xref: /titanic_51/usr/src/uts/common/inet/tcp/tcp_fusion.c (revision 8e50dcc9f00b393d43e6aa42b820bcbf1d3e1ce4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/stream.h>
30 #include <sys/strsun.h>
31 #include <sys/strsubr.h>
32 #include <sys/debug.h>
33 #include <sys/sdt.h>
34 #include <sys/cmn_err.h>
35 #include <sys/tihdr.h>
36 
37 #include <inet/common.h>
38 #include <inet/optcom.h>
39 #include <inet/ip.h>
40 #include <inet/ip_impl.h>
41 #include <inet/tcp.h>
42 #include <inet/tcp_impl.h>
43 #include <inet/ipsec_impl.h>
44 #include <inet/ipclassifier.h>
45 #include <inet/ipp_common.h>
46 
47 /*
48  * This file implements TCP fusion - a protocol-less data path for TCP
49  * loopback connections.  The fusion of two local TCP endpoints occurs
50  * at connection establishment time.  Various conditions (see details
51  * in tcp_fuse()) need to be met for fusion to be successful.  If it
52  * fails, we fall back to the regular TCP data path; if it succeeds,
53  * both endpoints proceed to use tcp_fuse_output() as the transmit path.
54  * tcp_fuse_output() enqueues application data directly onto the peer's
55  * receive queue; no protocol processing is involved.  After enqueueing
56  * the data, the sender can either push (putnext) data up the receiver's
57  * read queue; or the sender can simply return and let the receiver
58  * retrieve the enqueued data via the synchronous streams entry point
59  * tcp_fuse_rrw().  The latter path is taken if synchronous streams is
60  * enabled (the default).  It is disabled if sockfs no longer resides
61  * directly on top of tcp module due to a module insertion or removal.
62  * It also needs to be temporarily disabled when sending urgent data
63  * because the tcp_fuse_rrw() path bypasses the M_PROTO processing done
64  * by strsock_proto() hook.
65  *
66  * Sychronization is handled by squeue and the mutex tcp_non_sq_lock.
67  * One of the requirements for fusion to succeed is that both endpoints
68  * need to be using the same squeue.  This ensures that neither side
69  * can disappear while the other side is still sending data.  By itself,
70  * squeue is not sufficient for guaranteeing safety when synchronous
71  * streams is enabled.  The reason is that tcp_fuse_rrw() doesn't enter
72  * the squeue and its access to tcp_rcv_list and other fusion-related
73  * fields needs to be sychronized with the sender.  tcp_non_sq_lock is
74  * used for this purpose.  When there is urgent data, the sender needs
75  * to push the data up the receiver's streams read queue.  In order to
76  * avoid holding the tcp_non_sq_lock across putnext(), the sender sets
77  * the peer tcp's tcp_fuse_syncstr_plugged bit and releases tcp_non_sq_lock
78  * (see macro TCP_FUSE_SYNCSTR_PLUG_DRAIN()).  If tcp_fuse_rrw() enters
79  * after this point, it will see that synchronous streams is plugged and
80  * will wait on tcp_fuse_plugcv.  After the sender has finished pushing up
81  * all urgent data, it will clear the tcp_fuse_syncstr_plugged bit using
82  * TCP_FUSE_SYNCSTR_UNPLUG_DRAIN().  This will cause any threads waiting
83  * on tcp_fuse_plugcv to return EBUSY, and in turn cause strget() to call
84  * getq_noenab() to dequeue data from the stream head instead.  Once the
85  * data on the stream head has been consumed, tcp_fuse_rrw() may again
86  * be used to process tcp_rcv_list.  However, if TCP_FUSE_SYNCSTR_STOP()
87  * has been called, all future calls to tcp_fuse_rrw() will return EBUSY,
88  * effectively disabling synchronous streams.
89  *
90  * The following note applies only to the synchronous streams mode.
91  *
92  * Flow control is done by checking the size of receive buffer and
93  * the number of data blocks, both set to different limits.  This is
94  * different than regular streams flow control where cumulative size
95  * check dominates block count check -- streams queue high water mark
96  * typically represents bytes.  Each enqueue triggers notifications
97  * to the receiving process; a build up of data blocks indicates a
98  * slow receiver and the sender should be blocked or informed at the
99  * earliest moment instead of further wasting system resources.  In
100  * effect, this is equivalent to limiting the number of outstanding
101  * segments in flight.
102  */
103 
104 /*
105  * Setting this to false means we disable fusion altogether and
106  * loopback connections would go through the protocol paths.
107  */
108 boolean_t do_tcp_fusion = B_TRUE;
109 
110 /*
111  * Enabling this flag allows sockfs to retrieve data directly
112  * from a fused tcp endpoint using synchronous streams interface.
113  */
114 boolean_t do_tcp_direct_sockfs = B_TRUE;
115 
116 /*
117  * This is the minimum amount of outstanding writes allowed on
118  * a synchronous streams-enabled receiving endpoint before the
119  * sender gets flow-controlled.  Setting this value to 0 means
120  * that the data block limit is equivalent to the byte count
121  * limit, which essentially disables the check.
122  */
123 #define	TCP_FUSION_RCV_UNREAD_MIN	8
124 uint_t tcp_fusion_rcv_unread_min = TCP_FUSION_RCV_UNREAD_MIN;
125 
126 static void	tcp_fuse_syncstr_enable(tcp_t *);
127 static void	tcp_fuse_syncstr_disable(tcp_t *);
128 static void	strrput_sig(queue_t *, boolean_t);
129 
130 /*
131  * Return true if this connection needs some IP functionality
132  */
133 static boolean_t
134 tcp_loopback_needs_ip(tcp_t *tcp, netstack_t *ns)
135 {
136 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
137 
138 	/*
139 	 * If ire is not cached, do not use fusion
140 	 */
141 	if (tcp->tcp_connp->conn_ire_cache == NULL) {
142 		/*
143 		 * There is no need to hold conn_lock here because when called
144 		 * from tcp_fuse() there can be no window where conn_ire_cache
145 		 * can change. This is not true whe called from
146 		 * tcp_fuse_output(). conn_ire_cache can become null just
147 		 * after the check, but it's ok if a few packets are delivered
148 		 * in the fused state.
149 		 */
150 		return (B_TRUE);
151 	}
152 	if (tcp->tcp_ipversion == IPV4_VERSION) {
153 		if (tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH)
154 			return (B_TRUE);
155 		if (CONN_OUTBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss))
156 			return (B_TRUE);
157 		if (CONN_INBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss))
158 			return (B_TRUE);
159 	} else {
160 		if (tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)
161 			return (B_TRUE);
162 		if (CONN_OUTBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss))
163 			return (B_TRUE);
164 		if (CONN_INBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss))
165 			return (B_TRUE);
166 	}
167 	if (!CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp))
168 		return (B_TRUE);
169 	return (B_FALSE);
170 }
171 
172 
173 /*
174  * This routine gets called by the eager tcp upon changing state from
175  * SYN_RCVD to ESTABLISHED.  It fuses a direct path between itself
176  * and the active connect tcp such that the regular tcp processings
177  * may be bypassed under allowable circumstances.  Because the fusion
178  * requires both endpoints to be in the same squeue, it does not work
179  * for simultaneous active connects because there is no easy way to
180  * switch from one squeue to another once the connection is created.
181  * This is different from the eager tcp case where we assign it the
182  * same squeue as the one given to the active connect tcp during open.
183  */
184 void
185 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph)
186 {
187 	conn_t *peer_connp, *connp = tcp->tcp_connp;
188 	tcp_t *peer_tcp;
189 	tcp_stack_t	*tcps = tcp->tcp_tcps;
190 	netstack_t	*ns;
191 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
192 
193 	ASSERT(!tcp->tcp_fused);
194 	ASSERT(tcp->tcp_loopback);
195 	ASSERT(tcp->tcp_loopback_peer == NULL);
196 	/*
197 	 * We need to inherit q_hiwat of the listener tcp, but we can't
198 	 * really use tcp_listener since we get here after sending up
199 	 * T_CONN_IND and tcp_wput_accept() may be called independently,
200 	 * at which point tcp_listener is cleared; this is why we use
201 	 * tcp_saved_listener.  The listener itself is guaranteed to be
202 	 * around until tcp_accept_finish() is called on this eager --
203 	 * this won't happen until we're done since we're inside the
204 	 * eager's perimeter now.
205 	 */
206 	ASSERT(tcp->tcp_saved_listener != NULL);
207 
208 	/*
209 	 * Lookup peer endpoint; search for the remote endpoint having
210 	 * the reversed address-port quadruplet in ESTABLISHED state,
211 	 * which is guaranteed to be unique in the system.  Zone check
212 	 * is applied accordingly for loopback address, but not for
213 	 * local address since we want fusion to happen across Zones.
214 	 */
215 	if (tcp->tcp_ipversion == IPV4_VERSION) {
216 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp,
217 		    (ipha_t *)iphdr, tcph, ipst);
218 	} else {
219 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp,
220 		    (ip6_t *)iphdr, tcph, ipst);
221 	}
222 
223 	/*
224 	 * We can only proceed if peer exists, resides in the same squeue
225 	 * as our conn and is not raw-socket.  The squeue assignment of
226 	 * this eager tcp was done earlier at the time of SYN processing
227 	 * in ip_fanout_tcp{_v6}.  Note that similar squeues by itself
228 	 * doesn't guarantee a safe condition to fuse, hence we perform
229 	 * additional tests below.
230 	 */
231 	ASSERT(peer_connp == NULL || peer_connp != connp);
232 	if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp ||
233 	    !IPCL_IS_TCP(peer_connp)) {
234 		if (peer_connp != NULL) {
235 			TCP_STAT(tcps, tcp_fusion_unqualified);
236 			CONN_DEC_REF(peer_connp);
237 		}
238 		return;
239 	}
240 	peer_tcp = peer_connp->conn_tcp;	/* active connect tcp */
241 
242 	ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused);
243 	ASSERT(peer_tcp->tcp_loopback && peer_tcp->tcp_loopback_peer == NULL);
244 	ASSERT(peer_connp->conn_sqp == connp->conn_sqp);
245 
246 	/*
247 	 * Fuse the endpoints; we perform further checks against both
248 	 * tcp endpoints to ensure that a fusion is allowed to happen.
249 	 * In particular we bail out for non-simple TCP/IP or if IPsec/
250 	 * IPQoS policy/kernel SSL exists.
251 	 */
252 	ns = tcps->tcps_netstack;
253 	ipst = ns->netstack_ip;
254 
255 	if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable &&
256 	    !tcp_loopback_needs_ip(tcp, ns) &&
257 	    !tcp_loopback_needs_ip(peer_tcp, ns) &&
258 	    tcp->tcp_kssl_ent == NULL &&
259 	    !IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst)) {
260 		mblk_t *mp;
261 		struct stroptions *stropt;
262 		queue_t *peer_rq = peer_tcp->tcp_rq;
263 
264 		ASSERT(!TCP_IS_DETACHED(peer_tcp) && peer_rq != NULL);
265 		ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
266 		ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL);
267 		ASSERT(tcp->tcp_kssl_ctx == NULL);
268 
269 		/*
270 		 * We need to drain data on both endpoints during unfuse.
271 		 * If we need to send up SIGURG at the time of draining,
272 		 * we want to be sure that an mblk is readily available.
273 		 * This is why we pre-allocate the M_PCSIG mblks for both
274 		 * endpoints which will only be used during/after unfuse.
275 		 */
276 		if ((mp = allocb(1, BPRI_HI)) == NULL)
277 			goto failed;
278 
279 		tcp->tcp_fused_sigurg_mp = mp;
280 
281 		if ((mp = allocb(1, BPRI_HI)) == NULL)
282 			goto failed;
283 
284 		peer_tcp->tcp_fused_sigurg_mp = mp;
285 
286 		/* Allocate M_SETOPTS mblk */
287 		if ((mp = allocb(sizeof (*stropt), BPRI_HI)) == NULL)
288 			goto failed;
289 
290 		/* If peer sodirect enabled then disable */
291 		ASSERT(tcp->tcp_sodirect == NULL);
292 		if (peer_tcp->tcp_sodirect != NULL) {
293 			mutex_enter(peer_tcp->tcp_sodirect->sod_lock);
294 			SOD_DISABLE(peer_tcp->tcp_sodirect);
295 			mutex_exit(peer_tcp->tcp_sodirect->sod_lock);
296 			peer_tcp->tcp_sodirect = NULL;
297 		}
298 
299 		/* Fuse both endpoints */
300 		peer_tcp->tcp_loopback_peer = tcp;
301 		tcp->tcp_loopback_peer = peer_tcp;
302 		peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE;
303 
304 		/*
305 		 * We never use regular tcp paths in fusion and should
306 		 * therefore clear tcp_unsent on both endpoints.  Having
307 		 * them set to non-zero values means asking for trouble
308 		 * especially after unfuse, where we may end up sending
309 		 * through regular tcp paths which expect xmit_list and
310 		 * friends to be correctly setup.
311 		 */
312 		peer_tcp->tcp_unsent = tcp->tcp_unsent = 0;
313 
314 		tcp_timers_stop(tcp);
315 		tcp_timers_stop(peer_tcp);
316 
317 		/*
318 		 * At this point we are a detached eager tcp and therefore
319 		 * don't have a queue assigned to us until accept happens.
320 		 * In the mean time the peer endpoint may immediately send
321 		 * us data as soon as fusion is finished, and we need to be
322 		 * able to flow control it in case it sends down huge amount
323 		 * of data while we're still detached.  To prevent that we
324 		 * inherit the listener's q_hiwat value; this is temporary
325 		 * since we'll repeat the process in tcp_accept_finish().
326 		 */
327 		(void) tcp_fuse_set_rcv_hiwat(tcp,
328 		    tcp->tcp_saved_listener->tcp_rq->q_hiwat);
329 
330 		/*
331 		 * Set the stream head's write offset value to zero since we
332 		 * won't be needing any room for TCP/IP headers; tell it to
333 		 * not break up the writes (this would reduce the amount of
334 		 * work done by kmem); and configure our receive buffer.
335 		 * Note that we can only do this for the active connect tcp
336 		 * since our eager is still detached; it will be dealt with
337 		 * later in tcp_accept_finish().
338 		 */
339 		DB_TYPE(mp) = M_SETOPTS;
340 		mp->b_wptr += sizeof (*stropt);
341 
342 		stropt = (struct stroptions *)mp->b_rptr;
343 		stropt->so_flags = SO_MAXBLK | SO_WROFF | SO_HIWAT;
344 		stropt->so_maxblk = tcp_maxpsz_set(peer_tcp, B_FALSE);
345 		stropt->so_wroff = 0;
346 
347 		/*
348 		 * Record the stream head's high water mark for
349 		 * peer endpoint; this is used for flow-control
350 		 * purposes in tcp_fuse_output().
351 		 */
352 		stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(peer_tcp,
353 		    peer_rq->q_hiwat);
354 
355 		/* Send the options up */
356 		putnext(peer_rq, mp);
357 	} else {
358 		TCP_STAT(tcps, tcp_fusion_unqualified);
359 	}
360 	CONN_DEC_REF(peer_connp);
361 	return;
362 
363 failed:
364 	if (tcp->tcp_fused_sigurg_mp != NULL) {
365 		freeb(tcp->tcp_fused_sigurg_mp);
366 		tcp->tcp_fused_sigurg_mp = NULL;
367 	}
368 	if (peer_tcp->tcp_fused_sigurg_mp != NULL) {
369 		freeb(peer_tcp->tcp_fused_sigurg_mp);
370 		peer_tcp->tcp_fused_sigurg_mp = NULL;
371 	}
372 	CONN_DEC_REF(peer_connp);
373 }
374 
375 /*
376  * Unfuse a previously-fused pair of tcp loopback endpoints.
377  */
378 void
379 tcp_unfuse(tcp_t *tcp)
380 {
381 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
382 
383 	ASSERT(tcp->tcp_fused && peer_tcp != NULL);
384 	ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp);
385 	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
386 	ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0);
387 	ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
388 	ASSERT(peer_tcp->tcp_fused_sigurg_mp != NULL);
389 
390 	/*
391 	 * We disable synchronous streams, drain any queued data and
392 	 * clear tcp_direct_sockfs.  The synchronous streams entry
393 	 * points will become no-ops after this point.
394 	 */
395 	tcp_fuse_disable_pair(tcp, B_TRUE);
396 
397 	/*
398 	 * Update th_seq and th_ack in the header template
399 	 */
400 	U32_TO_ABE32(tcp->tcp_snxt, tcp->tcp_tcph->th_seq);
401 	U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
402 	U32_TO_ABE32(peer_tcp->tcp_snxt, peer_tcp->tcp_tcph->th_seq);
403 	U32_TO_ABE32(peer_tcp->tcp_rnxt, peer_tcp->tcp_tcph->th_ack);
404 
405 	/* Unfuse the endpoints */
406 	peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE;
407 	peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL;
408 }
409 
410 /*
411  * Fusion output routine for urgent data.  This routine is called by
412  * tcp_fuse_output() for handling non-M_DATA mblks.
413  */
414 void
415 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp)
416 {
417 	mblk_t *mp1;
418 	struct T_exdata_ind *tei;
419 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
420 	mblk_t *head, *prev_head = NULL;
421 	tcp_stack_t	*tcps = tcp->tcp_tcps;
422 
423 	ASSERT(tcp->tcp_fused);
424 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
425 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
426 	ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA);
427 	ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0);
428 
429 	/*
430 	 * Urgent data arrives in the form of T_EXDATA_REQ from above.
431 	 * Each occurence denotes a new urgent pointer.  For each new
432 	 * urgent pointer we signal (SIGURG) the receiving app to indicate
433 	 * that it needs to go into urgent mode.  This is similar to the
434 	 * urgent data handling in the regular tcp.  We don't need to keep
435 	 * track of where the urgent pointer is, because each T_EXDATA_REQ
436 	 * "advances" the urgent pointer for us.
437 	 *
438 	 * The actual urgent data carried by T_EXDATA_REQ is then prepended
439 	 * by a T_EXDATA_IND before being enqueued behind any existing data
440 	 * destined for the receiving app.  There is only a single urgent
441 	 * pointer (out-of-band mark) for a given tcp.  If the new urgent
442 	 * data arrives before the receiving app reads some existing urgent
443 	 * data, the previous marker is lost.  This behavior is emulated
444 	 * accordingly below, by removing any existing T_EXDATA_IND messages
445 	 * and essentially converting old urgent data into non-urgent.
446 	 */
447 	ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID);
448 	/* Let sender get out of urgent mode */
449 	tcp->tcp_valid_bits &= ~TCP_URG_VALID;
450 
451 	/*
452 	 * This flag indicates that a signal needs to be sent up.
453 	 * This flag will only get cleared once SIGURG is delivered and
454 	 * is not affected by the tcp_fused flag -- delivery will still
455 	 * happen even after an endpoint is unfused, to handle the case
456 	 * where the sending endpoint immediately closes/unfuses after
457 	 * sending urgent data and the accept is not yet finished.
458 	 */
459 	peer_tcp->tcp_fused_sigurg = B_TRUE;
460 
461 	/* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */
462 	DB_TYPE(mp) = M_PROTO;
463 	tei = (struct T_exdata_ind *)mp->b_rptr;
464 	tei->PRIM_type = T_EXDATA_IND;
465 	tei->MORE_flag = 0;
466 	mp->b_wptr = (uchar_t *)&tei[1];
467 
468 	TCP_STAT(tcps, tcp_fusion_urg);
469 	BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
470 
471 	head = peer_tcp->tcp_rcv_list;
472 	while (head != NULL) {
473 		/*
474 		 * Remove existing T_EXDATA_IND, keep the data which follows
475 		 * it and relink our list.  Note that we don't modify the
476 		 * tcp_rcv_last_tail since it never points to T_EXDATA_IND.
477 		 */
478 		if (DB_TYPE(head) != M_DATA) {
479 			mp1 = head;
480 
481 			ASSERT(DB_TYPE(mp1->b_cont) == M_DATA);
482 			head = mp1->b_cont;
483 			mp1->b_cont = NULL;
484 			head->b_next = mp1->b_next;
485 			mp1->b_next = NULL;
486 			if (prev_head != NULL)
487 				prev_head->b_next = head;
488 			if (peer_tcp->tcp_rcv_list == mp1)
489 				peer_tcp->tcp_rcv_list = head;
490 			if (peer_tcp->tcp_rcv_last_head == mp1)
491 				peer_tcp->tcp_rcv_last_head = head;
492 			freeb(mp1);
493 		}
494 		prev_head = head;
495 		head = head->b_next;
496 	}
497 }
498 
499 /*
500  * Fusion output routine, called by tcp_output() and tcp_wput_proto().
501  * If we are modifying any member that can be changed outside the squeue,
502  * like tcp_flow_stopped, we need to take tcp_non_sq_lock.
503  */
504 boolean_t
505 tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size)
506 {
507 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
508 	uint_t max_unread;
509 	boolean_t flow_stopped, peer_data_queued = B_FALSE;
510 	boolean_t urgent = (DB_TYPE(mp) != M_DATA);
511 	mblk_t *mp1 = mp;
512 	ill_t *ilp, *olp;
513 	ipha_t *ipha;
514 	ip6_t *ip6h;
515 	tcph_t *tcph;
516 	uint_t ip_hdr_len;
517 	uint32_t seq;
518 	uint32_t recv_size = send_size;
519 	tcp_stack_t	*tcps = tcp->tcp_tcps;
520 	netstack_t	*ns = tcps->tcps_netstack;
521 	ip_stack_t	*ipst = ns->netstack_ip;
522 
523 	ASSERT(tcp->tcp_fused);
524 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
525 	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
526 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO ||
527 	    DB_TYPE(mp) == M_PCPROTO);
528 
529 	max_unread = peer_tcp->tcp_fuse_rcv_unread_hiwater;
530 
531 	/* If this connection requires IP, unfuse and use regular path */
532 	if (tcp_loopback_needs_ip(tcp, ns) ||
533 	    tcp_loopback_needs_ip(peer_tcp, ns) ||
534 	    IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst)) {
535 		TCP_STAT(tcps, tcp_fusion_aborted);
536 		goto unfuse;
537 	}
538 
539 	if (send_size == 0) {
540 		freemsg(mp);
541 		return (B_TRUE);
542 	}
543 
544 	/*
545 	 * Handle urgent data; we either send up SIGURG to the peer now
546 	 * or do it later when we drain, in case the peer is detached
547 	 * or if we're short of memory for M_PCSIG mblk.
548 	 */
549 	if (urgent) {
550 		/*
551 		 * We stop synchronous streams when we have urgent data
552 		 * queued to prevent tcp_fuse_rrw() from pulling it.  If
553 		 * for some reasons the urgent data can't be delivered
554 		 * below, synchronous streams will remain stopped until
555 		 * someone drains the tcp_rcv_list.
556 		 */
557 		TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp);
558 		tcp_fuse_output_urg(tcp, mp);
559 
560 		mp1 = mp->b_cont;
561 	}
562 
563 	if (tcp->tcp_ipversion == IPV4_VERSION &&
564 	    (HOOKS4_INTERESTED_LOOPBACK_IN(ipst) ||
565 	    HOOKS4_INTERESTED_LOOPBACK_OUT(ipst)) ||
566 	    tcp->tcp_ipversion == IPV6_VERSION &&
567 	    (HOOKS6_INTERESTED_LOOPBACK_IN(ipst) ||
568 	    HOOKS6_INTERESTED_LOOPBACK_OUT(ipst))) {
569 		/*
570 		 * Build ip and tcp header to satisfy FW_HOOKS.
571 		 * We only build it when any hook is present.
572 		 */
573 		if ((mp1 = tcp_xmit_mp(tcp, mp1, tcp->tcp_mss, NULL, NULL,
574 		    tcp->tcp_snxt, B_TRUE, NULL, B_FALSE)) == NULL)
575 			/* If tcp_xmit_mp fails, use regular path */
576 			goto unfuse;
577 
578 		ASSERT(peer_tcp->tcp_connp->conn_ire_cache->ire_ipif != NULL);
579 		olp = peer_tcp->tcp_connp->conn_ire_cache->ire_ipif->ipif_ill;
580 		/* PFHooks: LOOPBACK_OUT */
581 		if (tcp->tcp_ipversion == IPV4_VERSION) {
582 			ipha = (ipha_t *)mp1->b_rptr;
583 
584 			DTRACE_PROBE4(ip4__loopback__out__start,
585 			    ill_t *, NULL, ill_t *, olp,
586 			    ipha_t *, ipha, mblk_t *, mp1);
587 			FW_HOOKS(ipst->ips_ip4_loopback_out_event,
588 			    ipst->ips_ipv4firewall_loopback_out,
589 			    NULL, olp, ipha, mp1, mp1, 0, ipst);
590 			DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, mp1);
591 		} else {
592 			ip6h = (ip6_t *)mp1->b_rptr;
593 
594 			DTRACE_PROBE4(ip6__loopback__out__start,
595 			    ill_t *, NULL, ill_t *, olp,
596 			    ip6_t *, ip6h, mblk_t *, mp1);
597 			FW_HOOKS6(ipst->ips_ip6_loopback_out_event,
598 			    ipst->ips_ipv6firewall_loopback_out,
599 			    NULL, olp, ip6h, mp1, mp1, 0, ipst);
600 			DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, mp1);
601 		}
602 		if (mp1 == NULL)
603 			goto unfuse;
604 
605 
606 		/* PFHooks: LOOPBACK_IN */
607 		ASSERT(tcp->tcp_connp->conn_ire_cache->ire_ipif != NULL);
608 		ilp = tcp->tcp_connp->conn_ire_cache->ire_ipif->ipif_ill;
609 
610 		if (tcp->tcp_ipversion == IPV4_VERSION) {
611 			DTRACE_PROBE4(ip4__loopback__in__start,
612 			    ill_t *, ilp, ill_t *, NULL,
613 			    ipha_t *, ipha, mblk_t *, mp1);
614 			FW_HOOKS(ipst->ips_ip4_loopback_in_event,
615 			    ipst->ips_ipv4firewall_loopback_in,
616 			    ilp, NULL, ipha, mp1, mp1, 0, ipst);
617 			DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, mp1);
618 			if (mp1 == NULL)
619 				goto unfuse;
620 
621 			ip_hdr_len = IPH_HDR_LENGTH(ipha);
622 		} else {
623 			DTRACE_PROBE4(ip6__loopback__in__start,
624 			    ill_t *, ilp, ill_t *, NULL,
625 			    ip6_t *, ip6h, mblk_t *, mp1);
626 			FW_HOOKS6(ipst->ips_ip6_loopback_in_event,
627 			    ipst->ips_ipv6firewall_loopback_in,
628 			    ilp, NULL, ip6h, mp1, mp1, 0, ipst);
629 			DTRACE_PROBE1(ip6__loopback__in__end, mblk_t *, mp1);
630 			if (mp1 == NULL)
631 				goto unfuse;
632 
633 			ip_hdr_len = ip_hdr_length_v6(mp1, ip6h);
634 		}
635 
636 		/* Data length might be changed by FW_HOOKS */
637 		tcph = (tcph_t *)&mp1->b_rptr[ip_hdr_len];
638 		seq = ABE32_TO_U32(tcph->th_seq);
639 		recv_size += seq - tcp->tcp_snxt;
640 
641 		/*
642 		 * The message duplicated by tcp_xmit_mp is freed.
643 		 * Note: the original message passed in remains unchanged.
644 		 */
645 		freemsg(mp1);
646 	}
647 
648 	mutex_enter(&peer_tcp->tcp_non_sq_lock);
649 	/*
650 	 * Wake up and signal the peer; it is okay to do this before
651 	 * enqueueing because we are holding the lock.  One of the
652 	 * advantages of synchronous streams is the ability for us to
653 	 * find out when the application performs a read on the socket,
654 	 * by way of tcp_fuse_rrw() entry point being called.  Every
655 	 * data that gets enqueued onto the receiver is treated as if
656 	 * it has arrived at the receiving endpoint, thus generating
657 	 * SIGPOLL/SIGIO for asynchronous socket just as in the strrput()
658 	 * case.  However, we only wake up the application when necessary,
659 	 * i.e. during the first enqueue.  When tcp_fuse_rrw() is called
660 	 * it will send everything upstream.
661 	 */
662 	if (peer_tcp->tcp_direct_sockfs && !urgent &&
663 	    !TCP_IS_DETACHED(peer_tcp)) {
664 		if (peer_tcp->tcp_rcv_list == NULL)
665 			STR_WAKEUP_SET(STREAM(peer_tcp->tcp_rq));
666 		/* Update poll events and send SIGPOLL/SIGIO if necessary */
667 		STR_SENDSIG(STREAM(peer_tcp->tcp_rq));
668 	}
669 
670 	/*
671 	 * Enqueue data into the peer's receive list; we may or may not
672 	 * drain the contents depending on the conditions below.
673 	 */
674 	tcp_rcv_enqueue(peer_tcp, mp, recv_size);
675 
676 	/* In case it wrapped around and also to keep it constant */
677 	peer_tcp->tcp_rwnd += recv_size;
678 
679 	/*
680 	 * Exercise flow-control when needed; we will get back-enabled
681 	 * in either tcp_accept_finish(), tcp_unfuse(), or tcp_fuse_rrw().
682 	 * If tcp_direct_sockfs is on or if the peer endpoint is detached,
683 	 * we emulate streams flow control by checking the peer's queue
684 	 * size and high water mark; otherwise we simply use canputnext()
685 	 * to decide if we need to stop our flow.
686 	 *
687 	 * The outstanding unread data block check does not apply for a
688 	 * detached receiver; this is to avoid unnecessary blocking of the
689 	 * sender while the accept is currently in progress and is quite
690 	 * similar to the regular tcp.
691 	 */
692 	if (TCP_IS_DETACHED(peer_tcp) || max_unread == 0)
693 		max_unread = UINT_MAX;
694 
695 	/*
696 	 * Since we are accessing our tcp_flow_stopped and might modify it,
697 	 * we need to take tcp->tcp_non_sq_lock. The lock for the highest
698 	 * address is held first. Dropping peer_tcp->tcp_non_sq_lock should
699 	 * not be an issue here since we are within the squeue and the peer
700 	 * won't disappear.
701 	 */
702 	if (tcp > peer_tcp) {
703 		mutex_exit(&peer_tcp->tcp_non_sq_lock);
704 		mutex_enter(&tcp->tcp_non_sq_lock);
705 		mutex_enter(&peer_tcp->tcp_non_sq_lock);
706 	} else {
707 		mutex_enter(&tcp->tcp_non_sq_lock);
708 	}
709 	flow_stopped = tcp->tcp_flow_stopped;
710 	if (((peer_tcp->tcp_direct_sockfs || TCP_IS_DETACHED(peer_tcp)) &&
711 	    (peer_tcp->tcp_rcv_cnt >= peer_tcp->tcp_fuse_rcv_hiwater ||
712 	    ++peer_tcp->tcp_fuse_rcv_unread_cnt >= max_unread)) ||
713 	    (!peer_tcp->tcp_direct_sockfs &&
714 	    !TCP_IS_DETACHED(peer_tcp) && !canputnext(peer_tcp->tcp_rq))) {
715 		peer_data_queued = B_TRUE;
716 	}
717 
718 	if (!flow_stopped && (peer_data_queued ||
719 	    (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater))) {
720 		tcp_setqfull(tcp);
721 		flow_stopped = B_TRUE;
722 		TCP_STAT(tcps, tcp_fusion_flowctl);
723 		DTRACE_PROBE4(tcp__fuse__output__flowctl, tcp_t *, tcp,
724 		    uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt,
725 		    uint_t, peer_tcp->tcp_fuse_rcv_unread_cnt);
726 	} else if (flow_stopped && !peer_data_queued &&
727 	    (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater)) {
728 		tcp_clrqfull(tcp);
729 		flow_stopped = B_FALSE;
730 	}
731 	mutex_exit(&tcp->tcp_non_sq_lock);
732 	ipst->ips_loopback_packets++;
733 	tcp->tcp_last_sent_len = send_size;
734 
735 	/* Need to adjust the following SNMP MIB-related variables */
736 	tcp->tcp_snxt += send_size;
737 	tcp->tcp_suna = tcp->tcp_snxt;
738 	peer_tcp->tcp_rnxt += recv_size;
739 	peer_tcp->tcp_rack = peer_tcp->tcp_rnxt;
740 
741 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
742 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, send_size);
743 
744 	BUMP_MIB(&tcps->tcps_mib, tcpInSegs);
745 	BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
746 	UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, send_size);
747 
748 	BUMP_LOCAL(tcp->tcp_obsegs);
749 	BUMP_LOCAL(peer_tcp->tcp_ibsegs);
750 
751 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
752 
753 	DTRACE_PROBE2(tcp__fuse__output, tcp_t *, tcp, uint_t, send_size);
754 
755 	if (!TCP_IS_DETACHED(peer_tcp)) {
756 		/*
757 		 * Drain the peer's receive queue it has urgent data or if
758 		 * we're not flow-controlled.  There is no need for draining
759 		 * normal data when tcp_direct_sockfs is on because the peer
760 		 * will pull the data via tcp_fuse_rrw().
761 		 */
762 		if (urgent || (!flow_stopped && !peer_tcp->tcp_direct_sockfs)) {
763 			ASSERT(peer_tcp->tcp_rcv_list != NULL);
764 			/*
765 			 * For TLI-based streams, a thread in tcp_accept_swap()
766 			 * can race with us.  That thread will ensure that the
767 			 * correct peer_tcp->tcp_rq is globally visible before
768 			 * peer_tcp->tcp_detached is visible as clear, but we
769 			 * must also ensure that the load of tcp_rq cannot be
770 			 * reordered to be before the tcp_detached check.
771 			 */
772 			membar_consumer();
773 			(void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp,
774 			    NULL);
775 			/*
776 			 * If synchronous streams was stopped above due
777 			 * to the presence of urgent data, re-enable it.
778 			 */
779 			if (urgent)
780 				TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp);
781 		}
782 	}
783 	return (B_TRUE);
784 unfuse:
785 	tcp_unfuse(tcp);
786 	return (B_FALSE);
787 }
788 
789 /*
790  * This routine gets called to deliver data upstream on a fused or
791  * previously fused tcp loopback endpoint; the latter happens only
792  * when there is a pending SIGURG signal plus urgent data that can't
793  * be sent upstream in the past.
794  */
795 boolean_t
796 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp)
797 {
798 	mblk_t *mp;
799 #ifdef DEBUG
800 	uint_t cnt = 0;
801 #endif
802 	tcp_stack_t	*tcps = tcp->tcp_tcps;
803 
804 	ASSERT(tcp->tcp_loopback);
805 	ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg);
806 	ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL);
807 	ASSERT(sigurg_mpp != NULL || tcp->tcp_fused);
808 
809 	/* No need for the push timer now, in case it was scheduled */
810 	if (tcp->tcp_push_tid != 0) {
811 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
812 		tcp->tcp_push_tid = 0;
813 	}
814 	/*
815 	 * If there's urgent data sitting in receive list and we didn't
816 	 * get a chance to send up a SIGURG signal, make sure we send
817 	 * it first before draining in order to ensure that SIOCATMARK
818 	 * works properly.
819 	 */
820 	if (tcp->tcp_fused_sigurg) {
821 		/*
822 		 * sigurg_mpp is normally NULL, i.e. when we're still
823 		 * fused and didn't get here because of tcp_unfuse().
824 		 * In this case try hard to allocate the M_PCSIG mblk.
825 		 */
826 		if (sigurg_mpp == NULL &&
827 		    (mp = allocb(1, BPRI_HI)) == NULL &&
828 		    (mp = allocb_tryhard(1)) == NULL) {
829 			/* Alloc failed; try again next time */
830 			tcp->tcp_push_tid = TCP_TIMER(tcp, tcp_push_timer,
831 			    MSEC_TO_TICK(tcps->tcps_push_timer_interval));
832 			return (B_TRUE);
833 		} else if (sigurg_mpp != NULL) {
834 			/*
835 			 * Use the supplied M_PCSIG mblk; it means we're
836 			 * either unfused or in the process of unfusing,
837 			 * and the drain must happen now.
838 			 */
839 			mp = *sigurg_mpp;
840 			*sigurg_mpp = NULL;
841 		}
842 		ASSERT(mp != NULL);
843 
844 		tcp->tcp_fused_sigurg = B_FALSE;
845 		/* Send up the signal */
846 		DB_TYPE(mp) = M_PCSIG;
847 		*mp->b_wptr++ = (uchar_t)SIGURG;
848 		putnext(q, mp);
849 		/*
850 		 * Let the regular tcp_rcv_drain() path handle
851 		 * draining the data if we're no longer fused.
852 		 */
853 		if (!tcp->tcp_fused)
854 			return (B_FALSE);
855 	}
856 
857 	/*
858 	 * In the synchronous streams case, we generate SIGPOLL/SIGIO for
859 	 * each M_DATA that gets enqueued onto the receiver.  At this point
860 	 * we are about to drain any queued data via putnext().  In order
861 	 * to avoid extraneous signal generation from strrput(), we set
862 	 * STRGETINPROG flag at the stream head prior to the draining and
863 	 * restore it afterwards.  This masks out signal generation only
864 	 * for M_DATA messages and does not affect urgent data.
865 	 */
866 	if (tcp->tcp_direct_sockfs)
867 		strrput_sig(q, B_FALSE);
868 
869 	/* Drain the data */
870 	while ((mp = tcp->tcp_rcv_list) != NULL) {
871 		tcp->tcp_rcv_list = mp->b_next;
872 		mp->b_next = NULL;
873 #ifdef DEBUG
874 		cnt += msgdsize(mp);
875 #endif
876 		putnext(q, mp);
877 		TCP_STAT(tcps, tcp_fusion_putnext);
878 	}
879 
880 	if (tcp->tcp_direct_sockfs)
881 		strrput_sig(q, B_TRUE);
882 
883 	ASSERT(cnt == tcp->tcp_rcv_cnt);
884 	tcp->tcp_rcv_last_head = NULL;
885 	tcp->tcp_rcv_last_tail = NULL;
886 	tcp->tcp_rcv_cnt = 0;
887 	tcp->tcp_fuse_rcv_unread_cnt = 0;
888 	tcp->tcp_rwnd = q->q_hiwat;
889 
890 	return (B_TRUE);
891 }
892 
893 /*
894  * Synchronous stream entry point for sockfs to retrieve
895  * data directly from tcp_rcv_list.
896  * tcp_fuse_rrw() might end up modifying the peer's tcp_flow_stopped,
897  * for which it  must take the tcp_non_sq_lock of the peer as well
898  * making any change. The order of taking the locks is based on
899  * the TCP pointer itself. Before we get the peer we need to take
900  * our tcp_non_sq_lock so that the peer doesn't disappear. However,
901  * we cannot drop the lock if we have to grab the peer's lock (because
902  * of ordering), since the peer might disappear in the interim. So,
903  * we take our tcp_non_sq_lock, get the peer, increment the ref on the
904  * peer's conn, drop all the locks and then take the tcp_non_sq_lock in the
905  * desired order. Incrementing the conn ref on the peer means that the
906  * peer won't disappear when we drop our tcp_non_sq_lock.
907  */
908 int
909 tcp_fuse_rrw(queue_t *q, struiod_t *dp)
910 {
911 	tcp_t *tcp = Q_TO_CONN(q)->conn_tcp;
912 	mblk_t *mp;
913 	tcp_t *peer_tcp;
914 	tcp_stack_t	*tcps = tcp->tcp_tcps;
915 
916 	mutex_enter(&tcp->tcp_non_sq_lock);
917 
918 	/*
919 	 * If tcp_fuse_syncstr_plugged is set, then another thread is moving
920 	 * the underlying data to the stream head.  We need to wait until it's
921 	 * done, then return EBUSY so that strget() will dequeue data from the
922 	 * stream head to ensure data is drained in-order.
923 	 */
924 plugged:
925 	if (tcp->tcp_fuse_syncstr_plugged) {
926 		do {
927 			cv_wait(&tcp->tcp_fuse_plugcv, &tcp->tcp_non_sq_lock);
928 		} while (tcp->tcp_fuse_syncstr_plugged);
929 
930 		mutex_exit(&tcp->tcp_non_sq_lock);
931 		TCP_STAT(tcps, tcp_fusion_rrw_plugged);
932 		TCP_STAT(tcps, tcp_fusion_rrw_busy);
933 		return (EBUSY);
934 	}
935 
936 	peer_tcp = tcp->tcp_loopback_peer;
937 
938 	/*
939 	 * If someone had turned off tcp_direct_sockfs or if synchronous
940 	 * streams is stopped, we return EBUSY.  This causes strget() to
941 	 * dequeue data from the stream head instead.
942 	 */
943 	if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped) {
944 		mutex_exit(&tcp->tcp_non_sq_lock);
945 		TCP_STAT(tcps, tcp_fusion_rrw_busy);
946 		return (EBUSY);
947 	}
948 
949 	/*
950 	 * Grab lock in order. The highest addressed tcp is locked first.
951 	 * We don't do this within the tcp_rcv_list check since if we
952 	 * have to drop the lock, for ordering, then the tcp_rcv_list
953 	 * could change.
954 	 */
955 	if (peer_tcp > tcp) {
956 		CONN_INC_REF(peer_tcp->tcp_connp);
957 		mutex_exit(&tcp->tcp_non_sq_lock);
958 		mutex_enter(&peer_tcp->tcp_non_sq_lock);
959 		mutex_enter(&tcp->tcp_non_sq_lock);
960 		/*
961 		 * This might have changed in the interim
962 		 * Once read-side tcp_non_sq_lock is dropped above
963 		 * anything can happen, we need to check all
964 		 * known conditions again once we reaquire
965 		 * read-side tcp_non_sq_lock.
966 		 */
967 		if (tcp->tcp_fuse_syncstr_plugged) {
968 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
969 			CONN_DEC_REF(peer_tcp->tcp_connp);
970 			goto plugged;
971 		}
972 		if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped) {
973 			mutex_exit(&tcp->tcp_non_sq_lock);
974 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
975 			CONN_DEC_REF(peer_tcp->tcp_connp);
976 			TCP_STAT(tcps, tcp_fusion_rrw_busy);
977 			return (EBUSY);
978 		}
979 		CONN_DEC_REF(peer_tcp->tcp_connp);
980 	} else {
981 		mutex_enter(&peer_tcp->tcp_non_sq_lock);
982 	}
983 
984 	if ((mp = tcp->tcp_rcv_list) != NULL) {
985 
986 		DTRACE_PROBE3(tcp__fuse__rrw, tcp_t *, tcp,
987 		    uint32_t, tcp->tcp_rcv_cnt, ssize_t, dp->d_uio.uio_resid);
988 
989 		tcp->tcp_rcv_list = NULL;
990 		TCP_STAT(tcps, tcp_fusion_rrw_msgcnt);
991 
992 		/*
993 		 * At this point nothing should be left in tcp_rcv_list.
994 		 * The only possible case where we would have a chain of
995 		 * b_next-linked messages is urgent data, but we wouldn't
996 		 * be here if that's true since urgent data is delivered
997 		 * via putnext() and synchronous streams is stopped until
998 		 * tcp_fuse_rcv_drain() is finished.
999 		 */
1000 		ASSERT(DB_TYPE(mp) == M_DATA && mp->b_next == NULL);
1001 
1002 		tcp->tcp_rcv_last_head = NULL;
1003 		tcp->tcp_rcv_last_tail = NULL;
1004 		tcp->tcp_rcv_cnt = 0;
1005 		tcp->tcp_fuse_rcv_unread_cnt = 0;
1006 
1007 		if (peer_tcp->tcp_flow_stopped &&
1008 		    (TCP_UNSENT_BYTES(peer_tcp) <=
1009 		    peer_tcp->tcp_xmit_lowater)) {
1010 			tcp_clrqfull(peer_tcp);
1011 			TCP_STAT(tcps, tcp_fusion_backenabled);
1012 		}
1013 	}
1014 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
1015 	/*
1016 	 * Either we just dequeued everything or we get here from sockfs
1017 	 * and have nothing to return; in this case clear RSLEEP.
1018 	 */
1019 	ASSERT(tcp->tcp_rcv_last_head == NULL);
1020 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
1021 	ASSERT(tcp->tcp_rcv_cnt == 0);
1022 	ASSERT(tcp->tcp_fuse_rcv_unread_cnt == 0);
1023 	STR_WAKEUP_CLEAR(STREAM(q));
1024 
1025 	mutex_exit(&tcp->tcp_non_sq_lock);
1026 	dp->d_mp = mp;
1027 	return (0);
1028 }
1029 
1030 /*
1031  * Synchronous stream entry point used by certain ioctls to retrieve
1032  * information about or peek into the tcp_rcv_list.
1033  */
1034 int
1035 tcp_fuse_rinfop(queue_t *q, infod_t *dp)
1036 {
1037 	tcp_t	*tcp = Q_TO_CONN(q)->conn_tcp;
1038 	mblk_t	*mp;
1039 	uint_t	cmd = dp->d_cmd;
1040 	int	res = 0;
1041 	int	error = 0;
1042 	struct stdata *stp = STREAM(q);
1043 
1044 	mutex_enter(&tcp->tcp_non_sq_lock);
1045 	/* If shutdown on read has happened, return nothing */
1046 	mutex_enter(&stp->sd_lock);
1047 	if (stp->sd_flag & STREOF) {
1048 		mutex_exit(&stp->sd_lock);
1049 		goto done;
1050 	}
1051 	mutex_exit(&stp->sd_lock);
1052 
1053 	/*
1054 	 * It is OK not to return an answer if tcp_rcv_list is
1055 	 * currently not accessible.
1056 	 */
1057 	if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped ||
1058 	    tcp->tcp_fuse_syncstr_plugged || (mp = tcp->tcp_rcv_list) == NULL)
1059 		goto done;
1060 
1061 	if (cmd & INFOD_COUNT) {
1062 		/*
1063 		 * We have at least one message and
1064 		 * could return only one at a time.
1065 		 */
1066 		dp->d_count++;
1067 		res |= INFOD_COUNT;
1068 	}
1069 	if (cmd & INFOD_BYTES) {
1070 		/*
1071 		 * Return size of all data messages.
1072 		 */
1073 		dp->d_bytes += tcp->tcp_rcv_cnt;
1074 		res |= INFOD_BYTES;
1075 	}
1076 	if (cmd & INFOD_FIRSTBYTES) {
1077 		/*
1078 		 * Return size of first data message.
1079 		 */
1080 		dp->d_bytes = msgdsize(mp);
1081 		res |= INFOD_FIRSTBYTES;
1082 		dp->d_cmd &= ~INFOD_FIRSTBYTES;
1083 	}
1084 	if (cmd & INFOD_COPYOUT) {
1085 		mblk_t *mp1;
1086 		int n;
1087 
1088 		if (DB_TYPE(mp) == M_DATA) {
1089 			mp1 = mp;
1090 		} else {
1091 			mp1 = mp->b_cont;
1092 			ASSERT(mp1 != NULL);
1093 		}
1094 
1095 		/*
1096 		 * Return data contents of first message.
1097 		 */
1098 		ASSERT(DB_TYPE(mp1) == M_DATA);
1099 		while (mp1 != NULL && dp->d_uiop->uio_resid > 0) {
1100 			n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1));
1101 			if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n,
1102 			    UIO_READ, dp->d_uiop)) != 0) {
1103 				goto done;
1104 			}
1105 			mp1 = mp1->b_cont;
1106 		}
1107 		res |= INFOD_COPYOUT;
1108 		dp->d_cmd &= ~INFOD_COPYOUT;
1109 	}
1110 done:
1111 	mutex_exit(&tcp->tcp_non_sq_lock);
1112 
1113 	dp->d_res |= res;
1114 
1115 	return (error);
1116 }
1117 
1118 /*
1119  * Enable synchronous streams on a fused tcp loopback endpoint.
1120  */
1121 static void
1122 tcp_fuse_syncstr_enable(tcp_t *tcp)
1123 {
1124 	queue_t *rq = tcp->tcp_rq;
1125 	struct stdata *stp = STREAM(rq);
1126 
1127 	/* We can only enable synchronous streams for sockfs mode */
1128 	tcp->tcp_direct_sockfs = tcp->tcp_issocket && do_tcp_direct_sockfs;
1129 
1130 	if (!tcp->tcp_direct_sockfs)
1131 		return;
1132 
1133 	mutex_enter(&stp->sd_lock);
1134 	mutex_enter(QLOCK(rq));
1135 
1136 	/*
1137 	 * We replace our q_qinfo with one that has the qi_rwp entry point.
1138 	 * Clear SR_SIGALLDATA because we generate the equivalent signal(s)
1139 	 * for every enqueued data in tcp_fuse_output().
1140 	 */
1141 	rq->q_qinfo = &tcp_loopback_rinit;
1142 	rq->q_struiot = tcp_loopback_rinit.qi_struiot;
1143 	stp->sd_struiordq = rq;
1144 	stp->sd_rput_opt &= ~SR_SIGALLDATA;
1145 
1146 	mutex_exit(QLOCK(rq));
1147 	mutex_exit(&stp->sd_lock);
1148 }
1149 
1150 /*
1151  * Disable synchronous streams on a fused tcp loopback endpoint.
1152  */
1153 static void
1154 tcp_fuse_syncstr_disable(tcp_t *tcp)
1155 {
1156 	queue_t *rq = tcp->tcp_rq;
1157 	struct stdata *stp = STREAM(rq);
1158 
1159 	if (!tcp->tcp_direct_sockfs)
1160 		return;
1161 
1162 	mutex_enter(&stp->sd_lock);
1163 	mutex_enter(QLOCK(rq));
1164 
1165 	/*
1166 	 * Reset q_qinfo to point to the default tcp entry points.
1167 	 * Also restore SR_SIGALLDATA so that strrput() can generate
1168 	 * the signals again for future M_DATA messages.
1169 	 */
1170 	rq->q_qinfo = &tcp_rinitv4;	/* No open - same as rinitv6 */
1171 	rq->q_struiot = tcp_rinitv4.qi_struiot;
1172 	stp->sd_struiordq = NULL;
1173 	stp->sd_rput_opt |= SR_SIGALLDATA;
1174 	tcp->tcp_direct_sockfs = B_FALSE;
1175 
1176 	mutex_exit(QLOCK(rq));
1177 	mutex_exit(&stp->sd_lock);
1178 }
1179 
1180 /*
1181  * Enable synchronous streams on a pair of fused tcp endpoints.
1182  */
1183 void
1184 tcp_fuse_syncstr_enable_pair(tcp_t *tcp)
1185 {
1186 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
1187 
1188 	ASSERT(tcp->tcp_fused);
1189 	ASSERT(peer_tcp != NULL);
1190 
1191 	tcp_fuse_syncstr_enable(tcp);
1192 	tcp_fuse_syncstr_enable(peer_tcp);
1193 }
1194 
1195 /*
1196  * Allow or disallow signals to be generated by strrput().
1197  */
1198 static void
1199 strrput_sig(queue_t *q, boolean_t on)
1200 {
1201 	struct stdata *stp = STREAM(q);
1202 
1203 	mutex_enter(&stp->sd_lock);
1204 	if (on)
1205 		stp->sd_flag &= ~STRGETINPROG;
1206 	else
1207 		stp->sd_flag |= STRGETINPROG;
1208 	mutex_exit(&stp->sd_lock);
1209 }
1210 
1211 /*
1212  * Disable synchronous streams on a pair of fused tcp endpoints and drain
1213  * any queued data; called either during unfuse or upon transitioning from
1214  * a socket to a stream endpoint due to _SIOCSOCKFALLBACK.
1215  */
1216 void
1217 tcp_fuse_disable_pair(tcp_t *tcp, boolean_t unfusing)
1218 {
1219 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
1220 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1221 
1222 	ASSERT(tcp->tcp_fused);
1223 	ASSERT(peer_tcp != NULL);
1224 
1225 	/*
1226 	 * Force any tcp_fuse_rrw() calls to block until we've moved the data
1227 	 * onto the stream head.
1228 	 */
1229 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
1230 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp);
1231 
1232 	/*
1233 	 * Drain any pending data; the detached check is needed because
1234 	 * we may be called as a result of a tcp_unfuse() triggered by
1235 	 * tcp_fuse_output().  Note that in case of a detached tcp, the
1236 	 * draining will happen later after the tcp is unfused.  For non-
1237 	 * urgent data, this can be handled by the regular tcp_rcv_drain().
1238 	 * If we have urgent data sitting in the receive list, we will
1239 	 * need to send up a SIGURG signal first before draining the data.
1240 	 * All of these will be handled by the code in tcp_fuse_rcv_drain()
1241 	 * when called from tcp_rcv_drain().
1242 	 */
1243 	if (!TCP_IS_DETACHED(tcp)) {
1244 		(void) tcp_fuse_rcv_drain(tcp->tcp_rq, tcp,
1245 		    (unfusing ? &tcp->tcp_fused_sigurg_mp : NULL));
1246 	}
1247 	if (!TCP_IS_DETACHED(peer_tcp)) {
1248 		(void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp,
1249 		    (unfusing ? &peer_tcp->tcp_fused_sigurg_mp : NULL));
1250 	}
1251 
1252 	/*
1253 	 * Make all current and future tcp_fuse_rrw() calls fail with EBUSY.
1254 	 * To ensure threads don't sneak past the checks in tcp_fuse_rrw(),
1255 	 * a given stream must be stopped prior to being unplugged (but the
1256 	 * ordering of operations between the streams is unimportant).
1257 	 */
1258 	TCP_FUSE_SYNCSTR_STOP(tcp);
1259 	TCP_FUSE_SYNCSTR_STOP(peer_tcp);
1260 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
1261 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp);
1262 
1263 	/* Lift up any flow-control conditions */
1264 	if (tcp->tcp_flow_stopped) {
1265 		tcp_clrqfull(tcp);
1266 		TCP_STAT(tcps, tcp_fusion_backenabled);
1267 	}
1268 	if (peer_tcp->tcp_flow_stopped) {
1269 		tcp_clrqfull(peer_tcp);
1270 		TCP_STAT(tcps, tcp_fusion_backenabled);
1271 	}
1272 
1273 	/* Disable synchronous streams */
1274 	tcp_fuse_syncstr_disable(tcp);
1275 	tcp_fuse_syncstr_disable(peer_tcp);
1276 }
1277 
1278 /*
1279  * Calculate the size of receive buffer for a fused tcp endpoint.
1280  */
1281 size_t
1282 tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd)
1283 {
1284 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1285 
1286 	ASSERT(tcp->tcp_fused);
1287 
1288 	/* Ensure that value is within the maximum upper bound */
1289 	if (rwnd > tcps->tcps_max_buf)
1290 		rwnd = tcps->tcps_max_buf;
1291 
1292 	/* Obey the absolute minimum tcp receive high water mark */
1293 	if (rwnd < tcps->tcps_sth_rcv_hiwat)
1294 		rwnd = tcps->tcps_sth_rcv_hiwat;
1295 
1296 	/*
1297 	 * Round up to system page size in case SO_RCVBUF is modified
1298 	 * after SO_SNDBUF; the latter is also similarly rounded up.
1299 	 */
1300 	rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t);
1301 	tcp->tcp_fuse_rcv_hiwater = rwnd;
1302 	return (rwnd);
1303 }
1304 
1305 /*
1306  * Calculate the maximum outstanding unread data block for a fused tcp endpoint.
1307  */
1308 int
1309 tcp_fuse_maxpsz_set(tcp_t *tcp)
1310 {
1311 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
1312 	uint_t sndbuf = tcp->tcp_xmit_hiwater;
1313 	uint_t maxpsz = sndbuf;
1314 
1315 	ASSERT(tcp->tcp_fused);
1316 	ASSERT(peer_tcp != NULL);
1317 	ASSERT(peer_tcp->tcp_fuse_rcv_hiwater != 0);
1318 	/*
1319 	 * In the fused loopback case, we want the stream head to split
1320 	 * up larger writes into smaller chunks for a more accurate flow-
1321 	 * control accounting.  Our maxpsz is half of the sender's send
1322 	 * buffer or the receiver's receive buffer, whichever is smaller.
1323 	 * We round up the buffer to system page size due to the lack of
1324 	 * TCP MSS concept in Fusion.
1325 	 */
1326 	if (maxpsz > peer_tcp->tcp_fuse_rcv_hiwater)
1327 		maxpsz = peer_tcp->tcp_fuse_rcv_hiwater;
1328 	maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1;
1329 
1330 	/*
1331 	 * Calculate the peer's limit for the number of outstanding unread
1332 	 * data block.  This is the amount of data blocks that are allowed
1333 	 * to reside in the receiver's queue before the sender gets flow
1334 	 * controlled.  It is used only in the synchronous streams mode as
1335 	 * a way to throttle the sender when it performs consecutive writes
1336 	 * faster than can be read.  The value is derived from SO_SNDBUF in
1337 	 * order to give the sender some control; we divide it with a large
1338 	 * value (16KB) to produce a fairly low initial limit.
1339 	 */
1340 	if (tcp_fusion_rcv_unread_min == 0) {
1341 		/* A value of 0 means that we disable the check */
1342 		peer_tcp->tcp_fuse_rcv_unread_hiwater = 0;
1343 	} else {
1344 		peer_tcp->tcp_fuse_rcv_unread_hiwater =
1345 		    MAX(sndbuf >> 14, tcp_fusion_rcv_unread_min);
1346 	}
1347 	return (maxpsz);
1348 }
1349