1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/stropts.h> 33 #include <sys/strlog.h> 34 #define _SUN_TPI_VERSION 2 35 #include <sys/tihdr.h> 36 #include <sys/timod.h> 37 #include <sys/ddi.h> 38 #include <sys/sunddi.h> 39 #include <sys/suntpi.h> 40 #include <sys/xti_inet.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/sdt.h> 44 #include <sys/vtrace.h> 45 #include <sys/kmem.h> 46 #include <sys/ethernet.h> 47 #include <sys/cpuvar.h> 48 #include <sys/dlpi.h> 49 #include <sys/pattr.h> 50 #include <sys/policy.h> 51 #include <sys/priv.h> 52 #include <sys/zone.h> 53 #include <sys/sunldi.h> 54 55 #include <sys/errno.h> 56 #include <sys/signal.h> 57 #include <sys/socket.h> 58 #include <sys/socketvar.h> 59 #include <sys/sockio.h> 60 #include <sys/isa_defs.h> 61 #include <sys/md5.h> 62 #include <sys/random.h> 63 #include <sys/uio.h> 64 #include <sys/systm.h> 65 #include <netinet/in.h> 66 #include <netinet/tcp.h> 67 #include <netinet/ip6.h> 68 #include <netinet/icmp6.h> 69 #include <net/if.h> 70 #include <net/route.h> 71 #include <inet/ipsec_impl.h> 72 73 #include <inet/common.h> 74 #include <inet/ip.h> 75 #include <inet/ip_impl.h> 76 #include <inet/ip6.h> 77 #include <inet/ip_ndp.h> 78 #include <inet/proto_set.h> 79 #include <inet/mib2.h> 80 #include <inet/nd.h> 81 #include <inet/optcom.h> 82 #include <inet/snmpcom.h> 83 #include <inet/kstatcom.h> 84 #include <inet/tcp.h> 85 #include <inet/tcp_impl.h> 86 #include <inet/udp_impl.h> 87 #include <net/pfkeyv2.h> 88 #include <inet/ipdrop.h> 89 90 #include <inet/ipclassifier.h> 91 #include <inet/ip_ire.h> 92 #include <inet/ip_ftable.h> 93 #include <inet/ip_if.h> 94 #include <inet/ipp_common.h> 95 #include <inet/ip_rts.h> 96 #include <inet/ip_netinfo.h> 97 #include <sys/squeue_impl.h> 98 #include <sys/squeue.h> 99 #include <inet/kssl/ksslapi.h> 100 #include <sys/tsol/label.h> 101 #include <sys/tsol/tnet.h> 102 #include <rpc/pmap_prot.h> 103 #include <sys/callo.h> 104 105 /* 106 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 107 * 108 * (Read the detailed design doc in PSARC case directory) 109 * 110 * The entire tcp state is contained in tcp_t and conn_t structure 111 * which are allocated in tandem using ipcl_conn_create() and passing 112 * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect 113 * the references on the tcp_t. The tcp_t structure is never compressed 114 * and packets always land on the correct TCP perimeter from the time 115 * eager is created till the time tcp_t dies (as such the old mentat 116 * TCP global queue is not used for detached state and no IPSEC checking 117 * is required). The global queue is still allocated to send out resets 118 * for connection which have no listeners and IP directly calls 119 * tcp_xmit_listeners_reset() which does any policy check. 120 * 121 * Protection and Synchronisation mechanism: 122 * 123 * The tcp data structure does not use any kind of lock for protecting 124 * its state but instead uses 'squeues' for mutual exclusion from various 125 * read and write side threads. To access a tcp member, the thread should 126 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 127 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 128 * can pass any tcp function having prototype of edesc_t as argument 129 * (different from traditional STREAMs model where packets come in only 130 * designated entry points). The list of functions that can be directly 131 * called via squeue are listed before the usual function prototype. 132 * 133 * Referencing: 134 * 135 * TCP is MT-Hot and we use a reference based scheme to make sure that the 136 * tcp structure doesn't disappear when its needed. When the application 137 * creates an outgoing connection or accepts an incoming connection, we 138 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 139 * The IP reference is just a symbolic reference since ip_tcpclose() 140 * looks at tcp structure after tcp_close_output() returns which could 141 * have dropped the last TCP reference. So as long as the connection is 142 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 143 * conn_t. The classifier puts its own reference when the connection is 144 * inserted in listen or connected hash. Anytime a thread needs to enter 145 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 146 * on write side or by doing a classify on read side and then puts a 147 * reference on the conn before doing squeue_enter/tryenter/fill. For 148 * read side, the classifier itself puts the reference under fanout lock 149 * to make sure that tcp can't disappear before it gets processed. The 150 * squeue will drop this reference automatically so the called function 151 * doesn't have to do a DEC_REF. 152 * 153 * Opening a new connection: 154 * 155 * The outgoing connection open is pretty simple. tcp_open() does the 156 * work in creating the conn/tcp structure and initializing it. The 157 * squeue assignment is done based on the CPU the application 158 * is running on. So for outbound connections, processing is always done 159 * on application CPU which might be different from the incoming CPU 160 * being interrupted by the NIC. An optimal way would be to figure out 161 * the NIC <-> CPU binding at listen time, and assign the outgoing 162 * connection to the squeue attached to the CPU that will be interrupted 163 * for incoming packets (we know the NIC based on the bind IP address). 164 * This might seem like a problem if more data is going out but the 165 * fact is that in most cases the transmit is ACK driven transmit where 166 * the outgoing data normally sits on TCP's xmit queue waiting to be 167 * transmitted. 168 * 169 * Accepting a connection: 170 * 171 * This is a more interesting case because of various races involved in 172 * establishing a eager in its own perimeter. Read the meta comment on 173 * top of tcp_input_listener(). But briefly, the squeue is picked by 174 * ip_fanout based on the ring or the sender (if loopback). 175 * 176 * Closing a connection: 177 * 178 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 179 * via squeue to do the close and mark the tcp as detached if the connection 180 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 181 * reference but tcp_close() drop IP's reference always. So if tcp was 182 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 183 * and 1 because it is in classifier's connected hash. This is the condition 184 * we use to determine that its OK to clean up the tcp outside of squeue 185 * when time wait expires (check the ref under fanout and conn_lock and 186 * if it is 2, remove it from fanout hash and kill it). 187 * 188 * Although close just drops the necessary references and marks the 189 * tcp_detached state, tcp_close needs to know the tcp_detached has been 190 * set (under squeue) before letting the STREAM go away (because a 191 * inbound packet might attempt to go up the STREAM while the close 192 * has happened and tcp_detached is not set). So a special lock and 193 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 194 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 195 * tcp_detached. 196 * 197 * Special provisions and fast paths: 198 * 199 * We make special provisions for sockfs by marking tcp_issocket 200 * whenever we have only sockfs on top of TCP. This allows us to skip 201 * putting the tcp in acceptor hash since a sockfs listener can never 202 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 203 * since eager has already been allocated and the accept now happens 204 * on acceptor STREAM. There is a big blob of comment on top of 205 * tcp_input_listener explaining the new accept. When socket is POP'd, 206 * sockfs sends us an ioctl to mark the fact and we go back to old 207 * behaviour. Once tcp_issocket is unset, its never set for the 208 * life of that connection. 209 * 210 * IPsec notes : 211 * 212 * Since a packet is always executed on the correct TCP perimeter 213 * all IPsec processing is defered to IP including checking new 214 * connections and setting IPSEC policies for new connection. The 215 * only exception is tcp_xmit_listeners_reset() which is called 216 * directly from IP and needs to policy check to see if TH_RST 217 * can be sent out. 218 */ 219 220 /* 221 * Values for squeue switch: 222 * 1: SQ_NODRAIN 223 * 2: SQ_PROCESS 224 * 3: SQ_FILL 225 */ 226 int tcp_squeue_wput = 2; /* /etc/systems */ 227 int tcp_squeue_flag; 228 229 /* 230 * This controls how tiny a write must be before we try to copy it 231 * into the mblk on the tail of the transmit queue. Not much 232 * speedup is observed for values larger than sixteen. Zero will 233 * disable the optimisation. 234 */ 235 int tcp_tx_pull_len = 16; 236 237 /* 238 * TCP Statistics. 239 * 240 * How TCP statistics work. 241 * 242 * There are two types of statistics invoked by two macros. 243 * 244 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 245 * supposed to be used in non MT-hot paths of the code. 246 * 247 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 248 * supposed to be used for DEBUG purposes and may be used on a hot path. 249 * 250 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 251 * (use "kstat tcp" to get them). 252 * 253 * There is also additional debugging facility that marks tcp_clean_death() 254 * instances and saves them in tcp_t structure. It is triggered by 255 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 256 * tcp_clean_death() calls that counts the number of times each tag was hit. It 257 * is triggered by TCP_CLD_COUNTERS define. 258 * 259 * How to add new counters. 260 * 261 * 1) Add a field in the tcp_stat structure describing your counter. 262 * 2) Add a line in the template in tcp_kstat2_init() with the name 263 * of the counter. 264 * 265 * IMPORTANT!! - make sure that both are in sync !! 266 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 267 * 268 * Please avoid using private counters which are not kstat-exported. 269 * 270 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 271 * in tcp_t structure. 272 * 273 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 274 */ 275 276 #ifndef TCP_DEBUG_COUNTER 277 #ifdef DEBUG 278 #define TCP_DEBUG_COUNTER 1 279 #else 280 #define TCP_DEBUG_COUNTER 0 281 #endif 282 #endif 283 284 #define TCP_CLD_COUNTERS 0 285 286 #define TCP_TAG_CLEAN_DEATH 1 287 #define TCP_MAX_CLEAN_DEATH_TAG 32 288 289 #ifdef lint 290 static int _lint_dummy_; 291 #endif 292 293 #if TCP_CLD_COUNTERS 294 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 295 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 296 #elif defined(lint) 297 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 298 #else 299 #define TCP_CLD_STAT(x) 300 #endif 301 302 #if TCP_DEBUG_COUNTER 303 #define TCP_DBGSTAT(tcps, x) \ 304 atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) 305 #define TCP_G_DBGSTAT(x) \ 306 atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) 307 #elif defined(lint) 308 #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); 309 #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 310 #else 311 #define TCP_DBGSTAT(tcps, x) 312 #define TCP_G_DBGSTAT(x) 313 #endif 314 315 #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) 316 317 tcp_g_stat_t tcp_g_statistics; 318 kstat_t *tcp_g_kstat; 319 320 /* Macros for timestamp comparisons */ 321 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 322 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 323 324 /* 325 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 326 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 327 * by adding three components: a time component which grows by 1 every 4096 328 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 329 * a per-connection component which grows by 125000 for every new connection; 330 * and an "extra" component that grows by a random amount centered 331 * approximately on 64000. This causes the ISS generator to cycle every 332 * 4.89 hours if no TCP connections are made, and faster if connections are 333 * made. 334 * 335 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 336 * components: a time component which grows by 250000 every second; and 337 * a per-connection component which grows by 125000 for every new connections. 338 * 339 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 340 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 341 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 342 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 343 * password. 344 */ 345 #define ISS_INCR 250000 346 #define ISS_NSEC_SHT 12 347 348 static sin_t sin_null; /* Zero address for quick clears */ 349 static sin6_t sin6_null; /* Zero address for quick clears */ 350 351 /* 352 * This implementation follows the 4.3BSD interpretation of the urgent 353 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 354 * incompatible changes in protocols like telnet and rlogin. 355 */ 356 #define TCP_OLD_URP_INTERPRETATION 1 357 358 /* 359 * Since tcp_listener is not cleared atomically with tcp_detached 360 * being cleared we need this extra bit to tell a detached connection 361 * apart from one that is in the process of being accepted. 362 */ 363 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 364 (TCP_IS_DETACHED(tcp) && \ 365 (!(tcp)->tcp_hard_binding)) 366 367 /* 368 * TCP reassembly macros. We hide starting and ending sequence numbers in 369 * b_next and b_prev of messages on the reassembly queue. The messages are 370 * chained using b_cont. These macros are used in tcp_reass() so we don't 371 * have to see the ugly casts and assignments. 372 */ 373 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 374 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 375 (mblk_t *)(uintptr_t)(u)) 376 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 377 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 378 (mblk_t *)(uintptr_t)(u)) 379 380 /* 381 * Implementation of TCP Timers. 382 * ============================= 383 * 384 * INTERFACE: 385 * 386 * There are two basic functions dealing with tcp timers: 387 * 388 * timeout_id_t tcp_timeout(connp, func, time) 389 * clock_t tcp_timeout_cancel(connp, timeout_id) 390 * TCP_TIMER_RESTART(tcp, intvl) 391 * 392 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 393 * after 'time' ticks passed. The function called by timeout() must adhere to 394 * the same restrictions as a driver soft interrupt handler - it must not sleep 395 * or call other functions that might sleep. The value returned is the opaque 396 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 397 * cancel the request. The call to tcp_timeout() may fail in which case it 398 * returns zero. This is different from the timeout(9F) function which never 399 * fails. 400 * 401 * The call-back function 'func' always receives 'connp' as its single 402 * argument. It is always executed in the squeue corresponding to the tcp 403 * structure. The tcp structure is guaranteed to be present at the time the 404 * call-back is called. 405 * 406 * NOTE: The call-back function 'func' is never called if tcp is in 407 * the TCPS_CLOSED state. 408 * 409 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 410 * request. locks acquired by the call-back routine should not be held across 411 * the call to tcp_timeout_cancel() or a deadlock may result. 412 * 413 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 414 * Otherwise, it returns an integer value greater than or equal to 0. In 415 * particular, if the call-back function is already placed on the squeue, it can 416 * not be canceled. 417 * 418 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 419 * within squeue context corresponding to the tcp instance. Since the 420 * call-back is also called via the same squeue, there are no race 421 * conditions described in untimeout(9F) manual page since all calls are 422 * strictly serialized. 423 * 424 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 425 * stored in tcp_timer_tid and starts a new one using 426 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 427 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 428 * field. 429 * 430 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 431 * call-back may still be called, so it is possible tcp_timer() will be 432 * called several times. This should not be a problem since tcp_timer() 433 * should always check the tcp instance state. 434 * 435 * 436 * IMPLEMENTATION: 437 * 438 * TCP timers are implemented using three-stage process. The call to 439 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 440 * when the timer expires. The tcp_timer_callback() arranges the call of the 441 * tcp_timer_handler() function via squeue corresponding to the tcp 442 * instance. The tcp_timer_handler() calls actual requested timeout call-back 443 * and passes tcp instance as an argument to it. Information is passed between 444 * stages using the tcp_timer_t structure which contains the connp pointer, the 445 * tcp call-back to call and the timeout id returned by the timeout(9F). 446 * 447 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 448 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 449 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 450 * returns the pointer to this mblk. 451 * 452 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 453 * looks like a normal mblk without actual dblk attached to it. 454 * 455 * To optimize performance each tcp instance holds a small cache of timer 456 * mblocks. In the current implementation it caches up to two timer mblocks per 457 * tcp instance. The cache is preserved over tcp frees and is only freed when 458 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 459 * timer processing happens on a corresponding squeue, the cache manipulation 460 * does not require any locks. Experiments show that majority of timer mblocks 461 * allocations are satisfied from the tcp cache and do not involve kmem calls. 462 * 463 * The tcp_timeout() places a refhold on the connp instance which guarantees 464 * that it will be present at the time the call-back function fires. The 465 * tcp_timer_handler() drops the reference after calling the call-back, so the 466 * call-back function does not need to manipulate the references explicitly. 467 */ 468 469 typedef struct tcp_timer_s { 470 conn_t *connp; 471 void (*tcpt_proc)(void *); 472 callout_id_t tcpt_tid; 473 } tcp_timer_t; 474 475 static kmem_cache_t *tcp_timercache; 476 kmem_cache_t *tcp_sack_info_cache; 477 478 /* 479 * For scalability, we must not run a timer for every TCP connection 480 * in TIME_WAIT state. To see why, consider (for time wait interval of 481 * 4 minutes): 482 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 483 * 484 * This list is ordered by time, so you need only delete from the head 485 * until you get to entries which aren't old enough to delete yet. 486 * The list consists of only the detached TIME_WAIT connections. 487 * 488 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 489 * becomes detached TIME_WAIT (either by changing the state and already 490 * being detached or the other way around). This means that the TIME_WAIT 491 * state can be extended (up to doubled) if the connection doesn't become 492 * detached for a long time. 493 * 494 * The list manipulations (including tcp_time_wait_next/prev) 495 * are protected by the tcp_time_wait_lock. The content of the 496 * detached TIME_WAIT connections is protected by the normal perimeters. 497 * 498 * This list is per squeue and squeues are shared across the tcp_stack_t's. 499 * Things on tcp_time_wait_head remain associated with the tcp_stack_t 500 * and conn_netstack. 501 * The tcp_t's that are added to tcp_free_list are disassociated and 502 * have NULL tcp_tcps and conn_netstack pointers. 503 */ 504 typedef struct tcp_squeue_priv_s { 505 kmutex_t tcp_time_wait_lock; 506 callout_id_t tcp_time_wait_tid; 507 tcp_t *tcp_time_wait_head; 508 tcp_t *tcp_time_wait_tail; 509 tcp_t *tcp_free_list; 510 uint_t tcp_free_list_cnt; 511 } tcp_squeue_priv_t; 512 513 /* 514 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 515 * Running it every 5 seconds seems to give the best results. 516 */ 517 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 518 519 /* 520 * To prevent memory hog, limit the number of entries in tcp_free_list 521 * to 1% of available memory / number of cpus 522 */ 523 uint_t tcp_free_list_max_cnt = 0; 524 525 #define TCP_XMIT_LOWATER 4096 526 #define TCP_XMIT_HIWATER 49152 527 #define TCP_RECV_LOWATER 2048 528 #define TCP_RECV_HIWATER 49152 529 530 /* 531 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 532 */ 533 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 534 535 #define TIDUSZ 4096 /* transport interface data unit size */ 536 537 /* 538 * Bind hash list size and has function. It has to be a power of 2 for 539 * hashing. 540 */ 541 #define TCP_BIND_FANOUT_SIZE 512 542 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 543 /* 544 * Size of listen and acceptor hash list. It has to be a power of 2 for 545 * hashing. 546 */ 547 #define TCP_FANOUT_SIZE 256 548 549 #ifdef _ILP32 550 #define TCP_ACCEPTOR_HASH(accid) \ 551 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 552 #else 553 #define TCP_ACCEPTOR_HASH(accid) \ 554 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 555 #endif /* _ILP32 */ 556 557 #define IP_ADDR_CACHE_SIZE 2048 558 #define IP_ADDR_CACHE_HASH(faddr) \ 559 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 560 561 /* 562 * TCP options struct returned from tcp_parse_options. 563 */ 564 typedef struct tcp_opt_s { 565 uint32_t tcp_opt_mss; 566 uint32_t tcp_opt_wscale; 567 uint32_t tcp_opt_ts_val; 568 uint32_t tcp_opt_ts_ecr; 569 tcp_t *tcp; 570 } tcp_opt_t; 571 572 /* 573 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 574 */ 575 576 #ifdef _BIG_ENDIAN 577 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 578 (TCPOPT_TSTAMP << 8) | 10) 579 #else 580 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 581 (TCPOPT_NOP << 8) | TCPOPT_NOP) 582 #endif 583 584 /* 585 * Flags returned from tcp_parse_options. 586 */ 587 #define TCP_OPT_MSS_PRESENT 1 588 #define TCP_OPT_WSCALE_PRESENT 2 589 #define TCP_OPT_TSTAMP_PRESENT 4 590 #define TCP_OPT_SACK_OK_PRESENT 8 591 #define TCP_OPT_SACK_PRESENT 16 592 593 /* TCP option length */ 594 #define TCPOPT_NOP_LEN 1 595 #define TCPOPT_MAXSEG_LEN 4 596 #define TCPOPT_WS_LEN 3 597 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 598 #define TCPOPT_TSTAMP_LEN 10 599 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 600 #define TCPOPT_SACK_OK_LEN 2 601 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 602 #define TCPOPT_REAL_SACK_LEN 4 603 #define TCPOPT_MAX_SACK_LEN 36 604 #define TCPOPT_HEADER_LEN 2 605 606 /* TCP cwnd burst factor. */ 607 #define TCP_CWND_INFINITE 65535 608 #define TCP_CWND_SS 3 609 #define TCP_CWND_NORMAL 5 610 611 /* Maximum TCP initial cwin (start/restart). */ 612 #define TCP_MAX_INIT_CWND 8 613 614 /* 615 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 616 * either tcp_slow_start_initial or tcp_slow_start_after idle 617 * depending on the caller. If the upper layer has not used the 618 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 619 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 620 * If the upper layer has changed set the tcp_init_cwnd, just use 621 * it to calculate the tcp_cwnd. 622 */ 623 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 624 { \ 625 if ((tcp)->tcp_init_cwnd == 0) { \ 626 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 627 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 628 } else { \ 629 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 630 } \ 631 tcp->tcp_cwnd_cnt = 0; \ 632 } 633 634 /* TCP Timer control structure */ 635 typedef struct tcpt_s { 636 pfv_t tcpt_pfv; /* The routine we are to call */ 637 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 638 } tcpt_t; 639 640 /* 641 * Functions called directly via squeue having a prototype of edesc_t. 642 */ 643 void tcp_input_listener(void *arg, mblk_t *mp, void *arg2, 644 ip_recv_attr_t *ira); 645 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2, 646 ip_recv_attr_t *dummy); 647 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2, 648 ip_recv_attr_t *dummy); 649 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2, 650 ip_recv_attr_t *dummy); 651 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2, 652 ip_recv_attr_t *dummy); 653 void tcp_input_data(void *arg, mblk_t *mp, void *arg2, 654 ip_recv_attr_t *ira); 655 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2, 656 ip_recv_attr_t *dummy); 657 void tcp_output(void *arg, mblk_t *mp, void *arg2, 658 ip_recv_attr_t *dummy); 659 void tcp_output_urgent(void *arg, mblk_t *mp, void *arg2, 660 ip_recv_attr_t *dummy); 661 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, 662 ip_recv_attr_t *dummy); 663 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2, 664 ip_recv_attr_t *dummy); 665 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, 666 ip_recv_attr_t *dummy); 667 668 669 /* Prototype for TCP functions */ 670 static void tcp_random_init(void); 671 int tcp_random(void); 672 static void tcp_tli_accept(tcp_t *tcp, mblk_t *mp); 673 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 674 tcp_t *eager); 675 static int tcp_set_destination(tcp_t *tcp); 676 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 677 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 678 boolean_t user_specified); 679 static void tcp_closei_local(tcp_t *tcp); 680 static void tcp_close_detached(tcp_t *tcp); 681 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, 682 mblk_t *idmp, mblk_t **defermp, ip_recv_attr_t *ira); 683 static void tcp_tpi_connect(tcp_t *tcp, mblk_t *mp); 684 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 685 in_port_t dstport, uint_t srcid); 686 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 687 in_port_t dstport, uint32_t flowinfo, 688 uint_t srcid, uint32_t scope_id); 689 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 690 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 691 static char *tcp_display(tcp_t *tcp, char *, char); 692 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 693 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 694 static void tcp_eager_unlink(tcp_t *tcp); 695 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 696 int unixerr); 697 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 698 int tlierr, int unixerr); 699 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 700 cred_t *cr); 701 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 702 char *value, caddr_t cp, cred_t *cr); 703 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 704 char *value, caddr_t cp, cred_t *cr); 705 static int tcp_tpistate(tcp_t *tcp); 706 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 707 int caller_holds_lock); 708 static void tcp_bind_hash_remove(tcp_t *tcp); 709 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); 710 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 711 static void tcp_acceptor_hash_remove(tcp_t *tcp); 712 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 713 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 714 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 715 static void tcp_init_values(tcp_t *tcp); 716 static void tcp_ip_notify(tcp_t *tcp); 717 static void tcp_iss_init(tcp_t *tcp); 718 static void tcp_keepalive_killer(void *arg); 719 static int tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt); 720 static void tcp_mss_set(tcp_t *tcp, uint32_t size); 721 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 722 int *do_disconnectp, int *t_errorp, int *sys_errorp); 723 static boolean_t tcp_allow_connopt_set(int level, int name); 724 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 725 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 726 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, 727 tcp_stack_t *); 728 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 729 caddr_t cp, cred_t *cr); 730 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 731 caddr_t cp, cred_t *cr); 732 static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); 733 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 734 caddr_t cp, cred_t *cr); 735 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 736 static void tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt); 737 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 738 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 739 static void tcp_reinit(tcp_t *tcp); 740 static void tcp_reinit_values(tcp_t *tcp); 741 742 static uint_t tcp_rwnd_reopen(tcp_t *tcp); 743 static uint_t tcp_rcv_drain(tcp_t *tcp); 744 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 745 static boolean_t tcp_send_rst_chk(tcp_stack_t *); 746 static void tcp_ss_rexmit(tcp_t *tcp); 747 static mblk_t *tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp, 748 ip_recv_attr_t *); 749 static void tcp_process_options(tcp_t *, tcpha_t *); 750 static void tcp_rsrv(queue_t *q); 751 static int tcp_snmp_state(tcp_t *tcp); 752 static void tcp_timer(void *arg); 753 static void tcp_timer_callback(void *); 754 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 755 boolean_t random); 756 static in_port_t tcp_get_next_priv_port(const tcp_t *); 757 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 758 static void tcp_wput_fallback(queue_t *q, mblk_t *mp); 759 void tcp_tpi_accept(queue_t *q, mblk_t *mp); 760 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 761 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 762 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 763 static int tcp_send(tcp_t *tcp, const int mss, 764 const int total_hdr_len, const int tcp_hdr_len, 765 const int num_sack_blk, int *usable, uint_t *snxt, 766 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time); 767 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 768 int num_sack_blk); 769 static void tcp_wsrv(queue_t *q); 770 static int tcp_xmit_end(tcp_t *tcp); 771 static void tcp_ack_timer(void *arg); 772 static mblk_t *tcp_ack_mp(tcp_t *tcp); 773 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 774 uint32_t seq, uint32_t ack, int ctl, ip_recv_attr_t *, 775 ip_stack_t *, conn_t *); 776 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 777 uint32_t ack, int ctl); 778 static void tcp_set_rto(tcp_t *, time_t); 779 static void tcp_icmp_input(void *, mblk_t *, void *, ip_recv_attr_t *); 780 static void tcp_icmp_error_ipv6(tcp_t *, mblk_t *, ip_recv_attr_t *); 781 static boolean_t tcp_verifyicmp(conn_t *, void *, icmph_t *, icmp6_t *, 782 ip_recv_attr_t *); 783 static int tcp_build_hdrs(tcp_t *); 784 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 785 uint32_t seg_seq, uint32_t seg_ack, int seg_len, tcpha_t *tcpha, 786 ip_recv_attr_t *ira); 787 boolean_t tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp); 788 static boolean_t tcp_zcopy_check(tcp_t *); 789 static void tcp_zcopy_notify(tcp_t *); 790 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, boolean_t); 791 static void tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa); 792 static void tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only); 793 static void tcp_update_zcopy(tcp_t *tcp); 794 static void tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t, 795 ixa_notify_arg_t); 796 static void tcp_rexmit_after_error(tcp_t *tcp); 797 static void tcp_send_data(tcp_t *, mblk_t *); 798 extern mblk_t *tcp_timermp_alloc(int); 799 extern void tcp_timermp_free(tcp_t *); 800 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 801 static void tcp_stop_lingering(tcp_t *tcp); 802 static void tcp_close_linger_timeout(void *arg); 803 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 804 static void tcp_stack_fini(netstackid_t stackid, void *arg); 805 static void *tcp_g_kstat_init(tcp_g_stat_t *); 806 static void tcp_g_kstat_fini(kstat_t *); 807 static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); 808 static void tcp_kstat_fini(netstackid_t, kstat_t *); 809 static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); 810 static void tcp_kstat2_fini(netstackid_t, kstat_t *); 811 static int tcp_kstat_update(kstat_t *kp, int rw); 812 static mblk_t *tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 813 ip_recv_attr_t *ira); 814 static mblk_t *tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp, 815 ip_recv_attr_t *ira); 816 static int tcp_squeue_switch(int); 817 818 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 819 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 820 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 821 static int tcp_tpi_close(queue_t *, int); 822 static int tcp_tpi_close_accept(queue_t *); 823 824 static void tcp_squeue_add(squeue_t *); 825 static void tcp_setcred_data(mblk_t *, ip_recv_attr_t *); 826 827 extern void tcp_kssl_input(tcp_t *, mblk_t *, cred_t *); 828 829 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy); 830 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2, 831 ip_recv_attr_t *dummy); 832 833 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t, 834 sock_upper_handle_t, cred_t *); 835 static int tcp_listen(sock_lower_handle_t, int, cred_t *); 836 static int tcp_do_listen(conn_t *, struct sockaddr *, socklen_t, int, cred_t *, 837 boolean_t); 838 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t, 839 cred_t *, pid_t); 840 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *, 841 boolean_t); 842 static int tcp_do_unbind(conn_t *); 843 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *, 844 boolean_t); 845 846 static void tcp_ulp_newconn(conn_t *, conn_t *, mblk_t *); 847 848 /* 849 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 850 * 851 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 852 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 853 * (defined in tcp.h) needs to be filled in and passed into the kernel 854 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 855 * structure contains the four-tuple of a TCP connection and a range of TCP 856 * states (specified by ac_start and ac_end). The use of wildcard addresses 857 * and ports is allowed. Connections with a matching four tuple and a state 858 * within the specified range will be aborted. The valid states for the 859 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 860 * inclusive. 861 * 862 * An application which has its connection aborted by this ioctl will receive 863 * an error that is dependent on the connection state at the time of the abort. 864 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 865 * though a RST packet has been received. If the connection state is equal to 866 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 867 * and all resources associated with the connection will be freed. 868 */ 869 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 870 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 871 static void tcp_ioctl_abort_handler(void *arg, mblk_t *mp, void *arg2, 872 ip_recv_attr_t *dummy); 873 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); 874 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 875 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 876 boolean_t, tcp_stack_t *); 877 878 static struct module_info tcp_rinfo = { 879 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 880 }; 881 882 static struct module_info tcp_winfo = { 883 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 884 }; 885 886 /* 887 * Entry points for TCP as a device. The normal case which supports 888 * the TCP functionality. 889 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 890 */ 891 struct qinit tcp_rinitv4 = { 892 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 893 }; 894 895 struct qinit tcp_rinitv6 = { 896 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 897 }; 898 899 struct qinit tcp_winit = { 900 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 901 }; 902 903 /* Initial entry point for TCP in socket mode. */ 904 struct qinit tcp_sock_winit = { 905 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 906 }; 907 908 /* TCP entry point during fallback */ 909 struct qinit tcp_fallback_sock_winit = { 910 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 911 }; 912 913 /* 914 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 915 * an accept. Avoid allocating data structures since eager has already 916 * been created. 917 */ 918 struct qinit tcp_acceptor_rinit = { 919 NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo 920 }; 921 922 struct qinit tcp_acceptor_winit = { 923 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 924 }; 925 926 /* For AF_INET aka /dev/tcp */ 927 struct streamtab tcpinfov4 = { 928 &tcp_rinitv4, &tcp_winit 929 }; 930 931 /* For AF_INET6 aka /dev/tcp6 */ 932 struct streamtab tcpinfov6 = { 933 &tcp_rinitv6, &tcp_winit 934 }; 935 936 sock_downcalls_t sock_tcp_downcalls; 937 938 /* Setable only in /etc/system. Move to ndd? */ 939 boolean_t tcp_icmp_source_quench = B_FALSE; 940 941 /* 942 * Following assumes TPI alignment requirements stay along 32 bit 943 * boundaries 944 */ 945 #define ROUNDUP32(x) \ 946 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 947 948 /* Template for response to info request. */ 949 static struct T_info_ack tcp_g_t_info_ack = { 950 T_INFO_ACK, /* PRIM_type */ 951 0, /* TSDU_size */ 952 T_INFINITE, /* ETSDU_size */ 953 T_INVALID, /* CDATA_size */ 954 T_INVALID, /* DDATA_size */ 955 sizeof (sin_t), /* ADDR_size */ 956 0, /* OPT_size - not initialized here */ 957 TIDUSZ, /* TIDU_size */ 958 T_COTS_ORD, /* SERV_type */ 959 TCPS_IDLE, /* CURRENT_state */ 960 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 961 }; 962 963 static struct T_info_ack tcp_g_t_info_ack_v6 = { 964 T_INFO_ACK, /* PRIM_type */ 965 0, /* TSDU_size */ 966 T_INFINITE, /* ETSDU_size */ 967 T_INVALID, /* CDATA_size */ 968 T_INVALID, /* DDATA_size */ 969 sizeof (sin6_t), /* ADDR_size */ 970 0, /* OPT_size - not initialized here */ 971 TIDUSZ, /* TIDU_size */ 972 T_COTS_ORD, /* SERV_type */ 973 TCPS_IDLE, /* CURRENT_state */ 974 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 975 }; 976 977 #define MS 1L 978 #define SECONDS (1000 * MS) 979 #define MINUTES (60 * SECONDS) 980 #define HOURS (60 * MINUTES) 981 #define DAYS (24 * HOURS) 982 983 #define PARAM_MAX (~(uint32_t)0) 984 985 /* Max size IP datagram is 64k - 1 */ 986 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcpha_t))) 987 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcpha_t))) 988 /* Max of the above */ 989 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 990 991 /* Largest TCP port number */ 992 #define TCP_MAX_PORT (64 * 1024 - 1) 993 994 /* 995 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 996 * layer header. It has to be a multiple of 4. 997 */ 998 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 999 #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val 1000 1001 /* 1002 * All of these are alterable, within the min/max values given, at run time. 1003 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1004 * per the TCP spec. 1005 */ 1006 /* BEGIN CSTYLED */ 1007 static tcpparam_t lcl_tcp_param_arr[] = { 1008 /*min max value name */ 1009 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1010 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1011 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1012 { 1, 1024, 1, "tcp_conn_req_min" }, 1013 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1014 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1015 { 0, 10, 0, "tcp_debug" }, 1016 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1017 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1018 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1019 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1020 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1021 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1022 { 1, 255, 64, "tcp_ipv4_ttl"}, 1023 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1024 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1025 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1026 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1027 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1028 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1029 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1030 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1031 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1032 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1033 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1034 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1035 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1036 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1037 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1038 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1039 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1040 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1041 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1042 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1043 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1044 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1045 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1046 /* 1047 * Question: What default value should I set for tcp_strong_iss? 1048 */ 1049 { 0, 2, 1, "tcp_strong_iss"}, 1050 { 0, 65536, 20, "tcp_rtt_updates"}, 1051 { 0, 1, 1, "tcp_wscale_always"}, 1052 { 0, 1, 0, "tcp_tstamp_always"}, 1053 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1054 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1055 { 0, 16, 2, "tcp_deferred_acks_max"}, 1056 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1057 { 1, 4, 4, "tcp_slow_start_initial"}, 1058 { 0, 2, 2, "tcp_sack_permitted"}, 1059 { 0, 1, 1, "tcp_compression_enabled"}, 1060 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1061 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1062 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1063 { 0, 1, 0, "tcp_rev_src_routes"}, 1064 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1065 { 0, 16, 8, "tcp_local_dacks_max"}, 1066 { 0, 2, 1, "tcp_ecn_permitted"}, 1067 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1068 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1069 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1070 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1071 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1072 { 0, 1, 0, "tcp_dev_flow_ctl"}, 1073 }; 1074 /* END CSTYLED */ 1075 1076 /* Round up the value to the nearest mss. */ 1077 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1078 1079 /* 1080 * Set ECN capable transport (ECT) code point in IP header. 1081 * 1082 * Note that there are 2 ECT code points '01' and '10', which are called 1083 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1084 * point ECT(0) for TCP as described in RFC 2481. 1085 */ 1086 #define SET_ECT(tcp, iph) \ 1087 if ((tcp)->tcp_connp->conn_ipversion == IPV4_VERSION) { \ 1088 /* We need to clear the code point first. */ \ 1089 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1090 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1091 } else { \ 1092 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1093 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1094 } 1095 1096 /* 1097 * The format argument to pass to tcp_display(). 1098 * DISP_PORT_ONLY means that the returned string has only port info. 1099 * DISP_ADDR_AND_PORT means that the returned string also contains the 1100 * remote and local IP address. 1101 */ 1102 #define DISP_PORT_ONLY 1 1103 #define DISP_ADDR_AND_PORT 2 1104 1105 #define IS_VMLOANED_MBLK(mp) \ 1106 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1107 1108 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1109 1110 /* 1111 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 1112 * tunable settable via NDD. Otherwise, the per-connection behavior is 1113 * determined dynamically during tcp_set_destination(), which is the default. 1114 */ 1115 boolean_t tcp_static_maxpsz = B_FALSE; 1116 1117 /* Setable in /etc/system */ 1118 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1119 uint32_t tcp_random_anon_port = 1; 1120 1121 /* 1122 * To reach to an eager in Q0 which can be dropped due to an incoming 1123 * new SYN request when Q0 is full, a new doubly linked list is 1124 * introduced. This list allows to select an eager from Q0 in O(1) time. 1125 * This is needed to avoid spending too much time walking through the 1126 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1127 * this new list has to be a member of Q0. 1128 * This list is headed by listener's tcp_t. When the list is empty, 1129 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1130 * of listener's tcp_t point to listener's tcp_t itself. 1131 * 1132 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1133 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1134 * These macros do not affect the eager's membership to Q0. 1135 */ 1136 1137 1138 #define MAKE_DROPPABLE(listener, eager) \ 1139 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1140 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1141 = (eager); \ 1142 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1143 (eager)->tcp_eager_next_drop_q0 = \ 1144 (listener)->tcp_eager_next_drop_q0; \ 1145 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1146 } 1147 1148 #define MAKE_UNDROPPABLE(eager) \ 1149 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1150 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1151 = (eager)->tcp_eager_prev_drop_q0; \ 1152 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1153 = (eager)->tcp_eager_next_drop_q0; \ 1154 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1155 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1156 } 1157 1158 /* 1159 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1160 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1161 * data, TCP will not respond with an ACK. RFC 793 requires that 1162 * TCP responds with an ACK for such a bogus ACK. By not following 1163 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1164 * an attacker successfully spoofs an acceptable segment to our 1165 * peer; or when our peer is "confused." 1166 */ 1167 uint32_t tcp_drop_ack_unsent_cnt = 10; 1168 1169 /* 1170 * Hook functions to enable cluster networking 1171 * On non-clustered systems these vectors must always be NULL. 1172 */ 1173 1174 void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol, 1175 sa_family_t addr_family, uint8_t *laddrp, 1176 in_port_t lport, void *args) = NULL; 1177 void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol, 1178 sa_family_t addr_family, uint8_t *laddrp, 1179 in_port_t lport, void *args) = NULL; 1180 1181 int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol, 1182 boolean_t is_outgoing, 1183 sa_family_t addr_family, 1184 uint8_t *laddrp, in_port_t lport, 1185 uint8_t *faddrp, in_port_t fport, 1186 void *args) = NULL; 1187 void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol, 1188 sa_family_t addr_family, uint8_t *laddrp, 1189 in_port_t lport, uint8_t *faddrp, 1190 in_port_t fport, void *args) = NULL; 1191 1192 1193 /* 1194 * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err) 1195 */ 1196 #define CL_INET_CONNECT(connp, is_outgoing, err) { \ 1197 (err) = 0; \ 1198 if (cl_inet_connect2 != NULL) { \ 1199 /* \ 1200 * Running in cluster mode - register active connection \ 1201 * information \ 1202 */ \ 1203 if ((connp)->conn_ipversion == IPV4_VERSION) { \ 1204 if ((connp)->conn_laddr_v4 != 0) { \ 1205 (err) = (*cl_inet_connect2)( \ 1206 (connp)->conn_netstack->netstack_stackid,\ 1207 IPPROTO_TCP, is_outgoing, AF_INET, \ 1208 (uint8_t *)(&((connp)->conn_laddr_v4)),\ 1209 (in_port_t)(connp)->conn_lport, \ 1210 (uint8_t *)(&((connp)->conn_faddr_v4)),\ 1211 (in_port_t)(connp)->conn_fport, NULL); \ 1212 } \ 1213 } else { \ 1214 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1215 &(connp)->conn_laddr_v6)) { \ 1216 (err) = (*cl_inet_connect2)( \ 1217 (connp)->conn_netstack->netstack_stackid,\ 1218 IPPROTO_TCP, is_outgoing, AF_INET6, \ 1219 (uint8_t *)(&((connp)->conn_laddr_v6)),\ 1220 (in_port_t)(connp)->conn_lport, \ 1221 (uint8_t *)(&((connp)->conn_faddr_v6)), \ 1222 (in_port_t)(connp)->conn_fport, NULL); \ 1223 } \ 1224 } \ 1225 } \ 1226 } 1227 1228 #define CL_INET_DISCONNECT(connp) { \ 1229 if (cl_inet_disconnect != NULL) { \ 1230 /* \ 1231 * Running in cluster mode - deregister active \ 1232 * connection information \ 1233 */ \ 1234 if ((connp)->conn_ipversion == IPV4_VERSION) { \ 1235 if ((connp)->conn_laddr_v4 != 0) { \ 1236 (*cl_inet_disconnect)( \ 1237 (connp)->conn_netstack->netstack_stackid,\ 1238 IPPROTO_TCP, AF_INET, \ 1239 (uint8_t *)(&((connp)->conn_laddr_v4)),\ 1240 (in_port_t)(connp)->conn_lport, \ 1241 (uint8_t *)(&((connp)->conn_faddr_v4)),\ 1242 (in_port_t)(connp)->conn_fport, NULL); \ 1243 } \ 1244 } else { \ 1245 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1246 &(connp)->conn_laddr_v6)) { \ 1247 (*cl_inet_disconnect)( \ 1248 (connp)->conn_netstack->netstack_stackid,\ 1249 IPPROTO_TCP, AF_INET6, \ 1250 (uint8_t *)(&((connp)->conn_laddr_v6)),\ 1251 (in_port_t)(connp)->conn_lport, \ 1252 (uint8_t *)(&((connp)->conn_faddr_v6)), \ 1253 (in_port_t)(connp)->conn_fport, NULL); \ 1254 } \ 1255 } \ 1256 } \ 1257 } 1258 1259 /* 1260 * Cluster networking hook for traversing current connection list. 1261 * This routine is used to extract the current list of live connections 1262 * which must continue to to be dispatched to this node. 1263 */ 1264 int cl_tcp_walk_list(netstackid_t stack_id, 1265 int (*callback)(cl_tcp_info_t *, void *), void *arg); 1266 1267 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), 1268 void *arg, tcp_stack_t *tcps); 1269 1270 static void 1271 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh) 1272 { 1273 uint32_t default_threshold = SOCKET_RECVHIWATER >> 3; 1274 1275 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 1276 conn_t *connp = tcp->tcp_connp; 1277 struct sock_proto_props sopp; 1278 1279 /* 1280 * only increase rcvthresh upto default_threshold 1281 */ 1282 if (new_rcvthresh > default_threshold) 1283 new_rcvthresh = default_threshold; 1284 1285 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 1286 sopp.sopp_rcvthresh = new_rcvthresh; 1287 1288 (*connp->conn_upcalls->su_set_proto_props) 1289 (connp->conn_upper_handle, &sopp); 1290 } 1291 } 1292 /* 1293 * Figure out the value of window scale opton. Note that the rwnd is 1294 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1295 * We cannot find the scale value and then do a round up of tcp_rwnd 1296 * because the scale value may not be correct after that. 1297 * 1298 * Set the compiler flag to make this function inline. 1299 */ 1300 static void 1301 tcp_set_ws_value(tcp_t *tcp) 1302 { 1303 int i; 1304 uint32_t rwnd = tcp->tcp_rwnd; 1305 1306 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1307 i++, rwnd >>= 1) 1308 ; 1309 tcp->tcp_rcv_ws = i; 1310 } 1311 1312 /* 1313 * Remove a connection from the list of detached TIME_WAIT connections. 1314 * It returns B_FALSE if it can't remove the connection from the list 1315 * as the connection has already been removed from the list due to an 1316 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1317 */ 1318 static boolean_t 1319 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1320 { 1321 boolean_t locked = B_FALSE; 1322 1323 if (tcp_time_wait == NULL) { 1324 tcp_time_wait = *((tcp_squeue_priv_t **) 1325 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1326 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1327 locked = B_TRUE; 1328 } else { 1329 ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); 1330 } 1331 1332 if (tcp->tcp_time_wait_expire == 0) { 1333 ASSERT(tcp->tcp_time_wait_next == NULL); 1334 ASSERT(tcp->tcp_time_wait_prev == NULL); 1335 if (locked) 1336 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1337 return (B_FALSE); 1338 } 1339 ASSERT(TCP_IS_DETACHED(tcp)); 1340 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1341 1342 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1343 ASSERT(tcp->tcp_time_wait_prev == NULL); 1344 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1345 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1346 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1347 NULL; 1348 } else { 1349 tcp_time_wait->tcp_time_wait_tail = NULL; 1350 } 1351 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1352 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1353 ASSERT(tcp->tcp_time_wait_next == NULL); 1354 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1355 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1356 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1357 } else { 1358 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1359 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1360 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1361 tcp->tcp_time_wait_next; 1362 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1363 tcp->tcp_time_wait_prev; 1364 } 1365 tcp->tcp_time_wait_next = NULL; 1366 tcp->tcp_time_wait_prev = NULL; 1367 tcp->tcp_time_wait_expire = 0; 1368 1369 if (locked) 1370 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1371 return (B_TRUE); 1372 } 1373 1374 /* 1375 * Add a connection to the list of detached TIME_WAIT connections 1376 * and set its time to expire. 1377 */ 1378 static void 1379 tcp_time_wait_append(tcp_t *tcp) 1380 { 1381 tcp_stack_t *tcps = tcp->tcp_tcps; 1382 tcp_squeue_priv_t *tcp_time_wait = 1383 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1384 SQPRIVATE_TCP)); 1385 1386 tcp_timers_stop(tcp); 1387 1388 /* Freed above */ 1389 ASSERT(tcp->tcp_timer_tid == 0); 1390 ASSERT(tcp->tcp_ack_tid == 0); 1391 1392 /* must have happened at the time of detaching the tcp */ 1393 ASSERT(tcp->tcp_ptpahn == NULL); 1394 ASSERT(tcp->tcp_flow_stopped == 0); 1395 ASSERT(tcp->tcp_time_wait_next == NULL); 1396 ASSERT(tcp->tcp_time_wait_prev == NULL); 1397 ASSERT(tcp->tcp_time_wait_expire == NULL); 1398 ASSERT(tcp->tcp_listener == NULL); 1399 1400 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1401 /* 1402 * The value computed below in tcp->tcp_time_wait_expire may 1403 * appear negative or wrap around. That is ok since our 1404 * interest is only in the difference between the current lbolt 1405 * value and tcp->tcp_time_wait_expire. But the value should not 1406 * be zero, since it means the tcp is not in the TIME_WAIT list. 1407 * The corresponding comparison in tcp_time_wait_collector() uses 1408 * modular arithmetic. 1409 */ 1410 tcp->tcp_time_wait_expire += 1411 drv_usectohz(tcps->tcps_time_wait_interval * 1000); 1412 if (tcp->tcp_time_wait_expire == 0) 1413 tcp->tcp_time_wait_expire = 1; 1414 1415 ASSERT(TCP_IS_DETACHED(tcp)); 1416 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1417 ASSERT(tcp->tcp_time_wait_next == NULL); 1418 ASSERT(tcp->tcp_time_wait_prev == NULL); 1419 TCP_DBGSTAT(tcps, tcp_time_wait); 1420 1421 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1422 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1423 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1424 tcp_time_wait->tcp_time_wait_head = tcp; 1425 } else { 1426 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1427 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1428 TCPS_TIME_WAIT); 1429 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1430 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1431 } 1432 tcp_time_wait->tcp_time_wait_tail = tcp; 1433 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1434 } 1435 1436 /* ARGSUSED */ 1437 void 1438 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 1439 { 1440 conn_t *connp = (conn_t *)arg; 1441 tcp_t *tcp = connp->conn_tcp; 1442 tcp_stack_t *tcps = tcp->tcp_tcps; 1443 1444 ASSERT(tcp != NULL); 1445 if (tcp->tcp_state == TCPS_CLOSED) { 1446 return; 1447 } 1448 1449 ASSERT((connp->conn_family == AF_INET && 1450 connp->conn_ipversion == IPV4_VERSION) || 1451 (connp->conn_family == AF_INET6 && 1452 (connp->conn_ipversion == IPV4_VERSION || 1453 connp->conn_ipversion == IPV6_VERSION))); 1454 ASSERT(!tcp->tcp_listener); 1455 1456 TCP_STAT(tcps, tcp_time_wait_reap); 1457 ASSERT(TCP_IS_DETACHED(tcp)); 1458 1459 /* 1460 * Because they have no upstream client to rebind or tcp_close() 1461 * them later, we axe the connection here and now. 1462 */ 1463 tcp_close_detached(tcp); 1464 } 1465 1466 /* 1467 * Remove cached/latched IPsec references. 1468 */ 1469 void 1470 tcp_ipsec_cleanup(tcp_t *tcp) 1471 { 1472 conn_t *connp = tcp->tcp_connp; 1473 1474 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1475 1476 if (connp->conn_latch != NULL) { 1477 IPLATCH_REFRELE(connp->conn_latch); 1478 connp->conn_latch = NULL; 1479 } 1480 if (connp->conn_latch_in_policy != NULL) { 1481 IPPOL_REFRELE(connp->conn_latch_in_policy); 1482 connp->conn_latch_in_policy = NULL; 1483 } 1484 if (connp->conn_latch_in_action != NULL) { 1485 IPACT_REFRELE(connp->conn_latch_in_action); 1486 connp->conn_latch_in_action = NULL; 1487 } 1488 if (connp->conn_policy != NULL) { 1489 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 1490 connp->conn_policy = NULL; 1491 } 1492 } 1493 1494 /* 1495 * Cleaup before placing on free list. 1496 * Disassociate from the netstack/tcp_stack_t since the freelist 1497 * is per squeue and not per netstack. 1498 */ 1499 void 1500 tcp_cleanup(tcp_t *tcp) 1501 { 1502 mblk_t *mp; 1503 tcp_sack_info_t *tcp_sack_info; 1504 conn_t *connp = tcp->tcp_connp; 1505 tcp_stack_t *tcps = tcp->tcp_tcps; 1506 netstack_t *ns = tcps->tcps_netstack; 1507 mblk_t *tcp_rsrv_mp; 1508 1509 tcp_bind_hash_remove(tcp); 1510 1511 /* Cleanup that which needs the netstack first */ 1512 tcp_ipsec_cleanup(tcp); 1513 ixa_cleanup(connp->conn_ixa); 1514 1515 if (connp->conn_ht_iphc != NULL) { 1516 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 1517 connp->conn_ht_iphc = NULL; 1518 connp->conn_ht_iphc_allocated = 0; 1519 connp->conn_ht_iphc_len = 0; 1520 connp->conn_ht_ulp = NULL; 1521 connp->conn_ht_ulp_len = 0; 1522 tcp->tcp_ipha = NULL; 1523 tcp->tcp_ip6h = NULL; 1524 tcp->tcp_tcpha = NULL; 1525 } 1526 1527 /* We clear any IP_OPTIONS and extension headers */ 1528 ip_pkt_free(&connp->conn_xmit_ipp); 1529 1530 tcp_free(tcp); 1531 1532 /* Release any SSL context */ 1533 if (tcp->tcp_kssl_ent != NULL) { 1534 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1535 tcp->tcp_kssl_ent = NULL; 1536 } 1537 1538 if (tcp->tcp_kssl_ctx != NULL) { 1539 kssl_release_ctx(tcp->tcp_kssl_ctx); 1540 tcp->tcp_kssl_ctx = NULL; 1541 } 1542 tcp->tcp_kssl_pending = B_FALSE; 1543 1544 /* 1545 * Since we will bzero the entire structure, we need to 1546 * remove it and reinsert it in global hash list. We 1547 * know the walkers can't get to this conn because we 1548 * had set CONDEMNED flag earlier and checked reference 1549 * under conn_lock so walker won't pick it and when we 1550 * go the ipcl_globalhash_remove() below, no walker 1551 * can get to it. 1552 */ 1553 ipcl_globalhash_remove(connp); 1554 1555 /* Save some state */ 1556 mp = tcp->tcp_timercache; 1557 1558 tcp_sack_info = tcp->tcp_sack_info; 1559 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 1560 1561 if (connp->conn_cred != NULL) { 1562 crfree(connp->conn_cred); 1563 connp->conn_cred = NULL; 1564 } 1565 ipcl_conn_cleanup(connp); 1566 connp->conn_flags = IPCL_TCPCONN; 1567 1568 /* 1569 * Now it is safe to decrement the reference counts. 1570 * This might be the last reference on the netstack 1571 * in which case it will cause the freeing of the IP Instance. 1572 */ 1573 connp->conn_netstack = NULL; 1574 connp->conn_ixa->ixa_ipst = NULL; 1575 netstack_rele(ns); 1576 ASSERT(tcps != NULL); 1577 tcp->tcp_tcps = NULL; 1578 1579 bzero(tcp, sizeof (tcp_t)); 1580 1581 /* restore the state */ 1582 tcp->tcp_timercache = mp; 1583 1584 tcp->tcp_sack_info = tcp_sack_info; 1585 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1586 1587 tcp->tcp_connp = connp; 1588 1589 ASSERT(connp->conn_tcp == tcp); 1590 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1591 connp->conn_state_flags = CONN_INCIPIENT; 1592 ASSERT(connp->conn_proto == IPPROTO_TCP); 1593 ASSERT(connp->conn_ref == 1); 1594 } 1595 1596 /* 1597 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1598 * is done forwards from the head. 1599 * This walks all stack instances since 1600 * tcp_time_wait remains global across all stacks. 1601 */ 1602 /* ARGSUSED */ 1603 void 1604 tcp_time_wait_collector(void *arg) 1605 { 1606 tcp_t *tcp; 1607 clock_t now; 1608 mblk_t *mp; 1609 conn_t *connp; 1610 kmutex_t *lock; 1611 boolean_t removed; 1612 1613 squeue_t *sqp = (squeue_t *)arg; 1614 tcp_squeue_priv_t *tcp_time_wait = 1615 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1616 1617 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1618 tcp_time_wait->tcp_time_wait_tid = 0; 1619 1620 if (tcp_time_wait->tcp_free_list != NULL && 1621 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1622 TCP_G_STAT(tcp_freelist_cleanup); 1623 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1624 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1625 tcp->tcp_time_wait_next = NULL; 1626 tcp_time_wait->tcp_free_list_cnt--; 1627 ASSERT(tcp->tcp_tcps == NULL); 1628 CONN_DEC_REF(tcp->tcp_connp); 1629 } 1630 ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); 1631 } 1632 1633 /* 1634 * In order to reap time waits reliably, we should use a 1635 * source of time that is not adjustable by the user -- hence 1636 * the call to ddi_get_lbolt(). 1637 */ 1638 now = ddi_get_lbolt(); 1639 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1640 /* 1641 * Compare times using modular arithmetic, since 1642 * lbolt can wrapover. 1643 */ 1644 if ((now - tcp->tcp_time_wait_expire) < 0) { 1645 break; 1646 } 1647 1648 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1649 ASSERT(removed); 1650 1651 connp = tcp->tcp_connp; 1652 ASSERT(connp->conn_fanout != NULL); 1653 lock = &connp->conn_fanout->connf_lock; 1654 /* 1655 * This is essentially a TW reclaim fast path optimization for 1656 * performance where the timewait collector checks under the 1657 * fanout lock (so that no one else can get access to the 1658 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1659 * the classifier hash list. If ref count is indeed 2, we can 1660 * just remove the conn under the fanout lock and avoid 1661 * cleaning up the conn under the squeue, provided that 1662 * clustering callbacks are not enabled. If clustering is 1663 * enabled, we need to make the clustering callback before 1664 * setting the CONDEMNED flag and after dropping all locks and 1665 * so we forego this optimization and fall back to the slow 1666 * path. Also please see the comments in tcp_closei_local 1667 * regarding the refcnt logic. 1668 * 1669 * Since we are holding the tcp_time_wait_lock, its better 1670 * not to block on the fanout_lock because other connections 1671 * can't add themselves to time_wait list. So we do a 1672 * tryenter instead of mutex_enter. 1673 */ 1674 if (mutex_tryenter(lock)) { 1675 mutex_enter(&connp->conn_lock); 1676 if ((connp->conn_ref == 2) && 1677 (cl_inet_disconnect == NULL)) { 1678 ipcl_hash_remove_locked(connp, 1679 connp->conn_fanout); 1680 /* 1681 * Set the CONDEMNED flag now itself so that 1682 * the refcnt cannot increase due to any 1683 * walker. 1684 */ 1685 connp->conn_state_flags |= CONN_CONDEMNED; 1686 mutex_exit(lock); 1687 mutex_exit(&connp->conn_lock); 1688 if (tcp_time_wait->tcp_free_list_cnt < 1689 tcp_free_list_max_cnt) { 1690 /* Add to head of tcp_free_list */ 1691 mutex_exit( 1692 &tcp_time_wait->tcp_time_wait_lock); 1693 tcp_cleanup(tcp); 1694 ASSERT(connp->conn_latch == NULL); 1695 ASSERT(connp->conn_policy == NULL); 1696 ASSERT(tcp->tcp_tcps == NULL); 1697 ASSERT(connp->conn_netstack == NULL); 1698 1699 mutex_enter( 1700 &tcp_time_wait->tcp_time_wait_lock); 1701 tcp->tcp_time_wait_next = 1702 tcp_time_wait->tcp_free_list; 1703 tcp_time_wait->tcp_free_list = tcp; 1704 tcp_time_wait->tcp_free_list_cnt++; 1705 continue; 1706 } else { 1707 /* Do not add to tcp_free_list */ 1708 mutex_exit( 1709 &tcp_time_wait->tcp_time_wait_lock); 1710 tcp_bind_hash_remove(tcp); 1711 ixa_cleanup(tcp->tcp_connp->conn_ixa); 1712 tcp_ipsec_cleanup(tcp); 1713 CONN_DEC_REF(tcp->tcp_connp); 1714 } 1715 } else { 1716 CONN_INC_REF_LOCKED(connp); 1717 mutex_exit(lock); 1718 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1719 mutex_exit(&connp->conn_lock); 1720 /* 1721 * We can reuse the closemp here since conn has 1722 * detached (otherwise we wouldn't even be in 1723 * time_wait list). tcp_closemp_used can safely 1724 * be changed without taking a lock as no other 1725 * thread can concurrently access it at this 1726 * point in the connection lifecycle. 1727 */ 1728 1729 if (tcp->tcp_closemp.b_prev == NULL) 1730 tcp->tcp_closemp_used = B_TRUE; 1731 else 1732 cmn_err(CE_PANIC, 1733 "tcp_timewait_collector: " 1734 "concurrent use of tcp_closemp: " 1735 "connp %p tcp %p\n", (void *)connp, 1736 (void *)tcp); 1737 1738 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1739 mp = &tcp->tcp_closemp; 1740 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1741 tcp_timewait_output, connp, NULL, 1742 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1743 } 1744 } else { 1745 mutex_enter(&connp->conn_lock); 1746 CONN_INC_REF_LOCKED(connp); 1747 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1748 mutex_exit(&connp->conn_lock); 1749 /* 1750 * We can reuse the closemp here since conn has 1751 * detached (otherwise we wouldn't even be in 1752 * time_wait list). tcp_closemp_used can safely 1753 * be changed without taking a lock as no other 1754 * thread can concurrently access it at this 1755 * point in the connection lifecycle. 1756 */ 1757 1758 if (tcp->tcp_closemp.b_prev == NULL) 1759 tcp->tcp_closemp_used = B_TRUE; 1760 else 1761 cmn_err(CE_PANIC, "tcp_timewait_collector: " 1762 "concurrent use of tcp_closemp: " 1763 "connp %p tcp %p\n", (void *)connp, 1764 (void *)tcp); 1765 1766 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1767 mp = &tcp->tcp_closemp; 1768 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1769 tcp_timewait_output, connp, NULL, 1770 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1771 } 1772 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1773 } 1774 1775 if (tcp_time_wait->tcp_free_list != NULL) 1776 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1777 1778 tcp_time_wait->tcp_time_wait_tid = 1779 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 1780 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 1781 CALLOUT_FLAG_ROUNDUP); 1782 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1783 } 1784 1785 /* 1786 * Reply to a clients T_CONN_RES TPI message. This function 1787 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1788 * on the acceptor STREAM and processed in tcp_accept_common(). 1789 * Read the block comment on top of tcp_input_listener(). 1790 */ 1791 static void 1792 tcp_tli_accept(tcp_t *listener, mblk_t *mp) 1793 { 1794 tcp_t *acceptor; 1795 tcp_t *eager; 1796 tcp_t *tcp; 1797 struct T_conn_res *tcr; 1798 t_uscalar_t acceptor_id; 1799 t_scalar_t seqnum; 1800 mblk_t *discon_mp = NULL; 1801 mblk_t *ok_mp; 1802 mblk_t *mp1; 1803 tcp_stack_t *tcps = listener->tcp_tcps; 1804 conn_t *econnp; 1805 1806 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1807 tcp_err_ack(listener, mp, TPROTO, 0); 1808 return; 1809 } 1810 tcr = (struct T_conn_res *)mp->b_rptr; 1811 1812 /* 1813 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1814 * read side queue of the streams device underneath us i.e. the 1815 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1816 * look it up in the queue_hash. Under LP64 it sends down the 1817 * minor_t of the accepting endpoint. 1818 * 1819 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1820 * fanout hash lock is held. 1821 * This prevents any thread from entering the acceptor queue from 1822 * below (since it has not been hard bound yet i.e. any inbound 1823 * packets will arrive on the listener conn_t and 1824 * go through the classifier). 1825 * The CONN_INC_REF will prevent the acceptor from closing. 1826 * 1827 * XXX It is still possible for a tli application to send down data 1828 * on the accepting stream while another thread calls t_accept. 1829 * This should not be a problem for well-behaved applications since 1830 * the T_OK_ACK is sent after the queue swapping is completed. 1831 * 1832 * If the accepting fd is the same as the listening fd, avoid 1833 * queue hash lookup since that will return an eager listener in a 1834 * already established state. 1835 */ 1836 acceptor_id = tcr->ACCEPTOR_id; 1837 mutex_enter(&listener->tcp_eager_lock); 1838 if (listener->tcp_acceptor_id == acceptor_id) { 1839 eager = listener->tcp_eager_next_q; 1840 /* only count how many T_CONN_INDs so don't count q0 */ 1841 if ((listener->tcp_conn_req_cnt_q != 1) || 1842 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1843 mutex_exit(&listener->tcp_eager_lock); 1844 tcp_err_ack(listener, mp, TBADF, 0); 1845 return; 1846 } 1847 if (listener->tcp_conn_req_cnt_q0 != 0) { 1848 /* Throw away all the eagers on q0. */ 1849 tcp_eager_cleanup(listener, 1); 1850 } 1851 if (listener->tcp_syn_defense) { 1852 listener->tcp_syn_defense = B_FALSE; 1853 if (listener->tcp_ip_addr_cache != NULL) { 1854 kmem_free(listener->tcp_ip_addr_cache, 1855 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1856 listener->tcp_ip_addr_cache = NULL; 1857 } 1858 } 1859 /* 1860 * Transfer tcp_conn_req_max to the eager so that when 1861 * a disconnect occurs we can revert the endpoint to the 1862 * listen state. 1863 */ 1864 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1865 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1866 /* 1867 * Get a reference on the acceptor just like the 1868 * tcp_acceptor_hash_lookup below. 1869 */ 1870 acceptor = listener; 1871 CONN_INC_REF(acceptor->tcp_connp); 1872 } else { 1873 acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); 1874 if (acceptor == NULL) { 1875 if (listener->tcp_connp->conn_debug) { 1876 (void) strlog(TCP_MOD_ID, 0, 1, 1877 SL_ERROR|SL_TRACE, 1878 "tcp_accept: did not find acceptor 0x%x\n", 1879 acceptor_id); 1880 } 1881 mutex_exit(&listener->tcp_eager_lock); 1882 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 1883 return; 1884 } 1885 /* 1886 * Verify acceptor state. The acceptable states for an acceptor 1887 * include TCPS_IDLE and TCPS_BOUND. 1888 */ 1889 switch (acceptor->tcp_state) { 1890 case TCPS_IDLE: 1891 /* FALLTHRU */ 1892 case TCPS_BOUND: 1893 break; 1894 default: 1895 CONN_DEC_REF(acceptor->tcp_connp); 1896 mutex_exit(&listener->tcp_eager_lock); 1897 tcp_err_ack(listener, mp, TOUTSTATE, 0); 1898 return; 1899 } 1900 } 1901 1902 /* The listener must be in TCPS_LISTEN */ 1903 if (listener->tcp_state != TCPS_LISTEN) { 1904 CONN_DEC_REF(acceptor->tcp_connp); 1905 mutex_exit(&listener->tcp_eager_lock); 1906 tcp_err_ack(listener, mp, TOUTSTATE, 0); 1907 return; 1908 } 1909 1910 /* 1911 * Rendezvous with an eager connection request packet hanging off 1912 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 1913 * tcp structure when the connection packet arrived in 1914 * tcp_input_listener(). 1915 */ 1916 seqnum = tcr->SEQ_number; 1917 eager = listener; 1918 do { 1919 eager = eager->tcp_eager_next_q; 1920 if (eager == NULL) { 1921 CONN_DEC_REF(acceptor->tcp_connp); 1922 mutex_exit(&listener->tcp_eager_lock); 1923 tcp_err_ack(listener, mp, TBADSEQ, 0); 1924 return; 1925 } 1926 } while (eager->tcp_conn_req_seqnum != seqnum); 1927 mutex_exit(&listener->tcp_eager_lock); 1928 1929 /* 1930 * At this point, both acceptor and listener have 2 ref 1931 * that they begin with. Acceptor has one additional ref 1932 * we placed in lookup while listener has 3 additional 1933 * ref for being behind the squeue (tcp_accept() is 1934 * done on listener's squeue); being in classifier hash; 1935 * and eager's ref on listener. 1936 */ 1937 ASSERT(listener->tcp_connp->conn_ref >= 5); 1938 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 1939 1940 /* 1941 * The eager at this point is set in its own squeue and 1942 * could easily have been killed (tcp_accept_finish will 1943 * deal with that) because of a TH_RST so we can only 1944 * ASSERT for a single ref. 1945 */ 1946 ASSERT(eager->tcp_connp->conn_ref >= 1); 1947 1948 /* 1949 * Pre allocate the discon_ind mblk also. tcp_accept_finish will 1950 * use it if something failed. 1951 */ 1952 discon_mp = allocb(MAX(sizeof (struct T_discon_ind), 1953 sizeof (struct stroptions)), BPRI_HI); 1954 if (discon_mp == NULL) { 1955 CONN_DEC_REF(acceptor->tcp_connp); 1956 CONN_DEC_REF(eager->tcp_connp); 1957 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 1958 return; 1959 } 1960 1961 econnp = eager->tcp_connp; 1962 1963 /* Hold a copy of mp, in case reallocb fails */ 1964 if ((mp1 = copymsg(mp)) == NULL) { 1965 CONN_DEC_REF(acceptor->tcp_connp); 1966 CONN_DEC_REF(eager->tcp_connp); 1967 freemsg(discon_mp); 1968 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 1969 return; 1970 } 1971 1972 tcr = (struct T_conn_res *)mp1->b_rptr; 1973 1974 /* 1975 * This is an expanded version of mi_tpi_ok_ack_alloc() 1976 * which allocates a larger mblk and appends the new 1977 * local address to the ok_ack. The address is copied by 1978 * soaccept() for getsockname(). 1979 */ 1980 { 1981 int extra; 1982 1983 extra = (econnp->conn_family == AF_INET) ? 1984 sizeof (sin_t) : sizeof (sin6_t); 1985 1986 /* 1987 * Try to re-use mp, if possible. Otherwise, allocate 1988 * an mblk and return it as ok_mp. In any case, mp 1989 * is no longer usable upon return. 1990 */ 1991 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 1992 CONN_DEC_REF(acceptor->tcp_connp); 1993 CONN_DEC_REF(eager->tcp_connp); 1994 freemsg(discon_mp); 1995 /* Original mp has been freed by now, so use mp1 */ 1996 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 1997 return; 1998 } 1999 2000 mp = NULL; /* We should never use mp after this point */ 2001 2002 switch (extra) { 2003 case sizeof (sin_t): { 2004 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2005 2006 ok_mp->b_wptr += extra; 2007 sin->sin_family = AF_INET; 2008 sin->sin_port = econnp->conn_lport; 2009 sin->sin_addr.s_addr = econnp->conn_laddr_v4; 2010 break; 2011 } 2012 case sizeof (sin6_t): { 2013 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2014 2015 ok_mp->b_wptr += extra; 2016 sin6->sin6_family = AF_INET6; 2017 sin6->sin6_port = econnp->conn_lport; 2018 sin6->sin6_addr = econnp->conn_laddr_v6; 2019 sin6->sin6_flowinfo = econnp->conn_flowinfo; 2020 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6) && 2021 (econnp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)) { 2022 sin6->sin6_scope_id = 2023 econnp->conn_ixa->ixa_scopeid; 2024 } else { 2025 sin6->sin6_scope_id = 0; 2026 } 2027 sin6->__sin6_src_id = 0; 2028 break; 2029 } 2030 default: 2031 break; 2032 } 2033 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2034 } 2035 2036 /* 2037 * If there are no options we know that the T_CONN_RES will 2038 * succeed. However, we can't send the T_OK_ACK upstream until 2039 * the tcp_accept_swap is done since it would be dangerous to 2040 * let the application start using the new fd prior to the swap. 2041 */ 2042 tcp_accept_swap(listener, acceptor, eager); 2043 2044 /* 2045 * tcp_accept_swap unlinks eager from listener but does not drop 2046 * the eager's reference on the listener. 2047 */ 2048 ASSERT(eager->tcp_listener == NULL); 2049 ASSERT(listener->tcp_connp->conn_ref >= 5); 2050 2051 /* 2052 * The eager is now associated with its own queue. Insert in 2053 * the hash so that the connection can be reused for a future 2054 * T_CONN_RES. 2055 */ 2056 tcp_acceptor_hash_insert(acceptor_id, eager); 2057 2058 /* 2059 * We now do the processing of options with T_CONN_RES. 2060 * We delay till now since we wanted to have queue to pass to 2061 * option processing routines that points back to the right 2062 * instance structure which does not happen until after 2063 * tcp_accept_swap(). 2064 * 2065 * Note: 2066 * The sanity of the logic here assumes that whatever options 2067 * are appropriate to inherit from listner=>eager are done 2068 * before this point, and whatever were to be overridden (or not) 2069 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2070 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2071 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2072 * This may not be true at this point in time but can be fixed 2073 * independently. This option processing code starts with 2074 * the instantiated acceptor instance and the final queue at 2075 * this point. 2076 */ 2077 2078 if (tcr->OPT_length != 0) { 2079 /* Options to process */ 2080 int t_error = 0; 2081 int sys_error = 0; 2082 int do_disconnect = 0; 2083 2084 if (tcp_conprim_opt_process(eager, mp1, 2085 &do_disconnect, &t_error, &sys_error) < 0) { 2086 eager->tcp_accept_error = 1; 2087 if (do_disconnect) { 2088 /* 2089 * An option failed which does not allow 2090 * connection to be accepted. 2091 * 2092 * We allow T_CONN_RES to succeed and 2093 * put a T_DISCON_IND on the eager queue. 2094 */ 2095 ASSERT(t_error == 0 && sys_error == 0); 2096 eager->tcp_send_discon_ind = 1; 2097 } else { 2098 ASSERT(t_error != 0); 2099 freemsg(ok_mp); 2100 /* 2101 * Original mp was either freed or set 2102 * to ok_mp above, so use mp1 instead. 2103 */ 2104 tcp_err_ack(listener, mp1, t_error, sys_error); 2105 goto finish; 2106 } 2107 } 2108 /* 2109 * Most likely success in setting options (except if 2110 * eager->tcp_send_discon_ind set). 2111 * mp1 option buffer represented by OPT_length/offset 2112 * potentially modified and contains results of setting 2113 * options at this point 2114 */ 2115 } 2116 2117 /* We no longer need mp1, since all options processing has passed */ 2118 freemsg(mp1); 2119 2120 putnext(listener->tcp_connp->conn_rq, ok_mp); 2121 2122 mutex_enter(&listener->tcp_eager_lock); 2123 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2124 tcp_t *tail; 2125 mblk_t *conn_ind; 2126 2127 /* 2128 * This path should not be executed if listener and 2129 * acceptor streams are the same. 2130 */ 2131 ASSERT(listener != acceptor); 2132 2133 tcp = listener->tcp_eager_prev_q0; 2134 /* 2135 * listener->tcp_eager_prev_q0 points to the TAIL of the 2136 * deferred T_conn_ind queue. We need to get to the head of 2137 * the queue in order to send up T_conn_ind the same order as 2138 * how the 3WHS is completed. 2139 */ 2140 while (tcp != listener) { 2141 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2142 break; 2143 else 2144 tcp = tcp->tcp_eager_prev_q0; 2145 } 2146 ASSERT(tcp != listener); 2147 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2148 ASSERT(conn_ind != NULL); 2149 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2150 2151 /* Move from q0 to q */ 2152 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2153 listener->tcp_conn_req_cnt_q0--; 2154 listener->tcp_conn_req_cnt_q++; 2155 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2156 tcp->tcp_eager_prev_q0; 2157 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2158 tcp->tcp_eager_next_q0; 2159 tcp->tcp_eager_prev_q0 = NULL; 2160 tcp->tcp_eager_next_q0 = NULL; 2161 tcp->tcp_conn_def_q0 = B_FALSE; 2162 2163 /* Make sure the tcp isn't in the list of droppables */ 2164 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2165 tcp->tcp_eager_prev_drop_q0 == NULL); 2166 2167 /* 2168 * Insert at end of the queue because sockfs sends 2169 * down T_CONN_RES in chronological order. Leaving 2170 * the older conn indications at front of the queue 2171 * helps reducing search time. 2172 */ 2173 tail = listener->tcp_eager_last_q; 2174 if (tail != NULL) 2175 tail->tcp_eager_next_q = tcp; 2176 else 2177 listener->tcp_eager_next_q = tcp; 2178 listener->tcp_eager_last_q = tcp; 2179 tcp->tcp_eager_next_q = NULL; 2180 mutex_exit(&listener->tcp_eager_lock); 2181 putnext(tcp->tcp_connp->conn_rq, conn_ind); 2182 } else { 2183 mutex_exit(&listener->tcp_eager_lock); 2184 } 2185 2186 /* 2187 * Done with the acceptor - free it 2188 * 2189 * Note: from this point on, no access to listener should be made 2190 * as listener can be equal to acceptor. 2191 */ 2192 finish: 2193 ASSERT(acceptor->tcp_detached); 2194 acceptor->tcp_connp->conn_rq = NULL; 2195 ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp)); 2196 acceptor->tcp_connp->conn_wq = NULL; 2197 (void) tcp_clean_death(acceptor, 0, 2); 2198 CONN_DEC_REF(acceptor->tcp_connp); 2199 2200 /* 2201 * We pass discon_mp to tcp_accept_finish to get on the right squeue. 2202 * 2203 * It will update the setting for sockfs/stream head and also take 2204 * care of any data that arrived before accept() wad called. 2205 * In case we already received a FIN then tcp_accept_finish will send up 2206 * the ordrel. It will also send up a window update if the window 2207 * has opened up. 2208 */ 2209 2210 /* 2211 * XXX: we currently have a problem if XTI application closes the 2212 * acceptor stream in between. This problem exists in on10-gate also 2213 * and is well know but nothing can be done short of major rewrite 2214 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2215 * eager same squeue as listener (we can distinguish non socket 2216 * listeners at the time of handling a SYN in tcp_input_listener) 2217 * and do most of the work that tcp_accept_finish does here itself 2218 * and then get behind the acceptor squeue to access the acceptor 2219 * queue. 2220 */ 2221 /* 2222 * We already have a ref on tcp so no need to do one before squeue_enter 2223 */ 2224 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, discon_mp, 2225 tcp_accept_finish, eager->tcp_connp, NULL, SQ_FILL, 2226 SQTAG_TCP_ACCEPT_FINISH); 2227 } 2228 2229 /* 2230 * Swap information between the eager and acceptor for a TLI/XTI client. 2231 * The sockfs accept is done on the acceptor stream and control goes 2232 * through tcp_tli_accept() and tcp_accept()/tcp_accept_swap() is not 2233 * called. In either case, both the eager and listener are in their own 2234 * perimeter (squeue) and the code has to deal with potential race. 2235 * 2236 * See the block comment on top of tcp_accept() and tcp_tli_accept(). 2237 */ 2238 static void 2239 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2240 { 2241 conn_t *econnp, *aconnp; 2242 2243 ASSERT(eager->tcp_connp->conn_rq == listener->tcp_connp->conn_rq); 2244 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2245 ASSERT(!TCP_IS_SOCKET(acceptor)); 2246 ASSERT(!TCP_IS_SOCKET(eager)); 2247 ASSERT(!TCP_IS_SOCKET(listener)); 2248 2249 /* 2250 * Trusted Extensions may need to use a security label that is 2251 * different from the acceptor's label on MLP and MAC-Exempt 2252 * sockets. If this is the case, the required security label 2253 * already exists in econnp->conn_ixa->ixa_tsl. Since we make the 2254 * acceptor stream refer to econnp we atomatically get that label. 2255 */ 2256 2257 acceptor->tcp_detached = B_TRUE; 2258 /* 2259 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2260 * the acceptor id. 2261 */ 2262 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2263 2264 /* remove eager from listen list... */ 2265 mutex_enter(&listener->tcp_eager_lock); 2266 tcp_eager_unlink(eager); 2267 ASSERT(eager->tcp_eager_next_q == NULL && 2268 eager->tcp_eager_last_q == NULL); 2269 ASSERT(eager->tcp_eager_next_q0 == NULL && 2270 eager->tcp_eager_prev_q0 == NULL); 2271 mutex_exit(&listener->tcp_eager_lock); 2272 2273 econnp = eager->tcp_connp; 2274 aconnp = acceptor->tcp_connp; 2275 econnp->conn_rq = aconnp->conn_rq; 2276 econnp->conn_wq = aconnp->conn_wq; 2277 econnp->conn_rq->q_ptr = econnp; 2278 econnp->conn_wq->q_ptr = econnp; 2279 2280 /* 2281 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2282 * which might be a different squeue from our peer TCP instance. 2283 * For TCP Fusion, the peer expects that whenever tcp_detached is 2284 * clear, our TCP queues point to the acceptor's queues. Thus, use 2285 * membar_producer() to ensure that the assignments of conn_rq/conn_wq 2286 * above reach global visibility prior to the clearing of tcp_detached. 2287 */ 2288 membar_producer(); 2289 eager->tcp_detached = B_FALSE; 2290 2291 ASSERT(eager->tcp_ack_tid == 0); 2292 2293 econnp->conn_dev = aconnp->conn_dev; 2294 econnp->conn_minor_arena = aconnp->conn_minor_arena; 2295 2296 ASSERT(econnp->conn_minor_arena != NULL); 2297 if (econnp->conn_cred != NULL) 2298 crfree(econnp->conn_cred); 2299 econnp->conn_cred = aconnp->conn_cred; 2300 aconnp->conn_cred = NULL; 2301 econnp->conn_cpid = aconnp->conn_cpid; 2302 ASSERT(econnp->conn_netstack == aconnp->conn_netstack); 2303 ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); 2304 2305 econnp->conn_zoneid = aconnp->conn_zoneid; 2306 econnp->conn_allzones = aconnp->conn_allzones; 2307 econnp->conn_ixa->ixa_zoneid = aconnp->conn_ixa->ixa_zoneid; 2308 2309 econnp->conn_mac_mode = aconnp->conn_mac_mode; 2310 econnp->conn_zone_is_global = aconnp->conn_zone_is_global; 2311 aconnp->conn_mac_mode = CONN_MAC_DEFAULT; 2312 2313 /* Do the IPC initialization */ 2314 CONN_INC_REF(econnp); 2315 2316 econnp->conn_family = aconnp->conn_family; 2317 econnp->conn_ipversion = aconnp->conn_ipversion; 2318 2319 /* Done with old IPC. Drop its ref on its connp */ 2320 CONN_DEC_REF(aconnp); 2321 } 2322 2323 2324 /* 2325 * Adapt to the information, such as rtt and rtt_sd, provided from the 2326 * DCE and IRE maintained by IP. 2327 * 2328 * Checks for multicast and broadcast destination address. 2329 * Returns zero if ok; an errno on failure. 2330 * 2331 * Note that the MSS calculation here is based on the info given in 2332 * the DCE and IRE. We do not do any calculation based on TCP options. They 2333 * will be handled in tcp_input_data() when TCP knows which options to use. 2334 * 2335 * Note on how TCP gets its parameters for a connection. 2336 * 2337 * When a tcp_t structure is allocated, it gets all the default parameters. 2338 * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd, 2339 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2340 * default. 2341 * 2342 * An incoming SYN with a multicast or broadcast destination address is dropped 2343 * in ip_fanout_v4/v6. 2344 * 2345 * An incoming SYN with a multicast or broadcast source address is always 2346 * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in 2347 * conn_connect. 2348 * The same logic in tcp_set_destination also serves to 2349 * reject an attempt to connect to a broadcast or multicast (destination) 2350 * address. 2351 */ 2352 static int 2353 tcp_set_destination(tcp_t *tcp) 2354 { 2355 uint32_t mss_max; 2356 uint32_t mss; 2357 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2358 conn_t *connp = tcp->tcp_connp; 2359 tcp_stack_t *tcps = tcp->tcp_tcps; 2360 iulp_t uinfo; 2361 int error; 2362 uint32_t flags; 2363 2364 flags = IPDF_LSO | IPDF_ZCOPY; 2365 /* 2366 * Make sure we have a dce for the destination to avoid dce_ident 2367 * contention for connected sockets. 2368 */ 2369 flags |= IPDF_UNIQUE_DCE; 2370 2371 if (!tcps->tcps_ignore_path_mtu) 2372 connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY; 2373 2374 /* Use conn_lock to satify ASSERT; tcp is already serialized */ 2375 mutex_enter(&connp->conn_lock); 2376 error = conn_connect(connp, &uinfo, flags); 2377 mutex_exit(&connp->conn_lock); 2378 if (error != 0) 2379 return (error); 2380 2381 error = tcp_build_hdrs(tcp); 2382 if (error != 0) 2383 return (error); 2384 2385 tcp->tcp_localnet = uinfo.iulp_localnet; 2386 2387 if (uinfo.iulp_rtt != 0) { 2388 clock_t rto; 2389 2390 tcp->tcp_rtt_sa = uinfo.iulp_rtt; 2391 tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd; 2392 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2393 tcps->tcps_rexmit_interval_extra + 2394 (tcp->tcp_rtt_sa >> 5); 2395 2396 if (rto > tcps->tcps_rexmit_interval_max) { 2397 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 2398 } else if (rto < tcps->tcps_rexmit_interval_min) { 2399 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2400 } else { 2401 tcp->tcp_rto = rto; 2402 } 2403 } 2404 if (uinfo.iulp_ssthresh != 0) 2405 tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh; 2406 else 2407 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2408 if (uinfo.iulp_spipe > 0) { 2409 connp->conn_sndbuf = MIN(uinfo.iulp_spipe, 2410 tcps->tcps_max_buf); 2411 if (tcps->tcps_snd_lowat_fraction != 0) { 2412 connp->conn_sndlowat = connp->conn_sndbuf / 2413 tcps->tcps_snd_lowat_fraction; 2414 } 2415 (void) tcp_maxpsz_set(tcp, B_TRUE); 2416 } 2417 /* 2418 * Note that up till now, acceptor always inherits receive 2419 * window from the listener. But if there is a metrics 2420 * associated with a host, we should use that instead of 2421 * inheriting it from listener. Thus we need to pass this 2422 * info back to the caller. 2423 */ 2424 if (uinfo.iulp_rpipe > 0) { 2425 tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe, 2426 tcps->tcps_max_buf); 2427 } 2428 2429 if (uinfo.iulp_rtomax > 0) { 2430 tcp->tcp_second_timer_threshold = 2431 uinfo.iulp_rtomax; 2432 } 2433 2434 /* 2435 * Use the metric option settings, iulp_tstamp_ok and 2436 * iulp_wscale_ok, only for active open. What this means 2437 * is that if the other side uses timestamp or window 2438 * scale option, TCP will also use those options. That 2439 * is for passive open. If the application sets a 2440 * large window, window scale is enabled regardless of 2441 * the value in iulp_wscale_ok. This is the behavior 2442 * since 2.6. So we keep it. 2443 * The only case left in passive open processing is the 2444 * check for SACK. 2445 * For ECN, it should probably be like SACK. But the 2446 * current value is binary, so we treat it like the other 2447 * cases. The metric only controls active open.For passive 2448 * open, the ndd param, tcp_ecn_permitted, controls the 2449 * behavior. 2450 */ 2451 if (!tcp_detached) { 2452 /* 2453 * The if check means that the following can only 2454 * be turned on by the metrics only IRE, but not off. 2455 */ 2456 if (uinfo.iulp_tstamp_ok) 2457 tcp->tcp_snd_ts_ok = B_TRUE; 2458 if (uinfo.iulp_wscale_ok) 2459 tcp->tcp_snd_ws_ok = B_TRUE; 2460 if (uinfo.iulp_sack == 2) 2461 tcp->tcp_snd_sack_ok = B_TRUE; 2462 if (uinfo.iulp_ecn_ok) 2463 tcp->tcp_ecn_ok = B_TRUE; 2464 } else { 2465 /* 2466 * Passive open. 2467 * 2468 * As above, the if check means that SACK can only be 2469 * turned on by the metric only IRE. 2470 */ 2471 if (uinfo.iulp_sack > 0) { 2472 tcp->tcp_snd_sack_ok = B_TRUE; 2473 } 2474 } 2475 2476 /* 2477 * XXX Note that currently, iulp_mtu can be as small as 68 2478 * because of PMTUd. So tcp_mss may go to negative if combined 2479 * length of all those options exceeds 28 bytes. But because 2480 * of the tcp_mss_min check below, we may not have a problem if 2481 * tcp_mss_min is of a reasonable value. The default is 1 so 2482 * the negative problem still exists. And the check defeats PMTUd. 2483 * In fact, if PMTUd finds that the MSS should be smaller than 2484 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2485 * value. 2486 * 2487 * We do not deal with that now. All those problems related to 2488 * PMTUd will be fixed later. 2489 */ 2490 ASSERT(uinfo.iulp_mtu != 0); 2491 mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu; 2492 2493 /* Sanity check for MSS value. */ 2494 if (connp->conn_ipversion == IPV4_VERSION) 2495 mss_max = tcps->tcps_mss_max_ipv4; 2496 else 2497 mss_max = tcps->tcps_mss_max_ipv6; 2498 2499 if (tcp->tcp_ipsec_overhead == 0) 2500 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2501 2502 mss -= tcp->tcp_ipsec_overhead; 2503 2504 if (mss < tcps->tcps_mss_min) 2505 mss = tcps->tcps_mss_min; 2506 if (mss > mss_max) 2507 mss = mss_max; 2508 2509 /* Note that this is the maximum MSS, excluding all options. */ 2510 tcp->tcp_mss = mss; 2511 2512 /* 2513 * Update the tcp connection with LSO capability. 2514 */ 2515 tcp_update_lso(tcp, connp->conn_ixa); 2516 2517 /* 2518 * Initialize the ISS here now that we have the full connection ID. 2519 * The RFC 1948 method of initial sequence number generation requires 2520 * knowledge of the full connection ID before setting the ISS. 2521 */ 2522 tcp_iss_init(tcp); 2523 2524 tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local); 2525 2526 /* 2527 * Make sure that conn is not marked incipient 2528 * for incoming connections. A blind 2529 * removal of incipient flag is cheaper than 2530 * check and removal. 2531 */ 2532 mutex_enter(&connp->conn_lock); 2533 connp->conn_state_flags &= ~CONN_INCIPIENT; 2534 mutex_exit(&connp->conn_lock); 2535 return (0); 2536 } 2537 2538 static void 2539 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp) 2540 { 2541 int error; 2542 conn_t *connp = tcp->tcp_connp; 2543 struct sockaddr *sa; 2544 mblk_t *mp1; 2545 struct T_bind_req *tbr; 2546 int backlog; 2547 socklen_t len; 2548 sin_t *sin; 2549 sin6_t *sin6; 2550 cred_t *cr; 2551 2552 /* 2553 * All Solaris components should pass a db_credp 2554 * for this TPI message, hence we ASSERT. 2555 * But in case there is some other M_PROTO that looks 2556 * like a TPI message sent by some other kernel 2557 * component, we check and return an error. 2558 */ 2559 cr = msg_getcred(mp, NULL); 2560 ASSERT(cr != NULL); 2561 if (cr == NULL) { 2562 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 2563 return; 2564 } 2565 2566 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 2567 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 2568 if (connp->conn_debug) { 2569 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2570 "tcp_tpi_bind: bad req, len %u", 2571 (uint_t)(mp->b_wptr - mp->b_rptr)); 2572 } 2573 tcp_err_ack(tcp, mp, TPROTO, 0); 2574 return; 2575 } 2576 /* Make sure the largest address fits */ 2577 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t), 1); 2578 if (mp1 == NULL) { 2579 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 2580 return; 2581 } 2582 mp = mp1; 2583 tbr = (struct T_bind_req *)mp->b_rptr; 2584 2585 backlog = tbr->CONIND_number; 2586 len = tbr->ADDR_length; 2587 2588 switch (len) { 2589 case 0: /* request for a generic port */ 2590 tbr->ADDR_offset = sizeof (struct T_bind_req); 2591 if (connp->conn_family == AF_INET) { 2592 tbr->ADDR_length = sizeof (sin_t); 2593 sin = (sin_t *)&tbr[1]; 2594 *sin = sin_null; 2595 sin->sin_family = AF_INET; 2596 sa = (struct sockaddr *)sin; 2597 len = sizeof (sin_t); 2598 mp->b_wptr = (uchar_t *)&sin[1]; 2599 } else { 2600 ASSERT(connp->conn_family == AF_INET6); 2601 tbr->ADDR_length = sizeof (sin6_t); 2602 sin6 = (sin6_t *)&tbr[1]; 2603 *sin6 = sin6_null; 2604 sin6->sin6_family = AF_INET6; 2605 sa = (struct sockaddr *)sin6; 2606 len = sizeof (sin6_t); 2607 mp->b_wptr = (uchar_t *)&sin6[1]; 2608 } 2609 break; 2610 2611 case sizeof (sin_t): /* Complete IPv4 address */ 2612 sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset, 2613 sizeof (sin_t)); 2614 break; 2615 2616 case sizeof (sin6_t): /* Complete IPv6 address */ 2617 sa = (struct sockaddr *)mi_offset_param(mp, 2618 tbr->ADDR_offset, sizeof (sin6_t)); 2619 break; 2620 2621 default: 2622 if (connp->conn_debug) { 2623 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2624 "tcp_tpi_bind: bad address length, %d", 2625 tbr->ADDR_length); 2626 } 2627 tcp_err_ack(tcp, mp, TBADADDR, 0); 2628 return; 2629 } 2630 2631 if (backlog > 0) { 2632 error = tcp_do_listen(connp, sa, len, backlog, DB_CRED(mp), 2633 tbr->PRIM_type != O_T_BIND_REQ); 2634 } else { 2635 error = tcp_do_bind(connp, sa, len, DB_CRED(mp), 2636 tbr->PRIM_type != O_T_BIND_REQ); 2637 } 2638 done: 2639 if (error > 0) { 2640 tcp_err_ack(tcp, mp, TSYSERR, error); 2641 } else if (error < 0) { 2642 tcp_err_ack(tcp, mp, -error, 0); 2643 } else { 2644 /* 2645 * Update port information as sockfs/tpi needs it for checking 2646 */ 2647 if (connp->conn_family == AF_INET) { 2648 sin = (sin_t *)sa; 2649 sin->sin_port = connp->conn_lport; 2650 } else { 2651 sin6 = (sin6_t *)sa; 2652 sin6->sin6_port = connp->conn_lport; 2653 } 2654 mp->b_datap->db_type = M_PCPROTO; 2655 tbr->PRIM_type = T_BIND_ACK; 2656 putnext(connp->conn_rq, mp); 2657 } 2658 } 2659 2660 /* 2661 * If the "bind_to_req_port_only" parameter is set, if the requested port 2662 * number is available, return it, If not return 0 2663 * 2664 * If "bind_to_req_port_only" parameter is not set and 2665 * If the requested port number is available, return it. If not, return 2666 * the first anonymous port we happen across. If no anonymous ports are 2667 * available, return 0. addr is the requested local address, if any. 2668 * 2669 * In either case, when succeeding update the tcp_t to record the port number 2670 * and insert it in the bind hash table. 2671 * 2672 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 2673 * without setting SO_REUSEADDR. This is needed so that they 2674 * can be viewed as two independent transport protocols. 2675 */ 2676 static in_port_t 2677 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 2678 int reuseaddr, boolean_t quick_connect, 2679 boolean_t bind_to_req_port_only, boolean_t user_specified) 2680 { 2681 /* number of times we have run around the loop */ 2682 int count = 0; 2683 /* maximum number of times to run around the loop */ 2684 int loopmax; 2685 conn_t *connp = tcp->tcp_connp; 2686 tcp_stack_t *tcps = tcp->tcp_tcps; 2687 2688 /* 2689 * Lookup for free addresses is done in a loop and "loopmax" 2690 * influences how long we spin in the loop 2691 */ 2692 if (bind_to_req_port_only) { 2693 /* 2694 * If the requested port is busy, don't bother to look 2695 * for a new one. Setting loop maximum count to 1 has 2696 * that effect. 2697 */ 2698 loopmax = 1; 2699 } else { 2700 /* 2701 * If the requested port is busy, look for a free one 2702 * in the anonymous port range. 2703 * Set loopmax appropriately so that one does not look 2704 * forever in the case all of the anonymous ports are in use. 2705 */ 2706 if (connp->conn_anon_priv_bind) { 2707 /* 2708 * loopmax = 2709 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 2710 */ 2711 loopmax = IPPORT_RESERVED - 2712 tcps->tcps_min_anonpriv_port; 2713 } else { 2714 loopmax = (tcps->tcps_largest_anon_port - 2715 tcps->tcps_smallest_anon_port + 1); 2716 } 2717 } 2718 do { 2719 uint16_t lport; 2720 tf_t *tbf; 2721 tcp_t *ltcp; 2722 conn_t *lconnp; 2723 2724 lport = htons(port); 2725 2726 /* 2727 * Ensure that the tcp_t is not currently in the bind hash. 2728 * Hold the lock on the hash bucket to ensure that 2729 * the duplicate check plus the insertion is an atomic 2730 * operation. 2731 * 2732 * This function does an inline lookup on the bind hash list 2733 * Make sure that we access only members of tcp_t 2734 * and that we don't look at tcp_tcp, since we are not 2735 * doing a CONN_INC_REF. 2736 */ 2737 tcp_bind_hash_remove(tcp); 2738 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; 2739 mutex_enter(&tbf->tf_lock); 2740 for (ltcp = tbf->tf_tcp; ltcp != NULL; 2741 ltcp = ltcp->tcp_bind_hash) { 2742 if (lport == ltcp->tcp_connp->conn_lport) 2743 break; 2744 } 2745 2746 for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) { 2747 boolean_t not_socket; 2748 boolean_t exclbind; 2749 2750 lconnp = ltcp->tcp_connp; 2751 2752 /* 2753 * On a labeled system, we must treat bindings to ports 2754 * on shared IP addresses by sockets with MAC exemption 2755 * privilege as being in all zones, as there's 2756 * otherwise no way to identify the right receiver. 2757 */ 2758 if (!IPCL_BIND_ZONE_MATCH(lconnp, connp)) 2759 continue; 2760 2761 /* 2762 * If TCP_EXCLBIND is set for either the bound or 2763 * binding endpoint, the semantics of bind 2764 * is changed according to the following. 2765 * 2766 * spec = specified address (v4 or v6) 2767 * unspec = unspecified address (v4 or v6) 2768 * A = specified addresses are different for endpoints 2769 * 2770 * bound bind to allowed 2771 * ------------------------------------- 2772 * unspec unspec no 2773 * unspec spec no 2774 * spec unspec no 2775 * spec spec yes if A 2776 * 2777 * For labeled systems, SO_MAC_EXEMPT behaves the same 2778 * as TCP_EXCLBIND, except that zoneid is ignored. 2779 * 2780 * Note: 2781 * 2782 * 1. Because of TLI semantics, an endpoint can go 2783 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 2784 * TCPS_BOUND, depending on whether it is originally 2785 * a listener or not. That is why we need to check 2786 * for states greater than or equal to TCPS_BOUND 2787 * here. 2788 * 2789 * 2. Ideally, we should only check for state equals 2790 * to TCPS_LISTEN. And the following check should be 2791 * added. 2792 * 2793 * if (ltcp->tcp_state == TCPS_LISTEN || 2794 * !reuseaddr || !lconnp->conn_reuseaddr) { 2795 * ... 2796 * } 2797 * 2798 * The semantics will be changed to this. If the 2799 * endpoint on the list is in state not equal to 2800 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 2801 * set, let the bind succeed. 2802 * 2803 * Because of (1), we cannot do that for TLI 2804 * endpoints. But we can do that for socket endpoints. 2805 * If in future, we can change this going back 2806 * semantics, we can use the above check for TLI also. 2807 */ 2808 not_socket = !(TCP_IS_SOCKET(ltcp) && 2809 TCP_IS_SOCKET(tcp)); 2810 exclbind = lconnp->conn_exclbind || 2811 connp->conn_exclbind; 2812 2813 if ((lconnp->conn_mac_mode != CONN_MAC_DEFAULT) || 2814 (connp->conn_mac_mode != CONN_MAC_DEFAULT) || 2815 (exclbind && (not_socket || 2816 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 2817 if (V6_OR_V4_INADDR_ANY( 2818 lconnp->conn_bound_addr_v6) || 2819 V6_OR_V4_INADDR_ANY(*laddr) || 2820 IN6_ARE_ADDR_EQUAL(laddr, 2821 &lconnp->conn_bound_addr_v6)) { 2822 break; 2823 } 2824 continue; 2825 } 2826 2827 /* 2828 * Check ipversion to allow IPv4 and IPv6 sockets to 2829 * have disjoint port number spaces, if *_EXCLBIND 2830 * is not set and only if the application binds to a 2831 * specific port. We use the same autoassigned port 2832 * number space for IPv4 and IPv6 sockets. 2833 */ 2834 if (connp->conn_ipversion != lconnp->conn_ipversion && 2835 bind_to_req_port_only) 2836 continue; 2837 2838 /* 2839 * Ideally, we should make sure that the source 2840 * address, remote address, and remote port in the 2841 * four tuple for this tcp-connection is unique. 2842 * However, trying to find out the local source 2843 * address would require too much code duplication 2844 * with IP, since IP needs needs to have that code 2845 * to support userland TCP implementations. 2846 */ 2847 if (quick_connect && 2848 (ltcp->tcp_state > TCPS_LISTEN) && 2849 ((connp->conn_fport != lconnp->conn_fport) || 2850 !IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, 2851 &lconnp->conn_faddr_v6))) 2852 continue; 2853 2854 if (!reuseaddr) { 2855 /* 2856 * No socket option SO_REUSEADDR. 2857 * If existing port is bound to 2858 * a non-wildcard IP address 2859 * and the requesting stream is 2860 * bound to a distinct 2861 * different IP addresses 2862 * (non-wildcard, also), keep 2863 * going. 2864 */ 2865 if (!V6_OR_V4_INADDR_ANY(*laddr) && 2866 !V6_OR_V4_INADDR_ANY( 2867 lconnp->conn_bound_addr_v6) && 2868 !IN6_ARE_ADDR_EQUAL(laddr, 2869 &lconnp->conn_bound_addr_v6)) 2870 continue; 2871 if (ltcp->tcp_state >= TCPS_BOUND) { 2872 /* 2873 * This port is being used and 2874 * its state is >= TCPS_BOUND, 2875 * so we can't bind to it. 2876 */ 2877 break; 2878 } 2879 } else { 2880 /* 2881 * socket option SO_REUSEADDR is set on the 2882 * binding tcp_t. 2883 * 2884 * If two streams are bound to 2885 * same IP address or both addr 2886 * and bound source are wildcards 2887 * (INADDR_ANY), we want to stop 2888 * searching. 2889 * We have found a match of IP source 2890 * address and source port, which is 2891 * refused regardless of the 2892 * SO_REUSEADDR setting, so we break. 2893 */ 2894 if (IN6_ARE_ADDR_EQUAL(laddr, 2895 &lconnp->conn_bound_addr_v6) && 2896 (ltcp->tcp_state == TCPS_LISTEN || 2897 ltcp->tcp_state == TCPS_BOUND)) 2898 break; 2899 } 2900 } 2901 if (ltcp != NULL) { 2902 /* The port number is busy */ 2903 mutex_exit(&tbf->tf_lock); 2904 } else { 2905 /* 2906 * This port is ours. Insert in fanout and mark as 2907 * bound to prevent others from getting the port 2908 * number. 2909 */ 2910 tcp->tcp_state = TCPS_BOUND; 2911 connp->conn_lport = htons(port); 2912 2913 ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( 2914 connp->conn_lport)] == tbf); 2915 tcp_bind_hash_insert(tbf, tcp, 1); 2916 2917 mutex_exit(&tbf->tf_lock); 2918 2919 /* 2920 * We don't want tcp_next_port_to_try to "inherit" 2921 * a port number supplied by the user in a bind. 2922 */ 2923 if (user_specified) 2924 return (port); 2925 2926 /* 2927 * This is the only place where tcp_next_port_to_try 2928 * is updated. After the update, it may or may not 2929 * be in the valid range. 2930 */ 2931 if (!connp->conn_anon_priv_bind) 2932 tcps->tcps_next_port_to_try = port + 1; 2933 return (port); 2934 } 2935 2936 if (connp->conn_anon_priv_bind) { 2937 port = tcp_get_next_priv_port(tcp); 2938 } else { 2939 if (count == 0 && user_specified) { 2940 /* 2941 * We may have to return an anonymous port. So 2942 * get one to start with. 2943 */ 2944 port = 2945 tcp_update_next_port( 2946 tcps->tcps_next_port_to_try, 2947 tcp, B_TRUE); 2948 user_specified = B_FALSE; 2949 } else { 2950 port = tcp_update_next_port(port + 1, tcp, 2951 B_FALSE); 2952 } 2953 } 2954 if (port == 0) 2955 break; 2956 2957 /* 2958 * Don't let this loop run forever in the case where 2959 * all of the anonymous ports are in use. 2960 */ 2961 } while (++count < loopmax); 2962 return (0); 2963 } 2964 2965 /* 2966 * tcp_clean_death / tcp_close_detached must not be called more than once 2967 * on a tcp. Thus every function that potentially calls tcp_clean_death 2968 * must check for the tcp state before calling tcp_clean_death. 2969 * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper, 2970 * tcp_timer_handler, all check for the tcp state. 2971 */ 2972 /* ARGSUSED */ 2973 void 2974 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2, 2975 ip_recv_attr_t *dummy) 2976 { 2977 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 2978 2979 freemsg(mp); 2980 if (tcp->tcp_state > TCPS_BOUND) 2981 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, 2982 ETIMEDOUT, 5); 2983 } 2984 2985 /* 2986 * We are dying for some reason. Try to do it gracefully. (May be called 2987 * as writer.) 2988 * 2989 * Return -1 if the structure was not cleaned up (if the cleanup had to be 2990 * done by a service procedure). 2991 * TBD - Should the return value distinguish between the tcp_t being 2992 * freed and it being reinitialized? 2993 */ 2994 static int 2995 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 2996 { 2997 mblk_t *mp; 2998 queue_t *q; 2999 conn_t *connp = tcp->tcp_connp; 3000 tcp_stack_t *tcps = tcp->tcp_tcps; 3001 3002 TCP_CLD_STAT(tag); 3003 3004 #if TCP_TAG_CLEAN_DEATH 3005 tcp->tcp_cleandeathtag = tag; 3006 #endif 3007 3008 if (tcp->tcp_fused) 3009 tcp_unfuse(tcp); 3010 3011 if (tcp->tcp_linger_tid != 0 && 3012 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3013 tcp_stop_lingering(tcp); 3014 } 3015 3016 ASSERT(tcp != NULL); 3017 ASSERT((connp->conn_family == AF_INET && 3018 connp->conn_ipversion == IPV4_VERSION) || 3019 (connp->conn_family == AF_INET6 && 3020 (connp->conn_ipversion == IPV4_VERSION || 3021 connp->conn_ipversion == IPV6_VERSION))); 3022 3023 if (TCP_IS_DETACHED(tcp)) { 3024 if (tcp->tcp_hard_binding) { 3025 /* 3026 * Its an eager that we are dealing with. We close the 3027 * eager but in case a conn_ind has already gone to the 3028 * listener, let tcp_accept_finish() send a discon_ind 3029 * to the listener and drop the last reference. If the 3030 * listener doesn't even know about the eager i.e. the 3031 * conn_ind hasn't gone up, blow away the eager and drop 3032 * the last reference as well. If the conn_ind has gone 3033 * up, state should be BOUND. tcp_accept_finish 3034 * will figure out that the connection has received a 3035 * RST and will send a DISCON_IND to the application. 3036 */ 3037 tcp_closei_local(tcp); 3038 if (!tcp->tcp_tconnind_started) { 3039 CONN_DEC_REF(connp); 3040 } else { 3041 tcp->tcp_state = TCPS_BOUND; 3042 } 3043 } else { 3044 tcp_close_detached(tcp); 3045 } 3046 return (0); 3047 } 3048 3049 TCP_STAT(tcps, tcp_clean_death_nondetached); 3050 3051 q = connp->conn_rq; 3052 3053 /* Trash all inbound data */ 3054 if (!IPCL_IS_NONSTR(connp)) { 3055 ASSERT(q != NULL); 3056 flushq(q, FLUSHALL); 3057 } 3058 3059 /* 3060 * If we are at least part way open and there is error 3061 * (err==0 implies no error) 3062 * notify our client by a T_DISCON_IND. 3063 */ 3064 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3065 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3066 !TCP_IS_SOCKET(tcp)) { 3067 /* 3068 * Send M_FLUSH according to TPI. Because sockets will 3069 * (and must) ignore FLUSHR we do that only for TPI 3070 * endpoints and sockets in STREAMS mode. 3071 */ 3072 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3073 } 3074 if (connp->conn_debug) { 3075 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3076 "tcp_clean_death: discon err %d", err); 3077 } 3078 if (IPCL_IS_NONSTR(connp)) { 3079 /* Direct socket, use upcall */ 3080 (*connp->conn_upcalls->su_disconnected)( 3081 connp->conn_upper_handle, tcp->tcp_connid, err); 3082 } else { 3083 mp = mi_tpi_discon_ind(NULL, err, 0); 3084 if (mp != NULL) { 3085 putnext(q, mp); 3086 } else { 3087 if (connp->conn_debug) { 3088 (void) strlog(TCP_MOD_ID, 0, 1, 3089 SL_ERROR|SL_TRACE, 3090 "tcp_clean_death, sending M_ERROR"); 3091 } 3092 (void) putnextctl1(q, M_ERROR, EPROTO); 3093 } 3094 } 3095 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3096 /* SYN_SENT or SYN_RCVD */ 3097 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3098 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3099 /* ESTABLISHED or CLOSE_WAIT */ 3100 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3101 } 3102 } 3103 3104 tcp_reinit(tcp); 3105 if (IPCL_IS_NONSTR(connp)) 3106 (void) tcp_do_unbind(connp); 3107 3108 return (-1); 3109 } 3110 3111 /* 3112 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3113 * to expire, stop the wait and finish the close. 3114 */ 3115 static void 3116 tcp_stop_lingering(tcp_t *tcp) 3117 { 3118 clock_t delta = 0; 3119 tcp_stack_t *tcps = tcp->tcp_tcps; 3120 conn_t *connp = tcp->tcp_connp; 3121 3122 tcp->tcp_linger_tid = 0; 3123 if (tcp->tcp_state > TCPS_LISTEN) { 3124 tcp_acceptor_hash_remove(tcp); 3125 mutex_enter(&tcp->tcp_non_sq_lock); 3126 if (tcp->tcp_flow_stopped) { 3127 tcp_clrqfull(tcp); 3128 } 3129 mutex_exit(&tcp->tcp_non_sq_lock); 3130 3131 if (tcp->tcp_timer_tid != 0) { 3132 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3133 tcp->tcp_timer_tid = 0; 3134 } 3135 /* 3136 * Need to cancel those timers which will not be used when 3137 * TCP is detached. This has to be done before the conn_wq 3138 * is cleared. 3139 */ 3140 tcp_timers_stop(tcp); 3141 3142 tcp->tcp_detached = B_TRUE; 3143 connp->conn_rq = NULL; 3144 connp->conn_wq = NULL; 3145 3146 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3147 tcp_time_wait_append(tcp); 3148 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3149 goto finish; 3150 } 3151 3152 /* 3153 * If delta is zero the timer event wasn't executed and was 3154 * successfully canceled. In this case we need to restart it 3155 * with the minimal delta possible. 3156 */ 3157 if (delta >= 0) { 3158 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3159 delta ? delta : 1); 3160 } 3161 } else { 3162 tcp_closei_local(tcp); 3163 CONN_DEC_REF(connp); 3164 } 3165 finish: 3166 /* Signal closing thread that it can complete close */ 3167 mutex_enter(&tcp->tcp_closelock); 3168 tcp->tcp_detached = B_TRUE; 3169 connp->conn_rq = NULL; 3170 connp->conn_wq = NULL; 3171 3172 tcp->tcp_closed = 1; 3173 cv_signal(&tcp->tcp_closecv); 3174 mutex_exit(&tcp->tcp_closelock); 3175 } 3176 3177 /* 3178 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3179 * expires. 3180 */ 3181 static void 3182 tcp_close_linger_timeout(void *arg) 3183 { 3184 conn_t *connp = (conn_t *)arg; 3185 tcp_t *tcp = connp->conn_tcp; 3186 3187 tcp->tcp_client_errno = ETIMEDOUT; 3188 tcp_stop_lingering(tcp); 3189 } 3190 3191 static void 3192 tcp_close_common(conn_t *connp, int flags) 3193 { 3194 tcp_t *tcp = connp->conn_tcp; 3195 mblk_t *mp = &tcp->tcp_closemp; 3196 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 3197 mblk_t *bp; 3198 3199 ASSERT(connp->conn_ref >= 2); 3200 3201 /* 3202 * Mark the conn as closing. ipsq_pending_mp_add will not 3203 * add any mp to the pending mp list, after this conn has 3204 * started closing. 3205 */ 3206 mutex_enter(&connp->conn_lock); 3207 connp->conn_state_flags |= CONN_CLOSING; 3208 if (connp->conn_oper_pending_ill != NULL) 3209 conn_ioctl_cleanup_reqd = B_TRUE; 3210 CONN_INC_REF_LOCKED(connp); 3211 mutex_exit(&connp->conn_lock); 3212 tcp->tcp_closeflags = (uint8_t)flags; 3213 ASSERT(connp->conn_ref >= 3); 3214 3215 /* 3216 * tcp_closemp_used is used below without any protection of a lock 3217 * as we don't expect any one else to use it concurrently at this 3218 * point otherwise it would be a major defect. 3219 */ 3220 3221 if (mp->b_prev == NULL) 3222 tcp->tcp_closemp_used = B_TRUE; 3223 else 3224 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 3225 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 3226 3227 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 3228 3229 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 3230 NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3231 3232 mutex_enter(&tcp->tcp_closelock); 3233 while (!tcp->tcp_closed) { 3234 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 3235 /* 3236 * The cv_wait_sig() was interrupted. We now do the 3237 * following: 3238 * 3239 * 1) If the endpoint was lingering, we allow this 3240 * to be interrupted by cancelling the linger timeout 3241 * and closing normally. 3242 * 3243 * 2) Revert to calling cv_wait() 3244 * 3245 * We revert to using cv_wait() to avoid an 3246 * infinite loop which can occur if the calling 3247 * thread is higher priority than the squeue worker 3248 * thread and is bound to the same cpu. 3249 */ 3250 if (connp->conn_linger && connp->conn_lingertime > 0) { 3251 mutex_exit(&tcp->tcp_closelock); 3252 /* Entering squeue, bump ref count. */ 3253 CONN_INC_REF(connp); 3254 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 3255 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 3256 tcp_linger_interrupted, connp, NULL, 3257 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3258 mutex_enter(&tcp->tcp_closelock); 3259 } 3260 break; 3261 } 3262 } 3263 while (!tcp->tcp_closed) 3264 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 3265 mutex_exit(&tcp->tcp_closelock); 3266 3267 /* 3268 * In the case of listener streams that have eagers in the q or q0 3269 * we wait for the eagers to drop their reference to us. conn_rq and 3270 * conn_wq of the eagers point to our queues. By waiting for the 3271 * refcnt to drop to 1, we are sure that the eagers have cleaned 3272 * up their queue pointers and also dropped their references to us. 3273 */ 3274 if (tcp->tcp_wait_for_eagers) { 3275 mutex_enter(&connp->conn_lock); 3276 while (connp->conn_ref != 1) { 3277 cv_wait(&connp->conn_cv, &connp->conn_lock); 3278 } 3279 mutex_exit(&connp->conn_lock); 3280 } 3281 /* 3282 * ioctl cleanup. The mp is queued in the ipx_pending_mp. 3283 */ 3284 if (conn_ioctl_cleanup_reqd) 3285 conn_ioctl_cleanup(connp); 3286 3287 connp->conn_cpid = NOPID; 3288 } 3289 3290 static int 3291 tcp_tpi_close(queue_t *q, int flags) 3292 { 3293 conn_t *connp; 3294 3295 ASSERT(WR(q)->q_next == NULL); 3296 3297 if (flags & SO_FALLBACK) { 3298 /* 3299 * stream is being closed while in fallback 3300 * simply free the resources that were allocated 3301 */ 3302 inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr)); 3303 qprocsoff(q); 3304 goto done; 3305 } 3306 3307 connp = Q_TO_CONN(q); 3308 /* 3309 * We are being closed as /dev/tcp or /dev/tcp6. 3310 */ 3311 tcp_close_common(connp, flags); 3312 3313 qprocsoff(q); 3314 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 3315 3316 /* 3317 * Drop IP's reference on the conn. This is the last reference 3318 * on the connp if the state was less than established. If the 3319 * connection has gone into timewait state, then we will have 3320 * one ref for the TCP and one more ref (total of two) for the 3321 * classifier connected hash list (a timewait connections stays 3322 * in connected hash till closed). 3323 * 3324 * We can't assert the references because there might be other 3325 * transient reference places because of some walkers or queued 3326 * packets in squeue for the timewait state. 3327 */ 3328 CONN_DEC_REF(connp); 3329 done: 3330 q->q_ptr = WR(q)->q_ptr = NULL; 3331 return (0); 3332 } 3333 3334 static int 3335 tcp_tpi_close_accept(queue_t *q) 3336 { 3337 vmem_t *minor_arena; 3338 dev_t conn_dev; 3339 3340 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 3341 3342 /* 3343 * We had opened an acceptor STREAM for sockfs which is 3344 * now being closed due to some error. 3345 */ 3346 qprocsoff(q); 3347 3348 minor_arena = (vmem_t *)WR(q)->q_ptr; 3349 conn_dev = (dev_t)RD(q)->q_ptr; 3350 ASSERT(minor_arena != NULL); 3351 ASSERT(conn_dev != 0); 3352 inet_minor_free(minor_arena, conn_dev); 3353 q->q_ptr = WR(q)->q_ptr = NULL; 3354 return (0); 3355 } 3356 3357 /* 3358 * Called by tcp_close() routine via squeue when lingering is 3359 * interrupted by a signal. 3360 */ 3361 3362 /* ARGSUSED */ 3363 static void 3364 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 3365 { 3366 conn_t *connp = (conn_t *)arg; 3367 tcp_t *tcp = connp->conn_tcp; 3368 3369 freeb(mp); 3370 if (tcp->tcp_linger_tid != 0 && 3371 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3372 tcp_stop_lingering(tcp); 3373 tcp->tcp_client_errno = EINTR; 3374 } 3375 } 3376 3377 /* 3378 * Called by streams close routine via squeues when our client blows off her 3379 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 3380 * connection politely" When SO_LINGER is set (with a non-zero linger time and 3381 * it is not a nonblocking socket) then this routine sleeps until the FIN is 3382 * acked. 3383 * 3384 * NOTE: tcp_close potentially returns error when lingering. 3385 * However, the stream head currently does not pass these errors 3386 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 3387 * errors to the application (from tsleep()) and not errors 3388 * like ECONNRESET caused by receiving a reset packet. 3389 */ 3390 3391 /* ARGSUSED */ 3392 static void 3393 tcp_close_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 3394 { 3395 char *msg; 3396 conn_t *connp = (conn_t *)arg; 3397 tcp_t *tcp = connp->conn_tcp; 3398 clock_t delta = 0; 3399 tcp_stack_t *tcps = tcp->tcp_tcps; 3400 3401 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 3402 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 3403 3404 mutex_enter(&tcp->tcp_eager_lock); 3405 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3406 /* Cleanup for listener */ 3407 tcp_eager_cleanup(tcp, 0); 3408 tcp->tcp_wait_for_eagers = 1; 3409 } 3410 mutex_exit(&tcp->tcp_eager_lock); 3411 3412 tcp->tcp_lso = B_FALSE; 3413 3414 msg = NULL; 3415 switch (tcp->tcp_state) { 3416 case TCPS_CLOSED: 3417 case TCPS_IDLE: 3418 case TCPS_BOUND: 3419 case TCPS_LISTEN: 3420 break; 3421 case TCPS_SYN_SENT: 3422 msg = "tcp_close, during connect"; 3423 break; 3424 case TCPS_SYN_RCVD: 3425 /* 3426 * Close during the connect 3-way handshake 3427 * but here there may or may not be pending data 3428 * already on queue. Process almost same as in 3429 * the ESTABLISHED state. 3430 */ 3431 /* FALLTHRU */ 3432 default: 3433 if (tcp->tcp_fused) 3434 tcp_unfuse(tcp); 3435 3436 /* 3437 * If SO_LINGER has set a zero linger time, abort the 3438 * connection with a reset. 3439 */ 3440 if (connp->conn_linger && connp->conn_lingertime == 0) { 3441 msg = "tcp_close, zero lingertime"; 3442 break; 3443 } 3444 3445 /* 3446 * Abort connection if there is unread data queued. 3447 */ 3448 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 3449 msg = "tcp_close, unread data"; 3450 break; 3451 } 3452 /* 3453 * We have done a qwait() above which could have possibly 3454 * drained more messages in turn causing transition to a 3455 * different state. Check whether we have to do the rest 3456 * of the processing or not. 3457 */ 3458 if (tcp->tcp_state <= TCPS_LISTEN) 3459 break; 3460 3461 /* 3462 * Transmit the FIN before detaching the tcp_t. 3463 * After tcp_detach returns this queue/perimeter 3464 * no longer owns the tcp_t thus others can modify it. 3465 */ 3466 (void) tcp_xmit_end(tcp); 3467 3468 /* 3469 * If lingering on close then wait until the fin is acked, 3470 * the SO_LINGER time passes, or a reset is sent/received. 3471 */ 3472 if (connp->conn_linger && connp->conn_lingertime > 0 && 3473 !(tcp->tcp_fin_acked) && 3474 tcp->tcp_state >= TCPS_ESTABLISHED) { 3475 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 3476 tcp->tcp_client_errno = EWOULDBLOCK; 3477 } else if (tcp->tcp_client_errno == 0) { 3478 3479 ASSERT(tcp->tcp_linger_tid == 0); 3480 3481 tcp->tcp_linger_tid = TCP_TIMER(tcp, 3482 tcp_close_linger_timeout, 3483 connp->conn_lingertime * hz); 3484 3485 /* tcp_close_linger_timeout will finish close */ 3486 if (tcp->tcp_linger_tid == 0) 3487 tcp->tcp_client_errno = ENOSR; 3488 else 3489 return; 3490 } 3491 3492 /* 3493 * Check if we need to detach or just close 3494 * the instance. 3495 */ 3496 if (tcp->tcp_state <= TCPS_LISTEN) 3497 break; 3498 } 3499 3500 /* 3501 * Make sure that no other thread will access the conn_rq of 3502 * this instance (through lookups etc.) as conn_rq will go 3503 * away shortly. 3504 */ 3505 tcp_acceptor_hash_remove(tcp); 3506 3507 mutex_enter(&tcp->tcp_non_sq_lock); 3508 if (tcp->tcp_flow_stopped) { 3509 tcp_clrqfull(tcp); 3510 } 3511 mutex_exit(&tcp->tcp_non_sq_lock); 3512 3513 if (tcp->tcp_timer_tid != 0) { 3514 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3515 tcp->tcp_timer_tid = 0; 3516 } 3517 /* 3518 * Need to cancel those timers which will not be used when 3519 * TCP is detached. This has to be done before the conn_wq 3520 * is set to NULL. 3521 */ 3522 tcp_timers_stop(tcp); 3523 3524 tcp->tcp_detached = B_TRUE; 3525 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3526 tcp_time_wait_append(tcp); 3527 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3528 ASSERT(connp->conn_ref >= 3); 3529 goto finish; 3530 } 3531 3532 /* 3533 * If delta is zero the timer event wasn't executed and was 3534 * successfully canceled. In this case we need to restart it 3535 * with the minimal delta possible. 3536 */ 3537 if (delta >= 0) 3538 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3539 delta ? delta : 1); 3540 3541 ASSERT(connp->conn_ref >= 3); 3542 goto finish; 3543 } 3544 3545 /* Detach did not complete. Still need to remove q from stream. */ 3546 if (msg) { 3547 if (tcp->tcp_state == TCPS_ESTABLISHED || 3548 tcp->tcp_state == TCPS_CLOSE_WAIT) 3549 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3550 if (tcp->tcp_state == TCPS_SYN_SENT || 3551 tcp->tcp_state == TCPS_SYN_RCVD) 3552 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3553 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 3554 } 3555 3556 tcp_closei_local(tcp); 3557 CONN_DEC_REF(connp); 3558 ASSERT(connp->conn_ref >= 2); 3559 3560 finish: 3561 mutex_enter(&tcp->tcp_closelock); 3562 /* 3563 * Don't change the queues in the case of a listener that has 3564 * eagers in its q or q0. It could surprise the eagers. 3565 * Instead wait for the eagers outside the squeue. 3566 */ 3567 if (!tcp->tcp_wait_for_eagers) { 3568 tcp->tcp_detached = B_TRUE; 3569 connp->conn_rq = NULL; 3570 connp->conn_wq = NULL; 3571 } 3572 3573 /* Signal tcp_close() to finish closing. */ 3574 tcp->tcp_closed = 1; 3575 cv_signal(&tcp->tcp_closecv); 3576 mutex_exit(&tcp->tcp_closelock); 3577 } 3578 3579 /* 3580 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 3581 * Some stream heads get upset if they see these later on as anything but NULL. 3582 */ 3583 static void 3584 tcp_close_mpp(mblk_t **mpp) 3585 { 3586 mblk_t *mp; 3587 3588 if ((mp = *mpp) != NULL) { 3589 do { 3590 mp->b_next = NULL; 3591 mp->b_prev = NULL; 3592 } while ((mp = mp->b_cont) != NULL); 3593 3594 mp = *mpp; 3595 *mpp = NULL; 3596 freemsg(mp); 3597 } 3598 } 3599 3600 /* Do detached close. */ 3601 static void 3602 tcp_close_detached(tcp_t *tcp) 3603 { 3604 if (tcp->tcp_fused) 3605 tcp_unfuse(tcp); 3606 3607 /* 3608 * Clustering code serializes TCP disconnect callbacks and 3609 * cluster tcp list walks by blocking a TCP disconnect callback 3610 * if a cluster tcp list walk is in progress. This ensures 3611 * accurate accounting of TCPs in the cluster code even though 3612 * the TCP list walk itself is not atomic. 3613 */ 3614 tcp_closei_local(tcp); 3615 CONN_DEC_REF(tcp->tcp_connp); 3616 } 3617 3618 /* 3619 * Stop all TCP timers, and free the timer mblks if requested. 3620 */ 3621 void 3622 tcp_timers_stop(tcp_t *tcp) 3623 { 3624 if (tcp->tcp_timer_tid != 0) { 3625 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3626 tcp->tcp_timer_tid = 0; 3627 } 3628 if (tcp->tcp_ka_tid != 0) { 3629 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 3630 tcp->tcp_ka_tid = 0; 3631 } 3632 if (tcp->tcp_ack_tid != 0) { 3633 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 3634 tcp->tcp_ack_tid = 0; 3635 } 3636 if (tcp->tcp_push_tid != 0) { 3637 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 3638 tcp->tcp_push_tid = 0; 3639 } 3640 } 3641 3642 /* 3643 * The tcp_t is going away. Remove it from all lists and set it 3644 * to TCPS_CLOSED. The freeing up of memory is deferred until 3645 * tcp_inactive. This is needed since a thread in tcp_rput might have 3646 * done a CONN_INC_REF on this structure before it was removed from the 3647 * hashes. 3648 */ 3649 static void 3650 tcp_closei_local(tcp_t *tcp) 3651 { 3652 conn_t *connp = tcp->tcp_connp; 3653 tcp_stack_t *tcps = tcp->tcp_tcps; 3654 3655 if (!TCP_IS_SOCKET(tcp)) 3656 tcp_acceptor_hash_remove(tcp); 3657 3658 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 3659 tcp->tcp_ibsegs = 0; 3660 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 3661 tcp->tcp_obsegs = 0; 3662 3663 /* 3664 * If we are an eager connection hanging off a listener that 3665 * hasn't formally accepted the connection yet, get off his 3666 * list and blow off any data that we have accumulated. 3667 */ 3668 if (tcp->tcp_listener != NULL) { 3669 tcp_t *listener = tcp->tcp_listener; 3670 mutex_enter(&listener->tcp_eager_lock); 3671 /* 3672 * tcp_tconnind_started == B_TRUE means that the 3673 * conn_ind has already gone to listener. At 3674 * this point, eager will be closed but we 3675 * leave it in listeners eager list so that 3676 * if listener decides to close without doing 3677 * accept, we can clean this up. In tcp_tli_accept 3678 * we take care of the case of accept on closed 3679 * eager. 3680 */ 3681 if (!tcp->tcp_tconnind_started) { 3682 tcp_eager_unlink(tcp); 3683 mutex_exit(&listener->tcp_eager_lock); 3684 /* 3685 * We don't want to have any pointers to the 3686 * listener queue, after we have released our 3687 * reference on the listener 3688 */ 3689 ASSERT(tcp->tcp_detached); 3690 connp->conn_rq = NULL; 3691 connp->conn_wq = NULL; 3692 CONN_DEC_REF(listener->tcp_connp); 3693 } else { 3694 mutex_exit(&listener->tcp_eager_lock); 3695 } 3696 } 3697 3698 /* Stop all the timers */ 3699 tcp_timers_stop(tcp); 3700 3701 if (tcp->tcp_state == TCPS_LISTEN) { 3702 if (tcp->tcp_ip_addr_cache) { 3703 kmem_free((void *)tcp->tcp_ip_addr_cache, 3704 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 3705 tcp->tcp_ip_addr_cache = NULL; 3706 } 3707 } 3708 mutex_enter(&tcp->tcp_non_sq_lock); 3709 if (tcp->tcp_flow_stopped) 3710 tcp_clrqfull(tcp); 3711 mutex_exit(&tcp->tcp_non_sq_lock); 3712 3713 tcp_bind_hash_remove(tcp); 3714 /* 3715 * If the tcp_time_wait_collector (which runs outside the squeue) 3716 * is trying to remove this tcp from the time wait list, we will 3717 * block in tcp_time_wait_remove while trying to acquire the 3718 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 3719 * requires the ipcl_hash_remove to be ordered after the 3720 * tcp_time_wait_remove for the refcnt checks to work correctly. 3721 */ 3722 if (tcp->tcp_state == TCPS_TIME_WAIT) 3723 (void) tcp_time_wait_remove(tcp, NULL); 3724 CL_INET_DISCONNECT(connp); 3725 ipcl_hash_remove(connp); 3726 ixa_cleanup(connp->conn_ixa); 3727 3728 /* 3729 * Mark the conn as CONDEMNED 3730 */ 3731 mutex_enter(&connp->conn_lock); 3732 connp->conn_state_flags |= CONN_CONDEMNED; 3733 mutex_exit(&connp->conn_lock); 3734 3735 /* Need to cleanup any pending ioctls */ 3736 ASSERT(tcp->tcp_time_wait_next == NULL); 3737 ASSERT(tcp->tcp_time_wait_prev == NULL); 3738 ASSERT(tcp->tcp_time_wait_expire == 0); 3739 tcp->tcp_state = TCPS_CLOSED; 3740 3741 /* Release any SSL context */ 3742 if (tcp->tcp_kssl_ent != NULL) { 3743 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 3744 tcp->tcp_kssl_ent = NULL; 3745 } 3746 if (tcp->tcp_kssl_ctx != NULL) { 3747 kssl_release_ctx(tcp->tcp_kssl_ctx); 3748 tcp->tcp_kssl_ctx = NULL; 3749 } 3750 tcp->tcp_kssl_pending = B_FALSE; 3751 3752 tcp_ipsec_cleanup(tcp); 3753 } 3754 3755 /* 3756 * tcp is dying (called from ipcl_conn_destroy and error cases). 3757 * Free the tcp_t in either case. 3758 */ 3759 void 3760 tcp_free(tcp_t *tcp) 3761 { 3762 mblk_t *mp; 3763 conn_t *connp = tcp->tcp_connp; 3764 3765 ASSERT(tcp != NULL); 3766 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 3767 3768 connp->conn_rq = NULL; 3769 connp->conn_wq = NULL; 3770 3771 tcp_close_mpp(&tcp->tcp_xmit_head); 3772 tcp_close_mpp(&tcp->tcp_reass_head); 3773 if (tcp->tcp_rcv_list != NULL) { 3774 /* Free b_next chain */ 3775 tcp_close_mpp(&tcp->tcp_rcv_list); 3776 } 3777 if ((mp = tcp->tcp_urp_mp) != NULL) { 3778 freemsg(mp); 3779 } 3780 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 3781 freemsg(mp); 3782 } 3783 3784 if (tcp->tcp_fused_sigurg_mp != NULL) { 3785 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 3786 freeb(tcp->tcp_fused_sigurg_mp); 3787 tcp->tcp_fused_sigurg_mp = NULL; 3788 } 3789 3790 if (tcp->tcp_ordrel_mp != NULL) { 3791 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 3792 freeb(tcp->tcp_ordrel_mp); 3793 tcp->tcp_ordrel_mp = NULL; 3794 } 3795 3796 if (tcp->tcp_sack_info != NULL) { 3797 if (tcp->tcp_notsack_list != NULL) { 3798 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 3799 tcp); 3800 } 3801 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 3802 } 3803 3804 if (tcp->tcp_hopopts != NULL) { 3805 mi_free(tcp->tcp_hopopts); 3806 tcp->tcp_hopopts = NULL; 3807 tcp->tcp_hopoptslen = 0; 3808 } 3809 ASSERT(tcp->tcp_hopoptslen == 0); 3810 if (tcp->tcp_dstopts != NULL) { 3811 mi_free(tcp->tcp_dstopts); 3812 tcp->tcp_dstopts = NULL; 3813 tcp->tcp_dstoptslen = 0; 3814 } 3815 ASSERT(tcp->tcp_dstoptslen == 0); 3816 if (tcp->tcp_rthdrdstopts != NULL) { 3817 mi_free(tcp->tcp_rthdrdstopts); 3818 tcp->tcp_rthdrdstopts = NULL; 3819 tcp->tcp_rthdrdstoptslen = 0; 3820 } 3821 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 3822 if (tcp->tcp_rthdr != NULL) { 3823 mi_free(tcp->tcp_rthdr); 3824 tcp->tcp_rthdr = NULL; 3825 tcp->tcp_rthdrlen = 0; 3826 } 3827 ASSERT(tcp->tcp_rthdrlen == 0); 3828 3829 /* 3830 * Following is really a blowing away a union. 3831 * It happens to have exactly two members of identical size 3832 * the following code is enough. 3833 */ 3834 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 3835 } 3836 3837 3838 /* 3839 * Put a connection confirmation message upstream built from the 3840 * address/flowid information with the conn and iph. Report our success or 3841 * failure. 3842 */ 3843 static boolean_t 3844 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, mblk_t *idmp, 3845 mblk_t **defermp, ip_recv_attr_t *ira) 3846 { 3847 sin_t sin; 3848 sin6_t sin6; 3849 mblk_t *mp; 3850 char *optp = NULL; 3851 int optlen = 0; 3852 conn_t *connp = tcp->tcp_connp; 3853 3854 if (defermp != NULL) 3855 *defermp = NULL; 3856 3857 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 3858 /* 3859 * Return in T_CONN_CON results of option negotiation through 3860 * the T_CONN_REQ. Note: If there is an real end-to-end option 3861 * negotiation, then what is received from remote end needs 3862 * to be taken into account but there is no such thing (yet?) 3863 * in our TCP/IP. 3864 * Note: We do not use mi_offset_param() here as 3865 * tcp_opts_conn_req contents do not directly come from 3866 * an application and are either generated in kernel or 3867 * from user input that was already verified. 3868 */ 3869 mp = tcp->tcp_conn.tcp_opts_conn_req; 3870 optp = (char *)(mp->b_rptr + 3871 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 3872 optlen = (int) 3873 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 3874 } 3875 3876 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 3877 3878 /* packet is IPv4 */ 3879 if (connp->conn_family == AF_INET) { 3880 sin = sin_null; 3881 sin.sin_addr.s_addr = connp->conn_faddr_v4; 3882 sin.sin_port = connp->conn_fport; 3883 sin.sin_family = AF_INET; 3884 mp = mi_tpi_conn_con(NULL, (char *)&sin, 3885 (int)sizeof (sin_t), optp, optlen); 3886 } else { 3887 sin6 = sin6_null; 3888 sin6.sin6_addr = connp->conn_faddr_v6; 3889 sin6.sin6_port = connp->conn_fport; 3890 sin6.sin6_family = AF_INET6; 3891 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 3892 (int)sizeof (sin6_t), optp, optlen); 3893 3894 } 3895 } else { 3896 ip6_t *ip6h = (ip6_t *)iphdr; 3897 3898 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 3899 ASSERT(connp->conn_family == AF_INET6); 3900 sin6 = sin6_null; 3901 sin6.sin6_addr = connp->conn_faddr_v6; 3902 sin6.sin6_port = connp->conn_fport; 3903 sin6.sin6_family = AF_INET6; 3904 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 3905 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 3906 (int)sizeof (sin6_t), optp, optlen); 3907 } 3908 3909 if (!mp) 3910 return (B_FALSE); 3911 3912 mblk_copycred(mp, idmp); 3913 3914 if (defermp == NULL) { 3915 conn_t *connp = tcp->tcp_connp; 3916 if (IPCL_IS_NONSTR(connp)) { 3917 (*connp->conn_upcalls->su_connected) 3918 (connp->conn_upper_handle, tcp->tcp_connid, 3919 ira->ira_cred, ira->ira_cpid); 3920 freemsg(mp); 3921 } else { 3922 if (ira->ira_cred != NULL) { 3923 /* So that getpeerucred works for TPI sockfs */ 3924 mblk_setcred(mp, ira->ira_cred, ira->ira_cpid); 3925 } 3926 putnext(connp->conn_rq, mp); 3927 } 3928 } else { 3929 *defermp = mp; 3930 } 3931 3932 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 3933 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 3934 return (B_TRUE); 3935 } 3936 3937 /* 3938 * Defense for the SYN attack - 3939 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 3940 * one from the list of droppable eagers. This list is a subset of q0. 3941 * see comments before the definition of MAKE_DROPPABLE(). 3942 * 2. Don't drop a SYN request before its first timeout. This gives every 3943 * request at least til the first timeout to complete its 3-way handshake. 3944 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 3945 * requests currently on the queue that has timed out. This will be used 3946 * as an indicator of whether an attack is under way, so that appropriate 3947 * actions can be taken. (It's incremented in tcp_timer() and decremented 3948 * either when eager goes into ESTABLISHED, or gets freed up.) 3949 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 3950 * # of timeout drops back to <= q0len/32 => SYN alert off 3951 */ 3952 static boolean_t 3953 tcp_drop_q0(tcp_t *tcp) 3954 { 3955 tcp_t *eager; 3956 mblk_t *mp; 3957 tcp_stack_t *tcps = tcp->tcp_tcps; 3958 3959 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 3960 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 3961 3962 /* Pick oldest eager from the list of droppable eagers */ 3963 eager = tcp->tcp_eager_prev_drop_q0; 3964 3965 /* If list is empty. return B_FALSE */ 3966 if (eager == tcp) { 3967 return (B_FALSE); 3968 } 3969 3970 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 3971 if ((mp = allocb(0, BPRI_HI)) == NULL) 3972 return (B_FALSE); 3973 3974 /* 3975 * Take this eager out from the list of droppable eagers since we are 3976 * going to drop it. 3977 */ 3978 MAKE_UNDROPPABLE(eager); 3979 3980 if (tcp->tcp_connp->conn_debug) { 3981 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 3982 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 3983 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 3984 tcp->tcp_conn_req_cnt_q0, 3985 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 3986 } 3987 3988 BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); 3989 3990 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 3991 CONN_INC_REF(eager->tcp_connp); 3992 3993 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 3994 tcp_clean_death_wrapper, eager->tcp_connp, NULL, 3995 SQ_FILL, SQTAG_TCP_DROP_Q0); 3996 3997 return (B_TRUE); 3998 } 3999 4000 /* 4001 * Handle a SYN on an AF_INET6 socket; can be either IPv4 or IPv6 4002 */ 4003 static mblk_t * 4004 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4005 ip_recv_attr_t *ira) 4006 { 4007 tcp_t *ltcp = lconnp->conn_tcp; 4008 tcp_t *tcp = connp->conn_tcp; 4009 mblk_t *tpi_mp; 4010 ipha_t *ipha; 4011 ip6_t *ip6h; 4012 sin6_t sin6; 4013 uint_t ifindex = ira->ira_ruifindex; 4014 tcp_stack_t *tcps = tcp->tcp_tcps; 4015 4016 if (ira->ira_flags & IRAF_IS_IPV4) { 4017 ipha = (ipha_t *)mp->b_rptr; 4018 4019 connp->conn_ipversion = IPV4_VERSION; 4020 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 4021 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 4022 connp->conn_saddr_v6 = connp->conn_laddr_v6; 4023 4024 sin6 = sin6_null; 4025 sin6.sin6_addr = connp->conn_faddr_v6; 4026 sin6.sin6_port = connp->conn_fport; 4027 sin6.sin6_family = AF_INET6; 4028 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 4029 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 4030 4031 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 4032 sin6_t sin6d; 4033 4034 sin6d = sin6_null; 4035 sin6d.sin6_addr = connp->conn_laddr_v6; 4036 sin6d.sin6_port = connp->conn_lport; 4037 sin6d.sin6_family = AF_INET; 4038 tpi_mp = mi_tpi_extconn_ind(NULL, 4039 (char *)&sin6d, sizeof (sin6_t), 4040 (char *)&tcp, 4041 (t_scalar_t)sizeof (intptr_t), 4042 (char *)&sin6d, sizeof (sin6_t), 4043 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4044 } else { 4045 tpi_mp = mi_tpi_conn_ind(NULL, 4046 (char *)&sin6, sizeof (sin6_t), 4047 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4048 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4049 } 4050 } else { 4051 ip6h = (ip6_t *)mp->b_rptr; 4052 4053 connp->conn_ipversion = IPV6_VERSION; 4054 connp->conn_laddr_v6 = ip6h->ip6_dst; 4055 connp->conn_faddr_v6 = ip6h->ip6_src; 4056 connp->conn_saddr_v6 = connp->conn_laddr_v6; 4057 4058 sin6 = sin6_null; 4059 sin6.sin6_addr = connp->conn_faddr_v6; 4060 sin6.sin6_port = connp->conn_fport; 4061 sin6.sin6_family = AF_INET6; 4062 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4063 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 4064 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 4065 4066 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4067 /* Pass up the scope_id of remote addr */ 4068 sin6.sin6_scope_id = ifindex; 4069 } else { 4070 sin6.sin6_scope_id = 0; 4071 } 4072 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 4073 sin6_t sin6d; 4074 4075 sin6d = sin6_null; 4076 sin6.sin6_addr = connp->conn_laddr_v6; 4077 sin6d.sin6_port = connp->conn_lport; 4078 sin6d.sin6_family = AF_INET6; 4079 if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_laddr_v6)) 4080 sin6d.sin6_scope_id = ifindex; 4081 4082 tpi_mp = mi_tpi_extconn_ind(NULL, 4083 (char *)&sin6d, sizeof (sin6_t), 4084 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4085 (char *)&sin6d, sizeof (sin6_t), 4086 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4087 } else { 4088 tpi_mp = mi_tpi_conn_ind(NULL, 4089 (char *)&sin6, sizeof (sin6_t), 4090 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4091 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4092 } 4093 } 4094 4095 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 4096 return (tpi_mp); 4097 } 4098 4099 /* Handle a SYN on an AF_INET socket */ 4100 mblk_t * 4101 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4102 ip_recv_attr_t *ira) 4103 { 4104 tcp_t *ltcp = lconnp->conn_tcp; 4105 tcp_t *tcp = connp->conn_tcp; 4106 sin_t sin; 4107 mblk_t *tpi_mp = NULL; 4108 tcp_stack_t *tcps = tcp->tcp_tcps; 4109 ipha_t *ipha; 4110 4111 ASSERT(ira->ira_flags & IRAF_IS_IPV4); 4112 ipha = (ipha_t *)mp->b_rptr; 4113 4114 connp->conn_ipversion = IPV4_VERSION; 4115 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 4116 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 4117 connp->conn_saddr_v6 = connp->conn_laddr_v6; 4118 4119 sin = sin_null; 4120 sin.sin_addr.s_addr = connp->conn_faddr_v4; 4121 sin.sin_port = connp->conn_fport; 4122 sin.sin_family = AF_INET; 4123 if (lconnp->conn_recv_ancillary.crb_recvdstaddr) { 4124 sin_t sind; 4125 4126 sind = sin_null; 4127 sind.sin_addr.s_addr = connp->conn_laddr_v4; 4128 sind.sin_port = connp->conn_lport; 4129 sind.sin_family = AF_INET; 4130 tpi_mp = mi_tpi_extconn_ind(NULL, 4131 (char *)&sind, sizeof (sin_t), (char *)&tcp, 4132 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 4133 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4134 } else { 4135 tpi_mp = mi_tpi_conn_ind(NULL, 4136 (char *)&sin, sizeof (sin_t), 4137 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4138 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4139 } 4140 4141 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 4142 return (tpi_mp); 4143 } 4144 4145 /* 4146 * tcp_get_conn/tcp_free_conn 4147 * 4148 * tcp_get_conn is used to get a clean tcp connection structure. 4149 * It tries to reuse the connections put on the freelist by the 4150 * time_wait_collector failing which it goes to kmem_cache. This 4151 * way has two benefits compared to just allocating from and 4152 * freeing to kmem_cache. 4153 * 1) The time_wait_collector can free (which includes the cleanup) 4154 * outside the squeue. So when the interrupt comes, we have a clean 4155 * connection sitting in the freelist. Obviously, this buys us 4156 * performance. 4157 * 4158 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener 4159 * has multiple disadvantages - tying up the squeue during alloc. 4160 * But allocating the conn/tcp in IP land is also not the best since 4161 * we can't check the 'q' and 'q0' which are protected by squeue and 4162 * blindly allocate memory which might have to be freed here if we are 4163 * not allowed to accept the connection. By using the freelist and 4164 * putting the conn/tcp back in freelist, we don't pay a penalty for 4165 * allocating memory without checking 'q/q0' and freeing it if we can't 4166 * accept the connection. 4167 * 4168 * Care should be taken to put the conn back in the same squeue's freelist 4169 * from which it was allocated. Best results are obtained if conn is 4170 * allocated from listener's squeue and freed to the same. Time wait 4171 * collector will free up the freelist is the connection ends up sitting 4172 * there for too long. 4173 */ 4174 void * 4175 tcp_get_conn(void *arg, tcp_stack_t *tcps) 4176 { 4177 tcp_t *tcp = NULL; 4178 conn_t *connp = NULL; 4179 squeue_t *sqp = (squeue_t *)arg; 4180 tcp_squeue_priv_t *tcp_time_wait; 4181 netstack_t *ns; 4182 mblk_t *tcp_rsrv_mp = NULL; 4183 4184 tcp_time_wait = 4185 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 4186 4187 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 4188 tcp = tcp_time_wait->tcp_free_list; 4189 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 4190 if (tcp != NULL) { 4191 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 4192 tcp_time_wait->tcp_free_list_cnt--; 4193 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 4194 tcp->tcp_time_wait_next = NULL; 4195 connp = tcp->tcp_connp; 4196 connp->conn_flags |= IPCL_REUSED; 4197 4198 ASSERT(tcp->tcp_tcps == NULL); 4199 ASSERT(connp->conn_netstack == NULL); 4200 ASSERT(tcp->tcp_rsrv_mp != NULL); 4201 ns = tcps->tcps_netstack; 4202 netstack_hold(ns); 4203 connp->conn_netstack = ns; 4204 connp->conn_ixa->ixa_ipst = ns->netstack_ip; 4205 tcp->tcp_tcps = tcps; 4206 ipcl_globalhash_insert(connp); 4207 4208 connp->conn_ixa->ixa_notify_cookie = tcp; 4209 ASSERT(connp->conn_ixa->ixa_notify == tcp_notify); 4210 connp->conn_recv = tcp_input_data; 4211 ASSERT(connp->conn_recvicmp == tcp_icmp_input); 4212 ASSERT(connp->conn_verifyicmp == tcp_verifyicmp); 4213 return ((void *)connp); 4214 } 4215 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 4216 /* 4217 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until 4218 * this conn_t/tcp_t is freed at ipcl_conn_destroy(). 4219 */ 4220 tcp_rsrv_mp = allocb(0, BPRI_HI); 4221 if (tcp_rsrv_mp == NULL) 4222 return (NULL); 4223 4224 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 4225 tcps->tcps_netstack)) == NULL) { 4226 freeb(tcp_rsrv_mp); 4227 return (NULL); 4228 } 4229 4230 tcp = connp->conn_tcp; 4231 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 4232 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 4233 4234 tcp->tcp_tcps = tcps; 4235 4236 connp->conn_recv = tcp_input_data; 4237 connp->conn_recvicmp = tcp_icmp_input; 4238 connp->conn_verifyicmp = tcp_verifyicmp; 4239 4240 /* 4241 * Register tcp_notify to listen to capability changes detected by IP. 4242 * This upcall is made in the context of the call to conn_ip_output 4243 * thus it is inside the squeue. 4244 */ 4245 connp->conn_ixa->ixa_notify = tcp_notify; 4246 connp->conn_ixa->ixa_notify_cookie = tcp; 4247 4248 return ((void *)connp); 4249 } 4250 4251 /* BEGIN CSTYLED */ 4252 /* 4253 * 4254 * The sockfs ACCEPT path: 4255 * ======================= 4256 * 4257 * The eager is now established in its own perimeter as soon as SYN is 4258 * received in tcp_input_listener(). When sockfs receives conn_ind, it 4259 * completes the accept processing on the acceptor STREAM. The sending 4260 * of conn_ind part is common for both sockfs listener and a TLI/XTI 4261 * listener but a TLI/XTI listener completes the accept processing 4262 * on the listener perimeter. 4263 * 4264 * Common control flow for 3 way handshake: 4265 * ---------------------------------------- 4266 * 4267 * incoming SYN (listener perimeter) -> tcp_input_listener() 4268 * 4269 * incoming SYN-ACK-ACK (eager perim) -> tcp_input_data() 4270 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 4271 * 4272 * Sockfs ACCEPT Path: 4273 * ------------------- 4274 * 4275 * open acceptor stream (tcp_open allocates tcp_tli_accept() 4276 * as STREAM entry point) 4277 * 4278 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_tli_accept() 4279 * 4280 * tcp_tli_accept() extracts the eager and makes the q->q_ptr <-> eager 4281 * association (we are not behind eager's squeue but sockfs is protecting us 4282 * and no one knows about this stream yet. The STREAMS entry point q->q_info 4283 * is changed to point at tcp_wput(). 4284 * 4285 * tcp_accept_common() sends any deferred eagers via tcp_send_pending() to 4286 * listener (done on listener's perimeter). 4287 * 4288 * tcp_tli_accept() calls tcp_accept_finish() on eagers perimeter to finish 4289 * accept. 4290 * 4291 * TLI/XTI client ACCEPT path: 4292 * --------------------------- 4293 * 4294 * soaccept() sends T_CONN_RES on the listener STREAM. 4295 * 4296 * tcp_tli_accept() -> tcp_accept_swap() complete the processing and send 4297 * a M_SETOPS mblk to eager perimeter to finish accept (tcp_accept_finish()). 4298 * 4299 * Locks: 4300 * ====== 4301 * 4302 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 4303 * and listeners->tcp_eager_next_q. 4304 * 4305 * Referencing: 4306 * ============ 4307 * 4308 * 1) We start out in tcp_input_listener by eager placing a ref on 4309 * listener and listener adding eager to listeners->tcp_eager_next_q0. 4310 * 4311 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 4312 * doing so we place a ref on the eager. This ref is finally dropped at the 4313 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 4314 * reference is dropped by the squeue framework. 4315 * 4316 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 4317 * 4318 * The reference must be released by the same entity that added the reference 4319 * In the above scheme, the eager is the entity that adds and releases the 4320 * references. Note that tcp_accept_finish executes in the squeue of the eager 4321 * (albeit after it is attached to the acceptor stream). Though 1. executes 4322 * in the listener's squeue, the eager is nascent at this point and the 4323 * reference can be considered to have been added on behalf of the eager. 4324 * 4325 * Eager getting a Reset or listener closing: 4326 * ========================================== 4327 * 4328 * Once the listener and eager are linked, the listener never does the unlink. 4329 * If the listener needs to close, tcp_eager_cleanup() is called which queues 4330 * a message on all eager perimeter. The eager then does the unlink, clears 4331 * any pointers to the listener's queue and drops the reference to the 4332 * listener. The listener waits in tcp_close outside the squeue until its 4333 * refcount has dropped to 1. This ensures that the listener has waited for 4334 * all eagers to clear their association with the listener. 4335 * 4336 * Similarly, if eager decides to go away, it can unlink itself and close. 4337 * When the T_CONN_RES comes down, we check if eager has closed. Note that 4338 * the reference to eager is still valid because of the extra ref we put 4339 * in tcp_send_conn_ind. 4340 * 4341 * Listener can always locate the eager under the protection 4342 * of the listener->tcp_eager_lock, and then do a refhold 4343 * on the eager during the accept processing. 4344 * 4345 * The acceptor stream accesses the eager in the accept processing 4346 * based on the ref placed on eager before sending T_conn_ind. 4347 * The only entity that can negate this refhold is a listener close 4348 * which is mutually exclusive with an active acceptor stream. 4349 * 4350 * Eager's reference on the listener 4351 * =================================== 4352 * 4353 * If the accept happens (even on a closed eager) the eager drops its 4354 * reference on the listener at the start of tcp_accept_finish. If the 4355 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 4356 * the reference is dropped in tcp_closei_local. If the listener closes, 4357 * the reference is dropped in tcp_eager_kill. In all cases the reference 4358 * is dropped while executing in the eager's context (squeue). 4359 */ 4360 /* END CSTYLED */ 4361 4362 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 4363 4364 /* 4365 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 4366 * tcp_input_data will not see any packets for listeners since the listener 4367 * has conn_recv set to tcp_input_listener. 4368 */ 4369 /* ARGSUSED */ 4370 void 4371 tcp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4372 { 4373 tcpha_t *tcpha; 4374 uint32_t seg_seq; 4375 tcp_t *eager; 4376 int err; 4377 conn_t *econnp = NULL; 4378 squeue_t *new_sqp; 4379 mblk_t *mp1; 4380 uint_t ip_hdr_len; 4381 conn_t *lconnp = (conn_t *)arg; 4382 tcp_t *listener = lconnp->conn_tcp; 4383 tcp_stack_t *tcps = listener->tcp_tcps; 4384 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 4385 uint_t flags; 4386 mblk_t *tpi_mp; 4387 uint_t ifindex = ira->ira_ruifindex; 4388 4389 ip_hdr_len = ira->ira_ip_hdr_length; 4390 tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len]; 4391 flags = (unsigned int)tcpha->tha_flags & 0xFF; 4392 4393 if (!(flags & TH_SYN)) { 4394 if ((flags & TH_RST) || (flags & TH_URG)) { 4395 freemsg(mp); 4396 return; 4397 } 4398 if (flags & TH_ACK) { 4399 /* Note this executes in listener's squeue */ 4400 tcp_xmit_listeners_reset(mp, ira, ipst, lconnp); 4401 return; 4402 } 4403 4404 freemsg(mp); 4405 return; 4406 } 4407 4408 if (listener->tcp_state != TCPS_LISTEN) 4409 goto error2; 4410 4411 ASSERT(IPCL_IS_BOUND(lconnp)); 4412 4413 mutex_enter(&listener->tcp_eager_lock); 4414 if (listener->tcp_conn_req_cnt_q >= listener->tcp_conn_req_max) { 4415 mutex_exit(&listener->tcp_eager_lock); 4416 TCP_STAT(tcps, tcp_listendrop); 4417 BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); 4418 if (lconnp->conn_debug) { 4419 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 4420 "tcp_input_listener: listen backlog (max=%d) " 4421 "overflow (%d pending) on %s", 4422 listener->tcp_conn_req_max, 4423 listener->tcp_conn_req_cnt_q, 4424 tcp_display(listener, NULL, DISP_PORT_ONLY)); 4425 } 4426 goto error2; 4427 } 4428 4429 if (listener->tcp_conn_req_cnt_q0 >= 4430 listener->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 4431 /* 4432 * Q0 is full. Drop a pending half-open req from the queue 4433 * to make room for the new SYN req. Also mark the time we 4434 * drop a SYN. 4435 * 4436 * A more aggressive defense against SYN attack will 4437 * be to set the "tcp_syn_defense" flag now. 4438 */ 4439 TCP_STAT(tcps, tcp_listendropq0); 4440 listener->tcp_last_rcv_lbolt = lbolt64; 4441 if (!tcp_drop_q0(listener)) { 4442 mutex_exit(&listener->tcp_eager_lock); 4443 BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); 4444 if (lconnp->conn_debug) { 4445 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4446 "tcp_input_listener: listen half-open " 4447 "queue (max=%d) full (%d pending) on %s", 4448 tcps->tcps_conn_req_max_q0, 4449 listener->tcp_conn_req_cnt_q0, 4450 tcp_display(listener, NULL, 4451 DISP_PORT_ONLY)); 4452 } 4453 goto error2; 4454 } 4455 } 4456 mutex_exit(&listener->tcp_eager_lock); 4457 4458 /* 4459 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 4460 * or based on the ring (for packets from GLD). Otherwise it is 4461 * set based on lbolt i.e., a somewhat random number. 4462 */ 4463 ASSERT(ira->ira_sqp != NULL); 4464 new_sqp = ira->ira_sqp; 4465 4466 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 4467 if (econnp == NULL) 4468 goto error2; 4469 4470 ASSERT(econnp->conn_netstack == lconnp->conn_netstack); 4471 econnp->conn_sqp = new_sqp; 4472 econnp->conn_initial_sqp = new_sqp; 4473 econnp->conn_ixa->ixa_sqp = new_sqp; 4474 4475 econnp->conn_fport = tcpha->tha_lport; 4476 econnp->conn_lport = tcpha->tha_fport; 4477 4478 err = conn_inherit_parent(lconnp, econnp); 4479 if (err != 0) 4480 goto error3; 4481 4482 ASSERT(OK_32PTR(mp->b_rptr)); 4483 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION || 4484 IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 4485 4486 if (lconnp->conn_family == AF_INET) { 4487 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 4488 tpi_mp = tcp_conn_create_v4(lconnp, econnp, mp, ira); 4489 } else { 4490 tpi_mp = tcp_conn_create_v6(lconnp, econnp, mp, ira); 4491 } 4492 4493 if (tpi_mp == NULL) 4494 goto error3; 4495 4496 eager = econnp->conn_tcp; 4497 eager->tcp_detached = B_TRUE; 4498 SOCK_CONNID_INIT(eager->tcp_connid); 4499 4500 tcp_init_values(eager); 4501 4502 ASSERT((econnp->conn_ixa->ixa_flags & 4503 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 4504 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)) == 4505 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 4506 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)); 4507 4508 if (!tcps->tcps_dev_flow_ctl) 4509 econnp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 4510 4511 /* Prepare for diffing against previous packets */ 4512 eager->tcp_recvifindex = 0; 4513 eager->tcp_recvhops = 0xffffffffU; 4514 4515 if (!(ira->ira_flags & IRAF_IS_IPV4) && econnp->conn_bound_if == 0) { 4516 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_faddr_v6) || 4517 IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6)) { 4518 econnp->conn_incoming_ifindex = ifindex; 4519 econnp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 4520 econnp->conn_ixa->ixa_scopeid = ifindex; 4521 } 4522 } 4523 4524 if ((ira->ira_flags & (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS)) == 4525 (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS) && 4526 tcps->tcps_rev_src_routes) { 4527 ipha_t *ipha = (ipha_t *)mp->b_rptr; 4528 ip_pkt_t *ipp = &econnp->conn_xmit_ipp; 4529 4530 /* Source routing option copyover (reverse it) */ 4531 err = ip_find_hdr_v4(ipha, ipp, B_TRUE); 4532 if (err != 0) { 4533 freemsg(tpi_mp); 4534 goto error3; 4535 } 4536 ip_pkt_source_route_reverse_v4(ipp); 4537 } 4538 4539 ASSERT(eager->tcp_conn.tcp_eager_conn_ind == NULL); 4540 ASSERT(!eager->tcp_tconnind_started); 4541 /* 4542 * If the SYN came with a credential, it's a loopback packet or a 4543 * labeled packet; attach the credential to the TPI message. 4544 */ 4545 if (ira->ira_cred != NULL) 4546 mblk_setcred(tpi_mp, ira->ira_cred, ira->ira_cpid); 4547 4548 eager->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4549 4550 /* Inherit the listener's SSL protection state */ 4551 if ((eager->tcp_kssl_ent = listener->tcp_kssl_ent) != NULL) { 4552 kssl_hold_ent(eager->tcp_kssl_ent); 4553 eager->tcp_kssl_pending = B_TRUE; 4554 } 4555 4556 /* Inherit the listener's non-STREAMS flag */ 4557 if (IPCL_IS_NONSTR(lconnp)) { 4558 econnp->conn_flags |= IPCL_NONSTR; 4559 } 4560 4561 ASSERT(eager->tcp_ordrel_mp == NULL); 4562 4563 if (!IPCL_IS_NONSTR(econnp)) { 4564 /* 4565 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that 4566 * at close time, we will always have that to send up. 4567 * Otherwise, we need to do special handling in case the 4568 * allocation fails at that time. 4569 */ 4570 if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 4571 goto error3; 4572 } 4573 /* 4574 * Now that the IP addresses and ports are setup in econnp we 4575 * can do the IPsec policy work. 4576 */ 4577 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 4578 if (lconnp->conn_policy != NULL) { 4579 /* 4580 * Inherit the policy from the listener; use 4581 * actions from ira 4582 */ 4583 if (!ip_ipsec_policy_inherit(econnp, lconnp, ira)) { 4584 CONN_DEC_REF(econnp); 4585 freemsg(mp); 4586 goto error3; 4587 } 4588 } 4589 } 4590 4591 /* Inherit various TCP parameters from the listener */ 4592 eager->tcp_naglim = listener->tcp_naglim; 4593 eager->tcp_first_timer_threshold = listener->tcp_first_timer_threshold; 4594 eager->tcp_second_timer_threshold = 4595 listener->tcp_second_timer_threshold; 4596 eager->tcp_first_ctimer_threshold = 4597 listener->tcp_first_ctimer_threshold; 4598 eager->tcp_second_ctimer_threshold = 4599 listener->tcp_second_ctimer_threshold; 4600 4601 /* 4602 * tcp_set_destination() may set tcp_rwnd according to the route 4603 * metrics. If it does not, the eager's receive window will be set 4604 * to the listener's receive window later in this function. 4605 */ 4606 eager->tcp_rwnd = 0; 4607 4608 /* 4609 * Inherit listener's tcp_init_cwnd. Need to do this before 4610 * calling tcp_process_options() which set the initial cwnd. 4611 */ 4612 eager->tcp_init_cwnd = listener->tcp_init_cwnd; 4613 4614 if (is_system_labeled()) { 4615 ip_xmit_attr_t *ixa = econnp->conn_ixa; 4616 4617 ASSERT(ira->ira_tsl != NULL); 4618 /* Discard any old label */ 4619 if (ixa->ixa_free_flags & IXA_FREE_TSL) { 4620 ASSERT(ixa->ixa_tsl != NULL); 4621 label_rele(ixa->ixa_tsl); 4622 ixa->ixa_free_flags &= ~IXA_FREE_TSL; 4623 ixa->ixa_tsl = NULL; 4624 } 4625 if ((lconnp->conn_mlp_type != mlptSingle || 4626 lconnp->conn_mac_mode != CONN_MAC_DEFAULT) && 4627 ira->ira_tsl != NULL) { 4628 /* 4629 * If this is an MLP connection or a MAC-Exempt 4630 * connection with an unlabeled node, packets are to be 4631 * exchanged using the security label of the received 4632 * SYN packet instead of the server application's label. 4633 * tsol_check_dest called from ip_set_destination 4634 * might later update TSF_UNLABELED by replacing 4635 * ixa_tsl with a new label. 4636 */ 4637 label_hold(ira->ira_tsl); 4638 ip_xmit_attr_replace_tsl(ixa, ira->ira_tsl); 4639 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 4640 econnp, ts_label_t *, ixa->ixa_tsl) 4641 } else { 4642 ixa->ixa_tsl = crgetlabel(econnp->conn_cred); 4643 DTRACE_PROBE2(syn_accept, conn_t *, 4644 econnp, ts_label_t *, ixa->ixa_tsl) 4645 } 4646 /* 4647 * conn_connect() called from tcp_set_destination will verify 4648 * the destination is allowed to receive packets at the 4649 * security label of the SYN-ACK we are generating. As part of 4650 * that, tsol_check_dest() may create a new effective label for 4651 * this connection. 4652 * Finally conn_connect() will call conn_update_label. 4653 * All that remains for TCP to do is to call 4654 * conn_build_hdr_template which is done as part of 4655 * tcp_set_destination. 4656 */ 4657 } 4658 4659 /* 4660 * Since we will clear tcp_listener before we clear tcp_detached 4661 * in the accept code we need tcp_hard_binding aka tcp_accept_inprogress 4662 * so we can tell a TCP_DETACHED_NONEAGER apart. 4663 */ 4664 eager->tcp_hard_binding = B_TRUE; 4665 4666 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 4667 TCP_BIND_HASH(econnp->conn_lport)], eager, 0); 4668 4669 CL_INET_CONNECT(econnp, B_FALSE, err); 4670 if (err != 0) { 4671 tcp_bind_hash_remove(eager); 4672 goto error3; 4673 } 4674 4675 /* 4676 * No need to check for multicast destination since ip will only pass 4677 * up multicasts to those that have expressed interest 4678 * TODO: what about rejecting broadcasts? 4679 * Also check that source is not a multicast or broadcast address. 4680 */ 4681 eager->tcp_state = TCPS_SYN_RCVD; 4682 SOCK_CONNID_BUMP(eager->tcp_connid); 4683 4684 /* 4685 * Adapt our mss, ttl, ... based on the remote address. 4686 */ 4687 4688 if (tcp_set_destination(eager) != 0) { 4689 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 4690 /* Undo the bind_hash_insert */ 4691 tcp_bind_hash_remove(eager); 4692 goto error3; 4693 } 4694 4695 /* Process all TCP options. */ 4696 tcp_process_options(eager, tcpha); 4697 4698 /* Is the other end ECN capable? */ 4699 if (tcps->tcps_ecn_permitted >= 1 && 4700 (tcpha->tha_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 4701 eager->tcp_ecn_ok = B_TRUE; 4702 } 4703 4704 /* 4705 * The listener's conn_rcvbuf should be the default window size or a 4706 * window size changed via SO_RCVBUF option. First round up the 4707 * eager's tcp_rwnd to the nearest MSS. Then find out the window 4708 * scale option value if needed. Call tcp_rwnd_set() to finish the 4709 * setting. 4710 * 4711 * Note if there is a rpipe metric associated with the remote host, 4712 * we should not inherit receive window size from listener. 4713 */ 4714 eager->tcp_rwnd = MSS_ROUNDUP( 4715 (eager->tcp_rwnd == 0 ? econnp->conn_rcvbuf : 4716 eager->tcp_rwnd), eager->tcp_mss); 4717 if (eager->tcp_snd_ws_ok) 4718 tcp_set_ws_value(eager); 4719 /* 4720 * Note that this is the only place tcp_rwnd_set() is called for 4721 * accepting a connection. We need to call it here instead of 4722 * after the 3-way handshake because we need to tell the other 4723 * side our rwnd in the SYN-ACK segment. 4724 */ 4725 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 4726 4727 ASSERT(eager->tcp_connp->conn_rcvbuf != 0 && 4728 eager->tcp_connp->conn_rcvbuf == eager->tcp_rwnd); 4729 4730 ASSERT(econnp->conn_rcvbuf != 0 && 4731 econnp->conn_rcvbuf == eager->tcp_rwnd); 4732 4733 /* Put a ref on the listener for the eager. */ 4734 CONN_INC_REF(lconnp); 4735 mutex_enter(&listener->tcp_eager_lock); 4736 listener->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 4737 eager->tcp_eager_next_q0 = listener->tcp_eager_next_q0; 4738 listener->tcp_eager_next_q0 = eager; 4739 eager->tcp_eager_prev_q0 = listener; 4740 4741 /* Set tcp_listener before adding it to tcp_conn_fanout */ 4742 eager->tcp_listener = listener; 4743 eager->tcp_saved_listener = listener; 4744 4745 /* 4746 * Tag this detached tcp vector for later retrieval 4747 * by our listener client in tcp_accept(). 4748 */ 4749 eager->tcp_conn_req_seqnum = listener->tcp_conn_req_seqnum; 4750 listener->tcp_conn_req_cnt_q0++; 4751 if (++listener->tcp_conn_req_seqnum == -1) { 4752 /* 4753 * -1 is "special" and defined in TPI as something 4754 * that should never be used in T_CONN_IND 4755 */ 4756 ++listener->tcp_conn_req_seqnum; 4757 } 4758 mutex_exit(&listener->tcp_eager_lock); 4759 4760 if (listener->tcp_syn_defense) { 4761 /* Don't drop the SYN that comes from a good IP source */ 4762 ipaddr_t *addr_cache; 4763 4764 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 4765 if (addr_cache != NULL && econnp->conn_faddr_v4 == 4766 addr_cache[IP_ADDR_CACHE_HASH(econnp->conn_faddr_v4)]) { 4767 eager->tcp_dontdrop = B_TRUE; 4768 } 4769 } 4770 4771 /* 4772 * We need to insert the eager in its own perimeter but as soon 4773 * as we do that, we expose the eager to the classifier and 4774 * should not touch any field outside the eager's perimeter. 4775 * So do all the work necessary before inserting the eager 4776 * in its own perimeter. Be optimistic that conn_connect() 4777 * will succeed but undo everything if it fails. 4778 */ 4779 seg_seq = ntohl(tcpha->tha_seq); 4780 eager->tcp_irs = seg_seq; 4781 eager->tcp_rack = seg_seq; 4782 eager->tcp_rnxt = seg_seq + 1; 4783 eager->tcp_tcpha->tha_ack = htonl(eager->tcp_rnxt); 4784 BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); 4785 eager->tcp_state = TCPS_SYN_RCVD; 4786 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 4787 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 4788 if (mp1 == NULL) { 4789 /* 4790 * Increment the ref count as we are going to 4791 * enqueueing an mp in squeue 4792 */ 4793 CONN_INC_REF(econnp); 4794 goto error; 4795 } 4796 4797 /* 4798 * We need to start the rto timer. In normal case, we start 4799 * the timer after sending the packet on the wire (or at 4800 * least believing that packet was sent by waiting for 4801 * conn_ip_output() to return). Since this is the first packet 4802 * being sent on the wire for the eager, our initial tcp_rto 4803 * is at least tcp_rexmit_interval_min which is a fairly 4804 * large value to allow the algorithm to adjust slowly to large 4805 * fluctuations of RTT during first few transmissions. 4806 * 4807 * Starting the timer first and then sending the packet in this 4808 * case shouldn't make much difference since tcp_rexmit_interval_min 4809 * is of the order of several 100ms and starting the timer 4810 * first and then sending the packet will result in difference 4811 * of few micro seconds. 4812 * 4813 * Without this optimization, we are forced to hold the fanout 4814 * lock across the ipcl_bind_insert() and sending the packet 4815 * so that we don't race against an incoming packet (maybe RST) 4816 * for this eager. 4817 * 4818 * It is necessary to acquire an extra reference on the eager 4819 * at this point and hold it until after tcp_send_data() to 4820 * ensure against an eager close race. 4821 */ 4822 4823 CONN_INC_REF(econnp); 4824 4825 TCP_TIMER_RESTART(eager, eager->tcp_rto); 4826 4827 /* 4828 * Insert the eager in its own perimeter now. We are ready to deal 4829 * with any packets on eager. 4830 */ 4831 if (ipcl_conn_insert(econnp) != 0) 4832 goto error; 4833 4834 /* 4835 * Send the SYN-ACK. Can't use tcp_send_data since we can't update 4836 * pmtu etc; we are not on the eager's squeue 4837 */ 4838 ASSERT(econnp->conn_ixa->ixa_notify_cookie == econnp->conn_tcp); 4839 (void) conn_ip_output(mp1, econnp->conn_ixa); 4840 CONN_DEC_REF(econnp); 4841 freemsg(mp); 4842 4843 return; 4844 error: 4845 freemsg(mp1); 4846 eager->tcp_closemp_used = B_TRUE; 4847 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 4848 mp1 = &eager->tcp_closemp; 4849 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, 4850 econnp, NULL, SQ_FILL, SQTAG_TCP_CONN_REQ_2); 4851 4852 /* 4853 * If a connection already exists, send the mp to that connections so 4854 * that it can be appropriately dealt with. 4855 */ 4856 ipst = tcps->tcps_netstack->netstack_ip; 4857 4858 if ((econnp = ipcl_classify(mp, ira, ipst)) != NULL) { 4859 if (!IPCL_IS_CONNECTED(econnp)) { 4860 /* 4861 * Something bad happened. ipcl_conn_insert() 4862 * failed because a connection already existed 4863 * in connected hash but we can't find it 4864 * anymore (someone blew it away). Just 4865 * free this message and hopefully remote 4866 * will retransmit at which time the SYN can be 4867 * treated as a new connection or dealth with 4868 * a TH_RST if a connection already exists. 4869 */ 4870 CONN_DEC_REF(econnp); 4871 freemsg(mp); 4872 } else { 4873 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, tcp_input_data, 4874 econnp, ira, SQ_FILL, SQTAG_TCP_CONN_REQ_1); 4875 } 4876 } else { 4877 /* Nobody wants this packet */ 4878 freemsg(mp); 4879 } 4880 return; 4881 error3: 4882 CONN_DEC_REF(econnp); 4883 error2: 4884 freemsg(mp); 4885 } 4886 4887 /* 4888 * In an ideal case of vertical partition in NUMA architecture, its 4889 * beneficial to have the listener and all the incoming connections 4890 * tied to the same squeue. The other constraint is that incoming 4891 * connections should be tied to the squeue attached to interrupted 4892 * CPU for obvious locality reason so this leaves the listener to 4893 * be tied to the same squeue. Our only problem is that when listener 4894 * is binding, the CPU that will get interrupted by the NIC whose 4895 * IP address the listener is binding to is not even known. So 4896 * the code below allows us to change that binding at the time the 4897 * CPU is interrupted by virtue of incoming connection's squeue. 4898 * 4899 * This is usefull only in case of a listener bound to a specific IP 4900 * address. For other kind of listeners, they get bound the 4901 * very first time and there is no attempt to rebind them. 4902 */ 4903 void 4904 tcp_input_listener_unbound(void *arg, mblk_t *mp, void *arg2, 4905 ip_recv_attr_t *ira) 4906 { 4907 conn_t *connp = (conn_t *)arg; 4908 squeue_t *sqp = (squeue_t *)arg2; 4909 squeue_t *new_sqp; 4910 uint32_t conn_flags; 4911 4912 /* 4913 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 4914 * or based on the ring (for packets from GLD). Otherwise it is 4915 * set based on lbolt i.e., a somewhat random number. 4916 */ 4917 ASSERT(ira->ira_sqp != NULL); 4918 new_sqp = ira->ira_sqp; 4919 4920 if (connp->conn_fanout == NULL) 4921 goto done; 4922 4923 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 4924 mutex_enter(&connp->conn_fanout->connf_lock); 4925 mutex_enter(&connp->conn_lock); 4926 /* 4927 * No one from read or write side can access us now 4928 * except for already queued packets on this squeue. 4929 * But since we haven't changed the squeue yet, they 4930 * can't execute. If they are processed after we have 4931 * changed the squeue, they are sent back to the 4932 * correct squeue down below. 4933 * But a listner close can race with processing of 4934 * incoming SYN. If incoming SYN processing changes 4935 * the squeue then the listener close which is waiting 4936 * to enter the squeue would operate on the wrong 4937 * squeue. Hence we don't change the squeue here unless 4938 * the refcount is exactly the minimum refcount. The 4939 * minimum refcount of 4 is counted as - 1 each for 4940 * TCP and IP, 1 for being in the classifier hash, and 4941 * 1 for the mblk being processed. 4942 */ 4943 4944 if (connp->conn_ref != 4 || 4945 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 4946 mutex_exit(&connp->conn_lock); 4947 mutex_exit(&connp->conn_fanout->connf_lock); 4948 goto done; 4949 } 4950 if (connp->conn_sqp != new_sqp) { 4951 while (connp->conn_sqp != new_sqp) 4952 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 4953 /* No special MT issues for outbound ixa_sqp hint */ 4954 connp->conn_ixa->ixa_sqp = new_sqp; 4955 } 4956 4957 do { 4958 conn_flags = connp->conn_flags; 4959 conn_flags |= IPCL_FULLY_BOUND; 4960 (void) cas32(&connp->conn_flags, connp->conn_flags, 4961 conn_flags); 4962 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 4963 4964 mutex_exit(&connp->conn_fanout->connf_lock); 4965 mutex_exit(&connp->conn_lock); 4966 4967 /* 4968 * Assume we have picked a good squeue for the listener. Make 4969 * subsequent SYNs not try to change the squeue. 4970 */ 4971 connp->conn_recv = tcp_input_listener; 4972 } 4973 4974 done: 4975 if (connp->conn_sqp != sqp) { 4976 CONN_INC_REF(connp); 4977 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 4978 ira, SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); 4979 } else { 4980 tcp_input_listener(connp, mp, sqp, ira); 4981 } 4982 } 4983 4984 /* 4985 * Successful connect request processing begins when our client passes 4986 * a T_CONN_REQ message into tcp_wput(), which performs function calls into 4987 * IP and the passes a T_OK_ACK (or T_ERROR_ACK upstream). 4988 * 4989 * After various error checks are completed, tcp_tpi_connect() lays 4990 * the target address and port into the composite header template. 4991 * Then we ask IP for information, including a source address if we didn't 4992 * already have one. Finally we prepare to send the SYN packet, and then 4993 * send up the T_OK_ACK reply message. 4994 */ 4995 static void 4996 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp) 4997 { 4998 sin_t *sin; 4999 struct T_conn_req *tcr; 5000 struct sockaddr *sa; 5001 socklen_t len; 5002 int error; 5003 cred_t *cr; 5004 pid_t cpid; 5005 conn_t *connp = tcp->tcp_connp; 5006 queue_t *q = connp->conn_wq; 5007 5008 /* 5009 * All Solaris components should pass a db_credp 5010 * for this TPI message, hence we ASSERT. 5011 * But in case there is some other M_PROTO that looks 5012 * like a TPI message sent by some other kernel 5013 * component, we check and return an error. 5014 */ 5015 cr = msg_getcred(mp, &cpid); 5016 ASSERT(cr != NULL); 5017 if (cr == NULL) { 5018 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5019 return; 5020 } 5021 5022 tcr = (struct T_conn_req *)mp->b_rptr; 5023 5024 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5025 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 5026 tcp_err_ack(tcp, mp, TPROTO, 0); 5027 return; 5028 } 5029 5030 /* 5031 * Pre-allocate the T_ordrel_ind mblk so that at close time, we 5032 * will always have that to send up. Otherwise, we need to do 5033 * special handling in case the allocation fails at that time. 5034 * If the end point is TPI, the tcp_t can be reused and the 5035 * tcp_ordrel_mp may be allocated already. 5036 */ 5037 if (tcp->tcp_ordrel_mp == NULL) { 5038 if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) { 5039 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5040 return; 5041 } 5042 } 5043 5044 /* 5045 * Determine packet type based on type of address passed in 5046 * the request should contain an IPv4 or IPv6 address. 5047 * Make sure that address family matches the type of 5048 * family of the address passed down. 5049 */ 5050 switch (tcr->DEST_length) { 5051 default: 5052 tcp_err_ack(tcp, mp, TBADADDR, 0); 5053 return; 5054 5055 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 5056 /* 5057 * XXX: The check for valid DEST_length was not there 5058 * in earlier releases and some buggy 5059 * TLI apps (e.g Sybase) got away with not feeding 5060 * in sin_zero part of address. 5061 * We allow that bug to keep those buggy apps humming. 5062 * Test suites require the check on DEST_length. 5063 * We construct a new mblk with valid DEST_length 5064 * free the original so the rest of the code does 5065 * not have to keep track of this special shorter 5066 * length address case. 5067 */ 5068 mblk_t *nmp; 5069 struct T_conn_req *ntcr; 5070 sin_t *nsin; 5071 5072 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 5073 tcr->OPT_length, BPRI_HI); 5074 if (nmp == NULL) { 5075 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5076 return; 5077 } 5078 ntcr = (struct T_conn_req *)nmp->b_rptr; 5079 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 5080 ntcr->PRIM_type = T_CONN_REQ; 5081 ntcr->DEST_length = sizeof (sin_t); 5082 ntcr->DEST_offset = sizeof (struct T_conn_req); 5083 5084 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 5085 *nsin = sin_null; 5086 /* Get pointer to shorter address to copy from original mp */ 5087 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 5088 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 5089 if (sin == NULL || !OK_32PTR((char *)sin)) { 5090 freemsg(nmp); 5091 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5092 return; 5093 } 5094 nsin->sin_family = sin->sin_family; 5095 nsin->sin_port = sin->sin_port; 5096 nsin->sin_addr = sin->sin_addr; 5097 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 5098 nmp->b_wptr = (uchar_t *)&nsin[1]; 5099 if (tcr->OPT_length != 0) { 5100 ntcr->OPT_length = tcr->OPT_length; 5101 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 5102 bcopy((uchar_t *)tcr + tcr->OPT_offset, 5103 (uchar_t *)ntcr + ntcr->OPT_offset, 5104 tcr->OPT_length); 5105 nmp->b_wptr += tcr->OPT_length; 5106 } 5107 freemsg(mp); /* original mp freed */ 5108 mp = nmp; /* re-initialize original variables */ 5109 tcr = ntcr; 5110 } 5111 /* FALLTHRU */ 5112 5113 case sizeof (sin_t): 5114 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 5115 sizeof (sin_t)); 5116 len = sizeof (sin_t); 5117 break; 5118 5119 case sizeof (sin6_t): 5120 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 5121 sizeof (sin6_t)); 5122 len = sizeof (sin6_t); 5123 break; 5124 } 5125 5126 error = proto_verify_ip_addr(connp->conn_family, sa, len); 5127 if (error != 0) { 5128 tcp_err_ack(tcp, mp, TSYSERR, error); 5129 return; 5130 } 5131 5132 /* 5133 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 5134 * should key on their sequence number and cut them loose. 5135 */ 5136 5137 /* 5138 * If options passed in, feed it for verification and handling 5139 */ 5140 if (tcr->OPT_length != 0) { 5141 mblk_t *ok_mp; 5142 mblk_t *discon_mp; 5143 mblk_t *conn_opts_mp; 5144 int t_error, sys_error, do_disconnect; 5145 5146 conn_opts_mp = NULL; 5147 5148 if (tcp_conprim_opt_process(tcp, mp, 5149 &do_disconnect, &t_error, &sys_error) < 0) { 5150 if (do_disconnect) { 5151 ASSERT(t_error == 0 && sys_error == 0); 5152 discon_mp = mi_tpi_discon_ind(NULL, 5153 ECONNREFUSED, 0); 5154 if (!discon_mp) { 5155 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 5156 TSYSERR, ENOMEM); 5157 return; 5158 } 5159 ok_mp = mi_tpi_ok_ack_alloc(mp); 5160 if (!ok_mp) { 5161 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 5162 TSYSERR, ENOMEM); 5163 return; 5164 } 5165 qreply(q, ok_mp); 5166 qreply(q, discon_mp); /* no flush! */ 5167 } else { 5168 ASSERT(t_error != 0); 5169 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 5170 sys_error); 5171 } 5172 return; 5173 } 5174 /* 5175 * Success in setting options, the mp option buffer represented 5176 * by OPT_length/offset has been potentially modified and 5177 * contains results of option processing. We copy it in 5178 * another mp to save it for potentially influencing returning 5179 * it in T_CONN_CONN. 5180 */ 5181 if (tcr->OPT_length != 0) { /* there are resulting options */ 5182 conn_opts_mp = copyb(mp); 5183 if (!conn_opts_mp) { 5184 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 5185 TSYSERR, ENOMEM); 5186 return; 5187 } 5188 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 5189 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 5190 /* 5191 * Note: 5192 * These resulting option negotiation can include any 5193 * end-to-end negotiation options but there no such 5194 * thing (yet?) in our TCP/IP. 5195 */ 5196 } 5197 } 5198 5199 /* call the non-TPI version */ 5200 error = tcp_do_connect(tcp->tcp_connp, sa, len, cr, cpid); 5201 if (error < 0) { 5202 mp = mi_tpi_err_ack_alloc(mp, -error, 0); 5203 } else if (error > 0) { 5204 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 5205 } else { 5206 mp = mi_tpi_ok_ack_alloc(mp); 5207 } 5208 5209 /* 5210 * Note: Code below is the "failure" case 5211 */ 5212 /* return error ack and blow away saved option results if any */ 5213 connect_failed: 5214 if (mp != NULL) 5215 putnext(connp->conn_rq, mp); 5216 else { 5217 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 5218 TSYSERR, ENOMEM); 5219 } 5220 } 5221 5222 /* 5223 * Handle connect to IPv4 destinations, including connections for AF_INET6 5224 * sockets connecting to IPv4 mapped IPv6 destinations. 5225 * Returns zero if OK, a positive errno, or a negative TLI error. 5226 */ 5227 static int 5228 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 5229 uint_t srcid) 5230 { 5231 ipaddr_t dstaddr = *dstaddrp; 5232 uint16_t lport; 5233 conn_t *connp = tcp->tcp_connp; 5234 tcp_stack_t *tcps = tcp->tcp_tcps; 5235 int error; 5236 5237 ASSERT(connp->conn_ipversion == IPV4_VERSION); 5238 5239 /* Check for attempt to connect to INADDR_ANY */ 5240 if (dstaddr == INADDR_ANY) { 5241 /* 5242 * SunOS 4.x and 4.3 BSD allow an application 5243 * to connect a TCP socket to INADDR_ANY. 5244 * When they do this, the kernel picks the 5245 * address of one interface and uses it 5246 * instead. The kernel usually ends up 5247 * picking the address of the loopback 5248 * interface. This is an undocumented feature. 5249 * However, we provide the same thing here 5250 * in order to have source and binary 5251 * compatibility with SunOS 4.x. 5252 * Update the T_CONN_REQ (sin/sin6) since it is used to 5253 * generate the T_CONN_CON. 5254 */ 5255 dstaddr = htonl(INADDR_LOOPBACK); 5256 *dstaddrp = dstaddr; 5257 } 5258 5259 /* Handle __sin6_src_id if socket not bound to an IP address */ 5260 if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) { 5261 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 5262 IPCL_ZONEID(connp), tcps->tcps_netstack); 5263 connp->conn_saddr_v6 = connp->conn_laddr_v6; 5264 } 5265 5266 IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6); 5267 connp->conn_fport = dstport; 5268 5269 /* 5270 * At this point the remote destination address and remote port fields 5271 * in the tcp-four-tuple have been filled in the tcp structure. Now we 5272 * have to see which state tcp was in so we can take appropriate action. 5273 */ 5274 if (tcp->tcp_state == TCPS_IDLE) { 5275 /* 5276 * We support a quick connect capability here, allowing 5277 * clients to transition directly from IDLE to SYN_SENT 5278 * tcp_bindi will pick an unused port, insert the connection 5279 * in the bind hash and transition to BOUND state. 5280 */ 5281 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 5282 tcp, B_TRUE); 5283 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 5284 B_FALSE, B_FALSE); 5285 if (lport == 0) 5286 return (-TNOADDR); 5287 } 5288 5289 /* 5290 * Lookup the route to determine a source address and the uinfo. 5291 * If there was a source route we have tcp_ipha->ipha_dst as the first 5292 * hop. 5293 * Setup TCP parameters based on the metrics/DCE. 5294 */ 5295 error = tcp_set_destination(tcp); 5296 if (error != 0) 5297 return (error); 5298 5299 /* 5300 * Don't let an endpoint connect to itself. 5301 */ 5302 if (connp->conn_faddr_v4 == connp->conn_laddr_v4 && 5303 connp->conn_fport == connp->conn_lport) 5304 return (-TBADADDR); 5305 5306 tcp->tcp_state = TCPS_SYN_SENT; 5307 5308 return (ipcl_conn_insert_v4(connp)); 5309 } 5310 5311 /* 5312 * Handle connect to IPv6 destinations. 5313 * Returns zero if OK, a positive errno, or a negative TLI error. 5314 */ 5315 static int 5316 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 5317 uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 5318 { 5319 uint16_t lport; 5320 conn_t *connp = tcp->tcp_connp; 5321 tcp_stack_t *tcps = tcp->tcp_tcps; 5322 int error; 5323 5324 ASSERT(connp->conn_family == AF_INET6); 5325 5326 /* 5327 * If we're here, it means that the destination address is a native 5328 * IPv6 address. Return an error if conn_ipversion is not IPv6. A 5329 * reason why it might not be IPv6 is if the socket was bound to an 5330 * IPv4-mapped IPv6 address. 5331 */ 5332 if (connp->conn_ipversion != IPV6_VERSION) 5333 return (-TBADADDR); 5334 5335 /* 5336 * Interpret a zero destination to mean loopback. 5337 * Update the T_CONN_REQ (sin/sin6) since it is used to 5338 * generate the T_CONN_CON. 5339 */ 5340 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) 5341 *dstaddrp = ipv6_loopback; 5342 5343 /* Handle __sin6_src_id if socket not bound to an IP address */ 5344 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) { 5345 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 5346 IPCL_ZONEID(connp), tcps->tcps_netstack); 5347 connp->conn_saddr_v6 = connp->conn_laddr_v6; 5348 } 5349 5350 /* 5351 * Take care of the scope_id now. 5352 */ 5353 if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 5354 connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 5355 connp->conn_ixa->ixa_scopeid = scope_id; 5356 } else { 5357 connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET; 5358 } 5359 5360 connp->conn_flowinfo = flowinfo; 5361 connp->conn_faddr_v6 = *dstaddrp; 5362 connp->conn_fport = dstport; 5363 5364 /* 5365 * At this point the remote destination address and remote port fields 5366 * in the tcp-four-tuple have been filled in the tcp structure. Now we 5367 * have to see which state tcp was in so we can take appropriate action. 5368 */ 5369 if (tcp->tcp_state == TCPS_IDLE) { 5370 /* 5371 * We support a quick connect capability here, allowing 5372 * clients to transition directly from IDLE to SYN_SENT 5373 * tcp_bindi will pick an unused port, insert the connection 5374 * in the bind hash and transition to BOUND state. 5375 */ 5376 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 5377 tcp, B_TRUE); 5378 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 5379 B_FALSE, B_FALSE); 5380 if (lport == 0) 5381 return (-TNOADDR); 5382 } 5383 5384 /* 5385 * Lookup the route to determine a source address and the uinfo. 5386 * If there was a source route we have tcp_ip6h->ip6_dst as the first 5387 * hop. 5388 * Setup TCP parameters based on the metrics/DCE. 5389 */ 5390 error = tcp_set_destination(tcp); 5391 if (error != 0) 5392 return (error); 5393 5394 /* 5395 * Don't let an endpoint connect to itself. 5396 */ 5397 if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) && 5398 connp->conn_fport == connp->conn_lport) 5399 return (-TBADADDR); 5400 5401 tcp->tcp_state = TCPS_SYN_SENT; 5402 5403 return (ipcl_conn_insert_v6(connp)); 5404 } 5405 5406 /* 5407 * Disconnect 5408 * Note that unlike other functions this returns a positive tli error 5409 * when it fails; it never returns an errno. 5410 */ 5411 static int 5412 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 5413 { 5414 tcp_t *ltcp = NULL; 5415 conn_t *lconnp; 5416 tcp_stack_t *tcps = tcp->tcp_tcps; 5417 conn_t *connp = tcp->tcp_connp; 5418 5419 /* 5420 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 5421 * when the stream is in BOUND state. Do not send a reset, 5422 * since the destination IP address is not valid, and it can 5423 * be the initialized value of all zeros (broadcast address). 5424 */ 5425 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) { 5426 if (connp->conn_debug) { 5427 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 5428 "tcp_disconnect: bad state, %d", tcp->tcp_state); 5429 } 5430 return (TOUTSTATE); 5431 } 5432 5433 5434 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 5435 5436 /* 5437 * According to TPI, for non-listeners, ignore seqnum 5438 * and disconnect. 5439 * Following interpretation of -1 seqnum is historical 5440 * and implied TPI ? (TPI only states that for T_CONN_IND, 5441 * a valid seqnum should not be -1). 5442 * 5443 * -1 means disconnect everything 5444 * regardless even on a listener. 5445 */ 5446 5447 int old_state = tcp->tcp_state; 5448 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 5449 5450 /* 5451 * The connection can't be on the tcp_time_wait_head list 5452 * since it is not detached. 5453 */ 5454 ASSERT(tcp->tcp_time_wait_next == NULL); 5455 ASSERT(tcp->tcp_time_wait_prev == NULL); 5456 ASSERT(tcp->tcp_time_wait_expire == 0); 5457 ltcp = NULL; 5458 /* 5459 * If it used to be a listener, check to make sure no one else 5460 * has taken the port before switching back to LISTEN state. 5461 */ 5462 if (connp->conn_ipversion == IPV4_VERSION) { 5463 lconnp = ipcl_lookup_listener_v4(connp->conn_lport, 5464 connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst); 5465 if (lconnp != NULL) 5466 ltcp = lconnp->conn_tcp; 5467 } else { 5468 uint_t ifindex = 0; 5469 5470 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) 5471 ifindex = connp->conn_ixa->ixa_scopeid; 5472 5473 /* Allow conn_bound_if listeners? */ 5474 lconnp = ipcl_lookup_listener_v6(connp->conn_lport, 5475 &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp), 5476 ipst); 5477 if (lconnp != NULL) 5478 ltcp = lconnp->conn_tcp; 5479 } 5480 if (tcp->tcp_conn_req_max && ltcp == NULL) { 5481 tcp->tcp_state = TCPS_LISTEN; 5482 } else if (old_state > TCPS_BOUND) { 5483 tcp->tcp_conn_req_max = 0; 5484 tcp->tcp_state = TCPS_BOUND; 5485 } 5486 if (ltcp != NULL) 5487 CONN_DEC_REF(lconnp); 5488 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 5489 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 5490 } else if (old_state == TCPS_ESTABLISHED || 5491 old_state == TCPS_CLOSE_WAIT) { 5492 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 5493 } 5494 5495 if (tcp->tcp_fused) 5496 tcp_unfuse(tcp); 5497 5498 mutex_enter(&tcp->tcp_eager_lock); 5499 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 5500 (tcp->tcp_conn_req_cnt_q != 0)) { 5501 tcp_eager_cleanup(tcp, 0); 5502 } 5503 mutex_exit(&tcp->tcp_eager_lock); 5504 5505 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 5506 tcp->tcp_rnxt, TH_RST | TH_ACK); 5507 5508 tcp_reinit(tcp); 5509 5510 return (0); 5511 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 5512 return (TBADSEQ); 5513 } 5514 return (0); 5515 } 5516 5517 /* 5518 * Our client hereby directs us to reject the connection request 5519 * that tcp_input_listener() marked with 'seqnum'. Rejection consists 5520 * of sending the appropriate RST, not an ICMP error. 5521 */ 5522 static void 5523 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 5524 { 5525 t_scalar_t seqnum; 5526 int error; 5527 conn_t *connp = tcp->tcp_connp; 5528 5529 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5530 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 5531 tcp_err_ack(tcp, mp, TPROTO, 0); 5532 return; 5533 } 5534 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 5535 error = tcp_disconnect_common(tcp, seqnum); 5536 if (error != 0) 5537 tcp_err_ack(tcp, mp, error, 0); 5538 else { 5539 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 5540 /* Send M_FLUSH according to TPI */ 5541 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW); 5542 } 5543 mp = mi_tpi_ok_ack_alloc(mp); 5544 if (mp != NULL) 5545 putnext(connp->conn_rq, mp); 5546 } 5547 } 5548 5549 /* 5550 * Diagnostic routine used to return a string associated with the tcp state. 5551 * Note that if the caller does not supply a buffer, it will use an internal 5552 * static string. This means that if multiple threads call this function at 5553 * the same time, output can be corrupted... Note also that this function 5554 * does not check the size of the supplied buffer. The caller has to make 5555 * sure that it is big enough. 5556 */ 5557 static char * 5558 tcp_display(tcp_t *tcp, char *sup_buf, char format) 5559 { 5560 char buf1[30]; 5561 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 5562 char *buf; 5563 char *cp; 5564 in6_addr_t local, remote; 5565 char local_addrbuf[INET6_ADDRSTRLEN]; 5566 char remote_addrbuf[INET6_ADDRSTRLEN]; 5567 conn_t *connp; 5568 5569 if (sup_buf != NULL) 5570 buf = sup_buf; 5571 else 5572 buf = priv_buf; 5573 5574 if (tcp == NULL) 5575 return ("NULL_TCP"); 5576 5577 connp = tcp->tcp_connp; 5578 switch (tcp->tcp_state) { 5579 case TCPS_CLOSED: 5580 cp = "TCP_CLOSED"; 5581 break; 5582 case TCPS_IDLE: 5583 cp = "TCP_IDLE"; 5584 break; 5585 case TCPS_BOUND: 5586 cp = "TCP_BOUND"; 5587 break; 5588 case TCPS_LISTEN: 5589 cp = "TCP_LISTEN"; 5590 break; 5591 case TCPS_SYN_SENT: 5592 cp = "TCP_SYN_SENT"; 5593 break; 5594 case TCPS_SYN_RCVD: 5595 cp = "TCP_SYN_RCVD"; 5596 break; 5597 case TCPS_ESTABLISHED: 5598 cp = "TCP_ESTABLISHED"; 5599 break; 5600 case TCPS_CLOSE_WAIT: 5601 cp = "TCP_CLOSE_WAIT"; 5602 break; 5603 case TCPS_FIN_WAIT_1: 5604 cp = "TCP_FIN_WAIT_1"; 5605 break; 5606 case TCPS_CLOSING: 5607 cp = "TCP_CLOSING"; 5608 break; 5609 case TCPS_LAST_ACK: 5610 cp = "TCP_LAST_ACK"; 5611 break; 5612 case TCPS_FIN_WAIT_2: 5613 cp = "TCP_FIN_WAIT_2"; 5614 break; 5615 case TCPS_TIME_WAIT: 5616 cp = "TCP_TIME_WAIT"; 5617 break; 5618 default: 5619 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 5620 cp = buf1; 5621 break; 5622 } 5623 switch (format) { 5624 case DISP_ADDR_AND_PORT: 5625 if (connp->conn_ipversion == IPV4_VERSION) { 5626 /* 5627 * Note that we use the remote address in the tcp_b 5628 * structure. This means that it will print out 5629 * the real destination address, not the next hop's 5630 * address if source routing is used. 5631 */ 5632 IN6_IPADDR_TO_V4MAPPED(connp->conn_laddr_v4, &local); 5633 IN6_IPADDR_TO_V4MAPPED(connp->conn_faddr_v4, &remote); 5634 5635 } else { 5636 local = connp->conn_laddr_v6; 5637 remote = connp->conn_faddr_v6; 5638 } 5639 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 5640 sizeof (local_addrbuf)); 5641 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 5642 sizeof (remote_addrbuf)); 5643 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 5644 local_addrbuf, ntohs(connp->conn_lport), remote_addrbuf, 5645 ntohs(connp->conn_fport), cp); 5646 break; 5647 case DISP_PORT_ONLY: 5648 default: 5649 (void) mi_sprintf(buf, "[%u, %u] %s", 5650 ntohs(connp->conn_lport), ntohs(connp->conn_fport), cp); 5651 break; 5652 } 5653 5654 return (buf); 5655 } 5656 5657 /* 5658 * Called via squeue to get on to eager's perimeter. It sends a 5659 * TH_RST if eager is in the fanout table. The listener wants the 5660 * eager to disappear either by means of tcp_eager_blowoff() or 5661 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 5662 * called (via squeue) if the eager cannot be inserted in the 5663 * fanout table in tcp_input_listener(). 5664 */ 5665 /* ARGSUSED */ 5666 void 5667 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 5668 { 5669 conn_t *econnp = (conn_t *)arg; 5670 tcp_t *eager = econnp->conn_tcp; 5671 tcp_t *listener = eager->tcp_listener; 5672 5673 /* 5674 * We could be called because listener is closing. Since 5675 * the eager was using listener's queue's, we avoid 5676 * using the listeners queues from now on. 5677 */ 5678 ASSERT(eager->tcp_detached); 5679 econnp->conn_rq = NULL; 5680 econnp->conn_wq = NULL; 5681 5682 /* 5683 * An eager's conn_fanout will be NULL if it's a duplicate 5684 * for an existing 4-tuples in the conn fanout table. 5685 * We don't want to send an RST out in such case. 5686 */ 5687 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 5688 tcp_xmit_ctl("tcp_eager_kill, can't wait", 5689 eager, eager->tcp_snxt, 0, TH_RST); 5690 } 5691 5692 /* We are here because listener wants this eager gone */ 5693 if (listener != NULL) { 5694 mutex_enter(&listener->tcp_eager_lock); 5695 tcp_eager_unlink(eager); 5696 if (eager->tcp_tconnind_started) { 5697 /* 5698 * The eager has sent a conn_ind up to the 5699 * listener but listener decides to close 5700 * instead. We need to drop the extra ref 5701 * placed on eager in tcp_input_data() before 5702 * sending the conn_ind to listener. 5703 */ 5704 CONN_DEC_REF(econnp); 5705 } 5706 mutex_exit(&listener->tcp_eager_lock); 5707 CONN_DEC_REF(listener->tcp_connp); 5708 } 5709 5710 if (eager->tcp_state != TCPS_CLOSED) 5711 tcp_close_detached(eager); 5712 } 5713 5714 /* 5715 * Reset any eager connection hanging off this listener marked 5716 * with 'seqnum' and then reclaim it's resources. 5717 */ 5718 static boolean_t 5719 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 5720 { 5721 tcp_t *eager; 5722 mblk_t *mp; 5723 tcp_stack_t *tcps = listener->tcp_tcps; 5724 5725 TCP_STAT(tcps, tcp_eager_blowoff_calls); 5726 eager = listener; 5727 mutex_enter(&listener->tcp_eager_lock); 5728 do { 5729 eager = eager->tcp_eager_next_q; 5730 if (eager == NULL) { 5731 mutex_exit(&listener->tcp_eager_lock); 5732 return (B_FALSE); 5733 } 5734 } while (eager->tcp_conn_req_seqnum != seqnum); 5735 5736 if (eager->tcp_closemp_used) { 5737 mutex_exit(&listener->tcp_eager_lock); 5738 return (B_TRUE); 5739 } 5740 eager->tcp_closemp_used = B_TRUE; 5741 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5742 CONN_INC_REF(eager->tcp_connp); 5743 mutex_exit(&listener->tcp_eager_lock); 5744 mp = &eager->tcp_closemp; 5745 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 5746 eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); 5747 return (B_TRUE); 5748 } 5749 5750 /* 5751 * Reset any eager connection hanging off this listener 5752 * and then reclaim it's resources. 5753 */ 5754 static void 5755 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 5756 { 5757 tcp_t *eager; 5758 mblk_t *mp; 5759 tcp_stack_t *tcps = listener->tcp_tcps; 5760 5761 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 5762 5763 if (!q0_only) { 5764 /* First cleanup q */ 5765 TCP_STAT(tcps, tcp_eager_blowoff_q); 5766 eager = listener->tcp_eager_next_q; 5767 while (eager != NULL) { 5768 if (!eager->tcp_closemp_used) { 5769 eager->tcp_closemp_used = B_TRUE; 5770 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5771 CONN_INC_REF(eager->tcp_connp); 5772 mp = &eager->tcp_closemp; 5773 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 5774 tcp_eager_kill, eager->tcp_connp, NULL, 5775 SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); 5776 } 5777 eager = eager->tcp_eager_next_q; 5778 } 5779 } 5780 /* Then cleanup q0 */ 5781 TCP_STAT(tcps, tcp_eager_blowoff_q0); 5782 eager = listener->tcp_eager_next_q0; 5783 while (eager != listener) { 5784 if (!eager->tcp_closemp_used) { 5785 eager->tcp_closemp_used = B_TRUE; 5786 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5787 CONN_INC_REF(eager->tcp_connp); 5788 mp = &eager->tcp_closemp; 5789 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 5790 tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL, 5791 SQTAG_TCP_EAGER_CLEANUP_Q0); 5792 } 5793 eager = eager->tcp_eager_next_q0; 5794 } 5795 } 5796 5797 /* 5798 * If we are an eager connection hanging off a listener that hasn't 5799 * formally accepted the connection yet, get off his list and blow off 5800 * any data that we have accumulated. 5801 */ 5802 static void 5803 tcp_eager_unlink(tcp_t *tcp) 5804 { 5805 tcp_t *listener = tcp->tcp_listener; 5806 5807 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 5808 ASSERT(listener != NULL); 5809 if (tcp->tcp_eager_next_q0 != NULL) { 5810 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 5811 5812 /* Remove the eager tcp from q0 */ 5813 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 5814 tcp->tcp_eager_prev_q0; 5815 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 5816 tcp->tcp_eager_next_q0; 5817 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 5818 listener->tcp_conn_req_cnt_q0--; 5819 5820 tcp->tcp_eager_next_q0 = NULL; 5821 tcp->tcp_eager_prev_q0 = NULL; 5822 5823 /* 5824 * Take the eager out, if it is in the list of droppable 5825 * eagers. 5826 */ 5827 MAKE_UNDROPPABLE(tcp); 5828 5829 if (tcp->tcp_syn_rcvd_timeout != 0) { 5830 /* we have timed out before */ 5831 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 5832 listener->tcp_syn_rcvd_timeout--; 5833 } 5834 } else { 5835 tcp_t **tcpp = &listener->tcp_eager_next_q; 5836 tcp_t *prev = NULL; 5837 5838 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 5839 if (tcpp[0] == tcp) { 5840 if (listener->tcp_eager_last_q == tcp) { 5841 /* 5842 * If we are unlinking the last 5843 * element on the list, adjust 5844 * tail pointer. Set tail pointer 5845 * to nil when list is empty. 5846 */ 5847 ASSERT(tcp->tcp_eager_next_q == NULL); 5848 if (listener->tcp_eager_last_q == 5849 listener->tcp_eager_next_q) { 5850 listener->tcp_eager_last_q = 5851 NULL; 5852 } else { 5853 /* 5854 * We won't get here if there 5855 * is only one eager in the 5856 * list. 5857 */ 5858 ASSERT(prev != NULL); 5859 listener->tcp_eager_last_q = 5860 prev; 5861 } 5862 } 5863 tcpp[0] = tcp->tcp_eager_next_q; 5864 tcp->tcp_eager_next_q = NULL; 5865 tcp->tcp_eager_last_q = NULL; 5866 ASSERT(listener->tcp_conn_req_cnt_q > 0); 5867 listener->tcp_conn_req_cnt_q--; 5868 break; 5869 } 5870 prev = tcpp[0]; 5871 } 5872 } 5873 tcp->tcp_listener = NULL; 5874 } 5875 5876 /* Shorthand to generate and send TPI error acks to our client */ 5877 static void 5878 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 5879 { 5880 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 5881 putnext(tcp->tcp_connp->conn_rq, mp); 5882 } 5883 5884 /* Shorthand to generate and send TPI error acks to our client */ 5885 static void 5886 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 5887 int t_error, int sys_error) 5888 { 5889 struct T_error_ack *teackp; 5890 5891 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 5892 M_PCPROTO, T_ERROR_ACK)) != NULL) { 5893 teackp = (struct T_error_ack *)mp->b_rptr; 5894 teackp->ERROR_prim = primitive; 5895 teackp->TLI_error = t_error; 5896 teackp->UNIX_error = sys_error; 5897 putnext(tcp->tcp_connp->conn_rq, mp); 5898 } 5899 } 5900 5901 /* 5902 * Note: No locks are held when inspecting tcp_g_*epriv_ports 5903 * but instead the code relies on: 5904 * - the fact that the address of the array and its size never changes 5905 * - the atomic assignment of the elements of the array 5906 */ 5907 /* ARGSUSED */ 5908 static int 5909 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 5910 { 5911 int i; 5912 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 5913 5914 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 5915 if (tcps->tcps_g_epriv_ports[i] != 0) 5916 (void) mi_mpprintf(mp, "%d ", 5917 tcps->tcps_g_epriv_ports[i]); 5918 } 5919 return (0); 5920 } 5921 5922 /* 5923 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 5924 * threads from changing it at the same time. 5925 */ 5926 /* ARGSUSED */ 5927 static int 5928 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 5929 cred_t *cr) 5930 { 5931 long new_value; 5932 int i; 5933 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 5934 5935 /* 5936 * Fail the request if the new value does not lie within the 5937 * port number limits. 5938 */ 5939 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 5940 new_value <= 0 || new_value >= 65536) { 5941 return (EINVAL); 5942 } 5943 5944 mutex_enter(&tcps->tcps_epriv_port_lock); 5945 /* Check if the value is already in the list */ 5946 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 5947 if (new_value == tcps->tcps_g_epriv_ports[i]) { 5948 mutex_exit(&tcps->tcps_epriv_port_lock); 5949 return (EEXIST); 5950 } 5951 } 5952 /* Find an empty slot */ 5953 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 5954 if (tcps->tcps_g_epriv_ports[i] == 0) 5955 break; 5956 } 5957 if (i == tcps->tcps_g_num_epriv_ports) { 5958 mutex_exit(&tcps->tcps_epriv_port_lock); 5959 return (EOVERFLOW); 5960 } 5961 /* Set the new value */ 5962 tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; 5963 mutex_exit(&tcps->tcps_epriv_port_lock); 5964 return (0); 5965 } 5966 5967 /* 5968 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 5969 * threads from changing it at the same time. 5970 */ 5971 /* ARGSUSED */ 5972 static int 5973 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 5974 cred_t *cr) 5975 { 5976 long new_value; 5977 int i; 5978 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 5979 5980 /* 5981 * Fail the request if the new value does not lie within the 5982 * port number limits. 5983 */ 5984 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 5985 new_value >= 65536) { 5986 return (EINVAL); 5987 } 5988 5989 mutex_enter(&tcps->tcps_epriv_port_lock); 5990 /* Check that the value is already in the list */ 5991 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 5992 if (tcps->tcps_g_epriv_ports[i] == new_value) 5993 break; 5994 } 5995 if (i == tcps->tcps_g_num_epriv_ports) { 5996 mutex_exit(&tcps->tcps_epriv_port_lock); 5997 return (ESRCH); 5998 } 5999 /* Clear the value */ 6000 tcps->tcps_g_epriv_ports[i] = 0; 6001 mutex_exit(&tcps->tcps_epriv_port_lock); 6002 return (0); 6003 } 6004 6005 /* Return the TPI/TLI equivalent of our current tcp_state */ 6006 static int 6007 tcp_tpistate(tcp_t *tcp) 6008 { 6009 switch (tcp->tcp_state) { 6010 case TCPS_IDLE: 6011 return (TS_UNBND); 6012 case TCPS_LISTEN: 6013 /* 6014 * Return whether there are outstanding T_CONN_IND waiting 6015 * for the matching T_CONN_RES. Therefore don't count q0. 6016 */ 6017 if (tcp->tcp_conn_req_cnt_q > 0) 6018 return (TS_WRES_CIND); 6019 else 6020 return (TS_IDLE); 6021 case TCPS_BOUND: 6022 return (TS_IDLE); 6023 case TCPS_SYN_SENT: 6024 return (TS_WCON_CREQ); 6025 case TCPS_SYN_RCVD: 6026 /* 6027 * Note: assumption: this has to the active open SYN_RCVD. 6028 * The passive instance is detached in SYN_RCVD stage of 6029 * incoming connection processing so we cannot get request 6030 * for T_info_ack on it. 6031 */ 6032 return (TS_WACK_CRES); 6033 case TCPS_ESTABLISHED: 6034 return (TS_DATA_XFER); 6035 case TCPS_CLOSE_WAIT: 6036 return (TS_WREQ_ORDREL); 6037 case TCPS_FIN_WAIT_1: 6038 return (TS_WIND_ORDREL); 6039 case TCPS_FIN_WAIT_2: 6040 return (TS_WIND_ORDREL); 6041 6042 case TCPS_CLOSING: 6043 case TCPS_LAST_ACK: 6044 case TCPS_TIME_WAIT: 6045 case TCPS_CLOSED: 6046 /* 6047 * Following TS_WACK_DREQ7 is a rendition of "not 6048 * yet TS_IDLE" TPI state. There is no best match to any 6049 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 6050 * choose a value chosen that will map to TLI/XTI level 6051 * state of TSTATECHNG (state is process of changing) which 6052 * captures what this dummy state represents. 6053 */ 6054 return (TS_WACK_DREQ7); 6055 default: 6056 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 6057 tcp->tcp_state, tcp_display(tcp, NULL, 6058 DISP_PORT_ONLY)); 6059 return (TS_UNBND); 6060 } 6061 } 6062 6063 static void 6064 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 6065 { 6066 tcp_stack_t *tcps = tcp->tcp_tcps; 6067 conn_t *connp = tcp->tcp_connp; 6068 6069 if (connp->conn_family == AF_INET6) 6070 *tia = tcp_g_t_info_ack_v6; 6071 else 6072 *tia = tcp_g_t_info_ack; 6073 tia->CURRENT_state = tcp_tpistate(tcp); 6074 tia->OPT_size = tcp_max_optsize; 6075 if (tcp->tcp_mss == 0) { 6076 /* Not yet set - tcp_open does not set mss */ 6077 if (connp->conn_ipversion == IPV4_VERSION) 6078 tia->TIDU_size = tcps->tcps_mss_def_ipv4; 6079 else 6080 tia->TIDU_size = tcps->tcps_mss_def_ipv6; 6081 } else { 6082 tia->TIDU_size = tcp->tcp_mss; 6083 } 6084 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 6085 } 6086 6087 static void 6088 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap, 6089 t_uscalar_t cap_bits1) 6090 { 6091 tcap->CAP_bits1 = 0; 6092 6093 if (cap_bits1 & TC1_INFO) { 6094 tcp_copy_info(&tcap->INFO_ack, tcp); 6095 tcap->CAP_bits1 |= TC1_INFO; 6096 } 6097 6098 if (cap_bits1 & TC1_ACCEPTOR_ID) { 6099 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 6100 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 6101 } 6102 6103 } 6104 6105 /* 6106 * This routine responds to T_CAPABILITY_REQ messages. It is called by 6107 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 6108 * tcp_g_t_info_ack. The current state of the stream is copied from 6109 * tcp_state. 6110 */ 6111 static void 6112 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 6113 { 6114 t_uscalar_t cap_bits1; 6115 struct T_capability_ack *tcap; 6116 6117 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 6118 freemsg(mp); 6119 return; 6120 } 6121 6122 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 6123 6124 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 6125 mp->b_datap->db_type, T_CAPABILITY_ACK); 6126 if (mp == NULL) 6127 return; 6128 6129 tcap = (struct T_capability_ack *)mp->b_rptr; 6130 tcp_do_capability_ack(tcp, tcap, cap_bits1); 6131 6132 putnext(tcp->tcp_connp->conn_rq, mp); 6133 } 6134 6135 /* 6136 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 6137 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 6138 * The current state of the stream is copied from tcp_state. 6139 */ 6140 static void 6141 tcp_info_req(tcp_t *tcp, mblk_t *mp) 6142 { 6143 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 6144 T_INFO_ACK); 6145 if (!mp) { 6146 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6147 return; 6148 } 6149 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 6150 putnext(tcp->tcp_connp->conn_rq, mp); 6151 } 6152 6153 /* Respond to the TPI addr request */ 6154 static void 6155 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 6156 { 6157 struct sockaddr *sa; 6158 mblk_t *ackmp; 6159 struct T_addr_ack *taa; 6160 conn_t *connp = tcp->tcp_connp; 6161 uint_t addrlen; 6162 6163 /* Make it large enough for worst case */ 6164 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 6165 2 * sizeof (sin6_t), 1); 6166 if (ackmp == NULL) { 6167 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6168 return; 6169 } 6170 6171 taa = (struct T_addr_ack *)ackmp->b_rptr; 6172 6173 bzero(taa, sizeof (struct T_addr_ack)); 6174 ackmp->b_wptr = (uchar_t *)&taa[1]; 6175 6176 taa->PRIM_type = T_ADDR_ACK; 6177 ackmp->b_datap->db_type = M_PCPROTO; 6178 6179 if (connp->conn_family == AF_INET) 6180 addrlen = sizeof (sin_t); 6181 else 6182 addrlen = sizeof (sin6_t); 6183 6184 /* 6185 * Note: Following code assumes 32 bit alignment of basic 6186 * data structures like sin_t and struct T_addr_ack. 6187 */ 6188 if (tcp->tcp_state >= TCPS_BOUND) { 6189 /* 6190 * Fill in local address first 6191 */ 6192 taa->LOCADDR_offset = sizeof (*taa); 6193 taa->LOCADDR_length = addrlen; 6194 sa = (struct sockaddr *)&taa[1]; 6195 (void) conn_getsockname(connp, sa, &addrlen); 6196 ackmp->b_wptr += addrlen; 6197 } 6198 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 6199 /* 6200 * Fill in Remote address 6201 */ 6202 taa->REMADDR_length = addrlen; 6203 /* assumed 32-bit alignment */ 6204 taa->REMADDR_offset = taa->LOCADDR_offset + taa->LOCADDR_length; 6205 sa = (struct sockaddr *)(ackmp->b_rptr + taa->REMADDR_offset); 6206 (void) conn_getpeername(connp, sa, &addrlen); 6207 ackmp->b_wptr += addrlen; 6208 } 6209 ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim); 6210 putnext(tcp->tcp_connp->conn_rq, ackmp); 6211 } 6212 6213 /* 6214 * Handle reinitialization of a tcp structure. 6215 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 6216 */ 6217 static void 6218 tcp_reinit(tcp_t *tcp) 6219 { 6220 mblk_t *mp; 6221 tcp_stack_t *tcps = tcp->tcp_tcps; 6222 conn_t *connp = tcp->tcp_connp; 6223 6224 TCP_STAT(tcps, tcp_reinit_calls); 6225 6226 /* tcp_reinit should never be called for detached tcp_t's */ 6227 ASSERT(tcp->tcp_listener == NULL); 6228 ASSERT((connp->conn_family == AF_INET && 6229 connp->conn_ipversion == IPV4_VERSION) || 6230 (connp->conn_family == AF_INET6 && 6231 (connp->conn_ipversion == IPV4_VERSION || 6232 connp->conn_ipversion == IPV6_VERSION))); 6233 6234 /* Cancel outstanding timers */ 6235 tcp_timers_stop(tcp); 6236 6237 /* 6238 * Reset everything in the state vector, after updating global 6239 * MIB data from instance counters. 6240 */ 6241 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 6242 tcp->tcp_ibsegs = 0; 6243 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 6244 tcp->tcp_obsegs = 0; 6245 6246 tcp_close_mpp(&tcp->tcp_xmit_head); 6247 if (tcp->tcp_snd_zcopy_aware) 6248 tcp_zcopy_notify(tcp); 6249 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 6250 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 6251 mutex_enter(&tcp->tcp_non_sq_lock); 6252 if (tcp->tcp_flow_stopped && 6253 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 6254 tcp_clrqfull(tcp); 6255 } 6256 mutex_exit(&tcp->tcp_non_sq_lock); 6257 tcp_close_mpp(&tcp->tcp_reass_head); 6258 tcp->tcp_reass_tail = NULL; 6259 if (tcp->tcp_rcv_list != NULL) { 6260 /* Free b_next chain */ 6261 tcp_close_mpp(&tcp->tcp_rcv_list); 6262 tcp->tcp_rcv_last_head = NULL; 6263 tcp->tcp_rcv_last_tail = NULL; 6264 tcp->tcp_rcv_cnt = 0; 6265 } 6266 tcp->tcp_rcv_last_tail = NULL; 6267 6268 if ((mp = tcp->tcp_urp_mp) != NULL) { 6269 freemsg(mp); 6270 tcp->tcp_urp_mp = NULL; 6271 } 6272 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 6273 freemsg(mp); 6274 tcp->tcp_urp_mark_mp = NULL; 6275 } 6276 if (tcp->tcp_fused_sigurg_mp != NULL) { 6277 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 6278 freeb(tcp->tcp_fused_sigurg_mp); 6279 tcp->tcp_fused_sigurg_mp = NULL; 6280 } 6281 if (tcp->tcp_ordrel_mp != NULL) { 6282 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 6283 freeb(tcp->tcp_ordrel_mp); 6284 tcp->tcp_ordrel_mp = NULL; 6285 } 6286 6287 /* 6288 * Following is a union with two members which are 6289 * identical types and size so the following cleanup 6290 * is enough. 6291 */ 6292 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 6293 6294 CL_INET_DISCONNECT(connp); 6295 6296 /* 6297 * The connection can't be on the tcp_time_wait_head list 6298 * since it is not detached. 6299 */ 6300 ASSERT(tcp->tcp_time_wait_next == NULL); 6301 ASSERT(tcp->tcp_time_wait_prev == NULL); 6302 ASSERT(tcp->tcp_time_wait_expire == 0); 6303 6304 if (tcp->tcp_kssl_pending) { 6305 tcp->tcp_kssl_pending = B_FALSE; 6306 6307 /* Don't reset if the initialized by bind. */ 6308 if (tcp->tcp_kssl_ent != NULL) { 6309 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 6310 KSSL_NO_PROXY); 6311 } 6312 } 6313 if (tcp->tcp_kssl_ctx != NULL) { 6314 kssl_release_ctx(tcp->tcp_kssl_ctx); 6315 tcp->tcp_kssl_ctx = NULL; 6316 } 6317 6318 /* 6319 * Reset/preserve other values 6320 */ 6321 tcp_reinit_values(tcp); 6322 ipcl_hash_remove(connp); 6323 ixa_cleanup(connp->conn_ixa); 6324 tcp_ipsec_cleanup(tcp); 6325 6326 connp->conn_laddr_v6 = connp->conn_bound_addr_v6; 6327 connp->conn_saddr_v6 = connp->conn_bound_addr_v6; 6328 6329 if (tcp->tcp_conn_req_max != 0) { 6330 /* 6331 * This is the case when a TLI program uses the same 6332 * transport end point to accept a connection. This 6333 * makes the TCP both a listener and acceptor. When 6334 * this connection is closed, we need to set the state 6335 * back to TCPS_LISTEN. Make sure that the eager list 6336 * is reinitialized. 6337 * 6338 * Note that this stream is still bound to the four 6339 * tuples of the previous connection in IP. If a new 6340 * SYN with different foreign address comes in, IP will 6341 * not find it and will send it to the global queue. In 6342 * the global queue, TCP will do a tcp_lookup_listener() 6343 * to find this stream. This works because this stream 6344 * is only removed from connected hash. 6345 * 6346 */ 6347 tcp->tcp_state = TCPS_LISTEN; 6348 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 6349 tcp->tcp_eager_next_drop_q0 = tcp; 6350 tcp->tcp_eager_prev_drop_q0 = tcp; 6351 /* 6352 * Initially set conn_recv to tcp_input_listener_unbound to try 6353 * to pick a good squeue for the listener when the first SYN 6354 * arrives. tcp_input_listener_unbound sets it to 6355 * tcp_input_listener on that first SYN. 6356 */ 6357 connp->conn_recv = tcp_input_listener_unbound; 6358 6359 connp->conn_proto = IPPROTO_TCP; 6360 connp->conn_faddr_v6 = ipv6_all_zeros; 6361 connp->conn_fport = 0; 6362 6363 (void) ipcl_bind_insert(connp); 6364 } else { 6365 tcp->tcp_state = TCPS_BOUND; 6366 } 6367 6368 /* 6369 * Initialize to default values 6370 */ 6371 tcp_init_values(tcp); 6372 6373 ASSERT(tcp->tcp_ptpbhn != NULL); 6374 tcp->tcp_rwnd = connp->conn_rcvbuf; 6375 tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ? 6376 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 6377 } 6378 6379 /* 6380 * Force values to zero that need be zero. 6381 * Do not touch values asociated with the BOUND or LISTEN state 6382 * since the connection will end up in that state after the reinit. 6383 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 6384 * structure! 6385 */ 6386 static void 6387 tcp_reinit_values(tcp) 6388 tcp_t *tcp; 6389 { 6390 tcp_stack_t *tcps = tcp->tcp_tcps; 6391 conn_t *connp = tcp->tcp_connp; 6392 6393 #ifndef lint 6394 #define DONTCARE(x) 6395 #define PRESERVE(x) 6396 #else 6397 #define DONTCARE(x) ((x) = (x)) 6398 #define PRESERVE(x) ((x) = (x)) 6399 #endif /* lint */ 6400 6401 PRESERVE(tcp->tcp_bind_hash_port); 6402 PRESERVE(tcp->tcp_bind_hash); 6403 PRESERVE(tcp->tcp_ptpbhn); 6404 PRESERVE(tcp->tcp_acceptor_hash); 6405 PRESERVE(tcp->tcp_ptpahn); 6406 6407 /* Should be ASSERT NULL on these with new code! */ 6408 ASSERT(tcp->tcp_time_wait_next == NULL); 6409 ASSERT(tcp->tcp_time_wait_prev == NULL); 6410 ASSERT(tcp->tcp_time_wait_expire == 0); 6411 PRESERVE(tcp->tcp_state); 6412 PRESERVE(connp->conn_rq); 6413 PRESERVE(connp->conn_wq); 6414 6415 ASSERT(tcp->tcp_xmit_head == NULL); 6416 ASSERT(tcp->tcp_xmit_last == NULL); 6417 ASSERT(tcp->tcp_unsent == 0); 6418 ASSERT(tcp->tcp_xmit_tail == NULL); 6419 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 6420 6421 tcp->tcp_snxt = 0; /* Displayed in mib */ 6422 tcp->tcp_suna = 0; /* Displayed in mib */ 6423 tcp->tcp_swnd = 0; 6424 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_process_options */ 6425 6426 ASSERT(tcp->tcp_ibsegs == 0); 6427 ASSERT(tcp->tcp_obsegs == 0); 6428 6429 if (connp->conn_ht_iphc != NULL) { 6430 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 6431 connp->conn_ht_iphc = NULL; 6432 connp->conn_ht_iphc_allocated = 0; 6433 connp->conn_ht_iphc_len = 0; 6434 connp->conn_ht_ulp = NULL; 6435 connp->conn_ht_ulp_len = 0; 6436 tcp->tcp_ipha = NULL; 6437 tcp->tcp_ip6h = NULL; 6438 tcp->tcp_tcpha = NULL; 6439 } 6440 6441 /* We clear any IP_OPTIONS and extension headers */ 6442 ip_pkt_free(&connp->conn_xmit_ipp); 6443 6444 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 6445 DONTCARE(tcp->tcp_ipha); 6446 DONTCARE(tcp->tcp_ip6h); 6447 DONTCARE(tcp->tcp_tcpha); 6448 tcp->tcp_valid_bits = 0; 6449 6450 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 6451 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 6452 tcp->tcp_last_rcv_lbolt = 0; 6453 6454 tcp->tcp_init_cwnd = 0; 6455 6456 tcp->tcp_urp_last_valid = 0; 6457 tcp->tcp_hard_binding = 0; 6458 6459 tcp->tcp_fin_acked = 0; 6460 tcp->tcp_fin_rcvd = 0; 6461 tcp->tcp_fin_sent = 0; 6462 tcp->tcp_ordrel_done = 0; 6463 6464 tcp->tcp_detached = 0; 6465 6466 tcp->tcp_snd_ws_ok = B_FALSE; 6467 tcp->tcp_snd_ts_ok = B_FALSE; 6468 tcp->tcp_zero_win_probe = 0; 6469 6470 tcp->tcp_loopback = 0; 6471 tcp->tcp_localnet = 0; 6472 tcp->tcp_syn_defense = 0; 6473 tcp->tcp_set_timer = 0; 6474 6475 tcp->tcp_active_open = 0; 6476 tcp->tcp_rexmit = B_FALSE; 6477 tcp->tcp_xmit_zc_clean = B_FALSE; 6478 6479 tcp->tcp_snd_sack_ok = B_FALSE; 6480 tcp->tcp_hwcksum = B_FALSE; 6481 6482 DONTCARE(tcp->tcp_maxpsz_multiplier); /* Init in tcp_init_values */ 6483 6484 tcp->tcp_conn_def_q0 = 0; 6485 tcp->tcp_ip_forward_progress = B_FALSE; 6486 tcp->tcp_ecn_ok = B_FALSE; 6487 6488 tcp->tcp_cwr = B_FALSE; 6489 tcp->tcp_ecn_echo_on = B_FALSE; 6490 tcp->tcp_is_wnd_shrnk = B_FALSE; 6491 6492 if (tcp->tcp_sack_info != NULL) { 6493 if (tcp->tcp_notsack_list != NULL) { 6494 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 6495 tcp); 6496 } 6497 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 6498 tcp->tcp_sack_info = NULL; 6499 } 6500 6501 tcp->tcp_rcv_ws = 0; 6502 tcp->tcp_snd_ws = 0; 6503 tcp->tcp_ts_recent = 0; 6504 tcp->tcp_rnxt = 0; /* Displayed in mib */ 6505 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 6506 tcp->tcp_initial_pmtu = 0; 6507 6508 ASSERT(tcp->tcp_reass_head == NULL); 6509 ASSERT(tcp->tcp_reass_tail == NULL); 6510 6511 tcp->tcp_cwnd_cnt = 0; 6512 6513 ASSERT(tcp->tcp_rcv_list == NULL); 6514 ASSERT(tcp->tcp_rcv_last_head == NULL); 6515 ASSERT(tcp->tcp_rcv_last_tail == NULL); 6516 ASSERT(tcp->tcp_rcv_cnt == 0); 6517 6518 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */ 6519 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 6520 tcp->tcp_csuna = 0; 6521 6522 tcp->tcp_rto = 0; /* Displayed in MIB */ 6523 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 6524 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 6525 tcp->tcp_rtt_update = 0; 6526 6527 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 6528 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 6529 6530 tcp->tcp_rack = 0; /* Displayed in mib */ 6531 tcp->tcp_rack_cnt = 0; 6532 tcp->tcp_rack_cur_max = 0; 6533 tcp->tcp_rack_abs_max = 0; 6534 6535 tcp->tcp_max_swnd = 0; 6536 6537 ASSERT(tcp->tcp_listener == NULL); 6538 6539 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 6540 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 6541 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 6542 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 6543 6544 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 6545 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 6546 PRESERVE(tcp->tcp_conn_req_max); 6547 PRESERVE(tcp->tcp_conn_req_seqnum); 6548 6549 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 6550 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 6551 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 6552 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 6553 6554 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 6555 ASSERT(tcp->tcp_urp_mp == NULL); 6556 ASSERT(tcp->tcp_urp_mark_mp == NULL); 6557 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 6558 6559 ASSERT(tcp->tcp_eager_next_q == NULL); 6560 ASSERT(tcp->tcp_eager_last_q == NULL); 6561 ASSERT((tcp->tcp_eager_next_q0 == NULL && 6562 tcp->tcp_eager_prev_q0 == NULL) || 6563 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 6564 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 6565 6566 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 6567 tcp->tcp_eager_prev_drop_q0 == NULL) || 6568 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 6569 6570 tcp->tcp_client_errno = 0; 6571 6572 DONTCARE(connp->conn_sum); /* Init in tcp_init_values */ 6573 6574 connp->conn_faddr_v6 = ipv6_all_zeros; /* Displayed in MIB */ 6575 6576 PRESERVE(connp->conn_bound_addr_v6); 6577 tcp->tcp_last_sent_len = 0; 6578 tcp->tcp_dupack_cnt = 0; 6579 6580 connp->conn_fport = 0; /* Displayed in MIB */ 6581 PRESERVE(connp->conn_lport); 6582 6583 PRESERVE(tcp->tcp_acceptor_lockp); 6584 6585 ASSERT(tcp->tcp_ordrel_mp == NULL); 6586 PRESERVE(tcp->tcp_acceptor_id); 6587 DONTCARE(tcp->tcp_ipsec_overhead); 6588 6589 PRESERVE(connp->conn_family); 6590 /* Remove any remnants of mapped address binding */ 6591 if (connp->conn_family == AF_INET6) { 6592 connp->conn_ipversion = IPV6_VERSION; 6593 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 6594 } else { 6595 connp->conn_ipversion = IPV4_VERSION; 6596 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 6597 } 6598 6599 connp->conn_bound_if = 0; 6600 connp->conn_recv_ancillary.crb_all = 0; 6601 tcp->tcp_recvifindex = 0; 6602 tcp->tcp_recvhops = 0; 6603 tcp->tcp_closed = 0; 6604 tcp->tcp_cleandeathtag = 0; 6605 if (tcp->tcp_hopopts != NULL) { 6606 mi_free(tcp->tcp_hopopts); 6607 tcp->tcp_hopopts = NULL; 6608 tcp->tcp_hopoptslen = 0; 6609 } 6610 ASSERT(tcp->tcp_hopoptslen == 0); 6611 if (tcp->tcp_dstopts != NULL) { 6612 mi_free(tcp->tcp_dstopts); 6613 tcp->tcp_dstopts = NULL; 6614 tcp->tcp_dstoptslen = 0; 6615 } 6616 ASSERT(tcp->tcp_dstoptslen == 0); 6617 if (tcp->tcp_rthdrdstopts != NULL) { 6618 mi_free(tcp->tcp_rthdrdstopts); 6619 tcp->tcp_rthdrdstopts = NULL; 6620 tcp->tcp_rthdrdstoptslen = 0; 6621 } 6622 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 6623 if (tcp->tcp_rthdr != NULL) { 6624 mi_free(tcp->tcp_rthdr); 6625 tcp->tcp_rthdr = NULL; 6626 tcp->tcp_rthdrlen = 0; 6627 } 6628 ASSERT(tcp->tcp_rthdrlen == 0); 6629 6630 /* Reset fusion-related fields */ 6631 tcp->tcp_fused = B_FALSE; 6632 tcp->tcp_unfusable = B_FALSE; 6633 tcp->tcp_fused_sigurg = B_FALSE; 6634 tcp->tcp_loopback_peer = NULL; 6635 6636 tcp->tcp_lso = B_FALSE; 6637 6638 tcp->tcp_in_ack_unsent = 0; 6639 tcp->tcp_cork = B_FALSE; 6640 tcp->tcp_tconnind_started = B_FALSE; 6641 6642 PRESERVE(tcp->tcp_squeue_bytes); 6643 6644 ASSERT(tcp->tcp_kssl_ctx == NULL); 6645 ASSERT(!tcp->tcp_kssl_pending); 6646 PRESERVE(tcp->tcp_kssl_ent); 6647 6648 tcp->tcp_closemp_used = B_FALSE; 6649 6650 PRESERVE(tcp->tcp_rsrv_mp); 6651 PRESERVE(tcp->tcp_rsrv_mp_lock); 6652 6653 #ifdef DEBUG 6654 DONTCARE(tcp->tcmp_stk[0]); 6655 #endif 6656 6657 PRESERVE(tcp->tcp_connid); 6658 6659 6660 #undef DONTCARE 6661 #undef PRESERVE 6662 } 6663 6664 static void 6665 tcp_init_values(tcp_t *tcp) 6666 { 6667 tcp_stack_t *tcps = tcp->tcp_tcps; 6668 conn_t *connp = tcp->tcp_connp; 6669 6670 ASSERT((connp->conn_family == AF_INET && 6671 connp->conn_ipversion == IPV4_VERSION) || 6672 (connp->conn_family == AF_INET6 && 6673 (connp->conn_ipversion == IPV4_VERSION || 6674 connp->conn_ipversion == IPV6_VERSION))); 6675 6676 /* 6677 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 6678 * will be close to tcp_rexmit_interval_initial. By doing this, we 6679 * allow the algorithm to adjust slowly to large fluctuations of RTT 6680 * during first few transmissions of a connection as seen in slow 6681 * links. 6682 */ 6683 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 6684 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 6685 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 6686 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 6687 tcps->tcps_conn_grace_period; 6688 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 6689 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 6690 tcp->tcp_timer_backoff = 0; 6691 tcp->tcp_ms_we_have_waited = 0; 6692 tcp->tcp_last_recv_time = lbolt; 6693 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 6694 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 6695 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 6696 6697 tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier; 6698 6699 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 6700 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 6701 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 6702 /* 6703 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 6704 * passive open. 6705 */ 6706 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 6707 6708 tcp->tcp_naglim = tcps->tcps_naglim_def; 6709 6710 /* NOTE: ISS is now set in tcp_set_destination(). */ 6711 6712 /* Reset fusion-related fields */ 6713 tcp->tcp_fused = B_FALSE; 6714 tcp->tcp_unfusable = B_FALSE; 6715 tcp->tcp_fused_sigurg = B_FALSE; 6716 tcp->tcp_loopback_peer = NULL; 6717 6718 /* We rebuild the header template on the next connect/conn_request */ 6719 6720 connp->conn_mlp_type = mlptSingle; 6721 6722 /* 6723 * Init the window scale to the max so tcp_rwnd_set() won't pare 6724 * down tcp_rwnd. tcp_set_destination() will set the right value later. 6725 */ 6726 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 6727 tcp->tcp_rwnd = connp->conn_rcvbuf; 6728 6729 tcp->tcp_cork = B_FALSE; 6730 /* 6731 * Init the tcp_debug option if it wasn't already set. This value 6732 * determines whether TCP 6733 * calls strlog() to print out debug messages. Doing this 6734 * initialization here means that this value is not inherited thru 6735 * tcp_reinit(). 6736 */ 6737 if (!connp->conn_debug) 6738 connp->conn_debug = tcps->tcps_dbg; 6739 6740 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 6741 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 6742 } 6743 6744 /* At minimum we need 8 bytes in the TCP header for the lookup */ 6745 #define ICMP_MIN_TCP_HDR 8 6746 6747 /* 6748 * tcp_icmp_input is called as conn_recvicmp to process ICMP error messages 6749 * passed up by IP. The message is always received on the correct tcp_t. 6750 * Assumes that IP has pulled up everything up to and including the ICMP header. 6751 */ 6752 /* ARGSUSED2 */ 6753 static void 6754 tcp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 6755 { 6756 conn_t *connp = (conn_t *)arg1; 6757 icmph_t *icmph; 6758 ipha_t *ipha; 6759 int iph_hdr_length; 6760 tcpha_t *tcpha; 6761 uint32_t seg_seq; 6762 tcp_t *tcp = connp->conn_tcp; 6763 6764 /* Assume IP provides aligned packets */ 6765 ASSERT(OK_32PTR(mp->b_rptr)); 6766 ASSERT((MBLKL(mp) >= sizeof (ipha_t))); 6767 6768 /* 6769 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 6770 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 6771 */ 6772 if (!(ira->ira_flags & IRAF_IS_IPV4)) { 6773 tcp_icmp_error_ipv6(tcp, mp, ira); 6774 return; 6775 } 6776 6777 /* Skip past the outer IP and ICMP headers */ 6778 iph_hdr_length = ira->ira_ip_hdr_length; 6779 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 6780 /* 6781 * If we don't have the correct outer IP header length 6782 * or if we don't have a complete inner IP header 6783 * drop it. 6784 */ 6785 if (iph_hdr_length < sizeof (ipha_t) || 6786 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 6787 noticmpv4: 6788 freemsg(mp); 6789 return; 6790 } 6791 ipha = (ipha_t *)&icmph[1]; 6792 6793 /* Skip past the inner IP and find the ULP header */ 6794 iph_hdr_length = IPH_HDR_LENGTH(ipha); 6795 tcpha = (tcpha_t *)((char *)ipha + iph_hdr_length); 6796 /* 6797 * If we don't have the correct inner IP header length or if the ULP 6798 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 6799 * bytes of TCP header, drop it. 6800 */ 6801 if (iph_hdr_length < sizeof (ipha_t) || 6802 ipha->ipha_protocol != IPPROTO_TCP || 6803 (uchar_t *)tcpha + ICMP_MIN_TCP_HDR > mp->b_wptr) { 6804 goto noticmpv4; 6805 } 6806 6807 seg_seq = ntohl(tcpha->tha_seq); 6808 switch (icmph->icmph_type) { 6809 case ICMP_DEST_UNREACHABLE: 6810 switch (icmph->icmph_code) { 6811 case ICMP_FRAGMENTATION_NEEDED: 6812 /* 6813 * Update Path MTU, then try to send something out. 6814 */ 6815 tcp_update_pmtu(tcp, B_TRUE); 6816 tcp_rexmit_after_error(tcp); 6817 break; 6818 case ICMP_PORT_UNREACHABLE: 6819 case ICMP_PROTOCOL_UNREACHABLE: 6820 switch (tcp->tcp_state) { 6821 case TCPS_SYN_SENT: 6822 case TCPS_SYN_RCVD: 6823 /* 6824 * ICMP can snipe away incipient 6825 * TCP connections as long as 6826 * seq number is same as initial 6827 * send seq number. 6828 */ 6829 if (seg_seq == tcp->tcp_iss) { 6830 (void) tcp_clean_death(tcp, 6831 ECONNREFUSED, 6); 6832 } 6833 break; 6834 } 6835 break; 6836 case ICMP_HOST_UNREACHABLE: 6837 case ICMP_NET_UNREACHABLE: 6838 /* Record the error in case we finally time out. */ 6839 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 6840 tcp->tcp_client_errno = EHOSTUNREACH; 6841 else 6842 tcp->tcp_client_errno = ENETUNREACH; 6843 if (tcp->tcp_state == TCPS_SYN_RCVD) { 6844 if (tcp->tcp_listener != NULL && 6845 tcp->tcp_listener->tcp_syn_defense) { 6846 /* 6847 * Ditch the half-open connection if we 6848 * suspect a SYN attack is under way. 6849 */ 6850 (void) tcp_clean_death(tcp, 6851 tcp->tcp_client_errno, 7); 6852 } 6853 } 6854 break; 6855 default: 6856 break; 6857 } 6858 break; 6859 case ICMP_SOURCE_QUENCH: { 6860 /* 6861 * use a global boolean to control 6862 * whether TCP should respond to ICMP_SOURCE_QUENCH. 6863 * The default is false. 6864 */ 6865 if (tcp_icmp_source_quench) { 6866 /* 6867 * Reduce the sending rate as if we got a 6868 * retransmit timeout 6869 */ 6870 uint32_t npkt; 6871 6872 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 6873 tcp->tcp_mss; 6874 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 6875 tcp->tcp_cwnd = tcp->tcp_mss; 6876 tcp->tcp_cwnd_cnt = 0; 6877 } 6878 break; 6879 } 6880 } 6881 freemsg(mp); 6882 } 6883 6884 /* 6885 * CALLED OUTSIDE OF SQUEUE! It can not follow any pointers that tcp might 6886 * change. But it can refer to fields like tcp_suna and tcp_snxt. 6887 * 6888 * Function tcp_verifyicmp is called as conn_verifyicmp to verify the ICMP 6889 * error messages received by IP. The message is always received on the correct 6890 * tcp_t. 6891 */ 6892 /* ARGSUSED */ 6893 static boolean_t 6894 tcp_verifyicmp(conn_t *connp, void *arg2, icmph_t *icmph, icmp6_t *icmp6, 6895 ip_recv_attr_t *ira) 6896 { 6897 tcpha_t *tcpha = (tcpha_t *)arg2; 6898 uint32_t seq = ntohl(tcpha->tha_seq); 6899 tcp_t *tcp = connp->conn_tcp; 6900 6901 /* 6902 * TCP sequence number contained in payload of the ICMP error message 6903 * should be within the range SND.UNA <= SEG.SEQ < SND.NXT. Otherwise, 6904 * the message is either a stale ICMP error, or an attack from the 6905 * network. Fail the verification. 6906 */ 6907 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 6908 return (B_FALSE); 6909 6910 /* For "too big" we also check the ignore flag */ 6911 if (ira->ira_flags & IRAF_IS_IPV4) { 6912 ASSERT(icmph != NULL); 6913 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && 6914 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 6915 tcp->tcp_tcps->tcps_ignore_path_mtu) 6916 return (B_FALSE); 6917 } else { 6918 ASSERT(icmp6 != NULL); 6919 if (icmp6->icmp6_type == ICMP6_PACKET_TOO_BIG && 6920 tcp->tcp_tcps->tcps_ignore_path_mtu) 6921 return (B_FALSE); 6922 } 6923 return (B_TRUE); 6924 } 6925 6926 /* 6927 * Update the TCP connection according to change of PMTU. 6928 * 6929 * Path MTU might have changed by either increase or decrease, so need to 6930 * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny 6931 * or negative MSS, since tcp_mss_set() will do it. 6932 */ 6933 static void 6934 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only) 6935 { 6936 uint32_t pmtu; 6937 int32_t mss; 6938 conn_t *connp = tcp->tcp_connp; 6939 ip_xmit_attr_t *ixa = connp->conn_ixa; 6940 iaflags_t ixaflags; 6941 6942 if (tcp->tcp_tcps->tcps_ignore_path_mtu) 6943 return; 6944 6945 if (tcp->tcp_state < TCPS_ESTABLISHED) 6946 return; 6947 6948 /* 6949 * Always call ip_get_pmtu() to make sure that IP has updated 6950 * ixa_flags properly. 6951 */ 6952 pmtu = ip_get_pmtu(ixa); 6953 ixaflags = ixa->ixa_flags; 6954 6955 /* 6956 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and 6957 * IPsec overhead if applied. Make sure to use the most recent 6958 * IPsec information. 6959 */ 6960 mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp); 6961 6962 /* 6963 * Nothing to change, so just return. 6964 */ 6965 if (mss == tcp->tcp_mss) 6966 return; 6967 6968 /* 6969 * Currently, for ICMP errors, only PMTU decrease is handled. 6970 */ 6971 if (mss > tcp->tcp_mss && decrease_only) 6972 return; 6973 6974 DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss); 6975 6976 /* 6977 * Update ixa_fragsize and ixa_pmtu. 6978 */ 6979 ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu; 6980 6981 /* 6982 * Adjust MSS and all relevant variables. 6983 */ 6984 tcp_mss_set(tcp, mss); 6985 6986 /* 6987 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu 6988 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP 6989 * has a (potentially different) min size we do the same. Make sure to 6990 * clear IXAF_DONTFRAG, which is used by IP to decide whether to 6991 * fragment the packet. 6992 * 6993 * LSO over IPv6 can not be fragmented. So need to disable LSO 6994 * when IPv6 fragmentation is needed. 6995 */ 6996 if (mss < tcp->tcp_tcps->tcps_mss_min) 6997 ixaflags |= IXAF_PMTU_TOO_SMALL; 6998 6999 if (ixaflags & IXAF_PMTU_TOO_SMALL) 7000 ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF); 7001 7002 if ((connp->conn_ipversion == IPV4_VERSION) && 7003 !(ixaflags & IXAF_PMTU_IPV4_DF)) { 7004 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 7005 } 7006 ixa->ixa_flags = ixaflags; 7007 } 7008 7009 /* 7010 * Do slow start retransmission after ICMP errors of PMTU changes. 7011 */ 7012 static void 7013 tcp_rexmit_after_error(tcp_t *tcp) 7014 { 7015 /* 7016 * All sent data has been acknowledged or no data left to send, just 7017 * to return. 7018 */ 7019 if (!SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) || 7020 (tcp->tcp_xmit_head == NULL)) 7021 return; 7022 7023 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && (tcp->tcp_unsent == 0)) 7024 tcp->tcp_rexmit_max = tcp->tcp_fss; 7025 else 7026 tcp->tcp_rexmit_max = tcp->tcp_snxt; 7027 7028 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 7029 tcp->tcp_rexmit = B_TRUE; 7030 tcp->tcp_dupack_cnt = 0; 7031 tcp->tcp_snd_burst = TCP_CWND_SS; 7032 tcp_ss_rexmit(tcp); 7033 } 7034 7035 /* 7036 * tcp_icmp_error_ipv6 is called from tcp_icmp_input to process ICMPv6 7037 * error messages passed up by IP. 7038 * Assumes that IP has pulled up all the extension headers as well 7039 * as the ICMPv6 header. 7040 */ 7041 static void 7042 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, ip_recv_attr_t *ira) 7043 { 7044 icmp6_t *icmp6; 7045 ip6_t *ip6h; 7046 uint16_t iph_hdr_length = ira->ira_ip_hdr_length; 7047 tcpha_t *tcpha; 7048 uint8_t *nexthdrp; 7049 uint32_t seg_seq; 7050 7051 /* 7052 * Verify that we have a complete IP header. 7053 */ 7054 ASSERT((MBLKL(mp) >= sizeof (ip6_t))); 7055 7056 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 7057 ip6h = (ip6_t *)&icmp6[1]; 7058 /* 7059 * Verify if we have a complete ICMP and inner IP header. 7060 */ 7061 if ((uchar_t *)&ip6h[1] > mp->b_wptr) { 7062 noticmpv6: 7063 freemsg(mp); 7064 return; 7065 } 7066 7067 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 7068 goto noticmpv6; 7069 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 7070 /* 7071 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 7072 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 7073 * packet. 7074 */ 7075 if ((*nexthdrp != IPPROTO_TCP) || 7076 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 7077 goto noticmpv6; 7078 } 7079 7080 seg_seq = ntohl(tcpha->tha_seq); 7081 switch (icmp6->icmp6_type) { 7082 case ICMP6_PACKET_TOO_BIG: 7083 /* 7084 * Update Path MTU, then try to send something out. 7085 */ 7086 tcp_update_pmtu(tcp, B_TRUE); 7087 tcp_rexmit_after_error(tcp); 7088 break; 7089 case ICMP6_DST_UNREACH: 7090 switch (icmp6->icmp6_code) { 7091 case ICMP6_DST_UNREACH_NOPORT: 7092 if (((tcp->tcp_state == TCPS_SYN_SENT) || 7093 (tcp->tcp_state == TCPS_SYN_RCVD)) && 7094 (seg_seq == tcp->tcp_iss)) { 7095 (void) tcp_clean_death(tcp, 7096 ECONNREFUSED, 8); 7097 } 7098 break; 7099 case ICMP6_DST_UNREACH_ADMIN: 7100 case ICMP6_DST_UNREACH_NOROUTE: 7101 case ICMP6_DST_UNREACH_BEYONDSCOPE: 7102 case ICMP6_DST_UNREACH_ADDR: 7103 /* Record the error in case we finally time out. */ 7104 tcp->tcp_client_errno = EHOSTUNREACH; 7105 if (((tcp->tcp_state == TCPS_SYN_SENT) || 7106 (tcp->tcp_state == TCPS_SYN_RCVD)) && 7107 (seg_seq == tcp->tcp_iss)) { 7108 if (tcp->tcp_listener != NULL && 7109 tcp->tcp_listener->tcp_syn_defense) { 7110 /* 7111 * Ditch the half-open connection if we 7112 * suspect a SYN attack is under way. 7113 */ 7114 (void) tcp_clean_death(tcp, 7115 tcp->tcp_client_errno, 9); 7116 } 7117 } 7118 7119 7120 break; 7121 default: 7122 break; 7123 } 7124 break; 7125 case ICMP6_PARAM_PROB: 7126 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 7127 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 7128 (uchar_t *)ip6h + icmp6->icmp6_pptr == 7129 (uchar_t *)nexthdrp) { 7130 if (tcp->tcp_state == TCPS_SYN_SENT || 7131 tcp->tcp_state == TCPS_SYN_RCVD) { 7132 (void) tcp_clean_death(tcp, 7133 ECONNREFUSED, 10); 7134 } 7135 break; 7136 } 7137 break; 7138 7139 case ICMP6_TIME_EXCEEDED: 7140 default: 7141 break; 7142 } 7143 freemsg(mp); 7144 } 7145 7146 /* 7147 * Notify IP that we are having trouble with this connection. IP should 7148 * make note so it can potentially use a different IRE. 7149 */ 7150 static void 7151 tcp_ip_notify(tcp_t *tcp) 7152 { 7153 conn_t *connp = tcp->tcp_connp; 7154 ire_t *ire; 7155 7156 /* 7157 * Note: in the case of source routing we want to blow away the 7158 * route to the first source route hop. 7159 */ 7160 ire = connp->conn_ixa->ixa_ire; 7161 if (ire != NULL && !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 7162 if (ire->ire_ipversion == IPV4_VERSION) { 7163 /* 7164 * As per RFC 1122, we send an RTM_LOSING to inform 7165 * routing protocols. 7166 */ 7167 ip_rts_change(RTM_LOSING, ire->ire_addr, 7168 ire->ire_gateway_addr, ire->ire_mask, 7169 connp->conn_laddr_v4, 0, 0, 0, 7170 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), 7171 ire->ire_ipst); 7172 } 7173 (void) ire_no_good(ire); 7174 } 7175 } 7176 7177 #pragma inline(tcp_send_data) 7178 7179 /* 7180 * Timer callback routine for keepalive probe. We do a fake resend of 7181 * last ACKed byte. Then set a timer using RTO. When the timer expires, 7182 * check to see if we have heard anything from the other end for the last 7183 * RTO period. If we have, set the timer to expire for another 7184 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 7185 * RTO << 1 and check again when it expires. Keep exponentially increasing 7186 * the timeout if we have not heard from the other side. If for more than 7187 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 7188 * kill the connection unless the keepalive abort threshold is 0. In 7189 * that case, we will probe "forever." 7190 */ 7191 static void 7192 tcp_keepalive_killer(void *arg) 7193 { 7194 mblk_t *mp; 7195 conn_t *connp = (conn_t *)arg; 7196 tcp_t *tcp = connp->conn_tcp; 7197 int32_t firetime; 7198 int32_t idletime; 7199 int32_t ka_intrvl; 7200 tcp_stack_t *tcps = tcp->tcp_tcps; 7201 7202 tcp->tcp_ka_tid = 0; 7203 7204 if (tcp->tcp_fused) 7205 return; 7206 7207 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); 7208 ka_intrvl = tcp->tcp_ka_interval; 7209 7210 /* 7211 * Keepalive probe should only be sent if the application has not 7212 * done a close on the connection. 7213 */ 7214 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 7215 return; 7216 } 7217 /* Timer fired too early, restart it. */ 7218 if (tcp->tcp_state < TCPS_ESTABLISHED) { 7219 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 7220 MSEC_TO_TICK(ka_intrvl)); 7221 return; 7222 } 7223 7224 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 7225 /* 7226 * If we have not heard from the other side for a long 7227 * time, kill the connection unless the keepalive abort 7228 * threshold is 0. In that case, we will probe "forever." 7229 */ 7230 if (tcp->tcp_ka_abort_thres != 0 && 7231 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 7232 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); 7233 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 7234 tcp->tcp_client_errno : ETIMEDOUT, 11); 7235 return; 7236 } 7237 7238 if (tcp->tcp_snxt == tcp->tcp_suna && 7239 idletime >= ka_intrvl) { 7240 /* Fake resend of last ACKed byte. */ 7241 mblk_t *mp1 = allocb(1, BPRI_LO); 7242 7243 if (mp1 != NULL) { 7244 *mp1->b_wptr++ = '\0'; 7245 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 7246 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 7247 freeb(mp1); 7248 /* 7249 * if allocation failed, fall through to start the 7250 * timer back. 7251 */ 7252 if (mp != NULL) { 7253 tcp_send_data(tcp, mp); 7254 BUMP_MIB(&tcps->tcps_mib, 7255 tcpTimKeepaliveProbe); 7256 if (tcp->tcp_ka_last_intrvl != 0) { 7257 int max; 7258 /* 7259 * We should probe again at least 7260 * in ka_intrvl, but not more than 7261 * tcp_rexmit_interval_max. 7262 */ 7263 max = tcps->tcps_rexmit_interval_max; 7264 firetime = MIN(ka_intrvl - 1, 7265 tcp->tcp_ka_last_intrvl << 1); 7266 if (firetime > max) 7267 firetime = max; 7268 } else { 7269 firetime = tcp->tcp_rto; 7270 } 7271 tcp->tcp_ka_tid = TCP_TIMER(tcp, 7272 tcp_keepalive_killer, 7273 MSEC_TO_TICK(firetime)); 7274 tcp->tcp_ka_last_intrvl = firetime; 7275 return; 7276 } 7277 } 7278 } else { 7279 tcp->tcp_ka_last_intrvl = 0; 7280 } 7281 7282 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 7283 if ((firetime = ka_intrvl - idletime) < 0) { 7284 firetime = ka_intrvl; 7285 } 7286 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 7287 MSEC_TO_TICK(firetime)); 7288 } 7289 7290 int 7291 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 7292 { 7293 conn_t *connp = tcp->tcp_connp; 7294 queue_t *q = connp->conn_rq; 7295 int32_t mss = tcp->tcp_mss; 7296 int maxpsz; 7297 7298 if (TCP_IS_DETACHED(tcp)) 7299 return (mss); 7300 if (tcp->tcp_fused) { 7301 maxpsz = tcp_fuse_maxpsz(tcp); 7302 mss = INFPSZ; 7303 } else if (tcp->tcp_maxpsz_multiplier == 0) { 7304 /* 7305 * Set the sd_qn_maxpsz according to the socket send buffer 7306 * size, and sd_maxblk to INFPSZ (-1). This will essentially 7307 * instruct the stream head to copyin user data into contiguous 7308 * kernel-allocated buffers without breaking it up into smaller 7309 * chunks. We round up the buffer size to the nearest SMSS. 7310 */ 7311 maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss); 7312 if (tcp->tcp_kssl_ctx == NULL) 7313 mss = INFPSZ; 7314 else 7315 mss = SSL3_MAX_RECORD_LEN; 7316 } else { 7317 /* 7318 * Set sd_qn_maxpsz to approx half the (receivers) buffer 7319 * (and a multiple of the mss). This instructs the stream 7320 * head to break down larger than SMSS writes into SMSS- 7321 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 7322 */ 7323 maxpsz = tcp->tcp_maxpsz_multiplier * mss; 7324 if (maxpsz > connp->conn_sndbuf / 2) { 7325 maxpsz = connp->conn_sndbuf / 2; 7326 /* Round up to nearest mss */ 7327 maxpsz = MSS_ROUNDUP(maxpsz, mss); 7328 } 7329 } 7330 7331 (void) proto_set_maxpsz(q, connp, maxpsz); 7332 if (!(IPCL_IS_NONSTR(connp))) 7333 connp->conn_wq->q_maxpsz = maxpsz; 7334 if (set_maxblk) 7335 (void) proto_set_tx_maxblk(q, connp, mss); 7336 return (mss); 7337 } 7338 7339 /* 7340 * Extract option values from a tcp header. We put any found values into the 7341 * tcpopt struct and return a bitmask saying which options were found. 7342 */ 7343 static int 7344 tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt) 7345 { 7346 uchar_t *endp; 7347 int len; 7348 uint32_t mss; 7349 uchar_t *up = (uchar_t *)tcpha; 7350 int found = 0; 7351 int32_t sack_len; 7352 tcp_seq sack_begin, sack_end; 7353 tcp_t *tcp; 7354 7355 endp = up + TCP_HDR_LENGTH(tcpha); 7356 up += TCP_MIN_HEADER_LENGTH; 7357 while (up < endp) { 7358 len = endp - up; 7359 switch (*up) { 7360 case TCPOPT_EOL: 7361 break; 7362 7363 case TCPOPT_NOP: 7364 up++; 7365 continue; 7366 7367 case TCPOPT_MAXSEG: 7368 if (len < TCPOPT_MAXSEG_LEN || 7369 up[1] != TCPOPT_MAXSEG_LEN) 7370 break; 7371 7372 mss = BE16_TO_U16(up+2); 7373 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 7374 tcpopt->tcp_opt_mss = mss; 7375 found |= TCP_OPT_MSS_PRESENT; 7376 7377 up += TCPOPT_MAXSEG_LEN; 7378 continue; 7379 7380 case TCPOPT_WSCALE: 7381 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 7382 break; 7383 7384 if (up[2] > TCP_MAX_WINSHIFT) 7385 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 7386 else 7387 tcpopt->tcp_opt_wscale = up[2]; 7388 found |= TCP_OPT_WSCALE_PRESENT; 7389 7390 up += TCPOPT_WS_LEN; 7391 continue; 7392 7393 case TCPOPT_SACK_PERMITTED: 7394 if (len < TCPOPT_SACK_OK_LEN || 7395 up[1] != TCPOPT_SACK_OK_LEN) 7396 break; 7397 found |= TCP_OPT_SACK_OK_PRESENT; 7398 up += TCPOPT_SACK_OK_LEN; 7399 continue; 7400 7401 case TCPOPT_SACK: 7402 if (len <= 2 || up[1] <= 2 || len < up[1]) 7403 break; 7404 7405 /* If TCP is not interested in SACK blks... */ 7406 if ((tcp = tcpopt->tcp) == NULL) { 7407 up += up[1]; 7408 continue; 7409 } 7410 sack_len = up[1] - TCPOPT_HEADER_LEN; 7411 up += TCPOPT_HEADER_LEN; 7412 7413 /* 7414 * If the list is empty, allocate one and assume 7415 * nothing is sack'ed. 7416 */ 7417 ASSERT(tcp->tcp_sack_info != NULL); 7418 if (tcp->tcp_notsack_list == NULL) { 7419 tcp_notsack_update(&(tcp->tcp_notsack_list), 7420 tcp->tcp_suna, tcp->tcp_snxt, 7421 &(tcp->tcp_num_notsack_blk), 7422 &(tcp->tcp_cnt_notsack_list)); 7423 7424 /* 7425 * Make sure tcp_notsack_list is not NULL. 7426 * This happens when kmem_alloc(KM_NOSLEEP) 7427 * returns NULL. 7428 */ 7429 if (tcp->tcp_notsack_list == NULL) { 7430 up += sack_len; 7431 continue; 7432 } 7433 tcp->tcp_fack = tcp->tcp_suna; 7434 } 7435 7436 while (sack_len > 0) { 7437 if (up + 8 > endp) { 7438 up = endp; 7439 break; 7440 } 7441 sack_begin = BE32_TO_U32(up); 7442 up += 4; 7443 sack_end = BE32_TO_U32(up); 7444 up += 4; 7445 sack_len -= 8; 7446 /* 7447 * Bounds checking. Make sure the SACK 7448 * info is within tcp_suna and tcp_snxt. 7449 * If this SACK blk is out of bound, ignore 7450 * it but continue to parse the following 7451 * blks. 7452 */ 7453 if (SEQ_LEQ(sack_end, sack_begin) || 7454 SEQ_LT(sack_begin, tcp->tcp_suna) || 7455 SEQ_GT(sack_end, tcp->tcp_snxt)) { 7456 continue; 7457 } 7458 tcp_notsack_insert(&(tcp->tcp_notsack_list), 7459 sack_begin, sack_end, 7460 &(tcp->tcp_num_notsack_blk), 7461 &(tcp->tcp_cnt_notsack_list)); 7462 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 7463 tcp->tcp_fack = sack_end; 7464 } 7465 } 7466 found |= TCP_OPT_SACK_PRESENT; 7467 continue; 7468 7469 case TCPOPT_TSTAMP: 7470 if (len < TCPOPT_TSTAMP_LEN || 7471 up[1] != TCPOPT_TSTAMP_LEN) 7472 break; 7473 7474 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 7475 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 7476 7477 found |= TCP_OPT_TSTAMP_PRESENT; 7478 7479 up += TCPOPT_TSTAMP_LEN; 7480 continue; 7481 7482 default: 7483 if (len <= 1 || len < (int)up[1] || up[1] == 0) 7484 break; 7485 up += up[1]; 7486 continue; 7487 } 7488 break; 7489 } 7490 return (found); 7491 } 7492 7493 /* 7494 * Set the MSS associated with a particular tcp based on its current value, 7495 * and a new one passed in. Observe minimums and maximums, and reset other 7496 * state variables that we want to view as multiples of MSS. 7497 * 7498 * The value of MSS could be either increased or descreased. 7499 */ 7500 static void 7501 tcp_mss_set(tcp_t *tcp, uint32_t mss) 7502 { 7503 uint32_t mss_max; 7504 tcp_stack_t *tcps = tcp->tcp_tcps; 7505 conn_t *connp = tcp->tcp_connp; 7506 7507 if (connp->conn_ipversion == IPV4_VERSION) 7508 mss_max = tcps->tcps_mss_max_ipv4; 7509 else 7510 mss_max = tcps->tcps_mss_max_ipv6; 7511 7512 if (mss < tcps->tcps_mss_min) 7513 mss = tcps->tcps_mss_min; 7514 if (mss > mss_max) 7515 mss = mss_max; 7516 /* 7517 * Unless naglim has been set by our client to 7518 * a non-mss value, force naglim to track mss. 7519 * This can help to aggregate small writes. 7520 */ 7521 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 7522 tcp->tcp_naglim = mss; 7523 /* 7524 * TCP should be able to buffer at least 4 MSS data for obvious 7525 * performance reason. 7526 */ 7527 if ((mss << 2) > connp->conn_sndbuf) 7528 connp->conn_sndbuf = mss << 2; 7529 7530 /* 7531 * Set the send lowater to at least twice of MSS. 7532 */ 7533 if ((mss << 1) > connp->conn_sndlowat) 7534 connp->conn_sndlowat = mss << 1; 7535 7536 /* 7537 * Update tcp_cwnd according to the new value of MSS. Keep the 7538 * previous ratio to preserve the transmit rate. 7539 */ 7540 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 7541 tcp->tcp_cwnd_cnt = 0; 7542 7543 tcp->tcp_mss = mss; 7544 (void) tcp_maxpsz_set(tcp, B_TRUE); 7545 } 7546 7547 /* For /dev/tcp aka AF_INET open */ 7548 static int 7549 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 7550 { 7551 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 7552 } 7553 7554 /* For /dev/tcp6 aka AF_INET6 open */ 7555 static int 7556 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 7557 { 7558 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 7559 } 7560 7561 static conn_t * 7562 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket, 7563 int *errorp) 7564 { 7565 tcp_t *tcp = NULL; 7566 conn_t *connp; 7567 zoneid_t zoneid; 7568 tcp_stack_t *tcps; 7569 squeue_t *sqp; 7570 7571 ASSERT(errorp != NULL); 7572 /* 7573 * Find the proper zoneid and netstack. 7574 */ 7575 /* 7576 * Special case for install: miniroot needs to be able to 7577 * access files via NFS as though it were always in the 7578 * global zone. 7579 */ 7580 if (credp == kcred && nfs_global_client_only != 0) { 7581 zoneid = GLOBAL_ZONEID; 7582 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 7583 netstack_tcp; 7584 ASSERT(tcps != NULL); 7585 } else { 7586 netstack_t *ns; 7587 7588 ns = netstack_find_by_cred(credp); 7589 ASSERT(ns != NULL); 7590 tcps = ns->netstack_tcp; 7591 ASSERT(tcps != NULL); 7592 7593 /* 7594 * For exclusive stacks we set the zoneid to zero 7595 * to make TCP operate as if in the global zone. 7596 */ 7597 if (tcps->tcps_netstack->netstack_stackid != 7598 GLOBAL_NETSTACKID) 7599 zoneid = GLOBAL_ZONEID; 7600 else 7601 zoneid = crgetzoneid(credp); 7602 } 7603 7604 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 7605 connp = (conn_t *)tcp_get_conn(sqp, tcps); 7606 /* 7607 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 7608 * so we drop it by one. 7609 */ 7610 netstack_rele(tcps->tcps_netstack); 7611 if (connp == NULL) { 7612 *errorp = ENOSR; 7613 return (NULL); 7614 } 7615 ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto); 7616 7617 connp->conn_sqp = sqp; 7618 connp->conn_initial_sqp = connp->conn_sqp; 7619 connp->conn_ixa->ixa_sqp = connp->conn_sqp; 7620 tcp = connp->conn_tcp; 7621 7622 /* 7623 * Besides asking IP to set the checksum for us, have conn_ip_output 7624 * to do the following checks when necessary: 7625 * 7626 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid 7627 * IXAF_VERIFY_PMTU: verify PMTU changes 7628 * IXAF_VERIFY_LSO: verify LSO capability changes 7629 */ 7630 connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 7631 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO; 7632 7633 if (!tcps->tcps_dev_flow_ctl) 7634 connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 7635 7636 if (isv6) { 7637 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 7638 connp->conn_ipversion = IPV6_VERSION; 7639 connp->conn_family = AF_INET6; 7640 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 7641 connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit; 7642 } else { 7643 connp->conn_ipversion = IPV4_VERSION; 7644 connp->conn_family = AF_INET; 7645 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 7646 connp->conn_default_ttl = tcps->tcps_ipv4_ttl; 7647 } 7648 connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl; 7649 7650 crhold(credp); 7651 connp->conn_cred = credp; 7652 connp->conn_cpid = curproc->p_pid; 7653 connp->conn_open_time = lbolt64; 7654 7655 connp->conn_zoneid = zoneid; 7656 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 7657 connp->conn_ixa->ixa_zoneid = zoneid; 7658 connp->conn_mlp_type = mlptSingle; 7659 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 7660 ASSERT(tcp->tcp_tcps == tcps); 7661 7662 /* 7663 * If the caller has the process-wide flag set, then default to MAC 7664 * exempt mode. This allows read-down to unlabeled hosts. 7665 */ 7666 if (getpflags(NET_MAC_AWARE, credp) != 0) 7667 connp->conn_mac_mode = CONN_MAC_AWARE; 7668 7669 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 7670 7671 if (issocket) { 7672 tcp->tcp_issocket = 1; 7673 } 7674 7675 connp->conn_rcvbuf = tcps->tcps_recv_hiwat; 7676 connp->conn_sndbuf = tcps->tcps_xmit_hiwat; 7677 connp->conn_sndlowat = tcps->tcps_xmit_lowat; 7678 connp->conn_so_type = SOCK_STREAM; 7679 connp->conn_wroff = connp->conn_ht_iphc_allocated + 7680 tcps->tcps_wroff_xtra; 7681 7682 SOCK_CONNID_INIT(tcp->tcp_connid); 7683 tcp->tcp_state = TCPS_IDLE; 7684 tcp_init_values(tcp); 7685 return (connp); 7686 } 7687 7688 static int 7689 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 7690 boolean_t isv6) 7691 { 7692 tcp_t *tcp = NULL; 7693 conn_t *connp = NULL; 7694 int err; 7695 vmem_t *minor_arena = NULL; 7696 dev_t conn_dev; 7697 boolean_t issocket; 7698 7699 if (q->q_ptr != NULL) 7700 return (0); 7701 7702 if (sflag == MODOPEN) 7703 return (EINVAL); 7704 7705 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 7706 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 7707 minor_arena = ip_minor_arena_la; 7708 } else { 7709 /* 7710 * Either minor numbers in the large arena were exhausted 7711 * or a non socket application is doing the open. 7712 * Try to allocate from the small arena. 7713 */ 7714 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 7715 return (EBUSY); 7716 } 7717 minor_arena = ip_minor_arena_sa; 7718 } 7719 7720 ASSERT(minor_arena != NULL); 7721 7722 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 7723 7724 if (flag & SO_FALLBACK) { 7725 /* 7726 * Non streams socket needs a stream to fallback to 7727 */ 7728 RD(q)->q_ptr = (void *)conn_dev; 7729 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 7730 WR(q)->q_ptr = (void *)minor_arena; 7731 qprocson(q); 7732 return (0); 7733 } else if (flag & SO_ACCEPTOR) { 7734 q->q_qinfo = &tcp_acceptor_rinit; 7735 /* 7736 * the conn_dev and minor_arena will be subsequently used by 7737 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out 7738 * the minor device number for this connection from the q_ptr. 7739 */ 7740 RD(q)->q_ptr = (void *)conn_dev; 7741 WR(q)->q_qinfo = &tcp_acceptor_winit; 7742 WR(q)->q_ptr = (void *)minor_arena; 7743 qprocson(q); 7744 return (0); 7745 } 7746 7747 issocket = flag & SO_SOCKSTR; 7748 connp = tcp_create_common(credp, isv6, issocket, &err); 7749 7750 if (connp == NULL) { 7751 inet_minor_free(minor_arena, conn_dev); 7752 q->q_ptr = WR(q)->q_ptr = NULL; 7753 return (err); 7754 } 7755 7756 connp->conn_rq = q; 7757 connp->conn_wq = WR(q); 7758 q->q_ptr = WR(q)->q_ptr = connp; 7759 7760 connp->conn_dev = conn_dev; 7761 connp->conn_minor_arena = minor_arena; 7762 7763 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 7764 ASSERT(WR(q)->q_qinfo == &tcp_winit); 7765 7766 tcp = connp->conn_tcp; 7767 7768 if (issocket) { 7769 WR(q)->q_qinfo = &tcp_sock_winit; 7770 } else { 7771 #ifdef _ILP32 7772 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 7773 #else 7774 tcp->tcp_acceptor_id = conn_dev; 7775 #endif /* _ILP32 */ 7776 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 7777 } 7778 7779 /* 7780 * Put the ref for TCP. Ref for IP was already put 7781 * by ipcl_conn_create. Also Make the conn_t globally 7782 * visible to walkers 7783 */ 7784 mutex_enter(&connp->conn_lock); 7785 CONN_INC_REF_LOCKED(connp); 7786 ASSERT(connp->conn_ref == 2); 7787 connp->conn_state_flags &= ~CONN_INCIPIENT; 7788 mutex_exit(&connp->conn_lock); 7789 7790 qprocson(q); 7791 return (0); 7792 } 7793 7794 /* 7795 * Some TCP options can be "set" by requesting them in the option 7796 * buffer. This is needed for XTI feature test though we do not 7797 * allow it in general. We interpret that this mechanism is more 7798 * applicable to OSI protocols and need not be allowed in general. 7799 * This routine filters out options for which it is not allowed (most) 7800 * and lets through those (few) for which it is. [ The XTI interface 7801 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 7802 * ever implemented will have to be allowed here ]. 7803 */ 7804 static boolean_t 7805 tcp_allow_connopt_set(int level, int name) 7806 { 7807 7808 switch (level) { 7809 case IPPROTO_TCP: 7810 switch (name) { 7811 case TCP_NODELAY: 7812 return (B_TRUE); 7813 default: 7814 return (B_FALSE); 7815 } 7816 /*NOTREACHED*/ 7817 default: 7818 return (B_FALSE); 7819 } 7820 /*NOTREACHED*/ 7821 } 7822 7823 /* 7824 * This routine gets default values of certain options whose default 7825 * values are maintained by protocol specific code 7826 */ 7827 /* ARGSUSED */ 7828 int 7829 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 7830 { 7831 int32_t *i1 = (int32_t *)ptr; 7832 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7833 7834 switch (level) { 7835 case IPPROTO_TCP: 7836 switch (name) { 7837 case TCP_NOTIFY_THRESHOLD: 7838 *i1 = tcps->tcps_ip_notify_interval; 7839 break; 7840 case TCP_ABORT_THRESHOLD: 7841 *i1 = tcps->tcps_ip_abort_interval; 7842 break; 7843 case TCP_CONN_NOTIFY_THRESHOLD: 7844 *i1 = tcps->tcps_ip_notify_cinterval; 7845 break; 7846 case TCP_CONN_ABORT_THRESHOLD: 7847 *i1 = tcps->tcps_ip_abort_cinterval; 7848 break; 7849 default: 7850 return (-1); 7851 } 7852 break; 7853 case IPPROTO_IP: 7854 switch (name) { 7855 case IP_TTL: 7856 *i1 = tcps->tcps_ipv4_ttl; 7857 break; 7858 default: 7859 return (-1); 7860 } 7861 break; 7862 case IPPROTO_IPV6: 7863 switch (name) { 7864 case IPV6_UNICAST_HOPS: 7865 *i1 = tcps->tcps_ipv6_hoplimit; 7866 break; 7867 default: 7868 return (-1); 7869 } 7870 break; 7871 default: 7872 return (-1); 7873 } 7874 return (sizeof (int)); 7875 } 7876 7877 /* 7878 * TCP routine to get the values of options. 7879 */ 7880 static int 7881 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr) 7882 { 7883 int *i1 = (int *)ptr; 7884 tcp_t *tcp = connp->conn_tcp; 7885 conn_opt_arg_t coas; 7886 int retval; 7887 7888 coas.coa_connp = connp; 7889 coas.coa_ixa = connp->conn_ixa; 7890 coas.coa_ipp = &connp->conn_xmit_ipp; 7891 coas.coa_ancillary = B_FALSE; 7892 coas.coa_changed = 0; 7893 7894 switch (level) { 7895 case SOL_SOCKET: 7896 switch (name) { 7897 case SO_SND_COPYAVOID: 7898 *i1 = tcp->tcp_snd_zcopy_on ? 7899 SO_SND_COPYAVOID : 0; 7900 return (sizeof (int)); 7901 case SO_ACCEPTCONN: 7902 *i1 = (tcp->tcp_state == TCPS_LISTEN); 7903 return (sizeof (int)); 7904 } 7905 break; 7906 case IPPROTO_TCP: 7907 switch (name) { 7908 case TCP_NODELAY: 7909 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 7910 return (sizeof (int)); 7911 case TCP_MAXSEG: 7912 *i1 = tcp->tcp_mss; 7913 return (sizeof (int)); 7914 case TCP_NOTIFY_THRESHOLD: 7915 *i1 = (int)tcp->tcp_first_timer_threshold; 7916 return (sizeof (int)); 7917 case TCP_ABORT_THRESHOLD: 7918 *i1 = tcp->tcp_second_timer_threshold; 7919 return (sizeof (int)); 7920 case TCP_CONN_NOTIFY_THRESHOLD: 7921 *i1 = tcp->tcp_first_ctimer_threshold; 7922 return (sizeof (int)); 7923 case TCP_CONN_ABORT_THRESHOLD: 7924 *i1 = tcp->tcp_second_ctimer_threshold; 7925 return (sizeof (int)); 7926 case TCP_INIT_CWND: 7927 *i1 = tcp->tcp_init_cwnd; 7928 return (sizeof (int)); 7929 case TCP_KEEPALIVE_THRESHOLD: 7930 *i1 = tcp->tcp_ka_interval; 7931 return (sizeof (int)); 7932 case TCP_KEEPALIVE_ABORT_THRESHOLD: 7933 *i1 = tcp->tcp_ka_abort_thres; 7934 return (sizeof (int)); 7935 case TCP_CORK: 7936 *i1 = tcp->tcp_cork; 7937 return (sizeof (int)); 7938 } 7939 break; 7940 case IPPROTO_IP: 7941 if (connp->conn_family != AF_INET) 7942 return (-1); 7943 switch (name) { 7944 case IP_OPTIONS: 7945 case T_IP_OPTIONS: 7946 /* Caller ensures enough space */ 7947 return (ip_opt_get_user(connp, ptr)); 7948 default: 7949 break; 7950 } 7951 break; 7952 7953 case IPPROTO_IPV6: 7954 /* 7955 * IPPROTO_IPV6 options are only supported for sockets 7956 * that are using IPv6 on the wire. 7957 */ 7958 if (connp->conn_ipversion != IPV6_VERSION) { 7959 return (-1); 7960 } 7961 switch (name) { 7962 case IPV6_PATHMTU: 7963 if (tcp->tcp_state < TCPS_ESTABLISHED) 7964 return (-1); 7965 break; 7966 } 7967 break; 7968 } 7969 mutex_enter(&connp->conn_lock); 7970 retval = conn_opt_get(&coas, level, name, ptr); 7971 mutex_exit(&connp->conn_lock); 7972 return (retval); 7973 } 7974 7975 /* 7976 * TCP routine to get the values of options. 7977 */ 7978 int 7979 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 7980 { 7981 return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr)); 7982 } 7983 7984 /* returns UNIX error, the optlen is a value-result arg */ 7985 int 7986 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 7987 void *optvalp, socklen_t *optlen, cred_t *cr) 7988 { 7989 conn_t *connp = (conn_t *)proto_handle; 7990 squeue_t *sqp = connp->conn_sqp; 7991 int error; 7992 t_uscalar_t max_optbuf_len; 7993 void *optvalp_buf; 7994 int len; 7995 7996 ASSERT(connp->conn_upper_handle != NULL); 7997 7998 error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len, 7999 tcp_opt_obj.odb_opt_des_arr, 8000 tcp_opt_obj.odb_opt_arr_cnt, 8001 B_FALSE, B_TRUE, cr); 8002 if (error != 0) { 8003 if (error < 0) { 8004 error = proto_tlitosyserr(-error); 8005 } 8006 return (error); 8007 } 8008 8009 optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP); 8010 8011 error = squeue_synch_enter(sqp, connp, NULL); 8012 if (error == ENOMEM) { 8013 kmem_free(optvalp_buf, max_optbuf_len); 8014 return (ENOMEM); 8015 } 8016 8017 len = tcp_opt_get(connp, level, option_name, optvalp_buf); 8018 squeue_synch_exit(sqp, connp); 8019 8020 if (len == -1) { 8021 kmem_free(optvalp_buf, max_optbuf_len); 8022 return (EINVAL); 8023 } 8024 8025 /* 8026 * update optlen and copy option value 8027 */ 8028 t_uscalar_t size = MIN(len, *optlen); 8029 8030 bcopy(optvalp_buf, optvalp, size); 8031 bcopy(&size, optlen, sizeof (size)); 8032 8033 kmem_free(optvalp_buf, max_optbuf_len); 8034 return (0); 8035 } 8036 8037 /* 8038 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 8039 * Parameters are assumed to be verified by the caller. 8040 */ 8041 /* ARGSUSED */ 8042 int 8043 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name, 8044 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 8045 void *thisdg_attrs, cred_t *cr) 8046 { 8047 tcp_t *tcp = connp->conn_tcp; 8048 int *i1 = (int *)invalp; 8049 boolean_t onoff = (*i1 == 0) ? 0 : 1; 8050 boolean_t checkonly; 8051 int reterr; 8052 tcp_stack_t *tcps = tcp->tcp_tcps; 8053 conn_opt_arg_t coas; 8054 8055 coas.coa_connp = connp; 8056 coas.coa_ixa = connp->conn_ixa; 8057 coas.coa_ipp = &connp->conn_xmit_ipp; 8058 coas.coa_ancillary = B_FALSE; 8059 coas.coa_changed = 0; 8060 8061 switch (optset_context) { 8062 case SETFN_OPTCOM_CHECKONLY: 8063 checkonly = B_TRUE; 8064 /* 8065 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 8066 * inlen != 0 implies value supplied and 8067 * we have to "pretend" to set it. 8068 * inlen == 0 implies that there is no 8069 * value part in T_CHECK request and just validation 8070 * done elsewhere should be enough, we just return here. 8071 */ 8072 if (inlen == 0) { 8073 *outlenp = 0; 8074 return (0); 8075 } 8076 break; 8077 case SETFN_OPTCOM_NEGOTIATE: 8078 checkonly = B_FALSE; 8079 break; 8080 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 8081 case SETFN_CONN_NEGOTIATE: 8082 checkonly = B_FALSE; 8083 /* 8084 * Negotiating local and "association-related" options 8085 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 8086 * primitives is allowed by XTI, but we choose 8087 * to not implement this style negotiation for Internet 8088 * protocols (We interpret it is a must for OSI world but 8089 * optional for Internet protocols) for all options. 8090 * [ Will do only for the few options that enable test 8091 * suites that our XTI implementation of this feature 8092 * works for transports that do allow it ] 8093 */ 8094 if (!tcp_allow_connopt_set(level, name)) { 8095 *outlenp = 0; 8096 return (EINVAL); 8097 } 8098 break; 8099 default: 8100 /* 8101 * We should never get here 8102 */ 8103 *outlenp = 0; 8104 return (EINVAL); 8105 } 8106 8107 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 8108 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 8109 8110 /* 8111 * For TCP, we should have no ancillary data sent down 8112 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 8113 * has to be zero. 8114 */ 8115 ASSERT(thisdg_attrs == NULL); 8116 8117 /* 8118 * For fixed length options, no sanity check 8119 * of passed in length is done. It is assumed *_optcom_req() 8120 * routines do the right thing. 8121 */ 8122 switch (level) { 8123 case SOL_SOCKET: 8124 switch (name) { 8125 case SO_KEEPALIVE: 8126 if (checkonly) { 8127 /* check only case */ 8128 break; 8129 } 8130 8131 if (!onoff) { 8132 if (connp->conn_keepalive) { 8133 if (tcp->tcp_ka_tid != 0) { 8134 (void) TCP_TIMER_CANCEL(tcp, 8135 tcp->tcp_ka_tid); 8136 tcp->tcp_ka_tid = 0; 8137 } 8138 connp->conn_keepalive = 0; 8139 } 8140 break; 8141 } 8142 if (!connp->conn_keepalive) { 8143 /* Crank up the keepalive timer */ 8144 tcp->tcp_ka_last_intrvl = 0; 8145 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8146 tcp_keepalive_killer, 8147 MSEC_TO_TICK(tcp->tcp_ka_interval)); 8148 connp->conn_keepalive = 1; 8149 } 8150 break; 8151 case SO_SNDBUF: { 8152 if (*i1 > tcps->tcps_max_buf) { 8153 *outlenp = 0; 8154 return (ENOBUFS); 8155 } 8156 if (checkonly) 8157 break; 8158 8159 connp->conn_sndbuf = *i1; 8160 if (tcps->tcps_snd_lowat_fraction != 0) { 8161 connp->conn_sndlowat = connp->conn_sndbuf / 8162 tcps->tcps_snd_lowat_fraction; 8163 } 8164 (void) tcp_maxpsz_set(tcp, B_TRUE); 8165 /* 8166 * If we are flow-controlled, recheck the condition. 8167 * There are apps that increase SO_SNDBUF size when 8168 * flow-controlled (EWOULDBLOCK), and expect the flow 8169 * control condition to be lifted right away. 8170 */ 8171 mutex_enter(&tcp->tcp_non_sq_lock); 8172 if (tcp->tcp_flow_stopped && 8173 TCP_UNSENT_BYTES(tcp) < connp->conn_sndbuf) { 8174 tcp_clrqfull(tcp); 8175 } 8176 mutex_exit(&tcp->tcp_non_sq_lock); 8177 *outlenp = inlen; 8178 return (0); 8179 } 8180 case SO_RCVBUF: 8181 if (*i1 > tcps->tcps_max_buf) { 8182 *outlenp = 0; 8183 return (ENOBUFS); 8184 } 8185 /* Silently ignore zero */ 8186 if (!checkonly && *i1 != 0) { 8187 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 8188 (void) tcp_rwnd_set(tcp, *i1); 8189 } 8190 /* 8191 * XXX should we return the rwnd here 8192 * and tcp_opt_get ? 8193 */ 8194 *outlenp = inlen; 8195 return (0); 8196 case SO_SND_COPYAVOID: 8197 if (!checkonly) { 8198 if (tcp->tcp_loopback || 8199 (tcp->tcp_kssl_ctx != NULL) || 8200 (onoff != 1) || !tcp_zcopy_check(tcp)) { 8201 *outlenp = 0; 8202 return (EOPNOTSUPP); 8203 } 8204 tcp->tcp_snd_zcopy_aware = 1; 8205 } 8206 *outlenp = inlen; 8207 return (0); 8208 } 8209 break; 8210 case IPPROTO_TCP: 8211 switch (name) { 8212 case TCP_NODELAY: 8213 if (!checkonly) 8214 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 8215 break; 8216 case TCP_NOTIFY_THRESHOLD: 8217 if (!checkonly) 8218 tcp->tcp_first_timer_threshold = *i1; 8219 break; 8220 case TCP_ABORT_THRESHOLD: 8221 if (!checkonly) 8222 tcp->tcp_second_timer_threshold = *i1; 8223 break; 8224 case TCP_CONN_NOTIFY_THRESHOLD: 8225 if (!checkonly) 8226 tcp->tcp_first_ctimer_threshold = *i1; 8227 break; 8228 case TCP_CONN_ABORT_THRESHOLD: 8229 if (!checkonly) 8230 tcp->tcp_second_ctimer_threshold = *i1; 8231 break; 8232 case TCP_RECVDSTADDR: 8233 if (tcp->tcp_state > TCPS_LISTEN) { 8234 *outlenp = 0; 8235 return (EOPNOTSUPP); 8236 } 8237 /* Setting done in conn_opt_set */ 8238 break; 8239 case TCP_INIT_CWND: { 8240 uint32_t init_cwnd = *((uint32_t *)invalp); 8241 8242 if (checkonly) 8243 break; 8244 8245 /* 8246 * Only allow socket with network configuration 8247 * privilege to set the initial cwnd to be larger 8248 * than allowed by RFC 3390. 8249 */ 8250 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 8251 tcp->tcp_init_cwnd = init_cwnd; 8252 break; 8253 } 8254 if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { 8255 *outlenp = 0; 8256 return (reterr); 8257 } 8258 if (init_cwnd > TCP_MAX_INIT_CWND) { 8259 *outlenp = 0; 8260 return (EINVAL); 8261 } 8262 tcp->tcp_init_cwnd = init_cwnd; 8263 break; 8264 } 8265 case TCP_KEEPALIVE_THRESHOLD: 8266 if (checkonly) 8267 break; 8268 8269 if (*i1 < tcps->tcps_keepalive_interval_low || 8270 *i1 > tcps->tcps_keepalive_interval_high) { 8271 *outlenp = 0; 8272 return (EINVAL); 8273 } 8274 if (*i1 != tcp->tcp_ka_interval) { 8275 tcp->tcp_ka_interval = *i1; 8276 /* 8277 * Check if we need to restart the 8278 * keepalive timer. 8279 */ 8280 if (tcp->tcp_ka_tid != 0) { 8281 ASSERT(connp->conn_keepalive); 8282 (void) TCP_TIMER_CANCEL(tcp, 8283 tcp->tcp_ka_tid); 8284 tcp->tcp_ka_last_intrvl = 0; 8285 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8286 tcp_keepalive_killer, 8287 MSEC_TO_TICK(tcp->tcp_ka_interval)); 8288 } 8289 } 8290 break; 8291 case TCP_KEEPALIVE_ABORT_THRESHOLD: 8292 if (!checkonly) { 8293 if (*i1 < 8294 tcps->tcps_keepalive_abort_interval_low || 8295 *i1 > 8296 tcps->tcps_keepalive_abort_interval_high) { 8297 *outlenp = 0; 8298 return (EINVAL); 8299 } 8300 tcp->tcp_ka_abort_thres = *i1; 8301 } 8302 break; 8303 case TCP_CORK: 8304 if (!checkonly) { 8305 /* 8306 * if tcp->tcp_cork was set and is now 8307 * being unset, we have to make sure that 8308 * the remaining data gets sent out. Also 8309 * unset tcp->tcp_cork so that tcp_wput_data() 8310 * can send data even if it is less than mss 8311 */ 8312 if (tcp->tcp_cork && onoff == 0 && 8313 tcp->tcp_unsent > 0) { 8314 tcp->tcp_cork = B_FALSE; 8315 tcp_wput_data(tcp, NULL, B_FALSE); 8316 } 8317 tcp->tcp_cork = onoff; 8318 } 8319 break; 8320 default: 8321 break; 8322 } 8323 break; 8324 case IPPROTO_IP: 8325 if (connp->conn_family != AF_INET) { 8326 *outlenp = 0; 8327 return (EINVAL); 8328 } 8329 switch (name) { 8330 case IP_SEC_OPT: 8331 /* 8332 * We should not allow policy setting after 8333 * we start listening for connections. 8334 */ 8335 if (tcp->tcp_state == TCPS_LISTEN) { 8336 return (EINVAL); 8337 } 8338 break; 8339 } 8340 break; 8341 case IPPROTO_IPV6: 8342 /* 8343 * IPPROTO_IPV6 options are only supported for sockets 8344 * that are using IPv6 on the wire. 8345 */ 8346 if (connp->conn_ipversion != IPV6_VERSION) { 8347 *outlenp = 0; 8348 return (EINVAL); 8349 } 8350 8351 switch (name) { 8352 case IPV6_RECVPKTINFO: 8353 if (!checkonly) { 8354 /* Force it to be sent up with the next msg */ 8355 tcp->tcp_recvifindex = 0; 8356 } 8357 break; 8358 case IPV6_RECVTCLASS: 8359 if (!checkonly) { 8360 /* Force it to be sent up with the next msg */ 8361 tcp->tcp_recvtclass = 0xffffffffU; 8362 } 8363 break; 8364 case IPV6_RECVHOPLIMIT: 8365 if (!checkonly) { 8366 /* Force it to be sent up with the next msg */ 8367 tcp->tcp_recvhops = 0xffffffffU; 8368 } 8369 break; 8370 case IPV6_PKTINFO: 8371 /* This is an extra check for TCP */ 8372 if (inlen == sizeof (struct in6_pktinfo)) { 8373 struct in6_pktinfo *pkti; 8374 8375 pkti = (struct in6_pktinfo *)invalp; 8376 /* 8377 * RFC 3542 states that ipi6_addr must be 8378 * the unspecified address when setting the 8379 * IPV6_PKTINFO sticky socket option on a 8380 * TCP socket. 8381 */ 8382 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 8383 return (EINVAL); 8384 } 8385 break; 8386 case IPV6_SEC_OPT: 8387 /* 8388 * We should not allow policy setting after 8389 * we start listening for connections. 8390 */ 8391 if (tcp->tcp_state == TCPS_LISTEN) { 8392 return (EINVAL); 8393 } 8394 break; 8395 } 8396 break; 8397 } 8398 reterr = conn_opt_set(&coas, level, name, inlen, invalp, 8399 checkonly, cr); 8400 if (reterr != 0) { 8401 *outlenp = 0; 8402 return (reterr); 8403 } 8404 8405 /* 8406 * Common case of OK return with outval same as inval 8407 */ 8408 if (invalp != outvalp) { 8409 /* don't trust bcopy for identical src/dst */ 8410 (void) bcopy(invalp, outvalp, inlen); 8411 } 8412 *outlenp = inlen; 8413 8414 if (coas.coa_changed & COA_HEADER_CHANGED) { 8415 reterr = tcp_build_hdrs(tcp); 8416 if (reterr != 0) 8417 return (reterr); 8418 } 8419 if (coas.coa_changed & COA_ROUTE_CHANGED) { 8420 in6_addr_t nexthop; 8421 8422 /* 8423 * If we are connected we re-cache the information. 8424 * We ignore errors to preserve BSD behavior. 8425 * Note that we don't redo IPsec policy lookup here 8426 * since the final destination (or source) didn't change. 8427 */ 8428 ip_attr_nexthop(&connp->conn_xmit_ipp, connp->conn_ixa, 8429 &connp->conn_faddr_v6, &nexthop); 8430 8431 if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6) && 8432 !IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_faddr_v6)) { 8433 (void) ip_attr_connect(connp, connp->conn_ixa, 8434 &connp->conn_laddr_v6, &connp->conn_faddr_v6, 8435 &nexthop, connp->conn_fport, NULL, NULL, 8436 IPDF_VERIFY_DST); 8437 } 8438 } 8439 if ((coas.coa_changed & COA_SNDBUF_CHANGED) && !IPCL_IS_NONSTR(connp)) { 8440 connp->conn_wq->q_hiwat = connp->conn_sndbuf; 8441 } 8442 if (coas.coa_changed & COA_WROFF_CHANGED) { 8443 connp->conn_wroff = connp->conn_ht_iphc_allocated + 8444 tcps->tcps_wroff_xtra; 8445 (void) proto_set_tx_wroff(connp->conn_rq, connp, 8446 connp->conn_wroff); 8447 } 8448 if (coas.coa_changed & COA_OOBINLINE_CHANGED) { 8449 if (IPCL_IS_NONSTR(connp)) 8450 proto_set_rx_oob_opt(connp, onoff); 8451 } 8452 return (0); 8453 } 8454 8455 /* ARGSUSED */ 8456 int 8457 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name, 8458 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 8459 void *thisdg_attrs, cred_t *cr) 8460 { 8461 conn_t *connp = Q_TO_CONN(q); 8462 8463 return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp, 8464 outlenp, outvalp, thisdg_attrs, cr)); 8465 } 8466 8467 int 8468 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 8469 const void *optvalp, socklen_t optlen, cred_t *cr) 8470 { 8471 conn_t *connp = (conn_t *)proto_handle; 8472 squeue_t *sqp = connp->conn_sqp; 8473 int error; 8474 8475 ASSERT(connp->conn_upper_handle != NULL); 8476 /* 8477 * Entering the squeue synchronously can result in a context switch, 8478 * which can cause a rather sever performance degradation. So we try to 8479 * handle whatever options we can without entering the squeue. 8480 */ 8481 if (level == IPPROTO_TCP) { 8482 switch (option_name) { 8483 case TCP_NODELAY: 8484 if (optlen != sizeof (int32_t)) 8485 return (EINVAL); 8486 mutex_enter(&connp->conn_tcp->tcp_non_sq_lock); 8487 connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 : 8488 connp->conn_tcp->tcp_mss; 8489 mutex_exit(&connp->conn_tcp->tcp_non_sq_lock); 8490 return (0); 8491 default: 8492 break; 8493 } 8494 } 8495 8496 error = squeue_synch_enter(sqp, connp, NULL); 8497 if (error == ENOMEM) { 8498 return (ENOMEM); 8499 } 8500 8501 error = proto_opt_check(level, option_name, optlen, NULL, 8502 tcp_opt_obj.odb_opt_des_arr, 8503 tcp_opt_obj.odb_opt_arr_cnt, 8504 B_TRUE, B_FALSE, cr); 8505 8506 if (error != 0) { 8507 if (error < 0) { 8508 error = proto_tlitosyserr(-error); 8509 } 8510 squeue_synch_exit(sqp, connp); 8511 return (error); 8512 } 8513 8514 error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name, 8515 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp, 8516 NULL, cr); 8517 squeue_synch_exit(sqp, connp); 8518 8519 ASSERT(error >= 0); 8520 8521 return (error); 8522 } 8523 8524 /* 8525 * Build/update the tcp header template (in conn_ht_iphc) based on 8526 * conn_xmit_ipp. The headers include ip6_t, any extension 8527 * headers, and the maximum size tcp header (to avoid reallocation 8528 * on the fly for additional tcp options). 8529 * 8530 * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}. 8531 * Returns failure if can't allocate memory. 8532 */ 8533 static int 8534 tcp_build_hdrs(tcp_t *tcp) 8535 { 8536 tcp_stack_t *tcps = tcp->tcp_tcps; 8537 conn_t *connp = tcp->tcp_connp; 8538 tcpha_t *tcpha; 8539 uint32_t cksum; 8540 int error; 8541 8542 /* Grab lock to satisfy ASSERT; TCP is serialized using squeue */ 8543 mutex_enter(&connp->conn_lock); 8544 error = conn_build_hdr_template(connp, TCP_MIN_HEADER_LENGTH, 8545 TCP_MAX_TCP_OPTIONS_LENGTH, &connp->conn_laddr_v6, 8546 &connp->conn_faddr_v6, connp->conn_flowinfo); 8547 mutex_exit(&connp->conn_lock); 8548 if (error != 0) 8549 return (error); 8550 8551 /* 8552 * Any routing header/option has been massaged. The checksum difference 8553 * is stored in conn_sum for later use. 8554 */ 8555 tcpha = (tcpha_t *)connp->conn_ht_ulp; 8556 tcp->tcp_tcpha = tcpha; 8557 8558 tcpha->tha_lport = connp->conn_lport; 8559 tcpha->tha_fport = connp->conn_fport; 8560 tcpha->tha_sum = 0; 8561 tcpha->tha_offset_and_reserved = (5 << 4); 8562 8563 /* 8564 * IP wants our header length in the checksum field to 8565 * allow it to perform a single pseudo-header+checksum 8566 * calculation on behalf of TCP. 8567 * Include the adjustment for a source route once IP_OPTIONS is set. 8568 */ 8569 cksum = sizeof (tcpha_t) + connp->conn_sum; 8570 cksum = (cksum >> 16) + (cksum & 0xFFFF); 8571 ASSERT(cksum < 0x10000); 8572 tcpha->tha_sum = htons(cksum); 8573 8574 if (connp->conn_ipversion == IPV4_VERSION) 8575 tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc; 8576 else 8577 tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc; 8578 8579 if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra > 8580 connp->conn_wroff) { 8581 connp->conn_wroff = connp->conn_ht_iphc_allocated + 8582 tcps->tcps_wroff_xtra; 8583 (void) proto_set_tx_wroff(connp->conn_rq, connp, 8584 connp->conn_wroff); 8585 } 8586 return (0); 8587 } 8588 8589 /* Get callback routine passed to nd_load by tcp_param_register */ 8590 /* ARGSUSED */ 8591 static int 8592 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 8593 { 8594 tcpparam_t *tcppa = (tcpparam_t *)cp; 8595 8596 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 8597 return (0); 8598 } 8599 8600 /* 8601 * Walk through the param array specified registering each element with the 8602 * named dispatch handler. 8603 */ 8604 static boolean_t 8605 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) 8606 { 8607 for (; cnt-- > 0; tcppa++) { 8608 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 8609 if (!nd_load(ndp, tcppa->tcp_param_name, 8610 tcp_param_get, tcp_param_set, 8611 (caddr_t)tcppa)) { 8612 nd_free(ndp); 8613 return (B_FALSE); 8614 } 8615 } 8616 } 8617 tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), 8618 KM_SLEEP); 8619 bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, 8620 sizeof (tcpparam_t)); 8621 if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, 8622 tcp_param_get, tcp_param_set_aligned, 8623 (caddr_t)tcps->tcps_wroff_xtra_param)) { 8624 nd_free(ndp); 8625 return (B_FALSE); 8626 } 8627 if (!nd_load(ndp, "tcp_extra_priv_ports", 8628 tcp_extra_priv_ports_get, NULL, NULL)) { 8629 nd_free(ndp); 8630 return (B_FALSE); 8631 } 8632 if (!nd_load(ndp, "tcp_extra_priv_ports_add", 8633 NULL, tcp_extra_priv_ports_add, NULL)) { 8634 nd_free(ndp); 8635 return (B_FALSE); 8636 } 8637 if (!nd_load(ndp, "tcp_extra_priv_ports_del", 8638 NULL, tcp_extra_priv_ports_del, NULL)) { 8639 nd_free(ndp); 8640 return (B_FALSE); 8641 } 8642 if (!nd_load(ndp, "tcp_1948_phrase", NULL, 8643 tcp_1948_phrase_set, NULL)) { 8644 nd_free(ndp); 8645 return (B_FALSE); 8646 } 8647 /* 8648 * Dummy ndd variables - only to convey obsolescence information 8649 * through printing of their name (no get or set routines) 8650 * XXX Remove in future releases ? 8651 */ 8652 if (!nd_load(ndp, 8653 "tcp_close_wait_interval(obsoleted - " 8654 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 8655 nd_free(ndp); 8656 return (B_FALSE); 8657 } 8658 return (B_TRUE); 8659 } 8660 8661 /* ndd set routine for tcp_wroff_xtra. */ 8662 /* ARGSUSED */ 8663 static int 8664 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 8665 cred_t *cr) 8666 { 8667 long new_value; 8668 tcpparam_t *tcppa = (tcpparam_t *)cp; 8669 8670 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 8671 new_value < tcppa->tcp_param_min || 8672 new_value > tcppa->tcp_param_max) { 8673 return (EINVAL); 8674 } 8675 /* 8676 * Need to make sure new_value is a multiple of 4. If it is not, 8677 * round it up. For future 64 bit requirement, we actually make it 8678 * a multiple of 8. 8679 */ 8680 if (new_value & 0x7) { 8681 new_value = (new_value & ~0x7) + 0x8; 8682 } 8683 tcppa->tcp_param_val = new_value; 8684 return (0); 8685 } 8686 8687 /* Set callback routine passed to nd_load by tcp_param_register */ 8688 /* ARGSUSED */ 8689 static int 8690 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 8691 { 8692 long new_value; 8693 tcpparam_t *tcppa = (tcpparam_t *)cp; 8694 8695 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 8696 new_value < tcppa->tcp_param_min || 8697 new_value > tcppa->tcp_param_max) { 8698 return (EINVAL); 8699 } 8700 tcppa->tcp_param_val = new_value; 8701 return (0); 8702 } 8703 8704 /* 8705 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 8706 * is filled, return as much as we can. The message passed in may be 8707 * multi-part, chained using b_cont. "start" is the starting sequence 8708 * number for this piece. 8709 */ 8710 static mblk_t * 8711 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 8712 { 8713 uint32_t end; 8714 mblk_t *mp1; 8715 mblk_t *mp2; 8716 mblk_t *next_mp; 8717 uint32_t u1; 8718 tcp_stack_t *tcps = tcp->tcp_tcps; 8719 8720 8721 /* Walk through all the new pieces. */ 8722 do { 8723 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 8724 (uintptr_t)INT_MAX); 8725 end = start + (int)(mp->b_wptr - mp->b_rptr); 8726 next_mp = mp->b_cont; 8727 if (start == end) { 8728 /* Empty. Blast it. */ 8729 freeb(mp); 8730 continue; 8731 } 8732 mp->b_cont = NULL; 8733 TCP_REASS_SET_SEQ(mp, start); 8734 TCP_REASS_SET_END(mp, end); 8735 mp1 = tcp->tcp_reass_tail; 8736 if (!mp1) { 8737 tcp->tcp_reass_tail = mp; 8738 tcp->tcp_reass_head = mp; 8739 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 8740 UPDATE_MIB(&tcps->tcps_mib, 8741 tcpInDataUnorderBytes, end - start); 8742 continue; 8743 } 8744 /* New stuff completely beyond tail? */ 8745 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 8746 /* Link it on end. */ 8747 mp1->b_cont = mp; 8748 tcp->tcp_reass_tail = mp; 8749 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 8750 UPDATE_MIB(&tcps->tcps_mib, 8751 tcpInDataUnorderBytes, end - start); 8752 continue; 8753 } 8754 mp1 = tcp->tcp_reass_head; 8755 u1 = TCP_REASS_SEQ(mp1); 8756 /* New stuff at the front? */ 8757 if (SEQ_LT(start, u1)) { 8758 /* Yes... Check for overlap. */ 8759 mp->b_cont = mp1; 8760 tcp->tcp_reass_head = mp; 8761 tcp_reass_elim_overlap(tcp, mp); 8762 continue; 8763 } 8764 /* 8765 * The new piece fits somewhere between the head and tail. 8766 * We find our slot, where mp1 precedes us and mp2 trails. 8767 */ 8768 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 8769 u1 = TCP_REASS_SEQ(mp2); 8770 if (SEQ_LEQ(start, u1)) 8771 break; 8772 } 8773 /* Link ourselves in */ 8774 mp->b_cont = mp2; 8775 mp1->b_cont = mp; 8776 8777 /* Trim overlap with following mblk(s) first */ 8778 tcp_reass_elim_overlap(tcp, mp); 8779 8780 /* Trim overlap with preceding mblk */ 8781 tcp_reass_elim_overlap(tcp, mp1); 8782 8783 } while (start = end, mp = next_mp); 8784 mp1 = tcp->tcp_reass_head; 8785 /* Anything ready to go? */ 8786 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 8787 return (NULL); 8788 /* Eat what we can off the queue */ 8789 for (;;) { 8790 mp = mp1->b_cont; 8791 end = TCP_REASS_END(mp1); 8792 TCP_REASS_SET_SEQ(mp1, 0); 8793 TCP_REASS_SET_END(mp1, 0); 8794 if (!mp) { 8795 tcp->tcp_reass_tail = NULL; 8796 break; 8797 } 8798 if (end != TCP_REASS_SEQ(mp)) { 8799 mp1->b_cont = NULL; 8800 break; 8801 } 8802 mp1 = mp; 8803 } 8804 mp1 = tcp->tcp_reass_head; 8805 tcp->tcp_reass_head = mp; 8806 return (mp1); 8807 } 8808 8809 /* Eliminate any overlap that mp may have over later mblks */ 8810 static void 8811 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 8812 { 8813 uint32_t end; 8814 mblk_t *mp1; 8815 uint32_t u1; 8816 tcp_stack_t *tcps = tcp->tcp_tcps; 8817 8818 end = TCP_REASS_END(mp); 8819 while ((mp1 = mp->b_cont) != NULL) { 8820 u1 = TCP_REASS_SEQ(mp1); 8821 if (!SEQ_GT(end, u1)) 8822 break; 8823 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 8824 mp->b_wptr -= end - u1; 8825 TCP_REASS_SET_END(mp, u1); 8826 BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); 8827 UPDATE_MIB(&tcps->tcps_mib, 8828 tcpInDataPartDupBytes, end - u1); 8829 break; 8830 } 8831 mp->b_cont = mp1->b_cont; 8832 TCP_REASS_SET_SEQ(mp1, 0); 8833 TCP_REASS_SET_END(mp1, 0); 8834 freeb(mp1); 8835 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 8836 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); 8837 } 8838 if (!mp1) 8839 tcp->tcp_reass_tail = mp; 8840 } 8841 8842 static uint_t 8843 tcp_rwnd_reopen(tcp_t *tcp) 8844 { 8845 uint_t ret = 0; 8846 uint_t thwin; 8847 conn_t *connp = tcp->tcp_connp; 8848 8849 /* Learn the latest rwnd information that we sent to the other side. */ 8850 thwin = ((uint_t)ntohs(tcp->tcp_tcpha->tha_win)) 8851 << tcp->tcp_rcv_ws; 8852 /* This is peer's calculated send window (our receive window). */ 8853 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 8854 /* 8855 * Increase the receive window to max. But we need to do receiver 8856 * SWS avoidance. This means that we need to check the increase of 8857 * of receive window is at least 1 MSS. 8858 */ 8859 if (connp->conn_rcvbuf - thwin >= tcp->tcp_mss) { 8860 /* 8861 * If the window that the other side knows is less than max 8862 * deferred acks segments, send an update immediately. 8863 */ 8864 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 8865 BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate); 8866 ret = TH_ACK_NEEDED; 8867 } 8868 tcp->tcp_rwnd = connp->conn_rcvbuf; 8869 } 8870 return (ret); 8871 } 8872 8873 /* 8874 * Send up all messages queued on tcp_rcv_list. 8875 */ 8876 static uint_t 8877 tcp_rcv_drain(tcp_t *tcp) 8878 { 8879 mblk_t *mp; 8880 uint_t ret = 0; 8881 #ifdef DEBUG 8882 uint_t cnt = 0; 8883 #endif 8884 queue_t *q = tcp->tcp_connp->conn_rq; 8885 8886 /* Can't drain on an eager connection */ 8887 if (tcp->tcp_listener != NULL) 8888 return (ret); 8889 8890 /* Can't be a non-STREAMS connection */ 8891 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 8892 8893 /* No need for the push timer now. */ 8894 if (tcp->tcp_push_tid != 0) { 8895 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 8896 tcp->tcp_push_tid = 0; 8897 } 8898 8899 /* 8900 * Handle two cases here: we are currently fused or we were 8901 * previously fused and have some urgent data to be delivered 8902 * upstream. The latter happens because we either ran out of 8903 * memory or were detached and therefore sending the SIGURG was 8904 * deferred until this point. In either case we pass control 8905 * over to tcp_fuse_rcv_drain() since it may need to complete 8906 * some work. 8907 */ 8908 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 8909 ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) || 8910 tcp->tcp_fused_sigurg_mp != NULL); 8911 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 8912 &tcp->tcp_fused_sigurg_mp)) 8913 return (ret); 8914 } 8915 8916 while ((mp = tcp->tcp_rcv_list) != NULL) { 8917 tcp->tcp_rcv_list = mp->b_next; 8918 mp->b_next = NULL; 8919 #ifdef DEBUG 8920 cnt += msgdsize(mp); 8921 #endif 8922 /* Does this need SSL processing first? */ 8923 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 8924 DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain, 8925 mblk_t *, mp); 8926 tcp_kssl_input(tcp, mp, NULL); 8927 continue; 8928 } 8929 putnext(q, mp); 8930 } 8931 #ifdef DEBUG 8932 ASSERT(cnt == tcp->tcp_rcv_cnt); 8933 #endif 8934 tcp->tcp_rcv_last_head = NULL; 8935 tcp->tcp_rcv_last_tail = NULL; 8936 tcp->tcp_rcv_cnt = 0; 8937 8938 if (canputnext(q)) 8939 return (tcp_rwnd_reopen(tcp)); 8940 8941 return (ret); 8942 } 8943 8944 /* 8945 * Queue data on tcp_rcv_list which is a b_next chain. 8946 * tcp_rcv_last_head/tail is the last element of this chain. 8947 * Each element of the chain is a b_cont chain. 8948 * 8949 * M_DATA messages are added to the current element. 8950 * Other messages are added as new (b_next) elements. 8951 */ 8952 void 8953 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len, cred_t *cr) 8954 { 8955 ASSERT(seg_len == msgdsize(mp)); 8956 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 8957 8958 if (is_system_labeled()) { 8959 ASSERT(cr != NULL || msg_getcred(mp, NULL) != NULL); 8960 /* 8961 * Provide for protocols above TCP such as RPC. NOPID leaves 8962 * db_cpid unchanged. 8963 * The cred could have already been set. 8964 */ 8965 if (cr != NULL) 8966 mblk_setcred(mp, cr, NOPID); 8967 } 8968 8969 if (tcp->tcp_rcv_list == NULL) { 8970 ASSERT(tcp->tcp_rcv_last_head == NULL); 8971 tcp->tcp_rcv_list = mp; 8972 tcp->tcp_rcv_last_head = mp; 8973 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 8974 tcp->tcp_rcv_last_tail->b_cont = mp; 8975 } else { 8976 tcp->tcp_rcv_last_head->b_next = mp; 8977 tcp->tcp_rcv_last_head = mp; 8978 } 8979 8980 while (mp->b_cont) 8981 mp = mp->b_cont; 8982 8983 tcp->tcp_rcv_last_tail = mp; 8984 tcp->tcp_rcv_cnt += seg_len; 8985 tcp->tcp_rwnd -= seg_len; 8986 } 8987 8988 /* The minimum of smoothed mean deviation in RTO calculation. */ 8989 #define TCP_SD_MIN 400 8990 8991 /* 8992 * Set RTO for this connection. The formula is from Jacobson and Karels' 8993 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 8994 * are the same as those in Appendix A.2 of that paper. 8995 * 8996 * m = new measurement 8997 * sa = smoothed RTT average (8 * average estimates). 8998 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 8999 */ 9000 static void 9001 tcp_set_rto(tcp_t *tcp, clock_t rtt) 9002 { 9003 long m = TICK_TO_MSEC(rtt); 9004 clock_t sa = tcp->tcp_rtt_sa; 9005 clock_t sv = tcp->tcp_rtt_sd; 9006 clock_t rto; 9007 tcp_stack_t *tcps = tcp->tcp_tcps; 9008 9009 BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); 9010 tcp->tcp_rtt_update++; 9011 9012 /* tcp_rtt_sa is not 0 means this is a new sample. */ 9013 if (sa != 0) { 9014 /* 9015 * Update average estimator: 9016 * new rtt = 7/8 old rtt + 1/8 Error 9017 */ 9018 9019 /* m is now Error in estimate. */ 9020 m -= sa >> 3; 9021 if ((sa += m) <= 0) { 9022 /* 9023 * Don't allow the smoothed average to be negative. 9024 * We use 0 to denote reinitialization of the 9025 * variables. 9026 */ 9027 sa = 1; 9028 } 9029 9030 /* 9031 * Update deviation estimator: 9032 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 9033 */ 9034 if (m < 0) 9035 m = -m; 9036 m -= sv >> 2; 9037 sv += m; 9038 } else { 9039 /* 9040 * This follows BSD's implementation. So the reinitialized 9041 * RTO is 3 * m. We cannot go less than 2 because if the 9042 * link is bandwidth dominated, doubling the window size 9043 * during slow start means doubling the RTT. We want to be 9044 * more conservative when we reinitialize our estimates. 3 9045 * is just a convenient number. 9046 */ 9047 sa = m << 3; 9048 sv = m << 1; 9049 } 9050 if (sv < TCP_SD_MIN) { 9051 /* 9052 * We do not know that if sa captures the delay ACK 9053 * effect as in a long train of segments, a receiver 9054 * does not delay its ACKs. So set the minimum of sv 9055 * to be TCP_SD_MIN, which is default to 400 ms, twice 9056 * of BSD DATO. That means the minimum of mean 9057 * deviation is 100 ms. 9058 * 9059 */ 9060 sv = TCP_SD_MIN; 9061 } 9062 tcp->tcp_rtt_sa = sa; 9063 tcp->tcp_rtt_sd = sv; 9064 /* 9065 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 9066 * 9067 * Add tcp_rexmit_interval extra in case of extreme environment 9068 * where the algorithm fails to work. The default value of 9069 * tcp_rexmit_interval_extra should be 0. 9070 * 9071 * As we use a finer grained clock than BSD and update 9072 * RTO for every ACKs, add in another .25 of RTT to the 9073 * deviation of RTO to accomodate burstiness of 1/4 of 9074 * window size. 9075 */ 9076 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 9077 9078 if (rto > tcps->tcps_rexmit_interval_max) { 9079 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 9080 } else if (rto < tcps->tcps_rexmit_interval_min) { 9081 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 9082 } else { 9083 tcp->tcp_rto = rto; 9084 } 9085 9086 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 9087 tcp->tcp_timer_backoff = 0; 9088 } 9089 9090 /* 9091 * tcp_get_seg_mp() is called to get the pointer to a segment in the 9092 * send queue which starts at the given sequence number. If the given 9093 * sequence number is equal to last valid sequence number (tcp_snxt), the 9094 * returned mblk is the last valid mblk, and off is set to the length of 9095 * that mblk. 9096 * 9097 * send queue which starts at the given seq. no. 9098 * 9099 * Parameters: 9100 * tcp_t *tcp: the tcp instance pointer. 9101 * uint32_t seq: the starting seq. no of the requested segment. 9102 * int32_t *off: after the execution, *off will be the offset to 9103 * the returned mblk which points to the requested seq no. 9104 * It is the caller's responsibility to send in a non-null off. 9105 * 9106 * Return: 9107 * A mblk_t pointer pointing to the requested segment in send queue. 9108 */ 9109 static mblk_t * 9110 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 9111 { 9112 int32_t cnt; 9113 mblk_t *mp; 9114 9115 /* Defensive coding. Make sure we don't send incorrect data. */ 9116 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GT(seq, tcp->tcp_snxt)) 9117 return (NULL); 9118 9119 cnt = seq - tcp->tcp_suna; 9120 mp = tcp->tcp_xmit_head; 9121 while (cnt > 0 && mp != NULL) { 9122 cnt -= mp->b_wptr - mp->b_rptr; 9123 if (cnt <= 0) { 9124 cnt += mp->b_wptr - mp->b_rptr; 9125 break; 9126 } 9127 mp = mp->b_cont; 9128 } 9129 ASSERT(mp != NULL); 9130 *off = cnt; 9131 return (mp); 9132 } 9133 9134 /* 9135 * This function handles all retransmissions if SACK is enabled for this 9136 * connection. First it calculates how many segments can be retransmitted 9137 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 9138 * segments. A segment is eligible if sack_cnt for that segment is greater 9139 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 9140 * all eligible segments, it checks to see if TCP can send some new segments 9141 * (fast recovery). If it can, set the appropriate flag for tcp_input_data(). 9142 * 9143 * Parameters: 9144 * tcp_t *tcp: the tcp structure of the connection. 9145 * uint_t *flags: in return, appropriate value will be set for 9146 * tcp_input_data(). 9147 */ 9148 static void 9149 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 9150 { 9151 notsack_blk_t *notsack_blk; 9152 int32_t usable_swnd; 9153 int32_t mss; 9154 uint32_t seg_len; 9155 mblk_t *xmit_mp; 9156 tcp_stack_t *tcps = tcp->tcp_tcps; 9157 9158 ASSERT(tcp->tcp_sack_info != NULL); 9159 ASSERT(tcp->tcp_notsack_list != NULL); 9160 ASSERT(tcp->tcp_rexmit == B_FALSE); 9161 9162 /* Defensive coding in case there is a bug... */ 9163 if (tcp->tcp_notsack_list == NULL) { 9164 return; 9165 } 9166 notsack_blk = tcp->tcp_notsack_list; 9167 mss = tcp->tcp_mss; 9168 9169 /* 9170 * Limit the num of outstanding data in the network to be 9171 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 9172 */ 9173 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 9174 9175 /* At least retransmit 1 MSS of data. */ 9176 if (usable_swnd <= 0) { 9177 usable_swnd = mss; 9178 } 9179 9180 /* Make sure no new RTT samples will be taken. */ 9181 tcp->tcp_csuna = tcp->tcp_snxt; 9182 9183 notsack_blk = tcp->tcp_notsack_list; 9184 while (usable_swnd > 0) { 9185 mblk_t *snxt_mp, *tmp_mp; 9186 tcp_seq begin = tcp->tcp_sack_snxt; 9187 tcp_seq end; 9188 int32_t off; 9189 9190 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 9191 if (SEQ_GT(notsack_blk->end, begin) && 9192 (notsack_blk->sack_cnt >= 9193 tcps->tcps_dupack_fast_retransmit)) { 9194 end = notsack_blk->end; 9195 if (SEQ_LT(begin, notsack_blk->begin)) { 9196 begin = notsack_blk->begin; 9197 } 9198 break; 9199 } 9200 } 9201 /* 9202 * All holes are filled. Manipulate tcp_cwnd to send more 9203 * if we can. Note that after the SACK recovery, tcp_cwnd is 9204 * set to tcp_cwnd_ssthresh. 9205 */ 9206 if (notsack_blk == NULL) { 9207 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 9208 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 9209 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 9210 ASSERT(tcp->tcp_cwnd > 0); 9211 return; 9212 } else { 9213 usable_swnd = usable_swnd / mss; 9214 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 9215 MAX(usable_swnd * mss, mss); 9216 *flags |= TH_XMIT_NEEDED; 9217 return; 9218 } 9219 } 9220 9221 /* 9222 * Note that we may send more than usable_swnd allows here 9223 * because of round off, but no more than 1 MSS of data. 9224 */ 9225 seg_len = end - begin; 9226 if (seg_len > mss) 9227 seg_len = mss; 9228 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 9229 ASSERT(snxt_mp != NULL); 9230 /* This should not happen. Defensive coding again... */ 9231 if (snxt_mp == NULL) { 9232 return; 9233 } 9234 9235 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 9236 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 9237 if (xmit_mp == NULL) 9238 return; 9239 9240 usable_swnd -= seg_len; 9241 tcp->tcp_pipe += seg_len; 9242 tcp->tcp_sack_snxt = begin + seg_len; 9243 9244 tcp_send_data(tcp, xmit_mp); 9245 9246 /* 9247 * Update the send timestamp to avoid false retransmission. 9248 */ 9249 snxt_mp->b_prev = (mblk_t *)lbolt; 9250 9251 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 9252 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); 9253 BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); 9254 /* 9255 * Update tcp_rexmit_max to extend this SACK recovery phase. 9256 * This happens when new data sent during fast recovery is 9257 * also lost. If TCP retransmits those new data, it needs 9258 * to extend SACK recover phase to avoid starting another 9259 * fast retransmit/recovery unnecessarily. 9260 */ 9261 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 9262 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 9263 } 9264 } 9265 } 9266 9267 /* 9268 * tcp_ss_rexmit() is called to do slow start retransmission after a timeout 9269 * or ICMP errors. 9270 * 9271 * To limit the number of duplicate segments, we limit the number of segment 9272 * to be sent in one time to tcp_snd_burst, the burst variable. 9273 */ 9274 static void 9275 tcp_ss_rexmit(tcp_t *tcp) 9276 { 9277 uint32_t snxt; 9278 uint32_t smax; 9279 int32_t win; 9280 int32_t mss; 9281 int32_t off; 9282 int32_t burst = tcp->tcp_snd_burst; 9283 mblk_t *snxt_mp; 9284 tcp_stack_t *tcps = tcp->tcp_tcps; 9285 9286 /* 9287 * Note that tcp_rexmit can be set even though TCP has retransmitted 9288 * all unack'ed segments. 9289 */ 9290 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 9291 smax = tcp->tcp_rexmit_max; 9292 snxt = tcp->tcp_rexmit_nxt; 9293 if (SEQ_LT(snxt, tcp->tcp_suna)) { 9294 snxt = tcp->tcp_suna; 9295 } 9296 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 9297 win -= snxt - tcp->tcp_suna; 9298 mss = tcp->tcp_mss; 9299 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 9300 9301 while (SEQ_LT(snxt, smax) && (win > 0) && 9302 (burst > 0) && (snxt_mp != NULL)) { 9303 mblk_t *xmit_mp; 9304 mblk_t *old_snxt_mp = snxt_mp; 9305 uint32_t cnt = mss; 9306 9307 if (win < cnt) { 9308 cnt = win; 9309 } 9310 if (SEQ_GT(snxt + cnt, smax)) { 9311 cnt = smax - snxt; 9312 } 9313 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 9314 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 9315 if (xmit_mp == NULL) 9316 return; 9317 9318 tcp_send_data(tcp, xmit_mp); 9319 9320 snxt += cnt; 9321 win -= cnt; 9322 /* 9323 * Update the send timestamp to avoid false 9324 * retransmission. 9325 */ 9326 old_snxt_mp->b_prev = (mblk_t *)lbolt; 9327 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 9328 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); 9329 9330 tcp->tcp_rexmit_nxt = snxt; 9331 burst--; 9332 } 9333 /* 9334 * If we have transmitted all we have at the time 9335 * we started the retranmission, we can leave 9336 * the rest of the job to tcp_wput_data(). But we 9337 * need to check the send window first. If the 9338 * win is not 0, go on with tcp_wput_data(). 9339 */ 9340 if (SEQ_LT(snxt, smax) || win == 0) { 9341 return; 9342 } 9343 } 9344 /* Only call tcp_wput_data() if there is data to be sent. */ 9345 if (tcp->tcp_unsent) { 9346 tcp_wput_data(tcp, NULL, B_FALSE); 9347 } 9348 } 9349 9350 /* 9351 * Process all TCP option in SYN segment. Note that this function should 9352 * be called after tcp_set_destination() is called so that the necessary info 9353 * from IRE is already set in the tcp structure. 9354 * 9355 * This function sets up the correct tcp_mss value according to the 9356 * MSS option value and our header size. It also sets up the window scale 9357 * and timestamp values, and initialize SACK info blocks. But it does not 9358 * change receive window size after setting the tcp_mss value. The caller 9359 * should do the appropriate change. 9360 */ 9361 void 9362 tcp_process_options(tcp_t *tcp, tcpha_t *tcpha) 9363 { 9364 int options; 9365 tcp_opt_t tcpopt; 9366 uint32_t mss_max; 9367 char *tmp_tcph; 9368 tcp_stack_t *tcps = tcp->tcp_tcps; 9369 conn_t *connp = tcp->tcp_connp; 9370 9371 tcpopt.tcp = NULL; 9372 options = tcp_parse_options(tcpha, &tcpopt); 9373 9374 /* 9375 * Process MSS option. Note that MSS option value does not account 9376 * for IP or TCP options. This means that it is equal to MTU - minimum 9377 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 9378 * IPv6. 9379 */ 9380 if (!(options & TCP_OPT_MSS_PRESENT)) { 9381 if (connp->conn_ipversion == IPV4_VERSION) 9382 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 9383 else 9384 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 9385 } else { 9386 if (connp->conn_ipversion == IPV4_VERSION) 9387 mss_max = tcps->tcps_mss_max_ipv4; 9388 else 9389 mss_max = tcps->tcps_mss_max_ipv6; 9390 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 9391 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 9392 else if (tcpopt.tcp_opt_mss > mss_max) 9393 tcpopt.tcp_opt_mss = mss_max; 9394 } 9395 9396 /* Process Window Scale option. */ 9397 if (options & TCP_OPT_WSCALE_PRESENT) { 9398 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 9399 tcp->tcp_snd_ws_ok = B_TRUE; 9400 } else { 9401 tcp->tcp_snd_ws = B_FALSE; 9402 tcp->tcp_snd_ws_ok = B_FALSE; 9403 tcp->tcp_rcv_ws = B_FALSE; 9404 } 9405 9406 /* Process Timestamp option. */ 9407 if ((options & TCP_OPT_TSTAMP_PRESENT) && 9408 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 9409 tmp_tcph = (char *)tcp->tcp_tcpha; 9410 9411 tcp->tcp_snd_ts_ok = B_TRUE; 9412 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 9413 tcp->tcp_last_rcv_lbolt = lbolt64; 9414 ASSERT(OK_32PTR(tmp_tcph)); 9415 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 9416 9417 /* Fill in our template header with basic timestamp option. */ 9418 tmp_tcph += connp->conn_ht_ulp_len; 9419 tmp_tcph[0] = TCPOPT_NOP; 9420 tmp_tcph[1] = TCPOPT_NOP; 9421 tmp_tcph[2] = TCPOPT_TSTAMP; 9422 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 9423 connp->conn_ht_iphc_len += TCPOPT_REAL_TS_LEN; 9424 connp->conn_ht_ulp_len += TCPOPT_REAL_TS_LEN; 9425 tcp->tcp_tcpha->tha_offset_and_reserved += (3 << 4); 9426 } else { 9427 tcp->tcp_snd_ts_ok = B_FALSE; 9428 } 9429 9430 /* 9431 * Process SACK options. If SACK is enabled for this connection, 9432 * then allocate the SACK info structure. Note the following ways 9433 * when tcp_snd_sack_ok is set to true. 9434 * 9435 * For active connection: in tcp_set_destination() called in 9436 * tcp_connect(). 9437 * 9438 * For passive connection: in tcp_set_destination() called in 9439 * tcp_input_listener(). 9440 * 9441 * That's the reason why the extra TCP_IS_DETACHED() check is there. 9442 * That check makes sure that if we did not send a SACK OK option, 9443 * we will not enable SACK for this connection even though the other 9444 * side sends us SACK OK option. For active connection, the SACK 9445 * info structure has already been allocated. So we need to free 9446 * it if SACK is disabled. 9447 */ 9448 if ((options & TCP_OPT_SACK_OK_PRESENT) && 9449 (tcp->tcp_snd_sack_ok || 9450 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 9451 /* This should be true only in the passive case. */ 9452 if (tcp->tcp_sack_info == NULL) { 9453 ASSERT(TCP_IS_DETACHED(tcp)); 9454 tcp->tcp_sack_info = 9455 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 9456 } 9457 if (tcp->tcp_sack_info == NULL) { 9458 tcp->tcp_snd_sack_ok = B_FALSE; 9459 } else { 9460 tcp->tcp_snd_sack_ok = B_TRUE; 9461 if (tcp->tcp_snd_ts_ok) { 9462 tcp->tcp_max_sack_blk = 3; 9463 } else { 9464 tcp->tcp_max_sack_blk = 4; 9465 } 9466 } 9467 } else { 9468 /* 9469 * Resetting tcp_snd_sack_ok to B_FALSE so that 9470 * no SACK info will be used for this 9471 * connection. This assumes that SACK usage 9472 * permission is negotiated. This may need 9473 * to be changed once this is clarified. 9474 */ 9475 if (tcp->tcp_sack_info != NULL) { 9476 ASSERT(tcp->tcp_notsack_list == NULL); 9477 kmem_cache_free(tcp_sack_info_cache, 9478 tcp->tcp_sack_info); 9479 tcp->tcp_sack_info = NULL; 9480 } 9481 tcp->tcp_snd_sack_ok = B_FALSE; 9482 } 9483 9484 /* 9485 * Now we know the exact TCP/IP header length, subtract 9486 * that from tcp_mss to get our side's MSS. 9487 */ 9488 tcp->tcp_mss -= connp->conn_ht_iphc_len; 9489 9490 /* 9491 * Here we assume that the other side's header size will be equal to 9492 * our header size. We calculate the real MSS accordingly. Need to 9493 * take into additional stuffs IPsec puts in. 9494 * 9495 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 9496 */ 9497 tcpopt.tcp_opt_mss -= connp->conn_ht_iphc_len + 9498 tcp->tcp_ipsec_overhead - 9499 ((connp->conn_ipversion == IPV4_VERSION ? 9500 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 9501 9502 /* 9503 * Set MSS to the smaller one of both ends of the connection. 9504 * We should not have called tcp_mss_set() before, but our 9505 * side of the MSS should have been set to a proper value 9506 * by tcp_set_destination(). tcp_mss_set() will also set up the 9507 * STREAM head parameters properly. 9508 * 9509 * If we have a larger-than-16-bit window but the other side 9510 * didn't want to do window scale, tcp_rwnd_set() will take 9511 * care of that. 9512 */ 9513 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); 9514 9515 /* 9516 * Initialize tcp_cwnd value. After tcp_mss_set(), tcp_mss has been 9517 * updated properly. 9518 */ 9519 SET_TCP_INIT_CWND(tcp, tcp->tcp_mss, tcps->tcps_slow_start_initial); 9520 } 9521 9522 /* 9523 * Sends the T_CONN_IND to the listener. The caller calls this 9524 * functions via squeue to get inside the listener's perimeter 9525 * once the 3 way hand shake is done a T_CONN_IND needs to be 9526 * sent. As an optimization, the caller can call this directly 9527 * if listener's perimeter is same as eager's. 9528 */ 9529 /* ARGSUSED */ 9530 void 9531 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 9532 { 9533 conn_t *lconnp = (conn_t *)arg; 9534 tcp_t *listener = lconnp->conn_tcp; 9535 tcp_t *tcp; 9536 struct T_conn_ind *conn_ind; 9537 ipaddr_t *addr_cache; 9538 boolean_t need_send_conn_ind = B_FALSE; 9539 tcp_stack_t *tcps = listener->tcp_tcps; 9540 9541 /* retrieve the eager */ 9542 conn_ind = (struct T_conn_ind *)mp->b_rptr; 9543 ASSERT(conn_ind->OPT_offset != 0 && 9544 conn_ind->OPT_length == sizeof (intptr_t)); 9545 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 9546 conn_ind->OPT_length); 9547 9548 /* 9549 * TLI/XTI applications will get confused by 9550 * sending eager as an option since it violates 9551 * the option semantics. So remove the eager as 9552 * option since TLI/XTI app doesn't need it anyway. 9553 */ 9554 if (!TCP_IS_SOCKET(listener)) { 9555 conn_ind->OPT_length = 0; 9556 conn_ind->OPT_offset = 0; 9557 } 9558 if (listener->tcp_state != TCPS_LISTEN) { 9559 /* 9560 * If listener has closed, it would have caused a 9561 * a cleanup/blowoff to happen for the eager. We 9562 * just need to return. 9563 */ 9564 freemsg(mp); 9565 return; 9566 } 9567 9568 9569 /* 9570 * if the conn_req_q is full defer passing up the 9571 * T_CONN_IND until space is availabe after t_accept() 9572 * processing 9573 */ 9574 mutex_enter(&listener->tcp_eager_lock); 9575 9576 /* 9577 * Take the eager out, if it is in the list of droppable eagers 9578 * as we are here because the 3W handshake is over. 9579 */ 9580 MAKE_UNDROPPABLE(tcp); 9581 9582 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 9583 tcp_t *tail; 9584 9585 /* 9586 * The eager already has an extra ref put in tcp_input_data 9587 * so that it stays till accept comes back even though it 9588 * might get into TCPS_CLOSED as a result of a TH_RST etc. 9589 */ 9590 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 9591 listener->tcp_conn_req_cnt_q0--; 9592 listener->tcp_conn_req_cnt_q++; 9593 9594 /* Move from SYN_RCVD to ESTABLISHED list */ 9595 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 9596 tcp->tcp_eager_prev_q0; 9597 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 9598 tcp->tcp_eager_next_q0; 9599 tcp->tcp_eager_prev_q0 = NULL; 9600 tcp->tcp_eager_next_q0 = NULL; 9601 9602 /* 9603 * Insert at end of the queue because sockfs 9604 * sends down T_CONN_RES in chronological 9605 * order. Leaving the older conn indications 9606 * at front of the queue helps reducing search 9607 * time. 9608 */ 9609 tail = listener->tcp_eager_last_q; 9610 if (tail != NULL) 9611 tail->tcp_eager_next_q = tcp; 9612 else 9613 listener->tcp_eager_next_q = tcp; 9614 listener->tcp_eager_last_q = tcp; 9615 tcp->tcp_eager_next_q = NULL; 9616 /* 9617 * Delay sending up the T_conn_ind until we are 9618 * done with the eager. Once we have have sent up 9619 * the T_conn_ind, the accept can potentially complete 9620 * any time and release the refhold we have on the eager. 9621 */ 9622 need_send_conn_ind = B_TRUE; 9623 } else { 9624 /* 9625 * Defer connection on q0 and set deferred 9626 * connection bit true 9627 */ 9628 tcp->tcp_conn_def_q0 = B_TRUE; 9629 9630 /* take tcp out of q0 ... */ 9631 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 9632 tcp->tcp_eager_next_q0; 9633 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 9634 tcp->tcp_eager_prev_q0; 9635 9636 /* ... and place it at the end of q0 */ 9637 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 9638 tcp->tcp_eager_next_q0 = listener; 9639 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 9640 listener->tcp_eager_prev_q0 = tcp; 9641 tcp->tcp_conn.tcp_eager_conn_ind = mp; 9642 } 9643 9644 /* we have timed out before */ 9645 if (tcp->tcp_syn_rcvd_timeout != 0) { 9646 tcp->tcp_syn_rcvd_timeout = 0; 9647 listener->tcp_syn_rcvd_timeout--; 9648 if (listener->tcp_syn_defense && 9649 listener->tcp_syn_rcvd_timeout <= 9650 (tcps->tcps_conn_req_max_q0 >> 5) && 9651 10*MINUTES < TICK_TO_MSEC(lbolt64 - 9652 listener->tcp_last_rcv_lbolt)) { 9653 /* 9654 * Turn off the defense mode if we 9655 * believe the SYN attack is over. 9656 */ 9657 listener->tcp_syn_defense = B_FALSE; 9658 if (listener->tcp_ip_addr_cache) { 9659 kmem_free((void *)listener->tcp_ip_addr_cache, 9660 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 9661 listener->tcp_ip_addr_cache = NULL; 9662 } 9663 } 9664 } 9665 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 9666 if (addr_cache != NULL) { 9667 /* 9668 * We have finished a 3-way handshake with this 9669 * remote host. This proves the IP addr is good. 9670 * Cache it! 9671 */ 9672 addr_cache[IP_ADDR_CACHE_HASH(tcp->tcp_connp->conn_faddr_v4)] = 9673 tcp->tcp_connp->conn_faddr_v4; 9674 } 9675 mutex_exit(&listener->tcp_eager_lock); 9676 if (need_send_conn_ind) 9677 tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp); 9678 } 9679 9680 /* 9681 * Send the newconn notification to ulp. The eager is blown off if the 9682 * notification fails. 9683 */ 9684 static void 9685 tcp_ulp_newconn(conn_t *lconnp, conn_t *econnp, mblk_t *mp) 9686 { 9687 if (IPCL_IS_NONSTR(lconnp)) { 9688 cred_t *cr; 9689 pid_t cpid = NOPID; 9690 9691 ASSERT(econnp->conn_tcp->tcp_listener == lconnp->conn_tcp); 9692 ASSERT(econnp->conn_tcp->tcp_saved_listener == 9693 lconnp->conn_tcp); 9694 9695 cr = msg_getcred(mp, &cpid); 9696 9697 /* Keep the message around in case of a fallback to TPI */ 9698 econnp->conn_tcp->tcp_conn.tcp_eager_conn_ind = mp; 9699 /* 9700 * Notify the ULP about the newconn. It is guaranteed that no 9701 * tcp_accept() call will be made for the eager if the 9702 * notification fails, so it's safe to blow it off in that 9703 * case. 9704 * 9705 * The upper handle will be assigned when tcp_accept() is 9706 * called. 9707 */ 9708 if ((*lconnp->conn_upcalls->su_newconn) 9709 (lconnp->conn_upper_handle, 9710 (sock_lower_handle_t)econnp, 9711 &sock_tcp_downcalls, cr, cpid, 9712 &econnp->conn_upcalls) == NULL) { 9713 /* Failed to allocate a socket */ 9714 BUMP_MIB(&lconnp->conn_tcp->tcp_tcps->tcps_mib, 9715 tcpEstabResets); 9716 (void) tcp_eager_blowoff(lconnp->conn_tcp, 9717 econnp->conn_tcp->tcp_conn_req_seqnum); 9718 } 9719 } else { 9720 putnext(lconnp->conn_rq, mp); 9721 } 9722 } 9723 9724 /* 9725 * Handle a packet that has been reclassified by TCP. 9726 * This function drops the ref on connp that the caller had. 9727 */ 9728 static void 9729 tcp_reinput(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst) 9730 { 9731 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 9732 9733 if (connp->conn_incoming_ifindex != 0 && 9734 connp->conn_incoming_ifindex != ira->ira_ruifindex) { 9735 freemsg(mp); 9736 CONN_DEC_REF(connp); 9737 return; 9738 } 9739 9740 if (CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) || 9741 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 9742 ip6_t *ip6h; 9743 ipha_t *ipha; 9744 9745 if (ira->ira_flags & IRAF_IS_IPV4) { 9746 ipha = (ipha_t *)mp->b_rptr; 9747 ip6h = NULL; 9748 } else { 9749 ipha = NULL; 9750 ip6h = (ip6_t *)mp->b_rptr; 9751 } 9752 mp = ipsec_check_inbound_policy(mp, connp, ipha, ip6h, ira); 9753 if (mp == NULL) { 9754 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 9755 /* Note that mp is NULL */ 9756 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 9757 CONN_DEC_REF(connp); 9758 return; 9759 } 9760 } 9761 9762 if (IPCL_IS_TCP(connp)) { 9763 /* 9764 * do not drain, certain use cases can blow 9765 * the stack 9766 */ 9767 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 9768 connp->conn_recv, connp, ira, 9769 SQ_NODRAIN, SQTAG_IP_TCP_INPUT); 9770 } else { 9771 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 9772 (connp->conn_recv)(connp, mp, NULL, 9773 ira); 9774 CONN_DEC_REF(connp); 9775 } 9776 9777 } 9778 9779 boolean_t tcp_outbound_squeue_switch = B_FALSE; 9780 9781 /* 9782 * Handle M_DATA messages from IP. Its called directly from IP via 9783 * squeue for received IP packets. 9784 * 9785 * The first argument is always the connp/tcp to which the mp belongs. 9786 * There are no exceptions to this rule. The caller has already put 9787 * a reference on this connp/tcp and once tcp_input_data() returns, 9788 * the squeue will do the refrele. 9789 * 9790 * The TH_SYN for the listener directly go to tcp_input_listener via 9791 * squeue. ICMP errors go directly to tcp_icmp_input(). 9792 * 9793 * sqp: NULL = recursive, sqp != NULL means called from squeue 9794 */ 9795 void 9796 tcp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 9797 { 9798 int32_t bytes_acked; 9799 int32_t gap; 9800 mblk_t *mp1; 9801 uint_t flags; 9802 uint32_t new_swnd = 0; 9803 uchar_t *iphdr; 9804 uchar_t *rptr; 9805 int32_t rgap; 9806 uint32_t seg_ack; 9807 int seg_len; 9808 uint_t ip_hdr_len; 9809 uint32_t seg_seq; 9810 tcpha_t *tcpha; 9811 int urp; 9812 tcp_opt_t tcpopt; 9813 ip_pkt_t ipp; 9814 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 9815 uint32_t cwnd; 9816 uint32_t add; 9817 int npkt; 9818 int mss; 9819 conn_t *connp = (conn_t *)arg; 9820 squeue_t *sqp = (squeue_t *)arg2; 9821 tcp_t *tcp = connp->conn_tcp; 9822 tcp_stack_t *tcps = tcp->tcp_tcps; 9823 9824 /* 9825 * RST from fused tcp loopback peer should trigger an unfuse. 9826 */ 9827 if (tcp->tcp_fused) { 9828 TCP_STAT(tcps, tcp_fusion_aborted); 9829 tcp_unfuse(tcp); 9830 } 9831 9832 iphdr = mp->b_rptr; 9833 rptr = mp->b_rptr; 9834 ASSERT(OK_32PTR(rptr)); 9835 9836 ip_hdr_len = ira->ira_ip_hdr_length; 9837 if (connp->conn_recv_ancillary.crb_all != 0) { 9838 /* 9839 * Record packet information in the ip_pkt_t 9840 */ 9841 ipp.ipp_fields = 0; 9842 if (ira->ira_flags & IRAF_IS_IPV4) { 9843 (void) ip_find_hdr_v4((ipha_t *)rptr, &ipp, 9844 B_FALSE); 9845 } else { 9846 uint8_t nexthdrp; 9847 9848 /* 9849 * IPv6 packets can only be received by applications 9850 * that are prepared to receive IPv6 addresses. 9851 * The IP fanout must ensure this. 9852 */ 9853 ASSERT(connp->conn_family == AF_INET6); 9854 9855 (void) ip_find_hdr_v6(mp, (ip6_t *)rptr, B_TRUE, &ipp, 9856 &nexthdrp); 9857 ASSERT(nexthdrp == IPPROTO_TCP); 9858 9859 /* Could have caused a pullup? */ 9860 iphdr = mp->b_rptr; 9861 rptr = mp->b_rptr; 9862 } 9863 } 9864 ASSERT(DB_TYPE(mp) == M_DATA); 9865 ASSERT(mp->b_next == NULL); 9866 9867 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 9868 seg_seq = ntohl(tcpha->tha_seq); 9869 seg_ack = ntohl(tcpha->tha_ack); 9870 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 9871 seg_len = (int)(mp->b_wptr - rptr) - 9872 (ip_hdr_len + TCP_HDR_LENGTH(tcpha)); 9873 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 9874 do { 9875 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 9876 (uintptr_t)INT_MAX); 9877 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 9878 } while ((mp1 = mp1->b_cont) != NULL && 9879 mp1->b_datap->db_type == M_DATA); 9880 } 9881 9882 if (tcp->tcp_state == TCPS_TIME_WAIT) { 9883 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 9884 seg_len, tcpha, ira); 9885 return; 9886 } 9887 9888 if (sqp != NULL) { 9889 /* 9890 * This is the correct place to update tcp_last_recv_time. Note 9891 * that it is also updated for tcp structure that belongs to 9892 * global and listener queues which do not really need updating. 9893 * But that should not cause any harm. And it is updated for 9894 * all kinds of incoming segments, not only for data segments. 9895 */ 9896 tcp->tcp_last_recv_time = lbolt; 9897 } 9898 9899 flags = (unsigned int)tcpha->tha_flags & 0xFF; 9900 9901 BUMP_LOCAL(tcp->tcp_ibsegs); 9902 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 9903 9904 if ((flags & TH_URG) && sqp != NULL) { 9905 /* 9906 * TCP can't handle urgent pointers that arrive before 9907 * the connection has been accept()ed since it can't 9908 * buffer OOB data. Discard segment if this happens. 9909 * 9910 * We can't just rely on a non-null tcp_listener to indicate 9911 * that the accept() has completed since unlinking of the 9912 * eager and completion of the accept are not atomic. 9913 * tcp_detached, when it is not set (B_FALSE) indicates 9914 * that the accept() has completed. 9915 * 9916 * Nor can it reassemble urgent pointers, so discard 9917 * if it's not the next segment expected. 9918 * 9919 * Otherwise, collapse chain into one mblk (discard if 9920 * that fails). This makes sure the headers, retransmitted 9921 * data, and new data all are in the same mblk. 9922 */ 9923 ASSERT(mp != NULL); 9924 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 9925 freemsg(mp); 9926 return; 9927 } 9928 /* Update pointers into message */ 9929 iphdr = rptr = mp->b_rptr; 9930 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 9931 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 9932 /* 9933 * Since we can't handle any data with this urgent 9934 * pointer that is out of sequence, we expunge 9935 * the data. This allows us to still register 9936 * the urgent mark and generate the M_PCSIG, 9937 * which we can do. 9938 */ 9939 mp->b_wptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 9940 seg_len = 0; 9941 } 9942 } 9943 9944 switch (tcp->tcp_state) { 9945 case TCPS_SYN_SENT: 9946 if (connp->conn_final_sqp == NULL && 9947 tcp_outbound_squeue_switch && sqp != NULL) { 9948 ASSERT(connp->conn_initial_sqp == connp->conn_sqp); 9949 connp->conn_final_sqp = sqp; 9950 if (connp->conn_final_sqp != connp->conn_sqp) { 9951 DTRACE_PROBE1(conn__final__sqp__switch, 9952 conn_t *, connp); 9953 CONN_INC_REF(connp); 9954 SQUEUE_SWITCH(connp, connp->conn_final_sqp); 9955 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 9956 tcp_input_data, connp, ira, ip_squeue_flag, 9957 SQTAG_CONNECT_FINISH); 9958 return; 9959 } 9960 DTRACE_PROBE1(conn__final__sqp__same, conn_t *, connp); 9961 } 9962 if (flags & TH_ACK) { 9963 /* 9964 * Note that our stack cannot send data before a 9965 * connection is established, therefore the 9966 * following check is valid. Otherwise, it has 9967 * to be changed. 9968 */ 9969 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 9970 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 9971 freemsg(mp); 9972 if (flags & TH_RST) 9973 return; 9974 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 9975 tcp, seg_ack, 0, TH_RST); 9976 return; 9977 } 9978 ASSERT(tcp->tcp_suna + 1 == seg_ack); 9979 } 9980 if (flags & TH_RST) { 9981 freemsg(mp); 9982 if (flags & TH_ACK) 9983 (void) tcp_clean_death(tcp, 9984 ECONNREFUSED, 13); 9985 return; 9986 } 9987 if (!(flags & TH_SYN)) { 9988 freemsg(mp); 9989 return; 9990 } 9991 9992 /* Process all TCP options. */ 9993 tcp_process_options(tcp, tcpha); 9994 /* 9995 * The following changes our rwnd to be a multiple of the 9996 * MIN(peer MSS, our MSS) for performance reason. 9997 */ 9998 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(connp->conn_rcvbuf, 9999 tcp->tcp_mss)); 10000 10001 /* Is the other end ECN capable? */ 10002 if (tcp->tcp_ecn_ok) { 10003 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 10004 tcp->tcp_ecn_ok = B_FALSE; 10005 } 10006 } 10007 /* 10008 * Clear ECN flags because it may interfere with later 10009 * processing. 10010 */ 10011 flags &= ~(TH_ECE|TH_CWR); 10012 10013 tcp->tcp_irs = seg_seq; 10014 tcp->tcp_rack = seg_seq; 10015 tcp->tcp_rnxt = seg_seq + 1; 10016 tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); 10017 if (!TCP_IS_DETACHED(tcp)) { 10018 /* Allocate room for SACK options if needed. */ 10019 connp->conn_wroff = connp->conn_ht_iphc_len; 10020 if (tcp->tcp_snd_sack_ok) 10021 connp->conn_wroff += TCPOPT_MAX_SACK_LEN; 10022 if (!tcp->tcp_loopback) 10023 connp->conn_wroff += tcps->tcps_wroff_xtra; 10024 10025 (void) proto_set_tx_wroff(connp->conn_rq, connp, 10026 connp->conn_wroff); 10027 } 10028 if (flags & TH_ACK) { 10029 /* 10030 * If we can't get the confirmation upstream, pretend 10031 * we didn't even see this one. 10032 * 10033 * XXX: how can we pretend we didn't see it if we 10034 * have updated rnxt et. al. 10035 * 10036 * For loopback we defer sending up the T_CONN_CON 10037 * until after some checks below. 10038 */ 10039 mp1 = NULL; 10040 /* 10041 * tcp_sendmsg() checks tcp_state without entering 10042 * the squeue so tcp_state should be updated before 10043 * sending up connection confirmation 10044 */ 10045 tcp->tcp_state = TCPS_ESTABLISHED; 10046 if (!tcp_conn_con(tcp, iphdr, mp, 10047 tcp->tcp_loopback ? &mp1 : NULL, ira)) { 10048 tcp->tcp_state = TCPS_SYN_SENT; 10049 freemsg(mp); 10050 return; 10051 } 10052 /* SYN was acked - making progress */ 10053 tcp->tcp_ip_forward_progress = B_TRUE; 10054 10055 /* One for the SYN */ 10056 tcp->tcp_suna = tcp->tcp_iss + 1; 10057 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 10058 10059 /* 10060 * If SYN was retransmitted, need to reset all 10061 * retransmission info. This is because this 10062 * segment will be treated as a dup ACK. 10063 */ 10064 if (tcp->tcp_rexmit) { 10065 tcp->tcp_rexmit = B_FALSE; 10066 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 10067 tcp->tcp_rexmit_max = tcp->tcp_snxt; 10068 tcp->tcp_snd_burst = tcp->tcp_localnet ? 10069 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 10070 tcp->tcp_ms_we_have_waited = 0; 10071 10072 /* 10073 * Set tcp_cwnd back to 1 MSS, per 10074 * recommendation from 10075 * draft-floyd-incr-init-win-01.txt, 10076 * Increasing TCP's Initial Window. 10077 */ 10078 tcp->tcp_cwnd = tcp->tcp_mss; 10079 } 10080 10081 tcp->tcp_swl1 = seg_seq; 10082 tcp->tcp_swl2 = seg_ack; 10083 10084 new_swnd = ntohs(tcpha->tha_win); 10085 tcp->tcp_swnd = new_swnd; 10086 if (new_swnd > tcp->tcp_max_swnd) 10087 tcp->tcp_max_swnd = new_swnd; 10088 10089 /* 10090 * Always send the three-way handshake ack immediately 10091 * in order to make the connection complete as soon as 10092 * possible on the accepting host. 10093 */ 10094 flags |= TH_ACK_NEEDED; 10095 10096 /* 10097 * Special case for loopback. At this point we have 10098 * received SYN-ACK from the remote endpoint. In 10099 * order to ensure that both endpoints reach the 10100 * fused state prior to any data exchange, the final 10101 * ACK needs to be sent before we indicate T_CONN_CON 10102 * to the module upstream. 10103 */ 10104 if (tcp->tcp_loopback) { 10105 mblk_t *ack_mp; 10106 10107 ASSERT(!tcp->tcp_unfusable); 10108 ASSERT(mp1 != NULL); 10109 /* 10110 * For loopback, we always get a pure SYN-ACK 10111 * and only need to send back the final ACK 10112 * with no data (this is because the other 10113 * tcp is ours and we don't do T/TCP). This 10114 * final ACK triggers the passive side to 10115 * perform fusion in ESTABLISHED state. 10116 */ 10117 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 10118 if (tcp->tcp_ack_tid != 0) { 10119 (void) TCP_TIMER_CANCEL(tcp, 10120 tcp->tcp_ack_tid); 10121 tcp->tcp_ack_tid = 0; 10122 } 10123 tcp_send_data(tcp, ack_mp); 10124 BUMP_LOCAL(tcp->tcp_obsegs); 10125 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 10126 10127 if (!IPCL_IS_NONSTR(connp)) { 10128 /* Send up T_CONN_CON */ 10129 if (ira->ira_cred != NULL) { 10130 mblk_setcred(mp1, 10131 ira->ira_cred, 10132 ira->ira_cpid); 10133 } 10134 putnext(connp->conn_rq, mp1); 10135 } else { 10136 (*connp->conn_upcalls-> 10137 su_connected) 10138 (connp->conn_upper_handle, 10139 tcp->tcp_connid, 10140 ira->ira_cred, 10141 ira->ira_cpid); 10142 freemsg(mp1); 10143 } 10144 10145 freemsg(mp); 10146 return; 10147 } 10148 /* 10149 * Forget fusion; we need to handle more 10150 * complex cases below. Send the deferred 10151 * T_CONN_CON message upstream and proceed 10152 * as usual. Mark this tcp as not capable 10153 * of fusion. 10154 */ 10155 TCP_STAT(tcps, tcp_fusion_unfusable); 10156 tcp->tcp_unfusable = B_TRUE; 10157 if (!IPCL_IS_NONSTR(connp)) { 10158 if (ira->ira_cred != NULL) { 10159 mblk_setcred(mp1, ira->ira_cred, 10160 ira->ira_cpid); 10161 } 10162 putnext(connp->conn_rq, mp1); 10163 } else { 10164 (*connp->conn_upcalls->su_connected) 10165 (connp->conn_upper_handle, 10166 tcp->tcp_connid, ira->ira_cred, 10167 ira->ira_cpid); 10168 freemsg(mp1); 10169 } 10170 } 10171 10172 /* 10173 * Check to see if there is data to be sent. If 10174 * yes, set the transmit flag. Then check to see 10175 * if received data processing needs to be done. 10176 * If not, go straight to xmit_check. This short 10177 * cut is OK as we don't support T/TCP. 10178 */ 10179 if (tcp->tcp_unsent) 10180 flags |= TH_XMIT_NEEDED; 10181 10182 if (seg_len == 0 && !(flags & TH_URG)) { 10183 freemsg(mp); 10184 goto xmit_check; 10185 } 10186 10187 flags &= ~TH_SYN; 10188 seg_seq++; 10189 break; 10190 } 10191 tcp->tcp_state = TCPS_SYN_RCVD; 10192 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 10193 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 10194 if (mp1 != NULL) { 10195 tcp_send_data(tcp, mp1); 10196 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 10197 } 10198 freemsg(mp); 10199 return; 10200 case TCPS_SYN_RCVD: 10201 if (flags & TH_ACK) { 10202 /* 10203 * In this state, a SYN|ACK packet is either bogus 10204 * because the other side must be ACKing our SYN which 10205 * indicates it has seen the ACK for their SYN and 10206 * shouldn't retransmit it or we're crossing SYNs 10207 * on active open. 10208 */ 10209 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 10210 freemsg(mp); 10211 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 10212 tcp, seg_ack, 0, TH_RST); 10213 return; 10214 } 10215 /* 10216 * NOTE: RFC 793 pg. 72 says this should be 10217 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 10218 * but that would mean we have an ack that ignored 10219 * our SYN. 10220 */ 10221 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 10222 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 10223 freemsg(mp); 10224 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 10225 tcp, seg_ack, 0, TH_RST); 10226 return; 10227 } 10228 } 10229 break; 10230 case TCPS_LISTEN: 10231 /* 10232 * Only a TLI listener can come through this path when a 10233 * acceptor is going back to be a listener and a packet 10234 * for the acceptor hits the classifier. For a socket 10235 * listener, this can never happen because a listener 10236 * can never accept connection on itself and hence a 10237 * socket acceptor can not go back to being a listener. 10238 */ 10239 ASSERT(!TCP_IS_SOCKET(tcp)); 10240 /*FALLTHRU*/ 10241 case TCPS_CLOSED: 10242 case TCPS_BOUND: { 10243 conn_t *new_connp; 10244 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 10245 10246 /* 10247 * Don't accept any input on a closed tcp as this TCP logically 10248 * does not exist on the system. Don't proceed further with 10249 * this TCP. For instance, this packet could trigger another 10250 * close of this tcp which would be disastrous for tcp_refcnt. 10251 * tcp_close_detached / tcp_clean_death / tcp_closei_local must 10252 * be called at most once on a TCP. In this case we need to 10253 * refeed the packet into the classifier and figure out where 10254 * the packet should go. 10255 */ 10256 new_connp = ipcl_classify(mp, ira, ipst); 10257 if (new_connp != NULL) { 10258 /* Drops ref on new_connp */ 10259 tcp_reinput(new_connp, mp, ira, ipst); 10260 return; 10261 } 10262 /* We failed to classify. For now just drop the packet */ 10263 freemsg(mp); 10264 return; 10265 } 10266 case TCPS_IDLE: 10267 /* 10268 * Handle the case where the tcp_clean_death() has happened 10269 * on a connection (application hasn't closed yet) but a packet 10270 * was already queued on squeue before tcp_clean_death() 10271 * was processed. Calling tcp_clean_death() twice on same 10272 * connection can result in weird behaviour. 10273 */ 10274 freemsg(mp); 10275 return; 10276 default: 10277 break; 10278 } 10279 10280 /* 10281 * Already on the correct queue/perimeter. 10282 * If this is a detached connection and not an eager 10283 * connection hanging off a listener then new data 10284 * (past the FIN) will cause a reset. 10285 * We do a special check here where it 10286 * is out of the main line, rather than check 10287 * if we are detached every time we see new 10288 * data down below. 10289 */ 10290 if (TCP_IS_DETACHED_NONEAGER(tcp) && 10291 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 10292 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 10293 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 10294 10295 freemsg(mp); 10296 /* 10297 * This could be an SSL closure alert. We're detached so just 10298 * acknowledge it this last time. 10299 */ 10300 if (tcp->tcp_kssl_ctx != NULL) { 10301 kssl_release_ctx(tcp->tcp_kssl_ctx); 10302 tcp->tcp_kssl_ctx = NULL; 10303 10304 tcp->tcp_rnxt += seg_len; 10305 tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); 10306 flags |= TH_ACK_NEEDED; 10307 goto ack_check; 10308 } 10309 10310 tcp_xmit_ctl("new data when detached", tcp, 10311 tcp->tcp_snxt, 0, TH_RST); 10312 (void) tcp_clean_death(tcp, EPROTO, 12); 10313 return; 10314 } 10315 10316 mp->b_rptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 10317 urp = ntohs(tcpha->tha_urp) - TCP_OLD_URP_INTERPRETATION; 10318 new_swnd = ntohs(tcpha->tha_win) << 10319 ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws); 10320 10321 if (tcp->tcp_snd_ts_ok) { 10322 if (!tcp_paws_check(tcp, tcpha, &tcpopt)) { 10323 /* 10324 * This segment is not acceptable. 10325 * Drop it and send back an ACK. 10326 */ 10327 freemsg(mp); 10328 flags |= TH_ACK_NEEDED; 10329 goto ack_check; 10330 } 10331 } else if (tcp->tcp_snd_sack_ok) { 10332 ASSERT(tcp->tcp_sack_info != NULL); 10333 tcpopt.tcp = tcp; 10334 /* 10335 * SACK info in already updated in tcp_parse_options. Ignore 10336 * all other TCP options... 10337 */ 10338 (void) tcp_parse_options(tcpha, &tcpopt); 10339 } 10340 try_again:; 10341 mss = tcp->tcp_mss; 10342 gap = seg_seq - tcp->tcp_rnxt; 10343 rgap = tcp->tcp_rwnd - (gap + seg_len); 10344 /* 10345 * gap is the amount of sequence space between what we expect to see 10346 * and what we got for seg_seq. A positive value for gap means 10347 * something got lost. A negative value means we got some old stuff. 10348 */ 10349 if (gap < 0) { 10350 /* Old stuff present. Is the SYN in there? */ 10351 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 10352 (seg_len != 0)) { 10353 flags &= ~TH_SYN; 10354 seg_seq++; 10355 urp--; 10356 /* Recompute the gaps after noting the SYN. */ 10357 goto try_again; 10358 } 10359 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 10360 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 10361 (seg_len > -gap ? -gap : seg_len)); 10362 /* Remove the old stuff from seg_len. */ 10363 seg_len += gap; 10364 /* 10365 * Anything left? 10366 * Make sure to check for unack'd FIN when rest of data 10367 * has been previously ack'd. 10368 */ 10369 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 10370 /* 10371 * Resets are only valid if they lie within our offered 10372 * window. If the RST bit is set, we just ignore this 10373 * segment. 10374 */ 10375 if (flags & TH_RST) { 10376 freemsg(mp); 10377 return; 10378 } 10379 10380 /* 10381 * The arriving of dup data packets indicate that we 10382 * may have postponed an ack for too long, or the other 10383 * side's RTT estimate is out of shape. Start acking 10384 * more often. 10385 */ 10386 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 10387 tcp->tcp_rack_cnt >= 1 && 10388 tcp->tcp_rack_abs_max > 2) { 10389 tcp->tcp_rack_abs_max--; 10390 } 10391 tcp->tcp_rack_cur_max = 1; 10392 10393 /* 10394 * This segment is "unacceptable". None of its 10395 * sequence space lies within our advertized window. 10396 * 10397 * Adjust seg_len to the original value for tracing. 10398 */ 10399 seg_len -= gap; 10400 if (connp->conn_debug) { 10401 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 10402 "tcp_rput: unacceptable, gap %d, rgap %d, " 10403 "flags 0x%x, seg_seq %u, seg_ack %u, " 10404 "seg_len %d, rnxt %u, snxt %u, %s", 10405 gap, rgap, flags, seg_seq, seg_ack, 10406 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 10407 tcp_display(tcp, NULL, 10408 DISP_ADDR_AND_PORT)); 10409 } 10410 10411 /* 10412 * Arrange to send an ACK in response to the 10413 * unacceptable segment per RFC 793 page 69. There 10414 * is only one small difference between ours and the 10415 * acceptability test in the RFC - we accept ACK-only 10416 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 10417 * will be generated. 10418 * 10419 * Note that we have to ACK an ACK-only packet at least 10420 * for stacks that send 0-length keep-alives with 10421 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 10422 * section 4.2.3.6. As long as we don't ever generate 10423 * an unacceptable packet in response to an incoming 10424 * packet that is unacceptable, it should not cause 10425 * "ACK wars". 10426 */ 10427 flags |= TH_ACK_NEEDED; 10428 10429 /* 10430 * Continue processing this segment in order to use the 10431 * ACK information it contains, but skip all other 10432 * sequence-number processing. Processing the ACK 10433 * information is necessary in order to 10434 * re-synchronize connections that may have lost 10435 * synchronization. 10436 * 10437 * We clear seg_len and flag fields related to 10438 * sequence number processing as they are not 10439 * to be trusted for an unacceptable segment. 10440 */ 10441 seg_len = 0; 10442 flags &= ~(TH_SYN | TH_FIN | TH_URG); 10443 goto process_ack; 10444 } 10445 10446 /* Fix seg_seq, and chew the gap off the front. */ 10447 seg_seq = tcp->tcp_rnxt; 10448 urp += gap; 10449 do { 10450 mblk_t *mp2; 10451 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 10452 (uintptr_t)UINT_MAX); 10453 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 10454 if (gap > 0) { 10455 mp->b_rptr = mp->b_wptr - gap; 10456 break; 10457 } 10458 mp2 = mp; 10459 mp = mp->b_cont; 10460 freeb(mp2); 10461 } while (gap < 0); 10462 /* 10463 * If the urgent data has already been acknowledged, we 10464 * should ignore TH_URG below 10465 */ 10466 if (urp < 0) 10467 flags &= ~TH_URG; 10468 } 10469 /* 10470 * rgap is the amount of stuff received out of window. A negative 10471 * value is the amount out of window. 10472 */ 10473 if (rgap < 0) { 10474 mblk_t *mp2; 10475 10476 if (tcp->tcp_rwnd == 0) { 10477 BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); 10478 } else { 10479 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 10480 UPDATE_MIB(&tcps->tcps_mib, 10481 tcpInDataPastWinBytes, -rgap); 10482 } 10483 10484 /* 10485 * seg_len does not include the FIN, so if more than 10486 * just the FIN is out of window, we act like we don't 10487 * see it. (If just the FIN is out of window, rgap 10488 * will be zero and we will go ahead and acknowledge 10489 * the FIN.) 10490 */ 10491 flags &= ~TH_FIN; 10492 10493 /* Fix seg_len and make sure there is something left. */ 10494 seg_len += rgap; 10495 if (seg_len <= 0) { 10496 /* 10497 * Resets are only valid if they lie within our offered 10498 * window. If the RST bit is set, we just ignore this 10499 * segment. 10500 */ 10501 if (flags & TH_RST) { 10502 freemsg(mp); 10503 return; 10504 } 10505 10506 /* Per RFC 793, we need to send back an ACK. */ 10507 flags |= TH_ACK_NEEDED; 10508 10509 /* 10510 * Send SIGURG as soon as possible i.e. even 10511 * if the TH_URG was delivered in a window probe 10512 * packet (which will be unacceptable). 10513 * 10514 * We generate a signal if none has been generated 10515 * for this connection or if this is a new urgent 10516 * byte. Also send a zero-length "unmarked" message 10517 * to inform SIOCATMARK that this is not the mark. 10518 * 10519 * tcp_urp_last_valid is cleared when the T_exdata_ind 10520 * is sent up. This plus the check for old data 10521 * (gap >= 0) handles the wraparound of the sequence 10522 * number space without having to always track the 10523 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 10524 * this max in its rcv_up variable). 10525 * 10526 * This prevents duplicate SIGURGS due to a "late" 10527 * zero-window probe when the T_EXDATA_IND has already 10528 * been sent up. 10529 */ 10530 if ((flags & TH_URG) && 10531 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 10532 tcp->tcp_urp_last))) { 10533 if (IPCL_IS_NONSTR(connp)) { 10534 if (!TCP_IS_DETACHED(tcp)) { 10535 (*connp->conn_upcalls-> 10536 su_signal_oob) 10537 (connp->conn_upper_handle, 10538 urp); 10539 } 10540 } else { 10541 mp1 = allocb(0, BPRI_MED); 10542 if (mp1 == NULL) { 10543 freemsg(mp); 10544 return; 10545 } 10546 if (!TCP_IS_DETACHED(tcp) && 10547 !putnextctl1(connp->conn_rq, 10548 M_PCSIG, SIGURG)) { 10549 /* Try again on the rexmit. */ 10550 freemsg(mp1); 10551 freemsg(mp); 10552 return; 10553 } 10554 /* 10555 * If the next byte would be the mark 10556 * then mark with MARKNEXT else mark 10557 * with NOTMARKNEXT. 10558 */ 10559 if (gap == 0 && urp == 0) 10560 mp1->b_flag |= MSGMARKNEXT; 10561 else 10562 mp1->b_flag |= MSGNOTMARKNEXT; 10563 freemsg(tcp->tcp_urp_mark_mp); 10564 tcp->tcp_urp_mark_mp = mp1; 10565 flags |= TH_SEND_URP_MARK; 10566 } 10567 tcp->tcp_urp_last_valid = B_TRUE; 10568 tcp->tcp_urp_last = urp + seg_seq; 10569 } 10570 /* 10571 * If this is a zero window probe, continue to 10572 * process the ACK part. But we need to set seg_len 10573 * to 0 to avoid data processing. Otherwise just 10574 * drop the segment and send back an ACK. 10575 */ 10576 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 10577 flags &= ~(TH_SYN | TH_URG); 10578 seg_len = 0; 10579 goto process_ack; 10580 } else { 10581 freemsg(mp); 10582 goto ack_check; 10583 } 10584 } 10585 /* Pitch out of window stuff off the end. */ 10586 rgap = seg_len; 10587 mp2 = mp; 10588 do { 10589 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 10590 (uintptr_t)INT_MAX); 10591 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 10592 if (rgap < 0) { 10593 mp2->b_wptr += rgap; 10594 if ((mp1 = mp2->b_cont) != NULL) { 10595 mp2->b_cont = NULL; 10596 freemsg(mp1); 10597 } 10598 break; 10599 } 10600 } while ((mp2 = mp2->b_cont) != NULL); 10601 } 10602 ok:; 10603 /* 10604 * TCP should check ECN info for segments inside the window only. 10605 * Therefore the check should be done here. 10606 */ 10607 if (tcp->tcp_ecn_ok) { 10608 if (flags & TH_CWR) { 10609 tcp->tcp_ecn_echo_on = B_FALSE; 10610 } 10611 /* 10612 * Note that both ECN_CE and CWR can be set in the 10613 * same segment. In this case, we once again turn 10614 * on ECN_ECHO. 10615 */ 10616 if (connp->conn_ipversion == IPV4_VERSION) { 10617 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 10618 10619 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 10620 tcp->tcp_ecn_echo_on = B_TRUE; 10621 } 10622 } else { 10623 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 10624 10625 if ((vcf & htonl(IPH_ECN_CE << 20)) == 10626 htonl(IPH_ECN_CE << 20)) { 10627 tcp->tcp_ecn_echo_on = B_TRUE; 10628 } 10629 } 10630 } 10631 10632 /* 10633 * Check whether we can update tcp_ts_recent. This test is 10634 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 10635 * Extensions for High Performance: An Update", Internet Draft. 10636 */ 10637 if (tcp->tcp_snd_ts_ok && 10638 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 10639 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 10640 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 10641 tcp->tcp_last_rcv_lbolt = lbolt64; 10642 } 10643 10644 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 10645 /* 10646 * FIN in an out of order segment. We record this in 10647 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 10648 * Clear the FIN so that any check on FIN flag will fail. 10649 * Remember that FIN also counts in the sequence number 10650 * space. So we need to ack out of order FIN only segments. 10651 */ 10652 if (flags & TH_FIN) { 10653 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 10654 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 10655 flags &= ~TH_FIN; 10656 flags |= TH_ACK_NEEDED; 10657 } 10658 if (seg_len > 0) { 10659 /* Fill in the SACK blk list. */ 10660 if (tcp->tcp_snd_sack_ok) { 10661 ASSERT(tcp->tcp_sack_info != NULL); 10662 tcp_sack_insert(tcp->tcp_sack_list, 10663 seg_seq, seg_seq + seg_len, 10664 &(tcp->tcp_num_sack_blk)); 10665 } 10666 10667 /* 10668 * Attempt reassembly and see if we have something 10669 * ready to go. 10670 */ 10671 mp = tcp_reass(tcp, mp, seg_seq); 10672 /* Always ack out of order packets */ 10673 flags |= TH_ACK_NEEDED | TH_PUSH; 10674 if (mp) { 10675 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 10676 (uintptr_t)INT_MAX); 10677 seg_len = mp->b_cont ? msgdsize(mp) : 10678 (int)(mp->b_wptr - mp->b_rptr); 10679 seg_seq = tcp->tcp_rnxt; 10680 /* 10681 * A gap is filled and the seq num and len 10682 * of the gap match that of a previously 10683 * received FIN, put the FIN flag back in. 10684 */ 10685 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 10686 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 10687 flags |= TH_FIN; 10688 tcp->tcp_valid_bits &= 10689 ~TCP_OFO_FIN_VALID; 10690 } 10691 } else { 10692 /* 10693 * Keep going even with NULL mp. 10694 * There may be a useful ACK or something else 10695 * we don't want to miss. 10696 * 10697 * But TCP should not perform fast retransmit 10698 * because of the ack number. TCP uses 10699 * seg_len == 0 to determine if it is a pure 10700 * ACK. And this is not a pure ACK. 10701 */ 10702 seg_len = 0; 10703 ofo_seg = B_TRUE; 10704 } 10705 } 10706 } else if (seg_len > 0) { 10707 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 10708 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 10709 /* 10710 * If an out of order FIN was received before, and the seq 10711 * num and len of the new segment match that of the FIN, 10712 * put the FIN flag back in. 10713 */ 10714 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 10715 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 10716 flags |= TH_FIN; 10717 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 10718 } 10719 } 10720 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 10721 if (flags & TH_RST) { 10722 freemsg(mp); 10723 switch (tcp->tcp_state) { 10724 case TCPS_SYN_RCVD: 10725 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 10726 break; 10727 case TCPS_ESTABLISHED: 10728 case TCPS_FIN_WAIT_1: 10729 case TCPS_FIN_WAIT_2: 10730 case TCPS_CLOSE_WAIT: 10731 (void) tcp_clean_death(tcp, ECONNRESET, 15); 10732 break; 10733 case TCPS_CLOSING: 10734 case TCPS_LAST_ACK: 10735 (void) tcp_clean_death(tcp, 0, 16); 10736 break; 10737 default: 10738 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 10739 (void) tcp_clean_death(tcp, ENXIO, 17); 10740 break; 10741 } 10742 return; 10743 } 10744 if (flags & TH_SYN) { 10745 /* 10746 * See RFC 793, Page 71 10747 * 10748 * The seq number must be in the window as it should 10749 * be "fixed" above. If it is outside window, it should 10750 * be already rejected. Note that we allow seg_seq to be 10751 * rnxt + rwnd because we want to accept 0 window probe. 10752 */ 10753 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 10754 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 10755 freemsg(mp); 10756 /* 10757 * If the ACK flag is not set, just use our snxt as the 10758 * seq number of the RST segment. 10759 */ 10760 if (!(flags & TH_ACK)) { 10761 seg_ack = tcp->tcp_snxt; 10762 } 10763 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 10764 TH_RST|TH_ACK); 10765 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 10766 (void) tcp_clean_death(tcp, ECONNRESET, 18); 10767 return; 10768 } 10769 /* 10770 * urp could be -1 when the urp field in the packet is 0 10771 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 10772 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 10773 */ 10774 if (flags & TH_URG && urp >= 0) { 10775 if (!tcp->tcp_urp_last_valid || 10776 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 10777 /* 10778 * Non-STREAMS sockets handle the urgent data a litte 10779 * differently from STREAMS based sockets. There is no 10780 * need to mark any mblks with the MSG{NOT,}MARKNEXT 10781 * flags to keep SIOCATMARK happy. Instead a 10782 * su_signal_oob upcall is made to update the mark. 10783 * Neither is a T_EXDATA_IND mblk needed to be 10784 * prepended to the urgent data. The urgent data is 10785 * delivered using the su_recv upcall, where we set 10786 * the MSG_OOB flag to indicate that it is urg data. 10787 * 10788 * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED 10789 * are used by non-STREAMS sockets. 10790 */ 10791 if (IPCL_IS_NONSTR(connp)) { 10792 if (!TCP_IS_DETACHED(tcp)) { 10793 (*connp->conn_upcalls->su_signal_oob) 10794 (connp->conn_upper_handle, urp); 10795 } 10796 } else { 10797 /* 10798 * If we haven't generated the signal yet for 10799 * this urgent pointer value, do it now. Also, 10800 * send up a zero-length M_DATA indicating 10801 * whether or not this is the mark. The latter 10802 * is not needed when a T_EXDATA_IND is sent up. 10803 * However, if there are allocation failures 10804 * this code relies on the sender retransmitting 10805 * and the socket code for determining the mark 10806 * should not block waiting for the peer to 10807 * transmit. Thus, for simplicity we always 10808 * send up the mark indication. 10809 */ 10810 mp1 = allocb(0, BPRI_MED); 10811 if (mp1 == NULL) { 10812 freemsg(mp); 10813 return; 10814 } 10815 if (!TCP_IS_DETACHED(tcp) && 10816 !putnextctl1(connp->conn_rq, M_PCSIG, 10817 SIGURG)) { 10818 /* Try again on the rexmit. */ 10819 freemsg(mp1); 10820 freemsg(mp); 10821 return; 10822 } 10823 /* 10824 * Mark with NOTMARKNEXT for now. 10825 * The code below will change this to MARKNEXT 10826 * if we are at the mark. 10827 * 10828 * If there are allocation failures (e.g. in 10829 * dupmsg below) the next time tcp_rput_data 10830 * sees the urgent segment it will send up the 10831 * MSGMARKNEXT message. 10832 */ 10833 mp1->b_flag |= MSGNOTMARKNEXT; 10834 freemsg(tcp->tcp_urp_mark_mp); 10835 tcp->tcp_urp_mark_mp = mp1; 10836 flags |= TH_SEND_URP_MARK; 10837 #ifdef DEBUG 10838 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 10839 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 10840 "last %x, %s", 10841 seg_seq, urp, tcp->tcp_urp_last, 10842 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 10843 #endif /* DEBUG */ 10844 } 10845 tcp->tcp_urp_last_valid = B_TRUE; 10846 tcp->tcp_urp_last = urp + seg_seq; 10847 } else if (tcp->tcp_urp_mark_mp != NULL) { 10848 /* 10849 * An allocation failure prevented the previous 10850 * tcp_input_data from sending up the allocated 10851 * MSG*MARKNEXT message - send it up this time 10852 * around. 10853 */ 10854 flags |= TH_SEND_URP_MARK; 10855 } 10856 10857 /* 10858 * If the urgent byte is in this segment, make sure that it is 10859 * all by itself. This makes it much easier to deal with the 10860 * possibility of an allocation failure on the T_exdata_ind. 10861 * Note that seg_len is the number of bytes in the segment, and 10862 * urp is the offset into the segment of the urgent byte. 10863 * urp < seg_len means that the urgent byte is in this segment. 10864 */ 10865 if (urp < seg_len) { 10866 if (seg_len != 1) { 10867 uint32_t tmp_rnxt; 10868 /* 10869 * Break it up and feed it back in. 10870 * Re-attach the IP header. 10871 */ 10872 mp->b_rptr = iphdr; 10873 if (urp > 0) { 10874 /* 10875 * There is stuff before the urgent 10876 * byte. 10877 */ 10878 mp1 = dupmsg(mp); 10879 if (!mp1) { 10880 /* 10881 * Trim from urgent byte on. 10882 * The rest will come back. 10883 */ 10884 (void) adjmsg(mp, 10885 urp - seg_len); 10886 tcp_input_data(connp, 10887 mp, NULL, ira); 10888 return; 10889 } 10890 (void) adjmsg(mp1, urp - seg_len); 10891 /* Feed this piece back in. */ 10892 tmp_rnxt = tcp->tcp_rnxt; 10893 tcp_input_data(connp, mp1, NULL, ira); 10894 /* 10895 * If the data passed back in was not 10896 * processed (ie: bad ACK) sending 10897 * the remainder back in will cause a 10898 * loop. In this case, drop the 10899 * packet and let the sender try 10900 * sending a good packet. 10901 */ 10902 if (tmp_rnxt == tcp->tcp_rnxt) { 10903 freemsg(mp); 10904 return; 10905 } 10906 } 10907 if (urp != seg_len - 1) { 10908 uint32_t tmp_rnxt; 10909 /* 10910 * There is stuff after the urgent 10911 * byte. 10912 */ 10913 mp1 = dupmsg(mp); 10914 if (!mp1) { 10915 /* 10916 * Trim everything beyond the 10917 * urgent byte. The rest will 10918 * come back. 10919 */ 10920 (void) adjmsg(mp, 10921 urp + 1 - seg_len); 10922 tcp_input_data(connp, 10923 mp, NULL, ira); 10924 return; 10925 } 10926 (void) adjmsg(mp1, urp + 1 - seg_len); 10927 tmp_rnxt = tcp->tcp_rnxt; 10928 tcp_input_data(connp, mp1, NULL, ira); 10929 /* 10930 * If the data passed back in was not 10931 * processed (ie: bad ACK) sending 10932 * the remainder back in will cause a 10933 * loop. In this case, drop the 10934 * packet and let the sender try 10935 * sending a good packet. 10936 */ 10937 if (tmp_rnxt == tcp->tcp_rnxt) { 10938 freemsg(mp); 10939 return; 10940 } 10941 } 10942 tcp_input_data(connp, mp, NULL, ira); 10943 return; 10944 } 10945 /* 10946 * This segment contains only the urgent byte. We 10947 * have to allocate the T_exdata_ind, if we can. 10948 */ 10949 if (IPCL_IS_NONSTR(connp)) { 10950 int error; 10951 10952 (*connp->conn_upcalls->su_recv) 10953 (connp->conn_upper_handle, mp, seg_len, 10954 MSG_OOB, &error, NULL); 10955 /* 10956 * We should never be in middle of a 10957 * fallback, the squeue guarantees that. 10958 */ 10959 ASSERT(error != EOPNOTSUPP); 10960 mp = NULL; 10961 goto update_ack; 10962 } else if (!tcp->tcp_urp_mp) { 10963 struct T_exdata_ind *tei; 10964 mp1 = allocb(sizeof (struct T_exdata_ind), 10965 BPRI_MED); 10966 if (!mp1) { 10967 /* 10968 * Sigh... It'll be back. 10969 * Generate any MSG*MARK message now. 10970 */ 10971 freemsg(mp); 10972 seg_len = 0; 10973 if (flags & TH_SEND_URP_MARK) { 10974 10975 10976 ASSERT(tcp->tcp_urp_mark_mp); 10977 tcp->tcp_urp_mark_mp->b_flag &= 10978 ~MSGNOTMARKNEXT; 10979 tcp->tcp_urp_mark_mp->b_flag |= 10980 MSGMARKNEXT; 10981 } 10982 goto ack_check; 10983 } 10984 mp1->b_datap->db_type = M_PROTO; 10985 tei = (struct T_exdata_ind *)mp1->b_rptr; 10986 tei->PRIM_type = T_EXDATA_IND; 10987 tei->MORE_flag = 0; 10988 mp1->b_wptr = (uchar_t *)&tei[1]; 10989 tcp->tcp_urp_mp = mp1; 10990 #ifdef DEBUG 10991 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 10992 "tcp_rput: allocated exdata_ind %s", 10993 tcp_display(tcp, NULL, 10994 DISP_PORT_ONLY)); 10995 #endif /* DEBUG */ 10996 /* 10997 * There is no need to send a separate MSG*MARK 10998 * message since the T_EXDATA_IND will be sent 10999 * now. 11000 */ 11001 flags &= ~TH_SEND_URP_MARK; 11002 freemsg(tcp->tcp_urp_mark_mp); 11003 tcp->tcp_urp_mark_mp = NULL; 11004 } 11005 /* 11006 * Now we are all set. On the next putnext upstream, 11007 * tcp_urp_mp will be non-NULL and will get prepended 11008 * to what has to be this piece containing the urgent 11009 * byte. If for any reason we abort this segment below, 11010 * if it comes back, we will have this ready, or it 11011 * will get blown off in close. 11012 */ 11013 } else if (urp == seg_len) { 11014 /* 11015 * The urgent byte is the next byte after this sequence 11016 * number. If this endpoint is non-STREAMS, then there 11017 * is nothing to do here since the socket has already 11018 * been notified about the urg pointer by the 11019 * su_signal_oob call above. 11020 * 11021 * In case of STREAMS, some more work might be needed. 11022 * If there is data it is marked with MSGMARKNEXT and 11023 * and any tcp_urp_mark_mp is discarded since it is not 11024 * needed. Otherwise, if the code above just allocated 11025 * a zero-length tcp_urp_mark_mp message, that message 11026 * is tagged with MSGMARKNEXT. Sending up these 11027 * MSGMARKNEXT messages makes SIOCATMARK work correctly 11028 * even though the T_EXDATA_IND will not be sent up 11029 * until the urgent byte arrives. 11030 */ 11031 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { 11032 if (seg_len != 0) { 11033 flags |= TH_MARKNEXT_NEEDED; 11034 freemsg(tcp->tcp_urp_mark_mp); 11035 tcp->tcp_urp_mark_mp = NULL; 11036 flags &= ~TH_SEND_URP_MARK; 11037 } else if (tcp->tcp_urp_mark_mp != NULL) { 11038 flags |= TH_SEND_URP_MARK; 11039 tcp->tcp_urp_mark_mp->b_flag &= 11040 ~MSGNOTMARKNEXT; 11041 tcp->tcp_urp_mark_mp->b_flag |= 11042 MSGMARKNEXT; 11043 } 11044 } 11045 #ifdef DEBUG 11046 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 11047 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 11048 seg_len, flags, 11049 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 11050 #endif /* DEBUG */ 11051 } 11052 #ifdef DEBUG 11053 else { 11054 /* Data left until we hit mark */ 11055 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 11056 "tcp_rput: URP %d bytes left, %s", 11057 urp - seg_len, tcp_display(tcp, NULL, 11058 DISP_PORT_ONLY)); 11059 } 11060 #endif /* DEBUG */ 11061 } 11062 11063 process_ack: 11064 if (!(flags & TH_ACK)) { 11065 freemsg(mp); 11066 goto xmit_check; 11067 } 11068 } 11069 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 11070 11071 if (bytes_acked > 0) 11072 tcp->tcp_ip_forward_progress = B_TRUE; 11073 if (tcp->tcp_state == TCPS_SYN_RCVD) { 11074 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 11075 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 11076 /* 3-way handshake complete - pass up the T_CONN_IND */ 11077 tcp_t *listener = tcp->tcp_listener; 11078 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 11079 11080 tcp->tcp_tconnind_started = B_TRUE; 11081 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 11082 /* 11083 * We are here means eager is fine but it can 11084 * get a TH_RST at any point between now and till 11085 * accept completes and disappear. We need to 11086 * ensure that reference to eager is valid after 11087 * we get out of eager's perimeter. So we do 11088 * an extra refhold. 11089 */ 11090 CONN_INC_REF(connp); 11091 11092 /* 11093 * The listener also exists because of the refhold 11094 * done in tcp_input_listener. Its possible that it 11095 * might have closed. We will check that once we 11096 * get inside listeners context. 11097 */ 11098 CONN_INC_REF(listener->tcp_connp); 11099 if (listener->tcp_connp->conn_sqp == 11100 connp->conn_sqp) { 11101 /* 11102 * We optimize by not calling an SQUEUE_ENTER 11103 * on the listener since we know that the 11104 * listener and eager squeues are the same. 11105 * We are able to make this check safely only 11106 * because neither the eager nor the listener 11107 * can change its squeue. Only an active connect 11108 * can change its squeue 11109 */ 11110 tcp_send_conn_ind(listener->tcp_connp, mp, 11111 listener->tcp_connp->conn_sqp); 11112 CONN_DEC_REF(listener->tcp_connp); 11113 } else if (!tcp->tcp_loopback) { 11114 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 11115 mp, tcp_send_conn_ind, 11116 listener->tcp_connp, NULL, SQ_FILL, 11117 SQTAG_TCP_CONN_IND); 11118 } else { 11119 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 11120 mp, tcp_send_conn_ind, 11121 listener->tcp_connp, NULL, SQ_PROCESS, 11122 SQTAG_TCP_CONN_IND); 11123 } 11124 } 11125 11126 /* 11127 * We are seeing the final ack in the three way 11128 * hand shake of a active open'ed connection 11129 * so we must send up a T_CONN_CON 11130 * 11131 * tcp_sendmsg() checks tcp_state without entering 11132 * the squeue so tcp_state should be updated before 11133 * sending up connection confirmation. 11134 */ 11135 tcp->tcp_state = TCPS_ESTABLISHED; 11136 if (tcp->tcp_active_open) { 11137 if (!tcp_conn_con(tcp, iphdr, mp, NULL, ira)) { 11138 freemsg(mp); 11139 tcp->tcp_state = TCPS_SYN_RCVD; 11140 return; 11141 } 11142 /* 11143 * Don't fuse the loopback endpoints for 11144 * simultaneous active opens. 11145 */ 11146 if (tcp->tcp_loopback) { 11147 TCP_STAT(tcps, tcp_fusion_unfusable); 11148 tcp->tcp_unfusable = B_TRUE; 11149 } 11150 } 11151 11152 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 11153 bytes_acked--; 11154 /* SYN was acked - making progress */ 11155 tcp->tcp_ip_forward_progress = B_TRUE; 11156 11157 /* 11158 * If SYN was retransmitted, need to reset all 11159 * retransmission info as this segment will be 11160 * treated as a dup ACK. 11161 */ 11162 if (tcp->tcp_rexmit) { 11163 tcp->tcp_rexmit = B_FALSE; 11164 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 11165 tcp->tcp_rexmit_max = tcp->tcp_snxt; 11166 tcp->tcp_snd_burst = tcp->tcp_localnet ? 11167 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 11168 tcp->tcp_ms_we_have_waited = 0; 11169 tcp->tcp_cwnd = mss; 11170 } 11171 11172 /* 11173 * We set the send window to zero here. 11174 * This is needed if there is data to be 11175 * processed already on the queue. 11176 * Later (at swnd_update label), the 11177 * "new_swnd > tcp_swnd" condition is satisfied 11178 * the XMIT_NEEDED flag is set in the current 11179 * (SYN_RCVD) state. This ensures tcp_wput_data() is 11180 * called if there is already data on queue in 11181 * this state. 11182 */ 11183 tcp->tcp_swnd = 0; 11184 11185 if (new_swnd > tcp->tcp_max_swnd) 11186 tcp->tcp_max_swnd = new_swnd; 11187 tcp->tcp_swl1 = seg_seq; 11188 tcp->tcp_swl2 = seg_ack; 11189 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 11190 11191 /* Fuse when both sides are in ESTABLISHED state */ 11192 if (tcp->tcp_loopback && do_tcp_fusion) 11193 tcp_fuse(tcp, iphdr, tcpha); 11194 11195 } 11196 /* This code follows 4.4BSD-Lite2 mostly. */ 11197 if (bytes_acked < 0) 11198 goto est; 11199 11200 /* 11201 * If TCP is ECN capable and the congestion experience bit is 11202 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 11203 * done once per window (or more loosely, per RTT). 11204 */ 11205 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 11206 tcp->tcp_cwr = B_FALSE; 11207 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 11208 if (!tcp->tcp_cwr) { 11209 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 11210 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 11211 tcp->tcp_cwnd = npkt * mss; 11212 /* 11213 * If the cwnd is 0, use the timer to clock out 11214 * new segments. This is required by the ECN spec. 11215 */ 11216 if (npkt == 0) { 11217 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 11218 /* 11219 * This makes sure that when the ACK comes 11220 * back, we will increase tcp_cwnd by 1 MSS. 11221 */ 11222 tcp->tcp_cwnd_cnt = 0; 11223 } 11224 tcp->tcp_cwr = B_TRUE; 11225 /* 11226 * This marks the end of the current window of in 11227 * flight data. That is why we don't use 11228 * tcp_suna + tcp_swnd. Only data in flight can 11229 * provide ECN info. 11230 */ 11231 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 11232 tcp->tcp_ecn_cwr_sent = B_FALSE; 11233 } 11234 } 11235 11236 mp1 = tcp->tcp_xmit_head; 11237 if (bytes_acked == 0) { 11238 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 11239 int dupack_cnt; 11240 11241 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 11242 /* 11243 * Fast retransmit. When we have seen exactly three 11244 * identical ACKs while we have unacked data 11245 * outstanding we take it as a hint that our peer 11246 * dropped something. 11247 * 11248 * If TCP is retransmitting, don't do fast retransmit. 11249 */ 11250 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 11251 ! tcp->tcp_rexmit) { 11252 /* Do Limited Transmit */ 11253 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 11254 tcps->tcps_dupack_fast_retransmit) { 11255 /* 11256 * RFC 3042 11257 * 11258 * What we need to do is temporarily 11259 * increase tcp_cwnd so that new 11260 * data can be sent if it is allowed 11261 * by the receive window (tcp_rwnd). 11262 * tcp_wput_data() will take care of 11263 * the rest. 11264 * 11265 * If the connection is SACK capable, 11266 * only do limited xmit when there 11267 * is SACK info. 11268 * 11269 * Note how tcp_cwnd is incremented. 11270 * The first dup ACK will increase 11271 * it by 1 MSS. The second dup ACK 11272 * will increase it by 2 MSS. This 11273 * means that only 1 new segment will 11274 * be sent for each dup ACK. 11275 */ 11276 if (tcp->tcp_unsent > 0 && 11277 (!tcp->tcp_snd_sack_ok || 11278 (tcp->tcp_snd_sack_ok && 11279 tcp->tcp_notsack_list != NULL))) { 11280 tcp->tcp_cwnd += mss << 11281 (tcp->tcp_dupack_cnt - 1); 11282 flags |= TH_LIMIT_XMIT; 11283 } 11284 } else if (dupack_cnt == 11285 tcps->tcps_dupack_fast_retransmit) { 11286 11287 /* 11288 * If we have reduced tcp_ssthresh 11289 * because of ECN, do not reduce it again 11290 * unless it is already one window of data 11291 * away. After one window of data, tcp_cwr 11292 * should then be cleared. Note that 11293 * for non ECN capable connection, tcp_cwr 11294 * should always be false. 11295 * 11296 * Adjust cwnd since the duplicate 11297 * ack indicates that a packet was 11298 * dropped (due to congestion.) 11299 */ 11300 if (!tcp->tcp_cwr) { 11301 npkt = ((tcp->tcp_snxt - 11302 tcp->tcp_suna) >> 1) / mss; 11303 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 11304 mss; 11305 tcp->tcp_cwnd = (npkt + 11306 tcp->tcp_dupack_cnt) * mss; 11307 } 11308 if (tcp->tcp_ecn_ok) { 11309 tcp->tcp_cwr = B_TRUE; 11310 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 11311 tcp->tcp_ecn_cwr_sent = B_FALSE; 11312 } 11313 11314 /* 11315 * We do Hoe's algorithm. Refer to her 11316 * paper "Improving the Start-up Behavior 11317 * of a Congestion Control Scheme for TCP," 11318 * appeared in SIGCOMM'96. 11319 * 11320 * Save highest seq no we have sent so far. 11321 * Be careful about the invisible FIN byte. 11322 */ 11323 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 11324 (tcp->tcp_unsent == 0)) { 11325 tcp->tcp_rexmit_max = tcp->tcp_fss; 11326 } else { 11327 tcp->tcp_rexmit_max = tcp->tcp_snxt; 11328 } 11329 11330 /* 11331 * Do not allow bursty traffic during. 11332 * fast recovery. Refer to Fall and Floyd's 11333 * paper "Simulation-based Comparisons of 11334 * Tahoe, Reno and SACK TCP" (in CCR?) 11335 * This is a best current practise. 11336 */ 11337 tcp->tcp_snd_burst = TCP_CWND_SS; 11338 11339 /* 11340 * For SACK: 11341 * Calculate tcp_pipe, which is the 11342 * estimated number of bytes in 11343 * network. 11344 * 11345 * tcp_fack is the highest sack'ed seq num 11346 * TCP has received. 11347 * 11348 * tcp_pipe is explained in the above quoted 11349 * Fall and Floyd's paper. tcp_fack is 11350 * explained in Mathis and Mahdavi's 11351 * "Forward Acknowledgment: Refining TCP 11352 * Congestion Control" in SIGCOMM '96. 11353 */ 11354 if (tcp->tcp_snd_sack_ok) { 11355 ASSERT(tcp->tcp_sack_info != NULL); 11356 if (tcp->tcp_notsack_list != NULL) { 11357 tcp->tcp_pipe = tcp->tcp_snxt - 11358 tcp->tcp_fack; 11359 tcp->tcp_sack_snxt = seg_ack; 11360 flags |= TH_NEED_SACK_REXMIT; 11361 } else { 11362 /* 11363 * Always initialize tcp_pipe 11364 * even though we don't have 11365 * any SACK info. If later 11366 * we get SACK info and 11367 * tcp_pipe is not initialized, 11368 * funny things will happen. 11369 */ 11370 tcp->tcp_pipe = 11371 tcp->tcp_cwnd_ssthresh; 11372 } 11373 } else { 11374 flags |= TH_REXMIT_NEEDED; 11375 } /* tcp_snd_sack_ok */ 11376 11377 } else { 11378 /* 11379 * Here we perform congestion 11380 * avoidance, but NOT slow start. 11381 * This is known as the Fast 11382 * Recovery Algorithm. 11383 */ 11384 if (tcp->tcp_snd_sack_ok && 11385 tcp->tcp_notsack_list != NULL) { 11386 flags |= TH_NEED_SACK_REXMIT; 11387 tcp->tcp_pipe -= mss; 11388 if (tcp->tcp_pipe < 0) 11389 tcp->tcp_pipe = 0; 11390 } else { 11391 /* 11392 * We know that one more packet has 11393 * left the pipe thus we can update 11394 * cwnd. 11395 */ 11396 cwnd = tcp->tcp_cwnd + mss; 11397 if (cwnd > tcp->tcp_cwnd_max) 11398 cwnd = tcp->tcp_cwnd_max; 11399 tcp->tcp_cwnd = cwnd; 11400 if (tcp->tcp_unsent > 0) 11401 flags |= TH_XMIT_NEEDED; 11402 } 11403 } 11404 } 11405 } else if (tcp->tcp_zero_win_probe) { 11406 /* 11407 * If the window has opened, need to arrange 11408 * to send additional data. 11409 */ 11410 if (new_swnd != 0) { 11411 /* tcp_suna != tcp_snxt */ 11412 /* Packet contains a window update */ 11413 BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); 11414 tcp->tcp_zero_win_probe = 0; 11415 tcp->tcp_timer_backoff = 0; 11416 tcp->tcp_ms_we_have_waited = 0; 11417 11418 /* 11419 * Transmit starting with tcp_suna since 11420 * the one byte probe is not ack'ed. 11421 * If TCP has sent more than one identical 11422 * probe, tcp_rexmit will be set. That means 11423 * tcp_ss_rexmit() will send out the one 11424 * byte along with new data. Otherwise, 11425 * fake the retransmission. 11426 */ 11427 flags |= TH_XMIT_NEEDED; 11428 if (!tcp->tcp_rexmit) { 11429 tcp->tcp_rexmit = B_TRUE; 11430 tcp->tcp_dupack_cnt = 0; 11431 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 11432 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 11433 } 11434 } 11435 } 11436 goto swnd_update; 11437 } 11438 11439 /* 11440 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 11441 * If the ACK value acks something that we have not yet sent, it might 11442 * be an old duplicate segment. Send an ACK to re-synchronize the 11443 * other side. 11444 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 11445 * state is handled above, so we can always just drop the segment and 11446 * send an ACK here. 11447 * 11448 * In the case where the peer shrinks the window, we see the new window 11449 * update, but all the data sent previously is queued up by the peer. 11450 * To account for this, in tcp_process_shrunk_swnd(), the sequence 11451 * number, which was already sent, and within window, is recorded. 11452 * tcp_snxt is then updated. 11453 * 11454 * If the window has previously shrunk, and an ACK for data not yet 11455 * sent, according to tcp_snxt is recieved, it may still be valid. If 11456 * the ACK is for data within the window at the time the window was 11457 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to 11458 * the sequence number ACK'ed. 11459 * 11460 * If the ACK covers all the data sent at the time the window was 11461 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE. 11462 * 11463 * Should we send ACKs in response to ACK only segments? 11464 */ 11465 11466 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 11467 if ((tcp->tcp_is_wnd_shrnk) && 11468 (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) { 11469 uint32_t data_acked_ahead_snxt; 11470 11471 data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt; 11472 tcp_update_xmit_tail(tcp, seg_ack); 11473 tcp->tcp_unsent -= data_acked_ahead_snxt; 11474 } else { 11475 BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); 11476 /* drop the received segment */ 11477 freemsg(mp); 11478 11479 /* 11480 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 11481 * greater than 0, check if the number of such 11482 * bogus ACks is greater than that count. If yes, 11483 * don't send back any ACK. This prevents TCP from 11484 * getting into an ACK storm if somehow an attacker 11485 * successfully spoofs an acceptable segment to our 11486 * peer. 11487 */ 11488 if (tcp_drop_ack_unsent_cnt > 0 && 11489 ++tcp->tcp_in_ack_unsent > 11490 tcp_drop_ack_unsent_cnt) { 11491 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 11492 return; 11493 } 11494 mp = tcp_ack_mp(tcp); 11495 if (mp != NULL) { 11496 BUMP_LOCAL(tcp->tcp_obsegs); 11497 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 11498 tcp_send_data(tcp, mp); 11499 } 11500 return; 11501 } 11502 } else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack, 11503 tcp->tcp_snxt_shrunk)) { 11504 tcp->tcp_is_wnd_shrnk = B_FALSE; 11505 } 11506 11507 /* 11508 * TCP gets a new ACK, update the notsack'ed list to delete those 11509 * blocks that are covered by this ACK. 11510 */ 11511 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 11512 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 11513 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 11514 } 11515 11516 /* 11517 * If we got an ACK after fast retransmit, check to see 11518 * if it is a partial ACK. If it is not and the congestion 11519 * window was inflated to account for the other side's 11520 * cached packets, retract it. If it is, do Hoe's algorithm. 11521 */ 11522 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 11523 ASSERT(tcp->tcp_rexmit == B_FALSE); 11524 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 11525 tcp->tcp_dupack_cnt = 0; 11526 /* 11527 * Restore the orig tcp_cwnd_ssthresh after 11528 * fast retransmit phase. 11529 */ 11530 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 11531 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 11532 } 11533 tcp->tcp_rexmit_max = seg_ack; 11534 tcp->tcp_cwnd_cnt = 0; 11535 tcp->tcp_snd_burst = tcp->tcp_localnet ? 11536 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 11537 11538 /* 11539 * Remove all notsack info to avoid confusion with 11540 * the next fast retrasnmit/recovery phase. 11541 */ 11542 if (tcp->tcp_snd_sack_ok && 11543 tcp->tcp_notsack_list != NULL) { 11544 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 11545 tcp); 11546 } 11547 } else { 11548 if (tcp->tcp_snd_sack_ok && 11549 tcp->tcp_notsack_list != NULL) { 11550 flags |= TH_NEED_SACK_REXMIT; 11551 tcp->tcp_pipe -= mss; 11552 if (tcp->tcp_pipe < 0) 11553 tcp->tcp_pipe = 0; 11554 } else { 11555 /* 11556 * Hoe's algorithm: 11557 * 11558 * Retransmit the unack'ed segment and 11559 * restart fast recovery. Note that we 11560 * need to scale back tcp_cwnd to the 11561 * original value when we started fast 11562 * recovery. This is to prevent overly 11563 * aggressive behaviour in sending new 11564 * segments. 11565 */ 11566 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 11567 tcps->tcps_dupack_fast_retransmit * mss; 11568 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 11569 flags |= TH_REXMIT_NEEDED; 11570 } 11571 } 11572 } else { 11573 tcp->tcp_dupack_cnt = 0; 11574 if (tcp->tcp_rexmit) { 11575 /* 11576 * TCP is retranmitting. If the ACK ack's all 11577 * outstanding data, update tcp_rexmit_max and 11578 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 11579 * to the correct value. 11580 * 11581 * Note that SEQ_LEQ() is used. This is to avoid 11582 * unnecessary fast retransmit caused by dup ACKs 11583 * received when TCP does slow start retransmission 11584 * after a time out. During this phase, TCP may 11585 * send out segments which are already received. 11586 * This causes dup ACKs to be sent back. 11587 */ 11588 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 11589 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 11590 tcp->tcp_rexmit_nxt = seg_ack; 11591 } 11592 if (seg_ack != tcp->tcp_rexmit_max) { 11593 flags |= TH_XMIT_NEEDED; 11594 } 11595 } else { 11596 tcp->tcp_rexmit = B_FALSE; 11597 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 11598 tcp->tcp_snd_burst = tcp->tcp_localnet ? 11599 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 11600 } 11601 tcp->tcp_ms_we_have_waited = 0; 11602 } 11603 } 11604 11605 BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); 11606 UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); 11607 tcp->tcp_suna = seg_ack; 11608 if (tcp->tcp_zero_win_probe != 0) { 11609 tcp->tcp_zero_win_probe = 0; 11610 tcp->tcp_timer_backoff = 0; 11611 } 11612 11613 /* 11614 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 11615 * Note that it cannot be the SYN being ack'ed. The code flow 11616 * will not reach here. 11617 */ 11618 if (mp1 == NULL) { 11619 goto fin_acked; 11620 } 11621 11622 /* 11623 * Update the congestion window. 11624 * 11625 * If TCP is not ECN capable or TCP is ECN capable but the 11626 * congestion experience bit is not set, increase the tcp_cwnd as 11627 * usual. 11628 */ 11629 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 11630 cwnd = tcp->tcp_cwnd; 11631 add = mss; 11632 11633 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 11634 /* 11635 * This is to prevent an increase of less than 1 MSS of 11636 * tcp_cwnd. With partial increase, tcp_wput_data() 11637 * may send out tinygrams in order to preserve mblk 11638 * boundaries. 11639 * 11640 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 11641 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 11642 * increased by 1 MSS for every RTTs. 11643 */ 11644 if (tcp->tcp_cwnd_cnt <= 0) { 11645 tcp->tcp_cwnd_cnt = cwnd + add; 11646 } else { 11647 tcp->tcp_cwnd_cnt -= add; 11648 add = 0; 11649 } 11650 } 11651 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 11652 } 11653 11654 /* See if the latest urgent data has been acknowledged */ 11655 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 11656 SEQ_GT(seg_ack, tcp->tcp_urg)) 11657 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 11658 11659 /* Can we update the RTT estimates? */ 11660 if (tcp->tcp_snd_ts_ok) { 11661 /* Ignore zero timestamp echo-reply. */ 11662 if (tcpopt.tcp_opt_ts_ecr != 0) { 11663 tcp_set_rto(tcp, (int32_t)lbolt - 11664 (int32_t)tcpopt.tcp_opt_ts_ecr); 11665 } 11666 11667 /* If needed, restart the timer. */ 11668 if (tcp->tcp_set_timer == 1) { 11669 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 11670 tcp->tcp_set_timer = 0; 11671 } 11672 /* 11673 * Update tcp_csuna in case the other side stops sending 11674 * us timestamps. 11675 */ 11676 tcp->tcp_csuna = tcp->tcp_snxt; 11677 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 11678 /* 11679 * An ACK sequence we haven't seen before, so get the RTT 11680 * and update the RTO. But first check if the timestamp is 11681 * valid to use. 11682 */ 11683 if ((mp1->b_next != NULL) && 11684 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 11685 tcp_set_rto(tcp, (int32_t)lbolt - 11686 (int32_t)(intptr_t)mp1->b_prev); 11687 else 11688 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 11689 11690 /* Remeber the last sequence to be ACKed */ 11691 tcp->tcp_csuna = seg_ack; 11692 if (tcp->tcp_set_timer == 1) { 11693 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 11694 tcp->tcp_set_timer = 0; 11695 } 11696 } else { 11697 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 11698 } 11699 11700 /* Eat acknowledged bytes off the xmit queue. */ 11701 for (;;) { 11702 mblk_t *mp2; 11703 uchar_t *wptr; 11704 11705 wptr = mp1->b_wptr; 11706 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 11707 bytes_acked -= (int)(wptr - mp1->b_rptr); 11708 if (bytes_acked < 0) { 11709 mp1->b_rptr = wptr + bytes_acked; 11710 /* 11711 * Set a new timestamp if all the bytes timed by the 11712 * old timestamp have been ack'ed. 11713 */ 11714 if (SEQ_GT(seg_ack, 11715 (uint32_t)(uintptr_t)(mp1->b_next))) { 11716 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 11717 mp1->b_next = NULL; 11718 } 11719 break; 11720 } 11721 mp1->b_next = NULL; 11722 mp1->b_prev = NULL; 11723 mp2 = mp1; 11724 mp1 = mp1->b_cont; 11725 11726 /* 11727 * This notification is required for some zero-copy 11728 * clients to maintain a copy semantic. After the data 11729 * is ack'ed, client is safe to modify or reuse the buffer. 11730 */ 11731 if (tcp->tcp_snd_zcopy_aware && 11732 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 11733 tcp_zcopy_notify(tcp); 11734 freeb(mp2); 11735 if (bytes_acked == 0) { 11736 if (mp1 == NULL) { 11737 /* Everything is ack'ed, clear the tail. */ 11738 tcp->tcp_xmit_tail = NULL; 11739 /* 11740 * Cancel the timer unless we are still 11741 * waiting for an ACK for the FIN packet. 11742 */ 11743 if (tcp->tcp_timer_tid != 0 && 11744 tcp->tcp_snxt == tcp->tcp_suna) { 11745 (void) TCP_TIMER_CANCEL(tcp, 11746 tcp->tcp_timer_tid); 11747 tcp->tcp_timer_tid = 0; 11748 } 11749 goto pre_swnd_update; 11750 } 11751 if (mp2 != tcp->tcp_xmit_tail) 11752 break; 11753 tcp->tcp_xmit_tail = mp1; 11754 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 11755 (uintptr_t)INT_MAX); 11756 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 11757 mp1->b_rptr); 11758 break; 11759 } 11760 if (mp1 == NULL) { 11761 /* 11762 * More was acked but there is nothing more 11763 * outstanding. This means that the FIN was 11764 * just acked or that we're talking to a clown. 11765 */ 11766 fin_acked: 11767 ASSERT(tcp->tcp_fin_sent); 11768 tcp->tcp_xmit_tail = NULL; 11769 if (tcp->tcp_fin_sent) { 11770 /* FIN was acked - making progress */ 11771 if (!tcp->tcp_fin_acked) 11772 tcp->tcp_ip_forward_progress = B_TRUE; 11773 tcp->tcp_fin_acked = B_TRUE; 11774 if (tcp->tcp_linger_tid != 0 && 11775 TCP_TIMER_CANCEL(tcp, 11776 tcp->tcp_linger_tid) >= 0) { 11777 tcp_stop_lingering(tcp); 11778 freemsg(mp); 11779 mp = NULL; 11780 } 11781 } else { 11782 /* 11783 * We should never get here because 11784 * we have already checked that the 11785 * number of bytes ack'ed should be 11786 * smaller than or equal to what we 11787 * have sent so far (it is the 11788 * acceptability check of the ACK). 11789 * We can only get here if the send 11790 * queue is corrupted. 11791 * 11792 * Terminate the connection and 11793 * panic the system. It is better 11794 * for us to panic instead of 11795 * continuing to avoid other disaster. 11796 */ 11797 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 11798 tcp->tcp_rnxt, TH_RST|TH_ACK); 11799 panic("Memory corruption " 11800 "detected for connection %s.", 11801 tcp_display(tcp, NULL, 11802 DISP_ADDR_AND_PORT)); 11803 /*NOTREACHED*/ 11804 } 11805 goto pre_swnd_update; 11806 } 11807 ASSERT(mp2 != tcp->tcp_xmit_tail); 11808 } 11809 if (tcp->tcp_unsent) { 11810 flags |= TH_XMIT_NEEDED; 11811 } 11812 pre_swnd_update: 11813 tcp->tcp_xmit_head = mp1; 11814 swnd_update: 11815 /* 11816 * The following check is different from most other implementations. 11817 * For bi-directional transfer, when segments are dropped, the 11818 * "normal" check will not accept a window update in those 11819 * retransmitted segemnts. Failing to do that, TCP may send out 11820 * segments which are outside receiver's window. As TCP accepts 11821 * the ack in those retransmitted segments, if the window update in 11822 * the same segment is not accepted, TCP will incorrectly calculates 11823 * that it can send more segments. This can create a deadlock 11824 * with the receiver if its window becomes zero. 11825 */ 11826 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 11827 SEQ_LT(tcp->tcp_swl1, seg_seq) || 11828 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 11829 /* 11830 * The criteria for update is: 11831 * 11832 * 1. the segment acknowledges some data. Or 11833 * 2. the segment is new, i.e. it has a higher seq num. Or 11834 * 3. the segment is not old and the advertised window is 11835 * larger than the previous advertised window. 11836 */ 11837 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 11838 flags |= TH_XMIT_NEEDED; 11839 tcp->tcp_swnd = new_swnd; 11840 if (new_swnd > tcp->tcp_max_swnd) 11841 tcp->tcp_max_swnd = new_swnd; 11842 tcp->tcp_swl1 = seg_seq; 11843 tcp->tcp_swl2 = seg_ack; 11844 } 11845 est: 11846 if (tcp->tcp_state > TCPS_ESTABLISHED) { 11847 11848 switch (tcp->tcp_state) { 11849 case TCPS_FIN_WAIT_1: 11850 if (tcp->tcp_fin_acked) { 11851 tcp->tcp_state = TCPS_FIN_WAIT_2; 11852 /* 11853 * We implement the non-standard BSD/SunOS 11854 * FIN_WAIT_2 flushing algorithm. 11855 * If there is no user attached to this 11856 * TCP endpoint, then this TCP struct 11857 * could hang around forever in FIN_WAIT_2 11858 * state if the peer forgets to send us 11859 * a FIN. To prevent this, we wait only 11860 * 2*MSL (a convenient time value) for 11861 * the FIN to arrive. If it doesn't show up, 11862 * we flush the TCP endpoint. This algorithm, 11863 * though a violation of RFC-793, has worked 11864 * for over 10 years in BSD systems. 11865 * Note: SunOS 4.x waits 675 seconds before 11866 * flushing the FIN_WAIT_2 connection. 11867 */ 11868 TCP_TIMER_RESTART(tcp, 11869 tcps->tcps_fin_wait_2_flush_interval); 11870 } 11871 break; 11872 case TCPS_FIN_WAIT_2: 11873 break; /* Shutdown hook? */ 11874 case TCPS_LAST_ACK: 11875 freemsg(mp); 11876 if (tcp->tcp_fin_acked) { 11877 (void) tcp_clean_death(tcp, 0, 19); 11878 return; 11879 } 11880 goto xmit_check; 11881 case TCPS_CLOSING: 11882 if (tcp->tcp_fin_acked) { 11883 tcp->tcp_state = TCPS_TIME_WAIT; 11884 /* 11885 * Unconditionally clear the exclusive binding 11886 * bit so this TIME-WAIT connection won't 11887 * interfere with new ones. 11888 */ 11889 connp->conn_exclbind = 0; 11890 if (!TCP_IS_DETACHED(tcp)) { 11891 TCP_TIMER_RESTART(tcp, 11892 tcps->tcps_time_wait_interval); 11893 } else { 11894 tcp_time_wait_append(tcp); 11895 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 11896 } 11897 } 11898 /*FALLTHRU*/ 11899 case TCPS_CLOSE_WAIT: 11900 freemsg(mp); 11901 goto xmit_check; 11902 default: 11903 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 11904 break; 11905 } 11906 } 11907 if (flags & TH_FIN) { 11908 /* Make sure we ack the fin */ 11909 flags |= TH_ACK_NEEDED; 11910 if (!tcp->tcp_fin_rcvd) { 11911 tcp->tcp_fin_rcvd = B_TRUE; 11912 tcp->tcp_rnxt++; 11913 tcpha = tcp->tcp_tcpha; 11914 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 11915 11916 /* 11917 * Generate the ordrel_ind at the end unless we 11918 * are an eager guy. 11919 * In the eager case tcp_rsrv will do this when run 11920 * after tcp_accept is done. 11921 */ 11922 if (tcp->tcp_listener == NULL && 11923 !TCP_IS_DETACHED(tcp) && !tcp->tcp_hard_binding) 11924 flags |= TH_ORDREL_NEEDED; 11925 switch (tcp->tcp_state) { 11926 case TCPS_SYN_RCVD: 11927 case TCPS_ESTABLISHED: 11928 tcp->tcp_state = TCPS_CLOSE_WAIT; 11929 /* Keepalive? */ 11930 break; 11931 case TCPS_FIN_WAIT_1: 11932 if (!tcp->tcp_fin_acked) { 11933 tcp->tcp_state = TCPS_CLOSING; 11934 break; 11935 } 11936 /* FALLTHRU */ 11937 case TCPS_FIN_WAIT_2: 11938 tcp->tcp_state = TCPS_TIME_WAIT; 11939 /* 11940 * Unconditionally clear the exclusive binding 11941 * bit so this TIME-WAIT connection won't 11942 * interfere with new ones. 11943 */ 11944 connp->conn_exclbind = 0; 11945 if (!TCP_IS_DETACHED(tcp)) { 11946 TCP_TIMER_RESTART(tcp, 11947 tcps->tcps_time_wait_interval); 11948 } else { 11949 tcp_time_wait_append(tcp); 11950 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 11951 } 11952 if (seg_len) { 11953 /* 11954 * implies data piggybacked on FIN. 11955 * break to handle data. 11956 */ 11957 break; 11958 } 11959 freemsg(mp); 11960 goto ack_check; 11961 } 11962 } 11963 } 11964 if (mp == NULL) 11965 goto xmit_check; 11966 if (seg_len == 0) { 11967 freemsg(mp); 11968 goto xmit_check; 11969 } 11970 if (mp->b_rptr == mp->b_wptr) { 11971 /* 11972 * The header has been consumed, so we remove the 11973 * zero-length mblk here. 11974 */ 11975 mp1 = mp; 11976 mp = mp->b_cont; 11977 freeb(mp1); 11978 } 11979 update_ack: 11980 tcpha = tcp->tcp_tcpha; 11981 tcp->tcp_rack_cnt++; 11982 { 11983 uint32_t cur_max; 11984 11985 cur_max = tcp->tcp_rack_cur_max; 11986 if (tcp->tcp_rack_cnt >= cur_max) { 11987 /* 11988 * We have more unacked data than we should - send 11989 * an ACK now. 11990 */ 11991 flags |= TH_ACK_NEEDED; 11992 cur_max++; 11993 if (cur_max > tcp->tcp_rack_abs_max) 11994 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 11995 else 11996 tcp->tcp_rack_cur_max = cur_max; 11997 } else if (TCP_IS_DETACHED(tcp)) { 11998 /* We don't have an ACK timer for detached TCP. */ 11999 flags |= TH_ACK_NEEDED; 12000 } else if (seg_len < mss) { 12001 /* 12002 * If we get a segment that is less than an mss, and we 12003 * already have unacknowledged data, and the amount 12004 * unacknowledged is not a multiple of mss, then we 12005 * better generate an ACK now. Otherwise, this may be 12006 * the tail piece of a transaction, and we would rather 12007 * wait for the response. 12008 */ 12009 uint32_t udif; 12010 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 12011 (uintptr_t)INT_MAX); 12012 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 12013 if (udif && (udif % mss)) 12014 flags |= TH_ACK_NEEDED; 12015 else 12016 flags |= TH_ACK_TIMER_NEEDED; 12017 } else { 12018 /* Start delayed ack timer */ 12019 flags |= TH_ACK_TIMER_NEEDED; 12020 } 12021 } 12022 tcp->tcp_rnxt += seg_len; 12023 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 12024 12025 if (mp == NULL) 12026 goto xmit_check; 12027 12028 /* Update SACK list */ 12029 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 12030 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 12031 &(tcp->tcp_num_sack_blk)); 12032 } 12033 12034 if (tcp->tcp_urp_mp) { 12035 tcp->tcp_urp_mp->b_cont = mp; 12036 mp = tcp->tcp_urp_mp; 12037 tcp->tcp_urp_mp = NULL; 12038 /* Ready for a new signal. */ 12039 tcp->tcp_urp_last_valid = B_FALSE; 12040 #ifdef DEBUG 12041 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12042 "tcp_rput: sending exdata_ind %s", 12043 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 12044 #endif /* DEBUG */ 12045 } 12046 12047 /* 12048 * Check for ancillary data changes compared to last segment. 12049 */ 12050 if (connp->conn_recv_ancillary.crb_all != 0) { 12051 mp = tcp_input_add_ancillary(tcp, mp, &ipp, ira); 12052 if (mp == NULL) 12053 return; 12054 } 12055 12056 if (tcp->tcp_listener != NULL || tcp->tcp_hard_binding) { 12057 /* 12058 * Side queue inbound data until the accept happens. 12059 * tcp_accept/tcp_rput drains this when the accept happens. 12060 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 12061 * T_EXDATA_IND) it is queued on b_next. 12062 * XXX Make urgent data use this. Requires: 12063 * Removing tcp_listener check for TH_URG 12064 * Making M_PCPROTO and MARK messages skip the eager case 12065 */ 12066 12067 if (tcp->tcp_kssl_pending) { 12068 DTRACE_PROBE1(kssl_mblk__ksslinput_pending, 12069 mblk_t *, mp); 12070 tcp_kssl_input(tcp, mp, ira->ira_cred); 12071 } else { 12072 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 12073 } 12074 } else if (IPCL_IS_NONSTR(connp)) { 12075 /* 12076 * Non-STREAMS socket 12077 * 12078 * Note that no KSSL processing is done here, because 12079 * KSSL is not supported for non-STREAMS sockets. 12080 */ 12081 boolean_t push = flags & (TH_PUSH|TH_FIN); 12082 int error; 12083 12084 if ((*connp->conn_upcalls->su_recv)( 12085 connp->conn_upper_handle, 12086 mp, seg_len, 0, &error, &push) <= 0) { 12087 /* 12088 * We should never be in middle of a 12089 * fallback, the squeue guarantees that. 12090 */ 12091 ASSERT(error != EOPNOTSUPP); 12092 if (error == ENOSPC) 12093 tcp->tcp_rwnd -= seg_len; 12094 } else if (push) { 12095 /* PUSH bit set and sockfs is not flow controlled */ 12096 flags |= tcp_rwnd_reopen(tcp); 12097 } 12098 } else { 12099 /* STREAMS socket */ 12100 if (mp->b_datap->db_type != M_DATA || 12101 (flags & TH_MARKNEXT_NEEDED)) { 12102 if (tcp->tcp_rcv_list != NULL) { 12103 flags |= tcp_rcv_drain(tcp); 12104 } 12105 ASSERT(tcp->tcp_rcv_list == NULL || 12106 tcp->tcp_fused_sigurg); 12107 12108 if (flags & TH_MARKNEXT_NEEDED) { 12109 #ifdef DEBUG 12110 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12111 "tcp_rput: sending MSGMARKNEXT %s", 12112 tcp_display(tcp, NULL, 12113 DISP_PORT_ONLY)); 12114 #endif /* DEBUG */ 12115 mp->b_flag |= MSGMARKNEXT; 12116 flags &= ~TH_MARKNEXT_NEEDED; 12117 } 12118 12119 /* Does this need SSL processing first? */ 12120 if ((tcp->tcp_kssl_ctx != NULL) && 12121 (DB_TYPE(mp) == M_DATA)) { 12122 DTRACE_PROBE1(kssl_mblk__ksslinput_data1, 12123 mblk_t *, mp); 12124 tcp_kssl_input(tcp, mp, ira->ira_cred); 12125 } else { 12126 if (is_system_labeled()) 12127 tcp_setcred_data(mp, ira); 12128 12129 putnext(connp->conn_rq, mp); 12130 if (!canputnext(connp->conn_rq)) 12131 tcp->tcp_rwnd -= seg_len; 12132 } 12133 } else if ((tcp->tcp_kssl_ctx != NULL) && 12134 (DB_TYPE(mp) == M_DATA)) { 12135 /* Does this need SSL processing first? */ 12136 DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp); 12137 tcp_kssl_input(tcp, mp, ira->ira_cred); 12138 } else if ((flags & (TH_PUSH|TH_FIN)) || 12139 tcp->tcp_rcv_cnt + seg_len >= connp->conn_rcvbuf >> 3) { 12140 if (tcp->tcp_rcv_list != NULL) { 12141 /* 12142 * Enqueue the new segment first and then 12143 * call tcp_rcv_drain() to send all data 12144 * up. The other way to do this is to 12145 * send all queued data up and then call 12146 * putnext() to send the new segment up. 12147 * This way can remove the else part later 12148 * on. 12149 * 12150 * We don't do this to avoid one more call to 12151 * canputnext() as tcp_rcv_drain() needs to 12152 * call canputnext(). 12153 */ 12154 tcp_rcv_enqueue(tcp, mp, seg_len, 12155 ira->ira_cred); 12156 flags |= tcp_rcv_drain(tcp); 12157 } else { 12158 if (is_system_labeled()) 12159 tcp_setcred_data(mp, ira); 12160 12161 putnext(connp->conn_rq, mp); 12162 if (!canputnext(connp->conn_rq)) 12163 tcp->tcp_rwnd -= seg_len; 12164 } 12165 } else { 12166 /* 12167 * Enqueue all packets when processing an mblk 12168 * from the co queue and also enqueue normal packets. 12169 */ 12170 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 12171 } 12172 /* 12173 * Make sure the timer is running if we have data waiting 12174 * for a push bit. This provides resiliency against 12175 * implementations that do not correctly generate push bits. 12176 */ 12177 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 12178 /* 12179 * The connection may be closed at this point, so don't 12180 * do anything for a detached tcp. 12181 */ 12182 if (!TCP_IS_DETACHED(tcp)) 12183 tcp->tcp_push_tid = TCP_TIMER(tcp, 12184 tcp_push_timer, 12185 MSEC_TO_TICK( 12186 tcps->tcps_push_timer_interval)); 12187 } 12188 } 12189 12190 xmit_check: 12191 /* Is there anything left to do? */ 12192 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 12193 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 12194 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 12195 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 12196 goto done; 12197 12198 /* Any transmit work to do and a non-zero window? */ 12199 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 12200 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 12201 if (flags & TH_REXMIT_NEEDED) { 12202 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 12203 12204 BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); 12205 if (snd_size > mss) 12206 snd_size = mss; 12207 if (snd_size > tcp->tcp_swnd) 12208 snd_size = tcp->tcp_swnd; 12209 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 12210 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 12211 B_TRUE); 12212 12213 if (mp1 != NULL) { 12214 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 12215 tcp->tcp_csuna = tcp->tcp_snxt; 12216 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12217 UPDATE_MIB(&tcps->tcps_mib, 12218 tcpRetransBytes, snd_size); 12219 tcp_send_data(tcp, mp1); 12220 } 12221 } 12222 if (flags & TH_NEED_SACK_REXMIT) { 12223 tcp_sack_rxmit(tcp, &flags); 12224 } 12225 /* 12226 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 12227 * out new segment. Note that tcp_rexmit should not be 12228 * set, otherwise TH_LIMIT_XMIT should not be set. 12229 */ 12230 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 12231 if (!tcp->tcp_rexmit) { 12232 tcp_wput_data(tcp, NULL, B_FALSE); 12233 } else { 12234 tcp_ss_rexmit(tcp); 12235 } 12236 } 12237 /* 12238 * Adjust tcp_cwnd back to normal value after sending 12239 * new data segments. 12240 */ 12241 if (flags & TH_LIMIT_XMIT) { 12242 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 12243 /* 12244 * This will restart the timer. Restarting the 12245 * timer is used to avoid a timeout before the 12246 * limited transmitted segment's ACK gets back. 12247 */ 12248 if (tcp->tcp_xmit_head != NULL) 12249 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 12250 } 12251 12252 /* Anything more to do? */ 12253 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 12254 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 12255 goto done; 12256 } 12257 ack_check: 12258 if (flags & TH_SEND_URP_MARK) { 12259 ASSERT(tcp->tcp_urp_mark_mp); 12260 ASSERT(!IPCL_IS_NONSTR(connp)); 12261 /* 12262 * Send up any queued data and then send the mark message 12263 */ 12264 if (tcp->tcp_rcv_list != NULL) { 12265 flags |= tcp_rcv_drain(tcp); 12266 12267 } 12268 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 12269 mp1 = tcp->tcp_urp_mark_mp; 12270 tcp->tcp_urp_mark_mp = NULL; 12271 if (is_system_labeled()) 12272 tcp_setcred_data(mp1, ira); 12273 12274 putnext(connp->conn_rq, mp1); 12275 #ifdef DEBUG 12276 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12277 "tcp_rput: sending zero-length %s %s", 12278 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 12279 "MSGNOTMARKNEXT"), 12280 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 12281 #endif /* DEBUG */ 12282 flags &= ~TH_SEND_URP_MARK; 12283 } 12284 if (flags & TH_ACK_NEEDED) { 12285 /* 12286 * Time to send an ack for some reason. 12287 */ 12288 mp1 = tcp_ack_mp(tcp); 12289 12290 if (mp1 != NULL) { 12291 tcp_send_data(tcp, mp1); 12292 BUMP_LOCAL(tcp->tcp_obsegs); 12293 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 12294 } 12295 if (tcp->tcp_ack_tid != 0) { 12296 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 12297 tcp->tcp_ack_tid = 0; 12298 } 12299 } 12300 if (flags & TH_ACK_TIMER_NEEDED) { 12301 /* 12302 * Arrange for deferred ACK or push wait timeout. 12303 * Start timer if it is not already running. 12304 */ 12305 if (tcp->tcp_ack_tid == 0) { 12306 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 12307 MSEC_TO_TICK(tcp->tcp_localnet ? 12308 (clock_t)tcps->tcps_local_dack_interval : 12309 (clock_t)tcps->tcps_deferred_ack_interval)); 12310 } 12311 } 12312 if (flags & TH_ORDREL_NEEDED) { 12313 /* 12314 * Send up the ordrel_ind unless we are an eager guy. 12315 * In the eager case tcp_rsrv will do this when run 12316 * after tcp_accept is done. 12317 */ 12318 ASSERT(tcp->tcp_listener == NULL); 12319 ASSERT(!tcp->tcp_detached); 12320 12321 if (IPCL_IS_NONSTR(connp)) { 12322 ASSERT(tcp->tcp_ordrel_mp == NULL); 12323 tcp->tcp_ordrel_done = B_TRUE; 12324 (*connp->conn_upcalls->su_opctl) 12325 (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0); 12326 goto done; 12327 } 12328 12329 if (tcp->tcp_rcv_list != NULL) { 12330 /* 12331 * Push any mblk(s) enqueued from co processing. 12332 */ 12333 flags |= tcp_rcv_drain(tcp); 12334 } 12335 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 12336 12337 mp1 = tcp->tcp_ordrel_mp; 12338 tcp->tcp_ordrel_mp = NULL; 12339 tcp->tcp_ordrel_done = B_TRUE; 12340 putnext(connp->conn_rq, mp1); 12341 } 12342 done: 12343 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 12344 } 12345 12346 /* 12347 * This routine adjusts next-to-send sequence number variables, in the 12348 * case where the reciever has shrunk it's window. 12349 */ 12350 static void 12351 tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt) 12352 { 12353 mblk_t *xmit_tail; 12354 int32_t offset; 12355 12356 tcp->tcp_snxt = snxt; 12357 12358 /* Get the mblk, and the offset in it, as per the shrunk window */ 12359 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 12360 ASSERT(xmit_tail != NULL); 12361 tcp->tcp_xmit_tail = xmit_tail; 12362 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - 12363 xmit_tail->b_rptr - offset; 12364 } 12365 12366 /* 12367 * This function does PAWS protection check. Returns B_TRUE if the 12368 * segment passes the PAWS test, else returns B_FALSE. 12369 */ 12370 boolean_t 12371 tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp) 12372 { 12373 uint8_t flags; 12374 int options; 12375 uint8_t *up; 12376 conn_t *connp = tcp->tcp_connp; 12377 12378 flags = (unsigned int)tcpha->tha_flags & 0xFF; 12379 /* 12380 * If timestamp option is aligned nicely, get values inline, 12381 * otherwise call general routine to parse. Only do that 12382 * if timestamp is the only option. 12383 */ 12384 if (TCP_HDR_LENGTH(tcpha) == (uint32_t)TCP_MIN_HEADER_LENGTH + 12385 TCPOPT_REAL_TS_LEN && 12386 OK_32PTR((up = ((uint8_t *)tcpha) + 12387 TCP_MIN_HEADER_LENGTH)) && 12388 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 12389 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 12390 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 12391 12392 options = TCP_OPT_TSTAMP_PRESENT; 12393 } else { 12394 if (tcp->tcp_snd_sack_ok) { 12395 tcpoptp->tcp = tcp; 12396 } else { 12397 tcpoptp->tcp = NULL; 12398 } 12399 options = tcp_parse_options(tcpha, tcpoptp); 12400 } 12401 12402 if (options & TCP_OPT_TSTAMP_PRESENT) { 12403 /* 12404 * Do PAWS per RFC 1323 section 4.2. Accept RST 12405 * regardless of the timestamp, page 18 RFC 1323.bis. 12406 */ 12407 if ((flags & TH_RST) == 0 && 12408 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 12409 tcp->tcp_ts_recent)) { 12410 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 12411 PAWS_TIMEOUT)) { 12412 /* This segment is not acceptable. */ 12413 return (B_FALSE); 12414 } else { 12415 /* 12416 * Connection has been idle for 12417 * too long. Reset the timestamp 12418 * and assume the segment is valid. 12419 */ 12420 tcp->tcp_ts_recent = 12421 tcpoptp->tcp_opt_ts_val; 12422 } 12423 } 12424 } else { 12425 /* 12426 * If we don't get a timestamp on every packet, we 12427 * figure we can't really trust 'em, so we stop sending 12428 * and parsing them. 12429 */ 12430 tcp->tcp_snd_ts_ok = B_FALSE; 12431 12432 connp->conn_ht_iphc_len -= TCPOPT_REAL_TS_LEN; 12433 connp->conn_ht_ulp_len -= TCPOPT_REAL_TS_LEN; 12434 tcp->tcp_tcpha->tha_offset_and_reserved -= (3 << 4); 12435 /* 12436 * Adjust the tcp_mss and tcp_cwnd accordingly. We avoid 12437 * doing a slow start here so as to not to lose on the 12438 * transfer rate built up so far. 12439 */ 12440 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN); 12441 if (tcp->tcp_snd_sack_ok) { 12442 ASSERT(tcp->tcp_sack_info != NULL); 12443 tcp->tcp_max_sack_blk = 4; 12444 } 12445 } 12446 return (B_TRUE); 12447 } 12448 12449 /* 12450 * Attach ancillary data to a received TCP segments for the 12451 * ancillary pieces requested by the application that are 12452 * different than they were in the previous data segment. 12453 * 12454 * Save the "current" values once memory allocation is ok so that 12455 * when memory allocation fails we can just wait for the next data segment. 12456 */ 12457 static mblk_t * 12458 tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp, 12459 ip_recv_attr_t *ira) 12460 { 12461 struct T_optdata_ind *todi; 12462 int optlen; 12463 uchar_t *optptr; 12464 struct T_opthdr *toh; 12465 crb_t addflag; /* Which pieces to add */ 12466 mblk_t *mp1; 12467 conn_t *connp = tcp->tcp_connp; 12468 12469 optlen = 0; 12470 addflag.crb_all = 0; 12471 /* If app asked for pktinfo and the index has changed ... */ 12472 if (connp->conn_recv_ancillary.crb_ip_recvpktinfo && 12473 ira->ira_ruifindex != tcp->tcp_recvifindex) { 12474 optlen += sizeof (struct T_opthdr) + 12475 sizeof (struct in6_pktinfo); 12476 addflag.crb_ip_recvpktinfo = 1; 12477 } 12478 /* If app asked for hoplimit and it has changed ... */ 12479 if (connp->conn_recv_ancillary.crb_ipv6_recvhoplimit && 12480 ipp->ipp_hoplimit != tcp->tcp_recvhops) { 12481 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 12482 addflag.crb_ipv6_recvhoplimit = 1; 12483 } 12484 /* If app asked for tclass and it has changed ... */ 12485 if (connp->conn_recv_ancillary.crb_ipv6_recvtclass && 12486 ipp->ipp_tclass != tcp->tcp_recvtclass) { 12487 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 12488 addflag.crb_ipv6_recvtclass = 1; 12489 } 12490 /* 12491 * If app asked for hopbyhop headers and it has changed ... 12492 * For security labels, note that (1) security labels can't change on 12493 * a connected socket at all, (2) we're connected to at most one peer, 12494 * (3) if anything changes, then it must be some other extra option. 12495 */ 12496 if (connp->conn_recv_ancillary.crb_ipv6_recvhopopts && 12497 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 12498 (ipp->ipp_fields & IPPF_HOPOPTS), 12499 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 12500 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen; 12501 addflag.crb_ipv6_recvhopopts = 1; 12502 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 12503 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 12504 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 12505 return (mp); 12506 } 12507 /* If app asked for dst headers before routing headers ... */ 12508 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdrdstopts && 12509 ip_cmpbuf(tcp->tcp_rthdrdstopts, tcp->tcp_rthdrdstoptslen, 12510 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 12511 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) { 12512 optlen += sizeof (struct T_opthdr) + 12513 ipp->ipp_rthdrdstoptslen; 12514 addflag.crb_ipv6_recvrthdrdstopts = 1; 12515 if (!ip_allocbuf((void **)&tcp->tcp_rthdrdstopts, 12516 &tcp->tcp_rthdrdstoptslen, 12517 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 12518 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) 12519 return (mp); 12520 } 12521 /* If app asked for routing headers and it has changed ... */ 12522 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdr && 12523 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 12524 (ipp->ipp_fields & IPPF_RTHDR), 12525 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 12526 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 12527 addflag.crb_ipv6_recvrthdr = 1; 12528 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 12529 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 12530 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 12531 return (mp); 12532 } 12533 /* If app asked for dest headers and it has changed ... */ 12534 if ((connp->conn_recv_ancillary.crb_ipv6_recvdstopts || 12535 connp->conn_recv_ancillary.crb_old_ipv6_recvdstopts) && 12536 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 12537 (ipp->ipp_fields & IPPF_DSTOPTS), 12538 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 12539 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 12540 addflag.crb_ipv6_recvdstopts = 1; 12541 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 12542 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 12543 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 12544 return (mp); 12545 } 12546 12547 if (optlen == 0) { 12548 /* Nothing to add */ 12549 return (mp); 12550 } 12551 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 12552 if (mp1 == NULL) { 12553 /* 12554 * Defer sending ancillary data until the next TCP segment 12555 * arrives. 12556 */ 12557 return (mp); 12558 } 12559 mp1->b_cont = mp; 12560 mp = mp1; 12561 mp->b_wptr += sizeof (*todi) + optlen; 12562 mp->b_datap->db_type = M_PROTO; 12563 todi = (struct T_optdata_ind *)mp->b_rptr; 12564 todi->PRIM_type = T_OPTDATA_IND; 12565 todi->DATA_flag = 1; /* MORE data */ 12566 todi->OPT_length = optlen; 12567 todi->OPT_offset = sizeof (*todi); 12568 optptr = (uchar_t *)&todi[1]; 12569 /* 12570 * If app asked for pktinfo and the index has changed ... 12571 * Note that the local address never changes for the connection. 12572 */ 12573 if (addflag.crb_ip_recvpktinfo) { 12574 struct in6_pktinfo *pkti; 12575 uint_t ifindex; 12576 12577 ifindex = ira->ira_ruifindex; 12578 toh = (struct T_opthdr *)optptr; 12579 toh->level = IPPROTO_IPV6; 12580 toh->name = IPV6_PKTINFO; 12581 toh->len = sizeof (*toh) + sizeof (*pkti); 12582 toh->status = 0; 12583 optptr += sizeof (*toh); 12584 pkti = (struct in6_pktinfo *)optptr; 12585 pkti->ipi6_addr = connp->conn_laddr_v6; 12586 pkti->ipi6_ifindex = ifindex; 12587 optptr += sizeof (*pkti); 12588 ASSERT(OK_32PTR(optptr)); 12589 /* Save as "last" value */ 12590 tcp->tcp_recvifindex = ifindex; 12591 } 12592 /* If app asked for hoplimit and it has changed ... */ 12593 if (addflag.crb_ipv6_recvhoplimit) { 12594 toh = (struct T_opthdr *)optptr; 12595 toh->level = IPPROTO_IPV6; 12596 toh->name = IPV6_HOPLIMIT; 12597 toh->len = sizeof (*toh) + sizeof (uint_t); 12598 toh->status = 0; 12599 optptr += sizeof (*toh); 12600 *(uint_t *)optptr = ipp->ipp_hoplimit; 12601 optptr += sizeof (uint_t); 12602 ASSERT(OK_32PTR(optptr)); 12603 /* Save as "last" value */ 12604 tcp->tcp_recvhops = ipp->ipp_hoplimit; 12605 } 12606 /* If app asked for tclass and it has changed ... */ 12607 if (addflag.crb_ipv6_recvtclass) { 12608 toh = (struct T_opthdr *)optptr; 12609 toh->level = IPPROTO_IPV6; 12610 toh->name = IPV6_TCLASS; 12611 toh->len = sizeof (*toh) + sizeof (uint_t); 12612 toh->status = 0; 12613 optptr += sizeof (*toh); 12614 *(uint_t *)optptr = ipp->ipp_tclass; 12615 optptr += sizeof (uint_t); 12616 ASSERT(OK_32PTR(optptr)); 12617 /* Save as "last" value */ 12618 tcp->tcp_recvtclass = ipp->ipp_tclass; 12619 } 12620 if (addflag.crb_ipv6_recvhopopts) { 12621 toh = (struct T_opthdr *)optptr; 12622 toh->level = IPPROTO_IPV6; 12623 toh->name = IPV6_HOPOPTS; 12624 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen; 12625 toh->status = 0; 12626 optptr += sizeof (*toh); 12627 bcopy((uchar_t *)ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen); 12628 optptr += ipp->ipp_hopoptslen; 12629 ASSERT(OK_32PTR(optptr)); 12630 /* Save as last value */ 12631 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 12632 (ipp->ipp_fields & IPPF_HOPOPTS), 12633 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 12634 } 12635 if (addflag.crb_ipv6_recvrthdrdstopts) { 12636 toh = (struct T_opthdr *)optptr; 12637 toh->level = IPPROTO_IPV6; 12638 toh->name = IPV6_RTHDRDSTOPTS; 12639 toh->len = sizeof (*toh) + ipp->ipp_rthdrdstoptslen; 12640 toh->status = 0; 12641 optptr += sizeof (*toh); 12642 bcopy(ipp->ipp_rthdrdstopts, optptr, ipp->ipp_rthdrdstoptslen); 12643 optptr += ipp->ipp_rthdrdstoptslen; 12644 ASSERT(OK_32PTR(optptr)); 12645 /* Save as last value */ 12646 ip_savebuf((void **)&tcp->tcp_rthdrdstopts, 12647 &tcp->tcp_rthdrdstoptslen, 12648 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 12649 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 12650 } 12651 if (addflag.crb_ipv6_recvrthdr) { 12652 toh = (struct T_opthdr *)optptr; 12653 toh->level = IPPROTO_IPV6; 12654 toh->name = IPV6_RTHDR; 12655 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 12656 toh->status = 0; 12657 optptr += sizeof (*toh); 12658 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 12659 optptr += ipp->ipp_rthdrlen; 12660 ASSERT(OK_32PTR(optptr)); 12661 /* Save as last value */ 12662 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 12663 (ipp->ipp_fields & IPPF_RTHDR), 12664 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 12665 } 12666 if (addflag.crb_ipv6_recvdstopts) { 12667 toh = (struct T_opthdr *)optptr; 12668 toh->level = IPPROTO_IPV6; 12669 toh->name = IPV6_DSTOPTS; 12670 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 12671 toh->status = 0; 12672 optptr += sizeof (*toh); 12673 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 12674 optptr += ipp->ipp_dstoptslen; 12675 ASSERT(OK_32PTR(optptr)); 12676 /* Save as last value */ 12677 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 12678 (ipp->ipp_fields & IPPF_DSTOPTS), 12679 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 12680 } 12681 ASSERT(optptr == mp->b_wptr); 12682 return (mp); 12683 } 12684 12685 /* ARGSUSED */ 12686 static void 12687 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 12688 { 12689 conn_t *connp = (conn_t *)arg; 12690 tcp_t *tcp = connp->conn_tcp; 12691 queue_t *q = connp->conn_rq; 12692 tcp_stack_t *tcps = tcp->tcp_tcps; 12693 12694 ASSERT(!IPCL_IS_NONSTR(connp)); 12695 mutex_enter(&tcp->tcp_rsrv_mp_lock); 12696 tcp->tcp_rsrv_mp = mp; 12697 mutex_exit(&tcp->tcp_rsrv_mp_lock); 12698 12699 TCP_STAT(tcps, tcp_rsrv_calls); 12700 12701 if (TCP_IS_DETACHED(tcp) || q == NULL) { 12702 return; 12703 } 12704 12705 if (tcp->tcp_fused) { 12706 tcp_fuse_backenable(tcp); 12707 return; 12708 } 12709 12710 if (canputnext(q)) { 12711 /* Not flow-controlled, open rwnd */ 12712 tcp->tcp_rwnd = connp->conn_rcvbuf; 12713 12714 /* 12715 * Send back a window update immediately if TCP is above 12716 * ESTABLISHED state and the increase of the rcv window 12717 * that the other side knows is at least 1 MSS after flow 12718 * control is lifted. 12719 */ 12720 if (tcp->tcp_state >= TCPS_ESTABLISHED && 12721 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 12722 tcp_xmit_ctl(NULL, tcp, 12723 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 12724 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 12725 } 12726 } 12727 } 12728 12729 /* 12730 * The read side service routine is called mostly when we get back-enabled as a 12731 * result of flow control relief. Since we don't actually queue anything in 12732 * TCP, we have no data to send out of here. What we do is clear the receive 12733 * window, and send out a window update. 12734 */ 12735 static void 12736 tcp_rsrv(queue_t *q) 12737 { 12738 conn_t *connp = Q_TO_CONN(q); 12739 tcp_t *tcp = connp->conn_tcp; 12740 mblk_t *mp; 12741 12742 /* No code does a putq on the read side */ 12743 ASSERT(q->q_first == NULL); 12744 12745 /* 12746 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 12747 * been run. So just return. 12748 */ 12749 mutex_enter(&tcp->tcp_rsrv_mp_lock); 12750 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 12751 mutex_exit(&tcp->tcp_rsrv_mp_lock); 12752 return; 12753 } 12754 tcp->tcp_rsrv_mp = NULL; 12755 mutex_exit(&tcp->tcp_rsrv_mp_lock); 12756 12757 CONN_INC_REF(connp); 12758 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, 12759 NULL, SQ_PROCESS, SQTAG_TCP_RSRV); 12760 } 12761 12762 /* 12763 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 12764 * We do not allow the receive window to shrink. After setting rwnd, 12765 * set the flow control hiwat of the stream. 12766 * 12767 * This function is called in 2 cases: 12768 * 12769 * 1) Before data transfer begins, in tcp_input_listener() for accepting a 12770 * connection (passive open) and in tcp_input_data() for active connect. 12771 * This is called after tcp_mss_set() when the desired MSS value is known. 12772 * This makes sure that our window size is a mutiple of the other side's 12773 * MSS. 12774 * 2) Handling SO_RCVBUF option. 12775 * 12776 * It is ASSUMED that the requested size is a multiple of the current MSS. 12777 * 12778 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 12779 * user requests so. 12780 */ 12781 int 12782 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 12783 { 12784 uint32_t mss = tcp->tcp_mss; 12785 uint32_t old_max_rwnd; 12786 uint32_t max_transmittable_rwnd; 12787 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 12788 tcp_stack_t *tcps = tcp->tcp_tcps; 12789 conn_t *connp = tcp->tcp_connp; 12790 12791 /* 12792 * Insist on a receive window that is at least 12793 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 12794 * funny TCP interactions of Nagle algorithm, SWS avoidance 12795 * and delayed acknowledgement. 12796 */ 12797 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 12798 12799 if (tcp->tcp_fused) { 12800 size_t sth_hiwat; 12801 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 12802 12803 ASSERT(peer_tcp != NULL); 12804 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 12805 if (!tcp_detached) { 12806 (void) proto_set_rx_hiwat(connp->conn_rq, connp, 12807 sth_hiwat); 12808 tcp_set_recv_threshold(tcp, sth_hiwat >> 3); 12809 } 12810 12811 /* 12812 * In the fusion case, the maxpsz stream head value of 12813 * our peer is set according to its send buffer size 12814 * and our receive buffer size; since the latter may 12815 * have changed we need to update the peer's maxpsz. 12816 */ 12817 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 12818 return (sth_hiwat); 12819 } 12820 12821 if (tcp_detached) 12822 old_max_rwnd = tcp->tcp_rwnd; 12823 else 12824 old_max_rwnd = connp->conn_rcvbuf; 12825 12826 12827 /* 12828 * If window size info has already been exchanged, TCP should not 12829 * shrink the window. Shrinking window is doable if done carefully. 12830 * We may add that support later. But so far there is not a real 12831 * need to do that. 12832 */ 12833 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 12834 /* MSS may have changed, do a round up again. */ 12835 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 12836 } 12837 12838 /* 12839 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 12840 * can be applied even before the window scale option is decided. 12841 */ 12842 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 12843 if (rwnd > max_transmittable_rwnd) { 12844 rwnd = max_transmittable_rwnd - 12845 (max_transmittable_rwnd % mss); 12846 if (rwnd < mss) 12847 rwnd = max_transmittable_rwnd; 12848 /* 12849 * If we're over the limit we may have to back down tcp_rwnd. 12850 * The increment below won't work for us. So we set all three 12851 * here and the increment below will have no effect. 12852 */ 12853 tcp->tcp_rwnd = old_max_rwnd = rwnd; 12854 } 12855 if (tcp->tcp_localnet) { 12856 tcp->tcp_rack_abs_max = 12857 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 12858 } else { 12859 /* 12860 * For a remote host on a different subnet (through a router), 12861 * we ack every other packet to be conforming to RFC1122. 12862 * tcp_deferred_acks_max is default to 2. 12863 */ 12864 tcp->tcp_rack_abs_max = 12865 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 12866 } 12867 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 12868 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 12869 else 12870 tcp->tcp_rack_cur_max = 0; 12871 /* 12872 * Increment the current rwnd by the amount the maximum grew (we 12873 * can not overwrite it since we might be in the middle of a 12874 * connection.) 12875 */ 12876 tcp->tcp_rwnd += rwnd - old_max_rwnd; 12877 connp->conn_rcvbuf = rwnd; 12878 12879 /* Are we already connected? */ 12880 if (tcp->tcp_tcpha != NULL) { 12881 tcp->tcp_tcpha->tha_win = 12882 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 12883 } 12884 12885 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 12886 tcp->tcp_cwnd_max = rwnd; 12887 12888 if (tcp_detached) 12889 return (rwnd); 12890 12891 tcp_set_recv_threshold(tcp, rwnd >> 3); 12892 12893 (void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd); 12894 return (rwnd); 12895 } 12896 12897 /* 12898 * Return SNMP stuff in buffer in mpdata. 12899 */ 12900 mblk_t * 12901 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 12902 { 12903 mblk_t *mpdata; 12904 mblk_t *mp_conn_ctl = NULL; 12905 mblk_t *mp_conn_tail; 12906 mblk_t *mp_attr_ctl = NULL; 12907 mblk_t *mp_attr_tail; 12908 mblk_t *mp6_conn_ctl = NULL; 12909 mblk_t *mp6_conn_tail; 12910 mblk_t *mp6_attr_ctl = NULL; 12911 mblk_t *mp6_attr_tail; 12912 struct opthdr *optp; 12913 mib2_tcpConnEntry_t tce; 12914 mib2_tcp6ConnEntry_t tce6; 12915 mib2_transportMLPEntry_t mlp; 12916 connf_t *connfp; 12917 int i; 12918 boolean_t ispriv; 12919 zoneid_t zoneid; 12920 int v4_conn_idx; 12921 int v6_conn_idx; 12922 conn_t *connp = Q_TO_CONN(q); 12923 tcp_stack_t *tcps; 12924 ip_stack_t *ipst; 12925 mblk_t *mp2ctl; 12926 12927 /* 12928 * make a copy of the original message 12929 */ 12930 mp2ctl = copymsg(mpctl); 12931 12932 if (mpctl == NULL || 12933 (mpdata = mpctl->b_cont) == NULL || 12934 (mp_conn_ctl = copymsg(mpctl)) == NULL || 12935 (mp_attr_ctl = copymsg(mpctl)) == NULL || 12936 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 12937 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 12938 freemsg(mp_conn_ctl); 12939 freemsg(mp_attr_ctl); 12940 freemsg(mp6_conn_ctl); 12941 freemsg(mp6_attr_ctl); 12942 freemsg(mpctl); 12943 freemsg(mp2ctl); 12944 return (NULL); 12945 } 12946 12947 ipst = connp->conn_netstack->netstack_ip; 12948 tcps = connp->conn_netstack->netstack_tcp; 12949 12950 /* build table of connections -- need count in fixed part */ 12951 SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ 12952 SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); 12953 SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); 12954 SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); 12955 SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); 12956 12957 ispriv = 12958 secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 12959 zoneid = Q_TO_CONN(q)->conn_zoneid; 12960 12961 v4_conn_idx = v6_conn_idx = 0; 12962 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 12963 12964 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 12965 ipst = tcps->tcps_netstack->netstack_ip; 12966 12967 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 12968 12969 connp = NULL; 12970 12971 while ((connp = 12972 ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) { 12973 tcp_t *tcp; 12974 boolean_t needattr; 12975 12976 if (connp->conn_zoneid != zoneid) 12977 continue; /* not in this zone */ 12978 12979 tcp = connp->conn_tcp; 12980 UPDATE_MIB(&tcps->tcps_mib, 12981 tcpHCInSegs, tcp->tcp_ibsegs); 12982 tcp->tcp_ibsegs = 0; 12983 UPDATE_MIB(&tcps->tcps_mib, 12984 tcpHCOutSegs, tcp->tcp_obsegs); 12985 tcp->tcp_obsegs = 0; 12986 12987 tce6.tcp6ConnState = tce.tcpConnState = 12988 tcp_snmp_state(tcp); 12989 if (tce.tcpConnState == MIB2_TCP_established || 12990 tce.tcpConnState == MIB2_TCP_closeWait) 12991 BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); 12992 12993 needattr = B_FALSE; 12994 bzero(&mlp, sizeof (mlp)); 12995 if (connp->conn_mlp_type != mlptSingle) { 12996 if (connp->conn_mlp_type == mlptShared || 12997 connp->conn_mlp_type == mlptBoth) 12998 mlp.tme_flags |= MIB2_TMEF_SHARED; 12999 if (connp->conn_mlp_type == mlptPrivate || 13000 connp->conn_mlp_type == mlptBoth) 13001 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 13002 needattr = B_TRUE; 13003 } 13004 if (connp->conn_anon_mlp) { 13005 mlp.tme_flags |= MIB2_TMEF_ANONMLP; 13006 needattr = B_TRUE; 13007 } 13008 switch (connp->conn_mac_mode) { 13009 case CONN_MAC_DEFAULT: 13010 break; 13011 case CONN_MAC_AWARE: 13012 mlp.tme_flags |= MIB2_TMEF_MACEXEMPT; 13013 needattr = B_TRUE; 13014 break; 13015 case CONN_MAC_IMPLICIT: 13016 mlp.tme_flags |= MIB2_TMEF_MACIMPLICIT; 13017 needattr = B_TRUE; 13018 break; 13019 } 13020 if (connp->conn_ixa->ixa_tsl != NULL) { 13021 ts_label_t *tsl; 13022 13023 tsl = connp->conn_ixa->ixa_tsl; 13024 mlp.tme_flags |= MIB2_TMEF_IS_LABELED; 13025 mlp.tme_doi = label2doi(tsl); 13026 mlp.tme_label = *label2bslabel(tsl); 13027 needattr = B_TRUE; 13028 } 13029 13030 /* Create a message to report on IPv6 entries */ 13031 if (connp->conn_ipversion == IPV6_VERSION) { 13032 tce6.tcp6ConnLocalAddress = connp->conn_laddr_v6; 13033 tce6.tcp6ConnRemAddress = connp->conn_faddr_v6; 13034 tce6.tcp6ConnLocalPort = ntohs(connp->conn_lport); 13035 tce6.tcp6ConnRemPort = ntohs(connp->conn_fport); 13036 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) { 13037 tce6.tcp6ConnIfIndex = 13038 connp->conn_ixa->ixa_scopeid; 13039 } else { 13040 tce6.tcp6ConnIfIndex = connp->conn_bound_if; 13041 } 13042 /* Don't want just anybody seeing these... */ 13043 if (ispriv) { 13044 tce6.tcp6ConnEntryInfo.ce_snxt = 13045 tcp->tcp_snxt; 13046 tce6.tcp6ConnEntryInfo.ce_suna = 13047 tcp->tcp_suna; 13048 tce6.tcp6ConnEntryInfo.ce_rnxt = 13049 tcp->tcp_rnxt; 13050 tce6.tcp6ConnEntryInfo.ce_rack = 13051 tcp->tcp_rack; 13052 } else { 13053 /* 13054 * Netstat, unfortunately, uses this to 13055 * get send/receive queue sizes. How to fix? 13056 * Why not compute the difference only? 13057 */ 13058 tce6.tcp6ConnEntryInfo.ce_snxt = 13059 tcp->tcp_snxt - tcp->tcp_suna; 13060 tce6.tcp6ConnEntryInfo.ce_suna = 0; 13061 tce6.tcp6ConnEntryInfo.ce_rnxt = 13062 tcp->tcp_rnxt - tcp->tcp_rack; 13063 tce6.tcp6ConnEntryInfo.ce_rack = 0; 13064 } 13065 13066 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 13067 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 13068 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 13069 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 13070 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 13071 13072 tce6.tcp6ConnCreationProcess = 13073 (connp->conn_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 13074 connp->conn_cpid; 13075 tce6.tcp6ConnCreationTime = connp->conn_open_time; 13076 13077 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 13078 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 13079 13080 mlp.tme_connidx = v6_conn_idx++; 13081 if (needattr) 13082 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 13083 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 13084 } 13085 /* 13086 * Create an IPv4 table entry for IPv4 entries and also 13087 * for IPv6 entries which are bound to in6addr_any 13088 * but don't have IPV6_V6ONLY set. 13089 * (i.e. anything an IPv4 peer could connect to) 13090 */ 13091 if (connp->conn_ipversion == IPV4_VERSION || 13092 (tcp->tcp_state <= TCPS_LISTEN && 13093 !connp->conn_ipv6_v6only && 13094 IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6))) { 13095 if (connp->conn_ipversion == IPV6_VERSION) { 13096 tce.tcpConnRemAddress = INADDR_ANY; 13097 tce.tcpConnLocalAddress = INADDR_ANY; 13098 } else { 13099 tce.tcpConnRemAddress = 13100 connp->conn_faddr_v4; 13101 tce.tcpConnLocalAddress = 13102 connp->conn_laddr_v4; 13103 } 13104 tce.tcpConnLocalPort = ntohs(connp->conn_lport); 13105 tce.tcpConnRemPort = ntohs(connp->conn_fport); 13106 /* Don't want just anybody seeing these... */ 13107 if (ispriv) { 13108 tce.tcpConnEntryInfo.ce_snxt = 13109 tcp->tcp_snxt; 13110 tce.tcpConnEntryInfo.ce_suna = 13111 tcp->tcp_suna; 13112 tce.tcpConnEntryInfo.ce_rnxt = 13113 tcp->tcp_rnxt; 13114 tce.tcpConnEntryInfo.ce_rack = 13115 tcp->tcp_rack; 13116 } else { 13117 /* 13118 * Netstat, unfortunately, uses this to 13119 * get send/receive queue sizes. How 13120 * to fix? 13121 * Why not compute the difference only? 13122 */ 13123 tce.tcpConnEntryInfo.ce_snxt = 13124 tcp->tcp_snxt - tcp->tcp_suna; 13125 tce.tcpConnEntryInfo.ce_suna = 0; 13126 tce.tcpConnEntryInfo.ce_rnxt = 13127 tcp->tcp_rnxt - tcp->tcp_rack; 13128 tce.tcpConnEntryInfo.ce_rack = 0; 13129 } 13130 13131 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 13132 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 13133 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 13134 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 13135 tce.tcpConnEntryInfo.ce_state = 13136 tcp->tcp_state; 13137 13138 tce.tcpConnCreationProcess = 13139 (connp->conn_cpid < 0) ? 13140 MIB2_UNKNOWN_PROCESS : 13141 connp->conn_cpid; 13142 tce.tcpConnCreationTime = connp->conn_open_time; 13143 13144 (void) snmp_append_data2(mp_conn_ctl->b_cont, 13145 &mp_conn_tail, (char *)&tce, sizeof (tce)); 13146 13147 mlp.tme_connidx = v4_conn_idx++; 13148 if (needattr) 13149 (void) snmp_append_data2( 13150 mp_attr_ctl->b_cont, 13151 &mp_attr_tail, (char *)&mlp, 13152 sizeof (mlp)); 13153 } 13154 } 13155 } 13156 13157 /* fixed length structure for IPv4 and IPv6 counters */ 13158 SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 13159 SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, 13160 sizeof (mib2_tcp6ConnEntry_t)); 13161 /* synchronize 32- and 64-bit counters */ 13162 SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); 13163 SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); 13164 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 13165 optp->level = MIB2_TCP; 13166 optp->name = 0; 13167 (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, 13168 sizeof (tcps->tcps_mib)); 13169 optp->len = msgdsize(mpdata); 13170 qreply(q, mpctl); 13171 13172 /* table of connections... */ 13173 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 13174 sizeof (struct T_optmgmt_ack)]; 13175 optp->level = MIB2_TCP; 13176 optp->name = MIB2_TCP_CONN; 13177 optp->len = msgdsize(mp_conn_ctl->b_cont); 13178 qreply(q, mp_conn_ctl); 13179 13180 /* table of MLP attributes... */ 13181 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 13182 sizeof (struct T_optmgmt_ack)]; 13183 optp->level = MIB2_TCP; 13184 optp->name = EXPER_XPORT_MLP; 13185 optp->len = msgdsize(mp_attr_ctl->b_cont); 13186 if (optp->len == 0) 13187 freemsg(mp_attr_ctl); 13188 else 13189 qreply(q, mp_attr_ctl); 13190 13191 /* table of IPv6 connections... */ 13192 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 13193 sizeof (struct T_optmgmt_ack)]; 13194 optp->level = MIB2_TCP6; 13195 optp->name = MIB2_TCP6_CONN; 13196 optp->len = msgdsize(mp6_conn_ctl->b_cont); 13197 qreply(q, mp6_conn_ctl); 13198 13199 /* table of IPv6 MLP attributes... */ 13200 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 13201 sizeof (struct T_optmgmt_ack)]; 13202 optp->level = MIB2_TCP6; 13203 optp->name = EXPER_XPORT_MLP; 13204 optp->len = msgdsize(mp6_attr_ctl->b_cont); 13205 if (optp->len == 0) 13206 freemsg(mp6_attr_ctl); 13207 else 13208 qreply(q, mp6_attr_ctl); 13209 return (mp2ctl); 13210 } 13211 13212 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 13213 /* ARGSUSED */ 13214 int 13215 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 13216 { 13217 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 13218 13219 switch (level) { 13220 case MIB2_TCP: 13221 switch (name) { 13222 case 13: 13223 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 13224 return (0); 13225 /* TODO: delete entry defined by tce */ 13226 return (1); 13227 default: 13228 return (0); 13229 } 13230 default: 13231 return (1); 13232 } 13233 } 13234 13235 /* Translate TCP state to MIB2 TCP state. */ 13236 static int 13237 tcp_snmp_state(tcp_t *tcp) 13238 { 13239 if (tcp == NULL) 13240 return (0); 13241 13242 switch (tcp->tcp_state) { 13243 case TCPS_CLOSED: 13244 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 13245 case TCPS_BOUND: 13246 return (MIB2_TCP_closed); 13247 case TCPS_LISTEN: 13248 return (MIB2_TCP_listen); 13249 case TCPS_SYN_SENT: 13250 return (MIB2_TCP_synSent); 13251 case TCPS_SYN_RCVD: 13252 return (MIB2_TCP_synReceived); 13253 case TCPS_ESTABLISHED: 13254 return (MIB2_TCP_established); 13255 case TCPS_CLOSE_WAIT: 13256 return (MIB2_TCP_closeWait); 13257 case TCPS_FIN_WAIT_1: 13258 return (MIB2_TCP_finWait1); 13259 case TCPS_CLOSING: 13260 return (MIB2_TCP_closing); 13261 case TCPS_LAST_ACK: 13262 return (MIB2_TCP_lastAck); 13263 case TCPS_FIN_WAIT_2: 13264 return (MIB2_TCP_finWait2); 13265 case TCPS_TIME_WAIT: 13266 return (MIB2_TCP_timeWait); 13267 default: 13268 return (0); 13269 } 13270 } 13271 13272 /* 13273 * tcp_timer is the timer service routine. It handles the retransmission, 13274 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 13275 * from the state of the tcp instance what kind of action needs to be done 13276 * at the time it is called. 13277 */ 13278 static void 13279 tcp_timer(void *arg) 13280 { 13281 mblk_t *mp; 13282 clock_t first_threshold; 13283 clock_t second_threshold; 13284 clock_t ms; 13285 uint32_t mss; 13286 conn_t *connp = (conn_t *)arg; 13287 tcp_t *tcp = connp->conn_tcp; 13288 tcp_stack_t *tcps = tcp->tcp_tcps; 13289 13290 tcp->tcp_timer_tid = 0; 13291 13292 if (tcp->tcp_fused) 13293 return; 13294 13295 first_threshold = tcp->tcp_first_timer_threshold; 13296 second_threshold = tcp->tcp_second_timer_threshold; 13297 switch (tcp->tcp_state) { 13298 case TCPS_IDLE: 13299 case TCPS_BOUND: 13300 case TCPS_LISTEN: 13301 return; 13302 case TCPS_SYN_RCVD: { 13303 tcp_t *listener = tcp->tcp_listener; 13304 13305 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 13306 /* it's our first timeout */ 13307 tcp->tcp_syn_rcvd_timeout = 1; 13308 mutex_enter(&listener->tcp_eager_lock); 13309 listener->tcp_syn_rcvd_timeout++; 13310 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 13311 /* 13312 * Make this eager available for drop if we 13313 * need to drop one to accomodate a new 13314 * incoming SYN request. 13315 */ 13316 MAKE_DROPPABLE(listener, tcp); 13317 } 13318 if (!listener->tcp_syn_defense && 13319 (listener->tcp_syn_rcvd_timeout > 13320 (tcps->tcps_conn_req_max_q0 >> 2)) && 13321 (tcps->tcps_conn_req_max_q0 > 200)) { 13322 /* We may be under attack. Put on a defense. */ 13323 listener->tcp_syn_defense = B_TRUE; 13324 cmn_err(CE_WARN, "High TCP connect timeout " 13325 "rate! System (port %d) may be under a " 13326 "SYN flood attack!", 13327 ntohs(listener->tcp_connp->conn_lport)); 13328 13329 listener->tcp_ip_addr_cache = kmem_zalloc( 13330 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 13331 KM_NOSLEEP); 13332 } 13333 mutex_exit(&listener->tcp_eager_lock); 13334 } else if (listener != NULL) { 13335 mutex_enter(&listener->tcp_eager_lock); 13336 tcp->tcp_syn_rcvd_timeout++; 13337 if (tcp->tcp_syn_rcvd_timeout > 1 && 13338 !tcp->tcp_closemp_used) { 13339 /* 13340 * This is our second timeout. Put the tcp in 13341 * the list of droppable eagers to allow it to 13342 * be dropped, if needed. We don't check 13343 * whether tcp_dontdrop is set or not to 13344 * protect ourselve from a SYN attack where a 13345 * remote host can spoof itself as one of the 13346 * good IP source and continue to hold 13347 * resources too long. 13348 */ 13349 MAKE_DROPPABLE(listener, tcp); 13350 } 13351 mutex_exit(&listener->tcp_eager_lock); 13352 } 13353 } 13354 /* FALLTHRU */ 13355 case TCPS_SYN_SENT: 13356 first_threshold = tcp->tcp_first_ctimer_threshold; 13357 second_threshold = tcp->tcp_second_ctimer_threshold; 13358 break; 13359 case TCPS_ESTABLISHED: 13360 case TCPS_FIN_WAIT_1: 13361 case TCPS_CLOSING: 13362 case TCPS_CLOSE_WAIT: 13363 case TCPS_LAST_ACK: 13364 /* If we have data to rexmit */ 13365 if (tcp->tcp_suna != tcp->tcp_snxt) { 13366 clock_t time_to_wait; 13367 13368 BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); 13369 if (!tcp->tcp_xmit_head) 13370 break; 13371 time_to_wait = lbolt - 13372 (clock_t)tcp->tcp_xmit_head->b_prev; 13373 time_to_wait = tcp->tcp_rto - 13374 TICK_TO_MSEC(time_to_wait); 13375 /* 13376 * If the timer fires too early, 1 clock tick earlier, 13377 * restart the timer. 13378 */ 13379 if (time_to_wait > msec_per_tick) { 13380 TCP_STAT(tcps, tcp_timer_fire_early); 13381 TCP_TIMER_RESTART(tcp, time_to_wait); 13382 return; 13383 } 13384 /* 13385 * When we probe zero windows, we force the swnd open. 13386 * If our peer acks with a closed window swnd will be 13387 * set to zero by tcp_rput(). As long as we are 13388 * receiving acks tcp_rput will 13389 * reset 'tcp_ms_we_have_waited' so as not to trip the 13390 * first and second interval actions. NOTE: the timer 13391 * interval is allowed to continue its exponential 13392 * backoff. 13393 */ 13394 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 13395 if (connp->conn_debug) { 13396 (void) strlog(TCP_MOD_ID, 0, 1, 13397 SL_TRACE, "tcp_timer: zero win"); 13398 } 13399 } else { 13400 /* 13401 * After retransmission, we need to do 13402 * slow start. Set the ssthresh to one 13403 * half of current effective window and 13404 * cwnd to one MSS. Also reset 13405 * tcp_cwnd_cnt. 13406 * 13407 * Note that if tcp_ssthresh is reduced because 13408 * of ECN, do not reduce it again unless it is 13409 * already one window of data away (tcp_cwr 13410 * should then be cleared) or this is a 13411 * timeout for a retransmitted segment. 13412 */ 13413 uint32_t npkt; 13414 13415 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 13416 npkt = ((tcp->tcp_timer_backoff ? 13417 tcp->tcp_cwnd_ssthresh : 13418 tcp->tcp_snxt - 13419 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 13420 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 13421 tcp->tcp_mss; 13422 } 13423 tcp->tcp_cwnd = tcp->tcp_mss; 13424 tcp->tcp_cwnd_cnt = 0; 13425 if (tcp->tcp_ecn_ok) { 13426 tcp->tcp_cwr = B_TRUE; 13427 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 13428 tcp->tcp_ecn_cwr_sent = B_FALSE; 13429 } 13430 } 13431 break; 13432 } 13433 /* 13434 * We have something to send yet we cannot send. The 13435 * reason can be: 13436 * 13437 * 1. Zero send window: we need to do zero window probe. 13438 * 2. Zero cwnd: because of ECN, we need to "clock out 13439 * segments. 13440 * 3. SWS avoidance: receiver may have shrunk window, 13441 * reset our knowledge. 13442 * 13443 * Note that condition 2 can happen with either 1 or 13444 * 3. But 1 and 3 are exclusive. 13445 */ 13446 if (tcp->tcp_unsent != 0) { 13447 /* 13448 * Should not hold the zero-copy messages for too long. 13449 */ 13450 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) 13451 tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, 13452 tcp->tcp_xmit_head, B_TRUE); 13453 13454 if (tcp->tcp_cwnd == 0) { 13455 /* 13456 * Set tcp_cwnd to 1 MSS so that a 13457 * new segment can be sent out. We 13458 * are "clocking out" new data when 13459 * the network is really congested. 13460 */ 13461 ASSERT(tcp->tcp_ecn_ok); 13462 tcp->tcp_cwnd = tcp->tcp_mss; 13463 } 13464 if (tcp->tcp_swnd == 0) { 13465 /* Extend window for zero window probe */ 13466 tcp->tcp_swnd++; 13467 tcp->tcp_zero_win_probe = B_TRUE; 13468 BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); 13469 } else { 13470 /* 13471 * Handle timeout from sender SWS avoidance. 13472 * Reset our knowledge of the max send window 13473 * since the receiver might have reduced its 13474 * receive buffer. Avoid setting tcp_max_swnd 13475 * to one since that will essentially disable 13476 * the SWS checks. 13477 * 13478 * Note that since we don't have a SWS 13479 * state variable, if the timeout is set 13480 * for ECN but not for SWS, this 13481 * code will also be executed. This is 13482 * fine as tcp_max_swnd is updated 13483 * constantly and it will not affect 13484 * anything. 13485 */ 13486 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 13487 } 13488 tcp_wput_data(tcp, NULL, B_FALSE); 13489 return; 13490 } 13491 /* Is there a FIN that needs to be to re retransmitted? */ 13492 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 13493 !tcp->tcp_fin_acked) 13494 break; 13495 /* Nothing to do, return without restarting timer. */ 13496 TCP_STAT(tcps, tcp_timer_fire_miss); 13497 return; 13498 case TCPS_FIN_WAIT_2: 13499 /* 13500 * User closed the TCP endpoint and peer ACK'ed our FIN. 13501 * We waited some time for for peer's FIN, but it hasn't 13502 * arrived. We flush the connection now to avoid 13503 * case where the peer has rebooted. 13504 */ 13505 if (TCP_IS_DETACHED(tcp)) { 13506 (void) tcp_clean_death(tcp, 0, 23); 13507 } else { 13508 TCP_TIMER_RESTART(tcp, 13509 tcps->tcps_fin_wait_2_flush_interval); 13510 } 13511 return; 13512 case TCPS_TIME_WAIT: 13513 (void) tcp_clean_death(tcp, 0, 24); 13514 return; 13515 default: 13516 if (connp->conn_debug) { 13517 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 13518 "tcp_timer: strange state (%d) %s", 13519 tcp->tcp_state, tcp_display(tcp, NULL, 13520 DISP_PORT_ONLY)); 13521 } 13522 return; 13523 } 13524 13525 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 13526 /* 13527 * Should not hold the zero-copy messages for too long. 13528 */ 13529 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) 13530 tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, 13531 tcp->tcp_xmit_head, B_TRUE); 13532 13533 /* 13534 * For zero window probe, we need to send indefinitely, 13535 * unless we have not heard from the other side for some 13536 * time... 13537 */ 13538 if ((tcp->tcp_zero_win_probe == 0) || 13539 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 13540 second_threshold)) { 13541 BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); 13542 /* 13543 * If TCP is in SYN_RCVD state, send back a 13544 * RST|ACK as BSD does. Note that tcp_zero_win_probe 13545 * should be zero in TCPS_SYN_RCVD state. 13546 */ 13547 if (tcp->tcp_state == TCPS_SYN_RCVD) { 13548 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 13549 "in SYN_RCVD", 13550 tcp, tcp->tcp_snxt, 13551 tcp->tcp_rnxt, TH_RST | TH_ACK); 13552 } 13553 (void) tcp_clean_death(tcp, 13554 tcp->tcp_client_errno ? 13555 tcp->tcp_client_errno : ETIMEDOUT, 25); 13556 return; 13557 } else { 13558 /* 13559 * Set tcp_ms_we_have_waited to second_threshold 13560 * so that in next timeout, we will do the above 13561 * check (lbolt - tcp_last_recv_time). This is 13562 * also to avoid overflow. 13563 * 13564 * We don't need to decrement tcp_timer_backoff 13565 * to avoid overflow because it will be decremented 13566 * later if new timeout value is greater than 13567 * tcp_rexmit_interval_max. In the case when 13568 * tcp_rexmit_interval_max is greater than 13569 * second_threshold, it means that we will wait 13570 * longer than second_threshold to send the next 13571 * window probe. 13572 */ 13573 tcp->tcp_ms_we_have_waited = second_threshold; 13574 } 13575 } else if (ms > first_threshold) { 13576 /* 13577 * Should not hold the zero-copy messages for too long. 13578 */ 13579 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) 13580 tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, 13581 tcp->tcp_xmit_head, B_TRUE); 13582 13583 /* 13584 * We have been retransmitting for too long... The RTT 13585 * we calculated is probably incorrect. Reinitialize it. 13586 * Need to compensate for 0 tcp_rtt_sa. Reset 13587 * tcp_rtt_update so that we won't accidentally cache a 13588 * bad value. But only do this if this is not a zero 13589 * window probe. 13590 */ 13591 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 13592 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 13593 (tcp->tcp_rtt_sa >> 5); 13594 tcp->tcp_rtt_sa = 0; 13595 tcp_ip_notify(tcp); 13596 tcp->tcp_rtt_update = 0; 13597 } 13598 } 13599 tcp->tcp_timer_backoff++; 13600 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 13601 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 13602 tcps->tcps_rexmit_interval_min) { 13603 /* 13604 * This means the original RTO is tcp_rexmit_interval_min. 13605 * So we will use tcp_rexmit_interval_min as the RTO value 13606 * and do the backoff. 13607 */ 13608 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 13609 } else { 13610 ms <<= tcp->tcp_timer_backoff; 13611 } 13612 if (ms > tcps->tcps_rexmit_interval_max) { 13613 ms = tcps->tcps_rexmit_interval_max; 13614 /* 13615 * ms is at max, decrement tcp_timer_backoff to avoid 13616 * overflow. 13617 */ 13618 tcp->tcp_timer_backoff--; 13619 } 13620 tcp->tcp_ms_we_have_waited += ms; 13621 if (tcp->tcp_zero_win_probe == 0) { 13622 tcp->tcp_rto = ms; 13623 } 13624 TCP_TIMER_RESTART(tcp, ms); 13625 /* 13626 * This is after a timeout and tcp_rto is backed off. Set 13627 * tcp_set_timer to 1 so that next time RTO is updated, we will 13628 * restart the timer with a correct value. 13629 */ 13630 tcp->tcp_set_timer = 1; 13631 mss = tcp->tcp_snxt - tcp->tcp_suna; 13632 if (mss > tcp->tcp_mss) 13633 mss = tcp->tcp_mss; 13634 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 13635 mss = tcp->tcp_swnd; 13636 13637 if ((mp = tcp->tcp_xmit_head) != NULL) 13638 mp->b_prev = (mblk_t *)lbolt; 13639 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 13640 B_TRUE); 13641 13642 /* 13643 * When slow start after retransmission begins, start with 13644 * this seq no. tcp_rexmit_max marks the end of special slow 13645 * start phase. tcp_snd_burst controls how many segments 13646 * can be sent because of an ack. 13647 */ 13648 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 13649 tcp->tcp_snd_burst = TCP_CWND_SS; 13650 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 13651 (tcp->tcp_unsent == 0)) { 13652 tcp->tcp_rexmit_max = tcp->tcp_fss; 13653 } else { 13654 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13655 } 13656 tcp->tcp_rexmit = B_TRUE; 13657 tcp->tcp_dupack_cnt = 0; 13658 13659 /* 13660 * Remove all rexmit SACK blk to start from fresh. 13661 */ 13662 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) 13663 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 13664 if (mp == NULL) { 13665 return; 13666 } 13667 13668 tcp->tcp_csuna = tcp->tcp_snxt; 13669 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 13670 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); 13671 tcp_send_data(tcp, mp); 13672 13673 } 13674 13675 static int 13676 tcp_do_unbind(conn_t *connp) 13677 { 13678 tcp_t *tcp = connp->conn_tcp; 13679 13680 switch (tcp->tcp_state) { 13681 case TCPS_BOUND: 13682 case TCPS_LISTEN: 13683 break; 13684 default: 13685 return (-TOUTSTATE); 13686 } 13687 13688 /* 13689 * Need to clean up all the eagers since after the unbind, segments 13690 * will no longer be delivered to this listener stream. 13691 */ 13692 mutex_enter(&tcp->tcp_eager_lock); 13693 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 13694 tcp_eager_cleanup(tcp, 0); 13695 } 13696 mutex_exit(&tcp->tcp_eager_lock); 13697 13698 connp->conn_laddr_v6 = ipv6_all_zeros; 13699 connp->conn_saddr_v6 = ipv6_all_zeros; 13700 tcp_bind_hash_remove(tcp); 13701 tcp->tcp_state = TCPS_IDLE; 13702 13703 ip_unbind(connp); 13704 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 13705 13706 return (0); 13707 } 13708 13709 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 13710 static void 13711 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp) 13712 { 13713 conn_t *connp = tcp->tcp_connp; 13714 int error; 13715 13716 error = tcp_do_unbind(connp); 13717 if (error > 0) { 13718 tcp_err_ack(tcp, mp, TSYSERR, error); 13719 } else if (error < 0) { 13720 tcp_err_ack(tcp, mp, -error, 0); 13721 } else { 13722 /* Send M_FLUSH according to TPI */ 13723 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW); 13724 13725 mp = mi_tpi_ok_ack_alloc(mp); 13726 if (mp != NULL) 13727 putnext(connp->conn_rq, mp); 13728 } 13729 } 13730 13731 /* 13732 * Don't let port fall into the privileged range. 13733 * Since the extra privileged ports can be arbitrary we also 13734 * ensure that we exclude those from consideration. 13735 * tcp_g_epriv_ports is not sorted thus we loop over it until 13736 * there are no changes. 13737 * 13738 * Note: No locks are held when inspecting tcp_g_*epriv_ports 13739 * but instead the code relies on: 13740 * - the fact that the address of the array and its size never changes 13741 * - the atomic assignment of the elements of the array 13742 * 13743 * Returns 0 if there are no more ports available. 13744 * 13745 * TS note: skip multilevel ports. 13746 */ 13747 static in_port_t 13748 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 13749 { 13750 int i; 13751 boolean_t restart = B_FALSE; 13752 tcp_stack_t *tcps = tcp->tcp_tcps; 13753 13754 if (random && tcp_random_anon_port != 0) { 13755 (void) random_get_pseudo_bytes((uint8_t *)&port, 13756 sizeof (in_port_t)); 13757 /* 13758 * Unless changed by a sys admin, the smallest anon port 13759 * is 32768 and the largest anon port is 65535. It is 13760 * very likely (50%) for the random port to be smaller 13761 * than the smallest anon port. When that happens, 13762 * add port % (anon port range) to the smallest anon 13763 * port to get the random port. It should fall into the 13764 * valid anon port range. 13765 */ 13766 if (port < tcps->tcps_smallest_anon_port) { 13767 port = tcps->tcps_smallest_anon_port + 13768 port % (tcps->tcps_largest_anon_port - 13769 tcps->tcps_smallest_anon_port); 13770 } 13771 } 13772 13773 retry: 13774 if (port < tcps->tcps_smallest_anon_port) 13775 port = (in_port_t)tcps->tcps_smallest_anon_port; 13776 13777 if (port > tcps->tcps_largest_anon_port) { 13778 if (restart) 13779 return (0); 13780 restart = B_TRUE; 13781 port = (in_port_t)tcps->tcps_smallest_anon_port; 13782 } 13783 13784 if (port < tcps->tcps_smallest_nonpriv_port) 13785 port = (in_port_t)tcps->tcps_smallest_nonpriv_port; 13786 13787 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 13788 if (port == tcps->tcps_g_epriv_ports[i]) { 13789 port++; 13790 /* 13791 * Make sure whether the port is in the 13792 * valid range. 13793 */ 13794 goto retry; 13795 } 13796 } 13797 if (is_system_labeled() && 13798 (i = tsol_next_port(crgetzone(tcp->tcp_connp->conn_cred), port, 13799 IPPROTO_TCP, B_TRUE)) != 0) { 13800 port = i; 13801 goto retry; 13802 } 13803 return (port); 13804 } 13805 13806 /* 13807 * Return the next anonymous port in the privileged port range for 13808 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 13809 * downwards. This is the same behavior as documented in the userland 13810 * library call rresvport(3N). 13811 * 13812 * TS note: skip multilevel ports. 13813 */ 13814 static in_port_t 13815 tcp_get_next_priv_port(const tcp_t *tcp) 13816 { 13817 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 13818 in_port_t nextport; 13819 boolean_t restart = B_FALSE; 13820 tcp_stack_t *tcps = tcp->tcp_tcps; 13821 retry: 13822 if (next_priv_port < tcps->tcps_min_anonpriv_port || 13823 next_priv_port >= IPPORT_RESERVED) { 13824 next_priv_port = IPPORT_RESERVED - 1; 13825 if (restart) 13826 return (0); 13827 restart = B_TRUE; 13828 } 13829 if (is_system_labeled() && 13830 (nextport = tsol_next_port(crgetzone(tcp->tcp_connp->conn_cred), 13831 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 13832 next_priv_port = nextport; 13833 goto retry; 13834 } 13835 return (next_priv_port--); 13836 } 13837 13838 /* The write side r/w procedure. */ 13839 13840 #if CCS_STATS 13841 struct { 13842 struct { 13843 int64_t count, bytes; 13844 } tot, hit; 13845 } wrw_stats; 13846 #endif 13847 13848 /* 13849 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 13850 * messages. 13851 */ 13852 /* ARGSUSED */ 13853 static void 13854 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 13855 { 13856 conn_t *connp = (conn_t *)arg; 13857 tcp_t *tcp = connp->conn_tcp; 13858 13859 ASSERT(DB_TYPE(mp) != M_IOCTL); 13860 /* 13861 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 13862 * Once the close starts, streamhead and sockfs will not let any data 13863 * packets come down (close ensures that there are no threads using the 13864 * queue and no new threads will come down) but since qprocsoff() 13865 * hasn't happened yet, a M_FLUSH or some non data message might 13866 * get reflected back (in response to our own FLUSHRW) and get 13867 * processed after tcp_close() is done. The conn would still be valid 13868 * because a ref would have added but we need to check the state 13869 * before actually processing the packet. 13870 */ 13871 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 13872 freemsg(mp); 13873 return; 13874 } 13875 13876 switch (DB_TYPE(mp)) { 13877 case M_IOCDATA: 13878 tcp_wput_iocdata(tcp, mp); 13879 break; 13880 case M_FLUSH: 13881 tcp_wput_flush(tcp, mp); 13882 break; 13883 default: 13884 ip_wput_nondata(connp->conn_wq, mp); 13885 break; 13886 } 13887 } 13888 13889 /* 13890 * The TCP fast path write put procedure. 13891 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 13892 */ 13893 /* ARGSUSED */ 13894 void 13895 tcp_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 13896 { 13897 int len; 13898 int hdrlen; 13899 int plen; 13900 mblk_t *mp1; 13901 uchar_t *rptr; 13902 uint32_t snxt; 13903 tcpha_t *tcpha; 13904 struct datab *db; 13905 uint32_t suna; 13906 uint32_t mss; 13907 ipaddr_t *dst; 13908 ipaddr_t *src; 13909 uint32_t sum; 13910 int usable; 13911 conn_t *connp = (conn_t *)arg; 13912 tcp_t *tcp = connp->conn_tcp; 13913 uint32_t msize; 13914 tcp_stack_t *tcps = tcp->tcp_tcps; 13915 ip_xmit_attr_t *ixa; 13916 13917 /* 13918 * Try and ASSERT the minimum possible references on the 13919 * conn early enough. Since we are executing on write side, 13920 * the connection is obviously not detached and that means 13921 * there is a ref each for TCP and IP. Since we are behind 13922 * the squeue, the minimum references needed are 3. If the 13923 * conn is in classifier hash list, there should be an 13924 * extra ref for that (we check both the possibilities). 13925 */ 13926 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 13927 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 13928 13929 ASSERT(DB_TYPE(mp) == M_DATA); 13930 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 13931 13932 mutex_enter(&tcp->tcp_non_sq_lock); 13933 tcp->tcp_squeue_bytes -= msize; 13934 mutex_exit(&tcp->tcp_non_sq_lock); 13935 13936 /* Bypass tcp protocol for fused tcp loopback */ 13937 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 13938 return; 13939 13940 mss = tcp->tcp_mss; 13941 /* 13942 * If ZEROCOPY has turned off, try not to send any zero-copy message 13943 * down. Do backoff, now. 13944 */ 13945 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_snd_zcopy_on) 13946 mp = tcp_zcopy_backoff(tcp, mp, B_FALSE); 13947 13948 13949 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 13950 len = (int)(mp->b_wptr - mp->b_rptr); 13951 13952 /* 13953 * Criteria for fast path: 13954 * 13955 * 1. no unsent data 13956 * 2. single mblk in request 13957 * 3. connection established 13958 * 4. data in mblk 13959 * 5. len <= mss 13960 * 6. no tcp_valid bits 13961 */ 13962 if ((tcp->tcp_unsent != 0) || 13963 (tcp->tcp_cork) || 13964 (mp->b_cont != NULL) || 13965 (tcp->tcp_state != TCPS_ESTABLISHED) || 13966 (len == 0) || 13967 (len > mss) || 13968 (tcp->tcp_valid_bits != 0)) { 13969 tcp_wput_data(tcp, mp, B_FALSE); 13970 return; 13971 } 13972 13973 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 13974 ASSERT(tcp->tcp_fin_sent == 0); 13975 13976 /* queue new packet onto retransmission queue */ 13977 if (tcp->tcp_xmit_head == NULL) { 13978 tcp->tcp_xmit_head = mp; 13979 } else { 13980 tcp->tcp_xmit_last->b_cont = mp; 13981 } 13982 tcp->tcp_xmit_last = mp; 13983 tcp->tcp_xmit_tail = mp; 13984 13985 /* find out how much we can send */ 13986 /* BEGIN CSTYLED */ 13987 /* 13988 * un-acked usable 13989 * |--------------|-----------------| 13990 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 13991 */ 13992 /* END CSTYLED */ 13993 13994 /* start sending from tcp_snxt */ 13995 snxt = tcp->tcp_snxt; 13996 13997 /* 13998 * Check to see if this connection has been idled for some 13999 * time and no ACK is expected. If it is, we need to slow 14000 * start again to get back the connection's "self-clock" as 14001 * described in VJ's paper. 14002 * 14003 * Reinitialize tcp_cwnd after idle. 14004 */ 14005 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 14006 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 14007 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 14008 } 14009 14010 usable = tcp->tcp_swnd; /* tcp window size */ 14011 if (usable > tcp->tcp_cwnd) 14012 usable = tcp->tcp_cwnd; /* congestion window smaller */ 14013 usable -= snxt; /* subtract stuff already sent */ 14014 suna = tcp->tcp_suna; 14015 usable += suna; 14016 /* usable can be < 0 if the congestion window is smaller */ 14017 if (len > usable) { 14018 /* Can't send complete M_DATA in one shot */ 14019 goto slow; 14020 } 14021 14022 mutex_enter(&tcp->tcp_non_sq_lock); 14023 if (tcp->tcp_flow_stopped && 14024 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 14025 tcp_clrqfull(tcp); 14026 } 14027 mutex_exit(&tcp->tcp_non_sq_lock); 14028 14029 /* 14030 * determine if anything to send (Nagle). 14031 * 14032 * 1. len < tcp_mss (i.e. small) 14033 * 2. unacknowledged data present 14034 * 3. len < nagle limit 14035 * 4. last packet sent < nagle limit (previous packet sent) 14036 */ 14037 if ((len < mss) && (snxt != suna) && 14038 (len < (int)tcp->tcp_naglim) && 14039 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 14040 /* 14041 * This was the first unsent packet and normally 14042 * mss < xmit_hiwater so there is no need to worry 14043 * about flow control. The next packet will go 14044 * through the flow control check in tcp_wput_data(). 14045 */ 14046 /* leftover work from above */ 14047 tcp->tcp_unsent = len; 14048 tcp->tcp_xmit_tail_unsent = len; 14049 14050 return; 14051 } 14052 14053 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 14054 14055 if (snxt == suna) { 14056 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14057 } 14058 14059 /* we have always sent something */ 14060 tcp->tcp_rack_cnt = 0; 14061 14062 tcp->tcp_snxt = snxt + len; 14063 tcp->tcp_rack = tcp->tcp_rnxt; 14064 14065 if ((mp1 = dupb(mp)) == 0) 14066 goto no_memory; 14067 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 14068 mp->b_next = (mblk_t *)(uintptr_t)snxt; 14069 14070 /* adjust tcp header information */ 14071 tcpha = tcp->tcp_tcpha; 14072 tcpha->tha_flags = (TH_ACK|TH_PUSH); 14073 14074 sum = len + connp->conn_ht_ulp_len + connp->conn_sum; 14075 sum = (sum >> 16) + (sum & 0xFFFF); 14076 tcpha->tha_sum = htons(sum); 14077 14078 tcpha->tha_seq = htonl(snxt); 14079 14080 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 14081 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 14082 BUMP_LOCAL(tcp->tcp_obsegs); 14083 14084 /* Update the latest receive window size in TCP header. */ 14085 tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 14086 14087 tcp->tcp_last_sent_len = (ushort_t)len; 14088 14089 plen = len + connp->conn_ht_iphc_len; 14090 14091 ixa = connp->conn_ixa; 14092 ixa->ixa_pktlen = plen; 14093 14094 if (ixa->ixa_flags & IXAF_IS_IPV4) { 14095 tcp->tcp_ipha->ipha_length = htons(plen); 14096 } else { 14097 tcp->tcp_ip6h->ip6_plen = htons(plen - IPV6_HDR_LEN); 14098 } 14099 14100 /* see if we need to allocate a mblk for the headers */ 14101 hdrlen = connp->conn_ht_iphc_len; 14102 rptr = mp1->b_rptr - hdrlen; 14103 db = mp1->b_datap; 14104 if ((db->db_ref != 2) || rptr < db->db_base || 14105 (!OK_32PTR(rptr))) { 14106 /* NOTE: we assume allocb returns an OK_32PTR */ 14107 mp = allocb(hdrlen + tcps->tcps_wroff_xtra, BPRI_MED); 14108 if (!mp) { 14109 freemsg(mp1); 14110 goto no_memory; 14111 } 14112 mp->b_cont = mp1; 14113 mp1 = mp; 14114 /* Leave room for Link Level header */ 14115 rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; 14116 mp1->b_wptr = &rptr[hdrlen]; 14117 } 14118 mp1->b_rptr = rptr; 14119 14120 /* Fill in the timestamp option. */ 14121 if (tcp->tcp_snd_ts_ok) { 14122 U32_TO_BE32((uint32_t)lbolt, 14123 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 14124 U32_TO_BE32(tcp->tcp_ts_recent, 14125 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 14126 } else { 14127 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 14128 } 14129 14130 /* copy header into outgoing packet */ 14131 dst = (ipaddr_t *)rptr; 14132 src = (ipaddr_t *)connp->conn_ht_iphc; 14133 dst[0] = src[0]; 14134 dst[1] = src[1]; 14135 dst[2] = src[2]; 14136 dst[3] = src[3]; 14137 dst[4] = src[4]; 14138 dst[5] = src[5]; 14139 dst[6] = src[6]; 14140 dst[7] = src[7]; 14141 dst[8] = src[8]; 14142 dst[9] = src[9]; 14143 if (hdrlen -= 40) { 14144 hdrlen >>= 2; 14145 dst += 10; 14146 src += 10; 14147 do { 14148 *dst++ = *src++; 14149 } while (--hdrlen); 14150 } 14151 14152 /* 14153 * Set the ECN info in the TCP header. Note that this 14154 * is not the template header. 14155 */ 14156 if (tcp->tcp_ecn_ok) { 14157 SET_ECT(tcp, rptr); 14158 14159 tcpha = (tcpha_t *)(rptr + ixa->ixa_ip_hdr_length); 14160 if (tcp->tcp_ecn_echo_on) 14161 tcpha->tha_flags |= TH_ECE; 14162 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 14163 tcpha->tha_flags |= TH_CWR; 14164 tcp->tcp_ecn_cwr_sent = B_TRUE; 14165 } 14166 } 14167 14168 if (tcp->tcp_ip_forward_progress) { 14169 tcp->tcp_ip_forward_progress = B_FALSE; 14170 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 14171 } else { 14172 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 14173 } 14174 tcp_send_data(tcp, mp1); 14175 return; 14176 14177 /* 14178 * If we ran out of memory, we pretend to have sent the packet 14179 * and that it was lost on the wire. 14180 */ 14181 no_memory: 14182 return; 14183 14184 slow: 14185 /* leftover work from above */ 14186 tcp->tcp_unsent = len; 14187 tcp->tcp_xmit_tail_unsent = len; 14188 tcp_wput_data(tcp, NULL, B_FALSE); 14189 } 14190 14191 /* 14192 * This runs at the tail end of accept processing on the squeue of the 14193 * new connection. 14194 */ 14195 /* ARGSUSED */ 14196 void 14197 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 14198 { 14199 conn_t *connp = (conn_t *)arg; 14200 tcp_t *tcp = connp->conn_tcp; 14201 queue_t *q = connp->conn_rq; 14202 tcp_stack_t *tcps = tcp->tcp_tcps; 14203 /* socket options */ 14204 struct sock_proto_props sopp; 14205 14206 /* We should just receive a single mblk that fits a T_discon_ind */ 14207 ASSERT(mp->b_cont == NULL); 14208 14209 /* 14210 * Drop the eager's ref on the listener, that was placed when 14211 * this eager began life in tcp_input_listener. 14212 */ 14213 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 14214 if (IPCL_IS_NONSTR(connp)) { 14215 /* Safe to free conn_ind message */ 14216 freemsg(tcp->tcp_conn.tcp_eager_conn_ind); 14217 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14218 } 14219 14220 tcp->tcp_detached = B_FALSE; 14221 14222 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 14223 /* 14224 * Someone blewoff the eager before we could finish 14225 * the accept. 14226 * 14227 * The only reason eager exists it because we put in 14228 * a ref on it when conn ind went up. We need to send 14229 * a disconnect indication up while the last reference 14230 * on the eager will be dropped by the squeue when we 14231 * return. 14232 */ 14233 ASSERT(tcp->tcp_listener == NULL); 14234 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 14235 if (IPCL_IS_NONSTR(connp)) { 14236 ASSERT(tcp->tcp_issocket); 14237 (*connp->conn_upcalls->su_disconnected)( 14238 connp->conn_upper_handle, tcp->tcp_connid, 14239 ECONNREFUSED); 14240 freemsg(mp); 14241 } else { 14242 struct T_discon_ind *tdi; 14243 14244 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 14245 /* 14246 * Let us reuse the incoming mblk to avoid 14247 * memory allocation failure problems. We know 14248 * that the size of the incoming mblk i.e. 14249 * stroptions is greater than sizeof 14250 * T_discon_ind. 14251 */ 14252 ASSERT(DB_REF(mp) == 1); 14253 ASSERT(MBLKSIZE(mp) >= 14254 sizeof (struct T_discon_ind)); 14255 14256 DB_TYPE(mp) = M_PROTO; 14257 ((union T_primitives *)mp->b_rptr)->type = 14258 T_DISCON_IND; 14259 tdi = (struct T_discon_ind *)mp->b_rptr; 14260 if (tcp->tcp_issocket) { 14261 tdi->DISCON_reason = ECONNREFUSED; 14262 tdi->SEQ_number = 0; 14263 } else { 14264 tdi->DISCON_reason = ENOPROTOOPT; 14265 tdi->SEQ_number = 14266 tcp->tcp_conn_req_seqnum; 14267 } 14268 mp->b_wptr = mp->b_rptr + 14269 sizeof (struct T_discon_ind); 14270 putnext(q, mp); 14271 } 14272 } 14273 tcp->tcp_hard_binding = B_FALSE; 14274 return; 14275 } 14276 14277 /* 14278 * Set max window size (conn_rcvbuf) of the acceptor. 14279 */ 14280 if (tcp->tcp_rcv_list == NULL) { 14281 /* 14282 * Recv queue is empty, tcp_rwnd should not have changed. 14283 * That means it should be equal to the listener's tcp_rwnd. 14284 */ 14285 connp->conn_rcvbuf = tcp->tcp_rwnd; 14286 } else { 14287 #ifdef DEBUG 14288 mblk_t *tmp; 14289 mblk_t *mp1; 14290 uint_t cnt = 0; 14291 14292 mp1 = tcp->tcp_rcv_list; 14293 while ((tmp = mp1) != NULL) { 14294 mp1 = tmp->b_next; 14295 cnt += msgdsize(tmp); 14296 } 14297 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 14298 #endif 14299 /* There is some data, add them back to get the max. */ 14300 connp->conn_rcvbuf = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 14301 } 14302 /* 14303 * This is the first time we run on the correct 14304 * queue after tcp_accept. So fix all the q parameters 14305 * here. 14306 */ 14307 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 14308 sopp.sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 14309 14310 sopp.sopp_rxhiwat = tcp->tcp_fused ? 14311 tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) : 14312 connp->conn_rcvbuf; 14313 14314 /* 14315 * Determine what write offset value to use depending on SACK and 14316 * whether the endpoint is fused or not. 14317 */ 14318 if (tcp->tcp_fused) { 14319 ASSERT(tcp->tcp_loopback); 14320 ASSERT(tcp->tcp_loopback_peer != NULL); 14321 /* 14322 * For fused tcp loopback, set the stream head's write 14323 * offset value to zero since we won't be needing any room 14324 * for TCP/IP headers. This would also improve performance 14325 * since it would reduce the amount of work done by kmem. 14326 * Non-fused tcp loopback case is handled separately below. 14327 */ 14328 sopp.sopp_wroff = 0; 14329 /* 14330 * Update the peer's transmit parameters according to 14331 * our recently calculated high water mark value. 14332 */ 14333 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 14334 } else if (tcp->tcp_snd_sack_ok) { 14335 sopp.sopp_wroff = connp->conn_ht_iphc_allocated + 14336 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 14337 } else { 14338 sopp.sopp_wroff = connp->conn_ht_iphc_len + 14339 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 14340 } 14341 14342 /* 14343 * If this is endpoint is handling SSL, then reserve extra 14344 * offset and space at the end. 14345 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 14346 * overriding the previous setting. The extra cost of signing and 14347 * encrypting multiple MSS-size records (12 of them with Ethernet), 14348 * instead of a single contiguous one by the stream head 14349 * largely outweighs the statistical reduction of ACKs, when 14350 * applicable. The peer will also save on decryption and verification 14351 * costs. 14352 */ 14353 if (tcp->tcp_kssl_ctx != NULL) { 14354 sopp.sopp_wroff += SSL3_WROFFSET; 14355 14356 sopp.sopp_flags |= SOCKOPT_TAIL; 14357 sopp.sopp_tail = SSL3_MAX_TAIL_LEN; 14358 14359 sopp.sopp_flags |= SOCKOPT_ZCOPY; 14360 sopp.sopp_zcopyflag = ZCVMUNSAFE; 14361 14362 sopp.sopp_maxblk = SSL3_MAX_RECORD_LEN; 14363 } 14364 14365 /* Send the options up */ 14366 if (IPCL_IS_NONSTR(connp)) { 14367 if (sopp.sopp_flags & SOCKOPT_TAIL) { 14368 ASSERT(tcp->tcp_kssl_ctx != NULL); 14369 ASSERT(sopp.sopp_flags & SOCKOPT_ZCOPY); 14370 } 14371 if (tcp->tcp_loopback) { 14372 sopp.sopp_flags |= SOCKOPT_LOOPBACK; 14373 sopp.sopp_loopback = B_TRUE; 14374 } 14375 (*connp->conn_upcalls->su_set_proto_props) 14376 (connp->conn_upper_handle, &sopp); 14377 freemsg(mp); 14378 } else { 14379 /* 14380 * Let us reuse the incoming mblk to avoid 14381 * memory allocation failure problems. We know 14382 * that the size of the incoming mblk is at least 14383 * stroptions 14384 */ 14385 struct stroptions *stropt; 14386 14387 ASSERT(DB_REF(mp) == 1); 14388 ASSERT(MBLKSIZE(mp) >= sizeof (struct stroptions)); 14389 14390 DB_TYPE(mp) = M_SETOPTS; 14391 stropt = (struct stroptions *)mp->b_rptr; 14392 mp->b_wptr = mp->b_rptr + sizeof (struct stroptions); 14393 stropt = (struct stroptions *)mp->b_rptr; 14394 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 14395 stropt->so_hiwat = sopp.sopp_rxhiwat; 14396 stropt->so_wroff = sopp.sopp_wroff; 14397 stropt->so_maxblk = sopp.sopp_maxblk; 14398 14399 if (sopp.sopp_flags & SOCKOPT_TAIL) { 14400 ASSERT(tcp->tcp_kssl_ctx != NULL); 14401 14402 stropt->so_flags |= SO_TAIL | SO_COPYOPT; 14403 stropt->so_tail = sopp.sopp_tail; 14404 stropt->so_copyopt = sopp.sopp_zcopyflag; 14405 } 14406 14407 /* Send the options up */ 14408 putnext(q, mp); 14409 } 14410 14411 /* 14412 * Pass up any data and/or a fin that has been received. 14413 * 14414 * Adjust receive window in case it had decreased 14415 * (because there is data <=> tcp_rcv_list != NULL) 14416 * while the connection was detached. Note that 14417 * in case the eager was flow-controlled, w/o this 14418 * code, the rwnd may never open up again! 14419 */ 14420 if (tcp->tcp_rcv_list != NULL) { 14421 if (IPCL_IS_NONSTR(connp)) { 14422 mblk_t *mp; 14423 int space_left; 14424 int error; 14425 boolean_t push = B_TRUE; 14426 14427 if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv) 14428 (connp->conn_upper_handle, NULL, 0, 0, &error, 14429 &push) >= 0) { 14430 tcp->tcp_rwnd = connp->conn_rcvbuf; 14431 if (tcp->tcp_state >= TCPS_ESTABLISHED && 14432 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 14433 tcp_xmit_ctl(NULL, 14434 tcp, (tcp->tcp_swnd == 0) ? 14435 tcp->tcp_suna : tcp->tcp_snxt, 14436 tcp->tcp_rnxt, TH_ACK); 14437 } 14438 } 14439 while ((mp = tcp->tcp_rcv_list) != NULL) { 14440 push = B_TRUE; 14441 tcp->tcp_rcv_list = mp->b_next; 14442 mp->b_next = NULL; 14443 space_left = (*connp->conn_upcalls->su_recv) 14444 (connp->conn_upper_handle, mp, msgdsize(mp), 14445 0, &error, &push); 14446 if (space_left < 0) { 14447 /* 14448 * We should never be in middle of a 14449 * fallback, the squeue guarantees that. 14450 */ 14451 ASSERT(error != EOPNOTSUPP); 14452 } 14453 } 14454 tcp->tcp_rcv_last_head = NULL; 14455 tcp->tcp_rcv_last_tail = NULL; 14456 tcp->tcp_rcv_cnt = 0; 14457 } else { 14458 /* We drain directly in case of fused tcp loopback */ 14459 14460 if (!tcp->tcp_fused && canputnext(q)) { 14461 tcp->tcp_rwnd = connp->conn_rcvbuf; 14462 if (tcp->tcp_state >= TCPS_ESTABLISHED && 14463 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 14464 tcp_xmit_ctl(NULL, 14465 tcp, (tcp->tcp_swnd == 0) ? 14466 tcp->tcp_suna : tcp->tcp_snxt, 14467 tcp->tcp_rnxt, TH_ACK); 14468 } 14469 } 14470 14471 (void) tcp_rcv_drain(tcp); 14472 } 14473 14474 /* 14475 * For fused tcp loopback, back-enable peer endpoint 14476 * if it's currently flow-controlled. 14477 */ 14478 if (tcp->tcp_fused) { 14479 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 14480 14481 ASSERT(peer_tcp != NULL); 14482 ASSERT(peer_tcp->tcp_fused); 14483 14484 mutex_enter(&peer_tcp->tcp_non_sq_lock); 14485 if (peer_tcp->tcp_flow_stopped) { 14486 tcp_clrqfull(peer_tcp); 14487 TCP_STAT(tcps, tcp_fusion_backenabled); 14488 } 14489 mutex_exit(&peer_tcp->tcp_non_sq_lock); 14490 } 14491 } 14492 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 14493 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 14494 tcp->tcp_ordrel_done = B_TRUE; 14495 if (IPCL_IS_NONSTR(connp)) { 14496 ASSERT(tcp->tcp_ordrel_mp == NULL); 14497 (*connp->conn_upcalls->su_opctl)( 14498 connp->conn_upper_handle, 14499 SOCK_OPCTL_SHUT_RECV, 0); 14500 } else { 14501 mp = tcp->tcp_ordrel_mp; 14502 tcp->tcp_ordrel_mp = NULL; 14503 putnext(q, mp); 14504 } 14505 } 14506 tcp->tcp_hard_binding = B_FALSE; 14507 14508 if (connp->conn_keepalive) { 14509 tcp->tcp_ka_last_intrvl = 0; 14510 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 14511 MSEC_TO_TICK(tcp->tcp_ka_interval)); 14512 } 14513 14514 /* 14515 * At this point, eager is fully established and will 14516 * have the following references - 14517 * 14518 * 2 references for connection to exist (1 for TCP and 1 for IP). 14519 * 1 reference for the squeue which will be dropped by the squeue as 14520 * soon as this function returns. 14521 * There will be 1 additonal reference for being in classifier 14522 * hash list provided something bad hasn't happened. 14523 */ 14524 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 14525 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 14526 } 14527 14528 /* 14529 * The function called through squeue to get behind listener's perimeter to 14530 * send a deferred conn_ind. 14531 */ 14532 /* ARGSUSED */ 14533 void 14534 tcp_send_pending(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 14535 { 14536 conn_t *lconnp = (conn_t *)arg; 14537 tcp_t *listener = lconnp->conn_tcp; 14538 struct T_conn_ind *conn_ind; 14539 tcp_t *tcp; 14540 14541 conn_ind = (struct T_conn_ind *)mp->b_rptr; 14542 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 14543 conn_ind->OPT_length); 14544 14545 if (listener->tcp_state != TCPS_LISTEN) { 14546 /* 14547 * If listener has closed, it would have caused a 14548 * a cleanup/blowoff to happen for the eager, so 14549 * we don't need to do anything more. 14550 */ 14551 freemsg(mp); 14552 return; 14553 } 14554 14555 tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp); 14556 } 14557 14558 /* 14559 * Common to TPI and sockfs accept code. 14560 */ 14561 /* ARGSUSED2 */ 14562 static int 14563 tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr) 14564 { 14565 tcp_t *listener, *eager; 14566 mblk_t *discon_mp; 14567 14568 listener = lconnp->conn_tcp; 14569 ASSERT(listener->tcp_state == TCPS_LISTEN); 14570 eager = econnp->conn_tcp; 14571 ASSERT(eager->tcp_listener != NULL); 14572 14573 /* 14574 * Pre allocate the discon_ind mblk also. tcp_accept_finish will 14575 * use it if something failed. 14576 */ 14577 discon_mp = allocb(MAX(sizeof (struct T_discon_ind), 14578 sizeof (struct stroptions)), BPRI_HI); 14579 14580 if (discon_mp == NULL) { 14581 return (-TPROTO); 14582 } 14583 eager->tcp_issocket = B_TRUE; 14584 14585 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 14586 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 14587 ASSERT(econnp->conn_netstack == 14588 listener->tcp_connp->conn_netstack); 14589 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 14590 14591 /* Put the ref for IP */ 14592 CONN_INC_REF(econnp); 14593 14594 /* 14595 * We should have minimum of 3 references on the conn 14596 * at this point. One each for TCP and IP and one for 14597 * the T_conn_ind that was sent up when the 3-way handshake 14598 * completed. In the normal case we would also have another 14599 * reference (making a total of 4) for the conn being in the 14600 * classifier hash list. However the eager could have received 14601 * an RST subsequently and tcp_closei_local could have removed 14602 * the eager from the classifier hash list, hence we can't 14603 * assert that reference. 14604 */ 14605 ASSERT(econnp->conn_ref >= 3); 14606 14607 mutex_enter(&listener->tcp_eager_lock); 14608 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 14609 14610 tcp_t *tail; 14611 tcp_t *tcp; 14612 mblk_t *mp1; 14613 14614 tcp = listener->tcp_eager_prev_q0; 14615 /* 14616 * listener->tcp_eager_prev_q0 points to the TAIL of the 14617 * deferred T_conn_ind queue. We need to get to the head 14618 * of the queue in order to send up T_conn_ind the same 14619 * order as how the 3WHS is completed. 14620 */ 14621 while (tcp != listener) { 14622 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 14623 !tcp->tcp_kssl_pending) 14624 break; 14625 else 14626 tcp = tcp->tcp_eager_prev_q0; 14627 } 14628 /* None of the pending eagers can be sent up now */ 14629 if (tcp == listener) 14630 goto no_more_eagers; 14631 14632 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 14633 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14634 /* Move from q0 to q */ 14635 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 14636 listener->tcp_conn_req_cnt_q0--; 14637 listener->tcp_conn_req_cnt_q++; 14638 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 14639 tcp->tcp_eager_prev_q0; 14640 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 14641 tcp->tcp_eager_next_q0; 14642 tcp->tcp_eager_prev_q0 = NULL; 14643 tcp->tcp_eager_next_q0 = NULL; 14644 tcp->tcp_conn_def_q0 = B_FALSE; 14645 14646 /* Make sure the tcp isn't in the list of droppables */ 14647 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 14648 tcp->tcp_eager_prev_drop_q0 == NULL); 14649 14650 /* 14651 * Insert at end of the queue because sockfs sends 14652 * down T_CONN_RES in chronological order. Leaving 14653 * the older conn indications at front of the queue 14654 * helps reducing search time. 14655 */ 14656 tail = listener->tcp_eager_last_q; 14657 if (tail != NULL) { 14658 tail->tcp_eager_next_q = tcp; 14659 } else { 14660 listener->tcp_eager_next_q = tcp; 14661 } 14662 listener->tcp_eager_last_q = tcp; 14663 tcp->tcp_eager_next_q = NULL; 14664 14665 /* Need to get inside the listener perimeter */ 14666 CONN_INC_REF(listener->tcp_connp); 14667 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1, 14668 tcp_send_pending, listener->tcp_connp, NULL, SQ_FILL, 14669 SQTAG_TCP_SEND_PENDING); 14670 } 14671 no_more_eagers: 14672 tcp_eager_unlink(eager); 14673 mutex_exit(&listener->tcp_eager_lock); 14674 14675 /* 14676 * At this point, the eager is detached from the listener 14677 * but we still have an extra refs on eager (apart from the 14678 * usual tcp references). The ref was placed in tcp_rput_data 14679 * before sending the conn_ind in tcp_send_conn_ind. 14680 * The ref will be dropped in tcp_accept_finish(). 14681 */ 14682 SQUEUE_ENTER_ONE(econnp->conn_sqp, discon_mp, tcp_accept_finish, 14683 econnp, NULL, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0); 14684 return (0); 14685 } 14686 14687 int 14688 tcp_accept(sock_lower_handle_t lproto_handle, 14689 sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle, 14690 cred_t *cr) 14691 { 14692 conn_t *lconnp, *econnp; 14693 tcp_t *listener, *eager; 14694 14695 lconnp = (conn_t *)lproto_handle; 14696 listener = lconnp->conn_tcp; 14697 ASSERT(listener->tcp_state == TCPS_LISTEN); 14698 econnp = (conn_t *)eproto_handle; 14699 eager = econnp->conn_tcp; 14700 ASSERT(eager->tcp_listener != NULL); 14701 14702 /* 14703 * It is OK to manipulate these fields outside the eager's squeue 14704 * because they will not start being used until tcp_accept_finish 14705 * has been called. 14706 */ 14707 ASSERT(lconnp->conn_upper_handle != NULL); 14708 ASSERT(econnp->conn_upper_handle == NULL); 14709 econnp->conn_upper_handle = sock_handle; 14710 econnp->conn_upcalls = lconnp->conn_upcalls; 14711 ASSERT(IPCL_IS_NONSTR(econnp)); 14712 return (tcp_accept_common(lconnp, econnp, cr)); 14713 } 14714 14715 14716 /* 14717 * This is the STREAMS entry point for T_CONN_RES coming down on 14718 * Acceptor STREAM when sockfs listener does accept processing. 14719 * Read the block comment on top of tcp_input_listener(). 14720 */ 14721 void 14722 tcp_tpi_accept(queue_t *q, mblk_t *mp) 14723 { 14724 queue_t *rq = RD(q); 14725 struct T_conn_res *conn_res; 14726 tcp_t *eager; 14727 tcp_t *listener; 14728 struct T_ok_ack *ok; 14729 t_scalar_t PRIM_type; 14730 conn_t *econnp; 14731 cred_t *cr; 14732 14733 ASSERT(DB_TYPE(mp) == M_PROTO); 14734 14735 /* 14736 * All Solaris components should pass a db_credp 14737 * for this TPI message, hence we ASSERT. 14738 * But in case there is some other M_PROTO that looks 14739 * like a TPI message sent by some other kernel 14740 * component, we check and return an error. 14741 */ 14742 cr = msg_getcred(mp, NULL); 14743 ASSERT(cr != NULL); 14744 if (cr == NULL) { 14745 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 14746 if (mp != NULL) 14747 putnext(rq, mp); 14748 return; 14749 } 14750 conn_res = (struct T_conn_res *)mp->b_rptr; 14751 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 14752 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 14753 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 14754 if (mp != NULL) 14755 putnext(rq, mp); 14756 return; 14757 } 14758 switch (conn_res->PRIM_type) { 14759 case O_T_CONN_RES: 14760 case T_CONN_RES: 14761 /* 14762 * We pass up an err ack if allocb fails. This will 14763 * cause sockfs to issue a T_DISCON_REQ which will cause 14764 * tcp_eager_blowoff to be called. sockfs will then call 14765 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 14766 * we need to do the allocb up here because we have to 14767 * make sure rq->q_qinfo->qi_qclose still points to the 14768 * correct function (tcp_tpi_close_accept) in case allocb 14769 * fails. 14770 */ 14771 bcopy(mp->b_rptr + conn_res->OPT_offset, 14772 &eager, conn_res->OPT_length); 14773 PRIM_type = conn_res->PRIM_type; 14774 mp->b_datap->db_type = M_PCPROTO; 14775 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 14776 ok = (struct T_ok_ack *)mp->b_rptr; 14777 ok->PRIM_type = T_OK_ACK; 14778 ok->CORRECT_prim = PRIM_type; 14779 econnp = eager->tcp_connp; 14780 econnp->conn_dev = (dev_t)RD(q)->q_ptr; 14781 econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr); 14782 econnp->conn_rq = rq; 14783 econnp->conn_wq = q; 14784 rq->q_ptr = econnp; 14785 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 14786 q->q_ptr = econnp; 14787 q->q_qinfo = &tcp_winit; 14788 listener = eager->tcp_listener; 14789 14790 if (tcp_accept_common(listener->tcp_connp, 14791 econnp, cr) < 0) { 14792 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 14793 if (mp != NULL) 14794 putnext(rq, mp); 14795 return; 14796 } 14797 14798 /* 14799 * Send the new local address also up to sockfs. There 14800 * should already be enough space in the mp that came 14801 * down from soaccept(). 14802 */ 14803 if (econnp->conn_family == AF_INET) { 14804 sin_t *sin; 14805 14806 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 14807 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 14808 sin = (sin_t *)mp->b_wptr; 14809 mp->b_wptr += sizeof (sin_t); 14810 sin->sin_family = AF_INET; 14811 sin->sin_port = econnp->conn_lport; 14812 sin->sin_addr.s_addr = econnp->conn_laddr_v4; 14813 } else { 14814 sin6_t *sin6; 14815 14816 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 14817 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 14818 sin6 = (sin6_t *)mp->b_wptr; 14819 mp->b_wptr += sizeof (sin6_t); 14820 sin6->sin6_family = AF_INET6; 14821 sin6->sin6_port = econnp->conn_lport; 14822 sin6->sin6_addr = econnp->conn_laddr_v6; 14823 if (econnp->conn_ipversion == IPV4_VERSION) { 14824 sin6->sin6_flowinfo = 0; 14825 } else { 14826 ASSERT(eager->tcp_ip6h != NULL); 14827 sin6->sin6_flowinfo = 14828 eager->tcp_ip6h->ip6_vcf & 14829 ~IPV6_VERS_AND_FLOW_MASK; 14830 } 14831 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6) && 14832 (econnp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)) { 14833 sin6->sin6_scope_id = 14834 econnp->conn_ixa->ixa_scopeid; 14835 } else { 14836 sin6->sin6_scope_id = 0; 14837 } 14838 sin6->__sin6_src_id = 0; 14839 } 14840 14841 putnext(rq, mp); 14842 return; 14843 default: 14844 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 14845 if (mp != NULL) 14846 putnext(rq, mp); 14847 return; 14848 } 14849 } 14850 14851 /* 14852 * Handle special out-of-band ioctl requests (see PSARC/2008/265). 14853 */ 14854 static void 14855 tcp_wput_cmdblk(queue_t *q, mblk_t *mp) 14856 { 14857 void *data; 14858 mblk_t *datamp = mp->b_cont; 14859 conn_t *connp = Q_TO_CONN(q); 14860 tcp_t *tcp = connp->conn_tcp; 14861 cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr; 14862 14863 if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) { 14864 cmdp->cb_error = EPROTO; 14865 qreply(q, mp); 14866 return; 14867 } 14868 14869 data = datamp->b_rptr; 14870 14871 switch (cmdp->cb_cmd) { 14872 case TI_GETPEERNAME: 14873 if (tcp->tcp_state < TCPS_SYN_RCVD) 14874 cmdp->cb_error = ENOTCONN; 14875 else 14876 cmdp->cb_error = conn_getpeername(connp, data, 14877 &cmdp->cb_len); 14878 break; 14879 case TI_GETMYNAME: 14880 cmdp->cb_error = conn_getsockname(connp, data, &cmdp->cb_len); 14881 break; 14882 default: 14883 cmdp->cb_error = EINVAL; 14884 break; 14885 } 14886 14887 qreply(q, mp); 14888 } 14889 14890 void 14891 tcp_wput(queue_t *q, mblk_t *mp) 14892 { 14893 conn_t *connp = Q_TO_CONN(q); 14894 tcp_t *tcp; 14895 void (*output_proc)(); 14896 t_scalar_t type; 14897 uchar_t *rptr; 14898 struct iocblk *iocp; 14899 size_t size; 14900 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 14901 14902 ASSERT(connp->conn_ref >= 2); 14903 14904 switch (DB_TYPE(mp)) { 14905 case M_DATA: 14906 tcp = connp->conn_tcp; 14907 ASSERT(tcp != NULL); 14908 14909 size = msgdsize(mp); 14910 14911 mutex_enter(&tcp->tcp_non_sq_lock); 14912 tcp->tcp_squeue_bytes += size; 14913 if (TCP_UNSENT_BYTES(tcp) > connp->conn_sndbuf) { 14914 tcp_setqfull(tcp); 14915 } 14916 mutex_exit(&tcp->tcp_non_sq_lock); 14917 14918 CONN_INC_REF(connp); 14919 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp, 14920 NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 14921 return; 14922 14923 case M_CMD: 14924 tcp_wput_cmdblk(q, mp); 14925 return; 14926 14927 case M_PROTO: 14928 case M_PCPROTO: 14929 /* 14930 * if it is a snmp message, don't get behind the squeue 14931 */ 14932 tcp = connp->conn_tcp; 14933 rptr = mp->b_rptr; 14934 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 14935 type = ((union T_primitives *)rptr)->type; 14936 } else { 14937 if (connp->conn_debug) { 14938 (void) strlog(TCP_MOD_ID, 0, 1, 14939 SL_ERROR|SL_TRACE, 14940 "tcp_wput_proto, dropping one..."); 14941 } 14942 freemsg(mp); 14943 return; 14944 } 14945 if (type == T_SVR4_OPTMGMT_REQ) { 14946 /* 14947 * All Solaris components should pass a db_credp 14948 * for this TPI message, hence we ASSERT. 14949 * But in case there is some other M_PROTO that looks 14950 * like a TPI message sent by some other kernel 14951 * component, we check and return an error. 14952 */ 14953 cred_t *cr = msg_getcred(mp, NULL); 14954 14955 ASSERT(cr != NULL); 14956 if (cr == NULL) { 14957 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 14958 return; 14959 } 14960 if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get, 14961 cr)) { 14962 /* 14963 * This was a SNMP request 14964 */ 14965 return; 14966 } else { 14967 output_proc = tcp_wput_proto; 14968 } 14969 } else { 14970 output_proc = tcp_wput_proto; 14971 } 14972 break; 14973 case M_IOCTL: 14974 /* 14975 * Most ioctls can be processed right away without going via 14976 * squeues - process them right here. Those that do require 14977 * squeue (currently _SIOCSOCKFALLBACK) 14978 * are processed by tcp_wput_ioctl(). 14979 */ 14980 iocp = (struct iocblk *)mp->b_rptr; 14981 tcp = connp->conn_tcp; 14982 14983 switch (iocp->ioc_cmd) { 14984 case TCP_IOC_ABORT_CONN: 14985 tcp_ioctl_abort_conn(q, mp); 14986 return; 14987 case TI_GETPEERNAME: 14988 case TI_GETMYNAME: 14989 mi_copyin(q, mp, NULL, 14990 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 14991 return; 14992 case ND_SET: 14993 /* nd_getset does the necessary checks */ 14994 case ND_GET: 14995 if (nd_getset(q, tcps->tcps_g_nd, mp)) { 14996 qreply(q, mp); 14997 return; 14998 } 14999 ip_wput_nondata(q, mp); 15000 return; 15001 15002 default: 15003 output_proc = tcp_wput_ioctl; 15004 break; 15005 } 15006 break; 15007 default: 15008 output_proc = tcp_wput_nondata; 15009 break; 15010 } 15011 15012 CONN_INC_REF(connp); 15013 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp, 15014 NULL, tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER); 15015 } 15016 15017 /* 15018 * Initial STREAMS write side put() procedure for sockets. It tries to 15019 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 15020 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 15021 * are handled by tcp_wput() as usual. 15022 * 15023 * All further messages will also be handled by tcp_wput() because we cannot 15024 * be sure that the above short cut is safe later. 15025 */ 15026 static void 15027 tcp_wput_sock(queue_t *wq, mblk_t *mp) 15028 { 15029 conn_t *connp = Q_TO_CONN(wq); 15030 tcp_t *tcp = connp->conn_tcp; 15031 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 15032 15033 ASSERT(wq->q_qinfo == &tcp_sock_winit); 15034 wq->q_qinfo = &tcp_winit; 15035 15036 ASSERT(IPCL_IS_TCP(connp)); 15037 ASSERT(TCP_IS_SOCKET(tcp)); 15038 15039 if (DB_TYPE(mp) == M_PCPROTO && 15040 MBLKL(mp) == sizeof (struct T_capability_req) && 15041 car->PRIM_type == T_CAPABILITY_REQ) { 15042 tcp_capability_req(tcp, mp); 15043 return; 15044 } 15045 15046 tcp_wput(wq, mp); 15047 } 15048 15049 /* ARGSUSED */ 15050 static void 15051 tcp_wput_fallback(queue_t *wq, mblk_t *mp) 15052 { 15053 #ifdef DEBUG 15054 cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n"); 15055 #endif 15056 freemsg(mp); 15057 } 15058 15059 /* 15060 * Check the usability of ZEROCOPY. It's instead checking the flag set by IP. 15061 */ 15062 static boolean_t 15063 tcp_zcopy_check(tcp_t *tcp) 15064 { 15065 conn_t *connp = tcp->tcp_connp; 15066 ip_xmit_attr_t *ixa = connp->conn_ixa; 15067 boolean_t zc_enabled = B_FALSE; 15068 tcp_stack_t *tcps = tcp->tcp_tcps; 15069 15070 if (do_tcpzcopy == 2) 15071 zc_enabled = B_TRUE; 15072 else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB)) 15073 zc_enabled = B_TRUE; 15074 15075 tcp->tcp_snd_zcopy_on = zc_enabled; 15076 if (!TCP_IS_DETACHED(tcp)) { 15077 if (zc_enabled) { 15078 ixa->ixa_flags |= IXAF_VERIFY_ZCOPY; 15079 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15080 ZCVMSAFE); 15081 TCP_STAT(tcps, tcp_zcopy_on); 15082 } else { 15083 ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY; 15084 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15085 ZCVMUNSAFE); 15086 TCP_STAT(tcps, tcp_zcopy_off); 15087 } 15088 } 15089 return (zc_enabled); 15090 } 15091 15092 /* 15093 * Backoff from a zero-copy message by copying data to a new allocated 15094 * message and freeing the original desballoca'ed segmapped message. 15095 * 15096 * This function is called by following two callers: 15097 * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free 15098 * the origial desballoca'ed message and notify sockfs. This is in re- 15099 * transmit state. 15100 * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need 15101 * to be copied to new message. 15102 */ 15103 static mblk_t * 15104 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist) 15105 { 15106 mblk_t *nbp; 15107 mblk_t *head = NULL; 15108 mblk_t *tail = NULL; 15109 tcp_stack_t *tcps = tcp->tcp_tcps; 15110 15111 ASSERT(bp != NULL); 15112 while (bp != NULL) { 15113 if (IS_VMLOANED_MBLK(bp)) { 15114 TCP_STAT(tcps, tcp_zcopy_backoff); 15115 if ((nbp = copyb(bp)) == NULL) { 15116 tcp->tcp_xmit_zc_clean = B_FALSE; 15117 if (tail != NULL) 15118 tail->b_cont = bp; 15119 return ((head == NULL) ? bp : head); 15120 } 15121 15122 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 15123 if (fix_xmitlist) 15124 tcp_zcopy_notify(tcp); 15125 else 15126 nbp->b_datap->db_struioflag |= 15127 STRUIO_ZCNOTIFY; 15128 } 15129 nbp->b_cont = bp->b_cont; 15130 15131 /* 15132 * Copy saved information and adjust tcp_xmit_tail 15133 * if needed. 15134 */ 15135 if (fix_xmitlist) { 15136 nbp->b_prev = bp->b_prev; 15137 nbp->b_next = bp->b_next; 15138 15139 if (tcp->tcp_xmit_tail == bp) 15140 tcp->tcp_xmit_tail = nbp; 15141 } 15142 15143 /* Free the original message. */ 15144 bp->b_prev = NULL; 15145 bp->b_next = NULL; 15146 freeb(bp); 15147 15148 bp = nbp; 15149 } 15150 15151 if (head == NULL) { 15152 head = bp; 15153 } 15154 if (tail == NULL) { 15155 tail = bp; 15156 } else { 15157 tail->b_cont = bp; 15158 tail = bp; 15159 } 15160 15161 /* Move forward. */ 15162 bp = bp->b_cont; 15163 } 15164 15165 if (fix_xmitlist) { 15166 tcp->tcp_xmit_last = tail; 15167 tcp->tcp_xmit_zc_clean = B_TRUE; 15168 } 15169 15170 return (head); 15171 } 15172 15173 static void 15174 tcp_zcopy_notify(tcp_t *tcp) 15175 { 15176 struct stdata *stp; 15177 conn_t *connp; 15178 15179 if (tcp->tcp_detached) 15180 return; 15181 connp = tcp->tcp_connp; 15182 if (IPCL_IS_NONSTR(connp)) { 15183 (*connp->conn_upcalls->su_zcopy_notify) 15184 (connp->conn_upper_handle); 15185 return; 15186 } 15187 stp = STREAM(connp->conn_rq); 15188 mutex_enter(&stp->sd_lock); 15189 stp->sd_flag |= STZCNOTIFY; 15190 cv_broadcast(&stp->sd_zcopy_wait); 15191 mutex_exit(&stp->sd_lock); 15192 } 15193 15194 /* 15195 * Update the TCP connection according to change of LSO capability. 15196 */ 15197 static void 15198 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa) 15199 { 15200 /* 15201 * We check against IPv4 header length to preserve the old behavior 15202 * of only enabling LSO when there are no IP options. 15203 * But this restriction might not be necessary at all. Before removing 15204 * it, need to verify how LSO is handled for source routing case, with 15205 * which IP does software checksum. 15206 * 15207 * For IPv6, whenever any extension header is needed, LSO is supressed. 15208 */ 15209 if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ? 15210 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN)) 15211 return; 15212 15213 /* 15214 * Either the LSO capability newly became usable, or it has changed. 15215 */ 15216 if (ixa->ixa_flags & IXAF_LSO_CAPAB) { 15217 ill_lso_capab_t *lsoc = &ixa->ixa_lso_capab; 15218 15219 ASSERT(lsoc->ill_lso_max > 0); 15220 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max); 15221 15222 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 15223 boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max); 15224 15225 /* 15226 * If LSO to be enabled, notify the STREAM header with larger 15227 * data block. 15228 */ 15229 if (!tcp->tcp_lso) 15230 tcp->tcp_maxpsz_multiplier = 0; 15231 15232 tcp->tcp_lso = B_TRUE; 15233 TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled); 15234 } else { /* LSO capability is not usable any more. */ 15235 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 15236 boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max); 15237 15238 /* 15239 * If LSO to be disabled, notify the STREAM header with smaller 15240 * data block. And need to restore fragsize to PMTU. 15241 */ 15242 if (tcp->tcp_lso) { 15243 tcp->tcp_maxpsz_multiplier = 15244 tcp->tcp_tcps->tcps_maxpsz_multiplier; 15245 ixa->ixa_fragsize = ixa->ixa_pmtu; 15246 tcp->tcp_lso = B_FALSE; 15247 TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled); 15248 } 15249 } 15250 15251 (void) tcp_maxpsz_set(tcp, B_TRUE); 15252 } 15253 15254 /* 15255 * Update the TCP connection according to change of ZEROCOPY capability. 15256 */ 15257 static void 15258 tcp_update_zcopy(tcp_t *tcp) 15259 { 15260 conn_t *connp = tcp->tcp_connp; 15261 tcp_stack_t *tcps = tcp->tcp_tcps; 15262 15263 if (tcp->tcp_snd_zcopy_on) { 15264 tcp->tcp_snd_zcopy_on = B_FALSE; 15265 if (!TCP_IS_DETACHED(tcp)) { 15266 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15267 ZCVMUNSAFE); 15268 TCP_STAT(tcps, tcp_zcopy_off); 15269 } 15270 } else { 15271 tcp->tcp_snd_zcopy_on = B_TRUE; 15272 if (!TCP_IS_DETACHED(tcp)) { 15273 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15274 ZCVMSAFE); 15275 TCP_STAT(tcps, tcp_zcopy_on); 15276 } 15277 } 15278 } 15279 15280 /* 15281 * Notify function registered with ip_xmit_attr_t. It's called in the squeue 15282 * so it's safe to update the TCP connection. 15283 */ 15284 /* ARGSUSED1 */ 15285 static void 15286 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype, 15287 ixa_notify_arg_t narg) 15288 { 15289 tcp_t *tcp = (tcp_t *)arg; 15290 conn_t *connp = tcp->tcp_connp; 15291 15292 switch (ntype) { 15293 case IXAN_LSO: 15294 tcp_update_lso(tcp, connp->conn_ixa); 15295 break; 15296 case IXAN_PMTU: 15297 tcp_update_pmtu(tcp, B_FALSE); 15298 break; 15299 case IXAN_ZCOPY: 15300 tcp_update_zcopy(tcp); 15301 break; 15302 default: 15303 break; 15304 } 15305 } 15306 15307 static void 15308 tcp_send_data(tcp_t *tcp, mblk_t *mp) 15309 { 15310 conn_t *connp = tcp->tcp_connp; 15311 15312 /* 15313 * Check here to avoid sending zero-copy message down to IP when 15314 * ZEROCOPY capability has turned off. We only need to deal with 15315 * the race condition between sockfs and the notification here. 15316 * Since we have tried to backoff the tcp_xmit_head when turning 15317 * zero-copy off and new messages in tcp_output(), we simply drop 15318 * the dup'ed packet here and let tcp retransmit, if tcp_xmit_zc_clean 15319 * is not true. 15320 */ 15321 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_snd_zcopy_on && 15322 !tcp->tcp_xmit_zc_clean) { 15323 ip_drop_output("TCP ZC was disabled but not clean", mp, NULL); 15324 freemsg(mp); 15325 return; 15326 } 15327 15328 ASSERT(connp->conn_ixa->ixa_notify_cookie == connp->conn_tcp); 15329 (void) conn_ip_output(mp, connp->conn_ixa); 15330 } 15331 15332 /* 15333 * This handles the case when the receiver has shrunk its win. Per RFC 1122 15334 * if the receiver shrinks the window, i.e. moves the right window to the 15335 * left, the we should not send new data, but should retransmit normally the 15336 * old unacked data between suna and suna + swnd. We might has sent data 15337 * that is now outside the new window, pretend that we didn't send it. 15338 */ 15339 static void 15340 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 15341 { 15342 uint32_t snxt = tcp->tcp_snxt; 15343 15344 ASSERT(shrunk_count > 0); 15345 15346 if (!tcp->tcp_is_wnd_shrnk) { 15347 tcp->tcp_snxt_shrunk = snxt; 15348 tcp->tcp_is_wnd_shrnk = B_TRUE; 15349 } else if (SEQ_GT(snxt, tcp->tcp_snxt_shrunk)) { 15350 tcp->tcp_snxt_shrunk = snxt; 15351 } 15352 15353 /* Pretend we didn't send the data outside the window */ 15354 snxt -= shrunk_count; 15355 15356 /* Reset all the values per the now shrunk window */ 15357 tcp_update_xmit_tail(tcp, snxt); 15358 tcp->tcp_unsent += shrunk_count; 15359 15360 /* 15361 * If the SACK option is set, delete the entire list of 15362 * notsack'ed blocks. 15363 */ 15364 if (tcp->tcp_sack_info != NULL) { 15365 if (tcp->tcp_notsack_list != NULL) 15366 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 15367 } 15368 15369 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 15370 /* 15371 * Make sure the timer is running so that we will probe a zero 15372 * window. 15373 */ 15374 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15375 } 15376 15377 15378 /* 15379 * The TCP normal data output path. 15380 * NOTE: the logic of the fast path is duplicated from this function. 15381 */ 15382 static void 15383 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 15384 { 15385 int len; 15386 mblk_t *local_time; 15387 mblk_t *mp1; 15388 uint32_t snxt; 15389 int tail_unsent; 15390 int tcpstate; 15391 int usable = 0; 15392 mblk_t *xmit_tail; 15393 int32_t mss; 15394 int32_t num_sack_blk = 0; 15395 int32_t total_hdr_len; 15396 int32_t tcp_hdr_len; 15397 int rc; 15398 tcp_stack_t *tcps = tcp->tcp_tcps; 15399 conn_t *connp = tcp->tcp_connp; 15400 15401 tcpstate = tcp->tcp_state; 15402 if (mp == NULL) { 15403 /* 15404 * tcp_wput_data() with NULL mp should only be called when 15405 * there is unsent data. 15406 */ 15407 ASSERT(tcp->tcp_unsent > 0); 15408 /* Really tacky... but we need this for detached closes. */ 15409 len = tcp->tcp_unsent; 15410 goto data_null; 15411 } 15412 15413 #if CCS_STATS 15414 wrw_stats.tot.count++; 15415 wrw_stats.tot.bytes += msgdsize(mp); 15416 #endif 15417 ASSERT(mp->b_datap->db_type == M_DATA); 15418 /* 15419 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 15420 * or before a connection attempt has begun. 15421 */ 15422 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 15423 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 15424 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 15425 #ifdef DEBUG 15426 cmn_err(CE_WARN, 15427 "tcp_wput_data: data after ordrel, %s", 15428 tcp_display(tcp, NULL, 15429 DISP_ADDR_AND_PORT)); 15430 #else 15431 if (connp->conn_debug) { 15432 (void) strlog(TCP_MOD_ID, 0, 1, 15433 SL_TRACE|SL_ERROR, 15434 "tcp_wput_data: data after ordrel, %s\n", 15435 tcp_display(tcp, NULL, 15436 DISP_ADDR_AND_PORT)); 15437 } 15438 #endif /* DEBUG */ 15439 } 15440 if (tcp->tcp_snd_zcopy_aware && 15441 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 15442 tcp_zcopy_notify(tcp); 15443 freemsg(mp); 15444 mutex_enter(&tcp->tcp_non_sq_lock); 15445 if (tcp->tcp_flow_stopped && 15446 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 15447 tcp_clrqfull(tcp); 15448 } 15449 mutex_exit(&tcp->tcp_non_sq_lock); 15450 return; 15451 } 15452 15453 /* Strip empties */ 15454 for (;;) { 15455 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 15456 (uintptr_t)INT_MAX); 15457 len = (int)(mp->b_wptr - mp->b_rptr); 15458 if (len > 0) 15459 break; 15460 mp1 = mp; 15461 mp = mp->b_cont; 15462 freeb(mp1); 15463 if (!mp) { 15464 return; 15465 } 15466 } 15467 15468 /* If we are the first on the list ... */ 15469 if (tcp->tcp_xmit_head == NULL) { 15470 tcp->tcp_xmit_head = mp; 15471 tcp->tcp_xmit_tail = mp; 15472 tcp->tcp_xmit_tail_unsent = len; 15473 } else { 15474 /* If tiny tx and room in txq tail, pullup to save mblks. */ 15475 struct datab *dp; 15476 15477 mp1 = tcp->tcp_xmit_last; 15478 if (len < tcp_tx_pull_len && 15479 (dp = mp1->b_datap)->db_ref == 1 && 15480 dp->db_lim - mp1->b_wptr >= len) { 15481 ASSERT(len > 0); 15482 ASSERT(!mp1->b_cont); 15483 if (len == 1) { 15484 *mp1->b_wptr++ = *mp->b_rptr; 15485 } else { 15486 bcopy(mp->b_rptr, mp1->b_wptr, len); 15487 mp1->b_wptr += len; 15488 } 15489 if (mp1 == tcp->tcp_xmit_tail) 15490 tcp->tcp_xmit_tail_unsent += len; 15491 mp1->b_cont = mp->b_cont; 15492 if (tcp->tcp_snd_zcopy_aware && 15493 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 15494 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 15495 freeb(mp); 15496 mp = mp1; 15497 } else { 15498 tcp->tcp_xmit_last->b_cont = mp; 15499 } 15500 len += tcp->tcp_unsent; 15501 } 15502 15503 /* Tack on however many more positive length mblks we have */ 15504 if ((mp1 = mp->b_cont) != NULL) { 15505 do { 15506 int tlen; 15507 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 15508 (uintptr_t)INT_MAX); 15509 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 15510 if (tlen <= 0) { 15511 mp->b_cont = mp1->b_cont; 15512 freeb(mp1); 15513 } else { 15514 len += tlen; 15515 mp = mp1; 15516 } 15517 } while ((mp1 = mp->b_cont) != NULL); 15518 } 15519 tcp->tcp_xmit_last = mp; 15520 tcp->tcp_unsent = len; 15521 15522 if (urgent) 15523 usable = 1; 15524 15525 data_null: 15526 snxt = tcp->tcp_snxt; 15527 xmit_tail = tcp->tcp_xmit_tail; 15528 tail_unsent = tcp->tcp_xmit_tail_unsent; 15529 15530 /* 15531 * Note that tcp_mss has been adjusted to take into account the 15532 * timestamp option if applicable. Because SACK options do not 15533 * appear in every TCP segments and they are of variable lengths, 15534 * they cannot be included in tcp_mss. Thus we need to calculate 15535 * the actual segment length when we need to send a segment which 15536 * includes SACK options. 15537 */ 15538 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 15539 int32_t opt_len; 15540 15541 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 15542 tcp->tcp_num_sack_blk); 15543 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 15544 2 + TCPOPT_HEADER_LEN; 15545 mss = tcp->tcp_mss - opt_len; 15546 total_hdr_len = connp->conn_ht_iphc_len + opt_len; 15547 tcp_hdr_len = connp->conn_ht_ulp_len + opt_len; 15548 } else { 15549 mss = tcp->tcp_mss; 15550 total_hdr_len = connp->conn_ht_iphc_len; 15551 tcp_hdr_len = connp->conn_ht_ulp_len; 15552 } 15553 15554 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 15555 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 15556 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 15557 } 15558 if (tcpstate == TCPS_SYN_RCVD) { 15559 /* 15560 * The three-way connection establishment handshake is not 15561 * complete yet. We want to queue the data for transmission 15562 * after entering ESTABLISHED state (RFC793). A jump to 15563 * "done" label effectively leaves data on the queue. 15564 */ 15565 goto done; 15566 } else { 15567 int usable_r; 15568 15569 /* 15570 * In the special case when cwnd is zero, which can only 15571 * happen if the connection is ECN capable, return now. 15572 * New segments is sent using tcp_timer(). The timer 15573 * is set in tcp_input_data(). 15574 */ 15575 if (tcp->tcp_cwnd == 0) { 15576 /* 15577 * Note that tcp_cwnd is 0 before 3-way handshake is 15578 * finished. 15579 */ 15580 ASSERT(tcp->tcp_ecn_ok || 15581 tcp->tcp_state < TCPS_ESTABLISHED); 15582 return; 15583 } 15584 15585 /* NOTE: trouble if xmitting while SYN not acked? */ 15586 usable_r = snxt - tcp->tcp_suna; 15587 usable_r = tcp->tcp_swnd - usable_r; 15588 15589 /* 15590 * Check if the receiver has shrunk the window. If 15591 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 15592 * cannot be set as there is unsent data, so FIN cannot 15593 * be sent out. Otherwise, we need to take into account 15594 * of FIN as it consumes an "invisible" sequence number. 15595 */ 15596 ASSERT(tcp->tcp_fin_sent == 0); 15597 if (usable_r < 0) { 15598 /* 15599 * The receiver has shrunk the window and we have sent 15600 * -usable_r date beyond the window, re-adjust. 15601 * 15602 * If TCP window scaling is enabled, there can be 15603 * round down error as the advertised receive window 15604 * is actually right shifted n bits. This means that 15605 * the lower n bits info is wiped out. It will look 15606 * like the window is shrunk. Do a check here to 15607 * see if the shrunk amount is actually within the 15608 * error in window calculation. If it is, just 15609 * return. Note that this check is inside the 15610 * shrunk window check. This makes sure that even 15611 * though tcp_process_shrunk_swnd() is not called, 15612 * we will stop further processing. 15613 */ 15614 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 15615 tcp_process_shrunk_swnd(tcp, -usable_r); 15616 } 15617 return; 15618 } 15619 15620 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 15621 if (tcp->tcp_swnd > tcp->tcp_cwnd) 15622 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 15623 15624 /* usable = MIN(usable, unsent) */ 15625 if (usable_r > len) 15626 usable_r = len; 15627 15628 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 15629 if (usable_r > 0) { 15630 usable = usable_r; 15631 } else { 15632 /* Bypass all other unnecessary processing. */ 15633 goto done; 15634 } 15635 } 15636 15637 local_time = (mblk_t *)lbolt; 15638 15639 /* 15640 * "Our" Nagle Algorithm. This is not the same as in the old 15641 * BSD. This is more in line with the true intent of Nagle. 15642 * 15643 * The conditions are: 15644 * 1. The amount of unsent data (or amount of data which can be 15645 * sent, whichever is smaller) is less than Nagle limit. 15646 * 2. The last sent size is also less than Nagle limit. 15647 * 3. There is unack'ed data. 15648 * 4. Urgent pointer is not set. Send urgent data ignoring the 15649 * Nagle algorithm. This reduces the probability that urgent 15650 * bytes get "merged" together. 15651 * 5. The app has not closed the connection. This eliminates the 15652 * wait time of the receiving side waiting for the last piece of 15653 * (small) data. 15654 * 15655 * If all are satisified, exit without sending anything. Note 15656 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 15657 * the smaller of 1 MSS and global tcp_naglim_def (default to be 15658 * 4095). 15659 */ 15660 if (usable < (int)tcp->tcp_naglim && 15661 tcp->tcp_naglim > tcp->tcp_last_sent_len && 15662 snxt != tcp->tcp_suna && 15663 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 15664 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 15665 goto done; 15666 } 15667 15668 /* 15669 * If tcp_zero_win_probe is not set and the tcp->tcp_cork option 15670 * is set, then we have to force TCP not to send partial segment 15671 * (smaller than MSS bytes). We are calculating the usable now 15672 * based on full mss and will save the rest of remaining data for 15673 * later. When tcp_zero_win_probe is set, TCP needs to send out 15674 * something to do zero window probe. 15675 */ 15676 if (tcp->tcp_cork && !tcp->tcp_zero_win_probe) { 15677 if (usable < mss) 15678 goto done; 15679 usable = (usable / mss) * mss; 15680 } 15681 15682 /* Update the latest receive window size in TCP header. */ 15683 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 15684 15685 /* Send the packet. */ 15686 rc = tcp_send(tcp, mss, total_hdr_len, tcp_hdr_len, 15687 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 15688 local_time); 15689 15690 /* Pretend that all we were trying to send really got sent */ 15691 if (rc < 0 && tail_unsent < 0) { 15692 do { 15693 xmit_tail = xmit_tail->b_cont; 15694 xmit_tail->b_prev = local_time; 15695 ASSERT((uintptr_t)(xmit_tail->b_wptr - 15696 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 15697 tail_unsent += (int)(xmit_tail->b_wptr - 15698 xmit_tail->b_rptr); 15699 } while (tail_unsent < 0); 15700 } 15701 done:; 15702 tcp->tcp_xmit_tail = xmit_tail; 15703 tcp->tcp_xmit_tail_unsent = tail_unsent; 15704 len = tcp->tcp_snxt - snxt; 15705 if (len) { 15706 /* 15707 * If new data was sent, need to update the notsack 15708 * list, which is, afterall, data blocks that have 15709 * not been sack'ed by the receiver. New data is 15710 * not sack'ed. 15711 */ 15712 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 15713 /* len is a negative value. */ 15714 tcp->tcp_pipe -= len; 15715 tcp_notsack_update(&(tcp->tcp_notsack_list), 15716 tcp->tcp_snxt, snxt, 15717 &(tcp->tcp_num_notsack_blk), 15718 &(tcp->tcp_cnt_notsack_list)); 15719 } 15720 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 15721 tcp->tcp_rack = tcp->tcp_rnxt; 15722 tcp->tcp_rack_cnt = 0; 15723 if ((snxt + len) == tcp->tcp_suna) { 15724 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15725 } 15726 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 15727 /* 15728 * Didn't send anything. Make sure the timer is running 15729 * so that we will probe a zero window. 15730 */ 15731 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15732 } 15733 /* Note that len is the amount we just sent but with a negative sign */ 15734 tcp->tcp_unsent += len; 15735 mutex_enter(&tcp->tcp_non_sq_lock); 15736 if (tcp->tcp_flow_stopped) { 15737 if (TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 15738 tcp_clrqfull(tcp); 15739 } 15740 } else if (TCP_UNSENT_BYTES(tcp) >= connp->conn_sndbuf) { 15741 if (!(tcp->tcp_detached)) 15742 tcp_setqfull(tcp); 15743 } 15744 mutex_exit(&tcp->tcp_non_sq_lock); 15745 } 15746 15747 /* 15748 * tcp_fill_header is called by tcp_send() to fill the outgoing TCP header 15749 * with the template header, as well as other options such as time-stamp, 15750 * ECN and/or SACK. 15751 */ 15752 static void 15753 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 15754 { 15755 tcpha_t *tcp_tmpl, *tcpha; 15756 uint32_t *dst, *src; 15757 int hdrlen; 15758 conn_t *connp = tcp->tcp_connp; 15759 15760 ASSERT(OK_32PTR(rptr)); 15761 15762 /* Template header */ 15763 tcp_tmpl = tcp->tcp_tcpha; 15764 15765 /* Header of outgoing packet */ 15766 tcpha = (tcpha_t *)(rptr + connp->conn_ixa->ixa_ip_hdr_length); 15767 15768 /* dst and src are opaque 32-bit fields, used for copying */ 15769 dst = (uint32_t *)rptr; 15770 src = (uint32_t *)connp->conn_ht_iphc; 15771 hdrlen = connp->conn_ht_iphc_len; 15772 15773 /* Fill time-stamp option if needed */ 15774 if (tcp->tcp_snd_ts_ok) { 15775 U32_TO_BE32((uint32_t)now, 15776 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 15777 U32_TO_BE32(tcp->tcp_ts_recent, 15778 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 15779 } else { 15780 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 15781 } 15782 15783 /* 15784 * Copy the template header; is this really more efficient than 15785 * calling bcopy()? For simple IPv4/TCP, it may be the case, 15786 * but perhaps not for other scenarios. 15787 */ 15788 dst[0] = src[0]; 15789 dst[1] = src[1]; 15790 dst[2] = src[2]; 15791 dst[3] = src[3]; 15792 dst[4] = src[4]; 15793 dst[5] = src[5]; 15794 dst[6] = src[6]; 15795 dst[7] = src[7]; 15796 dst[8] = src[8]; 15797 dst[9] = src[9]; 15798 if (hdrlen -= 40) { 15799 hdrlen >>= 2; 15800 dst += 10; 15801 src += 10; 15802 do { 15803 *dst++ = *src++; 15804 } while (--hdrlen); 15805 } 15806 15807 /* 15808 * Set the ECN info in the TCP header if it is not a zero 15809 * window probe. Zero window probe is only sent in 15810 * tcp_wput_data() and tcp_timer(). 15811 */ 15812 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 15813 SET_ECT(tcp, rptr); 15814 15815 if (tcp->tcp_ecn_echo_on) 15816 tcpha->tha_flags |= TH_ECE; 15817 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 15818 tcpha->tha_flags |= TH_CWR; 15819 tcp->tcp_ecn_cwr_sent = B_TRUE; 15820 } 15821 } 15822 15823 /* Fill in SACK options */ 15824 if (num_sack_blk > 0) { 15825 uchar_t *wptr = rptr + connp->conn_ht_iphc_len; 15826 sack_blk_t *tmp; 15827 int32_t i; 15828 15829 wptr[0] = TCPOPT_NOP; 15830 wptr[1] = TCPOPT_NOP; 15831 wptr[2] = TCPOPT_SACK; 15832 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 15833 sizeof (sack_blk_t); 15834 wptr += TCPOPT_REAL_SACK_LEN; 15835 15836 tmp = tcp->tcp_sack_list; 15837 for (i = 0; i < num_sack_blk; i++) { 15838 U32_TO_BE32(tmp[i].begin, wptr); 15839 wptr += sizeof (tcp_seq); 15840 U32_TO_BE32(tmp[i].end, wptr); 15841 wptr += sizeof (tcp_seq); 15842 } 15843 tcpha->tha_offset_and_reserved += 15844 ((num_sack_blk * 2 + 1) << 4); 15845 } 15846 } 15847 15848 /* 15849 * tcp_send() is called by tcp_wput_data() and returns one of the following: 15850 * 15851 * -1 = failed allocation. 15852 * 0 = success; burst count reached, or usable send window is too small, 15853 * and that we'd rather wait until later before sending again. 15854 */ 15855 static int 15856 tcp_send(tcp_t *tcp, const int mss, const int total_hdr_len, 15857 const int tcp_hdr_len, const int num_sack_blk, int *usable, 15858 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time) 15859 { 15860 int num_burst_seg = tcp->tcp_snd_burst; 15861 int num_lso_seg = 1; 15862 uint_t lso_usable; 15863 boolean_t do_lso_send = B_FALSE; 15864 tcp_stack_t *tcps = tcp->tcp_tcps; 15865 conn_t *connp = tcp->tcp_connp; 15866 ip_xmit_attr_t *ixa = connp->conn_ixa; 15867 15868 /* 15869 * Check LSO possibility. The value of tcp->tcp_lso indicates whether 15870 * the underlying connection is LSO capable. Will check whether having 15871 * enough available data to initiate LSO transmission in the for(){} 15872 * loops. 15873 */ 15874 if (tcp->tcp_lso && (tcp->tcp_valid_bits & ~TCP_FSS_VALID) == 0) 15875 do_lso_send = B_TRUE; 15876 15877 for (;;) { 15878 struct datab *db; 15879 tcpha_t *tcpha; 15880 uint32_t sum; 15881 mblk_t *mp, *mp1; 15882 uchar_t *rptr; 15883 int len; 15884 15885 /* 15886 * Burst count reached, return successfully. 15887 */ 15888 if (num_burst_seg == 0) 15889 break; 15890 15891 /* 15892 * Calculate the maximum payload length we can send at one 15893 * time. 15894 */ 15895 if (do_lso_send) { 15896 /* 15897 * Check whether be able to to do LSO for the current 15898 * available data. 15899 */ 15900 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 15901 lso_usable = MIN(tcp->tcp_lso_max, *usable); 15902 lso_usable = MIN(lso_usable, 15903 num_burst_seg * mss); 15904 15905 num_lso_seg = lso_usable / mss; 15906 if (lso_usable % mss) { 15907 num_lso_seg++; 15908 tcp->tcp_last_sent_len = (ushort_t) 15909 (lso_usable % mss); 15910 } else { 15911 tcp->tcp_last_sent_len = (ushort_t)mss; 15912 } 15913 } else { 15914 do_lso_send = B_FALSE; 15915 num_lso_seg = 1; 15916 lso_usable = mss; 15917 } 15918 } 15919 15920 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 15921 #ifdef DEBUG 15922 DTRACE_PROBE2(tcp_send_lso, int, num_lso_seg, boolean_t, 15923 do_lso_send); 15924 #endif 15925 /* 15926 * Adjust num_burst_seg here. 15927 */ 15928 num_burst_seg -= num_lso_seg; 15929 15930 len = mss; 15931 if (len > *usable) { 15932 ASSERT(do_lso_send == B_FALSE); 15933 15934 len = *usable; 15935 if (len <= 0) { 15936 /* Terminate the loop */ 15937 break; /* success; too small */ 15938 } 15939 /* 15940 * Sender silly-window avoidance. 15941 * Ignore this if we are going to send a 15942 * zero window probe out. 15943 * 15944 * TODO: force data into microscopic window? 15945 * ==> (!pushed || (unsent > usable)) 15946 */ 15947 if (len < (tcp->tcp_max_swnd >> 1) && 15948 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 15949 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 15950 len == 1) && (! tcp->tcp_zero_win_probe)) { 15951 /* 15952 * If the retransmit timer is not running 15953 * we start it so that we will retransmit 15954 * in the case when the receiver has 15955 * decremented the window. 15956 */ 15957 if (*snxt == tcp->tcp_snxt && 15958 *snxt == tcp->tcp_suna) { 15959 /* 15960 * We are not supposed to send 15961 * anything. So let's wait a little 15962 * bit longer before breaking SWS 15963 * avoidance. 15964 * 15965 * What should the value be? 15966 * Suggestion: MAX(init rexmit time, 15967 * tcp->tcp_rto) 15968 */ 15969 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15970 } 15971 break; /* success; too small */ 15972 } 15973 } 15974 15975 tcpha = tcp->tcp_tcpha; 15976 15977 /* 15978 * The reason to adjust len here is that we need to set flags 15979 * and calculate checksum. 15980 */ 15981 if (do_lso_send) 15982 len = lso_usable; 15983 15984 *usable -= len; /* Approximate - can be adjusted later */ 15985 if (*usable > 0) 15986 tcpha->tha_flags = TH_ACK; 15987 else 15988 tcpha->tha_flags = (TH_ACK | TH_PUSH); 15989 15990 /* 15991 * Prime pump for IP's checksumming on our behalf. 15992 * Include the adjustment for a source route if any. 15993 * In case of LSO, the partial pseudo-header checksum should 15994 * exclusive TCP length, so zero tha_sum before IP calculate 15995 * pseudo-header checksum for partial checksum offload. 15996 */ 15997 if (do_lso_send) { 15998 sum = 0; 15999 } else { 16000 sum = len + tcp_hdr_len + connp->conn_sum; 16001 sum = (sum >> 16) + (sum & 0xFFFF); 16002 } 16003 tcpha->tha_sum = htons(sum); 16004 tcpha->tha_seq = htonl(*snxt); 16005 16006 /* 16007 * Branch off to tcp_xmit_mp() if any of the VALID bits is 16008 * set. For the case when TCP_FSS_VALID is the only valid 16009 * bit (normal active close), branch off only when we think 16010 * that the FIN flag needs to be set. Note for this case, 16011 * that (snxt + len) may not reflect the actual seg_len, 16012 * as len may be further reduced in tcp_xmit_mp(). If len 16013 * gets modified, we will end up here again. 16014 */ 16015 if (tcp->tcp_valid_bits != 0 && 16016 (tcp->tcp_valid_bits != TCP_FSS_VALID || 16017 ((*snxt + len) == tcp->tcp_fss))) { 16018 uchar_t *prev_rptr; 16019 uint32_t prev_snxt = tcp->tcp_snxt; 16020 16021 if (*tail_unsent == 0) { 16022 ASSERT((*xmit_tail)->b_cont != NULL); 16023 *xmit_tail = (*xmit_tail)->b_cont; 16024 prev_rptr = (*xmit_tail)->b_rptr; 16025 *tail_unsent = (int)((*xmit_tail)->b_wptr - 16026 (*xmit_tail)->b_rptr); 16027 } else { 16028 prev_rptr = (*xmit_tail)->b_rptr; 16029 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 16030 *tail_unsent; 16031 } 16032 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 16033 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 16034 /* Restore tcp_snxt so we get amount sent right. */ 16035 tcp->tcp_snxt = prev_snxt; 16036 if (prev_rptr == (*xmit_tail)->b_rptr) { 16037 /* 16038 * If the previous timestamp is still in use, 16039 * don't stomp on it. 16040 */ 16041 if ((*xmit_tail)->b_next == NULL) { 16042 (*xmit_tail)->b_prev = local_time; 16043 (*xmit_tail)->b_next = 16044 (mblk_t *)(uintptr_t)(*snxt); 16045 } 16046 } else 16047 (*xmit_tail)->b_rptr = prev_rptr; 16048 16049 if (mp == NULL) { 16050 return (-1); 16051 } 16052 mp1 = mp->b_cont; 16053 16054 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 16055 tcp->tcp_last_sent_len = (ushort_t)len; 16056 while (mp1->b_cont) { 16057 *xmit_tail = (*xmit_tail)->b_cont; 16058 (*xmit_tail)->b_prev = local_time; 16059 (*xmit_tail)->b_next = 16060 (mblk_t *)(uintptr_t)(*snxt); 16061 mp1 = mp1->b_cont; 16062 } 16063 *snxt += len; 16064 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 16065 BUMP_LOCAL(tcp->tcp_obsegs); 16066 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 16067 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 16068 tcp_send_data(tcp, mp); 16069 continue; 16070 } 16071 16072 *snxt += len; /* Adjust later if we don't send all of len */ 16073 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 16074 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 16075 16076 if (*tail_unsent) { 16077 /* Are the bytes above us in flight? */ 16078 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 16079 if (rptr != (*xmit_tail)->b_rptr) { 16080 *tail_unsent -= len; 16081 if (len <= mss) /* LSO is unusable */ 16082 tcp->tcp_last_sent_len = (ushort_t)len; 16083 len += total_hdr_len; 16084 ixa->ixa_pktlen = len; 16085 16086 if (ixa->ixa_flags & IXAF_IS_IPV4) { 16087 tcp->tcp_ipha->ipha_length = htons(len); 16088 } else { 16089 tcp->tcp_ip6h->ip6_plen = 16090 htons(len - IPV6_HDR_LEN); 16091 } 16092 16093 mp = dupb(*xmit_tail); 16094 if (mp == NULL) { 16095 return (-1); /* out_of_mem */ 16096 } 16097 mp->b_rptr = rptr; 16098 /* 16099 * If the old timestamp is no longer in use, 16100 * sample a new timestamp now. 16101 */ 16102 if ((*xmit_tail)->b_next == NULL) { 16103 (*xmit_tail)->b_prev = local_time; 16104 (*xmit_tail)->b_next = 16105 (mblk_t *)(uintptr_t)(*snxt-len); 16106 } 16107 goto must_alloc; 16108 } 16109 } else { 16110 *xmit_tail = (*xmit_tail)->b_cont; 16111 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 16112 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 16113 *tail_unsent = (int)((*xmit_tail)->b_wptr - 16114 (*xmit_tail)->b_rptr); 16115 } 16116 16117 (*xmit_tail)->b_prev = local_time; 16118 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 16119 16120 *tail_unsent -= len; 16121 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 16122 tcp->tcp_last_sent_len = (ushort_t)len; 16123 16124 len += total_hdr_len; 16125 ixa->ixa_pktlen = len; 16126 16127 if (ixa->ixa_flags & IXAF_IS_IPV4) { 16128 tcp->tcp_ipha->ipha_length = htons(len); 16129 } else { 16130 tcp->tcp_ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 16131 } 16132 16133 mp = dupb(*xmit_tail); 16134 if (mp == NULL) { 16135 return (-1); /* out_of_mem */ 16136 } 16137 16138 len = total_hdr_len; 16139 /* 16140 * There are four reasons to allocate a new hdr mblk: 16141 * 1) The bytes above us are in use by another packet 16142 * 2) We don't have good alignment 16143 * 3) The mblk is being shared 16144 * 4) We don't have enough room for a header 16145 */ 16146 rptr = mp->b_rptr - len; 16147 if (!OK_32PTR(rptr) || 16148 ((db = mp->b_datap), db->db_ref != 2) || 16149 rptr < db->db_base) { 16150 /* NOTE: we assume allocb returns an OK_32PTR */ 16151 16152 must_alloc:; 16153 mp1 = allocb(connp->conn_ht_iphc_allocated + 16154 tcps->tcps_wroff_xtra, BPRI_MED); 16155 if (mp1 == NULL) { 16156 freemsg(mp); 16157 return (-1); /* out_of_mem */ 16158 } 16159 mp1->b_cont = mp; 16160 mp = mp1; 16161 /* Leave room for Link Level header */ 16162 len = total_hdr_len; 16163 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 16164 mp->b_wptr = &rptr[len]; 16165 } 16166 16167 /* 16168 * Fill in the header using the template header, and add 16169 * options such as time-stamp, ECN and/or SACK, as needed. 16170 */ 16171 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 16172 16173 mp->b_rptr = rptr; 16174 16175 if (*tail_unsent) { 16176 int spill = *tail_unsent; 16177 16178 mp1 = mp->b_cont; 16179 if (mp1 == NULL) 16180 mp1 = mp; 16181 16182 /* 16183 * If we're a little short, tack on more mblks until 16184 * there is no more spillover. 16185 */ 16186 while (spill < 0) { 16187 mblk_t *nmp; 16188 int nmpsz; 16189 16190 nmp = (*xmit_tail)->b_cont; 16191 nmpsz = MBLKL(nmp); 16192 16193 /* 16194 * Excess data in mblk; can we split it? 16195 * If LSO is enabled for the connection, 16196 * keep on splitting as this is a transient 16197 * send path. 16198 */ 16199 if (!do_lso_send && (spill + nmpsz > 0)) { 16200 /* 16201 * Don't split if stream head was 16202 * told to break up larger writes 16203 * into smaller ones. 16204 */ 16205 if (tcp->tcp_maxpsz_multiplier > 0) 16206 break; 16207 16208 /* 16209 * Next mblk is less than SMSS/2 16210 * rounded up to nearest 64-byte; 16211 * let it get sent as part of the 16212 * next segment. 16213 */ 16214 if (tcp->tcp_localnet && 16215 !tcp->tcp_cork && 16216 (nmpsz < roundup((mss >> 1), 64))) 16217 break; 16218 } 16219 16220 *xmit_tail = nmp; 16221 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 16222 /* Stash for rtt use later */ 16223 (*xmit_tail)->b_prev = local_time; 16224 (*xmit_tail)->b_next = 16225 (mblk_t *)(uintptr_t)(*snxt - len); 16226 mp1->b_cont = dupb(*xmit_tail); 16227 mp1 = mp1->b_cont; 16228 16229 spill += nmpsz; 16230 if (mp1 == NULL) { 16231 *tail_unsent = spill; 16232 freemsg(mp); 16233 return (-1); /* out_of_mem */ 16234 } 16235 } 16236 16237 /* Trim back any surplus on the last mblk */ 16238 if (spill >= 0) { 16239 mp1->b_wptr -= spill; 16240 *tail_unsent = spill; 16241 } else { 16242 /* 16243 * We did not send everything we could in 16244 * order to remain within the b_cont limit. 16245 */ 16246 *usable -= spill; 16247 *snxt += spill; 16248 tcp->tcp_last_sent_len += spill; 16249 UPDATE_MIB(&tcps->tcps_mib, 16250 tcpOutDataBytes, spill); 16251 /* 16252 * Adjust the checksum 16253 */ 16254 tcpha = (tcpha_t *)(rptr + 16255 ixa->ixa_ip_hdr_length); 16256 sum += spill; 16257 sum = (sum >> 16) + (sum & 0xFFFF); 16258 tcpha->tha_sum = htons(sum); 16259 if (connp->conn_ipversion == IPV4_VERSION) { 16260 sum = ntohs( 16261 ((ipha_t *)rptr)->ipha_length) + 16262 spill; 16263 ((ipha_t *)rptr)->ipha_length = 16264 htons(sum); 16265 } else { 16266 sum = ntohs( 16267 ((ip6_t *)rptr)->ip6_plen) + 16268 spill; 16269 ((ip6_t *)rptr)->ip6_plen = 16270 htons(sum); 16271 } 16272 ixa->ixa_pktlen += spill; 16273 *tail_unsent = 0; 16274 } 16275 } 16276 if (tcp->tcp_ip_forward_progress) { 16277 tcp->tcp_ip_forward_progress = B_FALSE; 16278 ixa->ixa_flags |= IXAF_REACH_CONF; 16279 } else { 16280 ixa->ixa_flags &= ~IXAF_REACH_CONF; 16281 } 16282 16283 /* 16284 * Append LSO information, both flags and mss, to the mp. 16285 */ 16286 if (do_lso_send) { 16287 lso_info_set(mp, mss, HW_LSO); 16288 ixa->ixa_fragsize = IP_MAXPACKET; 16289 ixa->ixa_extra_ident = num_lso_seg - 1; 16290 16291 DTRACE_PROBE2(tcp_send_lso, int, num_lso_seg, 16292 boolean_t, B_TRUE); 16293 16294 tcp_send_data(tcp, mp); 16295 16296 /* 16297 * Restore values of ixa_fragsize and ixa_extra_ident. 16298 */ 16299 ixa->ixa_fragsize = ixa->ixa_pmtu; 16300 ixa->ixa_extra_ident = 0; 16301 tcp->tcp_obsegs += num_lso_seg; 16302 TCP_STAT(tcps, tcp_lso_times); 16303 TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); 16304 } else { 16305 tcp_send_data(tcp, mp); 16306 BUMP_LOCAL(tcp->tcp_obsegs); 16307 } 16308 } 16309 16310 return (0); 16311 } 16312 16313 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 16314 static void 16315 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 16316 { 16317 uchar_t fval = *mp->b_rptr; 16318 mblk_t *tail; 16319 conn_t *connp = tcp->tcp_connp; 16320 queue_t *q = connp->conn_wq; 16321 16322 /* TODO: How should flush interact with urgent data? */ 16323 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 16324 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 16325 /* 16326 * Flush only data that has not yet been put on the wire. If 16327 * we flush data that we have already transmitted, life, as we 16328 * know it, may come to an end. 16329 */ 16330 tail = tcp->tcp_xmit_tail; 16331 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 16332 tcp->tcp_xmit_tail_unsent = 0; 16333 tcp->tcp_unsent = 0; 16334 if (tail->b_wptr != tail->b_rptr) 16335 tail = tail->b_cont; 16336 if (tail) { 16337 mblk_t **excess = &tcp->tcp_xmit_head; 16338 for (;;) { 16339 mblk_t *mp1 = *excess; 16340 if (mp1 == tail) 16341 break; 16342 tcp->tcp_xmit_tail = mp1; 16343 tcp->tcp_xmit_last = mp1; 16344 excess = &mp1->b_cont; 16345 } 16346 *excess = NULL; 16347 tcp_close_mpp(&tail); 16348 if (tcp->tcp_snd_zcopy_aware) 16349 tcp_zcopy_notify(tcp); 16350 } 16351 /* 16352 * We have no unsent data, so unsent must be less than 16353 * conn_sndlowat, so re-enable flow. 16354 */ 16355 mutex_enter(&tcp->tcp_non_sq_lock); 16356 if (tcp->tcp_flow_stopped) { 16357 tcp_clrqfull(tcp); 16358 } 16359 mutex_exit(&tcp->tcp_non_sq_lock); 16360 } 16361 /* 16362 * TODO: you can't just flush these, you have to increase rwnd for one 16363 * thing. For another, how should urgent data interact? 16364 */ 16365 if (fval & FLUSHR) { 16366 *mp->b_rptr = fval & ~FLUSHW; 16367 /* XXX */ 16368 qreply(q, mp); 16369 return; 16370 } 16371 freemsg(mp); 16372 } 16373 16374 /* 16375 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 16376 * messages. 16377 */ 16378 static void 16379 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 16380 { 16381 mblk_t *mp1; 16382 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 16383 STRUCT_HANDLE(strbuf, sb); 16384 uint_t addrlen; 16385 conn_t *connp = tcp->tcp_connp; 16386 queue_t *q = connp->conn_wq; 16387 16388 /* Make sure it is one of ours. */ 16389 switch (iocp->ioc_cmd) { 16390 case TI_GETMYNAME: 16391 case TI_GETPEERNAME: 16392 break; 16393 default: 16394 ip_wput_nondata(q, mp); 16395 return; 16396 } 16397 switch (mi_copy_state(q, mp, &mp1)) { 16398 case -1: 16399 return; 16400 case MI_COPY_CASE(MI_COPY_IN, 1): 16401 break; 16402 case MI_COPY_CASE(MI_COPY_OUT, 1): 16403 /* Copy out the strbuf. */ 16404 mi_copyout(q, mp); 16405 return; 16406 case MI_COPY_CASE(MI_COPY_OUT, 2): 16407 /* All done. */ 16408 mi_copy_done(q, mp, 0); 16409 return; 16410 default: 16411 mi_copy_done(q, mp, EPROTO); 16412 return; 16413 } 16414 /* Check alignment of the strbuf */ 16415 if (!OK_32PTR(mp1->b_rptr)) { 16416 mi_copy_done(q, mp, EINVAL); 16417 return; 16418 } 16419 16420 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 16421 16422 if (connp->conn_family == AF_INET) 16423 addrlen = sizeof (sin_t); 16424 else 16425 addrlen = sizeof (sin6_t); 16426 16427 if (STRUCT_FGET(sb, maxlen) < addrlen) { 16428 mi_copy_done(q, mp, EINVAL); 16429 return; 16430 } 16431 16432 switch (iocp->ioc_cmd) { 16433 case TI_GETMYNAME: 16434 break; 16435 case TI_GETPEERNAME: 16436 if (tcp->tcp_state < TCPS_SYN_RCVD) { 16437 mi_copy_done(q, mp, ENOTCONN); 16438 return; 16439 } 16440 break; 16441 } 16442 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 16443 if (!mp1) 16444 return; 16445 16446 STRUCT_FSET(sb, len, addrlen); 16447 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 16448 case TI_GETMYNAME: 16449 (void) conn_getsockname(connp, (struct sockaddr *)mp1->b_wptr, 16450 &addrlen); 16451 break; 16452 case TI_GETPEERNAME: 16453 (void) conn_getpeername(connp, (struct sockaddr *)mp1->b_wptr, 16454 &addrlen); 16455 break; 16456 } 16457 mp1->b_wptr += addrlen; 16458 /* Copy out the address */ 16459 mi_copyout(q, mp); 16460 } 16461 16462 static void 16463 tcp_use_pure_tpi(tcp_t *tcp) 16464 { 16465 conn_t *connp = tcp->tcp_connp; 16466 16467 #ifdef _ILP32 16468 tcp->tcp_acceptor_id = (t_uscalar_t)connp->conn_rq; 16469 #else 16470 tcp->tcp_acceptor_id = connp->conn_dev; 16471 #endif 16472 /* 16473 * Insert this socket into the acceptor hash. 16474 * We might need it for T_CONN_RES message 16475 */ 16476 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 16477 16478 tcp->tcp_issocket = B_FALSE; 16479 TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback); 16480 } 16481 16482 /* 16483 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 16484 * messages. 16485 */ 16486 /* ARGSUSED */ 16487 static void 16488 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 16489 { 16490 conn_t *connp = (conn_t *)arg; 16491 tcp_t *tcp = connp->conn_tcp; 16492 queue_t *q = connp->conn_wq; 16493 struct iocblk *iocp; 16494 16495 ASSERT(DB_TYPE(mp) == M_IOCTL); 16496 /* 16497 * Try and ASSERT the minimum possible references on the 16498 * conn early enough. Since we are executing on write side, 16499 * the connection is obviously not detached and that means 16500 * there is a ref each for TCP and IP. Since we are behind 16501 * the squeue, the minimum references needed are 3. If the 16502 * conn is in classifier hash list, there should be an 16503 * extra ref for that (we check both the possibilities). 16504 */ 16505 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 16506 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 16507 16508 iocp = (struct iocblk *)mp->b_rptr; 16509 switch (iocp->ioc_cmd) { 16510 case _SIOCSOCKFALLBACK: 16511 /* 16512 * Either sockmod is about to be popped and the socket 16513 * would now be treated as a plain stream, or a module 16514 * is about to be pushed so we could no longer use read- 16515 * side synchronous streams for fused loopback tcp. 16516 * Drain any queued data and disable direct sockfs 16517 * interface from now on. 16518 */ 16519 if (!tcp->tcp_issocket) { 16520 DB_TYPE(mp) = M_IOCNAK; 16521 iocp->ioc_error = EINVAL; 16522 } else { 16523 tcp_use_pure_tpi(tcp); 16524 DB_TYPE(mp) = M_IOCACK; 16525 iocp->ioc_error = 0; 16526 } 16527 iocp->ioc_count = 0; 16528 iocp->ioc_rval = 0; 16529 qreply(q, mp); 16530 return; 16531 } 16532 ip_wput_nondata(q, mp); 16533 } 16534 16535 /* 16536 * This routine is called by tcp_wput() to handle all TPI requests. 16537 */ 16538 /* ARGSUSED */ 16539 static void 16540 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 16541 { 16542 conn_t *connp = (conn_t *)arg; 16543 tcp_t *tcp = connp->conn_tcp; 16544 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 16545 uchar_t *rptr; 16546 t_scalar_t type; 16547 cred_t *cr; 16548 16549 /* 16550 * Try and ASSERT the minimum possible references on the 16551 * conn early enough. Since we are executing on write side, 16552 * the connection is obviously not detached and that means 16553 * there is a ref each for TCP and IP. Since we are behind 16554 * the squeue, the minimum references needed are 3. If the 16555 * conn is in classifier hash list, there should be an 16556 * extra ref for that (we check both the possibilities). 16557 */ 16558 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 16559 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 16560 16561 rptr = mp->b_rptr; 16562 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 16563 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 16564 type = ((union T_primitives *)rptr)->type; 16565 if (type == T_EXDATA_REQ) { 16566 tcp_output_urgent(connp, mp, arg2, NULL); 16567 } else if (type != T_DATA_REQ) { 16568 goto non_urgent_data; 16569 } else { 16570 /* TODO: options, flags, ... from user */ 16571 /* Set length to zero for reclamation below */ 16572 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 16573 freeb(mp); 16574 } 16575 return; 16576 } else { 16577 if (connp->conn_debug) { 16578 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 16579 "tcp_wput_proto, dropping one..."); 16580 } 16581 freemsg(mp); 16582 return; 16583 } 16584 16585 non_urgent_data: 16586 16587 switch ((int)tprim->type) { 16588 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 16589 /* 16590 * save the kssl_ent_t from the next block, and convert this 16591 * back to a normal bind_req. 16592 */ 16593 if (mp->b_cont != NULL) { 16594 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 16595 16596 if (tcp->tcp_kssl_ent != NULL) { 16597 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 16598 KSSL_NO_PROXY); 16599 tcp->tcp_kssl_ent = NULL; 16600 } 16601 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 16602 sizeof (kssl_ent_t)); 16603 kssl_hold_ent(tcp->tcp_kssl_ent); 16604 freemsg(mp->b_cont); 16605 mp->b_cont = NULL; 16606 } 16607 tprim->type = T_BIND_REQ; 16608 16609 /* FALLTHROUGH */ 16610 case O_T_BIND_REQ: /* bind request */ 16611 case T_BIND_REQ: /* new semantics bind request */ 16612 tcp_tpi_bind(tcp, mp); 16613 break; 16614 case T_UNBIND_REQ: /* unbind request */ 16615 tcp_tpi_unbind(tcp, mp); 16616 break; 16617 case O_T_CONN_RES: /* old connection response XXX */ 16618 case T_CONN_RES: /* connection response */ 16619 tcp_tli_accept(tcp, mp); 16620 break; 16621 case T_CONN_REQ: /* connection request */ 16622 tcp_tpi_connect(tcp, mp); 16623 break; 16624 case T_DISCON_REQ: /* disconnect request */ 16625 tcp_disconnect(tcp, mp); 16626 break; 16627 case T_CAPABILITY_REQ: 16628 tcp_capability_req(tcp, mp); /* capability request */ 16629 break; 16630 case T_INFO_REQ: /* information request */ 16631 tcp_info_req(tcp, mp); 16632 break; 16633 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 16634 case T_OPTMGMT_REQ: 16635 /* 16636 * Note: no support for snmpcom_req() through new 16637 * T_OPTMGMT_REQ. See comments in ip.c 16638 */ 16639 16640 /* 16641 * All Solaris components should pass a db_credp 16642 * for this TPI message, hence we ASSERT. 16643 * But in case there is some other M_PROTO that looks 16644 * like a TPI message sent by some other kernel 16645 * component, we check and return an error. 16646 */ 16647 cr = msg_getcred(mp, NULL); 16648 ASSERT(cr != NULL); 16649 if (cr == NULL) { 16650 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 16651 return; 16652 } 16653 /* 16654 * If EINPROGRESS is returned, the request has been queued 16655 * for subsequent processing by ip_restart_optmgmt(), which 16656 * will do the CONN_DEC_REF(). 16657 */ 16658 if ((int)tprim->type == T_SVR4_OPTMGMT_REQ) { 16659 svr4_optcom_req(connp->conn_wq, mp, cr, &tcp_opt_obj); 16660 } else { 16661 tpi_optcom_req(connp->conn_wq, mp, cr, &tcp_opt_obj); 16662 } 16663 break; 16664 16665 case T_UNITDATA_REQ: /* unitdata request */ 16666 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 16667 break; 16668 case T_ORDREL_REQ: /* orderly release req */ 16669 freemsg(mp); 16670 16671 if (tcp->tcp_fused) 16672 tcp_unfuse(tcp); 16673 16674 if (tcp_xmit_end(tcp) != 0) { 16675 /* 16676 * We were crossing FINs and got a reset from 16677 * the other side. Just ignore it. 16678 */ 16679 if (connp->conn_debug) { 16680 (void) strlog(TCP_MOD_ID, 0, 1, 16681 SL_ERROR|SL_TRACE, 16682 "tcp_wput_proto, T_ORDREL_REQ out of " 16683 "state %s", 16684 tcp_display(tcp, NULL, 16685 DISP_ADDR_AND_PORT)); 16686 } 16687 } 16688 break; 16689 case T_ADDR_REQ: 16690 tcp_addr_req(tcp, mp); 16691 break; 16692 default: 16693 if (connp->conn_debug) { 16694 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 16695 "tcp_wput_proto, bogus TPI msg, type %d", 16696 tprim->type); 16697 } 16698 /* 16699 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 16700 * to recover. 16701 */ 16702 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 16703 break; 16704 } 16705 } 16706 16707 /* 16708 * The TCP write service routine should never be called... 16709 */ 16710 /* ARGSUSED */ 16711 static void 16712 tcp_wsrv(queue_t *q) 16713 { 16714 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 16715 16716 TCP_STAT(tcps, tcp_wsrv_called); 16717 } 16718 16719 /* 16720 * Send out a control packet on the tcp connection specified. This routine 16721 * is typically called where we need a simple ACK or RST generated. 16722 */ 16723 static void 16724 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 16725 { 16726 uchar_t *rptr; 16727 tcpha_t *tcpha; 16728 ipha_t *ipha = NULL; 16729 ip6_t *ip6h = NULL; 16730 uint32_t sum; 16731 int total_hdr_len; 16732 int ip_hdr_len; 16733 mblk_t *mp; 16734 tcp_stack_t *tcps = tcp->tcp_tcps; 16735 conn_t *connp = tcp->tcp_connp; 16736 ip_xmit_attr_t *ixa = connp->conn_ixa; 16737 16738 /* 16739 * Save sum for use in source route later. 16740 */ 16741 sum = connp->conn_ht_ulp_len + connp->conn_sum; 16742 total_hdr_len = connp->conn_ht_iphc_len; 16743 ip_hdr_len = ixa->ixa_ip_hdr_length; 16744 16745 /* If a text string is passed in with the request, pass it to strlog. */ 16746 if (str != NULL && connp->conn_debug) { 16747 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 16748 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 16749 str, seq, ack, ctl); 16750 } 16751 mp = allocb(connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra, 16752 BPRI_MED); 16753 if (mp == NULL) { 16754 return; 16755 } 16756 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 16757 mp->b_rptr = rptr; 16758 mp->b_wptr = &rptr[total_hdr_len]; 16759 bcopy(connp->conn_ht_iphc, rptr, total_hdr_len); 16760 16761 ixa->ixa_pktlen = total_hdr_len; 16762 16763 if (ixa->ixa_flags & IXAF_IS_IPV4) { 16764 ipha = (ipha_t *)rptr; 16765 ipha->ipha_length = htons(total_hdr_len); 16766 } else { 16767 ip6h = (ip6_t *)rptr; 16768 ip6h->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN); 16769 } 16770 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 16771 tcpha->tha_flags = (uint8_t)ctl; 16772 if (ctl & TH_RST) { 16773 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 16774 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 16775 /* 16776 * Don't send TSopt w/ TH_RST packets per RFC 1323. 16777 */ 16778 if (tcp->tcp_snd_ts_ok && 16779 tcp->tcp_state > TCPS_SYN_SENT) { 16780 mp->b_wptr = &rptr[total_hdr_len - TCPOPT_REAL_TS_LEN]; 16781 *(mp->b_wptr) = TCPOPT_EOL; 16782 16783 ixa->ixa_pktlen = total_hdr_len - TCPOPT_REAL_TS_LEN; 16784 16785 if (connp->conn_ipversion == IPV4_VERSION) { 16786 ipha->ipha_length = htons(total_hdr_len - 16787 TCPOPT_REAL_TS_LEN); 16788 } else { 16789 ip6h->ip6_plen = htons(total_hdr_len - 16790 IPV6_HDR_LEN - TCPOPT_REAL_TS_LEN); 16791 } 16792 tcpha->tha_offset_and_reserved -= (3 << 4); 16793 sum -= TCPOPT_REAL_TS_LEN; 16794 } 16795 } 16796 if (ctl & TH_ACK) { 16797 if (tcp->tcp_snd_ts_ok) { 16798 U32_TO_BE32(lbolt, 16799 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 16800 U32_TO_BE32(tcp->tcp_ts_recent, 16801 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 16802 } 16803 16804 /* Update the latest receive window size in TCP header. */ 16805 tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 16806 tcp->tcp_rack = ack; 16807 tcp->tcp_rack_cnt = 0; 16808 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 16809 } 16810 BUMP_LOCAL(tcp->tcp_obsegs); 16811 tcpha->tha_seq = htonl(seq); 16812 tcpha->tha_ack = htonl(ack); 16813 /* 16814 * Include the adjustment for a source route if any. 16815 */ 16816 sum = (sum >> 16) + (sum & 0xFFFF); 16817 tcpha->tha_sum = htons(sum); 16818 tcp_send_data(tcp, mp); 16819 } 16820 16821 /* 16822 * If this routine returns B_TRUE, TCP can generate a RST in response 16823 * to a segment. If it returns B_FALSE, TCP should not respond. 16824 */ 16825 static boolean_t 16826 tcp_send_rst_chk(tcp_stack_t *tcps) 16827 { 16828 clock_t now; 16829 16830 /* 16831 * TCP needs to protect itself from generating too many RSTs. 16832 * This can be a DoS attack by sending us random segments 16833 * soliciting RSTs. 16834 * 16835 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 16836 * in each 1 second interval. In this way, TCP still generate 16837 * RSTs in normal cases but when under attack, the impact is 16838 * limited. 16839 */ 16840 if (tcps->tcps_rst_sent_rate_enabled != 0) { 16841 now = lbolt; 16842 /* lbolt can wrap around. */ 16843 if ((tcps->tcps_last_rst_intrvl > now) || 16844 (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 16845 1*SECONDS)) { 16846 tcps->tcps_last_rst_intrvl = now; 16847 tcps->tcps_rst_cnt = 1; 16848 } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { 16849 return (B_FALSE); 16850 } 16851 } 16852 return (B_TRUE); 16853 } 16854 16855 /* 16856 * Generate a reset based on an inbound packet, connp is set by caller 16857 * when RST is in response to an unexpected inbound packet for which 16858 * there is active tcp state in the system. 16859 * 16860 * IPSEC NOTE : Try to send the reply with the same protection as it came 16861 * in. We have the ip_recv_attr_t which is reversed to form the ip_xmit_attr_t. 16862 * That way the packet will go out at the same level of protection as it 16863 * came in with. 16864 */ 16865 static void 16866 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, uint32_t ack, int ctl, 16867 ip_recv_attr_t *ira, ip_stack_t *ipst, conn_t *connp) 16868 { 16869 ipha_t *ipha = NULL; 16870 ip6_t *ip6h = NULL; 16871 ushort_t len; 16872 tcpha_t *tcpha; 16873 int i; 16874 ipaddr_t v4addr; 16875 in6_addr_t v6addr; 16876 netstack_t *ns = ipst->ips_netstack; 16877 tcp_stack_t *tcps = ns->netstack_tcp; 16878 ip_xmit_attr_t ixas, *ixa; 16879 uint_t ip_hdr_len = ira->ira_ip_hdr_length; 16880 boolean_t need_refrele = B_FALSE; /* ixa_refrele(ixa) */ 16881 ushort_t port; 16882 16883 if (!tcp_send_rst_chk(tcps)) { 16884 tcps->tcps_rst_unsent++; 16885 freemsg(mp); 16886 return; 16887 } 16888 16889 /* 16890 * If connp != NULL we use conn_ixa to keep IP_NEXTHOP and other 16891 * options from the listener. In that case the caller must ensure that 16892 * we are running on the listener = connp squeue. 16893 * 16894 * We get a safe copy of conn_ixa so we don't need to restore anything 16895 * we or ip_output_simple might change in the ixa. 16896 */ 16897 if (connp != NULL) { 16898 ASSERT(connp->conn_on_sqp); 16899 16900 ixa = conn_get_ixa_exclusive(connp); 16901 if (ixa == NULL) { 16902 tcps->tcps_rst_unsent++; 16903 freemsg(mp); 16904 return; 16905 } 16906 need_refrele = B_TRUE; 16907 } else { 16908 bzero(&ixas, sizeof (ixas)); 16909 ixa = &ixas; 16910 /* 16911 * IXAF_VERIFY_SOURCE is overkill since we know the 16912 * packet was for us. 16913 */ 16914 ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE; 16915 ixa->ixa_protocol = IPPROTO_TCP; 16916 ixa->ixa_zoneid = ira->ira_zoneid; 16917 ixa->ixa_ifindex = 0; 16918 ixa->ixa_ipst = ipst; 16919 ixa->ixa_cred = kcred; 16920 ixa->ixa_cpid = NOPID; 16921 } 16922 16923 if (str && tcps->tcps_dbg) { 16924 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 16925 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 16926 "flags 0x%x", 16927 str, seq, ack, ctl); 16928 } 16929 if (mp->b_datap->db_ref != 1) { 16930 mblk_t *mp1 = copyb(mp); 16931 freemsg(mp); 16932 mp = mp1; 16933 if (mp == NULL) 16934 goto done; 16935 } else if (mp->b_cont) { 16936 freemsg(mp->b_cont); 16937 mp->b_cont = NULL; 16938 DB_CKSUMFLAGS(mp) = 0; 16939 } 16940 /* 16941 * We skip reversing source route here. 16942 * (for now we replace all IP options with EOL) 16943 */ 16944 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 16945 ipha = (ipha_t *)mp->b_rptr; 16946 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 16947 mp->b_rptr[i] = IPOPT_EOL; 16948 /* 16949 * Make sure that src address isn't flagrantly invalid. 16950 * Not all broadcast address checking for the src address 16951 * is possible, since we don't know the netmask of the src 16952 * addr. No check for destination address is done, since 16953 * IP will not pass up a packet with a broadcast dest 16954 * address to TCP. Similar checks are done below for IPv6. 16955 */ 16956 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 16957 CLASSD(ipha->ipha_src)) { 16958 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 16959 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 16960 freemsg(mp); 16961 goto done; 16962 } 16963 } else { 16964 ip6h = (ip6_t *)mp->b_rptr; 16965 16966 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 16967 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 16968 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); 16969 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 16970 freemsg(mp); 16971 goto done; 16972 } 16973 16974 /* Remove any extension headers assuming partial overlay */ 16975 if (ip_hdr_len > IPV6_HDR_LEN) { 16976 uint8_t *to; 16977 16978 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 16979 ovbcopy(ip6h, to, IPV6_HDR_LEN); 16980 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 16981 ip_hdr_len = IPV6_HDR_LEN; 16982 ip6h = (ip6_t *)mp->b_rptr; 16983 ip6h->ip6_nxt = IPPROTO_TCP; 16984 } 16985 } 16986 tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len]; 16987 if (tcpha->tha_flags & TH_RST) { 16988 freemsg(mp); 16989 goto done; 16990 } 16991 tcpha->tha_offset_and_reserved = (5 << 4); 16992 len = ip_hdr_len + sizeof (tcpha_t); 16993 mp->b_wptr = &mp->b_rptr[len]; 16994 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 16995 ipha->ipha_length = htons(len); 16996 /* Swap addresses */ 16997 v4addr = ipha->ipha_src; 16998 ipha->ipha_src = ipha->ipha_dst; 16999 ipha->ipha_dst = v4addr; 17000 ipha->ipha_ident = 0; 17001 ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 17002 ixa->ixa_flags |= IXAF_IS_IPV4; 17003 ixa->ixa_ip_hdr_length = ip_hdr_len; 17004 } else { 17005 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 17006 /* Swap addresses */ 17007 v6addr = ip6h->ip6_src; 17008 ip6h->ip6_src = ip6h->ip6_dst; 17009 ip6h->ip6_dst = v6addr; 17010 ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; 17011 ixa->ixa_flags &= ~IXAF_IS_IPV4; 17012 17013 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_dst)) { 17014 ixa->ixa_flags |= IXAF_SCOPEID_SET; 17015 ixa->ixa_scopeid = ira->ira_ruifindex; 17016 } 17017 ixa->ixa_ip_hdr_length = IPV6_HDR_LEN; 17018 } 17019 ixa->ixa_pktlen = len; 17020 17021 /* Swap the ports */ 17022 port = tcpha->tha_fport; 17023 tcpha->tha_fport = tcpha->tha_lport; 17024 tcpha->tha_lport = port; 17025 17026 tcpha->tha_ack = htonl(ack); 17027 tcpha->tha_seq = htonl(seq); 17028 tcpha->tha_win = 0; 17029 tcpha->tha_sum = htons(sizeof (tcpha_t)); 17030 tcpha->tha_flags = (uint8_t)ctl; 17031 if (ctl & TH_RST) { 17032 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 17033 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 17034 } 17035 17036 /* Discard any old label */ 17037 if (ixa->ixa_free_flags & IXA_FREE_TSL) { 17038 ASSERT(ixa->ixa_tsl != NULL); 17039 label_rele(ixa->ixa_tsl); 17040 ixa->ixa_free_flags &= ~IXA_FREE_TSL; 17041 } 17042 ixa->ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 17043 17044 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 17045 /* 17046 * Apply IPsec based on how IPsec was applied to 17047 * the packet that caused the RST. 17048 */ 17049 if (!ipsec_in_to_out(ira, ixa, mp, ipha, ip6h)) { 17050 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 17051 /* Note: mp already consumed and ip_drop_packet done */ 17052 goto done; 17053 } 17054 } else { 17055 /* 17056 * This is in clear. The RST message we are building 17057 * here should go out in clear, independent of our policy. 17058 */ 17059 ixa->ixa_flags |= IXAF_NO_IPSEC; 17060 } 17061 17062 /* 17063 * NOTE: one might consider tracing a TCP packet here, but 17064 * this function has no active TCP state and no tcp structure 17065 * that has a trace buffer. If we traced here, we would have 17066 * to keep a local trace buffer in tcp_record_trace(). 17067 */ 17068 17069 (void) ip_output_simple(mp, ixa); 17070 done: 17071 ixa_cleanup(ixa); 17072 if (need_refrele) { 17073 ASSERT(ixa != &ixas); 17074 ixa_refrele(ixa); 17075 } 17076 } 17077 17078 /* 17079 * Initiate closedown sequence on an active connection. (May be called as 17080 * writer.) Return value zero for OK return, non-zero for error return. 17081 */ 17082 static int 17083 tcp_xmit_end(tcp_t *tcp) 17084 { 17085 mblk_t *mp; 17086 tcp_stack_t *tcps = tcp->tcp_tcps; 17087 iulp_t uinfo; 17088 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 17089 conn_t *connp = tcp->tcp_connp; 17090 17091 if (tcp->tcp_state < TCPS_SYN_RCVD || 17092 tcp->tcp_state > TCPS_CLOSE_WAIT) { 17093 /* 17094 * Invalid state, only states TCPS_SYN_RCVD, 17095 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 17096 */ 17097 return (-1); 17098 } 17099 17100 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 17101 tcp->tcp_valid_bits |= TCP_FSS_VALID; 17102 /* 17103 * If there is nothing more unsent, send the FIN now. 17104 * Otherwise, it will go out with the last segment. 17105 */ 17106 if (tcp->tcp_unsent == 0) { 17107 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 17108 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 17109 17110 if (mp) { 17111 tcp_send_data(tcp, mp); 17112 } else { 17113 /* 17114 * Couldn't allocate msg. Pretend we got it out. 17115 * Wait for rexmit timeout. 17116 */ 17117 tcp->tcp_snxt = tcp->tcp_fss + 1; 17118 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17119 } 17120 17121 /* 17122 * If needed, update tcp_rexmit_snxt as tcp_snxt is 17123 * changed. 17124 */ 17125 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 17126 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 17127 } 17128 } else { 17129 /* 17130 * If tcp->tcp_cork is set, then the data will not get sent, 17131 * so we have to check that and unset it first. 17132 */ 17133 if (tcp->tcp_cork) 17134 tcp->tcp_cork = B_FALSE; 17135 tcp_wput_data(tcp, NULL, B_FALSE); 17136 } 17137 17138 /* 17139 * If TCP does not get enough samples of RTT or tcp_rtt_updates 17140 * is 0, don't update the cache. 17141 */ 17142 if (tcps->tcps_rtt_updates == 0 || 17143 tcp->tcp_rtt_update < tcps->tcps_rtt_updates) 17144 return (0); 17145 17146 /* 17147 * We do not have a good algorithm to update ssthresh at this time. 17148 * So don't do any update. 17149 */ 17150 bzero(&uinfo, sizeof (uinfo)); 17151 uinfo.iulp_rtt = tcp->tcp_rtt_sa; 17152 uinfo.iulp_rtt_sd = tcp->tcp_rtt_sd; 17153 17154 /* 17155 * Note that uinfo is kept for conn_faddr in the DCE. Could update even 17156 * if source routed but we don't. 17157 */ 17158 if (connp->conn_ipversion == IPV4_VERSION) { 17159 if (connp->conn_faddr_v4 != tcp->tcp_ipha->ipha_dst) { 17160 return (0); 17161 } 17162 (void) dce_update_uinfo_v4(connp->conn_faddr_v4, &uinfo, ipst); 17163 } else { 17164 uint_t ifindex; 17165 17166 if (!(IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, 17167 &tcp->tcp_ip6h->ip6_dst))) { 17168 return (0); 17169 } 17170 ifindex = 0; 17171 if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_faddr_v6)) { 17172 ip_xmit_attr_t *ixa = connp->conn_ixa; 17173 17174 /* 17175 * If we are going to create a DCE we'd better have 17176 * an ifindex 17177 */ 17178 if (ixa->ixa_nce != NULL) { 17179 ifindex = ixa->ixa_nce->nce_common->ncec_ill-> 17180 ill_phyint->phyint_ifindex; 17181 } else { 17182 return (0); 17183 } 17184 } 17185 17186 (void) dce_update_uinfo(&connp->conn_faddr_v6, ifindex, &uinfo, 17187 ipst); 17188 } 17189 return (0); 17190 } 17191 17192 /* 17193 * Generate a "no listener here" RST in response to an "unknown" segment. 17194 * connp is set by caller when RST is in response to an unexpected 17195 * inbound packet for which there is active tcp state in the system. 17196 * Note that we are reusing the incoming mp to construct the outgoing RST. 17197 */ 17198 void 17199 tcp_xmit_listeners_reset(mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst, 17200 conn_t *connp) 17201 { 17202 uchar_t *rptr; 17203 uint32_t seg_len; 17204 tcpha_t *tcpha; 17205 uint32_t seg_seq; 17206 uint32_t seg_ack; 17207 uint_t flags; 17208 ipha_t *ipha; 17209 ip6_t *ip6h; 17210 boolean_t policy_present; 17211 netstack_t *ns = ipst->ips_netstack; 17212 tcp_stack_t *tcps = ns->netstack_tcp; 17213 ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; 17214 uint_t ip_hdr_len = ira->ira_ip_hdr_length; 17215 17216 TCP_STAT(tcps, tcp_no_listener); 17217 17218 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 17219 policy_present = ipss->ipsec_inbound_v4_policy_present; 17220 ipha = (ipha_t *)mp->b_rptr; 17221 ip6h = NULL; 17222 } else { 17223 policy_present = ipss->ipsec_inbound_v6_policy_present; 17224 ipha = NULL; 17225 ip6h = (ip6_t *)mp->b_rptr; 17226 } 17227 17228 if (policy_present) { 17229 /* 17230 * The conn_t parameter is NULL because we already know 17231 * nobody's home. 17232 */ 17233 mp = ipsec_check_global_policy(mp, (conn_t *)NULL, ipha, ip6h, 17234 ira, ns); 17235 if (mp == NULL) 17236 return; 17237 } 17238 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 17239 DTRACE_PROBE2( 17240 tx__ip__log__error__nolistener__tcp, 17241 char *, "Could not reply with RST to mp(1)", 17242 mblk_t *, mp); 17243 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 17244 freemsg(mp); 17245 return; 17246 } 17247 17248 rptr = mp->b_rptr; 17249 17250 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 17251 seg_seq = ntohl(tcpha->tha_seq); 17252 seg_ack = ntohl(tcpha->tha_ack); 17253 flags = tcpha->tha_flags; 17254 17255 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcpha) + ip_hdr_len); 17256 if (flags & TH_RST) { 17257 freemsg(mp); 17258 } else if (flags & TH_ACK) { 17259 tcp_xmit_early_reset("no tcp, reset", mp, seg_ack, 0, TH_RST, 17260 ira, ipst, connp); 17261 } else { 17262 if (flags & TH_SYN) { 17263 seg_len++; 17264 } else { 17265 /* 17266 * Here we violate the RFC. Note that a normal 17267 * TCP will never send a segment without the ACK 17268 * flag, except for RST or SYN segment. This 17269 * segment is neither. Just drop it on the 17270 * floor. 17271 */ 17272 freemsg(mp); 17273 tcps->tcps_rst_unsent++; 17274 return; 17275 } 17276 17277 tcp_xmit_early_reset("no tcp, reset/ack", mp, 0, 17278 seg_seq + seg_len, TH_RST | TH_ACK, ira, ipst, connp); 17279 } 17280 } 17281 17282 /* 17283 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 17284 * ip and tcp header ready to pass down to IP. If the mp passed in is 17285 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 17286 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 17287 * otherwise it will dup partial mblks.) 17288 * Otherwise, an appropriate ACK packet will be generated. This 17289 * routine is not usually called to send new data for the first time. It 17290 * is mostly called out of the timer for retransmits, and to generate ACKs. 17291 * 17292 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 17293 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 17294 * of the original mblk chain will be returned in *offset and *end_mp. 17295 */ 17296 mblk_t * 17297 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 17298 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 17299 boolean_t rexmit) 17300 { 17301 int data_length; 17302 int32_t off = 0; 17303 uint_t flags; 17304 mblk_t *mp1; 17305 mblk_t *mp2; 17306 uchar_t *rptr; 17307 tcpha_t *tcpha; 17308 int32_t num_sack_blk = 0; 17309 int32_t sack_opt_len = 0; 17310 tcp_stack_t *tcps = tcp->tcp_tcps; 17311 conn_t *connp = tcp->tcp_connp; 17312 ip_xmit_attr_t *ixa = connp->conn_ixa; 17313 17314 /* Allocate for our maximum TCP header + link-level */ 17315 mp1 = allocb(connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra, 17316 BPRI_MED); 17317 if (!mp1) 17318 return (NULL); 17319 data_length = 0; 17320 17321 /* 17322 * Note that tcp_mss has been adjusted to take into account the 17323 * timestamp option if applicable. Because SACK options do not 17324 * appear in every TCP segments and they are of variable lengths, 17325 * they cannot be included in tcp_mss. Thus we need to calculate 17326 * the actual segment length when we need to send a segment which 17327 * includes SACK options. 17328 */ 17329 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 17330 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 17331 tcp->tcp_num_sack_blk); 17332 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 17333 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 17334 if (max_to_send + sack_opt_len > tcp->tcp_mss) 17335 max_to_send -= sack_opt_len; 17336 } 17337 17338 if (offset != NULL) { 17339 off = *offset; 17340 /* We use offset as an indicator that end_mp is not NULL. */ 17341 *end_mp = NULL; 17342 } 17343 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 17344 /* This could be faster with cooperation from downstream */ 17345 if (mp2 != mp1 && !sendall && 17346 data_length + (int)(mp->b_wptr - mp->b_rptr) > 17347 max_to_send) 17348 /* 17349 * Don't send the next mblk since the whole mblk 17350 * does not fit. 17351 */ 17352 break; 17353 mp2->b_cont = dupb(mp); 17354 mp2 = mp2->b_cont; 17355 if (!mp2) { 17356 freemsg(mp1); 17357 return (NULL); 17358 } 17359 mp2->b_rptr += off; 17360 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 17361 (uintptr_t)INT_MAX); 17362 17363 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 17364 if (data_length > max_to_send) { 17365 mp2->b_wptr -= data_length - max_to_send; 17366 data_length = max_to_send; 17367 off = mp2->b_wptr - mp->b_rptr; 17368 break; 17369 } else { 17370 off = 0; 17371 } 17372 } 17373 if (offset != NULL) { 17374 *offset = off; 17375 *end_mp = mp; 17376 } 17377 if (seg_len != NULL) { 17378 *seg_len = data_length; 17379 } 17380 17381 /* Update the latest receive window size in TCP header. */ 17382 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 17383 17384 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 17385 mp1->b_rptr = rptr; 17386 mp1->b_wptr = rptr + connp->conn_ht_iphc_len + sack_opt_len; 17387 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len); 17388 tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length]; 17389 tcpha->tha_seq = htonl(seq); 17390 17391 /* 17392 * Use tcp_unsent to determine if the PUSH bit should be used assumes 17393 * that this function was called from tcp_wput_data. Thus, when called 17394 * to retransmit data the setting of the PUSH bit may appear some 17395 * what random in that it might get set when it should not. This 17396 * should not pose any performance issues. 17397 */ 17398 if (data_length != 0 && (tcp->tcp_unsent == 0 || 17399 tcp->tcp_unsent == data_length)) { 17400 flags = TH_ACK | TH_PUSH; 17401 } else { 17402 flags = TH_ACK; 17403 } 17404 17405 if (tcp->tcp_ecn_ok) { 17406 if (tcp->tcp_ecn_echo_on) 17407 flags |= TH_ECE; 17408 17409 /* 17410 * Only set ECT bit and ECN_CWR if a segment contains new data. 17411 * There is no TCP flow control for non-data segments, and 17412 * only data segment is transmitted reliably. 17413 */ 17414 if (data_length > 0 && !rexmit) { 17415 SET_ECT(tcp, rptr); 17416 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17417 flags |= TH_CWR; 17418 tcp->tcp_ecn_cwr_sent = B_TRUE; 17419 } 17420 } 17421 } 17422 17423 if (tcp->tcp_valid_bits) { 17424 uint32_t u1; 17425 17426 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 17427 seq == tcp->tcp_iss) { 17428 uchar_t *wptr; 17429 17430 /* 17431 * If TCP_ISS_VALID and the seq number is tcp_iss, 17432 * TCP can only be in SYN-SENT, SYN-RCVD or 17433 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 17434 * our SYN is not ack'ed but the app closes this 17435 * TCP connection. 17436 */ 17437 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 17438 tcp->tcp_state == TCPS_SYN_RCVD || 17439 tcp->tcp_state == TCPS_FIN_WAIT_1); 17440 17441 /* 17442 * Tack on the MSS option. It is always needed 17443 * for both active and passive open. 17444 * 17445 * MSS option value should be interface MTU - MIN 17446 * TCP/IP header according to RFC 793 as it means 17447 * the maximum segment size TCP can receive. But 17448 * to get around some broken middle boxes/end hosts 17449 * out there, we allow the option value to be the 17450 * same as the MSS option size on the peer side. 17451 * In this way, the other side will not send 17452 * anything larger than they can receive. 17453 * 17454 * Note that for SYN_SENT state, the ndd param 17455 * tcp_use_smss_as_mss_opt has no effect as we 17456 * don't know the peer's MSS option value. So 17457 * the only case we need to take care of is in 17458 * SYN_RCVD state, which is done later. 17459 */ 17460 wptr = mp1->b_wptr; 17461 wptr[0] = TCPOPT_MAXSEG; 17462 wptr[1] = TCPOPT_MAXSEG_LEN; 17463 wptr += 2; 17464 u1 = tcp->tcp_initial_pmtu - 17465 (connp->conn_ipversion == IPV4_VERSION ? 17466 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 17467 TCP_MIN_HEADER_LENGTH; 17468 U16_TO_BE16(u1, wptr); 17469 mp1->b_wptr = wptr + 2; 17470 /* Update the offset to cover the additional word */ 17471 tcpha->tha_offset_and_reserved += (1 << 4); 17472 17473 /* 17474 * Note that the following way of filling in 17475 * TCP options are not optimal. Some NOPs can 17476 * be saved. But there is no need at this time 17477 * to optimize it. When it is needed, we will 17478 * do it. 17479 */ 17480 switch (tcp->tcp_state) { 17481 case TCPS_SYN_SENT: 17482 flags = TH_SYN; 17483 17484 if (tcp->tcp_snd_ts_ok) { 17485 uint32_t llbolt = (uint32_t)lbolt; 17486 17487 wptr = mp1->b_wptr; 17488 wptr[0] = TCPOPT_NOP; 17489 wptr[1] = TCPOPT_NOP; 17490 wptr[2] = TCPOPT_TSTAMP; 17491 wptr[3] = TCPOPT_TSTAMP_LEN; 17492 wptr += 4; 17493 U32_TO_BE32(llbolt, wptr); 17494 wptr += 4; 17495 ASSERT(tcp->tcp_ts_recent == 0); 17496 U32_TO_BE32(0L, wptr); 17497 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 17498 tcpha->tha_offset_and_reserved += 17499 (3 << 4); 17500 } 17501 17502 /* 17503 * Set up all the bits to tell other side 17504 * we are ECN capable. 17505 */ 17506 if (tcp->tcp_ecn_ok) { 17507 flags |= (TH_ECE | TH_CWR); 17508 } 17509 break; 17510 case TCPS_SYN_RCVD: 17511 flags |= TH_SYN; 17512 17513 /* 17514 * Reset the MSS option value to be SMSS 17515 * We should probably add back the bytes 17516 * for timestamp option and IPsec. We 17517 * don't do that as this is a workaround 17518 * for broken middle boxes/end hosts, it 17519 * is better for us to be more cautious. 17520 * They may not take these things into 17521 * account in their SMSS calculation. Thus 17522 * the peer's calculated SMSS may be smaller 17523 * than what it can be. This should be OK. 17524 */ 17525 if (tcps->tcps_use_smss_as_mss_opt) { 17526 u1 = tcp->tcp_mss; 17527 U16_TO_BE16(u1, wptr); 17528 } 17529 17530 /* 17531 * If the other side is ECN capable, reply 17532 * that we are also ECN capable. 17533 */ 17534 if (tcp->tcp_ecn_ok) 17535 flags |= TH_ECE; 17536 break; 17537 default: 17538 /* 17539 * The above ASSERT() makes sure that this 17540 * must be FIN-WAIT-1 state. Our SYN has 17541 * not been ack'ed so retransmit it. 17542 */ 17543 flags |= TH_SYN; 17544 break; 17545 } 17546 17547 if (tcp->tcp_snd_ws_ok) { 17548 wptr = mp1->b_wptr; 17549 wptr[0] = TCPOPT_NOP; 17550 wptr[1] = TCPOPT_WSCALE; 17551 wptr[2] = TCPOPT_WS_LEN; 17552 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 17553 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 17554 tcpha->tha_offset_and_reserved += (1 << 4); 17555 } 17556 17557 if (tcp->tcp_snd_sack_ok) { 17558 wptr = mp1->b_wptr; 17559 wptr[0] = TCPOPT_NOP; 17560 wptr[1] = TCPOPT_NOP; 17561 wptr[2] = TCPOPT_SACK_PERMITTED; 17562 wptr[3] = TCPOPT_SACK_OK_LEN; 17563 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 17564 tcpha->tha_offset_and_reserved += (1 << 4); 17565 } 17566 17567 /* allocb() of adequate mblk assures space */ 17568 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 17569 (uintptr_t)INT_MAX); 17570 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 17571 /* 17572 * Get IP set to checksum on our behalf 17573 * Include the adjustment for a source route if any. 17574 */ 17575 u1 += connp->conn_sum; 17576 u1 = (u1 >> 16) + (u1 & 0xFFFF); 17577 tcpha->tha_sum = htons(u1); 17578 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 17579 } 17580 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17581 (seq + data_length) == tcp->tcp_fss) { 17582 if (!tcp->tcp_fin_acked) { 17583 flags |= TH_FIN; 17584 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 17585 } 17586 if (!tcp->tcp_fin_sent) { 17587 tcp->tcp_fin_sent = B_TRUE; 17588 switch (tcp->tcp_state) { 17589 case TCPS_SYN_RCVD: 17590 case TCPS_ESTABLISHED: 17591 tcp->tcp_state = TCPS_FIN_WAIT_1; 17592 break; 17593 case TCPS_CLOSE_WAIT: 17594 tcp->tcp_state = TCPS_LAST_ACK; 17595 break; 17596 } 17597 if (tcp->tcp_suna == tcp->tcp_snxt) 17598 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17599 tcp->tcp_snxt = tcp->tcp_fss + 1; 17600 } 17601 } 17602 /* 17603 * Note the trick here. u1 is unsigned. When tcp_urg 17604 * is smaller than seq, u1 will become a very huge value. 17605 * So the comparison will fail. Also note that tcp_urp 17606 * should be positive, see RFC 793 page 17. 17607 */ 17608 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 17609 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 17610 u1 < (uint32_t)(64 * 1024)) { 17611 flags |= TH_URG; 17612 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 17613 tcpha->tha_urp = htons(u1); 17614 } 17615 } 17616 tcpha->tha_flags = (uchar_t)flags; 17617 tcp->tcp_rack = tcp->tcp_rnxt; 17618 tcp->tcp_rack_cnt = 0; 17619 17620 if (tcp->tcp_snd_ts_ok) { 17621 if (tcp->tcp_state != TCPS_SYN_SENT) { 17622 uint32_t llbolt = (uint32_t)lbolt; 17623 17624 U32_TO_BE32(llbolt, 17625 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 17626 U32_TO_BE32(tcp->tcp_ts_recent, 17627 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 17628 } 17629 } 17630 17631 if (num_sack_blk > 0) { 17632 uchar_t *wptr = (uchar_t *)tcpha + connp->conn_ht_ulp_len; 17633 sack_blk_t *tmp; 17634 int32_t i; 17635 17636 wptr[0] = TCPOPT_NOP; 17637 wptr[1] = TCPOPT_NOP; 17638 wptr[2] = TCPOPT_SACK; 17639 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 17640 sizeof (sack_blk_t); 17641 wptr += TCPOPT_REAL_SACK_LEN; 17642 17643 tmp = tcp->tcp_sack_list; 17644 for (i = 0; i < num_sack_blk; i++) { 17645 U32_TO_BE32(tmp[i].begin, wptr); 17646 wptr += sizeof (tcp_seq); 17647 U32_TO_BE32(tmp[i].end, wptr); 17648 wptr += sizeof (tcp_seq); 17649 } 17650 tcpha->tha_offset_and_reserved += ((num_sack_blk * 2 + 1) << 4); 17651 } 17652 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 17653 data_length += (int)(mp1->b_wptr - rptr); 17654 17655 ixa->ixa_pktlen = data_length; 17656 17657 if (ixa->ixa_flags & IXAF_IS_IPV4) { 17658 ((ipha_t *)rptr)->ipha_length = htons(data_length); 17659 } else { 17660 ip6_t *ip6 = (ip6_t *)rptr; 17661 17662 ip6->ip6_plen = htons(data_length - IPV6_HDR_LEN); 17663 } 17664 17665 /* 17666 * Prime pump for IP 17667 * Include the adjustment for a source route if any. 17668 */ 17669 data_length -= ixa->ixa_ip_hdr_length; 17670 data_length += connp->conn_sum; 17671 data_length = (data_length >> 16) + (data_length & 0xFFFF); 17672 tcpha->tha_sum = htons(data_length); 17673 if (tcp->tcp_ip_forward_progress) { 17674 tcp->tcp_ip_forward_progress = B_FALSE; 17675 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 17676 } else { 17677 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 17678 } 17679 return (mp1); 17680 } 17681 17682 /* This function handles the push timeout. */ 17683 void 17684 tcp_push_timer(void *arg) 17685 { 17686 conn_t *connp = (conn_t *)arg; 17687 tcp_t *tcp = connp->conn_tcp; 17688 17689 TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt); 17690 17691 ASSERT(tcp->tcp_listener == NULL); 17692 17693 ASSERT(!IPCL_IS_NONSTR(connp)); 17694 17695 tcp->tcp_push_tid = 0; 17696 17697 if (tcp->tcp_rcv_list != NULL && 17698 tcp_rcv_drain(tcp) == TH_ACK_NEEDED) 17699 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 17700 } 17701 17702 /* 17703 * This function handles delayed ACK timeout. 17704 */ 17705 static void 17706 tcp_ack_timer(void *arg) 17707 { 17708 conn_t *connp = (conn_t *)arg; 17709 tcp_t *tcp = connp->conn_tcp; 17710 mblk_t *mp; 17711 tcp_stack_t *tcps = tcp->tcp_tcps; 17712 17713 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 17714 17715 tcp->tcp_ack_tid = 0; 17716 17717 if (tcp->tcp_fused) 17718 return; 17719 17720 /* 17721 * Do not send ACK if there is no outstanding unack'ed data. 17722 */ 17723 if (tcp->tcp_rnxt == tcp->tcp_rack) { 17724 return; 17725 } 17726 17727 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 17728 /* 17729 * Make sure we don't allow deferred ACKs to result in 17730 * timer-based ACKing. If we have held off an ACK 17731 * when there was more than an mss here, and the timer 17732 * goes off, we have to worry about the possibility 17733 * that the sender isn't doing slow-start, or is out 17734 * of step with us for some other reason. We fall 17735 * permanently back in the direction of 17736 * ACK-every-other-packet as suggested in RFC 1122. 17737 */ 17738 if (tcp->tcp_rack_abs_max > 2) 17739 tcp->tcp_rack_abs_max--; 17740 tcp->tcp_rack_cur_max = 2; 17741 } 17742 mp = tcp_ack_mp(tcp); 17743 17744 if (mp != NULL) { 17745 BUMP_LOCAL(tcp->tcp_obsegs); 17746 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 17747 BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); 17748 tcp_send_data(tcp, mp); 17749 } 17750 } 17751 17752 17753 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 17754 static mblk_t * 17755 tcp_ack_mp(tcp_t *tcp) 17756 { 17757 uint32_t seq_no; 17758 tcp_stack_t *tcps = tcp->tcp_tcps; 17759 conn_t *connp = tcp->tcp_connp; 17760 17761 /* 17762 * There are a few cases to be considered while setting the sequence no. 17763 * Essentially, we can come here while processing an unacceptable pkt 17764 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 17765 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 17766 * If we are here for a zero window probe, stick with suna. In all 17767 * other cases, we check if suna + swnd encompasses snxt and set 17768 * the sequence number to snxt, if so. If snxt falls outside the 17769 * window (the receiver probably shrunk its window), we will go with 17770 * suna + swnd, otherwise the sequence no will be unacceptable to the 17771 * receiver. 17772 */ 17773 if (tcp->tcp_zero_win_probe) { 17774 seq_no = tcp->tcp_suna; 17775 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 17776 ASSERT(tcp->tcp_swnd == 0); 17777 seq_no = tcp->tcp_snxt; 17778 } else { 17779 seq_no = SEQ_GT(tcp->tcp_snxt, 17780 (tcp->tcp_suna + tcp->tcp_swnd)) ? 17781 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 17782 } 17783 17784 if (tcp->tcp_valid_bits) { 17785 /* 17786 * For the complex case where we have to send some 17787 * controls (FIN or SYN), let tcp_xmit_mp do it. 17788 */ 17789 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 17790 NULL, B_FALSE)); 17791 } else { 17792 /* Generate a simple ACK */ 17793 int data_length; 17794 uchar_t *rptr; 17795 tcpha_t *tcpha; 17796 mblk_t *mp1; 17797 int32_t total_hdr_len; 17798 int32_t tcp_hdr_len; 17799 int32_t num_sack_blk = 0; 17800 int32_t sack_opt_len; 17801 ip_xmit_attr_t *ixa = connp->conn_ixa; 17802 17803 /* 17804 * Allocate space for TCP + IP headers 17805 * and link-level header 17806 */ 17807 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 17808 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 17809 tcp->tcp_num_sack_blk); 17810 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 17811 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 17812 total_hdr_len = connp->conn_ht_iphc_len + sack_opt_len; 17813 tcp_hdr_len = connp->conn_ht_ulp_len + sack_opt_len; 17814 } else { 17815 total_hdr_len = connp->conn_ht_iphc_len; 17816 tcp_hdr_len = connp->conn_ht_ulp_len; 17817 } 17818 mp1 = allocb(total_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 17819 if (!mp1) 17820 return (NULL); 17821 17822 /* Update the latest receive window size in TCP header. */ 17823 tcp->tcp_tcpha->tha_win = 17824 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 17825 /* copy in prototype TCP + IP header */ 17826 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 17827 mp1->b_rptr = rptr; 17828 mp1->b_wptr = rptr + total_hdr_len; 17829 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len); 17830 17831 tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length]; 17832 17833 /* Set the TCP sequence number. */ 17834 tcpha->tha_seq = htonl(seq_no); 17835 17836 /* Set up the TCP flag field. */ 17837 tcpha->tha_flags = (uchar_t)TH_ACK; 17838 if (tcp->tcp_ecn_echo_on) 17839 tcpha->tha_flags |= TH_ECE; 17840 17841 tcp->tcp_rack = tcp->tcp_rnxt; 17842 tcp->tcp_rack_cnt = 0; 17843 17844 /* fill in timestamp option if in use */ 17845 if (tcp->tcp_snd_ts_ok) { 17846 uint32_t llbolt = (uint32_t)lbolt; 17847 17848 U32_TO_BE32(llbolt, 17849 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 17850 U32_TO_BE32(tcp->tcp_ts_recent, 17851 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 17852 } 17853 17854 /* Fill in SACK options */ 17855 if (num_sack_blk > 0) { 17856 uchar_t *wptr = (uchar_t *)tcpha + 17857 connp->conn_ht_ulp_len; 17858 sack_blk_t *tmp; 17859 int32_t i; 17860 17861 wptr[0] = TCPOPT_NOP; 17862 wptr[1] = TCPOPT_NOP; 17863 wptr[2] = TCPOPT_SACK; 17864 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 17865 sizeof (sack_blk_t); 17866 wptr += TCPOPT_REAL_SACK_LEN; 17867 17868 tmp = tcp->tcp_sack_list; 17869 for (i = 0; i < num_sack_blk; i++) { 17870 U32_TO_BE32(tmp[i].begin, wptr); 17871 wptr += sizeof (tcp_seq); 17872 U32_TO_BE32(tmp[i].end, wptr); 17873 wptr += sizeof (tcp_seq); 17874 } 17875 tcpha->tha_offset_and_reserved += 17876 ((num_sack_blk * 2 + 1) << 4); 17877 } 17878 17879 ixa->ixa_pktlen = total_hdr_len; 17880 17881 if (ixa->ixa_flags & IXAF_IS_IPV4) { 17882 ((ipha_t *)rptr)->ipha_length = htons(total_hdr_len); 17883 } else { 17884 ip6_t *ip6 = (ip6_t *)rptr; 17885 17886 ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN); 17887 } 17888 17889 /* 17890 * Prime pump for checksum calculation in IP. Include the 17891 * adjustment for a source route if any. 17892 */ 17893 data_length = tcp_hdr_len + connp->conn_sum; 17894 data_length = (data_length >> 16) + (data_length & 0xFFFF); 17895 tcpha->tha_sum = htons(data_length); 17896 17897 if (tcp->tcp_ip_forward_progress) { 17898 tcp->tcp_ip_forward_progress = B_FALSE; 17899 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 17900 } else { 17901 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 17902 } 17903 return (mp1); 17904 } 17905 } 17906 17907 /* 17908 * Hash list insertion routine for tcp_t structures. Each hash bucket 17909 * contains a list of tcp_t entries, and each entry is bound to a unique 17910 * port. If there are multiple tcp_t's that are bound to the same port, then 17911 * one of them will be linked into the hash bucket list, and the rest will 17912 * hang off of that one entry. For each port, entries bound to a specific IP 17913 * address will be inserted before those those bound to INADDR_ANY. 17914 */ 17915 static void 17916 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 17917 { 17918 tcp_t **tcpp; 17919 tcp_t *tcpnext; 17920 tcp_t *tcphash; 17921 conn_t *connp = tcp->tcp_connp; 17922 conn_t *connext; 17923 17924 if (tcp->tcp_ptpbhn != NULL) { 17925 ASSERT(!caller_holds_lock); 17926 tcp_bind_hash_remove(tcp); 17927 } 17928 tcpp = &tbf->tf_tcp; 17929 if (!caller_holds_lock) { 17930 mutex_enter(&tbf->tf_lock); 17931 } else { 17932 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 17933 } 17934 tcphash = tcpp[0]; 17935 tcpnext = NULL; 17936 if (tcphash != NULL) { 17937 /* Look for an entry using the same port */ 17938 while ((tcphash = tcpp[0]) != NULL && 17939 connp->conn_lport != tcphash->tcp_connp->conn_lport) 17940 tcpp = &(tcphash->tcp_bind_hash); 17941 17942 /* The port was not found, just add to the end */ 17943 if (tcphash == NULL) 17944 goto insert; 17945 17946 /* 17947 * OK, there already exists an entry bound to the 17948 * same port. 17949 * 17950 * If the new tcp bound to the INADDR_ANY address 17951 * and the first one in the list is not bound to 17952 * INADDR_ANY we skip all entries until we find the 17953 * first one bound to INADDR_ANY. 17954 * This makes sure that applications binding to a 17955 * specific address get preference over those binding to 17956 * INADDR_ANY. 17957 */ 17958 tcpnext = tcphash; 17959 connext = tcpnext->tcp_connp; 17960 tcphash = NULL; 17961 if (V6_OR_V4_INADDR_ANY(connp->conn_bound_addr_v6) && 17962 !V6_OR_V4_INADDR_ANY(connext->conn_bound_addr_v6)) { 17963 while ((tcpnext = tcpp[0]) != NULL) { 17964 connext = tcpnext->tcp_connp; 17965 if (!V6_OR_V4_INADDR_ANY( 17966 connext->conn_bound_addr_v6)) 17967 tcpp = &(tcpnext->tcp_bind_hash_port); 17968 else 17969 break; 17970 } 17971 if (tcpnext != NULL) { 17972 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 17973 tcphash = tcpnext->tcp_bind_hash; 17974 if (tcphash != NULL) { 17975 tcphash->tcp_ptpbhn = 17976 &(tcp->tcp_bind_hash); 17977 tcpnext->tcp_bind_hash = NULL; 17978 } 17979 } 17980 } else { 17981 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 17982 tcphash = tcpnext->tcp_bind_hash; 17983 if (tcphash != NULL) { 17984 tcphash->tcp_ptpbhn = 17985 &(tcp->tcp_bind_hash); 17986 tcpnext->tcp_bind_hash = NULL; 17987 } 17988 } 17989 } 17990 insert: 17991 tcp->tcp_bind_hash_port = tcpnext; 17992 tcp->tcp_bind_hash = tcphash; 17993 tcp->tcp_ptpbhn = tcpp; 17994 tcpp[0] = tcp; 17995 if (!caller_holds_lock) 17996 mutex_exit(&tbf->tf_lock); 17997 } 17998 17999 /* 18000 * Hash list removal routine for tcp_t structures. 18001 */ 18002 static void 18003 tcp_bind_hash_remove(tcp_t *tcp) 18004 { 18005 tcp_t *tcpnext; 18006 kmutex_t *lockp; 18007 tcp_stack_t *tcps = tcp->tcp_tcps; 18008 conn_t *connp = tcp->tcp_connp; 18009 18010 if (tcp->tcp_ptpbhn == NULL) 18011 return; 18012 18013 /* 18014 * Extract the lock pointer in case there are concurrent 18015 * hash_remove's for this instance. 18016 */ 18017 ASSERT(connp->conn_lport != 0); 18018 lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH( 18019 connp->conn_lport)].tf_lock; 18020 18021 ASSERT(lockp != NULL); 18022 mutex_enter(lockp); 18023 if (tcp->tcp_ptpbhn) { 18024 tcpnext = tcp->tcp_bind_hash_port; 18025 if (tcpnext != NULL) { 18026 tcp->tcp_bind_hash_port = NULL; 18027 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 18028 tcpnext->tcp_bind_hash = tcp->tcp_bind_hash; 18029 if (tcpnext->tcp_bind_hash != NULL) { 18030 tcpnext->tcp_bind_hash->tcp_ptpbhn = 18031 &(tcpnext->tcp_bind_hash); 18032 tcp->tcp_bind_hash = NULL; 18033 } 18034 } else if ((tcpnext = tcp->tcp_bind_hash) != NULL) { 18035 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 18036 tcp->tcp_bind_hash = NULL; 18037 } 18038 *tcp->tcp_ptpbhn = tcpnext; 18039 tcp->tcp_ptpbhn = NULL; 18040 } 18041 mutex_exit(lockp); 18042 } 18043 18044 18045 /* 18046 * Hash list lookup routine for tcp_t structures. 18047 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 18048 */ 18049 static tcp_t * 18050 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 18051 { 18052 tf_t *tf; 18053 tcp_t *tcp; 18054 18055 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 18056 mutex_enter(&tf->tf_lock); 18057 for (tcp = tf->tf_tcp; tcp != NULL; 18058 tcp = tcp->tcp_acceptor_hash) { 18059 if (tcp->tcp_acceptor_id == id) { 18060 CONN_INC_REF(tcp->tcp_connp); 18061 mutex_exit(&tf->tf_lock); 18062 return (tcp); 18063 } 18064 } 18065 mutex_exit(&tf->tf_lock); 18066 return (NULL); 18067 } 18068 18069 18070 /* 18071 * Hash list insertion routine for tcp_t structures. 18072 */ 18073 void 18074 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 18075 { 18076 tf_t *tf; 18077 tcp_t **tcpp; 18078 tcp_t *tcpnext; 18079 tcp_stack_t *tcps = tcp->tcp_tcps; 18080 18081 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 18082 18083 if (tcp->tcp_ptpahn != NULL) 18084 tcp_acceptor_hash_remove(tcp); 18085 tcpp = &tf->tf_tcp; 18086 mutex_enter(&tf->tf_lock); 18087 tcpnext = tcpp[0]; 18088 if (tcpnext) 18089 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 18090 tcp->tcp_acceptor_hash = tcpnext; 18091 tcp->tcp_ptpahn = tcpp; 18092 tcpp[0] = tcp; 18093 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 18094 mutex_exit(&tf->tf_lock); 18095 } 18096 18097 /* 18098 * Hash list removal routine for tcp_t structures. 18099 */ 18100 static void 18101 tcp_acceptor_hash_remove(tcp_t *tcp) 18102 { 18103 tcp_t *tcpnext; 18104 kmutex_t *lockp; 18105 18106 /* 18107 * Extract the lock pointer in case there are concurrent 18108 * hash_remove's for this instance. 18109 */ 18110 lockp = tcp->tcp_acceptor_lockp; 18111 18112 if (tcp->tcp_ptpahn == NULL) 18113 return; 18114 18115 ASSERT(lockp != NULL); 18116 mutex_enter(lockp); 18117 if (tcp->tcp_ptpahn) { 18118 tcpnext = tcp->tcp_acceptor_hash; 18119 if (tcpnext) { 18120 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 18121 tcp->tcp_acceptor_hash = NULL; 18122 } 18123 *tcp->tcp_ptpahn = tcpnext; 18124 tcp->tcp_ptpahn = NULL; 18125 } 18126 mutex_exit(lockp); 18127 tcp->tcp_acceptor_lockp = NULL; 18128 } 18129 18130 /* 18131 * Type three generator adapted from the random() function in 4.4 BSD: 18132 */ 18133 18134 /* 18135 * Copyright (c) 1983, 1993 18136 * The Regents of the University of California. All rights reserved. 18137 * 18138 * Redistribution and use in source and binary forms, with or without 18139 * modification, are permitted provided that the following conditions 18140 * are met: 18141 * 1. Redistributions of source code must retain the above copyright 18142 * notice, this list of conditions and the following disclaimer. 18143 * 2. Redistributions in binary form must reproduce the above copyright 18144 * notice, this list of conditions and the following disclaimer in the 18145 * documentation and/or other materials provided with the distribution. 18146 * 3. All advertising materials mentioning features or use of this software 18147 * must display the following acknowledgement: 18148 * This product includes software developed by the University of 18149 * California, Berkeley and its contributors. 18150 * 4. Neither the name of the University nor the names of its contributors 18151 * may be used to endorse or promote products derived from this software 18152 * without specific prior written permission. 18153 * 18154 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18155 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18156 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18157 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 18158 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18159 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 18160 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 18161 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 18162 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 18163 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 18164 * SUCH DAMAGE. 18165 */ 18166 18167 /* Type 3 -- x**31 + x**3 + 1 */ 18168 #define DEG_3 31 18169 #define SEP_3 3 18170 18171 18172 /* Protected by tcp_random_lock */ 18173 static int tcp_randtbl[DEG_3 + 1]; 18174 18175 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 18176 static int *tcp_random_rptr = &tcp_randtbl[1]; 18177 18178 static int *tcp_random_state = &tcp_randtbl[1]; 18179 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 18180 18181 kmutex_t tcp_random_lock; 18182 18183 void 18184 tcp_random_init(void) 18185 { 18186 int i; 18187 hrtime_t hrt; 18188 time_t wallclock; 18189 uint64_t result; 18190 18191 /* 18192 * Use high-res timer and current time for seed. Gethrtime() returns 18193 * a longlong, which may contain resolution down to nanoseconds. 18194 * The current time will either be a 32-bit or a 64-bit quantity. 18195 * XOR the two together in a 64-bit result variable. 18196 * Convert the result to a 32-bit value by multiplying the high-order 18197 * 32-bits by the low-order 32-bits. 18198 */ 18199 18200 hrt = gethrtime(); 18201 (void) drv_getparm(TIME, &wallclock); 18202 result = (uint64_t)wallclock ^ (uint64_t)hrt; 18203 mutex_enter(&tcp_random_lock); 18204 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 18205 (result & 0xffffffff); 18206 18207 for (i = 1; i < DEG_3; i++) 18208 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 18209 + 12345; 18210 tcp_random_fptr = &tcp_random_state[SEP_3]; 18211 tcp_random_rptr = &tcp_random_state[0]; 18212 mutex_exit(&tcp_random_lock); 18213 for (i = 0; i < 10 * DEG_3; i++) 18214 (void) tcp_random(); 18215 } 18216 18217 /* 18218 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 18219 * This range is selected to be approximately centered on TCP_ISS / 2, 18220 * and easy to compute. We get this value by generating a 32-bit random 18221 * number, selecting out the high-order 17 bits, and then adding one so 18222 * that we never return zero. 18223 */ 18224 int 18225 tcp_random(void) 18226 { 18227 int i; 18228 18229 mutex_enter(&tcp_random_lock); 18230 *tcp_random_fptr += *tcp_random_rptr; 18231 18232 /* 18233 * The high-order bits are more random than the low-order bits, 18234 * so we select out the high-order 17 bits and add one so that 18235 * we never return zero. 18236 */ 18237 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 18238 if (++tcp_random_fptr >= tcp_random_end_ptr) { 18239 tcp_random_fptr = tcp_random_state; 18240 ++tcp_random_rptr; 18241 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 18242 tcp_random_rptr = tcp_random_state; 18243 18244 mutex_exit(&tcp_random_lock); 18245 return (i); 18246 } 18247 18248 static int 18249 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 18250 int *t_errorp, int *sys_errorp) 18251 { 18252 int error; 18253 int is_absreq_failure; 18254 t_scalar_t *opt_lenp; 18255 t_scalar_t opt_offset; 18256 int prim_type; 18257 struct T_conn_req *tcreqp; 18258 struct T_conn_res *tcresp; 18259 cred_t *cr; 18260 18261 /* 18262 * All Solaris components should pass a db_credp 18263 * for this TPI message, hence we ASSERT. 18264 * But in case there is some other M_PROTO that looks 18265 * like a TPI message sent by some other kernel 18266 * component, we check and return an error. 18267 */ 18268 cr = msg_getcred(mp, NULL); 18269 ASSERT(cr != NULL); 18270 if (cr == NULL) 18271 return (-1); 18272 18273 prim_type = ((union T_primitives *)mp->b_rptr)->type; 18274 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 18275 prim_type == T_CONN_RES); 18276 18277 switch (prim_type) { 18278 case T_CONN_REQ: 18279 tcreqp = (struct T_conn_req *)mp->b_rptr; 18280 opt_offset = tcreqp->OPT_offset; 18281 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 18282 break; 18283 case O_T_CONN_RES: 18284 case T_CONN_RES: 18285 tcresp = (struct T_conn_res *)mp->b_rptr; 18286 opt_offset = tcresp->OPT_offset; 18287 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 18288 break; 18289 } 18290 18291 *t_errorp = 0; 18292 *sys_errorp = 0; 18293 *do_disconnectp = 0; 18294 18295 error = tpi_optcom_buf(tcp->tcp_connp->conn_wq, mp, opt_lenp, 18296 opt_offset, cr, &tcp_opt_obj, 18297 NULL, &is_absreq_failure); 18298 18299 switch (error) { 18300 case 0: /* no error */ 18301 ASSERT(is_absreq_failure == 0); 18302 return (0); 18303 case ENOPROTOOPT: 18304 *t_errorp = TBADOPT; 18305 break; 18306 case EACCES: 18307 *t_errorp = TACCES; 18308 break; 18309 default: 18310 *t_errorp = TSYSERR; *sys_errorp = error; 18311 break; 18312 } 18313 if (is_absreq_failure != 0) { 18314 /* 18315 * The connection request should get the local ack 18316 * T_OK_ACK and then a T_DISCON_IND. 18317 */ 18318 *do_disconnectp = 1; 18319 } 18320 return (-1); 18321 } 18322 18323 /* 18324 * Split this function out so that if the secret changes, I'm okay. 18325 * 18326 * Initialize the tcp_iss_cookie and tcp_iss_key. 18327 */ 18328 18329 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 18330 18331 static void 18332 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 18333 { 18334 struct { 18335 int32_t current_time; 18336 uint32_t randnum; 18337 uint16_t pad; 18338 uint8_t ether[6]; 18339 uint8_t passwd[PASSWD_SIZE]; 18340 } tcp_iss_cookie; 18341 time_t t; 18342 18343 /* 18344 * Start with the current absolute time. 18345 */ 18346 (void) drv_getparm(TIME, &t); 18347 tcp_iss_cookie.current_time = t; 18348 18349 /* 18350 * XXX - Need a more random number per RFC 1750, not this crap. 18351 * OTOH, if what follows is pretty random, then I'm in better shape. 18352 */ 18353 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 18354 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 18355 18356 /* 18357 * The cpu_type_info is pretty non-random. Ugggh. It does serve 18358 * as a good template. 18359 */ 18360 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 18361 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 18362 18363 /* 18364 * The pass-phrase. Normally this is supplied by user-called NDD. 18365 */ 18366 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 18367 18368 /* 18369 * See 4010593 if this section becomes a problem again, 18370 * but the local ethernet address is useful here. 18371 */ 18372 (void) localetheraddr(NULL, 18373 (struct ether_addr *)&tcp_iss_cookie.ether); 18374 18375 /* 18376 * Hash 'em all together. The MD5Final is called per-connection. 18377 */ 18378 mutex_enter(&tcps->tcps_iss_key_lock); 18379 MD5Init(&tcps->tcps_iss_key); 18380 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 18381 sizeof (tcp_iss_cookie)); 18382 mutex_exit(&tcps->tcps_iss_key_lock); 18383 } 18384 18385 /* 18386 * Set the RFC 1948 pass phrase 18387 */ 18388 /* ARGSUSED */ 18389 static int 18390 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 18391 cred_t *cr) 18392 { 18393 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 18394 18395 /* 18396 * Basically, value contains a new pass phrase. Pass it along! 18397 */ 18398 tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); 18399 return (0); 18400 } 18401 18402 /* ARGSUSED */ 18403 static int 18404 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 18405 { 18406 bzero(buf, sizeof (tcp_sack_info_t)); 18407 return (0); 18408 } 18409 18410 /* 18411 * Called by IP when IP is loaded into the kernel 18412 */ 18413 void 18414 tcp_ddi_g_init(void) 18415 { 18416 tcp_timercache = kmem_cache_create("tcp_timercache", 18417 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 18418 NULL, NULL, NULL, NULL, NULL, 0); 18419 18420 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 18421 sizeof (tcp_sack_info_t), 0, 18422 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 18423 18424 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 18425 18426 /* Initialize the random number generator */ 18427 tcp_random_init(); 18428 18429 /* A single callback independently of how many netstacks we have */ 18430 ip_squeue_init(tcp_squeue_add); 18431 18432 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 18433 18434 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 18435 18436 /* 18437 * We want to be informed each time a stack is created or 18438 * destroyed in the kernel, so we can maintain the 18439 * set of tcp_stack_t's. 18440 */ 18441 netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini); 18442 } 18443 18444 18445 #define INET_NAME "ip" 18446 18447 /* 18448 * Initialize the TCP stack instance. 18449 */ 18450 static void * 18451 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 18452 { 18453 tcp_stack_t *tcps; 18454 tcpparam_t *pa; 18455 int i; 18456 int error = 0; 18457 major_t major; 18458 18459 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 18460 tcps->tcps_netstack = ns; 18461 18462 /* Initialize locks */ 18463 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 18464 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 18465 18466 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 18467 tcps->tcps_g_epriv_ports[0] = 2049; 18468 tcps->tcps_g_epriv_ports[1] = 4045; 18469 tcps->tcps_min_anonpriv_port = 512; 18470 18471 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 18472 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 18473 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 18474 TCP_FANOUT_SIZE, KM_SLEEP); 18475 18476 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 18477 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 18478 MUTEX_DEFAULT, NULL); 18479 } 18480 18481 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 18482 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 18483 MUTEX_DEFAULT, NULL); 18484 } 18485 18486 /* TCP's IPsec code calls the packet dropper. */ 18487 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 18488 18489 pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); 18490 tcps->tcps_params = pa; 18491 bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 18492 18493 (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, 18494 A_CNT(lcl_tcp_param_arr), tcps); 18495 18496 /* 18497 * Note: To really walk the device tree you need the devinfo 18498 * pointer to your device which is only available after probe/attach. 18499 * The following is safe only because it uses ddi_root_node() 18500 */ 18501 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 18502 tcp_opt_obj.odb_opt_arr_cnt); 18503 18504 /* 18505 * Initialize RFC 1948 secret values. This will probably be reset once 18506 * by the boot scripts. 18507 * 18508 * Use NULL name, as the name is caught by the new lockstats. 18509 * 18510 * Initialize with some random, non-guessable string, like the global 18511 * T_INFO_ACK. 18512 */ 18513 18514 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 18515 sizeof (tcp_g_t_info_ack), tcps); 18516 18517 tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); 18518 tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); 18519 18520 major = mod_name_to_major(INET_NAME); 18521 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 18522 ASSERT(error == 0); 18523 tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL); 18524 ASSERT(tcps->tcps_ixa_cleanup_mp != NULL); 18525 cv_init(&tcps->tcps_ixa_cleanup_cv, NULL, CV_DEFAULT, NULL); 18526 mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL); 18527 18528 return (tcps); 18529 } 18530 18531 /* 18532 * Called when the IP module is about to be unloaded. 18533 */ 18534 void 18535 tcp_ddi_g_destroy(void) 18536 { 18537 tcp_g_kstat_fini(tcp_g_kstat); 18538 tcp_g_kstat = NULL; 18539 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 18540 18541 mutex_destroy(&tcp_random_lock); 18542 18543 kmem_cache_destroy(tcp_timercache); 18544 kmem_cache_destroy(tcp_sack_info_cache); 18545 18546 netstack_unregister(NS_TCP); 18547 } 18548 18549 /* 18550 * Free the TCP stack instance. 18551 */ 18552 static void 18553 tcp_stack_fini(netstackid_t stackid, void *arg) 18554 { 18555 tcp_stack_t *tcps = (tcp_stack_t *)arg; 18556 int i; 18557 18558 freeb(tcps->tcps_ixa_cleanup_mp); 18559 tcps->tcps_ixa_cleanup_mp = NULL; 18560 cv_destroy(&tcps->tcps_ixa_cleanup_cv); 18561 mutex_destroy(&tcps->tcps_ixa_cleanup_lock); 18562 18563 nd_free(&tcps->tcps_g_nd); 18564 kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 18565 tcps->tcps_params = NULL; 18566 kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); 18567 tcps->tcps_wroff_xtra_param = NULL; 18568 18569 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 18570 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 18571 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 18572 } 18573 18574 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 18575 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 18576 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 18577 } 18578 18579 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 18580 tcps->tcps_bind_fanout = NULL; 18581 18582 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE); 18583 tcps->tcps_acceptor_fanout = NULL; 18584 18585 mutex_destroy(&tcps->tcps_iss_key_lock); 18586 mutex_destroy(&tcps->tcps_epriv_port_lock); 18587 18588 ip_drop_unregister(&tcps->tcps_dropper); 18589 18590 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 18591 tcps->tcps_kstat = NULL; 18592 bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); 18593 18594 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 18595 tcps->tcps_mibkp = NULL; 18596 18597 ldi_ident_release(tcps->tcps_ldi_ident); 18598 kmem_free(tcps, sizeof (*tcps)); 18599 } 18600 18601 /* 18602 * Generate ISS, taking into account NDD changes may happen halfway through. 18603 * (If the iss is not zero, set it.) 18604 */ 18605 18606 static void 18607 tcp_iss_init(tcp_t *tcp) 18608 { 18609 MD5_CTX context; 18610 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 18611 uint32_t answer[4]; 18612 tcp_stack_t *tcps = tcp->tcp_tcps; 18613 conn_t *connp = tcp->tcp_connp; 18614 18615 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 18616 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 18617 switch (tcps->tcps_strong_iss) { 18618 case 2: 18619 mutex_enter(&tcps->tcps_iss_key_lock); 18620 context = tcps->tcps_iss_key; 18621 mutex_exit(&tcps->tcps_iss_key_lock); 18622 arg.ports = connp->conn_ports; 18623 arg.src = connp->conn_laddr_v6; 18624 arg.dst = connp->conn_faddr_v6; 18625 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 18626 MD5Final((uchar_t *)answer, &context); 18627 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 18628 /* 18629 * Now that we've hashed into a unique per-connection sequence 18630 * space, add a random increment per strong_iss == 1. So I 18631 * guess we'll have to... 18632 */ 18633 /* FALLTHRU */ 18634 case 1: 18635 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 18636 break; 18637 default: 18638 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 18639 break; 18640 } 18641 tcp->tcp_valid_bits = TCP_ISS_VALID; 18642 tcp->tcp_fss = tcp->tcp_iss - 1; 18643 tcp->tcp_suna = tcp->tcp_iss; 18644 tcp->tcp_snxt = tcp->tcp_iss + 1; 18645 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 18646 tcp->tcp_csuna = tcp->tcp_snxt; 18647 } 18648 18649 /* 18650 * Exported routine for extracting active tcp connection status. 18651 * 18652 * This is used by the Solaris Cluster Networking software to 18653 * gather a list of connections that need to be forwarded to 18654 * specific nodes in the cluster when configuration changes occur. 18655 * 18656 * The callback is invoked for each tcp_t structure from all netstacks, 18657 * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures 18658 * from the netstack with the specified stack_id. Returning 18659 * non-zero from the callback routine terminates the search. 18660 */ 18661 int 18662 cl_tcp_walk_list(netstackid_t stack_id, 18663 int (*cl_callback)(cl_tcp_info_t *, void *), void *arg) 18664 { 18665 netstack_handle_t nh; 18666 netstack_t *ns; 18667 int ret = 0; 18668 18669 if (stack_id >= 0) { 18670 if ((ns = netstack_find_by_stackid(stack_id)) == NULL) 18671 return (EINVAL); 18672 18673 ret = cl_tcp_walk_list_stack(cl_callback, arg, 18674 ns->netstack_tcp); 18675 netstack_rele(ns); 18676 return (ret); 18677 } 18678 18679 netstack_next_init(&nh); 18680 while ((ns = netstack_next(&nh)) != NULL) { 18681 ret = cl_tcp_walk_list_stack(cl_callback, arg, 18682 ns->netstack_tcp); 18683 netstack_rele(ns); 18684 } 18685 netstack_next_fini(&nh); 18686 return (ret); 18687 } 18688 18689 static int 18690 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, 18691 tcp_stack_t *tcps) 18692 { 18693 tcp_t *tcp; 18694 cl_tcp_info_t cl_tcpi; 18695 connf_t *connfp; 18696 conn_t *connp; 18697 int i; 18698 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18699 18700 ASSERT(callback != NULL); 18701 18702 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 18703 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 18704 connp = NULL; 18705 18706 while ((connp = 18707 ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) { 18708 18709 tcp = connp->conn_tcp; 18710 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 18711 cl_tcpi.cl_tcpi_ipversion = connp->conn_ipversion; 18712 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 18713 cl_tcpi.cl_tcpi_lport = connp->conn_lport; 18714 cl_tcpi.cl_tcpi_fport = connp->conn_fport; 18715 cl_tcpi.cl_tcpi_laddr_v6 = connp->conn_laddr_v6; 18716 cl_tcpi.cl_tcpi_faddr_v6 = connp->conn_faddr_v6; 18717 18718 /* 18719 * If the callback returns non-zero 18720 * we terminate the traversal. 18721 */ 18722 if ((*callback)(&cl_tcpi, arg) != 0) { 18723 CONN_DEC_REF(tcp->tcp_connp); 18724 return (1); 18725 } 18726 } 18727 } 18728 18729 return (0); 18730 } 18731 18732 /* 18733 * Macros used for accessing the different types of sockaddr 18734 * structures inside a tcp_ioc_abort_conn_t. 18735 */ 18736 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 18737 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 18738 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 18739 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 18740 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 18741 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 18742 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 18743 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 18744 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 18745 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 18746 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 18747 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 18748 18749 /* 18750 * Return the correct error code to mimic the behavior 18751 * of a connection reset. 18752 */ 18753 #define TCP_AC_GET_ERRCODE(state, err) { \ 18754 switch ((state)) { \ 18755 case TCPS_SYN_SENT: \ 18756 case TCPS_SYN_RCVD: \ 18757 (err) = ECONNREFUSED; \ 18758 break; \ 18759 case TCPS_ESTABLISHED: \ 18760 case TCPS_FIN_WAIT_1: \ 18761 case TCPS_FIN_WAIT_2: \ 18762 case TCPS_CLOSE_WAIT: \ 18763 (err) = ECONNRESET; \ 18764 break; \ 18765 case TCPS_CLOSING: \ 18766 case TCPS_LAST_ACK: \ 18767 case TCPS_TIME_WAIT: \ 18768 (err) = 0; \ 18769 break; \ 18770 default: \ 18771 (err) = ENXIO; \ 18772 } \ 18773 } 18774 18775 /* 18776 * Check if a tcp structure matches the info in acp. 18777 */ 18778 #define TCP_AC_ADDR_MATCH(acp, connp, tcp) \ 18779 (((acp)->ac_local.ss_family == AF_INET) ? \ 18780 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 18781 TCP_AC_V4LOCAL((acp)) == (connp)->conn_laddr_v4) && \ 18782 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 18783 TCP_AC_V4REMOTE((acp)) == (connp)->conn_faddr_v4) && \ 18784 (TCP_AC_V4LPORT((acp)) == 0 || \ 18785 TCP_AC_V4LPORT((acp)) == (connp)->conn_lport) && \ 18786 (TCP_AC_V4RPORT((acp)) == 0 || \ 18787 TCP_AC_V4RPORT((acp)) == (connp)->conn_fport) && \ 18788 (acp)->ac_start <= (tcp)->tcp_state && \ 18789 (acp)->ac_end >= (tcp)->tcp_state) : \ 18790 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 18791 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 18792 &(connp)->conn_laddr_v6)) && \ 18793 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 18794 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 18795 &(connp)->conn_faddr_v6)) && \ 18796 (TCP_AC_V6LPORT((acp)) == 0 || \ 18797 TCP_AC_V6LPORT((acp)) == (connp)->conn_lport) && \ 18798 (TCP_AC_V6RPORT((acp)) == 0 || \ 18799 TCP_AC_V6RPORT((acp)) == (connp)->conn_fport) && \ 18800 (acp)->ac_start <= (tcp)->tcp_state && \ 18801 (acp)->ac_end >= (tcp)->tcp_state)) 18802 18803 #define TCP_AC_MATCH(acp, connp, tcp) \ 18804 (((acp)->ac_zoneid == ALL_ZONES || \ 18805 (acp)->ac_zoneid == (connp)->conn_zoneid) ? \ 18806 TCP_AC_ADDR_MATCH(acp, connp, tcp) : 0) 18807 18808 /* 18809 * Build a message containing a tcp_ioc_abort_conn_t structure 18810 * which is filled in with information from acp and tp. 18811 */ 18812 static mblk_t * 18813 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 18814 { 18815 mblk_t *mp; 18816 tcp_ioc_abort_conn_t *tacp; 18817 18818 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 18819 if (mp == NULL) 18820 return (NULL); 18821 18822 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 18823 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 18824 sizeof (uint32_t)); 18825 18826 tacp->ac_start = acp->ac_start; 18827 tacp->ac_end = acp->ac_end; 18828 tacp->ac_zoneid = acp->ac_zoneid; 18829 18830 if (acp->ac_local.ss_family == AF_INET) { 18831 tacp->ac_local.ss_family = AF_INET; 18832 tacp->ac_remote.ss_family = AF_INET; 18833 TCP_AC_V4LOCAL(tacp) = tp->tcp_connp->conn_laddr_v4; 18834 TCP_AC_V4REMOTE(tacp) = tp->tcp_connp->conn_faddr_v4; 18835 TCP_AC_V4LPORT(tacp) = tp->tcp_connp->conn_lport; 18836 TCP_AC_V4RPORT(tacp) = tp->tcp_connp->conn_fport; 18837 } else { 18838 tacp->ac_local.ss_family = AF_INET6; 18839 tacp->ac_remote.ss_family = AF_INET6; 18840 TCP_AC_V6LOCAL(tacp) = tp->tcp_connp->conn_laddr_v6; 18841 TCP_AC_V6REMOTE(tacp) = tp->tcp_connp->conn_faddr_v6; 18842 TCP_AC_V6LPORT(tacp) = tp->tcp_connp->conn_lport; 18843 TCP_AC_V6RPORT(tacp) = tp->tcp_connp->conn_fport; 18844 } 18845 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 18846 return (mp); 18847 } 18848 18849 /* 18850 * Print a tcp_ioc_abort_conn_t structure. 18851 */ 18852 static void 18853 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 18854 { 18855 char lbuf[128]; 18856 char rbuf[128]; 18857 sa_family_t af; 18858 in_port_t lport, rport; 18859 ushort_t logflags; 18860 18861 af = acp->ac_local.ss_family; 18862 18863 if (af == AF_INET) { 18864 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 18865 lbuf, 128); 18866 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 18867 rbuf, 128); 18868 lport = ntohs(TCP_AC_V4LPORT(acp)); 18869 rport = ntohs(TCP_AC_V4RPORT(acp)); 18870 } else { 18871 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 18872 lbuf, 128); 18873 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 18874 rbuf, 128); 18875 lport = ntohs(TCP_AC_V6LPORT(acp)); 18876 rport = ntohs(TCP_AC_V6RPORT(acp)); 18877 } 18878 18879 logflags = SL_TRACE | SL_NOTE; 18880 /* 18881 * Don't print this message to the console if the operation was done 18882 * to a non-global zone. 18883 */ 18884 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 18885 logflags |= SL_CONSOLE; 18886 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 18887 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 18888 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 18889 acp->ac_start, acp->ac_end); 18890 } 18891 18892 /* 18893 * Called using SQ_FILL when a message built using 18894 * tcp_ioctl_abort_build_msg is put into a queue. 18895 * Note that when we get here there is no wildcard in acp any more. 18896 */ 18897 /* ARGSUSED2 */ 18898 static void 18899 tcp_ioctl_abort_handler(void *arg, mblk_t *mp, void *arg2, 18900 ip_recv_attr_t *dummy) 18901 { 18902 conn_t *connp = (conn_t *)arg; 18903 tcp_t *tcp = connp->conn_tcp; 18904 tcp_ioc_abort_conn_t *acp; 18905 18906 /* 18907 * Don't accept any input on a closed tcp as this TCP logically does 18908 * not exist on the system. Don't proceed further with this TCP. 18909 * For eg. this packet could trigger another close of this tcp 18910 * which would be disastrous for tcp_refcnt. tcp_close_detached / 18911 * tcp_clean_death / tcp_closei_local must be called at most once 18912 * on a TCP. 18913 */ 18914 if (tcp->tcp_state == TCPS_CLOSED || 18915 tcp->tcp_state == TCPS_BOUND) { 18916 freemsg(mp); 18917 return; 18918 } 18919 18920 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 18921 if (tcp->tcp_state <= acp->ac_end) { 18922 /* 18923 * If we get here, we are already on the correct 18924 * squeue. This ioctl follows the following path 18925 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 18926 * ->tcp_ioctl_abort->squeue_enter (if on a 18927 * different squeue) 18928 */ 18929 int errcode; 18930 18931 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 18932 (void) tcp_clean_death(tcp, errcode, 26); 18933 } 18934 freemsg(mp); 18935 } 18936 18937 /* 18938 * Abort all matching connections on a hash chain. 18939 */ 18940 static int 18941 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 18942 boolean_t exact, tcp_stack_t *tcps) 18943 { 18944 int nmatch, err = 0; 18945 tcp_t *tcp; 18946 MBLKP mp, last, listhead = NULL; 18947 conn_t *tconnp; 18948 connf_t *connfp; 18949 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18950 18951 connfp = &ipst->ips_ipcl_conn_fanout[index]; 18952 18953 startover: 18954 nmatch = 0; 18955 18956 mutex_enter(&connfp->connf_lock); 18957 for (tconnp = connfp->connf_head; tconnp != NULL; 18958 tconnp = tconnp->conn_next) { 18959 tcp = tconnp->conn_tcp; 18960 /* 18961 * We are missing a check on sin6_scope_id for linklocals here, 18962 * but current usage is just for aborting based on zoneid 18963 * for shared-IP zones. 18964 */ 18965 if (TCP_AC_MATCH(acp, tconnp, tcp)) { 18966 CONN_INC_REF(tconnp); 18967 mp = tcp_ioctl_abort_build_msg(acp, tcp); 18968 if (mp == NULL) { 18969 err = ENOMEM; 18970 CONN_DEC_REF(tconnp); 18971 break; 18972 } 18973 mp->b_prev = (mblk_t *)tcp; 18974 18975 if (listhead == NULL) { 18976 listhead = mp; 18977 last = mp; 18978 } else { 18979 last->b_next = mp; 18980 last = mp; 18981 } 18982 nmatch++; 18983 if (exact) 18984 break; 18985 } 18986 18987 /* Avoid holding lock for too long. */ 18988 if (nmatch >= 500) 18989 break; 18990 } 18991 mutex_exit(&connfp->connf_lock); 18992 18993 /* Pass mp into the correct tcp */ 18994 while ((mp = listhead) != NULL) { 18995 listhead = listhead->b_next; 18996 tcp = (tcp_t *)mp->b_prev; 18997 mp->b_next = mp->b_prev = NULL; 18998 SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp, 18999 tcp_ioctl_abort_handler, tcp->tcp_connp, NULL, 19000 SQ_FILL, SQTAG_TCP_ABORT_BUCKET); 19001 } 19002 19003 *count += nmatch; 19004 if (nmatch >= 500 && err == 0) 19005 goto startover; 19006 return (err); 19007 } 19008 19009 /* 19010 * Abort all connections that matches the attributes specified in acp. 19011 */ 19012 static int 19013 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) 19014 { 19015 sa_family_t af; 19016 uint32_t ports; 19017 uint16_t *pports; 19018 int err = 0, count = 0; 19019 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 19020 int index = -1; 19021 ushort_t logflags; 19022 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19023 19024 af = acp->ac_local.ss_family; 19025 19026 if (af == AF_INET) { 19027 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 19028 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 19029 pports = (uint16_t *)&ports; 19030 pports[1] = TCP_AC_V4LPORT(acp); 19031 pports[0] = TCP_AC_V4RPORT(acp); 19032 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 19033 } 19034 } else { 19035 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 19036 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 19037 pports = (uint16_t *)&ports; 19038 pports[1] = TCP_AC_V6LPORT(acp); 19039 pports[0] = TCP_AC_V6RPORT(acp); 19040 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 19041 } 19042 } 19043 19044 /* 19045 * For cases where remote addr, local port, and remote port are non- 19046 * wildcards, tcp_ioctl_abort_bucket will only be called once. 19047 */ 19048 if (index != -1) { 19049 err = tcp_ioctl_abort_bucket(acp, index, 19050 &count, exact, tcps); 19051 } else { 19052 /* 19053 * loop through all entries for wildcard case 19054 */ 19055 for (index = 0; 19056 index < ipst->ips_ipcl_conn_fanout_size; 19057 index++) { 19058 err = tcp_ioctl_abort_bucket(acp, index, 19059 &count, exact, tcps); 19060 if (err != 0) 19061 break; 19062 } 19063 } 19064 19065 logflags = SL_TRACE | SL_NOTE; 19066 /* 19067 * Don't print this message to the console if the operation was done 19068 * to a non-global zone. 19069 */ 19070 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 19071 logflags |= SL_CONSOLE; 19072 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 19073 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 19074 if (err == 0 && count == 0) 19075 err = ENOENT; 19076 return (err); 19077 } 19078 19079 /* 19080 * Process the TCP_IOC_ABORT_CONN ioctl request. 19081 */ 19082 static void 19083 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 19084 { 19085 int err; 19086 IOCP iocp; 19087 MBLKP mp1; 19088 sa_family_t laf, raf; 19089 tcp_ioc_abort_conn_t *acp; 19090 zone_t *zptr; 19091 conn_t *connp = Q_TO_CONN(q); 19092 zoneid_t zoneid = connp->conn_zoneid; 19093 tcp_t *tcp = connp->conn_tcp; 19094 tcp_stack_t *tcps = tcp->tcp_tcps; 19095 19096 iocp = (IOCP)mp->b_rptr; 19097 19098 if ((mp1 = mp->b_cont) == NULL || 19099 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 19100 err = EINVAL; 19101 goto out; 19102 } 19103 19104 /* check permissions */ 19105 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 19106 err = EPERM; 19107 goto out; 19108 } 19109 19110 if (mp1->b_cont != NULL) { 19111 freemsg(mp1->b_cont); 19112 mp1->b_cont = NULL; 19113 } 19114 19115 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 19116 laf = acp->ac_local.ss_family; 19117 raf = acp->ac_remote.ss_family; 19118 19119 /* check that a zone with the supplied zoneid exists */ 19120 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 19121 zptr = zone_find_by_id(zoneid); 19122 if (zptr != NULL) { 19123 zone_rele(zptr); 19124 } else { 19125 err = EINVAL; 19126 goto out; 19127 } 19128 } 19129 19130 /* 19131 * For exclusive stacks we set the zoneid to zero 19132 * to make TCP operate as if in the global zone. 19133 */ 19134 if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) 19135 acp->ac_zoneid = GLOBAL_ZONEID; 19136 19137 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 19138 acp->ac_start > acp->ac_end || laf != raf || 19139 (laf != AF_INET && laf != AF_INET6)) { 19140 err = EINVAL; 19141 goto out; 19142 } 19143 19144 tcp_ioctl_abort_dump(acp); 19145 err = tcp_ioctl_abort(acp, tcps); 19146 19147 out: 19148 if (mp1 != NULL) { 19149 freemsg(mp1); 19150 mp->b_cont = NULL; 19151 } 19152 19153 if (err != 0) 19154 miocnak(q, mp, 0, err); 19155 else 19156 miocack(q, mp, 0, 0); 19157 } 19158 19159 /* 19160 * tcp_time_wait_processing() handles processing of incoming packets when 19161 * the tcp is in the TIME_WAIT state. 19162 * A TIME_WAIT tcp that has an associated open TCP stream is never put 19163 * on the time wait list. 19164 */ 19165 void 19166 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 19167 uint32_t seg_ack, int seg_len, tcpha_t *tcpha, ip_recv_attr_t *ira) 19168 { 19169 int32_t bytes_acked; 19170 int32_t gap; 19171 int32_t rgap; 19172 tcp_opt_t tcpopt; 19173 uint_t flags; 19174 uint32_t new_swnd = 0; 19175 conn_t *nconnp; 19176 conn_t *connp = tcp->tcp_connp; 19177 tcp_stack_t *tcps = tcp->tcp_tcps; 19178 19179 BUMP_LOCAL(tcp->tcp_ibsegs); 19180 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 19181 19182 flags = (unsigned int)tcpha->tha_flags & 0xFF; 19183 new_swnd = ntohs(tcpha->tha_win) << 19184 ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws); 19185 if (tcp->tcp_snd_ts_ok) { 19186 if (!tcp_paws_check(tcp, tcpha, &tcpopt)) { 19187 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 19188 tcp->tcp_rnxt, TH_ACK); 19189 goto done; 19190 } 19191 } 19192 gap = seg_seq - tcp->tcp_rnxt; 19193 rgap = tcp->tcp_rwnd - (gap + seg_len); 19194 if (gap < 0) { 19195 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 19196 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 19197 (seg_len > -gap ? -gap : seg_len)); 19198 seg_len += gap; 19199 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 19200 if (flags & TH_RST) { 19201 goto done; 19202 } 19203 if ((flags & TH_FIN) && seg_len == -1) { 19204 /* 19205 * When TCP receives a duplicate FIN in 19206 * TIME_WAIT state, restart the 2 MSL timer. 19207 * See page 73 in RFC 793. Make sure this TCP 19208 * is already on the TIME_WAIT list. If not, 19209 * just restart the timer. 19210 */ 19211 if (TCP_IS_DETACHED(tcp)) { 19212 if (tcp_time_wait_remove(tcp, NULL) == 19213 B_TRUE) { 19214 tcp_time_wait_append(tcp); 19215 TCP_DBGSTAT(tcps, 19216 tcp_rput_time_wait); 19217 } 19218 } else { 19219 ASSERT(tcp != NULL); 19220 TCP_TIMER_RESTART(tcp, 19221 tcps->tcps_time_wait_interval); 19222 } 19223 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 19224 tcp->tcp_rnxt, TH_ACK); 19225 goto done; 19226 } 19227 flags |= TH_ACK_NEEDED; 19228 seg_len = 0; 19229 goto process_ack; 19230 } 19231 19232 /* Fix seg_seq, and chew the gap off the front. */ 19233 seg_seq = tcp->tcp_rnxt; 19234 } 19235 19236 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 19237 /* 19238 * Make sure that when we accept the connection, pick 19239 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 19240 * old connection. 19241 * 19242 * The next ISS generated is equal to tcp_iss_incr_extra 19243 * + ISS_INCR/2 + other components depending on the 19244 * value of tcp_strong_iss. We pre-calculate the new 19245 * ISS here and compare with tcp_snxt to determine if 19246 * we need to make adjustment to tcp_iss_incr_extra. 19247 * 19248 * The above calculation is ugly and is a 19249 * waste of CPU cycles... 19250 */ 19251 uint32_t new_iss = tcps->tcps_iss_incr_extra; 19252 int32_t adj; 19253 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19254 19255 switch (tcps->tcps_strong_iss) { 19256 case 2: { 19257 /* Add time and MD5 components. */ 19258 uint32_t answer[4]; 19259 struct { 19260 uint32_t ports; 19261 in6_addr_t src; 19262 in6_addr_t dst; 19263 } arg; 19264 MD5_CTX context; 19265 19266 mutex_enter(&tcps->tcps_iss_key_lock); 19267 context = tcps->tcps_iss_key; 19268 mutex_exit(&tcps->tcps_iss_key_lock); 19269 arg.ports = connp->conn_ports; 19270 /* We use MAPPED addresses in tcp_iss_init */ 19271 arg.src = connp->conn_laddr_v6; 19272 arg.dst = connp->conn_faddr_v6; 19273 MD5Update(&context, (uchar_t *)&arg, 19274 sizeof (arg)); 19275 MD5Final((uchar_t *)answer, &context); 19276 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 19277 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 19278 break; 19279 } 19280 case 1: 19281 /* Add time component and min random (i.e. 1). */ 19282 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 19283 break; 19284 default: 19285 /* Add only time component. */ 19286 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 19287 break; 19288 } 19289 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 19290 /* 19291 * New ISS not guaranteed to be ISS_INCR/2 19292 * ahead of the current tcp_snxt, so add the 19293 * difference to tcp_iss_incr_extra. 19294 */ 19295 tcps->tcps_iss_incr_extra += adj; 19296 } 19297 /* 19298 * If tcp_clean_death() can not perform the task now, 19299 * drop the SYN packet and let the other side re-xmit. 19300 * Otherwise pass the SYN packet back in, since the 19301 * old tcp state has been cleaned up or freed. 19302 */ 19303 if (tcp_clean_death(tcp, 0, 27) == -1) 19304 goto done; 19305 nconnp = ipcl_classify(mp, ira, ipst); 19306 if (nconnp != NULL) { 19307 TCP_STAT(tcps, tcp_time_wait_syn_success); 19308 /* Drops ref on nconnp */ 19309 tcp_reinput(nconnp, mp, ira, ipst); 19310 return; 19311 } 19312 goto done; 19313 } 19314 19315 /* 19316 * rgap is the amount of stuff received out of window. A negative 19317 * value is the amount out of window. 19318 */ 19319 if (rgap < 0) { 19320 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 19321 UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); 19322 /* Fix seg_len and make sure there is something left. */ 19323 seg_len += rgap; 19324 if (seg_len <= 0) { 19325 if (flags & TH_RST) { 19326 goto done; 19327 } 19328 flags |= TH_ACK_NEEDED; 19329 seg_len = 0; 19330 goto process_ack; 19331 } 19332 } 19333 /* 19334 * Check whether we can update tcp_ts_recent. This test is 19335 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 19336 * Extensions for High Performance: An Update", Internet Draft. 19337 */ 19338 if (tcp->tcp_snd_ts_ok && 19339 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 19340 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 19341 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 19342 tcp->tcp_last_rcv_lbolt = lbolt64; 19343 } 19344 19345 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 19346 /* Always ack out of order packets */ 19347 flags |= TH_ACK_NEEDED; 19348 seg_len = 0; 19349 } else if (seg_len > 0) { 19350 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 19351 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 19352 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 19353 } 19354 if (flags & TH_RST) { 19355 (void) tcp_clean_death(tcp, 0, 28); 19356 goto done; 19357 } 19358 if (flags & TH_SYN) { 19359 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 19360 TH_RST|TH_ACK); 19361 /* 19362 * Do not delete the TCP structure if it is in 19363 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 19364 */ 19365 goto done; 19366 } 19367 process_ack: 19368 if (flags & TH_ACK) { 19369 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 19370 if (bytes_acked <= 0) { 19371 if (bytes_acked == 0 && seg_len == 0 && 19372 new_swnd == tcp->tcp_swnd) 19373 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 19374 } else { 19375 /* Acks something not sent */ 19376 flags |= TH_ACK_NEEDED; 19377 } 19378 } 19379 if (flags & TH_ACK_NEEDED) { 19380 /* 19381 * Time to send an ack for some reason. 19382 */ 19383 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 19384 tcp->tcp_rnxt, TH_ACK); 19385 } 19386 done: 19387 freemsg(mp); 19388 } 19389 19390 /* 19391 * TCP Timers Implementation. 19392 */ 19393 timeout_id_t 19394 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 19395 { 19396 mblk_t *mp; 19397 tcp_timer_t *tcpt; 19398 tcp_t *tcp = connp->conn_tcp; 19399 19400 ASSERT(connp->conn_sqp != NULL); 19401 19402 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls); 19403 19404 if (tcp->tcp_timercache == NULL) { 19405 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 19406 } else { 19407 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc); 19408 mp = tcp->tcp_timercache; 19409 tcp->tcp_timercache = mp->b_next; 19410 mp->b_next = NULL; 19411 ASSERT(mp->b_wptr == NULL); 19412 } 19413 19414 CONN_INC_REF(connp); 19415 tcpt = (tcp_timer_t *)mp->b_rptr; 19416 tcpt->connp = connp; 19417 tcpt->tcpt_proc = f; 19418 /* 19419 * TCP timers are normal timeouts. Plus, they do not require more than 19420 * a 10 millisecond resolution. By choosing a coarser resolution and by 19421 * rounding up the expiration to the next resolution boundary, we can 19422 * batch timers in the callout subsystem to make TCP timers more 19423 * efficient. The roundup also protects short timers from expiring too 19424 * early before they have a chance to be cancelled. 19425 */ 19426 tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp, 19427 TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP); 19428 19429 return ((timeout_id_t)mp); 19430 } 19431 19432 static void 19433 tcp_timer_callback(void *arg) 19434 { 19435 mblk_t *mp = (mblk_t *)arg; 19436 tcp_timer_t *tcpt; 19437 conn_t *connp; 19438 19439 tcpt = (tcp_timer_t *)mp->b_rptr; 19440 connp = tcpt->connp; 19441 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp, 19442 NULL, SQ_FILL, SQTAG_TCP_TIMER); 19443 } 19444 19445 /* ARGSUSED */ 19446 static void 19447 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 19448 { 19449 tcp_timer_t *tcpt; 19450 conn_t *connp = (conn_t *)arg; 19451 tcp_t *tcp = connp->conn_tcp; 19452 19453 tcpt = (tcp_timer_t *)mp->b_rptr; 19454 ASSERT(connp == tcpt->connp); 19455 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 19456 19457 /* 19458 * If the TCP has reached the closed state, don't proceed any 19459 * further. This TCP logically does not exist on the system. 19460 * tcpt_proc could for example access queues, that have already 19461 * been qprocoff'ed off. 19462 */ 19463 if (tcp->tcp_state != TCPS_CLOSED) { 19464 (*tcpt->tcpt_proc)(connp); 19465 } else { 19466 tcp->tcp_timer_tid = 0; 19467 } 19468 tcp_timer_free(connp->conn_tcp, mp); 19469 } 19470 19471 /* 19472 * There is potential race with untimeout and the handler firing at the same 19473 * time. The mblock may be freed by the handler while we are trying to use 19474 * it. But since both should execute on the same squeue, this race should not 19475 * occur. 19476 */ 19477 clock_t 19478 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 19479 { 19480 mblk_t *mp = (mblk_t *)id; 19481 tcp_timer_t *tcpt; 19482 clock_t delta; 19483 19484 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs); 19485 19486 if (mp == NULL) 19487 return (-1); 19488 19489 tcpt = (tcp_timer_t *)mp->b_rptr; 19490 ASSERT(tcpt->connp == connp); 19491 19492 delta = untimeout_default(tcpt->tcpt_tid, 0); 19493 19494 if (delta >= 0) { 19495 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled); 19496 tcp_timer_free(connp->conn_tcp, mp); 19497 CONN_DEC_REF(connp); 19498 } 19499 19500 return (delta); 19501 } 19502 19503 /* 19504 * Allocate space for the timer event. The allocation looks like mblk, but it is 19505 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 19506 * 19507 * Dealing with failures: If we can't allocate from the timer cache we try 19508 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 19509 * points to b_rptr. 19510 * If we can't allocate anything using allocb_tryhard(), we perform a last 19511 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 19512 * save the actual allocation size in b_datap. 19513 */ 19514 mblk_t * 19515 tcp_timermp_alloc(int kmflags) 19516 { 19517 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 19518 kmflags & ~KM_PANIC); 19519 19520 if (mp != NULL) { 19521 mp->b_next = mp->b_prev = NULL; 19522 mp->b_rptr = (uchar_t *)(&mp[1]); 19523 mp->b_wptr = NULL; 19524 mp->b_datap = NULL; 19525 mp->b_queue = NULL; 19526 mp->b_cont = NULL; 19527 } else if (kmflags & KM_PANIC) { 19528 /* 19529 * Failed to allocate memory for the timer. Try allocating from 19530 * dblock caches. 19531 */ 19532 /* ipclassifier calls this from a constructor - hence no tcps */ 19533 TCP_G_STAT(tcp_timermp_allocfail); 19534 mp = allocb_tryhard(sizeof (tcp_timer_t)); 19535 if (mp == NULL) { 19536 size_t size = 0; 19537 /* 19538 * Memory is really low. Try tryhard allocation. 19539 * 19540 * ipclassifier calls this from a constructor - 19541 * hence no tcps 19542 */ 19543 TCP_G_STAT(tcp_timermp_allocdblfail); 19544 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 19545 sizeof (tcp_timer_t), &size, kmflags); 19546 mp->b_rptr = (uchar_t *)(&mp[1]); 19547 mp->b_next = mp->b_prev = NULL; 19548 mp->b_wptr = (uchar_t *)-1; 19549 mp->b_datap = (dblk_t *)size; 19550 mp->b_queue = NULL; 19551 mp->b_cont = NULL; 19552 } 19553 ASSERT(mp->b_wptr != NULL); 19554 } 19555 /* ipclassifier calls this from a constructor - hence no tcps */ 19556 TCP_G_DBGSTAT(tcp_timermp_alloced); 19557 19558 return (mp); 19559 } 19560 19561 /* 19562 * Free per-tcp timer cache. 19563 * It can only contain entries from tcp_timercache. 19564 */ 19565 void 19566 tcp_timermp_free(tcp_t *tcp) 19567 { 19568 mblk_t *mp; 19569 19570 while ((mp = tcp->tcp_timercache) != NULL) { 19571 ASSERT(mp->b_wptr == NULL); 19572 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 19573 kmem_cache_free(tcp_timercache, mp); 19574 } 19575 } 19576 19577 /* 19578 * Free timer event. Put it on the per-tcp timer cache if there is not too many 19579 * events there already (currently at most two events are cached). 19580 * If the event is not allocated from the timer cache, free it right away. 19581 */ 19582 static void 19583 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 19584 { 19585 mblk_t *mp1 = tcp->tcp_timercache; 19586 19587 if (mp->b_wptr != NULL) { 19588 /* 19589 * This allocation is not from a timer cache, free it right 19590 * away. 19591 */ 19592 if (mp->b_wptr != (uchar_t *)-1) 19593 freeb(mp); 19594 else 19595 kmem_free(mp, (size_t)mp->b_datap); 19596 } else if (mp1 == NULL || mp1->b_next == NULL) { 19597 /* Cache this timer block for future allocations */ 19598 mp->b_rptr = (uchar_t *)(&mp[1]); 19599 mp->b_next = mp1; 19600 tcp->tcp_timercache = mp; 19601 } else { 19602 kmem_cache_free(tcp_timercache, mp); 19603 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed); 19604 } 19605 } 19606 19607 /* 19608 * End of TCP Timers implementation. 19609 */ 19610 19611 /* 19612 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 19613 * on the specified backing STREAMS q. Note, the caller may make the 19614 * decision to call based on the tcp_t.tcp_flow_stopped value which 19615 * when check outside the q's lock is only an advisory check ... 19616 */ 19617 void 19618 tcp_setqfull(tcp_t *tcp) 19619 { 19620 tcp_stack_t *tcps = tcp->tcp_tcps; 19621 conn_t *connp = tcp->tcp_connp; 19622 19623 if (tcp->tcp_closed) 19624 return; 19625 19626 conn_setqfull(connp, &tcp->tcp_flow_stopped); 19627 if (tcp->tcp_flow_stopped) 19628 TCP_STAT(tcps, tcp_flwctl_on); 19629 } 19630 19631 void 19632 tcp_clrqfull(tcp_t *tcp) 19633 { 19634 conn_t *connp = tcp->tcp_connp; 19635 19636 if (tcp->tcp_closed) 19637 return; 19638 conn_clrqfull(connp, &tcp->tcp_flow_stopped); 19639 } 19640 19641 /* 19642 * kstats related to squeues i.e. not per IP instance 19643 */ 19644 static void * 19645 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) 19646 { 19647 kstat_t *ksp; 19648 19649 tcp_g_stat_t template = { 19650 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 19651 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 19652 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 19653 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 19654 }; 19655 19656 ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", 19657 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 19658 KSTAT_FLAG_VIRTUAL); 19659 19660 if (ksp == NULL) 19661 return (NULL); 19662 19663 bcopy(&template, tcp_g_statp, sizeof (template)); 19664 ksp->ks_data = (void *)tcp_g_statp; 19665 19666 kstat_install(ksp); 19667 return (ksp); 19668 } 19669 19670 static void 19671 tcp_g_kstat_fini(kstat_t *ksp) 19672 { 19673 if (ksp != NULL) { 19674 kstat_delete(ksp); 19675 } 19676 } 19677 19678 19679 static void * 19680 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) 19681 { 19682 kstat_t *ksp; 19683 19684 tcp_stat_t template = { 19685 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 19686 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 19687 { "tcp_time_wait_syn_success", KSTAT_DATA_UINT64 }, 19688 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 19689 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 19690 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 19691 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 19692 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 19693 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 19694 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 19695 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 19696 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 19697 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 19698 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 19699 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 19700 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 19701 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 19702 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 19703 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 19704 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 19705 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 19706 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 19707 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 19708 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 19709 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 19710 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 19711 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 19712 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 19713 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 19714 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 19715 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 19716 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 19717 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 19718 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 19719 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 19720 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 19721 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 19722 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 19723 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 19724 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 19725 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 19726 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 19727 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 19728 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 19729 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 19730 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 19731 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 19732 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 19733 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 19734 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 19735 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 19736 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 19737 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 19738 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 19739 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 19740 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 19741 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 19742 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 19743 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 19744 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 19745 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 19746 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 19747 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 19748 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 19749 }; 19750 19751 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", 19752 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 19753 KSTAT_FLAG_VIRTUAL, stackid); 19754 19755 if (ksp == NULL) 19756 return (NULL); 19757 19758 bcopy(&template, tcps_statisticsp, sizeof (template)); 19759 ksp->ks_data = (void *)tcps_statisticsp; 19760 ksp->ks_private = (void *)(uintptr_t)stackid; 19761 19762 kstat_install(ksp); 19763 return (ksp); 19764 } 19765 19766 static void 19767 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 19768 { 19769 if (ksp != NULL) { 19770 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 19771 kstat_delete_netstack(ksp, stackid); 19772 } 19773 } 19774 19775 /* 19776 * TCP Kstats implementation 19777 */ 19778 static void * 19779 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) 19780 { 19781 kstat_t *ksp; 19782 19783 tcp_named_kstat_t template = { 19784 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 19785 { "rtoMin", KSTAT_DATA_INT32, 0 }, 19786 { "rtoMax", KSTAT_DATA_INT32, 0 }, 19787 { "maxConn", KSTAT_DATA_INT32, 0 }, 19788 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 19789 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 19790 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 19791 { "estabResets", KSTAT_DATA_UINT32, 0 }, 19792 { "currEstab", KSTAT_DATA_UINT32, 0 }, 19793 { "inSegs", KSTAT_DATA_UINT64, 0 }, 19794 { "outSegs", KSTAT_DATA_UINT64, 0 }, 19795 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 19796 { "connTableSize", KSTAT_DATA_INT32, 0 }, 19797 { "outRsts", KSTAT_DATA_UINT32, 0 }, 19798 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 19799 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 19800 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 19801 { "outAck", KSTAT_DATA_UINT32, 0 }, 19802 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 19803 { "outUrg", KSTAT_DATA_UINT32, 0 }, 19804 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 19805 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 19806 { "outControl", KSTAT_DATA_UINT32, 0 }, 19807 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 19808 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 19809 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 19810 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 19811 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 19812 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 19813 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 19814 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 19815 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 19816 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 19817 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 19818 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 19819 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 19820 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 19821 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 19822 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 19823 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 19824 { "inClosed", KSTAT_DATA_UINT32, 0 }, 19825 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 19826 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 19827 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 19828 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 19829 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 19830 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 19831 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 19832 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 19833 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 19834 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 19835 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 19836 { "connTableSize6", KSTAT_DATA_INT32, 0 } 19837 }; 19838 19839 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", 19840 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); 19841 19842 if (ksp == NULL) 19843 return (NULL); 19844 19845 template.rtoAlgorithm.value.ui32 = 4; 19846 template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; 19847 template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; 19848 template.maxConn.value.i32 = -1; 19849 19850 bcopy(&template, ksp->ks_data, sizeof (template)); 19851 ksp->ks_update = tcp_kstat_update; 19852 ksp->ks_private = (void *)(uintptr_t)stackid; 19853 19854 kstat_install(ksp); 19855 return (ksp); 19856 } 19857 19858 static void 19859 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 19860 { 19861 if (ksp != NULL) { 19862 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 19863 kstat_delete_netstack(ksp, stackid); 19864 } 19865 } 19866 19867 static int 19868 tcp_kstat_update(kstat_t *kp, int rw) 19869 { 19870 tcp_named_kstat_t *tcpkp; 19871 tcp_t *tcp; 19872 connf_t *connfp; 19873 conn_t *connp; 19874 int i; 19875 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 19876 netstack_t *ns; 19877 tcp_stack_t *tcps; 19878 ip_stack_t *ipst; 19879 19880 if ((kp == NULL) || (kp->ks_data == NULL)) 19881 return (EIO); 19882 19883 if (rw == KSTAT_WRITE) 19884 return (EACCES); 19885 19886 ns = netstack_find_by_stackid(stackid); 19887 if (ns == NULL) 19888 return (-1); 19889 tcps = ns->netstack_tcp; 19890 if (tcps == NULL) { 19891 netstack_rele(ns); 19892 return (-1); 19893 } 19894 19895 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 19896 19897 tcpkp->currEstab.value.ui32 = 0; 19898 19899 ipst = ns->netstack_ip; 19900 19901 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 19902 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 19903 connp = NULL; 19904 while ((connp = 19905 ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) { 19906 tcp = connp->conn_tcp; 19907 switch (tcp_snmp_state(tcp)) { 19908 case MIB2_TCP_established: 19909 case MIB2_TCP_closeWait: 19910 tcpkp->currEstab.value.ui32++; 19911 break; 19912 } 19913 } 19914 } 19915 19916 tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; 19917 tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; 19918 tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; 19919 tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; 19920 tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; 19921 tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; 19922 tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; 19923 tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; 19924 tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; 19925 tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; 19926 tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; 19927 tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; 19928 tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; 19929 tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; 19930 tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; 19931 tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; 19932 tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; 19933 tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; 19934 tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; 19935 tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; 19936 tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; 19937 tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; 19938 tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; 19939 tcpkp->inDataInorderSegs.value.ui32 = 19940 tcps->tcps_mib.tcpInDataInorderSegs; 19941 tcpkp->inDataInorderBytes.value.ui32 = 19942 tcps->tcps_mib.tcpInDataInorderBytes; 19943 tcpkp->inDataUnorderSegs.value.ui32 = 19944 tcps->tcps_mib.tcpInDataUnorderSegs; 19945 tcpkp->inDataUnorderBytes.value.ui32 = 19946 tcps->tcps_mib.tcpInDataUnorderBytes; 19947 tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; 19948 tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; 19949 tcpkp->inDataPartDupSegs.value.ui32 = 19950 tcps->tcps_mib.tcpInDataPartDupSegs; 19951 tcpkp->inDataPartDupBytes.value.ui32 = 19952 tcps->tcps_mib.tcpInDataPartDupBytes; 19953 tcpkp->inDataPastWinSegs.value.ui32 = 19954 tcps->tcps_mib.tcpInDataPastWinSegs; 19955 tcpkp->inDataPastWinBytes.value.ui32 = 19956 tcps->tcps_mib.tcpInDataPastWinBytes; 19957 tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; 19958 tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; 19959 tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; 19960 tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; 19961 tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; 19962 tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; 19963 tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; 19964 tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; 19965 tcpkp->timKeepaliveProbe.value.ui32 = 19966 tcps->tcps_mib.tcpTimKeepaliveProbe; 19967 tcpkp->timKeepaliveDrop.value.ui32 = 19968 tcps->tcps_mib.tcpTimKeepaliveDrop; 19969 tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; 19970 tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; 19971 tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; 19972 tcpkp->outSackRetransSegs.value.ui32 = 19973 tcps->tcps_mib.tcpOutSackRetransSegs; 19974 tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; 19975 19976 netstack_rele(ns); 19977 return (0); 19978 } 19979 19980 static int 19981 tcp_squeue_switch(int val) 19982 { 19983 int rval = SQ_FILL; 19984 19985 switch (val) { 19986 case 1: 19987 rval = SQ_NODRAIN; 19988 break; 19989 case 2: 19990 rval = SQ_PROCESS; 19991 break; 19992 default: 19993 break; 19994 } 19995 return (rval); 19996 } 19997 19998 /* 19999 * This is called once for each squeue - globally for all stack 20000 * instances. 20001 */ 20002 static void 20003 tcp_squeue_add(squeue_t *sqp) 20004 { 20005 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 20006 sizeof (tcp_squeue_priv_t), KM_SLEEP); 20007 20008 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 20009 tcp_time_wait->tcp_time_wait_tid = 20010 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 20011 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 20012 CALLOUT_FLAG_ROUNDUP); 20013 if (tcp_free_list_max_cnt == 0) { 20014 int tcp_ncpus = ((boot_max_ncpus == -1) ? 20015 max_ncpus : boot_max_ncpus); 20016 20017 /* 20018 * Limit number of entries to 1% of availble memory / tcp_ncpus 20019 */ 20020 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 20021 (tcp_ncpus * sizeof (tcp_t) * 100); 20022 } 20023 tcp_time_wait->tcp_free_list_cnt = 0; 20024 } 20025 20026 /* 20027 * On a labeled system we have some protocols above TCP, such as RPC, which 20028 * appear to assume that every mblk in a chain has a db_credp. 20029 */ 20030 static void 20031 tcp_setcred_data(mblk_t *mp, ip_recv_attr_t *ira) 20032 { 20033 ASSERT(is_system_labeled()); 20034 ASSERT(ira->ira_cred != NULL); 20035 20036 while (mp != NULL) { 20037 mblk_setcred(mp, ira->ira_cred, NOPID); 20038 mp = mp->b_cont; 20039 } 20040 } 20041 20042 static int 20043 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr, 20044 boolean_t bind_to_req_port_only, cred_t *cr) 20045 { 20046 in_port_t mlp_port; 20047 mlp_type_t addrtype, mlptype; 20048 boolean_t user_specified; 20049 in_port_t allocated_port; 20050 in_port_t requested_port = *requested_port_ptr; 20051 conn_t *connp = tcp->tcp_connp; 20052 zone_t *zone; 20053 tcp_stack_t *tcps = tcp->tcp_tcps; 20054 in6_addr_t v6addr = connp->conn_laddr_v6; 20055 20056 /* 20057 * XXX It's up to the caller to specify bind_to_req_port_only or not. 20058 */ 20059 ASSERT(cr != NULL); 20060 20061 /* 20062 * Get a valid port (within the anonymous range and should not 20063 * be a privileged one) to use if the user has not given a port. 20064 * If multiple threads are here, they may all start with 20065 * with the same initial port. But, it should be fine as long as 20066 * tcp_bindi will ensure that no two threads will be assigned 20067 * the same port. 20068 * 20069 * NOTE: XXX If a privileged process asks for an anonymous port, we 20070 * still check for ports only in the range > tcp_smallest_non_priv_port, 20071 * unless TCP_ANONPRIVBIND option is set. 20072 */ 20073 mlptype = mlptSingle; 20074 mlp_port = requested_port; 20075 if (requested_port == 0) { 20076 requested_port = connp->conn_anon_priv_bind ? 20077 tcp_get_next_priv_port(tcp) : 20078 tcp_update_next_port(tcps->tcps_next_port_to_try, 20079 tcp, B_TRUE); 20080 if (requested_port == 0) { 20081 return (-TNOADDR); 20082 } 20083 user_specified = B_FALSE; 20084 20085 /* 20086 * If the user went through one of the RPC interfaces to create 20087 * this socket and RPC is MLP in this zone, then give him an 20088 * anonymous MLP. 20089 */ 20090 if (connp->conn_anon_mlp && is_system_labeled()) { 20091 zone = crgetzone(cr); 20092 addrtype = tsol_mlp_addr_type( 20093 connp->conn_allzones ? ALL_ZONES : zone->zone_id, 20094 IPV6_VERSION, &v6addr, 20095 tcps->tcps_netstack->netstack_ip); 20096 if (addrtype == mlptSingle) { 20097 return (-TNOADDR); 20098 } 20099 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 20100 PMAPPORT, addrtype); 20101 mlp_port = PMAPPORT; 20102 } 20103 } else { 20104 int i; 20105 boolean_t priv = B_FALSE; 20106 20107 /* 20108 * If the requested_port is in the well-known privileged range, 20109 * verify that the stream was opened by a privileged user. 20110 * Note: No locks are held when inspecting tcp_g_*epriv_ports 20111 * but instead the code relies on: 20112 * - the fact that the address of the array and its size never 20113 * changes 20114 * - the atomic assignment of the elements of the array 20115 */ 20116 if (requested_port < tcps->tcps_smallest_nonpriv_port) { 20117 priv = B_TRUE; 20118 } else { 20119 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 20120 if (requested_port == 20121 tcps->tcps_g_epriv_ports[i]) { 20122 priv = B_TRUE; 20123 break; 20124 } 20125 } 20126 } 20127 if (priv) { 20128 if (secpolicy_net_privaddr(cr, requested_port, 20129 IPPROTO_TCP) != 0) { 20130 if (connp->conn_debug) { 20131 (void) strlog(TCP_MOD_ID, 0, 1, 20132 SL_ERROR|SL_TRACE, 20133 "tcp_bind: no priv for port %d", 20134 requested_port); 20135 } 20136 return (-TACCES); 20137 } 20138 } 20139 user_specified = B_TRUE; 20140 20141 connp = tcp->tcp_connp; 20142 if (is_system_labeled()) { 20143 zone = crgetzone(cr); 20144 addrtype = tsol_mlp_addr_type( 20145 connp->conn_allzones ? ALL_ZONES : zone->zone_id, 20146 IPV6_VERSION, &v6addr, 20147 tcps->tcps_netstack->netstack_ip); 20148 if (addrtype == mlptSingle) { 20149 return (-TNOADDR); 20150 } 20151 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 20152 requested_port, addrtype); 20153 } 20154 } 20155 20156 if (mlptype != mlptSingle) { 20157 if (secpolicy_net_bindmlp(cr) != 0) { 20158 if (connp->conn_debug) { 20159 (void) strlog(TCP_MOD_ID, 0, 1, 20160 SL_ERROR|SL_TRACE, 20161 "tcp_bind: no priv for multilevel port %d", 20162 requested_port); 20163 } 20164 return (-TACCES); 20165 } 20166 20167 /* 20168 * If we're specifically binding a shared IP address and the 20169 * port is MLP on shared addresses, then check to see if this 20170 * zone actually owns the MLP. Reject if not. 20171 */ 20172 if (mlptype == mlptShared && addrtype == mlptShared) { 20173 /* 20174 * No need to handle exclusive-stack zones since 20175 * ALL_ZONES only applies to the shared stack. 20176 */ 20177 zoneid_t mlpzone; 20178 20179 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 20180 htons(mlp_port)); 20181 if (connp->conn_zoneid != mlpzone) { 20182 if (connp->conn_debug) { 20183 (void) strlog(TCP_MOD_ID, 0, 1, 20184 SL_ERROR|SL_TRACE, 20185 "tcp_bind: attempt to bind port " 20186 "%d on shared addr in zone %d " 20187 "(should be %d)", 20188 mlp_port, connp->conn_zoneid, 20189 mlpzone); 20190 } 20191 return (-TACCES); 20192 } 20193 } 20194 20195 if (!user_specified) { 20196 int err; 20197 err = tsol_mlp_anon(zone, mlptype, connp->conn_proto, 20198 requested_port, B_TRUE); 20199 if (err != 0) { 20200 if (connp->conn_debug) { 20201 (void) strlog(TCP_MOD_ID, 0, 1, 20202 SL_ERROR|SL_TRACE, 20203 "tcp_bind: cannot establish anon " 20204 "MLP for port %d", 20205 requested_port); 20206 } 20207 return (err); 20208 } 20209 connp->conn_anon_port = B_TRUE; 20210 } 20211 connp->conn_mlp_type = mlptype; 20212 } 20213 20214 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 20215 connp->conn_reuseaddr, B_FALSE, bind_to_req_port_only, 20216 user_specified); 20217 20218 if (allocated_port == 0) { 20219 connp->conn_mlp_type = mlptSingle; 20220 if (connp->conn_anon_port) { 20221 connp->conn_anon_port = B_FALSE; 20222 (void) tsol_mlp_anon(zone, mlptype, connp->conn_proto, 20223 requested_port, B_FALSE); 20224 } 20225 if (bind_to_req_port_only) { 20226 if (connp->conn_debug) { 20227 (void) strlog(TCP_MOD_ID, 0, 1, 20228 SL_ERROR|SL_TRACE, 20229 "tcp_bind: requested addr busy"); 20230 } 20231 return (-TADDRBUSY); 20232 } else { 20233 /* If we are out of ports, fail the bind. */ 20234 if (connp->conn_debug) { 20235 (void) strlog(TCP_MOD_ID, 0, 1, 20236 SL_ERROR|SL_TRACE, 20237 "tcp_bind: out of ports?"); 20238 } 20239 return (-TNOADDR); 20240 } 20241 } 20242 20243 /* Pass the allocated port back */ 20244 *requested_port_ptr = allocated_port; 20245 return (0); 20246 } 20247 20248 /* 20249 * Check the address and check/pick a local port number. 20250 */ 20251 static int 20252 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 20253 boolean_t bind_to_req_port_only) 20254 { 20255 tcp_t *tcp = connp->conn_tcp; 20256 sin_t *sin; 20257 sin6_t *sin6; 20258 in_port_t requested_port; 20259 ipaddr_t v4addr; 20260 in6_addr_t v6addr; 20261 ip_laddr_t laddr_type = IPVL_UNICAST_UP; /* INADDR_ANY */ 20262 zoneid_t zoneid = IPCL_ZONEID(connp); 20263 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 20264 uint_t scopeid = 0; 20265 int error = 0; 20266 ip_xmit_attr_t *ixa = connp->conn_ixa; 20267 20268 ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX); 20269 20270 if (tcp->tcp_state == TCPS_BOUND) { 20271 return (0); 20272 } else if (tcp->tcp_state > TCPS_BOUND) { 20273 if (connp->conn_debug) { 20274 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20275 "tcp_bind: bad state, %d", tcp->tcp_state); 20276 } 20277 return (-TOUTSTATE); 20278 } 20279 20280 ASSERT(sa != NULL && len != 0); 20281 20282 if (!OK_32PTR((char *)sa)) { 20283 if (connp->conn_debug) { 20284 (void) strlog(TCP_MOD_ID, 0, 1, 20285 SL_ERROR|SL_TRACE, 20286 "tcp_bind: bad address parameter, " 20287 "address %p, len %d", 20288 (void *)sa, len); 20289 } 20290 return (-TPROTO); 20291 } 20292 20293 error = proto_verify_ip_addr(connp->conn_family, sa, len); 20294 if (error != 0) { 20295 return (error); 20296 } 20297 20298 switch (len) { 20299 case sizeof (sin_t): /* Complete IPv4 address */ 20300 sin = (sin_t *)sa; 20301 requested_port = ntohs(sin->sin_port); 20302 v4addr = sin->sin_addr.s_addr; 20303 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 20304 if (v4addr != INADDR_ANY) { 20305 laddr_type = ip_laddr_verify_v4(v4addr, zoneid, ipst, 20306 B_FALSE); 20307 } 20308 break; 20309 20310 case sizeof (sin6_t): /* Complete IPv6 address */ 20311 sin6 = (sin6_t *)sa; 20312 v6addr = sin6->sin6_addr; 20313 requested_port = ntohs(sin6->sin6_port); 20314 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) { 20315 if (connp->conn_ipv6_v6only) 20316 return (EADDRNOTAVAIL); 20317 20318 IN6_V4MAPPED_TO_IPADDR(&v6addr, v4addr); 20319 if (v4addr != INADDR_ANY) { 20320 laddr_type = ip_laddr_verify_v4(v4addr, 20321 zoneid, ipst, B_FALSE); 20322 } 20323 } else { 20324 if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr)) { 20325 if (IN6_IS_ADDR_LINKSCOPE(&v6addr)) 20326 scopeid = sin6->sin6_scope_id; 20327 laddr_type = ip_laddr_verify_v6(&v6addr, 20328 zoneid, ipst, B_FALSE, scopeid); 20329 } 20330 } 20331 break; 20332 20333 default: 20334 if (connp->conn_debug) { 20335 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20336 "tcp_bind: bad address length, %d", len); 20337 } 20338 return (EAFNOSUPPORT); 20339 /* return (-TBADADDR); */ 20340 } 20341 20342 /* Is the local address a valid unicast address? */ 20343 if (laddr_type == IPVL_BAD) 20344 return (EADDRNOTAVAIL); 20345 20346 connp->conn_bound_addr_v6 = v6addr; 20347 if (scopeid != 0) { 20348 ixa->ixa_flags |= IXAF_SCOPEID_SET; 20349 ixa->ixa_scopeid = scopeid; 20350 connp->conn_incoming_ifindex = scopeid; 20351 } else { 20352 ixa->ixa_flags &= ~IXAF_SCOPEID_SET; 20353 connp->conn_incoming_ifindex = connp->conn_bound_if; 20354 } 20355 20356 connp->conn_laddr_v6 = v6addr; 20357 connp->conn_saddr_v6 = v6addr; 20358 20359 bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only; 20360 20361 error = tcp_bind_select_lport(tcp, &requested_port, 20362 bind_to_req_port_only, cr); 20363 if (error != 0) { 20364 connp->conn_laddr_v6 = ipv6_all_zeros; 20365 connp->conn_saddr_v6 = ipv6_all_zeros; 20366 connp->conn_bound_addr_v6 = ipv6_all_zeros; 20367 } 20368 return (error); 20369 } 20370 20371 /* 20372 * Return unix error is tli error is TSYSERR, otherwise return a negative 20373 * tli error. 20374 */ 20375 int 20376 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 20377 boolean_t bind_to_req_port_only) 20378 { 20379 int error; 20380 tcp_t *tcp = connp->conn_tcp; 20381 20382 if (tcp->tcp_state >= TCPS_BOUND) { 20383 if (connp->conn_debug) { 20384 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20385 "tcp_bind: bad state, %d", tcp->tcp_state); 20386 } 20387 return (-TOUTSTATE); 20388 } 20389 20390 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 20391 if (error != 0) 20392 return (error); 20393 20394 ASSERT(tcp->tcp_state == TCPS_BOUND); 20395 tcp->tcp_conn_req_max = 0; 20396 return (0); 20397 } 20398 20399 int 20400 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa, 20401 socklen_t len, cred_t *cr) 20402 { 20403 int error; 20404 conn_t *connp = (conn_t *)proto_handle; 20405 squeue_t *sqp = connp->conn_sqp; 20406 20407 /* All Solaris components should pass a cred for this operation. */ 20408 ASSERT(cr != NULL); 20409 20410 ASSERT(sqp != NULL); 20411 ASSERT(connp->conn_upper_handle != NULL); 20412 20413 error = squeue_synch_enter(sqp, connp, NULL); 20414 if (error != 0) { 20415 /* failed to enter */ 20416 return (ENOSR); 20417 } 20418 20419 /* binding to a NULL address really means unbind */ 20420 if (sa == NULL) { 20421 if (connp->conn_tcp->tcp_state < TCPS_LISTEN) 20422 error = tcp_do_unbind(connp); 20423 else 20424 error = EINVAL; 20425 } else { 20426 error = tcp_do_bind(connp, sa, len, cr, B_TRUE); 20427 } 20428 20429 squeue_synch_exit(sqp, connp); 20430 20431 if (error < 0) { 20432 if (error == -TOUTSTATE) 20433 error = EINVAL; 20434 else 20435 error = proto_tlitosyserr(-error); 20436 } 20437 20438 return (error); 20439 } 20440 20441 /* 20442 * If the return value from this function is positive, it's a UNIX error. 20443 * Otherwise, if it's negative, then the absolute value is a TLI error. 20444 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 20445 */ 20446 int 20447 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 20448 cred_t *cr, pid_t pid) 20449 { 20450 tcp_t *tcp = connp->conn_tcp; 20451 sin_t *sin = (sin_t *)sa; 20452 sin6_t *sin6 = (sin6_t *)sa; 20453 ipaddr_t *dstaddrp; 20454 in_port_t dstport; 20455 uint_t srcid; 20456 int error; 20457 uint32_t mss; 20458 mblk_t *syn_mp; 20459 tcp_stack_t *tcps = tcp->tcp_tcps; 20460 int32_t oldstate; 20461 ip_xmit_attr_t *ixa = connp->conn_ixa; 20462 20463 oldstate = tcp->tcp_state; 20464 20465 switch (len) { 20466 default: 20467 /* 20468 * Should never happen 20469 */ 20470 return (EINVAL); 20471 20472 case sizeof (sin_t): 20473 sin = (sin_t *)sa; 20474 if (sin->sin_port == 0) { 20475 return (-TBADADDR); 20476 } 20477 if (connp->conn_ipv6_v6only) { 20478 return (EAFNOSUPPORT); 20479 } 20480 break; 20481 20482 case sizeof (sin6_t): 20483 sin6 = (sin6_t *)sa; 20484 if (sin6->sin6_port == 0) { 20485 return (-TBADADDR); 20486 } 20487 break; 20488 } 20489 /* 20490 * If we're connecting to an IPv4-mapped IPv6 address, we need to 20491 * make sure that the conn_ipversion is IPV4_VERSION. We 20492 * need to this before we call tcp_bindi() so that the port lookup 20493 * code will look for ports in the correct port space (IPv4 and 20494 * IPv6 have separate port spaces). 20495 */ 20496 if (connp->conn_family == AF_INET6 && 20497 connp->conn_ipversion == IPV6_VERSION && 20498 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 20499 if (connp->conn_ipv6_v6only) 20500 return (EADDRNOTAVAIL); 20501 20502 connp->conn_ipversion = IPV4_VERSION; 20503 } 20504 20505 switch (tcp->tcp_state) { 20506 case TCPS_LISTEN: 20507 /* 20508 * Listening sockets are not allowed to issue connect(). 20509 */ 20510 if (IPCL_IS_NONSTR(connp)) 20511 return (EOPNOTSUPP); 20512 /* FALLTHRU */ 20513 case TCPS_IDLE: 20514 /* 20515 * We support quick connect, refer to comments in 20516 * tcp_connect_*() 20517 */ 20518 /* FALLTHRU */ 20519 case TCPS_BOUND: 20520 break; 20521 default: 20522 return (-TOUTSTATE); 20523 } 20524 20525 /* 20526 * We update our cred/cpid based on the caller of connect 20527 */ 20528 if (connp->conn_cred != cr) { 20529 crhold(cr); 20530 crfree(connp->conn_cred); 20531 connp->conn_cred = cr; 20532 } 20533 connp->conn_cpid = pid; 20534 20535 /* Cache things in the ixa without any refhold */ 20536 ixa->ixa_cred = cr; 20537 ixa->ixa_cpid = pid; 20538 if (is_system_labeled()) { 20539 /* We need to restart with a label based on the cred */ 20540 ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred); 20541 } 20542 20543 if (connp->conn_family == AF_INET6) { 20544 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 20545 error = tcp_connect_ipv6(tcp, &sin6->sin6_addr, 20546 sin6->sin6_port, sin6->sin6_flowinfo, 20547 sin6->__sin6_src_id, sin6->sin6_scope_id); 20548 } else { 20549 /* 20550 * Destination adress is mapped IPv6 address. 20551 * Source bound address should be unspecified or 20552 * IPv6 mapped address as well. 20553 */ 20554 if (!IN6_IS_ADDR_UNSPECIFIED( 20555 &connp->conn_bound_addr_v6) && 20556 !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) { 20557 return (EADDRNOTAVAIL); 20558 } 20559 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 20560 dstport = sin6->sin6_port; 20561 srcid = sin6->__sin6_src_id; 20562 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, 20563 srcid); 20564 } 20565 } else { 20566 dstaddrp = &sin->sin_addr.s_addr; 20567 dstport = sin->sin_port; 20568 srcid = 0; 20569 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid); 20570 } 20571 20572 if (error != 0) 20573 goto connect_failed; 20574 20575 CL_INET_CONNECT(connp, B_TRUE, error); 20576 if (error != 0) 20577 goto connect_failed; 20578 20579 /* connect succeeded */ 20580 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 20581 tcp->tcp_active_open = 1; 20582 20583 /* 20584 * tcp_set_destination() does not adjust for TCP/IP header length. 20585 */ 20586 mss = tcp->tcp_mss - connp->conn_ht_iphc_len; 20587 20588 /* 20589 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up 20590 * to the nearest MSS. 20591 * 20592 * We do the round up here because we need to get the interface MTU 20593 * first before we can do the round up. 20594 */ 20595 tcp->tcp_rwnd = connp->conn_rcvbuf; 20596 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 20597 tcps->tcps_recv_hiwat_minmss * mss); 20598 connp->conn_rcvbuf = tcp->tcp_rwnd; 20599 tcp_set_ws_value(tcp); 20600 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 20601 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 20602 tcp->tcp_snd_ws_ok = B_TRUE; 20603 20604 /* 20605 * Set tcp_snd_ts_ok to true 20606 * so that tcp_xmit_mp will 20607 * include the timestamp 20608 * option in the SYN segment. 20609 */ 20610 if (tcps->tcps_tstamp_always || 20611 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 20612 tcp->tcp_snd_ts_ok = B_TRUE; 20613 } 20614 20615 /* 20616 * tcp_snd_sack_ok can be set in 20617 * tcp_set_destination() if the sack metric 20618 * is set. So check it here also. 20619 */ 20620 if (tcps->tcps_sack_permitted == 2 || 20621 tcp->tcp_snd_sack_ok) { 20622 if (tcp->tcp_sack_info == NULL) { 20623 tcp->tcp_sack_info = kmem_cache_alloc( 20624 tcp_sack_info_cache, KM_SLEEP); 20625 } 20626 tcp->tcp_snd_sack_ok = B_TRUE; 20627 } 20628 20629 /* 20630 * Should we use ECN? Note that the current 20631 * default value (SunOS 5.9) of tcp_ecn_permitted 20632 * is 1. The reason for doing this is that there 20633 * are equipments out there that will drop ECN 20634 * enabled IP packets. Setting it to 1 avoids 20635 * compatibility problems. 20636 */ 20637 if (tcps->tcps_ecn_permitted == 2) 20638 tcp->tcp_ecn_ok = B_TRUE; 20639 20640 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20641 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 20642 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 20643 if (syn_mp != NULL) { 20644 /* 20645 * We must bump the generation before sending the syn 20646 * to ensure that we use the right generation in case 20647 * this thread issues a "connected" up call. 20648 */ 20649 SOCK_CONNID_BUMP(tcp->tcp_connid); 20650 tcp_send_data(tcp, syn_mp); 20651 } 20652 20653 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 20654 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 20655 return (0); 20656 20657 connect_failed: 20658 connp->conn_faddr_v6 = ipv6_all_zeros; 20659 connp->conn_fport = 0; 20660 tcp->tcp_state = oldstate; 20661 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 20662 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 20663 return (error); 20664 } 20665 20666 int 20667 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa, 20668 socklen_t len, sock_connid_t *id, cred_t *cr) 20669 { 20670 conn_t *connp = (conn_t *)proto_handle; 20671 squeue_t *sqp = connp->conn_sqp; 20672 int error; 20673 20674 ASSERT(connp->conn_upper_handle != NULL); 20675 20676 /* All Solaris components should pass a cred for this operation. */ 20677 ASSERT(cr != NULL); 20678 20679 error = proto_verify_ip_addr(connp->conn_family, sa, len); 20680 if (error != 0) { 20681 return (error); 20682 } 20683 20684 error = squeue_synch_enter(sqp, connp, NULL); 20685 if (error != 0) { 20686 /* failed to enter */ 20687 return (ENOSR); 20688 } 20689 20690 /* 20691 * TCP supports quick connect, so no need to do an implicit bind 20692 */ 20693 error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid); 20694 if (error == 0) { 20695 *id = connp->conn_tcp->tcp_connid; 20696 } else if (error < 0) { 20697 if (error == -TOUTSTATE) { 20698 switch (connp->conn_tcp->tcp_state) { 20699 case TCPS_SYN_SENT: 20700 error = EALREADY; 20701 break; 20702 case TCPS_ESTABLISHED: 20703 error = EISCONN; 20704 break; 20705 case TCPS_LISTEN: 20706 error = EOPNOTSUPP; 20707 break; 20708 default: 20709 error = EINVAL; 20710 break; 20711 } 20712 } else { 20713 error = proto_tlitosyserr(-error); 20714 } 20715 } 20716 20717 if (connp->conn_tcp->tcp_loopback) { 20718 struct sock_proto_props sopp; 20719 20720 sopp.sopp_flags = SOCKOPT_LOOPBACK; 20721 sopp.sopp_loopback = B_TRUE; 20722 20723 (*connp->conn_upcalls->su_set_proto_props)( 20724 connp->conn_upper_handle, &sopp); 20725 } 20726 done: 20727 squeue_synch_exit(sqp, connp); 20728 20729 return ((error == 0) ? EINPROGRESS : error); 20730 } 20731 20732 /* ARGSUSED */ 20733 sock_lower_handle_t 20734 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls, 20735 uint_t *smodep, int *errorp, int flags, cred_t *credp) 20736 { 20737 conn_t *connp; 20738 boolean_t isv6 = family == AF_INET6; 20739 if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) || 20740 (proto != 0 && proto != IPPROTO_TCP)) { 20741 *errorp = EPROTONOSUPPORT; 20742 return (NULL); 20743 } 20744 20745 connp = tcp_create_common(credp, isv6, B_TRUE, errorp); 20746 if (connp == NULL) { 20747 return (NULL); 20748 } 20749 20750 /* 20751 * Put the ref for TCP. Ref for IP was already put 20752 * by ipcl_conn_create. Also Make the conn_t globally 20753 * visible to walkers 20754 */ 20755 mutex_enter(&connp->conn_lock); 20756 CONN_INC_REF_LOCKED(connp); 20757 ASSERT(connp->conn_ref == 2); 20758 connp->conn_state_flags &= ~CONN_INCIPIENT; 20759 20760 connp->conn_flags |= IPCL_NONSTR; 20761 mutex_exit(&connp->conn_lock); 20762 20763 ASSERT(errorp != NULL); 20764 *errorp = 0; 20765 *sock_downcalls = &sock_tcp_downcalls; 20766 *smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP | 20767 SM_SENDFILESUPP; 20768 20769 return ((sock_lower_handle_t)connp); 20770 } 20771 20772 /* ARGSUSED */ 20773 void 20774 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle, 20775 sock_upcalls_t *sock_upcalls, int flags, cred_t *cr) 20776 { 20777 conn_t *connp = (conn_t *)proto_handle; 20778 struct sock_proto_props sopp; 20779 20780 ASSERT(connp->conn_upper_handle == NULL); 20781 20782 /* All Solaris components should pass a cred for this operation. */ 20783 ASSERT(cr != NULL); 20784 20785 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT | 20786 SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER | 20787 SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ; 20788 20789 sopp.sopp_rxhiwat = SOCKET_RECVHIWATER; 20790 sopp.sopp_rxlowat = SOCKET_RECVLOWATER; 20791 sopp.sopp_maxpsz = INFPSZ; 20792 sopp.sopp_maxblk = INFPSZ; 20793 sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL; 20794 sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3; 20795 sopp.sopp_maxaddrlen = sizeof (sin6_t); 20796 sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 : 20797 tcp_rinfo.mi_minpsz; 20798 20799 connp->conn_upcalls = sock_upcalls; 20800 connp->conn_upper_handle = sock_handle; 20801 20802 ASSERT(connp->conn_rcvbuf != 0 && 20803 connp->conn_rcvbuf == connp->conn_tcp->tcp_rwnd); 20804 (*sock_upcalls->su_set_proto_props)(sock_handle, &sopp); 20805 } 20806 20807 /* ARGSUSED */ 20808 int 20809 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr) 20810 { 20811 conn_t *connp = (conn_t *)proto_handle; 20812 20813 ASSERT(connp->conn_upper_handle != NULL); 20814 20815 /* All Solaris components should pass a cred for this operation. */ 20816 ASSERT(cr != NULL); 20817 20818 tcp_close_common(connp, flags); 20819 20820 ip_free_helper_stream(connp); 20821 20822 /* 20823 * Drop IP's reference on the conn. This is the last reference 20824 * on the connp if the state was less than established. If the 20825 * connection has gone into timewait state, then we will have 20826 * one ref for the TCP and one more ref (total of two) for the 20827 * classifier connected hash list (a timewait connections stays 20828 * in connected hash till closed). 20829 * 20830 * We can't assert the references because there might be other 20831 * transient reference places because of some walkers or queued 20832 * packets in squeue for the timewait state. 20833 */ 20834 CONN_DEC_REF(connp); 20835 return (0); 20836 } 20837 20838 /* ARGSUSED */ 20839 int 20840 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg, 20841 cred_t *cr) 20842 { 20843 tcp_t *tcp; 20844 uint32_t msize; 20845 conn_t *connp = (conn_t *)proto_handle; 20846 int32_t tcpstate; 20847 20848 /* All Solaris components should pass a cred for this operation. */ 20849 ASSERT(cr != NULL); 20850 20851 ASSERT(connp->conn_ref >= 2); 20852 ASSERT(connp->conn_upper_handle != NULL); 20853 20854 if (msg->msg_controllen != 0) { 20855 freemsg(mp); 20856 return (EOPNOTSUPP); 20857 } 20858 20859 switch (DB_TYPE(mp)) { 20860 case M_DATA: 20861 tcp = connp->conn_tcp; 20862 ASSERT(tcp != NULL); 20863 20864 tcpstate = tcp->tcp_state; 20865 if (tcpstate < TCPS_ESTABLISHED) { 20866 freemsg(mp); 20867 /* 20868 * We return ENOTCONN if the endpoint is trying to 20869 * connect or has never been connected, and EPIPE if it 20870 * has been disconnected. The connection id helps us 20871 * distinguish between the last two cases. 20872 */ 20873 return ((tcpstate == TCPS_SYN_SENT) ? ENOTCONN : 20874 ((tcp->tcp_connid > 0) ? EPIPE : ENOTCONN)); 20875 } else if (tcpstate > TCPS_CLOSE_WAIT) { 20876 freemsg(mp); 20877 return (EPIPE); 20878 } 20879 20880 msize = msgdsize(mp); 20881 20882 mutex_enter(&tcp->tcp_non_sq_lock); 20883 tcp->tcp_squeue_bytes += msize; 20884 /* 20885 * Squeue Flow Control 20886 */ 20887 if (TCP_UNSENT_BYTES(tcp) > connp->conn_sndbuf) { 20888 tcp_setqfull(tcp); 20889 } 20890 mutex_exit(&tcp->tcp_non_sq_lock); 20891 20892 /* 20893 * The application may pass in an address in the msghdr, but 20894 * we ignore the address on connection-oriented sockets. 20895 * Just like BSD this code does not generate an error for 20896 * TCP (a CONNREQUIRED socket) when sending to an address 20897 * passed in with sendto/sendmsg. Instead the data is 20898 * delivered on the connection as if no address had been 20899 * supplied. 20900 */ 20901 CONN_INC_REF(connp); 20902 20903 if (msg->msg_flags & MSG_OOB) { 20904 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output_urgent, 20905 connp, NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 20906 } else { 20907 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, 20908 connp, NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 20909 } 20910 20911 return (0); 20912 20913 default: 20914 ASSERT(0); 20915 } 20916 20917 freemsg(mp); 20918 return (0); 20919 } 20920 20921 /* ARGSUSED2 */ 20922 void 20923 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 20924 { 20925 int len; 20926 uint32_t msize; 20927 conn_t *connp = (conn_t *)arg; 20928 tcp_t *tcp = connp->conn_tcp; 20929 20930 msize = msgdsize(mp); 20931 20932 len = msize - 1; 20933 if (len < 0) { 20934 freemsg(mp); 20935 return; 20936 } 20937 20938 /* 20939 * Try to force urgent data out on the wire. Even if we have unsent 20940 * data this will at least send the urgent flag. 20941 * XXX does not handle more flag correctly. 20942 */ 20943 len += tcp->tcp_unsent; 20944 len += tcp->tcp_snxt; 20945 tcp->tcp_urg = len; 20946 tcp->tcp_valid_bits |= TCP_URG_VALID; 20947 20948 /* Bypass tcp protocol for fused tcp loopback */ 20949 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 20950 return; 20951 20952 /* Strip off the T_EXDATA_REQ if the data is from TPI */ 20953 if (DB_TYPE(mp) != M_DATA) { 20954 mblk_t *mp1 = mp; 20955 ASSERT(!IPCL_IS_NONSTR(connp)); 20956 mp = mp->b_cont; 20957 freeb(mp1); 20958 } 20959 tcp_wput_data(tcp, mp, B_TRUE); 20960 } 20961 20962 /* ARGSUSED3 */ 20963 int 20964 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr, 20965 socklen_t *addrlenp, cred_t *cr) 20966 { 20967 conn_t *connp = (conn_t *)proto_handle; 20968 tcp_t *tcp = connp->conn_tcp; 20969 20970 ASSERT(connp->conn_upper_handle != NULL); 20971 /* All Solaris components should pass a cred for this operation. */ 20972 ASSERT(cr != NULL); 20973 20974 ASSERT(tcp != NULL); 20975 if (tcp->tcp_state < TCPS_SYN_RCVD) 20976 return (ENOTCONN); 20977 20978 return (conn_getpeername(connp, addr, addrlenp)); 20979 } 20980 20981 /* ARGSUSED3 */ 20982 int 20983 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr, 20984 socklen_t *addrlenp, cred_t *cr) 20985 { 20986 conn_t *connp = (conn_t *)proto_handle; 20987 20988 /* All Solaris components should pass a cred for this operation. */ 20989 ASSERT(cr != NULL); 20990 20991 ASSERT(connp->conn_upper_handle != NULL); 20992 return (conn_getsockname(connp, addr, addrlenp)); 20993 } 20994 20995 /* 20996 * tcp_fallback 20997 * 20998 * A direct socket is falling back to using STREAMS. The queue 20999 * that is being passed down was created using tcp_open() with 21000 * the SO_FALLBACK flag set. As a result, the queue is not 21001 * associated with a conn, and the q_ptrs instead contain the 21002 * dev and minor area that should be used. 21003 * 21004 * The 'issocket' flag indicates whether the FireEngine 21005 * optimizations should be used. The common case would be that 21006 * optimizations are enabled, and they might be subsequently 21007 * disabled using the _SIOCSOCKFALLBACK ioctl. 21008 */ 21009 21010 /* 21011 * An active connection is falling back to TPI. Gather all the information 21012 * required by the STREAM head and TPI sonode and send it up. 21013 */ 21014 void 21015 tcp_fallback_noneager(tcp_t *tcp, mblk_t *stropt_mp, queue_t *q, 21016 boolean_t issocket, so_proto_quiesced_cb_t quiesced_cb) 21017 { 21018 conn_t *connp = tcp->tcp_connp; 21019 struct stroptions *stropt; 21020 struct T_capability_ack tca; 21021 struct sockaddr_in6 laddr, faddr; 21022 socklen_t laddrlen, faddrlen; 21023 short opts; 21024 int error; 21025 mblk_t *mp; 21026 21027 connp->conn_dev = (dev_t)RD(q)->q_ptr; 21028 connp->conn_minor_arena = WR(q)->q_ptr; 21029 21030 RD(q)->q_ptr = WR(q)->q_ptr = connp; 21031 21032 connp->conn_rq = RD(q); 21033 connp->conn_wq = WR(q); 21034 21035 WR(q)->q_qinfo = &tcp_sock_winit; 21036 21037 if (!issocket) 21038 tcp_use_pure_tpi(tcp); 21039 21040 /* 21041 * free the helper stream 21042 */ 21043 ip_free_helper_stream(connp); 21044 21045 /* 21046 * Notify the STREAM head about options 21047 */ 21048 DB_TYPE(stropt_mp) = M_SETOPTS; 21049 stropt = (struct stroptions *)stropt_mp->b_rptr; 21050 stropt_mp->b_wptr += sizeof (struct stroptions); 21051 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 21052 21053 stropt->so_wroff = connp->conn_ht_iphc_len + (tcp->tcp_loopback ? 0 : 21054 tcp->tcp_tcps->tcps_wroff_xtra); 21055 if (tcp->tcp_snd_sack_ok) 21056 stropt->so_wroff += TCPOPT_MAX_SACK_LEN; 21057 stropt->so_hiwat = connp->conn_rcvbuf; 21058 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 21059 21060 putnext(RD(q), stropt_mp); 21061 21062 /* 21063 * Collect the information needed to sync with the sonode 21064 */ 21065 tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID); 21066 21067 laddrlen = faddrlen = sizeof (sin6_t); 21068 (void) tcp_getsockname((sock_lower_handle_t)connp, 21069 (struct sockaddr *)&laddr, &laddrlen, CRED()); 21070 error = tcp_getpeername((sock_lower_handle_t)connp, 21071 (struct sockaddr *)&faddr, &faddrlen, CRED()); 21072 if (error != 0) 21073 faddrlen = 0; 21074 21075 opts = 0; 21076 if (connp->conn_oobinline) 21077 opts |= SO_OOBINLINE; 21078 if (connp->conn_ixa->ixa_flags & IXAF_DONTROUTE) 21079 opts |= SO_DONTROUTE; 21080 21081 /* 21082 * Notify the socket that the protocol is now quiescent, 21083 * and it's therefore safe move data from the socket 21084 * to the stream head. 21085 */ 21086 (*quiesced_cb)(connp->conn_upper_handle, q, &tca, 21087 (struct sockaddr *)&laddr, laddrlen, 21088 (struct sockaddr *)&faddr, faddrlen, opts); 21089 21090 while ((mp = tcp->tcp_rcv_list) != NULL) { 21091 tcp->tcp_rcv_list = mp->b_next; 21092 mp->b_next = NULL; 21093 /* We never do fallback for kernel RPC */ 21094 putnext(q, mp); 21095 } 21096 tcp->tcp_rcv_last_head = NULL; 21097 tcp->tcp_rcv_last_tail = NULL; 21098 tcp->tcp_rcv_cnt = 0; 21099 } 21100 21101 /* 21102 * An eager is falling back to TPI. All we have to do is send 21103 * up a T_CONN_IND. 21104 */ 21105 void 21106 tcp_fallback_eager(tcp_t *eager, boolean_t direct_sockfs) 21107 { 21108 tcp_t *listener = eager->tcp_listener; 21109 mblk_t *mp = eager->tcp_conn.tcp_eager_conn_ind; 21110 21111 ASSERT(listener != NULL); 21112 ASSERT(mp != NULL); 21113 21114 eager->tcp_conn.tcp_eager_conn_ind = NULL; 21115 21116 /* 21117 * TLI/XTI applications will get confused by 21118 * sending eager as an option since it violates 21119 * the option semantics. So remove the eager as 21120 * option since TLI/XTI app doesn't need it anyway. 21121 */ 21122 if (!direct_sockfs) { 21123 struct T_conn_ind *conn_ind; 21124 21125 conn_ind = (struct T_conn_ind *)mp->b_rptr; 21126 conn_ind->OPT_length = 0; 21127 conn_ind->OPT_offset = 0; 21128 } 21129 21130 /* 21131 * Sockfs guarantees that the listener will not be closed 21132 * during fallback. So we can safely use the listener's queue. 21133 */ 21134 putnext(listener->tcp_connp->conn_rq, mp); 21135 } 21136 21137 int 21138 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q, 21139 boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb) 21140 { 21141 tcp_t *tcp; 21142 conn_t *connp = (conn_t *)proto_handle; 21143 int error; 21144 mblk_t *stropt_mp; 21145 mblk_t *ordrel_mp; 21146 21147 tcp = connp->conn_tcp; 21148 21149 stropt_mp = allocb_wait(sizeof (struct stroptions), BPRI_HI, STR_NOSIG, 21150 NULL); 21151 21152 /* Pre-allocate the T_ordrel_ind mblk. */ 21153 ASSERT(tcp->tcp_ordrel_mp == NULL); 21154 ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI, 21155 STR_NOSIG, NULL); 21156 ordrel_mp->b_datap->db_type = M_PROTO; 21157 ((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND; 21158 ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind); 21159 21160 /* 21161 * Enter the squeue so that no new packets can come in 21162 */ 21163 error = squeue_synch_enter(connp->conn_sqp, connp, NULL); 21164 if (error != 0) { 21165 /* failed to enter, free all the pre-allocated messages. */ 21166 freeb(stropt_mp); 21167 freeb(ordrel_mp); 21168 /* 21169 * We cannot process the eager, so at least send out a 21170 * RST so the peer can reconnect. 21171 */ 21172 if (tcp->tcp_listener != NULL) { 21173 (void) tcp_eager_blowoff(tcp->tcp_listener, 21174 tcp->tcp_conn_req_seqnum); 21175 } 21176 return (ENOMEM); 21177 } 21178 21179 /* 21180 * Both endpoints must be of the same type (either STREAMS or 21181 * non-STREAMS) for fusion to be enabled. So if we are fused, 21182 * we have to unfuse. 21183 */ 21184 if (tcp->tcp_fused) 21185 tcp_unfuse(tcp); 21186 21187 /* 21188 * No longer a direct socket 21189 */ 21190 connp->conn_flags &= ~IPCL_NONSTR; 21191 tcp->tcp_ordrel_mp = ordrel_mp; 21192 21193 if (tcp->tcp_listener != NULL) { 21194 /* The eager will deal with opts when accept() is called */ 21195 freeb(stropt_mp); 21196 tcp_fallback_eager(tcp, direct_sockfs); 21197 } else { 21198 tcp_fallback_noneager(tcp, stropt_mp, q, direct_sockfs, 21199 quiesced_cb); 21200 } 21201 21202 /* 21203 * There should be atleast two ref's (IP + TCP) 21204 */ 21205 ASSERT(connp->conn_ref >= 2); 21206 squeue_synch_exit(connp->conn_sqp, connp); 21207 21208 return (0); 21209 } 21210 21211 /* ARGSUSED */ 21212 static void 21213 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 21214 { 21215 conn_t *connp = (conn_t *)arg; 21216 tcp_t *tcp = connp->conn_tcp; 21217 21218 freemsg(mp); 21219 21220 if (tcp->tcp_fused) 21221 tcp_unfuse(tcp); 21222 21223 if (tcp_xmit_end(tcp) != 0) { 21224 /* 21225 * We were crossing FINs and got a reset from 21226 * the other side. Just ignore it. 21227 */ 21228 if (connp->conn_debug) { 21229 (void) strlog(TCP_MOD_ID, 0, 1, 21230 SL_ERROR|SL_TRACE, 21231 "tcp_shutdown_output() out of state %s", 21232 tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); 21233 } 21234 } 21235 } 21236 21237 /* ARGSUSED */ 21238 int 21239 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr) 21240 { 21241 conn_t *connp = (conn_t *)proto_handle; 21242 tcp_t *tcp = connp->conn_tcp; 21243 21244 ASSERT(connp->conn_upper_handle != NULL); 21245 21246 /* All Solaris components should pass a cred for this operation. */ 21247 ASSERT(cr != NULL); 21248 21249 /* 21250 * X/Open requires that we check the connected state. 21251 */ 21252 if (tcp->tcp_state < TCPS_SYN_SENT) 21253 return (ENOTCONN); 21254 21255 /* shutdown the send side */ 21256 if (how != SHUT_RD) { 21257 mblk_t *bp; 21258 21259 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 21260 CONN_INC_REF(connp); 21261 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output, 21262 connp, NULL, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT); 21263 21264 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 21265 SOCK_OPCTL_SHUT_SEND, 0); 21266 } 21267 21268 /* shutdown the recv side */ 21269 if (how != SHUT_WR) 21270 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 21271 SOCK_OPCTL_SHUT_RECV, 0); 21272 21273 return (0); 21274 } 21275 21276 /* 21277 * SOP_LISTEN() calls into tcp_listen(). 21278 */ 21279 /* ARGSUSED */ 21280 int 21281 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr) 21282 { 21283 conn_t *connp = (conn_t *)proto_handle; 21284 int error; 21285 squeue_t *sqp = connp->conn_sqp; 21286 21287 ASSERT(connp->conn_upper_handle != NULL); 21288 21289 /* All Solaris components should pass a cred for this operation. */ 21290 ASSERT(cr != NULL); 21291 21292 error = squeue_synch_enter(sqp, connp, NULL); 21293 if (error != 0) { 21294 /* failed to enter */ 21295 return (ENOBUFS); 21296 } 21297 21298 error = tcp_do_listen(connp, NULL, 0, backlog, cr, FALSE); 21299 if (error == 0) { 21300 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 21301 SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog); 21302 } else if (error < 0) { 21303 if (error == -TOUTSTATE) 21304 error = EINVAL; 21305 else 21306 error = proto_tlitosyserr(-error); 21307 } 21308 squeue_synch_exit(sqp, connp); 21309 return (error); 21310 } 21311 21312 static int 21313 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len, 21314 int backlog, cred_t *cr, boolean_t bind_to_req_port_only) 21315 { 21316 tcp_t *tcp = connp->conn_tcp; 21317 int error = 0; 21318 tcp_stack_t *tcps = tcp->tcp_tcps; 21319 21320 /* All Solaris components should pass a cred for this operation. */ 21321 ASSERT(cr != NULL); 21322 21323 if (tcp->tcp_state >= TCPS_BOUND) { 21324 if ((tcp->tcp_state == TCPS_BOUND || 21325 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { 21326 /* 21327 * Handle listen() increasing backlog. 21328 * This is more "liberal" then what the TPI spec 21329 * requires but is needed to avoid a t_unbind 21330 * when handling listen() since the port number 21331 * might be "stolen" between the unbind and bind. 21332 */ 21333 goto do_listen; 21334 } 21335 if (connp->conn_debug) { 21336 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21337 "tcp_listen: bad state, %d", tcp->tcp_state); 21338 } 21339 return (-TOUTSTATE); 21340 } else { 21341 if (sa == NULL) { 21342 sin6_t addr; 21343 sin_t *sin; 21344 sin6_t *sin6; 21345 21346 ASSERT(IPCL_IS_NONSTR(connp)); 21347 /* Do an implicit bind: Request for a generic port. */ 21348 if (connp->conn_family == AF_INET) { 21349 len = sizeof (sin_t); 21350 sin = (sin_t *)&addr; 21351 *sin = sin_null; 21352 sin->sin_family = AF_INET; 21353 } else { 21354 ASSERT(connp->conn_family == AF_INET6); 21355 len = sizeof (sin6_t); 21356 sin6 = (sin6_t *)&addr; 21357 *sin6 = sin6_null; 21358 sin6->sin6_family = AF_INET6; 21359 } 21360 sa = (struct sockaddr *)&addr; 21361 } 21362 21363 error = tcp_bind_check(connp, sa, len, cr, 21364 bind_to_req_port_only); 21365 if (error) 21366 return (error); 21367 /* Fall through and do the fanout insertion */ 21368 } 21369 21370 do_listen: 21371 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 21372 tcp->tcp_conn_req_max = backlog; 21373 if (tcp->tcp_conn_req_max) { 21374 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 21375 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 21376 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 21377 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 21378 /* 21379 * If this is a listener, do not reset the eager list 21380 * and other stuffs. Note that we don't check if the 21381 * existing eager list meets the new tcp_conn_req_max 21382 * requirement. 21383 */ 21384 if (tcp->tcp_state != TCPS_LISTEN) { 21385 tcp->tcp_state = TCPS_LISTEN; 21386 /* Initialize the chain. Don't need the eager_lock */ 21387 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 21388 tcp->tcp_eager_next_drop_q0 = tcp; 21389 tcp->tcp_eager_prev_drop_q0 = tcp; 21390 tcp->tcp_second_ctimer_threshold = 21391 tcps->tcps_ip_abort_linterval; 21392 } 21393 } 21394 21395 /* 21396 * We need to make sure that the conn_recv is set to a non-null 21397 * value before we insert the conn into the classifier table. 21398 * This is to avoid a race with an incoming packet which does an 21399 * ipcl_classify(). 21400 * We initially set it to tcp_input_listener_unbound to try to 21401 * pick a good squeue for the listener when the first SYN arrives. 21402 * tcp_input_listener_unbound sets it to tcp_input_listener on that 21403 * first SYN. 21404 */ 21405 connp->conn_recv = tcp_input_listener_unbound; 21406 21407 /* Insert the listener in the classifier table */ 21408 error = ip_laddr_fanout_insert(connp); 21409 if (error != 0) { 21410 /* Undo the bind - release the port number */ 21411 tcp->tcp_state = TCPS_IDLE; 21412 connp->conn_bound_addr_v6 = ipv6_all_zeros; 21413 21414 connp->conn_laddr_v6 = ipv6_all_zeros; 21415 connp->conn_saddr_v6 = ipv6_all_zeros; 21416 connp->conn_ports = 0; 21417 21418 if (connp->conn_anon_port) { 21419 zone_t *zone; 21420 21421 zone = crgetzone(cr); 21422 connp->conn_anon_port = B_FALSE; 21423 (void) tsol_mlp_anon(zone, connp->conn_mlp_type, 21424 connp->conn_proto, connp->conn_lport, B_FALSE); 21425 } 21426 connp->conn_mlp_type = mlptSingle; 21427 21428 tcp_bind_hash_remove(tcp); 21429 return (error); 21430 } 21431 return (error); 21432 } 21433 21434 void 21435 tcp_clr_flowctrl(sock_lower_handle_t proto_handle) 21436 { 21437 conn_t *connp = (conn_t *)proto_handle; 21438 tcp_t *tcp = connp->conn_tcp; 21439 mblk_t *mp; 21440 int error; 21441 21442 ASSERT(connp->conn_upper_handle != NULL); 21443 21444 /* 21445 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_clr_flowctrl() 21446 * is currently running. 21447 */ 21448 mutex_enter(&tcp->tcp_rsrv_mp_lock); 21449 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 21450 mutex_exit(&tcp->tcp_rsrv_mp_lock); 21451 return; 21452 } 21453 tcp->tcp_rsrv_mp = NULL; 21454 mutex_exit(&tcp->tcp_rsrv_mp_lock); 21455 21456 error = squeue_synch_enter(connp->conn_sqp, connp, mp); 21457 ASSERT(error == 0); 21458 21459 mutex_enter(&tcp->tcp_rsrv_mp_lock); 21460 tcp->tcp_rsrv_mp = mp; 21461 mutex_exit(&tcp->tcp_rsrv_mp_lock); 21462 21463 if (tcp->tcp_fused) { 21464 tcp_fuse_backenable(tcp); 21465 } else { 21466 tcp->tcp_rwnd = connp->conn_rcvbuf; 21467 /* 21468 * Send back a window update immediately if TCP is above 21469 * ESTABLISHED state and the increase of the rcv window 21470 * that the other side knows is at least 1 MSS after flow 21471 * control is lifted. 21472 */ 21473 if (tcp->tcp_state >= TCPS_ESTABLISHED && 21474 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 21475 tcp_xmit_ctl(NULL, tcp, 21476 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 21477 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 21478 } 21479 } 21480 21481 squeue_synch_exit(connp->conn_sqp, connp); 21482 } 21483 21484 /* ARGSUSED */ 21485 int 21486 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg, 21487 int mode, int32_t *rvalp, cred_t *cr) 21488 { 21489 conn_t *connp = (conn_t *)proto_handle; 21490 int error; 21491 21492 ASSERT(connp->conn_upper_handle != NULL); 21493 21494 /* All Solaris components should pass a cred for this operation. */ 21495 ASSERT(cr != NULL); 21496 21497 /* 21498 * If we don't have a helper stream then create one. 21499 * ip_create_helper_stream takes care of locking the conn_t, 21500 * so this check for NULL is just a performance optimization. 21501 */ 21502 if (connp->conn_helper_info == NULL) { 21503 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 21504 21505 /* 21506 * Create a helper stream for non-STREAMS socket. 21507 */ 21508 error = ip_create_helper_stream(connp, tcps->tcps_ldi_ident); 21509 if (error != 0) { 21510 ip0dbg(("tcp_ioctl: create of IP helper stream " 21511 "failed %d\n", error)); 21512 return (error); 21513 } 21514 } 21515 21516 switch (cmd) { 21517 case ND_SET: 21518 case ND_GET: 21519 case _SIOCSOCKFALLBACK: 21520 case TCP_IOC_ABORT_CONN: 21521 case TI_GETPEERNAME: 21522 case TI_GETMYNAME: 21523 ip1dbg(("tcp_ioctl: cmd 0x%x on non sreams socket", 21524 cmd)); 21525 error = EINVAL; 21526 break; 21527 default: 21528 /* 21529 * Pass on to IP using helper stream 21530 */ 21531 error = ldi_ioctl(connp->conn_helper_info->iphs_handle, 21532 cmd, arg, mode, cr, rvalp); 21533 break; 21534 } 21535 return (error); 21536 } 21537 21538 sock_downcalls_t sock_tcp_downcalls = { 21539 tcp_activate, 21540 tcp_accept, 21541 tcp_bind, 21542 tcp_listen, 21543 tcp_connect, 21544 tcp_getpeername, 21545 tcp_getsockname, 21546 tcp_getsockopt, 21547 tcp_setsockopt, 21548 tcp_sendmsg, 21549 NULL, 21550 NULL, 21551 NULL, 21552 tcp_shutdown, 21553 tcp_clr_flowctrl, 21554 tcp_ioctl, 21555 tcp_close, 21556 }; 21557