1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 const char tcp_version[] = "%Z%%M% %I% %E% SMI"; 31 32 #include <sys/types.h> 33 #include <sys/stream.h> 34 #include <sys/strsun.h> 35 #include <sys/strsubr.h> 36 #include <sys/stropts.h> 37 #include <sys/strlog.h> 38 #include <sys/strsun.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/timod.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/suntpi.h> 45 #include <sys/xti_inet.h> 46 #include <sys/cmn_err.h> 47 #include <sys/debug.h> 48 #include <sys/vtrace.h> 49 #include <sys/kmem.h> 50 #include <sys/ethernet.h> 51 #include <sys/cpuvar.h> 52 #include <sys/dlpi.h> 53 #include <sys/multidata.h> 54 #include <sys/multidata_impl.h> 55 #include <sys/pattr.h> 56 #include <sys/policy.h> 57 #include <sys/priv.h> 58 #include <sys/zone.h> 59 60 #include <sys/errno.h> 61 #include <sys/signal.h> 62 #include <sys/socket.h> 63 #include <sys/sockio.h> 64 #include <sys/isa_defs.h> 65 #include <sys/md5.h> 66 #include <sys/random.h> 67 #include <netinet/in.h> 68 #include <netinet/tcp.h> 69 #include <netinet/ip6.h> 70 #include <netinet/icmp6.h> 71 #include <net/if.h> 72 #include <net/route.h> 73 #include <inet/ipsec_impl.h> 74 75 #include <inet/common.h> 76 #include <inet/ip.h> 77 #include <inet/ip_impl.h> 78 #include <inet/ip6.h> 79 #include <inet/ip_ndp.h> 80 #include <inet/mi.h> 81 #include <inet/mib2.h> 82 #include <inet/nd.h> 83 #include <inet/optcom.h> 84 #include <inet/snmpcom.h> 85 #include <inet/kstatcom.h> 86 #include <inet/tcp.h> 87 #include <inet/tcp_impl.h> 88 #include <net/pfkeyv2.h> 89 #include <inet/ipsec_info.h> 90 #include <inet/ipdrop.h> 91 #include <inet/tcp_trace.h> 92 93 #include <inet/ipclassifier.h> 94 #include <inet/ip_ire.h> 95 #include <inet/ip_if.h> 96 #include <inet/ipp_common.h> 97 #include <sys/squeue.h> 98 #include <inet/kssl/ksslapi.h> 99 #include <sys/tsol/label.h> 100 #include <sys/tsol/tnet.h> 101 #include <sys/sdt.h> 102 #include <rpc/pmap_prot.h> 103 104 /* 105 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 106 * 107 * (Read the detailed design doc in PSARC case directory) 108 * 109 * The entire tcp state is contained in tcp_t and conn_t structure 110 * which are allocated in tandem using ipcl_conn_create() and passing 111 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 112 * the references on the tcp_t. The tcp_t structure is never compressed 113 * and packets always land on the correct TCP perimeter from the time 114 * eager is created till the time tcp_t dies (as such the old mentat 115 * TCP global queue is not used for detached state and no IPSEC checking 116 * is required). The global queue is still allocated to send out resets 117 * for connection which have no listeners and IP directly calls 118 * tcp_xmit_listeners_reset() which does any policy check. 119 * 120 * Protection and Synchronisation mechanism: 121 * 122 * The tcp data structure does not use any kind of lock for protecting 123 * its state but instead uses 'squeues' for mutual exclusion from various 124 * read and write side threads. To access a tcp member, the thread should 125 * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or 126 * squeue_fill). Since the squeues allow a direct function call, caller 127 * can pass any tcp function having prototype of edesc_t as argument 128 * (different from traditional STREAMs model where packets come in only 129 * designated entry points). The list of functions that can be directly 130 * called via squeue are listed before the usual function prototype. 131 * 132 * Referencing: 133 * 134 * TCP is MT-Hot and we use a reference based scheme to make sure that the 135 * tcp structure doesn't disappear when its needed. When the application 136 * creates an outgoing connection or accepts an incoming connection, we 137 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 138 * The IP reference is just a symbolic reference since ip_tcpclose() 139 * looks at tcp structure after tcp_close_output() returns which could 140 * have dropped the last TCP reference. So as long as the connection is 141 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 142 * conn_t. The classifier puts its own reference when the connection is 143 * inserted in listen or connected hash. Anytime a thread needs to enter 144 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 145 * on write side or by doing a classify on read side and then puts a 146 * reference on the conn before doing squeue_enter/tryenter/fill. For 147 * read side, the classifier itself puts the reference under fanout lock 148 * to make sure that tcp can't disappear before it gets processed. The 149 * squeue will drop this reference automatically so the called function 150 * doesn't have to do a DEC_REF. 151 * 152 * Opening a new connection: 153 * 154 * The outgoing connection open is pretty simple. ip_tcpopen() does the 155 * work in creating the conn/tcp structure and initializing it. The 156 * squeue assignment is done based on the CPU the application 157 * is running on. So for outbound connections, processing is always done 158 * on application CPU which might be different from the incoming CPU 159 * being interrupted by the NIC. An optimal way would be to figure out 160 * the NIC <-> CPU binding at listen time, and assign the outgoing 161 * connection to the squeue attached to the CPU that will be interrupted 162 * for incoming packets (we know the NIC based on the bind IP address). 163 * This might seem like a problem if more data is going out but the 164 * fact is that in most cases the transmit is ACK driven transmit where 165 * the outgoing data normally sits on TCP's xmit queue waiting to be 166 * transmitted. 167 * 168 * Accepting a connection: 169 * 170 * This is a more interesting case because of various races involved in 171 * establishing a eager in its own perimeter. Read the meta comment on 172 * top of tcp_conn_request(). But briefly, the squeue is picked by 173 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 174 * 175 * Closing a connection: 176 * 177 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 178 * via squeue to do the close and mark the tcp as detached if the connection 179 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 180 * reference but tcp_close() drop IP's reference always. So if tcp was 181 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 182 * and 1 because it is in classifier's connected hash. This is the condition 183 * we use to determine that its OK to clean up the tcp outside of squeue 184 * when time wait expires (check the ref under fanout and conn_lock and 185 * if it is 2, remove it from fanout hash and kill it). 186 * 187 * Although close just drops the necessary references and marks the 188 * tcp_detached state, tcp_close needs to know the tcp_detached has been 189 * set (under squeue) before letting the STREAM go away (because a 190 * inbound packet might attempt to go up the STREAM while the close 191 * has happened and tcp_detached is not set). So a special lock and 192 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 193 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 194 * tcp_detached. 195 * 196 * Special provisions and fast paths: 197 * 198 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 199 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 200 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 201 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 202 * check to send packets directly to tcp_rput_data via squeue. Everyone 203 * else comes through tcp_input() on the read side. 204 * 205 * We also make special provisions for sockfs by marking tcp_issocket 206 * whenever we have only sockfs on top of TCP. This allows us to skip 207 * putting the tcp in acceptor hash since a sockfs listener can never 208 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 209 * since eager has already been allocated and the accept now happens 210 * on acceptor STREAM. There is a big blob of comment on top of 211 * tcp_conn_request explaining the new accept. When socket is POP'd, 212 * sockfs sends us an ioctl to mark the fact and we go back to old 213 * behaviour. Once tcp_issocket is unset, its never set for the 214 * life of that connection. 215 * 216 * IPsec notes : 217 * 218 * Since a packet is always executed on the correct TCP perimeter 219 * all IPsec processing is defered to IP including checking new 220 * connections and setting IPSEC policies for new connection. The 221 * only exception is tcp_xmit_listeners_reset() which is called 222 * directly from IP and needs to policy check to see if TH_RST 223 * can be sent out. 224 */ 225 226 extern major_t TCP6_MAJ; 227 228 /* 229 * Values for squeue switch: 230 * 1: squeue_enter_nodrain 231 * 2: squeue_enter 232 * 3: squeue_fill 233 */ 234 int tcp_squeue_close = 2; 235 int tcp_squeue_wput = 2; 236 237 squeue_func_t tcp_squeue_close_proc; 238 squeue_func_t tcp_squeue_wput_proc; 239 240 /* 241 * This controls how tiny a write must be before we try to copy it 242 * into the the mblk on the tail of the transmit queue. Not much 243 * speedup is observed for values larger than sixteen. Zero will 244 * disable the optimisation. 245 */ 246 int tcp_tx_pull_len = 16; 247 248 /* 249 * TCP Statistics. 250 * 251 * How TCP statistics work. 252 * 253 * There are two types of statistics invoked by two macros. 254 * 255 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 256 * supposed to be used in non MT-hot paths of the code. 257 * 258 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 259 * supposed to be used for DEBUG purposes and may be used on a hot path. 260 * 261 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 262 * (use "kstat tcp" to get them). 263 * 264 * There is also additional debugging facility that marks tcp_clean_death() 265 * instances and saves them in tcp_t structure. It is triggered by 266 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 267 * tcp_clean_death() calls that counts the number of times each tag was hit. It 268 * is triggered by TCP_CLD_COUNTERS define. 269 * 270 * How to add new counters. 271 * 272 * 1) Add a field in the tcp_stat structure describing your counter. 273 * 2) Add a line in tcp_statistics with the name of the counter. 274 * 275 * IMPORTANT!! - make sure that both are in sync !! 276 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 277 * 278 * Please avoid using private counters which are not kstat-exported. 279 * 280 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 281 * in tcp_t structure. 282 * 283 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 284 */ 285 286 #ifndef TCP_DEBUG_COUNTER 287 #ifdef DEBUG 288 #define TCP_DEBUG_COUNTER 1 289 #else 290 #define TCP_DEBUG_COUNTER 0 291 #endif 292 #endif 293 294 #define TCP_CLD_COUNTERS 0 295 296 #define TCP_TAG_CLEAN_DEATH 1 297 #define TCP_MAX_CLEAN_DEATH_TAG 32 298 299 #ifdef lint 300 static int _lint_dummy_; 301 #endif 302 303 #if TCP_CLD_COUNTERS 304 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 305 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 306 #elif defined(lint) 307 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 308 #else 309 #define TCP_CLD_STAT(x) 310 #endif 311 312 #if TCP_DEBUG_COUNTER 313 #define TCP_DBGSTAT(x) atomic_add_64(&(tcp_statistics.x.value.ui64), 1) 314 #elif defined(lint) 315 #define TCP_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 316 #else 317 #define TCP_DBGSTAT(x) 318 #endif 319 320 tcp_stat_t tcp_statistics = { 321 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 322 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 323 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 324 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 325 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 326 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 327 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 328 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 329 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 330 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 331 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 332 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 333 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 334 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 335 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 336 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 337 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 338 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 339 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 340 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 341 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 342 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 343 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 344 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 345 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 346 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 347 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 348 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 349 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 350 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 351 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 352 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 353 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 354 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 355 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 356 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 357 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 358 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 359 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 360 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 361 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 362 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 363 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 364 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 365 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 366 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 367 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 368 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 369 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 370 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 371 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 372 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 373 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 374 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 375 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 376 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 377 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 378 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 379 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 380 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 381 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 382 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 383 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 384 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 385 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 386 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 387 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 388 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 389 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 390 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 391 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 392 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 393 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 394 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 395 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 396 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 397 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 398 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 399 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 400 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 401 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 402 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 403 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 404 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 405 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 406 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 407 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 408 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 409 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 410 }; 411 412 static kstat_t *tcp_kstat; 413 414 /* 415 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 416 * tcp write side. 417 */ 418 #define CALL_IP_WPUT(connp, q, mp) { \ 419 ASSERT(((q)->q_flag & QREADR) == 0); \ 420 TCP_DBGSTAT(tcp_ip_output); \ 421 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 422 } 423 424 /* Macros for timestamp comparisons */ 425 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 426 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 427 428 /* 429 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 430 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 431 * by adding three components: a time component which grows by 1 every 4096 432 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 433 * a per-connection component which grows by 125000 for every new connection; 434 * and an "extra" component that grows by a random amount centered 435 * approximately on 64000. This causes the the ISS generator to cycle every 436 * 4.89 hours if no TCP connections are made, and faster if connections are 437 * made. 438 * 439 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 440 * components: a time component which grows by 250000 every second; and 441 * a per-connection component which grows by 125000 for every new connections. 442 * 443 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 444 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 445 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 446 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 447 * password. 448 */ 449 #define ISS_INCR 250000 450 #define ISS_NSEC_SHT 12 451 452 static uint32_t tcp_iss_incr_extra; /* Incremented for each connection */ 453 static kmutex_t tcp_iss_key_lock; 454 static MD5_CTX tcp_iss_key; 455 static sin_t sin_null; /* Zero address for quick clears */ 456 static sin6_t sin6_null; /* Zero address for quick clears */ 457 458 /* Packet dropper for TCP IPsec policy drops. */ 459 static ipdropper_t tcp_dropper; 460 461 /* 462 * This implementation follows the 4.3BSD interpretation of the urgent 463 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 464 * incompatible changes in protocols like telnet and rlogin. 465 */ 466 #define TCP_OLD_URP_INTERPRETATION 1 467 468 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 469 (TCP_IS_DETACHED(tcp) && \ 470 (!(tcp)->tcp_hard_binding)) 471 472 /* 473 * TCP reassembly macros. We hide starting and ending sequence numbers in 474 * b_next and b_prev of messages on the reassembly queue. The messages are 475 * chained using b_cont. These macros are used in tcp_reass() so we don't 476 * have to see the ugly casts and assignments. 477 */ 478 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 479 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 480 (mblk_t *)(uintptr_t)(u)) 481 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 482 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 483 (mblk_t *)(uintptr_t)(u)) 484 485 /* 486 * Implementation of TCP Timers. 487 * ============================= 488 * 489 * INTERFACE: 490 * 491 * There are two basic functions dealing with tcp timers: 492 * 493 * timeout_id_t tcp_timeout(connp, func, time) 494 * clock_t tcp_timeout_cancel(connp, timeout_id) 495 * TCP_TIMER_RESTART(tcp, intvl) 496 * 497 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 498 * after 'time' ticks passed. The function called by timeout() must adhere to 499 * the same restrictions as a driver soft interrupt handler - it must not sleep 500 * or call other functions that might sleep. The value returned is the opaque 501 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 502 * cancel the request. The call to tcp_timeout() may fail in which case it 503 * returns zero. This is different from the timeout(9F) function which never 504 * fails. 505 * 506 * The call-back function 'func' always receives 'connp' as its single 507 * argument. It is always executed in the squeue corresponding to the tcp 508 * structure. The tcp structure is guaranteed to be present at the time the 509 * call-back is called. 510 * 511 * NOTE: The call-back function 'func' is never called if tcp is in 512 * the TCPS_CLOSED state. 513 * 514 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 515 * request. locks acquired by the call-back routine should not be held across 516 * the call to tcp_timeout_cancel() or a deadlock may result. 517 * 518 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 519 * Otherwise, it returns an integer value greater than or equal to 0. In 520 * particular, if the call-back function is already placed on the squeue, it can 521 * not be canceled. 522 * 523 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 524 * within squeue context corresponding to the tcp instance. Since the 525 * call-back is also called via the same squeue, there are no race 526 * conditions described in untimeout(9F) manual page since all calls are 527 * strictly serialized. 528 * 529 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 530 * stored in tcp_timer_tid and starts a new one using 531 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 532 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 533 * field. 534 * 535 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 536 * call-back may still be called, so it is possible tcp_timer() will be 537 * called several times. This should not be a problem since tcp_timer() 538 * should always check the tcp instance state. 539 * 540 * 541 * IMPLEMENTATION: 542 * 543 * TCP timers are implemented using three-stage process. The call to 544 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 545 * when the timer expires. The tcp_timer_callback() arranges the call of the 546 * tcp_timer_handler() function via squeue corresponding to the tcp 547 * instance. The tcp_timer_handler() calls actual requested timeout call-back 548 * and passes tcp instance as an argument to it. Information is passed between 549 * stages using the tcp_timer_t structure which contains the connp pointer, the 550 * tcp call-back to call and the timeout id returned by the timeout(9F). 551 * 552 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 553 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 554 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 555 * returns the pointer to this mblk. 556 * 557 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 558 * looks like a normal mblk without actual dblk attached to it. 559 * 560 * To optimize performance each tcp instance holds a small cache of timer 561 * mblocks. In the current implementation it caches up to two timer mblocks per 562 * tcp instance. The cache is preserved over tcp frees and is only freed when 563 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 564 * timer processing happens on a corresponding squeue, the cache manipulation 565 * does not require any locks. Experiments show that majority of timer mblocks 566 * allocations are satisfied from the tcp cache and do not involve kmem calls. 567 * 568 * The tcp_timeout() places a refhold on the connp instance which guarantees 569 * that it will be present at the time the call-back function fires. The 570 * tcp_timer_handler() drops the reference after calling the call-back, so the 571 * call-back function does not need to manipulate the references explicitly. 572 */ 573 574 typedef struct tcp_timer_s { 575 conn_t *connp; 576 void (*tcpt_proc)(void *); 577 timeout_id_t tcpt_tid; 578 } tcp_timer_t; 579 580 static kmem_cache_t *tcp_timercache; 581 kmem_cache_t *tcp_sack_info_cache; 582 kmem_cache_t *tcp_iphc_cache; 583 584 /* 585 * For scalability, we must not run a timer for every TCP connection 586 * in TIME_WAIT state. To see why, consider (for time wait interval of 587 * 4 minutes): 588 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 589 * 590 * This list is ordered by time, so you need only delete from the head 591 * until you get to entries which aren't old enough to delete yet. 592 * The list consists of only the detached TIME_WAIT connections. 593 * 594 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 595 * becomes detached TIME_WAIT (either by changing the state and already 596 * being detached or the other way around). This means that the TIME_WAIT 597 * state can be extended (up to doubled) if the connection doesn't become 598 * detached for a long time. 599 * 600 * The list manipulations (including tcp_time_wait_next/prev) 601 * are protected by the tcp_time_wait_lock. The content of the 602 * detached TIME_WAIT connections is protected by the normal perimeters. 603 */ 604 605 typedef struct tcp_squeue_priv_s { 606 kmutex_t tcp_time_wait_lock; 607 /* Protects the next 3 globals */ 608 timeout_id_t tcp_time_wait_tid; 609 tcp_t *tcp_time_wait_head; 610 tcp_t *tcp_time_wait_tail; 611 tcp_t *tcp_free_list; 612 uint_t tcp_free_list_cnt; 613 } tcp_squeue_priv_t; 614 615 /* 616 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 617 * Running it every 5 seconds seems to give the best results. 618 */ 619 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 620 621 /* 622 * To prevent memory hog, limit the number of entries in tcp_free_list 623 * to 1% of available memory / number of cpus 624 */ 625 uint_t tcp_free_list_max_cnt = 0; 626 627 #define TCP_XMIT_LOWATER 4096 628 #define TCP_XMIT_HIWATER 49152 629 #define TCP_RECV_LOWATER 2048 630 #define TCP_RECV_HIWATER 49152 631 632 /* 633 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 634 */ 635 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 636 637 #define TIDUSZ 4096 /* transport interface data unit size */ 638 639 /* 640 * Bind hash list size and has function. It has to be a power of 2 for 641 * hashing. 642 */ 643 #define TCP_BIND_FANOUT_SIZE 512 644 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 645 /* 646 * Size of listen and acceptor hash list. It has to be a power of 2 for 647 * hashing. 648 */ 649 #define TCP_FANOUT_SIZE 256 650 651 #ifdef _ILP32 652 #define TCP_ACCEPTOR_HASH(accid) \ 653 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 654 #else 655 #define TCP_ACCEPTOR_HASH(accid) \ 656 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 657 #endif /* _ILP32 */ 658 659 #define IP_ADDR_CACHE_SIZE 2048 660 #define IP_ADDR_CACHE_HASH(faddr) \ 661 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 662 663 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */ 664 #define TCP_HSP_HASH_SIZE 256 665 666 #define TCP_HSP_HASH(addr) \ 667 (((addr>>24) ^ (addr >>16) ^ \ 668 (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE) 669 670 /* 671 * TCP options struct returned from tcp_parse_options. 672 */ 673 typedef struct tcp_opt_s { 674 uint32_t tcp_opt_mss; 675 uint32_t tcp_opt_wscale; 676 uint32_t tcp_opt_ts_val; 677 uint32_t tcp_opt_ts_ecr; 678 tcp_t *tcp; 679 } tcp_opt_t; 680 681 /* 682 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 683 */ 684 685 #ifdef _BIG_ENDIAN 686 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 687 (TCPOPT_TSTAMP << 8) | 10) 688 #else 689 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 690 (TCPOPT_NOP << 8) | TCPOPT_NOP) 691 #endif 692 693 /* 694 * Flags returned from tcp_parse_options. 695 */ 696 #define TCP_OPT_MSS_PRESENT 1 697 #define TCP_OPT_WSCALE_PRESENT 2 698 #define TCP_OPT_TSTAMP_PRESENT 4 699 #define TCP_OPT_SACK_OK_PRESENT 8 700 #define TCP_OPT_SACK_PRESENT 16 701 702 /* TCP option length */ 703 #define TCPOPT_NOP_LEN 1 704 #define TCPOPT_MAXSEG_LEN 4 705 #define TCPOPT_WS_LEN 3 706 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 707 #define TCPOPT_TSTAMP_LEN 10 708 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 709 #define TCPOPT_SACK_OK_LEN 2 710 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 711 #define TCPOPT_REAL_SACK_LEN 4 712 #define TCPOPT_MAX_SACK_LEN 36 713 #define TCPOPT_HEADER_LEN 2 714 715 /* TCP cwnd burst factor. */ 716 #define TCP_CWND_INFINITE 65535 717 #define TCP_CWND_SS 3 718 #define TCP_CWND_NORMAL 5 719 720 /* Maximum TCP initial cwin (start/restart). */ 721 #define TCP_MAX_INIT_CWND 8 722 723 /* 724 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 725 * either tcp_slow_start_initial or tcp_slow_start_after idle 726 * depending on the caller. If the upper layer has not used the 727 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 728 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 729 * If the upper layer has changed set the tcp_init_cwnd, just use 730 * it to calculate the tcp_cwnd. 731 */ 732 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 733 { \ 734 if ((tcp)->tcp_init_cwnd == 0) { \ 735 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 736 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 737 } else { \ 738 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 739 } \ 740 tcp->tcp_cwnd_cnt = 0; \ 741 } 742 743 /* TCP Timer control structure */ 744 typedef struct tcpt_s { 745 pfv_t tcpt_pfv; /* The routine we are to call */ 746 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 747 } tcpt_t; 748 749 /* Host Specific Parameter structure */ 750 typedef struct tcp_hsp { 751 struct tcp_hsp *tcp_hsp_next; 752 in6_addr_t tcp_hsp_addr_v6; 753 in6_addr_t tcp_hsp_subnet_v6; 754 uint_t tcp_hsp_vers; /* IPV4_VERSION | IPV6_VERSION */ 755 int32_t tcp_hsp_sendspace; 756 int32_t tcp_hsp_recvspace; 757 int32_t tcp_hsp_tstamp; 758 } tcp_hsp_t; 759 #define tcp_hsp_addr V4_PART_OF_V6(tcp_hsp_addr_v6) 760 #define tcp_hsp_subnet V4_PART_OF_V6(tcp_hsp_subnet_v6) 761 762 /* 763 * Functions called directly via squeue having a prototype of edesc_t. 764 */ 765 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 766 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 767 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 768 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 769 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 770 void tcp_input(void *arg, mblk_t *mp, void *arg2); 771 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 772 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 773 void tcp_output(void *arg, mblk_t *mp, void *arg2); 774 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 775 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 776 777 778 /* Prototype for TCP functions */ 779 static void tcp_random_init(void); 780 int tcp_random(void); 781 static void tcp_accept(tcp_t *tcp, mblk_t *mp); 782 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 783 tcp_t *eager); 784 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 785 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 786 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 787 boolean_t user_specified); 788 static void tcp_closei_local(tcp_t *tcp); 789 static void tcp_close_detached(tcp_t *tcp); 790 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 791 mblk_t *idmp, mblk_t **defermp); 792 static void tcp_connect(tcp_t *tcp, mblk_t *mp); 793 static void tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, 794 in_port_t dstport, uint_t srcid); 795 static void tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 796 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 797 uint32_t scope_id); 798 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 799 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 800 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 801 static char *tcp_display(tcp_t *tcp, char *, char); 802 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 803 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 804 static void tcp_eager_unlink(tcp_t *tcp); 805 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 806 int unixerr); 807 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 808 int tlierr, int unixerr); 809 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 810 cred_t *cr); 811 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 812 char *value, caddr_t cp, cred_t *cr); 813 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 814 char *value, caddr_t cp, cred_t *cr); 815 static int tcp_tpistate(tcp_t *tcp); 816 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 817 int caller_holds_lock); 818 static void tcp_bind_hash_remove(tcp_t *tcp); 819 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id); 820 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 821 static void tcp_acceptor_hash_remove(tcp_t *tcp); 822 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 823 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 824 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 825 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 826 static int tcp_header_init_ipv4(tcp_t *tcp); 827 static int tcp_header_init_ipv6(tcp_t *tcp); 828 int tcp_init(tcp_t *tcp, queue_t *q); 829 static int tcp_init_values(tcp_t *tcp); 830 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 831 static mblk_t *tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, 832 t_scalar_t addr_length); 833 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 834 static void tcp_ip_notify(tcp_t *tcp); 835 static mblk_t *tcp_ire_mp(mblk_t *mp); 836 static void tcp_iss_init(tcp_t *tcp); 837 static void tcp_keepalive_killer(void *arg); 838 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 839 static void tcp_mss_set(tcp_t *tcp, uint32_t size); 840 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 841 int *do_disconnectp, int *t_errorp, int *sys_errorp); 842 static boolean_t tcp_allow_connopt_set(int level, int name); 843 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 844 int tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 845 int tcp_opt_set(queue_t *q, uint_t optset_context, int level, 846 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 847 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 848 mblk_t *mblk); 849 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 850 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 851 uchar_t *ptr, uint_t len); 852 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 853 static boolean_t tcp_param_register(tcpparam_t *tcppa, int cnt); 854 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 855 caddr_t cp, cred_t *cr); 856 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 857 caddr_t cp, cred_t *cr); 858 static void tcp_iss_key_init(uint8_t *phrase, int len); 859 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 860 caddr_t cp, cred_t *cr); 861 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 862 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 863 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 864 static void tcp_reinit(tcp_t *tcp); 865 static void tcp_reinit_values(tcp_t *tcp); 866 static void tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, 867 tcp_t *thisstream, cred_t *cr); 868 869 static uint_t tcp_rcv_drain(queue_t *q, tcp_t *tcp); 870 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 871 static boolean_t tcp_send_rst_chk(void); 872 static void tcp_ss_rexmit(tcp_t *tcp); 873 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 874 static void tcp_process_options(tcp_t *, tcph_t *); 875 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 876 static void tcp_rsrv(queue_t *q); 877 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 878 static int tcp_snmp_state(tcp_t *tcp); 879 static int tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 880 cred_t *cr); 881 static int tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 882 cred_t *cr); 883 static int tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 884 cred_t *cr); 885 static int tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 886 cred_t *cr); 887 static int tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 888 cred_t *cr); 889 static int tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, 890 caddr_t cp, cred_t *cr); 891 static int tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, 892 caddr_t cp, cred_t *cr); 893 static int tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, 894 cred_t *cr); 895 static void tcp_timer(void *arg); 896 static void tcp_timer_callback(void *); 897 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 898 boolean_t random); 899 static in_port_t tcp_get_next_priv_port(const tcp_t *); 900 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 901 void tcp_wput_accept(queue_t *q, mblk_t *mp); 902 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 903 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 904 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 905 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 906 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 907 const int num_sack_blk, int *usable, uint_t *snxt, 908 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 909 const int mdt_thres); 910 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 911 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 912 const int num_sack_blk, int *usable, uint_t *snxt, 913 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 914 const int mdt_thres); 915 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 916 int num_sack_blk); 917 static void tcp_wsrv(queue_t *q); 918 static int tcp_xmit_end(tcp_t *tcp); 919 static mblk_t *tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, 920 int32_t *offset, mblk_t **end_mp, uint32_t seq, 921 boolean_t sendall, uint32_t *seg_len, boolean_t rexmit); 922 static void tcp_ack_timer(void *arg); 923 static mblk_t *tcp_ack_mp(tcp_t *tcp); 924 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 925 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len); 926 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 927 uint32_t ack, int ctl); 928 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr); 929 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr); 930 static int setmaxps(queue_t *q, int maxpsz); 931 static void tcp_set_rto(tcp_t *, time_t); 932 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 933 boolean_t, boolean_t); 934 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 935 boolean_t ipsec_mctl); 936 static mblk_t *tcp_setsockopt_mp(int level, int cmd, 937 char *opt, int optlen); 938 static int tcp_build_hdrs(queue_t *, tcp_t *); 939 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 940 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 941 tcph_t *tcph); 942 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 943 boolean_t tcp_reserved_port_add(int, in_port_t *, in_port_t *); 944 boolean_t tcp_reserved_port_del(in_port_t, in_port_t); 945 boolean_t tcp_reserved_port_check(in_port_t); 946 static tcp_t *tcp_alloc_temp_tcp(in_port_t); 947 static int tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *); 948 static mblk_t *tcp_mdt_info_mp(mblk_t *); 949 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 950 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 951 const boolean_t, const uint32_t, const uint32_t, 952 const uint32_t, const uint32_t); 953 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 954 const uint_t, const uint_t, boolean_t *); 955 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 956 extern mblk_t *tcp_timermp_alloc(int); 957 extern void tcp_timermp_free(tcp_t *); 958 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 959 static void tcp_stop_lingering(tcp_t *tcp); 960 static void tcp_close_linger_timeout(void *arg); 961 void tcp_ddi_init(void); 962 void tcp_ddi_destroy(void); 963 static void tcp_kstat_init(void); 964 static void tcp_kstat_fini(void); 965 static int tcp_kstat_update(kstat_t *kp, int rw); 966 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 967 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 968 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 969 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 970 tcph_t *tcph, mblk_t *idmp); 971 static squeue_func_t tcp_squeue_switch(int); 972 973 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *); 974 static int tcp_close(queue_t *, int); 975 static int tcpclose_accept(queue_t *); 976 static int tcp_modclose(queue_t *); 977 static void tcp_wput_mod(queue_t *, mblk_t *); 978 979 static void tcp_squeue_add(squeue_t *); 980 static boolean_t tcp_zcopy_check(tcp_t *); 981 static void tcp_zcopy_notify(tcp_t *); 982 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 983 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 984 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 985 986 extern void tcp_kssl_input(tcp_t *, mblk_t *); 987 988 /* 989 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 990 * 991 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 992 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 993 * (defined in tcp.h) needs to be filled in and passed into the kernel 994 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 995 * structure contains the four-tuple of a TCP connection and a range of TCP 996 * states (specified by ac_start and ac_end). The use of wildcard addresses 997 * and ports is allowed. Connections with a matching four tuple and a state 998 * within the specified range will be aborted. The valid states for the 999 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 1000 * inclusive. 1001 * 1002 * An application which has its connection aborted by this ioctl will receive 1003 * an error that is dependent on the connection state at the time of the abort. 1004 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 1005 * though a RST packet has been received. If the connection state is equal to 1006 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 1007 * and all resources associated with the connection will be freed. 1008 */ 1009 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 1010 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 1011 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 1012 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *); 1013 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 1014 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 1015 boolean_t); 1016 1017 static struct module_info tcp_rinfo = { 1018 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 1019 }; 1020 1021 static struct module_info tcp_winfo = { 1022 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 1023 }; 1024 1025 /* 1026 * Entry points for TCP as a module. It only allows SNMP requests 1027 * to pass through. 1028 */ 1029 struct qinit tcp_mod_rinit = { 1030 (pfi_t)putnext, NULL, tcp_open, ip_snmpmod_close, NULL, &tcp_rinfo, 1031 }; 1032 1033 struct qinit tcp_mod_winit = { 1034 (pfi_t)ip_snmpmod_wput, NULL, tcp_open, ip_snmpmod_close, NULL, 1035 &tcp_rinfo 1036 }; 1037 1038 /* 1039 * Entry points for TCP as a device. The normal case which supports 1040 * the TCP functionality. 1041 */ 1042 struct qinit tcp_rinit = { 1043 NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo 1044 }; 1045 1046 struct qinit tcp_winit = { 1047 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1048 }; 1049 1050 /* Initial entry point for TCP in socket mode. */ 1051 struct qinit tcp_sock_winit = { 1052 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1053 }; 1054 1055 /* 1056 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 1057 * an accept. Avoid allocating data structures since eager has already 1058 * been created. 1059 */ 1060 struct qinit tcp_acceptor_rinit = { 1061 NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo 1062 }; 1063 1064 struct qinit tcp_acceptor_winit = { 1065 (pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1066 }; 1067 1068 /* 1069 * Entry points for TCP loopback (read side only) 1070 */ 1071 struct qinit tcp_loopback_rinit = { 1072 (pfi_t)0, (pfi_t)tcp_rsrv, tcp_open, tcp_close, (pfi_t)0, 1073 &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD 1074 }; 1075 1076 struct streamtab tcpinfo = { 1077 &tcp_rinit, &tcp_winit 1078 }; 1079 1080 extern squeue_func_t tcp_squeue_wput_proc; 1081 extern squeue_func_t tcp_squeue_timer_proc; 1082 1083 /* Protected by tcp_g_q_lock */ 1084 static queue_t *tcp_g_q; /* Default queue used during detached closes */ 1085 kmutex_t tcp_g_q_lock; 1086 1087 /* Protected by tcp_hsp_lock */ 1088 /* 1089 * XXX The host param mechanism should go away and instead we should use 1090 * the metrics associated with the routes to determine the default sndspace 1091 * and rcvspace. 1092 */ 1093 static tcp_hsp_t **tcp_hsp_hash; /* Hash table for HSPs */ 1094 krwlock_t tcp_hsp_lock; 1095 1096 /* 1097 * Extra privileged ports. In host byte order. 1098 * Protected by tcp_epriv_port_lock. 1099 */ 1100 #define TCP_NUM_EPRIV_PORTS 64 1101 static int tcp_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 1102 static uint16_t tcp_g_epriv_ports[TCP_NUM_EPRIV_PORTS] = { 2049, 4045 }; 1103 kmutex_t tcp_epriv_port_lock; 1104 1105 /* 1106 * The smallest anonymous port in the privileged port range which TCP 1107 * looks for free port. Use in the option TCP_ANONPRIVBIND. 1108 */ 1109 static in_port_t tcp_min_anonpriv_port = 512; 1110 1111 /* Only modified during _init and _fini thus no locking is needed. */ 1112 static caddr_t tcp_g_nd; /* Head of 'named dispatch' variable list */ 1113 1114 /* Hint not protected by any lock */ 1115 static uint_t tcp_next_port_to_try; 1116 1117 1118 /* TCP bind hash list - all tcp_t with state >= BOUND. */ 1119 tf_t tcp_bind_fanout[TCP_BIND_FANOUT_SIZE]; 1120 1121 /* TCP queue hash list - all tcp_t in case they will be an acceptor. */ 1122 static tf_t tcp_acceptor_fanout[TCP_FANOUT_SIZE]; 1123 1124 /* 1125 * TCP has a private interface for other kernel modules to reserve a 1126 * port range for them to use. Once reserved, TCP will not use any ports 1127 * in the range. This interface relies on the TCP_EXCLBIND feature. If 1128 * the semantics of TCP_EXCLBIND is changed, implementation of this interface 1129 * has to be verified. 1130 * 1131 * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges. Each port 1132 * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports. A port 1133 * range is [port a, port b] inclusive. And each port range is between 1134 * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive. 1135 * 1136 * Note that the default anonymous port range starts from 32768. There is 1137 * no port "collision" between that and the reserved port range. If there 1138 * is port collision (because the default smallest anonymous port is lowered 1139 * or some apps specifically bind to ports in the reserved port range), the 1140 * system may not be able to reserve a port range even there are enough 1141 * unbound ports as a reserved port range contains consecutive ports . 1142 */ 1143 #define TCP_RESERVED_PORTS_ARRAY_MAX_SIZE 5 1144 #define TCP_RESERVED_PORTS_RANGE_MAX 1000 1145 #define TCP_SMALLEST_RESERVED_PORT 10240 1146 #define TCP_LARGEST_RESERVED_PORT 20480 1147 1148 /* Structure to represent those reserved port ranges. */ 1149 typedef struct tcp_rport_s { 1150 in_port_t lo_port; 1151 in_port_t hi_port; 1152 tcp_t **temp_tcp_array; 1153 } tcp_rport_t; 1154 1155 /* The reserved port array. */ 1156 static tcp_rport_t tcp_reserved_port[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 1157 1158 /* Locks to protect the tcp_reserved_ports array. */ 1159 static krwlock_t tcp_reserved_port_lock; 1160 1161 /* The number of ranges in the array. */ 1162 uint32_t tcp_reserved_port_array_size = 0; 1163 1164 /* 1165 * MIB-2 stuff for SNMP 1166 * Note: tcpInErrs {tcp 15} is accumulated in ip.c 1167 */ 1168 mib2_tcp_t tcp_mib; /* SNMP fixed size info */ 1169 kstat_t *tcp_mibkp; /* kstat exporting tcp_mib data */ 1170 1171 boolean_t tcp_icmp_source_quench = B_FALSE; 1172 /* 1173 * Following assumes TPI alignment requirements stay along 32 bit 1174 * boundaries 1175 */ 1176 #define ROUNDUP32(x) \ 1177 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1178 1179 /* Template for response to info request. */ 1180 static struct T_info_ack tcp_g_t_info_ack = { 1181 T_INFO_ACK, /* PRIM_type */ 1182 0, /* TSDU_size */ 1183 T_INFINITE, /* ETSDU_size */ 1184 T_INVALID, /* CDATA_size */ 1185 T_INVALID, /* DDATA_size */ 1186 sizeof (sin_t), /* ADDR_size */ 1187 0, /* OPT_size - not initialized here */ 1188 TIDUSZ, /* TIDU_size */ 1189 T_COTS_ORD, /* SERV_type */ 1190 TCPS_IDLE, /* CURRENT_state */ 1191 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1192 }; 1193 1194 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1195 T_INFO_ACK, /* PRIM_type */ 1196 0, /* TSDU_size */ 1197 T_INFINITE, /* ETSDU_size */ 1198 T_INVALID, /* CDATA_size */ 1199 T_INVALID, /* DDATA_size */ 1200 sizeof (sin6_t), /* ADDR_size */ 1201 0, /* OPT_size - not initialized here */ 1202 TIDUSZ, /* TIDU_size */ 1203 T_COTS_ORD, /* SERV_type */ 1204 TCPS_IDLE, /* CURRENT_state */ 1205 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1206 }; 1207 1208 #define MS 1L 1209 #define SECONDS (1000 * MS) 1210 #define MINUTES (60 * SECONDS) 1211 #define HOURS (60 * MINUTES) 1212 #define DAYS (24 * HOURS) 1213 1214 #define PARAM_MAX (~(uint32_t)0) 1215 1216 /* Max size IP datagram is 64k - 1 */ 1217 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1218 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1219 /* Max of the above */ 1220 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1221 1222 /* Largest TCP port number */ 1223 #define TCP_MAX_PORT (64 * 1024 - 1) 1224 1225 /* 1226 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1227 * layer header. It has to be a multiple of 4. 1228 */ 1229 static tcpparam_t tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1230 #define tcp_wroff_xtra tcp_wroff_xtra_param.tcp_param_val 1231 1232 /* 1233 * All of these are alterable, within the min/max values given, at run time. 1234 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1235 * per the TCP spec. 1236 */ 1237 /* BEGIN CSTYLED */ 1238 tcpparam_t tcp_param_arr[] = { 1239 /*min max value name */ 1240 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1241 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1242 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1243 { 1, 1024, 1, "tcp_conn_req_min" }, 1244 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1245 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1246 { 0, 10, 0, "tcp_debug" }, 1247 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1248 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1249 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1250 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1251 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1252 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1253 { 1, 255, 64, "tcp_ipv4_ttl"}, 1254 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1255 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1256 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1257 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1258 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1259 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1260 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1261 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1262 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1263 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1264 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1265 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1266 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1267 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1268 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1269 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1270 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1271 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1272 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1273 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1274 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1275 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1276 { 0, TCP_MSS_MAX, 64, "tcp_co_min"}, 1277 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1278 /* 1279 * Question: What default value should I set for tcp_strong_iss? 1280 */ 1281 { 0, 2, 1, "tcp_strong_iss"}, 1282 { 0, 65536, 20, "tcp_rtt_updates"}, 1283 { 0, 1, 1, "tcp_wscale_always"}, 1284 { 0, 1, 0, "tcp_tstamp_always"}, 1285 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1286 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1287 { 0, 16, 2, "tcp_deferred_acks_max"}, 1288 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1289 { 1, 4, 4, "tcp_slow_start_initial"}, 1290 { 10*MS, 50*MS, 20*MS, "tcp_co_timer_interval"}, 1291 { 0, 2, 2, "tcp_sack_permitted"}, 1292 { 0, 1, 0, "tcp_trace"}, 1293 { 0, 1, 1, "tcp_compression_enabled"}, 1294 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1295 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1296 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1297 { 0, 1, 0, "tcp_rev_src_routes"}, 1298 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1299 { 100*MS, 60*SECONDS, 1*SECONDS, "tcp_ndd_get_info_interval"}, 1300 { 0, 16, 8, "tcp_local_dacks_max"}, 1301 { 0, 2, 1, "tcp_ecn_permitted"}, 1302 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1303 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1304 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1305 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1306 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1307 }; 1308 /* END CSTYLED */ 1309 1310 /* 1311 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1312 * each header fragment in the header buffer. Each parameter value has 1313 * to be a multiple of 4 (32-bit aligned). 1314 */ 1315 static tcpparam_t tcp_mdt_head_param = { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1316 static tcpparam_t tcp_mdt_tail_param = { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1317 #define tcp_mdt_hdr_head_min tcp_mdt_head_param.tcp_param_val 1318 #define tcp_mdt_hdr_tail_min tcp_mdt_tail_param.tcp_param_val 1319 1320 /* 1321 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1322 * the maximum number of payload buffers associated per Multidata. 1323 */ 1324 static tcpparam_t tcp_mdt_max_pbufs_param = 1325 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1326 #define tcp_mdt_max_pbufs tcp_mdt_max_pbufs_param.tcp_param_val 1327 1328 /* Round up the value to the nearest mss. */ 1329 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1330 1331 /* 1332 * Set ECN capable transport (ECT) code point in IP header. 1333 * 1334 * Note that there are 2 ECT code points '01' and '10', which are called 1335 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1336 * point ECT(0) for TCP as described in RFC 2481. 1337 */ 1338 #define SET_ECT(tcp, iph) \ 1339 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1340 /* We need to clear the code point first. */ \ 1341 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1342 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1343 } else { \ 1344 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1345 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1346 } 1347 1348 /* 1349 * The format argument to pass to tcp_display(). 1350 * DISP_PORT_ONLY means that the returned string has only port info. 1351 * DISP_ADDR_AND_PORT means that the returned string also contains the 1352 * remote and local IP address. 1353 */ 1354 #define DISP_PORT_ONLY 1 1355 #define DISP_ADDR_AND_PORT 2 1356 1357 /* 1358 * This controls the rate some ndd info report functions can be used 1359 * by non-privileged users. It stores the last time such info is 1360 * requested. When those report functions are called again, this 1361 * is checked with the current time and compare with the ndd param 1362 * tcp_ndd_get_info_interval. 1363 */ 1364 static clock_t tcp_last_ndd_get_info_time = 0; 1365 #define NDD_TOO_QUICK_MSG \ 1366 "ndd get info rate too high for non-privileged users, try again " \ 1367 "later.\n" 1368 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 1369 1370 #define IS_VMLOANED_MBLK(mp) \ 1371 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1372 1373 /* 1374 * These two variables control the rate for TCP to generate RSTs in 1375 * response to segments not belonging to any connections. We limit 1376 * TCP to sent out tcp_rst_sent_rate (ndd param) number of RSTs in 1377 * each 1 second interval. This is to protect TCP against DoS attack. 1378 */ 1379 static clock_t tcp_last_rst_intrvl; 1380 static uint32_t tcp_rst_cnt; 1381 1382 /* The number of RST not sent because of the rate limit. */ 1383 static uint32_t tcp_rst_unsent; 1384 1385 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1386 boolean_t tcp_mdt_chain = B_TRUE; 1387 1388 /* 1389 * MDT threshold in the form of effective send MSS multiplier; we take 1390 * the MDT path if the amount of unsent data exceeds the threshold value 1391 * (default threshold is 1*SMSS). 1392 */ 1393 uint_t tcp_mdt_smss_threshold = 1; 1394 1395 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1396 1397 /* 1398 * Forces all connections to obey the value of the tcp_maxpsz_multiplier 1399 * tunable settable via NDD. Otherwise, the per-connection behavior is 1400 * determined dynamically during tcp_adapt_ire(), which is the default. 1401 */ 1402 boolean_t tcp_static_maxpsz = B_FALSE; 1403 1404 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1405 uint32_t tcp_random_anon_port = 1; 1406 1407 /* 1408 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1409 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1410 * data, TCP will not respond with an ACK. RFC 793 requires that 1411 * TCP responds with an ACK for such a bogus ACK. By not following 1412 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1413 * an attacker successfully spoofs an acceptable segment to our 1414 * peer; or when our peer is "confused." 1415 */ 1416 uint32_t tcp_drop_ack_unsent_cnt = 10; 1417 1418 /* 1419 * Hook functions to enable cluster networking 1420 * On non-clustered systems these vectors must always be NULL. 1421 */ 1422 1423 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family, 1424 uint8_t *laddrp, in_port_t lport) = NULL; 1425 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family, 1426 uint8_t *laddrp, in_port_t lport) = NULL; 1427 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family, 1428 uint8_t *laddrp, in_port_t lport, 1429 uint8_t *faddrp, in_port_t fport) = NULL; 1430 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family, 1431 uint8_t *laddrp, in_port_t lport, 1432 uint8_t *faddrp, in_port_t fport) = NULL; 1433 1434 /* 1435 * The following are defined in ip.c 1436 */ 1437 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family, 1438 uint8_t *laddrp); 1439 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 1440 uint8_t *laddrp, uint8_t *faddrp); 1441 1442 #define CL_INET_CONNECT(tcp) { \ 1443 if (cl_inet_connect != NULL) { \ 1444 /* \ 1445 * Running in cluster mode - register active connection \ 1446 * information \ 1447 */ \ 1448 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1449 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1450 (*cl_inet_connect)(IPPROTO_TCP, AF_INET,\ 1451 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1452 (in_port_t)(tcp)->tcp_lport, \ 1453 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1454 (in_port_t)(tcp)->tcp_fport); \ 1455 } \ 1456 } else { \ 1457 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1458 &(tcp)->tcp_ip6h->ip6_src)) {\ 1459 (*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\ 1460 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1461 (in_port_t)(tcp)->tcp_lport, \ 1462 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1463 (in_port_t)(tcp)->tcp_fport); \ 1464 } \ 1465 } \ 1466 } \ 1467 } 1468 1469 #define CL_INET_DISCONNECT(tcp) { \ 1470 if (cl_inet_disconnect != NULL) { \ 1471 /* \ 1472 * Running in cluster mode - deregister active \ 1473 * connection information \ 1474 */ \ 1475 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1476 if ((tcp)->tcp_ip_src != 0) { \ 1477 (*cl_inet_disconnect)(IPPROTO_TCP, \ 1478 AF_INET, \ 1479 (uint8_t *)(&((tcp)->tcp_ip_src)),\ 1480 (in_port_t)(tcp)->tcp_lport, \ 1481 (uint8_t *) \ 1482 (&((tcp)->tcp_ipha->ipha_dst)),\ 1483 (in_port_t)(tcp)->tcp_fport); \ 1484 } \ 1485 } else { \ 1486 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1487 &(tcp)->tcp_ip_src_v6)) { \ 1488 (*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\ 1489 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1490 (in_port_t)(tcp)->tcp_lport, \ 1491 (uint8_t *) \ 1492 (&((tcp)->tcp_ip6h->ip6_dst)),\ 1493 (in_port_t)(tcp)->tcp_fport); \ 1494 } \ 1495 } \ 1496 } \ 1497 } 1498 1499 /* 1500 * Cluster networking hook for traversing current connection list. 1501 * This routine is used to extract the current list of live connections 1502 * which must continue to to be dispatched to this node. 1503 */ 1504 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg); 1505 1506 /* 1507 * Figure out the value of window scale opton. Note that the rwnd is 1508 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1509 * We cannot find the scale value and then do a round up of tcp_rwnd 1510 * because the scale value may not be correct after that. 1511 * 1512 * Set the compiler flag to make this function inline. 1513 */ 1514 static void 1515 tcp_set_ws_value(tcp_t *tcp) 1516 { 1517 int i; 1518 uint32_t rwnd = tcp->tcp_rwnd; 1519 1520 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1521 i++, rwnd >>= 1) 1522 ; 1523 tcp->tcp_rcv_ws = i; 1524 } 1525 1526 /* 1527 * Remove a connection from the list of detached TIME_WAIT connections. 1528 */ 1529 static void 1530 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1531 { 1532 boolean_t locked = B_FALSE; 1533 1534 if (tcp_time_wait == NULL) { 1535 tcp_time_wait = *((tcp_squeue_priv_t **) 1536 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1537 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1538 locked = B_TRUE; 1539 } 1540 1541 if (tcp->tcp_time_wait_expire == 0) { 1542 ASSERT(tcp->tcp_time_wait_next == NULL); 1543 ASSERT(tcp->tcp_time_wait_prev == NULL); 1544 if (locked) 1545 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1546 return; 1547 } 1548 ASSERT(TCP_IS_DETACHED(tcp)); 1549 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1550 1551 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1552 ASSERT(tcp->tcp_time_wait_prev == NULL); 1553 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1554 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1555 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1556 NULL; 1557 } else { 1558 tcp_time_wait->tcp_time_wait_tail = NULL; 1559 } 1560 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1561 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1562 ASSERT(tcp->tcp_time_wait_next == NULL); 1563 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1564 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1565 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1566 } else { 1567 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1568 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1569 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1570 tcp->tcp_time_wait_next; 1571 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1572 tcp->tcp_time_wait_prev; 1573 } 1574 tcp->tcp_time_wait_next = NULL; 1575 tcp->tcp_time_wait_prev = NULL; 1576 tcp->tcp_time_wait_expire = 0; 1577 1578 if (locked) 1579 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1580 } 1581 1582 /* 1583 * Add a connection to the list of detached TIME_WAIT connections 1584 * and set its time to expire. 1585 */ 1586 static void 1587 tcp_time_wait_append(tcp_t *tcp) 1588 { 1589 tcp_squeue_priv_t *tcp_time_wait = 1590 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1591 SQPRIVATE_TCP)); 1592 1593 tcp_timers_stop(tcp); 1594 1595 /* Freed above */ 1596 ASSERT(tcp->tcp_timer_tid == 0); 1597 ASSERT(tcp->tcp_ack_tid == 0); 1598 1599 /* must have happened at the time of detaching the tcp */ 1600 ASSERT(tcp->tcp_ptpahn == NULL); 1601 ASSERT(tcp->tcp_flow_stopped == 0); 1602 ASSERT(tcp->tcp_time_wait_next == NULL); 1603 ASSERT(tcp->tcp_time_wait_prev == NULL); 1604 ASSERT(tcp->tcp_time_wait_expire == NULL); 1605 ASSERT(tcp->tcp_listener == NULL); 1606 1607 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1608 /* 1609 * The value computed below in tcp->tcp_time_wait_expire may 1610 * appear negative or wrap around. That is ok since our 1611 * interest is only in the difference between the current lbolt 1612 * value and tcp->tcp_time_wait_expire. But the value should not 1613 * be zero, since it means the tcp is not in the TIME_WAIT list. 1614 * The corresponding comparison in tcp_time_wait_collector() uses 1615 * modular arithmetic. 1616 */ 1617 tcp->tcp_time_wait_expire += 1618 drv_usectohz(tcp_time_wait_interval * 1000); 1619 if (tcp->tcp_time_wait_expire == 0) 1620 tcp->tcp_time_wait_expire = 1; 1621 1622 ASSERT(TCP_IS_DETACHED(tcp)); 1623 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1624 ASSERT(tcp->tcp_time_wait_next == NULL); 1625 ASSERT(tcp->tcp_time_wait_prev == NULL); 1626 TCP_DBGSTAT(tcp_time_wait); 1627 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1628 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1629 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1630 tcp_time_wait->tcp_time_wait_head = tcp; 1631 } else { 1632 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1633 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1634 TCPS_TIME_WAIT); 1635 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1636 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1637 } 1638 tcp_time_wait->tcp_time_wait_tail = tcp; 1639 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1640 } 1641 1642 /* ARGSUSED */ 1643 void 1644 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1645 { 1646 conn_t *connp = (conn_t *)arg; 1647 tcp_t *tcp = connp->conn_tcp; 1648 1649 ASSERT(tcp != NULL); 1650 if (tcp->tcp_state == TCPS_CLOSED) { 1651 return; 1652 } 1653 1654 ASSERT((tcp->tcp_family == AF_INET && 1655 tcp->tcp_ipversion == IPV4_VERSION) || 1656 (tcp->tcp_family == AF_INET6 && 1657 (tcp->tcp_ipversion == IPV4_VERSION || 1658 tcp->tcp_ipversion == IPV6_VERSION))); 1659 ASSERT(!tcp->tcp_listener); 1660 1661 TCP_STAT(tcp_time_wait_reap); 1662 ASSERT(TCP_IS_DETACHED(tcp)); 1663 1664 /* 1665 * Because they have no upstream client to rebind or tcp_close() 1666 * them later, we axe the connection here and now. 1667 */ 1668 tcp_close_detached(tcp); 1669 } 1670 1671 void 1672 tcp_cleanup(tcp_t *tcp) 1673 { 1674 mblk_t *mp; 1675 char *tcp_iphc; 1676 int tcp_iphc_len; 1677 int tcp_hdr_grown; 1678 tcp_sack_info_t *tcp_sack_info; 1679 conn_t *connp = tcp->tcp_connp; 1680 1681 tcp_bind_hash_remove(tcp); 1682 tcp_free(tcp); 1683 1684 /* Release any SSL context */ 1685 if (tcp->tcp_kssl_ent != NULL) { 1686 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1687 tcp->tcp_kssl_ent = NULL; 1688 } 1689 1690 if (tcp->tcp_kssl_ctx != NULL) { 1691 kssl_release_ctx(tcp->tcp_kssl_ctx); 1692 tcp->tcp_kssl_ctx = NULL; 1693 } 1694 tcp->tcp_kssl_pending = B_FALSE; 1695 1696 conn_delete_ire(connp, NULL); 1697 if (connp->conn_flags & IPCL_TCPCONN) { 1698 if (connp->conn_latch != NULL) 1699 IPLATCH_REFRELE(connp->conn_latch); 1700 if (connp->conn_policy != NULL) 1701 IPPH_REFRELE(connp->conn_policy); 1702 } 1703 1704 /* 1705 * Since we will bzero the entire structure, we need to 1706 * remove it and reinsert it in global hash list. We 1707 * know the walkers can't get to this conn because we 1708 * had set CONDEMNED flag earlier and checked reference 1709 * under conn_lock so walker won't pick it and when we 1710 * go the ipcl_globalhash_remove() below, no walker 1711 * can get to it. 1712 */ 1713 ipcl_globalhash_remove(connp); 1714 1715 /* Save some state */ 1716 mp = tcp->tcp_timercache; 1717 1718 tcp_sack_info = tcp->tcp_sack_info; 1719 tcp_iphc = tcp->tcp_iphc; 1720 tcp_iphc_len = tcp->tcp_iphc_len; 1721 tcp_hdr_grown = tcp->tcp_hdr_grown; 1722 1723 if (connp->conn_cred != NULL) 1724 crfree(connp->conn_cred); 1725 if (connp->conn_peercred != NULL) 1726 crfree(connp->conn_peercred); 1727 bzero(connp, sizeof (conn_t)); 1728 bzero(tcp, sizeof (tcp_t)); 1729 1730 /* restore the state */ 1731 tcp->tcp_timercache = mp; 1732 1733 tcp->tcp_sack_info = tcp_sack_info; 1734 tcp->tcp_iphc = tcp_iphc; 1735 tcp->tcp_iphc_len = tcp_iphc_len; 1736 tcp->tcp_hdr_grown = tcp_hdr_grown; 1737 1738 1739 tcp->tcp_connp = connp; 1740 1741 connp->conn_tcp = tcp; 1742 connp->conn_flags = IPCL_TCPCONN; 1743 connp->conn_state_flags = CONN_INCIPIENT; 1744 connp->conn_ulp = IPPROTO_TCP; 1745 connp->conn_ref = 1; 1746 1747 ipcl_globalhash_insert(connp); 1748 } 1749 1750 /* 1751 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1752 * is done forwards from the head. 1753 */ 1754 /* ARGSUSED */ 1755 void 1756 tcp_time_wait_collector(void *arg) 1757 { 1758 tcp_t *tcp; 1759 clock_t now; 1760 mblk_t *mp; 1761 conn_t *connp; 1762 kmutex_t *lock; 1763 1764 squeue_t *sqp = (squeue_t *)arg; 1765 tcp_squeue_priv_t *tcp_time_wait = 1766 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1767 1768 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1769 tcp_time_wait->tcp_time_wait_tid = 0; 1770 1771 if (tcp_time_wait->tcp_free_list != NULL && 1772 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1773 TCP_STAT(tcp_freelist_cleanup); 1774 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1775 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1776 CONN_DEC_REF(tcp->tcp_connp); 1777 } 1778 tcp_time_wait->tcp_free_list_cnt = 0; 1779 } 1780 1781 /* 1782 * In order to reap time waits reliably, we should use a 1783 * source of time that is not adjustable by the user -- hence 1784 * the call to ddi_get_lbolt(). 1785 */ 1786 now = ddi_get_lbolt(); 1787 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1788 /* 1789 * Compare times using modular arithmetic, since 1790 * lbolt can wrapover. 1791 */ 1792 if ((now - tcp->tcp_time_wait_expire) < 0) { 1793 break; 1794 } 1795 1796 tcp_time_wait_remove(tcp, tcp_time_wait); 1797 1798 connp = tcp->tcp_connp; 1799 ASSERT(connp->conn_fanout != NULL); 1800 lock = &connp->conn_fanout->connf_lock; 1801 /* 1802 * This is essentially a TW reclaim fast path optimization for 1803 * performance where the timewait collector checks under the 1804 * fanout lock (so that no one else can get access to the 1805 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1806 * the classifier hash list. If ref count is indeed 2, we can 1807 * just remove the conn under the fanout lock and avoid 1808 * cleaning up the conn under the squeue, provided that 1809 * clustering callbacks are not enabled. If clustering is 1810 * enabled, we need to make the clustering callback before 1811 * setting the CONDEMNED flag and after dropping all locks and 1812 * so we forego this optimization and fall back to the slow 1813 * path. Also please see the comments in tcp_closei_local 1814 * regarding the refcnt logic. 1815 * 1816 * Since we are holding the tcp_time_wait_lock, its better 1817 * not to block on the fanout_lock because other connections 1818 * can't add themselves to time_wait list. So we do a 1819 * tryenter instead of mutex_enter. 1820 */ 1821 if (mutex_tryenter(lock)) { 1822 mutex_enter(&connp->conn_lock); 1823 if ((connp->conn_ref == 2) && 1824 (cl_inet_disconnect == NULL)) { 1825 ipcl_hash_remove_locked(connp, 1826 connp->conn_fanout); 1827 /* 1828 * Set the CONDEMNED flag now itself so that 1829 * the refcnt cannot increase due to any 1830 * walker. But we have still not cleaned up 1831 * conn_ire_cache. This is still ok since 1832 * we are going to clean it up in tcp_cleanup 1833 * immediately and any interface unplumb 1834 * thread will wait till the ire is blown away 1835 */ 1836 connp->conn_state_flags |= CONN_CONDEMNED; 1837 mutex_exit(lock); 1838 mutex_exit(&connp->conn_lock); 1839 if (tcp_time_wait->tcp_free_list_cnt < 1840 tcp_free_list_max_cnt) { 1841 /* Add to head of tcp_free_list */ 1842 mutex_exit( 1843 &tcp_time_wait->tcp_time_wait_lock); 1844 tcp_cleanup(tcp); 1845 mutex_enter( 1846 &tcp_time_wait->tcp_time_wait_lock); 1847 tcp->tcp_time_wait_next = 1848 tcp_time_wait->tcp_free_list; 1849 tcp_time_wait->tcp_free_list = tcp; 1850 tcp_time_wait->tcp_free_list_cnt++; 1851 continue; 1852 } else { 1853 /* Do not add to tcp_free_list */ 1854 mutex_exit( 1855 &tcp_time_wait->tcp_time_wait_lock); 1856 tcp_bind_hash_remove(tcp); 1857 conn_delete_ire(tcp->tcp_connp, NULL); 1858 CONN_DEC_REF(tcp->tcp_connp); 1859 } 1860 } else { 1861 CONN_INC_REF_LOCKED(connp); 1862 mutex_exit(lock); 1863 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1864 mutex_exit(&connp->conn_lock); 1865 /* 1866 * We can reuse the closemp here since conn has 1867 * detached (otherwise we wouldn't even be in 1868 * time_wait list). 1869 */ 1870 mp = &tcp->tcp_closemp; 1871 squeue_fill(connp->conn_sqp, mp, 1872 tcp_timewait_output, connp, 1873 SQTAG_TCP_TIMEWAIT); 1874 } 1875 } else { 1876 mutex_enter(&connp->conn_lock); 1877 CONN_INC_REF_LOCKED(connp); 1878 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1879 mutex_exit(&connp->conn_lock); 1880 /* 1881 * We can reuse the closemp here since conn has 1882 * detached (otherwise we wouldn't even be in 1883 * time_wait list). 1884 */ 1885 mp = &tcp->tcp_closemp; 1886 squeue_fill(connp->conn_sqp, mp, 1887 tcp_timewait_output, connp, 0); 1888 } 1889 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1890 } 1891 1892 if (tcp_time_wait->tcp_free_list != NULL) 1893 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1894 1895 tcp_time_wait->tcp_time_wait_tid = 1896 timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY); 1897 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1898 } 1899 1900 /* 1901 * Reply to a clients T_CONN_RES TPI message. This function 1902 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1903 * on the acceptor STREAM and processed in tcp_wput_accept(). 1904 * Read the block comment on top of tcp_conn_request(). 1905 */ 1906 static void 1907 tcp_accept(tcp_t *listener, mblk_t *mp) 1908 { 1909 tcp_t *acceptor; 1910 tcp_t *eager; 1911 tcp_t *tcp; 1912 struct T_conn_res *tcr; 1913 t_uscalar_t acceptor_id; 1914 t_scalar_t seqnum; 1915 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 1916 mblk_t *ok_mp; 1917 mblk_t *mp1; 1918 1919 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1920 tcp_err_ack(listener, mp, TPROTO, 0); 1921 return; 1922 } 1923 tcr = (struct T_conn_res *)mp->b_rptr; 1924 1925 /* 1926 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1927 * read side queue of the streams device underneath us i.e. the 1928 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1929 * look it up in the queue_hash. Under LP64 it sends down the 1930 * minor_t of the accepting endpoint. 1931 * 1932 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1933 * fanout hash lock is held. 1934 * This prevents any thread from entering the acceptor queue from 1935 * below (since it has not been hard bound yet i.e. any inbound 1936 * packets will arrive on the listener or default tcp queue and 1937 * go through tcp_lookup). 1938 * The CONN_INC_REF will prevent the acceptor from closing. 1939 * 1940 * XXX It is still possible for a tli application to send down data 1941 * on the accepting stream while another thread calls t_accept. 1942 * This should not be a problem for well-behaved applications since 1943 * the T_OK_ACK is sent after the queue swapping is completed. 1944 * 1945 * If the accepting fd is the same as the listening fd, avoid 1946 * queue hash lookup since that will return an eager listener in a 1947 * already established state. 1948 */ 1949 acceptor_id = tcr->ACCEPTOR_id; 1950 mutex_enter(&listener->tcp_eager_lock); 1951 if (listener->tcp_acceptor_id == acceptor_id) { 1952 eager = listener->tcp_eager_next_q; 1953 /* only count how many T_CONN_INDs so don't count q0 */ 1954 if ((listener->tcp_conn_req_cnt_q != 1) || 1955 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1956 mutex_exit(&listener->tcp_eager_lock); 1957 tcp_err_ack(listener, mp, TBADF, 0); 1958 return; 1959 } 1960 if (listener->tcp_conn_req_cnt_q0 != 0) { 1961 /* Throw away all the eagers on q0. */ 1962 tcp_eager_cleanup(listener, 1); 1963 } 1964 if (listener->tcp_syn_defense) { 1965 listener->tcp_syn_defense = B_FALSE; 1966 if (listener->tcp_ip_addr_cache != NULL) { 1967 kmem_free(listener->tcp_ip_addr_cache, 1968 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1969 listener->tcp_ip_addr_cache = NULL; 1970 } 1971 } 1972 /* 1973 * Transfer tcp_conn_req_max to the eager so that when 1974 * a disconnect occurs we can revert the endpoint to the 1975 * listen state. 1976 */ 1977 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1978 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1979 /* 1980 * Get a reference on the acceptor just like the 1981 * tcp_acceptor_hash_lookup below. 1982 */ 1983 acceptor = listener; 1984 CONN_INC_REF(acceptor->tcp_connp); 1985 } else { 1986 acceptor = tcp_acceptor_hash_lookup(acceptor_id); 1987 if (acceptor == NULL) { 1988 if (listener->tcp_debug) { 1989 (void) strlog(TCP_MOD_ID, 0, 1, 1990 SL_ERROR|SL_TRACE, 1991 "tcp_accept: did not find acceptor 0x%x\n", 1992 acceptor_id); 1993 } 1994 mutex_exit(&listener->tcp_eager_lock); 1995 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 1996 return; 1997 } 1998 /* 1999 * Verify acceptor state. The acceptable states for an acceptor 2000 * include TCPS_IDLE and TCPS_BOUND. 2001 */ 2002 switch (acceptor->tcp_state) { 2003 case TCPS_IDLE: 2004 /* FALLTHRU */ 2005 case TCPS_BOUND: 2006 break; 2007 default: 2008 CONN_DEC_REF(acceptor->tcp_connp); 2009 mutex_exit(&listener->tcp_eager_lock); 2010 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2011 return; 2012 } 2013 } 2014 2015 /* The listener must be in TCPS_LISTEN */ 2016 if (listener->tcp_state != TCPS_LISTEN) { 2017 CONN_DEC_REF(acceptor->tcp_connp); 2018 mutex_exit(&listener->tcp_eager_lock); 2019 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2020 return; 2021 } 2022 2023 /* 2024 * Rendezvous with an eager connection request packet hanging off 2025 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2026 * tcp structure when the connection packet arrived in 2027 * tcp_conn_request(). 2028 */ 2029 seqnum = tcr->SEQ_number; 2030 eager = listener; 2031 do { 2032 eager = eager->tcp_eager_next_q; 2033 if (eager == NULL) { 2034 CONN_DEC_REF(acceptor->tcp_connp); 2035 mutex_exit(&listener->tcp_eager_lock); 2036 tcp_err_ack(listener, mp, TBADSEQ, 0); 2037 return; 2038 } 2039 } while (eager->tcp_conn_req_seqnum != seqnum); 2040 mutex_exit(&listener->tcp_eager_lock); 2041 2042 /* 2043 * At this point, both acceptor and listener have 2 ref 2044 * that they begin with. Acceptor has one additional ref 2045 * we placed in lookup while listener has 3 additional 2046 * ref for being behind the squeue (tcp_accept() is 2047 * done on listener's squeue); being in classifier hash; 2048 * and eager's ref on listener. 2049 */ 2050 ASSERT(listener->tcp_connp->conn_ref >= 5); 2051 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2052 2053 /* 2054 * The eager at this point is set in its own squeue and 2055 * could easily have been killed (tcp_accept_finish will 2056 * deal with that) because of a TH_RST so we can only 2057 * ASSERT for a single ref. 2058 */ 2059 ASSERT(eager->tcp_connp->conn_ref >= 1); 2060 2061 /* Pre allocate the stroptions mblk also */ 2062 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 2063 if (opt_mp == NULL) { 2064 CONN_DEC_REF(acceptor->tcp_connp); 2065 CONN_DEC_REF(eager->tcp_connp); 2066 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2067 return; 2068 } 2069 DB_TYPE(opt_mp) = M_SETOPTS; 2070 opt_mp->b_wptr += sizeof (struct stroptions); 2071 2072 /* 2073 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2074 * from listener to acceptor. The message is chained on opt_mp 2075 * which will be sent onto eager's squeue. 2076 */ 2077 if (listener->tcp_bound_if != 0) { 2078 /* allocate optmgmt req */ 2079 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2080 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 2081 sizeof (int)); 2082 if (mp1 != NULL) 2083 linkb(opt_mp, mp1); 2084 } 2085 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2086 uint_t on = 1; 2087 2088 /* allocate optmgmt req */ 2089 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2090 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 2091 if (mp1 != NULL) 2092 linkb(opt_mp, mp1); 2093 } 2094 2095 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2096 if ((mp1 = copymsg(mp)) == NULL) { 2097 CONN_DEC_REF(acceptor->tcp_connp); 2098 CONN_DEC_REF(eager->tcp_connp); 2099 freemsg(opt_mp); 2100 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2101 return; 2102 } 2103 2104 tcr = (struct T_conn_res *)mp1->b_rptr; 2105 2106 /* 2107 * This is an expanded version of mi_tpi_ok_ack_alloc() 2108 * which allocates a larger mblk and appends the new 2109 * local address to the ok_ack. The address is copied by 2110 * soaccept() for getsockname(). 2111 */ 2112 { 2113 int extra; 2114 2115 extra = (eager->tcp_family == AF_INET) ? 2116 sizeof (sin_t) : sizeof (sin6_t); 2117 2118 /* 2119 * Try to re-use mp, if possible. Otherwise, allocate 2120 * an mblk and return it as ok_mp. In any case, mp 2121 * is no longer usable upon return. 2122 */ 2123 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2124 CONN_DEC_REF(acceptor->tcp_connp); 2125 CONN_DEC_REF(eager->tcp_connp); 2126 freemsg(opt_mp); 2127 /* Original mp has been freed by now, so use mp1 */ 2128 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2129 return; 2130 } 2131 2132 mp = NULL; /* We should never use mp after this point */ 2133 2134 switch (extra) { 2135 case sizeof (sin_t): { 2136 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2137 2138 ok_mp->b_wptr += extra; 2139 sin->sin_family = AF_INET; 2140 sin->sin_port = eager->tcp_lport; 2141 sin->sin_addr.s_addr = 2142 eager->tcp_ipha->ipha_src; 2143 break; 2144 } 2145 case sizeof (sin6_t): { 2146 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2147 2148 ok_mp->b_wptr += extra; 2149 sin6->sin6_family = AF_INET6; 2150 sin6->sin6_port = eager->tcp_lport; 2151 if (eager->tcp_ipversion == IPV4_VERSION) { 2152 sin6->sin6_flowinfo = 0; 2153 IN6_IPADDR_TO_V4MAPPED( 2154 eager->tcp_ipha->ipha_src, 2155 &sin6->sin6_addr); 2156 } else { 2157 ASSERT(eager->tcp_ip6h != NULL); 2158 sin6->sin6_flowinfo = 2159 eager->tcp_ip6h->ip6_vcf & 2160 ~IPV6_VERS_AND_FLOW_MASK; 2161 sin6->sin6_addr = 2162 eager->tcp_ip6h->ip6_src; 2163 } 2164 break; 2165 } 2166 default: 2167 break; 2168 } 2169 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2170 } 2171 2172 /* 2173 * If there are no options we know that the T_CONN_RES will 2174 * succeed. However, we can't send the T_OK_ACK upstream until 2175 * the tcp_accept_swap is done since it would be dangerous to 2176 * let the application start using the new fd prior to the swap. 2177 */ 2178 tcp_accept_swap(listener, acceptor, eager); 2179 2180 /* 2181 * tcp_accept_swap unlinks eager from listener but does not drop 2182 * the eager's reference on the listener. 2183 */ 2184 ASSERT(eager->tcp_listener == NULL); 2185 ASSERT(listener->tcp_connp->conn_ref >= 5); 2186 2187 /* 2188 * The eager is now associated with its own queue. Insert in 2189 * the hash so that the connection can be reused for a future 2190 * T_CONN_RES. 2191 */ 2192 tcp_acceptor_hash_insert(acceptor_id, eager); 2193 2194 /* 2195 * We now do the processing of options with T_CONN_RES. 2196 * We delay till now since we wanted to have queue to pass to 2197 * option processing routines that points back to the right 2198 * instance structure which does not happen until after 2199 * tcp_accept_swap(). 2200 * 2201 * Note: 2202 * The sanity of the logic here assumes that whatever options 2203 * are appropriate to inherit from listner=>eager are done 2204 * before this point, and whatever were to be overridden (or not) 2205 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2206 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2207 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2208 * This may not be true at this point in time but can be fixed 2209 * independently. This option processing code starts with 2210 * the instantiated acceptor instance and the final queue at 2211 * this point. 2212 */ 2213 2214 if (tcr->OPT_length != 0) { 2215 /* Options to process */ 2216 int t_error = 0; 2217 int sys_error = 0; 2218 int do_disconnect = 0; 2219 2220 if (tcp_conprim_opt_process(eager, mp1, 2221 &do_disconnect, &t_error, &sys_error) < 0) { 2222 eager->tcp_accept_error = 1; 2223 if (do_disconnect) { 2224 /* 2225 * An option failed which does not allow 2226 * connection to be accepted. 2227 * 2228 * We allow T_CONN_RES to succeed and 2229 * put a T_DISCON_IND on the eager queue. 2230 */ 2231 ASSERT(t_error == 0 && sys_error == 0); 2232 eager->tcp_send_discon_ind = 1; 2233 } else { 2234 ASSERT(t_error != 0); 2235 freemsg(ok_mp); 2236 /* 2237 * Original mp was either freed or set 2238 * to ok_mp above, so use mp1 instead. 2239 */ 2240 tcp_err_ack(listener, mp1, t_error, sys_error); 2241 goto finish; 2242 } 2243 } 2244 /* 2245 * Most likely success in setting options (except if 2246 * eager->tcp_send_discon_ind set). 2247 * mp1 option buffer represented by OPT_length/offset 2248 * potentially modified and contains results of setting 2249 * options at this point 2250 */ 2251 } 2252 2253 /* We no longer need mp1, since all options processing has passed */ 2254 freemsg(mp1); 2255 2256 putnext(listener->tcp_rq, ok_mp); 2257 2258 mutex_enter(&listener->tcp_eager_lock); 2259 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2260 tcp_t *tail; 2261 mblk_t *conn_ind; 2262 2263 /* 2264 * This path should not be executed if listener and 2265 * acceptor streams are the same. 2266 */ 2267 ASSERT(listener != acceptor); 2268 2269 tcp = listener->tcp_eager_prev_q0; 2270 /* 2271 * listener->tcp_eager_prev_q0 points to the TAIL of the 2272 * deferred T_conn_ind queue. We need to get to the head of 2273 * the queue in order to send up T_conn_ind the same order as 2274 * how the 3WHS is completed. 2275 */ 2276 while (tcp != listener) { 2277 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2278 break; 2279 else 2280 tcp = tcp->tcp_eager_prev_q0; 2281 } 2282 ASSERT(tcp != listener); 2283 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2284 ASSERT(conn_ind != NULL); 2285 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2286 2287 /* Move from q0 to q */ 2288 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2289 listener->tcp_conn_req_cnt_q0--; 2290 listener->tcp_conn_req_cnt_q++; 2291 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2292 tcp->tcp_eager_prev_q0; 2293 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2294 tcp->tcp_eager_next_q0; 2295 tcp->tcp_eager_prev_q0 = NULL; 2296 tcp->tcp_eager_next_q0 = NULL; 2297 tcp->tcp_conn_def_q0 = B_FALSE; 2298 2299 /* 2300 * Insert at end of the queue because sockfs sends 2301 * down T_CONN_RES in chronological order. Leaving 2302 * the older conn indications at front of the queue 2303 * helps reducing search time. 2304 */ 2305 tail = listener->tcp_eager_last_q; 2306 if (tail != NULL) 2307 tail->tcp_eager_next_q = tcp; 2308 else 2309 listener->tcp_eager_next_q = tcp; 2310 listener->tcp_eager_last_q = tcp; 2311 tcp->tcp_eager_next_q = NULL; 2312 mutex_exit(&listener->tcp_eager_lock); 2313 putnext(tcp->tcp_rq, conn_ind); 2314 } else { 2315 mutex_exit(&listener->tcp_eager_lock); 2316 } 2317 2318 /* 2319 * Done with the acceptor - free it 2320 * 2321 * Note: from this point on, no access to listener should be made 2322 * as listener can be equal to acceptor. 2323 */ 2324 finish: 2325 ASSERT(acceptor->tcp_detached); 2326 acceptor->tcp_rq = tcp_g_q; 2327 acceptor->tcp_wq = WR(tcp_g_q); 2328 (void) tcp_clean_death(acceptor, 0, 2); 2329 CONN_DEC_REF(acceptor->tcp_connp); 2330 2331 /* 2332 * In case we already received a FIN we have to make tcp_rput send 2333 * the ordrel_ind. This will also send up a window update if the window 2334 * has opened up. 2335 * 2336 * In the normal case of a successful connection acceptance 2337 * we give the O_T_BIND_REQ to the read side put procedure as an 2338 * indication that this was just accepted. This tells tcp_rput to 2339 * pass up any data queued in tcp_rcv_list. 2340 * 2341 * In the fringe case where options sent with T_CONN_RES failed and 2342 * we required, we would be indicating a T_DISCON_IND to blow 2343 * away this connection. 2344 */ 2345 2346 /* 2347 * XXX: we currently have a problem if XTI application closes the 2348 * acceptor stream in between. This problem exists in on10-gate also 2349 * and is well know but nothing can be done short of major rewrite 2350 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2351 * eager same squeue as listener (we can distinguish non socket 2352 * listeners at the time of handling a SYN in tcp_conn_request) 2353 * and do most of the work that tcp_accept_finish does here itself 2354 * and then get behind the acceptor squeue to access the acceptor 2355 * queue. 2356 */ 2357 /* 2358 * We already have a ref on tcp so no need to do one before squeue_fill 2359 */ 2360 squeue_fill(eager->tcp_connp->conn_sqp, opt_mp, 2361 tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH); 2362 } 2363 2364 /* 2365 * Swap information between the eager and acceptor for a TLI/XTI client. 2366 * The sockfs accept is done on the acceptor stream and control goes 2367 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2368 * called. In either case, both the eager and listener are in their own 2369 * perimeter (squeue) and the code has to deal with potential race. 2370 * 2371 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2372 */ 2373 static void 2374 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2375 { 2376 conn_t *econnp, *aconnp; 2377 2378 ASSERT(eager->tcp_rq == listener->tcp_rq); 2379 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2380 ASSERT(!eager->tcp_hard_bound); 2381 ASSERT(!TCP_IS_SOCKET(acceptor)); 2382 ASSERT(!TCP_IS_SOCKET(eager)); 2383 ASSERT(!TCP_IS_SOCKET(listener)); 2384 2385 acceptor->tcp_detached = B_TRUE; 2386 /* 2387 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2388 * the acceptor id. 2389 */ 2390 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2391 2392 /* remove eager from listen list... */ 2393 mutex_enter(&listener->tcp_eager_lock); 2394 tcp_eager_unlink(eager); 2395 ASSERT(eager->tcp_eager_next_q == NULL && 2396 eager->tcp_eager_last_q == NULL); 2397 ASSERT(eager->tcp_eager_next_q0 == NULL && 2398 eager->tcp_eager_prev_q0 == NULL); 2399 mutex_exit(&listener->tcp_eager_lock); 2400 eager->tcp_rq = acceptor->tcp_rq; 2401 eager->tcp_wq = acceptor->tcp_wq; 2402 2403 econnp = eager->tcp_connp; 2404 aconnp = acceptor->tcp_connp; 2405 2406 eager->tcp_rq->q_ptr = econnp; 2407 eager->tcp_wq->q_ptr = econnp; 2408 eager->tcp_detached = B_FALSE; 2409 2410 ASSERT(eager->tcp_ack_tid == 0); 2411 2412 econnp->conn_dev = aconnp->conn_dev; 2413 if (eager->tcp_cred != NULL) 2414 crfree(eager->tcp_cred); 2415 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2416 econnp->conn_zoneid = aconnp->conn_zoneid; 2417 aconnp->conn_cred = NULL; 2418 2419 econnp->conn_mac_exempt = aconnp->conn_mac_exempt; 2420 aconnp->conn_mac_exempt = B_FALSE; 2421 2422 ASSERT(aconnp->conn_peercred == NULL); 2423 2424 /* Do the IPC initialization */ 2425 CONN_INC_REF(econnp); 2426 2427 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2428 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2429 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2430 econnp->conn_ulp = aconnp->conn_ulp; 2431 2432 /* Done with old IPC. Drop its ref on its connp */ 2433 CONN_DEC_REF(aconnp); 2434 } 2435 2436 2437 /* 2438 * Adapt to the information, such as rtt and rtt_sd, provided from the 2439 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2440 * 2441 * Checks for multicast and broadcast destination address. 2442 * Returns zero on failure; non-zero if ok. 2443 * 2444 * Note that the MSS calculation here is based on the info given in 2445 * the IRE. We do not do any calculation based on TCP options. They 2446 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2447 * knows which options to use. 2448 * 2449 * Note on how TCP gets its parameters for a connection. 2450 * 2451 * When a tcp_t structure is allocated, it gets all the default parameters. 2452 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2453 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2454 * default. But if there is an associated tcp_host_param, it will override 2455 * the metrics. 2456 * 2457 * An incoming SYN with a multicast or broadcast destination address, is dropped 2458 * in 1 of 2 places. 2459 * 2460 * 1. If the packet was received over the wire it is dropped in 2461 * ip_rput_process_broadcast() 2462 * 2463 * 2. If the packet was received through internal IP loopback, i.e. the packet 2464 * was generated and received on the same machine, it is dropped in 2465 * ip_wput_local() 2466 * 2467 * An incoming SYN with a multicast or broadcast source address is always 2468 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2469 * reject an attempt to connect to a broadcast or multicast (destination) 2470 * address. 2471 */ 2472 static int 2473 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2474 { 2475 tcp_hsp_t *hsp; 2476 ire_t *ire; 2477 ire_t *sire = NULL; 2478 iulp_t *ire_uinfo = NULL; 2479 uint32_t mss_max; 2480 uint32_t mss; 2481 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2482 conn_t *connp = tcp->tcp_connp; 2483 boolean_t ire_cacheable = B_FALSE; 2484 zoneid_t zoneid = connp->conn_zoneid; 2485 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 2486 MATCH_IRE_SECATTR; 2487 ts_label_t *tsl = crgetlabel(CONN_CRED(connp)); 2488 ill_t *ill = NULL; 2489 boolean_t incoming = (ire_mp == NULL); 2490 2491 ASSERT(connp->conn_ire_cache == NULL); 2492 2493 if (tcp->tcp_ipversion == IPV4_VERSION) { 2494 2495 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2496 BUMP_MIB(&ip_mib, ipInDiscards); 2497 return (0); 2498 } 2499 /* 2500 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2501 * for the destination with the nexthop as gateway. 2502 * ire_ctable_lookup() is used because this particular 2503 * ire, if it exists, will be marked private. 2504 * If that is not available, use the interface ire 2505 * for the nexthop. 2506 * 2507 * TSol: tcp_update_label will detect label mismatches based 2508 * only on the destination's label, but that would not 2509 * detect label mismatches based on the security attributes 2510 * of routes or next hop gateway. Hence we need to pass the 2511 * label to ire_ftable_lookup below in order to locate the 2512 * right prefix (and/or) ire cache. Similarly we also need 2513 * pass the label to the ire_cache_lookup below to locate 2514 * the right ire that also matches on the label. 2515 */ 2516 if (tcp->tcp_connp->conn_nexthop_set) { 2517 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2518 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2519 tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW); 2520 if (ire == NULL) { 2521 ire = ire_ftable_lookup( 2522 tcp->tcp_connp->conn_nexthop_v4, 2523 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2524 tsl, match_flags); 2525 if (ire == NULL) 2526 return (0); 2527 } else { 2528 ire_uinfo = &ire->ire_uinfo; 2529 } 2530 } else { 2531 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2532 zoneid, tsl); 2533 if (ire != NULL) { 2534 ire_cacheable = B_TRUE; 2535 ire_uinfo = (ire_mp != NULL) ? 2536 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2537 &ire->ire_uinfo; 2538 2539 } else { 2540 if (ire_mp == NULL) { 2541 ire = ire_ftable_lookup( 2542 tcp->tcp_connp->conn_rem, 2543 0, 0, 0, NULL, &sire, zoneid, 0, 2544 tsl, (MATCH_IRE_RECURSIVE | 2545 MATCH_IRE_DEFAULT)); 2546 if (ire == NULL) 2547 return (0); 2548 ire_uinfo = (sire != NULL) ? 2549 &sire->ire_uinfo : 2550 &ire->ire_uinfo; 2551 } else { 2552 ire = (ire_t *)ire_mp->b_rptr; 2553 ire_uinfo = 2554 &((ire_t *) 2555 ire_mp->b_rptr)->ire_uinfo; 2556 } 2557 } 2558 } 2559 ASSERT(ire != NULL); 2560 2561 if ((ire->ire_src_addr == INADDR_ANY) || 2562 (ire->ire_type & IRE_BROADCAST)) { 2563 /* 2564 * ire->ire_mp is non null when ire_mp passed in is used 2565 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2566 */ 2567 if (ire->ire_mp == NULL) 2568 ire_refrele(ire); 2569 if (sire != NULL) 2570 ire_refrele(sire); 2571 return (0); 2572 } 2573 2574 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2575 ipaddr_t src_addr; 2576 2577 /* 2578 * ip_bind_connected() has stored the correct source 2579 * address in conn_src. 2580 */ 2581 src_addr = tcp->tcp_connp->conn_src; 2582 tcp->tcp_ipha->ipha_src = src_addr; 2583 /* 2584 * Copy of the src addr. in tcp_t is needed 2585 * for the lookup funcs. 2586 */ 2587 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2588 } 2589 /* 2590 * Set the fragment bit so that IP will tell us if the MTU 2591 * should change. IP tells us the latest setting of 2592 * ip_path_mtu_discovery through ire_frag_flag. 2593 */ 2594 if (ip_path_mtu_discovery) { 2595 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2596 htons(IPH_DF); 2597 } 2598 /* 2599 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2600 * for IP_NEXTHOP. No cache ire has been found for the 2601 * destination and we are working with the nexthop's 2602 * interface ire. Since we need to forward all packets 2603 * to the nexthop first, we "blindly" set tcp_localnet 2604 * to false, eventhough the destination may also be 2605 * onlink. 2606 */ 2607 if (ire_uinfo == NULL) 2608 tcp->tcp_localnet = 0; 2609 else 2610 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2611 } else { 2612 /* 2613 * For incoming connection ire_mp = NULL 2614 * For outgoing connection ire_mp != NULL 2615 * Technically we should check conn_incoming_ill 2616 * when ire_mp is NULL and conn_outgoing_ill when 2617 * ire_mp is non-NULL. But this is performance 2618 * critical path and for IPV*_BOUND_IF, outgoing 2619 * and incoming ill are always set to the same value. 2620 */ 2621 ill_t *dst_ill = NULL; 2622 ipif_t *dst_ipif = NULL; 2623 2624 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2625 2626 if (connp->conn_outgoing_ill != NULL) { 2627 /* Outgoing or incoming path */ 2628 int err; 2629 2630 dst_ill = conn_get_held_ill(connp, 2631 &connp->conn_outgoing_ill, &err); 2632 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2633 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2634 return (0); 2635 } 2636 match_flags |= MATCH_IRE_ILL; 2637 dst_ipif = dst_ill->ill_ipif; 2638 } 2639 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2640 0, 0, dst_ipif, zoneid, tsl, match_flags); 2641 2642 if (ire != NULL) { 2643 ire_cacheable = B_TRUE; 2644 ire_uinfo = (ire_mp != NULL) ? 2645 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2646 &ire->ire_uinfo; 2647 } else { 2648 if (ire_mp == NULL) { 2649 ire = ire_ftable_lookup_v6( 2650 &tcp->tcp_connp->conn_remv6, 2651 0, 0, 0, dst_ipif, &sire, zoneid, 2652 0, tsl, match_flags); 2653 if (ire == NULL) { 2654 if (dst_ill != NULL) 2655 ill_refrele(dst_ill); 2656 return (0); 2657 } 2658 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2659 &ire->ire_uinfo; 2660 } else { 2661 ire = (ire_t *)ire_mp->b_rptr; 2662 ire_uinfo = 2663 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2664 } 2665 } 2666 if (dst_ill != NULL) 2667 ill_refrele(dst_ill); 2668 2669 ASSERT(ire != NULL); 2670 ASSERT(ire_uinfo != NULL); 2671 2672 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2673 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2674 /* 2675 * ire->ire_mp is non null when ire_mp passed in is used 2676 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2677 */ 2678 if (ire->ire_mp == NULL) 2679 ire_refrele(ire); 2680 if (sire != NULL) 2681 ire_refrele(sire); 2682 return (0); 2683 } 2684 2685 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2686 in6_addr_t src_addr; 2687 2688 /* 2689 * ip_bind_connected_v6() has stored the correct source 2690 * address per IPv6 addr. selection policy in 2691 * conn_src_v6. 2692 */ 2693 src_addr = tcp->tcp_connp->conn_srcv6; 2694 2695 tcp->tcp_ip6h->ip6_src = src_addr; 2696 /* 2697 * Copy of the src addr. in tcp_t is needed 2698 * for the lookup funcs. 2699 */ 2700 tcp->tcp_ip_src_v6 = src_addr; 2701 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2702 &connp->conn_srcv6)); 2703 } 2704 tcp->tcp_localnet = 2705 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2706 } 2707 2708 /* 2709 * This allows applications to fail quickly when connections are made 2710 * to dead hosts. Hosts can be labeled dead by adding a reject route 2711 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2712 */ 2713 if ((ire->ire_flags & RTF_REJECT) && 2714 (ire->ire_flags & RTF_PRIVATE)) 2715 goto error; 2716 2717 /* 2718 * Make use of the cached rtt and rtt_sd values to calculate the 2719 * initial RTO. Note that they are already initialized in 2720 * tcp_init_values(). 2721 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2722 * IP_NEXTHOP, but instead are using the interface ire for the 2723 * nexthop, then we do not use the ire_uinfo from that ire to 2724 * do any initializations. 2725 */ 2726 if (ire_uinfo != NULL) { 2727 if (ire_uinfo->iulp_rtt != 0) { 2728 clock_t rto; 2729 2730 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2731 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2732 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2733 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5); 2734 2735 if (rto > tcp_rexmit_interval_max) { 2736 tcp->tcp_rto = tcp_rexmit_interval_max; 2737 } else if (rto < tcp_rexmit_interval_min) { 2738 tcp->tcp_rto = tcp_rexmit_interval_min; 2739 } else { 2740 tcp->tcp_rto = rto; 2741 } 2742 } 2743 if (ire_uinfo->iulp_ssthresh != 0) 2744 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2745 else 2746 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2747 if (ire_uinfo->iulp_spipe > 0) { 2748 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2749 tcp_max_buf); 2750 if (tcp_snd_lowat_fraction != 0) 2751 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2752 tcp_snd_lowat_fraction; 2753 (void) tcp_maxpsz_set(tcp, B_TRUE); 2754 } 2755 /* 2756 * Note that up till now, acceptor always inherits receive 2757 * window from the listener. But if there is a metrics 2758 * associated with a host, we should use that instead of 2759 * inheriting it from listener. Thus we need to pass this 2760 * info back to the caller. 2761 */ 2762 if (ire_uinfo->iulp_rpipe > 0) { 2763 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, tcp_max_buf); 2764 } 2765 2766 if (ire_uinfo->iulp_rtomax > 0) { 2767 tcp->tcp_second_timer_threshold = 2768 ire_uinfo->iulp_rtomax; 2769 } 2770 2771 /* 2772 * Use the metric option settings, iulp_tstamp_ok and 2773 * iulp_wscale_ok, only for active open. What this means 2774 * is that if the other side uses timestamp or window 2775 * scale option, TCP will also use those options. That 2776 * is for passive open. If the application sets a 2777 * large window, window scale is enabled regardless of 2778 * the value in iulp_wscale_ok. This is the behavior 2779 * since 2.6. So we keep it. 2780 * The only case left in passive open processing is the 2781 * check for SACK. 2782 * For ECN, it should probably be like SACK. But the 2783 * current value is binary, so we treat it like the other 2784 * cases. The metric only controls active open.For passive 2785 * open, the ndd param, tcp_ecn_permitted, controls the 2786 * behavior. 2787 */ 2788 if (!tcp_detached) { 2789 /* 2790 * The if check means that the following can only 2791 * be turned on by the metrics only IRE, but not off. 2792 */ 2793 if (ire_uinfo->iulp_tstamp_ok) 2794 tcp->tcp_snd_ts_ok = B_TRUE; 2795 if (ire_uinfo->iulp_wscale_ok) 2796 tcp->tcp_snd_ws_ok = B_TRUE; 2797 if (ire_uinfo->iulp_sack == 2) 2798 tcp->tcp_snd_sack_ok = B_TRUE; 2799 if (ire_uinfo->iulp_ecn_ok) 2800 tcp->tcp_ecn_ok = B_TRUE; 2801 } else { 2802 /* 2803 * Passive open. 2804 * 2805 * As above, the if check means that SACK can only be 2806 * turned on by the metric only IRE. 2807 */ 2808 if (ire_uinfo->iulp_sack > 0) { 2809 tcp->tcp_snd_sack_ok = B_TRUE; 2810 } 2811 } 2812 } 2813 2814 2815 /* 2816 * XXX: Note that currently, ire_max_frag can be as small as 68 2817 * because of PMTUd. So tcp_mss may go to negative if combined 2818 * length of all those options exceeds 28 bytes. But because 2819 * of the tcp_mss_min check below, we may not have a problem if 2820 * tcp_mss_min is of a reasonable value. The default is 1 so 2821 * the negative problem still exists. And the check defeats PMTUd. 2822 * In fact, if PMTUd finds that the MSS should be smaller than 2823 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2824 * value. 2825 * 2826 * We do not deal with that now. All those problems related to 2827 * PMTUd will be fixed later. 2828 */ 2829 ASSERT(ire->ire_max_frag != 0); 2830 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2831 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2832 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2833 mss = MIN(mss, IPV6_MIN_MTU); 2834 } 2835 } 2836 2837 /* Sanity check for MSS value. */ 2838 if (tcp->tcp_ipversion == IPV4_VERSION) 2839 mss_max = tcp_mss_max_ipv4; 2840 else 2841 mss_max = tcp_mss_max_ipv6; 2842 2843 if (tcp->tcp_ipversion == IPV6_VERSION && 2844 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2845 /* 2846 * After receiving an ICMPv6 "packet too big" message with a 2847 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2848 * will insert a 8-byte fragment header in every packet; we 2849 * reduce the MSS by that amount here. 2850 */ 2851 mss -= sizeof (ip6_frag_t); 2852 } 2853 2854 if (tcp->tcp_ipsec_overhead == 0) 2855 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2856 2857 mss -= tcp->tcp_ipsec_overhead; 2858 2859 if (mss < tcp_mss_min) 2860 mss = tcp_mss_min; 2861 if (mss > mss_max) 2862 mss = mss_max; 2863 2864 /* Note that this is the maximum MSS, excluding all options. */ 2865 tcp->tcp_mss = mss; 2866 2867 /* 2868 * Initialize the ISS here now that we have the full connection ID. 2869 * The RFC 1948 method of initial sequence number generation requires 2870 * knowledge of the full connection ID before setting the ISS. 2871 */ 2872 2873 tcp_iss_init(tcp); 2874 2875 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2876 tcp->tcp_loopback = B_TRUE; 2877 2878 if (tcp->tcp_ipversion == IPV4_VERSION) { 2879 hsp = tcp_hsp_lookup(tcp->tcp_remote); 2880 } else { 2881 hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6); 2882 } 2883 2884 if (hsp != NULL) { 2885 /* Only modify if we're going to make them bigger */ 2886 if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) { 2887 tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace; 2888 if (tcp_snd_lowat_fraction != 0) 2889 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2890 tcp_snd_lowat_fraction; 2891 } 2892 2893 if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) { 2894 tcp->tcp_rwnd = hsp->tcp_hsp_recvspace; 2895 } 2896 2897 /* Copy timestamp flag only for active open */ 2898 if (!tcp_detached) 2899 tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp; 2900 } 2901 2902 if (sire != NULL) 2903 IRE_REFRELE(sire); 2904 2905 /* 2906 * If we got an IRE_CACHE and an ILL, go through their properties; 2907 * otherwise, this is deferred until later when we have an IRE_CACHE. 2908 */ 2909 if (tcp->tcp_loopback || 2910 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 2911 /* 2912 * For incoming, see if this tcp may be MDT-capable. For 2913 * outgoing, this process has been taken care of through 2914 * tcp_rput_other. 2915 */ 2916 tcp_ire_ill_check(tcp, ire, ill, incoming); 2917 tcp->tcp_ire_ill_check_done = B_TRUE; 2918 } 2919 2920 mutex_enter(&connp->conn_lock); 2921 /* 2922 * Make sure that conn is not marked incipient 2923 * for incoming connections. A blind 2924 * removal of incipient flag is cheaper than 2925 * check and removal. 2926 */ 2927 connp->conn_state_flags &= ~CONN_INCIPIENT; 2928 2929 /* Must not cache forwarding table routes. */ 2930 if (ire_cacheable) { 2931 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 2932 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 2933 connp->conn_ire_cache = ire; 2934 IRE_UNTRACE_REF(ire); 2935 rw_exit(&ire->ire_bucket->irb_lock); 2936 mutex_exit(&connp->conn_lock); 2937 return (1); 2938 } 2939 rw_exit(&ire->ire_bucket->irb_lock); 2940 } 2941 mutex_exit(&connp->conn_lock); 2942 2943 if (ire->ire_mp == NULL) 2944 ire_refrele(ire); 2945 return (1); 2946 2947 error: 2948 if (ire->ire_mp == NULL) 2949 ire_refrele(ire); 2950 if (sire != NULL) 2951 ire_refrele(sire); 2952 return (0); 2953 } 2954 2955 /* 2956 * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a 2957 * O_T_BIND_REQ/T_BIND_REQ message. 2958 */ 2959 static void 2960 tcp_bind(tcp_t *tcp, mblk_t *mp) 2961 { 2962 sin_t *sin; 2963 sin6_t *sin6; 2964 mblk_t *mp1; 2965 in_port_t requested_port; 2966 in_port_t allocated_port; 2967 struct T_bind_req *tbr; 2968 boolean_t bind_to_req_port_only; 2969 boolean_t backlog_update = B_FALSE; 2970 boolean_t user_specified; 2971 in6_addr_t v6addr; 2972 ipaddr_t v4addr; 2973 uint_t origipversion; 2974 int err; 2975 queue_t *q = tcp->tcp_wq; 2976 conn_t *connp; 2977 mlp_type_t addrtype, mlptype; 2978 zone_t *zone; 2979 cred_t *cr; 2980 in_port_t mlp_port; 2981 2982 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 2983 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 2984 if (tcp->tcp_debug) { 2985 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2986 "tcp_bind: bad req, len %u", 2987 (uint_t)(mp->b_wptr - mp->b_rptr)); 2988 } 2989 tcp_err_ack(tcp, mp, TPROTO, 0); 2990 return; 2991 } 2992 /* Make sure the largest address fits */ 2993 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 2994 if (mp1 == NULL) { 2995 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 2996 return; 2997 } 2998 mp = mp1; 2999 tbr = (struct T_bind_req *)mp->b_rptr; 3000 if (tcp->tcp_state >= TCPS_BOUND) { 3001 if ((tcp->tcp_state == TCPS_BOUND || 3002 tcp->tcp_state == TCPS_LISTEN) && 3003 tcp->tcp_conn_req_max != tbr->CONIND_number && 3004 tbr->CONIND_number > 0) { 3005 /* 3006 * Handle listen() increasing CONIND_number. 3007 * This is more "liberal" then what the TPI spec 3008 * requires but is needed to avoid a t_unbind 3009 * when handling listen() since the port number 3010 * might be "stolen" between the unbind and bind. 3011 */ 3012 backlog_update = B_TRUE; 3013 goto do_bind; 3014 } 3015 if (tcp->tcp_debug) { 3016 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3017 "tcp_bind: bad state, %d", tcp->tcp_state); 3018 } 3019 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 3020 return; 3021 } 3022 origipversion = tcp->tcp_ipversion; 3023 3024 switch (tbr->ADDR_length) { 3025 case 0: /* request for a generic port */ 3026 tbr->ADDR_offset = sizeof (struct T_bind_req); 3027 if (tcp->tcp_family == AF_INET) { 3028 tbr->ADDR_length = sizeof (sin_t); 3029 sin = (sin_t *)&tbr[1]; 3030 *sin = sin_null; 3031 sin->sin_family = AF_INET; 3032 mp->b_wptr = (uchar_t *)&sin[1]; 3033 tcp->tcp_ipversion = IPV4_VERSION; 3034 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); 3035 } else { 3036 ASSERT(tcp->tcp_family == AF_INET6); 3037 tbr->ADDR_length = sizeof (sin6_t); 3038 sin6 = (sin6_t *)&tbr[1]; 3039 *sin6 = sin6_null; 3040 sin6->sin6_family = AF_INET6; 3041 mp->b_wptr = (uchar_t *)&sin6[1]; 3042 tcp->tcp_ipversion = IPV6_VERSION; 3043 V6_SET_ZERO(v6addr); 3044 } 3045 requested_port = 0; 3046 break; 3047 3048 case sizeof (sin_t): /* Complete IPv4 address */ 3049 sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, 3050 sizeof (sin_t)); 3051 if (sin == NULL || !OK_32PTR((char *)sin)) { 3052 if (tcp->tcp_debug) { 3053 (void) strlog(TCP_MOD_ID, 0, 1, 3054 SL_ERROR|SL_TRACE, 3055 "tcp_bind: bad address parameter, " 3056 "offset %d, len %d", 3057 tbr->ADDR_offset, tbr->ADDR_length); 3058 } 3059 tcp_err_ack(tcp, mp, TPROTO, 0); 3060 return; 3061 } 3062 /* 3063 * With sockets sockfs will accept bogus sin_family in 3064 * bind() and replace it with the family used in the socket 3065 * call. 3066 */ 3067 if (sin->sin_family != AF_INET || 3068 tcp->tcp_family != AF_INET) { 3069 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3070 return; 3071 } 3072 requested_port = ntohs(sin->sin_port); 3073 tcp->tcp_ipversion = IPV4_VERSION; 3074 v4addr = sin->sin_addr.s_addr; 3075 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 3076 break; 3077 3078 case sizeof (sin6_t): /* Complete IPv6 address */ 3079 sin6 = (sin6_t *)mi_offset_param(mp, 3080 tbr->ADDR_offset, sizeof (sin6_t)); 3081 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 3082 if (tcp->tcp_debug) { 3083 (void) strlog(TCP_MOD_ID, 0, 1, 3084 SL_ERROR|SL_TRACE, 3085 "tcp_bind: bad IPv6 address parameter, " 3086 "offset %d, len %d", tbr->ADDR_offset, 3087 tbr->ADDR_length); 3088 } 3089 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 3090 return; 3091 } 3092 if (sin6->sin6_family != AF_INET6 || 3093 tcp->tcp_family != AF_INET6) { 3094 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3095 return; 3096 } 3097 requested_port = ntohs(sin6->sin6_port); 3098 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 3099 IPV4_VERSION : IPV6_VERSION; 3100 v6addr = sin6->sin6_addr; 3101 break; 3102 3103 default: 3104 if (tcp->tcp_debug) { 3105 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3106 "tcp_bind: bad address length, %d", 3107 tbr->ADDR_length); 3108 } 3109 tcp_err_ack(tcp, mp, TBADADDR, 0); 3110 return; 3111 } 3112 tcp->tcp_bound_source_v6 = v6addr; 3113 3114 /* Check for change in ipversion */ 3115 if (origipversion != tcp->tcp_ipversion) { 3116 ASSERT(tcp->tcp_family == AF_INET6); 3117 err = tcp->tcp_ipversion == IPV6_VERSION ? 3118 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 3119 if (err) { 3120 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3121 return; 3122 } 3123 } 3124 3125 /* 3126 * Initialize family specific fields. Copy of the src addr. 3127 * in tcp_t is needed for the lookup funcs. 3128 */ 3129 if (tcp->tcp_ipversion == IPV6_VERSION) { 3130 tcp->tcp_ip6h->ip6_src = v6addr; 3131 } else { 3132 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 3133 } 3134 tcp->tcp_ip_src_v6 = v6addr; 3135 3136 /* 3137 * For O_T_BIND_REQ: 3138 * Verify that the target port/addr is available, or choose 3139 * another. 3140 * For T_BIND_REQ: 3141 * Verify that the target port/addr is available or fail. 3142 * In both cases when it succeeds the tcp is inserted in the 3143 * bind hash table. This ensures that the operation is atomic 3144 * under the lock on the hash bucket. 3145 */ 3146 bind_to_req_port_only = requested_port != 0 && 3147 tbr->PRIM_type != O_T_BIND_REQ; 3148 /* 3149 * Get a valid port (within the anonymous range and should not 3150 * be a privileged one) to use if the user has not given a port. 3151 * If multiple threads are here, they may all start with 3152 * with the same initial port. But, it should be fine as long as 3153 * tcp_bindi will ensure that no two threads will be assigned 3154 * the same port. 3155 * 3156 * NOTE: XXX If a privileged process asks for an anonymous port, we 3157 * still check for ports only in the range > tcp_smallest_non_priv_port, 3158 * unless TCP_ANONPRIVBIND option is set. 3159 */ 3160 mlptype = mlptSingle; 3161 mlp_port = requested_port; 3162 if (requested_port == 0) { 3163 requested_port = tcp->tcp_anon_priv_bind ? 3164 tcp_get_next_priv_port(tcp) : 3165 tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE); 3166 if (requested_port == 0) { 3167 tcp_err_ack(tcp, mp, TNOADDR, 0); 3168 return; 3169 } 3170 user_specified = B_FALSE; 3171 3172 /* 3173 * If the user went through one of the RPC interfaces to create 3174 * this socket and RPC is MLP in this zone, then give him an 3175 * anonymous MLP. 3176 */ 3177 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3178 connp = tcp->tcp_connp; 3179 if (connp->conn_anon_mlp && is_system_labeled()) { 3180 zone = crgetzone(cr); 3181 addrtype = tsol_mlp_addr_type(zone->zone_id, 3182 IPV6_VERSION, &v6addr); 3183 if (addrtype == mlptSingle) { 3184 tcp_err_ack(tcp, mp, TNOADDR, 0); 3185 return; 3186 } 3187 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3188 PMAPPORT, addrtype); 3189 mlp_port = PMAPPORT; 3190 } 3191 } else { 3192 int i; 3193 boolean_t priv = B_FALSE; 3194 3195 /* 3196 * If the requested_port is in the well-known privileged range, 3197 * verify that the stream was opened by a privileged user. 3198 * Note: No locks are held when inspecting tcp_g_*epriv_ports 3199 * but instead the code relies on: 3200 * - the fact that the address of the array and its size never 3201 * changes 3202 * - the atomic assignment of the elements of the array 3203 */ 3204 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3205 if (requested_port < tcp_smallest_nonpriv_port) { 3206 priv = B_TRUE; 3207 } else { 3208 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 3209 if (requested_port == 3210 tcp_g_epriv_ports[i]) { 3211 priv = B_TRUE; 3212 break; 3213 } 3214 } 3215 } 3216 if (priv) { 3217 if (secpolicy_net_privaddr(cr, requested_port) != 0) { 3218 if (tcp->tcp_debug) { 3219 (void) strlog(TCP_MOD_ID, 0, 1, 3220 SL_ERROR|SL_TRACE, 3221 "tcp_bind: no priv for port %d", 3222 requested_port); 3223 } 3224 tcp_err_ack(tcp, mp, TACCES, 0); 3225 return; 3226 } 3227 } 3228 user_specified = B_TRUE; 3229 3230 connp = tcp->tcp_connp; 3231 if (is_system_labeled()) { 3232 zone = crgetzone(cr); 3233 addrtype = tsol_mlp_addr_type(zone->zone_id, 3234 IPV6_VERSION, &v6addr); 3235 if (addrtype == mlptSingle) { 3236 tcp_err_ack(tcp, mp, TNOADDR, 0); 3237 return; 3238 } 3239 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3240 requested_port, addrtype); 3241 } 3242 } 3243 3244 if (mlptype != mlptSingle) { 3245 if (secpolicy_net_bindmlp(cr) != 0) { 3246 if (tcp->tcp_debug) { 3247 (void) strlog(TCP_MOD_ID, 0, 1, 3248 SL_ERROR|SL_TRACE, 3249 "tcp_bind: no priv for multilevel port %d", 3250 requested_port); 3251 } 3252 tcp_err_ack(tcp, mp, TACCES, 0); 3253 return; 3254 } 3255 3256 /* 3257 * If we're specifically binding a shared IP address and the 3258 * port is MLP on shared addresses, then check to see if this 3259 * zone actually owns the MLP. Reject if not. 3260 */ 3261 if (mlptype == mlptShared && addrtype == mlptShared) { 3262 zoneid_t mlpzone; 3263 3264 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 3265 htons(mlp_port)); 3266 if (connp->conn_zoneid != mlpzone) { 3267 if (tcp->tcp_debug) { 3268 (void) strlog(TCP_MOD_ID, 0, 1, 3269 SL_ERROR|SL_TRACE, 3270 "tcp_bind: attempt to bind port " 3271 "%d on shared addr in zone %d " 3272 "(should be %d)", 3273 mlp_port, connp->conn_zoneid, 3274 mlpzone); 3275 } 3276 tcp_err_ack(tcp, mp, TACCES, 0); 3277 return; 3278 } 3279 } 3280 3281 if (!user_specified) { 3282 err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3283 requested_port, B_TRUE); 3284 if (err != 0) { 3285 if (tcp->tcp_debug) { 3286 (void) strlog(TCP_MOD_ID, 0, 1, 3287 SL_ERROR|SL_TRACE, 3288 "tcp_bind: cannot establish anon " 3289 "MLP for port %d", 3290 requested_port); 3291 } 3292 tcp_err_ack(tcp, mp, TSYSERR, err); 3293 return; 3294 } 3295 connp->conn_anon_port = B_TRUE; 3296 } 3297 connp->conn_mlp_type = mlptype; 3298 } 3299 3300 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 3301 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 3302 3303 if (allocated_port == 0) { 3304 connp->conn_mlp_type = mlptSingle; 3305 if (connp->conn_anon_port) { 3306 connp->conn_anon_port = B_FALSE; 3307 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3308 requested_port, B_FALSE); 3309 } 3310 if (bind_to_req_port_only) { 3311 if (tcp->tcp_debug) { 3312 (void) strlog(TCP_MOD_ID, 0, 1, 3313 SL_ERROR|SL_TRACE, 3314 "tcp_bind: requested addr busy"); 3315 } 3316 tcp_err_ack(tcp, mp, TADDRBUSY, 0); 3317 } else { 3318 /* If we are out of ports, fail the bind. */ 3319 if (tcp->tcp_debug) { 3320 (void) strlog(TCP_MOD_ID, 0, 1, 3321 SL_ERROR|SL_TRACE, 3322 "tcp_bind: out of ports?"); 3323 } 3324 tcp_err_ack(tcp, mp, TNOADDR, 0); 3325 } 3326 return; 3327 } 3328 ASSERT(tcp->tcp_state == TCPS_BOUND); 3329 do_bind: 3330 if (!backlog_update) { 3331 if (tcp->tcp_family == AF_INET) 3332 sin->sin_port = htons(allocated_port); 3333 else 3334 sin6->sin6_port = htons(allocated_port); 3335 } 3336 if (tcp->tcp_family == AF_INET) { 3337 if (tbr->CONIND_number != 0) { 3338 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3339 sizeof (sin_t)); 3340 } else { 3341 /* Just verify the local IP address */ 3342 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN); 3343 } 3344 } else { 3345 if (tbr->CONIND_number != 0) { 3346 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3347 sizeof (sin6_t)); 3348 } else { 3349 /* Just verify the local IP address */ 3350 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3351 IPV6_ADDR_LEN); 3352 } 3353 } 3354 if (mp1 == NULL) { 3355 if (connp->conn_anon_port) { 3356 connp->conn_anon_port = B_FALSE; 3357 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3358 requested_port, B_FALSE); 3359 } 3360 connp->conn_mlp_type = mlptSingle; 3361 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3362 return; 3363 } 3364 3365 tbr->PRIM_type = T_BIND_ACK; 3366 mp->b_datap->db_type = M_PCPROTO; 3367 3368 /* Chain in the reply mp for tcp_rput() */ 3369 mp1->b_cont = mp; 3370 mp = mp1; 3371 3372 tcp->tcp_conn_req_max = tbr->CONIND_number; 3373 if (tcp->tcp_conn_req_max) { 3374 if (tcp->tcp_conn_req_max < tcp_conn_req_min) 3375 tcp->tcp_conn_req_max = tcp_conn_req_min; 3376 if (tcp->tcp_conn_req_max > tcp_conn_req_max_q) 3377 tcp->tcp_conn_req_max = tcp_conn_req_max_q; 3378 /* 3379 * If this is a listener, do not reset the eager list 3380 * and other stuffs. Note that we don't check if the 3381 * existing eager list meets the new tcp_conn_req_max 3382 * requirement. 3383 */ 3384 if (tcp->tcp_state != TCPS_LISTEN) { 3385 tcp->tcp_state = TCPS_LISTEN; 3386 /* Initialize the chain. Don't need the eager_lock */ 3387 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 3388 tcp->tcp_second_ctimer_threshold = 3389 tcp_ip_abort_linterval; 3390 } 3391 } 3392 3393 /* 3394 * We can call ip_bind directly which returns a T_BIND_ACK mp. The 3395 * processing continues in tcp_rput_other(). 3396 */ 3397 if (tcp->tcp_family == AF_INET6) { 3398 ASSERT(tcp->tcp_connp->conn_af_isv6); 3399 mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp); 3400 } else { 3401 ASSERT(!tcp->tcp_connp->conn_af_isv6); 3402 mp = ip_bind_v4(q, mp, tcp->tcp_connp); 3403 } 3404 /* 3405 * If the bind cannot complete immediately 3406 * IP will arrange to call tcp_rput_other 3407 * when the bind completes. 3408 */ 3409 if (mp != NULL) { 3410 tcp_rput_other(tcp, mp); 3411 } else { 3412 /* 3413 * Bind will be resumed later. Need to ensure 3414 * that conn doesn't disappear when that happens. 3415 * This will be decremented in ip_resume_tcp_bind(). 3416 */ 3417 CONN_INC_REF(tcp->tcp_connp); 3418 } 3419 } 3420 3421 3422 /* 3423 * If the "bind_to_req_port_only" parameter is set, if the requested port 3424 * number is available, return it, If not return 0 3425 * 3426 * If "bind_to_req_port_only" parameter is not set and 3427 * If the requested port number is available, return it. If not, return 3428 * the first anonymous port we happen across. If no anonymous ports are 3429 * available, return 0. addr is the requested local address, if any. 3430 * 3431 * In either case, when succeeding update the tcp_t to record the port number 3432 * and insert it in the bind hash table. 3433 * 3434 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3435 * without setting SO_REUSEADDR. This is needed so that they 3436 * can be viewed as two independent transport protocols. 3437 */ 3438 static in_port_t 3439 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3440 int reuseaddr, boolean_t quick_connect, 3441 boolean_t bind_to_req_port_only, boolean_t user_specified) 3442 { 3443 /* number of times we have run around the loop */ 3444 int count = 0; 3445 /* maximum number of times to run around the loop */ 3446 int loopmax; 3447 conn_t *connp = tcp->tcp_connp; 3448 zoneid_t zoneid = connp->conn_zoneid; 3449 3450 /* 3451 * Lookup for free addresses is done in a loop and "loopmax" 3452 * influences how long we spin in the loop 3453 */ 3454 if (bind_to_req_port_only) { 3455 /* 3456 * If the requested port is busy, don't bother to look 3457 * for a new one. Setting loop maximum count to 1 has 3458 * that effect. 3459 */ 3460 loopmax = 1; 3461 } else { 3462 /* 3463 * If the requested port is busy, look for a free one 3464 * in the anonymous port range. 3465 * Set loopmax appropriately so that one does not look 3466 * forever in the case all of the anonymous ports are in use. 3467 */ 3468 if (tcp->tcp_anon_priv_bind) { 3469 /* 3470 * loopmax = 3471 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3472 */ 3473 loopmax = IPPORT_RESERVED - tcp_min_anonpriv_port; 3474 } else { 3475 loopmax = (tcp_largest_anon_port - 3476 tcp_smallest_anon_port + 1); 3477 } 3478 } 3479 do { 3480 uint16_t lport; 3481 tf_t *tbf; 3482 tcp_t *ltcp; 3483 conn_t *lconnp; 3484 3485 lport = htons(port); 3486 3487 /* 3488 * Ensure that the tcp_t is not currently in the bind hash. 3489 * Hold the lock on the hash bucket to ensure that 3490 * the duplicate check plus the insertion is an atomic 3491 * operation. 3492 * 3493 * This function does an inline lookup on the bind hash list 3494 * Make sure that we access only members of tcp_t 3495 * and that we don't look at tcp_tcp, since we are not 3496 * doing a CONN_INC_REF. 3497 */ 3498 tcp_bind_hash_remove(tcp); 3499 tbf = &tcp_bind_fanout[TCP_BIND_HASH(lport)]; 3500 mutex_enter(&tbf->tf_lock); 3501 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3502 ltcp = ltcp->tcp_bind_hash) { 3503 if (lport != ltcp->tcp_lport) 3504 continue; 3505 3506 lconnp = ltcp->tcp_connp; 3507 3508 /* 3509 * On a labeled system, we must treat bindings to ports 3510 * on shared IP addresses by sockets with MAC exemption 3511 * privilege as being in all zones, as there's 3512 * otherwise no way to identify the right receiver. 3513 */ 3514 if (lconnp->conn_zoneid != zoneid && 3515 !lconnp->conn_mac_exempt && 3516 !connp->conn_mac_exempt) 3517 continue; 3518 3519 /* 3520 * If TCP_EXCLBIND is set for either the bound or 3521 * binding endpoint, the semantics of bind 3522 * is changed according to the following. 3523 * 3524 * spec = specified address (v4 or v6) 3525 * unspec = unspecified address (v4 or v6) 3526 * A = specified addresses are different for endpoints 3527 * 3528 * bound bind to allowed 3529 * ------------------------------------- 3530 * unspec unspec no 3531 * unspec spec no 3532 * spec unspec no 3533 * spec spec yes if A 3534 * 3535 * For labeled systems, SO_MAC_EXEMPT behaves the same 3536 * as UDP_EXCLBIND, except that zoneid is ignored. 3537 * 3538 * Note: 3539 * 3540 * 1. Because of TLI semantics, an endpoint can go 3541 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3542 * TCPS_BOUND, depending on whether it is originally 3543 * a listener or not. That is why we need to check 3544 * for states greater than or equal to TCPS_BOUND 3545 * here. 3546 * 3547 * 2. Ideally, we should only check for state equals 3548 * to TCPS_LISTEN. And the following check should be 3549 * added. 3550 * 3551 * if (ltcp->tcp_state == TCPS_LISTEN || 3552 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3553 * ... 3554 * } 3555 * 3556 * The semantics will be changed to this. If the 3557 * endpoint on the list is in state not equal to 3558 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3559 * set, let the bind succeed. 3560 * 3561 * But because of (1), we cannot do that now. If 3562 * in future, we can change this going back semantics, 3563 * we can add the above check. 3564 */ 3565 if (ltcp->tcp_exclbind || tcp->tcp_exclbind || 3566 lconnp->conn_mac_exempt || connp->conn_mac_exempt) { 3567 if (V6_OR_V4_INADDR_ANY( 3568 ltcp->tcp_bound_source_v6) || 3569 V6_OR_V4_INADDR_ANY(*laddr) || 3570 IN6_ARE_ADDR_EQUAL(laddr, 3571 <cp->tcp_bound_source_v6)) { 3572 break; 3573 } 3574 continue; 3575 } 3576 3577 /* 3578 * Check ipversion to allow IPv4 and IPv6 sockets to 3579 * have disjoint port number spaces, if *_EXCLBIND 3580 * is not set and only if the application binds to a 3581 * specific port. We use the same autoassigned port 3582 * number space for IPv4 and IPv6 sockets. 3583 */ 3584 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3585 bind_to_req_port_only) 3586 continue; 3587 3588 /* 3589 * Ideally, we should make sure that the source 3590 * address, remote address, and remote port in the 3591 * four tuple for this tcp-connection is unique. 3592 * However, trying to find out the local source 3593 * address would require too much code duplication 3594 * with IP, since IP needs needs to have that code 3595 * to support userland TCP implementations. 3596 */ 3597 if (quick_connect && 3598 (ltcp->tcp_state > TCPS_LISTEN) && 3599 ((tcp->tcp_fport != ltcp->tcp_fport) || 3600 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3601 <cp->tcp_remote_v6))) 3602 continue; 3603 3604 if (!reuseaddr) { 3605 /* 3606 * No socket option SO_REUSEADDR. 3607 * If existing port is bound to 3608 * a non-wildcard IP address 3609 * and the requesting stream is 3610 * bound to a distinct 3611 * different IP addresses 3612 * (non-wildcard, also), keep 3613 * going. 3614 */ 3615 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3616 !V6_OR_V4_INADDR_ANY( 3617 ltcp->tcp_bound_source_v6) && 3618 !IN6_ARE_ADDR_EQUAL(laddr, 3619 <cp->tcp_bound_source_v6)) 3620 continue; 3621 if (ltcp->tcp_state >= TCPS_BOUND) { 3622 /* 3623 * This port is being used and 3624 * its state is >= TCPS_BOUND, 3625 * so we can't bind to it. 3626 */ 3627 break; 3628 } 3629 } else { 3630 /* 3631 * socket option SO_REUSEADDR is set on the 3632 * binding tcp_t. 3633 * 3634 * If two streams are bound to 3635 * same IP address or both addr 3636 * and bound source are wildcards 3637 * (INADDR_ANY), we want to stop 3638 * searching. 3639 * We have found a match of IP source 3640 * address and source port, which is 3641 * refused regardless of the 3642 * SO_REUSEADDR setting, so we break. 3643 */ 3644 if (IN6_ARE_ADDR_EQUAL(laddr, 3645 <cp->tcp_bound_source_v6) && 3646 (ltcp->tcp_state == TCPS_LISTEN || 3647 ltcp->tcp_state == TCPS_BOUND)) 3648 break; 3649 } 3650 } 3651 if (ltcp != NULL) { 3652 /* The port number is busy */ 3653 mutex_exit(&tbf->tf_lock); 3654 } else { 3655 /* 3656 * This port is ours. Insert in fanout and mark as 3657 * bound to prevent others from getting the port 3658 * number. 3659 */ 3660 tcp->tcp_state = TCPS_BOUND; 3661 tcp->tcp_lport = htons(port); 3662 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3663 3664 ASSERT(&tcp_bind_fanout[TCP_BIND_HASH( 3665 tcp->tcp_lport)] == tbf); 3666 tcp_bind_hash_insert(tbf, tcp, 1); 3667 3668 mutex_exit(&tbf->tf_lock); 3669 3670 /* 3671 * We don't want tcp_next_port_to_try to "inherit" 3672 * a port number supplied by the user in a bind. 3673 */ 3674 if (user_specified) 3675 return (port); 3676 3677 /* 3678 * This is the only place where tcp_next_port_to_try 3679 * is updated. After the update, it may or may not 3680 * be in the valid range. 3681 */ 3682 if (!tcp->tcp_anon_priv_bind) 3683 tcp_next_port_to_try = port + 1; 3684 return (port); 3685 } 3686 3687 if (tcp->tcp_anon_priv_bind) { 3688 port = tcp_get_next_priv_port(tcp); 3689 } else { 3690 if (count == 0 && user_specified) { 3691 /* 3692 * We may have to return an anonymous port. So 3693 * get one to start with. 3694 */ 3695 port = 3696 tcp_update_next_port(tcp_next_port_to_try, 3697 tcp, B_TRUE); 3698 user_specified = B_FALSE; 3699 } else { 3700 port = tcp_update_next_port(port + 1, tcp, 3701 B_FALSE); 3702 } 3703 } 3704 if (port == 0) 3705 break; 3706 3707 /* 3708 * Don't let this loop run forever in the case where 3709 * all of the anonymous ports are in use. 3710 */ 3711 } while (++count < loopmax); 3712 return (0); 3713 } 3714 3715 /* 3716 * We are dying for some reason. Try to do it gracefully. (May be called 3717 * as writer.) 3718 * 3719 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3720 * done by a service procedure). 3721 * TBD - Should the return value distinguish between the tcp_t being 3722 * freed and it being reinitialized? 3723 */ 3724 static int 3725 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3726 { 3727 mblk_t *mp; 3728 queue_t *q; 3729 3730 TCP_CLD_STAT(tag); 3731 3732 #if TCP_TAG_CLEAN_DEATH 3733 tcp->tcp_cleandeathtag = tag; 3734 #endif 3735 3736 if (tcp->tcp_linger_tid != 0 && 3737 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3738 tcp_stop_lingering(tcp); 3739 } 3740 3741 ASSERT(tcp != NULL); 3742 ASSERT((tcp->tcp_family == AF_INET && 3743 tcp->tcp_ipversion == IPV4_VERSION) || 3744 (tcp->tcp_family == AF_INET6 && 3745 (tcp->tcp_ipversion == IPV4_VERSION || 3746 tcp->tcp_ipversion == IPV6_VERSION))); 3747 3748 if (TCP_IS_DETACHED(tcp)) { 3749 if (tcp->tcp_hard_binding) { 3750 /* 3751 * Its an eager that we are dealing with. We close the 3752 * eager but in case a conn_ind has already gone to the 3753 * listener, let tcp_accept_finish() send a discon_ind 3754 * to the listener and drop the last reference. If the 3755 * listener doesn't even know about the eager i.e. the 3756 * conn_ind hasn't gone up, blow away the eager and drop 3757 * the last reference as well. If the conn_ind has gone 3758 * up, state should be BOUND. tcp_accept_finish 3759 * will figure out that the connection has received a 3760 * RST and will send a DISCON_IND to the application. 3761 */ 3762 tcp_closei_local(tcp); 3763 if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) { 3764 CONN_DEC_REF(tcp->tcp_connp); 3765 } else { 3766 tcp->tcp_state = TCPS_BOUND; 3767 } 3768 } else { 3769 tcp_close_detached(tcp); 3770 } 3771 return (0); 3772 } 3773 3774 TCP_STAT(tcp_clean_death_nondetached); 3775 3776 /* 3777 * If T_ORDREL_IND has not been sent yet (done when service routine 3778 * is run) postpone cleaning up the endpoint until service routine 3779 * has sent up the T_ORDREL_IND. Avoid clearing out an existing 3780 * client_errno since tcp_close uses the client_errno field. 3781 */ 3782 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 3783 if (err != 0) 3784 tcp->tcp_client_errno = err; 3785 3786 tcp->tcp_deferred_clean_death = B_TRUE; 3787 return (-1); 3788 } 3789 3790 q = tcp->tcp_rq; 3791 3792 /* Trash all inbound data */ 3793 flushq(q, FLUSHALL); 3794 3795 /* 3796 * If we are at least part way open and there is error 3797 * (err==0 implies no error) 3798 * notify our client by a T_DISCON_IND. 3799 */ 3800 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3801 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3802 !TCP_IS_SOCKET(tcp)) { 3803 /* 3804 * Send M_FLUSH according to TPI. Because sockets will 3805 * (and must) ignore FLUSHR we do that only for TPI 3806 * endpoints and sockets in STREAMS mode. 3807 */ 3808 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3809 } 3810 if (tcp->tcp_debug) { 3811 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3812 "tcp_clean_death: discon err %d", err); 3813 } 3814 mp = mi_tpi_discon_ind(NULL, err, 0); 3815 if (mp != NULL) { 3816 putnext(q, mp); 3817 } else { 3818 if (tcp->tcp_debug) { 3819 (void) strlog(TCP_MOD_ID, 0, 1, 3820 SL_ERROR|SL_TRACE, 3821 "tcp_clean_death, sending M_ERROR"); 3822 } 3823 (void) putnextctl1(q, M_ERROR, EPROTO); 3824 } 3825 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3826 /* SYN_SENT or SYN_RCVD */ 3827 BUMP_MIB(&tcp_mib, tcpAttemptFails); 3828 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3829 /* ESTABLISHED or CLOSE_WAIT */ 3830 BUMP_MIB(&tcp_mib, tcpEstabResets); 3831 } 3832 } 3833 3834 tcp_reinit(tcp); 3835 return (-1); 3836 } 3837 3838 /* 3839 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3840 * to expire, stop the wait and finish the close. 3841 */ 3842 static void 3843 tcp_stop_lingering(tcp_t *tcp) 3844 { 3845 clock_t delta = 0; 3846 3847 tcp->tcp_linger_tid = 0; 3848 if (tcp->tcp_state > TCPS_LISTEN) { 3849 tcp_acceptor_hash_remove(tcp); 3850 if (tcp->tcp_flow_stopped) { 3851 tcp_clrqfull(tcp); 3852 } 3853 3854 if (tcp->tcp_timer_tid != 0) { 3855 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3856 tcp->tcp_timer_tid = 0; 3857 } 3858 /* 3859 * Need to cancel those timers which will not be used when 3860 * TCP is detached. This has to be done before the tcp_wq 3861 * is set to the global queue. 3862 */ 3863 tcp_timers_stop(tcp); 3864 3865 3866 tcp->tcp_detached = B_TRUE; 3867 tcp->tcp_rq = tcp_g_q; 3868 tcp->tcp_wq = WR(tcp_g_q); 3869 3870 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3871 tcp_time_wait_append(tcp); 3872 TCP_DBGSTAT(tcp_detach_time_wait); 3873 goto finish; 3874 } 3875 3876 /* 3877 * If delta is zero the timer event wasn't executed and was 3878 * successfully canceled. In this case we need to restart it 3879 * with the minimal delta possible. 3880 */ 3881 if (delta >= 0) { 3882 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3883 delta ? delta : 1); 3884 } 3885 } else { 3886 tcp_closei_local(tcp); 3887 CONN_DEC_REF(tcp->tcp_connp); 3888 } 3889 finish: 3890 /* Signal closing thread that it can complete close */ 3891 mutex_enter(&tcp->tcp_closelock); 3892 tcp->tcp_detached = B_TRUE; 3893 tcp->tcp_rq = tcp_g_q; 3894 tcp->tcp_wq = WR(tcp_g_q); 3895 tcp->tcp_closed = 1; 3896 cv_signal(&tcp->tcp_closecv); 3897 mutex_exit(&tcp->tcp_closelock); 3898 } 3899 3900 /* 3901 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3902 * expires. 3903 */ 3904 static void 3905 tcp_close_linger_timeout(void *arg) 3906 { 3907 conn_t *connp = (conn_t *)arg; 3908 tcp_t *tcp = connp->conn_tcp; 3909 3910 tcp->tcp_client_errno = ETIMEDOUT; 3911 tcp_stop_lingering(tcp); 3912 } 3913 3914 static int 3915 tcp_close(queue_t *q, int flags) 3916 { 3917 conn_t *connp = Q_TO_CONN(q); 3918 tcp_t *tcp = connp->conn_tcp; 3919 mblk_t *mp = &tcp->tcp_closemp; 3920 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 3921 3922 ASSERT(WR(q)->q_next == NULL); 3923 ASSERT(connp->conn_ref >= 2); 3924 ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0); 3925 3926 /* 3927 * We are being closed as /dev/tcp or /dev/tcp6. 3928 * 3929 * Mark the conn as closing. ill_pending_mp_add will not 3930 * add any mp to the pending mp list, after this conn has 3931 * started closing. Same for sq_pending_mp_add 3932 */ 3933 mutex_enter(&connp->conn_lock); 3934 connp->conn_state_flags |= CONN_CLOSING; 3935 if (connp->conn_oper_pending_ill != NULL) 3936 conn_ioctl_cleanup_reqd = B_TRUE; 3937 CONN_INC_REF_LOCKED(connp); 3938 mutex_exit(&connp->conn_lock); 3939 tcp->tcp_closeflags = (uint8_t)flags; 3940 ASSERT(connp->conn_ref >= 3); 3941 3942 (*tcp_squeue_close_proc)(connp->conn_sqp, mp, 3943 tcp_close_output, connp, SQTAG_IP_TCP_CLOSE); 3944 3945 mutex_enter(&tcp->tcp_closelock); 3946 3947 while (!tcp->tcp_closed) 3948 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 3949 mutex_exit(&tcp->tcp_closelock); 3950 /* 3951 * In the case of listener streams that have eagers in the q or q0 3952 * we wait for the eagers to drop their reference to us. tcp_rq and 3953 * tcp_wq of the eagers point to our queues. By waiting for the 3954 * refcnt to drop to 1, we are sure that the eagers have cleaned 3955 * up their queue pointers and also dropped their references to us. 3956 */ 3957 if (tcp->tcp_wait_for_eagers) { 3958 mutex_enter(&connp->conn_lock); 3959 while (connp->conn_ref != 1) { 3960 cv_wait(&connp->conn_cv, &connp->conn_lock); 3961 } 3962 mutex_exit(&connp->conn_lock); 3963 } 3964 /* 3965 * ioctl cleanup. The mp is queued in the 3966 * ill_pending_mp or in the sq_pending_mp. 3967 */ 3968 if (conn_ioctl_cleanup_reqd) 3969 conn_ioctl_cleanup(connp); 3970 3971 qprocsoff(q); 3972 inet_minor_free(ip_minor_arena, connp->conn_dev); 3973 3974 tcp->tcp_cpid = -1; 3975 3976 /* 3977 * Drop IP's reference on the conn. This is the last reference 3978 * on the connp if the state was less than established. If the 3979 * connection has gone into timewait state, then we will have 3980 * one ref for the TCP and one more ref (total of two) for the 3981 * classifier connected hash list (a timewait connections stays 3982 * in connected hash till closed). 3983 * 3984 * We can't assert the references because there might be other 3985 * transient reference places because of some walkers or queued 3986 * packets in squeue for the timewait state. 3987 */ 3988 CONN_DEC_REF(connp); 3989 q->q_ptr = WR(q)->q_ptr = NULL; 3990 return (0); 3991 } 3992 3993 static int 3994 tcpclose_accept(queue_t *q) 3995 { 3996 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 3997 3998 /* 3999 * We had opened an acceptor STREAM for sockfs which is 4000 * now being closed due to some error. 4001 */ 4002 qprocsoff(q); 4003 inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr); 4004 q->q_ptr = WR(q)->q_ptr = NULL; 4005 return (0); 4006 } 4007 4008 4009 /* 4010 * Called by streams close routine via squeues when our client blows off her 4011 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 4012 * connection politely" When SO_LINGER is set (with a non-zero linger time and 4013 * it is not a nonblocking socket) then this routine sleeps until the FIN is 4014 * acked. 4015 * 4016 * NOTE: tcp_close potentially returns error when lingering. 4017 * However, the stream head currently does not pass these errors 4018 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 4019 * errors to the application (from tsleep()) and not errors 4020 * like ECONNRESET caused by receiving a reset packet. 4021 */ 4022 4023 /* ARGSUSED */ 4024 static void 4025 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 4026 { 4027 char *msg; 4028 conn_t *connp = (conn_t *)arg; 4029 tcp_t *tcp = connp->conn_tcp; 4030 clock_t delta = 0; 4031 4032 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 4033 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 4034 4035 /* Cancel any pending timeout */ 4036 if (tcp->tcp_ordrelid != 0) { 4037 if (tcp->tcp_timeout) { 4038 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid); 4039 } 4040 tcp->tcp_ordrelid = 0; 4041 tcp->tcp_timeout = B_FALSE; 4042 } 4043 4044 mutex_enter(&tcp->tcp_eager_lock); 4045 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 4046 /* Cleanup for listener */ 4047 tcp_eager_cleanup(tcp, 0); 4048 tcp->tcp_wait_for_eagers = 1; 4049 } 4050 mutex_exit(&tcp->tcp_eager_lock); 4051 4052 connp->conn_mdt_ok = B_FALSE; 4053 tcp->tcp_mdt = B_FALSE; 4054 4055 msg = NULL; 4056 switch (tcp->tcp_state) { 4057 case TCPS_CLOSED: 4058 case TCPS_IDLE: 4059 case TCPS_BOUND: 4060 case TCPS_LISTEN: 4061 break; 4062 case TCPS_SYN_SENT: 4063 msg = "tcp_close, during connect"; 4064 break; 4065 case TCPS_SYN_RCVD: 4066 /* 4067 * Close during the connect 3-way handshake 4068 * but here there may or may not be pending data 4069 * already on queue. Process almost same as in 4070 * the ESTABLISHED state. 4071 */ 4072 /* FALLTHRU */ 4073 default: 4074 if (tcp->tcp_fused) 4075 tcp_unfuse(tcp); 4076 4077 /* 4078 * If SO_LINGER has set a zero linger time, abort the 4079 * connection with a reset. 4080 */ 4081 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 4082 msg = "tcp_close, zero lingertime"; 4083 break; 4084 } 4085 4086 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 4087 /* 4088 * Abort connection if there is unread data queued. 4089 */ 4090 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 4091 msg = "tcp_close, unread data"; 4092 break; 4093 } 4094 /* 4095 * tcp_hard_bound is now cleared thus all packets go through 4096 * tcp_lookup. This fact is used by tcp_detach below. 4097 * 4098 * We have done a qwait() above which could have possibly 4099 * drained more messages in turn causing transition to a 4100 * different state. Check whether we have to do the rest 4101 * of the processing or not. 4102 */ 4103 if (tcp->tcp_state <= TCPS_LISTEN) 4104 break; 4105 4106 /* 4107 * Transmit the FIN before detaching the tcp_t. 4108 * After tcp_detach returns this queue/perimeter 4109 * no longer owns the tcp_t thus others can modify it. 4110 */ 4111 (void) tcp_xmit_end(tcp); 4112 4113 /* 4114 * If lingering on close then wait until the fin is acked, 4115 * the SO_LINGER time passes, or a reset is sent/received. 4116 */ 4117 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 4118 !(tcp->tcp_fin_acked) && 4119 tcp->tcp_state >= TCPS_ESTABLISHED) { 4120 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 4121 tcp->tcp_client_errno = EWOULDBLOCK; 4122 } else if (tcp->tcp_client_errno == 0) { 4123 4124 ASSERT(tcp->tcp_linger_tid == 0); 4125 4126 tcp->tcp_linger_tid = TCP_TIMER(tcp, 4127 tcp_close_linger_timeout, 4128 tcp->tcp_lingertime * hz); 4129 4130 /* tcp_close_linger_timeout will finish close */ 4131 if (tcp->tcp_linger_tid == 0) 4132 tcp->tcp_client_errno = ENOSR; 4133 else 4134 return; 4135 } 4136 4137 /* 4138 * Check if we need to detach or just close 4139 * the instance. 4140 */ 4141 if (tcp->tcp_state <= TCPS_LISTEN) 4142 break; 4143 } 4144 4145 /* 4146 * Make sure that no other thread will access the tcp_rq of 4147 * this instance (through lookups etc.) as tcp_rq will go 4148 * away shortly. 4149 */ 4150 tcp_acceptor_hash_remove(tcp); 4151 4152 if (tcp->tcp_flow_stopped) { 4153 tcp_clrqfull(tcp); 4154 } 4155 4156 if (tcp->tcp_timer_tid != 0) { 4157 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4158 tcp->tcp_timer_tid = 0; 4159 } 4160 /* 4161 * Need to cancel those timers which will not be used when 4162 * TCP is detached. This has to be done before the tcp_wq 4163 * is set to the global queue. 4164 */ 4165 tcp_timers_stop(tcp); 4166 4167 tcp->tcp_detached = B_TRUE; 4168 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4169 tcp_time_wait_append(tcp); 4170 TCP_DBGSTAT(tcp_detach_time_wait); 4171 ASSERT(connp->conn_ref >= 3); 4172 goto finish; 4173 } 4174 4175 /* 4176 * If delta is zero the timer event wasn't executed and was 4177 * successfully canceled. In this case we need to restart it 4178 * with the minimal delta possible. 4179 */ 4180 if (delta >= 0) 4181 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4182 delta ? delta : 1); 4183 4184 ASSERT(connp->conn_ref >= 3); 4185 goto finish; 4186 } 4187 4188 /* Detach did not complete. Still need to remove q from stream. */ 4189 if (msg) { 4190 if (tcp->tcp_state == TCPS_ESTABLISHED || 4191 tcp->tcp_state == TCPS_CLOSE_WAIT) 4192 BUMP_MIB(&tcp_mib, tcpEstabResets); 4193 if (tcp->tcp_state == TCPS_SYN_SENT || 4194 tcp->tcp_state == TCPS_SYN_RCVD) 4195 BUMP_MIB(&tcp_mib, tcpAttemptFails); 4196 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4197 } 4198 4199 tcp_closei_local(tcp); 4200 CONN_DEC_REF(connp); 4201 ASSERT(connp->conn_ref >= 2); 4202 4203 finish: 4204 /* 4205 * Although packets are always processed on the correct 4206 * tcp's perimeter and access is serialized via squeue's, 4207 * IP still needs a queue when sending packets in time_wait 4208 * state so use WR(tcp_g_q) till ip_output() can be 4209 * changed to deal with just connp. For read side, we 4210 * could have set tcp_rq to NULL but there are some cases 4211 * in tcp_rput_data() from early days of this code which 4212 * do a putnext without checking if tcp is closed. Those 4213 * need to be identified before both tcp_rq and tcp_wq 4214 * can be set to NULL and tcp_q_q can disappear forever. 4215 */ 4216 mutex_enter(&tcp->tcp_closelock); 4217 /* 4218 * Don't change the queues in the case of a listener that has 4219 * eagers in its q or q0. It could surprise the eagers. 4220 * Instead wait for the eagers outside the squeue. 4221 */ 4222 if (!tcp->tcp_wait_for_eagers) { 4223 tcp->tcp_detached = B_TRUE; 4224 tcp->tcp_rq = tcp_g_q; 4225 tcp->tcp_wq = WR(tcp_g_q); 4226 } 4227 4228 /* Signal tcp_close() to finish closing. */ 4229 tcp->tcp_closed = 1; 4230 cv_signal(&tcp->tcp_closecv); 4231 mutex_exit(&tcp->tcp_closelock); 4232 } 4233 4234 4235 /* 4236 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4237 * Some stream heads get upset if they see these later on as anything but NULL. 4238 */ 4239 static void 4240 tcp_close_mpp(mblk_t **mpp) 4241 { 4242 mblk_t *mp; 4243 4244 if ((mp = *mpp) != NULL) { 4245 do { 4246 mp->b_next = NULL; 4247 mp->b_prev = NULL; 4248 } while ((mp = mp->b_cont) != NULL); 4249 4250 mp = *mpp; 4251 *mpp = NULL; 4252 freemsg(mp); 4253 } 4254 } 4255 4256 /* Do detached close. */ 4257 static void 4258 tcp_close_detached(tcp_t *tcp) 4259 { 4260 if (tcp->tcp_fused) 4261 tcp_unfuse(tcp); 4262 4263 /* 4264 * Clustering code serializes TCP disconnect callbacks and 4265 * cluster tcp list walks by blocking a TCP disconnect callback 4266 * if a cluster tcp list walk is in progress. This ensures 4267 * accurate accounting of TCPs in the cluster code even though 4268 * the TCP list walk itself is not atomic. 4269 */ 4270 tcp_closei_local(tcp); 4271 CONN_DEC_REF(tcp->tcp_connp); 4272 } 4273 4274 /* 4275 * Stop all TCP timers, and free the timer mblks if requested. 4276 */ 4277 void 4278 tcp_timers_stop(tcp_t *tcp) 4279 { 4280 if (tcp->tcp_timer_tid != 0) { 4281 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4282 tcp->tcp_timer_tid = 0; 4283 } 4284 if (tcp->tcp_ka_tid != 0) { 4285 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4286 tcp->tcp_ka_tid = 0; 4287 } 4288 if (tcp->tcp_ack_tid != 0) { 4289 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4290 tcp->tcp_ack_tid = 0; 4291 } 4292 if (tcp->tcp_push_tid != 0) { 4293 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4294 tcp->tcp_push_tid = 0; 4295 } 4296 } 4297 4298 /* 4299 * The tcp_t is going away. Remove it from all lists and set it 4300 * to TCPS_CLOSED. The freeing up of memory is deferred until 4301 * tcp_inactive. This is needed since a thread in tcp_rput might have 4302 * done a CONN_INC_REF on this structure before it was removed from the 4303 * hashes. 4304 */ 4305 static void 4306 tcp_closei_local(tcp_t *tcp) 4307 { 4308 ire_t *ire; 4309 conn_t *connp = tcp->tcp_connp; 4310 4311 if (!TCP_IS_SOCKET(tcp)) 4312 tcp_acceptor_hash_remove(tcp); 4313 4314 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 4315 tcp->tcp_ibsegs = 0; 4316 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 4317 tcp->tcp_obsegs = 0; 4318 4319 /* 4320 * If we are an eager connection hanging off a listener that 4321 * hasn't formally accepted the connection yet, get off his 4322 * list and blow off any data that we have accumulated. 4323 */ 4324 if (tcp->tcp_listener != NULL) { 4325 tcp_t *listener = tcp->tcp_listener; 4326 mutex_enter(&listener->tcp_eager_lock); 4327 /* 4328 * tcp_eager_conn_ind == NULL means that the 4329 * conn_ind has already gone to listener. At 4330 * this point, eager will be closed but we 4331 * leave it in listeners eager list so that 4332 * if listener decides to close without doing 4333 * accept, we can clean this up. In tcp_wput_accept 4334 * we take case of the case of accept on closed 4335 * eager. 4336 */ 4337 if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) { 4338 tcp_eager_unlink(tcp); 4339 mutex_exit(&listener->tcp_eager_lock); 4340 /* 4341 * We don't want to have any pointers to the 4342 * listener queue, after we have released our 4343 * reference on the listener 4344 */ 4345 tcp->tcp_rq = tcp_g_q; 4346 tcp->tcp_wq = WR(tcp_g_q); 4347 CONN_DEC_REF(listener->tcp_connp); 4348 } else { 4349 mutex_exit(&listener->tcp_eager_lock); 4350 } 4351 } 4352 4353 /* Stop all the timers */ 4354 tcp_timers_stop(tcp); 4355 4356 if (tcp->tcp_state == TCPS_LISTEN) { 4357 if (tcp->tcp_ip_addr_cache) { 4358 kmem_free((void *)tcp->tcp_ip_addr_cache, 4359 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4360 tcp->tcp_ip_addr_cache = NULL; 4361 } 4362 } 4363 if (tcp->tcp_flow_stopped) 4364 tcp_clrqfull(tcp); 4365 4366 tcp_bind_hash_remove(tcp); 4367 /* 4368 * If the tcp_time_wait_collector (which runs outside the squeue) 4369 * is trying to remove this tcp from the time wait list, we will 4370 * block in tcp_time_wait_remove while trying to acquire the 4371 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4372 * requires the ipcl_hash_remove to be ordered after the 4373 * tcp_time_wait_remove for the refcnt checks to work correctly. 4374 */ 4375 if (tcp->tcp_state == TCPS_TIME_WAIT) 4376 tcp_time_wait_remove(tcp, NULL); 4377 CL_INET_DISCONNECT(tcp); 4378 ipcl_hash_remove(connp); 4379 4380 /* 4381 * Delete the cached ire in conn_ire_cache and also mark 4382 * the conn as CONDEMNED 4383 */ 4384 mutex_enter(&connp->conn_lock); 4385 connp->conn_state_flags |= CONN_CONDEMNED; 4386 ire = connp->conn_ire_cache; 4387 connp->conn_ire_cache = NULL; 4388 mutex_exit(&connp->conn_lock); 4389 if (ire != NULL) 4390 IRE_REFRELE_NOTR(ire); 4391 4392 /* Need to cleanup any pending ioctls */ 4393 ASSERT(tcp->tcp_time_wait_next == NULL); 4394 ASSERT(tcp->tcp_time_wait_prev == NULL); 4395 ASSERT(tcp->tcp_time_wait_expire == 0); 4396 tcp->tcp_state = TCPS_CLOSED; 4397 4398 /* Release any SSL context */ 4399 if (tcp->tcp_kssl_ent != NULL) { 4400 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4401 tcp->tcp_kssl_ent = NULL; 4402 } 4403 if (tcp->tcp_kssl_ctx != NULL) { 4404 kssl_release_ctx(tcp->tcp_kssl_ctx); 4405 tcp->tcp_kssl_ctx = NULL; 4406 } 4407 tcp->tcp_kssl_pending = B_FALSE; 4408 } 4409 4410 /* 4411 * tcp is dying (called from ipcl_conn_destroy and error cases). 4412 * Free the tcp_t in either case. 4413 */ 4414 void 4415 tcp_free(tcp_t *tcp) 4416 { 4417 mblk_t *mp; 4418 ip6_pkt_t *ipp; 4419 4420 ASSERT(tcp != NULL); 4421 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4422 4423 tcp->tcp_rq = NULL; 4424 tcp->tcp_wq = NULL; 4425 4426 tcp_close_mpp(&tcp->tcp_xmit_head); 4427 tcp_close_mpp(&tcp->tcp_reass_head); 4428 if (tcp->tcp_rcv_list != NULL) { 4429 /* Free b_next chain */ 4430 tcp_close_mpp(&tcp->tcp_rcv_list); 4431 } 4432 if ((mp = tcp->tcp_urp_mp) != NULL) { 4433 freemsg(mp); 4434 } 4435 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4436 freemsg(mp); 4437 } 4438 4439 if (tcp->tcp_fused_sigurg_mp != NULL) { 4440 freeb(tcp->tcp_fused_sigurg_mp); 4441 tcp->tcp_fused_sigurg_mp = NULL; 4442 } 4443 4444 if (tcp->tcp_sack_info != NULL) { 4445 if (tcp->tcp_notsack_list != NULL) { 4446 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 4447 } 4448 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4449 } 4450 4451 if (tcp->tcp_hopopts != NULL) { 4452 mi_free(tcp->tcp_hopopts); 4453 tcp->tcp_hopopts = NULL; 4454 tcp->tcp_hopoptslen = 0; 4455 } 4456 ASSERT(tcp->tcp_hopoptslen == 0); 4457 if (tcp->tcp_dstopts != NULL) { 4458 mi_free(tcp->tcp_dstopts); 4459 tcp->tcp_dstopts = NULL; 4460 tcp->tcp_dstoptslen = 0; 4461 } 4462 ASSERT(tcp->tcp_dstoptslen == 0); 4463 if (tcp->tcp_rtdstopts != NULL) { 4464 mi_free(tcp->tcp_rtdstopts); 4465 tcp->tcp_rtdstopts = NULL; 4466 tcp->tcp_rtdstoptslen = 0; 4467 } 4468 ASSERT(tcp->tcp_rtdstoptslen == 0); 4469 if (tcp->tcp_rthdr != NULL) { 4470 mi_free(tcp->tcp_rthdr); 4471 tcp->tcp_rthdr = NULL; 4472 tcp->tcp_rthdrlen = 0; 4473 } 4474 ASSERT(tcp->tcp_rthdrlen == 0); 4475 4476 ipp = &tcp->tcp_sticky_ipp; 4477 if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 4478 IPPF_RTHDR)) 4479 ip6_pkt_free(ipp); 4480 4481 /* 4482 * Free memory associated with the tcp/ip header template. 4483 */ 4484 4485 if (tcp->tcp_iphc != NULL) 4486 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4487 4488 /* 4489 * Following is really a blowing away a union. 4490 * It happens to have exactly two members of identical size 4491 * the following code is enough. 4492 */ 4493 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4494 4495 if (tcp->tcp_tracebuf != NULL) { 4496 kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 4497 tcp->tcp_tracebuf = NULL; 4498 } 4499 } 4500 4501 4502 /* 4503 * Put a connection confirmation message upstream built from the 4504 * address information within 'iph' and 'tcph'. Report our success or failure. 4505 */ 4506 static boolean_t 4507 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4508 mblk_t **defermp) 4509 { 4510 sin_t sin; 4511 sin6_t sin6; 4512 mblk_t *mp; 4513 char *optp = NULL; 4514 int optlen = 0; 4515 cred_t *cr; 4516 4517 if (defermp != NULL) 4518 *defermp = NULL; 4519 4520 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4521 /* 4522 * Return in T_CONN_CON results of option negotiation through 4523 * the T_CONN_REQ. Note: If there is an real end-to-end option 4524 * negotiation, then what is received from remote end needs 4525 * to be taken into account but there is no such thing (yet?) 4526 * in our TCP/IP. 4527 * Note: We do not use mi_offset_param() here as 4528 * tcp_opts_conn_req contents do not directly come from 4529 * an application and are either generated in kernel or 4530 * from user input that was already verified. 4531 */ 4532 mp = tcp->tcp_conn.tcp_opts_conn_req; 4533 optp = (char *)(mp->b_rptr + 4534 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4535 optlen = (int) 4536 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4537 } 4538 4539 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4540 ipha_t *ipha = (ipha_t *)iphdr; 4541 4542 /* packet is IPv4 */ 4543 if (tcp->tcp_family == AF_INET) { 4544 sin = sin_null; 4545 sin.sin_addr.s_addr = ipha->ipha_src; 4546 sin.sin_port = *(uint16_t *)tcph->th_lport; 4547 sin.sin_family = AF_INET; 4548 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4549 (int)sizeof (sin_t), optp, optlen); 4550 } else { 4551 sin6 = sin6_null; 4552 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4553 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4554 sin6.sin6_family = AF_INET6; 4555 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4556 (int)sizeof (sin6_t), optp, optlen); 4557 4558 } 4559 } else { 4560 ip6_t *ip6h = (ip6_t *)iphdr; 4561 4562 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4563 ASSERT(tcp->tcp_family == AF_INET6); 4564 sin6 = sin6_null; 4565 sin6.sin6_addr = ip6h->ip6_src; 4566 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4567 sin6.sin6_family = AF_INET6; 4568 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4569 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4570 (int)sizeof (sin6_t), optp, optlen); 4571 } 4572 4573 if (!mp) 4574 return (B_FALSE); 4575 4576 if ((cr = DB_CRED(idmp)) != NULL) { 4577 mblk_setcred(mp, cr); 4578 DB_CPID(mp) = DB_CPID(idmp); 4579 } 4580 4581 if (defermp == NULL) 4582 putnext(tcp->tcp_rq, mp); 4583 else 4584 *defermp = mp; 4585 4586 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4587 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4588 return (B_TRUE); 4589 } 4590 4591 /* 4592 * Defense for the SYN attack - 4593 * 1. When q0 is full, drop from the tail (tcp_eager_prev_q0) the oldest 4594 * one that doesn't have the dontdrop bit set. 4595 * 2. Don't drop a SYN request before its first timeout. This gives every 4596 * request at least til the first timeout to complete its 3-way handshake. 4597 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4598 * requests currently on the queue that has timed out. This will be used 4599 * as an indicator of whether an attack is under way, so that appropriate 4600 * actions can be taken. (It's incremented in tcp_timer() and decremented 4601 * either when eager goes into ESTABLISHED, or gets freed up.) 4602 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4603 * # of timeout drops back to <= q0len/32 => SYN alert off 4604 */ 4605 static boolean_t 4606 tcp_drop_q0(tcp_t *tcp) 4607 { 4608 tcp_t *eager; 4609 4610 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4611 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4612 /* 4613 * New one is added after next_q0 so prev_q0 points to the oldest 4614 * Also do not drop any established connections that are deferred on 4615 * q0 due to q being full 4616 */ 4617 4618 eager = tcp->tcp_eager_prev_q0; 4619 while (eager->tcp_dontdrop || eager->tcp_conn_def_q0) { 4620 eager = eager->tcp_eager_prev_q0; 4621 if (eager == tcp) { 4622 eager = tcp->tcp_eager_prev_q0; 4623 break; 4624 } 4625 } 4626 if (eager->tcp_syn_rcvd_timeout == 0) 4627 return (B_FALSE); 4628 4629 if (tcp->tcp_debug) { 4630 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4631 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4632 " (%d pending) on %s, drop one", tcp_conn_req_max_q0, 4633 tcp->tcp_conn_req_cnt_q0, 4634 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4635 } 4636 4637 BUMP_MIB(&tcp_mib, tcpHalfOpenDrop); 4638 4639 /* 4640 * need to do refhold here because the selected eager could 4641 * be removed by someone else if we release the eager lock. 4642 */ 4643 CONN_INC_REF(eager->tcp_connp); 4644 mutex_exit(&tcp->tcp_eager_lock); 4645 4646 /* Mark the IRE created for this SYN request temporary */ 4647 tcp_ip_ire_mark_advice(eager); 4648 (void) tcp_clean_death(eager, ETIMEDOUT, 5); 4649 CONN_DEC_REF(eager->tcp_connp); 4650 4651 mutex_enter(&tcp->tcp_eager_lock); 4652 return (B_TRUE); 4653 } 4654 4655 int 4656 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4657 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4658 { 4659 tcp_t *ltcp = lconnp->conn_tcp; 4660 tcp_t *tcp = connp->conn_tcp; 4661 mblk_t *tpi_mp; 4662 ipha_t *ipha; 4663 ip6_t *ip6h; 4664 sin6_t sin6; 4665 in6_addr_t v6dst; 4666 int err; 4667 int ifindex = 0; 4668 cred_t *cr; 4669 4670 if (ipvers == IPV4_VERSION) { 4671 ipha = (ipha_t *)mp->b_rptr; 4672 4673 connp->conn_send = ip_output; 4674 connp->conn_recv = tcp_input; 4675 4676 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4677 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4678 4679 sin6 = sin6_null; 4680 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4681 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4682 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4683 sin6.sin6_family = AF_INET6; 4684 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4685 lconnp->conn_zoneid); 4686 if (tcp->tcp_recvdstaddr) { 4687 sin6_t sin6d; 4688 4689 sin6d = sin6_null; 4690 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4691 &sin6d.sin6_addr); 4692 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4693 sin6d.sin6_family = AF_INET; 4694 tpi_mp = mi_tpi_extconn_ind(NULL, 4695 (char *)&sin6d, sizeof (sin6_t), 4696 (char *)&tcp, 4697 (t_scalar_t)sizeof (intptr_t), 4698 (char *)&sin6d, sizeof (sin6_t), 4699 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4700 } else { 4701 tpi_mp = mi_tpi_conn_ind(NULL, 4702 (char *)&sin6, sizeof (sin6_t), 4703 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4704 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4705 } 4706 } else { 4707 ip6h = (ip6_t *)mp->b_rptr; 4708 4709 connp->conn_send = ip_output_v6; 4710 connp->conn_recv = tcp_input; 4711 4712 connp->conn_srcv6 = ip6h->ip6_dst; 4713 connp->conn_remv6 = ip6h->ip6_src; 4714 4715 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4716 ifindex = (int)DB_CKSUMSTUFF(mp); 4717 DB_CKSUMSTUFF(mp) = 0; 4718 4719 sin6 = sin6_null; 4720 sin6.sin6_addr = ip6h->ip6_src; 4721 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4722 sin6.sin6_family = AF_INET6; 4723 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4724 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4725 lconnp->conn_zoneid); 4726 4727 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4728 /* Pass up the scope_id of remote addr */ 4729 sin6.sin6_scope_id = ifindex; 4730 } else { 4731 sin6.sin6_scope_id = 0; 4732 } 4733 if (tcp->tcp_recvdstaddr) { 4734 sin6_t sin6d; 4735 4736 sin6d = sin6_null; 4737 sin6.sin6_addr = ip6h->ip6_dst; 4738 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4739 sin6d.sin6_family = AF_INET; 4740 tpi_mp = mi_tpi_extconn_ind(NULL, 4741 (char *)&sin6d, sizeof (sin6_t), 4742 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4743 (char *)&sin6d, sizeof (sin6_t), 4744 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4745 } else { 4746 tpi_mp = mi_tpi_conn_ind(NULL, 4747 (char *)&sin6, sizeof (sin6_t), 4748 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4749 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4750 } 4751 } 4752 4753 if (tpi_mp == NULL) 4754 return (ENOMEM); 4755 4756 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4757 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4758 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4759 connp->conn_fully_bound = B_FALSE; 4760 4761 if (tcp_trace) 4762 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 4763 4764 /* Inherit information from the "parent" */ 4765 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4766 tcp->tcp_family = ltcp->tcp_family; 4767 tcp->tcp_wq = ltcp->tcp_wq; 4768 tcp->tcp_rq = ltcp->tcp_rq; 4769 tcp->tcp_mss = tcp_mss_def_ipv6; 4770 tcp->tcp_detached = B_TRUE; 4771 if ((err = tcp_init_values(tcp)) != 0) { 4772 freemsg(tpi_mp); 4773 return (err); 4774 } 4775 4776 if (ipvers == IPV4_VERSION) { 4777 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4778 freemsg(tpi_mp); 4779 return (err); 4780 } 4781 ASSERT(tcp->tcp_ipha != NULL); 4782 } else { 4783 /* ifindex must be already set */ 4784 ASSERT(ifindex != 0); 4785 4786 if (ltcp->tcp_bound_if != 0) { 4787 /* 4788 * Set newtcp's bound_if equal to 4789 * listener's value. If ifindex is 4790 * not the same as ltcp->tcp_bound_if, 4791 * it must be a packet for the ipmp group 4792 * of interfaces 4793 */ 4794 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4795 } else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4796 tcp->tcp_bound_if = ifindex; 4797 } 4798 4799 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4800 tcp->tcp_recvifindex = 0; 4801 tcp->tcp_recvhops = 0xffffffffU; 4802 ASSERT(tcp->tcp_ip6h != NULL); 4803 } 4804 4805 tcp->tcp_lport = ltcp->tcp_lport; 4806 4807 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 4808 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 4809 /* 4810 * Listener had options of some sort; eager inherits. 4811 * Free up the eager template and allocate one 4812 * of the right size. 4813 */ 4814 if (tcp->tcp_hdr_grown) { 4815 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 4816 } else { 4817 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4818 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 4819 } 4820 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 4821 KM_NOSLEEP); 4822 if (tcp->tcp_iphc == NULL) { 4823 tcp->tcp_iphc_len = 0; 4824 freemsg(tpi_mp); 4825 return (ENOMEM); 4826 } 4827 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 4828 tcp->tcp_hdr_grown = B_TRUE; 4829 } 4830 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4831 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4832 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4833 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 4834 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 4835 4836 /* 4837 * Copy the IP+TCP header template from listener to eager 4838 */ 4839 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4840 if (tcp->tcp_ipversion == IPV6_VERSION) { 4841 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 4842 IPPROTO_RAW) { 4843 tcp->tcp_ip6h = 4844 (ip6_t *)(tcp->tcp_iphc + 4845 sizeof (ip6i_t)); 4846 } else { 4847 tcp->tcp_ip6h = 4848 (ip6_t *)(tcp->tcp_iphc); 4849 } 4850 tcp->tcp_ipha = NULL; 4851 } else { 4852 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4853 tcp->tcp_ip6h = NULL; 4854 } 4855 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4856 tcp->tcp_ip_hdr_len); 4857 } else { 4858 /* 4859 * only valid case when ipversion of listener and 4860 * eager differ is when listener is IPv6 and 4861 * eager is IPv4. 4862 * Eager header template has been initialized to the 4863 * maximum v4 header sizes, which includes space for 4864 * TCP and IP options. 4865 */ 4866 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 4867 (tcp->tcp_ipversion == IPV4_VERSION)); 4868 ASSERT(tcp->tcp_iphc_len >= 4869 TCP_MAX_COMBINED_HEADER_LENGTH); 4870 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4871 /* copy IP header fields individually */ 4872 tcp->tcp_ipha->ipha_ttl = 4873 ltcp->tcp_ip6h->ip6_hops; 4874 bcopy(ltcp->tcp_tcph->th_lport, 4875 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 4876 } 4877 4878 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4879 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 4880 sizeof (in_port_t)); 4881 4882 if (ltcp->tcp_lport == 0) { 4883 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 4884 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 4885 sizeof (in_port_t)); 4886 } 4887 4888 if (tcp->tcp_ipversion == IPV4_VERSION) { 4889 ASSERT(ipha != NULL); 4890 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4891 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4892 4893 /* Source routing option copyover (reverse it) */ 4894 if (tcp_rev_src_routes) 4895 tcp_opt_reverse(tcp, ipha); 4896 } else { 4897 ASSERT(ip6h != NULL); 4898 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 4899 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 4900 } 4901 4902 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4903 /* 4904 * If the SYN contains a credential, it's a loopback packet; attach 4905 * the credential to the TPI message. 4906 */ 4907 if ((cr = DB_CRED(idmp)) != NULL) { 4908 mblk_setcred(tpi_mp, cr); 4909 DB_CPID(tpi_mp) = DB_CPID(idmp); 4910 } 4911 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4912 4913 /* Inherit the listener's SSL protection state */ 4914 4915 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4916 kssl_hold_ent(tcp->tcp_kssl_ent); 4917 tcp->tcp_kssl_pending = B_TRUE; 4918 } 4919 4920 return (0); 4921 } 4922 4923 4924 int 4925 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 4926 tcph_t *tcph, mblk_t *idmp) 4927 { 4928 tcp_t *ltcp = lconnp->conn_tcp; 4929 tcp_t *tcp = connp->conn_tcp; 4930 sin_t sin; 4931 mblk_t *tpi_mp = NULL; 4932 int err; 4933 cred_t *cr; 4934 4935 sin = sin_null; 4936 sin.sin_addr.s_addr = ipha->ipha_src; 4937 sin.sin_port = *(uint16_t *)tcph->th_lport; 4938 sin.sin_family = AF_INET; 4939 if (ltcp->tcp_recvdstaddr) { 4940 sin_t sind; 4941 4942 sind = sin_null; 4943 sind.sin_addr.s_addr = ipha->ipha_dst; 4944 sind.sin_port = *(uint16_t *)tcph->th_fport; 4945 sind.sin_family = AF_INET; 4946 tpi_mp = mi_tpi_extconn_ind(NULL, 4947 (char *)&sind, sizeof (sin_t), (char *)&tcp, 4948 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 4949 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4950 } else { 4951 tpi_mp = mi_tpi_conn_ind(NULL, 4952 (char *)&sin, sizeof (sin_t), 4953 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4954 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4955 } 4956 4957 if (tpi_mp == NULL) { 4958 return (ENOMEM); 4959 } 4960 4961 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 4962 connp->conn_send = ip_output; 4963 connp->conn_recv = tcp_input; 4964 connp->conn_fully_bound = B_FALSE; 4965 4966 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4967 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4968 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4969 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4970 4971 if (tcp_trace) { 4972 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 4973 } 4974 4975 /* Inherit information from the "parent" */ 4976 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4977 tcp->tcp_family = ltcp->tcp_family; 4978 tcp->tcp_wq = ltcp->tcp_wq; 4979 tcp->tcp_rq = ltcp->tcp_rq; 4980 tcp->tcp_mss = tcp_mss_def_ipv4; 4981 tcp->tcp_detached = B_TRUE; 4982 if ((err = tcp_init_values(tcp)) != 0) { 4983 freemsg(tpi_mp); 4984 return (err); 4985 } 4986 4987 /* 4988 * Let's make sure that eager tcp template has enough space to 4989 * copy IPv4 listener's tcp template. Since the conn_t structure is 4990 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 4991 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 4992 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 4993 * extension headers or with ip6i_t struct). Note that bcopy() below 4994 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 4995 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 4996 */ 4997 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 4998 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 4999 5000 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5001 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5002 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5003 tcp->tcp_ttl = ltcp->tcp_ttl; 5004 tcp->tcp_tos = ltcp->tcp_tos; 5005 5006 /* Copy the IP+TCP header template from listener to eager */ 5007 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5008 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5009 tcp->tcp_ip6h = NULL; 5010 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5011 tcp->tcp_ip_hdr_len); 5012 5013 /* Initialize the IP addresses and Ports */ 5014 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5015 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5016 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5017 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 5018 5019 /* Source routing option copyover (reverse it) */ 5020 if (tcp_rev_src_routes) 5021 tcp_opt_reverse(tcp, ipha); 5022 5023 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5024 5025 /* 5026 * If the SYN contains a credential, it's a loopback packet; attach 5027 * the credential to the TPI message. 5028 */ 5029 if ((cr = DB_CRED(idmp)) != NULL) { 5030 mblk_setcred(tpi_mp, cr); 5031 DB_CPID(tpi_mp) = DB_CPID(idmp); 5032 } 5033 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5034 5035 /* Inherit the listener's SSL protection state */ 5036 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5037 kssl_hold_ent(tcp->tcp_kssl_ent); 5038 tcp->tcp_kssl_pending = B_TRUE; 5039 } 5040 5041 return (0); 5042 } 5043 5044 /* 5045 * sets up conn for ipsec. 5046 * if the first mblk is M_CTL it is consumed and mpp is updated. 5047 * in case of error mpp is freed. 5048 */ 5049 conn_t * 5050 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 5051 { 5052 conn_t *connp = tcp->tcp_connp; 5053 conn_t *econnp; 5054 squeue_t *new_sqp; 5055 mblk_t *first_mp = *mpp; 5056 mblk_t *mp = *mpp; 5057 boolean_t mctl_present = B_FALSE; 5058 uint_t ipvers; 5059 5060 econnp = tcp_get_conn(sqp); 5061 if (econnp == NULL) { 5062 freemsg(first_mp); 5063 return (NULL); 5064 } 5065 if (DB_TYPE(mp) == M_CTL) { 5066 if (mp->b_cont == NULL || 5067 mp->b_cont->b_datap->db_type != M_DATA) { 5068 freemsg(first_mp); 5069 return (NULL); 5070 } 5071 mp = mp->b_cont; 5072 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 5073 freemsg(first_mp); 5074 return (NULL); 5075 } 5076 5077 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5078 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5079 mctl_present = B_TRUE; 5080 } else { 5081 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 5082 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5083 } 5084 5085 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5086 DB_CKSUMSTART(mp) = 0; 5087 5088 ASSERT(OK_32PTR(mp->b_rptr)); 5089 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5090 if (ipvers == IPV4_VERSION) { 5091 uint16_t *up; 5092 uint32_t ports; 5093 ipha_t *ipha; 5094 5095 ipha = (ipha_t *)mp->b_rptr; 5096 up = (uint16_t *)((uchar_t *)ipha + 5097 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 5098 ports = *(uint32_t *)up; 5099 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 5100 ipha->ipha_dst, ipha->ipha_src, ports); 5101 } else { 5102 uint16_t *up; 5103 uint32_t ports; 5104 uint16_t ip_hdr_len; 5105 uint8_t *nexthdrp; 5106 ip6_t *ip6h; 5107 tcph_t *tcph; 5108 5109 ip6h = (ip6_t *)mp->b_rptr; 5110 if (ip6h->ip6_nxt == IPPROTO_TCP) { 5111 ip_hdr_len = IPV6_HDR_LEN; 5112 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 5113 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 5114 CONN_DEC_REF(econnp); 5115 freemsg(first_mp); 5116 return (NULL); 5117 } 5118 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5119 up = (uint16_t *)tcph->th_lport; 5120 ports = *(uint32_t *)up; 5121 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 5122 ip6h->ip6_dst, ip6h->ip6_src, ports); 5123 } 5124 5125 /* 5126 * The caller already ensured that there is a sqp present. 5127 */ 5128 econnp->conn_sqp = new_sqp; 5129 5130 if (connp->conn_policy != NULL) { 5131 ipsec_in_t *ii; 5132 ii = (ipsec_in_t *)(first_mp->b_rptr); 5133 ASSERT(ii->ipsec_in_policy == NULL); 5134 IPPH_REFHOLD(connp->conn_policy); 5135 ii->ipsec_in_policy = connp->conn_policy; 5136 5137 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 5138 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 5139 CONN_DEC_REF(econnp); 5140 freemsg(first_mp); 5141 return (NULL); 5142 } 5143 } 5144 5145 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 5146 CONN_DEC_REF(econnp); 5147 freemsg(first_mp); 5148 return (NULL); 5149 } 5150 5151 /* 5152 * If we know we have some policy, pass the "IPSEC" 5153 * options size TCP uses this adjust the MSS. 5154 */ 5155 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 5156 if (mctl_present) { 5157 freeb(first_mp); 5158 *mpp = mp; 5159 } 5160 5161 return (econnp); 5162 } 5163 5164 /* 5165 * tcp_get_conn/tcp_free_conn 5166 * 5167 * tcp_get_conn is used to get a clean tcp connection structure. 5168 * It tries to reuse the connections put on the freelist by the 5169 * time_wait_collector failing which it goes to kmem_cache. This 5170 * way has two benefits compared to just allocating from and 5171 * freeing to kmem_cache. 5172 * 1) The time_wait_collector can free (which includes the cleanup) 5173 * outside the squeue. So when the interrupt comes, we have a clean 5174 * connection sitting in the freelist. Obviously, this buys us 5175 * performance. 5176 * 5177 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5178 * has multiple disadvantages - tying up the squeue during alloc, and the 5179 * fact that IPSec policy initialization has to happen here which 5180 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5181 * But allocating the conn/tcp in IP land is also not the best since 5182 * we can't check the 'q' and 'q0' which are protected by squeue and 5183 * blindly allocate memory which might have to be freed here if we are 5184 * not allowed to accept the connection. By using the freelist and 5185 * putting the conn/tcp back in freelist, we don't pay a penalty for 5186 * allocating memory without checking 'q/q0' and freeing it if we can't 5187 * accept the connection. 5188 * 5189 * Care should be taken to put the conn back in the same squeue's freelist 5190 * from which it was allocated. Best results are obtained if conn is 5191 * allocated from listener's squeue and freed to the same. Time wait 5192 * collector will free up the freelist is the connection ends up sitting 5193 * there for too long. 5194 */ 5195 void * 5196 tcp_get_conn(void *arg) 5197 { 5198 tcp_t *tcp = NULL; 5199 conn_t *connp = NULL; 5200 squeue_t *sqp = (squeue_t *)arg; 5201 tcp_squeue_priv_t *tcp_time_wait; 5202 5203 tcp_time_wait = 5204 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5205 5206 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5207 tcp = tcp_time_wait->tcp_free_list; 5208 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5209 if (tcp != NULL) { 5210 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5211 tcp_time_wait->tcp_free_list_cnt--; 5212 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5213 tcp->tcp_time_wait_next = NULL; 5214 connp = tcp->tcp_connp; 5215 connp->conn_flags |= IPCL_REUSED; 5216 return ((void *)connp); 5217 } 5218 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5219 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL) 5220 return (NULL); 5221 return ((void *)connp); 5222 } 5223 5224 /* 5225 * Update the cached label for the given tcp_t. This should be called once per 5226 * connection, and before any packets are sent or tcp_process_options is 5227 * invoked. Returns B_FALSE if the correct label could not be constructed. 5228 */ 5229 static boolean_t 5230 tcp_update_label(tcp_t *tcp, const cred_t *cr) 5231 { 5232 conn_t *connp = tcp->tcp_connp; 5233 5234 if (tcp->tcp_ipversion == IPV4_VERSION) { 5235 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 5236 int added; 5237 5238 if (tsol_compute_label(cr, tcp->tcp_remote, optbuf, 5239 connp->conn_mac_exempt) != 0) 5240 return (B_FALSE); 5241 5242 added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len); 5243 if (added == -1) 5244 return (B_FALSE); 5245 tcp->tcp_hdr_len += added; 5246 tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added); 5247 tcp->tcp_ip_hdr_len += added; 5248 if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) { 5249 tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3; 5250 added = tsol_prepend_option(optbuf, tcp->tcp_ipha, 5251 tcp->tcp_hdr_len); 5252 if (added == -1) 5253 return (B_FALSE); 5254 tcp->tcp_hdr_len += added; 5255 tcp->tcp_tcph = (tcph_t *) 5256 ((uchar_t *)tcp->tcp_tcph + added); 5257 tcp->tcp_ip_hdr_len += added; 5258 } 5259 } else { 5260 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 5261 5262 if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf, 5263 connp->conn_mac_exempt) != 0) 5264 return (B_FALSE); 5265 if (tsol_update_sticky(&tcp->tcp_sticky_ipp, 5266 &tcp->tcp_label_len, optbuf) != 0) 5267 return (B_FALSE); 5268 if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0) 5269 return (B_FALSE); 5270 } 5271 5272 connp->conn_ulp_labeled = 1; 5273 5274 return (B_TRUE); 5275 } 5276 5277 /* BEGIN CSTYLED */ 5278 /* 5279 * 5280 * The sockfs ACCEPT path: 5281 * ======================= 5282 * 5283 * The eager is now established in its own perimeter as soon as SYN is 5284 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5285 * completes the accept processing on the acceptor STREAM. The sending 5286 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5287 * listener but a TLI/XTI listener completes the accept processing 5288 * on the listener perimeter. 5289 * 5290 * Common control flow for 3 way handshake: 5291 * ---------------------------------------- 5292 * 5293 * incoming SYN (listener perimeter) -> tcp_rput_data() 5294 * -> tcp_conn_request() 5295 * 5296 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5297 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5298 * 5299 * Sockfs ACCEPT Path: 5300 * ------------------- 5301 * 5302 * open acceptor stream (ip_tcpopen allocates tcp_wput_accept() 5303 * as STREAM entry point) 5304 * 5305 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5306 * 5307 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5308 * association (we are not behind eager's squeue but sockfs is protecting us 5309 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5310 * is changed to point at tcp_wput(). 5311 * 5312 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5313 * listener (done on listener's perimeter). 5314 * 5315 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5316 * accept. 5317 * 5318 * TLI/XTI client ACCEPT path: 5319 * --------------------------- 5320 * 5321 * soaccept() sends T_CONN_RES on the listener STREAM. 5322 * 5323 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5324 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5325 * 5326 * Locks: 5327 * ====== 5328 * 5329 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5330 * and listeners->tcp_eager_next_q. 5331 * 5332 * Referencing: 5333 * ============ 5334 * 5335 * 1) We start out in tcp_conn_request by eager placing a ref on 5336 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5337 * 5338 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5339 * doing so we place a ref on the eager. This ref is finally dropped at the 5340 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5341 * reference is dropped by the squeue framework. 5342 * 5343 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5344 * 5345 * The reference must be released by the same entity that added the reference 5346 * In the above scheme, the eager is the entity that adds and releases the 5347 * references. Note that tcp_accept_finish executes in the squeue of the eager 5348 * (albeit after it is attached to the acceptor stream). Though 1. executes 5349 * in the listener's squeue, the eager is nascent at this point and the 5350 * reference can be considered to have been added on behalf of the eager. 5351 * 5352 * Eager getting a Reset or listener closing: 5353 * ========================================== 5354 * 5355 * Once the listener and eager are linked, the listener never does the unlink. 5356 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5357 * a message on all eager perimeter. The eager then does the unlink, clears 5358 * any pointers to the listener's queue and drops the reference to the 5359 * listener. The listener waits in tcp_close outside the squeue until its 5360 * refcount has dropped to 1. This ensures that the listener has waited for 5361 * all eagers to clear their association with the listener. 5362 * 5363 * Similarly, if eager decides to go away, it can unlink itself and close. 5364 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5365 * the reference to eager is still valid because of the extra ref we put 5366 * in tcp_send_conn_ind. 5367 * 5368 * Listener can always locate the eager under the protection 5369 * of the listener->tcp_eager_lock, and then do a refhold 5370 * on the eager during the accept processing. 5371 * 5372 * The acceptor stream accesses the eager in the accept processing 5373 * based on the ref placed on eager before sending T_conn_ind. 5374 * The only entity that can negate this refhold is a listener close 5375 * which is mutually exclusive with an active acceptor stream. 5376 * 5377 * Eager's reference on the listener 5378 * =================================== 5379 * 5380 * If the accept happens (even on a closed eager) the eager drops its 5381 * reference on the listener at the start of tcp_accept_finish. If the 5382 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5383 * the reference is dropped in tcp_closei_local. If the listener closes, 5384 * the reference is dropped in tcp_eager_kill. In all cases the reference 5385 * is dropped while executing in the eager's context (squeue). 5386 */ 5387 /* END CSTYLED */ 5388 5389 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5390 5391 /* 5392 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5393 * tcp_rput_data will not see any SYN packets. 5394 */ 5395 /* ARGSUSED */ 5396 void 5397 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5398 { 5399 tcph_t *tcph; 5400 uint32_t seg_seq; 5401 tcp_t *eager; 5402 uint_t ipvers; 5403 ipha_t *ipha; 5404 ip6_t *ip6h; 5405 int err; 5406 conn_t *econnp = NULL; 5407 squeue_t *new_sqp; 5408 mblk_t *mp1; 5409 uint_t ip_hdr_len; 5410 conn_t *connp = (conn_t *)arg; 5411 tcp_t *tcp = connp->conn_tcp; 5412 ire_t *ire; 5413 cred_t *credp; 5414 5415 if (tcp->tcp_state != TCPS_LISTEN) 5416 goto error2; 5417 5418 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5419 5420 mutex_enter(&tcp->tcp_eager_lock); 5421 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5422 mutex_exit(&tcp->tcp_eager_lock); 5423 TCP_STAT(tcp_listendrop); 5424 BUMP_MIB(&tcp_mib, tcpListenDrop); 5425 if (tcp->tcp_debug) { 5426 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5427 "tcp_conn_request: listen backlog (max=%d) " 5428 "overflow (%d pending) on %s", 5429 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5430 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5431 } 5432 goto error2; 5433 } 5434 5435 if (tcp->tcp_conn_req_cnt_q0 >= 5436 tcp->tcp_conn_req_max + tcp_conn_req_max_q0) { 5437 /* 5438 * Q0 is full. Drop a pending half-open req from the queue 5439 * to make room for the new SYN req. Also mark the time we 5440 * drop a SYN. 5441 * 5442 * A more aggressive defense against SYN attack will 5443 * be to set the "tcp_syn_defense" flag now. 5444 */ 5445 TCP_STAT(tcp_listendropq0); 5446 tcp->tcp_last_rcv_lbolt = lbolt64; 5447 if (!tcp_drop_q0(tcp)) { 5448 mutex_exit(&tcp->tcp_eager_lock); 5449 BUMP_MIB(&tcp_mib, tcpListenDropQ0); 5450 if (tcp->tcp_debug) { 5451 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5452 "tcp_conn_request: listen half-open queue " 5453 "(max=%d) full (%d pending) on %s", 5454 tcp_conn_req_max_q0, 5455 tcp->tcp_conn_req_cnt_q0, 5456 tcp_display(tcp, NULL, 5457 DISP_PORT_ONLY)); 5458 } 5459 goto error2; 5460 } 5461 } 5462 mutex_exit(&tcp->tcp_eager_lock); 5463 5464 /* 5465 * IP adds STRUIO_EAGER and ensures that the received packet is 5466 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5467 * link local address. If IPSec is enabled, db_struioflag has 5468 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5469 * otherwise an error case if neither of them is set. 5470 */ 5471 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5472 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5473 DB_CKSUMSTART(mp) = 0; 5474 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5475 econnp = (conn_t *)tcp_get_conn(arg2); 5476 if (econnp == NULL) 5477 goto error2; 5478 econnp->conn_sqp = new_sqp; 5479 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5480 /* 5481 * mp is updated in tcp_get_ipsec_conn(). 5482 */ 5483 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5484 if (econnp == NULL) { 5485 /* 5486 * mp freed by tcp_get_ipsec_conn. 5487 */ 5488 return; 5489 } 5490 } else { 5491 goto error2; 5492 } 5493 5494 ASSERT(DB_TYPE(mp) == M_DATA); 5495 5496 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5497 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5498 ASSERT(OK_32PTR(mp->b_rptr)); 5499 if (ipvers == IPV4_VERSION) { 5500 ipha = (ipha_t *)mp->b_rptr; 5501 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5502 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5503 } else { 5504 ip6h = (ip6_t *)mp->b_rptr; 5505 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5506 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5507 } 5508 5509 if (tcp->tcp_family == AF_INET) { 5510 ASSERT(ipvers == IPV4_VERSION); 5511 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5512 } else { 5513 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5514 } 5515 5516 if (err) 5517 goto error3; 5518 5519 eager = econnp->conn_tcp; 5520 5521 /* Inherit various TCP parameters from the listener */ 5522 eager->tcp_naglim = tcp->tcp_naglim; 5523 eager->tcp_first_timer_threshold = 5524 tcp->tcp_first_timer_threshold; 5525 eager->tcp_second_timer_threshold = 5526 tcp->tcp_second_timer_threshold; 5527 5528 eager->tcp_first_ctimer_threshold = 5529 tcp->tcp_first_ctimer_threshold; 5530 eager->tcp_second_ctimer_threshold = 5531 tcp->tcp_second_ctimer_threshold; 5532 5533 /* 5534 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5535 * If it does not, the eager's receive window will be set to the 5536 * listener's receive window later in this function. 5537 */ 5538 eager->tcp_rwnd = 0; 5539 5540 /* 5541 * Inherit listener's tcp_init_cwnd. Need to do this before 5542 * calling tcp_process_options() where tcp_mss_set() is called 5543 * to set the initial cwnd. 5544 */ 5545 eager->tcp_init_cwnd = tcp->tcp_init_cwnd; 5546 5547 /* 5548 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5549 * zone id before the accept is completed in tcp_wput_accept(). 5550 */ 5551 econnp->conn_zoneid = connp->conn_zoneid; 5552 5553 /* Copy nexthop information from listener to eager */ 5554 if (connp->conn_nexthop_set) { 5555 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5556 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5557 } 5558 5559 /* 5560 * TSOL: tsol_input_proc() needs the eager's cred before the 5561 * eager is accepted 5562 */ 5563 econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred; 5564 crhold(credp); 5565 5566 /* 5567 * If the caller has the process-wide flag set, then default to MAC 5568 * exempt mode. This allows read-down to unlabeled hosts. 5569 */ 5570 if (getpflags(NET_MAC_AWARE, credp) != 0) 5571 econnp->conn_mac_exempt = B_TRUE; 5572 5573 if (is_system_labeled()) { 5574 cred_t *cr; 5575 5576 if (connp->conn_mlp_type != mlptSingle) { 5577 cr = econnp->conn_peercred = DB_CRED(mp); 5578 if (cr != NULL) 5579 crhold(cr); 5580 else 5581 cr = econnp->conn_cred; 5582 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 5583 econnp, cred_t *, cr) 5584 } else { 5585 cr = econnp->conn_cred; 5586 DTRACE_PROBE2(syn_accept, conn_t *, 5587 econnp, cred_t *, cr) 5588 } 5589 5590 if (!tcp_update_label(eager, cr)) { 5591 DTRACE_PROBE3( 5592 tx__ip__log__error__connrequest__tcp, 5593 char *, "eager connp(1) label on SYN mp(2) failed", 5594 conn_t *, econnp, mblk_t *, mp); 5595 goto error3; 5596 } 5597 } 5598 5599 eager->tcp_hard_binding = B_TRUE; 5600 5601 tcp_bind_hash_insert(&tcp_bind_fanout[ 5602 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5603 5604 CL_INET_CONNECT(eager); 5605 5606 /* 5607 * No need to check for multicast destination since ip will only pass 5608 * up multicasts to those that have expressed interest 5609 * TODO: what about rejecting broadcasts? 5610 * Also check that source is not a multicast or broadcast address. 5611 */ 5612 eager->tcp_state = TCPS_SYN_RCVD; 5613 5614 5615 /* 5616 * There should be no ire in the mp as we are being called after 5617 * receiving the SYN. 5618 */ 5619 ASSERT(tcp_ire_mp(mp) == NULL); 5620 5621 /* 5622 * Adapt our mss, ttl, ... according to information provided in IRE. 5623 */ 5624 5625 if (tcp_adapt_ire(eager, NULL) == 0) { 5626 /* Undo the bind_hash_insert */ 5627 tcp_bind_hash_remove(eager); 5628 goto error3; 5629 } 5630 5631 /* Process all TCP options. */ 5632 tcp_process_options(eager, tcph); 5633 5634 /* Is the other end ECN capable? */ 5635 if (tcp_ecn_permitted >= 1 && 5636 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5637 eager->tcp_ecn_ok = B_TRUE; 5638 } 5639 5640 /* 5641 * listener->tcp_rq->q_hiwat should be the default window size or a 5642 * window size changed via SO_RCVBUF option. First round up the 5643 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5644 * scale option value if needed. Call tcp_rwnd_set() to finish the 5645 * setting. 5646 * 5647 * Note if there is a rpipe metric associated with the remote host, 5648 * we should not inherit receive window size from listener. 5649 */ 5650 eager->tcp_rwnd = MSS_ROUNDUP( 5651 (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat : 5652 eager->tcp_rwnd), eager->tcp_mss); 5653 if (eager->tcp_snd_ws_ok) 5654 tcp_set_ws_value(eager); 5655 /* 5656 * Note that this is the only place tcp_rwnd_set() is called for 5657 * accepting a connection. We need to call it here instead of 5658 * after the 3-way handshake because we need to tell the other 5659 * side our rwnd in the SYN-ACK segment. 5660 */ 5661 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5662 5663 /* 5664 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5665 * via soaccept()->soinheritoptions() which essentially applies 5666 * all the listener options to the new STREAM. The options that we 5667 * need to take care of are: 5668 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5669 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5670 * SO_SNDBUF, SO_RCVBUF. 5671 * 5672 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5673 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5674 * tcp_maxpsz_set() gets called later from 5675 * tcp_accept_finish(), the option takes effect. 5676 * 5677 */ 5678 /* Set the TCP options */ 5679 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5680 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5681 eager->tcp_oobinline = tcp->tcp_oobinline; 5682 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5683 eager->tcp_broadcast = tcp->tcp_broadcast; 5684 eager->tcp_useloopback = tcp->tcp_useloopback; 5685 eager->tcp_dontroute = tcp->tcp_dontroute; 5686 eager->tcp_linger = tcp->tcp_linger; 5687 eager->tcp_lingertime = tcp->tcp_lingertime; 5688 if (tcp->tcp_ka_enabled) 5689 eager->tcp_ka_enabled = 1; 5690 5691 /* Set the IP options */ 5692 econnp->conn_broadcast = connp->conn_broadcast; 5693 econnp->conn_loopback = connp->conn_loopback; 5694 econnp->conn_dontroute = connp->conn_dontroute; 5695 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5696 5697 /* Put a ref on the listener for the eager. */ 5698 CONN_INC_REF(connp); 5699 mutex_enter(&tcp->tcp_eager_lock); 5700 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5701 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5702 tcp->tcp_eager_next_q0 = eager; 5703 eager->tcp_eager_prev_q0 = tcp; 5704 5705 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5706 eager->tcp_listener = tcp; 5707 eager->tcp_saved_listener = tcp; 5708 5709 /* 5710 * Tag this detached tcp vector for later retrieval 5711 * by our listener client in tcp_accept(). 5712 */ 5713 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5714 tcp->tcp_conn_req_cnt_q0++; 5715 if (++tcp->tcp_conn_req_seqnum == -1) { 5716 /* 5717 * -1 is "special" and defined in TPI as something 5718 * that should never be used in T_CONN_IND 5719 */ 5720 ++tcp->tcp_conn_req_seqnum; 5721 } 5722 mutex_exit(&tcp->tcp_eager_lock); 5723 5724 if (tcp->tcp_syn_defense) { 5725 /* Don't drop the SYN that comes from a good IP source */ 5726 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5727 if (addr_cache != NULL && eager->tcp_remote == 5728 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5729 eager->tcp_dontdrop = B_TRUE; 5730 } 5731 } 5732 5733 /* 5734 * We need to insert the eager in its own perimeter but as soon 5735 * as we do that, we expose the eager to the classifier and 5736 * should not touch any field outside the eager's perimeter. 5737 * So do all the work necessary before inserting the eager 5738 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5739 * will succeed but undo everything if it fails. 5740 */ 5741 seg_seq = ABE32_TO_U32(tcph->th_seq); 5742 eager->tcp_irs = seg_seq; 5743 eager->tcp_rack = seg_seq; 5744 eager->tcp_rnxt = seg_seq + 1; 5745 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5746 BUMP_MIB(&tcp_mib, tcpPassiveOpens); 5747 eager->tcp_state = TCPS_SYN_RCVD; 5748 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5749 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5750 if (mp1 == NULL) 5751 goto error1; 5752 DB_CPID(mp1) = tcp->tcp_cpid; 5753 5754 /* 5755 * We need to start the rto timer. In normal case, we start 5756 * the timer after sending the packet on the wire (or at 5757 * least believing that packet was sent by waiting for 5758 * CALL_IP_WPUT() to return). Since this is the first packet 5759 * being sent on the wire for the eager, our initial tcp_rto 5760 * is at least tcp_rexmit_interval_min which is a fairly 5761 * large value to allow the algorithm to adjust slowly to large 5762 * fluctuations of RTT during first few transmissions. 5763 * 5764 * Starting the timer first and then sending the packet in this 5765 * case shouldn't make much difference since tcp_rexmit_interval_min 5766 * is of the order of several 100ms and starting the timer 5767 * first and then sending the packet will result in difference 5768 * of few micro seconds. 5769 * 5770 * Without this optimization, we are forced to hold the fanout 5771 * lock across the ipcl_bind_insert() and sending the packet 5772 * so that we don't race against an incoming packet (maybe RST) 5773 * for this eager. 5774 */ 5775 5776 TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT); 5777 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5778 5779 5780 /* 5781 * Insert the eager in its own perimeter now. We are ready to deal 5782 * with any packets on eager. 5783 */ 5784 if (eager->tcp_ipversion == IPV4_VERSION) { 5785 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 5786 goto error; 5787 } 5788 } else { 5789 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 5790 goto error; 5791 } 5792 } 5793 5794 /* mark conn as fully-bound */ 5795 econnp->conn_fully_bound = B_TRUE; 5796 5797 /* Send the SYN-ACK */ 5798 tcp_send_data(eager, eager->tcp_wq, mp1); 5799 freemsg(mp); 5800 5801 return; 5802 error: 5803 (void) TCP_TIMER_CANCEL(eager, eager->tcp_timer_tid); 5804 freemsg(mp1); 5805 error1: 5806 /* Undo what we did above */ 5807 mutex_enter(&tcp->tcp_eager_lock); 5808 tcp_eager_unlink(eager); 5809 mutex_exit(&tcp->tcp_eager_lock); 5810 /* Drop eager's reference on the listener */ 5811 CONN_DEC_REF(connp); 5812 5813 /* 5814 * Delete the cached ire in conn_ire_cache and also mark 5815 * the conn as CONDEMNED 5816 */ 5817 mutex_enter(&econnp->conn_lock); 5818 econnp->conn_state_flags |= CONN_CONDEMNED; 5819 ire = econnp->conn_ire_cache; 5820 econnp->conn_ire_cache = NULL; 5821 mutex_exit(&econnp->conn_lock); 5822 if (ire != NULL) 5823 IRE_REFRELE_NOTR(ire); 5824 5825 /* 5826 * tcp_accept_comm inserts the eager to the bind_hash 5827 * we need to remove it from the hash if ipcl_conn_insert 5828 * fails. 5829 */ 5830 tcp_bind_hash_remove(eager); 5831 /* Drop the eager ref placed in tcp_open_detached */ 5832 CONN_DEC_REF(econnp); 5833 5834 /* 5835 * If a connection already exists, send the mp to that connections so 5836 * that it can be appropriately dealt with. 5837 */ 5838 if ((econnp = ipcl_classify(mp, connp->conn_zoneid)) != NULL) { 5839 if (!IPCL_IS_CONNECTED(econnp)) { 5840 /* 5841 * Something bad happened. ipcl_conn_insert() 5842 * failed because a connection already existed 5843 * in connected hash but we can't find it 5844 * anymore (someone blew it away). Just 5845 * free this message and hopefully remote 5846 * will retransmit at which time the SYN can be 5847 * treated as a new connection or dealth with 5848 * a TH_RST if a connection already exists. 5849 */ 5850 freemsg(mp); 5851 } else { 5852 squeue_fill(econnp->conn_sqp, mp, tcp_input, 5853 econnp, SQTAG_TCP_CONN_REQ); 5854 } 5855 } else { 5856 /* Nobody wants this packet */ 5857 freemsg(mp); 5858 } 5859 return; 5860 error2: 5861 freemsg(mp); 5862 return; 5863 error3: 5864 CONN_DEC_REF(econnp); 5865 freemsg(mp); 5866 } 5867 5868 /* 5869 * In an ideal case of vertical partition in NUMA architecture, its 5870 * beneficial to have the listener and all the incoming connections 5871 * tied to the same squeue. The other constraint is that incoming 5872 * connections should be tied to the squeue attached to interrupted 5873 * CPU for obvious locality reason so this leaves the listener to 5874 * be tied to the same squeue. Our only problem is that when listener 5875 * is binding, the CPU that will get interrupted by the NIC whose 5876 * IP address the listener is binding to is not even known. So 5877 * the code below allows us to change that binding at the time the 5878 * CPU is interrupted by virtue of incoming connection's squeue. 5879 * 5880 * This is usefull only in case of a listener bound to a specific IP 5881 * address. For other kind of listeners, they get bound the 5882 * very first time and there is no attempt to rebind them. 5883 */ 5884 void 5885 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 5886 { 5887 conn_t *connp = (conn_t *)arg; 5888 squeue_t *sqp = (squeue_t *)arg2; 5889 squeue_t *new_sqp; 5890 uint32_t conn_flags; 5891 5892 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5893 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5894 } else { 5895 goto done; 5896 } 5897 5898 if (connp->conn_fanout == NULL) 5899 goto done; 5900 5901 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 5902 mutex_enter(&connp->conn_fanout->connf_lock); 5903 mutex_enter(&connp->conn_lock); 5904 /* 5905 * No one from read or write side can access us now 5906 * except for already queued packets on this squeue. 5907 * But since we haven't changed the squeue yet, they 5908 * can't execute. If they are processed after we have 5909 * changed the squeue, they are sent back to the 5910 * correct squeue down below. 5911 */ 5912 if (connp->conn_sqp != new_sqp) { 5913 while (connp->conn_sqp != new_sqp) 5914 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 5915 } 5916 5917 do { 5918 conn_flags = connp->conn_flags; 5919 conn_flags |= IPCL_FULLY_BOUND; 5920 (void) cas32(&connp->conn_flags, connp->conn_flags, 5921 conn_flags); 5922 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 5923 5924 mutex_exit(&connp->conn_fanout->connf_lock); 5925 mutex_exit(&connp->conn_lock); 5926 } 5927 5928 done: 5929 if (connp->conn_sqp != sqp) { 5930 CONN_INC_REF(connp); 5931 squeue_fill(connp->conn_sqp, mp, 5932 connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND); 5933 } else { 5934 tcp_conn_request(connp, mp, sqp); 5935 } 5936 } 5937 5938 /* 5939 * Successful connect request processing begins when our client passes 5940 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 5941 * our T_OK_ACK reply message upstream. The control flow looks like this: 5942 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP 5943 * upstream <- tcp_rput() <- IP 5944 * After various error checks are completed, tcp_connect() lays 5945 * the target address and port into the composite header template, 5946 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 5947 * request followed by an IRE request, and passes the three mblk message 5948 * down to IP looking like this: 5949 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 5950 * Processing continues in tcp_rput() when we receive the following message: 5951 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 5952 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 5953 * to fire off the connection request, and then passes the T_OK_ACK mblk 5954 * upstream that we filled in below. There are, of course, numerous 5955 * error conditions along the way which truncate the processing described 5956 * above. 5957 */ 5958 static void 5959 tcp_connect(tcp_t *tcp, mblk_t *mp) 5960 { 5961 sin_t *sin; 5962 sin6_t *sin6; 5963 queue_t *q = tcp->tcp_wq; 5964 struct T_conn_req *tcr; 5965 ipaddr_t *dstaddrp; 5966 in_port_t dstport; 5967 uint_t srcid; 5968 5969 tcr = (struct T_conn_req *)mp->b_rptr; 5970 5971 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5972 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 5973 tcp_err_ack(tcp, mp, TPROTO, 0); 5974 return; 5975 } 5976 5977 /* 5978 * Determine packet type based on type of address passed in 5979 * the request should contain an IPv4 or IPv6 address. 5980 * Make sure that address family matches the type of 5981 * family of the the address passed down 5982 */ 5983 switch (tcr->DEST_length) { 5984 default: 5985 tcp_err_ack(tcp, mp, TBADADDR, 0); 5986 return; 5987 5988 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 5989 /* 5990 * XXX: The check for valid DEST_length was not there 5991 * in earlier releases and some buggy 5992 * TLI apps (e.g Sybase) got away with not feeding 5993 * in sin_zero part of address. 5994 * We allow that bug to keep those buggy apps humming. 5995 * Test suites require the check on DEST_length. 5996 * We construct a new mblk with valid DEST_length 5997 * free the original so the rest of the code does 5998 * not have to keep track of this special shorter 5999 * length address case. 6000 */ 6001 mblk_t *nmp; 6002 struct T_conn_req *ntcr; 6003 sin_t *nsin; 6004 6005 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 6006 tcr->OPT_length, BPRI_HI); 6007 if (nmp == NULL) { 6008 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6009 return; 6010 } 6011 ntcr = (struct T_conn_req *)nmp->b_rptr; 6012 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 6013 ntcr->PRIM_type = T_CONN_REQ; 6014 ntcr->DEST_length = sizeof (sin_t); 6015 ntcr->DEST_offset = sizeof (struct T_conn_req); 6016 6017 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 6018 *nsin = sin_null; 6019 /* Get pointer to shorter address to copy from original mp */ 6020 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6021 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 6022 if (sin == NULL || !OK_32PTR((char *)sin)) { 6023 freemsg(nmp); 6024 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6025 return; 6026 } 6027 nsin->sin_family = sin->sin_family; 6028 nsin->sin_port = sin->sin_port; 6029 nsin->sin_addr = sin->sin_addr; 6030 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 6031 nmp->b_wptr = (uchar_t *)&nsin[1]; 6032 if (tcr->OPT_length != 0) { 6033 ntcr->OPT_length = tcr->OPT_length; 6034 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 6035 bcopy((uchar_t *)tcr + tcr->OPT_offset, 6036 (uchar_t *)ntcr + ntcr->OPT_offset, 6037 tcr->OPT_length); 6038 nmp->b_wptr += tcr->OPT_length; 6039 } 6040 freemsg(mp); /* original mp freed */ 6041 mp = nmp; /* re-initialize original variables */ 6042 tcr = ntcr; 6043 } 6044 /* FALLTHRU */ 6045 6046 case sizeof (sin_t): 6047 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6048 sizeof (sin_t)); 6049 if (sin == NULL || !OK_32PTR((char *)sin)) { 6050 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6051 return; 6052 } 6053 if (tcp->tcp_family != AF_INET || 6054 sin->sin_family != AF_INET) { 6055 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6056 return; 6057 } 6058 if (sin->sin_port == 0) { 6059 tcp_err_ack(tcp, mp, TBADADDR, 0); 6060 return; 6061 } 6062 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 6063 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6064 return; 6065 } 6066 6067 break; 6068 6069 case sizeof (sin6_t): 6070 sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, 6071 sizeof (sin6_t)); 6072 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 6073 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6074 return; 6075 } 6076 if (tcp->tcp_family != AF_INET6 || 6077 sin6->sin6_family != AF_INET6) { 6078 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6079 return; 6080 } 6081 if (sin6->sin6_port == 0) { 6082 tcp_err_ack(tcp, mp, TBADADDR, 0); 6083 return; 6084 } 6085 break; 6086 } 6087 /* 6088 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6089 * should key on their sequence number and cut them loose. 6090 */ 6091 6092 /* 6093 * If options passed in, feed it for verification and handling 6094 */ 6095 if (tcr->OPT_length != 0) { 6096 mblk_t *ok_mp; 6097 mblk_t *discon_mp; 6098 mblk_t *conn_opts_mp; 6099 int t_error, sys_error, do_disconnect; 6100 6101 conn_opts_mp = NULL; 6102 6103 if (tcp_conprim_opt_process(tcp, mp, 6104 &do_disconnect, &t_error, &sys_error) < 0) { 6105 if (do_disconnect) { 6106 ASSERT(t_error == 0 && sys_error == 0); 6107 discon_mp = mi_tpi_discon_ind(NULL, 6108 ECONNREFUSED, 0); 6109 if (!discon_mp) { 6110 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6111 TSYSERR, ENOMEM); 6112 return; 6113 } 6114 ok_mp = mi_tpi_ok_ack_alloc(mp); 6115 if (!ok_mp) { 6116 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6117 TSYSERR, ENOMEM); 6118 return; 6119 } 6120 qreply(q, ok_mp); 6121 qreply(q, discon_mp); /* no flush! */ 6122 } else { 6123 ASSERT(t_error != 0); 6124 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6125 sys_error); 6126 } 6127 return; 6128 } 6129 /* 6130 * Success in setting options, the mp option buffer represented 6131 * by OPT_length/offset has been potentially modified and 6132 * contains results of option processing. We copy it in 6133 * another mp to save it for potentially influencing returning 6134 * it in T_CONN_CONN. 6135 */ 6136 if (tcr->OPT_length != 0) { /* there are resulting options */ 6137 conn_opts_mp = copyb(mp); 6138 if (!conn_opts_mp) { 6139 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6140 TSYSERR, ENOMEM); 6141 return; 6142 } 6143 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6144 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6145 /* 6146 * Note: 6147 * These resulting option negotiation can include any 6148 * end-to-end negotiation options but there no such 6149 * thing (yet?) in our TCP/IP. 6150 */ 6151 } 6152 } 6153 6154 /* 6155 * If we're connecting to an IPv4-mapped IPv6 address, we need to 6156 * make sure that the template IP header in the tcp structure is an 6157 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 6158 * need to this before we call tcp_bindi() so that the port lookup 6159 * code will look for ports in the correct port space (IPv4 and 6160 * IPv6 have separate port spaces). 6161 */ 6162 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 6163 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6164 int err = 0; 6165 6166 err = tcp_header_init_ipv4(tcp); 6167 if (err != 0) { 6168 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6169 goto connect_failed; 6170 } 6171 if (tcp->tcp_lport != 0) 6172 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 6173 } 6174 6175 switch (tcp->tcp_state) { 6176 case TCPS_IDLE: 6177 /* 6178 * We support quick connect, refer to comments in 6179 * tcp_connect_*() 6180 */ 6181 /* FALLTHRU */ 6182 case TCPS_BOUND: 6183 case TCPS_LISTEN: 6184 if (tcp->tcp_family == AF_INET6) { 6185 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6186 tcp_connect_ipv6(tcp, mp, 6187 &sin6->sin6_addr, 6188 sin6->sin6_port, sin6->sin6_flowinfo, 6189 sin6->__sin6_src_id, sin6->sin6_scope_id); 6190 return; 6191 } 6192 /* 6193 * Destination adress is mapped IPv6 address. 6194 * Source bound address should be unspecified or 6195 * IPv6 mapped address as well. 6196 */ 6197 if (!IN6_IS_ADDR_UNSPECIFIED( 6198 &tcp->tcp_bound_source_v6) && 6199 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 6200 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, 6201 EADDRNOTAVAIL); 6202 break; 6203 } 6204 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 6205 dstport = sin6->sin6_port; 6206 srcid = sin6->__sin6_src_id; 6207 } else { 6208 dstaddrp = &sin->sin_addr.s_addr; 6209 dstport = sin->sin_port; 6210 srcid = 0; 6211 } 6212 6213 tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid); 6214 return; 6215 default: 6216 mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0); 6217 break; 6218 } 6219 /* 6220 * Note: Code below is the "failure" case 6221 */ 6222 /* return error ack and blow away saved option results if any */ 6223 connect_failed: 6224 if (mp != NULL) 6225 putnext(tcp->tcp_rq, mp); 6226 else { 6227 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6228 TSYSERR, ENOMEM); 6229 } 6230 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6231 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6232 } 6233 6234 /* 6235 * Handle connect to IPv4 destinations, including connections for AF_INET6 6236 * sockets connecting to IPv4 mapped IPv6 destinations. 6237 */ 6238 static void 6239 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport, 6240 uint_t srcid) 6241 { 6242 tcph_t *tcph; 6243 mblk_t *mp1; 6244 ipaddr_t dstaddr = *dstaddrp; 6245 int32_t oldstate; 6246 uint16_t lport; 6247 6248 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6249 6250 /* Check for attempt to connect to INADDR_ANY */ 6251 if (dstaddr == INADDR_ANY) { 6252 /* 6253 * SunOS 4.x and 4.3 BSD allow an application 6254 * to connect a TCP socket to INADDR_ANY. 6255 * When they do this, the kernel picks the 6256 * address of one interface and uses it 6257 * instead. The kernel usually ends up 6258 * picking the address of the loopback 6259 * interface. This is an undocumented feature. 6260 * However, we provide the same thing here 6261 * in order to have source and binary 6262 * compatibility with SunOS 4.x. 6263 * Update the T_CONN_REQ (sin/sin6) since it is used to 6264 * generate the T_CONN_CON. 6265 */ 6266 dstaddr = htonl(INADDR_LOOPBACK); 6267 *dstaddrp = dstaddr; 6268 } 6269 6270 /* Handle __sin6_src_id if socket not bound to an IP address */ 6271 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6272 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6273 tcp->tcp_connp->conn_zoneid); 6274 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6275 tcp->tcp_ipha->ipha_src); 6276 } 6277 6278 /* 6279 * Don't let an endpoint connect to itself. Note that 6280 * the test here does not catch the case where the 6281 * source IP addr was left unspecified by the user. In 6282 * this case, the source addr is set in tcp_adapt_ire() 6283 * using the reply to the T_BIND message that we send 6284 * down to IP here and the check is repeated in tcp_rput_other. 6285 */ 6286 if (dstaddr == tcp->tcp_ipha->ipha_src && 6287 dstport == tcp->tcp_lport) { 6288 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6289 goto failed; 6290 } 6291 6292 tcp->tcp_ipha->ipha_dst = dstaddr; 6293 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6294 6295 /* 6296 * Massage a source route if any putting the first hop 6297 * in iph_dst. Compute a starting value for the checksum which 6298 * takes into account that the original iph_dst should be 6299 * included in the checksum but that ip will include the 6300 * first hop in the source route in the tcp checksum. 6301 */ 6302 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha); 6303 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6304 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6305 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6306 if ((int)tcp->tcp_sum < 0) 6307 tcp->tcp_sum--; 6308 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6309 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6310 (tcp->tcp_sum >> 16)); 6311 tcph = tcp->tcp_tcph; 6312 *(uint16_t *)tcph->th_fport = dstport; 6313 tcp->tcp_fport = dstport; 6314 6315 oldstate = tcp->tcp_state; 6316 /* 6317 * At this point the remote destination address and remote port fields 6318 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6319 * have to see which state tcp was in so we can take apropriate action. 6320 */ 6321 if (oldstate == TCPS_IDLE) { 6322 /* 6323 * We support a quick connect capability here, allowing 6324 * clients to transition directly from IDLE to SYN_SENT 6325 * tcp_bindi will pick an unused port, insert the connection 6326 * in the bind hash and transition to BOUND state. 6327 */ 6328 lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE); 6329 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6330 B_FALSE, B_FALSE); 6331 if (lport == 0) { 6332 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6333 goto failed; 6334 } 6335 } 6336 tcp->tcp_state = TCPS_SYN_SENT; 6337 6338 /* 6339 * TODO: allow data with connect requests 6340 * by unlinking M_DATA trailers here and 6341 * linking them in behind the T_OK_ACK mblk. 6342 * The tcp_rput() bind ack handler would then 6343 * feed them to tcp_wput_data() rather than call 6344 * tcp_timer(). 6345 */ 6346 mp = mi_tpi_ok_ack_alloc(mp); 6347 if (!mp) { 6348 tcp->tcp_state = oldstate; 6349 goto failed; 6350 } 6351 if (tcp->tcp_family == AF_INET) { 6352 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6353 sizeof (ipa_conn_t)); 6354 } else { 6355 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6356 sizeof (ipa6_conn_t)); 6357 } 6358 if (mp1) { 6359 /* Hang onto the T_OK_ACK for later. */ 6360 linkb(mp1, mp); 6361 mblk_setcred(mp1, tcp->tcp_cred); 6362 if (tcp->tcp_family == AF_INET) 6363 mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp); 6364 else { 6365 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6366 &tcp->tcp_sticky_ipp); 6367 } 6368 BUMP_MIB(&tcp_mib, tcpActiveOpens); 6369 tcp->tcp_active_open = 1; 6370 /* 6371 * If the bind cannot complete immediately 6372 * IP will arrange to call tcp_rput_other 6373 * when the bind completes. 6374 */ 6375 if (mp1 != NULL) 6376 tcp_rput_other(tcp, mp1); 6377 return; 6378 } 6379 /* Error case */ 6380 tcp->tcp_state = oldstate; 6381 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6382 6383 failed: 6384 /* return error ack and blow away saved option results if any */ 6385 if (mp != NULL) 6386 putnext(tcp->tcp_rq, mp); 6387 else { 6388 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6389 TSYSERR, ENOMEM); 6390 } 6391 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6392 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6393 6394 } 6395 6396 /* 6397 * Handle connect to IPv6 destinations. 6398 */ 6399 static void 6400 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 6401 in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 6402 { 6403 tcph_t *tcph; 6404 mblk_t *mp1; 6405 ip6_rthdr_t *rth; 6406 int32_t oldstate; 6407 uint16_t lport; 6408 6409 ASSERT(tcp->tcp_family == AF_INET6); 6410 6411 /* 6412 * If we're here, it means that the destination address is a native 6413 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6414 * reason why it might not be IPv6 is if the socket was bound to an 6415 * IPv4-mapped IPv6 address. 6416 */ 6417 if (tcp->tcp_ipversion != IPV6_VERSION) { 6418 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6419 goto failed; 6420 } 6421 6422 /* 6423 * Interpret a zero destination to mean loopback. 6424 * Update the T_CONN_REQ (sin/sin6) since it is used to 6425 * generate the T_CONN_CON. 6426 */ 6427 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6428 *dstaddrp = ipv6_loopback; 6429 } 6430 6431 /* Handle __sin6_src_id if socket not bound to an IP address */ 6432 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6433 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6434 tcp->tcp_connp->conn_zoneid); 6435 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6436 } 6437 6438 /* 6439 * Take care of the scope_id now and add ip6i_t 6440 * if ip6i_t is not already allocated through TCP 6441 * sticky options. At this point tcp_ip6h does not 6442 * have dst info, thus use dstaddrp. 6443 */ 6444 if (scope_id != 0 && 6445 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6446 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6447 ip6i_t *ip6i; 6448 6449 ipp->ipp_ifindex = scope_id; 6450 ip6i = (ip6i_t *)tcp->tcp_iphc; 6451 6452 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6453 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6454 /* Already allocated */ 6455 ip6i->ip6i_flags |= IP6I_IFINDEX; 6456 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6457 ipp->ipp_fields |= IPPF_SCOPE_ID; 6458 } else { 6459 int reterr; 6460 6461 ipp->ipp_fields |= IPPF_SCOPE_ID; 6462 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6463 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6464 reterr = tcp_build_hdrs(tcp->tcp_rq, tcp); 6465 if (reterr != 0) 6466 goto failed; 6467 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6468 } 6469 } 6470 6471 /* 6472 * Don't let an endpoint connect to itself. Note that 6473 * the test here does not catch the case where the 6474 * source IP addr was left unspecified by the user. In 6475 * this case, the source addr is set in tcp_adapt_ire() 6476 * using the reply to the T_BIND message that we send 6477 * down to IP here and the check is repeated in tcp_rput_other. 6478 */ 6479 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6480 (dstport == tcp->tcp_lport)) { 6481 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6482 goto failed; 6483 } 6484 6485 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6486 tcp->tcp_remote_v6 = *dstaddrp; 6487 tcp->tcp_ip6h->ip6_vcf = 6488 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6489 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6490 6491 6492 /* 6493 * Massage a routing header (if present) putting the first hop 6494 * in ip6_dst. Compute a starting value for the checksum which 6495 * takes into account that the original ip6_dst should be 6496 * included in the checksum but that ip will include the 6497 * first hop in the source route in the tcp checksum. 6498 */ 6499 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6500 if (rth != NULL) { 6501 6502 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth); 6503 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6504 (tcp->tcp_sum >> 16)); 6505 } else { 6506 tcp->tcp_sum = 0; 6507 } 6508 6509 tcph = tcp->tcp_tcph; 6510 *(uint16_t *)tcph->th_fport = dstport; 6511 tcp->tcp_fport = dstport; 6512 6513 oldstate = tcp->tcp_state; 6514 /* 6515 * At this point the remote destination address and remote port fields 6516 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6517 * have to see which state tcp was in so we can take apropriate action. 6518 */ 6519 if (oldstate == TCPS_IDLE) { 6520 /* 6521 * We support a quick connect capability here, allowing 6522 * clients to transition directly from IDLE to SYN_SENT 6523 * tcp_bindi will pick an unused port, insert the connection 6524 * in the bind hash and transition to BOUND state. 6525 */ 6526 lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE); 6527 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6528 B_FALSE, B_FALSE); 6529 if (lport == 0) { 6530 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6531 goto failed; 6532 } 6533 } 6534 tcp->tcp_state = TCPS_SYN_SENT; 6535 /* 6536 * TODO: allow data with connect requests 6537 * by unlinking M_DATA trailers here and 6538 * linking them in behind the T_OK_ACK mblk. 6539 * The tcp_rput() bind ack handler would then 6540 * feed them to tcp_wput_data() rather than call 6541 * tcp_timer(). 6542 */ 6543 mp = mi_tpi_ok_ack_alloc(mp); 6544 if (!mp) { 6545 tcp->tcp_state = oldstate; 6546 goto failed; 6547 } 6548 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); 6549 if (mp1) { 6550 /* Hang onto the T_OK_ACK for later. */ 6551 linkb(mp1, mp); 6552 mblk_setcred(mp1, tcp->tcp_cred); 6553 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6554 &tcp->tcp_sticky_ipp); 6555 BUMP_MIB(&tcp_mib, tcpActiveOpens); 6556 tcp->tcp_active_open = 1; 6557 /* ip_bind_v6() may return ACK or ERROR */ 6558 if (mp1 != NULL) 6559 tcp_rput_other(tcp, mp1); 6560 return; 6561 } 6562 /* Error case */ 6563 tcp->tcp_state = oldstate; 6564 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6565 6566 failed: 6567 /* return error ack and blow away saved option results if any */ 6568 if (mp != NULL) 6569 putnext(tcp->tcp_rq, mp); 6570 else { 6571 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6572 TSYSERR, ENOMEM); 6573 } 6574 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6575 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6576 } 6577 6578 /* 6579 * We need a stream q for detached closing tcp connections 6580 * to use. Our client hereby indicates that this q is the 6581 * one to use. 6582 */ 6583 static void 6584 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6585 { 6586 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6587 queue_t *q = tcp->tcp_wq; 6588 6589 mp->b_datap->db_type = M_IOCACK; 6590 iocp->ioc_count = 0; 6591 mutex_enter(&tcp_g_q_lock); 6592 if (tcp_g_q != NULL) { 6593 mutex_exit(&tcp_g_q_lock); 6594 iocp->ioc_error = EALREADY; 6595 } else { 6596 mblk_t *mp1; 6597 6598 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0); 6599 if (mp1 == NULL) { 6600 mutex_exit(&tcp_g_q_lock); 6601 iocp->ioc_error = ENOMEM; 6602 } else { 6603 tcp_g_q = tcp->tcp_rq; 6604 mutex_exit(&tcp_g_q_lock); 6605 iocp->ioc_error = 0; 6606 iocp->ioc_rval = 0; 6607 /* 6608 * We are passing tcp_sticky_ipp as NULL 6609 * as it is not useful for tcp_default queue 6610 */ 6611 mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL); 6612 if (mp1 != NULL) 6613 tcp_rput_other(tcp, mp1); 6614 } 6615 } 6616 qreply(q, mp); 6617 } 6618 6619 /* 6620 * Our client hereby directs us to reject the connection request 6621 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6622 * of sending the appropriate RST, not an ICMP error. 6623 */ 6624 static void 6625 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6626 { 6627 tcp_t *ltcp = NULL; 6628 t_scalar_t seqnum; 6629 conn_t *connp; 6630 6631 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6632 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6633 tcp_err_ack(tcp, mp, TPROTO, 0); 6634 return; 6635 } 6636 6637 /* 6638 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6639 * when the stream is in BOUND state. Do not send a reset, 6640 * since the destination IP address is not valid, and it can 6641 * be the initialized value of all zeros (broadcast address). 6642 * 6643 * If TCP has sent down a bind request to IP and has not 6644 * received the reply, reject the request. Otherwise, TCP 6645 * will be confused. 6646 */ 6647 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) { 6648 if (tcp->tcp_debug) { 6649 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6650 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6651 } 6652 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 6653 return; 6654 } 6655 6656 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6657 6658 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6659 6660 /* 6661 * According to TPI, for non-listeners, ignore seqnum 6662 * and disconnect. 6663 * Following interpretation of -1 seqnum is historical 6664 * and implied TPI ? (TPI only states that for T_CONN_IND, 6665 * a valid seqnum should not be -1). 6666 * 6667 * -1 means disconnect everything 6668 * regardless even on a listener. 6669 */ 6670 6671 int old_state = tcp->tcp_state; 6672 6673 /* 6674 * The connection can't be on the tcp_time_wait_head list 6675 * since it is not detached. 6676 */ 6677 ASSERT(tcp->tcp_time_wait_next == NULL); 6678 ASSERT(tcp->tcp_time_wait_prev == NULL); 6679 ASSERT(tcp->tcp_time_wait_expire == 0); 6680 ltcp = NULL; 6681 /* 6682 * If it used to be a listener, check to make sure no one else 6683 * has taken the port before switching back to LISTEN state. 6684 */ 6685 if (tcp->tcp_ipversion == IPV4_VERSION) { 6686 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6687 tcp->tcp_ipha->ipha_src, 6688 tcp->tcp_connp->conn_zoneid); 6689 if (connp != NULL) 6690 ltcp = connp->conn_tcp; 6691 } else { 6692 /* Allow tcp_bound_if listeners? */ 6693 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6694 &tcp->tcp_ip6h->ip6_src, 0, 6695 tcp->tcp_connp->conn_zoneid); 6696 if (connp != NULL) 6697 ltcp = connp->conn_tcp; 6698 } 6699 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6700 tcp->tcp_state = TCPS_LISTEN; 6701 } else if (old_state > TCPS_BOUND) { 6702 tcp->tcp_conn_req_max = 0; 6703 tcp->tcp_state = TCPS_BOUND; 6704 } 6705 if (ltcp != NULL) 6706 CONN_DEC_REF(ltcp->tcp_connp); 6707 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6708 BUMP_MIB(&tcp_mib, tcpAttemptFails); 6709 } else if (old_state == TCPS_ESTABLISHED || 6710 old_state == TCPS_CLOSE_WAIT) { 6711 BUMP_MIB(&tcp_mib, tcpEstabResets); 6712 } 6713 6714 if (tcp->tcp_fused) 6715 tcp_unfuse(tcp); 6716 6717 mutex_enter(&tcp->tcp_eager_lock); 6718 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6719 (tcp->tcp_conn_req_cnt_q != 0)) { 6720 tcp_eager_cleanup(tcp, 0); 6721 } 6722 mutex_exit(&tcp->tcp_eager_lock); 6723 6724 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6725 tcp->tcp_rnxt, TH_RST | TH_ACK); 6726 6727 tcp_reinit(tcp); 6728 6729 if (old_state >= TCPS_ESTABLISHED) { 6730 /* Send M_FLUSH according to TPI */ 6731 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6732 } 6733 mp = mi_tpi_ok_ack_alloc(mp); 6734 if (mp) 6735 putnext(tcp->tcp_rq, mp); 6736 return; 6737 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6738 tcp_err_ack(tcp, mp, TBADSEQ, 0); 6739 return; 6740 } 6741 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6742 /* Send M_FLUSH according to TPI */ 6743 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6744 } 6745 mp = mi_tpi_ok_ack_alloc(mp); 6746 if (mp) 6747 putnext(tcp->tcp_rq, mp); 6748 } 6749 6750 /* 6751 * Diagnostic routine used to return a string associated with the tcp state. 6752 * Note that if the caller does not supply a buffer, it will use an internal 6753 * static string. This means that if multiple threads call this function at 6754 * the same time, output can be corrupted... Note also that this function 6755 * does not check the size of the supplied buffer. The caller has to make 6756 * sure that it is big enough. 6757 */ 6758 static char * 6759 tcp_display(tcp_t *tcp, char *sup_buf, char format) 6760 { 6761 char buf1[30]; 6762 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 6763 char *buf; 6764 char *cp; 6765 in6_addr_t local, remote; 6766 char local_addrbuf[INET6_ADDRSTRLEN]; 6767 char remote_addrbuf[INET6_ADDRSTRLEN]; 6768 6769 if (sup_buf != NULL) 6770 buf = sup_buf; 6771 else 6772 buf = priv_buf; 6773 6774 if (tcp == NULL) 6775 return ("NULL_TCP"); 6776 switch (tcp->tcp_state) { 6777 case TCPS_CLOSED: 6778 cp = "TCP_CLOSED"; 6779 break; 6780 case TCPS_IDLE: 6781 cp = "TCP_IDLE"; 6782 break; 6783 case TCPS_BOUND: 6784 cp = "TCP_BOUND"; 6785 break; 6786 case TCPS_LISTEN: 6787 cp = "TCP_LISTEN"; 6788 break; 6789 case TCPS_SYN_SENT: 6790 cp = "TCP_SYN_SENT"; 6791 break; 6792 case TCPS_SYN_RCVD: 6793 cp = "TCP_SYN_RCVD"; 6794 break; 6795 case TCPS_ESTABLISHED: 6796 cp = "TCP_ESTABLISHED"; 6797 break; 6798 case TCPS_CLOSE_WAIT: 6799 cp = "TCP_CLOSE_WAIT"; 6800 break; 6801 case TCPS_FIN_WAIT_1: 6802 cp = "TCP_FIN_WAIT_1"; 6803 break; 6804 case TCPS_CLOSING: 6805 cp = "TCP_CLOSING"; 6806 break; 6807 case TCPS_LAST_ACK: 6808 cp = "TCP_LAST_ACK"; 6809 break; 6810 case TCPS_FIN_WAIT_2: 6811 cp = "TCP_FIN_WAIT_2"; 6812 break; 6813 case TCPS_TIME_WAIT: 6814 cp = "TCP_TIME_WAIT"; 6815 break; 6816 default: 6817 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 6818 cp = buf1; 6819 break; 6820 } 6821 switch (format) { 6822 case DISP_ADDR_AND_PORT: 6823 if (tcp->tcp_ipversion == IPV4_VERSION) { 6824 /* 6825 * Note that we use the remote address in the tcp_b 6826 * structure. This means that it will print out 6827 * the real destination address, not the next hop's 6828 * address if source routing is used. 6829 */ 6830 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 6831 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 6832 6833 } else { 6834 local = tcp->tcp_ip_src_v6; 6835 remote = tcp->tcp_remote_v6; 6836 } 6837 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 6838 sizeof (local_addrbuf)); 6839 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 6840 sizeof (remote_addrbuf)); 6841 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 6842 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 6843 ntohs(tcp->tcp_fport), cp); 6844 break; 6845 case DISP_PORT_ONLY: 6846 default: 6847 (void) mi_sprintf(buf, "[%u, %u] %s", 6848 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 6849 break; 6850 } 6851 6852 return (buf); 6853 } 6854 6855 /* 6856 * Called via squeue to get on to eager's perimeter to send a 6857 * TH_RST. The listener wants the eager to disappear either 6858 * by means of tcp_eager_blowoff() or tcp_eager_cleanup() 6859 * being called. 6860 */ 6861 /* ARGSUSED */ 6862 void 6863 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 6864 { 6865 conn_t *econnp = (conn_t *)arg; 6866 tcp_t *eager = econnp->conn_tcp; 6867 tcp_t *listener = eager->tcp_listener; 6868 6869 /* 6870 * We could be called because listener is closing. Since 6871 * the eager is using listener's queue's, its not safe. 6872 * Better use the default queue just to send the TH_RST 6873 * out. 6874 */ 6875 eager->tcp_rq = tcp_g_q; 6876 eager->tcp_wq = WR(tcp_g_q); 6877 6878 if (eager->tcp_state > TCPS_LISTEN) { 6879 tcp_xmit_ctl("tcp_eager_kill, can't wait", 6880 eager, eager->tcp_snxt, 0, TH_RST); 6881 } 6882 6883 /* We are here because listener wants this eager gone */ 6884 if (listener != NULL) { 6885 mutex_enter(&listener->tcp_eager_lock); 6886 tcp_eager_unlink(eager); 6887 if (eager->tcp_conn.tcp_eager_conn_ind == NULL) { 6888 /* 6889 * The eager has sent a conn_ind up to the 6890 * listener but listener decides to close 6891 * instead. We need to drop the extra ref 6892 * placed on eager in tcp_rput_data() before 6893 * sending the conn_ind to listener. 6894 */ 6895 CONN_DEC_REF(econnp); 6896 } 6897 mutex_exit(&listener->tcp_eager_lock); 6898 CONN_DEC_REF(listener->tcp_connp); 6899 } 6900 6901 if (eager->tcp_state > TCPS_BOUND) 6902 tcp_close_detached(eager); 6903 } 6904 6905 /* 6906 * Reset any eager connection hanging off this listener marked 6907 * with 'seqnum' and then reclaim it's resources. 6908 */ 6909 static boolean_t 6910 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 6911 { 6912 tcp_t *eager; 6913 mblk_t *mp; 6914 6915 TCP_STAT(tcp_eager_blowoff_calls); 6916 eager = listener; 6917 mutex_enter(&listener->tcp_eager_lock); 6918 do { 6919 eager = eager->tcp_eager_next_q; 6920 if (eager == NULL) { 6921 mutex_exit(&listener->tcp_eager_lock); 6922 return (B_FALSE); 6923 } 6924 } while (eager->tcp_conn_req_seqnum != seqnum); 6925 CONN_INC_REF(eager->tcp_connp); 6926 mutex_exit(&listener->tcp_eager_lock); 6927 mp = &eager->tcp_closemp; 6928 squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 6929 eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF); 6930 return (B_TRUE); 6931 } 6932 6933 /* 6934 * Reset any eager connection hanging off this listener 6935 * and then reclaim it's resources. 6936 */ 6937 static void 6938 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 6939 { 6940 tcp_t *eager; 6941 mblk_t *mp; 6942 6943 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6944 6945 if (!q0_only) { 6946 /* First cleanup q */ 6947 TCP_STAT(tcp_eager_blowoff_q); 6948 eager = listener->tcp_eager_next_q; 6949 while (eager != NULL) { 6950 CONN_INC_REF(eager->tcp_connp); 6951 mp = &eager->tcp_closemp; 6952 squeue_fill(eager->tcp_connp->conn_sqp, mp, 6953 tcp_eager_kill, eager->tcp_connp, 6954 SQTAG_TCP_EAGER_CLEANUP); 6955 eager = eager->tcp_eager_next_q; 6956 } 6957 } 6958 /* Then cleanup q0 */ 6959 TCP_STAT(tcp_eager_blowoff_q0); 6960 eager = listener->tcp_eager_next_q0; 6961 while (eager != listener) { 6962 CONN_INC_REF(eager->tcp_connp); 6963 mp = &eager->tcp_closemp; 6964 squeue_fill(eager->tcp_connp->conn_sqp, mp, 6965 tcp_eager_kill, eager->tcp_connp, 6966 SQTAG_TCP_EAGER_CLEANUP_Q0); 6967 eager = eager->tcp_eager_next_q0; 6968 } 6969 } 6970 6971 /* 6972 * If we are an eager connection hanging off a listener that hasn't 6973 * formally accepted the connection yet, get off his list and blow off 6974 * any data that we have accumulated. 6975 */ 6976 static void 6977 tcp_eager_unlink(tcp_t *tcp) 6978 { 6979 tcp_t *listener = tcp->tcp_listener; 6980 6981 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6982 ASSERT(listener != NULL); 6983 if (tcp->tcp_eager_next_q0 != NULL) { 6984 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 6985 6986 /* Remove the eager tcp from q0 */ 6987 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 6988 tcp->tcp_eager_prev_q0; 6989 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 6990 tcp->tcp_eager_next_q0; 6991 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 6992 listener->tcp_conn_req_cnt_q0--; 6993 6994 tcp->tcp_eager_next_q0 = NULL; 6995 tcp->tcp_eager_prev_q0 = NULL; 6996 6997 if (tcp->tcp_syn_rcvd_timeout != 0) { 6998 /* we have timed out before */ 6999 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 7000 listener->tcp_syn_rcvd_timeout--; 7001 } 7002 } else { 7003 tcp_t **tcpp = &listener->tcp_eager_next_q; 7004 tcp_t *prev = NULL; 7005 7006 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 7007 if (tcpp[0] == tcp) { 7008 if (listener->tcp_eager_last_q == tcp) { 7009 /* 7010 * If we are unlinking the last 7011 * element on the list, adjust 7012 * tail pointer. Set tail pointer 7013 * to nil when list is empty. 7014 */ 7015 ASSERT(tcp->tcp_eager_next_q == NULL); 7016 if (listener->tcp_eager_last_q == 7017 listener->tcp_eager_next_q) { 7018 listener->tcp_eager_last_q = 7019 NULL; 7020 } else { 7021 /* 7022 * We won't get here if there 7023 * is only one eager in the 7024 * list. 7025 */ 7026 ASSERT(prev != NULL); 7027 listener->tcp_eager_last_q = 7028 prev; 7029 } 7030 } 7031 tcpp[0] = tcp->tcp_eager_next_q; 7032 tcp->tcp_eager_next_q = NULL; 7033 tcp->tcp_eager_last_q = NULL; 7034 ASSERT(listener->tcp_conn_req_cnt_q > 0); 7035 listener->tcp_conn_req_cnt_q--; 7036 break; 7037 } 7038 prev = tcpp[0]; 7039 } 7040 } 7041 tcp->tcp_listener = NULL; 7042 } 7043 7044 /* Shorthand to generate and send TPI error acks to our client */ 7045 static void 7046 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 7047 { 7048 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 7049 putnext(tcp->tcp_rq, mp); 7050 } 7051 7052 /* Shorthand to generate and send TPI error acks to our client */ 7053 static void 7054 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 7055 int t_error, int sys_error) 7056 { 7057 struct T_error_ack *teackp; 7058 7059 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 7060 M_PCPROTO, T_ERROR_ACK)) != NULL) { 7061 teackp = (struct T_error_ack *)mp->b_rptr; 7062 teackp->ERROR_prim = primitive; 7063 teackp->TLI_error = t_error; 7064 teackp->UNIX_error = sys_error; 7065 putnext(tcp->tcp_rq, mp); 7066 } 7067 } 7068 7069 /* 7070 * Note: No locks are held when inspecting tcp_g_*epriv_ports 7071 * but instead the code relies on: 7072 * - the fact that the address of the array and its size never changes 7073 * - the atomic assignment of the elements of the array 7074 */ 7075 /* ARGSUSED */ 7076 static int 7077 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 7078 { 7079 int i; 7080 7081 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7082 if (tcp_g_epriv_ports[i] != 0) 7083 (void) mi_mpprintf(mp, "%d ", tcp_g_epriv_ports[i]); 7084 } 7085 return (0); 7086 } 7087 7088 /* 7089 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7090 * threads from changing it at the same time. 7091 */ 7092 /* ARGSUSED */ 7093 static int 7094 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7095 cred_t *cr) 7096 { 7097 long new_value; 7098 int i; 7099 7100 /* 7101 * Fail the request if the new value does not lie within the 7102 * port number limits. 7103 */ 7104 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7105 new_value <= 0 || new_value >= 65536) { 7106 return (EINVAL); 7107 } 7108 7109 mutex_enter(&tcp_epriv_port_lock); 7110 /* Check if the value is already in the list */ 7111 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7112 if (new_value == tcp_g_epriv_ports[i]) { 7113 mutex_exit(&tcp_epriv_port_lock); 7114 return (EEXIST); 7115 } 7116 } 7117 /* Find an empty slot */ 7118 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7119 if (tcp_g_epriv_ports[i] == 0) 7120 break; 7121 } 7122 if (i == tcp_g_num_epriv_ports) { 7123 mutex_exit(&tcp_epriv_port_lock); 7124 return (EOVERFLOW); 7125 } 7126 /* Set the new value */ 7127 tcp_g_epriv_ports[i] = (uint16_t)new_value; 7128 mutex_exit(&tcp_epriv_port_lock); 7129 return (0); 7130 } 7131 7132 /* 7133 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7134 * threads from changing it at the same time. 7135 */ 7136 /* ARGSUSED */ 7137 static int 7138 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7139 cred_t *cr) 7140 { 7141 long new_value; 7142 int i; 7143 7144 /* 7145 * Fail the request if the new value does not lie within the 7146 * port number limits. 7147 */ 7148 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7149 new_value >= 65536) { 7150 return (EINVAL); 7151 } 7152 7153 mutex_enter(&tcp_epriv_port_lock); 7154 /* Check that the value is already in the list */ 7155 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7156 if (tcp_g_epriv_ports[i] == new_value) 7157 break; 7158 } 7159 if (i == tcp_g_num_epriv_ports) { 7160 mutex_exit(&tcp_epriv_port_lock); 7161 return (ESRCH); 7162 } 7163 /* Clear the value */ 7164 tcp_g_epriv_ports[i] = 0; 7165 mutex_exit(&tcp_epriv_port_lock); 7166 return (0); 7167 } 7168 7169 /* Return the TPI/TLI equivalent of our current tcp_state */ 7170 static int 7171 tcp_tpistate(tcp_t *tcp) 7172 { 7173 switch (tcp->tcp_state) { 7174 case TCPS_IDLE: 7175 return (TS_UNBND); 7176 case TCPS_LISTEN: 7177 /* 7178 * Return whether there are outstanding T_CONN_IND waiting 7179 * for the matching T_CONN_RES. Therefore don't count q0. 7180 */ 7181 if (tcp->tcp_conn_req_cnt_q > 0) 7182 return (TS_WRES_CIND); 7183 else 7184 return (TS_IDLE); 7185 case TCPS_BOUND: 7186 return (TS_IDLE); 7187 case TCPS_SYN_SENT: 7188 return (TS_WCON_CREQ); 7189 case TCPS_SYN_RCVD: 7190 /* 7191 * Note: assumption: this has to the active open SYN_RCVD. 7192 * The passive instance is detached in SYN_RCVD stage of 7193 * incoming connection processing so we cannot get request 7194 * for T_info_ack on it. 7195 */ 7196 return (TS_WACK_CRES); 7197 case TCPS_ESTABLISHED: 7198 return (TS_DATA_XFER); 7199 case TCPS_CLOSE_WAIT: 7200 return (TS_WREQ_ORDREL); 7201 case TCPS_FIN_WAIT_1: 7202 return (TS_WIND_ORDREL); 7203 case TCPS_FIN_WAIT_2: 7204 return (TS_WIND_ORDREL); 7205 7206 case TCPS_CLOSING: 7207 case TCPS_LAST_ACK: 7208 case TCPS_TIME_WAIT: 7209 case TCPS_CLOSED: 7210 /* 7211 * Following TS_WACK_DREQ7 is a rendition of "not 7212 * yet TS_IDLE" TPI state. There is no best match to any 7213 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7214 * choose a value chosen that will map to TLI/XTI level 7215 * state of TSTATECHNG (state is process of changing) which 7216 * captures what this dummy state represents. 7217 */ 7218 return (TS_WACK_DREQ7); 7219 default: 7220 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7221 tcp->tcp_state, tcp_display(tcp, NULL, 7222 DISP_PORT_ONLY)); 7223 return (TS_UNBND); 7224 } 7225 } 7226 7227 static void 7228 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7229 { 7230 if (tcp->tcp_family == AF_INET6) 7231 *tia = tcp_g_t_info_ack_v6; 7232 else 7233 *tia = tcp_g_t_info_ack; 7234 tia->CURRENT_state = tcp_tpistate(tcp); 7235 tia->OPT_size = tcp_max_optsize; 7236 if (tcp->tcp_mss == 0) { 7237 /* Not yet set - tcp_open does not set mss */ 7238 if (tcp->tcp_ipversion == IPV4_VERSION) 7239 tia->TIDU_size = tcp_mss_def_ipv4; 7240 else 7241 tia->TIDU_size = tcp_mss_def_ipv6; 7242 } else { 7243 tia->TIDU_size = tcp->tcp_mss; 7244 } 7245 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7246 } 7247 7248 /* 7249 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7250 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7251 * tcp_g_t_info_ack. The current state of the stream is copied from 7252 * tcp_state. 7253 */ 7254 static void 7255 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7256 { 7257 t_uscalar_t cap_bits1; 7258 struct T_capability_ack *tcap; 7259 7260 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7261 freemsg(mp); 7262 return; 7263 } 7264 7265 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7266 7267 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7268 mp->b_datap->db_type, T_CAPABILITY_ACK); 7269 if (mp == NULL) 7270 return; 7271 7272 tcap = (struct T_capability_ack *)mp->b_rptr; 7273 tcap->CAP_bits1 = 0; 7274 7275 if (cap_bits1 & TC1_INFO) { 7276 tcp_copy_info(&tcap->INFO_ack, tcp); 7277 tcap->CAP_bits1 |= TC1_INFO; 7278 } 7279 7280 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7281 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7282 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7283 } 7284 7285 putnext(tcp->tcp_rq, mp); 7286 } 7287 7288 /* 7289 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7290 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7291 * The current state of the stream is copied from tcp_state. 7292 */ 7293 static void 7294 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7295 { 7296 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7297 T_INFO_ACK); 7298 if (!mp) { 7299 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7300 return; 7301 } 7302 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7303 putnext(tcp->tcp_rq, mp); 7304 } 7305 7306 /* Respond to the TPI addr request */ 7307 static void 7308 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7309 { 7310 sin_t *sin; 7311 mblk_t *ackmp; 7312 struct T_addr_ack *taa; 7313 7314 /* Make it large enough for worst case */ 7315 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7316 2 * sizeof (sin6_t), 1); 7317 if (ackmp == NULL) { 7318 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7319 return; 7320 } 7321 7322 if (tcp->tcp_ipversion == IPV6_VERSION) { 7323 tcp_addr_req_ipv6(tcp, ackmp); 7324 return; 7325 } 7326 taa = (struct T_addr_ack *)ackmp->b_rptr; 7327 7328 bzero(taa, sizeof (struct T_addr_ack)); 7329 ackmp->b_wptr = (uchar_t *)&taa[1]; 7330 7331 taa->PRIM_type = T_ADDR_ACK; 7332 ackmp->b_datap->db_type = M_PCPROTO; 7333 7334 /* 7335 * Note: Following code assumes 32 bit alignment of basic 7336 * data structures like sin_t and struct T_addr_ack. 7337 */ 7338 if (tcp->tcp_state >= TCPS_BOUND) { 7339 /* 7340 * Fill in local address 7341 */ 7342 taa->LOCADDR_length = sizeof (sin_t); 7343 taa->LOCADDR_offset = sizeof (*taa); 7344 7345 sin = (sin_t *)&taa[1]; 7346 7347 /* Fill zeroes and then intialize non-zero fields */ 7348 *sin = sin_null; 7349 7350 sin->sin_family = AF_INET; 7351 7352 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7353 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7354 7355 ackmp->b_wptr = (uchar_t *)&sin[1]; 7356 7357 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7358 /* 7359 * Fill in Remote address 7360 */ 7361 taa->REMADDR_length = sizeof (sin_t); 7362 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7363 taa->LOCADDR_length); 7364 7365 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7366 *sin = sin_null; 7367 sin->sin_family = AF_INET; 7368 sin->sin_addr.s_addr = tcp->tcp_remote; 7369 sin->sin_port = tcp->tcp_fport; 7370 7371 ackmp->b_wptr = (uchar_t *)&sin[1]; 7372 } 7373 } 7374 putnext(tcp->tcp_rq, ackmp); 7375 } 7376 7377 /* Assumes that tcp_addr_req gets enough space and alignment */ 7378 static void 7379 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7380 { 7381 sin6_t *sin6; 7382 struct T_addr_ack *taa; 7383 7384 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7385 ASSERT(OK_32PTR(ackmp->b_rptr)); 7386 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7387 2 * sizeof (sin6_t)); 7388 7389 taa = (struct T_addr_ack *)ackmp->b_rptr; 7390 7391 bzero(taa, sizeof (struct T_addr_ack)); 7392 ackmp->b_wptr = (uchar_t *)&taa[1]; 7393 7394 taa->PRIM_type = T_ADDR_ACK; 7395 ackmp->b_datap->db_type = M_PCPROTO; 7396 7397 /* 7398 * Note: Following code assumes 32 bit alignment of basic 7399 * data structures like sin6_t and struct T_addr_ack. 7400 */ 7401 if (tcp->tcp_state >= TCPS_BOUND) { 7402 /* 7403 * Fill in local address 7404 */ 7405 taa->LOCADDR_length = sizeof (sin6_t); 7406 taa->LOCADDR_offset = sizeof (*taa); 7407 7408 sin6 = (sin6_t *)&taa[1]; 7409 *sin6 = sin6_null; 7410 7411 sin6->sin6_family = AF_INET6; 7412 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7413 sin6->sin6_port = tcp->tcp_lport; 7414 7415 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7416 7417 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7418 /* 7419 * Fill in Remote address 7420 */ 7421 taa->REMADDR_length = sizeof (sin6_t); 7422 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7423 taa->LOCADDR_length); 7424 7425 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7426 *sin6 = sin6_null; 7427 sin6->sin6_family = AF_INET6; 7428 sin6->sin6_flowinfo = 7429 tcp->tcp_ip6h->ip6_vcf & 7430 ~IPV6_VERS_AND_FLOW_MASK; 7431 sin6->sin6_addr = tcp->tcp_remote_v6; 7432 sin6->sin6_port = tcp->tcp_fport; 7433 7434 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7435 } 7436 } 7437 putnext(tcp->tcp_rq, ackmp); 7438 } 7439 7440 /* 7441 * Handle reinitialization of a tcp structure. 7442 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7443 */ 7444 static void 7445 tcp_reinit(tcp_t *tcp) 7446 { 7447 mblk_t *mp; 7448 int err; 7449 7450 TCP_STAT(tcp_reinit_calls); 7451 7452 /* tcp_reinit should never be called for detached tcp_t's */ 7453 ASSERT(tcp->tcp_listener == NULL); 7454 ASSERT((tcp->tcp_family == AF_INET && 7455 tcp->tcp_ipversion == IPV4_VERSION) || 7456 (tcp->tcp_family == AF_INET6 && 7457 (tcp->tcp_ipversion == IPV4_VERSION || 7458 tcp->tcp_ipversion == IPV6_VERSION))); 7459 7460 /* Cancel outstanding timers */ 7461 tcp_timers_stop(tcp); 7462 7463 /* 7464 * Reset everything in the state vector, after updating global 7465 * MIB data from instance counters. 7466 */ 7467 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 7468 tcp->tcp_ibsegs = 0; 7469 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 7470 tcp->tcp_obsegs = 0; 7471 7472 tcp_close_mpp(&tcp->tcp_xmit_head); 7473 if (tcp->tcp_snd_zcopy_aware) 7474 tcp_zcopy_notify(tcp); 7475 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7476 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7477 if (tcp->tcp_flow_stopped && 7478 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7479 tcp_clrqfull(tcp); 7480 } 7481 tcp_close_mpp(&tcp->tcp_reass_head); 7482 tcp->tcp_reass_tail = NULL; 7483 if (tcp->tcp_rcv_list != NULL) { 7484 /* Free b_next chain */ 7485 tcp_close_mpp(&tcp->tcp_rcv_list); 7486 tcp->tcp_rcv_last_head = NULL; 7487 tcp->tcp_rcv_last_tail = NULL; 7488 tcp->tcp_rcv_cnt = 0; 7489 } 7490 tcp->tcp_rcv_last_tail = NULL; 7491 7492 if ((mp = tcp->tcp_urp_mp) != NULL) { 7493 freemsg(mp); 7494 tcp->tcp_urp_mp = NULL; 7495 } 7496 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7497 freemsg(mp); 7498 tcp->tcp_urp_mark_mp = NULL; 7499 } 7500 if (tcp->tcp_fused_sigurg_mp != NULL) { 7501 freeb(tcp->tcp_fused_sigurg_mp); 7502 tcp->tcp_fused_sigurg_mp = NULL; 7503 } 7504 7505 /* 7506 * Following is a union with two members which are 7507 * identical types and size so the following cleanup 7508 * is enough. 7509 */ 7510 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7511 7512 CL_INET_DISCONNECT(tcp); 7513 7514 /* 7515 * The connection can't be on the tcp_time_wait_head list 7516 * since it is not detached. 7517 */ 7518 ASSERT(tcp->tcp_time_wait_next == NULL); 7519 ASSERT(tcp->tcp_time_wait_prev == NULL); 7520 ASSERT(tcp->tcp_time_wait_expire == 0); 7521 7522 if (tcp->tcp_kssl_pending) { 7523 tcp->tcp_kssl_pending = B_FALSE; 7524 7525 /* Don't reset if the initialized by bind. */ 7526 if (tcp->tcp_kssl_ent != NULL) { 7527 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7528 KSSL_NO_PROXY); 7529 } 7530 } 7531 if (tcp->tcp_kssl_ctx != NULL) { 7532 kssl_release_ctx(tcp->tcp_kssl_ctx); 7533 tcp->tcp_kssl_ctx = NULL; 7534 } 7535 7536 /* 7537 * Reset/preserve other values 7538 */ 7539 tcp_reinit_values(tcp); 7540 ipcl_hash_remove(tcp->tcp_connp); 7541 conn_delete_ire(tcp->tcp_connp, NULL); 7542 7543 if (tcp->tcp_conn_req_max != 0) { 7544 /* 7545 * This is the case when a TLI program uses the same 7546 * transport end point to accept a connection. This 7547 * makes the TCP both a listener and acceptor. When 7548 * this connection is closed, we need to set the state 7549 * back to TCPS_LISTEN. Make sure that the eager list 7550 * is reinitialized. 7551 * 7552 * Note that this stream is still bound to the four 7553 * tuples of the previous connection in IP. If a new 7554 * SYN with different foreign address comes in, IP will 7555 * not find it and will send it to the global queue. In 7556 * the global queue, TCP will do a tcp_lookup_listener() 7557 * to find this stream. This works because this stream 7558 * is only removed from connected hash. 7559 * 7560 */ 7561 tcp->tcp_state = TCPS_LISTEN; 7562 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7563 tcp->tcp_connp->conn_recv = tcp_conn_request; 7564 if (tcp->tcp_family == AF_INET6) { 7565 ASSERT(tcp->tcp_connp->conn_af_isv6); 7566 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7567 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7568 } else { 7569 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7570 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7571 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7572 } 7573 } else { 7574 tcp->tcp_state = TCPS_BOUND; 7575 } 7576 7577 /* 7578 * Initialize to default values 7579 * Can't fail since enough header template space already allocated 7580 * at open(). 7581 */ 7582 err = tcp_init_values(tcp); 7583 ASSERT(err == 0); 7584 /* Restore state in tcp_tcph */ 7585 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7586 if (tcp->tcp_ipversion == IPV4_VERSION) 7587 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7588 else 7589 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7590 /* 7591 * Copy of the src addr. in tcp_t is needed in tcp_t 7592 * since the lookup funcs can only lookup on tcp_t 7593 */ 7594 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7595 7596 ASSERT(tcp->tcp_ptpbhn != NULL); 7597 tcp->tcp_rq->q_hiwat = tcp_recv_hiwat; 7598 tcp->tcp_rwnd = tcp_recv_hiwat; 7599 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7600 tcp_mss_def_ipv6 : tcp_mss_def_ipv4; 7601 } 7602 7603 /* 7604 * Force values to zero that need be zero. 7605 * Do not touch values asociated with the BOUND or LISTEN state 7606 * since the connection will end up in that state after the reinit. 7607 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7608 * structure! 7609 */ 7610 static void 7611 tcp_reinit_values(tcp) 7612 tcp_t *tcp; 7613 { 7614 #ifndef lint 7615 #define DONTCARE(x) 7616 #define PRESERVE(x) 7617 #else 7618 #define DONTCARE(x) ((x) = (x)) 7619 #define PRESERVE(x) ((x) = (x)) 7620 #endif /* lint */ 7621 7622 PRESERVE(tcp->tcp_bind_hash); 7623 PRESERVE(tcp->tcp_ptpbhn); 7624 PRESERVE(tcp->tcp_acceptor_hash); 7625 PRESERVE(tcp->tcp_ptpahn); 7626 7627 /* Should be ASSERT NULL on these with new code! */ 7628 ASSERT(tcp->tcp_time_wait_next == NULL); 7629 ASSERT(tcp->tcp_time_wait_prev == NULL); 7630 ASSERT(tcp->tcp_time_wait_expire == 0); 7631 PRESERVE(tcp->tcp_state); 7632 PRESERVE(tcp->tcp_rq); 7633 PRESERVE(tcp->tcp_wq); 7634 7635 ASSERT(tcp->tcp_xmit_head == NULL); 7636 ASSERT(tcp->tcp_xmit_last == NULL); 7637 ASSERT(tcp->tcp_unsent == 0); 7638 ASSERT(tcp->tcp_xmit_tail == NULL); 7639 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7640 7641 tcp->tcp_snxt = 0; /* Displayed in mib */ 7642 tcp->tcp_suna = 0; /* Displayed in mib */ 7643 tcp->tcp_swnd = 0; 7644 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7645 7646 ASSERT(tcp->tcp_ibsegs == 0); 7647 ASSERT(tcp->tcp_obsegs == 0); 7648 7649 if (tcp->tcp_iphc != NULL) { 7650 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7651 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7652 } 7653 7654 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7655 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7656 DONTCARE(tcp->tcp_ipha); 7657 DONTCARE(tcp->tcp_ip6h); 7658 DONTCARE(tcp->tcp_ip_hdr_len); 7659 DONTCARE(tcp->tcp_tcph); 7660 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7661 tcp->tcp_valid_bits = 0; 7662 7663 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7664 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7665 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7666 tcp->tcp_last_rcv_lbolt = 0; 7667 7668 tcp->tcp_init_cwnd = 0; 7669 7670 tcp->tcp_urp_last_valid = 0; 7671 tcp->tcp_hard_binding = 0; 7672 tcp->tcp_hard_bound = 0; 7673 PRESERVE(tcp->tcp_cred); 7674 PRESERVE(tcp->tcp_cpid); 7675 PRESERVE(tcp->tcp_exclbind); 7676 7677 tcp->tcp_fin_acked = 0; 7678 tcp->tcp_fin_rcvd = 0; 7679 tcp->tcp_fin_sent = 0; 7680 tcp->tcp_ordrel_done = 0; 7681 7682 tcp->tcp_debug = 0; 7683 tcp->tcp_dontroute = 0; 7684 tcp->tcp_broadcast = 0; 7685 7686 tcp->tcp_useloopback = 0; 7687 tcp->tcp_reuseaddr = 0; 7688 tcp->tcp_oobinline = 0; 7689 tcp->tcp_dgram_errind = 0; 7690 7691 tcp->tcp_detached = 0; 7692 tcp->tcp_bind_pending = 0; 7693 tcp->tcp_unbind_pending = 0; 7694 tcp->tcp_deferred_clean_death = 0; 7695 7696 tcp->tcp_snd_ws_ok = B_FALSE; 7697 tcp->tcp_snd_ts_ok = B_FALSE; 7698 tcp->tcp_linger = 0; 7699 tcp->tcp_ka_enabled = 0; 7700 tcp->tcp_zero_win_probe = 0; 7701 7702 tcp->tcp_loopback = 0; 7703 tcp->tcp_localnet = 0; 7704 tcp->tcp_syn_defense = 0; 7705 tcp->tcp_set_timer = 0; 7706 7707 tcp->tcp_active_open = 0; 7708 ASSERT(tcp->tcp_timeout == B_FALSE); 7709 tcp->tcp_rexmit = B_FALSE; 7710 tcp->tcp_xmit_zc_clean = B_FALSE; 7711 7712 tcp->tcp_snd_sack_ok = B_FALSE; 7713 PRESERVE(tcp->tcp_recvdstaddr); 7714 tcp->tcp_hwcksum = B_FALSE; 7715 7716 tcp->tcp_ire_ill_check_done = B_FALSE; 7717 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 7718 7719 tcp->tcp_mdt = B_FALSE; 7720 tcp->tcp_mdt_hdr_head = 0; 7721 tcp->tcp_mdt_hdr_tail = 0; 7722 7723 tcp->tcp_conn_def_q0 = 0; 7724 tcp->tcp_ip_forward_progress = B_FALSE; 7725 tcp->tcp_anon_priv_bind = 0; 7726 tcp->tcp_ecn_ok = B_FALSE; 7727 7728 tcp->tcp_cwr = B_FALSE; 7729 tcp->tcp_ecn_echo_on = B_FALSE; 7730 7731 if (tcp->tcp_sack_info != NULL) { 7732 if (tcp->tcp_notsack_list != NULL) { 7733 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 7734 } 7735 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 7736 tcp->tcp_sack_info = NULL; 7737 } 7738 7739 tcp->tcp_rcv_ws = 0; 7740 tcp->tcp_snd_ws = 0; 7741 tcp->tcp_ts_recent = 0; 7742 tcp->tcp_rnxt = 0; /* Displayed in mib */ 7743 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 7744 tcp->tcp_if_mtu = 0; 7745 7746 ASSERT(tcp->tcp_reass_head == NULL); 7747 ASSERT(tcp->tcp_reass_tail == NULL); 7748 7749 tcp->tcp_cwnd_cnt = 0; 7750 7751 ASSERT(tcp->tcp_rcv_list == NULL); 7752 ASSERT(tcp->tcp_rcv_last_head == NULL); 7753 ASSERT(tcp->tcp_rcv_last_tail == NULL); 7754 ASSERT(tcp->tcp_rcv_cnt == 0); 7755 7756 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 7757 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 7758 tcp->tcp_csuna = 0; 7759 7760 tcp->tcp_rto = 0; /* Displayed in MIB */ 7761 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 7762 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 7763 tcp->tcp_rtt_update = 0; 7764 7765 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7766 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7767 7768 tcp->tcp_rack = 0; /* Displayed in mib */ 7769 tcp->tcp_rack_cnt = 0; 7770 tcp->tcp_rack_cur_max = 0; 7771 tcp->tcp_rack_abs_max = 0; 7772 7773 tcp->tcp_max_swnd = 0; 7774 7775 ASSERT(tcp->tcp_listener == NULL); 7776 7777 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 7778 7779 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 7780 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 7781 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 7782 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 7783 7784 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 7785 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 7786 PRESERVE(tcp->tcp_conn_req_max); 7787 PRESERVE(tcp->tcp_conn_req_seqnum); 7788 7789 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 7790 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 7791 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 7792 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 7793 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 7794 7795 tcp->tcp_lingertime = 0; 7796 7797 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 7798 ASSERT(tcp->tcp_urp_mp == NULL); 7799 ASSERT(tcp->tcp_urp_mark_mp == NULL); 7800 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 7801 7802 ASSERT(tcp->tcp_eager_next_q == NULL); 7803 ASSERT(tcp->tcp_eager_last_q == NULL); 7804 ASSERT((tcp->tcp_eager_next_q0 == NULL && 7805 tcp->tcp_eager_prev_q0 == NULL) || 7806 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 7807 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 7808 7809 tcp->tcp_client_errno = 0; 7810 7811 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 7812 7813 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 7814 7815 PRESERVE(tcp->tcp_bound_source_v6); 7816 tcp->tcp_last_sent_len = 0; 7817 tcp->tcp_dupack_cnt = 0; 7818 7819 tcp->tcp_fport = 0; /* Displayed in MIB */ 7820 PRESERVE(tcp->tcp_lport); 7821 7822 PRESERVE(tcp->tcp_acceptor_lockp); 7823 7824 ASSERT(tcp->tcp_ordrelid == 0); 7825 PRESERVE(tcp->tcp_acceptor_id); 7826 DONTCARE(tcp->tcp_ipsec_overhead); 7827 7828 /* 7829 * If tcp_tracing flag is ON (i.e. We have a trace buffer 7830 * in tcp structure and now tracing), Re-initialize all 7831 * members of tcp_traceinfo. 7832 */ 7833 if (tcp->tcp_tracebuf != NULL) { 7834 bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 7835 } 7836 7837 PRESERVE(tcp->tcp_family); 7838 if (tcp->tcp_family == AF_INET6) { 7839 tcp->tcp_ipversion = IPV6_VERSION; 7840 tcp->tcp_mss = tcp_mss_def_ipv6; 7841 } else { 7842 tcp->tcp_ipversion = IPV4_VERSION; 7843 tcp->tcp_mss = tcp_mss_def_ipv4; 7844 } 7845 7846 tcp->tcp_bound_if = 0; 7847 tcp->tcp_ipv6_recvancillary = 0; 7848 tcp->tcp_recvifindex = 0; 7849 tcp->tcp_recvhops = 0; 7850 tcp->tcp_closed = 0; 7851 tcp->tcp_cleandeathtag = 0; 7852 if (tcp->tcp_hopopts != NULL) { 7853 mi_free(tcp->tcp_hopopts); 7854 tcp->tcp_hopopts = NULL; 7855 tcp->tcp_hopoptslen = 0; 7856 } 7857 ASSERT(tcp->tcp_hopoptslen == 0); 7858 if (tcp->tcp_dstopts != NULL) { 7859 mi_free(tcp->tcp_dstopts); 7860 tcp->tcp_dstopts = NULL; 7861 tcp->tcp_dstoptslen = 0; 7862 } 7863 ASSERT(tcp->tcp_dstoptslen == 0); 7864 if (tcp->tcp_rtdstopts != NULL) { 7865 mi_free(tcp->tcp_rtdstopts); 7866 tcp->tcp_rtdstopts = NULL; 7867 tcp->tcp_rtdstoptslen = 0; 7868 } 7869 ASSERT(tcp->tcp_rtdstoptslen == 0); 7870 if (tcp->tcp_rthdr != NULL) { 7871 mi_free(tcp->tcp_rthdr); 7872 tcp->tcp_rthdr = NULL; 7873 tcp->tcp_rthdrlen = 0; 7874 } 7875 ASSERT(tcp->tcp_rthdrlen == 0); 7876 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 7877 7878 /* Reset fusion-related fields */ 7879 tcp->tcp_fused = B_FALSE; 7880 tcp->tcp_unfusable = B_FALSE; 7881 tcp->tcp_fused_sigurg = B_FALSE; 7882 tcp->tcp_direct_sockfs = B_FALSE; 7883 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7884 tcp->tcp_loopback_peer = NULL; 7885 tcp->tcp_fuse_rcv_hiwater = 0; 7886 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7887 tcp->tcp_fuse_rcv_unread_cnt = 0; 7888 7889 tcp->tcp_in_ack_unsent = 0; 7890 tcp->tcp_cork = B_FALSE; 7891 7892 PRESERVE(tcp->tcp_squeue_bytes); 7893 7894 ASSERT(tcp->tcp_kssl_ctx == NULL); 7895 ASSERT(!tcp->tcp_kssl_pending); 7896 PRESERVE(tcp->tcp_kssl_ent); 7897 7898 #undef DONTCARE 7899 #undef PRESERVE 7900 } 7901 7902 /* 7903 * Allocate necessary resources and initialize state vector. 7904 * Guaranteed not to fail so that when an error is returned, 7905 * the caller doesn't need to do any additional cleanup. 7906 */ 7907 int 7908 tcp_init(tcp_t *tcp, queue_t *q) 7909 { 7910 int err; 7911 7912 tcp->tcp_rq = q; 7913 tcp->tcp_wq = WR(q); 7914 tcp->tcp_state = TCPS_IDLE; 7915 if ((err = tcp_init_values(tcp)) != 0) 7916 tcp_timers_stop(tcp); 7917 return (err); 7918 } 7919 7920 static int 7921 tcp_init_values(tcp_t *tcp) 7922 { 7923 int err; 7924 7925 ASSERT((tcp->tcp_family == AF_INET && 7926 tcp->tcp_ipversion == IPV4_VERSION) || 7927 (tcp->tcp_family == AF_INET6 && 7928 (tcp->tcp_ipversion == IPV4_VERSION || 7929 tcp->tcp_ipversion == IPV6_VERSION))); 7930 7931 /* 7932 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 7933 * will be close to tcp_rexmit_interval_initial. By doing this, we 7934 * allow the algorithm to adjust slowly to large fluctuations of RTT 7935 * during first few transmissions of a connection as seen in slow 7936 * links. 7937 */ 7938 tcp->tcp_rtt_sa = tcp_rexmit_interval_initial << 2; 7939 tcp->tcp_rtt_sd = tcp_rexmit_interval_initial >> 1; 7940 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 7941 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 7942 tcp_conn_grace_period; 7943 if (tcp->tcp_rto < tcp_rexmit_interval_min) 7944 tcp->tcp_rto = tcp_rexmit_interval_min; 7945 tcp->tcp_timer_backoff = 0; 7946 tcp->tcp_ms_we_have_waited = 0; 7947 tcp->tcp_last_recv_time = lbolt; 7948 tcp->tcp_cwnd_max = tcp_cwnd_max_; 7949 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 7950 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 7951 7952 tcp->tcp_maxpsz = tcp_maxpsz_multiplier; 7953 7954 tcp->tcp_first_timer_threshold = tcp_ip_notify_interval; 7955 tcp->tcp_first_ctimer_threshold = tcp_ip_notify_cinterval; 7956 tcp->tcp_second_timer_threshold = tcp_ip_abort_interval; 7957 /* 7958 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 7959 * passive open. 7960 */ 7961 tcp->tcp_second_ctimer_threshold = tcp_ip_abort_cinterval; 7962 7963 tcp->tcp_naglim = tcp_naglim_def; 7964 7965 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 7966 7967 tcp->tcp_mdt_hdr_head = 0; 7968 tcp->tcp_mdt_hdr_tail = 0; 7969 7970 /* Reset fusion-related fields */ 7971 tcp->tcp_fused = B_FALSE; 7972 tcp->tcp_unfusable = B_FALSE; 7973 tcp->tcp_fused_sigurg = B_FALSE; 7974 tcp->tcp_direct_sockfs = B_FALSE; 7975 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7976 tcp->tcp_loopback_peer = NULL; 7977 tcp->tcp_fuse_rcv_hiwater = 0; 7978 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7979 tcp->tcp_fuse_rcv_unread_cnt = 0; 7980 7981 /* Initialize the header template */ 7982 if (tcp->tcp_ipversion == IPV4_VERSION) { 7983 err = tcp_header_init_ipv4(tcp); 7984 } else { 7985 err = tcp_header_init_ipv6(tcp); 7986 } 7987 if (err) 7988 return (err); 7989 7990 /* 7991 * Init the window scale to the max so tcp_rwnd_set() won't pare 7992 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 7993 */ 7994 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 7995 tcp->tcp_xmit_lowater = tcp_xmit_lowat; 7996 tcp->tcp_xmit_hiwater = tcp_xmit_hiwat; 7997 7998 tcp->tcp_cork = B_FALSE; 7999 /* 8000 * Init the tcp_debug option. This value determines whether TCP 8001 * calls strlog() to print out debug messages. Doing this 8002 * initialization here means that this value is not inherited thru 8003 * tcp_reinit(). 8004 */ 8005 tcp->tcp_debug = tcp_dbg; 8006 8007 tcp->tcp_ka_interval = tcp_keepalive_interval; 8008 tcp->tcp_ka_abort_thres = tcp_keepalive_abort_interval; 8009 8010 return (0); 8011 } 8012 8013 /* 8014 * Initialize the IPv4 header. Loses any record of any IP options. 8015 */ 8016 static int 8017 tcp_header_init_ipv4(tcp_t *tcp) 8018 { 8019 tcph_t *tcph; 8020 uint32_t sum; 8021 conn_t *connp; 8022 8023 /* 8024 * This is a simple initialization. If there's 8025 * already a template, it should never be too small, 8026 * so reuse it. Otherwise, allocate space for the new one. 8027 */ 8028 if (tcp->tcp_iphc == NULL) { 8029 ASSERT(tcp->tcp_iphc_len == 0); 8030 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8031 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8032 if (tcp->tcp_iphc == NULL) { 8033 tcp->tcp_iphc_len = 0; 8034 return (ENOMEM); 8035 } 8036 } 8037 8038 /* options are gone; may need a new label */ 8039 connp = tcp->tcp_connp; 8040 connp->conn_mlp_type = mlptSingle; 8041 connp->conn_ulp_labeled = !is_system_labeled(); 8042 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8043 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8044 tcp->tcp_ip6h = NULL; 8045 tcp->tcp_ipversion = IPV4_VERSION; 8046 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8047 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8048 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8049 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8050 tcp->tcp_ipha->ipha_version_and_hdr_length 8051 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8052 tcp->tcp_ipha->ipha_ident = 0; 8053 8054 tcp->tcp_ttl = (uchar_t)tcp_ipv4_ttl; 8055 tcp->tcp_tos = 0; 8056 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8057 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; 8058 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8059 8060 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8061 tcp->tcp_tcph = tcph; 8062 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8063 /* 8064 * IP wants our header length in the checksum field to 8065 * allow it to perform a single pseudo-header+checksum 8066 * calculation on behalf of TCP. 8067 * Include the adjustment for a source route once IP_OPTIONS is set. 8068 */ 8069 sum = sizeof (tcph_t) + tcp->tcp_sum; 8070 sum = (sum >> 16) + (sum & 0xFFFF); 8071 U16_TO_ABE16(sum, tcph->th_sum); 8072 return (0); 8073 } 8074 8075 /* 8076 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8077 */ 8078 static int 8079 tcp_header_init_ipv6(tcp_t *tcp) 8080 { 8081 tcph_t *tcph; 8082 uint32_t sum; 8083 conn_t *connp; 8084 8085 /* 8086 * This is a simple initialization. If there's 8087 * already a template, it should never be too small, 8088 * so reuse it. Otherwise, allocate space for the new one. 8089 * Ensure that there is enough space to "downgrade" the tcp_t 8090 * to an IPv4 tcp_t. This requires having space for a full load 8091 * of IPv4 options, as well as a full load of TCP options 8092 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8093 * than a v6 header and a TCP header with a full load of TCP options 8094 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8095 * We want to avoid reallocation in the "downgraded" case when 8096 * processing outbound IPv4 options. 8097 */ 8098 if (tcp->tcp_iphc == NULL) { 8099 ASSERT(tcp->tcp_iphc_len == 0); 8100 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8101 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8102 if (tcp->tcp_iphc == NULL) { 8103 tcp->tcp_iphc_len = 0; 8104 return (ENOMEM); 8105 } 8106 } 8107 8108 /* options are gone; may need a new label */ 8109 connp = tcp->tcp_connp; 8110 connp->conn_mlp_type = mlptSingle; 8111 connp->conn_ulp_labeled = !is_system_labeled(); 8112 8113 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8114 tcp->tcp_ipversion = IPV6_VERSION; 8115 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8116 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8117 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8118 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8119 tcp->tcp_ipha = NULL; 8120 8121 /* Initialize the header template */ 8122 8123 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8124 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8125 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8126 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcp_ipv6_hoplimit; 8127 8128 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8129 tcp->tcp_tcph = tcph; 8130 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8131 /* 8132 * IP wants our header length in the checksum field to 8133 * allow it to perform a single psuedo-header+checksum 8134 * calculation on behalf of TCP. 8135 * Include the adjustment for a source route when IPV6_RTHDR is set. 8136 */ 8137 sum = sizeof (tcph_t) + tcp->tcp_sum; 8138 sum = (sum >> 16) + (sum & 0xFFFF); 8139 U16_TO_ABE16(sum, tcph->th_sum); 8140 return (0); 8141 } 8142 8143 /* At minimum we need 4 bytes in the TCP header for the lookup */ 8144 #define ICMP_MIN_TCP_HDR 12 8145 8146 /* 8147 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8148 * passed up by IP. The message is always received on the correct tcp_t. 8149 * Assumes that IP has pulled up everything up to and including the ICMP header. 8150 */ 8151 void 8152 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8153 { 8154 icmph_t *icmph; 8155 ipha_t *ipha; 8156 int iph_hdr_length; 8157 tcph_t *tcph; 8158 boolean_t ipsec_mctl = B_FALSE; 8159 boolean_t secure; 8160 mblk_t *first_mp = mp; 8161 uint32_t new_mss; 8162 uint32_t ratio; 8163 size_t mp_size = MBLKL(mp); 8164 uint32_t seg_ack; 8165 uint32_t seg_seq; 8166 8167 /* Assume IP provides aligned packets - otherwise toss */ 8168 if (!OK_32PTR(mp->b_rptr)) { 8169 freemsg(mp); 8170 return; 8171 } 8172 8173 /* 8174 * Since ICMP errors are normal data marked with M_CTL when sent 8175 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8176 * packets starting with an ipsec_info_t, see ipsec_info.h. 8177 */ 8178 if ((mp_size == sizeof (ipsec_info_t)) && 8179 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8180 ASSERT(mp->b_cont != NULL); 8181 mp = mp->b_cont; 8182 /* IP should have done this */ 8183 ASSERT(OK_32PTR(mp->b_rptr)); 8184 mp_size = MBLKL(mp); 8185 ipsec_mctl = B_TRUE; 8186 } 8187 8188 /* 8189 * Verify that we have a complete outer IP header. If not, drop it. 8190 */ 8191 if (mp_size < sizeof (ipha_t)) { 8192 noticmpv4: 8193 freemsg(first_mp); 8194 return; 8195 } 8196 8197 ipha = (ipha_t *)mp->b_rptr; 8198 /* 8199 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8200 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8201 */ 8202 switch (IPH_HDR_VERSION(ipha)) { 8203 case IPV6_VERSION: 8204 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8205 return; 8206 case IPV4_VERSION: 8207 break; 8208 default: 8209 goto noticmpv4; 8210 } 8211 8212 /* Skip past the outer IP and ICMP headers */ 8213 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8214 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8215 /* 8216 * If we don't have the correct outer IP header length or if the ULP 8217 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8218 * send it upstream. 8219 */ 8220 if (iph_hdr_length < sizeof (ipha_t) || 8221 ipha->ipha_protocol != IPPROTO_ICMP || 8222 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8223 goto noticmpv4; 8224 } 8225 ipha = (ipha_t *)&icmph[1]; 8226 8227 /* Skip past the inner IP and find the ULP header */ 8228 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8229 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8230 /* 8231 * If we don't have the correct inner IP header length or if the ULP 8232 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8233 * bytes of TCP header, drop it. 8234 */ 8235 if (iph_hdr_length < sizeof (ipha_t) || 8236 ipha->ipha_protocol != IPPROTO_TCP || 8237 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8238 goto noticmpv4; 8239 } 8240 8241 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8242 if (ipsec_mctl) { 8243 secure = ipsec_in_is_secure(first_mp); 8244 } else { 8245 secure = B_FALSE; 8246 } 8247 if (secure) { 8248 /* 8249 * If we are willing to accept this in clear 8250 * we don't have to verify policy. 8251 */ 8252 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8253 if (!tcp_check_policy(tcp, first_mp, 8254 ipha, NULL, secure, ipsec_mctl)) { 8255 /* 8256 * tcp_check_policy called 8257 * ip_drop_packet() on failure. 8258 */ 8259 return; 8260 } 8261 } 8262 } 8263 } else if (ipsec_mctl) { 8264 /* 8265 * This is a hard_bound connection. IP has already 8266 * verified policy. We don't have to do it again. 8267 */ 8268 freeb(first_mp); 8269 first_mp = mp; 8270 ipsec_mctl = B_FALSE; 8271 } 8272 8273 seg_ack = ABE32_TO_U32(tcph->th_ack); 8274 seg_seq = ABE32_TO_U32(tcph->th_seq); 8275 /* 8276 * TCP SHOULD check that the TCP sequence number contained in 8277 * payload of the ICMP error message is within the range 8278 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT 8279 */ 8280 if (SEQ_LT(seg_seq, tcp->tcp_suna) || 8281 SEQ_GEQ(seg_seq, tcp->tcp_snxt) || 8282 SEQ_GT(seg_ack, tcp->tcp_rnxt)) { 8283 /* 8284 * If the ICMP message is bogus, should we kill the 8285 * connection, or should we just drop the bogus ICMP 8286 * message? It would probably make more sense to just 8287 * drop the message so that if this one managed to get 8288 * in, the real connection should not suffer. 8289 */ 8290 goto noticmpv4; 8291 } 8292 8293 switch (icmph->icmph_type) { 8294 case ICMP_DEST_UNREACHABLE: 8295 switch (icmph->icmph_code) { 8296 case ICMP_FRAGMENTATION_NEEDED: 8297 /* 8298 * Reduce the MSS based on the new MTU. This will 8299 * eliminate any fragmentation locally. 8300 * N.B. There may well be some funny side-effects on 8301 * the local send policy and the remote receive policy. 8302 * Pending further research, we provide 8303 * tcp_ignore_path_mtu just in case this proves 8304 * disastrous somewhere. 8305 * 8306 * After updating the MSS, retransmit part of the 8307 * dropped segment using the new mss by calling 8308 * tcp_wput_data(). Need to adjust all those 8309 * params to make sure tcp_wput_data() work properly. 8310 */ 8311 if (tcp_ignore_path_mtu) 8312 break; 8313 8314 /* 8315 * Decrease the MSS by time stamp options 8316 * IP options and IPSEC options. tcp_hdr_len 8317 * includes time stamp option and IP option 8318 * length. 8319 */ 8320 8321 new_mss = ntohs(icmph->icmph_du_mtu) - 8322 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8323 8324 /* 8325 * Only update the MSS if the new one is 8326 * smaller than the previous one. This is 8327 * to avoid problems when getting multiple 8328 * ICMP errors for the same MTU. 8329 */ 8330 if (new_mss >= tcp->tcp_mss) 8331 break; 8332 8333 /* 8334 * Stop doing PMTU if new_mss is less than 68 8335 * or less than tcp_mss_min. 8336 * The value 68 comes from rfc 1191. 8337 */ 8338 if (new_mss < MAX(68, tcp_mss_min)) 8339 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8340 0; 8341 8342 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8343 ASSERT(ratio >= 1); 8344 tcp_mss_set(tcp, new_mss); 8345 8346 /* 8347 * Make sure we have something to 8348 * send. 8349 */ 8350 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8351 (tcp->tcp_xmit_head != NULL)) { 8352 /* 8353 * Shrink tcp_cwnd in 8354 * proportion to the old MSS/new MSS. 8355 */ 8356 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8357 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8358 (tcp->tcp_unsent == 0)) { 8359 tcp->tcp_rexmit_max = tcp->tcp_fss; 8360 } else { 8361 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8362 } 8363 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8364 tcp->tcp_rexmit = B_TRUE; 8365 tcp->tcp_dupack_cnt = 0; 8366 tcp->tcp_snd_burst = TCP_CWND_SS; 8367 tcp_ss_rexmit(tcp); 8368 } 8369 break; 8370 case ICMP_PORT_UNREACHABLE: 8371 case ICMP_PROTOCOL_UNREACHABLE: 8372 switch (tcp->tcp_state) { 8373 case TCPS_SYN_SENT: 8374 case TCPS_SYN_RCVD: 8375 /* 8376 * ICMP can snipe away incipient 8377 * TCP connections as long as 8378 * seq number is same as initial 8379 * send seq number. 8380 */ 8381 if (seg_seq == tcp->tcp_iss) { 8382 (void) tcp_clean_death(tcp, 8383 ECONNREFUSED, 6); 8384 } 8385 break; 8386 } 8387 break; 8388 case ICMP_HOST_UNREACHABLE: 8389 case ICMP_NET_UNREACHABLE: 8390 /* Record the error in case we finally time out. */ 8391 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8392 tcp->tcp_client_errno = EHOSTUNREACH; 8393 else 8394 tcp->tcp_client_errno = ENETUNREACH; 8395 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8396 if (tcp->tcp_listener != NULL && 8397 tcp->tcp_listener->tcp_syn_defense) { 8398 /* 8399 * Ditch the half-open connection if we 8400 * suspect a SYN attack is under way. 8401 */ 8402 tcp_ip_ire_mark_advice(tcp); 8403 (void) tcp_clean_death(tcp, 8404 tcp->tcp_client_errno, 7); 8405 } 8406 } 8407 break; 8408 default: 8409 break; 8410 } 8411 break; 8412 case ICMP_SOURCE_QUENCH: { 8413 /* 8414 * use a global boolean to control 8415 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8416 * The default is false. 8417 */ 8418 if (tcp_icmp_source_quench) { 8419 /* 8420 * Reduce the sending rate as if we got a 8421 * retransmit timeout 8422 */ 8423 uint32_t npkt; 8424 8425 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8426 tcp->tcp_mss; 8427 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8428 tcp->tcp_cwnd = tcp->tcp_mss; 8429 tcp->tcp_cwnd_cnt = 0; 8430 } 8431 break; 8432 } 8433 } 8434 freemsg(first_mp); 8435 } 8436 8437 /* 8438 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8439 * error messages passed up by IP. 8440 * Assumes that IP has pulled up all the extension headers as well 8441 * as the ICMPv6 header. 8442 */ 8443 static void 8444 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8445 { 8446 icmp6_t *icmp6; 8447 ip6_t *ip6h; 8448 uint16_t iph_hdr_length; 8449 tcpha_t *tcpha; 8450 uint8_t *nexthdrp; 8451 uint32_t new_mss; 8452 uint32_t ratio; 8453 boolean_t secure; 8454 mblk_t *first_mp = mp; 8455 size_t mp_size; 8456 uint32_t seg_ack; 8457 uint32_t seg_seq; 8458 8459 /* 8460 * The caller has determined if this is an IPSEC_IN packet and 8461 * set ipsec_mctl appropriately (see tcp_icmp_error). 8462 */ 8463 if (ipsec_mctl) 8464 mp = mp->b_cont; 8465 8466 mp_size = MBLKL(mp); 8467 8468 /* 8469 * Verify that we have a complete IP header. If not, send it upstream. 8470 */ 8471 if (mp_size < sizeof (ip6_t)) { 8472 noticmpv6: 8473 freemsg(first_mp); 8474 return; 8475 } 8476 8477 /* 8478 * Verify this is an ICMPV6 packet, else send it upstream. 8479 */ 8480 ip6h = (ip6_t *)mp->b_rptr; 8481 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8482 iph_hdr_length = IPV6_HDR_LEN; 8483 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8484 &nexthdrp) || 8485 *nexthdrp != IPPROTO_ICMPV6) { 8486 goto noticmpv6; 8487 } 8488 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8489 ip6h = (ip6_t *)&icmp6[1]; 8490 /* 8491 * Verify if we have a complete ICMP and inner IP header. 8492 */ 8493 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8494 goto noticmpv6; 8495 8496 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8497 goto noticmpv6; 8498 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8499 /* 8500 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8501 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8502 * packet. 8503 */ 8504 if ((*nexthdrp != IPPROTO_TCP) || 8505 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8506 goto noticmpv6; 8507 } 8508 8509 /* 8510 * ICMP errors come on the right queue or come on 8511 * listener/global queue for detached connections and 8512 * get switched to the right queue. If it comes on the 8513 * right queue, policy check has already been done by IP 8514 * and thus free the first_mp without verifying the policy. 8515 * If it has come for a non-hard bound connection, we need 8516 * to verify policy as IP may not have done it. 8517 */ 8518 if (!tcp->tcp_hard_bound) { 8519 if (ipsec_mctl) { 8520 secure = ipsec_in_is_secure(first_mp); 8521 } else { 8522 secure = B_FALSE; 8523 } 8524 if (secure) { 8525 /* 8526 * If we are willing to accept this in clear 8527 * we don't have to verify policy. 8528 */ 8529 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8530 if (!tcp_check_policy(tcp, first_mp, 8531 NULL, ip6h, secure, ipsec_mctl)) { 8532 /* 8533 * tcp_check_policy called 8534 * ip_drop_packet() on failure. 8535 */ 8536 return; 8537 } 8538 } 8539 } 8540 } else if (ipsec_mctl) { 8541 /* 8542 * This is a hard_bound connection. IP has already 8543 * verified policy. We don't have to do it again. 8544 */ 8545 freeb(first_mp); 8546 first_mp = mp; 8547 ipsec_mctl = B_FALSE; 8548 } 8549 8550 seg_ack = ntohl(tcpha->tha_ack); 8551 seg_seq = ntohl(tcpha->tha_seq); 8552 /* 8553 * TCP SHOULD check that the TCP sequence number contained in 8554 * payload of the ICMP error message is within the range 8555 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT 8556 */ 8557 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt) || 8558 SEQ_GT(seg_ack, tcp->tcp_rnxt)) { 8559 /* 8560 * If the ICMP message is bogus, should we kill the 8561 * connection, or should we just drop the bogus ICMP 8562 * message? It would probably make more sense to just 8563 * drop the message so that if this one managed to get 8564 * in, the real connection should not suffer. 8565 */ 8566 goto noticmpv6; 8567 } 8568 8569 switch (icmp6->icmp6_type) { 8570 case ICMP6_PACKET_TOO_BIG: 8571 /* 8572 * Reduce the MSS based on the new MTU. This will 8573 * eliminate any fragmentation locally. 8574 * N.B. There may well be some funny side-effects on 8575 * the local send policy and the remote receive policy. 8576 * Pending further research, we provide 8577 * tcp_ignore_path_mtu just in case this proves 8578 * disastrous somewhere. 8579 * 8580 * After updating the MSS, retransmit part of the 8581 * dropped segment using the new mss by calling 8582 * tcp_wput_data(). Need to adjust all those 8583 * params to make sure tcp_wput_data() work properly. 8584 */ 8585 if (tcp_ignore_path_mtu) 8586 break; 8587 8588 /* 8589 * Decrease the MSS by time stamp options 8590 * IP options and IPSEC options. tcp_hdr_len 8591 * includes time stamp option and IP option 8592 * length. 8593 */ 8594 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8595 tcp->tcp_ipsec_overhead; 8596 8597 /* 8598 * Only update the MSS if the new one is 8599 * smaller than the previous one. This is 8600 * to avoid problems when getting multiple 8601 * ICMP errors for the same MTU. 8602 */ 8603 if (new_mss >= tcp->tcp_mss) 8604 break; 8605 8606 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8607 ASSERT(ratio >= 1); 8608 tcp_mss_set(tcp, new_mss); 8609 8610 /* 8611 * Make sure we have something to 8612 * send. 8613 */ 8614 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8615 (tcp->tcp_xmit_head != NULL)) { 8616 /* 8617 * Shrink tcp_cwnd in 8618 * proportion to the old MSS/new MSS. 8619 */ 8620 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8621 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8622 (tcp->tcp_unsent == 0)) { 8623 tcp->tcp_rexmit_max = tcp->tcp_fss; 8624 } else { 8625 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8626 } 8627 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8628 tcp->tcp_rexmit = B_TRUE; 8629 tcp->tcp_dupack_cnt = 0; 8630 tcp->tcp_snd_burst = TCP_CWND_SS; 8631 tcp_ss_rexmit(tcp); 8632 } 8633 break; 8634 8635 case ICMP6_DST_UNREACH: 8636 switch (icmp6->icmp6_code) { 8637 case ICMP6_DST_UNREACH_NOPORT: 8638 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8639 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8640 (seg_seq == tcp->tcp_iss)) { 8641 (void) tcp_clean_death(tcp, 8642 ECONNREFUSED, 8); 8643 } 8644 break; 8645 8646 case ICMP6_DST_UNREACH_ADMIN: 8647 case ICMP6_DST_UNREACH_NOROUTE: 8648 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8649 case ICMP6_DST_UNREACH_ADDR: 8650 /* Record the error in case we finally time out. */ 8651 tcp->tcp_client_errno = EHOSTUNREACH; 8652 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8653 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8654 (seg_seq == tcp->tcp_iss)) { 8655 if (tcp->tcp_listener != NULL && 8656 tcp->tcp_listener->tcp_syn_defense) { 8657 /* 8658 * Ditch the half-open connection if we 8659 * suspect a SYN attack is under way. 8660 */ 8661 tcp_ip_ire_mark_advice(tcp); 8662 (void) tcp_clean_death(tcp, 8663 tcp->tcp_client_errno, 9); 8664 } 8665 } 8666 8667 8668 break; 8669 default: 8670 break; 8671 } 8672 break; 8673 8674 case ICMP6_PARAM_PROB: 8675 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8676 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8677 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8678 (uchar_t *)nexthdrp) { 8679 if (tcp->tcp_state == TCPS_SYN_SENT || 8680 tcp->tcp_state == TCPS_SYN_RCVD) { 8681 (void) tcp_clean_death(tcp, 8682 ECONNREFUSED, 10); 8683 } 8684 break; 8685 } 8686 break; 8687 8688 case ICMP6_TIME_EXCEEDED: 8689 default: 8690 break; 8691 } 8692 freemsg(first_mp); 8693 } 8694 8695 /* 8696 * IP recognizes seven kinds of bind requests: 8697 * 8698 * - A zero-length address binds only to the protocol number. 8699 * 8700 * - A 4-byte address is treated as a request to 8701 * validate that the address is a valid local IPv4 8702 * address, appropriate for an application to bind to. 8703 * IP does the verification, but does not make any note 8704 * of the address at this time. 8705 * 8706 * - A 16-byte address contains is treated as a request 8707 * to validate a local IPv6 address, as the 4-byte 8708 * address case above. 8709 * 8710 * - A 16-byte sockaddr_in to validate the local IPv4 address and also 8711 * use it for the inbound fanout of packets. 8712 * 8713 * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also 8714 * use it for the inbound fanout of packets. 8715 * 8716 * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout 8717 * information consisting of local and remote addresses 8718 * and ports. In this case, the addresses are both 8719 * validated as appropriate for this operation, and, if 8720 * so, the information is retained for use in the 8721 * inbound fanout. 8722 * 8723 * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 8724 * fanout information, like the 12-byte case above. 8725 * 8726 * IP will also fill in the IRE request mblk with information 8727 * regarding our peer. In all cases, we notify IP of our protocol 8728 * type by appending a single protocol byte to the bind request. 8729 */ 8730 static mblk_t * 8731 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length) 8732 { 8733 char *cp; 8734 mblk_t *mp; 8735 struct T_bind_req *tbr; 8736 ipa_conn_t *ac; 8737 ipa6_conn_t *ac6; 8738 sin_t *sin; 8739 sin6_t *sin6; 8740 8741 ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); 8742 ASSERT((tcp->tcp_family == AF_INET && 8743 tcp->tcp_ipversion == IPV4_VERSION) || 8744 (tcp->tcp_family == AF_INET6 && 8745 (tcp->tcp_ipversion == IPV4_VERSION || 8746 tcp->tcp_ipversion == IPV6_VERSION))); 8747 8748 mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); 8749 if (!mp) 8750 return (mp); 8751 mp->b_datap->db_type = M_PROTO; 8752 tbr = (struct T_bind_req *)mp->b_rptr; 8753 tbr->PRIM_type = bind_prim; 8754 tbr->ADDR_offset = sizeof (*tbr); 8755 tbr->CONIND_number = 0; 8756 tbr->ADDR_length = addr_length; 8757 cp = (char *)&tbr[1]; 8758 switch (addr_length) { 8759 case sizeof (ipa_conn_t): 8760 ASSERT(tcp->tcp_family == AF_INET); 8761 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 8762 8763 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 8764 if (mp->b_cont == NULL) { 8765 freemsg(mp); 8766 return (NULL); 8767 } 8768 mp->b_cont->b_wptr += sizeof (ire_t); 8769 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 8770 8771 /* cp known to be 32 bit aligned */ 8772 ac = (ipa_conn_t *)cp; 8773 ac->ac_laddr = tcp->tcp_ipha->ipha_src; 8774 ac->ac_faddr = tcp->tcp_remote; 8775 ac->ac_fport = tcp->tcp_fport; 8776 ac->ac_lport = tcp->tcp_lport; 8777 tcp->tcp_hard_binding = 1; 8778 break; 8779 8780 case sizeof (ipa6_conn_t): 8781 ASSERT(tcp->tcp_family == AF_INET6); 8782 8783 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 8784 if (mp->b_cont == NULL) { 8785 freemsg(mp); 8786 return (NULL); 8787 } 8788 mp->b_cont->b_wptr += sizeof (ire_t); 8789 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 8790 8791 /* cp known to be 32 bit aligned */ 8792 ac6 = (ipa6_conn_t *)cp; 8793 if (tcp->tcp_ipversion == IPV4_VERSION) { 8794 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 8795 &ac6->ac6_laddr); 8796 } else { 8797 ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src; 8798 } 8799 ac6->ac6_faddr = tcp->tcp_remote_v6; 8800 ac6->ac6_fport = tcp->tcp_fport; 8801 ac6->ac6_lport = tcp->tcp_lport; 8802 tcp->tcp_hard_binding = 1; 8803 break; 8804 8805 case sizeof (sin_t): 8806 /* 8807 * NOTE: IPV6_ADDR_LEN also has same size. 8808 * Use family to discriminate. 8809 */ 8810 if (tcp->tcp_family == AF_INET) { 8811 sin = (sin_t *)cp; 8812 8813 *sin = sin_null; 8814 sin->sin_family = AF_INET; 8815 sin->sin_addr.s_addr = tcp->tcp_bound_source; 8816 sin->sin_port = tcp->tcp_lport; 8817 break; 8818 } else { 8819 *(in6_addr_t *)cp = tcp->tcp_bound_source_v6; 8820 } 8821 break; 8822 8823 case sizeof (sin6_t): 8824 ASSERT(tcp->tcp_family == AF_INET6); 8825 sin6 = (sin6_t *)cp; 8826 8827 *sin6 = sin6_null; 8828 sin6->sin6_family = AF_INET6; 8829 sin6->sin6_addr = tcp->tcp_bound_source_v6; 8830 sin6->sin6_port = tcp->tcp_lport; 8831 break; 8832 8833 case IP_ADDR_LEN: 8834 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 8835 *(uint32_t *)cp = tcp->tcp_ipha->ipha_src; 8836 break; 8837 8838 } 8839 /* Add protocol number to end */ 8840 cp[addr_length] = (char)IPPROTO_TCP; 8841 mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; 8842 return (mp); 8843 } 8844 8845 /* 8846 * Notify IP that we are having trouble with this connection. IP should 8847 * blow the IRE away and start over. 8848 */ 8849 static void 8850 tcp_ip_notify(tcp_t *tcp) 8851 { 8852 struct iocblk *iocp; 8853 ipid_t *ipid; 8854 mblk_t *mp; 8855 8856 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 8857 if (tcp->tcp_ipversion == IPV6_VERSION) 8858 return; 8859 8860 mp = mkiocb(IP_IOCTL); 8861 if (mp == NULL) 8862 return; 8863 8864 iocp = (struct iocblk *)mp->b_rptr; 8865 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 8866 8867 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 8868 if (!mp->b_cont) { 8869 freeb(mp); 8870 return; 8871 } 8872 8873 ipid = (ipid_t *)mp->b_cont->b_rptr; 8874 mp->b_cont->b_wptr += iocp->ioc_count; 8875 bzero(ipid, sizeof (*ipid)); 8876 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 8877 ipid->ipid_ire_type = IRE_CACHE; 8878 ipid->ipid_addr_offset = sizeof (ipid_t); 8879 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 8880 /* 8881 * Note: in the case of source routing we want to blow away the 8882 * route to the first source route hop. 8883 */ 8884 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 8885 sizeof (tcp->tcp_ipha->ipha_dst)); 8886 8887 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 8888 } 8889 8890 /* Unlink and return any mblk that looks like it contains an ire */ 8891 static mblk_t * 8892 tcp_ire_mp(mblk_t *mp) 8893 { 8894 mblk_t *prev_mp; 8895 8896 for (;;) { 8897 prev_mp = mp; 8898 mp = mp->b_cont; 8899 if (mp == NULL) 8900 break; 8901 switch (DB_TYPE(mp)) { 8902 case IRE_DB_TYPE: 8903 case IRE_DB_REQ_TYPE: 8904 if (prev_mp != NULL) 8905 prev_mp->b_cont = mp->b_cont; 8906 mp->b_cont = NULL; 8907 return (mp); 8908 default: 8909 break; 8910 } 8911 } 8912 return (mp); 8913 } 8914 8915 /* 8916 * Timer callback routine for keepalive probe. We do a fake resend of 8917 * last ACKed byte. Then set a timer using RTO. When the timer expires, 8918 * check to see if we have heard anything from the other end for the last 8919 * RTO period. If we have, set the timer to expire for another 8920 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 8921 * RTO << 1 and check again when it expires. Keep exponentially increasing 8922 * the timeout if we have not heard from the other side. If for more than 8923 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 8924 * kill the connection unless the keepalive abort threshold is 0. In 8925 * that case, we will probe "forever." 8926 */ 8927 static void 8928 tcp_keepalive_killer(void *arg) 8929 { 8930 mblk_t *mp; 8931 conn_t *connp = (conn_t *)arg; 8932 tcp_t *tcp = connp->conn_tcp; 8933 int32_t firetime; 8934 int32_t idletime; 8935 int32_t ka_intrvl; 8936 8937 tcp->tcp_ka_tid = 0; 8938 8939 if (tcp->tcp_fused) 8940 return; 8941 8942 BUMP_MIB(&tcp_mib, tcpTimKeepalive); 8943 ka_intrvl = tcp->tcp_ka_interval; 8944 8945 /* 8946 * Keepalive probe should only be sent if the application has not 8947 * done a close on the connection. 8948 */ 8949 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 8950 return; 8951 } 8952 /* Timer fired too early, restart it. */ 8953 if (tcp->tcp_state < TCPS_ESTABLISHED) { 8954 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8955 MSEC_TO_TICK(ka_intrvl)); 8956 return; 8957 } 8958 8959 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 8960 /* 8961 * If we have not heard from the other side for a long 8962 * time, kill the connection unless the keepalive abort 8963 * threshold is 0. In that case, we will probe "forever." 8964 */ 8965 if (tcp->tcp_ka_abort_thres != 0 && 8966 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 8967 BUMP_MIB(&tcp_mib, tcpTimKeepaliveDrop); 8968 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 8969 tcp->tcp_client_errno : ETIMEDOUT, 11); 8970 return; 8971 } 8972 8973 if (tcp->tcp_snxt == tcp->tcp_suna && 8974 idletime >= ka_intrvl) { 8975 /* Fake resend of last ACKed byte. */ 8976 mblk_t *mp1 = allocb(1, BPRI_LO); 8977 8978 if (mp1 != NULL) { 8979 *mp1->b_wptr++ = '\0'; 8980 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 8981 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 8982 freeb(mp1); 8983 /* 8984 * if allocation failed, fall through to start the 8985 * timer back. 8986 */ 8987 if (mp != NULL) { 8988 TCP_RECORD_TRACE(tcp, mp, 8989 TCP_TRACE_SEND_PKT); 8990 tcp_send_data(tcp, tcp->tcp_wq, mp); 8991 BUMP_MIB(&tcp_mib, tcpTimKeepaliveProbe); 8992 if (tcp->tcp_ka_last_intrvl != 0) { 8993 /* 8994 * We should probe again at least 8995 * in ka_intrvl, but not more than 8996 * tcp_rexmit_interval_max. 8997 */ 8998 firetime = MIN(ka_intrvl - 1, 8999 tcp->tcp_ka_last_intrvl << 1); 9000 if (firetime > tcp_rexmit_interval_max) 9001 firetime = 9002 tcp_rexmit_interval_max; 9003 } else { 9004 firetime = tcp->tcp_rto; 9005 } 9006 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9007 tcp_keepalive_killer, 9008 MSEC_TO_TICK(firetime)); 9009 tcp->tcp_ka_last_intrvl = firetime; 9010 return; 9011 } 9012 } 9013 } else { 9014 tcp->tcp_ka_last_intrvl = 0; 9015 } 9016 9017 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 9018 if ((firetime = ka_intrvl - idletime) < 0) { 9019 firetime = ka_intrvl; 9020 } 9021 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9022 MSEC_TO_TICK(firetime)); 9023 } 9024 9025 int 9026 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 9027 { 9028 queue_t *q = tcp->tcp_rq; 9029 int32_t mss = tcp->tcp_mss; 9030 int maxpsz; 9031 9032 if (TCP_IS_DETACHED(tcp)) 9033 return (mss); 9034 9035 if (tcp->tcp_fused) { 9036 maxpsz = tcp_fuse_maxpsz_set(tcp); 9037 mss = INFPSZ; 9038 } else if (tcp->tcp_mdt || tcp->tcp_maxpsz == 0) { 9039 /* 9040 * Set the sd_qn_maxpsz according to the socket send buffer 9041 * size, and sd_maxblk to INFPSZ (-1). This will essentially 9042 * instruct the stream head to copyin user data into contiguous 9043 * kernel-allocated buffers without breaking it up into smaller 9044 * chunks. We round up the buffer size to the nearest SMSS. 9045 */ 9046 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 9047 if (tcp->tcp_kssl_ctx == NULL) 9048 mss = INFPSZ; 9049 else 9050 mss = SSL3_MAX_RECORD_LEN; 9051 } else { 9052 /* 9053 * Set sd_qn_maxpsz to approx half the (receivers) buffer 9054 * (and a multiple of the mss). This instructs the stream 9055 * head to break down larger than SMSS writes into SMSS- 9056 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 9057 */ 9058 maxpsz = tcp->tcp_maxpsz * mss; 9059 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 9060 maxpsz = tcp->tcp_xmit_hiwater/2; 9061 /* Round up to nearest mss */ 9062 maxpsz = MSS_ROUNDUP(maxpsz, mss); 9063 } 9064 } 9065 (void) setmaxps(q, maxpsz); 9066 tcp->tcp_wq->q_maxpsz = maxpsz; 9067 9068 if (set_maxblk) 9069 (void) mi_set_sth_maxblk(q, mss); 9070 9071 return (mss); 9072 } 9073 9074 /* 9075 * Extract option values from a tcp header. We put any found values into the 9076 * tcpopt struct and return a bitmask saying which options were found. 9077 */ 9078 static int 9079 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 9080 { 9081 uchar_t *endp; 9082 int len; 9083 uint32_t mss; 9084 uchar_t *up = (uchar_t *)tcph; 9085 int found = 0; 9086 int32_t sack_len; 9087 tcp_seq sack_begin, sack_end; 9088 tcp_t *tcp; 9089 9090 endp = up + TCP_HDR_LENGTH(tcph); 9091 up += TCP_MIN_HEADER_LENGTH; 9092 while (up < endp) { 9093 len = endp - up; 9094 switch (*up) { 9095 case TCPOPT_EOL: 9096 break; 9097 9098 case TCPOPT_NOP: 9099 up++; 9100 continue; 9101 9102 case TCPOPT_MAXSEG: 9103 if (len < TCPOPT_MAXSEG_LEN || 9104 up[1] != TCPOPT_MAXSEG_LEN) 9105 break; 9106 9107 mss = BE16_TO_U16(up+2); 9108 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 9109 tcpopt->tcp_opt_mss = mss; 9110 found |= TCP_OPT_MSS_PRESENT; 9111 9112 up += TCPOPT_MAXSEG_LEN; 9113 continue; 9114 9115 case TCPOPT_WSCALE: 9116 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 9117 break; 9118 9119 if (up[2] > TCP_MAX_WINSHIFT) 9120 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 9121 else 9122 tcpopt->tcp_opt_wscale = up[2]; 9123 found |= TCP_OPT_WSCALE_PRESENT; 9124 9125 up += TCPOPT_WS_LEN; 9126 continue; 9127 9128 case TCPOPT_SACK_PERMITTED: 9129 if (len < TCPOPT_SACK_OK_LEN || 9130 up[1] != TCPOPT_SACK_OK_LEN) 9131 break; 9132 found |= TCP_OPT_SACK_OK_PRESENT; 9133 up += TCPOPT_SACK_OK_LEN; 9134 continue; 9135 9136 case TCPOPT_SACK: 9137 if (len <= 2 || up[1] <= 2 || len < up[1]) 9138 break; 9139 9140 /* If TCP is not interested in SACK blks... */ 9141 if ((tcp = tcpopt->tcp) == NULL) { 9142 up += up[1]; 9143 continue; 9144 } 9145 sack_len = up[1] - TCPOPT_HEADER_LEN; 9146 up += TCPOPT_HEADER_LEN; 9147 9148 /* 9149 * If the list is empty, allocate one and assume 9150 * nothing is sack'ed. 9151 */ 9152 ASSERT(tcp->tcp_sack_info != NULL); 9153 if (tcp->tcp_notsack_list == NULL) { 9154 tcp_notsack_update(&(tcp->tcp_notsack_list), 9155 tcp->tcp_suna, tcp->tcp_snxt, 9156 &(tcp->tcp_num_notsack_blk), 9157 &(tcp->tcp_cnt_notsack_list)); 9158 9159 /* 9160 * Make sure tcp_notsack_list is not NULL. 9161 * This happens when kmem_alloc(KM_NOSLEEP) 9162 * returns NULL. 9163 */ 9164 if (tcp->tcp_notsack_list == NULL) { 9165 up += sack_len; 9166 continue; 9167 } 9168 tcp->tcp_fack = tcp->tcp_suna; 9169 } 9170 9171 while (sack_len > 0) { 9172 if (up + 8 > endp) { 9173 up = endp; 9174 break; 9175 } 9176 sack_begin = BE32_TO_U32(up); 9177 up += 4; 9178 sack_end = BE32_TO_U32(up); 9179 up += 4; 9180 sack_len -= 8; 9181 /* 9182 * Bounds checking. Make sure the SACK 9183 * info is within tcp_suna and tcp_snxt. 9184 * If this SACK blk is out of bound, ignore 9185 * it but continue to parse the following 9186 * blks. 9187 */ 9188 if (SEQ_LEQ(sack_end, sack_begin) || 9189 SEQ_LT(sack_begin, tcp->tcp_suna) || 9190 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9191 continue; 9192 } 9193 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9194 sack_begin, sack_end, 9195 &(tcp->tcp_num_notsack_blk), 9196 &(tcp->tcp_cnt_notsack_list)); 9197 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9198 tcp->tcp_fack = sack_end; 9199 } 9200 } 9201 found |= TCP_OPT_SACK_PRESENT; 9202 continue; 9203 9204 case TCPOPT_TSTAMP: 9205 if (len < TCPOPT_TSTAMP_LEN || 9206 up[1] != TCPOPT_TSTAMP_LEN) 9207 break; 9208 9209 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9210 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9211 9212 found |= TCP_OPT_TSTAMP_PRESENT; 9213 9214 up += TCPOPT_TSTAMP_LEN; 9215 continue; 9216 9217 default: 9218 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9219 break; 9220 up += up[1]; 9221 continue; 9222 } 9223 break; 9224 } 9225 return (found); 9226 } 9227 9228 /* 9229 * Set the mss associated with a particular tcp based on its current value, 9230 * and a new one passed in. Observe minimums and maximums, and reset 9231 * other state variables that we want to view as multiples of mss. 9232 * 9233 * This function is called in various places mainly because 9234 * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the 9235 * other side's SYN/SYN-ACK packet arrives. 9236 * 2) PMTUd may get us a new MSS. 9237 * 3) If the other side stops sending us timestamp option, we need to 9238 * increase the MSS size to use the extra bytes available. 9239 */ 9240 static void 9241 tcp_mss_set(tcp_t *tcp, uint32_t mss) 9242 { 9243 uint32_t mss_max; 9244 9245 if (tcp->tcp_ipversion == IPV4_VERSION) 9246 mss_max = tcp_mss_max_ipv4; 9247 else 9248 mss_max = tcp_mss_max_ipv6; 9249 9250 if (mss < tcp_mss_min) 9251 mss = tcp_mss_min; 9252 if (mss > mss_max) 9253 mss = mss_max; 9254 /* 9255 * Unless naglim has been set by our client to 9256 * a non-mss value, force naglim to track mss. 9257 * This can help to aggregate small writes. 9258 */ 9259 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9260 tcp->tcp_naglim = mss; 9261 /* 9262 * TCP should be able to buffer at least 4 MSS data for obvious 9263 * performance reason. 9264 */ 9265 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9266 tcp->tcp_xmit_hiwater = mss << 2; 9267 9268 /* 9269 * Check if we need to apply the tcp_init_cwnd here. If 9270 * it is set and the MSS gets bigger (should not happen 9271 * normally), we need to adjust the resulting tcp_cwnd properly. 9272 * The new tcp_cwnd should not get bigger. 9273 */ 9274 if (tcp->tcp_init_cwnd == 0) { 9275 tcp->tcp_cwnd = MIN(tcp_slow_start_initial * mss, 9276 MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss))); 9277 } else { 9278 if (tcp->tcp_mss < mss) { 9279 tcp->tcp_cwnd = MAX(1, 9280 (tcp->tcp_init_cwnd * tcp->tcp_mss / mss)) * mss; 9281 } else { 9282 tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss; 9283 } 9284 } 9285 tcp->tcp_mss = mss; 9286 tcp->tcp_cwnd_cnt = 0; 9287 (void) tcp_maxpsz_set(tcp, B_TRUE); 9288 } 9289 9290 static int 9291 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9292 { 9293 tcp_t *tcp = NULL; 9294 conn_t *connp; 9295 int err; 9296 dev_t conn_dev; 9297 zoneid_t zoneid = getzoneid(); 9298 9299 /* 9300 * Special case for install: miniroot needs to be able to access files 9301 * via NFS as though it were always in the global zone. 9302 */ 9303 if (credp == kcred && nfs_global_client_only != 0) 9304 zoneid = GLOBAL_ZONEID; 9305 9306 if (q->q_ptr != NULL) 9307 return (0); 9308 9309 if (sflag == MODOPEN) { 9310 /* 9311 * This is a special case. The purpose of a modopen 9312 * is to allow just the T_SVR4_OPTMGMT_REQ to pass 9313 * through for MIB browsers. Everything else is failed. 9314 */ 9315 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); 9316 9317 if (connp == NULL) 9318 return (ENOMEM); 9319 9320 connp->conn_flags |= IPCL_TCPMOD; 9321 connp->conn_cred = credp; 9322 connp->conn_zoneid = zoneid; 9323 q->q_ptr = WR(q)->q_ptr = connp; 9324 crhold(credp); 9325 q->q_qinfo = &tcp_mod_rinit; 9326 WR(q)->q_qinfo = &tcp_mod_winit; 9327 qprocson(q); 9328 return (0); 9329 } 9330 9331 if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) 9332 return (EBUSY); 9333 9334 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 9335 9336 if (flag & SO_ACCEPTOR) { 9337 q->q_qinfo = &tcp_acceptor_rinit; 9338 q->q_ptr = (void *)conn_dev; 9339 WR(q)->q_qinfo = &tcp_acceptor_winit; 9340 WR(q)->q_ptr = (void *)conn_dev; 9341 qprocson(q); 9342 return (0); 9343 } 9344 9345 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); 9346 if (connp == NULL) { 9347 inet_minor_free(ip_minor_arena, conn_dev); 9348 q->q_ptr = NULL; 9349 return (ENOSR); 9350 } 9351 connp->conn_sqp = IP_SQUEUE_GET(lbolt); 9352 tcp = connp->conn_tcp; 9353 9354 q->q_ptr = WR(q)->q_ptr = connp; 9355 if (getmajor(*devp) == TCP6_MAJ) { 9356 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9357 connp->conn_send = ip_output_v6; 9358 connp->conn_af_isv6 = B_TRUE; 9359 connp->conn_pkt_isv6 = B_TRUE; 9360 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9361 tcp->tcp_ipversion = IPV6_VERSION; 9362 tcp->tcp_family = AF_INET6; 9363 tcp->tcp_mss = tcp_mss_def_ipv6; 9364 } else { 9365 connp->conn_flags |= IPCL_TCP4; 9366 connp->conn_send = ip_output; 9367 connp->conn_af_isv6 = B_FALSE; 9368 connp->conn_pkt_isv6 = B_FALSE; 9369 tcp->tcp_ipversion = IPV4_VERSION; 9370 tcp->tcp_family = AF_INET; 9371 tcp->tcp_mss = tcp_mss_def_ipv4; 9372 } 9373 9374 /* 9375 * TCP keeps a copy of cred for cache locality reasons but 9376 * we put a reference only once. If connp->conn_cred 9377 * becomes invalid, tcp_cred should also be set to NULL. 9378 */ 9379 tcp->tcp_cred = connp->conn_cred = credp; 9380 crhold(connp->conn_cred); 9381 tcp->tcp_cpid = curproc->p_pid; 9382 connp->conn_zoneid = zoneid; 9383 connp->conn_mlp_type = mlptSingle; 9384 connp->conn_ulp_labeled = !is_system_labeled(); 9385 9386 /* 9387 * If the caller has the process-wide flag set, then default to MAC 9388 * exempt mode. This allows read-down to unlabeled hosts. 9389 */ 9390 if (getpflags(NET_MAC_AWARE, credp) != 0) 9391 connp->conn_mac_exempt = B_TRUE; 9392 9393 connp->conn_dev = conn_dev; 9394 9395 ASSERT(q->q_qinfo == &tcp_rinit); 9396 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9397 9398 if (flag & SO_SOCKSTR) { 9399 /* 9400 * No need to insert a socket in tcp acceptor hash. 9401 * If it was a socket acceptor stream, we dealt with 9402 * it above. A socket listener can never accept a 9403 * connection and doesn't need acceptor_id. 9404 */ 9405 connp->conn_flags |= IPCL_SOCKET; 9406 tcp->tcp_issocket = 1; 9407 WR(q)->q_qinfo = &tcp_sock_winit; 9408 } else { 9409 #ifdef _ILP32 9410 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9411 #else 9412 tcp->tcp_acceptor_id = conn_dev; 9413 #endif /* _ILP32 */ 9414 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9415 } 9416 9417 if (tcp_trace) 9418 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP); 9419 9420 err = tcp_init(tcp, q); 9421 if (err != 0) { 9422 inet_minor_free(ip_minor_arena, connp->conn_dev); 9423 tcp_acceptor_hash_remove(tcp); 9424 CONN_DEC_REF(connp); 9425 q->q_ptr = WR(q)->q_ptr = NULL; 9426 return (err); 9427 } 9428 9429 RD(q)->q_hiwat = tcp_recv_hiwat; 9430 tcp->tcp_rwnd = tcp_recv_hiwat; 9431 9432 /* Non-zero default values */ 9433 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9434 /* 9435 * Put the ref for TCP. Ref for IP was already put 9436 * by ipcl_conn_create. Also Make the conn_t globally 9437 * visible to walkers 9438 */ 9439 mutex_enter(&connp->conn_lock); 9440 CONN_INC_REF_LOCKED(connp); 9441 ASSERT(connp->conn_ref == 2); 9442 connp->conn_state_flags &= ~CONN_INCIPIENT; 9443 mutex_exit(&connp->conn_lock); 9444 9445 qprocson(q); 9446 return (0); 9447 } 9448 9449 /* 9450 * Some TCP options can be "set" by requesting them in the option 9451 * buffer. This is needed for XTI feature test though we do not 9452 * allow it in general. We interpret that this mechanism is more 9453 * applicable to OSI protocols and need not be allowed in general. 9454 * This routine filters out options for which it is not allowed (most) 9455 * and lets through those (few) for which it is. [ The XTI interface 9456 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9457 * ever implemented will have to be allowed here ]. 9458 */ 9459 static boolean_t 9460 tcp_allow_connopt_set(int level, int name) 9461 { 9462 9463 switch (level) { 9464 case IPPROTO_TCP: 9465 switch (name) { 9466 case TCP_NODELAY: 9467 return (B_TRUE); 9468 default: 9469 return (B_FALSE); 9470 } 9471 /*NOTREACHED*/ 9472 default: 9473 return (B_FALSE); 9474 } 9475 /*NOTREACHED*/ 9476 } 9477 9478 /* 9479 * This routine gets default values of certain options whose default 9480 * values are maintained by protocol specific code 9481 */ 9482 /* ARGSUSED */ 9483 int 9484 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9485 { 9486 int32_t *i1 = (int32_t *)ptr; 9487 9488 switch (level) { 9489 case IPPROTO_TCP: 9490 switch (name) { 9491 case TCP_NOTIFY_THRESHOLD: 9492 *i1 = tcp_ip_notify_interval; 9493 break; 9494 case TCP_ABORT_THRESHOLD: 9495 *i1 = tcp_ip_abort_interval; 9496 break; 9497 case TCP_CONN_NOTIFY_THRESHOLD: 9498 *i1 = tcp_ip_notify_cinterval; 9499 break; 9500 case TCP_CONN_ABORT_THRESHOLD: 9501 *i1 = tcp_ip_abort_cinterval; 9502 break; 9503 default: 9504 return (-1); 9505 } 9506 break; 9507 case IPPROTO_IP: 9508 switch (name) { 9509 case IP_TTL: 9510 *i1 = tcp_ipv4_ttl; 9511 break; 9512 default: 9513 return (-1); 9514 } 9515 break; 9516 case IPPROTO_IPV6: 9517 switch (name) { 9518 case IPV6_UNICAST_HOPS: 9519 *i1 = tcp_ipv6_hoplimit; 9520 break; 9521 default: 9522 return (-1); 9523 } 9524 break; 9525 default: 9526 return (-1); 9527 } 9528 return (sizeof (int)); 9529 } 9530 9531 9532 /* 9533 * TCP routine to get the values of options. 9534 */ 9535 int 9536 tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9537 { 9538 int *i1 = (int *)ptr; 9539 conn_t *connp = Q_TO_CONN(q); 9540 tcp_t *tcp = connp->conn_tcp; 9541 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9542 9543 switch (level) { 9544 case SOL_SOCKET: 9545 switch (name) { 9546 case SO_LINGER: { 9547 struct linger *lgr = (struct linger *)ptr; 9548 9549 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9550 lgr->l_linger = tcp->tcp_lingertime; 9551 } 9552 return (sizeof (struct linger)); 9553 case SO_DEBUG: 9554 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9555 break; 9556 case SO_KEEPALIVE: 9557 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9558 break; 9559 case SO_DONTROUTE: 9560 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9561 break; 9562 case SO_USELOOPBACK: 9563 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9564 break; 9565 case SO_BROADCAST: 9566 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9567 break; 9568 case SO_REUSEADDR: 9569 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9570 break; 9571 case SO_OOBINLINE: 9572 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9573 break; 9574 case SO_DGRAM_ERRIND: 9575 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9576 break; 9577 case SO_TYPE: 9578 *i1 = SOCK_STREAM; 9579 break; 9580 case SO_SNDBUF: 9581 *i1 = tcp->tcp_xmit_hiwater; 9582 break; 9583 case SO_RCVBUF: 9584 *i1 = RD(q)->q_hiwat; 9585 break; 9586 case SO_SND_COPYAVOID: 9587 *i1 = tcp->tcp_snd_zcopy_on ? 9588 SO_SND_COPYAVOID : 0; 9589 break; 9590 case SO_ANON_MLP: 9591 *i1 = connp->conn_anon_mlp; 9592 break; 9593 case SO_MAC_EXEMPT: 9594 *i1 = connp->conn_mac_exempt; 9595 break; 9596 default: 9597 return (-1); 9598 } 9599 break; 9600 case IPPROTO_TCP: 9601 switch (name) { 9602 case TCP_NODELAY: 9603 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9604 break; 9605 case TCP_MAXSEG: 9606 *i1 = tcp->tcp_mss; 9607 break; 9608 case TCP_NOTIFY_THRESHOLD: 9609 *i1 = (int)tcp->tcp_first_timer_threshold; 9610 break; 9611 case TCP_ABORT_THRESHOLD: 9612 *i1 = tcp->tcp_second_timer_threshold; 9613 break; 9614 case TCP_CONN_NOTIFY_THRESHOLD: 9615 *i1 = tcp->tcp_first_ctimer_threshold; 9616 break; 9617 case TCP_CONN_ABORT_THRESHOLD: 9618 *i1 = tcp->tcp_second_ctimer_threshold; 9619 break; 9620 case TCP_RECVDSTADDR: 9621 *i1 = tcp->tcp_recvdstaddr; 9622 break; 9623 case TCP_ANONPRIVBIND: 9624 *i1 = tcp->tcp_anon_priv_bind; 9625 break; 9626 case TCP_EXCLBIND: 9627 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 9628 break; 9629 case TCP_INIT_CWND: 9630 *i1 = tcp->tcp_init_cwnd; 9631 break; 9632 case TCP_KEEPALIVE_THRESHOLD: 9633 *i1 = tcp->tcp_ka_interval; 9634 break; 9635 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9636 *i1 = tcp->tcp_ka_abort_thres; 9637 break; 9638 case TCP_CORK: 9639 *i1 = tcp->tcp_cork; 9640 break; 9641 default: 9642 return (-1); 9643 } 9644 break; 9645 case IPPROTO_IP: 9646 if (tcp->tcp_family != AF_INET) 9647 return (-1); 9648 switch (name) { 9649 case IP_OPTIONS: 9650 case T_IP_OPTIONS: { 9651 /* 9652 * This is compatible with BSD in that in only return 9653 * the reverse source route with the final destination 9654 * as the last entry. The first 4 bytes of the option 9655 * will contain the final destination. 9656 */ 9657 int opt_len; 9658 9659 opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha; 9660 opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH; 9661 ASSERT(opt_len >= 0); 9662 /* Caller ensures enough space */ 9663 if (opt_len > 0) { 9664 /* 9665 * TODO: Do we have to handle getsockopt on an 9666 * initiator as well? 9667 */ 9668 return (ip_opt_get_user(tcp->tcp_ipha, ptr)); 9669 } 9670 return (0); 9671 } 9672 case IP_TOS: 9673 case T_IP_TOS: 9674 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 9675 break; 9676 case IP_TTL: 9677 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 9678 break; 9679 case IP_NEXTHOP: 9680 /* Handled at IP level */ 9681 return (-EINVAL); 9682 default: 9683 return (-1); 9684 } 9685 break; 9686 case IPPROTO_IPV6: 9687 /* 9688 * IPPROTO_IPV6 options are only supported for sockets 9689 * that are using IPv6 on the wire. 9690 */ 9691 if (tcp->tcp_ipversion != IPV6_VERSION) { 9692 return (-1); 9693 } 9694 switch (name) { 9695 case IPV6_UNICAST_HOPS: 9696 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 9697 break; /* goto sizeof (int) option return */ 9698 case IPV6_BOUND_IF: 9699 /* Zero if not set */ 9700 *i1 = tcp->tcp_bound_if; 9701 break; /* goto sizeof (int) option return */ 9702 case IPV6_RECVPKTINFO: 9703 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 9704 *i1 = 1; 9705 else 9706 *i1 = 0; 9707 break; /* goto sizeof (int) option return */ 9708 case IPV6_RECVTCLASS: 9709 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 9710 *i1 = 1; 9711 else 9712 *i1 = 0; 9713 break; /* goto sizeof (int) option return */ 9714 case IPV6_RECVHOPLIMIT: 9715 if (tcp->tcp_ipv6_recvancillary & 9716 TCP_IPV6_RECVHOPLIMIT) 9717 *i1 = 1; 9718 else 9719 *i1 = 0; 9720 break; /* goto sizeof (int) option return */ 9721 case IPV6_RECVHOPOPTS: 9722 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 9723 *i1 = 1; 9724 else 9725 *i1 = 0; 9726 break; /* goto sizeof (int) option return */ 9727 case IPV6_RECVDSTOPTS: 9728 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 9729 *i1 = 1; 9730 else 9731 *i1 = 0; 9732 break; /* goto sizeof (int) option return */ 9733 case _OLD_IPV6_RECVDSTOPTS: 9734 if (tcp->tcp_ipv6_recvancillary & 9735 TCP_OLD_IPV6_RECVDSTOPTS) 9736 *i1 = 1; 9737 else 9738 *i1 = 0; 9739 break; /* goto sizeof (int) option return */ 9740 case IPV6_RECVRTHDR: 9741 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 9742 *i1 = 1; 9743 else 9744 *i1 = 0; 9745 break; /* goto sizeof (int) option return */ 9746 case IPV6_RECVRTHDRDSTOPTS: 9747 if (tcp->tcp_ipv6_recvancillary & 9748 TCP_IPV6_RECVRTDSTOPTS) 9749 *i1 = 1; 9750 else 9751 *i1 = 0; 9752 break; /* goto sizeof (int) option return */ 9753 case IPV6_PKTINFO: { 9754 /* XXX assumes that caller has room for max size! */ 9755 struct in6_pktinfo *pkti; 9756 9757 pkti = (struct in6_pktinfo *)ptr; 9758 if (ipp->ipp_fields & IPPF_IFINDEX) 9759 pkti->ipi6_ifindex = ipp->ipp_ifindex; 9760 else 9761 pkti->ipi6_ifindex = 0; 9762 if (ipp->ipp_fields & IPPF_ADDR) 9763 pkti->ipi6_addr = ipp->ipp_addr; 9764 else 9765 pkti->ipi6_addr = ipv6_all_zeros; 9766 return (sizeof (struct in6_pktinfo)); 9767 } 9768 case IPV6_TCLASS: 9769 if (ipp->ipp_fields & IPPF_TCLASS) 9770 *i1 = ipp->ipp_tclass; 9771 else 9772 *i1 = IPV6_FLOW_TCLASS( 9773 IPV6_DEFAULT_VERS_AND_FLOW); 9774 break; /* goto sizeof (int) option return */ 9775 case IPV6_NEXTHOP: { 9776 sin6_t *sin6 = (sin6_t *)ptr; 9777 9778 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 9779 return (0); 9780 *sin6 = sin6_null; 9781 sin6->sin6_family = AF_INET6; 9782 sin6->sin6_addr = ipp->ipp_nexthop; 9783 return (sizeof (sin6_t)); 9784 } 9785 case IPV6_HOPOPTS: 9786 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 9787 return (0); 9788 if (ipp->ipp_hopoptslen <= tcp->tcp_label_len) 9789 return (0); 9790 bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len, 9791 ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len); 9792 if (tcp->tcp_label_len > 0) { 9793 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 9794 ptr[1] = (ipp->ipp_hopoptslen - 9795 tcp->tcp_label_len + 7) / 8 - 1; 9796 } 9797 return (ipp->ipp_hopoptslen - tcp->tcp_label_len); 9798 case IPV6_RTHDRDSTOPTS: 9799 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 9800 return (0); 9801 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 9802 return (ipp->ipp_rtdstoptslen); 9803 case IPV6_RTHDR: 9804 if (!(ipp->ipp_fields & IPPF_RTHDR)) 9805 return (0); 9806 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 9807 return (ipp->ipp_rthdrlen); 9808 case IPV6_DSTOPTS: 9809 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 9810 return (0); 9811 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 9812 return (ipp->ipp_dstoptslen); 9813 case IPV6_SRC_PREFERENCES: 9814 return (ip6_get_src_preferences(connp, 9815 (uint32_t *)ptr)); 9816 case IPV6_PATHMTU: { 9817 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 9818 9819 if (tcp->tcp_state < TCPS_ESTABLISHED) 9820 return (-1); 9821 9822 return (ip_fill_mtuinfo(&connp->conn_remv6, 9823 connp->conn_fport, mtuinfo)); 9824 } 9825 default: 9826 return (-1); 9827 } 9828 break; 9829 default: 9830 return (-1); 9831 } 9832 return (sizeof (int)); 9833 } 9834 9835 /* 9836 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 9837 * Parameters are assumed to be verified by the caller. 9838 */ 9839 /* ARGSUSED */ 9840 int 9841 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name, 9842 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9843 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 9844 { 9845 conn_t *connp = Q_TO_CONN(q); 9846 tcp_t *tcp = connp->conn_tcp; 9847 int *i1 = (int *)invalp; 9848 boolean_t onoff = (*i1 == 0) ? 0 : 1; 9849 boolean_t checkonly; 9850 int reterr; 9851 9852 switch (optset_context) { 9853 case SETFN_OPTCOM_CHECKONLY: 9854 checkonly = B_TRUE; 9855 /* 9856 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9857 * inlen != 0 implies value supplied and 9858 * we have to "pretend" to set it. 9859 * inlen == 0 implies that there is no 9860 * value part in T_CHECK request and just validation 9861 * done elsewhere should be enough, we just return here. 9862 */ 9863 if (inlen == 0) { 9864 *outlenp = 0; 9865 return (0); 9866 } 9867 break; 9868 case SETFN_OPTCOM_NEGOTIATE: 9869 checkonly = B_FALSE; 9870 break; 9871 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 9872 case SETFN_CONN_NEGOTIATE: 9873 checkonly = B_FALSE; 9874 /* 9875 * Negotiating local and "association-related" options 9876 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 9877 * primitives is allowed by XTI, but we choose 9878 * to not implement this style negotiation for Internet 9879 * protocols (We interpret it is a must for OSI world but 9880 * optional for Internet protocols) for all options. 9881 * [ Will do only for the few options that enable test 9882 * suites that our XTI implementation of this feature 9883 * works for transports that do allow it ] 9884 */ 9885 if (!tcp_allow_connopt_set(level, name)) { 9886 *outlenp = 0; 9887 return (EINVAL); 9888 } 9889 break; 9890 default: 9891 /* 9892 * We should never get here 9893 */ 9894 *outlenp = 0; 9895 return (EINVAL); 9896 } 9897 9898 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 9899 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 9900 9901 /* 9902 * For TCP, we should have no ancillary data sent down 9903 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 9904 * has to be zero. 9905 */ 9906 ASSERT(thisdg_attrs == NULL); 9907 9908 /* 9909 * For fixed length options, no sanity check 9910 * of passed in length is done. It is assumed *_optcom_req() 9911 * routines do the right thing. 9912 */ 9913 9914 switch (level) { 9915 case SOL_SOCKET: 9916 switch (name) { 9917 case SO_LINGER: { 9918 struct linger *lgr = (struct linger *)invalp; 9919 9920 if (!checkonly) { 9921 if (lgr->l_onoff) { 9922 tcp->tcp_linger = 1; 9923 tcp->tcp_lingertime = lgr->l_linger; 9924 } else { 9925 tcp->tcp_linger = 0; 9926 tcp->tcp_lingertime = 0; 9927 } 9928 /* struct copy */ 9929 *(struct linger *)outvalp = *lgr; 9930 } else { 9931 if (!lgr->l_onoff) { 9932 ((struct linger *)outvalp)->l_onoff = 0; 9933 ((struct linger *)outvalp)->l_linger = 0; 9934 } else { 9935 /* struct copy */ 9936 *(struct linger *)outvalp = *lgr; 9937 } 9938 } 9939 *outlenp = sizeof (struct linger); 9940 return (0); 9941 } 9942 case SO_DEBUG: 9943 if (!checkonly) 9944 tcp->tcp_debug = onoff; 9945 break; 9946 case SO_KEEPALIVE: 9947 if (checkonly) { 9948 /* T_CHECK case */ 9949 break; 9950 } 9951 9952 if (!onoff) { 9953 if (tcp->tcp_ka_enabled) { 9954 if (tcp->tcp_ka_tid != 0) { 9955 (void) TCP_TIMER_CANCEL(tcp, 9956 tcp->tcp_ka_tid); 9957 tcp->tcp_ka_tid = 0; 9958 } 9959 tcp->tcp_ka_enabled = 0; 9960 } 9961 break; 9962 } 9963 if (!tcp->tcp_ka_enabled) { 9964 /* Crank up the keepalive timer */ 9965 tcp->tcp_ka_last_intrvl = 0; 9966 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9967 tcp_keepalive_killer, 9968 MSEC_TO_TICK(tcp->tcp_ka_interval)); 9969 tcp->tcp_ka_enabled = 1; 9970 } 9971 break; 9972 case SO_DONTROUTE: 9973 /* 9974 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are 9975 * only of interest to IP. We track them here only so 9976 * that we can report their current value. 9977 */ 9978 if (!checkonly) { 9979 tcp->tcp_dontroute = onoff; 9980 tcp->tcp_connp->conn_dontroute = onoff; 9981 } 9982 break; 9983 case SO_USELOOPBACK: 9984 if (!checkonly) { 9985 tcp->tcp_useloopback = onoff; 9986 tcp->tcp_connp->conn_loopback = onoff; 9987 } 9988 break; 9989 case SO_BROADCAST: 9990 if (!checkonly) { 9991 tcp->tcp_broadcast = onoff; 9992 tcp->tcp_connp->conn_broadcast = onoff; 9993 } 9994 break; 9995 case SO_REUSEADDR: 9996 if (!checkonly) { 9997 tcp->tcp_reuseaddr = onoff; 9998 tcp->tcp_connp->conn_reuseaddr = onoff; 9999 } 10000 break; 10001 case SO_OOBINLINE: 10002 if (!checkonly) 10003 tcp->tcp_oobinline = onoff; 10004 break; 10005 case SO_DGRAM_ERRIND: 10006 if (!checkonly) 10007 tcp->tcp_dgram_errind = onoff; 10008 break; 10009 case SO_SNDBUF: { 10010 tcp_t *peer_tcp; 10011 10012 if (*i1 > tcp_max_buf) { 10013 *outlenp = 0; 10014 return (ENOBUFS); 10015 } 10016 if (checkonly) 10017 break; 10018 10019 tcp->tcp_xmit_hiwater = *i1; 10020 if (tcp_snd_lowat_fraction != 0) 10021 tcp->tcp_xmit_lowater = 10022 tcp->tcp_xmit_hiwater / 10023 tcp_snd_lowat_fraction; 10024 (void) tcp_maxpsz_set(tcp, B_TRUE); 10025 /* 10026 * If we are flow-controlled, recheck the condition. 10027 * There are apps that increase SO_SNDBUF size when 10028 * flow-controlled (EWOULDBLOCK), and expect the flow 10029 * control condition to be lifted right away. 10030 * 10031 * For the fused tcp loopback case, in order to avoid 10032 * a race with the peer's tcp_fuse_rrw() we need to 10033 * hold its fuse_lock while accessing tcp_flow_stopped. 10034 */ 10035 peer_tcp = tcp->tcp_loopback_peer; 10036 ASSERT(!tcp->tcp_fused || peer_tcp != NULL); 10037 if (tcp->tcp_fused) 10038 mutex_enter(&peer_tcp->tcp_fuse_lock); 10039 10040 if (tcp->tcp_flow_stopped && 10041 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 10042 tcp_clrqfull(tcp); 10043 } 10044 if (tcp->tcp_fused) 10045 mutex_exit(&peer_tcp->tcp_fuse_lock); 10046 break; 10047 } 10048 case SO_RCVBUF: 10049 if (*i1 > tcp_max_buf) { 10050 *outlenp = 0; 10051 return (ENOBUFS); 10052 } 10053 /* Silently ignore zero */ 10054 if (!checkonly && *i1 != 0) { 10055 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10056 (void) tcp_rwnd_set(tcp, *i1); 10057 } 10058 /* 10059 * XXX should we return the rwnd here 10060 * and tcp_opt_get ? 10061 */ 10062 break; 10063 case SO_SND_COPYAVOID: 10064 if (!checkonly) { 10065 /* we only allow enable at most once for now */ 10066 if (tcp->tcp_loopback || 10067 (!tcp->tcp_snd_zcopy_aware && 10068 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10069 *outlenp = 0; 10070 return (EOPNOTSUPP); 10071 } 10072 tcp->tcp_snd_zcopy_aware = 1; 10073 } 10074 break; 10075 case SO_ANON_MLP: 10076 if (!checkonly) { 10077 mutex_enter(&connp->conn_lock); 10078 connp->conn_anon_mlp = onoff; 10079 mutex_exit(&connp->conn_lock); 10080 } 10081 break; 10082 case SO_MAC_EXEMPT: 10083 if (secpolicy_net_mac_aware(cr) != 0 || 10084 IPCL_IS_BOUND(connp)) 10085 return (EACCES); 10086 if (!checkonly) { 10087 mutex_enter(&connp->conn_lock); 10088 connp->conn_mac_exempt = onoff; 10089 mutex_exit(&connp->conn_lock); 10090 } 10091 break; 10092 default: 10093 *outlenp = 0; 10094 return (EINVAL); 10095 } 10096 break; 10097 case IPPROTO_TCP: 10098 switch (name) { 10099 case TCP_NODELAY: 10100 if (!checkonly) 10101 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10102 break; 10103 case TCP_NOTIFY_THRESHOLD: 10104 if (!checkonly) 10105 tcp->tcp_first_timer_threshold = *i1; 10106 break; 10107 case TCP_ABORT_THRESHOLD: 10108 if (!checkonly) 10109 tcp->tcp_second_timer_threshold = *i1; 10110 break; 10111 case TCP_CONN_NOTIFY_THRESHOLD: 10112 if (!checkonly) 10113 tcp->tcp_first_ctimer_threshold = *i1; 10114 break; 10115 case TCP_CONN_ABORT_THRESHOLD: 10116 if (!checkonly) 10117 tcp->tcp_second_ctimer_threshold = *i1; 10118 break; 10119 case TCP_RECVDSTADDR: 10120 if (tcp->tcp_state > TCPS_LISTEN) 10121 return (EOPNOTSUPP); 10122 if (!checkonly) 10123 tcp->tcp_recvdstaddr = onoff; 10124 break; 10125 case TCP_ANONPRIVBIND: 10126 if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) { 10127 *outlenp = 0; 10128 return (reterr); 10129 } 10130 if (!checkonly) { 10131 tcp->tcp_anon_priv_bind = onoff; 10132 } 10133 break; 10134 case TCP_EXCLBIND: 10135 if (!checkonly) 10136 tcp->tcp_exclbind = onoff; 10137 break; /* goto sizeof (int) option return */ 10138 case TCP_INIT_CWND: { 10139 uint32_t init_cwnd = *((uint32_t *)invalp); 10140 10141 if (checkonly) 10142 break; 10143 10144 /* 10145 * Only allow socket with network configuration 10146 * privilege to set the initial cwnd to be larger 10147 * than allowed by RFC 3390. 10148 */ 10149 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10150 tcp->tcp_init_cwnd = init_cwnd; 10151 break; 10152 } 10153 if ((reterr = secpolicy_net_config(cr, B_TRUE)) != 0) { 10154 *outlenp = 0; 10155 return (reterr); 10156 } 10157 if (init_cwnd > TCP_MAX_INIT_CWND) { 10158 *outlenp = 0; 10159 return (EINVAL); 10160 } 10161 tcp->tcp_init_cwnd = init_cwnd; 10162 break; 10163 } 10164 case TCP_KEEPALIVE_THRESHOLD: 10165 if (checkonly) 10166 break; 10167 10168 if (*i1 < tcp_keepalive_interval_low || 10169 *i1 > tcp_keepalive_interval_high) { 10170 *outlenp = 0; 10171 return (EINVAL); 10172 } 10173 if (*i1 != tcp->tcp_ka_interval) { 10174 tcp->tcp_ka_interval = *i1; 10175 /* 10176 * Check if we need to restart the 10177 * keepalive timer. 10178 */ 10179 if (tcp->tcp_ka_tid != 0) { 10180 ASSERT(tcp->tcp_ka_enabled); 10181 (void) TCP_TIMER_CANCEL(tcp, 10182 tcp->tcp_ka_tid); 10183 tcp->tcp_ka_last_intrvl = 0; 10184 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10185 tcp_keepalive_killer, 10186 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10187 } 10188 } 10189 break; 10190 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10191 if (!checkonly) { 10192 if (*i1 < tcp_keepalive_abort_interval_low || 10193 *i1 > tcp_keepalive_abort_interval_high) { 10194 *outlenp = 0; 10195 return (EINVAL); 10196 } 10197 tcp->tcp_ka_abort_thres = *i1; 10198 } 10199 break; 10200 case TCP_CORK: 10201 if (!checkonly) { 10202 /* 10203 * if tcp->tcp_cork was set and is now 10204 * being unset, we have to make sure that 10205 * the remaining data gets sent out. Also 10206 * unset tcp->tcp_cork so that tcp_wput_data() 10207 * can send data even if it is less than mss 10208 */ 10209 if (tcp->tcp_cork && onoff == 0 && 10210 tcp->tcp_unsent > 0) { 10211 tcp->tcp_cork = B_FALSE; 10212 tcp_wput_data(tcp, NULL, B_FALSE); 10213 } 10214 tcp->tcp_cork = onoff; 10215 } 10216 break; 10217 default: 10218 *outlenp = 0; 10219 return (EINVAL); 10220 } 10221 break; 10222 case IPPROTO_IP: 10223 if (tcp->tcp_family != AF_INET) { 10224 *outlenp = 0; 10225 return (ENOPROTOOPT); 10226 } 10227 switch (name) { 10228 case IP_OPTIONS: 10229 case T_IP_OPTIONS: 10230 reterr = tcp_opt_set_header(tcp, checkonly, 10231 invalp, inlen); 10232 if (reterr) { 10233 *outlenp = 0; 10234 return (reterr); 10235 } 10236 /* OK return - copy input buffer into output buffer */ 10237 if (invalp != outvalp) { 10238 /* don't trust bcopy for identical src/dst */ 10239 bcopy(invalp, outvalp, inlen); 10240 } 10241 *outlenp = inlen; 10242 return (0); 10243 case IP_TOS: 10244 case T_IP_TOS: 10245 if (!checkonly) { 10246 tcp->tcp_ipha->ipha_type_of_service = 10247 (uchar_t)*i1; 10248 tcp->tcp_tos = (uchar_t)*i1; 10249 } 10250 break; 10251 case IP_TTL: 10252 if (!checkonly) { 10253 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10254 tcp->tcp_ttl = (uchar_t)*i1; 10255 } 10256 break; 10257 case IP_BOUND_IF: 10258 case IP_NEXTHOP: 10259 /* Handled at the IP level */ 10260 return (-EINVAL); 10261 case IP_SEC_OPT: 10262 /* 10263 * We should not allow policy setting after 10264 * we start listening for connections. 10265 */ 10266 if (tcp->tcp_state == TCPS_LISTEN) { 10267 return (EINVAL); 10268 } else { 10269 /* Handled at the IP level */ 10270 return (-EINVAL); 10271 } 10272 default: 10273 *outlenp = 0; 10274 return (EINVAL); 10275 } 10276 break; 10277 case IPPROTO_IPV6: { 10278 ip6_pkt_t *ipp; 10279 10280 /* 10281 * IPPROTO_IPV6 options are only supported for sockets 10282 * that are using IPv6 on the wire. 10283 */ 10284 if (tcp->tcp_ipversion != IPV6_VERSION) { 10285 *outlenp = 0; 10286 return (ENOPROTOOPT); 10287 } 10288 /* 10289 * Only sticky options; no ancillary data 10290 */ 10291 ASSERT(thisdg_attrs == NULL); 10292 ipp = &tcp->tcp_sticky_ipp; 10293 10294 switch (name) { 10295 case IPV6_UNICAST_HOPS: 10296 /* -1 means use default */ 10297 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10298 *outlenp = 0; 10299 return (EINVAL); 10300 } 10301 if (!checkonly) { 10302 if (*i1 == -1) { 10303 tcp->tcp_ip6h->ip6_hops = 10304 ipp->ipp_unicast_hops = 10305 (uint8_t)tcp_ipv6_hoplimit; 10306 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10307 /* Pass modified value to IP. */ 10308 *i1 = tcp->tcp_ip6h->ip6_hops; 10309 } else { 10310 tcp->tcp_ip6h->ip6_hops = 10311 ipp->ipp_unicast_hops = 10312 (uint8_t)*i1; 10313 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10314 } 10315 reterr = tcp_build_hdrs(q, tcp); 10316 if (reterr != 0) 10317 return (reterr); 10318 } 10319 break; 10320 case IPV6_BOUND_IF: 10321 if (!checkonly) { 10322 int error = 0; 10323 10324 tcp->tcp_bound_if = *i1; 10325 error = ip_opt_set_ill(tcp->tcp_connp, *i1, 10326 B_TRUE, checkonly, level, name, mblk); 10327 if (error != 0) { 10328 *outlenp = 0; 10329 return (error); 10330 } 10331 } 10332 break; 10333 /* 10334 * Set boolean switches for ancillary data delivery 10335 */ 10336 case IPV6_RECVPKTINFO: 10337 if (!checkonly) { 10338 if (onoff) 10339 tcp->tcp_ipv6_recvancillary |= 10340 TCP_IPV6_RECVPKTINFO; 10341 else 10342 tcp->tcp_ipv6_recvancillary &= 10343 ~TCP_IPV6_RECVPKTINFO; 10344 /* Force it to be sent up with the next msg */ 10345 tcp->tcp_recvifindex = 0; 10346 } 10347 break; 10348 case IPV6_RECVTCLASS: 10349 if (!checkonly) { 10350 if (onoff) 10351 tcp->tcp_ipv6_recvancillary |= 10352 TCP_IPV6_RECVTCLASS; 10353 else 10354 tcp->tcp_ipv6_recvancillary &= 10355 ~TCP_IPV6_RECVTCLASS; 10356 } 10357 break; 10358 case IPV6_RECVHOPLIMIT: 10359 if (!checkonly) { 10360 if (onoff) 10361 tcp->tcp_ipv6_recvancillary |= 10362 TCP_IPV6_RECVHOPLIMIT; 10363 else 10364 tcp->tcp_ipv6_recvancillary &= 10365 ~TCP_IPV6_RECVHOPLIMIT; 10366 /* Force it to be sent up with the next msg */ 10367 tcp->tcp_recvhops = 0xffffffffU; 10368 } 10369 break; 10370 case IPV6_RECVHOPOPTS: 10371 if (!checkonly) { 10372 if (onoff) 10373 tcp->tcp_ipv6_recvancillary |= 10374 TCP_IPV6_RECVHOPOPTS; 10375 else 10376 tcp->tcp_ipv6_recvancillary &= 10377 ~TCP_IPV6_RECVHOPOPTS; 10378 } 10379 break; 10380 case IPV6_RECVDSTOPTS: 10381 if (!checkonly) { 10382 if (onoff) 10383 tcp->tcp_ipv6_recvancillary |= 10384 TCP_IPV6_RECVDSTOPTS; 10385 else 10386 tcp->tcp_ipv6_recvancillary &= 10387 ~TCP_IPV6_RECVDSTOPTS; 10388 } 10389 break; 10390 case _OLD_IPV6_RECVDSTOPTS: 10391 if (!checkonly) { 10392 if (onoff) 10393 tcp->tcp_ipv6_recvancillary |= 10394 TCP_OLD_IPV6_RECVDSTOPTS; 10395 else 10396 tcp->tcp_ipv6_recvancillary &= 10397 ~TCP_OLD_IPV6_RECVDSTOPTS; 10398 } 10399 break; 10400 case IPV6_RECVRTHDR: 10401 if (!checkonly) { 10402 if (onoff) 10403 tcp->tcp_ipv6_recvancillary |= 10404 TCP_IPV6_RECVRTHDR; 10405 else 10406 tcp->tcp_ipv6_recvancillary &= 10407 ~TCP_IPV6_RECVRTHDR; 10408 } 10409 break; 10410 case IPV6_RECVRTHDRDSTOPTS: 10411 if (!checkonly) { 10412 if (onoff) 10413 tcp->tcp_ipv6_recvancillary |= 10414 TCP_IPV6_RECVRTDSTOPTS; 10415 else 10416 tcp->tcp_ipv6_recvancillary &= 10417 ~TCP_IPV6_RECVRTDSTOPTS; 10418 } 10419 break; 10420 case IPV6_PKTINFO: 10421 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10422 return (EINVAL); 10423 if (checkonly) 10424 break; 10425 10426 if (inlen == 0) { 10427 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10428 } else { 10429 struct in6_pktinfo *pkti; 10430 10431 pkti = (struct in6_pktinfo *)invalp; 10432 /* 10433 * RFC 3542 states that ipi6_addr must be 10434 * the unspecified address when setting the 10435 * IPV6_PKTINFO sticky socket option on a 10436 * TCP socket. 10437 */ 10438 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10439 return (EINVAL); 10440 /* 10441 * ip6_set_pktinfo() validates the source 10442 * address and interface index. 10443 */ 10444 reterr = ip6_set_pktinfo(cr, tcp->tcp_connp, 10445 pkti, mblk); 10446 if (reterr != 0) 10447 return (reterr); 10448 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10449 ipp->ipp_addr = pkti->ipi6_addr; 10450 if (ipp->ipp_ifindex != 0) 10451 ipp->ipp_fields |= IPPF_IFINDEX; 10452 else 10453 ipp->ipp_fields &= ~IPPF_IFINDEX; 10454 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10455 ipp->ipp_fields |= IPPF_ADDR; 10456 else 10457 ipp->ipp_fields &= ~IPPF_ADDR; 10458 } 10459 reterr = tcp_build_hdrs(q, tcp); 10460 if (reterr != 0) 10461 return (reterr); 10462 break; 10463 case IPV6_TCLASS: 10464 if (inlen != 0 && inlen != sizeof (int)) 10465 return (EINVAL); 10466 if (checkonly) 10467 break; 10468 10469 if (inlen == 0) { 10470 ipp->ipp_fields &= ~IPPF_TCLASS; 10471 } else { 10472 if (*i1 > 255 || *i1 < -1) 10473 return (EINVAL); 10474 if (*i1 == -1) { 10475 ipp->ipp_tclass = 0; 10476 *i1 = 0; 10477 } else { 10478 ipp->ipp_tclass = *i1; 10479 } 10480 ipp->ipp_fields |= IPPF_TCLASS; 10481 } 10482 reterr = tcp_build_hdrs(q, tcp); 10483 if (reterr != 0) 10484 return (reterr); 10485 break; 10486 case IPV6_NEXTHOP: 10487 /* 10488 * IP will verify that the nexthop is reachable 10489 * and fail for sticky options. 10490 */ 10491 if (inlen != 0 && inlen != sizeof (sin6_t)) 10492 return (EINVAL); 10493 if (checkonly) 10494 break; 10495 10496 if (inlen == 0) { 10497 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10498 } else { 10499 sin6_t *sin6 = (sin6_t *)invalp; 10500 10501 if (sin6->sin6_family != AF_INET6) 10502 return (EAFNOSUPPORT); 10503 if (IN6_IS_ADDR_V4MAPPED( 10504 &sin6->sin6_addr)) 10505 return (EADDRNOTAVAIL); 10506 ipp->ipp_nexthop = sin6->sin6_addr; 10507 if (!IN6_IS_ADDR_UNSPECIFIED( 10508 &ipp->ipp_nexthop)) 10509 ipp->ipp_fields |= IPPF_NEXTHOP; 10510 else 10511 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10512 } 10513 reterr = tcp_build_hdrs(q, tcp); 10514 if (reterr != 0) 10515 return (reterr); 10516 break; 10517 case IPV6_HOPOPTS: { 10518 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10519 10520 /* 10521 * Sanity checks - minimum size, size a multiple of 10522 * eight bytes, and matching size passed in. 10523 */ 10524 if (inlen != 0 && 10525 inlen != (8 * (hopts->ip6h_len + 1))) 10526 return (EINVAL); 10527 10528 if (checkonly) 10529 break; 10530 10531 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10532 (uchar_t **)&ipp->ipp_hopopts, 10533 &ipp->ipp_hopoptslen, tcp->tcp_label_len); 10534 if (reterr != 0) 10535 return (reterr); 10536 if (ipp->ipp_hopoptslen == 0) 10537 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10538 else 10539 ipp->ipp_fields |= IPPF_HOPOPTS; 10540 reterr = tcp_build_hdrs(q, tcp); 10541 if (reterr != 0) 10542 return (reterr); 10543 break; 10544 } 10545 case IPV6_RTHDRDSTOPTS: { 10546 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10547 10548 /* 10549 * Sanity checks - minimum size, size a multiple of 10550 * eight bytes, and matching size passed in. 10551 */ 10552 if (inlen != 0 && 10553 inlen != (8 * (dopts->ip6d_len + 1))) 10554 return (EINVAL); 10555 10556 if (checkonly) 10557 break; 10558 10559 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10560 (uchar_t **)&ipp->ipp_rtdstopts, 10561 &ipp->ipp_rtdstoptslen, 0); 10562 if (reterr != 0) 10563 return (reterr); 10564 if (ipp->ipp_rtdstoptslen == 0) 10565 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10566 else 10567 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10568 reterr = tcp_build_hdrs(q, tcp); 10569 if (reterr != 0) 10570 return (reterr); 10571 break; 10572 } 10573 case IPV6_DSTOPTS: { 10574 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10575 10576 /* 10577 * Sanity checks - minimum size, size a multiple of 10578 * eight bytes, and matching size passed in. 10579 */ 10580 if (inlen != 0 && 10581 inlen != (8 * (dopts->ip6d_len + 1))) 10582 return (EINVAL); 10583 10584 if (checkonly) 10585 break; 10586 10587 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10588 (uchar_t **)&ipp->ipp_dstopts, 10589 &ipp->ipp_dstoptslen, 0); 10590 if (reterr != 0) 10591 return (reterr); 10592 if (ipp->ipp_dstoptslen == 0) 10593 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10594 else 10595 ipp->ipp_fields |= IPPF_DSTOPTS; 10596 reterr = tcp_build_hdrs(q, tcp); 10597 if (reterr != 0) 10598 return (reterr); 10599 break; 10600 } 10601 case IPV6_RTHDR: { 10602 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10603 10604 /* 10605 * Sanity checks - minimum size, size a multiple of 10606 * eight bytes, and matching size passed in. 10607 */ 10608 if (inlen != 0 && 10609 inlen != (8 * (rt->ip6r_len + 1))) 10610 return (EINVAL); 10611 10612 if (checkonly) 10613 break; 10614 10615 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10616 (uchar_t **)&ipp->ipp_rthdr, 10617 &ipp->ipp_rthdrlen, 0); 10618 if (reterr != 0) 10619 return (reterr); 10620 if (ipp->ipp_rthdrlen == 0) 10621 ipp->ipp_fields &= ~IPPF_RTHDR; 10622 else 10623 ipp->ipp_fields |= IPPF_RTHDR; 10624 reterr = tcp_build_hdrs(q, tcp); 10625 if (reterr != 0) 10626 return (reterr); 10627 break; 10628 } 10629 case IPV6_V6ONLY: 10630 if (!checkonly) 10631 tcp->tcp_connp->conn_ipv6_v6only = onoff; 10632 break; 10633 case IPV6_USE_MIN_MTU: 10634 if (inlen != sizeof (int)) 10635 return (EINVAL); 10636 10637 if (*i1 < -1 || *i1 > 1) 10638 return (EINVAL); 10639 10640 if (checkonly) 10641 break; 10642 10643 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 10644 ipp->ipp_use_min_mtu = *i1; 10645 break; 10646 case IPV6_BOUND_PIF: 10647 /* Handled at the IP level */ 10648 return (-EINVAL); 10649 case IPV6_SEC_OPT: 10650 /* 10651 * We should not allow policy setting after 10652 * we start listening for connections. 10653 */ 10654 if (tcp->tcp_state == TCPS_LISTEN) { 10655 return (EINVAL); 10656 } else { 10657 /* Handled at the IP level */ 10658 return (-EINVAL); 10659 } 10660 case IPV6_SRC_PREFERENCES: 10661 if (inlen != sizeof (uint32_t)) 10662 return (EINVAL); 10663 reterr = ip6_set_src_preferences(tcp->tcp_connp, 10664 *(uint32_t *)invalp); 10665 if (reterr != 0) { 10666 *outlenp = 0; 10667 return (reterr); 10668 } 10669 break; 10670 default: 10671 *outlenp = 0; 10672 return (EINVAL); 10673 } 10674 break; 10675 } /* end IPPROTO_IPV6 */ 10676 default: 10677 *outlenp = 0; 10678 return (EINVAL); 10679 } 10680 /* 10681 * Common case of OK return with outval same as inval 10682 */ 10683 if (invalp != outvalp) { 10684 /* don't trust bcopy for identical src/dst */ 10685 (void) bcopy(invalp, outvalp, inlen); 10686 } 10687 *outlenp = inlen; 10688 return (0); 10689 } 10690 10691 /* 10692 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 10693 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 10694 * headers, and the maximum size tcp header (to avoid reallocation 10695 * on the fly for additional tcp options). 10696 * Returns failure if can't allocate memory. 10697 */ 10698 static int 10699 tcp_build_hdrs(queue_t *q, tcp_t *tcp) 10700 { 10701 char *hdrs; 10702 uint_t hdrs_len; 10703 ip6i_t *ip6i; 10704 char buf[TCP_MAX_HDR_LENGTH]; 10705 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 10706 in6_addr_t src, dst; 10707 10708 /* 10709 * save the existing tcp header and source/dest IP addresses 10710 */ 10711 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 10712 src = tcp->tcp_ip6h->ip6_src; 10713 dst = tcp->tcp_ip6h->ip6_dst; 10714 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 10715 ASSERT(hdrs_len != 0); 10716 if (hdrs_len > tcp->tcp_iphc_len) { 10717 /* Need to reallocate */ 10718 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 10719 if (hdrs == NULL) 10720 return (ENOMEM); 10721 if (tcp->tcp_iphc != NULL) { 10722 if (tcp->tcp_hdr_grown) { 10723 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 10724 } else { 10725 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 10726 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 10727 } 10728 tcp->tcp_iphc_len = 0; 10729 } 10730 ASSERT(tcp->tcp_iphc_len == 0); 10731 tcp->tcp_iphc = hdrs; 10732 tcp->tcp_iphc_len = hdrs_len; 10733 tcp->tcp_hdr_grown = B_TRUE; 10734 } 10735 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 10736 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 10737 10738 /* Set header fields not in ipp */ 10739 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 10740 ip6i = (ip6i_t *)tcp->tcp_iphc; 10741 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 10742 } else { 10743 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 10744 } 10745 /* 10746 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 10747 * 10748 * tcp->tcp_tcp_hdr_len doesn't change here. 10749 */ 10750 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 10751 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 10752 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 10753 10754 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 10755 10756 tcp->tcp_ip6h->ip6_src = src; 10757 tcp->tcp_ip6h->ip6_dst = dst; 10758 10759 /* 10760 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 10761 * the default value for TCP. 10762 */ 10763 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 10764 tcp->tcp_ip6h->ip6_hops = tcp_ipv6_hoplimit; 10765 10766 /* 10767 * If we're setting extension headers after a connection 10768 * has been established, and if we have a routing header 10769 * among the extension headers, call ip_massage_options_v6 to 10770 * manipulate the routing header/ip6_dst set the checksum 10771 * difference in the tcp header template. 10772 * (This happens in tcp_connect_ipv6 if the routing header 10773 * is set prior to the connect.) 10774 * Set the tcp_sum to zero first in case we've cleared a 10775 * routing header or don't have one at all. 10776 */ 10777 tcp->tcp_sum = 0; 10778 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 10779 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 10780 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 10781 (uint8_t *)tcp->tcp_tcph); 10782 if (rth != NULL) { 10783 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 10784 rth); 10785 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 10786 (tcp->tcp_sum >> 16)); 10787 } 10788 } 10789 10790 /* Try to get everything in a single mblk */ 10791 (void) mi_set_sth_wroff(RD(q), hdrs_len + tcp_wroff_xtra); 10792 return (0); 10793 } 10794 10795 /* 10796 * Transfer any source route option from ipha to buf/dst in reversed form. 10797 */ 10798 static int 10799 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 10800 { 10801 ipoptp_t opts; 10802 uchar_t *opt; 10803 uint8_t optval; 10804 uint8_t optlen; 10805 uint32_t len = 0; 10806 10807 for (optval = ipoptp_first(&opts, ipha); 10808 optval != IPOPT_EOL; 10809 optval = ipoptp_next(&opts)) { 10810 opt = opts.ipoptp_cur; 10811 optlen = opts.ipoptp_len; 10812 switch (optval) { 10813 int off1, off2; 10814 case IPOPT_SSRR: 10815 case IPOPT_LSRR: 10816 10817 /* Reverse source route */ 10818 /* 10819 * First entry should be the next to last one in the 10820 * current source route (the last entry is our 10821 * address.) 10822 * The last entry should be the final destination. 10823 */ 10824 buf[IPOPT_OPTVAL] = (uint8_t)optval; 10825 buf[IPOPT_OLEN] = (uint8_t)optlen; 10826 off1 = IPOPT_MINOFF_SR - 1; 10827 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 10828 if (off2 < 0) { 10829 /* No entries in source route */ 10830 break; 10831 } 10832 bcopy(opt + off2, dst, IP_ADDR_LEN); 10833 /* 10834 * Note: use src since ipha has not had its src 10835 * and dst reversed (it is in the state it was 10836 * received. 10837 */ 10838 bcopy(&ipha->ipha_src, buf + off2, 10839 IP_ADDR_LEN); 10840 off2 -= IP_ADDR_LEN; 10841 10842 while (off2 > 0) { 10843 bcopy(opt + off2, buf + off1, 10844 IP_ADDR_LEN); 10845 off1 += IP_ADDR_LEN; 10846 off2 -= IP_ADDR_LEN; 10847 } 10848 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 10849 buf += optlen; 10850 len += optlen; 10851 break; 10852 } 10853 } 10854 done: 10855 /* Pad the resulting options */ 10856 while (len & 0x3) { 10857 *buf++ = IPOPT_EOL; 10858 len++; 10859 } 10860 return (len); 10861 } 10862 10863 10864 /* 10865 * Extract and revert a source route from ipha (if any) 10866 * and then update the relevant fields in both tcp_t and the standard header. 10867 */ 10868 static void 10869 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 10870 { 10871 char buf[TCP_MAX_HDR_LENGTH]; 10872 uint_t tcph_len; 10873 int len; 10874 10875 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 10876 len = IPH_HDR_LENGTH(ipha); 10877 if (len == IP_SIMPLE_HDR_LENGTH) 10878 /* Nothing to do */ 10879 return; 10880 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 10881 (len & 0x3)) 10882 return; 10883 10884 tcph_len = tcp->tcp_tcp_hdr_len; 10885 bcopy(tcp->tcp_tcph, buf, tcph_len); 10886 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 10887 (tcp->tcp_ipha->ipha_dst & 0xffff); 10888 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 10889 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 10890 len += IP_SIMPLE_HDR_LENGTH; 10891 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 10892 (tcp->tcp_ipha->ipha_dst & 0xffff)); 10893 if ((int)tcp->tcp_sum < 0) 10894 tcp->tcp_sum--; 10895 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 10896 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 10897 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 10898 bcopy(buf, tcp->tcp_tcph, tcph_len); 10899 tcp->tcp_ip_hdr_len = len; 10900 tcp->tcp_ipha->ipha_version_and_hdr_length = 10901 (IP_VERSION << 4) | (len >> 2); 10902 len += tcph_len; 10903 tcp->tcp_hdr_len = len; 10904 } 10905 10906 /* 10907 * Copy the standard header into its new location, 10908 * lay in the new options and then update the relevant 10909 * fields in both tcp_t and the standard header. 10910 */ 10911 static int 10912 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 10913 { 10914 uint_t tcph_len; 10915 uint8_t *ip_optp; 10916 tcph_t *new_tcph; 10917 10918 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 10919 return (EINVAL); 10920 10921 if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len) 10922 return (EINVAL); 10923 10924 if (checkonly) { 10925 /* 10926 * do not really set, just pretend to - T_CHECK 10927 */ 10928 return (0); 10929 } 10930 10931 ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 10932 if (tcp->tcp_label_len > 0) { 10933 int padlen; 10934 uint8_t opt; 10935 10936 /* convert list termination to no-ops */ 10937 padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN]; 10938 ip_optp += ip_optp[IPOPT_OLEN]; 10939 opt = len > 0 ? IPOPT_NOP : IPOPT_EOL; 10940 while (--padlen >= 0) 10941 *ip_optp++ = opt; 10942 } 10943 tcph_len = tcp->tcp_tcp_hdr_len; 10944 new_tcph = (tcph_t *)(ip_optp + len); 10945 ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len); 10946 tcp->tcp_tcph = new_tcph; 10947 bcopy(ptr, ip_optp, len); 10948 10949 len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len; 10950 10951 tcp->tcp_ip_hdr_len = len; 10952 tcp->tcp_ipha->ipha_version_and_hdr_length = 10953 (IP_VERSION << 4) | (len >> 2); 10954 tcp->tcp_hdr_len = len + tcph_len; 10955 if (!TCP_IS_DETACHED(tcp)) { 10956 /* Always allocate room for all options. */ 10957 (void) mi_set_sth_wroff(tcp->tcp_rq, 10958 TCP_MAX_COMBINED_HEADER_LENGTH + tcp_wroff_xtra); 10959 } 10960 return (0); 10961 } 10962 10963 /* Get callback routine passed to nd_load by tcp_param_register */ 10964 /* ARGSUSED */ 10965 static int 10966 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 10967 { 10968 tcpparam_t *tcppa = (tcpparam_t *)cp; 10969 10970 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 10971 return (0); 10972 } 10973 10974 /* 10975 * Walk through the param array specified registering each element with the 10976 * named dispatch handler. 10977 */ 10978 static boolean_t 10979 tcp_param_register(tcpparam_t *tcppa, int cnt) 10980 { 10981 for (; cnt-- > 0; tcppa++) { 10982 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 10983 if (!nd_load(&tcp_g_nd, tcppa->tcp_param_name, 10984 tcp_param_get, tcp_param_set, 10985 (caddr_t)tcppa)) { 10986 nd_free(&tcp_g_nd); 10987 return (B_FALSE); 10988 } 10989 } 10990 } 10991 if (!nd_load(&tcp_g_nd, tcp_wroff_xtra_param.tcp_param_name, 10992 tcp_param_get, tcp_param_set_aligned, 10993 (caddr_t)&tcp_wroff_xtra_param)) { 10994 nd_free(&tcp_g_nd); 10995 return (B_FALSE); 10996 } 10997 if (!nd_load(&tcp_g_nd, tcp_mdt_head_param.tcp_param_name, 10998 tcp_param_get, tcp_param_set_aligned, 10999 (caddr_t)&tcp_mdt_head_param)) { 11000 nd_free(&tcp_g_nd); 11001 return (B_FALSE); 11002 } 11003 if (!nd_load(&tcp_g_nd, tcp_mdt_tail_param.tcp_param_name, 11004 tcp_param_get, tcp_param_set_aligned, 11005 (caddr_t)&tcp_mdt_tail_param)) { 11006 nd_free(&tcp_g_nd); 11007 return (B_FALSE); 11008 } 11009 if (!nd_load(&tcp_g_nd, tcp_mdt_max_pbufs_param.tcp_param_name, 11010 tcp_param_get, tcp_param_set, 11011 (caddr_t)&tcp_mdt_max_pbufs_param)) { 11012 nd_free(&tcp_g_nd); 11013 return (B_FALSE); 11014 } 11015 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports", 11016 tcp_extra_priv_ports_get, NULL, NULL)) { 11017 nd_free(&tcp_g_nd); 11018 return (B_FALSE); 11019 } 11020 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_add", 11021 NULL, tcp_extra_priv_ports_add, NULL)) { 11022 nd_free(&tcp_g_nd); 11023 return (B_FALSE); 11024 } 11025 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_del", 11026 NULL, tcp_extra_priv_ports_del, NULL)) { 11027 nd_free(&tcp_g_nd); 11028 return (B_FALSE); 11029 } 11030 if (!nd_load(&tcp_g_nd, "tcp_status", tcp_status_report, NULL, 11031 NULL)) { 11032 nd_free(&tcp_g_nd); 11033 return (B_FALSE); 11034 } 11035 if (!nd_load(&tcp_g_nd, "tcp_bind_hash", tcp_bind_hash_report, 11036 NULL, NULL)) { 11037 nd_free(&tcp_g_nd); 11038 return (B_FALSE); 11039 } 11040 if (!nd_load(&tcp_g_nd, "tcp_listen_hash", tcp_listen_hash_report, 11041 NULL, NULL)) { 11042 nd_free(&tcp_g_nd); 11043 return (B_FALSE); 11044 } 11045 if (!nd_load(&tcp_g_nd, "tcp_conn_hash", tcp_conn_hash_report, 11046 NULL, NULL)) { 11047 nd_free(&tcp_g_nd); 11048 return (B_FALSE); 11049 } 11050 if (!nd_load(&tcp_g_nd, "tcp_acceptor_hash", tcp_acceptor_hash_report, 11051 NULL, NULL)) { 11052 nd_free(&tcp_g_nd); 11053 return (B_FALSE); 11054 } 11055 if (!nd_load(&tcp_g_nd, "tcp_host_param", tcp_host_param_report, 11056 tcp_host_param_set, NULL)) { 11057 nd_free(&tcp_g_nd); 11058 return (B_FALSE); 11059 } 11060 if (!nd_load(&tcp_g_nd, "tcp_host_param_ipv6", tcp_host_param_report, 11061 tcp_host_param_set_ipv6, NULL)) { 11062 nd_free(&tcp_g_nd); 11063 return (B_FALSE); 11064 } 11065 if (!nd_load(&tcp_g_nd, "tcp_1948_phrase", NULL, tcp_1948_phrase_set, 11066 NULL)) { 11067 nd_free(&tcp_g_nd); 11068 return (B_FALSE); 11069 } 11070 if (!nd_load(&tcp_g_nd, "tcp_reserved_port_list", 11071 tcp_reserved_port_list, NULL, NULL)) { 11072 nd_free(&tcp_g_nd); 11073 return (B_FALSE); 11074 } 11075 /* 11076 * Dummy ndd variables - only to convey obsolescence information 11077 * through printing of their name (no get or set routines) 11078 * XXX Remove in future releases ? 11079 */ 11080 if (!nd_load(&tcp_g_nd, 11081 "tcp_close_wait_interval(obsoleted - " 11082 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11083 nd_free(&tcp_g_nd); 11084 return (B_FALSE); 11085 } 11086 return (B_TRUE); 11087 } 11088 11089 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11090 /* ARGSUSED */ 11091 static int 11092 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11093 cred_t *cr) 11094 { 11095 long new_value; 11096 tcpparam_t *tcppa = (tcpparam_t *)cp; 11097 11098 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11099 new_value < tcppa->tcp_param_min || 11100 new_value > tcppa->tcp_param_max) { 11101 return (EINVAL); 11102 } 11103 /* 11104 * Need to make sure new_value is a multiple of 4. If it is not, 11105 * round it up. For future 64 bit requirement, we actually make it 11106 * a multiple of 8. 11107 */ 11108 if (new_value & 0x7) { 11109 new_value = (new_value & ~0x7) + 0x8; 11110 } 11111 tcppa->tcp_param_val = new_value; 11112 return (0); 11113 } 11114 11115 /* Set callback routine passed to nd_load by tcp_param_register */ 11116 /* ARGSUSED */ 11117 static int 11118 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11119 { 11120 long new_value; 11121 tcpparam_t *tcppa = (tcpparam_t *)cp; 11122 11123 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11124 new_value < tcppa->tcp_param_min || 11125 new_value > tcppa->tcp_param_max) { 11126 return (EINVAL); 11127 } 11128 tcppa->tcp_param_val = new_value; 11129 return (0); 11130 } 11131 11132 /* 11133 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11134 * is filled, return as much as we can. The message passed in may be 11135 * multi-part, chained using b_cont. "start" is the starting sequence 11136 * number for this piece. 11137 */ 11138 static mblk_t * 11139 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11140 { 11141 uint32_t end; 11142 mblk_t *mp1; 11143 mblk_t *mp2; 11144 mblk_t *next_mp; 11145 uint32_t u1; 11146 11147 /* Walk through all the new pieces. */ 11148 do { 11149 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11150 (uintptr_t)INT_MAX); 11151 end = start + (int)(mp->b_wptr - mp->b_rptr); 11152 next_mp = mp->b_cont; 11153 if (start == end) { 11154 /* Empty. Blast it. */ 11155 freeb(mp); 11156 continue; 11157 } 11158 mp->b_cont = NULL; 11159 TCP_REASS_SET_SEQ(mp, start); 11160 TCP_REASS_SET_END(mp, end); 11161 mp1 = tcp->tcp_reass_tail; 11162 if (!mp1) { 11163 tcp->tcp_reass_tail = mp; 11164 tcp->tcp_reass_head = mp; 11165 BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); 11166 UPDATE_MIB(&tcp_mib, 11167 tcpInDataUnorderBytes, end - start); 11168 continue; 11169 } 11170 /* New stuff completely beyond tail? */ 11171 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11172 /* Link it on end. */ 11173 mp1->b_cont = mp; 11174 tcp->tcp_reass_tail = mp; 11175 BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); 11176 UPDATE_MIB(&tcp_mib, 11177 tcpInDataUnorderBytes, end - start); 11178 continue; 11179 } 11180 mp1 = tcp->tcp_reass_head; 11181 u1 = TCP_REASS_SEQ(mp1); 11182 /* New stuff at the front? */ 11183 if (SEQ_LT(start, u1)) { 11184 /* Yes... Check for overlap. */ 11185 mp->b_cont = mp1; 11186 tcp->tcp_reass_head = mp; 11187 tcp_reass_elim_overlap(tcp, mp); 11188 continue; 11189 } 11190 /* 11191 * The new piece fits somewhere between the head and tail. 11192 * We find our slot, where mp1 precedes us and mp2 trails. 11193 */ 11194 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11195 u1 = TCP_REASS_SEQ(mp2); 11196 if (SEQ_LEQ(start, u1)) 11197 break; 11198 } 11199 /* Link ourselves in */ 11200 mp->b_cont = mp2; 11201 mp1->b_cont = mp; 11202 11203 /* Trim overlap with following mblk(s) first */ 11204 tcp_reass_elim_overlap(tcp, mp); 11205 11206 /* Trim overlap with preceding mblk */ 11207 tcp_reass_elim_overlap(tcp, mp1); 11208 11209 } while (start = end, mp = next_mp); 11210 mp1 = tcp->tcp_reass_head; 11211 /* Anything ready to go? */ 11212 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11213 return (NULL); 11214 /* Eat what we can off the queue */ 11215 for (;;) { 11216 mp = mp1->b_cont; 11217 end = TCP_REASS_END(mp1); 11218 TCP_REASS_SET_SEQ(mp1, 0); 11219 TCP_REASS_SET_END(mp1, 0); 11220 if (!mp) { 11221 tcp->tcp_reass_tail = NULL; 11222 break; 11223 } 11224 if (end != TCP_REASS_SEQ(mp)) { 11225 mp1->b_cont = NULL; 11226 break; 11227 } 11228 mp1 = mp; 11229 } 11230 mp1 = tcp->tcp_reass_head; 11231 tcp->tcp_reass_head = mp; 11232 return (mp1); 11233 } 11234 11235 /* Eliminate any overlap that mp may have over later mblks */ 11236 static void 11237 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11238 { 11239 uint32_t end; 11240 mblk_t *mp1; 11241 uint32_t u1; 11242 11243 end = TCP_REASS_END(mp); 11244 while ((mp1 = mp->b_cont) != NULL) { 11245 u1 = TCP_REASS_SEQ(mp1); 11246 if (!SEQ_GT(end, u1)) 11247 break; 11248 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11249 mp->b_wptr -= end - u1; 11250 TCP_REASS_SET_END(mp, u1); 11251 BUMP_MIB(&tcp_mib, tcpInDataPartDupSegs); 11252 UPDATE_MIB(&tcp_mib, tcpInDataPartDupBytes, end - u1); 11253 break; 11254 } 11255 mp->b_cont = mp1->b_cont; 11256 TCP_REASS_SET_SEQ(mp1, 0); 11257 TCP_REASS_SET_END(mp1, 0); 11258 freeb(mp1); 11259 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 11260 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, end - u1); 11261 } 11262 if (!mp1) 11263 tcp->tcp_reass_tail = mp; 11264 } 11265 11266 /* 11267 * Send up all messages queued on tcp_rcv_list. 11268 */ 11269 static uint_t 11270 tcp_rcv_drain(queue_t *q, tcp_t *tcp) 11271 { 11272 mblk_t *mp; 11273 uint_t ret = 0; 11274 uint_t thwin; 11275 #ifdef DEBUG 11276 uint_t cnt = 0; 11277 #endif 11278 /* Can't drain on an eager connection */ 11279 if (tcp->tcp_listener != NULL) 11280 return (ret); 11281 11282 /* 11283 * Handle two cases here: we are currently fused or we were 11284 * previously fused and have some urgent data to be delivered 11285 * upstream. The latter happens because we either ran out of 11286 * memory or were detached and therefore sending the SIGURG was 11287 * deferred until this point. In either case we pass control 11288 * over to tcp_fuse_rcv_drain() since it may need to complete 11289 * some work. 11290 */ 11291 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11292 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 11293 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11294 &tcp->tcp_fused_sigurg_mp)) 11295 return (ret); 11296 } 11297 11298 while ((mp = tcp->tcp_rcv_list) != NULL) { 11299 tcp->tcp_rcv_list = mp->b_next; 11300 mp->b_next = NULL; 11301 #ifdef DEBUG 11302 cnt += msgdsize(mp); 11303 #endif 11304 /* Does this need SSL processing first? */ 11305 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11306 tcp_kssl_input(tcp, mp); 11307 continue; 11308 } 11309 putnext(q, mp); 11310 } 11311 ASSERT(cnt == tcp->tcp_rcv_cnt); 11312 tcp->tcp_rcv_last_head = NULL; 11313 tcp->tcp_rcv_last_tail = NULL; 11314 tcp->tcp_rcv_cnt = 0; 11315 11316 /* Learn the latest rwnd information that we sent to the other side. */ 11317 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11318 << tcp->tcp_rcv_ws; 11319 /* This is peer's calculated send window (our receive window). */ 11320 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11321 /* 11322 * Increase the receive window to max. But we need to do receiver 11323 * SWS avoidance. This means that we need to check the increase of 11324 * of receive window is at least 1 MSS. 11325 */ 11326 if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11327 /* 11328 * If the window that the other side knows is less than max 11329 * deferred acks segments, send an update immediately. 11330 */ 11331 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11332 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 11333 ret = TH_ACK_NEEDED; 11334 } 11335 tcp->tcp_rwnd = q->q_hiwat; 11336 } 11337 /* No need for the push timer now. */ 11338 if (tcp->tcp_push_tid != 0) { 11339 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11340 tcp->tcp_push_tid = 0; 11341 } 11342 return (ret); 11343 } 11344 11345 /* 11346 * Queue data on tcp_rcv_list which is a b_next chain. 11347 * tcp_rcv_last_head/tail is the last element of this chain. 11348 * Each element of the chain is a b_cont chain. 11349 * 11350 * M_DATA messages are added to the current element. 11351 * Other messages are added as new (b_next) elements. 11352 */ 11353 void 11354 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11355 { 11356 ASSERT(seg_len == msgdsize(mp)); 11357 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11358 11359 if (tcp->tcp_rcv_list == NULL) { 11360 ASSERT(tcp->tcp_rcv_last_head == NULL); 11361 tcp->tcp_rcv_list = mp; 11362 tcp->tcp_rcv_last_head = mp; 11363 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11364 tcp->tcp_rcv_last_tail->b_cont = mp; 11365 } else { 11366 tcp->tcp_rcv_last_head->b_next = mp; 11367 tcp->tcp_rcv_last_head = mp; 11368 } 11369 11370 while (mp->b_cont) 11371 mp = mp->b_cont; 11372 11373 tcp->tcp_rcv_last_tail = mp; 11374 tcp->tcp_rcv_cnt += seg_len; 11375 tcp->tcp_rwnd -= seg_len; 11376 } 11377 11378 /* 11379 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11380 * 11381 * This is the default entry function into TCP on the read side. TCP is 11382 * always entered via squeue i.e. using squeue's for mutual exclusion. 11383 * When classifier does a lookup to find the tcp, it also puts a reference 11384 * on the conn structure associated so the tcp is guaranteed to exist 11385 * when we come here. We still need to check the state because it might 11386 * as well has been closed. The squeue processing function i.e. squeue_enter, 11387 * squeue_enter_nodrain, or squeue_drain is responsible for doing the 11388 * CONN_DEC_REF. 11389 * 11390 * Apart from the default entry point, IP also sends packets directly to 11391 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11392 * connections. 11393 */ 11394 void 11395 tcp_input(void *arg, mblk_t *mp, void *arg2) 11396 { 11397 conn_t *connp = (conn_t *)arg; 11398 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11399 11400 /* arg2 is the sqp */ 11401 ASSERT(arg2 != NULL); 11402 ASSERT(mp != NULL); 11403 11404 /* 11405 * Don't accept any input on a closed tcp as this TCP logically does 11406 * not exist on the system. Don't proceed further with this TCP. 11407 * For eg. this packet could trigger another close of this tcp 11408 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11409 * tcp_clean_death / tcp_closei_local must be called at most once 11410 * on a TCP. In this case we need to refeed the packet into the 11411 * classifier and figure out where the packet should go. Need to 11412 * preserve the recv_ill somehow. Until we figure that out, for 11413 * now just drop the packet if we can't classify the packet. 11414 */ 11415 if (tcp->tcp_state == TCPS_CLOSED || 11416 tcp->tcp_state == TCPS_BOUND) { 11417 conn_t *new_connp; 11418 11419 new_connp = ipcl_classify(mp, connp->conn_zoneid); 11420 if (new_connp != NULL) { 11421 tcp_reinput(new_connp, mp, arg2); 11422 return; 11423 } 11424 /* We failed to classify. For now just drop the packet */ 11425 freemsg(mp); 11426 return; 11427 } 11428 11429 if (DB_TYPE(mp) == M_DATA) 11430 tcp_rput_data(connp, mp, arg2); 11431 else 11432 tcp_rput_common(tcp, mp); 11433 } 11434 11435 /* 11436 * The read side put procedure. 11437 * The packets passed up by ip are assume to be aligned according to 11438 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11439 */ 11440 static void 11441 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11442 { 11443 /* 11444 * tcp_rput_data() does not expect M_CTL except for the case 11445 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11446 * type. Need to make sure that any other M_CTLs don't make 11447 * it to tcp_rput_data since it is not expecting any and doesn't 11448 * check for it. 11449 */ 11450 if (DB_TYPE(mp) == M_CTL) { 11451 switch (*(uint32_t *)(mp->b_rptr)) { 11452 case TCP_IOC_ABORT_CONN: 11453 /* 11454 * Handle connection abort request. 11455 */ 11456 tcp_ioctl_abort_handler(tcp, mp); 11457 return; 11458 case IPSEC_IN: 11459 /* 11460 * Only secure icmp arrive in TCP and they 11461 * don't go through data path. 11462 */ 11463 tcp_icmp_error(tcp, mp); 11464 return; 11465 case IN_PKTINFO: 11466 /* 11467 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11468 * sockets that are receiving IPv4 traffic. tcp 11469 */ 11470 ASSERT(tcp->tcp_family == AF_INET6); 11471 ASSERT(tcp->tcp_ipv6_recvancillary & 11472 TCP_IPV6_RECVPKTINFO); 11473 tcp_rput_data(tcp->tcp_connp, mp, 11474 tcp->tcp_connp->conn_sqp); 11475 return; 11476 case MDT_IOC_INFO_UPDATE: 11477 /* 11478 * Handle Multidata information update; the 11479 * following routine will free the message. 11480 */ 11481 if (tcp->tcp_connp->conn_mdt_ok) { 11482 tcp_mdt_update(tcp, 11483 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11484 B_FALSE); 11485 } 11486 freemsg(mp); 11487 return; 11488 default: 11489 break; 11490 } 11491 } 11492 11493 /* No point processing the message if tcp is already closed */ 11494 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11495 freemsg(mp); 11496 return; 11497 } 11498 11499 tcp_rput_other(tcp, mp); 11500 } 11501 11502 11503 /* The minimum of smoothed mean deviation in RTO calculation. */ 11504 #define TCP_SD_MIN 400 11505 11506 /* 11507 * Set RTO for this connection. The formula is from Jacobson and Karels' 11508 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11509 * are the same as those in Appendix A.2 of that paper. 11510 * 11511 * m = new measurement 11512 * sa = smoothed RTT average (8 * average estimates). 11513 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11514 */ 11515 static void 11516 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11517 { 11518 long m = TICK_TO_MSEC(rtt); 11519 clock_t sa = tcp->tcp_rtt_sa; 11520 clock_t sv = tcp->tcp_rtt_sd; 11521 clock_t rto; 11522 11523 BUMP_MIB(&tcp_mib, tcpRttUpdate); 11524 tcp->tcp_rtt_update++; 11525 11526 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11527 if (sa != 0) { 11528 /* 11529 * Update average estimator: 11530 * new rtt = 7/8 old rtt + 1/8 Error 11531 */ 11532 11533 /* m is now Error in estimate. */ 11534 m -= sa >> 3; 11535 if ((sa += m) <= 0) { 11536 /* 11537 * Don't allow the smoothed average to be negative. 11538 * We use 0 to denote reinitialization of the 11539 * variables. 11540 */ 11541 sa = 1; 11542 } 11543 11544 /* 11545 * Update deviation estimator: 11546 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11547 */ 11548 if (m < 0) 11549 m = -m; 11550 m -= sv >> 2; 11551 sv += m; 11552 } else { 11553 /* 11554 * This follows BSD's implementation. So the reinitialized 11555 * RTO is 3 * m. We cannot go less than 2 because if the 11556 * link is bandwidth dominated, doubling the window size 11557 * during slow start means doubling the RTT. We want to be 11558 * more conservative when we reinitialize our estimates. 3 11559 * is just a convenient number. 11560 */ 11561 sa = m << 3; 11562 sv = m << 1; 11563 } 11564 if (sv < TCP_SD_MIN) { 11565 /* 11566 * We do not know that if sa captures the delay ACK 11567 * effect as in a long train of segments, a receiver 11568 * does not delay its ACKs. So set the minimum of sv 11569 * to be TCP_SD_MIN, which is default to 400 ms, twice 11570 * of BSD DATO. That means the minimum of mean 11571 * deviation is 100 ms. 11572 * 11573 */ 11574 sv = TCP_SD_MIN; 11575 } 11576 tcp->tcp_rtt_sa = sa; 11577 tcp->tcp_rtt_sd = sv; 11578 /* 11579 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 11580 * 11581 * Add tcp_rexmit_interval extra in case of extreme environment 11582 * where the algorithm fails to work. The default value of 11583 * tcp_rexmit_interval_extra should be 0. 11584 * 11585 * As we use a finer grained clock than BSD and update 11586 * RTO for every ACKs, add in another .25 of RTT to the 11587 * deviation of RTO to accomodate burstiness of 1/4 of 11588 * window size. 11589 */ 11590 rto = (sa >> 3) + sv + tcp_rexmit_interval_extra + (sa >> 5); 11591 11592 if (rto > tcp_rexmit_interval_max) { 11593 tcp->tcp_rto = tcp_rexmit_interval_max; 11594 } else if (rto < tcp_rexmit_interval_min) { 11595 tcp->tcp_rto = tcp_rexmit_interval_min; 11596 } else { 11597 tcp->tcp_rto = rto; 11598 } 11599 11600 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 11601 tcp->tcp_timer_backoff = 0; 11602 } 11603 11604 /* 11605 * tcp_get_seg_mp() is called to get the pointer to a segment in the 11606 * send queue which starts at the given seq. no. 11607 * 11608 * Parameters: 11609 * tcp_t *tcp: the tcp instance pointer. 11610 * uint32_t seq: the starting seq. no of the requested segment. 11611 * int32_t *off: after the execution, *off will be the offset to 11612 * the returned mblk which points to the requested seq no. 11613 * It is the caller's responsibility to send in a non-null off. 11614 * 11615 * Return: 11616 * A mblk_t pointer pointing to the requested segment in send queue. 11617 */ 11618 static mblk_t * 11619 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 11620 { 11621 int32_t cnt; 11622 mblk_t *mp; 11623 11624 /* Defensive coding. Make sure we don't send incorrect data. */ 11625 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 11626 return (NULL); 11627 11628 cnt = seq - tcp->tcp_suna; 11629 mp = tcp->tcp_xmit_head; 11630 while (cnt > 0 && mp != NULL) { 11631 cnt -= mp->b_wptr - mp->b_rptr; 11632 if (cnt < 0) { 11633 cnt += mp->b_wptr - mp->b_rptr; 11634 break; 11635 } 11636 mp = mp->b_cont; 11637 } 11638 ASSERT(mp != NULL); 11639 *off = cnt; 11640 return (mp); 11641 } 11642 11643 /* 11644 * This function handles all retransmissions if SACK is enabled for this 11645 * connection. First it calculates how many segments can be retransmitted 11646 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 11647 * segments. A segment is eligible if sack_cnt for that segment is greater 11648 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 11649 * all eligible segments, it checks to see if TCP can send some new segments 11650 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 11651 * 11652 * Parameters: 11653 * tcp_t *tcp: the tcp structure of the connection. 11654 * uint_t *flags: in return, appropriate value will be set for 11655 * tcp_rput_data(). 11656 */ 11657 static void 11658 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 11659 { 11660 notsack_blk_t *notsack_blk; 11661 int32_t usable_swnd; 11662 int32_t mss; 11663 uint32_t seg_len; 11664 mblk_t *xmit_mp; 11665 11666 ASSERT(tcp->tcp_sack_info != NULL); 11667 ASSERT(tcp->tcp_notsack_list != NULL); 11668 ASSERT(tcp->tcp_rexmit == B_FALSE); 11669 11670 /* Defensive coding in case there is a bug... */ 11671 if (tcp->tcp_notsack_list == NULL) { 11672 return; 11673 } 11674 notsack_blk = tcp->tcp_notsack_list; 11675 mss = tcp->tcp_mss; 11676 11677 /* 11678 * Limit the num of outstanding data in the network to be 11679 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 11680 */ 11681 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11682 11683 /* At least retransmit 1 MSS of data. */ 11684 if (usable_swnd <= 0) { 11685 usable_swnd = mss; 11686 } 11687 11688 /* Make sure no new RTT samples will be taken. */ 11689 tcp->tcp_csuna = tcp->tcp_snxt; 11690 11691 notsack_blk = tcp->tcp_notsack_list; 11692 while (usable_swnd > 0) { 11693 mblk_t *snxt_mp, *tmp_mp; 11694 tcp_seq begin = tcp->tcp_sack_snxt; 11695 tcp_seq end; 11696 int32_t off; 11697 11698 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 11699 if (SEQ_GT(notsack_blk->end, begin) && 11700 (notsack_blk->sack_cnt >= 11701 tcp_dupack_fast_retransmit)) { 11702 end = notsack_blk->end; 11703 if (SEQ_LT(begin, notsack_blk->begin)) { 11704 begin = notsack_blk->begin; 11705 } 11706 break; 11707 } 11708 } 11709 /* 11710 * All holes are filled. Manipulate tcp_cwnd to send more 11711 * if we can. Note that after the SACK recovery, tcp_cwnd is 11712 * set to tcp_cwnd_ssthresh. 11713 */ 11714 if (notsack_blk == NULL) { 11715 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11716 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 11717 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 11718 ASSERT(tcp->tcp_cwnd > 0); 11719 return; 11720 } else { 11721 usable_swnd = usable_swnd / mss; 11722 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 11723 MAX(usable_swnd * mss, mss); 11724 *flags |= TH_XMIT_NEEDED; 11725 return; 11726 } 11727 } 11728 11729 /* 11730 * Note that we may send more than usable_swnd allows here 11731 * because of round off, but no more than 1 MSS of data. 11732 */ 11733 seg_len = end - begin; 11734 if (seg_len > mss) 11735 seg_len = mss; 11736 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 11737 ASSERT(snxt_mp != NULL); 11738 /* This should not happen. Defensive coding again... */ 11739 if (snxt_mp == NULL) { 11740 return; 11741 } 11742 11743 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 11744 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 11745 if (xmit_mp == NULL) 11746 return; 11747 11748 usable_swnd -= seg_len; 11749 tcp->tcp_pipe += seg_len; 11750 tcp->tcp_sack_snxt = begin + seg_len; 11751 TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT); 11752 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 11753 11754 /* 11755 * Update the send timestamp to avoid false retransmission. 11756 */ 11757 snxt_mp->b_prev = (mblk_t *)lbolt; 11758 11759 BUMP_MIB(&tcp_mib, tcpRetransSegs); 11760 UPDATE_MIB(&tcp_mib, tcpRetransBytes, seg_len); 11761 BUMP_MIB(&tcp_mib, tcpOutSackRetransSegs); 11762 /* 11763 * Update tcp_rexmit_max to extend this SACK recovery phase. 11764 * This happens when new data sent during fast recovery is 11765 * also lost. If TCP retransmits those new data, it needs 11766 * to extend SACK recover phase to avoid starting another 11767 * fast retransmit/recovery unnecessarily. 11768 */ 11769 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 11770 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 11771 } 11772 } 11773 } 11774 11775 /* 11776 * This function handles policy checking at TCP level for non-hard_bound/ 11777 * detached connections. 11778 */ 11779 static boolean_t 11780 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 11781 boolean_t secure, boolean_t mctl_present) 11782 { 11783 ipsec_latch_t *ipl = NULL; 11784 ipsec_action_t *act = NULL; 11785 mblk_t *data_mp; 11786 ipsec_in_t *ii; 11787 const char *reason; 11788 kstat_named_t *counter; 11789 11790 ASSERT(mctl_present || !secure); 11791 11792 ASSERT((ipha == NULL && ip6h != NULL) || 11793 (ip6h == NULL && ipha != NULL)); 11794 11795 /* 11796 * We don't necessarily have an ipsec_in_act action to verify 11797 * policy because of assymetrical policy where we have only 11798 * outbound policy and no inbound policy (possible with global 11799 * policy). 11800 */ 11801 if (!secure) { 11802 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 11803 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 11804 return (B_TRUE); 11805 ipsec_log_policy_failure(tcp->tcp_wq, IPSEC_POLICY_MISMATCH, 11806 "tcp_check_policy", ipha, ip6h, secure); 11807 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 11808 &ipdrops_tcp_clear, &tcp_dropper); 11809 return (B_FALSE); 11810 } 11811 11812 /* 11813 * We have a secure packet. 11814 */ 11815 if (act == NULL) { 11816 ipsec_log_policy_failure(tcp->tcp_wq, 11817 IPSEC_POLICY_NOT_NEEDED, "tcp_check_policy", ipha, ip6h, 11818 secure); 11819 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 11820 &ipdrops_tcp_secure, &tcp_dropper); 11821 return (B_FALSE); 11822 } 11823 11824 /* 11825 * XXX This whole routine is currently incorrect. ipl should 11826 * be set to the latch pointer, but is currently not set, so 11827 * we initialize it to NULL to avoid picking up random garbage. 11828 */ 11829 if (ipl == NULL) 11830 return (B_TRUE); 11831 11832 data_mp = first_mp->b_cont; 11833 11834 ii = (ipsec_in_t *)first_mp->b_rptr; 11835 11836 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 11837 &counter)) { 11838 BUMP_MIB(&ip_mib, ipsecInSucceeded); 11839 return (B_TRUE); 11840 } 11841 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 11842 "tcp inbound policy mismatch: %s, packet dropped\n", 11843 reason); 11844 BUMP_MIB(&ip_mib, ipsecInFailed); 11845 11846 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &tcp_dropper); 11847 return (B_FALSE); 11848 } 11849 11850 /* 11851 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 11852 * retransmission after a timeout. 11853 * 11854 * To limit the number of duplicate segments, we limit the number of segment 11855 * to be sent in one time to tcp_snd_burst, the burst variable. 11856 */ 11857 static void 11858 tcp_ss_rexmit(tcp_t *tcp) 11859 { 11860 uint32_t snxt; 11861 uint32_t smax; 11862 int32_t win; 11863 int32_t mss; 11864 int32_t off; 11865 int32_t burst = tcp->tcp_snd_burst; 11866 mblk_t *snxt_mp; 11867 11868 /* 11869 * Note that tcp_rexmit can be set even though TCP has retransmitted 11870 * all unack'ed segments. 11871 */ 11872 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 11873 smax = tcp->tcp_rexmit_max; 11874 snxt = tcp->tcp_rexmit_nxt; 11875 if (SEQ_LT(snxt, tcp->tcp_suna)) { 11876 snxt = tcp->tcp_suna; 11877 } 11878 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 11879 win -= snxt - tcp->tcp_suna; 11880 mss = tcp->tcp_mss; 11881 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 11882 11883 while (SEQ_LT(snxt, smax) && (win > 0) && 11884 (burst > 0) && (snxt_mp != NULL)) { 11885 mblk_t *xmit_mp; 11886 mblk_t *old_snxt_mp = snxt_mp; 11887 uint32_t cnt = mss; 11888 11889 if (win < cnt) { 11890 cnt = win; 11891 } 11892 if (SEQ_GT(snxt + cnt, smax)) { 11893 cnt = smax - snxt; 11894 } 11895 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 11896 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 11897 if (xmit_mp == NULL) 11898 return; 11899 11900 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 11901 11902 snxt += cnt; 11903 win -= cnt; 11904 /* 11905 * Update the send timestamp to avoid false 11906 * retransmission. 11907 */ 11908 old_snxt_mp->b_prev = (mblk_t *)lbolt; 11909 BUMP_MIB(&tcp_mib, tcpRetransSegs); 11910 UPDATE_MIB(&tcp_mib, tcpRetransBytes, cnt); 11911 11912 tcp->tcp_rexmit_nxt = snxt; 11913 burst--; 11914 } 11915 /* 11916 * If we have transmitted all we have at the time 11917 * we started the retranmission, we can leave 11918 * the rest of the job to tcp_wput_data(). But we 11919 * need to check the send window first. If the 11920 * win is not 0, go on with tcp_wput_data(). 11921 */ 11922 if (SEQ_LT(snxt, smax) || win == 0) { 11923 return; 11924 } 11925 } 11926 /* Only call tcp_wput_data() if there is data to be sent. */ 11927 if (tcp->tcp_unsent) { 11928 tcp_wput_data(tcp, NULL, B_FALSE); 11929 } 11930 } 11931 11932 /* 11933 * Process all TCP option in SYN segment. Note that this function should 11934 * be called after tcp_adapt_ire() is called so that the necessary info 11935 * from IRE is already set in the tcp structure. 11936 * 11937 * This function sets up the correct tcp_mss value according to the 11938 * MSS option value and our header size. It also sets up the window scale 11939 * and timestamp values, and initialize SACK info blocks. But it does not 11940 * change receive window size after setting the tcp_mss value. The caller 11941 * should do the appropriate change. 11942 */ 11943 void 11944 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 11945 { 11946 int options; 11947 tcp_opt_t tcpopt; 11948 uint32_t mss_max; 11949 char *tmp_tcph; 11950 11951 tcpopt.tcp = NULL; 11952 options = tcp_parse_options(tcph, &tcpopt); 11953 11954 /* 11955 * Process MSS option. Note that MSS option value does not account 11956 * for IP or TCP options. This means that it is equal to MTU - minimum 11957 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 11958 * IPv6. 11959 */ 11960 if (!(options & TCP_OPT_MSS_PRESENT)) { 11961 if (tcp->tcp_ipversion == IPV4_VERSION) 11962 tcpopt.tcp_opt_mss = tcp_mss_def_ipv4; 11963 else 11964 tcpopt.tcp_opt_mss = tcp_mss_def_ipv6; 11965 } else { 11966 if (tcp->tcp_ipversion == IPV4_VERSION) 11967 mss_max = tcp_mss_max_ipv4; 11968 else 11969 mss_max = tcp_mss_max_ipv6; 11970 if (tcpopt.tcp_opt_mss < tcp_mss_min) 11971 tcpopt.tcp_opt_mss = tcp_mss_min; 11972 else if (tcpopt.tcp_opt_mss > mss_max) 11973 tcpopt.tcp_opt_mss = mss_max; 11974 } 11975 11976 /* Process Window Scale option. */ 11977 if (options & TCP_OPT_WSCALE_PRESENT) { 11978 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 11979 tcp->tcp_snd_ws_ok = B_TRUE; 11980 } else { 11981 tcp->tcp_snd_ws = B_FALSE; 11982 tcp->tcp_snd_ws_ok = B_FALSE; 11983 tcp->tcp_rcv_ws = B_FALSE; 11984 } 11985 11986 /* Process Timestamp option. */ 11987 if ((options & TCP_OPT_TSTAMP_PRESENT) && 11988 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 11989 tmp_tcph = (char *)tcp->tcp_tcph; 11990 11991 tcp->tcp_snd_ts_ok = B_TRUE; 11992 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 11993 tcp->tcp_last_rcv_lbolt = lbolt64; 11994 ASSERT(OK_32PTR(tmp_tcph)); 11995 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 11996 11997 /* Fill in our template header with basic timestamp option. */ 11998 tmp_tcph += tcp->tcp_tcp_hdr_len; 11999 tmp_tcph[0] = TCPOPT_NOP; 12000 tmp_tcph[1] = TCPOPT_NOP; 12001 tmp_tcph[2] = TCPOPT_TSTAMP; 12002 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12003 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12004 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12005 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12006 } else { 12007 tcp->tcp_snd_ts_ok = B_FALSE; 12008 } 12009 12010 /* 12011 * Process SACK options. If SACK is enabled for this connection, 12012 * then allocate the SACK info structure. Note the following ways 12013 * when tcp_snd_sack_ok is set to true. 12014 * 12015 * For active connection: in tcp_adapt_ire() called in 12016 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12017 * is checked. 12018 * 12019 * For passive connection: in tcp_adapt_ire() called in 12020 * tcp_accept_comm(). 12021 * 12022 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12023 * That check makes sure that if we did not send a SACK OK option, 12024 * we will not enable SACK for this connection even though the other 12025 * side sends us SACK OK option. For active connection, the SACK 12026 * info structure has already been allocated. So we need to free 12027 * it if SACK is disabled. 12028 */ 12029 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12030 (tcp->tcp_snd_sack_ok || 12031 (tcp_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12032 /* This should be true only in the passive case. */ 12033 if (tcp->tcp_sack_info == NULL) { 12034 ASSERT(TCP_IS_DETACHED(tcp)); 12035 tcp->tcp_sack_info = 12036 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12037 } 12038 if (tcp->tcp_sack_info == NULL) { 12039 tcp->tcp_snd_sack_ok = B_FALSE; 12040 } else { 12041 tcp->tcp_snd_sack_ok = B_TRUE; 12042 if (tcp->tcp_snd_ts_ok) { 12043 tcp->tcp_max_sack_blk = 3; 12044 } else { 12045 tcp->tcp_max_sack_blk = 4; 12046 } 12047 } 12048 } else { 12049 /* 12050 * Resetting tcp_snd_sack_ok to B_FALSE so that 12051 * no SACK info will be used for this 12052 * connection. This assumes that SACK usage 12053 * permission is negotiated. This may need 12054 * to be changed once this is clarified. 12055 */ 12056 if (tcp->tcp_sack_info != NULL) { 12057 ASSERT(tcp->tcp_notsack_list == NULL); 12058 kmem_cache_free(tcp_sack_info_cache, 12059 tcp->tcp_sack_info); 12060 tcp->tcp_sack_info = NULL; 12061 } 12062 tcp->tcp_snd_sack_ok = B_FALSE; 12063 } 12064 12065 /* 12066 * Now we know the exact TCP/IP header length, subtract 12067 * that from tcp_mss to get our side's MSS. 12068 */ 12069 tcp->tcp_mss -= tcp->tcp_hdr_len; 12070 /* 12071 * Here we assume that the other side's header size will be equal to 12072 * our header size. We calculate the real MSS accordingly. Need to 12073 * take into additional stuffs IPsec puts in. 12074 * 12075 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12076 */ 12077 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12078 ((tcp->tcp_ipversion == IPV4_VERSION ? 12079 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12080 12081 /* 12082 * Set MSS to the smaller one of both ends of the connection. 12083 * We should not have called tcp_mss_set() before, but our 12084 * side of the MSS should have been set to a proper value 12085 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12086 * STREAM head parameters properly. 12087 * 12088 * If we have a larger-than-16-bit window but the other side 12089 * didn't want to do window scale, tcp_rwnd_set() will take 12090 * care of that. 12091 */ 12092 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); 12093 } 12094 12095 /* 12096 * Sends the T_CONN_IND to the listener. The caller calls this 12097 * functions via squeue to get inside the listener's perimeter 12098 * once the 3 way hand shake is done a T_CONN_IND needs to be 12099 * sent. As an optimization, the caller can call this directly 12100 * if listener's perimeter is same as eager's. 12101 */ 12102 /* ARGSUSED */ 12103 void 12104 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12105 { 12106 conn_t *lconnp = (conn_t *)arg; 12107 tcp_t *listener = lconnp->conn_tcp; 12108 tcp_t *tcp; 12109 struct T_conn_ind *conn_ind; 12110 ipaddr_t *addr_cache; 12111 boolean_t need_send_conn_ind = B_FALSE; 12112 12113 /* retrieve the eager */ 12114 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12115 ASSERT(conn_ind->OPT_offset != 0 && 12116 conn_ind->OPT_length == sizeof (intptr_t)); 12117 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12118 conn_ind->OPT_length); 12119 12120 /* 12121 * TLI/XTI applications will get confused by 12122 * sending eager as an option since it violates 12123 * the option semantics. So remove the eager as 12124 * option since TLI/XTI app doesn't need it anyway. 12125 */ 12126 if (!TCP_IS_SOCKET(listener)) { 12127 conn_ind->OPT_length = 0; 12128 conn_ind->OPT_offset = 0; 12129 } 12130 if (listener->tcp_state == TCPS_CLOSED || 12131 TCP_IS_DETACHED(listener)) { 12132 /* 12133 * If listener has closed, it would have caused a 12134 * a cleanup/blowoff to happen for the eager. We 12135 * just need to return. 12136 */ 12137 freemsg(mp); 12138 return; 12139 } 12140 12141 12142 /* 12143 * if the conn_req_q is full defer passing up the 12144 * T_CONN_IND until space is availabe after t_accept() 12145 * processing 12146 */ 12147 mutex_enter(&listener->tcp_eager_lock); 12148 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12149 tcp_t *tail; 12150 12151 /* 12152 * The eager already has an extra ref put in tcp_rput_data 12153 * so that it stays till accept comes back even though it 12154 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12155 */ 12156 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12157 listener->tcp_conn_req_cnt_q0--; 12158 listener->tcp_conn_req_cnt_q++; 12159 12160 /* Move from SYN_RCVD to ESTABLISHED list */ 12161 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12162 tcp->tcp_eager_prev_q0; 12163 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12164 tcp->tcp_eager_next_q0; 12165 tcp->tcp_eager_prev_q0 = NULL; 12166 tcp->tcp_eager_next_q0 = NULL; 12167 12168 /* 12169 * Insert at end of the queue because sockfs 12170 * sends down T_CONN_RES in chronological 12171 * order. Leaving the older conn indications 12172 * at front of the queue helps reducing search 12173 * time. 12174 */ 12175 tail = listener->tcp_eager_last_q; 12176 if (tail != NULL) 12177 tail->tcp_eager_next_q = tcp; 12178 else 12179 listener->tcp_eager_next_q = tcp; 12180 listener->tcp_eager_last_q = tcp; 12181 tcp->tcp_eager_next_q = NULL; 12182 /* 12183 * Delay sending up the T_conn_ind until we are 12184 * done with the eager. Once we have have sent up 12185 * the T_conn_ind, the accept can potentially complete 12186 * any time and release the refhold we have on the eager. 12187 */ 12188 need_send_conn_ind = B_TRUE; 12189 } else { 12190 /* 12191 * Defer connection on q0 and set deferred 12192 * connection bit true 12193 */ 12194 tcp->tcp_conn_def_q0 = B_TRUE; 12195 12196 /* take tcp out of q0 ... */ 12197 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12198 tcp->tcp_eager_next_q0; 12199 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12200 tcp->tcp_eager_prev_q0; 12201 12202 /* ... and place it at the end of q0 */ 12203 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12204 tcp->tcp_eager_next_q0 = listener; 12205 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12206 listener->tcp_eager_prev_q0 = tcp; 12207 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12208 } 12209 12210 /* we have timed out before */ 12211 if (tcp->tcp_syn_rcvd_timeout != 0) { 12212 tcp->tcp_syn_rcvd_timeout = 0; 12213 listener->tcp_syn_rcvd_timeout--; 12214 if (listener->tcp_syn_defense && 12215 listener->tcp_syn_rcvd_timeout <= 12216 (tcp_conn_req_max_q0 >> 5) && 12217 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12218 listener->tcp_last_rcv_lbolt)) { 12219 /* 12220 * Turn off the defense mode if we 12221 * believe the SYN attack is over. 12222 */ 12223 listener->tcp_syn_defense = B_FALSE; 12224 if (listener->tcp_ip_addr_cache) { 12225 kmem_free((void *)listener->tcp_ip_addr_cache, 12226 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12227 listener->tcp_ip_addr_cache = NULL; 12228 } 12229 } 12230 } 12231 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12232 if (addr_cache != NULL) { 12233 /* 12234 * We have finished a 3-way handshake with this 12235 * remote host. This proves the IP addr is good. 12236 * Cache it! 12237 */ 12238 addr_cache[IP_ADDR_CACHE_HASH( 12239 tcp->tcp_remote)] = tcp->tcp_remote; 12240 } 12241 mutex_exit(&listener->tcp_eager_lock); 12242 if (need_send_conn_ind) 12243 putnext(listener->tcp_rq, mp); 12244 } 12245 12246 mblk_t * 12247 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12248 uint_t *ifindexp, ip6_pkt_t *ippp) 12249 { 12250 in_pktinfo_t *pinfo; 12251 ip6_t *ip6h; 12252 uchar_t *rptr; 12253 mblk_t *first_mp = mp; 12254 boolean_t mctl_present = B_FALSE; 12255 uint_t ifindex = 0; 12256 ip6_pkt_t ipp; 12257 uint_t ipvers; 12258 uint_t ip_hdr_len; 12259 12260 rptr = mp->b_rptr; 12261 ASSERT(OK_32PTR(rptr)); 12262 ASSERT(tcp != NULL); 12263 ipp.ipp_fields = 0; 12264 12265 switch DB_TYPE(mp) { 12266 case M_CTL: 12267 mp = mp->b_cont; 12268 if (mp == NULL) { 12269 freemsg(first_mp); 12270 return (NULL); 12271 } 12272 if (DB_TYPE(mp) != M_DATA) { 12273 freemsg(first_mp); 12274 return (NULL); 12275 } 12276 mctl_present = B_TRUE; 12277 break; 12278 case M_DATA: 12279 break; 12280 default: 12281 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12282 freemsg(mp); 12283 return (NULL); 12284 } 12285 ipvers = IPH_HDR_VERSION(rptr); 12286 if (ipvers == IPV4_VERSION) { 12287 if (tcp == NULL) { 12288 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12289 goto done; 12290 } 12291 12292 ipp.ipp_fields |= IPPF_HOPLIMIT; 12293 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12294 12295 /* 12296 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12297 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12298 */ 12299 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12300 mctl_present) { 12301 pinfo = (in_pktinfo_t *)first_mp->b_rptr; 12302 if ((MBLKL(first_mp) == sizeof (in_pktinfo_t)) && 12303 (pinfo->in_pkt_ulp_type == IN_PKTINFO) && 12304 (pinfo->in_pkt_flags & IPF_RECVIF)) { 12305 ipp.ipp_fields |= IPPF_IFINDEX; 12306 ipp.ipp_ifindex = pinfo->in_pkt_ifindex; 12307 ifindex = pinfo->in_pkt_ifindex; 12308 } 12309 freeb(first_mp); 12310 mctl_present = B_FALSE; 12311 } 12312 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12313 } else { 12314 ip6h = (ip6_t *)rptr; 12315 12316 ASSERT(ipvers == IPV6_VERSION); 12317 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12318 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12319 ipp.ipp_hoplimit = ip6h->ip6_hops; 12320 12321 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12322 uint8_t nexthdrp; 12323 12324 /* Look for ifindex information */ 12325 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12326 ip6i_t *ip6i = (ip6i_t *)ip6h; 12327 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12328 BUMP_MIB(&ip_mib, tcpInErrs); 12329 freemsg(first_mp); 12330 return (NULL); 12331 } 12332 12333 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12334 ASSERT(ip6i->ip6i_ifindex != 0); 12335 ipp.ipp_fields |= IPPF_IFINDEX; 12336 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12337 ifindex = ip6i->ip6i_ifindex; 12338 } 12339 rptr = (uchar_t *)&ip6i[1]; 12340 mp->b_rptr = rptr; 12341 if (rptr == mp->b_wptr) { 12342 mblk_t *mp1; 12343 mp1 = mp->b_cont; 12344 freeb(mp); 12345 mp = mp1; 12346 rptr = mp->b_rptr; 12347 } 12348 if (MBLKL(mp) < IPV6_HDR_LEN + 12349 sizeof (tcph_t)) { 12350 BUMP_MIB(&ip_mib, tcpInErrs); 12351 freemsg(first_mp); 12352 return (NULL); 12353 } 12354 ip6h = (ip6_t *)rptr; 12355 } 12356 12357 /* 12358 * Find any potentially interesting extension headers 12359 * as well as the length of the IPv6 + extension 12360 * headers. 12361 */ 12362 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12363 /* Verify if this is a TCP packet */ 12364 if (nexthdrp != IPPROTO_TCP) { 12365 BUMP_MIB(&ip_mib, tcpInErrs); 12366 freemsg(first_mp); 12367 return (NULL); 12368 } 12369 } else { 12370 ip_hdr_len = IPV6_HDR_LEN; 12371 } 12372 } 12373 12374 done: 12375 if (ipversp != NULL) 12376 *ipversp = ipvers; 12377 if (ip_hdr_lenp != NULL) 12378 *ip_hdr_lenp = ip_hdr_len; 12379 if (ippp != NULL) 12380 *ippp = ipp; 12381 if (ifindexp != NULL) 12382 *ifindexp = ifindex; 12383 if (mctl_present) { 12384 freeb(first_mp); 12385 } 12386 return (mp); 12387 } 12388 12389 /* 12390 * Handle M_DATA messages from IP. Its called directly from IP via 12391 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12392 * in this path. 12393 * 12394 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12395 * v4 and v6), we are called through tcp_input() and a M_CTL can 12396 * be present for options but tcp_find_pktinfo() deals with it. We 12397 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12398 * 12399 * The first argument is always the connp/tcp to which the mp belongs. 12400 * There are no exceptions to this rule. The caller has already put 12401 * a reference on this connp/tcp and once tcp_rput_data() returns, 12402 * the squeue will do the refrele. 12403 * 12404 * The TH_SYN for the listener directly go to tcp_conn_request via 12405 * squeue. 12406 * 12407 * sqp: NULL = recursive, sqp != NULL means called from squeue 12408 */ 12409 void 12410 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12411 { 12412 int32_t bytes_acked; 12413 int32_t gap; 12414 mblk_t *mp1; 12415 uint_t flags; 12416 uint32_t new_swnd = 0; 12417 uchar_t *iphdr; 12418 uchar_t *rptr; 12419 int32_t rgap; 12420 uint32_t seg_ack; 12421 int seg_len; 12422 uint_t ip_hdr_len; 12423 uint32_t seg_seq; 12424 tcph_t *tcph; 12425 int urp; 12426 tcp_opt_t tcpopt; 12427 uint_t ipvers; 12428 ip6_pkt_t ipp; 12429 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12430 uint32_t cwnd; 12431 uint32_t add; 12432 int npkt; 12433 int mss; 12434 conn_t *connp = (conn_t *)arg; 12435 squeue_t *sqp = (squeue_t *)arg2; 12436 tcp_t *tcp = connp->conn_tcp; 12437 12438 /* 12439 * RST from fused tcp loopback peer should trigger an unfuse. 12440 */ 12441 if (tcp->tcp_fused) { 12442 TCP_STAT(tcp_fusion_aborted); 12443 tcp_unfuse(tcp); 12444 } 12445 12446 iphdr = mp->b_rptr; 12447 rptr = mp->b_rptr; 12448 ASSERT(OK_32PTR(rptr)); 12449 12450 /* 12451 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12452 * processing here. For rest call tcp_find_pktinfo to fill up the 12453 * necessary information. 12454 */ 12455 if (IPCL_IS_TCP4(connp)) { 12456 ipvers = IPV4_VERSION; 12457 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12458 } else { 12459 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12460 NULL, &ipp); 12461 if (mp == NULL) { 12462 TCP_STAT(tcp_rput_v6_error); 12463 return; 12464 } 12465 iphdr = mp->b_rptr; 12466 rptr = mp->b_rptr; 12467 } 12468 ASSERT(DB_TYPE(mp) == M_DATA); 12469 12470 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12471 seg_seq = ABE32_TO_U32(tcph->th_seq); 12472 seg_ack = ABE32_TO_U32(tcph->th_ack); 12473 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12474 seg_len = (int)(mp->b_wptr - rptr) - 12475 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12476 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12477 do { 12478 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12479 (uintptr_t)INT_MAX); 12480 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12481 } while ((mp1 = mp1->b_cont) != NULL && 12482 mp1->b_datap->db_type == M_DATA); 12483 } 12484 12485 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12486 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12487 seg_len, tcph); 12488 return; 12489 } 12490 12491 if (sqp != NULL) { 12492 /* 12493 * This is the correct place to update tcp_last_recv_time. Note 12494 * that it is also updated for tcp structure that belongs to 12495 * global and listener queues which do not really need updating. 12496 * But that should not cause any harm. And it is updated for 12497 * all kinds of incoming segments, not only for data segments. 12498 */ 12499 tcp->tcp_last_recv_time = lbolt; 12500 } 12501 12502 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12503 12504 BUMP_LOCAL(tcp->tcp_ibsegs); 12505 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 12506 12507 if ((flags & TH_URG) && sqp != NULL) { 12508 /* 12509 * TCP can't handle urgent pointers that arrive before 12510 * the connection has been accept()ed since it can't 12511 * buffer OOB data. Discard segment if this happens. 12512 * 12513 * Nor can it reassemble urgent pointers, so discard 12514 * if it's not the next segment expected. 12515 * 12516 * Otherwise, collapse chain into one mblk (discard if 12517 * that fails). This makes sure the headers, retransmitted 12518 * data, and new data all are in the same mblk. 12519 */ 12520 ASSERT(mp != NULL); 12521 if (tcp->tcp_listener || !pullupmsg(mp, -1)) { 12522 freemsg(mp); 12523 return; 12524 } 12525 /* Update pointers into message */ 12526 iphdr = rptr = mp->b_rptr; 12527 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12528 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 12529 /* 12530 * Since we can't handle any data with this urgent 12531 * pointer that is out of sequence, we expunge 12532 * the data. This allows us to still register 12533 * the urgent mark and generate the M_PCSIG, 12534 * which we can do. 12535 */ 12536 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12537 seg_len = 0; 12538 } 12539 } 12540 12541 switch (tcp->tcp_state) { 12542 case TCPS_SYN_SENT: 12543 if (flags & TH_ACK) { 12544 /* 12545 * Note that our stack cannot send data before a 12546 * connection is established, therefore the 12547 * following check is valid. Otherwise, it has 12548 * to be changed. 12549 */ 12550 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 12551 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 12552 freemsg(mp); 12553 if (flags & TH_RST) 12554 return; 12555 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 12556 tcp, seg_ack, 0, TH_RST); 12557 return; 12558 } 12559 ASSERT(tcp->tcp_suna + 1 == seg_ack); 12560 } 12561 if (flags & TH_RST) { 12562 freemsg(mp); 12563 if (flags & TH_ACK) 12564 (void) tcp_clean_death(tcp, 12565 ECONNREFUSED, 13); 12566 return; 12567 } 12568 if (!(flags & TH_SYN)) { 12569 freemsg(mp); 12570 return; 12571 } 12572 12573 /* Process all TCP options. */ 12574 tcp_process_options(tcp, tcph); 12575 /* 12576 * The following changes our rwnd to be a multiple of the 12577 * MIN(peer MSS, our MSS) for performance reason. 12578 */ 12579 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat, 12580 tcp->tcp_mss)); 12581 12582 /* Is the other end ECN capable? */ 12583 if (tcp->tcp_ecn_ok) { 12584 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 12585 tcp->tcp_ecn_ok = B_FALSE; 12586 } 12587 } 12588 /* 12589 * Clear ECN flags because it may interfere with later 12590 * processing. 12591 */ 12592 flags &= ~(TH_ECE|TH_CWR); 12593 12594 tcp->tcp_irs = seg_seq; 12595 tcp->tcp_rack = seg_seq; 12596 tcp->tcp_rnxt = seg_seq + 1; 12597 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 12598 if (!TCP_IS_DETACHED(tcp)) { 12599 /* Allocate room for SACK options if needed. */ 12600 if (tcp->tcp_snd_sack_ok) { 12601 (void) mi_set_sth_wroff(tcp->tcp_rq, 12602 tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 12603 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); 12604 } else { 12605 (void) mi_set_sth_wroff(tcp->tcp_rq, 12606 tcp->tcp_hdr_len + 12607 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); 12608 } 12609 } 12610 if (flags & TH_ACK) { 12611 /* 12612 * If we can't get the confirmation upstream, pretend 12613 * we didn't even see this one. 12614 * 12615 * XXX: how can we pretend we didn't see it if we 12616 * have updated rnxt et. al. 12617 * 12618 * For loopback we defer sending up the T_CONN_CON 12619 * until after some checks below. 12620 */ 12621 mp1 = NULL; 12622 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 12623 tcp->tcp_loopback ? &mp1 : NULL)) { 12624 freemsg(mp); 12625 return; 12626 } 12627 /* SYN was acked - making progress */ 12628 if (tcp->tcp_ipversion == IPV6_VERSION) 12629 tcp->tcp_ip_forward_progress = B_TRUE; 12630 12631 /* One for the SYN */ 12632 tcp->tcp_suna = tcp->tcp_iss + 1; 12633 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 12634 tcp->tcp_state = TCPS_ESTABLISHED; 12635 12636 /* 12637 * If SYN was retransmitted, need to reset all 12638 * retransmission info. This is because this 12639 * segment will be treated as a dup ACK. 12640 */ 12641 if (tcp->tcp_rexmit) { 12642 tcp->tcp_rexmit = B_FALSE; 12643 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 12644 tcp->tcp_rexmit_max = tcp->tcp_snxt; 12645 tcp->tcp_snd_burst = tcp->tcp_localnet ? 12646 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 12647 tcp->tcp_ms_we_have_waited = 0; 12648 12649 /* 12650 * Set tcp_cwnd back to 1 MSS, per 12651 * recommendation from 12652 * draft-floyd-incr-init-win-01.txt, 12653 * Increasing TCP's Initial Window. 12654 */ 12655 tcp->tcp_cwnd = tcp->tcp_mss; 12656 } 12657 12658 tcp->tcp_swl1 = seg_seq; 12659 tcp->tcp_swl2 = seg_ack; 12660 12661 new_swnd = BE16_TO_U16(tcph->th_win); 12662 tcp->tcp_swnd = new_swnd; 12663 if (new_swnd > tcp->tcp_max_swnd) 12664 tcp->tcp_max_swnd = new_swnd; 12665 12666 /* 12667 * Always send the three-way handshake ack immediately 12668 * in order to make the connection complete as soon as 12669 * possible on the accepting host. 12670 */ 12671 flags |= TH_ACK_NEEDED; 12672 12673 /* 12674 * Special case for loopback. At this point we have 12675 * received SYN-ACK from the remote endpoint. In 12676 * order to ensure that both endpoints reach the 12677 * fused state prior to any data exchange, the final 12678 * ACK needs to be sent before we indicate T_CONN_CON 12679 * to the module upstream. 12680 */ 12681 if (tcp->tcp_loopback) { 12682 mblk_t *ack_mp; 12683 12684 ASSERT(!tcp->tcp_unfusable); 12685 ASSERT(mp1 != NULL); 12686 /* 12687 * For loopback, we always get a pure SYN-ACK 12688 * and only need to send back the final ACK 12689 * with no data (this is because the other 12690 * tcp is ours and we don't do T/TCP). This 12691 * final ACK triggers the passive side to 12692 * perform fusion in ESTABLISHED state. 12693 */ 12694 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 12695 if (tcp->tcp_ack_tid != 0) { 12696 (void) TCP_TIMER_CANCEL(tcp, 12697 tcp->tcp_ack_tid); 12698 tcp->tcp_ack_tid = 0; 12699 } 12700 TCP_RECORD_TRACE(tcp, ack_mp, 12701 TCP_TRACE_SEND_PKT); 12702 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 12703 BUMP_LOCAL(tcp->tcp_obsegs); 12704 BUMP_MIB(&tcp_mib, tcpOutAck); 12705 12706 /* Send up T_CONN_CON */ 12707 putnext(tcp->tcp_rq, mp1); 12708 12709 freemsg(mp); 12710 return; 12711 } 12712 /* 12713 * Forget fusion; we need to handle more 12714 * complex cases below. Send the deferred 12715 * T_CONN_CON message upstream and proceed 12716 * as usual. Mark this tcp as not capable 12717 * of fusion. 12718 */ 12719 TCP_STAT(tcp_fusion_unfusable); 12720 tcp->tcp_unfusable = B_TRUE; 12721 putnext(tcp->tcp_rq, mp1); 12722 } 12723 12724 /* 12725 * Check to see if there is data to be sent. If 12726 * yes, set the transmit flag. Then check to see 12727 * if received data processing needs to be done. 12728 * If not, go straight to xmit_check. This short 12729 * cut is OK as we don't support T/TCP. 12730 */ 12731 if (tcp->tcp_unsent) 12732 flags |= TH_XMIT_NEEDED; 12733 12734 if (seg_len == 0 && !(flags & TH_URG)) { 12735 freemsg(mp); 12736 goto xmit_check; 12737 } 12738 12739 flags &= ~TH_SYN; 12740 seg_seq++; 12741 break; 12742 } 12743 tcp->tcp_state = TCPS_SYN_RCVD; 12744 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 12745 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 12746 if (mp1) { 12747 DB_CPID(mp1) = tcp->tcp_cpid; 12748 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 12749 tcp_send_data(tcp, tcp->tcp_wq, mp1); 12750 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 12751 } 12752 freemsg(mp); 12753 return; 12754 case TCPS_SYN_RCVD: 12755 if (flags & TH_ACK) { 12756 /* 12757 * In this state, a SYN|ACK packet is either bogus 12758 * because the other side must be ACKing our SYN which 12759 * indicates it has seen the ACK for their SYN and 12760 * shouldn't retransmit it or we're crossing SYNs 12761 * on active open. 12762 */ 12763 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 12764 freemsg(mp); 12765 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 12766 tcp, seg_ack, 0, TH_RST); 12767 return; 12768 } 12769 /* 12770 * NOTE: RFC 793 pg. 72 says this should be 12771 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 12772 * but that would mean we have an ack that ignored 12773 * our SYN. 12774 */ 12775 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 12776 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 12777 freemsg(mp); 12778 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 12779 tcp, seg_ack, 0, TH_RST); 12780 return; 12781 } 12782 } 12783 break; 12784 case TCPS_LISTEN: 12785 /* 12786 * Only a TLI listener can come through this path when a 12787 * acceptor is going back to be a listener and a packet 12788 * for the acceptor hits the classifier. For a socket 12789 * listener, this can never happen because a listener 12790 * can never accept connection on itself and hence a 12791 * socket acceptor can not go back to being a listener. 12792 */ 12793 ASSERT(!TCP_IS_SOCKET(tcp)); 12794 /*FALLTHRU*/ 12795 case TCPS_CLOSED: 12796 case TCPS_BOUND: { 12797 conn_t *new_connp; 12798 12799 new_connp = ipcl_classify(mp, connp->conn_zoneid); 12800 if (new_connp != NULL) { 12801 tcp_reinput(new_connp, mp, connp->conn_sqp); 12802 return; 12803 } 12804 /* We failed to classify. For now just drop the packet */ 12805 freemsg(mp); 12806 return; 12807 } 12808 case TCPS_IDLE: 12809 /* 12810 * Handle the case where the tcp_clean_death() has happened 12811 * on a connection (application hasn't closed yet) but a packet 12812 * was already queued on squeue before tcp_clean_death() 12813 * was processed. Calling tcp_clean_death() twice on same 12814 * connection can result in weird behaviour. 12815 */ 12816 freemsg(mp); 12817 return; 12818 default: 12819 break; 12820 } 12821 12822 /* 12823 * Already on the correct queue/perimeter. 12824 * If this is a detached connection and not an eager 12825 * connection hanging off a listener then new data 12826 * (past the FIN) will cause a reset. 12827 * We do a special check here where it 12828 * is out of the main line, rather than check 12829 * if we are detached every time we see new 12830 * data down below. 12831 */ 12832 if (TCP_IS_DETACHED_NONEAGER(tcp) && 12833 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 12834 BUMP_MIB(&tcp_mib, tcpInClosed); 12835 TCP_RECORD_TRACE(tcp, 12836 mp, TCP_TRACE_RECV_PKT); 12837 12838 freemsg(mp); 12839 /* 12840 * This could be an SSL closure alert. We're detached so just 12841 * acknowledge it this last time. 12842 */ 12843 if (tcp->tcp_kssl_ctx != NULL) { 12844 kssl_release_ctx(tcp->tcp_kssl_ctx); 12845 tcp->tcp_kssl_ctx = NULL; 12846 12847 tcp->tcp_rnxt += seg_len; 12848 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 12849 flags |= TH_ACK_NEEDED; 12850 goto ack_check; 12851 } 12852 12853 tcp_xmit_ctl("new data when detached", tcp, 12854 tcp->tcp_snxt, 0, TH_RST); 12855 (void) tcp_clean_death(tcp, EPROTO, 12); 12856 return; 12857 } 12858 12859 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12860 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 12861 new_swnd = BE16_TO_U16(tcph->th_win) << 12862 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 12863 mss = tcp->tcp_mss; 12864 12865 if (tcp->tcp_snd_ts_ok) { 12866 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 12867 /* 12868 * This segment is not acceptable. 12869 * Drop it and send back an ACK. 12870 */ 12871 freemsg(mp); 12872 flags |= TH_ACK_NEEDED; 12873 goto ack_check; 12874 } 12875 } else if (tcp->tcp_snd_sack_ok) { 12876 ASSERT(tcp->tcp_sack_info != NULL); 12877 tcpopt.tcp = tcp; 12878 /* 12879 * SACK info in already updated in tcp_parse_options. Ignore 12880 * all other TCP options... 12881 */ 12882 (void) tcp_parse_options(tcph, &tcpopt); 12883 } 12884 try_again:; 12885 gap = seg_seq - tcp->tcp_rnxt; 12886 rgap = tcp->tcp_rwnd - (gap + seg_len); 12887 /* 12888 * gap is the amount of sequence space between what we expect to see 12889 * and what we got for seg_seq. A positive value for gap means 12890 * something got lost. A negative value means we got some old stuff. 12891 */ 12892 if (gap < 0) { 12893 /* Old stuff present. Is the SYN in there? */ 12894 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 12895 (seg_len != 0)) { 12896 flags &= ~TH_SYN; 12897 seg_seq++; 12898 urp--; 12899 /* Recompute the gaps after noting the SYN. */ 12900 goto try_again; 12901 } 12902 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 12903 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, 12904 (seg_len > -gap ? -gap : seg_len)); 12905 /* Remove the old stuff from seg_len. */ 12906 seg_len += gap; 12907 /* 12908 * Anything left? 12909 * Make sure to check for unack'd FIN when rest of data 12910 * has been previously ack'd. 12911 */ 12912 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 12913 /* 12914 * Resets are only valid if they lie within our offered 12915 * window. If the RST bit is set, we just ignore this 12916 * segment. 12917 */ 12918 if (flags & TH_RST) { 12919 freemsg(mp); 12920 return; 12921 } 12922 12923 /* 12924 * The arriving of dup data packets indicate that we 12925 * may have postponed an ack for too long, or the other 12926 * side's RTT estimate is out of shape. Start acking 12927 * more often. 12928 */ 12929 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 12930 tcp->tcp_rack_cnt >= 1 && 12931 tcp->tcp_rack_abs_max > 2) { 12932 tcp->tcp_rack_abs_max--; 12933 } 12934 tcp->tcp_rack_cur_max = 1; 12935 12936 /* 12937 * This segment is "unacceptable". None of its 12938 * sequence space lies within our advertized window. 12939 * 12940 * Adjust seg_len to the original value for tracing. 12941 */ 12942 seg_len -= gap; 12943 if (tcp->tcp_debug) { 12944 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12945 "tcp_rput: unacceptable, gap %d, rgap %d, " 12946 "flags 0x%x, seg_seq %u, seg_ack %u, " 12947 "seg_len %d, rnxt %u, snxt %u, %s", 12948 gap, rgap, flags, seg_seq, seg_ack, 12949 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 12950 tcp_display(tcp, NULL, 12951 DISP_ADDR_AND_PORT)); 12952 } 12953 12954 /* 12955 * Arrange to send an ACK in response to the 12956 * unacceptable segment per RFC 793 page 69. There 12957 * is only one small difference between ours and the 12958 * acceptability test in the RFC - we accept ACK-only 12959 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 12960 * will be generated. 12961 * 12962 * Note that we have to ACK an ACK-only packet at least 12963 * for stacks that send 0-length keep-alives with 12964 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 12965 * section 4.2.3.6. As long as we don't ever generate 12966 * an unacceptable packet in response to an incoming 12967 * packet that is unacceptable, it should not cause 12968 * "ACK wars". 12969 */ 12970 flags |= TH_ACK_NEEDED; 12971 12972 /* 12973 * Continue processing this segment in order to use the 12974 * ACK information it contains, but skip all other 12975 * sequence-number processing. Processing the ACK 12976 * information is necessary in order to 12977 * re-synchronize connections that may have lost 12978 * synchronization. 12979 * 12980 * We clear seg_len and flag fields related to 12981 * sequence number processing as they are not 12982 * to be trusted for an unacceptable segment. 12983 */ 12984 seg_len = 0; 12985 flags &= ~(TH_SYN | TH_FIN | TH_URG); 12986 goto process_ack; 12987 } 12988 12989 /* Fix seg_seq, and chew the gap off the front. */ 12990 seg_seq = tcp->tcp_rnxt; 12991 urp += gap; 12992 do { 12993 mblk_t *mp2; 12994 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 12995 (uintptr_t)UINT_MAX); 12996 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 12997 if (gap > 0) { 12998 mp->b_rptr = mp->b_wptr - gap; 12999 break; 13000 } 13001 mp2 = mp; 13002 mp = mp->b_cont; 13003 freeb(mp2); 13004 } while (gap < 0); 13005 /* 13006 * If the urgent data has already been acknowledged, we 13007 * should ignore TH_URG below 13008 */ 13009 if (urp < 0) 13010 flags &= ~TH_URG; 13011 } 13012 /* 13013 * rgap is the amount of stuff received out of window. A negative 13014 * value is the amount out of window. 13015 */ 13016 if (rgap < 0) { 13017 mblk_t *mp2; 13018 13019 if (tcp->tcp_rwnd == 0) { 13020 BUMP_MIB(&tcp_mib, tcpInWinProbe); 13021 } else { 13022 BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); 13023 UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); 13024 } 13025 13026 /* 13027 * seg_len does not include the FIN, so if more than 13028 * just the FIN is out of window, we act like we don't 13029 * see it. (If just the FIN is out of window, rgap 13030 * will be zero and we will go ahead and acknowledge 13031 * the FIN.) 13032 */ 13033 flags &= ~TH_FIN; 13034 13035 /* Fix seg_len and make sure there is something left. */ 13036 seg_len += rgap; 13037 if (seg_len <= 0) { 13038 /* 13039 * Resets are only valid if they lie within our offered 13040 * window. If the RST bit is set, we just ignore this 13041 * segment. 13042 */ 13043 if (flags & TH_RST) { 13044 freemsg(mp); 13045 return; 13046 } 13047 13048 /* Per RFC 793, we need to send back an ACK. */ 13049 flags |= TH_ACK_NEEDED; 13050 13051 /* 13052 * Send SIGURG as soon as possible i.e. even 13053 * if the TH_URG was delivered in a window probe 13054 * packet (which will be unacceptable). 13055 * 13056 * We generate a signal if none has been generated 13057 * for this connection or if this is a new urgent 13058 * byte. Also send a zero-length "unmarked" message 13059 * to inform SIOCATMARK that this is not the mark. 13060 * 13061 * tcp_urp_last_valid is cleared when the T_exdata_ind 13062 * is sent up. This plus the check for old data 13063 * (gap >= 0) handles the wraparound of the sequence 13064 * number space without having to always track the 13065 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13066 * this max in its rcv_up variable). 13067 * 13068 * This prevents duplicate SIGURGS due to a "late" 13069 * zero-window probe when the T_EXDATA_IND has already 13070 * been sent up. 13071 */ 13072 if ((flags & TH_URG) && 13073 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13074 tcp->tcp_urp_last))) { 13075 mp1 = allocb(0, BPRI_MED); 13076 if (mp1 == NULL) { 13077 freemsg(mp); 13078 return; 13079 } 13080 if (!TCP_IS_DETACHED(tcp) && 13081 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13082 SIGURG)) { 13083 /* Try again on the rexmit. */ 13084 freemsg(mp1); 13085 freemsg(mp); 13086 return; 13087 } 13088 /* 13089 * If the next byte would be the mark 13090 * then mark with MARKNEXT else mark 13091 * with NOTMARKNEXT. 13092 */ 13093 if (gap == 0 && urp == 0) 13094 mp1->b_flag |= MSGMARKNEXT; 13095 else 13096 mp1->b_flag |= MSGNOTMARKNEXT; 13097 freemsg(tcp->tcp_urp_mark_mp); 13098 tcp->tcp_urp_mark_mp = mp1; 13099 flags |= TH_SEND_URP_MARK; 13100 tcp->tcp_urp_last_valid = B_TRUE; 13101 tcp->tcp_urp_last = urp + seg_seq; 13102 } 13103 /* 13104 * If this is a zero window probe, continue to 13105 * process the ACK part. But we need to set seg_len 13106 * to 0 to avoid data processing. Otherwise just 13107 * drop the segment and send back an ACK. 13108 */ 13109 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13110 flags &= ~(TH_SYN | TH_URG); 13111 seg_len = 0; 13112 goto process_ack; 13113 } else { 13114 freemsg(mp); 13115 goto ack_check; 13116 } 13117 } 13118 /* Pitch out of window stuff off the end. */ 13119 rgap = seg_len; 13120 mp2 = mp; 13121 do { 13122 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13123 (uintptr_t)INT_MAX); 13124 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13125 if (rgap < 0) { 13126 mp2->b_wptr += rgap; 13127 if ((mp1 = mp2->b_cont) != NULL) { 13128 mp2->b_cont = NULL; 13129 freemsg(mp1); 13130 } 13131 break; 13132 } 13133 } while ((mp2 = mp2->b_cont) != NULL); 13134 } 13135 ok:; 13136 /* 13137 * TCP should check ECN info for segments inside the window only. 13138 * Therefore the check should be done here. 13139 */ 13140 if (tcp->tcp_ecn_ok) { 13141 if (flags & TH_CWR) { 13142 tcp->tcp_ecn_echo_on = B_FALSE; 13143 } 13144 /* 13145 * Note that both ECN_CE and CWR can be set in the 13146 * same segment. In this case, we once again turn 13147 * on ECN_ECHO. 13148 */ 13149 if (tcp->tcp_ipversion == IPV4_VERSION) { 13150 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13151 13152 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13153 tcp->tcp_ecn_echo_on = B_TRUE; 13154 } 13155 } else { 13156 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13157 13158 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13159 htonl(IPH_ECN_CE << 20)) { 13160 tcp->tcp_ecn_echo_on = B_TRUE; 13161 } 13162 } 13163 } 13164 13165 /* 13166 * Check whether we can update tcp_ts_recent. This test is 13167 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13168 * Extensions for High Performance: An Update", Internet Draft. 13169 */ 13170 if (tcp->tcp_snd_ts_ok && 13171 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13172 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13173 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13174 tcp->tcp_last_rcv_lbolt = lbolt64; 13175 } 13176 13177 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13178 /* 13179 * FIN in an out of order segment. We record this in 13180 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13181 * Clear the FIN so that any check on FIN flag will fail. 13182 * Remember that FIN also counts in the sequence number 13183 * space. So we need to ack out of order FIN only segments. 13184 */ 13185 if (flags & TH_FIN) { 13186 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13187 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13188 flags &= ~TH_FIN; 13189 flags |= TH_ACK_NEEDED; 13190 } 13191 if (seg_len > 0) { 13192 /* Fill in the SACK blk list. */ 13193 if (tcp->tcp_snd_sack_ok) { 13194 ASSERT(tcp->tcp_sack_info != NULL); 13195 tcp_sack_insert(tcp->tcp_sack_list, 13196 seg_seq, seg_seq + seg_len, 13197 &(tcp->tcp_num_sack_blk)); 13198 } 13199 13200 /* 13201 * Attempt reassembly and see if we have something 13202 * ready to go. 13203 */ 13204 mp = tcp_reass(tcp, mp, seg_seq); 13205 /* Always ack out of order packets */ 13206 flags |= TH_ACK_NEEDED | TH_PUSH; 13207 if (mp) { 13208 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13209 (uintptr_t)INT_MAX); 13210 seg_len = mp->b_cont ? msgdsize(mp) : 13211 (int)(mp->b_wptr - mp->b_rptr); 13212 seg_seq = tcp->tcp_rnxt; 13213 /* 13214 * A gap is filled and the seq num and len 13215 * of the gap match that of a previously 13216 * received FIN, put the FIN flag back in. 13217 */ 13218 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13219 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13220 flags |= TH_FIN; 13221 tcp->tcp_valid_bits &= 13222 ~TCP_OFO_FIN_VALID; 13223 } 13224 } else { 13225 /* 13226 * Keep going even with NULL mp. 13227 * There may be a useful ACK or something else 13228 * we don't want to miss. 13229 * 13230 * But TCP should not perform fast retransmit 13231 * because of the ack number. TCP uses 13232 * seg_len == 0 to determine if it is a pure 13233 * ACK. And this is not a pure ACK. 13234 */ 13235 seg_len = 0; 13236 ofo_seg = B_TRUE; 13237 } 13238 } 13239 } else if (seg_len > 0) { 13240 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 13241 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); 13242 /* 13243 * If an out of order FIN was received before, and the seq 13244 * num and len of the new segment match that of the FIN, 13245 * put the FIN flag back in. 13246 */ 13247 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13248 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13249 flags |= TH_FIN; 13250 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13251 } 13252 } 13253 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13254 if (flags & TH_RST) { 13255 freemsg(mp); 13256 switch (tcp->tcp_state) { 13257 case TCPS_SYN_RCVD: 13258 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13259 break; 13260 case TCPS_ESTABLISHED: 13261 case TCPS_FIN_WAIT_1: 13262 case TCPS_FIN_WAIT_2: 13263 case TCPS_CLOSE_WAIT: 13264 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13265 break; 13266 case TCPS_CLOSING: 13267 case TCPS_LAST_ACK: 13268 (void) tcp_clean_death(tcp, 0, 16); 13269 break; 13270 default: 13271 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13272 (void) tcp_clean_death(tcp, ENXIO, 17); 13273 break; 13274 } 13275 return; 13276 } 13277 if (flags & TH_SYN) { 13278 /* 13279 * See RFC 793, Page 71 13280 * 13281 * The seq number must be in the window as it should 13282 * be "fixed" above. If it is outside window, it should 13283 * be already rejected. Note that we allow seg_seq to be 13284 * rnxt + rwnd because we want to accept 0 window probe. 13285 */ 13286 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13287 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13288 freemsg(mp); 13289 /* 13290 * If the ACK flag is not set, just use our snxt as the 13291 * seq number of the RST segment. 13292 */ 13293 if (!(flags & TH_ACK)) { 13294 seg_ack = tcp->tcp_snxt; 13295 } 13296 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13297 TH_RST|TH_ACK); 13298 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13299 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13300 return; 13301 } 13302 /* 13303 * urp could be -1 when the urp field in the packet is 0 13304 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13305 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13306 */ 13307 if (flags & TH_URG && urp >= 0) { 13308 if (!tcp->tcp_urp_last_valid || 13309 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13310 /* 13311 * If we haven't generated the signal yet for this 13312 * urgent pointer value, do it now. Also, send up a 13313 * zero-length M_DATA indicating whether or not this is 13314 * the mark. The latter is not needed when a 13315 * T_EXDATA_IND is sent up. However, if there are 13316 * allocation failures this code relies on the sender 13317 * retransmitting and the socket code for determining 13318 * the mark should not block waiting for the peer to 13319 * transmit. Thus, for simplicity we always send up the 13320 * mark indication. 13321 */ 13322 mp1 = allocb(0, BPRI_MED); 13323 if (mp1 == NULL) { 13324 freemsg(mp); 13325 return; 13326 } 13327 if (!TCP_IS_DETACHED(tcp) && 13328 !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) { 13329 /* Try again on the rexmit. */ 13330 freemsg(mp1); 13331 freemsg(mp); 13332 return; 13333 } 13334 /* 13335 * Mark with NOTMARKNEXT for now. 13336 * The code below will change this to MARKNEXT 13337 * if we are at the mark. 13338 * 13339 * If there are allocation failures (e.g. in dupmsg 13340 * below) the next time tcp_rput_data sees the urgent 13341 * segment it will send up the MSG*MARKNEXT message. 13342 */ 13343 mp1->b_flag |= MSGNOTMARKNEXT; 13344 freemsg(tcp->tcp_urp_mark_mp); 13345 tcp->tcp_urp_mark_mp = mp1; 13346 flags |= TH_SEND_URP_MARK; 13347 #ifdef DEBUG 13348 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13349 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13350 "last %x, %s", 13351 seg_seq, urp, tcp->tcp_urp_last, 13352 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13353 #endif /* DEBUG */ 13354 tcp->tcp_urp_last_valid = B_TRUE; 13355 tcp->tcp_urp_last = urp + seg_seq; 13356 } else if (tcp->tcp_urp_mark_mp != NULL) { 13357 /* 13358 * An allocation failure prevented the previous 13359 * tcp_rput_data from sending up the allocated 13360 * MSG*MARKNEXT message - send it up this time 13361 * around. 13362 */ 13363 flags |= TH_SEND_URP_MARK; 13364 } 13365 13366 /* 13367 * If the urgent byte is in this segment, make sure that it is 13368 * all by itself. This makes it much easier to deal with the 13369 * possibility of an allocation failure on the T_exdata_ind. 13370 * Note that seg_len is the number of bytes in the segment, and 13371 * urp is the offset into the segment of the urgent byte. 13372 * urp < seg_len means that the urgent byte is in this segment. 13373 */ 13374 if (urp < seg_len) { 13375 if (seg_len != 1) { 13376 uint32_t tmp_rnxt; 13377 /* 13378 * Break it up and feed it back in. 13379 * Re-attach the IP header. 13380 */ 13381 mp->b_rptr = iphdr; 13382 if (urp > 0) { 13383 /* 13384 * There is stuff before the urgent 13385 * byte. 13386 */ 13387 mp1 = dupmsg(mp); 13388 if (!mp1) { 13389 /* 13390 * Trim from urgent byte on. 13391 * The rest will come back. 13392 */ 13393 (void) adjmsg(mp, 13394 urp - seg_len); 13395 tcp_rput_data(connp, 13396 mp, NULL); 13397 return; 13398 } 13399 (void) adjmsg(mp1, urp - seg_len); 13400 /* Feed this piece back in. */ 13401 tmp_rnxt = tcp->tcp_rnxt; 13402 tcp_rput_data(connp, mp1, NULL); 13403 /* 13404 * If the data passed back in was not 13405 * processed (ie: bad ACK) sending 13406 * the remainder back in will cause a 13407 * loop. In this case, drop the 13408 * packet and let the sender try 13409 * sending a good packet. 13410 */ 13411 if (tmp_rnxt == tcp->tcp_rnxt) { 13412 freemsg(mp); 13413 return; 13414 } 13415 } 13416 if (urp != seg_len - 1) { 13417 uint32_t tmp_rnxt; 13418 /* 13419 * There is stuff after the urgent 13420 * byte. 13421 */ 13422 mp1 = dupmsg(mp); 13423 if (!mp1) { 13424 /* 13425 * Trim everything beyond the 13426 * urgent byte. The rest will 13427 * come back. 13428 */ 13429 (void) adjmsg(mp, 13430 urp + 1 - seg_len); 13431 tcp_rput_data(connp, 13432 mp, NULL); 13433 return; 13434 } 13435 (void) adjmsg(mp1, urp + 1 - seg_len); 13436 tmp_rnxt = tcp->tcp_rnxt; 13437 tcp_rput_data(connp, mp1, NULL); 13438 /* 13439 * If the data passed back in was not 13440 * processed (ie: bad ACK) sending 13441 * the remainder back in will cause a 13442 * loop. In this case, drop the 13443 * packet and let the sender try 13444 * sending a good packet. 13445 */ 13446 if (tmp_rnxt == tcp->tcp_rnxt) { 13447 freemsg(mp); 13448 return; 13449 } 13450 } 13451 tcp_rput_data(connp, mp, NULL); 13452 return; 13453 } 13454 /* 13455 * This segment contains only the urgent byte. We 13456 * have to allocate the T_exdata_ind, if we can. 13457 */ 13458 if (!tcp->tcp_urp_mp) { 13459 struct T_exdata_ind *tei; 13460 mp1 = allocb(sizeof (struct T_exdata_ind), 13461 BPRI_MED); 13462 if (!mp1) { 13463 /* 13464 * Sigh... It'll be back. 13465 * Generate any MSG*MARK message now. 13466 */ 13467 freemsg(mp); 13468 seg_len = 0; 13469 if (flags & TH_SEND_URP_MARK) { 13470 13471 13472 ASSERT(tcp->tcp_urp_mark_mp); 13473 tcp->tcp_urp_mark_mp->b_flag &= 13474 ~MSGNOTMARKNEXT; 13475 tcp->tcp_urp_mark_mp->b_flag |= 13476 MSGMARKNEXT; 13477 } 13478 goto ack_check; 13479 } 13480 mp1->b_datap->db_type = M_PROTO; 13481 tei = (struct T_exdata_ind *)mp1->b_rptr; 13482 tei->PRIM_type = T_EXDATA_IND; 13483 tei->MORE_flag = 0; 13484 mp1->b_wptr = (uchar_t *)&tei[1]; 13485 tcp->tcp_urp_mp = mp1; 13486 #ifdef DEBUG 13487 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13488 "tcp_rput: allocated exdata_ind %s", 13489 tcp_display(tcp, NULL, 13490 DISP_PORT_ONLY)); 13491 #endif /* DEBUG */ 13492 /* 13493 * There is no need to send a separate MSG*MARK 13494 * message since the T_EXDATA_IND will be sent 13495 * now. 13496 */ 13497 flags &= ~TH_SEND_URP_MARK; 13498 freemsg(tcp->tcp_urp_mark_mp); 13499 tcp->tcp_urp_mark_mp = NULL; 13500 } 13501 /* 13502 * Now we are all set. On the next putnext upstream, 13503 * tcp_urp_mp will be non-NULL and will get prepended 13504 * to what has to be this piece containing the urgent 13505 * byte. If for any reason we abort this segment below, 13506 * if it comes back, we will have this ready, or it 13507 * will get blown off in close. 13508 */ 13509 } else if (urp == seg_len) { 13510 /* 13511 * The urgent byte is the next byte after this sequence 13512 * number. If there is data it is marked with 13513 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 13514 * since it is not needed. Otherwise, if the code 13515 * above just allocated a zero-length tcp_urp_mark_mp 13516 * message, that message is tagged with MSGMARKNEXT. 13517 * Sending up these MSGMARKNEXT messages makes 13518 * SIOCATMARK work correctly even though 13519 * the T_EXDATA_IND will not be sent up until the 13520 * urgent byte arrives. 13521 */ 13522 if (seg_len != 0) { 13523 flags |= TH_MARKNEXT_NEEDED; 13524 freemsg(tcp->tcp_urp_mark_mp); 13525 tcp->tcp_urp_mark_mp = NULL; 13526 flags &= ~TH_SEND_URP_MARK; 13527 } else if (tcp->tcp_urp_mark_mp != NULL) { 13528 flags |= TH_SEND_URP_MARK; 13529 tcp->tcp_urp_mark_mp->b_flag &= 13530 ~MSGNOTMARKNEXT; 13531 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 13532 } 13533 #ifdef DEBUG 13534 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13535 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 13536 seg_len, flags, 13537 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13538 #endif /* DEBUG */ 13539 } else { 13540 /* Data left until we hit mark */ 13541 #ifdef DEBUG 13542 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13543 "tcp_rput: URP %d bytes left, %s", 13544 urp - seg_len, tcp_display(tcp, NULL, 13545 DISP_PORT_ONLY)); 13546 #endif /* DEBUG */ 13547 } 13548 } 13549 13550 process_ack: 13551 if (!(flags & TH_ACK)) { 13552 freemsg(mp); 13553 goto xmit_check; 13554 } 13555 } 13556 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 13557 13558 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 13559 tcp->tcp_ip_forward_progress = B_TRUE; 13560 if (tcp->tcp_state == TCPS_SYN_RCVD) { 13561 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 13562 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 13563 /* 3-way handshake complete - pass up the T_CONN_IND */ 13564 tcp_t *listener = tcp->tcp_listener; 13565 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 13566 13567 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 13568 /* 13569 * We are here means eager is fine but it can 13570 * get a TH_RST at any point between now and till 13571 * accept completes and disappear. We need to 13572 * ensure that reference to eager is valid after 13573 * we get out of eager's perimeter. So we do 13574 * an extra refhold. 13575 */ 13576 CONN_INC_REF(connp); 13577 13578 /* 13579 * The listener also exists because of the refhold 13580 * done in tcp_conn_request. Its possible that it 13581 * might have closed. We will check that once we 13582 * get inside listeners context. 13583 */ 13584 CONN_INC_REF(listener->tcp_connp); 13585 if (listener->tcp_connp->conn_sqp == 13586 connp->conn_sqp) { 13587 tcp_send_conn_ind(listener->tcp_connp, mp, 13588 listener->tcp_connp->conn_sqp); 13589 CONN_DEC_REF(listener->tcp_connp); 13590 } else if (!tcp->tcp_loopback) { 13591 squeue_fill(listener->tcp_connp->conn_sqp, mp, 13592 tcp_send_conn_ind, 13593 listener->tcp_connp, SQTAG_TCP_CONN_IND); 13594 } else { 13595 squeue_enter(listener->tcp_connp->conn_sqp, mp, 13596 tcp_send_conn_ind, listener->tcp_connp, 13597 SQTAG_TCP_CONN_IND); 13598 } 13599 } 13600 13601 if (tcp->tcp_active_open) { 13602 /* 13603 * We are seeing the final ack in the three way 13604 * hand shake of a active open'ed connection 13605 * so we must send up a T_CONN_CON 13606 */ 13607 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 13608 freemsg(mp); 13609 return; 13610 } 13611 /* 13612 * Don't fuse the loopback endpoints for 13613 * simultaneous active opens. 13614 */ 13615 if (tcp->tcp_loopback) { 13616 TCP_STAT(tcp_fusion_unfusable); 13617 tcp->tcp_unfusable = B_TRUE; 13618 } 13619 } 13620 13621 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 13622 bytes_acked--; 13623 /* SYN was acked - making progress */ 13624 if (tcp->tcp_ipversion == IPV6_VERSION) 13625 tcp->tcp_ip_forward_progress = B_TRUE; 13626 13627 /* 13628 * If SYN was retransmitted, need to reset all 13629 * retransmission info as this segment will be 13630 * treated as a dup ACK. 13631 */ 13632 if (tcp->tcp_rexmit) { 13633 tcp->tcp_rexmit = B_FALSE; 13634 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13635 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13636 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13637 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13638 tcp->tcp_ms_we_have_waited = 0; 13639 tcp->tcp_cwnd = mss; 13640 } 13641 13642 /* 13643 * We set the send window to zero here. 13644 * This is needed if there is data to be 13645 * processed already on the queue. 13646 * Later (at swnd_update label), the 13647 * "new_swnd > tcp_swnd" condition is satisfied 13648 * the XMIT_NEEDED flag is set in the current 13649 * (SYN_RCVD) state. This ensures tcp_wput_data() is 13650 * called if there is already data on queue in 13651 * this state. 13652 */ 13653 tcp->tcp_swnd = 0; 13654 13655 if (new_swnd > tcp->tcp_max_swnd) 13656 tcp->tcp_max_swnd = new_swnd; 13657 tcp->tcp_swl1 = seg_seq; 13658 tcp->tcp_swl2 = seg_ack; 13659 tcp->tcp_state = TCPS_ESTABLISHED; 13660 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 13661 13662 /* Fuse when both sides are in ESTABLISHED state */ 13663 if (tcp->tcp_loopback && do_tcp_fusion) 13664 tcp_fuse(tcp, iphdr, tcph); 13665 13666 } 13667 /* This code follows 4.4BSD-Lite2 mostly. */ 13668 if (bytes_acked < 0) 13669 goto est; 13670 13671 /* 13672 * If TCP is ECN capable and the congestion experience bit is 13673 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 13674 * done once per window (or more loosely, per RTT). 13675 */ 13676 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 13677 tcp->tcp_cwr = B_FALSE; 13678 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 13679 if (!tcp->tcp_cwr) { 13680 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 13681 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 13682 tcp->tcp_cwnd = npkt * mss; 13683 /* 13684 * If the cwnd is 0, use the timer to clock out 13685 * new segments. This is required by the ECN spec. 13686 */ 13687 if (npkt == 0) { 13688 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13689 /* 13690 * This makes sure that when the ACK comes 13691 * back, we will increase tcp_cwnd by 1 MSS. 13692 */ 13693 tcp->tcp_cwnd_cnt = 0; 13694 } 13695 tcp->tcp_cwr = B_TRUE; 13696 /* 13697 * This marks the end of the current window of in 13698 * flight data. That is why we don't use 13699 * tcp_suna + tcp_swnd. Only data in flight can 13700 * provide ECN info. 13701 */ 13702 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 13703 tcp->tcp_ecn_cwr_sent = B_FALSE; 13704 } 13705 } 13706 13707 mp1 = tcp->tcp_xmit_head; 13708 if (bytes_acked == 0) { 13709 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 13710 int dupack_cnt; 13711 13712 BUMP_MIB(&tcp_mib, tcpInDupAck); 13713 /* 13714 * Fast retransmit. When we have seen exactly three 13715 * identical ACKs while we have unacked data 13716 * outstanding we take it as a hint that our peer 13717 * dropped something. 13718 * 13719 * If TCP is retransmitting, don't do fast retransmit. 13720 */ 13721 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 13722 ! tcp->tcp_rexmit) { 13723 /* Do Limited Transmit */ 13724 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 13725 tcp_dupack_fast_retransmit) { 13726 /* 13727 * RFC 3042 13728 * 13729 * What we need to do is temporarily 13730 * increase tcp_cwnd so that new 13731 * data can be sent if it is allowed 13732 * by the receive window (tcp_rwnd). 13733 * tcp_wput_data() will take care of 13734 * the rest. 13735 * 13736 * If the connection is SACK capable, 13737 * only do limited xmit when there 13738 * is SACK info. 13739 * 13740 * Note how tcp_cwnd is incremented. 13741 * The first dup ACK will increase 13742 * it by 1 MSS. The second dup ACK 13743 * will increase it by 2 MSS. This 13744 * means that only 1 new segment will 13745 * be sent for each dup ACK. 13746 */ 13747 if (tcp->tcp_unsent > 0 && 13748 (!tcp->tcp_snd_sack_ok || 13749 (tcp->tcp_snd_sack_ok && 13750 tcp->tcp_notsack_list != NULL))) { 13751 tcp->tcp_cwnd += mss << 13752 (tcp->tcp_dupack_cnt - 1); 13753 flags |= TH_LIMIT_XMIT; 13754 } 13755 } else if (dupack_cnt == 13756 tcp_dupack_fast_retransmit) { 13757 13758 /* 13759 * If we have reduced tcp_ssthresh 13760 * because of ECN, do not reduce it again 13761 * unless it is already one window of data 13762 * away. After one window of data, tcp_cwr 13763 * should then be cleared. Note that 13764 * for non ECN capable connection, tcp_cwr 13765 * should always be false. 13766 * 13767 * Adjust cwnd since the duplicate 13768 * ack indicates that a packet was 13769 * dropped (due to congestion.) 13770 */ 13771 if (!tcp->tcp_cwr) { 13772 npkt = ((tcp->tcp_snxt - 13773 tcp->tcp_suna) >> 1) / mss; 13774 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 13775 mss; 13776 tcp->tcp_cwnd = (npkt + 13777 tcp->tcp_dupack_cnt) * mss; 13778 } 13779 if (tcp->tcp_ecn_ok) { 13780 tcp->tcp_cwr = B_TRUE; 13781 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 13782 tcp->tcp_ecn_cwr_sent = B_FALSE; 13783 } 13784 13785 /* 13786 * We do Hoe's algorithm. Refer to her 13787 * paper "Improving the Start-up Behavior 13788 * of a Congestion Control Scheme for TCP," 13789 * appeared in SIGCOMM'96. 13790 * 13791 * Save highest seq no we have sent so far. 13792 * Be careful about the invisible FIN byte. 13793 */ 13794 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 13795 (tcp->tcp_unsent == 0)) { 13796 tcp->tcp_rexmit_max = tcp->tcp_fss; 13797 } else { 13798 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13799 } 13800 13801 /* 13802 * Do not allow bursty traffic during. 13803 * fast recovery. Refer to Fall and Floyd's 13804 * paper "Simulation-based Comparisons of 13805 * Tahoe, Reno and SACK TCP" (in CCR?) 13806 * This is a best current practise. 13807 */ 13808 tcp->tcp_snd_burst = TCP_CWND_SS; 13809 13810 /* 13811 * For SACK: 13812 * Calculate tcp_pipe, which is the 13813 * estimated number of bytes in 13814 * network. 13815 * 13816 * tcp_fack is the highest sack'ed seq num 13817 * TCP has received. 13818 * 13819 * tcp_pipe is explained in the above quoted 13820 * Fall and Floyd's paper. tcp_fack is 13821 * explained in Mathis and Mahdavi's 13822 * "Forward Acknowledgment: Refining TCP 13823 * Congestion Control" in SIGCOMM '96. 13824 */ 13825 if (tcp->tcp_snd_sack_ok) { 13826 ASSERT(tcp->tcp_sack_info != NULL); 13827 if (tcp->tcp_notsack_list != NULL) { 13828 tcp->tcp_pipe = tcp->tcp_snxt - 13829 tcp->tcp_fack; 13830 tcp->tcp_sack_snxt = seg_ack; 13831 flags |= TH_NEED_SACK_REXMIT; 13832 } else { 13833 /* 13834 * Always initialize tcp_pipe 13835 * even though we don't have 13836 * any SACK info. If later 13837 * we get SACK info and 13838 * tcp_pipe is not initialized, 13839 * funny things will happen. 13840 */ 13841 tcp->tcp_pipe = 13842 tcp->tcp_cwnd_ssthresh; 13843 } 13844 } else { 13845 flags |= TH_REXMIT_NEEDED; 13846 } /* tcp_snd_sack_ok */ 13847 13848 } else { 13849 /* 13850 * Here we perform congestion 13851 * avoidance, but NOT slow start. 13852 * This is known as the Fast 13853 * Recovery Algorithm. 13854 */ 13855 if (tcp->tcp_snd_sack_ok && 13856 tcp->tcp_notsack_list != NULL) { 13857 flags |= TH_NEED_SACK_REXMIT; 13858 tcp->tcp_pipe -= mss; 13859 if (tcp->tcp_pipe < 0) 13860 tcp->tcp_pipe = 0; 13861 } else { 13862 /* 13863 * We know that one more packet has 13864 * left the pipe thus we can update 13865 * cwnd. 13866 */ 13867 cwnd = tcp->tcp_cwnd + mss; 13868 if (cwnd > tcp->tcp_cwnd_max) 13869 cwnd = tcp->tcp_cwnd_max; 13870 tcp->tcp_cwnd = cwnd; 13871 if (tcp->tcp_unsent > 0) 13872 flags |= TH_XMIT_NEEDED; 13873 } 13874 } 13875 } 13876 } else if (tcp->tcp_zero_win_probe) { 13877 /* 13878 * If the window has opened, need to arrange 13879 * to send additional data. 13880 */ 13881 if (new_swnd != 0) { 13882 /* tcp_suna != tcp_snxt */ 13883 /* Packet contains a window update */ 13884 BUMP_MIB(&tcp_mib, tcpInWinUpdate); 13885 tcp->tcp_zero_win_probe = 0; 13886 tcp->tcp_timer_backoff = 0; 13887 tcp->tcp_ms_we_have_waited = 0; 13888 13889 /* 13890 * Transmit starting with tcp_suna since 13891 * the one byte probe is not ack'ed. 13892 * If TCP has sent more than one identical 13893 * probe, tcp_rexmit will be set. That means 13894 * tcp_ss_rexmit() will send out the one 13895 * byte along with new data. Otherwise, 13896 * fake the retransmission. 13897 */ 13898 flags |= TH_XMIT_NEEDED; 13899 if (!tcp->tcp_rexmit) { 13900 tcp->tcp_rexmit = B_TRUE; 13901 tcp->tcp_dupack_cnt = 0; 13902 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 13903 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 13904 } 13905 } 13906 } 13907 goto swnd_update; 13908 } 13909 13910 /* 13911 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 13912 * If the ACK value acks something that we have not yet sent, it might 13913 * be an old duplicate segment. Send an ACK to re-synchronize the 13914 * other side. 13915 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 13916 * state is handled above, so we can always just drop the segment and 13917 * send an ACK here. 13918 * 13919 * Should we send ACKs in response to ACK only segments? 13920 */ 13921 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13922 BUMP_MIB(&tcp_mib, tcpInAckUnsent); 13923 /* drop the received segment */ 13924 freemsg(mp); 13925 13926 /* 13927 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 13928 * greater than 0, check if the number of such 13929 * bogus ACks is greater than that count. If yes, 13930 * don't send back any ACK. This prevents TCP from 13931 * getting into an ACK storm if somehow an attacker 13932 * successfully spoofs an acceptable segment to our 13933 * peer. 13934 */ 13935 if (tcp_drop_ack_unsent_cnt > 0 && 13936 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 13937 TCP_STAT(tcp_in_ack_unsent_drop); 13938 return; 13939 } 13940 mp = tcp_ack_mp(tcp); 13941 if (mp != NULL) { 13942 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 13943 BUMP_LOCAL(tcp->tcp_obsegs); 13944 BUMP_MIB(&tcp_mib, tcpOutAck); 13945 tcp_send_data(tcp, tcp->tcp_wq, mp); 13946 } 13947 return; 13948 } 13949 13950 /* 13951 * TCP gets a new ACK, update the notsack'ed list to delete those 13952 * blocks that are covered by this ACK. 13953 */ 13954 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 13955 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 13956 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 13957 } 13958 13959 /* 13960 * If we got an ACK after fast retransmit, check to see 13961 * if it is a partial ACK. If it is not and the congestion 13962 * window was inflated to account for the other side's 13963 * cached packets, retract it. If it is, do Hoe's algorithm. 13964 */ 13965 if (tcp->tcp_dupack_cnt >= tcp_dupack_fast_retransmit) { 13966 ASSERT(tcp->tcp_rexmit == B_FALSE); 13967 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 13968 tcp->tcp_dupack_cnt = 0; 13969 /* 13970 * Restore the orig tcp_cwnd_ssthresh after 13971 * fast retransmit phase. 13972 */ 13973 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 13974 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 13975 } 13976 tcp->tcp_rexmit_max = seg_ack; 13977 tcp->tcp_cwnd_cnt = 0; 13978 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13979 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13980 13981 /* 13982 * Remove all notsack info to avoid confusion with 13983 * the next fast retrasnmit/recovery phase. 13984 */ 13985 if (tcp->tcp_snd_sack_ok && 13986 tcp->tcp_notsack_list != NULL) { 13987 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 13988 } 13989 } else { 13990 if (tcp->tcp_snd_sack_ok && 13991 tcp->tcp_notsack_list != NULL) { 13992 flags |= TH_NEED_SACK_REXMIT; 13993 tcp->tcp_pipe -= mss; 13994 if (tcp->tcp_pipe < 0) 13995 tcp->tcp_pipe = 0; 13996 } else { 13997 /* 13998 * Hoe's algorithm: 13999 * 14000 * Retransmit the unack'ed segment and 14001 * restart fast recovery. Note that we 14002 * need to scale back tcp_cwnd to the 14003 * original value when we started fast 14004 * recovery. This is to prevent overly 14005 * aggressive behaviour in sending new 14006 * segments. 14007 */ 14008 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14009 tcp_dupack_fast_retransmit * mss; 14010 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14011 flags |= TH_REXMIT_NEEDED; 14012 } 14013 } 14014 } else { 14015 tcp->tcp_dupack_cnt = 0; 14016 if (tcp->tcp_rexmit) { 14017 /* 14018 * TCP is retranmitting. If the ACK ack's all 14019 * outstanding data, update tcp_rexmit_max and 14020 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14021 * to the correct value. 14022 * 14023 * Note that SEQ_LEQ() is used. This is to avoid 14024 * unnecessary fast retransmit caused by dup ACKs 14025 * received when TCP does slow start retransmission 14026 * after a time out. During this phase, TCP may 14027 * send out segments which are already received. 14028 * This causes dup ACKs to be sent back. 14029 */ 14030 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14031 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14032 tcp->tcp_rexmit_nxt = seg_ack; 14033 } 14034 if (seg_ack != tcp->tcp_rexmit_max) { 14035 flags |= TH_XMIT_NEEDED; 14036 } 14037 } else { 14038 tcp->tcp_rexmit = B_FALSE; 14039 tcp->tcp_xmit_zc_clean = B_FALSE; 14040 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14041 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14042 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14043 } 14044 tcp->tcp_ms_we_have_waited = 0; 14045 } 14046 } 14047 14048 BUMP_MIB(&tcp_mib, tcpInAckSegs); 14049 UPDATE_MIB(&tcp_mib, tcpInAckBytes, bytes_acked); 14050 tcp->tcp_suna = seg_ack; 14051 if (tcp->tcp_zero_win_probe != 0) { 14052 tcp->tcp_zero_win_probe = 0; 14053 tcp->tcp_timer_backoff = 0; 14054 } 14055 14056 /* 14057 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14058 * Note that it cannot be the SYN being ack'ed. The code flow 14059 * will not reach here. 14060 */ 14061 if (mp1 == NULL) { 14062 goto fin_acked; 14063 } 14064 14065 /* 14066 * Update the congestion window. 14067 * 14068 * If TCP is not ECN capable or TCP is ECN capable but the 14069 * congestion experience bit is not set, increase the tcp_cwnd as 14070 * usual. 14071 */ 14072 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14073 cwnd = tcp->tcp_cwnd; 14074 add = mss; 14075 14076 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14077 /* 14078 * This is to prevent an increase of less than 1 MSS of 14079 * tcp_cwnd. With partial increase, tcp_wput_data() 14080 * may send out tinygrams in order to preserve mblk 14081 * boundaries. 14082 * 14083 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14084 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14085 * increased by 1 MSS for every RTTs. 14086 */ 14087 if (tcp->tcp_cwnd_cnt <= 0) { 14088 tcp->tcp_cwnd_cnt = cwnd + add; 14089 } else { 14090 tcp->tcp_cwnd_cnt -= add; 14091 add = 0; 14092 } 14093 } 14094 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14095 } 14096 14097 /* See if the latest urgent data has been acknowledged */ 14098 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14099 SEQ_GT(seg_ack, tcp->tcp_urg)) 14100 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14101 14102 /* Can we update the RTT estimates? */ 14103 if (tcp->tcp_snd_ts_ok) { 14104 /* Ignore zero timestamp echo-reply. */ 14105 if (tcpopt.tcp_opt_ts_ecr != 0) { 14106 tcp_set_rto(tcp, (int32_t)lbolt - 14107 (int32_t)tcpopt.tcp_opt_ts_ecr); 14108 } 14109 14110 /* If needed, restart the timer. */ 14111 if (tcp->tcp_set_timer == 1) { 14112 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14113 tcp->tcp_set_timer = 0; 14114 } 14115 /* 14116 * Update tcp_csuna in case the other side stops sending 14117 * us timestamps. 14118 */ 14119 tcp->tcp_csuna = tcp->tcp_snxt; 14120 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14121 /* 14122 * An ACK sequence we haven't seen before, so get the RTT 14123 * and update the RTO. But first check if the timestamp is 14124 * valid to use. 14125 */ 14126 if ((mp1->b_next != NULL) && 14127 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14128 tcp_set_rto(tcp, (int32_t)lbolt - 14129 (int32_t)(intptr_t)mp1->b_prev); 14130 else 14131 BUMP_MIB(&tcp_mib, tcpRttNoUpdate); 14132 14133 /* Remeber the last sequence to be ACKed */ 14134 tcp->tcp_csuna = seg_ack; 14135 if (tcp->tcp_set_timer == 1) { 14136 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14137 tcp->tcp_set_timer = 0; 14138 } 14139 } else { 14140 BUMP_MIB(&tcp_mib, tcpRttNoUpdate); 14141 } 14142 14143 /* Eat acknowledged bytes off the xmit queue. */ 14144 for (;;) { 14145 mblk_t *mp2; 14146 uchar_t *wptr; 14147 14148 wptr = mp1->b_wptr; 14149 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14150 bytes_acked -= (int)(wptr - mp1->b_rptr); 14151 if (bytes_acked < 0) { 14152 mp1->b_rptr = wptr + bytes_acked; 14153 /* 14154 * Set a new timestamp if all the bytes timed by the 14155 * old timestamp have been ack'ed. 14156 */ 14157 if (SEQ_GT(seg_ack, 14158 (uint32_t)(uintptr_t)(mp1->b_next))) { 14159 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14160 mp1->b_next = NULL; 14161 } 14162 break; 14163 } 14164 mp1->b_next = NULL; 14165 mp1->b_prev = NULL; 14166 mp2 = mp1; 14167 mp1 = mp1->b_cont; 14168 14169 /* 14170 * This notification is required for some zero-copy 14171 * clients to maintain a copy semantic. After the data 14172 * is ack'ed, client is safe to modify or reuse the buffer. 14173 */ 14174 if (tcp->tcp_snd_zcopy_aware && 14175 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14176 tcp_zcopy_notify(tcp); 14177 freeb(mp2); 14178 if (bytes_acked == 0) { 14179 if (mp1 == NULL) { 14180 /* Everything is ack'ed, clear the tail. */ 14181 tcp->tcp_xmit_tail = NULL; 14182 /* 14183 * Cancel the timer unless we are still 14184 * waiting for an ACK for the FIN packet. 14185 */ 14186 if (tcp->tcp_timer_tid != 0 && 14187 tcp->tcp_snxt == tcp->tcp_suna) { 14188 (void) TCP_TIMER_CANCEL(tcp, 14189 tcp->tcp_timer_tid); 14190 tcp->tcp_timer_tid = 0; 14191 } 14192 goto pre_swnd_update; 14193 } 14194 if (mp2 != tcp->tcp_xmit_tail) 14195 break; 14196 tcp->tcp_xmit_tail = mp1; 14197 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14198 (uintptr_t)INT_MAX); 14199 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14200 mp1->b_rptr); 14201 break; 14202 } 14203 if (mp1 == NULL) { 14204 /* 14205 * More was acked but there is nothing more 14206 * outstanding. This means that the FIN was 14207 * just acked or that we're talking to a clown. 14208 */ 14209 fin_acked: 14210 ASSERT(tcp->tcp_fin_sent); 14211 tcp->tcp_xmit_tail = NULL; 14212 if (tcp->tcp_fin_sent) { 14213 /* FIN was acked - making progress */ 14214 if (tcp->tcp_ipversion == IPV6_VERSION && 14215 !tcp->tcp_fin_acked) 14216 tcp->tcp_ip_forward_progress = B_TRUE; 14217 tcp->tcp_fin_acked = B_TRUE; 14218 if (tcp->tcp_linger_tid != 0 && 14219 TCP_TIMER_CANCEL(tcp, 14220 tcp->tcp_linger_tid) >= 0) { 14221 tcp_stop_lingering(tcp); 14222 } 14223 } else { 14224 /* 14225 * We should never get here because 14226 * we have already checked that the 14227 * number of bytes ack'ed should be 14228 * smaller than or equal to what we 14229 * have sent so far (it is the 14230 * acceptability check of the ACK). 14231 * We can only get here if the send 14232 * queue is corrupted. 14233 * 14234 * Terminate the connection and 14235 * panic the system. It is better 14236 * for us to panic instead of 14237 * continuing to avoid other disaster. 14238 */ 14239 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14240 tcp->tcp_rnxt, TH_RST|TH_ACK); 14241 panic("Memory corruption " 14242 "detected for connection %s.", 14243 tcp_display(tcp, NULL, 14244 DISP_ADDR_AND_PORT)); 14245 /*NOTREACHED*/ 14246 } 14247 goto pre_swnd_update; 14248 } 14249 ASSERT(mp2 != tcp->tcp_xmit_tail); 14250 } 14251 if (tcp->tcp_unsent) { 14252 flags |= TH_XMIT_NEEDED; 14253 } 14254 pre_swnd_update: 14255 tcp->tcp_xmit_head = mp1; 14256 swnd_update: 14257 /* 14258 * The following check is different from most other implementations. 14259 * For bi-directional transfer, when segments are dropped, the 14260 * "normal" check will not accept a window update in those 14261 * retransmitted segemnts. Failing to do that, TCP may send out 14262 * segments which are outside receiver's window. As TCP accepts 14263 * the ack in those retransmitted segments, if the window update in 14264 * the same segment is not accepted, TCP will incorrectly calculates 14265 * that it can send more segments. This can create a deadlock 14266 * with the receiver if its window becomes zero. 14267 */ 14268 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14269 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14270 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14271 /* 14272 * The criteria for update is: 14273 * 14274 * 1. the segment acknowledges some data. Or 14275 * 2. the segment is new, i.e. it has a higher seq num. Or 14276 * 3. the segment is not old and the advertised window is 14277 * larger than the previous advertised window. 14278 */ 14279 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14280 flags |= TH_XMIT_NEEDED; 14281 tcp->tcp_swnd = new_swnd; 14282 if (new_swnd > tcp->tcp_max_swnd) 14283 tcp->tcp_max_swnd = new_swnd; 14284 tcp->tcp_swl1 = seg_seq; 14285 tcp->tcp_swl2 = seg_ack; 14286 } 14287 est: 14288 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14289 14290 switch (tcp->tcp_state) { 14291 case TCPS_FIN_WAIT_1: 14292 if (tcp->tcp_fin_acked) { 14293 tcp->tcp_state = TCPS_FIN_WAIT_2; 14294 /* 14295 * We implement the non-standard BSD/SunOS 14296 * FIN_WAIT_2 flushing algorithm. 14297 * If there is no user attached to this 14298 * TCP endpoint, then this TCP struct 14299 * could hang around forever in FIN_WAIT_2 14300 * state if the peer forgets to send us 14301 * a FIN. To prevent this, we wait only 14302 * 2*MSL (a convenient time value) for 14303 * the FIN to arrive. If it doesn't show up, 14304 * we flush the TCP endpoint. This algorithm, 14305 * though a violation of RFC-793, has worked 14306 * for over 10 years in BSD systems. 14307 * Note: SunOS 4.x waits 675 seconds before 14308 * flushing the FIN_WAIT_2 connection. 14309 */ 14310 TCP_TIMER_RESTART(tcp, 14311 tcp_fin_wait_2_flush_interval); 14312 } 14313 break; 14314 case TCPS_FIN_WAIT_2: 14315 break; /* Shutdown hook? */ 14316 case TCPS_LAST_ACK: 14317 freemsg(mp); 14318 if (tcp->tcp_fin_acked) { 14319 (void) tcp_clean_death(tcp, 0, 19); 14320 return; 14321 } 14322 goto xmit_check; 14323 case TCPS_CLOSING: 14324 if (tcp->tcp_fin_acked) { 14325 tcp->tcp_state = TCPS_TIME_WAIT; 14326 if (!TCP_IS_DETACHED(tcp)) { 14327 TCP_TIMER_RESTART(tcp, 14328 tcp_time_wait_interval); 14329 } else { 14330 tcp_time_wait_append(tcp); 14331 TCP_DBGSTAT(tcp_rput_time_wait); 14332 } 14333 } 14334 /*FALLTHRU*/ 14335 case TCPS_CLOSE_WAIT: 14336 freemsg(mp); 14337 goto xmit_check; 14338 default: 14339 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14340 break; 14341 } 14342 } 14343 if (flags & TH_FIN) { 14344 /* Make sure we ack the fin */ 14345 flags |= TH_ACK_NEEDED; 14346 if (!tcp->tcp_fin_rcvd) { 14347 tcp->tcp_fin_rcvd = B_TRUE; 14348 tcp->tcp_rnxt++; 14349 tcph = tcp->tcp_tcph; 14350 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14351 14352 /* 14353 * Generate the ordrel_ind at the end unless we 14354 * are an eager guy. 14355 * In the eager case tcp_rsrv will do this when run 14356 * after tcp_accept is done. 14357 */ 14358 if (tcp->tcp_listener == NULL && 14359 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14360 flags |= TH_ORDREL_NEEDED; 14361 switch (tcp->tcp_state) { 14362 case TCPS_SYN_RCVD: 14363 case TCPS_ESTABLISHED: 14364 tcp->tcp_state = TCPS_CLOSE_WAIT; 14365 /* Keepalive? */ 14366 break; 14367 case TCPS_FIN_WAIT_1: 14368 if (!tcp->tcp_fin_acked) { 14369 tcp->tcp_state = TCPS_CLOSING; 14370 break; 14371 } 14372 /* FALLTHRU */ 14373 case TCPS_FIN_WAIT_2: 14374 tcp->tcp_state = TCPS_TIME_WAIT; 14375 if (!TCP_IS_DETACHED(tcp)) { 14376 TCP_TIMER_RESTART(tcp, 14377 tcp_time_wait_interval); 14378 } else { 14379 tcp_time_wait_append(tcp); 14380 TCP_DBGSTAT(tcp_rput_time_wait); 14381 } 14382 if (seg_len) { 14383 /* 14384 * implies data piggybacked on FIN. 14385 * break to handle data. 14386 */ 14387 break; 14388 } 14389 freemsg(mp); 14390 goto ack_check; 14391 } 14392 } 14393 } 14394 if (mp == NULL) 14395 goto xmit_check; 14396 if (seg_len == 0) { 14397 freemsg(mp); 14398 goto xmit_check; 14399 } 14400 if (mp->b_rptr == mp->b_wptr) { 14401 /* 14402 * The header has been consumed, so we remove the 14403 * zero-length mblk here. 14404 */ 14405 mp1 = mp; 14406 mp = mp->b_cont; 14407 freeb(mp1); 14408 } 14409 tcph = tcp->tcp_tcph; 14410 tcp->tcp_rack_cnt++; 14411 { 14412 uint32_t cur_max; 14413 14414 cur_max = tcp->tcp_rack_cur_max; 14415 if (tcp->tcp_rack_cnt >= cur_max) { 14416 /* 14417 * We have more unacked data than we should - send 14418 * an ACK now. 14419 */ 14420 flags |= TH_ACK_NEEDED; 14421 cur_max++; 14422 if (cur_max > tcp->tcp_rack_abs_max) 14423 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14424 else 14425 tcp->tcp_rack_cur_max = cur_max; 14426 } else if (TCP_IS_DETACHED(tcp)) { 14427 /* We don't have an ACK timer for detached TCP. */ 14428 flags |= TH_ACK_NEEDED; 14429 } else if (seg_len < mss) { 14430 /* 14431 * If we get a segment that is less than an mss, and we 14432 * already have unacknowledged data, and the amount 14433 * unacknowledged is not a multiple of mss, then we 14434 * better generate an ACK now. Otherwise, this may be 14435 * the tail piece of a transaction, and we would rather 14436 * wait for the response. 14437 */ 14438 uint32_t udif; 14439 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 14440 (uintptr_t)INT_MAX); 14441 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 14442 if (udif && (udif % mss)) 14443 flags |= TH_ACK_NEEDED; 14444 else 14445 flags |= TH_ACK_TIMER_NEEDED; 14446 } else { 14447 /* Start delayed ack timer */ 14448 flags |= TH_ACK_TIMER_NEEDED; 14449 } 14450 } 14451 tcp->tcp_rnxt += seg_len; 14452 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14453 14454 /* Update SACK list */ 14455 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 14456 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 14457 &(tcp->tcp_num_sack_blk)); 14458 } 14459 14460 if (tcp->tcp_urp_mp) { 14461 tcp->tcp_urp_mp->b_cont = mp; 14462 mp = tcp->tcp_urp_mp; 14463 tcp->tcp_urp_mp = NULL; 14464 /* Ready for a new signal. */ 14465 tcp->tcp_urp_last_valid = B_FALSE; 14466 #ifdef DEBUG 14467 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14468 "tcp_rput: sending exdata_ind %s", 14469 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14470 #endif /* DEBUG */ 14471 } 14472 14473 /* 14474 * Check for ancillary data changes compared to last segment. 14475 */ 14476 if (tcp->tcp_ipv6_recvancillary != 0) { 14477 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 14478 if (mp == NULL) 14479 return; 14480 } 14481 14482 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 14483 /* 14484 * Side queue inbound data until the accept happens. 14485 * tcp_accept/tcp_rput drains this when the accept happens. 14486 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 14487 * T_EXDATA_IND) it is queued on b_next. 14488 * XXX Make urgent data use this. Requires: 14489 * Removing tcp_listener check for TH_URG 14490 * Making M_PCPROTO and MARK messages skip the eager case 14491 */ 14492 14493 if (tcp->tcp_kssl_pending) { 14494 tcp_kssl_input(tcp, mp); 14495 } else { 14496 tcp_rcv_enqueue(tcp, mp, seg_len); 14497 } 14498 } else { 14499 if (mp->b_datap->db_type != M_DATA || 14500 (flags & TH_MARKNEXT_NEEDED)) { 14501 if (tcp->tcp_rcv_list != NULL) { 14502 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14503 } 14504 ASSERT(tcp->tcp_rcv_list == NULL || 14505 tcp->tcp_fused_sigurg); 14506 if (flags & TH_MARKNEXT_NEEDED) { 14507 #ifdef DEBUG 14508 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14509 "tcp_rput: sending MSGMARKNEXT %s", 14510 tcp_display(tcp, NULL, 14511 DISP_PORT_ONLY)); 14512 #endif /* DEBUG */ 14513 mp->b_flag |= MSGMARKNEXT; 14514 flags &= ~TH_MARKNEXT_NEEDED; 14515 } 14516 14517 /* Does this need SSL processing first? */ 14518 if ((tcp->tcp_kssl_ctx != NULL) && 14519 (DB_TYPE(mp) == M_DATA)) { 14520 tcp_kssl_input(tcp, mp); 14521 } else { 14522 putnext(tcp->tcp_rq, mp); 14523 if (!canputnext(tcp->tcp_rq)) 14524 tcp->tcp_rwnd -= seg_len; 14525 } 14526 } else if ((flags & (TH_PUSH|TH_FIN)) || 14527 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) { 14528 if (tcp->tcp_rcv_list != NULL) { 14529 /* 14530 * Enqueue the new segment first and then 14531 * call tcp_rcv_drain() to send all data 14532 * up. The other way to do this is to 14533 * send all queued data up and then call 14534 * putnext() to send the new segment up. 14535 * This way can remove the else part later 14536 * on. 14537 * 14538 * We don't this to avoid one more call to 14539 * canputnext() as tcp_rcv_drain() needs to 14540 * call canputnext(). 14541 */ 14542 tcp_rcv_enqueue(tcp, mp, seg_len); 14543 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14544 } else { 14545 /* Does this need SSL processing first? */ 14546 if ((tcp->tcp_kssl_ctx != NULL) && 14547 (DB_TYPE(mp) == M_DATA)) { 14548 tcp_kssl_input(tcp, mp); 14549 } else { 14550 putnext(tcp->tcp_rq, mp); 14551 if (!canputnext(tcp->tcp_rq)) 14552 tcp->tcp_rwnd -= seg_len; 14553 } 14554 } 14555 } else { 14556 /* 14557 * Enqueue all packets when processing an mblk 14558 * from the co queue and also enqueue normal packets. 14559 */ 14560 tcp_rcv_enqueue(tcp, mp, seg_len); 14561 } 14562 /* 14563 * Make sure the timer is running if we have data waiting 14564 * for a push bit. This provides resiliency against 14565 * implementations that do not correctly generate push bits. 14566 */ 14567 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 14568 /* 14569 * The connection may be closed at this point, so don't 14570 * do anything for a detached tcp. 14571 */ 14572 if (!TCP_IS_DETACHED(tcp)) 14573 tcp->tcp_push_tid = TCP_TIMER(tcp, 14574 tcp_push_timer, 14575 MSEC_TO_TICK(tcp_push_timer_interval)); 14576 } 14577 } 14578 xmit_check: 14579 /* Is there anything left to do? */ 14580 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 14581 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 14582 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 14583 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 14584 goto done; 14585 14586 /* Any transmit work to do and a non-zero window? */ 14587 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 14588 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 14589 if (flags & TH_REXMIT_NEEDED) { 14590 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 14591 14592 BUMP_MIB(&tcp_mib, tcpOutFastRetrans); 14593 if (snd_size > mss) 14594 snd_size = mss; 14595 if (snd_size > tcp->tcp_swnd) 14596 snd_size = tcp->tcp_swnd; 14597 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 14598 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 14599 B_TRUE); 14600 14601 if (mp1 != NULL) { 14602 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 14603 tcp->tcp_csuna = tcp->tcp_snxt; 14604 BUMP_MIB(&tcp_mib, tcpRetransSegs); 14605 UPDATE_MIB(&tcp_mib, tcpRetransBytes, snd_size); 14606 TCP_RECORD_TRACE(tcp, mp1, 14607 TCP_TRACE_SEND_PKT); 14608 tcp_send_data(tcp, tcp->tcp_wq, mp1); 14609 } 14610 } 14611 if (flags & TH_NEED_SACK_REXMIT) { 14612 tcp_sack_rxmit(tcp, &flags); 14613 } 14614 /* 14615 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 14616 * out new segment. Note that tcp_rexmit should not be 14617 * set, otherwise TH_LIMIT_XMIT should not be set. 14618 */ 14619 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 14620 if (!tcp->tcp_rexmit) { 14621 tcp_wput_data(tcp, NULL, B_FALSE); 14622 } else { 14623 tcp_ss_rexmit(tcp); 14624 } 14625 } 14626 /* 14627 * Adjust tcp_cwnd back to normal value after sending 14628 * new data segments. 14629 */ 14630 if (flags & TH_LIMIT_XMIT) { 14631 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 14632 /* 14633 * This will restart the timer. Restarting the 14634 * timer is used to avoid a timeout before the 14635 * limited transmitted segment's ACK gets back. 14636 */ 14637 if (tcp->tcp_xmit_head != NULL) 14638 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 14639 } 14640 14641 /* Anything more to do? */ 14642 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 14643 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 14644 goto done; 14645 } 14646 ack_check: 14647 if (flags & TH_SEND_URP_MARK) { 14648 ASSERT(tcp->tcp_urp_mark_mp); 14649 /* 14650 * Send up any queued data and then send the mark message 14651 */ 14652 if (tcp->tcp_rcv_list != NULL) { 14653 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14654 } 14655 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 14656 14657 mp1 = tcp->tcp_urp_mark_mp; 14658 tcp->tcp_urp_mark_mp = NULL; 14659 #ifdef DEBUG 14660 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14661 "tcp_rput: sending zero-length %s %s", 14662 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 14663 "MSGNOTMARKNEXT"), 14664 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14665 #endif /* DEBUG */ 14666 putnext(tcp->tcp_rq, mp1); 14667 flags &= ~TH_SEND_URP_MARK; 14668 } 14669 if (flags & TH_ACK_NEEDED) { 14670 /* 14671 * Time to send an ack for some reason. 14672 */ 14673 mp1 = tcp_ack_mp(tcp); 14674 14675 if (mp1 != NULL) { 14676 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 14677 tcp_send_data(tcp, tcp->tcp_wq, mp1); 14678 BUMP_LOCAL(tcp->tcp_obsegs); 14679 BUMP_MIB(&tcp_mib, tcpOutAck); 14680 } 14681 if (tcp->tcp_ack_tid != 0) { 14682 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 14683 tcp->tcp_ack_tid = 0; 14684 } 14685 } 14686 if (flags & TH_ACK_TIMER_NEEDED) { 14687 /* 14688 * Arrange for deferred ACK or push wait timeout. 14689 * Start timer if it is not already running. 14690 */ 14691 if (tcp->tcp_ack_tid == 0) { 14692 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 14693 MSEC_TO_TICK(tcp->tcp_localnet ? 14694 (clock_t)tcp_local_dack_interval : 14695 (clock_t)tcp_deferred_ack_interval)); 14696 } 14697 } 14698 if (flags & TH_ORDREL_NEEDED) { 14699 /* 14700 * Send up the ordrel_ind unless we are an eager guy. 14701 * In the eager case tcp_rsrv will do this when run 14702 * after tcp_accept is done. 14703 */ 14704 ASSERT(tcp->tcp_listener == NULL); 14705 if (tcp->tcp_rcv_list != NULL) { 14706 /* 14707 * Push any mblk(s) enqueued from co processing. 14708 */ 14709 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14710 } 14711 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 14712 if ((mp1 = mi_tpi_ordrel_ind()) != NULL) { 14713 tcp->tcp_ordrel_done = B_TRUE; 14714 putnext(tcp->tcp_rq, mp1); 14715 if (tcp->tcp_deferred_clean_death) { 14716 /* 14717 * tcp_clean_death was deferred 14718 * for T_ORDREL_IND - do it now 14719 */ 14720 (void) tcp_clean_death(tcp, 14721 tcp->tcp_client_errno, 20); 14722 tcp->tcp_deferred_clean_death = B_FALSE; 14723 } 14724 } else { 14725 /* 14726 * Run the orderly release in the 14727 * service routine. 14728 */ 14729 qenable(tcp->tcp_rq); 14730 /* 14731 * Caveat(XXX): The machine may be so 14732 * overloaded that tcp_rsrv() is not scheduled 14733 * until after the endpoint has transitioned 14734 * to TCPS_TIME_WAIT 14735 * and tcp_time_wait_interval expires. Then 14736 * tcp_timer() will blow away state in tcp_t 14737 * and T_ORDREL_IND will never be delivered 14738 * upstream. Unlikely but potentially 14739 * a problem. 14740 */ 14741 } 14742 } 14743 done: 14744 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 14745 } 14746 14747 /* 14748 * This function does PAWS protection check. Returns B_TRUE if the 14749 * segment passes the PAWS test, else returns B_FALSE. 14750 */ 14751 boolean_t 14752 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 14753 { 14754 uint8_t flags; 14755 int options; 14756 uint8_t *up; 14757 14758 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 14759 /* 14760 * If timestamp option is aligned nicely, get values inline, 14761 * otherwise call general routine to parse. Only do that 14762 * if timestamp is the only option. 14763 */ 14764 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 14765 TCPOPT_REAL_TS_LEN && 14766 OK_32PTR((up = ((uint8_t *)tcph) + 14767 TCP_MIN_HEADER_LENGTH)) && 14768 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 14769 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 14770 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 14771 14772 options = TCP_OPT_TSTAMP_PRESENT; 14773 } else { 14774 if (tcp->tcp_snd_sack_ok) { 14775 tcpoptp->tcp = tcp; 14776 } else { 14777 tcpoptp->tcp = NULL; 14778 } 14779 options = tcp_parse_options(tcph, tcpoptp); 14780 } 14781 14782 if (options & TCP_OPT_TSTAMP_PRESENT) { 14783 /* 14784 * Do PAWS per RFC 1323 section 4.2. Accept RST 14785 * regardless of the timestamp, page 18 RFC 1323.bis. 14786 */ 14787 if ((flags & TH_RST) == 0 && 14788 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 14789 tcp->tcp_ts_recent)) { 14790 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 14791 PAWS_TIMEOUT)) { 14792 /* This segment is not acceptable. */ 14793 return (B_FALSE); 14794 } else { 14795 /* 14796 * Connection has been idle for 14797 * too long. Reset the timestamp 14798 * and assume the segment is valid. 14799 */ 14800 tcp->tcp_ts_recent = 14801 tcpoptp->tcp_opt_ts_val; 14802 } 14803 } 14804 } else { 14805 /* 14806 * If we don't get a timestamp on every packet, we 14807 * figure we can't really trust 'em, so we stop sending 14808 * and parsing them. 14809 */ 14810 tcp->tcp_snd_ts_ok = B_FALSE; 14811 14812 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 14813 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 14814 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 14815 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN); 14816 if (tcp->tcp_snd_sack_ok) { 14817 ASSERT(tcp->tcp_sack_info != NULL); 14818 tcp->tcp_max_sack_blk = 4; 14819 } 14820 } 14821 return (B_TRUE); 14822 } 14823 14824 /* 14825 * Attach ancillary data to a received TCP segments for the 14826 * ancillary pieces requested by the application that are 14827 * different than they were in the previous data segment. 14828 * 14829 * Save the "current" values once memory allocation is ok so that 14830 * when memory allocation fails we can just wait for the next data segment. 14831 */ 14832 static mblk_t * 14833 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 14834 { 14835 struct T_optdata_ind *todi; 14836 int optlen; 14837 uchar_t *optptr; 14838 struct T_opthdr *toh; 14839 uint_t addflag; /* Which pieces to add */ 14840 mblk_t *mp1; 14841 14842 optlen = 0; 14843 addflag = 0; 14844 /* If app asked for pktinfo and the index has changed ... */ 14845 if ((ipp->ipp_fields & IPPF_IFINDEX) && 14846 ipp->ipp_ifindex != tcp->tcp_recvifindex && 14847 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 14848 optlen += sizeof (struct T_opthdr) + 14849 sizeof (struct in6_pktinfo); 14850 addflag |= TCP_IPV6_RECVPKTINFO; 14851 } 14852 /* If app asked for hoplimit and it has changed ... */ 14853 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 14854 ipp->ipp_hoplimit != tcp->tcp_recvhops && 14855 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 14856 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 14857 addflag |= TCP_IPV6_RECVHOPLIMIT; 14858 } 14859 /* If app asked for tclass and it has changed ... */ 14860 if ((ipp->ipp_fields & IPPF_TCLASS) && 14861 ipp->ipp_tclass != tcp->tcp_recvtclass && 14862 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 14863 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 14864 addflag |= TCP_IPV6_RECVTCLASS; 14865 } 14866 /* 14867 * If app asked for hopbyhop headers and it has changed ... 14868 * For security labels, note that (1) security labels can't change on 14869 * a connected socket at all, (2) we're connected to at most one peer, 14870 * (3) if anything changes, then it must be some other extra option. 14871 */ 14872 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 14873 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 14874 (ipp->ipp_fields & IPPF_HOPOPTS), 14875 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 14876 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen - 14877 tcp->tcp_label_len; 14878 addflag |= TCP_IPV6_RECVHOPOPTS; 14879 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 14880 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 14881 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 14882 return (mp); 14883 } 14884 /* If app asked for dst headers before routing headers ... */ 14885 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 14886 ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 14887 (ipp->ipp_fields & IPPF_RTDSTOPTS), 14888 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 14889 optlen += sizeof (struct T_opthdr) + 14890 ipp->ipp_rtdstoptslen; 14891 addflag |= TCP_IPV6_RECVRTDSTOPTS; 14892 if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts, 14893 &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), 14894 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 14895 return (mp); 14896 } 14897 /* If app asked for routing headers and it has changed ... */ 14898 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 14899 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 14900 (ipp->ipp_fields & IPPF_RTHDR), 14901 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 14902 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 14903 addflag |= TCP_IPV6_RECVRTHDR; 14904 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 14905 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 14906 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 14907 return (mp); 14908 } 14909 /* If app asked for dest headers and it has changed ... */ 14910 if ((tcp->tcp_ipv6_recvancillary & 14911 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 14912 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 14913 (ipp->ipp_fields & IPPF_DSTOPTS), 14914 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 14915 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 14916 addflag |= TCP_IPV6_RECVDSTOPTS; 14917 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 14918 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 14919 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 14920 return (mp); 14921 } 14922 14923 if (optlen == 0) { 14924 /* Nothing to add */ 14925 return (mp); 14926 } 14927 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 14928 if (mp1 == NULL) { 14929 /* 14930 * Defer sending ancillary data until the next TCP segment 14931 * arrives. 14932 */ 14933 return (mp); 14934 } 14935 mp1->b_cont = mp; 14936 mp = mp1; 14937 mp->b_wptr += sizeof (*todi) + optlen; 14938 mp->b_datap->db_type = M_PROTO; 14939 todi = (struct T_optdata_ind *)mp->b_rptr; 14940 todi->PRIM_type = T_OPTDATA_IND; 14941 todi->DATA_flag = 1; /* MORE data */ 14942 todi->OPT_length = optlen; 14943 todi->OPT_offset = sizeof (*todi); 14944 optptr = (uchar_t *)&todi[1]; 14945 /* 14946 * If app asked for pktinfo and the index has changed ... 14947 * Note that the local address never changes for the connection. 14948 */ 14949 if (addflag & TCP_IPV6_RECVPKTINFO) { 14950 struct in6_pktinfo *pkti; 14951 14952 toh = (struct T_opthdr *)optptr; 14953 toh->level = IPPROTO_IPV6; 14954 toh->name = IPV6_PKTINFO; 14955 toh->len = sizeof (*toh) + sizeof (*pkti); 14956 toh->status = 0; 14957 optptr += sizeof (*toh); 14958 pkti = (struct in6_pktinfo *)optptr; 14959 if (tcp->tcp_ipversion == IPV6_VERSION) 14960 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 14961 else 14962 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 14963 &pkti->ipi6_addr); 14964 pkti->ipi6_ifindex = ipp->ipp_ifindex; 14965 optptr += sizeof (*pkti); 14966 ASSERT(OK_32PTR(optptr)); 14967 /* Save as "last" value */ 14968 tcp->tcp_recvifindex = ipp->ipp_ifindex; 14969 } 14970 /* If app asked for hoplimit and it has changed ... */ 14971 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 14972 toh = (struct T_opthdr *)optptr; 14973 toh->level = IPPROTO_IPV6; 14974 toh->name = IPV6_HOPLIMIT; 14975 toh->len = sizeof (*toh) + sizeof (uint_t); 14976 toh->status = 0; 14977 optptr += sizeof (*toh); 14978 *(uint_t *)optptr = ipp->ipp_hoplimit; 14979 optptr += sizeof (uint_t); 14980 ASSERT(OK_32PTR(optptr)); 14981 /* Save as "last" value */ 14982 tcp->tcp_recvhops = ipp->ipp_hoplimit; 14983 } 14984 /* If app asked for tclass and it has changed ... */ 14985 if (addflag & TCP_IPV6_RECVTCLASS) { 14986 toh = (struct T_opthdr *)optptr; 14987 toh->level = IPPROTO_IPV6; 14988 toh->name = IPV6_TCLASS; 14989 toh->len = sizeof (*toh) + sizeof (uint_t); 14990 toh->status = 0; 14991 optptr += sizeof (*toh); 14992 *(uint_t *)optptr = ipp->ipp_tclass; 14993 optptr += sizeof (uint_t); 14994 ASSERT(OK_32PTR(optptr)); 14995 /* Save as "last" value */ 14996 tcp->tcp_recvtclass = ipp->ipp_tclass; 14997 } 14998 if (addflag & TCP_IPV6_RECVHOPOPTS) { 14999 toh = (struct T_opthdr *)optptr; 15000 toh->level = IPPROTO_IPV6; 15001 toh->name = IPV6_HOPOPTS; 15002 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen - 15003 tcp->tcp_label_len; 15004 toh->status = 0; 15005 optptr += sizeof (*toh); 15006 bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr, 15007 ipp->ipp_hopoptslen - tcp->tcp_label_len); 15008 optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len; 15009 ASSERT(OK_32PTR(optptr)); 15010 /* Save as last value */ 15011 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 15012 (ipp->ipp_fields & IPPF_HOPOPTS), 15013 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15014 } 15015 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15016 toh = (struct T_opthdr *)optptr; 15017 toh->level = IPPROTO_IPV6; 15018 toh->name = IPV6_RTHDRDSTOPTS; 15019 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15020 toh->status = 0; 15021 optptr += sizeof (*toh); 15022 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15023 optptr += ipp->ipp_rtdstoptslen; 15024 ASSERT(OK_32PTR(optptr)); 15025 /* Save as last value */ 15026 ip_savebuf((void **)&tcp->tcp_rtdstopts, 15027 &tcp->tcp_rtdstoptslen, 15028 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15029 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15030 } 15031 if (addflag & TCP_IPV6_RECVRTHDR) { 15032 toh = (struct T_opthdr *)optptr; 15033 toh->level = IPPROTO_IPV6; 15034 toh->name = IPV6_RTHDR; 15035 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15036 toh->status = 0; 15037 optptr += sizeof (*toh); 15038 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15039 optptr += ipp->ipp_rthdrlen; 15040 ASSERT(OK_32PTR(optptr)); 15041 /* Save as last value */ 15042 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 15043 (ipp->ipp_fields & IPPF_RTHDR), 15044 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15045 } 15046 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15047 toh = (struct T_opthdr *)optptr; 15048 toh->level = IPPROTO_IPV6; 15049 toh->name = IPV6_DSTOPTS; 15050 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15051 toh->status = 0; 15052 optptr += sizeof (*toh); 15053 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15054 optptr += ipp->ipp_dstoptslen; 15055 ASSERT(OK_32PTR(optptr)); 15056 /* Save as last value */ 15057 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 15058 (ipp->ipp_fields & IPPF_DSTOPTS), 15059 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15060 } 15061 ASSERT(optptr == mp->b_wptr); 15062 return (mp); 15063 } 15064 15065 15066 /* 15067 * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK 15068 * or a "bad" IRE detected by tcp_adapt_ire. 15069 * We can't tell if the failure was due to the laddr or the faddr 15070 * thus we clear out all addresses and ports. 15071 */ 15072 static void 15073 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error) 15074 { 15075 queue_t *q = tcp->tcp_rq; 15076 tcph_t *tcph; 15077 struct T_error_ack *tea; 15078 conn_t *connp = tcp->tcp_connp; 15079 15080 15081 ASSERT(mp->b_datap->db_type == M_PCPROTO); 15082 15083 if (mp->b_cont) { 15084 freemsg(mp->b_cont); 15085 mp->b_cont = NULL; 15086 } 15087 tea = (struct T_error_ack *)mp->b_rptr; 15088 switch (tea->PRIM_type) { 15089 case T_BIND_ACK: 15090 /* 15091 * Need to unbind with classifier since we were just told that 15092 * our bind succeeded. 15093 */ 15094 tcp->tcp_hard_bound = B_FALSE; 15095 tcp->tcp_hard_binding = B_FALSE; 15096 15097 ipcl_hash_remove(connp); 15098 /* Reuse the mblk if possible */ 15099 ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >= 15100 sizeof (*tea)); 15101 mp->b_rptr = mp->b_datap->db_base; 15102 mp->b_wptr = mp->b_rptr + sizeof (*tea); 15103 tea = (struct T_error_ack *)mp->b_rptr; 15104 tea->PRIM_type = T_ERROR_ACK; 15105 tea->TLI_error = TSYSERR; 15106 tea->UNIX_error = error; 15107 if (tcp->tcp_state >= TCPS_SYN_SENT) { 15108 tea->ERROR_prim = T_CONN_REQ; 15109 } else { 15110 tea->ERROR_prim = O_T_BIND_REQ; 15111 } 15112 break; 15113 15114 case T_ERROR_ACK: 15115 if (tcp->tcp_state >= TCPS_SYN_SENT) 15116 tea->ERROR_prim = T_CONN_REQ; 15117 break; 15118 default: 15119 panic("tcp_bind_failed: unexpected TPI type"); 15120 /*NOTREACHED*/ 15121 } 15122 15123 tcp->tcp_state = TCPS_IDLE; 15124 if (tcp->tcp_ipversion == IPV4_VERSION) 15125 tcp->tcp_ipha->ipha_src = 0; 15126 else 15127 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 15128 /* 15129 * Copy of the src addr. in tcp_t is needed since 15130 * the lookup funcs. can only look at tcp_t 15131 */ 15132 V6_SET_ZERO(tcp->tcp_ip_src_v6); 15133 15134 tcph = tcp->tcp_tcph; 15135 tcph->th_lport[0] = 0; 15136 tcph->th_lport[1] = 0; 15137 tcp_bind_hash_remove(tcp); 15138 bzero(&connp->u_port, sizeof (connp->u_port)); 15139 /* blow away saved option results if any */ 15140 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 15141 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 15142 15143 conn_delete_ire(tcp->tcp_connp, NULL); 15144 putnext(q, mp); 15145 } 15146 15147 /* 15148 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15149 * messages. 15150 */ 15151 void 15152 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15153 { 15154 mblk_t *mp1; 15155 uchar_t *rptr = mp->b_rptr; 15156 queue_t *q = tcp->tcp_rq; 15157 struct T_error_ack *tea; 15158 uint32_t mss; 15159 mblk_t *syn_mp; 15160 mblk_t *mdti; 15161 int retval; 15162 mblk_t *ire_mp; 15163 15164 switch (mp->b_datap->db_type) { 15165 case M_PROTO: 15166 case M_PCPROTO: 15167 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15168 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15169 break; 15170 tea = (struct T_error_ack *)rptr; 15171 switch (tea->PRIM_type) { 15172 case T_BIND_ACK: 15173 /* 15174 * Adapt Multidata information, if any. The 15175 * following tcp_mdt_update routine will free 15176 * the message. 15177 */ 15178 if ((mdti = tcp_mdt_info_mp(mp)) != NULL) { 15179 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 15180 b_rptr)->mdt_capab, B_TRUE); 15181 freemsg(mdti); 15182 } 15183 15184 /* Get the IRE, if we had requested for it */ 15185 ire_mp = tcp_ire_mp(mp); 15186 15187 if (tcp->tcp_hard_binding) { 15188 tcp->tcp_hard_binding = B_FALSE; 15189 tcp->tcp_hard_bound = B_TRUE; 15190 CL_INET_CONNECT(tcp); 15191 } else { 15192 if (ire_mp != NULL) 15193 freeb(ire_mp); 15194 goto after_syn_sent; 15195 } 15196 15197 retval = tcp_adapt_ire(tcp, ire_mp); 15198 if (ire_mp != NULL) 15199 freeb(ire_mp); 15200 if (retval == 0) { 15201 tcp_bind_failed(tcp, mp, 15202 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15203 ENETUNREACH : EADDRNOTAVAIL)); 15204 return; 15205 } 15206 /* 15207 * Don't let an endpoint connect to itself. 15208 * Also checked in tcp_connect() but that 15209 * check can't handle the case when the 15210 * local IP address is INADDR_ANY. 15211 */ 15212 if (tcp->tcp_ipversion == IPV4_VERSION) { 15213 if ((tcp->tcp_ipha->ipha_dst == 15214 tcp->tcp_ipha->ipha_src) && 15215 (BE16_EQL(tcp->tcp_tcph->th_lport, 15216 tcp->tcp_tcph->th_fport))) { 15217 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15218 return; 15219 } 15220 } else { 15221 if (IN6_ARE_ADDR_EQUAL( 15222 &tcp->tcp_ip6h->ip6_dst, 15223 &tcp->tcp_ip6h->ip6_src) && 15224 (BE16_EQL(tcp->tcp_tcph->th_lport, 15225 tcp->tcp_tcph->th_fport))) { 15226 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15227 return; 15228 } 15229 } 15230 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 15231 /* 15232 * This should not be possible! Just for 15233 * defensive coding... 15234 */ 15235 if (tcp->tcp_state != TCPS_SYN_SENT) 15236 goto after_syn_sent; 15237 15238 if (is_system_labeled() && 15239 !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) { 15240 tcp_bind_failed(tcp, mp, EHOSTUNREACH); 15241 return; 15242 } 15243 15244 ASSERT(q == tcp->tcp_rq); 15245 /* 15246 * tcp_adapt_ire() does not adjust 15247 * for TCP/IP header length. 15248 */ 15249 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 15250 15251 /* 15252 * Just make sure our rwnd is at 15253 * least tcp_recv_hiwat_mss * MSS 15254 * large, and round up to the nearest 15255 * MSS. 15256 * 15257 * We do the round up here because 15258 * we need to get the interface 15259 * MTU first before we can do the 15260 * round up. 15261 */ 15262 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 15263 tcp_recv_hiwat_minmss * mss); 15264 q->q_hiwat = tcp->tcp_rwnd; 15265 tcp_set_ws_value(tcp); 15266 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 15267 tcp->tcp_tcph->th_win); 15268 if (tcp->tcp_rcv_ws > 0 || tcp_wscale_always) 15269 tcp->tcp_snd_ws_ok = B_TRUE; 15270 15271 /* 15272 * Set tcp_snd_ts_ok to true 15273 * so that tcp_xmit_mp will 15274 * include the timestamp 15275 * option in the SYN segment. 15276 */ 15277 if (tcp_tstamp_always || 15278 (tcp->tcp_rcv_ws && tcp_tstamp_if_wscale)) { 15279 tcp->tcp_snd_ts_ok = B_TRUE; 15280 } 15281 15282 /* 15283 * tcp_snd_sack_ok can be set in 15284 * tcp_adapt_ire() if the sack metric 15285 * is set. So check it here also. 15286 */ 15287 if (tcp_sack_permitted == 2 || 15288 tcp->tcp_snd_sack_ok) { 15289 if (tcp->tcp_sack_info == NULL) { 15290 tcp->tcp_sack_info = 15291 kmem_cache_alloc(tcp_sack_info_cache, 15292 KM_SLEEP); 15293 } 15294 tcp->tcp_snd_sack_ok = B_TRUE; 15295 } 15296 15297 /* 15298 * Should we use ECN? Note that the current 15299 * default value (SunOS 5.9) of tcp_ecn_permitted 15300 * is 1. The reason for doing this is that there 15301 * are equipments out there that will drop ECN 15302 * enabled IP packets. Setting it to 1 avoids 15303 * compatibility problems. 15304 */ 15305 if (tcp_ecn_permitted == 2) 15306 tcp->tcp_ecn_ok = B_TRUE; 15307 15308 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15309 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 15310 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 15311 if (syn_mp) { 15312 pid_t pid; 15313 15314 if (mp->b_cont == NULL) { 15315 pid = tcp->tcp_cpid; 15316 } else { 15317 pid = DB_CPID(mp->b_cont); 15318 } 15319 15320 TCP_RECORD_TRACE(tcp, syn_mp, 15321 TCP_TRACE_SEND_PKT); 15322 DB_CPID(syn_mp) = pid; 15323 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 15324 } 15325 after_syn_sent: 15326 /* 15327 * A trailer mblk indicates a waiting client upstream. 15328 * We complete here the processing begun in 15329 * either tcp_bind() or tcp_connect() by passing 15330 * upstream the reply message they supplied. 15331 */ 15332 mp1 = mp; 15333 mp = mp->b_cont; 15334 freeb(mp1); 15335 if (mp) 15336 break; 15337 return; 15338 case T_ERROR_ACK: 15339 if (tcp->tcp_debug) { 15340 (void) strlog(TCP_MOD_ID, 0, 1, 15341 SL_TRACE|SL_ERROR, 15342 "tcp_rput_other: case T_ERROR_ACK, " 15343 "ERROR_prim == %d", 15344 tea->ERROR_prim); 15345 } 15346 switch (tea->ERROR_prim) { 15347 case O_T_BIND_REQ: 15348 case T_BIND_REQ: 15349 tcp_bind_failed(tcp, mp, 15350 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15351 ENETUNREACH : EADDRNOTAVAIL)); 15352 return; 15353 case T_UNBIND_REQ: 15354 tcp->tcp_hard_binding = B_FALSE; 15355 tcp->tcp_hard_bound = B_FALSE; 15356 if (mp->b_cont) { 15357 freemsg(mp->b_cont); 15358 mp->b_cont = NULL; 15359 } 15360 if (tcp->tcp_unbind_pending) 15361 tcp->tcp_unbind_pending = 0; 15362 else { 15363 /* From tcp_ip_unbind() - free */ 15364 freemsg(mp); 15365 return; 15366 } 15367 break; 15368 case T_SVR4_OPTMGMT_REQ: 15369 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15370 /* T_OPTMGMT_REQ generated by TCP */ 15371 printf("T_SVR4_OPTMGMT_REQ failed " 15372 "%d/%d - dropped (cnt %d)\n", 15373 tea->TLI_error, tea->UNIX_error, 15374 tcp->tcp_drop_opt_ack_cnt); 15375 freemsg(mp); 15376 tcp->tcp_drop_opt_ack_cnt--; 15377 return; 15378 } 15379 break; 15380 } 15381 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15382 tcp->tcp_drop_opt_ack_cnt > 0) { 15383 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15384 "- dropped (cnt %d)\n", 15385 tea->TLI_error, tea->UNIX_error, 15386 tcp->tcp_drop_opt_ack_cnt); 15387 freemsg(mp); 15388 tcp->tcp_drop_opt_ack_cnt--; 15389 return; 15390 } 15391 break; 15392 case T_OPTMGMT_ACK: 15393 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15394 /* T_OPTMGMT_REQ generated by TCP */ 15395 freemsg(mp); 15396 tcp->tcp_drop_opt_ack_cnt--; 15397 return; 15398 } 15399 break; 15400 default: 15401 break; 15402 } 15403 break; 15404 case M_CTL: 15405 /* 15406 * ICMP messages. 15407 */ 15408 tcp_icmp_error(tcp, mp); 15409 return; 15410 case M_FLUSH: 15411 if (*rptr & FLUSHR) 15412 flushq(q, FLUSHDATA); 15413 break; 15414 default: 15415 break; 15416 } 15417 /* 15418 * Make sure we set this bit before sending the ACK for 15419 * bind. Otherwise accept could possibly run and free 15420 * this tcp struct. 15421 */ 15422 putnext(q, mp); 15423 } 15424 15425 /* 15426 * Called as the result of a qbufcall or a qtimeout to remedy a failure 15427 * to allocate a T_ordrel_ind in tcp_rsrv(). qenable(q) will make 15428 * tcp_rsrv() try again. 15429 */ 15430 static void 15431 tcp_ordrel_kick(void *arg) 15432 { 15433 conn_t *connp = (conn_t *)arg; 15434 tcp_t *tcp = connp->conn_tcp; 15435 15436 tcp->tcp_ordrelid = 0; 15437 tcp->tcp_timeout = B_FALSE; 15438 if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL && 15439 tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15440 qenable(tcp->tcp_rq); 15441 } 15442 } 15443 15444 /* ARGSUSED */ 15445 static void 15446 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15447 { 15448 conn_t *connp = (conn_t *)arg; 15449 tcp_t *tcp = connp->conn_tcp; 15450 queue_t *q = tcp->tcp_rq; 15451 uint_t thwin; 15452 15453 freeb(mp); 15454 15455 TCP_STAT(tcp_rsrv_calls); 15456 15457 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15458 return; 15459 } 15460 15461 if (tcp->tcp_fused) { 15462 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15463 15464 ASSERT(tcp->tcp_fused); 15465 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 15466 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 15467 ASSERT(!TCP_IS_DETACHED(tcp)); 15468 ASSERT(tcp->tcp_connp->conn_sqp == 15469 peer_tcp->tcp_connp->conn_sqp); 15470 15471 /* 15472 * Normally we would not get backenabled in synchronous 15473 * streams mode, but in case this happens, we need to stop 15474 * synchronous streams temporarily to prevent a race with 15475 * tcp_fuse_rrw() or tcp_fuse_rinfop(). It is safe to access 15476 * tcp_rcv_list here because those entry points will return 15477 * right away when synchronous streams is stopped. 15478 */ 15479 TCP_FUSE_SYNCSTR_STOP(tcp); 15480 if (tcp->tcp_rcv_list != NULL) 15481 (void) tcp_rcv_drain(tcp->tcp_rq, tcp); 15482 15483 tcp_clrqfull(peer_tcp); 15484 TCP_FUSE_SYNCSTR_RESUME(tcp); 15485 TCP_STAT(tcp_fusion_backenabled); 15486 return; 15487 } 15488 15489 if (canputnext(q)) { 15490 tcp->tcp_rwnd = q->q_hiwat; 15491 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 15492 << tcp->tcp_rcv_ws; 15493 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 15494 /* 15495 * Send back a window update immediately if TCP is above 15496 * ESTABLISHED state and the increase of the rcv window 15497 * that the other side knows is at least 1 MSS after flow 15498 * control is lifted. 15499 */ 15500 if (tcp->tcp_state >= TCPS_ESTABLISHED && 15501 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 15502 tcp_xmit_ctl(NULL, tcp, 15503 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 15504 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 15505 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 15506 } 15507 } 15508 /* Handle a failure to allocate a T_ORDREL_IND here */ 15509 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15510 ASSERT(tcp->tcp_listener == NULL); 15511 if (tcp->tcp_rcv_list != NULL) { 15512 (void) tcp_rcv_drain(q, tcp); 15513 } 15514 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15515 mp = mi_tpi_ordrel_ind(); 15516 if (mp) { 15517 tcp->tcp_ordrel_done = B_TRUE; 15518 putnext(q, mp); 15519 if (tcp->tcp_deferred_clean_death) { 15520 /* 15521 * tcp_clean_death was deferred for 15522 * T_ORDREL_IND - do it now 15523 */ 15524 tcp->tcp_deferred_clean_death = B_FALSE; 15525 (void) tcp_clean_death(tcp, 15526 tcp->tcp_client_errno, 22); 15527 } 15528 } else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 15529 /* 15530 * If there isn't already a timer running 15531 * start one. Use a 4 second 15532 * timer as a fallback since it can't fail. 15533 */ 15534 tcp->tcp_timeout = B_TRUE; 15535 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 15536 MSEC_TO_TICK(4000)); 15537 } 15538 } 15539 } 15540 15541 /* 15542 * The read side service routine is called mostly when we get back-enabled as a 15543 * result of flow control relief. Since we don't actually queue anything in 15544 * TCP, we have no data to send out of here. What we do is clear the receive 15545 * window, and send out a window update. 15546 * This routine is also called to drive an orderly release message upstream 15547 * if the attempt in tcp_rput failed. 15548 */ 15549 static void 15550 tcp_rsrv(queue_t *q) 15551 { 15552 conn_t *connp = Q_TO_CONN(q); 15553 tcp_t *tcp = connp->conn_tcp; 15554 mblk_t *mp; 15555 15556 /* No code does a putq on the read side */ 15557 ASSERT(q->q_first == NULL); 15558 15559 /* Nothing to do for the default queue */ 15560 if (q == tcp_g_q) { 15561 return; 15562 } 15563 15564 mp = allocb(0, BPRI_HI); 15565 if (mp == NULL) { 15566 /* 15567 * We are under memory pressure. Return for now and we 15568 * we will be called again later. 15569 */ 15570 if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 15571 /* 15572 * If there isn't already a timer running 15573 * start one. Use a 4 second 15574 * timer as a fallback since it can't fail. 15575 */ 15576 tcp->tcp_timeout = B_TRUE; 15577 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 15578 MSEC_TO_TICK(4000)); 15579 } 15580 return; 15581 } 15582 CONN_INC_REF(connp); 15583 squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp, 15584 SQTAG_TCP_RSRV); 15585 } 15586 15587 /* 15588 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 15589 * We do not allow the receive window to shrink. After setting rwnd, 15590 * set the flow control hiwat of the stream. 15591 * 15592 * This function is called in 2 cases: 15593 * 15594 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 15595 * connection (passive open) and in tcp_rput_data() for active connect. 15596 * This is called after tcp_mss_set() when the desired MSS value is known. 15597 * This makes sure that our window size is a mutiple of the other side's 15598 * MSS. 15599 * 2) Handling SO_RCVBUF option. 15600 * 15601 * It is ASSUMED that the requested size is a multiple of the current MSS. 15602 * 15603 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 15604 * user requests so. 15605 */ 15606 static int 15607 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 15608 { 15609 uint32_t mss = tcp->tcp_mss; 15610 uint32_t old_max_rwnd; 15611 uint32_t max_transmittable_rwnd; 15612 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 15613 15614 if (tcp->tcp_fused) { 15615 size_t sth_hiwat; 15616 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15617 15618 ASSERT(peer_tcp != NULL); 15619 /* 15620 * Record the stream head's high water mark for 15621 * this endpoint; this is used for flow-control 15622 * purposes in tcp_fuse_output(). 15623 */ 15624 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 15625 if (!tcp_detached) 15626 (void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat); 15627 15628 /* 15629 * In the fusion case, the maxpsz stream head value of 15630 * our peer is set according to its send buffer size 15631 * and our receive buffer size; since the latter may 15632 * have changed we need to update the peer's maxpsz. 15633 */ 15634 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 15635 return (rwnd); 15636 } 15637 15638 if (tcp_detached) 15639 old_max_rwnd = tcp->tcp_rwnd; 15640 else 15641 old_max_rwnd = tcp->tcp_rq->q_hiwat; 15642 15643 /* 15644 * Insist on a receive window that is at least 15645 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 15646 * funny TCP interactions of Nagle algorithm, SWS avoidance 15647 * and delayed acknowledgement. 15648 */ 15649 rwnd = MAX(rwnd, tcp_recv_hiwat_minmss * mss); 15650 15651 /* 15652 * If window size info has already been exchanged, TCP should not 15653 * shrink the window. Shrinking window is doable if done carefully. 15654 * We may add that support later. But so far there is not a real 15655 * need to do that. 15656 */ 15657 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 15658 /* MSS may have changed, do a round up again. */ 15659 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 15660 } 15661 15662 /* 15663 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 15664 * can be applied even before the window scale option is decided. 15665 */ 15666 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 15667 if (rwnd > max_transmittable_rwnd) { 15668 rwnd = max_transmittable_rwnd - 15669 (max_transmittable_rwnd % mss); 15670 if (rwnd < mss) 15671 rwnd = max_transmittable_rwnd; 15672 /* 15673 * If we're over the limit we may have to back down tcp_rwnd. 15674 * The increment below won't work for us. So we set all three 15675 * here and the increment below will have no effect. 15676 */ 15677 tcp->tcp_rwnd = old_max_rwnd = rwnd; 15678 } 15679 if (tcp->tcp_localnet) { 15680 tcp->tcp_rack_abs_max = 15681 MIN(tcp_local_dacks_max, rwnd / mss / 2); 15682 } else { 15683 /* 15684 * For a remote host on a different subnet (through a router), 15685 * we ack every other packet to be conforming to RFC1122. 15686 * tcp_deferred_acks_max is default to 2. 15687 */ 15688 tcp->tcp_rack_abs_max = 15689 MIN(tcp_deferred_acks_max, rwnd / mss / 2); 15690 } 15691 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 15692 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 15693 else 15694 tcp->tcp_rack_cur_max = 0; 15695 /* 15696 * Increment the current rwnd by the amount the maximum grew (we 15697 * can not overwrite it since we might be in the middle of a 15698 * connection.) 15699 */ 15700 tcp->tcp_rwnd += rwnd - old_max_rwnd; 15701 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 15702 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 15703 tcp->tcp_cwnd_max = rwnd; 15704 15705 if (tcp_detached) 15706 return (rwnd); 15707 /* 15708 * We set the maximum receive window into rq->q_hiwat. 15709 * This is not actually used for flow control. 15710 */ 15711 tcp->tcp_rq->q_hiwat = rwnd; 15712 /* 15713 * Set the Stream head high water mark. This doesn't have to be 15714 * here, since we are simply using default values, but we would 15715 * prefer to choose these values algorithmically, with a likely 15716 * relationship to rwnd. 15717 */ 15718 (void) mi_set_sth_hiwat(tcp->tcp_rq, MAX(rwnd, tcp_sth_rcv_hiwat)); 15719 return (rwnd); 15720 } 15721 15722 /* 15723 * Return SNMP stuff in buffer in mpdata. 15724 */ 15725 int 15726 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 15727 { 15728 mblk_t *mpdata; 15729 mblk_t *mp_conn_ctl = NULL; 15730 mblk_t *mp_conn_tail; 15731 mblk_t *mp_attr_ctl = NULL; 15732 mblk_t *mp_attr_tail; 15733 mblk_t *mp6_conn_ctl = NULL; 15734 mblk_t *mp6_conn_tail; 15735 mblk_t *mp6_attr_ctl = NULL; 15736 mblk_t *mp6_attr_tail; 15737 struct opthdr *optp; 15738 mib2_tcpConnEntry_t tce; 15739 mib2_tcp6ConnEntry_t tce6; 15740 mib2_transportMLPEntry_t mlp; 15741 connf_t *connfp; 15742 conn_t *connp; 15743 int i; 15744 boolean_t ispriv; 15745 zoneid_t zoneid; 15746 int v4_conn_idx; 15747 int v6_conn_idx; 15748 15749 if (mpctl == NULL || 15750 (mpdata = mpctl->b_cont) == NULL || 15751 (mp_conn_ctl = copymsg(mpctl)) == NULL || 15752 (mp_attr_ctl = copymsg(mpctl)) == NULL || 15753 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 15754 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 15755 freemsg(mp_conn_ctl); 15756 freemsg(mp_attr_ctl); 15757 freemsg(mp6_conn_ctl); 15758 freemsg(mp6_attr_ctl); 15759 return (0); 15760 } 15761 15762 /* build table of connections -- need count in fixed part */ 15763 SET_MIB(tcp_mib.tcpRtoAlgorithm, 4); /* vanj */ 15764 SET_MIB(tcp_mib.tcpRtoMin, tcp_rexmit_interval_min); 15765 SET_MIB(tcp_mib.tcpRtoMax, tcp_rexmit_interval_max); 15766 SET_MIB(tcp_mib.tcpMaxConn, -1); 15767 SET_MIB(tcp_mib.tcpCurrEstab, 0); 15768 15769 ispriv = 15770 secpolicy_net_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 15771 zoneid = Q_TO_CONN(q)->conn_zoneid; 15772 15773 v4_conn_idx = v6_conn_idx = 0; 15774 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 15775 15776 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 15777 15778 connfp = &ipcl_globalhash_fanout[i]; 15779 15780 connp = NULL; 15781 15782 while ((connp = 15783 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 15784 tcp_t *tcp; 15785 boolean_t needattr; 15786 15787 if (connp->conn_zoneid != zoneid) 15788 continue; /* not in this zone */ 15789 15790 tcp = connp->conn_tcp; 15791 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 15792 tcp->tcp_ibsegs = 0; 15793 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 15794 tcp->tcp_obsegs = 0; 15795 15796 tce6.tcp6ConnState = tce.tcpConnState = 15797 tcp_snmp_state(tcp); 15798 if (tce.tcpConnState == MIB2_TCP_established || 15799 tce.tcpConnState == MIB2_TCP_closeWait) 15800 BUMP_MIB(&tcp_mib, tcpCurrEstab); 15801 15802 needattr = B_FALSE; 15803 bzero(&mlp, sizeof (mlp)); 15804 if (connp->conn_mlp_type != mlptSingle) { 15805 if (connp->conn_mlp_type == mlptShared || 15806 connp->conn_mlp_type == mlptBoth) 15807 mlp.tme_flags |= MIB2_TMEF_SHARED; 15808 if (connp->conn_mlp_type == mlptPrivate || 15809 connp->conn_mlp_type == mlptBoth) 15810 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 15811 needattr = B_TRUE; 15812 } 15813 if (connp->conn_peercred != NULL) { 15814 ts_label_t *tsl; 15815 15816 tsl = crgetlabel(connp->conn_peercred); 15817 mlp.tme_doi = label2doi(tsl); 15818 mlp.tme_label = *label2bslabel(tsl); 15819 needattr = B_TRUE; 15820 } 15821 15822 /* Create a message to report on IPv6 entries */ 15823 if (tcp->tcp_ipversion == IPV6_VERSION) { 15824 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 15825 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 15826 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 15827 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 15828 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 15829 /* Don't want just anybody seeing these... */ 15830 if (ispriv) { 15831 tce6.tcp6ConnEntryInfo.ce_snxt = 15832 tcp->tcp_snxt; 15833 tce6.tcp6ConnEntryInfo.ce_suna = 15834 tcp->tcp_suna; 15835 tce6.tcp6ConnEntryInfo.ce_rnxt = 15836 tcp->tcp_rnxt; 15837 tce6.tcp6ConnEntryInfo.ce_rack = 15838 tcp->tcp_rack; 15839 } else { 15840 /* 15841 * Netstat, unfortunately, uses this to 15842 * get send/receive queue sizes. How to fix? 15843 * Why not compute the difference only? 15844 */ 15845 tce6.tcp6ConnEntryInfo.ce_snxt = 15846 tcp->tcp_snxt - tcp->tcp_suna; 15847 tce6.tcp6ConnEntryInfo.ce_suna = 0; 15848 tce6.tcp6ConnEntryInfo.ce_rnxt = 15849 tcp->tcp_rnxt - tcp->tcp_rack; 15850 tce6.tcp6ConnEntryInfo.ce_rack = 0; 15851 } 15852 15853 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 15854 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 15855 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 15856 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 15857 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 15858 15859 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 15860 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 15861 15862 mlp.tme_connidx = v6_conn_idx++; 15863 if (needattr) 15864 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 15865 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 15866 } 15867 /* 15868 * Create an IPv4 table entry for IPv4 entries and also 15869 * for IPv6 entries which are bound to in6addr_any 15870 * but don't have IPV6_V6ONLY set. 15871 * (i.e. anything an IPv4 peer could connect to) 15872 */ 15873 if (tcp->tcp_ipversion == IPV4_VERSION || 15874 (tcp->tcp_state <= TCPS_LISTEN && 15875 !tcp->tcp_connp->conn_ipv6_v6only && 15876 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 15877 if (tcp->tcp_ipversion == IPV6_VERSION) { 15878 tce.tcpConnRemAddress = INADDR_ANY; 15879 tce.tcpConnLocalAddress = INADDR_ANY; 15880 } else { 15881 tce.tcpConnRemAddress = 15882 tcp->tcp_remote; 15883 tce.tcpConnLocalAddress = 15884 tcp->tcp_ip_src; 15885 } 15886 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 15887 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 15888 /* Don't want just anybody seeing these... */ 15889 if (ispriv) { 15890 tce.tcpConnEntryInfo.ce_snxt = 15891 tcp->tcp_snxt; 15892 tce.tcpConnEntryInfo.ce_suna = 15893 tcp->tcp_suna; 15894 tce.tcpConnEntryInfo.ce_rnxt = 15895 tcp->tcp_rnxt; 15896 tce.tcpConnEntryInfo.ce_rack = 15897 tcp->tcp_rack; 15898 } else { 15899 /* 15900 * Netstat, unfortunately, uses this to 15901 * get send/receive queue sizes. How 15902 * to fix? 15903 * Why not compute the difference only? 15904 */ 15905 tce.tcpConnEntryInfo.ce_snxt = 15906 tcp->tcp_snxt - tcp->tcp_suna; 15907 tce.tcpConnEntryInfo.ce_suna = 0; 15908 tce.tcpConnEntryInfo.ce_rnxt = 15909 tcp->tcp_rnxt - tcp->tcp_rack; 15910 tce.tcpConnEntryInfo.ce_rack = 0; 15911 } 15912 15913 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 15914 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 15915 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 15916 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 15917 tce.tcpConnEntryInfo.ce_state = 15918 tcp->tcp_state; 15919 15920 (void) snmp_append_data2(mp_conn_ctl->b_cont, 15921 &mp_conn_tail, (char *)&tce, sizeof (tce)); 15922 15923 mlp.tme_connidx = v4_conn_idx++; 15924 if (needattr) 15925 (void) snmp_append_data2( 15926 mp_attr_ctl->b_cont, 15927 &mp_attr_tail, (char *)&mlp, 15928 sizeof (mlp)); 15929 } 15930 } 15931 } 15932 15933 /* fixed length structure for IPv4 and IPv6 counters */ 15934 SET_MIB(tcp_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 15935 SET_MIB(tcp_mib.tcp6ConnTableSize, sizeof (mib2_tcp6ConnEntry_t)); 15936 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 15937 optp->level = MIB2_TCP; 15938 optp->name = 0; 15939 (void) snmp_append_data(mpdata, (char *)&tcp_mib, sizeof (tcp_mib)); 15940 optp->len = msgdsize(mpdata); 15941 qreply(q, mpctl); 15942 15943 /* table of connections... */ 15944 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 15945 sizeof (struct T_optmgmt_ack)]; 15946 optp->level = MIB2_TCP; 15947 optp->name = MIB2_TCP_CONN; 15948 optp->len = msgdsize(mp_conn_ctl->b_cont); 15949 qreply(q, mp_conn_ctl); 15950 15951 /* table of MLP attributes... */ 15952 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 15953 sizeof (struct T_optmgmt_ack)]; 15954 optp->level = MIB2_TCP; 15955 optp->name = EXPER_XPORT_MLP; 15956 optp->len = msgdsize(mp_attr_ctl->b_cont); 15957 if (optp->len == 0) 15958 freemsg(mp_attr_ctl); 15959 else 15960 qreply(q, mp_attr_ctl); 15961 15962 /* table of IPv6 connections... */ 15963 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 15964 sizeof (struct T_optmgmt_ack)]; 15965 optp->level = MIB2_TCP6; 15966 optp->name = MIB2_TCP6_CONN; 15967 optp->len = msgdsize(mp6_conn_ctl->b_cont); 15968 qreply(q, mp6_conn_ctl); 15969 15970 /* table of IPv6 MLP attributes... */ 15971 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 15972 sizeof (struct T_optmgmt_ack)]; 15973 optp->level = MIB2_TCP6; 15974 optp->name = EXPER_XPORT_MLP; 15975 optp->len = msgdsize(mp6_attr_ctl->b_cont); 15976 if (optp->len == 0) 15977 freemsg(mp6_attr_ctl); 15978 else 15979 qreply(q, mp6_attr_ctl); 15980 return (1); 15981 } 15982 15983 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 15984 /* ARGSUSED */ 15985 int 15986 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 15987 { 15988 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 15989 15990 switch (level) { 15991 case MIB2_TCP: 15992 switch (name) { 15993 case 13: 15994 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 15995 return (0); 15996 /* TODO: delete entry defined by tce */ 15997 return (1); 15998 default: 15999 return (0); 16000 } 16001 default: 16002 return (1); 16003 } 16004 } 16005 16006 /* Translate TCP state to MIB2 TCP state. */ 16007 static int 16008 tcp_snmp_state(tcp_t *tcp) 16009 { 16010 if (tcp == NULL) 16011 return (0); 16012 16013 switch (tcp->tcp_state) { 16014 case TCPS_CLOSED: 16015 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16016 case TCPS_BOUND: 16017 return (MIB2_TCP_closed); 16018 case TCPS_LISTEN: 16019 return (MIB2_TCP_listen); 16020 case TCPS_SYN_SENT: 16021 return (MIB2_TCP_synSent); 16022 case TCPS_SYN_RCVD: 16023 return (MIB2_TCP_synReceived); 16024 case TCPS_ESTABLISHED: 16025 return (MIB2_TCP_established); 16026 case TCPS_CLOSE_WAIT: 16027 return (MIB2_TCP_closeWait); 16028 case TCPS_FIN_WAIT_1: 16029 return (MIB2_TCP_finWait1); 16030 case TCPS_CLOSING: 16031 return (MIB2_TCP_closing); 16032 case TCPS_LAST_ACK: 16033 return (MIB2_TCP_lastAck); 16034 case TCPS_FIN_WAIT_2: 16035 return (MIB2_TCP_finWait2); 16036 case TCPS_TIME_WAIT: 16037 return (MIB2_TCP_timeWait); 16038 default: 16039 return (0); 16040 } 16041 } 16042 16043 static char tcp_report_header[] = 16044 "TCP " MI_COL_HDRPAD_STR 16045 "zone dest snxt suna " 16046 "swnd rnxt rack rwnd rto mss w sw rw t " 16047 "recent [lport,fport] state"; 16048 16049 /* 16050 * TCP status report triggered via the Named Dispatch mechanism. 16051 */ 16052 /* ARGSUSED */ 16053 static void 16054 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream, 16055 cred_t *cr) 16056 { 16057 char hash[10], addrbuf[INET6_ADDRSTRLEN]; 16058 boolean_t ispriv = secpolicy_net_config(cr, B_TRUE) == 0; 16059 char cflag; 16060 in6_addr_t v6dst; 16061 char buf[80]; 16062 uint_t print_len, buf_len; 16063 16064 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16065 if (buf_len <= 0) 16066 return; 16067 16068 if (hashval >= 0) 16069 (void) sprintf(hash, "%03d ", hashval); 16070 else 16071 hash[0] = '\0'; 16072 16073 /* 16074 * Note that we use the remote address in the tcp_b structure. 16075 * This means that it will print out the real destination address, 16076 * not the next hop's address if source routing is used. This 16077 * avoid the confusion on the output because user may not 16078 * know that source routing is used for a connection. 16079 */ 16080 if (tcp->tcp_ipversion == IPV4_VERSION) { 16081 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst); 16082 } else { 16083 v6dst = tcp->tcp_remote_v6; 16084 } 16085 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16086 /* 16087 * the ispriv checks are so that normal users cannot determine 16088 * sequence number information using NDD. 16089 */ 16090 16091 if (TCP_IS_DETACHED(tcp)) 16092 cflag = '*'; 16093 else 16094 cflag = ' '; 16095 print_len = snprintf((char *)mp->b_wptr, buf_len, 16096 "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x " 16097 "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n", 16098 hash, 16099 (void *)tcp, 16100 tcp->tcp_connp->conn_zoneid, 16101 addrbuf, 16102 (ispriv) ? tcp->tcp_snxt : 0, 16103 (ispriv) ? tcp->tcp_suna : 0, 16104 tcp->tcp_swnd, 16105 (ispriv) ? tcp->tcp_rnxt : 0, 16106 (ispriv) ? tcp->tcp_rack : 0, 16107 tcp->tcp_rwnd, 16108 tcp->tcp_rto, 16109 tcp->tcp_mss, 16110 tcp->tcp_snd_ws_ok, 16111 tcp->tcp_snd_ws, 16112 tcp->tcp_rcv_ws, 16113 tcp->tcp_snd_ts_ok, 16114 tcp->tcp_ts_recent, 16115 tcp_display(tcp, buf, DISP_PORT_ONLY), cflag); 16116 if (print_len < buf_len) { 16117 ((mblk_t *)mp)->b_wptr += print_len; 16118 } else { 16119 ((mblk_t *)mp)->b_wptr += buf_len; 16120 } 16121 } 16122 16123 /* 16124 * TCP status report (for listeners only) triggered via the Named Dispatch 16125 * mechanism. 16126 */ 16127 /* ARGSUSED */ 16128 static void 16129 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval) 16130 { 16131 char addrbuf[INET6_ADDRSTRLEN]; 16132 in6_addr_t v6dst; 16133 uint_t print_len, buf_len; 16134 16135 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16136 if (buf_len <= 0) 16137 return; 16138 16139 if (tcp->tcp_ipversion == IPV4_VERSION) { 16140 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst); 16141 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16142 } else { 16143 (void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src, 16144 addrbuf, sizeof (addrbuf)); 16145 } 16146 print_len = snprintf((char *)mp->b_wptr, buf_len, 16147 "%03d " 16148 MI_COL_PTRFMT_STR 16149 "%d %s %05u %08u %d/%d/%d%c\n", 16150 hashval, (void *)tcp, 16151 tcp->tcp_connp->conn_zoneid, 16152 addrbuf, 16153 (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport), 16154 tcp->tcp_conn_req_seqnum, 16155 tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q, 16156 tcp->tcp_conn_req_max, 16157 tcp->tcp_syn_defense ? '*' : ' '); 16158 if (print_len < buf_len) { 16159 ((mblk_t *)mp)->b_wptr += print_len; 16160 } else { 16161 ((mblk_t *)mp)->b_wptr += buf_len; 16162 } 16163 } 16164 16165 /* TCP status report triggered via the Named Dispatch mechanism. */ 16166 /* ARGSUSED */ 16167 static int 16168 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16169 { 16170 tcp_t *tcp; 16171 int i; 16172 conn_t *connp; 16173 connf_t *connfp; 16174 zoneid_t zoneid; 16175 16176 /* 16177 * Because of the ndd constraint, at most we can have 64K buffer 16178 * to put in all TCP info. So to be more efficient, just 16179 * allocate a 64K buffer here, assuming we need that large buffer. 16180 * This may be a problem as any user can read tcp_status. Therefore 16181 * we limit the rate of doing this using tcp_ndd_get_info_interval. 16182 * This should be OK as normal users should not do this too often. 16183 */ 16184 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16185 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16186 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16187 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16188 return (0); 16189 } 16190 } 16191 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16192 /* The following may work even if we cannot get a large buf. */ 16193 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16194 return (0); 16195 } 16196 16197 (void) mi_mpprintf(mp, "%s", tcp_report_header); 16198 16199 zoneid = Q_TO_CONN(q)->conn_zoneid; 16200 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16201 16202 connfp = &ipcl_globalhash_fanout[i]; 16203 16204 connp = NULL; 16205 16206 while ((connp = 16207 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16208 tcp = connp->conn_tcp; 16209 if (zoneid != GLOBAL_ZONEID && 16210 zoneid != connp->conn_zoneid) 16211 continue; 16212 tcp_report_item(mp->b_cont, tcp, -1, tcp, 16213 cr); 16214 } 16215 16216 } 16217 16218 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16219 return (0); 16220 } 16221 16222 /* TCP status report triggered via the Named Dispatch mechanism. */ 16223 /* ARGSUSED */ 16224 static int 16225 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16226 { 16227 tf_t *tbf; 16228 tcp_t *tcp; 16229 int i; 16230 zoneid_t zoneid; 16231 16232 /* Refer to comments in tcp_status_report(). */ 16233 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16234 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16235 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16236 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16237 return (0); 16238 } 16239 } 16240 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16241 /* The following may work even if we cannot get a large buf. */ 16242 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16243 return (0); 16244 } 16245 16246 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16247 16248 zoneid = Q_TO_CONN(q)->conn_zoneid; 16249 16250 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 16251 tbf = &tcp_bind_fanout[i]; 16252 mutex_enter(&tbf->tf_lock); 16253 for (tcp = tbf->tf_tcp; tcp != NULL; 16254 tcp = tcp->tcp_bind_hash) { 16255 if (zoneid != GLOBAL_ZONEID && 16256 zoneid != tcp->tcp_connp->conn_zoneid) 16257 continue; 16258 CONN_INC_REF(tcp->tcp_connp); 16259 tcp_report_item(mp->b_cont, tcp, i, 16260 Q_TO_TCP(q), cr); 16261 CONN_DEC_REF(tcp->tcp_connp); 16262 } 16263 mutex_exit(&tbf->tf_lock); 16264 } 16265 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16266 return (0); 16267 } 16268 16269 /* TCP status report triggered via the Named Dispatch mechanism. */ 16270 /* ARGSUSED */ 16271 static int 16272 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16273 { 16274 connf_t *connfp; 16275 conn_t *connp; 16276 tcp_t *tcp; 16277 int i; 16278 zoneid_t zoneid; 16279 16280 /* Refer to comments in tcp_status_report(). */ 16281 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16282 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16283 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16284 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16285 return (0); 16286 } 16287 } 16288 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16289 /* The following may work even if we cannot get a large buf. */ 16290 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16291 return (0); 16292 } 16293 16294 (void) mi_mpprintf(mp, 16295 " TCP " MI_COL_HDRPAD_STR 16296 "zone IP addr port seqnum backlog (q0/q/max)"); 16297 16298 zoneid = Q_TO_CONN(q)->conn_zoneid; 16299 16300 for (i = 0; i < ipcl_bind_fanout_size; i++) { 16301 connfp = &ipcl_bind_fanout[i]; 16302 connp = NULL; 16303 while ((connp = 16304 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16305 tcp = connp->conn_tcp; 16306 if (zoneid != GLOBAL_ZONEID && 16307 zoneid != connp->conn_zoneid) 16308 continue; 16309 tcp_report_listener(mp->b_cont, tcp, i); 16310 } 16311 } 16312 16313 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16314 return (0); 16315 } 16316 16317 /* TCP status report triggered via the Named Dispatch mechanism. */ 16318 /* ARGSUSED */ 16319 static int 16320 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16321 { 16322 connf_t *connfp; 16323 conn_t *connp; 16324 tcp_t *tcp; 16325 int i; 16326 zoneid_t zoneid; 16327 16328 /* Refer to comments in tcp_status_report(). */ 16329 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16330 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16331 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16332 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16333 return (0); 16334 } 16335 } 16336 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16337 /* The following may work even if we cannot get a large buf. */ 16338 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16339 return (0); 16340 } 16341 16342 (void) mi_mpprintf(mp, "tcp_conn_hash_size = %d", 16343 ipcl_conn_fanout_size); 16344 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16345 16346 zoneid = Q_TO_CONN(q)->conn_zoneid; 16347 16348 for (i = 0; i < ipcl_conn_fanout_size; i++) { 16349 connfp = &ipcl_conn_fanout[i]; 16350 connp = NULL; 16351 while ((connp = 16352 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16353 tcp = connp->conn_tcp; 16354 if (zoneid != GLOBAL_ZONEID && 16355 zoneid != connp->conn_zoneid) 16356 continue; 16357 tcp_report_item(mp->b_cont, tcp, i, 16358 Q_TO_TCP(q), cr); 16359 } 16360 } 16361 16362 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16363 return (0); 16364 } 16365 16366 /* TCP status report triggered via the Named Dispatch mechanism. */ 16367 /* ARGSUSED */ 16368 static int 16369 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16370 { 16371 tf_t *tf; 16372 tcp_t *tcp; 16373 int i; 16374 zoneid_t zoneid; 16375 16376 /* Refer to comments in tcp_status_report(). */ 16377 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16378 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16379 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16380 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16381 return (0); 16382 } 16383 } 16384 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16385 /* The following may work even if we cannot get a large buf. */ 16386 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16387 return (0); 16388 } 16389 16390 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16391 16392 zoneid = Q_TO_CONN(q)->conn_zoneid; 16393 16394 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 16395 tf = &tcp_acceptor_fanout[i]; 16396 mutex_enter(&tf->tf_lock); 16397 for (tcp = tf->tf_tcp; tcp != NULL; 16398 tcp = tcp->tcp_acceptor_hash) { 16399 if (zoneid != GLOBAL_ZONEID && 16400 zoneid != tcp->tcp_connp->conn_zoneid) 16401 continue; 16402 tcp_report_item(mp->b_cont, tcp, i, 16403 Q_TO_TCP(q), cr); 16404 } 16405 mutex_exit(&tf->tf_lock); 16406 } 16407 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16408 return (0); 16409 } 16410 16411 /* 16412 * tcp_timer is the timer service routine. It handles the retransmission, 16413 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 16414 * from the state of the tcp instance what kind of action needs to be done 16415 * at the time it is called. 16416 */ 16417 static void 16418 tcp_timer(void *arg) 16419 { 16420 mblk_t *mp; 16421 clock_t first_threshold; 16422 clock_t second_threshold; 16423 clock_t ms; 16424 uint32_t mss; 16425 conn_t *connp = (conn_t *)arg; 16426 tcp_t *tcp = connp->conn_tcp; 16427 16428 tcp->tcp_timer_tid = 0; 16429 16430 if (tcp->tcp_fused) 16431 return; 16432 16433 first_threshold = tcp->tcp_first_timer_threshold; 16434 second_threshold = tcp->tcp_second_timer_threshold; 16435 switch (tcp->tcp_state) { 16436 case TCPS_IDLE: 16437 case TCPS_BOUND: 16438 case TCPS_LISTEN: 16439 return; 16440 case TCPS_SYN_RCVD: { 16441 tcp_t *listener = tcp->tcp_listener; 16442 16443 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 16444 ASSERT(tcp->tcp_rq == listener->tcp_rq); 16445 /* it's our first timeout */ 16446 tcp->tcp_syn_rcvd_timeout = 1; 16447 mutex_enter(&listener->tcp_eager_lock); 16448 listener->tcp_syn_rcvd_timeout++; 16449 if (!listener->tcp_syn_defense && 16450 (listener->tcp_syn_rcvd_timeout > 16451 (tcp_conn_req_max_q0 >> 2)) && 16452 (tcp_conn_req_max_q0 > 200)) { 16453 /* We may be under attack. Put on a defense. */ 16454 listener->tcp_syn_defense = B_TRUE; 16455 cmn_err(CE_WARN, "High TCP connect timeout " 16456 "rate! System (port %d) may be under a " 16457 "SYN flood attack!", 16458 BE16_TO_U16(listener->tcp_tcph->th_lport)); 16459 16460 listener->tcp_ip_addr_cache = kmem_zalloc( 16461 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 16462 KM_NOSLEEP); 16463 } 16464 mutex_exit(&listener->tcp_eager_lock); 16465 } 16466 } 16467 /* FALLTHRU */ 16468 case TCPS_SYN_SENT: 16469 first_threshold = tcp->tcp_first_ctimer_threshold; 16470 second_threshold = tcp->tcp_second_ctimer_threshold; 16471 break; 16472 case TCPS_ESTABLISHED: 16473 case TCPS_FIN_WAIT_1: 16474 case TCPS_CLOSING: 16475 case TCPS_CLOSE_WAIT: 16476 case TCPS_LAST_ACK: 16477 /* If we have data to rexmit */ 16478 if (tcp->tcp_suna != tcp->tcp_snxt) { 16479 clock_t time_to_wait; 16480 16481 BUMP_MIB(&tcp_mib, tcpTimRetrans); 16482 if (!tcp->tcp_xmit_head) 16483 break; 16484 time_to_wait = lbolt - 16485 (clock_t)tcp->tcp_xmit_head->b_prev; 16486 time_to_wait = tcp->tcp_rto - 16487 TICK_TO_MSEC(time_to_wait); 16488 /* 16489 * If the timer fires too early, 1 clock tick earlier, 16490 * restart the timer. 16491 */ 16492 if (time_to_wait > msec_per_tick) { 16493 TCP_STAT(tcp_timer_fire_early); 16494 TCP_TIMER_RESTART(tcp, time_to_wait); 16495 return; 16496 } 16497 /* 16498 * When we probe zero windows, we force the swnd open. 16499 * If our peer acks with a closed window swnd will be 16500 * set to zero by tcp_rput(). As long as we are 16501 * receiving acks tcp_rput will 16502 * reset 'tcp_ms_we_have_waited' so as not to trip the 16503 * first and second interval actions. NOTE: the timer 16504 * interval is allowed to continue its exponential 16505 * backoff. 16506 */ 16507 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 16508 if (tcp->tcp_debug) { 16509 (void) strlog(TCP_MOD_ID, 0, 1, 16510 SL_TRACE, "tcp_timer: zero win"); 16511 } 16512 } else { 16513 /* 16514 * After retransmission, we need to do 16515 * slow start. Set the ssthresh to one 16516 * half of current effective window and 16517 * cwnd to one MSS. Also reset 16518 * tcp_cwnd_cnt. 16519 * 16520 * Note that if tcp_ssthresh is reduced because 16521 * of ECN, do not reduce it again unless it is 16522 * already one window of data away (tcp_cwr 16523 * should then be cleared) or this is a 16524 * timeout for a retransmitted segment. 16525 */ 16526 uint32_t npkt; 16527 16528 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 16529 npkt = ((tcp->tcp_timer_backoff ? 16530 tcp->tcp_cwnd_ssthresh : 16531 tcp->tcp_snxt - 16532 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 16533 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 16534 tcp->tcp_mss; 16535 } 16536 tcp->tcp_cwnd = tcp->tcp_mss; 16537 tcp->tcp_cwnd_cnt = 0; 16538 if (tcp->tcp_ecn_ok) { 16539 tcp->tcp_cwr = B_TRUE; 16540 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 16541 tcp->tcp_ecn_cwr_sent = B_FALSE; 16542 } 16543 } 16544 break; 16545 } 16546 /* 16547 * We have something to send yet we cannot send. The 16548 * reason can be: 16549 * 16550 * 1. Zero send window: we need to do zero window probe. 16551 * 2. Zero cwnd: because of ECN, we need to "clock out 16552 * segments. 16553 * 3. SWS avoidance: receiver may have shrunk window, 16554 * reset our knowledge. 16555 * 16556 * Note that condition 2 can happen with either 1 or 16557 * 3. But 1 and 3 are exclusive. 16558 */ 16559 if (tcp->tcp_unsent != 0) { 16560 if (tcp->tcp_cwnd == 0) { 16561 /* 16562 * Set tcp_cwnd to 1 MSS so that a 16563 * new segment can be sent out. We 16564 * are "clocking out" new data when 16565 * the network is really congested. 16566 */ 16567 ASSERT(tcp->tcp_ecn_ok); 16568 tcp->tcp_cwnd = tcp->tcp_mss; 16569 } 16570 if (tcp->tcp_swnd == 0) { 16571 /* Extend window for zero window probe */ 16572 tcp->tcp_swnd++; 16573 tcp->tcp_zero_win_probe = B_TRUE; 16574 BUMP_MIB(&tcp_mib, tcpOutWinProbe); 16575 } else { 16576 /* 16577 * Handle timeout from sender SWS avoidance. 16578 * Reset our knowledge of the max send window 16579 * since the receiver might have reduced its 16580 * receive buffer. Avoid setting tcp_max_swnd 16581 * to one since that will essentially disable 16582 * the SWS checks. 16583 * 16584 * Note that since we don't have a SWS 16585 * state variable, if the timeout is set 16586 * for ECN but not for SWS, this 16587 * code will also be executed. This is 16588 * fine as tcp_max_swnd is updated 16589 * constantly and it will not affect 16590 * anything. 16591 */ 16592 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 16593 } 16594 tcp_wput_data(tcp, NULL, B_FALSE); 16595 return; 16596 } 16597 /* Is there a FIN that needs to be to re retransmitted? */ 16598 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16599 !tcp->tcp_fin_acked) 16600 break; 16601 /* Nothing to do, return without restarting timer. */ 16602 TCP_STAT(tcp_timer_fire_miss); 16603 return; 16604 case TCPS_FIN_WAIT_2: 16605 /* 16606 * User closed the TCP endpoint and peer ACK'ed our FIN. 16607 * We waited some time for for peer's FIN, but it hasn't 16608 * arrived. We flush the connection now to avoid 16609 * case where the peer has rebooted. 16610 */ 16611 if (TCP_IS_DETACHED(tcp)) { 16612 (void) tcp_clean_death(tcp, 0, 23); 16613 } else { 16614 TCP_TIMER_RESTART(tcp, tcp_fin_wait_2_flush_interval); 16615 } 16616 return; 16617 case TCPS_TIME_WAIT: 16618 (void) tcp_clean_death(tcp, 0, 24); 16619 return; 16620 default: 16621 if (tcp->tcp_debug) { 16622 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 16623 "tcp_timer: strange state (%d) %s", 16624 tcp->tcp_state, tcp_display(tcp, NULL, 16625 DISP_PORT_ONLY)); 16626 } 16627 return; 16628 } 16629 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 16630 /* 16631 * For zero window probe, we need to send indefinitely, 16632 * unless we have not heard from the other side for some 16633 * time... 16634 */ 16635 if ((tcp->tcp_zero_win_probe == 0) || 16636 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 16637 second_threshold)) { 16638 BUMP_MIB(&tcp_mib, tcpTimRetransDrop); 16639 /* 16640 * If TCP is in SYN_RCVD state, send back a 16641 * RST|ACK as BSD does. Note that tcp_zero_win_probe 16642 * should be zero in TCPS_SYN_RCVD state. 16643 */ 16644 if (tcp->tcp_state == TCPS_SYN_RCVD) { 16645 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 16646 "in SYN_RCVD", 16647 tcp, tcp->tcp_snxt, 16648 tcp->tcp_rnxt, TH_RST | TH_ACK); 16649 } 16650 (void) tcp_clean_death(tcp, 16651 tcp->tcp_client_errno ? 16652 tcp->tcp_client_errno : ETIMEDOUT, 25); 16653 return; 16654 } else { 16655 /* 16656 * Set tcp_ms_we_have_waited to second_threshold 16657 * so that in next timeout, we will do the above 16658 * check (lbolt - tcp_last_recv_time). This is 16659 * also to avoid overflow. 16660 * 16661 * We don't need to decrement tcp_timer_backoff 16662 * to avoid overflow because it will be decremented 16663 * later if new timeout value is greater than 16664 * tcp_rexmit_interval_max. In the case when 16665 * tcp_rexmit_interval_max is greater than 16666 * second_threshold, it means that we will wait 16667 * longer than second_threshold to send the next 16668 * window probe. 16669 */ 16670 tcp->tcp_ms_we_have_waited = second_threshold; 16671 } 16672 } else if (ms > first_threshold) { 16673 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 16674 tcp->tcp_xmit_head != NULL) { 16675 tcp->tcp_xmit_head = 16676 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 16677 } 16678 /* 16679 * We have been retransmitting for too long... The RTT 16680 * we calculated is probably incorrect. Reinitialize it. 16681 * Need to compensate for 0 tcp_rtt_sa. Reset 16682 * tcp_rtt_update so that we won't accidentally cache a 16683 * bad value. But only do this if this is not a zero 16684 * window probe. 16685 */ 16686 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 16687 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 16688 (tcp->tcp_rtt_sa >> 5); 16689 tcp->tcp_rtt_sa = 0; 16690 tcp_ip_notify(tcp); 16691 tcp->tcp_rtt_update = 0; 16692 } 16693 } 16694 tcp->tcp_timer_backoff++; 16695 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 16696 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 16697 tcp_rexmit_interval_min) { 16698 /* 16699 * This means the original RTO is tcp_rexmit_interval_min. 16700 * So we will use tcp_rexmit_interval_min as the RTO value 16701 * and do the backoff. 16702 */ 16703 ms = tcp_rexmit_interval_min << tcp->tcp_timer_backoff; 16704 } else { 16705 ms <<= tcp->tcp_timer_backoff; 16706 } 16707 if (ms > tcp_rexmit_interval_max) { 16708 ms = tcp_rexmit_interval_max; 16709 /* 16710 * ms is at max, decrement tcp_timer_backoff to avoid 16711 * overflow. 16712 */ 16713 tcp->tcp_timer_backoff--; 16714 } 16715 tcp->tcp_ms_we_have_waited += ms; 16716 if (tcp->tcp_zero_win_probe == 0) { 16717 tcp->tcp_rto = ms; 16718 } 16719 TCP_TIMER_RESTART(tcp, ms); 16720 /* 16721 * This is after a timeout and tcp_rto is backed off. Set 16722 * tcp_set_timer to 1 so that next time RTO is updated, we will 16723 * restart the timer with a correct value. 16724 */ 16725 tcp->tcp_set_timer = 1; 16726 mss = tcp->tcp_snxt - tcp->tcp_suna; 16727 if (mss > tcp->tcp_mss) 16728 mss = tcp->tcp_mss; 16729 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 16730 mss = tcp->tcp_swnd; 16731 16732 if ((mp = tcp->tcp_xmit_head) != NULL) 16733 mp->b_prev = (mblk_t *)lbolt; 16734 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 16735 B_TRUE); 16736 16737 /* 16738 * When slow start after retransmission begins, start with 16739 * this seq no. tcp_rexmit_max marks the end of special slow 16740 * start phase. tcp_snd_burst controls how many segments 16741 * can be sent because of an ack. 16742 */ 16743 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 16744 tcp->tcp_snd_burst = TCP_CWND_SS; 16745 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16746 (tcp->tcp_unsent == 0)) { 16747 tcp->tcp_rexmit_max = tcp->tcp_fss; 16748 } else { 16749 tcp->tcp_rexmit_max = tcp->tcp_snxt; 16750 } 16751 tcp->tcp_rexmit = B_TRUE; 16752 tcp->tcp_dupack_cnt = 0; 16753 16754 /* 16755 * Remove all rexmit SACK blk to start from fresh. 16756 */ 16757 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 16758 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 16759 tcp->tcp_num_notsack_blk = 0; 16760 tcp->tcp_cnt_notsack_list = 0; 16761 } 16762 if (mp == NULL) { 16763 return; 16764 } 16765 /* Attach credentials to retransmitted initial SYNs. */ 16766 if (tcp->tcp_state == TCPS_SYN_SENT) { 16767 mblk_setcred(mp, tcp->tcp_cred); 16768 DB_CPID(mp) = tcp->tcp_cpid; 16769 } 16770 16771 tcp->tcp_csuna = tcp->tcp_snxt; 16772 BUMP_MIB(&tcp_mib, tcpRetransSegs); 16773 UPDATE_MIB(&tcp_mib, tcpRetransBytes, mss); 16774 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 16775 tcp_send_data(tcp, tcp->tcp_wq, mp); 16776 16777 } 16778 16779 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 16780 static void 16781 tcp_unbind(tcp_t *tcp, mblk_t *mp) 16782 { 16783 conn_t *connp; 16784 16785 switch (tcp->tcp_state) { 16786 case TCPS_BOUND: 16787 case TCPS_LISTEN: 16788 break; 16789 default: 16790 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 16791 return; 16792 } 16793 16794 /* 16795 * Need to clean up all the eagers since after the unbind, segments 16796 * will no longer be delivered to this listener stream. 16797 */ 16798 mutex_enter(&tcp->tcp_eager_lock); 16799 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 16800 tcp_eager_cleanup(tcp, 0); 16801 } 16802 mutex_exit(&tcp->tcp_eager_lock); 16803 16804 if (tcp->tcp_ipversion == IPV4_VERSION) { 16805 tcp->tcp_ipha->ipha_src = 0; 16806 } else { 16807 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 16808 } 16809 V6_SET_ZERO(tcp->tcp_ip_src_v6); 16810 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 16811 tcp_bind_hash_remove(tcp); 16812 tcp->tcp_state = TCPS_IDLE; 16813 tcp->tcp_mdt = B_FALSE; 16814 /* Send M_FLUSH according to TPI */ 16815 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 16816 connp = tcp->tcp_connp; 16817 connp->conn_mdt_ok = B_FALSE; 16818 ipcl_hash_remove(connp); 16819 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 16820 mp = mi_tpi_ok_ack_alloc(mp); 16821 putnext(tcp->tcp_rq, mp); 16822 } 16823 16824 /* 16825 * Don't let port fall into the privileged range. 16826 * Since the extra privileged ports can be arbitrary we also 16827 * ensure that we exclude those from consideration. 16828 * tcp_g_epriv_ports is not sorted thus we loop over it until 16829 * there are no changes. 16830 * 16831 * Note: No locks are held when inspecting tcp_g_*epriv_ports 16832 * but instead the code relies on: 16833 * - the fact that the address of the array and its size never changes 16834 * - the atomic assignment of the elements of the array 16835 * 16836 * Returns 0 if there are no more ports available. 16837 * 16838 * TS note: skip multilevel ports. 16839 */ 16840 static in_port_t 16841 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 16842 { 16843 int i; 16844 boolean_t restart = B_FALSE; 16845 16846 if (random && tcp_random_anon_port != 0) { 16847 (void) random_get_pseudo_bytes((uint8_t *)&port, 16848 sizeof (in_port_t)); 16849 /* 16850 * Unless changed by a sys admin, the smallest anon port 16851 * is 32768 and the largest anon port is 65535. It is 16852 * very likely (50%) for the random port to be smaller 16853 * than the smallest anon port. When that happens, 16854 * add port % (anon port range) to the smallest anon 16855 * port to get the random port. It should fall into the 16856 * valid anon port range. 16857 */ 16858 if (port < tcp_smallest_anon_port) { 16859 port = tcp_smallest_anon_port + 16860 port % (tcp_largest_anon_port - 16861 tcp_smallest_anon_port); 16862 } 16863 } 16864 16865 retry: 16866 if (port < tcp_smallest_anon_port) 16867 port = (in_port_t)tcp_smallest_anon_port; 16868 16869 if (port > tcp_largest_anon_port) { 16870 if (restart) 16871 return (0); 16872 restart = B_TRUE; 16873 port = (in_port_t)tcp_smallest_anon_port; 16874 } 16875 16876 if (port < tcp_smallest_nonpriv_port) 16877 port = (in_port_t)tcp_smallest_nonpriv_port; 16878 16879 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 16880 if (port == tcp_g_epriv_ports[i]) { 16881 port++; 16882 /* 16883 * Make sure whether the port is in the 16884 * valid range. 16885 */ 16886 goto retry; 16887 } 16888 } 16889 if (is_system_labeled() && 16890 (i = tsol_next_port(crgetzone(tcp->tcp_cred), port, 16891 IPPROTO_TCP, B_TRUE)) != 0) { 16892 port = i; 16893 goto retry; 16894 } 16895 return (port); 16896 } 16897 16898 /* 16899 * Return the next anonymous port in the privileged port range for 16900 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 16901 * downwards. This is the same behavior as documented in the userland 16902 * library call rresvport(3N). 16903 * 16904 * TS note: skip multilevel ports. 16905 */ 16906 static in_port_t 16907 tcp_get_next_priv_port(const tcp_t *tcp) 16908 { 16909 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 16910 in_port_t nextport; 16911 boolean_t restart = B_FALSE; 16912 16913 retry: 16914 if (next_priv_port < tcp_min_anonpriv_port || 16915 next_priv_port >= IPPORT_RESERVED) { 16916 next_priv_port = IPPORT_RESERVED - 1; 16917 if (restart) 16918 return (0); 16919 restart = B_TRUE; 16920 } 16921 if (is_system_labeled() && 16922 (nextport = tsol_next_port(crgetzone(tcp->tcp_cred), 16923 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 16924 next_priv_port = nextport; 16925 goto retry; 16926 } 16927 return (next_priv_port--); 16928 } 16929 16930 /* The write side r/w procedure. */ 16931 16932 #if CCS_STATS 16933 struct { 16934 struct { 16935 int64_t count, bytes; 16936 } tot, hit; 16937 } wrw_stats; 16938 #endif 16939 16940 /* 16941 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 16942 * messages. 16943 */ 16944 /* ARGSUSED */ 16945 static void 16946 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 16947 { 16948 conn_t *connp = (conn_t *)arg; 16949 tcp_t *tcp = connp->conn_tcp; 16950 queue_t *q = tcp->tcp_wq; 16951 16952 ASSERT(DB_TYPE(mp) != M_IOCTL); 16953 /* 16954 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 16955 * Once the close starts, streamhead and sockfs will not let any data 16956 * packets come down (close ensures that there are no threads using the 16957 * queue and no new threads will come down) but since qprocsoff() 16958 * hasn't happened yet, a M_FLUSH or some non data message might 16959 * get reflected back (in response to our own FLUSHRW) and get 16960 * processed after tcp_close() is done. The conn would still be valid 16961 * because a ref would have added but we need to check the state 16962 * before actually processing the packet. 16963 */ 16964 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 16965 freemsg(mp); 16966 return; 16967 } 16968 16969 switch (DB_TYPE(mp)) { 16970 case M_IOCDATA: 16971 tcp_wput_iocdata(tcp, mp); 16972 break; 16973 case M_FLUSH: 16974 tcp_wput_flush(tcp, mp); 16975 break; 16976 default: 16977 CALL_IP_WPUT(connp, q, mp); 16978 break; 16979 } 16980 } 16981 16982 /* 16983 * The TCP fast path write put procedure. 16984 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 16985 */ 16986 /* ARGSUSED */ 16987 void 16988 tcp_output(void *arg, mblk_t *mp, void *arg2) 16989 { 16990 int len; 16991 int hdrlen; 16992 int plen; 16993 mblk_t *mp1; 16994 uchar_t *rptr; 16995 uint32_t snxt; 16996 tcph_t *tcph; 16997 struct datab *db; 16998 uint32_t suna; 16999 uint32_t mss; 17000 ipaddr_t *dst; 17001 ipaddr_t *src; 17002 uint32_t sum; 17003 int usable; 17004 conn_t *connp = (conn_t *)arg; 17005 tcp_t *tcp = connp->conn_tcp; 17006 uint32_t msize; 17007 17008 /* 17009 * Try and ASSERT the minimum possible references on the 17010 * conn early enough. Since we are executing on write side, 17011 * the connection is obviously not detached and that means 17012 * there is a ref each for TCP and IP. Since we are behind 17013 * the squeue, the minimum references needed are 3. If the 17014 * conn is in classifier hash list, there should be an 17015 * extra ref for that (we check both the possibilities). 17016 */ 17017 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17018 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17019 17020 ASSERT(DB_TYPE(mp) == M_DATA); 17021 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 17022 17023 mutex_enter(&connp->conn_lock); 17024 tcp->tcp_squeue_bytes -= msize; 17025 mutex_exit(&connp->conn_lock); 17026 17027 /* Bypass tcp protocol for fused tcp loopback */ 17028 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 17029 return; 17030 17031 mss = tcp->tcp_mss; 17032 if (tcp->tcp_xmit_zc_clean) 17033 mp = tcp_zcopy_backoff(tcp, mp, 0); 17034 17035 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17036 len = (int)(mp->b_wptr - mp->b_rptr); 17037 17038 /* 17039 * Criteria for fast path: 17040 * 17041 * 1. no unsent data 17042 * 2. single mblk in request 17043 * 3. connection established 17044 * 4. data in mblk 17045 * 5. len <= mss 17046 * 6. no tcp_valid bits 17047 */ 17048 if ((tcp->tcp_unsent != 0) || 17049 (tcp->tcp_cork) || 17050 (mp->b_cont != NULL) || 17051 (tcp->tcp_state != TCPS_ESTABLISHED) || 17052 (len == 0) || 17053 (len > mss) || 17054 (tcp->tcp_valid_bits != 0)) { 17055 tcp_wput_data(tcp, mp, B_FALSE); 17056 return; 17057 } 17058 17059 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 17060 ASSERT(tcp->tcp_fin_sent == 0); 17061 17062 /* queue new packet onto retransmission queue */ 17063 if (tcp->tcp_xmit_head == NULL) { 17064 tcp->tcp_xmit_head = mp; 17065 } else { 17066 tcp->tcp_xmit_last->b_cont = mp; 17067 } 17068 tcp->tcp_xmit_last = mp; 17069 tcp->tcp_xmit_tail = mp; 17070 17071 /* find out how much we can send */ 17072 /* BEGIN CSTYLED */ 17073 /* 17074 * un-acked usable 17075 * |--------------|-----------------| 17076 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 17077 */ 17078 /* END CSTYLED */ 17079 17080 /* start sending from tcp_snxt */ 17081 snxt = tcp->tcp_snxt; 17082 17083 /* 17084 * Check to see if this connection has been idled for some 17085 * time and no ACK is expected. If it is, we need to slow 17086 * start again to get back the connection's "self-clock" as 17087 * described in VJ's paper. 17088 * 17089 * Refer to the comment in tcp_mss_set() for the calculation 17090 * of tcp_cwnd after idle. 17091 */ 17092 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 17093 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 17094 SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); 17095 } 17096 17097 usable = tcp->tcp_swnd; /* tcp window size */ 17098 if (usable > tcp->tcp_cwnd) 17099 usable = tcp->tcp_cwnd; /* congestion window smaller */ 17100 usable -= snxt; /* subtract stuff already sent */ 17101 suna = tcp->tcp_suna; 17102 usable += suna; 17103 /* usable can be < 0 if the congestion window is smaller */ 17104 if (len > usable) { 17105 /* Can't send complete M_DATA in one shot */ 17106 goto slow; 17107 } 17108 17109 if (tcp->tcp_flow_stopped && 17110 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 17111 tcp_clrqfull(tcp); 17112 } 17113 17114 /* 17115 * determine if anything to send (Nagle). 17116 * 17117 * 1. len < tcp_mss (i.e. small) 17118 * 2. unacknowledged data present 17119 * 3. len < nagle limit 17120 * 4. last packet sent < nagle limit (previous packet sent) 17121 */ 17122 if ((len < mss) && (snxt != suna) && 17123 (len < (int)tcp->tcp_naglim) && 17124 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 17125 /* 17126 * This was the first unsent packet and normally 17127 * mss < xmit_hiwater so there is no need to worry 17128 * about flow control. The next packet will go 17129 * through the flow control check in tcp_wput_data(). 17130 */ 17131 /* leftover work from above */ 17132 tcp->tcp_unsent = len; 17133 tcp->tcp_xmit_tail_unsent = len; 17134 17135 return; 17136 } 17137 17138 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 17139 17140 if (snxt == suna) { 17141 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17142 } 17143 17144 /* we have always sent something */ 17145 tcp->tcp_rack_cnt = 0; 17146 17147 tcp->tcp_snxt = snxt + len; 17148 tcp->tcp_rack = tcp->tcp_rnxt; 17149 17150 if ((mp1 = dupb(mp)) == 0) 17151 goto no_memory; 17152 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 17153 mp->b_next = (mblk_t *)(uintptr_t)snxt; 17154 17155 /* adjust tcp header information */ 17156 tcph = tcp->tcp_tcph; 17157 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 17158 17159 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 17160 sum = (sum >> 16) + (sum & 0xFFFF); 17161 U16_TO_ABE16(sum, tcph->th_sum); 17162 17163 U32_TO_ABE32(snxt, tcph->th_seq); 17164 17165 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 17166 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 17167 BUMP_LOCAL(tcp->tcp_obsegs); 17168 17169 /* Update the latest receive window size in TCP header. */ 17170 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 17171 tcph->th_win); 17172 17173 tcp->tcp_last_sent_len = (ushort_t)len; 17174 17175 plen = len + tcp->tcp_hdr_len; 17176 17177 if (tcp->tcp_ipversion == IPV4_VERSION) { 17178 tcp->tcp_ipha->ipha_length = htons(plen); 17179 } else { 17180 tcp->tcp_ip6h->ip6_plen = htons(plen - 17181 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 17182 } 17183 17184 /* see if we need to allocate a mblk for the headers */ 17185 hdrlen = tcp->tcp_hdr_len; 17186 rptr = mp1->b_rptr - hdrlen; 17187 db = mp1->b_datap; 17188 if ((db->db_ref != 2) || rptr < db->db_base || 17189 (!OK_32PTR(rptr))) { 17190 /* NOTE: we assume allocb returns an OK_32PTR */ 17191 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 17192 tcp_wroff_xtra, BPRI_MED); 17193 if (!mp) { 17194 freemsg(mp1); 17195 goto no_memory; 17196 } 17197 mp->b_cont = mp1; 17198 mp1 = mp; 17199 /* Leave room for Link Level header */ 17200 /* hdrlen = tcp->tcp_hdr_len; */ 17201 rptr = &mp1->b_rptr[tcp_wroff_xtra]; 17202 mp1->b_wptr = &rptr[hdrlen]; 17203 } 17204 mp1->b_rptr = rptr; 17205 17206 /* Fill in the timestamp option. */ 17207 if (tcp->tcp_snd_ts_ok) { 17208 U32_TO_BE32((uint32_t)lbolt, 17209 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 17210 U32_TO_BE32(tcp->tcp_ts_recent, 17211 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 17212 } else { 17213 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 17214 } 17215 17216 /* copy header into outgoing packet */ 17217 dst = (ipaddr_t *)rptr; 17218 src = (ipaddr_t *)tcp->tcp_iphc; 17219 dst[0] = src[0]; 17220 dst[1] = src[1]; 17221 dst[2] = src[2]; 17222 dst[3] = src[3]; 17223 dst[4] = src[4]; 17224 dst[5] = src[5]; 17225 dst[6] = src[6]; 17226 dst[7] = src[7]; 17227 dst[8] = src[8]; 17228 dst[9] = src[9]; 17229 if (hdrlen -= 40) { 17230 hdrlen >>= 2; 17231 dst += 10; 17232 src += 10; 17233 do { 17234 *dst++ = *src++; 17235 } while (--hdrlen); 17236 } 17237 17238 /* 17239 * Set the ECN info in the TCP header. Note that this 17240 * is not the template header. 17241 */ 17242 if (tcp->tcp_ecn_ok) { 17243 SET_ECT(tcp, rptr); 17244 17245 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 17246 if (tcp->tcp_ecn_echo_on) 17247 tcph->th_flags[0] |= TH_ECE; 17248 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17249 tcph->th_flags[0] |= TH_CWR; 17250 tcp->tcp_ecn_cwr_sent = B_TRUE; 17251 } 17252 } 17253 17254 if (tcp->tcp_ip_forward_progress) { 17255 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 17256 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 17257 tcp->tcp_ip_forward_progress = B_FALSE; 17258 } 17259 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 17260 tcp_send_data(tcp, tcp->tcp_wq, mp1); 17261 return; 17262 17263 /* 17264 * If we ran out of memory, we pretend to have sent the packet 17265 * and that it was lost on the wire. 17266 */ 17267 no_memory: 17268 return; 17269 17270 slow: 17271 /* leftover work from above */ 17272 tcp->tcp_unsent = len; 17273 tcp->tcp_xmit_tail_unsent = len; 17274 tcp_wput_data(tcp, NULL, B_FALSE); 17275 } 17276 17277 /* 17278 * The function called through squeue to get behind eager's perimeter to 17279 * finish the accept processing. 17280 */ 17281 /* ARGSUSED */ 17282 void 17283 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 17284 { 17285 conn_t *connp = (conn_t *)arg; 17286 tcp_t *tcp = connp->conn_tcp; 17287 queue_t *q = tcp->tcp_rq; 17288 mblk_t *mp1; 17289 mblk_t *stropt_mp = mp; 17290 struct stroptions *stropt; 17291 uint_t thwin; 17292 17293 /* 17294 * Drop the eager's ref on the listener, that was placed when 17295 * this eager began life in tcp_conn_request. 17296 */ 17297 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 17298 17299 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 17300 /* 17301 * Someone blewoff the eager before we could finish 17302 * the accept. 17303 * 17304 * The only reason eager exists it because we put in 17305 * a ref on it when conn ind went up. We need to send 17306 * a disconnect indication up while the last reference 17307 * on the eager will be dropped by the squeue when we 17308 * return. 17309 */ 17310 ASSERT(tcp->tcp_listener == NULL); 17311 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17312 struct T_discon_ind *tdi; 17313 17314 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17315 /* 17316 * Let us reuse the incoming mblk to avoid memory 17317 * allocation failure problems. We know that the 17318 * size of the incoming mblk i.e. stroptions is greater 17319 * than sizeof T_discon_ind. So the reallocb below 17320 * can't fail. 17321 */ 17322 freemsg(mp->b_cont); 17323 mp->b_cont = NULL; 17324 ASSERT(DB_REF(mp) == 1); 17325 mp = reallocb(mp, sizeof (struct T_discon_ind), 17326 B_FALSE); 17327 ASSERT(mp != NULL); 17328 DB_TYPE(mp) = M_PROTO; 17329 ((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND; 17330 tdi = (struct T_discon_ind *)mp->b_rptr; 17331 if (tcp->tcp_issocket) { 17332 tdi->DISCON_reason = ECONNREFUSED; 17333 tdi->SEQ_number = 0; 17334 } else { 17335 tdi->DISCON_reason = ENOPROTOOPT; 17336 tdi->SEQ_number = 17337 tcp->tcp_conn_req_seqnum; 17338 } 17339 mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind); 17340 putnext(q, mp); 17341 } else { 17342 freemsg(mp); 17343 } 17344 if (tcp->tcp_hard_binding) { 17345 tcp->tcp_hard_binding = B_FALSE; 17346 tcp->tcp_hard_bound = B_TRUE; 17347 } 17348 tcp->tcp_detached = B_FALSE; 17349 return; 17350 } 17351 17352 mp1 = stropt_mp->b_cont; 17353 stropt_mp->b_cont = NULL; 17354 ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS); 17355 stropt = (struct stroptions *)stropt_mp->b_rptr; 17356 17357 while (mp1 != NULL) { 17358 mp = mp1; 17359 mp1 = mp1->b_cont; 17360 mp->b_cont = NULL; 17361 tcp->tcp_drop_opt_ack_cnt++; 17362 CALL_IP_WPUT(connp, tcp->tcp_wq, mp); 17363 } 17364 mp = NULL; 17365 17366 /* 17367 * For a loopback connection with tcp_direct_sockfs on, note that 17368 * we don't have to protect tcp_rcv_list yet because synchronous 17369 * streams has not yet been enabled and tcp_fuse_rrw() cannot 17370 * possibly race with us. 17371 */ 17372 17373 /* 17374 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 17375 * properly. This is the first time we know of the acceptor' 17376 * queue. So we do it here. 17377 */ 17378 if (tcp->tcp_rcv_list == NULL) { 17379 /* 17380 * Recv queue is empty, tcp_rwnd should not have changed. 17381 * That means it should be equal to the listener's tcp_rwnd. 17382 */ 17383 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 17384 } else { 17385 #ifdef DEBUG 17386 uint_t cnt = 0; 17387 17388 mp1 = tcp->tcp_rcv_list; 17389 while ((mp = mp1) != NULL) { 17390 mp1 = mp->b_next; 17391 cnt += msgdsize(mp); 17392 } 17393 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 17394 #endif 17395 /* There is some data, add them back to get the max. */ 17396 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17397 } 17398 17399 stropt->so_flags = SO_HIWAT; 17400 stropt->so_hiwat = MAX(q->q_hiwat, tcp_sth_rcv_hiwat); 17401 17402 stropt->so_flags |= SO_MAXBLK; 17403 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 17404 17405 /* 17406 * This is the first time we run on the correct 17407 * queue after tcp_accept. So fix all the q parameters 17408 * here. 17409 */ 17410 /* Allocate room for SACK options if needed. */ 17411 stropt->so_flags |= SO_WROFF; 17412 if (tcp->tcp_fused) { 17413 ASSERT(tcp->tcp_loopback); 17414 ASSERT(tcp->tcp_loopback_peer != NULL); 17415 /* 17416 * For fused tcp loopback, set the stream head's write 17417 * offset value to zero since we won't be needing any room 17418 * for TCP/IP headers. This would also improve performance 17419 * since it would reduce the amount of work done by kmem. 17420 * Non-fused tcp loopback case is handled separately below. 17421 */ 17422 stropt->so_wroff = 0; 17423 /* 17424 * Record the stream head's high water mark for this endpoint; 17425 * this is used for flow-control purposes in tcp_fuse_output(). 17426 */ 17427 stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat); 17428 /* 17429 * Update the peer's transmit parameters according to 17430 * our recently calculated high water mark value. 17431 */ 17432 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 17433 } else if (tcp->tcp_snd_sack_ok) { 17434 stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 17435 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra); 17436 } else { 17437 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 17438 tcp_wroff_xtra); 17439 } 17440 17441 /* 17442 * If this is endpoint is handling SSL, then reserve extra 17443 * offset and space at the end. 17444 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 17445 * overriding the previous setting. The extra cost of signing and 17446 * encrypting multiple MSS-size records (12 of them with Ethernet), 17447 * instead of a single contiguous one by the stream head 17448 * largely outweighs the statistical reduction of ACKs, when 17449 * applicable. The peer will also save on decyption and verification 17450 * costs. 17451 */ 17452 if (tcp->tcp_kssl_ctx != NULL) { 17453 stropt->so_wroff += SSL3_WROFFSET; 17454 17455 stropt->so_flags |= SO_TAIL; 17456 stropt->so_tail = SSL3_MAX_TAIL_LEN; 17457 17458 stropt->so_maxblk = SSL3_MAX_RECORD_LEN; 17459 } 17460 17461 /* Send the options up */ 17462 putnext(q, stropt_mp); 17463 17464 /* 17465 * Pass up any data and/or a fin that has been received. 17466 * 17467 * Adjust receive window in case it had decreased 17468 * (because there is data <=> tcp_rcv_list != NULL) 17469 * while the connection was detached. Note that 17470 * in case the eager was flow-controlled, w/o this 17471 * code, the rwnd may never open up again! 17472 */ 17473 if (tcp->tcp_rcv_list != NULL) { 17474 /* We drain directly in case of fused tcp loopback */ 17475 if (!tcp->tcp_fused && canputnext(q)) { 17476 tcp->tcp_rwnd = q->q_hiwat; 17477 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 17478 << tcp->tcp_rcv_ws; 17479 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 17480 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17481 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 17482 tcp_xmit_ctl(NULL, 17483 tcp, (tcp->tcp_swnd == 0) ? 17484 tcp->tcp_suna : tcp->tcp_snxt, 17485 tcp->tcp_rnxt, TH_ACK); 17486 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 17487 } 17488 17489 } 17490 (void) tcp_rcv_drain(q, tcp); 17491 17492 /* 17493 * For fused tcp loopback, back-enable peer endpoint 17494 * if it's currently flow-controlled. 17495 */ 17496 if (tcp->tcp_fused && 17497 tcp->tcp_loopback_peer->tcp_flow_stopped) { 17498 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 17499 17500 ASSERT(peer_tcp != NULL); 17501 ASSERT(peer_tcp->tcp_fused); 17502 17503 tcp_clrqfull(peer_tcp); 17504 TCP_STAT(tcp_fusion_backenabled); 17505 } 17506 } 17507 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 17508 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 17509 mp = mi_tpi_ordrel_ind(); 17510 if (mp) { 17511 tcp->tcp_ordrel_done = B_TRUE; 17512 putnext(q, mp); 17513 if (tcp->tcp_deferred_clean_death) { 17514 /* 17515 * tcp_clean_death was deferred 17516 * for T_ORDREL_IND - do it now 17517 */ 17518 (void) tcp_clean_death(tcp, 17519 tcp->tcp_client_errno, 21); 17520 tcp->tcp_deferred_clean_death = B_FALSE; 17521 } 17522 } else { 17523 /* 17524 * Run the orderly release in the 17525 * service routine. 17526 */ 17527 qenable(q); 17528 } 17529 } 17530 if (tcp->tcp_hard_binding) { 17531 tcp->tcp_hard_binding = B_FALSE; 17532 tcp->tcp_hard_bound = B_TRUE; 17533 } 17534 17535 tcp->tcp_detached = B_FALSE; 17536 17537 /* We can enable synchronous streams now */ 17538 if (tcp->tcp_fused) { 17539 tcp_fuse_syncstr_enable_pair(tcp); 17540 } 17541 17542 if (tcp->tcp_ka_enabled) { 17543 tcp->tcp_ka_last_intrvl = 0; 17544 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 17545 MSEC_TO_TICK(tcp->tcp_ka_interval)); 17546 } 17547 17548 /* 17549 * At this point, eager is fully established and will 17550 * have the following references - 17551 * 17552 * 2 references for connection to exist (1 for TCP and 1 for IP). 17553 * 1 reference for the squeue which will be dropped by the squeue as 17554 * soon as this function returns. 17555 * There will be 1 additonal reference for being in classifier 17556 * hash list provided something bad hasn't happened. 17557 */ 17558 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17559 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17560 } 17561 17562 /* 17563 * The function called through squeue to get behind listener's perimeter to 17564 * send a deffered conn_ind. 17565 */ 17566 /* ARGSUSED */ 17567 void 17568 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 17569 { 17570 conn_t *connp = (conn_t *)arg; 17571 tcp_t *listener = connp->conn_tcp; 17572 17573 if (listener->tcp_state == TCPS_CLOSED || 17574 TCP_IS_DETACHED(listener)) { 17575 /* 17576 * If listener has closed, it would have caused a 17577 * a cleanup/blowoff to happen for the eager. 17578 */ 17579 tcp_t *tcp; 17580 struct T_conn_ind *conn_ind; 17581 17582 conn_ind = (struct T_conn_ind *)mp->b_rptr; 17583 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 17584 conn_ind->OPT_length); 17585 /* 17586 * We need to drop the ref on eager that was put 17587 * tcp_rput_data() before trying to send the conn_ind 17588 * to listener. The conn_ind was deferred in tcp_send_conn_ind 17589 * and tcp_wput_accept() is sending this deferred conn_ind but 17590 * listener is closed so we drop the ref. 17591 */ 17592 CONN_DEC_REF(tcp->tcp_connp); 17593 freemsg(mp); 17594 return; 17595 } 17596 putnext(listener->tcp_rq, mp); 17597 } 17598 17599 17600 /* 17601 * This is the STREAMS entry point for T_CONN_RES coming down on 17602 * Acceptor STREAM when sockfs listener does accept processing. 17603 * Read the block comment on top pf tcp_conn_request(). 17604 */ 17605 void 17606 tcp_wput_accept(queue_t *q, mblk_t *mp) 17607 { 17608 queue_t *rq = RD(q); 17609 struct T_conn_res *conn_res; 17610 tcp_t *eager; 17611 tcp_t *listener; 17612 struct T_ok_ack *ok; 17613 t_scalar_t PRIM_type; 17614 mblk_t *opt_mp; 17615 conn_t *econnp; 17616 17617 ASSERT(DB_TYPE(mp) == M_PROTO); 17618 17619 conn_res = (struct T_conn_res *)mp->b_rptr; 17620 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17621 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 17622 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17623 if (mp != NULL) 17624 putnext(rq, mp); 17625 return; 17626 } 17627 switch (conn_res->PRIM_type) { 17628 case O_T_CONN_RES: 17629 case T_CONN_RES: 17630 /* 17631 * We pass up an err ack if allocb fails. This will 17632 * cause sockfs to issue a T_DISCON_REQ which will cause 17633 * tcp_eager_blowoff to be called. sockfs will then call 17634 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 17635 * we need to do the allocb up here because we have to 17636 * make sure rq->q_qinfo->qi_qclose still points to the 17637 * correct function (tcpclose_accept) in case allocb 17638 * fails. 17639 */ 17640 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 17641 if (opt_mp == NULL) { 17642 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17643 if (mp != NULL) 17644 putnext(rq, mp); 17645 return; 17646 } 17647 17648 bcopy(mp->b_rptr + conn_res->OPT_offset, 17649 &eager, conn_res->OPT_length); 17650 PRIM_type = conn_res->PRIM_type; 17651 mp->b_datap->db_type = M_PCPROTO; 17652 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 17653 ok = (struct T_ok_ack *)mp->b_rptr; 17654 ok->PRIM_type = T_OK_ACK; 17655 ok->CORRECT_prim = PRIM_type; 17656 econnp = eager->tcp_connp; 17657 econnp->conn_dev = (dev_t)q->q_ptr; 17658 eager->tcp_rq = rq; 17659 eager->tcp_wq = q; 17660 rq->q_ptr = econnp; 17661 rq->q_qinfo = &tcp_rinit; 17662 q->q_ptr = econnp; 17663 q->q_qinfo = &tcp_winit; 17664 listener = eager->tcp_listener; 17665 eager->tcp_issocket = B_TRUE; 17666 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 17667 17668 /* Put the ref for IP */ 17669 CONN_INC_REF(econnp); 17670 17671 /* 17672 * We should have minimum of 3 references on the conn 17673 * at this point. One each for TCP and IP and one for 17674 * the T_conn_ind that was sent up when the 3-way handshake 17675 * completed. In the normal case we would also have another 17676 * reference (making a total of 4) for the conn being in the 17677 * classifier hash list. However the eager could have received 17678 * an RST subsequently and tcp_closei_local could have removed 17679 * the eager from the classifier hash list, hence we can't 17680 * assert that reference. 17681 */ 17682 ASSERT(econnp->conn_ref >= 3); 17683 17684 /* 17685 * Send the new local address also up to sockfs. There 17686 * should already be enough space in the mp that came 17687 * down from soaccept(). 17688 */ 17689 if (eager->tcp_family == AF_INET) { 17690 sin_t *sin; 17691 17692 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 17693 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 17694 sin = (sin_t *)mp->b_wptr; 17695 mp->b_wptr += sizeof (sin_t); 17696 sin->sin_family = AF_INET; 17697 sin->sin_port = eager->tcp_lport; 17698 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 17699 } else { 17700 sin6_t *sin6; 17701 17702 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 17703 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 17704 sin6 = (sin6_t *)mp->b_wptr; 17705 mp->b_wptr += sizeof (sin6_t); 17706 sin6->sin6_family = AF_INET6; 17707 sin6->sin6_port = eager->tcp_lport; 17708 if (eager->tcp_ipversion == IPV4_VERSION) { 17709 sin6->sin6_flowinfo = 0; 17710 IN6_IPADDR_TO_V4MAPPED( 17711 eager->tcp_ipha->ipha_src, 17712 &sin6->sin6_addr); 17713 } else { 17714 ASSERT(eager->tcp_ip6h != NULL); 17715 sin6->sin6_flowinfo = 17716 eager->tcp_ip6h->ip6_vcf & 17717 ~IPV6_VERS_AND_FLOW_MASK; 17718 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 17719 } 17720 sin6->sin6_scope_id = 0; 17721 sin6->__sin6_src_id = 0; 17722 } 17723 17724 putnext(rq, mp); 17725 17726 opt_mp->b_datap->db_type = M_SETOPTS; 17727 opt_mp->b_wptr += sizeof (struct stroptions); 17728 17729 /* 17730 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 17731 * from listener to acceptor. The message is chained on the 17732 * bind_mp which tcp_rput_other will send down to IP. 17733 */ 17734 if (listener->tcp_bound_if != 0) { 17735 /* allocate optmgmt req */ 17736 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 17737 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 17738 sizeof (int)); 17739 if (mp != NULL) 17740 linkb(opt_mp, mp); 17741 } 17742 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 17743 uint_t on = 1; 17744 17745 /* allocate optmgmt req */ 17746 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 17747 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 17748 if (mp != NULL) 17749 linkb(opt_mp, mp); 17750 } 17751 17752 17753 mutex_enter(&listener->tcp_eager_lock); 17754 17755 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 17756 17757 tcp_t *tail; 17758 tcp_t *tcp; 17759 mblk_t *mp1; 17760 17761 tcp = listener->tcp_eager_prev_q0; 17762 /* 17763 * listener->tcp_eager_prev_q0 points to the TAIL of the 17764 * deferred T_conn_ind queue. We need to get to the head 17765 * of the queue in order to send up T_conn_ind the same 17766 * order as how the 3WHS is completed. 17767 */ 17768 while (tcp != listener) { 17769 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 17770 !tcp->tcp_kssl_pending) 17771 break; 17772 else 17773 tcp = tcp->tcp_eager_prev_q0; 17774 } 17775 /* None of the pending eagers can be sent up now */ 17776 if (tcp == listener) 17777 goto no_more_eagers; 17778 17779 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 17780 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 17781 /* Move from q0 to q */ 17782 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 17783 listener->tcp_conn_req_cnt_q0--; 17784 listener->tcp_conn_req_cnt_q++; 17785 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 17786 tcp->tcp_eager_prev_q0; 17787 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 17788 tcp->tcp_eager_next_q0; 17789 tcp->tcp_eager_prev_q0 = NULL; 17790 tcp->tcp_eager_next_q0 = NULL; 17791 tcp->tcp_conn_def_q0 = B_FALSE; 17792 17793 /* 17794 * Insert at end of the queue because sockfs sends 17795 * down T_CONN_RES in chronological order. Leaving 17796 * the older conn indications at front of the queue 17797 * helps reducing search time. 17798 */ 17799 tail = listener->tcp_eager_last_q; 17800 if (tail != NULL) { 17801 tail->tcp_eager_next_q = tcp; 17802 } else { 17803 listener->tcp_eager_next_q = tcp; 17804 } 17805 listener->tcp_eager_last_q = tcp; 17806 tcp->tcp_eager_next_q = NULL; 17807 17808 /* Need to get inside the listener perimeter */ 17809 CONN_INC_REF(listener->tcp_connp); 17810 squeue_fill(listener->tcp_connp->conn_sqp, mp1, 17811 tcp_send_pending, listener->tcp_connp, 17812 SQTAG_TCP_SEND_PENDING); 17813 } 17814 no_more_eagers: 17815 tcp_eager_unlink(eager); 17816 mutex_exit(&listener->tcp_eager_lock); 17817 17818 /* 17819 * At this point, the eager is detached from the listener 17820 * but we still have an extra refs on eager (apart from the 17821 * usual tcp references). The ref was placed in tcp_rput_data 17822 * before sending the conn_ind in tcp_send_conn_ind. 17823 * The ref will be dropped in tcp_accept_finish(). 17824 */ 17825 squeue_enter_nodrain(econnp->conn_sqp, opt_mp, 17826 tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0); 17827 return; 17828 default: 17829 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 17830 if (mp != NULL) 17831 putnext(rq, mp); 17832 return; 17833 } 17834 } 17835 17836 void 17837 tcp_wput(queue_t *q, mblk_t *mp) 17838 { 17839 conn_t *connp = Q_TO_CONN(q); 17840 tcp_t *tcp; 17841 void (*output_proc)(); 17842 t_scalar_t type; 17843 uchar_t *rptr; 17844 struct iocblk *iocp; 17845 uint32_t msize; 17846 17847 ASSERT(connp->conn_ref >= 2); 17848 17849 switch (DB_TYPE(mp)) { 17850 case M_DATA: 17851 tcp = connp->conn_tcp; 17852 ASSERT(tcp != NULL); 17853 17854 msize = msgdsize(mp); 17855 17856 mutex_enter(&connp->conn_lock); 17857 CONN_INC_REF_LOCKED(connp); 17858 17859 tcp->tcp_squeue_bytes += msize; 17860 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 17861 mutex_exit(&connp->conn_lock); 17862 tcp_setqfull(tcp); 17863 } else 17864 mutex_exit(&connp->conn_lock); 17865 17866 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 17867 tcp_output, connp, SQTAG_TCP_OUTPUT); 17868 return; 17869 case M_PROTO: 17870 case M_PCPROTO: 17871 /* 17872 * if it is a snmp message, don't get behind the squeue 17873 */ 17874 tcp = connp->conn_tcp; 17875 rptr = mp->b_rptr; 17876 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 17877 type = ((union T_primitives *)rptr)->type; 17878 } else { 17879 if (tcp->tcp_debug) { 17880 (void) strlog(TCP_MOD_ID, 0, 1, 17881 SL_ERROR|SL_TRACE, 17882 "tcp_wput_proto, dropping one..."); 17883 } 17884 freemsg(mp); 17885 return; 17886 } 17887 if (type == T_SVR4_OPTMGMT_REQ) { 17888 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 17889 if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get, 17890 cr)) { 17891 /* 17892 * This was a SNMP request 17893 */ 17894 return; 17895 } else { 17896 output_proc = tcp_wput_proto; 17897 } 17898 } else { 17899 output_proc = tcp_wput_proto; 17900 } 17901 break; 17902 case M_IOCTL: 17903 /* 17904 * Most ioctls can be processed right away without going via 17905 * squeues - process them right here. Those that do require 17906 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 17907 * are processed by tcp_wput_ioctl(). 17908 */ 17909 iocp = (struct iocblk *)mp->b_rptr; 17910 tcp = connp->conn_tcp; 17911 17912 switch (iocp->ioc_cmd) { 17913 case TCP_IOC_ABORT_CONN: 17914 tcp_ioctl_abort_conn(q, mp); 17915 return; 17916 case TI_GETPEERNAME: 17917 if (tcp->tcp_state < TCPS_SYN_RCVD) { 17918 iocp->ioc_error = ENOTCONN; 17919 iocp->ioc_count = 0; 17920 mp->b_datap->db_type = M_IOCACK; 17921 qreply(q, mp); 17922 return; 17923 } 17924 /* FALLTHRU */ 17925 case TI_GETMYNAME: 17926 mi_copyin(q, mp, NULL, 17927 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 17928 return; 17929 case ND_SET: 17930 /* nd_getset does the necessary checks */ 17931 case ND_GET: 17932 if (!nd_getset(q, tcp_g_nd, mp)) { 17933 CALL_IP_WPUT(connp, q, mp); 17934 return; 17935 } 17936 qreply(q, mp); 17937 return; 17938 case TCP_IOC_DEFAULT_Q: 17939 /* 17940 * Wants to be the default wq. Check the credentials 17941 * first, the rest is executed via squeue. 17942 */ 17943 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 17944 iocp->ioc_error = EPERM; 17945 iocp->ioc_count = 0; 17946 mp->b_datap->db_type = M_IOCACK; 17947 qreply(q, mp); 17948 return; 17949 } 17950 output_proc = tcp_wput_ioctl; 17951 break; 17952 default: 17953 output_proc = tcp_wput_ioctl; 17954 break; 17955 } 17956 break; 17957 default: 17958 output_proc = tcp_wput_nondata; 17959 break; 17960 } 17961 17962 CONN_INC_REF(connp); 17963 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 17964 output_proc, connp, SQTAG_TCP_WPUT_OTHER); 17965 } 17966 17967 /* 17968 * Initial STREAMS write side put() procedure for sockets. It tries to 17969 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 17970 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 17971 * are handled by tcp_wput() as usual. 17972 * 17973 * All further messages will also be handled by tcp_wput() because we cannot 17974 * be sure that the above short cut is safe later. 17975 */ 17976 static void 17977 tcp_wput_sock(queue_t *wq, mblk_t *mp) 17978 { 17979 conn_t *connp = Q_TO_CONN(wq); 17980 tcp_t *tcp = connp->conn_tcp; 17981 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 17982 17983 ASSERT(wq->q_qinfo == &tcp_sock_winit); 17984 wq->q_qinfo = &tcp_winit; 17985 17986 ASSERT(IPCL_IS_TCP(connp)); 17987 ASSERT(TCP_IS_SOCKET(tcp)); 17988 17989 if (DB_TYPE(mp) == M_PCPROTO && 17990 MBLKL(mp) == sizeof (struct T_capability_req) && 17991 car->PRIM_type == T_CAPABILITY_REQ) { 17992 tcp_capability_req(tcp, mp); 17993 return; 17994 } 17995 17996 tcp_wput(wq, mp); 17997 } 17998 17999 static boolean_t 18000 tcp_zcopy_check(tcp_t *tcp) 18001 { 18002 conn_t *connp = tcp->tcp_connp; 18003 ire_t *ire; 18004 boolean_t zc_enabled = B_FALSE; 18005 18006 if (do_tcpzcopy == 2) 18007 zc_enabled = B_TRUE; 18008 else if (tcp->tcp_ipversion == IPV4_VERSION && 18009 IPCL_IS_CONNECTED(connp) && 18010 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 18011 connp->conn_dontroute == 0 && 18012 !connp->conn_nexthop_set && 18013 connp->conn_xmit_if_ill == NULL && 18014 connp->conn_nofailover_ill == NULL && 18015 do_tcpzcopy == 1) { 18016 /* 18017 * the checks above closely resemble the fast path checks 18018 * in tcp_send_data(). 18019 */ 18020 mutex_enter(&connp->conn_lock); 18021 ire = connp->conn_ire_cache; 18022 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18023 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18024 IRE_REFHOLD(ire); 18025 if (ire->ire_stq != NULL) { 18026 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 18027 18028 zc_enabled = ill && (ill->ill_capabilities & 18029 ILL_CAPAB_ZEROCOPY) && 18030 (ill->ill_zerocopy_capab-> 18031 ill_zerocopy_flags != 0); 18032 } 18033 IRE_REFRELE(ire); 18034 } 18035 mutex_exit(&connp->conn_lock); 18036 } 18037 tcp->tcp_snd_zcopy_on = zc_enabled; 18038 if (!TCP_IS_DETACHED(tcp)) { 18039 if (zc_enabled) { 18040 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE); 18041 TCP_STAT(tcp_zcopy_on); 18042 } else { 18043 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18044 TCP_STAT(tcp_zcopy_off); 18045 } 18046 } 18047 return (zc_enabled); 18048 } 18049 18050 static mblk_t * 18051 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 18052 { 18053 if (do_tcpzcopy == 2) 18054 return (bp); 18055 else if (tcp->tcp_snd_zcopy_on) { 18056 tcp->tcp_snd_zcopy_on = B_FALSE; 18057 if (!TCP_IS_DETACHED(tcp)) { 18058 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18059 TCP_STAT(tcp_zcopy_disable); 18060 } 18061 } 18062 return (tcp_zcopy_backoff(tcp, bp, 0)); 18063 } 18064 18065 /* 18066 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 18067 * the original desballoca'ed segmapped mblk. 18068 */ 18069 static mblk_t * 18070 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 18071 { 18072 mblk_t *head, *tail, *nbp; 18073 if (IS_VMLOANED_MBLK(bp)) { 18074 TCP_STAT(tcp_zcopy_backoff); 18075 if ((head = copyb(bp)) == NULL) { 18076 /* fail to backoff; leave it for the next backoff */ 18077 tcp->tcp_xmit_zc_clean = B_FALSE; 18078 return (bp); 18079 } 18080 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18081 if (fix_xmitlist) 18082 tcp_zcopy_notify(tcp); 18083 else 18084 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18085 } 18086 nbp = bp->b_cont; 18087 if (fix_xmitlist) { 18088 head->b_prev = bp->b_prev; 18089 head->b_next = bp->b_next; 18090 if (tcp->tcp_xmit_tail == bp) 18091 tcp->tcp_xmit_tail = head; 18092 } 18093 bp->b_next = NULL; 18094 bp->b_prev = NULL; 18095 freeb(bp); 18096 } else { 18097 head = bp; 18098 nbp = bp->b_cont; 18099 } 18100 tail = head; 18101 while (nbp) { 18102 if (IS_VMLOANED_MBLK(nbp)) { 18103 TCP_STAT(tcp_zcopy_backoff); 18104 if ((tail->b_cont = copyb(nbp)) == NULL) { 18105 tcp->tcp_xmit_zc_clean = B_FALSE; 18106 tail->b_cont = nbp; 18107 return (head); 18108 } 18109 tail = tail->b_cont; 18110 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18111 if (fix_xmitlist) 18112 tcp_zcopy_notify(tcp); 18113 else 18114 tail->b_datap->db_struioflag |= 18115 STRUIO_ZCNOTIFY; 18116 } 18117 bp = nbp; 18118 nbp = nbp->b_cont; 18119 if (fix_xmitlist) { 18120 tail->b_prev = bp->b_prev; 18121 tail->b_next = bp->b_next; 18122 if (tcp->tcp_xmit_tail == bp) 18123 tcp->tcp_xmit_tail = tail; 18124 } 18125 bp->b_next = NULL; 18126 bp->b_prev = NULL; 18127 freeb(bp); 18128 } else { 18129 tail->b_cont = nbp; 18130 tail = nbp; 18131 nbp = nbp->b_cont; 18132 } 18133 } 18134 if (fix_xmitlist) { 18135 tcp->tcp_xmit_last = tail; 18136 tcp->tcp_xmit_zc_clean = B_TRUE; 18137 } 18138 return (head); 18139 } 18140 18141 static void 18142 tcp_zcopy_notify(tcp_t *tcp) 18143 { 18144 struct stdata *stp; 18145 18146 if (tcp->tcp_detached) 18147 return; 18148 stp = STREAM(tcp->tcp_rq); 18149 mutex_enter(&stp->sd_lock); 18150 stp->sd_flag |= STZCNOTIFY; 18151 cv_broadcast(&stp->sd_zcopy_wait); 18152 mutex_exit(&stp->sd_lock); 18153 } 18154 18155 static void 18156 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 18157 { 18158 ipha_t *ipha; 18159 ipaddr_t src; 18160 ipaddr_t dst; 18161 uint32_t cksum; 18162 ire_t *ire; 18163 uint16_t *up; 18164 ill_t *ill; 18165 conn_t *connp = tcp->tcp_connp; 18166 uint32_t hcksum_txflags = 0; 18167 mblk_t *ire_fp_mp; 18168 uint_t ire_fp_mp_len; 18169 18170 ASSERT(DB_TYPE(mp) == M_DATA); 18171 18172 mblk_setcred(mp, CONN_CRED(connp)); 18173 18174 ipha = (ipha_t *)mp->b_rptr; 18175 src = ipha->ipha_src; 18176 dst = ipha->ipha_dst; 18177 18178 /* 18179 * Drop off fast path for IPv6 and also if options are present or 18180 * we need to resolve a TS label. 18181 */ 18182 if (tcp->tcp_ipversion != IPV4_VERSION || 18183 !IPCL_IS_CONNECTED(connp) || 18184 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 18185 connp->conn_dontroute || 18186 connp->conn_nexthop_set || 18187 connp->conn_xmit_if_ill != NULL || 18188 connp->conn_nofailover_ill != NULL || 18189 !connp->conn_ulp_labeled || 18190 ipha->ipha_ident == IP_HDR_INCLUDED || 18191 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 18192 IPP_ENABLED(IPP_LOCAL_OUT)) { 18193 if (tcp->tcp_snd_zcopy_aware) 18194 mp = tcp_zcopy_disable(tcp, mp); 18195 TCP_STAT(tcp_ip_send); 18196 CALL_IP_WPUT(connp, q, mp); 18197 return; 18198 } 18199 18200 mutex_enter(&connp->conn_lock); 18201 ire = connp->conn_ire_cache; 18202 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18203 if (ire != NULL && ire->ire_addr == dst && 18204 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18205 IRE_REFHOLD(ire); 18206 mutex_exit(&connp->conn_lock); 18207 } else { 18208 boolean_t cached = B_FALSE; 18209 18210 /* force a recheck later on */ 18211 tcp->tcp_ire_ill_check_done = B_FALSE; 18212 18213 TCP_DBGSTAT(tcp_ire_null1); 18214 connp->conn_ire_cache = NULL; 18215 mutex_exit(&connp->conn_lock); 18216 if (ire != NULL) 18217 IRE_REFRELE_NOTR(ire); 18218 ire = ire_cache_lookup(dst, connp->conn_zoneid, 18219 MBLK_GETLABEL(mp)); 18220 if (ire == NULL) { 18221 if (tcp->tcp_snd_zcopy_aware) 18222 mp = tcp_zcopy_backoff(tcp, mp, 0); 18223 TCP_STAT(tcp_ire_null); 18224 CALL_IP_WPUT(connp, q, mp); 18225 return; 18226 } 18227 IRE_REFHOLD_NOTR(ire); 18228 /* 18229 * Since we are inside the squeue, there cannot be another 18230 * thread in TCP trying to set the conn_ire_cache now. The 18231 * check for IRE_MARK_CONDEMNED ensures that an interface 18232 * unplumb thread has not yet started cleaning up the conns. 18233 * Hence we don't need to grab the conn lock. 18234 */ 18235 if (!(connp->conn_state_flags & CONN_CLOSING)) { 18236 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18237 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18238 connp->conn_ire_cache = ire; 18239 cached = B_TRUE; 18240 } 18241 rw_exit(&ire->ire_bucket->irb_lock); 18242 } 18243 18244 /* 18245 * We can continue to use the ire but since it was 18246 * not cached, we should drop the extra reference. 18247 */ 18248 if (!cached) 18249 IRE_REFRELE_NOTR(ire); 18250 18251 /* 18252 * Rampart note: no need to select a new label here, since 18253 * labels are not allowed to change during the life of a TCP 18254 * connection. 18255 */ 18256 } 18257 18258 if (ire->ire_flags & RTF_MULTIRT || 18259 ire->ire_stq == NULL || 18260 ire->ire_max_frag < ntohs(ipha->ipha_length) || 18261 (ire_fp_mp = ire->ire_fp_mp) == NULL || 18262 (ire_fp_mp_len = MBLKL(ire_fp_mp)) > MBLKHEAD(mp)) { 18263 if (tcp->tcp_snd_zcopy_aware) 18264 mp = tcp_zcopy_disable(tcp, mp); 18265 TCP_STAT(tcp_ip_ire_send); 18266 IRE_REFRELE(ire); 18267 CALL_IP_WPUT(connp, q, mp); 18268 return; 18269 } 18270 18271 ill = ire_to_ill(ire); 18272 if (connp->conn_outgoing_ill != NULL) { 18273 ill_t *conn_outgoing_ill = NULL; 18274 /* 18275 * Choose a good ill in the group to send the packets on. 18276 */ 18277 ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill); 18278 ill = ire_to_ill(ire); 18279 } 18280 ASSERT(ill != NULL); 18281 18282 if (!tcp->tcp_ire_ill_check_done) { 18283 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 18284 tcp->tcp_ire_ill_check_done = B_TRUE; 18285 } 18286 18287 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 18288 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 18289 #ifndef _BIG_ENDIAN 18290 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 18291 #endif 18292 18293 /* 18294 * Check to see if we need to re-enable MDT for this connection 18295 * because it was previously disabled due to changes in the ill; 18296 * note that by doing it here, this re-enabling only applies when 18297 * the packet is not dispatched through CALL_IP_WPUT(). 18298 * 18299 * That means for IPv4, it is worth re-enabling MDT for the fastpath 18300 * case, since that's how we ended up here. For IPv6, we do the 18301 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 18302 */ 18303 if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 18304 /* 18305 * Restore MDT for this connection, so that next time around 18306 * it is eligible to go through tcp_multisend() path again. 18307 */ 18308 TCP_STAT(tcp_mdt_conn_resumed1); 18309 tcp->tcp_mdt = B_TRUE; 18310 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 18311 "interface %s\n", (void *)connp, ill->ill_name)); 18312 } 18313 18314 if (tcp->tcp_snd_zcopy_aware) { 18315 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 18316 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 18317 mp = tcp_zcopy_disable(tcp, mp); 18318 /* 18319 * we shouldn't need to reset ipha as the mp containing 18320 * ipha should never be a zero-copy mp. 18321 */ 18322 } 18323 18324 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 18325 ASSERT(ill->ill_hcksum_capab != NULL); 18326 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 18327 } 18328 18329 /* pseudo-header checksum (do it in parts for IP header checksum) */ 18330 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 18331 18332 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 18333 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 18334 18335 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 18336 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 18337 18338 /* Software checksum? */ 18339 if (DB_CKSUMFLAGS(mp) == 0) { 18340 TCP_STAT(tcp_out_sw_cksum); 18341 TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes, 18342 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 18343 } 18344 18345 ipha->ipha_fragment_offset_and_flags |= 18346 (uint32_t)htons(ire->ire_frag_flag); 18347 18348 /* Calculate IP header checksum if hardware isn't capable */ 18349 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 18350 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 18351 ((uint16_t *)ipha)[4]); 18352 } 18353 18354 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 18355 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 18356 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 18357 18358 UPDATE_OB_PKT_COUNT(ire); 18359 ire->ire_last_used_time = lbolt; 18360 BUMP_MIB(&ip_mib, ipOutRequests); 18361 18362 if (ILL_DLS_CAPABLE(ill)) { 18363 /* 18364 * Send the packet directly to DLD, where it may be queued 18365 * depending on the availability of transmit resources at 18366 * the media layer. 18367 */ 18368 IP_DLS_ILL_TX(ill, mp); 18369 } else { 18370 putnext(ire->ire_stq, mp); 18371 } 18372 IRE_REFRELE(ire); 18373 } 18374 18375 /* 18376 * This handles the case when the receiver has shrunk its win. Per RFC 1122 18377 * if the receiver shrinks the window, i.e. moves the right window to the 18378 * left, the we should not send new data, but should retransmit normally the 18379 * old unacked data between suna and suna + swnd. We might has sent data 18380 * that is now outside the new window, pretend that we didn't send it. 18381 */ 18382 static void 18383 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 18384 { 18385 uint32_t snxt = tcp->tcp_snxt; 18386 mblk_t *xmit_tail; 18387 int32_t offset; 18388 18389 ASSERT(shrunk_count > 0); 18390 18391 /* Pretend we didn't send the data outside the window */ 18392 snxt -= shrunk_count; 18393 18394 /* Get the mblk and the offset in it per the shrunk window */ 18395 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 18396 18397 ASSERT(xmit_tail != NULL); 18398 18399 /* Reset all the values per the now shrunk window */ 18400 tcp->tcp_snxt = snxt; 18401 tcp->tcp_xmit_tail = xmit_tail; 18402 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 18403 offset; 18404 tcp->tcp_unsent += shrunk_count; 18405 18406 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 18407 /* 18408 * Make sure the timer is running so that we will probe a zero 18409 * window. 18410 */ 18411 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18412 } 18413 18414 18415 /* 18416 * The TCP normal data output path. 18417 * NOTE: the logic of the fast path is duplicated from this function. 18418 */ 18419 static void 18420 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 18421 { 18422 int len; 18423 mblk_t *local_time; 18424 mblk_t *mp1; 18425 uint32_t snxt; 18426 int tail_unsent; 18427 int tcpstate; 18428 int usable = 0; 18429 mblk_t *xmit_tail; 18430 queue_t *q = tcp->tcp_wq; 18431 int32_t mss; 18432 int32_t num_sack_blk = 0; 18433 int32_t tcp_hdr_len; 18434 int32_t tcp_tcp_hdr_len; 18435 int mdt_thres; 18436 int rc; 18437 18438 tcpstate = tcp->tcp_state; 18439 if (mp == NULL) { 18440 /* 18441 * tcp_wput_data() with NULL mp should only be called when 18442 * there is unsent data. 18443 */ 18444 ASSERT(tcp->tcp_unsent > 0); 18445 /* Really tacky... but we need this for detached closes. */ 18446 len = tcp->tcp_unsent; 18447 goto data_null; 18448 } 18449 18450 #if CCS_STATS 18451 wrw_stats.tot.count++; 18452 wrw_stats.tot.bytes += msgdsize(mp); 18453 #endif 18454 ASSERT(mp->b_datap->db_type == M_DATA); 18455 /* 18456 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 18457 * or before a connection attempt has begun. 18458 */ 18459 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 18460 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18461 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18462 #ifdef DEBUG 18463 cmn_err(CE_WARN, 18464 "tcp_wput_data: data after ordrel, %s", 18465 tcp_display(tcp, NULL, 18466 DISP_ADDR_AND_PORT)); 18467 #else 18468 if (tcp->tcp_debug) { 18469 (void) strlog(TCP_MOD_ID, 0, 1, 18470 SL_TRACE|SL_ERROR, 18471 "tcp_wput_data: data after ordrel, %s\n", 18472 tcp_display(tcp, NULL, 18473 DISP_ADDR_AND_PORT)); 18474 } 18475 #endif /* DEBUG */ 18476 } 18477 if (tcp->tcp_snd_zcopy_aware && 18478 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 18479 tcp_zcopy_notify(tcp); 18480 freemsg(mp); 18481 if (tcp->tcp_flow_stopped && 18482 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 18483 tcp_clrqfull(tcp); 18484 } 18485 return; 18486 } 18487 18488 /* Strip empties */ 18489 for (;;) { 18490 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 18491 (uintptr_t)INT_MAX); 18492 len = (int)(mp->b_wptr - mp->b_rptr); 18493 if (len > 0) 18494 break; 18495 mp1 = mp; 18496 mp = mp->b_cont; 18497 freeb(mp1); 18498 if (!mp) { 18499 return; 18500 } 18501 } 18502 18503 /* If we are the first on the list ... */ 18504 if (tcp->tcp_xmit_head == NULL) { 18505 tcp->tcp_xmit_head = mp; 18506 tcp->tcp_xmit_tail = mp; 18507 tcp->tcp_xmit_tail_unsent = len; 18508 } else { 18509 /* If tiny tx and room in txq tail, pullup to save mblks. */ 18510 struct datab *dp; 18511 18512 mp1 = tcp->tcp_xmit_last; 18513 if (len < tcp_tx_pull_len && 18514 (dp = mp1->b_datap)->db_ref == 1 && 18515 dp->db_lim - mp1->b_wptr >= len) { 18516 ASSERT(len > 0); 18517 ASSERT(!mp1->b_cont); 18518 if (len == 1) { 18519 *mp1->b_wptr++ = *mp->b_rptr; 18520 } else { 18521 bcopy(mp->b_rptr, mp1->b_wptr, len); 18522 mp1->b_wptr += len; 18523 } 18524 if (mp1 == tcp->tcp_xmit_tail) 18525 tcp->tcp_xmit_tail_unsent += len; 18526 mp1->b_cont = mp->b_cont; 18527 if (tcp->tcp_snd_zcopy_aware && 18528 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 18529 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18530 freeb(mp); 18531 mp = mp1; 18532 } else { 18533 tcp->tcp_xmit_last->b_cont = mp; 18534 } 18535 len += tcp->tcp_unsent; 18536 } 18537 18538 /* Tack on however many more positive length mblks we have */ 18539 if ((mp1 = mp->b_cont) != NULL) { 18540 do { 18541 int tlen; 18542 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 18543 (uintptr_t)INT_MAX); 18544 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 18545 if (tlen <= 0) { 18546 mp->b_cont = mp1->b_cont; 18547 freeb(mp1); 18548 } else { 18549 len += tlen; 18550 mp = mp1; 18551 } 18552 } while ((mp1 = mp->b_cont) != NULL); 18553 } 18554 tcp->tcp_xmit_last = mp; 18555 tcp->tcp_unsent = len; 18556 18557 if (urgent) 18558 usable = 1; 18559 18560 data_null: 18561 snxt = tcp->tcp_snxt; 18562 xmit_tail = tcp->tcp_xmit_tail; 18563 tail_unsent = tcp->tcp_xmit_tail_unsent; 18564 18565 /* 18566 * Note that tcp_mss has been adjusted to take into account the 18567 * timestamp option if applicable. Because SACK options do not 18568 * appear in every TCP segments and they are of variable lengths, 18569 * they cannot be included in tcp_mss. Thus we need to calculate 18570 * the actual segment length when we need to send a segment which 18571 * includes SACK options. 18572 */ 18573 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 18574 int32_t opt_len; 18575 18576 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 18577 tcp->tcp_num_sack_blk); 18578 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 18579 2 + TCPOPT_HEADER_LEN; 18580 mss = tcp->tcp_mss - opt_len; 18581 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 18582 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 18583 } else { 18584 mss = tcp->tcp_mss; 18585 tcp_hdr_len = tcp->tcp_hdr_len; 18586 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 18587 } 18588 18589 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 18590 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 18591 SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); 18592 } 18593 if (tcpstate == TCPS_SYN_RCVD) { 18594 /* 18595 * The three-way connection establishment handshake is not 18596 * complete yet. We want to queue the data for transmission 18597 * after entering ESTABLISHED state (RFC793). A jump to 18598 * "done" label effectively leaves data on the queue. 18599 */ 18600 goto done; 18601 } else { 18602 int usable_r = tcp->tcp_swnd; 18603 18604 /* 18605 * In the special case when cwnd is zero, which can only 18606 * happen if the connection is ECN capable, return now. 18607 * New segments is sent using tcp_timer(). The timer 18608 * is set in tcp_rput_data(). 18609 */ 18610 if (tcp->tcp_cwnd == 0) { 18611 /* 18612 * Note that tcp_cwnd is 0 before 3-way handshake is 18613 * finished. 18614 */ 18615 ASSERT(tcp->tcp_ecn_ok || 18616 tcp->tcp_state < TCPS_ESTABLISHED); 18617 return; 18618 } 18619 18620 /* NOTE: trouble if xmitting while SYN not acked? */ 18621 usable_r -= snxt; 18622 usable_r += tcp->tcp_suna; 18623 18624 /* 18625 * Check if the receiver has shrunk the window. If 18626 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 18627 * cannot be set as there is unsent data, so FIN cannot 18628 * be sent out. Otherwise, we need to take into account 18629 * of FIN as it consumes an "invisible" sequence number. 18630 */ 18631 ASSERT(tcp->tcp_fin_sent == 0); 18632 if (usable_r < 0) { 18633 /* 18634 * The receiver has shrunk the window and we have sent 18635 * -usable_r date beyond the window, re-adjust. 18636 * 18637 * If TCP window scaling is enabled, there can be 18638 * round down error as the advertised receive window 18639 * is actually right shifted n bits. This means that 18640 * the lower n bits info is wiped out. It will look 18641 * like the window is shrunk. Do a check here to 18642 * see if the shrunk amount is actually within the 18643 * error in window calculation. If it is, just 18644 * return. Note that this check is inside the 18645 * shrunk window check. This makes sure that even 18646 * though tcp_process_shrunk_swnd() is not called, 18647 * we will stop further processing. 18648 */ 18649 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 18650 tcp_process_shrunk_swnd(tcp, -usable_r); 18651 } 18652 return; 18653 } 18654 18655 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 18656 if (tcp->tcp_swnd > tcp->tcp_cwnd) 18657 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 18658 18659 /* usable = MIN(usable, unsent) */ 18660 if (usable_r > len) 18661 usable_r = len; 18662 18663 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 18664 if (usable_r > 0) { 18665 usable = usable_r; 18666 } else { 18667 /* Bypass all other unnecessary processing. */ 18668 goto done; 18669 } 18670 } 18671 18672 local_time = (mblk_t *)lbolt; 18673 18674 /* 18675 * "Our" Nagle Algorithm. This is not the same as in the old 18676 * BSD. This is more in line with the true intent of Nagle. 18677 * 18678 * The conditions are: 18679 * 1. The amount of unsent data (or amount of data which can be 18680 * sent, whichever is smaller) is less than Nagle limit. 18681 * 2. The last sent size is also less than Nagle limit. 18682 * 3. There is unack'ed data. 18683 * 4. Urgent pointer is not set. Send urgent data ignoring the 18684 * Nagle algorithm. This reduces the probability that urgent 18685 * bytes get "merged" together. 18686 * 5. The app has not closed the connection. This eliminates the 18687 * wait time of the receiving side waiting for the last piece of 18688 * (small) data. 18689 * 18690 * If all are satisified, exit without sending anything. Note 18691 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 18692 * the smaller of 1 MSS and global tcp_naglim_def (default to be 18693 * 4095). 18694 */ 18695 if (usable < (int)tcp->tcp_naglim && 18696 tcp->tcp_naglim > tcp->tcp_last_sent_len && 18697 snxt != tcp->tcp_suna && 18698 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 18699 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 18700 goto done; 18701 } 18702 18703 if (tcp->tcp_cork) { 18704 /* 18705 * if the tcp->tcp_cork option is set, then we have to force 18706 * TCP not to send partial segment (smaller than MSS bytes). 18707 * We are calculating the usable now based on full mss and 18708 * will save the rest of remaining data for later. 18709 */ 18710 if (usable < mss) 18711 goto done; 18712 usable = (usable / mss) * mss; 18713 } 18714 18715 /* Update the latest receive window size in TCP header. */ 18716 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 18717 tcp->tcp_tcph->th_win); 18718 18719 /* 18720 * Determine if it's worthwhile to attempt MDT, based on: 18721 * 18722 * 1. Simple TCP/IP{v4,v6} (no options). 18723 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 18724 * 3. If the TCP connection is in ESTABLISHED state. 18725 * 4. The TCP is not detached. 18726 * 18727 * If any of the above conditions have changed during the 18728 * connection, stop using MDT and restore the stream head 18729 * parameters accordingly. 18730 */ 18731 if (tcp->tcp_mdt && 18732 ((tcp->tcp_ipversion == IPV4_VERSION && 18733 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 18734 (tcp->tcp_ipversion == IPV6_VERSION && 18735 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 18736 tcp->tcp_state != TCPS_ESTABLISHED || 18737 TCP_IS_DETACHED(tcp) || !CONN_IS_MD_FASTPATH(tcp->tcp_connp) || 18738 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 18739 IPP_ENABLED(IPP_LOCAL_OUT))) { 18740 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 18741 tcp->tcp_mdt = B_FALSE; 18742 18743 /* Anything other than detached is considered pathological */ 18744 if (!TCP_IS_DETACHED(tcp)) { 18745 TCP_STAT(tcp_mdt_conn_halted1); 18746 (void) tcp_maxpsz_set(tcp, B_TRUE); 18747 } 18748 } 18749 18750 /* Use MDT if sendable amount is greater than the threshold */ 18751 if (tcp->tcp_mdt && 18752 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 18753 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 18754 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 18755 (tcp->tcp_valid_bits == 0 || 18756 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 18757 ASSERT(tcp->tcp_connp->conn_mdt_ok); 18758 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 18759 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 18760 local_time, mdt_thres); 18761 } else { 18762 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 18763 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 18764 local_time, INT_MAX); 18765 } 18766 18767 /* Pretend that all we were trying to send really got sent */ 18768 if (rc < 0 && tail_unsent < 0) { 18769 do { 18770 xmit_tail = xmit_tail->b_cont; 18771 xmit_tail->b_prev = local_time; 18772 ASSERT((uintptr_t)(xmit_tail->b_wptr - 18773 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 18774 tail_unsent += (int)(xmit_tail->b_wptr - 18775 xmit_tail->b_rptr); 18776 } while (tail_unsent < 0); 18777 } 18778 done:; 18779 tcp->tcp_xmit_tail = xmit_tail; 18780 tcp->tcp_xmit_tail_unsent = tail_unsent; 18781 len = tcp->tcp_snxt - snxt; 18782 if (len) { 18783 /* 18784 * If new data was sent, need to update the notsack 18785 * list, which is, afterall, data blocks that have 18786 * not been sack'ed by the receiver. New data is 18787 * not sack'ed. 18788 */ 18789 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 18790 /* len is a negative value. */ 18791 tcp->tcp_pipe -= len; 18792 tcp_notsack_update(&(tcp->tcp_notsack_list), 18793 tcp->tcp_snxt, snxt, 18794 &(tcp->tcp_num_notsack_blk), 18795 &(tcp->tcp_cnt_notsack_list)); 18796 } 18797 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 18798 tcp->tcp_rack = tcp->tcp_rnxt; 18799 tcp->tcp_rack_cnt = 0; 18800 if ((snxt + len) == tcp->tcp_suna) { 18801 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18802 } 18803 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 18804 /* 18805 * Didn't send anything. Make sure the timer is running 18806 * so that we will probe a zero window. 18807 */ 18808 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18809 } 18810 /* Note that len is the amount we just sent but with a negative sign */ 18811 tcp->tcp_unsent += len; 18812 if (tcp->tcp_flow_stopped) { 18813 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 18814 tcp_clrqfull(tcp); 18815 } 18816 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 18817 tcp_setqfull(tcp); 18818 } 18819 } 18820 18821 /* 18822 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 18823 * outgoing TCP header with the template header, as well as other 18824 * options such as time-stamp, ECN and/or SACK. 18825 */ 18826 static void 18827 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 18828 { 18829 tcph_t *tcp_tmpl, *tcp_h; 18830 uint32_t *dst, *src; 18831 int hdrlen; 18832 18833 ASSERT(OK_32PTR(rptr)); 18834 18835 /* Template header */ 18836 tcp_tmpl = tcp->tcp_tcph; 18837 18838 /* Header of outgoing packet */ 18839 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 18840 18841 /* dst and src are opaque 32-bit fields, used for copying */ 18842 dst = (uint32_t *)rptr; 18843 src = (uint32_t *)tcp->tcp_iphc; 18844 hdrlen = tcp->tcp_hdr_len; 18845 18846 /* Fill time-stamp option if needed */ 18847 if (tcp->tcp_snd_ts_ok) { 18848 U32_TO_BE32((uint32_t)now, 18849 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 18850 U32_TO_BE32(tcp->tcp_ts_recent, 18851 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 18852 } else { 18853 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 18854 } 18855 18856 /* 18857 * Copy the template header; is this really more efficient than 18858 * calling bcopy()? For simple IPv4/TCP, it may be the case, 18859 * but perhaps not for other scenarios. 18860 */ 18861 dst[0] = src[0]; 18862 dst[1] = src[1]; 18863 dst[2] = src[2]; 18864 dst[3] = src[3]; 18865 dst[4] = src[4]; 18866 dst[5] = src[5]; 18867 dst[6] = src[6]; 18868 dst[7] = src[7]; 18869 dst[8] = src[8]; 18870 dst[9] = src[9]; 18871 if (hdrlen -= 40) { 18872 hdrlen >>= 2; 18873 dst += 10; 18874 src += 10; 18875 do { 18876 *dst++ = *src++; 18877 } while (--hdrlen); 18878 } 18879 18880 /* 18881 * Set the ECN info in the TCP header if it is not a zero 18882 * window probe. Zero window probe is only sent in 18883 * tcp_wput_data() and tcp_timer(). 18884 */ 18885 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 18886 SET_ECT(tcp, rptr); 18887 18888 if (tcp->tcp_ecn_echo_on) 18889 tcp_h->th_flags[0] |= TH_ECE; 18890 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 18891 tcp_h->th_flags[0] |= TH_CWR; 18892 tcp->tcp_ecn_cwr_sent = B_TRUE; 18893 } 18894 } 18895 18896 /* Fill in SACK options */ 18897 if (num_sack_blk > 0) { 18898 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 18899 sack_blk_t *tmp; 18900 int32_t i; 18901 18902 wptr[0] = TCPOPT_NOP; 18903 wptr[1] = TCPOPT_NOP; 18904 wptr[2] = TCPOPT_SACK; 18905 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 18906 sizeof (sack_blk_t); 18907 wptr += TCPOPT_REAL_SACK_LEN; 18908 18909 tmp = tcp->tcp_sack_list; 18910 for (i = 0; i < num_sack_blk; i++) { 18911 U32_TO_BE32(tmp[i].begin, wptr); 18912 wptr += sizeof (tcp_seq); 18913 U32_TO_BE32(tmp[i].end, wptr); 18914 wptr += sizeof (tcp_seq); 18915 } 18916 tcp_h->th_offset_and_rsrvd[0] += 18917 ((num_sack_blk * 2 + 1) << 4); 18918 } 18919 } 18920 18921 /* 18922 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 18923 * the destination address and SAP attribute, and if necessary, the 18924 * hardware checksum offload attribute to a Multidata message. 18925 */ 18926 static int 18927 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 18928 const uint32_t start, const uint32_t stuff, const uint32_t end, 18929 const uint32_t flags) 18930 { 18931 /* Add global destination address & SAP attribute */ 18932 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 18933 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 18934 "destination address+SAP\n")); 18935 18936 if (dlmp != NULL) 18937 TCP_STAT(tcp_mdt_allocfail); 18938 return (-1); 18939 } 18940 18941 /* Add global hwcksum attribute */ 18942 if (hwcksum && 18943 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 18944 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 18945 "checksum attribute\n")); 18946 18947 TCP_STAT(tcp_mdt_allocfail); 18948 return (-1); 18949 } 18950 18951 return (0); 18952 } 18953 18954 /* 18955 * Smaller and private version of pdescinfo_t used specifically for TCP, 18956 * which allows for only two payload spans per packet. 18957 */ 18958 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 18959 18960 /* 18961 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 18962 * scheme, and returns one the following: 18963 * 18964 * -1 = failed allocation. 18965 * 0 = success; burst count reached, or usable send window is too small, 18966 * and that we'd rather wait until later before sending again. 18967 */ 18968 static int 18969 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 18970 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 18971 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 18972 const int mdt_thres) 18973 { 18974 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 18975 multidata_t *mmd; 18976 uint_t obsegs, obbytes, hdr_frag_sz; 18977 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 18978 int num_burst_seg, max_pld; 18979 pdesc_t *pkt; 18980 tcp_pdescinfo_t tcp_pkt_info; 18981 pdescinfo_t *pkt_info; 18982 int pbuf_idx, pbuf_idx_nxt; 18983 int seg_len, len, spill, af; 18984 boolean_t add_buffer, zcopy, clusterwide; 18985 boolean_t rconfirm = B_FALSE; 18986 boolean_t done = B_FALSE; 18987 uint32_t cksum; 18988 uint32_t hwcksum_flags; 18989 ire_t *ire; 18990 ill_t *ill; 18991 ipha_t *ipha; 18992 ip6_t *ip6h; 18993 ipaddr_t src, dst; 18994 ill_zerocopy_capab_t *zc_cap = NULL; 18995 uint16_t *up; 18996 int err; 18997 conn_t *connp; 18998 18999 #ifdef _BIG_ENDIAN 19000 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 19001 #else 19002 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 19003 #endif 19004 19005 #define PREP_NEW_MULTIDATA() { \ 19006 mmd = NULL; \ 19007 md_mp = md_hbuf = NULL; \ 19008 cur_hdr_off = 0; \ 19009 max_pld = tcp->tcp_mdt_max_pld; \ 19010 pbuf_idx = pbuf_idx_nxt = -1; \ 19011 add_buffer = B_TRUE; \ 19012 zcopy = B_FALSE; \ 19013 } 19014 19015 #define PREP_NEW_PBUF() { \ 19016 md_pbuf = md_pbuf_nxt = NULL; \ 19017 pbuf_idx = pbuf_idx_nxt = -1; \ 19018 cur_pld_off = 0; \ 19019 first_snxt = *snxt; \ 19020 ASSERT(*tail_unsent > 0); \ 19021 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 19022 } 19023 19024 ASSERT(mdt_thres >= mss); 19025 ASSERT(*usable > 0 && *usable > mdt_thres); 19026 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 19027 ASSERT(!TCP_IS_DETACHED(tcp)); 19028 ASSERT(tcp->tcp_valid_bits == 0 || 19029 tcp->tcp_valid_bits == TCP_FSS_VALID); 19030 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 19031 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 19032 (tcp->tcp_ipversion == IPV6_VERSION && 19033 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 19034 19035 connp = tcp->tcp_connp; 19036 ASSERT(connp != NULL); 19037 ASSERT(CONN_IS_MD_FASTPATH(connp)); 19038 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp)); 19039 19040 /* 19041 * Note that tcp will only declare at most 2 payload spans per 19042 * packet, which is much lower than the maximum allowable number 19043 * of packet spans per Multidata. For this reason, we use the 19044 * privately declared and smaller descriptor info structure, in 19045 * order to save some stack space. 19046 */ 19047 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 19048 19049 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 19050 if (af == AF_INET) { 19051 dst = tcp->tcp_ipha->ipha_dst; 19052 src = tcp->tcp_ipha->ipha_src; 19053 ASSERT(!CLASSD(dst)); 19054 } 19055 ASSERT(af == AF_INET || 19056 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 19057 19058 obsegs = obbytes = 0; 19059 num_burst_seg = tcp->tcp_snd_burst; 19060 md_mp_head = NULL; 19061 PREP_NEW_MULTIDATA(); 19062 19063 /* 19064 * Before we go on further, make sure there is an IRE that we can 19065 * use, and that the ILL supports MDT. Otherwise, there's no point 19066 * in proceeding any further, and we should just hand everything 19067 * off to the legacy path. 19068 */ 19069 mutex_enter(&connp->conn_lock); 19070 ire = connp->conn_ire_cache; 19071 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 19072 if (ire != NULL && ((af == AF_INET && ire->ire_addr == dst) || 19073 (af == AF_INET6 && IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, 19074 &tcp->tcp_ip6h->ip6_dst))) && 19075 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19076 IRE_REFHOLD(ire); 19077 mutex_exit(&connp->conn_lock); 19078 } else { 19079 boolean_t cached = B_FALSE; 19080 ts_label_t *tsl; 19081 19082 /* force a recheck later on */ 19083 tcp->tcp_ire_ill_check_done = B_FALSE; 19084 19085 TCP_DBGSTAT(tcp_ire_null1); 19086 connp->conn_ire_cache = NULL; 19087 mutex_exit(&connp->conn_lock); 19088 19089 /* Release the old ire */ 19090 if (ire != NULL) 19091 IRE_REFRELE_NOTR(ire); 19092 19093 tsl = crgetlabel(CONN_CRED(connp)); 19094 ire = (af == AF_INET) ? 19095 ire_cache_lookup(dst, connp->conn_zoneid, tsl) : 19096 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 19097 connp->conn_zoneid, tsl); 19098 19099 if (ire == NULL) { 19100 TCP_STAT(tcp_ire_null); 19101 goto legacy_send_no_md; 19102 } 19103 19104 IRE_REFHOLD_NOTR(ire); 19105 /* 19106 * Since we are inside the squeue, there cannot be another 19107 * thread in TCP trying to set the conn_ire_cache now. The 19108 * check for IRE_MARK_CONDEMNED ensures that an interface 19109 * unplumb thread has not yet started cleaning up the conns. 19110 * Hence we don't need to grab the conn lock. 19111 */ 19112 if (!(connp->conn_state_flags & CONN_CLOSING)) { 19113 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 19114 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19115 connp->conn_ire_cache = ire; 19116 cached = B_TRUE; 19117 } 19118 rw_exit(&ire->ire_bucket->irb_lock); 19119 } 19120 19121 /* 19122 * We can continue to use the ire but since it was not 19123 * cached, we should drop the extra reference. 19124 */ 19125 if (!cached) 19126 IRE_REFRELE_NOTR(ire); 19127 } 19128 19129 ASSERT(ire != NULL); 19130 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 19131 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 19132 ASSERT(af == AF_INET || ire->ire_nce != NULL); 19133 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19134 /* 19135 * If we do support loopback for MDT (which requires modifications 19136 * to the receiving paths), the following assertions should go away, 19137 * and we would be sending the Multidata to loopback conn later on. 19138 */ 19139 ASSERT(!IRE_IS_LOCAL(ire)); 19140 ASSERT(ire->ire_stq != NULL); 19141 19142 ill = ire_to_ill(ire); 19143 ASSERT(ill != NULL); 19144 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 19145 19146 if (!tcp->tcp_ire_ill_check_done) { 19147 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19148 tcp->tcp_ire_ill_check_done = B_TRUE; 19149 } 19150 19151 /* 19152 * If the underlying interface conditions have changed, or if the 19153 * new interface does not support MDT, go back to legacy path. 19154 */ 19155 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 19156 /* don't go through this path anymore for this connection */ 19157 TCP_STAT(tcp_mdt_conn_halted2); 19158 tcp->tcp_mdt = B_FALSE; 19159 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 19160 "interface %s\n", (void *)connp, ill->ill_name)); 19161 /* IRE will be released prior to returning */ 19162 goto legacy_send_no_md; 19163 } 19164 19165 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 19166 zc_cap = ill->ill_zerocopy_capab; 19167 19168 /* go to legacy path if interface doesn't support zerocopy */ 19169 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 19170 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 19171 /* IRE will be released prior to returning */ 19172 goto legacy_send_no_md; 19173 } 19174 19175 /* does the interface support hardware checksum offload? */ 19176 hwcksum_flags = 0; 19177 if (ILL_HCKSUM_CAPABLE(ill) && 19178 (ill->ill_hcksum_capab->ill_hcksum_txflags & 19179 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 19180 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 19181 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19182 HCKSUM_IPHDRCKSUM) 19183 hwcksum_flags = HCK_IPV4_HDRCKSUM; 19184 19185 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19186 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 19187 hwcksum_flags |= HCK_FULLCKSUM; 19188 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19189 HCKSUM_INET_PARTIAL) 19190 hwcksum_flags |= HCK_PARTIALCKSUM; 19191 } 19192 19193 /* 19194 * Each header fragment consists of the leading extra space, 19195 * followed by the TCP/IP header, and the trailing extra space. 19196 * We make sure that each header fragment begins on a 32-bit 19197 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 19198 * aligned in tcp_mdt_update). 19199 */ 19200 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 19201 tcp->tcp_mdt_hdr_tail), 4); 19202 19203 /* are we starting from the beginning of data block? */ 19204 if (*tail_unsent == 0) { 19205 *xmit_tail = (*xmit_tail)->b_cont; 19206 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 19207 *tail_unsent = (int)MBLKL(*xmit_tail); 19208 } 19209 19210 /* 19211 * Here we create one or more Multidata messages, each made up of 19212 * one header buffer and up to N payload buffers. This entire 19213 * operation is done within two loops: 19214 * 19215 * The outer loop mostly deals with creating the Multidata message, 19216 * as well as the header buffer that gets added to it. It also 19217 * links the Multidata messages together such that all of them can 19218 * be sent down to the lower layer in a single putnext call; this 19219 * linking behavior depends on the tcp_mdt_chain tunable. 19220 * 19221 * The inner loop takes an existing Multidata message, and adds 19222 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 19223 * packetizes those buffers by filling up the corresponding header 19224 * buffer fragments with the proper IP and TCP headers, and by 19225 * describing the layout of each packet in the packet descriptors 19226 * that get added to the Multidata. 19227 */ 19228 do { 19229 /* 19230 * If usable send window is too small, or data blocks in 19231 * transmit list are smaller than our threshold (i.e. app 19232 * performs large writes followed by small ones), we hand 19233 * off the control over to the legacy path. Note that we'll 19234 * get back the control once it encounters a large block. 19235 */ 19236 if (*usable < mss || (*tail_unsent <= mdt_thres && 19237 (*xmit_tail)->b_cont != NULL && 19238 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 19239 /* send down what we've got so far */ 19240 if (md_mp_head != NULL) { 19241 tcp_multisend_data(tcp, ire, ill, md_mp_head, 19242 obsegs, obbytes, &rconfirm); 19243 } 19244 /* 19245 * Pass control over to tcp_send(), but tell it to 19246 * return to us once a large-size transmission is 19247 * possible. 19248 */ 19249 TCP_STAT(tcp_mdt_legacy_small); 19250 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 19251 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 19252 tail_unsent, xmit_tail, local_time, 19253 mdt_thres)) <= 0) { 19254 /* burst count reached, or alloc failed */ 19255 IRE_REFRELE(ire); 19256 return (err); 19257 } 19258 19259 /* tcp_send() may have sent everything, so check */ 19260 if (*usable <= 0) { 19261 IRE_REFRELE(ire); 19262 return (0); 19263 } 19264 19265 TCP_STAT(tcp_mdt_legacy_ret); 19266 /* 19267 * We may have delivered the Multidata, so make sure 19268 * to re-initialize before the next round. 19269 */ 19270 md_mp_head = NULL; 19271 obsegs = obbytes = 0; 19272 num_burst_seg = tcp->tcp_snd_burst; 19273 PREP_NEW_MULTIDATA(); 19274 19275 /* are we starting from the beginning of data block? */ 19276 if (*tail_unsent == 0) { 19277 *xmit_tail = (*xmit_tail)->b_cont; 19278 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19279 (uintptr_t)INT_MAX); 19280 *tail_unsent = (int)MBLKL(*xmit_tail); 19281 } 19282 } 19283 19284 /* 19285 * max_pld limits the number of mblks in tcp's transmit 19286 * queue that can be added to a Multidata message. Once 19287 * this counter reaches zero, no more additional mblks 19288 * can be added to it. What happens afterwards depends 19289 * on whether or not we are set to chain the Multidata 19290 * messages. If we are to link them together, reset 19291 * max_pld to its original value (tcp_mdt_max_pld) and 19292 * prepare to create a new Multidata message which will 19293 * get linked to md_mp_head. Else, leave it alone and 19294 * let the inner loop break on its own. 19295 */ 19296 if (tcp_mdt_chain && max_pld == 0) 19297 PREP_NEW_MULTIDATA(); 19298 19299 /* adding a payload buffer; re-initialize values */ 19300 if (add_buffer) 19301 PREP_NEW_PBUF(); 19302 19303 /* 19304 * If we don't have a Multidata, either because we just 19305 * (re)entered this outer loop, or after we branched off 19306 * to tcp_send above, setup the Multidata and header 19307 * buffer to be used. 19308 */ 19309 if (md_mp == NULL) { 19310 int md_hbuflen; 19311 uint32_t start, stuff; 19312 19313 /* 19314 * Calculate Multidata header buffer size large enough 19315 * to hold all of the headers that can possibly be 19316 * sent at this moment. We'd rather over-estimate 19317 * the size than running out of space; this is okay 19318 * since this buffer is small anyway. 19319 */ 19320 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 19321 19322 /* 19323 * Start and stuff offset for partial hardware 19324 * checksum offload; these are currently for IPv4. 19325 * For full checksum offload, they are set to zero. 19326 */ 19327 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 19328 if (af == AF_INET) { 19329 start = IP_SIMPLE_HDR_LENGTH; 19330 stuff = IP_SIMPLE_HDR_LENGTH + 19331 TCP_CHECKSUM_OFFSET; 19332 } else { 19333 start = IPV6_HDR_LEN; 19334 stuff = IPV6_HDR_LEN + 19335 TCP_CHECKSUM_OFFSET; 19336 } 19337 } else { 19338 start = stuff = 0; 19339 } 19340 19341 /* 19342 * Create the header buffer, Multidata, as well as 19343 * any necessary attributes (destination address, 19344 * SAP and hardware checksum offload) that should 19345 * be associated with the Multidata message. 19346 */ 19347 ASSERT(cur_hdr_off == 0); 19348 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 19349 ((md_hbuf->b_wptr += md_hbuflen), 19350 (mmd = mmd_alloc(md_hbuf, &md_mp, 19351 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 19352 /* fastpath mblk */ 19353 (af == AF_INET) ? ire->ire_dlureq_mp : 19354 ire->ire_nce->nce_res_mp, 19355 /* hardware checksum enabled */ 19356 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 19357 /* hardware checksum offsets */ 19358 start, stuff, 0, 19359 /* hardware checksum flag */ 19360 hwcksum_flags) != 0)) { 19361 legacy_send: 19362 if (md_mp != NULL) { 19363 /* Unlink message from the chain */ 19364 if (md_mp_head != NULL) { 19365 err = (intptr_t)rmvb(md_mp_head, 19366 md_mp); 19367 /* 19368 * We can't assert that rmvb 19369 * did not return -1, since we 19370 * may get here before linkb 19371 * happens. We do, however, 19372 * check if we just removed the 19373 * only element in the list. 19374 */ 19375 if (err == 0) 19376 md_mp_head = NULL; 19377 } 19378 /* md_hbuf gets freed automatically */ 19379 TCP_STAT(tcp_mdt_discarded); 19380 freeb(md_mp); 19381 } else { 19382 /* Either allocb or mmd_alloc failed */ 19383 TCP_STAT(tcp_mdt_allocfail); 19384 if (md_hbuf != NULL) 19385 freeb(md_hbuf); 19386 } 19387 19388 /* send down what we've got so far */ 19389 if (md_mp_head != NULL) { 19390 tcp_multisend_data(tcp, ire, ill, 19391 md_mp_head, obsegs, obbytes, 19392 &rconfirm); 19393 } 19394 legacy_send_no_md: 19395 if (ire != NULL) 19396 IRE_REFRELE(ire); 19397 /* 19398 * Too bad; let the legacy path handle this. 19399 * We specify INT_MAX for the threshold, since 19400 * we gave up with the Multidata processings 19401 * and let the old path have it all. 19402 */ 19403 TCP_STAT(tcp_mdt_legacy_all); 19404 return (tcp_send(q, tcp, mss, tcp_hdr_len, 19405 tcp_tcp_hdr_len, num_sack_blk, usable, 19406 snxt, tail_unsent, xmit_tail, local_time, 19407 INT_MAX)); 19408 } 19409 19410 /* link to any existing ones, if applicable */ 19411 TCP_STAT(tcp_mdt_allocd); 19412 if (md_mp_head == NULL) { 19413 md_mp_head = md_mp; 19414 } else if (tcp_mdt_chain) { 19415 TCP_STAT(tcp_mdt_linked); 19416 linkb(md_mp_head, md_mp); 19417 } 19418 } 19419 19420 ASSERT(md_mp_head != NULL); 19421 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 19422 ASSERT(md_mp != NULL && mmd != NULL); 19423 ASSERT(md_hbuf != NULL); 19424 19425 /* 19426 * Packetize the transmittable portion of the data block; 19427 * each data block is essentially added to the Multidata 19428 * as a payload buffer. We also deal with adding more 19429 * than one payload buffers, which happens when the remaining 19430 * packetized portion of the current payload buffer is less 19431 * than MSS, while the next data block in transmit queue 19432 * has enough data to make up for one. This "spillover" 19433 * case essentially creates a split-packet, where portions 19434 * of the packet's payload fragments may span across two 19435 * virtually discontiguous address blocks. 19436 */ 19437 seg_len = mss; 19438 do { 19439 len = seg_len; 19440 19441 ASSERT(len > 0); 19442 ASSERT(max_pld >= 0); 19443 ASSERT(!add_buffer || cur_pld_off == 0); 19444 19445 /* 19446 * First time around for this payload buffer; note 19447 * in the case of a spillover, the following has 19448 * been done prior to adding the split-packet 19449 * descriptor to Multidata, and we don't want to 19450 * repeat the process. 19451 */ 19452 if (add_buffer) { 19453 ASSERT(mmd != NULL); 19454 ASSERT(md_pbuf == NULL); 19455 ASSERT(md_pbuf_nxt == NULL); 19456 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 19457 19458 /* 19459 * Have we reached the limit? We'd get to 19460 * this case when we're not chaining the 19461 * Multidata messages together, and since 19462 * we're done, terminate this loop. 19463 */ 19464 if (max_pld == 0) 19465 break; /* done */ 19466 19467 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 19468 TCP_STAT(tcp_mdt_allocfail); 19469 goto legacy_send; /* out_of_mem */ 19470 } 19471 19472 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 19473 zc_cap != NULL) { 19474 if (!ip_md_zcopy_attr(mmd, NULL, 19475 zc_cap->ill_zerocopy_flags)) { 19476 freeb(md_pbuf); 19477 TCP_STAT(tcp_mdt_allocfail); 19478 /* out_of_mem */ 19479 goto legacy_send; 19480 } 19481 zcopy = B_TRUE; 19482 } 19483 19484 md_pbuf->b_rptr += base_pld_off; 19485 19486 /* 19487 * Add a payload buffer to the Multidata; this 19488 * operation must not fail, or otherwise our 19489 * logic in this routine is broken. There 19490 * is no memory allocation done by the 19491 * routine, so any returned failure simply 19492 * tells us that we've done something wrong. 19493 * 19494 * A failure tells us that either we're adding 19495 * the same payload buffer more than once, or 19496 * we're trying to add more buffers than 19497 * allowed (max_pld calculation is wrong). 19498 * None of the above cases should happen, and 19499 * we panic because either there's horrible 19500 * heap corruption, and/or programming mistake. 19501 */ 19502 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 19503 if (pbuf_idx < 0) { 19504 cmn_err(CE_PANIC, "tcp_multisend: " 19505 "payload buffer logic error " 19506 "detected for tcp %p mmd %p " 19507 "pbuf %p (%d)\n", 19508 (void *)tcp, (void *)mmd, 19509 (void *)md_pbuf, pbuf_idx); 19510 } 19511 19512 ASSERT(max_pld > 0); 19513 --max_pld; 19514 add_buffer = B_FALSE; 19515 } 19516 19517 ASSERT(md_mp_head != NULL); 19518 ASSERT(md_pbuf != NULL); 19519 ASSERT(md_pbuf_nxt == NULL); 19520 ASSERT(pbuf_idx != -1); 19521 ASSERT(pbuf_idx_nxt == -1); 19522 ASSERT(*usable > 0); 19523 19524 /* 19525 * We spillover to the next payload buffer only 19526 * if all of the following is true: 19527 * 19528 * 1. There is not enough data on the current 19529 * payload buffer to make up `len', 19530 * 2. We are allowed to send `len', 19531 * 3. The next payload buffer length is large 19532 * enough to accomodate `spill'. 19533 */ 19534 if ((spill = len - *tail_unsent) > 0 && 19535 *usable >= len && 19536 MBLKL((*xmit_tail)->b_cont) >= spill && 19537 max_pld > 0) { 19538 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 19539 if (md_pbuf_nxt == NULL) { 19540 TCP_STAT(tcp_mdt_allocfail); 19541 goto legacy_send; /* out_of_mem */ 19542 } 19543 19544 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 19545 zc_cap != NULL) { 19546 if (!ip_md_zcopy_attr(mmd, NULL, 19547 zc_cap->ill_zerocopy_flags)) { 19548 freeb(md_pbuf_nxt); 19549 TCP_STAT(tcp_mdt_allocfail); 19550 /* out_of_mem */ 19551 goto legacy_send; 19552 } 19553 zcopy = B_TRUE; 19554 } 19555 19556 /* 19557 * See comments above on the first call to 19558 * mmd_addpldbuf for explanation on the panic. 19559 */ 19560 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 19561 if (pbuf_idx_nxt < 0) { 19562 panic("tcp_multisend: " 19563 "next payload buffer logic error " 19564 "detected for tcp %p mmd %p " 19565 "pbuf %p (%d)\n", 19566 (void *)tcp, (void *)mmd, 19567 (void *)md_pbuf_nxt, pbuf_idx_nxt); 19568 } 19569 19570 ASSERT(max_pld > 0); 19571 --max_pld; 19572 } else if (spill > 0) { 19573 /* 19574 * If there's a spillover, but the following 19575 * xmit_tail couldn't give us enough octets 19576 * to reach "len", then stop the current 19577 * Multidata creation and let the legacy 19578 * tcp_send() path take over. We don't want 19579 * to send the tiny segment as part of this 19580 * Multidata for performance reasons; instead, 19581 * we let the legacy path deal with grouping 19582 * it with the subsequent small mblks. 19583 */ 19584 if (*usable >= len && 19585 MBLKL((*xmit_tail)->b_cont) < spill) { 19586 max_pld = 0; 19587 break; /* done */ 19588 } 19589 19590 /* 19591 * We can't spillover, and we are near 19592 * the end of the current payload buffer, 19593 * so send what's left. 19594 */ 19595 ASSERT(*tail_unsent > 0); 19596 len = *tail_unsent; 19597 } 19598 19599 /* tail_unsent is negated if there is a spillover */ 19600 *tail_unsent -= len; 19601 *usable -= len; 19602 ASSERT(*usable >= 0); 19603 19604 if (*usable < mss) 19605 seg_len = *usable; 19606 /* 19607 * Sender SWS avoidance; see comments in tcp_send(); 19608 * everything else is the same, except that we only 19609 * do this here if there is no more data to be sent 19610 * following the current xmit_tail. We don't check 19611 * for 1-byte urgent data because we shouldn't get 19612 * here if TCP_URG_VALID is set. 19613 */ 19614 if (*usable > 0 && *usable < mss && 19615 ((md_pbuf_nxt == NULL && 19616 (*xmit_tail)->b_cont == NULL) || 19617 (md_pbuf_nxt != NULL && 19618 (*xmit_tail)->b_cont->b_cont == NULL)) && 19619 seg_len < (tcp->tcp_max_swnd >> 1) && 19620 (tcp->tcp_unsent - 19621 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 19622 !tcp->tcp_zero_win_probe) { 19623 if ((*snxt + len) == tcp->tcp_snxt && 19624 (*snxt + len) == tcp->tcp_suna) { 19625 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19626 } 19627 done = B_TRUE; 19628 } 19629 19630 /* 19631 * Prime pump for IP's checksumming on our behalf; 19632 * include the adjustment for a source route if any. 19633 * Do this only for software/partial hardware checksum 19634 * offload, as this field gets zeroed out later for 19635 * the full hardware checksum offload case. 19636 */ 19637 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 19638 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 19639 cksum = (cksum >> 16) + (cksum & 0xFFFF); 19640 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 19641 } 19642 19643 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 19644 *snxt += len; 19645 19646 tcp->tcp_tcph->th_flags[0] = TH_ACK; 19647 /* 19648 * We set the PUSH bit only if TCP has no more buffered 19649 * data to be transmitted (or if sender SWS avoidance 19650 * takes place), as opposed to setting it for every 19651 * last packet in the burst. 19652 */ 19653 if (done || 19654 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 19655 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 19656 19657 /* 19658 * Set FIN bit if this is our last segment; snxt 19659 * already includes its length, and it will not 19660 * be adjusted after this point. 19661 */ 19662 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 19663 *snxt == tcp->tcp_fss) { 19664 if (!tcp->tcp_fin_acked) { 19665 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 19666 BUMP_MIB(&tcp_mib, tcpOutControl); 19667 } 19668 if (!tcp->tcp_fin_sent) { 19669 tcp->tcp_fin_sent = B_TRUE; 19670 /* 19671 * tcp state must be ESTABLISHED 19672 * in order for us to get here in 19673 * the first place. 19674 */ 19675 tcp->tcp_state = TCPS_FIN_WAIT_1; 19676 19677 /* 19678 * Upon returning from this routine, 19679 * tcp_wput_data() will set tcp_snxt 19680 * to be equal to snxt + tcp_fin_sent. 19681 * This is essentially the same as 19682 * setting it to tcp_fss + 1. 19683 */ 19684 } 19685 } 19686 19687 tcp->tcp_last_sent_len = (ushort_t)len; 19688 19689 len += tcp_hdr_len; 19690 if (tcp->tcp_ipversion == IPV4_VERSION) 19691 tcp->tcp_ipha->ipha_length = htons(len); 19692 else 19693 tcp->tcp_ip6h->ip6_plen = htons(len - 19694 ((char *)&tcp->tcp_ip6h[1] - 19695 tcp->tcp_iphc)); 19696 19697 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 19698 19699 /* setup header fragment */ 19700 PDESC_HDR_ADD(pkt_info, 19701 md_hbuf->b_rptr + cur_hdr_off, /* base */ 19702 tcp->tcp_mdt_hdr_head, /* head room */ 19703 tcp_hdr_len, /* len */ 19704 tcp->tcp_mdt_hdr_tail); /* tail room */ 19705 19706 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 19707 hdr_frag_sz); 19708 ASSERT(MBLKIN(md_hbuf, 19709 (pkt_info->hdr_base - md_hbuf->b_rptr), 19710 PDESC_HDRSIZE(pkt_info))); 19711 19712 /* setup first payload fragment */ 19713 PDESC_PLD_INIT(pkt_info); 19714 PDESC_PLD_SPAN_ADD(pkt_info, 19715 pbuf_idx, /* index */ 19716 md_pbuf->b_rptr + cur_pld_off, /* start */ 19717 tcp->tcp_last_sent_len); /* len */ 19718 19719 /* create a split-packet in case of a spillover */ 19720 if (md_pbuf_nxt != NULL) { 19721 ASSERT(spill > 0); 19722 ASSERT(pbuf_idx_nxt > pbuf_idx); 19723 ASSERT(!add_buffer); 19724 19725 md_pbuf = md_pbuf_nxt; 19726 md_pbuf_nxt = NULL; 19727 pbuf_idx = pbuf_idx_nxt; 19728 pbuf_idx_nxt = -1; 19729 cur_pld_off = spill; 19730 19731 /* trim out first payload fragment */ 19732 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 19733 19734 /* setup second payload fragment */ 19735 PDESC_PLD_SPAN_ADD(pkt_info, 19736 pbuf_idx, /* index */ 19737 md_pbuf->b_rptr, /* start */ 19738 spill); /* len */ 19739 19740 if ((*xmit_tail)->b_next == NULL) { 19741 /* 19742 * Store the lbolt used for RTT 19743 * estimation. We can only record one 19744 * timestamp per mblk so we do it when 19745 * we reach the end of the payload 19746 * buffer. Also we only take a new 19747 * timestamp sample when the previous 19748 * timed data from the same mblk has 19749 * been ack'ed. 19750 */ 19751 (*xmit_tail)->b_prev = local_time; 19752 (*xmit_tail)->b_next = 19753 (mblk_t *)(uintptr_t)first_snxt; 19754 } 19755 19756 first_snxt = *snxt - spill; 19757 19758 /* 19759 * Advance xmit_tail; usable could be 0 by 19760 * the time we got here, but we made sure 19761 * above that we would only spillover to 19762 * the next data block if usable includes 19763 * the spilled-over amount prior to the 19764 * subtraction. Therefore, we are sure 19765 * that xmit_tail->b_cont can't be NULL. 19766 */ 19767 ASSERT((*xmit_tail)->b_cont != NULL); 19768 *xmit_tail = (*xmit_tail)->b_cont; 19769 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19770 (uintptr_t)INT_MAX); 19771 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 19772 } else { 19773 cur_pld_off += tcp->tcp_last_sent_len; 19774 } 19775 19776 /* 19777 * Fill in the header using the template header, and 19778 * add options such as time-stamp, ECN and/or SACK, 19779 * as needed. 19780 */ 19781 tcp_fill_header(tcp, pkt_info->hdr_rptr, 19782 (clock_t)local_time, num_sack_blk); 19783 19784 /* take care of some IP header businesses */ 19785 if (af == AF_INET) { 19786 ipha = (ipha_t *)pkt_info->hdr_rptr; 19787 19788 ASSERT(OK_32PTR((uchar_t *)ipha)); 19789 ASSERT(PDESC_HDRL(pkt_info) >= 19790 IP_SIMPLE_HDR_LENGTH); 19791 ASSERT(ipha->ipha_version_and_hdr_length == 19792 IP_SIMPLE_HDR_VERSION); 19793 19794 /* 19795 * Assign ident value for current packet; see 19796 * related comments in ip_wput_ire() about the 19797 * contract private interface with clustering 19798 * group. 19799 */ 19800 clusterwide = B_FALSE; 19801 if (cl_inet_ipident != NULL) { 19802 ASSERT(cl_inet_isclusterwide != NULL); 19803 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 19804 AF_INET, 19805 (uint8_t *)(uintptr_t)src)) { 19806 ipha->ipha_ident = 19807 (*cl_inet_ipident) 19808 (IPPROTO_IP, AF_INET, 19809 (uint8_t *)(uintptr_t)src, 19810 (uint8_t *)(uintptr_t)dst); 19811 clusterwide = B_TRUE; 19812 } 19813 } 19814 19815 if (!clusterwide) { 19816 ipha->ipha_ident = (uint16_t) 19817 atomic_add_32_nv( 19818 &ire->ire_ident, 1); 19819 } 19820 #ifndef _BIG_ENDIAN 19821 ipha->ipha_ident = (ipha->ipha_ident << 8) | 19822 (ipha->ipha_ident >> 8); 19823 #endif 19824 } else { 19825 ip6h = (ip6_t *)pkt_info->hdr_rptr; 19826 19827 ASSERT(OK_32PTR((uchar_t *)ip6h)); 19828 ASSERT(IPVER(ip6h) == IPV6_VERSION); 19829 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 19830 ASSERT(PDESC_HDRL(pkt_info) >= 19831 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 19832 TCP_CHECKSUM_SIZE)); 19833 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 19834 19835 if (tcp->tcp_ip_forward_progress) { 19836 rconfirm = B_TRUE; 19837 tcp->tcp_ip_forward_progress = B_FALSE; 19838 } 19839 } 19840 19841 /* at least one payload span, and at most two */ 19842 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 19843 19844 /* add the packet descriptor to Multidata */ 19845 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 19846 KM_NOSLEEP)) == NULL) { 19847 /* 19848 * Any failure other than ENOMEM indicates 19849 * that we have passed in invalid pkt_info 19850 * or parameters to mmd_addpdesc, which must 19851 * not happen. 19852 * 19853 * EINVAL is a result of failure on boundary 19854 * checks against the pkt_info contents. It 19855 * should not happen, and we panic because 19856 * either there's horrible heap corruption, 19857 * and/or programming mistake. 19858 */ 19859 if (err != ENOMEM) { 19860 cmn_err(CE_PANIC, "tcp_multisend: " 19861 "pdesc logic error detected for " 19862 "tcp %p mmd %p pinfo %p (%d)\n", 19863 (void *)tcp, (void *)mmd, 19864 (void *)pkt_info, err); 19865 } 19866 TCP_STAT(tcp_mdt_addpdescfail); 19867 goto legacy_send; /* out_of_mem */ 19868 } 19869 ASSERT(pkt != NULL); 19870 19871 /* calculate IP header and TCP checksums */ 19872 if (af == AF_INET) { 19873 /* calculate pseudo-header checksum */ 19874 cksum = (dst >> 16) + (dst & 0xFFFF) + 19875 (src >> 16) + (src & 0xFFFF); 19876 19877 /* offset for TCP header checksum */ 19878 up = IPH_TCPH_CHECKSUMP(ipha, 19879 IP_SIMPLE_HDR_LENGTH); 19880 } else { 19881 up = (uint16_t *)&ip6h->ip6_src; 19882 19883 /* calculate pseudo-header checksum */ 19884 cksum = up[0] + up[1] + up[2] + up[3] + 19885 up[4] + up[5] + up[6] + up[7] + 19886 up[8] + up[9] + up[10] + up[11] + 19887 up[12] + up[13] + up[14] + up[15]; 19888 19889 /* Fold the initial sum */ 19890 cksum = (cksum & 0xffff) + (cksum >> 16); 19891 19892 up = (uint16_t *)(((uchar_t *)ip6h) + 19893 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 19894 } 19895 19896 if (hwcksum_flags & HCK_FULLCKSUM) { 19897 /* clear checksum field for hardware */ 19898 *up = 0; 19899 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 19900 uint32_t sum; 19901 19902 /* pseudo-header checksumming */ 19903 sum = *up + cksum + IP_TCP_CSUM_COMP; 19904 sum = (sum & 0xFFFF) + (sum >> 16); 19905 *up = (sum & 0xFFFF) + (sum >> 16); 19906 } else { 19907 /* software checksumming */ 19908 TCP_STAT(tcp_out_sw_cksum); 19909 TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes, 19910 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 19911 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 19912 cksum + IP_TCP_CSUM_COMP); 19913 if (*up == 0) 19914 *up = 0xFFFF; 19915 } 19916 19917 /* IPv4 header checksum */ 19918 if (af == AF_INET) { 19919 ipha->ipha_fragment_offset_and_flags |= 19920 (uint32_t)htons(ire->ire_frag_flag); 19921 19922 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 19923 ipha->ipha_hdr_checksum = 0; 19924 } else { 19925 IP_HDR_CKSUM(ipha, cksum, 19926 ((uint32_t *)ipha)[0], 19927 ((uint16_t *)ipha)[4]); 19928 } 19929 } 19930 19931 /* advance header offset */ 19932 cur_hdr_off += hdr_frag_sz; 19933 19934 obbytes += tcp->tcp_last_sent_len; 19935 ++obsegs; 19936 } while (!done && *usable > 0 && --num_burst_seg > 0 && 19937 *tail_unsent > 0); 19938 19939 if ((*xmit_tail)->b_next == NULL) { 19940 /* 19941 * Store the lbolt used for RTT estimation. We can only 19942 * record one timestamp per mblk so we do it when we 19943 * reach the end of the payload buffer. Also we only 19944 * take a new timestamp sample when the previous timed 19945 * data from the same mblk has been ack'ed. 19946 */ 19947 (*xmit_tail)->b_prev = local_time; 19948 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 19949 } 19950 19951 ASSERT(*tail_unsent >= 0); 19952 if (*tail_unsent > 0) { 19953 /* 19954 * We got here because we broke out of the above 19955 * loop due to of one of the following cases: 19956 * 19957 * 1. len < adjusted MSS (i.e. small), 19958 * 2. Sender SWS avoidance, 19959 * 3. max_pld is zero. 19960 * 19961 * We are done for this Multidata, so trim our 19962 * last payload buffer (if any) accordingly. 19963 */ 19964 if (md_pbuf != NULL) 19965 md_pbuf->b_wptr -= *tail_unsent; 19966 } else if (*usable > 0) { 19967 *xmit_tail = (*xmit_tail)->b_cont; 19968 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19969 (uintptr_t)INT_MAX); 19970 *tail_unsent = (int)MBLKL(*xmit_tail); 19971 add_buffer = B_TRUE; 19972 } 19973 } while (!done && *usable > 0 && num_burst_seg > 0 && 19974 (tcp_mdt_chain || max_pld > 0)); 19975 19976 /* send everything down */ 19977 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 19978 &rconfirm); 19979 19980 #undef PREP_NEW_MULTIDATA 19981 #undef PREP_NEW_PBUF 19982 #undef IPVER 19983 19984 IRE_REFRELE(ire); 19985 return (0); 19986 } 19987 19988 /* 19989 * A wrapper function for sending one or more Multidata messages down to 19990 * the module below ip; this routine does not release the reference of the 19991 * IRE (caller does that). This routine is analogous to tcp_send_data(). 19992 */ 19993 static void 19994 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 19995 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 19996 { 19997 uint64_t delta; 19998 nce_t *nce; 19999 20000 ASSERT(ire != NULL && ill != NULL); 20001 ASSERT(ire->ire_stq != NULL); 20002 ASSERT(md_mp_head != NULL); 20003 ASSERT(rconfirm != NULL); 20004 20005 /* adjust MIBs and IRE timestamp */ 20006 TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT); 20007 tcp->tcp_obsegs += obsegs; 20008 UPDATE_MIB(&tcp_mib, tcpOutDataSegs, obsegs); 20009 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, obbytes); 20010 TCP_STAT_UPDATE(tcp_mdt_pkt_out, obsegs); 20011 20012 if (tcp->tcp_ipversion == IPV4_VERSION) { 20013 TCP_STAT_UPDATE(tcp_mdt_pkt_out_v4, obsegs); 20014 UPDATE_MIB(&ip_mib, ipOutRequests, obsegs); 20015 } else { 20016 TCP_STAT_UPDATE(tcp_mdt_pkt_out_v6, obsegs); 20017 UPDATE_MIB(&ip6_mib, ipv6OutRequests, obsegs); 20018 } 20019 20020 ire->ire_ob_pkt_count += obsegs; 20021 if (ire->ire_ipif != NULL) 20022 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 20023 ire->ire_last_used_time = lbolt; 20024 20025 /* send it down */ 20026 putnext(ire->ire_stq, md_mp_head); 20027 20028 /* we're done for TCP/IPv4 */ 20029 if (tcp->tcp_ipversion == IPV4_VERSION) 20030 return; 20031 20032 nce = ire->ire_nce; 20033 20034 ASSERT(nce != NULL); 20035 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 20036 ASSERT(nce->nce_state != ND_INCOMPLETE); 20037 20038 /* reachability confirmation? */ 20039 if (*rconfirm) { 20040 nce->nce_last = TICK_TO_MSEC(lbolt64); 20041 if (nce->nce_state != ND_REACHABLE) { 20042 mutex_enter(&nce->nce_lock); 20043 nce->nce_state = ND_REACHABLE; 20044 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 20045 mutex_exit(&nce->nce_lock); 20046 (void) untimeout(nce->nce_timeout_id); 20047 if (ip_debug > 2) { 20048 /* ip1dbg */ 20049 pr_addr_dbg("tcp_multisend_data: state " 20050 "for %s changed to REACHABLE\n", 20051 AF_INET6, &ire->ire_addr_v6); 20052 } 20053 } 20054 /* reset transport reachability confirmation */ 20055 *rconfirm = B_FALSE; 20056 } 20057 20058 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 20059 ip1dbg(("tcp_multisend_data: delta = %" PRId64 20060 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 20061 20062 if (delta > (uint64_t)ill->ill_reachable_time) { 20063 mutex_enter(&nce->nce_lock); 20064 switch (nce->nce_state) { 20065 case ND_REACHABLE: 20066 case ND_STALE: 20067 /* 20068 * ND_REACHABLE is identical to ND_STALE in this 20069 * specific case. If reachable time has expired for 20070 * this neighbor (delta is greater than reachable 20071 * time), conceptually, the neighbor cache is no 20072 * longer in REACHABLE state, but already in STALE 20073 * state. So the correct transition here is to 20074 * ND_DELAY. 20075 */ 20076 nce->nce_state = ND_DELAY; 20077 mutex_exit(&nce->nce_lock); 20078 NDP_RESTART_TIMER(nce, delay_first_probe_time); 20079 if (ip_debug > 3) { 20080 /* ip2dbg */ 20081 pr_addr_dbg("tcp_multisend_data: state " 20082 "for %s changed to DELAY\n", 20083 AF_INET6, &ire->ire_addr_v6); 20084 } 20085 break; 20086 case ND_DELAY: 20087 case ND_PROBE: 20088 mutex_exit(&nce->nce_lock); 20089 /* Timers have already started */ 20090 break; 20091 case ND_UNREACHABLE: 20092 /* 20093 * ndp timer has detected that this nce is 20094 * unreachable and initiated deleting this nce 20095 * and all its associated IREs. This is a race 20096 * where we found the ire before it was deleted 20097 * and have just sent out a packet using this 20098 * unreachable nce. 20099 */ 20100 mutex_exit(&nce->nce_lock); 20101 break; 20102 default: 20103 ASSERT(0); 20104 } 20105 } 20106 } 20107 20108 /* 20109 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 20110 * scheme, and returns one of the following: 20111 * 20112 * -1 = failed allocation. 20113 * 0 = success; burst count reached, or usable send window is too small, 20114 * and that we'd rather wait until later before sending again. 20115 * 1 = success; we are called from tcp_multisend(), and both usable send 20116 * window and tail_unsent are greater than the MDT threshold, and thus 20117 * Multidata Transmit should be used instead. 20118 */ 20119 static int 20120 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 20121 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 20122 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 20123 const int mdt_thres) 20124 { 20125 int num_burst_seg = tcp->tcp_snd_burst; 20126 20127 for (;;) { 20128 struct datab *db; 20129 tcph_t *tcph; 20130 uint32_t sum; 20131 mblk_t *mp, *mp1; 20132 uchar_t *rptr; 20133 int len; 20134 20135 /* 20136 * If we're called by tcp_multisend(), and the amount of 20137 * sendable data as well as the size of current xmit_tail 20138 * is beyond the MDT threshold, return to the caller and 20139 * let the large data transmit be done using MDT. 20140 */ 20141 if (*usable > 0 && *usable > mdt_thres && 20142 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 20143 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 20144 ASSERT(tcp->tcp_mdt); 20145 return (1); /* success; do large send */ 20146 } 20147 20148 if (num_burst_seg-- == 0) 20149 break; /* success; burst count reached */ 20150 20151 len = mss; 20152 if (len > *usable) { 20153 len = *usable; 20154 if (len <= 0) { 20155 /* Terminate the loop */ 20156 break; /* success; too small */ 20157 } 20158 /* 20159 * Sender silly-window avoidance. 20160 * Ignore this if we are going to send a 20161 * zero window probe out. 20162 * 20163 * TODO: force data into microscopic window? 20164 * ==> (!pushed || (unsent > usable)) 20165 */ 20166 if (len < (tcp->tcp_max_swnd >> 1) && 20167 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 20168 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 20169 len == 1) && (! tcp->tcp_zero_win_probe)) { 20170 /* 20171 * If the retransmit timer is not running 20172 * we start it so that we will retransmit 20173 * in the case when the the receiver has 20174 * decremented the window. 20175 */ 20176 if (*snxt == tcp->tcp_snxt && 20177 *snxt == tcp->tcp_suna) { 20178 /* 20179 * We are not supposed to send 20180 * anything. So let's wait a little 20181 * bit longer before breaking SWS 20182 * avoidance. 20183 * 20184 * What should the value be? 20185 * Suggestion: MAX(init rexmit time, 20186 * tcp->tcp_rto) 20187 */ 20188 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20189 } 20190 break; /* success; too small */ 20191 } 20192 } 20193 20194 tcph = tcp->tcp_tcph; 20195 20196 *usable -= len; /* Approximate - can be adjusted later */ 20197 if (*usable > 0) 20198 tcph->th_flags[0] = TH_ACK; 20199 else 20200 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 20201 20202 /* 20203 * Prime pump for IP's checksumming on our behalf 20204 * Include the adjustment for a source route if any. 20205 */ 20206 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20207 sum = (sum >> 16) + (sum & 0xFFFF); 20208 U16_TO_ABE16(sum, tcph->th_sum); 20209 20210 U32_TO_ABE32(*snxt, tcph->th_seq); 20211 20212 /* 20213 * Branch off to tcp_xmit_mp() if any of the VALID bits is 20214 * set. For the case when TCP_FSS_VALID is the only valid 20215 * bit (normal active close), branch off only when we think 20216 * that the FIN flag needs to be set. Note for this case, 20217 * that (snxt + len) may not reflect the actual seg_len, 20218 * as len may be further reduced in tcp_xmit_mp(). If len 20219 * gets modified, we will end up here again. 20220 */ 20221 if (tcp->tcp_valid_bits != 0 && 20222 (tcp->tcp_valid_bits != TCP_FSS_VALID || 20223 ((*snxt + len) == tcp->tcp_fss))) { 20224 uchar_t *prev_rptr; 20225 uint32_t prev_snxt = tcp->tcp_snxt; 20226 20227 if (*tail_unsent == 0) { 20228 ASSERT((*xmit_tail)->b_cont != NULL); 20229 *xmit_tail = (*xmit_tail)->b_cont; 20230 prev_rptr = (*xmit_tail)->b_rptr; 20231 *tail_unsent = (int)((*xmit_tail)->b_wptr - 20232 (*xmit_tail)->b_rptr); 20233 } else { 20234 prev_rptr = (*xmit_tail)->b_rptr; 20235 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 20236 *tail_unsent; 20237 } 20238 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 20239 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 20240 /* Restore tcp_snxt so we get amount sent right. */ 20241 tcp->tcp_snxt = prev_snxt; 20242 if (prev_rptr == (*xmit_tail)->b_rptr) { 20243 /* 20244 * If the previous timestamp is still in use, 20245 * don't stomp on it. 20246 */ 20247 if ((*xmit_tail)->b_next == NULL) { 20248 (*xmit_tail)->b_prev = local_time; 20249 (*xmit_tail)->b_next = 20250 (mblk_t *)(uintptr_t)(*snxt); 20251 } 20252 } else 20253 (*xmit_tail)->b_rptr = prev_rptr; 20254 20255 if (mp == NULL) 20256 return (-1); 20257 mp1 = mp->b_cont; 20258 20259 tcp->tcp_last_sent_len = (ushort_t)len; 20260 while (mp1->b_cont) { 20261 *xmit_tail = (*xmit_tail)->b_cont; 20262 (*xmit_tail)->b_prev = local_time; 20263 (*xmit_tail)->b_next = 20264 (mblk_t *)(uintptr_t)(*snxt); 20265 mp1 = mp1->b_cont; 20266 } 20267 *snxt += len; 20268 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 20269 BUMP_LOCAL(tcp->tcp_obsegs); 20270 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 20271 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 20272 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 20273 tcp_send_data(tcp, q, mp); 20274 continue; 20275 } 20276 20277 *snxt += len; /* Adjust later if we don't send all of len */ 20278 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 20279 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 20280 20281 if (*tail_unsent) { 20282 /* Are the bytes above us in flight? */ 20283 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 20284 if (rptr != (*xmit_tail)->b_rptr) { 20285 *tail_unsent -= len; 20286 tcp->tcp_last_sent_len = (ushort_t)len; 20287 len += tcp_hdr_len; 20288 if (tcp->tcp_ipversion == IPV4_VERSION) 20289 tcp->tcp_ipha->ipha_length = htons(len); 20290 else 20291 tcp->tcp_ip6h->ip6_plen = 20292 htons(len - 20293 ((char *)&tcp->tcp_ip6h[1] - 20294 tcp->tcp_iphc)); 20295 mp = dupb(*xmit_tail); 20296 if (!mp) 20297 return (-1); /* out_of_mem */ 20298 mp->b_rptr = rptr; 20299 /* 20300 * If the old timestamp is no longer in use, 20301 * sample a new timestamp now. 20302 */ 20303 if ((*xmit_tail)->b_next == NULL) { 20304 (*xmit_tail)->b_prev = local_time; 20305 (*xmit_tail)->b_next = 20306 (mblk_t *)(uintptr_t)(*snxt-len); 20307 } 20308 goto must_alloc; 20309 } 20310 } else { 20311 *xmit_tail = (*xmit_tail)->b_cont; 20312 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 20313 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 20314 *tail_unsent = (int)((*xmit_tail)->b_wptr - 20315 (*xmit_tail)->b_rptr); 20316 } 20317 20318 (*xmit_tail)->b_prev = local_time; 20319 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 20320 20321 *tail_unsent -= len; 20322 tcp->tcp_last_sent_len = (ushort_t)len; 20323 20324 len += tcp_hdr_len; 20325 if (tcp->tcp_ipversion == IPV4_VERSION) 20326 tcp->tcp_ipha->ipha_length = htons(len); 20327 else 20328 tcp->tcp_ip6h->ip6_plen = htons(len - 20329 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 20330 20331 mp = dupb(*xmit_tail); 20332 if (!mp) 20333 return (-1); /* out_of_mem */ 20334 20335 len = tcp_hdr_len; 20336 /* 20337 * There are four reasons to allocate a new hdr mblk: 20338 * 1) The bytes above us are in use by another packet 20339 * 2) We don't have good alignment 20340 * 3) The mblk is being shared 20341 * 4) We don't have enough room for a header 20342 */ 20343 rptr = mp->b_rptr - len; 20344 if (!OK_32PTR(rptr) || 20345 ((db = mp->b_datap), db->db_ref != 2) || 20346 rptr < db->db_base) { 20347 /* NOTE: we assume allocb returns an OK_32PTR */ 20348 20349 must_alloc:; 20350 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 20351 tcp_wroff_xtra, BPRI_MED); 20352 if (!mp1) { 20353 freemsg(mp); 20354 return (-1); /* out_of_mem */ 20355 } 20356 mp1->b_cont = mp; 20357 mp = mp1; 20358 /* Leave room for Link Level header */ 20359 len = tcp_hdr_len; 20360 rptr = &mp->b_rptr[tcp_wroff_xtra]; 20361 mp->b_wptr = &rptr[len]; 20362 } 20363 20364 /* 20365 * Fill in the header using the template header, and add 20366 * options such as time-stamp, ECN and/or SACK, as needed. 20367 */ 20368 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 20369 20370 mp->b_rptr = rptr; 20371 20372 if (*tail_unsent) { 20373 int spill = *tail_unsent; 20374 20375 mp1 = mp->b_cont; 20376 if (!mp1) 20377 mp1 = mp; 20378 20379 /* 20380 * If we're a little short, tack on more mblks until 20381 * there is no more spillover. 20382 */ 20383 while (spill < 0) { 20384 mblk_t *nmp; 20385 int nmpsz; 20386 20387 nmp = (*xmit_tail)->b_cont; 20388 nmpsz = MBLKL(nmp); 20389 20390 /* 20391 * Excess data in mblk; can we split it? 20392 * If MDT is enabled for the connection, 20393 * keep on splitting as this is a transient 20394 * send path. 20395 */ 20396 if (!tcp->tcp_mdt && (spill + nmpsz > 0)) { 20397 /* 20398 * Don't split if stream head was 20399 * told to break up larger writes 20400 * into smaller ones. 20401 */ 20402 if (tcp->tcp_maxpsz > 0) 20403 break; 20404 20405 /* 20406 * Next mblk is less than SMSS/2 20407 * rounded up to nearest 64-byte; 20408 * let it get sent as part of the 20409 * next segment. 20410 */ 20411 if (tcp->tcp_localnet && 20412 !tcp->tcp_cork && 20413 (nmpsz < roundup((mss >> 1), 64))) 20414 break; 20415 } 20416 20417 *xmit_tail = nmp; 20418 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 20419 /* Stash for rtt use later */ 20420 (*xmit_tail)->b_prev = local_time; 20421 (*xmit_tail)->b_next = 20422 (mblk_t *)(uintptr_t)(*snxt - len); 20423 mp1->b_cont = dupb(*xmit_tail); 20424 mp1 = mp1->b_cont; 20425 20426 spill += nmpsz; 20427 if (mp1 == NULL) { 20428 *tail_unsent = spill; 20429 freemsg(mp); 20430 return (-1); /* out_of_mem */ 20431 } 20432 } 20433 20434 /* Trim back any surplus on the last mblk */ 20435 if (spill >= 0) { 20436 mp1->b_wptr -= spill; 20437 *tail_unsent = spill; 20438 } else { 20439 /* 20440 * We did not send everything we could in 20441 * order to remain within the b_cont limit. 20442 */ 20443 *usable -= spill; 20444 *snxt += spill; 20445 tcp->tcp_last_sent_len += spill; 20446 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, spill); 20447 /* 20448 * Adjust the checksum 20449 */ 20450 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 20451 sum += spill; 20452 sum = (sum >> 16) + (sum & 0xFFFF); 20453 U16_TO_ABE16(sum, tcph->th_sum); 20454 if (tcp->tcp_ipversion == IPV4_VERSION) { 20455 sum = ntohs( 20456 ((ipha_t *)rptr)->ipha_length) + 20457 spill; 20458 ((ipha_t *)rptr)->ipha_length = 20459 htons(sum); 20460 } else { 20461 sum = ntohs( 20462 ((ip6_t *)rptr)->ip6_plen) + 20463 spill; 20464 ((ip6_t *)rptr)->ip6_plen = 20465 htons(sum); 20466 } 20467 *tail_unsent = 0; 20468 } 20469 } 20470 if (tcp->tcp_ip_forward_progress) { 20471 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20472 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 20473 tcp->tcp_ip_forward_progress = B_FALSE; 20474 } 20475 20476 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 20477 tcp_send_data(tcp, q, mp); 20478 BUMP_LOCAL(tcp->tcp_obsegs); 20479 } 20480 20481 return (0); 20482 } 20483 20484 /* Unlink and return any mblk that looks like it contains a MDT info */ 20485 static mblk_t * 20486 tcp_mdt_info_mp(mblk_t *mp) 20487 { 20488 mblk_t *prev_mp; 20489 20490 for (;;) { 20491 prev_mp = mp; 20492 /* no more to process? */ 20493 if ((mp = mp->b_cont) == NULL) 20494 break; 20495 20496 switch (DB_TYPE(mp)) { 20497 case M_CTL: 20498 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 20499 continue; 20500 ASSERT(prev_mp != NULL); 20501 prev_mp->b_cont = mp->b_cont; 20502 mp->b_cont = NULL; 20503 return (mp); 20504 default: 20505 break; 20506 } 20507 } 20508 return (mp); 20509 } 20510 20511 /* MDT info update routine, called when IP notifies us about MDT */ 20512 static void 20513 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 20514 { 20515 boolean_t prev_state; 20516 20517 /* 20518 * IP is telling us to abort MDT on this connection? We know 20519 * this because the capability is only turned off when IP 20520 * encounters some pathological cases, e.g. link-layer change 20521 * where the new driver doesn't support MDT, or in situation 20522 * where MDT usage on the link-layer has been switched off. 20523 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 20524 * if the link-layer doesn't support MDT, and if it does, it 20525 * will indicate that the feature is to be turned on. 20526 */ 20527 prev_state = tcp->tcp_mdt; 20528 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 20529 if (!tcp->tcp_mdt && !first) { 20530 TCP_STAT(tcp_mdt_conn_halted3); 20531 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 20532 (void *)tcp->tcp_connp)); 20533 } 20534 20535 /* 20536 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 20537 * so disable MDT otherwise. The checks are done here 20538 * and in tcp_wput_data(). 20539 */ 20540 if (tcp->tcp_mdt && 20541 (tcp->tcp_ipversion == IPV4_VERSION && 20542 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 20543 (tcp->tcp_ipversion == IPV6_VERSION && 20544 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 20545 tcp->tcp_mdt = B_FALSE; 20546 20547 if (tcp->tcp_mdt) { 20548 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 20549 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 20550 "version (%d), expected version is %d", 20551 mdt_capab->ill_mdt_version, MDT_VERSION_2); 20552 tcp->tcp_mdt = B_FALSE; 20553 return; 20554 } 20555 20556 /* 20557 * We need the driver to be able to handle at least three 20558 * spans per packet in order for tcp MDT to be utilized. 20559 * The first is for the header portion, while the rest are 20560 * needed to handle a packet that straddles across two 20561 * virtually non-contiguous buffers; a typical tcp packet 20562 * therefore consists of only two spans. Note that we take 20563 * a zero as "don't care". 20564 */ 20565 if (mdt_capab->ill_mdt_span_limit > 0 && 20566 mdt_capab->ill_mdt_span_limit < 3) { 20567 tcp->tcp_mdt = B_FALSE; 20568 return; 20569 } 20570 20571 /* a zero means driver wants default value */ 20572 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 20573 tcp_mdt_max_pbufs); 20574 if (tcp->tcp_mdt_max_pld == 0) 20575 tcp->tcp_mdt_max_pld = tcp_mdt_max_pbufs; 20576 20577 /* ensure 32-bit alignment */ 20578 tcp->tcp_mdt_hdr_head = roundup(MAX(tcp_mdt_hdr_head_min, 20579 mdt_capab->ill_mdt_hdr_head), 4); 20580 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcp_mdt_hdr_tail_min, 20581 mdt_capab->ill_mdt_hdr_tail), 4); 20582 20583 if (!first && !prev_state) { 20584 TCP_STAT(tcp_mdt_conn_resumed2); 20585 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 20586 (void *)tcp->tcp_connp)); 20587 } 20588 } 20589 } 20590 20591 static void 20592 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_mdt) 20593 { 20594 conn_t *connp = tcp->tcp_connp; 20595 20596 ASSERT(ire != NULL); 20597 20598 /* 20599 * We may be in the fastpath here, and although we essentially do 20600 * similar checks as in ip_bind_connected{_v6}/ip_mdinfo_return, 20601 * we try to keep things as brief as possible. After all, these 20602 * are only best-effort checks, and we do more thorough ones prior 20603 * to calling tcp_multisend(). 20604 */ 20605 if (ip_multidata_outbound && check_mdt && 20606 !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 20607 ill != NULL && ILL_MDT_CAPABLE(ill) && 20608 !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 20609 !(ire->ire_flags & RTF_MULTIRT) && 20610 !IPP_ENABLED(IPP_LOCAL_OUT) && 20611 CONN_IS_MD_FASTPATH(connp)) { 20612 /* Remember the result */ 20613 connp->conn_mdt_ok = B_TRUE; 20614 20615 ASSERT(ill->ill_mdt_capab != NULL); 20616 if (!ill->ill_mdt_capab->ill_mdt_on) { 20617 /* 20618 * If MDT has been previously turned off in the past, 20619 * and we currently can do MDT (due to IPQoS policy 20620 * removal, etc.) then enable it for this interface. 20621 */ 20622 ill->ill_mdt_capab->ill_mdt_on = 1; 20623 ip1dbg(("tcp_ire_ill_check: connp %p enables MDT for " 20624 "interface %s\n", (void *)connp, ill->ill_name)); 20625 } 20626 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 20627 } 20628 20629 /* 20630 * The goal is to reduce the number of generated tcp segments by 20631 * setting the maxpsz multiplier to 0; this will have an affect on 20632 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 20633 * into each packet, up to SMSS bytes. Doing this reduces the number 20634 * of outbound segments and incoming ACKs, thus allowing for better 20635 * network and system performance. In contrast the legacy behavior 20636 * may result in sending less than SMSS size, because the last mblk 20637 * for some packets may have more data than needed to make up SMSS, 20638 * and the legacy code refused to "split" it. 20639 * 20640 * We apply the new behavior on following situations: 20641 * 20642 * 1) Loopback connections, 20643 * 2) Connections in which the remote peer is not on local subnet, 20644 * 3) Local subnet connections over the bge interface (see below). 20645 * 20646 * Ideally, we would like this behavior to apply for interfaces other 20647 * than bge. However, doing so would negatively impact drivers which 20648 * perform dynamic mapping and unmapping of DMA resources, which are 20649 * increased by setting the maxpsz multiplier to 0 (more mblks per 20650 * packet will be generated by tcp). The bge driver does not suffer 20651 * from this, as it copies the mblks into pre-mapped buffers, and 20652 * therefore does not require more I/O resources than before. 20653 * 20654 * Otherwise, this behavior is present on all network interfaces when 20655 * the destination endpoint is non-local, since reducing the number 20656 * of packets in general is good for the network. 20657 * 20658 * TODO We need to remove this hard-coded conditional for bge once 20659 * a better "self-tuning" mechanism, or a way to comprehend 20660 * the driver transmit strategy is devised. Until the solution 20661 * is found and well understood, we live with this hack. 20662 */ 20663 if (!tcp_static_maxpsz && 20664 (tcp->tcp_loopback || !tcp->tcp_localnet || 20665 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 20666 /* override the default value */ 20667 tcp->tcp_maxpsz = 0; 20668 20669 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 20670 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 20671 ill != NULL ? ill->ill_name : ipif_loopback_name)); 20672 } 20673 20674 /* set the stream head parameters accordingly */ 20675 (void) tcp_maxpsz_set(tcp, B_TRUE); 20676 } 20677 20678 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 20679 static void 20680 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 20681 { 20682 uchar_t fval = *mp->b_rptr; 20683 mblk_t *tail; 20684 queue_t *q = tcp->tcp_wq; 20685 20686 /* TODO: How should flush interact with urgent data? */ 20687 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 20688 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 20689 /* 20690 * Flush only data that has not yet been put on the wire. If 20691 * we flush data that we have already transmitted, life, as we 20692 * know it, may come to an end. 20693 */ 20694 tail = tcp->tcp_xmit_tail; 20695 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 20696 tcp->tcp_xmit_tail_unsent = 0; 20697 tcp->tcp_unsent = 0; 20698 if (tail->b_wptr != tail->b_rptr) 20699 tail = tail->b_cont; 20700 if (tail) { 20701 mblk_t **excess = &tcp->tcp_xmit_head; 20702 for (;;) { 20703 mblk_t *mp1 = *excess; 20704 if (mp1 == tail) 20705 break; 20706 tcp->tcp_xmit_tail = mp1; 20707 tcp->tcp_xmit_last = mp1; 20708 excess = &mp1->b_cont; 20709 } 20710 *excess = NULL; 20711 tcp_close_mpp(&tail); 20712 if (tcp->tcp_snd_zcopy_aware) 20713 tcp_zcopy_notify(tcp); 20714 } 20715 /* 20716 * We have no unsent data, so unsent must be less than 20717 * tcp_xmit_lowater, so re-enable flow. 20718 */ 20719 if (tcp->tcp_flow_stopped) { 20720 tcp_clrqfull(tcp); 20721 } 20722 } 20723 /* 20724 * TODO: you can't just flush these, you have to increase rwnd for one 20725 * thing. For another, how should urgent data interact? 20726 */ 20727 if (fval & FLUSHR) { 20728 *mp->b_rptr = fval & ~FLUSHW; 20729 /* XXX */ 20730 qreply(q, mp); 20731 return; 20732 } 20733 freemsg(mp); 20734 } 20735 20736 /* 20737 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 20738 * messages. 20739 */ 20740 static void 20741 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 20742 { 20743 mblk_t *mp1; 20744 STRUCT_HANDLE(strbuf, sb); 20745 uint16_t port; 20746 queue_t *q = tcp->tcp_wq; 20747 in6_addr_t v6addr; 20748 ipaddr_t v4addr; 20749 uint32_t flowinfo = 0; 20750 int addrlen; 20751 20752 /* Make sure it is one of ours. */ 20753 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 20754 case TI_GETMYNAME: 20755 case TI_GETPEERNAME: 20756 break; 20757 default: 20758 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 20759 return; 20760 } 20761 switch (mi_copy_state(q, mp, &mp1)) { 20762 case -1: 20763 return; 20764 case MI_COPY_CASE(MI_COPY_IN, 1): 20765 break; 20766 case MI_COPY_CASE(MI_COPY_OUT, 1): 20767 /* Copy out the strbuf. */ 20768 mi_copyout(q, mp); 20769 return; 20770 case MI_COPY_CASE(MI_COPY_OUT, 2): 20771 /* All done. */ 20772 mi_copy_done(q, mp, 0); 20773 return; 20774 default: 20775 mi_copy_done(q, mp, EPROTO); 20776 return; 20777 } 20778 /* Check alignment of the strbuf */ 20779 if (!OK_32PTR(mp1->b_rptr)) { 20780 mi_copy_done(q, mp, EINVAL); 20781 return; 20782 } 20783 20784 STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag, 20785 (void *)mp1->b_rptr); 20786 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 20787 20788 if (STRUCT_FGET(sb, maxlen) < addrlen) { 20789 mi_copy_done(q, mp, EINVAL); 20790 return; 20791 } 20792 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 20793 case TI_GETMYNAME: 20794 if (tcp->tcp_family == AF_INET) { 20795 if (tcp->tcp_ipversion == IPV4_VERSION) { 20796 v4addr = tcp->tcp_ipha->ipha_src; 20797 } else { 20798 /* can't return an address in this case */ 20799 v4addr = 0; 20800 } 20801 } else { 20802 /* tcp->tcp_family == AF_INET6 */ 20803 if (tcp->tcp_ipversion == IPV4_VERSION) { 20804 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 20805 &v6addr); 20806 } else { 20807 v6addr = tcp->tcp_ip6h->ip6_src; 20808 } 20809 } 20810 port = tcp->tcp_lport; 20811 break; 20812 case TI_GETPEERNAME: 20813 if (tcp->tcp_family == AF_INET) { 20814 if (tcp->tcp_ipversion == IPV4_VERSION) { 20815 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 20816 v4addr); 20817 } else { 20818 /* can't return an address in this case */ 20819 v4addr = 0; 20820 } 20821 } else { 20822 /* tcp->tcp_family == AF_INET6) */ 20823 v6addr = tcp->tcp_remote_v6; 20824 if (tcp->tcp_ipversion == IPV6_VERSION) { 20825 /* 20826 * No flowinfo if tcp->tcp_ipversion is v4. 20827 * 20828 * flowinfo was already initialized to zero 20829 * where it was declared above, so only 20830 * set it if ipversion is v6. 20831 */ 20832 flowinfo = tcp->tcp_ip6h->ip6_vcf & 20833 ~IPV6_VERS_AND_FLOW_MASK; 20834 } 20835 } 20836 port = tcp->tcp_fport; 20837 break; 20838 default: 20839 mi_copy_done(q, mp, EPROTO); 20840 return; 20841 } 20842 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 20843 if (!mp1) 20844 return; 20845 20846 if (tcp->tcp_family == AF_INET) { 20847 sin_t *sin; 20848 20849 STRUCT_FSET(sb, len, (int)sizeof (sin_t)); 20850 sin = (sin_t *)mp1->b_rptr; 20851 mp1->b_wptr = (uchar_t *)&sin[1]; 20852 *sin = sin_null; 20853 sin->sin_family = AF_INET; 20854 sin->sin_addr.s_addr = v4addr; 20855 sin->sin_port = port; 20856 } else { 20857 /* tcp->tcp_family == AF_INET6 */ 20858 sin6_t *sin6; 20859 20860 STRUCT_FSET(sb, len, (int)sizeof (sin6_t)); 20861 sin6 = (sin6_t *)mp1->b_rptr; 20862 mp1->b_wptr = (uchar_t *)&sin6[1]; 20863 *sin6 = sin6_null; 20864 sin6->sin6_family = AF_INET6; 20865 sin6->sin6_flowinfo = flowinfo; 20866 sin6->sin6_addr = v6addr; 20867 sin6->sin6_port = port; 20868 } 20869 /* Copy out the address */ 20870 mi_copyout(q, mp); 20871 } 20872 20873 /* 20874 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 20875 * messages. 20876 */ 20877 /* ARGSUSED */ 20878 static void 20879 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 20880 { 20881 conn_t *connp = (conn_t *)arg; 20882 tcp_t *tcp = connp->conn_tcp; 20883 queue_t *q = tcp->tcp_wq; 20884 struct iocblk *iocp; 20885 20886 ASSERT(DB_TYPE(mp) == M_IOCTL); 20887 /* 20888 * Try and ASSERT the minimum possible references on the 20889 * conn early enough. Since we are executing on write side, 20890 * the connection is obviously not detached and that means 20891 * there is a ref each for TCP and IP. Since we are behind 20892 * the squeue, the minimum references needed are 3. If the 20893 * conn is in classifier hash list, there should be an 20894 * extra ref for that (we check both the possibilities). 20895 */ 20896 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 20897 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 20898 20899 iocp = (struct iocblk *)mp->b_rptr; 20900 switch (iocp->ioc_cmd) { 20901 case TCP_IOC_DEFAULT_Q: 20902 /* Wants to be the default wq. */ 20903 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 20904 iocp->ioc_error = EPERM; 20905 iocp->ioc_count = 0; 20906 mp->b_datap->db_type = M_IOCACK; 20907 qreply(q, mp); 20908 return; 20909 } 20910 tcp_def_q_set(tcp, mp); 20911 return; 20912 case _SIOCSOCKFALLBACK: 20913 /* 20914 * Either sockmod is about to be popped and the socket 20915 * would now be treated as a plain stream, or a module 20916 * is about to be pushed so we could no longer use read- 20917 * side synchronous streams for fused loopback tcp. 20918 * Drain any queued data and disable direct sockfs 20919 * interface from now on. 20920 */ 20921 if (!tcp->tcp_issocket) { 20922 DB_TYPE(mp) = M_IOCNAK; 20923 iocp->ioc_error = EINVAL; 20924 } else { 20925 #ifdef _ILP32 20926 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 20927 #else 20928 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 20929 #endif 20930 /* 20931 * Insert this socket into the acceptor hash. 20932 * We might need it for T_CONN_RES message 20933 */ 20934 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 20935 20936 if (tcp->tcp_fused) { 20937 /* 20938 * This is a fused loopback tcp; disable 20939 * read-side synchronous streams interface 20940 * and drain any queued data. It is okay 20941 * to do this for non-synchronous streams 20942 * fused tcp as well. 20943 */ 20944 tcp_fuse_disable_pair(tcp, B_FALSE); 20945 } 20946 tcp->tcp_issocket = B_FALSE; 20947 TCP_STAT(tcp_sock_fallback); 20948 20949 DB_TYPE(mp) = M_IOCACK; 20950 iocp->ioc_error = 0; 20951 } 20952 iocp->ioc_count = 0; 20953 iocp->ioc_rval = 0; 20954 qreply(q, mp); 20955 return; 20956 } 20957 CALL_IP_WPUT(connp, q, mp); 20958 } 20959 20960 /* 20961 * This routine is called by tcp_wput() to handle all TPI requests. 20962 */ 20963 /* ARGSUSED */ 20964 static void 20965 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 20966 { 20967 conn_t *connp = (conn_t *)arg; 20968 tcp_t *tcp = connp->conn_tcp; 20969 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 20970 uchar_t *rptr; 20971 t_scalar_t type; 20972 int len; 20973 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 20974 20975 /* 20976 * Try and ASSERT the minimum possible references on the 20977 * conn early enough. Since we are executing on write side, 20978 * the connection is obviously not detached and that means 20979 * there is a ref each for TCP and IP. Since we are behind 20980 * the squeue, the minimum references needed are 3. If the 20981 * conn is in classifier hash list, there should be an 20982 * extra ref for that (we check both the possibilities). 20983 */ 20984 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 20985 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 20986 20987 rptr = mp->b_rptr; 20988 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 20989 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 20990 type = ((union T_primitives *)rptr)->type; 20991 if (type == T_EXDATA_REQ) { 20992 uint32_t msize = msgdsize(mp->b_cont); 20993 20994 len = msize - 1; 20995 if (len < 0) { 20996 freemsg(mp); 20997 return; 20998 } 20999 /* 21000 * Try to force urgent data out on the wire. 21001 * Even if we have unsent data this will 21002 * at least send the urgent flag. 21003 * XXX does not handle more flag correctly. 21004 */ 21005 len += tcp->tcp_unsent; 21006 len += tcp->tcp_snxt; 21007 tcp->tcp_urg = len; 21008 tcp->tcp_valid_bits |= TCP_URG_VALID; 21009 21010 /* Bypass tcp protocol for fused tcp loopback */ 21011 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 21012 return; 21013 } else if (type != T_DATA_REQ) { 21014 goto non_urgent_data; 21015 } 21016 /* TODO: options, flags, ... from user */ 21017 /* Set length to zero for reclamation below */ 21018 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 21019 freeb(mp); 21020 return; 21021 } else { 21022 if (tcp->tcp_debug) { 21023 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21024 "tcp_wput_proto, dropping one..."); 21025 } 21026 freemsg(mp); 21027 return; 21028 } 21029 21030 non_urgent_data: 21031 21032 switch ((int)tprim->type) { 21033 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 21034 /* 21035 * save the kssl_ent_t from the next block, and convert this 21036 * back to a normal bind_req. 21037 */ 21038 if (mp->b_cont != NULL) { 21039 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 21040 21041 if (tcp->tcp_kssl_ent != NULL) { 21042 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 21043 KSSL_NO_PROXY); 21044 tcp->tcp_kssl_ent = NULL; 21045 } 21046 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 21047 sizeof (kssl_ent_t)); 21048 kssl_hold_ent(tcp->tcp_kssl_ent); 21049 freemsg(mp->b_cont); 21050 mp->b_cont = NULL; 21051 } 21052 tprim->type = T_BIND_REQ; 21053 21054 /* FALLTHROUGH */ 21055 case O_T_BIND_REQ: /* bind request */ 21056 case T_BIND_REQ: /* new semantics bind request */ 21057 tcp_bind(tcp, mp); 21058 break; 21059 case T_UNBIND_REQ: /* unbind request */ 21060 tcp_unbind(tcp, mp); 21061 break; 21062 case O_T_CONN_RES: /* old connection response XXX */ 21063 case T_CONN_RES: /* connection response */ 21064 tcp_accept(tcp, mp); 21065 break; 21066 case T_CONN_REQ: /* connection request */ 21067 tcp_connect(tcp, mp); 21068 break; 21069 case T_DISCON_REQ: /* disconnect request */ 21070 tcp_disconnect(tcp, mp); 21071 break; 21072 case T_CAPABILITY_REQ: 21073 tcp_capability_req(tcp, mp); /* capability request */ 21074 break; 21075 case T_INFO_REQ: /* information request */ 21076 tcp_info_req(tcp, mp); 21077 break; 21078 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 21079 /* Only IP is allowed to return meaningful value */ 21080 (void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 21081 break; 21082 case T_OPTMGMT_REQ: 21083 /* 21084 * Note: no support for snmpcom_req() through new 21085 * T_OPTMGMT_REQ. See comments in ip.c 21086 */ 21087 /* Only IP is allowed to return meaningful value */ 21088 (void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 21089 break; 21090 21091 case T_UNITDATA_REQ: /* unitdata request */ 21092 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21093 break; 21094 case T_ORDREL_REQ: /* orderly release req */ 21095 freemsg(mp); 21096 21097 if (tcp->tcp_fused) 21098 tcp_unfuse(tcp); 21099 21100 if (tcp_xmit_end(tcp) != 0) { 21101 /* 21102 * We were crossing FINs and got a reset from 21103 * the other side. Just ignore it. 21104 */ 21105 if (tcp->tcp_debug) { 21106 (void) strlog(TCP_MOD_ID, 0, 1, 21107 SL_ERROR|SL_TRACE, 21108 "tcp_wput_proto, T_ORDREL_REQ out of " 21109 "state %s", 21110 tcp_display(tcp, NULL, 21111 DISP_ADDR_AND_PORT)); 21112 } 21113 } 21114 break; 21115 case T_ADDR_REQ: 21116 tcp_addr_req(tcp, mp); 21117 break; 21118 default: 21119 if (tcp->tcp_debug) { 21120 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21121 "tcp_wput_proto, bogus TPI msg, type %d", 21122 tprim->type); 21123 } 21124 /* 21125 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 21126 * to recover. 21127 */ 21128 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21129 break; 21130 } 21131 } 21132 21133 /* 21134 * The TCP write service routine should never be called... 21135 */ 21136 /* ARGSUSED */ 21137 static void 21138 tcp_wsrv(queue_t *q) 21139 { 21140 TCP_STAT(tcp_wsrv_called); 21141 } 21142 21143 /* Non overlapping byte exchanger */ 21144 static void 21145 tcp_xchg(uchar_t *a, uchar_t *b, int len) 21146 { 21147 uchar_t uch; 21148 21149 while (len-- > 0) { 21150 uch = a[len]; 21151 a[len] = b[len]; 21152 b[len] = uch; 21153 } 21154 } 21155 21156 /* 21157 * Send out a control packet on the tcp connection specified. This routine 21158 * is typically called where we need a simple ACK or RST generated. 21159 */ 21160 static void 21161 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 21162 { 21163 uchar_t *rptr; 21164 tcph_t *tcph; 21165 ipha_t *ipha = NULL; 21166 ip6_t *ip6h = NULL; 21167 uint32_t sum; 21168 int tcp_hdr_len; 21169 int tcp_ip_hdr_len; 21170 mblk_t *mp; 21171 21172 /* 21173 * Save sum for use in source route later. 21174 */ 21175 ASSERT(tcp != NULL); 21176 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 21177 tcp_hdr_len = tcp->tcp_hdr_len; 21178 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 21179 21180 /* If a text string is passed in with the request, pass it to strlog. */ 21181 if (str != NULL && tcp->tcp_debug) { 21182 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 21183 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 21184 str, seq, ack, ctl); 21185 } 21186 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 21187 BPRI_MED); 21188 if (mp == NULL) { 21189 return; 21190 } 21191 rptr = &mp->b_rptr[tcp_wroff_xtra]; 21192 mp->b_rptr = rptr; 21193 mp->b_wptr = &rptr[tcp_hdr_len]; 21194 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 21195 21196 if (tcp->tcp_ipversion == IPV4_VERSION) { 21197 ipha = (ipha_t *)rptr; 21198 ipha->ipha_length = htons(tcp_hdr_len); 21199 } else { 21200 ip6h = (ip6_t *)rptr; 21201 ASSERT(tcp != NULL); 21202 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 21203 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21204 } 21205 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 21206 tcph->th_flags[0] = (uint8_t)ctl; 21207 if (ctl & TH_RST) { 21208 BUMP_MIB(&tcp_mib, tcpOutRsts); 21209 BUMP_MIB(&tcp_mib, tcpOutControl); 21210 /* 21211 * Don't send TSopt w/ TH_RST packets per RFC 1323. 21212 */ 21213 if (tcp->tcp_snd_ts_ok && 21214 tcp->tcp_state > TCPS_SYN_SENT) { 21215 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 21216 *(mp->b_wptr) = TCPOPT_EOL; 21217 if (tcp->tcp_ipversion == IPV4_VERSION) { 21218 ipha->ipha_length = htons(tcp_hdr_len - 21219 TCPOPT_REAL_TS_LEN); 21220 } else { 21221 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 21222 TCPOPT_REAL_TS_LEN); 21223 } 21224 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 21225 sum -= TCPOPT_REAL_TS_LEN; 21226 } 21227 } 21228 if (ctl & TH_ACK) { 21229 if (tcp->tcp_snd_ts_ok) { 21230 U32_TO_BE32(lbolt, 21231 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 21232 U32_TO_BE32(tcp->tcp_ts_recent, 21233 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 21234 } 21235 21236 /* Update the latest receive window size in TCP header. */ 21237 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 21238 tcph->th_win); 21239 tcp->tcp_rack = ack; 21240 tcp->tcp_rack_cnt = 0; 21241 BUMP_MIB(&tcp_mib, tcpOutAck); 21242 } 21243 BUMP_LOCAL(tcp->tcp_obsegs); 21244 U32_TO_BE32(seq, tcph->th_seq); 21245 U32_TO_BE32(ack, tcph->th_ack); 21246 /* 21247 * Include the adjustment for a source route if any. 21248 */ 21249 sum = (sum >> 16) + (sum & 0xFFFF); 21250 U16_TO_BE16(sum, tcph->th_sum); 21251 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21252 tcp_send_data(tcp, tcp->tcp_wq, mp); 21253 } 21254 21255 /* 21256 * If this routine returns B_TRUE, TCP can generate a RST in response 21257 * to a segment. If it returns B_FALSE, TCP should not respond. 21258 */ 21259 static boolean_t 21260 tcp_send_rst_chk(void) 21261 { 21262 clock_t now; 21263 21264 /* 21265 * TCP needs to protect itself from generating too many RSTs. 21266 * This can be a DoS attack by sending us random segments 21267 * soliciting RSTs. 21268 * 21269 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 21270 * in each 1 second interval. In this way, TCP still generate 21271 * RSTs in normal cases but when under attack, the impact is 21272 * limited. 21273 */ 21274 if (tcp_rst_sent_rate_enabled != 0) { 21275 now = lbolt; 21276 /* lbolt can wrap around. */ 21277 if ((tcp_last_rst_intrvl > now) || 21278 (TICK_TO_MSEC(now - tcp_last_rst_intrvl) > 1*SECONDS)) { 21279 tcp_last_rst_intrvl = now; 21280 tcp_rst_cnt = 1; 21281 } else if (++tcp_rst_cnt > tcp_rst_sent_rate) { 21282 return (B_FALSE); 21283 } 21284 } 21285 return (B_TRUE); 21286 } 21287 21288 /* 21289 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 21290 */ 21291 static void 21292 tcp_ip_ire_mark_advice(tcp_t *tcp) 21293 { 21294 mblk_t *mp; 21295 ipic_t *ipic; 21296 21297 if (tcp->tcp_ipversion == IPV4_VERSION) { 21298 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 21299 &ipic); 21300 } else { 21301 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 21302 &ipic); 21303 } 21304 if (mp == NULL) 21305 return; 21306 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 21307 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 21308 } 21309 21310 /* 21311 * Return an IP advice ioctl mblk and set ipic to be the pointer 21312 * to the advice structure. 21313 */ 21314 static mblk_t * 21315 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 21316 { 21317 struct iocblk *ioc; 21318 mblk_t *mp, *mp1; 21319 21320 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 21321 if (mp == NULL) 21322 return (NULL); 21323 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 21324 *ipic = (ipic_t *)mp->b_rptr; 21325 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 21326 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 21327 21328 bcopy(addr, *ipic + 1, addr_len); 21329 21330 (*ipic)->ipic_addr_length = addr_len; 21331 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 21332 21333 mp1 = mkiocb(IP_IOCTL); 21334 if (mp1 == NULL) { 21335 freemsg(mp); 21336 return (NULL); 21337 } 21338 mp1->b_cont = mp; 21339 ioc = (struct iocblk *)mp1->b_rptr; 21340 ioc->ioc_count = sizeof (ipic_t) + addr_len; 21341 21342 return (mp1); 21343 } 21344 21345 /* 21346 * Generate a reset based on an inbound packet for which there is no active 21347 * tcp state that we can find. 21348 * 21349 * IPSEC NOTE : Try to send the reply with the same protection as it came 21350 * in. We still have the ipsec_mp that the packet was attached to. Thus 21351 * the packet will go out at the same level of protection as it came in by 21352 * converting the IPSEC_IN to IPSEC_OUT. 21353 */ 21354 static void 21355 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 21356 uint32_t ack, int ctl, uint_t ip_hdr_len) 21357 { 21358 ipha_t *ipha = NULL; 21359 ip6_t *ip6h = NULL; 21360 ushort_t len; 21361 tcph_t *tcph; 21362 int i; 21363 mblk_t *ipsec_mp; 21364 boolean_t mctl_present; 21365 ipic_t *ipic; 21366 ipaddr_t v4addr; 21367 in6_addr_t v6addr; 21368 int addr_len; 21369 void *addr; 21370 queue_t *q = tcp_g_q; 21371 tcp_t *tcp = Q_TO_TCP(q); 21372 cred_t *cr; 21373 21374 if (!tcp_send_rst_chk()) { 21375 tcp_rst_unsent++; 21376 freemsg(mp); 21377 return; 21378 } 21379 21380 if (mp->b_datap->db_type == M_CTL) { 21381 ipsec_mp = mp; 21382 mp = mp->b_cont; 21383 mctl_present = B_TRUE; 21384 } else { 21385 ipsec_mp = mp; 21386 mctl_present = B_FALSE; 21387 } 21388 21389 if (str && q && tcp_dbg) { 21390 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 21391 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 21392 "flags 0x%x", 21393 str, seq, ack, ctl); 21394 } 21395 if (mp->b_datap->db_ref != 1) { 21396 mblk_t *mp1 = copyb(mp); 21397 freemsg(mp); 21398 mp = mp1; 21399 if (!mp) { 21400 if (mctl_present) 21401 freeb(ipsec_mp); 21402 return; 21403 } else { 21404 if (mctl_present) { 21405 ipsec_mp->b_cont = mp; 21406 } else { 21407 ipsec_mp = mp; 21408 } 21409 } 21410 } else if (mp->b_cont) { 21411 freemsg(mp->b_cont); 21412 mp->b_cont = NULL; 21413 } 21414 /* 21415 * We skip reversing source route here. 21416 * (for now we replace all IP options with EOL) 21417 */ 21418 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 21419 ipha = (ipha_t *)mp->b_rptr; 21420 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 21421 mp->b_rptr[i] = IPOPT_EOL; 21422 /* 21423 * Make sure that src address isn't flagrantly invalid. 21424 * Not all broadcast address checking for the src address 21425 * is possible, since we don't know the netmask of the src 21426 * addr. No check for destination address is done, since 21427 * IP will not pass up a packet with a broadcast dest 21428 * address to TCP. Similar checks are done below for IPv6. 21429 */ 21430 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 21431 CLASSD(ipha->ipha_src)) { 21432 freemsg(ipsec_mp); 21433 BUMP_MIB(&ip_mib, ipInDiscards); 21434 return; 21435 } 21436 } else { 21437 ip6h = (ip6_t *)mp->b_rptr; 21438 21439 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 21440 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 21441 freemsg(ipsec_mp); 21442 BUMP_MIB(&ip6_mib, ipv6InDiscards); 21443 return; 21444 } 21445 21446 /* Remove any extension headers assuming partial overlay */ 21447 if (ip_hdr_len > IPV6_HDR_LEN) { 21448 uint8_t *to; 21449 21450 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 21451 ovbcopy(ip6h, to, IPV6_HDR_LEN); 21452 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 21453 ip_hdr_len = IPV6_HDR_LEN; 21454 ip6h = (ip6_t *)mp->b_rptr; 21455 ip6h->ip6_nxt = IPPROTO_TCP; 21456 } 21457 } 21458 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 21459 if (tcph->th_flags[0] & TH_RST) { 21460 freemsg(ipsec_mp); 21461 return; 21462 } 21463 tcph->th_offset_and_rsrvd[0] = (5 << 4); 21464 len = ip_hdr_len + sizeof (tcph_t); 21465 mp->b_wptr = &mp->b_rptr[len]; 21466 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 21467 ipha->ipha_length = htons(len); 21468 /* Swap addresses */ 21469 v4addr = ipha->ipha_src; 21470 ipha->ipha_src = ipha->ipha_dst; 21471 ipha->ipha_dst = v4addr; 21472 ipha->ipha_ident = 0; 21473 ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; 21474 addr_len = IP_ADDR_LEN; 21475 addr = &v4addr; 21476 } else { 21477 /* No ip6i_t in this case */ 21478 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 21479 /* Swap addresses */ 21480 v6addr = ip6h->ip6_src; 21481 ip6h->ip6_src = ip6h->ip6_dst; 21482 ip6h->ip6_dst = v6addr; 21483 ip6h->ip6_hops = (uchar_t)tcp_ipv6_hoplimit; 21484 addr_len = IPV6_ADDR_LEN; 21485 addr = &v6addr; 21486 } 21487 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 21488 U32_TO_BE32(ack, tcph->th_ack); 21489 U32_TO_BE32(seq, tcph->th_seq); 21490 U16_TO_BE16(0, tcph->th_win); 21491 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 21492 tcph->th_flags[0] = (uint8_t)ctl; 21493 if (ctl & TH_RST) { 21494 BUMP_MIB(&tcp_mib, tcpOutRsts); 21495 BUMP_MIB(&tcp_mib, tcpOutControl); 21496 } 21497 21498 /* IP trusts us to set up labels when required. */ 21499 if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL && 21500 crgetlabel(cr) != NULL) { 21501 int err, adjust; 21502 21503 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) 21504 err = tsol_check_label(cr, &mp, &adjust, 21505 tcp->tcp_connp->conn_mac_exempt); 21506 else 21507 err = tsol_check_label_v6(cr, &mp, &adjust, 21508 tcp->tcp_connp->conn_mac_exempt); 21509 if (mctl_present) 21510 ipsec_mp->b_cont = mp; 21511 else 21512 ipsec_mp = mp; 21513 if (err != 0) { 21514 freemsg(ipsec_mp); 21515 return; 21516 } 21517 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 21518 ipha = (ipha_t *)mp->b_rptr; 21519 adjust += ntohs(ipha->ipha_length); 21520 ipha->ipha_length = htons(adjust); 21521 } else { 21522 ip6h = (ip6_t *)mp->b_rptr; 21523 } 21524 } 21525 21526 if (mctl_present) { 21527 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21528 21529 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21530 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 21531 return; 21532 } 21533 } 21534 /* 21535 * NOTE: one might consider tracing a TCP packet here, but 21536 * this function has no active TCP state and no tcp structure 21537 * that has a trace buffer. If we traced here, we would have 21538 * to keep a local trace buffer in tcp_record_trace(). 21539 * 21540 * TSol note: The mblk that contains the incoming packet was 21541 * reused by tcp_xmit_listener_reset, so it already contains 21542 * the right credentials and we don't need to call mblk_setcred. 21543 * Also the conn's cred is not right since it is associated 21544 * with tcp_g_q. 21545 */ 21546 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 21547 21548 /* 21549 * Tell IP to mark the IRE used for this destination temporary. 21550 * This way, we can limit our exposure to DoS attack because IP 21551 * creates an IRE for each destination. If there are too many, 21552 * the time to do any routing lookup will be extremely long. And 21553 * the lookup can be in interrupt context. 21554 * 21555 * Note that in normal circumstances, this marking should not 21556 * affect anything. It would be nice if only 1 message is 21557 * needed to inform IP that the IRE created for this RST should 21558 * not be added to the cache table. But there is currently 21559 * not such communication mechanism between TCP and IP. So 21560 * the best we can do now is to send the advice ioctl to IP 21561 * to mark the IRE temporary. 21562 */ 21563 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 21564 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 21565 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 21566 } 21567 } 21568 21569 /* 21570 * Initiate closedown sequence on an active connection. (May be called as 21571 * writer.) Return value zero for OK return, non-zero for error return. 21572 */ 21573 static int 21574 tcp_xmit_end(tcp_t *tcp) 21575 { 21576 ipic_t *ipic; 21577 mblk_t *mp; 21578 21579 if (tcp->tcp_state < TCPS_SYN_RCVD || 21580 tcp->tcp_state > TCPS_CLOSE_WAIT) { 21581 /* 21582 * Invalid state, only states TCPS_SYN_RCVD, 21583 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 21584 */ 21585 return (-1); 21586 } 21587 21588 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 21589 tcp->tcp_valid_bits |= TCP_FSS_VALID; 21590 /* 21591 * If there is nothing more unsent, send the FIN now. 21592 * Otherwise, it will go out with the last segment. 21593 */ 21594 if (tcp->tcp_unsent == 0) { 21595 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 21596 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 21597 21598 if (mp) { 21599 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21600 tcp_send_data(tcp, tcp->tcp_wq, mp); 21601 } else { 21602 /* 21603 * Couldn't allocate msg. Pretend we got it out. 21604 * Wait for rexmit timeout. 21605 */ 21606 tcp->tcp_snxt = tcp->tcp_fss + 1; 21607 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21608 } 21609 21610 /* 21611 * If needed, update tcp_rexmit_snxt as tcp_snxt is 21612 * changed. 21613 */ 21614 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 21615 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 21616 } 21617 } else { 21618 /* 21619 * If tcp->tcp_cork is set, then the data will not get sent, 21620 * so we have to check that and unset it first. 21621 */ 21622 if (tcp->tcp_cork) 21623 tcp->tcp_cork = B_FALSE; 21624 tcp_wput_data(tcp, NULL, B_FALSE); 21625 } 21626 21627 /* 21628 * If TCP does not get enough samples of RTT or tcp_rtt_updates 21629 * is 0, don't update the cache. 21630 */ 21631 if (tcp_rtt_updates == 0 || tcp->tcp_rtt_update < tcp_rtt_updates) 21632 return (0); 21633 21634 /* 21635 * NOTE: should not update if source routes i.e. if tcp_remote if 21636 * different from the destination. 21637 */ 21638 if (tcp->tcp_ipversion == IPV4_VERSION) { 21639 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 21640 return (0); 21641 } 21642 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 21643 &ipic); 21644 } else { 21645 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 21646 &tcp->tcp_ip6h->ip6_dst))) { 21647 return (0); 21648 } 21649 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 21650 &ipic); 21651 } 21652 21653 /* Record route attributes in the IRE for use by future connections. */ 21654 if (mp == NULL) 21655 return (0); 21656 21657 /* 21658 * We do not have a good algorithm to update ssthresh at this time. 21659 * So don't do any update. 21660 */ 21661 ipic->ipic_rtt = tcp->tcp_rtt_sa; 21662 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 21663 21664 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 21665 return (0); 21666 } 21667 21668 /* 21669 * Generate a "no listener here" RST in response to an "unknown" segment. 21670 * Note that we are reusing the incoming mp to construct the outgoing 21671 * RST. 21672 */ 21673 void 21674 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len) 21675 { 21676 uchar_t *rptr; 21677 uint32_t seg_len; 21678 tcph_t *tcph; 21679 uint32_t seg_seq; 21680 uint32_t seg_ack; 21681 uint_t flags; 21682 mblk_t *ipsec_mp; 21683 ipha_t *ipha; 21684 ip6_t *ip6h; 21685 boolean_t mctl_present = B_FALSE; 21686 boolean_t check = B_TRUE; 21687 boolean_t policy_present; 21688 21689 TCP_STAT(tcp_no_listener); 21690 21691 ipsec_mp = mp; 21692 21693 if (mp->b_datap->db_type == M_CTL) { 21694 ipsec_in_t *ii; 21695 21696 mctl_present = B_TRUE; 21697 mp = mp->b_cont; 21698 21699 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21700 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21701 if (ii->ipsec_in_dont_check) { 21702 check = B_FALSE; 21703 if (!ii->ipsec_in_secure) { 21704 freeb(ipsec_mp); 21705 mctl_present = B_FALSE; 21706 ipsec_mp = mp; 21707 } 21708 } 21709 } 21710 21711 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 21712 policy_present = ipsec_inbound_v4_policy_present; 21713 ipha = (ipha_t *)mp->b_rptr; 21714 ip6h = NULL; 21715 } else { 21716 policy_present = ipsec_inbound_v6_policy_present; 21717 ipha = NULL; 21718 ip6h = (ip6_t *)mp->b_rptr; 21719 } 21720 21721 if (check && policy_present) { 21722 /* 21723 * The conn_t parameter is NULL because we already know 21724 * nobody's home. 21725 */ 21726 ipsec_mp = ipsec_check_global_policy( 21727 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present); 21728 if (ipsec_mp == NULL) 21729 return; 21730 } 21731 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 21732 DTRACE_PROBE2( 21733 tx__ip__log__error__nolistener__tcp, 21734 char *, "Could not reply with RST to mp(1)", 21735 mblk_t *, mp); 21736 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 21737 freemsg(ipsec_mp); 21738 return; 21739 } 21740 21741 rptr = mp->b_rptr; 21742 21743 tcph = (tcph_t *)&rptr[ip_hdr_len]; 21744 seg_seq = BE32_TO_U32(tcph->th_seq); 21745 seg_ack = BE32_TO_U32(tcph->th_ack); 21746 flags = tcph->th_flags[0]; 21747 21748 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 21749 if (flags & TH_RST) { 21750 freemsg(ipsec_mp); 21751 } else if (flags & TH_ACK) { 21752 tcp_xmit_early_reset("no tcp, reset", 21753 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len); 21754 } else { 21755 if (flags & TH_SYN) { 21756 seg_len++; 21757 } else { 21758 /* 21759 * Here we violate the RFC. Note that a normal 21760 * TCP will never send a segment without the ACK 21761 * flag, except for RST or SYN segment. This 21762 * segment is neither. Just drop it on the 21763 * floor. 21764 */ 21765 freemsg(ipsec_mp); 21766 tcp_rst_unsent++; 21767 return; 21768 } 21769 21770 tcp_xmit_early_reset("no tcp, reset/ack", 21771 ipsec_mp, 0, seg_seq + seg_len, 21772 TH_RST | TH_ACK, ip_hdr_len); 21773 } 21774 } 21775 21776 /* 21777 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 21778 * ip and tcp header ready to pass down to IP. If the mp passed in is 21779 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 21780 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 21781 * otherwise it will dup partial mblks.) 21782 * Otherwise, an appropriate ACK packet will be generated. This 21783 * routine is not usually called to send new data for the first time. It 21784 * is mostly called out of the timer for retransmits, and to generate ACKs. 21785 * 21786 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 21787 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 21788 * of the original mblk chain will be returned in *offset and *end_mp. 21789 */ 21790 static mblk_t * 21791 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 21792 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 21793 boolean_t rexmit) 21794 { 21795 int data_length; 21796 int32_t off = 0; 21797 uint_t flags; 21798 mblk_t *mp1; 21799 mblk_t *mp2; 21800 uchar_t *rptr; 21801 tcph_t *tcph; 21802 int32_t num_sack_blk = 0; 21803 int32_t sack_opt_len = 0; 21804 21805 /* Allocate for our maximum TCP header + link-level */ 21806 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 21807 BPRI_MED); 21808 if (!mp1) 21809 return (NULL); 21810 data_length = 0; 21811 21812 /* 21813 * Note that tcp_mss has been adjusted to take into account the 21814 * timestamp option if applicable. Because SACK options do not 21815 * appear in every TCP segments and they are of variable lengths, 21816 * they cannot be included in tcp_mss. Thus we need to calculate 21817 * the actual segment length when we need to send a segment which 21818 * includes SACK options. 21819 */ 21820 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 21821 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 21822 tcp->tcp_num_sack_blk); 21823 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 21824 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 21825 if (max_to_send + sack_opt_len > tcp->tcp_mss) 21826 max_to_send -= sack_opt_len; 21827 } 21828 21829 if (offset != NULL) { 21830 off = *offset; 21831 /* We use offset as an indicator that end_mp is not NULL. */ 21832 *end_mp = NULL; 21833 } 21834 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 21835 /* This could be faster with cooperation from downstream */ 21836 if (mp2 != mp1 && !sendall && 21837 data_length + (int)(mp->b_wptr - mp->b_rptr) > 21838 max_to_send) 21839 /* 21840 * Don't send the next mblk since the whole mblk 21841 * does not fit. 21842 */ 21843 break; 21844 mp2->b_cont = dupb(mp); 21845 mp2 = mp2->b_cont; 21846 if (!mp2) { 21847 freemsg(mp1); 21848 return (NULL); 21849 } 21850 mp2->b_rptr += off; 21851 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 21852 (uintptr_t)INT_MAX); 21853 21854 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 21855 if (data_length > max_to_send) { 21856 mp2->b_wptr -= data_length - max_to_send; 21857 data_length = max_to_send; 21858 off = mp2->b_wptr - mp->b_rptr; 21859 break; 21860 } else { 21861 off = 0; 21862 } 21863 } 21864 if (offset != NULL) { 21865 *offset = off; 21866 *end_mp = mp; 21867 } 21868 if (seg_len != NULL) { 21869 *seg_len = data_length; 21870 } 21871 21872 /* Update the latest receive window size in TCP header. */ 21873 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 21874 tcp->tcp_tcph->th_win); 21875 21876 rptr = mp1->b_rptr + tcp_wroff_xtra; 21877 mp1->b_rptr = rptr; 21878 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 21879 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 21880 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 21881 U32_TO_ABE32(seq, tcph->th_seq); 21882 21883 /* 21884 * Use tcp_unsent to determine if the PUSH bit should be used assumes 21885 * that this function was called from tcp_wput_data. Thus, when called 21886 * to retransmit data the setting of the PUSH bit may appear some 21887 * what random in that it might get set when it should not. This 21888 * should not pose any performance issues. 21889 */ 21890 if (data_length != 0 && (tcp->tcp_unsent == 0 || 21891 tcp->tcp_unsent == data_length)) { 21892 flags = TH_ACK | TH_PUSH; 21893 } else { 21894 flags = TH_ACK; 21895 } 21896 21897 if (tcp->tcp_ecn_ok) { 21898 if (tcp->tcp_ecn_echo_on) 21899 flags |= TH_ECE; 21900 21901 /* 21902 * Only set ECT bit and ECN_CWR if a segment contains new data. 21903 * There is no TCP flow control for non-data segments, and 21904 * only data segment is transmitted reliably. 21905 */ 21906 if (data_length > 0 && !rexmit) { 21907 SET_ECT(tcp, rptr); 21908 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 21909 flags |= TH_CWR; 21910 tcp->tcp_ecn_cwr_sent = B_TRUE; 21911 } 21912 } 21913 } 21914 21915 if (tcp->tcp_valid_bits) { 21916 uint32_t u1; 21917 21918 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 21919 seq == tcp->tcp_iss) { 21920 uchar_t *wptr; 21921 21922 /* 21923 * If TCP_ISS_VALID and the seq number is tcp_iss, 21924 * TCP can only be in SYN-SENT, SYN-RCVD or 21925 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 21926 * our SYN is not ack'ed but the app closes this 21927 * TCP connection. 21928 */ 21929 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 21930 tcp->tcp_state == TCPS_SYN_RCVD || 21931 tcp->tcp_state == TCPS_FIN_WAIT_1); 21932 21933 /* 21934 * Tack on the MSS option. It is always needed 21935 * for both active and passive open. 21936 * 21937 * MSS option value should be interface MTU - MIN 21938 * TCP/IP header according to RFC 793 as it means 21939 * the maximum segment size TCP can receive. But 21940 * to get around some broken middle boxes/end hosts 21941 * out there, we allow the option value to be the 21942 * same as the MSS option size on the peer side. 21943 * In this way, the other side will not send 21944 * anything larger than they can receive. 21945 * 21946 * Note that for SYN_SENT state, the ndd param 21947 * tcp_use_smss_as_mss_opt has no effect as we 21948 * don't know the peer's MSS option value. So 21949 * the only case we need to take care of is in 21950 * SYN_RCVD state, which is done later. 21951 */ 21952 wptr = mp1->b_wptr; 21953 wptr[0] = TCPOPT_MAXSEG; 21954 wptr[1] = TCPOPT_MAXSEG_LEN; 21955 wptr += 2; 21956 u1 = tcp->tcp_if_mtu - 21957 (tcp->tcp_ipversion == IPV4_VERSION ? 21958 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 21959 TCP_MIN_HEADER_LENGTH; 21960 U16_TO_BE16(u1, wptr); 21961 mp1->b_wptr = wptr + 2; 21962 /* Update the offset to cover the additional word */ 21963 tcph->th_offset_and_rsrvd[0] += (1 << 4); 21964 21965 /* 21966 * Note that the following way of filling in 21967 * TCP options are not optimal. Some NOPs can 21968 * be saved. But there is no need at this time 21969 * to optimize it. When it is needed, we will 21970 * do it. 21971 */ 21972 switch (tcp->tcp_state) { 21973 case TCPS_SYN_SENT: 21974 flags = TH_SYN; 21975 21976 if (tcp->tcp_snd_ts_ok) { 21977 uint32_t llbolt = (uint32_t)lbolt; 21978 21979 wptr = mp1->b_wptr; 21980 wptr[0] = TCPOPT_NOP; 21981 wptr[1] = TCPOPT_NOP; 21982 wptr[2] = TCPOPT_TSTAMP; 21983 wptr[3] = TCPOPT_TSTAMP_LEN; 21984 wptr += 4; 21985 U32_TO_BE32(llbolt, wptr); 21986 wptr += 4; 21987 ASSERT(tcp->tcp_ts_recent == 0); 21988 U32_TO_BE32(0L, wptr); 21989 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 21990 tcph->th_offset_and_rsrvd[0] += 21991 (3 << 4); 21992 } 21993 21994 /* 21995 * Set up all the bits to tell other side 21996 * we are ECN capable. 21997 */ 21998 if (tcp->tcp_ecn_ok) { 21999 flags |= (TH_ECE | TH_CWR); 22000 } 22001 break; 22002 case TCPS_SYN_RCVD: 22003 flags |= TH_SYN; 22004 22005 /* 22006 * Reset the MSS option value to be SMSS 22007 * We should probably add back the bytes 22008 * for timestamp option and IPsec. We 22009 * don't do that as this is a workaround 22010 * for broken middle boxes/end hosts, it 22011 * is better for us to be more cautious. 22012 * They may not take these things into 22013 * account in their SMSS calculation. Thus 22014 * the peer's calculated SMSS may be smaller 22015 * than what it can be. This should be OK. 22016 */ 22017 if (tcp_use_smss_as_mss_opt) { 22018 u1 = tcp->tcp_mss; 22019 U16_TO_BE16(u1, wptr); 22020 } 22021 22022 /* 22023 * If the other side is ECN capable, reply 22024 * that we are also ECN capable. 22025 */ 22026 if (tcp->tcp_ecn_ok) 22027 flags |= TH_ECE; 22028 break; 22029 default: 22030 /* 22031 * The above ASSERT() makes sure that this 22032 * must be FIN-WAIT-1 state. Our SYN has 22033 * not been ack'ed so retransmit it. 22034 */ 22035 flags |= TH_SYN; 22036 break; 22037 } 22038 22039 if (tcp->tcp_snd_ws_ok) { 22040 wptr = mp1->b_wptr; 22041 wptr[0] = TCPOPT_NOP; 22042 wptr[1] = TCPOPT_WSCALE; 22043 wptr[2] = TCPOPT_WS_LEN; 22044 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 22045 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 22046 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22047 } 22048 22049 if (tcp->tcp_snd_sack_ok) { 22050 wptr = mp1->b_wptr; 22051 wptr[0] = TCPOPT_NOP; 22052 wptr[1] = TCPOPT_NOP; 22053 wptr[2] = TCPOPT_SACK_PERMITTED; 22054 wptr[3] = TCPOPT_SACK_OK_LEN; 22055 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 22056 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22057 } 22058 22059 /* allocb() of adequate mblk assures space */ 22060 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 22061 (uintptr_t)INT_MAX); 22062 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 22063 /* 22064 * Get IP set to checksum on our behalf 22065 * Include the adjustment for a source route if any. 22066 */ 22067 u1 += tcp->tcp_sum; 22068 u1 = (u1 >> 16) + (u1 & 0xFFFF); 22069 U16_TO_BE16(u1, tcph->th_sum); 22070 BUMP_MIB(&tcp_mib, tcpOutControl); 22071 } 22072 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 22073 (seq + data_length) == tcp->tcp_fss) { 22074 if (!tcp->tcp_fin_acked) { 22075 flags |= TH_FIN; 22076 BUMP_MIB(&tcp_mib, tcpOutControl); 22077 } 22078 if (!tcp->tcp_fin_sent) { 22079 tcp->tcp_fin_sent = B_TRUE; 22080 switch (tcp->tcp_state) { 22081 case TCPS_SYN_RCVD: 22082 case TCPS_ESTABLISHED: 22083 tcp->tcp_state = TCPS_FIN_WAIT_1; 22084 break; 22085 case TCPS_CLOSE_WAIT: 22086 tcp->tcp_state = TCPS_LAST_ACK; 22087 break; 22088 } 22089 if (tcp->tcp_suna == tcp->tcp_snxt) 22090 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22091 tcp->tcp_snxt = tcp->tcp_fss + 1; 22092 } 22093 } 22094 /* 22095 * Note the trick here. u1 is unsigned. When tcp_urg 22096 * is smaller than seq, u1 will become a very huge value. 22097 * So the comparison will fail. Also note that tcp_urp 22098 * should be positive, see RFC 793 page 17. 22099 */ 22100 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 22101 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 22102 u1 < (uint32_t)(64 * 1024)) { 22103 flags |= TH_URG; 22104 BUMP_MIB(&tcp_mib, tcpOutUrg); 22105 U32_TO_ABE16(u1, tcph->th_urp); 22106 } 22107 } 22108 tcph->th_flags[0] = (uchar_t)flags; 22109 tcp->tcp_rack = tcp->tcp_rnxt; 22110 tcp->tcp_rack_cnt = 0; 22111 22112 if (tcp->tcp_snd_ts_ok) { 22113 if (tcp->tcp_state != TCPS_SYN_SENT) { 22114 uint32_t llbolt = (uint32_t)lbolt; 22115 22116 U32_TO_BE32(llbolt, 22117 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22118 U32_TO_BE32(tcp->tcp_ts_recent, 22119 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22120 } 22121 } 22122 22123 if (num_sack_blk > 0) { 22124 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 22125 sack_blk_t *tmp; 22126 int32_t i; 22127 22128 wptr[0] = TCPOPT_NOP; 22129 wptr[1] = TCPOPT_NOP; 22130 wptr[2] = TCPOPT_SACK; 22131 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 22132 sizeof (sack_blk_t); 22133 wptr += TCPOPT_REAL_SACK_LEN; 22134 22135 tmp = tcp->tcp_sack_list; 22136 for (i = 0; i < num_sack_blk; i++) { 22137 U32_TO_BE32(tmp[i].begin, wptr); 22138 wptr += sizeof (tcp_seq); 22139 U32_TO_BE32(tmp[i].end, wptr); 22140 wptr += sizeof (tcp_seq); 22141 } 22142 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 22143 } 22144 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 22145 data_length += (int)(mp1->b_wptr - rptr); 22146 if (tcp->tcp_ipversion == IPV4_VERSION) { 22147 ((ipha_t *)rptr)->ipha_length = htons(data_length); 22148 } else { 22149 ip6_t *ip6 = (ip6_t *)(rptr + 22150 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 22151 sizeof (ip6i_t) : 0)); 22152 22153 ip6->ip6_plen = htons(data_length - 22154 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22155 } 22156 22157 /* 22158 * Prime pump for IP 22159 * Include the adjustment for a source route if any. 22160 */ 22161 data_length -= tcp->tcp_ip_hdr_len; 22162 data_length += tcp->tcp_sum; 22163 data_length = (data_length >> 16) + (data_length & 0xFFFF); 22164 U16_TO_ABE16(data_length, tcph->th_sum); 22165 if (tcp->tcp_ip_forward_progress) { 22166 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 22167 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 22168 tcp->tcp_ip_forward_progress = B_FALSE; 22169 } 22170 return (mp1); 22171 } 22172 22173 /* This function handles the push timeout. */ 22174 void 22175 tcp_push_timer(void *arg) 22176 { 22177 conn_t *connp = (conn_t *)arg; 22178 tcp_t *tcp = connp->conn_tcp; 22179 22180 TCP_DBGSTAT(tcp_push_timer_cnt); 22181 22182 ASSERT(tcp->tcp_listener == NULL); 22183 22184 /* 22185 * We need to stop synchronous streams temporarily to prevent a race 22186 * with tcp_fuse_rrw() or tcp_fusion rinfop(). It is safe to access 22187 * tcp_rcv_list here because those entry points will return right 22188 * away when synchronous streams is stopped. 22189 */ 22190 TCP_FUSE_SYNCSTR_STOP(tcp); 22191 tcp->tcp_push_tid = 0; 22192 if ((tcp->tcp_rcv_list != NULL) && 22193 (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED)) 22194 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 22195 TCP_FUSE_SYNCSTR_RESUME(tcp); 22196 } 22197 22198 /* 22199 * This function handles delayed ACK timeout. 22200 */ 22201 static void 22202 tcp_ack_timer(void *arg) 22203 { 22204 conn_t *connp = (conn_t *)arg; 22205 tcp_t *tcp = connp->conn_tcp; 22206 mblk_t *mp; 22207 22208 TCP_DBGSTAT(tcp_ack_timer_cnt); 22209 22210 tcp->tcp_ack_tid = 0; 22211 22212 if (tcp->tcp_fused) 22213 return; 22214 22215 /* 22216 * Do not send ACK if there is no outstanding unack'ed data. 22217 */ 22218 if (tcp->tcp_rnxt == tcp->tcp_rack) { 22219 return; 22220 } 22221 22222 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 22223 /* 22224 * Make sure we don't allow deferred ACKs to result in 22225 * timer-based ACKing. If we have held off an ACK 22226 * when there was more than an mss here, and the timer 22227 * goes off, we have to worry about the possibility 22228 * that the sender isn't doing slow-start, or is out 22229 * of step with us for some other reason. We fall 22230 * permanently back in the direction of 22231 * ACK-every-other-packet as suggested in RFC 1122. 22232 */ 22233 if (tcp->tcp_rack_abs_max > 2) 22234 tcp->tcp_rack_abs_max--; 22235 tcp->tcp_rack_cur_max = 2; 22236 } 22237 mp = tcp_ack_mp(tcp); 22238 22239 if (mp != NULL) { 22240 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 22241 BUMP_LOCAL(tcp->tcp_obsegs); 22242 BUMP_MIB(&tcp_mib, tcpOutAck); 22243 BUMP_MIB(&tcp_mib, tcpOutAckDelayed); 22244 tcp_send_data(tcp, tcp->tcp_wq, mp); 22245 } 22246 } 22247 22248 22249 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 22250 static mblk_t * 22251 tcp_ack_mp(tcp_t *tcp) 22252 { 22253 uint32_t seq_no; 22254 22255 /* 22256 * There are a few cases to be considered while setting the sequence no. 22257 * Essentially, we can come here while processing an unacceptable pkt 22258 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 22259 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 22260 * If we are here for a zero window probe, stick with suna. In all 22261 * other cases, we check if suna + swnd encompasses snxt and set 22262 * the sequence number to snxt, if so. If snxt falls outside the 22263 * window (the receiver probably shrunk its window), we will go with 22264 * suna + swnd, otherwise the sequence no will be unacceptable to the 22265 * receiver. 22266 */ 22267 if (tcp->tcp_zero_win_probe) { 22268 seq_no = tcp->tcp_suna; 22269 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 22270 ASSERT(tcp->tcp_swnd == 0); 22271 seq_no = tcp->tcp_snxt; 22272 } else { 22273 seq_no = SEQ_GT(tcp->tcp_snxt, 22274 (tcp->tcp_suna + tcp->tcp_swnd)) ? 22275 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 22276 } 22277 22278 if (tcp->tcp_valid_bits) { 22279 /* 22280 * For the complex case where we have to send some 22281 * controls (FIN or SYN), let tcp_xmit_mp do it. 22282 */ 22283 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 22284 NULL, B_FALSE)); 22285 } else { 22286 /* Generate a simple ACK */ 22287 int data_length; 22288 uchar_t *rptr; 22289 tcph_t *tcph; 22290 mblk_t *mp1; 22291 int32_t tcp_hdr_len; 22292 int32_t tcp_tcp_hdr_len; 22293 int32_t num_sack_blk = 0; 22294 int32_t sack_opt_len; 22295 22296 /* 22297 * Allocate space for TCP + IP headers 22298 * and link-level header 22299 */ 22300 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 22301 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 22302 tcp->tcp_num_sack_blk); 22303 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 22304 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 22305 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 22306 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 22307 } else { 22308 tcp_hdr_len = tcp->tcp_hdr_len; 22309 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 22310 } 22311 mp1 = allocb(tcp_hdr_len + tcp_wroff_xtra, BPRI_MED); 22312 if (!mp1) 22313 return (NULL); 22314 22315 /* Update the latest receive window size in TCP header. */ 22316 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22317 tcp->tcp_tcph->th_win); 22318 /* copy in prototype TCP + IP header */ 22319 rptr = mp1->b_rptr + tcp_wroff_xtra; 22320 mp1->b_rptr = rptr; 22321 mp1->b_wptr = rptr + tcp_hdr_len; 22322 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 22323 22324 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 22325 22326 /* Set the TCP sequence number. */ 22327 U32_TO_ABE32(seq_no, tcph->th_seq); 22328 22329 /* Set up the TCP flag field. */ 22330 tcph->th_flags[0] = (uchar_t)TH_ACK; 22331 if (tcp->tcp_ecn_echo_on) 22332 tcph->th_flags[0] |= TH_ECE; 22333 22334 tcp->tcp_rack = tcp->tcp_rnxt; 22335 tcp->tcp_rack_cnt = 0; 22336 22337 /* fill in timestamp option if in use */ 22338 if (tcp->tcp_snd_ts_ok) { 22339 uint32_t llbolt = (uint32_t)lbolt; 22340 22341 U32_TO_BE32(llbolt, 22342 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22343 U32_TO_BE32(tcp->tcp_ts_recent, 22344 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22345 } 22346 22347 /* Fill in SACK options */ 22348 if (num_sack_blk > 0) { 22349 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 22350 sack_blk_t *tmp; 22351 int32_t i; 22352 22353 wptr[0] = TCPOPT_NOP; 22354 wptr[1] = TCPOPT_NOP; 22355 wptr[2] = TCPOPT_SACK; 22356 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 22357 sizeof (sack_blk_t); 22358 wptr += TCPOPT_REAL_SACK_LEN; 22359 22360 tmp = tcp->tcp_sack_list; 22361 for (i = 0; i < num_sack_blk; i++) { 22362 U32_TO_BE32(tmp[i].begin, wptr); 22363 wptr += sizeof (tcp_seq); 22364 U32_TO_BE32(tmp[i].end, wptr); 22365 wptr += sizeof (tcp_seq); 22366 } 22367 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 22368 << 4); 22369 } 22370 22371 if (tcp->tcp_ipversion == IPV4_VERSION) { 22372 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 22373 } else { 22374 /* Check for ip6i_t header in sticky hdrs */ 22375 ip6_t *ip6 = (ip6_t *)(rptr + 22376 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 22377 sizeof (ip6i_t) : 0)); 22378 22379 ip6->ip6_plen = htons(tcp_hdr_len - 22380 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22381 } 22382 22383 /* 22384 * Prime pump for checksum calculation in IP. Include the 22385 * adjustment for a source route if any. 22386 */ 22387 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 22388 data_length = (data_length >> 16) + (data_length & 0xFFFF); 22389 U16_TO_ABE16(data_length, tcph->th_sum); 22390 22391 if (tcp->tcp_ip_forward_progress) { 22392 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 22393 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 22394 tcp->tcp_ip_forward_progress = B_FALSE; 22395 } 22396 return (mp1); 22397 } 22398 } 22399 22400 /* 22401 * To create a temporary tcp structure for inserting into bind hash list. 22402 * The parameter is assumed to be in network byte order, ready for use. 22403 */ 22404 /* ARGSUSED */ 22405 static tcp_t * 22406 tcp_alloc_temp_tcp(in_port_t port) 22407 { 22408 conn_t *connp; 22409 tcp_t *tcp; 22410 22411 connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP); 22412 if (connp == NULL) 22413 return (NULL); 22414 22415 tcp = connp->conn_tcp; 22416 22417 /* 22418 * Only initialize the necessary info in those structures. Note 22419 * that since INADDR_ANY is all 0, we do not need to set 22420 * tcp_bound_source to INADDR_ANY here. 22421 */ 22422 tcp->tcp_state = TCPS_BOUND; 22423 tcp->tcp_lport = port; 22424 tcp->tcp_exclbind = 1; 22425 tcp->tcp_reserved_port = 1; 22426 22427 /* Just for place holding... */ 22428 tcp->tcp_ipversion = IPV4_VERSION; 22429 22430 return (tcp); 22431 } 22432 22433 /* 22434 * To remove a port range specified by lo_port and hi_port from the 22435 * reserved port ranges. This is one of the three public functions of 22436 * the reserved port interface. Note that a port range has to be removed 22437 * as a whole. Ports in a range cannot be removed individually. 22438 * 22439 * Params: 22440 * in_port_t lo_port: the beginning port of the reserved port range to 22441 * be deleted. 22442 * in_port_t hi_port: the ending port of the reserved port range to 22443 * be deleted. 22444 * 22445 * Return: 22446 * B_TRUE if the deletion is successful, B_FALSE otherwise. 22447 */ 22448 boolean_t 22449 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port) 22450 { 22451 int i, j; 22452 int size; 22453 tcp_t **temp_tcp_array; 22454 tcp_t *tcp; 22455 22456 rw_enter(&tcp_reserved_port_lock, RW_WRITER); 22457 22458 /* First make sure that the port ranage is indeed reserved. */ 22459 for (i = 0; i < tcp_reserved_port_array_size; i++) { 22460 if (tcp_reserved_port[i].lo_port == lo_port) { 22461 hi_port = tcp_reserved_port[i].hi_port; 22462 temp_tcp_array = tcp_reserved_port[i].temp_tcp_array; 22463 break; 22464 } 22465 } 22466 if (i == tcp_reserved_port_array_size) { 22467 rw_exit(&tcp_reserved_port_lock); 22468 return (B_FALSE); 22469 } 22470 22471 /* 22472 * Remove the range from the array. This simple loop is possible 22473 * because port ranges are inserted in ascending order. 22474 */ 22475 for (j = i; j < tcp_reserved_port_array_size - 1; j++) { 22476 tcp_reserved_port[j].lo_port = tcp_reserved_port[j+1].lo_port; 22477 tcp_reserved_port[j].hi_port = tcp_reserved_port[j+1].hi_port; 22478 tcp_reserved_port[j].temp_tcp_array = 22479 tcp_reserved_port[j+1].temp_tcp_array; 22480 } 22481 22482 /* Remove all the temporary tcp structures. */ 22483 size = hi_port - lo_port + 1; 22484 while (size > 0) { 22485 tcp = temp_tcp_array[size - 1]; 22486 ASSERT(tcp != NULL); 22487 tcp_bind_hash_remove(tcp); 22488 CONN_DEC_REF(tcp->tcp_connp); 22489 size--; 22490 } 22491 kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *)); 22492 tcp_reserved_port_array_size--; 22493 rw_exit(&tcp_reserved_port_lock); 22494 return (B_TRUE); 22495 } 22496 22497 /* 22498 * Macro to remove temporary tcp structure from the bind hash list. The 22499 * first parameter is the list of tcp to be removed. The second parameter 22500 * is the number of tcps in the array. 22501 */ 22502 #define TCP_TMP_TCP_REMOVE(tcp_array, num) \ 22503 { \ 22504 while ((num) > 0) { \ 22505 tcp_t *tcp = (tcp_array)[(num) - 1]; \ 22506 tf_t *tbf; \ 22507 tcp_t *tcpnext; \ 22508 tbf = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \ 22509 mutex_enter(&tbf->tf_lock); \ 22510 tcpnext = tcp->tcp_bind_hash; \ 22511 if (tcpnext) { \ 22512 tcpnext->tcp_ptpbhn = \ 22513 tcp->tcp_ptpbhn; \ 22514 } \ 22515 *tcp->tcp_ptpbhn = tcpnext; \ 22516 mutex_exit(&tbf->tf_lock); \ 22517 kmem_free(tcp, sizeof (tcp_t)); \ 22518 (tcp_array)[(num) - 1] = NULL; \ 22519 (num)--; \ 22520 } \ 22521 } 22522 22523 /* 22524 * The public interface for other modules to call to reserve a port range 22525 * in TCP. The caller passes in how large a port range it wants. TCP 22526 * will try to find a range and return it via lo_port and hi_port. This is 22527 * used by NCA's nca_conn_init. 22528 * NCA can only be used in the global zone so this only affects the global 22529 * zone's ports. 22530 * 22531 * Params: 22532 * int size: the size of the port range to be reserved. 22533 * in_port_t *lo_port (referenced): returns the beginning port of the 22534 * reserved port range added. 22535 * in_port_t *hi_port (referenced): returns the ending port of the 22536 * reserved port range added. 22537 * 22538 * Return: 22539 * B_TRUE if the port reservation is successful, B_FALSE otherwise. 22540 */ 22541 boolean_t 22542 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port) 22543 { 22544 tcp_t *tcp; 22545 tcp_t *tmp_tcp; 22546 tcp_t **temp_tcp_array; 22547 tf_t *tbf; 22548 in_port_t net_port; 22549 in_port_t port; 22550 int32_t cur_size; 22551 int i, j; 22552 boolean_t used; 22553 tcp_rport_t tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 22554 zoneid_t zoneid = GLOBAL_ZONEID; 22555 22556 /* Sanity check. */ 22557 if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) { 22558 return (B_FALSE); 22559 } 22560 22561 rw_enter(&tcp_reserved_port_lock, RW_WRITER); 22562 if (tcp_reserved_port_array_size == TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) { 22563 rw_exit(&tcp_reserved_port_lock); 22564 return (B_FALSE); 22565 } 22566 22567 /* 22568 * Find the starting port to try. Since the port ranges are ordered 22569 * in the reserved port array, we can do a simple search here. 22570 */ 22571 *lo_port = TCP_SMALLEST_RESERVED_PORT; 22572 *hi_port = TCP_LARGEST_RESERVED_PORT; 22573 for (i = 0; i < tcp_reserved_port_array_size; 22574 *lo_port = tcp_reserved_port[i].hi_port + 1, i++) { 22575 if (tcp_reserved_port[i].lo_port - *lo_port >= size) { 22576 *hi_port = tcp_reserved_port[i].lo_port - 1; 22577 break; 22578 } 22579 } 22580 /* No available port range. */ 22581 if (i == tcp_reserved_port_array_size && *hi_port - *lo_port < size) { 22582 rw_exit(&tcp_reserved_port_lock); 22583 return (B_FALSE); 22584 } 22585 22586 temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP); 22587 if (temp_tcp_array == NULL) { 22588 rw_exit(&tcp_reserved_port_lock); 22589 return (B_FALSE); 22590 } 22591 22592 /* Go thru the port range to see if some ports are already bound. */ 22593 for (port = *lo_port, cur_size = 0; 22594 cur_size < size && port <= *hi_port; 22595 cur_size++, port++) { 22596 used = B_FALSE; 22597 net_port = htons(port); 22598 tbf = &tcp_bind_fanout[TCP_BIND_HASH(net_port)]; 22599 mutex_enter(&tbf->tf_lock); 22600 for (tcp = tbf->tf_tcp; tcp != NULL; 22601 tcp = tcp->tcp_bind_hash) { 22602 if (zoneid == tcp->tcp_connp->conn_zoneid && 22603 net_port == tcp->tcp_lport) { 22604 /* 22605 * A port is already bound. Search again 22606 * starting from port + 1. Release all 22607 * temporary tcps. 22608 */ 22609 mutex_exit(&tbf->tf_lock); 22610 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 22611 *lo_port = port + 1; 22612 cur_size = -1; 22613 used = B_TRUE; 22614 break; 22615 } 22616 } 22617 if (!used) { 22618 if ((tmp_tcp = tcp_alloc_temp_tcp(net_port)) == NULL) { 22619 /* 22620 * Allocation failure. Just fail the request. 22621 * Need to remove all those temporary tcp 22622 * structures. 22623 */ 22624 mutex_exit(&tbf->tf_lock); 22625 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 22626 rw_exit(&tcp_reserved_port_lock); 22627 kmem_free(temp_tcp_array, 22628 (hi_port - lo_port + 1) * 22629 sizeof (tcp_t *)); 22630 return (B_FALSE); 22631 } 22632 temp_tcp_array[cur_size] = tmp_tcp; 22633 tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE); 22634 mutex_exit(&tbf->tf_lock); 22635 } 22636 } 22637 22638 /* 22639 * The current range is not large enough. We can actually do another 22640 * search if this search is done between 2 reserved port ranges. But 22641 * for first release, we just stop here and return saying that no port 22642 * range is available. 22643 */ 22644 if (cur_size < size) { 22645 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 22646 rw_exit(&tcp_reserved_port_lock); 22647 kmem_free(temp_tcp_array, size * sizeof (tcp_t *)); 22648 return (B_FALSE); 22649 } 22650 *hi_port = port - 1; 22651 22652 /* 22653 * Insert range into array in ascending order. Since this function 22654 * must not be called often, we choose to use the simplest method. 22655 * The above array should not consume excessive stack space as 22656 * the size must be very small. If in future releases, we find 22657 * that we should provide more reserved port ranges, this function 22658 * has to be modified to be more efficient. 22659 */ 22660 if (tcp_reserved_port_array_size == 0) { 22661 tcp_reserved_port[0].lo_port = *lo_port; 22662 tcp_reserved_port[0].hi_port = *hi_port; 22663 tcp_reserved_port[0].temp_tcp_array = temp_tcp_array; 22664 } else { 22665 for (i = 0, j = 0; i < tcp_reserved_port_array_size; i++, j++) { 22666 if (*lo_port < tcp_reserved_port[i].lo_port && i == j) { 22667 tmp_ports[j].lo_port = *lo_port; 22668 tmp_ports[j].hi_port = *hi_port; 22669 tmp_ports[j].temp_tcp_array = temp_tcp_array; 22670 j++; 22671 } 22672 tmp_ports[j].lo_port = tcp_reserved_port[i].lo_port; 22673 tmp_ports[j].hi_port = tcp_reserved_port[i].hi_port; 22674 tmp_ports[j].temp_tcp_array = 22675 tcp_reserved_port[i].temp_tcp_array; 22676 } 22677 if (j == i) { 22678 tmp_ports[j].lo_port = *lo_port; 22679 tmp_ports[j].hi_port = *hi_port; 22680 tmp_ports[j].temp_tcp_array = temp_tcp_array; 22681 } 22682 bcopy(tmp_ports, tcp_reserved_port, sizeof (tmp_ports)); 22683 } 22684 tcp_reserved_port_array_size++; 22685 rw_exit(&tcp_reserved_port_lock); 22686 return (B_TRUE); 22687 } 22688 22689 /* 22690 * Check to see if a port is in any reserved port range. 22691 * 22692 * Params: 22693 * in_port_t port: the port to be verified. 22694 * 22695 * Return: 22696 * B_TRUE is the port is inside a reserved port range, B_FALSE otherwise. 22697 */ 22698 boolean_t 22699 tcp_reserved_port_check(in_port_t port) 22700 { 22701 int i; 22702 22703 rw_enter(&tcp_reserved_port_lock, RW_READER); 22704 for (i = 0; i < tcp_reserved_port_array_size; i++) { 22705 if (port >= tcp_reserved_port[i].lo_port || 22706 port <= tcp_reserved_port[i].hi_port) { 22707 rw_exit(&tcp_reserved_port_lock); 22708 return (B_TRUE); 22709 } 22710 } 22711 rw_exit(&tcp_reserved_port_lock); 22712 return (B_FALSE); 22713 } 22714 22715 /* 22716 * To list all reserved port ranges. This is the function to handle 22717 * ndd tcp_reserved_port_list. 22718 */ 22719 /* ARGSUSED */ 22720 static int 22721 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 22722 { 22723 int i; 22724 22725 rw_enter(&tcp_reserved_port_lock, RW_READER); 22726 if (tcp_reserved_port_array_size > 0) 22727 (void) mi_mpprintf(mp, "The following ports are reserved:"); 22728 else 22729 (void) mi_mpprintf(mp, "No port is reserved."); 22730 for (i = 0; i < tcp_reserved_port_array_size; i++) { 22731 (void) mi_mpprintf(mp, "%d-%d", 22732 tcp_reserved_port[i].lo_port, tcp_reserved_port[i].hi_port); 22733 } 22734 rw_exit(&tcp_reserved_port_lock); 22735 return (0); 22736 } 22737 22738 /* 22739 * Hash list insertion routine for tcp_t structures. 22740 * Inserts entries with the ones bound to a specific IP address first 22741 * followed by those bound to INADDR_ANY. 22742 */ 22743 static void 22744 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 22745 { 22746 tcp_t **tcpp; 22747 tcp_t *tcpnext; 22748 22749 if (tcp->tcp_ptpbhn != NULL) { 22750 ASSERT(!caller_holds_lock); 22751 tcp_bind_hash_remove(tcp); 22752 } 22753 tcpp = &tbf->tf_tcp; 22754 if (!caller_holds_lock) { 22755 mutex_enter(&tbf->tf_lock); 22756 } else { 22757 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 22758 } 22759 tcpnext = tcpp[0]; 22760 if (tcpnext) { 22761 /* 22762 * If the new tcp bound to the INADDR_ANY address 22763 * and the first one in the list is not bound to 22764 * INADDR_ANY we skip all entries until we find the 22765 * first one bound to INADDR_ANY. 22766 * This makes sure that applications binding to a 22767 * specific address get preference over those binding to 22768 * INADDR_ANY. 22769 */ 22770 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 22771 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 22772 while ((tcpnext = tcpp[0]) != NULL && 22773 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 22774 tcpp = &(tcpnext->tcp_bind_hash); 22775 if (tcpnext) 22776 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 22777 } else 22778 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 22779 } 22780 tcp->tcp_bind_hash = tcpnext; 22781 tcp->tcp_ptpbhn = tcpp; 22782 tcpp[0] = tcp; 22783 if (!caller_holds_lock) 22784 mutex_exit(&tbf->tf_lock); 22785 } 22786 22787 /* 22788 * Hash list removal routine for tcp_t structures. 22789 */ 22790 static void 22791 tcp_bind_hash_remove(tcp_t *tcp) 22792 { 22793 tcp_t *tcpnext; 22794 kmutex_t *lockp; 22795 22796 if (tcp->tcp_ptpbhn == NULL) 22797 return; 22798 22799 /* 22800 * Extract the lock pointer in case there are concurrent 22801 * hash_remove's for this instance. 22802 */ 22803 ASSERT(tcp->tcp_lport != 0); 22804 lockp = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 22805 22806 ASSERT(lockp != NULL); 22807 mutex_enter(lockp); 22808 if (tcp->tcp_ptpbhn) { 22809 tcpnext = tcp->tcp_bind_hash; 22810 if (tcpnext) { 22811 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 22812 tcp->tcp_bind_hash = NULL; 22813 } 22814 *tcp->tcp_ptpbhn = tcpnext; 22815 tcp->tcp_ptpbhn = NULL; 22816 } 22817 mutex_exit(lockp); 22818 } 22819 22820 22821 /* 22822 * Hash list lookup routine for tcp_t structures. 22823 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 22824 */ 22825 static tcp_t * 22826 tcp_acceptor_hash_lookup(t_uscalar_t id) 22827 { 22828 tf_t *tf; 22829 tcp_t *tcp; 22830 22831 tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 22832 mutex_enter(&tf->tf_lock); 22833 for (tcp = tf->tf_tcp; tcp != NULL; 22834 tcp = tcp->tcp_acceptor_hash) { 22835 if (tcp->tcp_acceptor_id == id) { 22836 CONN_INC_REF(tcp->tcp_connp); 22837 mutex_exit(&tf->tf_lock); 22838 return (tcp); 22839 } 22840 } 22841 mutex_exit(&tf->tf_lock); 22842 return (NULL); 22843 } 22844 22845 22846 /* 22847 * Hash list insertion routine for tcp_t structures. 22848 */ 22849 void 22850 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 22851 { 22852 tf_t *tf; 22853 tcp_t **tcpp; 22854 tcp_t *tcpnext; 22855 22856 tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 22857 22858 if (tcp->tcp_ptpahn != NULL) 22859 tcp_acceptor_hash_remove(tcp); 22860 tcpp = &tf->tf_tcp; 22861 mutex_enter(&tf->tf_lock); 22862 tcpnext = tcpp[0]; 22863 if (tcpnext) 22864 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 22865 tcp->tcp_acceptor_hash = tcpnext; 22866 tcp->tcp_ptpahn = tcpp; 22867 tcpp[0] = tcp; 22868 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 22869 mutex_exit(&tf->tf_lock); 22870 } 22871 22872 /* 22873 * Hash list removal routine for tcp_t structures. 22874 */ 22875 static void 22876 tcp_acceptor_hash_remove(tcp_t *tcp) 22877 { 22878 tcp_t *tcpnext; 22879 kmutex_t *lockp; 22880 22881 /* 22882 * Extract the lock pointer in case there are concurrent 22883 * hash_remove's for this instance. 22884 */ 22885 lockp = tcp->tcp_acceptor_lockp; 22886 22887 if (tcp->tcp_ptpahn == NULL) 22888 return; 22889 22890 ASSERT(lockp != NULL); 22891 mutex_enter(lockp); 22892 if (tcp->tcp_ptpahn) { 22893 tcpnext = tcp->tcp_acceptor_hash; 22894 if (tcpnext) { 22895 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 22896 tcp->tcp_acceptor_hash = NULL; 22897 } 22898 *tcp->tcp_ptpahn = tcpnext; 22899 tcp->tcp_ptpahn = NULL; 22900 } 22901 mutex_exit(lockp); 22902 tcp->tcp_acceptor_lockp = NULL; 22903 } 22904 22905 /* ARGSUSED */ 22906 static int 22907 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af) 22908 { 22909 int error = 0; 22910 int retval; 22911 char *end; 22912 22913 tcp_hsp_t *hsp; 22914 tcp_hsp_t *hspprev; 22915 22916 ipaddr_t addr = 0; /* Address we're looking for */ 22917 in6_addr_t v6addr; /* Address we're looking for */ 22918 uint32_t hash; /* Hash of that address */ 22919 22920 /* 22921 * If the following variables are still zero after parsing the input 22922 * string, the user didn't specify them and we don't change them in 22923 * the HSP. 22924 */ 22925 22926 ipaddr_t mask = 0; /* Subnet mask */ 22927 in6_addr_t v6mask; 22928 long sendspace = 0; /* Send buffer size */ 22929 long recvspace = 0; /* Receive buffer size */ 22930 long timestamp = 0; /* Originate TCP TSTAMP option, 1 = yes */ 22931 boolean_t delete = B_FALSE; /* User asked to delete this HSP */ 22932 22933 rw_enter(&tcp_hsp_lock, RW_WRITER); 22934 22935 /* Parse and validate address */ 22936 if (af == AF_INET) { 22937 retval = inet_pton(af, value, &addr); 22938 if (retval == 1) 22939 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 22940 } else if (af == AF_INET6) { 22941 retval = inet_pton(af, value, &v6addr); 22942 } else { 22943 error = EINVAL; 22944 goto done; 22945 } 22946 if (retval == 0) { 22947 error = EINVAL; 22948 goto done; 22949 } 22950 22951 while ((*value) && *value != ' ') 22952 value++; 22953 22954 /* Parse individual keywords, set variables if found */ 22955 while (*value) { 22956 /* Skip leading blanks */ 22957 22958 while (*value == ' ' || *value == '\t') 22959 value++; 22960 22961 /* If at end of string, we're done */ 22962 22963 if (!*value) 22964 break; 22965 22966 /* We have a word, figure out what it is */ 22967 22968 if (strncmp("mask", value, 4) == 0) { 22969 value += 4; 22970 while (*value == ' ' || *value == '\t') 22971 value++; 22972 /* Parse subnet mask */ 22973 if (af == AF_INET) { 22974 retval = inet_pton(af, value, &mask); 22975 if (retval == 1) { 22976 V4MASK_TO_V6(mask, v6mask); 22977 } 22978 } else if (af == AF_INET6) { 22979 retval = inet_pton(af, value, &v6mask); 22980 } 22981 if (retval != 1) { 22982 error = EINVAL; 22983 goto done; 22984 } 22985 while ((*value) && *value != ' ') 22986 value++; 22987 } else if (strncmp("sendspace", value, 9) == 0) { 22988 value += 9; 22989 22990 if (ddi_strtol(value, &end, 0, &sendspace) != 0 || 22991 sendspace < TCP_XMIT_HIWATER || 22992 sendspace >= (1L<<30)) { 22993 error = EINVAL; 22994 goto done; 22995 } 22996 value = end; 22997 } else if (strncmp("recvspace", value, 9) == 0) { 22998 value += 9; 22999 23000 if (ddi_strtol(value, &end, 0, &recvspace) != 0 || 23001 recvspace < TCP_RECV_HIWATER || 23002 recvspace >= (1L<<30)) { 23003 error = EINVAL; 23004 goto done; 23005 } 23006 value = end; 23007 } else if (strncmp("timestamp", value, 9) == 0) { 23008 value += 9; 23009 23010 if (ddi_strtol(value, &end, 0, ×tamp) != 0 || 23011 timestamp < 0 || timestamp > 1) { 23012 error = EINVAL; 23013 goto done; 23014 } 23015 23016 /* 23017 * We increment timestamp so we know it's been set; 23018 * this is undone when we put it in the HSP 23019 */ 23020 timestamp++; 23021 value = end; 23022 } else if (strncmp("delete", value, 6) == 0) { 23023 value += 6; 23024 delete = B_TRUE; 23025 } else { 23026 error = EINVAL; 23027 goto done; 23028 } 23029 } 23030 23031 /* Hash address for lookup */ 23032 23033 hash = TCP_HSP_HASH(addr); 23034 23035 if (delete) { 23036 /* 23037 * Note that deletes don't return an error if the thing 23038 * we're trying to delete isn't there. 23039 */ 23040 if (tcp_hsp_hash == NULL) 23041 goto done; 23042 hsp = tcp_hsp_hash[hash]; 23043 23044 if (hsp) { 23045 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 23046 &v6addr)) { 23047 tcp_hsp_hash[hash] = hsp->tcp_hsp_next; 23048 mi_free((char *)hsp); 23049 } else { 23050 hspprev = hsp; 23051 while ((hsp = hsp->tcp_hsp_next) != NULL) { 23052 if (IN6_ARE_ADDR_EQUAL( 23053 &hsp->tcp_hsp_addr_v6, &v6addr)) { 23054 hspprev->tcp_hsp_next = 23055 hsp->tcp_hsp_next; 23056 mi_free((char *)hsp); 23057 break; 23058 } 23059 hspprev = hsp; 23060 } 23061 } 23062 } 23063 } else { 23064 /* 23065 * We're adding/modifying an HSP. If we haven't already done 23066 * so, allocate the hash table. 23067 */ 23068 23069 if (!tcp_hsp_hash) { 23070 tcp_hsp_hash = (tcp_hsp_t **) 23071 mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE); 23072 if (!tcp_hsp_hash) { 23073 error = EINVAL; 23074 goto done; 23075 } 23076 } 23077 23078 /* Get head of hash chain */ 23079 23080 hsp = tcp_hsp_hash[hash]; 23081 23082 /* Try to find pre-existing hsp on hash chain */ 23083 /* Doesn't handle CIDR prefixes. */ 23084 while (hsp) { 23085 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr)) 23086 break; 23087 hsp = hsp->tcp_hsp_next; 23088 } 23089 23090 /* 23091 * If we didn't, create one with default values and put it 23092 * at head of hash chain 23093 */ 23094 23095 if (!hsp) { 23096 hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t)); 23097 if (!hsp) { 23098 error = EINVAL; 23099 goto done; 23100 } 23101 hsp->tcp_hsp_next = tcp_hsp_hash[hash]; 23102 tcp_hsp_hash[hash] = hsp; 23103 } 23104 23105 /* Set values that the user asked us to change */ 23106 23107 hsp->tcp_hsp_addr_v6 = v6addr; 23108 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) 23109 hsp->tcp_hsp_vers = IPV4_VERSION; 23110 else 23111 hsp->tcp_hsp_vers = IPV6_VERSION; 23112 hsp->tcp_hsp_subnet_v6 = v6mask; 23113 if (sendspace > 0) 23114 hsp->tcp_hsp_sendspace = sendspace; 23115 if (recvspace > 0) 23116 hsp->tcp_hsp_recvspace = recvspace; 23117 if (timestamp > 0) 23118 hsp->tcp_hsp_tstamp = timestamp - 1; 23119 } 23120 23121 done: 23122 rw_exit(&tcp_hsp_lock); 23123 return (error); 23124 } 23125 23126 /* Set callback routine passed to nd_load by tcp_param_register. */ 23127 /* ARGSUSED */ 23128 static int 23129 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 23130 { 23131 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET)); 23132 } 23133 /* ARGSUSED */ 23134 static int 23135 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 23136 cred_t *cr) 23137 { 23138 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6)); 23139 } 23140 23141 /* TCP host parameters report triggered via the Named Dispatch mechanism. */ 23142 /* ARGSUSED */ 23143 static int 23144 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 23145 { 23146 tcp_hsp_t *hsp; 23147 int i; 23148 char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN]; 23149 23150 rw_enter(&tcp_hsp_lock, RW_READER); 23151 (void) mi_mpprintf(mp, 23152 "Hash HSP " MI_COL_HDRPAD_STR 23153 "Address Subnet Mask Send Receive TStamp"); 23154 if (tcp_hsp_hash) { 23155 for (i = 0; i < TCP_HSP_HASH_SIZE; i++) { 23156 hsp = tcp_hsp_hash[i]; 23157 while (hsp) { 23158 if (hsp->tcp_hsp_vers == IPV4_VERSION) { 23159 (void) inet_ntop(AF_INET, 23160 &hsp->tcp_hsp_addr, 23161 addrbuf, sizeof (addrbuf)); 23162 (void) inet_ntop(AF_INET, 23163 &hsp->tcp_hsp_subnet, 23164 subnetbuf, sizeof (subnetbuf)); 23165 } else { 23166 (void) inet_ntop(AF_INET6, 23167 &hsp->tcp_hsp_addr_v6, 23168 addrbuf, sizeof (addrbuf)); 23169 (void) inet_ntop(AF_INET6, 23170 &hsp->tcp_hsp_subnet_v6, 23171 subnetbuf, sizeof (subnetbuf)); 23172 } 23173 (void) mi_mpprintf(mp, 23174 " %03d " MI_COL_PTRFMT_STR 23175 "%s %s %010d %010d %d", 23176 i, 23177 (void *)hsp, 23178 addrbuf, 23179 subnetbuf, 23180 hsp->tcp_hsp_sendspace, 23181 hsp->tcp_hsp_recvspace, 23182 hsp->tcp_hsp_tstamp); 23183 23184 hsp = hsp->tcp_hsp_next; 23185 } 23186 } 23187 } 23188 rw_exit(&tcp_hsp_lock); 23189 return (0); 23190 } 23191 23192 23193 /* Data for fast netmask macro used by tcp_hsp_lookup */ 23194 23195 static ipaddr_t netmasks[] = { 23196 IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET, 23197 IN_CLASSC_NET | IN_CLASSD_NET /* Class C,D,E */ 23198 }; 23199 23200 #define netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30]) 23201 23202 /* 23203 * XXX This routine should go away and instead we should use the metrics 23204 * associated with the routes to determine the default sndspace and rcvspace. 23205 */ 23206 static tcp_hsp_t * 23207 tcp_hsp_lookup(ipaddr_t addr) 23208 { 23209 tcp_hsp_t *hsp = NULL; 23210 23211 /* Quick check without acquiring the lock. */ 23212 if (tcp_hsp_hash == NULL) 23213 return (NULL); 23214 23215 rw_enter(&tcp_hsp_lock, RW_READER); 23216 23217 /* This routine finds the best-matching HSP for address addr. */ 23218 23219 if (tcp_hsp_hash) { 23220 int i; 23221 ipaddr_t srchaddr; 23222 tcp_hsp_t *hsp_net; 23223 23224 /* We do three passes: host, network, and subnet. */ 23225 23226 srchaddr = addr; 23227 23228 for (i = 1; i <= 3; i++) { 23229 /* Look for exact match on srchaddr */ 23230 23231 hsp = tcp_hsp_hash[TCP_HSP_HASH(srchaddr)]; 23232 while (hsp) { 23233 if (hsp->tcp_hsp_vers == IPV4_VERSION && 23234 hsp->tcp_hsp_addr == srchaddr) 23235 break; 23236 hsp = hsp->tcp_hsp_next; 23237 } 23238 ASSERT(hsp == NULL || 23239 hsp->tcp_hsp_vers == IPV4_VERSION); 23240 23241 /* 23242 * If this is the first pass: 23243 * If we found a match, great, return it. 23244 * If not, search for the network on the second pass. 23245 */ 23246 23247 if (i == 1) 23248 if (hsp) 23249 break; 23250 else 23251 { 23252 srchaddr = addr & netmask(addr); 23253 continue; 23254 } 23255 23256 /* 23257 * If this is the second pass: 23258 * If we found a match, but there's a subnet mask, 23259 * save the match but try again using the subnet 23260 * mask on the third pass. 23261 * Otherwise, return whatever we found. 23262 */ 23263 23264 if (i == 2) { 23265 if (hsp && hsp->tcp_hsp_subnet) { 23266 hsp_net = hsp; 23267 srchaddr = addr & hsp->tcp_hsp_subnet; 23268 continue; 23269 } else { 23270 break; 23271 } 23272 } 23273 23274 /* 23275 * This must be the third pass. If we didn't find 23276 * anything, return the saved network HSP instead. 23277 */ 23278 23279 if (!hsp) 23280 hsp = hsp_net; 23281 } 23282 } 23283 23284 rw_exit(&tcp_hsp_lock); 23285 return (hsp); 23286 } 23287 23288 /* 23289 * XXX Equally broken as the IPv4 routine. Doesn't handle longest 23290 * match lookup. 23291 */ 23292 static tcp_hsp_t * 23293 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr) 23294 { 23295 tcp_hsp_t *hsp = NULL; 23296 23297 /* Quick check without acquiring the lock. */ 23298 if (tcp_hsp_hash == NULL) 23299 return (NULL); 23300 23301 rw_enter(&tcp_hsp_lock, RW_READER); 23302 23303 /* This routine finds the best-matching HSP for address addr. */ 23304 23305 if (tcp_hsp_hash) { 23306 int i; 23307 in6_addr_t v6srchaddr; 23308 tcp_hsp_t *hsp_net; 23309 23310 /* We do three passes: host, network, and subnet. */ 23311 23312 v6srchaddr = *v6addr; 23313 23314 for (i = 1; i <= 3; i++) { 23315 /* Look for exact match on srchaddr */ 23316 23317 hsp = tcp_hsp_hash[TCP_HSP_HASH( 23318 V4_PART_OF_V6(v6srchaddr))]; 23319 while (hsp) { 23320 if (hsp->tcp_hsp_vers == IPV6_VERSION && 23321 IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 23322 &v6srchaddr)) 23323 break; 23324 hsp = hsp->tcp_hsp_next; 23325 } 23326 23327 /* 23328 * If this is the first pass: 23329 * If we found a match, great, return it. 23330 * If not, search for the network on the second pass. 23331 */ 23332 23333 if (i == 1) 23334 if (hsp) 23335 break; 23336 else { 23337 /* Assume a 64 bit mask */ 23338 v6srchaddr.s6_addr32[0] = 23339 v6addr->s6_addr32[0]; 23340 v6srchaddr.s6_addr32[1] = 23341 v6addr->s6_addr32[1]; 23342 v6srchaddr.s6_addr32[2] = 0; 23343 v6srchaddr.s6_addr32[3] = 0; 23344 continue; 23345 } 23346 23347 /* 23348 * If this is the second pass: 23349 * If we found a match, but there's a subnet mask, 23350 * save the match but try again using the subnet 23351 * mask on the third pass. 23352 * Otherwise, return whatever we found. 23353 */ 23354 23355 if (i == 2) { 23356 ASSERT(hsp == NULL || 23357 hsp->tcp_hsp_vers == IPV6_VERSION); 23358 if (hsp && 23359 !IN6_IS_ADDR_UNSPECIFIED( 23360 &hsp->tcp_hsp_subnet_v6)) { 23361 hsp_net = hsp; 23362 V6_MASK_COPY(*v6addr, 23363 hsp->tcp_hsp_subnet_v6, v6srchaddr); 23364 continue; 23365 } else { 23366 break; 23367 } 23368 } 23369 23370 /* 23371 * This must be the third pass. If we didn't find 23372 * anything, return the saved network HSP instead. 23373 */ 23374 23375 if (!hsp) 23376 hsp = hsp_net; 23377 } 23378 } 23379 23380 rw_exit(&tcp_hsp_lock); 23381 return (hsp); 23382 } 23383 23384 /* 23385 * Type three generator adapted from the random() function in 4.4 BSD: 23386 */ 23387 23388 /* 23389 * Copyright (c) 1983, 1993 23390 * The Regents of the University of California. All rights reserved. 23391 * 23392 * Redistribution and use in source and binary forms, with or without 23393 * modification, are permitted provided that the following conditions 23394 * are met: 23395 * 1. Redistributions of source code must retain the above copyright 23396 * notice, this list of conditions and the following disclaimer. 23397 * 2. Redistributions in binary form must reproduce the above copyright 23398 * notice, this list of conditions and the following disclaimer in the 23399 * documentation and/or other materials provided with the distribution. 23400 * 3. All advertising materials mentioning features or use of this software 23401 * must display the following acknowledgement: 23402 * This product includes software developed by the University of 23403 * California, Berkeley and its contributors. 23404 * 4. Neither the name of the University nor the names of its contributors 23405 * may be used to endorse or promote products derived from this software 23406 * without specific prior written permission. 23407 * 23408 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23409 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23410 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23411 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23412 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23413 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23414 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23415 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23416 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23417 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23418 * SUCH DAMAGE. 23419 */ 23420 23421 /* Type 3 -- x**31 + x**3 + 1 */ 23422 #define DEG_3 31 23423 #define SEP_3 3 23424 23425 23426 /* Protected by tcp_random_lock */ 23427 static int tcp_randtbl[DEG_3 + 1]; 23428 23429 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 23430 static int *tcp_random_rptr = &tcp_randtbl[1]; 23431 23432 static int *tcp_random_state = &tcp_randtbl[1]; 23433 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 23434 23435 kmutex_t tcp_random_lock; 23436 23437 void 23438 tcp_random_init(void) 23439 { 23440 int i; 23441 hrtime_t hrt; 23442 time_t wallclock; 23443 uint64_t result; 23444 23445 /* 23446 * Use high-res timer and current time for seed. Gethrtime() returns 23447 * a longlong, which may contain resolution down to nanoseconds. 23448 * The current time will either be a 32-bit or a 64-bit quantity. 23449 * XOR the two together in a 64-bit result variable. 23450 * Convert the result to a 32-bit value by multiplying the high-order 23451 * 32-bits by the low-order 32-bits. 23452 */ 23453 23454 hrt = gethrtime(); 23455 (void) drv_getparm(TIME, &wallclock); 23456 result = (uint64_t)wallclock ^ (uint64_t)hrt; 23457 mutex_enter(&tcp_random_lock); 23458 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 23459 (result & 0xffffffff); 23460 23461 for (i = 1; i < DEG_3; i++) 23462 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 23463 + 12345; 23464 tcp_random_fptr = &tcp_random_state[SEP_3]; 23465 tcp_random_rptr = &tcp_random_state[0]; 23466 mutex_exit(&tcp_random_lock); 23467 for (i = 0; i < 10 * DEG_3; i++) 23468 (void) tcp_random(); 23469 } 23470 23471 /* 23472 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 23473 * This range is selected to be approximately centered on TCP_ISS / 2, 23474 * and easy to compute. We get this value by generating a 32-bit random 23475 * number, selecting out the high-order 17 bits, and then adding one so 23476 * that we never return zero. 23477 */ 23478 int 23479 tcp_random(void) 23480 { 23481 int i; 23482 23483 mutex_enter(&tcp_random_lock); 23484 *tcp_random_fptr += *tcp_random_rptr; 23485 23486 /* 23487 * The high-order bits are more random than the low-order bits, 23488 * so we select out the high-order 17 bits and add one so that 23489 * we never return zero. 23490 */ 23491 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 23492 if (++tcp_random_fptr >= tcp_random_end_ptr) { 23493 tcp_random_fptr = tcp_random_state; 23494 ++tcp_random_rptr; 23495 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 23496 tcp_random_rptr = tcp_random_state; 23497 23498 mutex_exit(&tcp_random_lock); 23499 return (i); 23500 } 23501 23502 /* 23503 * XXX This will go away when TPI is extended to send 23504 * info reqs to sockfs/timod ..... 23505 * Given a queue, set the max packet size for the write 23506 * side of the queue below stream head. This value is 23507 * cached on the stream head. 23508 * Returns 1 on success, 0 otherwise. 23509 */ 23510 static int 23511 setmaxps(queue_t *q, int maxpsz) 23512 { 23513 struct stdata *stp; 23514 queue_t *wq; 23515 stp = STREAM(q); 23516 23517 /* 23518 * At this point change of a queue parameter is not allowed 23519 * when a multiplexor is sitting on top. 23520 */ 23521 if (stp->sd_flag & STPLEX) 23522 return (0); 23523 23524 claimstr(stp->sd_wrq); 23525 wq = stp->sd_wrq->q_next; 23526 ASSERT(wq != NULL); 23527 (void) strqset(wq, QMAXPSZ, 0, maxpsz); 23528 releasestr(stp->sd_wrq); 23529 return (1); 23530 } 23531 23532 static int 23533 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 23534 int *t_errorp, int *sys_errorp) 23535 { 23536 int error; 23537 int is_absreq_failure; 23538 t_scalar_t *opt_lenp; 23539 t_scalar_t opt_offset; 23540 int prim_type; 23541 struct T_conn_req *tcreqp; 23542 struct T_conn_res *tcresp; 23543 cred_t *cr; 23544 23545 cr = DB_CREDDEF(mp, tcp->tcp_cred); 23546 23547 prim_type = ((union T_primitives *)mp->b_rptr)->type; 23548 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 23549 prim_type == T_CONN_RES); 23550 23551 switch (prim_type) { 23552 case T_CONN_REQ: 23553 tcreqp = (struct T_conn_req *)mp->b_rptr; 23554 opt_offset = tcreqp->OPT_offset; 23555 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 23556 break; 23557 case O_T_CONN_RES: 23558 case T_CONN_RES: 23559 tcresp = (struct T_conn_res *)mp->b_rptr; 23560 opt_offset = tcresp->OPT_offset; 23561 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 23562 break; 23563 } 23564 23565 *t_errorp = 0; 23566 *sys_errorp = 0; 23567 *do_disconnectp = 0; 23568 23569 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 23570 opt_offset, cr, &tcp_opt_obj, 23571 NULL, &is_absreq_failure); 23572 23573 switch (error) { 23574 case 0: /* no error */ 23575 ASSERT(is_absreq_failure == 0); 23576 return (0); 23577 case ENOPROTOOPT: 23578 *t_errorp = TBADOPT; 23579 break; 23580 case EACCES: 23581 *t_errorp = TACCES; 23582 break; 23583 default: 23584 *t_errorp = TSYSERR; *sys_errorp = error; 23585 break; 23586 } 23587 if (is_absreq_failure != 0) { 23588 /* 23589 * The connection request should get the local ack 23590 * T_OK_ACK and then a T_DISCON_IND. 23591 */ 23592 *do_disconnectp = 1; 23593 } 23594 return (-1); 23595 } 23596 23597 /* 23598 * Split this function out so that if the secret changes, I'm okay. 23599 * 23600 * Initialize the tcp_iss_cookie and tcp_iss_key. 23601 */ 23602 23603 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 23604 23605 static void 23606 tcp_iss_key_init(uint8_t *phrase, int len) 23607 { 23608 struct { 23609 int32_t current_time; 23610 uint32_t randnum; 23611 uint16_t pad; 23612 uint8_t ether[6]; 23613 uint8_t passwd[PASSWD_SIZE]; 23614 } tcp_iss_cookie; 23615 time_t t; 23616 23617 /* 23618 * Start with the current absolute time. 23619 */ 23620 (void) drv_getparm(TIME, &t); 23621 tcp_iss_cookie.current_time = t; 23622 23623 /* 23624 * XXX - Need a more random number per RFC 1750, not this crap. 23625 * OTOH, if what follows is pretty random, then I'm in better shape. 23626 */ 23627 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 23628 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 23629 23630 /* 23631 * The cpu_type_info is pretty non-random. Ugggh. It does serve 23632 * as a good template. 23633 */ 23634 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 23635 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 23636 23637 /* 23638 * The pass-phrase. Normally this is supplied by user-called NDD. 23639 */ 23640 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 23641 23642 /* 23643 * See 4010593 if this section becomes a problem again, 23644 * but the local ethernet address is useful here. 23645 */ 23646 (void) localetheraddr(NULL, 23647 (struct ether_addr *)&tcp_iss_cookie.ether); 23648 23649 /* 23650 * Hash 'em all together. The MD5Final is called per-connection. 23651 */ 23652 mutex_enter(&tcp_iss_key_lock); 23653 MD5Init(&tcp_iss_key); 23654 MD5Update(&tcp_iss_key, (uchar_t *)&tcp_iss_cookie, 23655 sizeof (tcp_iss_cookie)); 23656 mutex_exit(&tcp_iss_key_lock); 23657 } 23658 23659 /* 23660 * Set the RFC 1948 pass phrase 23661 */ 23662 /* ARGSUSED */ 23663 static int 23664 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 23665 cred_t *cr) 23666 { 23667 /* 23668 * Basically, value contains a new pass phrase. Pass it along! 23669 */ 23670 tcp_iss_key_init((uint8_t *)value, strlen(value)); 23671 return (0); 23672 } 23673 23674 /* ARGSUSED */ 23675 static int 23676 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 23677 { 23678 bzero(buf, sizeof (tcp_sack_info_t)); 23679 return (0); 23680 } 23681 23682 /* ARGSUSED */ 23683 static int 23684 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 23685 { 23686 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 23687 return (0); 23688 } 23689 23690 void 23691 tcp_ddi_init(void) 23692 { 23693 int i; 23694 23695 /* Initialize locks */ 23696 rw_init(&tcp_hsp_lock, NULL, RW_DEFAULT, NULL); 23697 mutex_init(&tcp_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 23698 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 23699 mutex_init(&tcp_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 23700 mutex_init(&tcp_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 23701 rw_init(&tcp_reserved_port_lock, NULL, RW_DEFAULT, NULL); 23702 23703 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 23704 mutex_init(&tcp_bind_fanout[i].tf_lock, NULL, 23705 MUTEX_DEFAULT, NULL); 23706 } 23707 23708 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 23709 mutex_init(&tcp_acceptor_fanout[i].tf_lock, NULL, 23710 MUTEX_DEFAULT, NULL); 23711 } 23712 23713 /* TCP's IPsec code calls the packet dropper. */ 23714 ip_drop_register(&tcp_dropper, "TCP IPsec policy enforcement"); 23715 23716 if (!tcp_g_nd) { 23717 if (!tcp_param_register(tcp_param_arr, A_CNT(tcp_param_arr))) { 23718 nd_free(&tcp_g_nd); 23719 } 23720 } 23721 23722 /* 23723 * Note: To really walk the device tree you need the devinfo 23724 * pointer to your device which is only available after probe/attach. 23725 * The following is safe only because it uses ddi_root_node() 23726 */ 23727 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 23728 tcp_opt_obj.odb_opt_arr_cnt); 23729 23730 tcp_timercache = kmem_cache_create("tcp_timercache", 23731 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 23732 NULL, NULL, NULL, NULL, NULL, 0); 23733 23734 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 23735 sizeof (tcp_sack_info_t), 0, 23736 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 23737 23738 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 23739 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 23740 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 23741 23742 tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput); 23743 tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close); 23744 23745 ip_squeue_init(tcp_squeue_add); 23746 23747 /* Initialize the random number generator */ 23748 tcp_random_init(); 23749 23750 /* 23751 * Initialize RFC 1948 secret values. This will probably be reset once 23752 * by the boot scripts. 23753 * 23754 * Use NULL name, as the name is caught by the new lockstats. 23755 * 23756 * Initialize with some random, non-guessable string, like the global 23757 * T_INFO_ACK. 23758 */ 23759 23760 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 23761 sizeof (tcp_g_t_info_ack)); 23762 23763 if ((tcp_kstat = kstat_create(TCP_MOD_NAME, 0, "tcpstat", 23764 "net", KSTAT_TYPE_NAMED, 23765 sizeof (tcp_statistics) / sizeof (kstat_named_t), 23766 KSTAT_FLAG_VIRTUAL)) != NULL) { 23767 tcp_kstat->ks_data = &tcp_statistics; 23768 kstat_install(tcp_kstat); 23769 } 23770 23771 tcp_kstat_init(); 23772 } 23773 23774 void 23775 tcp_ddi_destroy(void) 23776 { 23777 int i; 23778 23779 nd_free(&tcp_g_nd); 23780 23781 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 23782 mutex_destroy(&tcp_bind_fanout[i].tf_lock); 23783 } 23784 23785 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 23786 mutex_destroy(&tcp_acceptor_fanout[i].tf_lock); 23787 } 23788 23789 mutex_destroy(&tcp_iss_key_lock); 23790 rw_destroy(&tcp_hsp_lock); 23791 mutex_destroy(&tcp_g_q_lock); 23792 mutex_destroy(&tcp_random_lock); 23793 mutex_destroy(&tcp_epriv_port_lock); 23794 rw_destroy(&tcp_reserved_port_lock); 23795 23796 ip_drop_unregister(&tcp_dropper); 23797 23798 kmem_cache_destroy(tcp_timercache); 23799 kmem_cache_destroy(tcp_sack_info_cache); 23800 kmem_cache_destroy(tcp_iphc_cache); 23801 23802 tcp_kstat_fini(); 23803 } 23804 23805 /* 23806 * Generate ISS, taking into account NDD changes may happen halfway through. 23807 * (If the iss is not zero, set it.) 23808 */ 23809 23810 static void 23811 tcp_iss_init(tcp_t *tcp) 23812 { 23813 MD5_CTX context; 23814 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 23815 uint32_t answer[4]; 23816 23817 tcp_iss_incr_extra += (ISS_INCR >> 1); 23818 tcp->tcp_iss = tcp_iss_incr_extra; 23819 switch (tcp_strong_iss) { 23820 case 2: 23821 mutex_enter(&tcp_iss_key_lock); 23822 context = tcp_iss_key; 23823 mutex_exit(&tcp_iss_key_lock); 23824 arg.ports = tcp->tcp_ports; 23825 if (tcp->tcp_ipversion == IPV4_VERSION) { 23826 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 23827 &arg.src); 23828 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 23829 &arg.dst); 23830 } else { 23831 arg.src = tcp->tcp_ip6h->ip6_src; 23832 arg.dst = tcp->tcp_ip6h->ip6_dst; 23833 } 23834 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 23835 MD5Final((uchar_t *)answer, &context); 23836 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 23837 /* 23838 * Now that we've hashed into a unique per-connection sequence 23839 * space, add a random increment per strong_iss == 1. So I 23840 * guess we'll have to... 23841 */ 23842 /* FALLTHRU */ 23843 case 1: 23844 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 23845 break; 23846 default: 23847 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 23848 break; 23849 } 23850 tcp->tcp_valid_bits = TCP_ISS_VALID; 23851 tcp->tcp_fss = tcp->tcp_iss - 1; 23852 tcp->tcp_suna = tcp->tcp_iss; 23853 tcp->tcp_snxt = tcp->tcp_iss + 1; 23854 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 23855 tcp->tcp_csuna = tcp->tcp_snxt; 23856 } 23857 23858 /* 23859 * Exported routine for extracting active tcp connection status. 23860 * 23861 * This is used by the Solaris Cluster Networking software to 23862 * gather a list of connections that need to be forwarded to 23863 * specific nodes in the cluster when configuration changes occur. 23864 * 23865 * The callback is invoked for each tcp_t structure. Returning 23866 * non-zero from the callback routine terminates the search. 23867 */ 23868 int 23869 cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg) 23870 { 23871 tcp_t *tcp; 23872 cl_tcp_info_t cl_tcpi; 23873 connf_t *connfp; 23874 conn_t *connp; 23875 int i; 23876 23877 ASSERT(callback != NULL); 23878 23879 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 23880 23881 connfp = &ipcl_globalhash_fanout[i]; 23882 connp = NULL; 23883 23884 while ((connp = 23885 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 23886 23887 tcp = connp->conn_tcp; 23888 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 23889 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 23890 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 23891 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 23892 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 23893 /* 23894 * The macros tcp_laddr and tcp_faddr give the IPv4 23895 * addresses. They are copied implicitly below as 23896 * mapped addresses. 23897 */ 23898 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 23899 if (tcp->tcp_ipversion == IPV4_VERSION) { 23900 cl_tcpi.cl_tcpi_faddr = 23901 tcp->tcp_ipha->ipha_dst; 23902 } else { 23903 cl_tcpi.cl_tcpi_faddr_v6 = 23904 tcp->tcp_ip6h->ip6_dst; 23905 } 23906 23907 /* 23908 * If the callback returns non-zero 23909 * we terminate the traversal. 23910 */ 23911 if ((*callback)(&cl_tcpi, arg) != 0) { 23912 CONN_DEC_REF(tcp->tcp_connp); 23913 return (1); 23914 } 23915 } 23916 } 23917 23918 return (0); 23919 } 23920 23921 /* 23922 * Macros used for accessing the different types of sockaddr 23923 * structures inside a tcp_ioc_abort_conn_t. 23924 */ 23925 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 23926 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 23927 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 23928 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 23929 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 23930 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 23931 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 23932 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 23933 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 23934 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 23935 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 23936 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 23937 23938 /* 23939 * Return the correct error code to mimic the behavior 23940 * of a connection reset. 23941 */ 23942 #define TCP_AC_GET_ERRCODE(state, err) { \ 23943 switch ((state)) { \ 23944 case TCPS_SYN_SENT: \ 23945 case TCPS_SYN_RCVD: \ 23946 (err) = ECONNREFUSED; \ 23947 break; \ 23948 case TCPS_ESTABLISHED: \ 23949 case TCPS_FIN_WAIT_1: \ 23950 case TCPS_FIN_WAIT_2: \ 23951 case TCPS_CLOSE_WAIT: \ 23952 (err) = ECONNRESET; \ 23953 break; \ 23954 case TCPS_CLOSING: \ 23955 case TCPS_LAST_ACK: \ 23956 case TCPS_TIME_WAIT: \ 23957 (err) = 0; \ 23958 break; \ 23959 default: \ 23960 (err) = ENXIO; \ 23961 } \ 23962 } 23963 23964 /* 23965 * Check if a tcp structure matches the info in acp. 23966 */ 23967 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 23968 (((acp)->ac_local.ss_family == AF_INET) ? \ 23969 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 23970 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 23971 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 23972 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 23973 (TCP_AC_V4LPORT((acp)) == 0 || \ 23974 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 23975 (TCP_AC_V4RPORT((acp)) == 0 || \ 23976 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 23977 (acp)->ac_start <= (tcp)->tcp_state && \ 23978 (acp)->ac_end >= (tcp)->tcp_state) : \ 23979 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 23980 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 23981 &(tcp)->tcp_ip_src_v6)) && \ 23982 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 23983 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 23984 &(tcp)->tcp_remote_v6)) && \ 23985 (TCP_AC_V6LPORT((acp)) == 0 || \ 23986 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 23987 (TCP_AC_V6RPORT((acp)) == 0 || \ 23988 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 23989 (acp)->ac_start <= (tcp)->tcp_state && \ 23990 (acp)->ac_end >= (tcp)->tcp_state)) 23991 23992 #define TCP_AC_MATCH(acp, tcp) \ 23993 (((acp)->ac_zoneid == ALL_ZONES || \ 23994 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 23995 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 23996 23997 /* 23998 * Build a message containing a tcp_ioc_abort_conn_t structure 23999 * which is filled in with information from acp and tp. 24000 */ 24001 static mblk_t * 24002 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 24003 { 24004 mblk_t *mp; 24005 tcp_ioc_abort_conn_t *tacp; 24006 24007 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 24008 if (mp == NULL) 24009 return (NULL); 24010 24011 mp->b_datap->db_type = M_CTL; 24012 24013 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 24014 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 24015 sizeof (uint32_t)); 24016 24017 tacp->ac_start = acp->ac_start; 24018 tacp->ac_end = acp->ac_end; 24019 tacp->ac_zoneid = acp->ac_zoneid; 24020 24021 if (acp->ac_local.ss_family == AF_INET) { 24022 tacp->ac_local.ss_family = AF_INET; 24023 tacp->ac_remote.ss_family = AF_INET; 24024 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 24025 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 24026 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 24027 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 24028 } else { 24029 tacp->ac_local.ss_family = AF_INET6; 24030 tacp->ac_remote.ss_family = AF_INET6; 24031 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 24032 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 24033 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 24034 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 24035 } 24036 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 24037 return (mp); 24038 } 24039 24040 /* 24041 * Print a tcp_ioc_abort_conn_t structure. 24042 */ 24043 static void 24044 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 24045 { 24046 char lbuf[128]; 24047 char rbuf[128]; 24048 sa_family_t af; 24049 in_port_t lport, rport; 24050 ushort_t logflags; 24051 24052 af = acp->ac_local.ss_family; 24053 24054 if (af == AF_INET) { 24055 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 24056 lbuf, 128); 24057 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 24058 rbuf, 128); 24059 lport = ntohs(TCP_AC_V4LPORT(acp)); 24060 rport = ntohs(TCP_AC_V4RPORT(acp)); 24061 } else { 24062 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 24063 lbuf, 128); 24064 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 24065 rbuf, 128); 24066 lport = ntohs(TCP_AC_V6LPORT(acp)); 24067 rport = ntohs(TCP_AC_V6RPORT(acp)); 24068 } 24069 24070 logflags = SL_TRACE | SL_NOTE; 24071 /* 24072 * Don't print this message to the console if the operation was done 24073 * to a non-global zone. 24074 */ 24075 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24076 logflags |= SL_CONSOLE; 24077 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 24078 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 24079 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 24080 acp->ac_start, acp->ac_end); 24081 } 24082 24083 /* 24084 * Called inside tcp_rput when a message built using 24085 * tcp_ioctl_abort_build_msg is put into a queue. 24086 * Note that when we get here there is no wildcard in acp any more. 24087 */ 24088 static void 24089 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 24090 { 24091 tcp_ioc_abort_conn_t *acp; 24092 24093 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 24094 if (tcp->tcp_state <= acp->ac_end) { 24095 /* 24096 * If we get here, we are already on the correct 24097 * squeue. This ioctl follows the following path 24098 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 24099 * ->tcp_ioctl_abort->squeue_fill (if on a 24100 * different squeue) 24101 */ 24102 int errcode; 24103 24104 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 24105 (void) tcp_clean_death(tcp, errcode, 26); 24106 } 24107 freemsg(mp); 24108 } 24109 24110 /* 24111 * Abort all matching connections on a hash chain. 24112 */ 24113 static int 24114 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 24115 boolean_t exact) 24116 { 24117 int nmatch, err = 0; 24118 tcp_t *tcp; 24119 MBLKP mp, last, listhead = NULL; 24120 conn_t *tconnp; 24121 connf_t *connfp = &ipcl_conn_fanout[index]; 24122 24123 startover: 24124 nmatch = 0; 24125 24126 mutex_enter(&connfp->connf_lock); 24127 for (tconnp = connfp->connf_head; tconnp != NULL; 24128 tconnp = tconnp->conn_next) { 24129 tcp = tconnp->conn_tcp; 24130 if (TCP_AC_MATCH(acp, tcp)) { 24131 CONN_INC_REF(tcp->tcp_connp); 24132 mp = tcp_ioctl_abort_build_msg(acp, tcp); 24133 if (mp == NULL) { 24134 err = ENOMEM; 24135 CONN_DEC_REF(tcp->tcp_connp); 24136 break; 24137 } 24138 mp->b_prev = (mblk_t *)tcp; 24139 24140 if (listhead == NULL) { 24141 listhead = mp; 24142 last = mp; 24143 } else { 24144 last->b_next = mp; 24145 last = mp; 24146 } 24147 nmatch++; 24148 if (exact) 24149 break; 24150 } 24151 24152 /* Avoid holding lock for too long. */ 24153 if (nmatch >= 500) 24154 break; 24155 } 24156 mutex_exit(&connfp->connf_lock); 24157 24158 /* Pass mp into the correct tcp */ 24159 while ((mp = listhead) != NULL) { 24160 listhead = listhead->b_next; 24161 tcp = (tcp_t *)mp->b_prev; 24162 mp->b_next = mp->b_prev = NULL; 24163 squeue_fill(tcp->tcp_connp->conn_sqp, mp, 24164 tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET); 24165 } 24166 24167 *count += nmatch; 24168 if (nmatch >= 500 && err == 0) 24169 goto startover; 24170 return (err); 24171 } 24172 24173 /* 24174 * Abort all connections that matches the attributes specified in acp. 24175 */ 24176 static int 24177 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp) 24178 { 24179 sa_family_t af; 24180 uint32_t ports; 24181 uint16_t *pports; 24182 int err = 0, count = 0; 24183 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 24184 int index = -1; 24185 ushort_t logflags; 24186 24187 af = acp->ac_local.ss_family; 24188 24189 if (af == AF_INET) { 24190 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 24191 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 24192 pports = (uint16_t *)&ports; 24193 pports[1] = TCP_AC_V4LPORT(acp); 24194 pports[0] = TCP_AC_V4RPORT(acp); 24195 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 24196 } 24197 } else { 24198 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 24199 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 24200 pports = (uint16_t *)&ports; 24201 pports[1] = TCP_AC_V6LPORT(acp); 24202 pports[0] = TCP_AC_V6RPORT(acp); 24203 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 24204 } 24205 } 24206 24207 /* 24208 * For cases where remote addr, local port, and remote port are non- 24209 * wildcards, tcp_ioctl_abort_bucket will only be called once. 24210 */ 24211 if (index != -1) { 24212 err = tcp_ioctl_abort_bucket(acp, index, 24213 &count, exact); 24214 } else { 24215 /* 24216 * loop through all entries for wildcard case 24217 */ 24218 for (index = 0; index < ipcl_conn_fanout_size; index++) { 24219 err = tcp_ioctl_abort_bucket(acp, index, 24220 &count, exact); 24221 if (err != 0) 24222 break; 24223 } 24224 } 24225 24226 logflags = SL_TRACE | SL_NOTE; 24227 /* 24228 * Don't print this message to the console if the operation was done 24229 * to a non-global zone. 24230 */ 24231 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24232 logflags |= SL_CONSOLE; 24233 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 24234 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 24235 if (err == 0 && count == 0) 24236 err = ENOENT; 24237 return (err); 24238 } 24239 24240 /* 24241 * Process the TCP_IOC_ABORT_CONN ioctl request. 24242 */ 24243 static void 24244 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 24245 { 24246 int err; 24247 IOCP iocp; 24248 MBLKP mp1; 24249 sa_family_t laf, raf; 24250 tcp_ioc_abort_conn_t *acp; 24251 zone_t *zptr; 24252 zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; 24253 24254 iocp = (IOCP)mp->b_rptr; 24255 24256 if ((mp1 = mp->b_cont) == NULL || 24257 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 24258 err = EINVAL; 24259 goto out; 24260 } 24261 24262 /* check permissions */ 24263 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 24264 err = EPERM; 24265 goto out; 24266 } 24267 24268 if (mp1->b_cont != NULL) { 24269 freemsg(mp1->b_cont); 24270 mp1->b_cont = NULL; 24271 } 24272 24273 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 24274 laf = acp->ac_local.ss_family; 24275 raf = acp->ac_remote.ss_family; 24276 24277 /* check that a zone with the supplied zoneid exists */ 24278 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 24279 zptr = zone_find_by_id(zoneid); 24280 if (zptr != NULL) { 24281 zone_rele(zptr); 24282 } else { 24283 err = EINVAL; 24284 goto out; 24285 } 24286 } 24287 24288 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 24289 acp->ac_start > acp->ac_end || laf != raf || 24290 (laf != AF_INET && laf != AF_INET6)) { 24291 err = EINVAL; 24292 goto out; 24293 } 24294 24295 tcp_ioctl_abort_dump(acp); 24296 err = tcp_ioctl_abort(acp); 24297 24298 out: 24299 if (mp1 != NULL) { 24300 freemsg(mp1); 24301 mp->b_cont = NULL; 24302 } 24303 24304 if (err != 0) 24305 miocnak(q, mp, 0, err); 24306 else 24307 miocack(q, mp, 0, 0); 24308 } 24309 24310 /* 24311 * tcp_time_wait_processing() handles processing of incoming packets when 24312 * the tcp is in the TIME_WAIT state. 24313 * A TIME_WAIT tcp that has an associated open TCP stream is never put 24314 * on the time wait list. 24315 */ 24316 void 24317 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 24318 uint32_t seg_ack, int seg_len, tcph_t *tcph) 24319 { 24320 int32_t bytes_acked; 24321 int32_t gap; 24322 int32_t rgap; 24323 tcp_opt_t tcpopt; 24324 uint_t flags; 24325 uint32_t new_swnd = 0; 24326 conn_t *connp; 24327 24328 BUMP_LOCAL(tcp->tcp_ibsegs); 24329 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 24330 24331 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 24332 new_swnd = BE16_TO_U16(tcph->th_win) << 24333 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 24334 if (tcp->tcp_snd_ts_ok) { 24335 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 24336 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24337 tcp->tcp_rnxt, TH_ACK); 24338 goto done; 24339 } 24340 } 24341 gap = seg_seq - tcp->tcp_rnxt; 24342 rgap = tcp->tcp_rwnd - (gap + seg_len); 24343 if (gap < 0) { 24344 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 24345 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, 24346 (seg_len > -gap ? -gap : seg_len)); 24347 seg_len += gap; 24348 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 24349 if (flags & TH_RST) { 24350 goto done; 24351 } 24352 if ((flags & TH_FIN) && seg_len == -1) { 24353 /* 24354 * When TCP receives a duplicate FIN in 24355 * TIME_WAIT state, restart the 2 MSL timer. 24356 * See page 73 in RFC 793. Make sure this TCP 24357 * is already on the TIME_WAIT list. If not, 24358 * just restart the timer. 24359 */ 24360 if (TCP_IS_DETACHED(tcp)) { 24361 tcp_time_wait_remove(tcp, NULL); 24362 tcp_time_wait_append(tcp); 24363 TCP_DBGSTAT(tcp_rput_time_wait); 24364 } else { 24365 ASSERT(tcp != NULL); 24366 TCP_TIMER_RESTART(tcp, 24367 tcp_time_wait_interval); 24368 } 24369 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24370 tcp->tcp_rnxt, TH_ACK); 24371 goto done; 24372 } 24373 flags |= TH_ACK_NEEDED; 24374 seg_len = 0; 24375 goto process_ack; 24376 } 24377 24378 /* Fix seg_seq, and chew the gap off the front. */ 24379 seg_seq = tcp->tcp_rnxt; 24380 } 24381 24382 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 24383 /* 24384 * Make sure that when we accept the connection, pick 24385 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 24386 * old connection. 24387 * 24388 * The next ISS generated is equal to tcp_iss_incr_extra 24389 * + ISS_INCR/2 + other components depending on the 24390 * value of tcp_strong_iss. We pre-calculate the new 24391 * ISS here and compare with tcp_snxt to determine if 24392 * we need to make adjustment to tcp_iss_incr_extra. 24393 * 24394 * The above calculation is ugly and is a 24395 * waste of CPU cycles... 24396 */ 24397 uint32_t new_iss = tcp_iss_incr_extra; 24398 int32_t adj; 24399 24400 switch (tcp_strong_iss) { 24401 case 2: { 24402 /* Add time and MD5 components. */ 24403 uint32_t answer[4]; 24404 struct { 24405 uint32_t ports; 24406 in6_addr_t src; 24407 in6_addr_t dst; 24408 } arg; 24409 MD5_CTX context; 24410 24411 mutex_enter(&tcp_iss_key_lock); 24412 context = tcp_iss_key; 24413 mutex_exit(&tcp_iss_key_lock); 24414 arg.ports = tcp->tcp_ports; 24415 /* We use MAPPED addresses in tcp_iss_init */ 24416 arg.src = tcp->tcp_ip_src_v6; 24417 if (tcp->tcp_ipversion == IPV4_VERSION) { 24418 IN6_IPADDR_TO_V4MAPPED( 24419 tcp->tcp_ipha->ipha_dst, 24420 &arg.dst); 24421 } else { 24422 arg.dst = 24423 tcp->tcp_ip6h->ip6_dst; 24424 } 24425 MD5Update(&context, (uchar_t *)&arg, 24426 sizeof (arg)); 24427 MD5Final((uchar_t *)answer, &context); 24428 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 24429 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 24430 break; 24431 } 24432 case 1: 24433 /* Add time component and min random (i.e. 1). */ 24434 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 24435 break; 24436 default: 24437 /* Add only time component. */ 24438 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24439 break; 24440 } 24441 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 24442 /* 24443 * New ISS not guaranteed to be ISS_INCR/2 24444 * ahead of the current tcp_snxt, so add the 24445 * difference to tcp_iss_incr_extra. 24446 */ 24447 tcp_iss_incr_extra += adj; 24448 } 24449 /* 24450 * If tcp_clean_death() can not perform the task now, 24451 * drop the SYN packet and let the other side re-xmit. 24452 * Otherwise pass the SYN packet back in, since the 24453 * old tcp state has been cleaned up or freed. 24454 */ 24455 if (tcp_clean_death(tcp, 0, 27) == -1) 24456 goto done; 24457 /* 24458 * We will come back to tcp_rput_data 24459 * on the global queue. Packets destined 24460 * for the global queue will be checked 24461 * with global policy. But the policy for 24462 * this packet has already been checked as 24463 * this was destined for the detached 24464 * connection. We need to bypass policy 24465 * check this time by attaching a dummy 24466 * ipsec_in with ipsec_in_dont_check set. 24467 */ 24468 if ((connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid)) != 24469 NULL) { 24470 TCP_STAT(tcp_time_wait_syn_success); 24471 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 24472 return; 24473 } 24474 goto done; 24475 } 24476 24477 /* 24478 * rgap is the amount of stuff received out of window. A negative 24479 * value is the amount out of window. 24480 */ 24481 if (rgap < 0) { 24482 BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); 24483 UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); 24484 /* Fix seg_len and make sure there is something left. */ 24485 seg_len += rgap; 24486 if (seg_len <= 0) { 24487 if (flags & TH_RST) { 24488 goto done; 24489 } 24490 flags |= TH_ACK_NEEDED; 24491 seg_len = 0; 24492 goto process_ack; 24493 } 24494 } 24495 /* 24496 * Check whether we can update tcp_ts_recent. This test is 24497 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 24498 * Extensions for High Performance: An Update", Internet Draft. 24499 */ 24500 if (tcp->tcp_snd_ts_ok && 24501 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 24502 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 24503 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 24504 tcp->tcp_last_rcv_lbolt = lbolt64; 24505 } 24506 24507 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 24508 /* Always ack out of order packets */ 24509 flags |= TH_ACK_NEEDED; 24510 seg_len = 0; 24511 } else if (seg_len > 0) { 24512 BUMP_MIB(&tcp_mib, tcpInClosed); 24513 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 24514 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); 24515 } 24516 if (flags & TH_RST) { 24517 (void) tcp_clean_death(tcp, 0, 28); 24518 goto done; 24519 } 24520 if (flags & TH_SYN) { 24521 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 24522 TH_RST|TH_ACK); 24523 /* 24524 * Do not delete the TCP structure if it is in 24525 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 24526 */ 24527 goto done; 24528 } 24529 process_ack: 24530 if (flags & TH_ACK) { 24531 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 24532 if (bytes_acked <= 0) { 24533 if (bytes_acked == 0 && seg_len == 0 && 24534 new_swnd == tcp->tcp_swnd) 24535 BUMP_MIB(&tcp_mib, tcpInDupAck); 24536 } else { 24537 /* Acks something not sent */ 24538 flags |= TH_ACK_NEEDED; 24539 } 24540 } 24541 if (flags & TH_ACK_NEEDED) { 24542 /* 24543 * Time to send an ack for some reason. 24544 */ 24545 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24546 tcp->tcp_rnxt, TH_ACK); 24547 } 24548 done: 24549 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 24550 DB_CKSUMSTART(mp) = 0; 24551 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 24552 TCP_STAT(tcp_time_wait_syn_fail); 24553 } 24554 freemsg(mp); 24555 } 24556 24557 /* 24558 * Allocate a T_SVR4_OPTMGMT_REQ. 24559 * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so 24560 * that tcp_rput_other can drop the acks. 24561 */ 24562 static mblk_t * 24563 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen) 24564 { 24565 mblk_t *mp; 24566 struct T_optmgmt_req *tor; 24567 struct opthdr *oh; 24568 uint_t size; 24569 char *optptr; 24570 24571 size = sizeof (*tor) + sizeof (*oh) + optlen; 24572 mp = allocb(size, BPRI_MED); 24573 if (mp == NULL) 24574 return (NULL); 24575 24576 mp->b_wptr += size; 24577 mp->b_datap->db_type = M_PROTO; 24578 tor = (struct T_optmgmt_req *)mp->b_rptr; 24579 tor->PRIM_type = T_SVR4_OPTMGMT_REQ; 24580 tor->MGMT_flags = T_NEGOTIATE; 24581 tor->OPT_length = sizeof (*oh) + optlen; 24582 tor->OPT_offset = (t_scalar_t)sizeof (*tor); 24583 24584 oh = (struct opthdr *)&tor[1]; 24585 oh->level = level; 24586 oh->name = cmd; 24587 oh->len = optlen; 24588 if (optlen != 0) { 24589 optptr = (char *)&oh[1]; 24590 bcopy(opt, optptr, optlen); 24591 } 24592 return (mp); 24593 } 24594 24595 /* 24596 * TCP Timers Implementation. 24597 */ 24598 timeout_id_t 24599 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 24600 { 24601 mblk_t *mp; 24602 tcp_timer_t *tcpt; 24603 tcp_t *tcp = connp->conn_tcp; 24604 24605 ASSERT(connp->conn_sqp != NULL); 24606 24607 TCP_DBGSTAT(tcp_timeout_calls); 24608 24609 if (tcp->tcp_timercache == NULL) { 24610 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 24611 } else { 24612 TCP_DBGSTAT(tcp_timeout_cached_alloc); 24613 mp = tcp->tcp_timercache; 24614 tcp->tcp_timercache = mp->b_next; 24615 mp->b_next = NULL; 24616 ASSERT(mp->b_wptr == NULL); 24617 } 24618 24619 CONN_INC_REF(connp); 24620 tcpt = (tcp_timer_t *)mp->b_rptr; 24621 tcpt->connp = connp; 24622 tcpt->tcpt_proc = f; 24623 tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim); 24624 return ((timeout_id_t)mp); 24625 } 24626 24627 static void 24628 tcp_timer_callback(void *arg) 24629 { 24630 mblk_t *mp = (mblk_t *)arg; 24631 tcp_timer_t *tcpt; 24632 conn_t *connp; 24633 24634 tcpt = (tcp_timer_t *)mp->b_rptr; 24635 connp = tcpt->connp; 24636 squeue_fill(connp->conn_sqp, mp, 24637 tcp_timer_handler, connp, SQTAG_TCP_TIMER); 24638 } 24639 24640 static void 24641 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 24642 { 24643 tcp_timer_t *tcpt; 24644 conn_t *connp = (conn_t *)arg; 24645 tcp_t *tcp = connp->conn_tcp; 24646 24647 tcpt = (tcp_timer_t *)mp->b_rptr; 24648 ASSERT(connp == tcpt->connp); 24649 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 24650 24651 /* 24652 * If the TCP has reached the closed state, don't proceed any 24653 * further. This TCP logically does not exist on the system. 24654 * tcpt_proc could for example access queues, that have already 24655 * been qprocoff'ed off. Also see comments at the start of tcp_input 24656 */ 24657 if (tcp->tcp_state != TCPS_CLOSED) { 24658 (*tcpt->tcpt_proc)(connp); 24659 } else { 24660 tcp->tcp_timer_tid = 0; 24661 } 24662 tcp_timer_free(connp->conn_tcp, mp); 24663 } 24664 24665 /* 24666 * There is potential race with untimeout and the handler firing at the same 24667 * time. The mblock may be freed by the handler while we are trying to use 24668 * it. But since both should execute on the same squeue, this race should not 24669 * occur. 24670 */ 24671 clock_t 24672 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 24673 { 24674 mblk_t *mp = (mblk_t *)id; 24675 tcp_timer_t *tcpt; 24676 clock_t delta; 24677 24678 TCP_DBGSTAT(tcp_timeout_cancel_reqs); 24679 24680 if (mp == NULL) 24681 return (-1); 24682 24683 tcpt = (tcp_timer_t *)mp->b_rptr; 24684 ASSERT(tcpt->connp == connp); 24685 24686 delta = untimeout(tcpt->tcpt_tid); 24687 24688 if (delta >= 0) { 24689 TCP_DBGSTAT(tcp_timeout_canceled); 24690 tcp_timer_free(connp->conn_tcp, mp); 24691 CONN_DEC_REF(connp); 24692 } 24693 24694 return (delta); 24695 } 24696 24697 /* 24698 * Allocate space for the timer event. The allocation looks like mblk, but it is 24699 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 24700 * 24701 * Dealing with failures: If we can't allocate from the timer cache we try 24702 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 24703 * points to b_rptr. 24704 * If we can't allocate anything using allocb_tryhard(), we perform a last 24705 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 24706 * save the actual allocation size in b_datap. 24707 */ 24708 mblk_t * 24709 tcp_timermp_alloc(int kmflags) 24710 { 24711 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 24712 kmflags & ~KM_PANIC); 24713 24714 if (mp != NULL) { 24715 mp->b_next = mp->b_prev = NULL; 24716 mp->b_rptr = (uchar_t *)(&mp[1]); 24717 mp->b_wptr = NULL; 24718 mp->b_datap = NULL; 24719 mp->b_queue = NULL; 24720 } else if (kmflags & KM_PANIC) { 24721 /* 24722 * Failed to allocate memory for the timer. Try allocating from 24723 * dblock caches. 24724 */ 24725 TCP_STAT(tcp_timermp_allocfail); 24726 mp = allocb_tryhard(sizeof (tcp_timer_t)); 24727 if (mp == NULL) { 24728 size_t size = 0; 24729 /* 24730 * Memory is really low. Try tryhard allocation. 24731 */ 24732 TCP_STAT(tcp_timermp_allocdblfail); 24733 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 24734 sizeof (tcp_timer_t), &size, kmflags); 24735 mp->b_rptr = (uchar_t *)(&mp[1]); 24736 mp->b_next = mp->b_prev = NULL; 24737 mp->b_wptr = (uchar_t *)-1; 24738 mp->b_datap = (dblk_t *)size; 24739 mp->b_queue = NULL; 24740 } 24741 ASSERT(mp->b_wptr != NULL); 24742 } 24743 TCP_DBGSTAT(tcp_timermp_alloced); 24744 24745 return (mp); 24746 } 24747 24748 /* 24749 * Free per-tcp timer cache. 24750 * It can only contain entries from tcp_timercache. 24751 */ 24752 void 24753 tcp_timermp_free(tcp_t *tcp) 24754 { 24755 mblk_t *mp; 24756 24757 while ((mp = tcp->tcp_timercache) != NULL) { 24758 ASSERT(mp->b_wptr == NULL); 24759 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 24760 kmem_cache_free(tcp_timercache, mp); 24761 } 24762 } 24763 24764 /* 24765 * Free timer event. Put it on the per-tcp timer cache if there is not too many 24766 * events there already (currently at most two events are cached). 24767 * If the event is not allocated from the timer cache, free it right away. 24768 */ 24769 static void 24770 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 24771 { 24772 mblk_t *mp1 = tcp->tcp_timercache; 24773 24774 if (mp->b_wptr != NULL) { 24775 /* 24776 * This allocation is not from a timer cache, free it right 24777 * away. 24778 */ 24779 if (mp->b_wptr != (uchar_t *)-1) 24780 freeb(mp); 24781 else 24782 kmem_free(mp, (size_t)mp->b_datap); 24783 } else if (mp1 == NULL || mp1->b_next == NULL) { 24784 /* Cache this timer block for future allocations */ 24785 mp->b_rptr = (uchar_t *)(&mp[1]); 24786 mp->b_next = mp1; 24787 tcp->tcp_timercache = mp; 24788 } else { 24789 kmem_cache_free(tcp_timercache, mp); 24790 TCP_DBGSTAT(tcp_timermp_freed); 24791 } 24792 } 24793 24794 /* 24795 * End of TCP Timers implementation. 24796 */ 24797 24798 /* 24799 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 24800 * on the specified backing STREAMS q. Note, the caller may make the 24801 * decision to call based on the tcp_t.tcp_flow_stopped value which 24802 * when check outside the q's lock is only an advisory check ... 24803 */ 24804 24805 void 24806 tcp_setqfull(tcp_t *tcp) 24807 { 24808 queue_t *q = tcp->tcp_wq; 24809 24810 if (!(q->q_flag & QFULL)) { 24811 mutex_enter(QLOCK(q)); 24812 if (!(q->q_flag & QFULL)) { 24813 /* still need to set QFULL */ 24814 q->q_flag |= QFULL; 24815 tcp->tcp_flow_stopped = B_TRUE; 24816 mutex_exit(QLOCK(q)); 24817 TCP_STAT(tcp_flwctl_on); 24818 } else { 24819 mutex_exit(QLOCK(q)); 24820 } 24821 } 24822 } 24823 24824 void 24825 tcp_clrqfull(tcp_t *tcp) 24826 { 24827 queue_t *q = tcp->tcp_wq; 24828 24829 if (q->q_flag & QFULL) { 24830 mutex_enter(QLOCK(q)); 24831 if (q->q_flag & QFULL) { 24832 q->q_flag &= ~QFULL; 24833 tcp->tcp_flow_stopped = B_FALSE; 24834 mutex_exit(QLOCK(q)); 24835 if (q->q_flag & QWANTW) 24836 qbackenable(q, 0); 24837 } else { 24838 mutex_exit(QLOCK(q)); 24839 } 24840 } 24841 } 24842 24843 /* 24844 * TCP Kstats implementation 24845 */ 24846 static void 24847 tcp_kstat_init(void) 24848 { 24849 tcp_named_kstat_t template = { 24850 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 24851 { "rtoMin", KSTAT_DATA_INT32, 0 }, 24852 { "rtoMax", KSTAT_DATA_INT32, 0 }, 24853 { "maxConn", KSTAT_DATA_INT32, 0 }, 24854 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 24855 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 24856 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 24857 { "estabResets", KSTAT_DATA_UINT32, 0 }, 24858 { "currEstab", KSTAT_DATA_UINT32, 0 }, 24859 { "inSegs", KSTAT_DATA_UINT32, 0 }, 24860 { "outSegs", KSTAT_DATA_UINT32, 0 }, 24861 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 24862 { "connTableSize", KSTAT_DATA_INT32, 0 }, 24863 { "outRsts", KSTAT_DATA_UINT32, 0 }, 24864 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 24865 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 24866 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 24867 { "outAck", KSTAT_DATA_UINT32, 0 }, 24868 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 24869 { "outUrg", KSTAT_DATA_UINT32, 0 }, 24870 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 24871 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 24872 { "outControl", KSTAT_DATA_UINT32, 0 }, 24873 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 24874 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 24875 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 24876 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 24877 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 24878 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 24879 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 24880 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 24881 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 24882 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 24883 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 24884 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 24885 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 24886 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 24887 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 24888 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 24889 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 24890 { "inClosed", KSTAT_DATA_UINT32, 0 }, 24891 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 24892 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 24893 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 24894 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 24895 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 24896 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 24897 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 24898 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 24899 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 24900 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 24901 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 24902 { "connTableSize6", KSTAT_DATA_INT32, 0 } 24903 }; 24904 24905 tcp_mibkp = kstat_create(TCP_MOD_NAME, 0, TCP_MOD_NAME, 24906 "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0); 24907 24908 if (tcp_mibkp == NULL) 24909 return; 24910 24911 template.rtoAlgorithm.value.ui32 = 4; 24912 template.rtoMin.value.ui32 = tcp_rexmit_interval_min; 24913 template.rtoMax.value.ui32 = tcp_rexmit_interval_max; 24914 template.maxConn.value.i32 = -1; 24915 24916 bcopy(&template, tcp_mibkp->ks_data, sizeof (template)); 24917 24918 tcp_mibkp->ks_update = tcp_kstat_update; 24919 24920 kstat_install(tcp_mibkp); 24921 } 24922 24923 static void 24924 tcp_kstat_fini(void) 24925 { 24926 24927 if (tcp_mibkp != NULL) { 24928 kstat_delete(tcp_mibkp); 24929 tcp_mibkp = NULL; 24930 } 24931 } 24932 24933 static int 24934 tcp_kstat_update(kstat_t *kp, int rw) 24935 { 24936 tcp_named_kstat_t *tcpkp; 24937 tcp_t *tcp; 24938 connf_t *connfp; 24939 conn_t *connp; 24940 int i; 24941 24942 if (!kp || !kp->ks_data) 24943 return (EIO); 24944 24945 if (rw == KSTAT_WRITE) 24946 return (EACCES); 24947 24948 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 24949 24950 tcpkp->currEstab.value.ui32 = 0; 24951 24952 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 24953 connfp = &ipcl_globalhash_fanout[i]; 24954 connp = NULL; 24955 while ((connp = 24956 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 24957 tcp = connp->conn_tcp; 24958 switch (tcp_snmp_state(tcp)) { 24959 case MIB2_TCP_established: 24960 case MIB2_TCP_closeWait: 24961 tcpkp->currEstab.value.ui32++; 24962 break; 24963 } 24964 } 24965 } 24966 24967 tcpkp->activeOpens.value.ui32 = tcp_mib.tcpActiveOpens; 24968 tcpkp->passiveOpens.value.ui32 = tcp_mib.tcpPassiveOpens; 24969 tcpkp->attemptFails.value.ui32 = tcp_mib.tcpAttemptFails; 24970 tcpkp->estabResets.value.ui32 = tcp_mib.tcpEstabResets; 24971 tcpkp->inSegs.value.ui32 = tcp_mib.tcpInSegs; 24972 tcpkp->outSegs.value.ui32 = tcp_mib.tcpOutSegs; 24973 tcpkp->retransSegs.value.ui32 = tcp_mib.tcpRetransSegs; 24974 tcpkp->connTableSize.value.i32 = tcp_mib.tcpConnTableSize; 24975 tcpkp->outRsts.value.ui32 = tcp_mib.tcpOutRsts; 24976 tcpkp->outDataSegs.value.ui32 = tcp_mib.tcpOutDataSegs; 24977 tcpkp->outDataBytes.value.ui32 = tcp_mib.tcpOutDataBytes; 24978 tcpkp->retransBytes.value.ui32 = tcp_mib.tcpRetransBytes; 24979 tcpkp->outAck.value.ui32 = tcp_mib.tcpOutAck; 24980 tcpkp->outAckDelayed.value.ui32 = tcp_mib.tcpOutAckDelayed; 24981 tcpkp->outUrg.value.ui32 = tcp_mib.tcpOutUrg; 24982 tcpkp->outWinUpdate.value.ui32 = tcp_mib.tcpOutWinUpdate; 24983 tcpkp->outWinProbe.value.ui32 = tcp_mib.tcpOutWinProbe; 24984 tcpkp->outControl.value.ui32 = tcp_mib.tcpOutControl; 24985 tcpkp->outFastRetrans.value.ui32 = tcp_mib.tcpOutFastRetrans; 24986 tcpkp->inAckSegs.value.ui32 = tcp_mib.tcpInAckSegs; 24987 tcpkp->inAckBytes.value.ui32 = tcp_mib.tcpInAckBytes; 24988 tcpkp->inDupAck.value.ui32 = tcp_mib.tcpInDupAck; 24989 tcpkp->inAckUnsent.value.ui32 = tcp_mib.tcpInAckUnsent; 24990 tcpkp->inDataInorderSegs.value.ui32 = tcp_mib.tcpInDataInorderSegs; 24991 tcpkp->inDataInorderBytes.value.ui32 = tcp_mib.tcpInDataInorderBytes; 24992 tcpkp->inDataUnorderSegs.value.ui32 = tcp_mib.tcpInDataUnorderSegs; 24993 tcpkp->inDataUnorderBytes.value.ui32 = tcp_mib.tcpInDataUnorderBytes; 24994 tcpkp->inDataDupSegs.value.ui32 = tcp_mib.tcpInDataDupSegs; 24995 tcpkp->inDataDupBytes.value.ui32 = tcp_mib.tcpInDataDupBytes; 24996 tcpkp->inDataPartDupSegs.value.ui32 = tcp_mib.tcpInDataPartDupSegs; 24997 tcpkp->inDataPartDupBytes.value.ui32 = tcp_mib.tcpInDataPartDupBytes; 24998 tcpkp->inDataPastWinSegs.value.ui32 = tcp_mib.tcpInDataPastWinSegs; 24999 tcpkp->inDataPastWinBytes.value.ui32 = tcp_mib.tcpInDataPastWinBytes; 25000 tcpkp->inWinProbe.value.ui32 = tcp_mib.tcpInWinProbe; 25001 tcpkp->inWinUpdate.value.ui32 = tcp_mib.tcpInWinUpdate; 25002 tcpkp->inClosed.value.ui32 = tcp_mib.tcpInClosed; 25003 tcpkp->rttNoUpdate.value.ui32 = tcp_mib.tcpRttNoUpdate; 25004 tcpkp->rttUpdate.value.ui32 = tcp_mib.tcpRttUpdate; 25005 tcpkp->timRetrans.value.ui32 = tcp_mib.tcpTimRetrans; 25006 tcpkp->timRetransDrop.value.ui32 = tcp_mib.tcpTimRetransDrop; 25007 tcpkp->timKeepalive.value.ui32 = tcp_mib.tcpTimKeepalive; 25008 tcpkp->timKeepaliveProbe.value.ui32 = tcp_mib.tcpTimKeepaliveProbe; 25009 tcpkp->timKeepaliveDrop.value.ui32 = tcp_mib.tcpTimKeepaliveDrop; 25010 tcpkp->listenDrop.value.ui32 = tcp_mib.tcpListenDrop; 25011 tcpkp->listenDropQ0.value.ui32 = tcp_mib.tcpListenDropQ0; 25012 tcpkp->halfOpenDrop.value.ui32 = tcp_mib.tcpHalfOpenDrop; 25013 tcpkp->outSackRetransSegs.value.ui32 = tcp_mib.tcpOutSackRetransSegs; 25014 tcpkp->connTableSize6.value.i32 = tcp_mib.tcp6ConnTableSize; 25015 25016 return (0); 25017 } 25018 25019 void 25020 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 25021 { 25022 uint16_t hdr_len; 25023 ipha_t *ipha; 25024 uint8_t *nexthdrp; 25025 tcph_t *tcph; 25026 25027 /* Already has an eager */ 25028 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25029 TCP_STAT(tcp_reinput_syn); 25030 squeue_enter(connp->conn_sqp, mp, connp->conn_recv, 25031 connp, SQTAG_TCP_REINPUT_EAGER); 25032 return; 25033 } 25034 25035 switch (IPH_HDR_VERSION(mp->b_rptr)) { 25036 case IPV4_VERSION: 25037 ipha = (ipha_t *)mp->b_rptr; 25038 hdr_len = IPH_HDR_LENGTH(ipha); 25039 break; 25040 case IPV6_VERSION: 25041 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 25042 &hdr_len, &nexthdrp)) { 25043 CONN_DEC_REF(connp); 25044 freemsg(mp); 25045 return; 25046 } 25047 break; 25048 } 25049 25050 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 25051 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 25052 mp->b_datap->db_struioflag |= STRUIO_EAGER; 25053 DB_CKSUMSTART(mp) = (intptr_t)sqp; 25054 } 25055 25056 squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp, 25057 SQTAG_TCP_REINPUT); 25058 } 25059 25060 static squeue_func_t 25061 tcp_squeue_switch(int val) 25062 { 25063 squeue_func_t rval = squeue_fill; 25064 25065 switch (val) { 25066 case 1: 25067 rval = squeue_enter_nodrain; 25068 break; 25069 case 2: 25070 rval = squeue_enter; 25071 break; 25072 default: 25073 break; 25074 } 25075 return (rval); 25076 } 25077 25078 static void 25079 tcp_squeue_add(squeue_t *sqp) 25080 { 25081 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 25082 sizeof (tcp_squeue_priv_t), KM_SLEEP); 25083 25084 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 25085 tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector, 25086 sqp, TCP_TIME_WAIT_DELAY); 25087 if (tcp_free_list_max_cnt == 0) { 25088 int tcp_ncpus = ((boot_max_ncpus == -1) ? 25089 max_ncpus : boot_max_ncpus); 25090 25091 /* 25092 * Limit number of entries to 1% of availble memory / tcp_ncpus 25093 */ 25094 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 25095 (tcp_ncpus * sizeof (tcp_t) * 100); 25096 } 25097 tcp_time_wait->tcp_free_list_cnt = 0; 25098 } 25099