 2907 (void) tcp_clean_death(tcp, EPROTO); 2908 return; 2909 } 2910 2911 mp->b_rptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 2912 urp = ntohs(tcpha->tha_urp) - TCP_OLD_URP_INTERPRETATION; 2913 new_swnd = ntohs(tcpha->tha_win) << 2914 ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws); 2915 2916 if (tcp->tcp_snd_ts_ok) { 2917 if (!tcp_paws_check(tcp, tcpha, &tcpopt)) { 2918 /* 2919 * This segment is not acceptable. 2920 * Drop it and send back an ACK. 2921 */ 2922 freemsg(mp); 2923 flags |= TH_ACK_NEEDED; 2924 goto ack_check; 2925 } 2926 } else if (tcp->tcp_snd_sack_ok) { 2927 tcpopt.tcp = tcp; 2928 /* 2929 * SACK info in already updated in tcp_parse_options. Ignore 2930 * all other TCP options... 2931 */ 2932 (void) tcp_parse_options(tcpha, &tcpopt); 2933 } 2934 try_again:; 2935 mss = tcp->tcp_mss; 2936 gap = seg_seq - tcp->tcp_rnxt; 2937 rgap = tcp->tcp_rwnd - (gap + seg_len); 2938 /* 2939 * gap is the amount of sequence space between what we expect to see 2940 * and what we got for seg_seq. A positive value for gap means 2941 * something got lost. A negative value means we got some old stuff. 2942 */ 2943 if (gap < 0) { 2944 /* Old stuff present. Is the SYN in there? */ 2945 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 2946 (seg_len != 0)) { 2947 flags &= ~TH_SYN; 2948 seg_seq++; 2949 urp--; 2950 /* Recompute the gaps after noting the SYN. */ 2951 goto try_again; 2952 } 2953 TCPS_BUMP_MIB(tcps, tcpInDataDupSegs); 2954 TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes, 2955 (seg_len > -gap ? -gap : seg_len)); 2956 /* Remove the old stuff from seg_len. */ 2957 seg_len += gap; 2958 /* 2959 * Anything left? 2960 * Make sure to check for unack'd FIN when rest of data 2961 * has been previously ack'd. 2962 */ 2963 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 2964 /* 2965 * Resets are only valid if they lie within our offered 2966 * window. If the RST bit is set, we just ignore this 2967 * segment. 2968 */ 2969 if (flags & TH_RST) { 2970 freemsg(mp); 2971 return; 2972 } 2973 2974 /* 2975 * The arriving of dup data packets indicate that we 2976 * may have postponed an ack for too long, or the other 2977 * side's RTT estimate is out of shape. Start acking 2978 * more often. 2979 */ 2980 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 2981 tcp->tcp_rack_cnt >= 1 && 2982 tcp->tcp_rack_abs_max > 2) { 2983 tcp->tcp_rack_abs_max--; 2984 } 2985 tcp->tcp_rack_cur_max = 1; 2986 2987 /* 2988 * This segment is "unacceptable". None of its 2989 * sequence space lies within our advertized window. 2990 * 2991 * Adjust seg_len to the original value for tracing. 2992 */ 2993 seg_len -= gap; 2994 if (connp->conn_debug) { 2995 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 2996 "tcp_rput: unacceptable, gap %d, rgap %d, " 2997 "flags 0x%x, seg_seq %u, seg_ack %u, " 2998 "seg_len %d, rnxt %u, snxt %u, %s", 2999 gap, rgap, flags, seg_seq, seg_ack, 3000 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 3001 tcp_display(tcp, NULL, 3002 DISP_ADDR_AND_PORT)); 3003 } 3004 3005 /* 3006 * Arrange to send an ACK in response to the 3007 * unacceptable segment per RFC 793 page 69. There 3008 * is only one small difference between ours and the 3009 * acceptability test in the RFC - we accept ACK-only 3010 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 3011 * will be generated. 3012 * 3013 * Note that we have to ACK an ACK-only packet at least 3014 * for stacks that send 0-length keep-alives with 3015 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 3016 * section 4.2.3.6. As long as we don't ever generate 3017 * an unacceptable packet in response to an incoming 3018 * packet that is unacceptable, it should not cause 3019 * "ACK wars". 3020 */ 3021 flags |= TH_ACK_NEEDED; 3022 3023 /* 3024 * Continue processing this segment in order to use the 3025 * ACK information it contains, but skip all other 3026 * sequence-number processing. Processing the ACK 3027 * information is necessary in order to 3028 * re-synchronize connections that may have lost 3029 * synchronization. 3030 * 3031 * We clear seg_len and flag fields related to 3032 * sequence number processing as they are not 3033 * to be trusted for an unacceptable segment. 3034 */ 3035 seg_len = 0; 3036 flags &= ~(TH_SYN | TH_FIN | TH_URG); 3037 goto process_ack; 3038 } 3039 3040 /* Fix seg_seq, and chew the gap off the front. */ 3041 seg_seq = tcp->tcp_rnxt; 3042 urp += gap; 3043 do { 3044 mblk_t *mp2; 3045 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 3046 (uintptr_t)UINT_MAX); 3047 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 3048 if (gap > 0) { 3049 mp->b_rptr = mp->b_wptr - gap; 3050 break; 3051 } 3052 mp2 = mp; 3053 mp = mp->b_cont; 3054 freeb(mp2); 3055 } while (gap < 0); 3056 /* 3057 * If the urgent data has already been acknowledged, we 3058 * should ignore TH_URG below 3059 */ 3060 if (urp < 0) 3061 flags &= ~TH_URG; 3062 } 3063 /* 3064 * rgap is the amount of stuff received out of window. A negative 3065 * value is the amount out of window. 3066 */ 3067 if (rgap < 0) { 3068 mblk_t *mp2; 3069 3070 if (tcp->tcp_rwnd == 0) { 3071 TCPS_BUMP_MIB(tcps, tcpInWinProbe); 3072 } else { 3073 TCPS_BUMP_MIB(tcps, tcpInDataPastWinSegs); 3074 TCPS_UPDATE_MIB(tcps, tcpInDataPastWinBytes, -rgap); 3075 } 3076 3077 /* 3078 * seg_len does not include the FIN, so if more than 3079 * just the FIN is out of window, we act like we don't 3080 * see it. (If just the FIN is out of window, rgap 3081 * will be zero and we will go ahead and acknowledge 3082 * the FIN.) 3083 */ 3084 flags &= ~TH_FIN; 3085 3086 /* Fix seg_len and make sure there is something left. */ 3087 seg_len += rgap; 3088 if (seg_len <= 0) { 3089 /* 3090 * Resets are only valid if they lie within our offered 3091 * window. If the RST bit is set, we just ignore this 3092 * segment. 3093 */ 3094 if (flags & TH_RST) { 3095 freemsg(mp); 3096 return; 3097 } 3098 3099 /* Per RFC 793, we need to send back an ACK. */ 3100 flags |= TH_ACK_NEEDED; 3101 3102 /* 3103 * Send SIGURG as soon as possible i.e. even 3104 * if the TH_URG was delivered in a window probe 3105 * packet (which will be unacceptable). 3106 * 3107 * We generate a signal if none has been generated 3108 * for this connection or if this is a new urgent 3109 * byte. Also send a zero-length "unmarked" message 3110 * to inform SIOCATMARK that this is not the mark. 3111 * 3112 * tcp_urp_last_valid is cleared when the T_exdata_ind 3113 * is sent up. This plus the check for old data 3114 * (gap >= 0) handles the wraparound of the sequence 3115 * number space without having to always track the 3116 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 3117 * this max in its rcv_up variable). 3118 * 3119 * This prevents duplicate SIGURGS due to a "late" 3120 * zero-window probe when the T_EXDATA_IND has already 3121 * been sent up. 3122 */ 3123 if ((flags & TH_URG) && 3124 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 3125 tcp->tcp_urp_last))) { 3126 if (IPCL_IS_NONSTR(connp)) { 3127 if (!TCP_IS_DETACHED(tcp)) { 3128 (*sockupcalls->su_signal_oob) 3129 (connp->conn_upper_handle, 3130 urp); 3131 } 3132 } else { 3133 mp1 = allocb(0, BPRI_MED); 3134 if (mp1 == NULL) { 3135 freemsg(mp); 3136 return; 3137 } 3138 if (!TCP_IS_DETACHED(tcp) && 3139 !putnextctl1(connp->conn_rq, 3140 M_PCSIG, SIGURG)) { 3141 /* Try again on the rexmit. */ 3142 freemsg(mp1); 3143 freemsg(mp); 3144 return; 3145 } 3146 /* 3147 * If the next byte would be the mark 3148 * then mark with MARKNEXT else mark 3149 * with NOTMARKNEXT. 3150 */ 3151 if (gap == 0 && urp == 0) 3152 mp1->b_flag |= MSGMARKNEXT; 3153 else 3154 mp1->b_flag |= MSGNOTMARKNEXT; 3155 freemsg(tcp->tcp_urp_mark_mp); 3156 tcp->tcp_urp_mark_mp = mp1; 3157 flags |= TH_SEND_URP_MARK; 3158 } 3159 tcp->tcp_urp_last_valid = B_TRUE; 3160 tcp->tcp_urp_last = urp + seg_seq; 3161 } 3162 /* 3163 * If this is a zero window probe, continue to 3164 * process the ACK part. But we need to set seg_len 3165 * to 0 to avoid data processing. Otherwise just 3166 * drop the segment and send back an ACK. 3167 */ 3168 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 3169 flags &= ~(TH_SYN | TH_URG); 3170 seg_len = 0; 3171 goto process_ack; 3172 } else { 3173 freemsg(mp); 3174 goto ack_check; 3175 } 3176 } 3177 /* Pitch out of window stuff off the end. */ 3178 rgap = seg_len; 3179 mp2 = mp; 3180 do { 3181 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 3182 (uintptr_t)INT_MAX); 3183 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 3184 if (rgap < 0) { 3185 mp2->b_wptr += rgap; 3186 if ((mp1 = mp2->b_cont) != NULL) { 3187 mp2->b_cont = NULL; 3188 freemsg(mp1); 3189 } 3190 break; 3191 } 3192 } while ((mp2 = mp2->b_cont) != NULL); 3193 } 3194 ok:; 3195 /* 3196 * TCP should check ECN info for segments inside the window only. 3197 * Therefore the check should be done here. 3198 */ 3199 if (tcp->tcp_ecn_ok) { 3200 if (flags & TH_CWR) { 3201 tcp->tcp_ecn_echo_on = B_FALSE; 3202 } 3203 /* 3204 * Note that both ECN_CE and CWR can be set in the 3205 * same segment. In this case, we once again turn 3206 * on ECN_ECHO. 3207 */ 3208 if (connp->conn_ipversion == IPV4_VERSION) { 3209 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 3210 3211 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 3212 tcp->tcp_ecn_echo_on = B_TRUE; 3213 } 3214 } else { 3215 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 3216 3217 if ((vcf & htonl(IPH_ECN_CE << 20)) == 3218 htonl(IPH_ECN_CE << 20)) { 3219 tcp->tcp_ecn_echo_on = B_TRUE; 3220 } 3221 } 3222 } 3223 3224 /* 3225 * Check whether we can update tcp_ts_recent. This test is 3226 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 3227 * Extensions for High Performance: An Update", Internet Draft. 3228 */ 3229 if (tcp->tcp_snd_ts_ok && 3230 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 3231 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 3232 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 3233 tcp->tcp_last_rcv_lbolt = LBOLT_FASTPATH64; 3234 } 3235 3236 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 3237 /* 3238 * FIN in an out of order segment. We record this in 3239 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 3240 * Clear the FIN so that any check on FIN flag will fail. 3241 * Remember that FIN also counts in the sequence number 3242 * space. So we need to ack out of order FIN only segments. 3243 */ 3244 if (flags & TH_FIN) { 3245 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 3246 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 3247 flags &= ~TH_FIN; 3248 flags |= TH_ACK_NEEDED; 3249 } 3250 if (seg_len > 0) { 3251 /* Fill in the SACK blk list. */ 3252 if (tcp->tcp_snd_sack_ok) { 3253 tcp_sack_insert(tcp->tcp_sack_list, 3254 seg_seq, seg_seq + seg_len, 3255 &(tcp->tcp_num_sack_blk)); 3256 } 3257 3258 /* 3259 * Attempt reassembly and see if we have something 3260 * ready to go. 3261 */ 3262 mp = tcp_reass(tcp, mp, seg_seq); 3263 /* Always ack out of order packets */ 3264 flags |= TH_ACK_NEEDED | TH_PUSH; 3265 if (mp) { 3266 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 3267 (uintptr_t)INT_MAX); 3268 seg_len = mp->b_cont ? msgdsize(mp) : 3269 (int)(mp->b_wptr - mp->b_rptr); 3270 seg_seq = tcp->tcp_rnxt; 3271 /* 3272 * A gap is filled and the seq num and len 3273 * of the gap match that of a previously 3274 * received FIN, put the FIN flag back in. 3275 */ 3276 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 3277 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 3278 flags |= TH_FIN; 3279 tcp->tcp_valid_bits &= 3280 ~TCP_OFO_FIN_VALID; 3281 } 3282 if (tcp->tcp_reass_tid != 0) { 3283 (void) TCP_TIMER_CANCEL(tcp, 3284 tcp->tcp_reass_tid); 3285 /* 3286 * Restart the timer if there is still 3287 * data in the reassembly queue. 3288 */ 3289 if (tcp->tcp_reass_head != NULL) { 3290 tcp->tcp_reass_tid = TCP_TIMER( 3291 tcp, tcp_reass_timer, 3292 tcps->tcps_reass_timeout); 3293 } else { 3294 tcp->tcp_reass_tid = 0; 3295 } 3296 } 3297 } else { 3298 /* 3299 * Keep going even with NULL mp. 3300 * There may be a useful ACK or something else 3301 * we don't want to miss. 3302 * 3303 * But TCP should not perform fast retransmit 3304 * because of the ack number. TCP uses 3305 * seg_len == 0 to determine if it is a pure 3306 * ACK. And this is not a pure ACK. 3307 */ 3308 seg_len = 0; 3309 ofo_seg = B_TRUE; 3310 3311 if (tcps->tcps_reass_timeout != 0 && 3312 tcp->tcp_reass_tid == 0) { 3313 tcp->tcp_reass_tid = TCP_TIMER(tcp, 3314 tcp_reass_timer, 3315 tcps->tcps_reass_timeout); 3316 } 3317 } 3318 } 3319 } else if (seg_len > 0) { 3320 TCPS_BUMP_MIB(tcps, tcpInDataInorderSegs); 3321 TCPS_UPDATE_MIB(tcps, tcpInDataInorderBytes, seg_len); 3322 /* 3323 * If an out of order FIN was received before, and the seq 3324 * num and len of the new segment match that of the FIN, 3325 * put the FIN flag back in. 3326 */ 3327 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 3328 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 3329 flags |= TH_FIN; 3330 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 3331 } 3332 } 3333 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 3334 if (flags & TH_RST) { 3335 freemsg(mp); 3336 switch (tcp->tcp_state) { 3337 case TCPS_SYN_RCVD: 3338 (void) tcp_clean_death(tcp, ECONNREFUSED); 3339 break; 3340 case TCPS_ESTABLISHED: 3341 case TCPS_FIN_WAIT_1: 3342 case TCPS_FIN_WAIT_2: 3343 case TCPS_CLOSE_WAIT: 3344 (void) tcp_clean_death(tcp, ECONNRESET); 3345 break; 3346 case TCPS_CLOSING: 3347 case TCPS_LAST_ACK: 3348 (void) tcp_clean_death(tcp, 0); 3349 break; 3350 default: 3351 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 3352 (void) tcp_clean_death(tcp, ENXIO); 3353 break; 3354 } 3355 return; 3356 } 3357 if (flags & TH_SYN) { 3358 /* 3359 * See RFC 793, Page 71 3360 * 3361 * The seq number must be in the window as it should 3362 * be "fixed" above. If it is outside window, it should 3363 * be already rejected. Note that we allow seg_seq to be 3364 * rnxt + rwnd because we want to accept 0 window probe. 3365 */ 3366 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 3367 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 3368 freemsg(mp); 3369 /* 3370 * If the ACK flag is not set, just use our snxt as the 3371 * seq number of the RST segment. 3372 */ 3373 if (!(flags & TH_ACK)) { 3374 seg_ack = tcp->tcp_snxt; 3375 } 3376 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 3377 TH_RST|TH_ACK); 3378 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 3379 (void) tcp_clean_death(tcp, ECONNRESET); 3380 return; 3381 } 3382 /* 3383 * urp could be -1 when the urp field in the packet is 0 3384 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 3385 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 3386 */ 3387 if (flags & TH_URG && urp >= 0) { 3388 if (!tcp->tcp_urp_last_valid || 3389 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 3390 /* 3391 * Non-STREAMS sockets handle the urgent data a litte 3392 * differently from STREAMS based sockets. There is no 3393 * need to mark any mblks with the MSG{NOT,}MARKNEXT 3394 * flags to keep SIOCATMARK happy. Instead a 3395 * su_signal_oob upcall is made to update the mark. 3396 * Neither is a T_EXDATA_IND mblk needed to be 3397 * prepended to the urgent data. The urgent data is 3398 * delivered using the su_recv upcall, where we set 3399 * the MSG_OOB flag to indicate that it is urg data. 3400 * 3401 * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED 3402 * are used by non-STREAMS sockets. 3403 */ 3404 if (IPCL_IS_NONSTR(connp)) { 3405 if (!TCP_IS_DETACHED(tcp)) { 3406 (*sockupcalls->su_signal_oob) 3407 (connp->conn_upper_handle, urp); 3408 } 3409 } else { 3410 /* 3411 * If we haven't generated the signal yet for 3412 * this urgent pointer value, do it now. Also, 3413 * send up a zero-length M_DATA indicating 3414 * whether or not this is the mark. The latter 3415 * is not needed when a T_EXDATA_IND is sent up. 3416 * However, if there are allocation failures 3417 * this code relies on the sender retransmitting 3418 * and the socket code for determining the mark 3419 * should not block waiting for the peer to 3420 * transmit. Thus, for simplicity we always 3421 * send up the mark indication. 3422 */ 3423 mp1 = allocb(0, BPRI_MED); 3424 if (mp1 == NULL) { 3425 freemsg(mp); 3426 return; 3427 } 3428 if (!TCP_IS_DETACHED(tcp) && 3429 !putnextctl1(connp->conn_rq, M_PCSIG, 3430 SIGURG)) { 3431 /* Try again on the rexmit. */ 3432 freemsg(mp1); 3433 freemsg(mp); 3434 return; 3435 } 3436 /* 3437 * Mark with NOTMARKNEXT for now. 3438 * The code below will change this to MARKNEXT 3439 * if we are at the mark. 3440 * 3441 * If there are allocation failures (e.g. in 3442 * dupmsg below) the next time tcp_input_data 3443 * sees the urgent segment it will send up the 3444 * MSGMARKNEXT message. 3445 */ 3446 mp1->b_flag |= MSGNOTMARKNEXT; 3447 freemsg(tcp->tcp_urp_mark_mp); 3448 tcp->tcp_urp_mark_mp = mp1; 3449 flags |= TH_SEND_URP_MARK; 3450 #ifdef DEBUG 3451 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3452 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 3453 "last %x, %s", 3454 seg_seq, urp, tcp->tcp_urp_last, 3455 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 3456 #endif /* DEBUG */ 3457 } 3458 tcp->tcp_urp_last_valid = B_TRUE; 3459 tcp->tcp_urp_last = urp + seg_seq; 3460 } else if (tcp->tcp_urp_mark_mp != NULL) { 3461 /* 3462 * An allocation failure prevented the previous 3463 * tcp_input_data from sending up the allocated 3464 * MSG*MARKNEXT message - send it up this time 3465 * around. 3466 */ 3467 flags |= TH_SEND_URP_MARK; 3468 } 3469 3470 /* 3471 * If the urgent byte is in this segment, make sure that it is 3472 * all by itself. This makes it much easier to deal with the 3473 * possibility of an allocation failure on the T_exdata_ind. 3474 * Note that seg_len is the number of bytes in the segment, and 3475 * urp is the offset into the segment of the urgent byte. 3476 * urp < seg_len means that the urgent byte is in this segment. 3477 */ 3478 if (urp < seg_len) { 3479 if (seg_len != 1) { 3480 uint32_t tmp_rnxt; 3481 /* 3482 * Break it up and feed it back in. 3483 * Re-attach the IP header. 3484 */ 3485 mp->b_rptr = iphdr; 3486 if (urp > 0) { 3487 /* 3488 * There is stuff before the urgent 3489 * byte. 3490 */ 3491 mp1 = dupmsg(mp); 3492 if (!mp1) { 3493 /* 3494 * Trim from urgent byte on. 3495 * The rest will come back. 3496 */ 3497 (void) adjmsg(mp, 3498 urp - seg_len); 3499 tcp_input_data(connp, 3500 mp, NULL, ira); 3501 return; 3502 } 3503 (void) adjmsg(mp1, urp - seg_len); 3504 /* Feed this piece back in. */ 3505 tmp_rnxt = tcp->tcp_rnxt; 3506 tcp_input_data(connp, mp1, NULL, ira); 3507 /* 3508 * If the data passed back in was not 3509 * processed (ie: bad ACK) sending 3510 * the remainder back in will cause a 3511 * loop. In this case, drop the 3512 * packet and let the sender try 3513 * sending a good packet. 3514 */ 3515 if (tmp_rnxt == tcp->tcp_rnxt) { 3516 freemsg(mp); 3517 return; 3518 } 3519 } 3520 if (urp != seg_len - 1) { 3521 uint32_t tmp_rnxt; 3522 /* 3523 * There is stuff after the urgent 3524 * byte. 3525 */ 3526 mp1 = dupmsg(mp); 3527 if (!mp1) { 3528 /* 3529 * Trim everything beyond the 3530 * urgent byte. The rest will 3531 * come back. 3532 */ 3533 (void) adjmsg(mp, 3534 urp + 1 - seg_len); 3535 tcp_input_data(connp, 3536 mp, NULL, ira); 3537 return; 3538 } 3539 (void) adjmsg(mp1, urp + 1 - seg_len); 3540 tmp_rnxt = tcp->tcp_rnxt; 3541 tcp_input_data(connp, mp1, NULL, ira); 3542 /* 3543 * If the data passed back in was not 3544 * processed (ie: bad ACK) sending 3545 * the remainder back in will cause a 3546 * loop. In this case, drop the 3547 * packet and let the sender try 3548 * sending a good packet. 3549 */ 3550 if (tmp_rnxt == tcp->tcp_rnxt) { 3551 freemsg(mp); 3552 return; 3553 } 3554 } 3555 tcp_input_data(connp, mp, NULL, ira); 3556 return; 3557 } 3558 /* 3559 * This segment contains only the urgent byte. We 3560 * have to allocate the T_exdata_ind, if we can. 3561 */ 3562 if (IPCL_IS_NONSTR(connp)) { 3563 int error; 3564 3565 (*sockupcalls->su_recv) 3566 (connp->conn_upper_handle, mp, seg_len, 3567 MSG_OOB, &error, NULL); 3568 /* 3569 * We should never be in middle of a 3570 * fallback, the squeue guarantees that. 3571 */ 3572 ASSERT(error != EOPNOTSUPP); 3573 mp = NULL; 3574 goto update_ack; 3575 } else if (!tcp->tcp_urp_mp) { 3576 struct T_exdata_ind *tei; 3577 mp1 = allocb(sizeof (struct T_exdata_ind), 3578 BPRI_MED); 3579 if (!mp1) { 3580 /* 3581 * Sigh... It'll be back. 3582 * Generate any MSG*MARK message now. 3583 */ 3584 freemsg(mp); 3585 seg_len = 0; 3586 if (flags & TH_SEND_URP_MARK) { 3587 3588 3589 ASSERT(tcp->tcp_urp_mark_mp); 3590 tcp->tcp_urp_mark_mp->b_flag &= 3591 ~MSGNOTMARKNEXT; 3592 tcp->tcp_urp_mark_mp->b_flag |= 3593 MSGMARKNEXT; 3594 } 3595 goto ack_check; 3596 } 3597 mp1->b_datap->db_type = M_PROTO; 3598 tei = (struct T_exdata_ind *)mp1->b_rptr; 3599 tei->PRIM_type = T_EXDATA_IND; 3600 tei->MORE_flag = 0; 3601 mp1->b_wptr = (uchar_t *)&tei[1]; 3602 tcp->tcp_urp_mp = mp1; 3603 #ifdef DEBUG 3604 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3605 "tcp_rput: allocated exdata_ind %s", 3606 tcp_display(tcp, NULL, 3607 DISP_PORT_ONLY)); 3608 #endif /* DEBUG */ 3609 /* 3610 * There is no need to send a separate MSG*MARK 3611 * message since the T_EXDATA_IND will be sent 3612 * now. 3613 */ 3614 flags &= ~TH_SEND_URP_MARK; 3615 freemsg(tcp->tcp_urp_mark_mp); 3616 tcp->tcp_urp_mark_mp = NULL; 3617 } 3618 /* 3619 * Now we are all set. On the next putnext upstream, 3620 * tcp_urp_mp will be non-NULL and will get prepended 3621 * to what has to be this piece containing the urgent 3622 * byte. If for any reason we abort this segment below, 3623 * if it comes back, we will have this ready, or it 3624 * will get blown off in close. 3625 */ 3626 } else if (urp == seg_len) { 3627 /* 3628 * The urgent byte is the next byte after this sequence 3629 * number. If this endpoint is non-STREAMS, then there 3630 * is nothing to do here since the socket has already 3631 * been notified about the urg pointer by the 3632 * su_signal_oob call above. 3633 * 3634 * In case of STREAMS, some more work might be needed. 3635 * If there is data it is marked with MSGMARKNEXT and 3636 * and any tcp_urp_mark_mp is discarded since it is not 3637 * needed. Otherwise, if the code above just allocated 3638 * a zero-length tcp_urp_mark_mp message, that message 3639 * is tagged with MSGMARKNEXT. Sending up these 3640 * MSGMARKNEXT messages makes SIOCATMARK work correctly 3641 * even though the T_EXDATA_IND will not be sent up 3642 * until the urgent byte arrives. 3643 */ 3644 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { 3645 if (seg_len != 0) { 3646 flags |= TH_MARKNEXT_NEEDED; 3647 freemsg(tcp->tcp_urp_mark_mp); 3648 tcp->tcp_urp_mark_mp = NULL; 3649 flags &= ~TH_SEND_URP_MARK; 3650 } else if (tcp->tcp_urp_mark_mp != NULL) { 3651 flags |= TH_SEND_URP_MARK; 3652 tcp->tcp_urp_mark_mp->b_flag &= 3653 ~MSGNOTMARKNEXT; 3654 tcp->tcp_urp_mark_mp->b_flag |= 3655 MSGMARKNEXT; 3656 } 3657 } 3658 #ifdef DEBUG 3659 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3660 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 3661 seg_len, flags, 3662 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 3663 #endif /* DEBUG */ 3664 } 3665 #ifdef DEBUG 3666 else { 3667 /* Data left until we hit mark */ 3668 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3669 "tcp_rput: URP %d bytes left, %s", 3670 urp - seg_len, tcp_display(tcp, NULL, 3671 DISP_PORT_ONLY)); 3672 } 3673 #endif /* DEBUG */ 3674 } 3675 3676 process_ack: 3677 if (!(flags & TH_ACK)) { 3678 freemsg(mp); 3679 goto xmit_check; 3680 } 3681 } 3682 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 3683 3684 if (bytes_acked > 0) 3685 tcp->tcp_ip_forward_progress = B_TRUE; 3686 if (tcp->tcp_state == TCPS_SYN_RCVD) { 3687 /* 3688 * tcp_sendmsg() checks tcp_state without entering 3689 * the squeue so tcp_state should be updated before 3690 * sending up a connection confirmation or a new 3691 * connection indication. 3692 */ 3693 tcp->tcp_state = TCPS_ESTABLISHED; 3694 3695 /* 3696 * We are seeing the final ack in the three way 3697 * hand shake of a active open'ed connection 3698 * so we must send up a T_CONN_CON 3699 */ 3700 if (tcp->tcp_active_open) { 3701 if (!tcp_conn_con(tcp, iphdr, mp, NULL, ira)) { 3702 freemsg(mp); 3703 tcp->tcp_state = TCPS_SYN_RCVD; 3704 return; 3705 } 3706 /* 3707 * Don't fuse the loopback endpoints for 3708 * simultaneous active opens. 3709 */ 3710 if (tcp->tcp_loopback) { 3711 TCP_STAT(tcps, tcp_fusion_unfusable); 3712 tcp->tcp_unfusable = B_TRUE; 3713 } 3714 /* 3715 * For simultaneous active open, trace receipt of final 3716 * ACK as tcp:::connect-established. 3717 */ 3718 DTRACE_TCP5(connect__established, mblk_t *, NULL, 3719 ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *, 3720 iphdr, tcp_t *, tcp, tcph_t *, tcpha); 3721 } else if (IPCL_IS_NONSTR(connp)) { 3722 /* 3723 * 3-way handshake has completed, so notify socket 3724 * of the new connection. 3725 * 3726 * We are here means eager is fine but it can 3727 * get a TH_RST at any point between now and till 3728 * accept completes and disappear. We need to 3729 * ensure that reference to eager is valid after 3730 * we get out of eager's perimeter. So we do 3731 * an extra refhold. 3732 */ 3733 CONN_INC_REF(connp); 3734 3735 if (!tcp_newconn_notify(tcp, ira)) { 3736 /* 3737 * The state-change probe for SYN_RCVD -> 3738 * ESTABLISHED has not fired yet. We reset 3739 * the state to SYN_RCVD so that future 3740 * state-change probes report correct state 3741 * transistions. 3742 */ 3743 tcp->tcp_state = TCPS_SYN_RCVD; 3744 freemsg(mp); 3745 /* notification did not go up, so drop ref */ 3746 CONN_DEC_REF(connp); 3747 /* ... and close the eager */ 3748 ASSERT(TCP_IS_DETACHED(tcp)); 3749 (void) tcp_close_detached(tcp); 3750 return; 3751 } 3752 /* 3753 * tcp_newconn_notify() changes conn_upcalls and 3754 * connp->conn_upper_handle. Fix things now, in case 3755 * there's data attached to this ack. 3756 */ 3757 if (connp->conn_upcalls != NULL) 3758 sockupcalls = connp->conn_upcalls; 3759 /* 3760 * For passive open, trace receipt of final ACK as 3761 * tcp:::accept-established. 3762 */ 3763 DTRACE_TCP5(accept__established, mlbk_t *, NULL, 3764 ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *, 3765 iphdr, tcp_t *, tcp, tcph_t *, tcpha); 3766 } else { 3767 /* 3768 * 3-way handshake complete - this is a STREAMS based 3769 * socket, so pass up the T_CONN_IND. 3770 */ 3771 tcp_t *listener = tcp->tcp_listener; 3772 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 3773 3774 tcp->tcp_tconnind_started = B_TRUE; 3775 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 3776 ASSERT(mp != NULL); 3777 /* 3778 * We are here means eager is fine but it can 3779 * get a TH_RST at any point between now and till 3780 * accept completes and disappear. We need to 3781 * ensure that reference to eager is valid after 3782 * we get out of eager's perimeter. So we do 3783 * an extra refhold. 3784 */ 3785 CONN_INC_REF(connp); 3786 3787 /* 3788 * The listener also exists because of the refhold 3789 * done in tcp_input_listener. Its possible that it 3790 * might have closed. We will check that once we 3791 * get inside listeners context. 3792 */ 3793 CONN_INC_REF(listener->tcp_connp); 3794 if (listener->tcp_connp->conn_sqp == 3795 connp->conn_sqp) { 3796 /* 3797 * We optimize by not calling an SQUEUE_ENTER 3798 * on the listener since we know that the 3799 * listener and eager squeues are the same. 3800 * We are able to make this check safely only 3801 * because neither the eager nor the listener 3802 * can change its squeue. Only an active connect 3803 * can change its squeue 3804 */ 3805 tcp_send_conn_ind(listener->tcp_connp, mp, 3806 listener->tcp_connp->conn_sqp); 3807 CONN_DEC_REF(listener->tcp_connp); 3808 } else if (!tcp->tcp_loopback) { 3809 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 3810 mp, tcp_send_conn_ind, 3811 listener->tcp_connp, NULL, SQ_FILL, 3812 SQTAG_TCP_CONN_IND); 3813 } else { 3814 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 3815 mp, tcp_send_conn_ind, 3816 listener->tcp_connp, NULL, SQ_NODRAIN, 3817 SQTAG_TCP_CONN_IND); 3818 } 3819 /* 3820 * For passive open, trace receipt of final ACK as 3821 * tcp:::accept-established. 3822 */ 3823 DTRACE_TCP5(accept__established, mlbk_t *, NULL, 3824 ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *, 3825 iphdr, tcp_t *, tcp, tcph_t *, tcpha); 3826 } 3827 TCPS_CONN_INC(tcps); 3828 3829 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 3830 bytes_acked--; 3831 /* SYN was acked - making progress */ 3832 tcp->tcp_ip_forward_progress = B_TRUE; 3833 3834 /* 3835 * If SYN was retransmitted, need to reset all 3836 * retransmission info as this segment will be 3837 * treated as a dup ACK. 3838 */ 3839 if (tcp->tcp_rexmit) { 3840 tcp->tcp_rexmit = B_FALSE; 3841 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 3842 tcp->tcp_rexmit_max = tcp->tcp_snxt; 3843 tcp->tcp_snd_burst = tcp->tcp_localnet ? 3844 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 3845 tcp->tcp_ms_we_have_waited = 0; 3846 tcp->tcp_cwnd = mss; 3847 } 3848 3849 /* 3850 * We set the send window to zero here. 3851 * This is needed if there is data to be 3852 * processed already on the queue. 3853 * Later (at swnd_update label), the 3854 * "new_swnd > tcp_swnd" condition is satisfied 3855 * the XMIT_NEEDED flag is set in the current 3856 * (SYN_RCVD) state. This ensures tcp_wput_data() is 3857 * called if there is already data on queue in 3858 * this state. 3859 */ 3860 tcp->tcp_swnd = 0; 3861 3862 if (new_swnd > tcp->tcp_max_swnd) 3863 tcp->tcp_max_swnd = new_swnd; 3864 tcp->tcp_swl1 = seg_seq; 3865 tcp->tcp_swl2 = seg_ack; 3866 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 3867 3868 /* Trace change from SYN_RCVD -> ESTABLISHED here */ 3869 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 3870 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 3871 int32_t, TCPS_SYN_RCVD); 3872 3873 /* Fuse when both sides are in ESTABLISHED state */ 3874 if (tcp->tcp_loopback && do_tcp_fusion) 3875 tcp_fuse(tcp, iphdr, tcpha); 3876 3877 } 3878 /* This code follows 4.4BSD-Lite2 mostly. */ 3879 if (bytes_acked < 0) 3880 goto est; 3881 3882 /* 3883 * If TCP is ECN capable and the congestion experience bit is 3884 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 3885 * done once per window (or more loosely, per RTT). 3886 */ 3887 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 3888 tcp->tcp_cwr = B_FALSE; 3889 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 3890 if (!tcp->tcp_cwr) { 3891 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 3892 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 3893 tcp->tcp_cwnd = npkt * mss; 3894 /* 3895 * If the cwnd is 0, use the timer to clock out 3896 * new segments. This is required by the ECN spec. 3897 */ 3898 if (npkt == 0) { 3899 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 3900 /* 3901 * This makes sure that when the ACK comes 3902 * back, we will increase tcp_cwnd by 1 MSS. 3903 */ 3904 tcp->tcp_cwnd_cnt = 0; 3905 } 3906 tcp->tcp_cwr = B_TRUE; 3907 /* 3908 * This marks the end of the current window of in 3909 * flight data. That is why we don't use 3910 * tcp_suna + tcp_swnd. Only data in flight can 3911 * provide ECN info. 3912 */ 3913 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 3914 tcp->tcp_ecn_cwr_sent = B_FALSE; 3915 } 3916 } 3917 3918 mp1 = tcp->tcp_xmit_head; 3919 if (bytes_acked == 0) { 3920 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 3921 int dupack_cnt; 3922 3923 TCPS_BUMP_MIB(tcps, tcpInDupAck); 3924 /* 3925 * Fast retransmit. When we have seen exactly three 3926 * identical ACKs while we have unacked data 3927 * outstanding we take it as a hint that our peer 3928 * dropped something. 3929 * 3930 * If TCP is retransmitting, don't do fast retransmit. 3931 */ 3932 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 3933 ! tcp->tcp_rexmit) { 3934 /* Do Limited Transmit */ 3935 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 3936 tcps->tcps_dupack_fast_retransmit) { 3937 /* 3938 * RFC 3042 3939 * 3940 * What we need to do is temporarily 3941 * increase tcp_cwnd so that new 3942 * data can be sent if it is allowed 3943 * by the receive window (tcp_rwnd). 3944 * tcp_wput_data() will take care of 3945 * the rest. 3946 * 3947 * If the connection is SACK capable, 3948 * only do limited xmit when there 3949 * is SACK info. 3950 * 3951 * Note how tcp_cwnd is incremented. 3952 * The first dup ACK will increase 3953 * it by 1 MSS. The second dup ACK 3954 * will increase it by 2 MSS. This 3955 * means that only 1 new segment will 3956 * be sent for each dup ACK. 3957 */ 3958 if (tcp->tcp_unsent > 0 && 3959 (!tcp->tcp_snd_sack_ok || 3960 (tcp->tcp_snd_sack_ok && 3961 tcp->tcp_notsack_list != NULL))) { 3962 tcp->tcp_cwnd += mss << 3963 (tcp->tcp_dupack_cnt - 1); 3964 flags |= TH_LIMIT_XMIT; 3965 } 3966 } else if (dupack_cnt == 3967 tcps->tcps_dupack_fast_retransmit) { 3968 3969 /* 3970 * If we have reduced tcp_ssthresh 3971 * because of ECN, do not reduce it again 3972 * unless it is already one window of data 3973 * away. After one window of data, tcp_cwr 3974 * should then be cleared. Note that 3975 * for non ECN capable connection, tcp_cwr 3976 * should always be false. 3977 * 3978 * Adjust cwnd since the duplicate 3979 * ack indicates that a packet was 3980 * dropped (due to congestion.) 3981 */ 3982 if (!tcp->tcp_cwr) { 3983 npkt = ((tcp->tcp_snxt - 3984 tcp->tcp_suna) >> 1) / mss; 3985 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 3986 mss; 3987 tcp->tcp_cwnd = (npkt + 3988 tcp->tcp_dupack_cnt) * mss; 3989 } 3990 if (tcp->tcp_ecn_ok) { 3991 tcp->tcp_cwr = B_TRUE; 3992 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 3993 tcp->tcp_ecn_cwr_sent = B_FALSE; 3994 } 3995 3996 /* 3997 * We do Hoe's algorithm. Refer to her 3998 * paper "Improving the Start-up Behavior 3999 * of a Congestion Control Scheme for TCP," 4000 * appeared in SIGCOMM'96. 4001 * 4002 * Save highest seq no we have sent so far. 4003 * Be careful about the invisible FIN byte. 4004 */ 4005 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 4006 (tcp->tcp_unsent == 0)) { 4007 tcp->tcp_rexmit_max = tcp->tcp_fss; 4008 } else { 4009 tcp->tcp_rexmit_max = tcp->tcp_snxt; 4010 } 4011 4012 /* 4013 * Do not allow bursty traffic during. 4014 * fast recovery. Refer to Fall and Floyd's 4015 * paper "Simulation-based Comparisons of 4016 * Tahoe, Reno and SACK TCP" (in CCR?) 4017 * This is a best current practise. 4018 */ 4019 tcp->tcp_snd_burst = TCP_CWND_SS; 4020 4021 /* 4022 * For SACK: 4023 * Calculate tcp_pipe, which is the 4024 * estimated number of bytes in 4025 * network. 4026 * 4027 * tcp_fack is the highest sack'ed seq num 4028 * TCP has received. 4029 * 4030 * tcp_pipe is explained in the above quoted 4031 * Fall and Floyd's paper. tcp_fack is 4032 * explained in Mathis and Mahdavi's 4033 * "Forward Acknowledgment: Refining TCP 4034 * Congestion Control" in SIGCOMM '96. 4035 */ 4036 if (tcp->tcp_snd_sack_ok) { 4037 if (tcp->tcp_notsack_list != NULL) { 4038 tcp->tcp_pipe = tcp->tcp_snxt - 4039 tcp->tcp_fack; 4040 tcp->tcp_sack_snxt = seg_ack; 4041 flags |= TH_NEED_SACK_REXMIT; 4042 } else { 4043 /* 4044 * Always initialize tcp_pipe 4045 * even though we don't have 4046 * any SACK info. If later 4047 * we get SACK info and 4048 * tcp_pipe is not initialized, 4049 * funny things will happen. 4050 */ 4051 tcp->tcp_pipe = 4052 tcp->tcp_cwnd_ssthresh; 4053 } 4054 } else { 4055 flags |= TH_REXMIT_NEEDED; 4056 } /* tcp_snd_sack_ok */ 4057 4058 } else { 4059 /* 4060 * Here we perform congestion 4061 * avoidance, but NOT slow start. 4062 * This is known as the Fast 4063 * Recovery Algorithm. 4064 */ 4065 if (tcp->tcp_snd_sack_ok && 4066 tcp->tcp_notsack_list != NULL) { 4067 flags |= TH_NEED_SACK_REXMIT; 4068 tcp->tcp_pipe -= mss; 4069 if (tcp->tcp_pipe < 0) 4070 tcp->tcp_pipe = 0; 4071 } else { 4072 /* 4073 * We know that one more packet has 4074 * left the pipe thus we can update 4075 * cwnd. 4076 */ 4077 cwnd = tcp->tcp_cwnd + mss; 4078 if (cwnd > tcp->tcp_cwnd_max) 4079 cwnd = tcp->tcp_cwnd_max; 4080 tcp->tcp_cwnd = cwnd; 4081 if (tcp->tcp_unsent > 0) 4082 flags |= TH_XMIT_NEEDED; 4083 } 4084 } 4085 } 4086 } else if (tcp->tcp_zero_win_probe) { 4087 /* 4088 * If the window has opened, need to arrange 4089 * to send additional data. 4090 */ 4091 if (new_swnd != 0) { 4092 /* tcp_suna != tcp_snxt */ 4093 /* Packet contains a window update */ 4094 TCPS_BUMP_MIB(tcps, tcpInWinUpdate); 4095 tcp->tcp_zero_win_probe = 0; 4096 tcp->tcp_timer_backoff = 0; 4097 tcp->tcp_ms_we_have_waited = 0; 4098 4099 /* 4100 * Transmit starting with tcp_suna since 4101 * the one byte probe is not ack'ed. 4102 * If TCP has sent more than one identical 4103 * probe, tcp_rexmit will be set. That means 4104 * tcp_ss_rexmit() will send out the one 4105 * byte along with new data. Otherwise, 4106 * fake the retransmission. 4107 */ 4108 flags |= TH_XMIT_NEEDED; 4109 if (!tcp->tcp_rexmit) { 4110 tcp->tcp_rexmit = B_TRUE; 4111 tcp->tcp_dupack_cnt = 0; 4112 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 4113 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 4114 } 4115 } 4116 } 4117 goto swnd_update; 4118 } 4119 4120 /* 4121 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 4122 * If the ACK value acks something that we have not yet sent, it might 4123 * be an old duplicate segment. Send an ACK to re-synchronize the 4124 * other side. 4125 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 4126 * state is handled above, so we can always just drop the segment and 4127 * send an ACK here. 4128 * 4129 * In the case where the peer shrinks the window, we see the new window 4130 * update, but all the data sent previously is queued up by the peer. 4131 * To account for this, in tcp_process_shrunk_swnd(), the sequence 4132 * number, which was already sent, and within window, is recorded. 4133 * tcp_snxt is then updated. 4134 * 4135 * If the window has previously shrunk, and an ACK for data not yet 4136 * sent, according to tcp_snxt is recieved, it may still be valid. If 4137 * the ACK is for data within the window at the time the window was 4138 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to 4139 * the sequence number ACK'ed. 4140 * 4141 * If the ACK covers all the data sent at the time the window was 4142 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE. 4143 * 4144 * Should we send ACKs in response to ACK only segments? 4145 */ 4146 4147 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 4148 if ((tcp->tcp_is_wnd_shrnk) && 4149 (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) { 4150 uint32_t data_acked_ahead_snxt; 4151 4152 data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt; 4153 tcp_update_xmit_tail(tcp, seg_ack); 4154 tcp->tcp_unsent -= data_acked_ahead_snxt; 4155 } else { 4156 TCPS_BUMP_MIB(tcps, tcpInAckUnsent); 4157 /* drop the received segment */ 4158 freemsg(mp); 4159 4160 /* 4161 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 4162 * greater than 0, check if the number of such 4163 * bogus ACks is greater than that count. If yes, 4164 * don't send back any ACK. This prevents TCP from 4165 * getting into an ACK storm if somehow an attacker 4166 * successfully spoofs an acceptable segment to our 4167 * peer. If this continues (count > 2 X threshold), 4168 * we should abort this connection. 4169 */ 4170 if (tcp_drop_ack_unsent_cnt > 0 && 4171 ++tcp->tcp_in_ack_unsent > 4172 tcp_drop_ack_unsent_cnt) { 4173 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 4174 if (tcp->tcp_in_ack_unsent > 2 * 4175 tcp_drop_ack_unsent_cnt) { 4176 (void) tcp_clean_death(tcp, EPROTO); 4177 } 4178 return; 4179 } 4180 mp = tcp_ack_mp(tcp); 4181 if (mp != NULL) { 4182 BUMP_LOCAL(tcp->tcp_obsegs); 4183 TCPS_BUMP_MIB(tcps, tcpOutAck); 4184 tcp_send_data(tcp, mp); 4185 } 4186 return; 4187 } 4188 } else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack, 4189 tcp->tcp_snxt_shrunk)) { 4190 tcp->tcp_is_wnd_shrnk = B_FALSE; 4191 } 4192 4193 /* 4194 * TCP gets a new ACK, update the notsack'ed list to delete those 4195 * blocks that are covered by this ACK. 4196 */ 4197 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 4198 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 4199 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 4200 } 4201 4202 /* 4203 * If we got an ACK after fast retransmit, check to see 4204 * if it is a partial ACK. If it is not and the congestion 4205 * window was inflated to account for the other side's 4206 * cached packets, retract it. If it is, do Hoe's algorithm. 4207 */ 4208 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 4209 ASSERT(tcp->tcp_rexmit == B_FALSE); 4210 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 4211 tcp->tcp_dupack_cnt = 0; 4212 /* 4213 * Restore the orig tcp_cwnd_ssthresh after 4214 * fast retransmit phase. 4215 */ 4216 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 4217 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 4218 } 4219 tcp->tcp_rexmit_max = seg_ack; 4220 tcp->tcp_cwnd_cnt = 0; 4221 tcp->tcp_snd_burst = tcp->tcp_localnet ? 4222 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 4223 4224 /* 4225 * Remove all notsack info to avoid confusion with 4226 * the next fast retrasnmit/recovery phase. 4227 */ 4228 if (tcp->tcp_snd_sack_ok) { 4229 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 4230 tcp); 4231 } 4232 } else { 4233 if (tcp->tcp_snd_sack_ok && 4234 tcp->tcp_notsack_list != NULL) { 4235 flags |= TH_NEED_SACK_REXMIT; 4236 tcp->tcp_pipe -= mss; 4237 if (tcp->tcp_pipe < 0) 4238 tcp->tcp_pipe = 0; 4239 } else { 4240 /* 4241 * Hoe's algorithm: 4242 * 4243 * Retransmit the unack'ed segment and 4244 * restart fast recovery. Note that we 4245 * need to scale back tcp_cwnd to the 4246 * original value when we started fast 4247 * recovery. This is to prevent overly 4248 * aggressive behaviour in sending new 4249 * segments. 4250 */ 4251 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 4252 tcps->tcps_dupack_fast_retransmit * mss; 4253 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 4254 flags |= TH_REXMIT_NEEDED; 4255 } 4256 } 4257 } else { 4258 tcp->tcp_dupack_cnt = 0; 4259 if (tcp->tcp_rexmit) { 4260 /* 4261 * TCP is retranmitting. If the ACK ack's all 4262 * outstanding data, update tcp_rexmit_max and 4263 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 4264 * to the correct value. 4265 * 4266 * Note that SEQ_LEQ() is used. This is to avoid 4267 * unnecessary fast retransmit caused by dup ACKs 4268 * received when TCP does slow start retransmission 4269 * after a time out. During this phase, TCP may 4270 * send out segments which are already received. 4271 * This causes dup ACKs to be sent back. 4272 */ 4273 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 4274 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 4275 tcp->tcp_rexmit_nxt = seg_ack; 4276 } 4277 if (seg_ack != tcp->tcp_rexmit_max) { 4278 flags |= TH_XMIT_NEEDED; 4279 } 4280 } else { 4281 tcp->tcp_rexmit = B_FALSE; 4282 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 4283 tcp->tcp_snd_burst = tcp->tcp_localnet ? 4284 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 4285 } 4286 tcp->tcp_ms_we_have_waited = 0; 4287 } 4288 } 4289 4290 TCPS_BUMP_MIB(tcps, tcpInAckSegs); 4291 TCPS_UPDATE_MIB(tcps, tcpInAckBytes, bytes_acked); 4292 tcp->tcp_suna = seg_ack; 4293 if (tcp->tcp_zero_win_probe != 0) { 4294 tcp->tcp_zero_win_probe = 0; 4295 tcp->tcp_timer_backoff = 0; 4296 } 4297 4298 /* 4299 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 4300 * Note that it cannot be the SYN being ack'ed. The code flow 4301 * will not reach here. 4302 */ 4303 if (mp1 == NULL) { 4304 goto fin_acked; 4305 } 4306 4307 /* 4308 * Update the congestion window. 4309 * 4310 * If TCP is not ECN capable or TCP is ECN capable but the 4311 * congestion experience bit is not set, increase the tcp_cwnd as 4312 * usual. 4313 */ 4314 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 4315 cwnd = tcp->tcp_cwnd; 4316 add = mss; 4317 4318 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 4319 /* 4320 * This is to prevent an increase of less than 1 MSS of 4321 * tcp_cwnd. With partial increase, tcp_wput_data() 4322 * may send out tinygrams in order to preserve mblk 4323 * boundaries. 4324 * 4325 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 4326 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 4327 * increased by 1 MSS for every RTTs. 4328 */ 4329 if (tcp->tcp_cwnd_cnt <= 0) { 4330 tcp->tcp_cwnd_cnt = cwnd + add; 4331 } else { 4332 tcp->tcp_cwnd_cnt -= add; 4333 add = 0; 4334 } 4335 } 4336 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 4337 } 4338 4339 /* See if the latest urgent data has been acknowledged */ 4340 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 4341 SEQ_GT(seg_ack, tcp->tcp_urg)) 4342 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 4343 4344 /* Can we update the RTT estimates? */ 4345 if (tcp->tcp_snd_ts_ok) { 4346 /* Ignore zero timestamp echo-reply. */ 4347 if (tcpopt.tcp_opt_ts_ecr != 0) { 4348 tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH - 4349 (int32_t)tcpopt.tcp_opt_ts_ecr); 4350 } 4351 4352 /* If needed, restart the timer. */ 4353 if (tcp->tcp_set_timer == 1) { 4354 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 4355 tcp->tcp_set_timer = 0; 4356 } 4357 /* 4358 * Update tcp_csuna in case the other side stops sending 4359 * us timestamps. 4360 */ 4361 tcp->tcp_csuna = tcp->tcp_snxt; 4362 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 4363 /* 4364 * An ACK sequence we haven't seen before, so get the RTT 4365 * and update the RTO. But first check if the timestamp is 4366 * valid to use. 4367 */ 4368 if ((mp1->b_next != NULL) && 4369 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 4370 tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH - 4371 (int32_t)(intptr_t)mp1->b_prev); 4372 else 4373 TCPS_BUMP_MIB(tcps, tcpRttNoUpdate); 4374 4375 /* Remeber the last sequence to be ACKed */ 4376 tcp->tcp_csuna = seg_ack; 4377 if (tcp->tcp_set_timer == 1) { 4378 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 4379 tcp->tcp_set_timer = 0; 4380 } 4381 } else { 4382 TCPS_BUMP_MIB(tcps, tcpRttNoUpdate); 4383 } 4384 4385 /* Eat acknowledged bytes off the xmit queue. */ 4386 for (;;) { 4387 mblk_t *mp2; 4388 uchar_t *wptr; 4389 4390 wptr = mp1->b_wptr; 4391 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 4392 bytes_acked -= (int)(wptr - mp1->b_rptr); 4393 if (bytes_acked < 0) { 4394 mp1->b_rptr = wptr + bytes_acked; 4395 /* 4396 * Set a new timestamp if all the bytes timed by the 4397 * old timestamp have been ack'ed. 4398 */ 4399 if (SEQ_GT(seg_ack, 4400 (uint32_t)(uintptr_t)(mp1->b_next))) { 4401 mp1->b_prev = 4402 (mblk_t *)(uintptr_t)LBOLT_FASTPATH; 4403 mp1->b_next = NULL; 4404 } 4405 break; 4406 } 4407 mp1->b_next = NULL; 4408 mp1->b_prev = NULL; 4409 mp2 = mp1; 4410 mp1 = mp1->b_cont; 4411 4412 /* 4413 * This notification is required for some zero-copy 4414 * clients to maintain a copy semantic. After the data 4415 * is ack'ed, client is safe to modify or reuse the buffer. 4416 */ 4417 if (tcp->tcp_snd_zcopy_aware && 4418 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 4419 tcp_zcopy_notify(tcp); 4420 freeb(mp2); 4421 if (bytes_acked == 0) { 4422 if (mp1 == NULL) { 4423 /* Everything is ack'ed, clear the tail. */ 4424 tcp->tcp_xmit_tail = NULL; 4425 /* 4426 * Cancel the timer unless we are still 4427 * waiting for an ACK for the FIN packet. 4428 */ 4429 if (tcp->tcp_timer_tid != 0 && 4430 tcp->tcp_snxt == tcp->tcp_suna) { 4431 (void) TCP_TIMER_CANCEL(tcp, 4432 tcp->tcp_timer_tid); 4433 tcp->tcp_timer_tid = 0; 4434 } 4435 goto pre_swnd_update; 4436 } 4437 if (mp2 != tcp->tcp_xmit_tail) 4438 break; 4439 tcp->tcp_xmit_tail = mp1; 4440 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 4441 (uintptr_t)INT_MAX); 4442 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 4443 mp1->b_rptr); 4444 break; 4445 } 4446 if (mp1 == NULL) { 4447 /* 4448 * More was acked but there is nothing more 4449 * outstanding. This means that the FIN was 4450 * just acked or that we're talking to a clown. 4451 */ 4452 fin_acked: 4453 ASSERT(tcp->tcp_fin_sent); 4454 tcp->tcp_xmit_tail = NULL; 4455 if (tcp->tcp_fin_sent) { 4456 /* FIN was acked - making progress */ 4457 if (!tcp->tcp_fin_acked) 4458 tcp->tcp_ip_forward_progress = B_TRUE; 4459 tcp->tcp_fin_acked = B_TRUE; 4460 if (tcp->tcp_linger_tid != 0 && 4461 TCP_TIMER_CANCEL(tcp, 4462 tcp->tcp_linger_tid) >= 0) { 4463 tcp_stop_lingering(tcp); 4464 freemsg(mp); 4465 mp = NULL; 4466 } 4467 } else { 4468 /* 4469 * We should never get here because 4470 * we have already checked that the 4471 * number of bytes ack'ed should be 4472 * smaller than or equal to what we 4473 * have sent so far (it is the 4474 * acceptability check of the ACK). 4475 * We can only get here if the send 4476 * queue is corrupted. 4477 * 4478 * Terminate the connection and 4479 * panic the system. It is better 4480 * for us to panic instead of 4481 * continuing to avoid other disaster. 4482 */ 4483 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 4484 tcp->tcp_rnxt, TH_RST|TH_ACK); 4485 panic("Memory corruption " 4486 "detected for connection %s.", 4487 tcp_display(tcp, NULL, 4488 DISP_ADDR_AND_PORT)); 4489 /*NOTREACHED*/ 4490 } 4491 goto pre_swnd_update; 4492 } 4493 ASSERT(mp2 != tcp->tcp_xmit_tail); 4494 } 4495 if (tcp->tcp_unsent) { 4496 flags |= TH_XMIT_NEEDED; 4497 } 4498 pre_swnd_update: 4499 tcp->tcp_xmit_head = mp1; 4500 swnd_update: 4501 /* 4502 * The following check is different from most other implementations. 4503 * For bi-directional transfer, when segments are dropped, the 4504 * "normal" check will not accept a window update in those 4505 * retransmitted segemnts. Failing to do that, TCP may send out 4506 * segments which are outside receiver's window. As TCP accepts 4507 * the ack in those retransmitted segments, if the window update in 4508 * the same segment is not accepted, TCP will incorrectly calculates 4509 * that it can send more segments. This can create a deadlock 4510 * with the receiver if its window becomes zero. 4511 */ 4512 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 4513 SEQ_LT(tcp->tcp_swl1, seg_seq) || 4514 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 4515 /* 4516 * The criteria for update is: 4517 * 4518 * 1. the segment acknowledges some data. Or 4519 * 2. the segment is new, i.e. it has a higher seq num. Or 4520 * 3. the segment is not old and the advertised window is 4521 * larger than the previous advertised window. 4522 */ 4523 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 4524 flags |= TH_XMIT_NEEDED; 4525 tcp->tcp_swnd = new_swnd; 4526 if (new_swnd > tcp->tcp_max_swnd) 4527 tcp->tcp_max_swnd = new_swnd; 4528 tcp->tcp_swl1 = seg_seq; 4529 tcp->tcp_swl2 = seg_ack; 4530 } 4531 est: 4532 if (tcp->tcp_state > TCPS_ESTABLISHED) { 4533 4534 switch (tcp->tcp_state) { 4535 case TCPS_FIN_WAIT_1: 4536 if (tcp->tcp_fin_acked) { 4537 tcp->tcp_state = TCPS_FIN_WAIT_2; 4538 DTRACE_TCP6(state__change, void, NULL, 4539 ip_xmit_attr_t *, connp->conn_ixa, 4540 void, NULL, tcp_t *, tcp, void, NULL, 4541 int32_t, TCPS_FIN_WAIT_1); 4542 /* 4543 * We implement the non-standard BSD/SunOS 4544 * FIN_WAIT_2 flushing algorithm. 4545 * If there is no user attached to this 4546 * TCP endpoint, then this TCP struct 4547 * could hang around forever in FIN_WAIT_2 4548 * state if the peer forgets to send us 4549 * a FIN. To prevent this, we wait only 4550 * 2*MSL (a convenient time value) for 4551 * the FIN to arrive. If it doesn't show up, 4552 * we flush the TCP endpoint. This algorithm, 4553 * though a violation of RFC-793, has worked 4554 * for over 10 years in BSD systems. 4555 * Note: SunOS 4.x waits 675 seconds before 4556 * flushing the FIN_WAIT_2 connection. 4557 */ 4558 TCP_TIMER_RESTART(tcp, 4559 tcp->tcp_fin_wait_2_flush_interval); 4560 } 4561 break; 4562 case TCPS_FIN_WAIT_2: 4563 break; /* Shutdown hook? */ 4564 case TCPS_LAST_ACK: 4565 freemsg(mp); 4566 if (tcp->tcp_fin_acked) { 4567 (void) tcp_clean_death(tcp, 0); 4568 return; 4569 } 4570 goto xmit_check; 4571 case TCPS_CLOSING: 4572 if (tcp->tcp_fin_acked) { 4573 SET_TIME_WAIT(tcps, tcp, connp); 4574 DTRACE_TCP6(state__change, void, NULL, 4575 ip_xmit_attr_t *, connp->conn_ixa, void, 4576 NULL, tcp_t *, tcp, void, NULL, int32_t, 4577 TCPS_CLOSING); 4578 } 4579 /*FALLTHRU*/ 4580 case TCPS_CLOSE_WAIT: 4581 freemsg(mp); 4582 goto xmit_check; 4583 default: 4584 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 4585 break; 4586 } 4587 } 4588 if (flags & TH_FIN) { 4589 /* Make sure we ack the fin */ 4590 flags |= TH_ACK_NEEDED; 4591 if (!tcp->tcp_fin_rcvd) { 4592 tcp->tcp_fin_rcvd = B_TRUE; 4593 tcp->tcp_rnxt++; 4594 tcpha = tcp->tcp_tcpha; 4595 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 4596 4597 /* 4598 * Generate the ordrel_ind at the end unless the 4599 * conn is detached or it is a STREAMS based eager. 4600 * In the eager case we defer the notification until 4601 * tcp_accept_finish has run. 4602 */ 4603 if (!TCP_IS_DETACHED(tcp) && (IPCL_IS_NONSTR(connp) || 4604 (tcp->tcp_listener == NULL && 4605 !tcp->tcp_hard_binding))) 4606 flags |= TH_ORDREL_NEEDED; 4607 switch (tcp->tcp_state) { 4608 case TCPS_SYN_RCVD: 4609 tcp->tcp_state = TCPS_CLOSE_WAIT; 4610 DTRACE_TCP6(state__change, void, NULL, 4611 ip_xmit_attr_t *, connp->conn_ixa, 4612 void, NULL, tcp_t *, tcp, void, NULL, 4613 int32_t, TCPS_SYN_RCVD); 4614 /* Keepalive? */ 4615 break; 4616 case TCPS_ESTABLISHED: 4617 tcp->tcp_state = TCPS_CLOSE_WAIT; 4618 DTRACE_TCP6(state__change, void, NULL, 4619 ip_xmit_attr_t *, connp->conn_ixa, 4620 void, NULL, tcp_t *, tcp, void, NULL, 4621 int32_t, TCPS_ESTABLISHED); 4622 /* Keepalive? */ 4623 break; 4624 case TCPS_FIN_WAIT_1: 4625 if (!tcp->tcp_fin_acked) { 4626 tcp->tcp_state = TCPS_CLOSING; 4627 DTRACE_TCP6(state__change, void, NULL, 4628 ip_xmit_attr_t *, connp->conn_ixa, 4629 void, NULL, tcp_t *, tcp, void, 4630 NULL, int32_t, TCPS_FIN_WAIT_1); 4631 break; 4632 } 4633 /* FALLTHRU */ 4634 case TCPS_FIN_WAIT_2: 4635 SET_TIME_WAIT(tcps, tcp, connp); 4636 DTRACE_TCP6(state__change, void, NULL, 4637 ip_xmit_attr_t *, connp->conn_ixa, void, 4638 NULL, tcp_t *, tcp, void, NULL, int32_t, 4639 TCPS_FIN_WAIT_2); 4640 if (seg_len) { 4641 /* 4642 * implies data piggybacked on FIN. 4643 * break to handle data. 4644 */ 4645 break; 4646 } 4647 freemsg(mp); 4648 goto ack_check; 4649 } 4650 } 4651 } 4652 if (mp == NULL) 4653 goto xmit_check; 4654 if (seg_len == 0) { 4655 freemsg(mp); 4656 goto xmit_check; 4657 } 4658 if (mp->b_rptr == mp->b_wptr) { 4659 /* 4660 * The header has been consumed, so we remove the 4661 * zero-length mblk here. 4662 */ 4663 mp1 = mp; 4664 mp = mp->b_cont; 4665 freeb(mp1); 4666 } 4667 update_ack: 4668 tcpha = tcp->tcp_tcpha; 4669 tcp->tcp_rack_cnt++; 4670 { 4671 uint32_t cur_max; 4672 4673 cur_max = tcp->tcp_rack_cur_max; 4674 if (tcp->tcp_rack_cnt >= cur_max) { 4675 /* 4676 * We have more unacked data than we should - send 4677 * an ACK now. 4678 */ 4679 flags |= TH_ACK_NEEDED; 4680 cur_max++; 4681 if (cur_max > tcp->tcp_rack_abs_max) 4682 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 4683 else 4684 tcp->tcp_rack_cur_max = cur_max; 4685 } else if (TCP_IS_DETACHED(tcp)) { 4686 /* We don't have an ACK timer for detached TCP. */ 4687 flags |= TH_ACK_NEEDED; 4688 } else if (seg_len < mss) { 4689 /* 4690 * If we get a segment that is less than an mss, and we 4691 * already have unacknowledged data, and the amount 4692 * unacknowledged is not a multiple of mss, then we 4693 * better generate an ACK now. Otherwise, this may be 4694 * the tail piece of a transaction, and we would rather 4695 * wait for the response. 4696 */ 4697 uint32_t udif; 4698 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 4699 (uintptr_t)INT_MAX); 4700 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 4701 if (udif && (udif % mss)) 4702 flags |= TH_ACK_NEEDED; 4703 else 4704 flags |= TH_ACK_TIMER_NEEDED; 4705 } else { 4706 /* Start delayed ack timer */ 4707 flags |= TH_ACK_TIMER_NEEDED; 4708 } 4709 } 4710 tcp->tcp_rnxt += seg_len; 4711 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 4712 4713 if (mp == NULL) 4714 goto xmit_check; 4715 4716 /* Update SACK list */ 4717 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 4718 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 4719 &(tcp->tcp_num_sack_blk)); 4720 } 4721 4722 if (tcp->tcp_urp_mp) { 4723 tcp->tcp_urp_mp->b_cont = mp; 4724 mp = tcp->tcp_urp_mp; 4725 tcp->tcp_urp_mp = NULL; 4726 /* Ready for a new signal. */ 4727 tcp->tcp_urp_last_valid = B_FALSE; 4728 #ifdef DEBUG 4729 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 4730 "tcp_rput: sending exdata_ind %s", 4731 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4732 #endif /* DEBUG */ 4733 } 4734 4735 /* 4736 * Check for ancillary data changes compared to last segment. 4737 */ 4738 if (connp->conn_recv_ancillary.crb_all != 0) { 4739 mp = tcp_input_add_ancillary(tcp, mp, &ipp, ira); 4740 if (mp == NULL) 4741 return; 4742 } 4743 4744 if (IPCL_IS_NONSTR(connp)) { 4745 /* 4746 * Non-STREAMS socket 4747 */ 4748 boolean_t push = flags & (TH_PUSH|TH_FIN); 4749 int error; 4750 4751 if ((*sockupcalls->su_recv)(connp->conn_upper_handle, 4752 mp, seg_len, 0, &error, &push) <= 0) { 4753 /* 4754 * We should never be in middle of a 4755 * fallback, the squeue guarantees that. 4756 */ 4757 ASSERT(error != EOPNOTSUPP); 4758 if (error == ENOSPC) 4759 tcp->tcp_rwnd -= seg_len; 4760 } else if (push) { 4761 /* PUSH bit set and sockfs is not flow controlled */ 4762 flags |= tcp_rwnd_reopen(tcp); 4763 } 4764 } else if (tcp->tcp_listener != NULL || tcp->tcp_hard_binding) { 4765 /* 4766 * Side queue inbound data until the accept happens. 4767 * tcp_accept/tcp_rput drains this when the accept happens. 4768 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 4769 * T_EXDATA_IND) it is queued on b_next. 4770 * XXX Make urgent data use this. Requires: 4771 * Removing tcp_listener check for TH_URG 4772 * Making M_PCPROTO and MARK messages skip the eager case 4773 */ 4774 4775 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 4776 } else { 4777 /* Active STREAMS socket */ 4778 if (mp->b_datap->db_type != M_DATA || 4779 (flags & TH_MARKNEXT_NEEDED)) { 4780 if (tcp->tcp_rcv_list != NULL) { 4781 flags |= tcp_rcv_drain(tcp); 4782 } 4783 ASSERT(tcp->tcp_rcv_list == NULL || 4784 tcp->tcp_fused_sigurg); 4785 4786 if (flags & TH_MARKNEXT_NEEDED) { 4787 #ifdef DEBUG 4788 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 4789 "tcp_rput: sending MSGMARKNEXT %s", 4790 tcp_display(tcp, NULL, 4791 DISP_PORT_ONLY)); 4792 #endif /* DEBUG */ 4793 mp->b_flag |= MSGMARKNEXT; 4794 flags &= ~TH_MARKNEXT_NEEDED; 4795 } 4796 4797 if (is_system_labeled()) 4798 tcp_setcred_data(mp, ira); 4799 4800 putnext(connp->conn_rq, mp); 4801 if (!canputnext(connp->conn_rq)) 4802 tcp->tcp_rwnd -= seg_len; 4803 } else if ((flags & (TH_PUSH|TH_FIN)) || 4804 tcp->tcp_rcv_cnt + seg_len >= connp->conn_rcvbuf >> 3) { 4805 if (tcp->tcp_rcv_list != NULL) { 4806 /* 4807 * Enqueue the new segment first and then 4808 * call tcp_rcv_drain() to send all data 4809 * up. The other way to do this is to 4810 * send all queued data up and then call 4811 * putnext() to send the new segment up. 4812 * This way can remove the else part later 4813 * on. 4814 * 4815 * We don't do this to avoid one more call to 4816 * canputnext() as tcp_rcv_drain() needs to 4817 * call canputnext(). 4818 */ 4819 tcp_rcv_enqueue(tcp, mp, seg_len, 4820 ira->ira_cred); 4821 flags |= tcp_rcv_drain(tcp); 4822 } else { 4823 if (is_system_labeled()) 4824 tcp_setcred_data(mp, ira); 4825 4826 putnext(connp->conn_rq, mp); 4827 if (!canputnext(connp->conn_rq)) 4828 tcp->tcp_rwnd -= seg_len; 4829 } 4830 } else { 4831 /* 4832 * Enqueue all packets when processing an mblk 4833 * from the co queue and also enqueue normal packets. 4834 */ 4835 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 4836 } 4837 /* 4838 * Make sure the timer is running if we have data waiting 4839 * for a push bit. This provides resiliency against 4840 * implementations that do not correctly generate push bits. 4841 */ 4842 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 4843 /* 4844 * The connection may be closed at this point, so don't 4845 * do anything for a detached tcp. 4846 */ 4847 if (!TCP_IS_DETACHED(tcp)) 4848 tcp->tcp_push_tid = TCP_TIMER(tcp, 4849 tcp_push_timer, 4850 tcps->tcps_push_timer_interval); 4851 } 4852 } 4853 4854 xmit_check: 4855 /* Is there anything left to do? */ 4856 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 4857 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 4858 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 4859 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 4860 goto done; 4861 4862 /* Any transmit work to do and a non-zero window? */ 4863 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 4864 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 4865 if (flags & TH_REXMIT_NEEDED) { 4866 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 4867 4868 TCPS_BUMP_MIB(tcps, tcpOutFastRetrans); 4869 if (snd_size > mss) 4870 snd_size = mss; 4871 if (snd_size > tcp->tcp_swnd) 4872 snd_size = tcp->tcp_swnd; 4873 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 4874 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 4875 B_TRUE); 4876 4877 if (mp1 != NULL) { 4878 tcp->tcp_xmit_head->b_prev = 4879 (mblk_t *)LBOLT_FASTPATH; 4880 tcp->tcp_csuna = tcp->tcp_snxt; 4881 TCPS_BUMP_MIB(tcps, tcpRetransSegs); 4882 TCPS_UPDATE_MIB(tcps, tcpRetransBytes, 4883 snd_size); 4884 tcp_send_data(tcp, mp1); 4885 } 4886 } 4887 if (flags & TH_NEED_SACK_REXMIT) { 4888 tcp_sack_rexmit(tcp, &flags); 4889 } 4890 /* 4891 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 4892 * out new segment. Note that tcp_rexmit should not be 4893 * set, otherwise TH_LIMIT_XMIT should not be set. 4894 */ 4895 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 4896 if (!tcp->tcp_rexmit) { 4897 tcp_wput_data(tcp, NULL, B_FALSE); 4898 } else { 4899 tcp_ss_rexmit(tcp); 4900 } 4901 } 4902 /* 4903 * Adjust tcp_cwnd back to normal value after sending 4904 * new data segments. 4905 */ 4906 if (flags & TH_LIMIT_XMIT) { 4907 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 4908 /* 4909 * This will restart the timer. Restarting the 4910 * timer is used to avoid a timeout before the 4911 * limited transmitted segment's ACK gets back. 4912 */ 4913 if (tcp->tcp_xmit_head != NULL) 4914 tcp->tcp_xmit_head->b_prev = 4915 (mblk_t *)LBOLT_FASTPATH; 4916 } 4917 4918 /* Anything more to do? */ 4919 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 4920 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 4921 goto done; 4922 } 4923 ack_check: 4924 if (flags & TH_SEND_URP_MARK) { 4925 ASSERT(tcp->tcp_urp_mark_mp); 4926 ASSERT(!IPCL_IS_NONSTR(connp)); 4927 /* 4928 * Send up any queued data and then send the mark message 4929 */ 4930 if (tcp->tcp_rcv_list != NULL) { 4931 flags |= tcp_rcv_drain(tcp); 4932 4933 } 4934 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 4935 mp1 = tcp->tcp_urp_mark_mp; 4936 tcp->tcp_urp_mark_mp = NULL; 4937 if (is_system_labeled()) 4938 tcp_setcred_data(mp1, ira); 4939 4940 putnext(connp->conn_rq, mp1); 4941 #ifdef DEBUG 4942 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 4943 "tcp_rput: sending zero-length %s %s", 4944 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 4945 "MSGNOTMARKNEXT"), 4946 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4947 #endif /* DEBUG */ 4948 flags &= ~TH_SEND_URP_MARK; 4949 } 4950 if (flags & TH_ACK_NEEDED) { 4951 /* 4952 * Time to send an ack for some reason. 4953 */ 4954 mp1 = tcp_ack_mp(tcp); 4955 4956 if (mp1 != NULL) { 4957 tcp_send_data(tcp, mp1); 4958 BUMP_LOCAL(tcp->tcp_obsegs); 4959 TCPS_BUMP_MIB(tcps, tcpOutAck); 4960 } 4961 if (tcp->tcp_ack_tid != 0) { 4962 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4963 tcp->tcp_ack_tid = 0; 4964 } 4965 } 4966 if (flags & TH_ACK_TIMER_NEEDED) { 4967 /* 4968 * Arrange for deferred ACK or push wait timeout. 4969 * Start timer if it is not already running. 4970 */ 4971 if (tcp->tcp_ack_tid == 0) { 4972 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 4973 tcp->tcp_localnet ? 4974 tcps->tcps_local_dack_interval : 4975 tcps->tcps_deferred_ack_interval); 4976 } 4977 } 4978 if (flags & TH_ORDREL_NEEDED) { 4979 /* 4980 * Notify upper layer about an orderly release. If this is 4981 * a non-STREAMS socket, then just make an upcall. For STREAMS 4982 * we send up an ordrel_ind, unless this is an eager, in which 4983 * case the ordrel will be sent when tcp_accept_finish runs. 4984 * Note that for non-STREAMS we make an upcall even if it is an 4985 * eager, because we have an upper handle to send it to. 4986 */ 4987 ASSERT(IPCL_IS_NONSTR(connp) || tcp->tcp_listener == NULL); 4988 ASSERT(!tcp->tcp_detached); 4989 4990 if (IPCL_IS_NONSTR(connp)) { 4991 ASSERT(tcp->tcp_ordrel_mp == NULL); 4992 tcp->tcp_ordrel_done = B_TRUE; 4993 (*sockupcalls->su_opctl)(connp->conn_upper_handle, 4994 SOCK_OPCTL_SHUT_RECV, 0); 4995 goto done; 4996 } 4997 4998 if (tcp->tcp_rcv_list != NULL) { 4999 /* 5000 * Push any mblk(s) enqueued from co processing. 5001 */ 5002 flags |= tcp_rcv_drain(tcp); 5003 } 5004 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 5005 5006 mp1 = tcp->tcp_ordrel_mp; 5007 tcp->tcp_ordrel_mp = NULL; 5008 tcp->tcp_ordrel_done = B_TRUE; 5009 putnext(connp->conn_rq, mp1); 5010 } 5011 done: 5012 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 5013 } 5014 5015 /* 5016 * Attach ancillary data to a received TCP segments for the 5017 * ancillary pieces requested by the application that are 5018 * different than they were in the previous data segment. 5019 * 5020 * Save the "current" values once memory allocation is ok so that 5021 * when memory allocation fails we can just wait for the next data segment. 5022 */ 5023 static mblk_t * 5024 tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp, 5025 ip_recv_attr_t *ira) 5026 { 5027 struct T_optdata_ind *todi; 5028 int optlen; 5029 uchar_t *optptr; 5030 struct T_opthdr *toh; 5031 crb_t addflag; /* Which pieces to add */ 5032 mblk_t *mp1; 5033 conn_t *connp = tcp->tcp_connp; 5034 5035 optlen = 0; 5036 addflag.crb_all = 0; 5037 /* If app asked for pktinfo and the index has changed ... */ 5038 if (connp->conn_recv_ancillary.crb_ip_recvpktinfo && 5039 ira->ira_ruifindex != tcp->tcp_recvifindex) { 5040 optlen += sizeof (struct T_opthdr) + 5041 sizeof (struct in6_pktinfo); 5042 addflag.crb_ip_recvpktinfo = 1; 5043 } 5044 /* If app asked for hoplimit and it has changed ... */ 5045 if (connp->conn_recv_ancillary.crb_ipv6_recvhoplimit && 5046 ipp->ipp_hoplimit != tcp->tcp_recvhops) { 5047 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 5048 addflag.crb_ipv6_recvhoplimit = 1; 5049 } 5050 /* If app asked for tclass and it has changed ... */ 5051 if (connp->conn_recv_ancillary.crb_ipv6_recvtclass && 5052 ipp->ipp_tclass != tcp->tcp_recvtclass) { 5053 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 5054 addflag.crb_ipv6_recvtclass = 1; 5055 } 5056 /* 5057 * If app asked for hopbyhop headers and it has changed ... 5058 * For security labels, note that (1) security labels can't change on 5059 * a connected socket at all, (2) we're connected to at most one peer, 5060 * (3) if anything changes, then it must be some other extra option. 5061 */ 5062 if (connp->conn_recv_ancillary.crb_ipv6_recvhopopts && 5063 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 5064 (ipp->ipp_fields & IPPF_HOPOPTS), 5065 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 5066 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen; 5067 addflag.crb_ipv6_recvhopopts = 1; 5068 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 5069 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 5070 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 5071 return (mp); 5072 } 5073 /* If app asked for dst headers before routing headers ... */ 5074 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdrdstopts && 5075 ip_cmpbuf(tcp->tcp_rthdrdstopts, tcp->tcp_rthdrdstoptslen, 5076 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 5077 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) { 5078 optlen += sizeof (struct T_opthdr) + 5079 ipp->ipp_rthdrdstoptslen; 5080 addflag.crb_ipv6_recvrthdrdstopts = 1; 5081 if (!ip_allocbuf((void **)&tcp->tcp_rthdrdstopts, 5082 &tcp->tcp_rthdrdstoptslen, 5083 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 5084 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) 5085 return (mp); 5086 } 5087 /* If app asked for routing headers and it has changed ... */ 5088 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdr && 5089 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 5090 (ipp->ipp_fields & IPPF_RTHDR), 5091 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 5092 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 5093 addflag.crb_ipv6_recvrthdr = 1; 5094 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 5095 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 5096 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 5097 return (mp); 5098 } 5099 /* If app asked for dest headers and it has changed ... */ 5100 if ((connp->conn_recv_ancillary.crb_ipv6_recvdstopts || 5101 connp->conn_recv_ancillary.crb_old_ipv6_recvdstopts) && 5102 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 5103 (ipp->ipp_fields & IPPF_DSTOPTS), 5104 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 5105 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 5106 addflag.crb_ipv6_recvdstopts = 1; 5107 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 5108 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 5109 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 5110 return (mp); 5111 } 5112 5113 if (optlen == 0) { 5114 /* Nothing to add */ 5115 return (mp); 5116 } 5117 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 5118 if (mp1 == NULL) { 5119 /* 5120 * Defer sending ancillary data until the next TCP segment 5121 * arrives. 5122 */ 5123 return (mp); 5124 } 5125 mp1->b_cont = mp; 5126 mp = mp1; 5127 mp->b_wptr += sizeof (*todi) + optlen; 5128 mp->b_datap->db_type = M_PROTO; 5129 todi = (struct T_optdata_ind *)mp->b_rptr; 5130 todi->PRIM_type = T_OPTDATA_IND; 5131 todi->DATA_flag = 1; /* MORE data */ 5132 todi->OPT_length = optlen; 5133 todi->OPT_offset = sizeof (*todi); 5134 optptr = (uchar_t *)&todi[1]; 5135 /* 5136 * If app asked for pktinfo and the index has changed ... 5137 * Note that the local address never changes for the connection. 5138 */ 5139 if (addflag.crb_ip_recvpktinfo) { 5140 struct in6_pktinfo *pkti; 5141 uint_t ifindex; 5142 5143 ifindex = ira->ira_ruifindex; 5144 toh = (struct T_opthdr *)optptr; 5145 toh->level = IPPROTO_IPV6; 5146 toh->name = IPV6_PKTINFO; 5147 toh->len = sizeof (*toh) + sizeof (*pkti); 5148 toh->status = 0; 5149 optptr += sizeof (*toh); 5150 pkti = (struct in6_pktinfo *)optptr; 5151 pkti->ipi6_addr = connp->conn_laddr_v6; 5152 pkti->ipi6_ifindex = ifindex; 5153 optptr += sizeof (*pkti); 5154 ASSERT(OK_32PTR(optptr)); 5155 /* Save as "last" value */ 5156 tcp->tcp_recvifindex = ifindex; 5157 } 5158 /* If app asked for hoplimit and it has changed ... */ 5159 if (addflag.crb_ipv6_recvhoplimit) { 5160 toh = (struct T_opthdr *)optptr; 5161 toh->level = IPPROTO_IPV6; 5162 toh->name = IPV6_HOPLIMIT; 5163 toh->len = sizeof (*toh) + sizeof (uint_t); 5164 toh->status = 0; 5165 optptr += sizeof (*toh); 5166 *(uint_t *)optptr = ipp->ipp_hoplimit; 5167 optptr += sizeof (uint_t); 5168 ASSERT(OK_32PTR(optptr)); 5169 /* Save as "last" value */ 5170 tcp->tcp_recvhops = ipp->ipp_hoplimit; 5171 } 5172 /* If app asked for tclass and it has changed ... */ 5173 if (addflag.crb_ipv6_recvtclass) { 5174 toh = (struct T_opthdr *)optptr; 5175 toh->level = IPPROTO_IPV6; 5176 toh->name = IPV6_TCLASS; 5177 toh->len = sizeof (*toh) + sizeof (uint_t); 5178 toh->status = 0; 5179 optptr += sizeof (*toh); 5180 *(uint_t *)optptr = ipp->ipp_tclass; 5181 optptr += sizeof (uint_t); 5182 ASSERT(OK_32PTR(optptr)); 5183 /* Save as "last" value */ 5184 tcp->tcp_recvtclass = ipp->ipp_tclass; 5185 } 5186 if (addflag.crb_ipv6_recvhopopts) { 5187 toh = (struct T_opthdr *)optptr; 5188 toh->level = IPPROTO_IPV6; 5189 toh->name = IPV6_HOPOPTS; 5190 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen; 5191 toh->status = 0; 5192 optptr += sizeof (*toh); 5193 bcopy((uchar_t *)ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen); 5194 optptr += ipp->ipp_hopoptslen; 5195 ASSERT(OK_32PTR(optptr)); 5196 /* Save as last value */ 5197 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 5198 (ipp->ipp_fields & IPPF_HOPOPTS), 5199 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 5200 } 5201 if (addflag.crb_ipv6_recvrthdrdstopts) { 5202 toh = (struct T_opthdr *)optptr; 5203 toh->level = IPPROTO_IPV6; 5204 toh->name = IPV6_RTHDRDSTOPTS; 5205 toh->len = sizeof (*toh) + ipp->ipp_rthdrdstoptslen; 5206 toh->status = 0; 5207 optptr += sizeof (*toh); 5208 bcopy(ipp->ipp_rthdrdstopts, optptr, ipp->ipp_rthdrdstoptslen); 5209 optptr += ipp->ipp_rthdrdstoptslen; 5210 ASSERT(OK_32PTR(optptr)); 5211 /* Save as last value */ 5212 ip_savebuf((void **)&tcp->tcp_rthdrdstopts, 5213 &tcp->tcp_rthdrdstoptslen, 5214 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 5215 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 5216 } 5217 if (addflag.crb_ipv6_recvrthdr) { 5218 toh = (struct T_opthdr *)optptr; 5219 toh->level = IPPROTO_IPV6; 5220 toh->name = IPV6_RTHDR; 5221 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 5222 toh->status = 0; 5223 optptr += sizeof (*toh); 5224 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 5225 optptr += ipp->ipp_rthdrlen; 5226 ASSERT(OK_32PTR(optptr)); 5227 /* Save as last value */ 5228 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 5229 (ipp->ipp_fields & IPPF_RTHDR), 5230 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 5231 } 5232 if (addflag.crb_ipv6_recvdstopts) { 5233 toh = (struct T_opthdr *)optptr; 5234 toh->level = IPPROTO_IPV6; 5235 toh->name = IPV6_DSTOPTS; 5236 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 5237 toh->status = 0; 5238 optptr += sizeof (*toh); 5239 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 5240 optptr += ipp->ipp_dstoptslen; 5241 ASSERT(OK_32PTR(optptr)); 5242 /* Save as last value */ 5243 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 5244 (ipp->ipp_fields & IPPF_DSTOPTS), 5245 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 5246 } 5247 ASSERT(optptr == mp->b_wptr); 5248 return (mp); 5249 } 5250 5251 /* The minimum of smoothed mean deviation in RTO calculation. */ 5252 #define TCP_SD_MIN 400 5253 5254 /* 5255 * Set RTO for this connection. The formula is from Jacobson and Karels' 5256 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 5257 * are the same as those in Appendix A.2 of that paper. 5258 * 5259 * m = new measurement 5260 * sa = smoothed RTT average (8 * average estimates). 5261 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 5262 */ 5263 static void 5264 tcp_set_rto(tcp_t *tcp, clock_t rtt) 5265 { 5266 long m = TICK_TO_MSEC(rtt); 5267 clock_t sa = tcp->tcp_rtt_sa; 5268 clock_t sv = tcp->tcp_rtt_sd; 5269 clock_t rto; 5270 tcp_stack_t *tcps = tcp->tcp_tcps; 5271 5272 TCPS_BUMP_MIB(tcps, tcpRttUpdate); 5273 tcp->tcp_rtt_update++; 5274 5275 /* tcp_rtt_sa is not 0 means this is a new sample. */ 5276 if (sa != 0) { 5277 /* 5278 * Update average estimator: 5279 * new rtt = 7/8 old rtt + 1/8 Error 5280 */ 5281 5282 /* m is now Error in estimate. */ 5283 m -= sa >> 3; 5284 if ((sa += m) <= 0) { 5285 /* 5286 * Don't allow the smoothed average to be negative. 5287 * We use 0 to denote reinitialization of the 5288 * variables. 5289 */ 5290 sa = 1; 5291 } 5292 5293 /* 5294 * Update deviation estimator: 5295 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 5296 */ 5297 if (m < 0) 5298 m = -m; 5299 m -= sv >> 2; 5300 sv += m; 5301 } else { 5302 /* 5303 * This follows BSD's implementation. So the reinitialized 5304 * RTO is 3 * m. We cannot go less than 2 because if the 5305 * link is bandwidth dominated, doubling the window size 5306 * during slow start means doubling the RTT. We want to be 5307 * more conservative when we reinitialize our estimates. 3 5308 * is just a convenient number. 5309 */ 5310 sa = m << 3; 5311 sv = m << 1; 5312 } 5313 if (sv < TCP_SD_MIN) { 5314 /* 5315 * We do not know that if sa captures the delay ACK 5316 * effect as in a long train of segments, a receiver 5317 * does not delay its ACKs. So set the minimum of sv 5318 * to be TCP_SD_MIN, which is default to 400 ms, twice 5319 * of BSD DATO. That means the minimum of mean 5320 * deviation is 100 ms. 5321 * 5322 */ 5323 sv = TCP_SD_MIN; 5324 } 5325 tcp->tcp_rtt_sa = sa; 5326 tcp->tcp_rtt_sd = sv; 5327 /* 5328 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 5329 * 5330 * Add tcp_rexmit_interval extra in case of extreme environment 5331 * where the algorithm fails to work. The default value of 5332 * tcp_rexmit_interval_extra should be 0. 5333 * 5334 * As we use a finer grained clock than BSD and update 5335 * RTO for every ACKs, add in another .25 of RTT to the 5336 * deviation of RTO to accomodate burstiness of 1/4 of 5337 * window size. 5338 */ 5339 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 5340 5341 TCP_SET_RTO(tcp, rto); 5342 5343 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 5344 tcp->tcp_timer_backoff = 0; 5345 } 5346 5347 /* 5348 * On a labeled system we have some protocols above TCP, such as RPC, which 5349 * appear to assume that every mblk in a chain has a db_credp. 5350 */ 5351 static void 5352 tcp_setcred_data(mblk_t *mp, ip_recv_attr_t *ira) 5353 { 5354 ASSERT(is_system_labeled()); 5355 ASSERT(ira->ira_cred != NULL); 5356 5357 while (mp != NULL) { 5358 mblk_setcred(mp, ira->ira_cred, NOPID); 5359 mp = mp->b_cont; 5360 } 5361 } 5362 5363 uint_t 5364 tcp_rwnd_reopen(tcp_t *tcp) 5365 { 5366 uint_t ret = 0; 5367 uint_t thwin; 5368 conn_t *connp = tcp->tcp_connp; 5369 5370 /* Learn the latest rwnd information that we sent to the other side. */ 5371 thwin = ((uint_t)ntohs(tcp->tcp_tcpha->tha_win)) 5372 << tcp->tcp_rcv_ws; 5373 /* This is peer's calculated send window (our receive window). */ 5374 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 5375 /* 5376 * Increase the receive window to max. But we need to do receiver 5377 * SWS avoidance. This means that we need to check the increase of 5378 * of receive window is at least 1 MSS. 5379 */ 5380 if (connp->conn_rcvbuf - thwin >= tcp->tcp_mss) { 5381 /* 5382 * If the window that the other side knows is less than max 5383 * deferred acks segments, send an update immediately. 5384 */ 5385 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 5386 TCPS_BUMP_MIB(tcp->tcp_tcps, tcpOutWinUpdate); 5387 ret = TH_ACK_NEEDED; 5388 } 5389 tcp->tcp_rwnd = connp->conn_rcvbuf; 5390 } 5391 return (ret); 5392 } 5393 5394 /* 5395 * Handle a packet that has been reclassified by TCP. 5396 * This function drops the ref on connp that the caller had. 5397 */ 5398 void 5399 tcp_reinput(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst) 5400 { 5401 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5402 5403 if (connp->conn_incoming_ifindex != 0 && 5404 connp->conn_incoming_ifindex != ira->ira_ruifindex) { 5405 freemsg(mp); 5406 CONN_DEC_REF(connp); 5407 return; 5408 } 5409 5410 if (CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) || 5411 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 5412 ip6_t *ip6h; 5413 ipha_t *ipha; 5414 5415 if (ira->ira_flags & IRAF_IS_IPV4) { 5416 ipha = (ipha_t *)mp->b_rptr; 5417 ip6h = NULL; 5418 } else { 5419 ipha = NULL; 5420 ip6h = (ip6_t *)mp->b_rptr; 5421 } 5422 mp = ipsec_check_inbound_policy(mp, connp, ipha, ip6h, ira); 5423 if (mp == NULL) { 5424 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 5425 /* Note that mp is NULL */ 5426 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 5427 CONN_DEC_REF(connp); 5428 return; 5429 } 5430 } 5431 5432 if (IPCL_IS_TCP(connp)) { 5433 /* 5434 * do not drain, certain use cases can blow 5435 * the stack 5436 */ 5437 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 5438 connp->conn_recv, connp, ira, 5439 SQ_NODRAIN, SQTAG_IP_TCP_INPUT); 5440 } else { 5441 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 5442 (connp->conn_recv)(connp, mp, NULL, 5443 ira); 5444 CONN_DEC_REF(connp); 5445 } 5446 5447 } 5448 5449 /* ARGSUSED */ 5450 static void 5451 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 5452 { 5453 conn_t *connp = (conn_t *)arg; 5454 tcp_t *tcp = connp->conn_tcp; 5455 queue_t *q = connp->conn_rq; 5456 5457 ASSERT(!IPCL_IS_NONSTR(connp)); 5458 mutex_enter(&tcp->tcp_rsrv_mp_lock); 5459 tcp->tcp_rsrv_mp = mp; 5460 mutex_exit(&tcp->tcp_rsrv_mp_lock); 5461 5462 if (TCP_IS_DETACHED(tcp) || q == NULL) { 5463 return; 5464 } 5465 5466 if (tcp->tcp_fused) { 5467 tcp_fuse_backenable(tcp); 5468 return; 5469 } 5470 5471 if (canputnext(q)) { 5472 /* Not flow-controlled, open rwnd */ 5473 tcp->tcp_rwnd = connp->conn_rcvbuf; 5474 5475 /* 5476 * Send back a window update immediately if TCP is above 5477 * ESTABLISHED state and the increase of the rcv window 5478 * that the other side knows is at least 1 MSS after flow 5479 * control is lifted. 5480 */ 5481 if (tcp->tcp_state >= TCPS_ESTABLISHED && 5482 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 5483 tcp_xmit_ctl(NULL, tcp, 5484 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 5485 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 5486 } 5487 } 5488 } 5489 5490 /* 5491 * The read side service routine is called mostly when we get back-enabled as a 5492 * result of flow control relief. Since we don't actually queue anything in 5493 * TCP, we have no data to send out of here. What we do is clear the receive 5494 * window, and send out a window update. 5495 */ 5496 void 5497 tcp_rsrv(queue_t *q) 5498 { 5499 conn_t *connp = Q_TO_CONN(q); 5500 tcp_t *tcp = connp->conn_tcp; 5501 mblk_t *mp; 5502 5503 /* No code does a putq on the read side */ 5504 ASSERT(q->q_first == NULL); 5505 5506 /* 5507 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 5508 * been run. So just return. 5509 */ 5510 mutex_enter(&tcp->tcp_rsrv_mp_lock); 5511 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 5512 mutex_exit(&tcp->tcp_rsrv_mp_lock); 5513 return; 5514 } 5515 tcp->tcp_rsrv_mp = NULL; 5516 mutex_exit(&tcp->tcp_rsrv_mp_lock); 5517 5518 CONN_INC_REF(connp); 5519 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, 5520 NULL, SQ_PROCESS, SQTAG_TCP_RSRV); 5521 } 5522 5523 /* At minimum we need 8 bytes in the TCP header for the lookup */ 5524 #define ICMP_MIN_TCP_HDR 8 5525 5526 /* 5527 * tcp_icmp_input is called as conn_recvicmp to process ICMP error messages 5528 * passed up by IP. The message is always received on the correct tcp_t. 5529 * Assumes that IP has pulled up everything up to and including the ICMP header. 5530 */ 5531 /* ARGSUSED2 */ 5532 void 5533 tcp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 5534 { 5535 conn_t *connp = (conn_t *)arg1; 5536 icmph_t *icmph; 5537 ipha_t *ipha; 5538 int iph_hdr_length; 5539 tcpha_t *tcpha; 5540 uint32_t seg_seq; 5541 tcp_t *tcp = connp->conn_tcp; 5542 5543 /* Assume IP provides aligned packets */ 5544 ASSERT(OK_32PTR(mp->b_rptr)); 5545 ASSERT((MBLKL(mp) >= sizeof (ipha_t))); 5546 5547 /* 5548 * It's possible we have a closed, but not yet destroyed, TCP 5549 * connection. Several fields (e.g. conn_ixa->ixa_ire) are invalid 5550 * in the closed state, so don't take any chances and drop the packet. 5551 */ 5552 if (tcp->tcp_state == TCPS_CLOSED) { 5553 freemsg(mp); 5554 return; 5555 } 5556 5557 /* 5558 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 5559 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 5560 */ 5561 if (!(ira->ira_flags & IRAF_IS_IPV4)) { 5562 tcp_icmp_error_ipv6(tcp, mp, ira); 5563 return; 5564 } 5565 5566 /* Skip past the outer IP and ICMP headers */ 5567 iph_hdr_length = ira->ira_ip_hdr_length; 5568 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 5569 /* 5570 * If we don't have the correct outer IP header length 5571 * or if we don't have a complete inner IP header 5572 * drop it. 5573 */ 5574 if (iph_hdr_length < sizeof (ipha_t) || 5575 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 5576 noticmpv4: 5577 freemsg(mp); 5578 return; 5579 } 5580 ipha = (ipha_t *)&icmph[1]; 5581 5582 /* Skip past the inner IP and find the ULP header */ 5583 iph_hdr_length = IPH_HDR_LENGTH(ipha); 5584 tcpha = (tcpha_t *)((char *)ipha + iph_hdr_length); 5585 /* 5586 * If we don't have the correct inner IP header length or if the ULP 5587 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 5588 * bytes of TCP header, drop it. 5589 */ 5590 if (iph_hdr_length < sizeof (ipha_t) || 5591 ipha->ipha_protocol != IPPROTO_TCP || 5592 (uchar_t *)tcpha + ICMP_MIN_TCP_HDR > mp->b_wptr) { 5593 goto noticmpv4; 5594 } 5595 5596 seg_seq = ntohl(tcpha->tha_seq); 5597 switch (icmph->icmph_type) { 5598 case ICMP_DEST_UNREACHABLE: 5599 switch (icmph->icmph_code) { 5600 case ICMP_FRAGMENTATION_NEEDED: 5601 /* 5602 * Update Path MTU, then try to send something out. 5603 */ 5604 tcp_update_pmtu(tcp, B_TRUE); 5605 tcp_rexmit_after_error(tcp); 5606 break; 5607 case ICMP_PORT_UNREACHABLE: 5608 case ICMP_PROTOCOL_UNREACHABLE: 5609 switch (tcp->tcp_state) { 5610 case TCPS_SYN_SENT: 5611 case TCPS_SYN_RCVD: 5612 /* 5613 * ICMP can snipe away incipient 5614 * TCP connections as long as 5615 * seq number is same as initial 5616 * send seq number. 5617 */ 5618 if (seg_seq == tcp->tcp_iss) { 5619 (void) tcp_clean_death(tcp, 5620 ECONNREFUSED); 5621 } 5622 break; 5623 } 5624 break; 5625 case ICMP_HOST_UNREACHABLE: 5626 case ICMP_NET_UNREACHABLE: 5627 /* Record the error in case we finally time out. */ 5628 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 5629 tcp->tcp_client_errno = EHOSTUNREACH; 5630 else 5631 tcp->tcp_client_errno = ENETUNREACH; 5632 if (tcp->tcp_state == TCPS_SYN_RCVD) { 5633 if (tcp->tcp_listener != NULL && 5634 tcp->tcp_listener->tcp_syn_defense) { 5635 /* 5636 * Ditch the half-open connection if we 5637 * suspect a SYN attack is under way. 5638 */ 5639 (void) tcp_clean_death(tcp, 5640 tcp->tcp_client_errno); 5641 } 5642 } 5643 break; 5644 default: 5645 break; 5646 } 5647 break; 5648 case ICMP_SOURCE_QUENCH: { 5649 /* 5650 * use a global boolean to control 5651 * whether TCP should respond to ICMP_SOURCE_QUENCH. 5652 * The default is false. 5653 */ 5654 if (tcp_icmp_source_quench) { 5655 /* 5656 * Reduce the sending rate as if we got a 5657 * retransmit timeout 5658 */ 5659 uint32_t npkt; 5660 5661 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 5662 tcp->tcp_mss; 5663 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 5664 tcp->tcp_cwnd = tcp->tcp_mss; 5665 tcp->tcp_cwnd_cnt = 0; 5666 } 5667 break; 5668 } 5669 } 5670 freemsg(mp); 5671 } 5672 5673 /* 5674 * tcp_icmp_error_ipv6 is called from tcp_icmp_input to process ICMPv6 5675 * error messages passed up by IP. 5676 * Assumes that IP has pulled up all the extension headers as well 5677 * as the ICMPv6 header. 5678 */ 5679 static void 5680 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, ip_recv_attr_t *ira) 5681 { 5682 icmp6_t *icmp6; 5683 ip6_t *ip6h; 5684 uint16_t iph_hdr_length = ira->ira_ip_hdr_length; 5685 tcpha_t *tcpha; 5686 uint8_t *nexthdrp; 5687 uint32_t seg_seq; 5688 5689 /* 5690 * Verify that we have a complete IP header. 5691 */ 5692 ASSERT((MBLKL(mp) >= sizeof (ip6_t))); 5693 5694 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 5695 ip6h = (ip6_t *)&icmp6[1]; 5696 /* 5697 * Verify if we have a complete ICMP and inner IP header. 5698 */ 5699 if ((uchar_t *)&ip6h[1] > mp->b_wptr) { 5700 noticmpv6: 5701 freemsg(mp); 5702 return; 5703 } 5704 5705 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 5706 goto noticmpv6; 5707 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 5708 /* 5709 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 5710 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 5711 * packet. 5712 */ 5713 if ((*nexthdrp != IPPROTO_TCP) || 5714 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 5715 goto noticmpv6; 5716 } 5717 5718 seg_seq = ntohl(tcpha->tha_seq); 5719 switch (icmp6->icmp6_type) { 5720 case ICMP6_PACKET_TOO_BIG: 5721 /* 5722 * Update Path MTU, then try to send something out. 5723 */ 5724 tcp_update_pmtu(tcp, B_TRUE); 5725 tcp_rexmit_after_error(tcp); 5726 break; 5727 case ICMP6_DST_UNREACH: 5728 switch (icmp6->icmp6_code) { 5729 case ICMP6_DST_UNREACH_NOPORT: 5730 if (((tcp->tcp_state == TCPS_SYN_SENT) || 5731 (tcp->tcp_state == TCPS_SYN_RCVD)) && 5732 (seg_seq == tcp->tcp_iss)) { 5733 (void) tcp_clean_death(tcp, ECONNREFUSED); 5734 } 5735 break; 5736 case ICMP6_DST_UNREACH_ADMIN: 5737 case ICMP6_DST_UNREACH_NOROUTE: 5738 case ICMP6_DST_UNREACH_BEYONDSCOPE: 5739 case ICMP6_DST_UNREACH_ADDR: 5740 /* Record the error in case we finally time out. */ 5741 tcp->tcp_client_errno = EHOSTUNREACH; 5742 if (((tcp->tcp_state == TCPS_SYN_SENT) || 5743 (tcp->tcp_state == TCPS_SYN_RCVD)) && 5744 (seg_seq == tcp->tcp_iss)) { 5745 if (tcp->tcp_listener != NULL && 5746 tcp->tcp_listener->tcp_syn_defense) { 5747 /* 5748 * Ditch the half-open connection if we 5749 * suspect a SYN attack is under way. 5750 */ 5751 (void) tcp_clean_death(tcp, 5752 tcp->tcp_client_errno); 5753 } 5754 } 5755 5756 5757 break; 5758 default: 5759 break; 5760 } 5761 break; 5762 case ICMP6_PARAM_PROB: 5763 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 5764 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 5765 (uchar_t *)ip6h + icmp6->icmp6_pptr == 5766 (uchar_t *)nexthdrp) { 5767 if (tcp->tcp_state == TCPS_SYN_SENT || 5768 tcp->tcp_state == TCPS_SYN_RCVD) { 5769 (void) tcp_clean_death(tcp, ECONNREFUSED); 5770 } 5771 break; 5772 } 5773 break; 5774 5775 case ICMP6_TIME_EXCEEDED: 5776 default: 5777 break; 5778 } 5779 freemsg(mp); 5780 } 5781 5782 /* 5783 * CALLED OUTSIDE OF SQUEUE! It can not follow any pointers that tcp might 5784 * change. But it can refer to fields like tcp_suna and tcp_snxt. 5785 * 5786 * Function tcp_verifyicmp is called as conn_verifyicmp to verify the ICMP 5787 * error messages received by IP. The message is always received on the correct 5788 * tcp_t. 5789 */ 5790 /* ARGSUSED */ 5791 boolean_t 5792 tcp_verifyicmp(conn_t *connp, void *arg2, icmph_t *icmph, icmp6_t *icmp6, 5793 ip_recv_attr_t *ira) 5794 { 5795 tcpha_t *tcpha = (tcpha_t *)arg2; 5796 uint32_t seq = ntohl(tcpha->tha_seq); 5797 tcp_t *tcp = connp->conn_tcp; 5798 5799 /* 5800 * TCP sequence number contained in payload of the ICMP error message 5801 * should be within the range SND.UNA <= SEG.SEQ < SND.NXT. Otherwise, 5802 * the message is either a stale ICMP error, or an attack from the 5803 * network. Fail the verification. 5804 */ 5805 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 5806 return (B_FALSE); 5807 5808 /* For "too big" we also check the ignore flag */ 5809 if (ira->ira_flags & IRAF_IS_IPV4) { 5810 ASSERT(icmph != NULL); 5811 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && 5812 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 5813 tcp->tcp_tcps->tcps_ignore_path_mtu) 5814 return (B_FALSE); 5815 } else { 5816 ASSERT(icmp6 != NULL); 5817 if (icmp6->icmp6_type == ICMP6_PACKET_TOO_BIG && 5818 tcp->tcp_tcps->tcps_ignore_path_mtu) 5819 return (B_FALSE); 5820 } 5821 return (B_TRUE); 5822 } 5823