1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 const char tcp_version[] = "%Z%%M% %I% %E% SMI"; 30 31 32 #include <sys/types.h> 33 #include <sys/stream.h> 34 #include <sys/strsun.h> 35 #include <sys/strsubr.h> 36 #include <sys/stropts.h> 37 #include <sys/strlog.h> 38 #include <sys/strsun.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/timod.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/suntpi.h> 45 #include <sys/xti_inet.h> 46 #include <sys/cmn_err.h> 47 #include <sys/debug.h> 48 #include <sys/sdt.h> 49 #include <sys/vtrace.h> 50 #include <sys/kmem.h> 51 #include <sys/ethernet.h> 52 #include <sys/cpuvar.h> 53 #include <sys/dlpi.h> 54 #include <sys/multidata.h> 55 #include <sys/multidata_impl.h> 56 #include <sys/pattr.h> 57 #include <sys/policy.h> 58 #include <sys/priv.h> 59 #include <sys/zone.h> 60 #include <sys/sunldi.h> 61 62 #include <sys/errno.h> 63 #include <sys/signal.h> 64 #include <sys/socket.h> 65 #include <sys/sockio.h> 66 #include <sys/isa_defs.h> 67 #include <sys/md5.h> 68 #include <sys/random.h> 69 #include <netinet/in.h> 70 #include <netinet/tcp.h> 71 #include <netinet/ip6.h> 72 #include <netinet/icmp6.h> 73 #include <net/if.h> 74 #include <net/route.h> 75 #include <inet/ipsec_impl.h> 76 77 #include <inet/common.h> 78 #include <inet/ip.h> 79 #include <inet/ip_impl.h> 80 #include <inet/ip6.h> 81 #include <inet/ip_ndp.h> 82 #include <inet/mi.h> 83 #include <inet/mib2.h> 84 #include <inet/nd.h> 85 #include <inet/optcom.h> 86 #include <inet/snmpcom.h> 87 #include <inet/kstatcom.h> 88 #include <inet/tcp.h> 89 #include <inet/tcp_impl.h> 90 #include <net/pfkeyv2.h> 91 #include <inet/ipsec_info.h> 92 #include <inet/ipdrop.h> 93 #include <inet/tcp_trace.h> 94 95 #include <inet/ipclassifier.h> 96 #include <inet/ip_ire.h> 97 #include <inet/ip_ftable.h> 98 #include <inet/ip_if.h> 99 #include <inet/ipp_common.h> 100 #include <inet/ip_netinfo.h> 101 #include <sys/squeue.h> 102 #include <inet/kssl/ksslapi.h> 103 #include <sys/tsol/label.h> 104 #include <sys/tsol/tnet.h> 105 #include <rpc/pmap_prot.h> 106 107 /* 108 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 109 * 110 * (Read the detailed design doc in PSARC case directory) 111 * 112 * The entire tcp state is contained in tcp_t and conn_t structure 113 * which are allocated in tandem using ipcl_conn_create() and passing 114 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 115 * the references on the tcp_t. The tcp_t structure is never compressed 116 * and packets always land on the correct TCP perimeter from the time 117 * eager is created till the time tcp_t dies (as such the old mentat 118 * TCP global queue is not used for detached state and no IPSEC checking 119 * is required). The global queue is still allocated to send out resets 120 * for connection which have no listeners and IP directly calls 121 * tcp_xmit_listeners_reset() which does any policy check. 122 * 123 * Protection and Synchronisation mechanism: 124 * 125 * The tcp data structure does not use any kind of lock for protecting 126 * its state but instead uses 'squeues' for mutual exclusion from various 127 * read and write side threads. To access a tcp member, the thread should 128 * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or 129 * squeue_fill). Since the squeues allow a direct function call, caller 130 * can pass any tcp function having prototype of edesc_t as argument 131 * (different from traditional STREAMs model where packets come in only 132 * designated entry points). The list of functions that can be directly 133 * called via squeue are listed before the usual function prototype. 134 * 135 * Referencing: 136 * 137 * TCP is MT-Hot and we use a reference based scheme to make sure that the 138 * tcp structure doesn't disappear when its needed. When the application 139 * creates an outgoing connection or accepts an incoming connection, we 140 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 141 * The IP reference is just a symbolic reference since ip_tcpclose() 142 * looks at tcp structure after tcp_close_output() returns which could 143 * have dropped the last TCP reference. So as long as the connection is 144 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 145 * conn_t. The classifier puts its own reference when the connection is 146 * inserted in listen or connected hash. Anytime a thread needs to enter 147 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 148 * on write side or by doing a classify on read side and then puts a 149 * reference on the conn before doing squeue_enter/tryenter/fill. For 150 * read side, the classifier itself puts the reference under fanout lock 151 * to make sure that tcp can't disappear before it gets processed. The 152 * squeue will drop this reference automatically so the called function 153 * doesn't have to do a DEC_REF. 154 * 155 * Opening a new connection: 156 * 157 * The outgoing connection open is pretty simple. tcp_open() does the 158 * work in creating the conn/tcp structure and initializing it. The 159 * squeue assignment is done based on the CPU the application 160 * is running on. So for outbound connections, processing is always done 161 * on application CPU which might be different from the incoming CPU 162 * being interrupted by the NIC. An optimal way would be to figure out 163 * the NIC <-> CPU binding at listen time, and assign the outgoing 164 * connection to the squeue attached to the CPU that will be interrupted 165 * for incoming packets (we know the NIC based on the bind IP address). 166 * This might seem like a problem if more data is going out but the 167 * fact is that in most cases the transmit is ACK driven transmit where 168 * the outgoing data normally sits on TCP's xmit queue waiting to be 169 * transmitted. 170 * 171 * Accepting a connection: 172 * 173 * This is a more interesting case because of various races involved in 174 * establishing a eager in its own perimeter. Read the meta comment on 175 * top of tcp_conn_request(). But briefly, the squeue is picked by 176 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 177 * 178 * Closing a connection: 179 * 180 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 181 * via squeue to do the close and mark the tcp as detached if the connection 182 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 183 * reference but tcp_close() drop IP's reference always. So if tcp was 184 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 185 * and 1 because it is in classifier's connected hash. This is the condition 186 * we use to determine that its OK to clean up the tcp outside of squeue 187 * when time wait expires (check the ref under fanout and conn_lock and 188 * if it is 2, remove it from fanout hash and kill it). 189 * 190 * Although close just drops the necessary references and marks the 191 * tcp_detached state, tcp_close needs to know the tcp_detached has been 192 * set (under squeue) before letting the STREAM go away (because a 193 * inbound packet might attempt to go up the STREAM while the close 194 * has happened and tcp_detached is not set). So a special lock and 195 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 196 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 197 * tcp_detached. 198 * 199 * Special provisions and fast paths: 200 * 201 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 202 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 203 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 204 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 205 * check to send packets directly to tcp_rput_data via squeue. Everyone 206 * else comes through tcp_input() on the read side. 207 * 208 * We also make special provisions for sockfs by marking tcp_issocket 209 * whenever we have only sockfs on top of TCP. This allows us to skip 210 * putting the tcp in acceptor hash since a sockfs listener can never 211 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 212 * since eager has already been allocated and the accept now happens 213 * on acceptor STREAM. There is a big blob of comment on top of 214 * tcp_conn_request explaining the new accept. When socket is POP'd, 215 * sockfs sends us an ioctl to mark the fact and we go back to old 216 * behaviour. Once tcp_issocket is unset, its never set for the 217 * life of that connection. 218 * 219 * IPsec notes : 220 * 221 * Since a packet is always executed on the correct TCP perimeter 222 * all IPsec processing is defered to IP including checking new 223 * connections and setting IPSEC policies for new connection. The 224 * only exception is tcp_xmit_listeners_reset() which is called 225 * directly from IP and needs to policy check to see if TH_RST 226 * can be sent out. 227 * 228 * PFHooks notes : 229 * 230 * For mdt case, one meta buffer contains multiple packets. Mblks for every 231 * packet are assembled and passed to the hooks. When packets are blocked, 232 * or boundary of any packet is changed, the mdt processing is stopped, and 233 * packets of the meta buffer are send to the IP path one by one. 234 */ 235 236 /* 237 * Values for squeue switch: 238 * 1: squeue_enter_nodrain 239 * 2: squeue_enter 240 * 3: squeue_fill 241 */ 242 int tcp_squeue_close = 2; /* Setable in /etc/system */ 243 int tcp_squeue_wput = 2; 244 245 squeue_func_t tcp_squeue_close_proc; 246 squeue_func_t tcp_squeue_wput_proc; 247 248 /* 249 * This controls how tiny a write must be before we try to copy it 250 * into the the mblk on the tail of the transmit queue. Not much 251 * speedup is observed for values larger than sixteen. Zero will 252 * disable the optimisation. 253 */ 254 int tcp_tx_pull_len = 16; 255 256 /* 257 * TCP Statistics. 258 * 259 * How TCP statistics work. 260 * 261 * There are two types of statistics invoked by two macros. 262 * 263 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 264 * supposed to be used in non MT-hot paths of the code. 265 * 266 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 267 * supposed to be used for DEBUG purposes and may be used on a hot path. 268 * 269 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 270 * (use "kstat tcp" to get them). 271 * 272 * There is also additional debugging facility that marks tcp_clean_death() 273 * instances and saves them in tcp_t structure. It is triggered by 274 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 275 * tcp_clean_death() calls that counts the number of times each tag was hit. It 276 * is triggered by TCP_CLD_COUNTERS define. 277 * 278 * How to add new counters. 279 * 280 * 1) Add a field in the tcp_stat structure describing your counter. 281 * 2) Add a line in the template in tcp_kstat2_init() with the name 282 * of the counter. 283 * 284 * IMPORTANT!! - make sure that both are in sync !! 285 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 286 * 287 * Please avoid using private counters which are not kstat-exported. 288 * 289 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 290 * in tcp_t structure. 291 * 292 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 293 */ 294 295 #ifndef TCP_DEBUG_COUNTER 296 #ifdef DEBUG 297 #define TCP_DEBUG_COUNTER 1 298 #else 299 #define TCP_DEBUG_COUNTER 0 300 #endif 301 #endif 302 303 #define TCP_CLD_COUNTERS 0 304 305 #define TCP_TAG_CLEAN_DEATH 1 306 #define TCP_MAX_CLEAN_DEATH_TAG 32 307 308 #ifdef lint 309 static int _lint_dummy_; 310 #endif 311 312 #if TCP_CLD_COUNTERS 313 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 314 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 315 #elif defined(lint) 316 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 317 #else 318 #define TCP_CLD_STAT(x) 319 #endif 320 321 #if TCP_DEBUG_COUNTER 322 #define TCP_DBGSTAT(tcps, x) \ 323 atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) 324 #define TCP_G_DBGSTAT(x) \ 325 atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) 326 #elif defined(lint) 327 #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); 328 #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 329 #else 330 #define TCP_DBGSTAT(tcps, x) 331 #define TCP_G_DBGSTAT(x) 332 #endif 333 334 #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) 335 336 tcp_g_stat_t tcp_g_statistics; 337 kstat_t *tcp_g_kstat; 338 339 /* 340 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 341 * tcp write side. 342 */ 343 #define CALL_IP_WPUT(connp, q, mp) { \ 344 tcp_stack_t *tcps; \ 345 \ 346 tcps = connp->conn_netstack->netstack_tcp; \ 347 ASSERT(((q)->q_flag & QREADR) == 0); \ 348 TCP_DBGSTAT(tcps, tcp_ip_output); \ 349 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 350 } 351 352 /* Macros for timestamp comparisons */ 353 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 354 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 355 356 /* 357 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 358 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 359 * by adding three components: a time component which grows by 1 every 4096 360 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 361 * a per-connection component which grows by 125000 for every new connection; 362 * and an "extra" component that grows by a random amount centered 363 * approximately on 64000. This causes the the ISS generator to cycle every 364 * 4.89 hours if no TCP connections are made, and faster if connections are 365 * made. 366 * 367 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 368 * components: a time component which grows by 250000 every second; and 369 * a per-connection component which grows by 125000 for every new connections. 370 * 371 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 372 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 373 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 374 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 375 * password. 376 */ 377 #define ISS_INCR 250000 378 #define ISS_NSEC_SHT 12 379 380 static sin_t sin_null; /* Zero address for quick clears */ 381 static sin6_t sin6_null; /* Zero address for quick clears */ 382 383 /* 384 * This implementation follows the 4.3BSD interpretation of the urgent 385 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 386 * incompatible changes in protocols like telnet and rlogin. 387 */ 388 #define TCP_OLD_URP_INTERPRETATION 1 389 390 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 391 (TCP_IS_DETACHED(tcp) && \ 392 (!(tcp)->tcp_hard_binding)) 393 394 /* 395 * TCP reassembly macros. We hide starting and ending sequence numbers in 396 * b_next and b_prev of messages on the reassembly queue. The messages are 397 * chained using b_cont. These macros are used in tcp_reass() so we don't 398 * have to see the ugly casts and assignments. 399 */ 400 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 401 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 402 (mblk_t *)(uintptr_t)(u)) 403 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 404 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 405 (mblk_t *)(uintptr_t)(u)) 406 407 /* 408 * Implementation of TCP Timers. 409 * ============================= 410 * 411 * INTERFACE: 412 * 413 * There are two basic functions dealing with tcp timers: 414 * 415 * timeout_id_t tcp_timeout(connp, func, time) 416 * clock_t tcp_timeout_cancel(connp, timeout_id) 417 * TCP_TIMER_RESTART(tcp, intvl) 418 * 419 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 420 * after 'time' ticks passed. The function called by timeout() must adhere to 421 * the same restrictions as a driver soft interrupt handler - it must not sleep 422 * or call other functions that might sleep. The value returned is the opaque 423 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 424 * cancel the request. The call to tcp_timeout() may fail in which case it 425 * returns zero. This is different from the timeout(9F) function which never 426 * fails. 427 * 428 * The call-back function 'func' always receives 'connp' as its single 429 * argument. It is always executed in the squeue corresponding to the tcp 430 * structure. The tcp structure is guaranteed to be present at the time the 431 * call-back is called. 432 * 433 * NOTE: The call-back function 'func' is never called if tcp is in 434 * the TCPS_CLOSED state. 435 * 436 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 437 * request. locks acquired by the call-back routine should not be held across 438 * the call to tcp_timeout_cancel() or a deadlock may result. 439 * 440 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 441 * Otherwise, it returns an integer value greater than or equal to 0. In 442 * particular, if the call-back function is already placed on the squeue, it can 443 * not be canceled. 444 * 445 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 446 * within squeue context corresponding to the tcp instance. Since the 447 * call-back is also called via the same squeue, there are no race 448 * conditions described in untimeout(9F) manual page since all calls are 449 * strictly serialized. 450 * 451 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 452 * stored in tcp_timer_tid and starts a new one using 453 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 454 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 455 * field. 456 * 457 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 458 * call-back may still be called, so it is possible tcp_timer() will be 459 * called several times. This should not be a problem since tcp_timer() 460 * should always check the tcp instance state. 461 * 462 * 463 * IMPLEMENTATION: 464 * 465 * TCP timers are implemented using three-stage process. The call to 466 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 467 * when the timer expires. The tcp_timer_callback() arranges the call of the 468 * tcp_timer_handler() function via squeue corresponding to the tcp 469 * instance. The tcp_timer_handler() calls actual requested timeout call-back 470 * and passes tcp instance as an argument to it. Information is passed between 471 * stages using the tcp_timer_t structure which contains the connp pointer, the 472 * tcp call-back to call and the timeout id returned by the timeout(9F). 473 * 474 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 475 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 476 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 477 * returns the pointer to this mblk. 478 * 479 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 480 * looks like a normal mblk without actual dblk attached to it. 481 * 482 * To optimize performance each tcp instance holds a small cache of timer 483 * mblocks. In the current implementation it caches up to two timer mblocks per 484 * tcp instance. The cache is preserved over tcp frees and is only freed when 485 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 486 * timer processing happens on a corresponding squeue, the cache manipulation 487 * does not require any locks. Experiments show that majority of timer mblocks 488 * allocations are satisfied from the tcp cache and do not involve kmem calls. 489 * 490 * The tcp_timeout() places a refhold on the connp instance which guarantees 491 * that it will be present at the time the call-back function fires. The 492 * tcp_timer_handler() drops the reference after calling the call-back, so the 493 * call-back function does not need to manipulate the references explicitly. 494 */ 495 496 typedef struct tcp_timer_s { 497 conn_t *connp; 498 void (*tcpt_proc)(void *); 499 timeout_id_t tcpt_tid; 500 } tcp_timer_t; 501 502 static kmem_cache_t *tcp_timercache; 503 kmem_cache_t *tcp_sack_info_cache; 504 kmem_cache_t *tcp_iphc_cache; 505 506 /* 507 * For scalability, we must not run a timer for every TCP connection 508 * in TIME_WAIT state. To see why, consider (for time wait interval of 509 * 4 minutes): 510 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 511 * 512 * This list is ordered by time, so you need only delete from the head 513 * until you get to entries which aren't old enough to delete yet. 514 * The list consists of only the detached TIME_WAIT connections. 515 * 516 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 517 * becomes detached TIME_WAIT (either by changing the state and already 518 * being detached or the other way around). This means that the TIME_WAIT 519 * state can be extended (up to doubled) if the connection doesn't become 520 * detached for a long time. 521 * 522 * The list manipulations (including tcp_time_wait_next/prev) 523 * are protected by the tcp_time_wait_lock. The content of the 524 * detached TIME_WAIT connections is protected by the normal perimeters. 525 * 526 * This list is per squeue and squeues are shared across the tcp_stack_t's. 527 * Things on tcp_time_wait_head remain associated with the tcp_stack_t 528 * and conn_netstack. 529 * The tcp_t's that are added to tcp_free_list are disassociated and 530 * have NULL tcp_tcps and conn_netstack pointers. 531 */ 532 typedef struct tcp_squeue_priv_s { 533 kmutex_t tcp_time_wait_lock; 534 timeout_id_t tcp_time_wait_tid; 535 tcp_t *tcp_time_wait_head; 536 tcp_t *tcp_time_wait_tail; 537 tcp_t *tcp_free_list; 538 uint_t tcp_free_list_cnt; 539 } tcp_squeue_priv_t; 540 541 /* 542 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 543 * Running it every 5 seconds seems to give the best results. 544 */ 545 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 546 547 /* 548 * To prevent memory hog, limit the number of entries in tcp_free_list 549 * to 1% of available memory / number of cpus 550 */ 551 uint_t tcp_free_list_max_cnt = 0; 552 553 #define TCP_XMIT_LOWATER 4096 554 #define TCP_XMIT_HIWATER 49152 555 #define TCP_RECV_LOWATER 2048 556 #define TCP_RECV_HIWATER 49152 557 558 /* 559 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 560 */ 561 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 562 563 #define TIDUSZ 4096 /* transport interface data unit size */ 564 565 /* 566 * Bind hash list size and has function. It has to be a power of 2 for 567 * hashing. 568 */ 569 #define TCP_BIND_FANOUT_SIZE 512 570 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 571 /* 572 * Size of listen and acceptor hash list. It has to be a power of 2 for 573 * hashing. 574 */ 575 #define TCP_FANOUT_SIZE 256 576 577 #ifdef _ILP32 578 #define TCP_ACCEPTOR_HASH(accid) \ 579 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 580 #else 581 #define TCP_ACCEPTOR_HASH(accid) \ 582 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 583 #endif /* _ILP32 */ 584 585 #define IP_ADDR_CACHE_SIZE 2048 586 #define IP_ADDR_CACHE_HASH(faddr) \ 587 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 588 589 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */ 590 #define TCP_HSP_HASH_SIZE 256 591 592 #define TCP_HSP_HASH(addr) \ 593 (((addr>>24) ^ (addr >>16) ^ \ 594 (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE) 595 596 /* 597 * TCP options struct returned from tcp_parse_options. 598 */ 599 typedef struct tcp_opt_s { 600 uint32_t tcp_opt_mss; 601 uint32_t tcp_opt_wscale; 602 uint32_t tcp_opt_ts_val; 603 uint32_t tcp_opt_ts_ecr; 604 tcp_t *tcp; 605 } tcp_opt_t; 606 607 /* 608 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 609 */ 610 611 #ifdef _BIG_ENDIAN 612 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 613 (TCPOPT_TSTAMP << 8) | 10) 614 #else 615 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 616 (TCPOPT_NOP << 8) | TCPOPT_NOP) 617 #endif 618 619 /* 620 * Flags returned from tcp_parse_options. 621 */ 622 #define TCP_OPT_MSS_PRESENT 1 623 #define TCP_OPT_WSCALE_PRESENT 2 624 #define TCP_OPT_TSTAMP_PRESENT 4 625 #define TCP_OPT_SACK_OK_PRESENT 8 626 #define TCP_OPT_SACK_PRESENT 16 627 628 /* TCP option length */ 629 #define TCPOPT_NOP_LEN 1 630 #define TCPOPT_MAXSEG_LEN 4 631 #define TCPOPT_WS_LEN 3 632 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 633 #define TCPOPT_TSTAMP_LEN 10 634 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 635 #define TCPOPT_SACK_OK_LEN 2 636 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 637 #define TCPOPT_REAL_SACK_LEN 4 638 #define TCPOPT_MAX_SACK_LEN 36 639 #define TCPOPT_HEADER_LEN 2 640 641 /* TCP cwnd burst factor. */ 642 #define TCP_CWND_INFINITE 65535 643 #define TCP_CWND_SS 3 644 #define TCP_CWND_NORMAL 5 645 646 /* Maximum TCP initial cwin (start/restart). */ 647 #define TCP_MAX_INIT_CWND 8 648 649 /* 650 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 651 * either tcp_slow_start_initial or tcp_slow_start_after idle 652 * depending on the caller. If the upper layer has not used the 653 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 654 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 655 * If the upper layer has changed set the tcp_init_cwnd, just use 656 * it to calculate the tcp_cwnd. 657 */ 658 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 659 { \ 660 if ((tcp)->tcp_init_cwnd == 0) { \ 661 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 662 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 663 } else { \ 664 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 665 } \ 666 tcp->tcp_cwnd_cnt = 0; \ 667 } 668 669 /* TCP Timer control structure */ 670 typedef struct tcpt_s { 671 pfv_t tcpt_pfv; /* The routine we are to call */ 672 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 673 } tcpt_t; 674 675 /* Host Specific Parameter structure */ 676 typedef struct tcp_hsp { 677 struct tcp_hsp *tcp_hsp_next; 678 in6_addr_t tcp_hsp_addr_v6; 679 in6_addr_t tcp_hsp_subnet_v6; 680 uint_t tcp_hsp_vers; /* IPV4_VERSION | IPV6_VERSION */ 681 int32_t tcp_hsp_sendspace; 682 int32_t tcp_hsp_recvspace; 683 int32_t tcp_hsp_tstamp; 684 } tcp_hsp_t; 685 #define tcp_hsp_addr V4_PART_OF_V6(tcp_hsp_addr_v6) 686 #define tcp_hsp_subnet V4_PART_OF_V6(tcp_hsp_subnet_v6) 687 688 /* 689 * Functions called directly via squeue having a prototype of edesc_t. 690 */ 691 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 692 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 693 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 694 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 695 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 696 void tcp_input(void *arg, mblk_t *mp, void *arg2); 697 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 698 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 699 void tcp_output(void *arg, mblk_t *mp, void *arg2); 700 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 701 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 702 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2); 703 704 705 /* Prototype for TCP functions */ 706 static void tcp_random_init(void); 707 int tcp_random(void); 708 static void tcp_accept(tcp_t *tcp, mblk_t *mp); 709 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 710 tcp_t *eager); 711 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 712 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 713 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 714 boolean_t user_specified); 715 static void tcp_closei_local(tcp_t *tcp); 716 static void tcp_close_detached(tcp_t *tcp); 717 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 718 mblk_t *idmp, mblk_t **defermp); 719 static void tcp_connect(tcp_t *tcp, mblk_t *mp); 720 static void tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, 721 in_port_t dstport, uint_t srcid); 722 static void tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 723 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 724 uint32_t scope_id); 725 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 726 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 727 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 728 static char *tcp_display(tcp_t *tcp, char *, char); 729 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 730 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 731 static void tcp_eager_unlink(tcp_t *tcp); 732 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 733 int unixerr); 734 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 735 int tlierr, int unixerr); 736 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 737 cred_t *cr); 738 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 739 char *value, caddr_t cp, cred_t *cr); 740 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 741 char *value, caddr_t cp, cred_t *cr); 742 static int tcp_tpistate(tcp_t *tcp); 743 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 744 int caller_holds_lock); 745 static void tcp_bind_hash_remove(tcp_t *tcp); 746 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); 747 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 748 static void tcp_acceptor_hash_remove(tcp_t *tcp); 749 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 750 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 751 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 752 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 753 void tcp_g_q_setup(tcp_stack_t *); 754 void tcp_g_q_create(tcp_stack_t *); 755 void tcp_g_q_destroy(tcp_stack_t *); 756 static int tcp_header_init_ipv4(tcp_t *tcp); 757 static int tcp_header_init_ipv6(tcp_t *tcp); 758 int tcp_init(tcp_t *tcp, queue_t *q); 759 static int tcp_init_values(tcp_t *tcp); 760 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 761 static mblk_t *tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, 762 t_scalar_t addr_length); 763 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 764 static void tcp_ip_notify(tcp_t *tcp); 765 static mblk_t *tcp_ire_mp(mblk_t *mp); 766 static void tcp_iss_init(tcp_t *tcp); 767 static void tcp_keepalive_killer(void *arg); 768 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 769 static void tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss); 770 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 771 int *do_disconnectp, int *t_errorp, int *sys_errorp); 772 static boolean_t tcp_allow_connopt_set(int level, int name); 773 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 774 int tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 775 int tcp_opt_set(queue_t *q, uint_t optset_context, int level, 776 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 777 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 778 mblk_t *mblk); 779 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 780 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 781 uchar_t *ptr, uint_t len); 782 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 783 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, 784 tcp_stack_t *); 785 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 786 caddr_t cp, cred_t *cr); 787 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 788 caddr_t cp, cred_t *cr); 789 static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); 790 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 791 caddr_t cp, cred_t *cr); 792 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 793 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 794 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 795 static void tcp_reinit(tcp_t *tcp); 796 static void tcp_reinit_values(tcp_t *tcp); 797 static void tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, 798 tcp_t *thisstream, cred_t *cr); 799 800 static uint_t tcp_rcv_drain(queue_t *q, tcp_t *tcp); 801 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 802 static boolean_t tcp_send_rst_chk(tcp_stack_t *); 803 static void tcp_ss_rexmit(tcp_t *tcp); 804 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 805 static void tcp_process_options(tcp_t *, tcph_t *); 806 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 807 static void tcp_rsrv(queue_t *q); 808 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 809 static int tcp_snmp_state(tcp_t *tcp); 810 static int tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 811 cred_t *cr); 812 static int tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 813 cred_t *cr); 814 static int tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 815 cred_t *cr); 816 static int tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 817 cred_t *cr); 818 static int tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 819 cred_t *cr); 820 static int tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, 821 caddr_t cp, cred_t *cr); 822 static int tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, 823 caddr_t cp, cred_t *cr); 824 static int tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, 825 cred_t *cr); 826 static void tcp_timer(void *arg); 827 static void tcp_timer_callback(void *); 828 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 829 boolean_t random); 830 static in_port_t tcp_get_next_priv_port(const tcp_t *); 831 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 832 void tcp_wput_accept(queue_t *q, mblk_t *mp); 833 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 834 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 835 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 836 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 837 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 838 const int num_sack_blk, int *usable, uint_t *snxt, 839 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 840 const int mdt_thres); 841 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 842 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 843 const int num_sack_blk, int *usable, uint_t *snxt, 844 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 845 const int mdt_thres); 846 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 847 int num_sack_blk); 848 static void tcp_wsrv(queue_t *q); 849 static int tcp_xmit_end(tcp_t *tcp); 850 static void tcp_ack_timer(void *arg); 851 static mblk_t *tcp_ack_mp(tcp_t *tcp); 852 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 853 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len, 854 zoneid_t zoneid, tcp_stack_t *, conn_t *connp); 855 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 856 uint32_t ack, int ctl); 857 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *); 858 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr, tcp_stack_t *); 859 static int setmaxps(queue_t *q, int maxpsz); 860 static void tcp_set_rto(tcp_t *, time_t); 861 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 862 boolean_t, boolean_t); 863 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 864 boolean_t ipsec_mctl); 865 static mblk_t *tcp_setsockopt_mp(int level, int cmd, 866 char *opt, int optlen); 867 static int tcp_build_hdrs(queue_t *, tcp_t *); 868 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 869 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 870 tcph_t *tcph); 871 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 872 boolean_t tcp_reserved_port_add(int, in_port_t *, in_port_t *); 873 boolean_t tcp_reserved_port_del(in_port_t, in_port_t); 874 boolean_t tcp_reserved_port_check(in_port_t, tcp_stack_t *); 875 static tcp_t *tcp_alloc_temp_tcp(in_port_t, tcp_stack_t *); 876 static int tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *); 877 static mblk_t *tcp_mdt_info_mp(mblk_t *); 878 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 879 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 880 const boolean_t, const uint32_t, const uint32_t, 881 const uint32_t, const uint32_t, tcp_stack_t *); 882 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 883 const uint_t, const uint_t, boolean_t *); 884 static mblk_t *tcp_lso_info_mp(mblk_t *); 885 static void tcp_lso_update(tcp_t *, ill_lso_capab_t *); 886 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 887 extern mblk_t *tcp_timermp_alloc(int); 888 extern void tcp_timermp_free(tcp_t *); 889 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 890 static void tcp_stop_lingering(tcp_t *tcp); 891 static void tcp_close_linger_timeout(void *arg); 892 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 893 static void tcp_stack_shutdown(netstackid_t stackid, void *arg); 894 static void tcp_stack_fini(netstackid_t stackid, void *arg); 895 static void *tcp_g_kstat_init(tcp_g_stat_t *); 896 static void tcp_g_kstat_fini(kstat_t *); 897 static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); 898 static void tcp_kstat_fini(netstackid_t, kstat_t *); 899 static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); 900 static void tcp_kstat2_fini(netstackid_t, kstat_t *); 901 static int tcp_kstat_update(kstat_t *kp, int rw); 902 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 903 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 904 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 905 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 906 tcph_t *tcph, mblk_t *idmp); 907 static squeue_func_t tcp_squeue_switch(int); 908 909 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 910 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 911 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 912 static int tcp_close(queue_t *, int); 913 static int tcpclose_accept(queue_t *); 914 915 static void tcp_squeue_add(squeue_t *); 916 static boolean_t tcp_zcopy_check(tcp_t *); 917 static void tcp_zcopy_notify(tcp_t *); 918 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 919 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 920 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 921 922 extern void tcp_kssl_input(tcp_t *, mblk_t *); 923 924 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2); 925 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2); 926 927 /* 928 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 929 * 930 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 931 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 932 * (defined in tcp.h) needs to be filled in and passed into the kernel 933 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 934 * structure contains the four-tuple of a TCP connection and a range of TCP 935 * states (specified by ac_start and ac_end). The use of wildcard addresses 936 * and ports is allowed. Connections with a matching four tuple and a state 937 * within the specified range will be aborted. The valid states for the 938 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 939 * inclusive. 940 * 941 * An application which has its connection aborted by this ioctl will receive 942 * an error that is dependent on the connection state at the time of the abort. 943 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 944 * though a RST packet has been received. If the connection state is equal to 945 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 946 * and all resources associated with the connection will be freed. 947 */ 948 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 949 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 950 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 951 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); 952 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 953 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 954 boolean_t, tcp_stack_t *); 955 956 static struct module_info tcp_rinfo = { 957 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 958 }; 959 960 static struct module_info tcp_winfo = { 961 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 962 }; 963 964 /* 965 * Entry points for TCP as a device. The normal case which supports 966 * the TCP functionality. 967 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 968 */ 969 struct qinit tcp_rinitv4 = { 970 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, NULL, &tcp_rinfo 971 }; 972 973 struct qinit tcp_rinitv6 = { 974 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_close, NULL, &tcp_rinfo 975 }; 976 977 struct qinit tcp_winit = { 978 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 979 }; 980 981 /* Initial entry point for TCP in socket mode. */ 982 struct qinit tcp_sock_winit = { 983 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 984 }; 985 986 /* 987 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 988 * an accept. Avoid allocating data structures since eager has already 989 * been created. 990 */ 991 struct qinit tcp_acceptor_rinit = { 992 NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo 993 }; 994 995 struct qinit tcp_acceptor_winit = { 996 (pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo 997 }; 998 999 /* 1000 * Entry points for TCP loopback (read side only) 1001 * The open routine is only used for reopens, thus no need to 1002 * have a separate one for tcp_openv6. 1003 */ 1004 struct qinit tcp_loopback_rinit = { 1005 (pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, (pfi_t)0, 1006 &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD 1007 }; 1008 1009 /* For AF_INET aka /dev/tcp */ 1010 struct streamtab tcpinfov4 = { 1011 &tcp_rinitv4, &tcp_winit 1012 }; 1013 1014 /* For AF_INET6 aka /dev/tcp6 */ 1015 struct streamtab tcpinfov6 = { 1016 &tcp_rinitv6, &tcp_winit 1017 }; 1018 1019 /* 1020 * Have to ensure that tcp_g_q_close is not done by an 1021 * interrupt thread. 1022 */ 1023 static taskq_t *tcp_taskq; 1024 1025 /* 1026 * TCP has a private interface for other kernel modules to reserve a 1027 * port range for them to use. Once reserved, TCP will not use any ports 1028 * in the range. This interface relies on the TCP_EXCLBIND feature. If 1029 * the semantics of TCP_EXCLBIND is changed, implementation of this interface 1030 * has to be verified. 1031 * 1032 * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges. Each port 1033 * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports. A port 1034 * range is [port a, port b] inclusive. And each port range is between 1035 * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive. 1036 * 1037 * Note that the default anonymous port range starts from 32768. There is 1038 * no port "collision" between that and the reserved port range. If there 1039 * is port collision (because the default smallest anonymous port is lowered 1040 * or some apps specifically bind to ports in the reserved port range), the 1041 * system may not be able to reserve a port range even there are enough 1042 * unbound ports as a reserved port range contains consecutive ports . 1043 */ 1044 #define TCP_RESERVED_PORTS_ARRAY_MAX_SIZE 5 1045 #define TCP_RESERVED_PORTS_RANGE_MAX 1000 1046 #define TCP_SMALLEST_RESERVED_PORT 10240 1047 #define TCP_LARGEST_RESERVED_PORT 20480 1048 1049 /* Structure to represent those reserved port ranges. */ 1050 typedef struct tcp_rport_s { 1051 in_port_t lo_port; 1052 in_port_t hi_port; 1053 tcp_t **temp_tcp_array; 1054 } tcp_rport_t; 1055 1056 /* Setable only in /etc/system. Move to ndd? */ 1057 boolean_t tcp_icmp_source_quench = B_FALSE; 1058 1059 /* 1060 * Following assumes TPI alignment requirements stay along 32 bit 1061 * boundaries 1062 */ 1063 #define ROUNDUP32(x) \ 1064 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1065 1066 /* Template for response to info request. */ 1067 static struct T_info_ack tcp_g_t_info_ack = { 1068 T_INFO_ACK, /* PRIM_type */ 1069 0, /* TSDU_size */ 1070 T_INFINITE, /* ETSDU_size */ 1071 T_INVALID, /* CDATA_size */ 1072 T_INVALID, /* DDATA_size */ 1073 sizeof (sin_t), /* ADDR_size */ 1074 0, /* OPT_size - not initialized here */ 1075 TIDUSZ, /* TIDU_size */ 1076 T_COTS_ORD, /* SERV_type */ 1077 TCPS_IDLE, /* CURRENT_state */ 1078 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1079 }; 1080 1081 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1082 T_INFO_ACK, /* PRIM_type */ 1083 0, /* TSDU_size */ 1084 T_INFINITE, /* ETSDU_size */ 1085 T_INVALID, /* CDATA_size */ 1086 T_INVALID, /* DDATA_size */ 1087 sizeof (sin6_t), /* ADDR_size */ 1088 0, /* OPT_size - not initialized here */ 1089 TIDUSZ, /* TIDU_size */ 1090 T_COTS_ORD, /* SERV_type */ 1091 TCPS_IDLE, /* CURRENT_state */ 1092 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1093 }; 1094 1095 #define MS 1L 1096 #define SECONDS (1000 * MS) 1097 #define MINUTES (60 * SECONDS) 1098 #define HOURS (60 * MINUTES) 1099 #define DAYS (24 * HOURS) 1100 1101 #define PARAM_MAX (~(uint32_t)0) 1102 1103 /* Max size IP datagram is 64k - 1 */ 1104 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1105 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1106 /* Max of the above */ 1107 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1108 1109 /* Largest TCP port number */ 1110 #define TCP_MAX_PORT (64 * 1024 - 1) 1111 1112 /* 1113 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1114 * layer header. It has to be a multiple of 4. 1115 */ 1116 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1117 #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val 1118 1119 /* 1120 * All of these are alterable, within the min/max values given, at run time. 1121 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1122 * per the TCP spec. 1123 */ 1124 /* BEGIN CSTYLED */ 1125 static tcpparam_t lcl_tcp_param_arr[] = { 1126 /*min max value name */ 1127 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1128 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1129 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1130 { 1, 1024, 1, "tcp_conn_req_min" }, 1131 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1132 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1133 { 0, 10, 0, "tcp_debug" }, 1134 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1135 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1136 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1137 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1138 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1139 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1140 { 1, 255, 64, "tcp_ipv4_ttl"}, 1141 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1142 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1143 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1144 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1145 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1146 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1147 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1148 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1149 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1150 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1151 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1152 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1153 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1154 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1155 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1156 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1157 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1158 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1159 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1160 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1161 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1162 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1163 { 0, TCP_MSS_MAX, 64, "tcp_co_min"}, 1164 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1165 /* 1166 * Question: What default value should I set for tcp_strong_iss? 1167 */ 1168 { 0, 2, 1, "tcp_strong_iss"}, 1169 { 0, 65536, 20, "tcp_rtt_updates"}, 1170 { 0, 1, 1, "tcp_wscale_always"}, 1171 { 0, 1, 0, "tcp_tstamp_always"}, 1172 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1173 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1174 { 0, 16, 2, "tcp_deferred_acks_max"}, 1175 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1176 { 1, 4, 4, "tcp_slow_start_initial"}, 1177 { 10*MS, 50*MS, 20*MS, "tcp_co_timer_interval"}, 1178 { 0, 2, 2, "tcp_sack_permitted"}, 1179 { 0, 1, 0, "tcp_trace"}, 1180 { 0, 1, 1, "tcp_compression_enabled"}, 1181 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1182 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1183 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1184 { 0, 1, 0, "tcp_rev_src_routes"}, 1185 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1186 { 100*MS, 60*SECONDS, 1*SECONDS, "tcp_ndd_get_info_interval"}, 1187 { 0, 16, 8, "tcp_local_dacks_max"}, 1188 { 0, 2, 1, "tcp_ecn_permitted"}, 1189 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1190 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1191 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1192 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1193 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1194 }; 1195 /* END CSTYLED */ 1196 1197 /* 1198 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1199 * each header fragment in the header buffer. Each parameter value has 1200 * to be a multiple of 4 (32-bit aligned). 1201 */ 1202 static tcpparam_t lcl_tcp_mdt_head_param = 1203 { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1204 static tcpparam_t lcl_tcp_mdt_tail_param = 1205 { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1206 #define tcps_mdt_hdr_head_min tcps_mdt_head_param->tcp_param_val 1207 #define tcps_mdt_hdr_tail_min tcps_mdt_tail_param->tcp_param_val 1208 1209 /* 1210 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1211 * the maximum number of payload buffers associated per Multidata. 1212 */ 1213 static tcpparam_t lcl_tcp_mdt_max_pbufs_param = 1214 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1215 #define tcps_mdt_max_pbufs tcps_mdt_max_pbufs_param->tcp_param_val 1216 1217 /* Round up the value to the nearest mss. */ 1218 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1219 1220 /* 1221 * Set ECN capable transport (ECT) code point in IP header. 1222 * 1223 * Note that there are 2 ECT code points '01' and '10', which are called 1224 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1225 * point ECT(0) for TCP as described in RFC 2481. 1226 */ 1227 #define SET_ECT(tcp, iph) \ 1228 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1229 /* We need to clear the code point first. */ \ 1230 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1231 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1232 } else { \ 1233 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1234 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1235 } 1236 1237 /* 1238 * The format argument to pass to tcp_display(). 1239 * DISP_PORT_ONLY means that the returned string has only port info. 1240 * DISP_ADDR_AND_PORT means that the returned string also contains the 1241 * remote and local IP address. 1242 */ 1243 #define DISP_PORT_ONLY 1 1244 #define DISP_ADDR_AND_PORT 2 1245 1246 #define NDD_TOO_QUICK_MSG \ 1247 "ndd get info rate too high for non-privileged users, try again " \ 1248 "later.\n" 1249 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 1250 1251 #define IS_VMLOANED_MBLK(mp) \ 1252 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1253 1254 1255 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1256 boolean_t tcp_mdt_chain = B_TRUE; 1257 1258 /* 1259 * MDT threshold in the form of effective send MSS multiplier; we take 1260 * the MDT path if the amount of unsent data exceeds the threshold value 1261 * (default threshold is 1*SMSS). 1262 */ 1263 uint_t tcp_mdt_smss_threshold = 1; 1264 1265 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1266 1267 /* 1268 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 1269 * tunable settable via NDD. Otherwise, the per-connection behavior is 1270 * determined dynamically during tcp_adapt_ire(), which is the default. 1271 */ 1272 boolean_t tcp_static_maxpsz = B_FALSE; 1273 1274 /* Setable in /etc/system */ 1275 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1276 uint32_t tcp_random_anon_port = 1; 1277 1278 /* 1279 * To reach to an eager in Q0 which can be dropped due to an incoming 1280 * new SYN request when Q0 is full, a new doubly linked list is 1281 * introduced. This list allows to select an eager from Q0 in O(1) time. 1282 * This is needed to avoid spending too much time walking through the 1283 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1284 * this new list has to be a member of Q0. 1285 * This list is headed by listener's tcp_t. When the list is empty, 1286 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1287 * of listener's tcp_t point to listener's tcp_t itself. 1288 * 1289 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1290 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1291 * These macros do not affect the eager's membership to Q0. 1292 */ 1293 1294 1295 #define MAKE_DROPPABLE(listener, eager) \ 1296 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1297 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1298 = (eager); \ 1299 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1300 (eager)->tcp_eager_next_drop_q0 = \ 1301 (listener)->tcp_eager_next_drop_q0; \ 1302 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1303 } 1304 1305 #define MAKE_UNDROPPABLE(eager) \ 1306 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1307 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1308 = (eager)->tcp_eager_prev_drop_q0; \ 1309 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1310 = (eager)->tcp_eager_next_drop_q0; \ 1311 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1312 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1313 } 1314 1315 /* 1316 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1317 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1318 * data, TCP will not respond with an ACK. RFC 793 requires that 1319 * TCP responds with an ACK for such a bogus ACK. By not following 1320 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1321 * an attacker successfully spoofs an acceptable segment to our 1322 * peer; or when our peer is "confused." 1323 */ 1324 uint32_t tcp_drop_ack_unsent_cnt = 10; 1325 1326 /* 1327 * Hook functions to enable cluster networking 1328 * On non-clustered systems these vectors must always be NULL. 1329 */ 1330 1331 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family, 1332 uint8_t *laddrp, in_port_t lport) = NULL; 1333 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family, 1334 uint8_t *laddrp, in_port_t lport) = NULL; 1335 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family, 1336 uint8_t *laddrp, in_port_t lport, 1337 uint8_t *faddrp, in_port_t fport) = NULL; 1338 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family, 1339 uint8_t *laddrp, in_port_t lport, 1340 uint8_t *faddrp, in_port_t fport) = NULL; 1341 1342 /* 1343 * The following are defined in ip.c 1344 */ 1345 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family, 1346 uint8_t *laddrp); 1347 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 1348 uint8_t *laddrp, uint8_t *faddrp); 1349 1350 #define CL_INET_CONNECT(tcp) { \ 1351 if (cl_inet_connect != NULL) { \ 1352 /* \ 1353 * Running in cluster mode - register active connection \ 1354 * information \ 1355 */ \ 1356 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1357 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1358 (*cl_inet_connect)(IPPROTO_TCP, AF_INET,\ 1359 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1360 (in_port_t)(tcp)->tcp_lport, \ 1361 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1362 (in_port_t)(tcp)->tcp_fport); \ 1363 } \ 1364 } else { \ 1365 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1366 &(tcp)->tcp_ip6h->ip6_src)) {\ 1367 (*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\ 1368 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1369 (in_port_t)(tcp)->tcp_lport, \ 1370 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1371 (in_port_t)(tcp)->tcp_fport); \ 1372 } \ 1373 } \ 1374 } \ 1375 } 1376 1377 #define CL_INET_DISCONNECT(tcp) { \ 1378 if (cl_inet_disconnect != NULL) { \ 1379 /* \ 1380 * Running in cluster mode - deregister active \ 1381 * connection information \ 1382 */ \ 1383 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1384 if ((tcp)->tcp_ip_src != 0) { \ 1385 (*cl_inet_disconnect)(IPPROTO_TCP, \ 1386 AF_INET, \ 1387 (uint8_t *)(&((tcp)->tcp_ip_src)),\ 1388 (in_port_t)(tcp)->tcp_lport, \ 1389 (uint8_t *) \ 1390 (&((tcp)->tcp_ipha->ipha_dst)),\ 1391 (in_port_t)(tcp)->tcp_fport); \ 1392 } \ 1393 } else { \ 1394 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1395 &(tcp)->tcp_ip_src_v6)) { \ 1396 (*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\ 1397 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1398 (in_port_t)(tcp)->tcp_lport, \ 1399 (uint8_t *) \ 1400 (&((tcp)->tcp_ip6h->ip6_dst)),\ 1401 (in_port_t)(tcp)->tcp_fport); \ 1402 } \ 1403 } \ 1404 } \ 1405 } 1406 1407 /* 1408 * Cluster networking hook for traversing current connection list. 1409 * This routine is used to extract the current list of live connections 1410 * which must continue to to be dispatched to this node. 1411 */ 1412 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg); 1413 1414 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), 1415 void *arg, tcp_stack_t *tcps); 1416 1417 /* 1418 * Figure out the value of window scale opton. Note that the rwnd is 1419 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1420 * We cannot find the scale value and then do a round up of tcp_rwnd 1421 * because the scale value may not be correct after that. 1422 * 1423 * Set the compiler flag to make this function inline. 1424 */ 1425 static void 1426 tcp_set_ws_value(tcp_t *tcp) 1427 { 1428 int i; 1429 uint32_t rwnd = tcp->tcp_rwnd; 1430 1431 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1432 i++, rwnd >>= 1) 1433 ; 1434 tcp->tcp_rcv_ws = i; 1435 } 1436 1437 /* 1438 * Remove a connection from the list of detached TIME_WAIT connections. 1439 * It returns B_FALSE if it can't remove the connection from the list 1440 * as the connection has already been removed from the list due to an 1441 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1442 */ 1443 static boolean_t 1444 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1445 { 1446 boolean_t locked = B_FALSE; 1447 1448 if (tcp_time_wait == NULL) { 1449 tcp_time_wait = *((tcp_squeue_priv_t **) 1450 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1451 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1452 locked = B_TRUE; 1453 } else { 1454 ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); 1455 } 1456 1457 if (tcp->tcp_time_wait_expire == 0) { 1458 ASSERT(tcp->tcp_time_wait_next == NULL); 1459 ASSERT(tcp->tcp_time_wait_prev == NULL); 1460 if (locked) 1461 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1462 return (B_FALSE); 1463 } 1464 ASSERT(TCP_IS_DETACHED(tcp)); 1465 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1466 1467 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1468 ASSERT(tcp->tcp_time_wait_prev == NULL); 1469 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1470 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1471 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1472 NULL; 1473 } else { 1474 tcp_time_wait->tcp_time_wait_tail = NULL; 1475 } 1476 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1477 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1478 ASSERT(tcp->tcp_time_wait_next == NULL); 1479 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1480 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1481 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1482 } else { 1483 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1484 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1485 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1486 tcp->tcp_time_wait_next; 1487 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1488 tcp->tcp_time_wait_prev; 1489 } 1490 tcp->tcp_time_wait_next = NULL; 1491 tcp->tcp_time_wait_prev = NULL; 1492 tcp->tcp_time_wait_expire = 0; 1493 1494 if (locked) 1495 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1496 return (B_TRUE); 1497 } 1498 1499 /* 1500 * Add a connection to the list of detached TIME_WAIT connections 1501 * and set its time to expire. 1502 */ 1503 static void 1504 tcp_time_wait_append(tcp_t *tcp) 1505 { 1506 tcp_stack_t *tcps = tcp->tcp_tcps; 1507 tcp_squeue_priv_t *tcp_time_wait = 1508 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1509 SQPRIVATE_TCP)); 1510 1511 tcp_timers_stop(tcp); 1512 1513 /* Freed above */ 1514 ASSERT(tcp->tcp_timer_tid == 0); 1515 ASSERT(tcp->tcp_ack_tid == 0); 1516 1517 /* must have happened at the time of detaching the tcp */ 1518 ASSERT(tcp->tcp_ptpahn == NULL); 1519 ASSERT(tcp->tcp_flow_stopped == 0); 1520 ASSERT(tcp->tcp_time_wait_next == NULL); 1521 ASSERT(tcp->tcp_time_wait_prev == NULL); 1522 ASSERT(tcp->tcp_time_wait_expire == NULL); 1523 ASSERT(tcp->tcp_listener == NULL); 1524 1525 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1526 /* 1527 * The value computed below in tcp->tcp_time_wait_expire may 1528 * appear negative or wrap around. That is ok since our 1529 * interest is only in the difference between the current lbolt 1530 * value and tcp->tcp_time_wait_expire. But the value should not 1531 * be zero, since it means the tcp is not in the TIME_WAIT list. 1532 * The corresponding comparison in tcp_time_wait_collector() uses 1533 * modular arithmetic. 1534 */ 1535 tcp->tcp_time_wait_expire += 1536 drv_usectohz(tcps->tcps_time_wait_interval * 1000); 1537 if (tcp->tcp_time_wait_expire == 0) 1538 tcp->tcp_time_wait_expire = 1; 1539 1540 ASSERT(TCP_IS_DETACHED(tcp)); 1541 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1542 ASSERT(tcp->tcp_time_wait_next == NULL); 1543 ASSERT(tcp->tcp_time_wait_prev == NULL); 1544 TCP_DBGSTAT(tcps, tcp_time_wait); 1545 1546 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1547 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1548 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1549 tcp_time_wait->tcp_time_wait_head = tcp; 1550 } else { 1551 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1552 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1553 TCPS_TIME_WAIT); 1554 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1555 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1556 } 1557 tcp_time_wait->tcp_time_wait_tail = tcp; 1558 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1559 } 1560 1561 /* ARGSUSED */ 1562 void 1563 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1564 { 1565 conn_t *connp = (conn_t *)arg; 1566 tcp_t *tcp = connp->conn_tcp; 1567 tcp_stack_t *tcps = tcp->tcp_tcps; 1568 1569 ASSERT(tcp != NULL); 1570 if (tcp->tcp_state == TCPS_CLOSED) { 1571 return; 1572 } 1573 1574 ASSERT((tcp->tcp_family == AF_INET && 1575 tcp->tcp_ipversion == IPV4_VERSION) || 1576 (tcp->tcp_family == AF_INET6 && 1577 (tcp->tcp_ipversion == IPV4_VERSION || 1578 tcp->tcp_ipversion == IPV6_VERSION))); 1579 ASSERT(!tcp->tcp_listener); 1580 1581 TCP_STAT(tcps, tcp_time_wait_reap); 1582 ASSERT(TCP_IS_DETACHED(tcp)); 1583 1584 /* 1585 * Because they have no upstream client to rebind or tcp_close() 1586 * them later, we axe the connection here and now. 1587 */ 1588 tcp_close_detached(tcp); 1589 } 1590 1591 /* 1592 * Remove cached/latched IPsec references. 1593 */ 1594 void 1595 tcp_ipsec_cleanup(tcp_t *tcp) 1596 { 1597 conn_t *connp = tcp->tcp_connp; 1598 1599 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1600 1601 if (connp->conn_latch != NULL) { 1602 IPLATCH_REFRELE(connp->conn_latch, 1603 connp->conn_netstack); 1604 connp->conn_latch = NULL; 1605 } 1606 if (connp->conn_policy != NULL) { 1607 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 1608 connp->conn_policy = NULL; 1609 } 1610 } 1611 1612 /* 1613 * Cleaup before placing on free list. 1614 * Disassociate from the netstack/tcp_stack_t since the freelist 1615 * is per squeue and not per netstack. 1616 */ 1617 void 1618 tcp_cleanup(tcp_t *tcp) 1619 { 1620 mblk_t *mp; 1621 char *tcp_iphc; 1622 int tcp_iphc_len; 1623 int tcp_hdr_grown; 1624 tcp_sack_info_t *tcp_sack_info; 1625 conn_t *connp = tcp->tcp_connp; 1626 tcp_stack_t *tcps = tcp->tcp_tcps; 1627 netstack_t *ns = tcps->tcps_netstack; 1628 1629 tcp_bind_hash_remove(tcp); 1630 1631 /* Cleanup that which needs the netstack first */ 1632 tcp_ipsec_cleanup(tcp); 1633 1634 tcp_free(tcp); 1635 1636 /* Release any SSL context */ 1637 if (tcp->tcp_kssl_ent != NULL) { 1638 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1639 tcp->tcp_kssl_ent = NULL; 1640 } 1641 1642 if (tcp->tcp_kssl_ctx != NULL) { 1643 kssl_release_ctx(tcp->tcp_kssl_ctx); 1644 tcp->tcp_kssl_ctx = NULL; 1645 } 1646 tcp->tcp_kssl_pending = B_FALSE; 1647 1648 conn_delete_ire(connp, NULL); 1649 1650 /* 1651 * Since we will bzero the entire structure, we need to 1652 * remove it and reinsert it in global hash list. We 1653 * know the walkers can't get to this conn because we 1654 * had set CONDEMNED flag earlier and checked reference 1655 * under conn_lock so walker won't pick it and when we 1656 * go the ipcl_globalhash_remove() below, no walker 1657 * can get to it. 1658 */ 1659 ipcl_globalhash_remove(connp); 1660 1661 /* 1662 * Now it is safe to decrement the reference counts. 1663 * This might be the last reference on the netstack and TCPS 1664 * in which case it will cause the tcp_g_q_close and 1665 * the freeing of the IP Instance. 1666 */ 1667 connp->conn_netstack = NULL; 1668 netstack_rele(ns); 1669 ASSERT(tcps != NULL); 1670 tcp->tcp_tcps = NULL; 1671 TCPS_REFRELE(tcps); 1672 1673 /* Save some state */ 1674 mp = tcp->tcp_timercache; 1675 1676 tcp_sack_info = tcp->tcp_sack_info; 1677 tcp_iphc = tcp->tcp_iphc; 1678 tcp_iphc_len = tcp->tcp_iphc_len; 1679 tcp_hdr_grown = tcp->tcp_hdr_grown; 1680 1681 if (connp->conn_cred != NULL) { 1682 crfree(connp->conn_cred); 1683 connp->conn_cred = NULL; 1684 } 1685 if (connp->conn_peercred != NULL) { 1686 crfree(connp->conn_peercred); 1687 connp->conn_peercred = NULL; 1688 } 1689 ipcl_conn_cleanup(connp); 1690 connp->conn_flags = IPCL_TCPCONN; 1691 bzero(tcp, sizeof (tcp_t)); 1692 1693 /* restore the state */ 1694 tcp->tcp_timercache = mp; 1695 1696 tcp->tcp_sack_info = tcp_sack_info; 1697 tcp->tcp_iphc = tcp_iphc; 1698 tcp->tcp_iphc_len = tcp_iphc_len; 1699 tcp->tcp_hdr_grown = tcp_hdr_grown; 1700 1701 tcp->tcp_connp = connp; 1702 1703 ASSERT(connp->conn_tcp == tcp); 1704 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1705 connp->conn_state_flags = CONN_INCIPIENT; 1706 ASSERT(connp->conn_ulp == IPPROTO_TCP); 1707 ASSERT(connp->conn_ref == 1); 1708 } 1709 1710 /* 1711 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1712 * is done forwards from the head. 1713 * This walks all stack instances since 1714 * tcp_time_wait remains global across all stacks. 1715 */ 1716 /* ARGSUSED */ 1717 void 1718 tcp_time_wait_collector(void *arg) 1719 { 1720 tcp_t *tcp; 1721 clock_t now; 1722 mblk_t *mp; 1723 conn_t *connp; 1724 kmutex_t *lock; 1725 boolean_t removed; 1726 1727 squeue_t *sqp = (squeue_t *)arg; 1728 tcp_squeue_priv_t *tcp_time_wait = 1729 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1730 1731 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1732 tcp_time_wait->tcp_time_wait_tid = 0; 1733 1734 if (tcp_time_wait->tcp_free_list != NULL && 1735 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1736 TCP_G_STAT(tcp_freelist_cleanup); 1737 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1738 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1739 tcp->tcp_time_wait_next = NULL; 1740 tcp_time_wait->tcp_free_list_cnt--; 1741 ASSERT(tcp->tcp_tcps == NULL); 1742 CONN_DEC_REF(tcp->tcp_connp); 1743 } 1744 ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); 1745 } 1746 1747 /* 1748 * In order to reap time waits reliably, we should use a 1749 * source of time that is not adjustable by the user -- hence 1750 * the call to ddi_get_lbolt(). 1751 */ 1752 now = ddi_get_lbolt(); 1753 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1754 /* 1755 * Compare times using modular arithmetic, since 1756 * lbolt can wrapover. 1757 */ 1758 if ((now - tcp->tcp_time_wait_expire) < 0) { 1759 break; 1760 } 1761 1762 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1763 ASSERT(removed); 1764 1765 connp = tcp->tcp_connp; 1766 ASSERT(connp->conn_fanout != NULL); 1767 lock = &connp->conn_fanout->connf_lock; 1768 /* 1769 * This is essentially a TW reclaim fast path optimization for 1770 * performance where the timewait collector checks under the 1771 * fanout lock (so that no one else can get access to the 1772 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1773 * the classifier hash list. If ref count is indeed 2, we can 1774 * just remove the conn under the fanout lock and avoid 1775 * cleaning up the conn under the squeue, provided that 1776 * clustering callbacks are not enabled. If clustering is 1777 * enabled, we need to make the clustering callback before 1778 * setting the CONDEMNED flag and after dropping all locks and 1779 * so we forego this optimization and fall back to the slow 1780 * path. Also please see the comments in tcp_closei_local 1781 * regarding the refcnt logic. 1782 * 1783 * Since we are holding the tcp_time_wait_lock, its better 1784 * not to block on the fanout_lock because other connections 1785 * can't add themselves to time_wait list. So we do a 1786 * tryenter instead of mutex_enter. 1787 */ 1788 if (mutex_tryenter(lock)) { 1789 mutex_enter(&connp->conn_lock); 1790 if ((connp->conn_ref == 2) && 1791 (cl_inet_disconnect == NULL)) { 1792 ipcl_hash_remove_locked(connp, 1793 connp->conn_fanout); 1794 /* 1795 * Set the CONDEMNED flag now itself so that 1796 * the refcnt cannot increase due to any 1797 * walker. But we have still not cleaned up 1798 * conn_ire_cache. This is still ok since 1799 * we are going to clean it up in tcp_cleanup 1800 * immediately and any interface unplumb 1801 * thread will wait till the ire is blown away 1802 */ 1803 connp->conn_state_flags |= CONN_CONDEMNED; 1804 mutex_exit(lock); 1805 mutex_exit(&connp->conn_lock); 1806 if (tcp_time_wait->tcp_free_list_cnt < 1807 tcp_free_list_max_cnt) { 1808 /* Add to head of tcp_free_list */ 1809 mutex_exit( 1810 &tcp_time_wait->tcp_time_wait_lock); 1811 tcp_cleanup(tcp); 1812 ASSERT(connp->conn_latch == NULL); 1813 ASSERT(connp->conn_policy == NULL); 1814 ASSERT(tcp->tcp_tcps == NULL); 1815 ASSERT(connp->conn_netstack == NULL); 1816 1817 mutex_enter( 1818 &tcp_time_wait->tcp_time_wait_lock); 1819 tcp->tcp_time_wait_next = 1820 tcp_time_wait->tcp_free_list; 1821 tcp_time_wait->tcp_free_list = tcp; 1822 tcp_time_wait->tcp_free_list_cnt++; 1823 continue; 1824 } else { 1825 /* Do not add to tcp_free_list */ 1826 mutex_exit( 1827 &tcp_time_wait->tcp_time_wait_lock); 1828 tcp_bind_hash_remove(tcp); 1829 conn_delete_ire(tcp->tcp_connp, NULL); 1830 tcp_ipsec_cleanup(tcp); 1831 CONN_DEC_REF(tcp->tcp_connp); 1832 } 1833 } else { 1834 CONN_INC_REF_LOCKED(connp); 1835 mutex_exit(lock); 1836 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1837 mutex_exit(&connp->conn_lock); 1838 /* 1839 * We can reuse the closemp here since conn has 1840 * detached (otherwise we wouldn't even be in 1841 * time_wait list). tcp_closemp_used can safely 1842 * be changed without taking a lock as no other 1843 * thread can concurrently access it at this 1844 * point in the connection lifecycle. 1845 */ 1846 1847 if (tcp->tcp_closemp.b_prev == NULL) 1848 tcp->tcp_closemp_used = B_TRUE; 1849 else 1850 cmn_err(CE_PANIC, 1851 "tcp_timewait_collector: " 1852 "concurrent use of tcp_closemp: " 1853 "connp %p tcp %p\n", (void *)connp, 1854 (void *)tcp); 1855 1856 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1857 mp = &tcp->tcp_closemp; 1858 squeue_fill(connp->conn_sqp, mp, 1859 tcp_timewait_output, connp, 1860 SQTAG_TCP_TIMEWAIT); 1861 } 1862 } else { 1863 mutex_enter(&connp->conn_lock); 1864 CONN_INC_REF_LOCKED(connp); 1865 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1866 mutex_exit(&connp->conn_lock); 1867 /* 1868 * We can reuse the closemp here since conn has 1869 * detached (otherwise we wouldn't even be in 1870 * time_wait list). tcp_closemp_used can safely 1871 * be changed without taking a lock as no other 1872 * thread can concurrently access it at this 1873 * point in the connection lifecycle. 1874 */ 1875 1876 if (tcp->tcp_closemp.b_prev == NULL) 1877 tcp->tcp_closemp_used = B_TRUE; 1878 else 1879 cmn_err(CE_PANIC, "tcp_timewait_collector: " 1880 "concurrent use of tcp_closemp: " 1881 "connp %p tcp %p\n", (void *)connp, 1882 (void *)tcp); 1883 1884 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1885 mp = &tcp->tcp_closemp; 1886 squeue_fill(connp->conn_sqp, mp, 1887 tcp_timewait_output, connp, 0); 1888 } 1889 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1890 } 1891 1892 if (tcp_time_wait->tcp_free_list != NULL) 1893 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1894 1895 tcp_time_wait->tcp_time_wait_tid = 1896 timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY); 1897 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1898 } 1899 /* 1900 * Reply to a clients T_CONN_RES TPI message. This function 1901 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1902 * on the acceptor STREAM and processed in tcp_wput_accept(). 1903 * Read the block comment on top of tcp_conn_request(). 1904 */ 1905 static void 1906 tcp_accept(tcp_t *listener, mblk_t *mp) 1907 { 1908 tcp_t *acceptor; 1909 tcp_t *eager; 1910 tcp_t *tcp; 1911 struct T_conn_res *tcr; 1912 t_uscalar_t acceptor_id; 1913 t_scalar_t seqnum; 1914 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 1915 mblk_t *ok_mp; 1916 mblk_t *mp1; 1917 tcp_stack_t *tcps = listener->tcp_tcps; 1918 1919 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1920 tcp_err_ack(listener, mp, TPROTO, 0); 1921 return; 1922 } 1923 tcr = (struct T_conn_res *)mp->b_rptr; 1924 1925 /* 1926 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1927 * read side queue of the streams device underneath us i.e. the 1928 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1929 * look it up in the queue_hash. Under LP64 it sends down the 1930 * minor_t of the accepting endpoint. 1931 * 1932 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1933 * fanout hash lock is held. 1934 * This prevents any thread from entering the acceptor queue from 1935 * below (since it has not been hard bound yet i.e. any inbound 1936 * packets will arrive on the listener or default tcp queue and 1937 * go through tcp_lookup). 1938 * The CONN_INC_REF will prevent the acceptor from closing. 1939 * 1940 * XXX It is still possible for a tli application to send down data 1941 * on the accepting stream while another thread calls t_accept. 1942 * This should not be a problem for well-behaved applications since 1943 * the T_OK_ACK is sent after the queue swapping is completed. 1944 * 1945 * If the accepting fd is the same as the listening fd, avoid 1946 * queue hash lookup since that will return an eager listener in a 1947 * already established state. 1948 */ 1949 acceptor_id = tcr->ACCEPTOR_id; 1950 mutex_enter(&listener->tcp_eager_lock); 1951 if (listener->tcp_acceptor_id == acceptor_id) { 1952 eager = listener->tcp_eager_next_q; 1953 /* only count how many T_CONN_INDs so don't count q0 */ 1954 if ((listener->tcp_conn_req_cnt_q != 1) || 1955 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1956 mutex_exit(&listener->tcp_eager_lock); 1957 tcp_err_ack(listener, mp, TBADF, 0); 1958 return; 1959 } 1960 if (listener->tcp_conn_req_cnt_q0 != 0) { 1961 /* Throw away all the eagers on q0. */ 1962 tcp_eager_cleanup(listener, 1); 1963 } 1964 if (listener->tcp_syn_defense) { 1965 listener->tcp_syn_defense = B_FALSE; 1966 if (listener->tcp_ip_addr_cache != NULL) { 1967 kmem_free(listener->tcp_ip_addr_cache, 1968 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1969 listener->tcp_ip_addr_cache = NULL; 1970 } 1971 } 1972 /* 1973 * Transfer tcp_conn_req_max to the eager so that when 1974 * a disconnect occurs we can revert the endpoint to the 1975 * listen state. 1976 */ 1977 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1978 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1979 /* 1980 * Get a reference on the acceptor just like the 1981 * tcp_acceptor_hash_lookup below. 1982 */ 1983 acceptor = listener; 1984 CONN_INC_REF(acceptor->tcp_connp); 1985 } else { 1986 acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); 1987 if (acceptor == NULL) { 1988 if (listener->tcp_debug) { 1989 (void) strlog(TCP_MOD_ID, 0, 1, 1990 SL_ERROR|SL_TRACE, 1991 "tcp_accept: did not find acceptor 0x%x\n", 1992 acceptor_id); 1993 } 1994 mutex_exit(&listener->tcp_eager_lock); 1995 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 1996 return; 1997 } 1998 /* 1999 * Verify acceptor state. The acceptable states for an acceptor 2000 * include TCPS_IDLE and TCPS_BOUND. 2001 */ 2002 switch (acceptor->tcp_state) { 2003 case TCPS_IDLE: 2004 /* FALLTHRU */ 2005 case TCPS_BOUND: 2006 break; 2007 default: 2008 CONN_DEC_REF(acceptor->tcp_connp); 2009 mutex_exit(&listener->tcp_eager_lock); 2010 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2011 return; 2012 } 2013 } 2014 2015 /* The listener must be in TCPS_LISTEN */ 2016 if (listener->tcp_state != TCPS_LISTEN) { 2017 CONN_DEC_REF(acceptor->tcp_connp); 2018 mutex_exit(&listener->tcp_eager_lock); 2019 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2020 return; 2021 } 2022 2023 /* 2024 * Rendezvous with an eager connection request packet hanging off 2025 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2026 * tcp structure when the connection packet arrived in 2027 * tcp_conn_request(). 2028 */ 2029 seqnum = tcr->SEQ_number; 2030 eager = listener; 2031 do { 2032 eager = eager->tcp_eager_next_q; 2033 if (eager == NULL) { 2034 CONN_DEC_REF(acceptor->tcp_connp); 2035 mutex_exit(&listener->tcp_eager_lock); 2036 tcp_err_ack(listener, mp, TBADSEQ, 0); 2037 return; 2038 } 2039 } while (eager->tcp_conn_req_seqnum != seqnum); 2040 mutex_exit(&listener->tcp_eager_lock); 2041 2042 /* 2043 * At this point, both acceptor and listener have 2 ref 2044 * that they begin with. Acceptor has one additional ref 2045 * we placed in lookup while listener has 3 additional 2046 * ref for being behind the squeue (tcp_accept() is 2047 * done on listener's squeue); being in classifier hash; 2048 * and eager's ref on listener. 2049 */ 2050 ASSERT(listener->tcp_connp->conn_ref >= 5); 2051 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2052 2053 /* 2054 * The eager at this point is set in its own squeue and 2055 * could easily have been killed (tcp_accept_finish will 2056 * deal with that) because of a TH_RST so we can only 2057 * ASSERT for a single ref. 2058 */ 2059 ASSERT(eager->tcp_connp->conn_ref >= 1); 2060 2061 /* Pre allocate the stroptions mblk also */ 2062 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 2063 if (opt_mp == NULL) { 2064 CONN_DEC_REF(acceptor->tcp_connp); 2065 CONN_DEC_REF(eager->tcp_connp); 2066 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2067 return; 2068 } 2069 DB_TYPE(opt_mp) = M_SETOPTS; 2070 opt_mp->b_wptr += sizeof (struct stroptions); 2071 2072 /* 2073 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2074 * from listener to acceptor. The message is chained on opt_mp 2075 * which will be sent onto eager's squeue. 2076 */ 2077 if (listener->tcp_bound_if != 0) { 2078 /* allocate optmgmt req */ 2079 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2080 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 2081 sizeof (int)); 2082 if (mp1 != NULL) 2083 linkb(opt_mp, mp1); 2084 } 2085 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2086 uint_t on = 1; 2087 2088 /* allocate optmgmt req */ 2089 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2090 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 2091 if (mp1 != NULL) 2092 linkb(opt_mp, mp1); 2093 } 2094 2095 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2096 if ((mp1 = copymsg(mp)) == NULL) { 2097 CONN_DEC_REF(acceptor->tcp_connp); 2098 CONN_DEC_REF(eager->tcp_connp); 2099 freemsg(opt_mp); 2100 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2101 return; 2102 } 2103 2104 tcr = (struct T_conn_res *)mp1->b_rptr; 2105 2106 /* 2107 * This is an expanded version of mi_tpi_ok_ack_alloc() 2108 * which allocates a larger mblk and appends the new 2109 * local address to the ok_ack. The address is copied by 2110 * soaccept() for getsockname(). 2111 */ 2112 { 2113 int extra; 2114 2115 extra = (eager->tcp_family == AF_INET) ? 2116 sizeof (sin_t) : sizeof (sin6_t); 2117 2118 /* 2119 * Try to re-use mp, if possible. Otherwise, allocate 2120 * an mblk and return it as ok_mp. In any case, mp 2121 * is no longer usable upon return. 2122 */ 2123 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2124 CONN_DEC_REF(acceptor->tcp_connp); 2125 CONN_DEC_REF(eager->tcp_connp); 2126 freemsg(opt_mp); 2127 /* Original mp has been freed by now, so use mp1 */ 2128 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2129 return; 2130 } 2131 2132 mp = NULL; /* We should never use mp after this point */ 2133 2134 switch (extra) { 2135 case sizeof (sin_t): { 2136 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2137 2138 ok_mp->b_wptr += extra; 2139 sin->sin_family = AF_INET; 2140 sin->sin_port = eager->tcp_lport; 2141 sin->sin_addr.s_addr = 2142 eager->tcp_ipha->ipha_src; 2143 break; 2144 } 2145 case sizeof (sin6_t): { 2146 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2147 2148 ok_mp->b_wptr += extra; 2149 sin6->sin6_family = AF_INET6; 2150 sin6->sin6_port = eager->tcp_lport; 2151 if (eager->tcp_ipversion == IPV4_VERSION) { 2152 sin6->sin6_flowinfo = 0; 2153 IN6_IPADDR_TO_V4MAPPED( 2154 eager->tcp_ipha->ipha_src, 2155 &sin6->sin6_addr); 2156 } else { 2157 ASSERT(eager->tcp_ip6h != NULL); 2158 sin6->sin6_flowinfo = 2159 eager->tcp_ip6h->ip6_vcf & 2160 ~IPV6_VERS_AND_FLOW_MASK; 2161 sin6->sin6_addr = 2162 eager->tcp_ip6h->ip6_src; 2163 } 2164 sin6->sin6_scope_id = 0; 2165 sin6->__sin6_src_id = 0; 2166 break; 2167 } 2168 default: 2169 break; 2170 } 2171 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2172 } 2173 2174 /* 2175 * If there are no options we know that the T_CONN_RES will 2176 * succeed. However, we can't send the T_OK_ACK upstream until 2177 * the tcp_accept_swap is done since it would be dangerous to 2178 * let the application start using the new fd prior to the swap. 2179 */ 2180 tcp_accept_swap(listener, acceptor, eager); 2181 2182 /* 2183 * tcp_accept_swap unlinks eager from listener but does not drop 2184 * the eager's reference on the listener. 2185 */ 2186 ASSERT(eager->tcp_listener == NULL); 2187 ASSERT(listener->tcp_connp->conn_ref >= 5); 2188 2189 /* 2190 * The eager is now associated with its own queue. Insert in 2191 * the hash so that the connection can be reused for a future 2192 * T_CONN_RES. 2193 */ 2194 tcp_acceptor_hash_insert(acceptor_id, eager); 2195 2196 /* 2197 * We now do the processing of options with T_CONN_RES. 2198 * We delay till now since we wanted to have queue to pass to 2199 * option processing routines that points back to the right 2200 * instance structure which does not happen until after 2201 * tcp_accept_swap(). 2202 * 2203 * Note: 2204 * The sanity of the logic here assumes that whatever options 2205 * are appropriate to inherit from listner=>eager are done 2206 * before this point, and whatever were to be overridden (or not) 2207 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2208 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2209 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2210 * This may not be true at this point in time but can be fixed 2211 * independently. This option processing code starts with 2212 * the instantiated acceptor instance and the final queue at 2213 * this point. 2214 */ 2215 2216 if (tcr->OPT_length != 0) { 2217 /* Options to process */ 2218 int t_error = 0; 2219 int sys_error = 0; 2220 int do_disconnect = 0; 2221 2222 if (tcp_conprim_opt_process(eager, mp1, 2223 &do_disconnect, &t_error, &sys_error) < 0) { 2224 eager->tcp_accept_error = 1; 2225 if (do_disconnect) { 2226 /* 2227 * An option failed which does not allow 2228 * connection to be accepted. 2229 * 2230 * We allow T_CONN_RES to succeed and 2231 * put a T_DISCON_IND on the eager queue. 2232 */ 2233 ASSERT(t_error == 0 && sys_error == 0); 2234 eager->tcp_send_discon_ind = 1; 2235 } else { 2236 ASSERT(t_error != 0); 2237 freemsg(ok_mp); 2238 /* 2239 * Original mp was either freed or set 2240 * to ok_mp above, so use mp1 instead. 2241 */ 2242 tcp_err_ack(listener, mp1, t_error, sys_error); 2243 goto finish; 2244 } 2245 } 2246 /* 2247 * Most likely success in setting options (except if 2248 * eager->tcp_send_discon_ind set). 2249 * mp1 option buffer represented by OPT_length/offset 2250 * potentially modified and contains results of setting 2251 * options at this point 2252 */ 2253 } 2254 2255 /* We no longer need mp1, since all options processing has passed */ 2256 freemsg(mp1); 2257 2258 putnext(listener->tcp_rq, ok_mp); 2259 2260 mutex_enter(&listener->tcp_eager_lock); 2261 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2262 tcp_t *tail; 2263 mblk_t *conn_ind; 2264 2265 /* 2266 * This path should not be executed if listener and 2267 * acceptor streams are the same. 2268 */ 2269 ASSERT(listener != acceptor); 2270 2271 tcp = listener->tcp_eager_prev_q0; 2272 /* 2273 * listener->tcp_eager_prev_q0 points to the TAIL of the 2274 * deferred T_conn_ind queue. We need to get to the head of 2275 * the queue in order to send up T_conn_ind the same order as 2276 * how the 3WHS is completed. 2277 */ 2278 while (tcp != listener) { 2279 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2280 break; 2281 else 2282 tcp = tcp->tcp_eager_prev_q0; 2283 } 2284 ASSERT(tcp != listener); 2285 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2286 ASSERT(conn_ind != NULL); 2287 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2288 2289 /* Move from q0 to q */ 2290 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2291 listener->tcp_conn_req_cnt_q0--; 2292 listener->tcp_conn_req_cnt_q++; 2293 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2294 tcp->tcp_eager_prev_q0; 2295 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2296 tcp->tcp_eager_next_q0; 2297 tcp->tcp_eager_prev_q0 = NULL; 2298 tcp->tcp_eager_next_q0 = NULL; 2299 tcp->tcp_conn_def_q0 = B_FALSE; 2300 2301 /* Make sure the tcp isn't in the list of droppables */ 2302 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2303 tcp->tcp_eager_prev_drop_q0 == NULL); 2304 2305 /* 2306 * Insert at end of the queue because sockfs sends 2307 * down T_CONN_RES in chronological order. Leaving 2308 * the older conn indications at front of the queue 2309 * helps reducing search time. 2310 */ 2311 tail = listener->tcp_eager_last_q; 2312 if (tail != NULL) 2313 tail->tcp_eager_next_q = tcp; 2314 else 2315 listener->tcp_eager_next_q = tcp; 2316 listener->tcp_eager_last_q = tcp; 2317 tcp->tcp_eager_next_q = NULL; 2318 mutex_exit(&listener->tcp_eager_lock); 2319 putnext(tcp->tcp_rq, conn_ind); 2320 } else { 2321 mutex_exit(&listener->tcp_eager_lock); 2322 } 2323 2324 /* 2325 * Done with the acceptor - free it 2326 * 2327 * Note: from this point on, no access to listener should be made 2328 * as listener can be equal to acceptor. 2329 */ 2330 finish: 2331 ASSERT(acceptor->tcp_detached); 2332 ASSERT(tcps->tcps_g_q != NULL); 2333 acceptor->tcp_rq = tcps->tcps_g_q; 2334 acceptor->tcp_wq = WR(tcps->tcps_g_q); 2335 (void) tcp_clean_death(acceptor, 0, 2); 2336 CONN_DEC_REF(acceptor->tcp_connp); 2337 2338 /* 2339 * In case we already received a FIN we have to make tcp_rput send 2340 * the ordrel_ind. This will also send up a window update if the window 2341 * has opened up. 2342 * 2343 * In the normal case of a successful connection acceptance 2344 * we give the O_T_BIND_REQ to the read side put procedure as an 2345 * indication that this was just accepted. This tells tcp_rput to 2346 * pass up any data queued in tcp_rcv_list. 2347 * 2348 * In the fringe case where options sent with T_CONN_RES failed and 2349 * we required, we would be indicating a T_DISCON_IND to blow 2350 * away this connection. 2351 */ 2352 2353 /* 2354 * XXX: we currently have a problem if XTI application closes the 2355 * acceptor stream in between. This problem exists in on10-gate also 2356 * and is well know but nothing can be done short of major rewrite 2357 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2358 * eager same squeue as listener (we can distinguish non socket 2359 * listeners at the time of handling a SYN in tcp_conn_request) 2360 * and do most of the work that tcp_accept_finish does here itself 2361 * and then get behind the acceptor squeue to access the acceptor 2362 * queue. 2363 */ 2364 /* 2365 * We already have a ref on tcp so no need to do one before squeue_fill 2366 */ 2367 squeue_fill(eager->tcp_connp->conn_sqp, opt_mp, 2368 tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH); 2369 } 2370 2371 /* 2372 * Swap information between the eager and acceptor for a TLI/XTI client. 2373 * The sockfs accept is done on the acceptor stream and control goes 2374 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2375 * called. In either case, both the eager and listener are in their own 2376 * perimeter (squeue) and the code has to deal with potential race. 2377 * 2378 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2379 */ 2380 static void 2381 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2382 { 2383 conn_t *econnp, *aconnp; 2384 2385 ASSERT(eager->tcp_rq == listener->tcp_rq); 2386 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2387 ASSERT(!eager->tcp_hard_bound); 2388 ASSERT(!TCP_IS_SOCKET(acceptor)); 2389 ASSERT(!TCP_IS_SOCKET(eager)); 2390 ASSERT(!TCP_IS_SOCKET(listener)); 2391 2392 acceptor->tcp_detached = B_TRUE; 2393 /* 2394 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2395 * the acceptor id. 2396 */ 2397 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2398 2399 /* remove eager from listen list... */ 2400 mutex_enter(&listener->tcp_eager_lock); 2401 tcp_eager_unlink(eager); 2402 ASSERT(eager->tcp_eager_next_q == NULL && 2403 eager->tcp_eager_last_q == NULL); 2404 ASSERT(eager->tcp_eager_next_q0 == NULL && 2405 eager->tcp_eager_prev_q0 == NULL); 2406 mutex_exit(&listener->tcp_eager_lock); 2407 eager->tcp_rq = acceptor->tcp_rq; 2408 eager->tcp_wq = acceptor->tcp_wq; 2409 2410 econnp = eager->tcp_connp; 2411 aconnp = acceptor->tcp_connp; 2412 2413 eager->tcp_rq->q_ptr = econnp; 2414 eager->tcp_wq->q_ptr = econnp; 2415 2416 /* 2417 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2418 * which might be a different squeue from our peer TCP instance. 2419 * For TCP Fusion, the peer expects that whenever tcp_detached is 2420 * clear, our TCP queues point to the acceptor's queues. Thus, use 2421 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq 2422 * above reach global visibility prior to the clearing of tcp_detached. 2423 */ 2424 membar_producer(); 2425 eager->tcp_detached = B_FALSE; 2426 2427 ASSERT(eager->tcp_ack_tid == 0); 2428 2429 econnp->conn_dev = aconnp->conn_dev; 2430 econnp->conn_minor_arena = aconnp->conn_minor_arena; 2431 ASSERT(econnp->conn_minor_arena != NULL); 2432 if (eager->tcp_cred != NULL) 2433 crfree(eager->tcp_cred); 2434 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2435 ASSERT(econnp->conn_netstack == aconnp->conn_netstack); 2436 ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); 2437 2438 aconnp->conn_cred = NULL; 2439 2440 econnp->conn_zoneid = aconnp->conn_zoneid; 2441 econnp->conn_allzones = aconnp->conn_allzones; 2442 2443 econnp->conn_mac_exempt = aconnp->conn_mac_exempt; 2444 aconnp->conn_mac_exempt = B_FALSE; 2445 2446 ASSERT(aconnp->conn_peercred == NULL); 2447 2448 /* Do the IPC initialization */ 2449 CONN_INC_REF(econnp); 2450 2451 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2452 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2453 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2454 2455 /* Done with old IPC. Drop its ref on its connp */ 2456 CONN_DEC_REF(aconnp); 2457 } 2458 2459 2460 /* 2461 * Adapt to the information, such as rtt and rtt_sd, provided from the 2462 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2463 * 2464 * Checks for multicast and broadcast destination address. 2465 * Returns zero on failure; non-zero if ok. 2466 * 2467 * Note that the MSS calculation here is based on the info given in 2468 * the IRE. We do not do any calculation based on TCP options. They 2469 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2470 * knows which options to use. 2471 * 2472 * Note on how TCP gets its parameters for a connection. 2473 * 2474 * When a tcp_t structure is allocated, it gets all the default parameters. 2475 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2476 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2477 * default. But if there is an associated tcp_host_param, it will override 2478 * the metrics. 2479 * 2480 * An incoming SYN with a multicast or broadcast destination address, is dropped 2481 * in 1 of 2 places. 2482 * 2483 * 1. If the packet was received over the wire it is dropped in 2484 * ip_rput_process_broadcast() 2485 * 2486 * 2. If the packet was received through internal IP loopback, i.e. the packet 2487 * was generated and received on the same machine, it is dropped in 2488 * ip_wput_local() 2489 * 2490 * An incoming SYN with a multicast or broadcast source address is always 2491 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2492 * reject an attempt to connect to a broadcast or multicast (destination) 2493 * address. 2494 */ 2495 static int 2496 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2497 { 2498 tcp_hsp_t *hsp; 2499 ire_t *ire; 2500 ire_t *sire = NULL; 2501 iulp_t *ire_uinfo = NULL; 2502 uint32_t mss_max; 2503 uint32_t mss; 2504 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2505 conn_t *connp = tcp->tcp_connp; 2506 boolean_t ire_cacheable = B_FALSE; 2507 zoneid_t zoneid = connp->conn_zoneid; 2508 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 2509 MATCH_IRE_SECATTR; 2510 ts_label_t *tsl = crgetlabel(CONN_CRED(connp)); 2511 ill_t *ill = NULL; 2512 boolean_t incoming = (ire_mp == NULL); 2513 tcp_stack_t *tcps = tcp->tcp_tcps; 2514 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 2515 2516 ASSERT(connp->conn_ire_cache == NULL); 2517 2518 if (tcp->tcp_ipversion == IPV4_VERSION) { 2519 2520 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2521 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 2522 return (0); 2523 } 2524 /* 2525 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2526 * for the destination with the nexthop as gateway. 2527 * ire_ctable_lookup() is used because this particular 2528 * ire, if it exists, will be marked private. 2529 * If that is not available, use the interface ire 2530 * for the nexthop. 2531 * 2532 * TSol: tcp_update_label will detect label mismatches based 2533 * only on the destination's label, but that would not 2534 * detect label mismatches based on the security attributes 2535 * of routes or next hop gateway. Hence we need to pass the 2536 * label to ire_ftable_lookup below in order to locate the 2537 * right prefix (and/or) ire cache. Similarly we also need 2538 * pass the label to the ire_cache_lookup below to locate 2539 * the right ire that also matches on the label. 2540 */ 2541 if (tcp->tcp_connp->conn_nexthop_set) { 2542 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2543 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2544 tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, 2545 ipst); 2546 if (ire == NULL) { 2547 ire = ire_ftable_lookup( 2548 tcp->tcp_connp->conn_nexthop_v4, 2549 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2550 tsl, match_flags, ipst); 2551 if (ire == NULL) 2552 return (0); 2553 } else { 2554 ire_uinfo = &ire->ire_uinfo; 2555 } 2556 } else { 2557 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2558 zoneid, tsl, ipst); 2559 if (ire != NULL) { 2560 ire_cacheable = B_TRUE; 2561 ire_uinfo = (ire_mp != NULL) ? 2562 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2563 &ire->ire_uinfo; 2564 2565 } else { 2566 if (ire_mp == NULL) { 2567 ire = ire_ftable_lookup( 2568 tcp->tcp_connp->conn_rem, 2569 0, 0, 0, NULL, &sire, zoneid, 0, 2570 tsl, (MATCH_IRE_RECURSIVE | 2571 MATCH_IRE_DEFAULT), ipst); 2572 if (ire == NULL) 2573 return (0); 2574 ire_uinfo = (sire != NULL) ? 2575 &sire->ire_uinfo : 2576 &ire->ire_uinfo; 2577 } else { 2578 ire = (ire_t *)ire_mp->b_rptr; 2579 ire_uinfo = 2580 &((ire_t *) 2581 ire_mp->b_rptr)->ire_uinfo; 2582 } 2583 } 2584 } 2585 ASSERT(ire != NULL); 2586 2587 if ((ire->ire_src_addr == INADDR_ANY) || 2588 (ire->ire_type & IRE_BROADCAST)) { 2589 /* 2590 * ire->ire_mp is non null when ire_mp passed in is used 2591 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2592 */ 2593 if (ire->ire_mp == NULL) 2594 ire_refrele(ire); 2595 if (sire != NULL) 2596 ire_refrele(sire); 2597 return (0); 2598 } 2599 2600 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2601 ipaddr_t src_addr; 2602 2603 /* 2604 * ip_bind_connected() has stored the correct source 2605 * address in conn_src. 2606 */ 2607 src_addr = tcp->tcp_connp->conn_src; 2608 tcp->tcp_ipha->ipha_src = src_addr; 2609 /* 2610 * Copy of the src addr. in tcp_t is needed 2611 * for the lookup funcs. 2612 */ 2613 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2614 } 2615 /* 2616 * Set the fragment bit so that IP will tell us if the MTU 2617 * should change. IP tells us the latest setting of 2618 * ip_path_mtu_discovery through ire_frag_flag. 2619 */ 2620 if (ipst->ips_ip_path_mtu_discovery) { 2621 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2622 htons(IPH_DF); 2623 } 2624 /* 2625 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2626 * for IP_NEXTHOP. No cache ire has been found for the 2627 * destination and we are working with the nexthop's 2628 * interface ire. Since we need to forward all packets 2629 * to the nexthop first, we "blindly" set tcp_localnet 2630 * to false, eventhough the destination may also be 2631 * onlink. 2632 */ 2633 if (ire_uinfo == NULL) 2634 tcp->tcp_localnet = 0; 2635 else 2636 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2637 } else { 2638 /* 2639 * For incoming connection ire_mp = NULL 2640 * For outgoing connection ire_mp != NULL 2641 * Technically we should check conn_incoming_ill 2642 * when ire_mp is NULL and conn_outgoing_ill when 2643 * ire_mp is non-NULL. But this is performance 2644 * critical path and for IPV*_BOUND_IF, outgoing 2645 * and incoming ill are always set to the same value. 2646 */ 2647 ill_t *dst_ill = NULL; 2648 ipif_t *dst_ipif = NULL; 2649 2650 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2651 2652 if (connp->conn_outgoing_ill != NULL) { 2653 /* Outgoing or incoming path */ 2654 int err; 2655 2656 dst_ill = conn_get_held_ill(connp, 2657 &connp->conn_outgoing_ill, &err); 2658 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2659 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2660 return (0); 2661 } 2662 match_flags |= MATCH_IRE_ILL; 2663 dst_ipif = dst_ill->ill_ipif; 2664 } 2665 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2666 0, 0, dst_ipif, zoneid, tsl, match_flags, ipst); 2667 2668 if (ire != NULL) { 2669 ire_cacheable = B_TRUE; 2670 ire_uinfo = (ire_mp != NULL) ? 2671 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2672 &ire->ire_uinfo; 2673 } else { 2674 if (ire_mp == NULL) { 2675 ire = ire_ftable_lookup_v6( 2676 &tcp->tcp_connp->conn_remv6, 2677 0, 0, 0, dst_ipif, &sire, zoneid, 2678 0, tsl, match_flags, ipst); 2679 if (ire == NULL) { 2680 if (dst_ill != NULL) 2681 ill_refrele(dst_ill); 2682 return (0); 2683 } 2684 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2685 &ire->ire_uinfo; 2686 } else { 2687 ire = (ire_t *)ire_mp->b_rptr; 2688 ire_uinfo = 2689 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2690 } 2691 } 2692 if (dst_ill != NULL) 2693 ill_refrele(dst_ill); 2694 2695 ASSERT(ire != NULL); 2696 ASSERT(ire_uinfo != NULL); 2697 2698 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2699 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2700 /* 2701 * ire->ire_mp is non null when ire_mp passed in is used 2702 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2703 */ 2704 if (ire->ire_mp == NULL) 2705 ire_refrele(ire); 2706 if (sire != NULL) 2707 ire_refrele(sire); 2708 return (0); 2709 } 2710 2711 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2712 in6_addr_t src_addr; 2713 2714 /* 2715 * ip_bind_connected_v6() has stored the correct source 2716 * address per IPv6 addr. selection policy in 2717 * conn_src_v6. 2718 */ 2719 src_addr = tcp->tcp_connp->conn_srcv6; 2720 2721 tcp->tcp_ip6h->ip6_src = src_addr; 2722 /* 2723 * Copy of the src addr. in tcp_t is needed 2724 * for the lookup funcs. 2725 */ 2726 tcp->tcp_ip_src_v6 = src_addr; 2727 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2728 &connp->conn_srcv6)); 2729 } 2730 tcp->tcp_localnet = 2731 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2732 } 2733 2734 /* 2735 * This allows applications to fail quickly when connections are made 2736 * to dead hosts. Hosts can be labeled dead by adding a reject route 2737 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2738 */ 2739 if ((ire->ire_flags & RTF_REJECT) && 2740 (ire->ire_flags & RTF_PRIVATE)) 2741 goto error; 2742 2743 /* 2744 * Make use of the cached rtt and rtt_sd values to calculate the 2745 * initial RTO. Note that they are already initialized in 2746 * tcp_init_values(). 2747 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2748 * IP_NEXTHOP, but instead are using the interface ire for the 2749 * nexthop, then we do not use the ire_uinfo from that ire to 2750 * do any initializations. 2751 */ 2752 if (ire_uinfo != NULL) { 2753 if (ire_uinfo->iulp_rtt != 0) { 2754 clock_t rto; 2755 2756 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2757 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2758 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2759 tcps->tcps_rexmit_interval_extra + 2760 (tcp->tcp_rtt_sa >> 5); 2761 2762 if (rto > tcps->tcps_rexmit_interval_max) { 2763 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 2764 } else if (rto < tcps->tcps_rexmit_interval_min) { 2765 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2766 } else { 2767 tcp->tcp_rto = rto; 2768 } 2769 } 2770 if (ire_uinfo->iulp_ssthresh != 0) 2771 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2772 else 2773 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2774 if (ire_uinfo->iulp_spipe > 0) { 2775 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2776 tcps->tcps_max_buf); 2777 if (tcps->tcps_snd_lowat_fraction != 0) 2778 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2779 tcps->tcps_snd_lowat_fraction; 2780 (void) tcp_maxpsz_set(tcp, B_TRUE); 2781 } 2782 /* 2783 * Note that up till now, acceptor always inherits receive 2784 * window from the listener. But if there is a metrics 2785 * associated with a host, we should use that instead of 2786 * inheriting it from listener. Thus we need to pass this 2787 * info back to the caller. 2788 */ 2789 if (ire_uinfo->iulp_rpipe > 0) { 2790 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, 2791 tcps->tcps_max_buf); 2792 } 2793 2794 if (ire_uinfo->iulp_rtomax > 0) { 2795 tcp->tcp_second_timer_threshold = 2796 ire_uinfo->iulp_rtomax; 2797 } 2798 2799 /* 2800 * Use the metric option settings, iulp_tstamp_ok and 2801 * iulp_wscale_ok, only for active open. What this means 2802 * is that if the other side uses timestamp or window 2803 * scale option, TCP will also use those options. That 2804 * is for passive open. If the application sets a 2805 * large window, window scale is enabled regardless of 2806 * the value in iulp_wscale_ok. This is the behavior 2807 * since 2.6. So we keep it. 2808 * The only case left in passive open processing is the 2809 * check for SACK. 2810 * For ECN, it should probably be like SACK. But the 2811 * current value is binary, so we treat it like the other 2812 * cases. The metric only controls active open.For passive 2813 * open, the ndd param, tcp_ecn_permitted, controls the 2814 * behavior. 2815 */ 2816 if (!tcp_detached) { 2817 /* 2818 * The if check means that the following can only 2819 * be turned on by the metrics only IRE, but not off. 2820 */ 2821 if (ire_uinfo->iulp_tstamp_ok) 2822 tcp->tcp_snd_ts_ok = B_TRUE; 2823 if (ire_uinfo->iulp_wscale_ok) 2824 tcp->tcp_snd_ws_ok = B_TRUE; 2825 if (ire_uinfo->iulp_sack == 2) 2826 tcp->tcp_snd_sack_ok = B_TRUE; 2827 if (ire_uinfo->iulp_ecn_ok) 2828 tcp->tcp_ecn_ok = B_TRUE; 2829 } else { 2830 /* 2831 * Passive open. 2832 * 2833 * As above, the if check means that SACK can only be 2834 * turned on by the metric only IRE. 2835 */ 2836 if (ire_uinfo->iulp_sack > 0) { 2837 tcp->tcp_snd_sack_ok = B_TRUE; 2838 } 2839 } 2840 } 2841 2842 2843 /* 2844 * XXX: Note that currently, ire_max_frag can be as small as 68 2845 * because of PMTUd. So tcp_mss may go to negative if combined 2846 * length of all those options exceeds 28 bytes. But because 2847 * of the tcp_mss_min check below, we may not have a problem if 2848 * tcp_mss_min is of a reasonable value. The default is 1 so 2849 * the negative problem still exists. And the check defeats PMTUd. 2850 * In fact, if PMTUd finds that the MSS should be smaller than 2851 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2852 * value. 2853 * 2854 * We do not deal with that now. All those problems related to 2855 * PMTUd will be fixed later. 2856 */ 2857 ASSERT(ire->ire_max_frag != 0); 2858 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2859 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2860 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2861 mss = MIN(mss, IPV6_MIN_MTU); 2862 } 2863 } 2864 2865 /* Sanity check for MSS value. */ 2866 if (tcp->tcp_ipversion == IPV4_VERSION) 2867 mss_max = tcps->tcps_mss_max_ipv4; 2868 else 2869 mss_max = tcps->tcps_mss_max_ipv6; 2870 2871 if (tcp->tcp_ipversion == IPV6_VERSION && 2872 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2873 /* 2874 * After receiving an ICMPv6 "packet too big" message with a 2875 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2876 * will insert a 8-byte fragment header in every packet; we 2877 * reduce the MSS by that amount here. 2878 */ 2879 mss -= sizeof (ip6_frag_t); 2880 } 2881 2882 if (tcp->tcp_ipsec_overhead == 0) 2883 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2884 2885 mss -= tcp->tcp_ipsec_overhead; 2886 2887 if (mss < tcps->tcps_mss_min) 2888 mss = tcps->tcps_mss_min; 2889 if (mss > mss_max) 2890 mss = mss_max; 2891 2892 /* Note that this is the maximum MSS, excluding all options. */ 2893 tcp->tcp_mss = mss; 2894 2895 /* 2896 * Initialize the ISS here now that we have the full connection ID. 2897 * The RFC 1948 method of initial sequence number generation requires 2898 * knowledge of the full connection ID before setting the ISS. 2899 */ 2900 2901 tcp_iss_init(tcp); 2902 2903 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2904 tcp->tcp_loopback = B_TRUE; 2905 2906 if (tcp->tcp_ipversion == IPV4_VERSION) { 2907 hsp = tcp_hsp_lookup(tcp->tcp_remote, tcps); 2908 } else { 2909 hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6, tcps); 2910 } 2911 2912 if (hsp != NULL) { 2913 /* Only modify if we're going to make them bigger */ 2914 if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) { 2915 tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace; 2916 if (tcps->tcps_snd_lowat_fraction != 0) 2917 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2918 tcps->tcps_snd_lowat_fraction; 2919 } 2920 2921 if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) { 2922 tcp->tcp_rwnd = hsp->tcp_hsp_recvspace; 2923 } 2924 2925 /* Copy timestamp flag only for active open */ 2926 if (!tcp_detached) 2927 tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp; 2928 } 2929 2930 if (sire != NULL) 2931 IRE_REFRELE(sire); 2932 2933 /* 2934 * If we got an IRE_CACHE and an ILL, go through their properties; 2935 * otherwise, this is deferred until later when we have an IRE_CACHE. 2936 */ 2937 if (tcp->tcp_loopback || 2938 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 2939 /* 2940 * For incoming, see if this tcp may be MDT-capable. For 2941 * outgoing, this process has been taken care of through 2942 * tcp_rput_other. 2943 */ 2944 tcp_ire_ill_check(tcp, ire, ill, incoming); 2945 tcp->tcp_ire_ill_check_done = B_TRUE; 2946 } 2947 2948 mutex_enter(&connp->conn_lock); 2949 /* 2950 * Make sure that conn is not marked incipient 2951 * for incoming connections. A blind 2952 * removal of incipient flag is cheaper than 2953 * check and removal. 2954 */ 2955 connp->conn_state_flags &= ~CONN_INCIPIENT; 2956 2957 /* 2958 * Must not cache forwarding table routes 2959 * or recache an IRE after the conn_t has 2960 * had conn_ire_cache cleared and is flagged 2961 * unusable, (see the CONN_CACHE_IRE() macro). 2962 */ 2963 if (ire_cacheable && CONN_CACHE_IRE(connp)) { 2964 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 2965 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 2966 connp->conn_ire_cache = ire; 2967 IRE_UNTRACE_REF(ire); 2968 rw_exit(&ire->ire_bucket->irb_lock); 2969 mutex_exit(&connp->conn_lock); 2970 return (1); 2971 } 2972 rw_exit(&ire->ire_bucket->irb_lock); 2973 } 2974 mutex_exit(&connp->conn_lock); 2975 2976 if (ire->ire_mp == NULL) 2977 ire_refrele(ire); 2978 return (1); 2979 2980 error: 2981 if (ire->ire_mp == NULL) 2982 ire_refrele(ire); 2983 if (sire != NULL) 2984 ire_refrele(sire); 2985 return (0); 2986 } 2987 2988 /* 2989 * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a 2990 * O_T_BIND_REQ/T_BIND_REQ message. 2991 */ 2992 static void 2993 tcp_bind(tcp_t *tcp, mblk_t *mp) 2994 { 2995 sin_t *sin; 2996 sin6_t *sin6; 2997 mblk_t *mp1; 2998 in_port_t requested_port; 2999 in_port_t allocated_port; 3000 struct T_bind_req *tbr; 3001 boolean_t bind_to_req_port_only; 3002 boolean_t backlog_update = B_FALSE; 3003 boolean_t user_specified; 3004 in6_addr_t v6addr; 3005 ipaddr_t v4addr; 3006 uint_t origipversion; 3007 int err; 3008 queue_t *q = tcp->tcp_wq; 3009 conn_t *connp = tcp->tcp_connp; 3010 mlp_type_t addrtype, mlptype; 3011 zone_t *zone; 3012 cred_t *cr; 3013 in_port_t mlp_port; 3014 tcp_stack_t *tcps = tcp->tcp_tcps; 3015 3016 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 3017 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 3018 if (tcp->tcp_debug) { 3019 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3020 "tcp_bind: bad req, len %u", 3021 (uint_t)(mp->b_wptr - mp->b_rptr)); 3022 } 3023 tcp_err_ack(tcp, mp, TPROTO, 0); 3024 return; 3025 } 3026 /* Make sure the largest address fits */ 3027 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 3028 if (mp1 == NULL) { 3029 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3030 return; 3031 } 3032 mp = mp1; 3033 tbr = (struct T_bind_req *)mp->b_rptr; 3034 if (tcp->tcp_state >= TCPS_BOUND) { 3035 if ((tcp->tcp_state == TCPS_BOUND || 3036 tcp->tcp_state == TCPS_LISTEN) && 3037 tcp->tcp_conn_req_max != tbr->CONIND_number && 3038 tbr->CONIND_number > 0) { 3039 /* 3040 * Handle listen() increasing CONIND_number. 3041 * This is more "liberal" then what the TPI spec 3042 * requires but is needed to avoid a t_unbind 3043 * when handling listen() since the port number 3044 * might be "stolen" between the unbind and bind. 3045 */ 3046 backlog_update = B_TRUE; 3047 goto do_bind; 3048 } 3049 if (tcp->tcp_debug) { 3050 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3051 "tcp_bind: bad state, %d", tcp->tcp_state); 3052 } 3053 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 3054 return; 3055 } 3056 origipversion = tcp->tcp_ipversion; 3057 3058 switch (tbr->ADDR_length) { 3059 case 0: /* request for a generic port */ 3060 tbr->ADDR_offset = sizeof (struct T_bind_req); 3061 if (tcp->tcp_family == AF_INET) { 3062 tbr->ADDR_length = sizeof (sin_t); 3063 sin = (sin_t *)&tbr[1]; 3064 *sin = sin_null; 3065 sin->sin_family = AF_INET; 3066 mp->b_wptr = (uchar_t *)&sin[1]; 3067 tcp->tcp_ipversion = IPV4_VERSION; 3068 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); 3069 } else { 3070 ASSERT(tcp->tcp_family == AF_INET6); 3071 tbr->ADDR_length = sizeof (sin6_t); 3072 sin6 = (sin6_t *)&tbr[1]; 3073 *sin6 = sin6_null; 3074 sin6->sin6_family = AF_INET6; 3075 mp->b_wptr = (uchar_t *)&sin6[1]; 3076 tcp->tcp_ipversion = IPV6_VERSION; 3077 V6_SET_ZERO(v6addr); 3078 } 3079 requested_port = 0; 3080 break; 3081 3082 case sizeof (sin_t): /* Complete IPv4 address */ 3083 sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, 3084 sizeof (sin_t)); 3085 if (sin == NULL || !OK_32PTR((char *)sin)) { 3086 if (tcp->tcp_debug) { 3087 (void) strlog(TCP_MOD_ID, 0, 1, 3088 SL_ERROR|SL_TRACE, 3089 "tcp_bind: bad address parameter, " 3090 "offset %d, len %d", 3091 tbr->ADDR_offset, tbr->ADDR_length); 3092 } 3093 tcp_err_ack(tcp, mp, TPROTO, 0); 3094 return; 3095 } 3096 /* 3097 * With sockets sockfs will accept bogus sin_family in 3098 * bind() and replace it with the family used in the socket 3099 * call. 3100 */ 3101 if (sin->sin_family != AF_INET || 3102 tcp->tcp_family != AF_INET) { 3103 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3104 return; 3105 } 3106 requested_port = ntohs(sin->sin_port); 3107 tcp->tcp_ipversion = IPV4_VERSION; 3108 v4addr = sin->sin_addr.s_addr; 3109 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 3110 break; 3111 3112 case sizeof (sin6_t): /* Complete IPv6 address */ 3113 sin6 = (sin6_t *)mi_offset_param(mp, 3114 tbr->ADDR_offset, sizeof (sin6_t)); 3115 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 3116 if (tcp->tcp_debug) { 3117 (void) strlog(TCP_MOD_ID, 0, 1, 3118 SL_ERROR|SL_TRACE, 3119 "tcp_bind: bad IPv6 address parameter, " 3120 "offset %d, len %d", tbr->ADDR_offset, 3121 tbr->ADDR_length); 3122 } 3123 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 3124 return; 3125 } 3126 if (sin6->sin6_family != AF_INET6 || 3127 tcp->tcp_family != AF_INET6) { 3128 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3129 return; 3130 } 3131 requested_port = ntohs(sin6->sin6_port); 3132 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 3133 IPV4_VERSION : IPV6_VERSION; 3134 v6addr = sin6->sin6_addr; 3135 break; 3136 3137 default: 3138 if (tcp->tcp_debug) { 3139 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3140 "tcp_bind: bad address length, %d", 3141 tbr->ADDR_length); 3142 } 3143 tcp_err_ack(tcp, mp, TBADADDR, 0); 3144 return; 3145 } 3146 tcp->tcp_bound_source_v6 = v6addr; 3147 3148 /* Check for change in ipversion */ 3149 if (origipversion != tcp->tcp_ipversion) { 3150 ASSERT(tcp->tcp_family == AF_INET6); 3151 err = tcp->tcp_ipversion == IPV6_VERSION ? 3152 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 3153 if (err) { 3154 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3155 return; 3156 } 3157 } 3158 3159 /* 3160 * Initialize family specific fields. Copy of the src addr. 3161 * in tcp_t is needed for the lookup funcs. 3162 */ 3163 if (tcp->tcp_ipversion == IPV6_VERSION) { 3164 tcp->tcp_ip6h->ip6_src = v6addr; 3165 } else { 3166 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 3167 } 3168 tcp->tcp_ip_src_v6 = v6addr; 3169 3170 /* 3171 * For O_T_BIND_REQ: 3172 * Verify that the target port/addr is available, or choose 3173 * another. 3174 * For T_BIND_REQ: 3175 * Verify that the target port/addr is available or fail. 3176 * In both cases when it succeeds the tcp is inserted in the 3177 * bind hash table. This ensures that the operation is atomic 3178 * under the lock on the hash bucket. 3179 */ 3180 bind_to_req_port_only = requested_port != 0 && 3181 tbr->PRIM_type != O_T_BIND_REQ; 3182 /* 3183 * Get a valid port (within the anonymous range and should not 3184 * be a privileged one) to use if the user has not given a port. 3185 * If multiple threads are here, they may all start with 3186 * with the same initial port. But, it should be fine as long as 3187 * tcp_bindi will ensure that no two threads will be assigned 3188 * the same port. 3189 * 3190 * NOTE: XXX If a privileged process asks for an anonymous port, we 3191 * still check for ports only in the range > tcp_smallest_non_priv_port, 3192 * unless TCP_ANONPRIVBIND option is set. 3193 */ 3194 mlptype = mlptSingle; 3195 mlp_port = requested_port; 3196 if (requested_port == 0) { 3197 requested_port = tcp->tcp_anon_priv_bind ? 3198 tcp_get_next_priv_port(tcp) : 3199 tcp_update_next_port(tcps->tcps_next_port_to_try, 3200 tcp, B_TRUE); 3201 if (requested_port == 0) { 3202 tcp_err_ack(tcp, mp, TNOADDR, 0); 3203 return; 3204 } 3205 user_specified = B_FALSE; 3206 3207 /* 3208 * If the user went through one of the RPC interfaces to create 3209 * this socket and RPC is MLP in this zone, then give him an 3210 * anonymous MLP. 3211 */ 3212 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3213 if (connp->conn_anon_mlp && is_system_labeled()) { 3214 zone = crgetzone(cr); 3215 addrtype = tsol_mlp_addr_type(zone->zone_id, 3216 IPV6_VERSION, &v6addr, 3217 tcps->tcps_netstack->netstack_ip); 3218 if (addrtype == mlptSingle) { 3219 tcp_err_ack(tcp, mp, TNOADDR, 0); 3220 return; 3221 } 3222 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3223 PMAPPORT, addrtype); 3224 mlp_port = PMAPPORT; 3225 } 3226 } else { 3227 int i; 3228 boolean_t priv = B_FALSE; 3229 3230 /* 3231 * If the requested_port is in the well-known privileged range, 3232 * verify that the stream was opened by a privileged user. 3233 * Note: No locks are held when inspecting tcp_g_*epriv_ports 3234 * but instead the code relies on: 3235 * - the fact that the address of the array and its size never 3236 * changes 3237 * - the atomic assignment of the elements of the array 3238 */ 3239 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3240 if (requested_port < tcps->tcps_smallest_nonpriv_port) { 3241 priv = B_TRUE; 3242 } else { 3243 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 3244 if (requested_port == 3245 tcps->tcps_g_epriv_ports[i]) { 3246 priv = B_TRUE; 3247 break; 3248 } 3249 } 3250 } 3251 if (priv) { 3252 if (secpolicy_net_privaddr(cr, requested_port) != 0) { 3253 if (tcp->tcp_debug) { 3254 (void) strlog(TCP_MOD_ID, 0, 1, 3255 SL_ERROR|SL_TRACE, 3256 "tcp_bind: no priv for port %d", 3257 requested_port); 3258 } 3259 tcp_err_ack(tcp, mp, TACCES, 0); 3260 return; 3261 } 3262 } 3263 user_specified = B_TRUE; 3264 3265 if (is_system_labeled()) { 3266 zone = crgetzone(cr); 3267 addrtype = tsol_mlp_addr_type(zone->zone_id, 3268 IPV6_VERSION, &v6addr, 3269 tcps->tcps_netstack->netstack_ip); 3270 if (addrtype == mlptSingle) { 3271 tcp_err_ack(tcp, mp, TNOADDR, 0); 3272 return; 3273 } 3274 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3275 requested_port, addrtype); 3276 } 3277 } 3278 3279 if (mlptype != mlptSingle) { 3280 if (secpolicy_net_bindmlp(cr) != 0) { 3281 if (tcp->tcp_debug) { 3282 (void) strlog(TCP_MOD_ID, 0, 1, 3283 SL_ERROR|SL_TRACE, 3284 "tcp_bind: no priv for multilevel port %d", 3285 requested_port); 3286 } 3287 tcp_err_ack(tcp, mp, TACCES, 0); 3288 return; 3289 } 3290 3291 /* 3292 * If we're specifically binding a shared IP address and the 3293 * port is MLP on shared addresses, then check to see if this 3294 * zone actually owns the MLP. Reject if not. 3295 */ 3296 if (mlptype == mlptShared && addrtype == mlptShared) { 3297 /* 3298 * No need to handle exclusive-stack zones since 3299 * ALL_ZONES only applies to the shared stack. 3300 */ 3301 zoneid_t mlpzone; 3302 3303 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 3304 htons(mlp_port)); 3305 if (connp->conn_zoneid != mlpzone) { 3306 if (tcp->tcp_debug) { 3307 (void) strlog(TCP_MOD_ID, 0, 1, 3308 SL_ERROR|SL_TRACE, 3309 "tcp_bind: attempt to bind port " 3310 "%d on shared addr in zone %d " 3311 "(should be %d)", 3312 mlp_port, connp->conn_zoneid, 3313 mlpzone); 3314 } 3315 tcp_err_ack(tcp, mp, TACCES, 0); 3316 return; 3317 } 3318 } 3319 3320 if (!user_specified) { 3321 err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3322 requested_port, B_TRUE); 3323 if (err != 0) { 3324 if (tcp->tcp_debug) { 3325 (void) strlog(TCP_MOD_ID, 0, 1, 3326 SL_ERROR|SL_TRACE, 3327 "tcp_bind: cannot establish anon " 3328 "MLP for port %d", 3329 requested_port); 3330 } 3331 tcp_err_ack(tcp, mp, TSYSERR, err); 3332 return; 3333 } 3334 connp->conn_anon_port = B_TRUE; 3335 } 3336 connp->conn_mlp_type = mlptype; 3337 } 3338 3339 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 3340 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 3341 3342 if (allocated_port == 0) { 3343 connp->conn_mlp_type = mlptSingle; 3344 if (connp->conn_anon_port) { 3345 connp->conn_anon_port = B_FALSE; 3346 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3347 requested_port, B_FALSE); 3348 } 3349 if (bind_to_req_port_only) { 3350 if (tcp->tcp_debug) { 3351 (void) strlog(TCP_MOD_ID, 0, 1, 3352 SL_ERROR|SL_TRACE, 3353 "tcp_bind: requested addr busy"); 3354 } 3355 tcp_err_ack(tcp, mp, TADDRBUSY, 0); 3356 } else { 3357 /* If we are out of ports, fail the bind. */ 3358 if (tcp->tcp_debug) { 3359 (void) strlog(TCP_MOD_ID, 0, 1, 3360 SL_ERROR|SL_TRACE, 3361 "tcp_bind: out of ports?"); 3362 } 3363 tcp_err_ack(tcp, mp, TNOADDR, 0); 3364 } 3365 return; 3366 } 3367 ASSERT(tcp->tcp_state == TCPS_BOUND); 3368 do_bind: 3369 if (!backlog_update) { 3370 if (tcp->tcp_family == AF_INET) 3371 sin->sin_port = htons(allocated_port); 3372 else 3373 sin6->sin6_port = htons(allocated_port); 3374 } 3375 if (tcp->tcp_family == AF_INET) { 3376 if (tbr->CONIND_number != 0) { 3377 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3378 sizeof (sin_t)); 3379 } else { 3380 /* Just verify the local IP address */ 3381 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN); 3382 } 3383 } else { 3384 if (tbr->CONIND_number != 0) { 3385 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3386 sizeof (sin6_t)); 3387 } else { 3388 /* Just verify the local IP address */ 3389 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3390 IPV6_ADDR_LEN); 3391 } 3392 } 3393 if (mp1 == NULL) { 3394 if (connp->conn_anon_port) { 3395 connp->conn_anon_port = B_FALSE; 3396 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3397 requested_port, B_FALSE); 3398 } 3399 connp->conn_mlp_type = mlptSingle; 3400 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3401 return; 3402 } 3403 3404 tbr->PRIM_type = T_BIND_ACK; 3405 mp->b_datap->db_type = M_PCPROTO; 3406 3407 /* Chain in the reply mp for tcp_rput() */ 3408 mp1->b_cont = mp; 3409 mp = mp1; 3410 3411 tcp->tcp_conn_req_max = tbr->CONIND_number; 3412 if (tcp->tcp_conn_req_max) { 3413 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 3414 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 3415 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 3416 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 3417 /* 3418 * If this is a listener, do not reset the eager list 3419 * and other stuffs. Note that we don't check if the 3420 * existing eager list meets the new tcp_conn_req_max 3421 * requirement. 3422 */ 3423 if (tcp->tcp_state != TCPS_LISTEN) { 3424 tcp->tcp_state = TCPS_LISTEN; 3425 /* Initialize the chain. Don't need the eager_lock */ 3426 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 3427 tcp->tcp_eager_next_drop_q0 = tcp; 3428 tcp->tcp_eager_prev_drop_q0 = tcp; 3429 tcp->tcp_second_ctimer_threshold = 3430 tcps->tcps_ip_abort_linterval; 3431 } 3432 } 3433 3434 /* 3435 * We can call ip_bind directly which returns a T_BIND_ACK mp. The 3436 * processing continues in tcp_rput_other(). 3437 * 3438 * We need to make sure that the conn_recv is set to a non-null 3439 * value before we insert the conn into the classifier table. 3440 * This is to avoid a race with an incoming packet which does an 3441 * ipcl_classify(). 3442 */ 3443 connp->conn_recv = tcp_conn_request; 3444 if (tcp->tcp_family == AF_INET6) { 3445 ASSERT(tcp->tcp_connp->conn_af_isv6); 3446 mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp); 3447 } else { 3448 ASSERT(!tcp->tcp_connp->conn_af_isv6); 3449 mp = ip_bind_v4(q, mp, tcp->tcp_connp); 3450 } 3451 /* 3452 * If the bind cannot complete immediately 3453 * IP will arrange to call tcp_rput_other 3454 * when the bind completes. 3455 */ 3456 if (mp != NULL) { 3457 tcp_rput_other(tcp, mp); 3458 } else { 3459 /* 3460 * Bind will be resumed later. Need to ensure 3461 * that conn doesn't disappear when that happens. 3462 * This will be decremented in ip_resume_tcp_bind(). 3463 */ 3464 CONN_INC_REF(tcp->tcp_connp); 3465 } 3466 } 3467 3468 3469 /* 3470 * If the "bind_to_req_port_only" parameter is set, if the requested port 3471 * number is available, return it, If not return 0 3472 * 3473 * If "bind_to_req_port_only" parameter is not set and 3474 * If the requested port number is available, return it. If not, return 3475 * the first anonymous port we happen across. If no anonymous ports are 3476 * available, return 0. addr is the requested local address, if any. 3477 * 3478 * In either case, when succeeding update the tcp_t to record the port number 3479 * and insert it in the bind hash table. 3480 * 3481 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3482 * without setting SO_REUSEADDR. This is needed so that they 3483 * can be viewed as two independent transport protocols. 3484 */ 3485 static in_port_t 3486 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3487 int reuseaddr, boolean_t quick_connect, 3488 boolean_t bind_to_req_port_only, boolean_t user_specified) 3489 { 3490 /* number of times we have run around the loop */ 3491 int count = 0; 3492 /* maximum number of times to run around the loop */ 3493 int loopmax; 3494 conn_t *connp = tcp->tcp_connp; 3495 zoneid_t zoneid = connp->conn_zoneid; 3496 tcp_stack_t *tcps = tcp->tcp_tcps; 3497 3498 /* 3499 * Lookup for free addresses is done in a loop and "loopmax" 3500 * influences how long we spin in the loop 3501 */ 3502 if (bind_to_req_port_only) { 3503 /* 3504 * If the requested port is busy, don't bother to look 3505 * for a new one. Setting loop maximum count to 1 has 3506 * that effect. 3507 */ 3508 loopmax = 1; 3509 } else { 3510 /* 3511 * If the requested port is busy, look for a free one 3512 * in the anonymous port range. 3513 * Set loopmax appropriately so that one does not look 3514 * forever in the case all of the anonymous ports are in use. 3515 */ 3516 if (tcp->tcp_anon_priv_bind) { 3517 /* 3518 * loopmax = 3519 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3520 */ 3521 loopmax = IPPORT_RESERVED - 3522 tcps->tcps_min_anonpriv_port; 3523 } else { 3524 loopmax = (tcps->tcps_largest_anon_port - 3525 tcps->tcps_smallest_anon_port + 1); 3526 } 3527 } 3528 do { 3529 uint16_t lport; 3530 tf_t *tbf; 3531 tcp_t *ltcp; 3532 conn_t *lconnp; 3533 3534 lport = htons(port); 3535 3536 /* 3537 * Ensure that the tcp_t is not currently in the bind hash. 3538 * Hold the lock on the hash bucket to ensure that 3539 * the duplicate check plus the insertion is an atomic 3540 * operation. 3541 * 3542 * This function does an inline lookup on the bind hash list 3543 * Make sure that we access only members of tcp_t 3544 * and that we don't look at tcp_tcp, since we are not 3545 * doing a CONN_INC_REF. 3546 */ 3547 tcp_bind_hash_remove(tcp); 3548 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; 3549 mutex_enter(&tbf->tf_lock); 3550 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3551 ltcp = ltcp->tcp_bind_hash) { 3552 boolean_t not_socket; 3553 boolean_t exclbind; 3554 3555 if (lport != ltcp->tcp_lport) 3556 continue; 3557 3558 lconnp = ltcp->tcp_connp; 3559 3560 /* 3561 * On a labeled system, we must treat bindings to ports 3562 * on shared IP addresses by sockets with MAC exemption 3563 * privilege as being in all zones, as there's 3564 * otherwise no way to identify the right receiver. 3565 */ 3566 if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) || 3567 IPCL_ZONE_MATCH(connp, 3568 ltcp->tcp_connp->conn_zoneid)) && 3569 !lconnp->conn_mac_exempt && 3570 !connp->conn_mac_exempt) 3571 continue; 3572 3573 /* 3574 * If TCP_EXCLBIND is set for either the bound or 3575 * binding endpoint, the semantics of bind 3576 * is changed according to the following. 3577 * 3578 * spec = specified address (v4 or v6) 3579 * unspec = unspecified address (v4 or v6) 3580 * A = specified addresses are different for endpoints 3581 * 3582 * bound bind to allowed 3583 * ------------------------------------- 3584 * unspec unspec no 3585 * unspec spec no 3586 * spec unspec no 3587 * spec spec yes if A 3588 * 3589 * For labeled systems, SO_MAC_EXEMPT behaves the same 3590 * as TCP_EXCLBIND, except that zoneid is ignored. 3591 * 3592 * Note: 3593 * 3594 * 1. Because of TLI semantics, an endpoint can go 3595 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3596 * TCPS_BOUND, depending on whether it is originally 3597 * a listener or not. That is why we need to check 3598 * for states greater than or equal to TCPS_BOUND 3599 * here. 3600 * 3601 * 2. Ideally, we should only check for state equals 3602 * to TCPS_LISTEN. And the following check should be 3603 * added. 3604 * 3605 * if (ltcp->tcp_state == TCPS_LISTEN || 3606 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3607 * ... 3608 * } 3609 * 3610 * The semantics will be changed to this. If the 3611 * endpoint on the list is in state not equal to 3612 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3613 * set, let the bind succeed. 3614 * 3615 * Because of (1), we cannot do that for TLI 3616 * endpoints. But we can do that for socket endpoints. 3617 * If in future, we can change this going back 3618 * semantics, we can use the above check for TLI also. 3619 */ 3620 not_socket = !(TCP_IS_SOCKET(ltcp) && 3621 TCP_IS_SOCKET(tcp)); 3622 exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind; 3623 3624 if (lconnp->conn_mac_exempt || connp->conn_mac_exempt || 3625 (exclbind && (not_socket || 3626 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 3627 if (V6_OR_V4_INADDR_ANY( 3628 ltcp->tcp_bound_source_v6) || 3629 V6_OR_V4_INADDR_ANY(*laddr) || 3630 IN6_ARE_ADDR_EQUAL(laddr, 3631 <cp->tcp_bound_source_v6)) { 3632 break; 3633 } 3634 continue; 3635 } 3636 3637 /* 3638 * Check ipversion to allow IPv4 and IPv6 sockets to 3639 * have disjoint port number spaces, if *_EXCLBIND 3640 * is not set and only if the application binds to a 3641 * specific port. We use the same autoassigned port 3642 * number space for IPv4 and IPv6 sockets. 3643 */ 3644 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3645 bind_to_req_port_only) 3646 continue; 3647 3648 /* 3649 * Ideally, we should make sure that the source 3650 * address, remote address, and remote port in the 3651 * four tuple for this tcp-connection is unique. 3652 * However, trying to find out the local source 3653 * address would require too much code duplication 3654 * with IP, since IP needs needs to have that code 3655 * to support userland TCP implementations. 3656 */ 3657 if (quick_connect && 3658 (ltcp->tcp_state > TCPS_LISTEN) && 3659 ((tcp->tcp_fport != ltcp->tcp_fport) || 3660 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3661 <cp->tcp_remote_v6))) 3662 continue; 3663 3664 if (!reuseaddr) { 3665 /* 3666 * No socket option SO_REUSEADDR. 3667 * If existing port is bound to 3668 * a non-wildcard IP address 3669 * and the requesting stream is 3670 * bound to a distinct 3671 * different IP addresses 3672 * (non-wildcard, also), keep 3673 * going. 3674 */ 3675 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3676 !V6_OR_V4_INADDR_ANY( 3677 ltcp->tcp_bound_source_v6) && 3678 !IN6_ARE_ADDR_EQUAL(laddr, 3679 <cp->tcp_bound_source_v6)) 3680 continue; 3681 if (ltcp->tcp_state >= TCPS_BOUND) { 3682 /* 3683 * This port is being used and 3684 * its state is >= TCPS_BOUND, 3685 * so we can't bind to it. 3686 */ 3687 break; 3688 } 3689 } else { 3690 /* 3691 * socket option SO_REUSEADDR is set on the 3692 * binding tcp_t. 3693 * 3694 * If two streams are bound to 3695 * same IP address or both addr 3696 * and bound source are wildcards 3697 * (INADDR_ANY), we want to stop 3698 * searching. 3699 * We have found a match of IP source 3700 * address and source port, which is 3701 * refused regardless of the 3702 * SO_REUSEADDR setting, so we break. 3703 */ 3704 if (IN6_ARE_ADDR_EQUAL(laddr, 3705 <cp->tcp_bound_source_v6) && 3706 (ltcp->tcp_state == TCPS_LISTEN || 3707 ltcp->tcp_state == TCPS_BOUND)) 3708 break; 3709 } 3710 } 3711 if (ltcp != NULL) { 3712 /* The port number is busy */ 3713 mutex_exit(&tbf->tf_lock); 3714 } else { 3715 /* 3716 * This port is ours. Insert in fanout and mark as 3717 * bound to prevent others from getting the port 3718 * number. 3719 */ 3720 tcp->tcp_state = TCPS_BOUND; 3721 tcp->tcp_lport = htons(port); 3722 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3723 3724 ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( 3725 tcp->tcp_lport)] == tbf); 3726 tcp_bind_hash_insert(tbf, tcp, 1); 3727 3728 mutex_exit(&tbf->tf_lock); 3729 3730 /* 3731 * We don't want tcp_next_port_to_try to "inherit" 3732 * a port number supplied by the user in a bind. 3733 */ 3734 if (user_specified) 3735 return (port); 3736 3737 /* 3738 * This is the only place where tcp_next_port_to_try 3739 * is updated. After the update, it may or may not 3740 * be in the valid range. 3741 */ 3742 if (!tcp->tcp_anon_priv_bind) 3743 tcps->tcps_next_port_to_try = port + 1; 3744 return (port); 3745 } 3746 3747 if (tcp->tcp_anon_priv_bind) { 3748 port = tcp_get_next_priv_port(tcp); 3749 } else { 3750 if (count == 0 && user_specified) { 3751 /* 3752 * We may have to return an anonymous port. So 3753 * get one to start with. 3754 */ 3755 port = 3756 tcp_update_next_port( 3757 tcps->tcps_next_port_to_try, 3758 tcp, B_TRUE); 3759 user_specified = B_FALSE; 3760 } else { 3761 port = tcp_update_next_port(port + 1, tcp, 3762 B_FALSE); 3763 } 3764 } 3765 if (port == 0) 3766 break; 3767 3768 /* 3769 * Don't let this loop run forever in the case where 3770 * all of the anonymous ports are in use. 3771 */ 3772 } while (++count < loopmax); 3773 return (0); 3774 } 3775 3776 /* 3777 * tcp_clean_death / tcp_close_detached must not be called more than once 3778 * on a tcp. Thus every function that potentially calls tcp_clean_death 3779 * must check for the tcp state before calling tcp_clean_death. 3780 * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper, 3781 * tcp_timer_handler, all check for the tcp state. 3782 */ 3783 /* ARGSUSED */ 3784 void 3785 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2) 3786 { 3787 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3788 3789 freemsg(mp); 3790 if (tcp->tcp_state > TCPS_BOUND) 3791 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, 3792 ETIMEDOUT, 5); 3793 } 3794 3795 /* 3796 * We are dying for some reason. Try to do it gracefully. (May be called 3797 * as writer.) 3798 * 3799 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3800 * done by a service procedure). 3801 * TBD - Should the return value distinguish between the tcp_t being 3802 * freed and it being reinitialized? 3803 */ 3804 static int 3805 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3806 { 3807 mblk_t *mp; 3808 queue_t *q; 3809 tcp_stack_t *tcps = tcp->tcp_tcps; 3810 3811 TCP_CLD_STAT(tag); 3812 3813 #if TCP_TAG_CLEAN_DEATH 3814 tcp->tcp_cleandeathtag = tag; 3815 #endif 3816 3817 if (tcp->tcp_fused) 3818 tcp_unfuse(tcp); 3819 3820 if (tcp->tcp_linger_tid != 0 && 3821 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3822 tcp_stop_lingering(tcp); 3823 } 3824 3825 ASSERT(tcp != NULL); 3826 ASSERT((tcp->tcp_family == AF_INET && 3827 tcp->tcp_ipversion == IPV4_VERSION) || 3828 (tcp->tcp_family == AF_INET6 && 3829 (tcp->tcp_ipversion == IPV4_VERSION || 3830 tcp->tcp_ipversion == IPV6_VERSION))); 3831 3832 if (TCP_IS_DETACHED(tcp)) { 3833 if (tcp->tcp_hard_binding) { 3834 /* 3835 * Its an eager that we are dealing with. We close the 3836 * eager but in case a conn_ind has already gone to the 3837 * listener, let tcp_accept_finish() send a discon_ind 3838 * to the listener and drop the last reference. If the 3839 * listener doesn't even know about the eager i.e. the 3840 * conn_ind hasn't gone up, blow away the eager and drop 3841 * the last reference as well. If the conn_ind has gone 3842 * up, state should be BOUND. tcp_accept_finish 3843 * will figure out that the connection has received a 3844 * RST and will send a DISCON_IND to the application. 3845 */ 3846 tcp_closei_local(tcp); 3847 if (!tcp->tcp_tconnind_started) { 3848 CONN_DEC_REF(tcp->tcp_connp); 3849 } else { 3850 tcp->tcp_state = TCPS_BOUND; 3851 } 3852 } else { 3853 tcp_close_detached(tcp); 3854 } 3855 return (0); 3856 } 3857 3858 TCP_STAT(tcps, tcp_clean_death_nondetached); 3859 3860 /* 3861 * If T_ORDREL_IND has not been sent yet (done when service routine 3862 * is run) postpone cleaning up the endpoint until service routine 3863 * has sent up the T_ORDREL_IND. Avoid clearing out an existing 3864 * client_errno since tcp_close uses the client_errno field. 3865 */ 3866 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 3867 if (err != 0) 3868 tcp->tcp_client_errno = err; 3869 3870 tcp->tcp_deferred_clean_death = B_TRUE; 3871 return (-1); 3872 } 3873 3874 q = tcp->tcp_rq; 3875 3876 /* Trash all inbound data */ 3877 flushq(q, FLUSHALL); 3878 3879 /* 3880 * If we are at least part way open and there is error 3881 * (err==0 implies no error) 3882 * notify our client by a T_DISCON_IND. 3883 */ 3884 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3885 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3886 !TCP_IS_SOCKET(tcp)) { 3887 /* 3888 * Send M_FLUSH according to TPI. Because sockets will 3889 * (and must) ignore FLUSHR we do that only for TPI 3890 * endpoints and sockets in STREAMS mode. 3891 */ 3892 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3893 } 3894 if (tcp->tcp_debug) { 3895 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3896 "tcp_clean_death: discon err %d", err); 3897 } 3898 mp = mi_tpi_discon_ind(NULL, err, 0); 3899 if (mp != NULL) { 3900 putnext(q, mp); 3901 } else { 3902 if (tcp->tcp_debug) { 3903 (void) strlog(TCP_MOD_ID, 0, 1, 3904 SL_ERROR|SL_TRACE, 3905 "tcp_clean_death, sending M_ERROR"); 3906 } 3907 (void) putnextctl1(q, M_ERROR, EPROTO); 3908 } 3909 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3910 /* SYN_SENT or SYN_RCVD */ 3911 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3912 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3913 /* ESTABLISHED or CLOSE_WAIT */ 3914 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3915 } 3916 } 3917 3918 tcp_reinit(tcp); 3919 return (-1); 3920 } 3921 3922 /* 3923 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3924 * to expire, stop the wait and finish the close. 3925 */ 3926 static void 3927 tcp_stop_lingering(tcp_t *tcp) 3928 { 3929 clock_t delta = 0; 3930 tcp_stack_t *tcps = tcp->tcp_tcps; 3931 3932 tcp->tcp_linger_tid = 0; 3933 if (tcp->tcp_state > TCPS_LISTEN) { 3934 tcp_acceptor_hash_remove(tcp); 3935 mutex_enter(&tcp->tcp_non_sq_lock); 3936 if (tcp->tcp_flow_stopped) { 3937 tcp_clrqfull(tcp); 3938 } 3939 mutex_exit(&tcp->tcp_non_sq_lock); 3940 3941 if (tcp->tcp_timer_tid != 0) { 3942 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3943 tcp->tcp_timer_tid = 0; 3944 } 3945 /* 3946 * Need to cancel those timers which will not be used when 3947 * TCP is detached. This has to be done before the tcp_wq 3948 * is set to the global queue. 3949 */ 3950 tcp_timers_stop(tcp); 3951 3952 3953 tcp->tcp_detached = B_TRUE; 3954 ASSERT(tcps->tcps_g_q != NULL); 3955 tcp->tcp_rq = tcps->tcps_g_q; 3956 tcp->tcp_wq = WR(tcps->tcps_g_q); 3957 3958 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3959 tcp_time_wait_append(tcp); 3960 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3961 goto finish; 3962 } 3963 3964 /* 3965 * If delta is zero the timer event wasn't executed and was 3966 * successfully canceled. In this case we need to restart it 3967 * with the minimal delta possible. 3968 */ 3969 if (delta >= 0) { 3970 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3971 delta ? delta : 1); 3972 } 3973 } else { 3974 tcp_closei_local(tcp); 3975 CONN_DEC_REF(tcp->tcp_connp); 3976 } 3977 finish: 3978 /* Signal closing thread that it can complete close */ 3979 mutex_enter(&tcp->tcp_closelock); 3980 tcp->tcp_detached = B_TRUE; 3981 ASSERT(tcps->tcps_g_q != NULL); 3982 tcp->tcp_rq = tcps->tcps_g_q; 3983 tcp->tcp_wq = WR(tcps->tcps_g_q); 3984 tcp->tcp_closed = 1; 3985 cv_signal(&tcp->tcp_closecv); 3986 mutex_exit(&tcp->tcp_closelock); 3987 } 3988 3989 /* 3990 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3991 * expires. 3992 */ 3993 static void 3994 tcp_close_linger_timeout(void *arg) 3995 { 3996 conn_t *connp = (conn_t *)arg; 3997 tcp_t *tcp = connp->conn_tcp; 3998 3999 tcp->tcp_client_errno = ETIMEDOUT; 4000 tcp_stop_lingering(tcp); 4001 } 4002 4003 static int 4004 tcp_close(queue_t *q, int flags) 4005 { 4006 conn_t *connp = Q_TO_CONN(q); 4007 tcp_t *tcp = connp->conn_tcp; 4008 mblk_t *mp = &tcp->tcp_closemp; 4009 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4010 mblk_t *bp; 4011 4012 ASSERT(WR(q)->q_next == NULL); 4013 ASSERT(connp->conn_ref >= 2); 4014 4015 /* 4016 * We are being closed as /dev/tcp or /dev/tcp6. 4017 * 4018 * Mark the conn as closing. ill_pending_mp_add will not 4019 * add any mp to the pending mp list, after this conn has 4020 * started closing. Same for sq_pending_mp_add 4021 */ 4022 mutex_enter(&connp->conn_lock); 4023 connp->conn_state_flags |= CONN_CLOSING; 4024 if (connp->conn_oper_pending_ill != NULL) 4025 conn_ioctl_cleanup_reqd = B_TRUE; 4026 CONN_INC_REF_LOCKED(connp); 4027 mutex_exit(&connp->conn_lock); 4028 tcp->tcp_closeflags = (uint8_t)flags; 4029 ASSERT(connp->conn_ref >= 3); 4030 4031 /* 4032 * tcp_closemp_used is used below without any protection of a lock 4033 * as we don't expect any one else to use it concurrently at this 4034 * point otherwise it would be a major defect. 4035 */ 4036 4037 if (mp->b_prev == NULL) 4038 tcp->tcp_closemp_used = B_TRUE; 4039 else 4040 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 4041 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 4042 4043 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 4044 4045 (*tcp_squeue_close_proc)(connp->conn_sqp, mp, 4046 tcp_close_output, connp, SQTAG_IP_TCP_CLOSE); 4047 4048 mutex_enter(&tcp->tcp_closelock); 4049 while (!tcp->tcp_closed) { 4050 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 4051 /* 4052 * The cv_wait_sig() was interrupted. We now do the 4053 * following: 4054 * 4055 * 1) If the endpoint was lingering, we allow this 4056 * to be interrupted by cancelling the linger timeout 4057 * and closing normally. 4058 * 4059 * 2) Revert to calling cv_wait() 4060 * 4061 * We revert to using cv_wait() to avoid an 4062 * infinite loop which can occur if the calling 4063 * thread is higher priority than the squeue worker 4064 * thread and is bound to the same cpu. 4065 */ 4066 if (tcp->tcp_linger && tcp->tcp_lingertime > 0) { 4067 mutex_exit(&tcp->tcp_closelock); 4068 /* Entering squeue, bump ref count. */ 4069 CONN_INC_REF(connp); 4070 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 4071 squeue_enter(connp->conn_sqp, bp, 4072 tcp_linger_interrupted, connp, 4073 SQTAG_IP_TCP_CLOSE); 4074 mutex_enter(&tcp->tcp_closelock); 4075 } 4076 break; 4077 } 4078 } 4079 while (!tcp->tcp_closed) 4080 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 4081 mutex_exit(&tcp->tcp_closelock); 4082 4083 /* 4084 * In the case of listener streams that have eagers in the q or q0 4085 * we wait for the eagers to drop their reference to us. tcp_rq and 4086 * tcp_wq of the eagers point to our queues. By waiting for the 4087 * refcnt to drop to 1, we are sure that the eagers have cleaned 4088 * up their queue pointers and also dropped their references to us. 4089 */ 4090 if (tcp->tcp_wait_for_eagers) { 4091 mutex_enter(&connp->conn_lock); 4092 while (connp->conn_ref != 1) { 4093 cv_wait(&connp->conn_cv, &connp->conn_lock); 4094 } 4095 mutex_exit(&connp->conn_lock); 4096 } 4097 /* 4098 * ioctl cleanup. The mp is queued in the 4099 * ill_pending_mp or in the sq_pending_mp. 4100 */ 4101 if (conn_ioctl_cleanup_reqd) 4102 conn_ioctl_cleanup(connp); 4103 4104 qprocsoff(q); 4105 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 4106 4107 tcp->tcp_cpid = -1; 4108 4109 /* 4110 * Drop IP's reference on the conn. This is the last reference 4111 * on the connp if the state was less than established. If the 4112 * connection has gone into timewait state, then we will have 4113 * one ref for the TCP and one more ref (total of two) for the 4114 * classifier connected hash list (a timewait connections stays 4115 * in connected hash till closed). 4116 * 4117 * We can't assert the references because there might be other 4118 * transient reference places because of some walkers or queued 4119 * packets in squeue for the timewait state. 4120 */ 4121 CONN_DEC_REF(connp); 4122 q->q_ptr = WR(q)->q_ptr = NULL; 4123 return (0); 4124 } 4125 4126 static int 4127 tcpclose_accept(queue_t *q) 4128 { 4129 vmem_t *minor_arena; 4130 dev_t conn_dev; 4131 4132 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 4133 4134 /* 4135 * We had opened an acceptor STREAM for sockfs which is 4136 * now being closed due to some error. 4137 */ 4138 qprocsoff(q); 4139 4140 minor_arena = (vmem_t *)WR(q)->q_ptr; 4141 conn_dev = (dev_t)RD(q)->q_ptr; 4142 ASSERT(minor_arena != NULL); 4143 ASSERT(conn_dev != 0); 4144 inet_minor_free(minor_arena, conn_dev); 4145 q->q_ptr = WR(q)->q_ptr = NULL; 4146 return (0); 4147 } 4148 4149 /* 4150 * Called by tcp_close() routine via squeue when lingering is 4151 * interrupted by a signal. 4152 */ 4153 4154 /* ARGSUSED */ 4155 static void 4156 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2) 4157 { 4158 conn_t *connp = (conn_t *)arg; 4159 tcp_t *tcp = connp->conn_tcp; 4160 4161 freeb(mp); 4162 if (tcp->tcp_linger_tid != 0 && 4163 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 4164 tcp_stop_lingering(tcp); 4165 tcp->tcp_client_errno = EINTR; 4166 } 4167 } 4168 4169 /* 4170 * Called by streams close routine via squeues when our client blows off her 4171 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 4172 * connection politely" When SO_LINGER is set (with a non-zero linger time and 4173 * it is not a nonblocking socket) then this routine sleeps until the FIN is 4174 * acked. 4175 * 4176 * NOTE: tcp_close potentially returns error when lingering. 4177 * However, the stream head currently does not pass these errors 4178 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 4179 * errors to the application (from tsleep()) and not errors 4180 * like ECONNRESET caused by receiving a reset packet. 4181 */ 4182 4183 /* ARGSUSED */ 4184 static void 4185 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 4186 { 4187 char *msg; 4188 conn_t *connp = (conn_t *)arg; 4189 tcp_t *tcp = connp->conn_tcp; 4190 clock_t delta = 0; 4191 tcp_stack_t *tcps = tcp->tcp_tcps; 4192 4193 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 4194 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 4195 4196 /* Cancel any pending timeout */ 4197 if (tcp->tcp_ordrelid != 0) { 4198 if (tcp->tcp_timeout) { 4199 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid); 4200 } 4201 tcp->tcp_ordrelid = 0; 4202 tcp->tcp_timeout = B_FALSE; 4203 } 4204 4205 mutex_enter(&tcp->tcp_eager_lock); 4206 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 4207 /* Cleanup for listener */ 4208 tcp_eager_cleanup(tcp, 0); 4209 tcp->tcp_wait_for_eagers = 1; 4210 } 4211 mutex_exit(&tcp->tcp_eager_lock); 4212 4213 connp->conn_mdt_ok = B_FALSE; 4214 tcp->tcp_mdt = B_FALSE; 4215 4216 connp->conn_lso_ok = B_FALSE; 4217 tcp->tcp_lso = B_FALSE; 4218 4219 msg = NULL; 4220 switch (tcp->tcp_state) { 4221 case TCPS_CLOSED: 4222 case TCPS_IDLE: 4223 case TCPS_BOUND: 4224 case TCPS_LISTEN: 4225 break; 4226 case TCPS_SYN_SENT: 4227 msg = "tcp_close, during connect"; 4228 break; 4229 case TCPS_SYN_RCVD: 4230 /* 4231 * Close during the connect 3-way handshake 4232 * but here there may or may not be pending data 4233 * already on queue. Process almost same as in 4234 * the ESTABLISHED state. 4235 */ 4236 /* FALLTHRU */ 4237 default: 4238 if (tcp->tcp_fused) 4239 tcp_unfuse(tcp); 4240 4241 /* 4242 * If SO_LINGER has set a zero linger time, abort the 4243 * connection with a reset. 4244 */ 4245 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 4246 msg = "tcp_close, zero lingertime"; 4247 break; 4248 } 4249 4250 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 4251 /* 4252 * Abort connection if there is unread data queued. 4253 */ 4254 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 4255 msg = "tcp_close, unread data"; 4256 break; 4257 } 4258 /* 4259 * tcp_hard_bound is now cleared thus all packets go through 4260 * tcp_lookup. This fact is used by tcp_detach below. 4261 * 4262 * We have done a qwait() above which could have possibly 4263 * drained more messages in turn causing transition to a 4264 * different state. Check whether we have to do the rest 4265 * of the processing or not. 4266 */ 4267 if (tcp->tcp_state <= TCPS_LISTEN) 4268 break; 4269 4270 /* 4271 * Transmit the FIN before detaching the tcp_t. 4272 * After tcp_detach returns this queue/perimeter 4273 * no longer owns the tcp_t thus others can modify it. 4274 */ 4275 (void) tcp_xmit_end(tcp); 4276 4277 /* 4278 * If lingering on close then wait until the fin is acked, 4279 * the SO_LINGER time passes, or a reset is sent/received. 4280 */ 4281 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 4282 !(tcp->tcp_fin_acked) && 4283 tcp->tcp_state >= TCPS_ESTABLISHED) { 4284 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 4285 tcp->tcp_client_errno = EWOULDBLOCK; 4286 } else if (tcp->tcp_client_errno == 0) { 4287 4288 ASSERT(tcp->tcp_linger_tid == 0); 4289 4290 tcp->tcp_linger_tid = TCP_TIMER(tcp, 4291 tcp_close_linger_timeout, 4292 tcp->tcp_lingertime * hz); 4293 4294 /* tcp_close_linger_timeout will finish close */ 4295 if (tcp->tcp_linger_tid == 0) 4296 tcp->tcp_client_errno = ENOSR; 4297 else 4298 return; 4299 } 4300 4301 /* 4302 * Check if we need to detach or just close 4303 * the instance. 4304 */ 4305 if (tcp->tcp_state <= TCPS_LISTEN) 4306 break; 4307 } 4308 4309 /* 4310 * Make sure that no other thread will access the tcp_rq of 4311 * this instance (through lookups etc.) as tcp_rq will go 4312 * away shortly. 4313 */ 4314 tcp_acceptor_hash_remove(tcp); 4315 4316 mutex_enter(&tcp->tcp_non_sq_lock); 4317 if (tcp->tcp_flow_stopped) { 4318 tcp_clrqfull(tcp); 4319 } 4320 mutex_exit(&tcp->tcp_non_sq_lock); 4321 4322 if (tcp->tcp_timer_tid != 0) { 4323 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4324 tcp->tcp_timer_tid = 0; 4325 } 4326 /* 4327 * Need to cancel those timers which will not be used when 4328 * TCP is detached. This has to be done before the tcp_wq 4329 * is set to the global queue. 4330 */ 4331 tcp_timers_stop(tcp); 4332 4333 tcp->tcp_detached = B_TRUE; 4334 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4335 tcp_time_wait_append(tcp); 4336 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 4337 ASSERT(connp->conn_ref >= 3); 4338 goto finish; 4339 } 4340 4341 /* 4342 * If delta is zero the timer event wasn't executed and was 4343 * successfully canceled. In this case we need to restart it 4344 * with the minimal delta possible. 4345 */ 4346 if (delta >= 0) 4347 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4348 delta ? delta : 1); 4349 4350 ASSERT(connp->conn_ref >= 3); 4351 goto finish; 4352 } 4353 4354 /* Detach did not complete. Still need to remove q from stream. */ 4355 if (msg) { 4356 if (tcp->tcp_state == TCPS_ESTABLISHED || 4357 tcp->tcp_state == TCPS_CLOSE_WAIT) 4358 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 4359 if (tcp->tcp_state == TCPS_SYN_SENT || 4360 tcp->tcp_state == TCPS_SYN_RCVD) 4361 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 4362 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4363 } 4364 4365 tcp_closei_local(tcp); 4366 CONN_DEC_REF(connp); 4367 ASSERT(connp->conn_ref >= 2); 4368 4369 finish: 4370 /* 4371 * Although packets are always processed on the correct 4372 * tcp's perimeter and access is serialized via squeue's, 4373 * IP still needs a queue when sending packets in time_wait 4374 * state so use WR(tcps_g_q) till ip_output() can be 4375 * changed to deal with just connp. For read side, we 4376 * could have set tcp_rq to NULL but there are some cases 4377 * in tcp_rput_data() from early days of this code which 4378 * do a putnext without checking if tcp is closed. Those 4379 * need to be identified before both tcp_rq and tcp_wq 4380 * can be set to NULL and tcps_g_q can disappear forever. 4381 */ 4382 mutex_enter(&tcp->tcp_closelock); 4383 /* 4384 * Don't change the queues in the case of a listener that has 4385 * eagers in its q or q0. It could surprise the eagers. 4386 * Instead wait for the eagers outside the squeue. 4387 */ 4388 if (!tcp->tcp_wait_for_eagers) { 4389 tcp->tcp_detached = B_TRUE; 4390 /* 4391 * When default queue is closing we set tcps_g_q to NULL 4392 * after the close is done. 4393 */ 4394 ASSERT(tcps->tcps_g_q != NULL); 4395 tcp->tcp_rq = tcps->tcps_g_q; 4396 tcp->tcp_wq = WR(tcps->tcps_g_q); 4397 } 4398 4399 /* Signal tcp_close() to finish closing. */ 4400 tcp->tcp_closed = 1; 4401 cv_signal(&tcp->tcp_closecv); 4402 mutex_exit(&tcp->tcp_closelock); 4403 } 4404 4405 4406 /* 4407 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4408 * Some stream heads get upset if they see these later on as anything but NULL. 4409 */ 4410 static void 4411 tcp_close_mpp(mblk_t **mpp) 4412 { 4413 mblk_t *mp; 4414 4415 if ((mp = *mpp) != NULL) { 4416 do { 4417 mp->b_next = NULL; 4418 mp->b_prev = NULL; 4419 } while ((mp = mp->b_cont) != NULL); 4420 4421 mp = *mpp; 4422 *mpp = NULL; 4423 freemsg(mp); 4424 } 4425 } 4426 4427 /* Do detached close. */ 4428 static void 4429 tcp_close_detached(tcp_t *tcp) 4430 { 4431 if (tcp->tcp_fused) 4432 tcp_unfuse(tcp); 4433 4434 /* 4435 * Clustering code serializes TCP disconnect callbacks and 4436 * cluster tcp list walks by blocking a TCP disconnect callback 4437 * if a cluster tcp list walk is in progress. This ensures 4438 * accurate accounting of TCPs in the cluster code even though 4439 * the TCP list walk itself is not atomic. 4440 */ 4441 tcp_closei_local(tcp); 4442 CONN_DEC_REF(tcp->tcp_connp); 4443 } 4444 4445 /* 4446 * Stop all TCP timers, and free the timer mblks if requested. 4447 */ 4448 void 4449 tcp_timers_stop(tcp_t *tcp) 4450 { 4451 if (tcp->tcp_timer_tid != 0) { 4452 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4453 tcp->tcp_timer_tid = 0; 4454 } 4455 if (tcp->tcp_ka_tid != 0) { 4456 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4457 tcp->tcp_ka_tid = 0; 4458 } 4459 if (tcp->tcp_ack_tid != 0) { 4460 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4461 tcp->tcp_ack_tid = 0; 4462 } 4463 if (tcp->tcp_push_tid != 0) { 4464 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4465 tcp->tcp_push_tid = 0; 4466 } 4467 } 4468 4469 /* 4470 * The tcp_t is going away. Remove it from all lists and set it 4471 * to TCPS_CLOSED. The freeing up of memory is deferred until 4472 * tcp_inactive. This is needed since a thread in tcp_rput might have 4473 * done a CONN_INC_REF on this structure before it was removed from the 4474 * hashes. 4475 */ 4476 static void 4477 tcp_closei_local(tcp_t *tcp) 4478 { 4479 ire_t *ire; 4480 conn_t *connp = tcp->tcp_connp; 4481 tcp_stack_t *tcps = tcp->tcp_tcps; 4482 4483 if (!TCP_IS_SOCKET(tcp)) 4484 tcp_acceptor_hash_remove(tcp); 4485 4486 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 4487 tcp->tcp_ibsegs = 0; 4488 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 4489 tcp->tcp_obsegs = 0; 4490 4491 /* 4492 * If we are an eager connection hanging off a listener that 4493 * hasn't formally accepted the connection yet, get off his 4494 * list and blow off any data that we have accumulated. 4495 */ 4496 if (tcp->tcp_listener != NULL) { 4497 tcp_t *listener = tcp->tcp_listener; 4498 mutex_enter(&listener->tcp_eager_lock); 4499 /* 4500 * tcp_tconnind_started == B_TRUE means that the 4501 * conn_ind has already gone to listener. At 4502 * this point, eager will be closed but we 4503 * leave it in listeners eager list so that 4504 * if listener decides to close without doing 4505 * accept, we can clean this up. In tcp_wput_accept 4506 * we take care of the case of accept on closed 4507 * eager. 4508 */ 4509 if (!tcp->tcp_tconnind_started) { 4510 tcp_eager_unlink(tcp); 4511 mutex_exit(&listener->tcp_eager_lock); 4512 /* 4513 * We don't want to have any pointers to the 4514 * listener queue, after we have released our 4515 * reference on the listener 4516 */ 4517 ASSERT(tcps->tcps_g_q != NULL); 4518 tcp->tcp_rq = tcps->tcps_g_q; 4519 tcp->tcp_wq = WR(tcps->tcps_g_q); 4520 CONN_DEC_REF(listener->tcp_connp); 4521 } else { 4522 mutex_exit(&listener->tcp_eager_lock); 4523 } 4524 } 4525 4526 /* Stop all the timers */ 4527 tcp_timers_stop(tcp); 4528 4529 if (tcp->tcp_state == TCPS_LISTEN) { 4530 if (tcp->tcp_ip_addr_cache) { 4531 kmem_free((void *)tcp->tcp_ip_addr_cache, 4532 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4533 tcp->tcp_ip_addr_cache = NULL; 4534 } 4535 } 4536 mutex_enter(&tcp->tcp_non_sq_lock); 4537 if (tcp->tcp_flow_stopped) 4538 tcp_clrqfull(tcp); 4539 mutex_exit(&tcp->tcp_non_sq_lock); 4540 4541 tcp_bind_hash_remove(tcp); 4542 /* 4543 * If the tcp_time_wait_collector (which runs outside the squeue) 4544 * is trying to remove this tcp from the time wait list, we will 4545 * block in tcp_time_wait_remove while trying to acquire the 4546 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4547 * requires the ipcl_hash_remove to be ordered after the 4548 * tcp_time_wait_remove for the refcnt checks to work correctly. 4549 */ 4550 if (tcp->tcp_state == TCPS_TIME_WAIT) 4551 (void) tcp_time_wait_remove(tcp, NULL); 4552 CL_INET_DISCONNECT(tcp); 4553 ipcl_hash_remove(connp); 4554 4555 /* 4556 * Delete the cached ire in conn_ire_cache and also mark 4557 * the conn as CONDEMNED 4558 */ 4559 mutex_enter(&connp->conn_lock); 4560 connp->conn_state_flags |= CONN_CONDEMNED; 4561 ire = connp->conn_ire_cache; 4562 connp->conn_ire_cache = NULL; 4563 mutex_exit(&connp->conn_lock); 4564 if (ire != NULL) 4565 IRE_REFRELE_NOTR(ire); 4566 4567 /* Need to cleanup any pending ioctls */ 4568 ASSERT(tcp->tcp_time_wait_next == NULL); 4569 ASSERT(tcp->tcp_time_wait_prev == NULL); 4570 ASSERT(tcp->tcp_time_wait_expire == 0); 4571 tcp->tcp_state = TCPS_CLOSED; 4572 4573 /* Release any SSL context */ 4574 if (tcp->tcp_kssl_ent != NULL) { 4575 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4576 tcp->tcp_kssl_ent = NULL; 4577 } 4578 if (tcp->tcp_kssl_ctx != NULL) { 4579 kssl_release_ctx(tcp->tcp_kssl_ctx); 4580 tcp->tcp_kssl_ctx = NULL; 4581 } 4582 tcp->tcp_kssl_pending = B_FALSE; 4583 4584 tcp_ipsec_cleanup(tcp); 4585 } 4586 4587 /* 4588 * tcp is dying (called from ipcl_conn_destroy and error cases). 4589 * Free the tcp_t in either case. 4590 */ 4591 void 4592 tcp_free(tcp_t *tcp) 4593 { 4594 mblk_t *mp; 4595 ip6_pkt_t *ipp; 4596 4597 ASSERT(tcp != NULL); 4598 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4599 4600 tcp->tcp_rq = NULL; 4601 tcp->tcp_wq = NULL; 4602 4603 tcp_close_mpp(&tcp->tcp_xmit_head); 4604 tcp_close_mpp(&tcp->tcp_reass_head); 4605 if (tcp->tcp_rcv_list != NULL) { 4606 /* Free b_next chain */ 4607 tcp_close_mpp(&tcp->tcp_rcv_list); 4608 } 4609 if ((mp = tcp->tcp_urp_mp) != NULL) { 4610 freemsg(mp); 4611 } 4612 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4613 freemsg(mp); 4614 } 4615 4616 if (tcp->tcp_fused_sigurg_mp != NULL) { 4617 freeb(tcp->tcp_fused_sigurg_mp); 4618 tcp->tcp_fused_sigurg_mp = NULL; 4619 } 4620 4621 if (tcp->tcp_sack_info != NULL) { 4622 if (tcp->tcp_notsack_list != NULL) { 4623 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 4624 } 4625 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4626 } 4627 4628 if (tcp->tcp_hopopts != NULL) { 4629 mi_free(tcp->tcp_hopopts); 4630 tcp->tcp_hopopts = NULL; 4631 tcp->tcp_hopoptslen = 0; 4632 } 4633 ASSERT(tcp->tcp_hopoptslen == 0); 4634 if (tcp->tcp_dstopts != NULL) { 4635 mi_free(tcp->tcp_dstopts); 4636 tcp->tcp_dstopts = NULL; 4637 tcp->tcp_dstoptslen = 0; 4638 } 4639 ASSERT(tcp->tcp_dstoptslen == 0); 4640 if (tcp->tcp_rtdstopts != NULL) { 4641 mi_free(tcp->tcp_rtdstopts); 4642 tcp->tcp_rtdstopts = NULL; 4643 tcp->tcp_rtdstoptslen = 0; 4644 } 4645 ASSERT(tcp->tcp_rtdstoptslen == 0); 4646 if (tcp->tcp_rthdr != NULL) { 4647 mi_free(tcp->tcp_rthdr); 4648 tcp->tcp_rthdr = NULL; 4649 tcp->tcp_rthdrlen = 0; 4650 } 4651 ASSERT(tcp->tcp_rthdrlen == 0); 4652 4653 ipp = &tcp->tcp_sticky_ipp; 4654 if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 4655 IPPF_RTHDR)) 4656 ip6_pkt_free(ipp); 4657 4658 /* 4659 * Free memory associated with the tcp/ip header template. 4660 */ 4661 4662 if (tcp->tcp_iphc != NULL) 4663 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4664 4665 /* 4666 * Following is really a blowing away a union. 4667 * It happens to have exactly two members of identical size 4668 * the following code is enough. 4669 */ 4670 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4671 4672 if (tcp->tcp_tracebuf != NULL) { 4673 kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 4674 tcp->tcp_tracebuf = NULL; 4675 } 4676 } 4677 4678 4679 /* 4680 * Put a connection confirmation message upstream built from the 4681 * address information within 'iph' and 'tcph'. Report our success or failure. 4682 */ 4683 static boolean_t 4684 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4685 mblk_t **defermp) 4686 { 4687 sin_t sin; 4688 sin6_t sin6; 4689 mblk_t *mp; 4690 char *optp = NULL; 4691 int optlen = 0; 4692 cred_t *cr; 4693 4694 if (defermp != NULL) 4695 *defermp = NULL; 4696 4697 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4698 /* 4699 * Return in T_CONN_CON results of option negotiation through 4700 * the T_CONN_REQ. Note: If there is an real end-to-end option 4701 * negotiation, then what is received from remote end needs 4702 * to be taken into account but there is no such thing (yet?) 4703 * in our TCP/IP. 4704 * Note: We do not use mi_offset_param() here as 4705 * tcp_opts_conn_req contents do not directly come from 4706 * an application and are either generated in kernel or 4707 * from user input that was already verified. 4708 */ 4709 mp = tcp->tcp_conn.tcp_opts_conn_req; 4710 optp = (char *)(mp->b_rptr + 4711 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4712 optlen = (int) 4713 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4714 } 4715 4716 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4717 ipha_t *ipha = (ipha_t *)iphdr; 4718 4719 /* packet is IPv4 */ 4720 if (tcp->tcp_family == AF_INET) { 4721 sin = sin_null; 4722 sin.sin_addr.s_addr = ipha->ipha_src; 4723 sin.sin_port = *(uint16_t *)tcph->th_lport; 4724 sin.sin_family = AF_INET; 4725 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4726 (int)sizeof (sin_t), optp, optlen); 4727 } else { 4728 sin6 = sin6_null; 4729 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4730 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4731 sin6.sin6_family = AF_INET6; 4732 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4733 (int)sizeof (sin6_t), optp, optlen); 4734 4735 } 4736 } else { 4737 ip6_t *ip6h = (ip6_t *)iphdr; 4738 4739 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4740 ASSERT(tcp->tcp_family == AF_INET6); 4741 sin6 = sin6_null; 4742 sin6.sin6_addr = ip6h->ip6_src; 4743 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4744 sin6.sin6_family = AF_INET6; 4745 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4746 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4747 (int)sizeof (sin6_t), optp, optlen); 4748 } 4749 4750 if (!mp) 4751 return (B_FALSE); 4752 4753 if ((cr = DB_CRED(idmp)) != NULL) { 4754 mblk_setcred(mp, cr); 4755 DB_CPID(mp) = DB_CPID(idmp); 4756 } 4757 4758 if (defermp == NULL) 4759 putnext(tcp->tcp_rq, mp); 4760 else 4761 *defermp = mp; 4762 4763 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4764 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4765 return (B_TRUE); 4766 } 4767 4768 /* 4769 * Defense for the SYN attack - 4770 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4771 * one from the list of droppable eagers. This list is a subset of q0. 4772 * see comments before the definition of MAKE_DROPPABLE(). 4773 * 2. Don't drop a SYN request before its first timeout. This gives every 4774 * request at least til the first timeout to complete its 3-way handshake. 4775 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4776 * requests currently on the queue that has timed out. This will be used 4777 * as an indicator of whether an attack is under way, so that appropriate 4778 * actions can be taken. (It's incremented in tcp_timer() and decremented 4779 * either when eager goes into ESTABLISHED, or gets freed up.) 4780 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4781 * # of timeout drops back to <= q0len/32 => SYN alert off 4782 */ 4783 static boolean_t 4784 tcp_drop_q0(tcp_t *tcp) 4785 { 4786 tcp_t *eager; 4787 mblk_t *mp; 4788 tcp_stack_t *tcps = tcp->tcp_tcps; 4789 4790 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4791 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4792 4793 /* Pick oldest eager from the list of droppable eagers */ 4794 eager = tcp->tcp_eager_prev_drop_q0; 4795 4796 /* If list is empty. return B_FALSE */ 4797 if (eager == tcp) { 4798 return (B_FALSE); 4799 } 4800 4801 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4802 if ((mp = allocb(0, BPRI_HI)) == NULL) 4803 return (B_FALSE); 4804 4805 /* 4806 * Take this eager out from the list of droppable eagers since we are 4807 * going to drop it. 4808 */ 4809 MAKE_UNDROPPABLE(eager); 4810 4811 if (tcp->tcp_debug) { 4812 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4813 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4814 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 4815 tcp->tcp_conn_req_cnt_q0, 4816 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4817 } 4818 4819 BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); 4820 4821 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4822 CONN_INC_REF(eager->tcp_connp); 4823 4824 /* Mark the IRE created for this SYN request temporary */ 4825 tcp_ip_ire_mark_advice(eager); 4826 squeue_fill(eager->tcp_connp->conn_sqp, mp, 4827 tcp_clean_death_wrapper, eager->tcp_connp, SQTAG_TCP_DROP_Q0); 4828 4829 return (B_TRUE); 4830 } 4831 4832 int 4833 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4834 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4835 { 4836 tcp_t *ltcp = lconnp->conn_tcp; 4837 tcp_t *tcp = connp->conn_tcp; 4838 mblk_t *tpi_mp; 4839 ipha_t *ipha; 4840 ip6_t *ip6h; 4841 sin6_t sin6; 4842 in6_addr_t v6dst; 4843 int err; 4844 int ifindex = 0; 4845 cred_t *cr; 4846 tcp_stack_t *tcps = tcp->tcp_tcps; 4847 4848 if (ipvers == IPV4_VERSION) { 4849 ipha = (ipha_t *)mp->b_rptr; 4850 4851 connp->conn_send = ip_output; 4852 connp->conn_recv = tcp_input; 4853 4854 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4855 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4856 4857 sin6 = sin6_null; 4858 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4859 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4860 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4861 sin6.sin6_family = AF_INET6; 4862 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4863 lconnp->conn_zoneid, tcps->tcps_netstack); 4864 if (tcp->tcp_recvdstaddr) { 4865 sin6_t sin6d; 4866 4867 sin6d = sin6_null; 4868 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4869 &sin6d.sin6_addr); 4870 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4871 sin6d.sin6_family = AF_INET; 4872 tpi_mp = mi_tpi_extconn_ind(NULL, 4873 (char *)&sin6d, sizeof (sin6_t), 4874 (char *)&tcp, 4875 (t_scalar_t)sizeof (intptr_t), 4876 (char *)&sin6d, sizeof (sin6_t), 4877 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4878 } else { 4879 tpi_mp = mi_tpi_conn_ind(NULL, 4880 (char *)&sin6, sizeof (sin6_t), 4881 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4882 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4883 } 4884 } else { 4885 ip6h = (ip6_t *)mp->b_rptr; 4886 4887 connp->conn_send = ip_output_v6; 4888 connp->conn_recv = tcp_input; 4889 4890 connp->conn_srcv6 = ip6h->ip6_dst; 4891 connp->conn_remv6 = ip6h->ip6_src; 4892 4893 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4894 ifindex = (int)DB_CKSUMSTUFF(mp); 4895 DB_CKSUMSTUFF(mp) = 0; 4896 4897 sin6 = sin6_null; 4898 sin6.sin6_addr = ip6h->ip6_src; 4899 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4900 sin6.sin6_family = AF_INET6; 4901 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4902 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4903 lconnp->conn_zoneid, tcps->tcps_netstack); 4904 4905 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4906 /* Pass up the scope_id of remote addr */ 4907 sin6.sin6_scope_id = ifindex; 4908 } else { 4909 sin6.sin6_scope_id = 0; 4910 } 4911 if (tcp->tcp_recvdstaddr) { 4912 sin6_t sin6d; 4913 4914 sin6d = sin6_null; 4915 sin6.sin6_addr = ip6h->ip6_dst; 4916 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4917 sin6d.sin6_family = AF_INET; 4918 tpi_mp = mi_tpi_extconn_ind(NULL, 4919 (char *)&sin6d, sizeof (sin6_t), 4920 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4921 (char *)&sin6d, sizeof (sin6_t), 4922 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4923 } else { 4924 tpi_mp = mi_tpi_conn_ind(NULL, 4925 (char *)&sin6, sizeof (sin6_t), 4926 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4927 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4928 } 4929 } 4930 4931 if (tpi_mp == NULL) 4932 return (ENOMEM); 4933 4934 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4935 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4936 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4937 connp->conn_fully_bound = B_FALSE; 4938 4939 if (tcps->tcps_trace) 4940 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 4941 4942 /* Inherit information from the "parent" */ 4943 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4944 tcp->tcp_family = ltcp->tcp_family; 4945 tcp->tcp_wq = ltcp->tcp_wq; 4946 tcp->tcp_rq = ltcp->tcp_rq; 4947 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 4948 tcp->tcp_detached = B_TRUE; 4949 if ((err = tcp_init_values(tcp)) != 0) { 4950 freemsg(tpi_mp); 4951 return (err); 4952 } 4953 4954 if (ipvers == IPV4_VERSION) { 4955 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4956 freemsg(tpi_mp); 4957 return (err); 4958 } 4959 ASSERT(tcp->tcp_ipha != NULL); 4960 } else { 4961 /* ifindex must be already set */ 4962 ASSERT(ifindex != 0); 4963 4964 if (ltcp->tcp_bound_if != 0) { 4965 /* 4966 * Set newtcp's bound_if equal to 4967 * listener's value. If ifindex is 4968 * not the same as ltcp->tcp_bound_if, 4969 * it must be a packet for the ipmp group 4970 * of interfaces 4971 */ 4972 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4973 } else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4974 tcp->tcp_bound_if = ifindex; 4975 } 4976 4977 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4978 tcp->tcp_recvifindex = 0; 4979 tcp->tcp_recvhops = 0xffffffffU; 4980 ASSERT(tcp->tcp_ip6h != NULL); 4981 } 4982 4983 tcp->tcp_lport = ltcp->tcp_lport; 4984 4985 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 4986 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 4987 /* 4988 * Listener had options of some sort; eager inherits. 4989 * Free up the eager template and allocate one 4990 * of the right size. 4991 */ 4992 if (tcp->tcp_hdr_grown) { 4993 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 4994 } else { 4995 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4996 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 4997 } 4998 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 4999 KM_NOSLEEP); 5000 if (tcp->tcp_iphc == NULL) { 5001 tcp->tcp_iphc_len = 0; 5002 freemsg(tpi_mp); 5003 return (ENOMEM); 5004 } 5005 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 5006 tcp->tcp_hdr_grown = B_TRUE; 5007 } 5008 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5009 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5010 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5011 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 5012 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 5013 5014 /* 5015 * Copy the IP+TCP header template from listener to eager 5016 */ 5017 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5018 if (tcp->tcp_ipversion == IPV6_VERSION) { 5019 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 5020 IPPROTO_RAW) { 5021 tcp->tcp_ip6h = 5022 (ip6_t *)(tcp->tcp_iphc + 5023 sizeof (ip6i_t)); 5024 } else { 5025 tcp->tcp_ip6h = 5026 (ip6_t *)(tcp->tcp_iphc); 5027 } 5028 tcp->tcp_ipha = NULL; 5029 } else { 5030 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5031 tcp->tcp_ip6h = NULL; 5032 } 5033 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5034 tcp->tcp_ip_hdr_len); 5035 } else { 5036 /* 5037 * only valid case when ipversion of listener and 5038 * eager differ is when listener is IPv6 and 5039 * eager is IPv4. 5040 * Eager header template has been initialized to the 5041 * maximum v4 header sizes, which includes space for 5042 * TCP and IP options. 5043 */ 5044 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 5045 (tcp->tcp_ipversion == IPV4_VERSION)); 5046 ASSERT(tcp->tcp_iphc_len >= 5047 TCP_MAX_COMBINED_HEADER_LENGTH); 5048 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5049 /* copy IP header fields individually */ 5050 tcp->tcp_ipha->ipha_ttl = 5051 ltcp->tcp_ip6h->ip6_hops; 5052 bcopy(ltcp->tcp_tcph->th_lport, 5053 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 5054 } 5055 5056 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5057 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 5058 sizeof (in_port_t)); 5059 5060 if (ltcp->tcp_lport == 0) { 5061 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 5062 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 5063 sizeof (in_port_t)); 5064 } 5065 5066 if (tcp->tcp_ipversion == IPV4_VERSION) { 5067 ASSERT(ipha != NULL); 5068 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5069 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5070 5071 /* Source routing option copyover (reverse it) */ 5072 if (tcps->tcps_rev_src_routes) 5073 tcp_opt_reverse(tcp, ipha); 5074 } else { 5075 ASSERT(ip6h != NULL); 5076 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 5077 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 5078 } 5079 5080 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5081 ASSERT(!tcp->tcp_tconnind_started); 5082 /* 5083 * If the SYN contains a credential, it's a loopback packet; attach 5084 * the credential to the TPI message. 5085 */ 5086 if ((cr = DB_CRED(idmp)) != NULL) { 5087 mblk_setcred(tpi_mp, cr); 5088 DB_CPID(tpi_mp) = DB_CPID(idmp); 5089 } 5090 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5091 5092 /* Inherit the listener's SSL protection state */ 5093 5094 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5095 kssl_hold_ent(tcp->tcp_kssl_ent); 5096 tcp->tcp_kssl_pending = B_TRUE; 5097 } 5098 5099 return (0); 5100 } 5101 5102 5103 int 5104 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 5105 tcph_t *tcph, mblk_t *idmp) 5106 { 5107 tcp_t *ltcp = lconnp->conn_tcp; 5108 tcp_t *tcp = connp->conn_tcp; 5109 sin_t sin; 5110 mblk_t *tpi_mp = NULL; 5111 int err; 5112 cred_t *cr; 5113 tcp_stack_t *tcps = tcp->tcp_tcps; 5114 5115 sin = sin_null; 5116 sin.sin_addr.s_addr = ipha->ipha_src; 5117 sin.sin_port = *(uint16_t *)tcph->th_lport; 5118 sin.sin_family = AF_INET; 5119 if (ltcp->tcp_recvdstaddr) { 5120 sin_t sind; 5121 5122 sind = sin_null; 5123 sind.sin_addr.s_addr = ipha->ipha_dst; 5124 sind.sin_port = *(uint16_t *)tcph->th_fport; 5125 sind.sin_family = AF_INET; 5126 tpi_mp = mi_tpi_extconn_ind(NULL, 5127 (char *)&sind, sizeof (sin_t), (char *)&tcp, 5128 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 5129 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5130 } else { 5131 tpi_mp = mi_tpi_conn_ind(NULL, 5132 (char *)&sin, sizeof (sin_t), 5133 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 5134 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5135 } 5136 5137 if (tpi_mp == NULL) { 5138 return (ENOMEM); 5139 } 5140 5141 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 5142 connp->conn_send = ip_output; 5143 connp->conn_recv = tcp_input; 5144 connp->conn_fully_bound = B_FALSE; 5145 5146 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 5147 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 5148 connp->conn_fport = *(uint16_t *)tcph->th_lport; 5149 connp->conn_lport = *(uint16_t *)tcph->th_fport; 5150 5151 if (tcps->tcps_trace) { 5152 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 5153 } 5154 5155 /* Inherit information from the "parent" */ 5156 tcp->tcp_ipversion = ltcp->tcp_ipversion; 5157 tcp->tcp_family = ltcp->tcp_family; 5158 tcp->tcp_wq = ltcp->tcp_wq; 5159 tcp->tcp_rq = ltcp->tcp_rq; 5160 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 5161 tcp->tcp_detached = B_TRUE; 5162 if ((err = tcp_init_values(tcp)) != 0) { 5163 freemsg(tpi_mp); 5164 return (err); 5165 } 5166 5167 /* 5168 * Let's make sure that eager tcp template has enough space to 5169 * copy IPv4 listener's tcp template. Since the conn_t structure is 5170 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 5171 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 5172 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 5173 * extension headers or with ip6i_t struct). Note that bcopy() below 5174 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 5175 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 5176 */ 5177 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 5178 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 5179 5180 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5181 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5182 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5183 tcp->tcp_ttl = ltcp->tcp_ttl; 5184 tcp->tcp_tos = ltcp->tcp_tos; 5185 5186 /* Copy the IP+TCP header template from listener to eager */ 5187 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5188 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5189 tcp->tcp_ip6h = NULL; 5190 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5191 tcp->tcp_ip_hdr_len); 5192 5193 /* Initialize the IP addresses and Ports */ 5194 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5195 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5196 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5197 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 5198 5199 /* Source routing option copyover (reverse it) */ 5200 if (tcps->tcps_rev_src_routes) 5201 tcp_opt_reverse(tcp, ipha); 5202 5203 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5204 ASSERT(!tcp->tcp_tconnind_started); 5205 5206 /* 5207 * If the SYN contains a credential, it's a loopback packet; attach 5208 * the credential to the TPI message. 5209 */ 5210 if ((cr = DB_CRED(idmp)) != NULL) { 5211 mblk_setcred(tpi_mp, cr); 5212 DB_CPID(tpi_mp) = DB_CPID(idmp); 5213 } 5214 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5215 5216 /* Inherit the listener's SSL protection state */ 5217 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5218 kssl_hold_ent(tcp->tcp_kssl_ent); 5219 tcp->tcp_kssl_pending = B_TRUE; 5220 } 5221 5222 return (0); 5223 } 5224 5225 /* 5226 * sets up conn for ipsec. 5227 * if the first mblk is M_CTL it is consumed and mpp is updated. 5228 * in case of error mpp is freed. 5229 */ 5230 conn_t * 5231 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 5232 { 5233 conn_t *connp = tcp->tcp_connp; 5234 conn_t *econnp; 5235 squeue_t *new_sqp; 5236 mblk_t *first_mp = *mpp; 5237 mblk_t *mp = *mpp; 5238 boolean_t mctl_present = B_FALSE; 5239 uint_t ipvers; 5240 5241 econnp = tcp_get_conn(sqp, tcp->tcp_tcps); 5242 if (econnp == NULL) { 5243 freemsg(first_mp); 5244 return (NULL); 5245 } 5246 if (DB_TYPE(mp) == M_CTL) { 5247 if (mp->b_cont == NULL || 5248 mp->b_cont->b_datap->db_type != M_DATA) { 5249 freemsg(first_mp); 5250 return (NULL); 5251 } 5252 mp = mp->b_cont; 5253 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 5254 freemsg(first_mp); 5255 return (NULL); 5256 } 5257 5258 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5259 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5260 mctl_present = B_TRUE; 5261 } else { 5262 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 5263 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5264 } 5265 5266 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5267 DB_CKSUMSTART(mp) = 0; 5268 5269 ASSERT(OK_32PTR(mp->b_rptr)); 5270 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5271 if (ipvers == IPV4_VERSION) { 5272 uint16_t *up; 5273 uint32_t ports; 5274 ipha_t *ipha; 5275 5276 ipha = (ipha_t *)mp->b_rptr; 5277 up = (uint16_t *)((uchar_t *)ipha + 5278 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 5279 ports = *(uint32_t *)up; 5280 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 5281 ipha->ipha_dst, ipha->ipha_src, ports); 5282 } else { 5283 uint16_t *up; 5284 uint32_t ports; 5285 uint16_t ip_hdr_len; 5286 uint8_t *nexthdrp; 5287 ip6_t *ip6h; 5288 tcph_t *tcph; 5289 5290 ip6h = (ip6_t *)mp->b_rptr; 5291 if (ip6h->ip6_nxt == IPPROTO_TCP) { 5292 ip_hdr_len = IPV6_HDR_LEN; 5293 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 5294 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 5295 CONN_DEC_REF(econnp); 5296 freemsg(first_mp); 5297 return (NULL); 5298 } 5299 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5300 up = (uint16_t *)tcph->th_lport; 5301 ports = *(uint32_t *)up; 5302 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 5303 ip6h->ip6_dst, ip6h->ip6_src, ports); 5304 } 5305 5306 /* 5307 * The caller already ensured that there is a sqp present. 5308 */ 5309 econnp->conn_sqp = new_sqp; 5310 5311 if (connp->conn_policy != NULL) { 5312 ipsec_in_t *ii; 5313 ii = (ipsec_in_t *)(first_mp->b_rptr); 5314 ASSERT(ii->ipsec_in_policy == NULL); 5315 IPPH_REFHOLD(connp->conn_policy); 5316 ii->ipsec_in_policy = connp->conn_policy; 5317 5318 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 5319 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 5320 CONN_DEC_REF(econnp); 5321 freemsg(first_mp); 5322 return (NULL); 5323 } 5324 } 5325 5326 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 5327 CONN_DEC_REF(econnp); 5328 freemsg(first_mp); 5329 return (NULL); 5330 } 5331 5332 /* 5333 * If we know we have some policy, pass the "IPSEC" 5334 * options size TCP uses this adjust the MSS. 5335 */ 5336 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 5337 if (mctl_present) { 5338 freeb(first_mp); 5339 *mpp = mp; 5340 } 5341 5342 return (econnp); 5343 } 5344 5345 /* 5346 * tcp_get_conn/tcp_free_conn 5347 * 5348 * tcp_get_conn is used to get a clean tcp connection structure. 5349 * It tries to reuse the connections put on the freelist by the 5350 * time_wait_collector failing which it goes to kmem_cache. This 5351 * way has two benefits compared to just allocating from and 5352 * freeing to kmem_cache. 5353 * 1) The time_wait_collector can free (which includes the cleanup) 5354 * outside the squeue. So when the interrupt comes, we have a clean 5355 * connection sitting in the freelist. Obviously, this buys us 5356 * performance. 5357 * 5358 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5359 * has multiple disadvantages - tying up the squeue during alloc, and the 5360 * fact that IPSec policy initialization has to happen here which 5361 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5362 * But allocating the conn/tcp in IP land is also not the best since 5363 * we can't check the 'q' and 'q0' which are protected by squeue and 5364 * blindly allocate memory which might have to be freed here if we are 5365 * not allowed to accept the connection. By using the freelist and 5366 * putting the conn/tcp back in freelist, we don't pay a penalty for 5367 * allocating memory without checking 'q/q0' and freeing it if we can't 5368 * accept the connection. 5369 * 5370 * Care should be taken to put the conn back in the same squeue's freelist 5371 * from which it was allocated. Best results are obtained if conn is 5372 * allocated from listener's squeue and freed to the same. Time wait 5373 * collector will free up the freelist is the connection ends up sitting 5374 * there for too long. 5375 */ 5376 void * 5377 tcp_get_conn(void *arg, tcp_stack_t *tcps) 5378 { 5379 tcp_t *tcp = NULL; 5380 conn_t *connp = NULL; 5381 squeue_t *sqp = (squeue_t *)arg; 5382 tcp_squeue_priv_t *tcp_time_wait; 5383 netstack_t *ns; 5384 5385 tcp_time_wait = 5386 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5387 5388 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5389 tcp = tcp_time_wait->tcp_free_list; 5390 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5391 if (tcp != NULL) { 5392 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5393 tcp_time_wait->tcp_free_list_cnt--; 5394 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5395 tcp->tcp_time_wait_next = NULL; 5396 connp = tcp->tcp_connp; 5397 connp->conn_flags |= IPCL_REUSED; 5398 5399 ASSERT(tcp->tcp_tcps == NULL); 5400 ASSERT(connp->conn_netstack == NULL); 5401 ns = tcps->tcps_netstack; 5402 netstack_hold(ns); 5403 connp->conn_netstack = ns; 5404 tcp->tcp_tcps = tcps; 5405 TCPS_REFHOLD(tcps); 5406 ipcl_globalhash_insert(connp); 5407 return ((void *)connp); 5408 } 5409 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5410 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 5411 tcps->tcps_netstack)) == NULL) 5412 return (NULL); 5413 tcp = connp->conn_tcp; 5414 tcp->tcp_tcps = tcps; 5415 TCPS_REFHOLD(tcps); 5416 return ((void *)connp); 5417 } 5418 5419 /* 5420 * Update the cached label for the given tcp_t. This should be called once per 5421 * connection, and before any packets are sent or tcp_process_options is 5422 * invoked. Returns B_FALSE if the correct label could not be constructed. 5423 */ 5424 static boolean_t 5425 tcp_update_label(tcp_t *tcp, const cred_t *cr) 5426 { 5427 conn_t *connp = tcp->tcp_connp; 5428 5429 if (tcp->tcp_ipversion == IPV4_VERSION) { 5430 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 5431 int added; 5432 5433 if (tsol_compute_label(cr, tcp->tcp_remote, optbuf, 5434 connp->conn_mac_exempt, 5435 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5436 return (B_FALSE); 5437 5438 added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len); 5439 if (added == -1) 5440 return (B_FALSE); 5441 tcp->tcp_hdr_len += added; 5442 tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added); 5443 tcp->tcp_ip_hdr_len += added; 5444 if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) { 5445 tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3; 5446 added = tsol_prepend_option(optbuf, tcp->tcp_ipha, 5447 tcp->tcp_hdr_len); 5448 if (added == -1) 5449 return (B_FALSE); 5450 tcp->tcp_hdr_len += added; 5451 tcp->tcp_tcph = (tcph_t *) 5452 ((uchar_t *)tcp->tcp_tcph + added); 5453 tcp->tcp_ip_hdr_len += added; 5454 } 5455 } else { 5456 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 5457 5458 if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf, 5459 connp->conn_mac_exempt, 5460 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5461 return (B_FALSE); 5462 if (tsol_update_sticky(&tcp->tcp_sticky_ipp, 5463 &tcp->tcp_label_len, optbuf) != 0) 5464 return (B_FALSE); 5465 if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0) 5466 return (B_FALSE); 5467 } 5468 5469 connp->conn_ulp_labeled = 1; 5470 5471 return (B_TRUE); 5472 } 5473 5474 /* BEGIN CSTYLED */ 5475 /* 5476 * 5477 * The sockfs ACCEPT path: 5478 * ======================= 5479 * 5480 * The eager is now established in its own perimeter as soon as SYN is 5481 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5482 * completes the accept processing on the acceptor STREAM. The sending 5483 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5484 * listener but a TLI/XTI listener completes the accept processing 5485 * on the listener perimeter. 5486 * 5487 * Common control flow for 3 way handshake: 5488 * ---------------------------------------- 5489 * 5490 * incoming SYN (listener perimeter) -> tcp_rput_data() 5491 * -> tcp_conn_request() 5492 * 5493 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5494 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5495 * 5496 * Sockfs ACCEPT Path: 5497 * ------------------- 5498 * 5499 * open acceptor stream (tcp_open allocates tcp_wput_accept() 5500 * as STREAM entry point) 5501 * 5502 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5503 * 5504 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5505 * association (we are not behind eager's squeue but sockfs is protecting us 5506 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5507 * is changed to point at tcp_wput(). 5508 * 5509 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5510 * listener (done on listener's perimeter). 5511 * 5512 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5513 * accept. 5514 * 5515 * TLI/XTI client ACCEPT path: 5516 * --------------------------- 5517 * 5518 * soaccept() sends T_CONN_RES on the listener STREAM. 5519 * 5520 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5521 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5522 * 5523 * Locks: 5524 * ====== 5525 * 5526 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5527 * and listeners->tcp_eager_next_q. 5528 * 5529 * Referencing: 5530 * ============ 5531 * 5532 * 1) We start out in tcp_conn_request by eager placing a ref on 5533 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5534 * 5535 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5536 * doing so we place a ref on the eager. This ref is finally dropped at the 5537 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5538 * reference is dropped by the squeue framework. 5539 * 5540 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5541 * 5542 * The reference must be released by the same entity that added the reference 5543 * In the above scheme, the eager is the entity that adds and releases the 5544 * references. Note that tcp_accept_finish executes in the squeue of the eager 5545 * (albeit after it is attached to the acceptor stream). Though 1. executes 5546 * in the listener's squeue, the eager is nascent at this point and the 5547 * reference can be considered to have been added on behalf of the eager. 5548 * 5549 * Eager getting a Reset or listener closing: 5550 * ========================================== 5551 * 5552 * Once the listener and eager are linked, the listener never does the unlink. 5553 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5554 * a message on all eager perimeter. The eager then does the unlink, clears 5555 * any pointers to the listener's queue and drops the reference to the 5556 * listener. The listener waits in tcp_close outside the squeue until its 5557 * refcount has dropped to 1. This ensures that the listener has waited for 5558 * all eagers to clear their association with the listener. 5559 * 5560 * Similarly, if eager decides to go away, it can unlink itself and close. 5561 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5562 * the reference to eager is still valid because of the extra ref we put 5563 * in tcp_send_conn_ind. 5564 * 5565 * Listener can always locate the eager under the protection 5566 * of the listener->tcp_eager_lock, and then do a refhold 5567 * on the eager during the accept processing. 5568 * 5569 * The acceptor stream accesses the eager in the accept processing 5570 * based on the ref placed on eager before sending T_conn_ind. 5571 * The only entity that can negate this refhold is a listener close 5572 * which is mutually exclusive with an active acceptor stream. 5573 * 5574 * Eager's reference on the listener 5575 * =================================== 5576 * 5577 * If the accept happens (even on a closed eager) the eager drops its 5578 * reference on the listener at the start of tcp_accept_finish. If the 5579 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5580 * the reference is dropped in tcp_closei_local. If the listener closes, 5581 * the reference is dropped in tcp_eager_kill. In all cases the reference 5582 * is dropped while executing in the eager's context (squeue). 5583 */ 5584 /* END CSTYLED */ 5585 5586 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5587 5588 /* 5589 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5590 * tcp_rput_data will not see any SYN packets. 5591 */ 5592 /* ARGSUSED */ 5593 void 5594 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5595 { 5596 tcph_t *tcph; 5597 uint32_t seg_seq; 5598 tcp_t *eager; 5599 uint_t ipvers; 5600 ipha_t *ipha; 5601 ip6_t *ip6h; 5602 int err; 5603 conn_t *econnp = NULL; 5604 squeue_t *new_sqp; 5605 mblk_t *mp1; 5606 uint_t ip_hdr_len; 5607 conn_t *connp = (conn_t *)arg; 5608 tcp_t *tcp = connp->conn_tcp; 5609 cred_t *credp; 5610 tcp_stack_t *tcps = tcp->tcp_tcps; 5611 ip_stack_t *ipst; 5612 5613 if (tcp->tcp_state != TCPS_LISTEN) 5614 goto error2; 5615 5616 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5617 5618 mutex_enter(&tcp->tcp_eager_lock); 5619 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5620 mutex_exit(&tcp->tcp_eager_lock); 5621 TCP_STAT(tcps, tcp_listendrop); 5622 BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); 5623 if (tcp->tcp_debug) { 5624 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5625 "tcp_conn_request: listen backlog (max=%d) " 5626 "overflow (%d pending) on %s", 5627 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5628 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5629 } 5630 goto error2; 5631 } 5632 5633 if (tcp->tcp_conn_req_cnt_q0 >= 5634 tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 5635 /* 5636 * Q0 is full. Drop a pending half-open req from the queue 5637 * to make room for the new SYN req. Also mark the time we 5638 * drop a SYN. 5639 * 5640 * A more aggressive defense against SYN attack will 5641 * be to set the "tcp_syn_defense" flag now. 5642 */ 5643 TCP_STAT(tcps, tcp_listendropq0); 5644 tcp->tcp_last_rcv_lbolt = lbolt64; 5645 if (!tcp_drop_q0(tcp)) { 5646 mutex_exit(&tcp->tcp_eager_lock); 5647 BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); 5648 if (tcp->tcp_debug) { 5649 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5650 "tcp_conn_request: listen half-open queue " 5651 "(max=%d) full (%d pending) on %s", 5652 tcps->tcps_conn_req_max_q0, 5653 tcp->tcp_conn_req_cnt_q0, 5654 tcp_display(tcp, NULL, 5655 DISP_PORT_ONLY)); 5656 } 5657 goto error2; 5658 } 5659 } 5660 mutex_exit(&tcp->tcp_eager_lock); 5661 5662 /* 5663 * IP adds STRUIO_EAGER and ensures that the received packet is 5664 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5665 * link local address. If IPSec is enabled, db_struioflag has 5666 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5667 * otherwise an error case if neither of them is set. 5668 */ 5669 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5670 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5671 DB_CKSUMSTART(mp) = 0; 5672 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5673 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 5674 if (econnp == NULL) 5675 goto error2; 5676 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5677 econnp->conn_sqp = new_sqp; 5678 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5679 /* 5680 * mp is updated in tcp_get_ipsec_conn(). 5681 */ 5682 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5683 if (econnp == NULL) { 5684 /* 5685 * mp freed by tcp_get_ipsec_conn. 5686 */ 5687 return; 5688 } 5689 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5690 } else { 5691 goto error2; 5692 } 5693 5694 ASSERT(DB_TYPE(mp) == M_DATA); 5695 5696 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5697 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5698 ASSERT(OK_32PTR(mp->b_rptr)); 5699 if (ipvers == IPV4_VERSION) { 5700 ipha = (ipha_t *)mp->b_rptr; 5701 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5702 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5703 } else { 5704 ip6h = (ip6_t *)mp->b_rptr; 5705 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5706 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5707 } 5708 5709 if (tcp->tcp_family == AF_INET) { 5710 ASSERT(ipvers == IPV4_VERSION); 5711 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5712 } else { 5713 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5714 } 5715 5716 if (err) 5717 goto error3; 5718 5719 eager = econnp->conn_tcp; 5720 5721 /* Inherit various TCP parameters from the listener */ 5722 eager->tcp_naglim = tcp->tcp_naglim; 5723 eager->tcp_first_timer_threshold = 5724 tcp->tcp_first_timer_threshold; 5725 eager->tcp_second_timer_threshold = 5726 tcp->tcp_second_timer_threshold; 5727 5728 eager->tcp_first_ctimer_threshold = 5729 tcp->tcp_first_ctimer_threshold; 5730 eager->tcp_second_ctimer_threshold = 5731 tcp->tcp_second_ctimer_threshold; 5732 5733 /* 5734 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5735 * If it does not, the eager's receive window will be set to the 5736 * listener's receive window later in this function. 5737 */ 5738 eager->tcp_rwnd = 0; 5739 5740 /* 5741 * Inherit listener's tcp_init_cwnd. Need to do this before 5742 * calling tcp_process_options() where tcp_mss_set() is called 5743 * to set the initial cwnd. 5744 */ 5745 eager->tcp_init_cwnd = tcp->tcp_init_cwnd; 5746 5747 /* 5748 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5749 * zone id before the accept is completed in tcp_wput_accept(). 5750 */ 5751 econnp->conn_zoneid = connp->conn_zoneid; 5752 econnp->conn_allzones = connp->conn_allzones; 5753 5754 /* Copy nexthop information from listener to eager */ 5755 if (connp->conn_nexthop_set) { 5756 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5757 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5758 } 5759 5760 /* 5761 * TSOL: tsol_input_proc() needs the eager's cred before the 5762 * eager is accepted 5763 */ 5764 econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred; 5765 crhold(credp); 5766 5767 /* 5768 * If the caller has the process-wide flag set, then default to MAC 5769 * exempt mode. This allows read-down to unlabeled hosts. 5770 */ 5771 if (getpflags(NET_MAC_AWARE, credp) != 0) 5772 econnp->conn_mac_exempt = B_TRUE; 5773 5774 if (is_system_labeled()) { 5775 cred_t *cr; 5776 5777 if (connp->conn_mlp_type != mlptSingle) { 5778 cr = econnp->conn_peercred = DB_CRED(mp); 5779 if (cr != NULL) 5780 crhold(cr); 5781 else 5782 cr = econnp->conn_cred; 5783 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 5784 econnp, cred_t *, cr) 5785 } else { 5786 cr = econnp->conn_cred; 5787 DTRACE_PROBE2(syn_accept, conn_t *, 5788 econnp, cred_t *, cr) 5789 } 5790 5791 if (!tcp_update_label(eager, cr)) { 5792 DTRACE_PROBE3( 5793 tx__ip__log__error__connrequest__tcp, 5794 char *, "eager connp(1) label on SYN mp(2) failed", 5795 conn_t *, econnp, mblk_t *, mp); 5796 goto error3; 5797 } 5798 } 5799 5800 eager->tcp_hard_binding = B_TRUE; 5801 5802 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 5803 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5804 5805 CL_INET_CONNECT(eager); 5806 5807 /* 5808 * No need to check for multicast destination since ip will only pass 5809 * up multicasts to those that have expressed interest 5810 * TODO: what about rejecting broadcasts? 5811 * Also check that source is not a multicast or broadcast address. 5812 */ 5813 eager->tcp_state = TCPS_SYN_RCVD; 5814 5815 5816 /* 5817 * There should be no ire in the mp as we are being called after 5818 * receiving the SYN. 5819 */ 5820 ASSERT(tcp_ire_mp(mp) == NULL); 5821 5822 /* 5823 * Adapt our mss, ttl, ... according to information provided in IRE. 5824 */ 5825 5826 if (tcp_adapt_ire(eager, NULL) == 0) { 5827 /* Undo the bind_hash_insert */ 5828 tcp_bind_hash_remove(eager); 5829 goto error3; 5830 } 5831 5832 /* Process all TCP options. */ 5833 tcp_process_options(eager, tcph); 5834 5835 /* Is the other end ECN capable? */ 5836 if (tcps->tcps_ecn_permitted >= 1 && 5837 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5838 eager->tcp_ecn_ok = B_TRUE; 5839 } 5840 5841 /* 5842 * listener->tcp_rq->q_hiwat should be the default window size or a 5843 * window size changed via SO_RCVBUF option. First round up the 5844 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5845 * scale option value if needed. Call tcp_rwnd_set() to finish the 5846 * setting. 5847 * 5848 * Note if there is a rpipe metric associated with the remote host, 5849 * we should not inherit receive window size from listener. 5850 */ 5851 eager->tcp_rwnd = MSS_ROUNDUP( 5852 (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat : 5853 eager->tcp_rwnd), eager->tcp_mss); 5854 if (eager->tcp_snd_ws_ok) 5855 tcp_set_ws_value(eager); 5856 /* 5857 * Note that this is the only place tcp_rwnd_set() is called for 5858 * accepting a connection. We need to call it here instead of 5859 * after the 3-way handshake because we need to tell the other 5860 * side our rwnd in the SYN-ACK segment. 5861 */ 5862 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5863 5864 /* 5865 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5866 * via soaccept()->soinheritoptions() which essentially applies 5867 * all the listener options to the new STREAM. The options that we 5868 * need to take care of are: 5869 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5870 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5871 * SO_SNDBUF, SO_RCVBUF. 5872 * 5873 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5874 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5875 * tcp_maxpsz_set() gets called later from 5876 * tcp_accept_finish(), the option takes effect. 5877 * 5878 */ 5879 /* Set the TCP options */ 5880 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5881 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5882 eager->tcp_oobinline = tcp->tcp_oobinline; 5883 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5884 eager->tcp_broadcast = tcp->tcp_broadcast; 5885 eager->tcp_useloopback = tcp->tcp_useloopback; 5886 eager->tcp_dontroute = tcp->tcp_dontroute; 5887 eager->tcp_linger = tcp->tcp_linger; 5888 eager->tcp_lingertime = tcp->tcp_lingertime; 5889 if (tcp->tcp_ka_enabled) 5890 eager->tcp_ka_enabled = 1; 5891 5892 /* Set the IP options */ 5893 econnp->conn_broadcast = connp->conn_broadcast; 5894 econnp->conn_loopback = connp->conn_loopback; 5895 econnp->conn_dontroute = connp->conn_dontroute; 5896 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5897 5898 /* Put a ref on the listener for the eager. */ 5899 CONN_INC_REF(connp); 5900 mutex_enter(&tcp->tcp_eager_lock); 5901 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5902 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5903 tcp->tcp_eager_next_q0 = eager; 5904 eager->tcp_eager_prev_q0 = tcp; 5905 5906 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5907 eager->tcp_listener = tcp; 5908 eager->tcp_saved_listener = tcp; 5909 5910 /* 5911 * Tag this detached tcp vector for later retrieval 5912 * by our listener client in tcp_accept(). 5913 */ 5914 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5915 tcp->tcp_conn_req_cnt_q0++; 5916 if (++tcp->tcp_conn_req_seqnum == -1) { 5917 /* 5918 * -1 is "special" and defined in TPI as something 5919 * that should never be used in T_CONN_IND 5920 */ 5921 ++tcp->tcp_conn_req_seqnum; 5922 } 5923 mutex_exit(&tcp->tcp_eager_lock); 5924 5925 if (tcp->tcp_syn_defense) { 5926 /* Don't drop the SYN that comes from a good IP source */ 5927 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5928 if (addr_cache != NULL && eager->tcp_remote == 5929 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5930 eager->tcp_dontdrop = B_TRUE; 5931 } 5932 } 5933 5934 /* 5935 * We need to insert the eager in its own perimeter but as soon 5936 * as we do that, we expose the eager to the classifier and 5937 * should not touch any field outside the eager's perimeter. 5938 * So do all the work necessary before inserting the eager 5939 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5940 * will succeed but undo everything if it fails. 5941 */ 5942 seg_seq = ABE32_TO_U32(tcph->th_seq); 5943 eager->tcp_irs = seg_seq; 5944 eager->tcp_rack = seg_seq; 5945 eager->tcp_rnxt = seg_seq + 1; 5946 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5947 BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); 5948 eager->tcp_state = TCPS_SYN_RCVD; 5949 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5950 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5951 if (mp1 == NULL) { 5952 /* 5953 * Increment the ref count as we are going to 5954 * enqueueing an mp in squeue 5955 */ 5956 CONN_INC_REF(econnp); 5957 goto error; 5958 } 5959 DB_CPID(mp1) = tcp->tcp_cpid; 5960 eager->tcp_cpid = tcp->tcp_cpid; 5961 eager->tcp_open_time = lbolt64; 5962 5963 /* 5964 * We need to start the rto timer. In normal case, we start 5965 * the timer after sending the packet on the wire (or at 5966 * least believing that packet was sent by waiting for 5967 * CALL_IP_WPUT() to return). Since this is the first packet 5968 * being sent on the wire for the eager, our initial tcp_rto 5969 * is at least tcp_rexmit_interval_min which is a fairly 5970 * large value to allow the algorithm to adjust slowly to large 5971 * fluctuations of RTT during first few transmissions. 5972 * 5973 * Starting the timer first and then sending the packet in this 5974 * case shouldn't make much difference since tcp_rexmit_interval_min 5975 * is of the order of several 100ms and starting the timer 5976 * first and then sending the packet will result in difference 5977 * of few micro seconds. 5978 * 5979 * Without this optimization, we are forced to hold the fanout 5980 * lock across the ipcl_bind_insert() and sending the packet 5981 * so that we don't race against an incoming packet (maybe RST) 5982 * for this eager. 5983 * 5984 * It is necessary to acquire an extra reference on the eager 5985 * at this point and hold it until after tcp_send_data() to 5986 * ensure against an eager close race. 5987 */ 5988 5989 CONN_INC_REF(eager->tcp_connp); 5990 5991 TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT); 5992 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5993 5994 5995 /* 5996 * Insert the eager in its own perimeter now. We are ready to deal 5997 * with any packets on eager. 5998 */ 5999 if (eager->tcp_ipversion == IPV4_VERSION) { 6000 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 6001 goto error; 6002 } 6003 } else { 6004 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 6005 goto error; 6006 } 6007 } 6008 6009 /* mark conn as fully-bound */ 6010 econnp->conn_fully_bound = B_TRUE; 6011 6012 /* Send the SYN-ACK */ 6013 tcp_send_data(eager, eager->tcp_wq, mp1); 6014 CONN_DEC_REF(eager->tcp_connp); 6015 freemsg(mp); 6016 6017 return; 6018 error: 6019 freemsg(mp1); 6020 eager->tcp_closemp_used = B_TRUE; 6021 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6022 squeue_fill(econnp->conn_sqp, &eager->tcp_closemp, tcp_eager_kill, 6023 econnp, SQTAG_TCP_CONN_REQ_2); 6024 6025 /* 6026 * If a connection already exists, send the mp to that connections so 6027 * that it can be appropriately dealt with. 6028 */ 6029 ipst = tcps->tcps_netstack->netstack_ip; 6030 6031 if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) { 6032 if (!IPCL_IS_CONNECTED(econnp)) { 6033 /* 6034 * Something bad happened. ipcl_conn_insert() 6035 * failed because a connection already existed 6036 * in connected hash but we can't find it 6037 * anymore (someone blew it away). Just 6038 * free this message and hopefully remote 6039 * will retransmit at which time the SYN can be 6040 * treated as a new connection or dealth with 6041 * a TH_RST if a connection already exists. 6042 */ 6043 CONN_DEC_REF(econnp); 6044 freemsg(mp); 6045 } else { 6046 squeue_fill(econnp->conn_sqp, mp, tcp_input, 6047 econnp, SQTAG_TCP_CONN_REQ_1); 6048 } 6049 } else { 6050 /* Nobody wants this packet */ 6051 freemsg(mp); 6052 } 6053 return; 6054 error3: 6055 CONN_DEC_REF(econnp); 6056 error2: 6057 freemsg(mp); 6058 } 6059 6060 /* 6061 * In an ideal case of vertical partition in NUMA architecture, its 6062 * beneficial to have the listener and all the incoming connections 6063 * tied to the same squeue. The other constraint is that incoming 6064 * connections should be tied to the squeue attached to interrupted 6065 * CPU for obvious locality reason so this leaves the listener to 6066 * be tied to the same squeue. Our only problem is that when listener 6067 * is binding, the CPU that will get interrupted by the NIC whose 6068 * IP address the listener is binding to is not even known. So 6069 * the code below allows us to change that binding at the time the 6070 * CPU is interrupted by virtue of incoming connection's squeue. 6071 * 6072 * This is usefull only in case of a listener bound to a specific IP 6073 * address. For other kind of listeners, they get bound the 6074 * very first time and there is no attempt to rebind them. 6075 */ 6076 void 6077 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 6078 { 6079 conn_t *connp = (conn_t *)arg; 6080 squeue_t *sqp = (squeue_t *)arg2; 6081 squeue_t *new_sqp; 6082 uint32_t conn_flags; 6083 6084 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 6085 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 6086 } else { 6087 goto done; 6088 } 6089 6090 if (connp->conn_fanout == NULL) 6091 goto done; 6092 6093 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 6094 mutex_enter(&connp->conn_fanout->connf_lock); 6095 mutex_enter(&connp->conn_lock); 6096 /* 6097 * No one from read or write side can access us now 6098 * except for already queued packets on this squeue. 6099 * But since we haven't changed the squeue yet, they 6100 * can't execute. If they are processed after we have 6101 * changed the squeue, they are sent back to the 6102 * correct squeue down below. 6103 * But a listner close can race with processing of 6104 * incoming SYN. If incoming SYN processing changes 6105 * the squeue then the listener close which is waiting 6106 * to enter the squeue would operate on the wrong 6107 * squeue. Hence we don't change the squeue here unless 6108 * the refcount is exactly the minimum refcount. The 6109 * minimum refcount of 4 is counted as - 1 each for 6110 * TCP and IP, 1 for being in the classifier hash, and 6111 * 1 for the mblk being processed. 6112 */ 6113 6114 if (connp->conn_ref != 4 || 6115 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 6116 mutex_exit(&connp->conn_lock); 6117 mutex_exit(&connp->conn_fanout->connf_lock); 6118 goto done; 6119 } 6120 if (connp->conn_sqp != new_sqp) { 6121 while (connp->conn_sqp != new_sqp) 6122 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 6123 } 6124 6125 do { 6126 conn_flags = connp->conn_flags; 6127 conn_flags |= IPCL_FULLY_BOUND; 6128 (void) cas32(&connp->conn_flags, connp->conn_flags, 6129 conn_flags); 6130 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 6131 6132 mutex_exit(&connp->conn_fanout->connf_lock); 6133 mutex_exit(&connp->conn_lock); 6134 } 6135 6136 done: 6137 if (connp->conn_sqp != sqp) { 6138 CONN_INC_REF(connp); 6139 squeue_fill(connp->conn_sqp, mp, 6140 connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND); 6141 } else { 6142 tcp_conn_request(connp, mp, sqp); 6143 } 6144 } 6145 6146 /* 6147 * Successful connect request processing begins when our client passes 6148 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 6149 * our T_OK_ACK reply message upstream. The control flow looks like this: 6150 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP 6151 * upstream <- tcp_rput() <- IP 6152 * After various error checks are completed, tcp_connect() lays 6153 * the target address and port into the composite header template, 6154 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 6155 * request followed by an IRE request, and passes the three mblk message 6156 * down to IP looking like this: 6157 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 6158 * Processing continues in tcp_rput() when we receive the following message: 6159 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 6160 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 6161 * to fire off the connection request, and then passes the T_OK_ACK mblk 6162 * upstream that we filled in below. There are, of course, numerous 6163 * error conditions along the way which truncate the processing described 6164 * above. 6165 */ 6166 static void 6167 tcp_connect(tcp_t *tcp, mblk_t *mp) 6168 { 6169 sin_t *sin; 6170 sin6_t *sin6; 6171 queue_t *q = tcp->tcp_wq; 6172 struct T_conn_req *tcr; 6173 ipaddr_t *dstaddrp; 6174 in_port_t dstport; 6175 uint_t srcid; 6176 6177 tcr = (struct T_conn_req *)mp->b_rptr; 6178 6179 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6180 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 6181 tcp_err_ack(tcp, mp, TPROTO, 0); 6182 return; 6183 } 6184 6185 /* 6186 * Determine packet type based on type of address passed in 6187 * the request should contain an IPv4 or IPv6 address. 6188 * Make sure that address family matches the type of 6189 * family of the the address passed down 6190 */ 6191 switch (tcr->DEST_length) { 6192 default: 6193 tcp_err_ack(tcp, mp, TBADADDR, 0); 6194 return; 6195 6196 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 6197 /* 6198 * XXX: The check for valid DEST_length was not there 6199 * in earlier releases and some buggy 6200 * TLI apps (e.g Sybase) got away with not feeding 6201 * in sin_zero part of address. 6202 * We allow that bug to keep those buggy apps humming. 6203 * Test suites require the check on DEST_length. 6204 * We construct a new mblk with valid DEST_length 6205 * free the original so the rest of the code does 6206 * not have to keep track of this special shorter 6207 * length address case. 6208 */ 6209 mblk_t *nmp; 6210 struct T_conn_req *ntcr; 6211 sin_t *nsin; 6212 6213 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 6214 tcr->OPT_length, BPRI_HI); 6215 if (nmp == NULL) { 6216 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6217 return; 6218 } 6219 ntcr = (struct T_conn_req *)nmp->b_rptr; 6220 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 6221 ntcr->PRIM_type = T_CONN_REQ; 6222 ntcr->DEST_length = sizeof (sin_t); 6223 ntcr->DEST_offset = sizeof (struct T_conn_req); 6224 6225 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 6226 *nsin = sin_null; 6227 /* Get pointer to shorter address to copy from original mp */ 6228 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6229 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 6230 if (sin == NULL || !OK_32PTR((char *)sin)) { 6231 freemsg(nmp); 6232 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6233 return; 6234 } 6235 nsin->sin_family = sin->sin_family; 6236 nsin->sin_port = sin->sin_port; 6237 nsin->sin_addr = sin->sin_addr; 6238 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 6239 nmp->b_wptr = (uchar_t *)&nsin[1]; 6240 if (tcr->OPT_length != 0) { 6241 ntcr->OPT_length = tcr->OPT_length; 6242 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 6243 bcopy((uchar_t *)tcr + tcr->OPT_offset, 6244 (uchar_t *)ntcr + ntcr->OPT_offset, 6245 tcr->OPT_length); 6246 nmp->b_wptr += tcr->OPT_length; 6247 } 6248 freemsg(mp); /* original mp freed */ 6249 mp = nmp; /* re-initialize original variables */ 6250 tcr = ntcr; 6251 } 6252 /* FALLTHRU */ 6253 6254 case sizeof (sin_t): 6255 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6256 sizeof (sin_t)); 6257 if (sin == NULL || !OK_32PTR((char *)sin)) { 6258 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6259 return; 6260 } 6261 if (tcp->tcp_family != AF_INET || 6262 sin->sin_family != AF_INET) { 6263 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6264 return; 6265 } 6266 if (sin->sin_port == 0) { 6267 tcp_err_ack(tcp, mp, TBADADDR, 0); 6268 return; 6269 } 6270 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 6271 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6272 return; 6273 } 6274 6275 break; 6276 6277 case sizeof (sin6_t): 6278 sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, 6279 sizeof (sin6_t)); 6280 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 6281 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6282 return; 6283 } 6284 if (tcp->tcp_family != AF_INET6 || 6285 sin6->sin6_family != AF_INET6) { 6286 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6287 return; 6288 } 6289 if (sin6->sin6_port == 0) { 6290 tcp_err_ack(tcp, mp, TBADADDR, 0); 6291 return; 6292 } 6293 break; 6294 } 6295 /* 6296 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6297 * should key on their sequence number and cut them loose. 6298 */ 6299 6300 /* 6301 * If options passed in, feed it for verification and handling 6302 */ 6303 if (tcr->OPT_length != 0) { 6304 mblk_t *ok_mp; 6305 mblk_t *discon_mp; 6306 mblk_t *conn_opts_mp; 6307 int t_error, sys_error, do_disconnect; 6308 6309 conn_opts_mp = NULL; 6310 6311 if (tcp_conprim_opt_process(tcp, mp, 6312 &do_disconnect, &t_error, &sys_error) < 0) { 6313 if (do_disconnect) { 6314 ASSERT(t_error == 0 && sys_error == 0); 6315 discon_mp = mi_tpi_discon_ind(NULL, 6316 ECONNREFUSED, 0); 6317 if (!discon_mp) { 6318 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6319 TSYSERR, ENOMEM); 6320 return; 6321 } 6322 ok_mp = mi_tpi_ok_ack_alloc(mp); 6323 if (!ok_mp) { 6324 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6325 TSYSERR, ENOMEM); 6326 return; 6327 } 6328 qreply(q, ok_mp); 6329 qreply(q, discon_mp); /* no flush! */ 6330 } else { 6331 ASSERT(t_error != 0); 6332 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6333 sys_error); 6334 } 6335 return; 6336 } 6337 /* 6338 * Success in setting options, the mp option buffer represented 6339 * by OPT_length/offset has been potentially modified and 6340 * contains results of option processing. We copy it in 6341 * another mp to save it for potentially influencing returning 6342 * it in T_CONN_CONN. 6343 */ 6344 if (tcr->OPT_length != 0) { /* there are resulting options */ 6345 conn_opts_mp = copyb(mp); 6346 if (!conn_opts_mp) { 6347 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6348 TSYSERR, ENOMEM); 6349 return; 6350 } 6351 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6352 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6353 /* 6354 * Note: 6355 * These resulting option negotiation can include any 6356 * end-to-end negotiation options but there no such 6357 * thing (yet?) in our TCP/IP. 6358 */ 6359 } 6360 } 6361 6362 /* 6363 * If we're connecting to an IPv4-mapped IPv6 address, we need to 6364 * make sure that the template IP header in the tcp structure is an 6365 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 6366 * need to this before we call tcp_bindi() so that the port lookup 6367 * code will look for ports in the correct port space (IPv4 and 6368 * IPv6 have separate port spaces). 6369 */ 6370 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 6371 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6372 int err = 0; 6373 6374 err = tcp_header_init_ipv4(tcp); 6375 if (err != 0) { 6376 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6377 goto connect_failed; 6378 } 6379 if (tcp->tcp_lport != 0) 6380 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 6381 } 6382 6383 switch (tcp->tcp_state) { 6384 case TCPS_IDLE: 6385 /* 6386 * We support quick connect, refer to comments in 6387 * tcp_connect_*() 6388 */ 6389 /* FALLTHRU */ 6390 case TCPS_BOUND: 6391 case TCPS_LISTEN: 6392 if (tcp->tcp_family == AF_INET6) { 6393 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6394 tcp_connect_ipv6(tcp, mp, 6395 &sin6->sin6_addr, 6396 sin6->sin6_port, sin6->sin6_flowinfo, 6397 sin6->__sin6_src_id, sin6->sin6_scope_id); 6398 return; 6399 } 6400 /* 6401 * Destination adress is mapped IPv6 address. 6402 * Source bound address should be unspecified or 6403 * IPv6 mapped address as well. 6404 */ 6405 if (!IN6_IS_ADDR_UNSPECIFIED( 6406 &tcp->tcp_bound_source_v6) && 6407 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 6408 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, 6409 EADDRNOTAVAIL); 6410 break; 6411 } 6412 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 6413 dstport = sin6->sin6_port; 6414 srcid = sin6->__sin6_src_id; 6415 } else { 6416 dstaddrp = &sin->sin_addr.s_addr; 6417 dstport = sin->sin_port; 6418 srcid = 0; 6419 } 6420 6421 tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid); 6422 return; 6423 default: 6424 mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0); 6425 break; 6426 } 6427 /* 6428 * Note: Code below is the "failure" case 6429 */ 6430 /* return error ack and blow away saved option results if any */ 6431 connect_failed: 6432 if (mp != NULL) 6433 putnext(tcp->tcp_rq, mp); 6434 else { 6435 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6436 TSYSERR, ENOMEM); 6437 } 6438 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6439 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6440 } 6441 6442 /* 6443 * Handle connect to IPv4 destinations, including connections for AF_INET6 6444 * sockets connecting to IPv4 mapped IPv6 destinations. 6445 */ 6446 static void 6447 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport, 6448 uint_t srcid) 6449 { 6450 tcph_t *tcph; 6451 mblk_t *mp1; 6452 ipaddr_t dstaddr = *dstaddrp; 6453 int32_t oldstate; 6454 uint16_t lport; 6455 tcp_stack_t *tcps = tcp->tcp_tcps; 6456 6457 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6458 6459 /* Check for attempt to connect to INADDR_ANY */ 6460 if (dstaddr == INADDR_ANY) { 6461 /* 6462 * SunOS 4.x and 4.3 BSD allow an application 6463 * to connect a TCP socket to INADDR_ANY. 6464 * When they do this, the kernel picks the 6465 * address of one interface and uses it 6466 * instead. The kernel usually ends up 6467 * picking the address of the loopback 6468 * interface. This is an undocumented feature. 6469 * However, we provide the same thing here 6470 * in order to have source and binary 6471 * compatibility with SunOS 4.x. 6472 * Update the T_CONN_REQ (sin/sin6) since it is used to 6473 * generate the T_CONN_CON. 6474 */ 6475 dstaddr = htonl(INADDR_LOOPBACK); 6476 *dstaddrp = dstaddr; 6477 } 6478 6479 /* Handle __sin6_src_id if socket not bound to an IP address */ 6480 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6481 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6482 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6483 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6484 tcp->tcp_ipha->ipha_src); 6485 } 6486 6487 /* 6488 * Don't let an endpoint connect to itself. Note that 6489 * the test here does not catch the case where the 6490 * source IP addr was left unspecified by the user. In 6491 * this case, the source addr is set in tcp_adapt_ire() 6492 * using the reply to the T_BIND message that we send 6493 * down to IP here and the check is repeated in tcp_rput_other. 6494 */ 6495 if (dstaddr == tcp->tcp_ipha->ipha_src && 6496 dstport == tcp->tcp_lport) { 6497 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6498 goto failed; 6499 } 6500 6501 tcp->tcp_ipha->ipha_dst = dstaddr; 6502 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6503 6504 /* 6505 * Massage a source route if any putting the first hop 6506 * in iph_dst. Compute a starting value for the checksum which 6507 * takes into account that the original iph_dst should be 6508 * included in the checksum but that ip will include the 6509 * first hop in the source route in the tcp checksum. 6510 */ 6511 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack); 6512 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6513 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6514 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6515 if ((int)tcp->tcp_sum < 0) 6516 tcp->tcp_sum--; 6517 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6518 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6519 (tcp->tcp_sum >> 16)); 6520 tcph = tcp->tcp_tcph; 6521 *(uint16_t *)tcph->th_fport = dstport; 6522 tcp->tcp_fport = dstport; 6523 6524 oldstate = tcp->tcp_state; 6525 /* 6526 * At this point the remote destination address and remote port fields 6527 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6528 * have to see which state tcp was in so we can take apropriate action. 6529 */ 6530 if (oldstate == TCPS_IDLE) { 6531 /* 6532 * We support a quick connect capability here, allowing 6533 * clients to transition directly from IDLE to SYN_SENT 6534 * tcp_bindi will pick an unused port, insert the connection 6535 * in the bind hash and transition to BOUND state. 6536 */ 6537 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6538 tcp, B_TRUE); 6539 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6540 B_FALSE, B_FALSE); 6541 if (lport == 0) { 6542 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6543 goto failed; 6544 } 6545 } 6546 tcp->tcp_state = TCPS_SYN_SENT; 6547 6548 /* 6549 * TODO: allow data with connect requests 6550 * by unlinking M_DATA trailers here and 6551 * linking them in behind the T_OK_ACK mblk. 6552 * The tcp_rput() bind ack handler would then 6553 * feed them to tcp_wput_data() rather than call 6554 * tcp_timer(). 6555 */ 6556 mp = mi_tpi_ok_ack_alloc(mp); 6557 if (!mp) { 6558 tcp->tcp_state = oldstate; 6559 goto failed; 6560 } 6561 if (tcp->tcp_family == AF_INET) { 6562 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6563 sizeof (ipa_conn_t)); 6564 } else { 6565 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6566 sizeof (ipa6_conn_t)); 6567 } 6568 if (mp1) { 6569 /* 6570 * We need to make sure that the conn_recv is set to a non-null 6571 * value before we insert the conn_t into the classifier table. 6572 * This is to avoid a race with an incoming packet which does 6573 * an ipcl_classify(). 6574 */ 6575 tcp->tcp_connp->conn_recv = tcp_input; 6576 6577 /* Hang onto the T_OK_ACK for later. */ 6578 linkb(mp1, mp); 6579 mblk_setcred(mp1, tcp->tcp_cred); 6580 if (tcp->tcp_family == AF_INET) 6581 mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp); 6582 else { 6583 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6584 &tcp->tcp_sticky_ipp); 6585 } 6586 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6587 tcp->tcp_active_open = 1; 6588 /* 6589 * If the bind cannot complete immediately 6590 * IP will arrange to call tcp_rput_other 6591 * when the bind completes. 6592 */ 6593 if (mp1 != NULL) 6594 tcp_rput_other(tcp, mp1); 6595 return; 6596 } 6597 /* Error case */ 6598 tcp->tcp_state = oldstate; 6599 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6600 6601 failed: 6602 /* return error ack and blow away saved option results if any */ 6603 if (mp != NULL) 6604 putnext(tcp->tcp_rq, mp); 6605 else { 6606 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6607 TSYSERR, ENOMEM); 6608 } 6609 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6610 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6611 6612 } 6613 6614 /* 6615 * Handle connect to IPv6 destinations. 6616 */ 6617 static void 6618 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 6619 in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 6620 { 6621 tcph_t *tcph; 6622 mblk_t *mp1; 6623 ip6_rthdr_t *rth; 6624 int32_t oldstate; 6625 uint16_t lport; 6626 tcp_stack_t *tcps = tcp->tcp_tcps; 6627 6628 ASSERT(tcp->tcp_family == AF_INET6); 6629 6630 /* 6631 * If we're here, it means that the destination address is a native 6632 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6633 * reason why it might not be IPv6 is if the socket was bound to an 6634 * IPv4-mapped IPv6 address. 6635 */ 6636 if (tcp->tcp_ipversion != IPV6_VERSION) { 6637 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6638 goto failed; 6639 } 6640 6641 /* 6642 * Interpret a zero destination to mean loopback. 6643 * Update the T_CONN_REQ (sin/sin6) since it is used to 6644 * generate the T_CONN_CON. 6645 */ 6646 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6647 *dstaddrp = ipv6_loopback; 6648 } 6649 6650 /* Handle __sin6_src_id if socket not bound to an IP address */ 6651 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6652 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6653 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6654 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6655 } 6656 6657 /* 6658 * Take care of the scope_id now and add ip6i_t 6659 * if ip6i_t is not already allocated through TCP 6660 * sticky options. At this point tcp_ip6h does not 6661 * have dst info, thus use dstaddrp. 6662 */ 6663 if (scope_id != 0 && 6664 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6665 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6666 ip6i_t *ip6i; 6667 6668 ipp->ipp_ifindex = scope_id; 6669 ip6i = (ip6i_t *)tcp->tcp_iphc; 6670 6671 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6672 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6673 /* Already allocated */ 6674 ip6i->ip6i_flags |= IP6I_IFINDEX; 6675 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6676 ipp->ipp_fields |= IPPF_SCOPE_ID; 6677 } else { 6678 int reterr; 6679 6680 ipp->ipp_fields |= IPPF_SCOPE_ID; 6681 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6682 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6683 reterr = tcp_build_hdrs(tcp->tcp_rq, tcp); 6684 if (reterr != 0) 6685 goto failed; 6686 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6687 } 6688 } 6689 6690 /* 6691 * Don't let an endpoint connect to itself. Note that 6692 * the test here does not catch the case where the 6693 * source IP addr was left unspecified by the user. In 6694 * this case, the source addr is set in tcp_adapt_ire() 6695 * using the reply to the T_BIND message that we send 6696 * down to IP here and the check is repeated in tcp_rput_other. 6697 */ 6698 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6699 (dstport == tcp->tcp_lport)) { 6700 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6701 goto failed; 6702 } 6703 6704 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6705 tcp->tcp_remote_v6 = *dstaddrp; 6706 tcp->tcp_ip6h->ip6_vcf = 6707 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6708 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6709 6710 6711 /* 6712 * Massage a routing header (if present) putting the first hop 6713 * in ip6_dst. Compute a starting value for the checksum which 6714 * takes into account that the original ip6_dst should be 6715 * included in the checksum but that ip will include the 6716 * first hop in the source route in the tcp checksum. 6717 */ 6718 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6719 if (rth != NULL) { 6720 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth, 6721 tcps->tcps_netstack); 6722 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6723 (tcp->tcp_sum >> 16)); 6724 } else { 6725 tcp->tcp_sum = 0; 6726 } 6727 6728 tcph = tcp->tcp_tcph; 6729 *(uint16_t *)tcph->th_fport = dstport; 6730 tcp->tcp_fport = dstport; 6731 6732 oldstate = tcp->tcp_state; 6733 /* 6734 * At this point the remote destination address and remote port fields 6735 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6736 * have to see which state tcp was in so we can take apropriate action. 6737 */ 6738 if (oldstate == TCPS_IDLE) { 6739 /* 6740 * We support a quick connect capability here, allowing 6741 * clients to transition directly from IDLE to SYN_SENT 6742 * tcp_bindi will pick an unused port, insert the connection 6743 * in the bind hash and transition to BOUND state. 6744 */ 6745 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6746 tcp, B_TRUE); 6747 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6748 B_FALSE, B_FALSE); 6749 if (lport == 0) { 6750 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6751 goto failed; 6752 } 6753 } 6754 tcp->tcp_state = TCPS_SYN_SENT; 6755 /* 6756 * TODO: allow data with connect requests 6757 * by unlinking M_DATA trailers here and 6758 * linking them in behind the T_OK_ACK mblk. 6759 * The tcp_rput() bind ack handler would then 6760 * feed them to tcp_wput_data() rather than call 6761 * tcp_timer(). 6762 */ 6763 mp = mi_tpi_ok_ack_alloc(mp); 6764 if (!mp) { 6765 tcp->tcp_state = oldstate; 6766 goto failed; 6767 } 6768 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); 6769 if (mp1) { 6770 /* 6771 * We need to make sure that the conn_recv is set to a non-null 6772 * value before we insert the conn_t into the classifier table. 6773 * This is to avoid a race with an incoming packet which does 6774 * an ipcl_classify(). 6775 */ 6776 tcp->tcp_connp->conn_recv = tcp_input; 6777 6778 /* Hang onto the T_OK_ACK for later. */ 6779 linkb(mp1, mp); 6780 mblk_setcred(mp1, tcp->tcp_cred); 6781 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6782 &tcp->tcp_sticky_ipp); 6783 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6784 tcp->tcp_active_open = 1; 6785 /* ip_bind_v6() may return ACK or ERROR */ 6786 if (mp1 != NULL) 6787 tcp_rput_other(tcp, mp1); 6788 return; 6789 } 6790 /* Error case */ 6791 tcp->tcp_state = oldstate; 6792 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6793 6794 failed: 6795 /* return error ack and blow away saved option results if any */ 6796 if (mp != NULL) 6797 putnext(tcp->tcp_rq, mp); 6798 else { 6799 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6800 TSYSERR, ENOMEM); 6801 } 6802 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6803 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6804 } 6805 6806 /* 6807 * We need a stream q for detached closing tcp connections 6808 * to use. Our client hereby indicates that this q is the 6809 * one to use. 6810 */ 6811 static void 6812 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6813 { 6814 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6815 queue_t *q = tcp->tcp_wq; 6816 tcp_stack_t *tcps = tcp->tcp_tcps; 6817 6818 #ifdef NS_DEBUG 6819 (void) printf("TCP_IOC_DEFAULT_Q for stack %d\n", 6820 tcps->tcps_netstack->netstack_stackid); 6821 #endif 6822 mp->b_datap->db_type = M_IOCACK; 6823 iocp->ioc_count = 0; 6824 mutex_enter(&tcps->tcps_g_q_lock); 6825 if (tcps->tcps_g_q != NULL) { 6826 mutex_exit(&tcps->tcps_g_q_lock); 6827 iocp->ioc_error = EALREADY; 6828 } else { 6829 mblk_t *mp1; 6830 6831 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0); 6832 if (mp1 == NULL) { 6833 mutex_exit(&tcps->tcps_g_q_lock); 6834 iocp->ioc_error = ENOMEM; 6835 } else { 6836 tcps->tcps_g_q = tcp->tcp_rq; 6837 mutex_exit(&tcps->tcps_g_q_lock); 6838 iocp->ioc_error = 0; 6839 iocp->ioc_rval = 0; 6840 /* 6841 * We are passing tcp_sticky_ipp as NULL 6842 * as it is not useful for tcp_default queue 6843 * 6844 * Set conn_recv just in case. 6845 */ 6846 tcp->tcp_connp->conn_recv = tcp_conn_request; 6847 6848 mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL); 6849 if (mp1 != NULL) 6850 tcp_rput_other(tcp, mp1); 6851 } 6852 } 6853 qreply(q, mp); 6854 } 6855 6856 /* 6857 * Our client hereby directs us to reject the connection request 6858 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6859 * of sending the appropriate RST, not an ICMP error. 6860 */ 6861 static void 6862 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6863 { 6864 tcp_t *ltcp = NULL; 6865 t_scalar_t seqnum; 6866 conn_t *connp; 6867 tcp_stack_t *tcps = tcp->tcp_tcps; 6868 6869 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6870 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6871 tcp_err_ack(tcp, mp, TPROTO, 0); 6872 return; 6873 } 6874 6875 /* 6876 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6877 * when the stream is in BOUND state. Do not send a reset, 6878 * since the destination IP address is not valid, and it can 6879 * be the initialized value of all zeros (broadcast address). 6880 * 6881 * If TCP has sent down a bind request to IP and has not 6882 * received the reply, reject the request. Otherwise, TCP 6883 * will be confused. 6884 */ 6885 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) { 6886 if (tcp->tcp_debug) { 6887 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6888 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6889 } 6890 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 6891 return; 6892 } 6893 6894 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6895 6896 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6897 6898 /* 6899 * According to TPI, for non-listeners, ignore seqnum 6900 * and disconnect. 6901 * Following interpretation of -1 seqnum is historical 6902 * and implied TPI ? (TPI only states that for T_CONN_IND, 6903 * a valid seqnum should not be -1). 6904 * 6905 * -1 means disconnect everything 6906 * regardless even on a listener. 6907 */ 6908 6909 int old_state = tcp->tcp_state; 6910 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 6911 6912 /* 6913 * The connection can't be on the tcp_time_wait_head list 6914 * since it is not detached. 6915 */ 6916 ASSERT(tcp->tcp_time_wait_next == NULL); 6917 ASSERT(tcp->tcp_time_wait_prev == NULL); 6918 ASSERT(tcp->tcp_time_wait_expire == 0); 6919 ltcp = NULL; 6920 /* 6921 * If it used to be a listener, check to make sure no one else 6922 * has taken the port before switching back to LISTEN state. 6923 */ 6924 if (tcp->tcp_ipversion == IPV4_VERSION) { 6925 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6926 tcp->tcp_ipha->ipha_src, 6927 tcp->tcp_connp->conn_zoneid, ipst); 6928 if (connp != NULL) 6929 ltcp = connp->conn_tcp; 6930 } else { 6931 /* Allow tcp_bound_if listeners? */ 6932 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6933 &tcp->tcp_ip6h->ip6_src, 0, 6934 tcp->tcp_connp->conn_zoneid, ipst); 6935 if (connp != NULL) 6936 ltcp = connp->conn_tcp; 6937 } 6938 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6939 tcp->tcp_state = TCPS_LISTEN; 6940 } else if (old_state > TCPS_BOUND) { 6941 tcp->tcp_conn_req_max = 0; 6942 tcp->tcp_state = TCPS_BOUND; 6943 } 6944 if (ltcp != NULL) 6945 CONN_DEC_REF(ltcp->tcp_connp); 6946 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6947 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 6948 } else if (old_state == TCPS_ESTABLISHED || 6949 old_state == TCPS_CLOSE_WAIT) { 6950 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 6951 } 6952 6953 if (tcp->tcp_fused) 6954 tcp_unfuse(tcp); 6955 6956 mutex_enter(&tcp->tcp_eager_lock); 6957 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6958 (tcp->tcp_conn_req_cnt_q != 0)) { 6959 tcp_eager_cleanup(tcp, 0); 6960 } 6961 mutex_exit(&tcp->tcp_eager_lock); 6962 6963 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6964 tcp->tcp_rnxt, TH_RST | TH_ACK); 6965 6966 tcp_reinit(tcp); 6967 6968 if (old_state >= TCPS_ESTABLISHED) { 6969 /* Send M_FLUSH according to TPI */ 6970 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6971 } 6972 mp = mi_tpi_ok_ack_alloc(mp); 6973 if (mp) 6974 putnext(tcp->tcp_rq, mp); 6975 return; 6976 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6977 tcp_err_ack(tcp, mp, TBADSEQ, 0); 6978 return; 6979 } 6980 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6981 /* Send M_FLUSH according to TPI */ 6982 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6983 } 6984 mp = mi_tpi_ok_ack_alloc(mp); 6985 if (mp) 6986 putnext(tcp->tcp_rq, mp); 6987 } 6988 6989 /* 6990 * Diagnostic routine used to return a string associated with the tcp state. 6991 * Note that if the caller does not supply a buffer, it will use an internal 6992 * static string. This means that if multiple threads call this function at 6993 * the same time, output can be corrupted... Note also that this function 6994 * does not check the size of the supplied buffer. The caller has to make 6995 * sure that it is big enough. 6996 */ 6997 static char * 6998 tcp_display(tcp_t *tcp, char *sup_buf, char format) 6999 { 7000 char buf1[30]; 7001 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 7002 char *buf; 7003 char *cp; 7004 in6_addr_t local, remote; 7005 char local_addrbuf[INET6_ADDRSTRLEN]; 7006 char remote_addrbuf[INET6_ADDRSTRLEN]; 7007 7008 if (sup_buf != NULL) 7009 buf = sup_buf; 7010 else 7011 buf = priv_buf; 7012 7013 if (tcp == NULL) 7014 return ("NULL_TCP"); 7015 switch (tcp->tcp_state) { 7016 case TCPS_CLOSED: 7017 cp = "TCP_CLOSED"; 7018 break; 7019 case TCPS_IDLE: 7020 cp = "TCP_IDLE"; 7021 break; 7022 case TCPS_BOUND: 7023 cp = "TCP_BOUND"; 7024 break; 7025 case TCPS_LISTEN: 7026 cp = "TCP_LISTEN"; 7027 break; 7028 case TCPS_SYN_SENT: 7029 cp = "TCP_SYN_SENT"; 7030 break; 7031 case TCPS_SYN_RCVD: 7032 cp = "TCP_SYN_RCVD"; 7033 break; 7034 case TCPS_ESTABLISHED: 7035 cp = "TCP_ESTABLISHED"; 7036 break; 7037 case TCPS_CLOSE_WAIT: 7038 cp = "TCP_CLOSE_WAIT"; 7039 break; 7040 case TCPS_FIN_WAIT_1: 7041 cp = "TCP_FIN_WAIT_1"; 7042 break; 7043 case TCPS_CLOSING: 7044 cp = "TCP_CLOSING"; 7045 break; 7046 case TCPS_LAST_ACK: 7047 cp = "TCP_LAST_ACK"; 7048 break; 7049 case TCPS_FIN_WAIT_2: 7050 cp = "TCP_FIN_WAIT_2"; 7051 break; 7052 case TCPS_TIME_WAIT: 7053 cp = "TCP_TIME_WAIT"; 7054 break; 7055 default: 7056 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 7057 cp = buf1; 7058 break; 7059 } 7060 switch (format) { 7061 case DISP_ADDR_AND_PORT: 7062 if (tcp->tcp_ipversion == IPV4_VERSION) { 7063 /* 7064 * Note that we use the remote address in the tcp_b 7065 * structure. This means that it will print out 7066 * the real destination address, not the next hop's 7067 * address if source routing is used. 7068 */ 7069 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 7070 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 7071 7072 } else { 7073 local = tcp->tcp_ip_src_v6; 7074 remote = tcp->tcp_remote_v6; 7075 } 7076 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 7077 sizeof (local_addrbuf)); 7078 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 7079 sizeof (remote_addrbuf)); 7080 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 7081 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 7082 ntohs(tcp->tcp_fport), cp); 7083 break; 7084 case DISP_PORT_ONLY: 7085 default: 7086 (void) mi_sprintf(buf, "[%u, %u] %s", 7087 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 7088 break; 7089 } 7090 7091 return (buf); 7092 } 7093 7094 /* 7095 * Called via squeue to get on to eager's perimeter. It sends a 7096 * TH_RST if eager is in the fanout table. The listener wants the 7097 * eager to disappear either by means of tcp_eager_blowoff() or 7098 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 7099 * called (via squeue) if the eager cannot be inserted in the 7100 * fanout table in tcp_conn_request(). 7101 */ 7102 /* ARGSUSED */ 7103 void 7104 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 7105 { 7106 conn_t *econnp = (conn_t *)arg; 7107 tcp_t *eager = econnp->conn_tcp; 7108 tcp_t *listener = eager->tcp_listener; 7109 tcp_stack_t *tcps = eager->tcp_tcps; 7110 7111 /* 7112 * We could be called because listener is closing. Since 7113 * the eager is using listener's queue's, its not safe. 7114 * Better use the default queue just to send the TH_RST 7115 * out. 7116 */ 7117 ASSERT(tcps->tcps_g_q != NULL); 7118 eager->tcp_rq = tcps->tcps_g_q; 7119 eager->tcp_wq = WR(tcps->tcps_g_q); 7120 7121 /* 7122 * An eager's conn_fanout will be NULL if it's a duplicate 7123 * for an existing 4-tuples in the conn fanout table. 7124 * We don't want to send an RST out in such case. 7125 */ 7126 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 7127 tcp_xmit_ctl("tcp_eager_kill, can't wait", 7128 eager, eager->tcp_snxt, 0, TH_RST); 7129 } 7130 7131 /* We are here because listener wants this eager gone */ 7132 if (listener != NULL) { 7133 mutex_enter(&listener->tcp_eager_lock); 7134 tcp_eager_unlink(eager); 7135 if (eager->tcp_tconnind_started) { 7136 /* 7137 * The eager has sent a conn_ind up to the 7138 * listener but listener decides to close 7139 * instead. We need to drop the extra ref 7140 * placed on eager in tcp_rput_data() before 7141 * sending the conn_ind to listener. 7142 */ 7143 CONN_DEC_REF(econnp); 7144 } 7145 mutex_exit(&listener->tcp_eager_lock); 7146 CONN_DEC_REF(listener->tcp_connp); 7147 } 7148 7149 if (eager->tcp_state > TCPS_BOUND) 7150 tcp_close_detached(eager); 7151 } 7152 7153 /* 7154 * Reset any eager connection hanging off this listener marked 7155 * with 'seqnum' and then reclaim it's resources. 7156 */ 7157 static boolean_t 7158 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 7159 { 7160 tcp_t *eager; 7161 mblk_t *mp; 7162 tcp_stack_t *tcps = listener->tcp_tcps; 7163 7164 TCP_STAT(tcps, tcp_eager_blowoff_calls); 7165 eager = listener; 7166 mutex_enter(&listener->tcp_eager_lock); 7167 do { 7168 eager = eager->tcp_eager_next_q; 7169 if (eager == NULL) { 7170 mutex_exit(&listener->tcp_eager_lock); 7171 return (B_FALSE); 7172 } 7173 } while (eager->tcp_conn_req_seqnum != seqnum); 7174 7175 if (eager->tcp_closemp_used) { 7176 mutex_exit(&listener->tcp_eager_lock); 7177 return (B_TRUE); 7178 } 7179 eager->tcp_closemp_used = B_TRUE; 7180 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7181 CONN_INC_REF(eager->tcp_connp); 7182 mutex_exit(&listener->tcp_eager_lock); 7183 mp = &eager->tcp_closemp; 7184 squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 7185 eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF); 7186 return (B_TRUE); 7187 } 7188 7189 /* 7190 * Reset any eager connection hanging off this listener 7191 * and then reclaim it's resources. 7192 */ 7193 static void 7194 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 7195 { 7196 tcp_t *eager; 7197 mblk_t *mp; 7198 tcp_stack_t *tcps = listener->tcp_tcps; 7199 7200 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7201 7202 if (!q0_only) { 7203 /* First cleanup q */ 7204 TCP_STAT(tcps, tcp_eager_blowoff_q); 7205 eager = listener->tcp_eager_next_q; 7206 while (eager != NULL) { 7207 if (!eager->tcp_closemp_used) { 7208 eager->tcp_closemp_used = B_TRUE; 7209 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7210 CONN_INC_REF(eager->tcp_connp); 7211 mp = &eager->tcp_closemp; 7212 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7213 tcp_eager_kill, eager->tcp_connp, 7214 SQTAG_TCP_EAGER_CLEANUP); 7215 } 7216 eager = eager->tcp_eager_next_q; 7217 } 7218 } 7219 /* Then cleanup q0 */ 7220 TCP_STAT(tcps, tcp_eager_blowoff_q0); 7221 eager = listener->tcp_eager_next_q0; 7222 while (eager != listener) { 7223 if (!eager->tcp_closemp_used) { 7224 eager->tcp_closemp_used = B_TRUE; 7225 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7226 CONN_INC_REF(eager->tcp_connp); 7227 mp = &eager->tcp_closemp; 7228 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7229 tcp_eager_kill, eager->tcp_connp, 7230 SQTAG_TCP_EAGER_CLEANUP_Q0); 7231 } 7232 eager = eager->tcp_eager_next_q0; 7233 } 7234 } 7235 7236 /* 7237 * If we are an eager connection hanging off a listener that hasn't 7238 * formally accepted the connection yet, get off his list and blow off 7239 * any data that we have accumulated. 7240 */ 7241 static void 7242 tcp_eager_unlink(tcp_t *tcp) 7243 { 7244 tcp_t *listener = tcp->tcp_listener; 7245 7246 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7247 ASSERT(listener != NULL); 7248 if (tcp->tcp_eager_next_q0 != NULL) { 7249 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 7250 7251 /* Remove the eager tcp from q0 */ 7252 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 7253 tcp->tcp_eager_prev_q0; 7254 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 7255 tcp->tcp_eager_next_q0; 7256 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 7257 listener->tcp_conn_req_cnt_q0--; 7258 7259 tcp->tcp_eager_next_q0 = NULL; 7260 tcp->tcp_eager_prev_q0 = NULL; 7261 7262 /* 7263 * Take the eager out, if it is in the list of droppable 7264 * eagers. 7265 */ 7266 MAKE_UNDROPPABLE(tcp); 7267 7268 if (tcp->tcp_syn_rcvd_timeout != 0) { 7269 /* we have timed out before */ 7270 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 7271 listener->tcp_syn_rcvd_timeout--; 7272 } 7273 } else { 7274 tcp_t **tcpp = &listener->tcp_eager_next_q; 7275 tcp_t *prev = NULL; 7276 7277 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 7278 if (tcpp[0] == tcp) { 7279 if (listener->tcp_eager_last_q == tcp) { 7280 /* 7281 * If we are unlinking the last 7282 * element on the list, adjust 7283 * tail pointer. Set tail pointer 7284 * to nil when list is empty. 7285 */ 7286 ASSERT(tcp->tcp_eager_next_q == NULL); 7287 if (listener->tcp_eager_last_q == 7288 listener->tcp_eager_next_q) { 7289 listener->tcp_eager_last_q = 7290 NULL; 7291 } else { 7292 /* 7293 * We won't get here if there 7294 * is only one eager in the 7295 * list. 7296 */ 7297 ASSERT(prev != NULL); 7298 listener->tcp_eager_last_q = 7299 prev; 7300 } 7301 } 7302 tcpp[0] = tcp->tcp_eager_next_q; 7303 tcp->tcp_eager_next_q = NULL; 7304 tcp->tcp_eager_last_q = NULL; 7305 ASSERT(listener->tcp_conn_req_cnt_q > 0); 7306 listener->tcp_conn_req_cnt_q--; 7307 break; 7308 } 7309 prev = tcpp[0]; 7310 } 7311 } 7312 tcp->tcp_listener = NULL; 7313 } 7314 7315 /* Shorthand to generate and send TPI error acks to our client */ 7316 static void 7317 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 7318 { 7319 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 7320 putnext(tcp->tcp_rq, mp); 7321 } 7322 7323 /* Shorthand to generate and send TPI error acks to our client */ 7324 static void 7325 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 7326 int t_error, int sys_error) 7327 { 7328 struct T_error_ack *teackp; 7329 7330 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 7331 M_PCPROTO, T_ERROR_ACK)) != NULL) { 7332 teackp = (struct T_error_ack *)mp->b_rptr; 7333 teackp->ERROR_prim = primitive; 7334 teackp->TLI_error = t_error; 7335 teackp->UNIX_error = sys_error; 7336 putnext(tcp->tcp_rq, mp); 7337 } 7338 } 7339 7340 /* 7341 * Note: No locks are held when inspecting tcp_g_*epriv_ports 7342 * but instead the code relies on: 7343 * - the fact that the address of the array and its size never changes 7344 * - the atomic assignment of the elements of the array 7345 */ 7346 /* ARGSUSED */ 7347 static int 7348 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 7349 { 7350 int i; 7351 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7352 7353 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7354 if (tcps->tcps_g_epriv_ports[i] != 0) 7355 (void) mi_mpprintf(mp, "%d ", 7356 tcps->tcps_g_epriv_ports[i]); 7357 } 7358 return (0); 7359 } 7360 7361 /* 7362 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7363 * threads from changing it at the same time. 7364 */ 7365 /* ARGSUSED */ 7366 static int 7367 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7368 cred_t *cr) 7369 { 7370 long new_value; 7371 int i; 7372 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7373 7374 /* 7375 * Fail the request if the new value does not lie within the 7376 * port number limits. 7377 */ 7378 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7379 new_value <= 0 || new_value >= 65536) { 7380 return (EINVAL); 7381 } 7382 7383 mutex_enter(&tcps->tcps_epriv_port_lock); 7384 /* Check if the value is already in the list */ 7385 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7386 if (new_value == tcps->tcps_g_epriv_ports[i]) { 7387 mutex_exit(&tcps->tcps_epriv_port_lock); 7388 return (EEXIST); 7389 } 7390 } 7391 /* Find an empty slot */ 7392 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7393 if (tcps->tcps_g_epriv_ports[i] == 0) 7394 break; 7395 } 7396 if (i == tcps->tcps_g_num_epriv_ports) { 7397 mutex_exit(&tcps->tcps_epriv_port_lock); 7398 return (EOVERFLOW); 7399 } 7400 /* Set the new value */ 7401 tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; 7402 mutex_exit(&tcps->tcps_epriv_port_lock); 7403 return (0); 7404 } 7405 7406 /* 7407 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7408 * threads from changing it at the same time. 7409 */ 7410 /* ARGSUSED */ 7411 static int 7412 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7413 cred_t *cr) 7414 { 7415 long new_value; 7416 int i; 7417 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7418 7419 /* 7420 * Fail the request if the new value does not lie within the 7421 * port number limits. 7422 */ 7423 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7424 new_value >= 65536) { 7425 return (EINVAL); 7426 } 7427 7428 mutex_enter(&tcps->tcps_epriv_port_lock); 7429 /* Check that the value is already in the list */ 7430 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7431 if (tcps->tcps_g_epriv_ports[i] == new_value) 7432 break; 7433 } 7434 if (i == tcps->tcps_g_num_epriv_ports) { 7435 mutex_exit(&tcps->tcps_epriv_port_lock); 7436 return (ESRCH); 7437 } 7438 /* Clear the value */ 7439 tcps->tcps_g_epriv_ports[i] = 0; 7440 mutex_exit(&tcps->tcps_epriv_port_lock); 7441 return (0); 7442 } 7443 7444 /* Return the TPI/TLI equivalent of our current tcp_state */ 7445 static int 7446 tcp_tpistate(tcp_t *tcp) 7447 { 7448 switch (tcp->tcp_state) { 7449 case TCPS_IDLE: 7450 return (TS_UNBND); 7451 case TCPS_LISTEN: 7452 /* 7453 * Return whether there are outstanding T_CONN_IND waiting 7454 * for the matching T_CONN_RES. Therefore don't count q0. 7455 */ 7456 if (tcp->tcp_conn_req_cnt_q > 0) 7457 return (TS_WRES_CIND); 7458 else 7459 return (TS_IDLE); 7460 case TCPS_BOUND: 7461 return (TS_IDLE); 7462 case TCPS_SYN_SENT: 7463 return (TS_WCON_CREQ); 7464 case TCPS_SYN_RCVD: 7465 /* 7466 * Note: assumption: this has to the active open SYN_RCVD. 7467 * The passive instance is detached in SYN_RCVD stage of 7468 * incoming connection processing so we cannot get request 7469 * for T_info_ack on it. 7470 */ 7471 return (TS_WACK_CRES); 7472 case TCPS_ESTABLISHED: 7473 return (TS_DATA_XFER); 7474 case TCPS_CLOSE_WAIT: 7475 return (TS_WREQ_ORDREL); 7476 case TCPS_FIN_WAIT_1: 7477 return (TS_WIND_ORDREL); 7478 case TCPS_FIN_WAIT_2: 7479 return (TS_WIND_ORDREL); 7480 7481 case TCPS_CLOSING: 7482 case TCPS_LAST_ACK: 7483 case TCPS_TIME_WAIT: 7484 case TCPS_CLOSED: 7485 /* 7486 * Following TS_WACK_DREQ7 is a rendition of "not 7487 * yet TS_IDLE" TPI state. There is no best match to any 7488 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7489 * choose a value chosen that will map to TLI/XTI level 7490 * state of TSTATECHNG (state is process of changing) which 7491 * captures what this dummy state represents. 7492 */ 7493 return (TS_WACK_DREQ7); 7494 default: 7495 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7496 tcp->tcp_state, tcp_display(tcp, NULL, 7497 DISP_PORT_ONLY)); 7498 return (TS_UNBND); 7499 } 7500 } 7501 7502 static void 7503 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7504 { 7505 tcp_stack_t *tcps = tcp->tcp_tcps; 7506 7507 if (tcp->tcp_family == AF_INET6) 7508 *tia = tcp_g_t_info_ack_v6; 7509 else 7510 *tia = tcp_g_t_info_ack; 7511 tia->CURRENT_state = tcp_tpistate(tcp); 7512 tia->OPT_size = tcp_max_optsize; 7513 if (tcp->tcp_mss == 0) { 7514 /* Not yet set - tcp_open does not set mss */ 7515 if (tcp->tcp_ipversion == IPV4_VERSION) 7516 tia->TIDU_size = tcps->tcps_mss_def_ipv4; 7517 else 7518 tia->TIDU_size = tcps->tcps_mss_def_ipv6; 7519 } else { 7520 tia->TIDU_size = tcp->tcp_mss; 7521 } 7522 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7523 } 7524 7525 /* 7526 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7527 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7528 * tcp_g_t_info_ack. The current state of the stream is copied from 7529 * tcp_state. 7530 */ 7531 static void 7532 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7533 { 7534 t_uscalar_t cap_bits1; 7535 struct T_capability_ack *tcap; 7536 7537 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7538 freemsg(mp); 7539 return; 7540 } 7541 7542 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7543 7544 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7545 mp->b_datap->db_type, T_CAPABILITY_ACK); 7546 if (mp == NULL) 7547 return; 7548 7549 tcap = (struct T_capability_ack *)mp->b_rptr; 7550 tcap->CAP_bits1 = 0; 7551 7552 if (cap_bits1 & TC1_INFO) { 7553 tcp_copy_info(&tcap->INFO_ack, tcp); 7554 tcap->CAP_bits1 |= TC1_INFO; 7555 } 7556 7557 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7558 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7559 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7560 } 7561 7562 putnext(tcp->tcp_rq, mp); 7563 } 7564 7565 /* 7566 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7567 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7568 * The current state of the stream is copied from tcp_state. 7569 */ 7570 static void 7571 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7572 { 7573 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7574 T_INFO_ACK); 7575 if (!mp) { 7576 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7577 return; 7578 } 7579 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7580 putnext(tcp->tcp_rq, mp); 7581 } 7582 7583 /* Respond to the TPI addr request */ 7584 static void 7585 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7586 { 7587 sin_t *sin; 7588 mblk_t *ackmp; 7589 struct T_addr_ack *taa; 7590 7591 /* Make it large enough for worst case */ 7592 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7593 2 * sizeof (sin6_t), 1); 7594 if (ackmp == NULL) { 7595 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7596 return; 7597 } 7598 7599 if (tcp->tcp_ipversion == IPV6_VERSION) { 7600 tcp_addr_req_ipv6(tcp, ackmp); 7601 return; 7602 } 7603 taa = (struct T_addr_ack *)ackmp->b_rptr; 7604 7605 bzero(taa, sizeof (struct T_addr_ack)); 7606 ackmp->b_wptr = (uchar_t *)&taa[1]; 7607 7608 taa->PRIM_type = T_ADDR_ACK; 7609 ackmp->b_datap->db_type = M_PCPROTO; 7610 7611 /* 7612 * Note: Following code assumes 32 bit alignment of basic 7613 * data structures like sin_t and struct T_addr_ack. 7614 */ 7615 if (tcp->tcp_state >= TCPS_BOUND) { 7616 /* 7617 * Fill in local address 7618 */ 7619 taa->LOCADDR_length = sizeof (sin_t); 7620 taa->LOCADDR_offset = sizeof (*taa); 7621 7622 sin = (sin_t *)&taa[1]; 7623 7624 /* Fill zeroes and then intialize non-zero fields */ 7625 *sin = sin_null; 7626 7627 sin->sin_family = AF_INET; 7628 7629 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7630 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7631 7632 ackmp->b_wptr = (uchar_t *)&sin[1]; 7633 7634 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7635 /* 7636 * Fill in Remote address 7637 */ 7638 taa->REMADDR_length = sizeof (sin_t); 7639 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7640 taa->LOCADDR_length); 7641 7642 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7643 *sin = sin_null; 7644 sin->sin_family = AF_INET; 7645 sin->sin_addr.s_addr = tcp->tcp_remote; 7646 sin->sin_port = tcp->tcp_fport; 7647 7648 ackmp->b_wptr = (uchar_t *)&sin[1]; 7649 } 7650 } 7651 putnext(tcp->tcp_rq, ackmp); 7652 } 7653 7654 /* Assumes that tcp_addr_req gets enough space and alignment */ 7655 static void 7656 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7657 { 7658 sin6_t *sin6; 7659 struct T_addr_ack *taa; 7660 7661 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7662 ASSERT(OK_32PTR(ackmp->b_rptr)); 7663 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7664 2 * sizeof (sin6_t)); 7665 7666 taa = (struct T_addr_ack *)ackmp->b_rptr; 7667 7668 bzero(taa, sizeof (struct T_addr_ack)); 7669 ackmp->b_wptr = (uchar_t *)&taa[1]; 7670 7671 taa->PRIM_type = T_ADDR_ACK; 7672 ackmp->b_datap->db_type = M_PCPROTO; 7673 7674 /* 7675 * Note: Following code assumes 32 bit alignment of basic 7676 * data structures like sin6_t and struct T_addr_ack. 7677 */ 7678 if (tcp->tcp_state >= TCPS_BOUND) { 7679 /* 7680 * Fill in local address 7681 */ 7682 taa->LOCADDR_length = sizeof (sin6_t); 7683 taa->LOCADDR_offset = sizeof (*taa); 7684 7685 sin6 = (sin6_t *)&taa[1]; 7686 *sin6 = sin6_null; 7687 7688 sin6->sin6_family = AF_INET6; 7689 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7690 sin6->sin6_port = tcp->tcp_lport; 7691 7692 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7693 7694 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7695 /* 7696 * Fill in Remote address 7697 */ 7698 taa->REMADDR_length = sizeof (sin6_t); 7699 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7700 taa->LOCADDR_length); 7701 7702 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7703 *sin6 = sin6_null; 7704 sin6->sin6_family = AF_INET6; 7705 sin6->sin6_flowinfo = 7706 tcp->tcp_ip6h->ip6_vcf & 7707 ~IPV6_VERS_AND_FLOW_MASK; 7708 sin6->sin6_addr = tcp->tcp_remote_v6; 7709 sin6->sin6_port = tcp->tcp_fport; 7710 7711 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7712 } 7713 } 7714 putnext(tcp->tcp_rq, ackmp); 7715 } 7716 7717 /* 7718 * Handle reinitialization of a tcp structure. 7719 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7720 */ 7721 static void 7722 tcp_reinit(tcp_t *tcp) 7723 { 7724 mblk_t *mp; 7725 int err; 7726 tcp_stack_t *tcps = tcp->tcp_tcps; 7727 7728 TCP_STAT(tcps, tcp_reinit_calls); 7729 7730 /* tcp_reinit should never be called for detached tcp_t's */ 7731 ASSERT(tcp->tcp_listener == NULL); 7732 ASSERT((tcp->tcp_family == AF_INET && 7733 tcp->tcp_ipversion == IPV4_VERSION) || 7734 (tcp->tcp_family == AF_INET6 && 7735 (tcp->tcp_ipversion == IPV4_VERSION || 7736 tcp->tcp_ipversion == IPV6_VERSION))); 7737 7738 /* Cancel outstanding timers */ 7739 tcp_timers_stop(tcp); 7740 7741 /* 7742 * Reset everything in the state vector, after updating global 7743 * MIB data from instance counters. 7744 */ 7745 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 7746 tcp->tcp_ibsegs = 0; 7747 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 7748 tcp->tcp_obsegs = 0; 7749 7750 tcp_close_mpp(&tcp->tcp_xmit_head); 7751 if (tcp->tcp_snd_zcopy_aware) 7752 tcp_zcopy_notify(tcp); 7753 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7754 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7755 mutex_enter(&tcp->tcp_non_sq_lock); 7756 if (tcp->tcp_flow_stopped && 7757 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7758 tcp_clrqfull(tcp); 7759 } 7760 mutex_exit(&tcp->tcp_non_sq_lock); 7761 tcp_close_mpp(&tcp->tcp_reass_head); 7762 tcp->tcp_reass_tail = NULL; 7763 if (tcp->tcp_rcv_list != NULL) { 7764 /* Free b_next chain */ 7765 tcp_close_mpp(&tcp->tcp_rcv_list); 7766 tcp->tcp_rcv_last_head = NULL; 7767 tcp->tcp_rcv_last_tail = NULL; 7768 tcp->tcp_rcv_cnt = 0; 7769 } 7770 tcp->tcp_rcv_last_tail = NULL; 7771 7772 if ((mp = tcp->tcp_urp_mp) != NULL) { 7773 freemsg(mp); 7774 tcp->tcp_urp_mp = NULL; 7775 } 7776 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7777 freemsg(mp); 7778 tcp->tcp_urp_mark_mp = NULL; 7779 } 7780 if (tcp->tcp_fused_sigurg_mp != NULL) { 7781 freeb(tcp->tcp_fused_sigurg_mp); 7782 tcp->tcp_fused_sigurg_mp = NULL; 7783 } 7784 7785 /* 7786 * Following is a union with two members which are 7787 * identical types and size so the following cleanup 7788 * is enough. 7789 */ 7790 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7791 7792 CL_INET_DISCONNECT(tcp); 7793 7794 /* 7795 * The connection can't be on the tcp_time_wait_head list 7796 * since it is not detached. 7797 */ 7798 ASSERT(tcp->tcp_time_wait_next == NULL); 7799 ASSERT(tcp->tcp_time_wait_prev == NULL); 7800 ASSERT(tcp->tcp_time_wait_expire == 0); 7801 7802 if (tcp->tcp_kssl_pending) { 7803 tcp->tcp_kssl_pending = B_FALSE; 7804 7805 /* Don't reset if the initialized by bind. */ 7806 if (tcp->tcp_kssl_ent != NULL) { 7807 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7808 KSSL_NO_PROXY); 7809 } 7810 } 7811 if (tcp->tcp_kssl_ctx != NULL) { 7812 kssl_release_ctx(tcp->tcp_kssl_ctx); 7813 tcp->tcp_kssl_ctx = NULL; 7814 } 7815 7816 /* 7817 * Reset/preserve other values 7818 */ 7819 tcp_reinit_values(tcp); 7820 ipcl_hash_remove(tcp->tcp_connp); 7821 conn_delete_ire(tcp->tcp_connp, NULL); 7822 tcp_ipsec_cleanup(tcp); 7823 7824 if (tcp->tcp_conn_req_max != 0) { 7825 /* 7826 * This is the case when a TLI program uses the same 7827 * transport end point to accept a connection. This 7828 * makes the TCP both a listener and acceptor. When 7829 * this connection is closed, we need to set the state 7830 * back to TCPS_LISTEN. Make sure that the eager list 7831 * is reinitialized. 7832 * 7833 * Note that this stream is still bound to the four 7834 * tuples of the previous connection in IP. If a new 7835 * SYN with different foreign address comes in, IP will 7836 * not find it and will send it to the global queue. In 7837 * the global queue, TCP will do a tcp_lookup_listener() 7838 * to find this stream. This works because this stream 7839 * is only removed from connected hash. 7840 * 7841 */ 7842 tcp->tcp_state = TCPS_LISTEN; 7843 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7844 tcp->tcp_eager_next_drop_q0 = tcp; 7845 tcp->tcp_eager_prev_drop_q0 = tcp; 7846 tcp->tcp_connp->conn_recv = tcp_conn_request; 7847 if (tcp->tcp_family == AF_INET6) { 7848 ASSERT(tcp->tcp_connp->conn_af_isv6); 7849 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7850 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7851 } else { 7852 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7853 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7854 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7855 } 7856 } else { 7857 tcp->tcp_state = TCPS_BOUND; 7858 } 7859 7860 /* 7861 * Initialize to default values 7862 * Can't fail since enough header template space already allocated 7863 * at open(). 7864 */ 7865 err = tcp_init_values(tcp); 7866 ASSERT(err == 0); 7867 /* Restore state in tcp_tcph */ 7868 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7869 if (tcp->tcp_ipversion == IPV4_VERSION) 7870 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7871 else 7872 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7873 /* 7874 * Copy of the src addr. in tcp_t is needed in tcp_t 7875 * since the lookup funcs can only lookup on tcp_t 7876 */ 7877 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7878 7879 ASSERT(tcp->tcp_ptpbhn != NULL); 7880 tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat; 7881 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 7882 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7883 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 7884 } 7885 7886 /* 7887 * Force values to zero that need be zero. 7888 * Do not touch values asociated with the BOUND or LISTEN state 7889 * since the connection will end up in that state after the reinit. 7890 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7891 * structure! 7892 */ 7893 static void 7894 tcp_reinit_values(tcp) 7895 tcp_t *tcp; 7896 { 7897 tcp_stack_t *tcps = tcp->tcp_tcps; 7898 7899 #ifndef lint 7900 #define DONTCARE(x) 7901 #define PRESERVE(x) 7902 #else 7903 #define DONTCARE(x) ((x) = (x)) 7904 #define PRESERVE(x) ((x) = (x)) 7905 #endif /* lint */ 7906 7907 PRESERVE(tcp->tcp_bind_hash); 7908 PRESERVE(tcp->tcp_ptpbhn); 7909 PRESERVE(tcp->tcp_acceptor_hash); 7910 PRESERVE(tcp->tcp_ptpahn); 7911 7912 /* Should be ASSERT NULL on these with new code! */ 7913 ASSERT(tcp->tcp_time_wait_next == NULL); 7914 ASSERT(tcp->tcp_time_wait_prev == NULL); 7915 ASSERT(tcp->tcp_time_wait_expire == 0); 7916 PRESERVE(tcp->tcp_state); 7917 PRESERVE(tcp->tcp_rq); 7918 PRESERVE(tcp->tcp_wq); 7919 7920 ASSERT(tcp->tcp_xmit_head == NULL); 7921 ASSERT(tcp->tcp_xmit_last == NULL); 7922 ASSERT(tcp->tcp_unsent == 0); 7923 ASSERT(tcp->tcp_xmit_tail == NULL); 7924 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7925 7926 tcp->tcp_snxt = 0; /* Displayed in mib */ 7927 tcp->tcp_suna = 0; /* Displayed in mib */ 7928 tcp->tcp_swnd = 0; 7929 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7930 7931 ASSERT(tcp->tcp_ibsegs == 0); 7932 ASSERT(tcp->tcp_obsegs == 0); 7933 7934 if (tcp->tcp_iphc != NULL) { 7935 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7936 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7937 } 7938 7939 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7940 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7941 DONTCARE(tcp->tcp_ipha); 7942 DONTCARE(tcp->tcp_ip6h); 7943 DONTCARE(tcp->tcp_ip_hdr_len); 7944 DONTCARE(tcp->tcp_tcph); 7945 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7946 tcp->tcp_valid_bits = 0; 7947 7948 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7949 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7950 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7951 tcp->tcp_last_rcv_lbolt = 0; 7952 7953 tcp->tcp_init_cwnd = 0; 7954 7955 tcp->tcp_urp_last_valid = 0; 7956 tcp->tcp_hard_binding = 0; 7957 tcp->tcp_hard_bound = 0; 7958 PRESERVE(tcp->tcp_cred); 7959 PRESERVE(tcp->tcp_cpid); 7960 PRESERVE(tcp->tcp_open_time); 7961 PRESERVE(tcp->tcp_exclbind); 7962 7963 tcp->tcp_fin_acked = 0; 7964 tcp->tcp_fin_rcvd = 0; 7965 tcp->tcp_fin_sent = 0; 7966 tcp->tcp_ordrel_done = 0; 7967 7968 tcp->tcp_debug = 0; 7969 tcp->tcp_dontroute = 0; 7970 tcp->tcp_broadcast = 0; 7971 7972 tcp->tcp_useloopback = 0; 7973 tcp->tcp_reuseaddr = 0; 7974 tcp->tcp_oobinline = 0; 7975 tcp->tcp_dgram_errind = 0; 7976 7977 tcp->tcp_detached = 0; 7978 tcp->tcp_bind_pending = 0; 7979 tcp->tcp_unbind_pending = 0; 7980 tcp->tcp_deferred_clean_death = 0; 7981 7982 tcp->tcp_snd_ws_ok = B_FALSE; 7983 tcp->tcp_snd_ts_ok = B_FALSE; 7984 tcp->tcp_linger = 0; 7985 tcp->tcp_ka_enabled = 0; 7986 tcp->tcp_zero_win_probe = 0; 7987 7988 tcp->tcp_loopback = 0; 7989 tcp->tcp_localnet = 0; 7990 tcp->tcp_syn_defense = 0; 7991 tcp->tcp_set_timer = 0; 7992 7993 tcp->tcp_active_open = 0; 7994 ASSERT(tcp->tcp_timeout == B_FALSE); 7995 tcp->tcp_rexmit = B_FALSE; 7996 tcp->tcp_xmit_zc_clean = B_FALSE; 7997 7998 tcp->tcp_snd_sack_ok = B_FALSE; 7999 PRESERVE(tcp->tcp_recvdstaddr); 8000 tcp->tcp_hwcksum = B_FALSE; 8001 8002 tcp->tcp_ire_ill_check_done = B_FALSE; 8003 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 8004 8005 tcp->tcp_mdt = B_FALSE; 8006 tcp->tcp_mdt_hdr_head = 0; 8007 tcp->tcp_mdt_hdr_tail = 0; 8008 8009 tcp->tcp_conn_def_q0 = 0; 8010 tcp->tcp_ip_forward_progress = B_FALSE; 8011 tcp->tcp_anon_priv_bind = 0; 8012 tcp->tcp_ecn_ok = B_FALSE; 8013 8014 tcp->tcp_cwr = B_FALSE; 8015 tcp->tcp_ecn_echo_on = B_FALSE; 8016 8017 if (tcp->tcp_sack_info != NULL) { 8018 if (tcp->tcp_notsack_list != NULL) { 8019 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 8020 } 8021 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 8022 tcp->tcp_sack_info = NULL; 8023 } 8024 8025 tcp->tcp_rcv_ws = 0; 8026 tcp->tcp_snd_ws = 0; 8027 tcp->tcp_ts_recent = 0; 8028 tcp->tcp_rnxt = 0; /* Displayed in mib */ 8029 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 8030 tcp->tcp_if_mtu = 0; 8031 8032 ASSERT(tcp->tcp_reass_head == NULL); 8033 ASSERT(tcp->tcp_reass_tail == NULL); 8034 8035 tcp->tcp_cwnd_cnt = 0; 8036 8037 ASSERT(tcp->tcp_rcv_list == NULL); 8038 ASSERT(tcp->tcp_rcv_last_head == NULL); 8039 ASSERT(tcp->tcp_rcv_last_tail == NULL); 8040 ASSERT(tcp->tcp_rcv_cnt == 0); 8041 8042 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 8043 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 8044 tcp->tcp_csuna = 0; 8045 8046 tcp->tcp_rto = 0; /* Displayed in MIB */ 8047 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 8048 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 8049 tcp->tcp_rtt_update = 0; 8050 8051 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8052 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8053 8054 tcp->tcp_rack = 0; /* Displayed in mib */ 8055 tcp->tcp_rack_cnt = 0; 8056 tcp->tcp_rack_cur_max = 0; 8057 tcp->tcp_rack_abs_max = 0; 8058 8059 tcp->tcp_max_swnd = 0; 8060 8061 ASSERT(tcp->tcp_listener == NULL); 8062 8063 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 8064 8065 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 8066 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 8067 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 8068 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 8069 8070 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 8071 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 8072 PRESERVE(tcp->tcp_conn_req_max); 8073 PRESERVE(tcp->tcp_conn_req_seqnum); 8074 8075 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 8076 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 8077 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 8078 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 8079 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 8080 8081 tcp->tcp_lingertime = 0; 8082 8083 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 8084 ASSERT(tcp->tcp_urp_mp == NULL); 8085 ASSERT(tcp->tcp_urp_mark_mp == NULL); 8086 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 8087 8088 ASSERT(tcp->tcp_eager_next_q == NULL); 8089 ASSERT(tcp->tcp_eager_last_q == NULL); 8090 ASSERT((tcp->tcp_eager_next_q0 == NULL && 8091 tcp->tcp_eager_prev_q0 == NULL) || 8092 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 8093 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 8094 8095 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 8096 tcp->tcp_eager_prev_drop_q0 == NULL) || 8097 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 8098 8099 tcp->tcp_client_errno = 0; 8100 8101 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 8102 8103 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 8104 8105 PRESERVE(tcp->tcp_bound_source_v6); 8106 tcp->tcp_last_sent_len = 0; 8107 tcp->tcp_dupack_cnt = 0; 8108 8109 tcp->tcp_fport = 0; /* Displayed in MIB */ 8110 PRESERVE(tcp->tcp_lport); 8111 8112 PRESERVE(tcp->tcp_acceptor_lockp); 8113 8114 ASSERT(tcp->tcp_ordrelid == 0); 8115 PRESERVE(tcp->tcp_acceptor_id); 8116 DONTCARE(tcp->tcp_ipsec_overhead); 8117 8118 /* 8119 * If tcp_tracing flag is ON (i.e. We have a trace buffer 8120 * in tcp structure and now tracing), Re-initialize all 8121 * members of tcp_traceinfo. 8122 */ 8123 if (tcp->tcp_tracebuf != NULL) { 8124 bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 8125 } 8126 8127 PRESERVE(tcp->tcp_family); 8128 if (tcp->tcp_family == AF_INET6) { 8129 tcp->tcp_ipversion = IPV6_VERSION; 8130 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 8131 } else { 8132 tcp->tcp_ipversion = IPV4_VERSION; 8133 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 8134 } 8135 8136 tcp->tcp_bound_if = 0; 8137 tcp->tcp_ipv6_recvancillary = 0; 8138 tcp->tcp_recvifindex = 0; 8139 tcp->tcp_recvhops = 0; 8140 tcp->tcp_closed = 0; 8141 tcp->tcp_cleandeathtag = 0; 8142 if (tcp->tcp_hopopts != NULL) { 8143 mi_free(tcp->tcp_hopopts); 8144 tcp->tcp_hopopts = NULL; 8145 tcp->tcp_hopoptslen = 0; 8146 } 8147 ASSERT(tcp->tcp_hopoptslen == 0); 8148 if (tcp->tcp_dstopts != NULL) { 8149 mi_free(tcp->tcp_dstopts); 8150 tcp->tcp_dstopts = NULL; 8151 tcp->tcp_dstoptslen = 0; 8152 } 8153 ASSERT(tcp->tcp_dstoptslen == 0); 8154 if (tcp->tcp_rtdstopts != NULL) { 8155 mi_free(tcp->tcp_rtdstopts); 8156 tcp->tcp_rtdstopts = NULL; 8157 tcp->tcp_rtdstoptslen = 0; 8158 } 8159 ASSERT(tcp->tcp_rtdstoptslen == 0); 8160 if (tcp->tcp_rthdr != NULL) { 8161 mi_free(tcp->tcp_rthdr); 8162 tcp->tcp_rthdr = NULL; 8163 tcp->tcp_rthdrlen = 0; 8164 } 8165 ASSERT(tcp->tcp_rthdrlen == 0); 8166 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 8167 8168 /* Reset fusion-related fields */ 8169 tcp->tcp_fused = B_FALSE; 8170 tcp->tcp_unfusable = B_FALSE; 8171 tcp->tcp_fused_sigurg = B_FALSE; 8172 tcp->tcp_direct_sockfs = B_FALSE; 8173 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 8174 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 8175 tcp->tcp_loopback_peer = NULL; 8176 tcp->tcp_fuse_rcv_hiwater = 0; 8177 tcp->tcp_fuse_rcv_unread_hiwater = 0; 8178 tcp->tcp_fuse_rcv_unread_cnt = 0; 8179 8180 tcp->tcp_lso = B_FALSE; 8181 8182 tcp->tcp_in_ack_unsent = 0; 8183 tcp->tcp_cork = B_FALSE; 8184 tcp->tcp_tconnind_started = B_FALSE; 8185 8186 PRESERVE(tcp->tcp_squeue_bytes); 8187 8188 ASSERT(tcp->tcp_kssl_ctx == NULL); 8189 ASSERT(!tcp->tcp_kssl_pending); 8190 PRESERVE(tcp->tcp_kssl_ent); 8191 8192 tcp->tcp_closemp_used = B_FALSE; 8193 8194 #ifdef DEBUG 8195 DONTCARE(tcp->tcmp_stk[0]); 8196 #endif 8197 8198 8199 #undef DONTCARE 8200 #undef PRESERVE 8201 } 8202 8203 /* 8204 * Allocate necessary resources and initialize state vector. 8205 * Guaranteed not to fail so that when an error is returned, 8206 * the caller doesn't need to do any additional cleanup. 8207 */ 8208 int 8209 tcp_init(tcp_t *tcp, queue_t *q) 8210 { 8211 int err; 8212 8213 tcp->tcp_rq = q; 8214 tcp->tcp_wq = WR(q); 8215 tcp->tcp_state = TCPS_IDLE; 8216 if ((err = tcp_init_values(tcp)) != 0) 8217 tcp_timers_stop(tcp); 8218 return (err); 8219 } 8220 8221 static int 8222 tcp_init_values(tcp_t *tcp) 8223 { 8224 int err; 8225 tcp_stack_t *tcps = tcp->tcp_tcps; 8226 8227 ASSERT((tcp->tcp_family == AF_INET && 8228 tcp->tcp_ipversion == IPV4_VERSION) || 8229 (tcp->tcp_family == AF_INET6 && 8230 (tcp->tcp_ipversion == IPV4_VERSION || 8231 tcp->tcp_ipversion == IPV6_VERSION))); 8232 8233 /* 8234 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 8235 * will be close to tcp_rexmit_interval_initial. By doing this, we 8236 * allow the algorithm to adjust slowly to large fluctuations of RTT 8237 * during first few transmissions of a connection as seen in slow 8238 * links. 8239 */ 8240 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 8241 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 8242 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 8243 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 8244 tcps->tcps_conn_grace_period; 8245 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 8246 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 8247 tcp->tcp_timer_backoff = 0; 8248 tcp->tcp_ms_we_have_waited = 0; 8249 tcp->tcp_last_recv_time = lbolt; 8250 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 8251 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 8252 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 8253 8254 tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier; 8255 8256 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 8257 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 8258 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 8259 /* 8260 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 8261 * passive open. 8262 */ 8263 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 8264 8265 tcp->tcp_naglim = tcps->tcps_naglim_def; 8266 8267 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 8268 8269 tcp->tcp_mdt_hdr_head = 0; 8270 tcp->tcp_mdt_hdr_tail = 0; 8271 8272 /* Reset fusion-related fields */ 8273 tcp->tcp_fused = B_FALSE; 8274 tcp->tcp_unfusable = B_FALSE; 8275 tcp->tcp_fused_sigurg = B_FALSE; 8276 tcp->tcp_direct_sockfs = B_FALSE; 8277 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 8278 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 8279 tcp->tcp_loopback_peer = NULL; 8280 tcp->tcp_fuse_rcv_hiwater = 0; 8281 tcp->tcp_fuse_rcv_unread_hiwater = 0; 8282 tcp->tcp_fuse_rcv_unread_cnt = 0; 8283 8284 /* Initialize the header template */ 8285 if (tcp->tcp_ipversion == IPV4_VERSION) { 8286 err = tcp_header_init_ipv4(tcp); 8287 } else { 8288 err = tcp_header_init_ipv6(tcp); 8289 } 8290 if (err) 8291 return (err); 8292 8293 /* 8294 * Init the window scale to the max so tcp_rwnd_set() won't pare 8295 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 8296 */ 8297 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 8298 tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat; 8299 tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat; 8300 8301 tcp->tcp_cork = B_FALSE; 8302 /* 8303 * Init the tcp_debug option. This value determines whether TCP 8304 * calls strlog() to print out debug messages. Doing this 8305 * initialization here means that this value is not inherited thru 8306 * tcp_reinit(). 8307 */ 8308 tcp->tcp_debug = tcps->tcps_dbg; 8309 8310 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 8311 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 8312 8313 return (0); 8314 } 8315 8316 /* 8317 * Initialize the IPv4 header. Loses any record of any IP options. 8318 */ 8319 static int 8320 tcp_header_init_ipv4(tcp_t *tcp) 8321 { 8322 tcph_t *tcph; 8323 uint32_t sum; 8324 conn_t *connp; 8325 tcp_stack_t *tcps = tcp->tcp_tcps; 8326 8327 /* 8328 * This is a simple initialization. If there's 8329 * already a template, it should never be too small, 8330 * so reuse it. Otherwise, allocate space for the new one. 8331 */ 8332 if (tcp->tcp_iphc == NULL) { 8333 ASSERT(tcp->tcp_iphc_len == 0); 8334 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8335 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8336 if (tcp->tcp_iphc == NULL) { 8337 tcp->tcp_iphc_len = 0; 8338 return (ENOMEM); 8339 } 8340 } 8341 8342 /* options are gone; may need a new label */ 8343 connp = tcp->tcp_connp; 8344 connp->conn_mlp_type = mlptSingle; 8345 connp->conn_ulp_labeled = !is_system_labeled(); 8346 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8347 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8348 tcp->tcp_ip6h = NULL; 8349 tcp->tcp_ipversion = IPV4_VERSION; 8350 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8351 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8352 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8353 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8354 tcp->tcp_ipha->ipha_version_and_hdr_length 8355 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8356 tcp->tcp_ipha->ipha_ident = 0; 8357 8358 tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8359 tcp->tcp_tos = 0; 8360 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8361 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8362 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8363 8364 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8365 tcp->tcp_tcph = tcph; 8366 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8367 /* 8368 * IP wants our header length in the checksum field to 8369 * allow it to perform a single pseudo-header+checksum 8370 * calculation on behalf of TCP. 8371 * Include the adjustment for a source route once IP_OPTIONS is set. 8372 */ 8373 sum = sizeof (tcph_t) + tcp->tcp_sum; 8374 sum = (sum >> 16) + (sum & 0xFFFF); 8375 U16_TO_ABE16(sum, tcph->th_sum); 8376 return (0); 8377 } 8378 8379 /* 8380 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8381 */ 8382 static int 8383 tcp_header_init_ipv6(tcp_t *tcp) 8384 { 8385 tcph_t *tcph; 8386 uint32_t sum; 8387 conn_t *connp; 8388 tcp_stack_t *tcps = tcp->tcp_tcps; 8389 8390 /* 8391 * This is a simple initialization. If there's 8392 * already a template, it should never be too small, 8393 * so reuse it. Otherwise, allocate space for the new one. 8394 * Ensure that there is enough space to "downgrade" the tcp_t 8395 * to an IPv4 tcp_t. This requires having space for a full load 8396 * of IPv4 options, as well as a full load of TCP options 8397 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8398 * than a v6 header and a TCP header with a full load of TCP options 8399 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8400 * We want to avoid reallocation in the "downgraded" case when 8401 * processing outbound IPv4 options. 8402 */ 8403 if (tcp->tcp_iphc == NULL) { 8404 ASSERT(tcp->tcp_iphc_len == 0); 8405 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8406 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8407 if (tcp->tcp_iphc == NULL) { 8408 tcp->tcp_iphc_len = 0; 8409 return (ENOMEM); 8410 } 8411 } 8412 8413 /* options are gone; may need a new label */ 8414 connp = tcp->tcp_connp; 8415 connp->conn_mlp_type = mlptSingle; 8416 connp->conn_ulp_labeled = !is_system_labeled(); 8417 8418 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8419 tcp->tcp_ipversion = IPV6_VERSION; 8420 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8421 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8422 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8423 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8424 tcp->tcp_ipha = NULL; 8425 8426 /* Initialize the header template */ 8427 8428 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8429 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8430 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8431 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit; 8432 8433 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8434 tcp->tcp_tcph = tcph; 8435 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8436 /* 8437 * IP wants our header length in the checksum field to 8438 * allow it to perform a single psuedo-header+checksum 8439 * calculation on behalf of TCP. 8440 * Include the adjustment for a source route when IPV6_RTHDR is set. 8441 */ 8442 sum = sizeof (tcph_t) + tcp->tcp_sum; 8443 sum = (sum >> 16) + (sum & 0xFFFF); 8444 U16_TO_ABE16(sum, tcph->th_sum); 8445 return (0); 8446 } 8447 8448 /* At minimum we need 8 bytes in the TCP header for the lookup */ 8449 #define ICMP_MIN_TCP_HDR 8 8450 8451 /* 8452 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8453 * passed up by IP. The message is always received on the correct tcp_t. 8454 * Assumes that IP has pulled up everything up to and including the ICMP header. 8455 */ 8456 void 8457 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8458 { 8459 icmph_t *icmph; 8460 ipha_t *ipha; 8461 int iph_hdr_length; 8462 tcph_t *tcph; 8463 boolean_t ipsec_mctl = B_FALSE; 8464 boolean_t secure; 8465 mblk_t *first_mp = mp; 8466 uint32_t new_mss; 8467 uint32_t ratio; 8468 size_t mp_size = MBLKL(mp); 8469 uint32_t seg_seq; 8470 tcp_stack_t *tcps = tcp->tcp_tcps; 8471 8472 /* Assume IP provides aligned packets - otherwise toss */ 8473 if (!OK_32PTR(mp->b_rptr)) { 8474 freemsg(mp); 8475 return; 8476 } 8477 8478 /* 8479 * Since ICMP errors are normal data marked with M_CTL when sent 8480 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8481 * packets starting with an ipsec_info_t, see ipsec_info.h. 8482 */ 8483 if ((mp_size == sizeof (ipsec_info_t)) && 8484 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8485 ASSERT(mp->b_cont != NULL); 8486 mp = mp->b_cont; 8487 /* IP should have done this */ 8488 ASSERT(OK_32PTR(mp->b_rptr)); 8489 mp_size = MBLKL(mp); 8490 ipsec_mctl = B_TRUE; 8491 } 8492 8493 /* 8494 * Verify that we have a complete outer IP header. If not, drop it. 8495 */ 8496 if (mp_size < sizeof (ipha_t)) { 8497 noticmpv4: 8498 freemsg(first_mp); 8499 return; 8500 } 8501 8502 ipha = (ipha_t *)mp->b_rptr; 8503 /* 8504 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8505 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8506 */ 8507 switch (IPH_HDR_VERSION(ipha)) { 8508 case IPV6_VERSION: 8509 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8510 return; 8511 case IPV4_VERSION: 8512 break; 8513 default: 8514 goto noticmpv4; 8515 } 8516 8517 /* Skip past the outer IP and ICMP headers */ 8518 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8519 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8520 /* 8521 * If we don't have the correct outer IP header length or if the ULP 8522 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8523 * send it upstream. 8524 */ 8525 if (iph_hdr_length < sizeof (ipha_t) || 8526 ipha->ipha_protocol != IPPROTO_ICMP || 8527 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8528 goto noticmpv4; 8529 } 8530 ipha = (ipha_t *)&icmph[1]; 8531 8532 /* Skip past the inner IP and find the ULP header */ 8533 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8534 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8535 /* 8536 * If we don't have the correct inner IP header length or if the ULP 8537 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8538 * bytes of TCP header, drop it. 8539 */ 8540 if (iph_hdr_length < sizeof (ipha_t) || 8541 ipha->ipha_protocol != IPPROTO_TCP || 8542 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8543 goto noticmpv4; 8544 } 8545 8546 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8547 if (ipsec_mctl) { 8548 secure = ipsec_in_is_secure(first_mp); 8549 } else { 8550 secure = B_FALSE; 8551 } 8552 if (secure) { 8553 /* 8554 * If we are willing to accept this in clear 8555 * we don't have to verify policy. 8556 */ 8557 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8558 if (!tcp_check_policy(tcp, first_mp, 8559 ipha, NULL, secure, ipsec_mctl)) { 8560 /* 8561 * tcp_check_policy called 8562 * ip_drop_packet() on failure. 8563 */ 8564 return; 8565 } 8566 } 8567 } 8568 } else if (ipsec_mctl) { 8569 /* 8570 * This is a hard_bound connection. IP has already 8571 * verified policy. We don't have to do it again. 8572 */ 8573 freeb(first_mp); 8574 first_mp = mp; 8575 ipsec_mctl = B_FALSE; 8576 } 8577 8578 seg_seq = ABE32_TO_U32(tcph->th_seq); 8579 /* 8580 * TCP SHOULD check that the TCP sequence number contained in 8581 * payload of the ICMP error message is within the range 8582 * SND.UNA <= SEG.SEQ < SND.NXT. 8583 */ 8584 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8585 /* 8586 * If the ICMP message is bogus, should we kill the 8587 * connection, or should we just drop the bogus ICMP 8588 * message? It would probably make more sense to just 8589 * drop the message so that if this one managed to get 8590 * in, the real connection should not suffer. 8591 */ 8592 goto noticmpv4; 8593 } 8594 8595 switch (icmph->icmph_type) { 8596 case ICMP_DEST_UNREACHABLE: 8597 switch (icmph->icmph_code) { 8598 case ICMP_FRAGMENTATION_NEEDED: 8599 /* 8600 * Reduce the MSS based on the new MTU. This will 8601 * eliminate any fragmentation locally. 8602 * N.B. There may well be some funny side-effects on 8603 * the local send policy and the remote receive policy. 8604 * Pending further research, we provide 8605 * tcp_ignore_path_mtu just in case this proves 8606 * disastrous somewhere. 8607 * 8608 * After updating the MSS, retransmit part of the 8609 * dropped segment using the new mss by calling 8610 * tcp_wput_data(). Need to adjust all those 8611 * params to make sure tcp_wput_data() work properly. 8612 */ 8613 if (tcps->tcps_ignore_path_mtu) 8614 break; 8615 8616 /* 8617 * Decrease the MSS by time stamp options 8618 * IP options and IPSEC options. tcp_hdr_len 8619 * includes time stamp option and IP option 8620 * length. 8621 */ 8622 8623 new_mss = ntohs(icmph->icmph_du_mtu) - 8624 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8625 8626 /* 8627 * Only update the MSS if the new one is 8628 * smaller than the previous one. This is 8629 * to avoid problems when getting multiple 8630 * ICMP errors for the same MTU. 8631 */ 8632 if (new_mss >= tcp->tcp_mss) 8633 break; 8634 8635 /* 8636 * Stop doing PMTU if new_mss is less than 68 8637 * or less than tcp_mss_min. 8638 * The value 68 comes from rfc 1191. 8639 */ 8640 if (new_mss < MAX(68, tcps->tcps_mss_min)) 8641 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8642 0; 8643 8644 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8645 ASSERT(ratio >= 1); 8646 tcp_mss_set(tcp, new_mss, B_TRUE); 8647 8648 /* 8649 * Make sure we have something to 8650 * send. 8651 */ 8652 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8653 (tcp->tcp_xmit_head != NULL)) { 8654 /* 8655 * Shrink tcp_cwnd in 8656 * proportion to the old MSS/new MSS. 8657 */ 8658 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8659 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8660 (tcp->tcp_unsent == 0)) { 8661 tcp->tcp_rexmit_max = tcp->tcp_fss; 8662 } else { 8663 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8664 } 8665 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8666 tcp->tcp_rexmit = B_TRUE; 8667 tcp->tcp_dupack_cnt = 0; 8668 tcp->tcp_snd_burst = TCP_CWND_SS; 8669 tcp_ss_rexmit(tcp); 8670 } 8671 break; 8672 case ICMP_PORT_UNREACHABLE: 8673 case ICMP_PROTOCOL_UNREACHABLE: 8674 switch (tcp->tcp_state) { 8675 case TCPS_SYN_SENT: 8676 case TCPS_SYN_RCVD: 8677 /* 8678 * ICMP can snipe away incipient 8679 * TCP connections as long as 8680 * seq number is same as initial 8681 * send seq number. 8682 */ 8683 if (seg_seq == tcp->tcp_iss) { 8684 (void) tcp_clean_death(tcp, 8685 ECONNREFUSED, 6); 8686 } 8687 break; 8688 } 8689 break; 8690 case ICMP_HOST_UNREACHABLE: 8691 case ICMP_NET_UNREACHABLE: 8692 /* Record the error in case we finally time out. */ 8693 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8694 tcp->tcp_client_errno = EHOSTUNREACH; 8695 else 8696 tcp->tcp_client_errno = ENETUNREACH; 8697 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8698 if (tcp->tcp_listener != NULL && 8699 tcp->tcp_listener->tcp_syn_defense) { 8700 /* 8701 * Ditch the half-open connection if we 8702 * suspect a SYN attack is under way. 8703 */ 8704 tcp_ip_ire_mark_advice(tcp); 8705 (void) tcp_clean_death(tcp, 8706 tcp->tcp_client_errno, 7); 8707 } 8708 } 8709 break; 8710 default: 8711 break; 8712 } 8713 break; 8714 case ICMP_SOURCE_QUENCH: { 8715 /* 8716 * use a global boolean to control 8717 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8718 * The default is false. 8719 */ 8720 if (tcp_icmp_source_quench) { 8721 /* 8722 * Reduce the sending rate as if we got a 8723 * retransmit timeout 8724 */ 8725 uint32_t npkt; 8726 8727 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8728 tcp->tcp_mss; 8729 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8730 tcp->tcp_cwnd = tcp->tcp_mss; 8731 tcp->tcp_cwnd_cnt = 0; 8732 } 8733 break; 8734 } 8735 } 8736 freemsg(first_mp); 8737 } 8738 8739 /* 8740 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8741 * error messages passed up by IP. 8742 * Assumes that IP has pulled up all the extension headers as well 8743 * as the ICMPv6 header. 8744 */ 8745 static void 8746 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8747 { 8748 icmp6_t *icmp6; 8749 ip6_t *ip6h; 8750 uint16_t iph_hdr_length; 8751 tcpha_t *tcpha; 8752 uint8_t *nexthdrp; 8753 uint32_t new_mss; 8754 uint32_t ratio; 8755 boolean_t secure; 8756 mblk_t *first_mp = mp; 8757 size_t mp_size; 8758 uint32_t seg_seq; 8759 tcp_stack_t *tcps = tcp->tcp_tcps; 8760 8761 /* 8762 * The caller has determined if this is an IPSEC_IN packet and 8763 * set ipsec_mctl appropriately (see tcp_icmp_error). 8764 */ 8765 if (ipsec_mctl) 8766 mp = mp->b_cont; 8767 8768 mp_size = MBLKL(mp); 8769 8770 /* 8771 * Verify that we have a complete IP header. If not, send it upstream. 8772 */ 8773 if (mp_size < sizeof (ip6_t)) { 8774 noticmpv6: 8775 freemsg(first_mp); 8776 return; 8777 } 8778 8779 /* 8780 * Verify this is an ICMPV6 packet, else send it upstream. 8781 */ 8782 ip6h = (ip6_t *)mp->b_rptr; 8783 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8784 iph_hdr_length = IPV6_HDR_LEN; 8785 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8786 &nexthdrp) || 8787 *nexthdrp != IPPROTO_ICMPV6) { 8788 goto noticmpv6; 8789 } 8790 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8791 ip6h = (ip6_t *)&icmp6[1]; 8792 /* 8793 * Verify if we have a complete ICMP and inner IP header. 8794 */ 8795 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8796 goto noticmpv6; 8797 8798 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8799 goto noticmpv6; 8800 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8801 /* 8802 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8803 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8804 * packet. 8805 */ 8806 if ((*nexthdrp != IPPROTO_TCP) || 8807 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8808 goto noticmpv6; 8809 } 8810 8811 /* 8812 * ICMP errors come on the right queue or come on 8813 * listener/global queue for detached connections and 8814 * get switched to the right queue. If it comes on the 8815 * right queue, policy check has already been done by IP 8816 * and thus free the first_mp without verifying the policy. 8817 * If it has come for a non-hard bound connection, we need 8818 * to verify policy as IP may not have done it. 8819 */ 8820 if (!tcp->tcp_hard_bound) { 8821 if (ipsec_mctl) { 8822 secure = ipsec_in_is_secure(first_mp); 8823 } else { 8824 secure = B_FALSE; 8825 } 8826 if (secure) { 8827 /* 8828 * If we are willing to accept this in clear 8829 * we don't have to verify policy. 8830 */ 8831 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8832 if (!tcp_check_policy(tcp, first_mp, 8833 NULL, ip6h, secure, ipsec_mctl)) { 8834 /* 8835 * tcp_check_policy called 8836 * ip_drop_packet() on failure. 8837 */ 8838 return; 8839 } 8840 } 8841 } 8842 } else if (ipsec_mctl) { 8843 /* 8844 * This is a hard_bound connection. IP has already 8845 * verified policy. We don't have to do it again. 8846 */ 8847 freeb(first_mp); 8848 first_mp = mp; 8849 ipsec_mctl = B_FALSE; 8850 } 8851 8852 seg_seq = ntohl(tcpha->tha_seq); 8853 /* 8854 * TCP SHOULD check that the TCP sequence number contained in 8855 * payload of the ICMP error message is within the range 8856 * SND.UNA <= SEG.SEQ < SND.NXT. 8857 */ 8858 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8859 /* 8860 * If the ICMP message is bogus, should we kill the 8861 * connection, or should we just drop the bogus ICMP 8862 * message? It would probably make more sense to just 8863 * drop the message so that if this one managed to get 8864 * in, the real connection should not suffer. 8865 */ 8866 goto noticmpv6; 8867 } 8868 8869 switch (icmp6->icmp6_type) { 8870 case ICMP6_PACKET_TOO_BIG: 8871 /* 8872 * Reduce the MSS based on the new MTU. This will 8873 * eliminate any fragmentation locally. 8874 * N.B. There may well be some funny side-effects on 8875 * the local send policy and the remote receive policy. 8876 * Pending further research, we provide 8877 * tcp_ignore_path_mtu just in case this proves 8878 * disastrous somewhere. 8879 * 8880 * After updating the MSS, retransmit part of the 8881 * dropped segment using the new mss by calling 8882 * tcp_wput_data(). Need to adjust all those 8883 * params to make sure tcp_wput_data() work properly. 8884 */ 8885 if (tcps->tcps_ignore_path_mtu) 8886 break; 8887 8888 /* 8889 * Decrease the MSS by time stamp options 8890 * IP options and IPSEC options. tcp_hdr_len 8891 * includes time stamp option and IP option 8892 * length. 8893 */ 8894 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8895 tcp->tcp_ipsec_overhead; 8896 8897 /* 8898 * Only update the MSS if the new one is 8899 * smaller than the previous one. This is 8900 * to avoid problems when getting multiple 8901 * ICMP errors for the same MTU. 8902 */ 8903 if (new_mss >= tcp->tcp_mss) 8904 break; 8905 8906 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8907 ASSERT(ratio >= 1); 8908 tcp_mss_set(tcp, new_mss, B_TRUE); 8909 8910 /* 8911 * Make sure we have something to 8912 * send. 8913 */ 8914 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8915 (tcp->tcp_xmit_head != NULL)) { 8916 /* 8917 * Shrink tcp_cwnd in 8918 * proportion to the old MSS/new MSS. 8919 */ 8920 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8921 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8922 (tcp->tcp_unsent == 0)) { 8923 tcp->tcp_rexmit_max = tcp->tcp_fss; 8924 } else { 8925 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8926 } 8927 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8928 tcp->tcp_rexmit = B_TRUE; 8929 tcp->tcp_dupack_cnt = 0; 8930 tcp->tcp_snd_burst = TCP_CWND_SS; 8931 tcp_ss_rexmit(tcp); 8932 } 8933 break; 8934 8935 case ICMP6_DST_UNREACH: 8936 switch (icmp6->icmp6_code) { 8937 case ICMP6_DST_UNREACH_NOPORT: 8938 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8939 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8940 (seg_seq == tcp->tcp_iss)) { 8941 (void) tcp_clean_death(tcp, 8942 ECONNREFUSED, 8); 8943 } 8944 break; 8945 8946 case ICMP6_DST_UNREACH_ADMIN: 8947 case ICMP6_DST_UNREACH_NOROUTE: 8948 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8949 case ICMP6_DST_UNREACH_ADDR: 8950 /* Record the error in case we finally time out. */ 8951 tcp->tcp_client_errno = EHOSTUNREACH; 8952 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8953 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8954 (seg_seq == tcp->tcp_iss)) { 8955 if (tcp->tcp_listener != NULL && 8956 tcp->tcp_listener->tcp_syn_defense) { 8957 /* 8958 * Ditch the half-open connection if we 8959 * suspect a SYN attack is under way. 8960 */ 8961 tcp_ip_ire_mark_advice(tcp); 8962 (void) tcp_clean_death(tcp, 8963 tcp->tcp_client_errno, 9); 8964 } 8965 } 8966 8967 8968 break; 8969 default: 8970 break; 8971 } 8972 break; 8973 8974 case ICMP6_PARAM_PROB: 8975 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8976 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8977 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8978 (uchar_t *)nexthdrp) { 8979 if (tcp->tcp_state == TCPS_SYN_SENT || 8980 tcp->tcp_state == TCPS_SYN_RCVD) { 8981 (void) tcp_clean_death(tcp, 8982 ECONNREFUSED, 10); 8983 } 8984 break; 8985 } 8986 break; 8987 8988 case ICMP6_TIME_EXCEEDED: 8989 default: 8990 break; 8991 } 8992 freemsg(first_mp); 8993 } 8994 8995 /* 8996 * IP recognizes seven kinds of bind requests: 8997 * 8998 * - A zero-length address binds only to the protocol number. 8999 * 9000 * - A 4-byte address is treated as a request to 9001 * validate that the address is a valid local IPv4 9002 * address, appropriate for an application to bind to. 9003 * IP does the verification, but does not make any note 9004 * of the address at this time. 9005 * 9006 * - A 16-byte address contains is treated as a request 9007 * to validate a local IPv6 address, as the 4-byte 9008 * address case above. 9009 * 9010 * - A 16-byte sockaddr_in to validate the local IPv4 address and also 9011 * use it for the inbound fanout of packets. 9012 * 9013 * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also 9014 * use it for the inbound fanout of packets. 9015 * 9016 * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout 9017 * information consisting of local and remote addresses 9018 * and ports. In this case, the addresses are both 9019 * validated as appropriate for this operation, and, if 9020 * so, the information is retained for use in the 9021 * inbound fanout. 9022 * 9023 * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 9024 * fanout information, like the 12-byte case above. 9025 * 9026 * IP will also fill in the IRE request mblk with information 9027 * regarding our peer. In all cases, we notify IP of our protocol 9028 * type by appending a single protocol byte to the bind request. 9029 */ 9030 static mblk_t * 9031 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length) 9032 { 9033 char *cp; 9034 mblk_t *mp; 9035 struct T_bind_req *tbr; 9036 ipa_conn_t *ac; 9037 ipa6_conn_t *ac6; 9038 sin_t *sin; 9039 sin6_t *sin6; 9040 9041 ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); 9042 ASSERT((tcp->tcp_family == AF_INET && 9043 tcp->tcp_ipversion == IPV4_VERSION) || 9044 (tcp->tcp_family == AF_INET6 && 9045 (tcp->tcp_ipversion == IPV4_VERSION || 9046 tcp->tcp_ipversion == IPV6_VERSION))); 9047 9048 mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); 9049 if (!mp) 9050 return (mp); 9051 mp->b_datap->db_type = M_PROTO; 9052 tbr = (struct T_bind_req *)mp->b_rptr; 9053 tbr->PRIM_type = bind_prim; 9054 tbr->ADDR_offset = sizeof (*tbr); 9055 tbr->CONIND_number = 0; 9056 tbr->ADDR_length = addr_length; 9057 cp = (char *)&tbr[1]; 9058 switch (addr_length) { 9059 case sizeof (ipa_conn_t): 9060 ASSERT(tcp->tcp_family == AF_INET); 9061 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9062 9063 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9064 if (mp->b_cont == NULL) { 9065 freemsg(mp); 9066 return (NULL); 9067 } 9068 mp->b_cont->b_wptr += sizeof (ire_t); 9069 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9070 9071 /* cp known to be 32 bit aligned */ 9072 ac = (ipa_conn_t *)cp; 9073 ac->ac_laddr = tcp->tcp_ipha->ipha_src; 9074 ac->ac_faddr = tcp->tcp_remote; 9075 ac->ac_fport = tcp->tcp_fport; 9076 ac->ac_lport = tcp->tcp_lport; 9077 tcp->tcp_hard_binding = 1; 9078 break; 9079 9080 case sizeof (ipa6_conn_t): 9081 ASSERT(tcp->tcp_family == AF_INET6); 9082 9083 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9084 if (mp->b_cont == NULL) { 9085 freemsg(mp); 9086 return (NULL); 9087 } 9088 mp->b_cont->b_wptr += sizeof (ire_t); 9089 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9090 9091 /* cp known to be 32 bit aligned */ 9092 ac6 = (ipa6_conn_t *)cp; 9093 if (tcp->tcp_ipversion == IPV4_VERSION) { 9094 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 9095 &ac6->ac6_laddr); 9096 } else { 9097 ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src; 9098 } 9099 ac6->ac6_faddr = tcp->tcp_remote_v6; 9100 ac6->ac6_fport = tcp->tcp_fport; 9101 ac6->ac6_lport = tcp->tcp_lport; 9102 tcp->tcp_hard_binding = 1; 9103 break; 9104 9105 case sizeof (sin_t): 9106 /* 9107 * NOTE: IPV6_ADDR_LEN also has same size. 9108 * Use family to discriminate. 9109 */ 9110 if (tcp->tcp_family == AF_INET) { 9111 sin = (sin_t *)cp; 9112 9113 *sin = sin_null; 9114 sin->sin_family = AF_INET; 9115 sin->sin_addr.s_addr = tcp->tcp_bound_source; 9116 sin->sin_port = tcp->tcp_lport; 9117 break; 9118 } else { 9119 *(in6_addr_t *)cp = tcp->tcp_bound_source_v6; 9120 } 9121 break; 9122 9123 case sizeof (sin6_t): 9124 ASSERT(tcp->tcp_family == AF_INET6); 9125 sin6 = (sin6_t *)cp; 9126 9127 *sin6 = sin6_null; 9128 sin6->sin6_family = AF_INET6; 9129 sin6->sin6_addr = tcp->tcp_bound_source_v6; 9130 sin6->sin6_port = tcp->tcp_lport; 9131 break; 9132 9133 case IP_ADDR_LEN: 9134 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9135 *(uint32_t *)cp = tcp->tcp_ipha->ipha_src; 9136 break; 9137 9138 } 9139 /* Add protocol number to end */ 9140 cp[addr_length] = (char)IPPROTO_TCP; 9141 mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; 9142 return (mp); 9143 } 9144 9145 /* 9146 * Notify IP that we are having trouble with this connection. IP should 9147 * blow the IRE away and start over. 9148 */ 9149 static void 9150 tcp_ip_notify(tcp_t *tcp) 9151 { 9152 struct iocblk *iocp; 9153 ipid_t *ipid; 9154 mblk_t *mp; 9155 9156 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 9157 if (tcp->tcp_ipversion == IPV6_VERSION) 9158 return; 9159 9160 mp = mkiocb(IP_IOCTL); 9161 if (mp == NULL) 9162 return; 9163 9164 iocp = (struct iocblk *)mp->b_rptr; 9165 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 9166 9167 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 9168 if (!mp->b_cont) { 9169 freeb(mp); 9170 return; 9171 } 9172 9173 ipid = (ipid_t *)mp->b_cont->b_rptr; 9174 mp->b_cont->b_wptr += iocp->ioc_count; 9175 bzero(ipid, sizeof (*ipid)); 9176 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 9177 ipid->ipid_ire_type = IRE_CACHE; 9178 ipid->ipid_addr_offset = sizeof (ipid_t); 9179 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 9180 /* 9181 * Note: in the case of source routing we want to blow away the 9182 * route to the first source route hop. 9183 */ 9184 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 9185 sizeof (tcp->tcp_ipha->ipha_dst)); 9186 9187 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 9188 } 9189 9190 /* Unlink and return any mblk that looks like it contains an ire */ 9191 static mblk_t * 9192 tcp_ire_mp(mblk_t *mp) 9193 { 9194 mblk_t *prev_mp; 9195 9196 for (;;) { 9197 prev_mp = mp; 9198 mp = mp->b_cont; 9199 if (mp == NULL) 9200 break; 9201 switch (DB_TYPE(mp)) { 9202 case IRE_DB_TYPE: 9203 case IRE_DB_REQ_TYPE: 9204 if (prev_mp != NULL) 9205 prev_mp->b_cont = mp->b_cont; 9206 mp->b_cont = NULL; 9207 return (mp); 9208 default: 9209 break; 9210 } 9211 } 9212 return (mp); 9213 } 9214 9215 /* 9216 * Timer callback routine for keepalive probe. We do a fake resend of 9217 * last ACKed byte. Then set a timer using RTO. When the timer expires, 9218 * check to see if we have heard anything from the other end for the last 9219 * RTO period. If we have, set the timer to expire for another 9220 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 9221 * RTO << 1 and check again when it expires. Keep exponentially increasing 9222 * the timeout if we have not heard from the other side. If for more than 9223 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 9224 * kill the connection unless the keepalive abort threshold is 0. In 9225 * that case, we will probe "forever." 9226 */ 9227 static void 9228 tcp_keepalive_killer(void *arg) 9229 { 9230 mblk_t *mp; 9231 conn_t *connp = (conn_t *)arg; 9232 tcp_t *tcp = connp->conn_tcp; 9233 int32_t firetime; 9234 int32_t idletime; 9235 int32_t ka_intrvl; 9236 tcp_stack_t *tcps = tcp->tcp_tcps; 9237 9238 tcp->tcp_ka_tid = 0; 9239 9240 if (tcp->tcp_fused) 9241 return; 9242 9243 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); 9244 ka_intrvl = tcp->tcp_ka_interval; 9245 9246 /* 9247 * Keepalive probe should only be sent if the application has not 9248 * done a close on the connection. 9249 */ 9250 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 9251 return; 9252 } 9253 /* Timer fired too early, restart it. */ 9254 if (tcp->tcp_state < TCPS_ESTABLISHED) { 9255 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9256 MSEC_TO_TICK(ka_intrvl)); 9257 return; 9258 } 9259 9260 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 9261 /* 9262 * If we have not heard from the other side for a long 9263 * time, kill the connection unless the keepalive abort 9264 * threshold is 0. In that case, we will probe "forever." 9265 */ 9266 if (tcp->tcp_ka_abort_thres != 0 && 9267 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 9268 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); 9269 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 9270 tcp->tcp_client_errno : ETIMEDOUT, 11); 9271 return; 9272 } 9273 9274 if (tcp->tcp_snxt == tcp->tcp_suna && 9275 idletime >= ka_intrvl) { 9276 /* Fake resend of last ACKed byte. */ 9277 mblk_t *mp1 = allocb(1, BPRI_LO); 9278 9279 if (mp1 != NULL) { 9280 *mp1->b_wptr++ = '\0'; 9281 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 9282 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 9283 freeb(mp1); 9284 /* 9285 * if allocation failed, fall through to start the 9286 * timer back. 9287 */ 9288 if (mp != NULL) { 9289 TCP_RECORD_TRACE(tcp, mp, 9290 TCP_TRACE_SEND_PKT); 9291 tcp_send_data(tcp, tcp->tcp_wq, mp); 9292 BUMP_MIB(&tcps->tcps_mib, 9293 tcpTimKeepaliveProbe); 9294 if (tcp->tcp_ka_last_intrvl != 0) { 9295 int max; 9296 /* 9297 * We should probe again at least 9298 * in ka_intrvl, but not more than 9299 * tcp_rexmit_interval_max. 9300 */ 9301 max = tcps->tcps_rexmit_interval_max; 9302 firetime = MIN(ka_intrvl - 1, 9303 tcp->tcp_ka_last_intrvl << 1); 9304 if (firetime > max) 9305 firetime = max; 9306 } else { 9307 firetime = tcp->tcp_rto; 9308 } 9309 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9310 tcp_keepalive_killer, 9311 MSEC_TO_TICK(firetime)); 9312 tcp->tcp_ka_last_intrvl = firetime; 9313 return; 9314 } 9315 } 9316 } else { 9317 tcp->tcp_ka_last_intrvl = 0; 9318 } 9319 9320 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 9321 if ((firetime = ka_intrvl - idletime) < 0) { 9322 firetime = ka_intrvl; 9323 } 9324 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9325 MSEC_TO_TICK(firetime)); 9326 } 9327 9328 int 9329 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 9330 { 9331 queue_t *q = tcp->tcp_rq; 9332 int32_t mss = tcp->tcp_mss; 9333 int maxpsz; 9334 9335 if (TCP_IS_DETACHED(tcp)) 9336 return (mss); 9337 9338 if (tcp->tcp_fused) { 9339 maxpsz = tcp_fuse_maxpsz_set(tcp); 9340 mss = INFPSZ; 9341 } else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) { 9342 /* 9343 * Set the sd_qn_maxpsz according to the socket send buffer 9344 * size, and sd_maxblk to INFPSZ (-1). This will essentially 9345 * instruct the stream head to copyin user data into contiguous 9346 * kernel-allocated buffers without breaking it up into smaller 9347 * chunks. We round up the buffer size to the nearest SMSS. 9348 */ 9349 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 9350 if (tcp->tcp_kssl_ctx == NULL) 9351 mss = INFPSZ; 9352 else 9353 mss = SSL3_MAX_RECORD_LEN; 9354 } else { 9355 /* 9356 * Set sd_qn_maxpsz to approx half the (receivers) buffer 9357 * (and a multiple of the mss). This instructs the stream 9358 * head to break down larger than SMSS writes into SMSS- 9359 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 9360 */ 9361 maxpsz = tcp->tcp_maxpsz * mss; 9362 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 9363 maxpsz = tcp->tcp_xmit_hiwater/2; 9364 /* Round up to nearest mss */ 9365 maxpsz = MSS_ROUNDUP(maxpsz, mss); 9366 } 9367 } 9368 (void) setmaxps(q, maxpsz); 9369 tcp->tcp_wq->q_maxpsz = maxpsz; 9370 9371 if (set_maxblk) 9372 (void) mi_set_sth_maxblk(q, mss); 9373 9374 return (mss); 9375 } 9376 9377 /* 9378 * Extract option values from a tcp header. We put any found values into the 9379 * tcpopt struct and return a bitmask saying which options were found. 9380 */ 9381 static int 9382 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 9383 { 9384 uchar_t *endp; 9385 int len; 9386 uint32_t mss; 9387 uchar_t *up = (uchar_t *)tcph; 9388 int found = 0; 9389 int32_t sack_len; 9390 tcp_seq sack_begin, sack_end; 9391 tcp_t *tcp; 9392 9393 endp = up + TCP_HDR_LENGTH(tcph); 9394 up += TCP_MIN_HEADER_LENGTH; 9395 while (up < endp) { 9396 len = endp - up; 9397 switch (*up) { 9398 case TCPOPT_EOL: 9399 break; 9400 9401 case TCPOPT_NOP: 9402 up++; 9403 continue; 9404 9405 case TCPOPT_MAXSEG: 9406 if (len < TCPOPT_MAXSEG_LEN || 9407 up[1] != TCPOPT_MAXSEG_LEN) 9408 break; 9409 9410 mss = BE16_TO_U16(up+2); 9411 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 9412 tcpopt->tcp_opt_mss = mss; 9413 found |= TCP_OPT_MSS_PRESENT; 9414 9415 up += TCPOPT_MAXSEG_LEN; 9416 continue; 9417 9418 case TCPOPT_WSCALE: 9419 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 9420 break; 9421 9422 if (up[2] > TCP_MAX_WINSHIFT) 9423 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 9424 else 9425 tcpopt->tcp_opt_wscale = up[2]; 9426 found |= TCP_OPT_WSCALE_PRESENT; 9427 9428 up += TCPOPT_WS_LEN; 9429 continue; 9430 9431 case TCPOPT_SACK_PERMITTED: 9432 if (len < TCPOPT_SACK_OK_LEN || 9433 up[1] != TCPOPT_SACK_OK_LEN) 9434 break; 9435 found |= TCP_OPT_SACK_OK_PRESENT; 9436 up += TCPOPT_SACK_OK_LEN; 9437 continue; 9438 9439 case TCPOPT_SACK: 9440 if (len <= 2 || up[1] <= 2 || len < up[1]) 9441 break; 9442 9443 /* If TCP is not interested in SACK blks... */ 9444 if ((tcp = tcpopt->tcp) == NULL) { 9445 up += up[1]; 9446 continue; 9447 } 9448 sack_len = up[1] - TCPOPT_HEADER_LEN; 9449 up += TCPOPT_HEADER_LEN; 9450 9451 /* 9452 * If the list is empty, allocate one and assume 9453 * nothing is sack'ed. 9454 */ 9455 ASSERT(tcp->tcp_sack_info != NULL); 9456 if (tcp->tcp_notsack_list == NULL) { 9457 tcp_notsack_update(&(tcp->tcp_notsack_list), 9458 tcp->tcp_suna, tcp->tcp_snxt, 9459 &(tcp->tcp_num_notsack_blk), 9460 &(tcp->tcp_cnt_notsack_list)); 9461 9462 /* 9463 * Make sure tcp_notsack_list is not NULL. 9464 * This happens when kmem_alloc(KM_NOSLEEP) 9465 * returns NULL. 9466 */ 9467 if (tcp->tcp_notsack_list == NULL) { 9468 up += sack_len; 9469 continue; 9470 } 9471 tcp->tcp_fack = tcp->tcp_suna; 9472 } 9473 9474 while (sack_len > 0) { 9475 if (up + 8 > endp) { 9476 up = endp; 9477 break; 9478 } 9479 sack_begin = BE32_TO_U32(up); 9480 up += 4; 9481 sack_end = BE32_TO_U32(up); 9482 up += 4; 9483 sack_len -= 8; 9484 /* 9485 * Bounds checking. Make sure the SACK 9486 * info is within tcp_suna and tcp_snxt. 9487 * If this SACK blk is out of bound, ignore 9488 * it but continue to parse the following 9489 * blks. 9490 */ 9491 if (SEQ_LEQ(sack_end, sack_begin) || 9492 SEQ_LT(sack_begin, tcp->tcp_suna) || 9493 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9494 continue; 9495 } 9496 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9497 sack_begin, sack_end, 9498 &(tcp->tcp_num_notsack_blk), 9499 &(tcp->tcp_cnt_notsack_list)); 9500 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9501 tcp->tcp_fack = sack_end; 9502 } 9503 } 9504 found |= TCP_OPT_SACK_PRESENT; 9505 continue; 9506 9507 case TCPOPT_TSTAMP: 9508 if (len < TCPOPT_TSTAMP_LEN || 9509 up[1] != TCPOPT_TSTAMP_LEN) 9510 break; 9511 9512 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9513 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9514 9515 found |= TCP_OPT_TSTAMP_PRESENT; 9516 9517 up += TCPOPT_TSTAMP_LEN; 9518 continue; 9519 9520 default: 9521 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9522 break; 9523 up += up[1]; 9524 continue; 9525 } 9526 break; 9527 } 9528 return (found); 9529 } 9530 9531 /* 9532 * Set the mss associated with a particular tcp based on its current value, 9533 * and a new one passed in. Observe minimums and maximums, and reset 9534 * other state variables that we want to view as multiples of mss. 9535 * 9536 * This function is called in various places mainly because 9537 * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the 9538 * other side's SYN/SYN-ACK packet arrives. 9539 * 2) PMTUd may get us a new MSS. 9540 * 3) If the other side stops sending us timestamp option, we need to 9541 * increase the MSS size to use the extra bytes available. 9542 * 9543 * do_ss is used to control whether we will be doing slow start or 9544 * not if there is a change in the mss. Note that for some events like 9545 * tcp_paws_check() we allow the tcp_cwnd to adjust to the new mss but 9546 * do not perform a slow start specifically. 9547 */ 9548 static void 9549 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss) 9550 { 9551 uint32_t mss_max; 9552 tcp_stack_t *tcps = tcp->tcp_tcps; 9553 9554 if (tcp->tcp_ipversion == IPV4_VERSION) 9555 mss_max = tcps->tcps_mss_max_ipv4; 9556 else 9557 mss_max = tcps->tcps_mss_max_ipv6; 9558 9559 if (mss < tcps->tcps_mss_min) 9560 mss = tcps->tcps_mss_min; 9561 if (mss > mss_max) 9562 mss = mss_max; 9563 /* 9564 * Unless naglim has been set by our client to 9565 * a non-mss value, force naglim to track mss. 9566 * This can help to aggregate small writes. 9567 */ 9568 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9569 tcp->tcp_naglim = mss; 9570 /* 9571 * TCP should be able to buffer at least 4 MSS data for obvious 9572 * performance reason. 9573 */ 9574 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9575 tcp->tcp_xmit_hiwater = mss << 2; 9576 9577 /* 9578 * Check if we need to apply the tcp_init_cwnd here. If 9579 * it is set and the MSS gets bigger (should not happen 9580 * normally), we need to adjust the resulting tcp_cwnd properly. 9581 * The new tcp_cwnd should not get bigger. 9582 */ 9583 /* 9584 * We need to avoid setting tcp_cwnd to its slow start value 9585 * unnecessarily. However we have to let the tcp_cwnd adjust 9586 * to the modified mss. 9587 */ 9588 if (tcp->tcp_init_cwnd == 0 && do_ss) { 9589 tcp->tcp_cwnd = MIN(tcps->tcps_slow_start_initial * 9590 mss, MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss))); 9591 } else { 9592 if (tcp->tcp_mss < mss) { 9593 tcp->tcp_cwnd = MAX(1, 9594 (tcp->tcp_init_cwnd * tcp->tcp_mss / 9595 mss)) * mss; 9596 } else { 9597 tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss; 9598 } 9599 } 9600 tcp->tcp_mss = mss; 9601 tcp->tcp_cwnd_cnt = 0; 9602 (void) tcp_maxpsz_set(tcp, B_TRUE); 9603 } 9604 9605 /* For /dev/tcp aka AF_INET open */ 9606 static int 9607 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9608 { 9609 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 9610 } 9611 9612 /* For /dev/tcp6 aka AF_INET6 open */ 9613 static int 9614 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9615 { 9616 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 9617 } 9618 9619 static int 9620 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9621 boolean_t isv6) 9622 { 9623 tcp_t *tcp = NULL; 9624 conn_t *connp; 9625 int err; 9626 vmem_t *minor_arena = NULL; 9627 dev_t conn_dev; 9628 zoneid_t zoneid; 9629 tcp_stack_t *tcps = NULL; 9630 9631 if (q->q_ptr != NULL) 9632 return (0); 9633 9634 if (sflag == MODOPEN) 9635 return (EINVAL); 9636 9637 if (!(flag & SO_ACCEPTOR)) { 9638 /* 9639 * Special case for install: miniroot needs to be able to 9640 * access files via NFS as though it were always in the 9641 * global zone. 9642 */ 9643 if (credp == kcred && nfs_global_client_only != 0) { 9644 zoneid = GLOBAL_ZONEID; 9645 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 9646 netstack_tcp; 9647 ASSERT(tcps != NULL); 9648 } else { 9649 netstack_t *ns; 9650 9651 ns = netstack_find_by_cred(credp); 9652 ASSERT(ns != NULL); 9653 tcps = ns->netstack_tcp; 9654 ASSERT(tcps != NULL); 9655 9656 /* 9657 * For exclusive stacks we set the zoneid to zero 9658 * to make TCP operate as if in the global zone. 9659 */ 9660 if (tcps->tcps_netstack->netstack_stackid != 9661 GLOBAL_NETSTACKID) 9662 zoneid = GLOBAL_ZONEID; 9663 else 9664 zoneid = crgetzoneid(credp); 9665 } 9666 /* 9667 * For stackid zero this is done from strplumb.c, but 9668 * non-zero stackids are handled here. 9669 */ 9670 if (tcps->tcps_g_q == NULL && 9671 tcps->tcps_netstack->netstack_stackid != 9672 GLOBAL_NETSTACKID) { 9673 tcp_g_q_setup(tcps); 9674 } 9675 } 9676 9677 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9678 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9679 minor_arena = ip_minor_arena_la; 9680 } else { 9681 /* 9682 * Either minor numbers in the large arena were exhausted 9683 * or a non socket application is doing the open. 9684 * Try to allocate from the small arena. 9685 */ 9686 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9687 if (tcps != NULL) 9688 netstack_rele(tcps->tcps_netstack); 9689 return (EBUSY); 9690 } 9691 minor_arena = ip_minor_arena_sa; 9692 } 9693 ASSERT(minor_arena != NULL); 9694 9695 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 9696 9697 if (flag & SO_ACCEPTOR) { 9698 /* No netstack_find_by_cred, hence no netstack_rele needed */ 9699 ASSERT(tcps == NULL); 9700 q->q_qinfo = &tcp_acceptor_rinit; 9701 /* 9702 * the conn_dev and minor_arena will be subsequently used by 9703 * tcp_wput_accept() and tcpclose_accept() to figure out the 9704 * minor device number for this connection from the q_ptr. 9705 */ 9706 RD(q)->q_ptr = (void *)conn_dev; 9707 WR(q)->q_qinfo = &tcp_acceptor_winit; 9708 WR(q)->q_ptr = (void *)minor_arena; 9709 qprocson(q); 9710 return (0); 9711 } 9712 9713 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt), tcps); 9714 /* 9715 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 9716 * so we drop it by one. 9717 */ 9718 netstack_rele(tcps->tcps_netstack); 9719 if (connp == NULL) { 9720 inet_minor_free(minor_arena, conn_dev); 9721 q->q_ptr = NULL; 9722 return (ENOSR); 9723 } 9724 connp->conn_sqp = IP_SQUEUE_GET(lbolt); 9725 tcp = connp->conn_tcp; 9726 9727 q->q_ptr = WR(q)->q_ptr = connp; 9728 if (isv6) { 9729 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9730 connp->conn_send = ip_output_v6; 9731 connp->conn_af_isv6 = B_TRUE; 9732 connp->conn_pkt_isv6 = B_TRUE; 9733 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9734 tcp->tcp_ipversion = IPV6_VERSION; 9735 tcp->tcp_family = AF_INET6; 9736 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 9737 } else { 9738 connp->conn_flags |= IPCL_TCP4; 9739 connp->conn_send = ip_output; 9740 connp->conn_af_isv6 = B_FALSE; 9741 connp->conn_pkt_isv6 = B_FALSE; 9742 tcp->tcp_ipversion = IPV4_VERSION; 9743 tcp->tcp_family = AF_INET; 9744 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 9745 } 9746 9747 /* 9748 * TCP keeps a copy of cred for cache locality reasons but 9749 * we put a reference only once. If connp->conn_cred 9750 * becomes invalid, tcp_cred should also be set to NULL. 9751 */ 9752 tcp->tcp_cred = connp->conn_cred = credp; 9753 crhold(connp->conn_cred); 9754 tcp->tcp_cpid = curproc->p_pid; 9755 tcp->tcp_open_time = lbolt64; 9756 connp->conn_zoneid = zoneid; 9757 connp->conn_mlp_type = mlptSingle; 9758 connp->conn_ulp_labeled = !is_system_labeled(); 9759 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 9760 ASSERT(tcp->tcp_tcps == tcps); 9761 9762 /* 9763 * If the caller has the process-wide flag set, then default to MAC 9764 * exempt mode. This allows read-down to unlabeled hosts. 9765 */ 9766 if (getpflags(NET_MAC_AWARE, credp) != 0) 9767 connp->conn_mac_exempt = B_TRUE; 9768 9769 connp->conn_dev = conn_dev; 9770 connp->conn_minor_arena = minor_arena; 9771 9772 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 9773 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9774 9775 if (flag & SO_SOCKSTR) { 9776 /* 9777 * No need to insert a socket in tcp acceptor hash. 9778 * If it was a socket acceptor stream, we dealt with 9779 * it above. A socket listener can never accept a 9780 * connection and doesn't need acceptor_id. 9781 */ 9782 connp->conn_flags |= IPCL_SOCKET; 9783 tcp->tcp_issocket = 1; 9784 WR(q)->q_qinfo = &tcp_sock_winit; 9785 } else { 9786 #ifdef _ILP32 9787 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9788 #else 9789 tcp->tcp_acceptor_id = conn_dev; 9790 #endif /* _ILP32 */ 9791 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9792 } 9793 9794 if (tcps->tcps_trace) 9795 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP); 9796 9797 err = tcp_init(tcp, q); 9798 if (err != 0) { 9799 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 9800 tcp_acceptor_hash_remove(tcp); 9801 CONN_DEC_REF(connp); 9802 q->q_ptr = WR(q)->q_ptr = NULL; 9803 return (err); 9804 } 9805 9806 RD(q)->q_hiwat = tcps->tcps_recv_hiwat; 9807 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 9808 9809 /* Non-zero default values */ 9810 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9811 /* 9812 * Put the ref for TCP. Ref for IP was already put 9813 * by ipcl_conn_create. Also Make the conn_t globally 9814 * visible to walkers 9815 */ 9816 mutex_enter(&connp->conn_lock); 9817 CONN_INC_REF_LOCKED(connp); 9818 ASSERT(connp->conn_ref == 2); 9819 connp->conn_state_flags &= ~CONN_INCIPIENT; 9820 mutex_exit(&connp->conn_lock); 9821 9822 qprocson(q); 9823 return (0); 9824 } 9825 9826 /* 9827 * Some TCP options can be "set" by requesting them in the option 9828 * buffer. This is needed for XTI feature test though we do not 9829 * allow it in general. We interpret that this mechanism is more 9830 * applicable to OSI protocols and need not be allowed in general. 9831 * This routine filters out options for which it is not allowed (most) 9832 * and lets through those (few) for which it is. [ The XTI interface 9833 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9834 * ever implemented will have to be allowed here ]. 9835 */ 9836 static boolean_t 9837 tcp_allow_connopt_set(int level, int name) 9838 { 9839 9840 switch (level) { 9841 case IPPROTO_TCP: 9842 switch (name) { 9843 case TCP_NODELAY: 9844 return (B_TRUE); 9845 default: 9846 return (B_FALSE); 9847 } 9848 /*NOTREACHED*/ 9849 default: 9850 return (B_FALSE); 9851 } 9852 /*NOTREACHED*/ 9853 } 9854 9855 /* 9856 * This routine gets default values of certain options whose default 9857 * values are maintained by protocol specific code 9858 */ 9859 /* ARGSUSED */ 9860 int 9861 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9862 { 9863 int32_t *i1 = (int32_t *)ptr; 9864 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 9865 9866 switch (level) { 9867 case IPPROTO_TCP: 9868 switch (name) { 9869 case TCP_NOTIFY_THRESHOLD: 9870 *i1 = tcps->tcps_ip_notify_interval; 9871 break; 9872 case TCP_ABORT_THRESHOLD: 9873 *i1 = tcps->tcps_ip_abort_interval; 9874 break; 9875 case TCP_CONN_NOTIFY_THRESHOLD: 9876 *i1 = tcps->tcps_ip_notify_cinterval; 9877 break; 9878 case TCP_CONN_ABORT_THRESHOLD: 9879 *i1 = tcps->tcps_ip_abort_cinterval; 9880 break; 9881 default: 9882 return (-1); 9883 } 9884 break; 9885 case IPPROTO_IP: 9886 switch (name) { 9887 case IP_TTL: 9888 *i1 = tcps->tcps_ipv4_ttl; 9889 break; 9890 default: 9891 return (-1); 9892 } 9893 break; 9894 case IPPROTO_IPV6: 9895 switch (name) { 9896 case IPV6_UNICAST_HOPS: 9897 *i1 = tcps->tcps_ipv6_hoplimit; 9898 break; 9899 default: 9900 return (-1); 9901 } 9902 break; 9903 default: 9904 return (-1); 9905 } 9906 return (sizeof (int)); 9907 } 9908 9909 9910 /* 9911 * TCP routine to get the values of options. 9912 */ 9913 int 9914 tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9915 { 9916 int *i1 = (int *)ptr; 9917 conn_t *connp = Q_TO_CONN(q); 9918 tcp_t *tcp = connp->conn_tcp; 9919 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9920 9921 switch (level) { 9922 case SOL_SOCKET: 9923 switch (name) { 9924 case SO_LINGER: { 9925 struct linger *lgr = (struct linger *)ptr; 9926 9927 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9928 lgr->l_linger = tcp->tcp_lingertime; 9929 } 9930 return (sizeof (struct linger)); 9931 case SO_DEBUG: 9932 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9933 break; 9934 case SO_KEEPALIVE: 9935 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9936 break; 9937 case SO_DONTROUTE: 9938 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9939 break; 9940 case SO_USELOOPBACK: 9941 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9942 break; 9943 case SO_BROADCAST: 9944 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9945 break; 9946 case SO_REUSEADDR: 9947 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9948 break; 9949 case SO_OOBINLINE: 9950 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9951 break; 9952 case SO_DGRAM_ERRIND: 9953 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9954 break; 9955 case SO_TYPE: 9956 *i1 = SOCK_STREAM; 9957 break; 9958 case SO_SNDBUF: 9959 *i1 = tcp->tcp_xmit_hiwater; 9960 break; 9961 case SO_RCVBUF: 9962 *i1 = RD(q)->q_hiwat; 9963 break; 9964 case SO_SND_COPYAVOID: 9965 *i1 = tcp->tcp_snd_zcopy_on ? 9966 SO_SND_COPYAVOID : 0; 9967 break; 9968 case SO_ALLZONES: 9969 *i1 = connp->conn_allzones ? 1 : 0; 9970 break; 9971 case SO_ANON_MLP: 9972 *i1 = connp->conn_anon_mlp; 9973 break; 9974 case SO_MAC_EXEMPT: 9975 *i1 = connp->conn_mac_exempt; 9976 break; 9977 case SO_EXCLBIND: 9978 *i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0; 9979 break; 9980 case SO_PROTOTYPE: 9981 *i1 = IPPROTO_TCP; 9982 break; 9983 case SO_DOMAIN: 9984 *i1 = tcp->tcp_family; 9985 break; 9986 default: 9987 return (-1); 9988 } 9989 break; 9990 case IPPROTO_TCP: 9991 switch (name) { 9992 case TCP_NODELAY: 9993 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9994 break; 9995 case TCP_MAXSEG: 9996 *i1 = tcp->tcp_mss; 9997 break; 9998 case TCP_NOTIFY_THRESHOLD: 9999 *i1 = (int)tcp->tcp_first_timer_threshold; 10000 break; 10001 case TCP_ABORT_THRESHOLD: 10002 *i1 = tcp->tcp_second_timer_threshold; 10003 break; 10004 case TCP_CONN_NOTIFY_THRESHOLD: 10005 *i1 = tcp->tcp_first_ctimer_threshold; 10006 break; 10007 case TCP_CONN_ABORT_THRESHOLD: 10008 *i1 = tcp->tcp_second_ctimer_threshold; 10009 break; 10010 case TCP_RECVDSTADDR: 10011 *i1 = tcp->tcp_recvdstaddr; 10012 break; 10013 case TCP_ANONPRIVBIND: 10014 *i1 = tcp->tcp_anon_priv_bind; 10015 break; 10016 case TCP_EXCLBIND: 10017 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 10018 break; 10019 case TCP_INIT_CWND: 10020 *i1 = tcp->tcp_init_cwnd; 10021 break; 10022 case TCP_KEEPALIVE_THRESHOLD: 10023 *i1 = tcp->tcp_ka_interval; 10024 break; 10025 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10026 *i1 = tcp->tcp_ka_abort_thres; 10027 break; 10028 case TCP_CORK: 10029 *i1 = tcp->tcp_cork; 10030 break; 10031 default: 10032 return (-1); 10033 } 10034 break; 10035 case IPPROTO_IP: 10036 if (tcp->tcp_family != AF_INET) 10037 return (-1); 10038 switch (name) { 10039 case IP_OPTIONS: 10040 case T_IP_OPTIONS: { 10041 /* 10042 * This is compatible with BSD in that in only return 10043 * the reverse source route with the final destination 10044 * as the last entry. The first 4 bytes of the option 10045 * will contain the final destination. 10046 */ 10047 int opt_len; 10048 10049 opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha; 10050 opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH; 10051 ASSERT(opt_len >= 0); 10052 /* Caller ensures enough space */ 10053 if (opt_len > 0) { 10054 /* 10055 * TODO: Do we have to handle getsockopt on an 10056 * initiator as well? 10057 */ 10058 return (ip_opt_get_user(tcp->tcp_ipha, ptr)); 10059 } 10060 return (0); 10061 } 10062 case IP_TOS: 10063 case T_IP_TOS: 10064 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 10065 break; 10066 case IP_TTL: 10067 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 10068 break; 10069 case IP_NEXTHOP: 10070 /* Handled at IP level */ 10071 return (-EINVAL); 10072 default: 10073 return (-1); 10074 } 10075 break; 10076 case IPPROTO_IPV6: 10077 /* 10078 * IPPROTO_IPV6 options are only supported for sockets 10079 * that are using IPv6 on the wire. 10080 */ 10081 if (tcp->tcp_ipversion != IPV6_VERSION) { 10082 return (-1); 10083 } 10084 switch (name) { 10085 case IPV6_UNICAST_HOPS: 10086 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 10087 break; /* goto sizeof (int) option return */ 10088 case IPV6_BOUND_IF: 10089 /* Zero if not set */ 10090 *i1 = tcp->tcp_bound_if; 10091 break; /* goto sizeof (int) option return */ 10092 case IPV6_RECVPKTINFO: 10093 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 10094 *i1 = 1; 10095 else 10096 *i1 = 0; 10097 break; /* goto sizeof (int) option return */ 10098 case IPV6_RECVTCLASS: 10099 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 10100 *i1 = 1; 10101 else 10102 *i1 = 0; 10103 break; /* goto sizeof (int) option return */ 10104 case IPV6_RECVHOPLIMIT: 10105 if (tcp->tcp_ipv6_recvancillary & 10106 TCP_IPV6_RECVHOPLIMIT) 10107 *i1 = 1; 10108 else 10109 *i1 = 0; 10110 break; /* goto sizeof (int) option return */ 10111 case IPV6_RECVHOPOPTS: 10112 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 10113 *i1 = 1; 10114 else 10115 *i1 = 0; 10116 break; /* goto sizeof (int) option return */ 10117 case IPV6_RECVDSTOPTS: 10118 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 10119 *i1 = 1; 10120 else 10121 *i1 = 0; 10122 break; /* goto sizeof (int) option return */ 10123 case _OLD_IPV6_RECVDSTOPTS: 10124 if (tcp->tcp_ipv6_recvancillary & 10125 TCP_OLD_IPV6_RECVDSTOPTS) 10126 *i1 = 1; 10127 else 10128 *i1 = 0; 10129 break; /* goto sizeof (int) option return */ 10130 case IPV6_RECVRTHDR: 10131 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 10132 *i1 = 1; 10133 else 10134 *i1 = 0; 10135 break; /* goto sizeof (int) option return */ 10136 case IPV6_RECVRTHDRDSTOPTS: 10137 if (tcp->tcp_ipv6_recvancillary & 10138 TCP_IPV6_RECVRTDSTOPTS) 10139 *i1 = 1; 10140 else 10141 *i1 = 0; 10142 break; /* goto sizeof (int) option return */ 10143 case IPV6_PKTINFO: { 10144 /* XXX assumes that caller has room for max size! */ 10145 struct in6_pktinfo *pkti; 10146 10147 pkti = (struct in6_pktinfo *)ptr; 10148 if (ipp->ipp_fields & IPPF_IFINDEX) 10149 pkti->ipi6_ifindex = ipp->ipp_ifindex; 10150 else 10151 pkti->ipi6_ifindex = 0; 10152 if (ipp->ipp_fields & IPPF_ADDR) 10153 pkti->ipi6_addr = ipp->ipp_addr; 10154 else 10155 pkti->ipi6_addr = ipv6_all_zeros; 10156 return (sizeof (struct in6_pktinfo)); 10157 } 10158 case IPV6_TCLASS: 10159 if (ipp->ipp_fields & IPPF_TCLASS) 10160 *i1 = ipp->ipp_tclass; 10161 else 10162 *i1 = IPV6_FLOW_TCLASS( 10163 IPV6_DEFAULT_VERS_AND_FLOW); 10164 break; /* goto sizeof (int) option return */ 10165 case IPV6_NEXTHOP: { 10166 sin6_t *sin6 = (sin6_t *)ptr; 10167 10168 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 10169 return (0); 10170 *sin6 = sin6_null; 10171 sin6->sin6_family = AF_INET6; 10172 sin6->sin6_addr = ipp->ipp_nexthop; 10173 return (sizeof (sin6_t)); 10174 } 10175 case IPV6_HOPOPTS: 10176 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 10177 return (0); 10178 if (ipp->ipp_hopoptslen <= tcp->tcp_label_len) 10179 return (0); 10180 bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len, 10181 ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len); 10182 if (tcp->tcp_label_len > 0) { 10183 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 10184 ptr[1] = (ipp->ipp_hopoptslen - 10185 tcp->tcp_label_len + 7) / 8 - 1; 10186 } 10187 return (ipp->ipp_hopoptslen - tcp->tcp_label_len); 10188 case IPV6_RTHDRDSTOPTS: 10189 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 10190 return (0); 10191 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 10192 return (ipp->ipp_rtdstoptslen); 10193 case IPV6_RTHDR: 10194 if (!(ipp->ipp_fields & IPPF_RTHDR)) 10195 return (0); 10196 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 10197 return (ipp->ipp_rthdrlen); 10198 case IPV6_DSTOPTS: 10199 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 10200 return (0); 10201 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 10202 return (ipp->ipp_dstoptslen); 10203 case IPV6_SRC_PREFERENCES: 10204 return (ip6_get_src_preferences(connp, 10205 (uint32_t *)ptr)); 10206 case IPV6_PATHMTU: { 10207 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 10208 10209 if (tcp->tcp_state < TCPS_ESTABLISHED) 10210 return (-1); 10211 10212 return (ip_fill_mtuinfo(&connp->conn_remv6, 10213 connp->conn_fport, mtuinfo, 10214 connp->conn_netstack)); 10215 } 10216 default: 10217 return (-1); 10218 } 10219 break; 10220 default: 10221 return (-1); 10222 } 10223 return (sizeof (int)); 10224 } 10225 10226 /* 10227 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 10228 * Parameters are assumed to be verified by the caller. 10229 */ 10230 /* ARGSUSED */ 10231 int 10232 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10233 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10234 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 10235 { 10236 conn_t *connp = Q_TO_CONN(q); 10237 tcp_t *tcp = connp->conn_tcp; 10238 int *i1 = (int *)invalp; 10239 boolean_t onoff = (*i1 == 0) ? 0 : 1; 10240 boolean_t checkonly; 10241 int reterr; 10242 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 10243 10244 switch (optset_context) { 10245 case SETFN_OPTCOM_CHECKONLY: 10246 checkonly = B_TRUE; 10247 /* 10248 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10249 * inlen != 0 implies value supplied and 10250 * we have to "pretend" to set it. 10251 * inlen == 0 implies that there is no 10252 * value part in T_CHECK request and just validation 10253 * done elsewhere should be enough, we just return here. 10254 */ 10255 if (inlen == 0) { 10256 *outlenp = 0; 10257 return (0); 10258 } 10259 break; 10260 case SETFN_OPTCOM_NEGOTIATE: 10261 checkonly = B_FALSE; 10262 break; 10263 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 10264 case SETFN_CONN_NEGOTIATE: 10265 checkonly = B_FALSE; 10266 /* 10267 * Negotiating local and "association-related" options 10268 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 10269 * primitives is allowed by XTI, but we choose 10270 * to not implement this style negotiation for Internet 10271 * protocols (We interpret it is a must for OSI world but 10272 * optional for Internet protocols) for all options. 10273 * [ Will do only for the few options that enable test 10274 * suites that our XTI implementation of this feature 10275 * works for transports that do allow it ] 10276 */ 10277 if (!tcp_allow_connopt_set(level, name)) { 10278 *outlenp = 0; 10279 return (EINVAL); 10280 } 10281 break; 10282 default: 10283 /* 10284 * We should never get here 10285 */ 10286 *outlenp = 0; 10287 return (EINVAL); 10288 } 10289 10290 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10291 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10292 10293 /* 10294 * For TCP, we should have no ancillary data sent down 10295 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 10296 * has to be zero. 10297 */ 10298 ASSERT(thisdg_attrs == NULL); 10299 10300 /* 10301 * For fixed length options, no sanity check 10302 * of passed in length is done. It is assumed *_optcom_req() 10303 * routines do the right thing. 10304 */ 10305 10306 switch (level) { 10307 case SOL_SOCKET: 10308 switch (name) { 10309 case SO_LINGER: { 10310 struct linger *lgr = (struct linger *)invalp; 10311 10312 if (!checkonly) { 10313 if (lgr->l_onoff) { 10314 tcp->tcp_linger = 1; 10315 tcp->tcp_lingertime = lgr->l_linger; 10316 } else { 10317 tcp->tcp_linger = 0; 10318 tcp->tcp_lingertime = 0; 10319 } 10320 /* struct copy */ 10321 *(struct linger *)outvalp = *lgr; 10322 } else { 10323 if (!lgr->l_onoff) { 10324 ((struct linger *) 10325 outvalp)->l_onoff = 0; 10326 ((struct linger *) 10327 outvalp)->l_linger = 0; 10328 } else { 10329 /* struct copy */ 10330 *(struct linger *)outvalp = *lgr; 10331 } 10332 } 10333 *outlenp = sizeof (struct linger); 10334 return (0); 10335 } 10336 case SO_DEBUG: 10337 if (!checkonly) 10338 tcp->tcp_debug = onoff; 10339 break; 10340 case SO_KEEPALIVE: 10341 if (checkonly) { 10342 /* T_CHECK case */ 10343 break; 10344 } 10345 10346 if (!onoff) { 10347 if (tcp->tcp_ka_enabled) { 10348 if (tcp->tcp_ka_tid != 0) { 10349 (void) TCP_TIMER_CANCEL(tcp, 10350 tcp->tcp_ka_tid); 10351 tcp->tcp_ka_tid = 0; 10352 } 10353 tcp->tcp_ka_enabled = 0; 10354 } 10355 break; 10356 } 10357 if (!tcp->tcp_ka_enabled) { 10358 /* Crank up the keepalive timer */ 10359 tcp->tcp_ka_last_intrvl = 0; 10360 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10361 tcp_keepalive_killer, 10362 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10363 tcp->tcp_ka_enabled = 1; 10364 } 10365 break; 10366 case SO_DONTROUTE: 10367 /* 10368 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are 10369 * only of interest to IP. We track them here only so 10370 * that we can report their current value. 10371 */ 10372 if (!checkonly) { 10373 tcp->tcp_dontroute = onoff; 10374 tcp->tcp_connp->conn_dontroute = onoff; 10375 } 10376 break; 10377 case SO_USELOOPBACK: 10378 if (!checkonly) { 10379 tcp->tcp_useloopback = onoff; 10380 tcp->tcp_connp->conn_loopback = onoff; 10381 } 10382 break; 10383 case SO_BROADCAST: 10384 if (!checkonly) { 10385 tcp->tcp_broadcast = onoff; 10386 tcp->tcp_connp->conn_broadcast = onoff; 10387 } 10388 break; 10389 case SO_REUSEADDR: 10390 if (!checkonly) { 10391 tcp->tcp_reuseaddr = onoff; 10392 tcp->tcp_connp->conn_reuseaddr = onoff; 10393 } 10394 break; 10395 case SO_OOBINLINE: 10396 if (!checkonly) 10397 tcp->tcp_oobinline = onoff; 10398 break; 10399 case SO_DGRAM_ERRIND: 10400 if (!checkonly) 10401 tcp->tcp_dgram_errind = onoff; 10402 break; 10403 case SO_SNDBUF: { 10404 if (*i1 > tcps->tcps_max_buf) { 10405 *outlenp = 0; 10406 return (ENOBUFS); 10407 } 10408 if (checkonly) 10409 break; 10410 10411 tcp->tcp_xmit_hiwater = *i1; 10412 if (tcps->tcps_snd_lowat_fraction != 0) 10413 tcp->tcp_xmit_lowater = 10414 tcp->tcp_xmit_hiwater / 10415 tcps->tcps_snd_lowat_fraction; 10416 (void) tcp_maxpsz_set(tcp, B_TRUE); 10417 /* 10418 * If we are flow-controlled, recheck the condition. 10419 * There are apps that increase SO_SNDBUF size when 10420 * flow-controlled (EWOULDBLOCK), and expect the flow 10421 * control condition to be lifted right away. 10422 */ 10423 mutex_enter(&tcp->tcp_non_sq_lock); 10424 if (tcp->tcp_flow_stopped && 10425 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 10426 tcp_clrqfull(tcp); 10427 } 10428 mutex_exit(&tcp->tcp_non_sq_lock); 10429 break; 10430 } 10431 case SO_RCVBUF: 10432 if (*i1 > tcps->tcps_max_buf) { 10433 *outlenp = 0; 10434 return (ENOBUFS); 10435 } 10436 /* Silently ignore zero */ 10437 if (!checkonly && *i1 != 0) { 10438 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10439 (void) tcp_rwnd_set(tcp, *i1); 10440 } 10441 /* 10442 * XXX should we return the rwnd here 10443 * and tcp_opt_get ? 10444 */ 10445 break; 10446 case SO_SND_COPYAVOID: 10447 if (!checkonly) { 10448 /* we only allow enable at most once for now */ 10449 if (tcp->tcp_loopback || 10450 (!tcp->tcp_snd_zcopy_aware && 10451 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10452 *outlenp = 0; 10453 return (EOPNOTSUPP); 10454 } 10455 tcp->tcp_snd_zcopy_aware = 1; 10456 } 10457 break; 10458 case SO_ALLZONES: 10459 /* Handled at the IP level */ 10460 return (-EINVAL); 10461 case SO_ANON_MLP: 10462 if (!checkonly) { 10463 mutex_enter(&connp->conn_lock); 10464 connp->conn_anon_mlp = onoff; 10465 mutex_exit(&connp->conn_lock); 10466 } 10467 break; 10468 case SO_MAC_EXEMPT: 10469 if (secpolicy_net_mac_aware(cr) != 0 || 10470 IPCL_IS_BOUND(connp)) 10471 return (EACCES); 10472 if (!checkonly) { 10473 mutex_enter(&connp->conn_lock); 10474 connp->conn_mac_exempt = onoff; 10475 mutex_exit(&connp->conn_lock); 10476 } 10477 break; 10478 case SO_EXCLBIND: 10479 if (!checkonly) 10480 tcp->tcp_exclbind = onoff; 10481 break; 10482 default: 10483 *outlenp = 0; 10484 return (EINVAL); 10485 } 10486 break; 10487 case IPPROTO_TCP: 10488 switch (name) { 10489 case TCP_NODELAY: 10490 if (!checkonly) 10491 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10492 break; 10493 case TCP_NOTIFY_THRESHOLD: 10494 if (!checkonly) 10495 tcp->tcp_first_timer_threshold = *i1; 10496 break; 10497 case TCP_ABORT_THRESHOLD: 10498 if (!checkonly) 10499 tcp->tcp_second_timer_threshold = *i1; 10500 break; 10501 case TCP_CONN_NOTIFY_THRESHOLD: 10502 if (!checkonly) 10503 tcp->tcp_first_ctimer_threshold = *i1; 10504 break; 10505 case TCP_CONN_ABORT_THRESHOLD: 10506 if (!checkonly) 10507 tcp->tcp_second_ctimer_threshold = *i1; 10508 break; 10509 case TCP_RECVDSTADDR: 10510 if (tcp->tcp_state > TCPS_LISTEN) 10511 return (EOPNOTSUPP); 10512 if (!checkonly) 10513 tcp->tcp_recvdstaddr = onoff; 10514 break; 10515 case TCP_ANONPRIVBIND: 10516 if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) { 10517 *outlenp = 0; 10518 return (reterr); 10519 } 10520 if (!checkonly) { 10521 tcp->tcp_anon_priv_bind = onoff; 10522 } 10523 break; 10524 case TCP_EXCLBIND: 10525 if (!checkonly) 10526 tcp->tcp_exclbind = onoff; 10527 break; /* goto sizeof (int) option return */ 10528 case TCP_INIT_CWND: { 10529 uint32_t init_cwnd = *((uint32_t *)invalp); 10530 10531 if (checkonly) 10532 break; 10533 10534 /* 10535 * Only allow socket with network configuration 10536 * privilege to set the initial cwnd to be larger 10537 * than allowed by RFC 3390. 10538 */ 10539 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10540 tcp->tcp_init_cwnd = init_cwnd; 10541 break; 10542 } 10543 if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { 10544 *outlenp = 0; 10545 return (reterr); 10546 } 10547 if (init_cwnd > TCP_MAX_INIT_CWND) { 10548 *outlenp = 0; 10549 return (EINVAL); 10550 } 10551 tcp->tcp_init_cwnd = init_cwnd; 10552 break; 10553 } 10554 case TCP_KEEPALIVE_THRESHOLD: 10555 if (checkonly) 10556 break; 10557 10558 if (*i1 < tcps->tcps_keepalive_interval_low || 10559 *i1 > tcps->tcps_keepalive_interval_high) { 10560 *outlenp = 0; 10561 return (EINVAL); 10562 } 10563 if (*i1 != tcp->tcp_ka_interval) { 10564 tcp->tcp_ka_interval = *i1; 10565 /* 10566 * Check if we need to restart the 10567 * keepalive timer. 10568 */ 10569 if (tcp->tcp_ka_tid != 0) { 10570 ASSERT(tcp->tcp_ka_enabled); 10571 (void) TCP_TIMER_CANCEL(tcp, 10572 tcp->tcp_ka_tid); 10573 tcp->tcp_ka_last_intrvl = 0; 10574 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10575 tcp_keepalive_killer, 10576 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10577 } 10578 } 10579 break; 10580 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10581 if (!checkonly) { 10582 if (*i1 < 10583 tcps->tcps_keepalive_abort_interval_low || 10584 *i1 > 10585 tcps->tcps_keepalive_abort_interval_high) { 10586 *outlenp = 0; 10587 return (EINVAL); 10588 } 10589 tcp->tcp_ka_abort_thres = *i1; 10590 } 10591 break; 10592 case TCP_CORK: 10593 if (!checkonly) { 10594 /* 10595 * if tcp->tcp_cork was set and is now 10596 * being unset, we have to make sure that 10597 * the remaining data gets sent out. Also 10598 * unset tcp->tcp_cork so that tcp_wput_data() 10599 * can send data even if it is less than mss 10600 */ 10601 if (tcp->tcp_cork && onoff == 0 && 10602 tcp->tcp_unsent > 0) { 10603 tcp->tcp_cork = B_FALSE; 10604 tcp_wput_data(tcp, NULL, B_FALSE); 10605 } 10606 tcp->tcp_cork = onoff; 10607 } 10608 break; 10609 default: 10610 *outlenp = 0; 10611 return (EINVAL); 10612 } 10613 break; 10614 case IPPROTO_IP: 10615 if (tcp->tcp_family != AF_INET) { 10616 *outlenp = 0; 10617 return (ENOPROTOOPT); 10618 } 10619 switch (name) { 10620 case IP_OPTIONS: 10621 case T_IP_OPTIONS: 10622 reterr = tcp_opt_set_header(tcp, checkonly, 10623 invalp, inlen); 10624 if (reterr) { 10625 *outlenp = 0; 10626 return (reterr); 10627 } 10628 /* OK return - copy input buffer into output buffer */ 10629 if (invalp != outvalp) { 10630 /* don't trust bcopy for identical src/dst */ 10631 bcopy(invalp, outvalp, inlen); 10632 } 10633 *outlenp = inlen; 10634 return (0); 10635 case IP_TOS: 10636 case T_IP_TOS: 10637 if (!checkonly) { 10638 tcp->tcp_ipha->ipha_type_of_service = 10639 (uchar_t)*i1; 10640 tcp->tcp_tos = (uchar_t)*i1; 10641 } 10642 break; 10643 case IP_TTL: 10644 if (!checkonly) { 10645 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10646 tcp->tcp_ttl = (uchar_t)*i1; 10647 } 10648 break; 10649 case IP_BOUND_IF: 10650 case IP_NEXTHOP: 10651 /* Handled at the IP level */ 10652 return (-EINVAL); 10653 case IP_SEC_OPT: 10654 /* 10655 * We should not allow policy setting after 10656 * we start listening for connections. 10657 */ 10658 if (tcp->tcp_state == TCPS_LISTEN) { 10659 return (EINVAL); 10660 } else { 10661 /* Handled at the IP level */ 10662 return (-EINVAL); 10663 } 10664 default: 10665 *outlenp = 0; 10666 return (EINVAL); 10667 } 10668 break; 10669 case IPPROTO_IPV6: { 10670 ip6_pkt_t *ipp; 10671 10672 /* 10673 * IPPROTO_IPV6 options are only supported for sockets 10674 * that are using IPv6 on the wire. 10675 */ 10676 if (tcp->tcp_ipversion != IPV6_VERSION) { 10677 *outlenp = 0; 10678 return (ENOPROTOOPT); 10679 } 10680 /* 10681 * Only sticky options; no ancillary data 10682 */ 10683 ASSERT(thisdg_attrs == NULL); 10684 ipp = &tcp->tcp_sticky_ipp; 10685 10686 switch (name) { 10687 case IPV6_UNICAST_HOPS: 10688 /* -1 means use default */ 10689 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10690 *outlenp = 0; 10691 return (EINVAL); 10692 } 10693 if (!checkonly) { 10694 if (*i1 == -1) { 10695 tcp->tcp_ip6h->ip6_hops = 10696 ipp->ipp_unicast_hops = 10697 (uint8_t)tcps->tcps_ipv6_hoplimit; 10698 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10699 /* Pass modified value to IP. */ 10700 *i1 = tcp->tcp_ip6h->ip6_hops; 10701 } else { 10702 tcp->tcp_ip6h->ip6_hops = 10703 ipp->ipp_unicast_hops = 10704 (uint8_t)*i1; 10705 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10706 } 10707 reterr = tcp_build_hdrs(q, tcp); 10708 if (reterr != 0) 10709 return (reterr); 10710 } 10711 break; 10712 case IPV6_BOUND_IF: 10713 if (!checkonly) { 10714 int error = 0; 10715 10716 tcp->tcp_bound_if = *i1; 10717 error = ip_opt_set_ill(tcp->tcp_connp, *i1, 10718 B_TRUE, checkonly, level, name, mblk); 10719 if (error != 0) { 10720 *outlenp = 0; 10721 return (error); 10722 } 10723 } 10724 break; 10725 /* 10726 * Set boolean switches for ancillary data delivery 10727 */ 10728 case IPV6_RECVPKTINFO: 10729 if (!checkonly) { 10730 if (onoff) 10731 tcp->tcp_ipv6_recvancillary |= 10732 TCP_IPV6_RECVPKTINFO; 10733 else 10734 tcp->tcp_ipv6_recvancillary &= 10735 ~TCP_IPV6_RECVPKTINFO; 10736 /* Force it to be sent up with the next msg */ 10737 tcp->tcp_recvifindex = 0; 10738 } 10739 break; 10740 case IPV6_RECVTCLASS: 10741 if (!checkonly) { 10742 if (onoff) 10743 tcp->tcp_ipv6_recvancillary |= 10744 TCP_IPV6_RECVTCLASS; 10745 else 10746 tcp->tcp_ipv6_recvancillary &= 10747 ~TCP_IPV6_RECVTCLASS; 10748 } 10749 break; 10750 case IPV6_RECVHOPLIMIT: 10751 if (!checkonly) { 10752 if (onoff) 10753 tcp->tcp_ipv6_recvancillary |= 10754 TCP_IPV6_RECVHOPLIMIT; 10755 else 10756 tcp->tcp_ipv6_recvancillary &= 10757 ~TCP_IPV6_RECVHOPLIMIT; 10758 /* Force it to be sent up with the next msg */ 10759 tcp->tcp_recvhops = 0xffffffffU; 10760 } 10761 break; 10762 case IPV6_RECVHOPOPTS: 10763 if (!checkonly) { 10764 if (onoff) 10765 tcp->tcp_ipv6_recvancillary |= 10766 TCP_IPV6_RECVHOPOPTS; 10767 else 10768 tcp->tcp_ipv6_recvancillary &= 10769 ~TCP_IPV6_RECVHOPOPTS; 10770 } 10771 break; 10772 case IPV6_RECVDSTOPTS: 10773 if (!checkonly) { 10774 if (onoff) 10775 tcp->tcp_ipv6_recvancillary |= 10776 TCP_IPV6_RECVDSTOPTS; 10777 else 10778 tcp->tcp_ipv6_recvancillary &= 10779 ~TCP_IPV6_RECVDSTOPTS; 10780 } 10781 break; 10782 case _OLD_IPV6_RECVDSTOPTS: 10783 if (!checkonly) { 10784 if (onoff) 10785 tcp->tcp_ipv6_recvancillary |= 10786 TCP_OLD_IPV6_RECVDSTOPTS; 10787 else 10788 tcp->tcp_ipv6_recvancillary &= 10789 ~TCP_OLD_IPV6_RECVDSTOPTS; 10790 } 10791 break; 10792 case IPV6_RECVRTHDR: 10793 if (!checkonly) { 10794 if (onoff) 10795 tcp->tcp_ipv6_recvancillary |= 10796 TCP_IPV6_RECVRTHDR; 10797 else 10798 tcp->tcp_ipv6_recvancillary &= 10799 ~TCP_IPV6_RECVRTHDR; 10800 } 10801 break; 10802 case IPV6_RECVRTHDRDSTOPTS: 10803 if (!checkonly) { 10804 if (onoff) 10805 tcp->tcp_ipv6_recvancillary |= 10806 TCP_IPV6_RECVRTDSTOPTS; 10807 else 10808 tcp->tcp_ipv6_recvancillary &= 10809 ~TCP_IPV6_RECVRTDSTOPTS; 10810 } 10811 break; 10812 case IPV6_PKTINFO: 10813 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10814 return (EINVAL); 10815 if (checkonly) 10816 break; 10817 10818 if (inlen == 0) { 10819 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10820 } else { 10821 struct in6_pktinfo *pkti; 10822 10823 pkti = (struct in6_pktinfo *)invalp; 10824 /* 10825 * RFC 3542 states that ipi6_addr must be 10826 * the unspecified address when setting the 10827 * IPV6_PKTINFO sticky socket option on a 10828 * TCP socket. 10829 */ 10830 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10831 return (EINVAL); 10832 /* 10833 * ip6_set_pktinfo() validates the source 10834 * address and interface index. 10835 */ 10836 reterr = ip6_set_pktinfo(cr, tcp->tcp_connp, 10837 pkti, mblk); 10838 if (reterr != 0) 10839 return (reterr); 10840 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10841 ipp->ipp_addr = pkti->ipi6_addr; 10842 if (ipp->ipp_ifindex != 0) 10843 ipp->ipp_fields |= IPPF_IFINDEX; 10844 else 10845 ipp->ipp_fields &= ~IPPF_IFINDEX; 10846 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10847 ipp->ipp_fields |= IPPF_ADDR; 10848 else 10849 ipp->ipp_fields &= ~IPPF_ADDR; 10850 } 10851 reterr = tcp_build_hdrs(q, tcp); 10852 if (reterr != 0) 10853 return (reterr); 10854 break; 10855 case IPV6_TCLASS: 10856 if (inlen != 0 && inlen != sizeof (int)) 10857 return (EINVAL); 10858 if (checkonly) 10859 break; 10860 10861 if (inlen == 0) { 10862 ipp->ipp_fields &= ~IPPF_TCLASS; 10863 } else { 10864 if (*i1 > 255 || *i1 < -1) 10865 return (EINVAL); 10866 if (*i1 == -1) { 10867 ipp->ipp_tclass = 0; 10868 *i1 = 0; 10869 } else { 10870 ipp->ipp_tclass = *i1; 10871 } 10872 ipp->ipp_fields |= IPPF_TCLASS; 10873 } 10874 reterr = tcp_build_hdrs(q, tcp); 10875 if (reterr != 0) 10876 return (reterr); 10877 break; 10878 case IPV6_NEXTHOP: 10879 /* 10880 * IP will verify that the nexthop is reachable 10881 * and fail for sticky options. 10882 */ 10883 if (inlen != 0 && inlen != sizeof (sin6_t)) 10884 return (EINVAL); 10885 if (checkonly) 10886 break; 10887 10888 if (inlen == 0) { 10889 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10890 } else { 10891 sin6_t *sin6 = (sin6_t *)invalp; 10892 10893 if (sin6->sin6_family != AF_INET6) 10894 return (EAFNOSUPPORT); 10895 if (IN6_IS_ADDR_V4MAPPED( 10896 &sin6->sin6_addr)) 10897 return (EADDRNOTAVAIL); 10898 ipp->ipp_nexthop = sin6->sin6_addr; 10899 if (!IN6_IS_ADDR_UNSPECIFIED( 10900 &ipp->ipp_nexthop)) 10901 ipp->ipp_fields |= IPPF_NEXTHOP; 10902 else 10903 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10904 } 10905 reterr = tcp_build_hdrs(q, tcp); 10906 if (reterr != 0) 10907 return (reterr); 10908 break; 10909 case IPV6_HOPOPTS: { 10910 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10911 10912 /* 10913 * Sanity checks - minimum size, size a multiple of 10914 * eight bytes, and matching size passed in. 10915 */ 10916 if (inlen != 0 && 10917 inlen != (8 * (hopts->ip6h_len + 1))) 10918 return (EINVAL); 10919 10920 if (checkonly) 10921 break; 10922 10923 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10924 (uchar_t **)&ipp->ipp_hopopts, 10925 &ipp->ipp_hopoptslen, tcp->tcp_label_len); 10926 if (reterr != 0) 10927 return (reterr); 10928 if (ipp->ipp_hopoptslen == 0) 10929 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10930 else 10931 ipp->ipp_fields |= IPPF_HOPOPTS; 10932 reterr = tcp_build_hdrs(q, tcp); 10933 if (reterr != 0) 10934 return (reterr); 10935 break; 10936 } 10937 case IPV6_RTHDRDSTOPTS: { 10938 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10939 10940 /* 10941 * Sanity checks - minimum size, size a multiple of 10942 * eight bytes, and matching size passed in. 10943 */ 10944 if (inlen != 0 && 10945 inlen != (8 * (dopts->ip6d_len + 1))) 10946 return (EINVAL); 10947 10948 if (checkonly) 10949 break; 10950 10951 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10952 (uchar_t **)&ipp->ipp_rtdstopts, 10953 &ipp->ipp_rtdstoptslen, 0); 10954 if (reterr != 0) 10955 return (reterr); 10956 if (ipp->ipp_rtdstoptslen == 0) 10957 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10958 else 10959 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10960 reterr = tcp_build_hdrs(q, tcp); 10961 if (reterr != 0) 10962 return (reterr); 10963 break; 10964 } 10965 case IPV6_DSTOPTS: { 10966 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10967 10968 /* 10969 * Sanity checks - minimum size, size a multiple of 10970 * eight bytes, and matching size passed in. 10971 */ 10972 if (inlen != 0 && 10973 inlen != (8 * (dopts->ip6d_len + 1))) 10974 return (EINVAL); 10975 10976 if (checkonly) 10977 break; 10978 10979 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10980 (uchar_t **)&ipp->ipp_dstopts, 10981 &ipp->ipp_dstoptslen, 0); 10982 if (reterr != 0) 10983 return (reterr); 10984 if (ipp->ipp_dstoptslen == 0) 10985 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10986 else 10987 ipp->ipp_fields |= IPPF_DSTOPTS; 10988 reterr = tcp_build_hdrs(q, tcp); 10989 if (reterr != 0) 10990 return (reterr); 10991 break; 10992 } 10993 case IPV6_RTHDR: { 10994 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10995 10996 /* 10997 * Sanity checks - minimum size, size a multiple of 10998 * eight bytes, and matching size passed in. 10999 */ 11000 if (inlen != 0 && 11001 inlen != (8 * (rt->ip6r_len + 1))) 11002 return (EINVAL); 11003 11004 if (checkonly) 11005 break; 11006 11007 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 11008 (uchar_t **)&ipp->ipp_rthdr, 11009 &ipp->ipp_rthdrlen, 0); 11010 if (reterr != 0) 11011 return (reterr); 11012 if (ipp->ipp_rthdrlen == 0) 11013 ipp->ipp_fields &= ~IPPF_RTHDR; 11014 else 11015 ipp->ipp_fields |= IPPF_RTHDR; 11016 reterr = tcp_build_hdrs(q, tcp); 11017 if (reterr != 0) 11018 return (reterr); 11019 break; 11020 } 11021 case IPV6_V6ONLY: 11022 if (!checkonly) 11023 tcp->tcp_connp->conn_ipv6_v6only = onoff; 11024 break; 11025 case IPV6_USE_MIN_MTU: 11026 if (inlen != sizeof (int)) 11027 return (EINVAL); 11028 11029 if (*i1 < -1 || *i1 > 1) 11030 return (EINVAL); 11031 11032 if (checkonly) 11033 break; 11034 11035 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 11036 ipp->ipp_use_min_mtu = *i1; 11037 break; 11038 case IPV6_BOUND_PIF: 11039 /* Handled at the IP level */ 11040 return (-EINVAL); 11041 case IPV6_SEC_OPT: 11042 /* 11043 * We should not allow policy setting after 11044 * we start listening for connections. 11045 */ 11046 if (tcp->tcp_state == TCPS_LISTEN) { 11047 return (EINVAL); 11048 } else { 11049 /* Handled at the IP level */ 11050 return (-EINVAL); 11051 } 11052 case IPV6_SRC_PREFERENCES: 11053 if (inlen != sizeof (uint32_t)) 11054 return (EINVAL); 11055 reterr = ip6_set_src_preferences(tcp->tcp_connp, 11056 *(uint32_t *)invalp); 11057 if (reterr != 0) { 11058 *outlenp = 0; 11059 return (reterr); 11060 } 11061 break; 11062 default: 11063 *outlenp = 0; 11064 return (EINVAL); 11065 } 11066 break; 11067 } /* end IPPROTO_IPV6 */ 11068 default: 11069 *outlenp = 0; 11070 return (EINVAL); 11071 } 11072 /* 11073 * Common case of OK return with outval same as inval 11074 */ 11075 if (invalp != outvalp) { 11076 /* don't trust bcopy for identical src/dst */ 11077 (void) bcopy(invalp, outvalp, inlen); 11078 } 11079 *outlenp = inlen; 11080 return (0); 11081 } 11082 11083 /* 11084 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 11085 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 11086 * headers, and the maximum size tcp header (to avoid reallocation 11087 * on the fly for additional tcp options). 11088 * Returns failure if can't allocate memory. 11089 */ 11090 static int 11091 tcp_build_hdrs(queue_t *q, tcp_t *tcp) 11092 { 11093 char *hdrs; 11094 uint_t hdrs_len; 11095 ip6i_t *ip6i; 11096 char buf[TCP_MAX_HDR_LENGTH]; 11097 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 11098 in6_addr_t src, dst; 11099 tcp_stack_t *tcps = tcp->tcp_tcps; 11100 11101 /* 11102 * save the existing tcp header and source/dest IP addresses 11103 */ 11104 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 11105 src = tcp->tcp_ip6h->ip6_src; 11106 dst = tcp->tcp_ip6h->ip6_dst; 11107 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 11108 ASSERT(hdrs_len != 0); 11109 if (hdrs_len > tcp->tcp_iphc_len) { 11110 /* Need to reallocate */ 11111 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 11112 if (hdrs == NULL) 11113 return (ENOMEM); 11114 if (tcp->tcp_iphc != NULL) { 11115 if (tcp->tcp_hdr_grown) { 11116 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 11117 } else { 11118 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 11119 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 11120 } 11121 tcp->tcp_iphc_len = 0; 11122 } 11123 ASSERT(tcp->tcp_iphc_len == 0); 11124 tcp->tcp_iphc = hdrs; 11125 tcp->tcp_iphc_len = hdrs_len; 11126 tcp->tcp_hdr_grown = B_TRUE; 11127 } 11128 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 11129 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 11130 11131 /* Set header fields not in ipp */ 11132 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 11133 ip6i = (ip6i_t *)tcp->tcp_iphc; 11134 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 11135 } else { 11136 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 11137 } 11138 /* 11139 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 11140 * 11141 * tcp->tcp_tcp_hdr_len doesn't change here. 11142 */ 11143 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 11144 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 11145 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 11146 11147 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 11148 11149 tcp->tcp_ip6h->ip6_src = src; 11150 tcp->tcp_ip6h->ip6_dst = dst; 11151 11152 /* 11153 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 11154 * the default value for TCP. 11155 */ 11156 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 11157 tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit; 11158 11159 /* 11160 * If we're setting extension headers after a connection 11161 * has been established, and if we have a routing header 11162 * among the extension headers, call ip_massage_options_v6 to 11163 * manipulate the routing header/ip6_dst set the checksum 11164 * difference in the tcp header template. 11165 * (This happens in tcp_connect_ipv6 if the routing header 11166 * is set prior to the connect.) 11167 * Set the tcp_sum to zero first in case we've cleared a 11168 * routing header or don't have one at all. 11169 */ 11170 tcp->tcp_sum = 0; 11171 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 11172 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 11173 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 11174 (uint8_t *)tcp->tcp_tcph); 11175 if (rth != NULL) { 11176 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 11177 rth, tcps->tcps_netstack); 11178 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 11179 (tcp->tcp_sum >> 16)); 11180 } 11181 } 11182 11183 /* Try to get everything in a single mblk */ 11184 (void) mi_set_sth_wroff(RD(q), hdrs_len + tcps->tcps_wroff_xtra); 11185 return (0); 11186 } 11187 11188 /* 11189 * Transfer any source route option from ipha to buf/dst in reversed form. 11190 */ 11191 static int 11192 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 11193 { 11194 ipoptp_t opts; 11195 uchar_t *opt; 11196 uint8_t optval; 11197 uint8_t optlen; 11198 uint32_t len = 0; 11199 11200 for (optval = ipoptp_first(&opts, ipha); 11201 optval != IPOPT_EOL; 11202 optval = ipoptp_next(&opts)) { 11203 opt = opts.ipoptp_cur; 11204 optlen = opts.ipoptp_len; 11205 switch (optval) { 11206 int off1, off2; 11207 case IPOPT_SSRR: 11208 case IPOPT_LSRR: 11209 11210 /* Reverse source route */ 11211 /* 11212 * First entry should be the next to last one in the 11213 * current source route (the last entry is our 11214 * address.) 11215 * The last entry should be the final destination. 11216 */ 11217 buf[IPOPT_OPTVAL] = (uint8_t)optval; 11218 buf[IPOPT_OLEN] = (uint8_t)optlen; 11219 off1 = IPOPT_MINOFF_SR - 1; 11220 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 11221 if (off2 < 0) { 11222 /* No entries in source route */ 11223 break; 11224 } 11225 bcopy(opt + off2, dst, IP_ADDR_LEN); 11226 /* 11227 * Note: use src since ipha has not had its src 11228 * and dst reversed (it is in the state it was 11229 * received. 11230 */ 11231 bcopy(&ipha->ipha_src, buf + off2, 11232 IP_ADDR_LEN); 11233 off2 -= IP_ADDR_LEN; 11234 11235 while (off2 > 0) { 11236 bcopy(opt + off2, buf + off1, 11237 IP_ADDR_LEN); 11238 off1 += IP_ADDR_LEN; 11239 off2 -= IP_ADDR_LEN; 11240 } 11241 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 11242 buf += optlen; 11243 len += optlen; 11244 break; 11245 } 11246 } 11247 done: 11248 /* Pad the resulting options */ 11249 while (len & 0x3) { 11250 *buf++ = IPOPT_EOL; 11251 len++; 11252 } 11253 return (len); 11254 } 11255 11256 11257 /* 11258 * Extract and revert a source route from ipha (if any) 11259 * and then update the relevant fields in both tcp_t and the standard header. 11260 */ 11261 static void 11262 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 11263 { 11264 char buf[TCP_MAX_HDR_LENGTH]; 11265 uint_t tcph_len; 11266 int len; 11267 11268 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 11269 len = IPH_HDR_LENGTH(ipha); 11270 if (len == IP_SIMPLE_HDR_LENGTH) 11271 /* Nothing to do */ 11272 return; 11273 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 11274 (len & 0x3)) 11275 return; 11276 11277 tcph_len = tcp->tcp_tcp_hdr_len; 11278 bcopy(tcp->tcp_tcph, buf, tcph_len); 11279 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 11280 (tcp->tcp_ipha->ipha_dst & 0xffff); 11281 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 11282 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 11283 len += IP_SIMPLE_HDR_LENGTH; 11284 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 11285 (tcp->tcp_ipha->ipha_dst & 0xffff)); 11286 if ((int)tcp->tcp_sum < 0) 11287 tcp->tcp_sum--; 11288 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 11289 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 11290 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 11291 bcopy(buf, tcp->tcp_tcph, tcph_len); 11292 tcp->tcp_ip_hdr_len = len; 11293 tcp->tcp_ipha->ipha_version_and_hdr_length = 11294 (IP_VERSION << 4) | (len >> 2); 11295 len += tcph_len; 11296 tcp->tcp_hdr_len = len; 11297 } 11298 11299 /* 11300 * Copy the standard header into its new location, 11301 * lay in the new options and then update the relevant 11302 * fields in both tcp_t and the standard header. 11303 */ 11304 static int 11305 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 11306 { 11307 uint_t tcph_len; 11308 uint8_t *ip_optp; 11309 tcph_t *new_tcph; 11310 tcp_stack_t *tcps = tcp->tcp_tcps; 11311 11312 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11313 return (EINVAL); 11314 11315 if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len) 11316 return (EINVAL); 11317 11318 if (checkonly) { 11319 /* 11320 * do not really set, just pretend to - T_CHECK 11321 */ 11322 return (0); 11323 } 11324 11325 ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 11326 if (tcp->tcp_label_len > 0) { 11327 int padlen; 11328 uint8_t opt; 11329 11330 /* convert list termination to no-ops */ 11331 padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN]; 11332 ip_optp += ip_optp[IPOPT_OLEN]; 11333 opt = len > 0 ? IPOPT_NOP : IPOPT_EOL; 11334 while (--padlen >= 0) 11335 *ip_optp++ = opt; 11336 } 11337 tcph_len = tcp->tcp_tcp_hdr_len; 11338 new_tcph = (tcph_t *)(ip_optp + len); 11339 ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len); 11340 tcp->tcp_tcph = new_tcph; 11341 bcopy(ptr, ip_optp, len); 11342 11343 len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len; 11344 11345 tcp->tcp_ip_hdr_len = len; 11346 tcp->tcp_ipha->ipha_version_and_hdr_length = 11347 (IP_VERSION << 4) | (len >> 2); 11348 tcp->tcp_hdr_len = len + tcph_len; 11349 if (!TCP_IS_DETACHED(tcp)) { 11350 /* Always allocate room for all options. */ 11351 (void) mi_set_sth_wroff(tcp->tcp_rq, 11352 TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra); 11353 } 11354 return (0); 11355 } 11356 11357 /* Get callback routine passed to nd_load by tcp_param_register */ 11358 /* ARGSUSED */ 11359 static int 11360 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 11361 { 11362 tcpparam_t *tcppa = (tcpparam_t *)cp; 11363 11364 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 11365 return (0); 11366 } 11367 11368 /* 11369 * Walk through the param array specified registering each element with the 11370 * named dispatch handler. 11371 */ 11372 static boolean_t 11373 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) 11374 { 11375 for (; cnt-- > 0; tcppa++) { 11376 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11377 if (!nd_load(ndp, tcppa->tcp_param_name, 11378 tcp_param_get, tcp_param_set, 11379 (caddr_t)tcppa)) { 11380 nd_free(ndp); 11381 return (B_FALSE); 11382 } 11383 } 11384 } 11385 tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), 11386 KM_SLEEP); 11387 bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, 11388 sizeof (tcpparam_t)); 11389 if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, 11390 tcp_param_get, tcp_param_set_aligned, 11391 (caddr_t)tcps->tcps_wroff_xtra_param)) { 11392 nd_free(ndp); 11393 return (B_FALSE); 11394 } 11395 tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t), 11396 KM_SLEEP); 11397 bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param, 11398 sizeof (tcpparam_t)); 11399 if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name, 11400 tcp_param_get, tcp_param_set_aligned, 11401 (caddr_t)tcps->tcps_mdt_head_param)) { 11402 nd_free(ndp); 11403 return (B_FALSE); 11404 } 11405 tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t), 11406 KM_SLEEP); 11407 bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param, 11408 sizeof (tcpparam_t)); 11409 if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name, 11410 tcp_param_get, tcp_param_set_aligned, 11411 (caddr_t)tcps->tcps_mdt_tail_param)) { 11412 nd_free(ndp); 11413 return (B_FALSE); 11414 } 11415 tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t), 11416 KM_SLEEP); 11417 bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param, 11418 sizeof (tcpparam_t)); 11419 if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name, 11420 tcp_param_get, tcp_param_set_aligned, 11421 (caddr_t)tcps->tcps_mdt_max_pbufs_param)) { 11422 nd_free(ndp); 11423 return (B_FALSE); 11424 } 11425 if (!nd_load(ndp, "tcp_extra_priv_ports", 11426 tcp_extra_priv_ports_get, NULL, NULL)) { 11427 nd_free(ndp); 11428 return (B_FALSE); 11429 } 11430 if (!nd_load(ndp, "tcp_extra_priv_ports_add", 11431 NULL, tcp_extra_priv_ports_add, NULL)) { 11432 nd_free(ndp); 11433 return (B_FALSE); 11434 } 11435 if (!nd_load(ndp, "tcp_extra_priv_ports_del", 11436 NULL, tcp_extra_priv_ports_del, NULL)) { 11437 nd_free(ndp); 11438 return (B_FALSE); 11439 } 11440 if (!nd_load(ndp, "tcp_status", tcp_status_report, NULL, 11441 NULL)) { 11442 nd_free(ndp); 11443 return (B_FALSE); 11444 } 11445 if (!nd_load(ndp, "tcp_bind_hash", tcp_bind_hash_report, 11446 NULL, NULL)) { 11447 nd_free(ndp); 11448 return (B_FALSE); 11449 } 11450 if (!nd_load(ndp, "tcp_listen_hash", 11451 tcp_listen_hash_report, NULL, NULL)) { 11452 nd_free(ndp); 11453 return (B_FALSE); 11454 } 11455 if (!nd_load(ndp, "tcp_conn_hash", tcp_conn_hash_report, 11456 NULL, NULL)) { 11457 nd_free(ndp); 11458 return (B_FALSE); 11459 } 11460 if (!nd_load(ndp, "tcp_acceptor_hash", 11461 tcp_acceptor_hash_report, NULL, NULL)) { 11462 nd_free(ndp); 11463 return (B_FALSE); 11464 } 11465 if (!nd_load(ndp, "tcp_host_param", tcp_host_param_report, 11466 tcp_host_param_set, NULL)) { 11467 nd_free(ndp); 11468 return (B_FALSE); 11469 } 11470 if (!nd_load(ndp, "tcp_host_param_ipv6", 11471 tcp_host_param_report, tcp_host_param_set_ipv6, NULL)) { 11472 nd_free(ndp); 11473 return (B_FALSE); 11474 } 11475 if (!nd_load(ndp, "tcp_1948_phrase", NULL, 11476 tcp_1948_phrase_set, NULL)) { 11477 nd_free(ndp); 11478 return (B_FALSE); 11479 } 11480 if (!nd_load(ndp, "tcp_reserved_port_list", 11481 tcp_reserved_port_list, NULL, NULL)) { 11482 nd_free(ndp); 11483 return (B_FALSE); 11484 } 11485 /* 11486 * Dummy ndd variables - only to convey obsolescence information 11487 * through printing of their name (no get or set routines) 11488 * XXX Remove in future releases ? 11489 */ 11490 if (!nd_load(ndp, 11491 "tcp_close_wait_interval(obsoleted - " 11492 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11493 nd_free(ndp); 11494 return (B_FALSE); 11495 } 11496 return (B_TRUE); 11497 } 11498 11499 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11500 /* ARGSUSED */ 11501 static int 11502 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11503 cred_t *cr) 11504 { 11505 long new_value; 11506 tcpparam_t *tcppa = (tcpparam_t *)cp; 11507 11508 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11509 new_value < tcppa->tcp_param_min || 11510 new_value > tcppa->tcp_param_max) { 11511 return (EINVAL); 11512 } 11513 /* 11514 * Need to make sure new_value is a multiple of 4. If it is not, 11515 * round it up. For future 64 bit requirement, we actually make it 11516 * a multiple of 8. 11517 */ 11518 if (new_value & 0x7) { 11519 new_value = (new_value & ~0x7) + 0x8; 11520 } 11521 tcppa->tcp_param_val = new_value; 11522 return (0); 11523 } 11524 11525 /* Set callback routine passed to nd_load by tcp_param_register */ 11526 /* ARGSUSED */ 11527 static int 11528 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11529 { 11530 long new_value; 11531 tcpparam_t *tcppa = (tcpparam_t *)cp; 11532 11533 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11534 new_value < tcppa->tcp_param_min || 11535 new_value > tcppa->tcp_param_max) { 11536 return (EINVAL); 11537 } 11538 tcppa->tcp_param_val = new_value; 11539 return (0); 11540 } 11541 11542 /* 11543 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11544 * is filled, return as much as we can. The message passed in may be 11545 * multi-part, chained using b_cont. "start" is the starting sequence 11546 * number for this piece. 11547 */ 11548 static mblk_t * 11549 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11550 { 11551 uint32_t end; 11552 mblk_t *mp1; 11553 mblk_t *mp2; 11554 mblk_t *next_mp; 11555 uint32_t u1; 11556 tcp_stack_t *tcps = tcp->tcp_tcps; 11557 11558 /* Walk through all the new pieces. */ 11559 do { 11560 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11561 (uintptr_t)INT_MAX); 11562 end = start + (int)(mp->b_wptr - mp->b_rptr); 11563 next_mp = mp->b_cont; 11564 if (start == end) { 11565 /* Empty. Blast it. */ 11566 freeb(mp); 11567 continue; 11568 } 11569 mp->b_cont = NULL; 11570 TCP_REASS_SET_SEQ(mp, start); 11571 TCP_REASS_SET_END(mp, end); 11572 mp1 = tcp->tcp_reass_tail; 11573 if (!mp1) { 11574 tcp->tcp_reass_tail = mp; 11575 tcp->tcp_reass_head = mp; 11576 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11577 UPDATE_MIB(&tcps->tcps_mib, 11578 tcpInDataUnorderBytes, end - start); 11579 continue; 11580 } 11581 /* New stuff completely beyond tail? */ 11582 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11583 /* Link it on end. */ 11584 mp1->b_cont = mp; 11585 tcp->tcp_reass_tail = mp; 11586 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11587 UPDATE_MIB(&tcps->tcps_mib, 11588 tcpInDataUnorderBytes, end - start); 11589 continue; 11590 } 11591 mp1 = tcp->tcp_reass_head; 11592 u1 = TCP_REASS_SEQ(mp1); 11593 /* New stuff at the front? */ 11594 if (SEQ_LT(start, u1)) { 11595 /* Yes... Check for overlap. */ 11596 mp->b_cont = mp1; 11597 tcp->tcp_reass_head = mp; 11598 tcp_reass_elim_overlap(tcp, mp); 11599 continue; 11600 } 11601 /* 11602 * The new piece fits somewhere between the head and tail. 11603 * We find our slot, where mp1 precedes us and mp2 trails. 11604 */ 11605 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11606 u1 = TCP_REASS_SEQ(mp2); 11607 if (SEQ_LEQ(start, u1)) 11608 break; 11609 } 11610 /* Link ourselves in */ 11611 mp->b_cont = mp2; 11612 mp1->b_cont = mp; 11613 11614 /* Trim overlap with following mblk(s) first */ 11615 tcp_reass_elim_overlap(tcp, mp); 11616 11617 /* Trim overlap with preceding mblk */ 11618 tcp_reass_elim_overlap(tcp, mp1); 11619 11620 } while (start = end, mp = next_mp); 11621 mp1 = tcp->tcp_reass_head; 11622 /* Anything ready to go? */ 11623 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11624 return (NULL); 11625 /* Eat what we can off the queue */ 11626 for (;;) { 11627 mp = mp1->b_cont; 11628 end = TCP_REASS_END(mp1); 11629 TCP_REASS_SET_SEQ(mp1, 0); 11630 TCP_REASS_SET_END(mp1, 0); 11631 if (!mp) { 11632 tcp->tcp_reass_tail = NULL; 11633 break; 11634 } 11635 if (end != TCP_REASS_SEQ(mp)) { 11636 mp1->b_cont = NULL; 11637 break; 11638 } 11639 mp1 = mp; 11640 } 11641 mp1 = tcp->tcp_reass_head; 11642 tcp->tcp_reass_head = mp; 11643 return (mp1); 11644 } 11645 11646 /* Eliminate any overlap that mp may have over later mblks */ 11647 static void 11648 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11649 { 11650 uint32_t end; 11651 mblk_t *mp1; 11652 uint32_t u1; 11653 tcp_stack_t *tcps = tcp->tcp_tcps; 11654 11655 end = TCP_REASS_END(mp); 11656 while ((mp1 = mp->b_cont) != NULL) { 11657 u1 = TCP_REASS_SEQ(mp1); 11658 if (!SEQ_GT(end, u1)) 11659 break; 11660 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11661 mp->b_wptr -= end - u1; 11662 TCP_REASS_SET_END(mp, u1); 11663 BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); 11664 UPDATE_MIB(&tcps->tcps_mib, 11665 tcpInDataPartDupBytes, end - u1); 11666 break; 11667 } 11668 mp->b_cont = mp1->b_cont; 11669 TCP_REASS_SET_SEQ(mp1, 0); 11670 TCP_REASS_SET_END(mp1, 0); 11671 freeb(mp1); 11672 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 11673 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); 11674 } 11675 if (!mp1) 11676 tcp->tcp_reass_tail = mp; 11677 } 11678 11679 /* 11680 * Send up all messages queued on tcp_rcv_list. 11681 */ 11682 static uint_t 11683 tcp_rcv_drain(queue_t *q, tcp_t *tcp) 11684 { 11685 mblk_t *mp; 11686 uint_t ret = 0; 11687 uint_t thwin; 11688 #ifdef DEBUG 11689 uint_t cnt = 0; 11690 #endif 11691 tcp_stack_t *tcps = tcp->tcp_tcps; 11692 11693 /* Can't drain on an eager connection */ 11694 if (tcp->tcp_listener != NULL) 11695 return (ret); 11696 11697 /* 11698 * Handle two cases here: we are currently fused or we were 11699 * previously fused and have some urgent data to be delivered 11700 * upstream. The latter happens because we either ran out of 11701 * memory or were detached and therefore sending the SIGURG was 11702 * deferred until this point. In either case we pass control 11703 * over to tcp_fuse_rcv_drain() since it may need to complete 11704 * some work. 11705 */ 11706 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11707 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 11708 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11709 &tcp->tcp_fused_sigurg_mp)) 11710 return (ret); 11711 } 11712 11713 while ((mp = tcp->tcp_rcv_list) != NULL) { 11714 tcp->tcp_rcv_list = mp->b_next; 11715 mp->b_next = NULL; 11716 #ifdef DEBUG 11717 cnt += msgdsize(mp); 11718 #endif 11719 /* Does this need SSL processing first? */ 11720 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11721 DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain, 11722 mblk_t *, mp); 11723 tcp_kssl_input(tcp, mp); 11724 continue; 11725 } 11726 putnext(q, mp); 11727 } 11728 ASSERT(cnt == tcp->tcp_rcv_cnt); 11729 tcp->tcp_rcv_last_head = NULL; 11730 tcp->tcp_rcv_last_tail = NULL; 11731 tcp->tcp_rcv_cnt = 0; 11732 11733 /* Learn the latest rwnd information that we sent to the other side. */ 11734 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11735 << tcp->tcp_rcv_ws; 11736 /* This is peer's calculated send window (our receive window). */ 11737 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11738 /* 11739 * Increase the receive window to max. But we need to do receiver 11740 * SWS avoidance. This means that we need to check the increase of 11741 * of receive window is at least 1 MSS. 11742 */ 11743 if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11744 /* 11745 * If the window that the other side knows is less than max 11746 * deferred acks segments, send an update immediately. 11747 */ 11748 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11749 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 11750 ret = TH_ACK_NEEDED; 11751 } 11752 tcp->tcp_rwnd = q->q_hiwat; 11753 } 11754 /* No need for the push timer now. */ 11755 if (tcp->tcp_push_tid != 0) { 11756 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11757 tcp->tcp_push_tid = 0; 11758 } 11759 return (ret); 11760 } 11761 11762 /* 11763 * Queue data on tcp_rcv_list which is a b_next chain. 11764 * tcp_rcv_last_head/tail is the last element of this chain. 11765 * Each element of the chain is a b_cont chain. 11766 * 11767 * M_DATA messages are added to the current element. 11768 * Other messages are added as new (b_next) elements. 11769 */ 11770 void 11771 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11772 { 11773 ASSERT(seg_len == msgdsize(mp)); 11774 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11775 11776 if (tcp->tcp_rcv_list == NULL) { 11777 ASSERT(tcp->tcp_rcv_last_head == NULL); 11778 tcp->tcp_rcv_list = mp; 11779 tcp->tcp_rcv_last_head = mp; 11780 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11781 tcp->tcp_rcv_last_tail->b_cont = mp; 11782 } else { 11783 tcp->tcp_rcv_last_head->b_next = mp; 11784 tcp->tcp_rcv_last_head = mp; 11785 } 11786 11787 while (mp->b_cont) 11788 mp = mp->b_cont; 11789 11790 tcp->tcp_rcv_last_tail = mp; 11791 tcp->tcp_rcv_cnt += seg_len; 11792 tcp->tcp_rwnd -= seg_len; 11793 } 11794 11795 /* 11796 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11797 * 11798 * This is the default entry function into TCP on the read side. TCP is 11799 * always entered via squeue i.e. using squeue's for mutual exclusion. 11800 * When classifier does a lookup to find the tcp, it also puts a reference 11801 * on the conn structure associated so the tcp is guaranteed to exist 11802 * when we come here. We still need to check the state because it might 11803 * as well has been closed. The squeue processing function i.e. squeue_enter, 11804 * squeue_enter_nodrain, or squeue_drain is responsible for doing the 11805 * CONN_DEC_REF. 11806 * 11807 * Apart from the default entry point, IP also sends packets directly to 11808 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11809 * connections. 11810 */ 11811 void 11812 tcp_input(void *arg, mblk_t *mp, void *arg2) 11813 { 11814 conn_t *connp = (conn_t *)arg; 11815 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11816 11817 /* arg2 is the sqp */ 11818 ASSERT(arg2 != NULL); 11819 ASSERT(mp != NULL); 11820 11821 /* 11822 * Don't accept any input on a closed tcp as this TCP logically does 11823 * not exist on the system. Don't proceed further with this TCP. 11824 * For eg. this packet could trigger another close of this tcp 11825 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11826 * tcp_clean_death / tcp_closei_local must be called at most once 11827 * on a TCP. In this case we need to refeed the packet into the 11828 * classifier and figure out where the packet should go. Need to 11829 * preserve the recv_ill somehow. Until we figure that out, for 11830 * now just drop the packet if we can't classify the packet. 11831 */ 11832 if (tcp->tcp_state == TCPS_CLOSED || 11833 tcp->tcp_state == TCPS_BOUND) { 11834 conn_t *new_connp; 11835 ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip; 11836 11837 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 11838 if (new_connp != NULL) { 11839 tcp_reinput(new_connp, mp, arg2); 11840 return; 11841 } 11842 /* We failed to classify. For now just drop the packet */ 11843 freemsg(mp); 11844 return; 11845 } 11846 11847 if (DB_TYPE(mp) == M_DATA) 11848 tcp_rput_data(connp, mp, arg2); 11849 else 11850 tcp_rput_common(tcp, mp); 11851 } 11852 11853 /* 11854 * The read side put procedure. 11855 * The packets passed up by ip are assume to be aligned according to 11856 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11857 */ 11858 static void 11859 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11860 { 11861 /* 11862 * tcp_rput_data() does not expect M_CTL except for the case 11863 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11864 * type. Need to make sure that any other M_CTLs don't make 11865 * it to tcp_rput_data since it is not expecting any and doesn't 11866 * check for it. 11867 */ 11868 if (DB_TYPE(mp) == M_CTL) { 11869 switch (*(uint32_t *)(mp->b_rptr)) { 11870 case TCP_IOC_ABORT_CONN: 11871 /* 11872 * Handle connection abort request. 11873 */ 11874 tcp_ioctl_abort_handler(tcp, mp); 11875 return; 11876 case IPSEC_IN: 11877 /* 11878 * Only secure icmp arrive in TCP and they 11879 * don't go through data path. 11880 */ 11881 tcp_icmp_error(tcp, mp); 11882 return; 11883 case IN_PKTINFO: 11884 /* 11885 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11886 * sockets that are receiving IPv4 traffic. tcp 11887 */ 11888 ASSERT(tcp->tcp_family == AF_INET6); 11889 ASSERT(tcp->tcp_ipv6_recvancillary & 11890 TCP_IPV6_RECVPKTINFO); 11891 tcp_rput_data(tcp->tcp_connp, mp, 11892 tcp->tcp_connp->conn_sqp); 11893 return; 11894 case MDT_IOC_INFO_UPDATE: 11895 /* 11896 * Handle Multidata information update; the 11897 * following routine will free the message. 11898 */ 11899 if (tcp->tcp_connp->conn_mdt_ok) { 11900 tcp_mdt_update(tcp, 11901 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11902 B_FALSE); 11903 } 11904 freemsg(mp); 11905 return; 11906 case LSO_IOC_INFO_UPDATE: 11907 /* 11908 * Handle LSO information update; the following 11909 * routine will free the message. 11910 */ 11911 if (tcp->tcp_connp->conn_lso_ok) { 11912 tcp_lso_update(tcp, 11913 &((ip_lso_info_t *)mp->b_rptr)->lso_capab); 11914 } 11915 freemsg(mp); 11916 return; 11917 default: 11918 /* 11919 * tcp_icmp_err() will process the M_CTL packets. 11920 * Non-ICMP packets, if any, will be discarded in 11921 * tcp_icmp_err(). We will process the ICMP packet 11922 * even if we are TCP_IS_DETACHED_NONEAGER as the 11923 * incoming ICMP packet may result in changing 11924 * the tcp_mss, which we would need if we have 11925 * packets to retransmit. 11926 */ 11927 tcp_icmp_error(tcp, mp); 11928 return; 11929 } 11930 } 11931 11932 /* No point processing the message if tcp is already closed */ 11933 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11934 freemsg(mp); 11935 return; 11936 } 11937 11938 tcp_rput_other(tcp, mp); 11939 } 11940 11941 11942 /* The minimum of smoothed mean deviation in RTO calculation. */ 11943 #define TCP_SD_MIN 400 11944 11945 /* 11946 * Set RTO for this connection. The formula is from Jacobson and Karels' 11947 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11948 * are the same as those in Appendix A.2 of that paper. 11949 * 11950 * m = new measurement 11951 * sa = smoothed RTT average (8 * average estimates). 11952 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11953 */ 11954 static void 11955 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11956 { 11957 long m = TICK_TO_MSEC(rtt); 11958 clock_t sa = tcp->tcp_rtt_sa; 11959 clock_t sv = tcp->tcp_rtt_sd; 11960 clock_t rto; 11961 tcp_stack_t *tcps = tcp->tcp_tcps; 11962 11963 BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); 11964 tcp->tcp_rtt_update++; 11965 11966 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11967 if (sa != 0) { 11968 /* 11969 * Update average estimator: 11970 * new rtt = 7/8 old rtt + 1/8 Error 11971 */ 11972 11973 /* m is now Error in estimate. */ 11974 m -= sa >> 3; 11975 if ((sa += m) <= 0) { 11976 /* 11977 * Don't allow the smoothed average to be negative. 11978 * We use 0 to denote reinitialization of the 11979 * variables. 11980 */ 11981 sa = 1; 11982 } 11983 11984 /* 11985 * Update deviation estimator: 11986 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11987 */ 11988 if (m < 0) 11989 m = -m; 11990 m -= sv >> 2; 11991 sv += m; 11992 } else { 11993 /* 11994 * This follows BSD's implementation. So the reinitialized 11995 * RTO is 3 * m. We cannot go less than 2 because if the 11996 * link is bandwidth dominated, doubling the window size 11997 * during slow start means doubling the RTT. We want to be 11998 * more conservative when we reinitialize our estimates. 3 11999 * is just a convenient number. 12000 */ 12001 sa = m << 3; 12002 sv = m << 1; 12003 } 12004 if (sv < TCP_SD_MIN) { 12005 /* 12006 * We do not know that if sa captures the delay ACK 12007 * effect as in a long train of segments, a receiver 12008 * does not delay its ACKs. So set the minimum of sv 12009 * to be TCP_SD_MIN, which is default to 400 ms, twice 12010 * of BSD DATO. That means the minimum of mean 12011 * deviation is 100 ms. 12012 * 12013 */ 12014 sv = TCP_SD_MIN; 12015 } 12016 tcp->tcp_rtt_sa = sa; 12017 tcp->tcp_rtt_sd = sv; 12018 /* 12019 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 12020 * 12021 * Add tcp_rexmit_interval extra in case of extreme environment 12022 * where the algorithm fails to work. The default value of 12023 * tcp_rexmit_interval_extra should be 0. 12024 * 12025 * As we use a finer grained clock than BSD and update 12026 * RTO for every ACKs, add in another .25 of RTT to the 12027 * deviation of RTO to accomodate burstiness of 1/4 of 12028 * window size. 12029 */ 12030 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 12031 12032 if (rto > tcps->tcps_rexmit_interval_max) { 12033 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 12034 } else if (rto < tcps->tcps_rexmit_interval_min) { 12035 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 12036 } else { 12037 tcp->tcp_rto = rto; 12038 } 12039 12040 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 12041 tcp->tcp_timer_backoff = 0; 12042 } 12043 12044 /* 12045 * tcp_get_seg_mp() is called to get the pointer to a segment in the 12046 * send queue which starts at the given seq. no. 12047 * 12048 * Parameters: 12049 * tcp_t *tcp: the tcp instance pointer. 12050 * uint32_t seq: the starting seq. no of the requested segment. 12051 * int32_t *off: after the execution, *off will be the offset to 12052 * the returned mblk which points to the requested seq no. 12053 * It is the caller's responsibility to send in a non-null off. 12054 * 12055 * Return: 12056 * A mblk_t pointer pointing to the requested segment in send queue. 12057 */ 12058 static mblk_t * 12059 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 12060 { 12061 int32_t cnt; 12062 mblk_t *mp; 12063 12064 /* Defensive coding. Make sure we don't send incorrect data. */ 12065 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 12066 return (NULL); 12067 12068 cnt = seq - tcp->tcp_suna; 12069 mp = tcp->tcp_xmit_head; 12070 while (cnt > 0 && mp != NULL) { 12071 cnt -= mp->b_wptr - mp->b_rptr; 12072 if (cnt < 0) { 12073 cnt += mp->b_wptr - mp->b_rptr; 12074 break; 12075 } 12076 mp = mp->b_cont; 12077 } 12078 ASSERT(mp != NULL); 12079 *off = cnt; 12080 return (mp); 12081 } 12082 12083 /* 12084 * This function handles all retransmissions if SACK is enabled for this 12085 * connection. First it calculates how many segments can be retransmitted 12086 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 12087 * segments. A segment is eligible if sack_cnt for that segment is greater 12088 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 12089 * all eligible segments, it checks to see if TCP can send some new segments 12090 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 12091 * 12092 * Parameters: 12093 * tcp_t *tcp: the tcp structure of the connection. 12094 * uint_t *flags: in return, appropriate value will be set for 12095 * tcp_rput_data(). 12096 */ 12097 static void 12098 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 12099 { 12100 notsack_blk_t *notsack_blk; 12101 int32_t usable_swnd; 12102 int32_t mss; 12103 uint32_t seg_len; 12104 mblk_t *xmit_mp; 12105 tcp_stack_t *tcps = tcp->tcp_tcps; 12106 12107 ASSERT(tcp->tcp_sack_info != NULL); 12108 ASSERT(tcp->tcp_notsack_list != NULL); 12109 ASSERT(tcp->tcp_rexmit == B_FALSE); 12110 12111 /* Defensive coding in case there is a bug... */ 12112 if (tcp->tcp_notsack_list == NULL) { 12113 return; 12114 } 12115 notsack_blk = tcp->tcp_notsack_list; 12116 mss = tcp->tcp_mss; 12117 12118 /* 12119 * Limit the num of outstanding data in the network to be 12120 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 12121 */ 12122 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12123 12124 /* At least retransmit 1 MSS of data. */ 12125 if (usable_swnd <= 0) { 12126 usable_swnd = mss; 12127 } 12128 12129 /* Make sure no new RTT samples will be taken. */ 12130 tcp->tcp_csuna = tcp->tcp_snxt; 12131 12132 notsack_blk = tcp->tcp_notsack_list; 12133 while (usable_swnd > 0) { 12134 mblk_t *snxt_mp, *tmp_mp; 12135 tcp_seq begin = tcp->tcp_sack_snxt; 12136 tcp_seq end; 12137 int32_t off; 12138 12139 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 12140 if (SEQ_GT(notsack_blk->end, begin) && 12141 (notsack_blk->sack_cnt >= 12142 tcps->tcps_dupack_fast_retransmit)) { 12143 end = notsack_blk->end; 12144 if (SEQ_LT(begin, notsack_blk->begin)) { 12145 begin = notsack_blk->begin; 12146 } 12147 break; 12148 } 12149 } 12150 /* 12151 * All holes are filled. Manipulate tcp_cwnd to send more 12152 * if we can. Note that after the SACK recovery, tcp_cwnd is 12153 * set to tcp_cwnd_ssthresh. 12154 */ 12155 if (notsack_blk == NULL) { 12156 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12157 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 12158 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 12159 ASSERT(tcp->tcp_cwnd > 0); 12160 return; 12161 } else { 12162 usable_swnd = usable_swnd / mss; 12163 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 12164 MAX(usable_swnd * mss, mss); 12165 *flags |= TH_XMIT_NEEDED; 12166 return; 12167 } 12168 } 12169 12170 /* 12171 * Note that we may send more than usable_swnd allows here 12172 * because of round off, but no more than 1 MSS of data. 12173 */ 12174 seg_len = end - begin; 12175 if (seg_len > mss) 12176 seg_len = mss; 12177 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 12178 ASSERT(snxt_mp != NULL); 12179 /* This should not happen. Defensive coding again... */ 12180 if (snxt_mp == NULL) { 12181 return; 12182 } 12183 12184 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 12185 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 12186 if (xmit_mp == NULL) 12187 return; 12188 12189 usable_swnd -= seg_len; 12190 tcp->tcp_pipe += seg_len; 12191 tcp->tcp_sack_snxt = begin + seg_len; 12192 TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT); 12193 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12194 12195 /* 12196 * Update the send timestamp to avoid false retransmission. 12197 */ 12198 snxt_mp->b_prev = (mblk_t *)lbolt; 12199 12200 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12201 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); 12202 BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); 12203 /* 12204 * Update tcp_rexmit_max to extend this SACK recovery phase. 12205 * This happens when new data sent during fast recovery is 12206 * also lost. If TCP retransmits those new data, it needs 12207 * to extend SACK recover phase to avoid starting another 12208 * fast retransmit/recovery unnecessarily. 12209 */ 12210 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 12211 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 12212 } 12213 } 12214 } 12215 12216 /* 12217 * This function handles policy checking at TCP level for non-hard_bound/ 12218 * detached connections. 12219 */ 12220 static boolean_t 12221 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 12222 boolean_t secure, boolean_t mctl_present) 12223 { 12224 ipsec_latch_t *ipl = NULL; 12225 ipsec_action_t *act = NULL; 12226 mblk_t *data_mp; 12227 ipsec_in_t *ii; 12228 const char *reason; 12229 kstat_named_t *counter; 12230 tcp_stack_t *tcps = tcp->tcp_tcps; 12231 ipsec_stack_t *ipss; 12232 ip_stack_t *ipst; 12233 12234 ASSERT(mctl_present || !secure); 12235 12236 ASSERT((ipha == NULL && ip6h != NULL) || 12237 (ip6h == NULL && ipha != NULL)); 12238 12239 /* 12240 * We don't necessarily have an ipsec_in_act action to verify 12241 * policy because of assymetrical policy where we have only 12242 * outbound policy and no inbound policy (possible with global 12243 * policy). 12244 */ 12245 if (!secure) { 12246 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 12247 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 12248 return (B_TRUE); 12249 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 12250 "tcp_check_policy", ipha, ip6h, secure, 12251 tcps->tcps_netstack); 12252 ipss = tcps->tcps_netstack->netstack_ipsec; 12253 12254 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12255 DROPPER(ipss, ipds_tcp_clear), 12256 &tcps->tcps_dropper); 12257 return (B_FALSE); 12258 } 12259 12260 /* 12261 * We have a secure packet. 12262 */ 12263 if (act == NULL) { 12264 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED, 12265 "tcp_check_policy", ipha, ip6h, secure, 12266 tcps->tcps_netstack); 12267 ipss = tcps->tcps_netstack->netstack_ipsec; 12268 12269 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12270 DROPPER(ipss, ipds_tcp_secure), 12271 &tcps->tcps_dropper); 12272 return (B_FALSE); 12273 } 12274 12275 /* 12276 * XXX This whole routine is currently incorrect. ipl should 12277 * be set to the latch pointer, but is currently not set, so 12278 * we initialize it to NULL to avoid picking up random garbage. 12279 */ 12280 if (ipl == NULL) 12281 return (B_TRUE); 12282 12283 data_mp = first_mp->b_cont; 12284 12285 ii = (ipsec_in_t *)first_mp->b_rptr; 12286 12287 ipst = tcps->tcps_netstack->netstack_ip; 12288 12289 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 12290 &counter, tcp->tcp_connp)) { 12291 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 12292 return (B_TRUE); 12293 } 12294 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 12295 "tcp inbound policy mismatch: %s, packet dropped\n", 12296 reason); 12297 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 12298 12299 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, 12300 &tcps->tcps_dropper); 12301 return (B_FALSE); 12302 } 12303 12304 /* 12305 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 12306 * retransmission after a timeout. 12307 * 12308 * To limit the number of duplicate segments, we limit the number of segment 12309 * to be sent in one time to tcp_snd_burst, the burst variable. 12310 */ 12311 static void 12312 tcp_ss_rexmit(tcp_t *tcp) 12313 { 12314 uint32_t snxt; 12315 uint32_t smax; 12316 int32_t win; 12317 int32_t mss; 12318 int32_t off; 12319 int32_t burst = tcp->tcp_snd_burst; 12320 mblk_t *snxt_mp; 12321 tcp_stack_t *tcps = tcp->tcp_tcps; 12322 12323 /* 12324 * Note that tcp_rexmit can be set even though TCP has retransmitted 12325 * all unack'ed segments. 12326 */ 12327 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 12328 smax = tcp->tcp_rexmit_max; 12329 snxt = tcp->tcp_rexmit_nxt; 12330 if (SEQ_LT(snxt, tcp->tcp_suna)) { 12331 snxt = tcp->tcp_suna; 12332 } 12333 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 12334 win -= snxt - tcp->tcp_suna; 12335 mss = tcp->tcp_mss; 12336 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 12337 12338 while (SEQ_LT(snxt, smax) && (win > 0) && 12339 (burst > 0) && (snxt_mp != NULL)) { 12340 mblk_t *xmit_mp; 12341 mblk_t *old_snxt_mp = snxt_mp; 12342 uint32_t cnt = mss; 12343 12344 if (win < cnt) { 12345 cnt = win; 12346 } 12347 if (SEQ_GT(snxt + cnt, smax)) { 12348 cnt = smax - snxt; 12349 } 12350 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 12351 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 12352 if (xmit_mp == NULL) 12353 return; 12354 12355 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12356 12357 snxt += cnt; 12358 win -= cnt; 12359 /* 12360 * Update the send timestamp to avoid false 12361 * retransmission. 12362 */ 12363 old_snxt_mp->b_prev = (mblk_t *)lbolt; 12364 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12365 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); 12366 12367 tcp->tcp_rexmit_nxt = snxt; 12368 burst--; 12369 } 12370 /* 12371 * If we have transmitted all we have at the time 12372 * we started the retranmission, we can leave 12373 * the rest of the job to tcp_wput_data(). But we 12374 * need to check the send window first. If the 12375 * win is not 0, go on with tcp_wput_data(). 12376 */ 12377 if (SEQ_LT(snxt, smax) || win == 0) { 12378 return; 12379 } 12380 } 12381 /* Only call tcp_wput_data() if there is data to be sent. */ 12382 if (tcp->tcp_unsent) { 12383 tcp_wput_data(tcp, NULL, B_FALSE); 12384 } 12385 } 12386 12387 /* 12388 * Process all TCP option in SYN segment. Note that this function should 12389 * be called after tcp_adapt_ire() is called so that the necessary info 12390 * from IRE is already set in the tcp structure. 12391 * 12392 * This function sets up the correct tcp_mss value according to the 12393 * MSS option value and our header size. It also sets up the window scale 12394 * and timestamp values, and initialize SACK info blocks. But it does not 12395 * change receive window size after setting the tcp_mss value. The caller 12396 * should do the appropriate change. 12397 */ 12398 void 12399 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 12400 { 12401 int options; 12402 tcp_opt_t tcpopt; 12403 uint32_t mss_max; 12404 char *tmp_tcph; 12405 tcp_stack_t *tcps = tcp->tcp_tcps; 12406 12407 tcpopt.tcp = NULL; 12408 options = tcp_parse_options(tcph, &tcpopt); 12409 12410 /* 12411 * Process MSS option. Note that MSS option value does not account 12412 * for IP or TCP options. This means that it is equal to MTU - minimum 12413 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 12414 * IPv6. 12415 */ 12416 if (!(options & TCP_OPT_MSS_PRESENT)) { 12417 if (tcp->tcp_ipversion == IPV4_VERSION) 12418 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 12419 else 12420 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 12421 } else { 12422 if (tcp->tcp_ipversion == IPV4_VERSION) 12423 mss_max = tcps->tcps_mss_max_ipv4; 12424 else 12425 mss_max = tcps->tcps_mss_max_ipv6; 12426 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 12427 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 12428 else if (tcpopt.tcp_opt_mss > mss_max) 12429 tcpopt.tcp_opt_mss = mss_max; 12430 } 12431 12432 /* Process Window Scale option. */ 12433 if (options & TCP_OPT_WSCALE_PRESENT) { 12434 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12435 tcp->tcp_snd_ws_ok = B_TRUE; 12436 } else { 12437 tcp->tcp_snd_ws = B_FALSE; 12438 tcp->tcp_snd_ws_ok = B_FALSE; 12439 tcp->tcp_rcv_ws = B_FALSE; 12440 } 12441 12442 /* Process Timestamp option. */ 12443 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12444 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12445 tmp_tcph = (char *)tcp->tcp_tcph; 12446 12447 tcp->tcp_snd_ts_ok = B_TRUE; 12448 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12449 tcp->tcp_last_rcv_lbolt = lbolt64; 12450 ASSERT(OK_32PTR(tmp_tcph)); 12451 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12452 12453 /* Fill in our template header with basic timestamp option. */ 12454 tmp_tcph += tcp->tcp_tcp_hdr_len; 12455 tmp_tcph[0] = TCPOPT_NOP; 12456 tmp_tcph[1] = TCPOPT_NOP; 12457 tmp_tcph[2] = TCPOPT_TSTAMP; 12458 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12459 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12460 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12461 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12462 } else { 12463 tcp->tcp_snd_ts_ok = B_FALSE; 12464 } 12465 12466 /* 12467 * Process SACK options. If SACK is enabled for this connection, 12468 * then allocate the SACK info structure. Note the following ways 12469 * when tcp_snd_sack_ok is set to true. 12470 * 12471 * For active connection: in tcp_adapt_ire() called in 12472 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12473 * is checked. 12474 * 12475 * For passive connection: in tcp_adapt_ire() called in 12476 * tcp_accept_comm(). 12477 * 12478 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12479 * That check makes sure that if we did not send a SACK OK option, 12480 * we will not enable SACK for this connection even though the other 12481 * side sends us SACK OK option. For active connection, the SACK 12482 * info structure has already been allocated. So we need to free 12483 * it if SACK is disabled. 12484 */ 12485 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12486 (tcp->tcp_snd_sack_ok || 12487 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12488 /* This should be true only in the passive case. */ 12489 if (tcp->tcp_sack_info == NULL) { 12490 ASSERT(TCP_IS_DETACHED(tcp)); 12491 tcp->tcp_sack_info = 12492 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12493 } 12494 if (tcp->tcp_sack_info == NULL) { 12495 tcp->tcp_snd_sack_ok = B_FALSE; 12496 } else { 12497 tcp->tcp_snd_sack_ok = B_TRUE; 12498 if (tcp->tcp_snd_ts_ok) { 12499 tcp->tcp_max_sack_blk = 3; 12500 } else { 12501 tcp->tcp_max_sack_blk = 4; 12502 } 12503 } 12504 } else { 12505 /* 12506 * Resetting tcp_snd_sack_ok to B_FALSE so that 12507 * no SACK info will be used for this 12508 * connection. This assumes that SACK usage 12509 * permission is negotiated. This may need 12510 * to be changed once this is clarified. 12511 */ 12512 if (tcp->tcp_sack_info != NULL) { 12513 ASSERT(tcp->tcp_notsack_list == NULL); 12514 kmem_cache_free(tcp_sack_info_cache, 12515 tcp->tcp_sack_info); 12516 tcp->tcp_sack_info = NULL; 12517 } 12518 tcp->tcp_snd_sack_ok = B_FALSE; 12519 } 12520 12521 /* 12522 * Now we know the exact TCP/IP header length, subtract 12523 * that from tcp_mss to get our side's MSS. 12524 */ 12525 tcp->tcp_mss -= tcp->tcp_hdr_len; 12526 /* 12527 * Here we assume that the other side's header size will be equal to 12528 * our header size. We calculate the real MSS accordingly. Need to 12529 * take into additional stuffs IPsec puts in. 12530 * 12531 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12532 */ 12533 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12534 ((tcp->tcp_ipversion == IPV4_VERSION ? 12535 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12536 12537 /* 12538 * Set MSS to the smaller one of both ends of the connection. 12539 * We should not have called tcp_mss_set() before, but our 12540 * side of the MSS should have been set to a proper value 12541 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12542 * STREAM head parameters properly. 12543 * 12544 * If we have a larger-than-16-bit window but the other side 12545 * didn't want to do window scale, tcp_rwnd_set() will take 12546 * care of that. 12547 */ 12548 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE); 12549 } 12550 12551 /* 12552 * Sends the T_CONN_IND to the listener. The caller calls this 12553 * functions via squeue to get inside the listener's perimeter 12554 * once the 3 way hand shake is done a T_CONN_IND needs to be 12555 * sent. As an optimization, the caller can call this directly 12556 * if listener's perimeter is same as eager's. 12557 */ 12558 /* ARGSUSED */ 12559 void 12560 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12561 { 12562 conn_t *lconnp = (conn_t *)arg; 12563 tcp_t *listener = lconnp->conn_tcp; 12564 tcp_t *tcp; 12565 struct T_conn_ind *conn_ind; 12566 ipaddr_t *addr_cache; 12567 boolean_t need_send_conn_ind = B_FALSE; 12568 tcp_stack_t *tcps = listener->tcp_tcps; 12569 12570 /* retrieve the eager */ 12571 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12572 ASSERT(conn_ind->OPT_offset != 0 && 12573 conn_ind->OPT_length == sizeof (intptr_t)); 12574 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12575 conn_ind->OPT_length); 12576 12577 /* 12578 * TLI/XTI applications will get confused by 12579 * sending eager as an option since it violates 12580 * the option semantics. So remove the eager as 12581 * option since TLI/XTI app doesn't need it anyway. 12582 */ 12583 if (!TCP_IS_SOCKET(listener)) { 12584 conn_ind->OPT_length = 0; 12585 conn_ind->OPT_offset = 0; 12586 } 12587 if (listener->tcp_state == TCPS_CLOSED || 12588 TCP_IS_DETACHED(listener)) { 12589 /* 12590 * If listener has closed, it would have caused a 12591 * a cleanup/blowoff to happen for the eager. We 12592 * just need to return. 12593 */ 12594 freemsg(mp); 12595 return; 12596 } 12597 12598 12599 /* 12600 * if the conn_req_q is full defer passing up the 12601 * T_CONN_IND until space is availabe after t_accept() 12602 * processing 12603 */ 12604 mutex_enter(&listener->tcp_eager_lock); 12605 12606 /* 12607 * Take the eager out, if it is in the list of droppable eagers 12608 * as we are here because the 3W handshake is over. 12609 */ 12610 MAKE_UNDROPPABLE(tcp); 12611 12612 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12613 tcp_t *tail; 12614 12615 /* 12616 * The eager already has an extra ref put in tcp_rput_data 12617 * so that it stays till accept comes back even though it 12618 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12619 */ 12620 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12621 listener->tcp_conn_req_cnt_q0--; 12622 listener->tcp_conn_req_cnt_q++; 12623 12624 /* Move from SYN_RCVD to ESTABLISHED list */ 12625 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12626 tcp->tcp_eager_prev_q0; 12627 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12628 tcp->tcp_eager_next_q0; 12629 tcp->tcp_eager_prev_q0 = NULL; 12630 tcp->tcp_eager_next_q0 = NULL; 12631 12632 /* 12633 * Insert at end of the queue because sockfs 12634 * sends down T_CONN_RES in chronological 12635 * order. Leaving the older conn indications 12636 * at front of the queue helps reducing search 12637 * time. 12638 */ 12639 tail = listener->tcp_eager_last_q; 12640 if (tail != NULL) 12641 tail->tcp_eager_next_q = tcp; 12642 else 12643 listener->tcp_eager_next_q = tcp; 12644 listener->tcp_eager_last_q = tcp; 12645 tcp->tcp_eager_next_q = NULL; 12646 /* 12647 * Delay sending up the T_conn_ind until we are 12648 * done with the eager. Once we have have sent up 12649 * the T_conn_ind, the accept can potentially complete 12650 * any time and release the refhold we have on the eager. 12651 */ 12652 need_send_conn_ind = B_TRUE; 12653 } else { 12654 /* 12655 * Defer connection on q0 and set deferred 12656 * connection bit true 12657 */ 12658 tcp->tcp_conn_def_q0 = B_TRUE; 12659 12660 /* take tcp out of q0 ... */ 12661 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12662 tcp->tcp_eager_next_q0; 12663 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12664 tcp->tcp_eager_prev_q0; 12665 12666 /* ... and place it at the end of q0 */ 12667 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12668 tcp->tcp_eager_next_q0 = listener; 12669 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12670 listener->tcp_eager_prev_q0 = tcp; 12671 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12672 } 12673 12674 /* we have timed out before */ 12675 if (tcp->tcp_syn_rcvd_timeout != 0) { 12676 tcp->tcp_syn_rcvd_timeout = 0; 12677 listener->tcp_syn_rcvd_timeout--; 12678 if (listener->tcp_syn_defense && 12679 listener->tcp_syn_rcvd_timeout <= 12680 (tcps->tcps_conn_req_max_q0 >> 5) && 12681 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12682 listener->tcp_last_rcv_lbolt)) { 12683 /* 12684 * Turn off the defense mode if we 12685 * believe the SYN attack is over. 12686 */ 12687 listener->tcp_syn_defense = B_FALSE; 12688 if (listener->tcp_ip_addr_cache) { 12689 kmem_free((void *)listener->tcp_ip_addr_cache, 12690 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12691 listener->tcp_ip_addr_cache = NULL; 12692 } 12693 } 12694 } 12695 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12696 if (addr_cache != NULL) { 12697 /* 12698 * We have finished a 3-way handshake with this 12699 * remote host. This proves the IP addr is good. 12700 * Cache it! 12701 */ 12702 addr_cache[IP_ADDR_CACHE_HASH( 12703 tcp->tcp_remote)] = tcp->tcp_remote; 12704 } 12705 mutex_exit(&listener->tcp_eager_lock); 12706 if (need_send_conn_ind) 12707 putnext(listener->tcp_rq, mp); 12708 } 12709 12710 mblk_t * 12711 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12712 uint_t *ifindexp, ip6_pkt_t *ippp) 12713 { 12714 ip_pktinfo_t *pinfo; 12715 ip6_t *ip6h; 12716 uchar_t *rptr; 12717 mblk_t *first_mp = mp; 12718 boolean_t mctl_present = B_FALSE; 12719 uint_t ifindex = 0; 12720 ip6_pkt_t ipp; 12721 uint_t ipvers; 12722 uint_t ip_hdr_len; 12723 tcp_stack_t *tcps = tcp->tcp_tcps; 12724 12725 rptr = mp->b_rptr; 12726 ASSERT(OK_32PTR(rptr)); 12727 ASSERT(tcp != NULL); 12728 ipp.ipp_fields = 0; 12729 12730 switch DB_TYPE(mp) { 12731 case M_CTL: 12732 mp = mp->b_cont; 12733 if (mp == NULL) { 12734 freemsg(first_mp); 12735 return (NULL); 12736 } 12737 if (DB_TYPE(mp) != M_DATA) { 12738 freemsg(first_mp); 12739 return (NULL); 12740 } 12741 mctl_present = B_TRUE; 12742 break; 12743 case M_DATA: 12744 break; 12745 default: 12746 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12747 freemsg(mp); 12748 return (NULL); 12749 } 12750 ipvers = IPH_HDR_VERSION(rptr); 12751 if (ipvers == IPV4_VERSION) { 12752 if (tcp == NULL) { 12753 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12754 goto done; 12755 } 12756 12757 ipp.ipp_fields |= IPPF_HOPLIMIT; 12758 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12759 12760 /* 12761 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12762 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12763 */ 12764 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12765 mctl_present) { 12766 pinfo = (ip_pktinfo_t *)first_mp->b_rptr; 12767 if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) && 12768 (pinfo->ip_pkt_ulp_type == IN_PKTINFO) && 12769 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 12770 ipp.ipp_fields |= IPPF_IFINDEX; 12771 ipp.ipp_ifindex = pinfo->ip_pkt_ifindex; 12772 ifindex = pinfo->ip_pkt_ifindex; 12773 } 12774 freeb(first_mp); 12775 mctl_present = B_FALSE; 12776 } 12777 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12778 } else { 12779 ip6h = (ip6_t *)rptr; 12780 12781 ASSERT(ipvers == IPV6_VERSION); 12782 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12783 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12784 ipp.ipp_hoplimit = ip6h->ip6_hops; 12785 12786 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12787 uint8_t nexthdrp; 12788 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 12789 12790 /* Look for ifindex information */ 12791 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12792 ip6i_t *ip6i = (ip6i_t *)ip6h; 12793 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12794 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12795 freemsg(first_mp); 12796 return (NULL); 12797 } 12798 12799 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12800 ASSERT(ip6i->ip6i_ifindex != 0); 12801 ipp.ipp_fields |= IPPF_IFINDEX; 12802 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12803 ifindex = ip6i->ip6i_ifindex; 12804 } 12805 rptr = (uchar_t *)&ip6i[1]; 12806 mp->b_rptr = rptr; 12807 if (rptr == mp->b_wptr) { 12808 mblk_t *mp1; 12809 mp1 = mp->b_cont; 12810 freeb(mp); 12811 mp = mp1; 12812 rptr = mp->b_rptr; 12813 } 12814 if (MBLKL(mp) < IPV6_HDR_LEN + 12815 sizeof (tcph_t)) { 12816 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12817 freemsg(first_mp); 12818 return (NULL); 12819 } 12820 ip6h = (ip6_t *)rptr; 12821 } 12822 12823 /* 12824 * Find any potentially interesting extension headers 12825 * as well as the length of the IPv6 + extension 12826 * headers. 12827 */ 12828 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12829 /* Verify if this is a TCP packet */ 12830 if (nexthdrp != IPPROTO_TCP) { 12831 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12832 freemsg(first_mp); 12833 return (NULL); 12834 } 12835 } else { 12836 ip_hdr_len = IPV6_HDR_LEN; 12837 } 12838 } 12839 12840 done: 12841 if (ipversp != NULL) 12842 *ipversp = ipvers; 12843 if (ip_hdr_lenp != NULL) 12844 *ip_hdr_lenp = ip_hdr_len; 12845 if (ippp != NULL) 12846 *ippp = ipp; 12847 if (ifindexp != NULL) 12848 *ifindexp = ifindex; 12849 if (mctl_present) { 12850 freeb(first_mp); 12851 } 12852 return (mp); 12853 } 12854 12855 /* 12856 * Handle M_DATA messages from IP. Its called directly from IP via 12857 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12858 * in this path. 12859 * 12860 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12861 * v4 and v6), we are called through tcp_input() and a M_CTL can 12862 * be present for options but tcp_find_pktinfo() deals with it. We 12863 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12864 * 12865 * The first argument is always the connp/tcp to which the mp belongs. 12866 * There are no exceptions to this rule. The caller has already put 12867 * a reference on this connp/tcp and once tcp_rput_data() returns, 12868 * the squeue will do the refrele. 12869 * 12870 * The TH_SYN for the listener directly go to tcp_conn_request via 12871 * squeue. 12872 * 12873 * sqp: NULL = recursive, sqp != NULL means called from squeue 12874 */ 12875 void 12876 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12877 { 12878 int32_t bytes_acked; 12879 int32_t gap; 12880 mblk_t *mp1; 12881 uint_t flags; 12882 uint32_t new_swnd = 0; 12883 uchar_t *iphdr; 12884 uchar_t *rptr; 12885 int32_t rgap; 12886 uint32_t seg_ack; 12887 int seg_len; 12888 uint_t ip_hdr_len; 12889 uint32_t seg_seq; 12890 tcph_t *tcph; 12891 int urp; 12892 tcp_opt_t tcpopt; 12893 uint_t ipvers; 12894 ip6_pkt_t ipp; 12895 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12896 uint32_t cwnd; 12897 uint32_t add; 12898 int npkt; 12899 int mss; 12900 conn_t *connp = (conn_t *)arg; 12901 squeue_t *sqp = (squeue_t *)arg2; 12902 tcp_t *tcp = connp->conn_tcp; 12903 tcp_stack_t *tcps = tcp->tcp_tcps; 12904 12905 /* 12906 * RST from fused tcp loopback peer should trigger an unfuse. 12907 */ 12908 if (tcp->tcp_fused) { 12909 TCP_STAT(tcps, tcp_fusion_aborted); 12910 tcp_unfuse(tcp); 12911 } 12912 12913 iphdr = mp->b_rptr; 12914 rptr = mp->b_rptr; 12915 ASSERT(OK_32PTR(rptr)); 12916 12917 /* 12918 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12919 * processing here. For rest call tcp_find_pktinfo to fill up the 12920 * necessary information. 12921 */ 12922 if (IPCL_IS_TCP4(connp)) { 12923 ipvers = IPV4_VERSION; 12924 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12925 } else { 12926 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12927 NULL, &ipp); 12928 if (mp == NULL) { 12929 TCP_STAT(tcps, tcp_rput_v6_error); 12930 return; 12931 } 12932 iphdr = mp->b_rptr; 12933 rptr = mp->b_rptr; 12934 } 12935 ASSERT(DB_TYPE(mp) == M_DATA); 12936 12937 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12938 seg_seq = ABE32_TO_U32(tcph->th_seq); 12939 seg_ack = ABE32_TO_U32(tcph->th_ack); 12940 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12941 seg_len = (int)(mp->b_wptr - rptr) - 12942 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12943 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12944 do { 12945 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12946 (uintptr_t)INT_MAX); 12947 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12948 } while ((mp1 = mp1->b_cont) != NULL && 12949 mp1->b_datap->db_type == M_DATA); 12950 } 12951 12952 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12953 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12954 seg_len, tcph); 12955 return; 12956 } 12957 12958 if (sqp != NULL) { 12959 /* 12960 * This is the correct place to update tcp_last_recv_time. Note 12961 * that it is also updated for tcp structure that belongs to 12962 * global and listener queues which do not really need updating. 12963 * But that should not cause any harm. And it is updated for 12964 * all kinds of incoming segments, not only for data segments. 12965 */ 12966 tcp->tcp_last_recv_time = lbolt; 12967 } 12968 12969 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12970 12971 BUMP_LOCAL(tcp->tcp_ibsegs); 12972 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 12973 12974 if ((flags & TH_URG) && sqp != NULL) { 12975 /* 12976 * TCP can't handle urgent pointers that arrive before 12977 * the connection has been accept()ed since it can't 12978 * buffer OOB data. Discard segment if this happens. 12979 * 12980 * We can't just rely on a non-null tcp_listener to indicate 12981 * that the accept() has completed since unlinking of the 12982 * eager and completion of the accept are not atomic. 12983 * tcp_detached, when it is not set (B_FALSE) indicates 12984 * that the accept() has completed. 12985 * 12986 * Nor can it reassemble urgent pointers, so discard 12987 * if it's not the next segment expected. 12988 * 12989 * Otherwise, collapse chain into one mblk (discard if 12990 * that fails). This makes sure the headers, retransmitted 12991 * data, and new data all are in the same mblk. 12992 */ 12993 ASSERT(mp != NULL); 12994 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 12995 freemsg(mp); 12996 return; 12997 } 12998 /* Update pointers into message */ 12999 iphdr = rptr = mp->b_rptr; 13000 tcph = (tcph_t *)&rptr[ip_hdr_len]; 13001 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 13002 /* 13003 * Since we can't handle any data with this urgent 13004 * pointer that is out of sequence, we expunge 13005 * the data. This allows us to still register 13006 * the urgent mark and generate the M_PCSIG, 13007 * which we can do. 13008 */ 13009 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13010 seg_len = 0; 13011 } 13012 } 13013 13014 switch (tcp->tcp_state) { 13015 case TCPS_SYN_SENT: 13016 if (flags & TH_ACK) { 13017 /* 13018 * Note that our stack cannot send data before a 13019 * connection is established, therefore the 13020 * following check is valid. Otherwise, it has 13021 * to be changed. 13022 */ 13023 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 13024 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13025 freemsg(mp); 13026 if (flags & TH_RST) 13027 return; 13028 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 13029 tcp, seg_ack, 0, TH_RST); 13030 return; 13031 } 13032 ASSERT(tcp->tcp_suna + 1 == seg_ack); 13033 } 13034 if (flags & TH_RST) { 13035 freemsg(mp); 13036 if (flags & TH_ACK) 13037 (void) tcp_clean_death(tcp, 13038 ECONNREFUSED, 13); 13039 return; 13040 } 13041 if (!(flags & TH_SYN)) { 13042 freemsg(mp); 13043 return; 13044 } 13045 13046 /* Process all TCP options. */ 13047 tcp_process_options(tcp, tcph); 13048 /* 13049 * The following changes our rwnd to be a multiple of the 13050 * MIN(peer MSS, our MSS) for performance reason. 13051 */ 13052 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat, 13053 tcp->tcp_mss)); 13054 13055 /* Is the other end ECN capable? */ 13056 if (tcp->tcp_ecn_ok) { 13057 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 13058 tcp->tcp_ecn_ok = B_FALSE; 13059 } 13060 } 13061 /* 13062 * Clear ECN flags because it may interfere with later 13063 * processing. 13064 */ 13065 flags &= ~(TH_ECE|TH_CWR); 13066 13067 tcp->tcp_irs = seg_seq; 13068 tcp->tcp_rack = seg_seq; 13069 tcp->tcp_rnxt = seg_seq + 1; 13070 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13071 if (!TCP_IS_DETACHED(tcp)) { 13072 /* Allocate room for SACK options if needed. */ 13073 if (tcp->tcp_snd_sack_ok) { 13074 (void) mi_set_sth_wroff(tcp->tcp_rq, 13075 tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 13076 (tcp->tcp_loopback ? 0 : 13077 tcps->tcps_wroff_xtra)); 13078 } else { 13079 (void) mi_set_sth_wroff(tcp->tcp_rq, 13080 tcp->tcp_hdr_len + 13081 (tcp->tcp_loopback ? 0 : 13082 tcps->tcps_wroff_xtra)); 13083 } 13084 } 13085 if (flags & TH_ACK) { 13086 /* 13087 * If we can't get the confirmation upstream, pretend 13088 * we didn't even see this one. 13089 * 13090 * XXX: how can we pretend we didn't see it if we 13091 * have updated rnxt et. al. 13092 * 13093 * For loopback we defer sending up the T_CONN_CON 13094 * until after some checks below. 13095 */ 13096 mp1 = NULL; 13097 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 13098 tcp->tcp_loopback ? &mp1 : NULL)) { 13099 freemsg(mp); 13100 return; 13101 } 13102 /* SYN was acked - making progress */ 13103 if (tcp->tcp_ipversion == IPV6_VERSION) 13104 tcp->tcp_ip_forward_progress = B_TRUE; 13105 13106 /* One for the SYN */ 13107 tcp->tcp_suna = tcp->tcp_iss + 1; 13108 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 13109 tcp->tcp_state = TCPS_ESTABLISHED; 13110 13111 /* 13112 * If SYN was retransmitted, need to reset all 13113 * retransmission info. This is because this 13114 * segment will be treated as a dup ACK. 13115 */ 13116 if (tcp->tcp_rexmit) { 13117 tcp->tcp_rexmit = B_FALSE; 13118 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13119 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13120 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13121 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13122 tcp->tcp_ms_we_have_waited = 0; 13123 13124 /* 13125 * Set tcp_cwnd back to 1 MSS, per 13126 * recommendation from 13127 * draft-floyd-incr-init-win-01.txt, 13128 * Increasing TCP's Initial Window. 13129 */ 13130 tcp->tcp_cwnd = tcp->tcp_mss; 13131 } 13132 13133 tcp->tcp_swl1 = seg_seq; 13134 tcp->tcp_swl2 = seg_ack; 13135 13136 new_swnd = BE16_TO_U16(tcph->th_win); 13137 tcp->tcp_swnd = new_swnd; 13138 if (new_swnd > tcp->tcp_max_swnd) 13139 tcp->tcp_max_swnd = new_swnd; 13140 13141 /* 13142 * Always send the three-way handshake ack immediately 13143 * in order to make the connection complete as soon as 13144 * possible on the accepting host. 13145 */ 13146 flags |= TH_ACK_NEEDED; 13147 13148 /* 13149 * Special case for loopback. At this point we have 13150 * received SYN-ACK from the remote endpoint. In 13151 * order to ensure that both endpoints reach the 13152 * fused state prior to any data exchange, the final 13153 * ACK needs to be sent before we indicate T_CONN_CON 13154 * to the module upstream. 13155 */ 13156 if (tcp->tcp_loopback) { 13157 mblk_t *ack_mp; 13158 13159 ASSERT(!tcp->tcp_unfusable); 13160 ASSERT(mp1 != NULL); 13161 /* 13162 * For loopback, we always get a pure SYN-ACK 13163 * and only need to send back the final ACK 13164 * with no data (this is because the other 13165 * tcp is ours and we don't do T/TCP). This 13166 * final ACK triggers the passive side to 13167 * perform fusion in ESTABLISHED state. 13168 */ 13169 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 13170 if (tcp->tcp_ack_tid != 0) { 13171 (void) TCP_TIMER_CANCEL(tcp, 13172 tcp->tcp_ack_tid); 13173 tcp->tcp_ack_tid = 0; 13174 } 13175 TCP_RECORD_TRACE(tcp, ack_mp, 13176 TCP_TRACE_SEND_PKT); 13177 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 13178 BUMP_LOCAL(tcp->tcp_obsegs); 13179 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 13180 13181 /* Send up T_CONN_CON */ 13182 putnext(tcp->tcp_rq, mp1); 13183 13184 freemsg(mp); 13185 return; 13186 } 13187 /* 13188 * Forget fusion; we need to handle more 13189 * complex cases below. Send the deferred 13190 * T_CONN_CON message upstream and proceed 13191 * as usual. Mark this tcp as not capable 13192 * of fusion. 13193 */ 13194 TCP_STAT(tcps, tcp_fusion_unfusable); 13195 tcp->tcp_unfusable = B_TRUE; 13196 putnext(tcp->tcp_rq, mp1); 13197 } 13198 13199 /* 13200 * Check to see if there is data to be sent. If 13201 * yes, set the transmit flag. Then check to see 13202 * if received data processing needs to be done. 13203 * If not, go straight to xmit_check. This short 13204 * cut is OK as we don't support T/TCP. 13205 */ 13206 if (tcp->tcp_unsent) 13207 flags |= TH_XMIT_NEEDED; 13208 13209 if (seg_len == 0 && !(flags & TH_URG)) { 13210 freemsg(mp); 13211 goto xmit_check; 13212 } 13213 13214 flags &= ~TH_SYN; 13215 seg_seq++; 13216 break; 13217 } 13218 tcp->tcp_state = TCPS_SYN_RCVD; 13219 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 13220 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 13221 if (mp1) { 13222 DB_CPID(mp1) = tcp->tcp_cpid; 13223 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 13224 tcp_send_data(tcp, tcp->tcp_wq, mp1); 13225 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13226 } 13227 freemsg(mp); 13228 return; 13229 case TCPS_SYN_RCVD: 13230 if (flags & TH_ACK) { 13231 /* 13232 * In this state, a SYN|ACK packet is either bogus 13233 * because the other side must be ACKing our SYN which 13234 * indicates it has seen the ACK for their SYN and 13235 * shouldn't retransmit it or we're crossing SYNs 13236 * on active open. 13237 */ 13238 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 13239 freemsg(mp); 13240 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 13241 tcp, seg_ack, 0, TH_RST); 13242 return; 13243 } 13244 /* 13245 * NOTE: RFC 793 pg. 72 says this should be 13246 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 13247 * but that would mean we have an ack that ignored 13248 * our SYN. 13249 */ 13250 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 13251 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13252 freemsg(mp); 13253 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 13254 tcp, seg_ack, 0, TH_RST); 13255 return; 13256 } 13257 } 13258 break; 13259 case TCPS_LISTEN: 13260 /* 13261 * Only a TLI listener can come through this path when a 13262 * acceptor is going back to be a listener and a packet 13263 * for the acceptor hits the classifier. For a socket 13264 * listener, this can never happen because a listener 13265 * can never accept connection on itself and hence a 13266 * socket acceptor can not go back to being a listener. 13267 */ 13268 ASSERT(!TCP_IS_SOCKET(tcp)); 13269 /*FALLTHRU*/ 13270 case TCPS_CLOSED: 13271 case TCPS_BOUND: { 13272 conn_t *new_connp; 13273 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 13274 13275 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 13276 if (new_connp != NULL) { 13277 tcp_reinput(new_connp, mp, connp->conn_sqp); 13278 return; 13279 } 13280 /* We failed to classify. For now just drop the packet */ 13281 freemsg(mp); 13282 return; 13283 } 13284 case TCPS_IDLE: 13285 /* 13286 * Handle the case where the tcp_clean_death() has happened 13287 * on a connection (application hasn't closed yet) but a packet 13288 * was already queued on squeue before tcp_clean_death() 13289 * was processed. Calling tcp_clean_death() twice on same 13290 * connection can result in weird behaviour. 13291 */ 13292 freemsg(mp); 13293 return; 13294 default: 13295 break; 13296 } 13297 13298 /* 13299 * Already on the correct queue/perimeter. 13300 * If this is a detached connection and not an eager 13301 * connection hanging off a listener then new data 13302 * (past the FIN) will cause a reset. 13303 * We do a special check here where it 13304 * is out of the main line, rather than check 13305 * if we are detached every time we see new 13306 * data down below. 13307 */ 13308 if (TCP_IS_DETACHED_NONEAGER(tcp) && 13309 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 13310 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 13311 TCP_RECORD_TRACE(tcp, 13312 mp, TCP_TRACE_RECV_PKT); 13313 13314 freemsg(mp); 13315 /* 13316 * This could be an SSL closure alert. We're detached so just 13317 * acknowledge it this last time. 13318 */ 13319 if (tcp->tcp_kssl_ctx != NULL) { 13320 kssl_release_ctx(tcp->tcp_kssl_ctx); 13321 tcp->tcp_kssl_ctx = NULL; 13322 13323 tcp->tcp_rnxt += seg_len; 13324 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13325 flags |= TH_ACK_NEEDED; 13326 goto ack_check; 13327 } 13328 13329 tcp_xmit_ctl("new data when detached", tcp, 13330 tcp->tcp_snxt, 0, TH_RST); 13331 (void) tcp_clean_death(tcp, EPROTO, 12); 13332 return; 13333 } 13334 13335 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13336 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 13337 new_swnd = BE16_TO_U16(tcph->th_win) << 13338 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 13339 13340 if (tcp->tcp_snd_ts_ok) { 13341 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 13342 /* 13343 * This segment is not acceptable. 13344 * Drop it and send back an ACK. 13345 */ 13346 freemsg(mp); 13347 flags |= TH_ACK_NEEDED; 13348 goto ack_check; 13349 } 13350 } else if (tcp->tcp_snd_sack_ok) { 13351 ASSERT(tcp->tcp_sack_info != NULL); 13352 tcpopt.tcp = tcp; 13353 /* 13354 * SACK info in already updated in tcp_parse_options. Ignore 13355 * all other TCP options... 13356 */ 13357 (void) tcp_parse_options(tcph, &tcpopt); 13358 } 13359 try_again:; 13360 mss = tcp->tcp_mss; 13361 gap = seg_seq - tcp->tcp_rnxt; 13362 rgap = tcp->tcp_rwnd - (gap + seg_len); 13363 /* 13364 * gap is the amount of sequence space between what we expect to see 13365 * and what we got for seg_seq. A positive value for gap means 13366 * something got lost. A negative value means we got some old stuff. 13367 */ 13368 if (gap < 0) { 13369 /* Old stuff present. Is the SYN in there? */ 13370 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 13371 (seg_len != 0)) { 13372 flags &= ~TH_SYN; 13373 seg_seq++; 13374 urp--; 13375 /* Recompute the gaps after noting the SYN. */ 13376 goto try_again; 13377 } 13378 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 13379 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 13380 (seg_len > -gap ? -gap : seg_len)); 13381 /* Remove the old stuff from seg_len. */ 13382 seg_len += gap; 13383 /* 13384 * Anything left? 13385 * Make sure to check for unack'd FIN when rest of data 13386 * has been previously ack'd. 13387 */ 13388 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 13389 /* 13390 * Resets are only valid if they lie within our offered 13391 * window. If the RST bit is set, we just ignore this 13392 * segment. 13393 */ 13394 if (flags & TH_RST) { 13395 freemsg(mp); 13396 return; 13397 } 13398 13399 /* 13400 * The arriving of dup data packets indicate that we 13401 * may have postponed an ack for too long, or the other 13402 * side's RTT estimate is out of shape. Start acking 13403 * more often. 13404 */ 13405 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 13406 tcp->tcp_rack_cnt >= 1 && 13407 tcp->tcp_rack_abs_max > 2) { 13408 tcp->tcp_rack_abs_max--; 13409 } 13410 tcp->tcp_rack_cur_max = 1; 13411 13412 /* 13413 * This segment is "unacceptable". None of its 13414 * sequence space lies within our advertized window. 13415 * 13416 * Adjust seg_len to the original value for tracing. 13417 */ 13418 seg_len -= gap; 13419 if (tcp->tcp_debug) { 13420 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13421 "tcp_rput: unacceptable, gap %d, rgap %d, " 13422 "flags 0x%x, seg_seq %u, seg_ack %u, " 13423 "seg_len %d, rnxt %u, snxt %u, %s", 13424 gap, rgap, flags, seg_seq, seg_ack, 13425 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 13426 tcp_display(tcp, NULL, 13427 DISP_ADDR_AND_PORT)); 13428 } 13429 13430 /* 13431 * Arrange to send an ACK in response to the 13432 * unacceptable segment per RFC 793 page 69. There 13433 * is only one small difference between ours and the 13434 * acceptability test in the RFC - we accept ACK-only 13435 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 13436 * will be generated. 13437 * 13438 * Note that we have to ACK an ACK-only packet at least 13439 * for stacks that send 0-length keep-alives with 13440 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 13441 * section 4.2.3.6. As long as we don't ever generate 13442 * an unacceptable packet in response to an incoming 13443 * packet that is unacceptable, it should not cause 13444 * "ACK wars". 13445 */ 13446 flags |= TH_ACK_NEEDED; 13447 13448 /* 13449 * Continue processing this segment in order to use the 13450 * ACK information it contains, but skip all other 13451 * sequence-number processing. Processing the ACK 13452 * information is necessary in order to 13453 * re-synchronize connections that may have lost 13454 * synchronization. 13455 * 13456 * We clear seg_len and flag fields related to 13457 * sequence number processing as they are not 13458 * to be trusted for an unacceptable segment. 13459 */ 13460 seg_len = 0; 13461 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13462 goto process_ack; 13463 } 13464 13465 /* Fix seg_seq, and chew the gap off the front. */ 13466 seg_seq = tcp->tcp_rnxt; 13467 urp += gap; 13468 do { 13469 mblk_t *mp2; 13470 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13471 (uintptr_t)UINT_MAX); 13472 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13473 if (gap > 0) { 13474 mp->b_rptr = mp->b_wptr - gap; 13475 break; 13476 } 13477 mp2 = mp; 13478 mp = mp->b_cont; 13479 freeb(mp2); 13480 } while (gap < 0); 13481 /* 13482 * If the urgent data has already been acknowledged, we 13483 * should ignore TH_URG below 13484 */ 13485 if (urp < 0) 13486 flags &= ~TH_URG; 13487 } 13488 /* 13489 * rgap is the amount of stuff received out of window. A negative 13490 * value is the amount out of window. 13491 */ 13492 if (rgap < 0) { 13493 mblk_t *mp2; 13494 13495 if (tcp->tcp_rwnd == 0) { 13496 BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); 13497 } else { 13498 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 13499 UPDATE_MIB(&tcps->tcps_mib, 13500 tcpInDataPastWinBytes, -rgap); 13501 } 13502 13503 /* 13504 * seg_len does not include the FIN, so if more than 13505 * just the FIN is out of window, we act like we don't 13506 * see it. (If just the FIN is out of window, rgap 13507 * will be zero and we will go ahead and acknowledge 13508 * the FIN.) 13509 */ 13510 flags &= ~TH_FIN; 13511 13512 /* Fix seg_len and make sure there is something left. */ 13513 seg_len += rgap; 13514 if (seg_len <= 0) { 13515 /* 13516 * Resets are only valid if they lie within our offered 13517 * window. If the RST bit is set, we just ignore this 13518 * segment. 13519 */ 13520 if (flags & TH_RST) { 13521 freemsg(mp); 13522 return; 13523 } 13524 13525 /* Per RFC 793, we need to send back an ACK. */ 13526 flags |= TH_ACK_NEEDED; 13527 13528 /* 13529 * Send SIGURG as soon as possible i.e. even 13530 * if the TH_URG was delivered in a window probe 13531 * packet (which will be unacceptable). 13532 * 13533 * We generate a signal if none has been generated 13534 * for this connection or if this is a new urgent 13535 * byte. Also send a zero-length "unmarked" message 13536 * to inform SIOCATMARK that this is not the mark. 13537 * 13538 * tcp_urp_last_valid is cleared when the T_exdata_ind 13539 * is sent up. This plus the check for old data 13540 * (gap >= 0) handles the wraparound of the sequence 13541 * number space without having to always track the 13542 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13543 * this max in its rcv_up variable). 13544 * 13545 * This prevents duplicate SIGURGS due to a "late" 13546 * zero-window probe when the T_EXDATA_IND has already 13547 * been sent up. 13548 */ 13549 if ((flags & TH_URG) && 13550 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13551 tcp->tcp_urp_last))) { 13552 mp1 = allocb(0, BPRI_MED); 13553 if (mp1 == NULL) { 13554 freemsg(mp); 13555 return; 13556 } 13557 if (!TCP_IS_DETACHED(tcp) && 13558 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13559 SIGURG)) { 13560 /* Try again on the rexmit. */ 13561 freemsg(mp1); 13562 freemsg(mp); 13563 return; 13564 } 13565 /* 13566 * If the next byte would be the mark 13567 * then mark with MARKNEXT else mark 13568 * with NOTMARKNEXT. 13569 */ 13570 if (gap == 0 && urp == 0) 13571 mp1->b_flag |= MSGMARKNEXT; 13572 else 13573 mp1->b_flag |= MSGNOTMARKNEXT; 13574 freemsg(tcp->tcp_urp_mark_mp); 13575 tcp->tcp_urp_mark_mp = mp1; 13576 flags |= TH_SEND_URP_MARK; 13577 tcp->tcp_urp_last_valid = B_TRUE; 13578 tcp->tcp_urp_last = urp + seg_seq; 13579 } 13580 /* 13581 * If this is a zero window probe, continue to 13582 * process the ACK part. But we need to set seg_len 13583 * to 0 to avoid data processing. Otherwise just 13584 * drop the segment and send back an ACK. 13585 */ 13586 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13587 flags &= ~(TH_SYN | TH_URG); 13588 seg_len = 0; 13589 goto process_ack; 13590 } else { 13591 freemsg(mp); 13592 goto ack_check; 13593 } 13594 } 13595 /* Pitch out of window stuff off the end. */ 13596 rgap = seg_len; 13597 mp2 = mp; 13598 do { 13599 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13600 (uintptr_t)INT_MAX); 13601 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13602 if (rgap < 0) { 13603 mp2->b_wptr += rgap; 13604 if ((mp1 = mp2->b_cont) != NULL) { 13605 mp2->b_cont = NULL; 13606 freemsg(mp1); 13607 } 13608 break; 13609 } 13610 } while ((mp2 = mp2->b_cont) != NULL); 13611 } 13612 ok:; 13613 /* 13614 * TCP should check ECN info for segments inside the window only. 13615 * Therefore the check should be done here. 13616 */ 13617 if (tcp->tcp_ecn_ok) { 13618 if (flags & TH_CWR) { 13619 tcp->tcp_ecn_echo_on = B_FALSE; 13620 } 13621 /* 13622 * Note that both ECN_CE and CWR can be set in the 13623 * same segment. In this case, we once again turn 13624 * on ECN_ECHO. 13625 */ 13626 if (tcp->tcp_ipversion == IPV4_VERSION) { 13627 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13628 13629 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13630 tcp->tcp_ecn_echo_on = B_TRUE; 13631 } 13632 } else { 13633 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13634 13635 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13636 htonl(IPH_ECN_CE << 20)) { 13637 tcp->tcp_ecn_echo_on = B_TRUE; 13638 } 13639 } 13640 } 13641 13642 /* 13643 * Check whether we can update tcp_ts_recent. This test is 13644 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13645 * Extensions for High Performance: An Update", Internet Draft. 13646 */ 13647 if (tcp->tcp_snd_ts_ok && 13648 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13649 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13650 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13651 tcp->tcp_last_rcv_lbolt = lbolt64; 13652 } 13653 13654 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13655 /* 13656 * FIN in an out of order segment. We record this in 13657 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13658 * Clear the FIN so that any check on FIN flag will fail. 13659 * Remember that FIN also counts in the sequence number 13660 * space. So we need to ack out of order FIN only segments. 13661 */ 13662 if (flags & TH_FIN) { 13663 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13664 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13665 flags &= ~TH_FIN; 13666 flags |= TH_ACK_NEEDED; 13667 } 13668 if (seg_len > 0) { 13669 /* Fill in the SACK blk list. */ 13670 if (tcp->tcp_snd_sack_ok) { 13671 ASSERT(tcp->tcp_sack_info != NULL); 13672 tcp_sack_insert(tcp->tcp_sack_list, 13673 seg_seq, seg_seq + seg_len, 13674 &(tcp->tcp_num_sack_blk)); 13675 } 13676 13677 /* 13678 * Attempt reassembly and see if we have something 13679 * ready to go. 13680 */ 13681 mp = tcp_reass(tcp, mp, seg_seq); 13682 /* Always ack out of order packets */ 13683 flags |= TH_ACK_NEEDED | TH_PUSH; 13684 if (mp) { 13685 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13686 (uintptr_t)INT_MAX); 13687 seg_len = mp->b_cont ? msgdsize(mp) : 13688 (int)(mp->b_wptr - mp->b_rptr); 13689 seg_seq = tcp->tcp_rnxt; 13690 /* 13691 * A gap is filled and the seq num and len 13692 * of the gap match that of a previously 13693 * received FIN, put the FIN flag back in. 13694 */ 13695 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13696 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13697 flags |= TH_FIN; 13698 tcp->tcp_valid_bits &= 13699 ~TCP_OFO_FIN_VALID; 13700 } 13701 } else { 13702 /* 13703 * Keep going even with NULL mp. 13704 * There may be a useful ACK or something else 13705 * we don't want to miss. 13706 * 13707 * But TCP should not perform fast retransmit 13708 * because of the ack number. TCP uses 13709 * seg_len == 0 to determine if it is a pure 13710 * ACK. And this is not a pure ACK. 13711 */ 13712 seg_len = 0; 13713 ofo_seg = B_TRUE; 13714 } 13715 } 13716 } else if (seg_len > 0) { 13717 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 13718 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 13719 /* 13720 * If an out of order FIN was received before, and the seq 13721 * num and len of the new segment match that of the FIN, 13722 * put the FIN flag back in. 13723 */ 13724 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13725 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13726 flags |= TH_FIN; 13727 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13728 } 13729 } 13730 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13731 if (flags & TH_RST) { 13732 freemsg(mp); 13733 switch (tcp->tcp_state) { 13734 case TCPS_SYN_RCVD: 13735 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13736 break; 13737 case TCPS_ESTABLISHED: 13738 case TCPS_FIN_WAIT_1: 13739 case TCPS_FIN_WAIT_2: 13740 case TCPS_CLOSE_WAIT: 13741 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13742 break; 13743 case TCPS_CLOSING: 13744 case TCPS_LAST_ACK: 13745 (void) tcp_clean_death(tcp, 0, 16); 13746 break; 13747 default: 13748 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13749 (void) tcp_clean_death(tcp, ENXIO, 17); 13750 break; 13751 } 13752 return; 13753 } 13754 if (flags & TH_SYN) { 13755 /* 13756 * See RFC 793, Page 71 13757 * 13758 * The seq number must be in the window as it should 13759 * be "fixed" above. If it is outside window, it should 13760 * be already rejected. Note that we allow seg_seq to be 13761 * rnxt + rwnd because we want to accept 0 window probe. 13762 */ 13763 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13764 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13765 freemsg(mp); 13766 /* 13767 * If the ACK flag is not set, just use our snxt as the 13768 * seq number of the RST segment. 13769 */ 13770 if (!(flags & TH_ACK)) { 13771 seg_ack = tcp->tcp_snxt; 13772 } 13773 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13774 TH_RST|TH_ACK); 13775 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13776 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13777 return; 13778 } 13779 /* 13780 * urp could be -1 when the urp field in the packet is 0 13781 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13782 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13783 */ 13784 if (flags & TH_URG && urp >= 0) { 13785 if (!tcp->tcp_urp_last_valid || 13786 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13787 /* 13788 * If we haven't generated the signal yet for this 13789 * urgent pointer value, do it now. Also, send up a 13790 * zero-length M_DATA indicating whether or not this is 13791 * the mark. The latter is not needed when a 13792 * T_EXDATA_IND is sent up. However, if there are 13793 * allocation failures this code relies on the sender 13794 * retransmitting and the socket code for determining 13795 * the mark should not block waiting for the peer to 13796 * transmit. Thus, for simplicity we always send up the 13797 * mark indication. 13798 */ 13799 mp1 = allocb(0, BPRI_MED); 13800 if (mp1 == NULL) { 13801 freemsg(mp); 13802 return; 13803 } 13804 if (!TCP_IS_DETACHED(tcp) && 13805 !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) { 13806 /* Try again on the rexmit. */ 13807 freemsg(mp1); 13808 freemsg(mp); 13809 return; 13810 } 13811 /* 13812 * Mark with NOTMARKNEXT for now. 13813 * The code below will change this to MARKNEXT 13814 * if we are at the mark. 13815 * 13816 * If there are allocation failures (e.g. in dupmsg 13817 * below) the next time tcp_rput_data sees the urgent 13818 * segment it will send up the MSG*MARKNEXT message. 13819 */ 13820 mp1->b_flag |= MSGNOTMARKNEXT; 13821 freemsg(tcp->tcp_urp_mark_mp); 13822 tcp->tcp_urp_mark_mp = mp1; 13823 flags |= TH_SEND_URP_MARK; 13824 #ifdef DEBUG 13825 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13826 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13827 "last %x, %s", 13828 seg_seq, urp, tcp->tcp_urp_last, 13829 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13830 #endif /* DEBUG */ 13831 tcp->tcp_urp_last_valid = B_TRUE; 13832 tcp->tcp_urp_last = urp + seg_seq; 13833 } else if (tcp->tcp_urp_mark_mp != NULL) { 13834 /* 13835 * An allocation failure prevented the previous 13836 * tcp_rput_data from sending up the allocated 13837 * MSG*MARKNEXT message - send it up this time 13838 * around. 13839 */ 13840 flags |= TH_SEND_URP_MARK; 13841 } 13842 13843 /* 13844 * If the urgent byte is in this segment, make sure that it is 13845 * all by itself. This makes it much easier to deal with the 13846 * possibility of an allocation failure on the T_exdata_ind. 13847 * Note that seg_len is the number of bytes in the segment, and 13848 * urp is the offset into the segment of the urgent byte. 13849 * urp < seg_len means that the urgent byte is in this segment. 13850 */ 13851 if (urp < seg_len) { 13852 if (seg_len != 1) { 13853 uint32_t tmp_rnxt; 13854 /* 13855 * Break it up and feed it back in. 13856 * Re-attach the IP header. 13857 */ 13858 mp->b_rptr = iphdr; 13859 if (urp > 0) { 13860 /* 13861 * There is stuff before the urgent 13862 * byte. 13863 */ 13864 mp1 = dupmsg(mp); 13865 if (!mp1) { 13866 /* 13867 * Trim from urgent byte on. 13868 * The rest will come back. 13869 */ 13870 (void) adjmsg(mp, 13871 urp - seg_len); 13872 tcp_rput_data(connp, 13873 mp, NULL); 13874 return; 13875 } 13876 (void) adjmsg(mp1, urp - seg_len); 13877 /* Feed this piece back in. */ 13878 tmp_rnxt = tcp->tcp_rnxt; 13879 tcp_rput_data(connp, mp1, NULL); 13880 /* 13881 * If the data passed back in was not 13882 * processed (ie: bad ACK) sending 13883 * the remainder back in will cause a 13884 * loop. In this case, drop the 13885 * packet and let the sender try 13886 * sending a good packet. 13887 */ 13888 if (tmp_rnxt == tcp->tcp_rnxt) { 13889 freemsg(mp); 13890 return; 13891 } 13892 } 13893 if (urp != seg_len - 1) { 13894 uint32_t tmp_rnxt; 13895 /* 13896 * There is stuff after the urgent 13897 * byte. 13898 */ 13899 mp1 = dupmsg(mp); 13900 if (!mp1) { 13901 /* 13902 * Trim everything beyond the 13903 * urgent byte. The rest will 13904 * come back. 13905 */ 13906 (void) adjmsg(mp, 13907 urp + 1 - seg_len); 13908 tcp_rput_data(connp, 13909 mp, NULL); 13910 return; 13911 } 13912 (void) adjmsg(mp1, urp + 1 - seg_len); 13913 tmp_rnxt = tcp->tcp_rnxt; 13914 tcp_rput_data(connp, mp1, NULL); 13915 /* 13916 * If the data passed back in was not 13917 * processed (ie: bad ACK) sending 13918 * the remainder back in will cause a 13919 * loop. In this case, drop the 13920 * packet and let the sender try 13921 * sending a good packet. 13922 */ 13923 if (tmp_rnxt == tcp->tcp_rnxt) { 13924 freemsg(mp); 13925 return; 13926 } 13927 } 13928 tcp_rput_data(connp, mp, NULL); 13929 return; 13930 } 13931 /* 13932 * This segment contains only the urgent byte. We 13933 * have to allocate the T_exdata_ind, if we can. 13934 */ 13935 if (!tcp->tcp_urp_mp) { 13936 struct T_exdata_ind *tei; 13937 mp1 = allocb(sizeof (struct T_exdata_ind), 13938 BPRI_MED); 13939 if (!mp1) { 13940 /* 13941 * Sigh... It'll be back. 13942 * Generate any MSG*MARK message now. 13943 */ 13944 freemsg(mp); 13945 seg_len = 0; 13946 if (flags & TH_SEND_URP_MARK) { 13947 13948 13949 ASSERT(tcp->tcp_urp_mark_mp); 13950 tcp->tcp_urp_mark_mp->b_flag &= 13951 ~MSGNOTMARKNEXT; 13952 tcp->tcp_urp_mark_mp->b_flag |= 13953 MSGMARKNEXT; 13954 } 13955 goto ack_check; 13956 } 13957 mp1->b_datap->db_type = M_PROTO; 13958 tei = (struct T_exdata_ind *)mp1->b_rptr; 13959 tei->PRIM_type = T_EXDATA_IND; 13960 tei->MORE_flag = 0; 13961 mp1->b_wptr = (uchar_t *)&tei[1]; 13962 tcp->tcp_urp_mp = mp1; 13963 #ifdef DEBUG 13964 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13965 "tcp_rput: allocated exdata_ind %s", 13966 tcp_display(tcp, NULL, 13967 DISP_PORT_ONLY)); 13968 #endif /* DEBUG */ 13969 /* 13970 * There is no need to send a separate MSG*MARK 13971 * message since the T_EXDATA_IND will be sent 13972 * now. 13973 */ 13974 flags &= ~TH_SEND_URP_MARK; 13975 freemsg(tcp->tcp_urp_mark_mp); 13976 tcp->tcp_urp_mark_mp = NULL; 13977 } 13978 /* 13979 * Now we are all set. On the next putnext upstream, 13980 * tcp_urp_mp will be non-NULL and will get prepended 13981 * to what has to be this piece containing the urgent 13982 * byte. If for any reason we abort this segment below, 13983 * if it comes back, we will have this ready, or it 13984 * will get blown off in close. 13985 */ 13986 } else if (urp == seg_len) { 13987 /* 13988 * The urgent byte is the next byte after this sequence 13989 * number. If there is data it is marked with 13990 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 13991 * since it is not needed. Otherwise, if the code 13992 * above just allocated a zero-length tcp_urp_mark_mp 13993 * message, that message is tagged with MSGMARKNEXT. 13994 * Sending up these MSGMARKNEXT messages makes 13995 * SIOCATMARK work correctly even though 13996 * the T_EXDATA_IND will not be sent up until the 13997 * urgent byte arrives. 13998 */ 13999 if (seg_len != 0) { 14000 flags |= TH_MARKNEXT_NEEDED; 14001 freemsg(tcp->tcp_urp_mark_mp); 14002 tcp->tcp_urp_mark_mp = NULL; 14003 flags &= ~TH_SEND_URP_MARK; 14004 } else if (tcp->tcp_urp_mark_mp != NULL) { 14005 flags |= TH_SEND_URP_MARK; 14006 tcp->tcp_urp_mark_mp->b_flag &= 14007 ~MSGNOTMARKNEXT; 14008 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 14009 } 14010 #ifdef DEBUG 14011 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14012 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 14013 seg_len, flags, 14014 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14015 #endif /* DEBUG */ 14016 } else { 14017 /* Data left until we hit mark */ 14018 #ifdef DEBUG 14019 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14020 "tcp_rput: URP %d bytes left, %s", 14021 urp - seg_len, tcp_display(tcp, NULL, 14022 DISP_PORT_ONLY)); 14023 #endif /* DEBUG */ 14024 } 14025 } 14026 14027 process_ack: 14028 if (!(flags & TH_ACK)) { 14029 freemsg(mp); 14030 goto xmit_check; 14031 } 14032 } 14033 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 14034 14035 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 14036 tcp->tcp_ip_forward_progress = B_TRUE; 14037 if (tcp->tcp_state == TCPS_SYN_RCVD) { 14038 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 14039 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 14040 /* 3-way handshake complete - pass up the T_CONN_IND */ 14041 tcp_t *listener = tcp->tcp_listener; 14042 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 14043 14044 tcp->tcp_tconnind_started = B_TRUE; 14045 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14046 /* 14047 * We are here means eager is fine but it can 14048 * get a TH_RST at any point between now and till 14049 * accept completes and disappear. We need to 14050 * ensure that reference to eager is valid after 14051 * we get out of eager's perimeter. So we do 14052 * an extra refhold. 14053 */ 14054 CONN_INC_REF(connp); 14055 14056 /* 14057 * The listener also exists because of the refhold 14058 * done in tcp_conn_request. Its possible that it 14059 * might have closed. We will check that once we 14060 * get inside listeners context. 14061 */ 14062 CONN_INC_REF(listener->tcp_connp); 14063 if (listener->tcp_connp->conn_sqp == 14064 connp->conn_sqp) { 14065 tcp_send_conn_ind(listener->tcp_connp, mp, 14066 listener->tcp_connp->conn_sqp); 14067 CONN_DEC_REF(listener->tcp_connp); 14068 } else if (!tcp->tcp_loopback) { 14069 squeue_fill(listener->tcp_connp->conn_sqp, mp, 14070 tcp_send_conn_ind, 14071 listener->tcp_connp, SQTAG_TCP_CONN_IND); 14072 } else { 14073 squeue_enter(listener->tcp_connp->conn_sqp, mp, 14074 tcp_send_conn_ind, listener->tcp_connp, 14075 SQTAG_TCP_CONN_IND); 14076 } 14077 } 14078 14079 if (tcp->tcp_active_open) { 14080 /* 14081 * We are seeing the final ack in the three way 14082 * hand shake of a active open'ed connection 14083 * so we must send up a T_CONN_CON 14084 */ 14085 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 14086 freemsg(mp); 14087 return; 14088 } 14089 /* 14090 * Don't fuse the loopback endpoints for 14091 * simultaneous active opens. 14092 */ 14093 if (tcp->tcp_loopback) { 14094 TCP_STAT(tcps, tcp_fusion_unfusable); 14095 tcp->tcp_unfusable = B_TRUE; 14096 } 14097 } 14098 14099 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 14100 bytes_acked--; 14101 /* SYN was acked - making progress */ 14102 if (tcp->tcp_ipversion == IPV6_VERSION) 14103 tcp->tcp_ip_forward_progress = B_TRUE; 14104 14105 /* 14106 * If SYN was retransmitted, need to reset all 14107 * retransmission info as this segment will be 14108 * treated as a dup ACK. 14109 */ 14110 if (tcp->tcp_rexmit) { 14111 tcp->tcp_rexmit = B_FALSE; 14112 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14113 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14114 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14115 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14116 tcp->tcp_ms_we_have_waited = 0; 14117 tcp->tcp_cwnd = mss; 14118 } 14119 14120 /* 14121 * We set the send window to zero here. 14122 * This is needed if there is data to be 14123 * processed already on the queue. 14124 * Later (at swnd_update label), the 14125 * "new_swnd > tcp_swnd" condition is satisfied 14126 * the XMIT_NEEDED flag is set in the current 14127 * (SYN_RCVD) state. This ensures tcp_wput_data() is 14128 * called if there is already data on queue in 14129 * this state. 14130 */ 14131 tcp->tcp_swnd = 0; 14132 14133 if (new_swnd > tcp->tcp_max_swnd) 14134 tcp->tcp_max_swnd = new_swnd; 14135 tcp->tcp_swl1 = seg_seq; 14136 tcp->tcp_swl2 = seg_ack; 14137 tcp->tcp_state = TCPS_ESTABLISHED; 14138 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 14139 14140 /* Fuse when both sides are in ESTABLISHED state */ 14141 if (tcp->tcp_loopback && do_tcp_fusion) 14142 tcp_fuse(tcp, iphdr, tcph); 14143 14144 } 14145 /* This code follows 4.4BSD-Lite2 mostly. */ 14146 if (bytes_acked < 0) 14147 goto est; 14148 14149 /* 14150 * If TCP is ECN capable and the congestion experience bit is 14151 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 14152 * done once per window (or more loosely, per RTT). 14153 */ 14154 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 14155 tcp->tcp_cwr = B_FALSE; 14156 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 14157 if (!tcp->tcp_cwr) { 14158 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 14159 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 14160 tcp->tcp_cwnd = npkt * mss; 14161 /* 14162 * If the cwnd is 0, use the timer to clock out 14163 * new segments. This is required by the ECN spec. 14164 */ 14165 if (npkt == 0) { 14166 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14167 /* 14168 * This makes sure that when the ACK comes 14169 * back, we will increase tcp_cwnd by 1 MSS. 14170 */ 14171 tcp->tcp_cwnd_cnt = 0; 14172 } 14173 tcp->tcp_cwr = B_TRUE; 14174 /* 14175 * This marks the end of the current window of in 14176 * flight data. That is why we don't use 14177 * tcp_suna + tcp_swnd. Only data in flight can 14178 * provide ECN info. 14179 */ 14180 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14181 tcp->tcp_ecn_cwr_sent = B_FALSE; 14182 } 14183 } 14184 14185 mp1 = tcp->tcp_xmit_head; 14186 if (bytes_acked == 0) { 14187 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 14188 int dupack_cnt; 14189 14190 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 14191 /* 14192 * Fast retransmit. When we have seen exactly three 14193 * identical ACKs while we have unacked data 14194 * outstanding we take it as a hint that our peer 14195 * dropped something. 14196 * 14197 * If TCP is retransmitting, don't do fast retransmit. 14198 */ 14199 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 14200 ! tcp->tcp_rexmit) { 14201 /* Do Limited Transmit */ 14202 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 14203 tcps->tcps_dupack_fast_retransmit) { 14204 /* 14205 * RFC 3042 14206 * 14207 * What we need to do is temporarily 14208 * increase tcp_cwnd so that new 14209 * data can be sent if it is allowed 14210 * by the receive window (tcp_rwnd). 14211 * tcp_wput_data() will take care of 14212 * the rest. 14213 * 14214 * If the connection is SACK capable, 14215 * only do limited xmit when there 14216 * is SACK info. 14217 * 14218 * Note how tcp_cwnd is incremented. 14219 * The first dup ACK will increase 14220 * it by 1 MSS. The second dup ACK 14221 * will increase it by 2 MSS. This 14222 * means that only 1 new segment will 14223 * be sent for each dup ACK. 14224 */ 14225 if (tcp->tcp_unsent > 0 && 14226 (!tcp->tcp_snd_sack_ok || 14227 (tcp->tcp_snd_sack_ok && 14228 tcp->tcp_notsack_list != NULL))) { 14229 tcp->tcp_cwnd += mss << 14230 (tcp->tcp_dupack_cnt - 1); 14231 flags |= TH_LIMIT_XMIT; 14232 } 14233 } else if (dupack_cnt == 14234 tcps->tcps_dupack_fast_retransmit) { 14235 14236 /* 14237 * If we have reduced tcp_ssthresh 14238 * because of ECN, do not reduce it again 14239 * unless it is already one window of data 14240 * away. After one window of data, tcp_cwr 14241 * should then be cleared. Note that 14242 * for non ECN capable connection, tcp_cwr 14243 * should always be false. 14244 * 14245 * Adjust cwnd since the duplicate 14246 * ack indicates that a packet was 14247 * dropped (due to congestion.) 14248 */ 14249 if (!tcp->tcp_cwr) { 14250 npkt = ((tcp->tcp_snxt - 14251 tcp->tcp_suna) >> 1) / mss; 14252 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 14253 mss; 14254 tcp->tcp_cwnd = (npkt + 14255 tcp->tcp_dupack_cnt) * mss; 14256 } 14257 if (tcp->tcp_ecn_ok) { 14258 tcp->tcp_cwr = B_TRUE; 14259 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14260 tcp->tcp_ecn_cwr_sent = B_FALSE; 14261 } 14262 14263 /* 14264 * We do Hoe's algorithm. Refer to her 14265 * paper "Improving the Start-up Behavior 14266 * of a Congestion Control Scheme for TCP," 14267 * appeared in SIGCOMM'96. 14268 * 14269 * Save highest seq no we have sent so far. 14270 * Be careful about the invisible FIN byte. 14271 */ 14272 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 14273 (tcp->tcp_unsent == 0)) { 14274 tcp->tcp_rexmit_max = tcp->tcp_fss; 14275 } else { 14276 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14277 } 14278 14279 /* 14280 * Do not allow bursty traffic during. 14281 * fast recovery. Refer to Fall and Floyd's 14282 * paper "Simulation-based Comparisons of 14283 * Tahoe, Reno and SACK TCP" (in CCR?) 14284 * This is a best current practise. 14285 */ 14286 tcp->tcp_snd_burst = TCP_CWND_SS; 14287 14288 /* 14289 * For SACK: 14290 * Calculate tcp_pipe, which is the 14291 * estimated number of bytes in 14292 * network. 14293 * 14294 * tcp_fack is the highest sack'ed seq num 14295 * TCP has received. 14296 * 14297 * tcp_pipe is explained in the above quoted 14298 * Fall and Floyd's paper. tcp_fack is 14299 * explained in Mathis and Mahdavi's 14300 * "Forward Acknowledgment: Refining TCP 14301 * Congestion Control" in SIGCOMM '96. 14302 */ 14303 if (tcp->tcp_snd_sack_ok) { 14304 ASSERT(tcp->tcp_sack_info != NULL); 14305 if (tcp->tcp_notsack_list != NULL) { 14306 tcp->tcp_pipe = tcp->tcp_snxt - 14307 tcp->tcp_fack; 14308 tcp->tcp_sack_snxt = seg_ack; 14309 flags |= TH_NEED_SACK_REXMIT; 14310 } else { 14311 /* 14312 * Always initialize tcp_pipe 14313 * even though we don't have 14314 * any SACK info. If later 14315 * we get SACK info and 14316 * tcp_pipe is not initialized, 14317 * funny things will happen. 14318 */ 14319 tcp->tcp_pipe = 14320 tcp->tcp_cwnd_ssthresh; 14321 } 14322 } else { 14323 flags |= TH_REXMIT_NEEDED; 14324 } /* tcp_snd_sack_ok */ 14325 14326 } else { 14327 /* 14328 * Here we perform congestion 14329 * avoidance, but NOT slow start. 14330 * This is known as the Fast 14331 * Recovery Algorithm. 14332 */ 14333 if (tcp->tcp_snd_sack_ok && 14334 tcp->tcp_notsack_list != NULL) { 14335 flags |= TH_NEED_SACK_REXMIT; 14336 tcp->tcp_pipe -= mss; 14337 if (tcp->tcp_pipe < 0) 14338 tcp->tcp_pipe = 0; 14339 } else { 14340 /* 14341 * We know that one more packet has 14342 * left the pipe thus we can update 14343 * cwnd. 14344 */ 14345 cwnd = tcp->tcp_cwnd + mss; 14346 if (cwnd > tcp->tcp_cwnd_max) 14347 cwnd = tcp->tcp_cwnd_max; 14348 tcp->tcp_cwnd = cwnd; 14349 if (tcp->tcp_unsent > 0) 14350 flags |= TH_XMIT_NEEDED; 14351 } 14352 } 14353 } 14354 } else if (tcp->tcp_zero_win_probe) { 14355 /* 14356 * If the window has opened, need to arrange 14357 * to send additional data. 14358 */ 14359 if (new_swnd != 0) { 14360 /* tcp_suna != tcp_snxt */ 14361 /* Packet contains a window update */ 14362 BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); 14363 tcp->tcp_zero_win_probe = 0; 14364 tcp->tcp_timer_backoff = 0; 14365 tcp->tcp_ms_we_have_waited = 0; 14366 14367 /* 14368 * Transmit starting with tcp_suna since 14369 * the one byte probe is not ack'ed. 14370 * If TCP has sent more than one identical 14371 * probe, tcp_rexmit will be set. That means 14372 * tcp_ss_rexmit() will send out the one 14373 * byte along with new data. Otherwise, 14374 * fake the retransmission. 14375 */ 14376 flags |= TH_XMIT_NEEDED; 14377 if (!tcp->tcp_rexmit) { 14378 tcp->tcp_rexmit = B_TRUE; 14379 tcp->tcp_dupack_cnt = 0; 14380 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 14381 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 14382 } 14383 } 14384 } 14385 goto swnd_update; 14386 } 14387 14388 /* 14389 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 14390 * If the ACK value acks something that we have not yet sent, it might 14391 * be an old duplicate segment. Send an ACK to re-synchronize the 14392 * other side. 14393 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 14394 * state is handled above, so we can always just drop the segment and 14395 * send an ACK here. 14396 * 14397 * Should we send ACKs in response to ACK only segments? 14398 */ 14399 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 14400 BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); 14401 /* drop the received segment */ 14402 freemsg(mp); 14403 14404 /* 14405 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 14406 * greater than 0, check if the number of such 14407 * bogus ACks is greater than that count. If yes, 14408 * don't send back any ACK. This prevents TCP from 14409 * getting into an ACK storm if somehow an attacker 14410 * successfully spoofs an acceptable segment to our 14411 * peer. 14412 */ 14413 if (tcp_drop_ack_unsent_cnt > 0 && 14414 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 14415 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 14416 return; 14417 } 14418 mp = tcp_ack_mp(tcp); 14419 if (mp != NULL) { 14420 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 14421 BUMP_LOCAL(tcp->tcp_obsegs); 14422 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 14423 tcp_send_data(tcp, tcp->tcp_wq, mp); 14424 } 14425 return; 14426 } 14427 14428 /* 14429 * TCP gets a new ACK, update the notsack'ed list to delete those 14430 * blocks that are covered by this ACK. 14431 */ 14432 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 14433 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 14434 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 14435 } 14436 14437 /* 14438 * If we got an ACK after fast retransmit, check to see 14439 * if it is a partial ACK. If it is not and the congestion 14440 * window was inflated to account for the other side's 14441 * cached packets, retract it. If it is, do Hoe's algorithm. 14442 */ 14443 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 14444 ASSERT(tcp->tcp_rexmit == B_FALSE); 14445 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 14446 tcp->tcp_dupack_cnt = 0; 14447 /* 14448 * Restore the orig tcp_cwnd_ssthresh after 14449 * fast retransmit phase. 14450 */ 14451 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 14452 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14453 } 14454 tcp->tcp_rexmit_max = seg_ack; 14455 tcp->tcp_cwnd_cnt = 0; 14456 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14457 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14458 14459 /* 14460 * Remove all notsack info to avoid confusion with 14461 * the next fast retrasnmit/recovery phase. 14462 */ 14463 if (tcp->tcp_snd_sack_ok && 14464 tcp->tcp_notsack_list != NULL) { 14465 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 14466 } 14467 } else { 14468 if (tcp->tcp_snd_sack_ok && 14469 tcp->tcp_notsack_list != NULL) { 14470 flags |= TH_NEED_SACK_REXMIT; 14471 tcp->tcp_pipe -= mss; 14472 if (tcp->tcp_pipe < 0) 14473 tcp->tcp_pipe = 0; 14474 } else { 14475 /* 14476 * Hoe's algorithm: 14477 * 14478 * Retransmit the unack'ed segment and 14479 * restart fast recovery. Note that we 14480 * need to scale back tcp_cwnd to the 14481 * original value when we started fast 14482 * recovery. This is to prevent overly 14483 * aggressive behaviour in sending new 14484 * segments. 14485 */ 14486 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14487 tcps->tcps_dupack_fast_retransmit * mss; 14488 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14489 flags |= TH_REXMIT_NEEDED; 14490 } 14491 } 14492 } else { 14493 tcp->tcp_dupack_cnt = 0; 14494 if (tcp->tcp_rexmit) { 14495 /* 14496 * TCP is retranmitting. If the ACK ack's all 14497 * outstanding data, update tcp_rexmit_max and 14498 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14499 * to the correct value. 14500 * 14501 * Note that SEQ_LEQ() is used. This is to avoid 14502 * unnecessary fast retransmit caused by dup ACKs 14503 * received when TCP does slow start retransmission 14504 * after a time out. During this phase, TCP may 14505 * send out segments which are already received. 14506 * This causes dup ACKs to be sent back. 14507 */ 14508 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14509 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14510 tcp->tcp_rexmit_nxt = seg_ack; 14511 } 14512 if (seg_ack != tcp->tcp_rexmit_max) { 14513 flags |= TH_XMIT_NEEDED; 14514 } 14515 } else { 14516 tcp->tcp_rexmit = B_FALSE; 14517 tcp->tcp_xmit_zc_clean = B_FALSE; 14518 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14519 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14520 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14521 } 14522 tcp->tcp_ms_we_have_waited = 0; 14523 } 14524 } 14525 14526 BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); 14527 UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); 14528 tcp->tcp_suna = seg_ack; 14529 if (tcp->tcp_zero_win_probe != 0) { 14530 tcp->tcp_zero_win_probe = 0; 14531 tcp->tcp_timer_backoff = 0; 14532 } 14533 14534 /* 14535 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14536 * Note that it cannot be the SYN being ack'ed. The code flow 14537 * will not reach here. 14538 */ 14539 if (mp1 == NULL) { 14540 goto fin_acked; 14541 } 14542 14543 /* 14544 * Update the congestion window. 14545 * 14546 * If TCP is not ECN capable or TCP is ECN capable but the 14547 * congestion experience bit is not set, increase the tcp_cwnd as 14548 * usual. 14549 */ 14550 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14551 cwnd = tcp->tcp_cwnd; 14552 add = mss; 14553 14554 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14555 /* 14556 * This is to prevent an increase of less than 1 MSS of 14557 * tcp_cwnd. With partial increase, tcp_wput_data() 14558 * may send out tinygrams in order to preserve mblk 14559 * boundaries. 14560 * 14561 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14562 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14563 * increased by 1 MSS for every RTTs. 14564 */ 14565 if (tcp->tcp_cwnd_cnt <= 0) { 14566 tcp->tcp_cwnd_cnt = cwnd + add; 14567 } else { 14568 tcp->tcp_cwnd_cnt -= add; 14569 add = 0; 14570 } 14571 } 14572 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14573 } 14574 14575 /* See if the latest urgent data has been acknowledged */ 14576 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14577 SEQ_GT(seg_ack, tcp->tcp_urg)) 14578 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14579 14580 /* Can we update the RTT estimates? */ 14581 if (tcp->tcp_snd_ts_ok) { 14582 /* Ignore zero timestamp echo-reply. */ 14583 if (tcpopt.tcp_opt_ts_ecr != 0) { 14584 tcp_set_rto(tcp, (int32_t)lbolt - 14585 (int32_t)tcpopt.tcp_opt_ts_ecr); 14586 } 14587 14588 /* If needed, restart the timer. */ 14589 if (tcp->tcp_set_timer == 1) { 14590 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14591 tcp->tcp_set_timer = 0; 14592 } 14593 /* 14594 * Update tcp_csuna in case the other side stops sending 14595 * us timestamps. 14596 */ 14597 tcp->tcp_csuna = tcp->tcp_snxt; 14598 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14599 /* 14600 * An ACK sequence we haven't seen before, so get the RTT 14601 * and update the RTO. But first check if the timestamp is 14602 * valid to use. 14603 */ 14604 if ((mp1->b_next != NULL) && 14605 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14606 tcp_set_rto(tcp, (int32_t)lbolt - 14607 (int32_t)(intptr_t)mp1->b_prev); 14608 else 14609 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14610 14611 /* Remeber the last sequence to be ACKed */ 14612 tcp->tcp_csuna = seg_ack; 14613 if (tcp->tcp_set_timer == 1) { 14614 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14615 tcp->tcp_set_timer = 0; 14616 } 14617 } else { 14618 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14619 } 14620 14621 /* Eat acknowledged bytes off the xmit queue. */ 14622 for (;;) { 14623 mblk_t *mp2; 14624 uchar_t *wptr; 14625 14626 wptr = mp1->b_wptr; 14627 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14628 bytes_acked -= (int)(wptr - mp1->b_rptr); 14629 if (bytes_acked < 0) { 14630 mp1->b_rptr = wptr + bytes_acked; 14631 /* 14632 * Set a new timestamp if all the bytes timed by the 14633 * old timestamp have been ack'ed. 14634 */ 14635 if (SEQ_GT(seg_ack, 14636 (uint32_t)(uintptr_t)(mp1->b_next))) { 14637 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14638 mp1->b_next = NULL; 14639 } 14640 break; 14641 } 14642 mp1->b_next = NULL; 14643 mp1->b_prev = NULL; 14644 mp2 = mp1; 14645 mp1 = mp1->b_cont; 14646 14647 /* 14648 * This notification is required for some zero-copy 14649 * clients to maintain a copy semantic. After the data 14650 * is ack'ed, client is safe to modify or reuse the buffer. 14651 */ 14652 if (tcp->tcp_snd_zcopy_aware && 14653 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14654 tcp_zcopy_notify(tcp); 14655 freeb(mp2); 14656 if (bytes_acked == 0) { 14657 if (mp1 == NULL) { 14658 /* Everything is ack'ed, clear the tail. */ 14659 tcp->tcp_xmit_tail = NULL; 14660 /* 14661 * Cancel the timer unless we are still 14662 * waiting for an ACK for the FIN packet. 14663 */ 14664 if (tcp->tcp_timer_tid != 0 && 14665 tcp->tcp_snxt == tcp->tcp_suna) { 14666 (void) TCP_TIMER_CANCEL(tcp, 14667 tcp->tcp_timer_tid); 14668 tcp->tcp_timer_tid = 0; 14669 } 14670 goto pre_swnd_update; 14671 } 14672 if (mp2 != tcp->tcp_xmit_tail) 14673 break; 14674 tcp->tcp_xmit_tail = mp1; 14675 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14676 (uintptr_t)INT_MAX); 14677 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14678 mp1->b_rptr); 14679 break; 14680 } 14681 if (mp1 == NULL) { 14682 /* 14683 * More was acked but there is nothing more 14684 * outstanding. This means that the FIN was 14685 * just acked or that we're talking to a clown. 14686 */ 14687 fin_acked: 14688 ASSERT(tcp->tcp_fin_sent); 14689 tcp->tcp_xmit_tail = NULL; 14690 if (tcp->tcp_fin_sent) { 14691 /* FIN was acked - making progress */ 14692 if (tcp->tcp_ipversion == IPV6_VERSION && 14693 !tcp->tcp_fin_acked) 14694 tcp->tcp_ip_forward_progress = B_TRUE; 14695 tcp->tcp_fin_acked = B_TRUE; 14696 if (tcp->tcp_linger_tid != 0 && 14697 TCP_TIMER_CANCEL(tcp, 14698 tcp->tcp_linger_tid) >= 0) { 14699 tcp_stop_lingering(tcp); 14700 freemsg(mp); 14701 mp = NULL; 14702 } 14703 } else { 14704 /* 14705 * We should never get here because 14706 * we have already checked that the 14707 * number of bytes ack'ed should be 14708 * smaller than or equal to what we 14709 * have sent so far (it is the 14710 * acceptability check of the ACK). 14711 * We can only get here if the send 14712 * queue is corrupted. 14713 * 14714 * Terminate the connection and 14715 * panic the system. It is better 14716 * for us to panic instead of 14717 * continuing to avoid other disaster. 14718 */ 14719 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14720 tcp->tcp_rnxt, TH_RST|TH_ACK); 14721 panic("Memory corruption " 14722 "detected for connection %s.", 14723 tcp_display(tcp, NULL, 14724 DISP_ADDR_AND_PORT)); 14725 /*NOTREACHED*/ 14726 } 14727 goto pre_swnd_update; 14728 } 14729 ASSERT(mp2 != tcp->tcp_xmit_tail); 14730 } 14731 if (tcp->tcp_unsent) { 14732 flags |= TH_XMIT_NEEDED; 14733 } 14734 pre_swnd_update: 14735 tcp->tcp_xmit_head = mp1; 14736 swnd_update: 14737 /* 14738 * The following check is different from most other implementations. 14739 * For bi-directional transfer, when segments are dropped, the 14740 * "normal" check will not accept a window update in those 14741 * retransmitted segemnts. Failing to do that, TCP may send out 14742 * segments which are outside receiver's window. As TCP accepts 14743 * the ack in those retransmitted segments, if the window update in 14744 * the same segment is not accepted, TCP will incorrectly calculates 14745 * that it can send more segments. This can create a deadlock 14746 * with the receiver if its window becomes zero. 14747 */ 14748 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14749 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14750 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14751 /* 14752 * The criteria for update is: 14753 * 14754 * 1. the segment acknowledges some data. Or 14755 * 2. the segment is new, i.e. it has a higher seq num. Or 14756 * 3. the segment is not old and the advertised window is 14757 * larger than the previous advertised window. 14758 */ 14759 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14760 flags |= TH_XMIT_NEEDED; 14761 tcp->tcp_swnd = new_swnd; 14762 if (new_swnd > tcp->tcp_max_swnd) 14763 tcp->tcp_max_swnd = new_swnd; 14764 tcp->tcp_swl1 = seg_seq; 14765 tcp->tcp_swl2 = seg_ack; 14766 } 14767 est: 14768 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14769 14770 switch (tcp->tcp_state) { 14771 case TCPS_FIN_WAIT_1: 14772 if (tcp->tcp_fin_acked) { 14773 tcp->tcp_state = TCPS_FIN_WAIT_2; 14774 /* 14775 * We implement the non-standard BSD/SunOS 14776 * FIN_WAIT_2 flushing algorithm. 14777 * If there is no user attached to this 14778 * TCP endpoint, then this TCP struct 14779 * could hang around forever in FIN_WAIT_2 14780 * state if the peer forgets to send us 14781 * a FIN. To prevent this, we wait only 14782 * 2*MSL (a convenient time value) for 14783 * the FIN to arrive. If it doesn't show up, 14784 * we flush the TCP endpoint. This algorithm, 14785 * though a violation of RFC-793, has worked 14786 * for over 10 years in BSD systems. 14787 * Note: SunOS 4.x waits 675 seconds before 14788 * flushing the FIN_WAIT_2 connection. 14789 */ 14790 TCP_TIMER_RESTART(tcp, 14791 tcps->tcps_fin_wait_2_flush_interval); 14792 } 14793 break; 14794 case TCPS_FIN_WAIT_2: 14795 break; /* Shutdown hook? */ 14796 case TCPS_LAST_ACK: 14797 freemsg(mp); 14798 if (tcp->tcp_fin_acked) { 14799 (void) tcp_clean_death(tcp, 0, 19); 14800 return; 14801 } 14802 goto xmit_check; 14803 case TCPS_CLOSING: 14804 if (tcp->tcp_fin_acked) { 14805 tcp->tcp_state = TCPS_TIME_WAIT; 14806 /* 14807 * Unconditionally clear the exclusive binding 14808 * bit so this TIME-WAIT connection won't 14809 * interfere with new ones. 14810 */ 14811 tcp->tcp_exclbind = 0; 14812 if (!TCP_IS_DETACHED(tcp)) { 14813 TCP_TIMER_RESTART(tcp, 14814 tcps->tcps_time_wait_interval); 14815 } else { 14816 tcp_time_wait_append(tcp); 14817 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14818 } 14819 } 14820 /*FALLTHRU*/ 14821 case TCPS_CLOSE_WAIT: 14822 freemsg(mp); 14823 goto xmit_check; 14824 default: 14825 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14826 break; 14827 } 14828 } 14829 if (flags & TH_FIN) { 14830 /* Make sure we ack the fin */ 14831 flags |= TH_ACK_NEEDED; 14832 if (!tcp->tcp_fin_rcvd) { 14833 tcp->tcp_fin_rcvd = B_TRUE; 14834 tcp->tcp_rnxt++; 14835 tcph = tcp->tcp_tcph; 14836 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14837 14838 /* 14839 * Generate the ordrel_ind at the end unless we 14840 * are an eager guy. 14841 * In the eager case tcp_rsrv will do this when run 14842 * after tcp_accept is done. 14843 */ 14844 if (tcp->tcp_listener == NULL && 14845 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14846 flags |= TH_ORDREL_NEEDED; 14847 switch (tcp->tcp_state) { 14848 case TCPS_SYN_RCVD: 14849 case TCPS_ESTABLISHED: 14850 tcp->tcp_state = TCPS_CLOSE_WAIT; 14851 /* Keepalive? */ 14852 break; 14853 case TCPS_FIN_WAIT_1: 14854 if (!tcp->tcp_fin_acked) { 14855 tcp->tcp_state = TCPS_CLOSING; 14856 break; 14857 } 14858 /* FALLTHRU */ 14859 case TCPS_FIN_WAIT_2: 14860 tcp->tcp_state = TCPS_TIME_WAIT; 14861 /* 14862 * Unconditionally clear the exclusive binding 14863 * bit so this TIME-WAIT connection won't 14864 * interfere with new ones. 14865 */ 14866 tcp->tcp_exclbind = 0; 14867 if (!TCP_IS_DETACHED(tcp)) { 14868 TCP_TIMER_RESTART(tcp, 14869 tcps->tcps_time_wait_interval); 14870 } else { 14871 tcp_time_wait_append(tcp); 14872 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14873 } 14874 if (seg_len) { 14875 /* 14876 * implies data piggybacked on FIN. 14877 * break to handle data. 14878 */ 14879 break; 14880 } 14881 freemsg(mp); 14882 goto ack_check; 14883 } 14884 } 14885 } 14886 if (mp == NULL) 14887 goto xmit_check; 14888 if (seg_len == 0) { 14889 freemsg(mp); 14890 goto xmit_check; 14891 } 14892 if (mp->b_rptr == mp->b_wptr) { 14893 /* 14894 * The header has been consumed, so we remove the 14895 * zero-length mblk here. 14896 */ 14897 mp1 = mp; 14898 mp = mp->b_cont; 14899 freeb(mp1); 14900 } 14901 tcph = tcp->tcp_tcph; 14902 tcp->tcp_rack_cnt++; 14903 { 14904 uint32_t cur_max; 14905 14906 cur_max = tcp->tcp_rack_cur_max; 14907 if (tcp->tcp_rack_cnt >= cur_max) { 14908 /* 14909 * We have more unacked data than we should - send 14910 * an ACK now. 14911 */ 14912 flags |= TH_ACK_NEEDED; 14913 cur_max++; 14914 if (cur_max > tcp->tcp_rack_abs_max) 14915 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14916 else 14917 tcp->tcp_rack_cur_max = cur_max; 14918 } else if (TCP_IS_DETACHED(tcp)) { 14919 /* We don't have an ACK timer for detached TCP. */ 14920 flags |= TH_ACK_NEEDED; 14921 } else if (seg_len < mss) { 14922 /* 14923 * If we get a segment that is less than an mss, and we 14924 * already have unacknowledged data, and the amount 14925 * unacknowledged is not a multiple of mss, then we 14926 * better generate an ACK now. Otherwise, this may be 14927 * the tail piece of a transaction, and we would rather 14928 * wait for the response. 14929 */ 14930 uint32_t udif; 14931 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 14932 (uintptr_t)INT_MAX); 14933 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 14934 if (udif && (udif % mss)) 14935 flags |= TH_ACK_NEEDED; 14936 else 14937 flags |= TH_ACK_TIMER_NEEDED; 14938 } else { 14939 /* Start delayed ack timer */ 14940 flags |= TH_ACK_TIMER_NEEDED; 14941 } 14942 } 14943 tcp->tcp_rnxt += seg_len; 14944 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14945 14946 /* Update SACK list */ 14947 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 14948 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 14949 &(tcp->tcp_num_sack_blk)); 14950 } 14951 14952 if (tcp->tcp_urp_mp) { 14953 tcp->tcp_urp_mp->b_cont = mp; 14954 mp = tcp->tcp_urp_mp; 14955 tcp->tcp_urp_mp = NULL; 14956 /* Ready for a new signal. */ 14957 tcp->tcp_urp_last_valid = B_FALSE; 14958 #ifdef DEBUG 14959 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14960 "tcp_rput: sending exdata_ind %s", 14961 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14962 #endif /* DEBUG */ 14963 } 14964 14965 /* 14966 * Check for ancillary data changes compared to last segment. 14967 */ 14968 if (tcp->tcp_ipv6_recvancillary != 0) { 14969 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 14970 if (mp == NULL) 14971 return; 14972 } 14973 14974 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 14975 /* 14976 * Side queue inbound data until the accept happens. 14977 * tcp_accept/tcp_rput drains this when the accept happens. 14978 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 14979 * T_EXDATA_IND) it is queued on b_next. 14980 * XXX Make urgent data use this. Requires: 14981 * Removing tcp_listener check for TH_URG 14982 * Making M_PCPROTO and MARK messages skip the eager case 14983 */ 14984 14985 if (tcp->tcp_kssl_pending) { 14986 DTRACE_PROBE1(kssl_mblk__ksslinput_pending, 14987 mblk_t *, mp); 14988 tcp_kssl_input(tcp, mp); 14989 } else { 14990 tcp_rcv_enqueue(tcp, mp, seg_len); 14991 } 14992 } else { 14993 if (mp->b_datap->db_type != M_DATA || 14994 (flags & TH_MARKNEXT_NEEDED)) { 14995 if (tcp->tcp_rcv_list != NULL) { 14996 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14997 } 14998 ASSERT(tcp->tcp_rcv_list == NULL || 14999 tcp->tcp_fused_sigurg); 15000 if (flags & TH_MARKNEXT_NEEDED) { 15001 #ifdef DEBUG 15002 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15003 "tcp_rput: sending MSGMARKNEXT %s", 15004 tcp_display(tcp, NULL, 15005 DISP_PORT_ONLY)); 15006 #endif /* DEBUG */ 15007 mp->b_flag |= MSGMARKNEXT; 15008 flags &= ~TH_MARKNEXT_NEEDED; 15009 } 15010 15011 /* Does this need SSL processing first? */ 15012 if ((tcp->tcp_kssl_ctx != NULL) && 15013 (DB_TYPE(mp) == M_DATA)) { 15014 DTRACE_PROBE1(kssl_mblk__ksslinput_data1, 15015 mblk_t *, mp); 15016 tcp_kssl_input(tcp, mp); 15017 } else { 15018 putnext(tcp->tcp_rq, mp); 15019 if (!canputnext(tcp->tcp_rq)) 15020 tcp->tcp_rwnd -= seg_len; 15021 } 15022 } else if ((flags & (TH_PUSH|TH_FIN)) || 15023 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) { 15024 if (tcp->tcp_rcv_list != NULL) { 15025 /* 15026 * Enqueue the new segment first and then 15027 * call tcp_rcv_drain() to send all data 15028 * up. The other way to do this is to 15029 * send all queued data up and then call 15030 * putnext() to send the new segment up. 15031 * This way can remove the else part later 15032 * on. 15033 * 15034 * We don't this to avoid one more call to 15035 * canputnext() as tcp_rcv_drain() needs to 15036 * call canputnext(). 15037 */ 15038 tcp_rcv_enqueue(tcp, mp, seg_len); 15039 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15040 } else { 15041 /* Does this need SSL processing first? */ 15042 if ((tcp->tcp_kssl_ctx != NULL) && 15043 (DB_TYPE(mp) == M_DATA)) { 15044 DTRACE_PROBE1( 15045 kssl_mblk__ksslinput_data2, 15046 mblk_t *, mp); 15047 tcp_kssl_input(tcp, mp); 15048 } else { 15049 putnext(tcp->tcp_rq, mp); 15050 if (!canputnext(tcp->tcp_rq)) 15051 tcp->tcp_rwnd -= seg_len; 15052 } 15053 } 15054 } else { 15055 /* 15056 * Enqueue all packets when processing an mblk 15057 * from the co queue and also enqueue normal packets. 15058 * For packets which belong to SSL stream do SSL 15059 * processing first. 15060 */ 15061 if ((tcp->tcp_kssl_ctx != NULL) && 15062 (DB_TYPE(mp) == M_DATA)) { 15063 DTRACE_PROBE1(kssl_mblk__tcpksslin3, 15064 mblk_t *, mp); 15065 tcp_kssl_input(tcp, mp); 15066 } else { 15067 tcp_rcv_enqueue(tcp, mp, seg_len); 15068 } 15069 } 15070 /* 15071 * Make sure the timer is running if we have data waiting 15072 * for a push bit. This provides resiliency against 15073 * implementations that do not correctly generate push bits. 15074 */ 15075 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 15076 /* 15077 * The connection may be closed at this point, so don't 15078 * do anything for a detached tcp. 15079 */ 15080 if (!TCP_IS_DETACHED(tcp)) 15081 tcp->tcp_push_tid = TCP_TIMER(tcp, 15082 tcp_push_timer, 15083 MSEC_TO_TICK( 15084 tcps->tcps_push_timer_interval)); 15085 } 15086 } 15087 xmit_check: 15088 /* Is there anything left to do? */ 15089 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15090 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 15091 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 15092 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15093 goto done; 15094 15095 /* Any transmit work to do and a non-zero window? */ 15096 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 15097 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 15098 if (flags & TH_REXMIT_NEEDED) { 15099 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 15100 15101 BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); 15102 if (snd_size > mss) 15103 snd_size = mss; 15104 if (snd_size > tcp->tcp_swnd) 15105 snd_size = tcp->tcp_swnd; 15106 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 15107 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 15108 B_TRUE); 15109 15110 if (mp1 != NULL) { 15111 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15112 tcp->tcp_csuna = tcp->tcp_snxt; 15113 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 15114 UPDATE_MIB(&tcps->tcps_mib, 15115 tcpRetransBytes, snd_size); 15116 TCP_RECORD_TRACE(tcp, mp1, 15117 TCP_TRACE_SEND_PKT); 15118 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15119 } 15120 } 15121 if (flags & TH_NEED_SACK_REXMIT) { 15122 tcp_sack_rxmit(tcp, &flags); 15123 } 15124 /* 15125 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 15126 * out new segment. Note that tcp_rexmit should not be 15127 * set, otherwise TH_LIMIT_XMIT should not be set. 15128 */ 15129 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 15130 if (!tcp->tcp_rexmit) { 15131 tcp_wput_data(tcp, NULL, B_FALSE); 15132 } else { 15133 tcp_ss_rexmit(tcp); 15134 } 15135 } 15136 /* 15137 * Adjust tcp_cwnd back to normal value after sending 15138 * new data segments. 15139 */ 15140 if (flags & TH_LIMIT_XMIT) { 15141 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 15142 /* 15143 * This will restart the timer. Restarting the 15144 * timer is used to avoid a timeout before the 15145 * limited transmitted segment's ACK gets back. 15146 */ 15147 if (tcp->tcp_xmit_head != NULL) 15148 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15149 } 15150 15151 /* Anything more to do? */ 15152 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 15153 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15154 goto done; 15155 } 15156 ack_check: 15157 if (flags & TH_SEND_URP_MARK) { 15158 ASSERT(tcp->tcp_urp_mark_mp); 15159 /* 15160 * Send up any queued data and then send the mark message 15161 */ 15162 if (tcp->tcp_rcv_list != NULL) { 15163 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15164 } 15165 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15166 15167 mp1 = tcp->tcp_urp_mark_mp; 15168 tcp->tcp_urp_mark_mp = NULL; 15169 #ifdef DEBUG 15170 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15171 "tcp_rput: sending zero-length %s %s", 15172 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 15173 "MSGNOTMARKNEXT"), 15174 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15175 #endif /* DEBUG */ 15176 putnext(tcp->tcp_rq, mp1); 15177 flags &= ~TH_SEND_URP_MARK; 15178 } 15179 if (flags & TH_ACK_NEEDED) { 15180 /* 15181 * Time to send an ack for some reason. 15182 */ 15183 mp1 = tcp_ack_mp(tcp); 15184 15185 if (mp1 != NULL) { 15186 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 15187 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15188 BUMP_LOCAL(tcp->tcp_obsegs); 15189 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 15190 } 15191 if (tcp->tcp_ack_tid != 0) { 15192 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 15193 tcp->tcp_ack_tid = 0; 15194 } 15195 } 15196 if (flags & TH_ACK_TIMER_NEEDED) { 15197 /* 15198 * Arrange for deferred ACK or push wait timeout. 15199 * Start timer if it is not already running. 15200 */ 15201 if (tcp->tcp_ack_tid == 0) { 15202 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 15203 MSEC_TO_TICK(tcp->tcp_localnet ? 15204 (clock_t)tcps->tcps_local_dack_interval : 15205 (clock_t)tcps->tcps_deferred_ack_interval)); 15206 } 15207 } 15208 if (flags & TH_ORDREL_NEEDED) { 15209 /* 15210 * Send up the ordrel_ind unless we are an eager guy. 15211 * In the eager case tcp_rsrv will do this when run 15212 * after tcp_accept is done. 15213 */ 15214 ASSERT(tcp->tcp_listener == NULL); 15215 if (tcp->tcp_rcv_list != NULL) { 15216 /* 15217 * Push any mblk(s) enqueued from co processing. 15218 */ 15219 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15220 } 15221 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15222 if ((mp1 = mi_tpi_ordrel_ind()) != NULL) { 15223 tcp->tcp_ordrel_done = B_TRUE; 15224 putnext(tcp->tcp_rq, mp1); 15225 if (tcp->tcp_deferred_clean_death) { 15226 /* 15227 * tcp_clean_death was deferred 15228 * for T_ORDREL_IND - do it now 15229 */ 15230 (void) tcp_clean_death(tcp, 15231 tcp->tcp_client_errno, 20); 15232 tcp->tcp_deferred_clean_death = B_FALSE; 15233 } 15234 } else { 15235 /* 15236 * Run the orderly release in the 15237 * service routine. 15238 */ 15239 qenable(tcp->tcp_rq); 15240 /* 15241 * Caveat(XXX): The machine may be so 15242 * overloaded that tcp_rsrv() is not scheduled 15243 * until after the endpoint has transitioned 15244 * to TCPS_TIME_WAIT 15245 * and tcp_time_wait_interval expires. Then 15246 * tcp_timer() will blow away state in tcp_t 15247 * and T_ORDREL_IND will never be delivered 15248 * upstream. Unlikely but potentially 15249 * a problem. 15250 */ 15251 } 15252 } 15253 done: 15254 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15255 } 15256 15257 /* 15258 * This function does PAWS protection check. Returns B_TRUE if the 15259 * segment passes the PAWS test, else returns B_FALSE. 15260 */ 15261 boolean_t 15262 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 15263 { 15264 uint8_t flags; 15265 int options; 15266 uint8_t *up; 15267 15268 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 15269 /* 15270 * If timestamp option is aligned nicely, get values inline, 15271 * otherwise call general routine to parse. Only do that 15272 * if timestamp is the only option. 15273 */ 15274 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 15275 TCPOPT_REAL_TS_LEN && 15276 OK_32PTR((up = ((uint8_t *)tcph) + 15277 TCP_MIN_HEADER_LENGTH)) && 15278 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 15279 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 15280 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 15281 15282 options = TCP_OPT_TSTAMP_PRESENT; 15283 } else { 15284 if (tcp->tcp_snd_sack_ok) { 15285 tcpoptp->tcp = tcp; 15286 } else { 15287 tcpoptp->tcp = NULL; 15288 } 15289 options = tcp_parse_options(tcph, tcpoptp); 15290 } 15291 15292 if (options & TCP_OPT_TSTAMP_PRESENT) { 15293 /* 15294 * Do PAWS per RFC 1323 section 4.2. Accept RST 15295 * regardless of the timestamp, page 18 RFC 1323.bis. 15296 */ 15297 if ((flags & TH_RST) == 0 && 15298 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 15299 tcp->tcp_ts_recent)) { 15300 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 15301 PAWS_TIMEOUT)) { 15302 /* This segment is not acceptable. */ 15303 return (B_FALSE); 15304 } else { 15305 /* 15306 * Connection has been idle for 15307 * too long. Reset the timestamp 15308 * and assume the segment is valid. 15309 */ 15310 tcp->tcp_ts_recent = 15311 tcpoptp->tcp_opt_ts_val; 15312 } 15313 } 15314 } else { 15315 /* 15316 * If we don't get a timestamp on every packet, we 15317 * figure we can't really trust 'em, so we stop sending 15318 * and parsing them. 15319 */ 15320 tcp->tcp_snd_ts_ok = B_FALSE; 15321 15322 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15323 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15324 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 15325 /* 15326 * Adjust the tcp_mss accordingly. We also need to 15327 * adjust tcp_cwnd here in accordance with the new mss. 15328 * But we avoid doing a slow start here so as to not 15329 * to lose on the transfer rate built up so far. 15330 */ 15331 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE); 15332 if (tcp->tcp_snd_sack_ok) { 15333 ASSERT(tcp->tcp_sack_info != NULL); 15334 tcp->tcp_max_sack_blk = 4; 15335 } 15336 } 15337 return (B_TRUE); 15338 } 15339 15340 /* 15341 * Attach ancillary data to a received TCP segments for the 15342 * ancillary pieces requested by the application that are 15343 * different than they were in the previous data segment. 15344 * 15345 * Save the "current" values once memory allocation is ok so that 15346 * when memory allocation fails we can just wait for the next data segment. 15347 */ 15348 static mblk_t * 15349 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 15350 { 15351 struct T_optdata_ind *todi; 15352 int optlen; 15353 uchar_t *optptr; 15354 struct T_opthdr *toh; 15355 uint_t addflag; /* Which pieces to add */ 15356 mblk_t *mp1; 15357 15358 optlen = 0; 15359 addflag = 0; 15360 /* If app asked for pktinfo and the index has changed ... */ 15361 if ((ipp->ipp_fields & IPPF_IFINDEX) && 15362 ipp->ipp_ifindex != tcp->tcp_recvifindex && 15363 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 15364 optlen += sizeof (struct T_opthdr) + 15365 sizeof (struct in6_pktinfo); 15366 addflag |= TCP_IPV6_RECVPKTINFO; 15367 } 15368 /* If app asked for hoplimit and it has changed ... */ 15369 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 15370 ipp->ipp_hoplimit != tcp->tcp_recvhops && 15371 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 15372 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15373 addflag |= TCP_IPV6_RECVHOPLIMIT; 15374 } 15375 /* If app asked for tclass and it has changed ... */ 15376 if ((ipp->ipp_fields & IPPF_TCLASS) && 15377 ipp->ipp_tclass != tcp->tcp_recvtclass && 15378 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 15379 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15380 addflag |= TCP_IPV6_RECVTCLASS; 15381 } 15382 /* 15383 * If app asked for hopbyhop headers and it has changed ... 15384 * For security labels, note that (1) security labels can't change on 15385 * a connected socket at all, (2) we're connected to at most one peer, 15386 * (3) if anything changes, then it must be some other extra option. 15387 */ 15388 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 15389 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 15390 (ipp->ipp_fields & IPPF_HOPOPTS), 15391 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 15392 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen - 15393 tcp->tcp_label_len; 15394 addflag |= TCP_IPV6_RECVHOPOPTS; 15395 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 15396 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 15397 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 15398 return (mp); 15399 } 15400 /* If app asked for dst headers before routing headers ... */ 15401 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 15402 ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 15403 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15404 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 15405 optlen += sizeof (struct T_opthdr) + 15406 ipp->ipp_rtdstoptslen; 15407 addflag |= TCP_IPV6_RECVRTDSTOPTS; 15408 if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts, 15409 &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), 15410 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 15411 return (mp); 15412 } 15413 /* If app asked for routing headers and it has changed ... */ 15414 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 15415 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 15416 (ipp->ipp_fields & IPPF_RTHDR), 15417 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 15418 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 15419 addflag |= TCP_IPV6_RECVRTHDR; 15420 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 15421 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 15422 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 15423 return (mp); 15424 } 15425 /* If app asked for dest headers and it has changed ... */ 15426 if ((tcp->tcp_ipv6_recvancillary & 15427 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 15428 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 15429 (ipp->ipp_fields & IPPF_DSTOPTS), 15430 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 15431 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 15432 addflag |= TCP_IPV6_RECVDSTOPTS; 15433 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 15434 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 15435 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 15436 return (mp); 15437 } 15438 15439 if (optlen == 0) { 15440 /* Nothing to add */ 15441 return (mp); 15442 } 15443 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 15444 if (mp1 == NULL) { 15445 /* 15446 * Defer sending ancillary data until the next TCP segment 15447 * arrives. 15448 */ 15449 return (mp); 15450 } 15451 mp1->b_cont = mp; 15452 mp = mp1; 15453 mp->b_wptr += sizeof (*todi) + optlen; 15454 mp->b_datap->db_type = M_PROTO; 15455 todi = (struct T_optdata_ind *)mp->b_rptr; 15456 todi->PRIM_type = T_OPTDATA_IND; 15457 todi->DATA_flag = 1; /* MORE data */ 15458 todi->OPT_length = optlen; 15459 todi->OPT_offset = sizeof (*todi); 15460 optptr = (uchar_t *)&todi[1]; 15461 /* 15462 * If app asked for pktinfo and the index has changed ... 15463 * Note that the local address never changes for the connection. 15464 */ 15465 if (addflag & TCP_IPV6_RECVPKTINFO) { 15466 struct in6_pktinfo *pkti; 15467 15468 toh = (struct T_opthdr *)optptr; 15469 toh->level = IPPROTO_IPV6; 15470 toh->name = IPV6_PKTINFO; 15471 toh->len = sizeof (*toh) + sizeof (*pkti); 15472 toh->status = 0; 15473 optptr += sizeof (*toh); 15474 pkti = (struct in6_pktinfo *)optptr; 15475 if (tcp->tcp_ipversion == IPV6_VERSION) 15476 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 15477 else 15478 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15479 &pkti->ipi6_addr); 15480 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15481 optptr += sizeof (*pkti); 15482 ASSERT(OK_32PTR(optptr)); 15483 /* Save as "last" value */ 15484 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15485 } 15486 /* If app asked for hoplimit and it has changed ... */ 15487 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15488 toh = (struct T_opthdr *)optptr; 15489 toh->level = IPPROTO_IPV6; 15490 toh->name = IPV6_HOPLIMIT; 15491 toh->len = sizeof (*toh) + sizeof (uint_t); 15492 toh->status = 0; 15493 optptr += sizeof (*toh); 15494 *(uint_t *)optptr = ipp->ipp_hoplimit; 15495 optptr += sizeof (uint_t); 15496 ASSERT(OK_32PTR(optptr)); 15497 /* Save as "last" value */ 15498 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15499 } 15500 /* If app asked for tclass and it has changed ... */ 15501 if (addflag & TCP_IPV6_RECVTCLASS) { 15502 toh = (struct T_opthdr *)optptr; 15503 toh->level = IPPROTO_IPV6; 15504 toh->name = IPV6_TCLASS; 15505 toh->len = sizeof (*toh) + sizeof (uint_t); 15506 toh->status = 0; 15507 optptr += sizeof (*toh); 15508 *(uint_t *)optptr = ipp->ipp_tclass; 15509 optptr += sizeof (uint_t); 15510 ASSERT(OK_32PTR(optptr)); 15511 /* Save as "last" value */ 15512 tcp->tcp_recvtclass = ipp->ipp_tclass; 15513 } 15514 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15515 toh = (struct T_opthdr *)optptr; 15516 toh->level = IPPROTO_IPV6; 15517 toh->name = IPV6_HOPOPTS; 15518 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen - 15519 tcp->tcp_label_len; 15520 toh->status = 0; 15521 optptr += sizeof (*toh); 15522 bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr, 15523 ipp->ipp_hopoptslen - tcp->tcp_label_len); 15524 optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len; 15525 ASSERT(OK_32PTR(optptr)); 15526 /* Save as last value */ 15527 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 15528 (ipp->ipp_fields & IPPF_HOPOPTS), 15529 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15530 } 15531 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15532 toh = (struct T_opthdr *)optptr; 15533 toh->level = IPPROTO_IPV6; 15534 toh->name = IPV6_RTHDRDSTOPTS; 15535 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15536 toh->status = 0; 15537 optptr += sizeof (*toh); 15538 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15539 optptr += ipp->ipp_rtdstoptslen; 15540 ASSERT(OK_32PTR(optptr)); 15541 /* Save as last value */ 15542 ip_savebuf((void **)&tcp->tcp_rtdstopts, 15543 &tcp->tcp_rtdstoptslen, 15544 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15545 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15546 } 15547 if (addflag & TCP_IPV6_RECVRTHDR) { 15548 toh = (struct T_opthdr *)optptr; 15549 toh->level = IPPROTO_IPV6; 15550 toh->name = IPV6_RTHDR; 15551 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15552 toh->status = 0; 15553 optptr += sizeof (*toh); 15554 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15555 optptr += ipp->ipp_rthdrlen; 15556 ASSERT(OK_32PTR(optptr)); 15557 /* Save as last value */ 15558 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 15559 (ipp->ipp_fields & IPPF_RTHDR), 15560 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15561 } 15562 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15563 toh = (struct T_opthdr *)optptr; 15564 toh->level = IPPROTO_IPV6; 15565 toh->name = IPV6_DSTOPTS; 15566 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15567 toh->status = 0; 15568 optptr += sizeof (*toh); 15569 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15570 optptr += ipp->ipp_dstoptslen; 15571 ASSERT(OK_32PTR(optptr)); 15572 /* Save as last value */ 15573 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 15574 (ipp->ipp_fields & IPPF_DSTOPTS), 15575 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15576 } 15577 ASSERT(optptr == mp->b_wptr); 15578 return (mp); 15579 } 15580 15581 15582 /* 15583 * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK 15584 * or a "bad" IRE detected by tcp_adapt_ire. 15585 * We can't tell if the failure was due to the laddr or the faddr 15586 * thus we clear out all addresses and ports. 15587 */ 15588 static void 15589 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error) 15590 { 15591 queue_t *q = tcp->tcp_rq; 15592 tcph_t *tcph; 15593 struct T_error_ack *tea; 15594 conn_t *connp = tcp->tcp_connp; 15595 15596 15597 ASSERT(mp->b_datap->db_type == M_PCPROTO); 15598 15599 if (mp->b_cont) { 15600 freemsg(mp->b_cont); 15601 mp->b_cont = NULL; 15602 } 15603 tea = (struct T_error_ack *)mp->b_rptr; 15604 switch (tea->PRIM_type) { 15605 case T_BIND_ACK: 15606 /* 15607 * Need to unbind with classifier since we were just told that 15608 * our bind succeeded. 15609 */ 15610 tcp->tcp_hard_bound = B_FALSE; 15611 tcp->tcp_hard_binding = B_FALSE; 15612 15613 ipcl_hash_remove(connp); 15614 /* Reuse the mblk if possible */ 15615 ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >= 15616 sizeof (*tea)); 15617 mp->b_rptr = mp->b_datap->db_base; 15618 mp->b_wptr = mp->b_rptr + sizeof (*tea); 15619 tea = (struct T_error_ack *)mp->b_rptr; 15620 tea->PRIM_type = T_ERROR_ACK; 15621 tea->TLI_error = TSYSERR; 15622 tea->UNIX_error = error; 15623 if (tcp->tcp_state >= TCPS_SYN_SENT) { 15624 tea->ERROR_prim = T_CONN_REQ; 15625 } else { 15626 tea->ERROR_prim = O_T_BIND_REQ; 15627 } 15628 break; 15629 15630 case T_ERROR_ACK: 15631 if (tcp->tcp_state >= TCPS_SYN_SENT) 15632 tea->ERROR_prim = T_CONN_REQ; 15633 break; 15634 default: 15635 panic("tcp_bind_failed: unexpected TPI type"); 15636 /*NOTREACHED*/ 15637 } 15638 15639 tcp->tcp_state = TCPS_IDLE; 15640 if (tcp->tcp_ipversion == IPV4_VERSION) 15641 tcp->tcp_ipha->ipha_src = 0; 15642 else 15643 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 15644 /* 15645 * Copy of the src addr. in tcp_t is needed since 15646 * the lookup funcs. can only look at tcp_t 15647 */ 15648 V6_SET_ZERO(tcp->tcp_ip_src_v6); 15649 15650 tcph = tcp->tcp_tcph; 15651 tcph->th_lport[0] = 0; 15652 tcph->th_lport[1] = 0; 15653 tcp_bind_hash_remove(tcp); 15654 bzero(&connp->u_port, sizeof (connp->u_port)); 15655 /* blow away saved option results if any */ 15656 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 15657 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 15658 15659 conn_delete_ire(tcp->tcp_connp, NULL); 15660 putnext(q, mp); 15661 } 15662 15663 /* 15664 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15665 * messages. 15666 */ 15667 void 15668 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15669 { 15670 mblk_t *mp1; 15671 uchar_t *rptr = mp->b_rptr; 15672 queue_t *q = tcp->tcp_rq; 15673 struct T_error_ack *tea; 15674 uint32_t mss; 15675 mblk_t *syn_mp; 15676 mblk_t *mdti; 15677 mblk_t *lsoi; 15678 int retval; 15679 mblk_t *ire_mp; 15680 tcp_stack_t *tcps = tcp->tcp_tcps; 15681 15682 switch (mp->b_datap->db_type) { 15683 case M_PROTO: 15684 case M_PCPROTO: 15685 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15686 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15687 break; 15688 tea = (struct T_error_ack *)rptr; 15689 switch (tea->PRIM_type) { 15690 case T_BIND_ACK: 15691 /* 15692 * Adapt Multidata information, if any. The 15693 * following tcp_mdt_update routine will free 15694 * the message. 15695 */ 15696 if ((mdti = tcp_mdt_info_mp(mp)) != NULL) { 15697 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 15698 b_rptr)->mdt_capab, B_TRUE); 15699 freemsg(mdti); 15700 } 15701 15702 /* 15703 * Check to update LSO information with tcp, and 15704 * tcp_lso_update routine will free the message. 15705 */ 15706 if ((lsoi = tcp_lso_info_mp(mp)) != NULL) { 15707 tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi-> 15708 b_rptr)->lso_capab); 15709 freemsg(lsoi); 15710 } 15711 15712 /* Get the IRE, if we had requested for it */ 15713 ire_mp = tcp_ire_mp(mp); 15714 15715 if (tcp->tcp_hard_binding) { 15716 tcp->tcp_hard_binding = B_FALSE; 15717 tcp->tcp_hard_bound = B_TRUE; 15718 CL_INET_CONNECT(tcp); 15719 } else { 15720 if (ire_mp != NULL) 15721 freeb(ire_mp); 15722 goto after_syn_sent; 15723 } 15724 15725 retval = tcp_adapt_ire(tcp, ire_mp); 15726 if (ire_mp != NULL) 15727 freeb(ire_mp); 15728 if (retval == 0) { 15729 tcp_bind_failed(tcp, mp, 15730 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15731 ENETUNREACH : EADDRNOTAVAIL)); 15732 return; 15733 } 15734 /* 15735 * Don't let an endpoint connect to itself. 15736 * Also checked in tcp_connect() but that 15737 * check can't handle the case when the 15738 * local IP address is INADDR_ANY. 15739 */ 15740 if (tcp->tcp_ipversion == IPV4_VERSION) { 15741 if ((tcp->tcp_ipha->ipha_dst == 15742 tcp->tcp_ipha->ipha_src) && 15743 (BE16_EQL(tcp->tcp_tcph->th_lport, 15744 tcp->tcp_tcph->th_fport))) { 15745 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15746 return; 15747 } 15748 } else { 15749 if (IN6_ARE_ADDR_EQUAL( 15750 &tcp->tcp_ip6h->ip6_dst, 15751 &tcp->tcp_ip6h->ip6_src) && 15752 (BE16_EQL(tcp->tcp_tcph->th_lport, 15753 tcp->tcp_tcph->th_fport))) { 15754 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15755 return; 15756 } 15757 } 15758 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 15759 /* 15760 * This should not be possible! Just for 15761 * defensive coding... 15762 */ 15763 if (tcp->tcp_state != TCPS_SYN_SENT) 15764 goto after_syn_sent; 15765 15766 if (is_system_labeled() && 15767 !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) { 15768 tcp_bind_failed(tcp, mp, EHOSTUNREACH); 15769 return; 15770 } 15771 15772 ASSERT(q == tcp->tcp_rq); 15773 /* 15774 * tcp_adapt_ire() does not adjust 15775 * for TCP/IP header length. 15776 */ 15777 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 15778 15779 /* 15780 * Just make sure our rwnd is at 15781 * least tcp_recv_hiwat_mss * MSS 15782 * large, and round up to the nearest 15783 * MSS. 15784 * 15785 * We do the round up here because 15786 * we need to get the interface 15787 * MTU first before we can do the 15788 * round up. 15789 */ 15790 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 15791 tcps->tcps_recv_hiwat_minmss * mss); 15792 q->q_hiwat = tcp->tcp_rwnd; 15793 tcp_set_ws_value(tcp); 15794 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 15795 tcp->tcp_tcph->th_win); 15796 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 15797 tcp->tcp_snd_ws_ok = B_TRUE; 15798 15799 /* 15800 * Set tcp_snd_ts_ok to true 15801 * so that tcp_xmit_mp will 15802 * include the timestamp 15803 * option in the SYN segment. 15804 */ 15805 if (tcps->tcps_tstamp_always || 15806 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 15807 tcp->tcp_snd_ts_ok = B_TRUE; 15808 } 15809 15810 /* 15811 * tcp_snd_sack_ok can be set in 15812 * tcp_adapt_ire() if the sack metric 15813 * is set. So check it here also. 15814 */ 15815 if (tcps->tcps_sack_permitted == 2 || 15816 tcp->tcp_snd_sack_ok) { 15817 if (tcp->tcp_sack_info == NULL) { 15818 tcp->tcp_sack_info = 15819 kmem_cache_alloc( 15820 tcp_sack_info_cache, 15821 KM_SLEEP); 15822 } 15823 tcp->tcp_snd_sack_ok = B_TRUE; 15824 } 15825 15826 /* 15827 * Should we use ECN? Note that the current 15828 * default value (SunOS 5.9) of tcp_ecn_permitted 15829 * is 1. The reason for doing this is that there 15830 * are equipments out there that will drop ECN 15831 * enabled IP packets. Setting it to 1 avoids 15832 * compatibility problems. 15833 */ 15834 if (tcps->tcps_ecn_permitted == 2) 15835 tcp->tcp_ecn_ok = B_TRUE; 15836 15837 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15838 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 15839 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 15840 if (syn_mp) { 15841 cred_t *cr; 15842 pid_t pid; 15843 15844 /* 15845 * Obtain the credential from the 15846 * thread calling connect(); the credential 15847 * lives on in the second mblk which 15848 * originated from T_CONN_REQ and is echoed 15849 * with the T_BIND_ACK from ip. If none 15850 * can be found, default to the creator 15851 * of the socket. 15852 */ 15853 if (mp->b_cont == NULL || 15854 (cr = DB_CRED(mp->b_cont)) == NULL) { 15855 cr = tcp->tcp_cred; 15856 pid = tcp->tcp_cpid; 15857 } else { 15858 pid = DB_CPID(mp->b_cont); 15859 } 15860 15861 TCP_RECORD_TRACE(tcp, syn_mp, 15862 TCP_TRACE_SEND_PKT); 15863 mblk_setcred(syn_mp, cr); 15864 DB_CPID(syn_mp) = pid; 15865 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 15866 } 15867 after_syn_sent: 15868 /* 15869 * A trailer mblk indicates a waiting client upstream. 15870 * We complete here the processing begun in 15871 * either tcp_bind() or tcp_connect() by passing 15872 * upstream the reply message they supplied. 15873 */ 15874 mp1 = mp; 15875 mp = mp->b_cont; 15876 freeb(mp1); 15877 if (mp) 15878 break; 15879 return; 15880 case T_ERROR_ACK: 15881 if (tcp->tcp_debug) { 15882 (void) strlog(TCP_MOD_ID, 0, 1, 15883 SL_TRACE|SL_ERROR, 15884 "tcp_rput_other: case T_ERROR_ACK, " 15885 "ERROR_prim == %d", 15886 tea->ERROR_prim); 15887 } 15888 switch (tea->ERROR_prim) { 15889 case O_T_BIND_REQ: 15890 case T_BIND_REQ: 15891 tcp_bind_failed(tcp, mp, 15892 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15893 ENETUNREACH : EADDRNOTAVAIL)); 15894 return; 15895 case T_UNBIND_REQ: 15896 tcp->tcp_hard_binding = B_FALSE; 15897 tcp->tcp_hard_bound = B_FALSE; 15898 if (mp->b_cont) { 15899 freemsg(mp->b_cont); 15900 mp->b_cont = NULL; 15901 } 15902 if (tcp->tcp_unbind_pending) 15903 tcp->tcp_unbind_pending = 0; 15904 else { 15905 /* From tcp_ip_unbind() - free */ 15906 freemsg(mp); 15907 return; 15908 } 15909 break; 15910 case T_SVR4_OPTMGMT_REQ: 15911 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15912 /* T_OPTMGMT_REQ generated by TCP */ 15913 printf("T_SVR4_OPTMGMT_REQ failed " 15914 "%d/%d - dropped (cnt %d)\n", 15915 tea->TLI_error, tea->UNIX_error, 15916 tcp->tcp_drop_opt_ack_cnt); 15917 freemsg(mp); 15918 tcp->tcp_drop_opt_ack_cnt--; 15919 return; 15920 } 15921 break; 15922 } 15923 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15924 tcp->tcp_drop_opt_ack_cnt > 0) { 15925 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15926 "- dropped (cnt %d)\n", 15927 tea->TLI_error, tea->UNIX_error, 15928 tcp->tcp_drop_opt_ack_cnt); 15929 freemsg(mp); 15930 tcp->tcp_drop_opt_ack_cnt--; 15931 return; 15932 } 15933 break; 15934 case T_OPTMGMT_ACK: 15935 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15936 /* T_OPTMGMT_REQ generated by TCP */ 15937 freemsg(mp); 15938 tcp->tcp_drop_opt_ack_cnt--; 15939 return; 15940 } 15941 break; 15942 default: 15943 break; 15944 } 15945 break; 15946 case M_FLUSH: 15947 if (*rptr & FLUSHR) 15948 flushq(q, FLUSHDATA); 15949 break; 15950 default: 15951 /* M_CTL will be directly sent to tcp_icmp_error() */ 15952 ASSERT(DB_TYPE(mp) != M_CTL); 15953 break; 15954 } 15955 /* 15956 * Make sure we set this bit before sending the ACK for 15957 * bind. Otherwise accept could possibly run and free 15958 * this tcp struct. 15959 */ 15960 putnext(q, mp); 15961 } 15962 15963 /* 15964 * Called as the result of a qbufcall or a qtimeout to remedy a failure 15965 * to allocate a T_ordrel_ind in tcp_rsrv(). qenable(q) will make 15966 * tcp_rsrv() try again. 15967 */ 15968 static void 15969 tcp_ordrel_kick(void *arg) 15970 { 15971 conn_t *connp = (conn_t *)arg; 15972 tcp_t *tcp = connp->conn_tcp; 15973 15974 tcp->tcp_ordrelid = 0; 15975 tcp->tcp_timeout = B_FALSE; 15976 if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL && 15977 tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15978 qenable(tcp->tcp_rq); 15979 } 15980 } 15981 15982 /* ARGSUSED */ 15983 static void 15984 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15985 { 15986 conn_t *connp = (conn_t *)arg; 15987 tcp_t *tcp = connp->conn_tcp; 15988 queue_t *q = tcp->tcp_rq; 15989 uint_t thwin; 15990 tcp_stack_t *tcps = tcp->tcp_tcps; 15991 15992 freeb(mp); 15993 15994 TCP_STAT(tcps, tcp_rsrv_calls); 15995 15996 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15997 return; 15998 } 15999 16000 if (tcp->tcp_fused) { 16001 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 16002 16003 ASSERT(tcp->tcp_fused); 16004 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 16005 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 16006 ASSERT(!TCP_IS_DETACHED(tcp)); 16007 ASSERT(tcp->tcp_connp->conn_sqp == 16008 peer_tcp->tcp_connp->conn_sqp); 16009 16010 /* 16011 * Normally we would not get backenabled in synchronous 16012 * streams mode, but in case this happens, we need to plug 16013 * synchronous streams during our drain to prevent a race 16014 * with tcp_fuse_rrw() or tcp_fuse_rinfop(). 16015 */ 16016 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 16017 if (tcp->tcp_rcv_list != NULL) 16018 (void) tcp_rcv_drain(tcp->tcp_rq, tcp); 16019 16020 if (peer_tcp > tcp) { 16021 mutex_enter(&peer_tcp->tcp_non_sq_lock); 16022 mutex_enter(&tcp->tcp_non_sq_lock); 16023 } else { 16024 mutex_enter(&tcp->tcp_non_sq_lock); 16025 mutex_enter(&peer_tcp->tcp_non_sq_lock); 16026 } 16027 16028 if (peer_tcp->tcp_flow_stopped && 16029 (TCP_UNSENT_BYTES(peer_tcp) <= 16030 peer_tcp->tcp_xmit_lowater)) { 16031 tcp_clrqfull(peer_tcp); 16032 } 16033 mutex_exit(&peer_tcp->tcp_non_sq_lock); 16034 mutex_exit(&tcp->tcp_non_sq_lock); 16035 16036 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 16037 TCP_STAT(tcps, tcp_fusion_backenabled); 16038 return; 16039 } 16040 16041 if (canputnext(q)) { 16042 tcp->tcp_rwnd = q->q_hiwat; 16043 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 16044 << tcp->tcp_rcv_ws; 16045 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 16046 /* 16047 * Send back a window update immediately if TCP is above 16048 * ESTABLISHED state and the increase of the rcv window 16049 * that the other side knows is at least 1 MSS after flow 16050 * control is lifted. 16051 */ 16052 if (tcp->tcp_state >= TCPS_ESTABLISHED && 16053 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 16054 tcp_xmit_ctl(NULL, tcp, 16055 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 16056 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 16057 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 16058 } 16059 } 16060 /* Handle a failure to allocate a T_ORDREL_IND here */ 16061 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 16062 ASSERT(tcp->tcp_listener == NULL); 16063 if (tcp->tcp_rcv_list != NULL) { 16064 (void) tcp_rcv_drain(q, tcp); 16065 } 16066 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 16067 mp = mi_tpi_ordrel_ind(); 16068 if (mp) { 16069 tcp->tcp_ordrel_done = B_TRUE; 16070 putnext(q, mp); 16071 if (tcp->tcp_deferred_clean_death) { 16072 /* 16073 * tcp_clean_death was deferred for 16074 * T_ORDREL_IND - do it now 16075 */ 16076 tcp->tcp_deferred_clean_death = B_FALSE; 16077 (void) tcp_clean_death(tcp, 16078 tcp->tcp_client_errno, 22); 16079 } 16080 } else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 16081 /* 16082 * If there isn't already a timer running 16083 * start one. Use a 4 second 16084 * timer as a fallback since it can't fail. 16085 */ 16086 tcp->tcp_timeout = B_TRUE; 16087 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 16088 MSEC_TO_TICK(4000)); 16089 } 16090 } 16091 } 16092 16093 /* 16094 * The read side service routine is called mostly when we get back-enabled as a 16095 * result of flow control relief. Since we don't actually queue anything in 16096 * TCP, we have no data to send out of here. What we do is clear the receive 16097 * window, and send out a window update. 16098 * This routine is also called to drive an orderly release message upstream 16099 * if the attempt in tcp_rput failed. 16100 */ 16101 static void 16102 tcp_rsrv(queue_t *q) 16103 { 16104 conn_t *connp = Q_TO_CONN(q); 16105 tcp_t *tcp = connp->conn_tcp; 16106 mblk_t *mp; 16107 tcp_stack_t *tcps = tcp->tcp_tcps; 16108 16109 /* No code does a putq on the read side */ 16110 ASSERT(q->q_first == NULL); 16111 16112 /* Nothing to do for the default queue */ 16113 if (q == tcps->tcps_g_q) { 16114 return; 16115 } 16116 16117 mp = allocb(0, BPRI_HI); 16118 if (mp == NULL) { 16119 /* 16120 * We are under memory pressure. Return for now and we 16121 * we will be called again later. 16122 */ 16123 if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 16124 /* 16125 * If there isn't already a timer running 16126 * start one. Use a 4 second 16127 * timer as a fallback since it can't fail. 16128 */ 16129 tcp->tcp_timeout = B_TRUE; 16130 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 16131 MSEC_TO_TICK(4000)); 16132 } 16133 return; 16134 } 16135 CONN_INC_REF(connp); 16136 squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp, 16137 SQTAG_TCP_RSRV); 16138 } 16139 16140 /* 16141 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 16142 * We do not allow the receive window to shrink. After setting rwnd, 16143 * set the flow control hiwat of the stream. 16144 * 16145 * This function is called in 2 cases: 16146 * 16147 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 16148 * connection (passive open) and in tcp_rput_data() for active connect. 16149 * This is called after tcp_mss_set() when the desired MSS value is known. 16150 * This makes sure that our window size is a mutiple of the other side's 16151 * MSS. 16152 * 2) Handling SO_RCVBUF option. 16153 * 16154 * It is ASSUMED that the requested size is a multiple of the current MSS. 16155 * 16156 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 16157 * user requests so. 16158 */ 16159 static int 16160 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 16161 { 16162 uint32_t mss = tcp->tcp_mss; 16163 uint32_t old_max_rwnd; 16164 uint32_t max_transmittable_rwnd; 16165 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 16166 tcp_stack_t *tcps = tcp->tcp_tcps; 16167 16168 if (tcp->tcp_fused) { 16169 size_t sth_hiwat; 16170 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 16171 16172 ASSERT(peer_tcp != NULL); 16173 /* 16174 * Record the stream head's high water mark for 16175 * this endpoint; this is used for flow-control 16176 * purposes in tcp_fuse_output(). 16177 */ 16178 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 16179 if (!tcp_detached) 16180 (void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat); 16181 16182 /* 16183 * In the fusion case, the maxpsz stream head value of 16184 * our peer is set according to its send buffer size 16185 * and our receive buffer size; since the latter may 16186 * have changed we need to update the peer's maxpsz. 16187 */ 16188 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 16189 return (rwnd); 16190 } 16191 16192 if (tcp_detached) 16193 old_max_rwnd = tcp->tcp_rwnd; 16194 else 16195 old_max_rwnd = tcp->tcp_rq->q_hiwat; 16196 16197 /* 16198 * Insist on a receive window that is at least 16199 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 16200 * funny TCP interactions of Nagle algorithm, SWS avoidance 16201 * and delayed acknowledgement. 16202 */ 16203 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 16204 16205 /* 16206 * If window size info has already been exchanged, TCP should not 16207 * shrink the window. Shrinking window is doable if done carefully. 16208 * We may add that support later. But so far there is not a real 16209 * need to do that. 16210 */ 16211 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 16212 /* MSS may have changed, do a round up again. */ 16213 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 16214 } 16215 16216 /* 16217 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 16218 * can be applied even before the window scale option is decided. 16219 */ 16220 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 16221 if (rwnd > max_transmittable_rwnd) { 16222 rwnd = max_transmittable_rwnd - 16223 (max_transmittable_rwnd % mss); 16224 if (rwnd < mss) 16225 rwnd = max_transmittable_rwnd; 16226 /* 16227 * If we're over the limit we may have to back down tcp_rwnd. 16228 * The increment below won't work for us. So we set all three 16229 * here and the increment below will have no effect. 16230 */ 16231 tcp->tcp_rwnd = old_max_rwnd = rwnd; 16232 } 16233 if (tcp->tcp_localnet) { 16234 tcp->tcp_rack_abs_max = 16235 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 16236 } else { 16237 /* 16238 * For a remote host on a different subnet (through a router), 16239 * we ack every other packet to be conforming to RFC1122. 16240 * tcp_deferred_acks_max is default to 2. 16241 */ 16242 tcp->tcp_rack_abs_max = 16243 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 16244 } 16245 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 16246 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 16247 else 16248 tcp->tcp_rack_cur_max = 0; 16249 /* 16250 * Increment the current rwnd by the amount the maximum grew (we 16251 * can not overwrite it since we might be in the middle of a 16252 * connection.) 16253 */ 16254 tcp->tcp_rwnd += rwnd - old_max_rwnd; 16255 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 16256 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 16257 tcp->tcp_cwnd_max = rwnd; 16258 16259 if (tcp_detached) 16260 return (rwnd); 16261 /* 16262 * We set the maximum receive window into rq->q_hiwat. 16263 * This is not actually used for flow control. 16264 */ 16265 tcp->tcp_rq->q_hiwat = rwnd; 16266 /* 16267 * Set the Stream head high water mark. This doesn't have to be 16268 * here, since we are simply using default values, but we would 16269 * prefer to choose these values algorithmically, with a likely 16270 * relationship to rwnd. 16271 */ 16272 (void) mi_set_sth_hiwat(tcp->tcp_rq, 16273 MAX(rwnd, tcps->tcps_sth_rcv_hiwat)); 16274 return (rwnd); 16275 } 16276 16277 /* 16278 * Return SNMP stuff in buffer in mpdata. 16279 */ 16280 mblk_t * 16281 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 16282 { 16283 mblk_t *mpdata; 16284 mblk_t *mp_conn_ctl = NULL; 16285 mblk_t *mp_conn_tail; 16286 mblk_t *mp_attr_ctl = NULL; 16287 mblk_t *mp_attr_tail; 16288 mblk_t *mp6_conn_ctl = NULL; 16289 mblk_t *mp6_conn_tail; 16290 mblk_t *mp6_attr_ctl = NULL; 16291 mblk_t *mp6_attr_tail; 16292 struct opthdr *optp; 16293 mib2_tcpConnEntry_t tce; 16294 mib2_tcp6ConnEntry_t tce6; 16295 mib2_transportMLPEntry_t mlp; 16296 connf_t *connfp; 16297 int i; 16298 boolean_t ispriv; 16299 zoneid_t zoneid; 16300 int v4_conn_idx; 16301 int v6_conn_idx; 16302 conn_t *connp = Q_TO_CONN(q); 16303 tcp_stack_t *tcps; 16304 ip_stack_t *ipst; 16305 mblk_t *mp2ctl; 16306 16307 /* 16308 * make a copy of the original message 16309 */ 16310 mp2ctl = copymsg(mpctl); 16311 16312 if (mpctl == NULL || 16313 (mpdata = mpctl->b_cont) == NULL || 16314 (mp_conn_ctl = copymsg(mpctl)) == NULL || 16315 (mp_attr_ctl = copymsg(mpctl)) == NULL || 16316 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 16317 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 16318 freemsg(mp_conn_ctl); 16319 freemsg(mp_attr_ctl); 16320 freemsg(mp6_conn_ctl); 16321 freemsg(mp6_attr_ctl); 16322 freemsg(mpctl); 16323 freemsg(mp2ctl); 16324 return (NULL); 16325 } 16326 16327 ipst = connp->conn_netstack->netstack_ip; 16328 tcps = connp->conn_netstack->netstack_tcp; 16329 16330 /* build table of connections -- need count in fixed part */ 16331 SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ 16332 SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); 16333 SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); 16334 SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); 16335 SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); 16336 16337 ispriv = 16338 secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 16339 zoneid = Q_TO_CONN(q)->conn_zoneid; 16340 16341 v4_conn_idx = v6_conn_idx = 0; 16342 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 16343 16344 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16345 ipst = tcps->tcps_netstack->netstack_ip; 16346 16347 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 16348 16349 connp = NULL; 16350 16351 while ((connp = 16352 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16353 tcp_t *tcp; 16354 boolean_t needattr; 16355 16356 if (connp->conn_zoneid != zoneid) 16357 continue; /* not in this zone */ 16358 16359 tcp = connp->conn_tcp; 16360 UPDATE_MIB(&tcps->tcps_mib, 16361 tcpHCInSegs, tcp->tcp_ibsegs); 16362 tcp->tcp_ibsegs = 0; 16363 UPDATE_MIB(&tcps->tcps_mib, 16364 tcpHCOutSegs, tcp->tcp_obsegs); 16365 tcp->tcp_obsegs = 0; 16366 16367 tce6.tcp6ConnState = tce.tcpConnState = 16368 tcp_snmp_state(tcp); 16369 if (tce.tcpConnState == MIB2_TCP_established || 16370 tce.tcpConnState == MIB2_TCP_closeWait) 16371 BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); 16372 16373 needattr = B_FALSE; 16374 bzero(&mlp, sizeof (mlp)); 16375 if (connp->conn_mlp_type != mlptSingle) { 16376 if (connp->conn_mlp_type == mlptShared || 16377 connp->conn_mlp_type == mlptBoth) 16378 mlp.tme_flags |= MIB2_TMEF_SHARED; 16379 if (connp->conn_mlp_type == mlptPrivate || 16380 connp->conn_mlp_type == mlptBoth) 16381 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 16382 needattr = B_TRUE; 16383 } 16384 if (connp->conn_peercred != NULL) { 16385 ts_label_t *tsl; 16386 16387 tsl = crgetlabel(connp->conn_peercred); 16388 mlp.tme_doi = label2doi(tsl); 16389 mlp.tme_label = *label2bslabel(tsl); 16390 needattr = B_TRUE; 16391 } 16392 16393 /* Create a message to report on IPv6 entries */ 16394 if (tcp->tcp_ipversion == IPV6_VERSION) { 16395 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 16396 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 16397 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 16398 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 16399 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 16400 /* Don't want just anybody seeing these... */ 16401 if (ispriv) { 16402 tce6.tcp6ConnEntryInfo.ce_snxt = 16403 tcp->tcp_snxt; 16404 tce6.tcp6ConnEntryInfo.ce_suna = 16405 tcp->tcp_suna; 16406 tce6.tcp6ConnEntryInfo.ce_rnxt = 16407 tcp->tcp_rnxt; 16408 tce6.tcp6ConnEntryInfo.ce_rack = 16409 tcp->tcp_rack; 16410 } else { 16411 /* 16412 * Netstat, unfortunately, uses this to 16413 * get send/receive queue sizes. How to fix? 16414 * Why not compute the difference only? 16415 */ 16416 tce6.tcp6ConnEntryInfo.ce_snxt = 16417 tcp->tcp_snxt - tcp->tcp_suna; 16418 tce6.tcp6ConnEntryInfo.ce_suna = 0; 16419 tce6.tcp6ConnEntryInfo.ce_rnxt = 16420 tcp->tcp_rnxt - tcp->tcp_rack; 16421 tce6.tcp6ConnEntryInfo.ce_rack = 0; 16422 } 16423 16424 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16425 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16426 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 16427 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 16428 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 16429 16430 tce6.tcp6ConnCreationProcess = 16431 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16432 tcp->tcp_cpid; 16433 tce6.tcp6ConnCreationTime = tcp->tcp_open_time; 16434 16435 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 16436 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 16437 16438 mlp.tme_connidx = v6_conn_idx++; 16439 if (needattr) 16440 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 16441 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 16442 } 16443 /* 16444 * Create an IPv4 table entry for IPv4 entries and also 16445 * for IPv6 entries which are bound to in6addr_any 16446 * but don't have IPV6_V6ONLY set. 16447 * (i.e. anything an IPv4 peer could connect to) 16448 */ 16449 if (tcp->tcp_ipversion == IPV4_VERSION || 16450 (tcp->tcp_state <= TCPS_LISTEN && 16451 !tcp->tcp_connp->conn_ipv6_v6only && 16452 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 16453 if (tcp->tcp_ipversion == IPV6_VERSION) { 16454 tce.tcpConnRemAddress = INADDR_ANY; 16455 tce.tcpConnLocalAddress = INADDR_ANY; 16456 } else { 16457 tce.tcpConnRemAddress = 16458 tcp->tcp_remote; 16459 tce.tcpConnLocalAddress = 16460 tcp->tcp_ip_src; 16461 } 16462 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 16463 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 16464 /* Don't want just anybody seeing these... */ 16465 if (ispriv) { 16466 tce.tcpConnEntryInfo.ce_snxt = 16467 tcp->tcp_snxt; 16468 tce.tcpConnEntryInfo.ce_suna = 16469 tcp->tcp_suna; 16470 tce.tcpConnEntryInfo.ce_rnxt = 16471 tcp->tcp_rnxt; 16472 tce.tcpConnEntryInfo.ce_rack = 16473 tcp->tcp_rack; 16474 } else { 16475 /* 16476 * Netstat, unfortunately, uses this to 16477 * get send/receive queue sizes. How 16478 * to fix? 16479 * Why not compute the difference only? 16480 */ 16481 tce.tcpConnEntryInfo.ce_snxt = 16482 tcp->tcp_snxt - tcp->tcp_suna; 16483 tce.tcpConnEntryInfo.ce_suna = 0; 16484 tce.tcpConnEntryInfo.ce_rnxt = 16485 tcp->tcp_rnxt - tcp->tcp_rack; 16486 tce.tcpConnEntryInfo.ce_rack = 0; 16487 } 16488 16489 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16490 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16491 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 16492 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 16493 tce.tcpConnEntryInfo.ce_state = 16494 tcp->tcp_state; 16495 16496 tce.tcpConnCreationProcess = 16497 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16498 tcp->tcp_cpid; 16499 tce.tcpConnCreationTime = tcp->tcp_open_time; 16500 16501 (void) snmp_append_data2(mp_conn_ctl->b_cont, 16502 &mp_conn_tail, (char *)&tce, sizeof (tce)); 16503 16504 mlp.tme_connidx = v4_conn_idx++; 16505 if (needattr) 16506 (void) snmp_append_data2( 16507 mp_attr_ctl->b_cont, 16508 &mp_attr_tail, (char *)&mlp, 16509 sizeof (mlp)); 16510 } 16511 } 16512 } 16513 16514 /* fixed length structure for IPv4 and IPv6 counters */ 16515 SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 16516 SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, 16517 sizeof (mib2_tcp6ConnEntry_t)); 16518 /* synchronize 32- and 64-bit counters */ 16519 SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); 16520 SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); 16521 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16522 optp->level = MIB2_TCP; 16523 optp->name = 0; 16524 (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, 16525 sizeof (tcps->tcps_mib)); 16526 optp->len = msgdsize(mpdata); 16527 qreply(q, mpctl); 16528 16529 /* table of connections... */ 16530 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 16531 sizeof (struct T_optmgmt_ack)]; 16532 optp->level = MIB2_TCP; 16533 optp->name = MIB2_TCP_CONN; 16534 optp->len = msgdsize(mp_conn_ctl->b_cont); 16535 qreply(q, mp_conn_ctl); 16536 16537 /* table of MLP attributes... */ 16538 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 16539 sizeof (struct T_optmgmt_ack)]; 16540 optp->level = MIB2_TCP; 16541 optp->name = EXPER_XPORT_MLP; 16542 optp->len = msgdsize(mp_attr_ctl->b_cont); 16543 if (optp->len == 0) 16544 freemsg(mp_attr_ctl); 16545 else 16546 qreply(q, mp_attr_ctl); 16547 16548 /* table of IPv6 connections... */ 16549 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16550 sizeof (struct T_optmgmt_ack)]; 16551 optp->level = MIB2_TCP6; 16552 optp->name = MIB2_TCP6_CONN; 16553 optp->len = msgdsize(mp6_conn_ctl->b_cont); 16554 qreply(q, mp6_conn_ctl); 16555 16556 /* table of IPv6 MLP attributes... */ 16557 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 16558 sizeof (struct T_optmgmt_ack)]; 16559 optp->level = MIB2_TCP6; 16560 optp->name = EXPER_XPORT_MLP; 16561 optp->len = msgdsize(mp6_attr_ctl->b_cont); 16562 if (optp->len == 0) 16563 freemsg(mp6_attr_ctl); 16564 else 16565 qreply(q, mp6_attr_ctl); 16566 return (mp2ctl); 16567 } 16568 16569 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16570 /* ARGSUSED */ 16571 int 16572 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16573 { 16574 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16575 16576 switch (level) { 16577 case MIB2_TCP: 16578 switch (name) { 16579 case 13: 16580 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16581 return (0); 16582 /* TODO: delete entry defined by tce */ 16583 return (1); 16584 default: 16585 return (0); 16586 } 16587 default: 16588 return (1); 16589 } 16590 } 16591 16592 /* Translate TCP state to MIB2 TCP state. */ 16593 static int 16594 tcp_snmp_state(tcp_t *tcp) 16595 { 16596 if (tcp == NULL) 16597 return (0); 16598 16599 switch (tcp->tcp_state) { 16600 case TCPS_CLOSED: 16601 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16602 case TCPS_BOUND: 16603 return (MIB2_TCP_closed); 16604 case TCPS_LISTEN: 16605 return (MIB2_TCP_listen); 16606 case TCPS_SYN_SENT: 16607 return (MIB2_TCP_synSent); 16608 case TCPS_SYN_RCVD: 16609 return (MIB2_TCP_synReceived); 16610 case TCPS_ESTABLISHED: 16611 return (MIB2_TCP_established); 16612 case TCPS_CLOSE_WAIT: 16613 return (MIB2_TCP_closeWait); 16614 case TCPS_FIN_WAIT_1: 16615 return (MIB2_TCP_finWait1); 16616 case TCPS_CLOSING: 16617 return (MIB2_TCP_closing); 16618 case TCPS_LAST_ACK: 16619 return (MIB2_TCP_lastAck); 16620 case TCPS_FIN_WAIT_2: 16621 return (MIB2_TCP_finWait2); 16622 case TCPS_TIME_WAIT: 16623 return (MIB2_TCP_timeWait); 16624 default: 16625 return (0); 16626 } 16627 } 16628 16629 static char tcp_report_header[] = 16630 "TCP " MI_COL_HDRPAD_STR 16631 "zone dest snxt suna " 16632 "swnd rnxt rack rwnd rto mss w sw rw t " 16633 "recent [lport,fport] state"; 16634 16635 /* 16636 * TCP status report triggered via the Named Dispatch mechanism. 16637 */ 16638 /* ARGSUSED */ 16639 static void 16640 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream, 16641 cred_t *cr) 16642 { 16643 char hash[10], addrbuf[INET6_ADDRSTRLEN]; 16644 boolean_t ispriv = secpolicy_ip_config(cr, B_TRUE) == 0; 16645 char cflag; 16646 in6_addr_t v6dst; 16647 char buf[80]; 16648 uint_t print_len, buf_len; 16649 16650 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16651 if (buf_len <= 0) 16652 return; 16653 16654 if (hashval >= 0) 16655 (void) sprintf(hash, "%03d ", hashval); 16656 else 16657 hash[0] = '\0'; 16658 16659 /* 16660 * Note that we use the remote address in the tcp_b structure. 16661 * This means that it will print out the real destination address, 16662 * not the next hop's address if source routing is used. This 16663 * avoid the confusion on the output because user may not 16664 * know that source routing is used for a connection. 16665 */ 16666 if (tcp->tcp_ipversion == IPV4_VERSION) { 16667 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst); 16668 } else { 16669 v6dst = tcp->tcp_remote_v6; 16670 } 16671 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16672 /* 16673 * the ispriv checks are so that normal users cannot determine 16674 * sequence number information using NDD. 16675 */ 16676 16677 if (TCP_IS_DETACHED(tcp)) 16678 cflag = '*'; 16679 else 16680 cflag = ' '; 16681 print_len = snprintf((char *)mp->b_wptr, buf_len, 16682 "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x " 16683 "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n", 16684 hash, 16685 (void *)tcp, 16686 tcp->tcp_connp->conn_zoneid, 16687 addrbuf, 16688 (ispriv) ? tcp->tcp_snxt : 0, 16689 (ispriv) ? tcp->tcp_suna : 0, 16690 tcp->tcp_swnd, 16691 (ispriv) ? tcp->tcp_rnxt : 0, 16692 (ispriv) ? tcp->tcp_rack : 0, 16693 tcp->tcp_rwnd, 16694 tcp->tcp_rto, 16695 tcp->tcp_mss, 16696 tcp->tcp_snd_ws_ok, 16697 tcp->tcp_snd_ws, 16698 tcp->tcp_rcv_ws, 16699 tcp->tcp_snd_ts_ok, 16700 tcp->tcp_ts_recent, 16701 tcp_display(tcp, buf, DISP_PORT_ONLY), cflag); 16702 if (print_len < buf_len) { 16703 ((mblk_t *)mp)->b_wptr += print_len; 16704 } else { 16705 ((mblk_t *)mp)->b_wptr += buf_len; 16706 } 16707 } 16708 16709 /* 16710 * TCP status report (for listeners only) triggered via the Named Dispatch 16711 * mechanism. 16712 */ 16713 /* ARGSUSED */ 16714 static void 16715 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval) 16716 { 16717 char addrbuf[INET6_ADDRSTRLEN]; 16718 in6_addr_t v6dst; 16719 uint_t print_len, buf_len; 16720 16721 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16722 if (buf_len <= 0) 16723 return; 16724 16725 if (tcp->tcp_ipversion == IPV4_VERSION) { 16726 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst); 16727 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16728 } else { 16729 (void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src, 16730 addrbuf, sizeof (addrbuf)); 16731 } 16732 print_len = snprintf((char *)mp->b_wptr, buf_len, 16733 "%03d " 16734 MI_COL_PTRFMT_STR 16735 "%d %s %05u %08u %d/%d/%d%c\n", 16736 hashval, (void *)tcp, 16737 tcp->tcp_connp->conn_zoneid, 16738 addrbuf, 16739 (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport), 16740 tcp->tcp_conn_req_seqnum, 16741 tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q, 16742 tcp->tcp_conn_req_max, 16743 tcp->tcp_syn_defense ? '*' : ' '); 16744 if (print_len < buf_len) { 16745 ((mblk_t *)mp)->b_wptr += print_len; 16746 } else { 16747 ((mblk_t *)mp)->b_wptr += buf_len; 16748 } 16749 } 16750 16751 /* TCP status report triggered via the Named Dispatch mechanism. */ 16752 /* ARGSUSED */ 16753 static int 16754 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16755 { 16756 tcp_t *tcp; 16757 int i; 16758 conn_t *connp; 16759 connf_t *connfp; 16760 zoneid_t zoneid; 16761 tcp_stack_t *tcps; 16762 ip_stack_t *ipst; 16763 16764 zoneid = Q_TO_CONN(q)->conn_zoneid; 16765 tcps = Q_TO_TCP(q)->tcp_tcps; 16766 16767 /* 16768 * Because of the ndd constraint, at most we can have 64K buffer 16769 * to put in all TCP info. So to be more efficient, just 16770 * allocate a 64K buffer here, assuming we need that large buffer. 16771 * This may be a problem as any user can read tcp_status. Therefore 16772 * we limit the rate of doing this using tcp_ndd_get_info_interval. 16773 * This should be OK as normal users should not do this too often. 16774 */ 16775 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16776 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16777 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16778 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16779 return (0); 16780 } 16781 } 16782 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16783 /* The following may work even if we cannot get a large buf. */ 16784 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16785 return (0); 16786 } 16787 16788 (void) mi_mpprintf(mp, "%s", tcp_report_header); 16789 16790 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16791 16792 ipst = tcps->tcps_netstack->netstack_ip; 16793 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 16794 16795 connp = NULL; 16796 16797 while ((connp = 16798 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16799 tcp = connp->conn_tcp; 16800 if (zoneid != GLOBAL_ZONEID && 16801 zoneid != connp->conn_zoneid) 16802 continue; 16803 tcp_report_item(mp->b_cont, tcp, -1, tcp, 16804 cr); 16805 } 16806 16807 } 16808 16809 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16810 return (0); 16811 } 16812 16813 /* TCP status report triggered via the Named Dispatch mechanism. */ 16814 /* ARGSUSED */ 16815 static int 16816 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16817 { 16818 tf_t *tbf; 16819 tcp_t *tcp; 16820 int i; 16821 zoneid_t zoneid; 16822 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 16823 16824 zoneid = Q_TO_CONN(q)->conn_zoneid; 16825 16826 /* Refer to comments in tcp_status_report(). */ 16827 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16828 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16829 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16830 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16831 return (0); 16832 } 16833 } 16834 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16835 /* The following may work even if we cannot get a large buf. */ 16836 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16837 return (0); 16838 } 16839 16840 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16841 16842 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 16843 tbf = &tcps->tcps_bind_fanout[i]; 16844 mutex_enter(&tbf->tf_lock); 16845 for (tcp = tbf->tf_tcp; tcp != NULL; 16846 tcp = tcp->tcp_bind_hash) { 16847 if (zoneid != GLOBAL_ZONEID && 16848 zoneid != tcp->tcp_connp->conn_zoneid) 16849 continue; 16850 CONN_INC_REF(tcp->tcp_connp); 16851 tcp_report_item(mp->b_cont, tcp, i, 16852 Q_TO_TCP(q), cr); 16853 CONN_DEC_REF(tcp->tcp_connp); 16854 } 16855 mutex_exit(&tbf->tf_lock); 16856 } 16857 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16858 return (0); 16859 } 16860 16861 /* TCP status report triggered via the Named Dispatch mechanism. */ 16862 /* ARGSUSED */ 16863 static int 16864 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16865 { 16866 connf_t *connfp; 16867 conn_t *connp; 16868 tcp_t *tcp; 16869 int i; 16870 zoneid_t zoneid; 16871 tcp_stack_t *tcps; 16872 ip_stack_t *ipst; 16873 16874 zoneid = Q_TO_CONN(q)->conn_zoneid; 16875 tcps = Q_TO_TCP(q)->tcp_tcps; 16876 16877 /* Refer to comments in tcp_status_report(). */ 16878 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16879 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16880 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16881 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16882 return (0); 16883 } 16884 } 16885 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16886 /* The following may work even if we cannot get a large buf. */ 16887 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16888 return (0); 16889 } 16890 16891 (void) mi_mpprintf(mp, 16892 " TCP " MI_COL_HDRPAD_STR 16893 "zone IP addr port seqnum backlog (q0/q/max)"); 16894 16895 ipst = tcps->tcps_netstack->netstack_ip; 16896 16897 for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) { 16898 connfp = &ipst->ips_ipcl_bind_fanout[i]; 16899 connp = NULL; 16900 while ((connp = 16901 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16902 tcp = connp->conn_tcp; 16903 if (zoneid != GLOBAL_ZONEID && 16904 zoneid != connp->conn_zoneid) 16905 continue; 16906 tcp_report_listener(mp->b_cont, tcp, i); 16907 } 16908 } 16909 16910 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16911 return (0); 16912 } 16913 16914 /* TCP status report triggered via the Named Dispatch mechanism. */ 16915 /* ARGSUSED */ 16916 static int 16917 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16918 { 16919 connf_t *connfp; 16920 conn_t *connp; 16921 tcp_t *tcp; 16922 int i; 16923 zoneid_t zoneid; 16924 tcp_stack_t *tcps; 16925 ip_stack_t *ipst; 16926 16927 zoneid = Q_TO_CONN(q)->conn_zoneid; 16928 tcps = Q_TO_TCP(q)->tcp_tcps; 16929 ipst = tcps->tcps_netstack->netstack_ip; 16930 16931 /* Refer to comments in tcp_status_report(). */ 16932 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16933 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16934 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16935 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16936 return (0); 16937 } 16938 } 16939 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16940 /* The following may work even if we cannot get a large buf. */ 16941 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16942 return (0); 16943 } 16944 16945 (void) mi_mpprintf(mp, "tcp_conn_hash_size = %d", 16946 ipst->ips_ipcl_conn_fanout_size); 16947 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16948 16949 for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) { 16950 connfp = &ipst->ips_ipcl_conn_fanout[i]; 16951 connp = NULL; 16952 while ((connp = 16953 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16954 tcp = connp->conn_tcp; 16955 if (zoneid != GLOBAL_ZONEID && 16956 zoneid != connp->conn_zoneid) 16957 continue; 16958 tcp_report_item(mp->b_cont, tcp, i, 16959 Q_TO_TCP(q), cr); 16960 } 16961 } 16962 16963 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16964 return (0); 16965 } 16966 16967 /* TCP status report triggered via the Named Dispatch mechanism. */ 16968 /* ARGSUSED */ 16969 static int 16970 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16971 { 16972 tf_t *tf; 16973 tcp_t *tcp; 16974 int i; 16975 zoneid_t zoneid; 16976 tcp_stack_t *tcps; 16977 16978 zoneid = Q_TO_CONN(q)->conn_zoneid; 16979 tcps = Q_TO_TCP(q)->tcp_tcps; 16980 16981 /* Refer to comments in tcp_status_report(). */ 16982 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16983 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16984 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16985 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16986 return (0); 16987 } 16988 } 16989 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16990 /* The following may work even if we cannot get a large buf. */ 16991 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16992 return (0); 16993 } 16994 16995 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16996 16997 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 16998 tf = &tcps->tcps_acceptor_fanout[i]; 16999 mutex_enter(&tf->tf_lock); 17000 for (tcp = tf->tf_tcp; tcp != NULL; 17001 tcp = tcp->tcp_acceptor_hash) { 17002 if (zoneid != GLOBAL_ZONEID && 17003 zoneid != tcp->tcp_connp->conn_zoneid) 17004 continue; 17005 tcp_report_item(mp->b_cont, tcp, i, 17006 Q_TO_TCP(q), cr); 17007 } 17008 mutex_exit(&tf->tf_lock); 17009 } 17010 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 17011 return (0); 17012 } 17013 17014 /* 17015 * tcp_timer is the timer service routine. It handles the retransmission, 17016 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 17017 * from the state of the tcp instance what kind of action needs to be done 17018 * at the time it is called. 17019 */ 17020 static void 17021 tcp_timer(void *arg) 17022 { 17023 mblk_t *mp; 17024 clock_t first_threshold; 17025 clock_t second_threshold; 17026 clock_t ms; 17027 uint32_t mss; 17028 conn_t *connp = (conn_t *)arg; 17029 tcp_t *tcp = connp->conn_tcp; 17030 tcp_stack_t *tcps = tcp->tcp_tcps; 17031 17032 tcp->tcp_timer_tid = 0; 17033 17034 if (tcp->tcp_fused) 17035 return; 17036 17037 first_threshold = tcp->tcp_first_timer_threshold; 17038 second_threshold = tcp->tcp_second_timer_threshold; 17039 switch (tcp->tcp_state) { 17040 case TCPS_IDLE: 17041 case TCPS_BOUND: 17042 case TCPS_LISTEN: 17043 return; 17044 case TCPS_SYN_RCVD: { 17045 tcp_t *listener = tcp->tcp_listener; 17046 17047 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 17048 ASSERT(tcp->tcp_rq == listener->tcp_rq); 17049 /* it's our first timeout */ 17050 tcp->tcp_syn_rcvd_timeout = 1; 17051 mutex_enter(&listener->tcp_eager_lock); 17052 listener->tcp_syn_rcvd_timeout++; 17053 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 17054 /* 17055 * Make this eager available for drop if we 17056 * need to drop one to accomodate a new 17057 * incoming SYN request. 17058 */ 17059 MAKE_DROPPABLE(listener, tcp); 17060 } 17061 if (!listener->tcp_syn_defense && 17062 (listener->tcp_syn_rcvd_timeout > 17063 (tcps->tcps_conn_req_max_q0 >> 2)) && 17064 (tcps->tcps_conn_req_max_q0 > 200)) { 17065 /* We may be under attack. Put on a defense. */ 17066 listener->tcp_syn_defense = B_TRUE; 17067 cmn_err(CE_WARN, "High TCP connect timeout " 17068 "rate! System (port %d) may be under a " 17069 "SYN flood attack!", 17070 BE16_TO_U16(listener->tcp_tcph->th_lport)); 17071 17072 listener->tcp_ip_addr_cache = kmem_zalloc( 17073 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 17074 KM_NOSLEEP); 17075 } 17076 mutex_exit(&listener->tcp_eager_lock); 17077 } else if (listener != NULL) { 17078 mutex_enter(&listener->tcp_eager_lock); 17079 tcp->tcp_syn_rcvd_timeout++; 17080 if (tcp->tcp_syn_rcvd_timeout > 1 && 17081 !tcp->tcp_closemp_used) { 17082 /* 17083 * This is our second timeout. Put the tcp in 17084 * the list of droppable eagers to allow it to 17085 * be dropped, if needed. We don't check 17086 * whether tcp_dontdrop is set or not to 17087 * protect ourselve from a SYN attack where a 17088 * remote host can spoof itself as one of the 17089 * good IP source and continue to hold 17090 * resources too long. 17091 */ 17092 MAKE_DROPPABLE(listener, tcp); 17093 } 17094 mutex_exit(&listener->tcp_eager_lock); 17095 } 17096 } 17097 /* FALLTHRU */ 17098 case TCPS_SYN_SENT: 17099 first_threshold = tcp->tcp_first_ctimer_threshold; 17100 second_threshold = tcp->tcp_second_ctimer_threshold; 17101 break; 17102 case TCPS_ESTABLISHED: 17103 case TCPS_FIN_WAIT_1: 17104 case TCPS_CLOSING: 17105 case TCPS_CLOSE_WAIT: 17106 case TCPS_LAST_ACK: 17107 /* If we have data to rexmit */ 17108 if (tcp->tcp_suna != tcp->tcp_snxt) { 17109 clock_t time_to_wait; 17110 17111 BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); 17112 if (!tcp->tcp_xmit_head) 17113 break; 17114 time_to_wait = lbolt - 17115 (clock_t)tcp->tcp_xmit_head->b_prev; 17116 time_to_wait = tcp->tcp_rto - 17117 TICK_TO_MSEC(time_to_wait); 17118 /* 17119 * If the timer fires too early, 1 clock tick earlier, 17120 * restart the timer. 17121 */ 17122 if (time_to_wait > msec_per_tick) { 17123 TCP_STAT(tcps, tcp_timer_fire_early); 17124 TCP_TIMER_RESTART(tcp, time_to_wait); 17125 return; 17126 } 17127 /* 17128 * When we probe zero windows, we force the swnd open. 17129 * If our peer acks with a closed window swnd will be 17130 * set to zero by tcp_rput(). As long as we are 17131 * receiving acks tcp_rput will 17132 * reset 'tcp_ms_we_have_waited' so as not to trip the 17133 * first and second interval actions. NOTE: the timer 17134 * interval is allowed to continue its exponential 17135 * backoff. 17136 */ 17137 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 17138 if (tcp->tcp_debug) { 17139 (void) strlog(TCP_MOD_ID, 0, 1, 17140 SL_TRACE, "tcp_timer: zero win"); 17141 } 17142 } else { 17143 /* 17144 * After retransmission, we need to do 17145 * slow start. Set the ssthresh to one 17146 * half of current effective window and 17147 * cwnd to one MSS. Also reset 17148 * tcp_cwnd_cnt. 17149 * 17150 * Note that if tcp_ssthresh is reduced because 17151 * of ECN, do not reduce it again unless it is 17152 * already one window of data away (tcp_cwr 17153 * should then be cleared) or this is a 17154 * timeout for a retransmitted segment. 17155 */ 17156 uint32_t npkt; 17157 17158 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 17159 npkt = ((tcp->tcp_timer_backoff ? 17160 tcp->tcp_cwnd_ssthresh : 17161 tcp->tcp_snxt - 17162 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 17163 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 17164 tcp->tcp_mss; 17165 } 17166 tcp->tcp_cwnd = tcp->tcp_mss; 17167 tcp->tcp_cwnd_cnt = 0; 17168 if (tcp->tcp_ecn_ok) { 17169 tcp->tcp_cwr = B_TRUE; 17170 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 17171 tcp->tcp_ecn_cwr_sent = B_FALSE; 17172 } 17173 } 17174 break; 17175 } 17176 /* 17177 * We have something to send yet we cannot send. The 17178 * reason can be: 17179 * 17180 * 1. Zero send window: we need to do zero window probe. 17181 * 2. Zero cwnd: because of ECN, we need to "clock out 17182 * segments. 17183 * 3. SWS avoidance: receiver may have shrunk window, 17184 * reset our knowledge. 17185 * 17186 * Note that condition 2 can happen with either 1 or 17187 * 3. But 1 and 3 are exclusive. 17188 */ 17189 if (tcp->tcp_unsent != 0) { 17190 if (tcp->tcp_cwnd == 0) { 17191 /* 17192 * Set tcp_cwnd to 1 MSS so that a 17193 * new segment can be sent out. We 17194 * are "clocking out" new data when 17195 * the network is really congested. 17196 */ 17197 ASSERT(tcp->tcp_ecn_ok); 17198 tcp->tcp_cwnd = tcp->tcp_mss; 17199 } 17200 if (tcp->tcp_swnd == 0) { 17201 /* Extend window for zero window probe */ 17202 tcp->tcp_swnd++; 17203 tcp->tcp_zero_win_probe = B_TRUE; 17204 BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); 17205 } else { 17206 /* 17207 * Handle timeout from sender SWS avoidance. 17208 * Reset our knowledge of the max send window 17209 * since the receiver might have reduced its 17210 * receive buffer. Avoid setting tcp_max_swnd 17211 * to one since that will essentially disable 17212 * the SWS checks. 17213 * 17214 * Note that since we don't have a SWS 17215 * state variable, if the timeout is set 17216 * for ECN but not for SWS, this 17217 * code will also be executed. This is 17218 * fine as tcp_max_swnd is updated 17219 * constantly and it will not affect 17220 * anything. 17221 */ 17222 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 17223 } 17224 tcp_wput_data(tcp, NULL, B_FALSE); 17225 return; 17226 } 17227 /* Is there a FIN that needs to be to re retransmitted? */ 17228 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17229 !tcp->tcp_fin_acked) 17230 break; 17231 /* Nothing to do, return without restarting timer. */ 17232 TCP_STAT(tcps, tcp_timer_fire_miss); 17233 return; 17234 case TCPS_FIN_WAIT_2: 17235 /* 17236 * User closed the TCP endpoint and peer ACK'ed our FIN. 17237 * We waited some time for for peer's FIN, but it hasn't 17238 * arrived. We flush the connection now to avoid 17239 * case where the peer has rebooted. 17240 */ 17241 if (TCP_IS_DETACHED(tcp)) { 17242 (void) tcp_clean_death(tcp, 0, 23); 17243 } else { 17244 TCP_TIMER_RESTART(tcp, 17245 tcps->tcps_fin_wait_2_flush_interval); 17246 } 17247 return; 17248 case TCPS_TIME_WAIT: 17249 (void) tcp_clean_death(tcp, 0, 24); 17250 return; 17251 default: 17252 if (tcp->tcp_debug) { 17253 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 17254 "tcp_timer: strange state (%d) %s", 17255 tcp->tcp_state, tcp_display(tcp, NULL, 17256 DISP_PORT_ONLY)); 17257 } 17258 return; 17259 } 17260 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 17261 /* 17262 * For zero window probe, we need to send indefinitely, 17263 * unless we have not heard from the other side for some 17264 * time... 17265 */ 17266 if ((tcp->tcp_zero_win_probe == 0) || 17267 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 17268 second_threshold)) { 17269 BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); 17270 /* 17271 * If TCP is in SYN_RCVD state, send back a 17272 * RST|ACK as BSD does. Note that tcp_zero_win_probe 17273 * should be zero in TCPS_SYN_RCVD state. 17274 */ 17275 if (tcp->tcp_state == TCPS_SYN_RCVD) { 17276 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 17277 "in SYN_RCVD", 17278 tcp, tcp->tcp_snxt, 17279 tcp->tcp_rnxt, TH_RST | TH_ACK); 17280 } 17281 (void) tcp_clean_death(tcp, 17282 tcp->tcp_client_errno ? 17283 tcp->tcp_client_errno : ETIMEDOUT, 25); 17284 return; 17285 } else { 17286 /* 17287 * Set tcp_ms_we_have_waited to second_threshold 17288 * so that in next timeout, we will do the above 17289 * check (lbolt - tcp_last_recv_time). This is 17290 * also to avoid overflow. 17291 * 17292 * We don't need to decrement tcp_timer_backoff 17293 * to avoid overflow because it will be decremented 17294 * later if new timeout value is greater than 17295 * tcp_rexmit_interval_max. In the case when 17296 * tcp_rexmit_interval_max is greater than 17297 * second_threshold, it means that we will wait 17298 * longer than second_threshold to send the next 17299 * window probe. 17300 */ 17301 tcp->tcp_ms_we_have_waited = second_threshold; 17302 } 17303 } else if (ms > first_threshold) { 17304 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 17305 tcp->tcp_xmit_head != NULL) { 17306 tcp->tcp_xmit_head = 17307 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 17308 } 17309 /* 17310 * We have been retransmitting for too long... The RTT 17311 * we calculated is probably incorrect. Reinitialize it. 17312 * Need to compensate for 0 tcp_rtt_sa. Reset 17313 * tcp_rtt_update so that we won't accidentally cache a 17314 * bad value. But only do this if this is not a zero 17315 * window probe. 17316 */ 17317 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 17318 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 17319 (tcp->tcp_rtt_sa >> 5); 17320 tcp->tcp_rtt_sa = 0; 17321 tcp_ip_notify(tcp); 17322 tcp->tcp_rtt_update = 0; 17323 } 17324 } 17325 tcp->tcp_timer_backoff++; 17326 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 17327 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 17328 tcps->tcps_rexmit_interval_min) { 17329 /* 17330 * This means the original RTO is tcp_rexmit_interval_min. 17331 * So we will use tcp_rexmit_interval_min as the RTO value 17332 * and do the backoff. 17333 */ 17334 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 17335 } else { 17336 ms <<= tcp->tcp_timer_backoff; 17337 } 17338 if (ms > tcps->tcps_rexmit_interval_max) { 17339 ms = tcps->tcps_rexmit_interval_max; 17340 /* 17341 * ms is at max, decrement tcp_timer_backoff to avoid 17342 * overflow. 17343 */ 17344 tcp->tcp_timer_backoff--; 17345 } 17346 tcp->tcp_ms_we_have_waited += ms; 17347 if (tcp->tcp_zero_win_probe == 0) { 17348 tcp->tcp_rto = ms; 17349 } 17350 TCP_TIMER_RESTART(tcp, ms); 17351 /* 17352 * This is after a timeout and tcp_rto is backed off. Set 17353 * tcp_set_timer to 1 so that next time RTO is updated, we will 17354 * restart the timer with a correct value. 17355 */ 17356 tcp->tcp_set_timer = 1; 17357 mss = tcp->tcp_snxt - tcp->tcp_suna; 17358 if (mss > tcp->tcp_mss) 17359 mss = tcp->tcp_mss; 17360 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 17361 mss = tcp->tcp_swnd; 17362 17363 if ((mp = tcp->tcp_xmit_head) != NULL) 17364 mp->b_prev = (mblk_t *)lbolt; 17365 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 17366 B_TRUE); 17367 17368 /* 17369 * When slow start after retransmission begins, start with 17370 * this seq no. tcp_rexmit_max marks the end of special slow 17371 * start phase. tcp_snd_burst controls how many segments 17372 * can be sent because of an ack. 17373 */ 17374 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 17375 tcp->tcp_snd_burst = TCP_CWND_SS; 17376 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17377 (tcp->tcp_unsent == 0)) { 17378 tcp->tcp_rexmit_max = tcp->tcp_fss; 17379 } else { 17380 tcp->tcp_rexmit_max = tcp->tcp_snxt; 17381 } 17382 tcp->tcp_rexmit = B_TRUE; 17383 tcp->tcp_dupack_cnt = 0; 17384 17385 /* 17386 * Remove all rexmit SACK blk to start from fresh. 17387 */ 17388 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 17389 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 17390 tcp->tcp_num_notsack_blk = 0; 17391 tcp->tcp_cnt_notsack_list = 0; 17392 } 17393 if (mp == NULL) { 17394 return; 17395 } 17396 /* Attach credentials to retransmitted initial SYNs. */ 17397 if (tcp->tcp_state == TCPS_SYN_SENT) { 17398 mblk_setcred(mp, tcp->tcp_cred); 17399 DB_CPID(mp) = tcp->tcp_cpid; 17400 } 17401 17402 tcp->tcp_csuna = tcp->tcp_snxt; 17403 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 17404 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); 17405 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 17406 tcp_send_data(tcp, tcp->tcp_wq, mp); 17407 17408 } 17409 17410 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 17411 static void 17412 tcp_unbind(tcp_t *tcp, mblk_t *mp) 17413 { 17414 conn_t *connp; 17415 17416 switch (tcp->tcp_state) { 17417 case TCPS_BOUND: 17418 case TCPS_LISTEN: 17419 break; 17420 default: 17421 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 17422 return; 17423 } 17424 17425 /* 17426 * Need to clean up all the eagers since after the unbind, segments 17427 * will no longer be delivered to this listener stream. 17428 */ 17429 mutex_enter(&tcp->tcp_eager_lock); 17430 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 17431 tcp_eager_cleanup(tcp, 0); 17432 } 17433 mutex_exit(&tcp->tcp_eager_lock); 17434 17435 if (tcp->tcp_ipversion == IPV4_VERSION) { 17436 tcp->tcp_ipha->ipha_src = 0; 17437 } else { 17438 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 17439 } 17440 V6_SET_ZERO(tcp->tcp_ip_src_v6); 17441 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 17442 tcp_bind_hash_remove(tcp); 17443 tcp->tcp_state = TCPS_IDLE; 17444 tcp->tcp_mdt = B_FALSE; 17445 /* Send M_FLUSH according to TPI */ 17446 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 17447 connp = tcp->tcp_connp; 17448 connp->conn_mdt_ok = B_FALSE; 17449 ipcl_hash_remove(connp); 17450 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 17451 mp = mi_tpi_ok_ack_alloc(mp); 17452 putnext(tcp->tcp_rq, mp); 17453 } 17454 17455 /* 17456 * Don't let port fall into the privileged range. 17457 * Since the extra privileged ports can be arbitrary we also 17458 * ensure that we exclude those from consideration. 17459 * tcp_g_epriv_ports is not sorted thus we loop over it until 17460 * there are no changes. 17461 * 17462 * Note: No locks are held when inspecting tcp_g_*epriv_ports 17463 * but instead the code relies on: 17464 * - the fact that the address of the array and its size never changes 17465 * - the atomic assignment of the elements of the array 17466 * 17467 * Returns 0 if there are no more ports available. 17468 * 17469 * TS note: skip multilevel ports. 17470 */ 17471 static in_port_t 17472 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 17473 { 17474 int i; 17475 boolean_t restart = B_FALSE; 17476 tcp_stack_t *tcps = tcp->tcp_tcps; 17477 17478 if (random && tcp_random_anon_port != 0) { 17479 (void) random_get_pseudo_bytes((uint8_t *)&port, 17480 sizeof (in_port_t)); 17481 /* 17482 * Unless changed by a sys admin, the smallest anon port 17483 * is 32768 and the largest anon port is 65535. It is 17484 * very likely (50%) for the random port to be smaller 17485 * than the smallest anon port. When that happens, 17486 * add port % (anon port range) to the smallest anon 17487 * port to get the random port. It should fall into the 17488 * valid anon port range. 17489 */ 17490 if (port < tcps->tcps_smallest_anon_port) { 17491 port = tcps->tcps_smallest_anon_port + 17492 port % (tcps->tcps_largest_anon_port - 17493 tcps->tcps_smallest_anon_port); 17494 } 17495 } 17496 17497 retry: 17498 if (port < tcps->tcps_smallest_anon_port) 17499 port = (in_port_t)tcps->tcps_smallest_anon_port; 17500 17501 if (port > tcps->tcps_largest_anon_port) { 17502 if (restart) 17503 return (0); 17504 restart = B_TRUE; 17505 port = (in_port_t)tcps->tcps_smallest_anon_port; 17506 } 17507 17508 if (port < tcps->tcps_smallest_nonpriv_port) 17509 port = (in_port_t)tcps->tcps_smallest_nonpriv_port; 17510 17511 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 17512 if (port == tcps->tcps_g_epriv_ports[i]) { 17513 port++; 17514 /* 17515 * Make sure whether the port is in the 17516 * valid range. 17517 */ 17518 goto retry; 17519 } 17520 } 17521 if (is_system_labeled() && 17522 (i = tsol_next_port(crgetzone(tcp->tcp_cred), port, 17523 IPPROTO_TCP, B_TRUE)) != 0) { 17524 port = i; 17525 goto retry; 17526 } 17527 return (port); 17528 } 17529 17530 /* 17531 * Return the next anonymous port in the privileged port range for 17532 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 17533 * downwards. This is the same behavior as documented in the userland 17534 * library call rresvport(3N). 17535 * 17536 * TS note: skip multilevel ports. 17537 */ 17538 static in_port_t 17539 tcp_get_next_priv_port(const tcp_t *tcp) 17540 { 17541 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 17542 in_port_t nextport; 17543 boolean_t restart = B_FALSE; 17544 tcp_stack_t *tcps = tcp->tcp_tcps; 17545 retry: 17546 if (next_priv_port < tcps->tcps_min_anonpriv_port || 17547 next_priv_port >= IPPORT_RESERVED) { 17548 next_priv_port = IPPORT_RESERVED - 1; 17549 if (restart) 17550 return (0); 17551 restart = B_TRUE; 17552 } 17553 if (is_system_labeled() && 17554 (nextport = tsol_next_port(crgetzone(tcp->tcp_cred), 17555 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 17556 next_priv_port = nextport; 17557 goto retry; 17558 } 17559 return (next_priv_port--); 17560 } 17561 17562 /* The write side r/w procedure. */ 17563 17564 #if CCS_STATS 17565 struct { 17566 struct { 17567 int64_t count, bytes; 17568 } tot, hit; 17569 } wrw_stats; 17570 #endif 17571 17572 /* 17573 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 17574 * messages. 17575 */ 17576 /* ARGSUSED */ 17577 static void 17578 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 17579 { 17580 conn_t *connp = (conn_t *)arg; 17581 tcp_t *tcp = connp->conn_tcp; 17582 queue_t *q = tcp->tcp_wq; 17583 17584 ASSERT(DB_TYPE(mp) != M_IOCTL); 17585 /* 17586 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 17587 * Once the close starts, streamhead and sockfs will not let any data 17588 * packets come down (close ensures that there are no threads using the 17589 * queue and no new threads will come down) but since qprocsoff() 17590 * hasn't happened yet, a M_FLUSH or some non data message might 17591 * get reflected back (in response to our own FLUSHRW) and get 17592 * processed after tcp_close() is done. The conn would still be valid 17593 * because a ref would have added but we need to check the state 17594 * before actually processing the packet. 17595 */ 17596 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 17597 freemsg(mp); 17598 return; 17599 } 17600 17601 switch (DB_TYPE(mp)) { 17602 case M_IOCDATA: 17603 tcp_wput_iocdata(tcp, mp); 17604 break; 17605 case M_FLUSH: 17606 tcp_wput_flush(tcp, mp); 17607 break; 17608 default: 17609 CALL_IP_WPUT(connp, q, mp); 17610 break; 17611 } 17612 } 17613 17614 /* 17615 * The TCP fast path write put procedure. 17616 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 17617 */ 17618 /* ARGSUSED */ 17619 void 17620 tcp_output(void *arg, mblk_t *mp, void *arg2) 17621 { 17622 int len; 17623 int hdrlen; 17624 int plen; 17625 mblk_t *mp1; 17626 uchar_t *rptr; 17627 uint32_t snxt; 17628 tcph_t *tcph; 17629 struct datab *db; 17630 uint32_t suna; 17631 uint32_t mss; 17632 ipaddr_t *dst; 17633 ipaddr_t *src; 17634 uint32_t sum; 17635 int usable; 17636 conn_t *connp = (conn_t *)arg; 17637 tcp_t *tcp = connp->conn_tcp; 17638 uint32_t msize; 17639 tcp_stack_t *tcps = tcp->tcp_tcps; 17640 17641 /* 17642 * Try and ASSERT the minimum possible references on the 17643 * conn early enough. Since we are executing on write side, 17644 * the connection is obviously not detached and that means 17645 * there is a ref each for TCP and IP. Since we are behind 17646 * the squeue, the minimum references needed are 3. If the 17647 * conn is in classifier hash list, there should be an 17648 * extra ref for that (we check both the possibilities). 17649 */ 17650 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17651 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17652 17653 ASSERT(DB_TYPE(mp) == M_DATA); 17654 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 17655 17656 mutex_enter(&tcp->tcp_non_sq_lock); 17657 tcp->tcp_squeue_bytes -= msize; 17658 mutex_exit(&tcp->tcp_non_sq_lock); 17659 17660 /* Bypass tcp protocol for fused tcp loopback */ 17661 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 17662 return; 17663 17664 mss = tcp->tcp_mss; 17665 if (tcp->tcp_xmit_zc_clean) 17666 mp = tcp_zcopy_backoff(tcp, mp, 0); 17667 17668 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17669 len = (int)(mp->b_wptr - mp->b_rptr); 17670 17671 /* 17672 * Criteria for fast path: 17673 * 17674 * 1. no unsent data 17675 * 2. single mblk in request 17676 * 3. connection established 17677 * 4. data in mblk 17678 * 5. len <= mss 17679 * 6. no tcp_valid bits 17680 */ 17681 if ((tcp->tcp_unsent != 0) || 17682 (tcp->tcp_cork) || 17683 (mp->b_cont != NULL) || 17684 (tcp->tcp_state != TCPS_ESTABLISHED) || 17685 (len == 0) || 17686 (len > mss) || 17687 (tcp->tcp_valid_bits != 0)) { 17688 tcp_wput_data(tcp, mp, B_FALSE); 17689 return; 17690 } 17691 17692 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 17693 ASSERT(tcp->tcp_fin_sent == 0); 17694 17695 /* queue new packet onto retransmission queue */ 17696 if (tcp->tcp_xmit_head == NULL) { 17697 tcp->tcp_xmit_head = mp; 17698 } else { 17699 tcp->tcp_xmit_last->b_cont = mp; 17700 } 17701 tcp->tcp_xmit_last = mp; 17702 tcp->tcp_xmit_tail = mp; 17703 17704 /* find out how much we can send */ 17705 /* BEGIN CSTYLED */ 17706 /* 17707 * un-acked usable 17708 * |--------------|-----------------| 17709 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 17710 */ 17711 /* END CSTYLED */ 17712 17713 /* start sending from tcp_snxt */ 17714 snxt = tcp->tcp_snxt; 17715 17716 /* 17717 * Check to see if this connection has been idled for some 17718 * time and no ACK is expected. If it is, we need to slow 17719 * start again to get back the connection's "self-clock" as 17720 * described in VJ's paper. 17721 * 17722 * Refer to the comment in tcp_mss_set() for the calculation 17723 * of tcp_cwnd after idle. 17724 */ 17725 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 17726 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 17727 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 17728 } 17729 17730 usable = tcp->tcp_swnd; /* tcp window size */ 17731 if (usable > tcp->tcp_cwnd) 17732 usable = tcp->tcp_cwnd; /* congestion window smaller */ 17733 usable -= snxt; /* subtract stuff already sent */ 17734 suna = tcp->tcp_suna; 17735 usable += suna; 17736 /* usable can be < 0 if the congestion window is smaller */ 17737 if (len > usable) { 17738 /* Can't send complete M_DATA in one shot */ 17739 goto slow; 17740 } 17741 17742 mutex_enter(&tcp->tcp_non_sq_lock); 17743 if (tcp->tcp_flow_stopped && 17744 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 17745 tcp_clrqfull(tcp); 17746 } 17747 mutex_exit(&tcp->tcp_non_sq_lock); 17748 17749 /* 17750 * determine if anything to send (Nagle). 17751 * 17752 * 1. len < tcp_mss (i.e. small) 17753 * 2. unacknowledged data present 17754 * 3. len < nagle limit 17755 * 4. last packet sent < nagle limit (previous packet sent) 17756 */ 17757 if ((len < mss) && (snxt != suna) && 17758 (len < (int)tcp->tcp_naglim) && 17759 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 17760 /* 17761 * This was the first unsent packet and normally 17762 * mss < xmit_hiwater so there is no need to worry 17763 * about flow control. The next packet will go 17764 * through the flow control check in tcp_wput_data(). 17765 */ 17766 /* leftover work from above */ 17767 tcp->tcp_unsent = len; 17768 tcp->tcp_xmit_tail_unsent = len; 17769 17770 return; 17771 } 17772 17773 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 17774 17775 if (snxt == suna) { 17776 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17777 } 17778 17779 /* we have always sent something */ 17780 tcp->tcp_rack_cnt = 0; 17781 17782 tcp->tcp_snxt = snxt + len; 17783 tcp->tcp_rack = tcp->tcp_rnxt; 17784 17785 if ((mp1 = dupb(mp)) == 0) 17786 goto no_memory; 17787 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 17788 mp->b_next = (mblk_t *)(uintptr_t)snxt; 17789 17790 /* adjust tcp header information */ 17791 tcph = tcp->tcp_tcph; 17792 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 17793 17794 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 17795 sum = (sum >> 16) + (sum & 0xFFFF); 17796 U16_TO_ABE16(sum, tcph->th_sum); 17797 17798 U32_TO_ABE32(snxt, tcph->th_seq); 17799 17800 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 17801 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 17802 BUMP_LOCAL(tcp->tcp_obsegs); 17803 17804 /* Update the latest receive window size in TCP header. */ 17805 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 17806 tcph->th_win); 17807 17808 tcp->tcp_last_sent_len = (ushort_t)len; 17809 17810 plen = len + tcp->tcp_hdr_len; 17811 17812 if (tcp->tcp_ipversion == IPV4_VERSION) { 17813 tcp->tcp_ipha->ipha_length = htons(plen); 17814 } else { 17815 tcp->tcp_ip6h->ip6_plen = htons(plen - 17816 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 17817 } 17818 17819 /* see if we need to allocate a mblk for the headers */ 17820 hdrlen = tcp->tcp_hdr_len; 17821 rptr = mp1->b_rptr - hdrlen; 17822 db = mp1->b_datap; 17823 if ((db->db_ref != 2) || rptr < db->db_base || 17824 (!OK_32PTR(rptr))) { 17825 /* NOTE: we assume allocb returns an OK_32PTR */ 17826 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 17827 tcps->tcps_wroff_xtra, BPRI_MED); 17828 if (!mp) { 17829 freemsg(mp1); 17830 goto no_memory; 17831 } 17832 mp->b_cont = mp1; 17833 mp1 = mp; 17834 /* Leave room for Link Level header */ 17835 /* hdrlen = tcp->tcp_hdr_len; */ 17836 rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; 17837 mp1->b_wptr = &rptr[hdrlen]; 17838 } 17839 mp1->b_rptr = rptr; 17840 17841 /* Fill in the timestamp option. */ 17842 if (tcp->tcp_snd_ts_ok) { 17843 U32_TO_BE32((uint32_t)lbolt, 17844 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 17845 U32_TO_BE32(tcp->tcp_ts_recent, 17846 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 17847 } else { 17848 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 17849 } 17850 17851 /* copy header into outgoing packet */ 17852 dst = (ipaddr_t *)rptr; 17853 src = (ipaddr_t *)tcp->tcp_iphc; 17854 dst[0] = src[0]; 17855 dst[1] = src[1]; 17856 dst[2] = src[2]; 17857 dst[3] = src[3]; 17858 dst[4] = src[4]; 17859 dst[5] = src[5]; 17860 dst[6] = src[6]; 17861 dst[7] = src[7]; 17862 dst[8] = src[8]; 17863 dst[9] = src[9]; 17864 if (hdrlen -= 40) { 17865 hdrlen >>= 2; 17866 dst += 10; 17867 src += 10; 17868 do { 17869 *dst++ = *src++; 17870 } while (--hdrlen); 17871 } 17872 17873 /* 17874 * Set the ECN info in the TCP header. Note that this 17875 * is not the template header. 17876 */ 17877 if (tcp->tcp_ecn_ok) { 17878 SET_ECT(tcp, rptr); 17879 17880 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 17881 if (tcp->tcp_ecn_echo_on) 17882 tcph->th_flags[0] |= TH_ECE; 17883 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17884 tcph->th_flags[0] |= TH_CWR; 17885 tcp->tcp_ecn_cwr_sent = B_TRUE; 17886 } 17887 } 17888 17889 if (tcp->tcp_ip_forward_progress) { 17890 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 17891 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 17892 tcp->tcp_ip_forward_progress = B_FALSE; 17893 } 17894 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 17895 tcp_send_data(tcp, tcp->tcp_wq, mp1); 17896 return; 17897 17898 /* 17899 * If we ran out of memory, we pretend to have sent the packet 17900 * and that it was lost on the wire. 17901 */ 17902 no_memory: 17903 return; 17904 17905 slow: 17906 /* leftover work from above */ 17907 tcp->tcp_unsent = len; 17908 tcp->tcp_xmit_tail_unsent = len; 17909 tcp_wput_data(tcp, NULL, B_FALSE); 17910 } 17911 17912 /* 17913 * The function called through squeue to get behind eager's perimeter to 17914 * finish the accept processing. 17915 */ 17916 /* ARGSUSED */ 17917 void 17918 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 17919 { 17920 conn_t *connp = (conn_t *)arg; 17921 tcp_t *tcp = connp->conn_tcp; 17922 queue_t *q = tcp->tcp_rq; 17923 mblk_t *mp1; 17924 mblk_t *stropt_mp = mp; 17925 struct stroptions *stropt; 17926 uint_t thwin; 17927 tcp_stack_t *tcps = tcp->tcp_tcps; 17928 17929 /* 17930 * Drop the eager's ref on the listener, that was placed when 17931 * this eager began life in tcp_conn_request. 17932 */ 17933 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 17934 17935 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 17936 /* 17937 * Someone blewoff the eager before we could finish 17938 * the accept. 17939 * 17940 * The only reason eager exists it because we put in 17941 * a ref on it when conn ind went up. We need to send 17942 * a disconnect indication up while the last reference 17943 * on the eager will be dropped by the squeue when we 17944 * return. 17945 */ 17946 ASSERT(tcp->tcp_listener == NULL); 17947 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17948 struct T_discon_ind *tdi; 17949 17950 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17951 /* 17952 * Let us reuse the incoming mblk to avoid memory 17953 * allocation failure problems. We know that the 17954 * size of the incoming mblk i.e. stroptions is greater 17955 * than sizeof T_discon_ind. So the reallocb below 17956 * can't fail. 17957 */ 17958 freemsg(mp->b_cont); 17959 mp->b_cont = NULL; 17960 ASSERT(DB_REF(mp) == 1); 17961 mp = reallocb(mp, sizeof (struct T_discon_ind), 17962 B_FALSE); 17963 ASSERT(mp != NULL); 17964 DB_TYPE(mp) = M_PROTO; 17965 ((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND; 17966 tdi = (struct T_discon_ind *)mp->b_rptr; 17967 if (tcp->tcp_issocket) { 17968 tdi->DISCON_reason = ECONNREFUSED; 17969 tdi->SEQ_number = 0; 17970 } else { 17971 tdi->DISCON_reason = ENOPROTOOPT; 17972 tdi->SEQ_number = 17973 tcp->tcp_conn_req_seqnum; 17974 } 17975 mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind); 17976 putnext(q, mp); 17977 } else { 17978 freemsg(mp); 17979 } 17980 if (tcp->tcp_hard_binding) { 17981 tcp->tcp_hard_binding = B_FALSE; 17982 tcp->tcp_hard_bound = B_TRUE; 17983 } 17984 tcp->tcp_detached = B_FALSE; 17985 return; 17986 } 17987 17988 mp1 = stropt_mp->b_cont; 17989 stropt_mp->b_cont = NULL; 17990 ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS); 17991 stropt = (struct stroptions *)stropt_mp->b_rptr; 17992 17993 while (mp1 != NULL) { 17994 mp = mp1; 17995 mp1 = mp1->b_cont; 17996 mp->b_cont = NULL; 17997 tcp->tcp_drop_opt_ack_cnt++; 17998 CALL_IP_WPUT(connp, tcp->tcp_wq, mp); 17999 } 18000 mp = NULL; 18001 18002 /* 18003 * For a loopback connection with tcp_direct_sockfs on, note that 18004 * we don't have to protect tcp_rcv_list yet because synchronous 18005 * streams has not yet been enabled and tcp_fuse_rrw() cannot 18006 * possibly race with us. 18007 */ 18008 18009 /* 18010 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 18011 * properly. This is the first time we know of the acceptor' 18012 * queue. So we do it here. 18013 */ 18014 if (tcp->tcp_rcv_list == NULL) { 18015 /* 18016 * Recv queue is empty, tcp_rwnd should not have changed. 18017 * That means it should be equal to the listener's tcp_rwnd. 18018 */ 18019 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 18020 } else { 18021 #ifdef DEBUG 18022 uint_t cnt = 0; 18023 18024 mp1 = tcp->tcp_rcv_list; 18025 while ((mp = mp1) != NULL) { 18026 mp1 = mp->b_next; 18027 cnt += msgdsize(mp); 18028 } 18029 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 18030 #endif 18031 /* There is some data, add them back to get the max. */ 18032 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 18033 } 18034 18035 stropt->so_flags = SO_HIWAT; 18036 stropt->so_hiwat = MAX(q->q_hiwat, tcps->tcps_sth_rcv_hiwat); 18037 18038 stropt->so_flags |= SO_MAXBLK; 18039 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 18040 18041 /* 18042 * This is the first time we run on the correct 18043 * queue after tcp_accept. So fix all the q parameters 18044 * here. 18045 */ 18046 /* Allocate room for SACK options if needed. */ 18047 stropt->so_flags |= SO_WROFF; 18048 if (tcp->tcp_fused) { 18049 ASSERT(tcp->tcp_loopback); 18050 ASSERT(tcp->tcp_loopback_peer != NULL); 18051 /* 18052 * For fused tcp loopback, set the stream head's write 18053 * offset value to zero since we won't be needing any room 18054 * for TCP/IP headers. This would also improve performance 18055 * since it would reduce the amount of work done by kmem. 18056 * Non-fused tcp loopback case is handled separately below. 18057 */ 18058 stropt->so_wroff = 0; 18059 /* 18060 * Record the stream head's high water mark for this endpoint; 18061 * this is used for flow-control purposes in tcp_fuse_output(). 18062 */ 18063 stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat); 18064 /* 18065 * Update the peer's transmit parameters according to 18066 * our recently calculated high water mark value. 18067 */ 18068 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 18069 } else if (tcp->tcp_snd_sack_ok) { 18070 stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 18071 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 18072 } else { 18073 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 18074 tcps->tcps_wroff_xtra); 18075 } 18076 18077 /* 18078 * If this is endpoint is handling SSL, then reserve extra 18079 * offset and space at the end. 18080 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 18081 * overriding the previous setting. The extra cost of signing and 18082 * encrypting multiple MSS-size records (12 of them with Ethernet), 18083 * instead of a single contiguous one by the stream head 18084 * largely outweighs the statistical reduction of ACKs, when 18085 * applicable. The peer will also save on decryption and verification 18086 * costs. 18087 */ 18088 if (tcp->tcp_kssl_ctx != NULL) { 18089 stropt->so_wroff += SSL3_WROFFSET; 18090 18091 stropt->so_flags |= SO_TAIL; 18092 stropt->so_tail = SSL3_MAX_TAIL_LEN; 18093 18094 stropt->so_maxblk = SSL3_MAX_RECORD_LEN; 18095 } 18096 18097 /* Send the options up */ 18098 putnext(q, stropt_mp); 18099 18100 /* 18101 * Pass up any data and/or a fin that has been received. 18102 * 18103 * Adjust receive window in case it had decreased 18104 * (because there is data <=> tcp_rcv_list != NULL) 18105 * while the connection was detached. Note that 18106 * in case the eager was flow-controlled, w/o this 18107 * code, the rwnd may never open up again! 18108 */ 18109 if (tcp->tcp_rcv_list != NULL) { 18110 /* We drain directly in case of fused tcp loopback */ 18111 if (!tcp->tcp_fused && canputnext(q)) { 18112 tcp->tcp_rwnd = q->q_hiwat; 18113 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 18114 << tcp->tcp_rcv_ws; 18115 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 18116 if (tcp->tcp_state >= TCPS_ESTABLISHED && 18117 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 18118 tcp_xmit_ctl(NULL, 18119 tcp, (tcp->tcp_swnd == 0) ? 18120 tcp->tcp_suna : tcp->tcp_snxt, 18121 tcp->tcp_rnxt, TH_ACK); 18122 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 18123 } 18124 18125 } 18126 (void) tcp_rcv_drain(q, tcp); 18127 18128 /* 18129 * For fused tcp loopback, back-enable peer endpoint 18130 * if it's currently flow-controlled. 18131 */ 18132 if (tcp->tcp_fused) { 18133 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 18134 18135 ASSERT(peer_tcp != NULL); 18136 ASSERT(peer_tcp->tcp_fused); 18137 /* 18138 * In order to change the peer's tcp_flow_stopped, 18139 * we need to take locks for both end points. The 18140 * highest address is taken first. 18141 */ 18142 if (peer_tcp > tcp) { 18143 mutex_enter(&peer_tcp->tcp_non_sq_lock); 18144 mutex_enter(&tcp->tcp_non_sq_lock); 18145 } else { 18146 mutex_enter(&tcp->tcp_non_sq_lock); 18147 mutex_enter(&peer_tcp->tcp_non_sq_lock); 18148 } 18149 if (peer_tcp->tcp_flow_stopped) { 18150 tcp_clrqfull(peer_tcp); 18151 TCP_STAT(tcps, tcp_fusion_backenabled); 18152 } 18153 mutex_exit(&peer_tcp->tcp_non_sq_lock); 18154 mutex_exit(&tcp->tcp_non_sq_lock); 18155 } 18156 } 18157 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 18158 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 18159 mp = mi_tpi_ordrel_ind(); 18160 if (mp) { 18161 tcp->tcp_ordrel_done = B_TRUE; 18162 putnext(q, mp); 18163 if (tcp->tcp_deferred_clean_death) { 18164 /* 18165 * tcp_clean_death was deferred 18166 * for T_ORDREL_IND - do it now 18167 */ 18168 (void) tcp_clean_death(tcp, 18169 tcp->tcp_client_errno, 21); 18170 tcp->tcp_deferred_clean_death = B_FALSE; 18171 } 18172 } else { 18173 /* 18174 * Run the orderly release in the 18175 * service routine. 18176 */ 18177 qenable(q); 18178 } 18179 } 18180 if (tcp->tcp_hard_binding) { 18181 tcp->tcp_hard_binding = B_FALSE; 18182 tcp->tcp_hard_bound = B_TRUE; 18183 } 18184 18185 tcp->tcp_detached = B_FALSE; 18186 18187 /* We can enable synchronous streams now */ 18188 if (tcp->tcp_fused) { 18189 tcp_fuse_syncstr_enable_pair(tcp); 18190 } 18191 18192 if (tcp->tcp_ka_enabled) { 18193 tcp->tcp_ka_last_intrvl = 0; 18194 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 18195 MSEC_TO_TICK(tcp->tcp_ka_interval)); 18196 } 18197 18198 /* 18199 * At this point, eager is fully established and will 18200 * have the following references - 18201 * 18202 * 2 references for connection to exist (1 for TCP and 1 for IP). 18203 * 1 reference for the squeue which will be dropped by the squeue as 18204 * soon as this function returns. 18205 * There will be 1 additonal reference for being in classifier 18206 * hash list provided something bad hasn't happened. 18207 */ 18208 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 18209 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 18210 } 18211 18212 /* 18213 * The function called through squeue to get behind listener's perimeter to 18214 * send a deffered conn_ind. 18215 */ 18216 /* ARGSUSED */ 18217 void 18218 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 18219 { 18220 conn_t *connp = (conn_t *)arg; 18221 tcp_t *listener = connp->conn_tcp; 18222 18223 if (listener->tcp_state == TCPS_CLOSED || 18224 TCP_IS_DETACHED(listener)) { 18225 /* 18226 * If listener has closed, it would have caused a 18227 * a cleanup/blowoff to happen for the eager. 18228 */ 18229 tcp_t *tcp; 18230 struct T_conn_ind *conn_ind; 18231 18232 conn_ind = (struct T_conn_ind *)mp->b_rptr; 18233 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 18234 conn_ind->OPT_length); 18235 /* 18236 * We need to drop the ref on eager that was put 18237 * tcp_rput_data() before trying to send the conn_ind 18238 * to listener. The conn_ind was deferred in tcp_send_conn_ind 18239 * and tcp_wput_accept() is sending this deferred conn_ind but 18240 * listener is closed so we drop the ref. 18241 */ 18242 CONN_DEC_REF(tcp->tcp_connp); 18243 freemsg(mp); 18244 return; 18245 } 18246 putnext(listener->tcp_rq, mp); 18247 } 18248 18249 18250 /* 18251 * This is the STREAMS entry point for T_CONN_RES coming down on 18252 * Acceptor STREAM when sockfs listener does accept processing. 18253 * Read the block comment on top of tcp_conn_request(). 18254 */ 18255 void 18256 tcp_wput_accept(queue_t *q, mblk_t *mp) 18257 { 18258 queue_t *rq = RD(q); 18259 struct T_conn_res *conn_res; 18260 tcp_t *eager; 18261 tcp_t *listener; 18262 struct T_ok_ack *ok; 18263 t_scalar_t PRIM_type; 18264 mblk_t *opt_mp; 18265 conn_t *econnp; 18266 18267 ASSERT(DB_TYPE(mp) == M_PROTO); 18268 18269 conn_res = (struct T_conn_res *)mp->b_rptr; 18270 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 18271 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 18272 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18273 if (mp != NULL) 18274 putnext(rq, mp); 18275 return; 18276 } 18277 switch (conn_res->PRIM_type) { 18278 case O_T_CONN_RES: 18279 case T_CONN_RES: 18280 /* 18281 * We pass up an err ack if allocb fails. This will 18282 * cause sockfs to issue a T_DISCON_REQ which will cause 18283 * tcp_eager_blowoff to be called. sockfs will then call 18284 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 18285 * we need to do the allocb up here because we have to 18286 * make sure rq->q_qinfo->qi_qclose still points to the 18287 * correct function (tcpclose_accept) in case allocb 18288 * fails. 18289 */ 18290 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 18291 if (opt_mp == NULL) { 18292 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18293 if (mp != NULL) 18294 putnext(rq, mp); 18295 return; 18296 } 18297 18298 bcopy(mp->b_rptr + conn_res->OPT_offset, 18299 &eager, conn_res->OPT_length); 18300 PRIM_type = conn_res->PRIM_type; 18301 mp->b_datap->db_type = M_PCPROTO; 18302 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 18303 ok = (struct T_ok_ack *)mp->b_rptr; 18304 ok->PRIM_type = T_OK_ACK; 18305 ok->CORRECT_prim = PRIM_type; 18306 econnp = eager->tcp_connp; 18307 econnp->conn_dev = (dev_t)RD(q)->q_ptr; 18308 econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr); 18309 eager->tcp_rq = rq; 18310 eager->tcp_wq = q; 18311 rq->q_ptr = econnp; 18312 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 18313 q->q_ptr = econnp; 18314 q->q_qinfo = &tcp_winit; 18315 listener = eager->tcp_listener; 18316 eager->tcp_issocket = B_TRUE; 18317 18318 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 18319 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 18320 ASSERT(econnp->conn_netstack == 18321 listener->tcp_connp->conn_netstack); 18322 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 18323 18324 /* Put the ref for IP */ 18325 CONN_INC_REF(econnp); 18326 18327 /* 18328 * We should have minimum of 3 references on the conn 18329 * at this point. One each for TCP and IP and one for 18330 * the T_conn_ind that was sent up when the 3-way handshake 18331 * completed. In the normal case we would also have another 18332 * reference (making a total of 4) for the conn being in the 18333 * classifier hash list. However the eager could have received 18334 * an RST subsequently and tcp_closei_local could have removed 18335 * the eager from the classifier hash list, hence we can't 18336 * assert that reference. 18337 */ 18338 ASSERT(econnp->conn_ref >= 3); 18339 18340 /* 18341 * Send the new local address also up to sockfs. There 18342 * should already be enough space in the mp that came 18343 * down from soaccept(). 18344 */ 18345 if (eager->tcp_family == AF_INET) { 18346 sin_t *sin; 18347 18348 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18349 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 18350 sin = (sin_t *)mp->b_wptr; 18351 mp->b_wptr += sizeof (sin_t); 18352 sin->sin_family = AF_INET; 18353 sin->sin_port = eager->tcp_lport; 18354 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 18355 } else { 18356 sin6_t *sin6; 18357 18358 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18359 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 18360 sin6 = (sin6_t *)mp->b_wptr; 18361 mp->b_wptr += sizeof (sin6_t); 18362 sin6->sin6_family = AF_INET6; 18363 sin6->sin6_port = eager->tcp_lport; 18364 if (eager->tcp_ipversion == IPV4_VERSION) { 18365 sin6->sin6_flowinfo = 0; 18366 IN6_IPADDR_TO_V4MAPPED( 18367 eager->tcp_ipha->ipha_src, 18368 &sin6->sin6_addr); 18369 } else { 18370 ASSERT(eager->tcp_ip6h != NULL); 18371 sin6->sin6_flowinfo = 18372 eager->tcp_ip6h->ip6_vcf & 18373 ~IPV6_VERS_AND_FLOW_MASK; 18374 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 18375 } 18376 sin6->sin6_scope_id = 0; 18377 sin6->__sin6_src_id = 0; 18378 } 18379 18380 putnext(rq, mp); 18381 18382 opt_mp->b_datap->db_type = M_SETOPTS; 18383 opt_mp->b_wptr += sizeof (struct stroptions); 18384 18385 /* 18386 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 18387 * from listener to acceptor. The message is chained on the 18388 * bind_mp which tcp_rput_other will send down to IP. 18389 */ 18390 if (listener->tcp_bound_if != 0) { 18391 /* allocate optmgmt req */ 18392 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18393 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 18394 sizeof (int)); 18395 if (mp != NULL) 18396 linkb(opt_mp, mp); 18397 } 18398 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 18399 uint_t on = 1; 18400 18401 /* allocate optmgmt req */ 18402 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18403 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 18404 if (mp != NULL) 18405 linkb(opt_mp, mp); 18406 } 18407 18408 18409 mutex_enter(&listener->tcp_eager_lock); 18410 18411 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 18412 18413 tcp_t *tail; 18414 tcp_t *tcp; 18415 mblk_t *mp1; 18416 18417 tcp = listener->tcp_eager_prev_q0; 18418 /* 18419 * listener->tcp_eager_prev_q0 points to the TAIL of the 18420 * deferred T_conn_ind queue. We need to get to the head 18421 * of the queue in order to send up T_conn_ind the same 18422 * order as how the 3WHS is completed. 18423 */ 18424 while (tcp != listener) { 18425 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 18426 !tcp->tcp_kssl_pending) 18427 break; 18428 else 18429 tcp = tcp->tcp_eager_prev_q0; 18430 } 18431 /* None of the pending eagers can be sent up now */ 18432 if (tcp == listener) 18433 goto no_more_eagers; 18434 18435 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 18436 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 18437 /* Move from q0 to q */ 18438 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 18439 listener->tcp_conn_req_cnt_q0--; 18440 listener->tcp_conn_req_cnt_q++; 18441 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 18442 tcp->tcp_eager_prev_q0; 18443 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 18444 tcp->tcp_eager_next_q0; 18445 tcp->tcp_eager_prev_q0 = NULL; 18446 tcp->tcp_eager_next_q0 = NULL; 18447 tcp->tcp_conn_def_q0 = B_FALSE; 18448 18449 /* Make sure the tcp isn't in the list of droppables */ 18450 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 18451 tcp->tcp_eager_prev_drop_q0 == NULL); 18452 18453 /* 18454 * Insert at end of the queue because sockfs sends 18455 * down T_CONN_RES in chronological order. Leaving 18456 * the older conn indications at front of the queue 18457 * helps reducing search time. 18458 */ 18459 tail = listener->tcp_eager_last_q; 18460 if (tail != NULL) { 18461 tail->tcp_eager_next_q = tcp; 18462 } else { 18463 listener->tcp_eager_next_q = tcp; 18464 } 18465 listener->tcp_eager_last_q = tcp; 18466 tcp->tcp_eager_next_q = NULL; 18467 18468 /* Need to get inside the listener perimeter */ 18469 CONN_INC_REF(listener->tcp_connp); 18470 squeue_fill(listener->tcp_connp->conn_sqp, mp1, 18471 tcp_send_pending, listener->tcp_connp, 18472 SQTAG_TCP_SEND_PENDING); 18473 } 18474 no_more_eagers: 18475 tcp_eager_unlink(eager); 18476 mutex_exit(&listener->tcp_eager_lock); 18477 18478 /* 18479 * At this point, the eager is detached from the listener 18480 * but we still have an extra refs on eager (apart from the 18481 * usual tcp references). The ref was placed in tcp_rput_data 18482 * before sending the conn_ind in tcp_send_conn_ind. 18483 * The ref will be dropped in tcp_accept_finish(). 18484 */ 18485 squeue_enter_nodrain(econnp->conn_sqp, opt_mp, 18486 tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0); 18487 return; 18488 default: 18489 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 18490 if (mp != NULL) 18491 putnext(rq, mp); 18492 return; 18493 } 18494 } 18495 18496 void 18497 tcp_wput(queue_t *q, mblk_t *mp) 18498 { 18499 conn_t *connp = Q_TO_CONN(q); 18500 tcp_t *tcp; 18501 void (*output_proc)(); 18502 t_scalar_t type; 18503 uchar_t *rptr; 18504 struct iocblk *iocp; 18505 uint32_t msize; 18506 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 18507 18508 ASSERT(connp->conn_ref >= 2); 18509 18510 switch (DB_TYPE(mp)) { 18511 case M_DATA: 18512 tcp = connp->conn_tcp; 18513 ASSERT(tcp != NULL); 18514 18515 msize = msgdsize(mp); 18516 18517 mutex_enter(&tcp->tcp_non_sq_lock); 18518 tcp->tcp_squeue_bytes += msize; 18519 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 18520 tcp_setqfull(tcp); 18521 } 18522 mutex_exit(&tcp->tcp_non_sq_lock); 18523 18524 CONN_INC_REF(connp); 18525 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 18526 tcp_output, connp, SQTAG_TCP_OUTPUT); 18527 return; 18528 case M_PROTO: 18529 case M_PCPROTO: 18530 /* 18531 * if it is a snmp message, don't get behind the squeue 18532 */ 18533 tcp = connp->conn_tcp; 18534 rptr = mp->b_rptr; 18535 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 18536 type = ((union T_primitives *)rptr)->type; 18537 } else { 18538 if (tcp->tcp_debug) { 18539 (void) strlog(TCP_MOD_ID, 0, 1, 18540 SL_ERROR|SL_TRACE, 18541 "tcp_wput_proto, dropping one..."); 18542 } 18543 freemsg(mp); 18544 return; 18545 } 18546 if (type == T_SVR4_OPTMGMT_REQ) { 18547 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 18548 if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get, 18549 cr)) { 18550 /* 18551 * This was a SNMP request 18552 */ 18553 return; 18554 } else { 18555 output_proc = tcp_wput_proto; 18556 } 18557 } else { 18558 output_proc = tcp_wput_proto; 18559 } 18560 break; 18561 case M_IOCTL: 18562 /* 18563 * Most ioctls can be processed right away without going via 18564 * squeues - process them right here. Those that do require 18565 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 18566 * are processed by tcp_wput_ioctl(). 18567 */ 18568 iocp = (struct iocblk *)mp->b_rptr; 18569 tcp = connp->conn_tcp; 18570 18571 switch (iocp->ioc_cmd) { 18572 case TCP_IOC_ABORT_CONN: 18573 tcp_ioctl_abort_conn(q, mp); 18574 return; 18575 case TI_GETPEERNAME: 18576 if (tcp->tcp_state < TCPS_SYN_RCVD) { 18577 iocp->ioc_error = ENOTCONN; 18578 iocp->ioc_count = 0; 18579 mp->b_datap->db_type = M_IOCACK; 18580 qreply(q, mp); 18581 return; 18582 } 18583 /* FALLTHRU */ 18584 case TI_GETMYNAME: 18585 mi_copyin(q, mp, NULL, 18586 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 18587 return; 18588 case ND_SET: 18589 /* nd_getset does the necessary checks */ 18590 case ND_GET: 18591 if (!nd_getset(q, tcps->tcps_g_nd, mp)) { 18592 CALL_IP_WPUT(connp, q, mp); 18593 return; 18594 } 18595 qreply(q, mp); 18596 return; 18597 case TCP_IOC_DEFAULT_Q: 18598 /* 18599 * Wants to be the default wq. Check the credentials 18600 * first, the rest is executed via squeue. 18601 */ 18602 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 18603 iocp->ioc_error = EPERM; 18604 iocp->ioc_count = 0; 18605 mp->b_datap->db_type = M_IOCACK; 18606 qreply(q, mp); 18607 return; 18608 } 18609 output_proc = tcp_wput_ioctl; 18610 break; 18611 default: 18612 output_proc = tcp_wput_ioctl; 18613 break; 18614 } 18615 break; 18616 default: 18617 output_proc = tcp_wput_nondata; 18618 break; 18619 } 18620 18621 CONN_INC_REF(connp); 18622 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 18623 output_proc, connp, SQTAG_TCP_WPUT_OTHER); 18624 } 18625 18626 /* 18627 * Initial STREAMS write side put() procedure for sockets. It tries to 18628 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 18629 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 18630 * are handled by tcp_wput() as usual. 18631 * 18632 * All further messages will also be handled by tcp_wput() because we cannot 18633 * be sure that the above short cut is safe later. 18634 */ 18635 static void 18636 tcp_wput_sock(queue_t *wq, mblk_t *mp) 18637 { 18638 conn_t *connp = Q_TO_CONN(wq); 18639 tcp_t *tcp = connp->conn_tcp; 18640 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 18641 18642 ASSERT(wq->q_qinfo == &tcp_sock_winit); 18643 wq->q_qinfo = &tcp_winit; 18644 18645 ASSERT(IPCL_IS_TCP(connp)); 18646 ASSERT(TCP_IS_SOCKET(tcp)); 18647 18648 if (DB_TYPE(mp) == M_PCPROTO && 18649 MBLKL(mp) == sizeof (struct T_capability_req) && 18650 car->PRIM_type == T_CAPABILITY_REQ) { 18651 tcp_capability_req(tcp, mp); 18652 return; 18653 } 18654 18655 tcp_wput(wq, mp); 18656 } 18657 18658 static boolean_t 18659 tcp_zcopy_check(tcp_t *tcp) 18660 { 18661 conn_t *connp = tcp->tcp_connp; 18662 ire_t *ire; 18663 boolean_t zc_enabled = B_FALSE; 18664 tcp_stack_t *tcps = tcp->tcp_tcps; 18665 18666 if (do_tcpzcopy == 2) 18667 zc_enabled = B_TRUE; 18668 else if (tcp->tcp_ipversion == IPV4_VERSION && 18669 IPCL_IS_CONNECTED(connp) && 18670 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 18671 connp->conn_dontroute == 0 && 18672 !connp->conn_nexthop_set && 18673 connp->conn_outgoing_ill == NULL && 18674 connp->conn_nofailover_ill == NULL && 18675 do_tcpzcopy == 1) { 18676 /* 18677 * the checks above closely resemble the fast path checks 18678 * in tcp_send_data(). 18679 */ 18680 mutex_enter(&connp->conn_lock); 18681 ire = connp->conn_ire_cache; 18682 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18683 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18684 IRE_REFHOLD(ire); 18685 if (ire->ire_stq != NULL) { 18686 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 18687 18688 zc_enabled = ill && (ill->ill_capabilities & 18689 ILL_CAPAB_ZEROCOPY) && 18690 (ill->ill_zerocopy_capab-> 18691 ill_zerocopy_flags != 0); 18692 } 18693 IRE_REFRELE(ire); 18694 } 18695 mutex_exit(&connp->conn_lock); 18696 } 18697 tcp->tcp_snd_zcopy_on = zc_enabled; 18698 if (!TCP_IS_DETACHED(tcp)) { 18699 if (zc_enabled) { 18700 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE); 18701 TCP_STAT(tcps, tcp_zcopy_on); 18702 } else { 18703 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18704 TCP_STAT(tcps, tcp_zcopy_off); 18705 } 18706 } 18707 return (zc_enabled); 18708 } 18709 18710 static mblk_t * 18711 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 18712 { 18713 tcp_stack_t *tcps = tcp->tcp_tcps; 18714 18715 if (do_tcpzcopy == 2) 18716 return (bp); 18717 else if (tcp->tcp_snd_zcopy_on) { 18718 tcp->tcp_snd_zcopy_on = B_FALSE; 18719 if (!TCP_IS_DETACHED(tcp)) { 18720 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18721 TCP_STAT(tcps, tcp_zcopy_disable); 18722 } 18723 } 18724 return (tcp_zcopy_backoff(tcp, bp, 0)); 18725 } 18726 18727 /* 18728 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 18729 * the original desballoca'ed segmapped mblk. 18730 */ 18731 static mblk_t * 18732 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 18733 { 18734 mblk_t *head, *tail, *nbp; 18735 tcp_stack_t *tcps = tcp->tcp_tcps; 18736 18737 if (IS_VMLOANED_MBLK(bp)) { 18738 TCP_STAT(tcps, tcp_zcopy_backoff); 18739 if ((head = copyb(bp)) == NULL) { 18740 /* fail to backoff; leave it for the next backoff */ 18741 tcp->tcp_xmit_zc_clean = B_FALSE; 18742 return (bp); 18743 } 18744 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18745 if (fix_xmitlist) 18746 tcp_zcopy_notify(tcp); 18747 else 18748 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18749 } 18750 nbp = bp->b_cont; 18751 if (fix_xmitlist) { 18752 head->b_prev = bp->b_prev; 18753 head->b_next = bp->b_next; 18754 if (tcp->tcp_xmit_tail == bp) 18755 tcp->tcp_xmit_tail = head; 18756 } 18757 bp->b_next = NULL; 18758 bp->b_prev = NULL; 18759 freeb(bp); 18760 } else { 18761 head = bp; 18762 nbp = bp->b_cont; 18763 } 18764 tail = head; 18765 while (nbp) { 18766 if (IS_VMLOANED_MBLK(nbp)) { 18767 TCP_STAT(tcps, tcp_zcopy_backoff); 18768 if ((tail->b_cont = copyb(nbp)) == NULL) { 18769 tcp->tcp_xmit_zc_clean = B_FALSE; 18770 tail->b_cont = nbp; 18771 return (head); 18772 } 18773 tail = tail->b_cont; 18774 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18775 if (fix_xmitlist) 18776 tcp_zcopy_notify(tcp); 18777 else 18778 tail->b_datap->db_struioflag |= 18779 STRUIO_ZCNOTIFY; 18780 } 18781 bp = nbp; 18782 nbp = nbp->b_cont; 18783 if (fix_xmitlist) { 18784 tail->b_prev = bp->b_prev; 18785 tail->b_next = bp->b_next; 18786 if (tcp->tcp_xmit_tail == bp) 18787 tcp->tcp_xmit_tail = tail; 18788 } 18789 bp->b_next = NULL; 18790 bp->b_prev = NULL; 18791 freeb(bp); 18792 } else { 18793 tail->b_cont = nbp; 18794 tail = nbp; 18795 nbp = nbp->b_cont; 18796 } 18797 } 18798 if (fix_xmitlist) { 18799 tcp->tcp_xmit_last = tail; 18800 tcp->tcp_xmit_zc_clean = B_TRUE; 18801 } 18802 return (head); 18803 } 18804 18805 static void 18806 tcp_zcopy_notify(tcp_t *tcp) 18807 { 18808 struct stdata *stp; 18809 18810 if (tcp->tcp_detached) 18811 return; 18812 stp = STREAM(tcp->tcp_rq); 18813 mutex_enter(&stp->sd_lock); 18814 stp->sd_flag |= STZCNOTIFY; 18815 cv_broadcast(&stp->sd_zcopy_wait); 18816 mutex_exit(&stp->sd_lock); 18817 } 18818 18819 static boolean_t 18820 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep) 18821 { 18822 ire_t *ire; 18823 conn_t *connp = tcp->tcp_connp; 18824 tcp_stack_t *tcps = tcp->tcp_tcps; 18825 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18826 18827 mutex_enter(&connp->conn_lock); 18828 ire = connp->conn_ire_cache; 18829 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18830 18831 if ((ire != NULL) && 18832 (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) && 18833 IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) && 18834 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18835 IRE_REFHOLD(ire); 18836 mutex_exit(&connp->conn_lock); 18837 } else { 18838 boolean_t cached = B_FALSE; 18839 ts_label_t *tsl; 18840 18841 /* force a recheck later on */ 18842 tcp->tcp_ire_ill_check_done = B_FALSE; 18843 18844 TCP_DBGSTAT(tcps, tcp_ire_null1); 18845 connp->conn_ire_cache = NULL; 18846 mutex_exit(&connp->conn_lock); 18847 18848 if (ire != NULL) 18849 IRE_REFRELE_NOTR(ire); 18850 18851 tsl = crgetlabel(CONN_CRED(connp)); 18852 ire = (dst ? 18853 ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) : 18854 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 18855 connp->conn_zoneid, tsl, ipst)); 18856 18857 if (ire == NULL) { 18858 TCP_STAT(tcps, tcp_ire_null); 18859 return (B_FALSE); 18860 } 18861 18862 IRE_REFHOLD_NOTR(ire); 18863 /* 18864 * Since we are inside the squeue, there cannot be another 18865 * thread in TCP trying to set the conn_ire_cache now. The 18866 * check for IRE_MARK_CONDEMNED ensures that an interface 18867 * unplumb thread has not yet started cleaning up the conns. 18868 * Hence we don't need to grab the conn lock. 18869 */ 18870 if (CONN_CACHE_IRE(connp)) { 18871 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18872 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18873 TCP_CHECK_IREINFO(tcp, ire); 18874 connp->conn_ire_cache = ire; 18875 cached = B_TRUE; 18876 } 18877 rw_exit(&ire->ire_bucket->irb_lock); 18878 } 18879 18880 /* 18881 * We can continue to use the ire but since it was 18882 * not cached, we should drop the extra reference. 18883 */ 18884 if (!cached) 18885 IRE_REFRELE_NOTR(ire); 18886 18887 /* 18888 * Rampart note: no need to select a new label here, since 18889 * labels are not allowed to change during the life of a TCP 18890 * connection. 18891 */ 18892 } 18893 18894 *irep = ire; 18895 18896 return (B_TRUE); 18897 } 18898 18899 /* 18900 * Called from tcp_send() or tcp_send_data() to find workable IRE. 18901 * 18902 * 0 = success; 18903 * 1 = failed to find ire and ill. 18904 */ 18905 static boolean_t 18906 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp) 18907 { 18908 ipha_t *ipha; 18909 ipaddr_t dst; 18910 ire_t *ire; 18911 ill_t *ill; 18912 conn_t *connp = tcp->tcp_connp; 18913 mblk_t *ire_fp_mp; 18914 tcp_stack_t *tcps = tcp->tcp_tcps; 18915 18916 if (mp != NULL) 18917 ipha = (ipha_t *)mp->b_rptr; 18918 else 18919 ipha = tcp->tcp_ipha; 18920 dst = ipha->ipha_dst; 18921 18922 if (!tcp_send_find_ire(tcp, &dst, &ire)) 18923 return (B_FALSE); 18924 18925 if ((ire->ire_flags & RTF_MULTIRT) || 18926 (ire->ire_stq == NULL) || 18927 (ire->ire_nce == NULL) || 18928 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 18929 ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) || 18930 MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) { 18931 TCP_STAT(tcps, tcp_ip_ire_send); 18932 IRE_REFRELE(ire); 18933 return (B_FALSE); 18934 } 18935 18936 ill = ire_to_ill(ire); 18937 if (connp->conn_outgoing_ill != NULL) { 18938 ill_t *conn_outgoing_ill = NULL; 18939 /* 18940 * Choose a good ill in the group to send the packets on. 18941 */ 18942 ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill); 18943 ill = ire_to_ill(ire); 18944 } 18945 ASSERT(ill != NULL); 18946 18947 if (!tcp->tcp_ire_ill_check_done) { 18948 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 18949 tcp->tcp_ire_ill_check_done = B_TRUE; 18950 } 18951 18952 *irep = ire; 18953 *illp = ill; 18954 18955 return (B_TRUE); 18956 } 18957 18958 static void 18959 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 18960 { 18961 ipha_t *ipha; 18962 ipaddr_t src; 18963 ipaddr_t dst; 18964 uint32_t cksum; 18965 ire_t *ire; 18966 uint16_t *up; 18967 ill_t *ill; 18968 conn_t *connp = tcp->tcp_connp; 18969 uint32_t hcksum_txflags = 0; 18970 mblk_t *ire_fp_mp; 18971 uint_t ire_fp_mp_len; 18972 tcp_stack_t *tcps = tcp->tcp_tcps; 18973 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18974 18975 ASSERT(DB_TYPE(mp) == M_DATA); 18976 18977 if (DB_CRED(mp) == NULL) 18978 mblk_setcred(mp, CONN_CRED(connp)); 18979 18980 ipha = (ipha_t *)mp->b_rptr; 18981 src = ipha->ipha_src; 18982 dst = ipha->ipha_dst; 18983 18984 /* 18985 * Drop off fast path for IPv6 and also if options are present or 18986 * we need to resolve a TS label. 18987 */ 18988 if (tcp->tcp_ipversion != IPV4_VERSION || 18989 !IPCL_IS_CONNECTED(connp) || 18990 !CONN_IS_LSO_MD_FASTPATH(connp) || 18991 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 18992 !connp->conn_ulp_labeled || 18993 ipha->ipha_ident == IP_HDR_INCLUDED || 18994 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 18995 IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 18996 if (tcp->tcp_snd_zcopy_aware) 18997 mp = tcp_zcopy_disable(tcp, mp); 18998 TCP_STAT(tcps, tcp_ip_send); 18999 CALL_IP_WPUT(connp, q, mp); 19000 return; 19001 } 19002 19003 if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) { 19004 if (tcp->tcp_snd_zcopy_aware) 19005 mp = tcp_zcopy_backoff(tcp, mp, 0); 19006 CALL_IP_WPUT(connp, q, mp); 19007 return; 19008 } 19009 ire_fp_mp = ire->ire_nce->nce_fp_mp; 19010 ire_fp_mp_len = MBLKL(ire_fp_mp); 19011 19012 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 19013 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 19014 #ifndef _BIG_ENDIAN 19015 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 19016 #endif 19017 19018 /* 19019 * Check to see if we need to re-enable LSO/MDT for this connection 19020 * because it was previously disabled due to changes in the ill; 19021 * note that by doing it here, this re-enabling only applies when 19022 * the packet is not dispatched through CALL_IP_WPUT(). 19023 * 19024 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath 19025 * case, since that's how we ended up here. For IPv6, we do the 19026 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 19027 */ 19028 if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 19029 /* 19030 * Restore LSO for this connection, so that next time around 19031 * it is eligible to go through tcp_lsosend() path again. 19032 */ 19033 TCP_STAT(tcps, tcp_lso_enabled); 19034 tcp->tcp_lso = B_TRUE; 19035 ip1dbg(("tcp_send_data: reenabling LSO for connp %p on " 19036 "interface %s\n", (void *)connp, ill->ill_name)); 19037 } else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 19038 /* 19039 * Restore MDT for this connection, so that next time around 19040 * it is eligible to go through tcp_multisend() path again. 19041 */ 19042 TCP_STAT(tcps, tcp_mdt_conn_resumed1); 19043 tcp->tcp_mdt = B_TRUE; 19044 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 19045 "interface %s\n", (void *)connp, ill->ill_name)); 19046 } 19047 19048 if (tcp->tcp_snd_zcopy_aware) { 19049 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 19050 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 19051 mp = tcp_zcopy_disable(tcp, mp); 19052 /* 19053 * we shouldn't need to reset ipha as the mp containing 19054 * ipha should never be a zero-copy mp. 19055 */ 19056 } 19057 19058 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 19059 ASSERT(ill->ill_hcksum_capab != NULL); 19060 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 19061 } 19062 19063 /* pseudo-header checksum (do it in parts for IP header checksum) */ 19064 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 19065 19066 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 19067 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 19068 19069 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 19070 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 19071 19072 /* Software checksum? */ 19073 if (DB_CKSUMFLAGS(mp) == 0) { 19074 TCP_STAT(tcps, tcp_out_sw_cksum); 19075 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 19076 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 19077 } 19078 19079 ipha->ipha_fragment_offset_and_flags |= 19080 (uint32_t)htons(ire->ire_frag_flag); 19081 19082 /* Calculate IP header checksum if hardware isn't capable */ 19083 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 19084 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 19085 ((uint16_t *)ipha)[4]); 19086 } 19087 19088 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 19089 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 19090 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 19091 19092 UPDATE_OB_PKT_COUNT(ire); 19093 ire->ire_last_used_time = lbolt; 19094 19095 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 19096 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 19097 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 19098 ntohs(ipha->ipha_length)); 19099 19100 if (ILL_DLS_CAPABLE(ill)) { 19101 /* 19102 * Send the packet directly to DLD, where it may be queued 19103 * depending on the availability of transmit resources at 19104 * the media layer. 19105 */ 19106 IP_DLS_ILL_TX(ill, ipha, mp, ipst); 19107 } else { 19108 ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr; 19109 DTRACE_PROBE4(ip4__physical__out__start, 19110 ill_t *, NULL, ill_t *, out_ill, 19111 ipha_t *, ipha, mblk_t *, mp); 19112 FW_HOOKS(ipst->ips_ip4_physical_out_event, 19113 ipst->ips_ipv4firewall_physical_out, 19114 NULL, out_ill, ipha, mp, mp, 0, ipst); 19115 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 19116 if (mp != NULL) 19117 putnext(ire->ire_stq, mp); 19118 } 19119 IRE_REFRELE(ire); 19120 } 19121 19122 /* 19123 * This handles the case when the receiver has shrunk its win. Per RFC 1122 19124 * if the receiver shrinks the window, i.e. moves the right window to the 19125 * left, the we should not send new data, but should retransmit normally the 19126 * old unacked data between suna and suna + swnd. We might has sent data 19127 * that is now outside the new window, pretend that we didn't send it. 19128 */ 19129 static void 19130 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 19131 { 19132 uint32_t snxt = tcp->tcp_snxt; 19133 mblk_t *xmit_tail; 19134 int32_t offset; 19135 19136 ASSERT(shrunk_count > 0); 19137 19138 /* Pretend we didn't send the data outside the window */ 19139 snxt -= shrunk_count; 19140 19141 /* Get the mblk and the offset in it per the shrunk window */ 19142 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 19143 19144 ASSERT(xmit_tail != NULL); 19145 19146 /* Reset all the values per the now shrunk window */ 19147 tcp->tcp_snxt = snxt; 19148 tcp->tcp_xmit_tail = xmit_tail; 19149 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 19150 offset; 19151 tcp->tcp_unsent += shrunk_count; 19152 19153 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 19154 /* 19155 * Make sure the timer is running so that we will probe a zero 19156 * window. 19157 */ 19158 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19159 } 19160 19161 19162 /* 19163 * The TCP normal data output path. 19164 * NOTE: the logic of the fast path is duplicated from this function. 19165 */ 19166 static void 19167 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 19168 { 19169 int len; 19170 mblk_t *local_time; 19171 mblk_t *mp1; 19172 uint32_t snxt; 19173 int tail_unsent; 19174 int tcpstate; 19175 int usable = 0; 19176 mblk_t *xmit_tail; 19177 queue_t *q = tcp->tcp_wq; 19178 int32_t mss; 19179 int32_t num_sack_blk = 0; 19180 int32_t tcp_hdr_len; 19181 int32_t tcp_tcp_hdr_len; 19182 int mdt_thres; 19183 int rc; 19184 tcp_stack_t *tcps = tcp->tcp_tcps; 19185 ip_stack_t *ipst; 19186 19187 tcpstate = tcp->tcp_state; 19188 if (mp == NULL) { 19189 /* 19190 * tcp_wput_data() with NULL mp should only be called when 19191 * there is unsent data. 19192 */ 19193 ASSERT(tcp->tcp_unsent > 0); 19194 /* Really tacky... but we need this for detached closes. */ 19195 len = tcp->tcp_unsent; 19196 goto data_null; 19197 } 19198 19199 #if CCS_STATS 19200 wrw_stats.tot.count++; 19201 wrw_stats.tot.bytes += msgdsize(mp); 19202 #endif 19203 ASSERT(mp->b_datap->db_type == M_DATA); 19204 /* 19205 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 19206 * or before a connection attempt has begun. 19207 */ 19208 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 19209 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19210 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19211 #ifdef DEBUG 19212 cmn_err(CE_WARN, 19213 "tcp_wput_data: data after ordrel, %s", 19214 tcp_display(tcp, NULL, 19215 DISP_ADDR_AND_PORT)); 19216 #else 19217 if (tcp->tcp_debug) { 19218 (void) strlog(TCP_MOD_ID, 0, 1, 19219 SL_TRACE|SL_ERROR, 19220 "tcp_wput_data: data after ordrel, %s\n", 19221 tcp_display(tcp, NULL, 19222 DISP_ADDR_AND_PORT)); 19223 } 19224 #endif /* DEBUG */ 19225 } 19226 if (tcp->tcp_snd_zcopy_aware && 19227 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 19228 tcp_zcopy_notify(tcp); 19229 freemsg(mp); 19230 mutex_enter(&tcp->tcp_non_sq_lock); 19231 if (tcp->tcp_flow_stopped && 19232 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19233 tcp_clrqfull(tcp); 19234 } 19235 mutex_exit(&tcp->tcp_non_sq_lock); 19236 return; 19237 } 19238 19239 /* Strip empties */ 19240 for (;;) { 19241 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 19242 (uintptr_t)INT_MAX); 19243 len = (int)(mp->b_wptr - mp->b_rptr); 19244 if (len > 0) 19245 break; 19246 mp1 = mp; 19247 mp = mp->b_cont; 19248 freeb(mp1); 19249 if (!mp) { 19250 return; 19251 } 19252 } 19253 19254 /* If we are the first on the list ... */ 19255 if (tcp->tcp_xmit_head == NULL) { 19256 tcp->tcp_xmit_head = mp; 19257 tcp->tcp_xmit_tail = mp; 19258 tcp->tcp_xmit_tail_unsent = len; 19259 } else { 19260 /* If tiny tx and room in txq tail, pullup to save mblks. */ 19261 struct datab *dp; 19262 19263 mp1 = tcp->tcp_xmit_last; 19264 if (len < tcp_tx_pull_len && 19265 (dp = mp1->b_datap)->db_ref == 1 && 19266 dp->db_lim - mp1->b_wptr >= len) { 19267 ASSERT(len > 0); 19268 ASSERT(!mp1->b_cont); 19269 if (len == 1) { 19270 *mp1->b_wptr++ = *mp->b_rptr; 19271 } else { 19272 bcopy(mp->b_rptr, mp1->b_wptr, len); 19273 mp1->b_wptr += len; 19274 } 19275 if (mp1 == tcp->tcp_xmit_tail) 19276 tcp->tcp_xmit_tail_unsent += len; 19277 mp1->b_cont = mp->b_cont; 19278 if (tcp->tcp_snd_zcopy_aware && 19279 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 19280 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 19281 freeb(mp); 19282 mp = mp1; 19283 } else { 19284 tcp->tcp_xmit_last->b_cont = mp; 19285 } 19286 len += tcp->tcp_unsent; 19287 } 19288 19289 /* Tack on however many more positive length mblks we have */ 19290 if ((mp1 = mp->b_cont) != NULL) { 19291 do { 19292 int tlen; 19293 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 19294 (uintptr_t)INT_MAX); 19295 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 19296 if (tlen <= 0) { 19297 mp->b_cont = mp1->b_cont; 19298 freeb(mp1); 19299 } else { 19300 len += tlen; 19301 mp = mp1; 19302 } 19303 } while ((mp1 = mp->b_cont) != NULL); 19304 } 19305 tcp->tcp_xmit_last = mp; 19306 tcp->tcp_unsent = len; 19307 19308 if (urgent) 19309 usable = 1; 19310 19311 data_null: 19312 snxt = tcp->tcp_snxt; 19313 xmit_tail = tcp->tcp_xmit_tail; 19314 tail_unsent = tcp->tcp_xmit_tail_unsent; 19315 19316 /* 19317 * Note that tcp_mss has been adjusted to take into account the 19318 * timestamp option if applicable. Because SACK options do not 19319 * appear in every TCP segments and they are of variable lengths, 19320 * they cannot be included in tcp_mss. Thus we need to calculate 19321 * the actual segment length when we need to send a segment which 19322 * includes SACK options. 19323 */ 19324 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 19325 int32_t opt_len; 19326 19327 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 19328 tcp->tcp_num_sack_blk); 19329 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 19330 2 + TCPOPT_HEADER_LEN; 19331 mss = tcp->tcp_mss - opt_len; 19332 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 19333 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 19334 } else { 19335 mss = tcp->tcp_mss; 19336 tcp_hdr_len = tcp->tcp_hdr_len; 19337 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 19338 } 19339 19340 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 19341 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 19342 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 19343 } 19344 if (tcpstate == TCPS_SYN_RCVD) { 19345 /* 19346 * The three-way connection establishment handshake is not 19347 * complete yet. We want to queue the data for transmission 19348 * after entering ESTABLISHED state (RFC793). A jump to 19349 * "done" label effectively leaves data on the queue. 19350 */ 19351 goto done; 19352 } else { 19353 int usable_r; 19354 19355 /* 19356 * In the special case when cwnd is zero, which can only 19357 * happen if the connection is ECN capable, return now. 19358 * New segments is sent using tcp_timer(). The timer 19359 * is set in tcp_rput_data(). 19360 */ 19361 if (tcp->tcp_cwnd == 0) { 19362 /* 19363 * Note that tcp_cwnd is 0 before 3-way handshake is 19364 * finished. 19365 */ 19366 ASSERT(tcp->tcp_ecn_ok || 19367 tcp->tcp_state < TCPS_ESTABLISHED); 19368 return; 19369 } 19370 19371 /* NOTE: trouble if xmitting while SYN not acked? */ 19372 usable_r = snxt - tcp->tcp_suna; 19373 usable_r = tcp->tcp_swnd - usable_r; 19374 19375 /* 19376 * Check if the receiver has shrunk the window. If 19377 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 19378 * cannot be set as there is unsent data, so FIN cannot 19379 * be sent out. Otherwise, we need to take into account 19380 * of FIN as it consumes an "invisible" sequence number. 19381 */ 19382 ASSERT(tcp->tcp_fin_sent == 0); 19383 if (usable_r < 0) { 19384 /* 19385 * The receiver has shrunk the window and we have sent 19386 * -usable_r date beyond the window, re-adjust. 19387 * 19388 * If TCP window scaling is enabled, there can be 19389 * round down error as the advertised receive window 19390 * is actually right shifted n bits. This means that 19391 * the lower n bits info is wiped out. It will look 19392 * like the window is shrunk. Do a check here to 19393 * see if the shrunk amount is actually within the 19394 * error in window calculation. If it is, just 19395 * return. Note that this check is inside the 19396 * shrunk window check. This makes sure that even 19397 * though tcp_process_shrunk_swnd() is not called, 19398 * we will stop further processing. 19399 */ 19400 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 19401 tcp_process_shrunk_swnd(tcp, -usable_r); 19402 } 19403 return; 19404 } 19405 19406 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 19407 if (tcp->tcp_swnd > tcp->tcp_cwnd) 19408 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 19409 19410 /* usable = MIN(usable, unsent) */ 19411 if (usable_r > len) 19412 usable_r = len; 19413 19414 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 19415 if (usable_r > 0) { 19416 usable = usable_r; 19417 } else { 19418 /* Bypass all other unnecessary processing. */ 19419 goto done; 19420 } 19421 } 19422 19423 local_time = (mblk_t *)lbolt; 19424 19425 /* 19426 * "Our" Nagle Algorithm. This is not the same as in the old 19427 * BSD. This is more in line with the true intent of Nagle. 19428 * 19429 * The conditions are: 19430 * 1. The amount of unsent data (or amount of data which can be 19431 * sent, whichever is smaller) is less than Nagle limit. 19432 * 2. The last sent size is also less than Nagle limit. 19433 * 3. There is unack'ed data. 19434 * 4. Urgent pointer is not set. Send urgent data ignoring the 19435 * Nagle algorithm. This reduces the probability that urgent 19436 * bytes get "merged" together. 19437 * 5. The app has not closed the connection. This eliminates the 19438 * wait time of the receiving side waiting for the last piece of 19439 * (small) data. 19440 * 19441 * If all are satisified, exit without sending anything. Note 19442 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 19443 * the smaller of 1 MSS and global tcp_naglim_def (default to be 19444 * 4095). 19445 */ 19446 if (usable < (int)tcp->tcp_naglim && 19447 tcp->tcp_naglim > tcp->tcp_last_sent_len && 19448 snxt != tcp->tcp_suna && 19449 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 19450 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 19451 goto done; 19452 } 19453 19454 if (tcp->tcp_cork) { 19455 /* 19456 * if the tcp->tcp_cork option is set, then we have to force 19457 * TCP not to send partial segment (smaller than MSS bytes). 19458 * We are calculating the usable now based on full mss and 19459 * will save the rest of remaining data for later. 19460 */ 19461 if (usable < mss) 19462 goto done; 19463 usable = (usable / mss) * mss; 19464 } 19465 19466 /* Update the latest receive window size in TCP header. */ 19467 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 19468 tcp->tcp_tcph->th_win); 19469 19470 /* 19471 * Determine if it's worthwhile to attempt LSO or MDT, based on: 19472 * 19473 * 1. Simple TCP/IP{v4,v6} (no options). 19474 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 19475 * 3. If the TCP connection is in ESTABLISHED state. 19476 * 4. The TCP is not detached. 19477 * 19478 * If any of the above conditions have changed during the 19479 * connection, stop using LSO/MDT and restore the stream head 19480 * parameters accordingly. 19481 */ 19482 ipst = tcps->tcps_netstack->netstack_ip; 19483 19484 if ((tcp->tcp_lso || tcp->tcp_mdt) && 19485 ((tcp->tcp_ipversion == IPV4_VERSION && 19486 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 19487 (tcp->tcp_ipversion == IPV6_VERSION && 19488 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 19489 tcp->tcp_state != TCPS_ESTABLISHED || 19490 TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) || 19491 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 19492 IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 19493 if (tcp->tcp_lso) { 19494 tcp->tcp_connp->conn_lso_ok = B_FALSE; 19495 tcp->tcp_lso = B_FALSE; 19496 } else { 19497 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 19498 tcp->tcp_mdt = B_FALSE; 19499 } 19500 19501 /* Anything other than detached is considered pathological */ 19502 if (!TCP_IS_DETACHED(tcp)) { 19503 if (tcp->tcp_lso) 19504 TCP_STAT(tcps, tcp_lso_disabled); 19505 else 19506 TCP_STAT(tcps, tcp_mdt_conn_halted1); 19507 (void) tcp_maxpsz_set(tcp, B_TRUE); 19508 } 19509 } 19510 19511 /* Use MDT if sendable amount is greater than the threshold */ 19512 if (tcp->tcp_mdt && 19513 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 19514 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 19515 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 19516 (tcp->tcp_valid_bits == 0 || 19517 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 19518 ASSERT(tcp->tcp_connp->conn_mdt_ok); 19519 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19520 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19521 local_time, mdt_thres); 19522 } else { 19523 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19524 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19525 local_time, INT_MAX); 19526 } 19527 19528 /* Pretend that all we were trying to send really got sent */ 19529 if (rc < 0 && tail_unsent < 0) { 19530 do { 19531 xmit_tail = xmit_tail->b_cont; 19532 xmit_tail->b_prev = local_time; 19533 ASSERT((uintptr_t)(xmit_tail->b_wptr - 19534 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 19535 tail_unsent += (int)(xmit_tail->b_wptr - 19536 xmit_tail->b_rptr); 19537 } while (tail_unsent < 0); 19538 } 19539 done:; 19540 tcp->tcp_xmit_tail = xmit_tail; 19541 tcp->tcp_xmit_tail_unsent = tail_unsent; 19542 len = tcp->tcp_snxt - snxt; 19543 if (len) { 19544 /* 19545 * If new data was sent, need to update the notsack 19546 * list, which is, afterall, data blocks that have 19547 * not been sack'ed by the receiver. New data is 19548 * not sack'ed. 19549 */ 19550 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 19551 /* len is a negative value. */ 19552 tcp->tcp_pipe -= len; 19553 tcp_notsack_update(&(tcp->tcp_notsack_list), 19554 tcp->tcp_snxt, snxt, 19555 &(tcp->tcp_num_notsack_blk), 19556 &(tcp->tcp_cnt_notsack_list)); 19557 } 19558 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 19559 tcp->tcp_rack = tcp->tcp_rnxt; 19560 tcp->tcp_rack_cnt = 0; 19561 if ((snxt + len) == tcp->tcp_suna) { 19562 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19563 } 19564 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 19565 /* 19566 * Didn't send anything. Make sure the timer is running 19567 * so that we will probe a zero window. 19568 */ 19569 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19570 } 19571 /* Note that len is the amount we just sent but with a negative sign */ 19572 tcp->tcp_unsent += len; 19573 mutex_enter(&tcp->tcp_non_sq_lock); 19574 if (tcp->tcp_flow_stopped) { 19575 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19576 tcp_clrqfull(tcp); 19577 } 19578 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 19579 tcp_setqfull(tcp); 19580 } 19581 mutex_exit(&tcp->tcp_non_sq_lock); 19582 } 19583 19584 /* 19585 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 19586 * outgoing TCP header with the template header, as well as other 19587 * options such as time-stamp, ECN and/or SACK. 19588 */ 19589 static void 19590 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 19591 { 19592 tcph_t *tcp_tmpl, *tcp_h; 19593 uint32_t *dst, *src; 19594 int hdrlen; 19595 19596 ASSERT(OK_32PTR(rptr)); 19597 19598 /* Template header */ 19599 tcp_tmpl = tcp->tcp_tcph; 19600 19601 /* Header of outgoing packet */ 19602 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 19603 19604 /* dst and src are opaque 32-bit fields, used for copying */ 19605 dst = (uint32_t *)rptr; 19606 src = (uint32_t *)tcp->tcp_iphc; 19607 hdrlen = tcp->tcp_hdr_len; 19608 19609 /* Fill time-stamp option if needed */ 19610 if (tcp->tcp_snd_ts_ok) { 19611 U32_TO_BE32((uint32_t)now, 19612 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 19613 U32_TO_BE32(tcp->tcp_ts_recent, 19614 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 19615 } else { 19616 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 19617 } 19618 19619 /* 19620 * Copy the template header; is this really more efficient than 19621 * calling bcopy()? For simple IPv4/TCP, it may be the case, 19622 * but perhaps not for other scenarios. 19623 */ 19624 dst[0] = src[0]; 19625 dst[1] = src[1]; 19626 dst[2] = src[2]; 19627 dst[3] = src[3]; 19628 dst[4] = src[4]; 19629 dst[5] = src[5]; 19630 dst[6] = src[6]; 19631 dst[7] = src[7]; 19632 dst[8] = src[8]; 19633 dst[9] = src[9]; 19634 if (hdrlen -= 40) { 19635 hdrlen >>= 2; 19636 dst += 10; 19637 src += 10; 19638 do { 19639 *dst++ = *src++; 19640 } while (--hdrlen); 19641 } 19642 19643 /* 19644 * Set the ECN info in the TCP header if it is not a zero 19645 * window probe. Zero window probe is only sent in 19646 * tcp_wput_data() and tcp_timer(). 19647 */ 19648 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 19649 SET_ECT(tcp, rptr); 19650 19651 if (tcp->tcp_ecn_echo_on) 19652 tcp_h->th_flags[0] |= TH_ECE; 19653 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 19654 tcp_h->th_flags[0] |= TH_CWR; 19655 tcp->tcp_ecn_cwr_sent = B_TRUE; 19656 } 19657 } 19658 19659 /* Fill in SACK options */ 19660 if (num_sack_blk > 0) { 19661 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 19662 sack_blk_t *tmp; 19663 int32_t i; 19664 19665 wptr[0] = TCPOPT_NOP; 19666 wptr[1] = TCPOPT_NOP; 19667 wptr[2] = TCPOPT_SACK; 19668 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 19669 sizeof (sack_blk_t); 19670 wptr += TCPOPT_REAL_SACK_LEN; 19671 19672 tmp = tcp->tcp_sack_list; 19673 for (i = 0; i < num_sack_blk; i++) { 19674 U32_TO_BE32(tmp[i].begin, wptr); 19675 wptr += sizeof (tcp_seq); 19676 U32_TO_BE32(tmp[i].end, wptr); 19677 wptr += sizeof (tcp_seq); 19678 } 19679 tcp_h->th_offset_and_rsrvd[0] += 19680 ((num_sack_blk * 2 + 1) << 4); 19681 } 19682 } 19683 19684 /* 19685 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 19686 * the destination address and SAP attribute, and if necessary, the 19687 * hardware checksum offload attribute to a Multidata message. 19688 */ 19689 static int 19690 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 19691 const uint32_t start, const uint32_t stuff, const uint32_t end, 19692 const uint32_t flags, tcp_stack_t *tcps) 19693 { 19694 /* Add global destination address & SAP attribute */ 19695 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 19696 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 19697 "destination address+SAP\n")); 19698 19699 if (dlmp != NULL) 19700 TCP_STAT(tcps, tcp_mdt_allocfail); 19701 return (-1); 19702 } 19703 19704 /* Add global hwcksum attribute */ 19705 if (hwcksum && 19706 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 19707 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 19708 "checksum attribute\n")); 19709 19710 TCP_STAT(tcps, tcp_mdt_allocfail); 19711 return (-1); 19712 } 19713 19714 return (0); 19715 } 19716 19717 /* 19718 * Smaller and private version of pdescinfo_t used specifically for TCP, 19719 * which allows for only two payload spans per packet. 19720 */ 19721 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 19722 19723 /* 19724 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 19725 * scheme, and returns one the following: 19726 * 19727 * -1 = failed allocation. 19728 * 0 = success; burst count reached, or usable send window is too small, 19729 * and that we'd rather wait until later before sending again. 19730 */ 19731 static int 19732 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 19733 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 19734 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 19735 const int mdt_thres) 19736 { 19737 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 19738 multidata_t *mmd; 19739 uint_t obsegs, obbytes, hdr_frag_sz; 19740 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 19741 int num_burst_seg, max_pld; 19742 pdesc_t *pkt; 19743 tcp_pdescinfo_t tcp_pkt_info; 19744 pdescinfo_t *pkt_info; 19745 int pbuf_idx, pbuf_idx_nxt; 19746 int seg_len, len, spill, af; 19747 boolean_t add_buffer, zcopy, clusterwide; 19748 boolean_t buf_trunked = B_FALSE; 19749 boolean_t rconfirm = B_FALSE; 19750 boolean_t done = B_FALSE; 19751 uint32_t cksum; 19752 uint32_t hwcksum_flags; 19753 ire_t *ire = NULL; 19754 ill_t *ill; 19755 ipha_t *ipha; 19756 ip6_t *ip6h; 19757 ipaddr_t src, dst; 19758 ill_zerocopy_capab_t *zc_cap = NULL; 19759 uint16_t *up; 19760 int err; 19761 conn_t *connp; 19762 mblk_t *mp, *mp1, *fw_mp_head = NULL; 19763 uchar_t *pld_start; 19764 tcp_stack_t *tcps = tcp->tcp_tcps; 19765 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19766 19767 #ifdef _BIG_ENDIAN 19768 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 19769 #else 19770 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 19771 #endif 19772 19773 #define PREP_NEW_MULTIDATA() { \ 19774 mmd = NULL; \ 19775 md_mp = md_hbuf = NULL; \ 19776 cur_hdr_off = 0; \ 19777 max_pld = tcp->tcp_mdt_max_pld; \ 19778 pbuf_idx = pbuf_idx_nxt = -1; \ 19779 add_buffer = B_TRUE; \ 19780 zcopy = B_FALSE; \ 19781 } 19782 19783 #define PREP_NEW_PBUF() { \ 19784 md_pbuf = md_pbuf_nxt = NULL; \ 19785 pbuf_idx = pbuf_idx_nxt = -1; \ 19786 cur_pld_off = 0; \ 19787 first_snxt = *snxt; \ 19788 ASSERT(*tail_unsent > 0); \ 19789 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 19790 } 19791 19792 ASSERT(mdt_thres >= mss); 19793 ASSERT(*usable > 0 && *usable > mdt_thres); 19794 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 19795 ASSERT(!TCP_IS_DETACHED(tcp)); 19796 ASSERT(tcp->tcp_valid_bits == 0 || 19797 tcp->tcp_valid_bits == TCP_FSS_VALID); 19798 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 19799 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 19800 (tcp->tcp_ipversion == IPV6_VERSION && 19801 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 19802 19803 connp = tcp->tcp_connp; 19804 ASSERT(connp != NULL); 19805 ASSERT(CONN_IS_LSO_MD_FASTPATH(connp)); 19806 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp)); 19807 19808 /* 19809 * Note that tcp will only declare at most 2 payload spans per 19810 * packet, which is much lower than the maximum allowable number 19811 * of packet spans per Multidata. For this reason, we use the 19812 * privately declared and smaller descriptor info structure, in 19813 * order to save some stack space. 19814 */ 19815 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 19816 19817 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 19818 if (af == AF_INET) { 19819 dst = tcp->tcp_ipha->ipha_dst; 19820 src = tcp->tcp_ipha->ipha_src; 19821 ASSERT(!CLASSD(dst)); 19822 } 19823 ASSERT(af == AF_INET || 19824 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 19825 19826 obsegs = obbytes = 0; 19827 num_burst_seg = tcp->tcp_snd_burst; 19828 md_mp_head = NULL; 19829 PREP_NEW_MULTIDATA(); 19830 19831 /* 19832 * Before we go on further, make sure there is an IRE that we can 19833 * use, and that the ILL supports MDT. Otherwise, there's no point 19834 * in proceeding any further, and we should just hand everything 19835 * off to the legacy path. 19836 */ 19837 if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire)) 19838 goto legacy_send_no_md; 19839 19840 ASSERT(ire != NULL); 19841 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 19842 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 19843 ASSERT(af == AF_INET || ire->ire_nce != NULL); 19844 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19845 /* 19846 * If we do support loopback for MDT (which requires modifications 19847 * to the receiving paths), the following assertions should go away, 19848 * and we would be sending the Multidata to loopback conn later on. 19849 */ 19850 ASSERT(!IRE_IS_LOCAL(ire)); 19851 ASSERT(ire->ire_stq != NULL); 19852 19853 ill = ire_to_ill(ire); 19854 ASSERT(ill != NULL); 19855 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 19856 19857 if (!tcp->tcp_ire_ill_check_done) { 19858 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19859 tcp->tcp_ire_ill_check_done = B_TRUE; 19860 } 19861 19862 /* 19863 * If the underlying interface conditions have changed, or if the 19864 * new interface does not support MDT, go back to legacy path. 19865 */ 19866 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 19867 /* don't go through this path anymore for this connection */ 19868 TCP_STAT(tcps, tcp_mdt_conn_halted2); 19869 tcp->tcp_mdt = B_FALSE; 19870 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 19871 "interface %s\n", (void *)connp, ill->ill_name)); 19872 /* IRE will be released prior to returning */ 19873 goto legacy_send_no_md; 19874 } 19875 19876 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 19877 zc_cap = ill->ill_zerocopy_capab; 19878 19879 /* 19880 * Check if we can take tcp fast-path. Note that "incomplete" 19881 * ire's (where the link-layer for next hop is not resolved 19882 * or where the fast-path header in nce_fp_mp is not available 19883 * yet) are sent down the legacy (slow) path. 19884 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA 19885 */ 19886 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 19887 /* IRE will be released prior to returning */ 19888 goto legacy_send_no_md; 19889 } 19890 19891 /* go to legacy path if interface doesn't support zerocopy */ 19892 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 19893 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 19894 /* IRE will be released prior to returning */ 19895 goto legacy_send_no_md; 19896 } 19897 19898 /* does the interface support hardware checksum offload? */ 19899 hwcksum_flags = 0; 19900 if (ILL_HCKSUM_CAPABLE(ill) && 19901 (ill->ill_hcksum_capab->ill_hcksum_txflags & 19902 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 19903 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 19904 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19905 HCKSUM_IPHDRCKSUM) 19906 hwcksum_flags = HCK_IPV4_HDRCKSUM; 19907 19908 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19909 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 19910 hwcksum_flags |= HCK_FULLCKSUM; 19911 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19912 HCKSUM_INET_PARTIAL) 19913 hwcksum_flags |= HCK_PARTIALCKSUM; 19914 } 19915 19916 /* 19917 * Each header fragment consists of the leading extra space, 19918 * followed by the TCP/IP header, and the trailing extra space. 19919 * We make sure that each header fragment begins on a 32-bit 19920 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 19921 * aligned in tcp_mdt_update). 19922 */ 19923 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 19924 tcp->tcp_mdt_hdr_tail), 4); 19925 19926 /* are we starting from the beginning of data block? */ 19927 if (*tail_unsent == 0) { 19928 *xmit_tail = (*xmit_tail)->b_cont; 19929 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 19930 *tail_unsent = (int)MBLKL(*xmit_tail); 19931 } 19932 19933 /* 19934 * Here we create one or more Multidata messages, each made up of 19935 * one header buffer and up to N payload buffers. This entire 19936 * operation is done within two loops: 19937 * 19938 * The outer loop mostly deals with creating the Multidata message, 19939 * as well as the header buffer that gets added to it. It also 19940 * links the Multidata messages together such that all of them can 19941 * be sent down to the lower layer in a single putnext call; this 19942 * linking behavior depends on the tcp_mdt_chain tunable. 19943 * 19944 * The inner loop takes an existing Multidata message, and adds 19945 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 19946 * packetizes those buffers by filling up the corresponding header 19947 * buffer fragments with the proper IP and TCP headers, and by 19948 * describing the layout of each packet in the packet descriptors 19949 * that get added to the Multidata. 19950 */ 19951 do { 19952 /* 19953 * If usable send window is too small, or data blocks in 19954 * transmit list are smaller than our threshold (i.e. app 19955 * performs large writes followed by small ones), we hand 19956 * off the control over to the legacy path. Note that we'll 19957 * get back the control once it encounters a large block. 19958 */ 19959 if (*usable < mss || (*tail_unsent <= mdt_thres && 19960 (*xmit_tail)->b_cont != NULL && 19961 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 19962 /* send down what we've got so far */ 19963 if (md_mp_head != NULL) { 19964 tcp_multisend_data(tcp, ire, ill, md_mp_head, 19965 obsegs, obbytes, &rconfirm); 19966 } 19967 /* 19968 * Pass control over to tcp_send(), but tell it to 19969 * return to us once a large-size transmission is 19970 * possible. 19971 */ 19972 TCP_STAT(tcps, tcp_mdt_legacy_small); 19973 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 19974 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 19975 tail_unsent, xmit_tail, local_time, 19976 mdt_thres)) <= 0) { 19977 /* burst count reached, or alloc failed */ 19978 IRE_REFRELE(ire); 19979 return (err); 19980 } 19981 19982 /* tcp_send() may have sent everything, so check */ 19983 if (*usable <= 0) { 19984 IRE_REFRELE(ire); 19985 return (0); 19986 } 19987 19988 TCP_STAT(tcps, tcp_mdt_legacy_ret); 19989 /* 19990 * We may have delivered the Multidata, so make sure 19991 * to re-initialize before the next round. 19992 */ 19993 md_mp_head = NULL; 19994 obsegs = obbytes = 0; 19995 num_burst_seg = tcp->tcp_snd_burst; 19996 PREP_NEW_MULTIDATA(); 19997 19998 /* are we starting from the beginning of data block? */ 19999 if (*tail_unsent == 0) { 20000 *xmit_tail = (*xmit_tail)->b_cont; 20001 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20002 (uintptr_t)INT_MAX); 20003 *tail_unsent = (int)MBLKL(*xmit_tail); 20004 } 20005 } 20006 20007 /* 20008 * max_pld limits the number of mblks in tcp's transmit 20009 * queue that can be added to a Multidata message. Once 20010 * this counter reaches zero, no more additional mblks 20011 * can be added to it. What happens afterwards depends 20012 * on whether or not we are set to chain the Multidata 20013 * messages. If we are to link them together, reset 20014 * max_pld to its original value (tcp_mdt_max_pld) and 20015 * prepare to create a new Multidata message which will 20016 * get linked to md_mp_head. Else, leave it alone and 20017 * let the inner loop break on its own. 20018 */ 20019 if (tcp_mdt_chain && max_pld == 0) 20020 PREP_NEW_MULTIDATA(); 20021 20022 /* adding a payload buffer; re-initialize values */ 20023 if (add_buffer) 20024 PREP_NEW_PBUF(); 20025 20026 /* 20027 * If we don't have a Multidata, either because we just 20028 * (re)entered this outer loop, or after we branched off 20029 * to tcp_send above, setup the Multidata and header 20030 * buffer to be used. 20031 */ 20032 if (md_mp == NULL) { 20033 int md_hbuflen; 20034 uint32_t start, stuff; 20035 20036 /* 20037 * Calculate Multidata header buffer size large enough 20038 * to hold all of the headers that can possibly be 20039 * sent at this moment. We'd rather over-estimate 20040 * the size than running out of space; this is okay 20041 * since this buffer is small anyway. 20042 */ 20043 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 20044 20045 /* 20046 * Start and stuff offset for partial hardware 20047 * checksum offload; these are currently for IPv4. 20048 * For full checksum offload, they are set to zero. 20049 */ 20050 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 20051 if (af == AF_INET) { 20052 start = IP_SIMPLE_HDR_LENGTH; 20053 stuff = IP_SIMPLE_HDR_LENGTH + 20054 TCP_CHECKSUM_OFFSET; 20055 } else { 20056 start = IPV6_HDR_LEN; 20057 stuff = IPV6_HDR_LEN + 20058 TCP_CHECKSUM_OFFSET; 20059 } 20060 } else { 20061 start = stuff = 0; 20062 } 20063 20064 /* 20065 * Create the header buffer, Multidata, as well as 20066 * any necessary attributes (destination address, 20067 * SAP and hardware checksum offload) that should 20068 * be associated with the Multidata message. 20069 */ 20070 ASSERT(cur_hdr_off == 0); 20071 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 20072 ((md_hbuf->b_wptr += md_hbuflen), 20073 (mmd = mmd_alloc(md_hbuf, &md_mp, 20074 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 20075 /* fastpath mblk */ 20076 ire->ire_nce->nce_res_mp, 20077 /* hardware checksum enabled */ 20078 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 20079 /* hardware checksum offsets */ 20080 start, stuff, 0, 20081 /* hardware checksum flag */ 20082 hwcksum_flags, tcps) != 0)) { 20083 legacy_send: 20084 if (md_mp != NULL) { 20085 /* Unlink message from the chain */ 20086 if (md_mp_head != NULL) { 20087 err = (intptr_t)rmvb(md_mp_head, 20088 md_mp); 20089 /* 20090 * We can't assert that rmvb 20091 * did not return -1, since we 20092 * may get here before linkb 20093 * happens. We do, however, 20094 * check if we just removed the 20095 * only element in the list. 20096 */ 20097 if (err == 0) 20098 md_mp_head = NULL; 20099 } 20100 /* md_hbuf gets freed automatically */ 20101 TCP_STAT(tcps, tcp_mdt_discarded); 20102 freeb(md_mp); 20103 } else { 20104 /* Either allocb or mmd_alloc failed */ 20105 TCP_STAT(tcps, tcp_mdt_allocfail); 20106 if (md_hbuf != NULL) 20107 freeb(md_hbuf); 20108 } 20109 20110 /* send down what we've got so far */ 20111 if (md_mp_head != NULL) { 20112 tcp_multisend_data(tcp, ire, ill, 20113 md_mp_head, obsegs, obbytes, 20114 &rconfirm); 20115 } 20116 legacy_send_no_md: 20117 if (ire != NULL) 20118 IRE_REFRELE(ire); 20119 /* 20120 * Too bad; let the legacy path handle this. 20121 * We specify INT_MAX for the threshold, since 20122 * we gave up with the Multidata processings 20123 * and let the old path have it all. 20124 */ 20125 TCP_STAT(tcps, tcp_mdt_legacy_all); 20126 return (tcp_send(q, tcp, mss, tcp_hdr_len, 20127 tcp_tcp_hdr_len, num_sack_blk, usable, 20128 snxt, tail_unsent, xmit_tail, local_time, 20129 INT_MAX)); 20130 } 20131 20132 /* link to any existing ones, if applicable */ 20133 TCP_STAT(tcps, tcp_mdt_allocd); 20134 if (md_mp_head == NULL) { 20135 md_mp_head = md_mp; 20136 } else if (tcp_mdt_chain) { 20137 TCP_STAT(tcps, tcp_mdt_linked); 20138 linkb(md_mp_head, md_mp); 20139 } 20140 } 20141 20142 ASSERT(md_mp_head != NULL); 20143 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 20144 ASSERT(md_mp != NULL && mmd != NULL); 20145 ASSERT(md_hbuf != NULL); 20146 20147 /* 20148 * Packetize the transmittable portion of the data block; 20149 * each data block is essentially added to the Multidata 20150 * as a payload buffer. We also deal with adding more 20151 * than one payload buffers, which happens when the remaining 20152 * packetized portion of the current payload buffer is less 20153 * than MSS, while the next data block in transmit queue 20154 * has enough data to make up for one. This "spillover" 20155 * case essentially creates a split-packet, where portions 20156 * of the packet's payload fragments may span across two 20157 * virtually discontiguous address blocks. 20158 */ 20159 seg_len = mss; 20160 do { 20161 len = seg_len; 20162 20163 ASSERT(len > 0); 20164 ASSERT(max_pld >= 0); 20165 ASSERT(!add_buffer || cur_pld_off == 0); 20166 20167 /* 20168 * First time around for this payload buffer; note 20169 * in the case of a spillover, the following has 20170 * been done prior to adding the split-packet 20171 * descriptor to Multidata, and we don't want to 20172 * repeat the process. 20173 */ 20174 if (add_buffer) { 20175 ASSERT(mmd != NULL); 20176 ASSERT(md_pbuf == NULL); 20177 ASSERT(md_pbuf_nxt == NULL); 20178 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 20179 20180 /* 20181 * Have we reached the limit? We'd get to 20182 * this case when we're not chaining the 20183 * Multidata messages together, and since 20184 * we're done, terminate this loop. 20185 */ 20186 if (max_pld == 0) 20187 break; /* done */ 20188 20189 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 20190 TCP_STAT(tcps, tcp_mdt_allocfail); 20191 goto legacy_send; /* out_of_mem */ 20192 } 20193 20194 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 20195 zc_cap != NULL) { 20196 if (!ip_md_zcopy_attr(mmd, NULL, 20197 zc_cap->ill_zerocopy_flags)) { 20198 freeb(md_pbuf); 20199 TCP_STAT(tcps, 20200 tcp_mdt_allocfail); 20201 /* out_of_mem */ 20202 goto legacy_send; 20203 } 20204 zcopy = B_TRUE; 20205 } 20206 20207 md_pbuf->b_rptr += base_pld_off; 20208 20209 /* 20210 * Add a payload buffer to the Multidata; this 20211 * operation must not fail, or otherwise our 20212 * logic in this routine is broken. There 20213 * is no memory allocation done by the 20214 * routine, so any returned failure simply 20215 * tells us that we've done something wrong. 20216 * 20217 * A failure tells us that either we're adding 20218 * the same payload buffer more than once, or 20219 * we're trying to add more buffers than 20220 * allowed (max_pld calculation is wrong). 20221 * None of the above cases should happen, and 20222 * we panic because either there's horrible 20223 * heap corruption, and/or programming mistake. 20224 */ 20225 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 20226 if (pbuf_idx < 0) { 20227 cmn_err(CE_PANIC, "tcp_multisend: " 20228 "payload buffer logic error " 20229 "detected for tcp %p mmd %p " 20230 "pbuf %p (%d)\n", 20231 (void *)tcp, (void *)mmd, 20232 (void *)md_pbuf, pbuf_idx); 20233 } 20234 20235 ASSERT(max_pld > 0); 20236 --max_pld; 20237 add_buffer = B_FALSE; 20238 } 20239 20240 ASSERT(md_mp_head != NULL); 20241 ASSERT(md_pbuf != NULL); 20242 ASSERT(md_pbuf_nxt == NULL); 20243 ASSERT(pbuf_idx != -1); 20244 ASSERT(pbuf_idx_nxt == -1); 20245 ASSERT(*usable > 0); 20246 20247 /* 20248 * We spillover to the next payload buffer only 20249 * if all of the following is true: 20250 * 20251 * 1. There is not enough data on the current 20252 * payload buffer to make up `len', 20253 * 2. We are allowed to send `len', 20254 * 3. The next payload buffer length is large 20255 * enough to accomodate `spill'. 20256 */ 20257 if ((spill = len - *tail_unsent) > 0 && 20258 *usable >= len && 20259 MBLKL((*xmit_tail)->b_cont) >= spill && 20260 max_pld > 0) { 20261 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 20262 if (md_pbuf_nxt == NULL) { 20263 TCP_STAT(tcps, tcp_mdt_allocfail); 20264 goto legacy_send; /* out_of_mem */ 20265 } 20266 20267 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 20268 zc_cap != NULL) { 20269 if (!ip_md_zcopy_attr(mmd, NULL, 20270 zc_cap->ill_zerocopy_flags)) { 20271 freeb(md_pbuf_nxt); 20272 TCP_STAT(tcps, 20273 tcp_mdt_allocfail); 20274 /* out_of_mem */ 20275 goto legacy_send; 20276 } 20277 zcopy = B_TRUE; 20278 } 20279 20280 /* 20281 * See comments above on the first call to 20282 * mmd_addpldbuf for explanation on the panic. 20283 */ 20284 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 20285 if (pbuf_idx_nxt < 0) { 20286 panic("tcp_multisend: " 20287 "next payload buffer logic error " 20288 "detected for tcp %p mmd %p " 20289 "pbuf %p (%d)\n", 20290 (void *)tcp, (void *)mmd, 20291 (void *)md_pbuf_nxt, pbuf_idx_nxt); 20292 } 20293 20294 ASSERT(max_pld > 0); 20295 --max_pld; 20296 } else if (spill > 0) { 20297 /* 20298 * If there's a spillover, but the following 20299 * xmit_tail couldn't give us enough octets 20300 * to reach "len", then stop the current 20301 * Multidata creation and let the legacy 20302 * tcp_send() path take over. We don't want 20303 * to send the tiny segment as part of this 20304 * Multidata for performance reasons; instead, 20305 * we let the legacy path deal with grouping 20306 * it with the subsequent small mblks. 20307 */ 20308 if (*usable >= len && 20309 MBLKL((*xmit_tail)->b_cont) < spill) { 20310 max_pld = 0; 20311 break; /* done */ 20312 } 20313 20314 /* 20315 * We can't spillover, and we are near 20316 * the end of the current payload buffer, 20317 * so send what's left. 20318 */ 20319 ASSERT(*tail_unsent > 0); 20320 len = *tail_unsent; 20321 } 20322 20323 /* tail_unsent is negated if there is a spillover */ 20324 *tail_unsent -= len; 20325 *usable -= len; 20326 ASSERT(*usable >= 0); 20327 20328 if (*usable < mss) 20329 seg_len = *usable; 20330 /* 20331 * Sender SWS avoidance; see comments in tcp_send(); 20332 * everything else is the same, except that we only 20333 * do this here if there is no more data to be sent 20334 * following the current xmit_tail. We don't check 20335 * for 1-byte urgent data because we shouldn't get 20336 * here if TCP_URG_VALID is set. 20337 */ 20338 if (*usable > 0 && *usable < mss && 20339 ((md_pbuf_nxt == NULL && 20340 (*xmit_tail)->b_cont == NULL) || 20341 (md_pbuf_nxt != NULL && 20342 (*xmit_tail)->b_cont->b_cont == NULL)) && 20343 seg_len < (tcp->tcp_max_swnd >> 1) && 20344 (tcp->tcp_unsent - 20345 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 20346 !tcp->tcp_zero_win_probe) { 20347 if ((*snxt + len) == tcp->tcp_snxt && 20348 (*snxt + len) == tcp->tcp_suna) { 20349 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20350 } 20351 done = B_TRUE; 20352 } 20353 20354 /* 20355 * Prime pump for IP's checksumming on our behalf; 20356 * include the adjustment for a source route if any. 20357 * Do this only for software/partial hardware checksum 20358 * offload, as this field gets zeroed out later for 20359 * the full hardware checksum offload case. 20360 */ 20361 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 20362 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20363 cksum = (cksum >> 16) + (cksum & 0xFFFF); 20364 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 20365 } 20366 20367 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 20368 *snxt += len; 20369 20370 tcp->tcp_tcph->th_flags[0] = TH_ACK; 20371 /* 20372 * We set the PUSH bit only if TCP has no more buffered 20373 * data to be transmitted (or if sender SWS avoidance 20374 * takes place), as opposed to setting it for every 20375 * last packet in the burst. 20376 */ 20377 if (done || 20378 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 20379 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 20380 20381 /* 20382 * Set FIN bit if this is our last segment; snxt 20383 * already includes its length, and it will not 20384 * be adjusted after this point. 20385 */ 20386 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 20387 *snxt == tcp->tcp_fss) { 20388 if (!tcp->tcp_fin_acked) { 20389 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 20390 BUMP_MIB(&tcps->tcps_mib, 20391 tcpOutControl); 20392 } 20393 if (!tcp->tcp_fin_sent) { 20394 tcp->tcp_fin_sent = B_TRUE; 20395 /* 20396 * tcp state must be ESTABLISHED 20397 * in order for us to get here in 20398 * the first place. 20399 */ 20400 tcp->tcp_state = TCPS_FIN_WAIT_1; 20401 20402 /* 20403 * Upon returning from this routine, 20404 * tcp_wput_data() will set tcp_snxt 20405 * to be equal to snxt + tcp_fin_sent. 20406 * This is essentially the same as 20407 * setting it to tcp_fss + 1. 20408 */ 20409 } 20410 } 20411 20412 tcp->tcp_last_sent_len = (ushort_t)len; 20413 20414 len += tcp_hdr_len; 20415 if (tcp->tcp_ipversion == IPV4_VERSION) 20416 tcp->tcp_ipha->ipha_length = htons(len); 20417 else 20418 tcp->tcp_ip6h->ip6_plen = htons(len - 20419 ((char *)&tcp->tcp_ip6h[1] - 20420 tcp->tcp_iphc)); 20421 20422 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 20423 20424 /* setup header fragment */ 20425 PDESC_HDR_ADD(pkt_info, 20426 md_hbuf->b_rptr + cur_hdr_off, /* base */ 20427 tcp->tcp_mdt_hdr_head, /* head room */ 20428 tcp_hdr_len, /* len */ 20429 tcp->tcp_mdt_hdr_tail); /* tail room */ 20430 20431 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 20432 hdr_frag_sz); 20433 ASSERT(MBLKIN(md_hbuf, 20434 (pkt_info->hdr_base - md_hbuf->b_rptr), 20435 PDESC_HDRSIZE(pkt_info))); 20436 20437 /* setup first payload fragment */ 20438 PDESC_PLD_INIT(pkt_info); 20439 PDESC_PLD_SPAN_ADD(pkt_info, 20440 pbuf_idx, /* index */ 20441 md_pbuf->b_rptr + cur_pld_off, /* start */ 20442 tcp->tcp_last_sent_len); /* len */ 20443 20444 /* create a split-packet in case of a spillover */ 20445 if (md_pbuf_nxt != NULL) { 20446 ASSERT(spill > 0); 20447 ASSERT(pbuf_idx_nxt > pbuf_idx); 20448 ASSERT(!add_buffer); 20449 20450 md_pbuf = md_pbuf_nxt; 20451 md_pbuf_nxt = NULL; 20452 pbuf_idx = pbuf_idx_nxt; 20453 pbuf_idx_nxt = -1; 20454 cur_pld_off = spill; 20455 20456 /* trim out first payload fragment */ 20457 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 20458 20459 /* setup second payload fragment */ 20460 PDESC_PLD_SPAN_ADD(pkt_info, 20461 pbuf_idx, /* index */ 20462 md_pbuf->b_rptr, /* start */ 20463 spill); /* len */ 20464 20465 if ((*xmit_tail)->b_next == NULL) { 20466 /* 20467 * Store the lbolt used for RTT 20468 * estimation. We can only record one 20469 * timestamp per mblk so we do it when 20470 * we reach the end of the payload 20471 * buffer. Also we only take a new 20472 * timestamp sample when the previous 20473 * timed data from the same mblk has 20474 * been ack'ed. 20475 */ 20476 (*xmit_tail)->b_prev = local_time; 20477 (*xmit_tail)->b_next = 20478 (mblk_t *)(uintptr_t)first_snxt; 20479 } 20480 20481 first_snxt = *snxt - spill; 20482 20483 /* 20484 * Advance xmit_tail; usable could be 0 by 20485 * the time we got here, but we made sure 20486 * above that we would only spillover to 20487 * the next data block if usable includes 20488 * the spilled-over amount prior to the 20489 * subtraction. Therefore, we are sure 20490 * that xmit_tail->b_cont can't be NULL. 20491 */ 20492 ASSERT((*xmit_tail)->b_cont != NULL); 20493 *xmit_tail = (*xmit_tail)->b_cont; 20494 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20495 (uintptr_t)INT_MAX); 20496 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 20497 } else { 20498 cur_pld_off += tcp->tcp_last_sent_len; 20499 } 20500 20501 /* 20502 * Fill in the header using the template header, and 20503 * add options such as time-stamp, ECN and/or SACK, 20504 * as needed. 20505 */ 20506 tcp_fill_header(tcp, pkt_info->hdr_rptr, 20507 (clock_t)local_time, num_sack_blk); 20508 20509 /* take care of some IP header businesses */ 20510 if (af == AF_INET) { 20511 ipha = (ipha_t *)pkt_info->hdr_rptr; 20512 20513 ASSERT(OK_32PTR((uchar_t *)ipha)); 20514 ASSERT(PDESC_HDRL(pkt_info) >= 20515 IP_SIMPLE_HDR_LENGTH); 20516 ASSERT(ipha->ipha_version_and_hdr_length == 20517 IP_SIMPLE_HDR_VERSION); 20518 20519 /* 20520 * Assign ident value for current packet; see 20521 * related comments in ip_wput_ire() about the 20522 * contract private interface with clustering 20523 * group. 20524 */ 20525 clusterwide = B_FALSE; 20526 if (cl_inet_ipident != NULL) { 20527 ASSERT(cl_inet_isclusterwide != NULL); 20528 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 20529 AF_INET, 20530 (uint8_t *)(uintptr_t)src)) { 20531 ipha->ipha_ident = 20532 (*cl_inet_ipident) 20533 (IPPROTO_IP, AF_INET, 20534 (uint8_t *)(uintptr_t)src, 20535 (uint8_t *)(uintptr_t)dst); 20536 clusterwide = B_TRUE; 20537 } 20538 } 20539 20540 if (!clusterwide) { 20541 ipha->ipha_ident = (uint16_t) 20542 atomic_add_32_nv( 20543 &ire->ire_ident, 1); 20544 } 20545 #ifndef _BIG_ENDIAN 20546 ipha->ipha_ident = (ipha->ipha_ident << 8) | 20547 (ipha->ipha_ident >> 8); 20548 #endif 20549 } else { 20550 ip6h = (ip6_t *)pkt_info->hdr_rptr; 20551 20552 ASSERT(OK_32PTR((uchar_t *)ip6h)); 20553 ASSERT(IPVER(ip6h) == IPV6_VERSION); 20554 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 20555 ASSERT(PDESC_HDRL(pkt_info) >= 20556 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 20557 TCP_CHECKSUM_SIZE)); 20558 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20559 20560 if (tcp->tcp_ip_forward_progress) { 20561 rconfirm = B_TRUE; 20562 tcp->tcp_ip_forward_progress = B_FALSE; 20563 } 20564 } 20565 20566 /* at least one payload span, and at most two */ 20567 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 20568 20569 /* add the packet descriptor to Multidata */ 20570 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 20571 KM_NOSLEEP)) == NULL) { 20572 /* 20573 * Any failure other than ENOMEM indicates 20574 * that we have passed in invalid pkt_info 20575 * or parameters to mmd_addpdesc, which must 20576 * not happen. 20577 * 20578 * EINVAL is a result of failure on boundary 20579 * checks against the pkt_info contents. It 20580 * should not happen, and we panic because 20581 * either there's horrible heap corruption, 20582 * and/or programming mistake. 20583 */ 20584 if (err != ENOMEM) { 20585 cmn_err(CE_PANIC, "tcp_multisend: " 20586 "pdesc logic error detected for " 20587 "tcp %p mmd %p pinfo %p (%d)\n", 20588 (void *)tcp, (void *)mmd, 20589 (void *)pkt_info, err); 20590 } 20591 TCP_STAT(tcps, tcp_mdt_addpdescfail); 20592 goto legacy_send; /* out_of_mem */ 20593 } 20594 ASSERT(pkt != NULL); 20595 20596 /* calculate IP header and TCP checksums */ 20597 if (af == AF_INET) { 20598 /* calculate pseudo-header checksum */ 20599 cksum = (dst >> 16) + (dst & 0xFFFF) + 20600 (src >> 16) + (src & 0xFFFF); 20601 20602 /* offset for TCP header checksum */ 20603 up = IPH_TCPH_CHECKSUMP(ipha, 20604 IP_SIMPLE_HDR_LENGTH); 20605 } else { 20606 up = (uint16_t *)&ip6h->ip6_src; 20607 20608 /* calculate pseudo-header checksum */ 20609 cksum = up[0] + up[1] + up[2] + up[3] + 20610 up[4] + up[5] + up[6] + up[7] + 20611 up[8] + up[9] + up[10] + up[11] + 20612 up[12] + up[13] + up[14] + up[15]; 20613 20614 /* Fold the initial sum */ 20615 cksum = (cksum & 0xffff) + (cksum >> 16); 20616 20617 up = (uint16_t *)(((uchar_t *)ip6h) + 20618 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 20619 } 20620 20621 if (hwcksum_flags & HCK_FULLCKSUM) { 20622 /* clear checksum field for hardware */ 20623 *up = 0; 20624 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 20625 uint32_t sum; 20626 20627 /* pseudo-header checksumming */ 20628 sum = *up + cksum + IP_TCP_CSUM_COMP; 20629 sum = (sum & 0xFFFF) + (sum >> 16); 20630 *up = (sum & 0xFFFF) + (sum >> 16); 20631 } else { 20632 /* software checksumming */ 20633 TCP_STAT(tcps, tcp_out_sw_cksum); 20634 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 20635 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 20636 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 20637 cksum + IP_TCP_CSUM_COMP); 20638 if (*up == 0) 20639 *up = 0xFFFF; 20640 } 20641 20642 /* IPv4 header checksum */ 20643 if (af == AF_INET) { 20644 ipha->ipha_fragment_offset_and_flags |= 20645 (uint32_t)htons(ire->ire_frag_flag); 20646 20647 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 20648 ipha->ipha_hdr_checksum = 0; 20649 } else { 20650 IP_HDR_CKSUM(ipha, cksum, 20651 ((uint32_t *)ipha)[0], 20652 ((uint16_t *)ipha)[4]); 20653 } 20654 } 20655 20656 if (af == AF_INET && 20657 HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) || 20658 af == AF_INET6 && 20659 HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) { 20660 /* build header(IP/TCP) mblk for this segment */ 20661 if ((mp = dupb(md_hbuf)) == NULL) 20662 goto legacy_send; 20663 20664 mp->b_rptr = pkt_info->hdr_rptr; 20665 mp->b_wptr = pkt_info->hdr_wptr; 20666 20667 /* build payload mblk for this segment */ 20668 if ((mp1 = dupb(*xmit_tail)) == NULL) { 20669 freemsg(mp); 20670 goto legacy_send; 20671 } 20672 mp1->b_wptr = md_pbuf->b_rptr + cur_pld_off; 20673 mp1->b_rptr = mp1->b_wptr - 20674 tcp->tcp_last_sent_len; 20675 linkb(mp, mp1); 20676 20677 pld_start = mp1->b_rptr; 20678 20679 if (af == AF_INET) { 20680 DTRACE_PROBE4( 20681 ip4__physical__out__start, 20682 ill_t *, NULL, 20683 ill_t *, ill, 20684 ipha_t *, ipha, 20685 mblk_t *, mp); 20686 FW_HOOKS( 20687 ipst->ips_ip4_physical_out_event, 20688 ipst->ips_ipv4firewall_physical_out, 20689 NULL, ill, ipha, mp, mp, 0, ipst); 20690 DTRACE_PROBE1( 20691 ip4__physical__out__end, 20692 mblk_t *, mp); 20693 } else { 20694 DTRACE_PROBE4( 20695 ip6__physical__out_start, 20696 ill_t *, NULL, 20697 ill_t *, ill, 20698 ip6_t *, ip6h, 20699 mblk_t *, mp); 20700 FW_HOOKS6( 20701 ipst->ips_ip6_physical_out_event, 20702 ipst->ips_ipv6firewall_physical_out, 20703 NULL, ill, ip6h, mp, mp, 0, ipst); 20704 DTRACE_PROBE1( 20705 ip6__physical__out__end, 20706 mblk_t *, mp); 20707 } 20708 20709 if (buf_trunked && mp != NULL) { 20710 /* 20711 * Need to pass it to normal path. 20712 */ 20713 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 20714 } else if (mp == NULL || 20715 mp->b_rptr != pkt_info->hdr_rptr || 20716 mp->b_wptr != pkt_info->hdr_wptr || 20717 (mp1 = mp->b_cont) == NULL || 20718 mp1->b_rptr != pld_start || 20719 mp1->b_wptr != pld_start + 20720 tcp->tcp_last_sent_len || 20721 mp1->b_cont != NULL) { 20722 /* 20723 * Need to pass all packets of this 20724 * buffer to normal path, either when 20725 * packet is blocked, or when boundary 20726 * of header buffer or payload buffer 20727 * has been changed by FW_HOOKS[6]. 20728 */ 20729 buf_trunked = B_TRUE; 20730 if (md_mp_head != NULL) { 20731 err = (intptr_t)rmvb(md_mp_head, 20732 md_mp); 20733 if (err == 0) 20734 md_mp_head = NULL; 20735 } 20736 20737 /* send down what we've got so far */ 20738 if (md_mp_head != NULL) { 20739 tcp_multisend_data(tcp, ire, 20740 ill, md_mp_head, obsegs, 20741 obbytes, &rconfirm); 20742 } 20743 md_mp_head = NULL; 20744 20745 if (mp != NULL) 20746 CALL_IP_WPUT(tcp->tcp_connp, 20747 q, mp); 20748 20749 mp1 = fw_mp_head; 20750 do { 20751 mp = mp1; 20752 mp1 = mp1->b_next; 20753 mp->b_next = NULL; 20754 mp->b_prev = NULL; 20755 CALL_IP_WPUT(tcp->tcp_connp, 20756 q, mp); 20757 } while (mp1 != NULL); 20758 20759 fw_mp_head = NULL; 20760 } else { 20761 if (fw_mp_head == NULL) 20762 fw_mp_head = mp; 20763 else 20764 fw_mp_head->b_prev->b_next = mp; 20765 fw_mp_head->b_prev = mp; 20766 } 20767 } 20768 20769 /* advance header offset */ 20770 cur_hdr_off += hdr_frag_sz; 20771 20772 obbytes += tcp->tcp_last_sent_len; 20773 ++obsegs; 20774 } while (!done && *usable > 0 && --num_burst_seg > 0 && 20775 *tail_unsent > 0); 20776 20777 if ((*xmit_tail)->b_next == NULL) { 20778 /* 20779 * Store the lbolt used for RTT estimation. We can only 20780 * record one timestamp per mblk so we do it when we 20781 * reach the end of the payload buffer. Also we only 20782 * take a new timestamp sample when the previous timed 20783 * data from the same mblk has been ack'ed. 20784 */ 20785 (*xmit_tail)->b_prev = local_time; 20786 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 20787 } 20788 20789 ASSERT(*tail_unsent >= 0); 20790 if (*tail_unsent > 0) { 20791 /* 20792 * We got here because we broke out of the above 20793 * loop due to of one of the following cases: 20794 * 20795 * 1. len < adjusted MSS (i.e. small), 20796 * 2. Sender SWS avoidance, 20797 * 3. max_pld is zero. 20798 * 20799 * We are done for this Multidata, so trim our 20800 * last payload buffer (if any) accordingly. 20801 */ 20802 if (md_pbuf != NULL) 20803 md_pbuf->b_wptr -= *tail_unsent; 20804 } else if (*usable > 0) { 20805 *xmit_tail = (*xmit_tail)->b_cont; 20806 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20807 (uintptr_t)INT_MAX); 20808 *tail_unsent = (int)MBLKL(*xmit_tail); 20809 add_buffer = B_TRUE; 20810 } 20811 20812 while (fw_mp_head) { 20813 mp = fw_mp_head; 20814 fw_mp_head = fw_mp_head->b_next; 20815 mp->b_prev = mp->b_next = NULL; 20816 freemsg(mp); 20817 } 20818 if (buf_trunked) { 20819 TCP_STAT(tcps, tcp_mdt_discarded); 20820 freeb(md_mp); 20821 buf_trunked = B_FALSE; 20822 } 20823 } while (!done && *usable > 0 && num_burst_seg > 0 && 20824 (tcp_mdt_chain || max_pld > 0)); 20825 20826 if (md_mp_head != NULL) { 20827 /* send everything down */ 20828 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 20829 &rconfirm); 20830 } 20831 20832 #undef PREP_NEW_MULTIDATA 20833 #undef PREP_NEW_PBUF 20834 #undef IPVER 20835 20836 IRE_REFRELE(ire); 20837 return (0); 20838 } 20839 20840 /* 20841 * A wrapper function for sending one or more Multidata messages down to 20842 * the module below ip; this routine does not release the reference of the 20843 * IRE (caller does that). This routine is analogous to tcp_send_data(). 20844 */ 20845 static void 20846 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 20847 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 20848 { 20849 uint64_t delta; 20850 nce_t *nce; 20851 tcp_stack_t *tcps = tcp->tcp_tcps; 20852 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20853 20854 ASSERT(ire != NULL && ill != NULL); 20855 ASSERT(ire->ire_stq != NULL); 20856 ASSERT(md_mp_head != NULL); 20857 ASSERT(rconfirm != NULL); 20858 20859 /* adjust MIBs and IRE timestamp */ 20860 TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT); 20861 tcp->tcp_obsegs += obsegs; 20862 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs); 20863 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes); 20864 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs); 20865 20866 if (tcp->tcp_ipversion == IPV4_VERSION) { 20867 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs); 20868 } else { 20869 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs); 20870 } 20871 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs); 20872 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs); 20873 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes); 20874 20875 ire->ire_ob_pkt_count += obsegs; 20876 if (ire->ire_ipif != NULL) 20877 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 20878 ire->ire_last_used_time = lbolt; 20879 20880 /* send it down */ 20881 putnext(ire->ire_stq, md_mp_head); 20882 20883 /* we're done for TCP/IPv4 */ 20884 if (tcp->tcp_ipversion == IPV4_VERSION) 20885 return; 20886 20887 nce = ire->ire_nce; 20888 20889 ASSERT(nce != NULL); 20890 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 20891 ASSERT(nce->nce_state != ND_INCOMPLETE); 20892 20893 /* reachability confirmation? */ 20894 if (*rconfirm) { 20895 nce->nce_last = TICK_TO_MSEC(lbolt64); 20896 if (nce->nce_state != ND_REACHABLE) { 20897 mutex_enter(&nce->nce_lock); 20898 nce->nce_state = ND_REACHABLE; 20899 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 20900 mutex_exit(&nce->nce_lock); 20901 (void) untimeout(nce->nce_timeout_id); 20902 if (ip_debug > 2) { 20903 /* ip1dbg */ 20904 pr_addr_dbg("tcp_multisend_data: state " 20905 "for %s changed to REACHABLE\n", 20906 AF_INET6, &ire->ire_addr_v6); 20907 } 20908 } 20909 /* reset transport reachability confirmation */ 20910 *rconfirm = B_FALSE; 20911 } 20912 20913 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 20914 ip1dbg(("tcp_multisend_data: delta = %" PRId64 20915 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 20916 20917 if (delta > (uint64_t)ill->ill_reachable_time) { 20918 mutex_enter(&nce->nce_lock); 20919 switch (nce->nce_state) { 20920 case ND_REACHABLE: 20921 case ND_STALE: 20922 /* 20923 * ND_REACHABLE is identical to ND_STALE in this 20924 * specific case. If reachable time has expired for 20925 * this neighbor (delta is greater than reachable 20926 * time), conceptually, the neighbor cache is no 20927 * longer in REACHABLE state, but already in STALE 20928 * state. So the correct transition here is to 20929 * ND_DELAY. 20930 */ 20931 nce->nce_state = ND_DELAY; 20932 mutex_exit(&nce->nce_lock); 20933 NDP_RESTART_TIMER(nce, 20934 ipst->ips_delay_first_probe_time); 20935 if (ip_debug > 3) { 20936 /* ip2dbg */ 20937 pr_addr_dbg("tcp_multisend_data: state " 20938 "for %s changed to DELAY\n", 20939 AF_INET6, &ire->ire_addr_v6); 20940 } 20941 break; 20942 case ND_DELAY: 20943 case ND_PROBE: 20944 mutex_exit(&nce->nce_lock); 20945 /* Timers have already started */ 20946 break; 20947 case ND_UNREACHABLE: 20948 /* 20949 * ndp timer has detected that this nce is 20950 * unreachable and initiated deleting this nce 20951 * and all its associated IREs. This is a race 20952 * where we found the ire before it was deleted 20953 * and have just sent out a packet using this 20954 * unreachable nce. 20955 */ 20956 mutex_exit(&nce->nce_lock); 20957 break; 20958 default: 20959 ASSERT(0); 20960 } 20961 } 20962 } 20963 20964 /* 20965 * Derived from tcp_send_data(). 20966 */ 20967 static void 20968 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss, 20969 int num_lso_seg) 20970 { 20971 ipha_t *ipha; 20972 mblk_t *ire_fp_mp; 20973 uint_t ire_fp_mp_len; 20974 uint32_t hcksum_txflags = 0; 20975 ipaddr_t src; 20976 ipaddr_t dst; 20977 uint32_t cksum; 20978 uint16_t *up; 20979 tcp_stack_t *tcps = tcp->tcp_tcps; 20980 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20981 20982 ASSERT(DB_TYPE(mp) == M_DATA); 20983 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 20984 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 20985 ASSERT(tcp->tcp_connp != NULL); 20986 ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)); 20987 20988 ipha = (ipha_t *)mp->b_rptr; 20989 src = ipha->ipha_src; 20990 dst = ipha->ipha_dst; 20991 20992 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 20993 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 20994 num_lso_seg); 20995 #ifndef _BIG_ENDIAN 20996 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 20997 #endif 20998 if (tcp->tcp_snd_zcopy_aware) { 20999 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 21000 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 21001 mp = tcp_zcopy_disable(tcp, mp); 21002 } 21003 21004 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 21005 ASSERT(ill->ill_hcksum_capab != NULL); 21006 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 21007 } 21008 21009 /* 21010 * Since the TCP checksum should be recalculated by h/w, we can just 21011 * zero the checksum field for HCK_FULLCKSUM, or calculate partial 21012 * pseudo-header checksum for HCK_PARTIALCKSUM. 21013 * The partial pseudo-header excludes TCP length, that was calculated 21014 * in tcp_send(), so to zero *up before further processing. 21015 */ 21016 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 21017 21018 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 21019 *up = 0; 21020 21021 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 21022 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 21023 21024 /* 21025 * Append LSO flag to DB_LSOFLAGS(mp) and set the mss to DB_LSOMSS(mp). 21026 */ 21027 DB_LSOFLAGS(mp) |= HW_LSO; 21028 DB_LSOMSS(mp) = mss; 21029 21030 ipha->ipha_fragment_offset_and_flags |= 21031 (uint32_t)htons(ire->ire_frag_flag); 21032 21033 ire_fp_mp = ire->ire_nce->nce_fp_mp; 21034 ire_fp_mp_len = MBLKL(ire_fp_mp); 21035 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 21036 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 21037 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 21038 21039 UPDATE_OB_PKT_COUNT(ire); 21040 ire->ire_last_used_time = lbolt; 21041 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 21042 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 21043 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 21044 ntohs(ipha->ipha_length)); 21045 21046 if (ILL_DLS_CAPABLE(ill)) { 21047 /* 21048 * Send the packet directly to DLD, where it may be queued 21049 * depending on the availability of transmit resources at 21050 * the media layer. 21051 */ 21052 IP_DLS_ILL_TX(ill, ipha, mp, ipst); 21053 } else { 21054 ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr; 21055 DTRACE_PROBE4(ip4__physical__out__start, 21056 ill_t *, NULL, ill_t *, out_ill, 21057 ipha_t *, ipha, mblk_t *, mp); 21058 FW_HOOKS(ipst->ips_ip4_physical_out_event, 21059 ipst->ips_ipv4firewall_physical_out, 21060 NULL, out_ill, ipha, mp, mp, 0, ipst); 21061 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 21062 if (mp != NULL) 21063 putnext(ire->ire_stq, mp); 21064 } 21065 } 21066 21067 /* 21068 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 21069 * scheme, and returns one of the following: 21070 * 21071 * -1 = failed allocation. 21072 * 0 = success; burst count reached, or usable send window is too small, 21073 * and that we'd rather wait until later before sending again. 21074 * 1 = success; we are called from tcp_multisend(), and both usable send 21075 * window and tail_unsent are greater than the MDT threshold, and thus 21076 * Multidata Transmit should be used instead. 21077 */ 21078 static int 21079 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 21080 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 21081 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 21082 const int mdt_thres) 21083 { 21084 int num_burst_seg = tcp->tcp_snd_burst; 21085 ire_t *ire = NULL; 21086 ill_t *ill = NULL; 21087 mblk_t *ire_fp_mp = NULL; 21088 uint_t ire_fp_mp_len = 0; 21089 int num_lso_seg = 1; 21090 uint_t lso_usable; 21091 boolean_t do_lso_send = B_FALSE; 21092 tcp_stack_t *tcps = tcp->tcp_tcps; 21093 21094 /* 21095 * Check LSO capability before any further work. And the similar check 21096 * need to be done in for(;;) loop. 21097 * LSO will be deployed when therer is more than one mss of available 21098 * data and a burst transmission is allowed. 21099 */ 21100 if (tcp->tcp_lso && 21101 (tcp->tcp_valid_bits == 0 || 21102 tcp->tcp_valid_bits == TCP_FSS_VALID) && 21103 num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 21104 /* 21105 * Try to find usable IRE/ILL and do basic check to the ILL. 21106 */ 21107 if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) { 21108 /* 21109 * Enable LSO with this transmission. 21110 * Since IRE has been hold in 21111 * tcp_send_find_ire_ill(), IRE_REFRELE(ire) 21112 * should be called before return. 21113 */ 21114 do_lso_send = B_TRUE; 21115 ire_fp_mp = ire->ire_nce->nce_fp_mp; 21116 ire_fp_mp_len = MBLKL(ire_fp_mp); 21117 /* Round up to multiple of 4 */ 21118 ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4; 21119 } else { 21120 do_lso_send = B_FALSE; 21121 ill = NULL; 21122 } 21123 } 21124 21125 for (;;) { 21126 struct datab *db; 21127 tcph_t *tcph; 21128 uint32_t sum; 21129 mblk_t *mp, *mp1; 21130 uchar_t *rptr; 21131 int len; 21132 21133 /* 21134 * If we're called by tcp_multisend(), and the amount of 21135 * sendable data as well as the size of current xmit_tail 21136 * is beyond the MDT threshold, return to the caller and 21137 * let the large data transmit be done using MDT. 21138 */ 21139 if (*usable > 0 && *usable > mdt_thres && 21140 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 21141 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 21142 ASSERT(tcp->tcp_mdt); 21143 return (1); /* success; do large send */ 21144 } 21145 21146 if (num_burst_seg == 0) 21147 break; /* success; burst count reached */ 21148 21149 /* 21150 * Calculate the maximum payload length we can send in *one* 21151 * time. 21152 */ 21153 if (do_lso_send) { 21154 /* 21155 * Check whether need to do LSO any more. 21156 */ 21157 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 21158 lso_usable = MIN(tcp->tcp_lso_max, *usable); 21159 lso_usable = MIN(lso_usable, 21160 num_burst_seg * mss); 21161 21162 num_lso_seg = lso_usable / mss; 21163 if (lso_usable % mss) { 21164 num_lso_seg++; 21165 tcp->tcp_last_sent_len = (ushort_t) 21166 (lso_usable % mss); 21167 } else { 21168 tcp->tcp_last_sent_len = (ushort_t)mss; 21169 } 21170 } else { 21171 do_lso_send = B_FALSE; 21172 num_lso_seg = 1; 21173 lso_usable = mss; 21174 } 21175 } 21176 21177 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 21178 21179 /* 21180 * Adjust num_burst_seg here. 21181 */ 21182 num_burst_seg -= num_lso_seg; 21183 21184 len = mss; 21185 if (len > *usable) { 21186 ASSERT(do_lso_send == B_FALSE); 21187 21188 len = *usable; 21189 if (len <= 0) { 21190 /* Terminate the loop */ 21191 break; /* success; too small */ 21192 } 21193 /* 21194 * Sender silly-window avoidance. 21195 * Ignore this if we are going to send a 21196 * zero window probe out. 21197 * 21198 * TODO: force data into microscopic window? 21199 * ==> (!pushed || (unsent > usable)) 21200 */ 21201 if (len < (tcp->tcp_max_swnd >> 1) && 21202 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 21203 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 21204 len == 1) && (! tcp->tcp_zero_win_probe)) { 21205 /* 21206 * If the retransmit timer is not running 21207 * we start it so that we will retransmit 21208 * in the case when the the receiver has 21209 * decremented the window. 21210 */ 21211 if (*snxt == tcp->tcp_snxt && 21212 *snxt == tcp->tcp_suna) { 21213 /* 21214 * We are not supposed to send 21215 * anything. So let's wait a little 21216 * bit longer before breaking SWS 21217 * avoidance. 21218 * 21219 * What should the value be? 21220 * Suggestion: MAX(init rexmit time, 21221 * tcp->tcp_rto) 21222 */ 21223 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21224 } 21225 break; /* success; too small */ 21226 } 21227 } 21228 21229 tcph = tcp->tcp_tcph; 21230 21231 /* 21232 * The reason to adjust len here is that we need to set flags 21233 * and calculate checksum. 21234 */ 21235 if (do_lso_send) 21236 len = lso_usable; 21237 21238 *usable -= len; /* Approximate - can be adjusted later */ 21239 if (*usable > 0) 21240 tcph->th_flags[0] = TH_ACK; 21241 else 21242 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 21243 21244 /* 21245 * Prime pump for IP's checksumming on our behalf 21246 * Include the adjustment for a source route if any. 21247 */ 21248 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 21249 sum = (sum >> 16) + (sum & 0xFFFF); 21250 U16_TO_ABE16(sum, tcph->th_sum); 21251 21252 U32_TO_ABE32(*snxt, tcph->th_seq); 21253 21254 /* 21255 * Branch off to tcp_xmit_mp() if any of the VALID bits is 21256 * set. For the case when TCP_FSS_VALID is the only valid 21257 * bit (normal active close), branch off only when we think 21258 * that the FIN flag needs to be set. Note for this case, 21259 * that (snxt + len) may not reflect the actual seg_len, 21260 * as len may be further reduced in tcp_xmit_mp(). If len 21261 * gets modified, we will end up here again. 21262 */ 21263 if (tcp->tcp_valid_bits != 0 && 21264 (tcp->tcp_valid_bits != TCP_FSS_VALID || 21265 ((*snxt + len) == tcp->tcp_fss))) { 21266 uchar_t *prev_rptr; 21267 uint32_t prev_snxt = tcp->tcp_snxt; 21268 21269 if (*tail_unsent == 0) { 21270 ASSERT((*xmit_tail)->b_cont != NULL); 21271 *xmit_tail = (*xmit_tail)->b_cont; 21272 prev_rptr = (*xmit_tail)->b_rptr; 21273 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21274 (*xmit_tail)->b_rptr); 21275 } else { 21276 prev_rptr = (*xmit_tail)->b_rptr; 21277 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 21278 *tail_unsent; 21279 } 21280 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 21281 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 21282 /* Restore tcp_snxt so we get amount sent right. */ 21283 tcp->tcp_snxt = prev_snxt; 21284 if (prev_rptr == (*xmit_tail)->b_rptr) { 21285 /* 21286 * If the previous timestamp is still in use, 21287 * don't stomp on it. 21288 */ 21289 if ((*xmit_tail)->b_next == NULL) { 21290 (*xmit_tail)->b_prev = local_time; 21291 (*xmit_tail)->b_next = 21292 (mblk_t *)(uintptr_t)(*snxt); 21293 } 21294 } else 21295 (*xmit_tail)->b_rptr = prev_rptr; 21296 21297 if (mp == NULL) { 21298 if (ire != NULL) 21299 IRE_REFRELE(ire); 21300 return (-1); 21301 } 21302 mp1 = mp->b_cont; 21303 21304 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21305 tcp->tcp_last_sent_len = (ushort_t)len; 21306 while (mp1->b_cont) { 21307 *xmit_tail = (*xmit_tail)->b_cont; 21308 (*xmit_tail)->b_prev = local_time; 21309 (*xmit_tail)->b_next = 21310 (mblk_t *)(uintptr_t)(*snxt); 21311 mp1 = mp1->b_cont; 21312 } 21313 *snxt += len; 21314 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 21315 BUMP_LOCAL(tcp->tcp_obsegs); 21316 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21317 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21318 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21319 tcp_send_data(tcp, q, mp); 21320 continue; 21321 } 21322 21323 *snxt += len; /* Adjust later if we don't send all of len */ 21324 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21325 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21326 21327 if (*tail_unsent) { 21328 /* Are the bytes above us in flight? */ 21329 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 21330 if (rptr != (*xmit_tail)->b_rptr) { 21331 *tail_unsent -= len; 21332 if (len <= mss) /* LSO is unusable */ 21333 tcp->tcp_last_sent_len = (ushort_t)len; 21334 len += tcp_hdr_len; 21335 if (tcp->tcp_ipversion == IPV4_VERSION) 21336 tcp->tcp_ipha->ipha_length = htons(len); 21337 else 21338 tcp->tcp_ip6h->ip6_plen = 21339 htons(len - 21340 ((char *)&tcp->tcp_ip6h[1] - 21341 tcp->tcp_iphc)); 21342 mp = dupb(*xmit_tail); 21343 if (mp == NULL) { 21344 if (ire != NULL) 21345 IRE_REFRELE(ire); 21346 return (-1); /* out_of_mem */ 21347 } 21348 mp->b_rptr = rptr; 21349 /* 21350 * If the old timestamp is no longer in use, 21351 * sample a new timestamp now. 21352 */ 21353 if ((*xmit_tail)->b_next == NULL) { 21354 (*xmit_tail)->b_prev = local_time; 21355 (*xmit_tail)->b_next = 21356 (mblk_t *)(uintptr_t)(*snxt-len); 21357 } 21358 goto must_alloc; 21359 } 21360 } else { 21361 *xmit_tail = (*xmit_tail)->b_cont; 21362 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 21363 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 21364 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21365 (*xmit_tail)->b_rptr); 21366 } 21367 21368 (*xmit_tail)->b_prev = local_time; 21369 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 21370 21371 *tail_unsent -= len; 21372 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21373 tcp->tcp_last_sent_len = (ushort_t)len; 21374 21375 len += tcp_hdr_len; 21376 if (tcp->tcp_ipversion == IPV4_VERSION) 21377 tcp->tcp_ipha->ipha_length = htons(len); 21378 else 21379 tcp->tcp_ip6h->ip6_plen = htons(len - 21380 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21381 21382 mp = dupb(*xmit_tail); 21383 if (mp == NULL) { 21384 if (ire != NULL) 21385 IRE_REFRELE(ire); 21386 return (-1); /* out_of_mem */ 21387 } 21388 21389 len = tcp_hdr_len; 21390 /* 21391 * There are four reasons to allocate a new hdr mblk: 21392 * 1) The bytes above us are in use by another packet 21393 * 2) We don't have good alignment 21394 * 3) The mblk is being shared 21395 * 4) We don't have enough room for a header 21396 */ 21397 rptr = mp->b_rptr - len; 21398 if (!OK_32PTR(rptr) || 21399 ((db = mp->b_datap), db->db_ref != 2) || 21400 rptr < db->db_base + ire_fp_mp_len) { 21401 /* NOTE: we assume allocb returns an OK_32PTR */ 21402 21403 must_alloc:; 21404 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 21405 tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED); 21406 if (mp1 == NULL) { 21407 freemsg(mp); 21408 if (ire != NULL) 21409 IRE_REFRELE(ire); 21410 return (-1); /* out_of_mem */ 21411 } 21412 mp1->b_cont = mp; 21413 mp = mp1; 21414 /* Leave room for Link Level header */ 21415 len = tcp_hdr_len; 21416 rptr = 21417 &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len]; 21418 mp->b_wptr = &rptr[len]; 21419 } 21420 21421 /* 21422 * Fill in the header using the template header, and add 21423 * options such as time-stamp, ECN and/or SACK, as needed. 21424 */ 21425 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 21426 21427 mp->b_rptr = rptr; 21428 21429 if (*tail_unsent) { 21430 int spill = *tail_unsent; 21431 21432 mp1 = mp->b_cont; 21433 if (mp1 == NULL) 21434 mp1 = mp; 21435 21436 /* 21437 * If we're a little short, tack on more mblks until 21438 * there is no more spillover. 21439 */ 21440 while (spill < 0) { 21441 mblk_t *nmp; 21442 int nmpsz; 21443 21444 nmp = (*xmit_tail)->b_cont; 21445 nmpsz = MBLKL(nmp); 21446 21447 /* 21448 * Excess data in mblk; can we split it? 21449 * If MDT is enabled for the connection, 21450 * keep on splitting as this is a transient 21451 * send path. 21452 */ 21453 if (!do_lso_send && !tcp->tcp_mdt && 21454 (spill + nmpsz > 0)) { 21455 /* 21456 * Don't split if stream head was 21457 * told to break up larger writes 21458 * into smaller ones. 21459 */ 21460 if (tcp->tcp_maxpsz > 0) 21461 break; 21462 21463 /* 21464 * Next mblk is less than SMSS/2 21465 * rounded up to nearest 64-byte; 21466 * let it get sent as part of the 21467 * next segment. 21468 */ 21469 if (tcp->tcp_localnet && 21470 !tcp->tcp_cork && 21471 (nmpsz < roundup((mss >> 1), 64))) 21472 break; 21473 } 21474 21475 *xmit_tail = nmp; 21476 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 21477 /* Stash for rtt use later */ 21478 (*xmit_tail)->b_prev = local_time; 21479 (*xmit_tail)->b_next = 21480 (mblk_t *)(uintptr_t)(*snxt - len); 21481 mp1->b_cont = dupb(*xmit_tail); 21482 mp1 = mp1->b_cont; 21483 21484 spill += nmpsz; 21485 if (mp1 == NULL) { 21486 *tail_unsent = spill; 21487 freemsg(mp); 21488 if (ire != NULL) 21489 IRE_REFRELE(ire); 21490 return (-1); /* out_of_mem */ 21491 } 21492 } 21493 21494 /* Trim back any surplus on the last mblk */ 21495 if (spill >= 0) { 21496 mp1->b_wptr -= spill; 21497 *tail_unsent = spill; 21498 } else { 21499 /* 21500 * We did not send everything we could in 21501 * order to remain within the b_cont limit. 21502 */ 21503 *usable -= spill; 21504 *snxt += spill; 21505 tcp->tcp_last_sent_len += spill; 21506 UPDATE_MIB(&tcps->tcps_mib, 21507 tcpOutDataBytes, spill); 21508 /* 21509 * Adjust the checksum 21510 */ 21511 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 21512 sum += spill; 21513 sum = (sum >> 16) + (sum & 0xFFFF); 21514 U16_TO_ABE16(sum, tcph->th_sum); 21515 if (tcp->tcp_ipversion == IPV4_VERSION) { 21516 sum = ntohs( 21517 ((ipha_t *)rptr)->ipha_length) + 21518 spill; 21519 ((ipha_t *)rptr)->ipha_length = 21520 htons(sum); 21521 } else { 21522 sum = ntohs( 21523 ((ip6_t *)rptr)->ip6_plen) + 21524 spill; 21525 ((ip6_t *)rptr)->ip6_plen = 21526 htons(sum); 21527 } 21528 *tail_unsent = 0; 21529 } 21530 } 21531 if (tcp->tcp_ip_forward_progress) { 21532 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21533 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 21534 tcp->tcp_ip_forward_progress = B_FALSE; 21535 } 21536 21537 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21538 if (do_lso_send) { 21539 tcp_lsosend_data(tcp, mp, ire, ill, mss, 21540 num_lso_seg); 21541 tcp->tcp_obsegs += num_lso_seg; 21542 21543 TCP_STAT(tcps, tcp_lso_times); 21544 TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); 21545 } else { 21546 tcp_send_data(tcp, q, mp); 21547 BUMP_LOCAL(tcp->tcp_obsegs); 21548 } 21549 } 21550 21551 if (ire != NULL) 21552 IRE_REFRELE(ire); 21553 return (0); 21554 } 21555 21556 /* Unlink and return any mblk that looks like it contains a MDT info */ 21557 static mblk_t * 21558 tcp_mdt_info_mp(mblk_t *mp) 21559 { 21560 mblk_t *prev_mp; 21561 21562 for (;;) { 21563 prev_mp = mp; 21564 /* no more to process? */ 21565 if ((mp = mp->b_cont) == NULL) 21566 break; 21567 21568 switch (DB_TYPE(mp)) { 21569 case M_CTL: 21570 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 21571 continue; 21572 ASSERT(prev_mp != NULL); 21573 prev_mp->b_cont = mp->b_cont; 21574 mp->b_cont = NULL; 21575 return (mp); 21576 default: 21577 break; 21578 } 21579 } 21580 return (mp); 21581 } 21582 21583 /* MDT info update routine, called when IP notifies us about MDT */ 21584 static void 21585 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 21586 { 21587 boolean_t prev_state; 21588 tcp_stack_t *tcps = tcp->tcp_tcps; 21589 21590 /* 21591 * IP is telling us to abort MDT on this connection? We know 21592 * this because the capability is only turned off when IP 21593 * encounters some pathological cases, e.g. link-layer change 21594 * where the new driver doesn't support MDT, or in situation 21595 * where MDT usage on the link-layer has been switched off. 21596 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 21597 * if the link-layer doesn't support MDT, and if it does, it 21598 * will indicate that the feature is to be turned on. 21599 */ 21600 prev_state = tcp->tcp_mdt; 21601 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 21602 if (!tcp->tcp_mdt && !first) { 21603 TCP_STAT(tcps, tcp_mdt_conn_halted3); 21604 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 21605 (void *)tcp->tcp_connp)); 21606 } 21607 21608 /* 21609 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 21610 * so disable MDT otherwise. The checks are done here 21611 * and in tcp_wput_data(). 21612 */ 21613 if (tcp->tcp_mdt && 21614 (tcp->tcp_ipversion == IPV4_VERSION && 21615 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21616 (tcp->tcp_ipversion == IPV6_VERSION && 21617 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 21618 tcp->tcp_mdt = B_FALSE; 21619 21620 if (tcp->tcp_mdt) { 21621 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 21622 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 21623 "version (%d), expected version is %d", 21624 mdt_capab->ill_mdt_version, MDT_VERSION_2); 21625 tcp->tcp_mdt = B_FALSE; 21626 return; 21627 } 21628 21629 /* 21630 * We need the driver to be able to handle at least three 21631 * spans per packet in order for tcp MDT to be utilized. 21632 * The first is for the header portion, while the rest are 21633 * needed to handle a packet that straddles across two 21634 * virtually non-contiguous buffers; a typical tcp packet 21635 * therefore consists of only two spans. Note that we take 21636 * a zero as "don't care". 21637 */ 21638 if (mdt_capab->ill_mdt_span_limit > 0 && 21639 mdt_capab->ill_mdt_span_limit < 3) { 21640 tcp->tcp_mdt = B_FALSE; 21641 return; 21642 } 21643 21644 /* a zero means driver wants default value */ 21645 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 21646 tcps->tcps_mdt_max_pbufs); 21647 if (tcp->tcp_mdt_max_pld == 0) 21648 tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs; 21649 21650 /* ensure 32-bit alignment */ 21651 tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min, 21652 mdt_capab->ill_mdt_hdr_head), 4); 21653 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min, 21654 mdt_capab->ill_mdt_hdr_tail), 4); 21655 21656 if (!first && !prev_state) { 21657 TCP_STAT(tcps, tcp_mdt_conn_resumed2); 21658 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 21659 (void *)tcp->tcp_connp)); 21660 } 21661 } 21662 } 21663 21664 /* Unlink and return any mblk that looks like it contains a LSO info */ 21665 static mblk_t * 21666 tcp_lso_info_mp(mblk_t *mp) 21667 { 21668 mblk_t *prev_mp; 21669 21670 for (;;) { 21671 prev_mp = mp; 21672 /* no more to process? */ 21673 if ((mp = mp->b_cont) == NULL) 21674 break; 21675 21676 switch (DB_TYPE(mp)) { 21677 case M_CTL: 21678 if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE) 21679 continue; 21680 ASSERT(prev_mp != NULL); 21681 prev_mp->b_cont = mp->b_cont; 21682 mp->b_cont = NULL; 21683 return (mp); 21684 default: 21685 break; 21686 } 21687 } 21688 21689 return (mp); 21690 } 21691 21692 /* LSO info update routine, called when IP notifies us about LSO */ 21693 static void 21694 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab) 21695 { 21696 tcp_stack_t *tcps = tcp->tcp_tcps; 21697 21698 /* 21699 * IP is telling us to abort LSO on this connection? We know 21700 * this because the capability is only turned off when IP 21701 * encounters some pathological cases, e.g. link-layer change 21702 * where the new NIC/driver doesn't support LSO, or in situation 21703 * where LSO usage on the link-layer has been switched off. 21704 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE 21705 * if the link-layer doesn't support LSO, and if it does, it 21706 * will indicate that the feature is to be turned on. 21707 */ 21708 tcp->tcp_lso = (lso_capab->ill_lso_on != 0); 21709 TCP_STAT(tcps, tcp_lso_enabled); 21710 21711 /* 21712 * We currently only support LSO on simple TCP/IPv4, 21713 * so disable LSO otherwise. The checks are done here 21714 * and in tcp_wput_data(). 21715 */ 21716 if (tcp->tcp_lso && 21717 (tcp->tcp_ipversion == IPV4_VERSION && 21718 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21719 (tcp->tcp_ipversion == IPV6_VERSION)) { 21720 tcp->tcp_lso = B_FALSE; 21721 TCP_STAT(tcps, tcp_lso_disabled); 21722 } else { 21723 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, 21724 lso_capab->ill_lso_max); 21725 } 21726 } 21727 21728 static void 21729 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt) 21730 { 21731 conn_t *connp = tcp->tcp_connp; 21732 tcp_stack_t *tcps = tcp->tcp_tcps; 21733 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21734 21735 ASSERT(ire != NULL); 21736 21737 /* 21738 * We may be in the fastpath here, and although we essentially do 21739 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return, 21740 * we try to keep things as brief as possible. After all, these 21741 * are only best-effort checks, and we do more thorough ones prior 21742 * to calling tcp_send()/tcp_multisend(). 21743 */ 21744 if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) && 21745 check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 21746 ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 21747 !(ire->ire_flags & RTF_MULTIRT) && 21748 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 21749 CONN_IS_LSO_MD_FASTPATH(connp)) { 21750 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 21751 /* Cache the result */ 21752 connp->conn_lso_ok = B_TRUE; 21753 21754 ASSERT(ill->ill_lso_capab != NULL); 21755 if (!ill->ill_lso_capab->ill_lso_on) { 21756 ill->ill_lso_capab->ill_lso_on = 1; 21757 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21758 "LSO for interface %s\n", (void *)connp, 21759 ill->ill_name)); 21760 } 21761 tcp_lso_update(tcp, ill->ill_lso_capab); 21762 } else if (ipst->ips_ip_multidata_outbound && 21763 ILL_MDT_CAPABLE(ill)) { 21764 /* Cache the result */ 21765 connp->conn_mdt_ok = B_TRUE; 21766 21767 ASSERT(ill->ill_mdt_capab != NULL); 21768 if (!ill->ill_mdt_capab->ill_mdt_on) { 21769 ill->ill_mdt_capab->ill_mdt_on = 1; 21770 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21771 "MDT for interface %s\n", (void *)connp, 21772 ill->ill_name)); 21773 } 21774 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 21775 } 21776 } 21777 21778 /* 21779 * The goal is to reduce the number of generated tcp segments by 21780 * setting the maxpsz multiplier to 0; this will have an affect on 21781 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 21782 * into each packet, up to SMSS bytes. Doing this reduces the number 21783 * of outbound segments and incoming ACKs, thus allowing for better 21784 * network and system performance. In contrast the legacy behavior 21785 * may result in sending less than SMSS size, because the last mblk 21786 * for some packets may have more data than needed to make up SMSS, 21787 * and the legacy code refused to "split" it. 21788 * 21789 * We apply the new behavior on following situations: 21790 * 21791 * 1) Loopback connections, 21792 * 2) Connections in which the remote peer is not on local subnet, 21793 * 3) Local subnet connections over the bge interface (see below). 21794 * 21795 * Ideally, we would like this behavior to apply for interfaces other 21796 * than bge. However, doing so would negatively impact drivers which 21797 * perform dynamic mapping and unmapping of DMA resources, which are 21798 * increased by setting the maxpsz multiplier to 0 (more mblks per 21799 * packet will be generated by tcp). The bge driver does not suffer 21800 * from this, as it copies the mblks into pre-mapped buffers, and 21801 * therefore does not require more I/O resources than before. 21802 * 21803 * Otherwise, this behavior is present on all network interfaces when 21804 * the destination endpoint is non-local, since reducing the number 21805 * of packets in general is good for the network. 21806 * 21807 * TODO We need to remove this hard-coded conditional for bge once 21808 * a better "self-tuning" mechanism, or a way to comprehend 21809 * the driver transmit strategy is devised. Until the solution 21810 * is found and well understood, we live with this hack. 21811 */ 21812 if (!tcp_static_maxpsz && 21813 (tcp->tcp_loopback || !tcp->tcp_localnet || 21814 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 21815 /* override the default value */ 21816 tcp->tcp_maxpsz = 0; 21817 21818 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 21819 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 21820 ill != NULL ? ill->ill_name : ipif_loopback_name)); 21821 } 21822 21823 /* set the stream head parameters accordingly */ 21824 (void) tcp_maxpsz_set(tcp, B_TRUE); 21825 } 21826 21827 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 21828 static void 21829 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 21830 { 21831 uchar_t fval = *mp->b_rptr; 21832 mblk_t *tail; 21833 queue_t *q = tcp->tcp_wq; 21834 21835 /* TODO: How should flush interact with urgent data? */ 21836 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 21837 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 21838 /* 21839 * Flush only data that has not yet been put on the wire. If 21840 * we flush data that we have already transmitted, life, as we 21841 * know it, may come to an end. 21842 */ 21843 tail = tcp->tcp_xmit_tail; 21844 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 21845 tcp->tcp_xmit_tail_unsent = 0; 21846 tcp->tcp_unsent = 0; 21847 if (tail->b_wptr != tail->b_rptr) 21848 tail = tail->b_cont; 21849 if (tail) { 21850 mblk_t **excess = &tcp->tcp_xmit_head; 21851 for (;;) { 21852 mblk_t *mp1 = *excess; 21853 if (mp1 == tail) 21854 break; 21855 tcp->tcp_xmit_tail = mp1; 21856 tcp->tcp_xmit_last = mp1; 21857 excess = &mp1->b_cont; 21858 } 21859 *excess = NULL; 21860 tcp_close_mpp(&tail); 21861 if (tcp->tcp_snd_zcopy_aware) 21862 tcp_zcopy_notify(tcp); 21863 } 21864 /* 21865 * We have no unsent data, so unsent must be less than 21866 * tcp_xmit_lowater, so re-enable flow. 21867 */ 21868 mutex_enter(&tcp->tcp_non_sq_lock); 21869 if (tcp->tcp_flow_stopped) { 21870 tcp_clrqfull(tcp); 21871 } 21872 mutex_exit(&tcp->tcp_non_sq_lock); 21873 } 21874 /* 21875 * TODO: you can't just flush these, you have to increase rwnd for one 21876 * thing. For another, how should urgent data interact? 21877 */ 21878 if (fval & FLUSHR) { 21879 *mp->b_rptr = fval & ~FLUSHW; 21880 /* XXX */ 21881 qreply(q, mp); 21882 return; 21883 } 21884 freemsg(mp); 21885 } 21886 21887 /* 21888 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 21889 * messages. 21890 */ 21891 static void 21892 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 21893 { 21894 mblk_t *mp1; 21895 STRUCT_HANDLE(strbuf, sb); 21896 uint16_t port; 21897 queue_t *q = tcp->tcp_wq; 21898 in6_addr_t v6addr; 21899 ipaddr_t v4addr; 21900 uint32_t flowinfo = 0; 21901 int addrlen; 21902 21903 /* Make sure it is one of ours. */ 21904 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 21905 case TI_GETMYNAME: 21906 case TI_GETPEERNAME: 21907 break; 21908 default: 21909 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 21910 return; 21911 } 21912 switch (mi_copy_state(q, mp, &mp1)) { 21913 case -1: 21914 return; 21915 case MI_COPY_CASE(MI_COPY_IN, 1): 21916 break; 21917 case MI_COPY_CASE(MI_COPY_OUT, 1): 21918 /* Copy out the strbuf. */ 21919 mi_copyout(q, mp); 21920 return; 21921 case MI_COPY_CASE(MI_COPY_OUT, 2): 21922 /* All done. */ 21923 mi_copy_done(q, mp, 0); 21924 return; 21925 default: 21926 mi_copy_done(q, mp, EPROTO); 21927 return; 21928 } 21929 /* Check alignment of the strbuf */ 21930 if (!OK_32PTR(mp1->b_rptr)) { 21931 mi_copy_done(q, mp, EINVAL); 21932 return; 21933 } 21934 21935 STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag, 21936 (void *)mp1->b_rptr); 21937 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 21938 21939 if (STRUCT_FGET(sb, maxlen) < addrlen) { 21940 mi_copy_done(q, mp, EINVAL); 21941 return; 21942 } 21943 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 21944 case TI_GETMYNAME: 21945 if (tcp->tcp_family == AF_INET) { 21946 if (tcp->tcp_ipversion == IPV4_VERSION) { 21947 v4addr = tcp->tcp_ipha->ipha_src; 21948 } else { 21949 /* can't return an address in this case */ 21950 v4addr = 0; 21951 } 21952 } else { 21953 /* tcp->tcp_family == AF_INET6 */ 21954 if (tcp->tcp_ipversion == IPV4_VERSION) { 21955 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 21956 &v6addr); 21957 } else { 21958 v6addr = tcp->tcp_ip6h->ip6_src; 21959 } 21960 } 21961 port = tcp->tcp_lport; 21962 break; 21963 case TI_GETPEERNAME: 21964 if (tcp->tcp_family == AF_INET) { 21965 if (tcp->tcp_ipversion == IPV4_VERSION) { 21966 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 21967 v4addr); 21968 } else { 21969 /* can't return an address in this case */ 21970 v4addr = 0; 21971 } 21972 } else { 21973 /* tcp->tcp_family == AF_INET6) */ 21974 v6addr = tcp->tcp_remote_v6; 21975 if (tcp->tcp_ipversion == IPV6_VERSION) { 21976 /* 21977 * No flowinfo if tcp->tcp_ipversion is v4. 21978 * 21979 * flowinfo was already initialized to zero 21980 * where it was declared above, so only 21981 * set it if ipversion is v6. 21982 */ 21983 flowinfo = tcp->tcp_ip6h->ip6_vcf & 21984 ~IPV6_VERS_AND_FLOW_MASK; 21985 } 21986 } 21987 port = tcp->tcp_fport; 21988 break; 21989 default: 21990 mi_copy_done(q, mp, EPROTO); 21991 return; 21992 } 21993 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 21994 if (!mp1) 21995 return; 21996 21997 if (tcp->tcp_family == AF_INET) { 21998 sin_t *sin; 21999 22000 STRUCT_FSET(sb, len, (int)sizeof (sin_t)); 22001 sin = (sin_t *)mp1->b_rptr; 22002 mp1->b_wptr = (uchar_t *)&sin[1]; 22003 *sin = sin_null; 22004 sin->sin_family = AF_INET; 22005 sin->sin_addr.s_addr = v4addr; 22006 sin->sin_port = port; 22007 } else { 22008 /* tcp->tcp_family == AF_INET6 */ 22009 sin6_t *sin6; 22010 22011 STRUCT_FSET(sb, len, (int)sizeof (sin6_t)); 22012 sin6 = (sin6_t *)mp1->b_rptr; 22013 mp1->b_wptr = (uchar_t *)&sin6[1]; 22014 *sin6 = sin6_null; 22015 sin6->sin6_family = AF_INET6; 22016 sin6->sin6_flowinfo = flowinfo; 22017 sin6->sin6_addr = v6addr; 22018 sin6->sin6_port = port; 22019 } 22020 /* Copy out the address */ 22021 mi_copyout(q, mp); 22022 } 22023 22024 /* 22025 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 22026 * messages. 22027 */ 22028 /* ARGSUSED */ 22029 static void 22030 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 22031 { 22032 conn_t *connp = (conn_t *)arg; 22033 tcp_t *tcp = connp->conn_tcp; 22034 queue_t *q = tcp->tcp_wq; 22035 struct iocblk *iocp; 22036 tcp_stack_t *tcps = tcp->tcp_tcps; 22037 22038 ASSERT(DB_TYPE(mp) == M_IOCTL); 22039 /* 22040 * Try and ASSERT the minimum possible references on the 22041 * conn early enough. Since we are executing on write side, 22042 * the connection is obviously not detached and that means 22043 * there is a ref each for TCP and IP. Since we are behind 22044 * the squeue, the minimum references needed are 3. If the 22045 * conn is in classifier hash list, there should be an 22046 * extra ref for that (we check both the possibilities). 22047 */ 22048 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 22049 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 22050 22051 iocp = (struct iocblk *)mp->b_rptr; 22052 switch (iocp->ioc_cmd) { 22053 case TCP_IOC_DEFAULT_Q: 22054 /* Wants to be the default wq. */ 22055 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 22056 iocp->ioc_error = EPERM; 22057 iocp->ioc_count = 0; 22058 mp->b_datap->db_type = M_IOCACK; 22059 qreply(q, mp); 22060 return; 22061 } 22062 tcp_def_q_set(tcp, mp); 22063 return; 22064 case _SIOCSOCKFALLBACK: 22065 /* 22066 * Either sockmod is about to be popped and the socket 22067 * would now be treated as a plain stream, or a module 22068 * is about to be pushed so we could no longer use read- 22069 * side synchronous streams for fused loopback tcp. 22070 * Drain any queued data and disable direct sockfs 22071 * interface from now on. 22072 */ 22073 if (!tcp->tcp_issocket) { 22074 DB_TYPE(mp) = M_IOCNAK; 22075 iocp->ioc_error = EINVAL; 22076 } else { 22077 #ifdef _ILP32 22078 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 22079 #else 22080 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 22081 #endif 22082 /* 22083 * Insert this socket into the acceptor hash. 22084 * We might need it for T_CONN_RES message 22085 */ 22086 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 22087 22088 if (tcp->tcp_fused) { 22089 /* 22090 * This is a fused loopback tcp; disable 22091 * read-side synchronous streams interface 22092 * and drain any queued data. It is okay 22093 * to do this for non-synchronous streams 22094 * fused tcp as well. 22095 */ 22096 tcp_fuse_disable_pair(tcp, B_FALSE); 22097 } 22098 tcp->tcp_issocket = B_FALSE; 22099 TCP_STAT(tcps, tcp_sock_fallback); 22100 22101 DB_TYPE(mp) = M_IOCACK; 22102 iocp->ioc_error = 0; 22103 } 22104 iocp->ioc_count = 0; 22105 iocp->ioc_rval = 0; 22106 qreply(q, mp); 22107 return; 22108 } 22109 CALL_IP_WPUT(connp, q, mp); 22110 } 22111 22112 /* 22113 * This routine is called by tcp_wput() to handle all TPI requests. 22114 */ 22115 /* ARGSUSED */ 22116 static void 22117 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 22118 { 22119 conn_t *connp = (conn_t *)arg; 22120 tcp_t *tcp = connp->conn_tcp; 22121 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 22122 uchar_t *rptr; 22123 t_scalar_t type; 22124 int len; 22125 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 22126 22127 /* 22128 * Try and ASSERT the minimum possible references on the 22129 * conn early enough. Since we are executing on write side, 22130 * the connection is obviously not detached and that means 22131 * there is a ref each for TCP and IP. Since we are behind 22132 * the squeue, the minimum references needed are 3. If the 22133 * conn is in classifier hash list, there should be an 22134 * extra ref for that (we check both the possibilities). 22135 */ 22136 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 22137 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 22138 22139 rptr = mp->b_rptr; 22140 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 22141 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 22142 type = ((union T_primitives *)rptr)->type; 22143 if (type == T_EXDATA_REQ) { 22144 uint32_t msize = msgdsize(mp->b_cont); 22145 22146 len = msize - 1; 22147 if (len < 0) { 22148 freemsg(mp); 22149 return; 22150 } 22151 /* 22152 * Try to force urgent data out on the wire. 22153 * Even if we have unsent data this will 22154 * at least send the urgent flag. 22155 * XXX does not handle more flag correctly. 22156 */ 22157 len += tcp->tcp_unsent; 22158 len += tcp->tcp_snxt; 22159 tcp->tcp_urg = len; 22160 tcp->tcp_valid_bits |= TCP_URG_VALID; 22161 22162 /* Bypass tcp protocol for fused tcp loopback */ 22163 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 22164 return; 22165 } else if (type != T_DATA_REQ) { 22166 goto non_urgent_data; 22167 } 22168 /* TODO: options, flags, ... from user */ 22169 /* Set length to zero for reclamation below */ 22170 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 22171 freeb(mp); 22172 return; 22173 } else { 22174 if (tcp->tcp_debug) { 22175 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 22176 "tcp_wput_proto, dropping one..."); 22177 } 22178 freemsg(mp); 22179 return; 22180 } 22181 22182 non_urgent_data: 22183 22184 switch ((int)tprim->type) { 22185 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 22186 /* 22187 * save the kssl_ent_t from the next block, and convert this 22188 * back to a normal bind_req. 22189 */ 22190 if (mp->b_cont != NULL) { 22191 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 22192 22193 if (tcp->tcp_kssl_ent != NULL) { 22194 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 22195 KSSL_NO_PROXY); 22196 tcp->tcp_kssl_ent = NULL; 22197 } 22198 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 22199 sizeof (kssl_ent_t)); 22200 kssl_hold_ent(tcp->tcp_kssl_ent); 22201 freemsg(mp->b_cont); 22202 mp->b_cont = NULL; 22203 } 22204 tprim->type = T_BIND_REQ; 22205 22206 /* FALLTHROUGH */ 22207 case O_T_BIND_REQ: /* bind request */ 22208 case T_BIND_REQ: /* new semantics bind request */ 22209 tcp_bind(tcp, mp); 22210 break; 22211 case T_UNBIND_REQ: /* unbind request */ 22212 tcp_unbind(tcp, mp); 22213 break; 22214 case O_T_CONN_RES: /* old connection response XXX */ 22215 case T_CONN_RES: /* connection response */ 22216 tcp_accept(tcp, mp); 22217 break; 22218 case T_CONN_REQ: /* connection request */ 22219 tcp_connect(tcp, mp); 22220 break; 22221 case T_DISCON_REQ: /* disconnect request */ 22222 tcp_disconnect(tcp, mp); 22223 break; 22224 case T_CAPABILITY_REQ: 22225 tcp_capability_req(tcp, mp); /* capability request */ 22226 break; 22227 case T_INFO_REQ: /* information request */ 22228 tcp_info_req(tcp, mp); 22229 break; 22230 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 22231 (void) svr4_optcom_req(tcp->tcp_wq, mp, cr, 22232 &tcp_opt_obj, B_TRUE); 22233 break; 22234 case T_OPTMGMT_REQ: 22235 /* 22236 * Note: no support for snmpcom_req() through new 22237 * T_OPTMGMT_REQ. See comments in ip.c 22238 */ 22239 /* Only IP is allowed to return meaningful value */ 22240 (void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj, 22241 B_TRUE); 22242 break; 22243 22244 case T_UNITDATA_REQ: /* unitdata request */ 22245 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22246 break; 22247 case T_ORDREL_REQ: /* orderly release req */ 22248 freemsg(mp); 22249 22250 if (tcp->tcp_fused) 22251 tcp_unfuse(tcp); 22252 22253 if (tcp_xmit_end(tcp) != 0) { 22254 /* 22255 * We were crossing FINs and got a reset from 22256 * the other side. Just ignore it. 22257 */ 22258 if (tcp->tcp_debug) { 22259 (void) strlog(TCP_MOD_ID, 0, 1, 22260 SL_ERROR|SL_TRACE, 22261 "tcp_wput_proto, T_ORDREL_REQ out of " 22262 "state %s", 22263 tcp_display(tcp, NULL, 22264 DISP_ADDR_AND_PORT)); 22265 } 22266 } 22267 break; 22268 case T_ADDR_REQ: 22269 tcp_addr_req(tcp, mp); 22270 break; 22271 default: 22272 if (tcp->tcp_debug) { 22273 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 22274 "tcp_wput_proto, bogus TPI msg, type %d", 22275 tprim->type); 22276 } 22277 /* 22278 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 22279 * to recover. 22280 */ 22281 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22282 break; 22283 } 22284 } 22285 22286 /* 22287 * The TCP write service routine should never be called... 22288 */ 22289 /* ARGSUSED */ 22290 static void 22291 tcp_wsrv(queue_t *q) 22292 { 22293 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 22294 22295 TCP_STAT(tcps, tcp_wsrv_called); 22296 } 22297 22298 /* Non overlapping byte exchanger */ 22299 static void 22300 tcp_xchg(uchar_t *a, uchar_t *b, int len) 22301 { 22302 uchar_t uch; 22303 22304 while (len-- > 0) { 22305 uch = a[len]; 22306 a[len] = b[len]; 22307 b[len] = uch; 22308 } 22309 } 22310 22311 /* 22312 * Send out a control packet on the tcp connection specified. This routine 22313 * is typically called where we need a simple ACK or RST generated. 22314 */ 22315 static void 22316 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 22317 { 22318 uchar_t *rptr; 22319 tcph_t *tcph; 22320 ipha_t *ipha = NULL; 22321 ip6_t *ip6h = NULL; 22322 uint32_t sum; 22323 int tcp_hdr_len; 22324 int tcp_ip_hdr_len; 22325 mblk_t *mp; 22326 tcp_stack_t *tcps = tcp->tcp_tcps; 22327 22328 /* 22329 * Save sum for use in source route later. 22330 */ 22331 ASSERT(tcp != NULL); 22332 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 22333 tcp_hdr_len = tcp->tcp_hdr_len; 22334 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 22335 22336 /* If a text string is passed in with the request, pass it to strlog. */ 22337 if (str != NULL && tcp->tcp_debug) { 22338 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22339 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 22340 str, seq, ack, ctl); 22341 } 22342 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra, 22343 BPRI_MED); 22344 if (mp == NULL) { 22345 return; 22346 } 22347 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 22348 mp->b_rptr = rptr; 22349 mp->b_wptr = &rptr[tcp_hdr_len]; 22350 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 22351 22352 if (tcp->tcp_ipversion == IPV4_VERSION) { 22353 ipha = (ipha_t *)rptr; 22354 ipha->ipha_length = htons(tcp_hdr_len); 22355 } else { 22356 ip6h = (ip6_t *)rptr; 22357 ASSERT(tcp != NULL); 22358 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 22359 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22360 } 22361 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 22362 tcph->th_flags[0] = (uint8_t)ctl; 22363 if (ctl & TH_RST) { 22364 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22365 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22366 /* 22367 * Don't send TSopt w/ TH_RST packets per RFC 1323. 22368 */ 22369 if (tcp->tcp_snd_ts_ok && 22370 tcp->tcp_state > TCPS_SYN_SENT) { 22371 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 22372 *(mp->b_wptr) = TCPOPT_EOL; 22373 if (tcp->tcp_ipversion == IPV4_VERSION) { 22374 ipha->ipha_length = htons(tcp_hdr_len - 22375 TCPOPT_REAL_TS_LEN); 22376 } else { 22377 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 22378 TCPOPT_REAL_TS_LEN); 22379 } 22380 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 22381 sum -= TCPOPT_REAL_TS_LEN; 22382 } 22383 } 22384 if (ctl & TH_ACK) { 22385 if (tcp->tcp_snd_ts_ok) { 22386 U32_TO_BE32(lbolt, 22387 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22388 U32_TO_BE32(tcp->tcp_ts_recent, 22389 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22390 } 22391 22392 /* Update the latest receive window size in TCP header. */ 22393 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22394 tcph->th_win); 22395 tcp->tcp_rack = ack; 22396 tcp->tcp_rack_cnt = 0; 22397 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 22398 } 22399 BUMP_LOCAL(tcp->tcp_obsegs); 22400 U32_TO_BE32(seq, tcph->th_seq); 22401 U32_TO_BE32(ack, tcph->th_ack); 22402 /* 22403 * Include the adjustment for a source route if any. 22404 */ 22405 sum = (sum >> 16) + (sum & 0xFFFF); 22406 U16_TO_BE16(sum, tcph->th_sum); 22407 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 22408 tcp_send_data(tcp, tcp->tcp_wq, mp); 22409 } 22410 22411 /* 22412 * If this routine returns B_TRUE, TCP can generate a RST in response 22413 * to a segment. If it returns B_FALSE, TCP should not respond. 22414 */ 22415 static boolean_t 22416 tcp_send_rst_chk(tcp_stack_t *tcps) 22417 { 22418 clock_t now; 22419 22420 /* 22421 * TCP needs to protect itself from generating too many RSTs. 22422 * This can be a DoS attack by sending us random segments 22423 * soliciting RSTs. 22424 * 22425 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 22426 * in each 1 second interval. In this way, TCP still generate 22427 * RSTs in normal cases but when under attack, the impact is 22428 * limited. 22429 */ 22430 if (tcps->tcps_rst_sent_rate_enabled != 0) { 22431 now = lbolt; 22432 /* lbolt can wrap around. */ 22433 if ((tcps->tcps_last_rst_intrvl > now) || 22434 (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 22435 1*SECONDS)) { 22436 tcps->tcps_last_rst_intrvl = now; 22437 tcps->tcps_rst_cnt = 1; 22438 } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { 22439 return (B_FALSE); 22440 } 22441 } 22442 return (B_TRUE); 22443 } 22444 22445 /* 22446 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 22447 */ 22448 static void 22449 tcp_ip_ire_mark_advice(tcp_t *tcp) 22450 { 22451 mblk_t *mp; 22452 ipic_t *ipic; 22453 22454 if (tcp->tcp_ipversion == IPV4_VERSION) { 22455 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22456 &ipic); 22457 } else { 22458 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22459 &ipic); 22460 } 22461 if (mp == NULL) 22462 return; 22463 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22464 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22465 } 22466 22467 /* 22468 * Return an IP advice ioctl mblk and set ipic to be the pointer 22469 * to the advice structure. 22470 */ 22471 static mblk_t * 22472 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 22473 { 22474 struct iocblk *ioc; 22475 mblk_t *mp, *mp1; 22476 22477 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 22478 if (mp == NULL) 22479 return (NULL); 22480 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 22481 *ipic = (ipic_t *)mp->b_rptr; 22482 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 22483 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 22484 22485 bcopy(addr, *ipic + 1, addr_len); 22486 22487 (*ipic)->ipic_addr_length = addr_len; 22488 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 22489 22490 mp1 = mkiocb(IP_IOCTL); 22491 if (mp1 == NULL) { 22492 freemsg(mp); 22493 return (NULL); 22494 } 22495 mp1->b_cont = mp; 22496 ioc = (struct iocblk *)mp1->b_rptr; 22497 ioc->ioc_count = sizeof (ipic_t) + addr_len; 22498 22499 return (mp1); 22500 } 22501 22502 /* 22503 * Generate a reset based on an inbound packet, connp is set by caller 22504 * when RST is in response to an unexpected inbound packet for which 22505 * there is active tcp state in the system. 22506 * 22507 * IPSEC NOTE : Try to send the reply with the same protection as it came 22508 * in. We still have the ipsec_mp that the packet was attached to. Thus 22509 * the packet will go out at the same level of protection as it came in by 22510 * converting the IPSEC_IN to IPSEC_OUT. 22511 */ 22512 static void 22513 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 22514 uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid, 22515 tcp_stack_t *tcps, conn_t *connp) 22516 { 22517 ipha_t *ipha = NULL; 22518 ip6_t *ip6h = NULL; 22519 ushort_t len; 22520 tcph_t *tcph; 22521 int i; 22522 mblk_t *ipsec_mp; 22523 boolean_t mctl_present; 22524 ipic_t *ipic; 22525 ipaddr_t v4addr; 22526 in6_addr_t v6addr; 22527 int addr_len; 22528 void *addr; 22529 queue_t *q = tcps->tcps_g_q; 22530 tcp_t *tcp; 22531 cred_t *cr; 22532 mblk_t *nmp; 22533 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 22534 22535 if (tcps->tcps_g_q == NULL) { 22536 /* 22537 * For non-zero stackids the default queue isn't created 22538 * until the first open, thus there can be a need to send 22539 * a reset before then. But we can't do that, hence we just 22540 * drop the packet. Later during boot, when the default queue 22541 * has been setup, a retransmitted packet from the peer 22542 * will result in a reset. 22543 */ 22544 ASSERT(tcps->tcps_netstack->netstack_stackid != 22545 GLOBAL_NETSTACKID); 22546 freemsg(mp); 22547 return; 22548 } 22549 22550 if (connp != NULL) 22551 tcp = connp->conn_tcp; 22552 else 22553 tcp = Q_TO_TCP(q); 22554 22555 if (!tcp_send_rst_chk(tcps)) { 22556 tcps->tcps_rst_unsent++; 22557 freemsg(mp); 22558 return; 22559 } 22560 22561 if (mp->b_datap->db_type == M_CTL) { 22562 ipsec_mp = mp; 22563 mp = mp->b_cont; 22564 mctl_present = B_TRUE; 22565 } else { 22566 ipsec_mp = mp; 22567 mctl_present = B_FALSE; 22568 } 22569 22570 if (str && q && tcps->tcps_dbg) { 22571 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22572 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 22573 "flags 0x%x", 22574 str, seq, ack, ctl); 22575 } 22576 if (mp->b_datap->db_ref != 1) { 22577 mblk_t *mp1 = copyb(mp); 22578 freemsg(mp); 22579 mp = mp1; 22580 if (!mp) { 22581 if (mctl_present) 22582 freeb(ipsec_mp); 22583 return; 22584 } else { 22585 if (mctl_present) { 22586 ipsec_mp->b_cont = mp; 22587 } else { 22588 ipsec_mp = mp; 22589 } 22590 } 22591 } else if (mp->b_cont) { 22592 freemsg(mp->b_cont); 22593 mp->b_cont = NULL; 22594 } 22595 /* 22596 * We skip reversing source route here. 22597 * (for now we replace all IP options with EOL) 22598 */ 22599 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22600 ipha = (ipha_t *)mp->b_rptr; 22601 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 22602 mp->b_rptr[i] = IPOPT_EOL; 22603 /* 22604 * Make sure that src address isn't flagrantly invalid. 22605 * Not all broadcast address checking for the src address 22606 * is possible, since we don't know the netmask of the src 22607 * addr. No check for destination address is done, since 22608 * IP will not pass up a packet with a broadcast dest 22609 * address to TCP. Similar checks are done below for IPv6. 22610 */ 22611 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 22612 CLASSD(ipha->ipha_src)) { 22613 freemsg(ipsec_mp); 22614 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 22615 return; 22616 } 22617 } else { 22618 ip6h = (ip6_t *)mp->b_rptr; 22619 22620 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 22621 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 22622 freemsg(ipsec_mp); 22623 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); 22624 return; 22625 } 22626 22627 /* Remove any extension headers assuming partial overlay */ 22628 if (ip_hdr_len > IPV6_HDR_LEN) { 22629 uint8_t *to; 22630 22631 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 22632 ovbcopy(ip6h, to, IPV6_HDR_LEN); 22633 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 22634 ip_hdr_len = IPV6_HDR_LEN; 22635 ip6h = (ip6_t *)mp->b_rptr; 22636 ip6h->ip6_nxt = IPPROTO_TCP; 22637 } 22638 } 22639 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 22640 if (tcph->th_flags[0] & TH_RST) { 22641 freemsg(ipsec_mp); 22642 return; 22643 } 22644 tcph->th_offset_and_rsrvd[0] = (5 << 4); 22645 len = ip_hdr_len + sizeof (tcph_t); 22646 mp->b_wptr = &mp->b_rptr[len]; 22647 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22648 ipha->ipha_length = htons(len); 22649 /* Swap addresses */ 22650 v4addr = ipha->ipha_src; 22651 ipha->ipha_src = ipha->ipha_dst; 22652 ipha->ipha_dst = v4addr; 22653 ipha->ipha_ident = 0; 22654 ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 22655 addr_len = IP_ADDR_LEN; 22656 addr = &v4addr; 22657 } else { 22658 /* No ip6i_t in this case */ 22659 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 22660 /* Swap addresses */ 22661 v6addr = ip6h->ip6_src; 22662 ip6h->ip6_src = ip6h->ip6_dst; 22663 ip6h->ip6_dst = v6addr; 22664 ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; 22665 addr_len = IPV6_ADDR_LEN; 22666 addr = &v6addr; 22667 } 22668 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 22669 U32_TO_BE32(ack, tcph->th_ack); 22670 U32_TO_BE32(seq, tcph->th_seq); 22671 U16_TO_BE16(0, tcph->th_win); 22672 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 22673 tcph->th_flags[0] = (uint8_t)ctl; 22674 if (ctl & TH_RST) { 22675 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22676 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22677 } 22678 22679 /* IP trusts us to set up labels when required. */ 22680 if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL && 22681 crgetlabel(cr) != NULL) { 22682 int err, adjust; 22683 22684 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) 22685 err = tsol_check_label(cr, &mp, &adjust, 22686 tcp->tcp_connp->conn_mac_exempt, 22687 tcps->tcps_netstack->netstack_ip); 22688 else 22689 err = tsol_check_label_v6(cr, &mp, &adjust, 22690 tcp->tcp_connp->conn_mac_exempt, 22691 tcps->tcps_netstack->netstack_ip); 22692 if (mctl_present) 22693 ipsec_mp->b_cont = mp; 22694 else 22695 ipsec_mp = mp; 22696 if (err != 0) { 22697 freemsg(ipsec_mp); 22698 return; 22699 } 22700 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22701 ipha = (ipha_t *)mp->b_rptr; 22702 adjust += ntohs(ipha->ipha_length); 22703 ipha->ipha_length = htons(adjust); 22704 } else { 22705 ip6h = (ip6_t *)mp->b_rptr; 22706 } 22707 } 22708 22709 if (mctl_present) { 22710 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22711 22712 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22713 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 22714 return; 22715 } 22716 } 22717 if (zoneid == ALL_ZONES) 22718 zoneid = GLOBAL_ZONEID; 22719 22720 /* Add the zoneid so ip_output routes it properly */ 22721 if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) { 22722 freemsg(ipsec_mp); 22723 return; 22724 } 22725 ipsec_mp = nmp; 22726 22727 /* 22728 * NOTE: one might consider tracing a TCP packet here, but 22729 * this function has no active TCP state and no tcp structure 22730 * that has a trace buffer. If we traced here, we would have 22731 * to keep a local trace buffer in tcp_record_trace(). 22732 * 22733 * TSol note: The mblk that contains the incoming packet was 22734 * reused by tcp_xmit_listener_reset, so it already contains 22735 * the right credentials and we don't need to call mblk_setcred. 22736 * Also the conn's cred is not right since it is associated 22737 * with tcps_g_q. 22738 */ 22739 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 22740 22741 /* 22742 * Tell IP to mark the IRE used for this destination temporary. 22743 * This way, we can limit our exposure to DoS attack because IP 22744 * creates an IRE for each destination. If there are too many, 22745 * the time to do any routing lookup will be extremely long. And 22746 * the lookup can be in interrupt context. 22747 * 22748 * Note that in normal circumstances, this marking should not 22749 * affect anything. It would be nice if only 1 message is 22750 * needed to inform IP that the IRE created for this RST should 22751 * not be added to the cache table. But there is currently 22752 * not such communication mechanism between TCP and IP. So 22753 * the best we can do now is to send the advice ioctl to IP 22754 * to mark the IRE temporary. 22755 */ 22756 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 22757 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22758 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22759 } 22760 } 22761 22762 /* 22763 * Initiate closedown sequence on an active connection. (May be called as 22764 * writer.) Return value zero for OK return, non-zero for error return. 22765 */ 22766 static int 22767 tcp_xmit_end(tcp_t *tcp) 22768 { 22769 ipic_t *ipic; 22770 mblk_t *mp; 22771 tcp_stack_t *tcps = tcp->tcp_tcps; 22772 22773 if (tcp->tcp_state < TCPS_SYN_RCVD || 22774 tcp->tcp_state > TCPS_CLOSE_WAIT) { 22775 /* 22776 * Invalid state, only states TCPS_SYN_RCVD, 22777 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 22778 */ 22779 return (-1); 22780 } 22781 22782 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 22783 tcp->tcp_valid_bits |= TCP_FSS_VALID; 22784 /* 22785 * If there is nothing more unsent, send the FIN now. 22786 * Otherwise, it will go out with the last segment. 22787 */ 22788 if (tcp->tcp_unsent == 0) { 22789 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 22790 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 22791 22792 if (mp) { 22793 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 22794 tcp_send_data(tcp, tcp->tcp_wq, mp); 22795 } else { 22796 /* 22797 * Couldn't allocate msg. Pretend we got it out. 22798 * Wait for rexmit timeout. 22799 */ 22800 tcp->tcp_snxt = tcp->tcp_fss + 1; 22801 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22802 } 22803 22804 /* 22805 * If needed, update tcp_rexmit_snxt as tcp_snxt is 22806 * changed. 22807 */ 22808 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 22809 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 22810 } 22811 } else { 22812 /* 22813 * If tcp->tcp_cork is set, then the data will not get sent, 22814 * so we have to check that and unset it first. 22815 */ 22816 if (tcp->tcp_cork) 22817 tcp->tcp_cork = B_FALSE; 22818 tcp_wput_data(tcp, NULL, B_FALSE); 22819 } 22820 22821 /* 22822 * If TCP does not get enough samples of RTT or tcp_rtt_updates 22823 * is 0, don't update the cache. 22824 */ 22825 if (tcps->tcps_rtt_updates == 0 || 22826 tcp->tcp_rtt_update < tcps->tcps_rtt_updates) 22827 return (0); 22828 22829 /* 22830 * NOTE: should not update if source routes i.e. if tcp_remote if 22831 * different from the destination. 22832 */ 22833 if (tcp->tcp_ipversion == IPV4_VERSION) { 22834 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 22835 return (0); 22836 } 22837 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22838 &ipic); 22839 } else { 22840 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 22841 &tcp->tcp_ip6h->ip6_dst))) { 22842 return (0); 22843 } 22844 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22845 &ipic); 22846 } 22847 22848 /* Record route attributes in the IRE for use by future connections. */ 22849 if (mp == NULL) 22850 return (0); 22851 22852 /* 22853 * We do not have a good algorithm to update ssthresh at this time. 22854 * So don't do any update. 22855 */ 22856 ipic->ipic_rtt = tcp->tcp_rtt_sa; 22857 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 22858 22859 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22860 return (0); 22861 } 22862 22863 /* 22864 * Generate a "no listener here" RST in response to an "unknown" segment. 22865 * connp is set by caller when RST is in response to an unexpected 22866 * inbound packet for which there is active tcp state in the system. 22867 * Note that we are reusing the incoming mp to construct the outgoing RST. 22868 */ 22869 void 22870 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid, 22871 tcp_stack_t *tcps, conn_t *connp) 22872 { 22873 uchar_t *rptr; 22874 uint32_t seg_len; 22875 tcph_t *tcph; 22876 uint32_t seg_seq; 22877 uint32_t seg_ack; 22878 uint_t flags; 22879 mblk_t *ipsec_mp; 22880 ipha_t *ipha; 22881 ip6_t *ip6h; 22882 boolean_t mctl_present = B_FALSE; 22883 boolean_t check = B_TRUE; 22884 boolean_t policy_present; 22885 ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; 22886 22887 TCP_STAT(tcps, tcp_no_listener); 22888 22889 ipsec_mp = mp; 22890 22891 if (mp->b_datap->db_type == M_CTL) { 22892 ipsec_in_t *ii; 22893 22894 mctl_present = B_TRUE; 22895 mp = mp->b_cont; 22896 22897 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22898 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22899 if (ii->ipsec_in_dont_check) { 22900 check = B_FALSE; 22901 if (!ii->ipsec_in_secure) { 22902 freeb(ipsec_mp); 22903 mctl_present = B_FALSE; 22904 ipsec_mp = mp; 22905 } 22906 } 22907 } 22908 22909 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22910 policy_present = ipss->ipsec_inbound_v4_policy_present; 22911 ipha = (ipha_t *)mp->b_rptr; 22912 ip6h = NULL; 22913 } else { 22914 policy_present = ipss->ipsec_inbound_v6_policy_present; 22915 ipha = NULL; 22916 ip6h = (ip6_t *)mp->b_rptr; 22917 } 22918 22919 if (check && policy_present) { 22920 /* 22921 * The conn_t parameter is NULL because we already know 22922 * nobody's home. 22923 */ 22924 ipsec_mp = ipsec_check_global_policy( 22925 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present, 22926 tcps->tcps_netstack); 22927 if (ipsec_mp == NULL) 22928 return; 22929 } 22930 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 22931 DTRACE_PROBE2( 22932 tx__ip__log__error__nolistener__tcp, 22933 char *, "Could not reply with RST to mp(1)", 22934 mblk_t *, mp); 22935 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 22936 freemsg(ipsec_mp); 22937 return; 22938 } 22939 22940 rptr = mp->b_rptr; 22941 22942 tcph = (tcph_t *)&rptr[ip_hdr_len]; 22943 seg_seq = BE32_TO_U32(tcph->th_seq); 22944 seg_ack = BE32_TO_U32(tcph->th_ack); 22945 flags = tcph->th_flags[0]; 22946 22947 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 22948 if (flags & TH_RST) { 22949 freemsg(ipsec_mp); 22950 } else if (flags & TH_ACK) { 22951 tcp_xmit_early_reset("no tcp, reset", 22952 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps, 22953 connp); 22954 } else { 22955 if (flags & TH_SYN) { 22956 seg_len++; 22957 } else { 22958 /* 22959 * Here we violate the RFC. Note that a normal 22960 * TCP will never send a segment without the ACK 22961 * flag, except for RST or SYN segment. This 22962 * segment is neither. Just drop it on the 22963 * floor. 22964 */ 22965 freemsg(ipsec_mp); 22966 tcps->tcps_rst_unsent++; 22967 return; 22968 } 22969 22970 tcp_xmit_early_reset("no tcp, reset/ack", 22971 ipsec_mp, 0, seg_seq + seg_len, 22972 TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp); 22973 } 22974 } 22975 22976 /* 22977 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 22978 * ip and tcp header ready to pass down to IP. If the mp passed in is 22979 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 22980 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 22981 * otherwise it will dup partial mblks.) 22982 * Otherwise, an appropriate ACK packet will be generated. This 22983 * routine is not usually called to send new data for the first time. It 22984 * is mostly called out of the timer for retransmits, and to generate ACKs. 22985 * 22986 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 22987 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 22988 * of the original mblk chain will be returned in *offset and *end_mp. 22989 */ 22990 mblk_t * 22991 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 22992 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 22993 boolean_t rexmit) 22994 { 22995 int data_length; 22996 int32_t off = 0; 22997 uint_t flags; 22998 mblk_t *mp1; 22999 mblk_t *mp2; 23000 uchar_t *rptr; 23001 tcph_t *tcph; 23002 int32_t num_sack_blk = 0; 23003 int32_t sack_opt_len = 0; 23004 tcp_stack_t *tcps = tcp->tcp_tcps; 23005 23006 /* Allocate for our maximum TCP header + link-level */ 23007 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 23008 tcps->tcps_wroff_xtra, BPRI_MED); 23009 if (!mp1) 23010 return (NULL); 23011 data_length = 0; 23012 23013 /* 23014 * Note that tcp_mss has been adjusted to take into account the 23015 * timestamp option if applicable. Because SACK options do not 23016 * appear in every TCP segments and they are of variable lengths, 23017 * they cannot be included in tcp_mss. Thus we need to calculate 23018 * the actual segment length when we need to send a segment which 23019 * includes SACK options. 23020 */ 23021 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23022 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23023 tcp->tcp_num_sack_blk); 23024 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23025 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23026 if (max_to_send + sack_opt_len > tcp->tcp_mss) 23027 max_to_send -= sack_opt_len; 23028 } 23029 23030 if (offset != NULL) { 23031 off = *offset; 23032 /* We use offset as an indicator that end_mp is not NULL. */ 23033 *end_mp = NULL; 23034 } 23035 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 23036 /* This could be faster with cooperation from downstream */ 23037 if (mp2 != mp1 && !sendall && 23038 data_length + (int)(mp->b_wptr - mp->b_rptr) > 23039 max_to_send) 23040 /* 23041 * Don't send the next mblk since the whole mblk 23042 * does not fit. 23043 */ 23044 break; 23045 mp2->b_cont = dupb(mp); 23046 mp2 = mp2->b_cont; 23047 if (!mp2) { 23048 freemsg(mp1); 23049 return (NULL); 23050 } 23051 mp2->b_rptr += off; 23052 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 23053 (uintptr_t)INT_MAX); 23054 23055 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 23056 if (data_length > max_to_send) { 23057 mp2->b_wptr -= data_length - max_to_send; 23058 data_length = max_to_send; 23059 off = mp2->b_wptr - mp->b_rptr; 23060 break; 23061 } else { 23062 off = 0; 23063 } 23064 } 23065 if (offset != NULL) { 23066 *offset = off; 23067 *end_mp = mp; 23068 } 23069 if (seg_len != NULL) { 23070 *seg_len = data_length; 23071 } 23072 23073 /* Update the latest receive window size in TCP header. */ 23074 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23075 tcp->tcp_tcph->th_win); 23076 23077 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23078 mp1->b_rptr = rptr; 23079 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 23080 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23081 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23082 U32_TO_ABE32(seq, tcph->th_seq); 23083 23084 /* 23085 * Use tcp_unsent to determine if the PUSH bit should be used assumes 23086 * that this function was called from tcp_wput_data. Thus, when called 23087 * to retransmit data the setting of the PUSH bit may appear some 23088 * what random in that it might get set when it should not. This 23089 * should not pose any performance issues. 23090 */ 23091 if (data_length != 0 && (tcp->tcp_unsent == 0 || 23092 tcp->tcp_unsent == data_length)) { 23093 flags = TH_ACK | TH_PUSH; 23094 } else { 23095 flags = TH_ACK; 23096 } 23097 23098 if (tcp->tcp_ecn_ok) { 23099 if (tcp->tcp_ecn_echo_on) 23100 flags |= TH_ECE; 23101 23102 /* 23103 * Only set ECT bit and ECN_CWR if a segment contains new data. 23104 * There is no TCP flow control for non-data segments, and 23105 * only data segment is transmitted reliably. 23106 */ 23107 if (data_length > 0 && !rexmit) { 23108 SET_ECT(tcp, rptr); 23109 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 23110 flags |= TH_CWR; 23111 tcp->tcp_ecn_cwr_sent = B_TRUE; 23112 } 23113 } 23114 } 23115 23116 if (tcp->tcp_valid_bits) { 23117 uint32_t u1; 23118 23119 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 23120 seq == tcp->tcp_iss) { 23121 uchar_t *wptr; 23122 23123 /* 23124 * If TCP_ISS_VALID and the seq number is tcp_iss, 23125 * TCP can only be in SYN-SENT, SYN-RCVD or 23126 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 23127 * our SYN is not ack'ed but the app closes this 23128 * TCP connection. 23129 */ 23130 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 23131 tcp->tcp_state == TCPS_SYN_RCVD || 23132 tcp->tcp_state == TCPS_FIN_WAIT_1); 23133 23134 /* 23135 * Tack on the MSS option. It is always needed 23136 * for both active and passive open. 23137 * 23138 * MSS option value should be interface MTU - MIN 23139 * TCP/IP header according to RFC 793 as it means 23140 * the maximum segment size TCP can receive. But 23141 * to get around some broken middle boxes/end hosts 23142 * out there, we allow the option value to be the 23143 * same as the MSS option size on the peer side. 23144 * In this way, the other side will not send 23145 * anything larger than they can receive. 23146 * 23147 * Note that for SYN_SENT state, the ndd param 23148 * tcp_use_smss_as_mss_opt has no effect as we 23149 * don't know the peer's MSS option value. So 23150 * the only case we need to take care of is in 23151 * SYN_RCVD state, which is done later. 23152 */ 23153 wptr = mp1->b_wptr; 23154 wptr[0] = TCPOPT_MAXSEG; 23155 wptr[1] = TCPOPT_MAXSEG_LEN; 23156 wptr += 2; 23157 u1 = tcp->tcp_if_mtu - 23158 (tcp->tcp_ipversion == IPV4_VERSION ? 23159 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 23160 TCP_MIN_HEADER_LENGTH; 23161 U16_TO_BE16(u1, wptr); 23162 mp1->b_wptr = wptr + 2; 23163 /* Update the offset to cover the additional word */ 23164 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23165 23166 /* 23167 * Note that the following way of filling in 23168 * TCP options are not optimal. Some NOPs can 23169 * be saved. But there is no need at this time 23170 * to optimize it. When it is needed, we will 23171 * do it. 23172 */ 23173 switch (tcp->tcp_state) { 23174 case TCPS_SYN_SENT: 23175 flags = TH_SYN; 23176 23177 if (tcp->tcp_snd_ts_ok) { 23178 uint32_t llbolt = (uint32_t)lbolt; 23179 23180 wptr = mp1->b_wptr; 23181 wptr[0] = TCPOPT_NOP; 23182 wptr[1] = TCPOPT_NOP; 23183 wptr[2] = TCPOPT_TSTAMP; 23184 wptr[3] = TCPOPT_TSTAMP_LEN; 23185 wptr += 4; 23186 U32_TO_BE32(llbolt, wptr); 23187 wptr += 4; 23188 ASSERT(tcp->tcp_ts_recent == 0); 23189 U32_TO_BE32(0L, wptr); 23190 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 23191 tcph->th_offset_and_rsrvd[0] += 23192 (3 << 4); 23193 } 23194 23195 /* 23196 * Set up all the bits to tell other side 23197 * we are ECN capable. 23198 */ 23199 if (tcp->tcp_ecn_ok) { 23200 flags |= (TH_ECE | TH_CWR); 23201 } 23202 break; 23203 case TCPS_SYN_RCVD: 23204 flags |= TH_SYN; 23205 23206 /* 23207 * Reset the MSS option value to be SMSS 23208 * We should probably add back the bytes 23209 * for timestamp option and IPsec. We 23210 * don't do that as this is a workaround 23211 * for broken middle boxes/end hosts, it 23212 * is better for us to be more cautious. 23213 * They may not take these things into 23214 * account in their SMSS calculation. Thus 23215 * the peer's calculated SMSS may be smaller 23216 * than what it can be. This should be OK. 23217 */ 23218 if (tcps->tcps_use_smss_as_mss_opt) { 23219 u1 = tcp->tcp_mss; 23220 U16_TO_BE16(u1, wptr); 23221 } 23222 23223 /* 23224 * If the other side is ECN capable, reply 23225 * that we are also ECN capable. 23226 */ 23227 if (tcp->tcp_ecn_ok) 23228 flags |= TH_ECE; 23229 break; 23230 default: 23231 /* 23232 * The above ASSERT() makes sure that this 23233 * must be FIN-WAIT-1 state. Our SYN has 23234 * not been ack'ed so retransmit it. 23235 */ 23236 flags |= TH_SYN; 23237 break; 23238 } 23239 23240 if (tcp->tcp_snd_ws_ok) { 23241 wptr = mp1->b_wptr; 23242 wptr[0] = TCPOPT_NOP; 23243 wptr[1] = TCPOPT_WSCALE; 23244 wptr[2] = TCPOPT_WS_LEN; 23245 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 23246 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 23247 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23248 } 23249 23250 if (tcp->tcp_snd_sack_ok) { 23251 wptr = mp1->b_wptr; 23252 wptr[0] = TCPOPT_NOP; 23253 wptr[1] = TCPOPT_NOP; 23254 wptr[2] = TCPOPT_SACK_PERMITTED; 23255 wptr[3] = TCPOPT_SACK_OK_LEN; 23256 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 23257 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23258 } 23259 23260 /* allocb() of adequate mblk assures space */ 23261 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 23262 (uintptr_t)INT_MAX); 23263 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 23264 /* 23265 * Get IP set to checksum on our behalf 23266 * Include the adjustment for a source route if any. 23267 */ 23268 u1 += tcp->tcp_sum; 23269 u1 = (u1 >> 16) + (u1 & 0xFFFF); 23270 U16_TO_BE16(u1, tcph->th_sum); 23271 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23272 } 23273 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 23274 (seq + data_length) == tcp->tcp_fss) { 23275 if (!tcp->tcp_fin_acked) { 23276 flags |= TH_FIN; 23277 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23278 } 23279 if (!tcp->tcp_fin_sent) { 23280 tcp->tcp_fin_sent = B_TRUE; 23281 switch (tcp->tcp_state) { 23282 case TCPS_SYN_RCVD: 23283 case TCPS_ESTABLISHED: 23284 tcp->tcp_state = TCPS_FIN_WAIT_1; 23285 break; 23286 case TCPS_CLOSE_WAIT: 23287 tcp->tcp_state = TCPS_LAST_ACK; 23288 break; 23289 } 23290 if (tcp->tcp_suna == tcp->tcp_snxt) 23291 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 23292 tcp->tcp_snxt = tcp->tcp_fss + 1; 23293 } 23294 } 23295 /* 23296 * Note the trick here. u1 is unsigned. When tcp_urg 23297 * is smaller than seq, u1 will become a very huge value. 23298 * So the comparison will fail. Also note that tcp_urp 23299 * should be positive, see RFC 793 page 17. 23300 */ 23301 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 23302 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 23303 u1 < (uint32_t)(64 * 1024)) { 23304 flags |= TH_URG; 23305 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 23306 U32_TO_ABE16(u1, tcph->th_urp); 23307 } 23308 } 23309 tcph->th_flags[0] = (uchar_t)flags; 23310 tcp->tcp_rack = tcp->tcp_rnxt; 23311 tcp->tcp_rack_cnt = 0; 23312 23313 if (tcp->tcp_snd_ts_ok) { 23314 if (tcp->tcp_state != TCPS_SYN_SENT) { 23315 uint32_t llbolt = (uint32_t)lbolt; 23316 23317 U32_TO_BE32(llbolt, 23318 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23319 U32_TO_BE32(tcp->tcp_ts_recent, 23320 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23321 } 23322 } 23323 23324 if (num_sack_blk > 0) { 23325 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23326 sack_blk_t *tmp; 23327 int32_t i; 23328 23329 wptr[0] = TCPOPT_NOP; 23330 wptr[1] = TCPOPT_NOP; 23331 wptr[2] = TCPOPT_SACK; 23332 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23333 sizeof (sack_blk_t); 23334 wptr += TCPOPT_REAL_SACK_LEN; 23335 23336 tmp = tcp->tcp_sack_list; 23337 for (i = 0; i < num_sack_blk; i++) { 23338 U32_TO_BE32(tmp[i].begin, wptr); 23339 wptr += sizeof (tcp_seq); 23340 U32_TO_BE32(tmp[i].end, wptr); 23341 wptr += sizeof (tcp_seq); 23342 } 23343 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 23344 } 23345 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 23346 data_length += (int)(mp1->b_wptr - rptr); 23347 if (tcp->tcp_ipversion == IPV4_VERSION) { 23348 ((ipha_t *)rptr)->ipha_length = htons(data_length); 23349 } else { 23350 ip6_t *ip6 = (ip6_t *)(rptr + 23351 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23352 sizeof (ip6i_t) : 0)); 23353 23354 ip6->ip6_plen = htons(data_length - 23355 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23356 } 23357 23358 /* 23359 * Prime pump for IP 23360 * Include the adjustment for a source route if any. 23361 */ 23362 data_length -= tcp->tcp_ip_hdr_len; 23363 data_length += tcp->tcp_sum; 23364 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23365 U16_TO_ABE16(data_length, tcph->th_sum); 23366 if (tcp->tcp_ip_forward_progress) { 23367 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23368 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23369 tcp->tcp_ip_forward_progress = B_FALSE; 23370 } 23371 return (mp1); 23372 } 23373 23374 /* This function handles the push timeout. */ 23375 void 23376 tcp_push_timer(void *arg) 23377 { 23378 conn_t *connp = (conn_t *)arg; 23379 tcp_t *tcp = connp->conn_tcp; 23380 tcp_stack_t *tcps = tcp->tcp_tcps; 23381 23382 TCP_DBGSTAT(tcps, tcp_push_timer_cnt); 23383 23384 ASSERT(tcp->tcp_listener == NULL); 23385 23386 /* 23387 * We need to plug synchronous streams during our drain to prevent 23388 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop(). 23389 */ 23390 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 23391 tcp->tcp_push_tid = 0; 23392 if ((tcp->tcp_rcv_list != NULL) && 23393 (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED)) 23394 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 23395 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 23396 } 23397 23398 /* 23399 * This function handles delayed ACK timeout. 23400 */ 23401 static void 23402 tcp_ack_timer(void *arg) 23403 { 23404 conn_t *connp = (conn_t *)arg; 23405 tcp_t *tcp = connp->conn_tcp; 23406 mblk_t *mp; 23407 tcp_stack_t *tcps = tcp->tcp_tcps; 23408 23409 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 23410 23411 tcp->tcp_ack_tid = 0; 23412 23413 if (tcp->tcp_fused) 23414 return; 23415 23416 /* 23417 * Do not send ACK if there is no outstanding unack'ed data. 23418 */ 23419 if (tcp->tcp_rnxt == tcp->tcp_rack) { 23420 return; 23421 } 23422 23423 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 23424 /* 23425 * Make sure we don't allow deferred ACKs to result in 23426 * timer-based ACKing. If we have held off an ACK 23427 * when there was more than an mss here, and the timer 23428 * goes off, we have to worry about the possibility 23429 * that the sender isn't doing slow-start, or is out 23430 * of step with us for some other reason. We fall 23431 * permanently back in the direction of 23432 * ACK-every-other-packet as suggested in RFC 1122. 23433 */ 23434 if (tcp->tcp_rack_abs_max > 2) 23435 tcp->tcp_rack_abs_max--; 23436 tcp->tcp_rack_cur_max = 2; 23437 } 23438 mp = tcp_ack_mp(tcp); 23439 23440 if (mp != NULL) { 23441 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 23442 BUMP_LOCAL(tcp->tcp_obsegs); 23443 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 23444 BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); 23445 tcp_send_data(tcp, tcp->tcp_wq, mp); 23446 } 23447 } 23448 23449 23450 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 23451 static mblk_t * 23452 tcp_ack_mp(tcp_t *tcp) 23453 { 23454 uint32_t seq_no; 23455 tcp_stack_t *tcps = tcp->tcp_tcps; 23456 23457 /* 23458 * There are a few cases to be considered while setting the sequence no. 23459 * Essentially, we can come here while processing an unacceptable pkt 23460 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 23461 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 23462 * If we are here for a zero window probe, stick with suna. In all 23463 * other cases, we check if suna + swnd encompasses snxt and set 23464 * the sequence number to snxt, if so. If snxt falls outside the 23465 * window (the receiver probably shrunk its window), we will go with 23466 * suna + swnd, otherwise the sequence no will be unacceptable to the 23467 * receiver. 23468 */ 23469 if (tcp->tcp_zero_win_probe) { 23470 seq_no = tcp->tcp_suna; 23471 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 23472 ASSERT(tcp->tcp_swnd == 0); 23473 seq_no = tcp->tcp_snxt; 23474 } else { 23475 seq_no = SEQ_GT(tcp->tcp_snxt, 23476 (tcp->tcp_suna + tcp->tcp_swnd)) ? 23477 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 23478 } 23479 23480 if (tcp->tcp_valid_bits) { 23481 /* 23482 * For the complex case where we have to send some 23483 * controls (FIN or SYN), let tcp_xmit_mp do it. 23484 */ 23485 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 23486 NULL, B_FALSE)); 23487 } else { 23488 /* Generate a simple ACK */ 23489 int data_length; 23490 uchar_t *rptr; 23491 tcph_t *tcph; 23492 mblk_t *mp1; 23493 int32_t tcp_hdr_len; 23494 int32_t tcp_tcp_hdr_len; 23495 int32_t num_sack_blk = 0; 23496 int32_t sack_opt_len; 23497 23498 /* 23499 * Allocate space for TCP + IP headers 23500 * and link-level header 23501 */ 23502 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23503 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23504 tcp->tcp_num_sack_blk); 23505 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23506 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23507 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 23508 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 23509 } else { 23510 tcp_hdr_len = tcp->tcp_hdr_len; 23511 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 23512 } 23513 mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 23514 if (!mp1) 23515 return (NULL); 23516 23517 /* Update the latest receive window size in TCP header. */ 23518 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23519 tcp->tcp_tcph->th_win); 23520 /* copy in prototype TCP + IP header */ 23521 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23522 mp1->b_rptr = rptr; 23523 mp1->b_wptr = rptr + tcp_hdr_len; 23524 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23525 23526 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23527 23528 /* Set the TCP sequence number. */ 23529 U32_TO_ABE32(seq_no, tcph->th_seq); 23530 23531 /* Set up the TCP flag field. */ 23532 tcph->th_flags[0] = (uchar_t)TH_ACK; 23533 if (tcp->tcp_ecn_echo_on) 23534 tcph->th_flags[0] |= TH_ECE; 23535 23536 tcp->tcp_rack = tcp->tcp_rnxt; 23537 tcp->tcp_rack_cnt = 0; 23538 23539 /* fill in timestamp option if in use */ 23540 if (tcp->tcp_snd_ts_ok) { 23541 uint32_t llbolt = (uint32_t)lbolt; 23542 23543 U32_TO_BE32(llbolt, 23544 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23545 U32_TO_BE32(tcp->tcp_ts_recent, 23546 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23547 } 23548 23549 /* Fill in SACK options */ 23550 if (num_sack_blk > 0) { 23551 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23552 sack_blk_t *tmp; 23553 int32_t i; 23554 23555 wptr[0] = TCPOPT_NOP; 23556 wptr[1] = TCPOPT_NOP; 23557 wptr[2] = TCPOPT_SACK; 23558 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23559 sizeof (sack_blk_t); 23560 wptr += TCPOPT_REAL_SACK_LEN; 23561 23562 tmp = tcp->tcp_sack_list; 23563 for (i = 0; i < num_sack_blk; i++) { 23564 U32_TO_BE32(tmp[i].begin, wptr); 23565 wptr += sizeof (tcp_seq); 23566 U32_TO_BE32(tmp[i].end, wptr); 23567 wptr += sizeof (tcp_seq); 23568 } 23569 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 23570 << 4); 23571 } 23572 23573 if (tcp->tcp_ipversion == IPV4_VERSION) { 23574 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 23575 } else { 23576 /* Check for ip6i_t header in sticky hdrs */ 23577 ip6_t *ip6 = (ip6_t *)(rptr + 23578 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23579 sizeof (ip6i_t) : 0)); 23580 23581 ip6->ip6_plen = htons(tcp_hdr_len - 23582 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23583 } 23584 23585 /* 23586 * Prime pump for checksum calculation in IP. Include the 23587 * adjustment for a source route if any. 23588 */ 23589 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 23590 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23591 U16_TO_ABE16(data_length, tcph->th_sum); 23592 23593 if (tcp->tcp_ip_forward_progress) { 23594 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23595 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23596 tcp->tcp_ip_forward_progress = B_FALSE; 23597 } 23598 return (mp1); 23599 } 23600 } 23601 23602 /* 23603 * To create a temporary tcp structure for inserting into bind hash list. 23604 * The parameter is assumed to be in network byte order, ready for use. 23605 */ 23606 /* ARGSUSED */ 23607 static tcp_t * 23608 tcp_alloc_temp_tcp(in_port_t port, tcp_stack_t *tcps) 23609 { 23610 conn_t *connp; 23611 tcp_t *tcp; 23612 23613 connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP, tcps->tcps_netstack); 23614 if (connp == NULL) 23615 return (NULL); 23616 23617 tcp = connp->conn_tcp; 23618 tcp->tcp_tcps = tcps; 23619 TCPS_REFHOLD(tcps); 23620 23621 /* 23622 * Only initialize the necessary info in those structures. Note 23623 * that since INADDR_ANY is all 0, we do not need to set 23624 * tcp_bound_source to INADDR_ANY here. 23625 */ 23626 tcp->tcp_state = TCPS_BOUND; 23627 tcp->tcp_lport = port; 23628 tcp->tcp_exclbind = 1; 23629 tcp->tcp_reserved_port = 1; 23630 23631 /* Just for place holding... */ 23632 tcp->tcp_ipversion = IPV4_VERSION; 23633 23634 return (tcp); 23635 } 23636 23637 /* 23638 * To remove a port range specified by lo_port and hi_port from the 23639 * reserved port ranges. This is one of the three public functions of 23640 * the reserved port interface. Note that a port range has to be removed 23641 * as a whole. Ports in a range cannot be removed individually. 23642 * 23643 * Params: 23644 * in_port_t lo_port: the beginning port of the reserved port range to 23645 * be deleted. 23646 * in_port_t hi_port: the ending port of the reserved port range to 23647 * be deleted. 23648 * 23649 * Return: 23650 * B_TRUE if the deletion is successful, B_FALSE otherwise. 23651 * 23652 * Assumes that nca is only for zoneid=0 23653 */ 23654 boolean_t 23655 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port) 23656 { 23657 int i, j; 23658 int size; 23659 tcp_t **temp_tcp_array; 23660 tcp_t *tcp; 23661 tcp_stack_t *tcps; 23662 23663 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp; 23664 ASSERT(tcps != NULL); 23665 23666 rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER); 23667 23668 /* First make sure that the port ranage is indeed reserved. */ 23669 for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) { 23670 if (tcps->tcps_reserved_port[i].lo_port == lo_port) { 23671 hi_port = tcps->tcps_reserved_port[i].hi_port; 23672 temp_tcp_array = 23673 tcps->tcps_reserved_port[i].temp_tcp_array; 23674 break; 23675 } 23676 } 23677 if (i == tcps->tcps_reserved_port_array_size) { 23678 rw_exit(&tcps->tcps_reserved_port_lock); 23679 netstack_rele(tcps->tcps_netstack); 23680 return (B_FALSE); 23681 } 23682 23683 /* 23684 * Remove the range from the array. This simple loop is possible 23685 * because port ranges are inserted in ascending order. 23686 */ 23687 for (j = i; j < tcps->tcps_reserved_port_array_size - 1; j++) { 23688 tcps->tcps_reserved_port[j].lo_port = 23689 tcps->tcps_reserved_port[j+1].lo_port; 23690 tcps->tcps_reserved_port[j].hi_port = 23691 tcps->tcps_reserved_port[j+1].hi_port; 23692 tcps->tcps_reserved_port[j].temp_tcp_array = 23693 tcps->tcps_reserved_port[j+1].temp_tcp_array; 23694 } 23695 23696 /* Remove all the temporary tcp structures. */ 23697 size = hi_port - lo_port + 1; 23698 while (size > 0) { 23699 tcp = temp_tcp_array[size - 1]; 23700 ASSERT(tcp != NULL); 23701 tcp_bind_hash_remove(tcp); 23702 CONN_DEC_REF(tcp->tcp_connp); 23703 size--; 23704 } 23705 kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *)); 23706 tcps->tcps_reserved_port_array_size--; 23707 rw_exit(&tcps->tcps_reserved_port_lock); 23708 netstack_rele(tcps->tcps_netstack); 23709 return (B_TRUE); 23710 } 23711 23712 /* 23713 * Macro to remove temporary tcp structure from the bind hash list. The 23714 * first parameter is the list of tcp to be removed. The second parameter 23715 * is the number of tcps in the array. 23716 */ 23717 #define TCP_TMP_TCP_REMOVE(tcp_array, num, tcps) \ 23718 { \ 23719 while ((num) > 0) { \ 23720 tcp_t *tcp = (tcp_array)[(num) - 1]; \ 23721 tf_t *tbf; \ 23722 tcp_t *tcpnext; \ 23723 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \ 23724 mutex_enter(&tbf->tf_lock); \ 23725 tcpnext = tcp->tcp_bind_hash; \ 23726 if (tcpnext) { \ 23727 tcpnext->tcp_ptpbhn = \ 23728 tcp->tcp_ptpbhn; \ 23729 } \ 23730 *tcp->tcp_ptpbhn = tcpnext; \ 23731 mutex_exit(&tbf->tf_lock); \ 23732 kmem_free(tcp, sizeof (tcp_t)); \ 23733 (tcp_array)[(num) - 1] = NULL; \ 23734 (num)--; \ 23735 } \ 23736 } 23737 23738 /* 23739 * The public interface for other modules to call to reserve a port range 23740 * in TCP. The caller passes in how large a port range it wants. TCP 23741 * will try to find a range and return it via lo_port and hi_port. This is 23742 * used by NCA's nca_conn_init. 23743 * NCA can only be used in the global zone so this only affects the global 23744 * zone's ports. 23745 * 23746 * Params: 23747 * int size: the size of the port range to be reserved. 23748 * in_port_t *lo_port (referenced): returns the beginning port of the 23749 * reserved port range added. 23750 * in_port_t *hi_port (referenced): returns the ending port of the 23751 * reserved port range added. 23752 * 23753 * Return: 23754 * B_TRUE if the port reservation is successful, B_FALSE otherwise. 23755 * 23756 * Assumes that nca is only for zoneid=0 23757 */ 23758 boolean_t 23759 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port) 23760 { 23761 tcp_t *tcp; 23762 tcp_t *tmp_tcp; 23763 tcp_t **temp_tcp_array; 23764 tf_t *tbf; 23765 in_port_t net_port; 23766 in_port_t port; 23767 int32_t cur_size; 23768 int i, j; 23769 boolean_t used; 23770 tcp_rport_t tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 23771 zoneid_t zoneid = GLOBAL_ZONEID; 23772 tcp_stack_t *tcps; 23773 23774 /* Sanity check. */ 23775 if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) { 23776 return (B_FALSE); 23777 } 23778 23779 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp; 23780 ASSERT(tcps != NULL); 23781 23782 rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER); 23783 if (tcps->tcps_reserved_port_array_size == 23784 TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) { 23785 rw_exit(&tcps->tcps_reserved_port_lock); 23786 netstack_rele(tcps->tcps_netstack); 23787 return (B_FALSE); 23788 } 23789 23790 /* 23791 * Find the starting port to try. Since the port ranges are ordered 23792 * in the reserved port array, we can do a simple search here. 23793 */ 23794 *lo_port = TCP_SMALLEST_RESERVED_PORT; 23795 *hi_port = TCP_LARGEST_RESERVED_PORT; 23796 for (i = 0; i < tcps->tcps_reserved_port_array_size; 23797 *lo_port = tcps->tcps_reserved_port[i].hi_port + 1, i++) { 23798 if (tcps->tcps_reserved_port[i].lo_port - *lo_port >= size) { 23799 *hi_port = tcps->tcps_reserved_port[i].lo_port - 1; 23800 break; 23801 } 23802 } 23803 /* No available port range. */ 23804 if (i == tcps->tcps_reserved_port_array_size && 23805 *hi_port - *lo_port < size) { 23806 rw_exit(&tcps->tcps_reserved_port_lock); 23807 netstack_rele(tcps->tcps_netstack); 23808 return (B_FALSE); 23809 } 23810 23811 temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP); 23812 if (temp_tcp_array == NULL) { 23813 rw_exit(&tcps->tcps_reserved_port_lock); 23814 netstack_rele(tcps->tcps_netstack); 23815 return (B_FALSE); 23816 } 23817 23818 /* Go thru the port range to see if some ports are already bound. */ 23819 for (port = *lo_port, cur_size = 0; 23820 cur_size < size && port <= *hi_port; 23821 cur_size++, port++) { 23822 used = B_FALSE; 23823 net_port = htons(port); 23824 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(net_port)]; 23825 mutex_enter(&tbf->tf_lock); 23826 for (tcp = tbf->tf_tcp; tcp != NULL; 23827 tcp = tcp->tcp_bind_hash) { 23828 if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) && 23829 net_port == tcp->tcp_lport) { 23830 /* 23831 * A port is already bound. Search again 23832 * starting from port + 1. Release all 23833 * temporary tcps. 23834 */ 23835 mutex_exit(&tbf->tf_lock); 23836 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size, 23837 tcps); 23838 *lo_port = port + 1; 23839 cur_size = -1; 23840 used = B_TRUE; 23841 break; 23842 } 23843 } 23844 if (!used) { 23845 if ((tmp_tcp = tcp_alloc_temp_tcp(net_port, tcps)) == 23846 NULL) { 23847 /* 23848 * Allocation failure. Just fail the request. 23849 * Need to remove all those temporary tcp 23850 * structures. 23851 */ 23852 mutex_exit(&tbf->tf_lock); 23853 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size, 23854 tcps); 23855 rw_exit(&tcps->tcps_reserved_port_lock); 23856 kmem_free(temp_tcp_array, 23857 (hi_port - lo_port + 1) * 23858 sizeof (tcp_t *)); 23859 netstack_rele(tcps->tcps_netstack); 23860 return (B_FALSE); 23861 } 23862 temp_tcp_array[cur_size] = tmp_tcp; 23863 tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE); 23864 mutex_exit(&tbf->tf_lock); 23865 } 23866 } 23867 23868 /* 23869 * The current range is not large enough. We can actually do another 23870 * search if this search is done between 2 reserved port ranges. But 23871 * for first release, we just stop here and return saying that no port 23872 * range is available. 23873 */ 23874 if (cur_size < size) { 23875 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size, tcps); 23876 rw_exit(&tcps->tcps_reserved_port_lock); 23877 kmem_free(temp_tcp_array, size * sizeof (tcp_t *)); 23878 netstack_rele(tcps->tcps_netstack); 23879 return (B_FALSE); 23880 } 23881 *hi_port = port - 1; 23882 23883 /* 23884 * Insert range into array in ascending order. Since this function 23885 * must not be called often, we choose to use the simplest method. 23886 * The above array should not consume excessive stack space as 23887 * the size must be very small. If in future releases, we find 23888 * that we should provide more reserved port ranges, this function 23889 * has to be modified to be more efficient. 23890 */ 23891 if (tcps->tcps_reserved_port_array_size == 0) { 23892 tcps->tcps_reserved_port[0].lo_port = *lo_port; 23893 tcps->tcps_reserved_port[0].hi_port = *hi_port; 23894 tcps->tcps_reserved_port[0].temp_tcp_array = temp_tcp_array; 23895 } else { 23896 for (i = 0, j = 0; i < tcps->tcps_reserved_port_array_size; 23897 i++, j++) { 23898 if (*lo_port < tcps->tcps_reserved_port[i].lo_port && 23899 i == j) { 23900 tmp_ports[j].lo_port = *lo_port; 23901 tmp_ports[j].hi_port = *hi_port; 23902 tmp_ports[j].temp_tcp_array = temp_tcp_array; 23903 j++; 23904 } 23905 tmp_ports[j].lo_port = 23906 tcps->tcps_reserved_port[i].lo_port; 23907 tmp_ports[j].hi_port = 23908 tcps->tcps_reserved_port[i].hi_port; 23909 tmp_ports[j].temp_tcp_array = 23910 tcps->tcps_reserved_port[i].temp_tcp_array; 23911 } 23912 if (j == i) { 23913 tmp_ports[j].lo_port = *lo_port; 23914 tmp_ports[j].hi_port = *hi_port; 23915 tmp_ports[j].temp_tcp_array = temp_tcp_array; 23916 } 23917 bcopy(tmp_ports, tcps->tcps_reserved_port, sizeof (tmp_ports)); 23918 } 23919 tcps->tcps_reserved_port_array_size++; 23920 rw_exit(&tcps->tcps_reserved_port_lock); 23921 netstack_rele(tcps->tcps_netstack); 23922 return (B_TRUE); 23923 } 23924 23925 /* 23926 * Check to see if a port is in any reserved port range. 23927 * 23928 * Params: 23929 * in_port_t port: the port to be verified. 23930 * 23931 * Return: 23932 * B_TRUE is the port is inside a reserved port range, B_FALSE otherwise. 23933 */ 23934 boolean_t 23935 tcp_reserved_port_check(in_port_t port, tcp_stack_t *tcps) 23936 { 23937 int i; 23938 23939 rw_enter(&tcps->tcps_reserved_port_lock, RW_READER); 23940 for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) { 23941 if (port >= tcps->tcps_reserved_port[i].lo_port || 23942 port <= tcps->tcps_reserved_port[i].hi_port) { 23943 rw_exit(&tcps->tcps_reserved_port_lock); 23944 return (B_TRUE); 23945 } 23946 } 23947 rw_exit(&tcps->tcps_reserved_port_lock); 23948 return (B_FALSE); 23949 } 23950 23951 /* 23952 * To list all reserved port ranges. This is the function to handle 23953 * ndd tcp_reserved_port_list. 23954 */ 23955 /* ARGSUSED */ 23956 static int 23957 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 23958 { 23959 int i; 23960 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 23961 23962 rw_enter(&tcps->tcps_reserved_port_lock, RW_READER); 23963 if (tcps->tcps_reserved_port_array_size > 0) 23964 (void) mi_mpprintf(mp, "The following ports are reserved:"); 23965 else 23966 (void) mi_mpprintf(mp, "No port is reserved."); 23967 for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) { 23968 (void) mi_mpprintf(mp, "%d-%d", 23969 tcps->tcps_reserved_port[i].lo_port, 23970 tcps->tcps_reserved_port[i].hi_port); 23971 } 23972 rw_exit(&tcps->tcps_reserved_port_lock); 23973 return (0); 23974 } 23975 23976 /* 23977 * Hash list insertion routine for tcp_t structures. 23978 * Inserts entries with the ones bound to a specific IP address first 23979 * followed by those bound to INADDR_ANY. 23980 */ 23981 static void 23982 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 23983 { 23984 tcp_t **tcpp; 23985 tcp_t *tcpnext; 23986 23987 if (tcp->tcp_ptpbhn != NULL) { 23988 ASSERT(!caller_holds_lock); 23989 tcp_bind_hash_remove(tcp); 23990 } 23991 tcpp = &tbf->tf_tcp; 23992 if (!caller_holds_lock) { 23993 mutex_enter(&tbf->tf_lock); 23994 } else { 23995 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 23996 } 23997 tcpnext = tcpp[0]; 23998 if (tcpnext) { 23999 /* 24000 * If the new tcp bound to the INADDR_ANY address 24001 * and the first one in the list is not bound to 24002 * INADDR_ANY we skip all entries until we find the 24003 * first one bound to INADDR_ANY. 24004 * This makes sure that applications binding to a 24005 * specific address get preference over those binding to 24006 * INADDR_ANY. 24007 */ 24008 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 24009 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 24010 while ((tcpnext = tcpp[0]) != NULL && 24011 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 24012 tcpp = &(tcpnext->tcp_bind_hash); 24013 if (tcpnext) 24014 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 24015 } else 24016 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 24017 } 24018 tcp->tcp_bind_hash = tcpnext; 24019 tcp->tcp_ptpbhn = tcpp; 24020 tcpp[0] = tcp; 24021 if (!caller_holds_lock) 24022 mutex_exit(&tbf->tf_lock); 24023 } 24024 24025 /* 24026 * Hash list removal routine for tcp_t structures. 24027 */ 24028 static void 24029 tcp_bind_hash_remove(tcp_t *tcp) 24030 { 24031 tcp_t *tcpnext; 24032 kmutex_t *lockp; 24033 tcp_stack_t *tcps = tcp->tcp_tcps; 24034 24035 if (tcp->tcp_ptpbhn == NULL) 24036 return; 24037 24038 /* 24039 * Extract the lock pointer in case there are concurrent 24040 * hash_remove's for this instance. 24041 */ 24042 ASSERT(tcp->tcp_lport != 0); 24043 lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 24044 24045 ASSERT(lockp != NULL); 24046 mutex_enter(lockp); 24047 if (tcp->tcp_ptpbhn) { 24048 tcpnext = tcp->tcp_bind_hash; 24049 if (tcpnext) { 24050 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 24051 tcp->tcp_bind_hash = NULL; 24052 } 24053 *tcp->tcp_ptpbhn = tcpnext; 24054 tcp->tcp_ptpbhn = NULL; 24055 } 24056 mutex_exit(lockp); 24057 } 24058 24059 24060 /* 24061 * Hash list lookup routine for tcp_t structures. 24062 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 24063 */ 24064 static tcp_t * 24065 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 24066 { 24067 tf_t *tf; 24068 tcp_t *tcp; 24069 24070 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 24071 mutex_enter(&tf->tf_lock); 24072 for (tcp = tf->tf_tcp; tcp != NULL; 24073 tcp = tcp->tcp_acceptor_hash) { 24074 if (tcp->tcp_acceptor_id == id) { 24075 CONN_INC_REF(tcp->tcp_connp); 24076 mutex_exit(&tf->tf_lock); 24077 return (tcp); 24078 } 24079 } 24080 mutex_exit(&tf->tf_lock); 24081 return (NULL); 24082 } 24083 24084 24085 /* 24086 * Hash list insertion routine for tcp_t structures. 24087 */ 24088 void 24089 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 24090 { 24091 tf_t *tf; 24092 tcp_t **tcpp; 24093 tcp_t *tcpnext; 24094 tcp_stack_t *tcps = tcp->tcp_tcps; 24095 24096 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 24097 24098 if (tcp->tcp_ptpahn != NULL) 24099 tcp_acceptor_hash_remove(tcp); 24100 tcpp = &tf->tf_tcp; 24101 mutex_enter(&tf->tf_lock); 24102 tcpnext = tcpp[0]; 24103 if (tcpnext) 24104 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 24105 tcp->tcp_acceptor_hash = tcpnext; 24106 tcp->tcp_ptpahn = tcpp; 24107 tcpp[0] = tcp; 24108 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 24109 mutex_exit(&tf->tf_lock); 24110 } 24111 24112 /* 24113 * Hash list removal routine for tcp_t structures. 24114 */ 24115 static void 24116 tcp_acceptor_hash_remove(tcp_t *tcp) 24117 { 24118 tcp_t *tcpnext; 24119 kmutex_t *lockp; 24120 24121 /* 24122 * Extract the lock pointer in case there are concurrent 24123 * hash_remove's for this instance. 24124 */ 24125 lockp = tcp->tcp_acceptor_lockp; 24126 24127 if (tcp->tcp_ptpahn == NULL) 24128 return; 24129 24130 ASSERT(lockp != NULL); 24131 mutex_enter(lockp); 24132 if (tcp->tcp_ptpahn) { 24133 tcpnext = tcp->tcp_acceptor_hash; 24134 if (tcpnext) { 24135 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 24136 tcp->tcp_acceptor_hash = NULL; 24137 } 24138 *tcp->tcp_ptpahn = tcpnext; 24139 tcp->tcp_ptpahn = NULL; 24140 } 24141 mutex_exit(lockp); 24142 tcp->tcp_acceptor_lockp = NULL; 24143 } 24144 24145 /* ARGSUSED */ 24146 static int 24147 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af) 24148 { 24149 int error = 0; 24150 int retval; 24151 char *end; 24152 tcp_hsp_t *hsp; 24153 tcp_hsp_t *hspprev; 24154 ipaddr_t addr = 0; /* Address we're looking for */ 24155 in6_addr_t v6addr; /* Address we're looking for */ 24156 uint32_t hash; /* Hash of that address */ 24157 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 24158 24159 /* 24160 * If the following variables are still zero after parsing the input 24161 * string, the user didn't specify them and we don't change them in 24162 * the HSP. 24163 */ 24164 24165 ipaddr_t mask = 0; /* Subnet mask */ 24166 in6_addr_t v6mask; 24167 long sendspace = 0; /* Send buffer size */ 24168 long recvspace = 0; /* Receive buffer size */ 24169 long timestamp = 0; /* Originate TCP TSTAMP option, 1 = yes */ 24170 boolean_t delete = B_FALSE; /* User asked to delete this HSP */ 24171 24172 rw_enter(&tcps->tcps_hsp_lock, RW_WRITER); 24173 24174 /* Parse and validate address */ 24175 if (af == AF_INET) { 24176 retval = inet_pton(af, value, &addr); 24177 if (retval == 1) 24178 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 24179 } else if (af == AF_INET6) { 24180 retval = inet_pton(af, value, &v6addr); 24181 } else { 24182 error = EINVAL; 24183 goto done; 24184 } 24185 if (retval == 0) { 24186 error = EINVAL; 24187 goto done; 24188 } 24189 24190 while ((*value) && *value != ' ') 24191 value++; 24192 24193 /* Parse individual keywords, set variables if found */ 24194 while (*value) { 24195 /* Skip leading blanks */ 24196 24197 while (*value == ' ' || *value == '\t') 24198 value++; 24199 24200 /* If at end of string, we're done */ 24201 24202 if (!*value) 24203 break; 24204 24205 /* We have a word, figure out what it is */ 24206 24207 if (strncmp("mask", value, 4) == 0) { 24208 value += 4; 24209 while (*value == ' ' || *value == '\t') 24210 value++; 24211 /* Parse subnet mask */ 24212 if (af == AF_INET) { 24213 retval = inet_pton(af, value, &mask); 24214 if (retval == 1) { 24215 V4MASK_TO_V6(mask, v6mask); 24216 } 24217 } else if (af == AF_INET6) { 24218 retval = inet_pton(af, value, &v6mask); 24219 } 24220 if (retval != 1) { 24221 error = EINVAL; 24222 goto done; 24223 } 24224 while ((*value) && *value != ' ') 24225 value++; 24226 } else if (strncmp("sendspace", value, 9) == 0) { 24227 value += 9; 24228 24229 if (ddi_strtol(value, &end, 0, &sendspace) != 0 || 24230 sendspace < TCP_XMIT_HIWATER || 24231 sendspace >= (1L<<30)) { 24232 error = EINVAL; 24233 goto done; 24234 } 24235 value = end; 24236 } else if (strncmp("recvspace", value, 9) == 0) { 24237 value += 9; 24238 24239 if (ddi_strtol(value, &end, 0, &recvspace) != 0 || 24240 recvspace < TCP_RECV_HIWATER || 24241 recvspace >= (1L<<30)) { 24242 error = EINVAL; 24243 goto done; 24244 } 24245 value = end; 24246 } else if (strncmp("timestamp", value, 9) == 0) { 24247 value += 9; 24248 24249 if (ddi_strtol(value, &end, 0, ×tamp) != 0 || 24250 timestamp < 0 || timestamp > 1) { 24251 error = EINVAL; 24252 goto done; 24253 } 24254 24255 /* 24256 * We increment timestamp so we know it's been set; 24257 * this is undone when we put it in the HSP 24258 */ 24259 timestamp++; 24260 value = end; 24261 } else if (strncmp("delete", value, 6) == 0) { 24262 value += 6; 24263 delete = B_TRUE; 24264 } else { 24265 error = EINVAL; 24266 goto done; 24267 } 24268 } 24269 24270 /* Hash address for lookup */ 24271 24272 hash = TCP_HSP_HASH(addr); 24273 24274 if (delete) { 24275 /* 24276 * Note that deletes don't return an error if the thing 24277 * we're trying to delete isn't there. 24278 */ 24279 if (tcps->tcps_hsp_hash == NULL) 24280 goto done; 24281 hsp = tcps->tcps_hsp_hash[hash]; 24282 24283 if (hsp) { 24284 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 24285 &v6addr)) { 24286 tcps->tcps_hsp_hash[hash] = hsp->tcp_hsp_next; 24287 mi_free((char *)hsp); 24288 } else { 24289 hspprev = hsp; 24290 while ((hsp = hsp->tcp_hsp_next) != NULL) { 24291 if (IN6_ARE_ADDR_EQUAL( 24292 &hsp->tcp_hsp_addr_v6, &v6addr)) { 24293 hspprev->tcp_hsp_next = 24294 hsp->tcp_hsp_next; 24295 mi_free((char *)hsp); 24296 break; 24297 } 24298 hspprev = hsp; 24299 } 24300 } 24301 } 24302 } else { 24303 /* 24304 * We're adding/modifying an HSP. If we haven't already done 24305 * so, allocate the hash table. 24306 */ 24307 24308 if (!tcps->tcps_hsp_hash) { 24309 tcps->tcps_hsp_hash = (tcp_hsp_t **) 24310 mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE); 24311 if (!tcps->tcps_hsp_hash) { 24312 error = EINVAL; 24313 goto done; 24314 } 24315 } 24316 24317 /* Get head of hash chain */ 24318 24319 hsp = tcps->tcps_hsp_hash[hash]; 24320 24321 /* Try to find pre-existing hsp on hash chain */ 24322 /* Doesn't handle CIDR prefixes. */ 24323 while (hsp) { 24324 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr)) 24325 break; 24326 hsp = hsp->tcp_hsp_next; 24327 } 24328 24329 /* 24330 * If we didn't, create one with default values and put it 24331 * at head of hash chain 24332 */ 24333 24334 if (!hsp) { 24335 hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t)); 24336 if (!hsp) { 24337 error = EINVAL; 24338 goto done; 24339 } 24340 hsp->tcp_hsp_next = tcps->tcps_hsp_hash[hash]; 24341 tcps->tcps_hsp_hash[hash] = hsp; 24342 } 24343 24344 /* Set values that the user asked us to change */ 24345 24346 hsp->tcp_hsp_addr_v6 = v6addr; 24347 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) 24348 hsp->tcp_hsp_vers = IPV4_VERSION; 24349 else 24350 hsp->tcp_hsp_vers = IPV6_VERSION; 24351 hsp->tcp_hsp_subnet_v6 = v6mask; 24352 if (sendspace > 0) 24353 hsp->tcp_hsp_sendspace = sendspace; 24354 if (recvspace > 0) 24355 hsp->tcp_hsp_recvspace = recvspace; 24356 if (timestamp > 0) 24357 hsp->tcp_hsp_tstamp = timestamp - 1; 24358 } 24359 24360 done: 24361 rw_exit(&tcps->tcps_hsp_lock); 24362 return (error); 24363 } 24364 24365 /* Set callback routine passed to nd_load by tcp_param_register. */ 24366 /* ARGSUSED */ 24367 static int 24368 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 24369 { 24370 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET)); 24371 } 24372 /* ARGSUSED */ 24373 static int 24374 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 24375 cred_t *cr) 24376 { 24377 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6)); 24378 } 24379 24380 /* TCP host parameters report triggered via the Named Dispatch mechanism. */ 24381 /* ARGSUSED */ 24382 static int 24383 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 24384 { 24385 tcp_hsp_t *hsp; 24386 int i; 24387 char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN]; 24388 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 24389 24390 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24391 (void) mi_mpprintf(mp, 24392 "Hash HSP " MI_COL_HDRPAD_STR 24393 "Address Subnet Mask Send Receive TStamp"); 24394 if (tcps->tcps_hsp_hash) { 24395 for (i = 0; i < TCP_HSP_HASH_SIZE; i++) { 24396 hsp = tcps->tcps_hsp_hash[i]; 24397 while (hsp) { 24398 if (hsp->tcp_hsp_vers == IPV4_VERSION) { 24399 (void) inet_ntop(AF_INET, 24400 &hsp->tcp_hsp_addr, 24401 addrbuf, sizeof (addrbuf)); 24402 (void) inet_ntop(AF_INET, 24403 &hsp->tcp_hsp_subnet, 24404 subnetbuf, sizeof (subnetbuf)); 24405 } else { 24406 (void) inet_ntop(AF_INET6, 24407 &hsp->tcp_hsp_addr_v6, 24408 addrbuf, sizeof (addrbuf)); 24409 (void) inet_ntop(AF_INET6, 24410 &hsp->tcp_hsp_subnet_v6, 24411 subnetbuf, sizeof (subnetbuf)); 24412 } 24413 (void) mi_mpprintf(mp, 24414 " %03d " MI_COL_PTRFMT_STR 24415 "%s %s %010d %010d %d", 24416 i, 24417 (void *)hsp, 24418 addrbuf, 24419 subnetbuf, 24420 hsp->tcp_hsp_sendspace, 24421 hsp->tcp_hsp_recvspace, 24422 hsp->tcp_hsp_tstamp); 24423 24424 hsp = hsp->tcp_hsp_next; 24425 } 24426 } 24427 } 24428 rw_exit(&tcps->tcps_hsp_lock); 24429 return (0); 24430 } 24431 24432 24433 /* Data for fast netmask macro used by tcp_hsp_lookup */ 24434 24435 static ipaddr_t netmasks[] = { 24436 IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET, 24437 IN_CLASSC_NET | IN_CLASSD_NET /* Class C,D,E */ 24438 }; 24439 24440 #define netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30]) 24441 24442 /* 24443 * XXX This routine should go away and instead we should use the metrics 24444 * associated with the routes to determine the default sndspace and rcvspace. 24445 */ 24446 static tcp_hsp_t * 24447 tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *tcps) 24448 { 24449 tcp_hsp_t *hsp = NULL; 24450 24451 /* Quick check without acquiring the lock. */ 24452 if (tcps->tcps_hsp_hash == NULL) 24453 return (NULL); 24454 24455 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24456 24457 /* This routine finds the best-matching HSP for address addr. */ 24458 24459 if (tcps->tcps_hsp_hash) { 24460 int i; 24461 ipaddr_t srchaddr; 24462 tcp_hsp_t *hsp_net; 24463 24464 /* We do three passes: host, network, and subnet. */ 24465 24466 srchaddr = addr; 24467 24468 for (i = 1; i <= 3; i++) { 24469 /* Look for exact match on srchaddr */ 24470 24471 hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(srchaddr)]; 24472 while (hsp) { 24473 if (hsp->tcp_hsp_vers == IPV4_VERSION && 24474 hsp->tcp_hsp_addr == srchaddr) 24475 break; 24476 hsp = hsp->tcp_hsp_next; 24477 } 24478 ASSERT(hsp == NULL || 24479 hsp->tcp_hsp_vers == IPV4_VERSION); 24480 24481 /* 24482 * If this is the first pass: 24483 * If we found a match, great, return it. 24484 * If not, search for the network on the second pass. 24485 */ 24486 24487 if (i == 1) 24488 if (hsp) 24489 break; 24490 else 24491 { 24492 srchaddr = addr & netmask(addr); 24493 continue; 24494 } 24495 24496 /* 24497 * If this is the second pass: 24498 * If we found a match, but there's a subnet mask, 24499 * save the match but try again using the subnet 24500 * mask on the third pass. 24501 * Otherwise, return whatever we found. 24502 */ 24503 24504 if (i == 2) { 24505 if (hsp && hsp->tcp_hsp_subnet) { 24506 hsp_net = hsp; 24507 srchaddr = addr & hsp->tcp_hsp_subnet; 24508 continue; 24509 } else { 24510 break; 24511 } 24512 } 24513 24514 /* 24515 * This must be the third pass. If we didn't find 24516 * anything, return the saved network HSP instead. 24517 */ 24518 24519 if (!hsp) 24520 hsp = hsp_net; 24521 } 24522 } 24523 24524 rw_exit(&tcps->tcps_hsp_lock); 24525 return (hsp); 24526 } 24527 24528 /* 24529 * XXX Equally broken as the IPv4 routine. Doesn't handle longest 24530 * match lookup. 24531 */ 24532 static tcp_hsp_t * 24533 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr, tcp_stack_t *tcps) 24534 { 24535 tcp_hsp_t *hsp = NULL; 24536 24537 /* Quick check without acquiring the lock. */ 24538 if (tcps->tcps_hsp_hash == NULL) 24539 return (NULL); 24540 24541 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24542 24543 /* This routine finds the best-matching HSP for address addr. */ 24544 24545 if (tcps->tcps_hsp_hash) { 24546 int i; 24547 in6_addr_t v6srchaddr; 24548 tcp_hsp_t *hsp_net; 24549 24550 /* We do three passes: host, network, and subnet. */ 24551 24552 v6srchaddr = *v6addr; 24553 24554 for (i = 1; i <= 3; i++) { 24555 /* Look for exact match on srchaddr */ 24556 24557 hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH( 24558 V4_PART_OF_V6(v6srchaddr))]; 24559 while (hsp) { 24560 if (hsp->tcp_hsp_vers == IPV6_VERSION && 24561 IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 24562 &v6srchaddr)) 24563 break; 24564 hsp = hsp->tcp_hsp_next; 24565 } 24566 24567 /* 24568 * If this is the first pass: 24569 * If we found a match, great, return it. 24570 * If not, search for the network on the second pass. 24571 */ 24572 24573 if (i == 1) 24574 if (hsp) 24575 break; 24576 else { 24577 /* Assume a 64 bit mask */ 24578 v6srchaddr.s6_addr32[0] = 24579 v6addr->s6_addr32[0]; 24580 v6srchaddr.s6_addr32[1] = 24581 v6addr->s6_addr32[1]; 24582 v6srchaddr.s6_addr32[2] = 0; 24583 v6srchaddr.s6_addr32[3] = 0; 24584 continue; 24585 } 24586 24587 /* 24588 * If this is the second pass: 24589 * If we found a match, but there's a subnet mask, 24590 * save the match but try again using the subnet 24591 * mask on the third pass. 24592 * Otherwise, return whatever we found. 24593 */ 24594 24595 if (i == 2) { 24596 ASSERT(hsp == NULL || 24597 hsp->tcp_hsp_vers == IPV6_VERSION); 24598 if (hsp && 24599 !IN6_IS_ADDR_UNSPECIFIED( 24600 &hsp->tcp_hsp_subnet_v6)) { 24601 hsp_net = hsp; 24602 V6_MASK_COPY(*v6addr, 24603 hsp->tcp_hsp_subnet_v6, v6srchaddr); 24604 continue; 24605 } else { 24606 break; 24607 } 24608 } 24609 24610 /* 24611 * This must be the third pass. If we didn't find 24612 * anything, return the saved network HSP instead. 24613 */ 24614 24615 if (!hsp) 24616 hsp = hsp_net; 24617 } 24618 } 24619 24620 rw_exit(&tcps->tcps_hsp_lock); 24621 return (hsp); 24622 } 24623 24624 /* 24625 * Type three generator adapted from the random() function in 4.4 BSD: 24626 */ 24627 24628 /* 24629 * Copyright (c) 1983, 1993 24630 * The Regents of the University of California. All rights reserved. 24631 * 24632 * Redistribution and use in source and binary forms, with or without 24633 * modification, are permitted provided that the following conditions 24634 * are met: 24635 * 1. Redistributions of source code must retain the above copyright 24636 * notice, this list of conditions and the following disclaimer. 24637 * 2. Redistributions in binary form must reproduce the above copyright 24638 * notice, this list of conditions and the following disclaimer in the 24639 * documentation and/or other materials provided with the distribution. 24640 * 3. All advertising materials mentioning features or use of this software 24641 * must display the following acknowledgement: 24642 * This product includes software developed by the University of 24643 * California, Berkeley and its contributors. 24644 * 4. Neither the name of the University nor the names of its contributors 24645 * may be used to endorse or promote products derived from this software 24646 * without specific prior written permission. 24647 * 24648 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24649 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24650 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24651 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24652 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24653 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24654 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24655 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24656 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24657 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24658 * SUCH DAMAGE. 24659 */ 24660 24661 /* Type 3 -- x**31 + x**3 + 1 */ 24662 #define DEG_3 31 24663 #define SEP_3 3 24664 24665 24666 /* Protected by tcp_random_lock */ 24667 static int tcp_randtbl[DEG_3 + 1]; 24668 24669 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 24670 static int *tcp_random_rptr = &tcp_randtbl[1]; 24671 24672 static int *tcp_random_state = &tcp_randtbl[1]; 24673 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 24674 24675 kmutex_t tcp_random_lock; 24676 24677 void 24678 tcp_random_init(void) 24679 { 24680 int i; 24681 hrtime_t hrt; 24682 time_t wallclock; 24683 uint64_t result; 24684 24685 /* 24686 * Use high-res timer and current time for seed. Gethrtime() returns 24687 * a longlong, which may contain resolution down to nanoseconds. 24688 * The current time will either be a 32-bit or a 64-bit quantity. 24689 * XOR the two together in a 64-bit result variable. 24690 * Convert the result to a 32-bit value by multiplying the high-order 24691 * 32-bits by the low-order 32-bits. 24692 */ 24693 24694 hrt = gethrtime(); 24695 (void) drv_getparm(TIME, &wallclock); 24696 result = (uint64_t)wallclock ^ (uint64_t)hrt; 24697 mutex_enter(&tcp_random_lock); 24698 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 24699 (result & 0xffffffff); 24700 24701 for (i = 1; i < DEG_3; i++) 24702 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 24703 + 12345; 24704 tcp_random_fptr = &tcp_random_state[SEP_3]; 24705 tcp_random_rptr = &tcp_random_state[0]; 24706 mutex_exit(&tcp_random_lock); 24707 for (i = 0; i < 10 * DEG_3; i++) 24708 (void) tcp_random(); 24709 } 24710 24711 /* 24712 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 24713 * This range is selected to be approximately centered on TCP_ISS / 2, 24714 * and easy to compute. We get this value by generating a 32-bit random 24715 * number, selecting out the high-order 17 bits, and then adding one so 24716 * that we never return zero. 24717 */ 24718 int 24719 tcp_random(void) 24720 { 24721 int i; 24722 24723 mutex_enter(&tcp_random_lock); 24724 *tcp_random_fptr += *tcp_random_rptr; 24725 24726 /* 24727 * The high-order bits are more random than the low-order bits, 24728 * so we select out the high-order 17 bits and add one so that 24729 * we never return zero. 24730 */ 24731 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 24732 if (++tcp_random_fptr >= tcp_random_end_ptr) { 24733 tcp_random_fptr = tcp_random_state; 24734 ++tcp_random_rptr; 24735 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 24736 tcp_random_rptr = tcp_random_state; 24737 24738 mutex_exit(&tcp_random_lock); 24739 return (i); 24740 } 24741 24742 /* 24743 * XXX This will go away when TPI is extended to send 24744 * info reqs to sockfs/timod ..... 24745 * Given a queue, set the max packet size for the write 24746 * side of the queue below stream head. This value is 24747 * cached on the stream head. 24748 * Returns 1 on success, 0 otherwise. 24749 */ 24750 static int 24751 setmaxps(queue_t *q, int maxpsz) 24752 { 24753 struct stdata *stp; 24754 queue_t *wq; 24755 stp = STREAM(q); 24756 24757 /* 24758 * At this point change of a queue parameter is not allowed 24759 * when a multiplexor is sitting on top. 24760 */ 24761 if (stp->sd_flag & STPLEX) 24762 return (0); 24763 24764 claimstr(stp->sd_wrq); 24765 wq = stp->sd_wrq->q_next; 24766 ASSERT(wq != NULL); 24767 (void) strqset(wq, QMAXPSZ, 0, maxpsz); 24768 releasestr(stp->sd_wrq); 24769 return (1); 24770 } 24771 24772 static int 24773 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 24774 int *t_errorp, int *sys_errorp) 24775 { 24776 int error; 24777 int is_absreq_failure; 24778 t_scalar_t *opt_lenp; 24779 t_scalar_t opt_offset; 24780 int prim_type; 24781 struct T_conn_req *tcreqp; 24782 struct T_conn_res *tcresp; 24783 cred_t *cr; 24784 24785 cr = DB_CREDDEF(mp, tcp->tcp_cred); 24786 24787 prim_type = ((union T_primitives *)mp->b_rptr)->type; 24788 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 24789 prim_type == T_CONN_RES); 24790 24791 switch (prim_type) { 24792 case T_CONN_REQ: 24793 tcreqp = (struct T_conn_req *)mp->b_rptr; 24794 opt_offset = tcreqp->OPT_offset; 24795 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 24796 break; 24797 case O_T_CONN_RES: 24798 case T_CONN_RES: 24799 tcresp = (struct T_conn_res *)mp->b_rptr; 24800 opt_offset = tcresp->OPT_offset; 24801 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 24802 break; 24803 } 24804 24805 *t_errorp = 0; 24806 *sys_errorp = 0; 24807 *do_disconnectp = 0; 24808 24809 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 24810 opt_offset, cr, &tcp_opt_obj, 24811 NULL, &is_absreq_failure); 24812 24813 switch (error) { 24814 case 0: /* no error */ 24815 ASSERT(is_absreq_failure == 0); 24816 return (0); 24817 case ENOPROTOOPT: 24818 *t_errorp = TBADOPT; 24819 break; 24820 case EACCES: 24821 *t_errorp = TACCES; 24822 break; 24823 default: 24824 *t_errorp = TSYSERR; *sys_errorp = error; 24825 break; 24826 } 24827 if (is_absreq_failure != 0) { 24828 /* 24829 * The connection request should get the local ack 24830 * T_OK_ACK and then a T_DISCON_IND. 24831 */ 24832 *do_disconnectp = 1; 24833 } 24834 return (-1); 24835 } 24836 24837 /* 24838 * Split this function out so that if the secret changes, I'm okay. 24839 * 24840 * Initialize the tcp_iss_cookie and tcp_iss_key. 24841 */ 24842 24843 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 24844 24845 static void 24846 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 24847 { 24848 struct { 24849 int32_t current_time; 24850 uint32_t randnum; 24851 uint16_t pad; 24852 uint8_t ether[6]; 24853 uint8_t passwd[PASSWD_SIZE]; 24854 } tcp_iss_cookie; 24855 time_t t; 24856 24857 /* 24858 * Start with the current absolute time. 24859 */ 24860 (void) drv_getparm(TIME, &t); 24861 tcp_iss_cookie.current_time = t; 24862 24863 /* 24864 * XXX - Need a more random number per RFC 1750, not this crap. 24865 * OTOH, if what follows is pretty random, then I'm in better shape. 24866 */ 24867 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 24868 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 24869 24870 /* 24871 * The cpu_type_info is pretty non-random. Ugggh. It does serve 24872 * as a good template. 24873 */ 24874 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 24875 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 24876 24877 /* 24878 * The pass-phrase. Normally this is supplied by user-called NDD. 24879 */ 24880 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 24881 24882 /* 24883 * See 4010593 if this section becomes a problem again, 24884 * but the local ethernet address is useful here. 24885 */ 24886 (void) localetheraddr(NULL, 24887 (struct ether_addr *)&tcp_iss_cookie.ether); 24888 24889 /* 24890 * Hash 'em all together. The MD5Final is called per-connection. 24891 */ 24892 mutex_enter(&tcps->tcps_iss_key_lock); 24893 MD5Init(&tcps->tcps_iss_key); 24894 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 24895 sizeof (tcp_iss_cookie)); 24896 mutex_exit(&tcps->tcps_iss_key_lock); 24897 } 24898 24899 /* 24900 * Set the RFC 1948 pass phrase 24901 */ 24902 /* ARGSUSED */ 24903 static int 24904 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 24905 cred_t *cr) 24906 { 24907 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 24908 24909 /* 24910 * Basically, value contains a new pass phrase. Pass it along! 24911 */ 24912 tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); 24913 return (0); 24914 } 24915 24916 /* ARGSUSED */ 24917 static int 24918 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 24919 { 24920 bzero(buf, sizeof (tcp_sack_info_t)); 24921 return (0); 24922 } 24923 24924 /* ARGSUSED */ 24925 static int 24926 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 24927 { 24928 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 24929 return (0); 24930 } 24931 24932 /* 24933 * Make sure we wait until the default queue is setup, yet allow 24934 * tcp_g_q_create() to open a TCP stream. 24935 * We need to allow tcp_g_q_create() do do an open 24936 * of tcp, hence we compare curhread. 24937 * All others have to wait until the tcps_g_q has been 24938 * setup. 24939 */ 24940 void 24941 tcp_g_q_setup(tcp_stack_t *tcps) 24942 { 24943 mutex_enter(&tcps->tcps_g_q_lock); 24944 if (tcps->tcps_g_q != NULL) { 24945 mutex_exit(&tcps->tcps_g_q_lock); 24946 return; 24947 } 24948 if (tcps->tcps_g_q_creator == NULL) { 24949 /* This thread will set it up */ 24950 tcps->tcps_g_q_creator = curthread; 24951 mutex_exit(&tcps->tcps_g_q_lock); 24952 tcp_g_q_create(tcps); 24953 mutex_enter(&tcps->tcps_g_q_lock); 24954 ASSERT(tcps->tcps_g_q_creator == curthread); 24955 tcps->tcps_g_q_creator = NULL; 24956 cv_signal(&tcps->tcps_g_q_cv); 24957 ASSERT(tcps->tcps_g_q != NULL); 24958 mutex_exit(&tcps->tcps_g_q_lock); 24959 return; 24960 } 24961 /* Everybody but the creator has to wait */ 24962 if (tcps->tcps_g_q_creator != curthread) { 24963 while (tcps->tcps_g_q == NULL) 24964 cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock); 24965 } 24966 mutex_exit(&tcps->tcps_g_q_lock); 24967 } 24968 24969 #define IP "ip" 24970 24971 #define TCP6DEV "/devices/pseudo/tcp6@0:tcp6" 24972 24973 /* 24974 * Create a default tcp queue here instead of in strplumb 24975 */ 24976 void 24977 tcp_g_q_create(tcp_stack_t *tcps) 24978 { 24979 int error; 24980 ldi_handle_t lh = NULL; 24981 ldi_ident_t li = NULL; 24982 int rval; 24983 cred_t *cr; 24984 major_t IP_MAJ; 24985 24986 #ifdef NS_DEBUG 24987 (void) printf("tcp_g_q_create()\n"); 24988 #endif 24989 24990 IP_MAJ = ddi_name_to_major(IP); 24991 24992 ASSERT(tcps->tcps_g_q_creator == curthread); 24993 24994 error = ldi_ident_from_major(IP_MAJ, &li); 24995 if (error) { 24996 #ifdef DEBUG 24997 printf("tcp_g_q_create: lyr ident get failed error %d\n", 24998 error); 24999 #endif 25000 return; 25001 } 25002 25003 cr = zone_get_kcred(netstackid_to_zoneid( 25004 tcps->tcps_netstack->netstack_stackid)); 25005 ASSERT(cr != NULL); 25006 /* 25007 * We set the tcp default queue to IPv6 because IPv4 falls 25008 * back to IPv6 when it can't find a client, but 25009 * IPv6 does not fall back to IPv4. 25010 */ 25011 error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li); 25012 if (error) { 25013 #ifdef DEBUG 25014 printf("tcp_g_q_create: open of TCP6DEV failed error %d\n", 25015 error); 25016 #endif 25017 goto out; 25018 } 25019 25020 /* 25021 * This ioctl causes the tcp framework to cache a pointer to 25022 * this stream, so we don't want to close the stream after 25023 * this operation. 25024 * Use the kernel credentials that are for the zone we're in. 25025 */ 25026 error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q, 25027 (intptr_t)0, FKIOCTL, cr, &rval); 25028 if (error) { 25029 #ifdef DEBUG 25030 printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed " 25031 "error %d\n", error); 25032 #endif 25033 goto out; 25034 } 25035 tcps->tcps_g_q_lh = lh; /* For tcp_g_q_close */ 25036 lh = NULL; 25037 out: 25038 /* Close layered handles */ 25039 if (li) 25040 ldi_ident_release(li); 25041 /* Keep cred around until _inactive needs it */ 25042 tcps->tcps_g_q_cr = cr; 25043 } 25044 25045 /* 25046 * We keep tcp_g_q set until all other tcp_t's in the zone 25047 * has gone away, and then when tcp_g_q_inactive() is called 25048 * we clear it. 25049 */ 25050 void 25051 tcp_g_q_destroy(tcp_stack_t *tcps) 25052 { 25053 #ifdef NS_DEBUG 25054 (void) printf("tcp_g_q_destroy()for stack %d\n", 25055 tcps->tcps_netstack->netstack_stackid); 25056 #endif 25057 25058 if (tcps->tcps_g_q == NULL) { 25059 return; /* Nothing to cleanup */ 25060 } 25061 /* 25062 * Drop reference corresponding to the default queue. 25063 * This reference was added from tcp_open when the default queue 25064 * was created, hence we compensate for this extra drop in 25065 * tcp_g_q_close. If the refcnt drops to zero here it means 25066 * the default queue was the last one to be open, in which 25067 * case, then tcp_g_q_inactive will be 25068 * called as a result of the refrele. 25069 */ 25070 TCPS_REFRELE(tcps); 25071 } 25072 25073 /* 25074 * Called when last tcp_t drops reference count using TCPS_REFRELE. 25075 * Run by tcp_q_q_inactive using a taskq. 25076 */ 25077 static void 25078 tcp_g_q_close(void *arg) 25079 { 25080 tcp_stack_t *tcps = arg; 25081 int error; 25082 ldi_handle_t lh = NULL; 25083 ldi_ident_t li = NULL; 25084 cred_t *cr; 25085 major_t IP_MAJ; 25086 25087 IP_MAJ = ddi_name_to_major(IP); 25088 25089 #ifdef NS_DEBUG 25090 (void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n", 25091 tcps->tcps_netstack->netstack_stackid, 25092 tcps->tcps_netstack->netstack_refcnt); 25093 #endif 25094 lh = tcps->tcps_g_q_lh; 25095 if (lh == NULL) 25096 return; /* Nothing to cleanup */ 25097 25098 ASSERT(tcps->tcps_refcnt == 1); 25099 ASSERT(tcps->tcps_g_q != NULL); 25100 25101 error = ldi_ident_from_major(IP_MAJ, &li); 25102 if (error) { 25103 #ifdef DEBUG 25104 printf("tcp_g_q_inactive: lyr ident get failed error %d\n", 25105 error); 25106 #endif 25107 return; 25108 } 25109 25110 cr = tcps->tcps_g_q_cr; 25111 tcps->tcps_g_q_cr = NULL; 25112 ASSERT(cr != NULL); 25113 25114 /* 25115 * Make sure we can break the recursion when tcp_close decrements 25116 * the reference count causing g_q_inactive to be called again. 25117 */ 25118 tcps->tcps_g_q_lh = NULL; 25119 25120 /* close the default queue */ 25121 (void) ldi_close(lh, FREAD|FWRITE, cr); 25122 /* 25123 * At this point in time tcps and the rest of netstack_t might 25124 * have been deleted. 25125 */ 25126 tcps = NULL; 25127 25128 /* Close layered handles */ 25129 ldi_ident_release(li); 25130 crfree(cr); 25131 } 25132 25133 /* 25134 * Called when last tcp_t drops reference count using TCPS_REFRELE. 25135 * 25136 * Have to ensure that the ldi routines are not used by an 25137 * interrupt thread by using a taskq. 25138 */ 25139 void 25140 tcp_g_q_inactive(tcp_stack_t *tcps) 25141 { 25142 if (tcps->tcps_g_q_lh == NULL) 25143 return; /* Nothing to cleanup */ 25144 25145 ASSERT(tcps->tcps_refcnt == 0); 25146 TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */ 25147 25148 if (servicing_interrupt()) { 25149 (void) taskq_dispatch(tcp_taskq, tcp_g_q_close, 25150 (void *) tcps, TQ_SLEEP); 25151 } else { 25152 tcp_g_q_close(tcps); 25153 } 25154 } 25155 25156 /* 25157 * Called by IP when IP is loaded into the kernel 25158 */ 25159 void 25160 tcp_ddi_g_init(void) 25161 { 25162 tcp_timercache = kmem_cache_create("tcp_timercache", 25163 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 25164 NULL, NULL, NULL, NULL, NULL, 0); 25165 25166 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 25167 sizeof (tcp_sack_info_t), 0, 25168 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 25169 25170 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 25171 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 25172 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 25173 25174 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 25175 25176 /* Initialize the random number generator */ 25177 tcp_random_init(); 25178 25179 tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput); 25180 tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close); 25181 25182 /* A single callback independently of how many netstacks we have */ 25183 ip_squeue_init(tcp_squeue_add); 25184 25185 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 25186 25187 tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1, 25188 TASKQ_PREPOPULATE); 25189 25190 /* 25191 * We want to be informed each time a stack is created or 25192 * destroyed in the kernel, so we can maintain the 25193 * set of tcp_stack_t's. 25194 */ 25195 netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown, 25196 tcp_stack_fini); 25197 } 25198 25199 25200 /* 25201 * Initialize the TCP stack instance. 25202 */ 25203 static void * 25204 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 25205 { 25206 tcp_stack_t *tcps; 25207 tcpparam_t *pa; 25208 int i; 25209 25210 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 25211 tcps->tcps_netstack = ns; 25212 25213 /* Initialize locks */ 25214 rw_init(&tcps->tcps_hsp_lock, NULL, RW_DEFAULT, NULL); 25215 mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 25216 cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL); 25217 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 25218 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 25219 rw_init(&tcps->tcps_reserved_port_lock, NULL, RW_DEFAULT, NULL); 25220 25221 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 25222 tcps->tcps_g_epriv_ports[0] = 2049; 25223 tcps->tcps_g_epriv_ports[1] = 4045; 25224 tcps->tcps_min_anonpriv_port = 512; 25225 25226 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 25227 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 25228 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 25229 TCP_FANOUT_SIZE, KM_SLEEP); 25230 tcps->tcps_reserved_port = kmem_zalloc(sizeof (tcp_rport_t) * 25231 TCP_RESERVED_PORTS_ARRAY_MAX_SIZE, KM_SLEEP); 25232 25233 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 25234 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 25235 MUTEX_DEFAULT, NULL); 25236 } 25237 25238 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 25239 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 25240 MUTEX_DEFAULT, NULL); 25241 } 25242 25243 /* TCP's IPsec code calls the packet dropper. */ 25244 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 25245 25246 pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); 25247 tcps->tcps_params = pa; 25248 bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 25249 25250 (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, 25251 A_CNT(lcl_tcp_param_arr), tcps); 25252 25253 /* 25254 * Note: To really walk the device tree you need the devinfo 25255 * pointer to your device which is only available after probe/attach. 25256 * The following is safe only because it uses ddi_root_node() 25257 */ 25258 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 25259 tcp_opt_obj.odb_opt_arr_cnt); 25260 25261 /* 25262 * Initialize RFC 1948 secret values. This will probably be reset once 25263 * by the boot scripts. 25264 * 25265 * Use NULL name, as the name is caught by the new lockstats. 25266 * 25267 * Initialize with some random, non-guessable string, like the global 25268 * T_INFO_ACK. 25269 */ 25270 25271 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 25272 sizeof (tcp_g_t_info_ack), tcps); 25273 25274 tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); 25275 tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); 25276 25277 return (tcps); 25278 } 25279 25280 /* 25281 * Called when the IP module is about to be unloaded. 25282 */ 25283 void 25284 tcp_ddi_g_destroy(void) 25285 { 25286 tcp_g_kstat_fini(tcp_g_kstat); 25287 tcp_g_kstat = NULL; 25288 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 25289 25290 mutex_destroy(&tcp_random_lock); 25291 25292 kmem_cache_destroy(tcp_timercache); 25293 kmem_cache_destroy(tcp_sack_info_cache); 25294 kmem_cache_destroy(tcp_iphc_cache); 25295 25296 netstack_unregister(NS_TCP); 25297 taskq_destroy(tcp_taskq); 25298 } 25299 25300 /* 25301 * Shut down the TCP stack instance. 25302 */ 25303 /* ARGSUSED */ 25304 static void 25305 tcp_stack_shutdown(netstackid_t stackid, void *arg) 25306 { 25307 tcp_stack_t *tcps = (tcp_stack_t *)arg; 25308 25309 tcp_g_q_destroy(tcps); 25310 } 25311 25312 /* 25313 * Free the TCP stack instance. 25314 */ 25315 static void 25316 tcp_stack_fini(netstackid_t stackid, void *arg) 25317 { 25318 tcp_stack_t *tcps = (tcp_stack_t *)arg; 25319 int i; 25320 25321 nd_free(&tcps->tcps_g_nd); 25322 kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 25323 tcps->tcps_params = NULL; 25324 kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); 25325 tcps->tcps_wroff_xtra_param = NULL; 25326 kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t)); 25327 tcps->tcps_mdt_head_param = NULL; 25328 kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t)); 25329 tcps->tcps_mdt_tail_param = NULL; 25330 kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t)); 25331 tcps->tcps_mdt_max_pbufs_param = NULL; 25332 25333 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 25334 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 25335 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 25336 } 25337 25338 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 25339 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 25340 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 25341 } 25342 25343 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 25344 tcps->tcps_bind_fanout = NULL; 25345 25346 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE); 25347 tcps->tcps_acceptor_fanout = NULL; 25348 25349 kmem_free(tcps->tcps_reserved_port, sizeof (tcp_rport_t) * 25350 TCP_RESERVED_PORTS_ARRAY_MAX_SIZE); 25351 tcps->tcps_reserved_port = NULL; 25352 25353 mutex_destroy(&tcps->tcps_iss_key_lock); 25354 rw_destroy(&tcps->tcps_hsp_lock); 25355 mutex_destroy(&tcps->tcps_g_q_lock); 25356 cv_destroy(&tcps->tcps_g_q_cv); 25357 mutex_destroy(&tcps->tcps_epriv_port_lock); 25358 rw_destroy(&tcps->tcps_reserved_port_lock); 25359 25360 ip_drop_unregister(&tcps->tcps_dropper); 25361 25362 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 25363 tcps->tcps_kstat = NULL; 25364 bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); 25365 25366 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 25367 tcps->tcps_mibkp = NULL; 25368 25369 kmem_free(tcps, sizeof (*tcps)); 25370 } 25371 25372 /* 25373 * Generate ISS, taking into account NDD changes may happen halfway through. 25374 * (If the iss is not zero, set it.) 25375 */ 25376 25377 static void 25378 tcp_iss_init(tcp_t *tcp) 25379 { 25380 MD5_CTX context; 25381 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 25382 uint32_t answer[4]; 25383 tcp_stack_t *tcps = tcp->tcp_tcps; 25384 25385 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 25386 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 25387 switch (tcps->tcps_strong_iss) { 25388 case 2: 25389 mutex_enter(&tcps->tcps_iss_key_lock); 25390 context = tcps->tcps_iss_key; 25391 mutex_exit(&tcps->tcps_iss_key_lock); 25392 arg.ports = tcp->tcp_ports; 25393 if (tcp->tcp_ipversion == IPV4_VERSION) { 25394 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 25395 &arg.src); 25396 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 25397 &arg.dst); 25398 } else { 25399 arg.src = tcp->tcp_ip6h->ip6_src; 25400 arg.dst = tcp->tcp_ip6h->ip6_dst; 25401 } 25402 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 25403 MD5Final((uchar_t *)answer, &context); 25404 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 25405 /* 25406 * Now that we've hashed into a unique per-connection sequence 25407 * space, add a random increment per strong_iss == 1. So I 25408 * guess we'll have to... 25409 */ 25410 /* FALLTHRU */ 25411 case 1: 25412 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 25413 break; 25414 default: 25415 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 25416 break; 25417 } 25418 tcp->tcp_valid_bits = TCP_ISS_VALID; 25419 tcp->tcp_fss = tcp->tcp_iss - 1; 25420 tcp->tcp_suna = tcp->tcp_iss; 25421 tcp->tcp_snxt = tcp->tcp_iss + 1; 25422 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 25423 tcp->tcp_csuna = tcp->tcp_snxt; 25424 } 25425 25426 /* 25427 * Exported routine for extracting active tcp connection status. 25428 * 25429 * This is used by the Solaris Cluster Networking software to 25430 * gather a list of connections that need to be forwarded to 25431 * specific nodes in the cluster when configuration changes occur. 25432 * 25433 * The callback is invoked for each tcp_t structure. Returning 25434 * non-zero from the callback routine terminates the search. 25435 */ 25436 int 25437 cl_tcp_walk_list(int (*cl_callback)(cl_tcp_info_t *, void *), 25438 void *arg) 25439 { 25440 netstack_handle_t nh; 25441 netstack_t *ns; 25442 int ret = 0; 25443 25444 netstack_next_init(&nh); 25445 while ((ns = netstack_next(&nh)) != NULL) { 25446 ret = cl_tcp_walk_list_stack(cl_callback, arg, 25447 ns->netstack_tcp); 25448 netstack_rele(ns); 25449 } 25450 netstack_next_fini(&nh); 25451 return (ret); 25452 } 25453 25454 static int 25455 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, 25456 tcp_stack_t *tcps) 25457 { 25458 tcp_t *tcp; 25459 cl_tcp_info_t cl_tcpi; 25460 connf_t *connfp; 25461 conn_t *connp; 25462 int i; 25463 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25464 25465 ASSERT(callback != NULL); 25466 25467 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25468 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 25469 connp = NULL; 25470 25471 while ((connp = 25472 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 25473 25474 tcp = connp->conn_tcp; 25475 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 25476 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 25477 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 25478 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 25479 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 25480 /* 25481 * The macros tcp_laddr and tcp_faddr give the IPv4 25482 * addresses. They are copied implicitly below as 25483 * mapped addresses. 25484 */ 25485 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 25486 if (tcp->tcp_ipversion == IPV4_VERSION) { 25487 cl_tcpi.cl_tcpi_faddr = 25488 tcp->tcp_ipha->ipha_dst; 25489 } else { 25490 cl_tcpi.cl_tcpi_faddr_v6 = 25491 tcp->tcp_ip6h->ip6_dst; 25492 } 25493 25494 /* 25495 * If the callback returns non-zero 25496 * we terminate the traversal. 25497 */ 25498 if ((*callback)(&cl_tcpi, arg) != 0) { 25499 CONN_DEC_REF(tcp->tcp_connp); 25500 return (1); 25501 } 25502 } 25503 } 25504 25505 return (0); 25506 } 25507 25508 /* 25509 * Macros used for accessing the different types of sockaddr 25510 * structures inside a tcp_ioc_abort_conn_t. 25511 */ 25512 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 25513 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 25514 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 25515 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 25516 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 25517 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 25518 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 25519 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 25520 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 25521 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 25522 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 25523 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 25524 25525 /* 25526 * Return the correct error code to mimic the behavior 25527 * of a connection reset. 25528 */ 25529 #define TCP_AC_GET_ERRCODE(state, err) { \ 25530 switch ((state)) { \ 25531 case TCPS_SYN_SENT: \ 25532 case TCPS_SYN_RCVD: \ 25533 (err) = ECONNREFUSED; \ 25534 break; \ 25535 case TCPS_ESTABLISHED: \ 25536 case TCPS_FIN_WAIT_1: \ 25537 case TCPS_FIN_WAIT_2: \ 25538 case TCPS_CLOSE_WAIT: \ 25539 (err) = ECONNRESET; \ 25540 break; \ 25541 case TCPS_CLOSING: \ 25542 case TCPS_LAST_ACK: \ 25543 case TCPS_TIME_WAIT: \ 25544 (err) = 0; \ 25545 break; \ 25546 default: \ 25547 (err) = ENXIO; \ 25548 } \ 25549 } 25550 25551 /* 25552 * Check if a tcp structure matches the info in acp. 25553 */ 25554 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 25555 (((acp)->ac_local.ss_family == AF_INET) ? \ 25556 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 25557 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 25558 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 25559 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 25560 (TCP_AC_V4LPORT((acp)) == 0 || \ 25561 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 25562 (TCP_AC_V4RPORT((acp)) == 0 || \ 25563 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 25564 (acp)->ac_start <= (tcp)->tcp_state && \ 25565 (acp)->ac_end >= (tcp)->tcp_state) : \ 25566 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 25567 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 25568 &(tcp)->tcp_ip_src_v6)) && \ 25569 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 25570 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 25571 &(tcp)->tcp_remote_v6)) && \ 25572 (TCP_AC_V6LPORT((acp)) == 0 || \ 25573 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 25574 (TCP_AC_V6RPORT((acp)) == 0 || \ 25575 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 25576 (acp)->ac_start <= (tcp)->tcp_state && \ 25577 (acp)->ac_end >= (tcp)->tcp_state)) 25578 25579 #define TCP_AC_MATCH(acp, tcp) \ 25580 (((acp)->ac_zoneid == ALL_ZONES || \ 25581 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 25582 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 25583 25584 /* 25585 * Build a message containing a tcp_ioc_abort_conn_t structure 25586 * which is filled in with information from acp and tp. 25587 */ 25588 static mblk_t * 25589 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 25590 { 25591 mblk_t *mp; 25592 tcp_ioc_abort_conn_t *tacp; 25593 25594 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 25595 if (mp == NULL) 25596 return (NULL); 25597 25598 mp->b_datap->db_type = M_CTL; 25599 25600 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 25601 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 25602 sizeof (uint32_t)); 25603 25604 tacp->ac_start = acp->ac_start; 25605 tacp->ac_end = acp->ac_end; 25606 tacp->ac_zoneid = acp->ac_zoneid; 25607 25608 if (acp->ac_local.ss_family == AF_INET) { 25609 tacp->ac_local.ss_family = AF_INET; 25610 tacp->ac_remote.ss_family = AF_INET; 25611 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 25612 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 25613 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 25614 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 25615 } else { 25616 tacp->ac_local.ss_family = AF_INET6; 25617 tacp->ac_remote.ss_family = AF_INET6; 25618 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 25619 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 25620 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 25621 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 25622 } 25623 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 25624 return (mp); 25625 } 25626 25627 /* 25628 * Print a tcp_ioc_abort_conn_t structure. 25629 */ 25630 static void 25631 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 25632 { 25633 char lbuf[128]; 25634 char rbuf[128]; 25635 sa_family_t af; 25636 in_port_t lport, rport; 25637 ushort_t logflags; 25638 25639 af = acp->ac_local.ss_family; 25640 25641 if (af == AF_INET) { 25642 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 25643 lbuf, 128); 25644 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 25645 rbuf, 128); 25646 lport = ntohs(TCP_AC_V4LPORT(acp)); 25647 rport = ntohs(TCP_AC_V4RPORT(acp)); 25648 } else { 25649 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 25650 lbuf, 128); 25651 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 25652 rbuf, 128); 25653 lport = ntohs(TCP_AC_V6LPORT(acp)); 25654 rport = ntohs(TCP_AC_V6RPORT(acp)); 25655 } 25656 25657 logflags = SL_TRACE | SL_NOTE; 25658 /* 25659 * Don't print this message to the console if the operation was done 25660 * to a non-global zone. 25661 */ 25662 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 25663 logflags |= SL_CONSOLE; 25664 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 25665 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 25666 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 25667 acp->ac_start, acp->ac_end); 25668 } 25669 25670 /* 25671 * Called inside tcp_rput when a message built using 25672 * tcp_ioctl_abort_build_msg is put into a queue. 25673 * Note that when we get here there is no wildcard in acp any more. 25674 */ 25675 static void 25676 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 25677 { 25678 tcp_ioc_abort_conn_t *acp; 25679 25680 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 25681 if (tcp->tcp_state <= acp->ac_end) { 25682 /* 25683 * If we get here, we are already on the correct 25684 * squeue. This ioctl follows the following path 25685 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 25686 * ->tcp_ioctl_abort->squeue_fill (if on a 25687 * different squeue) 25688 */ 25689 int errcode; 25690 25691 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 25692 (void) tcp_clean_death(tcp, errcode, 26); 25693 } 25694 freemsg(mp); 25695 } 25696 25697 /* 25698 * Abort all matching connections on a hash chain. 25699 */ 25700 static int 25701 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 25702 boolean_t exact, tcp_stack_t *tcps) 25703 { 25704 int nmatch, err = 0; 25705 tcp_t *tcp; 25706 MBLKP mp, last, listhead = NULL; 25707 conn_t *tconnp; 25708 connf_t *connfp; 25709 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25710 25711 connfp = &ipst->ips_ipcl_conn_fanout[index]; 25712 25713 startover: 25714 nmatch = 0; 25715 25716 mutex_enter(&connfp->connf_lock); 25717 for (tconnp = connfp->connf_head; tconnp != NULL; 25718 tconnp = tconnp->conn_next) { 25719 tcp = tconnp->conn_tcp; 25720 if (TCP_AC_MATCH(acp, tcp)) { 25721 CONN_INC_REF(tcp->tcp_connp); 25722 mp = tcp_ioctl_abort_build_msg(acp, tcp); 25723 if (mp == NULL) { 25724 err = ENOMEM; 25725 CONN_DEC_REF(tcp->tcp_connp); 25726 break; 25727 } 25728 mp->b_prev = (mblk_t *)tcp; 25729 25730 if (listhead == NULL) { 25731 listhead = mp; 25732 last = mp; 25733 } else { 25734 last->b_next = mp; 25735 last = mp; 25736 } 25737 nmatch++; 25738 if (exact) 25739 break; 25740 } 25741 25742 /* Avoid holding lock for too long. */ 25743 if (nmatch >= 500) 25744 break; 25745 } 25746 mutex_exit(&connfp->connf_lock); 25747 25748 /* Pass mp into the correct tcp */ 25749 while ((mp = listhead) != NULL) { 25750 listhead = listhead->b_next; 25751 tcp = (tcp_t *)mp->b_prev; 25752 mp->b_next = mp->b_prev = NULL; 25753 squeue_fill(tcp->tcp_connp->conn_sqp, mp, 25754 tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET); 25755 } 25756 25757 *count += nmatch; 25758 if (nmatch >= 500 && err == 0) 25759 goto startover; 25760 return (err); 25761 } 25762 25763 /* 25764 * Abort all connections that matches the attributes specified in acp. 25765 */ 25766 static int 25767 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) 25768 { 25769 sa_family_t af; 25770 uint32_t ports; 25771 uint16_t *pports; 25772 int err = 0, count = 0; 25773 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 25774 int index = -1; 25775 ushort_t logflags; 25776 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25777 25778 af = acp->ac_local.ss_family; 25779 25780 if (af == AF_INET) { 25781 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 25782 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 25783 pports = (uint16_t *)&ports; 25784 pports[1] = TCP_AC_V4LPORT(acp); 25785 pports[0] = TCP_AC_V4RPORT(acp); 25786 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 25787 } 25788 } else { 25789 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 25790 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 25791 pports = (uint16_t *)&ports; 25792 pports[1] = TCP_AC_V6LPORT(acp); 25793 pports[0] = TCP_AC_V6RPORT(acp); 25794 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 25795 } 25796 } 25797 25798 /* 25799 * For cases where remote addr, local port, and remote port are non- 25800 * wildcards, tcp_ioctl_abort_bucket will only be called once. 25801 */ 25802 if (index != -1) { 25803 err = tcp_ioctl_abort_bucket(acp, index, 25804 &count, exact, tcps); 25805 } else { 25806 /* 25807 * loop through all entries for wildcard case 25808 */ 25809 for (index = 0; 25810 index < ipst->ips_ipcl_conn_fanout_size; 25811 index++) { 25812 err = tcp_ioctl_abort_bucket(acp, index, 25813 &count, exact, tcps); 25814 if (err != 0) 25815 break; 25816 } 25817 } 25818 25819 logflags = SL_TRACE | SL_NOTE; 25820 /* 25821 * Don't print this message to the console if the operation was done 25822 * to a non-global zone. 25823 */ 25824 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 25825 logflags |= SL_CONSOLE; 25826 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 25827 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 25828 if (err == 0 && count == 0) 25829 err = ENOENT; 25830 return (err); 25831 } 25832 25833 /* 25834 * Process the TCP_IOC_ABORT_CONN ioctl request. 25835 */ 25836 static void 25837 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 25838 { 25839 int err; 25840 IOCP iocp; 25841 MBLKP mp1; 25842 sa_family_t laf, raf; 25843 tcp_ioc_abort_conn_t *acp; 25844 zone_t *zptr; 25845 conn_t *connp = Q_TO_CONN(q); 25846 zoneid_t zoneid = connp->conn_zoneid; 25847 tcp_t *tcp = connp->conn_tcp; 25848 tcp_stack_t *tcps = tcp->tcp_tcps; 25849 25850 iocp = (IOCP)mp->b_rptr; 25851 25852 if ((mp1 = mp->b_cont) == NULL || 25853 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 25854 err = EINVAL; 25855 goto out; 25856 } 25857 25858 /* check permissions */ 25859 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 25860 err = EPERM; 25861 goto out; 25862 } 25863 25864 if (mp1->b_cont != NULL) { 25865 freemsg(mp1->b_cont); 25866 mp1->b_cont = NULL; 25867 } 25868 25869 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 25870 laf = acp->ac_local.ss_family; 25871 raf = acp->ac_remote.ss_family; 25872 25873 /* check that a zone with the supplied zoneid exists */ 25874 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 25875 zptr = zone_find_by_id(zoneid); 25876 if (zptr != NULL) { 25877 zone_rele(zptr); 25878 } else { 25879 err = EINVAL; 25880 goto out; 25881 } 25882 } 25883 25884 /* 25885 * For exclusive stacks we set the zoneid to zero 25886 * to make TCP operate as if in the global zone. 25887 */ 25888 if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) 25889 acp->ac_zoneid = GLOBAL_ZONEID; 25890 25891 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 25892 acp->ac_start > acp->ac_end || laf != raf || 25893 (laf != AF_INET && laf != AF_INET6)) { 25894 err = EINVAL; 25895 goto out; 25896 } 25897 25898 tcp_ioctl_abort_dump(acp); 25899 err = tcp_ioctl_abort(acp, tcps); 25900 25901 out: 25902 if (mp1 != NULL) { 25903 freemsg(mp1); 25904 mp->b_cont = NULL; 25905 } 25906 25907 if (err != 0) 25908 miocnak(q, mp, 0, err); 25909 else 25910 miocack(q, mp, 0, 0); 25911 } 25912 25913 /* 25914 * tcp_time_wait_processing() handles processing of incoming packets when 25915 * the tcp is in the TIME_WAIT state. 25916 * A TIME_WAIT tcp that has an associated open TCP stream is never put 25917 * on the time wait list. 25918 */ 25919 void 25920 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 25921 uint32_t seg_ack, int seg_len, tcph_t *tcph) 25922 { 25923 int32_t bytes_acked; 25924 int32_t gap; 25925 int32_t rgap; 25926 tcp_opt_t tcpopt; 25927 uint_t flags; 25928 uint32_t new_swnd = 0; 25929 conn_t *connp; 25930 tcp_stack_t *tcps = tcp->tcp_tcps; 25931 25932 BUMP_LOCAL(tcp->tcp_ibsegs); 25933 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 25934 25935 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 25936 new_swnd = BE16_TO_U16(tcph->th_win) << 25937 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 25938 if (tcp->tcp_snd_ts_ok) { 25939 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 25940 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25941 tcp->tcp_rnxt, TH_ACK); 25942 goto done; 25943 } 25944 } 25945 gap = seg_seq - tcp->tcp_rnxt; 25946 rgap = tcp->tcp_rwnd - (gap + seg_len); 25947 if (gap < 0) { 25948 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 25949 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 25950 (seg_len > -gap ? -gap : seg_len)); 25951 seg_len += gap; 25952 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 25953 if (flags & TH_RST) { 25954 goto done; 25955 } 25956 if ((flags & TH_FIN) && seg_len == -1) { 25957 /* 25958 * When TCP receives a duplicate FIN in 25959 * TIME_WAIT state, restart the 2 MSL timer. 25960 * See page 73 in RFC 793. Make sure this TCP 25961 * is already on the TIME_WAIT list. If not, 25962 * just restart the timer. 25963 */ 25964 if (TCP_IS_DETACHED(tcp)) { 25965 if (tcp_time_wait_remove(tcp, NULL) == 25966 B_TRUE) { 25967 tcp_time_wait_append(tcp); 25968 TCP_DBGSTAT(tcps, 25969 tcp_rput_time_wait); 25970 } 25971 } else { 25972 ASSERT(tcp != NULL); 25973 TCP_TIMER_RESTART(tcp, 25974 tcps->tcps_time_wait_interval); 25975 } 25976 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25977 tcp->tcp_rnxt, TH_ACK); 25978 goto done; 25979 } 25980 flags |= TH_ACK_NEEDED; 25981 seg_len = 0; 25982 goto process_ack; 25983 } 25984 25985 /* Fix seg_seq, and chew the gap off the front. */ 25986 seg_seq = tcp->tcp_rnxt; 25987 } 25988 25989 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 25990 /* 25991 * Make sure that when we accept the connection, pick 25992 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 25993 * old connection. 25994 * 25995 * The next ISS generated is equal to tcp_iss_incr_extra 25996 * + ISS_INCR/2 + other components depending on the 25997 * value of tcp_strong_iss. We pre-calculate the new 25998 * ISS here and compare with tcp_snxt to determine if 25999 * we need to make adjustment to tcp_iss_incr_extra. 26000 * 26001 * The above calculation is ugly and is a 26002 * waste of CPU cycles... 26003 */ 26004 uint32_t new_iss = tcps->tcps_iss_incr_extra; 26005 int32_t adj; 26006 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 26007 26008 switch (tcps->tcps_strong_iss) { 26009 case 2: { 26010 /* Add time and MD5 components. */ 26011 uint32_t answer[4]; 26012 struct { 26013 uint32_t ports; 26014 in6_addr_t src; 26015 in6_addr_t dst; 26016 } arg; 26017 MD5_CTX context; 26018 26019 mutex_enter(&tcps->tcps_iss_key_lock); 26020 context = tcps->tcps_iss_key; 26021 mutex_exit(&tcps->tcps_iss_key_lock); 26022 arg.ports = tcp->tcp_ports; 26023 /* We use MAPPED addresses in tcp_iss_init */ 26024 arg.src = tcp->tcp_ip_src_v6; 26025 if (tcp->tcp_ipversion == IPV4_VERSION) { 26026 IN6_IPADDR_TO_V4MAPPED( 26027 tcp->tcp_ipha->ipha_dst, 26028 &arg.dst); 26029 } else { 26030 arg.dst = 26031 tcp->tcp_ip6h->ip6_dst; 26032 } 26033 MD5Update(&context, (uchar_t *)&arg, 26034 sizeof (arg)); 26035 MD5Final((uchar_t *)answer, &context); 26036 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 26037 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 26038 break; 26039 } 26040 case 1: 26041 /* Add time component and min random (i.e. 1). */ 26042 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 26043 break; 26044 default: 26045 /* Add only time component. */ 26046 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 26047 break; 26048 } 26049 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 26050 /* 26051 * New ISS not guaranteed to be ISS_INCR/2 26052 * ahead of the current tcp_snxt, so add the 26053 * difference to tcp_iss_incr_extra. 26054 */ 26055 tcps->tcps_iss_incr_extra += adj; 26056 } 26057 /* 26058 * If tcp_clean_death() can not perform the task now, 26059 * drop the SYN packet and let the other side re-xmit. 26060 * Otherwise pass the SYN packet back in, since the 26061 * old tcp state has been cleaned up or freed. 26062 */ 26063 if (tcp_clean_death(tcp, 0, 27) == -1) 26064 goto done; 26065 /* 26066 * We will come back to tcp_rput_data 26067 * on the global queue. Packets destined 26068 * for the global queue will be checked 26069 * with global policy. But the policy for 26070 * this packet has already been checked as 26071 * this was destined for the detached 26072 * connection. We need to bypass policy 26073 * check this time by attaching a dummy 26074 * ipsec_in with ipsec_in_dont_check set. 26075 */ 26076 connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst); 26077 if (connp != NULL) { 26078 TCP_STAT(tcps, tcp_time_wait_syn_success); 26079 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 26080 return; 26081 } 26082 goto done; 26083 } 26084 26085 /* 26086 * rgap is the amount of stuff received out of window. A negative 26087 * value is the amount out of window. 26088 */ 26089 if (rgap < 0) { 26090 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 26091 UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); 26092 /* Fix seg_len and make sure there is something left. */ 26093 seg_len += rgap; 26094 if (seg_len <= 0) { 26095 if (flags & TH_RST) { 26096 goto done; 26097 } 26098 flags |= TH_ACK_NEEDED; 26099 seg_len = 0; 26100 goto process_ack; 26101 } 26102 } 26103 /* 26104 * Check whether we can update tcp_ts_recent. This test is 26105 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 26106 * Extensions for High Performance: An Update", Internet Draft. 26107 */ 26108 if (tcp->tcp_snd_ts_ok && 26109 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 26110 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 26111 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 26112 tcp->tcp_last_rcv_lbolt = lbolt64; 26113 } 26114 26115 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 26116 /* Always ack out of order packets */ 26117 flags |= TH_ACK_NEEDED; 26118 seg_len = 0; 26119 } else if (seg_len > 0) { 26120 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 26121 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 26122 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 26123 } 26124 if (flags & TH_RST) { 26125 (void) tcp_clean_death(tcp, 0, 28); 26126 goto done; 26127 } 26128 if (flags & TH_SYN) { 26129 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 26130 TH_RST|TH_ACK); 26131 /* 26132 * Do not delete the TCP structure if it is in 26133 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 26134 */ 26135 goto done; 26136 } 26137 process_ack: 26138 if (flags & TH_ACK) { 26139 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 26140 if (bytes_acked <= 0) { 26141 if (bytes_acked == 0 && seg_len == 0 && 26142 new_swnd == tcp->tcp_swnd) 26143 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 26144 } else { 26145 /* Acks something not sent */ 26146 flags |= TH_ACK_NEEDED; 26147 } 26148 } 26149 if (flags & TH_ACK_NEEDED) { 26150 /* 26151 * Time to send an ack for some reason. 26152 */ 26153 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 26154 tcp->tcp_rnxt, TH_ACK); 26155 } 26156 done: 26157 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 26158 DB_CKSUMSTART(mp) = 0; 26159 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 26160 TCP_STAT(tcps, tcp_time_wait_syn_fail); 26161 } 26162 freemsg(mp); 26163 } 26164 26165 /* 26166 * Allocate a T_SVR4_OPTMGMT_REQ. 26167 * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so 26168 * that tcp_rput_other can drop the acks. 26169 */ 26170 static mblk_t * 26171 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen) 26172 { 26173 mblk_t *mp; 26174 struct T_optmgmt_req *tor; 26175 struct opthdr *oh; 26176 uint_t size; 26177 char *optptr; 26178 26179 size = sizeof (*tor) + sizeof (*oh) + optlen; 26180 mp = allocb(size, BPRI_MED); 26181 if (mp == NULL) 26182 return (NULL); 26183 26184 mp->b_wptr += size; 26185 mp->b_datap->db_type = M_PROTO; 26186 tor = (struct T_optmgmt_req *)mp->b_rptr; 26187 tor->PRIM_type = T_SVR4_OPTMGMT_REQ; 26188 tor->MGMT_flags = T_NEGOTIATE; 26189 tor->OPT_length = sizeof (*oh) + optlen; 26190 tor->OPT_offset = (t_scalar_t)sizeof (*tor); 26191 26192 oh = (struct opthdr *)&tor[1]; 26193 oh->level = level; 26194 oh->name = cmd; 26195 oh->len = optlen; 26196 if (optlen != 0) { 26197 optptr = (char *)&oh[1]; 26198 bcopy(opt, optptr, optlen); 26199 } 26200 return (mp); 26201 } 26202 26203 /* 26204 * TCP Timers Implementation. 26205 */ 26206 timeout_id_t 26207 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 26208 { 26209 mblk_t *mp; 26210 tcp_timer_t *tcpt; 26211 tcp_t *tcp = connp->conn_tcp; 26212 tcp_stack_t *tcps = tcp->tcp_tcps; 26213 26214 ASSERT(connp->conn_sqp != NULL); 26215 26216 TCP_DBGSTAT(tcps, tcp_timeout_calls); 26217 26218 if (tcp->tcp_timercache == NULL) { 26219 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 26220 } else { 26221 TCP_DBGSTAT(tcps, tcp_timeout_cached_alloc); 26222 mp = tcp->tcp_timercache; 26223 tcp->tcp_timercache = mp->b_next; 26224 mp->b_next = NULL; 26225 ASSERT(mp->b_wptr == NULL); 26226 } 26227 26228 CONN_INC_REF(connp); 26229 tcpt = (tcp_timer_t *)mp->b_rptr; 26230 tcpt->connp = connp; 26231 tcpt->tcpt_proc = f; 26232 tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim); 26233 return ((timeout_id_t)mp); 26234 } 26235 26236 static void 26237 tcp_timer_callback(void *arg) 26238 { 26239 mblk_t *mp = (mblk_t *)arg; 26240 tcp_timer_t *tcpt; 26241 conn_t *connp; 26242 26243 tcpt = (tcp_timer_t *)mp->b_rptr; 26244 connp = tcpt->connp; 26245 squeue_fill(connp->conn_sqp, mp, 26246 tcp_timer_handler, connp, SQTAG_TCP_TIMER); 26247 } 26248 26249 static void 26250 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 26251 { 26252 tcp_timer_t *tcpt; 26253 conn_t *connp = (conn_t *)arg; 26254 tcp_t *tcp = connp->conn_tcp; 26255 26256 tcpt = (tcp_timer_t *)mp->b_rptr; 26257 ASSERT(connp == tcpt->connp); 26258 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 26259 26260 /* 26261 * If the TCP has reached the closed state, don't proceed any 26262 * further. This TCP logically does not exist on the system. 26263 * tcpt_proc could for example access queues, that have already 26264 * been qprocoff'ed off. Also see comments at the start of tcp_input 26265 */ 26266 if (tcp->tcp_state != TCPS_CLOSED) { 26267 (*tcpt->tcpt_proc)(connp); 26268 } else { 26269 tcp->tcp_timer_tid = 0; 26270 } 26271 tcp_timer_free(connp->conn_tcp, mp); 26272 } 26273 26274 /* 26275 * There is potential race with untimeout and the handler firing at the same 26276 * time. The mblock may be freed by the handler while we are trying to use 26277 * it. But since both should execute on the same squeue, this race should not 26278 * occur. 26279 */ 26280 clock_t 26281 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 26282 { 26283 mblk_t *mp = (mblk_t *)id; 26284 tcp_timer_t *tcpt; 26285 clock_t delta; 26286 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 26287 26288 TCP_DBGSTAT(tcps, tcp_timeout_cancel_reqs); 26289 26290 if (mp == NULL) 26291 return (-1); 26292 26293 tcpt = (tcp_timer_t *)mp->b_rptr; 26294 ASSERT(tcpt->connp == connp); 26295 26296 delta = untimeout(tcpt->tcpt_tid); 26297 26298 if (delta >= 0) { 26299 TCP_DBGSTAT(tcps, tcp_timeout_canceled); 26300 tcp_timer_free(connp->conn_tcp, mp); 26301 CONN_DEC_REF(connp); 26302 } 26303 26304 return (delta); 26305 } 26306 26307 /* 26308 * Allocate space for the timer event. The allocation looks like mblk, but it is 26309 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 26310 * 26311 * Dealing with failures: If we can't allocate from the timer cache we try 26312 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 26313 * points to b_rptr. 26314 * If we can't allocate anything using allocb_tryhard(), we perform a last 26315 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 26316 * save the actual allocation size in b_datap. 26317 */ 26318 mblk_t * 26319 tcp_timermp_alloc(int kmflags) 26320 { 26321 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 26322 kmflags & ~KM_PANIC); 26323 26324 if (mp != NULL) { 26325 mp->b_next = mp->b_prev = NULL; 26326 mp->b_rptr = (uchar_t *)(&mp[1]); 26327 mp->b_wptr = NULL; 26328 mp->b_datap = NULL; 26329 mp->b_queue = NULL; 26330 mp->b_cont = NULL; 26331 } else if (kmflags & KM_PANIC) { 26332 /* 26333 * Failed to allocate memory for the timer. Try allocating from 26334 * dblock caches. 26335 */ 26336 /* ipclassifier calls this from a constructor - hence no tcps */ 26337 TCP_G_STAT(tcp_timermp_allocfail); 26338 mp = allocb_tryhard(sizeof (tcp_timer_t)); 26339 if (mp == NULL) { 26340 size_t size = 0; 26341 /* 26342 * Memory is really low. Try tryhard allocation. 26343 * 26344 * ipclassifier calls this from a constructor - 26345 * hence no tcps 26346 */ 26347 TCP_G_STAT(tcp_timermp_allocdblfail); 26348 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 26349 sizeof (tcp_timer_t), &size, kmflags); 26350 mp->b_rptr = (uchar_t *)(&mp[1]); 26351 mp->b_next = mp->b_prev = NULL; 26352 mp->b_wptr = (uchar_t *)-1; 26353 mp->b_datap = (dblk_t *)size; 26354 mp->b_queue = NULL; 26355 mp->b_cont = NULL; 26356 } 26357 ASSERT(mp->b_wptr != NULL); 26358 } 26359 /* ipclassifier calls this from a constructor - hence no tcps */ 26360 TCP_G_DBGSTAT(tcp_timermp_alloced); 26361 26362 return (mp); 26363 } 26364 26365 /* 26366 * Free per-tcp timer cache. 26367 * It can only contain entries from tcp_timercache. 26368 */ 26369 void 26370 tcp_timermp_free(tcp_t *tcp) 26371 { 26372 mblk_t *mp; 26373 26374 while ((mp = tcp->tcp_timercache) != NULL) { 26375 ASSERT(mp->b_wptr == NULL); 26376 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 26377 kmem_cache_free(tcp_timercache, mp); 26378 } 26379 } 26380 26381 /* 26382 * Free timer event. Put it on the per-tcp timer cache if there is not too many 26383 * events there already (currently at most two events are cached). 26384 * If the event is not allocated from the timer cache, free it right away. 26385 */ 26386 static void 26387 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 26388 { 26389 mblk_t *mp1 = tcp->tcp_timercache; 26390 tcp_stack_t *tcps = tcp->tcp_tcps; 26391 26392 if (mp->b_wptr != NULL) { 26393 /* 26394 * This allocation is not from a timer cache, free it right 26395 * away. 26396 */ 26397 if (mp->b_wptr != (uchar_t *)-1) 26398 freeb(mp); 26399 else 26400 kmem_free(mp, (size_t)mp->b_datap); 26401 } else if (mp1 == NULL || mp1->b_next == NULL) { 26402 /* Cache this timer block for future allocations */ 26403 mp->b_rptr = (uchar_t *)(&mp[1]); 26404 mp->b_next = mp1; 26405 tcp->tcp_timercache = mp; 26406 } else { 26407 kmem_cache_free(tcp_timercache, mp); 26408 TCP_DBGSTAT(tcps, tcp_timermp_freed); 26409 } 26410 } 26411 26412 /* 26413 * End of TCP Timers implementation. 26414 */ 26415 26416 /* 26417 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 26418 * on the specified backing STREAMS q. Note, the caller may make the 26419 * decision to call based on the tcp_t.tcp_flow_stopped value which 26420 * when check outside the q's lock is only an advisory check ... 26421 */ 26422 26423 void 26424 tcp_setqfull(tcp_t *tcp) 26425 { 26426 queue_t *q = tcp->tcp_wq; 26427 tcp_stack_t *tcps = tcp->tcp_tcps; 26428 26429 if (!(q->q_flag & QFULL)) { 26430 mutex_enter(QLOCK(q)); 26431 if (!(q->q_flag & QFULL)) { 26432 /* still need to set QFULL */ 26433 q->q_flag |= QFULL; 26434 tcp->tcp_flow_stopped = B_TRUE; 26435 mutex_exit(QLOCK(q)); 26436 TCP_STAT(tcps, tcp_flwctl_on); 26437 } else { 26438 mutex_exit(QLOCK(q)); 26439 } 26440 } 26441 } 26442 26443 void 26444 tcp_clrqfull(tcp_t *tcp) 26445 { 26446 queue_t *q = tcp->tcp_wq; 26447 26448 if (q->q_flag & QFULL) { 26449 mutex_enter(QLOCK(q)); 26450 if (q->q_flag & QFULL) { 26451 q->q_flag &= ~QFULL; 26452 tcp->tcp_flow_stopped = B_FALSE; 26453 mutex_exit(QLOCK(q)); 26454 if (q->q_flag & QWANTW) 26455 qbackenable(q, 0); 26456 } else { 26457 mutex_exit(QLOCK(q)); 26458 } 26459 } 26460 } 26461 26462 26463 /* 26464 * kstats related to squeues i.e. not per IP instance 26465 */ 26466 static void * 26467 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) 26468 { 26469 kstat_t *ksp; 26470 26471 tcp_g_stat_t template = { 26472 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 26473 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 26474 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 26475 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 26476 }; 26477 26478 ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", 26479 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 26480 KSTAT_FLAG_VIRTUAL); 26481 26482 if (ksp == NULL) 26483 return (NULL); 26484 26485 bcopy(&template, tcp_g_statp, sizeof (template)); 26486 ksp->ks_data = (void *)tcp_g_statp; 26487 26488 kstat_install(ksp); 26489 return (ksp); 26490 } 26491 26492 static void 26493 tcp_g_kstat_fini(kstat_t *ksp) 26494 { 26495 if (ksp != NULL) { 26496 kstat_delete(ksp); 26497 } 26498 } 26499 26500 26501 static void * 26502 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) 26503 { 26504 kstat_t *ksp; 26505 26506 tcp_stat_t template = { 26507 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 26508 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 26509 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 26510 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 26511 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 26512 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 26513 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 26514 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 26515 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 26516 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 26517 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 26518 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 26519 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 26520 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 26521 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 26522 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 26523 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 26524 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 26525 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 26526 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 26527 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 26528 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 26529 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 26530 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 26531 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 26532 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 26533 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 26534 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 26535 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 26536 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 26537 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 26538 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 26539 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 26540 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 26541 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 26542 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 26543 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 26544 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 26545 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 26546 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 26547 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 26548 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 26549 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 26550 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 26551 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 26552 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 26553 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 26554 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 26555 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 26556 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 26557 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 26558 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 26559 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 26560 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 26561 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 26562 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 26563 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 26564 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 26565 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 26566 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 26567 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 26568 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 26569 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 26570 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 26571 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 26572 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 26573 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 26574 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 26575 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 26576 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 26577 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 26578 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 26579 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 26580 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 26581 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 26582 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 26583 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 26584 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 26585 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 26586 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 26587 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 26588 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 26589 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 26590 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 26591 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 26592 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 26593 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 26594 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 26595 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 26596 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 26597 }; 26598 26599 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", 26600 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 26601 KSTAT_FLAG_VIRTUAL, stackid); 26602 26603 if (ksp == NULL) 26604 return (NULL); 26605 26606 bcopy(&template, tcps_statisticsp, sizeof (template)); 26607 ksp->ks_data = (void *)tcps_statisticsp; 26608 ksp->ks_private = (void *)(uintptr_t)stackid; 26609 26610 kstat_install(ksp); 26611 return (ksp); 26612 } 26613 26614 static void 26615 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 26616 { 26617 if (ksp != NULL) { 26618 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 26619 kstat_delete_netstack(ksp, stackid); 26620 } 26621 } 26622 26623 /* 26624 * TCP Kstats implementation 26625 */ 26626 static void * 26627 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) 26628 { 26629 kstat_t *ksp; 26630 26631 tcp_named_kstat_t template = { 26632 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 26633 { "rtoMin", KSTAT_DATA_INT32, 0 }, 26634 { "rtoMax", KSTAT_DATA_INT32, 0 }, 26635 { "maxConn", KSTAT_DATA_INT32, 0 }, 26636 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 26637 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 26638 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 26639 { "estabResets", KSTAT_DATA_UINT32, 0 }, 26640 { "currEstab", KSTAT_DATA_UINT32, 0 }, 26641 { "inSegs", KSTAT_DATA_UINT64, 0 }, 26642 { "outSegs", KSTAT_DATA_UINT64, 0 }, 26643 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 26644 { "connTableSize", KSTAT_DATA_INT32, 0 }, 26645 { "outRsts", KSTAT_DATA_UINT32, 0 }, 26646 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 26647 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 26648 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 26649 { "outAck", KSTAT_DATA_UINT32, 0 }, 26650 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 26651 { "outUrg", KSTAT_DATA_UINT32, 0 }, 26652 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 26653 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 26654 { "outControl", KSTAT_DATA_UINT32, 0 }, 26655 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 26656 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 26657 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 26658 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 26659 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 26660 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 26661 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 26662 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 26663 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 26664 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 26665 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 26666 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 26667 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 26668 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 26669 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 26670 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 26671 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 26672 { "inClosed", KSTAT_DATA_UINT32, 0 }, 26673 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 26674 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 26675 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 26676 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 26677 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 26678 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 26679 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 26680 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 26681 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 26682 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 26683 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 26684 { "connTableSize6", KSTAT_DATA_INT32, 0 } 26685 }; 26686 26687 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", 26688 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); 26689 26690 if (ksp == NULL) 26691 return (NULL); 26692 26693 template.rtoAlgorithm.value.ui32 = 4; 26694 template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; 26695 template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; 26696 template.maxConn.value.i32 = -1; 26697 26698 bcopy(&template, ksp->ks_data, sizeof (template)); 26699 ksp->ks_update = tcp_kstat_update; 26700 ksp->ks_private = (void *)(uintptr_t)stackid; 26701 26702 kstat_install(ksp); 26703 return (ksp); 26704 } 26705 26706 static void 26707 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 26708 { 26709 if (ksp != NULL) { 26710 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 26711 kstat_delete_netstack(ksp, stackid); 26712 } 26713 } 26714 26715 static int 26716 tcp_kstat_update(kstat_t *kp, int rw) 26717 { 26718 tcp_named_kstat_t *tcpkp; 26719 tcp_t *tcp; 26720 connf_t *connfp; 26721 conn_t *connp; 26722 int i; 26723 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 26724 netstack_t *ns; 26725 tcp_stack_t *tcps; 26726 ip_stack_t *ipst; 26727 26728 if ((kp == NULL) || (kp->ks_data == NULL)) 26729 return (EIO); 26730 26731 if (rw == KSTAT_WRITE) 26732 return (EACCES); 26733 26734 ns = netstack_find_by_stackid(stackid); 26735 if (ns == NULL) 26736 return (-1); 26737 tcps = ns->netstack_tcp; 26738 if (tcps == NULL) { 26739 netstack_rele(ns); 26740 return (-1); 26741 } 26742 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 26743 26744 tcpkp->currEstab.value.ui32 = 0; 26745 26746 ipst = ns->netstack_ip; 26747 26748 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 26749 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 26750 connp = NULL; 26751 while ((connp = 26752 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 26753 tcp = connp->conn_tcp; 26754 switch (tcp_snmp_state(tcp)) { 26755 case MIB2_TCP_established: 26756 case MIB2_TCP_closeWait: 26757 tcpkp->currEstab.value.ui32++; 26758 break; 26759 } 26760 } 26761 } 26762 26763 tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; 26764 tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; 26765 tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; 26766 tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; 26767 tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; 26768 tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; 26769 tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; 26770 tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; 26771 tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; 26772 tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; 26773 tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; 26774 tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; 26775 tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; 26776 tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; 26777 tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; 26778 tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; 26779 tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; 26780 tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; 26781 tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; 26782 tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; 26783 tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; 26784 tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; 26785 tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; 26786 tcpkp->inDataInorderSegs.value.ui32 = 26787 tcps->tcps_mib.tcpInDataInorderSegs; 26788 tcpkp->inDataInorderBytes.value.ui32 = 26789 tcps->tcps_mib.tcpInDataInorderBytes; 26790 tcpkp->inDataUnorderSegs.value.ui32 = 26791 tcps->tcps_mib.tcpInDataUnorderSegs; 26792 tcpkp->inDataUnorderBytes.value.ui32 = 26793 tcps->tcps_mib.tcpInDataUnorderBytes; 26794 tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; 26795 tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; 26796 tcpkp->inDataPartDupSegs.value.ui32 = 26797 tcps->tcps_mib.tcpInDataPartDupSegs; 26798 tcpkp->inDataPartDupBytes.value.ui32 = 26799 tcps->tcps_mib.tcpInDataPartDupBytes; 26800 tcpkp->inDataPastWinSegs.value.ui32 = 26801 tcps->tcps_mib.tcpInDataPastWinSegs; 26802 tcpkp->inDataPastWinBytes.value.ui32 = 26803 tcps->tcps_mib.tcpInDataPastWinBytes; 26804 tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; 26805 tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; 26806 tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; 26807 tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; 26808 tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; 26809 tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; 26810 tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; 26811 tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; 26812 tcpkp->timKeepaliveProbe.value.ui32 = 26813 tcps->tcps_mib.tcpTimKeepaliveProbe; 26814 tcpkp->timKeepaliveDrop.value.ui32 = 26815 tcps->tcps_mib.tcpTimKeepaliveDrop; 26816 tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; 26817 tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; 26818 tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; 26819 tcpkp->outSackRetransSegs.value.ui32 = 26820 tcps->tcps_mib.tcpOutSackRetransSegs; 26821 tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; 26822 26823 netstack_rele(ns); 26824 return (0); 26825 } 26826 26827 void 26828 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 26829 { 26830 uint16_t hdr_len; 26831 ipha_t *ipha; 26832 uint8_t *nexthdrp; 26833 tcph_t *tcph; 26834 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 26835 26836 /* Already has an eager */ 26837 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 26838 TCP_STAT(tcps, tcp_reinput_syn); 26839 squeue_enter(connp->conn_sqp, mp, connp->conn_recv, 26840 connp, SQTAG_TCP_REINPUT_EAGER); 26841 return; 26842 } 26843 26844 switch (IPH_HDR_VERSION(mp->b_rptr)) { 26845 case IPV4_VERSION: 26846 ipha = (ipha_t *)mp->b_rptr; 26847 hdr_len = IPH_HDR_LENGTH(ipha); 26848 break; 26849 case IPV6_VERSION: 26850 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 26851 &hdr_len, &nexthdrp)) { 26852 CONN_DEC_REF(connp); 26853 freemsg(mp); 26854 return; 26855 } 26856 break; 26857 } 26858 26859 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 26860 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 26861 mp->b_datap->db_struioflag |= STRUIO_EAGER; 26862 DB_CKSUMSTART(mp) = (intptr_t)sqp; 26863 } 26864 26865 squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp, 26866 SQTAG_TCP_REINPUT); 26867 } 26868 26869 static squeue_func_t 26870 tcp_squeue_switch(int val) 26871 { 26872 squeue_func_t rval = squeue_fill; 26873 26874 switch (val) { 26875 case 1: 26876 rval = squeue_enter_nodrain; 26877 break; 26878 case 2: 26879 rval = squeue_enter; 26880 break; 26881 default: 26882 break; 26883 } 26884 return (rval); 26885 } 26886 26887 /* 26888 * This is called once for each squeue - globally for all stack 26889 * instances. 26890 */ 26891 static void 26892 tcp_squeue_add(squeue_t *sqp) 26893 { 26894 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 26895 sizeof (tcp_squeue_priv_t), KM_SLEEP); 26896 26897 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 26898 tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector, 26899 sqp, TCP_TIME_WAIT_DELAY); 26900 if (tcp_free_list_max_cnt == 0) { 26901 int tcp_ncpus = ((boot_max_ncpus == -1) ? 26902 max_ncpus : boot_max_ncpus); 26903 26904 /* 26905 * Limit number of entries to 1% of availble memory / tcp_ncpus 26906 */ 26907 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 26908 (tcp_ncpus * sizeof (tcp_t) * 100); 26909 } 26910 tcp_time_wait->tcp_free_list_cnt = 0; 26911 } 26912