1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/debug.h> 33 #include <sys/cmn_err.h> 34 #include <sys/tihdr.h> 35 36 #include <inet/common.h> 37 #include <inet/ip.h> 38 #include <inet/ip_impl.h> 39 #include <inet/tcp.h> 40 #include <inet/tcp_impl.h> 41 #include <inet/ipsec_impl.h> 42 #include <inet/ipclassifier.h> 43 #include <inet/ipp_common.h> 44 45 /* 46 * This file implements TCP fusion - a protocol-less data path for TCP 47 * loopback connections. The fusion of two local TCP endpoints occurs 48 * at connection establishment time. Various conditions (see details 49 * in tcp_fuse()) need to be met for fusion to be successful. If it 50 * fails, we fall back to the regular TCP data path; if it succeeds, 51 * both endpoints proceed to use tcp_fuse_output() as the transmit path. 52 * tcp_fuse_output() enqueues application data directly onto the peer's 53 * receive queue; no protocol processing is involved. After enqueueing 54 * the data, the sender can either push (putnext) data up the receiver's 55 * read queue; or the sender can simply return and let the receiver 56 * retrieve the enqueued data via the synchronous streams entry point 57 * tcp_fuse_rrw(). The latter path is taken if synchronous streams is 58 * enabled (the default). It is disabled if sockfs no longer resides 59 * directly on top of tcp module due to a module insertion or removal. 60 * It also needs to be temporarily disabled when sending urgent data 61 * because the tcp_fuse_rrw() path bypasses the M_PROTO processing done 62 * by strsock_proto() hook. 63 * 64 * Sychronization is handled by squeue and the mutex tcp_fuse_lock. 65 * One of the requirements for fusion to succeed is that both endpoints 66 * need to be using the same squeue. This ensures that neither side 67 * can disappear while the other side is still sending data. By itself, 68 * squeue is not sufficient for guaranteeing safety when synchronous 69 * streams is enabled. The reason is that tcp_fuse_rrw() doesn't enter 70 * the squeue and its access to tcp_rcv_list and other fusion-related 71 * fields needs to be sychronized with the sender. tcp_fuse_lock is 72 * used for this purpose. When there is urgent data, the sender needs 73 * to push the data up the receiver's streams read queue. In order to 74 * avoid holding the tcp_fuse_lock across putnext(), the sender sets 75 * the peer tcp's tcp_fuse_syncstr_stopped bit and releases tcp_fuse_lock 76 * (see macro TCP_FUSE_SYNCSTR_STOP()). If tcp_fuse_rrw() enters after 77 * this point, it will see that synchronous streams is temporarily 78 * stopped and it will immediately return EBUSY without accessing the 79 * tcp_rcv_list or other fields protected by the tcp_fuse_lock. This 80 * will result in strget() calling getq_noenab() to dequeue data from 81 * the stream head instead. After the sender has finished pushing up 82 * all urgent data, it will clear the tcp_fuse_syncstr_stopped bit using 83 * TCP_FUSE_SYNCSTR_RESUME and the receiver may then resume using 84 * tcp_fuse_rrw() to retrieve data from tcp_rcv_list. 85 * 86 * The following note applies only to the synchronous streams mode. 87 * 88 * Flow control is done by checking the size of receive buffer and 89 * the number of data blocks, both set to different limits. This is 90 * different than regular streams flow control where cumulative size 91 * check dominates block count check -- streams queue high water mark 92 * typically represents bytes. Each enqueue triggers notifications 93 * to the receiving process; a build up of data blocks indicates a 94 * slow receiver and the sender should be blocked or informed at the 95 * earliest moment instead of further wasting system resources. In 96 * effect, this is equivalent to limiting the number of outstanding 97 * segments in flight. 98 */ 99 100 /* 101 * Macros that determine whether or not IP processing is needed for TCP. 102 */ 103 #define TCP_IPOPT_POLICY_V4(tcp) \ 104 ((tcp)->tcp_ipversion == IPV4_VERSION && \ 105 ((tcp)->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH || \ 106 CONN_OUTBOUND_POLICY_PRESENT((tcp)->tcp_connp) || \ 107 CONN_INBOUND_POLICY_PRESENT((tcp)->tcp_connp))) 108 109 #define TCP_IPOPT_POLICY_V6(tcp) \ 110 ((tcp)->tcp_ipversion == IPV6_VERSION && \ 111 ((tcp)->tcp_ip_hdr_len != IPV6_HDR_LEN || \ 112 CONN_OUTBOUND_POLICY_PRESENT_V6((tcp)->tcp_connp) || \ 113 CONN_INBOUND_POLICY_PRESENT_V6((tcp)->tcp_connp))) 114 115 #define TCP_LOOPBACK_IP(tcp) \ 116 (TCP_IPOPT_POLICY_V4(tcp) || TCP_IPOPT_POLICY_V6(tcp) || \ 117 !CONN_IS_MD_FASTPATH((tcp)->tcp_connp)) 118 119 /* 120 * Setting this to false means we disable fusion altogether and 121 * loopback connections would go through the protocol paths. 122 */ 123 boolean_t do_tcp_fusion = B_TRUE; 124 125 /* 126 * Enabling this flag allows sockfs to retrieve data directly 127 * from a fused tcp endpoint using synchronous streams interface. 128 */ 129 boolean_t do_tcp_direct_sockfs = B_TRUE; 130 131 /* 132 * This is the minimum amount of outstanding writes allowed on 133 * a synchronous streams-enabled receiving endpoint before the 134 * sender gets flow-controlled. Setting this value to 0 means 135 * that the data block limit is equivalent to the byte count 136 * limit, which essentially disables the check. 137 */ 138 #define TCP_FUSION_RCV_UNREAD_MIN 8 139 uint_t tcp_fusion_rcv_unread_min = TCP_FUSION_RCV_UNREAD_MIN; 140 141 static void tcp_fuse_syncstr_enable(tcp_t *); 142 static void tcp_fuse_syncstr_disable(tcp_t *); 143 static void strrput_sig(queue_t *, boolean_t); 144 145 /* 146 * This routine gets called by the eager tcp upon changing state from 147 * SYN_RCVD to ESTABLISHED. It fuses a direct path between itself 148 * and the active connect tcp such that the regular tcp processings 149 * may be bypassed under allowable circumstances. Because the fusion 150 * requires both endpoints to be in the same squeue, it does not work 151 * for simultaneous active connects because there is no easy way to 152 * switch from one squeue to another once the connection is created. 153 * This is different from the eager tcp case where we assign it the 154 * same squeue as the one given to the active connect tcp during open. 155 */ 156 void 157 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph) 158 { 159 conn_t *peer_connp, *connp = tcp->tcp_connp; 160 tcp_t *peer_tcp; 161 162 ASSERT(!tcp->tcp_fused); 163 ASSERT(tcp->tcp_loopback); 164 ASSERT(tcp->tcp_loopback_peer == NULL); 165 /* 166 * We need to inherit q_hiwat of the listener tcp, but we can't 167 * really use tcp_listener since we get here after sending up 168 * T_CONN_IND and tcp_wput_accept() may be called independently, 169 * at which point tcp_listener is cleared; this is why we use 170 * tcp_saved_listener. The listener itself is guaranteed to be 171 * around until tcp_accept_finish() is called on this eager -- 172 * this won't happen until we're done since we're inside the 173 * eager's perimeter now. 174 */ 175 ASSERT(tcp->tcp_saved_listener != NULL); 176 177 /* 178 * Lookup peer endpoint; search for the remote endpoint having 179 * the reversed address-port quadruplet in ESTABLISHED state, 180 * which is guaranteed to be unique in the system. Zone check 181 * is applied accordingly for loopback address, but not for 182 * local address since we want fusion to happen across Zones. 183 */ 184 if (tcp->tcp_ipversion == IPV4_VERSION) { 185 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp, 186 (ipha_t *)iphdr, tcph); 187 } else { 188 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp, 189 (ip6_t *)iphdr, tcph); 190 } 191 192 /* 193 * We can only proceed if peer exists, resides in the same squeue 194 * as our conn and is not raw-socket. The squeue assignment of 195 * this eager tcp was done earlier at the time of SYN processing 196 * in ip_fanout_tcp{_v6}. Note that similar squeues by itself 197 * doesn't guarantee a safe condition to fuse, hence we perform 198 * additional tests below. 199 */ 200 ASSERT(peer_connp == NULL || peer_connp != connp); 201 if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp || 202 !IPCL_IS_TCP(peer_connp)) { 203 if (peer_connp != NULL) { 204 TCP_STAT(tcp_fusion_unqualified); 205 CONN_DEC_REF(peer_connp); 206 } 207 return; 208 } 209 peer_tcp = peer_connp->conn_tcp; /* active connect tcp */ 210 211 ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused); 212 ASSERT(peer_tcp->tcp_loopback && peer_tcp->tcp_loopback_peer == NULL); 213 ASSERT(peer_connp->conn_sqp == connp->conn_sqp); 214 215 /* 216 * Fuse the endpoints; we perform further checks against both 217 * tcp endpoints to ensure that a fusion is allowed to happen. 218 * In particular we bail out for non-simple TCP/IP or if IPsec/ 219 * IPQoS policy/kernel SSL exists. 220 */ 221 if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable && 222 !TCP_LOOPBACK_IP(tcp) && !TCP_LOOPBACK_IP(peer_tcp) && 223 tcp->tcp_kssl_ent == NULL && 224 !IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN)) { 225 mblk_t *mp; 226 struct stroptions *stropt; 227 queue_t *peer_rq = peer_tcp->tcp_rq; 228 229 ASSERT(!TCP_IS_DETACHED(peer_tcp) && peer_rq != NULL); 230 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 231 ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL); 232 ASSERT(tcp->tcp_kssl_ctx == NULL); 233 234 /* 235 * We need to drain data on both endpoints during unfuse. 236 * If we need to send up SIGURG at the time of draining, 237 * we want to be sure that an mblk is readily available. 238 * This is why we pre-allocate the M_PCSIG mblks for both 239 * endpoints which will only be used during/after unfuse. 240 */ 241 if ((mp = allocb(1, BPRI_HI)) == NULL) 242 goto failed; 243 244 tcp->tcp_fused_sigurg_mp = mp; 245 246 if ((mp = allocb(1, BPRI_HI)) == NULL) 247 goto failed; 248 249 peer_tcp->tcp_fused_sigurg_mp = mp; 250 251 /* Allocate M_SETOPTS mblk */ 252 if ((mp = allocb(sizeof (*stropt), BPRI_HI)) == NULL) 253 goto failed; 254 255 /* Fuse both endpoints */ 256 peer_tcp->tcp_loopback_peer = tcp; 257 tcp->tcp_loopback_peer = peer_tcp; 258 peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE; 259 260 /* 261 * We never use regular tcp paths in fusion and should 262 * therefore clear tcp_unsent on both endpoints. Having 263 * them set to non-zero values means asking for trouble 264 * especially after unfuse, where we may end up sending 265 * through regular tcp paths which expect xmit_list and 266 * friends to be correctly setup. 267 */ 268 peer_tcp->tcp_unsent = tcp->tcp_unsent = 0; 269 270 tcp_timers_stop(tcp); 271 tcp_timers_stop(peer_tcp); 272 273 /* 274 * At this point we are a detached eager tcp and therefore 275 * don't have a queue assigned to us until accept happens. 276 * In the mean time the peer endpoint may immediately send 277 * us data as soon as fusion is finished, and we need to be 278 * able to flow control it in case it sends down huge amount 279 * of data while we're still detached. To prevent that we 280 * inherit the listener's q_hiwat value; this is temporary 281 * since we'll repeat the process in tcp_accept_finish(). 282 */ 283 (void) tcp_fuse_set_rcv_hiwat(tcp, 284 tcp->tcp_saved_listener->tcp_rq->q_hiwat); 285 286 /* 287 * Set the stream head's write offset value to zero since we 288 * won't be needing any room for TCP/IP headers; tell it to 289 * not break up the writes (this would reduce the amount of 290 * work done by kmem); and configure our receive buffer. 291 * Note that we can only do this for the active connect tcp 292 * since our eager is still detached; it will be dealt with 293 * later in tcp_accept_finish(). 294 */ 295 DB_TYPE(mp) = M_SETOPTS; 296 mp->b_wptr += sizeof (*stropt); 297 298 stropt = (struct stroptions *)mp->b_rptr; 299 stropt->so_flags = SO_MAXBLK | SO_WROFF | SO_HIWAT; 300 stropt->so_maxblk = tcp_maxpsz_set(peer_tcp, B_FALSE); 301 stropt->so_wroff = 0; 302 303 /* 304 * Record the stream head's high water mark for 305 * peer endpoint; this is used for flow-control 306 * purposes in tcp_fuse_output(). 307 */ 308 stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(peer_tcp, 309 peer_rq->q_hiwat); 310 311 /* Send the options up */ 312 putnext(peer_rq, mp); 313 } else { 314 TCP_STAT(tcp_fusion_unqualified); 315 } 316 CONN_DEC_REF(peer_connp); 317 return; 318 319 failed: 320 if (tcp->tcp_fused_sigurg_mp != NULL) { 321 freeb(tcp->tcp_fused_sigurg_mp); 322 tcp->tcp_fused_sigurg_mp = NULL; 323 } 324 if (peer_tcp->tcp_fused_sigurg_mp != NULL) { 325 freeb(peer_tcp->tcp_fused_sigurg_mp); 326 peer_tcp->tcp_fused_sigurg_mp = NULL; 327 } 328 CONN_DEC_REF(peer_connp); 329 } 330 331 /* 332 * Unfuse a previously-fused pair of tcp loopback endpoints. 333 */ 334 void 335 tcp_unfuse(tcp_t *tcp) 336 { 337 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 338 339 ASSERT(tcp->tcp_fused && peer_tcp != NULL); 340 ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp); 341 ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp); 342 ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0); 343 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 344 ASSERT(peer_tcp->tcp_fused_sigurg_mp != NULL); 345 346 /* 347 * We disable synchronous streams, drain any queued data and 348 * clear tcp_direct_sockfs. The synchronous streams entry 349 * points will become no-ops after this point. 350 */ 351 tcp_fuse_disable_pair(tcp, B_TRUE); 352 353 /* 354 * Update th_seq and th_ack in the header template 355 */ 356 U32_TO_ABE32(tcp->tcp_snxt, tcp->tcp_tcph->th_seq); 357 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 358 U32_TO_ABE32(peer_tcp->tcp_snxt, peer_tcp->tcp_tcph->th_seq); 359 U32_TO_ABE32(peer_tcp->tcp_rnxt, peer_tcp->tcp_tcph->th_ack); 360 361 /* Unfuse the endpoints */ 362 peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE; 363 peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL; 364 } 365 366 /* 367 * Fusion output routine for urgent data. This routine is called by 368 * tcp_fuse_output() for handling non-M_DATA mblks. 369 */ 370 void 371 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp) 372 { 373 mblk_t *mp1; 374 struct T_exdata_ind *tei; 375 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 376 mblk_t *head, *prev_head = NULL; 377 378 ASSERT(tcp->tcp_fused); 379 ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); 380 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 381 ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA); 382 ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0); 383 384 /* 385 * Urgent data arrives in the form of T_EXDATA_REQ from above. 386 * Each occurence denotes a new urgent pointer. For each new 387 * urgent pointer we signal (SIGURG) the receiving app to indicate 388 * that it needs to go into urgent mode. This is similar to the 389 * urgent data handling in the regular tcp. We don't need to keep 390 * track of where the urgent pointer is, because each T_EXDATA_REQ 391 * "advances" the urgent pointer for us. 392 * 393 * The actual urgent data carried by T_EXDATA_REQ is then prepended 394 * by a T_EXDATA_IND before being enqueued behind any existing data 395 * destined for the receiving app. There is only a single urgent 396 * pointer (out-of-band mark) for a given tcp. If the new urgent 397 * data arrives before the receiving app reads some existing urgent 398 * data, the previous marker is lost. This behavior is emulated 399 * accordingly below, by removing any existing T_EXDATA_IND messages 400 * and essentially converting old urgent data into non-urgent. 401 */ 402 ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID); 403 /* Let sender get out of urgent mode */ 404 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 405 406 /* 407 * This flag indicates that a signal needs to be sent up. 408 * This flag will only get cleared once SIGURG is delivered and 409 * is not affected by the tcp_fused flag -- delivery will still 410 * happen even after an endpoint is unfused, to handle the case 411 * where the sending endpoint immediately closes/unfuses after 412 * sending urgent data and the accept is not yet finished. 413 */ 414 peer_tcp->tcp_fused_sigurg = B_TRUE; 415 416 /* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */ 417 DB_TYPE(mp) = M_PROTO; 418 tei = (struct T_exdata_ind *)mp->b_rptr; 419 tei->PRIM_type = T_EXDATA_IND; 420 tei->MORE_flag = 0; 421 mp->b_wptr = (uchar_t *)&tei[1]; 422 423 TCP_STAT(tcp_fusion_urg); 424 BUMP_MIB(&tcp_mib, tcpOutUrg); 425 426 head = peer_tcp->tcp_rcv_list; 427 while (head != NULL) { 428 /* 429 * Remove existing T_EXDATA_IND, keep the data which follows 430 * it and relink our list. Note that we don't modify the 431 * tcp_rcv_last_tail since it never points to T_EXDATA_IND. 432 */ 433 if (DB_TYPE(head) != M_DATA) { 434 mp1 = head; 435 436 ASSERT(DB_TYPE(mp1->b_cont) == M_DATA); 437 head = mp1->b_cont; 438 mp1->b_cont = NULL; 439 head->b_next = mp1->b_next; 440 mp1->b_next = NULL; 441 if (prev_head != NULL) 442 prev_head->b_next = head; 443 if (peer_tcp->tcp_rcv_list == mp1) 444 peer_tcp->tcp_rcv_list = head; 445 if (peer_tcp->tcp_rcv_last_head == mp1) 446 peer_tcp->tcp_rcv_last_head = head; 447 freeb(mp1); 448 } 449 prev_head = head; 450 head = head->b_next; 451 } 452 } 453 454 /* 455 * Fusion output routine, called by tcp_output() and tcp_wput_proto(). 456 */ 457 boolean_t 458 tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size) 459 { 460 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 461 uint_t max_unread; 462 boolean_t flow_stopped; 463 boolean_t urgent = (DB_TYPE(mp) != M_DATA); 464 465 ASSERT(tcp->tcp_fused); 466 ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); 467 ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp); 468 ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO || 469 DB_TYPE(mp) == M_PCPROTO); 470 471 max_unread = peer_tcp->tcp_fuse_rcv_unread_hiwater; 472 473 /* If this connection requires IP, unfuse and use regular path */ 474 if (TCP_LOOPBACK_IP(tcp) || TCP_LOOPBACK_IP(peer_tcp) || 475 IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN)) { 476 TCP_STAT(tcp_fusion_aborted); 477 tcp_unfuse(tcp); 478 return (B_FALSE); 479 } 480 481 if (send_size == 0) { 482 freemsg(mp); 483 return (B_TRUE); 484 } 485 486 /* 487 * Handle urgent data; we either send up SIGURG to the peer now 488 * or do it later when we drain, in case the peer is detached 489 * or if we're short of memory for M_PCSIG mblk. 490 */ 491 if (urgent) { 492 /* 493 * We stop synchronous streams when we have urgent data 494 * queued to prevent tcp_fuse_rrw() from pulling it. If 495 * for some reasons the urgent data can't be delivered 496 * below, synchronous streams will remain stopped until 497 * someone drains the tcp_rcv_list. 498 */ 499 TCP_FUSE_SYNCSTR_STOP(peer_tcp); 500 tcp_fuse_output_urg(tcp, mp); 501 } 502 503 mutex_enter(&peer_tcp->tcp_fuse_lock); 504 /* 505 * Wake up and signal the peer; it is okay to do this before 506 * enqueueing because we are holding the lock. One of the 507 * advantages of synchronous streams is the ability for us to 508 * find out when the application performs a read on the socket, 509 * by way of tcp_fuse_rrw() entry point being called. Every 510 * data that gets enqueued onto the receiver is treated as if 511 * it has arrived at the receiving endpoint, thus generating 512 * SIGPOLL/SIGIO for asynchronous socket just as in the strrput() 513 * case. However, we only wake up the application when necessary, 514 * i.e. during the first enqueue. When tcp_fuse_rrw() is called 515 * it will send everything upstream. 516 */ 517 if (peer_tcp->tcp_direct_sockfs && !urgent && 518 !TCP_IS_DETACHED(peer_tcp)) { 519 if (peer_tcp->tcp_rcv_list == NULL) 520 STR_WAKEUP_SET(STREAM(peer_tcp->tcp_rq)); 521 /* Update poll events and send SIGPOLL/SIGIO if necessary */ 522 STR_SENDSIG(STREAM(peer_tcp->tcp_rq)); 523 } 524 525 /* 526 * Enqueue data into the peer's receive list; we may or may not 527 * drain the contents depending on the conditions below. 528 */ 529 tcp_rcv_enqueue(peer_tcp, mp, send_size); 530 531 /* In case it wrapped around and also to keep it constant */ 532 peer_tcp->tcp_rwnd += send_size; 533 534 /* 535 * Exercise flow-control when needed; we will get back-enabled 536 * in either tcp_accept_finish(), tcp_unfuse(), or tcp_fuse_rrw(). 537 * If tcp_direct_sockfs is on or if the peer endpoint is detached, 538 * we emulate streams flow control by checking the peer's queue 539 * size and high water mark; otherwise we simply use canputnext() 540 * to decide if we need to stop our flow. 541 * 542 * The outstanding unread data block check does not apply for a 543 * detached receiver; this is to avoid unnecessary blocking of the 544 * sender while the accept is currently in progress and is quite 545 * similar to the regular tcp. 546 */ 547 if (TCP_IS_DETACHED(peer_tcp) || max_unread == 0) 548 max_unread = UINT_MAX; 549 550 flow_stopped = tcp->tcp_flow_stopped; 551 if (!flow_stopped && 552 (((peer_tcp->tcp_direct_sockfs || TCP_IS_DETACHED(peer_tcp)) && 553 (peer_tcp->tcp_rcv_cnt >= peer_tcp->tcp_fuse_rcv_hiwater || 554 ++peer_tcp->tcp_fuse_rcv_unread_cnt >= max_unread)) || 555 (!peer_tcp->tcp_direct_sockfs && 556 !TCP_IS_DETACHED(peer_tcp) && !canputnext(peer_tcp->tcp_rq)))) { 557 tcp_setqfull(tcp); 558 flow_stopped = B_TRUE; 559 TCP_STAT(tcp_fusion_flowctl); 560 DTRACE_PROBE4(tcp__fuse__output__flowctl, tcp_t *, tcp, 561 uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt, 562 uint_t, peer_tcp->tcp_fuse_rcv_unread_cnt); 563 } else if (flow_stopped && 564 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 565 tcp_clrqfull(tcp); 566 } 567 568 loopback_packets++; 569 tcp->tcp_last_sent_len = send_size; 570 571 /* Need to adjust the following SNMP MIB-related variables */ 572 tcp->tcp_snxt += send_size; 573 tcp->tcp_suna = tcp->tcp_snxt; 574 peer_tcp->tcp_rnxt += send_size; 575 peer_tcp->tcp_rack = peer_tcp->tcp_rnxt; 576 577 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 578 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, send_size); 579 580 BUMP_MIB(&tcp_mib, tcpInSegs); 581 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 582 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, send_size); 583 584 BUMP_LOCAL(tcp->tcp_obsegs); 585 BUMP_LOCAL(peer_tcp->tcp_ibsegs); 586 587 mutex_exit(&peer_tcp->tcp_fuse_lock); 588 589 DTRACE_PROBE2(tcp__fuse__output, tcp_t *, tcp, uint_t, send_size); 590 591 if (!TCP_IS_DETACHED(peer_tcp)) { 592 /* 593 * Drain the peer's receive queue it has urgent data or if 594 * we're not flow-controlled. There is no need for draining 595 * normal data when tcp_direct_sockfs is on because the peer 596 * will pull the data via tcp_fuse_rrw(). 597 */ 598 if (urgent || (!flow_stopped && !peer_tcp->tcp_direct_sockfs)) { 599 ASSERT(peer_tcp->tcp_rcv_list != NULL); 600 /* 601 * For TLI-based streams, a thread in tcp_accept_swap() 602 * can race with us. That thread will ensure that the 603 * correct peer_tcp->tcp_rq is globally visible before 604 * peer_tcp->tcp_detached is visible as clear, but we 605 * must also ensure that the load of tcp_rq cannot be 606 * reordered to be before the tcp_detached check. 607 */ 608 membar_consumer(); 609 (void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp, 610 NULL); 611 /* 612 * If synchronous streams was stopped above due 613 * to the presence of urgent data, re-enable it. 614 */ 615 if (urgent) 616 TCP_FUSE_SYNCSTR_RESUME(peer_tcp); 617 } 618 } 619 return (B_TRUE); 620 } 621 622 /* 623 * This routine gets called to deliver data upstream on a fused or 624 * previously fused tcp loopback endpoint; the latter happens only 625 * when there is a pending SIGURG signal plus urgent data that can't 626 * be sent upstream in the past. 627 */ 628 boolean_t 629 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp) 630 { 631 mblk_t *mp; 632 #ifdef DEBUG 633 uint_t cnt = 0; 634 #endif 635 636 ASSERT(tcp->tcp_loopback); 637 ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg); 638 ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL); 639 ASSERT(sigurg_mpp != NULL || tcp->tcp_fused); 640 641 /* No need for the push timer now, in case it was scheduled */ 642 if (tcp->tcp_push_tid != 0) { 643 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 644 tcp->tcp_push_tid = 0; 645 } 646 /* 647 * If there's urgent data sitting in receive list and we didn't 648 * get a chance to send up a SIGURG signal, make sure we send 649 * it first before draining in order to ensure that SIOCATMARK 650 * works properly. 651 */ 652 if (tcp->tcp_fused_sigurg) { 653 /* 654 * sigurg_mpp is normally NULL, i.e. when we're still 655 * fused and didn't get here because of tcp_unfuse(). 656 * In this case try hard to allocate the M_PCSIG mblk. 657 */ 658 if (sigurg_mpp == NULL && 659 (mp = allocb(1, BPRI_HI)) == NULL && 660 (mp = allocb_tryhard(1)) == NULL) { 661 /* Alloc failed; try again next time */ 662 tcp->tcp_push_tid = TCP_TIMER(tcp, tcp_push_timer, 663 MSEC_TO_TICK(tcp_push_timer_interval)); 664 return (B_TRUE); 665 } else if (sigurg_mpp != NULL) { 666 /* 667 * Use the supplied M_PCSIG mblk; it means we're 668 * either unfused or in the process of unfusing, 669 * and the drain must happen now. 670 */ 671 mp = *sigurg_mpp; 672 *sigurg_mpp = NULL; 673 } 674 ASSERT(mp != NULL); 675 676 tcp->tcp_fused_sigurg = B_FALSE; 677 /* Send up the signal */ 678 DB_TYPE(mp) = M_PCSIG; 679 *mp->b_wptr++ = (uchar_t)SIGURG; 680 putnext(q, mp); 681 /* 682 * Let the regular tcp_rcv_drain() path handle 683 * draining the data if we're no longer fused. 684 */ 685 if (!tcp->tcp_fused) 686 return (B_FALSE); 687 } 688 689 /* 690 * In the synchronous streams case, we generate SIGPOLL/SIGIO for 691 * each M_DATA that gets enqueued onto the receiver. At this point 692 * we are about to drain any queued data via putnext(). In order 693 * to avoid extraneous signal generation from strrput(), we set 694 * STRGETINPROG flag at the stream head prior to the draining and 695 * restore it afterwards. This masks out signal generation only 696 * for M_DATA messages and does not affect urgent data. 697 */ 698 if (tcp->tcp_direct_sockfs) 699 strrput_sig(q, B_FALSE); 700 701 /* Drain the data */ 702 while ((mp = tcp->tcp_rcv_list) != NULL) { 703 tcp->tcp_rcv_list = mp->b_next; 704 mp->b_next = NULL; 705 #ifdef DEBUG 706 cnt += msgdsize(mp); 707 #endif 708 putnext(q, mp); 709 TCP_STAT(tcp_fusion_putnext); 710 } 711 712 if (tcp->tcp_direct_sockfs) 713 strrput_sig(q, B_TRUE); 714 715 ASSERT(cnt == tcp->tcp_rcv_cnt); 716 tcp->tcp_rcv_last_head = NULL; 717 tcp->tcp_rcv_last_tail = NULL; 718 tcp->tcp_rcv_cnt = 0; 719 tcp->tcp_fuse_rcv_unread_cnt = 0; 720 tcp->tcp_rwnd = q->q_hiwat; 721 722 return (B_TRUE); 723 } 724 725 /* 726 * Synchronous stream entry point for sockfs to retrieve 727 * data directly from tcp_rcv_list. 728 */ 729 int 730 tcp_fuse_rrw(queue_t *q, struiod_t *dp) 731 { 732 tcp_t *tcp = Q_TO_CONN(q)->conn_tcp; 733 mblk_t *mp; 734 735 mutex_enter(&tcp->tcp_fuse_lock); 736 /* 737 * If someone had turned off tcp_direct_sockfs or if synchronous 738 * streams is temporarily disabled, we return EBUSY. This causes 739 * strget() to dequeue data from the stream head instead. 740 */ 741 if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped) { 742 mutex_exit(&tcp->tcp_fuse_lock); 743 TCP_STAT(tcp_fusion_rrw_busy); 744 return (EBUSY); 745 } 746 747 if ((mp = tcp->tcp_rcv_list) != NULL) { 748 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 749 750 DTRACE_PROBE3(tcp__fuse__rrw, tcp_t *, tcp, 751 uint32_t, tcp->tcp_rcv_cnt, ssize_t, dp->d_uio.uio_resid); 752 753 tcp->tcp_rcv_list = NULL; 754 TCP_STAT(tcp_fusion_rrw_msgcnt); 755 756 /* 757 * At this point nothing should be left in tcp_rcv_list. 758 * The only possible case where we would have a chain of 759 * b_next-linked messages is urgent data, but we wouldn't 760 * be here if that's true since urgent data is delivered 761 * via putnext() and synchronous streams is stopped until 762 * tcp_fuse_rcv_drain() is finished. 763 */ 764 ASSERT(DB_TYPE(mp) == M_DATA && mp->b_next == NULL); 765 766 tcp->tcp_rcv_last_head = NULL; 767 tcp->tcp_rcv_last_tail = NULL; 768 tcp->tcp_rcv_cnt = 0; 769 tcp->tcp_fuse_rcv_unread_cnt = 0; 770 771 if (peer_tcp->tcp_flow_stopped) { 772 tcp_clrqfull(peer_tcp); 773 TCP_STAT(tcp_fusion_backenabled); 774 } 775 } 776 777 /* 778 * Either we just dequeued everything or we get here from sockfs 779 * and have nothing to return; in this case clear RSLEEP. 780 */ 781 ASSERT(tcp->tcp_rcv_last_head == NULL); 782 ASSERT(tcp->tcp_rcv_last_tail == NULL); 783 ASSERT(tcp->tcp_rcv_cnt == 0); 784 ASSERT(tcp->tcp_fuse_rcv_unread_cnt == 0); 785 STR_WAKEUP_CLEAR(STREAM(q)); 786 787 mutex_exit(&tcp->tcp_fuse_lock); 788 dp->d_mp = mp; 789 return (0); 790 } 791 792 /* 793 * Synchronous stream entry point used by certain ioctls to retrieve 794 * information about or peek into the tcp_rcv_list. 795 */ 796 int 797 tcp_fuse_rinfop(queue_t *q, infod_t *dp) 798 { 799 tcp_t *tcp = Q_TO_CONN(q)->conn_tcp; 800 mblk_t *mp; 801 uint_t cmd = dp->d_cmd; 802 int res = 0; 803 int error = 0; 804 struct stdata *stp = STREAM(q); 805 806 mutex_enter(&tcp->tcp_fuse_lock); 807 /* If shutdown on read has happened, return nothing */ 808 mutex_enter(&stp->sd_lock); 809 if (stp->sd_flag & STREOF) { 810 mutex_exit(&stp->sd_lock); 811 goto done; 812 } 813 mutex_exit(&stp->sd_lock); 814 815 /* 816 * It is OK not to return an answer if tcp_rcv_list is 817 * currently not accessible. 818 */ 819 if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped || 820 (mp = tcp->tcp_rcv_list) == NULL) 821 goto done; 822 823 if (cmd & INFOD_COUNT) { 824 /* 825 * We have at least one message and 826 * could return only one at a time. 827 */ 828 dp->d_count++; 829 res |= INFOD_COUNT; 830 } 831 if (cmd & INFOD_BYTES) { 832 /* 833 * Return size of all data messages. 834 */ 835 dp->d_bytes += tcp->tcp_rcv_cnt; 836 res |= INFOD_BYTES; 837 } 838 if (cmd & INFOD_FIRSTBYTES) { 839 /* 840 * Return size of first data message. 841 */ 842 dp->d_bytes = msgdsize(mp); 843 res |= INFOD_FIRSTBYTES; 844 dp->d_cmd &= ~INFOD_FIRSTBYTES; 845 } 846 if (cmd & INFOD_COPYOUT) { 847 mblk_t *mp1; 848 int n; 849 850 if (DB_TYPE(mp) == M_DATA) { 851 mp1 = mp; 852 } else { 853 mp1 = mp->b_cont; 854 ASSERT(mp1 != NULL); 855 } 856 857 /* 858 * Return data contents of first message. 859 */ 860 ASSERT(DB_TYPE(mp1) == M_DATA); 861 while (mp1 != NULL && dp->d_uiop->uio_resid > 0) { 862 n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1)); 863 if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n, 864 UIO_READ, dp->d_uiop)) != 0) { 865 goto done; 866 } 867 mp1 = mp1->b_cont; 868 } 869 res |= INFOD_COPYOUT; 870 dp->d_cmd &= ~INFOD_COPYOUT; 871 } 872 done: 873 mutex_exit(&tcp->tcp_fuse_lock); 874 875 dp->d_res |= res; 876 877 return (error); 878 } 879 880 /* 881 * Enable synchronous streams on a fused tcp loopback endpoint. 882 */ 883 static void 884 tcp_fuse_syncstr_enable(tcp_t *tcp) 885 { 886 queue_t *rq = tcp->tcp_rq; 887 struct stdata *stp = STREAM(rq); 888 889 /* We can only enable synchronous streams for sockfs mode */ 890 tcp->tcp_direct_sockfs = tcp->tcp_issocket && do_tcp_direct_sockfs; 891 892 if (!tcp->tcp_direct_sockfs) 893 return; 894 895 mutex_enter(&stp->sd_lock); 896 mutex_enter(QLOCK(rq)); 897 898 /* 899 * We replace our q_qinfo with one that has the qi_rwp entry point. 900 * Clear SR_SIGALLDATA because we generate the equivalent signal(s) 901 * for every enqueued data in tcp_fuse_output(). 902 */ 903 rq->q_qinfo = &tcp_loopback_rinit; 904 rq->q_struiot = tcp_loopback_rinit.qi_struiot; 905 stp->sd_struiordq = rq; 906 stp->sd_rput_opt &= ~SR_SIGALLDATA; 907 908 mutex_exit(QLOCK(rq)); 909 mutex_exit(&stp->sd_lock); 910 } 911 912 /* 913 * Disable synchronous streams on a fused tcp loopback endpoint. 914 */ 915 static void 916 tcp_fuse_syncstr_disable(tcp_t *tcp) 917 { 918 queue_t *rq = tcp->tcp_rq; 919 struct stdata *stp = STREAM(rq); 920 921 if (!tcp->tcp_direct_sockfs) 922 return; 923 924 mutex_enter(&stp->sd_lock); 925 mutex_enter(QLOCK(rq)); 926 927 /* 928 * Reset q_qinfo to point to the default tcp entry points. 929 * Also restore SR_SIGALLDATA so that strrput() can generate 930 * the signals again for future M_DATA messages. 931 */ 932 rq->q_qinfo = &tcp_rinit; 933 rq->q_struiot = tcp_rinit.qi_struiot; 934 stp->sd_struiordq = NULL; 935 stp->sd_rput_opt |= SR_SIGALLDATA; 936 tcp->tcp_direct_sockfs = B_FALSE; 937 938 mutex_exit(QLOCK(rq)); 939 mutex_exit(&stp->sd_lock); 940 } 941 942 /* 943 * Enable synchronous streams on a pair of fused tcp endpoints. 944 */ 945 void 946 tcp_fuse_syncstr_enable_pair(tcp_t *tcp) 947 { 948 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 949 950 ASSERT(tcp->tcp_fused); 951 ASSERT(peer_tcp != NULL); 952 953 tcp_fuse_syncstr_enable(tcp); 954 tcp_fuse_syncstr_enable(peer_tcp); 955 } 956 957 /* 958 * Allow or disallow signals to be generated by strrput(). 959 */ 960 static void 961 strrput_sig(queue_t *q, boolean_t on) 962 { 963 struct stdata *stp = STREAM(q); 964 965 mutex_enter(&stp->sd_lock); 966 if (on) 967 stp->sd_flag &= ~STRGETINPROG; 968 else 969 stp->sd_flag |= STRGETINPROG; 970 mutex_exit(&stp->sd_lock); 971 } 972 973 /* 974 * Disable synchronous streams on a pair of fused tcp endpoints and drain 975 * any queued data; called either during unfuse or upon transitioning from 976 * a socket to a stream endpoint due to _SIOCSOCKFALLBACK. 977 */ 978 void 979 tcp_fuse_disable_pair(tcp_t *tcp, boolean_t unfusing) 980 { 981 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 982 983 ASSERT(tcp->tcp_fused); 984 ASSERT(peer_tcp != NULL); 985 986 /* 987 * We need to prevent tcp_fuse_rrw() from entering before 988 * we can disable synchronous streams. 989 */ 990 TCP_FUSE_SYNCSTR_STOP(tcp); 991 TCP_FUSE_SYNCSTR_STOP(peer_tcp); 992 993 /* 994 * Drain any pending data; the detached check is needed because 995 * we may be called as a result of a tcp_unfuse() triggered by 996 * tcp_fuse_output(). Note that in case of a detached tcp, the 997 * draining will happen later after the tcp is unfused. For non- 998 * urgent data, this can be handled by the regular tcp_rcv_drain(). 999 * If we have urgent data sitting in the receive list, we will 1000 * need to send up a SIGURG signal first before draining the data. 1001 * All of these will be handled by the code in tcp_fuse_rcv_drain() 1002 * when called from tcp_rcv_drain(). 1003 */ 1004 if (!TCP_IS_DETACHED(tcp)) { 1005 (void) tcp_fuse_rcv_drain(tcp->tcp_rq, tcp, 1006 (unfusing ? &tcp->tcp_fused_sigurg_mp : NULL)); 1007 } 1008 if (!TCP_IS_DETACHED(peer_tcp)) { 1009 (void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp, 1010 (unfusing ? &peer_tcp->tcp_fused_sigurg_mp : NULL)); 1011 } 1012 1013 /* Lift up any flow-control conditions */ 1014 if (tcp->tcp_flow_stopped) { 1015 tcp_clrqfull(tcp); 1016 TCP_STAT(tcp_fusion_backenabled); 1017 } 1018 if (peer_tcp->tcp_flow_stopped) { 1019 tcp_clrqfull(peer_tcp); 1020 TCP_STAT(tcp_fusion_backenabled); 1021 } 1022 1023 /* Disable synchronous streams */ 1024 tcp_fuse_syncstr_disable(tcp); 1025 tcp_fuse_syncstr_disable(peer_tcp); 1026 } 1027 1028 /* 1029 * Calculate the size of receive buffer for a fused tcp endpoint. 1030 */ 1031 size_t 1032 tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd) 1033 { 1034 ASSERT(tcp->tcp_fused); 1035 1036 /* Ensure that value is within the maximum upper bound */ 1037 if (rwnd > tcp_max_buf) 1038 rwnd = tcp_max_buf; 1039 1040 /* Obey the absolute minimum tcp receive high water mark */ 1041 if (rwnd < tcp_sth_rcv_hiwat) 1042 rwnd = tcp_sth_rcv_hiwat; 1043 1044 /* 1045 * Round up to system page size in case SO_RCVBUF is modified 1046 * after SO_SNDBUF; the latter is also similarly rounded up. 1047 */ 1048 rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t); 1049 tcp->tcp_fuse_rcv_hiwater = rwnd; 1050 return (rwnd); 1051 } 1052 1053 /* 1054 * Calculate the maximum outstanding unread data block for a fused tcp endpoint. 1055 */ 1056 int 1057 tcp_fuse_maxpsz_set(tcp_t *tcp) 1058 { 1059 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 1060 uint_t sndbuf = tcp->tcp_xmit_hiwater; 1061 uint_t maxpsz = sndbuf; 1062 1063 ASSERT(tcp->tcp_fused); 1064 ASSERT(peer_tcp != NULL); 1065 ASSERT(peer_tcp->tcp_fuse_rcv_hiwater != 0); 1066 /* 1067 * In the fused loopback case, we want the stream head to split 1068 * up larger writes into smaller chunks for a more accurate flow- 1069 * control accounting. Our maxpsz is half of the sender's send 1070 * buffer or the receiver's receive buffer, whichever is smaller. 1071 * We round up the buffer to system page size due to the lack of 1072 * TCP MSS concept in Fusion. 1073 */ 1074 if (maxpsz > peer_tcp->tcp_fuse_rcv_hiwater) 1075 maxpsz = peer_tcp->tcp_fuse_rcv_hiwater; 1076 maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1; 1077 1078 /* 1079 * Calculate the peer's limit for the number of outstanding unread 1080 * data block. This is the amount of data blocks that are allowed 1081 * to reside in the receiver's queue before the sender gets flow 1082 * controlled. It is used only in the synchronous streams mode as 1083 * a way to throttle the sender when it performs consecutive writes 1084 * faster than can be read. The value is derived from SO_SNDBUF in 1085 * order to give the sender some control; we divide it with a large 1086 * value (16KB) to produce a fairly low initial limit. 1087 */ 1088 if (tcp_fusion_rcv_unread_min == 0) { 1089 /* A value of 0 means that we disable the check */ 1090 peer_tcp->tcp_fuse_rcv_unread_hiwater = 0; 1091 } else { 1092 peer_tcp->tcp_fuse_rcv_unread_hiwater = 1093 MAX(sndbuf >> 14, tcp_fusion_rcv_unread_min); 1094 } 1095 return (maxpsz); 1096 } 1097