xref: /titanic_51/usr/src/uts/common/inet/tcp/tcp.c (revision f4ce81cfdad23bacfdb147be77d8d5fbe7673847)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #include <sys/types.h>
29 #include <sys/stream.h>
30 #include <sys/strsun.h>
31 #include <sys/strsubr.h>
32 #include <sys/stropts.h>
33 #include <sys/strlog.h>
34 #define	_SUN_TPI_VERSION 2
35 #include <sys/tihdr.h>
36 #include <sys/timod.h>
37 #include <sys/ddi.h>
38 #include <sys/sunddi.h>
39 #include <sys/suntpi.h>
40 #include <sys/xti_inet.h>
41 #include <sys/cmn_err.h>
42 #include <sys/debug.h>
43 #include <sys/sdt.h>
44 #include <sys/vtrace.h>
45 #include <sys/kmem.h>
46 #include <sys/ethernet.h>
47 #include <sys/cpuvar.h>
48 #include <sys/dlpi.h>
49 #include <sys/pattr.h>
50 #include <sys/policy.h>
51 #include <sys/priv.h>
52 #include <sys/zone.h>
53 #include <sys/sunldi.h>
54 
55 #include <sys/errno.h>
56 #include <sys/signal.h>
57 #include <sys/socket.h>
58 #include <sys/socketvar.h>
59 #include <sys/sockio.h>
60 #include <sys/isa_defs.h>
61 #include <sys/md5.h>
62 #include <sys/random.h>
63 #include <sys/uio.h>
64 #include <sys/systm.h>
65 #include <netinet/in.h>
66 #include <netinet/tcp.h>
67 #include <netinet/ip6.h>
68 #include <netinet/icmp6.h>
69 #include <net/if.h>
70 #include <net/route.h>
71 #include <inet/ipsec_impl.h>
72 
73 #include <inet/common.h>
74 #include <inet/ip.h>
75 #include <inet/ip_impl.h>
76 #include <inet/ip6.h>
77 #include <inet/ip_ndp.h>
78 #include <inet/proto_set.h>
79 #include <inet/mib2.h>
80 #include <inet/nd.h>
81 #include <inet/optcom.h>
82 #include <inet/snmpcom.h>
83 #include <inet/kstatcom.h>
84 #include <inet/tcp.h>
85 #include <inet/tcp_impl.h>
86 #include <inet/udp_impl.h>
87 #include <net/pfkeyv2.h>
88 #include <inet/ipdrop.h>
89 
90 #include <inet/ipclassifier.h>
91 #include <inet/ip_ire.h>
92 #include <inet/ip_ftable.h>
93 #include <inet/ip_if.h>
94 #include <inet/ipp_common.h>
95 #include <inet/ip_rts.h>
96 #include <inet/ip_netinfo.h>
97 #include <sys/squeue_impl.h>
98 #include <sys/squeue.h>
99 #include <inet/kssl/ksslapi.h>
100 #include <sys/tsol/label.h>
101 #include <sys/tsol/tnet.h>
102 #include <rpc/pmap_prot.h>
103 #include <sys/callo.h>
104 
105 /*
106  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
107  *
108  * (Read the detailed design doc in PSARC case directory)
109  *
110  * The entire tcp state is contained in tcp_t and conn_t structure
111  * which are allocated in tandem using ipcl_conn_create() and passing
112  * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect
113  * the references on the tcp_t. The tcp_t structure is never compressed
114  * and packets always land on the correct TCP perimeter from the time
115  * eager is created till the time tcp_t dies (as such the old mentat
116  * TCP global queue is not used for detached state and no IPSEC checking
117  * is required). The global queue is still allocated to send out resets
118  * for connection which have no listeners and IP directly calls
119  * tcp_xmit_listeners_reset() which does any policy check.
120  *
121  * Protection and Synchronisation mechanism:
122  *
123  * The tcp data structure does not use any kind of lock for protecting
124  * its state but instead uses 'squeues' for mutual exclusion from various
125  * read and write side threads. To access a tcp member, the thread should
126  * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS,
127  * or SQ_NODRAIN). Since the squeues allow a direct function call, caller
128  * can pass any tcp function having prototype of edesc_t as argument
129  * (different from traditional STREAMs model where packets come in only
130  * designated entry points). The list of functions that can be directly
131  * called via squeue are listed before the usual function prototype.
132  *
133  * Referencing:
134  *
135  * TCP is MT-Hot and we use a reference based scheme to make sure that the
136  * tcp structure doesn't disappear when its needed. When the application
137  * creates an outgoing connection or accepts an incoming connection, we
138  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
139  * The IP reference is just a symbolic reference since ip_tcpclose()
140  * looks at tcp structure after tcp_close_output() returns which could
141  * have dropped the last TCP reference. So as long as the connection is
142  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
143  * conn_t. The classifier puts its own reference when the connection is
144  * inserted in listen or connected hash. Anytime a thread needs to enter
145  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
146  * on write side or by doing a classify on read side and then puts a
147  * reference on the conn before doing squeue_enter/tryenter/fill. For
148  * read side, the classifier itself puts the reference under fanout lock
149  * to make sure that tcp can't disappear before it gets processed. The
150  * squeue will drop this reference automatically so the called function
151  * doesn't have to do a DEC_REF.
152  *
153  * Opening a new connection:
154  *
155  * The outgoing connection open is pretty simple. tcp_open() does the
156  * work in creating the conn/tcp structure and initializing it. The
157  * squeue assignment is done based on the CPU the application
158  * is running on. So for outbound connections, processing is always done
159  * on application CPU which might be different from the incoming CPU
160  * being interrupted by the NIC. An optimal way would be to figure out
161  * the NIC <-> CPU binding at listen time, and assign the outgoing
162  * connection to the squeue attached to the CPU that will be interrupted
163  * for incoming packets (we know the NIC based on the bind IP address).
164  * This might seem like a problem if more data is going out but the
165  * fact is that in most cases the transmit is ACK driven transmit where
166  * the outgoing data normally sits on TCP's xmit queue waiting to be
167  * transmitted.
168  *
169  * Accepting a connection:
170  *
171  * This is a more interesting case because of various races involved in
172  * establishing a eager in its own perimeter. Read the meta comment on
173  * top of tcp_input_listener(). But briefly, the squeue is picked by
174  * ip_fanout based on the ring or the sender (if loopback).
175  *
176  * Closing a connection:
177  *
178  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
179  * via squeue to do the close and mark the tcp as detached if the connection
180  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
181  * reference but tcp_close() drop IP's reference always. So if tcp was
182  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
183  * and 1 because it is in classifier's connected hash. This is the condition
184  * we use to determine that its OK to clean up the tcp outside of squeue
185  * when time wait expires (check the ref under fanout and conn_lock and
186  * if it is 2, remove it from fanout hash and kill it).
187  *
188  * Although close just drops the necessary references and marks the
189  * tcp_detached state, tcp_close needs to know the tcp_detached has been
190  * set (under squeue) before letting the STREAM go away (because a
191  * inbound packet might attempt to go up the STREAM while the close
192  * has happened and tcp_detached is not set). So a special lock and
193  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
194  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
195  * tcp_detached.
196  *
197  * Special provisions and fast paths:
198  *
199  * We make special provisions for sockfs by marking tcp_issocket
200  * whenever we have only sockfs on top of TCP. This allows us to skip
201  * putting the tcp in acceptor hash since a sockfs listener can never
202  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
203  * since eager has already been allocated and the accept now happens
204  * on acceptor STREAM. There is a big blob of comment on top of
205  * tcp_input_listener explaining the new accept. When socket is POP'd,
206  * sockfs sends us an ioctl to mark the fact and we go back to old
207  * behaviour. Once tcp_issocket is unset, its never set for the
208  * life of that connection.
209  *
210  * IPsec notes :
211  *
212  * Since a packet is always executed on the correct TCP perimeter
213  * all IPsec processing is defered to IP including checking new
214  * connections and setting IPSEC policies for new connection. The
215  * only exception is tcp_xmit_listeners_reset() which is called
216  * directly from IP and needs to policy check to see if TH_RST
217  * can be sent out.
218  */
219 
220 /*
221  * Values for squeue switch:
222  * 1: SQ_NODRAIN
223  * 2: SQ_PROCESS
224  * 3: SQ_FILL
225  */
226 int tcp_squeue_wput = 2;	/* /etc/systems */
227 int tcp_squeue_flag;
228 
229 /*
230  * This controls how tiny a write must be before we try to copy it
231  * into the mblk on the tail of the transmit queue.  Not much
232  * speedup is observed for values larger than sixteen.  Zero will
233  * disable the optimisation.
234  */
235 int tcp_tx_pull_len = 16;
236 
237 /*
238  * TCP Statistics.
239  *
240  * How TCP statistics work.
241  *
242  * There are two types of statistics invoked by two macros.
243  *
244  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
245  * supposed to be used in non MT-hot paths of the code.
246  *
247  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
248  * supposed to be used for DEBUG purposes and may be used on a hot path.
249  *
250  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
251  * (use "kstat tcp" to get them).
252  *
253  * There is also additional debugging facility that marks tcp_clean_death()
254  * instances and saves them in tcp_t structure. It is triggered by
255  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
256  * tcp_clean_death() calls that counts the number of times each tag was hit. It
257  * is triggered by TCP_CLD_COUNTERS define.
258  *
259  * How to add new counters.
260  *
261  * 1) Add a field in the tcp_stat structure describing your counter.
262  * 2) Add a line in the template in tcp_kstat2_init() with the name
263  *    of the counter.
264  *
265  *    IMPORTANT!! - make sure that both are in sync !!
266  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
267  *
268  * Please avoid using private counters which are not kstat-exported.
269  *
270  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
271  * in tcp_t structure.
272  *
273  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
274  */
275 
276 #ifndef TCP_DEBUG_COUNTER
277 #ifdef DEBUG
278 #define	TCP_DEBUG_COUNTER 1
279 #else
280 #define	TCP_DEBUG_COUNTER 0
281 #endif
282 #endif
283 
284 #define	TCP_CLD_COUNTERS 0
285 
286 #define	TCP_TAG_CLEAN_DEATH 1
287 #define	TCP_MAX_CLEAN_DEATH_TAG 32
288 
289 #ifdef lint
290 static int _lint_dummy_;
291 #endif
292 
293 #if TCP_CLD_COUNTERS
294 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
295 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
296 #elif defined(lint)
297 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
298 #else
299 #define	TCP_CLD_STAT(x)
300 #endif
301 
302 #if TCP_DEBUG_COUNTER
303 #define	TCP_DBGSTAT(tcps, x)	\
304 	atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1)
305 #define	TCP_G_DBGSTAT(x)	\
306 	atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1)
307 #elif defined(lint)
308 #define	TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0);
309 #define	TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
310 #else
311 #define	TCP_DBGSTAT(tcps, x)
312 #define	TCP_G_DBGSTAT(x)
313 #endif
314 
315 #define	TCP_G_STAT(x)	(tcp_g_statistics.x.value.ui64++)
316 
317 tcp_g_stat_t	tcp_g_statistics;
318 kstat_t		*tcp_g_kstat;
319 
320 /* Macros for timestamp comparisons */
321 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
322 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
323 
324 /*
325  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
326  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
327  * by adding three components: a time component which grows by 1 every 4096
328  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
329  * a per-connection component which grows by 125000 for every new connection;
330  * and an "extra" component that grows by a random amount centered
331  * approximately on 64000.  This causes the ISS generator to cycle every
332  * 4.89 hours if no TCP connections are made, and faster if connections are
333  * made.
334  *
335  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
336  * components: a time component which grows by 250000 every second; and
337  * a per-connection component which grows by 125000 for every new connections.
338  *
339  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
340  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
341  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
342  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
343  * password.
344  */
345 #define	ISS_INCR	250000
346 #define	ISS_NSEC_SHT	12
347 
348 static sin_t	sin_null;	/* Zero address for quick clears */
349 static sin6_t	sin6_null;	/* Zero address for quick clears */
350 
351 /*
352  * This implementation follows the 4.3BSD interpretation of the urgent
353  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
354  * incompatible changes in protocols like telnet and rlogin.
355  */
356 #define	TCP_OLD_URP_INTERPRETATION	1
357 
358 /*
359  * Since tcp_listener is not cleared atomically with tcp_detached
360  * being cleared we need this extra bit to tell a detached connection
361  * apart from one that is in the process of being accepted.
362  */
363 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
364 	(TCP_IS_DETACHED(tcp) &&	\
365 	    (!(tcp)->tcp_hard_binding))
366 
367 /*
368  * TCP reassembly macros.  We hide starting and ending sequence numbers in
369  * b_next and b_prev of messages on the reassembly queue.  The messages are
370  * chained using b_cont.  These macros are used in tcp_reass() so we don't
371  * have to see the ugly casts and assignments.
372  */
373 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
374 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
375 					(mblk_t *)(uintptr_t)(u))
376 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
377 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
378 					(mblk_t *)(uintptr_t)(u))
379 
380 /*
381  * Implementation of TCP Timers.
382  * =============================
383  *
384  * INTERFACE:
385  *
386  * There are two basic functions dealing with tcp timers:
387  *
388  *	timeout_id_t	tcp_timeout(connp, func, time)
389  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
390  *	TCP_TIMER_RESTART(tcp, intvl)
391  *
392  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
393  * after 'time' ticks passed. The function called by timeout() must adhere to
394  * the same restrictions as a driver soft interrupt handler - it must not sleep
395  * or call other functions that might sleep. The value returned is the opaque
396  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
397  * cancel the request. The call to tcp_timeout() may fail in which case it
398  * returns zero. This is different from the timeout(9F) function which never
399  * fails.
400  *
401  * The call-back function 'func' always receives 'connp' as its single
402  * argument. It is always executed in the squeue corresponding to the tcp
403  * structure. The tcp structure is guaranteed to be present at the time the
404  * call-back is called.
405  *
406  * NOTE: The call-back function 'func' is never called if tcp is in
407  * 	the TCPS_CLOSED state.
408  *
409  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
410  * request. locks acquired by the call-back routine should not be held across
411  * the call to tcp_timeout_cancel() or a deadlock may result.
412  *
413  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
414  * Otherwise, it returns an integer value greater than or equal to 0. In
415  * particular, if the call-back function is already placed on the squeue, it can
416  * not be canceled.
417  *
418  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
419  * 	within squeue context corresponding to the tcp instance. Since the
420  *	call-back is also called via the same squeue, there are no race
421  *	conditions described in untimeout(9F) manual page since all calls are
422  *	strictly serialized.
423  *
424  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
425  *	stored in tcp_timer_tid and starts a new one using
426  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
427  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
428  *	field.
429  *
430  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
431  *	call-back may still be called, so it is possible tcp_timer() will be
432  *	called several times. This should not be a problem since tcp_timer()
433  *	should always check the tcp instance state.
434  *
435  *
436  * IMPLEMENTATION:
437  *
438  * TCP timers are implemented using three-stage process. The call to
439  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
440  * when the timer expires. The tcp_timer_callback() arranges the call of the
441  * tcp_timer_handler() function via squeue corresponding to the tcp
442  * instance. The tcp_timer_handler() calls actual requested timeout call-back
443  * and passes tcp instance as an argument to it. Information is passed between
444  * stages using the tcp_timer_t structure which contains the connp pointer, the
445  * tcp call-back to call and the timeout id returned by the timeout(9F).
446  *
447  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
448  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
449  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
450  * returns the pointer to this mblk.
451  *
452  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
453  * looks like a normal mblk without actual dblk attached to it.
454  *
455  * To optimize performance each tcp instance holds a small cache of timer
456  * mblocks. In the current implementation it caches up to two timer mblocks per
457  * tcp instance. The cache is preserved over tcp frees and is only freed when
458  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
459  * timer processing happens on a corresponding squeue, the cache manipulation
460  * does not require any locks. Experiments show that majority of timer mblocks
461  * allocations are satisfied from the tcp cache and do not involve kmem calls.
462  *
463  * The tcp_timeout() places a refhold on the connp instance which guarantees
464  * that it will be present at the time the call-back function fires. The
465  * tcp_timer_handler() drops the reference after calling the call-back, so the
466  * call-back function does not need to manipulate the references explicitly.
467  */
468 
469 typedef struct tcp_timer_s {
470 	conn_t	*connp;
471 	void 	(*tcpt_proc)(void *);
472 	callout_id_t   tcpt_tid;
473 } tcp_timer_t;
474 
475 static kmem_cache_t *tcp_timercache;
476 kmem_cache_t	*tcp_sack_info_cache;
477 
478 /*
479  * For scalability, we must not run a timer for every TCP connection
480  * in TIME_WAIT state.  To see why, consider (for time wait interval of
481  * 4 minutes):
482  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
483  *
484  * This list is ordered by time, so you need only delete from the head
485  * until you get to entries which aren't old enough to delete yet.
486  * The list consists of only the detached TIME_WAIT connections.
487  *
488  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
489  * becomes detached TIME_WAIT (either by changing the state and already
490  * being detached or the other way around). This means that the TIME_WAIT
491  * state can be extended (up to doubled) if the connection doesn't become
492  * detached for a long time.
493  *
494  * The list manipulations (including tcp_time_wait_next/prev)
495  * are protected by the tcp_time_wait_lock. The content of the
496  * detached TIME_WAIT connections is protected by the normal perimeters.
497  *
498  * This list is per squeue and squeues are shared across the tcp_stack_t's.
499  * Things on tcp_time_wait_head remain associated with the tcp_stack_t
500  * and conn_netstack.
501  * The tcp_t's that are added to tcp_free_list are disassociated and
502  * have NULL tcp_tcps and conn_netstack pointers.
503  */
504 typedef struct tcp_squeue_priv_s {
505 	kmutex_t	tcp_time_wait_lock;
506 	callout_id_t	tcp_time_wait_tid;
507 	tcp_t		*tcp_time_wait_head;
508 	tcp_t		*tcp_time_wait_tail;
509 	tcp_t		*tcp_free_list;
510 	uint_t		tcp_free_list_cnt;
511 } tcp_squeue_priv_t;
512 
513 /*
514  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
515  * Running it every 5 seconds seems to give the best results.
516  */
517 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
518 
519 /*
520  * To prevent memory hog, limit the number of entries in tcp_free_list
521  * to 1% of available memory / number of cpus
522  */
523 uint_t tcp_free_list_max_cnt = 0;
524 
525 #define	TCP_XMIT_LOWATER	4096
526 #define	TCP_XMIT_HIWATER	49152
527 #define	TCP_RECV_LOWATER	2048
528 #define	TCP_RECV_HIWATER	49152
529 
530 /*
531  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
532  */
533 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
534 
535 #define	TIDUSZ	4096	/* transport interface data unit size */
536 
537 /*
538  * Bind hash list size and has function.  It has to be a power of 2 for
539  * hashing.
540  */
541 #define	TCP_BIND_FANOUT_SIZE	512
542 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
543 /*
544  * Size of listen and acceptor hash list.  It has to be a power of 2 for
545  * hashing.
546  */
547 #define	TCP_FANOUT_SIZE		256
548 
549 #ifdef	_ILP32
550 #define	TCP_ACCEPTOR_HASH(accid)					\
551 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
552 #else
553 #define	TCP_ACCEPTOR_HASH(accid)					\
554 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
555 #endif	/* _ILP32 */
556 
557 #define	IP_ADDR_CACHE_SIZE	2048
558 #define	IP_ADDR_CACHE_HASH(faddr)					\
559 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
560 
561 /*
562  * TCP options struct returned from tcp_parse_options.
563  */
564 typedef struct tcp_opt_s {
565 	uint32_t	tcp_opt_mss;
566 	uint32_t	tcp_opt_wscale;
567 	uint32_t	tcp_opt_ts_val;
568 	uint32_t	tcp_opt_ts_ecr;
569 	tcp_t		*tcp;
570 } tcp_opt_t;
571 
572 /*
573  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
574  */
575 
576 #ifdef _BIG_ENDIAN
577 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
578 	(TCPOPT_TSTAMP << 8) | 10)
579 #else
580 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
581 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
582 #endif
583 
584 /*
585  * Flags returned from tcp_parse_options.
586  */
587 #define	TCP_OPT_MSS_PRESENT	1
588 #define	TCP_OPT_WSCALE_PRESENT	2
589 #define	TCP_OPT_TSTAMP_PRESENT	4
590 #define	TCP_OPT_SACK_OK_PRESENT	8
591 #define	TCP_OPT_SACK_PRESENT	16
592 
593 /* TCP option length */
594 #define	TCPOPT_NOP_LEN		1
595 #define	TCPOPT_MAXSEG_LEN	4
596 #define	TCPOPT_WS_LEN		3
597 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
598 #define	TCPOPT_TSTAMP_LEN	10
599 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
600 #define	TCPOPT_SACK_OK_LEN	2
601 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
602 #define	TCPOPT_REAL_SACK_LEN	4
603 #define	TCPOPT_MAX_SACK_LEN	36
604 #define	TCPOPT_HEADER_LEN	2
605 
606 /* TCP cwnd burst factor. */
607 #define	TCP_CWND_INFINITE	65535
608 #define	TCP_CWND_SS		3
609 #define	TCP_CWND_NORMAL		5
610 
611 /* Maximum TCP initial cwin (start/restart). */
612 #define	TCP_MAX_INIT_CWND	8
613 
614 /*
615  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
616  * either tcp_slow_start_initial or tcp_slow_start_after idle
617  * depending on the caller.  If the upper layer has not used the
618  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
619  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
620  * If the upper layer has changed set the tcp_init_cwnd, just use
621  * it to calculate the tcp_cwnd.
622  */
623 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
624 {									\
625 	if ((tcp)->tcp_init_cwnd == 0) {				\
626 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
627 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
628 	} else {							\
629 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
630 	}								\
631 	tcp->tcp_cwnd_cnt = 0;						\
632 }
633 
634 /* TCP Timer control structure */
635 typedef struct tcpt_s {
636 	pfv_t	tcpt_pfv;	/* The routine we are to call */
637 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
638 } tcpt_t;
639 
640 /*
641  * Functions called directly via squeue having a prototype of edesc_t.
642  */
643 void		tcp_input_listener(void *arg, mblk_t *mp, void *arg2,
644     ip_recv_attr_t *ira);
645 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2,
646     ip_recv_attr_t *dummy);
647 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2,
648     ip_recv_attr_t *dummy);
649 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2,
650     ip_recv_attr_t *dummy);
651 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2,
652     ip_recv_attr_t *dummy);
653 void		tcp_input_data(void *arg, mblk_t *mp, void *arg2,
654     ip_recv_attr_t *ira);
655 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2,
656     ip_recv_attr_t *dummy);
657 void		tcp_output(void *arg, mblk_t *mp, void *arg2,
658     ip_recv_attr_t *dummy);
659 void		tcp_output_urgent(void *arg, mblk_t *mp, void *arg2,
660     ip_recv_attr_t *dummy);
661 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2,
662     ip_recv_attr_t *dummy);
663 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2,
664     ip_recv_attr_t *dummy);
665 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2,
666     ip_recv_attr_t *dummy);
667 
668 
669 /* Prototype for TCP functions */
670 static void	tcp_random_init(void);
671 int		tcp_random(void);
672 static void	tcp_tli_accept(tcp_t *tcp, mblk_t *mp);
673 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
674 		    tcp_t *eager);
675 static int	tcp_set_destination(tcp_t *tcp);
676 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
677     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
678     boolean_t user_specified);
679 static void	tcp_closei_local(tcp_t *tcp);
680 static void	tcp_close_detached(tcp_t *tcp);
681 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr,
682 		    mblk_t *idmp, mblk_t **defermp, ip_recv_attr_t *ira);
683 static void	tcp_tpi_connect(tcp_t *tcp, mblk_t *mp);
684 static int	tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp,
685 		    in_port_t dstport, uint_t srcid);
686 static int	tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp,
687 		    in_port_t dstport, uint32_t flowinfo,
688 		    uint_t srcid, uint32_t scope_id);
689 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
690 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
691 static char	*tcp_display(tcp_t *tcp, char *, char);
692 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
693 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
694 static void	tcp_eager_unlink(tcp_t *tcp);
695 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
696 		    int unixerr);
697 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
698 		    int tlierr, int unixerr);
699 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
700 		    cred_t *cr);
701 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
702 		    char *value, caddr_t cp, cred_t *cr);
703 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
704 		    char *value, caddr_t cp, cred_t *cr);
705 static int	tcp_tpistate(tcp_t *tcp);
706 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
707     int caller_holds_lock);
708 static void	tcp_bind_hash_remove(tcp_t *tcp);
709 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *);
710 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
711 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
712 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
713 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
714 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
715 static void	tcp_init_values(tcp_t *tcp);
716 static void	tcp_ip_notify(tcp_t *tcp);
717 static void	tcp_iss_init(tcp_t *tcp);
718 static void	tcp_keepalive_killer(void *arg);
719 static int	tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt);
720 static void	tcp_mss_set(tcp_t *tcp, uint32_t size);
721 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
722 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
723 static boolean_t tcp_allow_connopt_set(int level, int name);
724 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
725 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
726 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt,
727     tcp_stack_t *);
728 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
729 		    caddr_t cp, cred_t *cr);
730 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
731 		    caddr_t cp, cred_t *cr);
732 static void	tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *);
733 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
734 		    caddr_t cp, cred_t *cr);
735 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
736 static void	tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt);
737 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
738 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
739 static void	tcp_reinit(tcp_t *tcp);
740 static void	tcp_reinit_values(tcp_t *tcp);
741 
742 static uint_t	tcp_rwnd_reopen(tcp_t *tcp);
743 static uint_t	tcp_rcv_drain(tcp_t *tcp);
744 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
745 static boolean_t tcp_send_rst_chk(tcp_stack_t *);
746 static void	tcp_ss_rexmit(tcp_t *tcp);
747 static mblk_t	*tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp,
748     ip_recv_attr_t *);
749 static void	tcp_process_options(tcp_t *, tcpha_t *);
750 static void	tcp_rsrv(queue_t *q);
751 static int	tcp_snmp_state(tcp_t *tcp);
752 static void	tcp_timer(void *arg);
753 static void	tcp_timer_callback(void *);
754 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
755     boolean_t random);
756 static in_port_t tcp_get_next_priv_port(const tcp_t *);
757 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
758 static void	tcp_wput_fallback(queue_t *q, mblk_t *mp);
759 void		tcp_tpi_accept(queue_t *q, mblk_t *mp);
760 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
761 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
762 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
763 static int	tcp_send(tcp_t *tcp, const int mss,
764 		    const int total_hdr_len, const int tcp_hdr_len,
765 		    const int num_sack_blk, int *usable, uint_t *snxt,
766 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time);
767 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
768 		    int num_sack_blk);
769 static void	tcp_wsrv(queue_t *q);
770 static int	tcp_xmit_end(tcp_t *tcp);
771 static void	tcp_ack_timer(void *arg);
772 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
773 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
774 		    uint32_t seq, uint32_t ack, int ctl, ip_recv_attr_t *,
775 		    ip_stack_t *, conn_t *);
776 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
777 		    uint32_t ack, int ctl);
778 static void	tcp_set_rto(tcp_t *, time_t);
779 static void	tcp_icmp_input(void *, mblk_t *, void *, ip_recv_attr_t *);
780 static void	tcp_icmp_error_ipv6(tcp_t *, mblk_t *, ip_recv_attr_t *);
781 static boolean_t tcp_verifyicmp(conn_t *, void *, icmph_t *, icmp6_t *,
782     ip_recv_attr_t *);
783 static int	tcp_build_hdrs(tcp_t *);
784 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
785     uint32_t seg_seq, uint32_t seg_ack, int seg_len, tcpha_t *tcpha,
786     ip_recv_attr_t *ira);
787 boolean_t	tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp);
788 static boolean_t tcp_zcopy_check(tcp_t *);
789 static void	tcp_zcopy_notify(tcp_t *);
790 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, boolean_t);
791 static void	tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa);
792 static void	tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only);
793 static void	tcp_update_zcopy(tcp_t *tcp);
794 static void	tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t,
795     ixa_notify_arg_t);
796 static void	tcp_rexmit_after_error(tcp_t *tcp);
797 static void	tcp_send_data(tcp_t *, mblk_t *);
798 extern mblk_t	*tcp_timermp_alloc(int);
799 extern void	tcp_timermp_free(tcp_t *);
800 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
801 static void	tcp_stop_lingering(tcp_t *tcp);
802 static void	tcp_close_linger_timeout(void *arg);
803 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
804 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
805 static void	*tcp_g_kstat_init(tcp_g_stat_t *);
806 static void	tcp_g_kstat_fini(kstat_t *);
807 static void	*tcp_kstat_init(netstackid_t, tcp_stack_t *);
808 static void	tcp_kstat_fini(netstackid_t, kstat_t *);
809 static void	*tcp_kstat2_init(netstackid_t, tcp_stat_t *);
810 static void	tcp_kstat2_fini(netstackid_t, kstat_t *);
811 static int	tcp_kstat_update(kstat_t *kp, int rw);
812 static mblk_t	*tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
813     ip_recv_attr_t *ira);
814 static mblk_t	*tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp,
815     ip_recv_attr_t *ira);
816 static int	tcp_squeue_switch(int);
817 
818 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
819 static int	tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
820 static int	tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
821 static int	tcp_tpi_close(queue_t *, int);
822 static int	tcp_tpi_close_accept(queue_t *);
823 
824 static void	tcp_squeue_add(squeue_t *);
825 static void	tcp_setcred_data(mblk_t *, ip_recv_attr_t *);
826 
827 extern void	tcp_kssl_input(tcp_t *, mblk_t *, cred_t *);
828 
829 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy);
830 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2,
831     ip_recv_attr_t *dummy);
832 
833 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t,
834 	    sock_upper_handle_t, cred_t *);
835 static int tcp_listen(sock_lower_handle_t, int, cred_t *);
836 static int tcp_do_listen(conn_t *, struct sockaddr *, socklen_t, int, cred_t *,
837     boolean_t);
838 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t,
839     cred_t *, pid_t);
840 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *,
841     boolean_t);
842 static int tcp_do_unbind(conn_t *);
843 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *,
844     boolean_t);
845 
846 static void tcp_ulp_newconn(conn_t *, conn_t *, mblk_t *);
847 
848 /*
849  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
850  *
851  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
852  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
853  * (defined in tcp.h) needs to be filled in and passed into the kernel
854  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
855  * structure contains the four-tuple of a TCP connection and a range of TCP
856  * states (specified by ac_start and ac_end). The use of wildcard addresses
857  * and ports is allowed. Connections with a matching four tuple and a state
858  * within the specified range will be aborted. The valid states for the
859  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
860  * inclusive.
861  *
862  * An application which has its connection aborted by this ioctl will receive
863  * an error that is dependent on the connection state at the time of the abort.
864  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
865  * though a RST packet has been received.  If the connection state is equal to
866  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
867  * and all resources associated with the connection will be freed.
868  */
869 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
870 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
871 static void	tcp_ioctl_abort_handler(void *arg, mblk_t *mp, void *arg2,
872     ip_recv_attr_t *dummy);
873 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps);
874 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
875 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
876     boolean_t, tcp_stack_t *);
877 
878 static struct module_info tcp_rinfo =  {
879 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
880 };
881 
882 static struct module_info tcp_winfo =  {
883 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
884 };
885 
886 /*
887  * Entry points for TCP as a device. The normal case which supports
888  * the TCP functionality.
889  * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
890  */
891 struct qinit tcp_rinitv4 = {
892 	NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo
893 };
894 
895 struct qinit tcp_rinitv6 = {
896 	NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo
897 };
898 
899 struct qinit tcp_winit = {
900 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
901 };
902 
903 /* Initial entry point for TCP in socket mode. */
904 struct qinit tcp_sock_winit = {
905 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
906 };
907 
908 /* TCP entry point during fallback */
909 struct qinit tcp_fallback_sock_winit = {
910 	(pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo
911 };
912 
913 /*
914  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
915  * an accept. Avoid allocating data structures since eager has already
916  * been created.
917  */
918 struct qinit tcp_acceptor_rinit = {
919 	NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo
920 };
921 
922 struct qinit tcp_acceptor_winit = {
923 	(pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo
924 };
925 
926 /* For AF_INET aka /dev/tcp */
927 struct streamtab tcpinfov4 = {
928 	&tcp_rinitv4, &tcp_winit
929 };
930 
931 /* For AF_INET6 aka /dev/tcp6 */
932 struct streamtab tcpinfov6 = {
933 	&tcp_rinitv6, &tcp_winit
934 };
935 
936 sock_downcalls_t sock_tcp_downcalls;
937 
938 /* Setable only in /etc/system. Move to ndd? */
939 boolean_t tcp_icmp_source_quench = B_FALSE;
940 
941 /*
942  * Following assumes TPI alignment requirements stay along 32 bit
943  * boundaries
944  */
945 #define	ROUNDUP32(x) \
946 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
947 
948 /* Template for response to info request. */
949 static struct T_info_ack tcp_g_t_info_ack = {
950 	T_INFO_ACK,		/* PRIM_type */
951 	0,			/* TSDU_size */
952 	T_INFINITE,		/* ETSDU_size */
953 	T_INVALID,		/* CDATA_size */
954 	T_INVALID,		/* DDATA_size */
955 	sizeof (sin_t),		/* ADDR_size */
956 	0,			/* OPT_size - not initialized here */
957 	TIDUSZ,			/* TIDU_size */
958 	T_COTS_ORD,		/* SERV_type */
959 	TCPS_IDLE,		/* CURRENT_state */
960 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
961 };
962 
963 static struct T_info_ack tcp_g_t_info_ack_v6 = {
964 	T_INFO_ACK,		/* PRIM_type */
965 	0,			/* TSDU_size */
966 	T_INFINITE,		/* ETSDU_size */
967 	T_INVALID,		/* CDATA_size */
968 	T_INVALID,		/* DDATA_size */
969 	sizeof (sin6_t),	/* ADDR_size */
970 	0,			/* OPT_size - not initialized here */
971 	TIDUSZ,		/* TIDU_size */
972 	T_COTS_ORD,		/* SERV_type */
973 	TCPS_IDLE,		/* CURRENT_state */
974 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
975 };
976 
977 #define	MS	1L
978 #define	SECONDS	(1000 * MS)
979 #define	MINUTES	(60 * SECONDS)
980 #define	HOURS	(60 * MINUTES)
981 #define	DAYS	(24 * HOURS)
982 
983 #define	PARAM_MAX (~(uint32_t)0)
984 
985 /* Max size IP datagram is 64k - 1 */
986 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcpha_t)))
987 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcpha_t)))
988 /* Max of the above */
989 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
990 
991 /* Largest TCP port number */
992 #define	TCP_MAX_PORT	(64 * 1024 - 1)
993 
994 /*
995  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
996  * layer header.  It has to be a multiple of 4.
997  */
998 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
999 #define	tcps_wroff_xtra	tcps_wroff_xtra_param->tcp_param_val
1000 
1001 /*
1002  * All of these are alterable, within the min/max values given, at run time.
1003  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1004  * per the TCP spec.
1005  */
1006 /* BEGIN CSTYLED */
1007 static tcpparam_t	lcl_tcp_param_arr[] = {
1008  /*min		max		value		name */
1009  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1010  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1011  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1012  { 1,		1024,		1,		"tcp_conn_req_min" },
1013  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1014  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1015  { 0,		10,		0,		"tcp_debug" },
1016  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1017  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1018  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1019  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1020  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1021  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1022  { 1,		255,		64,		"tcp_ipv4_ttl"},
1023  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1024  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1025  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1026  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1027  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1028  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1029  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1030  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1031  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1032  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1033  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1034  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1035  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1036  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1037  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1038  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1039  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1040  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1041  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1042  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1043  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1044  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1045  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1046 /*
1047  * Question:  What default value should I set for tcp_strong_iss?
1048  */
1049  { 0,		2,		1,		"tcp_strong_iss"},
1050  { 0,		65536,		20,		"tcp_rtt_updates"},
1051  { 0,		1,		1,		"tcp_wscale_always"},
1052  { 0,		1,		0,		"tcp_tstamp_always"},
1053  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1054  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1055  { 0,		16,		2,		"tcp_deferred_acks_max"},
1056  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1057  { 1,		4,		4,		"tcp_slow_start_initial"},
1058  { 0,		2,		2,		"tcp_sack_permitted"},
1059  { 0,		1,		1,		"tcp_compression_enabled"},
1060  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1061  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1062  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1063  { 0,		1,		0,		"tcp_rev_src_routes"},
1064  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1065  { 0,		16,		8,		"tcp_local_dacks_max"},
1066  { 0,		2,		1,		"tcp_ecn_permitted"},
1067  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1068  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1069  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1070  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1071  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1072  { 0,		1,		0,		"tcp_dev_flow_ctl"},
1073 };
1074 /* END CSTYLED */
1075 
1076 /* Round up the value to the nearest mss. */
1077 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1078 
1079 /*
1080  * Set ECN capable transport (ECT) code point in IP header.
1081  *
1082  * Note that there are 2 ECT code points '01' and '10', which are called
1083  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1084  * point ECT(0) for TCP as described in RFC 2481.
1085  */
1086 #define	SET_ECT(tcp, iph) \
1087 	if ((tcp)->tcp_connp->conn_ipversion == IPV4_VERSION) { \
1088 		/* We need to clear the code point first. */ \
1089 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1090 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1091 	} else { \
1092 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1093 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1094 	}
1095 
1096 /*
1097  * The format argument to pass to tcp_display().
1098  * DISP_PORT_ONLY means that the returned string has only port info.
1099  * DISP_ADDR_AND_PORT means that the returned string also contains the
1100  * remote and local IP address.
1101  */
1102 #define	DISP_PORT_ONLY		1
1103 #define	DISP_ADDR_AND_PORT	2
1104 
1105 #define	IS_VMLOANED_MBLK(mp) \
1106 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1107 
1108 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1109 
1110 /*
1111  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
1112  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1113  * determined dynamically during tcp_set_destination(), which is the default.
1114  */
1115 boolean_t tcp_static_maxpsz = B_FALSE;
1116 
1117 /* Setable in /etc/system */
1118 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1119 uint32_t tcp_random_anon_port = 1;
1120 
1121 /*
1122  * To reach to an eager in Q0 which can be dropped due to an incoming
1123  * new SYN request when Q0 is full, a new doubly linked list is
1124  * introduced. This list allows to select an eager from Q0 in O(1) time.
1125  * This is needed to avoid spending too much time walking through the
1126  * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of
1127  * this new list has to be a member of Q0.
1128  * This list is headed by listener's tcp_t. When the list is empty,
1129  * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0,
1130  * of listener's tcp_t point to listener's tcp_t itself.
1131  *
1132  * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager
1133  * in the list. MAKE_UNDROPPABLE() takes the eager out of the list.
1134  * These macros do not affect the eager's membership to Q0.
1135  */
1136 
1137 
1138 #define	MAKE_DROPPABLE(listener, eager)					\
1139 	if ((eager)->tcp_eager_next_drop_q0 == NULL) {			\
1140 		(listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\
1141 		    = (eager);						\
1142 		(eager)->tcp_eager_prev_drop_q0 = (listener);		\
1143 		(eager)->tcp_eager_next_drop_q0 =			\
1144 		    (listener)->tcp_eager_next_drop_q0;			\
1145 		(listener)->tcp_eager_next_drop_q0 = (eager);		\
1146 	}
1147 
1148 #define	MAKE_UNDROPPABLE(eager)						\
1149 	if ((eager)->tcp_eager_next_drop_q0 != NULL) {			\
1150 		(eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0	\
1151 		    = (eager)->tcp_eager_prev_drop_q0;			\
1152 		(eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0	\
1153 		    = (eager)->tcp_eager_next_drop_q0;			\
1154 		(eager)->tcp_eager_prev_drop_q0 = NULL;			\
1155 		(eager)->tcp_eager_next_drop_q0 = NULL;			\
1156 	}
1157 
1158 /*
1159  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1160  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1161  * data, TCP will not respond with an ACK.  RFC 793 requires that
1162  * TCP responds with an ACK for such a bogus ACK.  By not following
1163  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1164  * an attacker successfully spoofs an acceptable segment to our
1165  * peer; or when our peer is "confused."
1166  */
1167 uint32_t tcp_drop_ack_unsent_cnt = 10;
1168 
1169 /*
1170  * Hook functions to enable cluster networking
1171  * On non-clustered systems these vectors must always be NULL.
1172  */
1173 
1174 void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol,
1175 			    sa_family_t addr_family, uint8_t *laddrp,
1176 			    in_port_t lport, void *args) = NULL;
1177 void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol,
1178 			    sa_family_t addr_family, uint8_t *laddrp,
1179 			    in_port_t lport, void *args) = NULL;
1180 
1181 int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol,
1182 			    boolean_t is_outgoing,
1183 			    sa_family_t addr_family,
1184 			    uint8_t *laddrp, in_port_t lport,
1185 			    uint8_t *faddrp, in_port_t fport,
1186 			    void *args) = NULL;
1187 void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol,
1188 			    sa_family_t addr_family, uint8_t *laddrp,
1189 			    in_port_t lport, uint8_t *faddrp,
1190 			    in_port_t fport, void *args) = NULL;
1191 
1192 
1193 /*
1194  * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err)
1195  */
1196 #define	CL_INET_CONNECT(connp, is_outgoing, err) {		\
1197 	(err) = 0;						\
1198 	if (cl_inet_connect2 != NULL) {				\
1199 		/*						\
1200 		 * Running in cluster mode - register active connection	\
1201 		 * information						\
1202 		 */							\
1203 		if ((connp)->conn_ipversion == IPV4_VERSION) {		\
1204 			if ((connp)->conn_laddr_v4 != 0) {		\
1205 				(err) = (*cl_inet_connect2)(		\
1206 				    (connp)->conn_netstack->netstack_stackid,\
1207 				    IPPROTO_TCP, is_outgoing, AF_INET,	\
1208 				    (uint8_t *)(&((connp)->conn_laddr_v4)),\
1209 				    (in_port_t)(connp)->conn_lport,	\
1210 				    (uint8_t *)(&((connp)->conn_faddr_v4)),\
1211 				    (in_port_t)(connp)->conn_fport, NULL); \
1212 			}						\
1213 		} else {						\
1214 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1215 			    &(connp)->conn_laddr_v6)) {			\
1216 				(err) = (*cl_inet_connect2)(		\
1217 				    (connp)->conn_netstack->netstack_stackid,\
1218 				    IPPROTO_TCP, is_outgoing, AF_INET6,	\
1219 				    (uint8_t *)(&((connp)->conn_laddr_v6)),\
1220 				    (in_port_t)(connp)->conn_lport,	\
1221 				    (uint8_t *)(&((connp)->conn_faddr_v6)), \
1222 				    (in_port_t)(connp)->conn_fport, NULL); \
1223 			}						\
1224 		}							\
1225 	}								\
1226 }
1227 
1228 #define	CL_INET_DISCONNECT(connp)	{				\
1229 	if (cl_inet_disconnect != NULL) {				\
1230 		/*							\
1231 		 * Running in cluster mode - deregister active		\
1232 		 * connection information				\
1233 		 */							\
1234 		if ((connp)->conn_ipversion == IPV4_VERSION) {		\
1235 			if ((connp)->conn_laddr_v4 != 0) {		\
1236 				(*cl_inet_disconnect)(			\
1237 				    (connp)->conn_netstack->netstack_stackid,\
1238 				    IPPROTO_TCP, AF_INET,		\
1239 				    (uint8_t *)(&((connp)->conn_laddr_v4)),\
1240 				    (in_port_t)(connp)->conn_lport,	\
1241 				    (uint8_t *)(&((connp)->conn_faddr_v4)),\
1242 				    (in_port_t)(connp)->conn_fport, NULL); \
1243 			}						\
1244 		} else {						\
1245 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1246 			    &(connp)->conn_laddr_v6)) {			\
1247 				(*cl_inet_disconnect)(			\
1248 				    (connp)->conn_netstack->netstack_stackid,\
1249 				    IPPROTO_TCP, AF_INET6,		\
1250 				    (uint8_t *)(&((connp)->conn_laddr_v6)),\
1251 				    (in_port_t)(connp)->conn_lport,	\
1252 				    (uint8_t *)(&((connp)->conn_faddr_v6)), \
1253 				    (in_port_t)(connp)->conn_fport, NULL); \
1254 			}						\
1255 		}							\
1256 	}								\
1257 }
1258 
1259 /*
1260  * Cluster networking hook for traversing current connection list.
1261  * This routine is used to extract the current list of live connections
1262  * which must continue to to be dispatched to this node.
1263  */
1264 int cl_tcp_walk_list(netstackid_t stack_id,
1265     int (*callback)(cl_tcp_info_t *, void *), void *arg);
1266 
1267 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *),
1268     void *arg, tcp_stack_t *tcps);
1269 
1270 static void
1271 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh)
1272 {
1273 	uint32_t default_threshold = SOCKET_RECVHIWATER >> 3;
1274 
1275 	if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
1276 		conn_t *connp = tcp->tcp_connp;
1277 		struct sock_proto_props sopp;
1278 
1279 		/*
1280 		 * only increase rcvthresh upto default_threshold
1281 		 */
1282 		if (new_rcvthresh > default_threshold)
1283 			new_rcvthresh = default_threshold;
1284 
1285 		sopp.sopp_flags = SOCKOPT_RCVTHRESH;
1286 		sopp.sopp_rcvthresh = new_rcvthresh;
1287 
1288 		(*connp->conn_upcalls->su_set_proto_props)
1289 		    (connp->conn_upper_handle, &sopp);
1290 	}
1291 }
1292 /*
1293  * Figure out the value of window scale opton.  Note that the rwnd is
1294  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1295  * We cannot find the scale value and then do a round up of tcp_rwnd
1296  * because the scale value may not be correct after that.
1297  *
1298  * Set the compiler flag to make this function inline.
1299  */
1300 static void
1301 tcp_set_ws_value(tcp_t *tcp)
1302 {
1303 	int i;
1304 	uint32_t rwnd = tcp->tcp_rwnd;
1305 
1306 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1307 	    i++, rwnd >>= 1)
1308 		;
1309 	tcp->tcp_rcv_ws = i;
1310 }
1311 
1312 /*
1313  * Remove a connection from the list of detached TIME_WAIT connections.
1314  * It returns B_FALSE if it can't remove the connection from the list
1315  * as the connection has already been removed from the list due to an
1316  * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE.
1317  */
1318 static boolean_t
1319 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1320 {
1321 	boolean_t	locked = B_FALSE;
1322 
1323 	if (tcp_time_wait == NULL) {
1324 		tcp_time_wait = *((tcp_squeue_priv_t **)
1325 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1326 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1327 		locked = B_TRUE;
1328 	} else {
1329 		ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock));
1330 	}
1331 
1332 	if (tcp->tcp_time_wait_expire == 0) {
1333 		ASSERT(tcp->tcp_time_wait_next == NULL);
1334 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1335 		if (locked)
1336 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1337 		return (B_FALSE);
1338 	}
1339 	ASSERT(TCP_IS_DETACHED(tcp));
1340 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1341 
1342 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1343 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1344 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1345 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1346 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1347 			    NULL;
1348 		} else {
1349 			tcp_time_wait->tcp_time_wait_tail = NULL;
1350 		}
1351 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1352 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1353 		ASSERT(tcp->tcp_time_wait_next == NULL);
1354 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1355 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1356 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1357 	} else {
1358 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1359 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1360 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1361 		    tcp->tcp_time_wait_next;
1362 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1363 		    tcp->tcp_time_wait_prev;
1364 	}
1365 	tcp->tcp_time_wait_next = NULL;
1366 	tcp->tcp_time_wait_prev = NULL;
1367 	tcp->tcp_time_wait_expire = 0;
1368 
1369 	if (locked)
1370 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1371 	return (B_TRUE);
1372 }
1373 
1374 /*
1375  * Add a connection to the list of detached TIME_WAIT connections
1376  * and set its time to expire.
1377  */
1378 static void
1379 tcp_time_wait_append(tcp_t *tcp)
1380 {
1381 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1382 	tcp_squeue_priv_t *tcp_time_wait =
1383 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1384 	    SQPRIVATE_TCP));
1385 
1386 	tcp_timers_stop(tcp);
1387 
1388 	/* Freed above */
1389 	ASSERT(tcp->tcp_timer_tid == 0);
1390 	ASSERT(tcp->tcp_ack_tid == 0);
1391 
1392 	/* must have happened at the time of detaching the tcp */
1393 	ASSERT(tcp->tcp_ptpahn == NULL);
1394 	ASSERT(tcp->tcp_flow_stopped == 0);
1395 	ASSERT(tcp->tcp_time_wait_next == NULL);
1396 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1397 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1398 	ASSERT(tcp->tcp_listener == NULL);
1399 
1400 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1401 	/*
1402 	 * The value computed below in tcp->tcp_time_wait_expire may
1403 	 * appear negative or wrap around. That is ok since our
1404 	 * interest is only in the difference between the current lbolt
1405 	 * value and tcp->tcp_time_wait_expire. But the value should not
1406 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1407 	 * The corresponding comparison in tcp_time_wait_collector() uses
1408 	 * modular arithmetic.
1409 	 */
1410 	tcp->tcp_time_wait_expire +=
1411 	    drv_usectohz(tcps->tcps_time_wait_interval * 1000);
1412 	if (tcp->tcp_time_wait_expire == 0)
1413 		tcp->tcp_time_wait_expire = 1;
1414 
1415 	ASSERT(TCP_IS_DETACHED(tcp));
1416 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1417 	ASSERT(tcp->tcp_time_wait_next == NULL);
1418 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1419 	TCP_DBGSTAT(tcps, tcp_time_wait);
1420 
1421 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1422 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1423 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1424 		tcp_time_wait->tcp_time_wait_head = tcp;
1425 	} else {
1426 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1427 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1428 		    TCPS_TIME_WAIT);
1429 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1430 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1431 	}
1432 	tcp_time_wait->tcp_time_wait_tail = tcp;
1433 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1434 }
1435 
1436 /* ARGSUSED */
1437 void
1438 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
1439 {
1440 	conn_t	*connp = (conn_t *)arg;
1441 	tcp_t	*tcp = connp->conn_tcp;
1442 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1443 
1444 	ASSERT(tcp != NULL);
1445 	if (tcp->tcp_state == TCPS_CLOSED) {
1446 		return;
1447 	}
1448 
1449 	ASSERT((connp->conn_family == AF_INET &&
1450 	    connp->conn_ipversion == IPV4_VERSION) ||
1451 	    (connp->conn_family == AF_INET6 &&
1452 	    (connp->conn_ipversion == IPV4_VERSION ||
1453 	    connp->conn_ipversion == IPV6_VERSION)));
1454 	ASSERT(!tcp->tcp_listener);
1455 
1456 	TCP_STAT(tcps, tcp_time_wait_reap);
1457 	ASSERT(TCP_IS_DETACHED(tcp));
1458 
1459 	/*
1460 	 * Because they have no upstream client to rebind or tcp_close()
1461 	 * them later, we axe the connection here and now.
1462 	 */
1463 	tcp_close_detached(tcp);
1464 }
1465 
1466 /*
1467  * Remove cached/latched IPsec references.
1468  */
1469 void
1470 tcp_ipsec_cleanup(tcp_t *tcp)
1471 {
1472 	conn_t		*connp = tcp->tcp_connp;
1473 
1474 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1475 
1476 	if (connp->conn_latch != NULL) {
1477 		IPLATCH_REFRELE(connp->conn_latch);
1478 		connp->conn_latch = NULL;
1479 	}
1480 	if (connp->conn_latch_in_policy != NULL) {
1481 		IPPOL_REFRELE(connp->conn_latch_in_policy);
1482 		connp->conn_latch_in_policy = NULL;
1483 	}
1484 	if (connp->conn_latch_in_action != NULL) {
1485 		IPACT_REFRELE(connp->conn_latch_in_action);
1486 		connp->conn_latch_in_action = NULL;
1487 	}
1488 	if (connp->conn_policy != NULL) {
1489 		IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
1490 		connp->conn_policy = NULL;
1491 	}
1492 }
1493 
1494 /*
1495  * Cleaup before placing on free list.
1496  * Disassociate from the netstack/tcp_stack_t since the freelist
1497  * is per squeue and not per netstack.
1498  */
1499 void
1500 tcp_cleanup(tcp_t *tcp)
1501 {
1502 	mblk_t		*mp;
1503 	tcp_sack_info_t	*tcp_sack_info;
1504 	conn_t		*connp = tcp->tcp_connp;
1505 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1506 	netstack_t	*ns = tcps->tcps_netstack;
1507 	mblk_t		*tcp_rsrv_mp;
1508 
1509 	tcp_bind_hash_remove(tcp);
1510 
1511 	/* Cleanup that which needs the netstack first */
1512 	tcp_ipsec_cleanup(tcp);
1513 	ixa_cleanup(connp->conn_ixa);
1514 
1515 	if (connp->conn_ht_iphc != NULL) {
1516 		kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
1517 		connp->conn_ht_iphc = NULL;
1518 		connp->conn_ht_iphc_allocated = 0;
1519 		connp->conn_ht_iphc_len = 0;
1520 		connp->conn_ht_ulp = NULL;
1521 		connp->conn_ht_ulp_len = 0;
1522 		tcp->tcp_ipha = NULL;
1523 		tcp->tcp_ip6h = NULL;
1524 		tcp->tcp_tcpha = NULL;
1525 	}
1526 
1527 	/* We clear any IP_OPTIONS and extension headers */
1528 	ip_pkt_free(&connp->conn_xmit_ipp);
1529 
1530 	tcp_free(tcp);
1531 
1532 	/* Release any SSL context */
1533 	if (tcp->tcp_kssl_ent != NULL) {
1534 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1535 		tcp->tcp_kssl_ent = NULL;
1536 	}
1537 
1538 	if (tcp->tcp_kssl_ctx != NULL) {
1539 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1540 		tcp->tcp_kssl_ctx = NULL;
1541 	}
1542 	tcp->tcp_kssl_pending = B_FALSE;
1543 
1544 	/*
1545 	 * Since we will bzero the entire structure, we need to
1546 	 * remove it and reinsert it in global hash list. We
1547 	 * know the walkers can't get to this conn because we
1548 	 * had set CONDEMNED flag earlier and checked reference
1549 	 * under conn_lock so walker won't pick it and when we
1550 	 * go the ipcl_globalhash_remove() below, no walker
1551 	 * can get to it.
1552 	 */
1553 	ipcl_globalhash_remove(connp);
1554 
1555 	/* Save some state */
1556 	mp = tcp->tcp_timercache;
1557 
1558 	tcp_sack_info = tcp->tcp_sack_info;
1559 	tcp_rsrv_mp = tcp->tcp_rsrv_mp;
1560 
1561 	if (connp->conn_cred != NULL) {
1562 		crfree(connp->conn_cred);
1563 		connp->conn_cred = NULL;
1564 	}
1565 	ipcl_conn_cleanup(connp);
1566 	connp->conn_flags = IPCL_TCPCONN;
1567 
1568 	/*
1569 	 * Now it is safe to decrement the reference counts.
1570 	 * This might be the last reference on the netstack
1571 	 * in which case it will cause the freeing of the IP Instance.
1572 	 */
1573 	connp->conn_netstack = NULL;
1574 	connp->conn_ixa->ixa_ipst = NULL;
1575 	netstack_rele(ns);
1576 	ASSERT(tcps != NULL);
1577 	tcp->tcp_tcps = NULL;
1578 
1579 	bzero(tcp, sizeof (tcp_t));
1580 
1581 	/* restore the state */
1582 	tcp->tcp_timercache = mp;
1583 
1584 	tcp->tcp_sack_info = tcp_sack_info;
1585 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
1586 
1587 	tcp->tcp_connp = connp;
1588 
1589 	ASSERT(connp->conn_tcp == tcp);
1590 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1591 	connp->conn_state_flags = CONN_INCIPIENT;
1592 	ASSERT(connp->conn_proto == IPPROTO_TCP);
1593 	ASSERT(connp->conn_ref == 1);
1594 }
1595 
1596 /*
1597  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1598  * is done forwards from the head.
1599  * This walks all stack instances since
1600  * tcp_time_wait remains global across all stacks.
1601  */
1602 /* ARGSUSED */
1603 void
1604 tcp_time_wait_collector(void *arg)
1605 {
1606 	tcp_t *tcp;
1607 	clock_t now;
1608 	mblk_t *mp;
1609 	conn_t *connp;
1610 	kmutex_t *lock;
1611 	boolean_t removed;
1612 
1613 	squeue_t *sqp = (squeue_t *)arg;
1614 	tcp_squeue_priv_t *tcp_time_wait =
1615 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1616 
1617 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1618 	tcp_time_wait->tcp_time_wait_tid = 0;
1619 
1620 	if (tcp_time_wait->tcp_free_list != NULL &&
1621 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1622 		TCP_G_STAT(tcp_freelist_cleanup);
1623 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1624 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1625 			tcp->tcp_time_wait_next = NULL;
1626 			tcp_time_wait->tcp_free_list_cnt--;
1627 			ASSERT(tcp->tcp_tcps == NULL);
1628 			CONN_DEC_REF(tcp->tcp_connp);
1629 		}
1630 		ASSERT(tcp_time_wait->tcp_free_list_cnt == 0);
1631 	}
1632 
1633 	/*
1634 	 * In order to reap time waits reliably, we should use a
1635 	 * source of time that is not adjustable by the user -- hence
1636 	 * the call to ddi_get_lbolt().
1637 	 */
1638 	now = ddi_get_lbolt();
1639 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1640 		/*
1641 		 * Compare times using modular arithmetic, since
1642 		 * lbolt can wrapover.
1643 		 */
1644 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1645 			break;
1646 		}
1647 
1648 		removed = tcp_time_wait_remove(tcp, tcp_time_wait);
1649 		ASSERT(removed);
1650 
1651 		connp = tcp->tcp_connp;
1652 		ASSERT(connp->conn_fanout != NULL);
1653 		lock = &connp->conn_fanout->connf_lock;
1654 		/*
1655 		 * This is essentially a TW reclaim fast path optimization for
1656 		 * performance where the timewait collector checks under the
1657 		 * fanout lock (so that no one else can get access to the
1658 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1659 		 * the classifier hash list. If ref count is indeed 2, we can
1660 		 * just remove the conn under the fanout lock and avoid
1661 		 * cleaning up the conn under the squeue, provided that
1662 		 * clustering callbacks are not enabled. If clustering is
1663 		 * enabled, we need to make the clustering callback before
1664 		 * setting the CONDEMNED flag and after dropping all locks and
1665 		 * so we forego this optimization and fall back to the slow
1666 		 * path. Also please see the comments in tcp_closei_local
1667 		 * regarding the refcnt logic.
1668 		 *
1669 		 * Since we are holding the tcp_time_wait_lock, its better
1670 		 * not to block on the fanout_lock because other connections
1671 		 * can't add themselves to time_wait list. So we do a
1672 		 * tryenter instead of mutex_enter.
1673 		 */
1674 		if (mutex_tryenter(lock)) {
1675 			mutex_enter(&connp->conn_lock);
1676 			if ((connp->conn_ref == 2) &&
1677 			    (cl_inet_disconnect == NULL)) {
1678 				ipcl_hash_remove_locked(connp,
1679 				    connp->conn_fanout);
1680 				/*
1681 				 * Set the CONDEMNED flag now itself so that
1682 				 * the refcnt cannot increase due to any
1683 				 * walker.
1684 				 */
1685 				connp->conn_state_flags |= CONN_CONDEMNED;
1686 				mutex_exit(lock);
1687 				mutex_exit(&connp->conn_lock);
1688 				if (tcp_time_wait->tcp_free_list_cnt <
1689 				    tcp_free_list_max_cnt) {
1690 					/* Add to head of tcp_free_list */
1691 					mutex_exit(
1692 					    &tcp_time_wait->tcp_time_wait_lock);
1693 					tcp_cleanup(tcp);
1694 					ASSERT(connp->conn_latch == NULL);
1695 					ASSERT(connp->conn_policy == NULL);
1696 					ASSERT(tcp->tcp_tcps == NULL);
1697 					ASSERT(connp->conn_netstack == NULL);
1698 
1699 					mutex_enter(
1700 					    &tcp_time_wait->tcp_time_wait_lock);
1701 					tcp->tcp_time_wait_next =
1702 					    tcp_time_wait->tcp_free_list;
1703 					tcp_time_wait->tcp_free_list = tcp;
1704 					tcp_time_wait->tcp_free_list_cnt++;
1705 					continue;
1706 				} else {
1707 					/* Do not add to tcp_free_list */
1708 					mutex_exit(
1709 					    &tcp_time_wait->tcp_time_wait_lock);
1710 					tcp_bind_hash_remove(tcp);
1711 					ixa_cleanup(tcp->tcp_connp->conn_ixa);
1712 					tcp_ipsec_cleanup(tcp);
1713 					CONN_DEC_REF(tcp->tcp_connp);
1714 				}
1715 			} else {
1716 				CONN_INC_REF_LOCKED(connp);
1717 				mutex_exit(lock);
1718 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1719 				mutex_exit(&connp->conn_lock);
1720 				/*
1721 				 * We can reuse the closemp here since conn has
1722 				 * detached (otherwise we wouldn't even be in
1723 				 * time_wait list). tcp_closemp_used can safely
1724 				 * be changed without taking a lock as no other
1725 				 * thread can concurrently access it at this
1726 				 * point in the connection lifecycle.
1727 				 */
1728 
1729 				if (tcp->tcp_closemp.b_prev == NULL)
1730 					tcp->tcp_closemp_used = B_TRUE;
1731 				else
1732 					cmn_err(CE_PANIC,
1733 					    "tcp_timewait_collector: "
1734 					    "concurrent use of tcp_closemp: "
1735 					    "connp %p tcp %p\n", (void *)connp,
1736 					    (void *)tcp);
1737 
1738 				TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1739 				mp = &tcp->tcp_closemp;
1740 				SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
1741 				    tcp_timewait_output, connp, NULL,
1742 				    SQ_FILL, SQTAG_TCP_TIMEWAIT);
1743 			}
1744 		} else {
1745 			mutex_enter(&connp->conn_lock);
1746 			CONN_INC_REF_LOCKED(connp);
1747 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1748 			mutex_exit(&connp->conn_lock);
1749 			/*
1750 			 * We can reuse the closemp here since conn has
1751 			 * detached (otherwise we wouldn't even be in
1752 			 * time_wait list). tcp_closemp_used can safely
1753 			 * be changed without taking a lock as no other
1754 			 * thread can concurrently access it at this
1755 			 * point in the connection lifecycle.
1756 			 */
1757 
1758 			if (tcp->tcp_closemp.b_prev == NULL)
1759 				tcp->tcp_closemp_used = B_TRUE;
1760 			else
1761 				cmn_err(CE_PANIC, "tcp_timewait_collector: "
1762 				    "concurrent use of tcp_closemp: "
1763 				    "connp %p tcp %p\n", (void *)connp,
1764 				    (void *)tcp);
1765 
1766 			TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1767 			mp = &tcp->tcp_closemp;
1768 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
1769 			    tcp_timewait_output, connp, NULL,
1770 			    SQ_FILL, SQTAG_TCP_TIMEWAIT);
1771 		}
1772 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1773 	}
1774 
1775 	if (tcp_time_wait->tcp_free_list != NULL)
1776 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1777 
1778 	tcp_time_wait->tcp_time_wait_tid =
1779 	    timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp,
1780 	    TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION,
1781 	    CALLOUT_FLAG_ROUNDUP);
1782 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1783 }
1784 
1785 /*
1786  * Reply to a clients T_CONN_RES TPI message. This function
1787  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1788  * on the acceptor STREAM and processed in tcp_accept_common().
1789  * Read the block comment on top of tcp_input_listener().
1790  */
1791 static void
1792 tcp_tli_accept(tcp_t *listener, mblk_t *mp)
1793 {
1794 	tcp_t		*acceptor;
1795 	tcp_t		*eager;
1796 	tcp_t   	*tcp;
1797 	struct T_conn_res	*tcr;
1798 	t_uscalar_t	acceptor_id;
1799 	t_scalar_t	seqnum;
1800 	mblk_t		*discon_mp = NULL;
1801 	mblk_t		*ok_mp;
1802 	mblk_t		*mp1;
1803 	tcp_stack_t	*tcps = listener->tcp_tcps;
1804 	conn_t		*econnp;
1805 
1806 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
1807 		tcp_err_ack(listener, mp, TPROTO, 0);
1808 		return;
1809 	}
1810 	tcr = (struct T_conn_res *)mp->b_rptr;
1811 
1812 	/*
1813 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
1814 	 * read side queue of the streams device underneath us i.e. the
1815 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
1816 	 * look it up in the queue_hash.  Under LP64 it sends down the
1817 	 * minor_t of the accepting endpoint.
1818 	 *
1819 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
1820 	 * fanout hash lock is held.
1821 	 * This prevents any thread from entering the acceptor queue from
1822 	 * below (since it has not been hard bound yet i.e. any inbound
1823 	 * packets will arrive on the listener conn_t and
1824 	 * go through the classifier).
1825 	 * The CONN_INC_REF will prevent the acceptor from closing.
1826 	 *
1827 	 * XXX It is still possible for a tli application to send down data
1828 	 * on the accepting stream while another thread calls t_accept.
1829 	 * This should not be a problem for well-behaved applications since
1830 	 * the T_OK_ACK is sent after the queue swapping is completed.
1831 	 *
1832 	 * If the accepting fd is the same as the listening fd, avoid
1833 	 * queue hash lookup since that will return an eager listener in a
1834 	 * already established state.
1835 	 */
1836 	acceptor_id = tcr->ACCEPTOR_id;
1837 	mutex_enter(&listener->tcp_eager_lock);
1838 	if (listener->tcp_acceptor_id == acceptor_id) {
1839 		eager = listener->tcp_eager_next_q;
1840 		/* only count how many T_CONN_INDs so don't count q0 */
1841 		if ((listener->tcp_conn_req_cnt_q != 1) ||
1842 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
1843 			mutex_exit(&listener->tcp_eager_lock);
1844 			tcp_err_ack(listener, mp, TBADF, 0);
1845 			return;
1846 		}
1847 		if (listener->tcp_conn_req_cnt_q0 != 0) {
1848 			/* Throw away all the eagers on q0. */
1849 			tcp_eager_cleanup(listener, 1);
1850 		}
1851 		if (listener->tcp_syn_defense) {
1852 			listener->tcp_syn_defense = B_FALSE;
1853 			if (listener->tcp_ip_addr_cache != NULL) {
1854 				kmem_free(listener->tcp_ip_addr_cache,
1855 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1856 				listener->tcp_ip_addr_cache = NULL;
1857 			}
1858 		}
1859 		/*
1860 		 * Transfer tcp_conn_req_max to the eager so that when
1861 		 * a disconnect occurs we can revert the endpoint to the
1862 		 * listen state.
1863 		 */
1864 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
1865 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
1866 		/*
1867 		 * Get a reference on the acceptor just like the
1868 		 * tcp_acceptor_hash_lookup below.
1869 		 */
1870 		acceptor = listener;
1871 		CONN_INC_REF(acceptor->tcp_connp);
1872 	} else {
1873 		acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps);
1874 		if (acceptor == NULL) {
1875 			if (listener->tcp_connp->conn_debug) {
1876 				(void) strlog(TCP_MOD_ID, 0, 1,
1877 				    SL_ERROR|SL_TRACE,
1878 				    "tcp_accept: did not find acceptor 0x%x\n",
1879 				    acceptor_id);
1880 			}
1881 			mutex_exit(&listener->tcp_eager_lock);
1882 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
1883 			return;
1884 		}
1885 		/*
1886 		 * Verify acceptor state. The acceptable states for an acceptor
1887 		 * include TCPS_IDLE and TCPS_BOUND.
1888 		 */
1889 		switch (acceptor->tcp_state) {
1890 		case TCPS_IDLE:
1891 			/* FALLTHRU */
1892 		case TCPS_BOUND:
1893 			break;
1894 		default:
1895 			CONN_DEC_REF(acceptor->tcp_connp);
1896 			mutex_exit(&listener->tcp_eager_lock);
1897 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
1898 			return;
1899 		}
1900 	}
1901 
1902 	/* The listener must be in TCPS_LISTEN */
1903 	if (listener->tcp_state != TCPS_LISTEN) {
1904 		CONN_DEC_REF(acceptor->tcp_connp);
1905 		mutex_exit(&listener->tcp_eager_lock);
1906 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
1907 		return;
1908 	}
1909 
1910 	/*
1911 	 * Rendezvous with an eager connection request packet hanging off
1912 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
1913 	 * tcp structure when the connection packet arrived in
1914 	 * tcp_input_listener().
1915 	 */
1916 	seqnum = tcr->SEQ_number;
1917 	eager = listener;
1918 	do {
1919 		eager = eager->tcp_eager_next_q;
1920 		if (eager == NULL) {
1921 			CONN_DEC_REF(acceptor->tcp_connp);
1922 			mutex_exit(&listener->tcp_eager_lock);
1923 			tcp_err_ack(listener, mp, TBADSEQ, 0);
1924 			return;
1925 		}
1926 	} while (eager->tcp_conn_req_seqnum != seqnum);
1927 	mutex_exit(&listener->tcp_eager_lock);
1928 
1929 	/*
1930 	 * At this point, both acceptor and listener have 2 ref
1931 	 * that they begin with. Acceptor has one additional ref
1932 	 * we placed in lookup while listener has 3 additional
1933 	 * ref for being behind the squeue (tcp_accept() is
1934 	 * done on listener's squeue); being in classifier hash;
1935 	 * and eager's ref on listener.
1936 	 */
1937 	ASSERT(listener->tcp_connp->conn_ref >= 5);
1938 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
1939 
1940 	/*
1941 	 * The eager at this point is set in its own squeue and
1942 	 * could easily have been killed (tcp_accept_finish will
1943 	 * deal with that) because of a TH_RST so we can only
1944 	 * ASSERT for a single ref.
1945 	 */
1946 	ASSERT(eager->tcp_connp->conn_ref >= 1);
1947 
1948 	/*
1949 	 * Pre allocate the discon_ind mblk also. tcp_accept_finish will
1950 	 * use it if something failed.
1951 	 */
1952 	discon_mp = allocb(MAX(sizeof (struct T_discon_ind),
1953 	    sizeof (struct stroptions)), BPRI_HI);
1954 	if (discon_mp == NULL) {
1955 		CONN_DEC_REF(acceptor->tcp_connp);
1956 		CONN_DEC_REF(eager->tcp_connp);
1957 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
1958 		return;
1959 	}
1960 
1961 	econnp = eager->tcp_connp;
1962 
1963 	/* Hold a copy of mp, in case reallocb fails */
1964 	if ((mp1 = copymsg(mp)) == NULL) {
1965 		CONN_DEC_REF(acceptor->tcp_connp);
1966 		CONN_DEC_REF(eager->tcp_connp);
1967 		freemsg(discon_mp);
1968 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
1969 		return;
1970 	}
1971 
1972 	tcr = (struct T_conn_res *)mp1->b_rptr;
1973 
1974 	/*
1975 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
1976 	 * which allocates a larger mblk and appends the new
1977 	 * local address to the ok_ack.  The address is copied by
1978 	 * soaccept() for getsockname().
1979 	 */
1980 	{
1981 		int extra;
1982 
1983 		extra = (econnp->conn_family == AF_INET) ?
1984 		    sizeof (sin_t) : sizeof (sin6_t);
1985 
1986 		/*
1987 		 * Try to re-use mp, if possible.  Otherwise, allocate
1988 		 * an mblk and return it as ok_mp.  In any case, mp
1989 		 * is no longer usable upon return.
1990 		 */
1991 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
1992 			CONN_DEC_REF(acceptor->tcp_connp);
1993 			CONN_DEC_REF(eager->tcp_connp);
1994 			freemsg(discon_mp);
1995 			/* Original mp has been freed by now, so use mp1 */
1996 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
1997 			return;
1998 		}
1999 
2000 		mp = NULL;	/* We should never use mp after this point */
2001 
2002 		switch (extra) {
2003 		case sizeof (sin_t): {
2004 			sin_t *sin = (sin_t *)ok_mp->b_wptr;
2005 
2006 			ok_mp->b_wptr += extra;
2007 			sin->sin_family = AF_INET;
2008 			sin->sin_port = econnp->conn_lport;
2009 			sin->sin_addr.s_addr = econnp->conn_laddr_v4;
2010 			break;
2011 		}
2012 		case sizeof (sin6_t): {
2013 			sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2014 
2015 			ok_mp->b_wptr += extra;
2016 			sin6->sin6_family = AF_INET6;
2017 			sin6->sin6_port = econnp->conn_lport;
2018 			sin6->sin6_addr = econnp->conn_laddr_v6;
2019 			sin6->sin6_flowinfo = econnp->conn_flowinfo;
2020 			if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6) &&
2021 			    (econnp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)) {
2022 				sin6->sin6_scope_id =
2023 				    econnp->conn_ixa->ixa_scopeid;
2024 			} else {
2025 				sin6->sin6_scope_id = 0;
2026 			}
2027 			sin6->__sin6_src_id = 0;
2028 			break;
2029 		}
2030 		default:
2031 			break;
2032 		}
2033 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2034 	}
2035 
2036 	/*
2037 	 * If there are no options we know that the T_CONN_RES will
2038 	 * succeed. However, we can't send the T_OK_ACK upstream until
2039 	 * the tcp_accept_swap is done since it would be dangerous to
2040 	 * let the application start using the new fd prior to the swap.
2041 	 */
2042 	tcp_accept_swap(listener, acceptor, eager);
2043 
2044 	/*
2045 	 * tcp_accept_swap unlinks eager from listener but does not drop
2046 	 * the eager's reference on the listener.
2047 	 */
2048 	ASSERT(eager->tcp_listener == NULL);
2049 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2050 
2051 	/*
2052 	 * The eager is now associated with its own queue. Insert in
2053 	 * the hash so that the connection can be reused for a future
2054 	 * T_CONN_RES.
2055 	 */
2056 	tcp_acceptor_hash_insert(acceptor_id, eager);
2057 
2058 	/*
2059 	 * We now do the processing of options with T_CONN_RES.
2060 	 * We delay till now since we wanted to have queue to pass to
2061 	 * option processing routines that points back to the right
2062 	 * instance structure which does not happen until after
2063 	 * tcp_accept_swap().
2064 	 *
2065 	 * Note:
2066 	 * The sanity of the logic here assumes that whatever options
2067 	 * are appropriate to inherit from listner=>eager are done
2068 	 * before this point, and whatever were to be overridden (or not)
2069 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2070 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2071 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2072 	 * This may not be true at this point in time but can be fixed
2073 	 * independently. This option processing code starts with
2074 	 * the instantiated acceptor instance and the final queue at
2075 	 * this point.
2076 	 */
2077 
2078 	if (tcr->OPT_length != 0) {
2079 		/* Options to process */
2080 		int t_error = 0;
2081 		int sys_error = 0;
2082 		int do_disconnect = 0;
2083 
2084 		if (tcp_conprim_opt_process(eager, mp1,
2085 		    &do_disconnect, &t_error, &sys_error) < 0) {
2086 			eager->tcp_accept_error = 1;
2087 			if (do_disconnect) {
2088 				/*
2089 				 * An option failed which does not allow
2090 				 * connection to be accepted.
2091 				 *
2092 				 * We allow T_CONN_RES to succeed and
2093 				 * put a T_DISCON_IND on the eager queue.
2094 				 */
2095 				ASSERT(t_error == 0 && sys_error == 0);
2096 				eager->tcp_send_discon_ind = 1;
2097 			} else {
2098 				ASSERT(t_error != 0);
2099 				freemsg(ok_mp);
2100 				/*
2101 				 * Original mp was either freed or set
2102 				 * to ok_mp above, so use mp1 instead.
2103 				 */
2104 				tcp_err_ack(listener, mp1, t_error, sys_error);
2105 				goto finish;
2106 			}
2107 		}
2108 		/*
2109 		 * Most likely success in setting options (except if
2110 		 * eager->tcp_send_discon_ind set).
2111 		 * mp1 option buffer represented by OPT_length/offset
2112 		 * potentially modified and contains results of setting
2113 		 * options at this point
2114 		 */
2115 	}
2116 
2117 	/* We no longer need mp1, since all options processing has passed */
2118 	freemsg(mp1);
2119 
2120 	putnext(listener->tcp_connp->conn_rq, ok_mp);
2121 
2122 	mutex_enter(&listener->tcp_eager_lock);
2123 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2124 		tcp_t	*tail;
2125 		mblk_t	*conn_ind;
2126 
2127 		/*
2128 		 * This path should not be executed if listener and
2129 		 * acceptor streams are the same.
2130 		 */
2131 		ASSERT(listener != acceptor);
2132 
2133 		tcp = listener->tcp_eager_prev_q0;
2134 		/*
2135 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2136 		 * deferred T_conn_ind queue. We need to get to the head of
2137 		 * the queue in order to send up T_conn_ind the same order as
2138 		 * how the 3WHS is completed.
2139 		 */
2140 		while (tcp != listener) {
2141 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2142 				break;
2143 			else
2144 				tcp = tcp->tcp_eager_prev_q0;
2145 		}
2146 		ASSERT(tcp != listener);
2147 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2148 		ASSERT(conn_ind != NULL);
2149 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2150 
2151 		/* Move from q0 to q */
2152 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2153 		listener->tcp_conn_req_cnt_q0--;
2154 		listener->tcp_conn_req_cnt_q++;
2155 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2156 		    tcp->tcp_eager_prev_q0;
2157 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2158 		    tcp->tcp_eager_next_q0;
2159 		tcp->tcp_eager_prev_q0 = NULL;
2160 		tcp->tcp_eager_next_q0 = NULL;
2161 		tcp->tcp_conn_def_q0 = B_FALSE;
2162 
2163 		/* Make sure the tcp isn't in the list of droppables */
2164 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
2165 		    tcp->tcp_eager_prev_drop_q0 == NULL);
2166 
2167 		/*
2168 		 * Insert at end of the queue because sockfs sends
2169 		 * down T_CONN_RES in chronological order. Leaving
2170 		 * the older conn indications at front of the queue
2171 		 * helps reducing search time.
2172 		 */
2173 		tail = listener->tcp_eager_last_q;
2174 		if (tail != NULL)
2175 			tail->tcp_eager_next_q = tcp;
2176 		else
2177 			listener->tcp_eager_next_q = tcp;
2178 		listener->tcp_eager_last_q = tcp;
2179 		tcp->tcp_eager_next_q = NULL;
2180 		mutex_exit(&listener->tcp_eager_lock);
2181 		putnext(tcp->tcp_connp->conn_rq, conn_ind);
2182 	} else {
2183 		mutex_exit(&listener->tcp_eager_lock);
2184 	}
2185 
2186 	/*
2187 	 * Done with the acceptor - free it
2188 	 *
2189 	 * Note: from this point on, no access to listener should be made
2190 	 * as listener can be equal to acceptor.
2191 	 */
2192 finish:
2193 	ASSERT(acceptor->tcp_detached);
2194 	acceptor->tcp_connp->conn_rq = NULL;
2195 	ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp));
2196 	acceptor->tcp_connp->conn_wq = NULL;
2197 	(void) tcp_clean_death(acceptor, 0, 2);
2198 	CONN_DEC_REF(acceptor->tcp_connp);
2199 
2200 	/*
2201 	 * We pass discon_mp to tcp_accept_finish to get on the right squeue.
2202 	 *
2203 	 * It will update the setting for sockfs/stream head and also take
2204 	 * care of any data that arrived before accept() wad called.
2205 	 * In case we already received a FIN then tcp_accept_finish will send up
2206 	 * the ordrel. It will also send up a window update if the window
2207 	 * has opened up.
2208 	 */
2209 
2210 	/*
2211 	 * XXX: we currently have a problem if XTI application closes the
2212 	 * acceptor stream in between. This problem exists in on10-gate also
2213 	 * and is well know but nothing can be done short of major rewrite
2214 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2215 	 * eager same squeue as listener (we can distinguish non socket
2216 	 * listeners at the time of handling a SYN in tcp_input_listener)
2217 	 * and do most of the work that tcp_accept_finish does here itself
2218 	 * and then get behind the acceptor squeue to access the acceptor
2219 	 * queue.
2220 	 */
2221 	/*
2222 	 * We already have a ref on tcp so no need to do one before squeue_enter
2223 	 */
2224 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, discon_mp,
2225 	    tcp_accept_finish, eager->tcp_connp, NULL, SQ_FILL,
2226 	    SQTAG_TCP_ACCEPT_FINISH);
2227 }
2228 
2229 /*
2230  * Swap information between the eager and acceptor for a TLI/XTI client.
2231  * The sockfs accept is done on the acceptor stream and control goes
2232  * through tcp_tli_accept() and tcp_accept()/tcp_accept_swap() is not
2233  * called. In either case, both the eager and listener are in their own
2234  * perimeter (squeue) and the code has to deal with potential race.
2235  *
2236  * See the block comment on top of tcp_accept() and tcp_tli_accept().
2237  */
2238 static void
2239 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2240 {
2241 	conn_t	*econnp, *aconnp;
2242 
2243 	ASSERT(eager->tcp_connp->conn_rq == listener->tcp_connp->conn_rq);
2244 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2245 	ASSERT(!TCP_IS_SOCKET(acceptor));
2246 	ASSERT(!TCP_IS_SOCKET(eager));
2247 	ASSERT(!TCP_IS_SOCKET(listener));
2248 
2249 	/*
2250 	 * Trusted Extensions may need to use a security label that is
2251 	 * different from the acceptor's label on MLP and MAC-Exempt
2252 	 * sockets. If this is the case, the required security label
2253 	 * already exists in econnp->conn_ixa->ixa_tsl. Since we make the
2254 	 * acceptor stream refer to econnp we atomatically get that label.
2255 	 */
2256 
2257 	acceptor->tcp_detached = B_TRUE;
2258 	/*
2259 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2260 	 * the acceptor id.
2261 	 */
2262 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2263 
2264 	/* remove eager from listen list... */
2265 	mutex_enter(&listener->tcp_eager_lock);
2266 	tcp_eager_unlink(eager);
2267 	ASSERT(eager->tcp_eager_next_q == NULL &&
2268 	    eager->tcp_eager_last_q == NULL);
2269 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2270 	    eager->tcp_eager_prev_q0 == NULL);
2271 	mutex_exit(&listener->tcp_eager_lock);
2272 
2273 	econnp = eager->tcp_connp;
2274 	aconnp = acceptor->tcp_connp;
2275 	econnp->conn_rq = aconnp->conn_rq;
2276 	econnp->conn_wq = aconnp->conn_wq;
2277 	econnp->conn_rq->q_ptr = econnp;
2278 	econnp->conn_wq->q_ptr = econnp;
2279 
2280 	/*
2281 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2282 	 * which might be a different squeue from our peer TCP instance.
2283 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2284 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2285 	 * membar_producer() to ensure that the assignments of conn_rq/conn_wq
2286 	 * above reach global visibility prior to the clearing of tcp_detached.
2287 	 */
2288 	membar_producer();
2289 	eager->tcp_detached = B_FALSE;
2290 
2291 	ASSERT(eager->tcp_ack_tid == 0);
2292 
2293 	econnp->conn_dev = aconnp->conn_dev;
2294 	econnp->conn_minor_arena = aconnp->conn_minor_arena;
2295 
2296 	ASSERT(econnp->conn_minor_arena != NULL);
2297 	if (econnp->conn_cred != NULL)
2298 		crfree(econnp->conn_cred);
2299 	econnp->conn_cred = aconnp->conn_cred;
2300 	aconnp->conn_cred = NULL;
2301 	econnp->conn_cpid = aconnp->conn_cpid;
2302 	ASSERT(econnp->conn_netstack == aconnp->conn_netstack);
2303 	ASSERT(eager->tcp_tcps == acceptor->tcp_tcps);
2304 
2305 	econnp->conn_zoneid = aconnp->conn_zoneid;
2306 	econnp->conn_allzones = aconnp->conn_allzones;
2307 	econnp->conn_ixa->ixa_zoneid = aconnp->conn_ixa->ixa_zoneid;
2308 
2309 	econnp->conn_mac_mode = aconnp->conn_mac_mode;
2310 	econnp->conn_zone_is_global = aconnp->conn_zone_is_global;
2311 	aconnp->conn_mac_mode = CONN_MAC_DEFAULT;
2312 
2313 	/* Do the IPC initialization */
2314 	CONN_INC_REF(econnp);
2315 
2316 	econnp->conn_family = aconnp->conn_family;
2317 	econnp->conn_ipversion = aconnp->conn_ipversion;
2318 
2319 	/* Done with old IPC. Drop its ref on its connp */
2320 	CONN_DEC_REF(aconnp);
2321 }
2322 
2323 
2324 /*
2325  * Adapt to the information, such as rtt and rtt_sd, provided from the
2326  * DCE and IRE maintained by IP.
2327  *
2328  * Checks for multicast and broadcast destination address.
2329  * Returns zero if ok; an errno on failure.
2330  *
2331  * Note that the MSS calculation here is based on the info given in
2332  * the DCE and IRE.  We do not do any calculation based on TCP options.  They
2333  * will be handled in tcp_input_data() when TCP knows which options to use.
2334  *
2335  * Note on how TCP gets its parameters for a connection.
2336  *
2337  * When a tcp_t structure is allocated, it gets all the default parameters.
2338  * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd,
2339  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2340  * default.
2341  *
2342  * An incoming SYN with a multicast or broadcast destination address is dropped
2343  * in ip_fanout_v4/v6.
2344  *
2345  * An incoming SYN with a multicast or broadcast source address is always
2346  * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in
2347  * conn_connect.
2348  * The same logic in tcp_set_destination also serves to
2349  * reject an attempt to connect to a broadcast or multicast (destination)
2350  * address.
2351  */
2352 static int
2353 tcp_set_destination(tcp_t *tcp)
2354 {
2355 	uint32_t	mss_max;
2356 	uint32_t	mss;
2357 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2358 	conn_t		*connp = tcp->tcp_connp;
2359 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2360 	iulp_t		uinfo;
2361 	int		error;
2362 	uint32_t	flags;
2363 
2364 	flags = IPDF_LSO | IPDF_ZCOPY;
2365 	/*
2366 	 * Make sure we have a dce for the destination to avoid dce_ident
2367 	 * contention for connected sockets.
2368 	 */
2369 	flags |= IPDF_UNIQUE_DCE;
2370 
2371 	if (!tcps->tcps_ignore_path_mtu)
2372 		connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY;
2373 
2374 	/* Use conn_lock to satify ASSERT; tcp is already serialized */
2375 	mutex_enter(&connp->conn_lock);
2376 	error = conn_connect(connp, &uinfo, flags);
2377 	mutex_exit(&connp->conn_lock);
2378 	if (error != 0)
2379 		return (error);
2380 
2381 	error = tcp_build_hdrs(tcp);
2382 	if (error != 0)
2383 		return (error);
2384 
2385 	tcp->tcp_localnet = uinfo.iulp_localnet;
2386 
2387 	if (uinfo.iulp_rtt != 0) {
2388 		clock_t	rto;
2389 
2390 		tcp->tcp_rtt_sa = uinfo.iulp_rtt;
2391 		tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd;
2392 		rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2393 		    tcps->tcps_rexmit_interval_extra +
2394 		    (tcp->tcp_rtt_sa >> 5);
2395 
2396 		if (rto > tcps->tcps_rexmit_interval_max) {
2397 			tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
2398 		} else if (rto < tcps->tcps_rexmit_interval_min) {
2399 			tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
2400 		} else {
2401 			tcp->tcp_rto = rto;
2402 		}
2403 	}
2404 	if (uinfo.iulp_ssthresh != 0)
2405 		tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh;
2406 	else
2407 		tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2408 	if (uinfo.iulp_spipe > 0) {
2409 		connp->conn_sndbuf = MIN(uinfo.iulp_spipe,
2410 		    tcps->tcps_max_buf);
2411 		if (tcps->tcps_snd_lowat_fraction != 0) {
2412 			connp->conn_sndlowat = connp->conn_sndbuf /
2413 			    tcps->tcps_snd_lowat_fraction;
2414 		}
2415 		(void) tcp_maxpsz_set(tcp, B_TRUE);
2416 	}
2417 	/*
2418 	 * Note that up till now, acceptor always inherits receive
2419 	 * window from the listener.  But if there is a metrics
2420 	 * associated with a host, we should use that instead of
2421 	 * inheriting it from listener. Thus we need to pass this
2422 	 * info back to the caller.
2423 	 */
2424 	if (uinfo.iulp_rpipe > 0) {
2425 		tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe,
2426 		    tcps->tcps_max_buf);
2427 	}
2428 
2429 	if (uinfo.iulp_rtomax > 0) {
2430 		tcp->tcp_second_timer_threshold =
2431 		    uinfo.iulp_rtomax;
2432 	}
2433 
2434 	/*
2435 	 * Use the metric option settings, iulp_tstamp_ok and
2436 	 * iulp_wscale_ok, only for active open. What this means
2437 	 * is that if the other side uses timestamp or window
2438 	 * scale option, TCP will also use those options. That
2439 	 * is for passive open.  If the application sets a
2440 	 * large window, window scale is enabled regardless of
2441 	 * the value in iulp_wscale_ok.  This is the behavior
2442 	 * since 2.6.  So we keep it.
2443 	 * The only case left in passive open processing is the
2444 	 * check for SACK.
2445 	 * For ECN, it should probably be like SACK.  But the
2446 	 * current value is binary, so we treat it like the other
2447 	 * cases.  The metric only controls active open.For passive
2448 	 * open, the ndd param, tcp_ecn_permitted, controls the
2449 	 * behavior.
2450 	 */
2451 	if (!tcp_detached) {
2452 		/*
2453 		 * The if check means that the following can only
2454 		 * be turned on by the metrics only IRE, but not off.
2455 		 */
2456 		if (uinfo.iulp_tstamp_ok)
2457 			tcp->tcp_snd_ts_ok = B_TRUE;
2458 		if (uinfo.iulp_wscale_ok)
2459 			tcp->tcp_snd_ws_ok = B_TRUE;
2460 		if (uinfo.iulp_sack == 2)
2461 			tcp->tcp_snd_sack_ok = B_TRUE;
2462 		if (uinfo.iulp_ecn_ok)
2463 			tcp->tcp_ecn_ok = B_TRUE;
2464 	} else {
2465 		/*
2466 		 * Passive open.
2467 		 *
2468 		 * As above, the if check means that SACK can only be
2469 		 * turned on by the metric only IRE.
2470 		 */
2471 		if (uinfo.iulp_sack > 0) {
2472 			tcp->tcp_snd_sack_ok = B_TRUE;
2473 		}
2474 	}
2475 
2476 	/*
2477 	 * XXX Note that currently, iulp_mtu can be as small as 68
2478 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2479 	 * length of all those options exceeds 28 bytes.  But because
2480 	 * of the tcp_mss_min check below, we may not have a problem if
2481 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2482 	 * the negative problem still exists.  And the check defeats PMTUd.
2483 	 * In fact, if PMTUd finds that the MSS should be smaller than
2484 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2485 	 * value.
2486 	 *
2487 	 * We do not deal with that now.  All those problems related to
2488 	 * PMTUd will be fixed later.
2489 	 */
2490 	ASSERT(uinfo.iulp_mtu != 0);
2491 	mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu;
2492 
2493 	/* Sanity check for MSS value. */
2494 	if (connp->conn_ipversion == IPV4_VERSION)
2495 		mss_max = tcps->tcps_mss_max_ipv4;
2496 	else
2497 		mss_max = tcps->tcps_mss_max_ipv6;
2498 
2499 	if (tcp->tcp_ipsec_overhead == 0)
2500 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2501 
2502 	mss -= tcp->tcp_ipsec_overhead;
2503 
2504 	if (mss < tcps->tcps_mss_min)
2505 		mss = tcps->tcps_mss_min;
2506 	if (mss > mss_max)
2507 		mss = mss_max;
2508 
2509 	/* Note that this is the maximum MSS, excluding all options. */
2510 	tcp->tcp_mss = mss;
2511 
2512 	/*
2513 	 * Update the tcp connection with LSO capability.
2514 	 */
2515 	tcp_update_lso(tcp, connp->conn_ixa);
2516 
2517 	/*
2518 	 * Initialize the ISS here now that we have the full connection ID.
2519 	 * The RFC 1948 method of initial sequence number generation requires
2520 	 * knowledge of the full connection ID before setting the ISS.
2521 	 */
2522 	tcp_iss_init(tcp);
2523 
2524 	tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local);
2525 
2526 	/*
2527 	 * Make sure that conn is not marked incipient
2528 	 * for incoming connections. A blind
2529 	 * removal of incipient flag is cheaper than
2530 	 * check and removal.
2531 	 */
2532 	mutex_enter(&connp->conn_lock);
2533 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2534 	mutex_exit(&connp->conn_lock);
2535 	return (0);
2536 }
2537 
2538 static void
2539 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp)
2540 {
2541 	int	error;
2542 	conn_t	*connp = tcp->tcp_connp;
2543 	struct sockaddr	*sa;
2544 	mblk_t  *mp1;
2545 	struct T_bind_req *tbr;
2546 	int	backlog;
2547 	socklen_t	len;
2548 	sin_t	*sin;
2549 	sin6_t	*sin6;
2550 	cred_t		*cr;
2551 
2552 	/*
2553 	 * All Solaris components should pass a db_credp
2554 	 * for this TPI message, hence we ASSERT.
2555 	 * But in case there is some other M_PROTO that looks
2556 	 * like a TPI message sent by some other kernel
2557 	 * component, we check and return an error.
2558 	 */
2559 	cr = msg_getcred(mp, NULL);
2560 	ASSERT(cr != NULL);
2561 	if (cr == NULL) {
2562 		tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
2563 		return;
2564 	}
2565 
2566 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
2567 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
2568 		if (connp->conn_debug) {
2569 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
2570 			    "tcp_tpi_bind: bad req, len %u",
2571 			    (uint_t)(mp->b_wptr - mp->b_rptr));
2572 		}
2573 		tcp_err_ack(tcp, mp, TPROTO, 0);
2574 		return;
2575 	}
2576 	/* Make sure the largest address fits */
2577 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t), 1);
2578 	if (mp1 == NULL) {
2579 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
2580 		return;
2581 	}
2582 	mp = mp1;
2583 	tbr = (struct T_bind_req *)mp->b_rptr;
2584 
2585 	backlog = tbr->CONIND_number;
2586 	len = tbr->ADDR_length;
2587 
2588 	switch (len) {
2589 	case 0:		/* request for a generic port */
2590 		tbr->ADDR_offset = sizeof (struct T_bind_req);
2591 		if (connp->conn_family == AF_INET) {
2592 			tbr->ADDR_length = sizeof (sin_t);
2593 			sin = (sin_t *)&tbr[1];
2594 			*sin = sin_null;
2595 			sin->sin_family = AF_INET;
2596 			sa = (struct sockaddr *)sin;
2597 			len = sizeof (sin_t);
2598 			mp->b_wptr = (uchar_t *)&sin[1];
2599 		} else {
2600 			ASSERT(connp->conn_family == AF_INET6);
2601 			tbr->ADDR_length = sizeof (sin6_t);
2602 			sin6 = (sin6_t *)&tbr[1];
2603 			*sin6 = sin6_null;
2604 			sin6->sin6_family = AF_INET6;
2605 			sa = (struct sockaddr *)sin6;
2606 			len = sizeof (sin6_t);
2607 			mp->b_wptr = (uchar_t *)&sin6[1];
2608 		}
2609 		break;
2610 
2611 	case sizeof (sin_t):    /* Complete IPv4 address */
2612 		sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset,
2613 		    sizeof (sin_t));
2614 		break;
2615 
2616 	case sizeof (sin6_t): /* Complete IPv6 address */
2617 		sa = (struct sockaddr *)mi_offset_param(mp,
2618 		    tbr->ADDR_offset, sizeof (sin6_t));
2619 		break;
2620 
2621 	default:
2622 		if (connp->conn_debug) {
2623 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
2624 			    "tcp_tpi_bind: bad address length, %d",
2625 			    tbr->ADDR_length);
2626 		}
2627 		tcp_err_ack(tcp, mp, TBADADDR, 0);
2628 		return;
2629 	}
2630 
2631 	if (backlog > 0) {
2632 		error = tcp_do_listen(connp, sa, len, backlog, DB_CRED(mp),
2633 		    tbr->PRIM_type != O_T_BIND_REQ);
2634 	} else {
2635 		error = tcp_do_bind(connp, sa, len, DB_CRED(mp),
2636 		    tbr->PRIM_type != O_T_BIND_REQ);
2637 	}
2638 done:
2639 	if (error > 0) {
2640 		tcp_err_ack(tcp, mp, TSYSERR, error);
2641 	} else if (error < 0) {
2642 		tcp_err_ack(tcp, mp, -error, 0);
2643 	} else {
2644 		/*
2645 		 * Update port information as sockfs/tpi needs it for checking
2646 		 */
2647 		if (connp->conn_family == AF_INET) {
2648 			sin = (sin_t *)sa;
2649 			sin->sin_port = connp->conn_lport;
2650 		} else {
2651 			sin6 = (sin6_t *)sa;
2652 			sin6->sin6_port = connp->conn_lport;
2653 		}
2654 		mp->b_datap->db_type = M_PCPROTO;
2655 		tbr->PRIM_type = T_BIND_ACK;
2656 		putnext(connp->conn_rq, mp);
2657 	}
2658 }
2659 
2660 /*
2661  * If the "bind_to_req_port_only" parameter is set, if the requested port
2662  * number is available, return it, If not return 0
2663  *
2664  * If "bind_to_req_port_only" parameter is not set and
2665  * If the requested port number is available, return it.  If not, return
2666  * the first anonymous port we happen across.  If no anonymous ports are
2667  * available, return 0. addr is the requested local address, if any.
2668  *
2669  * In either case, when succeeding update the tcp_t to record the port number
2670  * and insert it in the bind hash table.
2671  *
2672  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
2673  * without setting SO_REUSEADDR. This is needed so that they
2674  * can be viewed as two independent transport protocols.
2675  */
2676 static in_port_t
2677 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
2678     int reuseaddr, boolean_t quick_connect,
2679     boolean_t bind_to_req_port_only, boolean_t user_specified)
2680 {
2681 	/* number of times we have run around the loop */
2682 	int count = 0;
2683 	/* maximum number of times to run around the loop */
2684 	int loopmax;
2685 	conn_t *connp = tcp->tcp_connp;
2686 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2687 
2688 	/*
2689 	 * Lookup for free addresses is done in a loop and "loopmax"
2690 	 * influences how long we spin in the loop
2691 	 */
2692 	if (bind_to_req_port_only) {
2693 		/*
2694 		 * If the requested port is busy, don't bother to look
2695 		 * for a new one. Setting loop maximum count to 1 has
2696 		 * that effect.
2697 		 */
2698 		loopmax = 1;
2699 	} else {
2700 		/*
2701 		 * If the requested port is busy, look for a free one
2702 		 * in the anonymous port range.
2703 		 * Set loopmax appropriately so that one does not look
2704 		 * forever in the case all of the anonymous ports are in use.
2705 		 */
2706 		if (connp->conn_anon_priv_bind) {
2707 			/*
2708 			 * loopmax =
2709 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
2710 			 */
2711 			loopmax = IPPORT_RESERVED -
2712 			    tcps->tcps_min_anonpriv_port;
2713 		} else {
2714 			loopmax = (tcps->tcps_largest_anon_port -
2715 			    tcps->tcps_smallest_anon_port + 1);
2716 		}
2717 	}
2718 	do {
2719 		uint16_t	lport;
2720 		tf_t		*tbf;
2721 		tcp_t		*ltcp;
2722 		conn_t		*lconnp;
2723 
2724 		lport = htons(port);
2725 
2726 		/*
2727 		 * Ensure that the tcp_t is not currently in the bind hash.
2728 		 * Hold the lock on the hash bucket to ensure that
2729 		 * the duplicate check plus the insertion is an atomic
2730 		 * operation.
2731 		 *
2732 		 * This function does an inline lookup on the bind hash list
2733 		 * Make sure that we access only members of tcp_t
2734 		 * and that we don't look at tcp_tcp, since we are not
2735 		 * doing a CONN_INC_REF.
2736 		 */
2737 		tcp_bind_hash_remove(tcp);
2738 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)];
2739 		mutex_enter(&tbf->tf_lock);
2740 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
2741 		    ltcp = ltcp->tcp_bind_hash) {
2742 			if (lport == ltcp->tcp_connp->conn_lport)
2743 				break;
2744 		}
2745 
2746 		for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) {
2747 			boolean_t not_socket;
2748 			boolean_t exclbind;
2749 
2750 			lconnp = ltcp->tcp_connp;
2751 
2752 			/*
2753 			 * On a labeled system, we must treat bindings to ports
2754 			 * on shared IP addresses by sockets with MAC exemption
2755 			 * privilege as being in all zones, as there's
2756 			 * otherwise no way to identify the right receiver.
2757 			 */
2758 			if (!IPCL_BIND_ZONE_MATCH(lconnp, connp))
2759 				continue;
2760 
2761 			/*
2762 			 * If TCP_EXCLBIND is set for either the bound or
2763 			 * binding endpoint, the semantics of bind
2764 			 * is changed according to the following.
2765 			 *
2766 			 * spec = specified address (v4 or v6)
2767 			 * unspec = unspecified address (v4 or v6)
2768 			 * A = specified addresses are different for endpoints
2769 			 *
2770 			 * bound	bind to		allowed
2771 			 * -------------------------------------
2772 			 * unspec	unspec		no
2773 			 * unspec	spec		no
2774 			 * spec		unspec		no
2775 			 * spec		spec		yes if A
2776 			 *
2777 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
2778 			 * as TCP_EXCLBIND, except that zoneid is ignored.
2779 			 *
2780 			 * Note:
2781 			 *
2782 			 * 1. Because of TLI semantics, an endpoint can go
2783 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
2784 			 * TCPS_BOUND, depending on whether it is originally
2785 			 * a listener or not.  That is why we need to check
2786 			 * for states greater than or equal to TCPS_BOUND
2787 			 * here.
2788 			 *
2789 			 * 2. Ideally, we should only check for state equals
2790 			 * to TCPS_LISTEN. And the following check should be
2791 			 * added.
2792 			 *
2793 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
2794 			 *	!reuseaddr || !lconnp->conn_reuseaddr) {
2795 			 *		...
2796 			 * }
2797 			 *
2798 			 * The semantics will be changed to this.  If the
2799 			 * endpoint on the list is in state not equal to
2800 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
2801 			 * set, let the bind succeed.
2802 			 *
2803 			 * Because of (1), we cannot do that for TLI
2804 			 * endpoints.  But we can do that for socket endpoints.
2805 			 * If in future, we can change this going back
2806 			 * semantics, we can use the above check for TLI also.
2807 			 */
2808 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
2809 			    TCP_IS_SOCKET(tcp));
2810 			exclbind = lconnp->conn_exclbind ||
2811 			    connp->conn_exclbind;
2812 
2813 			if ((lconnp->conn_mac_mode != CONN_MAC_DEFAULT) ||
2814 			    (connp->conn_mac_mode != CONN_MAC_DEFAULT) ||
2815 			    (exclbind && (not_socket ||
2816 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
2817 				if (V6_OR_V4_INADDR_ANY(
2818 				    lconnp->conn_bound_addr_v6) ||
2819 				    V6_OR_V4_INADDR_ANY(*laddr) ||
2820 				    IN6_ARE_ADDR_EQUAL(laddr,
2821 				    &lconnp->conn_bound_addr_v6)) {
2822 					break;
2823 				}
2824 				continue;
2825 			}
2826 
2827 			/*
2828 			 * Check ipversion to allow IPv4 and IPv6 sockets to
2829 			 * have disjoint port number spaces, if *_EXCLBIND
2830 			 * is not set and only if the application binds to a
2831 			 * specific port. We use the same autoassigned port
2832 			 * number space for IPv4 and IPv6 sockets.
2833 			 */
2834 			if (connp->conn_ipversion != lconnp->conn_ipversion &&
2835 			    bind_to_req_port_only)
2836 				continue;
2837 
2838 			/*
2839 			 * Ideally, we should make sure that the source
2840 			 * address, remote address, and remote port in the
2841 			 * four tuple for this tcp-connection is unique.
2842 			 * However, trying to find out the local source
2843 			 * address would require too much code duplication
2844 			 * with IP, since IP needs needs to have that code
2845 			 * to support userland TCP implementations.
2846 			 */
2847 			if (quick_connect &&
2848 			    (ltcp->tcp_state > TCPS_LISTEN) &&
2849 			    ((connp->conn_fport != lconnp->conn_fport) ||
2850 			    !IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6,
2851 			    &lconnp->conn_faddr_v6)))
2852 				continue;
2853 
2854 			if (!reuseaddr) {
2855 				/*
2856 				 * No socket option SO_REUSEADDR.
2857 				 * If existing port is bound to
2858 				 * a non-wildcard IP address
2859 				 * and the requesting stream is
2860 				 * bound to a distinct
2861 				 * different IP addresses
2862 				 * (non-wildcard, also), keep
2863 				 * going.
2864 				 */
2865 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
2866 				    !V6_OR_V4_INADDR_ANY(
2867 				    lconnp->conn_bound_addr_v6) &&
2868 				    !IN6_ARE_ADDR_EQUAL(laddr,
2869 				    &lconnp->conn_bound_addr_v6))
2870 					continue;
2871 				if (ltcp->tcp_state >= TCPS_BOUND) {
2872 					/*
2873 					 * This port is being used and
2874 					 * its state is >= TCPS_BOUND,
2875 					 * so we can't bind to it.
2876 					 */
2877 					break;
2878 				}
2879 			} else {
2880 				/*
2881 				 * socket option SO_REUSEADDR is set on the
2882 				 * binding tcp_t.
2883 				 *
2884 				 * If two streams are bound to
2885 				 * same IP address or both addr
2886 				 * and bound source are wildcards
2887 				 * (INADDR_ANY), we want to stop
2888 				 * searching.
2889 				 * We have found a match of IP source
2890 				 * address and source port, which is
2891 				 * refused regardless of the
2892 				 * SO_REUSEADDR setting, so we break.
2893 				 */
2894 				if (IN6_ARE_ADDR_EQUAL(laddr,
2895 				    &lconnp->conn_bound_addr_v6) &&
2896 				    (ltcp->tcp_state == TCPS_LISTEN ||
2897 				    ltcp->tcp_state == TCPS_BOUND))
2898 					break;
2899 			}
2900 		}
2901 		if (ltcp != NULL) {
2902 			/* The port number is busy */
2903 			mutex_exit(&tbf->tf_lock);
2904 		} else {
2905 			/*
2906 			 * This port is ours. Insert in fanout and mark as
2907 			 * bound to prevent others from getting the port
2908 			 * number.
2909 			 */
2910 			tcp->tcp_state = TCPS_BOUND;
2911 			connp->conn_lport = htons(port);
2912 
2913 			ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH(
2914 			    connp->conn_lport)] == tbf);
2915 			tcp_bind_hash_insert(tbf, tcp, 1);
2916 
2917 			mutex_exit(&tbf->tf_lock);
2918 
2919 			/*
2920 			 * We don't want tcp_next_port_to_try to "inherit"
2921 			 * a port number supplied by the user in a bind.
2922 			 */
2923 			if (user_specified)
2924 				return (port);
2925 
2926 			/*
2927 			 * This is the only place where tcp_next_port_to_try
2928 			 * is updated. After the update, it may or may not
2929 			 * be in the valid range.
2930 			 */
2931 			if (!connp->conn_anon_priv_bind)
2932 				tcps->tcps_next_port_to_try = port + 1;
2933 			return (port);
2934 		}
2935 
2936 		if (connp->conn_anon_priv_bind) {
2937 			port = tcp_get_next_priv_port(tcp);
2938 		} else {
2939 			if (count == 0 && user_specified) {
2940 				/*
2941 				 * We may have to return an anonymous port. So
2942 				 * get one to start with.
2943 				 */
2944 				port =
2945 				    tcp_update_next_port(
2946 				    tcps->tcps_next_port_to_try,
2947 				    tcp, B_TRUE);
2948 				user_specified = B_FALSE;
2949 			} else {
2950 				port = tcp_update_next_port(port + 1, tcp,
2951 				    B_FALSE);
2952 			}
2953 		}
2954 		if (port == 0)
2955 			break;
2956 
2957 		/*
2958 		 * Don't let this loop run forever in the case where
2959 		 * all of the anonymous ports are in use.
2960 		 */
2961 	} while (++count < loopmax);
2962 	return (0);
2963 }
2964 
2965 /*
2966  * tcp_clean_death / tcp_close_detached must not be called more than once
2967  * on a tcp. Thus every function that potentially calls tcp_clean_death
2968  * must check for the tcp state before calling tcp_clean_death.
2969  * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper,
2970  * tcp_timer_handler, all check for the tcp state.
2971  */
2972 /* ARGSUSED */
2973 void
2974 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2,
2975     ip_recv_attr_t *dummy)
2976 {
2977 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
2978 
2979 	freemsg(mp);
2980 	if (tcp->tcp_state > TCPS_BOUND)
2981 		(void) tcp_clean_death(((conn_t *)arg)->conn_tcp,
2982 		    ETIMEDOUT, 5);
2983 }
2984 
2985 /*
2986  * We are dying for some reason.  Try to do it gracefully.  (May be called
2987  * as writer.)
2988  *
2989  * Return -1 if the structure was not cleaned up (if the cleanup had to be
2990  * done by a service procedure).
2991  * TBD - Should the return value distinguish between the tcp_t being
2992  * freed and it being reinitialized?
2993  */
2994 static int
2995 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
2996 {
2997 	mblk_t	*mp;
2998 	queue_t	*q;
2999 	conn_t	*connp = tcp->tcp_connp;
3000 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3001 
3002 	TCP_CLD_STAT(tag);
3003 
3004 #if TCP_TAG_CLEAN_DEATH
3005 	tcp->tcp_cleandeathtag = tag;
3006 #endif
3007 
3008 	if (tcp->tcp_fused)
3009 		tcp_unfuse(tcp);
3010 
3011 	if (tcp->tcp_linger_tid != 0 &&
3012 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3013 		tcp_stop_lingering(tcp);
3014 	}
3015 
3016 	ASSERT(tcp != NULL);
3017 	ASSERT((connp->conn_family == AF_INET &&
3018 	    connp->conn_ipversion == IPV4_VERSION) ||
3019 	    (connp->conn_family == AF_INET6 &&
3020 	    (connp->conn_ipversion == IPV4_VERSION ||
3021 	    connp->conn_ipversion == IPV6_VERSION)));
3022 
3023 	if (TCP_IS_DETACHED(tcp)) {
3024 		if (tcp->tcp_hard_binding) {
3025 			/*
3026 			 * Its an eager that we are dealing with. We close the
3027 			 * eager but in case a conn_ind has already gone to the
3028 			 * listener, let tcp_accept_finish() send a discon_ind
3029 			 * to the listener and drop the last reference. If the
3030 			 * listener doesn't even know about the eager i.e. the
3031 			 * conn_ind hasn't gone up, blow away the eager and drop
3032 			 * the last reference as well. If the conn_ind has gone
3033 			 * up, state should be BOUND. tcp_accept_finish
3034 			 * will figure out that the connection has received a
3035 			 * RST and will send a DISCON_IND to the application.
3036 			 */
3037 			tcp_closei_local(tcp);
3038 			if (!tcp->tcp_tconnind_started) {
3039 				CONN_DEC_REF(connp);
3040 			} else {
3041 				tcp->tcp_state = TCPS_BOUND;
3042 			}
3043 		} else {
3044 			tcp_close_detached(tcp);
3045 		}
3046 		return (0);
3047 	}
3048 
3049 	TCP_STAT(tcps, tcp_clean_death_nondetached);
3050 
3051 	q = connp->conn_rq;
3052 
3053 	/* Trash all inbound data */
3054 	if (!IPCL_IS_NONSTR(connp)) {
3055 		ASSERT(q != NULL);
3056 		flushq(q, FLUSHALL);
3057 	}
3058 
3059 	/*
3060 	 * If we are at least part way open and there is error
3061 	 * (err==0 implies no error)
3062 	 * notify our client by a T_DISCON_IND.
3063 	 */
3064 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3065 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3066 		    !TCP_IS_SOCKET(tcp)) {
3067 			/*
3068 			 * Send M_FLUSH according to TPI. Because sockets will
3069 			 * (and must) ignore FLUSHR we do that only for TPI
3070 			 * endpoints and sockets in STREAMS mode.
3071 			 */
3072 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3073 		}
3074 		if (connp->conn_debug) {
3075 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3076 			    "tcp_clean_death: discon err %d", err);
3077 		}
3078 		if (IPCL_IS_NONSTR(connp)) {
3079 			/* Direct socket, use upcall */
3080 			(*connp->conn_upcalls->su_disconnected)(
3081 			    connp->conn_upper_handle, tcp->tcp_connid, err);
3082 		} else {
3083 			mp = mi_tpi_discon_ind(NULL, err, 0);
3084 			if (mp != NULL) {
3085 				putnext(q, mp);
3086 			} else {
3087 				if (connp->conn_debug) {
3088 					(void) strlog(TCP_MOD_ID, 0, 1,
3089 					    SL_ERROR|SL_TRACE,
3090 					    "tcp_clean_death, sending M_ERROR");
3091 				}
3092 				(void) putnextctl1(q, M_ERROR, EPROTO);
3093 			}
3094 		}
3095 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3096 			/* SYN_SENT or SYN_RCVD */
3097 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
3098 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3099 			/* ESTABLISHED or CLOSE_WAIT */
3100 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
3101 		}
3102 	}
3103 
3104 	tcp_reinit(tcp);
3105 	if (IPCL_IS_NONSTR(connp))
3106 		(void) tcp_do_unbind(connp);
3107 
3108 	return (-1);
3109 }
3110 
3111 /*
3112  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3113  * to expire, stop the wait and finish the close.
3114  */
3115 static void
3116 tcp_stop_lingering(tcp_t *tcp)
3117 {
3118 	clock_t	delta = 0;
3119 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3120 	conn_t		*connp = tcp->tcp_connp;
3121 
3122 	tcp->tcp_linger_tid = 0;
3123 	if (tcp->tcp_state > TCPS_LISTEN) {
3124 		tcp_acceptor_hash_remove(tcp);
3125 		mutex_enter(&tcp->tcp_non_sq_lock);
3126 		if (tcp->tcp_flow_stopped) {
3127 			tcp_clrqfull(tcp);
3128 		}
3129 		mutex_exit(&tcp->tcp_non_sq_lock);
3130 
3131 		if (tcp->tcp_timer_tid != 0) {
3132 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3133 			tcp->tcp_timer_tid = 0;
3134 		}
3135 		/*
3136 		 * Need to cancel those timers which will not be used when
3137 		 * TCP is detached.  This has to be done before the conn_wq
3138 		 * is cleared.
3139 		 */
3140 		tcp_timers_stop(tcp);
3141 
3142 		tcp->tcp_detached = B_TRUE;
3143 		connp->conn_rq = NULL;
3144 		connp->conn_wq = NULL;
3145 
3146 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3147 			tcp_time_wait_append(tcp);
3148 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
3149 			goto finish;
3150 		}
3151 
3152 		/*
3153 		 * If delta is zero the timer event wasn't executed and was
3154 		 * successfully canceled. In this case we need to restart it
3155 		 * with the minimal delta possible.
3156 		 */
3157 		if (delta >= 0) {
3158 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3159 			    delta ? delta : 1);
3160 		}
3161 	} else {
3162 		tcp_closei_local(tcp);
3163 		CONN_DEC_REF(connp);
3164 	}
3165 finish:
3166 	/* Signal closing thread that it can complete close */
3167 	mutex_enter(&tcp->tcp_closelock);
3168 	tcp->tcp_detached = B_TRUE;
3169 	connp->conn_rq = NULL;
3170 	connp->conn_wq = NULL;
3171 
3172 	tcp->tcp_closed = 1;
3173 	cv_signal(&tcp->tcp_closecv);
3174 	mutex_exit(&tcp->tcp_closelock);
3175 }
3176 
3177 /*
3178  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
3179  * expires.
3180  */
3181 static void
3182 tcp_close_linger_timeout(void *arg)
3183 {
3184 	conn_t	*connp = (conn_t *)arg;
3185 	tcp_t 	*tcp = connp->conn_tcp;
3186 
3187 	tcp->tcp_client_errno = ETIMEDOUT;
3188 	tcp_stop_lingering(tcp);
3189 }
3190 
3191 static void
3192 tcp_close_common(conn_t *connp, int flags)
3193 {
3194 	tcp_t		*tcp = connp->conn_tcp;
3195 	mblk_t 		*mp = &tcp->tcp_closemp;
3196 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
3197 	mblk_t		*bp;
3198 
3199 	ASSERT(connp->conn_ref >= 2);
3200 
3201 	/*
3202 	 * Mark the conn as closing. ipsq_pending_mp_add will not
3203 	 * add any mp to the pending mp list, after this conn has
3204 	 * started closing.
3205 	 */
3206 	mutex_enter(&connp->conn_lock);
3207 	connp->conn_state_flags |= CONN_CLOSING;
3208 	if (connp->conn_oper_pending_ill != NULL)
3209 		conn_ioctl_cleanup_reqd = B_TRUE;
3210 	CONN_INC_REF_LOCKED(connp);
3211 	mutex_exit(&connp->conn_lock);
3212 	tcp->tcp_closeflags = (uint8_t)flags;
3213 	ASSERT(connp->conn_ref >= 3);
3214 
3215 	/*
3216 	 * tcp_closemp_used is used below without any protection of a lock
3217 	 * as we don't expect any one else to use it concurrently at this
3218 	 * point otherwise it would be a major defect.
3219 	 */
3220 
3221 	if (mp->b_prev == NULL)
3222 		tcp->tcp_closemp_used = B_TRUE;
3223 	else
3224 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
3225 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
3226 
3227 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
3228 
3229 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp,
3230 	    NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
3231 
3232 	mutex_enter(&tcp->tcp_closelock);
3233 	while (!tcp->tcp_closed) {
3234 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
3235 			/*
3236 			 * The cv_wait_sig() was interrupted. We now do the
3237 			 * following:
3238 			 *
3239 			 * 1) If the endpoint was lingering, we allow this
3240 			 * to be interrupted by cancelling the linger timeout
3241 			 * and closing normally.
3242 			 *
3243 			 * 2) Revert to calling cv_wait()
3244 			 *
3245 			 * We revert to using cv_wait() to avoid an
3246 			 * infinite loop which can occur if the calling
3247 			 * thread is higher priority than the squeue worker
3248 			 * thread and is bound to the same cpu.
3249 			 */
3250 			if (connp->conn_linger && connp->conn_lingertime > 0) {
3251 				mutex_exit(&tcp->tcp_closelock);
3252 				/* Entering squeue, bump ref count. */
3253 				CONN_INC_REF(connp);
3254 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
3255 				SQUEUE_ENTER_ONE(connp->conn_sqp, bp,
3256 				    tcp_linger_interrupted, connp, NULL,
3257 				    tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
3258 				mutex_enter(&tcp->tcp_closelock);
3259 			}
3260 			break;
3261 		}
3262 	}
3263 	while (!tcp->tcp_closed)
3264 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
3265 	mutex_exit(&tcp->tcp_closelock);
3266 
3267 	/*
3268 	 * In the case of listener streams that have eagers in the q or q0
3269 	 * we wait for the eagers to drop their reference to us. conn_rq and
3270 	 * conn_wq of the eagers point to our queues. By waiting for the
3271 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
3272 	 * up their queue pointers and also dropped their references to us.
3273 	 */
3274 	if (tcp->tcp_wait_for_eagers) {
3275 		mutex_enter(&connp->conn_lock);
3276 		while (connp->conn_ref != 1) {
3277 			cv_wait(&connp->conn_cv, &connp->conn_lock);
3278 		}
3279 		mutex_exit(&connp->conn_lock);
3280 	}
3281 	/*
3282 	 * ioctl cleanup. The mp is queued in the ipx_pending_mp.
3283 	 */
3284 	if (conn_ioctl_cleanup_reqd)
3285 		conn_ioctl_cleanup(connp);
3286 
3287 	connp->conn_cpid = NOPID;
3288 }
3289 
3290 static int
3291 tcp_tpi_close(queue_t *q, int flags)
3292 {
3293 	conn_t		*connp;
3294 
3295 	ASSERT(WR(q)->q_next == NULL);
3296 
3297 	if (flags & SO_FALLBACK) {
3298 		/*
3299 		 * stream is being closed while in fallback
3300 		 * simply free the resources that were allocated
3301 		 */
3302 		inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr));
3303 		qprocsoff(q);
3304 		goto done;
3305 	}
3306 
3307 	connp = Q_TO_CONN(q);
3308 	/*
3309 	 * We are being closed as /dev/tcp or /dev/tcp6.
3310 	 */
3311 	tcp_close_common(connp, flags);
3312 
3313 	qprocsoff(q);
3314 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
3315 
3316 	/*
3317 	 * Drop IP's reference on the conn. This is the last reference
3318 	 * on the connp if the state was less than established. If the
3319 	 * connection has gone into timewait state, then we will have
3320 	 * one ref for the TCP and one more ref (total of two) for the
3321 	 * classifier connected hash list (a timewait connections stays
3322 	 * in connected hash till closed).
3323 	 *
3324 	 * We can't assert the references because there might be other
3325 	 * transient reference places because of some walkers or queued
3326 	 * packets in squeue for the timewait state.
3327 	 */
3328 	CONN_DEC_REF(connp);
3329 done:
3330 	q->q_ptr = WR(q)->q_ptr = NULL;
3331 	return (0);
3332 }
3333 
3334 static int
3335 tcp_tpi_close_accept(queue_t *q)
3336 {
3337 	vmem_t	*minor_arena;
3338 	dev_t	conn_dev;
3339 
3340 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
3341 
3342 	/*
3343 	 * We had opened an acceptor STREAM for sockfs which is
3344 	 * now being closed due to some error.
3345 	 */
3346 	qprocsoff(q);
3347 
3348 	minor_arena = (vmem_t *)WR(q)->q_ptr;
3349 	conn_dev = (dev_t)RD(q)->q_ptr;
3350 	ASSERT(minor_arena != NULL);
3351 	ASSERT(conn_dev != 0);
3352 	inet_minor_free(minor_arena, conn_dev);
3353 	q->q_ptr = WR(q)->q_ptr = NULL;
3354 	return (0);
3355 }
3356 
3357 /*
3358  * Called by tcp_close() routine via squeue when lingering is
3359  * interrupted by a signal.
3360  */
3361 
3362 /* ARGSUSED */
3363 static void
3364 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
3365 {
3366 	conn_t	*connp = (conn_t *)arg;
3367 	tcp_t	*tcp = connp->conn_tcp;
3368 
3369 	freeb(mp);
3370 	if (tcp->tcp_linger_tid != 0 &&
3371 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3372 		tcp_stop_lingering(tcp);
3373 		tcp->tcp_client_errno = EINTR;
3374 	}
3375 }
3376 
3377 /*
3378  * Called by streams close routine via squeues when our client blows off her
3379  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
3380  * connection politely" When SO_LINGER is set (with a non-zero linger time and
3381  * it is not a nonblocking socket) then this routine sleeps until the FIN is
3382  * acked.
3383  *
3384  * NOTE: tcp_close potentially returns error when lingering.
3385  * However, the stream head currently does not pass these errors
3386  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
3387  * errors to the application (from tsleep()) and not errors
3388  * like ECONNRESET caused by receiving a reset packet.
3389  */
3390 
3391 /* ARGSUSED */
3392 static void
3393 tcp_close_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
3394 {
3395 	char	*msg;
3396 	conn_t	*connp = (conn_t *)arg;
3397 	tcp_t	*tcp = connp->conn_tcp;
3398 	clock_t	delta = 0;
3399 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3400 
3401 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
3402 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
3403 
3404 	mutex_enter(&tcp->tcp_eager_lock);
3405 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
3406 		/* Cleanup for listener */
3407 		tcp_eager_cleanup(tcp, 0);
3408 		tcp->tcp_wait_for_eagers = 1;
3409 	}
3410 	mutex_exit(&tcp->tcp_eager_lock);
3411 
3412 	tcp->tcp_lso = B_FALSE;
3413 
3414 	msg = NULL;
3415 	switch (tcp->tcp_state) {
3416 	case TCPS_CLOSED:
3417 	case TCPS_IDLE:
3418 	case TCPS_BOUND:
3419 	case TCPS_LISTEN:
3420 		break;
3421 	case TCPS_SYN_SENT:
3422 		msg = "tcp_close, during connect";
3423 		break;
3424 	case TCPS_SYN_RCVD:
3425 		/*
3426 		 * Close during the connect 3-way handshake
3427 		 * but here there may or may not be pending data
3428 		 * already on queue. Process almost same as in
3429 		 * the ESTABLISHED state.
3430 		 */
3431 		/* FALLTHRU */
3432 	default:
3433 		if (tcp->tcp_fused)
3434 			tcp_unfuse(tcp);
3435 
3436 		/*
3437 		 * If SO_LINGER has set a zero linger time, abort the
3438 		 * connection with a reset.
3439 		 */
3440 		if (connp->conn_linger && connp->conn_lingertime == 0) {
3441 			msg = "tcp_close, zero lingertime";
3442 			break;
3443 		}
3444 
3445 		/*
3446 		 * Abort connection if there is unread data queued.
3447 		 */
3448 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
3449 			msg = "tcp_close, unread data";
3450 			break;
3451 		}
3452 		/*
3453 		 * We have done a qwait() above which could have possibly
3454 		 * drained more messages in turn causing transition to a
3455 		 * different state. Check whether we have to do the rest
3456 		 * of the processing or not.
3457 		 */
3458 		if (tcp->tcp_state <= TCPS_LISTEN)
3459 			break;
3460 
3461 		/*
3462 		 * Transmit the FIN before detaching the tcp_t.
3463 		 * After tcp_detach returns this queue/perimeter
3464 		 * no longer owns the tcp_t thus others can modify it.
3465 		 */
3466 		(void) tcp_xmit_end(tcp);
3467 
3468 		/*
3469 		 * If lingering on close then wait until the fin is acked,
3470 		 * the SO_LINGER time passes, or a reset is sent/received.
3471 		 */
3472 		if (connp->conn_linger && connp->conn_lingertime > 0 &&
3473 		    !(tcp->tcp_fin_acked) &&
3474 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
3475 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
3476 				tcp->tcp_client_errno = EWOULDBLOCK;
3477 			} else if (tcp->tcp_client_errno == 0) {
3478 
3479 				ASSERT(tcp->tcp_linger_tid == 0);
3480 
3481 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
3482 				    tcp_close_linger_timeout,
3483 				    connp->conn_lingertime * hz);
3484 
3485 				/* tcp_close_linger_timeout will finish close */
3486 				if (tcp->tcp_linger_tid == 0)
3487 					tcp->tcp_client_errno = ENOSR;
3488 				else
3489 					return;
3490 			}
3491 
3492 			/*
3493 			 * Check if we need to detach or just close
3494 			 * the instance.
3495 			 */
3496 			if (tcp->tcp_state <= TCPS_LISTEN)
3497 				break;
3498 		}
3499 
3500 		/*
3501 		 * Make sure that no other thread will access the conn_rq of
3502 		 * this instance (through lookups etc.) as conn_rq will go
3503 		 * away shortly.
3504 		 */
3505 		tcp_acceptor_hash_remove(tcp);
3506 
3507 		mutex_enter(&tcp->tcp_non_sq_lock);
3508 		if (tcp->tcp_flow_stopped) {
3509 			tcp_clrqfull(tcp);
3510 		}
3511 		mutex_exit(&tcp->tcp_non_sq_lock);
3512 
3513 		if (tcp->tcp_timer_tid != 0) {
3514 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3515 			tcp->tcp_timer_tid = 0;
3516 		}
3517 		/*
3518 		 * Need to cancel those timers which will not be used when
3519 		 * TCP is detached.  This has to be done before the conn_wq
3520 		 * is set to NULL.
3521 		 */
3522 		tcp_timers_stop(tcp);
3523 
3524 		tcp->tcp_detached = B_TRUE;
3525 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3526 			tcp_time_wait_append(tcp);
3527 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
3528 			ASSERT(connp->conn_ref >= 3);
3529 			goto finish;
3530 		}
3531 
3532 		/*
3533 		 * If delta is zero the timer event wasn't executed and was
3534 		 * successfully canceled. In this case we need to restart it
3535 		 * with the minimal delta possible.
3536 		 */
3537 		if (delta >= 0)
3538 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3539 			    delta ? delta : 1);
3540 
3541 		ASSERT(connp->conn_ref >= 3);
3542 		goto finish;
3543 	}
3544 
3545 	/* Detach did not complete. Still need to remove q from stream. */
3546 	if (msg) {
3547 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
3548 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
3549 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
3550 		if (tcp->tcp_state == TCPS_SYN_SENT ||
3551 		    tcp->tcp_state == TCPS_SYN_RCVD)
3552 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
3553 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
3554 	}
3555 
3556 	tcp_closei_local(tcp);
3557 	CONN_DEC_REF(connp);
3558 	ASSERT(connp->conn_ref >= 2);
3559 
3560 finish:
3561 	mutex_enter(&tcp->tcp_closelock);
3562 	/*
3563 	 * Don't change the queues in the case of a listener that has
3564 	 * eagers in its q or q0. It could surprise the eagers.
3565 	 * Instead wait for the eagers outside the squeue.
3566 	 */
3567 	if (!tcp->tcp_wait_for_eagers) {
3568 		tcp->tcp_detached = B_TRUE;
3569 		connp->conn_rq = NULL;
3570 		connp->conn_wq = NULL;
3571 	}
3572 
3573 	/* Signal tcp_close() to finish closing. */
3574 	tcp->tcp_closed = 1;
3575 	cv_signal(&tcp->tcp_closecv);
3576 	mutex_exit(&tcp->tcp_closelock);
3577 }
3578 
3579 /*
3580  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
3581  * Some stream heads get upset if they see these later on as anything but NULL.
3582  */
3583 static void
3584 tcp_close_mpp(mblk_t **mpp)
3585 {
3586 	mblk_t	*mp;
3587 
3588 	if ((mp = *mpp) != NULL) {
3589 		do {
3590 			mp->b_next = NULL;
3591 			mp->b_prev = NULL;
3592 		} while ((mp = mp->b_cont) != NULL);
3593 
3594 		mp = *mpp;
3595 		*mpp = NULL;
3596 		freemsg(mp);
3597 	}
3598 }
3599 
3600 /* Do detached close. */
3601 static void
3602 tcp_close_detached(tcp_t *tcp)
3603 {
3604 	if (tcp->tcp_fused)
3605 		tcp_unfuse(tcp);
3606 
3607 	/*
3608 	 * Clustering code serializes TCP disconnect callbacks and
3609 	 * cluster tcp list walks by blocking a TCP disconnect callback
3610 	 * if a cluster tcp list walk is in progress. This ensures
3611 	 * accurate accounting of TCPs in the cluster code even though
3612 	 * the TCP list walk itself is not atomic.
3613 	 */
3614 	tcp_closei_local(tcp);
3615 	CONN_DEC_REF(tcp->tcp_connp);
3616 }
3617 
3618 /*
3619  * Stop all TCP timers, and free the timer mblks if requested.
3620  */
3621 void
3622 tcp_timers_stop(tcp_t *tcp)
3623 {
3624 	if (tcp->tcp_timer_tid != 0) {
3625 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3626 		tcp->tcp_timer_tid = 0;
3627 	}
3628 	if (tcp->tcp_ka_tid != 0) {
3629 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
3630 		tcp->tcp_ka_tid = 0;
3631 	}
3632 	if (tcp->tcp_ack_tid != 0) {
3633 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
3634 		tcp->tcp_ack_tid = 0;
3635 	}
3636 	if (tcp->tcp_push_tid != 0) {
3637 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
3638 		tcp->tcp_push_tid = 0;
3639 	}
3640 }
3641 
3642 /*
3643  * The tcp_t is going away. Remove it from all lists and set it
3644  * to TCPS_CLOSED. The freeing up of memory is deferred until
3645  * tcp_inactive. This is needed since a thread in tcp_rput might have
3646  * done a CONN_INC_REF on this structure before it was removed from the
3647  * hashes.
3648  */
3649 static void
3650 tcp_closei_local(tcp_t *tcp)
3651 {
3652 	conn_t		*connp = tcp->tcp_connp;
3653 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3654 
3655 	if (!TCP_IS_SOCKET(tcp))
3656 		tcp_acceptor_hash_remove(tcp);
3657 
3658 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
3659 	tcp->tcp_ibsegs = 0;
3660 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
3661 	tcp->tcp_obsegs = 0;
3662 
3663 	/*
3664 	 * If we are an eager connection hanging off a listener that
3665 	 * hasn't formally accepted the connection yet, get off his
3666 	 * list and blow off any data that we have accumulated.
3667 	 */
3668 	if (tcp->tcp_listener != NULL) {
3669 		tcp_t	*listener = tcp->tcp_listener;
3670 		mutex_enter(&listener->tcp_eager_lock);
3671 		/*
3672 		 * tcp_tconnind_started == B_TRUE means that the
3673 		 * conn_ind has already gone to listener. At
3674 		 * this point, eager will be closed but we
3675 		 * leave it in listeners eager list so that
3676 		 * if listener decides to close without doing
3677 		 * accept, we can clean this up. In tcp_tli_accept
3678 		 * we take care of the case of accept on closed
3679 		 * eager.
3680 		 */
3681 		if (!tcp->tcp_tconnind_started) {
3682 			tcp_eager_unlink(tcp);
3683 			mutex_exit(&listener->tcp_eager_lock);
3684 			/*
3685 			 * We don't want to have any pointers to the
3686 			 * listener queue, after we have released our
3687 			 * reference on the listener
3688 			 */
3689 			ASSERT(tcp->tcp_detached);
3690 			connp->conn_rq = NULL;
3691 			connp->conn_wq = NULL;
3692 			CONN_DEC_REF(listener->tcp_connp);
3693 		} else {
3694 			mutex_exit(&listener->tcp_eager_lock);
3695 		}
3696 	}
3697 
3698 	/* Stop all the timers */
3699 	tcp_timers_stop(tcp);
3700 
3701 	if (tcp->tcp_state == TCPS_LISTEN) {
3702 		if (tcp->tcp_ip_addr_cache) {
3703 			kmem_free((void *)tcp->tcp_ip_addr_cache,
3704 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
3705 			tcp->tcp_ip_addr_cache = NULL;
3706 		}
3707 	}
3708 	mutex_enter(&tcp->tcp_non_sq_lock);
3709 	if (tcp->tcp_flow_stopped)
3710 		tcp_clrqfull(tcp);
3711 	mutex_exit(&tcp->tcp_non_sq_lock);
3712 
3713 	tcp_bind_hash_remove(tcp);
3714 	/*
3715 	 * If the tcp_time_wait_collector (which runs outside the squeue)
3716 	 * is trying to remove this tcp from the time wait list, we will
3717 	 * block in tcp_time_wait_remove while trying to acquire the
3718 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
3719 	 * requires the ipcl_hash_remove to be ordered after the
3720 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
3721 	 */
3722 	if (tcp->tcp_state == TCPS_TIME_WAIT)
3723 		(void) tcp_time_wait_remove(tcp, NULL);
3724 	CL_INET_DISCONNECT(connp);
3725 	ipcl_hash_remove(connp);
3726 	ixa_cleanup(connp->conn_ixa);
3727 
3728 	/*
3729 	 * Mark the conn as CONDEMNED
3730 	 */
3731 	mutex_enter(&connp->conn_lock);
3732 	connp->conn_state_flags |= CONN_CONDEMNED;
3733 	mutex_exit(&connp->conn_lock);
3734 
3735 	/* Need to cleanup any pending ioctls */
3736 	ASSERT(tcp->tcp_time_wait_next == NULL);
3737 	ASSERT(tcp->tcp_time_wait_prev == NULL);
3738 	ASSERT(tcp->tcp_time_wait_expire == 0);
3739 	tcp->tcp_state = TCPS_CLOSED;
3740 
3741 	/* Release any SSL context */
3742 	if (tcp->tcp_kssl_ent != NULL) {
3743 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
3744 		tcp->tcp_kssl_ent = NULL;
3745 	}
3746 	if (tcp->tcp_kssl_ctx != NULL) {
3747 		kssl_release_ctx(tcp->tcp_kssl_ctx);
3748 		tcp->tcp_kssl_ctx = NULL;
3749 	}
3750 	tcp->tcp_kssl_pending = B_FALSE;
3751 
3752 	tcp_ipsec_cleanup(tcp);
3753 }
3754 
3755 /*
3756  * tcp is dying (called from ipcl_conn_destroy and error cases).
3757  * Free the tcp_t in either case.
3758  */
3759 void
3760 tcp_free(tcp_t *tcp)
3761 {
3762 	mblk_t		*mp;
3763 	conn_t		*connp = tcp->tcp_connp;
3764 
3765 	ASSERT(tcp != NULL);
3766 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
3767 
3768 	connp->conn_rq = NULL;
3769 	connp->conn_wq = NULL;
3770 
3771 	tcp_close_mpp(&tcp->tcp_xmit_head);
3772 	tcp_close_mpp(&tcp->tcp_reass_head);
3773 	if (tcp->tcp_rcv_list != NULL) {
3774 		/* Free b_next chain */
3775 		tcp_close_mpp(&tcp->tcp_rcv_list);
3776 	}
3777 	if ((mp = tcp->tcp_urp_mp) != NULL) {
3778 		freemsg(mp);
3779 	}
3780 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
3781 		freemsg(mp);
3782 	}
3783 
3784 	if (tcp->tcp_fused_sigurg_mp != NULL) {
3785 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
3786 		freeb(tcp->tcp_fused_sigurg_mp);
3787 		tcp->tcp_fused_sigurg_mp = NULL;
3788 	}
3789 
3790 	if (tcp->tcp_ordrel_mp != NULL) {
3791 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
3792 		freeb(tcp->tcp_ordrel_mp);
3793 		tcp->tcp_ordrel_mp = NULL;
3794 	}
3795 
3796 	if (tcp->tcp_sack_info != NULL) {
3797 		if (tcp->tcp_notsack_list != NULL) {
3798 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list,
3799 			    tcp);
3800 		}
3801 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
3802 	}
3803 
3804 	if (tcp->tcp_hopopts != NULL) {
3805 		mi_free(tcp->tcp_hopopts);
3806 		tcp->tcp_hopopts = NULL;
3807 		tcp->tcp_hopoptslen = 0;
3808 	}
3809 	ASSERT(tcp->tcp_hopoptslen == 0);
3810 	if (tcp->tcp_dstopts != NULL) {
3811 		mi_free(tcp->tcp_dstopts);
3812 		tcp->tcp_dstopts = NULL;
3813 		tcp->tcp_dstoptslen = 0;
3814 	}
3815 	ASSERT(tcp->tcp_dstoptslen == 0);
3816 	if (tcp->tcp_rthdrdstopts != NULL) {
3817 		mi_free(tcp->tcp_rthdrdstopts);
3818 		tcp->tcp_rthdrdstopts = NULL;
3819 		tcp->tcp_rthdrdstoptslen = 0;
3820 	}
3821 	ASSERT(tcp->tcp_rthdrdstoptslen == 0);
3822 	if (tcp->tcp_rthdr != NULL) {
3823 		mi_free(tcp->tcp_rthdr);
3824 		tcp->tcp_rthdr = NULL;
3825 		tcp->tcp_rthdrlen = 0;
3826 	}
3827 	ASSERT(tcp->tcp_rthdrlen == 0);
3828 
3829 	/*
3830 	 * Following is really a blowing away a union.
3831 	 * It happens to have exactly two members of identical size
3832 	 * the following code is enough.
3833 	 */
3834 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
3835 }
3836 
3837 
3838 /*
3839  * Put a connection confirmation message upstream built from the
3840  * address/flowid information with the conn and iph. Report our success or
3841  * failure.
3842  */
3843 static boolean_t
3844 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, mblk_t *idmp,
3845     mblk_t **defermp, ip_recv_attr_t *ira)
3846 {
3847 	sin_t	sin;
3848 	sin6_t	sin6;
3849 	mblk_t	*mp;
3850 	char	*optp = NULL;
3851 	int	optlen = 0;
3852 	conn_t	*connp = tcp->tcp_connp;
3853 
3854 	if (defermp != NULL)
3855 		*defermp = NULL;
3856 
3857 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
3858 		/*
3859 		 * Return in T_CONN_CON results of option negotiation through
3860 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
3861 		 * negotiation, then what is received from remote end needs
3862 		 * to be taken into account but there is no such thing (yet?)
3863 		 * in our TCP/IP.
3864 		 * Note: We do not use mi_offset_param() here as
3865 		 * tcp_opts_conn_req contents do not directly come from
3866 		 * an application and are either generated in kernel or
3867 		 * from user input that was already verified.
3868 		 */
3869 		mp = tcp->tcp_conn.tcp_opts_conn_req;
3870 		optp = (char *)(mp->b_rptr +
3871 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
3872 		optlen = (int)
3873 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
3874 	}
3875 
3876 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
3877 
3878 		/* packet is IPv4 */
3879 		if (connp->conn_family == AF_INET) {
3880 			sin = sin_null;
3881 			sin.sin_addr.s_addr = connp->conn_faddr_v4;
3882 			sin.sin_port = connp->conn_fport;
3883 			sin.sin_family = AF_INET;
3884 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
3885 			    (int)sizeof (sin_t), optp, optlen);
3886 		} else {
3887 			sin6 = sin6_null;
3888 			sin6.sin6_addr = connp->conn_faddr_v6;
3889 			sin6.sin6_port = connp->conn_fport;
3890 			sin6.sin6_family = AF_INET6;
3891 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
3892 			    (int)sizeof (sin6_t), optp, optlen);
3893 
3894 		}
3895 	} else {
3896 		ip6_t	*ip6h = (ip6_t *)iphdr;
3897 
3898 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
3899 		ASSERT(connp->conn_family == AF_INET6);
3900 		sin6 = sin6_null;
3901 		sin6.sin6_addr = connp->conn_faddr_v6;
3902 		sin6.sin6_port = connp->conn_fport;
3903 		sin6.sin6_family = AF_INET6;
3904 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
3905 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
3906 		    (int)sizeof (sin6_t), optp, optlen);
3907 	}
3908 
3909 	if (!mp)
3910 		return (B_FALSE);
3911 
3912 	mblk_copycred(mp, idmp);
3913 
3914 	if (defermp == NULL) {
3915 		conn_t *connp = tcp->tcp_connp;
3916 		if (IPCL_IS_NONSTR(connp)) {
3917 			(*connp->conn_upcalls->su_connected)
3918 			    (connp->conn_upper_handle, tcp->tcp_connid,
3919 			    ira->ira_cred, ira->ira_cpid);
3920 			freemsg(mp);
3921 		} else {
3922 			if (ira->ira_cred != NULL) {
3923 				/* So that getpeerucred works for TPI sockfs */
3924 				mblk_setcred(mp, ira->ira_cred, ira->ira_cpid);
3925 			}
3926 			putnext(connp->conn_rq, mp);
3927 		}
3928 	} else {
3929 		*defermp = mp;
3930 	}
3931 
3932 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
3933 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
3934 	return (B_TRUE);
3935 }
3936 
3937 /*
3938  * Defense for the SYN attack -
3939  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
3940  *    one from the list of droppable eagers. This list is a subset of q0.
3941  *    see comments before the definition of MAKE_DROPPABLE().
3942  * 2. Don't drop a SYN request before its first timeout. This gives every
3943  *    request at least til the first timeout to complete its 3-way handshake.
3944  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
3945  *    requests currently on the queue that has timed out. This will be used
3946  *    as an indicator of whether an attack is under way, so that appropriate
3947  *    actions can be taken. (It's incremented in tcp_timer() and decremented
3948  *    either when eager goes into ESTABLISHED, or gets freed up.)
3949  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
3950  *    # of timeout drops back to <= q0len/32 => SYN alert off
3951  */
3952 static boolean_t
3953 tcp_drop_q0(tcp_t *tcp)
3954 {
3955 	tcp_t	*eager;
3956 	mblk_t	*mp;
3957 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3958 
3959 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
3960 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
3961 
3962 	/* Pick oldest eager from the list of droppable eagers */
3963 	eager = tcp->tcp_eager_prev_drop_q0;
3964 
3965 	/* If list is empty. return B_FALSE */
3966 	if (eager == tcp) {
3967 		return (B_FALSE);
3968 	}
3969 
3970 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
3971 	if ((mp = allocb(0, BPRI_HI)) == NULL)
3972 		return (B_FALSE);
3973 
3974 	/*
3975 	 * Take this eager out from the list of droppable eagers since we are
3976 	 * going to drop it.
3977 	 */
3978 	MAKE_UNDROPPABLE(eager);
3979 
3980 	if (tcp->tcp_connp->conn_debug) {
3981 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
3982 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
3983 		    " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
3984 		    tcp->tcp_conn_req_cnt_q0,
3985 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
3986 	}
3987 
3988 	BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop);
3989 
3990 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
3991 	CONN_INC_REF(eager->tcp_connp);
3992 
3993 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
3994 	    tcp_clean_death_wrapper, eager->tcp_connp, NULL,
3995 	    SQ_FILL, SQTAG_TCP_DROP_Q0);
3996 
3997 	return (B_TRUE);
3998 }
3999 
4000 /*
4001  * Handle a SYN on an AF_INET6 socket; can be either IPv4 or IPv6
4002  */
4003 static mblk_t *
4004 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4005     ip_recv_attr_t *ira)
4006 {
4007 	tcp_t 		*ltcp = lconnp->conn_tcp;
4008 	tcp_t		*tcp = connp->conn_tcp;
4009 	mblk_t		*tpi_mp;
4010 	ipha_t		*ipha;
4011 	ip6_t		*ip6h;
4012 	sin6_t 		sin6;
4013 	uint_t		ifindex = ira->ira_ruifindex;
4014 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4015 
4016 	if (ira->ira_flags & IRAF_IS_IPV4) {
4017 		ipha = (ipha_t *)mp->b_rptr;
4018 
4019 		connp->conn_ipversion = IPV4_VERSION;
4020 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6);
4021 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6);
4022 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
4023 
4024 		sin6 = sin6_null;
4025 		sin6.sin6_addr = connp->conn_faddr_v6;
4026 		sin6.sin6_port = connp->conn_fport;
4027 		sin6.sin6_family = AF_INET6;
4028 		sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6,
4029 		    IPCL_ZONEID(lconnp), tcps->tcps_netstack);
4030 
4031 		if (connp->conn_recv_ancillary.crb_recvdstaddr) {
4032 			sin6_t	sin6d;
4033 
4034 			sin6d = sin6_null;
4035 			sin6d.sin6_addr = connp->conn_laddr_v6;
4036 			sin6d.sin6_port = connp->conn_lport;
4037 			sin6d.sin6_family = AF_INET;
4038 			tpi_mp = mi_tpi_extconn_ind(NULL,
4039 			    (char *)&sin6d, sizeof (sin6_t),
4040 			    (char *)&tcp,
4041 			    (t_scalar_t)sizeof (intptr_t),
4042 			    (char *)&sin6d, sizeof (sin6_t),
4043 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4044 		} else {
4045 			tpi_mp = mi_tpi_conn_ind(NULL,
4046 			    (char *)&sin6, sizeof (sin6_t),
4047 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4048 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4049 		}
4050 	} else {
4051 		ip6h = (ip6_t *)mp->b_rptr;
4052 
4053 		connp->conn_ipversion = IPV6_VERSION;
4054 		connp->conn_laddr_v6 = ip6h->ip6_dst;
4055 		connp->conn_faddr_v6 = ip6h->ip6_src;
4056 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
4057 
4058 		sin6 = sin6_null;
4059 		sin6.sin6_addr = connp->conn_faddr_v6;
4060 		sin6.sin6_port = connp->conn_fport;
4061 		sin6.sin6_family = AF_INET6;
4062 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4063 		sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6,
4064 		    IPCL_ZONEID(lconnp), tcps->tcps_netstack);
4065 
4066 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4067 			/* Pass up the scope_id of remote addr */
4068 			sin6.sin6_scope_id = ifindex;
4069 		} else {
4070 			sin6.sin6_scope_id = 0;
4071 		}
4072 		if (connp->conn_recv_ancillary.crb_recvdstaddr) {
4073 			sin6_t	sin6d;
4074 
4075 			sin6d = sin6_null;
4076 			sin6.sin6_addr = connp->conn_laddr_v6;
4077 			sin6d.sin6_port = connp->conn_lport;
4078 			sin6d.sin6_family = AF_INET6;
4079 			if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_laddr_v6))
4080 				sin6d.sin6_scope_id = ifindex;
4081 
4082 			tpi_mp = mi_tpi_extconn_ind(NULL,
4083 			    (char *)&sin6d, sizeof (sin6_t),
4084 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4085 			    (char *)&sin6d, sizeof (sin6_t),
4086 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4087 		} else {
4088 			tpi_mp = mi_tpi_conn_ind(NULL,
4089 			    (char *)&sin6, sizeof (sin6_t),
4090 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4091 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4092 		}
4093 	}
4094 
4095 	tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
4096 	return (tpi_mp);
4097 }
4098 
4099 /* Handle a SYN on an AF_INET socket */
4100 mblk_t *
4101 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4102     ip_recv_attr_t *ira)
4103 {
4104 	tcp_t 		*ltcp = lconnp->conn_tcp;
4105 	tcp_t		*tcp = connp->conn_tcp;
4106 	sin_t		sin;
4107 	mblk_t		*tpi_mp = NULL;
4108 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4109 	ipha_t		*ipha;
4110 
4111 	ASSERT(ira->ira_flags & IRAF_IS_IPV4);
4112 	ipha = (ipha_t *)mp->b_rptr;
4113 
4114 	connp->conn_ipversion = IPV4_VERSION;
4115 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6);
4116 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6);
4117 	connp->conn_saddr_v6 = connp->conn_laddr_v6;
4118 
4119 	sin = sin_null;
4120 	sin.sin_addr.s_addr = connp->conn_faddr_v4;
4121 	sin.sin_port = connp->conn_fport;
4122 	sin.sin_family = AF_INET;
4123 	if (lconnp->conn_recv_ancillary.crb_recvdstaddr) {
4124 		sin_t	sind;
4125 
4126 		sind = sin_null;
4127 		sind.sin_addr.s_addr = connp->conn_laddr_v4;
4128 		sind.sin_port = connp->conn_lport;
4129 		sind.sin_family = AF_INET;
4130 		tpi_mp = mi_tpi_extconn_ind(NULL,
4131 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
4132 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
4133 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4134 	} else {
4135 		tpi_mp = mi_tpi_conn_ind(NULL,
4136 		    (char *)&sin, sizeof (sin_t),
4137 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4138 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4139 	}
4140 
4141 	tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
4142 	return (tpi_mp);
4143 }
4144 
4145 /*
4146  * tcp_get_conn/tcp_free_conn
4147  *
4148  * tcp_get_conn is used to get a clean tcp connection structure.
4149  * It tries to reuse the connections put on the freelist by the
4150  * time_wait_collector failing which it goes to kmem_cache. This
4151  * way has two benefits compared to just allocating from and
4152  * freeing to kmem_cache.
4153  * 1) The time_wait_collector can free (which includes the cleanup)
4154  * outside the squeue. So when the interrupt comes, we have a clean
4155  * connection sitting in the freelist. Obviously, this buys us
4156  * performance.
4157  *
4158  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener
4159  * has multiple disadvantages - tying up the squeue during alloc.
4160  * But allocating the conn/tcp in IP land is also not the best since
4161  * we can't check the 'q' and 'q0' which are protected by squeue and
4162  * blindly allocate memory which might have to be freed here if we are
4163  * not allowed to accept the connection. By using the freelist and
4164  * putting the conn/tcp back in freelist, we don't pay a penalty for
4165  * allocating memory without checking 'q/q0' and freeing it if we can't
4166  * accept the connection.
4167  *
4168  * Care should be taken to put the conn back in the same squeue's freelist
4169  * from which it was allocated. Best results are obtained if conn is
4170  * allocated from listener's squeue and freed to the same. Time wait
4171  * collector will free up the freelist is the connection ends up sitting
4172  * there for too long.
4173  */
4174 void *
4175 tcp_get_conn(void *arg, tcp_stack_t *tcps)
4176 {
4177 	tcp_t			*tcp = NULL;
4178 	conn_t			*connp = NULL;
4179 	squeue_t		*sqp = (squeue_t *)arg;
4180 	tcp_squeue_priv_t 	*tcp_time_wait;
4181 	netstack_t		*ns;
4182 	mblk_t			*tcp_rsrv_mp = NULL;
4183 
4184 	tcp_time_wait =
4185 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
4186 
4187 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
4188 	tcp = tcp_time_wait->tcp_free_list;
4189 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
4190 	if (tcp != NULL) {
4191 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
4192 		tcp_time_wait->tcp_free_list_cnt--;
4193 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
4194 		tcp->tcp_time_wait_next = NULL;
4195 		connp = tcp->tcp_connp;
4196 		connp->conn_flags |= IPCL_REUSED;
4197 
4198 		ASSERT(tcp->tcp_tcps == NULL);
4199 		ASSERT(connp->conn_netstack == NULL);
4200 		ASSERT(tcp->tcp_rsrv_mp != NULL);
4201 		ns = tcps->tcps_netstack;
4202 		netstack_hold(ns);
4203 		connp->conn_netstack = ns;
4204 		connp->conn_ixa->ixa_ipst = ns->netstack_ip;
4205 		tcp->tcp_tcps = tcps;
4206 		ipcl_globalhash_insert(connp);
4207 
4208 		connp->conn_ixa->ixa_notify_cookie = tcp;
4209 		ASSERT(connp->conn_ixa->ixa_notify == tcp_notify);
4210 		connp->conn_recv = tcp_input_data;
4211 		ASSERT(connp->conn_recvicmp == tcp_icmp_input);
4212 		ASSERT(connp->conn_verifyicmp == tcp_verifyicmp);
4213 		return ((void *)connp);
4214 	}
4215 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
4216 	/*
4217 	 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until
4218 	 * this conn_t/tcp_t is freed at ipcl_conn_destroy().
4219 	 */
4220 	tcp_rsrv_mp = allocb(0, BPRI_HI);
4221 	if (tcp_rsrv_mp == NULL)
4222 		return (NULL);
4223 
4224 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
4225 	    tcps->tcps_netstack)) == NULL) {
4226 		freeb(tcp_rsrv_mp);
4227 		return (NULL);
4228 	}
4229 
4230 	tcp = connp->conn_tcp;
4231 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
4232 	mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL);
4233 
4234 	tcp->tcp_tcps = tcps;
4235 
4236 	connp->conn_recv = tcp_input_data;
4237 	connp->conn_recvicmp = tcp_icmp_input;
4238 	connp->conn_verifyicmp = tcp_verifyicmp;
4239 
4240 	/*
4241 	 * Register tcp_notify to listen to capability changes detected by IP.
4242 	 * This upcall is made in the context of the call to conn_ip_output
4243 	 * thus it is inside the squeue.
4244 	 */
4245 	connp->conn_ixa->ixa_notify = tcp_notify;
4246 	connp->conn_ixa->ixa_notify_cookie = tcp;
4247 
4248 	return ((void *)connp);
4249 }
4250 
4251 /* BEGIN CSTYLED */
4252 /*
4253  *
4254  * The sockfs ACCEPT path:
4255  * =======================
4256  *
4257  * The eager is now established in its own perimeter as soon as SYN is
4258  * received in tcp_input_listener(). When sockfs receives conn_ind, it
4259  * completes the accept processing on the acceptor STREAM. The sending
4260  * of conn_ind part is common for both sockfs listener and a TLI/XTI
4261  * listener but a TLI/XTI listener completes the accept processing
4262  * on the listener perimeter.
4263  *
4264  * Common control flow for 3 way handshake:
4265  * ----------------------------------------
4266  *
4267  * incoming SYN (listener perimeter)	-> tcp_input_listener()
4268  *
4269  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_input_data()
4270  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
4271  *
4272  * Sockfs ACCEPT Path:
4273  * -------------------
4274  *
4275  * open acceptor stream (tcp_open allocates tcp_tli_accept()
4276  * as STREAM entry point)
4277  *
4278  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_tli_accept()
4279  *
4280  * tcp_tli_accept() extracts the eager and makes the q->q_ptr <-> eager
4281  * association (we are not behind eager's squeue but sockfs is protecting us
4282  * and no one knows about this stream yet. The STREAMS entry point q->q_info
4283  * is changed to point at tcp_wput().
4284  *
4285  * tcp_accept_common() sends any deferred eagers via tcp_send_pending() to
4286  * listener (done on listener's perimeter).
4287  *
4288  * tcp_tli_accept() calls tcp_accept_finish() on eagers perimeter to finish
4289  * accept.
4290  *
4291  * TLI/XTI client ACCEPT path:
4292  * ---------------------------
4293  *
4294  * soaccept() sends T_CONN_RES on the listener STREAM.
4295  *
4296  * tcp_tli_accept() -> tcp_accept_swap() complete the processing and send
4297  * a M_SETOPS mblk to eager perimeter to finish accept (tcp_accept_finish()).
4298  *
4299  * Locks:
4300  * ======
4301  *
4302  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
4303  * and listeners->tcp_eager_next_q.
4304  *
4305  * Referencing:
4306  * ============
4307  *
4308  * 1) We start out in tcp_input_listener by eager placing a ref on
4309  * listener and listener adding eager to listeners->tcp_eager_next_q0.
4310  *
4311  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
4312  * doing so we place a ref on the eager. This ref is finally dropped at the
4313  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
4314  * reference is dropped by the squeue framework.
4315  *
4316  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
4317  *
4318  * The reference must be released by the same entity that added the reference
4319  * In the above scheme, the eager is the entity that adds and releases the
4320  * references. Note that tcp_accept_finish executes in the squeue of the eager
4321  * (albeit after it is attached to the acceptor stream). Though 1. executes
4322  * in the listener's squeue, the eager is nascent at this point and the
4323  * reference can be considered to have been added on behalf of the eager.
4324  *
4325  * Eager getting a Reset or listener closing:
4326  * ==========================================
4327  *
4328  * Once the listener and eager are linked, the listener never does the unlink.
4329  * If the listener needs to close, tcp_eager_cleanup() is called which queues
4330  * a message on all eager perimeter. The eager then does the unlink, clears
4331  * any pointers to the listener's queue and drops the reference to the
4332  * listener. The listener waits in tcp_close outside the squeue until its
4333  * refcount has dropped to 1. This ensures that the listener has waited for
4334  * all eagers to clear their association with the listener.
4335  *
4336  * Similarly, if eager decides to go away, it can unlink itself and close.
4337  * When the T_CONN_RES comes down, we check if eager has closed. Note that
4338  * the reference to eager is still valid because of the extra ref we put
4339  * in tcp_send_conn_ind.
4340  *
4341  * Listener can always locate the eager under the protection
4342  * of the listener->tcp_eager_lock, and then do a refhold
4343  * on the eager during the accept processing.
4344  *
4345  * The acceptor stream accesses the eager in the accept processing
4346  * based on the ref placed on eager before sending T_conn_ind.
4347  * The only entity that can negate this refhold is a listener close
4348  * which is mutually exclusive with an active acceptor stream.
4349  *
4350  * Eager's reference on the listener
4351  * ===================================
4352  *
4353  * If the accept happens (even on a closed eager) the eager drops its
4354  * reference on the listener at the start of tcp_accept_finish. If the
4355  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
4356  * the reference is dropped in tcp_closei_local. If the listener closes,
4357  * the reference is dropped in tcp_eager_kill. In all cases the reference
4358  * is dropped while executing in the eager's context (squeue).
4359  */
4360 /* END CSTYLED */
4361 
4362 /* Process the SYN packet, mp, directed at the listener 'tcp' */
4363 
4364 /*
4365  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
4366  * tcp_input_data will not see any packets for listeners since the listener
4367  * has conn_recv set to tcp_input_listener.
4368  */
4369 /* ARGSUSED */
4370 void
4371 tcp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4372 {
4373 	tcpha_t		*tcpha;
4374 	uint32_t	seg_seq;
4375 	tcp_t		*eager;
4376 	int		err;
4377 	conn_t		*econnp = NULL;
4378 	squeue_t	*new_sqp;
4379 	mblk_t		*mp1;
4380 	uint_t 		ip_hdr_len;
4381 	conn_t		*lconnp = (conn_t *)arg;
4382 	tcp_t		*listener = lconnp->conn_tcp;
4383 	tcp_stack_t	*tcps = listener->tcp_tcps;
4384 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
4385 	uint_t		flags;
4386 	mblk_t		*tpi_mp;
4387 	uint_t		ifindex = ira->ira_ruifindex;
4388 
4389 	ip_hdr_len = ira->ira_ip_hdr_length;
4390 	tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len];
4391 	flags = (unsigned int)tcpha->tha_flags & 0xFF;
4392 
4393 	if (!(flags & TH_SYN)) {
4394 		if ((flags & TH_RST) || (flags & TH_URG)) {
4395 			freemsg(mp);
4396 			return;
4397 		}
4398 		if (flags & TH_ACK) {
4399 			/* Note this executes in listener's squeue */
4400 			tcp_xmit_listeners_reset(mp, ira, ipst, lconnp);
4401 			return;
4402 		}
4403 
4404 		freemsg(mp);
4405 		return;
4406 	}
4407 
4408 	if (listener->tcp_state != TCPS_LISTEN)
4409 		goto error2;
4410 
4411 	ASSERT(IPCL_IS_BOUND(lconnp));
4412 
4413 	mutex_enter(&listener->tcp_eager_lock);
4414 	if (listener->tcp_conn_req_cnt_q >= listener->tcp_conn_req_max) {
4415 		mutex_exit(&listener->tcp_eager_lock);
4416 		TCP_STAT(tcps, tcp_listendrop);
4417 		BUMP_MIB(&tcps->tcps_mib, tcpListenDrop);
4418 		if (lconnp->conn_debug) {
4419 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
4420 			    "tcp_input_listener: listen backlog (max=%d) "
4421 			    "overflow (%d pending) on %s",
4422 			    listener->tcp_conn_req_max,
4423 			    listener->tcp_conn_req_cnt_q,
4424 			    tcp_display(listener, NULL, DISP_PORT_ONLY));
4425 		}
4426 		goto error2;
4427 	}
4428 
4429 	if (listener->tcp_conn_req_cnt_q0 >=
4430 	    listener->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
4431 		/*
4432 		 * Q0 is full. Drop a pending half-open req from the queue
4433 		 * to make room for the new SYN req. Also mark the time we
4434 		 * drop a SYN.
4435 		 *
4436 		 * A more aggressive defense against SYN attack will
4437 		 * be to set the "tcp_syn_defense" flag now.
4438 		 */
4439 		TCP_STAT(tcps, tcp_listendropq0);
4440 		listener->tcp_last_rcv_lbolt = lbolt64;
4441 		if (!tcp_drop_q0(listener)) {
4442 			mutex_exit(&listener->tcp_eager_lock);
4443 			BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0);
4444 			if (lconnp->conn_debug) {
4445 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4446 				    "tcp_input_listener: listen half-open "
4447 				    "queue (max=%d) full (%d pending) on %s",
4448 				    tcps->tcps_conn_req_max_q0,
4449 				    listener->tcp_conn_req_cnt_q0,
4450 				    tcp_display(listener, NULL,
4451 				    DISP_PORT_ONLY));
4452 			}
4453 			goto error2;
4454 		}
4455 	}
4456 	mutex_exit(&listener->tcp_eager_lock);
4457 
4458 	/*
4459 	 * IP sets ira_sqp to either the senders conn_sqp (for loopback)
4460 	 * or based on the ring (for packets from GLD). Otherwise it is
4461 	 * set based on lbolt i.e., a somewhat random number.
4462 	 */
4463 	ASSERT(ira->ira_sqp != NULL);
4464 	new_sqp = ira->ira_sqp;
4465 
4466 	econnp = (conn_t *)tcp_get_conn(arg2, tcps);
4467 	if (econnp == NULL)
4468 		goto error2;
4469 
4470 	ASSERT(econnp->conn_netstack == lconnp->conn_netstack);
4471 	econnp->conn_sqp = new_sqp;
4472 	econnp->conn_initial_sqp = new_sqp;
4473 	econnp->conn_ixa->ixa_sqp = new_sqp;
4474 
4475 	econnp->conn_fport = tcpha->tha_lport;
4476 	econnp->conn_lport = tcpha->tha_fport;
4477 
4478 	err = conn_inherit_parent(lconnp, econnp);
4479 	if (err != 0)
4480 		goto error3;
4481 
4482 	ASSERT(OK_32PTR(mp->b_rptr));
4483 	ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION ||
4484 	    IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
4485 
4486 	if (lconnp->conn_family == AF_INET) {
4487 		ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION);
4488 		tpi_mp = tcp_conn_create_v4(lconnp, econnp, mp, ira);
4489 	} else {
4490 		tpi_mp = tcp_conn_create_v6(lconnp, econnp, mp, ira);
4491 	}
4492 
4493 	if (tpi_mp == NULL)
4494 		goto error3;
4495 
4496 	eager = econnp->conn_tcp;
4497 	eager->tcp_detached = B_TRUE;
4498 	SOCK_CONNID_INIT(eager->tcp_connid);
4499 
4500 	tcp_init_values(eager);
4501 
4502 	ASSERT((econnp->conn_ixa->ixa_flags &
4503 	    (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
4504 	    IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)) ==
4505 	    (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
4506 	    IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO));
4507 
4508 	if (!tcps->tcps_dev_flow_ctl)
4509 		econnp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL;
4510 
4511 	/* Prepare for diffing against previous packets */
4512 	eager->tcp_recvifindex = 0;
4513 	eager->tcp_recvhops = 0xffffffffU;
4514 
4515 	if (!(ira->ira_flags & IRAF_IS_IPV4) && econnp->conn_bound_if == 0) {
4516 		if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_faddr_v6) ||
4517 		    IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6)) {
4518 			econnp->conn_incoming_ifindex = ifindex;
4519 			econnp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
4520 			econnp->conn_ixa->ixa_scopeid = ifindex;
4521 		}
4522 	}
4523 
4524 	if ((ira->ira_flags & (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS)) ==
4525 	    (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS) &&
4526 	    tcps->tcps_rev_src_routes) {
4527 		ipha_t *ipha = (ipha_t *)mp->b_rptr;
4528 		ip_pkt_t *ipp = &econnp->conn_xmit_ipp;
4529 
4530 		/* Source routing option copyover (reverse it) */
4531 		err = ip_find_hdr_v4(ipha, ipp, B_TRUE);
4532 		if (err != 0) {
4533 			freemsg(tpi_mp);
4534 			goto error3;
4535 		}
4536 		ip_pkt_source_route_reverse_v4(ipp);
4537 	}
4538 
4539 	ASSERT(eager->tcp_conn.tcp_eager_conn_ind == NULL);
4540 	ASSERT(!eager->tcp_tconnind_started);
4541 	/*
4542 	 * If the SYN came with a credential, it's a loopback packet or a
4543 	 * labeled packet; attach the credential to the TPI message.
4544 	 */
4545 	if (ira->ira_cred != NULL)
4546 		mblk_setcred(tpi_mp, ira->ira_cred, ira->ira_cpid);
4547 
4548 	eager->tcp_conn.tcp_eager_conn_ind = tpi_mp;
4549 
4550 	/* Inherit the listener's SSL protection state */
4551 	if ((eager->tcp_kssl_ent = listener->tcp_kssl_ent) != NULL) {
4552 		kssl_hold_ent(eager->tcp_kssl_ent);
4553 		eager->tcp_kssl_pending = B_TRUE;
4554 	}
4555 
4556 	/* Inherit the listener's non-STREAMS flag */
4557 	if (IPCL_IS_NONSTR(lconnp)) {
4558 		econnp->conn_flags |= IPCL_NONSTR;
4559 	}
4560 
4561 	ASSERT(eager->tcp_ordrel_mp == NULL);
4562 
4563 	if (!IPCL_IS_NONSTR(econnp)) {
4564 		/*
4565 		 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that
4566 		 * at close time, we will always have that to send up.
4567 		 * Otherwise, we need to do special handling in case the
4568 		 * allocation fails at that time.
4569 		 */
4570 		if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL)
4571 			goto error3;
4572 	}
4573 	/*
4574 	 * Now that the IP addresses and ports are setup in econnp we
4575 	 * can do the IPsec policy work.
4576 	 */
4577 	if (ira->ira_flags & IRAF_IPSEC_SECURE) {
4578 		if (lconnp->conn_policy != NULL) {
4579 			/*
4580 			 * Inherit the policy from the listener; use
4581 			 * actions from ira
4582 			 */
4583 			if (!ip_ipsec_policy_inherit(econnp, lconnp, ira)) {
4584 				CONN_DEC_REF(econnp);
4585 				freemsg(mp);
4586 				goto error3;
4587 			}
4588 		}
4589 	}
4590 
4591 	/* Inherit various TCP parameters from the listener */
4592 	eager->tcp_naglim = listener->tcp_naglim;
4593 	eager->tcp_first_timer_threshold = listener->tcp_first_timer_threshold;
4594 	eager->tcp_second_timer_threshold =
4595 	    listener->tcp_second_timer_threshold;
4596 	eager->tcp_first_ctimer_threshold =
4597 	    listener->tcp_first_ctimer_threshold;
4598 	eager->tcp_second_ctimer_threshold =
4599 	    listener->tcp_second_ctimer_threshold;
4600 
4601 	/*
4602 	 * tcp_set_destination() may set tcp_rwnd according to the route
4603 	 * metrics. If it does not, the eager's receive window will be set
4604 	 * to the listener's receive window later in this function.
4605 	 */
4606 	eager->tcp_rwnd = 0;
4607 
4608 	/*
4609 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
4610 	 * calling tcp_process_options() which set the initial cwnd.
4611 	 */
4612 	eager->tcp_init_cwnd = listener->tcp_init_cwnd;
4613 
4614 	if (is_system_labeled()) {
4615 		ip_xmit_attr_t *ixa = econnp->conn_ixa;
4616 
4617 		ASSERT(ira->ira_tsl != NULL);
4618 		/* Discard any old label */
4619 		if (ixa->ixa_free_flags & IXA_FREE_TSL) {
4620 			ASSERT(ixa->ixa_tsl != NULL);
4621 			label_rele(ixa->ixa_tsl);
4622 			ixa->ixa_free_flags &= ~IXA_FREE_TSL;
4623 			ixa->ixa_tsl = NULL;
4624 		}
4625 		if ((lconnp->conn_mlp_type != mlptSingle ||
4626 		    lconnp->conn_mac_mode != CONN_MAC_DEFAULT) &&
4627 		    ira->ira_tsl != NULL) {
4628 			/*
4629 			 * If this is an MLP connection or a MAC-Exempt
4630 			 * connection with an unlabeled node, packets are to be
4631 			 * exchanged using the security label of the received
4632 			 * SYN packet instead of the server application's label.
4633 			 * tsol_check_dest called from ip_set_destination
4634 			 * might later update TSF_UNLABELED by replacing
4635 			 * ixa_tsl with a new label.
4636 			 */
4637 			label_hold(ira->ira_tsl);
4638 			ip_xmit_attr_replace_tsl(ixa, ira->ira_tsl);
4639 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
4640 			    econnp, ts_label_t *, ixa->ixa_tsl)
4641 		} else {
4642 			ixa->ixa_tsl = crgetlabel(econnp->conn_cred);
4643 			DTRACE_PROBE2(syn_accept, conn_t *,
4644 			    econnp, ts_label_t *, ixa->ixa_tsl)
4645 		}
4646 		/*
4647 		 * conn_connect() called from tcp_set_destination will verify
4648 		 * the destination is allowed to receive packets at the
4649 		 * security label of the SYN-ACK we are generating. As part of
4650 		 * that, tsol_check_dest() may create a new effective label for
4651 		 * this connection.
4652 		 * Finally conn_connect() will call conn_update_label.
4653 		 * All that remains for TCP to do is to call
4654 		 * conn_build_hdr_template which is done as part of
4655 		 * tcp_set_destination.
4656 		 */
4657 	}
4658 
4659 	/*
4660 	 * Since we will clear tcp_listener before we clear tcp_detached
4661 	 * in the accept code we need tcp_hard_binding aka tcp_accept_inprogress
4662 	 * so we can tell a TCP_DETACHED_NONEAGER apart.
4663 	 */
4664 	eager->tcp_hard_binding = B_TRUE;
4665 
4666 	tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
4667 	    TCP_BIND_HASH(econnp->conn_lport)], eager, 0);
4668 
4669 	CL_INET_CONNECT(econnp, B_FALSE, err);
4670 	if (err != 0) {
4671 		tcp_bind_hash_remove(eager);
4672 		goto error3;
4673 	}
4674 
4675 	/*
4676 	 * No need to check for multicast destination since ip will only pass
4677 	 * up multicasts to those that have expressed interest
4678 	 * TODO: what about rejecting broadcasts?
4679 	 * Also check that source is not a multicast or broadcast address.
4680 	 */
4681 	eager->tcp_state = TCPS_SYN_RCVD;
4682 	SOCK_CONNID_BUMP(eager->tcp_connid);
4683 
4684 	/*
4685 	 * Adapt our mss, ttl, ... based on the remote address.
4686 	 */
4687 
4688 	if (tcp_set_destination(eager) != 0) {
4689 		BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
4690 		/* Undo the bind_hash_insert */
4691 		tcp_bind_hash_remove(eager);
4692 		goto error3;
4693 	}
4694 
4695 	/* Process all TCP options. */
4696 	tcp_process_options(eager, tcpha);
4697 
4698 	/* Is the other end ECN capable? */
4699 	if (tcps->tcps_ecn_permitted >= 1 &&
4700 	    (tcpha->tha_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
4701 		eager->tcp_ecn_ok = B_TRUE;
4702 	}
4703 
4704 	/*
4705 	 * The listener's conn_rcvbuf should be the default window size or a
4706 	 * window size changed via SO_RCVBUF option. First round up the
4707 	 * eager's tcp_rwnd to the nearest MSS. Then find out the window
4708 	 * scale option value if needed. Call tcp_rwnd_set() to finish the
4709 	 * setting.
4710 	 *
4711 	 * Note if there is a rpipe metric associated with the remote host,
4712 	 * we should not inherit receive window size from listener.
4713 	 */
4714 	eager->tcp_rwnd = MSS_ROUNDUP(
4715 	    (eager->tcp_rwnd == 0 ? econnp->conn_rcvbuf :
4716 	    eager->tcp_rwnd), eager->tcp_mss);
4717 	if (eager->tcp_snd_ws_ok)
4718 		tcp_set_ws_value(eager);
4719 	/*
4720 	 * Note that this is the only place tcp_rwnd_set() is called for
4721 	 * accepting a connection.  We need to call it here instead of
4722 	 * after the 3-way handshake because we need to tell the other
4723 	 * side our rwnd in the SYN-ACK segment.
4724 	 */
4725 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
4726 
4727 	ASSERT(eager->tcp_connp->conn_rcvbuf != 0 &&
4728 	    eager->tcp_connp->conn_rcvbuf == eager->tcp_rwnd);
4729 
4730 	ASSERT(econnp->conn_rcvbuf != 0 &&
4731 	    econnp->conn_rcvbuf == eager->tcp_rwnd);
4732 
4733 	/* Put a ref on the listener for the eager. */
4734 	CONN_INC_REF(lconnp);
4735 	mutex_enter(&listener->tcp_eager_lock);
4736 	listener->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
4737 	eager->tcp_eager_next_q0 = listener->tcp_eager_next_q0;
4738 	listener->tcp_eager_next_q0 = eager;
4739 	eager->tcp_eager_prev_q0 = listener;
4740 
4741 	/* Set tcp_listener before adding it to tcp_conn_fanout */
4742 	eager->tcp_listener = listener;
4743 	eager->tcp_saved_listener = listener;
4744 
4745 	/*
4746 	 * Tag this detached tcp vector for later retrieval
4747 	 * by our listener client in tcp_accept().
4748 	 */
4749 	eager->tcp_conn_req_seqnum = listener->tcp_conn_req_seqnum;
4750 	listener->tcp_conn_req_cnt_q0++;
4751 	if (++listener->tcp_conn_req_seqnum == -1) {
4752 		/*
4753 		 * -1 is "special" and defined in TPI as something
4754 		 * that should never be used in T_CONN_IND
4755 		 */
4756 		++listener->tcp_conn_req_seqnum;
4757 	}
4758 	mutex_exit(&listener->tcp_eager_lock);
4759 
4760 	if (listener->tcp_syn_defense) {
4761 		/* Don't drop the SYN that comes from a good IP source */
4762 		ipaddr_t *addr_cache;
4763 
4764 		addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
4765 		if (addr_cache != NULL && econnp->conn_faddr_v4 ==
4766 		    addr_cache[IP_ADDR_CACHE_HASH(econnp->conn_faddr_v4)]) {
4767 			eager->tcp_dontdrop = B_TRUE;
4768 		}
4769 	}
4770 
4771 	/*
4772 	 * We need to insert the eager in its own perimeter but as soon
4773 	 * as we do that, we expose the eager to the classifier and
4774 	 * should not touch any field outside the eager's perimeter.
4775 	 * So do all the work necessary before inserting the eager
4776 	 * in its own perimeter. Be optimistic that conn_connect()
4777 	 * will succeed but undo everything if it fails.
4778 	 */
4779 	seg_seq = ntohl(tcpha->tha_seq);
4780 	eager->tcp_irs = seg_seq;
4781 	eager->tcp_rack = seg_seq;
4782 	eager->tcp_rnxt = seg_seq + 1;
4783 	eager->tcp_tcpha->tha_ack = htonl(eager->tcp_rnxt);
4784 	BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens);
4785 	eager->tcp_state = TCPS_SYN_RCVD;
4786 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
4787 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
4788 	if (mp1 == NULL) {
4789 		/*
4790 		 * Increment the ref count as we are going to
4791 		 * enqueueing an mp in squeue
4792 		 */
4793 		CONN_INC_REF(econnp);
4794 		goto error;
4795 	}
4796 
4797 	/*
4798 	 * We need to start the rto timer. In normal case, we start
4799 	 * the timer after sending the packet on the wire (or at
4800 	 * least believing that packet was sent by waiting for
4801 	 * conn_ip_output() to return). Since this is the first packet
4802 	 * being sent on the wire for the eager, our initial tcp_rto
4803 	 * is at least tcp_rexmit_interval_min which is a fairly
4804 	 * large value to allow the algorithm to adjust slowly to large
4805 	 * fluctuations of RTT during first few transmissions.
4806 	 *
4807 	 * Starting the timer first and then sending the packet in this
4808 	 * case shouldn't make much difference since tcp_rexmit_interval_min
4809 	 * is of the order of several 100ms and starting the timer
4810 	 * first and then sending the packet will result in difference
4811 	 * of few micro seconds.
4812 	 *
4813 	 * Without this optimization, we are forced to hold the fanout
4814 	 * lock across the ipcl_bind_insert() and sending the packet
4815 	 * so that we don't race against an incoming packet (maybe RST)
4816 	 * for this eager.
4817 	 *
4818 	 * It is necessary to acquire an extra reference on the eager
4819 	 * at this point and hold it until after tcp_send_data() to
4820 	 * ensure against an eager close race.
4821 	 */
4822 
4823 	CONN_INC_REF(econnp);
4824 
4825 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
4826 
4827 	/*
4828 	 * Insert the eager in its own perimeter now. We are ready to deal
4829 	 * with any packets on eager.
4830 	 */
4831 	if (ipcl_conn_insert(econnp) != 0)
4832 		goto error;
4833 
4834 	/*
4835 	 * Send the SYN-ACK. Can't use tcp_send_data since we can't update
4836 	 * pmtu etc; we are not on the eager's squeue
4837 	 */
4838 	ASSERT(econnp->conn_ixa->ixa_notify_cookie == econnp->conn_tcp);
4839 	(void) conn_ip_output(mp1, econnp->conn_ixa);
4840 	CONN_DEC_REF(econnp);
4841 	freemsg(mp);
4842 
4843 	return;
4844 error:
4845 	freemsg(mp1);
4846 	eager->tcp_closemp_used = B_TRUE;
4847 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
4848 	mp1 = &eager->tcp_closemp;
4849 	SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill,
4850 	    econnp, NULL, SQ_FILL, SQTAG_TCP_CONN_REQ_2);
4851 
4852 	/*
4853 	 * If a connection already exists, send the mp to that connections so
4854 	 * that it can be appropriately dealt with.
4855 	 */
4856 	ipst = tcps->tcps_netstack->netstack_ip;
4857 
4858 	if ((econnp = ipcl_classify(mp, ira, ipst)) != NULL) {
4859 		if (!IPCL_IS_CONNECTED(econnp)) {
4860 			/*
4861 			 * Something bad happened. ipcl_conn_insert()
4862 			 * failed because a connection already existed
4863 			 * in connected hash but we can't find it
4864 			 * anymore (someone blew it away). Just
4865 			 * free this message and hopefully remote
4866 			 * will retransmit at which time the SYN can be
4867 			 * treated as a new connection or dealth with
4868 			 * a TH_RST if a connection already exists.
4869 			 */
4870 			CONN_DEC_REF(econnp);
4871 			freemsg(mp);
4872 		} else {
4873 			SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, tcp_input_data,
4874 			    econnp, ira, SQ_FILL, SQTAG_TCP_CONN_REQ_1);
4875 		}
4876 	} else {
4877 		/* Nobody wants this packet */
4878 		freemsg(mp);
4879 	}
4880 	return;
4881 error3:
4882 	CONN_DEC_REF(econnp);
4883 error2:
4884 	freemsg(mp);
4885 }
4886 
4887 /*
4888  * In an ideal case of vertical partition in NUMA architecture, its
4889  * beneficial to have the listener and all the incoming connections
4890  * tied to the same squeue. The other constraint is that incoming
4891  * connections should be tied to the squeue attached to interrupted
4892  * CPU for obvious locality reason so this leaves the listener to
4893  * be tied to the same squeue. Our only problem is that when listener
4894  * is binding, the CPU that will get interrupted by the NIC whose
4895  * IP address the listener is binding to is not even known. So
4896  * the code below allows us to change that binding at the time the
4897  * CPU is interrupted by virtue of incoming connection's squeue.
4898  *
4899  * This is usefull only in case of a listener bound to a specific IP
4900  * address. For other kind of listeners, they get bound the
4901  * very first time and there is no attempt to rebind them.
4902  */
4903 void
4904 tcp_input_listener_unbound(void *arg, mblk_t *mp, void *arg2,
4905     ip_recv_attr_t *ira)
4906 {
4907 	conn_t		*connp = (conn_t *)arg;
4908 	squeue_t	*sqp = (squeue_t *)arg2;
4909 	squeue_t	*new_sqp;
4910 	uint32_t	conn_flags;
4911 
4912 	/*
4913 	 * IP sets ira_sqp to either the senders conn_sqp (for loopback)
4914 	 * or based on the ring (for packets from GLD). Otherwise it is
4915 	 * set based on lbolt i.e., a somewhat random number.
4916 	 */
4917 	ASSERT(ira->ira_sqp != NULL);
4918 	new_sqp = ira->ira_sqp;
4919 
4920 	if (connp->conn_fanout == NULL)
4921 		goto done;
4922 
4923 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
4924 		mutex_enter(&connp->conn_fanout->connf_lock);
4925 		mutex_enter(&connp->conn_lock);
4926 		/*
4927 		 * No one from read or write side can access us now
4928 		 * except for already queued packets on this squeue.
4929 		 * But since we haven't changed the squeue yet, they
4930 		 * can't execute. If they are processed after we have
4931 		 * changed the squeue, they are sent back to the
4932 		 * correct squeue down below.
4933 		 * But a listner close can race with processing of
4934 		 * incoming SYN. If incoming SYN processing changes
4935 		 * the squeue then the listener close which is waiting
4936 		 * to enter the squeue would operate on the wrong
4937 		 * squeue. Hence we don't change the squeue here unless
4938 		 * the refcount is exactly the minimum refcount. The
4939 		 * minimum refcount of 4 is counted as - 1 each for
4940 		 * TCP and IP, 1 for being in the classifier hash, and
4941 		 * 1 for the mblk being processed.
4942 		 */
4943 
4944 		if (connp->conn_ref != 4 ||
4945 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
4946 			mutex_exit(&connp->conn_lock);
4947 			mutex_exit(&connp->conn_fanout->connf_lock);
4948 			goto done;
4949 		}
4950 		if (connp->conn_sqp != new_sqp) {
4951 			while (connp->conn_sqp != new_sqp)
4952 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
4953 			/* No special MT issues for outbound ixa_sqp hint */
4954 			connp->conn_ixa->ixa_sqp = new_sqp;
4955 		}
4956 
4957 		do {
4958 			conn_flags = connp->conn_flags;
4959 			conn_flags |= IPCL_FULLY_BOUND;
4960 			(void) cas32(&connp->conn_flags, connp->conn_flags,
4961 			    conn_flags);
4962 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
4963 
4964 		mutex_exit(&connp->conn_fanout->connf_lock);
4965 		mutex_exit(&connp->conn_lock);
4966 
4967 		/*
4968 		 * Assume we have picked a good squeue for the listener. Make
4969 		 * subsequent SYNs not try to change the squeue.
4970 		 */
4971 		connp->conn_recv = tcp_input_listener;
4972 	}
4973 
4974 done:
4975 	if (connp->conn_sqp != sqp) {
4976 		CONN_INC_REF(connp);
4977 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
4978 		    ira, SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND);
4979 	} else {
4980 		tcp_input_listener(connp, mp, sqp, ira);
4981 	}
4982 }
4983 
4984 /*
4985  * Successful connect request processing begins when our client passes
4986  * a T_CONN_REQ message into tcp_wput(), which performs function calls into
4987  * IP and the passes a T_OK_ACK (or T_ERROR_ACK upstream).
4988  *
4989  * After various error checks are completed, tcp_tpi_connect() lays
4990  * the target address and port into the composite header template.
4991  * Then we ask IP for information, including a source address if we didn't
4992  * already have one. Finally we prepare to send the SYN packet, and then
4993  * send up the T_OK_ACK reply message.
4994  */
4995 static void
4996 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp)
4997 {
4998 	sin_t		*sin;
4999 	struct T_conn_req	*tcr;
5000 	struct sockaddr	*sa;
5001 	socklen_t	len;
5002 	int		error;
5003 	cred_t		*cr;
5004 	pid_t		cpid;
5005 	conn_t		*connp = tcp->tcp_connp;
5006 	queue_t		*q = connp->conn_wq;
5007 
5008 	/*
5009 	 * All Solaris components should pass a db_credp
5010 	 * for this TPI message, hence we ASSERT.
5011 	 * But in case there is some other M_PROTO that looks
5012 	 * like a TPI message sent by some other kernel
5013 	 * component, we check and return an error.
5014 	 */
5015 	cr = msg_getcred(mp, &cpid);
5016 	ASSERT(cr != NULL);
5017 	if (cr == NULL) {
5018 		tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
5019 		return;
5020 	}
5021 
5022 	tcr = (struct T_conn_req *)mp->b_rptr;
5023 
5024 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
5025 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
5026 		tcp_err_ack(tcp, mp, TPROTO, 0);
5027 		return;
5028 	}
5029 
5030 	/*
5031 	 * Pre-allocate the T_ordrel_ind mblk so that at close time, we
5032 	 * will always have that to send up.  Otherwise, we need to do
5033 	 * special handling in case the allocation fails at that time.
5034 	 * If the end point is TPI, the tcp_t can be reused and the
5035 	 * tcp_ordrel_mp may be allocated already.
5036 	 */
5037 	if (tcp->tcp_ordrel_mp == NULL) {
5038 		if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) {
5039 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
5040 			return;
5041 		}
5042 	}
5043 
5044 	/*
5045 	 * Determine packet type based on type of address passed in
5046 	 * the request should contain an IPv4 or IPv6 address.
5047 	 * Make sure that address family matches the type of
5048 	 * family of the address passed down.
5049 	 */
5050 	switch (tcr->DEST_length) {
5051 	default:
5052 		tcp_err_ack(tcp, mp, TBADADDR, 0);
5053 		return;
5054 
5055 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
5056 		/*
5057 		 * XXX: The check for valid DEST_length was not there
5058 		 * in earlier releases and some buggy
5059 		 * TLI apps (e.g Sybase) got away with not feeding
5060 		 * in sin_zero part of address.
5061 		 * We allow that bug to keep those buggy apps humming.
5062 		 * Test suites require the check on DEST_length.
5063 		 * We construct a new mblk with valid DEST_length
5064 		 * free the original so the rest of the code does
5065 		 * not have to keep track of this special shorter
5066 		 * length address case.
5067 		 */
5068 		mblk_t *nmp;
5069 		struct T_conn_req *ntcr;
5070 		sin_t *nsin;
5071 
5072 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
5073 		    tcr->OPT_length, BPRI_HI);
5074 		if (nmp == NULL) {
5075 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
5076 			return;
5077 		}
5078 		ntcr = (struct T_conn_req *)nmp->b_rptr;
5079 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
5080 		ntcr->PRIM_type = T_CONN_REQ;
5081 		ntcr->DEST_length = sizeof (sin_t);
5082 		ntcr->DEST_offset = sizeof (struct T_conn_req);
5083 
5084 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
5085 		*nsin = sin_null;
5086 		/* Get pointer to shorter address to copy from original mp */
5087 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
5088 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
5089 		if (sin == NULL || !OK_32PTR((char *)sin)) {
5090 			freemsg(nmp);
5091 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
5092 			return;
5093 		}
5094 		nsin->sin_family = sin->sin_family;
5095 		nsin->sin_port = sin->sin_port;
5096 		nsin->sin_addr = sin->sin_addr;
5097 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
5098 		nmp->b_wptr = (uchar_t *)&nsin[1];
5099 		if (tcr->OPT_length != 0) {
5100 			ntcr->OPT_length = tcr->OPT_length;
5101 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
5102 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
5103 			    (uchar_t *)ntcr + ntcr->OPT_offset,
5104 			    tcr->OPT_length);
5105 			nmp->b_wptr += tcr->OPT_length;
5106 		}
5107 		freemsg(mp);	/* original mp freed */
5108 		mp = nmp;	/* re-initialize original variables */
5109 		tcr = ntcr;
5110 	}
5111 	/* FALLTHRU */
5112 
5113 	case sizeof (sin_t):
5114 		sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset,
5115 		    sizeof (sin_t));
5116 		len = sizeof (sin_t);
5117 		break;
5118 
5119 	case sizeof (sin6_t):
5120 		sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset,
5121 		    sizeof (sin6_t));
5122 		len = sizeof (sin6_t);
5123 		break;
5124 	}
5125 
5126 	error = proto_verify_ip_addr(connp->conn_family, sa, len);
5127 	if (error != 0) {
5128 		tcp_err_ack(tcp, mp, TSYSERR, error);
5129 		return;
5130 	}
5131 
5132 	/*
5133 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
5134 	 * should key on their sequence number and cut them loose.
5135 	 */
5136 
5137 	/*
5138 	 * If options passed in, feed it for verification and handling
5139 	 */
5140 	if (tcr->OPT_length != 0) {
5141 		mblk_t	*ok_mp;
5142 		mblk_t	*discon_mp;
5143 		mblk_t  *conn_opts_mp;
5144 		int t_error, sys_error, do_disconnect;
5145 
5146 		conn_opts_mp = NULL;
5147 
5148 		if (tcp_conprim_opt_process(tcp, mp,
5149 		    &do_disconnect, &t_error, &sys_error) < 0) {
5150 			if (do_disconnect) {
5151 				ASSERT(t_error == 0 && sys_error == 0);
5152 				discon_mp = mi_tpi_discon_ind(NULL,
5153 				    ECONNREFUSED, 0);
5154 				if (!discon_mp) {
5155 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
5156 					    TSYSERR, ENOMEM);
5157 					return;
5158 				}
5159 				ok_mp = mi_tpi_ok_ack_alloc(mp);
5160 				if (!ok_mp) {
5161 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
5162 					    TSYSERR, ENOMEM);
5163 					return;
5164 				}
5165 				qreply(q, ok_mp);
5166 				qreply(q, discon_mp); /* no flush! */
5167 			} else {
5168 				ASSERT(t_error != 0);
5169 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
5170 				    sys_error);
5171 			}
5172 			return;
5173 		}
5174 		/*
5175 		 * Success in setting options, the mp option buffer represented
5176 		 * by OPT_length/offset has been potentially modified and
5177 		 * contains results of option processing. We copy it in
5178 		 * another mp to save it for potentially influencing returning
5179 		 * it in T_CONN_CONN.
5180 		 */
5181 		if (tcr->OPT_length != 0) { /* there are resulting options */
5182 			conn_opts_mp = copyb(mp);
5183 			if (!conn_opts_mp) {
5184 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
5185 				    TSYSERR, ENOMEM);
5186 				return;
5187 			}
5188 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
5189 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
5190 			/*
5191 			 * Note:
5192 			 * These resulting option negotiation can include any
5193 			 * end-to-end negotiation options but there no such
5194 			 * thing (yet?) in our TCP/IP.
5195 			 */
5196 		}
5197 	}
5198 
5199 	/* call the non-TPI version */
5200 	error = tcp_do_connect(tcp->tcp_connp, sa, len, cr, cpid);
5201 	if (error < 0) {
5202 		mp = mi_tpi_err_ack_alloc(mp, -error, 0);
5203 	} else if (error > 0) {
5204 		mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error);
5205 	} else {
5206 		mp = mi_tpi_ok_ack_alloc(mp);
5207 	}
5208 
5209 	/*
5210 	 * Note: Code below is the "failure" case
5211 	 */
5212 	/* return error ack and blow away saved option results if any */
5213 connect_failed:
5214 	if (mp != NULL)
5215 		putnext(connp->conn_rq, mp);
5216 	else {
5217 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
5218 		    TSYSERR, ENOMEM);
5219 	}
5220 }
5221 
5222 /*
5223  * Handle connect to IPv4 destinations, including connections for AF_INET6
5224  * sockets connecting to IPv4 mapped IPv6 destinations.
5225  * Returns zero if OK, a positive errno, or a negative TLI error.
5226  */
5227 static int
5228 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport,
5229     uint_t srcid)
5230 {
5231 	ipaddr_t 	dstaddr = *dstaddrp;
5232 	uint16_t 	lport;
5233 	conn_t		*connp = tcp->tcp_connp;
5234 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5235 	int		error;
5236 
5237 	ASSERT(connp->conn_ipversion == IPV4_VERSION);
5238 
5239 	/* Check for attempt to connect to INADDR_ANY */
5240 	if (dstaddr == INADDR_ANY)  {
5241 		/*
5242 		 * SunOS 4.x and 4.3 BSD allow an application
5243 		 * to connect a TCP socket to INADDR_ANY.
5244 		 * When they do this, the kernel picks the
5245 		 * address of one interface and uses it
5246 		 * instead.  The kernel usually ends up
5247 		 * picking the address of the loopback
5248 		 * interface.  This is an undocumented feature.
5249 		 * However, we provide the same thing here
5250 		 * in order to have source and binary
5251 		 * compatibility with SunOS 4.x.
5252 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
5253 		 * generate the T_CONN_CON.
5254 		 */
5255 		dstaddr = htonl(INADDR_LOOPBACK);
5256 		*dstaddrp = dstaddr;
5257 	}
5258 
5259 	/* Handle __sin6_src_id if socket not bound to an IP address */
5260 	if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) {
5261 		ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
5262 		    IPCL_ZONEID(connp), tcps->tcps_netstack);
5263 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
5264 	}
5265 
5266 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6);
5267 	connp->conn_fport = dstport;
5268 
5269 	/*
5270 	 * At this point the remote destination address and remote port fields
5271 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
5272 	 * have to see which state tcp was in so we can take appropriate action.
5273 	 */
5274 	if (tcp->tcp_state == TCPS_IDLE) {
5275 		/*
5276 		 * We support a quick connect capability here, allowing
5277 		 * clients to transition directly from IDLE to SYN_SENT
5278 		 * tcp_bindi will pick an unused port, insert the connection
5279 		 * in the bind hash and transition to BOUND state.
5280 		 */
5281 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
5282 		    tcp, B_TRUE);
5283 		lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
5284 		    B_FALSE, B_FALSE);
5285 		if (lport == 0)
5286 			return (-TNOADDR);
5287 	}
5288 
5289 	/*
5290 	 * Lookup the route to determine a source address and the uinfo.
5291 	 * If there was a source route we have tcp_ipha->ipha_dst as the first
5292 	 * hop.
5293 	 * Setup TCP parameters based on the metrics/DCE.
5294 	 */
5295 	error = tcp_set_destination(tcp);
5296 	if (error != 0)
5297 		return (error);
5298 
5299 	/*
5300 	 * Don't let an endpoint connect to itself.
5301 	 */
5302 	if (connp->conn_faddr_v4 == connp->conn_laddr_v4 &&
5303 	    connp->conn_fport == connp->conn_lport)
5304 		return (-TBADADDR);
5305 
5306 	tcp->tcp_state = TCPS_SYN_SENT;
5307 
5308 	return (ipcl_conn_insert_v4(connp));
5309 }
5310 
5311 /*
5312  * Handle connect to IPv6 destinations.
5313  * Returns zero if OK, a positive errno, or a negative TLI error.
5314  */
5315 static int
5316 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport,
5317     uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
5318 {
5319 	uint16_t 	lport;
5320 	conn_t		*connp = tcp->tcp_connp;
5321 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5322 	int		error;
5323 
5324 	ASSERT(connp->conn_family == AF_INET6);
5325 
5326 	/*
5327 	 * If we're here, it means that the destination address is a native
5328 	 * IPv6 address.  Return an error if conn_ipversion is not IPv6.  A
5329 	 * reason why it might not be IPv6 is if the socket was bound to an
5330 	 * IPv4-mapped IPv6 address.
5331 	 */
5332 	if (connp->conn_ipversion != IPV6_VERSION)
5333 		return (-TBADADDR);
5334 
5335 	/*
5336 	 * Interpret a zero destination to mean loopback.
5337 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
5338 	 * generate the T_CONN_CON.
5339 	 */
5340 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp))
5341 		*dstaddrp = ipv6_loopback;
5342 
5343 	/* Handle __sin6_src_id if socket not bound to an IP address */
5344 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) {
5345 		ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
5346 		    IPCL_ZONEID(connp), tcps->tcps_netstack);
5347 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
5348 	}
5349 
5350 	/*
5351 	 * Take care of the scope_id now.
5352 	 */
5353 	if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
5354 		connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
5355 		connp->conn_ixa->ixa_scopeid = scope_id;
5356 	} else {
5357 		connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET;
5358 	}
5359 
5360 	connp->conn_flowinfo = flowinfo;
5361 	connp->conn_faddr_v6 = *dstaddrp;
5362 	connp->conn_fport = dstport;
5363 
5364 	/*
5365 	 * At this point the remote destination address and remote port fields
5366 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
5367 	 * have to see which state tcp was in so we can take appropriate action.
5368 	 */
5369 	if (tcp->tcp_state == TCPS_IDLE) {
5370 		/*
5371 		 * We support a quick connect capability here, allowing
5372 		 * clients to transition directly from IDLE to SYN_SENT
5373 		 * tcp_bindi will pick an unused port, insert the connection
5374 		 * in the bind hash and transition to BOUND state.
5375 		 */
5376 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
5377 		    tcp, B_TRUE);
5378 		lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
5379 		    B_FALSE, B_FALSE);
5380 		if (lport == 0)
5381 			return (-TNOADDR);
5382 	}
5383 
5384 	/*
5385 	 * Lookup the route to determine a source address and the uinfo.
5386 	 * If there was a source route we have tcp_ip6h->ip6_dst as the first
5387 	 * hop.
5388 	 * Setup TCP parameters based on the metrics/DCE.
5389 	 */
5390 	error = tcp_set_destination(tcp);
5391 	if (error != 0)
5392 		return (error);
5393 
5394 	/*
5395 	 * Don't let an endpoint connect to itself.
5396 	 */
5397 	if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) &&
5398 	    connp->conn_fport == connp->conn_lport)
5399 		return (-TBADADDR);
5400 
5401 	tcp->tcp_state = TCPS_SYN_SENT;
5402 
5403 	return (ipcl_conn_insert_v6(connp));
5404 }
5405 
5406 /*
5407  * Disconnect
5408  * Note that unlike other functions this returns a positive tli error
5409  * when it fails; it never returns an errno.
5410  */
5411 static int
5412 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum)
5413 {
5414 	tcp_t	*ltcp = NULL;
5415 	conn_t		*lconnp;
5416 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5417 	conn_t		*connp = tcp->tcp_connp;
5418 
5419 	/*
5420 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
5421 	 * when the stream is in BOUND state. Do not send a reset,
5422 	 * since the destination IP address is not valid, and it can
5423 	 * be the initialized value of all zeros (broadcast address).
5424 	 */
5425 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) {
5426 		if (connp->conn_debug) {
5427 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
5428 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
5429 		}
5430 		return (TOUTSTATE);
5431 	}
5432 
5433 
5434 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
5435 
5436 		/*
5437 		 * According to TPI, for non-listeners, ignore seqnum
5438 		 * and disconnect.
5439 		 * Following interpretation of -1 seqnum is historical
5440 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
5441 		 * a valid seqnum should not be -1).
5442 		 *
5443 		 *	-1 means disconnect everything
5444 		 *	regardless even on a listener.
5445 		 */
5446 
5447 		int old_state = tcp->tcp_state;
5448 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
5449 
5450 		/*
5451 		 * The connection can't be on the tcp_time_wait_head list
5452 		 * since it is not detached.
5453 		 */
5454 		ASSERT(tcp->tcp_time_wait_next == NULL);
5455 		ASSERT(tcp->tcp_time_wait_prev == NULL);
5456 		ASSERT(tcp->tcp_time_wait_expire == 0);
5457 		ltcp = NULL;
5458 		/*
5459 		 * If it used to be a listener, check to make sure no one else
5460 		 * has taken the port before switching back to LISTEN state.
5461 		 */
5462 		if (connp->conn_ipversion == IPV4_VERSION) {
5463 			lconnp = ipcl_lookup_listener_v4(connp->conn_lport,
5464 			    connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst);
5465 			if (lconnp != NULL)
5466 				ltcp = lconnp->conn_tcp;
5467 		} else {
5468 			uint_t ifindex = 0;
5469 
5470 			if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)
5471 				ifindex = connp->conn_ixa->ixa_scopeid;
5472 
5473 			/* Allow conn_bound_if listeners? */
5474 			lconnp = ipcl_lookup_listener_v6(connp->conn_lport,
5475 			    &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp),
5476 			    ipst);
5477 			if (lconnp != NULL)
5478 				ltcp = lconnp->conn_tcp;
5479 		}
5480 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
5481 			tcp->tcp_state = TCPS_LISTEN;
5482 		} else if (old_state > TCPS_BOUND) {
5483 			tcp->tcp_conn_req_max = 0;
5484 			tcp->tcp_state = TCPS_BOUND;
5485 		}
5486 		if (ltcp != NULL)
5487 			CONN_DEC_REF(lconnp);
5488 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
5489 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
5490 		} else if (old_state == TCPS_ESTABLISHED ||
5491 		    old_state == TCPS_CLOSE_WAIT) {
5492 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
5493 		}
5494 
5495 		if (tcp->tcp_fused)
5496 			tcp_unfuse(tcp);
5497 
5498 		mutex_enter(&tcp->tcp_eager_lock);
5499 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
5500 		    (tcp->tcp_conn_req_cnt_q != 0)) {
5501 			tcp_eager_cleanup(tcp, 0);
5502 		}
5503 		mutex_exit(&tcp->tcp_eager_lock);
5504 
5505 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
5506 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
5507 
5508 		tcp_reinit(tcp);
5509 
5510 		return (0);
5511 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
5512 		return (TBADSEQ);
5513 	}
5514 	return (0);
5515 }
5516 
5517 /*
5518  * Our client hereby directs us to reject the connection request
5519  * that tcp_input_listener() marked with 'seqnum'.  Rejection consists
5520  * of sending the appropriate RST, not an ICMP error.
5521  */
5522 static void
5523 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
5524 {
5525 	t_scalar_t seqnum;
5526 	int	error;
5527 	conn_t	*connp = tcp->tcp_connp;
5528 
5529 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
5530 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
5531 		tcp_err_ack(tcp, mp, TPROTO, 0);
5532 		return;
5533 	}
5534 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
5535 	error = tcp_disconnect_common(tcp, seqnum);
5536 	if (error != 0)
5537 		tcp_err_ack(tcp, mp, error, 0);
5538 	else {
5539 		if (tcp->tcp_state >= TCPS_ESTABLISHED) {
5540 			/* Send M_FLUSH according to TPI */
5541 			(void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW);
5542 		}
5543 		mp = mi_tpi_ok_ack_alloc(mp);
5544 		if (mp != NULL)
5545 			putnext(connp->conn_rq, mp);
5546 	}
5547 }
5548 
5549 /*
5550  * Diagnostic routine used to return a string associated with the tcp state.
5551  * Note that if the caller does not supply a buffer, it will use an internal
5552  * static string.  This means that if multiple threads call this function at
5553  * the same time, output can be corrupted...  Note also that this function
5554  * does not check the size of the supplied buffer.  The caller has to make
5555  * sure that it is big enough.
5556  */
5557 static char *
5558 tcp_display(tcp_t *tcp, char *sup_buf, char format)
5559 {
5560 	char		buf1[30];
5561 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
5562 	char		*buf;
5563 	char		*cp;
5564 	in6_addr_t	local, remote;
5565 	char		local_addrbuf[INET6_ADDRSTRLEN];
5566 	char		remote_addrbuf[INET6_ADDRSTRLEN];
5567 	conn_t		*connp;
5568 
5569 	if (sup_buf != NULL)
5570 		buf = sup_buf;
5571 	else
5572 		buf = priv_buf;
5573 
5574 	if (tcp == NULL)
5575 		return ("NULL_TCP");
5576 
5577 	connp = tcp->tcp_connp;
5578 	switch (tcp->tcp_state) {
5579 	case TCPS_CLOSED:
5580 		cp = "TCP_CLOSED";
5581 		break;
5582 	case TCPS_IDLE:
5583 		cp = "TCP_IDLE";
5584 		break;
5585 	case TCPS_BOUND:
5586 		cp = "TCP_BOUND";
5587 		break;
5588 	case TCPS_LISTEN:
5589 		cp = "TCP_LISTEN";
5590 		break;
5591 	case TCPS_SYN_SENT:
5592 		cp = "TCP_SYN_SENT";
5593 		break;
5594 	case TCPS_SYN_RCVD:
5595 		cp = "TCP_SYN_RCVD";
5596 		break;
5597 	case TCPS_ESTABLISHED:
5598 		cp = "TCP_ESTABLISHED";
5599 		break;
5600 	case TCPS_CLOSE_WAIT:
5601 		cp = "TCP_CLOSE_WAIT";
5602 		break;
5603 	case TCPS_FIN_WAIT_1:
5604 		cp = "TCP_FIN_WAIT_1";
5605 		break;
5606 	case TCPS_CLOSING:
5607 		cp = "TCP_CLOSING";
5608 		break;
5609 	case TCPS_LAST_ACK:
5610 		cp = "TCP_LAST_ACK";
5611 		break;
5612 	case TCPS_FIN_WAIT_2:
5613 		cp = "TCP_FIN_WAIT_2";
5614 		break;
5615 	case TCPS_TIME_WAIT:
5616 		cp = "TCP_TIME_WAIT";
5617 		break;
5618 	default:
5619 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
5620 		cp = buf1;
5621 		break;
5622 	}
5623 	switch (format) {
5624 	case DISP_ADDR_AND_PORT:
5625 		if (connp->conn_ipversion == IPV4_VERSION) {
5626 			/*
5627 			 * Note that we use the remote address in the tcp_b
5628 			 * structure.  This means that it will print out
5629 			 * the real destination address, not the next hop's
5630 			 * address if source routing is used.
5631 			 */
5632 			IN6_IPADDR_TO_V4MAPPED(connp->conn_laddr_v4, &local);
5633 			IN6_IPADDR_TO_V4MAPPED(connp->conn_faddr_v4, &remote);
5634 
5635 		} else {
5636 			local = connp->conn_laddr_v6;
5637 			remote = connp->conn_faddr_v6;
5638 		}
5639 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
5640 		    sizeof (local_addrbuf));
5641 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
5642 		    sizeof (remote_addrbuf));
5643 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
5644 		    local_addrbuf, ntohs(connp->conn_lport), remote_addrbuf,
5645 		    ntohs(connp->conn_fport), cp);
5646 		break;
5647 	case DISP_PORT_ONLY:
5648 	default:
5649 		(void) mi_sprintf(buf, "[%u, %u] %s",
5650 		    ntohs(connp->conn_lport), ntohs(connp->conn_fport), cp);
5651 		break;
5652 	}
5653 
5654 	return (buf);
5655 }
5656 
5657 /*
5658  * Called via squeue to get on to eager's perimeter. It sends a
5659  * TH_RST if eager is in the fanout table. The listener wants the
5660  * eager to disappear either by means of tcp_eager_blowoff() or
5661  * tcp_eager_cleanup() being called. tcp_eager_kill() can also be
5662  * called (via squeue) if the eager cannot be inserted in the
5663  * fanout table in tcp_input_listener().
5664  */
5665 /* ARGSUSED */
5666 void
5667 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
5668 {
5669 	conn_t	*econnp = (conn_t *)arg;
5670 	tcp_t	*eager = econnp->conn_tcp;
5671 	tcp_t	*listener = eager->tcp_listener;
5672 
5673 	/*
5674 	 * We could be called because listener is closing. Since
5675 	 * the eager was using listener's queue's, we avoid
5676 	 * using the listeners queues from now on.
5677 	 */
5678 	ASSERT(eager->tcp_detached);
5679 	econnp->conn_rq = NULL;
5680 	econnp->conn_wq = NULL;
5681 
5682 	/*
5683 	 * An eager's conn_fanout will be NULL if it's a duplicate
5684 	 * for an existing 4-tuples in the conn fanout table.
5685 	 * We don't want to send an RST out in such case.
5686 	 */
5687 	if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) {
5688 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
5689 		    eager, eager->tcp_snxt, 0, TH_RST);
5690 	}
5691 
5692 	/* We are here because listener wants this eager gone */
5693 	if (listener != NULL) {
5694 		mutex_enter(&listener->tcp_eager_lock);
5695 		tcp_eager_unlink(eager);
5696 		if (eager->tcp_tconnind_started) {
5697 			/*
5698 			 * The eager has sent a conn_ind up to the
5699 			 * listener but listener decides to close
5700 			 * instead. We need to drop the extra ref
5701 			 * placed on eager in tcp_input_data() before
5702 			 * sending the conn_ind to listener.
5703 			 */
5704 			CONN_DEC_REF(econnp);
5705 		}
5706 		mutex_exit(&listener->tcp_eager_lock);
5707 		CONN_DEC_REF(listener->tcp_connp);
5708 	}
5709 
5710 	if (eager->tcp_state != TCPS_CLOSED)
5711 		tcp_close_detached(eager);
5712 }
5713 
5714 /*
5715  * Reset any eager connection hanging off this listener marked
5716  * with 'seqnum' and then reclaim it's resources.
5717  */
5718 static boolean_t
5719 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
5720 {
5721 	tcp_t	*eager;
5722 	mblk_t 	*mp;
5723 	tcp_stack_t	*tcps = listener->tcp_tcps;
5724 
5725 	TCP_STAT(tcps, tcp_eager_blowoff_calls);
5726 	eager = listener;
5727 	mutex_enter(&listener->tcp_eager_lock);
5728 	do {
5729 		eager = eager->tcp_eager_next_q;
5730 		if (eager == NULL) {
5731 			mutex_exit(&listener->tcp_eager_lock);
5732 			return (B_FALSE);
5733 		}
5734 	} while (eager->tcp_conn_req_seqnum != seqnum);
5735 
5736 	if (eager->tcp_closemp_used) {
5737 		mutex_exit(&listener->tcp_eager_lock);
5738 		return (B_TRUE);
5739 	}
5740 	eager->tcp_closemp_used = B_TRUE;
5741 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
5742 	CONN_INC_REF(eager->tcp_connp);
5743 	mutex_exit(&listener->tcp_eager_lock);
5744 	mp = &eager->tcp_closemp;
5745 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
5746 	    eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF);
5747 	return (B_TRUE);
5748 }
5749 
5750 /*
5751  * Reset any eager connection hanging off this listener
5752  * and then reclaim it's resources.
5753  */
5754 static void
5755 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
5756 {
5757 	tcp_t	*eager;
5758 	mblk_t	*mp;
5759 	tcp_stack_t	*tcps = listener->tcp_tcps;
5760 
5761 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
5762 
5763 	if (!q0_only) {
5764 		/* First cleanup q */
5765 		TCP_STAT(tcps, tcp_eager_blowoff_q);
5766 		eager = listener->tcp_eager_next_q;
5767 		while (eager != NULL) {
5768 			if (!eager->tcp_closemp_used) {
5769 				eager->tcp_closemp_used = B_TRUE;
5770 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
5771 				CONN_INC_REF(eager->tcp_connp);
5772 				mp = &eager->tcp_closemp;
5773 				SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
5774 				    tcp_eager_kill, eager->tcp_connp, NULL,
5775 				    SQ_FILL, SQTAG_TCP_EAGER_CLEANUP);
5776 			}
5777 			eager = eager->tcp_eager_next_q;
5778 		}
5779 	}
5780 	/* Then cleanup q0 */
5781 	TCP_STAT(tcps, tcp_eager_blowoff_q0);
5782 	eager = listener->tcp_eager_next_q0;
5783 	while (eager != listener) {
5784 		if (!eager->tcp_closemp_used) {
5785 			eager->tcp_closemp_used = B_TRUE;
5786 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
5787 			CONN_INC_REF(eager->tcp_connp);
5788 			mp = &eager->tcp_closemp;
5789 			SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
5790 			    tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL,
5791 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
5792 		}
5793 		eager = eager->tcp_eager_next_q0;
5794 	}
5795 }
5796 
5797 /*
5798  * If we are an eager connection hanging off a listener that hasn't
5799  * formally accepted the connection yet, get off his list and blow off
5800  * any data that we have accumulated.
5801  */
5802 static void
5803 tcp_eager_unlink(tcp_t *tcp)
5804 {
5805 	tcp_t	*listener = tcp->tcp_listener;
5806 
5807 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
5808 	ASSERT(listener != NULL);
5809 	if (tcp->tcp_eager_next_q0 != NULL) {
5810 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
5811 
5812 		/* Remove the eager tcp from q0 */
5813 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
5814 		    tcp->tcp_eager_prev_q0;
5815 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
5816 		    tcp->tcp_eager_next_q0;
5817 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
5818 		listener->tcp_conn_req_cnt_q0--;
5819 
5820 		tcp->tcp_eager_next_q0 = NULL;
5821 		tcp->tcp_eager_prev_q0 = NULL;
5822 
5823 		/*
5824 		 * Take the eager out, if it is in the list of droppable
5825 		 * eagers.
5826 		 */
5827 		MAKE_UNDROPPABLE(tcp);
5828 
5829 		if (tcp->tcp_syn_rcvd_timeout != 0) {
5830 			/* we have timed out before */
5831 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
5832 			listener->tcp_syn_rcvd_timeout--;
5833 		}
5834 	} else {
5835 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
5836 		tcp_t	*prev = NULL;
5837 
5838 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
5839 			if (tcpp[0] == tcp) {
5840 				if (listener->tcp_eager_last_q == tcp) {
5841 					/*
5842 					 * If we are unlinking the last
5843 					 * element on the list, adjust
5844 					 * tail pointer. Set tail pointer
5845 					 * to nil when list is empty.
5846 					 */
5847 					ASSERT(tcp->tcp_eager_next_q == NULL);
5848 					if (listener->tcp_eager_last_q ==
5849 					    listener->tcp_eager_next_q) {
5850 						listener->tcp_eager_last_q =
5851 						    NULL;
5852 					} else {
5853 						/*
5854 						 * We won't get here if there
5855 						 * is only one eager in the
5856 						 * list.
5857 						 */
5858 						ASSERT(prev != NULL);
5859 						listener->tcp_eager_last_q =
5860 						    prev;
5861 					}
5862 				}
5863 				tcpp[0] = tcp->tcp_eager_next_q;
5864 				tcp->tcp_eager_next_q = NULL;
5865 				tcp->tcp_eager_last_q = NULL;
5866 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
5867 				listener->tcp_conn_req_cnt_q--;
5868 				break;
5869 			}
5870 			prev = tcpp[0];
5871 		}
5872 	}
5873 	tcp->tcp_listener = NULL;
5874 }
5875 
5876 /* Shorthand to generate and send TPI error acks to our client */
5877 static void
5878 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
5879 {
5880 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
5881 		putnext(tcp->tcp_connp->conn_rq, mp);
5882 }
5883 
5884 /* Shorthand to generate and send TPI error acks to our client */
5885 static void
5886 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
5887     int t_error, int sys_error)
5888 {
5889 	struct T_error_ack	*teackp;
5890 
5891 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
5892 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
5893 		teackp = (struct T_error_ack *)mp->b_rptr;
5894 		teackp->ERROR_prim = primitive;
5895 		teackp->TLI_error = t_error;
5896 		teackp->UNIX_error = sys_error;
5897 		putnext(tcp->tcp_connp->conn_rq, mp);
5898 	}
5899 }
5900 
5901 /*
5902  * Note: No locks are held when inspecting tcp_g_*epriv_ports
5903  * but instead the code relies on:
5904  * - the fact that the address of the array and its size never changes
5905  * - the atomic assignment of the elements of the array
5906  */
5907 /* ARGSUSED */
5908 static int
5909 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
5910 {
5911 	int i;
5912 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
5913 
5914 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
5915 		if (tcps->tcps_g_epriv_ports[i] != 0)
5916 			(void) mi_mpprintf(mp, "%d ",
5917 			    tcps->tcps_g_epriv_ports[i]);
5918 	}
5919 	return (0);
5920 }
5921 
5922 /*
5923  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
5924  * threads from changing it at the same time.
5925  */
5926 /* ARGSUSED */
5927 static int
5928 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
5929     cred_t *cr)
5930 {
5931 	long	new_value;
5932 	int	i;
5933 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
5934 
5935 	/*
5936 	 * Fail the request if the new value does not lie within the
5937 	 * port number limits.
5938 	 */
5939 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
5940 	    new_value <= 0 || new_value >= 65536) {
5941 		return (EINVAL);
5942 	}
5943 
5944 	mutex_enter(&tcps->tcps_epriv_port_lock);
5945 	/* Check if the value is already in the list */
5946 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
5947 		if (new_value == tcps->tcps_g_epriv_ports[i]) {
5948 			mutex_exit(&tcps->tcps_epriv_port_lock);
5949 			return (EEXIST);
5950 		}
5951 	}
5952 	/* Find an empty slot */
5953 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
5954 		if (tcps->tcps_g_epriv_ports[i] == 0)
5955 			break;
5956 	}
5957 	if (i == tcps->tcps_g_num_epriv_ports) {
5958 		mutex_exit(&tcps->tcps_epriv_port_lock);
5959 		return (EOVERFLOW);
5960 	}
5961 	/* Set the new value */
5962 	tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value;
5963 	mutex_exit(&tcps->tcps_epriv_port_lock);
5964 	return (0);
5965 }
5966 
5967 /*
5968  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
5969  * threads from changing it at the same time.
5970  */
5971 /* ARGSUSED */
5972 static int
5973 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
5974     cred_t *cr)
5975 {
5976 	long	new_value;
5977 	int	i;
5978 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
5979 
5980 	/*
5981 	 * Fail the request if the new value does not lie within the
5982 	 * port number limits.
5983 	 */
5984 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
5985 	    new_value >= 65536) {
5986 		return (EINVAL);
5987 	}
5988 
5989 	mutex_enter(&tcps->tcps_epriv_port_lock);
5990 	/* Check that the value is already in the list */
5991 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
5992 		if (tcps->tcps_g_epriv_ports[i] == new_value)
5993 			break;
5994 	}
5995 	if (i == tcps->tcps_g_num_epriv_ports) {
5996 		mutex_exit(&tcps->tcps_epriv_port_lock);
5997 		return (ESRCH);
5998 	}
5999 	/* Clear the value */
6000 	tcps->tcps_g_epriv_ports[i] = 0;
6001 	mutex_exit(&tcps->tcps_epriv_port_lock);
6002 	return (0);
6003 }
6004 
6005 /* Return the TPI/TLI equivalent of our current tcp_state */
6006 static int
6007 tcp_tpistate(tcp_t *tcp)
6008 {
6009 	switch (tcp->tcp_state) {
6010 	case TCPS_IDLE:
6011 		return (TS_UNBND);
6012 	case TCPS_LISTEN:
6013 		/*
6014 		 * Return whether there are outstanding T_CONN_IND waiting
6015 		 * for the matching T_CONN_RES. Therefore don't count q0.
6016 		 */
6017 		if (tcp->tcp_conn_req_cnt_q > 0)
6018 			return (TS_WRES_CIND);
6019 		else
6020 			return (TS_IDLE);
6021 	case TCPS_BOUND:
6022 		return (TS_IDLE);
6023 	case TCPS_SYN_SENT:
6024 		return (TS_WCON_CREQ);
6025 	case TCPS_SYN_RCVD:
6026 		/*
6027 		 * Note: assumption: this has to the active open SYN_RCVD.
6028 		 * The passive instance is detached in SYN_RCVD stage of
6029 		 * incoming connection processing so we cannot get request
6030 		 * for T_info_ack on it.
6031 		 */
6032 		return (TS_WACK_CRES);
6033 	case TCPS_ESTABLISHED:
6034 		return (TS_DATA_XFER);
6035 	case TCPS_CLOSE_WAIT:
6036 		return (TS_WREQ_ORDREL);
6037 	case TCPS_FIN_WAIT_1:
6038 		return (TS_WIND_ORDREL);
6039 	case TCPS_FIN_WAIT_2:
6040 		return (TS_WIND_ORDREL);
6041 
6042 	case TCPS_CLOSING:
6043 	case TCPS_LAST_ACK:
6044 	case TCPS_TIME_WAIT:
6045 	case TCPS_CLOSED:
6046 		/*
6047 		 * Following TS_WACK_DREQ7 is a rendition of "not
6048 		 * yet TS_IDLE" TPI state. There is no best match to any
6049 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
6050 		 * choose a value chosen that will map to TLI/XTI level
6051 		 * state of TSTATECHNG (state is process of changing) which
6052 		 * captures what this dummy state represents.
6053 		 */
6054 		return (TS_WACK_DREQ7);
6055 	default:
6056 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
6057 		    tcp->tcp_state, tcp_display(tcp, NULL,
6058 		    DISP_PORT_ONLY));
6059 		return (TS_UNBND);
6060 	}
6061 }
6062 
6063 static void
6064 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
6065 {
6066 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6067 	conn_t		*connp = tcp->tcp_connp;
6068 
6069 	if (connp->conn_family == AF_INET6)
6070 		*tia = tcp_g_t_info_ack_v6;
6071 	else
6072 		*tia = tcp_g_t_info_ack;
6073 	tia->CURRENT_state = tcp_tpistate(tcp);
6074 	tia->OPT_size = tcp_max_optsize;
6075 	if (tcp->tcp_mss == 0) {
6076 		/* Not yet set - tcp_open does not set mss */
6077 		if (connp->conn_ipversion == IPV4_VERSION)
6078 			tia->TIDU_size = tcps->tcps_mss_def_ipv4;
6079 		else
6080 			tia->TIDU_size = tcps->tcps_mss_def_ipv6;
6081 	} else {
6082 		tia->TIDU_size = tcp->tcp_mss;
6083 	}
6084 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
6085 }
6086 
6087 static void
6088 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap,
6089     t_uscalar_t cap_bits1)
6090 {
6091 	tcap->CAP_bits1 = 0;
6092 
6093 	if (cap_bits1 & TC1_INFO) {
6094 		tcp_copy_info(&tcap->INFO_ack, tcp);
6095 		tcap->CAP_bits1 |= TC1_INFO;
6096 	}
6097 
6098 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
6099 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
6100 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
6101 	}
6102 
6103 }
6104 
6105 /*
6106  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
6107  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
6108  * tcp_g_t_info_ack.  The current state of the stream is copied from
6109  * tcp_state.
6110  */
6111 static void
6112 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
6113 {
6114 	t_uscalar_t		cap_bits1;
6115 	struct T_capability_ack	*tcap;
6116 
6117 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
6118 		freemsg(mp);
6119 		return;
6120 	}
6121 
6122 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
6123 
6124 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
6125 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
6126 	if (mp == NULL)
6127 		return;
6128 
6129 	tcap = (struct T_capability_ack *)mp->b_rptr;
6130 	tcp_do_capability_ack(tcp, tcap, cap_bits1);
6131 
6132 	putnext(tcp->tcp_connp->conn_rq, mp);
6133 }
6134 
6135 /*
6136  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
6137  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
6138  * The current state of the stream is copied from tcp_state.
6139  */
6140 static void
6141 tcp_info_req(tcp_t *tcp, mblk_t *mp)
6142 {
6143 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
6144 	    T_INFO_ACK);
6145 	if (!mp) {
6146 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6147 		return;
6148 	}
6149 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
6150 	putnext(tcp->tcp_connp->conn_rq, mp);
6151 }
6152 
6153 /* Respond to the TPI addr request */
6154 static void
6155 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
6156 {
6157 	struct sockaddr *sa;
6158 	mblk_t	*ackmp;
6159 	struct T_addr_ack *taa;
6160 	conn_t	*connp = tcp->tcp_connp;
6161 	uint_t	addrlen;
6162 
6163 	/* Make it large enough for worst case */
6164 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
6165 	    2 * sizeof (sin6_t), 1);
6166 	if (ackmp == NULL) {
6167 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6168 		return;
6169 	}
6170 
6171 	taa = (struct T_addr_ack *)ackmp->b_rptr;
6172 
6173 	bzero(taa, sizeof (struct T_addr_ack));
6174 	ackmp->b_wptr = (uchar_t *)&taa[1];
6175 
6176 	taa->PRIM_type = T_ADDR_ACK;
6177 	ackmp->b_datap->db_type = M_PCPROTO;
6178 
6179 	if (connp->conn_family == AF_INET)
6180 		addrlen = sizeof (sin_t);
6181 	else
6182 		addrlen = sizeof (sin6_t);
6183 
6184 	/*
6185 	 * Note: Following code assumes 32 bit alignment of basic
6186 	 * data structures like sin_t and struct T_addr_ack.
6187 	 */
6188 	if (tcp->tcp_state >= TCPS_BOUND) {
6189 		/*
6190 		 * Fill in local address first
6191 		 */
6192 		taa->LOCADDR_offset = sizeof (*taa);
6193 		taa->LOCADDR_length = addrlen;
6194 		sa = (struct sockaddr *)&taa[1];
6195 		(void) conn_getsockname(connp, sa, &addrlen);
6196 		ackmp->b_wptr += addrlen;
6197 	}
6198 	if (tcp->tcp_state >= TCPS_SYN_RCVD) {
6199 		/*
6200 		 * Fill in Remote address
6201 		 */
6202 		taa->REMADDR_length = addrlen;
6203 		/* assumed 32-bit alignment */
6204 		taa->REMADDR_offset = taa->LOCADDR_offset + taa->LOCADDR_length;
6205 		sa = (struct sockaddr *)(ackmp->b_rptr + taa->REMADDR_offset);
6206 		(void) conn_getpeername(connp, sa, &addrlen);
6207 		ackmp->b_wptr += addrlen;
6208 	}
6209 	ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim);
6210 	putnext(tcp->tcp_connp->conn_rq, ackmp);
6211 }
6212 
6213 /*
6214  * Handle reinitialization of a tcp structure.
6215  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
6216  */
6217 static void
6218 tcp_reinit(tcp_t *tcp)
6219 {
6220 	mblk_t		*mp;
6221 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6222 	conn_t		*connp  = tcp->tcp_connp;
6223 
6224 	TCP_STAT(tcps, tcp_reinit_calls);
6225 
6226 	/* tcp_reinit should never be called for detached tcp_t's */
6227 	ASSERT(tcp->tcp_listener == NULL);
6228 	ASSERT((connp->conn_family == AF_INET &&
6229 	    connp->conn_ipversion == IPV4_VERSION) ||
6230 	    (connp->conn_family == AF_INET6 &&
6231 	    (connp->conn_ipversion == IPV4_VERSION ||
6232 	    connp->conn_ipversion == IPV6_VERSION)));
6233 
6234 	/* Cancel outstanding timers */
6235 	tcp_timers_stop(tcp);
6236 
6237 	/*
6238 	 * Reset everything in the state vector, after updating global
6239 	 * MIB data from instance counters.
6240 	 */
6241 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
6242 	tcp->tcp_ibsegs = 0;
6243 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
6244 	tcp->tcp_obsegs = 0;
6245 
6246 	tcp_close_mpp(&tcp->tcp_xmit_head);
6247 	if (tcp->tcp_snd_zcopy_aware)
6248 		tcp_zcopy_notify(tcp);
6249 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
6250 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
6251 	mutex_enter(&tcp->tcp_non_sq_lock);
6252 	if (tcp->tcp_flow_stopped &&
6253 	    TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) {
6254 		tcp_clrqfull(tcp);
6255 	}
6256 	mutex_exit(&tcp->tcp_non_sq_lock);
6257 	tcp_close_mpp(&tcp->tcp_reass_head);
6258 	tcp->tcp_reass_tail = NULL;
6259 	if (tcp->tcp_rcv_list != NULL) {
6260 		/* Free b_next chain */
6261 		tcp_close_mpp(&tcp->tcp_rcv_list);
6262 		tcp->tcp_rcv_last_head = NULL;
6263 		tcp->tcp_rcv_last_tail = NULL;
6264 		tcp->tcp_rcv_cnt = 0;
6265 	}
6266 	tcp->tcp_rcv_last_tail = NULL;
6267 
6268 	if ((mp = tcp->tcp_urp_mp) != NULL) {
6269 		freemsg(mp);
6270 		tcp->tcp_urp_mp = NULL;
6271 	}
6272 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
6273 		freemsg(mp);
6274 		tcp->tcp_urp_mark_mp = NULL;
6275 	}
6276 	if (tcp->tcp_fused_sigurg_mp != NULL) {
6277 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
6278 		freeb(tcp->tcp_fused_sigurg_mp);
6279 		tcp->tcp_fused_sigurg_mp = NULL;
6280 	}
6281 	if (tcp->tcp_ordrel_mp != NULL) {
6282 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
6283 		freeb(tcp->tcp_ordrel_mp);
6284 		tcp->tcp_ordrel_mp = NULL;
6285 	}
6286 
6287 	/*
6288 	 * Following is a union with two members which are
6289 	 * identical types and size so the following cleanup
6290 	 * is enough.
6291 	 */
6292 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
6293 
6294 	CL_INET_DISCONNECT(connp);
6295 
6296 	/*
6297 	 * The connection can't be on the tcp_time_wait_head list
6298 	 * since it is not detached.
6299 	 */
6300 	ASSERT(tcp->tcp_time_wait_next == NULL);
6301 	ASSERT(tcp->tcp_time_wait_prev == NULL);
6302 	ASSERT(tcp->tcp_time_wait_expire == 0);
6303 
6304 	if (tcp->tcp_kssl_pending) {
6305 		tcp->tcp_kssl_pending = B_FALSE;
6306 
6307 		/* Don't reset if the initialized by bind. */
6308 		if (tcp->tcp_kssl_ent != NULL) {
6309 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
6310 			    KSSL_NO_PROXY);
6311 		}
6312 	}
6313 	if (tcp->tcp_kssl_ctx != NULL) {
6314 		kssl_release_ctx(tcp->tcp_kssl_ctx);
6315 		tcp->tcp_kssl_ctx = NULL;
6316 	}
6317 
6318 	/*
6319 	 * Reset/preserve other values
6320 	 */
6321 	tcp_reinit_values(tcp);
6322 	ipcl_hash_remove(connp);
6323 	ixa_cleanup(connp->conn_ixa);
6324 	tcp_ipsec_cleanup(tcp);
6325 
6326 	connp->conn_laddr_v6 = connp->conn_bound_addr_v6;
6327 	connp->conn_saddr_v6 = connp->conn_bound_addr_v6;
6328 
6329 	if (tcp->tcp_conn_req_max != 0) {
6330 		/*
6331 		 * This is the case when a TLI program uses the same
6332 		 * transport end point to accept a connection.  This
6333 		 * makes the TCP both a listener and acceptor.  When
6334 		 * this connection is closed, we need to set the state
6335 		 * back to TCPS_LISTEN.  Make sure that the eager list
6336 		 * is reinitialized.
6337 		 *
6338 		 * Note that this stream is still bound to the four
6339 		 * tuples of the previous connection in IP.  If a new
6340 		 * SYN with different foreign address comes in, IP will
6341 		 * not find it and will send it to the global queue.  In
6342 		 * the global queue, TCP will do a tcp_lookup_listener()
6343 		 * to find this stream.  This works because this stream
6344 		 * is only removed from connected hash.
6345 		 *
6346 		 */
6347 		tcp->tcp_state = TCPS_LISTEN;
6348 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
6349 		tcp->tcp_eager_next_drop_q0 = tcp;
6350 		tcp->tcp_eager_prev_drop_q0 = tcp;
6351 		/*
6352 		 * Initially set conn_recv to tcp_input_listener_unbound to try
6353 		 * to pick a good squeue for the listener when the first SYN
6354 		 * arrives. tcp_input_listener_unbound sets it to
6355 		 * tcp_input_listener on that first SYN.
6356 		 */
6357 		connp->conn_recv = tcp_input_listener_unbound;
6358 
6359 		connp->conn_proto = IPPROTO_TCP;
6360 		connp->conn_faddr_v6 = ipv6_all_zeros;
6361 		connp->conn_fport = 0;
6362 
6363 		(void) ipcl_bind_insert(connp);
6364 	} else {
6365 		tcp->tcp_state = TCPS_BOUND;
6366 	}
6367 
6368 	/*
6369 	 * Initialize to default values
6370 	 */
6371 	tcp_init_values(tcp);
6372 
6373 	ASSERT(tcp->tcp_ptpbhn != NULL);
6374 	tcp->tcp_rwnd = connp->conn_rcvbuf;
6375 	tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ?
6376 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
6377 }
6378 
6379 /*
6380  * Force values to zero that need be zero.
6381  * Do not touch values asociated with the BOUND or LISTEN state
6382  * since the connection will end up in that state after the reinit.
6383  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
6384  * structure!
6385  */
6386 static void
6387 tcp_reinit_values(tcp)
6388 	tcp_t *tcp;
6389 {
6390 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6391 	conn_t		*connp = tcp->tcp_connp;
6392 
6393 #ifndef	lint
6394 #define	DONTCARE(x)
6395 #define	PRESERVE(x)
6396 #else
6397 #define	DONTCARE(x)	((x) = (x))
6398 #define	PRESERVE(x)	((x) = (x))
6399 #endif	/* lint */
6400 
6401 	PRESERVE(tcp->tcp_bind_hash_port);
6402 	PRESERVE(tcp->tcp_bind_hash);
6403 	PRESERVE(tcp->tcp_ptpbhn);
6404 	PRESERVE(tcp->tcp_acceptor_hash);
6405 	PRESERVE(tcp->tcp_ptpahn);
6406 
6407 	/* Should be ASSERT NULL on these with new code! */
6408 	ASSERT(tcp->tcp_time_wait_next == NULL);
6409 	ASSERT(tcp->tcp_time_wait_prev == NULL);
6410 	ASSERT(tcp->tcp_time_wait_expire == 0);
6411 	PRESERVE(tcp->tcp_state);
6412 	PRESERVE(connp->conn_rq);
6413 	PRESERVE(connp->conn_wq);
6414 
6415 	ASSERT(tcp->tcp_xmit_head == NULL);
6416 	ASSERT(tcp->tcp_xmit_last == NULL);
6417 	ASSERT(tcp->tcp_unsent == 0);
6418 	ASSERT(tcp->tcp_xmit_tail == NULL);
6419 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
6420 
6421 	tcp->tcp_snxt = 0;			/* Displayed in mib */
6422 	tcp->tcp_suna = 0;			/* Displayed in mib */
6423 	tcp->tcp_swnd = 0;
6424 	DONTCARE(tcp->tcp_cwnd);	/* Init in tcp_process_options */
6425 
6426 	ASSERT(tcp->tcp_ibsegs == 0);
6427 	ASSERT(tcp->tcp_obsegs == 0);
6428 
6429 	if (connp->conn_ht_iphc != NULL) {
6430 		kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
6431 		connp->conn_ht_iphc = NULL;
6432 		connp->conn_ht_iphc_allocated = 0;
6433 		connp->conn_ht_iphc_len = 0;
6434 		connp->conn_ht_ulp = NULL;
6435 		connp->conn_ht_ulp_len = 0;
6436 		tcp->tcp_ipha = NULL;
6437 		tcp->tcp_ip6h = NULL;
6438 		tcp->tcp_tcpha = NULL;
6439 	}
6440 
6441 	/* We clear any IP_OPTIONS and extension headers */
6442 	ip_pkt_free(&connp->conn_xmit_ipp);
6443 
6444 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
6445 	DONTCARE(tcp->tcp_ipha);
6446 	DONTCARE(tcp->tcp_ip6h);
6447 	DONTCARE(tcp->tcp_tcpha);
6448 	tcp->tcp_valid_bits = 0;
6449 
6450 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
6451 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
6452 	tcp->tcp_last_rcv_lbolt = 0;
6453 
6454 	tcp->tcp_init_cwnd = 0;
6455 
6456 	tcp->tcp_urp_last_valid = 0;
6457 	tcp->tcp_hard_binding = 0;
6458 
6459 	tcp->tcp_fin_acked = 0;
6460 	tcp->tcp_fin_rcvd = 0;
6461 	tcp->tcp_fin_sent = 0;
6462 	tcp->tcp_ordrel_done = 0;
6463 
6464 	tcp->tcp_detached = 0;
6465 
6466 	tcp->tcp_snd_ws_ok = B_FALSE;
6467 	tcp->tcp_snd_ts_ok = B_FALSE;
6468 	tcp->tcp_zero_win_probe = 0;
6469 
6470 	tcp->tcp_loopback = 0;
6471 	tcp->tcp_localnet = 0;
6472 	tcp->tcp_syn_defense = 0;
6473 	tcp->tcp_set_timer = 0;
6474 
6475 	tcp->tcp_active_open = 0;
6476 	tcp->tcp_rexmit = B_FALSE;
6477 	tcp->tcp_xmit_zc_clean = B_FALSE;
6478 
6479 	tcp->tcp_snd_sack_ok = B_FALSE;
6480 	tcp->tcp_hwcksum = B_FALSE;
6481 
6482 	DONTCARE(tcp->tcp_maxpsz_multiplier);	/* Init in tcp_init_values */
6483 
6484 	tcp->tcp_conn_def_q0 = 0;
6485 	tcp->tcp_ip_forward_progress = B_FALSE;
6486 	tcp->tcp_ecn_ok = B_FALSE;
6487 
6488 	tcp->tcp_cwr = B_FALSE;
6489 	tcp->tcp_ecn_echo_on = B_FALSE;
6490 	tcp->tcp_is_wnd_shrnk = B_FALSE;
6491 
6492 	if (tcp->tcp_sack_info != NULL) {
6493 		if (tcp->tcp_notsack_list != NULL) {
6494 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list,
6495 			    tcp);
6496 		}
6497 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
6498 		tcp->tcp_sack_info = NULL;
6499 	}
6500 
6501 	tcp->tcp_rcv_ws = 0;
6502 	tcp->tcp_snd_ws = 0;
6503 	tcp->tcp_ts_recent = 0;
6504 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
6505 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
6506 	tcp->tcp_initial_pmtu = 0;
6507 
6508 	ASSERT(tcp->tcp_reass_head == NULL);
6509 	ASSERT(tcp->tcp_reass_tail == NULL);
6510 
6511 	tcp->tcp_cwnd_cnt = 0;
6512 
6513 	ASSERT(tcp->tcp_rcv_list == NULL);
6514 	ASSERT(tcp->tcp_rcv_last_head == NULL);
6515 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
6516 	ASSERT(tcp->tcp_rcv_cnt == 0);
6517 
6518 	DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */
6519 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
6520 	tcp->tcp_csuna = 0;
6521 
6522 	tcp->tcp_rto = 0;			/* Displayed in MIB */
6523 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
6524 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
6525 	tcp->tcp_rtt_update = 0;
6526 
6527 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
6528 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
6529 
6530 	tcp->tcp_rack = 0;			/* Displayed in mib */
6531 	tcp->tcp_rack_cnt = 0;
6532 	tcp->tcp_rack_cur_max = 0;
6533 	tcp->tcp_rack_abs_max = 0;
6534 
6535 	tcp->tcp_max_swnd = 0;
6536 
6537 	ASSERT(tcp->tcp_listener == NULL);
6538 
6539 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
6540 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
6541 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
6542 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
6543 
6544 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
6545 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
6546 	PRESERVE(tcp->tcp_conn_req_max);
6547 	PRESERVE(tcp->tcp_conn_req_seqnum);
6548 
6549 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
6550 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
6551 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
6552 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
6553 
6554 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
6555 	ASSERT(tcp->tcp_urp_mp == NULL);
6556 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
6557 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
6558 
6559 	ASSERT(tcp->tcp_eager_next_q == NULL);
6560 	ASSERT(tcp->tcp_eager_last_q == NULL);
6561 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
6562 	    tcp->tcp_eager_prev_q0 == NULL) ||
6563 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
6564 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
6565 
6566 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
6567 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
6568 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
6569 
6570 	tcp->tcp_client_errno = 0;
6571 
6572 	DONTCARE(connp->conn_sum);		/* Init in tcp_init_values */
6573 
6574 	connp->conn_faddr_v6 = ipv6_all_zeros;	/* Displayed in MIB */
6575 
6576 	PRESERVE(connp->conn_bound_addr_v6);
6577 	tcp->tcp_last_sent_len = 0;
6578 	tcp->tcp_dupack_cnt = 0;
6579 
6580 	connp->conn_fport = 0;			/* Displayed in MIB */
6581 	PRESERVE(connp->conn_lport);
6582 
6583 	PRESERVE(tcp->tcp_acceptor_lockp);
6584 
6585 	ASSERT(tcp->tcp_ordrel_mp == NULL);
6586 	PRESERVE(tcp->tcp_acceptor_id);
6587 	DONTCARE(tcp->tcp_ipsec_overhead);
6588 
6589 	PRESERVE(connp->conn_family);
6590 	/* Remove any remnants of mapped address binding */
6591 	if (connp->conn_family == AF_INET6) {
6592 		connp->conn_ipversion = IPV6_VERSION;
6593 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
6594 	} else {
6595 		connp->conn_ipversion = IPV4_VERSION;
6596 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
6597 	}
6598 
6599 	connp->conn_bound_if = 0;
6600 	connp->conn_recv_ancillary.crb_all = 0;
6601 	tcp->tcp_recvifindex = 0;
6602 	tcp->tcp_recvhops = 0;
6603 	tcp->tcp_closed = 0;
6604 	tcp->tcp_cleandeathtag = 0;
6605 	if (tcp->tcp_hopopts != NULL) {
6606 		mi_free(tcp->tcp_hopopts);
6607 		tcp->tcp_hopopts = NULL;
6608 		tcp->tcp_hopoptslen = 0;
6609 	}
6610 	ASSERT(tcp->tcp_hopoptslen == 0);
6611 	if (tcp->tcp_dstopts != NULL) {
6612 		mi_free(tcp->tcp_dstopts);
6613 		tcp->tcp_dstopts = NULL;
6614 		tcp->tcp_dstoptslen = 0;
6615 	}
6616 	ASSERT(tcp->tcp_dstoptslen == 0);
6617 	if (tcp->tcp_rthdrdstopts != NULL) {
6618 		mi_free(tcp->tcp_rthdrdstopts);
6619 		tcp->tcp_rthdrdstopts = NULL;
6620 		tcp->tcp_rthdrdstoptslen = 0;
6621 	}
6622 	ASSERT(tcp->tcp_rthdrdstoptslen == 0);
6623 	if (tcp->tcp_rthdr != NULL) {
6624 		mi_free(tcp->tcp_rthdr);
6625 		tcp->tcp_rthdr = NULL;
6626 		tcp->tcp_rthdrlen = 0;
6627 	}
6628 	ASSERT(tcp->tcp_rthdrlen == 0);
6629 
6630 	/* Reset fusion-related fields */
6631 	tcp->tcp_fused = B_FALSE;
6632 	tcp->tcp_unfusable = B_FALSE;
6633 	tcp->tcp_fused_sigurg = B_FALSE;
6634 	tcp->tcp_loopback_peer = NULL;
6635 
6636 	tcp->tcp_lso = B_FALSE;
6637 
6638 	tcp->tcp_in_ack_unsent = 0;
6639 	tcp->tcp_cork = B_FALSE;
6640 	tcp->tcp_tconnind_started = B_FALSE;
6641 
6642 	PRESERVE(tcp->tcp_squeue_bytes);
6643 
6644 	ASSERT(tcp->tcp_kssl_ctx == NULL);
6645 	ASSERT(!tcp->tcp_kssl_pending);
6646 	PRESERVE(tcp->tcp_kssl_ent);
6647 
6648 	tcp->tcp_closemp_used = B_FALSE;
6649 
6650 	PRESERVE(tcp->tcp_rsrv_mp);
6651 	PRESERVE(tcp->tcp_rsrv_mp_lock);
6652 
6653 #ifdef DEBUG
6654 	DONTCARE(tcp->tcmp_stk[0]);
6655 #endif
6656 
6657 	PRESERVE(tcp->tcp_connid);
6658 
6659 
6660 #undef	DONTCARE
6661 #undef	PRESERVE
6662 }
6663 
6664 static void
6665 tcp_init_values(tcp_t *tcp)
6666 {
6667 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6668 	conn_t		*connp = tcp->tcp_connp;
6669 
6670 	ASSERT((connp->conn_family == AF_INET &&
6671 	    connp->conn_ipversion == IPV4_VERSION) ||
6672 	    (connp->conn_family == AF_INET6 &&
6673 	    (connp->conn_ipversion == IPV4_VERSION ||
6674 	    connp->conn_ipversion == IPV6_VERSION)));
6675 
6676 	/*
6677 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
6678 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
6679 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
6680 	 * during first few transmissions of a connection as seen in slow
6681 	 * links.
6682 	 */
6683 	tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2;
6684 	tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1;
6685 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
6686 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
6687 	    tcps->tcps_conn_grace_period;
6688 	if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min)
6689 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
6690 	tcp->tcp_timer_backoff = 0;
6691 	tcp->tcp_ms_we_have_waited = 0;
6692 	tcp->tcp_last_recv_time = lbolt;
6693 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
6694 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
6695 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
6696 
6697 	tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier;
6698 
6699 	tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
6700 	tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval;
6701 	tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
6702 	/*
6703 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
6704 	 * passive open.
6705 	 */
6706 	tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval;
6707 
6708 	tcp->tcp_naglim = tcps->tcps_naglim_def;
6709 
6710 	/* NOTE:  ISS is now set in tcp_set_destination(). */
6711 
6712 	/* Reset fusion-related fields */
6713 	tcp->tcp_fused = B_FALSE;
6714 	tcp->tcp_unfusable = B_FALSE;
6715 	tcp->tcp_fused_sigurg = B_FALSE;
6716 	tcp->tcp_loopback_peer = NULL;
6717 
6718 	/* We rebuild the header template on the next connect/conn_request */
6719 
6720 	connp->conn_mlp_type = mlptSingle;
6721 
6722 	/*
6723 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
6724 	 * down tcp_rwnd. tcp_set_destination() will set the right value later.
6725 	 */
6726 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
6727 	tcp->tcp_rwnd = connp->conn_rcvbuf;
6728 
6729 	tcp->tcp_cork = B_FALSE;
6730 	/*
6731 	 * Init the tcp_debug option if it wasn't already set.  This value
6732 	 * determines whether TCP
6733 	 * calls strlog() to print out debug messages.  Doing this
6734 	 * initialization here means that this value is not inherited thru
6735 	 * tcp_reinit().
6736 	 */
6737 	if (!connp->conn_debug)
6738 		connp->conn_debug = tcps->tcps_dbg;
6739 
6740 	tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
6741 	tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
6742 }
6743 
6744 /* At minimum we need 8 bytes in the TCP header for the lookup */
6745 #define	ICMP_MIN_TCP_HDR	8
6746 
6747 /*
6748  * tcp_icmp_input is called as conn_recvicmp to process ICMP error messages
6749  * passed up by IP. The message is always received on the correct tcp_t.
6750  * Assumes that IP has pulled up everything up to and including the ICMP header.
6751  */
6752 /* ARGSUSED2 */
6753 static void
6754 tcp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
6755 {
6756 	conn_t		*connp = (conn_t *)arg1;
6757 	icmph_t		*icmph;
6758 	ipha_t		*ipha;
6759 	int		iph_hdr_length;
6760 	tcpha_t		*tcpha;
6761 	uint32_t	seg_seq;
6762 	tcp_t		*tcp = connp->conn_tcp;
6763 
6764 	/* Assume IP provides aligned packets */
6765 	ASSERT(OK_32PTR(mp->b_rptr));
6766 	ASSERT((MBLKL(mp) >= sizeof (ipha_t)));
6767 
6768 	/*
6769 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
6770 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
6771 	 */
6772 	if (!(ira->ira_flags & IRAF_IS_IPV4)) {
6773 		tcp_icmp_error_ipv6(tcp, mp, ira);
6774 		return;
6775 	}
6776 
6777 	/* Skip past the outer IP and ICMP headers */
6778 	iph_hdr_length = ira->ira_ip_hdr_length;
6779 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
6780 	/*
6781 	 * If we don't have the correct outer IP header length
6782 	 * or if we don't have a complete inner IP header
6783 	 * drop it.
6784 	 */
6785 	if (iph_hdr_length < sizeof (ipha_t) ||
6786 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
6787 noticmpv4:
6788 		freemsg(mp);
6789 		return;
6790 	}
6791 	ipha = (ipha_t *)&icmph[1];
6792 
6793 	/* Skip past the inner IP and find the ULP header */
6794 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
6795 	tcpha = (tcpha_t *)((char *)ipha + iph_hdr_length);
6796 	/*
6797 	 * If we don't have the correct inner IP header length or if the ULP
6798 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
6799 	 * bytes of TCP header, drop it.
6800 	 */
6801 	if (iph_hdr_length < sizeof (ipha_t) ||
6802 	    ipha->ipha_protocol != IPPROTO_TCP ||
6803 	    (uchar_t *)tcpha + ICMP_MIN_TCP_HDR > mp->b_wptr) {
6804 		goto noticmpv4;
6805 	}
6806 
6807 	seg_seq = ntohl(tcpha->tha_seq);
6808 	switch (icmph->icmph_type) {
6809 	case ICMP_DEST_UNREACHABLE:
6810 		switch (icmph->icmph_code) {
6811 		case ICMP_FRAGMENTATION_NEEDED:
6812 			/*
6813 			 * Update Path MTU, then try to send something out.
6814 			 */
6815 			tcp_update_pmtu(tcp, B_TRUE);
6816 			tcp_rexmit_after_error(tcp);
6817 			break;
6818 		case ICMP_PORT_UNREACHABLE:
6819 		case ICMP_PROTOCOL_UNREACHABLE:
6820 			switch (tcp->tcp_state) {
6821 			case TCPS_SYN_SENT:
6822 			case TCPS_SYN_RCVD:
6823 				/*
6824 				 * ICMP can snipe away incipient
6825 				 * TCP connections as long as
6826 				 * seq number is same as initial
6827 				 * send seq number.
6828 				 */
6829 				if (seg_seq == tcp->tcp_iss) {
6830 					(void) tcp_clean_death(tcp,
6831 					    ECONNREFUSED, 6);
6832 				}
6833 				break;
6834 			}
6835 			break;
6836 		case ICMP_HOST_UNREACHABLE:
6837 		case ICMP_NET_UNREACHABLE:
6838 			/* Record the error in case we finally time out. */
6839 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
6840 				tcp->tcp_client_errno = EHOSTUNREACH;
6841 			else
6842 				tcp->tcp_client_errno = ENETUNREACH;
6843 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
6844 				if (tcp->tcp_listener != NULL &&
6845 				    tcp->tcp_listener->tcp_syn_defense) {
6846 					/*
6847 					 * Ditch the half-open connection if we
6848 					 * suspect a SYN attack is under way.
6849 					 */
6850 					(void) tcp_clean_death(tcp,
6851 					    tcp->tcp_client_errno, 7);
6852 				}
6853 			}
6854 			break;
6855 		default:
6856 			break;
6857 		}
6858 		break;
6859 	case ICMP_SOURCE_QUENCH: {
6860 		/*
6861 		 * use a global boolean to control
6862 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
6863 		 * The default is false.
6864 		 */
6865 		if (tcp_icmp_source_quench) {
6866 			/*
6867 			 * Reduce the sending rate as if we got a
6868 			 * retransmit timeout
6869 			 */
6870 			uint32_t npkt;
6871 
6872 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
6873 			    tcp->tcp_mss;
6874 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
6875 			tcp->tcp_cwnd = tcp->tcp_mss;
6876 			tcp->tcp_cwnd_cnt = 0;
6877 		}
6878 		break;
6879 	}
6880 	}
6881 	freemsg(mp);
6882 }
6883 
6884 /*
6885  * CALLED OUTSIDE OF SQUEUE! It can not follow any pointers that tcp might
6886  * change. But it can refer to fields like tcp_suna and tcp_snxt.
6887  *
6888  * Function tcp_verifyicmp is called as conn_verifyicmp to verify the ICMP
6889  * error messages received by IP. The message is always received on the correct
6890  * tcp_t.
6891  */
6892 /* ARGSUSED */
6893 static boolean_t
6894 tcp_verifyicmp(conn_t *connp, void *arg2, icmph_t *icmph, icmp6_t *icmp6,
6895     ip_recv_attr_t *ira)
6896 {
6897 	tcpha_t		*tcpha = (tcpha_t *)arg2;
6898 	uint32_t	seq = ntohl(tcpha->tha_seq);
6899 	tcp_t		*tcp = connp->conn_tcp;
6900 
6901 	/*
6902 	 * TCP sequence number contained in payload of the ICMP error message
6903 	 * should be within the range SND.UNA <= SEG.SEQ < SND.NXT. Otherwise,
6904 	 * the message is either a stale ICMP error, or an attack from the
6905 	 * network. Fail the verification.
6906 	 */
6907 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
6908 		return (B_FALSE);
6909 
6910 	/* For "too big" we also check the ignore flag */
6911 	if (ira->ira_flags & IRAF_IS_IPV4) {
6912 		ASSERT(icmph != NULL);
6913 		if (icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
6914 		    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED &&
6915 		    tcp->tcp_tcps->tcps_ignore_path_mtu)
6916 			return (B_FALSE);
6917 	} else {
6918 		ASSERT(icmp6 != NULL);
6919 		if (icmp6->icmp6_type == ICMP6_PACKET_TOO_BIG &&
6920 		    tcp->tcp_tcps->tcps_ignore_path_mtu)
6921 			return (B_FALSE);
6922 	}
6923 	return (B_TRUE);
6924 }
6925 
6926 /*
6927  * Update the TCP connection according to change of PMTU.
6928  *
6929  * Path MTU might have changed by either increase or decrease, so need to
6930  * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny
6931  * or negative MSS, since tcp_mss_set() will do it.
6932  */
6933 static void
6934 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only)
6935 {
6936 	uint32_t	pmtu;
6937 	int32_t		mss;
6938 	conn_t		*connp = tcp->tcp_connp;
6939 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
6940 	iaflags_t	ixaflags;
6941 
6942 	if (tcp->tcp_tcps->tcps_ignore_path_mtu)
6943 		return;
6944 
6945 	if (tcp->tcp_state < TCPS_ESTABLISHED)
6946 		return;
6947 
6948 	/*
6949 	 * Always call ip_get_pmtu() to make sure that IP has updated
6950 	 * ixa_flags properly.
6951 	 */
6952 	pmtu = ip_get_pmtu(ixa);
6953 	ixaflags = ixa->ixa_flags;
6954 
6955 	/*
6956 	 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and
6957 	 * IPsec overhead if applied. Make sure to use the most recent
6958 	 * IPsec information.
6959 	 */
6960 	mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp);
6961 
6962 	/*
6963 	 * Nothing to change, so just return.
6964 	 */
6965 	if (mss == tcp->tcp_mss)
6966 		return;
6967 
6968 	/*
6969 	 * Currently, for ICMP errors, only PMTU decrease is handled.
6970 	 */
6971 	if (mss > tcp->tcp_mss && decrease_only)
6972 		return;
6973 
6974 	DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss);
6975 
6976 	/*
6977 	 * Update ixa_fragsize and ixa_pmtu.
6978 	 */
6979 	ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu;
6980 
6981 	/*
6982 	 * Adjust MSS and all relevant variables.
6983 	 */
6984 	tcp_mss_set(tcp, mss);
6985 
6986 	/*
6987 	 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu
6988 	 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP
6989 	 * has a (potentially different) min size we do the same. Make sure to
6990 	 * clear IXAF_DONTFRAG, which is used by IP to decide whether to
6991 	 * fragment the packet.
6992 	 *
6993 	 * LSO over IPv6 can not be fragmented. So need to disable LSO
6994 	 * when IPv6 fragmentation is needed.
6995 	 */
6996 	if (mss < tcp->tcp_tcps->tcps_mss_min)
6997 		ixaflags |= IXAF_PMTU_TOO_SMALL;
6998 
6999 	if (ixaflags & IXAF_PMTU_TOO_SMALL)
7000 		ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF);
7001 
7002 	if ((connp->conn_ipversion == IPV4_VERSION) &&
7003 	    !(ixaflags & IXAF_PMTU_IPV4_DF)) {
7004 		tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
7005 	}
7006 	ixa->ixa_flags = ixaflags;
7007 }
7008 
7009 /*
7010  * Do slow start retransmission after ICMP errors of PMTU changes.
7011  */
7012 static void
7013 tcp_rexmit_after_error(tcp_t *tcp)
7014 {
7015 	/*
7016 	 * All sent data has been acknowledged or no data left to send, just
7017 	 * to return.
7018 	 */
7019 	if (!SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) ||
7020 	    (tcp->tcp_xmit_head == NULL))
7021 		return;
7022 
7023 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && (tcp->tcp_unsent == 0))
7024 		tcp->tcp_rexmit_max = tcp->tcp_fss;
7025 	else
7026 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
7027 
7028 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
7029 	tcp->tcp_rexmit = B_TRUE;
7030 	tcp->tcp_dupack_cnt = 0;
7031 	tcp->tcp_snd_burst = TCP_CWND_SS;
7032 	tcp_ss_rexmit(tcp);
7033 }
7034 
7035 /*
7036  * tcp_icmp_error_ipv6 is called from tcp_icmp_input to process ICMPv6
7037  * error messages passed up by IP.
7038  * Assumes that IP has pulled up all the extension headers as well
7039  * as the ICMPv6 header.
7040  */
7041 static void
7042 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, ip_recv_attr_t *ira)
7043 {
7044 	icmp6_t		*icmp6;
7045 	ip6_t		*ip6h;
7046 	uint16_t	iph_hdr_length = ira->ira_ip_hdr_length;
7047 	tcpha_t		*tcpha;
7048 	uint8_t		*nexthdrp;
7049 	uint32_t	seg_seq;
7050 
7051 	/*
7052 	 * Verify that we have a complete IP header.
7053 	 */
7054 	ASSERT((MBLKL(mp) >= sizeof (ip6_t)));
7055 
7056 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
7057 	ip6h = (ip6_t *)&icmp6[1];
7058 	/*
7059 	 * Verify if we have a complete ICMP and inner IP header.
7060 	 */
7061 	if ((uchar_t *)&ip6h[1] > mp->b_wptr) {
7062 noticmpv6:
7063 		freemsg(mp);
7064 		return;
7065 	}
7066 
7067 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
7068 		goto noticmpv6;
7069 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
7070 	/*
7071 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
7072 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
7073 	 * packet.
7074 	 */
7075 	if ((*nexthdrp != IPPROTO_TCP) ||
7076 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
7077 		goto noticmpv6;
7078 	}
7079 
7080 	seg_seq = ntohl(tcpha->tha_seq);
7081 	switch (icmp6->icmp6_type) {
7082 	case ICMP6_PACKET_TOO_BIG:
7083 		/*
7084 		 * Update Path MTU, then try to send something out.
7085 		 */
7086 		tcp_update_pmtu(tcp, B_TRUE);
7087 		tcp_rexmit_after_error(tcp);
7088 		break;
7089 	case ICMP6_DST_UNREACH:
7090 		switch (icmp6->icmp6_code) {
7091 		case ICMP6_DST_UNREACH_NOPORT:
7092 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
7093 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
7094 			    (seg_seq == tcp->tcp_iss)) {
7095 				(void) tcp_clean_death(tcp,
7096 				    ECONNREFUSED, 8);
7097 			}
7098 			break;
7099 		case ICMP6_DST_UNREACH_ADMIN:
7100 		case ICMP6_DST_UNREACH_NOROUTE:
7101 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
7102 		case ICMP6_DST_UNREACH_ADDR:
7103 			/* Record the error in case we finally time out. */
7104 			tcp->tcp_client_errno = EHOSTUNREACH;
7105 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
7106 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
7107 			    (seg_seq == tcp->tcp_iss)) {
7108 				if (tcp->tcp_listener != NULL &&
7109 				    tcp->tcp_listener->tcp_syn_defense) {
7110 					/*
7111 					 * Ditch the half-open connection if we
7112 					 * suspect a SYN attack is under way.
7113 					 */
7114 					(void) tcp_clean_death(tcp,
7115 					    tcp->tcp_client_errno, 9);
7116 				}
7117 			}
7118 
7119 
7120 			break;
7121 		default:
7122 			break;
7123 		}
7124 		break;
7125 	case ICMP6_PARAM_PROB:
7126 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
7127 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
7128 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
7129 		    (uchar_t *)nexthdrp) {
7130 			if (tcp->tcp_state == TCPS_SYN_SENT ||
7131 			    tcp->tcp_state == TCPS_SYN_RCVD) {
7132 				(void) tcp_clean_death(tcp,
7133 				    ECONNREFUSED, 10);
7134 			}
7135 			break;
7136 		}
7137 		break;
7138 
7139 	case ICMP6_TIME_EXCEEDED:
7140 	default:
7141 		break;
7142 	}
7143 	freemsg(mp);
7144 }
7145 
7146 /*
7147  * Notify IP that we are having trouble with this connection.  IP should
7148  * make note so it can potentially use a different IRE.
7149  */
7150 static void
7151 tcp_ip_notify(tcp_t *tcp)
7152 {
7153 	conn_t		*connp = tcp->tcp_connp;
7154 	ire_t		*ire;
7155 
7156 	/*
7157 	 * Note: in the case of source routing we want to blow away the
7158 	 * route to the first source route hop.
7159 	 */
7160 	ire = connp->conn_ixa->ixa_ire;
7161 	if (ire != NULL && !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
7162 		if (ire->ire_ipversion == IPV4_VERSION) {
7163 			/*
7164 			 * As per RFC 1122, we send an RTM_LOSING to inform
7165 			 * routing protocols.
7166 			 */
7167 			ip_rts_change(RTM_LOSING, ire->ire_addr,
7168 			    ire->ire_gateway_addr, ire->ire_mask,
7169 			    connp->conn_laddr_v4,  0, 0, 0,
7170 			    (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA),
7171 			    ire->ire_ipst);
7172 		}
7173 		(void) ire_no_good(ire);
7174 	}
7175 }
7176 
7177 #pragma inline(tcp_send_data)
7178 
7179 /*
7180  * Timer callback routine for keepalive probe.  We do a fake resend of
7181  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
7182  * check to see if we have heard anything from the other end for the last
7183  * RTO period.  If we have, set the timer to expire for another
7184  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
7185  * RTO << 1 and check again when it expires.  Keep exponentially increasing
7186  * the timeout if we have not heard from the other side.  If for more than
7187  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
7188  * kill the connection unless the keepalive abort threshold is 0.  In
7189  * that case, we will probe "forever."
7190  */
7191 static void
7192 tcp_keepalive_killer(void *arg)
7193 {
7194 	mblk_t	*mp;
7195 	conn_t	*connp = (conn_t *)arg;
7196 	tcp_t  	*tcp = connp->conn_tcp;
7197 	int32_t	firetime;
7198 	int32_t	idletime;
7199 	int32_t	ka_intrvl;
7200 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7201 
7202 	tcp->tcp_ka_tid = 0;
7203 
7204 	if (tcp->tcp_fused)
7205 		return;
7206 
7207 	BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive);
7208 	ka_intrvl = tcp->tcp_ka_interval;
7209 
7210 	/*
7211 	 * Keepalive probe should only be sent if the application has not
7212 	 * done a close on the connection.
7213 	 */
7214 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
7215 		return;
7216 	}
7217 	/* Timer fired too early, restart it. */
7218 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
7219 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
7220 		    MSEC_TO_TICK(ka_intrvl));
7221 		return;
7222 	}
7223 
7224 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
7225 	/*
7226 	 * If we have not heard from the other side for a long
7227 	 * time, kill the connection unless the keepalive abort
7228 	 * threshold is 0.  In that case, we will probe "forever."
7229 	 */
7230 	if (tcp->tcp_ka_abort_thres != 0 &&
7231 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
7232 		BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop);
7233 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
7234 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
7235 		return;
7236 	}
7237 
7238 	if (tcp->tcp_snxt == tcp->tcp_suna &&
7239 	    idletime >= ka_intrvl) {
7240 		/* Fake resend of last ACKed byte. */
7241 		mblk_t	*mp1 = allocb(1, BPRI_LO);
7242 
7243 		if (mp1 != NULL) {
7244 			*mp1->b_wptr++ = '\0';
7245 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
7246 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
7247 			freeb(mp1);
7248 			/*
7249 			 * if allocation failed, fall through to start the
7250 			 * timer back.
7251 			 */
7252 			if (mp != NULL) {
7253 				tcp_send_data(tcp, mp);
7254 				BUMP_MIB(&tcps->tcps_mib,
7255 				    tcpTimKeepaliveProbe);
7256 				if (tcp->tcp_ka_last_intrvl != 0) {
7257 					int max;
7258 					/*
7259 					 * We should probe again at least
7260 					 * in ka_intrvl, but not more than
7261 					 * tcp_rexmit_interval_max.
7262 					 */
7263 					max = tcps->tcps_rexmit_interval_max;
7264 					firetime = MIN(ka_intrvl - 1,
7265 					    tcp->tcp_ka_last_intrvl << 1);
7266 					if (firetime > max)
7267 						firetime = max;
7268 				} else {
7269 					firetime = tcp->tcp_rto;
7270 				}
7271 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
7272 				    tcp_keepalive_killer,
7273 				    MSEC_TO_TICK(firetime));
7274 				tcp->tcp_ka_last_intrvl = firetime;
7275 				return;
7276 			}
7277 		}
7278 	} else {
7279 		tcp->tcp_ka_last_intrvl = 0;
7280 	}
7281 
7282 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
7283 	if ((firetime = ka_intrvl - idletime) < 0) {
7284 		firetime = ka_intrvl;
7285 	}
7286 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
7287 	    MSEC_TO_TICK(firetime));
7288 }
7289 
7290 int
7291 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
7292 {
7293 	conn_t	*connp = tcp->tcp_connp;
7294 	queue_t	*q = connp->conn_rq;
7295 	int32_t	mss = tcp->tcp_mss;
7296 	int	maxpsz;
7297 
7298 	if (TCP_IS_DETACHED(tcp))
7299 		return (mss);
7300 	if (tcp->tcp_fused) {
7301 		maxpsz = tcp_fuse_maxpsz(tcp);
7302 		mss = INFPSZ;
7303 	} else if (tcp->tcp_maxpsz_multiplier == 0) {
7304 		/*
7305 		 * Set the sd_qn_maxpsz according to the socket send buffer
7306 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
7307 		 * instruct the stream head to copyin user data into contiguous
7308 		 * kernel-allocated buffers without breaking it up into smaller
7309 		 * chunks.  We round up the buffer size to the nearest SMSS.
7310 		 */
7311 		maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss);
7312 		if (tcp->tcp_kssl_ctx == NULL)
7313 			mss = INFPSZ;
7314 		else
7315 			mss = SSL3_MAX_RECORD_LEN;
7316 	} else {
7317 		/*
7318 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
7319 		 * (and a multiple of the mss).  This instructs the stream
7320 		 * head to break down larger than SMSS writes into SMSS-
7321 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
7322 		 */
7323 		maxpsz = tcp->tcp_maxpsz_multiplier * mss;
7324 		if (maxpsz > connp->conn_sndbuf / 2) {
7325 			maxpsz = connp->conn_sndbuf / 2;
7326 			/* Round up to nearest mss */
7327 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
7328 		}
7329 	}
7330 
7331 	(void) proto_set_maxpsz(q, connp, maxpsz);
7332 	if (!(IPCL_IS_NONSTR(connp)))
7333 		connp->conn_wq->q_maxpsz = maxpsz;
7334 	if (set_maxblk)
7335 		(void) proto_set_tx_maxblk(q, connp, mss);
7336 	return (mss);
7337 }
7338 
7339 /*
7340  * Extract option values from a tcp header.  We put any found values into the
7341  * tcpopt struct and return a bitmask saying which options were found.
7342  */
7343 static int
7344 tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt)
7345 {
7346 	uchar_t		*endp;
7347 	int		len;
7348 	uint32_t	mss;
7349 	uchar_t		*up = (uchar_t *)tcpha;
7350 	int		found = 0;
7351 	int32_t		sack_len;
7352 	tcp_seq		sack_begin, sack_end;
7353 	tcp_t		*tcp;
7354 
7355 	endp = up + TCP_HDR_LENGTH(tcpha);
7356 	up += TCP_MIN_HEADER_LENGTH;
7357 	while (up < endp) {
7358 		len = endp - up;
7359 		switch (*up) {
7360 		case TCPOPT_EOL:
7361 			break;
7362 
7363 		case TCPOPT_NOP:
7364 			up++;
7365 			continue;
7366 
7367 		case TCPOPT_MAXSEG:
7368 			if (len < TCPOPT_MAXSEG_LEN ||
7369 			    up[1] != TCPOPT_MAXSEG_LEN)
7370 				break;
7371 
7372 			mss = BE16_TO_U16(up+2);
7373 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
7374 			tcpopt->tcp_opt_mss = mss;
7375 			found |= TCP_OPT_MSS_PRESENT;
7376 
7377 			up += TCPOPT_MAXSEG_LEN;
7378 			continue;
7379 
7380 		case TCPOPT_WSCALE:
7381 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
7382 				break;
7383 
7384 			if (up[2] > TCP_MAX_WINSHIFT)
7385 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
7386 			else
7387 				tcpopt->tcp_opt_wscale = up[2];
7388 			found |= TCP_OPT_WSCALE_PRESENT;
7389 
7390 			up += TCPOPT_WS_LEN;
7391 			continue;
7392 
7393 		case TCPOPT_SACK_PERMITTED:
7394 			if (len < TCPOPT_SACK_OK_LEN ||
7395 			    up[1] != TCPOPT_SACK_OK_LEN)
7396 				break;
7397 			found |= TCP_OPT_SACK_OK_PRESENT;
7398 			up += TCPOPT_SACK_OK_LEN;
7399 			continue;
7400 
7401 		case TCPOPT_SACK:
7402 			if (len <= 2 || up[1] <= 2 || len < up[1])
7403 				break;
7404 
7405 			/* If TCP is not interested in SACK blks... */
7406 			if ((tcp = tcpopt->tcp) == NULL) {
7407 				up += up[1];
7408 				continue;
7409 			}
7410 			sack_len = up[1] - TCPOPT_HEADER_LEN;
7411 			up += TCPOPT_HEADER_LEN;
7412 
7413 			/*
7414 			 * If the list is empty, allocate one and assume
7415 			 * nothing is sack'ed.
7416 			 */
7417 			ASSERT(tcp->tcp_sack_info != NULL);
7418 			if (tcp->tcp_notsack_list == NULL) {
7419 				tcp_notsack_update(&(tcp->tcp_notsack_list),
7420 				    tcp->tcp_suna, tcp->tcp_snxt,
7421 				    &(tcp->tcp_num_notsack_blk),
7422 				    &(tcp->tcp_cnt_notsack_list));
7423 
7424 				/*
7425 				 * Make sure tcp_notsack_list is not NULL.
7426 				 * This happens when kmem_alloc(KM_NOSLEEP)
7427 				 * returns NULL.
7428 				 */
7429 				if (tcp->tcp_notsack_list == NULL) {
7430 					up += sack_len;
7431 					continue;
7432 				}
7433 				tcp->tcp_fack = tcp->tcp_suna;
7434 			}
7435 
7436 			while (sack_len > 0) {
7437 				if (up + 8 > endp) {
7438 					up = endp;
7439 					break;
7440 				}
7441 				sack_begin = BE32_TO_U32(up);
7442 				up += 4;
7443 				sack_end = BE32_TO_U32(up);
7444 				up += 4;
7445 				sack_len -= 8;
7446 				/*
7447 				 * Bounds checking.  Make sure the SACK
7448 				 * info is within tcp_suna and tcp_snxt.
7449 				 * If this SACK blk is out of bound, ignore
7450 				 * it but continue to parse the following
7451 				 * blks.
7452 				 */
7453 				if (SEQ_LEQ(sack_end, sack_begin) ||
7454 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
7455 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
7456 					continue;
7457 				}
7458 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
7459 				    sack_begin, sack_end,
7460 				    &(tcp->tcp_num_notsack_blk),
7461 				    &(tcp->tcp_cnt_notsack_list));
7462 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
7463 					tcp->tcp_fack = sack_end;
7464 				}
7465 			}
7466 			found |= TCP_OPT_SACK_PRESENT;
7467 			continue;
7468 
7469 		case TCPOPT_TSTAMP:
7470 			if (len < TCPOPT_TSTAMP_LEN ||
7471 			    up[1] != TCPOPT_TSTAMP_LEN)
7472 				break;
7473 
7474 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
7475 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
7476 
7477 			found |= TCP_OPT_TSTAMP_PRESENT;
7478 
7479 			up += TCPOPT_TSTAMP_LEN;
7480 			continue;
7481 
7482 		default:
7483 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
7484 				break;
7485 			up += up[1];
7486 			continue;
7487 		}
7488 		break;
7489 	}
7490 	return (found);
7491 }
7492 
7493 /*
7494  * Set the MSS associated with a particular tcp based on its current value,
7495  * and a new one passed in. Observe minimums and maximums, and reset other
7496  * state variables that we want to view as multiples of MSS.
7497  *
7498  * The value of MSS could be either increased or descreased.
7499  */
7500 static void
7501 tcp_mss_set(tcp_t *tcp, uint32_t mss)
7502 {
7503 	uint32_t	mss_max;
7504 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7505 	conn_t		*connp = tcp->tcp_connp;
7506 
7507 	if (connp->conn_ipversion == IPV4_VERSION)
7508 		mss_max = tcps->tcps_mss_max_ipv4;
7509 	else
7510 		mss_max = tcps->tcps_mss_max_ipv6;
7511 
7512 	if (mss < tcps->tcps_mss_min)
7513 		mss = tcps->tcps_mss_min;
7514 	if (mss > mss_max)
7515 		mss = mss_max;
7516 	/*
7517 	 * Unless naglim has been set by our client to
7518 	 * a non-mss value, force naglim to track mss.
7519 	 * This can help to aggregate small writes.
7520 	 */
7521 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
7522 		tcp->tcp_naglim = mss;
7523 	/*
7524 	 * TCP should be able to buffer at least 4 MSS data for obvious
7525 	 * performance reason.
7526 	 */
7527 	if ((mss << 2) > connp->conn_sndbuf)
7528 		connp->conn_sndbuf = mss << 2;
7529 
7530 	/*
7531 	 * Set the send lowater to at least twice of MSS.
7532 	 */
7533 	if ((mss << 1) > connp->conn_sndlowat)
7534 		connp->conn_sndlowat = mss << 1;
7535 
7536 	/*
7537 	 * Update tcp_cwnd according to the new value of MSS. Keep the
7538 	 * previous ratio to preserve the transmit rate.
7539 	 */
7540 	tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss;
7541 	tcp->tcp_cwnd_cnt = 0;
7542 
7543 	tcp->tcp_mss = mss;
7544 	(void) tcp_maxpsz_set(tcp, B_TRUE);
7545 }
7546 
7547 /* For /dev/tcp aka AF_INET open */
7548 static int
7549 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
7550 {
7551 	return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
7552 }
7553 
7554 /* For /dev/tcp6 aka AF_INET6 open */
7555 static int
7556 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
7557 {
7558 	return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
7559 }
7560 
7561 static conn_t *
7562 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket,
7563     int *errorp)
7564 {
7565 	tcp_t		*tcp = NULL;
7566 	conn_t		*connp;
7567 	zoneid_t	zoneid;
7568 	tcp_stack_t	*tcps;
7569 	squeue_t	*sqp;
7570 
7571 	ASSERT(errorp != NULL);
7572 	/*
7573 	 * Find the proper zoneid and netstack.
7574 	 */
7575 	/*
7576 	 * Special case for install: miniroot needs to be able to
7577 	 * access files via NFS as though it were always in the
7578 	 * global zone.
7579 	 */
7580 	if (credp == kcred && nfs_global_client_only != 0) {
7581 		zoneid = GLOBAL_ZONEID;
7582 		tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
7583 		    netstack_tcp;
7584 		ASSERT(tcps != NULL);
7585 	} else {
7586 		netstack_t *ns;
7587 
7588 		ns = netstack_find_by_cred(credp);
7589 		ASSERT(ns != NULL);
7590 		tcps = ns->netstack_tcp;
7591 		ASSERT(tcps != NULL);
7592 
7593 		/*
7594 		 * For exclusive stacks we set the zoneid to zero
7595 		 * to make TCP operate as if in the global zone.
7596 		 */
7597 		if (tcps->tcps_netstack->netstack_stackid !=
7598 		    GLOBAL_NETSTACKID)
7599 			zoneid = GLOBAL_ZONEID;
7600 		else
7601 			zoneid = crgetzoneid(credp);
7602 	}
7603 
7604 	sqp = IP_SQUEUE_GET((uint_t)gethrtime());
7605 	connp = (conn_t *)tcp_get_conn(sqp, tcps);
7606 	/*
7607 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
7608 	 * so we drop it by one.
7609 	 */
7610 	netstack_rele(tcps->tcps_netstack);
7611 	if (connp == NULL) {
7612 		*errorp = ENOSR;
7613 		return (NULL);
7614 	}
7615 	ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto);
7616 
7617 	connp->conn_sqp = sqp;
7618 	connp->conn_initial_sqp = connp->conn_sqp;
7619 	connp->conn_ixa->ixa_sqp = connp->conn_sqp;
7620 	tcp = connp->conn_tcp;
7621 
7622 	/*
7623 	 * Besides asking IP to set the checksum for us, have conn_ip_output
7624 	 * to do the following checks when necessary:
7625 	 *
7626 	 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid
7627 	 * IXAF_VERIFY_PMTU: verify PMTU changes
7628 	 * IXAF_VERIFY_LSO: verify LSO capability changes
7629 	 */
7630 	connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
7631 	    IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO;
7632 
7633 	if (!tcps->tcps_dev_flow_ctl)
7634 		connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL;
7635 
7636 	if (isv6) {
7637 		connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
7638 		connp->conn_ipversion = IPV6_VERSION;
7639 		connp->conn_family = AF_INET6;
7640 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
7641 		connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit;
7642 	} else {
7643 		connp->conn_ipversion = IPV4_VERSION;
7644 		connp->conn_family = AF_INET;
7645 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
7646 		connp->conn_default_ttl = tcps->tcps_ipv4_ttl;
7647 	}
7648 	connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl;
7649 
7650 	crhold(credp);
7651 	connp->conn_cred = credp;
7652 	connp->conn_cpid = curproc->p_pid;
7653 	connp->conn_open_time = lbolt64;
7654 
7655 	connp->conn_zoneid = zoneid;
7656 	/* conn_allzones can not be set this early, hence no IPCL_ZONEID */
7657 	connp->conn_ixa->ixa_zoneid = zoneid;
7658 	connp->conn_mlp_type = mlptSingle;
7659 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
7660 	ASSERT(tcp->tcp_tcps == tcps);
7661 
7662 	/*
7663 	 * If the caller has the process-wide flag set, then default to MAC
7664 	 * exempt mode.  This allows read-down to unlabeled hosts.
7665 	 */
7666 	if (getpflags(NET_MAC_AWARE, credp) != 0)
7667 		connp->conn_mac_mode = CONN_MAC_AWARE;
7668 
7669 	connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
7670 
7671 	if (issocket) {
7672 		tcp->tcp_issocket = 1;
7673 	}
7674 
7675 	connp->conn_rcvbuf = tcps->tcps_recv_hiwat;
7676 	connp->conn_sndbuf = tcps->tcps_xmit_hiwat;
7677 	connp->conn_sndlowat = tcps->tcps_xmit_lowat;
7678 	connp->conn_so_type = SOCK_STREAM;
7679 	connp->conn_wroff = connp->conn_ht_iphc_allocated +
7680 	    tcps->tcps_wroff_xtra;
7681 
7682 	SOCK_CONNID_INIT(tcp->tcp_connid);
7683 	tcp->tcp_state = TCPS_IDLE;
7684 	tcp_init_values(tcp);
7685 	return (connp);
7686 }
7687 
7688 static int
7689 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
7690     boolean_t isv6)
7691 {
7692 	tcp_t		*tcp = NULL;
7693 	conn_t		*connp = NULL;
7694 	int		err;
7695 	vmem_t		*minor_arena = NULL;
7696 	dev_t		conn_dev;
7697 	boolean_t	issocket;
7698 
7699 	if (q->q_ptr != NULL)
7700 		return (0);
7701 
7702 	if (sflag == MODOPEN)
7703 		return (EINVAL);
7704 
7705 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
7706 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
7707 		minor_arena = ip_minor_arena_la;
7708 	} else {
7709 		/*
7710 		 * Either minor numbers in the large arena were exhausted
7711 		 * or a non socket application is doing the open.
7712 		 * Try to allocate from the small arena.
7713 		 */
7714 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
7715 			return (EBUSY);
7716 		}
7717 		minor_arena = ip_minor_arena_sa;
7718 	}
7719 
7720 	ASSERT(minor_arena != NULL);
7721 
7722 	*devp = makedevice(getmajor(*devp), (minor_t)conn_dev);
7723 
7724 	if (flag & SO_FALLBACK) {
7725 		/*
7726 		 * Non streams socket needs a stream to fallback to
7727 		 */
7728 		RD(q)->q_ptr = (void *)conn_dev;
7729 		WR(q)->q_qinfo = &tcp_fallback_sock_winit;
7730 		WR(q)->q_ptr = (void *)minor_arena;
7731 		qprocson(q);
7732 		return (0);
7733 	} else if (flag & SO_ACCEPTOR) {
7734 		q->q_qinfo = &tcp_acceptor_rinit;
7735 		/*
7736 		 * the conn_dev and minor_arena will be subsequently used by
7737 		 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out
7738 		 * the minor device number for this connection from the q_ptr.
7739 		 */
7740 		RD(q)->q_ptr = (void *)conn_dev;
7741 		WR(q)->q_qinfo = &tcp_acceptor_winit;
7742 		WR(q)->q_ptr = (void *)minor_arena;
7743 		qprocson(q);
7744 		return (0);
7745 	}
7746 
7747 	issocket = flag & SO_SOCKSTR;
7748 	connp = tcp_create_common(credp, isv6, issocket, &err);
7749 
7750 	if (connp == NULL) {
7751 		inet_minor_free(minor_arena, conn_dev);
7752 		q->q_ptr = WR(q)->q_ptr = NULL;
7753 		return (err);
7754 	}
7755 
7756 	connp->conn_rq = q;
7757 	connp->conn_wq = WR(q);
7758 	q->q_ptr = WR(q)->q_ptr = connp;
7759 
7760 	connp->conn_dev = conn_dev;
7761 	connp->conn_minor_arena = minor_arena;
7762 
7763 	ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
7764 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
7765 
7766 	tcp = connp->conn_tcp;
7767 
7768 	if (issocket) {
7769 		WR(q)->q_qinfo = &tcp_sock_winit;
7770 	} else {
7771 #ifdef  _ILP32
7772 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
7773 #else
7774 		tcp->tcp_acceptor_id = conn_dev;
7775 #endif  /* _ILP32 */
7776 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
7777 	}
7778 
7779 	/*
7780 	 * Put the ref for TCP. Ref for IP was already put
7781 	 * by ipcl_conn_create. Also Make the conn_t globally
7782 	 * visible to walkers
7783 	 */
7784 	mutex_enter(&connp->conn_lock);
7785 	CONN_INC_REF_LOCKED(connp);
7786 	ASSERT(connp->conn_ref == 2);
7787 	connp->conn_state_flags &= ~CONN_INCIPIENT;
7788 	mutex_exit(&connp->conn_lock);
7789 
7790 	qprocson(q);
7791 	return (0);
7792 }
7793 
7794 /*
7795  * Some TCP options can be "set" by requesting them in the option
7796  * buffer. This is needed for XTI feature test though we do not
7797  * allow it in general. We interpret that this mechanism is more
7798  * applicable to OSI protocols and need not be allowed in general.
7799  * This routine filters out options for which it is not allowed (most)
7800  * and lets through those (few) for which it is. [ The XTI interface
7801  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
7802  * ever implemented will have to be allowed here ].
7803  */
7804 static boolean_t
7805 tcp_allow_connopt_set(int level, int name)
7806 {
7807 
7808 	switch (level) {
7809 	case IPPROTO_TCP:
7810 		switch (name) {
7811 		case TCP_NODELAY:
7812 			return (B_TRUE);
7813 		default:
7814 			return (B_FALSE);
7815 		}
7816 		/*NOTREACHED*/
7817 	default:
7818 		return (B_FALSE);
7819 	}
7820 	/*NOTREACHED*/
7821 }
7822 
7823 /*
7824  * This routine gets default values of certain options whose default
7825  * values are maintained by protocol specific code
7826  */
7827 /* ARGSUSED */
7828 int
7829 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
7830 {
7831 	int32_t	*i1 = (int32_t *)ptr;
7832 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7833 
7834 	switch (level) {
7835 	case IPPROTO_TCP:
7836 		switch (name) {
7837 		case TCP_NOTIFY_THRESHOLD:
7838 			*i1 = tcps->tcps_ip_notify_interval;
7839 			break;
7840 		case TCP_ABORT_THRESHOLD:
7841 			*i1 = tcps->tcps_ip_abort_interval;
7842 			break;
7843 		case TCP_CONN_NOTIFY_THRESHOLD:
7844 			*i1 = tcps->tcps_ip_notify_cinterval;
7845 			break;
7846 		case TCP_CONN_ABORT_THRESHOLD:
7847 			*i1 = tcps->tcps_ip_abort_cinterval;
7848 			break;
7849 		default:
7850 			return (-1);
7851 		}
7852 		break;
7853 	case IPPROTO_IP:
7854 		switch (name) {
7855 		case IP_TTL:
7856 			*i1 = tcps->tcps_ipv4_ttl;
7857 			break;
7858 		default:
7859 			return (-1);
7860 		}
7861 		break;
7862 	case IPPROTO_IPV6:
7863 		switch (name) {
7864 		case IPV6_UNICAST_HOPS:
7865 			*i1 = tcps->tcps_ipv6_hoplimit;
7866 			break;
7867 		default:
7868 			return (-1);
7869 		}
7870 		break;
7871 	default:
7872 		return (-1);
7873 	}
7874 	return (sizeof (int));
7875 }
7876 
7877 /*
7878  * TCP routine to get the values of options.
7879  */
7880 static int
7881 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr)
7882 {
7883 	int		*i1 = (int *)ptr;
7884 	tcp_t		*tcp = connp->conn_tcp;
7885 	conn_opt_arg_t	coas;
7886 	int		retval;
7887 
7888 	coas.coa_connp = connp;
7889 	coas.coa_ixa = connp->conn_ixa;
7890 	coas.coa_ipp = &connp->conn_xmit_ipp;
7891 	coas.coa_ancillary = B_FALSE;
7892 	coas.coa_changed = 0;
7893 
7894 	switch (level) {
7895 	case SOL_SOCKET:
7896 		switch (name) {
7897 		case SO_SND_COPYAVOID:
7898 			*i1 = tcp->tcp_snd_zcopy_on ?
7899 			    SO_SND_COPYAVOID : 0;
7900 			return (sizeof (int));
7901 		case SO_ACCEPTCONN:
7902 			*i1 = (tcp->tcp_state == TCPS_LISTEN);
7903 			return (sizeof (int));
7904 		}
7905 		break;
7906 	case IPPROTO_TCP:
7907 		switch (name) {
7908 		case TCP_NODELAY:
7909 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
7910 			return (sizeof (int));
7911 		case TCP_MAXSEG:
7912 			*i1 = tcp->tcp_mss;
7913 			return (sizeof (int));
7914 		case TCP_NOTIFY_THRESHOLD:
7915 			*i1 = (int)tcp->tcp_first_timer_threshold;
7916 			return (sizeof (int));
7917 		case TCP_ABORT_THRESHOLD:
7918 			*i1 = tcp->tcp_second_timer_threshold;
7919 			return (sizeof (int));
7920 		case TCP_CONN_NOTIFY_THRESHOLD:
7921 			*i1 = tcp->tcp_first_ctimer_threshold;
7922 			return (sizeof (int));
7923 		case TCP_CONN_ABORT_THRESHOLD:
7924 			*i1 = tcp->tcp_second_ctimer_threshold;
7925 			return (sizeof (int));
7926 		case TCP_INIT_CWND:
7927 			*i1 = tcp->tcp_init_cwnd;
7928 			return (sizeof (int));
7929 		case TCP_KEEPALIVE_THRESHOLD:
7930 			*i1 = tcp->tcp_ka_interval;
7931 			return (sizeof (int));
7932 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
7933 			*i1 = tcp->tcp_ka_abort_thres;
7934 			return (sizeof (int));
7935 		case TCP_CORK:
7936 			*i1 = tcp->tcp_cork;
7937 			return (sizeof (int));
7938 		}
7939 		break;
7940 	case IPPROTO_IP:
7941 		if (connp->conn_family != AF_INET)
7942 			return (-1);
7943 		switch (name) {
7944 		case IP_OPTIONS:
7945 		case T_IP_OPTIONS:
7946 			/* Caller ensures enough space */
7947 			return (ip_opt_get_user(connp, ptr));
7948 		default:
7949 			break;
7950 		}
7951 		break;
7952 
7953 	case IPPROTO_IPV6:
7954 		/*
7955 		 * IPPROTO_IPV6 options are only supported for sockets
7956 		 * that are using IPv6 on the wire.
7957 		 */
7958 		if (connp->conn_ipversion != IPV6_VERSION) {
7959 			return (-1);
7960 		}
7961 		switch (name) {
7962 		case IPV6_PATHMTU:
7963 			if (tcp->tcp_state < TCPS_ESTABLISHED)
7964 				return (-1);
7965 			break;
7966 		}
7967 		break;
7968 	}
7969 	mutex_enter(&connp->conn_lock);
7970 	retval = conn_opt_get(&coas, level, name, ptr);
7971 	mutex_exit(&connp->conn_lock);
7972 	return (retval);
7973 }
7974 
7975 /*
7976  * TCP routine to get the values of options.
7977  */
7978 int
7979 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr)
7980 {
7981 	return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr));
7982 }
7983 
7984 /* returns UNIX error, the optlen is a value-result arg */
7985 int
7986 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
7987     void *optvalp, socklen_t *optlen, cred_t *cr)
7988 {
7989 	conn_t		*connp = (conn_t *)proto_handle;
7990 	squeue_t	*sqp = connp->conn_sqp;
7991 	int		error;
7992 	t_uscalar_t	max_optbuf_len;
7993 	void		*optvalp_buf;
7994 	int		len;
7995 
7996 	ASSERT(connp->conn_upper_handle != NULL);
7997 
7998 	error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len,
7999 	    tcp_opt_obj.odb_opt_des_arr,
8000 	    tcp_opt_obj.odb_opt_arr_cnt,
8001 	    B_FALSE, B_TRUE, cr);
8002 	if (error != 0) {
8003 		if (error < 0) {
8004 			error = proto_tlitosyserr(-error);
8005 		}
8006 		return (error);
8007 	}
8008 
8009 	optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP);
8010 
8011 	error = squeue_synch_enter(sqp, connp, NULL);
8012 	if (error == ENOMEM) {
8013 		kmem_free(optvalp_buf, max_optbuf_len);
8014 		return (ENOMEM);
8015 	}
8016 
8017 	len = tcp_opt_get(connp, level, option_name, optvalp_buf);
8018 	squeue_synch_exit(sqp, connp);
8019 
8020 	if (len == -1) {
8021 		kmem_free(optvalp_buf, max_optbuf_len);
8022 		return (EINVAL);
8023 	}
8024 
8025 	/*
8026 	 * update optlen and copy option value
8027 	 */
8028 	t_uscalar_t size = MIN(len, *optlen);
8029 
8030 	bcopy(optvalp_buf, optvalp, size);
8031 	bcopy(&size, optlen, sizeof (size));
8032 
8033 	kmem_free(optvalp_buf, max_optbuf_len);
8034 	return (0);
8035 }
8036 
8037 /*
8038  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
8039  * Parameters are assumed to be verified by the caller.
8040  */
8041 /* ARGSUSED */
8042 int
8043 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name,
8044     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
8045     void *thisdg_attrs, cred_t *cr)
8046 {
8047 	tcp_t	*tcp = connp->conn_tcp;
8048 	int	*i1 = (int *)invalp;
8049 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
8050 	boolean_t checkonly;
8051 	int	reterr;
8052 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8053 	conn_opt_arg_t	coas;
8054 
8055 	coas.coa_connp = connp;
8056 	coas.coa_ixa = connp->conn_ixa;
8057 	coas.coa_ipp = &connp->conn_xmit_ipp;
8058 	coas.coa_ancillary = B_FALSE;
8059 	coas.coa_changed = 0;
8060 
8061 	switch (optset_context) {
8062 	case SETFN_OPTCOM_CHECKONLY:
8063 		checkonly = B_TRUE;
8064 		/*
8065 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
8066 		 * inlen != 0 implies value supplied and
8067 		 * 	we have to "pretend" to set it.
8068 		 * inlen == 0 implies that there is no
8069 		 * 	value part in T_CHECK request and just validation
8070 		 * done elsewhere should be enough, we just return here.
8071 		 */
8072 		if (inlen == 0) {
8073 			*outlenp = 0;
8074 			return (0);
8075 		}
8076 		break;
8077 	case SETFN_OPTCOM_NEGOTIATE:
8078 		checkonly = B_FALSE;
8079 		break;
8080 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
8081 	case SETFN_CONN_NEGOTIATE:
8082 		checkonly = B_FALSE;
8083 		/*
8084 		 * Negotiating local and "association-related" options
8085 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
8086 		 * primitives is allowed by XTI, but we choose
8087 		 * to not implement this style negotiation for Internet
8088 		 * protocols (We interpret it is a must for OSI world but
8089 		 * optional for Internet protocols) for all options.
8090 		 * [ Will do only for the few options that enable test
8091 		 * suites that our XTI implementation of this feature
8092 		 * works for transports that do allow it ]
8093 		 */
8094 		if (!tcp_allow_connopt_set(level, name)) {
8095 			*outlenp = 0;
8096 			return (EINVAL);
8097 		}
8098 		break;
8099 	default:
8100 		/*
8101 		 * We should never get here
8102 		 */
8103 		*outlenp = 0;
8104 		return (EINVAL);
8105 	}
8106 
8107 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
8108 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
8109 
8110 	/*
8111 	 * For TCP, we should have no ancillary data sent down
8112 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
8113 	 * has to be zero.
8114 	 */
8115 	ASSERT(thisdg_attrs == NULL);
8116 
8117 	/*
8118 	 * For fixed length options, no sanity check
8119 	 * of passed in length is done. It is assumed *_optcom_req()
8120 	 * routines do the right thing.
8121 	 */
8122 	switch (level) {
8123 	case SOL_SOCKET:
8124 		switch (name) {
8125 		case SO_KEEPALIVE:
8126 			if (checkonly) {
8127 				/* check only case */
8128 				break;
8129 			}
8130 
8131 			if (!onoff) {
8132 				if (connp->conn_keepalive) {
8133 					if (tcp->tcp_ka_tid != 0) {
8134 						(void) TCP_TIMER_CANCEL(tcp,
8135 						    tcp->tcp_ka_tid);
8136 						tcp->tcp_ka_tid = 0;
8137 					}
8138 					connp->conn_keepalive = 0;
8139 				}
8140 				break;
8141 			}
8142 			if (!connp->conn_keepalive) {
8143 				/* Crank up the keepalive timer */
8144 				tcp->tcp_ka_last_intrvl = 0;
8145 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
8146 				    tcp_keepalive_killer,
8147 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
8148 				connp->conn_keepalive = 1;
8149 			}
8150 			break;
8151 		case SO_SNDBUF: {
8152 			if (*i1 > tcps->tcps_max_buf) {
8153 				*outlenp = 0;
8154 				return (ENOBUFS);
8155 			}
8156 			if (checkonly)
8157 				break;
8158 
8159 			connp->conn_sndbuf = *i1;
8160 			if (tcps->tcps_snd_lowat_fraction != 0) {
8161 				connp->conn_sndlowat = connp->conn_sndbuf /
8162 				    tcps->tcps_snd_lowat_fraction;
8163 			}
8164 			(void) tcp_maxpsz_set(tcp, B_TRUE);
8165 			/*
8166 			 * If we are flow-controlled, recheck the condition.
8167 			 * There are apps that increase SO_SNDBUF size when
8168 			 * flow-controlled (EWOULDBLOCK), and expect the flow
8169 			 * control condition to be lifted right away.
8170 			 */
8171 			mutex_enter(&tcp->tcp_non_sq_lock);
8172 			if (tcp->tcp_flow_stopped &&
8173 			    TCP_UNSENT_BYTES(tcp) < connp->conn_sndbuf) {
8174 				tcp_clrqfull(tcp);
8175 			}
8176 			mutex_exit(&tcp->tcp_non_sq_lock);
8177 			*outlenp = inlen;
8178 			return (0);
8179 		}
8180 		case SO_RCVBUF:
8181 			if (*i1 > tcps->tcps_max_buf) {
8182 				*outlenp = 0;
8183 				return (ENOBUFS);
8184 			}
8185 			/* Silently ignore zero */
8186 			if (!checkonly && *i1 != 0) {
8187 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
8188 				(void) tcp_rwnd_set(tcp, *i1);
8189 			}
8190 			/*
8191 			 * XXX should we return the rwnd here
8192 			 * and tcp_opt_get ?
8193 			 */
8194 			*outlenp = inlen;
8195 			return (0);
8196 		case SO_SND_COPYAVOID:
8197 			if (!checkonly) {
8198 				if (tcp->tcp_loopback ||
8199 				    (tcp->tcp_kssl_ctx != NULL) ||
8200 				    (onoff != 1) || !tcp_zcopy_check(tcp)) {
8201 					*outlenp = 0;
8202 					return (EOPNOTSUPP);
8203 				}
8204 				tcp->tcp_snd_zcopy_aware = 1;
8205 			}
8206 			*outlenp = inlen;
8207 			return (0);
8208 		}
8209 		break;
8210 	case IPPROTO_TCP:
8211 		switch (name) {
8212 		case TCP_NODELAY:
8213 			if (!checkonly)
8214 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
8215 			break;
8216 		case TCP_NOTIFY_THRESHOLD:
8217 			if (!checkonly)
8218 				tcp->tcp_first_timer_threshold = *i1;
8219 			break;
8220 		case TCP_ABORT_THRESHOLD:
8221 			if (!checkonly)
8222 				tcp->tcp_second_timer_threshold = *i1;
8223 			break;
8224 		case TCP_CONN_NOTIFY_THRESHOLD:
8225 			if (!checkonly)
8226 				tcp->tcp_first_ctimer_threshold = *i1;
8227 			break;
8228 		case TCP_CONN_ABORT_THRESHOLD:
8229 			if (!checkonly)
8230 				tcp->tcp_second_ctimer_threshold = *i1;
8231 			break;
8232 		case TCP_RECVDSTADDR:
8233 			if (tcp->tcp_state > TCPS_LISTEN) {
8234 				*outlenp = 0;
8235 				return (EOPNOTSUPP);
8236 			}
8237 			/* Setting done in conn_opt_set */
8238 			break;
8239 		case TCP_INIT_CWND: {
8240 			uint32_t init_cwnd = *((uint32_t *)invalp);
8241 
8242 			if (checkonly)
8243 				break;
8244 
8245 			/*
8246 			 * Only allow socket with network configuration
8247 			 * privilege to set the initial cwnd to be larger
8248 			 * than allowed by RFC 3390.
8249 			 */
8250 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
8251 				tcp->tcp_init_cwnd = init_cwnd;
8252 				break;
8253 			}
8254 			if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) {
8255 				*outlenp = 0;
8256 				return (reterr);
8257 			}
8258 			if (init_cwnd > TCP_MAX_INIT_CWND) {
8259 				*outlenp = 0;
8260 				return (EINVAL);
8261 			}
8262 			tcp->tcp_init_cwnd = init_cwnd;
8263 			break;
8264 		}
8265 		case TCP_KEEPALIVE_THRESHOLD:
8266 			if (checkonly)
8267 				break;
8268 
8269 			if (*i1 < tcps->tcps_keepalive_interval_low ||
8270 			    *i1 > tcps->tcps_keepalive_interval_high) {
8271 				*outlenp = 0;
8272 				return (EINVAL);
8273 			}
8274 			if (*i1 != tcp->tcp_ka_interval) {
8275 				tcp->tcp_ka_interval = *i1;
8276 				/*
8277 				 * Check if we need to restart the
8278 				 * keepalive timer.
8279 				 */
8280 				if (tcp->tcp_ka_tid != 0) {
8281 					ASSERT(connp->conn_keepalive);
8282 					(void) TCP_TIMER_CANCEL(tcp,
8283 					    tcp->tcp_ka_tid);
8284 					tcp->tcp_ka_last_intrvl = 0;
8285 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
8286 					    tcp_keepalive_killer,
8287 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
8288 				}
8289 			}
8290 			break;
8291 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
8292 			if (!checkonly) {
8293 				if (*i1 <
8294 				    tcps->tcps_keepalive_abort_interval_low ||
8295 				    *i1 >
8296 				    tcps->tcps_keepalive_abort_interval_high) {
8297 					*outlenp = 0;
8298 					return (EINVAL);
8299 				}
8300 				tcp->tcp_ka_abort_thres = *i1;
8301 			}
8302 			break;
8303 		case TCP_CORK:
8304 			if (!checkonly) {
8305 				/*
8306 				 * if tcp->tcp_cork was set and is now
8307 				 * being unset, we have to make sure that
8308 				 * the remaining data gets sent out. Also
8309 				 * unset tcp->tcp_cork so that tcp_wput_data()
8310 				 * can send data even if it is less than mss
8311 				 */
8312 				if (tcp->tcp_cork && onoff == 0 &&
8313 				    tcp->tcp_unsent > 0) {
8314 					tcp->tcp_cork = B_FALSE;
8315 					tcp_wput_data(tcp, NULL, B_FALSE);
8316 				}
8317 				tcp->tcp_cork = onoff;
8318 			}
8319 			break;
8320 		default:
8321 			break;
8322 		}
8323 		break;
8324 	case IPPROTO_IP:
8325 		if (connp->conn_family != AF_INET) {
8326 			*outlenp = 0;
8327 			return (EINVAL);
8328 		}
8329 		switch (name) {
8330 		case IP_SEC_OPT:
8331 			/*
8332 			 * We should not allow policy setting after
8333 			 * we start listening for connections.
8334 			 */
8335 			if (tcp->tcp_state == TCPS_LISTEN) {
8336 				return (EINVAL);
8337 			}
8338 			break;
8339 		}
8340 		break;
8341 	case IPPROTO_IPV6:
8342 		/*
8343 		 * IPPROTO_IPV6 options are only supported for sockets
8344 		 * that are using IPv6 on the wire.
8345 		 */
8346 		if (connp->conn_ipversion != IPV6_VERSION) {
8347 			*outlenp = 0;
8348 			return (EINVAL);
8349 		}
8350 
8351 		switch (name) {
8352 		case IPV6_RECVPKTINFO:
8353 			if (!checkonly) {
8354 				/* Force it to be sent up with the next msg */
8355 				tcp->tcp_recvifindex = 0;
8356 			}
8357 			break;
8358 		case IPV6_RECVTCLASS:
8359 			if (!checkonly) {
8360 				/* Force it to be sent up with the next msg */
8361 				tcp->tcp_recvtclass = 0xffffffffU;
8362 			}
8363 			break;
8364 		case IPV6_RECVHOPLIMIT:
8365 			if (!checkonly) {
8366 				/* Force it to be sent up with the next msg */
8367 				tcp->tcp_recvhops = 0xffffffffU;
8368 			}
8369 			break;
8370 		case IPV6_PKTINFO:
8371 			/* This is an extra check for TCP */
8372 			if (inlen == sizeof (struct in6_pktinfo)) {
8373 				struct in6_pktinfo *pkti;
8374 
8375 				pkti = (struct in6_pktinfo *)invalp;
8376 				/*
8377 				 * RFC 3542 states that ipi6_addr must be
8378 				 * the unspecified address when setting the
8379 				 * IPV6_PKTINFO sticky socket option on a
8380 				 * TCP socket.
8381 				 */
8382 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
8383 					return (EINVAL);
8384 			}
8385 			break;
8386 		case IPV6_SEC_OPT:
8387 			/*
8388 			 * We should not allow policy setting after
8389 			 * we start listening for connections.
8390 			 */
8391 			if (tcp->tcp_state == TCPS_LISTEN) {
8392 				return (EINVAL);
8393 			}
8394 			break;
8395 		}
8396 		break;
8397 	}
8398 	reterr = conn_opt_set(&coas, level, name, inlen, invalp,
8399 	    checkonly, cr);
8400 	if (reterr != 0) {
8401 		*outlenp = 0;
8402 		return (reterr);
8403 	}
8404 
8405 	/*
8406 	 * Common case of OK return with outval same as inval
8407 	 */
8408 	if (invalp != outvalp) {
8409 		/* don't trust bcopy for identical src/dst */
8410 		(void) bcopy(invalp, outvalp, inlen);
8411 	}
8412 	*outlenp = inlen;
8413 
8414 	if (coas.coa_changed & COA_HEADER_CHANGED) {
8415 		reterr = tcp_build_hdrs(tcp);
8416 		if (reterr != 0)
8417 			return (reterr);
8418 	}
8419 	if (coas.coa_changed & COA_ROUTE_CHANGED) {
8420 		in6_addr_t nexthop;
8421 
8422 		/*
8423 		 * If we are connected we re-cache the information.
8424 		 * We ignore errors to preserve BSD behavior.
8425 		 * Note that we don't redo IPsec policy lookup here
8426 		 * since the final destination (or source) didn't change.
8427 		 */
8428 		ip_attr_nexthop(&connp->conn_xmit_ipp, connp->conn_ixa,
8429 		    &connp->conn_faddr_v6, &nexthop);
8430 
8431 		if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6) &&
8432 		    !IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_faddr_v6)) {
8433 			(void) ip_attr_connect(connp, connp->conn_ixa,
8434 			    &connp->conn_laddr_v6, &connp->conn_faddr_v6,
8435 			    &nexthop, connp->conn_fport, NULL, NULL,
8436 			    IPDF_VERIFY_DST);
8437 		}
8438 	}
8439 	if ((coas.coa_changed & COA_SNDBUF_CHANGED) && !IPCL_IS_NONSTR(connp)) {
8440 		connp->conn_wq->q_hiwat = connp->conn_sndbuf;
8441 	}
8442 	if (coas.coa_changed & COA_WROFF_CHANGED) {
8443 		connp->conn_wroff = connp->conn_ht_iphc_allocated +
8444 		    tcps->tcps_wroff_xtra;
8445 		(void) proto_set_tx_wroff(connp->conn_rq, connp,
8446 		    connp->conn_wroff);
8447 	}
8448 	if (coas.coa_changed & COA_OOBINLINE_CHANGED) {
8449 		if (IPCL_IS_NONSTR(connp))
8450 			proto_set_rx_oob_opt(connp, onoff);
8451 	}
8452 	return (0);
8453 }
8454 
8455 /* ARGSUSED */
8456 int
8457 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name,
8458     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
8459     void *thisdg_attrs, cred_t *cr)
8460 {
8461 	conn_t	*connp =  Q_TO_CONN(q);
8462 
8463 	return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp,
8464 	    outlenp, outvalp, thisdg_attrs, cr));
8465 }
8466 
8467 int
8468 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
8469     const void *optvalp, socklen_t optlen, cred_t *cr)
8470 {
8471 	conn_t		*connp = (conn_t *)proto_handle;
8472 	squeue_t	*sqp = connp->conn_sqp;
8473 	int		error;
8474 
8475 	ASSERT(connp->conn_upper_handle != NULL);
8476 	/*
8477 	 * Entering the squeue synchronously can result in a context switch,
8478 	 * which can cause a rather sever performance degradation. So we try to
8479 	 * handle whatever options we can without entering the squeue.
8480 	 */
8481 	if (level == IPPROTO_TCP) {
8482 		switch (option_name) {
8483 		case TCP_NODELAY:
8484 			if (optlen != sizeof (int32_t))
8485 				return (EINVAL);
8486 			mutex_enter(&connp->conn_tcp->tcp_non_sq_lock);
8487 			connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 :
8488 			    connp->conn_tcp->tcp_mss;
8489 			mutex_exit(&connp->conn_tcp->tcp_non_sq_lock);
8490 			return (0);
8491 		default:
8492 			break;
8493 		}
8494 	}
8495 
8496 	error = squeue_synch_enter(sqp, connp, NULL);
8497 	if (error == ENOMEM) {
8498 		return (ENOMEM);
8499 	}
8500 
8501 	error = proto_opt_check(level, option_name, optlen, NULL,
8502 	    tcp_opt_obj.odb_opt_des_arr,
8503 	    tcp_opt_obj.odb_opt_arr_cnt,
8504 	    B_TRUE, B_FALSE, cr);
8505 
8506 	if (error != 0) {
8507 		if (error < 0) {
8508 			error = proto_tlitosyserr(-error);
8509 		}
8510 		squeue_synch_exit(sqp, connp);
8511 		return (error);
8512 	}
8513 
8514 	error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name,
8515 	    optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp,
8516 	    NULL, cr);
8517 	squeue_synch_exit(sqp, connp);
8518 
8519 	ASSERT(error >= 0);
8520 
8521 	return (error);
8522 }
8523 
8524 /*
8525  * Build/update the tcp header template (in conn_ht_iphc) based on
8526  * conn_xmit_ipp. The headers include ip6_t, any extension
8527  * headers, and the maximum size tcp header (to avoid reallocation
8528  * on the fly for additional tcp options).
8529  *
8530  * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}.
8531  * Returns failure if can't allocate memory.
8532  */
8533 static int
8534 tcp_build_hdrs(tcp_t *tcp)
8535 {
8536 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8537 	conn_t		*connp = tcp->tcp_connp;
8538 	tcpha_t		*tcpha;
8539 	uint32_t	cksum;
8540 	int		error;
8541 
8542 	/* Grab lock to satisfy ASSERT; TCP is serialized using squeue */
8543 	mutex_enter(&connp->conn_lock);
8544 	error = conn_build_hdr_template(connp, TCP_MIN_HEADER_LENGTH,
8545 	    TCP_MAX_TCP_OPTIONS_LENGTH, &connp->conn_laddr_v6,
8546 	    &connp->conn_faddr_v6, connp->conn_flowinfo);
8547 	mutex_exit(&connp->conn_lock);
8548 	if (error != 0)
8549 		return (error);
8550 
8551 	/*
8552 	 * Any routing header/option has been massaged. The checksum difference
8553 	 * is stored in conn_sum for later use.
8554 	 */
8555 	tcpha = (tcpha_t *)connp->conn_ht_ulp;
8556 	tcp->tcp_tcpha = tcpha;
8557 
8558 	tcpha->tha_lport = connp->conn_lport;
8559 	tcpha->tha_fport = connp->conn_fport;
8560 	tcpha->tha_sum = 0;
8561 	tcpha->tha_offset_and_reserved = (5 << 4);
8562 
8563 	/*
8564 	 * IP wants our header length in the checksum field to
8565 	 * allow it to perform a single pseudo-header+checksum
8566 	 * calculation on behalf of TCP.
8567 	 * Include the adjustment for a source route once IP_OPTIONS is set.
8568 	 */
8569 	cksum = sizeof (tcpha_t) + connp->conn_sum;
8570 	cksum = (cksum >> 16) + (cksum & 0xFFFF);
8571 	ASSERT(cksum < 0x10000);
8572 	tcpha->tha_sum = htons(cksum);
8573 
8574 	if (connp->conn_ipversion == IPV4_VERSION)
8575 		tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc;
8576 	else
8577 		tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc;
8578 
8579 	if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra >
8580 	    connp->conn_wroff) {
8581 		connp->conn_wroff = connp->conn_ht_iphc_allocated +
8582 		    tcps->tcps_wroff_xtra;
8583 		(void) proto_set_tx_wroff(connp->conn_rq, connp,
8584 		    connp->conn_wroff);
8585 	}
8586 	return (0);
8587 }
8588 
8589 /* Get callback routine passed to nd_load by tcp_param_register */
8590 /* ARGSUSED */
8591 static int
8592 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
8593 {
8594 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
8595 
8596 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
8597 	return (0);
8598 }
8599 
8600 /*
8601  * Walk through the param array specified registering each element with the
8602  * named dispatch handler.
8603  */
8604 static boolean_t
8605 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps)
8606 {
8607 	for (; cnt-- > 0; tcppa++) {
8608 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
8609 			if (!nd_load(ndp, tcppa->tcp_param_name,
8610 			    tcp_param_get, tcp_param_set,
8611 			    (caddr_t)tcppa)) {
8612 				nd_free(ndp);
8613 				return (B_FALSE);
8614 			}
8615 		}
8616 	}
8617 	tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t),
8618 	    KM_SLEEP);
8619 	bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param,
8620 	    sizeof (tcpparam_t));
8621 	if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name,
8622 	    tcp_param_get, tcp_param_set_aligned,
8623 	    (caddr_t)tcps->tcps_wroff_xtra_param)) {
8624 		nd_free(ndp);
8625 		return (B_FALSE);
8626 	}
8627 	if (!nd_load(ndp, "tcp_extra_priv_ports",
8628 	    tcp_extra_priv_ports_get, NULL, NULL)) {
8629 		nd_free(ndp);
8630 		return (B_FALSE);
8631 	}
8632 	if (!nd_load(ndp, "tcp_extra_priv_ports_add",
8633 	    NULL, tcp_extra_priv_ports_add, NULL)) {
8634 		nd_free(ndp);
8635 		return (B_FALSE);
8636 	}
8637 	if (!nd_load(ndp, "tcp_extra_priv_ports_del",
8638 	    NULL, tcp_extra_priv_ports_del, NULL)) {
8639 		nd_free(ndp);
8640 		return (B_FALSE);
8641 	}
8642 	if (!nd_load(ndp, "tcp_1948_phrase", NULL,
8643 	    tcp_1948_phrase_set, NULL)) {
8644 		nd_free(ndp);
8645 		return (B_FALSE);
8646 	}
8647 	/*
8648 	 * Dummy ndd variables - only to convey obsolescence information
8649 	 * through printing of their name (no get or set routines)
8650 	 * XXX Remove in future releases ?
8651 	 */
8652 	if (!nd_load(ndp,
8653 	    "tcp_close_wait_interval(obsoleted - "
8654 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
8655 		nd_free(ndp);
8656 		return (B_FALSE);
8657 	}
8658 	return (B_TRUE);
8659 }
8660 
8661 /* ndd set routine for tcp_wroff_xtra. */
8662 /* ARGSUSED */
8663 static int
8664 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
8665     cred_t *cr)
8666 {
8667 	long new_value;
8668 	tcpparam_t *tcppa = (tcpparam_t *)cp;
8669 
8670 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
8671 	    new_value < tcppa->tcp_param_min ||
8672 	    new_value > tcppa->tcp_param_max) {
8673 		return (EINVAL);
8674 	}
8675 	/*
8676 	 * Need to make sure new_value is a multiple of 4.  If it is not,
8677 	 * round it up.  For future 64 bit requirement, we actually make it
8678 	 * a multiple of 8.
8679 	 */
8680 	if (new_value & 0x7) {
8681 		new_value = (new_value & ~0x7) + 0x8;
8682 	}
8683 	tcppa->tcp_param_val = new_value;
8684 	return (0);
8685 }
8686 
8687 /* Set callback routine passed to nd_load by tcp_param_register */
8688 /* ARGSUSED */
8689 static int
8690 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
8691 {
8692 	long	new_value;
8693 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
8694 
8695 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
8696 	    new_value < tcppa->tcp_param_min ||
8697 	    new_value > tcppa->tcp_param_max) {
8698 		return (EINVAL);
8699 	}
8700 	tcppa->tcp_param_val = new_value;
8701 	return (0);
8702 }
8703 
8704 /*
8705  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
8706  * is filled, return as much as we can.  The message passed in may be
8707  * multi-part, chained using b_cont.  "start" is the starting sequence
8708  * number for this piece.
8709  */
8710 static mblk_t *
8711 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
8712 {
8713 	uint32_t	end;
8714 	mblk_t		*mp1;
8715 	mblk_t		*mp2;
8716 	mblk_t		*next_mp;
8717 	uint32_t	u1;
8718 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8719 
8720 
8721 	/* Walk through all the new pieces. */
8722 	do {
8723 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
8724 		    (uintptr_t)INT_MAX);
8725 		end = start + (int)(mp->b_wptr - mp->b_rptr);
8726 		next_mp = mp->b_cont;
8727 		if (start == end) {
8728 			/* Empty.  Blast it. */
8729 			freeb(mp);
8730 			continue;
8731 		}
8732 		mp->b_cont = NULL;
8733 		TCP_REASS_SET_SEQ(mp, start);
8734 		TCP_REASS_SET_END(mp, end);
8735 		mp1 = tcp->tcp_reass_tail;
8736 		if (!mp1) {
8737 			tcp->tcp_reass_tail = mp;
8738 			tcp->tcp_reass_head = mp;
8739 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
8740 			UPDATE_MIB(&tcps->tcps_mib,
8741 			    tcpInDataUnorderBytes, end - start);
8742 			continue;
8743 		}
8744 		/* New stuff completely beyond tail? */
8745 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
8746 			/* Link it on end. */
8747 			mp1->b_cont = mp;
8748 			tcp->tcp_reass_tail = mp;
8749 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
8750 			UPDATE_MIB(&tcps->tcps_mib,
8751 			    tcpInDataUnorderBytes, end - start);
8752 			continue;
8753 		}
8754 		mp1 = tcp->tcp_reass_head;
8755 		u1 = TCP_REASS_SEQ(mp1);
8756 		/* New stuff at the front? */
8757 		if (SEQ_LT(start, u1)) {
8758 			/* Yes... Check for overlap. */
8759 			mp->b_cont = mp1;
8760 			tcp->tcp_reass_head = mp;
8761 			tcp_reass_elim_overlap(tcp, mp);
8762 			continue;
8763 		}
8764 		/*
8765 		 * The new piece fits somewhere between the head and tail.
8766 		 * We find our slot, where mp1 precedes us and mp2 trails.
8767 		 */
8768 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
8769 			u1 = TCP_REASS_SEQ(mp2);
8770 			if (SEQ_LEQ(start, u1))
8771 				break;
8772 		}
8773 		/* Link ourselves in */
8774 		mp->b_cont = mp2;
8775 		mp1->b_cont = mp;
8776 
8777 		/* Trim overlap with following mblk(s) first */
8778 		tcp_reass_elim_overlap(tcp, mp);
8779 
8780 		/* Trim overlap with preceding mblk */
8781 		tcp_reass_elim_overlap(tcp, mp1);
8782 
8783 	} while (start = end, mp = next_mp);
8784 	mp1 = tcp->tcp_reass_head;
8785 	/* Anything ready to go? */
8786 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
8787 		return (NULL);
8788 	/* Eat what we can off the queue */
8789 	for (;;) {
8790 		mp = mp1->b_cont;
8791 		end = TCP_REASS_END(mp1);
8792 		TCP_REASS_SET_SEQ(mp1, 0);
8793 		TCP_REASS_SET_END(mp1, 0);
8794 		if (!mp) {
8795 			tcp->tcp_reass_tail = NULL;
8796 			break;
8797 		}
8798 		if (end != TCP_REASS_SEQ(mp)) {
8799 			mp1->b_cont = NULL;
8800 			break;
8801 		}
8802 		mp1 = mp;
8803 	}
8804 	mp1 = tcp->tcp_reass_head;
8805 	tcp->tcp_reass_head = mp;
8806 	return (mp1);
8807 }
8808 
8809 /* Eliminate any overlap that mp may have over later mblks */
8810 static void
8811 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
8812 {
8813 	uint32_t	end;
8814 	mblk_t		*mp1;
8815 	uint32_t	u1;
8816 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8817 
8818 	end = TCP_REASS_END(mp);
8819 	while ((mp1 = mp->b_cont) != NULL) {
8820 		u1 = TCP_REASS_SEQ(mp1);
8821 		if (!SEQ_GT(end, u1))
8822 			break;
8823 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
8824 			mp->b_wptr -= end - u1;
8825 			TCP_REASS_SET_END(mp, u1);
8826 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs);
8827 			UPDATE_MIB(&tcps->tcps_mib,
8828 			    tcpInDataPartDupBytes, end - u1);
8829 			break;
8830 		}
8831 		mp->b_cont = mp1->b_cont;
8832 		TCP_REASS_SET_SEQ(mp1, 0);
8833 		TCP_REASS_SET_END(mp1, 0);
8834 		freeb(mp1);
8835 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
8836 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1);
8837 	}
8838 	if (!mp1)
8839 		tcp->tcp_reass_tail = mp;
8840 }
8841 
8842 static uint_t
8843 tcp_rwnd_reopen(tcp_t *tcp)
8844 {
8845 	uint_t ret = 0;
8846 	uint_t thwin;
8847 	conn_t *connp = tcp->tcp_connp;
8848 
8849 	/* Learn the latest rwnd information that we sent to the other side. */
8850 	thwin = ((uint_t)ntohs(tcp->tcp_tcpha->tha_win))
8851 	    << tcp->tcp_rcv_ws;
8852 	/* This is peer's calculated send window (our receive window). */
8853 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
8854 	/*
8855 	 * Increase the receive window to max.  But we need to do receiver
8856 	 * SWS avoidance.  This means that we need to check the increase of
8857 	 * of receive window is at least 1 MSS.
8858 	 */
8859 	if (connp->conn_rcvbuf - thwin >= tcp->tcp_mss) {
8860 		/*
8861 		 * If the window that the other side knows is less than max
8862 		 * deferred acks segments, send an update immediately.
8863 		 */
8864 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
8865 			BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate);
8866 			ret = TH_ACK_NEEDED;
8867 		}
8868 		tcp->tcp_rwnd = connp->conn_rcvbuf;
8869 	}
8870 	return (ret);
8871 }
8872 
8873 /*
8874  * Send up all messages queued on tcp_rcv_list.
8875  */
8876 static uint_t
8877 tcp_rcv_drain(tcp_t *tcp)
8878 {
8879 	mblk_t *mp;
8880 	uint_t ret = 0;
8881 #ifdef DEBUG
8882 	uint_t cnt = 0;
8883 #endif
8884 	queue_t	*q = tcp->tcp_connp->conn_rq;
8885 
8886 	/* Can't drain on an eager connection */
8887 	if (tcp->tcp_listener != NULL)
8888 		return (ret);
8889 
8890 	/* Can't be a non-STREAMS connection */
8891 	ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
8892 
8893 	/* No need for the push timer now. */
8894 	if (tcp->tcp_push_tid != 0) {
8895 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
8896 		tcp->tcp_push_tid = 0;
8897 	}
8898 
8899 	/*
8900 	 * Handle two cases here: we are currently fused or we were
8901 	 * previously fused and have some urgent data to be delivered
8902 	 * upstream.  The latter happens because we either ran out of
8903 	 * memory or were detached and therefore sending the SIGURG was
8904 	 * deferred until this point.  In either case we pass control
8905 	 * over to tcp_fuse_rcv_drain() since it may need to complete
8906 	 * some work.
8907 	 */
8908 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
8909 		ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) ||
8910 		    tcp->tcp_fused_sigurg_mp != NULL);
8911 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
8912 		    &tcp->tcp_fused_sigurg_mp))
8913 			return (ret);
8914 	}
8915 
8916 	while ((mp = tcp->tcp_rcv_list) != NULL) {
8917 		tcp->tcp_rcv_list = mp->b_next;
8918 		mp->b_next = NULL;
8919 #ifdef DEBUG
8920 		cnt += msgdsize(mp);
8921 #endif
8922 		/* Does this need SSL processing first? */
8923 		if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) {
8924 			DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain,
8925 			    mblk_t *, mp);
8926 			tcp_kssl_input(tcp, mp, NULL);
8927 			continue;
8928 		}
8929 		putnext(q, mp);
8930 	}
8931 #ifdef DEBUG
8932 	ASSERT(cnt == tcp->tcp_rcv_cnt);
8933 #endif
8934 	tcp->tcp_rcv_last_head = NULL;
8935 	tcp->tcp_rcv_last_tail = NULL;
8936 	tcp->tcp_rcv_cnt = 0;
8937 
8938 	if (canputnext(q))
8939 		return (tcp_rwnd_reopen(tcp));
8940 
8941 	return (ret);
8942 }
8943 
8944 /*
8945  * Queue data on tcp_rcv_list which is a b_next chain.
8946  * tcp_rcv_last_head/tail is the last element of this chain.
8947  * Each element of the chain is a b_cont chain.
8948  *
8949  * M_DATA messages are added to the current element.
8950  * Other messages are added as new (b_next) elements.
8951  */
8952 void
8953 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len, cred_t *cr)
8954 {
8955 	ASSERT(seg_len == msgdsize(mp));
8956 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
8957 
8958 	if (is_system_labeled()) {
8959 		ASSERT(cr != NULL || msg_getcred(mp, NULL) != NULL);
8960 		/*
8961 		 * Provide for protocols above TCP such as RPC. NOPID leaves
8962 		 * db_cpid unchanged.
8963 		 * The cred could have already been set.
8964 		 */
8965 		if (cr != NULL)
8966 			mblk_setcred(mp, cr, NOPID);
8967 	}
8968 
8969 	if (tcp->tcp_rcv_list == NULL) {
8970 		ASSERT(tcp->tcp_rcv_last_head == NULL);
8971 		tcp->tcp_rcv_list = mp;
8972 		tcp->tcp_rcv_last_head = mp;
8973 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
8974 		tcp->tcp_rcv_last_tail->b_cont = mp;
8975 	} else {
8976 		tcp->tcp_rcv_last_head->b_next = mp;
8977 		tcp->tcp_rcv_last_head = mp;
8978 	}
8979 
8980 	while (mp->b_cont)
8981 		mp = mp->b_cont;
8982 
8983 	tcp->tcp_rcv_last_tail = mp;
8984 	tcp->tcp_rcv_cnt += seg_len;
8985 	tcp->tcp_rwnd -= seg_len;
8986 }
8987 
8988 /* The minimum of smoothed mean deviation in RTO calculation. */
8989 #define	TCP_SD_MIN	400
8990 
8991 /*
8992  * Set RTO for this connection.  The formula is from Jacobson and Karels'
8993  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
8994  * are the same as those in Appendix A.2 of that paper.
8995  *
8996  * m = new measurement
8997  * sa = smoothed RTT average (8 * average estimates).
8998  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
8999  */
9000 static void
9001 tcp_set_rto(tcp_t *tcp, clock_t rtt)
9002 {
9003 	long m = TICK_TO_MSEC(rtt);
9004 	clock_t sa = tcp->tcp_rtt_sa;
9005 	clock_t sv = tcp->tcp_rtt_sd;
9006 	clock_t rto;
9007 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9008 
9009 	BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate);
9010 	tcp->tcp_rtt_update++;
9011 
9012 	/* tcp_rtt_sa is not 0 means this is a new sample. */
9013 	if (sa != 0) {
9014 		/*
9015 		 * Update average estimator:
9016 		 *	new rtt = 7/8 old rtt + 1/8 Error
9017 		 */
9018 
9019 		/* m is now Error in estimate. */
9020 		m -= sa >> 3;
9021 		if ((sa += m) <= 0) {
9022 			/*
9023 			 * Don't allow the smoothed average to be negative.
9024 			 * We use 0 to denote reinitialization of the
9025 			 * variables.
9026 			 */
9027 			sa = 1;
9028 		}
9029 
9030 		/*
9031 		 * Update deviation estimator:
9032 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
9033 		 */
9034 		if (m < 0)
9035 			m = -m;
9036 		m -= sv >> 2;
9037 		sv += m;
9038 	} else {
9039 		/*
9040 		 * This follows BSD's implementation.  So the reinitialized
9041 		 * RTO is 3 * m.  We cannot go less than 2 because if the
9042 		 * link is bandwidth dominated, doubling the window size
9043 		 * during slow start means doubling the RTT.  We want to be
9044 		 * more conservative when we reinitialize our estimates.  3
9045 		 * is just a convenient number.
9046 		 */
9047 		sa = m << 3;
9048 		sv = m << 1;
9049 	}
9050 	if (sv < TCP_SD_MIN) {
9051 		/*
9052 		 * We do not know that if sa captures the delay ACK
9053 		 * effect as in a long train of segments, a receiver
9054 		 * does not delay its ACKs.  So set the minimum of sv
9055 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
9056 		 * of BSD DATO.  That means the minimum of mean
9057 		 * deviation is 100 ms.
9058 		 *
9059 		 */
9060 		sv = TCP_SD_MIN;
9061 	}
9062 	tcp->tcp_rtt_sa = sa;
9063 	tcp->tcp_rtt_sd = sv;
9064 	/*
9065 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
9066 	 *
9067 	 * Add tcp_rexmit_interval extra in case of extreme environment
9068 	 * where the algorithm fails to work.  The default value of
9069 	 * tcp_rexmit_interval_extra should be 0.
9070 	 *
9071 	 * As we use a finer grained clock than BSD and update
9072 	 * RTO for every ACKs, add in another .25 of RTT to the
9073 	 * deviation of RTO to accomodate burstiness of 1/4 of
9074 	 * window size.
9075 	 */
9076 	rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5);
9077 
9078 	if (rto > tcps->tcps_rexmit_interval_max) {
9079 		tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
9080 	} else if (rto < tcps->tcps_rexmit_interval_min) {
9081 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
9082 	} else {
9083 		tcp->tcp_rto = rto;
9084 	}
9085 
9086 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
9087 	tcp->tcp_timer_backoff = 0;
9088 }
9089 
9090 /*
9091  * tcp_get_seg_mp() is called to get the pointer to a segment in the
9092  * send queue which starts at the given sequence number. If the given
9093  * sequence number is equal to last valid sequence number (tcp_snxt), the
9094  * returned mblk is the last valid mblk, and off is set to the length of
9095  * that mblk.
9096  *
9097  * send queue which starts at the given seq. no.
9098  *
9099  * Parameters:
9100  *	tcp_t *tcp: the tcp instance pointer.
9101  *	uint32_t seq: the starting seq. no of the requested segment.
9102  *	int32_t *off: after the execution, *off will be the offset to
9103  *		the returned mblk which points to the requested seq no.
9104  *		It is the caller's responsibility to send in a non-null off.
9105  *
9106  * Return:
9107  *	A mblk_t pointer pointing to the requested segment in send queue.
9108  */
9109 static mblk_t *
9110 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
9111 {
9112 	int32_t	cnt;
9113 	mblk_t	*mp;
9114 
9115 	/* Defensive coding.  Make sure we don't send incorrect data. */
9116 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GT(seq, tcp->tcp_snxt))
9117 		return (NULL);
9118 
9119 	cnt = seq - tcp->tcp_suna;
9120 	mp = tcp->tcp_xmit_head;
9121 	while (cnt > 0 && mp != NULL) {
9122 		cnt -= mp->b_wptr - mp->b_rptr;
9123 		if (cnt <= 0) {
9124 			cnt += mp->b_wptr - mp->b_rptr;
9125 			break;
9126 		}
9127 		mp = mp->b_cont;
9128 	}
9129 	ASSERT(mp != NULL);
9130 	*off = cnt;
9131 	return (mp);
9132 }
9133 
9134 /*
9135  * This function handles all retransmissions if SACK is enabled for this
9136  * connection.  First it calculates how many segments can be retransmitted
9137  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
9138  * segments.  A segment is eligible if sack_cnt for that segment is greater
9139  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
9140  * all eligible segments, it checks to see if TCP can send some new segments
9141  * (fast recovery).  If it can, set the appropriate flag for tcp_input_data().
9142  *
9143  * Parameters:
9144  *	tcp_t *tcp: the tcp structure of the connection.
9145  *	uint_t *flags: in return, appropriate value will be set for
9146  *	tcp_input_data().
9147  */
9148 static void
9149 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
9150 {
9151 	notsack_blk_t	*notsack_blk;
9152 	int32_t		usable_swnd;
9153 	int32_t		mss;
9154 	uint32_t	seg_len;
9155 	mblk_t		*xmit_mp;
9156 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9157 
9158 	ASSERT(tcp->tcp_sack_info != NULL);
9159 	ASSERT(tcp->tcp_notsack_list != NULL);
9160 	ASSERT(tcp->tcp_rexmit == B_FALSE);
9161 
9162 	/* Defensive coding in case there is a bug... */
9163 	if (tcp->tcp_notsack_list == NULL) {
9164 		return;
9165 	}
9166 	notsack_blk = tcp->tcp_notsack_list;
9167 	mss = tcp->tcp_mss;
9168 
9169 	/*
9170 	 * Limit the num of outstanding data in the network to be
9171 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
9172 	 */
9173 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
9174 
9175 	/* At least retransmit 1 MSS of data. */
9176 	if (usable_swnd <= 0) {
9177 		usable_swnd = mss;
9178 	}
9179 
9180 	/* Make sure no new RTT samples will be taken. */
9181 	tcp->tcp_csuna = tcp->tcp_snxt;
9182 
9183 	notsack_blk = tcp->tcp_notsack_list;
9184 	while (usable_swnd > 0) {
9185 		mblk_t		*snxt_mp, *tmp_mp;
9186 		tcp_seq		begin = tcp->tcp_sack_snxt;
9187 		tcp_seq		end;
9188 		int32_t		off;
9189 
9190 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
9191 			if (SEQ_GT(notsack_blk->end, begin) &&
9192 			    (notsack_blk->sack_cnt >=
9193 			    tcps->tcps_dupack_fast_retransmit)) {
9194 				end = notsack_blk->end;
9195 				if (SEQ_LT(begin, notsack_blk->begin)) {
9196 					begin = notsack_blk->begin;
9197 				}
9198 				break;
9199 			}
9200 		}
9201 		/*
9202 		 * All holes are filled.  Manipulate tcp_cwnd to send more
9203 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
9204 		 * set to tcp_cwnd_ssthresh.
9205 		 */
9206 		if (notsack_blk == NULL) {
9207 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
9208 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
9209 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
9210 				ASSERT(tcp->tcp_cwnd > 0);
9211 				return;
9212 			} else {
9213 				usable_swnd = usable_swnd / mss;
9214 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
9215 				    MAX(usable_swnd * mss, mss);
9216 				*flags |= TH_XMIT_NEEDED;
9217 				return;
9218 			}
9219 		}
9220 
9221 		/*
9222 		 * Note that we may send more than usable_swnd allows here
9223 		 * because of round off, but no more than 1 MSS of data.
9224 		 */
9225 		seg_len = end - begin;
9226 		if (seg_len > mss)
9227 			seg_len = mss;
9228 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
9229 		ASSERT(snxt_mp != NULL);
9230 		/* This should not happen.  Defensive coding again... */
9231 		if (snxt_mp == NULL) {
9232 			return;
9233 		}
9234 
9235 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
9236 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
9237 		if (xmit_mp == NULL)
9238 			return;
9239 
9240 		usable_swnd -= seg_len;
9241 		tcp->tcp_pipe += seg_len;
9242 		tcp->tcp_sack_snxt = begin + seg_len;
9243 
9244 		tcp_send_data(tcp, xmit_mp);
9245 
9246 		/*
9247 		 * Update the send timestamp to avoid false retransmission.
9248 		 */
9249 		snxt_mp->b_prev = (mblk_t *)lbolt;
9250 
9251 		BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
9252 		UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len);
9253 		BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs);
9254 		/*
9255 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
9256 		 * This happens when new data sent during fast recovery is
9257 		 * also lost.  If TCP retransmits those new data, it needs
9258 		 * to extend SACK recover phase to avoid starting another
9259 		 * fast retransmit/recovery unnecessarily.
9260 		 */
9261 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
9262 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
9263 		}
9264 	}
9265 }
9266 
9267 /*
9268  * tcp_ss_rexmit() is called to do slow start retransmission after a timeout
9269  * or ICMP errors.
9270  *
9271  * To limit the number of duplicate segments, we limit the number of segment
9272  * to be sent in one time to tcp_snd_burst, the burst variable.
9273  */
9274 static void
9275 tcp_ss_rexmit(tcp_t *tcp)
9276 {
9277 	uint32_t	snxt;
9278 	uint32_t	smax;
9279 	int32_t		win;
9280 	int32_t		mss;
9281 	int32_t		off;
9282 	int32_t		burst = tcp->tcp_snd_burst;
9283 	mblk_t		*snxt_mp;
9284 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9285 
9286 	/*
9287 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
9288 	 * all unack'ed segments.
9289 	 */
9290 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
9291 		smax = tcp->tcp_rexmit_max;
9292 		snxt = tcp->tcp_rexmit_nxt;
9293 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
9294 			snxt = tcp->tcp_suna;
9295 		}
9296 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
9297 		win -= snxt - tcp->tcp_suna;
9298 		mss = tcp->tcp_mss;
9299 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
9300 
9301 		while (SEQ_LT(snxt, smax) && (win > 0) &&
9302 		    (burst > 0) && (snxt_mp != NULL)) {
9303 			mblk_t	*xmit_mp;
9304 			mblk_t	*old_snxt_mp = snxt_mp;
9305 			uint32_t cnt = mss;
9306 
9307 			if (win < cnt) {
9308 				cnt = win;
9309 			}
9310 			if (SEQ_GT(snxt + cnt, smax)) {
9311 				cnt = smax - snxt;
9312 			}
9313 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
9314 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
9315 			if (xmit_mp == NULL)
9316 				return;
9317 
9318 			tcp_send_data(tcp, xmit_mp);
9319 
9320 			snxt += cnt;
9321 			win -= cnt;
9322 			/*
9323 			 * Update the send timestamp to avoid false
9324 			 * retransmission.
9325 			 */
9326 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
9327 			BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
9328 			UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt);
9329 
9330 			tcp->tcp_rexmit_nxt = snxt;
9331 			burst--;
9332 		}
9333 		/*
9334 		 * If we have transmitted all we have at the time
9335 		 * we started the retranmission, we can leave
9336 		 * the rest of the job to tcp_wput_data().  But we
9337 		 * need to check the send window first.  If the
9338 		 * win is not 0, go on with tcp_wput_data().
9339 		 */
9340 		if (SEQ_LT(snxt, smax) || win == 0) {
9341 			return;
9342 		}
9343 	}
9344 	/* Only call tcp_wput_data() if there is data to be sent. */
9345 	if (tcp->tcp_unsent) {
9346 		tcp_wput_data(tcp, NULL, B_FALSE);
9347 	}
9348 }
9349 
9350 /*
9351  * Process all TCP option in SYN segment.  Note that this function should
9352  * be called after tcp_set_destination() is called so that the necessary info
9353  * from IRE is already set in the tcp structure.
9354  *
9355  * This function sets up the correct tcp_mss value according to the
9356  * MSS option value and our header size.  It also sets up the window scale
9357  * and timestamp values, and initialize SACK info blocks.  But it does not
9358  * change receive window size after setting the tcp_mss value.  The caller
9359  * should do the appropriate change.
9360  */
9361 void
9362 tcp_process_options(tcp_t *tcp, tcpha_t *tcpha)
9363 {
9364 	int options;
9365 	tcp_opt_t tcpopt;
9366 	uint32_t mss_max;
9367 	char *tmp_tcph;
9368 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9369 	conn_t		*connp = tcp->tcp_connp;
9370 
9371 	tcpopt.tcp = NULL;
9372 	options = tcp_parse_options(tcpha, &tcpopt);
9373 
9374 	/*
9375 	 * Process MSS option.  Note that MSS option value does not account
9376 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
9377 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
9378 	 * IPv6.
9379 	 */
9380 	if (!(options & TCP_OPT_MSS_PRESENT)) {
9381 		if (connp->conn_ipversion == IPV4_VERSION)
9382 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
9383 		else
9384 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
9385 	} else {
9386 		if (connp->conn_ipversion == IPV4_VERSION)
9387 			mss_max = tcps->tcps_mss_max_ipv4;
9388 		else
9389 			mss_max = tcps->tcps_mss_max_ipv6;
9390 		if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
9391 			tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
9392 		else if (tcpopt.tcp_opt_mss > mss_max)
9393 			tcpopt.tcp_opt_mss = mss_max;
9394 	}
9395 
9396 	/* Process Window Scale option. */
9397 	if (options & TCP_OPT_WSCALE_PRESENT) {
9398 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
9399 		tcp->tcp_snd_ws_ok = B_TRUE;
9400 	} else {
9401 		tcp->tcp_snd_ws = B_FALSE;
9402 		tcp->tcp_snd_ws_ok = B_FALSE;
9403 		tcp->tcp_rcv_ws = B_FALSE;
9404 	}
9405 
9406 	/* Process Timestamp option. */
9407 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
9408 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
9409 		tmp_tcph = (char *)tcp->tcp_tcpha;
9410 
9411 		tcp->tcp_snd_ts_ok = B_TRUE;
9412 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
9413 		tcp->tcp_last_rcv_lbolt = lbolt64;
9414 		ASSERT(OK_32PTR(tmp_tcph));
9415 		ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH);
9416 
9417 		/* Fill in our template header with basic timestamp option. */
9418 		tmp_tcph += connp->conn_ht_ulp_len;
9419 		tmp_tcph[0] = TCPOPT_NOP;
9420 		tmp_tcph[1] = TCPOPT_NOP;
9421 		tmp_tcph[2] = TCPOPT_TSTAMP;
9422 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
9423 		connp->conn_ht_iphc_len += TCPOPT_REAL_TS_LEN;
9424 		connp->conn_ht_ulp_len += TCPOPT_REAL_TS_LEN;
9425 		tcp->tcp_tcpha->tha_offset_and_reserved += (3 << 4);
9426 	} else {
9427 		tcp->tcp_snd_ts_ok = B_FALSE;
9428 	}
9429 
9430 	/*
9431 	 * Process SACK options.  If SACK is enabled for this connection,
9432 	 * then allocate the SACK info structure.  Note the following ways
9433 	 * when tcp_snd_sack_ok is set to true.
9434 	 *
9435 	 * For active connection: in tcp_set_destination() called in
9436 	 * tcp_connect().
9437 	 *
9438 	 * For passive connection: in tcp_set_destination() called in
9439 	 * tcp_input_listener().
9440 	 *
9441 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
9442 	 * That check makes sure that if we did not send a SACK OK option,
9443 	 * we will not enable SACK for this connection even though the other
9444 	 * side sends us SACK OK option.  For active connection, the SACK
9445 	 * info structure has already been allocated.  So we need to free
9446 	 * it if SACK is disabled.
9447 	 */
9448 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
9449 	    (tcp->tcp_snd_sack_ok ||
9450 	    (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
9451 		/* This should be true only in the passive case. */
9452 		if (tcp->tcp_sack_info == NULL) {
9453 			ASSERT(TCP_IS_DETACHED(tcp));
9454 			tcp->tcp_sack_info =
9455 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
9456 		}
9457 		if (tcp->tcp_sack_info == NULL) {
9458 			tcp->tcp_snd_sack_ok = B_FALSE;
9459 		} else {
9460 			tcp->tcp_snd_sack_ok = B_TRUE;
9461 			if (tcp->tcp_snd_ts_ok) {
9462 				tcp->tcp_max_sack_blk = 3;
9463 			} else {
9464 				tcp->tcp_max_sack_blk = 4;
9465 			}
9466 		}
9467 	} else {
9468 		/*
9469 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
9470 		 * no SACK info will be used for this
9471 		 * connection.  This assumes that SACK usage
9472 		 * permission is negotiated.  This may need
9473 		 * to be changed once this is clarified.
9474 		 */
9475 		if (tcp->tcp_sack_info != NULL) {
9476 			ASSERT(tcp->tcp_notsack_list == NULL);
9477 			kmem_cache_free(tcp_sack_info_cache,
9478 			    tcp->tcp_sack_info);
9479 			tcp->tcp_sack_info = NULL;
9480 		}
9481 		tcp->tcp_snd_sack_ok = B_FALSE;
9482 	}
9483 
9484 	/*
9485 	 * Now we know the exact TCP/IP header length, subtract
9486 	 * that from tcp_mss to get our side's MSS.
9487 	 */
9488 	tcp->tcp_mss -= connp->conn_ht_iphc_len;
9489 
9490 	/*
9491 	 * Here we assume that the other side's header size will be equal to
9492 	 * our header size.  We calculate the real MSS accordingly.  Need to
9493 	 * take into additional stuffs IPsec puts in.
9494 	 *
9495 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
9496 	 */
9497 	tcpopt.tcp_opt_mss -= connp->conn_ht_iphc_len +
9498 	    tcp->tcp_ipsec_overhead -
9499 	    ((connp->conn_ipversion == IPV4_VERSION ?
9500 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
9501 
9502 	/*
9503 	 * Set MSS to the smaller one of both ends of the connection.
9504 	 * We should not have called tcp_mss_set() before, but our
9505 	 * side of the MSS should have been set to a proper value
9506 	 * by tcp_set_destination().  tcp_mss_set() will also set up the
9507 	 * STREAM head parameters properly.
9508 	 *
9509 	 * If we have a larger-than-16-bit window but the other side
9510 	 * didn't want to do window scale, tcp_rwnd_set() will take
9511 	 * care of that.
9512 	 */
9513 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss));
9514 
9515 	/*
9516 	 * Initialize tcp_cwnd value. After tcp_mss_set(), tcp_mss has been
9517 	 * updated properly.
9518 	 */
9519 	SET_TCP_INIT_CWND(tcp, tcp->tcp_mss, tcps->tcps_slow_start_initial);
9520 }
9521 
9522 /*
9523  * Sends the T_CONN_IND to the listener. The caller calls this
9524  * functions via squeue to get inside the listener's perimeter
9525  * once the 3 way hand shake is done a T_CONN_IND needs to be
9526  * sent. As an optimization, the caller can call this directly
9527  * if listener's perimeter is same as eager's.
9528  */
9529 /* ARGSUSED */
9530 void
9531 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
9532 {
9533 	conn_t			*lconnp = (conn_t *)arg;
9534 	tcp_t			*listener = lconnp->conn_tcp;
9535 	tcp_t			*tcp;
9536 	struct T_conn_ind	*conn_ind;
9537 	ipaddr_t 		*addr_cache;
9538 	boolean_t		need_send_conn_ind = B_FALSE;
9539 	tcp_stack_t		*tcps = listener->tcp_tcps;
9540 
9541 	/* retrieve the eager */
9542 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
9543 	ASSERT(conn_ind->OPT_offset != 0 &&
9544 	    conn_ind->OPT_length == sizeof (intptr_t));
9545 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
9546 	    conn_ind->OPT_length);
9547 
9548 	/*
9549 	 * TLI/XTI applications will get confused by
9550 	 * sending eager as an option since it violates
9551 	 * the option semantics. So remove the eager as
9552 	 * option since TLI/XTI app doesn't need it anyway.
9553 	 */
9554 	if (!TCP_IS_SOCKET(listener)) {
9555 		conn_ind->OPT_length = 0;
9556 		conn_ind->OPT_offset = 0;
9557 	}
9558 	if (listener->tcp_state != TCPS_LISTEN) {
9559 		/*
9560 		 * If listener has closed, it would have caused a
9561 		 * a cleanup/blowoff to happen for the eager. We
9562 		 * just need to return.
9563 		 */
9564 		freemsg(mp);
9565 		return;
9566 	}
9567 
9568 
9569 	/*
9570 	 * if the conn_req_q is full defer passing up the
9571 	 * T_CONN_IND until space is availabe after t_accept()
9572 	 * processing
9573 	 */
9574 	mutex_enter(&listener->tcp_eager_lock);
9575 
9576 	/*
9577 	 * Take the eager out, if it is in the list of droppable eagers
9578 	 * as we are here because the 3W handshake is over.
9579 	 */
9580 	MAKE_UNDROPPABLE(tcp);
9581 
9582 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
9583 		tcp_t *tail;
9584 
9585 		/*
9586 		 * The eager already has an extra ref put in tcp_input_data
9587 		 * so that it stays till accept comes back even though it
9588 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
9589 		 */
9590 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
9591 		listener->tcp_conn_req_cnt_q0--;
9592 		listener->tcp_conn_req_cnt_q++;
9593 
9594 		/* Move from SYN_RCVD to ESTABLISHED list  */
9595 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
9596 		    tcp->tcp_eager_prev_q0;
9597 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
9598 		    tcp->tcp_eager_next_q0;
9599 		tcp->tcp_eager_prev_q0 = NULL;
9600 		tcp->tcp_eager_next_q0 = NULL;
9601 
9602 		/*
9603 		 * Insert at end of the queue because sockfs
9604 		 * sends down T_CONN_RES in chronological
9605 		 * order. Leaving the older conn indications
9606 		 * at front of the queue helps reducing search
9607 		 * time.
9608 		 */
9609 		tail = listener->tcp_eager_last_q;
9610 		if (tail != NULL)
9611 			tail->tcp_eager_next_q = tcp;
9612 		else
9613 			listener->tcp_eager_next_q = tcp;
9614 		listener->tcp_eager_last_q = tcp;
9615 		tcp->tcp_eager_next_q = NULL;
9616 		/*
9617 		 * Delay sending up the T_conn_ind until we are
9618 		 * done with the eager. Once we have have sent up
9619 		 * the T_conn_ind, the accept can potentially complete
9620 		 * any time and release the refhold we have on the eager.
9621 		 */
9622 		need_send_conn_ind = B_TRUE;
9623 	} else {
9624 		/*
9625 		 * Defer connection on q0 and set deferred
9626 		 * connection bit true
9627 		 */
9628 		tcp->tcp_conn_def_q0 = B_TRUE;
9629 
9630 		/* take tcp out of q0 ... */
9631 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
9632 		    tcp->tcp_eager_next_q0;
9633 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
9634 		    tcp->tcp_eager_prev_q0;
9635 
9636 		/* ... and place it at the end of q0 */
9637 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
9638 		tcp->tcp_eager_next_q0 = listener;
9639 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
9640 		listener->tcp_eager_prev_q0 = tcp;
9641 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
9642 	}
9643 
9644 	/* we have timed out before */
9645 	if (tcp->tcp_syn_rcvd_timeout != 0) {
9646 		tcp->tcp_syn_rcvd_timeout = 0;
9647 		listener->tcp_syn_rcvd_timeout--;
9648 		if (listener->tcp_syn_defense &&
9649 		    listener->tcp_syn_rcvd_timeout <=
9650 		    (tcps->tcps_conn_req_max_q0 >> 5) &&
9651 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
9652 		    listener->tcp_last_rcv_lbolt)) {
9653 			/*
9654 			 * Turn off the defense mode if we
9655 			 * believe the SYN attack is over.
9656 			 */
9657 			listener->tcp_syn_defense = B_FALSE;
9658 			if (listener->tcp_ip_addr_cache) {
9659 				kmem_free((void *)listener->tcp_ip_addr_cache,
9660 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
9661 				listener->tcp_ip_addr_cache = NULL;
9662 			}
9663 		}
9664 	}
9665 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
9666 	if (addr_cache != NULL) {
9667 		/*
9668 		 * We have finished a 3-way handshake with this
9669 		 * remote host. This proves the IP addr is good.
9670 		 * Cache it!
9671 		 */
9672 		addr_cache[IP_ADDR_CACHE_HASH(tcp->tcp_connp->conn_faddr_v4)] =
9673 		    tcp->tcp_connp->conn_faddr_v4;
9674 	}
9675 	mutex_exit(&listener->tcp_eager_lock);
9676 	if (need_send_conn_ind)
9677 		tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp);
9678 }
9679 
9680 /*
9681  * Send the newconn notification to ulp. The eager is blown off if the
9682  * notification fails.
9683  */
9684 static void
9685 tcp_ulp_newconn(conn_t *lconnp, conn_t *econnp, mblk_t *mp)
9686 {
9687 	if (IPCL_IS_NONSTR(lconnp)) {
9688 		cred_t	*cr;
9689 		pid_t	cpid = NOPID;
9690 
9691 		ASSERT(econnp->conn_tcp->tcp_listener == lconnp->conn_tcp);
9692 		ASSERT(econnp->conn_tcp->tcp_saved_listener ==
9693 		    lconnp->conn_tcp);
9694 
9695 		cr = msg_getcred(mp, &cpid);
9696 
9697 		/* Keep the message around in case of a fallback to TPI */
9698 		econnp->conn_tcp->tcp_conn.tcp_eager_conn_ind = mp;
9699 		/*
9700 		 * Notify the ULP about the newconn. It is guaranteed that no
9701 		 * tcp_accept() call will be made for the eager if the
9702 		 * notification fails, so it's safe to blow it off in that
9703 		 * case.
9704 		 *
9705 		 * The upper handle will be assigned when tcp_accept() is
9706 		 * called.
9707 		 */
9708 		if ((*lconnp->conn_upcalls->su_newconn)
9709 		    (lconnp->conn_upper_handle,
9710 		    (sock_lower_handle_t)econnp,
9711 		    &sock_tcp_downcalls, cr, cpid,
9712 		    &econnp->conn_upcalls) == NULL) {
9713 			/* Failed to allocate a socket */
9714 			BUMP_MIB(&lconnp->conn_tcp->tcp_tcps->tcps_mib,
9715 			    tcpEstabResets);
9716 			(void) tcp_eager_blowoff(lconnp->conn_tcp,
9717 			    econnp->conn_tcp->tcp_conn_req_seqnum);
9718 		}
9719 	} else {
9720 		putnext(lconnp->conn_rq, mp);
9721 	}
9722 }
9723 
9724 /*
9725  * Handle a packet that has been reclassified by TCP.
9726  * This function drops the ref on connp that the caller had.
9727  */
9728 static void
9729 tcp_reinput(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst)
9730 {
9731 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
9732 
9733 	if (connp->conn_incoming_ifindex != 0 &&
9734 	    connp->conn_incoming_ifindex != ira->ira_ruifindex) {
9735 		freemsg(mp);
9736 		CONN_DEC_REF(connp);
9737 		return;
9738 	}
9739 
9740 	if (CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) ||
9741 	    (ira->ira_flags & IRAF_IPSEC_SECURE)) {
9742 		ip6_t *ip6h;
9743 		ipha_t *ipha;
9744 
9745 		if (ira->ira_flags & IRAF_IS_IPV4) {
9746 			ipha = (ipha_t *)mp->b_rptr;
9747 			ip6h = NULL;
9748 		} else {
9749 			ipha = NULL;
9750 			ip6h = (ip6_t *)mp->b_rptr;
9751 		}
9752 		mp = ipsec_check_inbound_policy(mp, connp, ipha, ip6h, ira);
9753 		if (mp == NULL) {
9754 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
9755 			/* Note that mp is NULL */
9756 			ip_drop_input("ipIfStatsInDiscards", mp, NULL);
9757 			CONN_DEC_REF(connp);
9758 			return;
9759 		}
9760 	}
9761 
9762 	if (IPCL_IS_TCP(connp)) {
9763 		/*
9764 		 * do not drain, certain use cases can blow
9765 		 * the stack
9766 		 */
9767 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
9768 		    connp->conn_recv, connp, ira,
9769 		    SQ_NODRAIN, SQTAG_IP_TCP_INPUT);
9770 	} else {
9771 		/* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
9772 		(connp->conn_recv)(connp, mp, NULL,
9773 		    ira);
9774 		CONN_DEC_REF(connp);
9775 	}
9776 
9777 }
9778 
9779 boolean_t tcp_outbound_squeue_switch = B_FALSE;
9780 
9781 /*
9782  * Handle M_DATA messages from IP. Its called directly from IP via
9783  * squeue for received IP packets.
9784  *
9785  * The first argument is always the connp/tcp to which the mp belongs.
9786  * There are no exceptions to this rule. The caller has already put
9787  * a reference on this connp/tcp and once tcp_input_data() returns,
9788  * the squeue will do the refrele.
9789  *
9790  * The TH_SYN for the listener directly go to tcp_input_listener via
9791  * squeue. ICMP errors go directly to tcp_icmp_input().
9792  *
9793  * sqp: NULL = recursive, sqp != NULL means called from squeue
9794  */
9795 void
9796 tcp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
9797 {
9798 	int32_t		bytes_acked;
9799 	int32_t		gap;
9800 	mblk_t		*mp1;
9801 	uint_t		flags;
9802 	uint32_t	new_swnd = 0;
9803 	uchar_t		*iphdr;
9804 	uchar_t		*rptr;
9805 	int32_t		rgap;
9806 	uint32_t	seg_ack;
9807 	int		seg_len;
9808 	uint_t		ip_hdr_len;
9809 	uint32_t	seg_seq;
9810 	tcpha_t		*tcpha;
9811 	int		urp;
9812 	tcp_opt_t	tcpopt;
9813 	ip_pkt_t	ipp;
9814 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
9815 	uint32_t	cwnd;
9816 	uint32_t	add;
9817 	int		npkt;
9818 	int		mss;
9819 	conn_t		*connp = (conn_t *)arg;
9820 	squeue_t	*sqp = (squeue_t *)arg2;
9821 	tcp_t		*tcp = connp->conn_tcp;
9822 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9823 
9824 	/*
9825 	 * RST from fused tcp loopback peer should trigger an unfuse.
9826 	 */
9827 	if (tcp->tcp_fused) {
9828 		TCP_STAT(tcps, tcp_fusion_aborted);
9829 		tcp_unfuse(tcp);
9830 	}
9831 
9832 	iphdr = mp->b_rptr;
9833 	rptr = mp->b_rptr;
9834 	ASSERT(OK_32PTR(rptr));
9835 
9836 	ip_hdr_len = ira->ira_ip_hdr_length;
9837 	if (connp->conn_recv_ancillary.crb_all != 0) {
9838 		/*
9839 		 * Record packet information in the ip_pkt_t
9840 		 */
9841 		ipp.ipp_fields = 0;
9842 		if (ira->ira_flags & IRAF_IS_IPV4) {
9843 			(void) ip_find_hdr_v4((ipha_t *)rptr, &ipp,
9844 			    B_FALSE);
9845 		} else {
9846 			uint8_t nexthdrp;
9847 
9848 			/*
9849 			 * IPv6 packets can only be received by applications
9850 			 * that are prepared to receive IPv6 addresses.
9851 			 * The IP fanout must ensure this.
9852 			 */
9853 			ASSERT(connp->conn_family == AF_INET6);
9854 
9855 			(void) ip_find_hdr_v6(mp, (ip6_t *)rptr, B_TRUE, &ipp,
9856 			    &nexthdrp);
9857 			ASSERT(nexthdrp == IPPROTO_TCP);
9858 
9859 			/* Could have caused a pullup? */
9860 			iphdr = mp->b_rptr;
9861 			rptr = mp->b_rptr;
9862 		}
9863 	}
9864 	ASSERT(DB_TYPE(mp) == M_DATA);
9865 	ASSERT(mp->b_next == NULL);
9866 
9867 	tcpha = (tcpha_t *)&rptr[ip_hdr_len];
9868 	seg_seq = ntohl(tcpha->tha_seq);
9869 	seg_ack = ntohl(tcpha->tha_ack);
9870 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
9871 	seg_len = (int)(mp->b_wptr - rptr) -
9872 	    (ip_hdr_len + TCP_HDR_LENGTH(tcpha));
9873 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
9874 		do {
9875 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
9876 			    (uintptr_t)INT_MAX);
9877 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
9878 		} while ((mp1 = mp1->b_cont) != NULL &&
9879 		    mp1->b_datap->db_type == M_DATA);
9880 	}
9881 
9882 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
9883 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
9884 		    seg_len, tcpha, ira);
9885 		return;
9886 	}
9887 
9888 	if (sqp != NULL) {
9889 		/*
9890 		 * This is the correct place to update tcp_last_recv_time. Note
9891 		 * that it is also updated for tcp structure that belongs to
9892 		 * global and listener queues which do not really need updating.
9893 		 * But that should not cause any harm.  And it is updated for
9894 		 * all kinds of incoming segments, not only for data segments.
9895 		 */
9896 		tcp->tcp_last_recv_time = lbolt;
9897 	}
9898 
9899 	flags = (unsigned int)tcpha->tha_flags & 0xFF;
9900 
9901 	BUMP_LOCAL(tcp->tcp_ibsegs);
9902 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
9903 
9904 	if ((flags & TH_URG) && sqp != NULL) {
9905 		/*
9906 		 * TCP can't handle urgent pointers that arrive before
9907 		 * the connection has been accept()ed since it can't
9908 		 * buffer OOB data.  Discard segment if this happens.
9909 		 *
9910 		 * We can't just rely on a non-null tcp_listener to indicate
9911 		 * that the accept() has completed since unlinking of the
9912 		 * eager and completion of the accept are not atomic.
9913 		 * tcp_detached, when it is not set (B_FALSE) indicates
9914 		 * that the accept() has completed.
9915 		 *
9916 		 * Nor can it reassemble urgent pointers, so discard
9917 		 * if it's not the next segment expected.
9918 		 *
9919 		 * Otherwise, collapse chain into one mblk (discard if
9920 		 * that fails).  This makes sure the headers, retransmitted
9921 		 * data, and new data all are in the same mblk.
9922 		 */
9923 		ASSERT(mp != NULL);
9924 		if (tcp->tcp_detached || !pullupmsg(mp, -1)) {
9925 			freemsg(mp);
9926 			return;
9927 		}
9928 		/* Update pointers into message */
9929 		iphdr = rptr = mp->b_rptr;
9930 		tcpha = (tcpha_t *)&rptr[ip_hdr_len];
9931 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
9932 			/*
9933 			 * Since we can't handle any data with this urgent
9934 			 * pointer that is out of sequence, we expunge
9935 			 * the data.  This allows us to still register
9936 			 * the urgent mark and generate the M_PCSIG,
9937 			 * which we can do.
9938 			 */
9939 			mp->b_wptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha);
9940 			seg_len = 0;
9941 		}
9942 	}
9943 
9944 	switch (tcp->tcp_state) {
9945 	case TCPS_SYN_SENT:
9946 		if (connp->conn_final_sqp == NULL &&
9947 		    tcp_outbound_squeue_switch && sqp != NULL) {
9948 			ASSERT(connp->conn_initial_sqp == connp->conn_sqp);
9949 			connp->conn_final_sqp = sqp;
9950 			if (connp->conn_final_sqp != connp->conn_sqp) {
9951 				DTRACE_PROBE1(conn__final__sqp__switch,
9952 				    conn_t *, connp);
9953 				CONN_INC_REF(connp);
9954 				SQUEUE_SWITCH(connp, connp->conn_final_sqp);
9955 				SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
9956 				    tcp_input_data, connp, ira, ip_squeue_flag,
9957 				    SQTAG_CONNECT_FINISH);
9958 				return;
9959 			}
9960 			DTRACE_PROBE1(conn__final__sqp__same, conn_t *, connp);
9961 		}
9962 		if (flags & TH_ACK) {
9963 			/*
9964 			 * Note that our stack cannot send data before a
9965 			 * connection is established, therefore the
9966 			 * following check is valid.  Otherwise, it has
9967 			 * to be changed.
9968 			 */
9969 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
9970 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
9971 				freemsg(mp);
9972 				if (flags & TH_RST)
9973 					return;
9974 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
9975 				    tcp, seg_ack, 0, TH_RST);
9976 				return;
9977 			}
9978 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
9979 		}
9980 		if (flags & TH_RST) {
9981 			freemsg(mp);
9982 			if (flags & TH_ACK)
9983 				(void) tcp_clean_death(tcp,
9984 				    ECONNREFUSED, 13);
9985 			return;
9986 		}
9987 		if (!(flags & TH_SYN)) {
9988 			freemsg(mp);
9989 			return;
9990 		}
9991 
9992 		/* Process all TCP options. */
9993 		tcp_process_options(tcp, tcpha);
9994 		/*
9995 		 * The following changes our rwnd to be a multiple of the
9996 		 * MIN(peer MSS, our MSS) for performance reason.
9997 		 */
9998 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(connp->conn_rcvbuf,
9999 		    tcp->tcp_mss));
10000 
10001 		/* Is the other end ECN capable? */
10002 		if (tcp->tcp_ecn_ok) {
10003 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
10004 				tcp->tcp_ecn_ok = B_FALSE;
10005 			}
10006 		}
10007 		/*
10008 		 * Clear ECN flags because it may interfere with later
10009 		 * processing.
10010 		 */
10011 		flags &= ~(TH_ECE|TH_CWR);
10012 
10013 		tcp->tcp_irs = seg_seq;
10014 		tcp->tcp_rack = seg_seq;
10015 		tcp->tcp_rnxt = seg_seq + 1;
10016 		tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt);
10017 		if (!TCP_IS_DETACHED(tcp)) {
10018 			/* Allocate room for SACK options if needed. */
10019 			connp->conn_wroff = connp->conn_ht_iphc_len;
10020 			if (tcp->tcp_snd_sack_ok)
10021 				connp->conn_wroff += TCPOPT_MAX_SACK_LEN;
10022 			if (!tcp->tcp_loopback)
10023 				connp->conn_wroff += tcps->tcps_wroff_xtra;
10024 
10025 			(void) proto_set_tx_wroff(connp->conn_rq, connp,
10026 			    connp->conn_wroff);
10027 		}
10028 		if (flags & TH_ACK) {
10029 			/*
10030 			 * If we can't get the confirmation upstream, pretend
10031 			 * we didn't even see this one.
10032 			 *
10033 			 * XXX: how can we pretend we didn't see it if we
10034 			 * have updated rnxt et. al.
10035 			 *
10036 			 * For loopback we defer sending up the T_CONN_CON
10037 			 * until after some checks below.
10038 			 */
10039 			mp1 = NULL;
10040 			/*
10041 			 * tcp_sendmsg() checks tcp_state without entering
10042 			 * the squeue so tcp_state should be updated before
10043 			 * sending up connection confirmation
10044 			 */
10045 			tcp->tcp_state = TCPS_ESTABLISHED;
10046 			if (!tcp_conn_con(tcp, iphdr, mp,
10047 			    tcp->tcp_loopback ? &mp1 : NULL, ira)) {
10048 				tcp->tcp_state = TCPS_SYN_SENT;
10049 				freemsg(mp);
10050 				return;
10051 			}
10052 			/* SYN was acked - making progress */
10053 			tcp->tcp_ip_forward_progress = B_TRUE;
10054 
10055 			/* One for the SYN */
10056 			tcp->tcp_suna = tcp->tcp_iss + 1;
10057 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
10058 
10059 			/*
10060 			 * If SYN was retransmitted, need to reset all
10061 			 * retransmission info.  This is because this
10062 			 * segment will be treated as a dup ACK.
10063 			 */
10064 			if (tcp->tcp_rexmit) {
10065 				tcp->tcp_rexmit = B_FALSE;
10066 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
10067 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
10068 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
10069 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
10070 				tcp->tcp_ms_we_have_waited = 0;
10071 
10072 				/*
10073 				 * Set tcp_cwnd back to 1 MSS, per
10074 				 * recommendation from
10075 				 * draft-floyd-incr-init-win-01.txt,
10076 				 * Increasing TCP's Initial Window.
10077 				 */
10078 				tcp->tcp_cwnd = tcp->tcp_mss;
10079 			}
10080 
10081 			tcp->tcp_swl1 = seg_seq;
10082 			tcp->tcp_swl2 = seg_ack;
10083 
10084 			new_swnd = ntohs(tcpha->tha_win);
10085 			tcp->tcp_swnd = new_swnd;
10086 			if (new_swnd > tcp->tcp_max_swnd)
10087 				tcp->tcp_max_swnd = new_swnd;
10088 
10089 			/*
10090 			 * Always send the three-way handshake ack immediately
10091 			 * in order to make the connection complete as soon as
10092 			 * possible on the accepting host.
10093 			 */
10094 			flags |= TH_ACK_NEEDED;
10095 
10096 			/*
10097 			 * Special case for loopback.  At this point we have
10098 			 * received SYN-ACK from the remote endpoint.  In
10099 			 * order to ensure that both endpoints reach the
10100 			 * fused state prior to any data exchange, the final
10101 			 * ACK needs to be sent before we indicate T_CONN_CON
10102 			 * to the module upstream.
10103 			 */
10104 			if (tcp->tcp_loopback) {
10105 				mblk_t *ack_mp;
10106 
10107 				ASSERT(!tcp->tcp_unfusable);
10108 				ASSERT(mp1 != NULL);
10109 				/*
10110 				 * For loopback, we always get a pure SYN-ACK
10111 				 * and only need to send back the final ACK
10112 				 * with no data (this is because the other
10113 				 * tcp is ours and we don't do T/TCP).  This
10114 				 * final ACK triggers the passive side to
10115 				 * perform fusion in ESTABLISHED state.
10116 				 */
10117 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
10118 					if (tcp->tcp_ack_tid != 0) {
10119 						(void) TCP_TIMER_CANCEL(tcp,
10120 						    tcp->tcp_ack_tid);
10121 						tcp->tcp_ack_tid = 0;
10122 					}
10123 					tcp_send_data(tcp, ack_mp);
10124 					BUMP_LOCAL(tcp->tcp_obsegs);
10125 					BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
10126 
10127 					if (!IPCL_IS_NONSTR(connp)) {
10128 						/* Send up T_CONN_CON */
10129 						if (ira->ira_cred != NULL) {
10130 							mblk_setcred(mp1,
10131 							    ira->ira_cred,
10132 							    ira->ira_cpid);
10133 						}
10134 						putnext(connp->conn_rq, mp1);
10135 					} else {
10136 						(*connp->conn_upcalls->
10137 						    su_connected)
10138 						    (connp->conn_upper_handle,
10139 						    tcp->tcp_connid,
10140 						    ira->ira_cred,
10141 						    ira->ira_cpid);
10142 						freemsg(mp1);
10143 					}
10144 
10145 					freemsg(mp);
10146 					return;
10147 				}
10148 				/*
10149 				 * Forget fusion; we need to handle more
10150 				 * complex cases below.  Send the deferred
10151 				 * T_CONN_CON message upstream and proceed
10152 				 * as usual.  Mark this tcp as not capable
10153 				 * of fusion.
10154 				 */
10155 				TCP_STAT(tcps, tcp_fusion_unfusable);
10156 				tcp->tcp_unfusable = B_TRUE;
10157 				if (!IPCL_IS_NONSTR(connp)) {
10158 					if (ira->ira_cred != NULL) {
10159 						mblk_setcred(mp1, ira->ira_cred,
10160 						    ira->ira_cpid);
10161 					}
10162 					putnext(connp->conn_rq, mp1);
10163 				} else {
10164 					(*connp->conn_upcalls->su_connected)
10165 					    (connp->conn_upper_handle,
10166 					    tcp->tcp_connid, ira->ira_cred,
10167 					    ira->ira_cpid);
10168 					freemsg(mp1);
10169 				}
10170 			}
10171 
10172 			/*
10173 			 * Check to see if there is data to be sent.  If
10174 			 * yes, set the transmit flag.  Then check to see
10175 			 * if received data processing needs to be done.
10176 			 * If not, go straight to xmit_check.  This short
10177 			 * cut is OK as we don't support T/TCP.
10178 			 */
10179 			if (tcp->tcp_unsent)
10180 				flags |= TH_XMIT_NEEDED;
10181 
10182 			if (seg_len == 0 && !(flags & TH_URG)) {
10183 				freemsg(mp);
10184 				goto xmit_check;
10185 			}
10186 
10187 			flags &= ~TH_SYN;
10188 			seg_seq++;
10189 			break;
10190 		}
10191 		tcp->tcp_state = TCPS_SYN_RCVD;
10192 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
10193 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
10194 		if (mp1 != NULL) {
10195 			tcp_send_data(tcp, mp1);
10196 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
10197 		}
10198 		freemsg(mp);
10199 		return;
10200 	case TCPS_SYN_RCVD:
10201 		if (flags & TH_ACK) {
10202 			/*
10203 			 * In this state, a SYN|ACK packet is either bogus
10204 			 * because the other side must be ACKing our SYN which
10205 			 * indicates it has seen the ACK for their SYN and
10206 			 * shouldn't retransmit it or we're crossing SYNs
10207 			 * on active open.
10208 			 */
10209 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
10210 				freemsg(mp);
10211 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
10212 				    tcp, seg_ack, 0, TH_RST);
10213 				return;
10214 			}
10215 			/*
10216 			 * NOTE: RFC 793 pg. 72 says this should be
10217 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
10218 			 * but that would mean we have an ack that ignored
10219 			 * our SYN.
10220 			 */
10221 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
10222 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
10223 				freemsg(mp);
10224 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
10225 				    tcp, seg_ack, 0, TH_RST);
10226 				return;
10227 			}
10228 		}
10229 		break;
10230 	case TCPS_LISTEN:
10231 		/*
10232 		 * Only a TLI listener can come through this path when a
10233 		 * acceptor is going back to be a listener and a packet
10234 		 * for the acceptor hits the classifier. For a socket
10235 		 * listener, this can never happen because a listener
10236 		 * can never accept connection on itself and hence a
10237 		 * socket acceptor can not go back to being a listener.
10238 		 */
10239 		ASSERT(!TCP_IS_SOCKET(tcp));
10240 		/*FALLTHRU*/
10241 	case TCPS_CLOSED:
10242 	case TCPS_BOUND: {
10243 		conn_t	*new_connp;
10244 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
10245 
10246 		/*
10247 		 * Don't accept any input on a closed tcp as this TCP logically
10248 		 * does not exist on the system. Don't proceed further with
10249 		 * this TCP. For instance, this packet could trigger another
10250 		 * close of this tcp which would be disastrous for tcp_refcnt.
10251 		 * tcp_close_detached / tcp_clean_death / tcp_closei_local must
10252 		 * be called at most once on a TCP. In this case we need to
10253 		 * refeed the packet into the classifier and figure out where
10254 		 * the packet should go.
10255 		 */
10256 		new_connp = ipcl_classify(mp, ira, ipst);
10257 		if (new_connp != NULL) {
10258 			/* Drops ref on new_connp */
10259 			tcp_reinput(new_connp, mp, ira, ipst);
10260 			return;
10261 		}
10262 		/* We failed to classify. For now just drop the packet */
10263 		freemsg(mp);
10264 		return;
10265 	}
10266 	case TCPS_IDLE:
10267 		/*
10268 		 * Handle the case where the tcp_clean_death() has happened
10269 		 * on a connection (application hasn't closed yet) but a packet
10270 		 * was already queued on squeue before tcp_clean_death()
10271 		 * was processed. Calling tcp_clean_death() twice on same
10272 		 * connection can result in weird behaviour.
10273 		 */
10274 		freemsg(mp);
10275 		return;
10276 	default:
10277 		break;
10278 	}
10279 
10280 	/*
10281 	 * Already on the correct queue/perimeter.
10282 	 * If this is a detached connection and not an eager
10283 	 * connection hanging off a listener then new data
10284 	 * (past the FIN) will cause a reset.
10285 	 * We do a special check here where it
10286 	 * is out of the main line, rather than check
10287 	 * if we are detached every time we see new
10288 	 * data down below.
10289 	 */
10290 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
10291 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
10292 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
10293 		DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
10294 
10295 		freemsg(mp);
10296 		/*
10297 		 * This could be an SSL closure alert. We're detached so just
10298 		 * acknowledge it this last time.
10299 		 */
10300 		if (tcp->tcp_kssl_ctx != NULL) {
10301 			kssl_release_ctx(tcp->tcp_kssl_ctx);
10302 			tcp->tcp_kssl_ctx = NULL;
10303 
10304 			tcp->tcp_rnxt += seg_len;
10305 			tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt);
10306 			flags |= TH_ACK_NEEDED;
10307 			goto ack_check;
10308 		}
10309 
10310 		tcp_xmit_ctl("new data when detached", tcp,
10311 		    tcp->tcp_snxt, 0, TH_RST);
10312 		(void) tcp_clean_death(tcp, EPROTO, 12);
10313 		return;
10314 	}
10315 
10316 	mp->b_rptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha);
10317 	urp = ntohs(tcpha->tha_urp) - TCP_OLD_URP_INTERPRETATION;
10318 	new_swnd = ntohs(tcpha->tha_win) <<
10319 	    ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws);
10320 
10321 	if (tcp->tcp_snd_ts_ok) {
10322 		if (!tcp_paws_check(tcp, tcpha, &tcpopt)) {
10323 			/*
10324 			 * This segment is not acceptable.
10325 			 * Drop it and send back an ACK.
10326 			 */
10327 			freemsg(mp);
10328 			flags |= TH_ACK_NEEDED;
10329 			goto ack_check;
10330 		}
10331 	} else if (tcp->tcp_snd_sack_ok) {
10332 		ASSERT(tcp->tcp_sack_info != NULL);
10333 		tcpopt.tcp = tcp;
10334 		/*
10335 		 * SACK info in already updated in tcp_parse_options.  Ignore
10336 		 * all other TCP options...
10337 		 */
10338 		(void) tcp_parse_options(tcpha, &tcpopt);
10339 	}
10340 try_again:;
10341 	mss = tcp->tcp_mss;
10342 	gap = seg_seq - tcp->tcp_rnxt;
10343 	rgap = tcp->tcp_rwnd - (gap + seg_len);
10344 	/*
10345 	 * gap is the amount of sequence space between what we expect to see
10346 	 * and what we got for seg_seq.  A positive value for gap means
10347 	 * something got lost.  A negative value means we got some old stuff.
10348 	 */
10349 	if (gap < 0) {
10350 		/* Old stuff present.  Is the SYN in there? */
10351 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
10352 		    (seg_len != 0)) {
10353 			flags &= ~TH_SYN;
10354 			seg_seq++;
10355 			urp--;
10356 			/* Recompute the gaps after noting the SYN. */
10357 			goto try_again;
10358 		}
10359 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
10360 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
10361 		    (seg_len > -gap ? -gap : seg_len));
10362 		/* Remove the old stuff from seg_len. */
10363 		seg_len += gap;
10364 		/*
10365 		 * Anything left?
10366 		 * Make sure to check for unack'd FIN when rest of data
10367 		 * has been previously ack'd.
10368 		 */
10369 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
10370 			/*
10371 			 * Resets are only valid if they lie within our offered
10372 			 * window.  If the RST bit is set, we just ignore this
10373 			 * segment.
10374 			 */
10375 			if (flags & TH_RST) {
10376 				freemsg(mp);
10377 				return;
10378 			}
10379 
10380 			/*
10381 			 * The arriving of dup data packets indicate that we
10382 			 * may have postponed an ack for too long, or the other
10383 			 * side's RTT estimate is out of shape. Start acking
10384 			 * more often.
10385 			 */
10386 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
10387 			    tcp->tcp_rack_cnt >= 1 &&
10388 			    tcp->tcp_rack_abs_max > 2) {
10389 				tcp->tcp_rack_abs_max--;
10390 			}
10391 			tcp->tcp_rack_cur_max = 1;
10392 
10393 			/*
10394 			 * This segment is "unacceptable".  None of its
10395 			 * sequence space lies within our advertized window.
10396 			 *
10397 			 * Adjust seg_len to the original value for tracing.
10398 			 */
10399 			seg_len -= gap;
10400 			if (connp->conn_debug) {
10401 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
10402 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
10403 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
10404 				    "seg_len %d, rnxt %u, snxt %u, %s",
10405 				    gap, rgap, flags, seg_seq, seg_ack,
10406 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
10407 				    tcp_display(tcp, NULL,
10408 				    DISP_ADDR_AND_PORT));
10409 			}
10410 
10411 			/*
10412 			 * Arrange to send an ACK in response to the
10413 			 * unacceptable segment per RFC 793 page 69. There
10414 			 * is only one small difference between ours and the
10415 			 * acceptability test in the RFC - we accept ACK-only
10416 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
10417 			 * will be generated.
10418 			 *
10419 			 * Note that we have to ACK an ACK-only packet at least
10420 			 * for stacks that send 0-length keep-alives with
10421 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
10422 			 * section 4.2.3.6. As long as we don't ever generate
10423 			 * an unacceptable packet in response to an incoming
10424 			 * packet that is unacceptable, it should not cause
10425 			 * "ACK wars".
10426 			 */
10427 			flags |=  TH_ACK_NEEDED;
10428 
10429 			/*
10430 			 * Continue processing this segment in order to use the
10431 			 * ACK information it contains, but skip all other
10432 			 * sequence-number processing.	Processing the ACK
10433 			 * information is necessary in order to
10434 			 * re-synchronize connections that may have lost
10435 			 * synchronization.
10436 			 *
10437 			 * We clear seg_len and flag fields related to
10438 			 * sequence number processing as they are not
10439 			 * to be trusted for an unacceptable segment.
10440 			 */
10441 			seg_len = 0;
10442 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
10443 			goto process_ack;
10444 		}
10445 
10446 		/* Fix seg_seq, and chew the gap off the front. */
10447 		seg_seq = tcp->tcp_rnxt;
10448 		urp += gap;
10449 		do {
10450 			mblk_t	*mp2;
10451 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
10452 			    (uintptr_t)UINT_MAX);
10453 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
10454 			if (gap > 0) {
10455 				mp->b_rptr = mp->b_wptr - gap;
10456 				break;
10457 			}
10458 			mp2 = mp;
10459 			mp = mp->b_cont;
10460 			freeb(mp2);
10461 		} while (gap < 0);
10462 		/*
10463 		 * If the urgent data has already been acknowledged, we
10464 		 * should ignore TH_URG below
10465 		 */
10466 		if (urp < 0)
10467 			flags &= ~TH_URG;
10468 	}
10469 	/*
10470 	 * rgap is the amount of stuff received out of window.  A negative
10471 	 * value is the amount out of window.
10472 	 */
10473 	if (rgap < 0) {
10474 		mblk_t	*mp2;
10475 
10476 		if (tcp->tcp_rwnd == 0) {
10477 			BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe);
10478 		} else {
10479 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
10480 			UPDATE_MIB(&tcps->tcps_mib,
10481 			    tcpInDataPastWinBytes, -rgap);
10482 		}
10483 
10484 		/*
10485 		 * seg_len does not include the FIN, so if more than
10486 		 * just the FIN is out of window, we act like we don't
10487 		 * see it.  (If just the FIN is out of window, rgap
10488 		 * will be zero and we will go ahead and acknowledge
10489 		 * the FIN.)
10490 		 */
10491 		flags &= ~TH_FIN;
10492 
10493 		/* Fix seg_len and make sure there is something left. */
10494 		seg_len += rgap;
10495 		if (seg_len <= 0) {
10496 			/*
10497 			 * Resets are only valid if they lie within our offered
10498 			 * window.  If the RST bit is set, we just ignore this
10499 			 * segment.
10500 			 */
10501 			if (flags & TH_RST) {
10502 				freemsg(mp);
10503 				return;
10504 			}
10505 
10506 			/* Per RFC 793, we need to send back an ACK. */
10507 			flags |= TH_ACK_NEEDED;
10508 
10509 			/*
10510 			 * Send SIGURG as soon as possible i.e. even
10511 			 * if the TH_URG was delivered in a window probe
10512 			 * packet (which will be unacceptable).
10513 			 *
10514 			 * We generate a signal if none has been generated
10515 			 * for this connection or if this is a new urgent
10516 			 * byte. Also send a zero-length "unmarked" message
10517 			 * to inform SIOCATMARK that this is not the mark.
10518 			 *
10519 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
10520 			 * is sent up. This plus the check for old data
10521 			 * (gap >= 0) handles the wraparound of the sequence
10522 			 * number space without having to always track the
10523 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
10524 			 * this max in its rcv_up variable).
10525 			 *
10526 			 * This prevents duplicate SIGURGS due to a "late"
10527 			 * zero-window probe when the T_EXDATA_IND has already
10528 			 * been sent up.
10529 			 */
10530 			if ((flags & TH_URG) &&
10531 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
10532 			    tcp->tcp_urp_last))) {
10533 				if (IPCL_IS_NONSTR(connp)) {
10534 					if (!TCP_IS_DETACHED(tcp)) {
10535 						(*connp->conn_upcalls->
10536 						    su_signal_oob)
10537 						    (connp->conn_upper_handle,
10538 						    urp);
10539 					}
10540 				} else {
10541 					mp1 = allocb(0, BPRI_MED);
10542 					if (mp1 == NULL) {
10543 						freemsg(mp);
10544 						return;
10545 					}
10546 					if (!TCP_IS_DETACHED(tcp) &&
10547 					    !putnextctl1(connp->conn_rq,
10548 					    M_PCSIG, SIGURG)) {
10549 						/* Try again on the rexmit. */
10550 						freemsg(mp1);
10551 						freemsg(mp);
10552 						return;
10553 					}
10554 					/*
10555 					 * If the next byte would be the mark
10556 					 * then mark with MARKNEXT else mark
10557 					 * with NOTMARKNEXT.
10558 					 */
10559 					if (gap == 0 && urp == 0)
10560 						mp1->b_flag |= MSGMARKNEXT;
10561 					else
10562 						mp1->b_flag |= MSGNOTMARKNEXT;
10563 					freemsg(tcp->tcp_urp_mark_mp);
10564 					tcp->tcp_urp_mark_mp = mp1;
10565 					flags |= TH_SEND_URP_MARK;
10566 				}
10567 				tcp->tcp_urp_last_valid = B_TRUE;
10568 				tcp->tcp_urp_last = urp + seg_seq;
10569 			}
10570 			/*
10571 			 * If this is a zero window probe, continue to
10572 			 * process the ACK part.  But we need to set seg_len
10573 			 * to 0 to avoid data processing.  Otherwise just
10574 			 * drop the segment and send back an ACK.
10575 			 */
10576 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
10577 				flags &= ~(TH_SYN | TH_URG);
10578 				seg_len = 0;
10579 				goto process_ack;
10580 			} else {
10581 				freemsg(mp);
10582 				goto ack_check;
10583 			}
10584 		}
10585 		/* Pitch out of window stuff off the end. */
10586 		rgap = seg_len;
10587 		mp2 = mp;
10588 		do {
10589 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
10590 			    (uintptr_t)INT_MAX);
10591 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
10592 			if (rgap < 0) {
10593 				mp2->b_wptr += rgap;
10594 				if ((mp1 = mp2->b_cont) != NULL) {
10595 					mp2->b_cont = NULL;
10596 					freemsg(mp1);
10597 				}
10598 				break;
10599 			}
10600 		} while ((mp2 = mp2->b_cont) != NULL);
10601 	}
10602 ok:;
10603 	/*
10604 	 * TCP should check ECN info for segments inside the window only.
10605 	 * Therefore the check should be done here.
10606 	 */
10607 	if (tcp->tcp_ecn_ok) {
10608 		if (flags & TH_CWR) {
10609 			tcp->tcp_ecn_echo_on = B_FALSE;
10610 		}
10611 		/*
10612 		 * Note that both ECN_CE and CWR can be set in the
10613 		 * same segment.  In this case, we once again turn
10614 		 * on ECN_ECHO.
10615 		 */
10616 		if (connp->conn_ipversion == IPV4_VERSION) {
10617 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
10618 
10619 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
10620 				tcp->tcp_ecn_echo_on = B_TRUE;
10621 			}
10622 		} else {
10623 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
10624 
10625 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
10626 			    htonl(IPH_ECN_CE << 20)) {
10627 				tcp->tcp_ecn_echo_on = B_TRUE;
10628 			}
10629 		}
10630 	}
10631 
10632 	/*
10633 	 * Check whether we can update tcp_ts_recent.  This test is
10634 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
10635 	 * Extensions for High Performance: An Update", Internet Draft.
10636 	 */
10637 	if (tcp->tcp_snd_ts_ok &&
10638 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
10639 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
10640 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
10641 		tcp->tcp_last_rcv_lbolt = lbolt64;
10642 	}
10643 
10644 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
10645 		/*
10646 		 * FIN in an out of order segment.  We record this in
10647 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
10648 		 * Clear the FIN so that any check on FIN flag will fail.
10649 		 * Remember that FIN also counts in the sequence number
10650 		 * space.  So we need to ack out of order FIN only segments.
10651 		 */
10652 		if (flags & TH_FIN) {
10653 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
10654 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
10655 			flags &= ~TH_FIN;
10656 			flags |= TH_ACK_NEEDED;
10657 		}
10658 		if (seg_len > 0) {
10659 			/* Fill in the SACK blk list. */
10660 			if (tcp->tcp_snd_sack_ok) {
10661 				ASSERT(tcp->tcp_sack_info != NULL);
10662 				tcp_sack_insert(tcp->tcp_sack_list,
10663 				    seg_seq, seg_seq + seg_len,
10664 				    &(tcp->tcp_num_sack_blk));
10665 			}
10666 
10667 			/*
10668 			 * Attempt reassembly and see if we have something
10669 			 * ready to go.
10670 			 */
10671 			mp = tcp_reass(tcp, mp, seg_seq);
10672 			/* Always ack out of order packets */
10673 			flags |= TH_ACK_NEEDED | TH_PUSH;
10674 			if (mp) {
10675 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
10676 				    (uintptr_t)INT_MAX);
10677 				seg_len = mp->b_cont ? msgdsize(mp) :
10678 				    (int)(mp->b_wptr - mp->b_rptr);
10679 				seg_seq = tcp->tcp_rnxt;
10680 				/*
10681 				 * A gap is filled and the seq num and len
10682 				 * of the gap match that of a previously
10683 				 * received FIN, put the FIN flag back in.
10684 				 */
10685 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
10686 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
10687 					flags |= TH_FIN;
10688 					tcp->tcp_valid_bits &=
10689 					    ~TCP_OFO_FIN_VALID;
10690 				}
10691 			} else {
10692 				/*
10693 				 * Keep going even with NULL mp.
10694 				 * There may be a useful ACK or something else
10695 				 * we don't want to miss.
10696 				 *
10697 				 * But TCP should not perform fast retransmit
10698 				 * because of the ack number.  TCP uses
10699 				 * seg_len == 0 to determine if it is a pure
10700 				 * ACK.  And this is not a pure ACK.
10701 				 */
10702 				seg_len = 0;
10703 				ofo_seg = B_TRUE;
10704 			}
10705 		}
10706 	} else if (seg_len > 0) {
10707 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
10708 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
10709 		/*
10710 		 * If an out of order FIN was received before, and the seq
10711 		 * num and len of the new segment match that of the FIN,
10712 		 * put the FIN flag back in.
10713 		 */
10714 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
10715 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
10716 			flags |= TH_FIN;
10717 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
10718 		}
10719 	}
10720 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
10721 	if (flags & TH_RST) {
10722 		freemsg(mp);
10723 		switch (tcp->tcp_state) {
10724 		case TCPS_SYN_RCVD:
10725 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
10726 			break;
10727 		case TCPS_ESTABLISHED:
10728 		case TCPS_FIN_WAIT_1:
10729 		case TCPS_FIN_WAIT_2:
10730 		case TCPS_CLOSE_WAIT:
10731 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
10732 			break;
10733 		case TCPS_CLOSING:
10734 		case TCPS_LAST_ACK:
10735 			(void) tcp_clean_death(tcp, 0, 16);
10736 			break;
10737 		default:
10738 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
10739 			(void) tcp_clean_death(tcp, ENXIO, 17);
10740 			break;
10741 		}
10742 		return;
10743 	}
10744 	if (flags & TH_SYN) {
10745 		/*
10746 		 * See RFC 793, Page 71
10747 		 *
10748 		 * The seq number must be in the window as it should
10749 		 * be "fixed" above.  If it is outside window, it should
10750 		 * be already rejected.  Note that we allow seg_seq to be
10751 		 * rnxt + rwnd because we want to accept 0 window probe.
10752 		 */
10753 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
10754 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
10755 		freemsg(mp);
10756 		/*
10757 		 * If the ACK flag is not set, just use our snxt as the
10758 		 * seq number of the RST segment.
10759 		 */
10760 		if (!(flags & TH_ACK)) {
10761 			seg_ack = tcp->tcp_snxt;
10762 		}
10763 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
10764 		    TH_RST|TH_ACK);
10765 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
10766 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
10767 		return;
10768 	}
10769 	/*
10770 	 * urp could be -1 when the urp field in the packet is 0
10771 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
10772 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
10773 	 */
10774 	if (flags & TH_URG && urp >= 0) {
10775 		if (!tcp->tcp_urp_last_valid ||
10776 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
10777 			/*
10778 			 * Non-STREAMS sockets handle the urgent data a litte
10779 			 * differently from STREAMS based sockets. There is no
10780 			 * need to mark any mblks with the MSG{NOT,}MARKNEXT
10781 			 * flags to keep SIOCATMARK happy. Instead a
10782 			 * su_signal_oob upcall is made to update the mark.
10783 			 * Neither is a T_EXDATA_IND mblk needed to be
10784 			 * prepended to the urgent data. The urgent data is
10785 			 * delivered using the su_recv upcall, where we set
10786 			 * the MSG_OOB flag to indicate that it is urg data.
10787 			 *
10788 			 * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED
10789 			 * are used by non-STREAMS sockets.
10790 			 */
10791 			if (IPCL_IS_NONSTR(connp)) {
10792 				if (!TCP_IS_DETACHED(tcp)) {
10793 					(*connp->conn_upcalls->su_signal_oob)
10794 					    (connp->conn_upper_handle, urp);
10795 				}
10796 			} else {
10797 				/*
10798 				 * If we haven't generated the signal yet for
10799 				 * this urgent pointer value, do it now.  Also,
10800 				 * send up a zero-length M_DATA indicating
10801 				 * whether or not this is the mark. The latter
10802 				 * is not needed when a T_EXDATA_IND is sent up.
10803 				 * However, if there are allocation failures
10804 				 * this code relies on the sender retransmitting
10805 				 * and the socket code for determining the mark
10806 				 * should not block waiting for the peer to
10807 				 * transmit. Thus, for simplicity we always
10808 				 * send up the mark indication.
10809 				 */
10810 				mp1 = allocb(0, BPRI_MED);
10811 				if (mp1 == NULL) {
10812 					freemsg(mp);
10813 					return;
10814 				}
10815 				if (!TCP_IS_DETACHED(tcp) &&
10816 				    !putnextctl1(connp->conn_rq, M_PCSIG,
10817 				    SIGURG)) {
10818 					/* Try again on the rexmit. */
10819 					freemsg(mp1);
10820 					freemsg(mp);
10821 					return;
10822 				}
10823 				/*
10824 				 * Mark with NOTMARKNEXT for now.
10825 				 * The code below will change this to MARKNEXT
10826 				 * if we are at the mark.
10827 				 *
10828 				 * If there are allocation failures (e.g. in
10829 				 * dupmsg below) the next time tcp_rput_data
10830 				 * sees the urgent segment it will send up the
10831 				 * MSGMARKNEXT message.
10832 				 */
10833 				mp1->b_flag |= MSGNOTMARKNEXT;
10834 				freemsg(tcp->tcp_urp_mark_mp);
10835 				tcp->tcp_urp_mark_mp = mp1;
10836 				flags |= TH_SEND_URP_MARK;
10837 #ifdef DEBUG
10838 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
10839 				    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
10840 				    "last %x, %s",
10841 				    seg_seq, urp, tcp->tcp_urp_last,
10842 				    tcp_display(tcp, NULL, DISP_PORT_ONLY));
10843 #endif /* DEBUG */
10844 			}
10845 			tcp->tcp_urp_last_valid = B_TRUE;
10846 			tcp->tcp_urp_last = urp + seg_seq;
10847 		} else if (tcp->tcp_urp_mark_mp != NULL) {
10848 			/*
10849 			 * An allocation failure prevented the previous
10850 			 * tcp_input_data from sending up the allocated
10851 			 * MSG*MARKNEXT message - send it up this time
10852 			 * around.
10853 			 */
10854 			flags |= TH_SEND_URP_MARK;
10855 		}
10856 
10857 		/*
10858 		 * If the urgent byte is in this segment, make sure that it is
10859 		 * all by itself.  This makes it much easier to deal with the
10860 		 * possibility of an allocation failure on the T_exdata_ind.
10861 		 * Note that seg_len is the number of bytes in the segment, and
10862 		 * urp is the offset into the segment of the urgent byte.
10863 		 * urp < seg_len means that the urgent byte is in this segment.
10864 		 */
10865 		if (urp < seg_len) {
10866 			if (seg_len != 1) {
10867 				uint32_t  tmp_rnxt;
10868 				/*
10869 				 * Break it up and feed it back in.
10870 				 * Re-attach the IP header.
10871 				 */
10872 				mp->b_rptr = iphdr;
10873 				if (urp > 0) {
10874 					/*
10875 					 * There is stuff before the urgent
10876 					 * byte.
10877 					 */
10878 					mp1 = dupmsg(mp);
10879 					if (!mp1) {
10880 						/*
10881 						 * Trim from urgent byte on.
10882 						 * The rest will come back.
10883 						 */
10884 						(void) adjmsg(mp,
10885 						    urp - seg_len);
10886 						tcp_input_data(connp,
10887 						    mp, NULL, ira);
10888 						return;
10889 					}
10890 					(void) adjmsg(mp1, urp - seg_len);
10891 					/* Feed this piece back in. */
10892 					tmp_rnxt = tcp->tcp_rnxt;
10893 					tcp_input_data(connp, mp1, NULL, ira);
10894 					/*
10895 					 * If the data passed back in was not
10896 					 * processed (ie: bad ACK) sending
10897 					 * the remainder back in will cause a
10898 					 * loop. In this case, drop the
10899 					 * packet and let the sender try
10900 					 * sending a good packet.
10901 					 */
10902 					if (tmp_rnxt == tcp->tcp_rnxt) {
10903 						freemsg(mp);
10904 						return;
10905 					}
10906 				}
10907 				if (urp != seg_len - 1) {
10908 					uint32_t  tmp_rnxt;
10909 					/*
10910 					 * There is stuff after the urgent
10911 					 * byte.
10912 					 */
10913 					mp1 = dupmsg(mp);
10914 					if (!mp1) {
10915 						/*
10916 						 * Trim everything beyond the
10917 						 * urgent byte.  The rest will
10918 						 * come back.
10919 						 */
10920 						(void) adjmsg(mp,
10921 						    urp + 1 - seg_len);
10922 						tcp_input_data(connp,
10923 						    mp, NULL, ira);
10924 						return;
10925 					}
10926 					(void) adjmsg(mp1, urp + 1 - seg_len);
10927 					tmp_rnxt = tcp->tcp_rnxt;
10928 					tcp_input_data(connp, mp1, NULL, ira);
10929 					/*
10930 					 * If the data passed back in was not
10931 					 * processed (ie: bad ACK) sending
10932 					 * the remainder back in will cause a
10933 					 * loop. In this case, drop the
10934 					 * packet and let the sender try
10935 					 * sending a good packet.
10936 					 */
10937 					if (tmp_rnxt == tcp->tcp_rnxt) {
10938 						freemsg(mp);
10939 						return;
10940 					}
10941 				}
10942 				tcp_input_data(connp, mp, NULL, ira);
10943 				return;
10944 			}
10945 			/*
10946 			 * This segment contains only the urgent byte.  We
10947 			 * have to allocate the T_exdata_ind, if we can.
10948 			 */
10949 			if (IPCL_IS_NONSTR(connp)) {
10950 				int error;
10951 
10952 				(*connp->conn_upcalls->su_recv)
10953 				    (connp->conn_upper_handle, mp, seg_len,
10954 				    MSG_OOB, &error, NULL);
10955 				/*
10956 				 * We should never be in middle of a
10957 				 * fallback, the squeue guarantees that.
10958 				 */
10959 				ASSERT(error != EOPNOTSUPP);
10960 				mp = NULL;
10961 				goto update_ack;
10962 			} else if (!tcp->tcp_urp_mp) {
10963 				struct T_exdata_ind *tei;
10964 				mp1 = allocb(sizeof (struct T_exdata_ind),
10965 				    BPRI_MED);
10966 				if (!mp1) {
10967 					/*
10968 					 * Sigh... It'll be back.
10969 					 * Generate any MSG*MARK message now.
10970 					 */
10971 					freemsg(mp);
10972 					seg_len = 0;
10973 					if (flags & TH_SEND_URP_MARK) {
10974 
10975 
10976 						ASSERT(tcp->tcp_urp_mark_mp);
10977 						tcp->tcp_urp_mark_mp->b_flag &=
10978 						    ~MSGNOTMARKNEXT;
10979 						tcp->tcp_urp_mark_mp->b_flag |=
10980 						    MSGMARKNEXT;
10981 					}
10982 					goto ack_check;
10983 				}
10984 				mp1->b_datap->db_type = M_PROTO;
10985 				tei = (struct T_exdata_ind *)mp1->b_rptr;
10986 				tei->PRIM_type = T_EXDATA_IND;
10987 				tei->MORE_flag = 0;
10988 				mp1->b_wptr = (uchar_t *)&tei[1];
10989 				tcp->tcp_urp_mp = mp1;
10990 #ifdef DEBUG
10991 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
10992 				    "tcp_rput: allocated exdata_ind %s",
10993 				    tcp_display(tcp, NULL,
10994 				    DISP_PORT_ONLY));
10995 #endif /* DEBUG */
10996 				/*
10997 				 * There is no need to send a separate MSG*MARK
10998 				 * message since the T_EXDATA_IND will be sent
10999 				 * now.
11000 				 */
11001 				flags &= ~TH_SEND_URP_MARK;
11002 				freemsg(tcp->tcp_urp_mark_mp);
11003 				tcp->tcp_urp_mark_mp = NULL;
11004 			}
11005 			/*
11006 			 * Now we are all set.  On the next putnext upstream,
11007 			 * tcp_urp_mp will be non-NULL and will get prepended
11008 			 * to what has to be this piece containing the urgent
11009 			 * byte.  If for any reason we abort this segment below,
11010 			 * if it comes back, we will have this ready, or it
11011 			 * will get blown off in close.
11012 			 */
11013 		} else if (urp == seg_len) {
11014 			/*
11015 			 * The urgent byte is the next byte after this sequence
11016 			 * number. If this endpoint is non-STREAMS, then there
11017 			 * is nothing to do here since the socket has already
11018 			 * been notified about the urg pointer by the
11019 			 * su_signal_oob call above.
11020 			 *
11021 			 * In case of STREAMS, some more work might be needed.
11022 			 * If there is data it is marked with MSGMARKNEXT and
11023 			 * and any tcp_urp_mark_mp is discarded since it is not
11024 			 * needed. Otherwise, if the code above just allocated
11025 			 * a zero-length tcp_urp_mark_mp message, that message
11026 			 * is tagged with MSGMARKNEXT. Sending up these
11027 			 * MSGMARKNEXT messages makes SIOCATMARK work correctly
11028 			 * even though the T_EXDATA_IND will not be sent up
11029 			 * until the urgent byte arrives.
11030 			 */
11031 			if (!IPCL_IS_NONSTR(tcp->tcp_connp)) {
11032 				if (seg_len != 0) {
11033 					flags |= TH_MARKNEXT_NEEDED;
11034 					freemsg(tcp->tcp_urp_mark_mp);
11035 					tcp->tcp_urp_mark_mp = NULL;
11036 					flags &= ~TH_SEND_URP_MARK;
11037 				} else if (tcp->tcp_urp_mark_mp != NULL) {
11038 					flags |= TH_SEND_URP_MARK;
11039 					tcp->tcp_urp_mark_mp->b_flag &=
11040 					    ~MSGNOTMARKNEXT;
11041 					tcp->tcp_urp_mark_mp->b_flag |=
11042 					    MSGMARKNEXT;
11043 				}
11044 			}
11045 #ifdef DEBUG
11046 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
11047 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
11048 			    seg_len, flags,
11049 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
11050 #endif /* DEBUG */
11051 		}
11052 #ifdef DEBUG
11053 		else {
11054 			/* Data left until we hit mark */
11055 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
11056 			    "tcp_rput: URP %d bytes left, %s",
11057 			    urp - seg_len, tcp_display(tcp, NULL,
11058 			    DISP_PORT_ONLY));
11059 		}
11060 #endif /* DEBUG */
11061 	}
11062 
11063 process_ack:
11064 	if (!(flags & TH_ACK)) {
11065 		freemsg(mp);
11066 		goto xmit_check;
11067 	}
11068 	}
11069 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
11070 
11071 	if (bytes_acked > 0)
11072 		tcp->tcp_ip_forward_progress = B_TRUE;
11073 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
11074 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
11075 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
11076 			/* 3-way handshake complete - pass up the T_CONN_IND */
11077 			tcp_t	*listener = tcp->tcp_listener;
11078 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
11079 
11080 			tcp->tcp_tconnind_started = B_TRUE;
11081 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
11082 			/*
11083 			 * We are here means eager is fine but it can
11084 			 * get a TH_RST at any point between now and till
11085 			 * accept completes and disappear. We need to
11086 			 * ensure that reference to eager is valid after
11087 			 * we get out of eager's perimeter. So we do
11088 			 * an extra refhold.
11089 			 */
11090 			CONN_INC_REF(connp);
11091 
11092 			/*
11093 			 * The listener also exists because of the refhold
11094 			 * done in tcp_input_listener. Its possible that it
11095 			 * might have closed. We will check that once we
11096 			 * get inside listeners context.
11097 			 */
11098 			CONN_INC_REF(listener->tcp_connp);
11099 			if (listener->tcp_connp->conn_sqp ==
11100 			    connp->conn_sqp) {
11101 				/*
11102 				 * We optimize by not calling an SQUEUE_ENTER
11103 				 * on the listener since we know that the
11104 				 * listener and eager squeues are the same.
11105 				 * We are able to make this check safely only
11106 				 * because neither the eager nor the listener
11107 				 * can change its squeue. Only an active connect
11108 				 * can change its squeue
11109 				 */
11110 				tcp_send_conn_ind(listener->tcp_connp, mp,
11111 				    listener->tcp_connp->conn_sqp);
11112 				CONN_DEC_REF(listener->tcp_connp);
11113 			} else if (!tcp->tcp_loopback) {
11114 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
11115 				    mp, tcp_send_conn_ind,
11116 				    listener->tcp_connp, NULL, SQ_FILL,
11117 				    SQTAG_TCP_CONN_IND);
11118 			} else {
11119 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
11120 				    mp, tcp_send_conn_ind,
11121 				    listener->tcp_connp, NULL, SQ_PROCESS,
11122 				    SQTAG_TCP_CONN_IND);
11123 			}
11124 		}
11125 
11126 		/*
11127 		 * We are seeing the final ack in the three way
11128 		 * hand shake of a active open'ed connection
11129 		 * so we must send up a T_CONN_CON
11130 		 *
11131 		 * tcp_sendmsg() checks tcp_state without entering
11132 		 * the squeue so tcp_state should be updated before
11133 		 * sending up connection confirmation.
11134 		 */
11135 		tcp->tcp_state = TCPS_ESTABLISHED;
11136 		if (tcp->tcp_active_open) {
11137 			if (!tcp_conn_con(tcp, iphdr, mp, NULL, ira)) {
11138 				freemsg(mp);
11139 				tcp->tcp_state = TCPS_SYN_RCVD;
11140 				return;
11141 			}
11142 			/*
11143 			 * Don't fuse the loopback endpoints for
11144 			 * simultaneous active opens.
11145 			 */
11146 			if (tcp->tcp_loopback) {
11147 				TCP_STAT(tcps, tcp_fusion_unfusable);
11148 				tcp->tcp_unfusable = B_TRUE;
11149 			}
11150 		}
11151 
11152 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
11153 		bytes_acked--;
11154 		/* SYN was acked - making progress */
11155 		tcp->tcp_ip_forward_progress = B_TRUE;
11156 
11157 		/*
11158 		 * If SYN was retransmitted, need to reset all
11159 		 * retransmission info as this segment will be
11160 		 * treated as a dup ACK.
11161 		 */
11162 		if (tcp->tcp_rexmit) {
11163 			tcp->tcp_rexmit = B_FALSE;
11164 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
11165 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
11166 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
11167 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
11168 			tcp->tcp_ms_we_have_waited = 0;
11169 			tcp->tcp_cwnd = mss;
11170 		}
11171 
11172 		/*
11173 		 * We set the send window to zero here.
11174 		 * This is needed if there is data to be
11175 		 * processed already on the queue.
11176 		 * Later (at swnd_update label), the
11177 		 * "new_swnd > tcp_swnd" condition is satisfied
11178 		 * the XMIT_NEEDED flag is set in the current
11179 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
11180 		 * called if there is already data on queue in
11181 		 * this state.
11182 		 */
11183 		tcp->tcp_swnd = 0;
11184 
11185 		if (new_swnd > tcp->tcp_max_swnd)
11186 			tcp->tcp_max_swnd = new_swnd;
11187 		tcp->tcp_swl1 = seg_seq;
11188 		tcp->tcp_swl2 = seg_ack;
11189 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
11190 
11191 		/* Fuse when both sides are in ESTABLISHED state */
11192 		if (tcp->tcp_loopback && do_tcp_fusion)
11193 			tcp_fuse(tcp, iphdr, tcpha);
11194 
11195 	}
11196 	/* This code follows 4.4BSD-Lite2 mostly. */
11197 	if (bytes_acked < 0)
11198 		goto est;
11199 
11200 	/*
11201 	 * If TCP is ECN capable and the congestion experience bit is
11202 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
11203 	 * done once per window (or more loosely, per RTT).
11204 	 */
11205 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
11206 		tcp->tcp_cwr = B_FALSE;
11207 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
11208 		if (!tcp->tcp_cwr) {
11209 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
11210 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
11211 			tcp->tcp_cwnd = npkt * mss;
11212 			/*
11213 			 * If the cwnd is 0, use the timer to clock out
11214 			 * new segments.  This is required by the ECN spec.
11215 			 */
11216 			if (npkt == 0) {
11217 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
11218 				/*
11219 				 * This makes sure that when the ACK comes
11220 				 * back, we will increase tcp_cwnd by 1 MSS.
11221 				 */
11222 				tcp->tcp_cwnd_cnt = 0;
11223 			}
11224 			tcp->tcp_cwr = B_TRUE;
11225 			/*
11226 			 * This marks the end of the current window of in
11227 			 * flight data.  That is why we don't use
11228 			 * tcp_suna + tcp_swnd.  Only data in flight can
11229 			 * provide ECN info.
11230 			 */
11231 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
11232 			tcp->tcp_ecn_cwr_sent = B_FALSE;
11233 		}
11234 	}
11235 
11236 	mp1 = tcp->tcp_xmit_head;
11237 	if (bytes_acked == 0) {
11238 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
11239 			int dupack_cnt;
11240 
11241 			BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
11242 			/*
11243 			 * Fast retransmit.  When we have seen exactly three
11244 			 * identical ACKs while we have unacked data
11245 			 * outstanding we take it as a hint that our peer
11246 			 * dropped something.
11247 			 *
11248 			 * If TCP is retransmitting, don't do fast retransmit.
11249 			 */
11250 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
11251 			    ! tcp->tcp_rexmit) {
11252 				/* Do Limited Transmit */
11253 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
11254 				    tcps->tcps_dupack_fast_retransmit) {
11255 					/*
11256 					 * RFC 3042
11257 					 *
11258 					 * What we need to do is temporarily
11259 					 * increase tcp_cwnd so that new
11260 					 * data can be sent if it is allowed
11261 					 * by the receive window (tcp_rwnd).
11262 					 * tcp_wput_data() will take care of
11263 					 * the rest.
11264 					 *
11265 					 * If the connection is SACK capable,
11266 					 * only do limited xmit when there
11267 					 * is SACK info.
11268 					 *
11269 					 * Note how tcp_cwnd is incremented.
11270 					 * The first dup ACK will increase
11271 					 * it by 1 MSS.  The second dup ACK
11272 					 * will increase it by 2 MSS.  This
11273 					 * means that only 1 new segment will
11274 					 * be sent for each dup ACK.
11275 					 */
11276 					if (tcp->tcp_unsent > 0 &&
11277 					    (!tcp->tcp_snd_sack_ok ||
11278 					    (tcp->tcp_snd_sack_ok &&
11279 					    tcp->tcp_notsack_list != NULL))) {
11280 						tcp->tcp_cwnd += mss <<
11281 						    (tcp->tcp_dupack_cnt - 1);
11282 						flags |= TH_LIMIT_XMIT;
11283 					}
11284 				} else if (dupack_cnt ==
11285 				    tcps->tcps_dupack_fast_retransmit) {
11286 
11287 				/*
11288 				 * If we have reduced tcp_ssthresh
11289 				 * because of ECN, do not reduce it again
11290 				 * unless it is already one window of data
11291 				 * away.  After one window of data, tcp_cwr
11292 				 * should then be cleared.  Note that
11293 				 * for non ECN capable connection, tcp_cwr
11294 				 * should always be false.
11295 				 *
11296 				 * Adjust cwnd since the duplicate
11297 				 * ack indicates that a packet was
11298 				 * dropped (due to congestion.)
11299 				 */
11300 				if (!tcp->tcp_cwr) {
11301 					npkt = ((tcp->tcp_snxt -
11302 					    tcp->tcp_suna) >> 1) / mss;
11303 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
11304 					    mss;
11305 					tcp->tcp_cwnd = (npkt +
11306 					    tcp->tcp_dupack_cnt) * mss;
11307 				}
11308 				if (tcp->tcp_ecn_ok) {
11309 					tcp->tcp_cwr = B_TRUE;
11310 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
11311 					tcp->tcp_ecn_cwr_sent = B_FALSE;
11312 				}
11313 
11314 				/*
11315 				 * We do Hoe's algorithm.  Refer to her
11316 				 * paper "Improving the Start-up Behavior
11317 				 * of a Congestion Control Scheme for TCP,"
11318 				 * appeared in SIGCOMM'96.
11319 				 *
11320 				 * Save highest seq no we have sent so far.
11321 				 * Be careful about the invisible FIN byte.
11322 				 */
11323 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
11324 				    (tcp->tcp_unsent == 0)) {
11325 					tcp->tcp_rexmit_max = tcp->tcp_fss;
11326 				} else {
11327 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
11328 				}
11329 
11330 				/*
11331 				 * Do not allow bursty traffic during.
11332 				 * fast recovery.  Refer to Fall and Floyd's
11333 				 * paper "Simulation-based Comparisons of
11334 				 * Tahoe, Reno and SACK TCP" (in CCR?)
11335 				 * This is a best current practise.
11336 				 */
11337 				tcp->tcp_snd_burst = TCP_CWND_SS;
11338 
11339 				/*
11340 				 * For SACK:
11341 				 * Calculate tcp_pipe, which is the
11342 				 * estimated number of bytes in
11343 				 * network.
11344 				 *
11345 				 * tcp_fack is the highest sack'ed seq num
11346 				 * TCP has received.
11347 				 *
11348 				 * tcp_pipe is explained in the above quoted
11349 				 * Fall and Floyd's paper.  tcp_fack is
11350 				 * explained in Mathis and Mahdavi's
11351 				 * "Forward Acknowledgment: Refining TCP
11352 				 * Congestion Control" in SIGCOMM '96.
11353 				 */
11354 				if (tcp->tcp_snd_sack_ok) {
11355 					ASSERT(tcp->tcp_sack_info != NULL);
11356 					if (tcp->tcp_notsack_list != NULL) {
11357 						tcp->tcp_pipe = tcp->tcp_snxt -
11358 						    tcp->tcp_fack;
11359 						tcp->tcp_sack_snxt = seg_ack;
11360 						flags |= TH_NEED_SACK_REXMIT;
11361 					} else {
11362 						/*
11363 						 * Always initialize tcp_pipe
11364 						 * even though we don't have
11365 						 * any SACK info.  If later
11366 						 * we get SACK info and
11367 						 * tcp_pipe is not initialized,
11368 						 * funny things will happen.
11369 						 */
11370 						tcp->tcp_pipe =
11371 						    tcp->tcp_cwnd_ssthresh;
11372 					}
11373 				} else {
11374 					flags |= TH_REXMIT_NEEDED;
11375 				} /* tcp_snd_sack_ok */
11376 
11377 				} else {
11378 					/*
11379 					 * Here we perform congestion
11380 					 * avoidance, but NOT slow start.
11381 					 * This is known as the Fast
11382 					 * Recovery Algorithm.
11383 					 */
11384 					if (tcp->tcp_snd_sack_ok &&
11385 					    tcp->tcp_notsack_list != NULL) {
11386 						flags |= TH_NEED_SACK_REXMIT;
11387 						tcp->tcp_pipe -= mss;
11388 						if (tcp->tcp_pipe < 0)
11389 							tcp->tcp_pipe = 0;
11390 					} else {
11391 					/*
11392 					 * We know that one more packet has
11393 					 * left the pipe thus we can update
11394 					 * cwnd.
11395 					 */
11396 					cwnd = tcp->tcp_cwnd + mss;
11397 					if (cwnd > tcp->tcp_cwnd_max)
11398 						cwnd = tcp->tcp_cwnd_max;
11399 					tcp->tcp_cwnd = cwnd;
11400 					if (tcp->tcp_unsent > 0)
11401 						flags |= TH_XMIT_NEEDED;
11402 					}
11403 				}
11404 			}
11405 		} else if (tcp->tcp_zero_win_probe) {
11406 			/*
11407 			 * If the window has opened, need to arrange
11408 			 * to send additional data.
11409 			 */
11410 			if (new_swnd != 0) {
11411 				/* tcp_suna != tcp_snxt */
11412 				/* Packet contains a window update */
11413 				BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate);
11414 				tcp->tcp_zero_win_probe = 0;
11415 				tcp->tcp_timer_backoff = 0;
11416 				tcp->tcp_ms_we_have_waited = 0;
11417 
11418 				/*
11419 				 * Transmit starting with tcp_suna since
11420 				 * the one byte probe is not ack'ed.
11421 				 * If TCP has sent more than one identical
11422 				 * probe, tcp_rexmit will be set.  That means
11423 				 * tcp_ss_rexmit() will send out the one
11424 				 * byte along with new data.  Otherwise,
11425 				 * fake the retransmission.
11426 				 */
11427 				flags |= TH_XMIT_NEEDED;
11428 				if (!tcp->tcp_rexmit) {
11429 					tcp->tcp_rexmit = B_TRUE;
11430 					tcp->tcp_dupack_cnt = 0;
11431 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
11432 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
11433 				}
11434 			}
11435 		}
11436 		goto swnd_update;
11437 	}
11438 
11439 	/*
11440 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
11441 	 * If the ACK value acks something that we have not yet sent, it might
11442 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
11443 	 * other side.
11444 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
11445 	 * state is handled above, so we can always just drop the segment and
11446 	 * send an ACK here.
11447 	 *
11448 	 * In the case where the peer shrinks the window, we see the new window
11449 	 * update, but all the data sent previously is queued up by the peer.
11450 	 * To account for this, in tcp_process_shrunk_swnd(), the sequence
11451 	 * number, which was already sent, and within window, is recorded.
11452 	 * tcp_snxt is then updated.
11453 	 *
11454 	 * If the window has previously shrunk, and an ACK for data not yet
11455 	 * sent, according to tcp_snxt is recieved, it may still be valid. If
11456 	 * the ACK is for data within the window at the time the window was
11457 	 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to
11458 	 * the sequence number ACK'ed.
11459 	 *
11460 	 * If the ACK covers all the data sent at the time the window was
11461 	 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE.
11462 	 *
11463 	 * Should we send ACKs in response to ACK only segments?
11464 	 */
11465 
11466 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
11467 		if ((tcp->tcp_is_wnd_shrnk) &&
11468 		    (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) {
11469 			uint32_t data_acked_ahead_snxt;
11470 
11471 			data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt;
11472 			tcp_update_xmit_tail(tcp, seg_ack);
11473 			tcp->tcp_unsent -= data_acked_ahead_snxt;
11474 		} else {
11475 			BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent);
11476 			/* drop the received segment */
11477 			freemsg(mp);
11478 
11479 			/*
11480 			 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
11481 			 * greater than 0, check if the number of such
11482 			 * bogus ACks is greater than that count.  If yes,
11483 			 * don't send back any ACK.  This prevents TCP from
11484 			 * getting into an ACK storm if somehow an attacker
11485 			 * successfully spoofs an acceptable segment to our
11486 			 * peer.
11487 			 */
11488 			if (tcp_drop_ack_unsent_cnt > 0 &&
11489 			    ++tcp->tcp_in_ack_unsent >
11490 			    tcp_drop_ack_unsent_cnt) {
11491 				TCP_STAT(tcps, tcp_in_ack_unsent_drop);
11492 				return;
11493 			}
11494 			mp = tcp_ack_mp(tcp);
11495 			if (mp != NULL) {
11496 				BUMP_LOCAL(tcp->tcp_obsegs);
11497 				BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
11498 				tcp_send_data(tcp, mp);
11499 			}
11500 			return;
11501 		}
11502 	} else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack,
11503 	    tcp->tcp_snxt_shrunk)) {
11504 			tcp->tcp_is_wnd_shrnk = B_FALSE;
11505 	}
11506 
11507 	/*
11508 	 * TCP gets a new ACK, update the notsack'ed list to delete those
11509 	 * blocks that are covered by this ACK.
11510 	 */
11511 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
11512 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
11513 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
11514 	}
11515 
11516 	/*
11517 	 * If we got an ACK after fast retransmit, check to see
11518 	 * if it is a partial ACK.  If it is not and the congestion
11519 	 * window was inflated to account for the other side's
11520 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
11521 	 */
11522 	if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
11523 		ASSERT(tcp->tcp_rexmit == B_FALSE);
11524 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
11525 			tcp->tcp_dupack_cnt = 0;
11526 			/*
11527 			 * Restore the orig tcp_cwnd_ssthresh after
11528 			 * fast retransmit phase.
11529 			 */
11530 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
11531 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
11532 			}
11533 			tcp->tcp_rexmit_max = seg_ack;
11534 			tcp->tcp_cwnd_cnt = 0;
11535 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
11536 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
11537 
11538 			/*
11539 			 * Remove all notsack info to avoid confusion with
11540 			 * the next fast retrasnmit/recovery phase.
11541 			 */
11542 			if (tcp->tcp_snd_sack_ok &&
11543 			    tcp->tcp_notsack_list != NULL) {
11544 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list,
11545 				    tcp);
11546 			}
11547 		} else {
11548 			if (tcp->tcp_snd_sack_ok &&
11549 			    tcp->tcp_notsack_list != NULL) {
11550 				flags |= TH_NEED_SACK_REXMIT;
11551 				tcp->tcp_pipe -= mss;
11552 				if (tcp->tcp_pipe < 0)
11553 					tcp->tcp_pipe = 0;
11554 			} else {
11555 				/*
11556 				 * Hoe's algorithm:
11557 				 *
11558 				 * Retransmit the unack'ed segment and
11559 				 * restart fast recovery.  Note that we
11560 				 * need to scale back tcp_cwnd to the
11561 				 * original value when we started fast
11562 				 * recovery.  This is to prevent overly
11563 				 * aggressive behaviour in sending new
11564 				 * segments.
11565 				 */
11566 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
11567 				    tcps->tcps_dupack_fast_retransmit * mss;
11568 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
11569 				flags |= TH_REXMIT_NEEDED;
11570 			}
11571 		}
11572 	} else {
11573 		tcp->tcp_dupack_cnt = 0;
11574 		if (tcp->tcp_rexmit) {
11575 			/*
11576 			 * TCP is retranmitting.  If the ACK ack's all
11577 			 * outstanding data, update tcp_rexmit_max and
11578 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
11579 			 * to the correct value.
11580 			 *
11581 			 * Note that SEQ_LEQ() is used.  This is to avoid
11582 			 * unnecessary fast retransmit caused by dup ACKs
11583 			 * received when TCP does slow start retransmission
11584 			 * after a time out.  During this phase, TCP may
11585 			 * send out segments which are already received.
11586 			 * This causes dup ACKs to be sent back.
11587 			 */
11588 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
11589 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
11590 					tcp->tcp_rexmit_nxt = seg_ack;
11591 				}
11592 				if (seg_ack != tcp->tcp_rexmit_max) {
11593 					flags |= TH_XMIT_NEEDED;
11594 				}
11595 			} else {
11596 				tcp->tcp_rexmit = B_FALSE;
11597 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
11598 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
11599 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
11600 			}
11601 			tcp->tcp_ms_we_have_waited = 0;
11602 		}
11603 	}
11604 
11605 	BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs);
11606 	UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked);
11607 	tcp->tcp_suna = seg_ack;
11608 	if (tcp->tcp_zero_win_probe != 0) {
11609 		tcp->tcp_zero_win_probe = 0;
11610 		tcp->tcp_timer_backoff = 0;
11611 	}
11612 
11613 	/*
11614 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
11615 	 * Note that it cannot be the SYN being ack'ed.  The code flow
11616 	 * will not reach here.
11617 	 */
11618 	if (mp1 == NULL) {
11619 		goto fin_acked;
11620 	}
11621 
11622 	/*
11623 	 * Update the congestion window.
11624 	 *
11625 	 * If TCP is not ECN capable or TCP is ECN capable but the
11626 	 * congestion experience bit is not set, increase the tcp_cwnd as
11627 	 * usual.
11628 	 */
11629 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
11630 		cwnd = tcp->tcp_cwnd;
11631 		add = mss;
11632 
11633 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
11634 			/*
11635 			 * This is to prevent an increase of less than 1 MSS of
11636 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
11637 			 * may send out tinygrams in order to preserve mblk
11638 			 * boundaries.
11639 			 *
11640 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
11641 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
11642 			 * increased by 1 MSS for every RTTs.
11643 			 */
11644 			if (tcp->tcp_cwnd_cnt <= 0) {
11645 				tcp->tcp_cwnd_cnt = cwnd + add;
11646 			} else {
11647 				tcp->tcp_cwnd_cnt -= add;
11648 				add = 0;
11649 			}
11650 		}
11651 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
11652 	}
11653 
11654 	/* See if the latest urgent data has been acknowledged */
11655 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
11656 	    SEQ_GT(seg_ack, tcp->tcp_urg))
11657 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
11658 
11659 	/* Can we update the RTT estimates? */
11660 	if (tcp->tcp_snd_ts_ok) {
11661 		/* Ignore zero timestamp echo-reply. */
11662 		if (tcpopt.tcp_opt_ts_ecr != 0) {
11663 			tcp_set_rto(tcp, (int32_t)lbolt -
11664 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
11665 		}
11666 
11667 		/* If needed, restart the timer. */
11668 		if (tcp->tcp_set_timer == 1) {
11669 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
11670 			tcp->tcp_set_timer = 0;
11671 		}
11672 		/*
11673 		 * Update tcp_csuna in case the other side stops sending
11674 		 * us timestamps.
11675 		 */
11676 		tcp->tcp_csuna = tcp->tcp_snxt;
11677 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
11678 		/*
11679 		 * An ACK sequence we haven't seen before, so get the RTT
11680 		 * and update the RTO. But first check if the timestamp is
11681 		 * valid to use.
11682 		 */
11683 		if ((mp1->b_next != NULL) &&
11684 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
11685 			tcp_set_rto(tcp, (int32_t)lbolt -
11686 			    (int32_t)(intptr_t)mp1->b_prev);
11687 		else
11688 			BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
11689 
11690 		/* Remeber the last sequence to be ACKed */
11691 		tcp->tcp_csuna = seg_ack;
11692 		if (tcp->tcp_set_timer == 1) {
11693 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
11694 			tcp->tcp_set_timer = 0;
11695 		}
11696 	} else {
11697 		BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
11698 	}
11699 
11700 	/* Eat acknowledged bytes off the xmit queue. */
11701 	for (;;) {
11702 		mblk_t	*mp2;
11703 		uchar_t	*wptr;
11704 
11705 		wptr = mp1->b_wptr;
11706 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
11707 		bytes_acked -= (int)(wptr - mp1->b_rptr);
11708 		if (bytes_acked < 0) {
11709 			mp1->b_rptr = wptr + bytes_acked;
11710 			/*
11711 			 * Set a new timestamp if all the bytes timed by the
11712 			 * old timestamp have been ack'ed.
11713 			 */
11714 			if (SEQ_GT(seg_ack,
11715 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
11716 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
11717 				mp1->b_next = NULL;
11718 			}
11719 			break;
11720 		}
11721 		mp1->b_next = NULL;
11722 		mp1->b_prev = NULL;
11723 		mp2 = mp1;
11724 		mp1 = mp1->b_cont;
11725 
11726 		/*
11727 		 * This notification is required for some zero-copy
11728 		 * clients to maintain a copy semantic. After the data
11729 		 * is ack'ed, client is safe to modify or reuse the buffer.
11730 		 */
11731 		if (tcp->tcp_snd_zcopy_aware &&
11732 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
11733 			tcp_zcopy_notify(tcp);
11734 		freeb(mp2);
11735 		if (bytes_acked == 0) {
11736 			if (mp1 == NULL) {
11737 				/* Everything is ack'ed, clear the tail. */
11738 				tcp->tcp_xmit_tail = NULL;
11739 				/*
11740 				 * Cancel the timer unless we are still
11741 				 * waiting for an ACK for the FIN packet.
11742 				 */
11743 				if (tcp->tcp_timer_tid != 0 &&
11744 				    tcp->tcp_snxt == tcp->tcp_suna) {
11745 					(void) TCP_TIMER_CANCEL(tcp,
11746 					    tcp->tcp_timer_tid);
11747 					tcp->tcp_timer_tid = 0;
11748 				}
11749 				goto pre_swnd_update;
11750 			}
11751 			if (mp2 != tcp->tcp_xmit_tail)
11752 				break;
11753 			tcp->tcp_xmit_tail = mp1;
11754 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
11755 			    (uintptr_t)INT_MAX);
11756 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
11757 			    mp1->b_rptr);
11758 			break;
11759 		}
11760 		if (mp1 == NULL) {
11761 			/*
11762 			 * More was acked but there is nothing more
11763 			 * outstanding.  This means that the FIN was
11764 			 * just acked or that we're talking to a clown.
11765 			 */
11766 fin_acked:
11767 			ASSERT(tcp->tcp_fin_sent);
11768 			tcp->tcp_xmit_tail = NULL;
11769 			if (tcp->tcp_fin_sent) {
11770 				/* FIN was acked - making progress */
11771 				if (!tcp->tcp_fin_acked)
11772 					tcp->tcp_ip_forward_progress = B_TRUE;
11773 				tcp->tcp_fin_acked = B_TRUE;
11774 				if (tcp->tcp_linger_tid != 0 &&
11775 				    TCP_TIMER_CANCEL(tcp,
11776 				    tcp->tcp_linger_tid) >= 0) {
11777 					tcp_stop_lingering(tcp);
11778 					freemsg(mp);
11779 					mp = NULL;
11780 				}
11781 			} else {
11782 				/*
11783 				 * We should never get here because
11784 				 * we have already checked that the
11785 				 * number of bytes ack'ed should be
11786 				 * smaller than or equal to what we
11787 				 * have sent so far (it is the
11788 				 * acceptability check of the ACK).
11789 				 * We can only get here if the send
11790 				 * queue is corrupted.
11791 				 *
11792 				 * Terminate the connection and
11793 				 * panic the system.  It is better
11794 				 * for us to panic instead of
11795 				 * continuing to avoid other disaster.
11796 				 */
11797 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
11798 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
11799 				panic("Memory corruption "
11800 				    "detected for connection %s.",
11801 				    tcp_display(tcp, NULL,
11802 				    DISP_ADDR_AND_PORT));
11803 				/*NOTREACHED*/
11804 			}
11805 			goto pre_swnd_update;
11806 		}
11807 		ASSERT(mp2 != tcp->tcp_xmit_tail);
11808 	}
11809 	if (tcp->tcp_unsent) {
11810 		flags |= TH_XMIT_NEEDED;
11811 	}
11812 pre_swnd_update:
11813 	tcp->tcp_xmit_head = mp1;
11814 swnd_update:
11815 	/*
11816 	 * The following check is different from most other implementations.
11817 	 * For bi-directional transfer, when segments are dropped, the
11818 	 * "normal" check will not accept a window update in those
11819 	 * retransmitted segemnts.  Failing to do that, TCP may send out
11820 	 * segments which are outside receiver's window.  As TCP accepts
11821 	 * the ack in those retransmitted segments, if the window update in
11822 	 * the same segment is not accepted, TCP will incorrectly calculates
11823 	 * that it can send more segments.  This can create a deadlock
11824 	 * with the receiver if its window becomes zero.
11825 	 */
11826 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
11827 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
11828 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
11829 		/*
11830 		 * The criteria for update is:
11831 		 *
11832 		 * 1. the segment acknowledges some data.  Or
11833 		 * 2. the segment is new, i.e. it has a higher seq num. Or
11834 		 * 3. the segment is not old and the advertised window is
11835 		 * larger than the previous advertised window.
11836 		 */
11837 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
11838 			flags |= TH_XMIT_NEEDED;
11839 		tcp->tcp_swnd = new_swnd;
11840 		if (new_swnd > tcp->tcp_max_swnd)
11841 			tcp->tcp_max_swnd = new_swnd;
11842 		tcp->tcp_swl1 = seg_seq;
11843 		tcp->tcp_swl2 = seg_ack;
11844 	}
11845 est:
11846 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
11847 
11848 		switch (tcp->tcp_state) {
11849 		case TCPS_FIN_WAIT_1:
11850 			if (tcp->tcp_fin_acked) {
11851 				tcp->tcp_state = TCPS_FIN_WAIT_2;
11852 				/*
11853 				 * We implement the non-standard BSD/SunOS
11854 				 * FIN_WAIT_2 flushing algorithm.
11855 				 * If there is no user attached to this
11856 				 * TCP endpoint, then this TCP struct
11857 				 * could hang around forever in FIN_WAIT_2
11858 				 * state if the peer forgets to send us
11859 				 * a FIN.  To prevent this, we wait only
11860 				 * 2*MSL (a convenient time value) for
11861 				 * the FIN to arrive.  If it doesn't show up,
11862 				 * we flush the TCP endpoint.  This algorithm,
11863 				 * though a violation of RFC-793, has worked
11864 				 * for over 10 years in BSD systems.
11865 				 * Note: SunOS 4.x waits 675 seconds before
11866 				 * flushing the FIN_WAIT_2 connection.
11867 				 */
11868 				TCP_TIMER_RESTART(tcp,
11869 				    tcps->tcps_fin_wait_2_flush_interval);
11870 			}
11871 			break;
11872 		case TCPS_FIN_WAIT_2:
11873 			break;	/* Shutdown hook? */
11874 		case TCPS_LAST_ACK:
11875 			freemsg(mp);
11876 			if (tcp->tcp_fin_acked) {
11877 				(void) tcp_clean_death(tcp, 0, 19);
11878 				return;
11879 			}
11880 			goto xmit_check;
11881 		case TCPS_CLOSING:
11882 			if (tcp->tcp_fin_acked) {
11883 				tcp->tcp_state = TCPS_TIME_WAIT;
11884 				/*
11885 				 * Unconditionally clear the exclusive binding
11886 				 * bit so this TIME-WAIT connection won't
11887 				 * interfere with new ones.
11888 				 */
11889 				connp->conn_exclbind = 0;
11890 				if (!TCP_IS_DETACHED(tcp)) {
11891 					TCP_TIMER_RESTART(tcp,
11892 					    tcps->tcps_time_wait_interval);
11893 				} else {
11894 					tcp_time_wait_append(tcp);
11895 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
11896 				}
11897 			}
11898 			/*FALLTHRU*/
11899 		case TCPS_CLOSE_WAIT:
11900 			freemsg(mp);
11901 			goto xmit_check;
11902 		default:
11903 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
11904 			break;
11905 		}
11906 	}
11907 	if (flags & TH_FIN) {
11908 		/* Make sure we ack the fin */
11909 		flags |= TH_ACK_NEEDED;
11910 		if (!tcp->tcp_fin_rcvd) {
11911 			tcp->tcp_fin_rcvd = B_TRUE;
11912 			tcp->tcp_rnxt++;
11913 			tcpha = tcp->tcp_tcpha;
11914 			tcpha->tha_ack = htonl(tcp->tcp_rnxt);
11915 
11916 			/*
11917 			 * Generate the ordrel_ind at the end unless we
11918 			 * are an eager guy.
11919 			 * In the eager case tcp_rsrv will do this when run
11920 			 * after tcp_accept is done.
11921 			 */
11922 			if (tcp->tcp_listener == NULL &&
11923 			    !TCP_IS_DETACHED(tcp) && !tcp->tcp_hard_binding)
11924 				flags |= TH_ORDREL_NEEDED;
11925 			switch (tcp->tcp_state) {
11926 			case TCPS_SYN_RCVD:
11927 			case TCPS_ESTABLISHED:
11928 				tcp->tcp_state = TCPS_CLOSE_WAIT;
11929 				/* Keepalive? */
11930 				break;
11931 			case TCPS_FIN_WAIT_1:
11932 				if (!tcp->tcp_fin_acked) {
11933 					tcp->tcp_state = TCPS_CLOSING;
11934 					break;
11935 				}
11936 				/* FALLTHRU */
11937 			case TCPS_FIN_WAIT_2:
11938 				tcp->tcp_state = TCPS_TIME_WAIT;
11939 				/*
11940 				 * Unconditionally clear the exclusive binding
11941 				 * bit so this TIME-WAIT connection won't
11942 				 * interfere with new ones.
11943 				 */
11944 				connp->conn_exclbind = 0;
11945 				if (!TCP_IS_DETACHED(tcp)) {
11946 					TCP_TIMER_RESTART(tcp,
11947 					    tcps->tcps_time_wait_interval);
11948 				} else {
11949 					tcp_time_wait_append(tcp);
11950 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
11951 				}
11952 				if (seg_len) {
11953 					/*
11954 					 * implies data piggybacked on FIN.
11955 					 * break to handle data.
11956 					 */
11957 					break;
11958 				}
11959 				freemsg(mp);
11960 				goto ack_check;
11961 			}
11962 		}
11963 	}
11964 	if (mp == NULL)
11965 		goto xmit_check;
11966 	if (seg_len == 0) {
11967 		freemsg(mp);
11968 		goto xmit_check;
11969 	}
11970 	if (mp->b_rptr == mp->b_wptr) {
11971 		/*
11972 		 * The header has been consumed, so we remove the
11973 		 * zero-length mblk here.
11974 		 */
11975 		mp1 = mp;
11976 		mp = mp->b_cont;
11977 		freeb(mp1);
11978 	}
11979 update_ack:
11980 	tcpha = tcp->tcp_tcpha;
11981 	tcp->tcp_rack_cnt++;
11982 	{
11983 		uint32_t cur_max;
11984 
11985 		cur_max = tcp->tcp_rack_cur_max;
11986 		if (tcp->tcp_rack_cnt >= cur_max) {
11987 			/*
11988 			 * We have more unacked data than we should - send
11989 			 * an ACK now.
11990 			 */
11991 			flags |= TH_ACK_NEEDED;
11992 			cur_max++;
11993 			if (cur_max > tcp->tcp_rack_abs_max)
11994 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
11995 			else
11996 				tcp->tcp_rack_cur_max = cur_max;
11997 		} else if (TCP_IS_DETACHED(tcp)) {
11998 			/* We don't have an ACK timer for detached TCP. */
11999 			flags |= TH_ACK_NEEDED;
12000 		} else if (seg_len < mss) {
12001 			/*
12002 			 * If we get a segment that is less than an mss, and we
12003 			 * already have unacknowledged data, and the amount
12004 			 * unacknowledged is not a multiple of mss, then we
12005 			 * better generate an ACK now.  Otherwise, this may be
12006 			 * the tail piece of a transaction, and we would rather
12007 			 * wait for the response.
12008 			 */
12009 			uint32_t udif;
12010 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
12011 			    (uintptr_t)INT_MAX);
12012 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
12013 			if (udif && (udif % mss))
12014 				flags |= TH_ACK_NEEDED;
12015 			else
12016 				flags |= TH_ACK_TIMER_NEEDED;
12017 		} else {
12018 			/* Start delayed ack timer */
12019 			flags |= TH_ACK_TIMER_NEEDED;
12020 		}
12021 	}
12022 	tcp->tcp_rnxt += seg_len;
12023 	tcpha->tha_ack = htonl(tcp->tcp_rnxt);
12024 
12025 	if (mp == NULL)
12026 		goto xmit_check;
12027 
12028 	/* Update SACK list */
12029 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
12030 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
12031 		    &(tcp->tcp_num_sack_blk));
12032 	}
12033 
12034 	if (tcp->tcp_urp_mp) {
12035 		tcp->tcp_urp_mp->b_cont = mp;
12036 		mp = tcp->tcp_urp_mp;
12037 		tcp->tcp_urp_mp = NULL;
12038 		/* Ready for a new signal. */
12039 		tcp->tcp_urp_last_valid = B_FALSE;
12040 #ifdef DEBUG
12041 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
12042 		    "tcp_rput: sending exdata_ind %s",
12043 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
12044 #endif /* DEBUG */
12045 	}
12046 
12047 	/*
12048 	 * Check for ancillary data changes compared to last segment.
12049 	 */
12050 	if (connp->conn_recv_ancillary.crb_all != 0) {
12051 		mp = tcp_input_add_ancillary(tcp, mp, &ipp, ira);
12052 		if (mp == NULL)
12053 			return;
12054 	}
12055 
12056 	if (tcp->tcp_listener != NULL || tcp->tcp_hard_binding) {
12057 		/*
12058 		 * Side queue inbound data until the accept happens.
12059 		 * tcp_accept/tcp_rput drains this when the accept happens.
12060 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
12061 		 * T_EXDATA_IND) it is queued on b_next.
12062 		 * XXX Make urgent data use this. Requires:
12063 		 *	Removing tcp_listener check for TH_URG
12064 		 *	Making M_PCPROTO and MARK messages skip the eager case
12065 		 */
12066 
12067 		if (tcp->tcp_kssl_pending) {
12068 			DTRACE_PROBE1(kssl_mblk__ksslinput_pending,
12069 			    mblk_t *, mp);
12070 			tcp_kssl_input(tcp, mp, ira->ira_cred);
12071 		} else {
12072 			tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred);
12073 		}
12074 	} else if (IPCL_IS_NONSTR(connp)) {
12075 		/*
12076 		 * Non-STREAMS socket
12077 		 *
12078 		 * Note that no KSSL processing is done here, because
12079 		 * KSSL is not supported for non-STREAMS sockets.
12080 		 */
12081 		boolean_t push = flags & (TH_PUSH|TH_FIN);
12082 		int error;
12083 
12084 		if ((*connp->conn_upcalls->su_recv)(
12085 		    connp->conn_upper_handle,
12086 		    mp, seg_len, 0, &error, &push) <= 0) {
12087 			/*
12088 			 * We should never be in middle of a
12089 			 * fallback, the squeue guarantees that.
12090 			 */
12091 			ASSERT(error != EOPNOTSUPP);
12092 			if (error == ENOSPC)
12093 				tcp->tcp_rwnd -= seg_len;
12094 		} else if (push) {
12095 			/* PUSH bit set and sockfs is not flow controlled */
12096 			flags |= tcp_rwnd_reopen(tcp);
12097 		}
12098 	} else {
12099 		/* STREAMS socket */
12100 		if (mp->b_datap->db_type != M_DATA ||
12101 		    (flags & TH_MARKNEXT_NEEDED)) {
12102 			if (tcp->tcp_rcv_list != NULL) {
12103 				flags |= tcp_rcv_drain(tcp);
12104 			}
12105 			ASSERT(tcp->tcp_rcv_list == NULL ||
12106 			    tcp->tcp_fused_sigurg);
12107 
12108 			if (flags & TH_MARKNEXT_NEEDED) {
12109 #ifdef DEBUG
12110 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
12111 				    "tcp_rput: sending MSGMARKNEXT %s",
12112 				    tcp_display(tcp, NULL,
12113 				    DISP_PORT_ONLY));
12114 #endif /* DEBUG */
12115 				mp->b_flag |= MSGMARKNEXT;
12116 				flags &= ~TH_MARKNEXT_NEEDED;
12117 			}
12118 
12119 			/* Does this need SSL processing first? */
12120 			if ((tcp->tcp_kssl_ctx != NULL) &&
12121 			    (DB_TYPE(mp) == M_DATA)) {
12122 				DTRACE_PROBE1(kssl_mblk__ksslinput_data1,
12123 				    mblk_t *, mp);
12124 				tcp_kssl_input(tcp, mp, ira->ira_cred);
12125 			} else {
12126 				if (is_system_labeled())
12127 					tcp_setcred_data(mp, ira);
12128 
12129 				putnext(connp->conn_rq, mp);
12130 				if (!canputnext(connp->conn_rq))
12131 					tcp->tcp_rwnd -= seg_len;
12132 			}
12133 		} else if ((tcp->tcp_kssl_ctx != NULL) &&
12134 		    (DB_TYPE(mp) == M_DATA)) {
12135 			/* Does this need SSL processing first? */
12136 			DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp);
12137 			tcp_kssl_input(tcp, mp, ira->ira_cred);
12138 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
12139 		    tcp->tcp_rcv_cnt + seg_len >= connp->conn_rcvbuf >> 3) {
12140 			if (tcp->tcp_rcv_list != NULL) {
12141 				/*
12142 				 * Enqueue the new segment first and then
12143 				 * call tcp_rcv_drain() to send all data
12144 				 * up.  The other way to do this is to
12145 				 * send all queued data up and then call
12146 				 * putnext() to send the new segment up.
12147 				 * This way can remove the else part later
12148 				 * on.
12149 				 *
12150 				 * We don't do this to avoid one more call to
12151 				 * canputnext() as tcp_rcv_drain() needs to
12152 				 * call canputnext().
12153 				 */
12154 				tcp_rcv_enqueue(tcp, mp, seg_len,
12155 				    ira->ira_cred);
12156 				flags |= tcp_rcv_drain(tcp);
12157 			} else {
12158 				if (is_system_labeled())
12159 					tcp_setcred_data(mp, ira);
12160 
12161 				putnext(connp->conn_rq, mp);
12162 				if (!canputnext(connp->conn_rq))
12163 					tcp->tcp_rwnd -= seg_len;
12164 			}
12165 		} else {
12166 			/*
12167 			 * Enqueue all packets when processing an mblk
12168 			 * from the co queue and also enqueue normal packets.
12169 			 */
12170 			tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred);
12171 		}
12172 		/*
12173 		 * Make sure the timer is running if we have data waiting
12174 		 * for a push bit. This provides resiliency against
12175 		 * implementations that do not correctly generate push bits.
12176 		 */
12177 		if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) {
12178 			/*
12179 			 * The connection may be closed at this point, so don't
12180 			 * do anything for a detached tcp.
12181 			 */
12182 			if (!TCP_IS_DETACHED(tcp))
12183 				tcp->tcp_push_tid = TCP_TIMER(tcp,
12184 				    tcp_push_timer,
12185 				    MSEC_TO_TICK(
12186 				    tcps->tcps_push_timer_interval));
12187 		}
12188 	}
12189 
12190 xmit_check:
12191 	/* Is there anything left to do? */
12192 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
12193 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
12194 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
12195 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
12196 		goto done;
12197 
12198 	/* Any transmit work to do and a non-zero window? */
12199 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
12200 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
12201 		if (flags & TH_REXMIT_NEEDED) {
12202 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
12203 
12204 			BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans);
12205 			if (snd_size > mss)
12206 				snd_size = mss;
12207 			if (snd_size > tcp->tcp_swnd)
12208 				snd_size = tcp->tcp_swnd;
12209 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
12210 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
12211 			    B_TRUE);
12212 
12213 			if (mp1 != NULL) {
12214 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
12215 				tcp->tcp_csuna = tcp->tcp_snxt;
12216 				BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12217 				UPDATE_MIB(&tcps->tcps_mib,
12218 				    tcpRetransBytes, snd_size);
12219 				tcp_send_data(tcp, mp1);
12220 			}
12221 		}
12222 		if (flags & TH_NEED_SACK_REXMIT) {
12223 			tcp_sack_rxmit(tcp, &flags);
12224 		}
12225 		/*
12226 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
12227 		 * out new segment.  Note that tcp_rexmit should not be
12228 		 * set, otherwise TH_LIMIT_XMIT should not be set.
12229 		 */
12230 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
12231 			if (!tcp->tcp_rexmit) {
12232 				tcp_wput_data(tcp, NULL, B_FALSE);
12233 			} else {
12234 				tcp_ss_rexmit(tcp);
12235 			}
12236 		}
12237 		/*
12238 		 * Adjust tcp_cwnd back to normal value after sending
12239 		 * new data segments.
12240 		 */
12241 		if (flags & TH_LIMIT_XMIT) {
12242 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
12243 			/*
12244 			 * This will restart the timer.  Restarting the
12245 			 * timer is used to avoid a timeout before the
12246 			 * limited transmitted segment's ACK gets back.
12247 			 */
12248 			if (tcp->tcp_xmit_head != NULL)
12249 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
12250 		}
12251 
12252 		/* Anything more to do? */
12253 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
12254 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
12255 			goto done;
12256 	}
12257 ack_check:
12258 	if (flags & TH_SEND_URP_MARK) {
12259 		ASSERT(tcp->tcp_urp_mark_mp);
12260 		ASSERT(!IPCL_IS_NONSTR(connp));
12261 		/*
12262 		 * Send up any queued data and then send the mark message
12263 		 */
12264 		if (tcp->tcp_rcv_list != NULL) {
12265 			flags |= tcp_rcv_drain(tcp);
12266 
12267 		}
12268 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
12269 		mp1 = tcp->tcp_urp_mark_mp;
12270 		tcp->tcp_urp_mark_mp = NULL;
12271 		if (is_system_labeled())
12272 			tcp_setcred_data(mp1, ira);
12273 
12274 		putnext(connp->conn_rq, mp1);
12275 #ifdef DEBUG
12276 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
12277 		    "tcp_rput: sending zero-length %s %s",
12278 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
12279 		    "MSGNOTMARKNEXT"),
12280 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
12281 #endif /* DEBUG */
12282 		flags &= ~TH_SEND_URP_MARK;
12283 	}
12284 	if (flags & TH_ACK_NEEDED) {
12285 		/*
12286 		 * Time to send an ack for some reason.
12287 		 */
12288 		mp1 = tcp_ack_mp(tcp);
12289 
12290 		if (mp1 != NULL) {
12291 			tcp_send_data(tcp, mp1);
12292 			BUMP_LOCAL(tcp->tcp_obsegs);
12293 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
12294 		}
12295 		if (tcp->tcp_ack_tid != 0) {
12296 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
12297 			tcp->tcp_ack_tid = 0;
12298 		}
12299 	}
12300 	if (flags & TH_ACK_TIMER_NEEDED) {
12301 		/*
12302 		 * Arrange for deferred ACK or push wait timeout.
12303 		 * Start timer if it is not already running.
12304 		 */
12305 		if (tcp->tcp_ack_tid == 0) {
12306 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
12307 			    MSEC_TO_TICK(tcp->tcp_localnet ?
12308 			    (clock_t)tcps->tcps_local_dack_interval :
12309 			    (clock_t)tcps->tcps_deferred_ack_interval));
12310 		}
12311 	}
12312 	if (flags & TH_ORDREL_NEEDED) {
12313 		/*
12314 		 * Send up the ordrel_ind unless we are an eager guy.
12315 		 * In the eager case tcp_rsrv will do this when run
12316 		 * after tcp_accept is done.
12317 		 */
12318 		ASSERT(tcp->tcp_listener == NULL);
12319 		ASSERT(!tcp->tcp_detached);
12320 
12321 		if (IPCL_IS_NONSTR(connp)) {
12322 			ASSERT(tcp->tcp_ordrel_mp == NULL);
12323 			tcp->tcp_ordrel_done = B_TRUE;
12324 			(*connp->conn_upcalls->su_opctl)
12325 			    (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0);
12326 			goto done;
12327 		}
12328 
12329 		if (tcp->tcp_rcv_list != NULL) {
12330 			/*
12331 			 * Push any mblk(s) enqueued from co processing.
12332 			 */
12333 			flags |= tcp_rcv_drain(tcp);
12334 		}
12335 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
12336 
12337 		mp1 = tcp->tcp_ordrel_mp;
12338 		tcp->tcp_ordrel_mp = NULL;
12339 		tcp->tcp_ordrel_done = B_TRUE;
12340 		putnext(connp->conn_rq, mp1);
12341 	}
12342 done:
12343 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
12344 }
12345 
12346 /*
12347  * This routine adjusts next-to-send sequence number variables, in the
12348  * case where the reciever has shrunk it's window.
12349  */
12350 static void
12351 tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt)
12352 {
12353 	mblk_t *xmit_tail;
12354 	int32_t offset;
12355 
12356 	tcp->tcp_snxt = snxt;
12357 
12358 	/* Get the mblk, and the offset in it, as per the shrunk window */
12359 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
12360 	ASSERT(xmit_tail != NULL);
12361 	tcp->tcp_xmit_tail = xmit_tail;
12362 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr -
12363 	    xmit_tail->b_rptr - offset;
12364 }
12365 
12366 /*
12367  * This function does PAWS protection check. Returns B_TRUE if the
12368  * segment passes the PAWS test, else returns B_FALSE.
12369  */
12370 boolean_t
12371 tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp)
12372 {
12373 	uint8_t	flags;
12374 	int	options;
12375 	uint8_t *up;
12376 	conn_t	*connp = tcp->tcp_connp;
12377 
12378 	flags = (unsigned int)tcpha->tha_flags & 0xFF;
12379 	/*
12380 	 * If timestamp option is aligned nicely, get values inline,
12381 	 * otherwise call general routine to parse.  Only do that
12382 	 * if timestamp is the only option.
12383 	 */
12384 	if (TCP_HDR_LENGTH(tcpha) == (uint32_t)TCP_MIN_HEADER_LENGTH +
12385 	    TCPOPT_REAL_TS_LEN &&
12386 	    OK_32PTR((up = ((uint8_t *)tcpha) +
12387 	    TCP_MIN_HEADER_LENGTH)) &&
12388 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
12389 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
12390 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
12391 
12392 		options = TCP_OPT_TSTAMP_PRESENT;
12393 	} else {
12394 		if (tcp->tcp_snd_sack_ok) {
12395 			tcpoptp->tcp = tcp;
12396 		} else {
12397 			tcpoptp->tcp = NULL;
12398 		}
12399 		options = tcp_parse_options(tcpha, tcpoptp);
12400 	}
12401 
12402 	if (options & TCP_OPT_TSTAMP_PRESENT) {
12403 		/*
12404 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
12405 		 * regardless of the timestamp, page 18 RFC 1323.bis.
12406 		 */
12407 		if ((flags & TH_RST) == 0 &&
12408 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
12409 		    tcp->tcp_ts_recent)) {
12410 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
12411 			    PAWS_TIMEOUT)) {
12412 				/* This segment is not acceptable. */
12413 				return (B_FALSE);
12414 			} else {
12415 				/*
12416 				 * Connection has been idle for
12417 				 * too long.  Reset the timestamp
12418 				 * and assume the segment is valid.
12419 				 */
12420 				tcp->tcp_ts_recent =
12421 				    tcpoptp->tcp_opt_ts_val;
12422 			}
12423 		}
12424 	} else {
12425 		/*
12426 		 * If we don't get a timestamp on every packet, we
12427 		 * figure we can't really trust 'em, so we stop sending
12428 		 * and parsing them.
12429 		 */
12430 		tcp->tcp_snd_ts_ok = B_FALSE;
12431 
12432 		connp->conn_ht_iphc_len -= TCPOPT_REAL_TS_LEN;
12433 		connp->conn_ht_ulp_len -= TCPOPT_REAL_TS_LEN;
12434 		tcp->tcp_tcpha->tha_offset_and_reserved -= (3 << 4);
12435 		/*
12436 		 * Adjust the tcp_mss and tcp_cwnd accordingly. We avoid
12437 		 * doing a slow start here so as to not to lose on the
12438 		 * transfer rate built up so far.
12439 		 */
12440 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN);
12441 		if (tcp->tcp_snd_sack_ok) {
12442 			ASSERT(tcp->tcp_sack_info != NULL);
12443 			tcp->tcp_max_sack_blk = 4;
12444 		}
12445 	}
12446 	return (B_TRUE);
12447 }
12448 
12449 /*
12450  * Attach ancillary data to a received TCP segments for the
12451  * ancillary pieces requested by the application that are
12452  * different than they were in the previous data segment.
12453  *
12454  * Save the "current" values once memory allocation is ok so that
12455  * when memory allocation fails we can just wait for the next data segment.
12456  */
12457 static mblk_t *
12458 tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp,
12459     ip_recv_attr_t *ira)
12460 {
12461 	struct T_optdata_ind *todi;
12462 	int optlen;
12463 	uchar_t *optptr;
12464 	struct T_opthdr *toh;
12465 	crb_t addflag;	/* Which pieces to add */
12466 	mblk_t *mp1;
12467 	conn_t	*connp = tcp->tcp_connp;
12468 
12469 	optlen = 0;
12470 	addflag.crb_all = 0;
12471 	/* If app asked for pktinfo and the index has changed ... */
12472 	if (connp->conn_recv_ancillary.crb_ip_recvpktinfo &&
12473 	    ira->ira_ruifindex != tcp->tcp_recvifindex) {
12474 		optlen += sizeof (struct T_opthdr) +
12475 		    sizeof (struct in6_pktinfo);
12476 		addflag.crb_ip_recvpktinfo = 1;
12477 	}
12478 	/* If app asked for hoplimit and it has changed ... */
12479 	if (connp->conn_recv_ancillary.crb_ipv6_recvhoplimit &&
12480 	    ipp->ipp_hoplimit != tcp->tcp_recvhops) {
12481 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
12482 		addflag.crb_ipv6_recvhoplimit = 1;
12483 	}
12484 	/* If app asked for tclass and it has changed ... */
12485 	if (connp->conn_recv_ancillary.crb_ipv6_recvtclass &&
12486 	    ipp->ipp_tclass != tcp->tcp_recvtclass) {
12487 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
12488 		addflag.crb_ipv6_recvtclass = 1;
12489 	}
12490 	/*
12491 	 * If app asked for hopbyhop headers and it has changed ...
12492 	 * For security labels, note that (1) security labels can't change on
12493 	 * a connected socket at all, (2) we're connected to at most one peer,
12494 	 * (3) if anything changes, then it must be some other extra option.
12495 	 */
12496 	if (connp->conn_recv_ancillary.crb_ipv6_recvhopopts &&
12497 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
12498 	    (ipp->ipp_fields & IPPF_HOPOPTS),
12499 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
12500 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen;
12501 		addflag.crb_ipv6_recvhopopts = 1;
12502 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
12503 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
12504 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
12505 			return (mp);
12506 	}
12507 	/* If app asked for dst headers before routing headers ... */
12508 	if (connp->conn_recv_ancillary.crb_ipv6_recvrthdrdstopts &&
12509 	    ip_cmpbuf(tcp->tcp_rthdrdstopts, tcp->tcp_rthdrdstoptslen,
12510 	    (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
12511 	    ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) {
12512 		optlen += sizeof (struct T_opthdr) +
12513 		    ipp->ipp_rthdrdstoptslen;
12514 		addflag.crb_ipv6_recvrthdrdstopts = 1;
12515 		if (!ip_allocbuf((void **)&tcp->tcp_rthdrdstopts,
12516 		    &tcp->tcp_rthdrdstoptslen,
12517 		    (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
12518 		    ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen))
12519 			return (mp);
12520 	}
12521 	/* If app asked for routing headers and it has changed ... */
12522 	if (connp->conn_recv_ancillary.crb_ipv6_recvrthdr &&
12523 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
12524 	    (ipp->ipp_fields & IPPF_RTHDR),
12525 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
12526 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
12527 		addflag.crb_ipv6_recvrthdr = 1;
12528 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
12529 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
12530 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
12531 			return (mp);
12532 	}
12533 	/* If app asked for dest headers and it has changed ... */
12534 	if ((connp->conn_recv_ancillary.crb_ipv6_recvdstopts ||
12535 	    connp->conn_recv_ancillary.crb_old_ipv6_recvdstopts) &&
12536 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
12537 	    (ipp->ipp_fields & IPPF_DSTOPTS),
12538 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
12539 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
12540 		addflag.crb_ipv6_recvdstopts = 1;
12541 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
12542 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
12543 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
12544 			return (mp);
12545 	}
12546 
12547 	if (optlen == 0) {
12548 		/* Nothing to add */
12549 		return (mp);
12550 	}
12551 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
12552 	if (mp1 == NULL) {
12553 		/*
12554 		 * Defer sending ancillary data until the next TCP segment
12555 		 * arrives.
12556 		 */
12557 		return (mp);
12558 	}
12559 	mp1->b_cont = mp;
12560 	mp = mp1;
12561 	mp->b_wptr += sizeof (*todi) + optlen;
12562 	mp->b_datap->db_type = M_PROTO;
12563 	todi = (struct T_optdata_ind *)mp->b_rptr;
12564 	todi->PRIM_type = T_OPTDATA_IND;
12565 	todi->DATA_flag = 1;	/* MORE data */
12566 	todi->OPT_length = optlen;
12567 	todi->OPT_offset = sizeof (*todi);
12568 	optptr = (uchar_t *)&todi[1];
12569 	/*
12570 	 * If app asked for pktinfo and the index has changed ...
12571 	 * Note that the local address never changes for the connection.
12572 	 */
12573 	if (addflag.crb_ip_recvpktinfo) {
12574 		struct in6_pktinfo *pkti;
12575 		uint_t ifindex;
12576 
12577 		ifindex = ira->ira_ruifindex;
12578 		toh = (struct T_opthdr *)optptr;
12579 		toh->level = IPPROTO_IPV6;
12580 		toh->name = IPV6_PKTINFO;
12581 		toh->len = sizeof (*toh) + sizeof (*pkti);
12582 		toh->status = 0;
12583 		optptr += sizeof (*toh);
12584 		pkti = (struct in6_pktinfo *)optptr;
12585 		pkti->ipi6_addr = connp->conn_laddr_v6;
12586 		pkti->ipi6_ifindex = ifindex;
12587 		optptr += sizeof (*pkti);
12588 		ASSERT(OK_32PTR(optptr));
12589 		/* Save as "last" value */
12590 		tcp->tcp_recvifindex = ifindex;
12591 	}
12592 	/* If app asked for hoplimit and it has changed ... */
12593 	if (addflag.crb_ipv6_recvhoplimit) {
12594 		toh = (struct T_opthdr *)optptr;
12595 		toh->level = IPPROTO_IPV6;
12596 		toh->name = IPV6_HOPLIMIT;
12597 		toh->len = sizeof (*toh) + sizeof (uint_t);
12598 		toh->status = 0;
12599 		optptr += sizeof (*toh);
12600 		*(uint_t *)optptr = ipp->ipp_hoplimit;
12601 		optptr += sizeof (uint_t);
12602 		ASSERT(OK_32PTR(optptr));
12603 		/* Save as "last" value */
12604 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
12605 	}
12606 	/* If app asked for tclass and it has changed ... */
12607 	if (addflag.crb_ipv6_recvtclass) {
12608 		toh = (struct T_opthdr *)optptr;
12609 		toh->level = IPPROTO_IPV6;
12610 		toh->name = IPV6_TCLASS;
12611 		toh->len = sizeof (*toh) + sizeof (uint_t);
12612 		toh->status = 0;
12613 		optptr += sizeof (*toh);
12614 		*(uint_t *)optptr = ipp->ipp_tclass;
12615 		optptr += sizeof (uint_t);
12616 		ASSERT(OK_32PTR(optptr));
12617 		/* Save as "last" value */
12618 		tcp->tcp_recvtclass = ipp->ipp_tclass;
12619 	}
12620 	if (addflag.crb_ipv6_recvhopopts) {
12621 		toh = (struct T_opthdr *)optptr;
12622 		toh->level = IPPROTO_IPV6;
12623 		toh->name = IPV6_HOPOPTS;
12624 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen;
12625 		toh->status = 0;
12626 		optptr += sizeof (*toh);
12627 		bcopy((uchar_t *)ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen);
12628 		optptr += ipp->ipp_hopoptslen;
12629 		ASSERT(OK_32PTR(optptr));
12630 		/* Save as last value */
12631 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
12632 		    (ipp->ipp_fields & IPPF_HOPOPTS),
12633 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
12634 	}
12635 	if (addflag.crb_ipv6_recvrthdrdstopts) {
12636 		toh = (struct T_opthdr *)optptr;
12637 		toh->level = IPPROTO_IPV6;
12638 		toh->name = IPV6_RTHDRDSTOPTS;
12639 		toh->len = sizeof (*toh) + ipp->ipp_rthdrdstoptslen;
12640 		toh->status = 0;
12641 		optptr += sizeof (*toh);
12642 		bcopy(ipp->ipp_rthdrdstopts, optptr, ipp->ipp_rthdrdstoptslen);
12643 		optptr += ipp->ipp_rthdrdstoptslen;
12644 		ASSERT(OK_32PTR(optptr));
12645 		/* Save as last value */
12646 		ip_savebuf((void **)&tcp->tcp_rthdrdstopts,
12647 		    &tcp->tcp_rthdrdstoptslen,
12648 		    (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
12649 		    ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
12650 	}
12651 	if (addflag.crb_ipv6_recvrthdr) {
12652 		toh = (struct T_opthdr *)optptr;
12653 		toh->level = IPPROTO_IPV6;
12654 		toh->name = IPV6_RTHDR;
12655 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
12656 		toh->status = 0;
12657 		optptr += sizeof (*toh);
12658 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
12659 		optptr += ipp->ipp_rthdrlen;
12660 		ASSERT(OK_32PTR(optptr));
12661 		/* Save as last value */
12662 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
12663 		    (ipp->ipp_fields & IPPF_RTHDR),
12664 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
12665 	}
12666 	if (addflag.crb_ipv6_recvdstopts) {
12667 		toh = (struct T_opthdr *)optptr;
12668 		toh->level = IPPROTO_IPV6;
12669 		toh->name = IPV6_DSTOPTS;
12670 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
12671 		toh->status = 0;
12672 		optptr += sizeof (*toh);
12673 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
12674 		optptr += ipp->ipp_dstoptslen;
12675 		ASSERT(OK_32PTR(optptr));
12676 		/* Save as last value */
12677 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
12678 		    (ipp->ipp_fields & IPPF_DSTOPTS),
12679 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
12680 	}
12681 	ASSERT(optptr == mp->b_wptr);
12682 	return (mp);
12683 }
12684 
12685 /* ARGSUSED */
12686 static void
12687 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
12688 {
12689 	conn_t	*connp = (conn_t *)arg;
12690 	tcp_t	*tcp = connp->conn_tcp;
12691 	queue_t	*q = connp->conn_rq;
12692 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12693 
12694 	ASSERT(!IPCL_IS_NONSTR(connp));
12695 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
12696 	tcp->tcp_rsrv_mp = mp;
12697 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
12698 
12699 	TCP_STAT(tcps, tcp_rsrv_calls);
12700 
12701 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
12702 		return;
12703 	}
12704 
12705 	if (tcp->tcp_fused) {
12706 		tcp_fuse_backenable(tcp);
12707 		return;
12708 	}
12709 
12710 	if (canputnext(q)) {
12711 		/* Not flow-controlled, open rwnd */
12712 		tcp->tcp_rwnd = connp->conn_rcvbuf;
12713 
12714 		/*
12715 		 * Send back a window update immediately if TCP is above
12716 		 * ESTABLISHED state and the increase of the rcv window
12717 		 * that the other side knows is at least 1 MSS after flow
12718 		 * control is lifted.
12719 		 */
12720 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
12721 		    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
12722 			tcp_xmit_ctl(NULL, tcp,
12723 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
12724 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
12725 		}
12726 	}
12727 }
12728 
12729 /*
12730  * The read side service routine is called mostly when we get back-enabled as a
12731  * result of flow control relief.  Since we don't actually queue anything in
12732  * TCP, we have no data to send out of here.  What we do is clear the receive
12733  * window, and send out a window update.
12734  */
12735 static void
12736 tcp_rsrv(queue_t *q)
12737 {
12738 	conn_t		*connp = Q_TO_CONN(q);
12739 	tcp_t		*tcp = connp->conn_tcp;
12740 	mblk_t		*mp;
12741 
12742 	/* No code does a putq on the read side */
12743 	ASSERT(q->q_first == NULL);
12744 
12745 	/*
12746 	 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already
12747 	 * been run.  So just return.
12748 	 */
12749 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
12750 	if ((mp = tcp->tcp_rsrv_mp) == NULL) {
12751 		mutex_exit(&tcp->tcp_rsrv_mp_lock);
12752 		return;
12753 	}
12754 	tcp->tcp_rsrv_mp = NULL;
12755 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
12756 
12757 	CONN_INC_REF(connp);
12758 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp,
12759 	    NULL, SQ_PROCESS, SQTAG_TCP_RSRV);
12760 }
12761 
12762 /*
12763  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
12764  * We do not allow the receive window to shrink.  After setting rwnd,
12765  * set the flow control hiwat of the stream.
12766  *
12767  * This function is called in 2 cases:
12768  *
12769  * 1) Before data transfer begins, in tcp_input_listener() for accepting a
12770  *    connection (passive open) and in tcp_input_data() for active connect.
12771  *    This is called after tcp_mss_set() when the desired MSS value is known.
12772  *    This makes sure that our window size is a mutiple of the other side's
12773  *    MSS.
12774  * 2) Handling SO_RCVBUF option.
12775  *
12776  * It is ASSUMED that the requested size is a multiple of the current MSS.
12777  *
12778  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
12779  * user requests so.
12780  */
12781 int
12782 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
12783 {
12784 	uint32_t	mss = tcp->tcp_mss;
12785 	uint32_t	old_max_rwnd;
12786 	uint32_t	max_transmittable_rwnd;
12787 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
12788 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12789 	conn_t		*connp = tcp->tcp_connp;
12790 
12791 	/*
12792 	 * Insist on a receive window that is at least
12793 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
12794 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
12795 	 * and delayed acknowledgement.
12796 	 */
12797 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
12798 
12799 	if (tcp->tcp_fused) {
12800 		size_t sth_hiwat;
12801 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
12802 
12803 		ASSERT(peer_tcp != NULL);
12804 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
12805 		if (!tcp_detached) {
12806 			(void) proto_set_rx_hiwat(connp->conn_rq, connp,
12807 			    sth_hiwat);
12808 			tcp_set_recv_threshold(tcp, sth_hiwat >> 3);
12809 		}
12810 
12811 		/*
12812 		 * In the fusion case, the maxpsz stream head value of
12813 		 * our peer is set according to its send buffer size
12814 		 * and our receive buffer size; since the latter may
12815 		 * have changed we need to update the peer's maxpsz.
12816 		 */
12817 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
12818 		return (sth_hiwat);
12819 	}
12820 
12821 	if (tcp_detached)
12822 		old_max_rwnd = tcp->tcp_rwnd;
12823 	else
12824 		old_max_rwnd = connp->conn_rcvbuf;
12825 
12826 
12827 	/*
12828 	 * If window size info has already been exchanged, TCP should not
12829 	 * shrink the window.  Shrinking window is doable if done carefully.
12830 	 * We may add that support later.  But so far there is not a real
12831 	 * need to do that.
12832 	 */
12833 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
12834 		/* MSS may have changed, do a round up again. */
12835 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
12836 	}
12837 
12838 	/*
12839 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
12840 	 * can be applied even before the window scale option is decided.
12841 	 */
12842 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
12843 	if (rwnd > max_transmittable_rwnd) {
12844 		rwnd = max_transmittable_rwnd -
12845 		    (max_transmittable_rwnd % mss);
12846 		if (rwnd < mss)
12847 			rwnd = max_transmittable_rwnd;
12848 		/*
12849 		 * If we're over the limit we may have to back down tcp_rwnd.
12850 		 * The increment below won't work for us. So we set all three
12851 		 * here and the increment below will have no effect.
12852 		 */
12853 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
12854 	}
12855 	if (tcp->tcp_localnet) {
12856 		tcp->tcp_rack_abs_max =
12857 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
12858 	} else {
12859 		/*
12860 		 * For a remote host on a different subnet (through a router),
12861 		 * we ack every other packet to be conforming to RFC1122.
12862 		 * tcp_deferred_acks_max is default to 2.
12863 		 */
12864 		tcp->tcp_rack_abs_max =
12865 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
12866 	}
12867 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
12868 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
12869 	else
12870 		tcp->tcp_rack_cur_max = 0;
12871 	/*
12872 	 * Increment the current rwnd by the amount the maximum grew (we
12873 	 * can not overwrite it since we might be in the middle of a
12874 	 * connection.)
12875 	 */
12876 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
12877 	connp->conn_rcvbuf = rwnd;
12878 
12879 	/* Are we already connected? */
12880 	if (tcp->tcp_tcpha != NULL) {
12881 		tcp->tcp_tcpha->tha_win =
12882 		    htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
12883 	}
12884 
12885 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
12886 		tcp->tcp_cwnd_max = rwnd;
12887 
12888 	if (tcp_detached)
12889 		return (rwnd);
12890 
12891 	tcp_set_recv_threshold(tcp, rwnd >> 3);
12892 
12893 	(void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd);
12894 	return (rwnd);
12895 }
12896 
12897 /*
12898  * Return SNMP stuff in buffer in mpdata.
12899  */
12900 mblk_t *
12901 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
12902 {
12903 	mblk_t			*mpdata;
12904 	mblk_t			*mp_conn_ctl = NULL;
12905 	mblk_t			*mp_conn_tail;
12906 	mblk_t			*mp_attr_ctl = NULL;
12907 	mblk_t			*mp_attr_tail;
12908 	mblk_t			*mp6_conn_ctl = NULL;
12909 	mblk_t			*mp6_conn_tail;
12910 	mblk_t			*mp6_attr_ctl = NULL;
12911 	mblk_t			*mp6_attr_tail;
12912 	struct opthdr		*optp;
12913 	mib2_tcpConnEntry_t	tce;
12914 	mib2_tcp6ConnEntry_t	tce6;
12915 	mib2_transportMLPEntry_t mlp;
12916 	connf_t			*connfp;
12917 	int			i;
12918 	boolean_t 		ispriv;
12919 	zoneid_t 		zoneid;
12920 	int			v4_conn_idx;
12921 	int			v6_conn_idx;
12922 	conn_t			*connp = Q_TO_CONN(q);
12923 	tcp_stack_t		*tcps;
12924 	ip_stack_t		*ipst;
12925 	mblk_t			*mp2ctl;
12926 
12927 	/*
12928 	 * make a copy of the original message
12929 	 */
12930 	mp2ctl = copymsg(mpctl);
12931 
12932 	if (mpctl == NULL ||
12933 	    (mpdata = mpctl->b_cont) == NULL ||
12934 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
12935 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
12936 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
12937 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
12938 		freemsg(mp_conn_ctl);
12939 		freemsg(mp_attr_ctl);
12940 		freemsg(mp6_conn_ctl);
12941 		freemsg(mp6_attr_ctl);
12942 		freemsg(mpctl);
12943 		freemsg(mp2ctl);
12944 		return (NULL);
12945 	}
12946 
12947 	ipst = connp->conn_netstack->netstack_ip;
12948 	tcps = connp->conn_netstack->netstack_tcp;
12949 
12950 	/* build table of connections -- need count in fixed part */
12951 	SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4);   /* vanj */
12952 	SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min);
12953 	SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max);
12954 	SET_MIB(tcps->tcps_mib.tcpMaxConn, -1);
12955 	SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0);
12956 
12957 	ispriv =
12958 	    secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
12959 	zoneid = Q_TO_CONN(q)->conn_zoneid;
12960 
12961 	v4_conn_idx = v6_conn_idx = 0;
12962 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
12963 
12964 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
12965 		ipst = tcps->tcps_netstack->netstack_ip;
12966 
12967 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
12968 
12969 		connp = NULL;
12970 
12971 		while ((connp =
12972 		    ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) {
12973 			tcp_t *tcp;
12974 			boolean_t needattr;
12975 
12976 			if (connp->conn_zoneid != zoneid)
12977 				continue;	/* not in this zone */
12978 
12979 			tcp = connp->conn_tcp;
12980 			UPDATE_MIB(&tcps->tcps_mib,
12981 			    tcpHCInSegs, tcp->tcp_ibsegs);
12982 			tcp->tcp_ibsegs = 0;
12983 			UPDATE_MIB(&tcps->tcps_mib,
12984 			    tcpHCOutSegs, tcp->tcp_obsegs);
12985 			tcp->tcp_obsegs = 0;
12986 
12987 			tce6.tcp6ConnState = tce.tcpConnState =
12988 			    tcp_snmp_state(tcp);
12989 			if (tce.tcpConnState == MIB2_TCP_established ||
12990 			    tce.tcpConnState == MIB2_TCP_closeWait)
12991 				BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab);
12992 
12993 			needattr = B_FALSE;
12994 			bzero(&mlp, sizeof (mlp));
12995 			if (connp->conn_mlp_type != mlptSingle) {
12996 				if (connp->conn_mlp_type == mlptShared ||
12997 				    connp->conn_mlp_type == mlptBoth)
12998 					mlp.tme_flags |= MIB2_TMEF_SHARED;
12999 				if (connp->conn_mlp_type == mlptPrivate ||
13000 				    connp->conn_mlp_type == mlptBoth)
13001 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
13002 				needattr = B_TRUE;
13003 			}
13004 			if (connp->conn_anon_mlp) {
13005 				mlp.tme_flags |= MIB2_TMEF_ANONMLP;
13006 				needattr = B_TRUE;
13007 			}
13008 			switch (connp->conn_mac_mode) {
13009 			case CONN_MAC_DEFAULT:
13010 				break;
13011 			case CONN_MAC_AWARE:
13012 				mlp.tme_flags |= MIB2_TMEF_MACEXEMPT;
13013 				needattr = B_TRUE;
13014 				break;
13015 			case CONN_MAC_IMPLICIT:
13016 				mlp.tme_flags |= MIB2_TMEF_MACIMPLICIT;
13017 				needattr = B_TRUE;
13018 				break;
13019 			}
13020 			if (connp->conn_ixa->ixa_tsl != NULL) {
13021 				ts_label_t *tsl;
13022 
13023 				tsl = connp->conn_ixa->ixa_tsl;
13024 				mlp.tme_flags |= MIB2_TMEF_IS_LABELED;
13025 				mlp.tme_doi = label2doi(tsl);
13026 				mlp.tme_label = *label2bslabel(tsl);
13027 				needattr = B_TRUE;
13028 			}
13029 
13030 			/* Create a message to report on IPv6 entries */
13031 			if (connp->conn_ipversion == IPV6_VERSION) {
13032 			tce6.tcp6ConnLocalAddress = connp->conn_laddr_v6;
13033 			tce6.tcp6ConnRemAddress = connp->conn_faddr_v6;
13034 			tce6.tcp6ConnLocalPort = ntohs(connp->conn_lport);
13035 			tce6.tcp6ConnRemPort = ntohs(connp->conn_fport);
13036 			if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) {
13037 				tce6.tcp6ConnIfIndex =
13038 				    connp->conn_ixa->ixa_scopeid;
13039 			} else {
13040 				tce6.tcp6ConnIfIndex = connp->conn_bound_if;
13041 			}
13042 			/* Don't want just anybody seeing these... */
13043 			if (ispriv) {
13044 				tce6.tcp6ConnEntryInfo.ce_snxt =
13045 				    tcp->tcp_snxt;
13046 				tce6.tcp6ConnEntryInfo.ce_suna =
13047 				    tcp->tcp_suna;
13048 				tce6.tcp6ConnEntryInfo.ce_rnxt =
13049 				    tcp->tcp_rnxt;
13050 				tce6.tcp6ConnEntryInfo.ce_rack =
13051 				    tcp->tcp_rack;
13052 			} else {
13053 				/*
13054 				 * Netstat, unfortunately, uses this to
13055 				 * get send/receive queue sizes.  How to fix?
13056 				 * Why not compute the difference only?
13057 				 */
13058 				tce6.tcp6ConnEntryInfo.ce_snxt =
13059 				    tcp->tcp_snxt - tcp->tcp_suna;
13060 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
13061 				tce6.tcp6ConnEntryInfo.ce_rnxt =
13062 				    tcp->tcp_rnxt - tcp->tcp_rack;
13063 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
13064 			}
13065 
13066 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
13067 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
13068 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
13069 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
13070 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
13071 
13072 			tce6.tcp6ConnCreationProcess =
13073 			    (connp->conn_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
13074 			    connp->conn_cpid;
13075 			tce6.tcp6ConnCreationTime = connp->conn_open_time;
13076 
13077 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
13078 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
13079 
13080 			mlp.tme_connidx = v6_conn_idx++;
13081 			if (needattr)
13082 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
13083 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
13084 			}
13085 			/*
13086 			 * Create an IPv4 table entry for IPv4 entries and also
13087 			 * for IPv6 entries which are bound to in6addr_any
13088 			 * but don't have IPV6_V6ONLY set.
13089 			 * (i.e. anything an IPv4 peer could connect to)
13090 			 */
13091 			if (connp->conn_ipversion == IPV4_VERSION ||
13092 			    (tcp->tcp_state <= TCPS_LISTEN &&
13093 			    !connp->conn_ipv6_v6only &&
13094 			    IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6))) {
13095 				if (connp->conn_ipversion == IPV6_VERSION) {
13096 					tce.tcpConnRemAddress = INADDR_ANY;
13097 					tce.tcpConnLocalAddress = INADDR_ANY;
13098 				} else {
13099 					tce.tcpConnRemAddress =
13100 					    connp->conn_faddr_v4;
13101 					tce.tcpConnLocalAddress =
13102 					    connp->conn_laddr_v4;
13103 				}
13104 				tce.tcpConnLocalPort = ntohs(connp->conn_lport);
13105 				tce.tcpConnRemPort = ntohs(connp->conn_fport);
13106 				/* Don't want just anybody seeing these... */
13107 				if (ispriv) {
13108 					tce.tcpConnEntryInfo.ce_snxt =
13109 					    tcp->tcp_snxt;
13110 					tce.tcpConnEntryInfo.ce_suna =
13111 					    tcp->tcp_suna;
13112 					tce.tcpConnEntryInfo.ce_rnxt =
13113 					    tcp->tcp_rnxt;
13114 					tce.tcpConnEntryInfo.ce_rack =
13115 					    tcp->tcp_rack;
13116 				} else {
13117 					/*
13118 					 * Netstat, unfortunately, uses this to
13119 					 * get send/receive queue sizes.  How
13120 					 * to fix?
13121 					 * Why not compute the difference only?
13122 					 */
13123 					tce.tcpConnEntryInfo.ce_snxt =
13124 					    tcp->tcp_snxt - tcp->tcp_suna;
13125 					tce.tcpConnEntryInfo.ce_suna = 0;
13126 					tce.tcpConnEntryInfo.ce_rnxt =
13127 					    tcp->tcp_rnxt - tcp->tcp_rack;
13128 					tce.tcpConnEntryInfo.ce_rack = 0;
13129 				}
13130 
13131 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
13132 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
13133 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
13134 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
13135 				tce.tcpConnEntryInfo.ce_state =
13136 				    tcp->tcp_state;
13137 
13138 				tce.tcpConnCreationProcess =
13139 				    (connp->conn_cpid < 0) ?
13140 				    MIB2_UNKNOWN_PROCESS :
13141 				    connp->conn_cpid;
13142 				tce.tcpConnCreationTime = connp->conn_open_time;
13143 
13144 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
13145 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
13146 
13147 				mlp.tme_connidx = v4_conn_idx++;
13148 				if (needattr)
13149 					(void) snmp_append_data2(
13150 					    mp_attr_ctl->b_cont,
13151 					    &mp_attr_tail, (char *)&mlp,
13152 					    sizeof (mlp));
13153 			}
13154 		}
13155 	}
13156 
13157 	/* fixed length structure for IPv4 and IPv6 counters */
13158 	SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
13159 	SET_MIB(tcps->tcps_mib.tcp6ConnTableSize,
13160 	    sizeof (mib2_tcp6ConnEntry_t));
13161 	/* synchronize 32- and 64-bit counters */
13162 	SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs);
13163 	SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs);
13164 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
13165 	optp->level = MIB2_TCP;
13166 	optp->name = 0;
13167 	(void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib,
13168 	    sizeof (tcps->tcps_mib));
13169 	optp->len = msgdsize(mpdata);
13170 	qreply(q, mpctl);
13171 
13172 	/* table of connections... */
13173 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
13174 	    sizeof (struct T_optmgmt_ack)];
13175 	optp->level = MIB2_TCP;
13176 	optp->name = MIB2_TCP_CONN;
13177 	optp->len = msgdsize(mp_conn_ctl->b_cont);
13178 	qreply(q, mp_conn_ctl);
13179 
13180 	/* table of MLP attributes... */
13181 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
13182 	    sizeof (struct T_optmgmt_ack)];
13183 	optp->level = MIB2_TCP;
13184 	optp->name = EXPER_XPORT_MLP;
13185 	optp->len = msgdsize(mp_attr_ctl->b_cont);
13186 	if (optp->len == 0)
13187 		freemsg(mp_attr_ctl);
13188 	else
13189 		qreply(q, mp_attr_ctl);
13190 
13191 	/* table of IPv6 connections... */
13192 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
13193 	    sizeof (struct T_optmgmt_ack)];
13194 	optp->level = MIB2_TCP6;
13195 	optp->name = MIB2_TCP6_CONN;
13196 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
13197 	qreply(q, mp6_conn_ctl);
13198 
13199 	/* table of IPv6 MLP attributes... */
13200 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
13201 	    sizeof (struct T_optmgmt_ack)];
13202 	optp->level = MIB2_TCP6;
13203 	optp->name = EXPER_XPORT_MLP;
13204 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
13205 	if (optp->len == 0)
13206 		freemsg(mp6_attr_ctl);
13207 	else
13208 		qreply(q, mp6_attr_ctl);
13209 	return (mp2ctl);
13210 }
13211 
13212 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
13213 /* ARGSUSED */
13214 int
13215 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
13216 {
13217 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
13218 
13219 	switch (level) {
13220 	case MIB2_TCP:
13221 		switch (name) {
13222 		case 13:
13223 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
13224 				return (0);
13225 			/* TODO: delete entry defined by tce */
13226 			return (1);
13227 		default:
13228 			return (0);
13229 		}
13230 	default:
13231 		return (1);
13232 	}
13233 }
13234 
13235 /* Translate TCP state to MIB2 TCP state. */
13236 static int
13237 tcp_snmp_state(tcp_t *tcp)
13238 {
13239 	if (tcp == NULL)
13240 		return (0);
13241 
13242 	switch (tcp->tcp_state) {
13243 	case TCPS_CLOSED:
13244 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
13245 	case TCPS_BOUND:
13246 		return (MIB2_TCP_closed);
13247 	case TCPS_LISTEN:
13248 		return (MIB2_TCP_listen);
13249 	case TCPS_SYN_SENT:
13250 		return (MIB2_TCP_synSent);
13251 	case TCPS_SYN_RCVD:
13252 		return (MIB2_TCP_synReceived);
13253 	case TCPS_ESTABLISHED:
13254 		return (MIB2_TCP_established);
13255 	case TCPS_CLOSE_WAIT:
13256 		return (MIB2_TCP_closeWait);
13257 	case TCPS_FIN_WAIT_1:
13258 		return (MIB2_TCP_finWait1);
13259 	case TCPS_CLOSING:
13260 		return (MIB2_TCP_closing);
13261 	case TCPS_LAST_ACK:
13262 		return (MIB2_TCP_lastAck);
13263 	case TCPS_FIN_WAIT_2:
13264 		return (MIB2_TCP_finWait2);
13265 	case TCPS_TIME_WAIT:
13266 		return (MIB2_TCP_timeWait);
13267 	default:
13268 		return (0);
13269 	}
13270 }
13271 
13272 /*
13273  * tcp_timer is the timer service routine.  It handles the retransmission,
13274  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
13275  * from the state of the tcp instance what kind of action needs to be done
13276  * at the time it is called.
13277  */
13278 static void
13279 tcp_timer(void *arg)
13280 {
13281 	mblk_t		*mp;
13282 	clock_t		first_threshold;
13283 	clock_t		second_threshold;
13284 	clock_t		ms;
13285 	uint32_t	mss;
13286 	conn_t		*connp = (conn_t *)arg;
13287 	tcp_t		*tcp = connp->conn_tcp;
13288 	tcp_stack_t	*tcps = tcp->tcp_tcps;
13289 
13290 	tcp->tcp_timer_tid = 0;
13291 
13292 	if (tcp->tcp_fused)
13293 		return;
13294 
13295 	first_threshold =  tcp->tcp_first_timer_threshold;
13296 	second_threshold = tcp->tcp_second_timer_threshold;
13297 	switch (tcp->tcp_state) {
13298 	case TCPS_IDLE:
13299 	case TCPS_BOUND:
13300 	case TCPS_LISTEN:
13301 		return;
13302 	case TCPS_SYN_RCVD: {
13303 		tcp_t	*listener = tcp->tcp_listener;
13304 
13305 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
13306 			/* it's our first timeout */
13307 			tcp->tcp_syn_rcvd_timeout = 1;
13308 			mutex_enter(&listener->tcp_eager_lock);
13309 			listener->tcp_syn_rcvd_timeout++;
13310 			if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) {
13311 				/*
13312 				 * Make this eager available for drop if we
13313 				 * need to drop one to accomodate a new
13314 				 * incoming SYN request.
13315 				 */
13316 				MAKE_DROPPABLE(listener, tcp);
13317 			}
13318 			if (!listener->tcp_syn_defense &&
13319 			    (listener->tcp_syn_rcvd_timeout >
13320 			    (tcps->tcps_conn_req_max_q0 >> 2)) &&
13321 			    (tcps->tcps_conn_req_max_q0 > 200)) {
13322 				/* We may be under attack. Put on a defense. */
13323 				listener->tcp_syn_defense = B_TRUE;
13324 				cmn_err(CE_WARN, "High TCP connect timeout "
13325 				    "rate! System (port %d) may be under a "
13326 				    "SYN flood attack!",
13327 				    ntohs(listener->tcp_connp->conn_lport));
13328 
13329 				listener->tcp_ip_addr_cache = kmem_zalloc(
13330 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
13331 				    KM_NOSLEEP);
13332 			}
13333 			mutex_exit(&listener->tcp_eager_lock);
13334 		} else if (listener != NULL) {
13335 			mutex_enter(&listener->tcp_eager_lock);
13336 			tcp->tcp_syn_rcvd_timeout++;
13337 			if (tcp->tcp_syn_rcvd_timeout > 1 &&
13338 			    !tcp->tcp_closemp_used) {
13339 				/*
13340 				 * This is our second timeout. Put the tcp in
13341 				 * the list of droppable eagers to allow it to
13342 				 * be dropped, if needed. We don't check
13343 				 * whether tcp_dontdrop is set or not to
13344 				 * protect ourselve from a SYN attack where a
13345 				 * remote host can spoof itself as one of the
13346 				 * good IP source and continue to hold
13347 				 * resources too long.
13348 				 */
13349 				MAKE_DROPPABLE(listener, tcp);
13350 			}
13351 			mutex_exit(&listener->tcp_eager_lock);
13352 		}
13353 	}
13354 		/* FALLTHRU */
13355 	case TCPS_SYN_SENT:
13356 		first_threshold =  tcp->tcp_first_ctimer_threshold;
13357 		second_threshold = tcp->tcp_second_ctimer_threshold;
13358 		break;
13359 	case TCPS_ESTABLISHED:
13360 	case TCPS_FIN_WAIT_1:
13361 	case TCPS_CLOSING:
13362 	case TCPS_CLOSE_WAIT:
13363 	case TCPS_LAST_ACK:
13364 		/* If we have data to rexmit */
13365 		if (tcp->tcp_suna != tcp->tcp_snxt) {
13366 			clock_t	time_to_wait;
13367 
13368 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans);
13369 			if (!tcp->tcp_xmit_head)
13370 				break;
13371 			time_to_wait = lbolt -
13372 			    (clock_t)tcp->tcp_xmit_head->b_prev;
13373 			time_to_wait = tcp->tcp_rto -
13374 			    TICK_TO_MSEC(time_to_wait);
13375 			/*
13376 			 * If the timer fires too early, 1 clock tick earlier,
13377 			 * restart the timer.
13378 			 */
13379 			if (time_to_wait > msec_per_tick) {
13380 				TCP_STAT(tcps, tcp_timer_fire_early);
13381 				TCP_TIMER_RESTART(tcp, time_to_wait);
13382 				return;
13383 			}
13384 			/*
13385 			 * When we probe zero windows, we force the swnd open.
13386 			 * If our peer acks with a closed window swnd will be
13387 			 * set to zero by tcp_rput(). As long as we are
13388 			 * receiving acks tcp_rput will
13389 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
13390 			 * first and second interval actions.  NOTE: the timer
13391 			 * interval is allowed to continue its exponential
13392 			 * backoff.
13393 			 */
13394 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
13395 				if (connp->conn_debug) {
13396 					(void) strlog(TCP_MOD_ID, 0, 1,
13397 					    SL_TRACE, "tcp_timer: zero win");
13398 				}
13399 			} else {
13400 				/*
13401 				 * After retransmission, we need to do
13402 				 * slow start.  Set the ssthresh to one
13403 				 * half of current effective window and
13404 				 * cwnd to one MSS.  Also reset
13405 				 * tcp_cwnd_cnt.
13406 				 *
13407 				 * Note that if tcp_ssthresh is reduced because
13408 				 * of ECN, do not reduce it again unless it is
13409 				 * already one window of data away (tcp_cwr
13410 				 * should then be cleared) or this is a
13411 				 * timeout for a retransmitted segment.
13412 				 */
13413 				uint32_t npkt;
13414 
13415 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
13416 					npkt = ((tcp->tcp_timer_backoff ?
13417 					    tcp->tcp_cwnd_ssthresh :
13418 					    tcp->tcp_snxt -
13419 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
13420 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
13421 					    tcp->tcp_mss;
13422 				}
13423 				tcp->tcp_cwnd = tcp->tcp_mss;
13424 				tcp->tcp_cwnd_cnt = 0;
13425 				if (tcp->tcp_ecn_ok) {
13426 					tcp->tcp_cwr = B_TRUE;
13427 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
13428 					tcp->tcp_ecn_cwr_sent = B_FALSE;
13429 				}
13430 			}
13431 			break;
13432 		}
13433 		/*
13434 		 * We have something to send yet we cannot send.  The
13435 		 * reason can be:
13436 		 *
13437 		 * 1. Zero send window: we need to do zero window probe.
13438 		 * 2. Zero cwnd: because of ECN, we need to "clock out
13439 		 * segments.
13440 		 * 3. SWS avoidance: receiver may have shrunk window,
13441 		 * reset our knowledge.
13442 		 *
13443 		 * Note that condition 2 can happen with either 1 or
13444 		 * 3.  But 1 and 3 are exclusive.
13445 		 */
13446 		if (tcp->tcp_unsent != 0) {
13447 			/*
13448 			 * Should not hold the zero-copy messages for too long.
13449 			 */
13450 			if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean)
13451 				tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp,
13452 				    tcp->tcp_xmit_head, B_TRUE);
13453 
13454 			if (tcp->tcp_cwnd == 0) {
13455 				/*
13456 				 * Set tcp_cwnd to 1 MSS so that a
13457 				 * new segment can be sent out.  We
13458 				 * are "clocking out" new data when
13459 				 * the network is really congested.
13460 				 */
13461 				ASSERT(tcp->tcp_ecn_ok);
13462 				tcp->tcp_cwnd = tcp->tcp_mss;
13463 			}
13464 			if (tcp->tcp_swnd == 0) {
13465 				/* Extend window for zero window probe */
13466 				tcp->tcp_swnd++;
13467 				tcp->tcp_zero_win_probe = B_TRUE;
13468 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe);
13469 			} else {
13470 				/*
13471 				 * Handle timeout from sender SWS avoidance.
13472 				 * Reset our knowledge of the max send window
13473 				 * since the receiver might have reduced its
13474 				 * receive buffer.  Avoid setting tcp_max_swnd
13475 				 * to one since that will essentially disable
13476 				 * the SWS checks.
13477 				 *
13478 				 * Note that since we don't have a SWS
13479 				 * state variable, if the timeout is set
13480 				 * for ECN but not for SWS, this
13481 				 * code will also be executed.  This is
13482 				 * fine as tcp_max_swnd is updated
13483 				 * constantly and it will not affect
13484 				 * anything.
13485 				 */
13486 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
13487 			}
13488 			tcp_wput_data(tcp, NULL, B_FALSE);
13489 			return;
13490 		}
13491 		/* Is there a FIN that needs to be to re retransmitted? */
13492 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
13493 		    !tcp->tcp_fin_acked)
13494 			break;
13495 		/* Nothing to do, return without restarting timer. */
13496 		TCP_STAT(tcps, tcp_timer_fire_miss);
13497 		return;
13498 	case TCPS_FIN_WAIT_2:
13499 		/*
13500 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
13501 		 * We waited some time for for peer's FIN, but it hasn't
13502 		 * arrived.  We flush the connection now to avoid
13503 		 * case where the peer has rebooted.
13504 		 */
13505 		if (TCP_IS_DETACHED(tcp)) {
13506 			(void) tcp_clean_death(tcp, 0, 23);
13507 		} else {
13508 			TCP_TIMER_RESTART(tcp,
13509 			    tcps->tcps_fin_wait_2_flush_interval);
13510 		}
13511 		return;
13512 	case TCPS_TIME_WAIT:
13513 		(void) tcp_clean_death(tcp, 0, 24);
13514 		return;
13515 	default:
13516 		if (connp->conn_debug) {
13517 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
13518 			    "tcp_timer: strange state (%d) %s",
13519 			    tcp->tcp_state, tcp_display(tcp, NULL,
13520 			    DISP_PORT_ONLY));
13521 		}
13522 		return;
13523 	}
13524 
13525 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
13526 		/*
13527 		 * Should not hold the zero-copy messages for too long.
13528 		 */
13529 		if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean)
13530 			tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp,
13531 			    tcp->tcp_xmit_head, B_TRUE);
13532 
13533 		/*
13534 		 * For zero window probe, we need to send indefinitely,
13535 		 * unless we have not heard from the other side for some
13536 		 * time...
13537 		 */
13538 		if ((tcp->tcp_zero_win_probe == 0) ||
13539 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
13540 		    second_threshold)) {
13541 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop);
13542 			/*
13543 			 * If TCP is in SYN_RCVD state, send back a
13544 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
13545 			 * should be zero in TCPS_SYN_RCVD state.
13546 			 */
13547 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
13548 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
13549 				    "in SYN_RCVD",
13550 				    tcp, tcp->tcp_snxt,
13551 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
13552 			}
13553 			(void) tcp_clean_death(tcp,
13554 			    tcp->tcp_client_errno ?
13555 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
13556 			return;
13557 		} else {
13558 			/*
13559 			 * Set tcp_ms_we_have_waited to second_threshold
13560 			 * so that in next timeout, we will do the above
13561 			 * check (lbolt - tcp_last_recv_time).  This is
13562 			 * also to avoid overflow.
13563 			 *
13564 			 * We don't need to decrement tcp_timer_backoff
13565 			 * to avoid overflow because it will be decremented
13566 			 * later if new timeout value is greater than
13567 			 * tcp_rexmit_interval_max.  In the case when
13568 			 * tcp_rexmit_interval_max is greater than
13569 			 * second_threshold, it means that we will wait
13570 			 * longer than second_threshold to send the next
13571 			 * window probe.
13572 			 */
13573 			tcp->tcp_ms_we_have_waited = second_threshold;
13574 		}
13575 	} else if (ms > first_threshold) {
13576 		/*
13577 		 * Should not hold the zero-copy messages for too long.
13578 		 */
13579 		if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean)
13580 			tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp,
13581 			    tcp->tcp_xmit_head, B_TRUE);
13582 
13583 		/*
13584 		 * We have been retransmitting for too long...  The RTT
13585 		 * we calculated is probably incorrect.  Reinitialize it.
13586 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
13587 		 * tcp_rtt_update so that we won't accidentally cache a
13588 		 * bad value.  But only do this if this is not a zero
13589 		 * window probe.
13590 		 */
13591 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
13592 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
13593 			    (tcp->tcp_rtt_sa >> 5);
13594 			tcp->tcp_rtt_sa = 0;
13595 			tcp_ip_notify(tcp);
13596 			tcp->tcp_rtt_update = 0;
13597 		}
13598 	}
13599 	tcp->tcp_timer_backoff++;
13600 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
13601 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
13602 	    tcps->tcps_rexmit_interval_min) {
13603 		/*
13604 		 * This means the original RTO is tcp_rexmit_interval_min.
13605 		 * So we will use tcp_rexmit_interval_min as the RTO value
13606 		 * and do the backoff.
13607 		 */
13608 		ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff;
13609 	} else {
13610 		ms <<= tcp->tcp_timer_backoff;
13611 	}
13612 	if (ms > tcps->tcps_rexmit_interval_max) {
13613 		ms = tcps->tcps_rexmit_interval_max;
13614 		/*
13615 		 * ms is at max, decrement tcp_timer_backoff to avoid
13616 		 * overflow.
13617 		 */
13618 		tcp->tcp_timer_backoff--;
13619 	}
13620 	tcp->tcp_ms_we_have_waited += ms;
13621 	if (tcp->tcp_zero_win_probe == 0) {
13622 		tcp->tcp_rto = ms;
13623 	}
13624 	TCP_TIMER_RESTART(tcp, ms);
13625 	/*
13626 	 * This is after a timeout and tcp_rto is backed off.  Set
13627 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
13628 	 * restart the timer with a correct value.
13629 	 */
13630 	tcp->tcp_set_timer = 1;
13631 	mss = tcp->tcp_snxt - tcp->tcp_suna;
13632 	if (mss > tcp->tcp_mss)
13633 		mss = tcp->tcp_mss;
13634 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
13635 		mss = tcp->tcp_swnd;
13636 
13637 	if ((mp = tcp->tcp_xmit_head) != NULL)
13638 		mp->b_prev = (mblk_t *)lbolt;
13639 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
13640 	    B_TRUE);
13641 
13642 	/*
13643 	 * When slow start after retransmission begins, start with
13644 	 * this seq no.  tcp_rexmit_max marks the end of special slow
13645 	 * start phase.  tcp_snd_burst controls how many segments
13646 	 * can be sent because of an ack.
13647 	 */
13648 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
13649 	tcp->tcp_snd_burst = TCP_CWND_SS;
13650 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
13651 	    (tcp->tcp_unsent == 0)) {
13652 		tcp->tcp_rexmit_max = tcp->tcp_fss;
13653 	} else {
13654 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
13655 	}
13656 	tcp->tcp_rexmit = B_TRUE;
13657 	tcp->tcp_dupack_cnt = 0;
13658 
13659 	/*
13660 	 * Remove all rexmit SACK blk to start from fresh.
13661 	 */
13662 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL)
13663 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
13664 	if (mp == NULL) {
13665 		return;
13666 	}
13667 
13668 	tcp->tcp_csuna = tcp->tcp_snxt;
13669 	BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
13670 	UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss);
13671 	tcp_send_data(tcp, mp);
13672 
13673 }
13674 
13675 static int
13676 tcp_do_unbind(conn_t *connp)
13677 {
13678 	tcp_t *tcp = connp->conn_tcp;
13679 
13680 	switch (tcp->tcp_state) {
13681 	case TCPS_BOUND:
13682 	case TCPS_LISTEN:
13683 		break;
13684 	default:
13685 		return (-TOUTSTATE);
13686 	}
13687 
13688 	/*
13689 	 * Need to clean up all the eagers since after the unbind, segments
13690 	 * will no longer be delivered to this listener stream.
13691 	 */
13692 	mutex_enter(&tcp->tcp_eager_lock);
13693 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
13694 		tcp_eager_cleanup(tcp, 0);
13695 	}
13696 	mutex_exit(&tcp->tcp_eager_lock);
13697 
13698 	connp->conn_laddr_v6 = ipv6_all_zeros;
13699 	connp->conn_saddr_v6 = ipv6_all_zeros;
13700 	tcp_bind_hash_remove(tcp);
13701 	tcp->tcp_state = TCPS_IDLE;
13702 
13703 	ip_unbind(connp);
13704 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
13705 
13706 	return (0);
13707 }
13708 
13709 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
13710 static void
13711 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp)
13712 {
13713 	conn_t *connp = tcp->tcp_connp;
13714 	int error;
13715 
13716 	error = tcp_do_unbind(connp);
13717 	if (error > 0) {
13718 		tcp_err_ack(tcp, mp, TSYSERR, error);
13719 	} else if (error < 0) {
13720 		tcp_err_ack(tcp, mp, -error, 0);
13721 	} else {
13722 		/* Send M_FLUSH according to TPI */
13723 		(void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW);
13724 
13725 		mp = mi_tpi_ok_ack_alloc(mp);
13726 		if (mp != NULL)
13727 			putnext(connp->conn_rq, mp);
13728 	}
13729 }
13730 
13731 /*
13732  * Don't let port fall into the privileged range.
13733  * Since the extra privileged ports can be arbitrary we also
13734  * ensure that we exclude those from consideration.
13735  * tcp_g_epriv_ports is not sorted thus we loop over it until
13736  * there are no changes.
13737  *
13738  * Note: No locks are held when inspecting tcp_g_*epriv_ports
13739  * but instead the code relies on:
13740  * - the fact that the address of the array and its size never changes
13741  * - the atomic assignment of the elements of the array
13742  *
13743  * Returns 0 if there are no more ports available.
13744  *
13745  * TS note: skip multilevel ports.
13746  */
13747 static in_port_t
13748 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
13749 {
13750 	int i;
13751 	boolean_t restart = B_FALSE;
13752 	tcp_stack_t *tcps = tcp->tcp_tcps;
13753 
13754 	if (random && tcp_random_anon_port != 0) {
13755 		(void) random_get_pseudo_bytes((uint8_t *)&port,
13756 		    sizeof (in_port_t));
13757 		/*
13758 		 * Unless changed by a sys admin, the smallest anon port
13759 		 * is 32768 and the largest anon port is 65535.  It is
13760 		 * very likely (50%) for the random port to be smaller
13761 		 * than the smallest anon port.  When that happens,
13762 		 * add port % (anon port range) to the smallest anon
13763 		 * port to get the random port.  It should fall into the
13764 		 * valid anon port range.
13765 		 */
13766 		if (port < tcps->tcps_smallest_anon_port) {
13767 			port = tcps->tcps_smallest_anon_port +
13768 			    port % (tcps->tcps_largest_anon_port -
13769 			    tcps->tcps_smallest_anon_port);
13770 		}
13771 	}
13772 
13773 retry:
13774 	if (port < tcps->tcps_smallest_anon_port)
13775 		port = (in_port_t)tcps->tcps_smallest_anon_port;
13776 
13777 	if (port > tcps->tcps_largest_anon_port) {
13778 		if (restart)
13779 			return (0);
13780 		restart = B_TRUE;
13781 		port = (in_port_t)tcps->tcps_smallest_anon_port;
13782 	}
13783 
13784 	if (port < tcps->tcps_smallest_nonpriv_port)
13785 		port = (in_port_t)tcps->tcps_smallest_nonpriv_port;
13786 
13787 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
13788 		if (port == tcps->tcps_g_epriv_ports[i]) {
13789 			port++;
13790 			/*
13791 			 * Make sure whether the port is in the
13792 			 * valid range.
13793 			 */
13794 			goto retry;
13795 		}
13796 	}
13797 	if (is_system_labeled() &&
13798 	    (i = tsol_next_port(crgetzone(tcp->tcp_connp->conn_cred), port,
13799 	    IPPROTO_TCP, B_TRUE)) != 0) {
13800 		port = i;
13801 		goto retry;
13802 	}
13803 	return (port);
13804 }
13805 
13806 /*
13807  * Return the next anonymous port in the privileged port range for
13808  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
13809  * downwards.  This is the same behavior as documented in the userland
13810  * library call rresvport(3N).
13811  *
13812  * TS note: skip multilevel ports.
13813  */
13814 static in_port_t
13815 tcp_get_next_priv_port(const tcp_t *tcp)
13816 {
13817 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
13818 	in_port_t nextport;
13819 	boolean_t restart = B_FALSE;
13820 	tcp_stack_t *tcps = tcp->tcp_tcps;
13821 retry:
13822 	if (next_priv_port < tcps->tcps_min_anonpriv_port ||
13823 	    next_priv_port >= IPPORT_RESERVED) {
13824 		next_priv_port = IPPORT_RESERVED - 1;
13825 		if (restart)
13826 			return (0);
13827 		restart = B_TRUE;
13828 	}
13829 	if (is_system_labeled() &&
13830 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_connp->conn_cred),
13831 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
13832 		next_priv_port = nextport;
13833 		goto retry;
13834 	}
13835 	return (next_priv_port--);
13836 }
13837 
13838 /* The write side r/w procedure. */
13839 
13840 #if CCS_STATS
13841 struct {
13842 	struct {
13843 		int64_t count, bytes;
13844 	} tot, hit;
13845 } wrw_stats;
13846 #endif
13847 
13848 /*
13849  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
13850  * messages.
13851  */
13852 /* ARGSUSED */
13853 static void
13854 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
13855 {
13856 	conn_t	*connp = (conn_t *)arg;
13857 	tcp_t	*tcp = connp->conn_tcp;
13858 
13859 	ASSERT(DB_TYPE(mp) != M_IOCTL);
13860 	/*
13861 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
13862 	 * Once the close starts, streamhead and sockfs will not let any data
13863 	 * packets come down (close ensures that there are no threads using the
13864 	 * queue and no new threads will come down) but since qprocsoff()
13865 	 * hasn't happened yet, a M_FLUSH or some non data message might
13866 	 * get reflected back (in response to our own FLUSHRW) and get
13867 	 * processed after tcp_close() is done. The conn would still be valid
13868 	 * because a ref would have added but we need to check the state
13869 	 * before actually processing the packet.
13870 	 */
13871 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
13872 		freemsg(mp);
13873 		return;
13874 	}
13875 
13876 	switch (DB_TYPE(mp)) {
13877 	case M_IOCDATA:
13878 		tcp_wput_iocdata(tcp, mp);
13879 		break;
13880 	case M_FLUSH:
13881 		tcp_wput_flush(tcp, mp);
13882 		break;
13883 	default:
13884 		ip_wput_nondata(connp->conn_wq, mp);
13885 		break;
13886 	}
13887 }
13888 
13889 /*
13890  * The TCP fast path write put procedure.
13891  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
13892  */
13893 /* ARGSUSED */
13894 void
13895 tcp_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
13896 {
13897 	int		len;
13898 	int		hdrlen;
13899 	int		plen;
13900 	mblk_t		*mp1;
13901 	uchar_t		*rptr;
13902 	uint32_t	snxt;
13903 	tcpha_t		*tcpha;
13904 	struct datab	*db;
13905 	uint32_t	suna;
13906 	uint32_t	mss;
13907 	ipaddr_t	*dst;
13908 	ipaddr_t	*src;
13909 	uint32_t	sum;
13910 	int		usable;
13911 	conn_t		*connp = (conn_t *)arg;
13912 	tcp_t		*tcp = connp->conn_tcp;
13913 	uint32_t	msize;
13914 	tcp_stack_t	*tcps = tcp->tcp_tcps;
13915 	ip_xmit_attr_t	*ixa;
13916 
13917 	/*
13918 	 * Try and ASSERT the minimum possible references on the
13919 	 * conn early enough. Since we are executing on write side,
13920 	 * the connection is obviously not detached and that means
13921 	 * there is a ref each for TCP and IP. Since we are behind
13922 	 * the squeue, the minimum references needed are 3. If the
13923 	 * conn is in classifier hash list, there should be an
13924 	 * extra ref for that (we check both the possibilities).
13925 	 */
13926 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
13927 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
13928 
13929 	ASSERT(DB_TYPE(mp) == M_DATA);
13930 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
13931 
13932 	mutex_enter(&tcp->tcp_non_sq_lock);
13933 	tcp->tcp_squeue_bytes -= msize;
13934 	mutex_exit(&tcp->tcp_non_sq_lock);
13935 
13936 	/* Bypass tcp protocol for fused tcp loopback */
13937 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
13938 		return;
13939 
13940 	mss = tcp->tcp_mss;
13941 	/*
13942 	 * If ZEROCOPY has turned off, try not to send any zero-copy message
13943 	 * down. Do backoff, now.
13944 	 */
13945 	if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_snd_zcopy_on)
13946 		mp = tcp_zcopy_backoff(tcp, mp, B_FALSE);
13947 
13948 
13949 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
13950 	len = (int)(mp->b_wptr - mp->b_rptr);
13951 
13952 	/*
13953 	 * Criteria for fast path:
13954 	 *
13955 	 *   1. no unsent data
13956 	 *   2. single mblk in request
13957 	 *   3. connection established
13958 	 *   4. data in mblk
13959 	 *   5. len <= mss
13960 	 *   6. no tcp_valid bits
13961 	 */
13962 	if ((tcp->tcp_unsent != 0) ||
13963 	    (tcp->tcp_cork) ||
13964 	    (mp->b_cont != NULL) ||
13965 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
13966 	    (len == 0) ||
13967 	    (len > mss) ||
13968 	    (tcp->tcp_valid_bits != 0)) {
13969 		tcp_wput_data(tcp, mp, B_FALSE);
13970 		return;
13971 	}
13972 
13973 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
13974 	ASSERT(tcp->tcp_fin_sent == 0);
13975 
13976 	/* queue new packet onto retransmission queue */
13977 	if (tcp->tcp_xmit_head == NULL) {
13978 		tcp->tcp_xmit_head = mp;
13979 	} else {
13980 		tcp->tcp_xmit_last->b_cont = mp;
13981 	}
13982 	tcp->tcp_xmit_last = mp;
13983 	tcp->tcp_xmit_tail = mp;
13984 
13985 	/* find out how much we can send */
13986 	/* BEGIN CSTYLED */
13987 	/*
13988 	 *    un-acked	   usable
13989 	 *  |--------------|-----------------|
13990 	 *  tcp_suna       tcp_snxt	  tcp_suna+tcp_swnd
13991 	 */
13992 	/* END CSTYLED */
13993 
13994 	/* start sending from tcp_snxt */
13995 	snxt = tcp->tcp_snxt;
13996 
13997 	/*
13998 	 * Check to see if this connection has been idled for some
13999 	 * time and no ACK is expected.  If it is, we need to slow
14000 	 * start again to get back the connection's "self-clock" as
14001 	 * described in VJ's paper.
14002 	 *
14003 	 * Reinitialize tcp_cwnd after idle.
14004 	 */
14005 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
14006 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
14007 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
14008 	}
14009 
14010 	usable = tcp->tcp_swnd;		/* tcp window size */
14011 	if (usable > tcp->tcp_cwnd)
14012 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
14013 	usable -= snxt;		/* subtract stuff already sent */
14014 	suna = tcp->tcp_suna;
14015 	usable += suna;
14016 	/* usable can be < 0 if the congestion window is smaller */
14017 	if (len > usable) {
14018 		/* Can't send complete M_DATA in one shot */
14019 		goto slow;
14020 	}
14021 
14022 	mutex_enter(&tcp->tcp_non_sq_lock);
14023 	if (tcp->tcp_flow_stopped &&
14024 	    TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) {
14025 		tcp_clrqfull(tcp);
14026 	}
14027 	mutex_exit(&tcp->tcp_non_sq_lock);
14028 
14029 	/*
14030 	 * determine if anything to send (Nagle).
14031 	 *
14032 	 *   1. len < tcp_mss (i.e. small)
14033 	 *   2. unacknowledged data present
14034 	 *   3. len < nagle limit
14035 	 *   4. last packet sent < nagle limit (previous packet sent)
14036 	 */
14037 	if ((len < mss) && (snxt != suna) &&
14038 	    (len < (int)tcp->tcp_naglim) &&
14039 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
14040 		/*
14041 		 * This was the first unsent packet and normally
14042 		 * mss < xmit_hiwater so there is no need to worry
14043 		 * about flow control. The next packet will go
14044 		 * through the flow control check in tcp_wput_data().
14045 		 */
14046 		/* leftover work from above */
14047 		tcp->tcp_unsent = len;
14048 		tcp->tcp_xmit_tail_unsent = len;
14049 
14050 		return;
14051 	}
14052 
14053 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
14054 
14055 	if (snxt == suna) {
14056 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14057 	}
14058 
14059 	/* we have always sent something */
14060 	tcp->tcp_rack_cnt = 0;
14061 
14062 	tcp->tcp_snxt = snxt + len;
14063 	tcp->tcp_rack = tcp->tcp_rnxt;
14064 
14065 	if ((mp1 = dupb(mp)) == 0)
14066 		goto no_memory;
14067 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
14068 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
14069 
14070 	/* adjust tcp header information */
14071 	tcpha = tcp->tcp_tcpha;
14072 	tcpha->tha_flags = (TH_ACK|TH_PUSH);
14073 
14074 	sum = len + connp->conn_ht_ulp_len + connp->conn_sum;
14075 	sum = (sum >> 16) + (sum & 0xFFFF);
14076 	tcpha->tha_sum = htons(sum);
14077 
14078 	tcpha->tha_seq = htonl(snxt);
14079 
14080 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
14081 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
14082 	BUMP_LOCAL(tcp->tcp_obsegs);
14083 
14084 	/* Update the latest receive window size in TCP header. */
14085 	tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
14086 
14087 	tcp->tcp_last_sent_len = (ushort_t)len;
14088 
14089 	plen = len + connp->conn_ht_iphc_len;
14090 
14091 	ixa = connp->conn_ixa;
14092 	ixa->ixa_pktlen = plen;
14093 
14094 	if (ixa->ixa_flags & IXAF_IS_IPV4) {
14095 		tcp->tcp_ipha->ipha_length = htons(plen);
14096 	} else {
14097 		tcp->tcp_ip6h->ip6_plen = htons(plen - IPV6_HDR_LEN);
14098 	}
14099 
14100 	/* see if we need to allocate a mblk for the headers */
14101 	hdrlen = connp->conn_ht_iphc_len;
14102 	rptr = mp1->b_rptr - hdrlen;
14103 	db = mp1->b_datap;
14104 	if ((db->db_ref != 2) || rptr < db->db_base ||
14105 	    (!OK_32PTR(rptr))) {
14106 		/* NOTE: we assume allocb returns an OK_32PTR */
14107 		mp = allocb(hdrlen + tcps->tcps_wroff_xtra, BPRI_MED);
14108 		if (!mp) {
14109 			freemsg(mp1);
14110 			goto no_memory;
14111 		}
14112 		mp->b_cont = mp1;
14113 		mp1 = mp;
14114 		/* Leave room for Link Level header */
14115 		rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra];
14116 		mp1->b_wptr = &rptr[hdrlen];
14117 	}
14118 	mp1->b_rptr = rptr;
14119 
14120 	/* Fill in the timestamp option. */
14121 	if (tcp->tcp_snd_ts_ok) {
14122 		U32_TO_BE32((uint32_t)lbolt,
14123 		    (char *)tcpha + TCP_MIN_HEADER_LENGTH+4);
14124 		U32_TO_BE32(tcp->tcp_ts_recent,
14125 		    (char *)tcpha + TCP_MIN_HEADER_LENGTH+8);
14126 	} else {
14127 		ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH);
14128 	}
14129 
14130 	/* copy header into outgoing packet */
14131 	dst = (ipaddr_t *)rptr;
14132 	src = (ipaddr_t *)connp->conn_ht_iphc;
14133 	dst[0] = src[0];
14134 	dst[1] = src[1];
14135 	dst[2] = src[2];
14136 	dst[3] = src[3];
14137 	dst[4] = src[4];
14138 	dst[5] = src[5];
14139 	dst[6] = src[6];
14140 	dst[7] = src[7];
14141 	dst[8] = src[8];
14142 	dst[9] = src[9];
14143 	if (hdrlen -= 40) {
14144 		hdrlen >>= 2;
14145 		dst += 10;
14146 		src += 10;
14147 		do {
14148 			*dst++ = *src++;
14149 		} while (--hdrlen);
14150 	}
14151 
14152 	/*
14153 	 * Set the ECN info in the TCP header.  Note that this
14154 	 * is not the template header.
14155 	 */
14156 	if (tcp->tcp_ecn_ok) {
14157 		SET_ECT(tcp, rptr);
14158 
14159 		tcpha = (tcpha_t *)(rptr + ixa->ixa_ip_hdr_length);
14160 		if (tcp->tcp_ecn_echo_on)
14161 			tcpha->tha_flags |= TH_ECE;
14162 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
14163 			tcpha->tha_flags |= TH_CWR;
14164 			tcp->tcp_ecn_cwr_sent = B_TRUE;
14165 		}
14166 	}
14167 
14168 	if (tcp->tcp_ip_forward_progress) {
14169 		tcp->tcp_ip_forward_progress = B_FALSE;
14170 		connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF;
14171 	} else {
14172 		connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF;
14173 	}
14174 	tcp_send_data(tcp, mp1);
14175 	return;
14176 
14177 	/*
14178 	 * If we ran out of memory, we pretend to have sent the packet
14179 	 * and that it was lost on the wire.
14180 	 */
14181 no_memory:
14182 	return;
14183 
14184 slow:
14185 	/* leftover work from above */
14186 	tcp->tcp_unsent = len;
14187 	tcp->tcp_xmit_tail_unsent = len;
14188 	tcp_wput_data(tcp, NULL, B_FALSE);
14189 }
14190 
14191 /*
14192  * This runs at the tail end of accept processing on the squeue of the
14193  * new connection.
14194  */
14195 /* ARGSUSED */
14196 void
14197 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
14198 {
14199 	conn_t			*connp = (conn_t *)arg;
14200 	tcp_t			*tcp = connp->conn_tcp;
14201 	queue_t			*q = connp->conn_rq;
14202 	tcp_stack_t		*tcps = tcp->tcp_tcps;
14203 	/* socket options */
14204 	struct sock_proto_props	sopp;
14205 
14206 	/* We should just receive a single mblk that fits a T_discon_ind */
14207 	ASSERT(mp->b_cont == NULL);
14208 
14209 	/*
14210 	 * Drop the eager's ref on the listener, that was placed when
14211 	 * this eager began life in tcp_input_listener.
14212 	 */
14213 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
14214 	if (IPCL_IS_NONSTR(connp)) {
14215 		/* Safe to free conn_ind message */
14216 		freemsg(tcp->tcp_conn.tcp_eager_conn_ind);
14217 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
14218 	}
14219 
14220 	tcp->tcp_detached = B_FALSE;
14221 
14222 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
14223 		/*
14224 		 * Someone blewoff the eager before we could finish
14225 		 * the accept.
14226 		 *
14227 		 * The only reason eager exists it because we put in
14228 		 * a ref on it when conn ind went up. We need to send
14229 		 * a disconnect indication up while the last reference
14230 		 * on the eager will be dropped by the squeue when we
14231 		 * return.
14232 		 */
14233 		ASSERT(tcp->tcp_listener == NULL);
14234 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
14235 			if (IPCL_IS_NONSTR(connp)) {
14236 				ASSERT(tcp->tcp_issocket);
14237 				(*connp->conn_upcalls->su_disconnected)(
14238 				    connp->conn_upper_handle, tcp->tcp_connid,
14239 				    ECONNREFUSED);
14240 				freemsg(mp);
14241 			} else {
14242 				struct	T_discon_ind	*tdi;
14243 
14244 				(void) putnextctl1(q, M_FLUSH, FLUSHRW);
14245 				/*
14246 				 * Let us reuse the incoming mblk to avoid
14247 				 * memory allocation failure problems. We know
14248 				 * that the size of the incoming mblk i.e.
14249 				 * stroptions is greater than sizeof
14250 				 * T_discon_ind.
14251 				 */
14252 				ASSERT(DB_REF(mp) == 1);
14253 				ASSERT(MBLKSIZE(mp) >=
14254 				    sizeof (struct T_discon_ind));
14255 
14256 				DB_TYPE(mp) = M_PROTO;
14257 				((union T_primitives *)mp->b_rptr)->type =
14258 				    T_DISCON_IND;
14259 				tdi = (struct T_discon_ind *)mp->b_rptr;
14260 				if (tcp->tcp_issocket) {
14261 					tdi->DISCON_reason = ECONNREFUSED;
14262 					tdi->SEQ_number = 0;
14263 				} else {
14264 					tdi->DISCON_reason = ENOPROTOOPT;
14265 					tdi->SEQ_number =
14266 					    tcp->tcp_conn_req_seqnum;
14267 				}
14268 				mp->b_wptr = mp->b_rptr +
14269 				    sizeof (struct T_discon_ind);
14270 				putnext(q, mp);
14271 			}
14272 		}
14273 		tcp->tcp_hard_binding = B_FALSE;
14274 		return;
14275 	}
14276 
14277 	/*
14278 	 * Set max window size (conn_rcvbuf) of the acceptor.
14279 	 */
14280 	if (tcp->tcp_rcv_list == NULL) {
14281 		/*
14282 		 * Recv queue is empty, tcp_rwnd should not have changed.
14283 		 * That means it should be equal to the listener's tcp_rwnd.
14284 		 */
14285 		connp->conn_rcvbuf = tcp->tcp_rwnd;
14286 	} else {
14287 #ifdef DEBUG
14288 		mblk_t *tmp;
14289 		mblk_t	*mp1;
14290 		uint_t	cnt = 0;
14291 
14292 		mp1 = tcp->tcp_rcv_list;
14293 		while ((tmp = mp1) != NULL) {
14294 			mp1 = tmp->b_next;
14295 			cnt += msgdsize(tmp);
14296 		}
14297 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
14298 #endif
14299 		/* There is some data, add them back to get the max. */
14300 		connp->conn_rcvbuf = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
14301 	}
14302 	/*
14303 	 * This is the first time we run on the correct
14304 	 * queue after tcp_accept. So fix all the q parameters
14305 	 * here.
14306 	 */
14307 	sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF;
14308 	sopp.sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
14309 
14310 	sopp.sopp_rxhiwat = tcp->tcp_fused ?
14311 	    tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) :
14312 	    connp->conn_rcvbuf;
14313 
14314 	/*
14315 	 * Determine what write offset value to use depending on SACK and
14316 	 * whether the endpoint is fused or not.
14317 	 */
14318 	if (tcp->tcp_fused) {
14319 		ASSERT(tcp->tcp_loopback);
14320 		ASSERT(tcp->tcp_loopback_peer != NULL);
14321 		/*
14322 		 * For fused tcp loopback, set the stream head's write
14323 		 * offset value to zero since we won't be needing any room
14324 		 * for TCP/IP headers.  This would also improve performance
14325 		 * since it would reduce the amount of work done by kmem.
14326 		 * Non-fused tcp loopback case is handled separately below.
14327 		 */
14328 		sopp.sopp_wroff = 0;
14329 		/*
14330 		 * Update the peer's transmit parameters according to
14331 		 * our recently calculated high water mark value.
14332 		 */
14333 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
14334 	} else if (tcp->tcp_snd_sack_ok) {
14335 		sopp.sopp_wroff = connp->conn_ht_iphc_allocated +
14336 		    (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra);
14337 	} else {
14338 		sopp.sopp_wroff = connp->conn_ht_iphc_len +
14339 		    (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra);
14340 	}
14341 
14342 	/*
14343 	 * If this is endpoint is handling SSL, then reserve extra
14344 	 * offset and space at the end.
14345 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
14346 	 * overriding the previous setting. The extra cost of signing and
14347 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
14348 	 * instead of a single contiguous one by the stream head
14349 	 * largely outweighs the statistical reduction of ACKs, when
14350 	 * applicable. The peer will also save on decryption and verification
14351 	 * costs.
14352 	 */
14353 	if (tcp->tcp_kssl_ctx != NULL) {
14354 		sopp.sopp_wroff += SSL3_WROFFSET;
14355 
14356 		sopp.sopp_flags |= SOCKOPT_TAIL;
14357 		sopp.sopp_tail = SSL3_MAX_TAIL_LEN;
14358 
14359 		sopp.sopp_flags |= SOCKOPT_ZCOPY;
14360 		sopp.sopp_zcopyflag = ZCVMUNSAFE;
14361 
14362 		sopp.sopp_maxblk = SSL3_MAX_RECORD_LEN;
14363 	}
14364 
14365 	/* Send the options up */
14366 	if (IPCL_IS_NONSTR(connp)) {
14367 		if (sopp.sopp_flags & SOCKOPT_TAIL) {
14368 			ASSERT(tcp->tcp_kssl_ctx != NULL);
14369 			ASSERT(sopp.sopp_flags & SOCKOPT_ZCOPY);
14370 		}
14371 		if (tcp->tcp_loopback) {
14372 			sopp.sopp_flags |= SOCKOPT_LOOPBACK;
14373 			sopp.sopp_loopback = B_TRUE;
14374 		}
14375 		(*connp->conn_upcalls->su_set_proto_props)
14376 		    (connp->conn_upper_handle, &sopp);
14377 		freemsg(mp);
14378 	} else {
14379 		/*
14380 		 * Let us reuse the incoming mblk to avoid
14381 		 * memory allocation failure problems. We know
14382 		 * that the size of the incoming mblk is at least
14383 		 * stroptions
14384 		 */
14385 		struct stroptions *stropt;
14386 
14387 		ASSERT(DB_REF(mp) == 1);
14388 		ASSERT(MBLKSIZE(mp) >= sizeof (struct stroptions));
14389 
14390 		DB_TYPE(mp) = M_SETOPTS;
14391 		stropt = (struct stroptions *)mp->b_rptr;
14392 		mp->b_wptr = mp->b_rptr + sizeof (struct stroptions);
14393 		stropt = (struct stroptions *)mp->b_rptr;
14394 		stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK;
14395 		stropt->so_hiwat = sopp.sopp_rxhiwat;
14396 		stropt->so_wroff = sopp.sopp_wroff;
14397 		stropt->so_maxblk = sopp.sopp_maxblk;
14398 
14399 		if (sopp.sopp_flags & SOCKOPT_TAIL) {
14400 			ASSERT(tcp->tcp_kssl_ctx != NULL);
14401 
14402 			stropt->so_flags |= SO_TAIL | SO_COPYOPT;
14403 			stropt->so_tail = sopp.sopp_tail;
14404 			stropt->so_copyopt = sopp.sopp_zcopyflag;
14405 		}
14406 
14407 		/* Send the options up */
14408 		putnext(q, mp);
14409 	}
14410 
14411 	/*
14412 	 * Pass up any data and/or a fin that has been received.
14413 	 *
14414 	 * Adjust receive window in case it had decreased
14415 	 * (because there is data <=> tcp_rcv_list != NULL)
14416 	 * while the connection was detached. Note that
14417 	 * in case the eager was flow-controlled, w/o this
14418 	 * code, the rwnd may never open up again!
14419 	 */
14420 	if (tcp->tcp_rcv_list != NULL) {
14421 		if (IPCL_IS_NONSTR(connp)) {
14422 			mblk_t *mp;
14423 			int space_left;
14424 			int error;
14425 			boolean_t push = B_TRUE;
14426 
14427 			if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv)
14428 			    (connp->conn_upper_handle, NULL, 0, 0, &error,
14429 			    &push) >= 0) {
14430 				tcp->tcp_rwnd = connp->conn_rcvbuf;
14431 				if (tcp->tcp_state >= TCPS_ESTABLISHED &&
14432 				    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
14433 					tcp_xmit_ctl(NULL,
14434 					    tcp, (tcp->tcp_swnd == 0) ?
14435 					    tcp->tcp_suna : tcp->tcp_snxt,
14436 					    tcp->tcp_rnxt, TH_ACK);
14437 				}
14438 			}
14439 			while ((mp = tcp->tcp_rcv_list) != NULL) {
14440 				push = B_TRUE;
14441 				tcp->tcp_rcv_list = mp->b_next;
14442 				mp->b_next = NULL;
14443 				space_left = (*connp->conn_upcalls->su_recv)
14444 				    (connp->conn_upper_handle, mp, msgdsize(mp),
14445 				    0, &error, &push);
14446 				if (space_left < 0) {
14447 					/*
14448 					 * We should never be in middle of a
14449 					 * fallback, the squeue guarantees that.
14450 					 */
14451 					ASSERT(error != EOPNOTSUPP);
14452 				}
14453 			}
14454 			tcp->tcp_rcv_last_head = NULL;
14455 			tcp->tcp_rcv_last_tail = NULL;
14456 			tcp->tcp_rcv_cnt = 0;
14457 		} else {
14458 			/* We drain directly in case of fused tcp loopback */
14459 
14460 			if (!tcp->tcp_fused && canputnext(q)) {
14461 				tcp->tcp_rwnd = connp->conn_rcvbuf;
14462 				if (tcp->tcp_state >= TCPS_ESTABLISHED &&
14463 				    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
14464 					tcp_xmit_ctl(NULL,
14465 					    tcp, (tcp->tcp_swnd == 0) ?
14466 					    tcp->tcp_suna : tcp->tcp_snxt,
14467 					    tcp->tcp_rnxt, TH_ACK);
14468 				}
14469 			}
14470 
14471 			(void) tcp_rcv_drain(tcp);
14472 		}
14473 
14474 		/*
14475 		 * For fused tcp loopback, back-enable peer endpoint
14476 		 * if it's currently flow-controlled.
14477 		 */
14478 		if (tcp->tcp_fused) {
14479 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
14480 
14481 			ASSERT(peer_tcp != NULL);
14482 			ASSERT(peer_tcp->tcp_fused);
14483 
14484 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
14485 			if (peer_tcp->tcp_flow_stopped) {
14486 				tcp_clrqfull(peer_tcp);
14487 				TCP_STAT(tcps, tcp_fusion_backenabled);
14488 			}
14489 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
14490 		}
14491 	}
14492 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
14493 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
14494 		tcp->tcp_ordrel_done = B_TRUE;
14495 		if (IPCL_IS_NONSTR(connp)) {
14496 			ASSERT(tcp->tcp_ordrel_mp == NULL);
14497 			(*connp->conn_upcalls->su_opctl)(
14498 			    connp->conn_upper_handle,
14499 			    SOCK_OPCTL_SHUT_RECV, 0);
14500 		} else {
14501 			mp = tcp->tcp_ordrel_mp;
14502 			tcp->tcp_ordrel_mp = NULL;
14503 			putnext(q, mp);
14504 		}
14505 	}
14506 	tcp->tcp_hard_binding = B_FALSE;
14507 
14508 	if (connp->conn_keepalive) {
14509 		tcp->tcp_ka_last_intrvl = 0;
14510 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
14511 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
14512 	}
14513 
14514 	/*
14515 	 * At this point, eager is fully established and will
14516 	 * have the following references -
14517 	 *
14518 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
14519 	 * 1 reference for the squeue which will be dropped by the squeue as
14520 	 *	soon as this function returns.
14521 	 * There will be 1 additonal reference for being in classifier
14522 	 *	hash list provided something bad hasn't happened.
14523 	 */
14524 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
14525 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
14526 }
14527 
14528 /*
14529  * The function called through squeue to get behind listener's perimeter to
14530  * send a deferred conn_ind.
14531  */
14532 /* ARGSUSED */
14533 void
14534 tcp_send_pending(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
14535 {
14536 	conn_t	*lconnp = (conn_t *)arg;
14537 	tcp_t *listener = lconnp->conn_tcp;
14538 	struct T_conn_ind *conn_ind;
14539 	tcp_t *tcp;
14540 
14541 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
14542 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
14543 	    conn_ind->OPT_length);
14544 
14545 	if (listener->tcp_state != TCPS_LISTEN) {
14546 		/*
14547 		 * If listener has closed, it would have caused a
14548 		 * a cleanup/blowoff to happen for the eager, so
14549 		 * we don't need to do anything more.
14550 		 */
14551 		freemsg(mp);
14552 		return;
14553 	}
14554 
14555 	tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp);
14556 }
14557 
14558 /*
14559  * Common to TPI and sockfs accept code.
14560  */
14561 /* ARGSUSED2 */
14562 static int
14563 tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr)
14564 {
14565 	tcp_t *listener, *eager;
14566 	mblk_t *discon_mp;
14567 
14568 	listener = lconnp->conn_tcp;
14569 	ASSERT(listener->tcp_state == TCPS_LISTEN);
14570 	eager = econnp->conn_tcp;
14571 	ASSERT(eager->tcp_listener != NULL);
14572 
14573 	/*
14574 	 * Pre allocate the discon_ind mblk also. tcp_accept_finish will
14575 	 * use it if something failed.
14576 	 */
14577 	discon_mp = allocb(MAX(sizeof (struct T_discon_ind),
14578 	    sizeof (struct stroptions)), BPRI_HI);
14579 
14580 	if (discon_mp == NULL) {
14581 		return (-TPROTO);
14582 	}
14583 	eager->tcp_issocket = B_TRUE;
14584 
14585 	econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
14586 	econnp->conn_allzones = listener->tcp_connp->conn_allzones;
14587 	ASSERT(econnp->conn_netstack ==
14588 	    listener->tcp_connp->conn_netstack);
14589 	ASSERT(eager->tcp_tcps == listener->tcp_tcps);
14590 
14591 	/* Put the ref for IP */
14592 	CONN_INC_REF(econnp);
14593 
14594 	/*
14595 	 * We should have minimum of 3 references on the conn
14596 	 * at this point. One each for TCP and IP and one for
14597 	 * the T_conn_ind that was sent up when the 3-way handshake
14598 	 * completed. In the normal case we would also have another
14599 	 * reference (making a total of 4) for the conn being in the
14600 	 * classifier hash list. However the eager could have received
14601 	 * an RST subsequently and tcp_closei_local could have removed
14602 	 * the eager from the classifier hash list, hence we can't
14603 	 * assert that reference.
14604 	 */
14605 	ASSERT(econnp->conn_ref >= 3);
14606 
14607 	mutex_enter(&listener->tcp_eager_lock);
14608 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
14609 
14610 		tcp_t *tail;
14611 		tcp_t *tcp;
14612 		mblk_t *mp1;
14613 
14614 		tcp = listener->tcp_eager_prev_q0;
14615 		/*
14616 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
14617 		 * deferred T_conn_ind queue. We need to get to the head
14618 		 * of the queue in order to send up T_conn_ind the same
14619 		 * order as how the 3WHS is completed.
14620 		 */
14621 		while (tcp != listener) {
14622 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
14623 			    !tcp->tcp_kssl_pending)
14624 				break;
14625 			else
14626 				tcp = tcp->tcp_eager_prev_q0;
14627 		}
14628 		/* None of the pending eagers can be sent up now */
14629 		if (tcp == listener)
14630 			goto no_more_eagers;
14631 
14632 		mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
14633 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
14634 		/* Move from q0 to q */
14635 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
14636 		listener->tcp_conn_req_cnt_q0--;
14637 		listener->tcp_conn_req_cnt_q++;
14638 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
14639 		    tcp->tcp_eager_prev_q0;
14640 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
14641 		    tcp->tcp_eager_next_q0;
14642 		tcp->tcp_eager_prev_q0 = NULL;
14643 		tcp->tcp_eager_next_q0 = NULL;
14644 		tcp->tcp_conn_def_q0 = B_FALSE;
14645 
14646 		/* Make sure the tcp isn't in the list of droppables */
14647 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
14648 		    tcp->tcp_eager_prev_drop_q0 == NULL);
14649 
14650 		/*
14651 		 * Insert at end of the queue because sockfs sends
14652 		 * down T_CONN_RES in chronological order. Leaving
14653 		 * the older conn indications at front of the queue
14654 		 * helps reducing search time.
14655 		 */
14656 		tail = listener->tcp_eager_last_q;
14657 		if (tail != NULL) {
14658 			tail->tcp_eager_next_q = tcp;
14659 		} else {
14660 			listener->tcp_eager_next_q = tcp;
14661 		}
14662 		listener->tcp_eager_last_q = tcp;
14663 		tcp->tcp_eager_next_q = NULL;
14664 
14665 		/* Need to get inside the listener perimeter */
14666 		CONN_INC_REF(listener->tcp_connp);
14667 		SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1,
14668 		    tcp_send_pending, listener->tcp_connp, NULL, SQ_FILL,
14669 		    SQTAG_TCP_SEND_PENDING);
14670 	}
14671 no_more_eagers:
14672 	tcp_eager_unlink(eager);
14673 	mutex_exit(&listener->tcp_eager_lock);
14674 
14675 	/*
14676 	 * At this point, the eager is detached from the listener
14677 	 * but we still have an extra refs on eager (apart from the
14678 	 * usual tcp references). The ref was placed in tcp_rput_data
14679 	 * before sending the conn_ind in tcp_send_conn_ind.
14680 	 * The ref will be dropped in tcp_accept_finish().
14681 	 */
14682 	SQUEUE_ENTER_ONE(econnp->conn_sqp, discon_mp, tcp_accept_finish,
14683 	    econnp, NULL, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0);
14684 	return (0);
14685 }
14686 
14687 int
14688 tcp_accept(sock_lower_handle_t lproto_handle,
14689     sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle,
14690     cred_t *cr)
14691 {
14692 	conn_t *lconnp, *econnp;
14693 	tcp_t *listener, *eager;
14694 
14695 	lconnp = (conn_t *)lproto_handle;
14696 	listener = lconnp->conn_tcp;
14697 	ASSERT(listener->tcp_state == TCPS_LISTEN);
14698 	econnp = (conn_t *)eproto_handle;
14699 	eager = econnp->conn_tcp;
14700 	ASSERT(eager->tcp_listener != NULL);
14701 
14702 	/*
14703 	 * It is OK to manipulate these fields outside the eager's squeue
14704 	 * because they will not start being used until tcp_accept_finish
14705 	 * has been called.
14706 	 */
14707 	ASSERT(lconnp->conn_upper_handle != NULL);
14708 	ASSERT(econnp->conn_upper_handle == NULL);
14709 	econnp->conn_upper_handle = sock_handle;
14710 	econnp->conn_upcalls = lconnp->conn_upcalls;
14711 	ASSERT(IPCL_IS_NONSTR(econnp));
14712 	return (tcp_accept_common(lconnp, econnp, cr));
14713 }
14714 
14715 
14716 /*
14717  * This is the STREAMS entry point for T_CONN_RES coming down on
14718  * Acceptor STREAM when  sockfs listener does accept processing.
14719  * Read the block comment on top of tcp_input_listener().
14720  */
14721 void
14722 tcp_tpi_accept(queue_t *q, mblk_t *mp)
14723 {
14724 	queue_t *rq = RD(q);
14725 	struct T_conn_res *conn_res;
14726 	tcp_t *eager;
14727 	tcp_t *listener;
14728 	struct T_ok_ack *ok;
14729 	t_scalar_t PRIM_type;
14730 	conn_t *econnp;
14731 	cred_t *cr;
14732 
14733 	ASSERT(DB_TYPE(mp) == M_PROTO);
14734 
14735 	/*
14736 	 * All Solaris components should pass a db_credp
14737 	 * for this TPI message, hence we ASSERT.
14738 	 * But in case there is some other M_PROTO that looks
14739 	 * like a TPI message sent by some other kernel
14740 	 * component, we check and return an error.
14741 	 */
14742 	cr = msg_getcred(mp, NULL);
14743 	ASSERT(cr != NULL);
14744 	if (cr == NULL) {
14745 		mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL);
14746 		if (mp != NULL)
14747 			putnext(rq, mp);
14748 		return;
14749 	}
14750 	conn_res = (struct T_conn_res *)mp->b_rptr;
14751 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
14752 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
14753 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
14754 		if (mp != NULL)
14755 			putnext(rq, mp);
14756 		return;
14757 	}
14758 	switch (conn_res->PRIM_type) {
14759 	case O_T_CONN_RES:
14760 	case T_CONN_RES:
14761 		/*
14762 		 * We pass up an err ack if allocb fails. This will
14763 		 * cause sockfs to issue a T_DISCON_REQ which will cause
14764 		 * tcp_eager_blowoff to be called. sockfs will then call
14765 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
14766 		 * we need to do the allocb up here because we have to
14767 		 * make sure rq->q_qinfo->qi_qclose still points to the
14768 		 * correct function (tcp_tpi_close_accept) in case allocb
14769 		 * fails.
14770 		 */
14771 		bcopy(mp->b_rptr + conn_res->OPT_offset,
14772 		    &eager, conn_res->OPT_length);
14773 		PRIM_type = conn_res->PRIM_type;
14774 		mp->b_datap->db_type = M_PCPROTO;
14775 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
14776 		ok = (struct T_ok_ack *)mp->b_rptr;
14777 		ok->PRIM_type = T_OK_ACK;
14778 		ok->CORRECT_prim = PRIM_type;
14779 		econnp = eager->tcp_connp;
14780 		econnp->conn_dev = (dev_t)RD(q)->q_ptr;
14781 		econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr);
14782 		econnp->conn_rq = rq;
14783 		econnp->conn_wq = q;
14784 		rq->q_ptr = econnp;
14785 		rq->q_qinfo = &tcp_rinitv4;	/* No open - same as rinitv6 */
14786 		q->q_ptr = econnp;
14787 		q->q_qinfo = &tcp_winit;
14788 		listener = eager->tcp_listener;
14789 
14790 		if (tcp_accept_common(listener->tcp_connp,
14791 		    econnp, cr) < 0) {
14792 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
14793 			if (mp != NULL)
14794 				putnext(rq, mp);
14795 			return;
14796 		}
14797 
14798 		/*
14799 		 * Send the new local address also up to sockfs. There
14800 		 * should already be enough space in the mp that came
14801 		 * down from soaccept().
14802 		 */
14803 		if (econnp->conn_family == AF_INET) {
14804 			sin_t *sin;
14805 
14806 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
14807 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
14808 			sin = (sin_t *)mp->b_wptr;
14809 			mp->b_wptr += sizeof (sin_t);
14810 			sin->sin_family = AF_INET;
14811 			sin->sin_port = econnp->conn_lport;
14812 			sin->sin_addr.s_addr = econnp->conn_laddr_v4;
14813 		} else {
14814 			sin6_t *sin6;
14815 
14816 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
14817 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
14818 			sin6 = (sin6_t *)mp->b_wptr;
14819 			mp->b_wptr += sizeof (sin6_t);
14820 			sin6->sin6_family = AF_INET6;
14821 			sin6->sin6_port = econnp->conn_lport;
14822 			sin6->sin6_addr = econnp->conn_laddr_v6;
14823 			if (econnp->conn_ipversion == IPV4_VERSION) {
14824 				sin6->sin6_flowinfo = 0;
14825 			} else {
14826 				ASSERT(eager->tcp_ip6h != NULL);
14827 				sin6->sin6_flowinfo =
14828 				    eager->tcp_ip6h->ip6_vcf &
14829 				    ~IPV6_VERS_AND_FLOW_MASK;
14830 			}
14831 			if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6) &&
14832 			    (econnp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)) {
14833 				sin6->sin6_scope_id =
14834 				    econnp->conn_ixa->ixa_scopeid;
14835 			} else {
14836 				sin6->sin6_scope_id = 0;
14837 			}
14838 			sin6->__sin6_src_id = 0;
14839 		}
14840 
14841 		putnext(rq, mp);
14842 		return;
14843 	default:
14844 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
14845 		if (mp != NULL)
14846 			putnext(rq, mp);
14847 		return;
14848 	}
14849 }
14850 
14851 /*
14852  * Handle special out-of-band ioctl requests (see PSARC/2008/265).
14853  */
14854 static void
14855 tcp_wput_cmdblk(queue_t *q, mblk_t *mp)
14856 {
14857 	void	*data;
14858 	mblk_t	*datamp = mp->b_cont;
14859 	conn_t	*connp = Q_TO_CONN(q);
14860 	tcp_t	*tcp = connp->conn_tcp;
14861 	cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr;
14862 
14863 	if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) {
14864 		cmdp->cb_error = EPROTO;
14865 		qreply(q, mp);
14866 		return;
14867 	}
14868 
14869 	data = datamp->b_rptr;
14870 
14871 	switch (cmdp->cb_cmd) {
14872 	case TI_GETPEERNAME:
14873 		if (tcp->tcp_state < TCPS_SYN_RCVD)
14874 			cmdp->cb_error = ENOTCONN;
14875 		else
14876 			cmdp->cb_error = conn_getpeername(connp, data,
14877 			    &cmdp->cb_len);
14878 		break;
14879 	case TI_GETMYNAME:
14880 		cmdp->cb_error = conn_getsockname(connp, data, &cmdp->cb_len);
14881 		break;
14882 	default:
14883 		cmdp->cb_error = EINVAL;
14884 		break;
14885 	}
14886 
14887 	qreply(q, mp);
14888 }
14889 
14890 void
14891 tcp_wput(queue_t *q, mblk_t *mp)
14892 {
14893 	conn_t	*connp = Q_TO_CONN(q);
14894 	tcp_t	*tcp;
14895 	void (*output_proc)();
14896 	t_scalar_t type;
14897 	uchar_t *rptr;
14898 	struct iocblk	*iocp;
14899 	size_t size;
14900 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
14901 
14902 	ASSERT(connp->conn_ref >= 2);
14903 
14904 	switch (DB_TYPE(mp)) {
14905 	case M_DATA:
14906 		tcp = connp->conn_tcp;
14907 		ASSERT(tcp != NULL);
14908 
14909 		size = msgdsize(mp);
14910 
14911 		mutex_enter(&tcp->tcp_non_sq_lock);
14912 		tcp->tcp_squeue_bytes += size;
14913 		if (TCP_UNSENT_BYTES(tcp) > connp->conn_sndbuf) {
14914 			tcp_setqfull(tcp);
14915 		}
14916 		mutex_exit(&tcp->tcp_non_sq_lock);
14917 
14918 		CONN_INC_REF(connp);
14919 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp,
14920 		    NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT);
14921 		return;
14922 
14923 	case M_CMD:
14924 		tcp_wput_cmdblk(q, mp);
14925 		return;
14926 
14927 	case M_PROTO:
14928 	case M_PCPROTO:
14929 		/*
14930 		 * if it is a snmp message, don't get behind the squeue
14931 		 */
14932 		tcp = connp->conn_tcp;
14933 		rptr = mp->b_rptr;
14934 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
14935 			type = ((union T_primitives *)rptr)->type;
14936 		} else {
14937 			if (connp->conn_debug) {
14938 				(void) strlog(TCP_MOD_ID, 0, 1,
14939 				    SL_ERROR|SL_TRACE,
14940 				    "tcp_wput_proto, dropping one...");
14941 			}
14942 			freemsg(mp);
14943 			return;
14944 		}
14945 		if (type == T_SVR4_OPTMGMT_REQ) {
14946 			/*
14947 			 * All Solaris components should pass a db_credp
14948 			 * for this TPI message, hence we ASSERT.
14949 			 * But in case there is some other M_PROTO that looks
14950 			 * like a TPI message sent by some other kernel
14951 			 * component, we check and return an error.
14952 			 */
14953 			cred_t	*cr = msg_getcred(mp, NULL);
14954 
14955 			ASSERT(cr != NULL);
14956 			if (cr == NULL) {
14957 				tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
14958 				return;
14959 			}
14960 			if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get,
14961 			    cr)) {
14962 				/*
14963 				 * This was a SNMP request
14964 				 */
14965 				return;
14966 			} else {
14967 				output_proc = tcp_wput_proto;
14968 			}
14969 		} else {
14970 			output_proc = tcp_wput_proto;
14971 		}
14972 		break;
14973 	case M_IOCTL:
14974 		/*
14975 		 * Most ioctls can be processed right away without going via
14976 		 * squeues - process them right here. Those that do require
14977 		 * squeue (currently _SIOCSOCKFALLBACK)
14978 		 * are processed by tcp_wput_ioctl().
14979 		 */
14980 		iocp = (struct iocblk *)mp->b_rptr;
14981 		tcp = connp->conn_tcp;
14982 
14983 		switch (iocp->ioc_cmd) {
14984 		case TCP_IOC_ABORT_CONN:
14985 			tcp_ioctl_abort_conn(q, mp);
14986 			return;
14987 		case TI_GETPEERNAME:
14988 		case TI_GETMYNAME:
14989 			mi_copyin(q, mp, NULL,
14990 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
14991 			return;
14992 		case ND_SET:
14993 			/* nd_getset does the necessary checks */
14994 		case ND_GET:
14995 			if (nd_getset(q, tcps->tcps_g_nd, mp)) {
14996 				qreply(q, mp);
14997 				return;
14998 			}
14999 			ip_wput_nondata(q, mp);
15000 			return;
15001 
15002 		default:
15003 			output_proc = tcp_wput_ioctl;
15004 			break;
15005 		}
15006 		break;
15007 	default:
15008 		output_proc = tcp_wput_nondata;
15009 		break;
15010 	}
15011 
15012 	CONN_INC_REF(connp);
15013 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp,
15014 	    NULL, tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER);
15015 }
15016 
15017 /*
15018  * Initial STREAMS write side put() procedure for sockets. It tries to
15019  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
15020  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
15021  * are handled by tcp_wput() as usual.
15022  *
15023  * All further messages will also be handled by tcp_wput() because we cannot
15024  * be sure that the above short cut is safe later.
15025  */
15026 static void
15027 tcp_wput_sock(queue_t *wq, mblk_t *mp)
15028 {
15029 	conn_t			*connp = Q_TO_CONN(wq);
15030 	tcp_t			*tcp = connp->conn_tcp;
15031 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
15032 
15033 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
15034 	wq->q_qinfo = &tcp_winit;
15035 
15036 	ASSERT(IPCL_IS_TCP(connp));
15037 	ASSERT(TCP_IS_SOCKET(tcp));
15038 
15039 	if (DB_TYPE(mp) == M_PCPROTO &&
15040 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
15041 	    car->PRIM_type == T_CAPABILITY_REQ) {
15042 		tcp_capability_req(tcp, mp);
15043 		return;
15044 	}
15045 
15046 	tcp_wput(wq, mp);
15047 }
15048 
15049 /* ARGSUSED */
15050 static void
15051 tcp_wput_fallback(queue_t *wq, mblk_t *mp)
15052 {
15053 #ifdef DEBUG
15054 	cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n");
15055 #endif
15056 	freemsg(mp);
15057 }
15058 
15059 /*
15060  * Check the usability of ZEROCOPY. It's instead checking the flag set by IP.
15061  */
15062 static boolean_t
15063 tcp_zcopy_check(tcp_t *tcp)
15064 {
15065 	conn_t		*connp = tcp->tcp_connp;
15066 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
15067 	boolean_t	zc_enabled = B_FALSE;
15068 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15069 
15070 	if (do_tcpzcopy == 2)
15071 		zc_enabled = B_TRUE;
15072 	else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB))
15073 		zc_enabled = B_TRUE;
15074 
15075 	tcp->tcp_snd_zcopy_on = zc_enabled;
15076 	if (!TCP_IS_DETACHED(tcp)) {
15077 		if (zc_enabled) {
15078 			ixa->ixa_flags |= IXAF_VERIFY_ZCOPY;
15079 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
15080 			    ZCVMSAFE);
15081 			TCP_STAT(tcps, tcp_zcopy_on);
15082 		} else {
15083 			ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY;
15084 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
15085 			    ZCVMUNSAFE);
15086 			TCP_STAT(tcps, tcp_zcopy_off);
15087 		}
15088 	}
15089 	return (zc_enabled);
15090 }
15091 
15092 /*
15093  * Backoff from a zero-copy message by copying data to a new allocated
15094  * message and freeing the original desballoca'ed segmapped message.
15095  *
15096  * This function is called by following two callers:
15097  * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free
15098  *    the origial desballoca'ed message and notify sockfs. This is in re-
15099  *    transmit state.
15100  * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need
15101  *    to be copied to new message.
15102  */
15103 static mblk_t *
15104 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist)
15105 {
15106 	mblk_t		*nbp;
15107 	mblk_t		*head = NULL;
15108 	mblk_t		*tail = NULL;
15109 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15110 
15111 	ASSERT(bp != NULL);
15112 	while (bp != NULL) {
15113 		if (IS_VMLOANED_MBLK(bp)) {
15114 			TCP_STAT(tcps, tcp_zcopy_backoff);
15115 			if ((nbp = copyb(bp)) == NULL) {
15116 				tcp->tcp_xmit_zc_clean = B_FALSE;
15117 				if (tail != NULL)
15118 					tail->b_cont = bp;
15119 				return ((head == NULL) ? bp : head);
15120 			}
15121 
15122 			if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
15123 				if (fix_xmitlist)
15124 					tcp_zcopy_notify(tcp);
15125 				else
15126 					nbp->b_datap->db_struioflag |=
15127 					    STRUIO_ZCNOTIFY;
15128 			}
15129 			nbp->b_cont = bp->b_cont;
15130 
15131 			/*
15132 			 * Copy saved information and adjust tcp_xmit_tail
15133 			 * if needed.
15134 			 */
15135 			if (fix_xmitlist) {
15136 				nbp->b_prev = bp->b_prev;
15137 				nbp->b_next = bp->b_next;
15138 
15139 				if (tcp->tcp_xmit_tail == bp)
15140 					tcp->tcp_xmit_tail = nbp;
15141 			}
15142 
15143 			/* Free the original message. */
15144 			bp->b_prev = NULL;
15145 			bp->b_next = NULL;
15146 			freeb(bp);
15147 
15148 			bp = nbp;
15149 		}
15150 
15151 		if (head == NULL) {
15152 			head = bp;
15153 		}
15154 		if (tail == NULL) {
15155 			tail = bp;
15156 		} else {
15157 			tail->b_cont = bp;
15158 			tail = bp;
15159 		}
15160 
15161 		/* Move forward. */
15162 		bp = bp->b_cont;
15163 	}
15164 
15165 	if (fix_xmitlist) {
15166 		tcp->tcp_xmit_last = tail;
15167 		tcp->tcp_xmit_zc_clean = B_TRUE;
15168 	}
15169 
15170 	return (head);
15171 }
15172 
15173 static void
15174 tcp_zcopy_notify(tcp_t *tcp)
15175 {
15176 	struct stdata	*stp;
15177 	conn_t		*connp;
15178 
15179 	if (tcp->tcp_detached)
15180 		return;
15181 	connp = tcp->tcp_connp;
15182 	if (IPCL_IS_NONSTR(connp)) {
15183 		(*connp->conn_upcalls->su_zcopy_notify)
15184 		    (connp->conn_upper_handle);
15185 		return;
15186 	}
15187 	stp = STREAM(connp->conn_rq);
15188 	mutex_enter(&stp->sd_lock);
15189 	stp->sd_flag |= STZCNOTIFY;
15190 	cv_broadcast(&stp->sd_zcopy_wait);
15191 	mutex_exit(&stp->sd_lock);
15192 }
15193 
15194 /*
15195  * Update the TCP connection according to change of LSO capability.
15196  */
15197 static void
15198 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa)
15199 {
15200 	/*
15201 	 * We check against IPv4 header length to preserve the old behavior
15202 	 * of only enabling LSO when there are no IP options.
15203 	 * But this restriction might not be necessary at all. Before removing
15204 	 * it, need to verify how LSO is handled for source routing case, with
15205 	 * which IP does software checksum.
15206 	 *
15207 	 * For IPv6, whenever any extension header is needed, LSO is supressed.
15208 	 */
15209 	if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ?
15210 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN))
15211 		return;
15212 
15213 	/*
15214 	 * Either the LSO capability newly became usable, or it has changed.
15215 	 */
15216 	if (ixa->ixa_flags & IXAF_LSO_CAPAB) {
15217 		ill_lso_capab_t	*lsoc = &ixa->ixa_lso_capab;
15218 
15219 		ASSERT(lsoc->ill_lso_max > 0);
15220 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max);
15221 
15222 		DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
15223 		    boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max);
15224 
15225 		/*
15226 		 * If LSO to be enabled, notify the STREAM header with larger
15227 		 * data block.
15228 		 */
15229 		if (!tcp->tcp_lso)
15230 			tcp->tcp_maxpsz_multiplier = 0;
15231 
15232 		tcp->tcp_lso = B_TRUE;
15233 		TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled);
15234 	} else { /* LSO capability is not usable any more. */
15235 		DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
15236 		    boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max);
15237 
15238 		/*
15239 		 * If LSO to be disabled, notify the STREAM header with smaller
15240 		 * data block. And need to restore fragsize to PMTU.
15241 		 */
15242 		if (tcp->tcp_lso) {
15243 			tcp->tcp_maxpsz_multiplier =
15244 			    tcp->tcp_tcps->tcps_maxpsz_multiplier;
15245 			ixa->ixa_fragsize = ixa->ixa_pmtu;
15246 			tcp->tcp_lso = B_FALSE;
15247 			TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled);
15248 		}
15249 	}
15250 
15251 	(void) tcp_maxpsz_set(tcp, B_TRUE);
15252 }
15253 
15254 /*
15255  * Update the TCP connection according to change of ZEROCOPY capability.
15256  */
15257 static void
15258 tcp_update_zcopy(tcp_t *tcp)
15259 {
15260 	conn_t		*connp = tcp->tcp_connp;
15261 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15262 
15263 	if (tcp->tcp_snd_zcopy_on) {
15264 		tcp->tcp_snd_zcopy_on = B_FALSE;
15265 		if (!TCP_IS_DETACHED(tcp)) {
15266 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
15267 			    ZCVMUNSAFE);
15268 			TCP_STAT(tcps, tcp_zcopy_off);
15269 		}
15270 	} else {
15271 		tcp->tcp_snd_zcopy_on = B_TRUE;
15272 		if (!TCP_IS_DETACHED(tcp)) {
15273 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
15274 			    ZCVMSAFE);
15275 			TCP_STAT(tcps, tcp_zcopy_on);
15276 		}
15277 	}
15278 }
15279 
15280 /*
15281  * Notify function registered with ip_xmit_attr_t. It's called in the squeue
15282  * so it's safe to update the TCP connection.
15283  */
15284 /* ARGSUSED1 */
15285 static void
15286 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype,
15287     ixa_notify_arg_t narg)
15288 {
15289 	tcp_t		*tcp = (tcp_t *)arg;
15290 	conn_t		*connp = tcp->tcp_connp;
15291 
15292 	switch (ntype) {
15293 	case IXAN_LSO:
15294 		tcp_update_lso(tcp, connp->conn_ixa);
15295 		break;
15296 	case IXAN_PMTU:
15297 		tcp_update_pmtu(tcp, B_FALSE);
15298 		break;
15299 	case IXAN_ZCOPY:
15300 		tcp_update_zcopy(tcp);
15301 		break;
15302 	default:
15303 		break;
15304 	}
15305 }
15306 
15307 static void
15308 tcp_send_data(tcp_t *tcp, mblk_t *mp)
15309 {
15310 	conn_t		*connp = tcp->tcp_connp;
15311 
15312 	/*
15313 	 * Check here to avoid sending zero-copy message down to IP when
15314 	 * ZEROCOPY capability has turned off. We only need to deal with
15315 	 * the race condition between sockfs and the notification here.
15316 	 * Since we have tried to backoff the tcp_xmit_head when turning
15317 	 * zero-copy off and new messages in tcp_output(), we simply drop
15318 	 * the dup'ed packet here and let tcp retransmit, if tcp_xmit_zc_clean
15319 	 * is not true.
15320 	 */
15321 	if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_snd_zcopy_on &&
15322 	    !tcp->tcp_xmit_zc_clean) {
15323 		ip_drop_output("TCP ZC was disabled but not clean", mp, NULL);
15324 		freemsg(mp);
15325 		return;
15326 	}
15327 
15328 	ASSERT(connp->conn_ixa->ixa_notify_cookie == connp->conn_tcp);
15329 	(void) conn_ip_output(mp, connp->conn_ixa);
15330 }
15331 
15332 /*
15333  * This handles the case when the receiver has shrunk its win. Per RFC 1122
15334  * if the receiver shrinks the window, i.e. moves the right window to the
15335  * left, the we should not send new data, but should retransmit normally the
15336  * old unacked data between suna and suna + swnd. We might has sent data
15337  * that is now outside the new window, pretend that we didn't send  it.
15338  */
15339 static void
15340 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
15341 {
15342 	uint32_t	snxt = tcp->tcp_snxt;
15343 
15344 	ASSERT(shrunk_count > 0);
15345 
15346 	if (!tcp->tcp_is_wnd_shrnk) {
15347 		tcp->tcp_snxt_shrunk = snxt;
15348 		tcp->tcp_is_wnd_shrnk = B_TRUE;
15349 	} else if (SEQ_GT(snxt, tcp->tcp_snxt_shrunk)) {
15350 		tcp->tcp_snxt_shrunk = snxt;
15351 	}
15352 
15353 	/* Pretend we didn't send the data outside the window */
15354 	snxt -= shrunk_count;
15355 
15356 	/* Reset all the values per the now shrunk window */
15357 	tcp_update_xmit_tail(tcp, snxt);
15358 	tcp->tcp_unsent += shrunk_count;
15359 
15360 	/*
15361 	 * If the SACK option is set, delete the entire list of
15362 	 * notsack'ed blocks.
15363 	 */
15364 	if (tcp->tcp_sack_info != NULL) {
15365 		if (tcp->tcp_notsack_list != NULL)
15366 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
15367 	}
15368 
15369 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
15370 		/*
15371 		 * Make sure the timer is running so that we will probe a zero
15372 		 * window.
15373 		 */
15374 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
15375 }
15376 
15377 
15378 /*
15379  * The TCP normal data output path.
15380  * NOTE: the logic of the fast path is duplicated from this function.
15381  */
15382 static void
15383 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
15384 {
15385 	int		len;
15386 	mblk_t		*local_time;
15387 	mblk_t		*mp1;
15388 	uint32_t	snxt;
15389 	int		tail_unsent;
15390 	int		tcpstate;
15391 	int		usable = 0;
15392 	mblk_t		*xmit_tail;
15393 	int32_t		mss;
15394 	int32_t		num_sack_blk = 0;
15395 	int32_t		total_hdr_len;
15396 	int32_t		tcp_hdr_len;
15397 	int		rc;
15398 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15399 	conn_t		*connp = tcp->tcp_connp;
15400 
15401 	tcpstate = tcp->tcp_state;
15402 	if (mp == NULL) {
15403 		/*
15404 		 * tcp_wput_data() with NULL mp should only be called when
15405 		 * there is unsent data.
15406 		 */
15407 		ASSERT(tcp->tcp_unsent > 0);
15408 		/* Really tacky... but we need this for detached closes. */
15409 		len = tcp->tcp_unsent;
15410 		goto data_null;
15411 	}
15412 
15413 #if CCS_STATS
15414 	wrw_stats.tot.count++;
15415 	wrw_stats.tot.bytes += msgdsize(mp);
15416 #endif
15417 	ASSERT(mp->b_datap->db_type == M_DATA);
15418 	/*
15419 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
15420 	 * or before a connection attempt has begun.
15421 	 */
15422 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
15423 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
15424 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
15425 #ifdef DEBUG
15426 			cmn_err(CE_WARN,
15427 			    "tcp_wput_data: data after ordrel, %s",
15428 			    tcp_display(tcp, NULL,
15429 			    DISP_ADDR_AND_PORT));
15430 #else
15431 			if (connp->conn_debug) {
15432 				(void) strlog(TCP_MOD_ID, 0, 1,
15433 				    SL_TRACE|SL_ERROR,
15434 				    "tcp_wput_data: data after ordrel, %s\n",
15435 				    tcp_display(tcp, NULL,
15436 				    DISP_ADDR_AND_PORT));
15437 			}
15438 #endif /* DEBUG */
15439 		}
15440 		if (tcp->tcp_snd_zcopy_aware &&
15441 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
15442 			tcp_zcopy_notify(tcp);
15443 		freemsg(mp);
15444 		mutex_enter(&tcp->tcp_non_sq_lock);
15445 		if (tcp->tcp_flow_stopped &&
15446 		    TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) {
15447 			tcp_clrqfull(tcp);
15448 		}
15449 		mutex_exit(&tcp->tcp_non_sq_lock);
15450 		return;
15451 	}
15452 
15453 	/* Strip empties */
15454 	for (;;) {
15455 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
15456 		    (uintptr_t)INT_MAX);
15457 		len = (int)(mp->b_wptr - mp->b_rptr);
15458 		if (len > 0)
15459 			break;
15460 		mp1 = mp;
15461 		mp = mp->b_cont;
15462 		freeb(mp1);
15463 		if (!mp) {
15464 			return;
15465 		}
15466 	}
15467 
15468 	/* If we are the first on the list ... */
15469 	if (tcp->tcp_xmit_head == NULL) {
15470 		tcp->tcp_xmit_head = mp;
15471 		tcp->tcp_xmit_tail = mp;
15472 		tcp->tcp_xmit_tail_unsent = len;
15473 	} else {
15474 		/* If tiny tx and room in txq tail, pullup to save mblks. */
15475 		struct datab *dp;
15476 
15477 		mp1 = tcp->tcp_xmit_last;
15478 		if (len < tcp_tx_pull_len &&
15479 		    (dp = mp1->b_datap)->db_ref == 1 &&
15480 		    dp->db_lim - mp1->b_wptr >= len) {
15481 			ASSERT(len > 0);
15482 			ASSERT(!mp1->b_cont);
15483 			if (len == 1) {
15484 				*mp1->b_wptr++ = *mp->b_rptr;
15485 			} else {
15486 				bcopy(mp->b_rptr, mp1->b_wptr, len);
15487 				mp1->b_wptr += len;
15488 			}
15489 			if (mp1 == tcp->tcp_xmit_tail)
15490 				tcp->tcp_xmit_tail_unsent += len;
15491 			mp1->b_cont = mp->b_cont;
15492 			if (tcp->tcp_snd_zcopy_aware &&
15493 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
15494 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
15495 			freeb(mp);
15496 			mp = mp1;
15497 		} else {
15498 			tcp->tcp_xmit_last->b_cont = mp;
15499 		}
15500 		len += tcp->tcp_unsent;
15501 	}
15502 
15503 	/* Tack on however many more positive length mblks we have */
15504 	if ((mp1 = mp->b_cont) != NULL) {
15505 		do {
15506 			int tlen;
15507 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
15508 			    (uintptr_t)INT_MAX);
15509 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
15510 			if (tlen <= 0) {
15511 				mp->b_cont = mp1->b_cont;
15512 				freeb(mp1);
15513 			} else {
15514 				len += tlen;
15515 				mp = mp1;
15516 			}
15517 		} while ((mp1 = mp->b_cont) != NULL);
15518 	}
15519 	tcp->tcp_xmit_last = mp;
15520 	tcp->tcp_unsent = len;
15521 
15522 	if (urgent)
15523 		usable = 1;
15524 
15525 data_null:
15526 	snxt = tcp->tcp_snxt;
15527 	xmit_tail = tcp->tcp_xmit_tail;
15528 	tail_unsent = tcp->tcp_xmit_tail_unsent;
15529 
15530 	/*
15531 	 * Note that tcp_mss has been adjusted to take into account the
15532 	 * timestamp option if applicable.  Because SACK options do not
15533 	 * appear in every TCP segments and they are of variable lengths,
15534 	 * they cannot be included in tcp_mss.  Thus we need to calculate
15535 	 * the actual segment length when we need to send a segment which
15536 	 * includes SACK options.
15537 	 */
15538 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
15539 		int32_t	opt_len;
15540 
15541 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
15542 		    tcp->tcp_num_sack_blk);
15543 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
15544 		    2 + TCPOPT_HEADER_LEN;
15545 		mss = tcp->tcp_mss - opt_len;
15546 		total_hdr_len = connp->conn_ht_iphc_len + opt_len;
15547 		tcp_hdr_len = connp->conn_ht_ulp_len + opt_len;
15548 	} else {
15549 		mss = tcp->tcp_mss;
15550 		total_hdr_len = connp->conn_ht_iphc_len;
15551 		tcp_hdr_len = connp->conn_ht_ulp_len;
15552 	}
15553 
15554 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
15555 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
15556 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
15557 	}
15558 	if (tcpstate == TCPS_SYN_RCVD) {
15559 		/*
15560 		 * The three-way connection establishment handshake is not
15561 		 * complete yet. We want to queue the data for transmission
15562 		 * after entering ESTABLISHED state (RFC793). A jump to
15563 		 * "done" label effectively leaves data on the queue.
15564 		 */
15565 		goto done;
15566 	} else {
15567 		int usable_r;
15568 
15569 		/*
15570 		 * In the special case when cwnd is zero, which can only
15571 		 * happen if the connection is ECN capable, return now.
15572 		 * New segments is sent using tcp_timer().  The timer
15573 		 * is set in tcp_input_data().
15574 		 */
15575 		if (tcp->tcp_cwnd == 0) {
15576 			/*
15577 			 * Note that tcp_cwnd is 0 before 3-way handshake is
15578 			 * finished.
15579 			 */
15580 			ASSERT(tcp->tcp_ecn_ok ||
15581 			    tcp->tcp_state < TCPS_ESTABLISHED);
15582 			return;
15583 		}
15584 
15585 		/* NOTE: trouble if xmitting while SYN not acked? */
15586 		usable_r = snxt - tcp->tcp_suna;
15587 		usable_r = tcp->tcp_swnd - usable_r;
15588 
15589 		/*
15590 		 * Check if the receiver has shrunk the window.  If
15591 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
15592 		 * cannot be set as there is unsent data, so FIN cannot
15593 		 * be sent out.  Otherwise, we need to take into account
15594 		 * of FIN as it consumes an "invisible" sequence number.
15595 		 */
15596 		ASSERT(tcp->tcp_fin_sent == 0);
15597 		if (usable_r < 0) {
15598 			/*
15599 			 * The receiver has shrunk the window and we have sent
15600 			 * -usable_r date beyond the window, re-adjust.
15601 			 *
15602 			 * If TCP window scaling is enabled, there can be
15603 			 * round down error as the advertised receive window
15604 			 * is actually right shifted n bits.  This means that
15605 			 * the lower n bits info is wiped out.  It will look
15606 			 * like the window is shrunk.  Do a check here to
15607 			 * see if the shrunk amount is actually within the
15608 			 * error in window calculation.  If it is, just
15609 			 * return.  Note that this check is inside the
15610 			 * shrunk window check.  This makes sure that even
15611 			 * though tcp_process_shrunk_swnd() is not called,
15612 			 * we will stop further processing.
15613 			 */
15614 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
15615 				tcp_process_shrunk_swnd(tcp, -usable_r);
15616 			}
15617 			return;
15618 		}
15619 
15620 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
15621 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
15622 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
15623 
15624 		/* usable = MIN(usable, unsent) */
15625 		if (usable_r > len)
15626 			usable_r = len;
15627 
15628 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
15629 		if (usable_r > 0) {
15630 			usable = usable_r;
15631 		} else {
15632 			/* Bypass all other unnecessary processing. */
15633 			goto done;
15634 		}
15635 	}
15636 
15637 	local_time = (mblk_t *)lbolt;
15638 
15639 	/*
15640 	 * "Our" Nagle Algorithm.  This is not the same as in the old
15641 	 * BSD.  This is more in line with the true intent of Nagle.
15642 	 *
15643 	 * The conditions are:
15644 	 * 1. The amount of unsent data (or amount of data which can be
15645 	 *    sent, whichever is smaller) is less than Nagle limit.
15646 	 * 2. The last sent size is also less than Nagle limit.
15647 	 * 3. There is unack'ed data.
15648 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
15649 	 *    Nagle algorithm.  This reduces the probability that urgent
15650 	 *    bytes get "merged" together.
15651 	 * 5. The app has not closed the connection.  This eliminates the
15652 	 *    wait time of the receiving side waiting for the last piece of
15653 	 *    (small) data.
15654 	 *
15655 	 * If all are satisified, exit without sending anything.  Note
15656 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
15657 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
15658 	 * 4095).
15659 	 */
15660 	if (usable < (int)tcp->tcp_naglim &&
15661 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
15662 	    snxt != tcp->tcp_suna &&
15663 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
15664 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
15665 		goto done;
15666 	}
15667 
15668 	/*
15669 	 * If tcp_zero_win_probe is not set and the tcp->tcp_cork option
15670 	 * is set, then we have to force TCP not to send partial segment
15671 	 * (smaller than MSS bytes). We are calculating the usable now
15672 	 * based on full mss and will save the rest of remaining data for
15673 	 * later. When tcp_zero_win_probe is set, TCP needs to send out
15674 	 * something to do zero window probe.
15675 	 */
15676 	if (tcp->tcp_cork && !tcp->tcp_zero_win_probe) {
15677 		if (usable < mss)
15678 			goto done;
15679 		usable = (usable / mss) * mss;
15680 	}
15681 
15682 	/* Update the latest receive window size in TCP header. */
15683 	tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
15684 
15685 	/* Send the packet. */
15686 	rc = tcp_send(tcp, mss, total_hdr_len, tcp_hdr_len,
15687 	    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
15688 	    local_time);
15689 
15690 	/* Pretend that all we were trying to send really got sent */
15691 	if (rc < 0 && tail_unsent < 0) {
15692 		do {
15693 			xmit_tail = xmit_tail->b_cont;
15694 			xmit_tail->b_prev = local_time;
15695 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
15696 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
15697 			tail_unsent += (int)(xmit_tail->b_wptr -
15698 			    xmit_tail->b_rptr);
15699 		} while (tail_unsent < 0);
15700 	}
15701 done:;
15702 	tcp->tcp_xmit_tail = xmit_tail;
15703 	tcp->tcp_xmit_tail_unsent = tail_unsent;
15704 	len = tcp->tcp_snxt - snxt;
15705 	if (len) {
15706 		/*
15707 		 * If new data was sent, need to update the notsack
15708 		 * list, which is, afterall, data blocks that have
15709 		 * not been sack'ed by the receiver.  New data is
15710 		 * not sack'ed.
15711 		 */
15712 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
15713 			/* len is a negative value. */
15714 			tcp->tcp_pipe -= len;
15715 			tcp_notsack_update(&(tcp->tcp_notsack_list),
15716 			    tcp->tcp_snxt, snxt,
15717 			    &(tcp->tcp_num_notsack_blk),
15718 			    &(tcp->tcp_cnt_notsack_list));
15719 		}
15720 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
15721 		tcp->tcp_rack = tcp->tcp_rnxt;
15722 		tcp->tcp_rack_cnt = 0;
15723 		if ((snxt + len) == tcp->tcp_suna) {
15724 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
15725 		}
15726 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
15727 		/*
15728 		 * Didn't send anything. Make sure the timer is running
15729 		 * so that we will probe a zero window.
15730 		 */
15731 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
15732 	}
15733 	/* Note that len is the amount we just sent but with a negative sign */
15734 	tcp->tcp_unsent += len;
15735 	mutex_enter(&tcp->tcp_non_sq_lock);
15736 	if (tcp->tcp_flow_stopped) {
15737 		if (TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) {
15738 			tcp_clrqfull(tcp);
15739 		}
15740 	} else if (TCP_UNSENT_BYTES(tcp) >= connp->conn_sndbuf) {
15741 		if (!(tcp->tcp_detached))
15742 			tcp_setqfull(tcp);
15743 	}
15744 	mutex_exit(&tcp->tcp_non_sq_lock);
15745 }
15746 
15747 /*
15748  * tcp_fill_header is called by tcp_send() to fill the outgoing TCP header
15749  * with the template header, as well as other options such as time-stamp,
15750  * ECN and/or SACK.
15751  */
15752 static void
15753 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
15754 {
15755 	tcpha_t *tcp_tmpl, *tcpha;
15756 	uint32_t *dst, *src;
15757 	int hdrlen;
15758 	conn_t *connp = tcp->tcp_connp;
15759 
15760 	ASSERT(OK_32PTR(rptr));
15761 
15762 	/* Template header */
15763 	tcp_tmpl = tcp->tcp_tcpha;
15764 
15765 	/* Header of outgoing packet */
15766 	tcpha = (tcpha_t *)(rptr + connp->conn_ixa->ixa_ip_hdr_length);
15767 
15768 	/* dst and src are opaque 32-bit fields, used for copying */
15769 	dst = (uint32_t *)rptr;
15770 	src = (uint32_t *)connp->conn_ht_iphc;
15771 	hdrlen = connp->conn_ht_iphc_len;
15772 
15773 	/* Fill time-stamp option if needed */
15774 	if (tcp->tcp_snd_ts_ok) {
15775 		U32_TO_BE32((uint32_t)now,
15776 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
15777 		U32_TO_BE32(tcp->tcp_ts_recent,
15778 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
15779 	} else {
15780 		ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH);
15781 	}
15782 
15783 	/*
15784 	 * Copy the template header; is this really more efficient than
15785 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
15786 	 * but perhaps not for other scenarios.
15787 	 */
15788 	dst[0] = src[0];
15789 	dst[1] = src[1];
15790 	dst[2] = src[2];
15791 	dst[3] = src[3];
15792 	dst[4] = src[4];
15793 	dst[5] = src[5];
15794 	dst[6] = src[6];
15795 	dst[7] = src[7];
15796 	dst[8] = src[8];
15797 	dst[9] = src[9];
15798 	if (hdrlen -= 40) {
15799 		hdrlen >>= 2;
15800 		dst += 10;
15801 		src += 10;
15802 		do {
15803 			*dst++ = *src++;
15804 		} while (--hdrlen);
15805 	}
15806 
15807 	/*
15808 	 * Set the ECN info in the TCP header if it is not a zero
15809 	 * window probe.  Zero window probe is only sent in
15810 	 * tcp_wput_data() and tcp_timer().
15811 	 */
15812 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
15813 		SET_ECT(tcp, rptr);
15814 
15815 		if (tcp->tcp_ecn_echo_on)
15816 			tcpha->tha_flags |= TH_ECE;
15817 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
15818 			tcpha->tha_flags |= TH_CWR;
15819 			tcp->tcp_ecn_cwr_sent = B_TRUE;
15820 		}
15821 	}
15822 
15823 	/* Fill in SACK options */
15824 	if (num_sack_blk > 0) {
15825 		uchar_t *wptr = rptr + connp->conn_ht_iphc_len;
15826 		sack_blk_t *tmp;
15827 		int32_t	i;
15828 
15829 		wptr[0] = TCPOPT_NOP;
15830 		wptr[1] = TCPOPT_NOP;
15831 		wptr[2] = TCPOPT_SACK;
15832 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
15833 		    sizeof (sack_blk_t);
15834 		wptr += TCPOPT_REAL_SACK_LEN;
15835 
15836 		tmp = tcp->tcp_sack_list;
15837 		for (i = 0; i < num_sack_blk; i++) {
15838 			U32_TO_BE32(tmp[i].begin, wptr);
15839 			wptr += sizeof (tcp_seq);
15840 			U32_TO_BE32(tmp[i].end, wptr);
15841 			wptr += sizeof (tcp_seq);
15842 		}
15843 		tcpha->tha_offset_and_reserved +=
15844 		    ((num_sack_blk * 2 + 1) << 4);
15845 	}
15846 }
15847 
15848 /*
15849  * tcp_send() is called by tcp_wput_data() and returns one of the following:
15850  *
15851  * -1 = failed allocation.
15852  *  0 = success; burst count reached, or usable send window is too small,
15853  *      and that we'd rather wait until later before sending again.
15854  */
15855 static int
15856 tcp_send(tcp_t *tcp, const int mss, const int total_hdr_len,
15857     const int tcp_hdr_len, const int num_sack_blk, int *usable,
15858     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time)
15859 {
15860 	int		num_burst_seg = tcp->tcp_snd_burst;
15861 	int		num_lso_seg = 1;
15862 	uint_t		lso_usable;
15863 	boolean_t	do_lso_send = B_FALSE;
15864 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15865 	conn_t		*connp = tcp->tcp_connp;
15866 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
15867 
15868 	/*
15869 	 * Check LSO possibility. The value of tcp->tcp_lso indicates whether
15870 	 * the underlying connection is LSO capable. Will check whether having
15871 	 * enough available data to initiate LSO transmission in the for(){}
15872 	 * loops.
15873 	 */
15874 	if (tcp->tcp_lso && (tcp->tcp_valid_bits & ~TCP_FSS_VALID) == 0)
15875 			do_lso_send = B_TRUE;
15876 
15877 	for (;;) {
15878 		struct datab	*db;
15879 		tcpha_t		*tcpha;
15880 		uint32_t	sum;
15881 		mblk_t		*mp, *mp1;
15882 		uchar_t		*rptr;
15883 		int		len;
15884 
15885 		/*
15886 		 * Burst count reached, return successfully.
15887 		 */
15888 		if (num_burst_seg == 0)
15889 			break;
15890 
15891 		/*
15892 		 * Calculate the maximum payload length we can send at one
15893 		 * time.
15894 		 */
15895 		if (do_lso_send) {
15896 			/*
15897 			 * Check whether be able to to do LSO for the current
15898 			 * available data.
15899 			 */
15900 			if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
15901 				lso_usable = MIN(tcp->tcp_lso_max, *usable);
15902 				lso_usable = MIN(lso_usable,
15903 				    num_burst_seg * mss);
15904 
15905 				num_lso_seg = lso_usable / mss;
15906 				if (lso_usable % mss) {
15907 					num_lso_seg++;
15908 					tcp->tcp_last_sent_len = (ushort_t)
15909 					    (lso_usable % mss);
15910 				} else {
15911 					tcp->tcp_last_sent_len = (ushort_t)mss;
15912 				}
15913 			} else {
15914 				do_lso_send = B_FALSE;
15915 				num_lso_seg = 1;
15916 				lso_usable = mss;
15917 			}
15918 		}
15919 
15920 		ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1);
15921 #ifdef DEBUG
15922 		DTRACE_PROBE2(tcp_send_lso, int, num_lso_seg, boolean_t,
15923 		    do_lso_send);
15924 #endif
15925 		/*
15926 		 * Adjust num_burst_seg here.
15927 		 */
15928 		num_burst_seg -= num_lso_seg;
15929 
15930 		len = mss;
15931 		if (len > *usable) {
15932 			ASSERT(do_lso_send == B_FALSE);
15933 
15934 			len = *usable;
15935 			if (len <= 0) {
15936 				/* Terminate the loop */
15937 				break;	/* success; too small */
15938 			}
15939 			/*
15940 			 * Sender silly-window avoidance.
15941 			 * Ignore this if we are going to send a
15942 			 * zero window probe out.
15943 			 *
15944 			 * TODO: force data into microscopic window?
15945 			 *	==> (!pushed || (unsent > usable))
15946 			 */
15947 			if (len < (tcp->tcp_max_swnd >> 1) &&
15948 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
15949 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
15950 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
15951 				/*
15952 				 * If the retransmit timer is not running
15953 				 * we start it so that we will retransmit
15954 				 * in the case when the receiver has
15955 				 * decremented the window.
15956 				 */
15957 				if (*snxt == tcp->tcp_snxt &&
15958 				    *snxt == tcp->tcp_suna) {
15959 					/*
15960 					 * We are not supposed to send
15961 					 * anything.  So let's wait a little
15962 					 * bit longer before breaking SWS
15963 					 * avoidance.
15964 					 *
15965 					 * What should the value be?
15966 					 * Suggestion: MAX(init rexmit time,
15967 					 * tcp->tcp_rto)
15968 					 */
15969 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
15970 				}
15971 				break;	/* success; too small */
15972 			}
15973 		}
15974 
15975 		tcpha = tcp->tcp_tcpha;
15976 
15977 		/*
15978 		 * The reason to adjust len here is that we need to set flags
15979 		 * and calculate checksum.
15980 		 */
15981 		if (do_lso_send)
15982 			len = lso_usable;
15983 
15984 		*usable -= len; /* Approximate - can be adjusted later */
15985 		if (*usable > 0)
15986 			tcpha->tha_flags = TH_ACK;
15987 		else
15988 			tcpha->tha_flags = (TH_ACK | TH_PUSH);
15989 
15990 		/*
15991 		 * Prime pump for IP's checksumming on our behalf.
15992 		 * Include the adjustment for a source route if any.
15993 		 * In case of LSO, the partial pseudo-header checksum should
15994 		 * exclusive TCP length, so zero tha_sum before IP calculate
15995 		 * pseudo-header checksum for partial checksum offload.
15996 		 */
15997 		if (do_lso_send) {
15998 			sum = 0;
15999 		} else {
16000 			sum = len + tcp_hdr_len + connp->conn_sum;
16001 			sum = (sum >> 16) + (sum & 0xFFFF);
16002 		}
16003 		tcpha->tha_sum = htons(sum);
16004 		tcpha->tha_seq = htonl(*snxt);
16005 
16006 		/*
16007 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
16008 		 * set.  For the case when TCP_FSS_VALID is the only valid
16009 		 * bit (normal active close), branch off only when we think
16010 		 * that the FIN flag needs to be set.  Note for this case,
16011 		 * that (snxt + len) may not reflect the actual seg_len,
16012 		 * as len may be further reduced in tcp_xmit_mp().  If len
16013 		 * gets modified, we will end up here again.
16014 		 */
16015 		if (tcp->tcp_valid_bits != 0 &&
16016 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
16017 		    ((*snxt + len) == tcp->tcp_fss))) {
16018 			uchar_t		*prev_rptr;
16019 			uint32_t	prev_snxt = tcp->tcp_snxt;
16020 
16021 			if (*tail_unsent == 0) {
16022 				ASSERT((*xmit_tail)->b_cont != NULL);
16023 				*xmit_tail = (*xmit_tail)->b_cont;
16024 				prev_rptr = (*xmit_tail)->b_rptr;
16025 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
16026 				    (*xmit_tail)->b_rptr);
16027 			} else {
16028 				prev_rptr = (*xmit_tail)->b_rptr;
16029 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
16030 				    *tail_unsent;
16031 			}
16032 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
16033 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
16034 			/* Restore tcp_snxt so we get amount sent right. */
16035 			tcp->tcp_snxt = prev_snxt;
16036 			if (prev_rptr == (*xmit_tail)->b_rptr) {
16037 				/*
16038 				 * If the previous timestamp is still in use,
16039 				 * don't stomp on it.
16040 				 */
16041 				if ((*xmit_tail)->b_next == NULL) {
16042 					(*xmit_tail)->b_prev = local_time;
16043 					(*xmit_tail)->b_next =
16044 					    (mblk_t *)(uintptr_t)(*snxt);
16045 				}
16046 			} else
16047 				(*xmit_tail)->b_rptr = prev_rptr;
16048 
16049 			if (mp == NULL) {
16050 				return (-1);
16051 			}
16052 			mp1 = mp->b_cont;
16053 
16054 			if (len <= mss) /* LSO is unusable (!do_lso_send) */
16055 				tcp->tcp_last_sent_len = (ushort_t)len;
16056 			while (mp1->b_cont) {
16057 				*xmit_tail = (*xmit_tail)->b_cont;
16058 				(*xmit_tail)->b_prev = local_time;
16059 				(*xmit_tail)->b_next =
16060 				    (mblk_t *)(uintptr_t)(*snxt);
16061 				mp1 = mp1->b_cont;
16062 			}
16063 			*snxt += len;
16064 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
16065 			BUMP_LOCAL(tcp->tcp_obsegs);
16066 			BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
16067 			UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
16068 			tcp_send_data(tcp, mp);
16069 			continue;
16070 		}
16071 
16072 		*snxt += len;	/* Adjust later if we don't send all of len */
16073 		BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
16074 		UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
16075 
16076 		if (*tail_unsent) {
16077 			/* Are the bytes above us in flight? */
16078 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
16079 			if (rptr != (*xmit_tail)->b_rptr) {
16080 				*tail_unsent -= len;
16081 				if (len <= mss) /* LSO is unusable */
16082 					tcp->tcp_last_sent_len = (ushort_t)len;
16083 				len += total_hdr_len;
16084 				ixa->ixa_pktlen = len;
16085 
16086 				if (ixa->ixa_flags & IXAF_IS_IPV4) {
16087 					tcp->tcp_ipha->ipha_length = htons(len);
16088 				} else {
16089 					tcp->tcp_ip6h->ip6_plen =
16090 					    htons(len - IPV6_HDR_LEN);
16091 				}
16092 
16093 				mp = dupb(*xmit_tail);
16094 				if (mp == NULL) {
16095 					return (-1);	/* out_of_mem */
16096 				}
16097 				mp->b_rptr = rptr;
16098 				/*
16099 				 * If the old timestamp is no longer in use,
16100 				 * sample a new timestamp now.
16101 				 */
16102 				if ((*xmit_tail)->b_next == NULL) {
16103 					(*xmit_tail)->b_prev = local_time;
16104 					(*xmit_tail)->b_next =
16105 					    (mblk_t *)(uintptr_t)(*snxt-len);
16106 				}
16107 				goto must_alloc;
16108 			}
16109 		} else {
16110 			*xmit_tail = (*xmit_tail)->b_cont;
16111 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
16112 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
16113 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
16114 			    (*xmit_tail)->b_rptr);
16115 		}
16116 
16117 		(*xmit_tail)->b_prev = local_time;
16118 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
16119 
16120 		*tail_unsent -= len;
16121 		if (len <= mss) /* LSO is unusable (!do_lso_send) */
16122 			tcp->tcp_last_sent_len = (ushort_t)len;
16123 
16124 		len += total_hdr_len;
16125 		ixa->ixa_pktlen = len;
16126 
16127 		if (ixa->ixa_flags & IXAF_IS_IPV4) {
16128 			tcp->tcp_ipha->ipha_length = htons(len);
16129 		} else {
16130 			tcp->tcp_ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
16131 		}
16132 
16133 		mp = dupb(*xmit_tail);
16134 		if (mp == NULL) {
16135 			return (-1);	/* out_of_mem */
16136 		}
16137 
16138 		len = total_hdr_len;
16139 		/*
16140 		 * There are four reasons to allocate a new hdr mblk:
16141 		 *  1) The bytes above us are in use by another packet
16142 		 *  2) We don't have good alignment
16143 		 *  3) The mblk is being shared
16144 		 *  4) We don't have enough room for a header
16145 		 */
16146 		rptr = mp->b_rptr - len;
16147 		if (!OK_32PTR(rptr) ||
16148 		    ((db = mp->b_datap), db->db_ref != 2) ||
16149 		    rptr < db->db_base) {
16150 			/* NOTE: we assume allocb returns an OK_32PTR */
16151 
16152 		must_alloc:;
16153 			mp1 = allocb(connp->conn_ht_iphc_allocated +
16154 			    tcps->tcps_wroff_xtra, BPRI_MED);
16155 			if (mp1 == NULL) {
16156 				freemsg(mp);
16157 				return (-1);	/* out_of_mem */
16158 			}
16159 			mp1->b_cont = mp;
16160 			mp = mp1;
16161 			/* Leave room for Link Level header */
16162 			len = total_hdr_len;
16163 			rptr = &mp->b_rptr[tcps->tcps_wroff_xtra];
16164 			mp->b_wptr = &rptr[len];
16165 		}
16166 
16167 		/*
16168 		 * Fill in the header using the template header, and add
16169 		 * options such as time-stamp, ECN and/or SACK, as needed.
16170 		 */
16171 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
16172 
16173 		mp->b_rptr = rptr;
16174 
16175 		if (*tail_unsent) {
16176 			int spill = *tail_unsent;
16177 
16178 			mp1 = mp->b_cont;
16179 			if (mp1 == NULL)
16180 				mp1 = mp;
16181 
16182 			/*
16183 			 * If we're a little short, tack on more mblks until
16184 			 * there is no more spillover.
16185 			 */
16186 			while (spill < 0) {
16187 				mblk_t *nmp;
16188 				int nmpsz;
16189 
16190 				nmp = (*xmit_tail)->b_cont;
16191 				nmpsz = MBLKL(nmp);
16192 
16193 				/*
16194 				 * Excess data in mblk; can we split it?
16195 				 * If LSO is enabled for the connection,
16196 				 * keep on splitting as this is a transient
16197 				 * send path.
16198 				 */
16199 				if (!do_lso_send && (spill + nmpsz > 0)) {
16200 					/*
16201 					 * Don't split if stream head was
16202 					 * told to break up larger writes
16203 					 * into smaller ones.
16204 					 */
16205 					if (tcp->tcp_maxpsz_multiplier > 0)
16206 						break;
16207 
16208 					/*
16209 					 * Next mblk is less than SMSS/2
16210 					 * rounded up to nearest 64-byte;
16211 					 * let it get sent as part of the
16212 					 * next segment.
16213 					 */
16214 					if (tcp->tcp_localnet &&
16215 					    !tcp->tcp_cork &&
16216 					    (nmpsz < roundup((mss >> 1), 64)))
16217 						break;
16218 				}
16219 
16220 				*xmit_tail = nmp;
16221 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
16222 				/* Stash for rtt use later */
16223 				(*xmit_tail)->b_prev = local_time;
16224 				(*xmit_tail)->b_next =
16225 				    (mblk_t *)(uintptr_t)(*snxt - len);
16226 				mp1->b_cont = dupb(*xmit_tail);
16227 				mp1 = mp1->b_cont;
16228 
16229 				spill += nmpsz;
16230 				if (mp1 == NULL) {
16231 					*tail_unsent = spill;
16232 					freemsg(mp);
16233 					return (-1);	/* out_of_mem */
16234 				}
16235 			}
16236 
16237 			/* Trim back any surplus on the last mblk */
16238 			if (spill >= 0) {
16239 				mp1->b_wptr -= spill;
16240 				*tail_unsent = spill;
16241 			} else {
16242 				/*
16243 				 * We did not send everything we could in
16244 				 * order to remain within the b_cont limit.
16245 				 */
16246 				*usable -= spill;
16247 				*snxt += spill;
16248 				tcp->tcp_last_sent_len += spill;
16249 				UPDATE_MIB(&tcps->tcps_mib,
16250 				    tcpOutDataBytes, spill);
16251 				/*
16252 				 * Adjust the checksum
16253 				 */
16254 				tcpha = (tcpha_t *)(rptr +
16255 				    ixa->ixa_ip_hdr_length);
16256 				sum += spill;
16257 				sum = (sum >> 16) + (sum & 0xFFFF);
16258 				tcpha->tha_sum = htons(sum);
16259 				if (connp->conn_ipversion == IPV4_VERSION) {
16260 					sum = ntohs(
16261 					    ((ipha_t *)rptr)->ipha_length) +
16262 					    spill;
16263 					((ipha_t *)rptr)->ipha_length =
16264 					    htons(sum);
16265 				} else {
16266 					sum = ntohs(
16267 					    ((ip6_t *)rptr)->ip6_plen) +
16268 					    spill;
16269 					((ip6_t *)rptr)->ip6_plen =
16270 					    htons(sum);
16271 				}
16272 				ixa->ixa_pktlen += spill;
16273 				*tail_unsent = 0;
16274 			}
16275 		}
16276 		if (tcp->tcp_ip_forward_progress) {
16277 			tcp->tcp_ip_forward_progress = B_FALSE;
16278 			ixa->ixa_flags |= IXAF_REACH_CONF;
16279 		} else {
16280 			ixa->ixa_flags &= ~IXAF_REACH_CONF;
16281 		}
16282 
16283 		/*
16284 		 * Append LSO information, both flags and mss, to the mp.
16285 		 */
16286 		if (do_lso_send) {
16287 			lso_info_set(mp, mss, HW_LSO);
16288 			ixa->ixa_fragsize = IP_MAXPACKET;
16289 			ixa->ixa_extra_ident = num_lso_seg - 1;
16290 
16291 			DTRACE_PROBE2(tcp_send_lso, int, num_lso_seg,
16292 			    boolean_t, B_TRUE);
16293 
16294 			tcp_send_data(tcp, mp);
16295 
16296 			/*
16297 			 * Restore values of ixa_fragsize and ixa_extra_ident.
16298 			 */
16299 			ixa->ixa_fragsize = ixa->ixa_pmtu;
16300 			ixa->ixa_extra_ident = 0;
16301 			tcp->tcp_obsegs += num_lso_seg;
16302 			TCP_STAT(tcps, tcp_lso_times);
16303 			TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg);
16304 		} else {
16305 			tcp_send_data(tcp, mp);
16306 			BUMP_LOCAL(tcp->tcp_obsegs);
16307 		}
16308 	}
16309 
16310 	return (0);
16311 }
16312 
16313 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
16314 static void
16315 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
16316 {
16317 	uchar_t	fval = *mp->b_rptr;
16318 	mblk_t	*tail;
16319 	conn_t	*connp = tcp->tcp_connp;
16320 	queue_t	*q = connp->conn_wq;
16321 
16322 	/* TODO: How should flush interact with urgent data? */
16323 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
16324 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
16325 		/*
16326 		 * Flush only data that has not yet been put on the wire.  If
16327 		 * we flush data that we have already transmitted, life, as we
16328 		 * know it, may come to an end.
16329 		 */
16330 		tail = tcp->tcp_xmit_tail;
16331 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
16332 		tcp->tcp_xmit_tail_unsent = 0;
16333 		tcp->tcp_unsent = 0;
16334 		if (tail->b_wptr != tail->b_rptr)
16335 			tail = tail->b_cont;
16336 		if (tail) {
16337 			mblk_t **excess = &tcp->tcp_xmit_head;
16338 			for (;;) {
16339 				mblk_t *mp1 = *excess;
16340 				if (mp1 == tail)
16341 					break;
16342 				tcp->tcp_xmit_tail = mp1;
16343 				tcp->tcp_xmit_last = mp1;
16344 				excess = &mp1->b_cont;
16345 			}
16346 			*excess = NULL;
16347 			tcp_close_mpp(&tail);
16348 			if (tcp->tcp_snd_zcopy_aware)
16349 				tcp_zcopy_notify(tcp);
16350 		}
16351 		/*
16352 		 * We have no unsent data, so unsent must be less than
16353 		 * conn_sndlowat, so re-enable flow.
16354 		 */
16355 		mutex_enter(&tcp->tcp_non_sq_lock);
16356 		if (tcp->tcp_flow_stopped) {
16357 			tcp_clrqfull(tcp);
16358 		}
16359 		mutex_exit(&tcp->tcp_non_sq_lock);
16360 	}
16361 	/*
16362 	 * TODO: you can't just flush these, you have to increase rwnd for one
16363 	 * thing.  For another, how should urgent data interact?
16364 	 */
16365 	if (fval & FLUSHR) {
16366 		*mp->b_rptr = fval & ~FLUSHW;
16367 		/* XXX */
16368 		qreply(q, mp);
16369 		return;
16370 	}
16371 	freemsg(mp);
16372 }
16373 
16374 /*
16375  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
16376  * messages.
16377  */
16378 static void
16379 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
16380 {
16381 	mblk_t		*mp1;
16382 	struct iocblk	*iocp = (struct iocblk *)mp->b_rptr;
16383 	STRUCT_HANDLE(strbuf, sb);
16384 	uint_t		addrlen;
16385 	conn_t		*connp = tcp->tcp_connp;
16386 	queue_t 	*q = connp->conn_wq;
16387 
16388 	/* Make sure it is one of ours. */
16389 	switch (iocp->ioc_cmd) {
16390 	case TI_GETMYNAME:
16391 	case TI_GETPEERNAME:
16392 		break;
16393 	default:
16394 		ip_wput_nondata(q, mp);
16395 		return;
16396 	}
16397 	switch (mi_copy_state(q, mp, &mp1)) {
16398 	case -1:
16399 		return;
16400 	case MI_COPY_CASE(MI_COPY_IN, 1):
16401 		break;
16402 	case MI_COPY_CASE(MI_COPY_OUT, 1):
16403 		/* Copy out the strbuf. */
16404 		mi_copyout(q, mp);
16405 		return;
16406 	case MI_COPY_CASE(MI_COPY_OUT, 2):
16407 		/* All done. */
16408 		mi_copy_done(q, mp, 0);
16409 		return;
16410 	default:
16411 		mi_copy_done(q, mp, EPROTO);
16412 		return;
16413 	}
16414 	/* Check alignment of the strbuf */
16415 	if (!OK_32PTR(mp1->b_rptr)) {
16416 		mi_copy_done(q, mp, EINVAL);
16417 		return;
16418 	}
16419 
16420 	STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr);
16421 
16422 	if (connp->conn_family == AF_INET)
16423 		addrlen = sizeof (sin_t);
16424 	else
16425 		addrlen = sizeof (sin6_t);
16426 
16427 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
16428 		mi_copy_done(q, mp, EINVAL);
16429 		return;
16430 	}
16431 
16432 	switch (iocp->ioc_cmd) {
16433 	case TI_GETMYNAME:
16434 		break;
16435 	case TI_GETPEERNAME:
16436 		if (tcp->tcp_state < TCPS_SYN_RCVD) {
16437 			mi_copy_done(q, mp, ENOTCONN);
16438 			return;
16439 		}
16440 		break;
16441 	}
16442 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
16443 	if (!mp1)
16444 		return;
16445 
16446 	STRUCT_FSET(sb, len, addrlen);
16447 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
16448 	case TI_GETMYNAME:
16449 		(void) conn_getsockname(connp, (struct sockaddr *)mp1->b_wptr,
16450 		    &addrlen);
16451 		break;
16452 	case TI_GETPEERNAME:
16453 		(void) conn_getpeername(connp, (struct sockaddr *)mp1->b_wptr,
16454 		    &addrlen);
16455 		break;
16456 	}
16457 	mp1->b_wptr += addrlen;
16458 	/* Copy out the address */
16459 	mi_copyout(q, mp);
16460 }
16461 
16462 static void
16463 tcp_use_pure_tpi(tcp_t *tcp)
16464 {
16465 	conn_t		*connp = tcp->tcp_connp;
16466 
16467 #ifdef	_ILP32
16468 	tcp->tcp_acceptor_id = (t_uscalar_t)connp->conn_rq;
16469 #else
16470 	tcp->tcp_acceptor_id = connp->conn_dev;
16471 #endif
16472 	/*
16473 	 * Insert this socket into the acceptor hash.
16474 	 * We might need it for T_CONN_RES message
16475 	 */
16476 	tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
16477 
16478 	tcp->tcp_issocket = B_FALSE;
16479 	TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback);
16480 }
16481 
16482 /*
16483  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
16484  * messages.
16485  */
16486 /* ARGSUSED */
16487 static void
16488 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
16489 {
16490 	conn_t 		*connp = (conn_t *)arg;
16491 	tcp_t		*tcp = connp->conn_tcp;
16492 	queue_t		*q = connp->conn_wq;
16493 	struct iocblk	*iocp;
16494 
16495 	ASSERT(DB_TYPE(mp) == M_IOCTL);
16496 	/*
16497 	 * Try and ASSERT the minimum possible references on the
16498 	 * conn early enough. Since we are executing on write side,
16499 	 * the connection is obviously not detached and that means
16500 	 * there is a ref each for TCP and IP. Since we are behind
16501 	 * the squeue, the minimum references needed are 3. If the
16502 	 * conn is in classifier hash list, there should be an
16503 	 * extra ref for that (we check both the possibilities).
16504 	 */
16505 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
16506 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
16507 
16508 	iocp = (struct iocblk *)mp->b_rptr;
16509 	switch (iocp->ioc_cmd) {
16510 	case _SIOCSOCKFALLBACK:
16511 		/*
16512 		 * Either sockmod is about to be popped and the socket
16513 		 * would now be treated as a plain stream, or a module
16514 		 * is about to be pushed so we could no longer use read-
16515 		 * side synchronous streams for fused loopback tcp.
16516 		 * Drain any queued data and disable direct sockfs
16517 		 * interface from now on.
16518 		 */
16519 		if (!tcp->tcp_issocket) {
16520 			DB_TYPE(mp) = M_IOCNAK;
16521 			iocp->ioc_error = EINVAL;
16522 		} else {
16523 			tcp_use_pure_tpi(tcp);
16524 			DB_TYPE(mp) = M_IOCACK;
16525 			iocp->ioc_error = 0;
16526 		}
16527 		iocp->ioc_count = 0;
16528 		iocp->ioc_rval = 0;
16529 		qreply(q, mp);
16530 		return;
16531 	}
16532 	ip_wput_nondata(q, mp);
16533 }
16534 
16535 /*
16536  * This routine is called by tcp_wput() to handle all TPI requests.
16537  */
16538 /* ARGSUSED */
16539 static void
16540 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
16541 {
16542 	conn_t		*connp = (conn_t *)arg;
16543 	tcp_t		*tcp = connp->conn_tcp;
16544 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
16545 	uchar_t		*rptr;
16546 	t_scalar_t	type;
16547 	cred_t		*cr;
16548 
16549 	/*
16550 	 * Try and ASSERT the minimum possible references on the
16551 	 * conn early enough. Since we are executing on write side,
16552 	 * the connection is obviously not detached and that means
16553 	 * there is a ref each for TCP and IP. Since we are behind
16554 	 * the squeue, the minimum references needed are 3. If the
16555 	 * conn is in classifier hash list, there should be an
16556 	 * extra ref for that (we check both the possibilities).
16557 	 */
16558 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
16559 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
16560 
16561 	rptr = mp->b_rptr;
16562 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
16563 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
16564 		type = ((union T_primitives *)rptr)->type;
16565 		if (type == T_EXDATA_REQ) {
16566 			tcp_output_urgent(connp, mp, arg2, NULL);
16567 		} else if (type != T_DATA_REQ) {
16568 			goto non_urgent_data;
16569 		} else {
16570 			/* TODO: options, flags, ... from user */
16571 			/* Set length to zero for reclamation below */
16572 			tcp_wput_data(tcp, mp->b_cont, B_TRUE);
16573 			freeb(mp);
16574 		}
16575 		return;
16576 	} else {
16577 		if (connp->conn_debug) {
16578 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
16579 			    "tcp_wput_proto, dropping one...");
16580 		}
16581 		freemsg(mp);
16582 		return;
16583 	}
16584 
16585 non_urgent_data:
16586 
16587 	switch ((int)tprim->type) {
16588 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
16589 		/*
16590 		 * save the kssl_ent_t from the next block, and convert this
16591 		 * back to a normal bind_req.
16592 		 */
16593 		if (mp->b_cont != NULL) {
16594 			ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
16595 
16596 			if (tcp->tcp_kssl_ent != NULL) {
16597 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
16598 				    KSSL_NO_PROXY);
16599 				tcp->tcp_kssl_ent = NULL;
16600 			}
16601 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
16602 			    sizeof (kssl_ent_t));
16603 			kssl_hold_ent(tcp->tcp_kssl_ent);
16604 			freemsg(mp->b_cont);
16605 			mp->b_cont = NULL;
16606 		}
16607 		tprim->type = T_BIND_REQ;
16608 
16609 	/* FALLTHROUGH */
16610 	case O_T_BIND_REQ:	/* bind request */
16611 	case T_BIND_REQ:	/* new semantics bind request */
16612 		tcp_tpi_bind(tcp, mp);
16613 		break;
16614 	case T_UNBIND_REQ:	/* unbind request */
16615 		tcp_tpi_unbind(tcp, mp);
16616 		break;
16617 	case O_T_CONN_RES:	/* old connection response XXX */
16618 	case T_CONN_RES:	/* connection response */
16619 		tcp_tli_accept(tcp, mp);
16620 		break;
16621 	case T_CONN_REQ:	/* connection request */
16622 		tcp_tpi_connect(tcp, mp);
16623 		break;
16624 	case T_DISCON_REQ:	/* disconnect request */
16625 		tcp_disconnect(tcp, mp);
16626 		break;
16627 	case T_CAPABILITY_REQ:
16628 		tcp_capability_req(tcp, mp);	/* capability request */
16629 		break;
16630 	case T_INFO_REQ:	/* information request */
16631 		tcp_info_req(tcp, mp);
16632 		break;
16633 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
16634 	case T_OPTMGMT_REQ:
16635 		/*
16636 		 * Note:  no support for snmpcom_req() through new
16637 		 * T_OPTMGMT_REQ. See comments in ip.c
16638 		 */
16639 
16640 		/*
16641 		 * All Solaris components should pass a db_credp
16642 		 * for this TPI message, hence we ASSERT.
16643 		 * But in case there is some other M_PROTO that looks
16644 		 * like a TPI message sent by some other kernel
16645 		 * component, we check and return an error.
16646 		 */
16647 		cr = msg_getcred(mp, NULL);
16648 		ASSERT(cr != NULL);
16649 		if (cr == NULL) {
16650 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
16651 			return;
16652 		}
16653 		/*
16654 		 * If EINPROGRESS is returned, the request has been queued
16655 		 * for subsequent processing by ip_restart_optmgmt(), which
16656 		 * will do the CONN_DEC_REF().
16657 		 */
16658 		if ((int)tprim->type == T_SVR4_OPTMGMT_REQ) {
16659 			svr4_optcom_req(connp->conn_wq, mp, cr, &tcp_opt_obj);
16660 		} else {
16661 			tpi_optcom_req(connp->conn_wq, mp, cr, &tcp_opt_obj);
16662 		}
16663 		break;
16664 
16665 	case T_UNITDATA_REQ:	/* unitdata request */
16666 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
16667 		break;
16668 	case T_ORDREL_REQ:	/* orderly release req */
16669 		freemsg(mp);
16670 
16671 		if (tcp->tcp_fused)
16672 			tcp_unfuse(tcp);
16673 
16674 		if (tcp_xmit_end(tcp) != 0) {
16675 			/*
16676 			 * We were crossing FINs and got a reset from
16677 			 * the other side. Just ignore it.
16678 			 */
16679 			if (connp->conn_debug) {
16680 				(void) strlog(TCP_MOD_ID, 0, 1,
16681 				    SL_ERROR|SL_TRACE,
16682 				    "tcp_wput_proto, T_ORDREL_REQ out of "
16683 				    "state %s",
16684 				    tcp_display(tcp, NULL,
16685 				    DISP_ADDR_AND_PORT));
16686 			}
16687 		}
16688 		break;
16689 	case T_ADDR_REQ:
16690 		tcp_addr_req(tcp, mp);
16691 		break;
16692 	default:
16693 		if (connp->conn_debug) {
16694 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
16695 			    "tcp_wput_proto, bogus TPI msg, type %d",
16696 			    tprim->type);
16697 		}
16698 		/*
16699 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
16700 		 * to recover.
16701 		 */
16702 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
16703 		break;
16704 	}
16705 }
16706 
16707 /*
16708  * The TCP write service routine should never be called...
16709  */
16710 /* ARGSUSED */
16711 static void
16712 tcp_wsrv(queue_t *q)
16713 {
16714 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
16715 
16716 	TCP_STAT(tcps, tcp_wsrv_called);
16717 }
16718 
16719 /*
16720  * Send out a control packet on the tcp connection specified.  This routine
16721  * is typically called where we need a simple ACK or RST generated.
16722  */
16723 static void
16724 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
16725 {
16726 	uchar_t		*rptr;
16727 	tcpha_t		*tcpha;
16728 	ipha_t		*ipha = NULL;
16729 	ip6_t		*ip6h = NULL;
16730 	uint32_t	sum;
16731 	int		total_hdr_len;
16732 	int		ip_hdr_len;
16733 	mblk_t		*mp;
16734 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16735 	conn_t		*connp = tcp->tcp_connp;
16736 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
16737 
16738 	/*
16739 	 * Save sum for use in source route later.
16740 	 */
16741 	sum = connp->conn_ht_ulp_len + connp->conn_sum;
16742 	total_hdr_len = connp->conn_ht_iphc_len;
16743 	ip_hdr_len = ixa->ixa_ip_hdr_length;
16744 
16745 	/* If a text string is passed in with the request, pass it to strlog. */
16746 	if (str != NULL && connp->conn_debug) {
16747 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
16748 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
16749 		    str, seq, ack, ctl);
16750 	}
16751 	mp = allocb(connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra,
16752 	    BPRI_MED);
16753 	if (mp == NULL) {
16754 		return;
16755 	}
16756 	rptr = &mp->b_rptr[tcps->tcps_wroff_xtra];
16757 	mp->b_rptr = rptr;
16758 	mp->b_wptr = &rptr[total_hdr_len];
16759 	bcopy(connp->conn_ht_iphc, rptr, total_hdr_len);
16760 
16761 	ixa->ixa_pktlen = total_hdr_len;
16762 
16763 	if (ixa->ixa_flags & IXAF_IS_IPV4) {
16764 		ipha = (ipha_t *)rptr;
16765 		ipha->ipha_length = htons(total_hdr_len);
16766 	} else {
16767 		ip6h = (ip6_t *)rptr;
16768 		ip6h->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN);
16769 	}
16770 	tcpha = (tcpha_t *)&rptr[ip_hdr_len];
16771 	tcpha->tha_flags = (uint8_t)ctl;
16772 	if (ctl & TH_RST) {
16773 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
16774 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
16775 		/*
16776 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
16777 		 */
16778 		if (tcp->tcp_snd_ts_ok &&
16779 		    tcp->tcp_state > TCPS_SYN_SENT) {
16780 			mp->b_wptr = &rptr[total_hdr_len - TCPOPT_REAL_TS_LEN];
16781 			*(mp->b_wptr) = TCPOPT_EOL;
16782 
16783 			ixa->ixa_pktlen = total_hdr_len - TCPOPT_REAL_TS_LEN;
16784 
16785 			if (connp->conn_ipversion == IPV4_VERSION) {
16786 				ipha->ipha_length = htons(total_hdr_len -
16787 				    TCPOPT_REAL_TS_LEN);
16788 			} else {
16789 				ip6h->ip6_plen = htons(total_hdr_len -
16790 				    IPV6_HDR_LEN - TCPOPT_REAL_TS_LEN);
16791 			}
16792 			tcpha->tha_offset_and_reserved -= (3 << 4);
16793 			sum -= TCPOPT_REAL_TS_LEN;
16794 		}
16795 	}
16796 	if (ctl & TH_ACK) {
16797 		if (tcp->tcp_snd_ts_ok) {
16798 			U32_TO_BE32(lbolt,
16799 			    (char *)tcpha + TCP_MIN_HEADER_LENGTH+4);
16800 			U32_TO_BE32(tcp->tcp_ts_recent,
16801 			    (char *)tcpha + TCP_MIN_HEADER_LENGTH+8);
16802 		}
16803 
16804 		/* Update the latest receive window size in TCP header. */
16805 		tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
16806 		tcp->tcp_rack = ack;
16807 		tcp->tcp_rack_cnt = 0;
16808 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
16809 	}
16810 	BUMP_LOCAL(tcp->tcp_obsegs);
16811 	tcpha->tha_seq = htonl(seq);
16812 	tcpha->tha_ack = htonl(ack);
16813 	/*
16814 	 * Include the adjustment for a source route if any.
16815 	 */
16816 	sum = (sum >> 16) + (sum & 0xFFFF);
16817 	tcpha->tha_sum = htons(sum);
16818 	tcp_send_data(tcp, mp);
16819 }
16820 
16821 /*
16822  * If this routine returns B_TRUE, TCP can generate a RST in response
16823  * to a segment.  If it returns B_FALSE, TCP should not respond.
16824  */
16825 static boolean_t
16826 tcp_send_rst_chk(tcp_stack_t *tcps)
16827 {
16828 	clock_t	now;
16829 
16830 	/*
16831 	 * TCP needs to protect itself from generating too many RSTs.
16832 	 * This can be a DoS attack by sending us random segments
16833 	 * soliciting RSTs.
16834 	 *
16835 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
16836 	 * in each 1 second interval.  In this way, TCP still generate
16837 	 * RSTs in normal cases but when under attack, the impact is
16838 	 * limited.
16839 	 */
16840 	if (tcps->tcps_rst_sent_rate_enabled != 0) {
16841 		now = lbolt;
16842 		/* lbolt can wrap around. */
16843 		if ((tcps->tcps_last_rst_intrvl > now) ||
16844 		    (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) >
16845 		    1*SECONDS)) {
16846 			tcps->tcps_last_rst_intrvl = now;
16847 			tcps->tcps_rst_cnt = 1;
16848 		} else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) {
16849 			return (B_FALSE);
16850 		}
16851 	}
16852 	return (B_TRUE);
16853 }
16854 
16855 /*
16856  * Generate a reset based on an inbound packet, connp is set by caller
16857  * when RST is in response to an unexpected inbound packet for which
16858  * there is active tcp state in the system.
16859  *
16860  * IPSEC NOTE : Try to send the reply with the same protection as it came
16861  * in.  We have the ip_recv_attr_t which is reversed to form the ip_xmit_attr_t.
16862  * That way the packet will go out at the same level of protection as it
16863  * came in with.
16864  */
16865 static void
16866 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, uint32_t ack, int ctl,
16867     ip_recv_attr_t *ira, ip_stack_t *ipst, conn_t *connp)
16868 {
16869 	ipha_t		*ipha = NULL;
16870 	ip6_t		*ip6h = NULL;
16871 	ushort_t	len;
16872 	tcpha_t		*tcpha;
16873 	int		i;
16874 	ipaddr_t	v4addr;
16875 	in6_addr_t	v6addr;
16876 	netstack_t	*ns = ipst->ips_netstack;
16877 	tcp_stack_t	*tcps = ns->netstack_tcp;
16878 	ip_xmit_attr_t	ixas, *ixa;
16879 	uint_t		ip_hdr_len = ira->ira_ip_hdr_length;
16880 	boolean_t	need_refrele = B_FALSE;		/* ixa_refrele(ixa) */
16881 	ushort_t	port;
16882 
16883 	if (!tcp_send_rst_chk(tcps)) {
16884 		tcps->tcps_rst_unsent++;
16885 		freemsg(mp);
16886 		return;
16887 	}
16888 
16889 	/*
16890 	 * If connp != NULL we use conn_ixa to keep IP_NEXTHOP and other
16891 	 * options from the listener. In that case the caller must ensure that
16892 	 * we are running on the listener = connp squeue.
16893 	 *
16894 	 * We get a safe copy of conn_ixa so we don't need to restore anything
16895 	 * we or ip_output_simple might change in the ixa.
16896 	 */
16897 	if (connp != NULL) {
16898 		ASSERT(connp->conn_on_sqp);
16899 
16900 		ixa = conn_get_ixa_exclusive(connp);
16901 		if (ixa == NULL) {
16902 			tcps->tcps_rst_unsent++;
16903 			freemsg(mp);
16904 			return;
16905 		}
16906 		need_refrele = B_TRUE;
16907 	} else {
16908 		bzero(&ixas, sizeof (ixas));
16909 		ixa = &ixas;
16910 		/*
16911 		 * IXAF_VERIFY_SOURCE is overkill since we know the
16912 		 * packet was for us.
16913 		 */
16914 		ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE;
16915 		ixa->ixa_protocol = IPPROTO_TCP;
16916 		ixa->ixa_zoneid = ira->ira_zoneid;
16917 		ixa->ixa_ifindex = 0;
16918 		ixa->ixa_ipst = ipst;
16919 		ixa->ixa_cred = kcred;
16920 		ixa->ixa_cpid = NOPID;
16921 	}
16922 
16923 	if (str && tcps->tcps_dbg) {
16924 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
16925 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
16926 		    "flags 0x%x",
16927 		    str, seq, ack, ctl);
16928 	}
16929 	if (mp->b_datap->db_ref != 1) {
16930 		mblk_t *mp1 = copyb(mp);
16931 		freemsg(mp);
16932 		mp = mp1;
16933 		if (mp == NULL)
16934 			goto done;
16935 	} else if (mp->b_cont) {
16936 		freemsg(mp->b_cont);
16937 		mp->b_cont = NULL;
16938 		DB_CKSUMFLAGS(mp) = 0;
16939 	}
16940 	/*
16941 	 * We skip reversing source route here.
16942 	 * (for now we replace all IP options with EOL)
16943 	 */
16944 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
16945 		ipha = (ipha_t *)mp->b_rptr;
16946 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
16947 			mp->b_rptr[i] = IPOPT_EOL;
16948 		/*
16949 		 * Make sure that src address isn't flagrantly invalid.
16950 		 * Not all broadcast address checking for the src address
16951 		 * is possible, since we don't know the netmask of the src
16952 		 * addr.  No check for destination address is done, since
16953 		 * IP will not pass up a packet with a broadcast dest
16954 		 * address to TCP.  Similar checks are done below for IPv6.
16955 		 */
16956 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
16957 		    CLASSD(ipha->ipha_src)) {
16958 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
16959 			ip_drop_input("ipIfStatsInDiscards", mp, NULL);
16960 			freemsg(mp);
16961 			goto done;
16962 		}
16963 	} else {
16964 		ip6h = (ip6_t *)mp->b_rptr;
16965 
16966 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
16967 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
16968 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards);
16969 			ip_drop_input("ipIfStatsInDiscards", mp, NULL);
16970 			freemsg(mp);
16971 			goto done;
16972 		}
16973 
16974 		/* Remove any extension headers assuming partial overlay */
16975 		if (ip_hdr_len > IPV6_HDR_LEN) {
16976 			uint8_t *to;
16977 
16978 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
16979 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
16980 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
16981 			ip_hdr_len = IPV6_HDR_LEN;
16982 			ip6h = (ip6_t *)mp->b_rptr;
16983 			ip6h->ip6_nxt = IPPROTO_TCP;
16984 		}
16985 	}
16986 	tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len];
16987 	if (tcpha->tha_flags & TH_RST) {
16988 		freemsg(mp);
16989 		goto done;
16990 	}
16991 	tcpha->tha_offset_and_reserved = (5 << 4);
16992 	len = ip_hdr_len + sizeof (tcpha_t);
16993 	mp->b_wptr = &mp->b_rptr[len];
16994 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
16995 		ipha->ipha_length = htons(len);
16996 		/* Swap addresses */
16997 		v4addr = ipha->ipha_src;
16998 		ipha->ipha_src = ipha->ipha_dst;
16999 		ipha->ipha_dst = v4addr;
17000 		ipha->ipha_ident = 0;
17001 		ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
17002 		ixa->ixa_flags |= IXAF_IS_IPV4;
17003 		ixa->ixa_ip_hdr_length = ip_hdr_len;
17004 	} else {
17005 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
17006 		/* Swap addresses */
17007 		v6addr = ip6h->ip6_src;
17008 		ip6h->ip6_src = ip6h->ip6_dst;
17009 		ip6h->ip6_dst = v6addr;
17010 		ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit;
17011 		ixa->ixa_flags &= ~IXAF_IS_IPV4;
17012 
17013 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_dst)) {
17014 			ixa->ixa_flags |= IXAF_SCOPEID_SET;
17015 			ixa->ixa_scopeid = ira->ira_ruifindex;
17016 		}
17017 		ixa->ixa_ip_hdr_length = IPV6_HDR_LEN;
17018 	}
17019 	ixa->ixa_pktlen = len;
17020 
17021 	/* Swap the ports */
17022 	port = tcpha->tha_fport;
17023 	tcpha->tha_fport = tcpha->tha_lport;
17024 	tcpha->tha_lport = port;
17025 
17026 	tcpha->tha_ack = htonl(ack);
17027 	tcpha->tha_seq = htonl(seq);
17028 	tcpha->tha_win = 0;
17029 	tcpha->tha_sum = htons(sizeof (tcpha_t));
17030 	tcpha->tha_flags = (uint8_t)ctl;
17031 	if (ctl & TH_RST) {
17032 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
17033 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
17034 	}
17035 
17036 	/* Discard any old label */
17037 	if (ixa->ixa_free_flags & IXA_FREE_TSL) {
17038 		ASSERT(ixa->ixa_tsl != NULL);
17039 		label_rele(ixa->ixa_tsl);
17040 		ixa->ixa_free_flags &= ~IXA_FREE_TSL;
17041 	}
17042 	ixa->ixa_tsl = ira->ira_tsl;	/* Behave as a multi-level responder */
17043 
17044 	if (ira->ira_flags & IRAF_IPSEC_SECURE) {
17045 		/*
17046 		 * Apply IPsec based on how IPsec was applied to
17047 		 * the packet that caused the RST.
17048 		 */
17049 		if (!ipsec_in_to_out(ira, ixa, mp, ipha, ip6h)) {
17050 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
17051 			/* Note: mp already consumed and ip_drop_packet done */
17052 			goto done;
17053 		}
17054 	} else {
17055 		/*
17056 		 * This is in clear. The RST message we are building
17057 		 * here should go out in clear, independent of our policy.
17058 		 */
17059 		ixa->ixa_flags |= IXAF_NO_IPSEC;
17060 	}
17061 
17062 	/*
17063 	 * NOTE:  one might consider tracing a TCP packet here, but
17064 	 * this function has no active TCP state and no tcp structure
17065 	 * that has a trace buffer.  If we traced here, we would have
17066 	 * to keep a local trace buffer in tcp_record_trace().
17067 	 */
17068 
17069 	(void) ip_output_simple(mp, ixa);
17070 done:
17071 	ixa_cleanup(ixa);
17072 	if (need_refrele) {
17073 		ASSERT(ixa != &ixas);
17074 		ixa_refrele(ixa);
17075 	}
17076 }
17077 
17078 /*
17079  * Initiate closedown sequence on an active connection.  (May be called as
17080  * writer.)  Return value zero for OK return, non-zero for error return.
17081  */
17082 static int
17083 tcp_xmit_end(tcp_t *tcp)
17084 {
17085 	mblk_t		*mp;
17086 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17087 	iulp_t		uinfo;
17088 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
17089 	conn_t		*connp = tcp->tcp_connp;
17090 
17091 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
17092 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
17093 		/*
17094 		 * Invalid state, only states TCPS_SYN_RCVD,
17095 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
17096 		 */
17097 		return (-1);
17098 	}
17099 
17100 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
17101 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
17102 	/*
17103 	 * If there is nothing more unsent, send the FIN now.
17104 	 * Otherwise, it will go out with the last segment.
17105 	 */
17106 	if (tcp->tcp_unsent == 0) {
17107 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
17108 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
17109 
17110 		if (mp) {
17111 			tcp_send_data(tcp, mp);
17112 		} else {
17113 			/*
17114 			 * Couldn't allocate msg.  Pretend we got it out.
17115 			 * Wait for rexmit timeout.
17116 			 */
17117 			tcp->tcp_snxt = tcp->tcp_fss + 1;
17118 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
17119 		}
17120 
17121 		/*
17122 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
17123 		 * changed.
17124 		 */
17125 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
17126 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
17127 		}
17128 	} else {
17129 		/*
17130 		 * If tcp->tcp_cork is set, then the data will not get sent,
17131 		 * so we have to check that and unset it first.
17132 		 */
17133 		if (tcp->tcp_cork)
17134 			tcp->tcp_cork = B_FALSE;
17135 		tcp_wput_data(tcp, NULL, B_FALSE);
17136 	}
17137 
17138 	/*
17139 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
17140 	 * is 0, don't update the cache.
17141 	 */
17142 	if (tcps->tcps_rtt_updates == 0 ||
17143 	    tcp->tcp_rtt_update < tcps->tcps_rtt_updates)
17144 		return (0);
17145 
17146 	/*
17147 	 * We do not have a good algorithm to update ssthresh at this time.
17148 	 * So don't do any update.
17149 	 */
17150 	bzero(&uinfo, sizeof (uinfo));
17151 	uinfo.iulp_rtt = tcp->tcp_rtt_sa;
17152 	uinfo.iulp_rtt_sd = tcp->tcp_rtt_sd;
17153 
17154 	/*
17155 	 * Note that uinfo is kept for conn_faddr in the DCE. Could update even
17156 	 * if source routed but we don't.
17157 	 */
17158 	if (connp->conn_ipversion == IPV4_VERSION) {
17159 		if (connp->conn_faddr_v4 !=  tcp->tcp_ipha->ipha_dst) {
17160 			return (0);
17161 		}
17162 		(void) dce_update_uinfo_v4(connp->conn_faddr_v4, &uinfo, ipst);
17163 	} else {
17164 		uint_t ifindex;
17165 
17166 		if (!(IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6,
17167 		    &tcp->tcp_ip6h->ip6_dst))) {
17168 			return (0);
17169 		}
17170 		ifindex = 0;
17171 		if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_faddr_v6)) {
17172 			ip_xmit_attr_t *ixa = connp->conn_ixa;
17173 
17174 			/*
17175 			 * If we are going to create a DCE we'd better have
17176 			 * an ifindex
17177 			 */
17178 			if (ixa->ixa_nce != NULL) {
17179 				ifindex = ixa->ixa_nce->nce_common->ncec_ill->
17180 				    ill_phyint->phyint_ifindex;
17181 			} else {
17182 				return (0);
17183 			}
17184 		}
17185 
17186 		(void) dce_update_uinfo(&connp->conn_faddr_v6, ifindex, &uinfo,
17187 		    ipst);
17188 	}
17189 	return (0);
17190 }
17191 
17192 /*
17193  * Generate a "no listener here" RST in response to an "unknown" segment.
17194  * connp is set by caller when RST is in response to an unexpected
17195  * inbound packet for which there is active tcp state in the system.
17196  * Note that we are reusing the incoming mp to construct the outgoing RST.
17197  */
17198 void
17199 tcp_xmit_listeners_reset(mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst,
17200     conn_t *connp)
17201 {
17202 	uchar_t		*rptr;
17203 	uint32_t	seg_len;
17204 	tcpha_t		*tcpha;
17205 	uint32_t	seg_seq;
17206 	uint32_t	seg_ack;
17207 	uint_t		flags;
17208 	ipha_t 		*ipha;
17209 	ip6_t 		*ip6h;
17210 	boolean_t	policy_present;
17211 	netstack_t	*ns = ipst->ips_netstack;
17212 	tcp_stack_t	*tcps = ns->netstack_tcp;
17213 	ipsec_stack_t	*ipss = tcps->tcps_netstack->netstack_ipsec;
17214 	uint_t		ip_hdr_len = ira->ira_ip_hdr_length;
17215 
17216 	TCP_STAT(tcps, tcp_no_listener);
17217 
17218 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
17219 		policy_present = ipss->ipsec_inbound_v4_policy_present;
17220 		ipha = (ipha_t *)mp->b_rptr;
17221 		ip6h = NULL;
17222 	} else {
17223 		policy_present = ipss->ipsec_inbound_v6_policy_present;
17224 		ipha = NULL;
17225 		ip6h = (ip6_t *)mp->b_rptr;
17226 	}
17227 
17228 	if (policy_present) {
17229 		/*
17230 		 * The conn_t parameter is NULL because we already know
17231 		 * nobody's home.
17232 		 */
17233 		mp = ipsec_check_global_policy(mp, (conn_t *)NULL, ipha, ip6h,
17234 		    ira, ns);
17235 		if (mp == NULL)
17236 			return;
17237 	}
17238 	if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) {
17239 		DTRACE_PROBE2(
17240 		    tx__ip__log__error__nolistener__tcp,
17241 		    char *, "Could not reply with RST to mp(1)",
17242 		    mblk_t *, mp);
17243 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
17244 		freemsg(mp);
17245 		return;
17246 	}
17247 
17248 	rptr = mp->b_rptr;
17249 
17250 	tcpha = (tcpha_t *)&rptr[ip_hdr_len];
17251 	seg_seq = ntohl(tcpha->tha_seq);
17252 	seg_ack = ntohl(tcpha->tha_ack);
17253 	flags = tcpha->tha_flags;
17254 
17255 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcpha) + ip_hdr_len);
17256 	if (flags & TH_RST) {
17257 		freemsg(mp);
17258 	} else if (flags & TH_ACK) {
17259 		tcp_xmit_early_reset("no tcp, reset", mp, seg_ack, 0, TH_RST,
17260 		    ira, ipst, connp);
17261 	} else {
17262 		if (flags & TH_SYN) {
17263 			seg_len++;
17264 		} else {
17265 			/*
17266 			 * Here we violate the RFC.  Note that a normal
17267 			 * TCP will never send a segment without the ACK
17268 			 * flag, except for RST or SYN segment.  This
17269 			 * segment is neither.  Just drop it on the
17270 			 * floor.
17271 			 */
17272 			freemsg(mp);
17273 			tcps->tcps_rst_unsent++;
17274 			return;
17275 		}
17276 
17277 		tcp_xmit_early_reset("no tcp, reset/ack", mp, 0,
17278 		    seg_seq + seg_len, TH_RST | TH_ACK, ira, ipst, connp);
17279 	}
17280 }
17281 
17282 /*
17283  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
17284  * ip and tcp header ready to pass down to IP.  If the mp passed in is
17285  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
17286  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
17287  * otherwise it will dup partial mblks.)
17288  * Otherwise, an appropriate ACK packet will be generated.  This
17289  * routine is not usually called to send new data for the first time.  It
17290  * is mostly called out of the timer for retransmits, and to generate ACKs.
17291  *
17292  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
17293  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
17294  * of the original mblk chain will be returned in *offset and *end_mp.
17295  */
17296 mblk_t *
17297 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
17298     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
17299     boolean_t rexmit)
17300 {
17301 	int	data_length;
17302 	int32_t	off = 0;
17303 	uint_t	flags;
17304 	mblk_t	*mp1;
17305 	mblk_t	*mp2;
17306 	uchar_t	*rptr;
17307 	tcpha_t	*tcpha;
17308 	int32_t	num_sack_blk = 0;
17309 	int32_t	sack_opt_len = 0;
17310 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17311 	conn_t		*connp = tcp->tcp_connp;
17312 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
17313 
17314 	/* Allocate for our maximum TCP header + link-level */
17315 	mp1 = allocb(connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra,
17316 	    BPRI_MED);
17317 	if (!mp1)
17318 		return (NULL);
17319 	data_length = 0;
17320 
17321 	/*
17322 	 * Note that tcp_mss has been adjusted to take into account the
17323 	 * timestamp option if applicable.  Because SACK options do not
17324 	 * appear in every TCP segments and they are of variable lengths,
17325 	 * they cannot be included in tcp_mss.  Thus we need to calculate
17326 	 * the actual segment length when we need to send a segment which
17327 	 * includes SACK options.
17328 	 */
17329 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
17330 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
17331 		    tcp->tcp_num_sack_blk);
17332 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
17333 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
17334 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
17335 			max_to_send -= sack_opt_len;
17336 	}
17337 
17338 	if (offset != NULL) {
17339 		off = *offset;
17340 		/* We use offset as an indicator that end_mp is not NULL. */
17341 		*end_mp = NULL;
17342 	}
17343 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
17344 		/* This could be faster with cooperation from downstream */
17345 		if (mp2 != mp1 && !sendall &&
17346 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
17347 		    max_to_send)
17348 			/*
17349 			 * Don't send the next mblk since the whole mblk
17350 			 * does not fit.
17351 			 */
17352 			break;
17353 		mp2->b_cont = dupb(mp);
17354 		mp2 = mp2->b_cont;
17355 		if (!mp2) {
17356 			freemsg(mp1);
17357 			return (NULL);
17358 		}
17359 		mp2->b_rptr += off;
17360 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
17361 		    (uintptr_t)INT_MAX);
17362 
17363 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
17364 		if (data_length > max_to_send) {
17365 			mp2->b_wptr -= data_length - max_to_send;
17366 			data_length = max_to_send;
17367 			off = mp2->b_wptr - mp->b_rptr;
17368 			break;
17369 		} else {
17370 			off = 0;
17371 		}
17372 	}
17373 	if (offset != NULL) {
17374 		*offset = off;
17375 		*end_mp = mp;
17376 	}
17377 	if (seg_len != NULL) {
17378 		*seg_len = data_length;
17379 	}
17380 
17381 	/* Update the latest receive window size in TCP header. */
17382 	tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
17383 
17384 	rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
17385 	mp1->b_rptr = rptr;
17386 	mp1->b_wptr = rptr + connp->conn_ht_iphc_len + sack_opt_len;
17387 	bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len);
17388 	tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length];
17389 	tcpha->tha_seq = htonl(seq);
17390 
17391 	/*
17392 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
17393 	 * that this function was called from tcp_wput_data. Thus, when called
17394 	 * to retransmit data the setting of the PUSH bit may appear some
17395 	 * what random in that it might get set when it should not. This
17396 	 * should not pose any performance issues.
17397 	 */
17398 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
17399 	    tcp->tcp_unsent == data_length)) {
17400 		flags = TH_ACK | TH_PUSH;
17401 	} else {
17402 		flags = TH_ACK;
17403 	}
17404 
17405 	if (tcp->tcp_ecn_ok) {
17406 		if (tcp->tcp_ecn_echo_on)
17407 			flags |= TH_ECE;
17408 
17409 		/*
17410 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
17411 		 * There is no TCP flow control for non-data segments, and
17412 		 * only data segment is transmitted reliably.
17413 		 */
17414 		if (data_length > 0 && !rexmit) {
17415 			SET_ECT(tcp, rptr);
17416 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
17417 				flags |= TH_CWR;
17418 				tcp->tcp_ecn_cwr_sent = B_TRUE;
17419 			}
17420 		}
17421 	}
17422 
17423 	if (tcp->tcp_valid_bits) {
17424 		uint32_t u1;
17425 
17426 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
17427 		    seq == tcp->tcp_iss) {
17428 			uchar_t	*wptr;
17429 
17430 			/*
17431 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
17432 			 * TCP can only be in SYN-SENT, SYN-RCVD or
17433 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
17434 			 * our SYN is not ack'ed but the app closes this
17435 			 * TCP connection.
17436 			 */
17437 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
17438 			    tcp->tcp_state == TCPS_SYN_RCVD ||
17439 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
17440 
17441 			/*
17442 			 * Tack on the MSS option.  It is always needed
17443 			 * for both active and passive open.
17444 			 *
17445 			 * MSS option value should be interface MTU - MIN
17446 			 * TCP/IP header according to RFC 793 as it means
17447 			 * the maximum segment size TCP can receive.  But
17448 			 * to get around some broken middle boxes/end hosts
17449 			 * out there, we allow the option value to be the
17450 			 * same as the MSS option size on the peer side.
17451 			 * In this way, the other side will not send
17452 			 * anything larger than they can receive.
17453 			 *
17454 			 * Note that for SYN_SENT state, the ndd param
17455 			 * tcp_use_smss_as_mss_opt has no effect as we
17456 			 * don't know the peer's MSS option value. So
17457 			 * the only case we need to take care of is in
17458 			 * SYN_RCVD state, which is done later.
17459 			 */
17460 			wptr = mp1->b_wptr;
17461 			wptr[0] = TCPOPT_MAXSEG;
17462 			wptr[1] = TCPOPT_MAXSEG_LEN;
17463 			wptr += 2;
17464 			u1 = tcp->tcp_initial_pmtu -
17465 			    (connp->conn_ipversion == IPV4_VERSION ?
17466 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
17467 			    TCP_MIN_HEADER_LENGTH;
17468 			U16_TO_BE16(u1, wptr);
17469 			mp1->b_wptr = wptr + 2;
17470 			/* Update the offset to cover the additional word */
17471 			tcpha->tha_offset_and_reserved += (1 << 4);
17472 
17473 			/*
17474 			 * Note that the following way of filling in
17475 			 * TCP options are not optimal.  Some NOPs can
17476 			 * be saved.  But there is no need at this time
17477 			 * to optimize it.  When it is needed, we will
17478 			 * do it.
17479 			 */
17480 			switch (tcp->tcp_state) {
17481 			case TCPS_SYN_SENT:
17482 				flags = TH_SYN;
17483 
17484 				if (tcp->tcp_snd_ts_ok) {
17485 					uint32_t llbolt = (uint32_t)lbolt;
17486 
17487 					wptr = mp1->b_wptr;
17488 					wptr[0] = TCPOPT_NOP;
17489 					wptr[1] = TCPOPT_NOP;
17490 					wptr[2] = TCPOPT_TSTAMP;
17491 					wptr[3] = TCPOPT_TSTAMP_LEN;
17492 					wptr += 4;
17493 					U32_TO_BE32(llbolt, wptr);
17494 					wptr += 4;
17495 					ASSERT(tcp->tcp_ts_recent == 0);
17496 					U32_TO_BE32(0L, wptr);
17497 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
17498 					tcpha->tha_offset_and_reserved +=
17499 					    (3 << 4);
17500 				}
17501 
17502 				/*
17503 				 * Set up all the bits to tell other side
17504 				 * we are ECN capable.
17505 				 */
17506 				if (tcp->tcp_ecn_ok) {
17507 					flags |= (TH_ECE | TH_CWR);
17508 				}
17509 				break;
17510 			case TCPS_SYN_RCVD:
17511 				flags |= TH_SYN;
17512 
17513 				/*
17514 				 * Reset the MSS option value to be SMSS
17515 				 * We should probably add back the bytes
17516 				 * for timestamp option and IPsec.  We
17517 				 * don't do that as this is a workaround
17518 				 * for broken middle boxes/end hosts, it
17519 				 * is better for us to be more cautious.
17520 				 * They may not take these things into
17521 				 * account in their SMSS calculation.  Thus
17522 				 * the peer's calculated SMSS may be smaller
17523 				 * than what it can be.  This should be OK.
17524 				 */
17525 				if (tcps->tcps_use_smss_as_mss_opt) {
17526 					u1 = tcp->tcp_mss;
17527 					U16_TO_BE16(u1, wptr);
17528 				}
17529 
17530 				/*
17531 				 * If the other side is ECN capable, reply
17532 				 * that we are also ECN capable.
17533 				 */
17534 				if (tcp->tcp_ecn_ok)
17535 					flags |= TH_ECE;
17536 				break;
17537 			default:
17538 				/*
17539 				 * The above ASSERT() makes sure that this
17540 				 * must be FIN-WAIT-1 state.  Our SYN has
17541 				 * not been ack'ed so retransmit it.
17542 				 */
17543 				flags |= TH_SYN;
17544 				break;
17545 			}
17546 
17547 			if (tcp->tcp_snd_ws_ok) {
17548 				wptr = mp1->b_wptr;
17549 				wptr[0] =  TCPOPT_NOP;
17550 				wptr[1] =  TCPOPT_WSCALE;
17551 				wptr[2] =  TCPOPT_WS_LEN;
17552 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
17553 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
17554 				tcpha->tha_offset_and_reserved += (1 << 4);
17555 			}
17556 
17557 			if (tcp->tcp_snd_sack_ok) {
17558 				wptr = mp1->b_wptr;
17559 				wptr[0] = TCPOPT_NOP;
17560 				wptr[1] = TCPOPT_NOP;
17561 				wptr[2] = TCPOPT_SACK_PERMITTED;
17562 				wptr[3] = TCPOPT_SACK_OK_LEN;
17563 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
17564 				tcpha->tha_offset_and_reserved += (1 << 4);
17565 			}
17566 
17567 			/* allocb() of adequate mblk assures space */
17568 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
17569 			    (uintptr_t)INT_MAX);
17570 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
17571 			/*
17572 			 * Get IP set to checksum on our behalf
17573 			 * Include the adjustment for a source route if any.
17574 			 */
17575 			u1 += connp->conn_sum;
17576 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
17577 			tcpha->tha_sum = htons(u1);
17578 			BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
17579 		}
17580 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17581 		    (seq + data_length) == tcp->tcp_fss) {
17582 			if (!tcp->tcp_fin_acked) {
17583 				flags |= TH_FIN;
17584 				BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
17585 			}
17586 			if (!tcp->tcp_fin_sent) {
17587 				tcp->tcp_fin_sent = B_TRUE;
17588 				switch (tcp->tcp_state) {
17589 				case TCPS_SYN_RCVD:
17590 				case TCPS_ESTABLISHED:
17591 					tcp->tcp_state = TCPS_FIN_WAIT_1;
17592 					break;
17593 				case TCPS_CLOSE_WAIT:
17594 					tcp->tcp_state = TCPS_LAST_ACK;
17595 					break;
17596 				}
17597 				if (tcp->tcp_suna == tcp->tcp_snxt)
17598 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
17599 				tcp->tcp_snxt = tcp->tcp_fss + 1;
17600 			}
17601 		}
17602 		/*
17603 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
17604 		 * is smaller than seq, u1 will become a very huge value.
17605 		 * So the comparison will fail.  Also note that tcp_urp
17606 		 * should be positive, see RFC 793 page 17.
17607 		 */
17608 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
17609 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
17610 		    u1 < (uint32_t)(64 * 1024)) {
17611 			flags |= TH_URG;
17612 			BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
17613 			tcpha->tha_urp = htons(u1);
17614 		}
17615 	}
17616 	tcpha->tha_flags = (uchar_t)flags;
17617 	tcp->tcp_rack = tcp->tcp_rnxt;
17618 	tcp->tcp_rack_cnt = 0;
17619 
17620 	if (tcp->tcp_snd_ts_ok) {
17621 		if (tcp->tcp_state != TCPS_SYN_SENT) {
17622 			uint32_t llbolt = (uint32_t)lbolt;
17623 
17624 			U32_TO_BE32(llbolt,
17625 			    (char *)tcpha + TCP_MIN_HEADER_LENGTH+4);
17626 			U32_TO_BE32(tcp->tcp_ts_recent,
17627 			    (char *)tcpha + TCP_MIN_HEADER_LENGTH+8);
17628 		}
17629 	}
17630 
17631 	if (num_sack_blk > 0) {
17632 		uchar_t *wptr = (uchar_t *)tcpha + connp->conn_ht_ulp_len;
17633 		sack_blk_t *tmp;
17634 		int32_t	i;
17635 
17636 		wptr[0] = TCPOPT_NOP;
17637 		wptr[1] = TCPOPT_NOP;
17638 		wptr[2] = TCPOPT_SACK;
17639 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
17640 		    sizeof (sack_blk_t);
17641 		wptr += TCPOPT_REAL_SACK_LEN;
17642 
17643 		tmp = tcp->tcp_sack_list;
17644 		for (i = 0; i < num_sack_blk; i++) {
17645 			U32_TO_BE32(tmp[i].begin, wptr);
17646 			wptr += sizeof (tcp_seq);
17647 			U32_TO_BE32(tmp[i].end, wptr);
17648 			wptr += sizeof (tcp_seq);
17649 		}
17650 		tcpha->tha_offset_and_reserved += ((num_sack_blk * 2 + 1) << 4);
17651 	}
17652 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
17653 	data_length += (int)(mp1->b_wptr - rptr);
17654 
17655 	ixa->ixa_pktlen = data_length;
17656 
17657 	if (ixa->ixa_flags & IXAF_IS_IPV4) {
17658 		((ipha_t *)rptr)->ipha_length = htons(data_length);
17659 	} else {
17660 		ip6_t *ip6 = (ip6_t *)rptr;
17661 
17662 		ip6->ip6_plen = htons(data_length - IPV6_HDR_LEN);
17663 	}
17664 
17665 	/*
17666 	 * Prime pump for IP
17667 	 * Include the adjustment for a source route if any.
17668 	 */
17669 	data_length -= ixa->ixa_ip_hdr_length;
17670 	data_length += connp->conn_sum;
17671 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
17672 	tcpha->tha_sum = htons(data_length);
17673 	if (tcp->tcp_ip_forward_progress) {
17674 		tcp->tcp_ip_forward_progress = B_FALSE;
17675 		connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF;
17676 	} else {
17677 		connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF;
17678 	}
17679 	return (mp1);
17680 }
17681 
17682 /* This function handles the push timeout. */
17683 void
17684 tcp_push_timer(void *arg)
17685 {
17686 	conn_t	*connp = (conn_t *)arg;
17687 	tcp_t *tcp = connp->conn_tcp;
17688 
17689 	TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt);
17690 
17691 	ASSERT(tcp->tcp_listener == NULL);
17692 
17693 	ASSERT(!IPCL_IS_NONSTR(connp));
17694 
17695 	tcp->tcp_push_tid = 0;
17696 
17697 	if (tcp->tcp_rcv_list != NULL &&
17698 	    tcp_rcv_drain(tcp) == TH_ACK_NEEDED)
17699 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
17700 }
17701 
17702 /*
17703  * This function handles delayed ACK timeout.
17704  */
17705 static void
17706 tcp_ack_timer(void *arg)
17707 {
17708 	conn_t	*connp = (conn_t *)arg;
17709 	tcp_t *tcp = connp->conn_tcp;
17710 	mblk_t *mp;
17711 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17712 
17713 	TCP_DBGSTAT(tcps, tcp_ack_timer_cnt);
17714 
17715 	tcp->tcp_ack_tid = 0;
17716 
17717 	if (tcp->tcp_fused)
17718 		return;
17719 
17720 	/*
17721 	 * Do not send ACK if there is no outstanding unack'ed data.
17722 	 */
17723 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
17724 		return;
17725 	}
17726 
17727 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
17728 		/*
17729 		 * Make sure we don't allow deferred ACKs to result in
17730 		 * timer-based ACKing.  If we have held off an ACK
17731 		 * when there was more than an mss here, and the timer
17732 		 * goes off, we have to worry about the possibility
17733 		 * that the sender isn't doing slow-start, or is out
17734 		 * of step with us for some other reason.  We fall
17735 		 * permanently back in the direction of
17736 		 * ACK-every-other-packet as suggested in RFC 1122.
17737 		 */
17738 		if (tcp->tcp_rack_abs_max > 2)
17739 			tcp->tcp_rack_abs_max--;
17740 		tcp->tcp_rack_cur_max = 2;
17741 	}
17742 	mp = tcp_ack_mp(tcp);
17743 
17744 	if (mp != NULL) {
17745 		BUMP_LOCAL(tcp->tcp_obsegs);
17746 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
17747 		BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed);
17748 		tcp_send_data(tcp, mp);
17749 	}
17750 }
17751 
17752 
17753 /* Generate an ACK-only (no data) segment for a TCP endpoint */
17754 static mblk_t *
17755 tcp_ack_mp(tcp_t *tcp)
17756 {
17757 	uint32_t	seq_no;
17758 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17759 	conn_t		*connp = tcp->tcp_connp;
17760 
17761 	/*
17762 	 * There are a few cases to be considered while setting the sequence no.
17763 	 * Essentially, we can come here while processing an unacceptable pkt
17764 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
17765 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
17766 	 * If we are here for a zero window probe, stick with suna. In all
17767 	 * other cases, we check if suna + swnd encompasses snxt and set
17768 	 * the sequence number to snxt, if so. If snxt falls outside the
17769 	 * window (the receiver probably shrunk its window), we will go with
17770 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
17771 	 * receiver.
17772 	 */
17773 	if (tcp->tcp_zero_win_probe) {
17774 		seq_no = tcp->tcp_suna;
17775 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
17776 		ASSERT(tcp->tcp_swnd == 0);
17777 		seq_no = tcp->tcp_snxt;
17778 	} else {
17779 		seq_no = SEQ_GT(tcp->tcp_snxt,
17780 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
17781 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
17782 	}
17783 
17784 	if (tcp->tcp_valid_bits) {
17785 		/*
17786 		 * For the complex case where we have to send some
17787 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
17788 		 */
17789 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
17790 		    NULL, B_FALSE));
17791 	} else {
17792 		/* Generate a simple ACK */
17793 		int	data_length;
17794 		uchar_t	*rptr;
17795 		tcpha_t	*tcpha;
17796 		mblk_t	*mp1;
17797 		int32_t	total_hdr_len;
17798 		int32_t	tcp_hdr_len;
17799 		int32_t	num_sack_blk = 0;
17800 		int32_t sack_opt_len;
17801 		ip_xmit_attr_t *ixa = connp->conn_ixa;
17802 
17803 		/*
17804 		 * Allocate space for TCP + IP headers
17805 		 * and link-level header
17806 		 */
17807 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
17808 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
17809 			    tcp->tcp_num_sack_blk);
17810 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
17811 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
17812 			total_hdr_len = connp->conn_ht_iphc_len + sack_opt_len;
17813 			tcp_hdr_len = connp->conn_ht_ulp_len + sack_opt_len;
17814 		} else {
17815 			total_hdr_len = connp->conn_ht_iphc_len;
17816 			tcp_hdr_len = connp->conn_ht_ulp_len;
17817 		}
17818 		mp1 = allocb(total_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
17819 		if (!mp1)
17820 			return (NULL);
17821 
17822 		/* Update the latest receive window size in TCP header. */
17823 		tcp->tcp_tcpha->tha_win =
17824 		    htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
17825 		/* copy in prototype TCP + IP header */
17826 		rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
17827 		mp1->b_rptr = rptr;
17828 		mp1->b_wptr = rptr + total_hdr_len;
17829 		bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len);
17830 
17831 		tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length];
17832 
17833 		/* Set the TCP sequence number. */
17834 		tcpha->tha_seq = htonl(seq_no);
17835 
17836 		/* Set up the TCP flag field. */
17837 		tcpha->tha_flags = (uchar_t)TH_ACK;
17838 		if (tcp->tcp_ecn_echo_on)
17839 			tcpha->tha_flags |= TH_ECE;
17840 
17841 		tcp->tcp_rack = tcp->tcp_rnxt;
17842 		tcp->tcp_rack_cnt = 0;
17843 
17844 		/* fill in timestamp option if in use */
17845 		if (tcp->tcp_snd_ts_ok) {
17846 			uint32_t llbolt = (uint32_t)lbolt;
17847 
17848 			U32_TO_BE32(llbolt,
17849 			    (char *)tcpha + TCP_MIN_HEADER_LENGTH+4);
17850 			U32_TO_BE32(tcp->tcp_ts_recent,
17851 			    (char *)tcpha + TCP_MIN_HEADER_LENGTH+8);
17852 		}
17853 
17854 		/* Fill in SACK options */
17855 		if (num_sack_blk > 0) {
17856 			uchar_t *wptr = (uchar_t *)tcpha +
17857 			    connp->conn_ht_ulp_len;
17858 			sack_blk_t *tmp;
17859 			int32_t	i;
17860 
17861 			wptr[0] = TCPOPT_NOP;
17862 			wptr[1] = TCPOPT_NOP;
17863 			wptr[2] = TCPOPT_SACK;
17864 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
17865 			    sizeof (sack_blk_t);
17866 			wptr += TCPOPT_REAL_SACK_LEN;
17867 
17868 			tmp = tcp->tcp_sack_list;
17869 			for (i = 0; i < num_sack_blk; i++) {
17870 				U32_TO_BE32(tmp[i].begin, wptr);
17871 				wptr += sizeof (tcp_seq);
17872 				U32_TO_BE32(tmp[i].end, wptr);
17873 				wptr += sizeof (tcp_seq);
17874 			}
17875 			tcpha->tha_offset_and_reserved +=
17876 			    ((num_sack_blk * 2 + 1) << 4);
17877 		}
17878 
17879 		ixa->ixa_pktlen = total_hdr_len;
17880 
17881 		if (ixa->ixa_flags & IXAF_IS_IPV4) {
17882 			((ipha_t *)rptr)->ipha_length = htons(total_hdr_len);
17883 		} else {
17884 			ip6_t *ip6 = (ip6_t *)rptr;
17885 
17886 			ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN);
17887 		}
17888 
17889 		/*
17890 		 * Prime pump for checksum calculation in IP.  Include the
17891 		 * adjustment for a source route if any.
17892 		 */
17893 		data_length = tcp_hdr_len + connp->conn_sum;
17894 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
17895 		tcpha->tha_sum = htons(data_length);
17896 
17897 		if (tcp->tcp_ip_forward_progress) {
17898 			tcp->tcp_ip_forward_progress = B_FALSE;
17899 			connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF;
17900 		} else {
17901 			connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF;
17902 		}
17903 		return (mp1);
17904 	}
17905 }
17906 
17907 /*
17908  * Hash list insertion routine for tcp_t structures. Each hash bucket
17909  * contains a list of tcp_t entries, and each entry is bound to a unique
17910  * port. If there are multiple tcp_t's that are bound to the same port, then
17911  * one of them will be linked into the hash bucket list, and the rest will
17912  * hang off of that one entry. For each port, entries bound to a specific IP
17913  * address will be inserted before those those bound to INADDR_ANY.
17914  */
17915 static void
17916 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
17917 {
17918 	tcp_t	**tcpp;
17919 	tcp_t	*tcpnext;
17920 	tcp_t	*tcphash;
17921 	conn_t	*connp = tcp->tcp_connp;
17922 	conn_t	*connext;
17923 
17924 	if (tcp->tcp_ptpbhn != NULL) {
17925 		ASSERT(!caller_holds_lock);
17926 		tcp_bind_hash_remove(tcp);
17927 	}
17928 	tcpp = &tbf->tf_tcp;
17929 	if (!caller_holds_lock) {
17930 		mutex_enter(&tbf->tf_lock);
17931 	} else {
17932 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
17933 	}
17934 	tcphash = tcpp[0];
17935 	tcpnext = NULL;
17936 	if (tcphash != NULL) {
17937 		/* Look for an entry using the same port */
17938 		while ((tcphash = tcpp[0]) != NULL &&
17939 		    connp->conn_lport != tcphash->tcp_connp->conn_lport)
17940 			tcpp = &(tcphash->tcp_bind_hash);
17941 
17942 		/* The port was not found, just add to the end */
17943 		if (tcphash == NULL)
17944 			goto insert;
17945 
17946 		/*
17947 		 * OK, there already exists an entry bound to the
17948 		 * same port.
17949 		 *
17950 		 * If the new tcp bound to the INADDR_ANY address
17951 		 * and the first one in the list is not bound to
17952 		 * INADDR_ANY we skip all entries until we find the
17953 		 * first one bound to INADDR_ANY.
17954 		 * This makes sure that applications binding to a
17955 		 * specific address get preference over those binding to
17956 		 * INADDR_ANY.
17957 		 */
17958 		tcpnext = tcphash;
17959 		connext = tcpnext->tcp_connp;
17960 		tcphash = NULL;
17961 		if (V6_OR_V4_INADDR_ANY(connp->conn_bound_addr_v6) &&
17962 		    !V6_OR_V4_INADDR_ANY(connext->conn_bound_addr_v6)) {
17963 			while ((tcpnext = tcpp[0]) != NULL) {
17964 				connext = tcpnext->tcp_connp;
17965 				if (!V6_OR_V4_INADDR_ANY(
17966 				    connext->conn_bound_addr_v6))
17967 					tcpp = &(tcpnext->tcp_bind_hash_port);
17968 				else
17969 					break;
17970 			}
17971 			if (tcpnext != NULL) {
17972 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port;
17973 				tcphash = tcpnext->tcp_bind_hash;
17974 				if (tcphash != NULL) {
17975 					tcphash->tcp_ptpbhn =
17976 					    &(tcp->tcp_bind_hash);
17977 					tcpnext->tcp_bind_hash = NULL;
17978 				}
17979 			}
17980 		} else {
17981 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port;
17982 			tcphash = tcpnext->tcp_bind_hash;
17983 			if (tcphash != NULL) {
17984 				tcphash->tcp_ptpbhn =
17985 				    &(tcp->tcp_bind_hash);
17986 				tcpnext->tcp_bind_hash = NULL;
17987 			}
17988 		}
17989 	}
17990 insert:
17991 	tcp->tcp_bind_hash_port = tcpnext;
17992 	tcp->tcp_bind_hash = tcphash;
17993 	tcp->tcp_ptpbhn = tcpp;
17994 	tcpp[0] = tcp;
17995 	if (!caller_holds_lock)
17996 		mutex_exit(&tbf->tf_lock);
17997 }
17998 
17999 /*
18000  * Hash list removal routine for tcp_t structures.
18001  */
18002 static void
18003 tcp_bind_hash_remove(tcp_t *tcp)
18004 {
18005 	tcp_t	*tcpnext;
18006 	kmutex_t *lockp;
18007 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18008 	conn_t		*connp = tcp->tcp_connp;
18009 
18010 	if (tcp->tcp_ptpbhn == NULL)
18011 		return;
18012 
18013 	/*
18014 	 * Extract the lock pointer in case there are concurrent
18015 	 * hash_remove's for this instance.
18016 	 */
18017 	ASSERT(connp->conn_lport != 0);
18018 	lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(
18019 	    connp->conn_lport)].tf_lock;
18020 
18021 	ASSERT(lockp != NULL);
18022 	mutex_enter(lockp);
18023 	if (tcp->tcp_ptpbhn) {
18024 		tcpnext = tcp->tcp_bind_hash_port;
18025 		if (tcpnext != NULL) {
18026 			tcp->tcp_bind_hash_port = NULL;
18027 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
18028 			tcpnext->tcp_bind_hash = tcp->tcp_bind_hash;
18029 			if (tcpnext->tcp_bind_hash != NULL) {
18030 				tcpnext->tcp_bind_hash->tcp_ptpbhn =
18031 				    &(tcpnext->tcp_bind_hash);
18032 				tcp->tcp_bind_hash = NULL;
18033 			}
18034 		} else if ((tcpnext = tcp->tcp_bind_hash) != NULL) {
18035 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
18036 			tcp->tcp_bind_hash = NULL;
18037 		}
18038 		*tcp->tcp_ptpbhn = tcpnext;
18039 		tcp->tcp_ptpbhn = NULL;
18040 	}
18041 	mutex_exit(lockp);
18042 }
18043 
18044 
18045 /*
18046  * Hash list lookup routine for tcp_t structures.
18047  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
18048  */
18049 static tcp_t *
18050 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
18051 {
18052 	tf_t	*tf;
18053 	tcp_t	*tcp;
18054 
18055 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
18056 	mutex_enter(&tf->tf_lock);
18057 	for (tcp = tf->tf_tcp; tcp != NULL;
18058 	    tcp = tcp->tcp_acceptor_hash) {
18059 		if (tcp->tcp_acceptor_id == id) {
18060 			CONN_INC_REF(tcp->tcp_connp);
18061 			mutex_exit(&tf->tf_lock);
18062 			return (tcp);
18063 		}
18064 	}
18065 	mutex_exit(&tf->tf_lock);
18066 	return (NULL);
18067 }
18068 
18069 
18070 /*
18071  * Hash list insertion routine for tcp_t structures.
18072  */
18073 void
18074 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
18075 {
18076 	tf_t	*tf;
18077 	tcp_t	**tcpp;
18078 	tcp_t	*tcpnext;
18079 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18080 
18081 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
18082 
18083 	if (tcp->tcp_ptpahn != NULL)
18084 		tcp_acceptor_hash_remove(tcp);
18085 	tcpp = &tf->tf_tcp;
18086 	mutex_enter(&tf->tf_lock);
18087 	tcpnext = tcpp[0];
18088 	if (tcpnext)
18089 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
18090 	tcp->tcp_acceptor_hash = tcpnext;
18091 	tcp->tcp_ptpahn = tcpp;
18092 	tcpp[0] = tcp;
18093 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
18094 	mutex_exit(&tf->tf_lock);
18095 }
18096 
18097 /*
18098  * Hash list removal routine for tcp_t structures.
18099  */
18100 static void
18101 tcp_acceptor_hash_remove(tcp_t *tcp)
18102 {
18103 	tcp_t	*tcpnext;
18104 	kmutex_t *lockp;
18105 
18106 	/*
18107 	 * Extract the lock pointer in case there are concurrent
18108 	 * hash_remove's for this instance.
18109 	 */
18110 	lockp = tcp->tcp_acceptor_lockp;
18111 
18112 	if (tcp->tcp_ptpahn == NULL)
18113 		return;
18114 
18115 	ASSERT(lockp != NULL);
18116 	mutex_enter(lockp);
18117 	if (tcp->tcp_ptpahn) {
18118 		tcpnext = tcp->tcp_acceptor_hash;
18119 		if (tcpnext) {
18120 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
18121 			tcp->tcp_acceptor_hash = NULL;
18122 		}
18123 		*tcp->tcp_ptpahn = tcpnext;
18124 		tcp->tcp_ptpahn = NULL;
18125 	}
18126 	mutex_exit(lockp);
18127 	tcp->tcp_acceptor_lockp = NULL;
18128 }
18129 
18130 /*
18131  * Type three generator adapted from the random() function in 4.4 BSD:
18132  */
18133 
18134 /*
18135  * Copyright (c) 1983, 1993
18136  *	The Regents of the University of California.  All rights reserved.
18137  *
18138  * Redistribution and use in source and binary forms, with or without
18139  * modification, are permitted provided that the following conditions
18140  * are met:
18141  * 1. Redistributions of source code must retain the above copyright
18142  *    notice, this list of conditions and the following disclaimer.
18143  * 2. Redistributions in binary form must reproduce the above copyright
18144  *    notice, this list of conditions and the following disclaimer in the
18145  *    documentation and/or other materials provided with the distribution.
18146  * 3. All advertising materials mentioning features or use of this software
18147  *    must display the following acknowledgement:
18148  *	This product includes software developed by the University of
18149  *	California, Berkeley and its contributors.
18150  * 4. Neither the name of the University nor the names of its contributors
18151  *    may be used to endorse or promote products derived from this software
18152  *    without specific prior written permission.
18153  *
18154  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18155  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18156  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18157  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
18158  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18159  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
18160  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
18161  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
18162  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
18163  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
18164  * SUCH DAMAGE.
18165  */
18166 
18167 /* Type 3 -- x**31 + x**3 + 1 */
18168 #define	DEG_3		31
18169 #define	SEP_3		3
18170 
18171 
18172 /* Protected by tcp_random_lock */
18173 static int tcp_randtbl[DEG_3 + 1];
18174 
18175 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
18176 static int *tcp_random_rptr = &tcp_randtbl[1];
18177 
18178 static int *tcp_random_state = &tcp_randtbl[1];
18179 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
18180 
18181 kmutex_t tcp_random_lock;
18182 
18183 void
18184 tcp_random_init(void)
18185 {
18186 	int i;
18187 	hrtime_t hrt;
18188 	time_t wallclock;
18189 	uint64_t result;
18190 
18191 	/*
18192 	 * Use high-res timer and current time for seed.  Gethrtime() returns
18193 	 * a longlong, which may contain resolution down to nanoseconds.
18194 	 * The current time will either be a 32-bit or a 64-bit quantity.
18195 	 * XOR the two together in a 64-bit result variable.
18196 	 * Convert the result to a 32-bit value by multiplying the high-order
18197 	 * 32-bits by the low-order 32-bits.
18198 	 */
18199 
18200 	hrt = gethrtime();
18201 	(void) drv_getparm(TIME, &wallclock);
18202 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
18203 	mutex_enter(&tcp_random_lock);
18204 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
18205 	    (result & 0xffffffff);
18206 
18207 	for (i = 1; i < DEG_3; i++)
18208 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
18209 		    + 12345;
18210 	tcp_random_fptr = &tcp_random_state[SEP_3];
18211 	tcp_random_rptr = &tcp_random_state[0];
18212 	mutex_exit(&tcp_random_lock);
18213 	for (i = 0; i < 10 * DEG_3; i++)
18214 		(void) tcp_random();
18215 }
18216 
18217 /*
18218  * tcp_random: Return a random number in the range [1 - (128K + 1)].
18219  * This range is selected to be approximately centered on TCP_ISS / 2,
18220  * and easy to compute. We get this value by generating a 32-bit random
18221  * number, selecting out the high-order 17 bits, and then adding one so
18222  * that we never return zero.
18223  */
18224 int
18225 tcp_random(void)
18226 {
18227 	int i;
18228 
18229 	mutex_enter(&tcp_random_lock);
18230 	*tcp_random_fptr += *tcp_random_rptr;
18231 
18232 	/*
18233 	 * The high-order bits are more random than the low-order bits,
18234 	 * so we select out the high-order 17 bits and add one so that
18235 	 * we never return zero.
18236 	 */
18237 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
18238 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
18239 		tcp_random_fptr = tcp_random_state;
18240 		++tcp_random_rptr;
18241 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
18242 		tcp_random_rptr = tcp_random_state;
18243 
18244 	mutex_exit(&tcp_random_lock);
18245 	return (i);
18246 }
18247 
18248 static int
18249 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
18250     int *t_errorp, int *sys_errorp)
18251 {
18252 	int error;
18253 	int is_absreq_failure;
18254 	t_scalar_t *opt_lenp;
18255 	t_scalar_t opt_offset;
18256 	int prim_type;
18257 	struct T_conn_req *tcreqp;
18258 	struct T_conn_res *tcresp;
18259 	cred_t *cr;
18260 
18261 	/*
18262 	 * All Solaris components should pass a db_credp
18263 	 * for this TPI message, hence we ASSERT.
18264 	 * But in case there is some other M_PROTO that looks
18265 	 * like a TPI message sent by some other kernel
18266 	 * component, we check and return an error.
18267 	 */
18268 	cr = msg_getcred(mp, NULL);
18269 	ASSERT(cr != NULL);
18270 	if (cr == NULL)
18271 		return (-1);
18272 
18273 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
18274 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
18275 	    prim_type == T_CONN_RES);
18276 
18277 	switch (prim_type) {
18278 	case T_CONN_REQ:
18279 		tcreqp = (struct T_conn_req *)mp->b_rptr;
18280 		opt_offset = tcreqp->OPT_offset;
18281 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
18282 		break;
18283 	case O_T_CONN_RES:
18284 	case T_CONN_RES:
18285 		tcresp = (struct T_conn_res *)mp->b_rptr;
18286 		opt_offset = tcresp->OPT_offset;
18287 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
18288 		break;
18289 	}
18290 
18291 	*t_errorp = 0;
18292 	*sys_errorp = 0;
18293 	*do_disconnectp = 0;
18294 
18295 	error = tpi_optcom_buf(tcp->tcp_connp->conn_wq, mp, opt_lenp,
18296 	    opt_offset, cr, &tcp_opt_obj,
18297 	    NULL, &is_absreq_failure);
18298 
18299 	switch (error) {
18300 	case  0:		/* no error */
18301 		ASSERT(is_absreq_failure == 0);
18302 		return (0);
18303 	case ENOPROTOOPT:
18304 		*t_errorp = TBADOPT;
18305 		break;
18306 	case EACCES:
18307 		*t_errorp = TACCES;
18308 		break;
18309 	default:
18310 		*t_errorp = TSYSERR; *sys_errorp = error;
18311 		break;
18312 	}
18313 	if (is_absreq_failure != 0) {
18314 		/*
18315 		 * The connection request should get the local ack
18316 		 * T_OK_ACK and then a T_DISCON_IND.
18317 		 */
18318 		*do_disconnectp = 1;
18319 	}
18320 	return (-1);
18321 }
18322 
18323 /*
18324  * Split this function out so that if the secret changes, I'm okay.
18325  *
18326  * Initialize the tcp_iss_cookie and tcp_iss_key.
18327  */
18328 
18329 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
18330 
18331 static void
18332 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
18333 {
18334 	struct {
18335 		int32_t current_time;
18336 		uint32_t randnum;
18337 		uint16_t pad;
18338 		uint8_t ether[6];
18339 		uint8_t passwd[PASSWD_SIZE];
18340 	} tcp_iss_cookie;
18341 	time_t t;
18342 
18343 	/*
18344 	 * Start with the current absolute time.
18345 	 */
18346 	(void) drv_getparm(TIME, &t);
18347 	tcp_iss_cookie.current_time = t;
18348 
18349 	/*
18350 	 * XXX - Need a more random number per RFC 1750, not this crap.
18351 	 * OTOH, if what follows is pretty random, then I'm in better shape.
18352 	 */
18353 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
18354 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
18355 
18356 	/*
18357 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
18358 	 * as a good template.
18359 	 */
18360 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
18361 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
18362 
18363 	/*
18364 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
18365 	 */
18366 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
18367 
18368 	/*
18369 	 * See 4010593 if this section becomes a problem again,
18370 	 * but the local ethernet address is useful here.
18371 	 */
18372 	(void) localetheraddr(NULL,
18373 	    (struct ether_addr *)&tcp_iss_cookie.ether);
18374 
18375 	/*
18376 	 * Hash 'em all together.  The MD5Final is called per-connection.
18377 	 */
18378 	mutex_enter(&tcps->tcps_iss_key_lock);
18379 	MD5Init(&tcps->tcps_iss_key);
18380 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
18381 	    sizeof (tcp_iss_cookie));
18382 	mutex_exit(&tcps->tcps_iss_key_lock);
18383 }
18384 
18385 /*
18386  * Set the RFC 1948 pass phrase
18387  */
18388 /* ARGSUSED */
18389 static int
18390 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
18391     cred_t *cr)
18392 {
18393 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
18394 
18395 	/*
18396 	 * Basically, value contains a new pass phrase.  Pass it along!
18397 	 */
18398 	tcp_iss_key_init((uint8_t *)value, strlen(value), tcps);
18399 	return (0);
18400 }
18401 
18402 /* ARGSUSED */
18403 static int
18404 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
18405 {
18406 	bzero(buf, sizeof (tcp_sack_info_t));
18407 	return (0);
18408 }
18409 
18410 /*
18411  * Called by IP when IP is loaded into the kernel
18412  */
18413 void
18414 tcp_ddi_g_init(void)
18415 {
18416 	tcp_timercache = kmem_cache_create("tcp_timercache",
18417 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
18418 	    NULL, NULL, NULL, NULL, NULL, 0);
18419 
18420 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
18421 	    sizeof (tcp_sack_info_t), 0,
18422 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
18423 
18424 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
18425 
18426 	/* Initialize the random number generator */
18427 	tcp_random_init();
18428 
18429 	/* A single callback independently of how many netstacks we have */
18430 	ip_squeue_init(tcp_squeue_add);
18431 
18432 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
18433 
18434 	tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput);
18435 
18436 	/*
18437 	 * We want to be informed each time a stack is created or
18438 	 * destroyed in the kernel, so we can maintain the
18439 	 * set of tcp_stack_t's.
18440 	 */
18441 	netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini);
18442 }
18443 
18444 
18445 #define	INET_NAME	"ip"
18446 
18447 /*
18448  * Initialize the TCP stack instance.
18449  */
18450 static void *
18451 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
18452 {
18453 	tcp_stack_t	*tcps;
18454 	tcpparam_t	*pa;
18455 	int		i;
18456 	int		error = 0;
18457 	major_t		major;
18458 
18459 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
18460 	tcps->tcps_netstack = ns;
18461 
18462 	/* Initialize locks */
18463 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
18464 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
18465 
18466 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
18467 	tcps->tcps_g_epriv_ports[0] = 2049;
18468 	tcps->tcps_g_epriv_ports[1] = 4045;
18469 	tcps->tcps_min_anonpriv_port = 512;
18470 
18471 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
18472 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
18473 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
18474 	    TCP_FANOUT_SIZE, KM_SLEEP);
18475 
18476 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
18477 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
18478 		    MUTEX_DEFAULT, NULL);
18479 	}
18480 
18481 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
18482 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
18483 		    MUTEX_DEFAULT, NULL);
18484 	}
18485 
18486 	/* TCP's IPsec code calls the packet dropper. */
18487 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
18488 
18489 	pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP);
18490 	tcps->tcps_params = pa;
18491 	bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr));
18492 
18493 	(void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params,
18494 	    A_CNT(lcl_tcp_param_arr), tcps);
18495 
18496 	/*
18497 	 * Note: To really walk the device tree you need the devinfo
18498 	 * pointer to your device which is only available after probe/attach.
18499 	 * The following is safe only because it uses ddi_root_node()
18500 	 */
18501 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
18502 	    tcp_opt_obj.odb_opt_arr_cnt);
18503 
18504 	/*
18505 	 * Initialize RFC 1948 secret values.  This will probably be reset once
18506 	 * by the boot scripts.
18507 	 *
18508 	 * Use NULL name, as the name is caught by the new lockstats.
18509 	 *
18510 	 * Initialize with some random, non-guessable string, like the global
18511 	 * T_INFO_ACK.
18512 	 */
18513 
18514 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
18515 	    sizeof (tcp_g_t_info_ack), tcps);
18516 
18517 	tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics);
18518 	tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps);
18519 
18520 	major = mod_name_to_major(INET_NAME);
18521 	error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident);
18522 	ASSERT(error == 0);
18523 	tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL);
18524 	ASSERT(tcps->tcps_ixa_cleanup_mp != NULL);
18525 	cv_init(&tcps->tcps_ixa_cleanup_cv, NULL, CV_DEFAULT, NULL);
18526 	mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL);
18527 
18528 	return (tcps);
18529 }
18530 
18531 /*
18532  * Called when the IP module is about to be unloaded.
18533  */
18534 void
18535 tcp_ddi_g_destroy(void)
18536 {
18537 	tcp_g_kstat_fini(tcp_g_kstat);
18538 	tcp_g_kstat = NULL;
18539 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
18540 
18541 	mutex_destroy(&tcp_random_lock);
18542 
18543 	kmem_cache_destroy(tcp_timercache);
18544 	kmem_cache_destroy(tcp_sack_info_cache);
18545 
18546 	netstack_unregister(NS_TCP);
18547 }
18548 
18549 /*
18550  * Free the TCP stack instance.
18551  */
18552 static void
18553 tcp_stack_fini(netstackid_t stackid, void *arg)
18554 {
18555 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
18556 	int i;
18557 
18558 	freeb(tcps->tcps_ixa_cleanup_mp);
18559 	tcps->tcps_ixa_cleanup_mp = NULL;
18560 	cv_destroy(&tcps->tcps_ixa_cleanup_cv);
18561 	mutex_destroy(&tcps->tcps_ixa_cleanup_lock);
18562 
18563 	nd_free(&tcps->tcps_g_nd);
18564 	kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr));
18565 	tcps->tcps_params = NULL;
18566 	kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t));
18567 	tcps->tcps_wroff_xtra_param = NULL;
18568 
18569 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
18570 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
18571 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
18572 	}
18573 
18574 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
18575 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
18576 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
18577 	}
18578 
18579 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
18580 	tcps->tcps_bind_fanout = NULL;
18581 
18582 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE);
18583 	tcps->tcps_acceptor_fanout = NULL;
18584 
18585 	mutex_destroy(&tcps->tcps_iss_key_lock);
18586 	mutex_destroy(&tcps->tcps_epriv_port_lock);
18587 
18588 	ip_drop_unregister(&tcps->tcps_dropper);
18589 
18590 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
18591 	tcps->tcps_kstat = NULL;
18592 	bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics));
18593 
18594 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
18595 	tcps->tcps_mibkp = NULL;
18596 
18597 	ldi_ident_release(tcps->tcps_ldi_ident);
18598 	kmem_free(tcps, sizeof (*tcps));
18599 }
18600 
18601 /*
18602  * Generate ISS, taking into account NDD changes may happen halfway through.
18603  * (If the iss is not zero, set it.)
18604  */
18605 
18606 static void
18607 tcp_iss_init(tcp_t *tcp)
18608 {
18609 	MD5_CTX context;
18610 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
18611 	uint32_t answer[4];
18612 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18613 	conn_t		*connp = tcp->tcp_connp;
18614 
18615 	tcps->tcps_iss_incr_extra += (ISS_INCR >> 1);
18616 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
18617 	switch (tcps->tcps_strong_iss) {
18618 	case 2:
18619 		mutex_enter(&tcps->tcps_iss_key_lock);
18620 		context = tcps->tcps_iss_key;
18621 		mutex_exit(&tcps->tcps_iss_key_lock);
18622 		arg.ports = connp->conn_ports;
18623 		arg.src = connp->conn_laddr_v6;
18624 		arg.dst = connp->conn_faddr_v6;
18625 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
18626 		MD5Final((uchar_t *)answer, &context);
18627 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
18628 		/*
18629 		 * Now that we've hashed into a unique per-connection sequence
18630 		 * space, add a random increment per strong_iss == 1.  So I
18631 		 * guess we'll have to...
18632 		 */
18633 		/* FALLTHRU */
18634 	case 1:
18635 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
18636 		break;
18637 	default:
18638 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
18639 		break;
18640 	}
18641 	tcp->tcp_valid_bits = TCP_ISS_VALID;
18642 	tcp->tcp_fss = tcp->tcp_iss - 1;
18643 	tcp->tcp_suna = tcp->tcp_iss;
18644 	tcp->tcp_snxt = tcp->tcp_iss + 1;
18645 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
18646 	tcp->tcp_csuna = tcp->tcp_snxt;
18647 }
18648 
18649 /*
18650  * Exported routine for extracting active tcp connection status.
18651  *
18652  * This is used by the Solaris Cluster Networking software to
18653  * gather a list of connections that need to be forwarded to
18654  * specific nodes in the cluster when configuration changes occur.
18655  *
18656  * The callback is invoked for each tcp_t structure from all netstacks,
18657  * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures
18658  * from the netstack with the specified stack_id. Returning
18659  * non-zero from the callback routine terminates the search.
18660  */
18661 int
18662 cl_tcp_walk_list(netstackid_t stack_id,
18663     int (*cl_callback)(cl_tcp_info_t *, void *), void *arg)
18664 {
18665 	netstack_handle_t nh;
18666 	netstack_t *ns;
18667 	int ret = 0;
18668 
18669 	if (stack_id >= 0) {
18670 		if ((ns = netstack_find_by_stackid(stack_id)) == NULL)
18671 			return (EINVAL);
18672 
18673 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
18674 		    ns->netstack_tcp);
18675 		netstack_rele(ns);
18676 		return (ret);
18677 	}
18678 
18679 	netstack_next_init(&nh);
18680 	while ((ns = netstack_next(&nh)) != NULL) {
18681 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
18682 		    ns->netstack_tcp);
18683 		netstack_rele(ns);
18684 	}
18685 	netstack_next_fini(&nh);
18686 	return (ret);
18687 }
18688 
18689 static int
18690 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg,
18691     tcp_stack_t *tcps)
18692 {
18693 	tcp_t *tcp;
18694 	cl_tcp_info_t	cl_tcpi;
18695 	connf_t	*connfp;
18696 	conn_t	*connp;
18697 	int	i;
18698 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
18699 
18700 	ASSERT(callback != NULL);
18701 
18702 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
18703 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
18704 		connp = NULL;
18705 
18706 		while ((connp =
18707 		    ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) {
18708 
18709 			tcp = connp->conn_tcp;
18710 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
18711 			cl_tcpi.cl_tcpi_ipversion = connp->conn_ipversion;
18712 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
18713 			cl_tcpi.cl_tcpi_lport = connp->conn_lport;
18714 			cl_tcpi.cl_tcpi_fport = connp->conn_fport;
18715 			cl_tcpi.cl_tcpi_laddr_v6 = connp->conn_laddr_v6;
18716 			cl_tcpi.cl_tcpi_faddr_v6 = connp->conn_faddr_v6;
18717 
18718 			/*
18719 			 * If the callback returns non-zero
18720 			 * we terminate the traversal.
18721 			 */
18722 			if ((*callback)(&cl_tcpi, arg) != 0) {
18723 				CONN_DEC_REF(tcp->tcp_connp);
18724 				return (1);
18725 			}
18726 		}
18727 	}
18728 
18729 	return (0);
18730 }
18731 
18732 /*
18733  * Macros used for accessing the different types of sockaddr
18734  * structures inside a tcp_ioc_abort_conn_t.
18735  */
18736 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
18737 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
18738 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
18739 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
18740 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
18741 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
18742 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
18743 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
18744 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
18745 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
18746 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
18747 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
18748 
18749 /*
18750  * Return the correct error code to mimic the behavior
18751  * of a connection reset.
18752  */
18753 #define	TCP_AC_GET_ERRCODE(state, err) {	\
18754 		switch ((state)) {		\
18755 		case TCPS_SYN_SENT:		\
18756 		case TCPS_SYN_RCVD:		\
18757 			(err) = ECONNREFUSED;	\
18758 			break;			\
18759 		case TCPS_ESTABLISHED:		\
18760 		case TCPS_FIN_WAIT_1:		\
18761 		case TCPS_FIN_WAIT_2:		\
18762 		case TCPS_CLOSE_WAIT:		\
18763 			(err) = ECONNRESET;	\
18764 			break;			\
18765 		case TCPS_CLOSING:		\
18766 		case TCPS_LAST_ACK:		\
18767 		case TCPS_TIME_WAIT:		\
18768 			(err) = 0;		\
18769 			break;			\
18770 		default:			\
18771 			(err) = ENXIO;		\
18772 		}				\
18773 	}
18774 
18775 /*
18776  * Check if a tcp structure matches the info in acp.
18777  */
18778 #define	TCP_AC_ADDR_MATCH(acp, connp, tcp)			\
18779 	(((acp)->ac_local.ss_family == AF_INET) ?		\
18780 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
18781 	TCP_AC_V4LOCAL((acp)) == (connp)->conn_laddr_v4) &&	\
18782 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
18783 	TCP_AC_V4REMOTE((acp)) == (connp)->conn_faddr_v4) &&	\
18784 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
18785 	TCP_AC_V4LPORT((acp)) == (connp)->conn_lport) &&	\
18786 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
18787 	TCP_AC_V4RPORT((acp)) == (connp)->conn_fport) &&	\
18788 	(acp)->ac_start <= (tcp)->tcp_state &&			\
18789 	(acp)->ac_end >= (tcp)->tcp_state) :			\
18790 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
18791 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
18792 	&(connp)->conn_laddr_v6)) &&				\
18793 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
18794 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
18795 	&(connp)->conn_faddr_v6)) &&				\
18796 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
18797 	TCP_AC_V6LPORT((acp)) == (connp)->conn_lport) &&	\
18798 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
18799 	TCP_AC_V6RPORT((acp)) == (connp)->conn_fport) &&	\
18800 	(acp)->ac_start <= (tcp)->tcp_state &&			\
18801 	(acp)->ac_end >= (tcp)->tcp_state))
18802 
18803 #define	TCP_AC_MATCH(acp, connp, tcp)				\
18804 	(((acp)->ac_zoneid == ALL_ZONES ||			\
18805 	(acp)->ac_zoneid == (connp)->conn_zoneid) ?		\
18806 	TCP_AC_ADDR_MATCH(acp, connp, tcp) : 0)
18807 
18808 /*
18809  * Build a message containing a tcp_ioc_abort_conn_t structure
18810  * which is filled in with information from acp and tp.
18811  */
18812 static mblk_t *
18813 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
18814 {
18815 	mblk_t *mp;
18816 	tcp_ioc_abort_conn_t *tacp;
18817 
18818 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
18819 	if (mp == NULL)
18820 		return (NULL);
18821 
18822 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
18823 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
18824 	    sizeof (uint32_t));
18825 
18826 	tacp->ac_start = acp->ac_start;
18827 	tacp->ac_end = acp->ac_end;
18828 	tacp->ac_zoneid = acp->ac_zoneid;
18829 
18830 	if (acp->ac_local.ss_family == AF_INET) {
18831 		tacp->ac_local.ss_family = AF_INET;
18832 		tacp->ac_remote.ss_family = AF_INET;
18833 		TCP_AC_V4LOCAL(tacp) = tp->tcp_connp->conn_laddr_v4;
18834 		TCP_AC_V4REMOTE(tacp) = tp->tcp_connp->conn_faddr_v4;
18835 		TCP_AC_V4LPORT(tacp) = tp->tcp_connp->conn_lport;
18836 		TCP_AC_V4RPORT(tacp) = tp->tcp_connp->conn_fport;
18837 	} else {
18838 		tacp->ac_local.ss_family = AF_INET6;
18839 		tacp->ac_remote.ss_family = AF_INET6;
18840 		TCP_AC_V6LOCAL(tacp) = tp->tcp_connp->conn_laddr_v6;
18841 		TCP_AC_V6REMOTE(tacp) = tp->tcp_connp->conn_faddr_v6;
18842 		TCP_AC_V6LPORT(tacp) = tp->tcp_connp->conn_lport;
18843 		TCP_AC_V6RPORT(tacp) = tp->tcp_connp->conn_fport;
18844 	}
18845 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
18846 	return (mp);
18847 }
18848 
18849 /*
18850  * Print a tcp_ioc_abort_conn_t structure.
18851  */
18852 static void
18853 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
18854 {
18855 	char lbuf[128];
18856 	char rbuf[128];
18857 	sa_family_t af;
18858 	in_port_t lport, rport;
18859 	ushort_t logflags;
18860 
18861 	af = acp->ac_local.ss_family;
18862 
18863 	if (af == AF_INET) {
18864 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
18865 		    lbuf, 128);
18866 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
18867 		    rbuf, 128);
18868 		lport = ntohs(TCP_AC_V4LPORT(acp));
18869 		rport = ntohs(TCP_AC_V4RPORT(acp));
18870 	} else {
18871 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
18872 		    lbuf, 128);
18873 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
18874 		    rbuf, 128);
18875 		lport = ntohs(TCP_AC_V6LPORT(acp));
18876 		rport = ntohs(TCP_AC_V6RPORT(acp));
18877 	}
18878 
18879 	logflags = SL_TRACE | SL_NOTE;
18880 	/*
18881 	 * Don't print this message to the console if the operation was done
18882 	 * to a non-global zone.
18883 	 */
18884 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
18885 		logflags |= SL_CONSOLE;
18886 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
18887 	    "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
18888 	    "start = %d, end = %d\n", lbuf, lport, rbuf, rport,
18889 	    acp->ac_start, acp->ac_end);
18890 }
18891 
18892 /*
18893  * Called using SQ_FILL when a message built using
18894  * tcp_ioctl_abort_build_msg is put into a queue.
18895  * Note that when we get here there is no wildcard in acp any more.
18896  */
18897 /* ARGSUSED2 */
18898 static void
18899 tcp_ioctl_abort_handler(void *arg, mblk_t *mp, void *arg2,
18900     ip_recv_attr_t *dummy)
18901 {
18902 	conn_t			*connp = (conn_t *)arg;
18903 	tcp_t			*tcp = connp->conn_tcp;
18904 	tcp_ioc_abort_conn_t	*acp;
18905 
18906 	/*
18907 	 * Don't accept any input on a closed tcp as this TCP logically does
18908 	 * not exist on the system. Don't proceed further with this TCP.
18909 	 * For eg. this packet could trigger another close of this tcp
18910 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
18911 	 * tcp_clean_death / tcp_closei_local must be called at most once
18912 	 * on a TCP.
18913 	 */
18914 	if (tcp->tcp_state == TCPS_CLOSED ||
18915 	    tcp->tcp_state == TCPS_BOUND) {
18916 		freemsg(mp);
18917 		return;
18918 	}
18919 
18920 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
18921 	if (tcp->tcp_state <= acp->ac_end) {
18922 		/*
18923 		 * If we get here, we are already on the correct
18924 		 * squeue. This ioctl follows the following path
18925 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
18926 		 * ->tcp_ioctl_abort->squeue_enter (if on a
18927 		 * different squeue)
18928 		 */
18929 		int errcode;
18930 
18931 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
18932 		(void) tcp_clean_death(tcp, errcode, 26);
18933 	}
18934 	freemsg(mp);
18935 }
18936 
18937 /*
18938  * Abort all matching connections on a hash chain.
18939  */
18940 static int
18941 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
18942     boolean_t exact, tcp_stack_t *tcps)
18943 {
18944 	int nmatch, err = 0;
18945 	tcp_t *tcp;
18946 	MBLKP mp, last, listhead = NULL;
18947 	conn_t	*tconnp;
18948 	connf_t	*connfp;
18949 	ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
18950 
18951 	connfp = &ipst->ips_ipcl_conn_fanout[index];
18952 
18953 startover:
18954 	nmatch = 0;
18955 
18956 	mutex_enter(&connfp->connf_lock);
18957 	for (tconnp = connfp->connf_head; tconnp != NULL;
18958 	    tconnp = tconnp->conn_next) {
18959 		tcp = tconnp->conn_tcp;
18960 		/*
18961 		 * We are missing a check on sin6_scope_id for linklocals here,
18962 		 * but current usage is just for aborting based on zoneid
18963 		 * for shared-IP zones.
18964 		 */
18965 		if (TCP_AC_MATCH(acp, tconnp, tcp)) {
18966 			CONN_INC_REF(tconnp);
18967 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
18968 			if (mp == NULL) {
18969 				err = ENOMEM;
18970 				CONN_DEC_REF(tconnp);
18971 				break;
18972 			}
18973 			mp->b_prev = (mblk_t *)tcp;
18974 
18975 			if (listhead == NULL) {
18976 				listhead = mp;
18977 				last = mp;
18978 			} else {
18979 				last->b_next = mp;
18980 				last = mp;
18981 			}
18982 			nmatch++;
18983 			if (exact)
18984 				break;
18985 		}
18986 
18987 		/* Avoid holding lock for too long. */
18988 		if (nmatch >= 500)
18989 			break;
18990 	}
18991 	mutex_exit(&connfp->connf_lock);
18992 
18993 	/* Pass mp into the correct tcp */
18994 	while ((mp = listhead) != NULL) {
18995 		listhead = listhead->b_next;
18996 		tcp = (tcp_t *)mp->b_prev;
18997 		mp->b_next = mp->b_prev = NULL;
18998 		SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp,
18999 		    tcp_ioctl_abort_handler, tcp->tcp_connp, NULL,
19000 		    SQ_FILL, SQTAG_TCP_ABORT_BUCKET);
19001 	}
19002 
19003 	*count += nmatch;
19004 	if (nmatch >= 500 && err == 0)
19005 		goto startover;
19006 	return (err);
19007 }
19008 
19009 /*
19010  * Abort all connections that matches the attributes specified in acp.
19011  */
19012 static int
19013 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps)
19014 {
19015 	sa_family_t af;
19016 	uint32_t  ports;
19017 	uint16_t *pports;
19018 	int err = 0, count = 0;
19019 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
19020 	int index = -1;
19021 	ushort_t logflags;
19022 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
19023 
19024 	af = acp->ac_local.ss_family;
19025 
19026 	if (af == AF_INET) {
19027 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
19028 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
19029 			pports = (uint16_t *)&ports;
19030 			pports[1] = TCP_AC_V4LPORT(acp);
19031 			pports[0] = TCP_AC_V4RPORT(acp);
19032 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
19033 		}
19034 	} else {
19035 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
19036 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
19037 			pports = (uint16_t *)&ports;
19038 			pports[1] = TCP_AC_V6LPORT(acp);
19039 			pports[0] = TCP_AC_V6RPORT(acp);
19040 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
19041 		}
19042 	}
19043 
19044 	/*
19045 	 * For cases where remote addr, local port, and remote port are non-
19046 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
19047 	 */
19048 	if (index != -1) {
19049 		err = tcp_ioctl_abort_bucket(acp, index,
19050 		    &count, exact, tcps);
19051 	} else {
19052 		/*
19053 		 * loop through all entries for wildcard case
19054 		 */
19055 		for (index = 0;
19056 		    index < ipst->ips_ipcl_conn_fanout_size;
19057 		    index++) {
19058 			err = tcp_ioctl_abort_bucket(acp, index,
19059 			    &count, exact, tcps);
19060 			if (err != 0)
19061 				break;
19062 		}
19063 	}
19064 
19065 	logflags = SL_TRACE | SL_NOTE;
19066 	/*
19067 	 * Don't print this message to the console if the operation was done
19068 	 * to a non-global zone.
19069 	 */
19070 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
19071 		logflags |= SL_CONSOLE;
19072 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
19073 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
19074 	if (err == 0 && count == 0)
19075 		err = ENOENT;
19076 	return (err);
19077 }
19078 
19079 /*
19080  * Process the TCP_IOC_ABORT_CONN ioctl request.
19081  */
19082 static void
19083 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
19084 {
19085 	int	err;
19086 	IOCP    iocp;
19087 	MBLKP   mp1;
19088 	sa_family_t laf, raf;
19089 	tcp_ioc_abort_conn_t *acp;
19090 	zone_t		*zptr;
19091 	conn_t		*connp = Q_TO_CONN(q);
19092 	zoneid_t	zoneid = connp->conn_zoneid;
19093 	tcp_t		*tcp = connp->conn_tcp;
19094 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19095 
19096 	iocp = (IOCP)mp->b_rptr;
19097 
19098 	if ((mp1 = mp->b_cont) == NULL ||
19099 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
19100 		err = EINVAL;
19101 		goto out;
19102 	}
19103 
19104 	/* check permissions */
19105 	if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
19106 		err = EPERM;
19107 		goto out;
19108 	}
19109 
19110 	if (mp1->b_cont != NULL) {
19111 		freemsg(mp1->b_cont);
19112 		mp1->b_cont = NULL;
19113 	}
19114 
19115 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
19116 	laf = acp->ac_local.ss_family;
19117 	raf = acp->ac_remote.ss_family;
19118 
19119 	/* check that a zone with the supplied zoneid exists */
19120 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
19121 		zptr = zone_find_by_id(zoneid);
19122 		if (zptr != NULL) {
19123 			zone_rele(zptr);
19124 		} else {
19125 			err = EINVAL;
19126 			goto out;
19127 		}
19128 	}
19129 
19130 	/*
19131 	 * For exclusive stacks we set the zoneid to zero
19132 	 * to make TCP operate as if in the global zone.
19133 	 */
19134 	if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID)
19135 		acp->ac_zoneid = GLOBAL_ZONEID;
19136 
19137 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
19138 	    acp->ac_start > acp->ac_end || laf != raf ||
19139 	    (laf != AF_INET && laf != AF_INET6)) {
19140 		err = EINVAL;
19141 		goto out;
19142 	}
19143 
19144 	tcp_ioctl_abort_dump(acp);
19145 	err = tcp_ioctl_abort(acp, tcps);
19146 
19147 out:
19148 	if (mp1 != NULL) {
19149 		freemsg(mp1);
19150 		mp->b_cont = NULL;
19151 	}
19152 
19153 	if (err != 0)
19154 		miocnak(q, mp, 0, err);
19155 	else
19156 		miocack(q, mp, 0, 0);
19157 }
19158 
19159 /*
19160  * tcp_time_wait_processing() handles processing of incoming packets when
19161  * the tcp is in the TIME_WAIT state.
19162  * A TIME_WAIT tcp that has an associated open TCP stream is never put
19163  * on the time wait list.
19164  */
19165 void
19166 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
19167     uint32_t seg_ack, int seg_len, tcpha_t *tcpha, ip_recv_attr_t *ira)
19168 {
19169 	int32_t		bytes_acked;
19170 	int32_t		gap;
19171 	int32_t		rgap;
19172 	tcp_opt_t	tcpopt;
19173 	uint_t		flags;
19174 	uint32_t	new_swnd = 0;
19175 	conn_t		*nconnp;
19176 	conn_t		*connp = tcp->tcp_connp;
19177 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19178 
19179 	BUMP_LOCAL(tcp->tcp_ibsegs);
19180 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
19181 
19182 	flags = (unsigned int)tcpha->tha_flags & 0xFF;
19183 	new_swnd = ntohs(tcpha->tha_win) <<
19184 	    ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws);
19185 	if (tcp->tcp_snd_ts_ok) {
19186 		if (!tcp_paws_check(tcp, tcpha, &tcpopt)) {
19187 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
19188 			    tcp->tcp_rnxt, TH_ACK);
19189 			goto done;
19190 		}
19191 	}
19192 	gap = seg_seq - tcp->tcp_rnxt;
19193 	rgap = tcp->tcp_rwnd - (gap + seg_len);
19194 	if (gap < 0) {
19195 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
19196 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
19197 		    (seg_len > -gap ? -gap : seg_len));
19198 		seg_len += gap;
19199 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
19200 			if (flags & TH_RST) {
19201 				goto done;
19202 			}
19203 			if ((flags & TH_FIN) && seg_len == -1) {
19204 				/*
19205 				 * When TCP receives a duplicate FIN in
19206 				 * TIME_WAIT state, restart the 2 MSL timer.
19207 				 * See page 73 in RFC 793. Make sure this TCP
19208 				 * is already on the TIME_WAIT list. If not,
19209 				 * just restart the timer.
19210 				 */
19211 				if (TCP_IS_DETACHED(tcp)) {
19212 					if (tcp_time_wait_remove(tcp, NULL) ==
19213 					    B_TRUE) {
19214 						tcp_time_wait_append(tcp);
19215 						TCP_DBGSTAT(tcps,
19216 						    tcp_rput_time_wait);
19217 					}
19218 				} else {
19219 					ASSERT(tcp != NULL);
19220 					TCP_TIMER_RESTART(tcp,
19221 					    tcps->tcps_time_wait_interval);
19222 				}
19223 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
19224 				    tcp->tcp_rnxt, TH_ACK);
19225 				goto done;
19226 			}
19227 			flags |=  TH_ACK_NEEDED;
19228 			seg_len = 0;
19229 			goto process_ack;
19230 		}
19231 
19232 		/* Fix seg_seq, and chew the gap off the front. */
19233 		seg_seq = tcp->tcp_rnxt;
19234 	}
19235 
19236 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
19237 		/*
19238 		 * Make sure that when we accept the connection, pick
19239 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
19240 		 * old connection.
19241 		 *
19242 		 * The next ISS generated is equal to tcp_iss_incr_extra
19243 		 * + ISS_INCR/2 + other components depending on the
19244 		 * value of tcp_strong_iss.  We pre-calculate the new
19245 		 * ISS here and compare with tcp_snxt to determine if
19246 		 * we need to make adjustment to tcp_iss_incr_extra.
19247 		 *
19248 		 * The above calculation is ugly and is a
19249 		 * waste of CPU cycles...
19250 		 */
19251 		uint32_t new_iss = tcps->tcps_iss_incr_extra;
19252 		int32_t adj;
19253 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
19254 
19255 		switch (tcps->tcps_strong_iss) {
19256 		case 2: {
19257 			/* Add time and MD5 components. */
19258 			uint32_t answer[4];
19259 			struct {
19260 				uint32_t ports;
19261 				in6_addr_t src;
19262 				in6_addr_t dst;
19263 			} arg;
19264 			MD5_CTX context;
19265 
19266 			mutex_enter(&tcps->tcps_iss_key_lock);
19267 			context = tcps->tcps_iss_key;
19268 			mutex_exit(&tcps->tcps_iss_key_lock);
19269 			arg.ports = connp->conn_ports;
19270 			/* We use MAPPED addresses in tcp_iss_init */
19271 			arg.src = connp->conn_laddr_v6;
19272 			arg.dst = connp->conn_faddr_v6;
19273 			MD5Update(&context, (uchar_t *)&arg,
19274 			    sizeof (arg));
19275 			MD5Final((uchar_t *)answer, &context);
19276 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
19277 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
19278 			break;
19279 		}
19280 		case 1:
19281 			/* Add time component and min random (i.e. 1). */
19282 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
19283 			break;
19284 		default:
19285 			/* Add only time component. */
19286 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
19287 			break;
19288 		}
19289 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
19290 			/*
19291 			 * New ISS not guaranteed to be ISS_INCR/2
19292 			 * ahead of the current tcp_snxt, so add the
19293 			 * difference to tcp_iss_incr_extra.
19294 			 */
19295 			tcps->tcps_iss_incr_extra += adj;
19296 		}
19297 		/*
19298 		 * If tcp_clean_death() can not perform the task now,
19299 		 * drop the SYN packet and let the other side re-xmit.
19300 		 * Otherwise pass the SYN packet back in, since the
19301 		 * old tcp state has been cleaned up or freed.
19302 		 */
19303 		if (tcp_clean_death(tcp, 0, 27) == -1)
19304 			goto done;
19305 		nconnp = ipcl_classify(mp, ira, ipst);
19306 		if (nconnp != NULL) {
19307 			TCP_STAT(tcps, tcp_time_wait_syn_success);
19308 			/* Drops ref on nconnp */
19309 			tcp_reinput(nconnp, mp, ira, ipst);
19310 			return;
19311 		}
19312 		goto done;
19313 	}
19314 
19315 	/*
19316 	 * rgap is the amount of stuff received out of window.  A negative
19317 	 * value is the amount out of window.
19318 	 */
19319 	if (rgap < 0) {
19320 		BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
19321 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap);
19322 		/* Fix seg_len and make sure there is something left. */
19323 		seg_len += rgap;
19324 		if (seg_len <= 0) {
19325 			if (flags & TH_RST) {
19326 				goto done;
19327 			}
19328 			flags |=  TH_ACK_NEEDED;
19329 			seg_len = 0;
19330 			goto process_ack;
19331 		}
19332 	}
19333 	/*
19334 	 * Check whether we can update tcp_ts_recent.  This test is
19335 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
19336 	 * Extensions for High Performance: An Update", Internet Draft.
19337 	 */
19338 	if (tcp->tcp_snd_ts_ok &&
19339 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
19340 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
19341 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
19342 		tcp->tcp_last_rcv_lbolt = lbolt64;
19343 	}
19344 
19345 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
19346 		/* Always ack out of order packets */
19347 		flags |= TH_ACK_NEEDED;
19348 		seg_len = 0;
19349 	} else if (seg_len > 0) {
19350 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
19351 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
19352 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
19353 	}
19354 	if (flags & TH_RST) {
19355 		(void) tcp_clean_death(tcp, 0, 28);
19356 		goto done;
19357 	}
19358 	if (flags & TH_SYN) {
19359 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
19360 		    TH_RST|TH_ACK);
19361 		/*
19362 		 * Do not delete the TCP structure if it is in
19363 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
19364 		 */
19365 		goto done;
19366 	}
19367 process_ack:
19368 	if (flags & TH_ACK) {
19369 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
19370 		if (bytes_acked <= 0) {
19371 			if (bytes_acked == 0 && seg_len == 0 &&
19372 			    new_swnd == tcp->tcp_swnd)
19373 				BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
19374 		} else {
19375 			/* Acks something not sent */
19376 			flags |= TH_ACK_NEEDED;
19377 		}
19378 	}
19379 	if (flags & TH_ACK_NEEDED) {
19380 		/*
19381 		 * Time to send an ack for some reason.
19382 		 */
19383 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
19384 		    tcp->tcp_rnxt, TH_ACK);
19385 	}
19386 done:
19387 	freemsg(mp);
19388 }
19389 
19390 /*
19391  * TCP Timers Implementation.
19392  */
19393 timeout_id_t
19394 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
19395 {
19396 	mblk_t *mp;
19397 	tcp_timer_t *tcpt;
19398 	tcp_t *tcp = connp->conn_tcp;
19399 
19400 	ASSERT(connp->conn_sqp != NULL);
19401 
19402 	TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls);
19403 
19404 	if (tcp->tcp_timercache == NULL) {
19405 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
19406 	} else {
19407 		TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc);
19408 		mp = tcp->tcp_timercache;
19409 		tcp->tcp_timercache = mp->b_next;
19410 		mp->b_next = NULL;
19411 		ASSERT(mp->b_wptr == NULL);
19412 	}
19413 
19414 	CONN_INC_REF(connp);
19415 	tcpt = (tcp_timer_t *)mp->b_rptr;
19416 	tcpt->connp = connp;
19417 	tcpt->tcpt_proc = f;
19418 	/*
19419 	 * TCP timers are normal timeouts. Plus, they do not require more than
19420 	 * a 10 millisecond resolution. By choosing a coarser resolution and by
19421 	 * rounding up the expiration to the next resolution boundary, we can
19422 	 * batch timers in the callout subsystem to make TCP timers more
19423 	 * efficient. The roundup also protects short timers from expiring too
19424 	 * early before they have a chance to be cancelled.
19425 	 */
19426 	tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp,
19427 	    TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP);
19428 
19429 	return ((timeout_id_t)mp);
19430 }
19431 
19432 static void
19433 tcp_timer_callback(void *arg)
19434 {
19435 	mblk_t *mp = (mblk_t *)arg;
19436 	tcp_timer_t *tcpt;
19437 	conn_t	*connp;
19438 
19439 	tcpt = (tcp_timer_t *)mp->b_rptr;
19440 	connp = tcpt->connp;
19441 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp,
19442 	    NULL, SQ_FILL, SQTAG_TCP_TIMER);
19443 }
19444 
19445 /* ARGSUSED */
19446 static void
19447 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
19448 {
19449 	tcp_timer_t *tcpt;
19450 	conn_t *connp = (conn_t *)arg;
19451 	tcp_t *tcp = connp->conn_tcp;
19452 
19453 	tcpt = (tcp_timer_t *)mp->b_rptr;
19454 	ASSERT(connp == tcpt->connp);
19455 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
19456 
19457 	/*
19458 	 * If the TCP has reached the closed state, don't proceed any
19459 	 * further. This TCP logically does not exist on the system.
19460 	 * tcpt_proc could for example access queues, that have already
19461 	 * been qprocoff'ed off.
19462 	 */
19463 	if (tcp->tcp_state != TCPS_CLOSED) {
19464 		(*tcpt->tcpt_proc)(connp);
19465 	} else {
19466 		tcp->tcp_timer_tid = 0;
19467 	}
19468 	tcp_timer_free(connp->conn_tcp, mp);
19469 }
19470 
19471 /*
19472  * There is potential race with untimeout and the handler firing at the same
19473  * time. The mblock may be freed by the handler while we are trying to use
19474  * it. But since both should execute on the same squeue, this race should not
19475  * occur.
19476  */
19477 clock_t
19478 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
19479 {
19480 	mblk_t	*mp = (mblk_t *)id;
19481 	tcp_timer_t *tcpt;
19482 	clock_t delta;
19483 
19484 	TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs);
19485 
19486 	if (mp == NULL)
19487 		return (-1);
19488 
19489 	tcpt = (tcp_timer_t *)mp->b_rptr;
19490 	ASSERT(tcpt->connp == connp);
19491 
19492 	delta = untimeout_default(tcpt->tcpt_tid, 0);
19493 
19494 	if (delta >= 0) {
19495 		TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled);
19496 		tcp_timer_free(connp->conn_tcp, mp);
19497 		CONN_DEC_REF(connp);
19498 	}
19499 
19500 	return (delta);
19501 }
19502 
19503 /*
19504  * Allocate space for the timer event. The allocation looks like mblk, but it is
19505  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
19506  *
19507  * Dealing with failures: If we can't allocate from the timer cache we try
19508  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
19509  * points to b_rptr.
19510  * If we can't allocate anything using allocb_tryhard(), we perform a last
19511  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
19512  * save the actual allocation size in b_datap.
19513  */
19514 mblk_t *
19515 tcp_timermp_alloc(int kmflags)
19516 {
19517 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
19518 	    kmflags & ~KM_PANIC);
19519 
19520 	if (mp != NULL) {
19521 		mp->b_next = mp->b_prev = NULL;
19522 		mp->b_rptr = (uchar_t *)(&mp[1]);
19523 		mp->b_wptr = NULL;
19524 		mp->b_datap = NULL;
19525 		mp->b_queue = NULL;
19526 		mp->b_cont = NULL;
19527 	} else if (kmflags & KM_PANIC) {
19528 		/*
19529 		 * Failed to allocate memory for the timer. Try allocating from
19530 		 * dblock caches.
19531 		 */
19532 		/* ipclassifier calls this from a constructor - hence no tcps */
19533 		TCP_G_STAT(tcp_timermp_allocfail);
19534 		mp = allocb_tryhard(sizeof (tcp_timer_t));
19535 		if (mp == NULL) {
19536 			size_t size = 0;
19537 			/*
19538 			 * Memory is really low. Try tryhard allocation.
19539 			 *
19540 			 * ipclassifier calls this from a constructor -
19541 			 * hence no tcps
19542 			 */
19543 			TCP_G_STAT(tcp_timermp_allocdblfail);
19544 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
19545 			    sizeof (tcp_timer_t), &size, kmflags);
19546 			mp->b_rptr = (uchar_t *)(&mp[1]);
19547 			mp->b_next = mp->b_prev = NULL;
19548 			mp->b_wptr = (uchar_t *)-1;
19549 			mp->b_datap = (dblk_t *)size;
19550 			mp->b_queue = NULL;
19551 			mp->b_cont = NULL;
19552 		}
19553 		ASSERT(mp->b_wptr != NULL);
19554 	}
19555 	/* ipclassifier calls this from a constructor - hence no tcps */
19556 	TCP_G_DBGSTAT(tcp_timermp_alloced);
19557 
19558 	return (mp);
19559 }
19560 
19561 /*
19562  * Free per-tcp timer cache.
19563  * It can only contain entries from tcp_timercache.
19564  */
19565 void
19566 tcp_timermp_free(tcp_t *tcp)
19567 {
19568 	mblk_t *mp;
19569 
19570 	while ((mp = tcp->tcp_timercache) != NULL) {
19571 		ASSERT(mp->b_wptr == NULL);
19572 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
19573 		kmem_cache_free(tcp_timercache, mp);
19574 	}
19575 }
19576 
19577 /*
19578  * Free timer event. Put it on the per-tcp timer cache if there is not too many
19579  * events there already (currently at most two events are cached).
19580  * If the event is not allocated from the timer cache, free it right away.
19581  */
19582 static void
19583 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
19584 {
19585 	mblk_t *mp1 = tcp->tcp_timercache;
19586 
19587 	if (mp->b_wptr != NULL) {
19588 		/*
19589 		 * This allocation is not from a timer cache, free it right
19590 		 * away.
19591 		 */
19592 		if (mp->b_wptr != (uchar_t *)-1)
19593 			freeb(mp);
19594 		else
19595 			kmem_free(mp, (size_t)mp->b_datap);
19596 	} else if (mp1 == NULL || mp1->b_next == NULL) {
19597 		/* Cache this timer block for future allocations */
19598 		mp->b_rptr = (uchar_t *)(&mp[1]);
19599 		mp->b_next = mp1;
19600 		tcp->tcp_timercache = mp;
19601 	} else {
19602 		kmem_cache_free(tcp_timercache, mp);
19603 		TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed);
19604 	}
19605 }
19606 
19607 /*
19608  * End of TCP Timers implementation.
19609  */
19610 
19611 /*
19612  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
19613  * on the specified backing STREAMS q. Note, the caller may make the
19614  * decision to call based on the tcp_t.tcp_flow_stopped value which
19615  * when check outside the q's lock is only an advisory check ...
19616  */
19617 void
19618 tcp_setqfull(tcp_t *tcp)
19619 {
19620 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19621 	conn_t	*connp = tcp->tcp_connp;
19622 
19623 	if (tcp->tcp_closed)
19624 		return;
19625 
19626 	conn_setqfull(connp, &tcp->tcp_flow_stopped);
19627 	if (tcp->tcp_flow_stopped)
19628 		TCP_STAT(tcps, tcp_flwctl_on);
19629 }
19630 
19631 void
19632 tcp_clrqfull(tcp_t *tcp)
19633 {
19634 	conn_t  *connp = tcp->tcp_connp;
19635 
19636 	if (tcp->tcp_closed)
19637 		return;
19638 	conn_clrqfull(connp, &tcp->tcp_flow_stopped);
19639 }
19640 
19641 /*
19642  * kstats related to squeues i.e. not per IP instance
19643  */
19644 static void *
19645 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp)
19646 {
19647 	kstat_t *ksp;
19648 
19649 	tcp_g_stat_t template = {
19650 		{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
19651 		{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
19652 		{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
19653 		{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
19654 	};
19655 
19656 	ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net",
19657 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
19658 	    KSTAT_FLAG_VIRTUAL);
19659 
19660 	if (ksp == NULL)
19661 		return (NULL);
19662 
19663 	bcopy(&template, tcp_g_statp, sizeof (template));
19664 	ksp->ks_data = (void *)tcp_g_statp;
19665 
19666 	kstat_install(ksp);
19667 	return (ksp);
19668 }
19669 
19670 static void
19671 tcp_g_kstat_fini(kstat_t *ksp)
19672 {
19673 	if (ksp != NULL) {
19674 		kstat_delete(ksp);
19675 	}
19676 }
19677 
19678 
19679 static void *
19680 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp)
19681 {
19682 	kstat_t *ksp;
19683 
19684 	tcp_stat_t template = {
19685 		{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
19686 		{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
19687 		{ "tcp_time_wait_syn_success",	KSTAT_DATA_UINT64 },
19688 		{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
19689 		{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
19690 		{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
19691 		{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
19692 		{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
19693 		{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
19694 		{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
19695 		{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
19696 		{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
19697 		{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
19698 		{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
19699 		{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
19700 		{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
19701 		{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
19702 		{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
19703 		{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
19704 		{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
19705 		{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
19706 		{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
19707 		{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
19708 		{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
19709 		{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
19710 		{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
19711 		{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
19712 		{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
19713 		{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
19714 		{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
19715 		{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
19716 		{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
19717 		{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
19718 		{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
19719 		{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
19720 		{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
19721 		{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
19722 		{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
19723 		{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
19724 		{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
19725 		{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
19726 		{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
19727 		{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
19728 		{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
19729 		{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
19730 		{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
19731 		{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
19732 		{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
19733 		{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
19734 		{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
19735 		{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
19736 		{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
19737 		{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
19738 		{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
19739 		{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
19740 		{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
19741 		{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
19742 		{ "tcp_fusion_rrw_plugged",	KSTAT_DATA_UINT64 },
19743 		{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
19744 		{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
19745 		{ "tcp_lso_enabled",		KSTAT_DATA_UINT64 },
19746 		{ "tcp_lso_disabled",		KSTAT_DATA_UINT64 },
19747 		{ "tcp_lso_times",		KSTAT_DATA_UINT64 },
19748 		{ "tcp_lso_pkt_out",		KSTAT_DATA_UINT64 },
19749 	};
19750 
19751 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net",
19752 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
19753 	    KSTAT_FLAG_VIRTUAL, stackid);
19754 
19755 	if (ksp == NULL)
19756 		return (NULL);
19757 
19758 	bcopy(&template, tcps_statisticsp, sizeof (template));
19759 	ksp->ks_data = (void *)tcps_statisticsp;
19760 	ksp->ks_private = (void *)(uintptr_t)stackid;
19761 
19762 	kstat_install(ksp);
19763 	return (ksp);
19764 }
19765 
19766 static void
19767 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
19768 {
19769 	if (ksp != NULL) {
19770 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
19771 		kstat_delete_netstack(ksp, stackid);
19772 	}
19773 }
19774 
19775 /*
19776  * TCP Kstats implementation
19777  */
19778 static void *
19779 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps)
19780 {
19781 	kstat_t	*ksp;
19782 
19783 	tcp_named_kstat_t template = {
19784 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
19785 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
19786 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
19787 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
19788 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
19789 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
19790 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
19791 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
19792 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
19793 		{ "inSegs",		KSTAT_DATA_UINT64, 0 },
19794 		{ "outSegs",		KSTAT_DATA_UINT64, 0 },
19795 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
19796 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
19797 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
19798 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
19799 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
19800 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
19801 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
19802 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
19803 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
19804 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
19805 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
19806 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
19807 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
19808 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
19809 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
19810 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
19811 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
19812 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
19813 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
19814 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
19815 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
19816 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
19817 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
19818 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
19819 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
19820 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
19821 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
19822 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
19823 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
19824 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
19825 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
19826 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
19827 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
19828 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
19829 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
19830 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
19831 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
19832 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
19833 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
19834 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
19835 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
19836 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
19837 	};
19838 
19839 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2",
19840 	    KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid);
19841 
19842 	if (ksp == NULL)
19843 		return (NULL);
19844 
19845 	template.rtoAlgorithm.value.ui32 = 4;
19846 	template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min;
19847 	template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max;
19848 	template.maxConn.value.i32 = -1;
19849 
19850 	bcopy(&template, ksp->ks_data, sizeof (template));
19851 	ksp->ks_update = tcp_kstat_update;
19852 	ksp->ks_private = (void *)(uintptr_t)stackid;
19853 
19854 	kstat_install(ksp);
19855 	return (ksp);
19856 }
19857 
19858 static void
19859 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
19860 {
19861 	if (ksp != NULL) {
19862 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
19863 		kstat_delete_netstack(ksp, stackid);
19864 	}
19865 }
19866 
19867 static int
19868 tcp_kstat_update(kstat_t *kp, int rw)
19869 {
19870 	tcp_named_kstat_t *tcpkp;
19871 	tcp_t		*tcp;
19872 	connf_t		*connfp;
19873 	conn_t		*connp;
19874 	int 		i;
19875 	netstackid_t	stackid = (netstackid_t)(uintptr_t)kp->ks_private;
19876 	netstack_t	*ns;
19877 	tcp_stack_t	*tcps;
19878 	ip_stack_t	*ipst;
19879 
19880 	if ((kp == NULL) || (kp->ks_data == NULL))
19881 		return (EIO);
19882 
19883 	if (rw == KSTAT_WRITE)
19884 		return (EACCES);
19885 
19886 	ns = netstack_find_by_stackid(stackid);
19887 	if (ns == NULL)
19888 		return (-1);
19889 	tcps = ns->netstack_tcp;
19890 	if (tcps == NULL) {
19891 		netstack_rele(ns);
19892 		return (-1);
19893 	}
19894 
19895 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
19896 
19897 	tcpkp->currEstab.value.ui32 = 0;
19898 
19899 	ipst = ns->netstack_ip;
19900 
19901 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
19902 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
19903 		connp = NULL;
19904 		while ((connp =
19905 		    ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) {
19906 			tcp = connp->conn_tcp;
19907 			switch (tcp_snmp_state(tcp)) {
19908 			case MIB2_TCP_established:
19909 			case MIB2_TCP_closeWait:
19910 				tcpkp->currEstab.value.ui32++;
19911 				break;
19912 			}
19913 		}
19914 	}
19915 
19916 	tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens;
19917 	tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens;
19918 	tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails;
19919 	tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets;
19920 	tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs;
19921 	tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs;
19922 	tcpkp->retransSegs.value.ui32 =	tcps->tcps_mib.tcpRetransSegs;
19923 	tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize;
19924 	tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts;
19925 	tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs;
19926 	tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes;
19927 	tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes;
19928 	tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck;
19929 	tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed;
19930 	tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg;
19931 	tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate;
19932 	tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe;
19933 	tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl;
19934 	tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans;
19935 	tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs;
19936 	tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes;
19937 	tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck;
19938 	tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent;
19939 	tcpkp->inDataInorderSegs.value.ui32 =
19940 	    tcps->tcps_mib.tcpInDataInorderSegs;
19941 	tcpkp->inDataInorderBytes.value.ui32 =
19942 	    tcps->tcps_mib.tcpInDataInorderBytes;
19943 	tcpkp->inDataUnorderSegs.value.ui32 =
19944 	    tcps->tcps_mib.tcpInDataUnorderSegs;
19945 	tcpkp->inDataUnorderBytes.value.ui32 =
19946 	    tcps->tcps_mib.tcpInDataUnorderBytes;
19947 	tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs;
19948 	tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes;
19949 	tcpkp->inDataPartDupSegs.value.ui32 =
19950 	    tcps->tcps_mib.tcpInDataPartDupSegs;
19951 	tcpkp->inDataPartDupBytes.value.ui32 =
19952 	    tcps->tcps_mib.tcpInDataPartDupBytes;
19953 	tcpkp->inDataPastWinSegs.value.ui32 =
19954 	    tcps->tcps_mib.tcpInDataPastWinSegs;
19955 	tcpkp->inDataPastWinBytes.value.ui32 =
19956 	    tcps->tcps_mib.tcpInDataPastWinBytes;
19957 	tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe;
19958 	tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate;
19959 	tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed;
19960 	tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate;
19961 	tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate;
19962 	tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans;
19963 	tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop;
19964 	tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive;
19965 	tcpkp->timKeepaliveProbe.value.ui32 =
19966 	    tcps->tcps_mib.tcpTimKeepaliveProbe;
19967 	tcpkp->timKeepaliveDrop.value.ui32 =
19968 	    tcps->tcps_mib.tcpTimKeepaliveDrop;
19969 	tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop;
19970 	tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0;
19971 	tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop;
19972 	tcpkp->outSackRetransSegs.value.ui32 =
19973 	    tcps->tcps_mib.tcpOutSackRetransSegs;
19974 	tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize;
19975 
19976 	netstack_rele(ns);
19977 	return (0);
19978 }
19979 
19980 static int
19981 tcp_squeue_switch(int val)
19982 {
19983 	int rval = SQ_FILL;
19984 
19985 	switch (val) {
19986 	case 1:
19987 		rval = SQ_NODRAIN;
19988 		break;
19989 	case 2:
19990 		rval = SQ_PROCESS;
19991 		break;
19992 	default:
19993 		break;
19994 	}
19995 	return (rval);
19996 }
19997 
19998 /*
19999  * This is called once for each squeue - globally for all stack
20000  * instances.
20001  */
20002 static void
20003 tcp_squeue_add(squeue_t *sqp)
20004 {
20005 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
20006 	    sizeof (tcp_squeue_priv_t), KM_SLEEP);
20007 
20008 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
20009 	tcp_time_wait->tcp_time_wait_tid =
20010 	    timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp,
20011 	    TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION,
20012 	    CALLOUT_FLAG_ROUNDUP);
20013 	if (tcp_free_list_max_cnt == 0) {
20014 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
20015 		    max_ncpus : boot_max_ncpus);
20016 
20017 		/*
20018 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
20019 		 */
20020 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
20021 		    (tcp_ncpus * sizeof (tcp_t) * 100);
20022 	}
20023 	tcp_time_wait->tcp_free_list_cnt = 0;
20024 }
20025 
20026 /*
20027  * On a labeled system we have some protocols above TCP, such as RPC, which
20028  * appear to assume that every mblk in a chain has a db_credp.
20029  */
20030 static void
20031 tcp_setcred_data(mblk_t *mp, ip_recv_attr_t *ira)
20032 {
20033 	ASSERT(is_system_labeled());
20034 	ASSERT(ira->ira_cred != NULL);
20035 
20036 	while (mp != NULL) {
20037 		mblk_setcred(mp, ira->ira_cred, NOPID);
20038 		mp = mp->b_cont;
20039 	}
20040 }
20041 
20042 static int
20043 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr,
20044     boolean_t bind_to_req_port_only, cred_t *cr)
20045 {
20046 	in_port_t	mlp_port;
20047 	mlp_type_t 	addrtype, mlptype;
20048 	boolean_t	user_specified;
20049 	in_port_t	allocated_port;
20050 	in_port_t	requested_port = *requested_port_ptr;
20051 	conn_t		*connp = tcp->tcp_connp;
20052 	zone_t		*zone;
20053 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20054 	in6_addr_t	v6addr = connp->conn_laddr_v6;
20055 
20056 	/*
20057 	 * XXX It's up to the caller to specify bind_to_req_port_only or not.
20058 	 */
20059 	ASSERT(cr != NULL);
20060 
20061 	/*
20062 	 * Get a valid port (within the anonymous range and should not
20063 	 * be a privileged one) to use if the user has not given a port.
20064 	 * If multiple threads are here, they may all start with
20065 	 * with the same initial port. But, it should be fine as long as
20066 	 * tcp_bindi will ensure that no two threads will be assigned
20067 	 * the same port.
20068 	 *
20069 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
20070 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
20071 	 * unless TCP_ANONPRIVBIND option is set.
20072 	 */
20073 	mlptype = mlptSingle;
20074 	mlp_port = requested_port;
20075 	if (requested_port == 0) {
20076 		requested_port = connp->conn_anon_priv_bind ?
20077 		    tcp_get_next_priv_port(tcp) :
20078 		    tcp_update_next_port(tcps->tcps_next_port_to_try,
20079 		    tcp, B_TRUE);
20080 		if (requested_port == 0) {
20081 			return (-TNOADDR);
20082 		}
20083 		user_specified = B_FALSE;
20084 
20085 		/*
20086 		 * If the user went through one of the RPC interfaces to create
20087 		 * this socket and RPC is MLP in this zone, then give him an
20088 		 * anonymous MLP.
20089 		 */
20090 		if (connp->conn_anon_mlp && is_system_labeled()) {
20091 			zone = crgetzone(cr);
20092 			addrtype = tsol_mlp_addr_type(
20093 			    connp->conn_allzones ? ALL_ZONES : zone->zone_id,
20094 			    IPV6_VERSION, &v6addr,
20095 			    tcps->tcps_netstack->netstack_ip);
20096 			if (addrtype == mlptSingle) {
20097 				return (-TNOADDR);
20098 			}
20099 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
20100 			    PMAPPORT, addrtype);
20101 			mlp_port = PMAPPORT;
20102 		}
20103 	} else {
20104 		int i;
20105 		boolean_t priv = B_FALSE;
20106 
20107 		/*
20108 		 * If the requested_port is in the well-known privileged range,
20109 		 * verify that the stream was opened by a privileged user.
20110 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
20111 		 * but instead the code relies on:
20112 		 * - the fact that the address of the array and its size never
20113 		 *   changes
20114 		 * - the atomic assignment of the elements of the array
20115 		 */
20116 		if (requested_port < tcps->tcps_smallest_nonpriv_port) {
20117 			priv = B_TRUE;
20118 		} else {
20119 			for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
20120 				if (requested_port ==
20121 				    tcps->tcps_g_epriv_ports[i]) {
20122 					priv = B_TRUE;
20123 					break;
20124 				}
20125 			}
20126 		}
20127 		if (priv) {
20128 			if (secpolicy_net_privaddr(cr, requested_port,
20129 			    IPPROTO_TCP) != 0) {
20130 				if (connp->conn_debug) {
20131 					(void) strlog(TCP_MOD_ID, 0, 1,
20132 					    SL_ERROR|SL_TRACE,
20133 					    "tcp_bind: no priv for port %d",
20134 					    requested_port);
20135 				}
20136 				return (-TACCES);
20137 			}
20138 		}
20139 		user_specified = B_TRUE;
20140 
20141 		connp = tcp->tcp_connp;
20142 		if (is_system_labeled()) {
20143 			zone = crgetzone(cr);
20144 			addrtype = tsol_mlp_addr_type(
20145 			    connp->conn_allzones ? ALL_ZONES : zone->zone_id,
20146 			    IPV6_VERSION, &v6addr,
20147 			    tcps->tcps_netstack->netstack_ip);
20148 			if (addrtype == mlptSingle) {
20149 				return (-TNOADDR);
20150 			}
20151 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
20152 			    requested_port, addrtype);
20153 		}
20154 	}
20155 
20156 	if (mlptype != mlptSingle) {
20157 		if (secpolicy_net_bindmlp(cr) != 0) {
20158 			if (connp->conn_debug) {
20159 				(void) strlog(TCP_MOD_ID, 0, 1,
20160 				    SL_ERROR|SL_TRACE,
20161 				    "tcp_bind: no priv for multilevel port %d",
20162 				    requested_port);
20163 			}
20164 			return (-TACCES);
20165 		}
20166 
20167 		/*
20168 		 * If we're specifically binding a shared IP address and the
20169 		 * port is MLP on shared addresses, then check to see if this
20170 		 * zone actually owns the MLP.  Reject if not.
20171 		 */
20172 		if (mlptype == mlptShared && addrtype == mlptShared) {
20173 			/*
20174 			 * No need to handle exclusive-stack zones since
20175 			 * ALL_ZONES only applies to the shared stack.
20176 			 */
20177 			zoneid_t mlpzone;
20178 
20179 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
20180 			    htons(mlp_port));
20181 			if (connp->conn_zoneid != mlpzone) {
20182 				if (connp->conn_debug) {
20183 					(void) strlog(TCP_MOD_ID, 0, 1,
20184 					    SL_ERROR|SL_TRACE,
20185 					    "tcp_bind: attempt to bind port "
20186 					    "%d on shared addr in zone %d "
20187 					    "(should be %d)",
20188 					    mlp_port, connp->conn_zoneid,
20189 					    mlpzone);
20190 				}
20191 				return (-TACCES);
20192 			}
20193 		}
20194 
20195 		if (!user_specified) {
20196 			int err;
20197 			err = tsol_mlp_anon(zone, mlptype, connp->conn_proto,
20198 			    requested_port, B_TRUE);
20199 			if (err != 0) {
20200 				if (connp->conn_debug) {
20201 					(void) strlog(TCP_MOD_ID, 0, 1,
20202 					    SL_ERROR|SL_TRACE,
20203 					    "tcp_bind: cannot establish anon "
20204 					    "MLP for port %d",
20205 					    requested_port);
20206 				}
20207 				return (err);
20208 			}
20209 			connp->conn_anon_port = B_TRUE;
20210 		}
20211 		connp->conn_mlp_type = mlptype;
20212 	}
20213 
20214 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
20215 	    connp->conn_reuseaddr, B_FALSE, bind_to_req_port_only,
20216 	    user_specified);
20217 
20218 	if (allocated_port == 0) {
20219 		connp->conn_mlp_type = mlptSingle;
20220 		if (connp->conn_anon_port) {
20221 			connp->conn_anon_port = B_FALSE;
20222 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_proto,
20223 			    requested_port, B_FALSE);
20224 		}
20225 		if (bind_to_req_port_only) {
20226 			if (connp->conn_debug) {
20227 				(void) strlog(TCP_MOD_ID, 0, 1,
20228 				    SL_ERROR|SL_TRACE,
20229 				    "tcp_bind: requested addr busy");
20230 			}
20231 			return (-TADDRBUSY);
20232 		} else {
20233 			/* If we are out of ports, fail the bind. */
20234 			if (connp->conn_debug) {
20235 				(void) strlog(TCP_MOD_ID, 0, 1,
20236 				    SL_ERROR|SL_TRACE,
20237 				    "tcp_bind: out of ports?");
20238 			}
20239 			return (-TNOADDR);
20240 		}
20241 	}
20242 
20243 	/* Pass the allocated port back */
20244 	*requested_port_ptr = allocated_port;
20245 	return (0);
20246 }
20247 
20248 /*
20249  * Check the address and check/pick a local port number.
20250  */
20251 static int
20252 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
20253     boolean_t bind_to_req_port_only)
20254 {
20255 	tcp_t	*tcp = connp->conn_tcp;
20256 	sin_t	*sin;
20257 	sin6_t  *sin6;
20258 	in_port_t	requested_port;
20259 	ipaddr_t	v4addr;
20260 	in6_addr_t	v6addr;
20261 	ip_laddr_t	laddr_type = IPVL_UNICAST_UP;	/* INADDR_ANY */
20262 	zoneid_t	zoneid = IPCL_ZONEID(connp);
20263 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
20264 	uint_t		scopeid = 0;
20265 	int		error = 0;
20266 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
20267 
20268 	ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX);
20269 
20270 	if (tcp->tcp_state == TCPS_BOUND) {
20271 		return (0);
20272 	} else if (tcp->tcp_state > TCPS_BOUND) {
20273 		if (connp->conn_debug) {
20274 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
20275 			    "tcp_bind: bad state, %d", tcp->tcp_state);
20276 		}
20277 		return (-TOUTSTATE);
20278 	}
20279 
20280 	ASSERT(sa != NULL && len != 0);
20281 
20282 	if (!OK_32PTR((char *)sa)) {
20283 		if (connp->conn_debug) {
20284 			(void) strlog(TCP_MOD_ID, 0, 1,
20285 			    SL_ERROR|SL_TRACE,
20286 			    "tcp_bind: bad address parameter, "
20287 			    "address %p, len %d",
20288 			    (void *)sa, len);
20289 		}
20290 		return (-TPROTO);
20291 	}
20292 
20293 	error = proto_verify_ip_addr(connp->conn_family, sa, len);
20294 	if (error != 0) {
20295 		return (error);
20296 	}
20297 
20298 	switch (len) {
20299 	case sizeof (sin_t):	/* Complete IPv4 address */
20300 		sin = (sin_t *)sa;
20301 		requested_port = ntohs(sin->sin_port);
20302 		v4addr = sin->sin_addr.s_addr;
20303 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
20304 		if (v4addr != INADDR_ANY) {
20305 			laddr_type = ip_laddr_verify_v4(v4addr, zoneid, ipst,
20306 			    B_FALSE);
20307 		}
20308 		break;
20309 
20310 	case sizeof (sin6_t): /* Complete IPv6 address */
20311 		sin6 = (sin6_t *)sa;
20312 		v6addr = sin6->sin6_addr;
20313 		requested_port = ntohs(sin6->sin6_port);
20314 		if (IN6_IS_ADDR_V4MAPPED(&v6addr)) {
20315 			if (connp->conn_ipv6_v6only)
20316 				return (EADDRNOTAVAIL);
20317 
20318 			IN6_V4MAPPED_TO_IPADDR(&v6addr, v4addr);
20319 			if (v4addr != INADDR_ANY) {
20320 				laddr_type = ip_laddr_verify_v4(v4addr,
20321 				    zoneid, ipst, B_FALSE);
20322 			}
20323 		} else {
20324 			if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr)) {
20325 				if (IN6_IS_ADDR_LINKSCOPE(&v6addr))
20326 					scopeid = sin6->sin6_scope_id;
20327 				laddr_type = ip_laddr_verify_v6(&v6addr,
20328 				    zoneid, ipst, B_FALSE, scopeid);
20329 			}
20330 		}
20331 		break;
20332 
20333 	default:
20334 		if (connp->conn_debug) {
20335 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
20336 			    "tcp_bind: bad address length, %d", len);
20337 		}
20338 		return (EAFNOSUPPORT);
20339 		/* return (-TBADADDR); */
20340 	}
20341 
20342 	/* Is the local address a valid unicast address? */
20343 	if (laddr_type == IPVL_BAD)
20344 		return (EADDRNOTAVAIL);
20345 
20346 	connp->conn_bound_addr_v6 = v6addr;
20347 	if (scopeid != 0) {
20348 		ixa->ixa_flags |= IXAF_SCOPEID_SET;
20349 		ixa->ixa_scopeid = scopeid;
20350 		connp->conn_incoming_ifindex = scopeid;
20351 	} else {
20352 		ixa->ixa_flags &= ~IXAF_SCOPEID_SET;
20353 		connp->conn_incoming_ifindex = connp->conn_bound_if;
20354 	}
20355 
20356 	connp->conn_laddr_v6 = v6addr;
20357 	connp->conn_saddr_v6 = v6addr;
20358 
20359 	bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only;
20360 
20361 	error = tcp_bind_select_lport(tcp, &requested_port,
20362 	    bind_to_req_port_only, cr);
20363 	if (error != 0) {
20364 		connp->conn_laddr_v6 = ipv6_all_zeros;
20365 		connp->conn_saddr_v6 = ipv6_all_zeros;
20366 		connp->conn_bound_addr_v6 = ipv6_all_zeros;
20367 	}
20368 	return (error);
20369 }
20370 
20371 /*
20372  * Return unix error is tli error is TSYSERR, otherwise return a negative
20373  * tli error.
20374  */
20375 int
20376 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
20377     boolean_t bind_to_req_port_only)
20378 {
20379 	int error;
20380 	tcp_t *tcp = connp->conn_tcp;
20381 
20382 	if (tcp->tcp_state >= TCPS_BOUND) {
20383 		if (connp->conn_debug) {
20384 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
20385 			    "tcp_bind: bad state, %d", tcp->tcp_state);
20386 		}
20387 		return (-TOUTSTATE);
20388 	}
20389 
20390 	error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only);
20391 	if (error != 0)
20392 		return (error);
20393 
20394 	ASSERT(tcp->tcp_state == TCPS_BOUND);
20395 	tcp->tcp_conn_req_max = 0;
20396 	return (0);
20397 }
20398 
20399 int
20400 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa,
20401     socklen_t len, cred_t *cr)
20402 {
20403 	int 		error;
20404 	conn_t		*connp = (conn_t *)proto_handle;
20405 	squeue_t	*sqp = connp->conn_sqp;
20406 
20407 	/* All Solaris components should pass a cred for this operation. */
20408 	ASSERT(cr != NULL);
20409 
20410 	ASSERT(sqp != NULL);
20411 	ASSERT(connp->conn_upper_handle != NULL);
20412 
20413 	error = squeue_synch_enter(sqp, connp, NULL);
20414 	if (error != 0) {
20415 		/* failed to enter */
20416 		return (ENOSR);
20417 	}
20418 
20419 	/* binding to a NULL address really means unbind */
20420 	if (sa == NULL) {
20421 		if (connp->conn_tcp->tcp_state < TCPS_LISTEN)
20422 			error = tcp_do_unbind(connp);
20423 		else
20424 			error = EINVAL;
20425 	} else {
20426 		error = tcp_do_bind(connp, sa, len, cr, B_TRUE);
20427 	}
20428 
20429 	squeue_synch_exit(sqp, connp);
20430 
20431 	if (error < 0) {
20432 		if (error == -TOUTSTATE)
20433 			error = EINVAL;
20434 		else
20435 			error = proto_tlitosyserr(-error);
20436 	}
20437 
20438 	return (error);
20439 }
20440 
20441 /*
20442  * If the return value from this function is positive, it's a UNIX error.
20443  * Otherwise, if it's negative, then the absolute value is a TLI error.
20444  * the TPI routine tcp_tpi_connect() is a wrapper function for this.
20445  */
20446 int
20447 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len,
20448     cred_t *cr, pid_t pid)
20449 {
20450 	tcp_t		*tcp = connp->conn_tcp;
20451 	sin_t		*sin = (sin_t *)sa;
20452 	sin6_t		*sin6 = (sin6_t *)sa;
20453 	ipaddr_t	*dstaddrp;
20454 	in_port_t	dstport;
20455 	uint_t		srcid;
20456 	int		error;
20457 	uint32_t	mss;
20458 	mblk_t		*syn_mp;
20459 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20460 	int32_t		oldstate;
20461 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
20462 
20463 	oldstate = tcp->tcp_state;
20464 
20465 	switch (len) {
20466 	default:
20467 		/*
20468 		 * Should never happen
20469 		 */
20470 		return (EINVAL);
20471 
20472 	case sizeof (sin_t):
20473 		sin = (sin_t *)sa;
20474 		if (sin->sin_port == 0) {
20475 			return (-TBADADDR);
20476 		}
20477 		if (connp->conn_ipv6_v6only) {
20478 			return (EAFNOSUPPORT);
20479 		}
20480 		break;
20481 
20482 	case sizeof (sin6_t):
20483 		sin6 = (sin6_t *)sa;
20484 		if (sin6->sin6_port == 0) {
20485 			return (-TBADADDR);
20486 		}
20487 		break;
20488 	}
20489 	/*
20490 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
20491 	 * make sure that the conn_ipversion is IPV4_VERSION.  We
20492 	 * need to this before we call tcp_bindi() so that the port lookup
20493 	 * code will look for ports in the correct port space (IPv4 and
20494 	 * IPv6 have separate port spaces).
20495 	 */
20496 	if (connp->conn_family == AF_INET6 &&
20497 	    connp->conn_ipversion == IPV6_VERSION &&
20498 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
20499 		if (connp->conn_ipv6_v6only)
20500 			return (EADDRNOTAVAIL);
20501 
20502 		connp->conn_ipversion = IPV4_VERSION;
20503 	}
20504 
20505 	switch (tcp->tcp_state) {
20506 	case TCPS_LISTEN:
20507 		/*
20508 		 * Listening sockets are not allowed to issue connect().
20509 		 */
20510 		if (IPCL_IS_NONSTR(connp))
20511 			return (EOPNOTSUPP);
20512 		/* FALLTHRU */
20513 	case TCPS_IDLE:
20514 		/*
20515 		 * We support quick connect, refer to comments in
20516 		 * tcp_connect_*()
20517 		 */
20518 		/* FALLTHRU */
20519 	case TCPS_BOUND:
20520 		break;
20521 	default:
20522 		return (-TOUTSTATE);
20523 	}
20524 
20525 	/*
20526 	 * We update our cred/cpid based on the caller of connect
20527 	 */
20528 	if (connp->conn_cred != cr) {
20529 		crhold(cr);
20530 		crfree(connp->conn_cred);
20531 		connp->conn_cred = cr;
20532 	}
20533 	connp->conn_cpid = pid;
20534 
20535 	/* Cache things in the ixa without any refhold */
20536 	ixa->ixa_cred = cr;
20537 	ixa->ixa_cpid = pid;
20538 	if (is_system_labeled()) {
20539 		/* We need to restart with a label based on the cred */
20540 		ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred);
20541 	}
20542 
20543 	if (connp->conn_family == AF_INET6) {
20544 		if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
20545 			error = tcp_connect_ipv6(tcp, &sin6->sin6_addr,
20546 			    sin6->sin6_port, sin6->sin6_flowinfo,
20547 			    sin6->__sin6_src_id, sin6->sin6_scope_id);
20548 		} else {
20549 			/*
20550 			 * Destination adress is mapped IPv6 address.
20551 			 * Source bound address should be unspecified or
20552 			 * IPv6 mapped address as well.
20553 			 */
20554 			if (!IN6_IS_ADDR_UNSPECIFIED(
20555 			    &connp->conn_bound_addr_v6) &&
20556 			    !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) {
20557 				return (EADDRNOTAVAIL);
20558 			}
20559 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
20560 			dstport = sin6->sin6_port;
20561 			srcid = sin6->__sin6_src_id;
20562 			error = tcp_connect_ipv4(tcp, dstaddrp, dstport,
20563 			    srcid);
20564 		}
20565 	} else {
20566 		dstaddrp = &sin->sin_addr.s_addr;
20567 		dstport = sin->sin_port;
20568 		srcid = 0;
20569 		error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid);
20570 	}
20571 
20572 	if (error != 0)
20573 		goto connect_failed;
20574 
20575 	CL_INET_CONNECT(connp, B_TRUE, error);
20576 	if (error != 0)
20577 		goto connect_failed;
20578 
20579 	/* connect succeeded */
20580 	BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
20581 	tcp->tcp_active_open = 1;
20582 
20583 	/*
20584 	 * tcp_set_destination() does not adjust for TCP/IP header length.
20585 	 */
20586 	mss = tcp->tcp_mss - connp->conn_ht_iphc_len;
20587 
20588 	/*
20589 	 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up
20590 	 * to the nearest MSS.
20591 	 *
20592 	 * We do the round up here because we need to get the interface MTU
20593 	 * first before we can do the round up.
20594 	 */
20595 	tcp->tcp_rwnd = connp->conn_rcvbuf;
20596 	tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
20597 	    tcps->tcps_recv_hiwat_minmss * mss);
20598 	connp->conn_rcvbuf = tcp->tcp_rwnd;
20599 	tcp_set_ws_value(tcp);
20600 	tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
20601 	if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
20602 		tcp->tcp_snd_ws_ok = B_TRUE;
20603 
20604 	/*
20605 	 * Set tcp_snd_ts_ok to true
20606 	 * so that tcp_xmit_mp will
20607 	 * include the timestamp
20608 	 * option in the SYN segment.
20609 	 */
20610 	if (tcps->tcps_tstamp_always ||
20611 	    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
20612 		tcp->tcp_snd_ts_ok = B_TRUE;
20613 	}
20614 
20615 	/*
20616 	 * tcp_snd_sack_ok can be set in
20617 	 * tcp_set_destination() if the sack metric
20618 	 * is set.  So check it here also.
20619 	 */
20620 	if (tcps->tcps_sack_permitted == 2 ||
20621 	    tcp->tcp_snd_sack_ok) {
20622 		if (tcp->tcp_sack_info == NULL) {
20623 			tcp->tcp_sack_info = kmem_cache_alloc(
20624 			    tcp_sack_info_cache, KM_SLEEP);
20625 		}
20626 		tcp->tcp_snd_sack_ok = B_TRUE;
20627 	}
20628 
20629 	/*
20630 	 * Should we use ECN?  Note that the current
20631 	 * default value (SunOS 5.9) of tcp_ecn_permitted
20632 	 * is 1.  The reason for doing this is that there
20633 	 * are equipments out there that will drop ECN
20634 	 * enabled IP packets.  Setting it to 1 avoids
20635 	 * compatibility problems.
20636 	 */
20637 	if (tcps->tcps_ecn_permitted == 2)
20638 		tcp->tcp_ecn_ok = B_TRUE;
20639 
20640 	TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20641 	syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
20642 	    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
20643 	if (syn_mp != NULL) {
20644 		/*
20645 		 * We must bump the generation before sending the syn
20646 		 * to ensure that we use the right generation in case
20647 		 * this thread issues a "connected" up call.
20648 		 */
20649 		SOCK_CONNID_BUMP(tcp->tcp_connid);
20650 		tcp_send_data(tcp, syn_mp);
20651 	}
20652 
20653 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
20654 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
20655 	return (0);
20656 
20657 connect_failed:
20658 	connp->conn_faddr_v6 = ipv6_all_zeros;
20659 	connp->conn_fport = 0;
20660 	tcp->tcp_state = oldstate;
20661 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
20662 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
20663 	return (error);
20664 }
20665 
20666 int
20667 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa,
20668     socklen_t len, sock_connid_t *id, cred_t *cr)
20669 {
20670 	conn_t		*connp = (conn_t *)proto_handle;
20671 	squeue_t	*sqp = connp->conn_sqp;
20672 	int		error;
20673 
20674 	ASSERT(connp->conn_upper_handle != NULL);
20675 
20676 	/* All Solaris components should pass a cred for this operation. */
20677 	ASSERT(cr != NULL);
20678 
20679 	error = proto_verify_ip_addr(connp->conn_family, sa, len);
20680 	if (error != 0) {
20681 		return (error);
20682 	}
20683 
20684 	error = squeue_synch_enter(sqp, connp, NULL);
20685 	if (error != 0) {
20686 		/* failed to enter */
20687 		return (ENOSR);
20688 	}
20689 
20690 	/*
20691 	 * TCP supports quick connect, so no need to do an implicit bind
20692 	 */
20693 	error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid);
20694 	if (error == 0) {
20695 		*id = connp->conn_tcp->tcp_connid;
20696 	} else if (error < 0) {
20697 		if (error == -TOUTSTATE) {
20698 			switch (connp->conn_tcp->tcp_state) {
20699 			case TCPS_SYN_SENT:
20700 				error = EALREADY;
20701 				break;
20702 			case TCPS_ESTABLISHED:
20703 				error = EISCONN;
20704 				break;
20705 			case TCPS_LISTEN:
20706 				error = EOPNOTSUPP;
20707 				break;
20708 			default:
20709 				error = EINVAL;
20710 				break;
20711 			}
20712 		} else {
20713 			error = proto_tlitosyserr(-error);
20714 		}
20715 	}
20716 
20717 	if (connp->conn_tcp->tcp_loopback) {
20718 		struct sock_proto_props sopp;
20719 
20720 		sopp.sopp_flags = SOCKOPT_LOOPBACK;
20721 		sopp.sopp_loopback = B_TRUE;
20722 
20723 		(*connp->conn_upcalls->su_set_proto_props)(
20724 		    connp->conn_upper_handle, &sopp);
20725 	}
20726 done:
20727 	squeue_synch_exit(sqp, connp);
20728 
20729 	return ((error == 0) ? EINPROGRESS : error);
20730 }
20731 
20732 /* ARGSUSED */
20733 sock_lower_handle_t
20734 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls,
20735     uint_t *smodep, int *errorp, int flags, cred_t *credp)
20736 {
20737 	conn_t		*connp;
20738 	boolean_t	isv6 = family == AF_INET6;
20739 	if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) ||
20740 	    (proto != 0 && proto != IPPROTO_TCP)) {
20741 		*errorp = EPROTONOSUPPORT;
20742 		return (NULL);
20743 	}
20744 
20745 	connp = tcp_create_common(credp, isv6, B_TRUE, errorp);
20746 	if (connp == NULL) {
20747 		return (NULL);
20748 	}
20749 
20750 	/*
20751 	 * Put the ref for TCP. Ref for IP was already put
20752 	 * by ipcl_conn_create. Also Make the conn_t globally
20753 	 * visible to walkers
20754 	 */
20755 	mutex_enter(&connp->conn_lock);
20756 	CONN_INC_REF_LOCKED(connp);
20757 	ASSERT(connp->conn_ref == 2);
20758 	connp->conn_state_flags &= ~CONN_INCIPIENT;
20759 
20760 	connp->conn_flags |= IPCL_NONSTR;
20761 	mutex_exit(&connp->conn_lock);
20762 
20763 	ASSERT(errorp != NULL);
20764 	*errorp = 0;
20765 	*sock_downcalls = &sock_tcp_downcalls;
20766 	*smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP |
20767 	    SM_SENDFILESUPP;
20768 
20769 	return ((sock_lower_handle_t)connp);
20770 }
20771 
20772 /* ARGSUSED */
20773 void
20774 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle,
20775     sock_upcalls_t *sock_upcalls, int flags, cred_t *cr)
20776 {
20777 	conn_t *connp = (conn_t *)proto_handle;
20778 	struct sock_proto_props sopp;
20779 
20780 	ASSERT(connp->conn_upper_handle == NULL);
20781 
20782 	/* All Solaris components should pass a cred for this operation. */
20783 	ASSERT(cr != NULL);
20784 
20785 	sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT |
20786 	    SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER |
20787 	    SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ;
20788 
20789 	sopp.sopp_rxhiwat = SOCKET_RECVHIWATER;
20790 	sopp.sopp_rxlowat = SOCKET_RECVLOWATER;
20791 	sopp.sopp_maxpsz = INFPSZ;
20792 	sopp.sopp_maxblk = INFPSZ;
20793 	sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL;
20794 	sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3;
20795 	sopp.sopp_maxaddrlen = sizeof (sin6_t);
20796 	sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 :
20797 	    tcp_rinfo.mi_minpsz;
20798 
20799 	connp->conn_upcalls = sock_upcalls;
20800 	connp->conn_upper_handle = sock_handle;
20801 
20802 	ASSERT(connp->conn_rcvbuf != 0 &&
20803 	    connp->conn_rcvbuf == connp->conn_tcp->tcp_rwnd);
20804 	(*sock_upcalls->su_set_proto_props)(sock_handle, &sopp);
20805 }
20806 
20807 /* ARGSUSED */
20808 int
20809 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr)
20810 {
20811 	conn_t *connp = (conn_t *)proto_handle;
20812 
20813 	ASSERT(connp->conn_upper_handle != NULL);
20814 
20815 	/* All Solaris components should pass a cred for this operation. */
20816 	ASSERT(cr != NULL);
20817 
20818 	tcp_close_common(connp, flags);
20819 
20820 	ip_free_helper_stream(connp);
20821 
20822 	/*
20823 	 * Drop IP's reference on the conn. This is the last reference
20824 	 * on the connp if the state was less than established. If the
20825 	 * connection has gone into timewait state, then we will have
20826 	 * one ref for the TCP and one more ref (total of two) for the
20827 	 * classifier connected hash list (a timewait connections stays
20828 	 * in connected hash till closed).
20829 	 *
20830 	 * We can't assert the references because there might be other
20831 	 * transient reference places because of some walkers or queued
20832 	 * packets in squeue for the timewait state.
20833 	 */
20834 	CONN_DEC_REF(connp);
20835 	return (0);
20836 }
20837 
20838 /* ARGSUSED */
20839 int
20840 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg,
20841     cred_t *cr)
20842 {
20843 	tcp_t		*tcp;
20844 	uint32_t	msize;
20845 	conn_t *connp = (conn_t *)proto_handle;
20846 	int32_t		tcpstate;
20847 
20848 	/* All Solaris components should pass a cred for this operation. */
20849 	ASSERT(cr != NULL);
20850 
20851 	ASSERT(connp->conn_ref >= 2);
20852 	ASSERT(connp->conn_upper_handle != NULL);
20853 
20854 	if (msg->msg_controllen != 0) {
20855 		freemsg(mp);
20856 		return (EOPNOTSUPP);
20857 	}
20858 
20859 	switch (DB_TYPE(mp)) {
20860 	case M_DATA:
20861 		tcp = connp->conn_tcp;
20862 		ASSERT(tcp != NULL);
20863 
20864 		tcpstate = tcp->tcp_state;
20865 		if (tcpstate < TCPS_ESTABLISHED) {
20866 			freemsg(mp);
20867 			/*
20868 			 * We return ENOTCONN if the endpoint is trying to
20869 			 * connect or has never been connected, and EPIPE if it
20870 			 * has been disconnected. The connection id helps us
20871 			 * distinguish between the last two cases.
20872 			 */
20873 			return ((tcpstate == TCPS_SYN_SENT) ? ENOTCONN :
20874 			    ((tcp->tcp_connid > 0) ? EPIPE : ENOTCONN));
20875 		} else if (tcpstate > TCPS_CLOSE_WAIT) {
20876 			freemsg(mp);
20877 			return (EPIPE);
20878 		}
20879 
20880 		msize = msgdsize(mp);
20881 
20882 		mutex_enter(&tcp->tcp_non_sq_lock);
20883 		tcp->tcp_squeue_bytes += msize;
20884 		/*
20885 		 * Squeue Flow Control
20886 		 */
20887 		if (TCP_UNSENT_BYTES(tcp) > connp->conn_sndbuf) {
20888 			tcp_setqfull(tcp);
20889 		}
20890 		mutex_exit(&tcp->tcp_non_sq_lock);
20891 
20892 		/*
20893 		 * The application may pass in an address in the msghdr, but
20894 		 * we ignore the address on connection-oriented sockets.
20895 		 * Just like BSD this code does not generate an error for
20896 		 * TCP (a CONNREQUIRED socket) when sending to an address
20897 		 * passed in with sendto/sendmsg. Instead the data is
20898 		 * delivered on the connection as if no address had been
20899 		 * supplied.
20900 		 */
20901 		CONN_INC_REF(connp);
20902 
20903 		if (msg->msg_flags & MSG_OOB) {
20904 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output_urgent,
20905 			    connp, NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT);
20906 		} else {
20907 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output,
20908 			    connp, NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT);
20909 		}
20910 
20911 		return (0);
20912 
20913 	default:
20914 		ASSERT(0);
20915 	}
20916 
20917 	freemsg(mp);
20918 	return (0);
20919 }
20920 
20921 /* ARGSUSED2 */
20922 void
20923 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
20924 {
20925 	int len;
20926 	uint32_t msize;
20927 	conn_t *connp = (conn_t *)arg;
20928 	tcp_t *tcp = connp->conn_tcp;
20929 
20930 	msize = msgdsize(mp);
20931 
20932 	len = msize - 1;
20933 	if (len < 0) {
20934 		freemsg(mp);
20935 		return;
20936 	}
20937 
20938 	/*
20939 	 * Try to force urgent data out on the wire. Even if we have unsent
20940 	 * data this will at least send the urgent flag.
20941 	 * XXX does not handle more flag correctly.
20942 	 */
20943 	len += tcp->tcp_unsent;
20944 	len += tcp->tcp_snxt;
20945 	tcp->tcp_urg = len;
20946 	tcp->tcp_valid_bits |= TCP_URG_VALID;
20947 
20948 	/* Bypass tcp protocol for fused tcp loopback */
20949 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
20950 		return;
20951 
20952 	/* Strip off the T_EXDATA_REQ if the data is from TPI */
20953 	if (DB_TYPE(mp) != M_DATA) {
20954 		mblk_t *mp1 = mp;
20955 		ASSERT(!IPCL_IS_NONSTR(connp));
20956 		mp = mp->b_cont;
20957 		freeb(mp1);
20958 	}
20959 	tcp_wput_data(tcp, mp, B_TRUE);
20960 }
20961 
20962 /* ARGSUSED3 */
20963 int
20964 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr,
20965     socklen_t *addrlenp, cred_t *cr)
20966 {
20967 	conn_t	*connp = (conn_t *)proto_handle;
20968 	tcp_t	*tcp = connp->conn_tcp;
20969 
20970 	ASSERT(connp->conn_upper_handle != NULL);
20971 	/* All Solaris components should pass a cred for this operation. */
20972 	ASSERT(cr != NULL);
20973 
20974 	ASSERT(tcp != NULL);
20975 	if (tcp->tcp_state < TCPS_SYN_RCVD)
20976 		return (ENOTCONN);
20977 
20978 	return (conn_getpeername(connp, addr, addrlenp));
20979 }
20980 
20981 /* ARGSUSED3 */
20982 int
20983 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr,
20984     socklen_t *addrlenp, cred_t *cr)
20985 {
20986 	conn_t	*connp = (conn_t *)proto_handle;
20987 
20988 	/* All Solaris components should pass a cred for this operation. */
20989 	ASSERT(cr != NULL);
20990 
20991 	ASSERT(connp->conn_upper_handle != NULL);
20992 	return (conn_getsockname(connp, addr, addrlenp));
20993 }
20994 
20995 /*
20996  * tcp_fallback
20997  *
20998  * A direct socket is falling back to using STREAMS. The queue
20999  * that is being passed down was created using tcp_open() with
21000  * the SO_FALLBACK flag set. As a result, the queue is not
21001  * associated with a conn, and the q_ptrs instead contain the
21002  * dev and minor area that should be used.
21003  *
21004  * The 'issocket' flag indicates whether the FireEngine
21005  * optimizations should be used. The common case would be that
21006  * optimizations are enabled, and they might be subsequently
21007  * disabled using the _SIOCSOCKFALLBACK ioctl.
21008  */
21009 
21010 /*
21011  * An active connection is falling back to TPI. Gather all the information
21012  * required by the STREAM head and TPI sonode and send it up.
21013  */
21014 void
21015 tcp_fallback_noneager(tcp_t *tcp, mblk_t *stropt_mp, queue_t *q,
21016     boolean_t issocket, so_proto_quiesced_cb_t quiesced_cb)
21017 {
21018 	conn_t			*connp = tcp->tcp_connp;
21019 	struct stroptions	*stropt;
21020 	struct T_capability_ack tca;
21021 	struct sockaddr_in6	laddr, faddr;
21022 	socklen_t 		laddrlen, faddrlen;
21023 	short			opts;
21024 	int			error;
21025 	mblk_t			*mp;
21026 
21027 	connp->conn_dev = (dev_t)RD(q)->q_ptr;
21028 	connp->conn_minor_arena = WR(q)->q_ptr;
21029 
21030 	RD(q)->q_ptr = WR(q)->q_ptr = connp;
21031 
21032 	connp->conn_rq = RD(q);
21033 	connp->conn_wq = WR(q);
21034 
21035 	WR(q)->q_qinfo = &tcp_sock_winit;
21036 
21037 	if (!issocket)
21038 		tcp_use_pure_tpi(tcp);
21039 
21040 	/*
21041 	 * free the helper stream
21042 	 */
21043 	ip_free_helper_stream(connp);
21044 
21045 	/*
21046 	 * Notify the STREAM head about options
21047 	 */
21048 	DB_TYPE(stropt_mp) = M_SETOPTS;
21049 	stropt = (struct stroptions *)stropt_mp->b_rptr;
21050 	stropt_mp->b_wptr += sizeof (struct stroptions);
21051 	stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK;
21052 
21053 	stropt->so_wroff = connp->conn_ht_iphc_len + (tcp->tcp_loopback ? 0 :
21054 	    tcp->tcp_tcps->tcps_wroff_xtra);
21055 	if (tcp->tcp_snd_sack_ok)
21056 		stropt->so_wroff += TCPOPT_MAX_SACK_LEN;
21057 	stropt->so_hiwat = connp->conn_rcvbuf;
21058 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
21059 
21060 	putnext(RD(q), stropt_mp);
21061 
21062 	/*
21063 	 * Collect the information needed to sync with the sonode
21064 	 */
21065 	tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID);
21066 
21067 	laddrlen = faddrlen = sizeof (sin6_t);
21068 	(void) tcp_getsockname((sock_lower_handle_t)connp,
21069 	    (struct sockaddr *)&laddr, &laddrlen, CRED());
21070 	error = tcp_getpeername((sock_lower_handle_t)connp,
21071 	    (struct sockaddr *)&faddr, &faddrlen, CRED());
21072 	if (error != 0)
21073 		faddrlen = 0;
21074 
21075 	opts = 0;
21076 	if (connp->conn_oobinline)
21077 		opts |= SO_OOBINLINE;
21078 	if (connp->conn_ixa->ixa_flags & IXAF_DONTROUTE)
21079 		opts |= SO_DONTROUTE;
21080 
21081 	/*
21082 	 * Notify the socket that the protocol is now quiescent,
21083 	 * and it's therefore safe move data from the socket
21084 	 * to the stream head.
21085 	 */
21086 	(*quiesced_cb)(connp->conn_upper_handle, q, &tca,
21087 	    (struct sockaddr *)&laddr, laddrlen,
21088 	    (struct sockaddr *)&faddr, faddrlen, opts);
21089 
21090 	while ((mp = tcp->tcp_rcv_list) != NULL) {
21091 		tcp->tcp_rcv_list = mp->b_next;
21092 		mp->b_next = NULL;
21093 		/* We never do fallback for kernel RPC */
21094 		putnext(q, mp);
21095 	}
21096 	tcp->tcp_rcv_last_head = NULL;
21097 	tcp->tcp_rcv_last_tail = NULL;
21098 	tcp->tcp_rcv_cnt = 0;
21099 }
21100 
21101 /*
21102  * An eager is falling back to TPI. All we have to do is send
21103  * up a T_CONN_IND.
21104  */
21105 void
21106 tcp_fallback_eager(tcp_t *eager, boolean_t direct_sockfs)
21107 {
21108 	tcp_t *listener = eager->tcp_listener;
21109 	mblk_t *mp = eager->tcp_conn.tcp_eager_conn_ind;
21110 
21111 	ASSERT(listener != NULL);
21112 	ASSERT(mp != NULL);
21113 
21114 	eager->tcp_conn.tcp_eager_conn_ind = NULL;
21115 
21116 	/*
21117 	 * TLI/XTI applications will get confused by
21118 	 * sending eager as an option since it violates
21119 	 * the option semantics. So remove the eager as
21120 	 * option since TLI/XTI app doesn't need it anyway.
21121 	 */
21122 	if (!direct_sockfs) {
21123 		struct T_conn_ind *conn_ind;
21124 
21125 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
21126 		conn_ind->OPT_length = 0;
21127 		conn_ind->OPT_offset = 0;
21128 	}
21129 
21130 	/*
21131 	 * Sockfs guarantees that the listener will not be closed
21132 	 * during fallback. So we can safely use the listener's queue.
21133 	 */
21134 	putnext(listener->tcp_connp->conn_rq, mp);
21135 }
21136 
21137 int
21138 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q,
21139     boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb)
21140 {
21141 	tcp_t			*tcp;
21142 	conn_t 			*connp = (conn_t *)proto_handle;
21143 	int			error;
21144 	mblk_t			*stropt_mp;
21145 	mblk_t			*ordrel_mp;
21146 
21147 	tcp = connp->conn_tcp;
21148 
21149 	stropt_mp = allocb_wait(sizeof (struct stroptions), BPRI_HI, STR_NOSIG,
21150 	    NULL);
21151 
21152 	/* Pre-allocate the T_ordrel_ind mblk. */
21153 	ASSERT(tcp->tcp_ordrel_mp == NULL);
21154 	ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI,
21155 	    STR_NOSIG, NULL);
21156 	ordrel_mp->b_datap->db_type = M_PROTO;
21157 	((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND;
21158 	ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind);
21159 
21160 	/*
21161 	 * Enter the squeue so that no new packets can come in
21162 	 */
21163 	error = squeue_synch_enter(connp->conn_sqp, connp, NULL);
21164 	if (error != 0) {
21165 		/* failed to enter, free all the pre-allocated messages. */
21166 		freeb(stropt_mp);
21167 		freeb(ordrel_mp);
21168 		/*
21169 		 * We cannot process the eager, so at least send out a
21170 		 * RST so the peer can reconnect.
21171 		 */
21172 		if (tcp->tcp_listener != NULL) {
21173 			(void) tcp_eager_blowoff(tcp->tcp_listener,
21174 			    tcp->tcp_conn_req_seqnum);
21175 		}
21176 		return (ENOMEM);
21177 	}
21178 
21179 	/*
21180 	 * Both endpoints must be of the same type (either STREAMS or
21181 	 * non-STREAMS) for fusion to be enabled. So if we are fused,
21182 	 * we have to unfuse.
21183 	 */
21184 	if (tcp->tcp_fused)
21185 		tcp_unfuse(tcp);
21186 
21187 	/*
21188 	 * No longer a direct socket
21189 	 */
21190 	connp->conn_flags &= ~IPCL_NONSTR;
21191 	tcp->tcp_ordrel_mp = ordrel_mp;
21192 
21193 	if (tcp->tcp_listener != NULL) {
21194 		/* The eager will deal with opts when accept() is called */
21195 		freeb(stropt_mp);
21196 		tcp_fallback_eager(tcp, direct_sockfs);
21197 	} else {
21198 		tcp_fallback_noneager(tcp, stropt_mp, q, direct_sockfs,
21199 		    quiesced_cb);
21200 	}
21201 
21202 	/*
21203 	 * There should be atleast two ref's (IP + TCP)
21204 	 */
21205 	ASSERT(connp->conn_ref >= 2);
21206 	squeue_synch_exit(connp->conn_sqp, connp);
21207 
21208 	return (0);
21209 }
21210 
21211 /* ARGSUSED */
21212 static void
21213 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
21214 {
21215 	conn_t 	*connp = (conn_t *)arg;
21216 	tcp_t	*tcp = connp->conn_tcp;
21217 
21218 	freemsg(mp);
21219 
21220 	if (tcp->tcp_fused)
21221 		tcp_unfuse(tcp);
21222 
21223 	if (tcp_xmit_end(tcp) != 0) {
21224 		/*
21225 		 * We were crossing FINs and got a reset from
21226 		 * the other side. Just ignore it.
21227 		 */
21228 		if (connp->conn_debug) {
21229 			(void) strlog(TCP_MOD_ID, 0, 1,
21230 			    SL_ERROR|SL_TRACE,
21231 			    "tcp_shutdown_output() out of state %s",
21232 			    tcp_display(tcp, NULL, DISP_ADDR_AND_PORT));
21233 		}
21234 	}
21235 }
21236 
21237 /* ARGSUSED */
21238 int
21239 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr)
21240 {
21241 	conn_t  *connp = (conn_t *)proto_handle;
21242 	tcp_t   *tcp = connp->conn_tcp;
21243 
21244 	ASSERT(connp->conn_upper_handle != NULL);
21245 
21246 	/* All Solaris components should pass a cred for this operation. */
21247 	ASSERT(cr != NULL);
21248 
21249 	/*
21250 	 * X/Open requires that we check the connected state.
21251 	 */
21252 	if (tcp->tcp_state < TCPS_SYN_SENT)
21253 		return (ENOTCONN);
21254 
21255 	/* shutdown the send side */
21256 	if (how != SHUT_RD) {
21257 		mblk_t *bp;
21258 
21259 		bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
21260 		CONN_INC_REF(connp);
21261 		SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output,
21262 		    connp, NULL, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT);
21263 
21264 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
21265 		    SOCK_OPCTL_SHUT_SEND, 0);
21266 	}
21267 
21268 	/* shutdown the recv side */
21269 	if (how != SHUT_WR)
21270 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
21271 		    SOCK_OPCTL_SHUT_RECV, 0);
21272 
21273 	return (0);
21274 }
21275 
21276 /*
21277  * SOP_LISTEN() calls into tcp_listen().
21278  */
21279 /* ARGSUSED */
21280 int
21281 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr)
21282 {
21283 	conn_t	*connp = (conn_t *)proto_handle;
21284 	int 	error;
21285 	squeue_t *sqp = connp->conn_sqp;
21286 
21287 	ASSERT(connp->conn_upper_handle != NULL);
21288 
21289 	/* All Solaris components should pass a cred for this operation. */
21290 	ASSERT(cr != NULL);
21291 
21292 	error = squeue_synch_enter(sqp, connp, NULL);
21293 	if (error != 0) {
21294 		/* failed to enter */
21295 		return (ENOBUFS);
21296 	}
21297 
21298 	error = tcp_do_listen(connp, NULL, 0, backlog, cr, FALSE);
21299 	if (error == 0) {
21300 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
21301 		    SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog);
21302 	} else if (error < 0) {
21303 		if (error == -TOUTSTATE)
21304 			error = EINVAL;
21305 		else
21306 			error = proto_tlitosyserr(-error);
21307 	}
21308 	squeue_synch_exit(sqp, connp);
21309 	return (error);
21310 }
21311 
21312 static int
21313 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len,
21314     int backlog, cred_t *cr, boolean_t bind_to_req_port_only)
21315 {
21316 	tcp_t		*tcp = connp->conn_tcp;
21317 	int		error = 0;
21318 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21319 
21320 	/* All Solaris components should pass a cred for this operation. */
21321 	ASSERT(cr != NULL);
21322 
21323 	if (tcp->tcp_state >= TCPS_BOUND) {
21324 		if ((tcp->tcp_state == TCPS_BOUND ||
21325 		    tcp->tcp_state == TCPS_LISTEN) && backlog > 0) {
21326 			/*
21327 			 * Handle listen() increasing backlog.
21328 			 * This is more "liberal" then what the TPI spec
21329 			 * requires but is needed to avoid a t_unbind
21330 			 * when handling listen() since the port number
21331 			 * might be "stolen" between the unbind and bind.
21332 			 */
21333 			goto do_listen;
21334 		}
21335 		if (connp->conn_debug) {
21336 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
21337 			    "tcp_listen: bad state, %d", tcp->tcp_state);
21338 		}
21339 		return (-TOUTSTATE);
21340 	} else {
21341 		if (sa == NULL) {
21342 			sin6_t	addr;
21343 			sin_t *sin;
21344 			sin6_t *sin6;
21345 
21346 			ASSERT(IPCL_IS_NONSTR(connp));
21347 			/* Do an implicit bind: Request for a generic port. */
21348 			if (connp->conn_family == AF_INET) {
21349 				len = sizeof (sin_t);
21350 				sin = (sin_t *)&addr;
21351 				*sin = sin_null;
21352 				sin->sin_family = AF_INET;
21353 			} else {
21354 				ASSERT(connp->conn_family == AF_INET6);
21355 				len = sizeof (sin6_t);
21356 				sin6 = (sin6_t *)&addr;
21357 				*sin6 = sin6_null;
21358 				sin6->sin6_family = AF_INET6;
21359 			}
21360 			sa = (struct sockaddr *)&addr;
21361 		}
21362 
21363 		error = tcp_bind_check(connp, sa, len, cr,
21364 		    bind_to_req_port_only);
21365 		if (error)
21366 			return (error);
21367 		/* Fall through and do the fanout insertion */
21368 	}
21369 
21370 do_listen:
21371 	ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN);
21372 	tcp->tcp_conn_req_max = backlog;
21373 	if (tcp->tcp_conn_req_max) {
21374 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
21375 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
21376 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
21377 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
21378 		/*
21379 		 * If this is a listener, do not reset the eager list
21380 		 * and other stuffs.  Note that we don't check if the
21381 		 * existing eager list meets the new tcp_conn_req_max
21382 		 * requirement.
21383 		 */
21384 		if (tcp->tcp_state != TCPS_LISTEN) {
21385 			tcp->tcp_state = TCPS_LISTEN;
21386 			/* Initialize the chain. Don't need the eager_lock */
21387 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
21388 			tcp->tcp_eager_next_drop_q0 = tcp;
21389 			tcp->tcp_eager_prev_drop_q0 = tcp;
21390 			tcp->tcp_second_ctimer_threshold =
21391 			    tcps->tcps_ip_abort_linterval;
21392 		}
21393 	}
21394 
21395 	/*
21396 	 * We need to make sure that the conn_recv is set to a non-null
21397 	 * value before we insert the conn into the classifier table.
21398 	 * This is to avoid a race with an incoming packet which does an
21399 	 * ipcl_classify().
21400 	 * We initially set it to tcp_input_listener_unbound to try to
21401 	 * pick a good squeue for the listener when the first SYN arrives.
21402 	 * tcp_input_listener_unbound sets it to tcp_input_listener on that
21403 	 * first SYN.
21404 	 */
21405 	connp->conn_recv = tcp_input_listener_unbound;
21406 
21407 	/* Insert the listener in the classifier table */
21408 	error = ip_laddr_fanout_insert(connp);
21409 	if (error != 0) {
21410 		/* Undo the bind - release the port number */
21411 		tcp->tcp_state = TCPS_IDLE;
21412 		connp->conn_bound_addr_v6 = ipv6_all_zeros;
21413 
21414 		connp->conn_laddr_v6 = ipv6_all_zeros;
21415 		connp->conn_saddr_v6 = ipv6_all_zeros;
21416 		connp->conn_ports = 0;
21417 
21418 		if (connp->conn_anon_port) {
21419 			zone_t		*zone;
21420 
21421 			zone = crgetzone(cr);
21422 			connp->conn_anon_port = B_FALSE;
21423 			(void) tsol_mlp_anon(zone, connp->conn_mlp_type,
21424 			    connp->conn_proto, connp->conn_lport, B_FALSE);
21425 		}
21426 		connp->conn_mlp_type = mlptSingle;
21427 
21428 		tcp_bind_hash_remove(tcp);
21429 		return (error);
21430 	}
21431 	return (error);
21432 }
21433 
21434 void
21435 tcp_clr_flowctrl(sock_lower_handle_t proto_handle)
21436 {
21437 	conn_t  *connp = (conn_t *)proto_handle;
21438 	tcp_t	*tcp = connp->conn_tcp;
21439 	mblk_t *mp;
21440 	int error;
21441 
21442 	ASSERT(connp->conn_upper_handle != NULL);
21443 
21444 	/*
21445 	 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_clr_flowctrl()
21446 	 * is currently running.
21447 	 */
21448 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
21449 	if ((mp = tcp->tcp_rsrv_mp) == NULL) {
21450 		mutex_exit(&tcp->tcp_rsrv_mp_lock);
21451 		return;
21452 	}
21453 	tcp->tcp_rsrv_mp = NULL;
21454 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
21455 
21456 	error = squeue_synch_enter(connp->conn_sqp, connp, mp);
21457 	ASSERT(error == 0);
21458 
21459 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
21460 	tcp->tcp_rsrv_mp = mp;
21461 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
21462 
21463 	if (tcp->tcp_fused) {
21464 		tcp_fuse_backenable(tcp);
21465 	} else {
21466 		tcp->tcp_rwnd = connp->conn_rcvbuf;
21467 		/*
21468 		 * Send back a window update immediately if TCP is above
21469 		 * ESTABLISHED state and the increase of the rcv window
21470 		 * that the other side knows is at least 1 MSS after flow
21471 		 * control is lifted.
21472 		 */
21473 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
21474 		    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
21475 			tcp_xmit_ctl(NULL, tcp,
21476 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
21477 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
21478 		}
21479 	}
21480 
21481 	squeue_synch_exit(connp->conn_sqp, connp);
21482 }
21483 
21484 /* ARGSUSED */
21485 int
21486 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg,
21487     int mode, int32_t *rvalp, cred_t *cr)
21488 {
21489 	conn_t  	*connp = (conn_t *)proto_handle;
21490 	int		error;
21491 
21492 	ASSERT(connp->conn_upper_handle != NULL);
21493 
21494 	/* All Solaris components should pass a cred for this operation. */
21495 	ASSERT(cr != NULL);
21496 
21497 	/*
21498 	 * If we don't have a helper stream then create one.
21499 	 * ip_create_helper_stream takes care of locking the conn_t,
21500 	 * so this check for NULL is just a performance optimization.
21501 	 */
21502 	if (connp->conn_helper_info == NULL) {
21503 		tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps;
21504 
21505 		/*
21506 		 * Create a helper stream for non-STREAMS socket.
21507 		 */
21508 		error = ip_create_helper_stream(connp, tcps->tcps_ldi_ident);
21509 		if (error != 0) {
21510 			ip0dbg(("tcp_ioctl: create of IP helper stream "
21511 			    "failed %d\n", error));
21512 			return (error);
21513 		}
21514 	}
21515 
21516 	switch (cmd) {
21517 		case ND_SET:
21518 		case ND_GET:
21519 		case _SIOCSOCKFALLBACK:
21520 		case TCP_IOC_ABORT_CONN:
21521 		case TI_GETPEERNAME:
21522 		case TI_GETMYNAME:
21523 			ip1dbg(("tcp_ioctl: cmd 0x%x on non sreams socket",
21524 			    cmd));
21525 			error = EINVAL;
21526 			break;
21527 		default:
21528 			/*
21529 			 * Pass on to IP using helper stream
21530 			 */
21531 			error = ldi_ioctl(connp->conn_helper_info->iphs_handle,
21532 			    cmd, arg, mode, cr, rvalp);
21533 			break;
21534 	}
21535 	return (error);
21536 }
21537 
21538 sock_downcalls_t sock_tcp_downcalls = {
21539 	tcp_activate,
21540 	tcp_accept,
21541 	tcp_bind,
21542 	tcp_listen,
21543 	tcp_connect,
21544 	tcp_getpeername,
21545 	tcp_getsockname,
21546 	tcp_getsockopt,
21547 	tcp_setsockopt,
21548 	tcp_sendmsg,
21549 	NULL,
21550 	NULL,
21551 	NULL,
21552 	tcp_shutdown,
21553 	tcp_clr_flowctrl,
21554 	tcp_ioctl,
21555 	tcp_close,
21556 };
21557