xref: /titanic_51/usr/src/uts/common/inet/tcp/tcp.c (revision c8268b2c32246a4fd927df00921c772baab114e0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #include <sys/types.h>
29 #include <sys/stream.h>
30 #include <sys/strsun.h>
31 #include <sys/strsubr.h>
32 #include <sys/stropts.h>
33 #include <sys/strlog.h>
34 #include <sys/strsun.h>
35 #define	_SUN_TPI_VERSION 2
36 #include <sys/tihdr.h>
37 #include <sys/timod.h>
38 #include <sys/ddi.h>
39 #include <sys/sunddi.h>
40 #include <sys/suntpi.h>
41 #include <sys/xti_inet.h>
42 #include <sys/cmn_err.h>
43 #include <sys/debug.h>
44 #include <sys/sdt.h>
45 #include <sys/vtrace.h>
46 #include <sys/kmem.h>
47 #include <sys/ethernet.h>
48 #include <sys/cpuvar.h>
49 #include <sys/dlpi.h>
50 #include <sys/multidata.h>
51 #include <sys/multidata_impl.h>
52 #include <sys/pattr.h>
53 #include <sys/policy.h>
54 #include <sys/priv.h>
55 #include <sys/zone.h>
56 #include <sys/sunldi.h>
57 
58 #include <sys/errno.h>
59 #include <sys/signal.h>
60 #include <sys/socket.h>
61 #include <sys/socketvar.h>
62 #include <sys/sockio.h>
63 #include <sys/isa_defs.h>
64 #include <sys/md5.h>
65 #include <sys/random.h>
66 #include <sys/sodirect.h>
67 #include <sys/uio.h>
68 #include <sys/systm.h>
69 #include <netinet/in.h>
70 #include <netinet/tcp.h>
71 #include <netinet/ip6.h>
72 #include <netinet/icmp6.h>
73 #include <net/if.h>
74 #include <net/route.h>
75 #include <inet/ipsec_impl.h>
76 
77 #include <inet/common.h>
78 #include <inet/ip.h>
79 #include <inet/ip_impl.h>
80 #include <inet/ip6.h>
81 #include <inet/ip_ndp.h>
82 #include <inet/proto_set.h>
83 #include <inet/mib2.h>
84 #include <inet/nd.h>
85 #include <inet/optcom.h>
86 #include <inet/snmpcom.h>
87 #include <inet/kstatcom.h>
88 #include <inet/tcp.h>
89 #include <inet/tcp_impl.h>
90 #include <net/pfkeyv2.h>
91 #include <inet/ipsec_info.h>
92 #include <inet/ipdrop.h>
93 
94 #include <inet/ipclassifier.h>
95 #include <inet/ip_ire.h>
96 #include <inet/ip_ftable.h>
97 #include <inet/ip_if.h>
98 #include <inet/ipp_common.h>
99 #include <inet/ip_netinfo.h>
100 #include <sys/squeue_impl.h>
101 #include <sys/squeue.h>
102 #include <inet/kssl/ksslapi.h>
103 #include <sys/tsol/label.h>
104 #include <sys/tsol/tnet.h>
105 #include <rpc/pmap_prot.h>
106 #include <sys/callo.h>
107 
108 /*
109  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
110  *
111  * (Read the detailed design doc in PSARC case directory)
112  *
113  * The entire tcp state is contained in tcp_t and conn_t structure
114  * which are allocated in tandem using ipcl_conn_create() and passing
115  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
116  * the references on the tcp_t. The tcp_t structure is never compressed
117  * and packets always land on the correct TCP perimeter from the time
118  * eager is created till the time tcp_t dies (as such the old mentat
119  * TCP global queue is not used for detached state and no IPSEC checking
120  * is required). The global queue is still allocated to send out resets
121  * for connection which have no listeners and IP directly calls
122  * tcp_xmit_listeners_reset() which does any policy check.
123  *
124  * Protection and Synchronisation mechanism:
125  *
126  * The tcp data structure does not use any kind of lock for protecting
127  * its state but instead uses 'squeues' for mutual exclusion from various
128  * read and write side threads. To access a tcp member, the thread should
129  * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS,
130  * or SQ_NODRAIN). Since the squeues allow a direct function call, caller
131  * can pass any tcp function having prototype of edesc_t as argument
132  * (different from traditional STREAMs model where packets come in only
133  * designated entry points). The list of functions that can be directly
134  * called via squeue are listed before the usual function prototype.
135  *
136  * Referencing:
137  *
138  * TCP is MT-Hot and we use a reference based scheme to make sure that the
139  * tcp structure doesn't disappear when its needed. When the application
140  * creates an outgoing connection or accepts an incoming connection, we
141  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
142  * The IP reference is just a symbolic reference since ip_tcpclose()
143  * looks at tcp structure after tcp_close_output() returns which could
144  * have dropped the last TCP reference. So as long as the connection is
145  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
146  * conn_t. The classifier puts its own reference when the connection is
147  * inserted in listen or connected hash. Anytime a thread needs to enter
148  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
149  * on write side or by doing a classify on read side and then puts a
150  * reference on the conn before doing squeue_enter/tryenter/fill. For
151  * read side, the classifier itself puts the reference under fanout lock
152  * to make sure that tcp can't disappear before it gets processed. The
153  * squeue will drop this reference automatically so the called function
154  * doesn't have to do a DEC_REF.
155  *
156  * Opening a new connection:
157  *
158  * The outgoing connection open is pretty simple. tcp_open() does the
159  * work in creating the conn/tcp structure and initializing it. The
160  * squeue assignment is done based on the CPU the application
161  * is running on. So for outbound connections, processing is always done
162  * on application CPU which might be different from the incoming CPU
163  * being interrupted by the NIC. An optimal way would be to figure out
164  * the NIC <-> CPU binding at listen time, and assign the outgoing
165  * connection to the squeue attached to the CPU that will be interrupted
166  * for incoming packets (we know the NIC based on the bind IP address).
167  * This might seem like a problem if more data is going out but the
168  * fact is that in most cases the transmit is ACK driven transmit where
169  * the outgoing data normally sits on TCP's xmit queue waiting to be
170  * transmitted.
171  *
172  * Accepting a connection:
173  *
174  * This is a more interesting case because of various races involved in
175  * establishing a eager in its own perimeter. Read the meta comment on
176  * top of tcp_conn_request(). But briefly, the squeue is picked by
177  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
178  *
179  * Closing a connection:
180  *
181  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
182  * via squeue to do the close and mark the tcp as detached if the connection
183  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
184  * reference but tcp_close() drop IP's reference always. So if tcp was
185  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
186  * and 1 because it is in classifier's connected hash. This is the condition
187  * we use to determine that its OK to clean up the tcp outside of squeue
188  * when time wait expires (check the ref under fanout and conn_lock and
189  * if it is 2, remove it from fanout hash and kill it).
190  *
191  * Although close just drops the necessary references and marks the
192  * tcp_detached state, tcp_close needs to know the tcp_detached has been
193  * set (under squeue) before letting the STREAM go away (because a
194  * inbound packet might attempt to go up the STREAM while the close
195  * has happened and tcp_detached is not set). So a special lock and
196  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
197  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
198  * tcp_detached.
199  *
200  * Special provisions and fast paths:
201  *
202  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
203  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
204  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
205  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
206  * check to send packets directly to tcp_rput_data via squeue. Everyone
207  * else comes through tcp_input() on the read side.
208  *
209  * We also make special provisions for sockfs by marking tcp_issocket
210  * whenever we have only sockfs on top of TCP. This allows us to skip
211  * putting the tcp in acceptor hash since a sockfs listener can never
212  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
213  * since eager has already been allocated and the accept now happens
214  * on acceptor STREAM. There is a big blob of comment on top of
215  * tcp_conn_request explaining the new accept. When socket is POP'd,
216  * sockfs sends us an ioctl to mark the fact and we go back to old
217  * behaviour. Once tcp_issocket is unset, its never set for the
218  * life of that connection.
219  *
220  * In support of on-board asynchronous DMA hardware (e.g. Intel I/OAT)
221  * two consoldiation private KAPIs are used to enqueue M_DATA mblk_t's
222  * directly to the socket (sodirect) and start an asynchronous copyout
223  * to a user-land receive-side buffer (uioa) when a blocking socket read
224  * (e.g. read, recv, ...) is pending.
225  *
226  * This is accomplished when tcp_issocket is set and tcp_sodirect is not
227  * NULL so points to an sodirect_t and if marked enabled then we enqueue
228  * all mblk_t's directly to the socket.
229  *
230  * Further, if the sodirect_t sod_uioa and if marked enabled (due to a
231  * blocking socket read, e.g. user-land read, recv, ...) then an asynchronous
232  * copyout will be started directly to the user-land uio buffer. Also, as we
233  * have a pending read, TCP's push logic can take into account the number of
234  * bytes to be received and only awake the blocked read()er when the uioa_t
235  * byte count has been satisfied.
236  *
237  * IPsec notes :
238  *
239  * Since a packet is always executed on the correct TCP perimeter
240  * all IPsec processing is defered to IP including checking new
241  * connections and setting IPSEC policies for new connection. The
242  * only exception is tcp_xmit_listeners_reset() which is called
243  * directly from IP and needs to policy check to see if TH_RST
244  * can be sent out.
245  *
246  * PFHooks notes :
247  *
248  * For mdt case, one meta buffer contains multiple packets. Mblks for every
249  * packet are assembled and passed to the hooks. When packets are blocked,
250  * or boundary of any packet is changed, the mdt processing is stopped, and
251  * packets of the meta buffer are send to the IP path one by one.
252  */
253 
254 /*
255  * Values for squeue switch:
256  * 1: SQ_NODRAIN
257  * 2: SQ_PROCESS
258  * 3: SQ_FILL
259  */
260 int tcp_squeue_wput = 2;	/* /etc/systems */
261 int tcp_squeue_flag;
262 
263 /*
264  * Macros for sodirect:
265  *
266  * SOD_PTR_ENTER(tcp, sodp) - for the tcp_t pointer "tcp" set the
267  * sodirect_t pointer "sodp" to the socket/tcp shared sodirect_t
268  * if it exists and is enabled, else to NULL. Note, in the current
269  * sodirect implementation the sod_lockp must not be held across any
270  * STREAMS call (e.g. putnext) else a "recursive mutex_enter" PANIC
271  * will result as sod_lockp is the streamhead stdata.sd_lock.
272  *
273  * SOD_NOT_ENABLED(tcp) - return true if not a sodirect tcp_t or the
274  * sodirect_t isn't enabled, usefull for ASSERT()ing that a recieve
275  * side tcp code path dealing with a tcp_rcv_list or putnext() isn't
276  * being used when sodirect code paths should be.
277  */
278 
279 #define	SOD_PTR_ENTER(tcp, sodp)					\
280 	(sodp) = (tcp)->tcp_sodirect;					\
281 									\
282 	if ((sodp) != NULL) {						\
283 		mutex_enter((sodp)->sod_lockp);				\
284 		if (!((sodp)->sod_state & SOD_ENABLED)) {		\
285 			mutex_exit((sodp)->sod_lockp);			\
286 			(sodp) = NULL;					\
287 		}							\
288 	}
289 
290 #define	SOD_NOT_ENABLED(tcp)						\
291 	((tcp)->tcp_sodirect == NULL ||					\
292 	    !((tcp)->tcp_sodirect->sod_state & SOD_ENABLED))
293 
294 /*
295  * This controls how tiny a write must be before we try to copy it
296  * into the the mblk on the tail of the transmit queue.  Not much
297  * speedup is observed for values larger than sixteen.  Zero will
298  * disable the optimisation.
299  */
300 int tcp_tx_pull_len = 16;
301 
302 /*
303  * TCP Statistics.
304  *
305  * How TCP statistics work.
306  *
307  * There are two types of statistics invoked by two macros.
308  *
309  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
310  * supposed to be used in non MT-hot paths of the code.
311  *
312  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
313  * supposed to be used for DEBUG purposes and may be used on a hot path.
314  *
315  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
316  * (use "kstat tcp" to get them).
317  *
318  * There is also additional debugging facility that marks tcp_clean_death()
319  * instances and saves them in tcp_t structure. It is triggered by
320  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
321  * tcp_clean_death() calls that counts the number of times each tag was hit. It
322  * is triggered by TCP_CLD_COUNTERS define.
323  *
324  * How to add new counters.
325  *
326  * 1) Add a field in the tcp_stat structure describing your counter.
327  * 2) Add a line in the template in tcp_kstat2_init() with the name
328  *    of the counter.
329  *
330  *    IMPORTANT!! - make sure that both are in sync !!
331  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
332  *
333  * Please avoid using private counters which are not kstat-exported.
334  *
335  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
336  * in tcp_t structure.
337  *
338  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
339  */
340 
341 #ifndef TCP_DEBUG_COUNTER
342 #ifdef DEBUG
343 #define	TCP_DEBUG_COUNTER 1
344 #else
345 #define	TCP_DEBUG_COUNTER 0
346 #endif
347 #endif
348 
349 #define	TCP_CLD_COUNTERS 0
350 
351 #define	TCP_TAG_CLEAN_DEATH 1
352 #define	TCP_MAX_CLEAN_DEATH_TAG 32
353 
354 #ifdef lint
355 static int _lint_dummy_;
356 #endif
357 
358 #if TCP_CLD_COUNTERS
359 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
360 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
361 #elif defined(lint)
362 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
363 #else
364 #define	TCP_CLD_STAT(x)
365 #endif
366 
367 #if TCP_DEBUG_COUNTER
368 #define	TCP_DBGSTAT(tcps, x)	\
369 	atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1)
370 #define	TCP_G_DBGSTAT(x)	\
371 	atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1)
372 #elif defined(lint)
373 #define	TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0);
374 #define	TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
375 #else
376 #define	TCP_DBGSTAT(tcps, x)
377 #define	TCP_G_DBGSTAT(x)
378 #endif
379 
380 #define	TCP_G_STAT(x)	(tcp_g_statistics.x.value.ui64++)
381 
382 tcp_g_stat_t	tcp_g_statistics;
383 kstat_t		*tcp_g_kstat;
384 
385 /*
386  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
387  * tcp write side.
388  */
389 #define	CALL_IP_WPUT(connp, q, mp) {					\
390 	ASSERT(((q)->q_flag & QREADR) == 0);				\
391 	TCP_DBGSTAT(connp->conn_netstack->netstack_tcp, tcp_ip_output);	\
392 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
393 }
394 
395 /* Macros for timestamp comparisons */
396 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
397 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
398 
399 /*
400  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
401  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
402  * by adding three components: a time component which grows by 1 every 4096
403  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
404  * a per-connection component which grows by 125000 for every new connection;
405  * and an "extra" component that grows by a random amount centered
406  * approximately on 64000.  This causes the the ISS generator to cycle every
407  * 4.89 hours if no TCP connections are made, and faster if connections are
408  * made.
409  *
410  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
411  * components: a time component which grows by 250000 every second; and
412  * a per-connection component which grows by 125000 for every new connections.
413  *
414  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
415  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
416  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
417  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
418  * password.
419  */
420 #define	ISS_INCR	250000
421 #define	ISS_NSEC_SHT	12
422 
423 static sin_t	sin_null;	/* Zero address for quick clears */
424 static sin6_t	sin6_null;	/* Zero address for quick clears */
425 
426 /*
427  * This implementation follows the 4.3BSD interpretation of the urgent
428  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
429  * incompatible changes in protocols like telnet and rlogin.
430  */
431 #define	TCP_OLD_URP_INTERPRETATION	1
432 
433 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
434 	(TCP_IS_DETACHED(tcp) && \
435 	    (!(tcp)->tcp_hard_binding))
436 
437 /*
438  * TCP reassembly macros.  We hide starting and ending sequence numbers in
439  * b_next and b_prev of messages on the reassembly queue.  The messages are
440  * chained using b_cont.  These macros are used in tcp_reass() so we don't
441  * have to see the ugly casts and assignments.
442  */
443 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
444 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
445 					(mblk_t *)(uintptr_t)(u))
446 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
447 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
448 					(mblk_t *)(uintptr_t)(u))
449 
450 /*
451  * Implementation of TCP Timers.
452  * =============================
453  *
454  * INTERFACE:
455  *
456  * There are two basic functions dealing with tcp timers:
457  *
458  *	timeout_id_t	tcp_timeout(connp, func, time)
459  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
460  *	TCP_TIMER_RESTART(tcp, intvl)
461  *
462  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
463  * after 'time' ticks passed. The function called by timeout() must adhere to
464  * the same restrictions as a driver soft interrupt handler - it must not sleep
465  * or call other functions that might sleep. The value returned is the opaque
466  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
467  * cancel the request. The call to tcp_timeout() may fail in which case it
468  * returns zero. This is different from the timeout(9F) function which never
469  * fails.
470  *
471  * The call-back function 'func' always receives 'connp' as its single
472  * argument. It is always executed in the squeue corresponding to the tcp
473  * structure. The tcp structure is guaranteed to be present at the time the
474  * call-back is called.
475  *
476  * NOTE: The call-back function 'func' is never called if tcp is in
477  * 	the TCPS_CLOSED state.
478  *
479  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
480  * request. locks acquired by the call-back routine should not be held across
481  * the call to tcp_timeout_cancel() or a deadlock may result.
482  *
483  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
484  * Otherwise, it returns an integer value greater than or equal to 0. In
485  * particular, if the call-back function is already placed on the squeue, it can
486  * not be canceled.
487  *
488  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
489  * 	within squeue context corresponding to the tcp instance. Since the
490  *	call-back is also called via the same squeue, there are no race
491  *	conditions described in untimeout(9F) manual page since all calls are
492  *	strictly serialized.
493  *
494  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
495  *	stored in tcp_timer_tid and starts a new one using
496  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
497  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
498  *	field.
499  *
500  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
501  *	call-back may still be called, so it is possible tcp_timer() will be
502  *	called several times. This should not be a problem since tcp_timer()
503  *	should always check the tcp instance state.
504  *
505  *
506  * IMPLEMENTATION:
507  *
508  * TCP timers are implemented using three-stage process. The call to
509  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
510  * when the timer expires. The tcp_timer_callback() arranges the call of the
511  * tcp_timer_handler() function via squeue corresponding to the tcp
512  * instance. The tcp_timer_handler() calls actual requested timeout call-back
513  * and passes tcp instance as an argument to it. Information is passed between
514  * stages using the tcp_timer_t structure which contains the connp pointer, the
515  * tcp call-back to call and the timeout id returned by the timeout(9F).
516  *
517  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
518  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
519  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
520  * returns the pointer to this mblk.
521  *
522  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
523  * looks like a normal mblk without actual dblk attached to it.
524  *
525  * To optimize performance each tcp instance holds a small cache of timer
526  * mblocks. In the current implementation it caches up to two timer mblocks per
527  * tcp instance. The cache is preserved over tcp frees and is only freed when
528  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
529  * timer processing happens on a corresponding squeue, the cache manipulation
530  * does not require any locks. Experiments show that majority of timer mblocks
531  * allocations are satisfied from the tcp cache and do not involve kmem calls.
532  *
533  * The tcp_timeout() places a refhold on the connp instance which guarantees
534  * that it will be present at the time the call-back function fires. The
535  * tcp_timer_handler() drops the reference after calling the call-back, so the
536  * call-back function does not need to manipulate the references explicitly.
537  */
538 
539 typedef struct tcp_timer_s {
540 	conn_t	*connp;
541 	void 	(*tcpt_proc)(void *);
542 	callout_id_t   tcpt_tid;
543 } tcp_timer_t;
544 
545 static kmem_cache_t *tcp_timercache;
546 kmem_cache_t	*tcp_sack_info_cache;
547 kmem_cache_t	*tcp_iphc_cache;
548 
549 /*
550  * For scalability, we must not run a timer for every TCP connection
551  * in TIME_WAIT state.  To see why, consider (for time wait interval of
552  * 4 minutes):
553  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
554  *
555  * This list is ordered by time, so you need only delete from the head
556  * until you get to entries which aren't old enough to delete yet.
557  * The list consists of only the detached TIME_WAIT connections.
558  *
559  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
560  * becomes detached TIME_WAIT (either by changing the state and already
561  * being detached or the other way around). This means that the TIME_WAIT
562  * state can be extended (up to doubled) if the connection doesn't become
563  * detached for a long time.
564  *
565  * The list manipulations (including tcp_time_wait_next/prev)
566  * are protected by the tcp_time_wait_lock. The content of the
567  * detached TIME_WAIT connections is protected by the normal perimeters.
568  *
569  * This list is per squeue and squeues are shared across the tcp_stack_t's.
570  * Things on tcp_time_wait_head remain associated with the tcp_stack_t
571  * and conn_netstack.
572  * The tcp_t's that are added to tcp_free_list are disassociated and
573  * have NULL tcp_tcps and conn_netstack pointers.
574  */
575 typedef struct tcp_squeue_priv_s {
576 	kmutex_t	tcp_time_wait_lock;
577 	callout_id_t	tcp_time_wait_tid;
578 	tcp_t		*tcp_time_wait_head;
579 	tcp_t		*tcp_time_wait_tail;
580 	tcp_t		*tcp_free_list;
581 	uint_t		tcp_free_list_cnt;
582 } tcp_squeue_priv_t;
583 
584 /*
585  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
586  * Running it every 5 seconds seems to give the best results.
587  */
588 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
589 
590 /*
591  * To prevent memory hog, limit the number of entries in tcp_free_list
592  * to 1% of available memory / number of cpus
593  */
594 uint_t tcp_free_list_max_cnt = 0;
595 
596 #define	TCP_XMIT_LOWATER	4096
597 #define	TCP_XMIT_HIWATER	49152
598 #define	TCP_RECV_LOWATER	2048
599 #define	TCP_RECV_HIWATER	49152
600 
601 /*
602  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
603  */
604 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
605 
606 #define	TIDUSZ	4096	/* transport interface data unit size */
607 
608 /*
609  * Bind hash list size and has function.  It has to be a power of 2 for
610  * hashing.
611  */
612 #define	TCP_BIND_FANOUT_SIZE	512
613 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
614 /*
615  * Size of listen and acceptor hash list.  It has to be a power of 2 for
616  * hashing.
617  */
618 #define	TCP_FANOUT_SIZE		256
619 
620 #ifdef	_ILP32
621 #define	TCP_ACCEPTOR_HASH(accid)					\
622 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
623 #else
624 #define	TCP_ACCEPTOR_HASH(accid)					\
625 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
626 #endif	/* _ILP32 */
627 
628 #define	IP_ADDR_CACHE_SIZE	2048
629 #define	IP_ADDR_CACHE_HASH(faddr)					\
630 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
631 
632 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */
633 #define	TCP_HSP_HASH_SIZE 256
634 
635 #define	TCP_HSP_HASH(addr)					\
636 	(((addr>>24) ^ (addr >>16) ^			\
637 	    (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE)
638 
639 /*
640  * TCP options struct returned from tcp_parse_options.
641  */
642 typedef struct tcp_opt_s {
643 	uint32_t	tcp_opt_mss;
644 	uint32_t	tcp_opt_wscale;
645 	uint32_t	tcp_opt_ts_val;
646 	uint32_t	tcp_opt_ts_ecr;
647 	tcp_t		*tcp;
648 } tcp_opt_t;
649 
650 /*
651  * TCP option struct passing information b/w lisenter and eager.
652  */
653 struct tcp_options {
654 	uint_t			to_flags;
655 	ssize_t			to_boundif;	/* IPV6_BOUND_IF */
656 	sock_upper_handle_t	to_handle;
657 };
658 
659 #define	TCPOPT_BOUNDIF		0x00000001	/* set IPV6_BOUND_IF */
660 #define	TCPOPT_RECVPKTINFO	0x00000002	/* set IPV6_RECVPKTINFO */
661 #define	TCPOPT_UPPERHANDLE	0x00000004	/* set upper handle */
662 
663 /*
664  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
665  */
666 
667 #ifdef _BIG_ENDIAN
668 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
669 	(TCPOPT_TSTAMP << 8) | 10)
670 #else
671 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
672 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
673 #endif
674 
675 /*
676  * Flags returned from tcp_parse_options.
677  */
678 #define	TCP_OPT_MSS_PRESENT	1
679 #define	TCP_OPT_WSCALE_PRESENT	2
680 #define	TCP_OPT_TSTAMP_PRESENT	4
681 #define	TCP_OPT_SACK_OK_PRESENT	8
682 #define	TCP_OPT_SACK_PRESENT	16
683 
684 /* TCP option length */
685 #define	TCPOPT_NOP_LEN		1
686 #define	TCPOPT_MAXSEG_LEN	4
687 #define	TCPOPT_WS_LEN		3
688 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
689 #define	TCPOPT_TSTAMP_LEN	10
690 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
691 #define	TCPOPT_SACK_OK_LEN	2
692 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
693 #define	TCPOPT_REAL_SACK_LEN	4
694 #define	TCPOPT_MAX_SACK_LEN	36
695 #define	TCPOPT_HEADER_LEN	2
696 
697 /* TCP cwnd burst factor. */
698 #define	TCP_CWND_INFINITE	65535
699 #define	TCP_CWND_SS		3
700 #define	TCP_CWND_NORMAL		5
701 
702 /* Maximum TCP initial cwin (start/restart). */
703 #define	TCP_MAX_INIT_CWND	8
704 
705 /*
706  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
707  * either tcp_slow_start_initial or tcp_slow_start_after idle
708  * depending on the caller.  If the upper layer has not used the
709  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
710  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
711  * If the upper layer has changed set the tcp_init_cwnd, just use
712  * it to calculate the tcp_cwnd.
713  */
714 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
715 {									\
716 	if ((tcp)->tcp_init_cwnd == 0) {				\
717 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
718 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
719 	} else {							\
720 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
721 	}								\
722 	tcp->tcp_cwnd_cnt = 0;						\
723 }
724 
725 /* TCP Timer control structure */
726 typedef struct tcpt_s {
727 	pfv_t	tcpt_pfv;	/* The routine we are to call */
728 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
729 } tcpt_t;
730 
731 /* Host Specific Parameter structure */
732 typedef struct tcp_hsp {
733 	struct tcp_hsp	*tcp_hsp_next;
734 	in6_addr_t	tcp_hsp_addr_v6;
735 	in6_addr_t	tcp_hsp_subnet_v6;
736 	uint_t		tcp_hsp_vers;	/* IPV4_VERSION | IPV6_VERSION */
737 	int32_t		tcp_hsp_sendspace;
738 	int32_t		tcp_hsp_recvspace;
739 	int32_t		tcp_hsp_tstamp;
740 } tcp_hsp_t;
741 #define	tcp_hsp_addr	V4_PART_OF_V6(tcp_hsp_addr_v6)
742 #define	tcp_hsp_subnet	V4_PART_OF_V6(tcp_hsp_subnet_v6)
743 
744 /*
745  * Functions called directly via squeue having a prototype of edesc_t.
746  */
747 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
748 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
749 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
750 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
751 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
752 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
753 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
754 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
755 void		tcp_output(void *arg, mblk_t *mp, void *arg2);
756 void		tcp_output_urgent(void *arg, mblk_t *mp, void *arg2);
757 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
758 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
759 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2);
760 
761 
762 /* Prototype for TCP functions */
763 static void	tcp_random_init(void);
764 int		tcp_random(void);
765 static void	tcp_tli_accept(tcp_t *tcp, mblk_t *mp);
766 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
767 		    tcp_t *eager);
768 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
769 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
770     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
771     boolean_t user_specified);
772 static void	tcp_closei_local(tcp_t *tcp);
773 static void	tcp_close_detached(tcp_t *tcp);
774 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
775 			mblk_t *idmp, mblk_t **defermp);
776 static void	tcp_tpi_connect(tcp_t *tcp, mblk_t *mp);
777 static int	tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp,
778 		    in_port_t dstport, uint_t srcid, cred_t *cr, pid_t pid);
779 static int 	tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp,
780 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
781 		    uint32_t scope_id, cred_t *cr, pid_t pid);
782 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
783 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
784 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
785 static char	*tcp_display(tcp_t *tcp, char *, char);
786 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
787 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
788 static void	tcp_eager_unlink(tcp_t *tcp);
789 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
790 		    int unixerr);
791 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
792 		    int tlierr, int unixerr);
793 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
794 		    cred_t *cr);
795 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
796 		    char *value, caddr_t cp, cred_t *cr);
797 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
798 		    char *value, caddr_t cp, cred_t *cr);
799 static int	tcp_tpistate(tcp_t *tcp);
800 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
801     int caller_holds_lock);
802 static void	tcp_bind_hash_remove(tcp_t *tcp);
803 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *);
804 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
805 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
806 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
807 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
808 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
809 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
810 void		tcp_g_q_setup(tcp_stack_t *);
811 void		tcp_g_q_create(tcp_stack_t *);
812 void		tcp_g_q_destroy(tcp_stack_t *);
813 static int	tcp_header_init_ipv4(tcp_t *tcp);
814 static int	tcp_header_init_ipv6(tcp_t *tcp);
815 int		tcp_init(tcp_t *tcp, queue_t *q);
816 static int	tcp_init_values(tcp_t *tcp);
817 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
818 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
819 static void	tcp_ip_notify(tcp_t *tcp);
820 static mblk_t	*tcp_ire_mp(mblk_t **mpp);
821 static void	tcp_iss_init(tcp_t *tcp);
822 static void	tcp_keepalive_killer(void *arg);
823 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
824 static void	tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss);
825 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
826 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
827 static boolean_t tcp_allow_connopt_set(int level, int name);
828 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
829 int		tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
830 int		tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level,
831 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
832 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
833 		    mblk_t *mblk);
834 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
835 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
836 		    uchar_t *ptr, uint_t len);
837 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
838 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt,
839     tcp_stack_t *);
840 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
841 		    caddr_t cp, cred_t *cr);
842 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
843 		    caddr_t cp, cred_t *cr);
844 static void	tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *);
845 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
846 		    caddr_t cp, cred_t *cr);
847 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
848 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
849 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
850 static void	tcp_reinit(tcp_t *tcp);
851 static void	tcp_reinit_values(tcp_t *tcp);
852 static void	tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval,
853 		    tcp_t *thisstream, cred_t *cr);
854 
855 static uint_t	tcp_rwnd_reopen(tcp_t *tcp);
856 static uint_t	tcp_rcv_drain(tcp_t *tcp);
857 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
858 static boolean_t tcp_send_rst_chk(tcp_stack_t *);
859 static void	tcp_ss_rexmit(tcp_t *tcp);
860 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
861 static void	tcp_process_options(tcp_t *, tcph_t *);
862 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
863 static void	tcp_rsrv(queue_t *q);
864 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
865 static int	tcp_snmp_state(tcp_t *tcp);
866 static int	tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
867 		    cred_t *cr);
868 static int	tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
869 		    cred_t *cr);
870 static int	tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
871 		    cred_t *cr);
872 static int	tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
873 		    cred_t *cr);
874 static int	tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
875 		    cred_t *cr);
876 static void	tcp_timer(void *arg);
877 static void	tcp_timer_callback(void *);
878 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
879     boolean_t random);
880 static in_port_t tcp_get_next_priv_port(const tcp_t *);
881 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
882 static void	tcp_wput_fallback(queue_t *q, mblk_t *mp);
883 void		tcp_tpi_accept(queue_t *q, mblk_t *mp);
884 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
885 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
886 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
887 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
888 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
889 		    const int num_sack_blk, int *usable, uint_t *snxt,
890 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
891 		    const int mdt_thres);
892 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
893 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
894 		    const int num_sack_blk, int *usable, uint_t *snxt,
895 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
896 		    const int mdt_thres);
897 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
898 		    int num_sack_blk);
899 static void	tcp_wsrv(queue_t *q);
900 static int	tcp_xmit_end(tcp_t *tcp);
901 static void	tcp_ack_timer(void *arg);
902 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
903 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
904 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len,
905 		    zoneid_t zoneid, tcp_stack_t *, conn_t *connp);
906 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
907 		    uint32_t ack, int ctl);
908 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *);
909 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr, tcp_stack_t *);
910 static int	setmaxps(queue_t *q, int maxpsz);
911 static void	tcp_set_rto(tcp_t *, time_t);
912 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
913 		    boolean_t, boolean_t);
914 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
915 		    boolean_t ipsec_mctl);
916 static int	tcp_build_hdrs(tcp_t *);
917 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
918 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
919 		    tcph_t *tcph);
920 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
921 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
922 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
923 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
924 		    const boolean_t, const uint32_t, const uint32_t,
925 		    const uint32_t, const uint32_t, tcp_stack_t *);
926 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
927 		    const uint_t, const uint_t, boolean_t *);
928 static mblk_t	*tcp_lso_info_mp(mblk_t *);
929 static void	tcp_lso_update(tcp_t *, ill_lso_capab_t *);
930 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
931 extern mblk_t	*tcp_timermp_alloc(int);
932 extern void	tcp_timermp_free(tcp_t *);
933 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
934 static void	tcp_stop_lingering(tcp_t *tcp);
935 static void	tcp_close_linger_timeout(void *arg);
936 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
937 static void	tcp_stack_shutdown(netstackid_t stackid, void *arg);
938 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
939 static void	*tcp_g_kstat_init(tcp_g_stat_t *);
940 static void	tcp_g_kstat_fini(kstat_t *);
941 static void	*tcp_kstat_init(netstackid_t, tcp_stack_t *);
942 static void	tcp_kstat_fini(netstackid_t, kstat_t *);
943 static void	*tcp_kstat2_init(netstackid_t, tcp_stat_t *);
944 static void	tcp_kstat2_fini(netstackid_t, kstat_t *);
945 static int	tcp_kstat_update(kstat_t *kp, int rw);
946 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
947 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
948 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
949 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
950 			tcph_t *tcph, mblk_t *idmp);
951 static int	tcp_squeue_switch(int);
952 
953 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
954 static int	tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
955 static int	tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
956 static int	tcp_tpi_close(queue_t *, int);
957 static int	tcpclose_accept(queue_t *);
958 
959 static void	tcp_squeue_add(squeue_t *);
960 static boolean_t tcp_zcopy_check(tcp_t *);
961 static void	tcp_zcopy_notify(tcp_t *);
962 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
963 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
964 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
965 
966 extern void	tcp_kssl_input(tcp_t *, mblk_t *);
967 
968 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2);
969 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2);
970 
971 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t,
972 	    sock_upper_handle_t, cred_t *);
973 static int tcp_listen(sock_lower_handle_t, int, cred_t *);
974 static int tcp_post_ip_bind(tcp_t *, mblk_t *, int);
975 static int tcp_do_listen(conn_t *, int, cred_t *);
976 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t,
977     cred_t *, pid_t);
978 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *,
979     boolean_t);
980 static int tcp_do_unbind(conn_t *);
981 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *,
982     boolean_t);
983 
984 /*
985  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
986  *
987  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
988  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
989  * (defined in tcp.h) needs to be filled in and passed into the kernel
990  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
991  * structure contains the four-tuple of a TCP connection and a range of TCP
992  * states (specified by ac_start and ac_end). The use of wildcard addresses
993  * and ports is allowed. Connections with a matching four tuple and a state
994  * within the specified range will be aborted. The valid states for the
995  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
996  * inclusive.
997  *
998  * An application which has its connection aborted by this ioctl will receive
999  * an error that is dependent on the connection state at the time of the abort.
1000  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
1001  * though a RST packet has been received.  If the connection state is equal to
1002  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
1003  * and all resources associated with the connection will be freed.
1004  */
1005 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
1006 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
1007 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
1008 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps);
1009 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
1010 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
1011     boolean_t, tcp_stack_t *);
1012 
1013 static struct module_info tcp_rinfo =  {
1014 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
1015 };
1016 
1017 static struct module_info tcp_winfo =  {
1018 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
1019 };
1020 
1021 /*
1022  * Entry points for TCP as a device. The normal case which supports
1023  * the TCP functionality.
1024  * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
1025  */
1026 struct qinit tcp_rinitv4 = {
1027 	NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo
1028 };
1029 
1030 struct qinit tcp_rinitv6 = {
1031 	NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo
1032 };
1033 
1034 struct qinit tcp_winit = {
1035 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1036 };
1037 
1038 /* Initial entry point for TCP in socket mode. */
1039 struct qinit tcp_sock_winit = {
1040 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1041 };
1042 
1043 /* TCP entry point during fallback */
1044 struct qinit tcp_fallback_sock_winit = {
1045 	(pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo
1046 };
1047 
1048 /*
1049  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
1050  * an accept. Avoid allocating data structures since eager has already
1051  * been created.
1052  */
1053 struct qinit tcp_acceptor_rinit = {
1054 	NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo
1055 };
1056 
1057 struct qinit tcp_acceptor_winit = {
1058 	(pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo
1059 };
1060 
1061 /*
1062  * Entry points for TCP loopback (read side only)
1063  * The open routine is only used for reopens, thus no need to
1064  * have a separate one for tcp_openv6.
1065  */
1066 struct qinit tcp_loopback_rinit = {
1067 	(pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, (pfi_t)0,
1068 	&tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD
1069 };
1070 
1071 /* For AF_INET aka /dev/tcp */
1072 struct streamtab tcpinfov4 = {
1073 	&tcp_rinitv4, &tcp_winit
1074 };
1075 
1076 /* For AF_INET6 aka /dev/tcp6 */
1077 struct streamtab tcpinfov6 = {
1078 	&tcp_rinitv6, &tcp_winit
1079 };
1080 
1081 sock_downcalls_t sock_tcp_downcalls;
1082 
1083 /*
1084  * Have to ensure that tcp_g_q_close is not done by an
1085  * interrupt thread.
1086  */
1087 static taskq_t *tcp_taskq;
1088 
1089 /* Setable only in /etc/system. Move to ndd? */
1090 boolean_t tcp_icmp_source_quench = B_FALSE;
1091 
1092 /*
1093  * Following assumes TPI alignment requirements stay along 32 bit
1094  * boundaries
1095  */
1096 #define	ROUNDUP32(x) \
1097 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1098 
1099 /* Template for response to info request. */
1100 static struct T_info_ack tcp_g_t_info_ack = {
1101 	T_INFO_ACK,		/* PRIM_type */
1102 	0,			/* TSDU_size */
1103 	T_INFINITE,		/* ETSDU_size */
1104 	T_INVALID,		/* CDATA_size */
1105 	T_INVALID,		/* DDATA_size */
1106 	sizeof (sin_t),		/* ADDR_size */
1107 	0,			/* OPT_size - not initialized here */
1108 	TIDUSZ,			/* TIDU_size */
1109 	T_COTS_ORD,		/* SERV_type */
1110 	TCPS_IDLE,		/* CURRENT_state */
1111 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1112 };
1113 
1114 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1115 	T_INFO_ACK,		/* PRIM_type */
1116 	0,			/* TSDU_size */
1117 	T_INFINITE,		/* ETSDU_size */
1118 	T_INVALID,		/* CDATA_size */
1119 	T_INVALID,		/* DDATA_size */
1120 	sizeof (sin6_t),	/* ADDR_size */
1121 	0,			/* OPT_size - not initialized here */
1122 	TIDUSZ,		/* TIDU_size */
1123 	T_COTS_ORD,		/* SERV_type */
1124 	TCPS_IDLE,		/* CURRENT_state */
1125 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1126 };
1127 
1128 #define	MS	1L
1129 #define	SECONDS	(1000 * MS)
1130 #define	MINUTES	(60 * SECONDS)
1131 #define	HOURS	(60 * MINUTES)
1132 #define	DAYS	(24 * HOURS)
1133 
1134 #define	PARAM_MAX (~(uint32_t)0)
1135 
1136 /* Max size IP datagram is 64k - 1 */
1137 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1138 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1139 /* Max of the above */
1140 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1141 
1142 /* Largest TCP port number */
1143 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1144 
1145 /*
1146  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1147  * layer header.  It has to be a multiple of 4.
1148  */
1149 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1150 #define	tcps_wroff_xtra	tcps_wroff_xtra_param->tcp_param_val
1151 
1152 /*
1153  * All of these are alterable, within the min/max values given, at run time.
1154  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1155  * per the TCP spec.
1156  */
1157 /* BEGIN CSTYLED */
1158 static tcpparam_t	lcl_tcp_param_arr[] = {
1159  /*min		max		value		name */
1160  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1161  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1162  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1163  { 1,		1024,		1,		"tcp_conn_req_min" },
1164  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1165  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1166  { 0,		10,		0,		"tcp_debug" },
1167  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1168  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1169  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1170  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1171  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1172  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1173  { 1,		255,		64,		"tcp_ipv4_ttl"},
1174  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1175  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1176  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1177  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1178  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1179  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1180  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1181  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1182  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1183  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1184  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1185  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1186  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1187  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1188  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1189  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1190  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1191  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1192  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1193  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1194  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1195  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1196  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1197 /*
1198  * Question:  What default value should I set for tcp_strong_iss?
1199  */
1200  { 0,		2,		1,		"tcp_strong_iss"},
1201  { 0,		65536,		20,		"tcp_rtt_updates"},
1202  { 0,		1,		1,		"tcp_wscale_always"},
1203  { 0,		1,		0,		"tcp_tstamp_always"},
1204  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1205  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1206  { 0,		16,		2,		"tcp_deferred_acks_max"},
1207  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1208  { 1,		4,		4,		"tcp_slow_start_initial"},
1209  { 0,		2,		2,		"tcp_sack_permitted"},
1210  { 0,		1,		1,		"tcp_compression_enabled"},
1211  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1212  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1213  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1214  { 0,		1,		0,		"tcp_rev_src_routes"},
1215  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1216  { 100*MS,	60*SECONDS,	1*SECONDS,	"tcp_ndd_get_info_interval"},
1217  { 0,		16,		8,		"tcp_local_dacks_max"},
1218  { 0,		2,		1,		"tcp_ecn_permitted"},
1219  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1220  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1221  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1222  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1223  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1224 };
1225 /* END CSTYLED */
1226 
1227 /*
1228  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1229  * each header fragment in the header buffer.  Each parameter value has
1230  * to be a multiple of 4 (32-bit aligned).
1231  */
1232 static tcpparam_t lcl_tcp_mdt_head_param =
1233 	{ 32, 256, 32, "tcp_mdt_hdr_head_min" };
1234 static tcpparam_t lcl_tcp_mdt_tail_param =
1235 	{ 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1236 #define	tcps_mdt_hdr_head_min	tcps_mdt_head_param->tcp_param_val
1237 #define	tcps_mdt_hdr_tail_min	tcps_mdt_tail_param->tcp_param_val
1238 
1239 /*
1240  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1241  * the maximum number of payload buffers associated per Multidata.
1242  */
1243 static tcpparam_t lcl_tcp_mdt_max_pbufs_param =
1244 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1245 #define	tcps_mdt_max_pbufs	tcps_mdt_max_pbufs_param->tcp_param_val
1246 
1247 /* Round up the value to the nearest mss. */
1248 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1249 
1250 /*
1251  * Set ECN capable transport (ECT) code point in IP header.
1252  *
1253  * Note that there are 2 ECT code points '01' and '10', which are called
1254  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1255  * point ECT(0) for TCP as described in RFC 2481.
1256  */
1257 #define	SET_ECT(tcp, iph) \
1258 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1259 		/* We need to clear the code point first. */ \
1260 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1261 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1262 	} else { \
1263 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1264 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1265 	}
1266 
1267 /*
1268  * The format argument to pass to tcp_display().
1269  * DISP_PORT_ONLY means that the returned string has only port info.
1270  * DISP_ADDR_AND_PORT means that the returned string also contains the
1271  * remote and local IP address.
1272  */
1273 #define	DISP_PORT_ONLY		1
1274 #define	DISP_ADDR_AND_PORT	2
1275 
1276 #define	NDD_TOO_QUICK_MSG \
1277 	"ndd get info rate too high for non-privileged users, try again " \
1278 	"later.\n"
1279 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
1280 
1281 #define	IS_VMLOANED_MBLK(mp) \
1282 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1283 
1284 
1285 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1286 boolean_t tcp_mdt_chain = B_TRUE;
1287 
1288 /*
1289  * MDT threshold in the form of effective send MSS multiplier; we take
1290  * the MDT path if the amount of unsent data exceeds the threshold value
1291  * (default threshold is 1*SMSS).
1292  */
1293 uint_t tcp_mdt_smss_threshold = 1;
1294 
1295 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1296 
1297 /*
1298  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
1299  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1300  * determined dynamically during tcp_adapt_ire(), which is the default.
1301  */
1302 boolean_t tcp_static_maxpsz = B_FALSE;
1303 
1304 /* Setable in /etc/system */
1305 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1306 uint32_t tcp_random_anon_port = 1;
1307 
1308 /*
1309  * To reach to an eager in Q0 which can be dropped due to an incoming
1310  * new SYN request when Q0 is full, a new doubly linked list is
1311  * introduced. This list allows to select an eager from Q0 in O(1) time.
1312  * This is needed to avoid spending too much time walking through the
1313  * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of
1314  * this new list has to be a member of Q0.
1315  * This list is headed by listener's tcp_t. When the list is empty,
1316  * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0,
1317  * of listener's tcp_t point to listener's tcp_t itself.
1318  *
1319  * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager
1320  * in the list. MAKE_UNDROPPABLE() takes the eager out of the list.
1321  * These macros do not affect the eager's membership to Q0.
1322  */
1323 
1324 
1325 #define	MAKE_DROPPABLE(listener, eager)					\
1326 	if ((eager)->tcp_eager_next_drop_q0 == NULL) {			\
1327 		(listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\
1328 		    = (eager);						\
1329 		(eager)->tcp_eager_prev_drop_q0 = (listener);		\
1330 		(eager)->tcp_eager_next_drop_q0 =			\
1331 		    (listener)->tcp_eager_next_drop_q0;			\
1332 		(listener)->tcp_eager_next_drop_q0 = (eager);		\
1333 	}
1334 
1335 #define	MAKE_UNDROPPABLE(eager)						\
1336 	if ((eager)->tcp_eager_next_drop_q0 != NULL) {			\
1337 		(eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0	\
1338 		    = (eager)->tcp_eager_prev_drop_q0;			\
1339 		(eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0	\
1340 		    = (eager)->tcp_eager_next_drop_q0;			\
1341 		(eager)->tcp_eager_prev_drop_q0 = NULL;			\
1342 		(eager)->tcp_eager_next_drop_q0 = NULL;			\
1343 	}
1344 
1345 /*
1346  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1347  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1348  * data, TCP will not respond with an ACK.  RFC 793 requires that
1349  * TCP responds with an ACK for such a bogus ACK.  By not following
1350  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1351  * an attacker successfully spoofs an acceptable segment to our
1352  * peer; or when our peer is "confused."
1353  */
1354 uint32_t tcp_drop_ack_unsent_cnt = 10;
1355 
1356 /*
1357  * Hook functions to enable cluster networking
1358  * On non-clustered systems these vectors must always be NULL.
1359  */
1360 
1361 void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol,
1362 			    sa_family_t addr_family, uint8_t *laddrp,
1363 			    in_port_t lport, void *args) = NULL;
1364 void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol,
1365 			    sa_family_t addr_family, uint8_t *laddrp,
1366 			    in_port_t lport, void *args) = NULL;
1367 
1368 int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol,
1369 			    boolean_t is_outgoing,
1370 			    sa_family_t addr_family,
1371 			    uint8_t *laddrp, in_port_t lport,
1372 			    uint8_t *faddrp, in_port_t fport,
1373 			    void *args) = NULL;
1374 
1375 void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol,
1376 			    sa_family_t addr_family, uint8_t *laddrp,
1377 			    in_port_t lport, uint8_t *faddrp,
1378 			    in_port_t fport, void *args) = NULL;
1379 
1380 /*
1381  * The following are defined in ip.c
1382  */
1383 extern int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol,
1384 			    sa_family_t addr_family, uint8_t *laddrp,
1385 			    void *args);
1386 extern uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol,
1387 			    sa_family_t addr_family, uint8_t *laddrp,
1388 			    uint8_t *faddrp, void *args);
1389 
1390 
1391 /*
1392  * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err)
1393  */
1394 #define	CL_INET_CONNECT(connp, tcp, is_outgoing, err) {		\
1395 	(err) = 0;						\
1396 	if (cl_inet_connect2 != NULL) {				\
1397 		/*						\
1398 		 * Running in cluster mode - register active connection	\
1399 		 * information						\
1400 		 */							\
1401 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1402 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1403 				(err) = (*cl_inet_connect2)(		\
1404 				    (connp)->conn_netstack->netstack_stackid,\
1405 				    IPPROTO_TCP, is_outgoing, AF_INET,	\
1406 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1407 				    (in_port_t)(tcp)->tcp_lport,	\
1408 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1409 				    (in_port_t)(tcp)->tcp_fport, NULL);	\
1410 			}						\
1411 		} else {						\
1412 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1413 			    &(tcp)->tcp_ip6h->ip6_src)) {		\
1414 				(err) = (*cl_inet_connect2)(		\
1415 				    (connp)->conn_netstack->netstack_stackid,\
1416 				    IPPROTO_TCP, is_outgoing, AF_INET6,	\
1417 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1418 				    (in_port_t)(tcp)->tcp_lport,	\
1419 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1420 				    (in_port_t)(tcp)->tcp_fport, NULL);	\
1421 			}						\
1422 		}							\
1423 	}								\
1424 }
1425 
1426 #define	CL_INET_DISCONNECT(connp, tcp)	{				\
1427 	if (cl_inet_disconnect != NULL) {				\
1428 		/*							\
1429 		 * Running in cluster mode - deregister active		\
1430 		 * connection information				\
1431 		 */							\
1432 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1433 			if ((tcp)->tcp_ip_src != 0) {			\
1434 				(*cl_inet_disconnect)(			\
1435 				    (connp)->conn_netstack->netstack_stackid,\
1436 				    IPPROTO_TCP, AF_INET,		\
1437 				    (uint8_t *)(&((tcp)->tcp_ip_src)),	\
1438 				    (in_port_t)(tcp)->tcp_lport,	\
1439 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1440 				    (in_port_t)(tcp)->tcp_fport, NULL);	\
1441 			}						\
1442 		} else {						\
1443 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1444 			    &(tcp)->tcp_ip_src_v6)) {			\
1445 				(*cl_inet_disconnect)(			\
1446 				    (connp)->conn_netstack->netstack_stackid,\
1447 				    IPPROTO_TCP, AF_INET6,		\
1448 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1449 				    (in_port_t)(tcp)->tcp_lport,	\
1450 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1451 				    (in_port_t)(tcp)->tcp_fport, NULL);	\
1452 			}						\
1453 		}							\
1454 	}								\
1455 }
1456 
1457 /*
1458  * Cluster networking hook for traversing current connection list.
1459  * This routine is used to extract the current list of live connections
1460  * which must continue to to be dispatched to this node.
1461  */
1462 int cl_tcp_walk_list(netstackid_t stack_id,
1463     int (*callback)(cl_tcp_info_t *, void *), void *arg);
1464 
1465 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *),
1466     void *arg, tcp_stack_t *tcps);
1467 
1468 #define	DTRACE_IP_FASTPATH(mp, iph, ill, ipha, ip6h) 			\
1469 	DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *,	\
1470 	    iph, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha,		\
1471 	    ip6_t *, ip6h, int, 0);
1472 
1473 /*
1474  * Figure out the value of window scale opton.  Note that the rwnd is
1475  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1476  * We cannot find the scale value and then do a round up of tcp_rwnd
1477  * because the scale value may not be correct after that.
1478  *
1479  * Set the compiler flag to make this function inline.
1480  */
1481 static void
1482 tcp_set_ws_value(tcp_t *tcp)
1483 {
1484 	int i;
1485 	uint32_t rwnd = tcp->tcp_rwnd;
1486 
1487 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1488 	    i++, rwnd >>= 1)
1489 		;
1490 	tcp->tcp_rcv_ws = i;
1491 }
1492 
1493 /*
1494  * Remove a connection from the list of detached TIME_WAIT connections.
1495  * It returns B_FALSE if it can't remove the connection from the list
1496  * as the connection has already been removed from the list due to an
1497  * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE.
1498  */
1499 static boolean_t
1500 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1501 {
1502 	boolean_t	locked = B_FALSE;
1503 
1504 	if (tcp_time_wait == NULL) {
1505 		tcp_time_wait = *((tcp_squeue_priv_t **)
1506 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1507 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1508 		locked = B_TRUE;
1509 	} else {
1510 		ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock));
1511 	}
1512 
1513 	if (tcp->tcp_time_wait_expire == 0) {
1514 		ASSERT(tcp->tcp_time_wait_next == NULL);
1515 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1516 		if (locked)
1517 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1518 		return (B_FALSE);
1519 	}
1520 	ASSERT(TCP_IS_DETACHED(tcp));
1521 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1522 
1523 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1524 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1525 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1526 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1527 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1528 			    NULL;
1529 		} else {
1530 			tcp_time_wait->tcp_time_wait_tail = NULL;
1531 		}
1532 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1533 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1534 		ASSERT(tcp->tcp_time_wait_next == NULL);
1535 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1536 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1537 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1538 	} else {
1539 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1540 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1541 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1542 		    tcp->tcp_time_wait_next;
1543 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1544 		    tcp->tcp_time_wait_prev;
1545 	}
1546 	tcp->tcp_time_wait_next = NULL;
1547 	tcp->tcp_time_wait_prev = NULL;
1548 	tcp->tcp_time_wait_expire = 0;
1549 
1550 	if (locked)
1551 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1552 	return (B_TRUE);
1553 }
1554 
1555 /*
1556  * Add a connection to the list of detached TIME_WAIT connections
1557  * and set its time to expire.
1558  */
1559 static void
1560 tcp_time_wait_append(tcp_t *tcp)
1561 {
1562 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1563 	tcp_squeue_priv_t *tcp_time_wait =
1564 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1565 	    SQPRIVATE_TCP));
1566 
1567 	tcp_timers_stop(tcp);
1568 
1569 	/* Freed above */
1570 	ASSERT(tcp->tcp_timer_tid == 0);
1571 	ASSERT(tcp->tcp_ack_tid == 0);
1572 
1573 	/* must have happened at the time of detaching the tcp */
1574 	ASSERT(tcp->tcp_ptpahn == NULL);
1575 	ASSERT(tcp->tcp_flow_stopped == 0);
1576 	ASSERT(tcp->tcp_time_wait_next == NULL);
1577 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1578 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1579 	ASSERT(tcp->tcp_listener == NULL);
1580 
1581 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1582 	/*
1583 	 * The value computed below in tcp->tcp_time_wait_expire may
1584 	 * appear negative or wrap around. That is ok since our
1585 	 * interest is only in the difference between the current lbolt
1586 	 * value and tcp->tcp_time_wait_expire. But the value should not
1587 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1588 	 * The corresponding comparison in tcp_time_wait_collector() uses
1589 	 * modular arithmetic.
1590 	 */
1591 	tcp->tcp_time_wait_expire +=
1592 	    drv_usectohz(tcps->tcps_time_wait_interval * 1000);
1593 	if (tcp->tcp_time_wait_expire == 0)
1594 		tcp->tcp_time_wait_expire = 1;
1595 
1596 	ASSERT(TCP_IS_DETACHED(tcp));
1597 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1598 	ASSERT(tcp->tcp_time_wait_next == NULL);
1599 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1600 	TCP_DBGSTAT(tcps, tcp_time_wait);
1601 
1602 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1603 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1604 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1605 		tcp_time_wait->tcp_time_wait_head = tcp;
1606 	} else {
1607 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1608 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1609 		    TCPS_TIME_WAIT);
1610 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1611 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1612 	}
1613 	tcp_time_wait->tcp_time_wait_tail = tcp;
1614 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1615 }
1616 
1617 /* ARGSUSED */
1618 void
1619 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
1620 {
1621 	conn_t	*connp = (conn_t *)arg;
1622 	tcp_t	*tcp = connp->conn_tcp;
1623 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1624 
1625 	ASSERT(tcp != NULL);
1626 	if (tcp->tcp_state == TCPS_CLOSED) {
1627 		return;
1628 	}
1629 
1630 	ASSERT((tcp->tcp_family == AF_INET &&
1631 	    tcp->tcp_ipversion == IPV4_VERSION) ||
1632 	    (tcp->tcp_family == AF_INET6 &&
1633 	    (tcp->tcp_ipversion == IPV4_VERSION ||
1634 	    tcp->tcp_ipversion == IPV6_VERSION)));
1635 	ASSERT(!tcp->tcp_listener);
1636 
1637 	TCP_STAT(tcps, tcp_time_wait_reap);
1638 	ASSERT(TCP_IS_DETACHED(tcp));
1639 
1640 	/*
1641 	 * Because they have no upstream client to rebind or tcp_close()
1642 	 * them later, we axe the connection here and now.
1643 	 */
1644 	tcp_close_detached(tcp);
1645 }
1646 
1647 /*
1648  * Remove cached/latched IPsec references.
1649  */
1650 void
1651 tcp_ipsec_cleanup(tcp_t *tcp)
1652 {
1653 	conn_t		*connp = tcp->tcp_connp;
1654 
1655 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1656 
1657 	if (connp->conn_latch != NULL) {
1658 		IPLATCH_REFRELE(connp->conn_latch,
1659 		    connp->conn_netstack);
1660 		connp->conn_latch = NULL;
1661 	}
1662 	if (connp->conn_policy != NULL) {
1663 		IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
1664 		connp->conn_policy = NULL;
1665 	}
1666 }
1667 
1668 /*
1669  * Cleaup before placing on free list.
1670  * Disassociate from the netstack/tcp_stack_t since the freelist
1671  * is per squeue and not per netstack.
1672  */
1673 void
1674 tcp_cleanup(tcp_t *tcp)
1675 {
1676 	mblk_t		*mp;
1677 	char		*tcp_iphc;
1678 	int		tcp_iphc_len;
1679 	int		tcp_hdr_grown;
1680 	tcp_sack_info_t	*tcp_sack_info;
1681 	conn_t		*connp = tcp->tcp_connp;
1682 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1683 	netstack_t	*ns = tcps->tcps_netstack;
1684 	mblk_t		*tcp_rsrv_mp;
1685 
1686 	tcp_bind_hash_remove(tcp);
1687 
1688 	/* Cleanup that which needs the netstack first */
1689 	tcp_ipsec_cleanup(tcp);
1690 
1691 	tcp_free(tcp);
1692 
1693 	/* Release any SSL context */
1694 	if (tcp->tcp_kssl_ent != NULL) {
1695 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1696 		tcp->tcp_kssl_ent = NULL;
1697 	}
1698 
1699 	if (tcp->tcp_kssl_ctx != NULL) {
1700 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1701 		tcp->tcp_kssl_ctx = NULL;
1702 	}
1703 	tcp->tcp_kssl_pending = B_FALSE;
1704 
1705 	conn_delete_ire(connp, NULL);
1706 
1707 	/*
1708 	 * Since we will bzero the entire structure, we need to
1709 	 * remove it and reinsert it in global hash list. We
1710 	 * know the walkers can't get to this conn because we
1711 	 * had set CONDEMNED flag earlier and checked reference
1712 	 * under conn_lock so walker won't pick it and when we
1713 	 * go the ipcl_globalhash_remove() below, no walker
1714 	 * can get to it.
1715 	 */
1716 	ipcl_globalhash_remove(connp);
1717 
1718 	/*
1719 	 * Now it is safe to decrement the reference counts.
1720 	 * This might be the last reference on the netstack and TCPS
1721 	 * in which case it will cause the tcp_g_q_close and
1722 	 * the freeing of the IP Instance.
1723 	 */
1724 	connp->conn_netstack = NULL;
1725 	netstack_rele(ns);
1726 	ASSERT(tcps != NULL);
1727 	tcp->tcp_tcps = NULL;
1728 	TCPS_REFRELE(tcps);
1729 
1730 	/* Save some state */
1731 	mp = tcp->tcp_timercache;
1732 
1733 	tcp_sack_info = tcp->tcp_sack_info;
1734 	tcp_iphc = tcp->tcp_iphc;
1735 	tcp_iphc_len = tcp->tcp_iphc_len;
1736 	tcp_hdr_grown = tcp->tcp_hdr_grown;
1737 	tcp_rsrv_mp = tcp->tcp_rsrv_mp;
1738 
1739 	if (connp->conn_cred != NULL) {
1740 		crfree(connp->conn_cred);
1741 		connp->conn_cred = NULL;
1742 	}
1743 	if (connp->conn_peercred != NULL) {
1744 		crfree(connp->conn_peercred);
1745 		connp->conn_peercred = NULL;
1746 	}
1747 	ipcl_conn_cleanup(connp);
1748 	connp->conn_flags = IPCL_TCPCONN;
1749 	bzero(tcp, sizeof (tcp_t));
1750 
1751 	/* restore the state */
1752 	tcp->tcp_timercache = mp;
1753 
1754 	tcp->tcp_sack_info = tcp_sack_info;
1755 	tcp->tcp_iphc = tcp_iphc;
1756 	tcp->tcp_iphc_len = tcp_iphc_len;
1757 	tcp->tcp_hdr_grown = tcp_hdr_grown;
1758 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
1759 
1760 	tcp->tcp_connp = connp;
1761 
1762 	ASSERT(connp->conn_tcp == tcp);
1763 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1764 	connp->conn_state_flags = CONN_INCIPIENT;
1765 	ASSERT(connp->conn_ulp == IPPROTO_TCP);
1766 	ASSERT(connp->conn_ref == 1);
1767 }
1768 
1769 /*
1770  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1771  * is done forwards from the head.
1772  * This walks all stack instances since
1773  * tcp_time_wait remains global across all stacks.
1774  */
1775 /* ARGSUSED */
1776 void
1777 tcp_time_wait_collector(void *arg)
1778 {
1779 	tcp_t *tcp;
1780 	clock_t now;
1781 	mblk_t *mp;
1782 	conn_t *connp;
1783 	kmutex_t *lock;
1784 	boolean_t removed;
1785 
1786 	squeue_t *sqp = (squeue_t *)arg;
1787 	tcp_squeue_priv_t *tcp_time_wait =
1788 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1789 
1790 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1791 	tcp_time_wait->tcp_time_wait_tid = 0;
1792 
1793 	if (tcp_time_wait->tcp_free_list != NULL &&
1794 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1795 		TCP_G_STAT(tcp_freelist_cleanup);
1796 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1797 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1798 			tcp->tcp_time_wait_next = NULL;
1799 			tcp_time_wait->tcp_free_list_cnt--;
1800 			ASSERT(tcp->tcp_tcps == NULL);
1801 			CONN_DEC_REF(tcp->tcp_connp);
1802 		}
1803 		ASSERT(tcp_time_wait->tcp_free_list_cnt == 0);
1804 	}
1805 
1806 	/*
1807 	 * In order to reap time waits reliably, we should use a
1808 	 * source of time that is not adjustable by the user -- hence
1809 	 * the call to ddi_get_lbolt().
1810 	 */
1811 	now = ddi_get_lbolt();
1812 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1813 		/*
1814 		 * Compare times using modular arithmetic, since
1815 		 * lbolt can wrapover.
1816 		 */
1817 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1818 			break;
1819 		}
1820 
1821 		removed = tcp_time_wait_remove(tcp, tcp_time_wait);
1822 		ASSERT(removed);
1823 
1824 		connp = tcp->tcp_connp;
1825 		ASSERT(connp->conn_fanout != NULL);
1826 		lock = &connp->conn_fanout->connf_lock;
1827 		/*
1828 		 * This is essentially a TW reclaim fast path optimization for
1829 		 * performance where the timewait collector checks under the
1830 		 * fanout lock (so that no one else can get access to the
1831 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1832 		 * the classifier hash list. If ref count is indeed 2, we can
1833 		 * just remove the conn under the fanout lock and avoid
1834 		 * cleaning up the conn under the squeue, provided that
1835 		 * clustering callbacks are not enabled. If clustering is
1836 		 * enabled, we need to make the clustering callback before
1837 		 * setting the CONDEMNED flag and after dropping all locks and
1838 		 * so we forego this optimization and fall back to the slow
1839 		 * path. Also please see the comments in tcp_closei_local
1840 		 * regarding the refcnt logic.
1841 		 *
1842 		 * Since we are holding the tcp_time_wait_lock, its better
1843 		 * not to block on the fanout_lock because other connections
1844 		 * can't add themselves to time_wait list. So we do a
1845 		 * tryenter instead of mutex_enter.
1846 		 */
1847 		if (mutex_tryenter(lock)) {
1848 			mutex_enter(&connp->conn_lock);
1849 			if ((connp->conn_ref == 2) &&
1850 			    (cl_inet_disconnect == NULL)) {
1851 				ipcl_hash_remove_locked(connp,
1852 				    connp->conn_fanout);
1853 				/*
1854 				 * Set the CONDEMNED flag now itself so that
1855 				 * the refcnt cannot increase due to any
1856 				 * walker. But we have still not cleaned up
1857 				 * conn_ire_cache. This is still ok since
1858 				 * we are going to clean it up in tcp_cleanup
1859 				 * immediately and any interface unplumb
1860 				 * thread will wait till the ire is blown away
1861 				 */
1862 				connp->conn_state_flags |= CONN_CONDEMNED;
1863 				mutex_exit(lock);
1864 				mutex_exit(&connp->conn_lock);
1865 				if (tcp_time_wait->tcp_free_list_cnt <
1866 				    tcp_free_list_max_cnt) {
1867 					/* Add to head of tcp_free_list */
1868 					mutex_exit(
1869 					    &tcp_time_wait->tcp_time_wait_lock);
1870 					tcp_cleanup(tcp);
1871 					ASSERT(connp->conn_latch == NULL);
1872 					ASSERT(connp->conn_policy == NULL);
1873 					ASSERT(tcp->tcp_tcps == NULL);
1874 					ASSERT(connp->conn_netstack == NULL);
1875 
1876 					mutex_enter(
1877 					    &tcp_time_wait->tcp_time_wait_lock);
1878 					tcp->tcp_time_wait_next =
1879 					    tcp_time_wait->tcp_free_list;
1880 					tcp_time_wait->tcp_free_list = tcp;
1881 					tcp_time_wait->tcp_free_list_cnt++;
1882 					continue;
1883 				} else {
1884 					/* Do not add to tcp_free_list */
1885 					mutex_exit(
1886 					    &tcp_time_wait->tcp_time_wait_lock);
1887 					tcp_bind_hash_remove(tcp);
1888 					conn_delete_ire(tcp->tcp_connp, NULL);
1889 					tcp_ipsec_cleanup(tcp);
1890 					CONN_DEC_REF(tcp->tcp_connp);
1891 				}
1892 			} else {
1893 				CONN_INC_REF_LOCKED(connp);
1894 				mutex_exit(lock);
1895 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1896 				mutex_exit(&connp->conn_lock);
1897 				/*
1898 				 * We can reuse the closemp here since conn has
1899 				 * detached (otherwise we wouldn't even be in
1900 				 * time_wait list). tcp_closemp_used can safely
1901 				 * be changed without taking a lock as no other
1902 				 * thread can concurrently access it at this
1903 				 * point in the connection lifecycle.
1904 				 */
1905 
1906 				if (tcp->tcp_closemp.b_prev == NULL)
1907 					tcp->tcp_closemp_used = B_TRUE;
1908 				else
1909 					cmn_err(CE_PANIC,
1910 					    "tcp_timewait_collector: "
1911 					    "concurrent use of tcp_closemp: "
1912 					    "connp %p tcp %p\n", (void *)connp,
1913 					    (void *)tcp);
1914 
1915 				TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1916 				mp = &tcp->tcp_closemp;
1917 				SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
1918 				    tcp_timewait_output, connp,
1919 				    SQ_FILL, SQTAG_TCP_TIMEWAIT);
1920 			}
1921 		} else {
1922 			mutex_enter(&connp->conn_lock);
1923 			CONN_INC_REF_LOCKED(connp);
1924 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1925 			mutex_exit(&connp->conn_lock);
1926 			/*
1927 			 * We can reuse the closemp here since conn has
1928 			 * detached (otherwise we wouldn't even be in
1929 			 * time_wait list). tcp_closemp_used can safely
1930 			 * be changed without taking a lock as no other
1931 			 * thread can concurrently access it at this
1932 			 * point in the connection lifecycle.
1933 			 */
1934 
1935 			if (tcp->tcp_closemp.b_prev == NULL)
1936 				tcp->tcp_closemp_used = B_TRUE;
1937 			else
1938 				cmn_err(CE_PANIC, "tcp_timewait_collector: "
1939 				    "concurrent use of tcp_closemp: "
1940 				    "connp %p tcp %p\n", (void *)connp,
1941 				    (void *)tcp);
1942 
1943 			TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1944 			mp = &tcp->tcp_closemp;
1945 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
1946 			    tcp_timewait_output, connp,
1947 			    SQ_FILL, SQTAG_TCP_TIMEWAIT);
1948 		}
1949 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1950 	}
1951 
1952 	if (tcp_time_wait->tcp_free_list != NULL)
1953 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1954 
1955 	tcp_time_wait->tcp_time_wait_tid =
1956 	    timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp,
1957 	    TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION,
1958 	    CALLOUT_FLAG_ROUNDUP);
1959 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1960 }
1961 
1962 /*
1963  * Reply to a clients T_CONN_RES TPI message. This function
1964  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1965  * on the acceptor STREAM and processed in tcp_wput_accept().
1966  * Read the block comment on top of tcp_conn_request().
1967  */
1968 static void
1969 tcp_tli_accept(tcp_t *listener, mblk_t *mp)
1970 {
1971 	tcp_t	*acceptor;
1972 	tcp_t	*eager;
1973 	tcp_t   *tcp;
1974 	struct T_conn_res	*tcr;
1975 	t_uscalar_t	acceptor_id;
1976 	t_scalar_t	seqnum;
1977 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
1978 	struct tcp_options *tcpopt;
1979 	mblk_t	*ok_mp;
1980 	mblk_t	*mp1;
1981 	tcp_stack_t	*tcps = listener->tcp_tcps;
1982 
1983 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
1984 		tcp_err_ack(listener, mp, TPROTO, 0);
1985 		return;
1986 	}
1987 	tcr = (struct T_conn_res *)mp->b_rptr;
1988 
1989 	/*
1990 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
1991 	 * read side queue of the streams device underneath us i.e. the
1992 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
1993 	 * look it up in the queue_hash.  Under LP64 it sends down the
1994 	 * minor_t of the accepting endpoint.
1995 	 *
1996 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
1997 	 * fanout hash lock is held.
1998 	 * This prevents any thread from entering the acceptor queue from
1999 	 * below (since it has not been hard bound yet i.e. any inbound
2000 	 * packets will arrive on the listener or default tcp queue and
2001 	 * go through tcp_lookup).
2002 	 * The CONN_INC_REF will prevent the acceptor from closing.
2003 	 *
2004 	 * XXX It is still possible for a tli application to send down data
2005 	 * on the accepting stream while another thread calls t_accept.
2006 	 * This should not be a problem for well-behaved applications since
2007 	 * the T_OK_ACK is sent after the queue swapping is completed.
2008 	 *
2009 	 * If the accepting fd is the same as the listening fd, avoid
2010 	 * queue hash lookup since that will return an eager listener in a
2011 	 * already established state.
2012 	 */
2013 	acceptor_id = tcr->ACCEPTOR_id;
2014 	mutex_enter(&listener->tcp_eager_lock);
2015 	if (listener->tcp_acceptor_id == acceptor_id) {
2016 		eager = listener->tcp_eager_next_q;
2017 		/* only count how many T_CONN_INDs so don't count q0 */
2018 		if ((listener->tcp_conn_req_cnt_q != 1) ||
2019 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
2020 			mutex_exit(&listener->tcp_eager_lock);
2021 			tcp_err_ack(listener, mp, TBADF, 0);
2022 			return;
2023 		}
2024 		if (listener->tcp_conn_req_cnt_q0 != 0) {
2025 			/* Throw away all the eagers on q0. */
2026 			tcp_eager_cleanup(listener, 1);
2027 		}
2028 		if (listener->tcp_syn_defense) {
2029 			listener->tcp_syn_defense = B_FALSE;
2030 			if (listener->tcp_ip_addr_cache != NULL) {
2031 				kmem_free(listener->tcp_ip_addr_cache,
2032 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
2033 				listener->tcp_ip_addr_cache = NULL;
2034 			}
2035 		}
2036 		/*
2037 		 * Transfer tcp_conn_req_max to the eager so that when
2038 		 * a disconnect occurs we can revert the endpoint to the
2039 		 * listen state.
2040 		 */
2041 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
2042 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
2043 		/*
2044 		 * Get a reference on the acceptor just like the
2045 		 * tcp_acceptor_hash_lookup below.
2046 		 */
2047 		acceptor = listener;
2048 		CONN_INC_REF(acceptor->tcp_connp);
2049 	} else {
2050 		acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps);
2051 		if (acceptor == NULL) {
2052 			if (listener->tcp_debug) {
2053 				(void) strlog(TCP_MOD_ID, 0, 1,
2054 				    SL_ERROR|SL_TRACE,
2055 				    "tcp_accept: did not find acceptor 0x%x\n",
2056 				    acceptor_id);
2057 			}
2058 			mutex_exit(&listener->tcp_eager_lock);
2059 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
2060 			return;
2061 		}
2062 		/*
2063 		 * Verify acceptor state. The acceptable states for an acceptor
2064 		 * include TCPS_IDLE and TCPS_BOUND.
2065 		 */
2066 		switch (acceptor->tcp_state) {
2067 		case TCPS_IDLE:
2068 			/* FALLTHRU */
2069 		case TCPS_BOUND:
2070 			break;
2071 		default:
2072 			CONN_DEC_REF(acceptor->tcp_connp);
2073 			mutex_exit(&listener->tcp_eager_lock);
2074 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
2075 			return;
2076 		}
2077 	}
2078 
2079 	/* The listener must be in TCPS_LISTEN */
2080 	if (listener->tcp_state != TCPS_LISTEN) {
2081 		CONN_DEC_REF(acceptor->tcp_connp);
2082 		mutex_exit(&listener->tcp_eager_lock);
2083 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
2084 		return;
2085 	}
2086 
2087 	/*
2088 	 * Rendezvous with an eager connection request packet hanging off
2089 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2090 	 * tcp structure when the connection packet arrived in
2091 	 * tcp_conn_request().
2092 	 */
2093 	seqnum = tcr->SEQ_number;
2094 	eager = listener;
2095 	do {
2096 		eager = eager->tcp_eager_next_q;
2097 		if (eager == NULL) {
2098 			CONN_DEC_REF(acceptor->tcp_connp);
2099 			mutex_exit(&listener->tcp_eager_lock);
2100 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2101 			return;
2102 		}
2103 	} while (eager->tcp_conn_req_seqnum != seqnum);
2104 	mutex_exit(&listener->tcp_eager_lock);
2105 
2106 	/*
2107 	 * At this point, both acceptor and listener have 2 ref
2108 	 * that they begin with. Acceptor has one additional ref
2109 	 * we placed in lookup while listener has 3 additional
2110 	 * ref for being behind the squeue (tcp_accept() is
2111 	 * done on listener's squeue); being in classifier hash;
2112 	 * and eager's ref on listener.
2113 	 */
2114 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2115 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2116 
2117 	/*
2118 	 * The eager at this point is set in its own squeue and
2119 	 * could easily have been killed (tcp_accept_finish will
2120 	 * deal with that) because of a TH_RST so we can only
2121 	 * ASSERT for a single ref.
2122 	 */
2123 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2124 
2125 	/* Pre allocate the stroptions mblk also */
2126 	opt_mp = allocb(MAX(sizeof (struct tcp_options),
2127 	    sizeof (struct T_conn_res)), BPRI_HI);
2128 	if (opt_mp == NULL) {
2129 		CONN_DEC_REF(acceptor->tcp_connp);
2130 		CONN_DEC_REF(eager->tcp_connp);
2131 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2132 		return;
2133 	}
2134 	DB_TYPE(opt_mp) = M_SETOPTS;
2135 	opt_mp->b_wptr += sizeof (struct tcp_options);
2136 	tcpopt = (struct tcp_options *)opt_mp->b_rptr;
2137 	tcpopt->to_flags = 0;
2138 
2139 	/*
2140 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2141 	 * from listener to acceptor.
2142 	 */
2143 	if (listener->tcp_bound_if != 0) {
2144 		tcpopt->to_flags |= TCPOPT_BOUNDIF;
2145 		tcpopt->to_boundif = listener->tcp_bound_if;
2146 	}
2147 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2148 		tcpopt->to_flags |= TCPOPT_RECVPKTINFO;
2149 	}
2150 
2151 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2152 	if ((mp1 = copymsg(mp)) == NULL) {
2153 		CONN_DEC_REF(acceptor->tcp_connp);
2154 		CONN_DEC_REF(eager->tcp_connp);
2155 		freemsg(opt_mp);
2156 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2157 		return;
2158 	}
2159 
2160 	tcr = (struct T_conn_res *)mp1->b_rptr;
2161 
2162 	/*
2163 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2164 	 * which allocates a larger mblk and appends the new
2165 	 * local address to the ok_ack.  The address is copied by
2166 	 * soaccept() for getsockname().
2167 	 */
2168 	{
2169 		int extra;
2170 
2171 		extra = (eager->tcp_family == AF_INET) ?
2172 		    sizeof (sin_t) : sizeof (sin6_t);
2173 
2174 		/*
2175 		 * Try to re-use mp, if possible.  Otherwise, allocate
2176 		 * an mblk and return it as ok_mp.  In any case, mp
2177 		 * is no longer usable upon return.
2178 		 */
2179 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2180 			CONN_DEC_REF(acceptor->tcp_connp);
2181 			CONN_DEC_REF(eager->tcp_connp);
2182 			freemsg(opt_mp);
2183 			/* Original mp has been freed by now, so use mp1 */
2184 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2185 			return;
2186 		}
2187 
2188 		mp = NULL;	/* We should never use mp after this point */
2189 
2190 		switch (extra) {
2191 		case sizeof (sin_t): {
2192 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2193 
2194 				ok_mp->b_wptr += extra;
2195 				sin->sin_family = AF_INET;
2196 				sin->sin_port = eager->tcp_lport;
2197 				sin->sin_addr.s_addr =
2198 				    eager->tcp_ipha->ipha_src;
2199 				break;
2200 			}
2201 		case sizeof (sin6_t): {
2202 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2203 
2204 				ok_mp->b_wptr += extra;
2205 				sin6->sin6_family = AF_INET6;
2206 				sin6->sin6_port = eager->tcp_lport;
2207 				if (eager->tcp_ipversion == IPV4_VERSION) {
2208 					sin6->sin6_flowinfo = 0;
2209 					IN6_IPADDR_TO_V4MAPPED(
2210 					    eager->tcp_ipha->ipha_src,
2211 					    &sin6->sin6_addr);
2212 				} else {
2213 					ASSERT(eager->tcp_ip6h != NULL);
2214 					sin6->sin6_flowinfo =
2215 					    eager->tcp_ip6h->ip6_vcf &
2216 					    ~IPV6_VERS_AND_FLOW_MASK;
2217 					sin6->sin6_addr =
2218 					    eager->tcp_ip6h->ip6_src;
2219 				}
2220 				sin6->sin6_scope_id = 0;
2221 				sin6->__sin6_src_id = 0;
2222 				break;
2223 			}
2224 		default:
2225 			break;
2226 		}
2227 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2228 	}
2229 
2230 	/*
2231 	 * If there are no options we know that the T_CONN_RES will
2232 	 * succeed. However, we can't send the T_OK_ACK upstream until
2233 	 * the tcp_accept_swap is done since it would be dangerous to
2234 	 * let the application start using the new fd prior to the swap.
2235 	 */
2236 	tcp_accept_swap(listener, acceptor, eager);
2237 
2238 	/*
2239 	 * tcp_accept_swap unlinks eager from listener but does not drop
2240 	 * the eager's reference on the listener.
2241 	 */
2242 	ASSERT(eager->tcp_listener == NULL);
2243 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2244 
2245 	/*
2246 	 * The eager is now associated with its own queue. Insert in
2247 	 * the hash so that the connection can be reused for a future
2248 	 * T_CONN_RES.
2249 	 */
2250 	tcp_acceptor_hash_insert(acceptor_id, eager);
2251 
2252 	/*
2253 	 * We now do the processing of options with T_CONN_RES.
2254 	 * We delay till now since we wanted to have queue to pass to
2255 	 * option processing routines that points back to the right
2256 	 * instance structure which does not happen until after
2257 	 * tcp_accept_swap().
2258 	 *
2259 	 * Note:
2260 	 * The sanity of the logic here assumes that whatever options
2261 	 * are appropriate to inherit from listner=>eager are done
2262 	 * before this point, and whatever were to be overridden (or not)
2263 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2264 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2265 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2266 	 * This may not be true at this point in time but can be fixed
2267 	 * independently. This option processing code starts with
2268 	 * the instantiated acceptor instance and the final queue at
2269 	 * this point.
2270 	 */
2271 
2272 	if (tcr->OPT_length != 0) {
2273 		/* Options to process */
2274 		int t_error = 0;
2275 		int sys_error = 0;
2276 		int do_disconnect = 0;
2277 
2278 		if (tcp_conprim_opt_process(eager, mp1,
2279 		    &do_disconnect, &t_error, &sys_error) < 0) {
2280 			eager->tcp_accept_error = 1;
2281 			if (do_disconnect) {
2282 				/*
2283 				 * An option failed which does not allow
2284 				 * connection to be accepted.
2285 				 *
2286 				 * We allow T_CONN_RES to succeed and
2287 				 * put a T_DISCON_IND on the eager queue.
2288 				 */
2289 				ASSERT(t_error == 0 && sys_error == 0);
2290 				eager->tcp_send_discon_ind = 1;
2291 			} else {
2292 				ASSERT(t_error != 0);
2293 				freemsg(ok_mp);
2294 				/*
2295 				 * Original mp was either freed or set
2296 				 * to ok_mp above, so use mp1 instead.
2297 				 */
2298 				tcp_err_ack(listener, mp1, t_error, sys_error);
2299 				goto finish;
2300 			}
2301 		}
2302 		/*
2303 		 * Most likely success in setting options (except if
2304 		 * eager->tcp_send_discon_ind set).
2305 		 * mp1 option buffer represented by OPT_length/offset
2306 		 * potentially modified and contains results of setting
2307 		 * options at this point
2308 		 */
2309 	}
2310 
2311 	/* We no longer need mp1, since all options processing has passed */
2312 	freemsg(mp1);
2313 
2314 	putnext(listener->tcp_rq, ok_mp);
2315 
2316 	mutex_enter(&listener->tcp_eager_lock);
2317 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2318 		tcp_t	*tail;
2319 		mblk_t	*conn_ind;
2320 
2321 		/*
2322 		 * This path should not be executed if listener and
2323 		 * acceptor streams are the same.
2324 		 */
2325 		ASSERT(listener != acceptor);
2326 
2327 		tcp = listener->tcp_eager_prev_q0;
2328 		/*
2329 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2330 		 * deferred T_conn_ind queue. We need to get to the head of
2331 		 * the queue in order to send up T_conn_ind the same order as
2332 		 * how the 3WHS is completed.
2333 		 */
2334 		while (tcp != listener) {
2335 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2336 				break;
2337 			else
2338 				tcp = tcp->tcp_eager_prev_q0;
2339 		}
2340 		ASSERT(tcp != listener);
2341 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2342 		ASSERT(conn_ind != NULL);
2343 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2344 
2345 		/* Move from q0 to q */
2346 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2347 		listener->tcp_conn_req_cnt_q0--;
2348 		listener->tcp_conn_req_cnt_q++;
2349 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2350 		    tcp->tcp_eager_prev_q0;
2351 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2352 		    tcp->tcp_eager_next_q0;
2353 		tcp->tcp_eager_prev_q0 = NULL;
2354 		tcp->tcp_eager_next_q0 = NULL;
2355 		tcp->tcp_conn_def_q0 = B_FALSE;
2356 
2357 		/* Make sure the tcp isn't in the list of droppables */
2358 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
2359 		    tcp->tcp_eager_prev_drop_q0 == NULL);
2360 
2361 		/*
2362 		 * Insert at end of the queue because sockfs sends
2363 		 * down T_CONN_RES in chronological order. Leaving
2364 		 * the older conn indications at front of the queue
2365 		 * helps reducing search time.
2366 		 */
2367 		tail = listener->tcp_eager_last_q;
2368 		if (tail != NULL)
2369 			tail->tcp_eager_next_q = tcp;
2370 		else
2371 			listener->tcp_eager_next_q = tcp;
2372 		listener->tcp_eager_last_q = tcp;
2373 		tcp->tcp_eager_next_q = NULL;
2374 		mutex_exit(&listener->tcp_eager_lock);
2375 		putnext(tcp->tcp_rq, conn_ind);
2376 	} else {
2377 		mutex_exit(&listener->tcp_eager_lock);
2378 	}
2379 
2380 	/*
2381 	 * Done with the acceptor - free it
2382 	 *
2383 	 * Note: from this point on, no access to listener should be made
2384 	 * as listener can be equal to acceptor.
2385 	 */
2386 finish:
2387 	ASSERT(acceptor->tcp_detached);
2388 	ASSERT(tcps->tcps_g_q != NULL);
2389 	ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp));
2390 	acceptor->tcp_rq = tcps->tcps_g_q;
2391 	acceptor->tcp_wq = WR(tcps->tcps_g_q);
2392 	(void) tcp_clean_death(acceptor, 0, 2);
2393 	CONN_DEC_REF(acceptor->tcp_connp);
2394 
2395 	/*
2396 	 * In case we already received a FIN we have to make tcp_rput send
2397 	 * the ordrel_ind. This will also send up a window update if the window
2398 	 * has opened up.
2399 	 *
2400 	 * In the normal case of a successful connection acceptance
2401 	 * we give the O_T_BIND_REQ to the read side put procedure as an
2402 	 * indication that this was just accepted. This tells tcp_rput to
2403 	 * pass up any data queued in tcp_rcv_list.
2404 	 *
2405 	 * In the fringe case where options sent with T_CONN_RES failed and
2406 	 * we required, we would be indicating a T_DISCON_IND to blow
2407 	 * away this connection.
2408 	 */
2409 
2410 	/*
2411 	 * XXX: we currently have a problem if XTI application closes the
2412 	 * acceptor stream in between. This problem exists in on10-gate also
2413 	 * and is well know but nothing can be done short of major rewrite
2414 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2415 	 * eager same squeue as listener (we can distinguish non socket
2416 	 * listeners at the time of handling a SYN in tcp_conn_request)
2417 	 * and do most of the work that tcp_accept_finish does here itself
2418 	 * and then get behind the acceptor squeue to access the acceptor
2419 	 * queue.
2420 	 */
2421 	/*
2422 	 * We already have a ref on tcp so no need to do one before squeue_enter
2423 	 */
2424 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, opt_mp, tcp_accept_finish,
2425 	    eager->tcp_connp, SQ_FILL, SQTAG_TCP_ACCEPT_FINISH);
2426 }
2427 
2428 /*
2429  * Swap information between the eager and acceptor for a TLI/XTI client.
2430  * The sockfs accept is done on the acceptor stream and control goes
2431  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
2432  * called. In either case, both the eager and listener are in their own
2433  * perimeter (squeue) and the code has to deal with potential race.
2434  *
2435  * See the block comment on top of tcp_accept() and tcp_wput_accept().
2436  */
2437 static void
2438 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2439 {
2440 	conn_t	*econnp, *aconnp;
2441 
2442 	ASSERT(eager->tcp_rq == listener->tcp_rq);
2443 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2444 	ASSERT(!eager->tcp_hard_bound);
2445 	ASSERT(!TCP_IS_SOCKET(acceptor));
2446 	ASSERT(!TCP_IS_SOCKET(eager));
2447 	ASSERT(!TCP_IS_SOCKET(listener));
2448 
2449 	acceptor->tcp_detached = B_TRUE;
2450 	/*
2451 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2452 	 * the acceptor id.
2453 	 */
2454 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2455 
2456 	/* remove eager from listen list... */
2457 	mutex_enter(&listener->tcp_eager_lock);
2458 	tcp_eager_unlink(eager);
2459 	ASSERT(eager->tcp_eager_next_q == NULL &&
2460 	    eager->tcp_eager_last_q == NULL);
2461 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2462 	    eager->tcp_eager_prev_q0 == NULL);
2463 	mutex_exit(&listener->tcp_eager_lock);
2464 	eager->tcp_rq = acceptor->tcp_rq;
2465 	eager->tcp_wq = acceptor->tcp_wq;
2466 
2467 	econnp = eager->tcp_connp;
2468 	aconnp = acceptor->tcp_connp;
2469 
2470 	eager->tcp_rq->q_ptr = econnp;
2471 	eager->tcp_wq->q_ptr = econnp;
2472 
2473 	/*
2474 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2475 	 * which might be a different squeue from our peer TCP instance.
2476 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2477 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2478 	 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq
2479 	 * above reach global visibility prior to the clearing of tcp_detached.
2480 	 */
2481 	membar_producer();
2482 	eager->tcp_detached = B_FALSE;
2483 
2484 	ASSERT(eager->tcp_ack_tid == 0);
2485 
2486 	econnp->conn_dev = aconnp->conn_dev;
2487 	econnp->conn_minor_arena = aconnp->conn_minor_arena;
2488 	ASSERT(econnp->conn_minor_arena != NULL);
2489 	if (eager->tcp_cred != NULL)
2490 		crfree(eager->tcp_cred);
2491 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
2492 	ASSERT(econnp->conn_netstack == aconnp->conn_netstack);
2493 	ASSERT(eager->tcp_tcps == acceptor->tcp_tcps);
2494 
2495 	aconnp->conn_cred = NULL;
2496 
2497 	econnp->conn_zoneid = aconnp->conn_zoneid;
2498 	econnp->conn_allzones = aconnp->conn_allzones;
2499 
2500 	econnp->conn_mac_exempt = aconnp->conn_mac_exempt;
2501 	aconnp->conn_mac_exempt = B_FALSE;
2502 
2503 	ASSERT(aconnp->conn_peercred == NULL);
2504 
2505 	/* Do the IPC initialization */
2506 	CONN_INC_REF(econnp);
2507 
2508 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
2509 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
2510 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
2511 
2512 	/* Done with old IPC. Drop its ref on its connp */
2513 	CONN_DEC_REF(aconnp);
2514 }
2515 
2516 
2517 /*
2518  * Adapt to the information, such as rtt and rtt_sd, provided from the
2519  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
2520  *
2521  * Checks for multicast and broadcast destination address.
2522  * Returns zero on failure; non-zero if ok.
2523  *
2524  * Note that the MSS calculation here is based on the info given in
2525  * the IRE.  We do not do any calculation based on TCP options.  They
2526  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
2527  * knows which options to use.
2528  *
2529  * Note on how TCP gets its parameters for a connection.
2530  *
2531  * When a tcp_t structure is allocated, it gets all the default parameters.
2532  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
2533  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2534  * default.
2535  *
2536  * An incoming SYN with a multicast or broadcast destination address, is dropped
2537  * in 1 of 2 places.
2538  *
2539  * 1. If the packet was received over the wire it is dropped in
2540  * ip_rput_process_broadcast()
2541  *
2542  * 2. If the packet was received through internal IP loopback, i.e. the packet
2543  * was generated and received on the same machine, it is dropped in
2544  * ip_wput_local()
2545  *
2546  * An incoming SYN with a multicast or broadcast source address is always
2547  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
2548  * reject an attempt to connect to a broadcast or multicast (destination)
2549  * address.
2550  */
2551 static int
2552 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
2553 {
2554 	tcp_hsp_t	*hsp;
2555 	ire_t		*ire;
2556 	ire_t		*sire = NULL;
2557 	iulp_t		*ire_uinfo = NULL;
2558 	uint32_t	mss_max;
2559 	uint32_t	mss;
2560 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2561 	conn_t		*connp = tcp->tcp_connp;
2562 	boolean_t	ire_cacheable = B_FALSE;
2563 	zoneid_t	zoneid = connp->conn_zoneid;
2564 	int		match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
2565 	    MATCH_IRE_SECATTR;
2566 	ts_label_t	*tsl = crgetlabel(CONN_CRED(connp));
2567 	ill_t		*ill = NULL;
2568 	boolean_t	incoming = (ire_mp == NULL);
2569 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2570 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
2571 
2572 	ASSERT(connp->conn_ire_cache == NULL);
2573 
2574 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2575 
2576 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
2577 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
2578 			return (0);
2579 		}
2580 		/*
2581 		 * If IP_NEXTHOP is set, then look for an IRE_CACHE
2582 		 * for the destination with the nexthop as gateway.
2583 		 * ire_ctable_lookup() is used because this particular
2584 		 * ire, if it exists, will be marked private.
2585 		 * If that is not available, use the interface ire
2586 		 * for the nexthop.
2587 		 *
2588 		 * TSol: tcp_update_label will detect label mismatches based
2589 		 * only on the destination's label, but that would not
2590 		 * detect label mismatches based on the security attributes
2591 		 * of routes or next hop gateway. Hence we need to pass the
2592 		 * label to ire_ftable_lookup below in order to locate the
2593 		 * right prefix (and/or) ire cache. Similarly we also need
2594 		 * pass the label to the ire_cache_lookup below to locate
2595 		 * the right ire that also matches on the label.
2596 		 */
2597 		if (tcp->tcp_connp->conn_nexthop_set) {
2598 			ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem,
2599 			    tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid,
2600 			    tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW,
2601 			    ipst);
2602 			if (ire == NULL) {
2603 				ire = ire_ftable_lookup(
2604 				    tcp->tcp_connp->conn_nexthop_v4,
2605 				    0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0,
2606 				    tsl, match_flags, ipst);
2607 				if (ire == NULL)
2608 					return (0);
2609 			} else {
2610 				ire_uinfo = &ire->ire_uinfo;
2611 			}
2612 		} else {
2613 			ire = ire_cache_lookup(tcp->tcp_connp->conn_rem,
2614 			    zoneid, tsl, ipst);
2615 			if (ire != NULL) {
2616 				ire_cacheable = B_TRUE;
2617 				ire_uinfo = (ire_mp != NULL) ?
2618 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2619 				    &ire->ire_uinfo;
2620 
2621 			} else {
2622 				if (ire_mp == NULL) {
2623 					ire = ire_ftable_lookup(
2624 					    tcp->tcp_connp->conn_rem,
2625 					    0, 0, 0, NULL, &sire, zoneid, 0,
2626 					    tsl, (MATCH_IRE_RECURSIVE |
2627 					    MATCH_IRE_DEFAULT), ipst);
2628 					if (ire == NULL)
2629 						return (0);
2630 					ire_uinfo = (sire != NULL) ?
2631 					    &sire->ire_uinfo :
2632 					    &ire->ire_uinfo;
2633 				} else {
2634 					ire = (ire_t *)ire_mp->b_rptr;
2635 					ire_uinfo =
2636 					    &((ire_t *)
2637 					    ire_mp->b_rptr)->ire_uinfo;
2638 				}
2639 			}
2640 		}
2641 		ASSERT(ire != NULL);
2642 
2643 		if ((ire->ire_src_addr == INADDR_ANY) ||
2644 		    (ire->ire_type & IRE_BROADCAST)) {
2645 			/*
2646 			 * ire->ire_mp is non null when ire_mp passed in is used
2647 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2648 			 */
2649 			if (ire->ire_mp == NULL)
2650 				ire_refrele(ire);
2651 			if (sire != NULL)
2652 				ire_refrele(sire);
2653 			return (0);
2654 		}
2655 
2656 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
2657 			ipaddr_t src_addr;
2658 
2659 			/*
2660 			 * ip_bind_connected() has stored the correct source
2661 			 * address in conn_src.
2662 			 */
2663 			src_addr = tcp->tcp_connp->conn_src;
2664 			tcp->tcp_ipha->ipha_src = src_addr;
2665 			/*
2666 			 * Copy of the src addr. in tcp_t is needed
2667 			 * for the lookup funcs.
2668 			 */
2669 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
2670 		}
2671 		/*
2672 		 * Set the fragment bit so that IP will tell us if the MTU
2673 		 * should change. IP tells us the latest setting of
2674 		 * ip_path_mtu_discovery through ire_frag_flag.
2675 		 */
2676 		if (ipst->ips_ip_path_mtu_discovery) {
2677 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
2678 			    htons(IPH_DF);
2679 		}
2680 		/*
2681 		 * If ire_uinfo is NULL, this is the IRE_INTERFACE case
2682 		 * for IP_NEXTHOP. No cache ire has been found for the
2683 		 * destination and we are working with the nexthop's
2684 		 * interface ire. Since we need to forward all packets
2685 		 * to the nexthop first, we "blindly" set tcp_localnet
2686 		 * to false, eventhough the destination may also be
2687 		 * onlink.
2688 		 */
2689 		if (ire_uinfo == NULL)
2690 			tcp->tcp_localnet = 0;
2691 		else
2692 			tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
2693 	} else {
2694 		/*
2695 		 * For incoming connection ire_mp = NULL
2696 		 * For outgoing connection ire_mp != NULL
2697 		 * Technically we should check conn_incoming_ill
2698 		 * when ire_mp is NULL and conn_outgoing_ill when
2699 		 * ire_mp is non-NULL. But this is performance
2700 		 * critical path and for IPV*_BOUND_IF, outgoing
2701 		 * and incoming ill are always set to the same value.
2702 		 */
2703 		ill_t	*dst_ill = NULL;
2704 		ipif_t  *dst_ipif = NULL;
2705 
2706 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
2707 
2708 		if (connp->conn_outgoing_ill != NULL) {
2709 			/* Outgoing or incoming path */
2710 			int   err;
2711 
2712 			dst_ill = conn_get_held_ill(connp,
2713 			    &connp->conn_outgoing_ill, &err);
2714 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
2715 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
2716 				return (0);
2717 			}
2718 			match_flags |= MATCH_IRE_ILL;
2719 			dst_ipif = dst_ill->ill_ipif;
2720 		}
2721 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
2722 		    0, 0, dst_ipif, zoneid, tsl, match_flags, ipst);
2723 
2724 		if (ire != NULL) {
2725 			ire_cacheable = B_TRUE;
2726 			ire_uinfo = (ire_mp != NULL) ?
2727 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2728 			    &ire->ire_uinfo;
2729 		} else {
2730 			if (ire_mp == NULL) {
2731 				ire = ire_ftable_lookup_v6(
2732 				    &tcp->tcp_connp->conn_remv6,
2733 				    0, 0, 0, dst_ipif, &sire, zoneid,
2734 				    0, tsl, match_flags, ipst);
2735 				if (ire == NULL) {
2736 					if (dst_ill != NULL)
2737 						ill_refrele(dst_ill);
2738 					return (0);
2739 				}
2740 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
2741 				    &ire->ire_uinfo;
2742 			} else {
2743 				ire = (ire_t *)ire_mp->b_rptr;
2744 				ire_uinfo =
2745 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
2746 			}
2747 		}
2748 		if (dst_ill != NULL)
2749 			ill_refrele(dst_ill);
2750 
2751 		ASSERT(ire != NULL);
2752 		ASSERT(ire_uinfo != NULL);
2753 
2754 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
2755 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
2756 			/*
2757 			 * ire->ire_mp is non null when ire_mp passed in is used
2758 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2759 			 */
2760 			if (ire->ire_mp == NULL)
2761 				ire_refrele(ire);
2762 			if (sire != NULL)
2763 				ire_refrele(sire);
2764 			return (0);
2765 		}
2766 
2767 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
2768 			in6_addr_t	src_addr;
2769 
2770 			/*
2771 			 * ip_bind_connected_v6() has stored the correct source
2772 			 * address per IPv6 addr. selection policy in
2773 			 * conn_src_v6.
2774 			 */
2775 			src_addr = tcp->tcp_connp->conn_srcv6;
2776 
2777 			tcp->tcp_ip6h->ip6_src = src_addr;
2778 			/*
2779 			 * Copy of the src addr. in tcp_t is needed
2780 			 * for the lookup funcs.
2781 			 */
2782 			tcp->tcp_ip_src_v6 = src_addr;
2783 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
2784 			    &connp->conn_srcv6));
2785 		}
2786 		tcp->tcp_localnet =
2787 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
2788 	}
2789 
2790 	/*
2791 	 * This allows applications to fail quickly when connections are made
2792 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
2793 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
2794 	 */
2795 	if ((ire->ire_flags & RTF_REJECT) &&
2796 	    (ire->ire_flags & RTF_PRIVATE))
2797 		goto error;
2798 
2799 	/*
2800 	 * Make use of the cached rtt and rtt_sd values to calculate the
2801 	 * initial RTO.  Note that they are already initialized in
2802 	 * tcp_init_values().
2803 	 * If ire_uinfo is NULL, i.e., we do not have a cache ire for
2804 	 * IP_NEXTHOP, but instead are using the interface ire for the
2805 	 * nexthop, then we do not use the ire_uinfo from that ire to
2806 	 * do any initializations.
2807 	 */
2808 	if (ire_uinfo != NULL) {
2809 		if (ire_uinfo->iulp_rtt != 0) {
2810 			clock_t	rto;
2811 
2812 			tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
2813 			tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
2814 			rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2815 			    tcps->tcps_rexmit_interval_extra +
2816 			    (tcp->tcp_rtt_sa >> 5);
2817 
2818 			if (rto > tcps->tcps_rexmit_interval_max) {
2819 				tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
2820 			} else if (rto < tcps->tcps_rexmit_interval_min) {
2821 				tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
2822 			} else {
2823 				tcp->tcp_rto = rto;
2824 			}
2825 		}
2826 		if (ire_uinfo->iulp_ssthresh != 0)
2827 			tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
2828 		else
2829 			tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2830 		if (ire_uinfo->iulp_spipe > 0) {
2831 			tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
2832 			    tcps->tcps_max_buf);
2833 			if (tcps->tcps_snd_lowat_fraction != 0)
2834 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2835 				    tcps->tcps_snd_lowat_fraction;
2836 			(void) tcp_maxpsz_set(tcp, B_TRUE);
2837 		}
2838 		/*
2839 		 * Note that up till now, acceptor always inherits receive
2840 		 * window from the listener.  But if there is a metrics
2841 		 * associated with a host, we should use that instead of
2842 		 * inheriting it from listener. Thus we need to pass this
2843 		 * info back to the caller.
2844 		 */
2845 		if (ire_uinfo->iulp_rpipe > 0) {
2846 			tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe,
2847 			    tcps->tcps_max_buf);
2848 		}
2849 
2850 		if (ire_uinfo->iulp_rtomax > 0) {
2851 			tcp->tcp_second_timer_threshold =
2852 			    ire_uinfo->iulp_rtomax;
2853 		}
2854 
2855 		/*
2856 		 * Use the metric option settings, iulp_tstamp_ok and
2857 		 * iulp_wscale_ok, only for active open. What this means
2858 		 * is that if the other side uses timestamp or window
2859 		 * scale option, TCP will also use those options. That
2860 		 * is for passive open.  If the application sets a
2861 		 * large window, window scale is enabled regardless of
2862 		 * the value in iulp_wscale_ok.  This is the behavior
2863 		 * since 2.6.  So we keep it.
2864 		 * The only case left in passive open processing is the
2865 		 * check for SACK.
2866 		 * For ECN, it should probably be like SACK.  But the
2867 		 * current value is binary, so we treat it like the other
2868 		 * cases.  The metric only controls active open.For passive
2869 		 * open, the ndd param, tcp_ecn_permitted, controls the
2870 		 * behavior.
2871 		 */
2872 		if (!tcp_detached) {
2873 			/*
2874 			 * The if check means that the following can only
2875 			 * be turned on by the metrics only IRE, but not off.
2876 			 */
2877 			if (ire_uinfo->iulp_tstamp_ok)
2878 				tcp->tcp_snd_ts_ok = B_TRUE;
2879 			if (ire_uinfo->iulp_wscale_ok)
2880 				tcp->tcp_snd_ws_ok = B_TRUE;
2881 			if (ire_uinfo->iulp_sack == 2)
2882 				tcp->tcp_snd_sack_ok = B_TRUE;
2883 			if (ire_uinfo->iulp_ecn_ok)
2884 				tcp->tcp_ecn_ok = B_TRUE;
2885 		} else {
2886 			/*
2887 			 * Passive open.
2888 			 *
2889 			 * As above, the if check means that SACK can only be
2890 			 * turned on by the metric only IRE.
2891 			 */
2892 			if (ire_uinfo->iulp_sack > 0) {
2893 				tcp->tcp_snd_sack_ok = B_TRUE;
2894 			}
2895 		}
2896 	}
2897 
2898 
2899 	/*
2900 	 * XXX: Note that currently, ire_max_frag can be as small as 68
2901 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2902 	 * length of all those options exceeds 28 bytes.  But because
2903 	 * of the tcp_mss_min check below, we may not have a problem if
2904 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2905 	 * the negative problem still exists.  And the check defeats PMTUd.
2906 	 * In fact, if PMTUd finds that the MSS should be smaller than
2907 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2908 	 * value.
2909 	 *
2910 	 * We do not deal with that now.  All those problems related to
2911 	 * PMTUd will be fixed later.
2912 	 */
2913 	ASSERT(ire->ire_max_frag != 0);
2914 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
2915 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
2916 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
2917 			mss = MIN(mss, IPV6_MIN_MTU);
2918 		}
2919 	}
2920 
2921 	/* Sanity check for MSS value. */
2922 	if (tcp->tcp_ipversion == IPV4_VERSION)
2923 		mss_max = tcps->tcps_mss_max_ipv4;
2924 	else
2925 		mss_max = tcps->tcps_mss_max_ipv6;
2926 
2927 	if (tcp->tcp_ipversion == IPV6_VERSION &&
2928 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
2929 		/*
2930 		 * After receiving an ICMPv6 "packet too big" message with a
2931 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
2932 		 * will insert a 8-byte fragment header in every packet; we
2933 		 * reduce the MSS by that amount here.
2934 		 */
2935 		mss -= sizeof (ip6_frag_t);
2936 	}
2937 
2938 	if (tcp->tcp_ipsec_overhead == 0)
2939 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2940 
2941 	mss -= tcp->tcp_ipsec_overhead;
2942 
2943 	if (mss < tcps->tcps_mss_min)
2944 		mss = tcps->tcps_mss_min;
2945 	if (mss > mss_max)
2946 		mss = mss_max;
2947 
2948 	/* Note that this is the maximum MSS, excluding all options. */
2949 	tcp->tcp_mss = mss;
2950 
2951 	/*
2952 	 * Initialize the ISS here now that we have the full connection ID.
2953 	 * The RFC 1948 method of initial sequence number generation requires
2954 	 * knowledge of the full connection ID before setting the ISS.
2955 	 */
2956 
2957 	tcp_iss_init(tcp);
2958 
2959 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
2960 		tcp->tcp_loopback = B_TRUE;
2961 
2962 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2963 		hsp = tcp_hsp_lookup(tcp->tcp_remote, tcps);
2964 	} else {
2965 		hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6, tcps);
2966 	}
2967 
2968 	if (hsp != NULL) {
2969 		/* Only modify if we're going to make them bigger */
2970 		if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) {
2971 			tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace;
2972 			if (tcps->tcps_snd_lowat_fraction != 0)
2973 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2974 				    tcps->tcps_snd_lowat_fraction;
2975 		}
2976 
2977 		if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) {
2978 			tcp->tcp_rwnd = hsp->tcp_hsp_recvspace;
2979 		}
2980 
2981 		/* Copy timestamp flag only for active open */
2982 		if (!tcp_detached)
2983 			tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp;
2984 	}
2985 
2986 	if (sire != NULL)
2987 		IRE_REFRELE(sire);
2988 
2989 	/*
2990 	 * If we got an IRE_CACHE and an ILL, go through their properties;
2991 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
2992 	 */
2993 	if (tcp->tcp_loopback ||
2994 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
2995 		/*
2996 		 * For incoming, see if this tcp may be MDT-capable.  For
2997 		 * outgoing, this process has been taken care of through
2998 		 * tcp_rput_other.
2999 		 */
3000 		tcp_ire_ill_check(tcp, ire, ill, incoming);
3001 		tcp->tcp_ire_ill_check_done = B_TRUE;
3002 	}
3003 
3004 	mutex_enter(&connp->conn_lock);
3005 	/*
3006 	 * Make sure that conn is not marked incipient
3007 	 * for incoming connections. A blind
3008 	 * removal of incipient flag is cheaper than
3009 	 * check and removal.
3010 	 */
3011 	connp->conn_state_flags &= ~CONN_INCIPIENT;
3012 
3013 	/*
3014 	 * Must not cache forwarding table routes
3015 	 * or recache an IRE after the conn_t has
3016 	 * had conn_ire_cache cleared and is flagged
3017 	 * unusable, (see the CONN_CACHE_IRE() macro).
3018 	 */
3019 	if (ire_cacheable && CONN_CACHE_IRE(connp)) {
3020 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
3021 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
3022 			connp->conn_ire_cache = ire;
3023 			IRE_UNTRACE_REF(ire);
3024 			rw_exit(&ire->ire_bucket->irb_lock);
3025 			mutex_exit(&connp->conn_lock);
3026 			return (1);
3027 		}
3028 		rw_exit(&ire->ire_bucket->irb_lock);
3029 	}
3030 	mutex_exit(&connp->conn_lock);
3031 
3032 	if (ire->ire_mp == NULL)
3033 		ire_refrele(ire);
3034 	return (1);
3035 
3036 error:
3037 	if (ire->ire_mp == NULL)
3038 		ire_refrele(ire);
3039 	if (sire != NULL)
3040 		ire_refrele(sire);
3041 	return (0);
3042 }
3043 
3044 static void
3045 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp)
3046 {
3047 	int	error;
3048 	conn_t	*connp = tcp->tcp_connp;
3049 	struct sockaddr	*sa;
3050 	mblk_t  *mp1;
3051 	struct T_bind_req *tbr;
3052 	int	backlog;
3053 	socklen_t	len;
3054 	sin_t	*sin;
3055 	sin6_t	*sin6;
3056 
3057 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
3058 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
3059 		if (tcp->tcp_debug) {
3060 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3061 			    "tcp_tpi_bind: bad req, len %u",
3062 			    (uint_t)(mp->b_wptr - mp->b_rptr));
3063 		}
3064 		tcp_err_ack(tcp, mp, TPROTO, 0);
3065 		return;
3066 	}
3067 	/* Make sure the largest address fits */
3068 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
3069 	if (mp1 == NULL) {
3070 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3071 		return;
3072 	}
3073 	mp = mp1;
3074 	tbr = (struct T_bind_req *)mp->b_rptr;
3075 
3076 	backlog = tbr->CONIND_number;
3077 	len = tbr->ADDR_length;
3078 
3079 	switch (len) {
3080 	case 0:		/* request for a generic port */
3081 		tbr->ADDR_offset = sizeof (struct T_bind_req);
3082 		if (tcp->tcp_family == AF_INET) {
3083 			tbr->ADDR_length = sizeof (sin_t);
3084 			sin = (sin_t *)&tbr[1];
3085 			*sin = sin_null;
3086 			sin->sin_family = AF_INET;
3087 			sa = (struct sockaddr *)sin;
3088 			len = sizeof (sin_t);
3089 			mp->b_wptr = (uchar_t *)&sin[1];
3090 		} else {
3091 			ASSERT(tcp->tcp_family == AF_INET6);
3092 			tbr->ADDR_length = sizeof (sin6_t);
3093 			sin6 = (sin6_t *)&tbr[1];
3094 			*sin6 = sin6_null;
3095 			sin6->sin6_family = AF_INET6;
3096 			sa = (struct sockaddr *)sin6;
3097 			len = sizeof (sin6_t);
3098 			mp->b_wptr = (uchar_t *)&sin6[1];
3099 		}
3100 		break;
3101 
3102 	case sizeof (sin_t):    /* Complete IPv4 address */
3103 		sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset,
3104 		    sizeof (sin_t));
3105 		break;
3106 
3107 	case sizeof (sin6_t): /* Complete IPv6 address */
3108 		sa = (struct sockaddr *)mi_offset_param(mp,
3109 		    tbr->ADDR_offset, sizeof (sin6_t));
3110 		break;
3111 
3112 	default:
3113 		if (tcp->tcp_debug) {
3114 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3115 			    "tcp_tpi_bind: bad address length, %d",
3116 			    tbr->ADDR_length);
3117 		}
3118 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3119 		return;
3120 	}
3121 
3122 	error = tcp_bind_check(connp, sa, len, DB_CRED(mp),
3123 	    tbr->PRIM_type != O_T_BIND_REQ);
3124 	if (error == 0) {
3125 		if (tcp->tcp_family == AF_INET) {
3126 			sin = (sin_t *)sa;
3127 			sin->sin_port = tcp->tcp_lport;
3128 		} else {
3129 			sin6 = (sin6_t *)sa;
3130 			sin6->sin6_port = tcp->tcp_lport;
3131 		}
3132 
3133 		if (backlog > 0) {
3134 			error = tcp_do_listen(connp, backlog, DB_CRED(mp));
3135 		}
3136 	}
3137 done:
3138 	if (error > 0) {
3139 		tcp_err_ack(tcp, mp, TSYSERR, error);
3140 	} else if (error < 0) {
3141 		tcp_err_ack(tcp, mp, -error, 0);
3142 	} else {
3143 		mp->b_datap->db_type = M_PCPROTO;
3144 		tbr->PRIM_type = T_BIND_ACK;
3145 		putnext(tcp->tcp_rq, mp);
3146 	}
3147 }
3148 
3149 /*
3150  * If the "bind_to_req_port_only" parameter is set, if the requested port
3151  * number is available, return it, If not return 0
3152  *
3153  * If "bind_to_req_port_only" parameter is not set and
3154  * If the requested port number is available, return it.  If not, return
3155  * the first anonymous port we happen across.  If no anonymous ports are
3156  * available, return 0. addr is the requested local address, if any.
3157  *
3158  * In either case, when succeeding update the tcp_t to record the port number
3159  * and insert it in the bind hash table.
3160  *
3161  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
3162  * without setting SO_REUSEADDR. This is needed so that they
3163  * can be viewed as two independent transport protocols.
3164  */
3165 static in_port_t
3166 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
3167     int reuseaddr, boolean_t quick_connect,
3168     boolean_t bind_to_req_port_only, boolean_t user_specified)
3169 {
3170 	/* number of times we have run around the loop */
3171 	int count = 0;
3172 	/* maximum number of times to run around the loop */
3173 	int loopmax;
3174 	conn_t *connp = tcp->tcp_connp;
3175 	zoneid_t zoneid = connp->conn_zoneid;
3176 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3177 
3178 	/*
3179 	 * Lookup for free addresses is done in a loop and "loopmax"
3180 	 * influences how long we spin in the loop
3181 	 */
3182 	if (bind_to_req_port_only) {
3183 		/*
3184 		 * If the requested port is busy, don't bother to look
3185 		 * for a new one. Setting loop maximum count to 1 has
3186 		 * that effect.
3187 		 */
3188 		loopmax = 1;
3189 	} else {
3190 		/*
3191 		 * If the requested port is busy, look for a free one
3192 		 * in the anonymous port range.
3193 		 * Set loopmax appropriately so that one does not look
3194 		 * forever in the case all of the anonymous ports are in use.
3195 		 */
3196 		if (tcp->tcp_anon_priv_bind) {
3197 			/*
3198 			 * loopmax =
3199 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
3200 			 */
3201 			loopmax = IPPORT_RESERVED -
3202 			    tcps->tcps_min_anonpriv_port;
3203 		} else {
3204 			loopmax = (tcps->tcps_largest_anon_port -
3205 			    tcps->tcps_smallest_anon_port + 1);
3206 		}
3207 	}
3208 	do {
3209 		uint16_t	lport;
3210 		tf_t		*tbf;
3211 		tcp_t		*ltcp;
3212 		conn_t		*lconnp;
3213 
3214 		lport = htons(port);
3215 
3216 		/*
3217 		 * Ensure that the tcp_t is not currently in the bind hash.
3218 		 * Hold the lock on the hash bucket to ensure that
3219 		 * the duplicate check plus the insertion is an atomic
3220 		 * operation.
3221 		 *
3222 		 * This function does an inline lookup on the bind hash list
3223 		 * Make sure that we access only members of tcp_t
3224 		 * and that we don't look at tcp_tcp, since we are not
3225 		 * doing a CONN_INC_REF.
3226 		 */
3227 		tcp_bind_hash_remove(tcp);
3228 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)];
3229 		mutex_enter(&tbf->tf_lock);
3230 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
3231 		    ltcp = ltcp->tcp_bind_hash) {
3232 			if (lport == ltcp->tcp_lport)
3233 				break;
3234 		}
3235 
3236 		for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) {
3237 			boolean_t not_socket;
3238 			boolean_t exclbind;
3239 
3240 			lconnp = ltcp->tcp_connp;
3241 
3242 			/*
3243 			 * On a labeled system, we must treat bindings to ports
3244 			 * on shared IP addresses by sockets with MAC exemption
3245 			 * privilege as being in all zones, as there's
3246 			 * otherwise no way to identify the right receiver.
3247 			 */
3248 			if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) ||
3249 			    IPCL_ZONE_MATCH(connp,
3250 			    ltcp->tcp_connp->conn_zoneid)) &&
3251 			    !lconnp->conn_mac_exempt &&
3252 			    !connp->conn_mac_exempt)
3253 				continue;
3254 
3255 			/*
3256 			 * If TCP_EXCLBIND is set for either the bound or
3257 			 * binding endpoint, the semantics of bind
3258 			 * is changed according to the following.
3259 			 *
3260 			 * spec = specified address (v4 or v6)
3261 			 * unspec = unspecified address (v4 or v6)
3262 			 * A = specified addresses are different for endpoints
3263 			 *
3264 			 * bound	bind to		allowed
3265 			 * -------------------------------------
3266 			 * unspec	unspec		no
3267 			 * unspec	spec		no
3268 			 * spec		unspec		no
3269 			 * spec		spec		yes if A
3270 			 *
3271 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
3272 			 * as TCP_EXCLBIND, except that zoneid is ignored.
3273 			 *
3274 			 * Note:
3275 			 *
3276 			 * 1. Because of TLI semantics, an endpoint can go
3277 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
3278 			 * TCPS_BOUND, depending on whether it is originally
3279 			 * a listener or not.  That is why we need to check
3280 			 * for states greater than or equal to TCPS_BOUND
3281 			 * here.
3282 			 *
3283 			 * 2. Ideally, we should only check for state equals
3284 			 * to TCPS_LISTEN. And the following check should be
3285 			 * added.
3286 			 *
3287 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
3288 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
3289 			 *		...
3290 			 * }
3291 			 *
3292 			 * The semantics will be changed to this.  If the
3293 			 * endpoint on the list is in state not equal to
3294 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
3295 			 * set, let the bind succeed.
3296 			 *
3297 			 * Because of (1), we cannot do that for TLI
3298 			 * endpoints.  But we can do that for socket endpoints.
3299 			 * If in future, we can change this going back
3300 			 * semantics, we can use the above check for TLI also.
3301 			 */
3302 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
3303 			    TCP_IS_SOCKET(tcp));
3304 			exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind;
3305 
3306 			if (lconnp->conn_mac_exempt || connp->conn_mac_exempt ||
3307 			    (exclbind && (not_socket ||
3308 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
3309 				if (V6_OR_V4_INADDR_ANY(
3310 				    ltcp->tcp_bound_source_v6) ||
3311 				    V6_OR_V4_INADDR_ANY(*laddr) ||
3312 				    IN6_ARE_ADDR_EQUAL(laddr,
3313 				    &ltcp->tcp_bound_source_v6)) {
3314 					break;
3315 				}
3316 				continue;
3317 			}
3318 
3319 			/*
3320 			 * Check ipversion to allow IPv4 and IPv6 sockets to
3321 			 * have disjoint port number spaces, if *_EXCLBIND
3322 			 * is not set and only if the application binds to a
3323 			 * specific port. We use the same autoassigned port
3324 			 * number space for IPv4 and IPv6 sockets.
3325 			 */
3326 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
3327 			    bind_to_req_port_only)
3328 				continue;
3329 
3330 			/*
3331 			 * Ideally, we should make sure that the source
3332 			 * address, remote address, and remote port in the
3333 			 * four tuple for this tcp-connection is unique.
3334 			 * However, trying to find out the local source
3335 			 * address would require too much code duplication
3336 			 * with IP, since IP needs needs to have that code
3337 			 * to support userland TCP implementations.
3338 			 */
3339 			if (quick_connect &&
3340 			    (ltcp->tcp_state > TCPS_LISTEN) &&
3341 			    ((tcp->tcp_fport != ltcp->tcp_fport) ||
3342 			    !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
3343 			    &ltcp->tcp_remote_v6)))
3344 				continue;
3345 
3346 			if (!reuseaddr) {
3347 				/*
3348 				 * No socket option SO_REUSEADDR.
3349 				 * If existing port is bound to
3350 				 * a non-wildcard IP address
3351 				 * and the requesting stream is
3352 				 * bound to a distinct
3353 				 * different IP addresses
3354 				 * (non-wildcard, also), keep
3355 				 * going.
3356 				 */
3357 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
3358 				    !V6_OR_V4_INADDR_ANY(
3359 				    ltcp->tcp_bound_source_v6) &&
3360 				    !IN6_ARE_ADDR_EQUAL(laddr,
3361 				    &ltcp->tcp_bound_source_v6))
3362 					continue;
3363 				if (ltcp->tcp_state >= TCPS_BOUND) {
3364 					/*
3365 					 * This port is being used and
3366 					 * its state is >= TCPS_BOUND,
3367 					 * so we can't bind to it.
3368 					 */
3369 					break;
3370 				}
3371 			} else {
3372 				/*
3373 				 * socket option SO_REUSEADDR is set on the
3374 				 * binding tcp_t.
3375 				 *
3376 				 * If two streams are bound to
3377 				 * same IP address or both addr
3378 				 * and bound source are wildcards
3379 				 * (INADDR_ANY), we want to stop
3380 				 * searching.
3381 				 * We have found a match of IP source
3382 				 * address and source port, which is
3383 				 * refused regardless of the
3384 				 * SO_REUSEADDR setting, so we break.
3385 				 */
3386 				if (IN6_ARE_ADDR_EQUAL(laddr,
3387 				    &ltcp->tcp_bound_source_v6) &&
3388 				    (ltcp->tcp_state == TCPS_LISTEN ||
3389 				    ltcp->tcp_state == TCPS_BOUND))
3390 					break;
3391 			}
3392 		}
3393 		if (ltcp != NULL) {
3394 			/* The port number is busy */
3395 			mutex_exit(&tbf->tf_lock);
3396 		} else {
3397 			/*
3398 			 * This port is ours. Insert in fanout and mark as
3399 			 * bound to prevent others from getting the port
3400 			 * number.
3401 			 */
3402 			tcp->tcp_state = TCPS_BOUND;
3403 			tcp->tcp_lport = htons(port);
3404 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
3405 
3406 			ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH(
3407 			    tcp->tcp_lport)] == tbf);
3408 			tcp_bind_hash_insert(tbf, tcp, 1);
3409 
3410 			mutex_exit(&tbf->tf_lock);
3411 
3412 			/*
3413 			 * We don't want tcp_next_port_to_try to "inherit"
3414 			 * a port number supplied by the user in a bind.
3415 			 */
3416 			if (user_specified)
3417 				return (port);
3418 
3419 			/*
3420 			 * This is the only place where tcp_next_port_to_try
3421 			 * is updated. After the update, it may or may not
3422 			 * be in the valid range.
3423 			 */
3424 			if (!tcp->tcp_anon_priv_bind)
3425 				tcps->tcps_next_port_to_try = port + 1;
3426 			return (port);
3427 		}
3428 
3429 		if (tcp->tcp_anon_priv_bind) {
3430 			port = tcp_get_next_priv_port(tcp);
3431 		} else {
3432 			if (count == 0 && user_specified) {
3433 				/*
3434 				 * We may have to return an anonymous port. So
3435 				 * get one to start with.
3436 				 */
3437 				port =
3438 				    tcp_update_next_port(
3439 				    tcps->tcps_next_port_to_try,
3440 				    tcp, B_TRUE);
3441 				user_specified = B_FALSE;
3442 			} else {
3443 				port = tcp_update_next_port(port + 1, tcp,
3444 				    B_FALSE);
3445 			}
3446 		}
3447 		if (port == 0)
3448 			break;
3449 
3450 		/*
3451 		 * Don't let this loop run forever in the case where
3452 		 * all of the anonymous ports are in use.
3453 		 */
3454 	} while (++count < loopmax);
3455 	return (0);
3456 }
3457 
3458 /*
3459  * tcp_clean_death / tcp_close_detached must not be called more than once
3460  * on a tcp. Thus every function that potentially calls tcp_clean_death
3461  * must check for the tcp state before calling tcp_clean_death.
3462  * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper,
3463  * tcp_timer_handler, all check for the tcp state.
3464  */
3465 /* ARGSUSED */
3466 void
3467 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2)
3468 {
3469 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
3470 
3471 	freemsg(mp);
3472 	if (tcp->tcp_state > TCPS_BOUND)
3473 		(void) tcp_clean_death(((conn_t *)arg)->conn_tcp,
3474 		    ETIMEDOUT, 5);
3475 }
3476 
3477 /*
3478  * We are dying for some reason.  Try to do it gracefully.  (May be called
3479  * as writer.)
3480  *
3481  * Return -1 if the structure was not cleaned up (if the cleanup had to be
3482  * done by a service procedure).
3483  * TBD - Should the return value distinguish between the tcp_t being
3484  * freed and it being reinitialized?
3485  */
3486 static int
3487 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
3488 {
3489 	mblk_t	*mp;
3490 	queue_t	*q;
3491 	conn_t	*connp = tcp->tcp_connp;
3492 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3493 	sodirect_t	*sodp;
3494 
3495 	TCP_CLD_STAT(tag);
3496 
3497 #if TCP_TAG_CLEAN_DEATH
3498 	tcp->tcp_cleandeathtag = tag;
3499 #endif
3500 
3501 	if (tcp->tcp_fused)
3502 		tcp_unfuse(tcp);
3503 
3504 	if (tcp->tcp_linger_tid != 0 &&
3505 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3506 		tcp_stop_lingering(tcp);
3507 	}
3508 
3509 	ASSERT(tcp != NULL);
3510 	ASSERT((tcp->tcp_family == AF_INET &&
3511 	    tcp->tcp_ipversion == IPV4_VERSION) ||
3512 	    (tcp->tcp_family == AF_INET6 &&
3513 	    (tcp->tcp_ipversion == IPV4_VERSION ||
3514 	    tcp->tcp_ipversion == IPV6_VERSION)));
3515 
3516 	if (TCP_IS_DETACHED(tcp)) {
3517 		if (tcp->tcp_hard_binding) {
3518 			/*
3519 			 * Its an eager that we are dealing with. We close the
3520 			 * eager but in case a conn_ind has already gone to the
3521 			 * listener, let tcp_accept_finish() send a discon_ind
3522 			 * to the listener and drop the last reference. If the
3523 			 * listener doesn't even know about the eager i.e. the
3524 			 * conn_ind hasn't gone up, blow away the eager and drop
3525 			 * the last reference as well. If the conn_ind has gone
3526 			 * up, state should be BOUND. tcp_accept_finish
3527 			 * will figure out that the connection has received a
3528 			 * RST and will send a DISCON_IND to the application.
3529 			 */
3530 			tcp_closei_local(tcp);
3531 			if (!tcp->tcp_tconnind_started) {
3532 				CONN_DEC_REF(connp);
3533 			} else {
3534 				tcp->tcp_state = TCPS_BOUND;
3535 			}
3536 		} else {
3537 			tcp_close_detached(tcp);
3538 		}
3539 		return (0);
3540 	}
3541 
3542 	TCP_STAT(tcps, tcp_clean_death_nondetached);
3543 
3544 	/* If sodirect, not anymore */
3545 	SOD_PTR_ENTER(tcp, sodp);
3546 	if (sodp != NULL) {
3547 		tcp->tcp_sodirect = NULL;
3548 		mutex_exit(sodp->sod_lockp);
3549 	}
3550 
3551 	q = tcp->tcp_rq;
3552 
3553 	/* Trash all inbound data */
3554 	if (!IPCL_IS_NONSTR(connp)) {
3555 		ASSERT(q != NULL);
3556 		flushq(q, FLUSHALL);
3557 	}
3558 
3559 	/*
3560 	 * If we are at least part way open and there is error
3561 	 * (err==0 implies no error)
3562 	 * notify our client by a T_DISCON_IND.
3563 	 */
3564 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3565 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3566 		    !TCP_IS_SOCKET(tcp)) {
3567 			/*
3568 			 * Send M_FLUSH according to TPI. Because sockets will
3569 			 * (and must) ignore FLUSHR we do that only for TPI
3570 			 * endpoints and sockets in STREAMS mode.
3571 			 */
3572 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3573 		}
3574 		if (tcp->tcp_debug) {
3575 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3576 			    "tcp_clean_death: discon err %d", err);
3577 		}
3578 		if (IPCL_IS_NONSTR(connp)) {
3579 			/* Direct socket, use upcall */
3580 			(*connp->conn_upcalls->su_disconnected)(
3581 			    connp->conn_upper_handle, tcp->tcp_connid, err);
3582 		} else {
3583 			mp = mi_tpi_discon_ind(NULL, err, 0);
3584 			if (mp != NULL) {
3585 				putnext(q, mp);
3586 			} else {
3587 				if (tcp->tcp_debug) {
3588 					(void) strlog(TCP_MOD_ID, 0, 1,
3589 					    SL_ERROR|SL_TRACE,
3590 					    "tcp_clean_death, sending M_ERROR");
3591 				}
3592 				(void) putnextctl1(q, M_ERROR, EPROTO);
3593 			}
3594 		}
3595 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3596 			/* SYN_SENT or SYN_RCVD */
3597 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
3598 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3599 			/* ESTABLISHED or CLOSE_WAIT */
3600 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
3601 		}
3602 	}
3603 
3604 	tcp_reinit(tcp);
3605 	if (IPCL_IS_NONSTR(connp))
3606 		(void) tcp_do_unbind(connp);
3607 
3608 	return (-1);
3609 }
3610 
3611 /*
3612  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3613  * to expire, stop the wait and finish the close.
3614  */
3615 static void
3616 tcp_stop_lingering(tcp_t *tcp)
3617 {
3618 	clock_t	delta = 0;
3619 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3620 
3621 	tcp->tcp_linger_tid = 0;
3622 	if (tcp->tcp_state > TCPS_LISTEN) {
3623 		tcp_acceptor_hash_remove(tcp);
3624 		mutex_enter(&tcp->tcp_non_sq_lock);
3625 		if (tcp->tcp_flow_stopped) {
3626 			tcp_clrqfull(tcp);
3627 		}
3628 		mutex_exit(&tcp->tcp_non_sq_lock);
3629 
3630 		if (tcp->tcp_timer_tid != 0) {
3631 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3632 			tcp->tcp_timer_tid = 0;
3633 		}
3634 		/*
3635 		 * Need to cancel those timers which will not be used when
3636 		 * TCP is detached.  This has to be done before the tcp_wq
3637 		 * is set to the global queue.
3638 		 */
3639 		tcp_timers_stop(tcp);
3640 
3641 		tcp->tcp_detached = B_TRUE;
3642 		ASSERT(tcps->tcps_g_q != NULL);
3643 		tcp->tcp_rq = tcps->tcps_g_q;
3644 		tcp->tcp_wq = WR(tcps->tcps_g_q);
3645 
3646 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3647 			tcp_time_wait_append(tcp);
3648 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
3649 			goto finish;
3650 		}
3651 
3652 		/*
3653 		 * If delta is zero the timer event wasn't executed and was
3654 		 * successfully canceled. In this case we need to restart it
3655 		 * with the minimal delta possible.
3656 		 */
3657 		if (delta >= 0) {
3658 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3659 			    delta ? delta : 1);
3660 		}
3661 	} else {
3662 		tcp_closei_local(tcp);
3663 		CONN_DEC_REF(tcp->tcp_connp);
3664 	}
3665 finish:
3666 	/* Signal closing thread that it can complete close */
3667 	mutex_enter(&tcp->tcp_closelock);
3668 	tcp->tcp_detached = B_TRUE;
3669 	ASSERT(tcps->tcps_g_q != NULL);
3670 
3671 	tcp->tcp_rq = tcps->tcps_g_q;
3672 	tcp->tcp_wq = WR(tcps->tcps_g_q);
3673 
3674 	tcp->tcp_closed = 1;
3675 	cv_signal(&tcp->tcp_closecv);
3676 	mutex_exit(&tcp->tcp_closelock);
3677 }
3678 
3679 /*
3680  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
3681  * expires.
3682  */
3683 static void
3684 tcp_close_linger_timeout(void *arg)
3685 {
3686 	conn_t	*connp = (conn_t *)arg;
3687 	tcp_t 	*tcp = connp->conn_tcp;
3688 
3689 	tcp->tcp_client_errno = ETIMEDOUT;
3690 	tcp_stop_lingering(tcp);
3691 }
3692 
3693 static void
3694 tcp_close_common(conn_t *connp, int flags)
3695 {
3696 	tcp_t		*tcp = connp->conn_tcp;
3697 	mblk_t 		*mp = &tcp->tcp_closemp;
3698 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
3699 	mblk_t		*bp;
3700 
3701 	ASSERT(connp->conn_ref >= 2);
3702 
3703 	/*
3704 	 * Mark the conn as closing. ill_pending_mp_add will not
3705 	 * add any mp to the pending mp list, after this conn has
3706 	 * started closing. Same for sq_pending_mp_add
3707 	 */
3708 	mutex_enter(&connp->conn_lock);
3709 	connp->conn_state_flags |= CONN_CLOSING;
3710 	if (connp->conn_oper_pending_ill != NULL)
3711 		conn_ioctl_cleanup_reqd = B_TRUE;
3712 	CONN_INC_REF_LOCKED(connp);
3713 	mutex_exit(&connp->conn_lock);
3714 	tcp->tcp_closeflags = (uint8_t)flags;
3715 	ASSERT(connp->conn_ref >= 3);
3716 
3717 	/*
3718 	 * tcp_closemp_used is used below without any protection of a lock
3719 	 * as we don't expect any one else to use it concurrently at this
3720 	 * point otherwise it would be a major defect.
3721 	 */
3722 
3723 	if (mp->b_prev == NULL)
3724 		tcp->tcp_closemp_used = B_TRUE;
3725 	else
3726 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
3727 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
3728 
3729 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
3730 
3731 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp,
3732 	    tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
3733 
3734 	mutex_enter(&tcp->tcp_closelock);
3735 	while (!tcp->tcp_closed) {
3736 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
3737 			/*
3738 			 * The cv_wait_sig() was interrupted. We now do the
3739 			 * following:
3740 			 *
3741 			 * 1) If the endpoint was lingering, we allow this
3742 			 * to be interrupted by cancelling the linger timeout
3743 			 * and closing normally.
3744 			 *
3745 			 * 2) Revert to calling cv_wait()
3746 			 *
3747 			 * We revert to using cv_wait() to avoid an
3748 			 * infinite loop which can occur if the calling
3749 			 * thread is higher priority than the squeue worker
3750 			 * thread and is bound to the same cpu.
3751 			 */
3752 			if (tcp->tcp_linger && tcp->tcp_lingertime > 0) {
3753 				mutex_exit(&tcp->tcp_closelock);
3754 				/* Entering squeue, bump ref count. */
3755 				CONN_INC_REF(connp);
3756 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
3757 				SQUEUE_ENTER_ONE(connp->conn_sqp, bp,
3758 				    tcp_linger_interrupted, connp,
3759 				    tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
3760 				mutex_enter(&tcp->tcp_closelock);
3761 			}
3762 			break;
3763 		}
3764 	}
3765 	while (!tcp->tcp_closed)
3766 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
3767 	mutex_exit(&tcp->tcp_closelock);
3768 
3769 	/*
3770 	 * In the case of listener streams that have eagers in the q or q0
3771 	 * we wait for the eagers to drop their reference to us. tcp_rq and
3772 	 * tcp_wq of the eagers point to our queues. By waiting for the
3773 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
3774 	 * up their queue pointers and also dropped their references to us.
3775 	 */
3776 	if (tcp->tcp_wait_for_eagers) {
3777 		mutex_enter(&connp->conn_lock);
3778 		while (connp->conn_ref != 1) {
3779 			cv_wait(&connp->conn_cv, &connp->conn_lock);
3780 		}
3781 		mutex_exit(&connp->conn_lock);
3782 	}
3783 	/*
3784 	 * ioctl cleanup. The mp is queued in the
3785 	 * ill_pending_mp or in the sq_pending_mp.
3786 	 */
3787 	if (conn_ioctl_cleanup_reqd)
3788 		conn_ioctl_cleanup(connp);
3789 
3790 	tcp->tcp_cpid = -1;
3791 }
3792 
3793 static int
3794 tcp_tpi_close(queue_t *q, int flags)
3795 {
3796 	conn_t		*connp;
3797 
3798 	ASSERT(WR(q)->q_next == NULL);
3799 
3800 	if (flags & SO_FALLBACK) {
3801 		/*
3802 		 * stream is being closed while in fallback
3803 		 * simply free the resources that were allocated
3804 		 */
3805 		inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr));
3806 		qprocsoff(q);
3807 		goto done;
3808 	}
3809 
3810 	connp = Q_TO_CONN(q);
3811 	/*
3812 	 * We are being closed as /dev/tcp or /dev/tcp6.
3813 	 */
3814 	tcp_close_common(connp, flags);
3815 
3816 	qprocsoff(q);
3817 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
3818 
3819 	/*
3820 	 * Drop IP's reference on the conn. This is the last reference
3821 	 * on the connp if the state was less than established. If the
3822 	 * connection has gone into timewait state, then we will have
3823 	 * one ref for the TCP and one more ref (total of two) for the
3824 	 * classifier connected hash list (a timewait connections stays
3825 	 * in connected hash till closed).
3826 	 *
3827 	 * We can't assert the references because there might be other
3828 	 * transient reference places because of some walkers or queued
3829 	 * packets in squeue for the timewait state.
3830 	 */
3831 	CONN_DEC_REF(connp);
3832 done:
3833 	q->q_ptr = WR(q)->q_ptr = NULL;
3834 	return (0);
3835 }
3836 
3837 static int
3838 tcpclose_accept(queue_t *q)
3839 {
3840 	vmem_t	*minor_arena;
3841 	dev_t	conn_dev;
3842 
3843 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
3844 
3845 	/*
3846 	 * We had opened an acceptor STREAM for sockfs which is
3847 	 * now being closed due to some error.
3848 	 */
3849 	qprocsoff(q);
3850 
3851 	minor_arena = (vmem_t *)WR(q)->q_ptr;
3852 	conn_dev = (dev_t)RD(q)->q_ptr;
3853 	ASSERT(minor_arena != NULL);
3854 	ASSERT(conn_dev != 0);
3855 	inet_minor_free(minor_arena, conn_dev);
3856 	q->q_ptr = WR(q)->q_ptr = NULL;
3857 	return (0);
3858 }
3859 
3860 /*
3861  * Called by tcp_close() routine via squeue when lingering is
3862  * interrupted by a signal.
3863  */
3864 
3865 /* ARGSUSED */
3866 static void
3867 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2)
3868 {
3869 	conn_t	*connp = (conn_t *)arg;
3870 	tcp_t	*tcp = connp->conn_tcp;
3871 
3872 	freeb(mp);
3873 	if (tcp->tcp_linger_tid != 0 &&
3874 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3875 		tcp_stop_lingering(tcp);
3876 		tcp->tcp_client_errno = EINTR;
3877 	}
3878 }
3879 
3880 /*
3881  * Called by streams close routine via squeues when our client blows off her
3882  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
3883  * connection politely" When SO_LINGER is set (with a non-zero linger time and
3884  * it is not a nonblocking socket) then this routine sleeps until the FIN is
3885  * acked.
3886  *
3887  * NOTE: tcp_close potentially returns error when lingering.
3888  * However, the stream head currently does not pass these errors
3889  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
3890  * errors to the application (from tsleep()) and not errors
3891  * like ECONNRESET caused by receiving a reset packet.
3892  */
3893 
3894 /* ARGSUSED */
3895 static void
3896 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
3897 {
3898 	char	*msg;
3899 	conn_t	*connp = (conn_t *)arg;
3900 	tcp_t	*tcp = connp->conn_tcp;
3901 	clock_t	delta = 0;
3902 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3903 
3904 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
3905 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
3906 
3907 	mutex_enter(&tcp->tcp_eager_lock);
3908 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
3909 		/* Cleanup for listener */
3910 		tcp_eager_cleanup(tcp, 0);
3911 		tcp->tcp_wait_for_eagers = 1;
3912 	}
3913 	mutex_exit(&tcp->tcp_eager_lock);
3914 
3915 	connp->conn_mdt_ok = B_FALSE;
3916 	tcp->tcp_mdt = B_FALSE;
3917 
3918 	connp->conn_lso_ok = B_FALSE;
3919 	tcp->tcp_lso = B_FALSE;
3920 
3921 	msg = NULL;
3922 	switch (tcp->tcp_state) {
3923 	case TCPS_CLOSED:
3924 	case TCPS_IDLE:
3925 	case TCPS_BOUND:
3926 	case TCPS_LISTEN:
3927 		break;
3928 	case TCPS_SYN_SENT:
3929 		msg = "tcp_close, during connect";
3930 		break;
3931 	case TCPS_SYN_RCVD:
3932 		/*
3933 		 * Close during the connect 3-way handshake
3934 		 * but here there may or may not be pending data
3935 		 * already on queue. Process almost same as in
3936 		 * the ESTABLISHED state.
3937 		 */
3938 		/* FALLTHRU */
3939 	default:
3940 		if (tcp->tcp_sodirect != NULL) {
3941 			/* Ok, no more sodirect */
3942 			tcp->tcp_sodirect = NULL;
3943 		}
3944 
3945 		if (tcp->tcp_fused)
3946 			tcp_unfuse(tcp);
3947 
3948 		/*
3949 		 * If SO_LINGER has set a zero linger time, abort the
3950 		 * connection with a reset.
3951 		 */
3952 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
3953 			msg = "tcp_close, zero lingertime";
3954 			break;
3955 		}
3956 
3957 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
3958 		/*
3959 		 * Abort connection if there is unread data queued.
3960 		 */
3961 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
3962 			msg = "tcp_close, unread data";
3963 			break;
3964 		}
3965 		/*
3966 		 * tcp_hard_bound is now cleared thus all packets go through
3967 		 * tcp_lookup. This fact is used by tcp_detach below.
3968 		 *
3969 		 * We have done a qwait() above which could have possibly
3970 		 * drained more messages in turn causing transition to a
3971 		 * different state. Check whether we have to do the rest
3972 		 * of the processing or not.
3973 		 */
3974 		if (tcp->tcp_state <= TCPS_LISTEN)
3975 			break;
3976 
3977 		/*
3978 		 * Transmit the FIN before detaching the tcp_t.
3979 		 * After tcp_detach returns this queue/perimeter
3980 		 * no longer owns the tcp_t thus others can modify it.
3981 		 */
3982 		(void) tcp_xmit_end(tcp);
3983 
3984 		/*
3985 		 * If lingering on close then wait until the fin is acked,
3986 		 * the SO_LINGER time passes, or a reset is sent/received.
3987 		 */
3988 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
3989 		    !(tcp->tcp_fin_acked) &&
3990 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
3991 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
3992 				tcp->tcp_client_errno = EWOULDBLOCK;
3993 			} else if (tcp->tcp_client_errno == 0) {
3994 
3995 				ASSERT(tcp->tcp_linger_tid == 0);
3996 
3997 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
3998 				    tcp_close_linger_timeout,
3999 				    tcp->tcp_lingertime * hz);
4000 
4001 				/* tcp_close_linger_timeout will finish close */
4002 				if (tcp->tcp_linger_tid == 0)
4003 					tcp->tcp_client_errno = ENOSR;
4004 				else
4005 					return;
4006 			}
4007 
4008 			/*
4009 			 * Check if we need to detach or just close
4010 			 * the instance.
4011 			 */
4012 			if (tcp->tcp_state <= TCPS_LISTEN)
4013 				break;
4014 		}
4015 
4016 		/*
4017 		 * Make sure that no other thread will access the tcp_rq of
4018 		 * this instance (through lookups etc.) as tcp_rq will go
4019 		 * away shortly.
4020 		 */
4021 		tcp_acceptor_hash_remove(tcp);
4022 
4023 		mutex_enter(&tcp->tcp_non_sq_lock);
4024 		if (tcp->tcp_flow_stopped) {
4025 			tcp_clrqfull(tcp);
4026 		}
4027 		mutex_exit(&tcp->tcp_non_sq_lock);
4028 
4029 		if (tcp->tcp_timer_tid != 0) {
4030 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4031 			tcp->tcp_timer_tid = 0;
4032 		}
4033 		/*
4034 		 * Need to cancel those timers which will not be used when
4035 		 * TCP is detached.  This has to be done before the tcp_wq
4036 		 * is set to the global queue.
4037 		 */
4038 		tcp_timers_stop(tcp);
4039 
4040 		tcp->tcp_detached = B_TRUE;
4041 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4042 			tcp_time_wait_append(tcp);
4043 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
4044 			ASSERT(connp->conn_ref >= 3);
4045 			goto finish;
4046 		}
4047 
4048 		/*
4049 		 * If delta is zero the timer event wasn't executed and was
4050 		 * successfully canceled. In this case we need to restart it
4051 		 * with the minimal delta possible.
4052 		 */
4053 		if (delta >= 0)
4054 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4055 			    delta ? delta : 1);
4056 
4057 		ASSERT(connp->conn_ref >= 3);
4058 		goto finish;
4059 	}
4060 
4061 	/* Detach did not complete. Still need to remove q from stream. */
4062 	if (msg) {
4063 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
4064 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
4065 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
4066 		if (tcp->tcp_state == TCPS_SYN_SENT ||
4067 		    tcp->tcp_state == TCPS_SYN_RCVD)
4068 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
4069 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
4070 	}
4071 
4072 	tcp_closei_local(tcp);
4073 	CONN_DEC_REF(connp);
4074 	ASSERT(connp->conn_ref >= 2);
4075 
4076 finish:
4077 	/*
4078 	 * Although packets are always processed on the correct
4079 	 * tcp's perimeter and access is serialized via squeue's,
4080 	 * IP still needs a queue when sending packets in time_wait
4081 	 * state so use WR(tcps_g_q) till ip_output() can be
4082 	 * changed to deal with just connp. For read side, we
4083 	 * could have set tcp_rq to NULL but there are some cases
4084 	 * in tcp_rput_data() from early days of this code which
4085 	 * do a putnext without checking if tcp is closed. Those
4086 	 * need to be identified before both tcp_rq and tcp_wq
4087 	 * can be set to NULL and tcps_g_q can disappear forever.
4088 	 */
4089 	mutex_enter(&tcp->tcp_closelock);
4090 	/*
4091 	 * Don't change the queues in the case of a listener that has
4092 	 * eagers in its q or q0. It could surprise the eagers.
4093 	 * Instead wait for the eagers outside the squeue.
4094 	 */
4095 	if (!tcp->tcp_wait_for_eagers) {
4096 		tcp->tcp_detached = B_TRUE;
4097 		/*
4098 		 * When default queue is closing we set tcps_g_q to NULL
4099 		 * after the close is done.
4100 		 */
4101 		ASSERT(tcps->tcps_g_q != NULL);
4102 		tcp->tcp_rq = tcps->tcps_g_q;
4103 		tcp->tcp_wq = WR(tcps->tcps_g_q);
4104 	}
4105 
4106 	/* Signal tcp_close() to finish closing. */
4107 	tcp->tcp_closed = 1;
4108 	cv_signal(&tcp->tcp_closecv);
4109 	mutex_exit(&tcp->tcp_closelock);
4110 }
4111 
4112 
4113 /*
4114  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4115  * Some stream heads get upset if they see these later on as anything but NULL.
4116  */
4117 static void
4118 tcp_close_mpp(mblk_t **mpp)
4119 {
4120 	mblk_t	*mp;
4121 
4122 	if ((mp = *mpp) != NULL) {
4123 		do {
4124 			mp->b_next = NULL;
4125 			mp->b_prev = NULL;
4126 		} while ((mp = mp->b_cont) != NULL);
4127 
4128 		mp = *mpp;
4129 		*mpp = NULL;
4130 		freemsg(mp);
4131 	}
4132 }
4133 
4134 /* Do detached close. */
4135 static void
4136 tcp_close_detached(tcp_t *tcp)
4137 {
4138 	if (tcp->tcp_fused)
4139 		tcp_unfuse(tcp);
4140 
4141 	/*
4142 	 * Clustering code serializes TCP disconnect callbacks and
4143 	 * cluster tcp list walks by blocking a TCP disconnect callback
4144 	 * if a cluster tcp list walk is in progress. This ensures
4145 	 * accurate accounting of TCPs in the cluster code even though
4146 	 * the TCP list walk itself is not atomic.
4147 	 */
4148 	tcp_closei_local(tcp);
4149 	CONN_DEC_REF(tcp->tcp_connp);
4150 }
4151 
4152 /*
4153  * Stop all TCP timers, and free the timer mblks if requested.
4154  */
4155 void
4156 tcp_timers_stop(tcp_t *tcp)
4157 {
4158 	if (tcp->tcp_timer_tid != 0) {
4159 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4160 		tcp->tcp_timer_tid = 0;
4161 	}
4162 	if (tcp->tcp_ka_tid != 0) {
4163 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4164 		tcp->tcp_ka_tid = 0;
4165 	}
4166 	if (tcp->tcp_ack_tid != 0) {
4167 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4168 		tcp->tcp_ack_tid = 0;
4169 	}
4170 	if (tcp->tcp_push_tid != 0) {
4171 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4172 		tcp->tcp_push_tid = 0;
4173 	}
4174 }
4175 
4176 /*
4177  * The tcp_t is going away. Remove it from all lists and set it
4178  * to TCPS_CLOSED. The freeing up of memory is deferred until
4179  * tcp_inactive. This is needed since a thread in tcp_rput might have
4180  * done a CONN_INC_REF on this structure before it was removed from the
4181  * hashes.
4182  */
4183 static void
4184 tcp_closei_local(tcp_t *tcp)
4185 {
4186 	ire_t 	*ire;
4187 	conn_t	*connp = tcp->tcp_connp;
4188 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4189 
4190 	if (!TCP_IS_SOCKET(tcp))
4191 		tcp_acceptor_hash_remove(tcp);
4192 
4193 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
4194 	tcp->tcp_ibsegs = 0;
4195 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
4196 	tcp->tcp_obsegs = 0;
4197 
4198 	/*
4199 	 * If we are an eager connection hanging off a listener that
4200 	 * hasn't formally accepted the connection yet, get off his
4201 	 * list and blow off any data that we have accumulated.
4202 	 */
4203 	if (tcp->tcp_listener != NULL) {
4204 		tcp_t	*listener = tcp->tcp_listener;
4205 		mutex_enter(&listener->tcp_eager_lock);
4206 		/*
4207 		 * tcp_tconnind_started == B_TRUE means that the
4208 		 * conn_ind has already gone to listener. At
4209 		 * this point, eager will be closed but we
4210 		 * leave it in listeners eager list so that
4211 		 * if listener decides to close without doing
4212 		 * accept, we can clean this up. In tcp_wput_accept
4213 		 * we take care of the case of accept on closed
4214 		 * eager.
4215 		 */
4216 		if (!tcp->tcp_tconnind_started) {
4217 			tcp_eager_unlink(tcp);
4218 			mutex_exit(&listener->tcp_eager_lock);
4219 			/*
4220 			 * We don't want to have any pointers to the
4221 			 * listener queue, after we have released our
4222 			 * reference on the listener
4223 			 */
4224 			ASSERT(tcps->tcps_g_q != NULL);
4225 			tcp->tcp_rq = tcps->tcps_g_q;
4226 			tcp->tcp_wq = WR(tcps->tcps_g_q);
4227 			CONN_DEC_REF(listener->tcp_connp);
4228 		} else {
4229 			mutex_exit(&listener->tcp_eager_lock);
4230 		}
4231 	}
4232 
4233 	/* Stop all the timers */
4234 	tcp_timers_stop(tcp);
4235 
4236 	if (tcp->tcp_state == TCPS_LISTEN) {
4237 		if (tcp->tcp_ip_addr_cache) {
4238 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4239 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4240 			tcp->tcp_ip_addr_cache = NULL;
4241 		}
4242 	}
4243 	mutex_enter(&tcp->tcp_non_sq_lock);
4244 	if (tcp->tcp_flow_stopped)
4245 		tcp_clrqfull(tcp);
4246 	mutex_exit(&tcp->tcp_non_sq_lock);
4247 
4248 	tcp_bind_hash_remove(tcp);
4249 	/*
4250 	 * If the tcp_time_wait_collector (which runs outside the squeue)
4251 	 * is trying to remove this tcp from the time wait list, we will
4252 	 * block in tcp_time_wait_remove while trying to acquire the
4253 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
4254 	 * requires the ipcl_hash_remove to be ordered after the
4255 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
4256 	 */
4257 	if (tcp->tcp_state == TCPS_TIME_WAIT)
4258 		(void) tcp_time_wait_remove(tcp, NULL);
4259 	CL_INET_DISCONNECT(connp, tcp);
4260 	ipcl_hash_remove(connp);
4261 
4262 	/*
4263 	 * Delete the cached ire in conn_ire_cache and also mark
4264 	 * the conn as CONDEMNED
4265 	 */
4266 	mutex_enter(&connp->conn_lock);
4267 	connp->conn_state_flags |= CONN_CONDEMNED;
4268 	ire = connp->conn_ire_cache;
4269 	connp->conn_ire_cache = NULL;
4270 	mutex_exit(&connp->conn_lock);
4271 	if (ire != NULL)
4272 		IRE_REFRELE_NOTR(ire);
4273 
4274 	/* Need to cleanup any pending ioctls */
4275 	ASSERT(tcp->tcp_time_wait_next == NULL);
4276 	ASSERT(tcp->tcp_time_wait_prev == NULL);
4277 	ASSERT(tcp->tcp_time_wait_expire == 0);
4278 	tcp->tcp_state = TCPS_CLOSED;
4279 
4280 	/* Release any SSL context */
4281 	if (tcp->tcp_kssl_ent != NULL) {
4282 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
4283 		tcp->tcp_kssl_ent = NULL;
4284 	}
4285 	if (tcp->tcp_kssl_ctx != NULL) {
4286 		kssl_release_ctx(tcp->tcp_kssl_ctx);
4287 		tcp->tcp_kssl_ctx = NULL;
4288 	}
4289 	tcp->tcp_kssl_pending = B_FALSE;
4290 
4291 	tcp_ipsec_cleanup(tcp);
4292 }
4293 
4294 /*
4295  * tcp is dying (called from ipcl_conn_destroy and error cases).
4296  * Free the tcp_t in either case.
4297  */
4298 void
4299 tcp_free(tcp_t *tcp)
4300 {
4301 	mblk_t	*mp;
4302 	ip6_pkt_t	*ipp;
4303 
4304 	ASSERT(tcp != NULL);
4305 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
4306 
4307 	tcp->tcp_rq = NULL;
4308 	tcp->tcp_wq = NULL;
4309 
4310 	tcp_close_mpp(&tcp->tcp_xmit_head);
4311 	tcp_close_mpp(&tcp->tcp_reass_head);
4312 	if (tcp->tcp_rcv_list != NULL) {
4313 		/* Free b_next chain */
4314 		tcp_close_mpp(&tcp->tcp_rcv_list);
4315 	}
4316 	if ((mp = tcp->tcp_urp_mp) != NULL) {
4317 		freemsg(mp);
4318 	}
4319 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
4320 		freemsg(mp);
4321 	}
4322 
4323 	if (tcp->tcp_fused_sigurg_mp != NULL) {
4324 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
4325 		freeb(tcp->tcp_fused_sigurg_mp);
4326 		tcp->tcp_fused_sigurg_mp = NULL;
4327 	}
4328 
4329 	if (tcp->tcp_ordrel_mp != NULL) {
4330 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
4331 		freeb(tcp->tcp_ordrel_mp);
4332 		tcp->tcp_ordrel_mp = NULL;
4333 	}
4334 
4335 	if (tcp->tcp_ordrel_mp != NULL) {
4336 		freeb(tcp->tcp_ordrel_mp);
4337 		tcp->tcp_ordrel_mp = NULL;
4338 	}
4339 
4340 	if (tcp->tcp_sack_info != NULL) {
4341 		if (tcp->tcp_notsack_list != NULL) {
4342 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4343 		}
4344 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
4345 	}
4346 
4347 	if (tcp->tcp_hopopts != NULL) {
4348 		mi_free(tcp->tcp_hopopts);
4349 		tcp->tcp_hopopts = NULL;
4350 		tcp->tcp_hopoptslen = 0;
4351 	}
4352 	ASSERT(tcp->tcp_hopoptslen == 0);
4353 	if (tcp->tcp_dstopts != NULL) {
4354 		mi_free(tcp->tcp_dstopts);
4355 		tcp->tcp_dstopts = NULL;
4356 		tcp->tcp_dstoptslen = 0;
4357 	}
4358 	ASSERT(tcp->tcp_dstoptslen == 0);
4359 	if (tcp->tcp_rtdstopts != NULL) {
4360 		mi_free(tcp->tcp_rtdstopts);
4361 		tcp->tcp_rtdstopts = NULL;
4362 		tcp->tcp_rtdstoptslen = 0;
4363 	}
4364 	ASSERT(tcp->tcp_rtdstoptslen == 0);
4365 	if (tcp->tcp_rthdr != NULL) {
4366 		mi_free(tcp->tcp_rthdr);
4367 		tcp->tcp_rthdr = NULL;
4368 		tcp->tcp_rthdrlen = 0;
4369 	}
4370 	ASSERT(tcp->tcp_rthdrlen == 0);
4371 
4372 	ipp = &tcp->tcp_sticky_ipp;
4373 	if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
4374 	    IPPF_RTHDR))
4375 		ip6_pkt_free(ipp);
4376 
4377 	/*
4378 	 * Free memory associated with the tcp/ip header template.
4379 	 */
4380 
4381 	if (tcp->tcp_iphc != NULL)
4382 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4383 
4384 	/*
4385 	 * Following is really a blowing away a union.
4386 	 * It happens to have exactly two members of identical size
4387 	 * the following code is enough.
4388 	 */
4389 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
4390 }
4391 
4392 
4393 /*
4394  * Put a connection confirmation message upstream built from the
4395  * address information within 'iph' and 'tcph'.  Report our success or failure.
4396  */
4397 static boolean_t
4398 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
4399     mblk_t **defermp)
4400 {
4401 	sin_t	sin;
4402 	sin6_t	sin6;
4403 	mblk_t	*mp;
4404 	char	*optp = NULL;
4405 	int	optlen = 0;
4406 	cred_t	*cr;
4407 
4408 	if (defermp != NULL)
4409 		*defermp = NULL;
4410 
4411 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
4412 		/*
4413 		 * Return in T_CONN_CON results of option negotiation through
4414 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
4415 		 * negotiation, then what is received from remote end needs
4416 		 * to be taken into account but there is no such thing (yet?)
4417 		 * in our TCP/IP.
4418 		 * Note: We do not use mi_offset_param() here as
4419 		 * tcp_opts_conn_req contents do not directly come from
4420 		 * an application and are either generated in kernel or
4421 		 * from user input that was already verified.
4422 		 */
4423 		mp = tcp->tcp_conn.tcp_opts_conn_req;
4424 		optp = (char *)(mp->b_rptr +
4425 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
4426 		optlen = (int)
4427 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
4428 	}
4429 
4430 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
4431 		ipha_t *ipha = (ipha_t *)iphdr;
4432 
4433 		/* packet is IPv4 */
4434 		if (tcp->tcp_family == AF_INET) {
4435 			sin = sin_null;
4436 			sin.sin_addr.s_addr = ipha->ipha_src;
4437 			sin.sin_port = *(uint16_t *)tcph->th_lport;
4438 			sin.sin_family = AF_INET;
4439 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
4440 			    (int)sizeof (sin_t), optp, optlen);
4441 		} else {
4442 			sin6 = sin6_null;
4443 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4444 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4445 			sin6.sin6_family = AF_INET6;
4446 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4447 			    (int)sizeof (sin6_t), optp, optlen);
4448 
4449 		}
4450 	} else {
4451 		ip6_t	*ip6h = (ip6_t *)iphdr;
4452 
4453 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
4454 		ASSERT(tcp->tcp_family == AF_INET6);
4455 		sin6 = sin6_null;
4456 		sin6.sin6_addr = ip6h->ip6_src;
4457 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4458 		sin6.sin6_family = AF_INET6;
4459 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4460 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4461 		    (int)sizeof (sin6_t), optp, optlen);
4462 	}
4463 
4464 	if (!mp)
4465 		return (B_FALSE);
4466 
4467 	if ((cr = DB_CRED(idmp)) != NULL) {
4468 		mblk_setcred(mp, cr);
4469 		DB_CPID(mp) = DB_CPID(idmp);
4470 	}
4471 
4472 	if (defermp == NULL) {
4473 		conn_t *connp = tcp->tcp_connp;
4474 		if (IPCL_IS_NONSTR(connp)) {
4475 			(*connp->conn_upcalls->su_connected)
4476 			    (connp->conn_upper_handle, tcp->tcp_connid, cr,
4477 			    DB_CPID(mp));
4478 			freemsg(mp);
4479 		} else {
4480 			putnext(tcp->tcp_rq, mp);
4481 		}
4482 	} else {
4483 		*defermp = mp;
4484 	}
4485 
4486 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4487 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4488 	return (B_TRUE);
4489 }
4490 
4491 /*
4492  * Defense for the SYN attack -
4493  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
4494  *    one from the list of droppable eagers. This list is a subset of q0.
4495  *    see comments before the definition of MAKE_DROPPABLE().
4496  * 2. Don't drop a SYN request before its first timeout. This gives every
4497  *    request at least til the first timeout to complete its 3-way handshake.
4498  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
4499  *    requests currently on the queue that has timed out. This will be used
4500  *    as an indicator of whether an attack is under way, so that appropriate
4501  *    actions can be taken. (It's incremented in tcp_timer() and decremented
4502  *    either when eager goes into ESTABLISHED, or gets freed up.)
4503  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
4504  *    # of timeout drops back to <= q0len/32 => SYN alert off
4505  */
4506 static boolean_t
4507 tcp_drop_q0(tcp_t *tcp)
4508 {
4509 	tcp_t	*eager;
4510 	mblk_t	*mp;
4511 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4512 
4513 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
4514 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
4515 
4516 	/* Pick oldest eager from the list of droppable eagers */
4517 	eager = tcp->tcp_eager_prev_drop_q0;
4518 
4519 	/* If list is empty. return B_FALSE */
4520 	if (eager == tcp) {
4521 		return (B_FALSE);
4522 	}
4523 
4524 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
4525 	if ((mp = allocb(0, BPRI_HI)) == NULL)
4526 		return (B_FALSE);
4527 
4528 	/*
4529 	 * Take this eager out from the list of droppable eagers since we are
4530 	 * going to drop it.
4531 	 */
4532 	MAKE_UNDROPPABLE(eager);
4533 
4534 	if (tcp->tcp_debug) {
4535 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4536 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
4537 		    " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
4538 		    tcp->tcp_conn_req_cnt_q0,
4539 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4540 	}
4541 
4542 	BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop);
4543 
4544 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
4545 	CONN_INC_REF(eager->tcp_connp);
4546 
4547 	/* Mark the IRE created for this SYN request temporary */
4548 	tcp_ip_ire_mark_advice(eager);
4549 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
4550 	    tcp_clean_death_wrapper, eager->tcp_connp,
4551 	    SQ_FILL, SQTAG_TCP_DROP_Q0);
4552 
4553 	return (B_TRUE);
4554 }
4555 
4556 int
4557 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4558     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
4559 {
4560 	tcp_t 		*ltcp = lconnp->conn_tcp;
4561 	tcp_t		*tcp = connp->conn_tcp;
4562 	mblk_t		*tpi_mp;
4563 	ipha_t		*ipha;
4564 	ip6_t		*ip6h;
4565 	sin6_t 		sin6;
4566 	in6_addr_t 	v6dst;
4567 	int		err;
4568 	int		ifindex = 0;
4569 	cred_t		*cr;
4570 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4571 
4572 	if (ipvers == IPV4_VERSION) {
4573 		ipha = (ipha_t *)mp->b_rptr;
4574 
4575 		connp->conn_send = ip_output;
4576 		connp->conn_recv = tcp_input;
4577 
4578 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4579 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4580 
4581 		sin6 = sin6_null;
4582 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4583 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
4584 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4585 		sin6.sin6_family = AF_INET6;
4586 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
4587 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4588 		if (tcp->tcp_recvdstaddr) {
4589 			sin6_t	sin6d;
4590 
4591 			sin6d = sin6_null;
4592 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4593 			    &sin6d.sin6_addr);
4594 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4595 			sin6d.sin6_family = AF_INET;
4596 			tpi_mp = mi_tpi_extconn_ind(NULL,
4597 			    (char *)&sin6d, sizeof (sin6_t),
4598 			    (char *)&tcp,
4599 			    (t_scalar_t)sizeof (intptr_t),
4600 			    (char *)&sin6d, sizeof (sin6_t),
4601 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4602 		} else {
4603 			tpi_mp = mi_tpi_conn_ind(NULL,
4604 			    (char *)&sin6, sizeof (sin6_t),
4605 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4606 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4607 		}
4608 	} else {
4609 		ip6h = (ip6_t *)mp->b_rptr;
4610 
4611 		connp->conn_send = ip_output_v6;
4612 		connp->conn_recv = tcp_input;
4613 
4614 		connp->conn_srcv6 = ip6h->ip6_dst;
4615 		connp->conn_remv6 = ip6h->ip6_src;
4616 
4617 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
4618 		ifindex = (int)DB_CKSUMSTUFF(mp);
4619 		DB_CKSUMSTUFF(mp) = 0;
4620 
4621 		sin6 = sin6_null;
4622 		sin6.sin6_addr = ip6h->ip6_src;
4623 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4624 		sin6.sin6_family = AF_INET6;
4625 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4626 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
4627 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4628 
4629 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4630 			/* Pass up the scope_id of remote addr */
4631 			sin6.sin6_scope_id = ifindex;
4632 		} else {
4633 			sin6.sin6_scope_id = 0;
4634 		}
4635 		if (tcp->tcp_recvdstaddr) {
4636 			sin6_t	sin6d;
4637 
4638 			sin6d = sin6_null;
4639 			sin6.sin6_addr = ip6h->ip6_dst;
4640 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4641 			sin6d.sin6_family = AF_INET;
4642 			tpi_mp = mi_tpi_extconn_ind(NULL,
4643 			    (char *)&sin6d, sizeof (sin6_t),
4644 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4645 			    (char *)&sin6d, sizeof (sin6_t),
4646 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4647 		} else {
4648 			tpi_mp = mi_tpi_conn_ind(NULL,
4649 			    (char *)&sin6, sizeof (sin6_t),
4650 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4651 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4652 		}
4653 	}
4654 
4655 	if (tpi_mp == NULL)
4656 		return (ENOMEM);
4657 
4658 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4659 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4660 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
4661 	connp->conn_fully_bound = B_FALSE;
4662 
4663 	/* Inherit information from the "parent" */
4664 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4665 	tcp->tcp_family = ltcp->tcp_family;
4666 
4667 	tcp->tcp_wq = ltcp->tcp_wq;
4668 	tcp->tcp_rq = ltcp->tcp_rq;
4669 
4670 	tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
4671 	tcp->tcp_detached = B_TRUE;
4672 	SOCK_CONNID_INIT(tcp->tcp_connid);
4673 	if ((err = tcp_init_values(tcp)) != 0) {
4674 		freemsg(tpi_mp);
4675 		return (err);
4676 	}
4677 
4678 	if (ipvers == IPV4_VERSION) {
4679 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
4680 			freemsg(tpi_mp);
4681 			return (err);
4682 		}
4683 		ASSERT(tcp->tcp_ipha != NULL);
4684 	} else {
4685 		/* ifindex must be already set */
4686 		ASSERT(ifindex != 0);
4687 
4688 		if (ltcp->tcp_bound_if != 0) {
4689 			/*
4690 			 * Set newtcp's bound_if equal to
4691 			 * listener's value. If ifindex is
4692 			 * not the same as ltcp->tcp_bound_if,
4693 			 * it must be a packet for the ipmp group
4694 			 * of interfaces
4695 			 */
4696 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
4697 		} else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4698 			tcp->tcp_bound_if = ifindex;
4699 		}
4700 
4701 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
4702 		tcp->tcp_recvifindex = 0;
4703 		tcp->tcp_recvhops = 0xffffffffU;
4704 		ASSERT(tcp->tcp_ip6h != NULL);
4705 	}
4706 
4707 	tcp->tcp_lport = ltcp->tcp_lport;
4708 
4709 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
4710 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
4711 			/*
4712 			 * Listener had options of some sort; eager inherits.
4713 			 * Free up the eager template and allocate one
4714 			 * of the right size.
4715 			 */
4716 			if (tcp->tcp_hdr_grown) {
4717 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
4718 			} else {
4719 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4720 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
4721 			}
4722 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
4723 			    KM_NOSLEEP);
4724 			if (tcp->tcp_iphc == NULL) {
4725 				tcp->tcp_iphc_len = 0;
4726 				freemsg(tpi_mp);
4727 				return (ENOMEM);
4728 			}
4729 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
4730 			tcp->tcp_hdr_grown = B_TRUE;
4731 		}
4732 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
4733 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
4734 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4735 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
4736 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
4737 
4738 		/*
4739 		 * Copy the IP+TCP header template from listener to eager
4740 		 */
4741 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
4742 		if (tcp->tcp_ipversion == IPV6_VERSION) {
4743 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
4744 			    IPPROTO_RAW) {
4745 				tcp->tcp_ip6h =
4746 				    (ip6_t *)(tcp->tcp_iphc +
4747 				    sizeof (ip6i_t));
4748 			} else {
4749 				tcp->tcp_ip6h =
4750 				    (ip6_t *)(tcp->tcp_iphc);
4751 			}
4752 			tcp->tcp_ipha = NULL;
4753 		} else {
4754 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
4755 			tcp->tcp_ip6h = NULL;
4756 		}
4757 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
4758 		    tcp->tcp_ip_hdr_len);
4759 	} else {
4760 		/*
4761 		 * only valid case when ipversion of listener and
4762 		 * eager differ is when listener is IPv6 and
4763 		 * eager is IPv4.
4764 		 * Eager header template has been initialized to the
4765 		 * maximum v4 header sizes, which includes space for
4766 		 * TCP and IP options.
4767 		 */
4768 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
4769 		    (tcp->tcp_ipversion == IPV4_VERSION));
4770 		ASSERT(tcp->tcp_iphc_len >=
4771 		    TCP_MAX_COMBINED_HEADER_LENGTH);
4772 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4773 		/* copy IP header fields individually */
4774 		tcp->tcp_ipha->ipha_ttl =
4775 		    ltcp->tcp_ip6h->ip6_hops;
4776 		bcopy(ltcp->tcp_tcph->th_lport,
4777 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
4778 	}
4779 
4780 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
4781 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
4782 	    sizeof (in_port_t));
4783 
4784 	if (ltcp->tcp_lport == 0) {
4785 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
4786 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
4787 		    sizeof (in_port_t));
4788 	}
4789 
4790 	if (tcp->tcp_ipversion == IPV4_VERSION) {
4791 		ASSERT(ipha != NULL);
4792 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
4793 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
4794 
4795 		/* Source routing option copyover (reverse it) */
4796 		if (tcps->tcps_rev_src_routes)
4797 			tcp_opt_reverse(tcp, ipha);
4798 	} else {
4799 		ASSERT(ip6h != NULL);
4800 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
4801 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
4802 	}
4803 
4804 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
4805 	ASSERT(!tcp->tcp_tconnind_started);
4806 	/*
4807 	 * If the SYN contains a credential, it's a loopback packet; attach
4808 	 * the credential to the TPI message.
4809 	 */
4810 	if ((cr = DB_CRED(idmp)) != NULL) {
4811 		mblk_setcred(tpi_mp, cr);
4812 		DB_CPID(tpi_mp) = DB_CPID(idmp);
4813 	}
4814 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
4815 
4816 	/* Inherit the listener's SSL protection state */
4817 
4818 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
4819 		kssl_hold_ent(tcp->tcp_kssl_ent);
4820 		tcp->tcp_kssl_pending = B_TRUE;
4821 	}
4822 
4823 	/* Inherit the listener's non-STREAMS flag */
4824 	if (IPCL_IS_NONSTR(lconnp)) {
4825 		connp->conn_flags |= IPCL_NONSTR;
4826 		connp->conn_upcalls = lconnp->conn_upcalls;
4827 	}
4828 
4829 	return (0);
4830 }
4831 
4832 
4833 int
4834 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
4835     tcph_t *tcph, mblk_t *idmp)
4836 {
4837 	tcp_t 		*ltcp = lconnp->conn_tcp;
4838 	tcp_t		*tcp = connp->conn_tcp;
4839 	sin_t		sin;
4840 	mblk_t		*tpi_mp = NULL;
4841 	int		err;
4842 	cred_t		*cr;
4843 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4844 
4845 	sin = sin_null;
4846 	sin.sin_addr.s_addr = ipha->ipha_src;
4847 	sin.sin_port = *(uint16_t *)tcph->th_lport;
4848 	sin.sin_family = AF_INET;
4849 	if (ltcp->tcp_recvdstaddr) {
4850 		sin_t	sind;
4851 
4852 		sind = sin_null;
4853 		sind.sin_addr.s_addr = ipha->ipha_dst;
4854 		sind.sin_port = *(uint16_t *)tcph->th_fport;
4855 		sind.sin_family = AF_INET;
4856 		tpi_mp = mi_tpi_extconn_ind(NULL,
4857 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
4858 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
4859 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4860 	} else {
4861 		tpi_mp = mi_tpi_conn_ind(NULL,
4862 		    (char *)&sin, sizeof (sin_t),
4863 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4864 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4865 	}
4866 
4867 	if (tpi_mp == NULL) {
4868 		return (ENOMEM);
4869 	}
4870 
4871 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
4872 	connp->conn_send = ip_output;
4873 	connp->conn_recv = tcp_input;
4874 	connp->conn_fully_bound = B_FALSE;
4875 
4876 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4877 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4878 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4879 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4880 
4881 	/* Inherit information from the "parent" */
4882 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4883 	tcp->tcp_family = ltcp->tcp_family;
4884 	tcp->tcp_wq = ltcp->tcp_wq;
4885 	tcp->tcp_rq = ltcp->tcp_rq;
4886 	tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
4887 	tcp->tcp_detached = B_TRUE;
4888 	SOCK_CONNID_INIT(tcp->tcp_connid);
4889 	if ((err = tcp_init_values(tcp)) != 0) {
4890 		freemsg(tpi_mp);
4891 		return (err);
4892 	}
4893 
4894 	/*
4895 	 * Let's make sure that eager tcp template has enough space to
4896 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
4897 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
4898 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
4899 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
4900 	 * extension headers or with ip6i_t struct). Note that bcopy() below
4901 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
4902 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
4903 	 */
4904 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
4905 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
4906 
4907 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
4908 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
4909 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4910 	tcp->tcp_ttl = ltcp->tcp_ttl;
4911 	tcp->tcp_tos = ltcp->tcp_tos;
4912 
4913 	/* Copy the IP+TCP header template from listener to eager */
4914 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
4915 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
4916 	tcp->tcp_ip6h = NULL;
4917 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
4918 	    tcp->tcp_ip_hdr_len);
4919 
4920 	/* Initialize the IP addresses and Ports */
4921 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
4922 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
4923 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
4924 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
4925 
4926 	/* Source routing option copyover (reverse it) */
4927 	if (tcps->tcps_rev_src_routes)
4928 		tcp_opt_reverse(tcp, ipha);
4929 
4930 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
4931 	ASSERT(!tcp->tcp_tconnind_started);
4932 
4933 	/*
4934 	 * If the SYN contains a credential, it's a loopback packet; attach
4935 	 * the credential to the TPI message.
4936 	 */
4937 	if ((cr = DB_CRED(idmp)) != NULL) {
4938 		mblk_setcred(tpi_mp, cr);
4939 		DB_CPID(tpi_mp) = DB_CPID(idmp);
4940 	}
4941 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
4942 
4943 	/* Inherit the listener's SSL protection state */
4944 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
4945 		kssl_hold_ent(tcp->tcp_kssl_ent);
4946 		tcp->tcp_kssl_pending = B_TRUE;
4947 	}
4948 
4949 	/* Inherit the listener's non-STREAMS flag */
4950 	if (IPCL_IS_NONSTR(lconnp)) {
4951 		connp->conn_flags |= IPCL_NONSTR;
4952 		connp->conn_upcalls = lconnp->conn_upcalls;
4953 	}
4954 
4955 	return (0);
4956 }
4957 
4958 /*
4959  * sets up conn for ipsec.
4960  * if the first mblk is M_CTL it is consumed and mpp is updated.
4961  * in case of error mpp is freed.
4962  */
4963 conn_t *
4964 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp)
4965 {
4966 	conn_t 		*connp = tcp->tcp_connp;
4967 	conn_t 		*econnp;
4968 	squeue_t 	*new_sqp;
4969 	mblk_t 		*first_mp = *mpp;
4970 	mblk_t		*mp = *mpp;
4971 	boolean_t	mctl_present = B_FALSE;
4972 	uint_t		ipvers;
4973 
4974 	econnp = tcp_get_conn(sqp, tcp->tcp_tcps);
4975 	if (econnp == NULL) {
4976 		freemsg(first_mp);
4977 		return (NULL);
4978 	}
4979 	if (DB_TYPE(mp) == M_CTL) {
4980 		if (mp->b_cont == NULL ||
4981 		    mp->b_cont->b_datap->db_type != M_DATA) {
4982 			freemsg(first_mp);
4983 			return (NULL);
4984 		}
4985 		mp = mp->b_cont;
4986 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
4987 			freemsg(first_mp);
4988 			return (NULL);
4989 		}
4990 
4991 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
4992 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
4993 		mctl_present = B_TRUE;
4994 	} else {
4995 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
4996 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
4997 	}
4998 
4999 	new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5000 	DB_CKSUMSTART(mp) = 0;
5001 
5002 	ASSERT(OK_32PTR(mp->b_rptr));
5003 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5004 	if (ipvers == IPV4_VERSION) {
5005 		uint16_t  	*up;
5006 		uint32_t	ports;
5007 		ipha_t		*ipha;
5008 
5009 		ipha = (ipha_t *)mp->b_rptr;
5010 		up = (uint16_t *)((uchar_t *)ipha +
5011 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
5012 		ports = *(uint32_t *)up;
5013 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
5014 		    ipha->ipha_dst, ipha->ipha_src, ports);
5015 	} else {
5016 		uint16_t  	*up;
5017 		uint32_t	ports;
5018 		uint16_t	ip_hdr_len;
5019 		uint8_t		*nexthdrp;
5020 		ip6_t 		*ip6h;
5021 		tcph_t		*tcph;
5022 
5023 		ip6h = (ip6_t *)mp->b_rptr;
5024 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
5025 			ip_hdr_len = IPV6_HDR_LEN;
5026 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
5027 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
5028 			CONN_DEC_REF(econnp);
5029 			freemsg(first_mp);
5030 			return (NULL);
5031 		}
5032 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5033 		up = (uint16_t *)tcph->th_lport;
5034 		ports = *(uint32_t *)up;
5035 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
5036 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
5037 	}
5038 
5039 	/*
5040 	 * The caller already ensured that there is a sqp present.
5041 	 */
5042 	econnp->conn_sqp = new_sqp;
5043 	econnp->conn_initial_sqp = new_sqp;
5044 
5045 	if (connp->conn_policy != NULL) {
5046 		ipsec_in_t *ii;
5047 		ii = (ipsec_in_t *)(first_mp->b_rptr);
5048 		ASSERT(ii->ipsec_in_policy == NULL);
5049 		IPPH_REFHOLD(connp->conn_policy);
5050 		ii->ipsec_in_policy = connp->conn_policy;
5051 
5052 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
5053 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
5054 			CONN_DEC_REF(econnp);
5055 			freemsg(first_mp);
5056 			return (NULL);
5057 		}
5058 	}
5059 
5060 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
5061 		CONN_DEC_REF(econnp);
5062 		freemsg(first_mp);
5063 		return (NULL);
5064 	}
5065 
5066 	/*
5067 	 * If we know we have some policy, pass the "IPSEC"
5068 	 * options size TCP uses this adjust the MSS.
5069 	 */
5070 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
5071 	if (mctl_present) {
5072 		freeb(first_mp);
5073 		*mpp = mp;
5074 	}
5075 
5076 	return (econnp);
5077 }
5078 
5079 /*
5080  * tcp_get_conn/tcp_free_conn
5081  *
5082  * tcp_get_conn is used to get a clean tcp connection structure.
5083  * It tries to reuse the connections put on the freelist by the
5084  * time_wait_collector failing which it goes to kmem_cache. This
5085  * way has two benefits compared to just allocating from and
5086  * freeing to kmem_cache.
5087  * 1) The time_wait_collector can free (which includes the cleanup)
5088  * outside the squeue. So when the interrupt comes, we have a clean
5089  * connection sitting in the freelist. Obviously, this buys us
5090  * performance.
5091  *
5092  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
5093  * has multiple disadvantages - tying up the squeue during alloc, and the
5094  * fact that IPSec policy initialization has to happen here which
5095  * requires us sending a M_CTL and checking for it i.e. real ugliness.
5096  * But allocating the conn/tcp in IP land is also not the best since
5097  * we can't check the 'q' and 'q0' which are protected by squeue and
5098  * blindly allocate memory which might have to be freed here if we are
5099  * not allowed to accept the connection. By using the freelist and
5100  * putting the conn/tcp back in freelist, we don't pay a penalty for
5101  * allocating memory without checking 'q/q0' and freeing it if we can't
5102  * accept the connection.
5103  *
5104  * Care should be taken to put the conn back in the same squeue's freelist
5105  * from which it was allocated. Best results are obtained if conn is
5106  * allocated from listener's squeue and freed to the same. Time wait
5107  * collector will free up the freelist is the connection ends up sitting
5108  * there for too long.
5109  */
5110 void *
5111 tcp_get_conn(void *arg, tcp_stack_t *tcps)
5112 {
5113 	tcp_t			*tcp = NULL;
5114 	conn_t			*connp = NULL;
5115 	squeue_t		*sqp = (squeue_t *)arg;
5116 	tcp_squeue_priv_t 	*tcp_time_wait;
5117 	netstack_t		*ns;
5118 
5119 	tcp_time_wait =
5120 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
5121 
5122 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
5123 	tcp = tcp_time_wait->tcp_free_list;
5124 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
5125 	if (tcp != NULL) {
5126 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5127 		tcp_time_wait->tcp_free_list_cnt--;
5128 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5129 		tcp->tcp_time_wait_next = NULL;
5130 		connp = tcp->tcp_connp;
5131 		connp->conn_flags |= IPCL_REUSED;
5132 
5133 		ASSERT(tcp->tcp_tcps == NULL);
5134 		ASSERT(connp->conn_netstack == NULL);
5135 		ASSERT(tcp->tcp_rsrv_mp != NULL);
5136 		ns = tcps->tcps_netstack;
5137 		netstack_hold(ns);
5138 		connp->conn_netstack = ns;
5139 		tcp->tcp_tcps = tcps;
5140 		TCPS_REFHOLD(tcps);
5141 		ipcl_globalhash_insert(connp);
5142 		return ((void *)connp);
5143 	}
5144 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5145 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
5146 	    tcps->tcps_netstack)) == NULL)
5147 		return (NULL);
5148 	tcp = connp->conn_tcp;
5149 	/*
5150 	 * Pre-allocate the tcp_rsrv_mp.  This mblk will not be freed
5151 	 * until this conn_t/tcp_t is freed at ipcl_conn_destroy().
5152 	 */
5153 	if ((tcp->tcp_rsrv_mp = allocb(0, BPRI_HI)) == NULL) {
5154 		ipcl_conn_destroy(connp);
5155 		return (NULL);
5156 	}
5157 	mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL);
5158 	tcp->tcp_tcps = tcps;
5159 	TCPS_REFHOLD(tcps);
5160 
5161 	return ((void *)connp);
5162 }
5163 
5164 /*
5165  * Update the cached label for the given tcp_t.  This should be called once per
5166  * connection, and before any packets are sent or tcp_process_options is
5167  * invoked.  Returns B_FALSE if the correct label could not be constructed.
5168  */
5169 static boolean_t
5170 tcp_update_label(tcp_t *tcp, const cred_t *cr)
5171 {
5172 	conn_t *connp = tcp->tcp_connp;
5173 
5174 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5175 		uchar_t optbuf[IP_MAX_OPT_LENGTH];
5176 		int added;
5177 
5178 		if (tsol_compute_label(cr, tcp->tcp_remote, optbuf,
5179 		    connp->conn_mac_exempt,
5180 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5181 			return (B_FALSE);
5182 
5183 		added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len);
5184 		if (added == -1)
5185 			return (B_FALSE);
5186 		tcp->tcp_hdr_len += added;
5187 		tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added);
5188 		tcp->tcp_ip_hdr_len += added;
5189 		if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) {
5190 			tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3;
5191 			added = tsol_prepend_option(optbuf, tcp->tcp_ipha,
5192 			    tcp->tcp_hdr_len);
5193 			if (added == -1)
5194 				return (B_FALSE);
5195 			tcp->tcp_hdr_len += added;
5196 			tcp->tcp_tcph = (tcph_t *)
5197 			    ((uchar_t *)tcp->tcp_tcph + added);
5198 			tcp->tcp_ip_hdr_len += added;
5199 		}
5200 	} else {
5201 		uchar_t optbuf[TSOL_MAX_IPV6_OPTION];
5202 
5203 		if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf,
5204 		    connp->conn_mac_exempt,
5205 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5206 			return (B_FALSE);
5207 		if (tsol_update_sticky(&tcp->tcp_sticky_ipp,
5208 		    &tcp->tcp_label_len, optbuf) != 0)
5209 			return (B_FALSE);
5210 		if (tcp_build_hdrs(tcp) != 0)
5211 			return (B_FALSE);
5212 	}
5213 
5214 	connp->conn_ulp_labeled = 1;
5215 
5216 	return (B_TRUE);
5217 }
5218 
5219 /* BEGIN CSTYLED */
5220 /*
5221  *
5222  * The sockfs ACCEPT path:
5223  * =======================
5224  *
5225  * The eager is now established in its own perimeter as soon as SYN is
5226  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5227  * completes the accept processing on the acceptor STREAM. The sending
5228  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5229  * listener but a TLI/XTI listener completes the accept processing
5230  * on the listener perimeter.
5231  *
5232  * Common control flow for 3 way handshake:
5233  * ----------------------------------------
5234  *
5235  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5236  *					-> tcp_conn_request()
5237  *
5238  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5239  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5240  *
5241  * Sockfs ACCEPT Path:
5242  * -------------------
5243  *
5244  * open acceptor stream (tcp_open allocates tcp_wput_accept()
5245  * as STREAM entry point)
5246  *
5247  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5248  *
5249  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5250  * association (we are not behind eager's squeue but sockfs is protecting us
5251  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5252  * is changed to point at tcp_wput().
5253  *
5254  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5255  * listener (done on listener's perimeter).
5256  *
5257  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5258  * accept.
5259  *
5260  * TLI/XTI client ACCEPT path:
5261  * ---------------------------
5262  *
5263  * soaccept() sends T_CONN_RES on the listener STREAM.
5264  *
5265  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5266  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5267  *
5268  * Locks:
5269  * ======
5270  *
5271  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5272  * and listeners->tcp_eager_next_q.
5273  *
5274  * Referencing:
5275  * ============
5276  *
5277  * 1) We start out in tcp_conn_request by eager placing a ref on
5278  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5279  *
5280  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5281  * doing so we place a ref on the eager. This ref is finally dropped at the
5282  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5283  * reference is dropped by the squeue framework.
5284  *
5285  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5286  *
5287  * The reference must be released by the same entity that added the reference
5288  * In the above scheme, the eager is the entity that adds and releases the
5289  * references. Note that tcp_accept_finish executes in the squeue of the eager
5290  * (albeit after it is attached to the acceptor stream). Though 1. executes
5291  * in the listener's squeue, the eager is nascent at this point and the
5292  * reference can be considered to have been added on behalf of the eager.
5293  *
5294  * Eager getting a Reset or listener closing:
5295  * ==========================================
5296  *
5297  * Once the listener and eager are linked, the listener never does the unlink.
5298  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5299  * a message on all eager perimeter. The eager then does the unlink, clears
5300  * any pointers to the listener's queue and drops the reference to the
5301  * listener. The listener waits in tcp_close outside the squeue until its
5302  * refcount has dropped to 1. This ensures that the listener has waited for
5303  * all eagers to clear their association with the listener.
5304  *
5305  * Similarly, if eager decides to go away, it can unlink itself and close.
5306  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5307  * the reference to eager is still valid because of the extra ref we put
5308  * in tcp_send_conn_ind.
5309  *
5310  * Listener can always locate the eager under the protection
5311  * of the listener->tcp_eager_lock, and then do a refhold
5312  * on the eager during the accept processing.
5313  *
5314  * The acceptor stream accesses the eager in the accept processing
5315  * based on the ref placed on eager before sending T_conn_ind.
5316  * The only entity that can negate this refhold is a listener close
5317  * which is mutually exclusive with an active acceptor stream.
5318  *
5319  * Eager's reference on the listener
5320  * ===================================
5321  *
5322  * If the accept happens (even on a closed eager) the eager drops its
5323  * reference on the listener at the start of tcp_accept_finish. If the
5324  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5325  * the reference is dropped in tcp_closei_local. If the listener closes,
5326  * the reference is dropped in tcp_eager_kill. In all cases the reference
5327  * is dropped while executing in the eager's context (squeue).
5328  */
5329 /* END CSTYLED */
5330 
5331 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5332 
5333 /*
5334  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5335  * tcp_rput_data will not see any SYN packets.
5336  */
5337 /* ARGSUSED */
5338 void
5339 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5340 {
5341 	tcph_t		*tcph;
5342 	uint32_t	seg_seq;
5343 	tcp_t		*eager;
5344 	uint_t		ipvers;
5345 	ipha_t		*ipha;
5346 	ip6_t		*ip6h;
5347 	int		err;
5348 	conn_t		*econnp = NULL;
5349 	squeue_t	*new_sqp;
5350 	mblk_t		*mp1;
5351 	uint_t 		ip_hdr_len;
5352 	conn_t		*connp = (conn_t *)arg;
5353 	tcp_t		*tcp = connp->conn_tcp;
5354 	cred_t		*credp;
5355 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5356 	ip_stack_t	*ipst;
5357 
5358 	if (tcp->tcp_state != TCPS_LISTEN)
5359 		goto error2;
5360 
5361 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5362 
5363 	mutex_enter(&tcp->tcp_eager_lock);
5364 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5365 		mutex_exit(&tcp->tcp_eager_lock);
5366 		TCP_STAT(tcps, tcp_listendrop);
5367 		BUMP_MIB(&tcps->tcps_mib, tcpListenDrop);
5368 		if (tcp->tcp_debug) {
5369 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
5370 			    "tcp_conn_request: listen backlog (max=%d) "
5371 			    "overflow (%d pending) on %s",
5372 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
5373 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5374 		}
5375 		goto error2;
5376 	}
5377 
5378 	if (tcp->tcp_conn_req_cnt_q0 >=
5379 	    tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
5380 		/*
5381 		 * Q0 is full. Drop a pending half-open req from the queue
5382 		 * to make room for the new SYN req. Also mark the time we
5383 		 * drop a SYN.
5384 		 *
5385 		 * A more aggressive defense against SYN attack will
5386 		 * be to set the "tcp_syn_defense" flag now.
5387 		 */
5388 		TCP_STAT(tcps, tcp_listendropq0);
5389 		tcp->tcp_last_rcv_lbolt = lbolt64;
5390 		if (!tcp_drop_q0(tcp)) {
5391 			mutex_exit(&tcp->tcp_eager_lock);
5392 			BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0);
5393 			if (tcp->tcp_debug) {
5394 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
5395 				    "tcp_conn_request: listen half-open queue "
5396 				    "(max=%d) full (%d pending) on %s",
5397 				    tcps->tcps_conn_req_max_q0,
5398 				    tcp->tcp_conn_req_cnt_q0,
5399 				    tcp_display(tcp, NULL,
5400 				    DISP_PORT_ONLY));
5401 			}
5402 			goto error2;
5403 		}
5404 	}
5405 	mutex_exit(&tcp->tcp_eager_lock);
5406 
5407 	/*
5408 	 * IP adds STRUIO_EAGER and ensures that the received packet is
5409 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
5410 	 * link local address.  If IPSec is enabled, db_struioflag has
5411 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
5412 	 * otherwise an error case if neither of them is set.
5413 	 */
5414 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5415 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5416 		DB_CKSUMSTART(mp) = 0;
5417 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5418 		econnp = (conn_t *)tcp_get_conn(arg2, tcps);
5419 		if (econnp == NULL)
5420 			goto error2;
5421 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5422 		econnp->conn_sqp = new_sqp;
5423 		econnp->conn_initial_sqp = new_sqp;
5424 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
5425 		/*
5426 		 * mp is updated in tcp_get_ipsec_conn().
5427 		 */
5428 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp);
5429 		if (econnp == NULL) {
5430 			/*
5431 			 * mp freed by tcp_get_ipsec_conn.
5432 			 */
5433 			return;
5434 		}
5435 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5436 	} else {
5437 		goto error2;
5438 	}
5439 
5440 	ASSERT(DB_TYPE(mp) == M_DATA);
5441 
5442 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5443 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
5444 	ASSERT(OK_32PTR(mp->b_rptr));
5445 	if (ipvers == IPV4_VERSION) {
5446 		ipha = (ipha_t *)mp->b_rptr;
5447 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
5448 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5449 	} else {
5450 		ip6h = (ip6_t *)mp->b_rptr;
5451 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
5452 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5453 	}
5454 
5455 	if (tcp->tcp_family == AF_INET) {
5456 		ASSERT(ipvers == IPV4_VERSION);
5457 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
5458 	} else {
5459 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
5460 	}
5461 
5462 	if (err)
5463 		goto error3;
5464 
5465 	eager = econnp->conn_tcp;
5466 
5467 	/*
5468 	 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that at close
5469 	 * time, we will always have that to send up.  Otherwise, we need to do
5470 	 * special handling in case the allocation fails at that time.
5471 	 */
5472 	ASSERT(eager->tcp_ordrel_mp == NULL);
5473 	if (!IPCL_IS_NONSTR(econnp) &&
5474 	    (eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL)
5475 		goto error3;
5476 
5477 	/* Inherit various TCP parameters from the listener */
5478 	eager->tcp_naglim = tcp->tcp_naglim;
5479 	eager->tcp_first_timer_threshold =
5480 	    tcp->tcp_first_timer_threshold;
5481 	eager->tcp_second_timer_threshold =
5482 	    tcp->tcp_second_timer_threshold;
5483 
5484 	eager->tcp_first_ctimer_threshold =
5485 	    tcp->tcp_first_ctimer_threshold;
5486 	eager->tcp_second_ctimer_threshold =
5487 	    tcp->tcp_second_ctimer_threshold;
5488 
5489 	/*
5490 	 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics.
5491 	 * If it does not, the eager's receive window will be set to the
5492 	 * listener's receive window later in this function.
5493 	 */
5494 	eager->tcp_rwnd = 0;
5495 
5496 	/*
5497 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
5498 	 * calling tcp_process_options() where tcp_mss_set() is called
5499 	 * to set the initial cwnd.
5500 	 */
5501 	eager->tcp_init_cwnd = tcp->tcp_init_cwnd;
5502 
5503 	/*
5504 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
5505 	 * zone id before the accept is completed in tcp_wput_accept().
5506 	 */
5507 	econnp->conn_zoneid = connp->conn_zoneid;
5508 	econnp->conn_allzones = connp->conn_allzones;
5509 
5510 	/* Copy nexthop information from listener to eager */
5511 	if (connp->conn_nexthop_set) {
5512 		econnp->conn_nexthop_set = connp->conn_nexthop_set;
5513 		econnp->conn_nexthop_v4 = connp->conn_nexthop_v4;
5514 	}
5515 
5516 	/*
5517 	 * TSOL: tsol_input_proc() needs the eager's cred before the
5518 	 * eager is accepted
5519 	 */
5520 	econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred;
5521 	crhold(credp);
5522 
5523 	/*
5524 	 * If the caller has the process-wide flag set, then default to MAC
5525 	 * exempt mode.  This allows read-down to unlabeled hosts.
5526 	 */
5527 	if (getpflags(NET_MAC_AWARE, credp) != 0)
5528 		econnp->conn_mac_exempt = B_TRUE;
5529 
5530 	if (is_system_labeled()) {
5531 		cred_t *cr;
5532 
5533 		if (connp->conn_mlp_type != mlptSingle) {
5534 			cr = econnp->conn_peercred = DB_CRED(mp);
5535 			if (cr != NULL)
5536 				crhold(cr);
5537 			else
5538 				cr = econnp->conn_cred;
5539 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
5540 			    econnp, cred_t *, cr)
5541 		} else {
5542 			cr = econnp->conn_cred;
5543 			DTRACE_PROBE2(syn_accept, conn_t *,
5544 			    econnp, cred_t *, cr)
5545 		}
5546 
5547 		if (!tcp_update_label(eager, cr)) {
5548 			DTRACE_PROBE3(
5549 			    tx__ip__log__error__connrequest__tcp,
5550 			    char *, "eager connp(1) label on SYN mp(2) failed",
5551 			    conn_t *, econnp, mblk_t *, mp);
5552 			goto error3;
5553 		}
5554 	}
5555 
5556 	eager->tcp_hard_binding = B_TRUE;
5557 
5558 	tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
5559 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
5560 
5561 	CL_INET_CONNECT(connp, eager, B_FALSE, err);
5562 	if (err != 0) {
5563 		tcp_bind_hash_remove(eager);
5564 		goto error3;
5565 	}
5566 
5567 	/*
5568 	 * No need to check for multicast destination since ip will only pass
5569 	 * up multicasts to those that have expressed interest
5570 	 * TODO: what about rejecting broadcasts?
5571 	 * Also check that source is not a multicast or broadcast address.
5572 	 */
5573 	eager->tcp_state = TCPS_SYN_RCVD;
5574 
5575 
5576 	/*
5577 	 * There should be no ire in the mp as we are being called after
5578 	 * receiving the SYN.
5579 	 */
5580 	ASSERT(tcp_ire_mp(&mp) == NULL);
5581 
5582 	/*
5583 	 * Adapt our mss, ttl, ... according to information provided in IRE.
5584 	 */
5585 
5586 	if (tcp_adapt_ire(eager, NULL) == 0) {
5587 		/* Undo the bind_hash_insert */
5588 		tcp_bind_hash_remove(eager);
5589 		goto error3;
5590 	}
5591 
5592 	/* Process all TCP options. */
5593 	tcp_process_options(eager, tcph);
5594 
5595 	/* Is the other end ECN capable? */
5596 	if (tcps->tcps_ecn_permitted >= 1 &&
5597 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
5598 		eager->tcp_ecn_ok = B_TRUE;
5599 	}
5600 
5601 	/*
5602 	 * listener->tcp_rq->q_hiwat should be the default window size or a
5603 	 * window size changed via SO_RCVBUF option.  First round up the
5604 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
5605 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
5606 	 * setting.
5607 	 *
5608 	 * Note if there is a rpipe metric associated with the remote host,
5609 	 * we should not inherit receive window size from listener.
5610 	 */
5611 	eager->tcp_rwnd = MSS_ROUNDUP(
5612 	    (eager->tcp_rwnd == 0 ? tcp->tcp_recv_hiwater:
5613 	    eager->tcp_rwnd), eager->tcp_mss);
5614 	if (eager->tcp_snd_ws_ok)
5615 		tcp_set_ws_value(eager);
5616 	/*
5617 	 * Note that this is the only place tcp_rwnd_set() is called for
5618 	 * accepting a connection.  We need to call it here instead of
5619 	 * after the 3-way handshake because we need to tell the other
5620 	 * side our rwnd in the SYN-ACK segment.
5621 	 */
5622 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
5623 
5624 	/*
5625 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
5626 	 * via soaccept()->soinheritoptions() which essentially applies
5627 	 * all the listener options to the new STREAM. The options that we
5628 	 * need to take care of are:
5629 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
5630 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
5631 	 * SO_SNDBUF, SO_RCVBUF.
5632 	 *
5633 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
5634 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
5635 	 *		tcp_maxpsz_set() gets called later from
5636 	 *		tcp_accept_finish(), the option takes effect.
5637 	 *
5638 	 */
5639 	/* Set the TCP options */
5640 	eager->tcp_recv_hiwater = tcp->tcp_recv_hiwater;
5641 	eager->tcp_recv_lowater = tcp->tcp_recv_lowater;
5642 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
5643 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
5644 	eager->tcp_oobinline = tcp->tcp_oobinline;
5645 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
5646 	eager->tcp_broadcast = tcp->tcp_broadcast;
5647 	eager->tcp_useloopback = tcp->tcp_useloopback;
5648 	eager->tcp_dontroute = tcp->tcp_dontroute;
5649 	eager->tcp_debug = tcp->tcp_debug;
5650 	eager->tcp_linger = tcp->tcp_linger;
5651 	eager->tcp_lingertime = tcp->tcp_lingertime;
5652 	if (tcp->tcp_ka_enabled)
5653 		eager->tcp_ka_enabled = 1;
5654 
5655 	/* Set the IP options */
5656 	econnp->conn_broadcast = connp->conn_broadcast;
5657 	econnp->conn_loopback = connp->conn_loopback;
5658 	econnp->conn_dontroute = connp->conn_dontroute;
5659 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
5660 
5661 	/* Put a ref on the listener for the eager. */
5662 	CONN_INC_REF(connp);
5663 	mutex_enter(&tcp->tcp_eager_lock);
5664 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
5665 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
5666 	tcp->tcp_eager_next_q0 = eager;
5667 	eager->tcp_eager_prev_q0 = tcp;
5668 
5669 	/* Set tcp_listener before adding it to tcp_conn_fanout */
5670 	eager->tcp_listener = tcp;
5671 	eager->tcp_saved_listener = tcp;
5672 
5673 	/*
5674 	 * Tag this detached tcp vector for later retrieval
5675 	 * by our listener client in tcp_accept().
5676 	 */
5677 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
5678 	tcp->tcp_conn_req_cnt_q0++;
5679 	if (++tcp->tcp_conn_req_seqnum == -1) {
5680 		/*
5681 		 * -1 is "special" and defined in TPI as something
5682 		 * that should never be used in T_CONN_IND
5683 		 */
5684 		++tcp->tcp_conn_req_seqnum;
5685 	}
5686 	mutex_exit(&tcp->tcp_eager_lock);
5687 
5688 	if (tcp->tcp_syn_defense) {
5689 		/* Don't drop the SYN that comes from a good IP source */
5690 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
5691 		if (addr_cache != NULL && eager->tcp_remote ==
5692 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
5693 			eager->tcp_dontdrop = B_TRUE;
5694 		}
5695 	}
5696 
5697 	/*
5698 	 * We need to insert the eager in its own perimeter but as soon
5699 	 * as we do that, we expose the eager to the classifier and
5700 	 * should not touch any field outside the eager's perimeter.
5701 	 * So do all the work necessary before inserting the eager
5702 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
5703 	 * will succeed but undo everything if it fails.
5704 	 */
5705 	seg_seq = ABE32_TO_U32(tcph->th_seq);
5706 	eager->tcp_irs = seg_seq;
5707 	eager->tcp_rack = seg_seq;
5708 	eager->tcp_rnxt = seg_seq + 1;
5709 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
5710 	BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens);
5711 	eager->tcp_state = TCPS_SYN_RCVD;
5712 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
5713 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
5714 	if (mp1 == NULL) {
5715 		/*
5716 		 * Increment the ref count as we are going to
5717 		 * enqueueing an mp in squeue
5718 		 */
5719 		CONN_INC_REF(econnp);
5720 		goto error;
5721 	}
5722 	DB_CPID(mp1) = tcp->tcp_cpid;
5723 	mblk_setcred(mp1, tcp->tcp_cred);
5724 	eager->tcp_cpid = tcp->tcp_cpid;
5725 	eager->tcp_open_time = lbolt64;
5726 
5727 	/*
5728 	 * We need to start the rto timer. In normal case, we start
5729 	 * the timer after sending the packet on the wire (or at
5730 	 * least believing that packet was sent by waiting for
5731 	 * CALL_IP_WPUT() to return). Since this is the first packet
5732 	 * being sent on the wire for the eager, our initial tcp_rto
5733 	 * is at least tcp_rexmit_interval_min which is a fairly
5734 	 * large value to allow the algorithm to adjust slowly to large
5735 	 * fluctuations of RTT during first few transmissions.
5736 	 *
5737 	 * Starting the timer first and then sending the packet in this
5738 	 * case shouldn't make much difference since tcp_rexmit_interval_min
5739 	 * is of the order of several 100ms and starting the timer
5740 	 * first and then sending the packet will result in difference
5741 	 * of few micro seconds.
5742 	 *
5743 	 * Without this optimization, we are forced to hold the fanout
5744 	 * lock across the ipcl_bind_insert() and sending the packet
5745 	 * so that we don't race against an incoming packet (maybe RST)
5746 	 * for this eager.
5747 	 *
5748 	 * It is necessary to acquire an extra reference on the eager
5749 	 * at this point and hold it until after tcp_send_data() to
5750 	 * ensure against an eager close race.
5751 	 */
5752 
5753 	CONN_INC_REF(eager->tcp_connp);
5754 
5755 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
5756 
5757 	/*
5758 	 * Insert the eager in its own perimeter now. We are ready to deal
5759 	 * with any packets on eager.
5760 	 */
5761 	if (eager->tcp_ipversion == IPV4_VERSION) {
5762 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
5763 			goto error;
5764 		}
5765 	} else {
5766 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
5767 			goto error;
5768 		}
5769 	}
5770 
5771 	/* mark conn as fully-bound */
5772 	econnp->conn_fully_bound = B_TRUE;
5773 
5774 	/* Send the SYN-ACK */
5775 	tcp_send_data(eager, eager->tcp_wq, mp1);
5776 	CONN_DEC_REF(eager->tcp_connp);
5777 	freemsg(mp);
5778 
5779 	return;
5780 error:
5781 	freemsg(mp1);
5782 	eager->tcp_closemp_used = B_TRUE;
5783 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
5784 	mp1 = &eager->tcp_closemp;
5785 	SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill,
5786 	    econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_2);
5787 
5788 	/*
5789 	 * If a connection already exists, send the mp to that connections so
5790 	 * that it can be appropriately dealt with.
5791 	 */
5792 	ipst = tcps->tcps_netstack->netstack_ip;
5793 
5794 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) {
5795 		if (!IPCL_IS_CONNECTED(econnp)) {
5796 			/*
5797 			 * Something bad happened. ipcl_conn_insert()
5798 			 * failed because a connection already existed
5799 			 * in connected hash but we can't find it
5800 			 * anymore (someone blew it away). Just
5801 			 * free this message and hopefully remote
5802 			 * will retransmit at which time the SYN can be
5803 			 * treated as a new connection or dealth with
5804 			 * a TH_RST if a connection already exists.
5805 			 */
5806 			CONN_DEC_REF(econnp);
5807 			freemsg(mp);
5808 		} else {
5809 			SQUEUE_ENTER_ONE(econnp->conn_sqp, mp,
5810 			    tcp_input, econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_1);
5811 		}
5812 	} else {
5813 		/* Nobody wants this packet */
5814 		freemsg(mp);
5815 	}
5816 	return;
5817 error3:
5818 	CONN_DEC_REF(econnp);
5819 error2:
5820 	freemsg(mp);
5821 }
5822 
5823 /*
5824  * In an ideal case of vertical partition in NUMA architecture, its
5825  * beneficial to have the listener and all the incoming connections
5826  * tied to the same squeue. The other constraint is that incoming
5827  * connections should be tied to the squeue attached to interrupted
5828  * CPU for obvious locality reason so this leaves the listener to
5829  * be tied to the same squeue. Our only problem is that when listener
5830  * is binding, the CPU that will get interrupted by the NIC whose
5831  * IP address the listener is binding to is not even known. So
5832  * the code below allows us to change that binding at the time the
5833  * CPU is interrupted by virtue of incoming connection's squeue.
5834  *
5835  * This is usefull only in case of a listener bound to a specific IP
5836  * address. For other kind of listeners, they get bound the
5837  * very first time and there is no attempt to rebind them.
5838  */
5839 void
5840 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
5841 {
5842 	conn_t		*connp = (conn_t *)arg;
5843 	squeue_t	*sqp = (squeue_t *)arg2;
5844 	squeue_t	*new_sqp;
5845 	uint32_t	conn_flags;
5846 
5847 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5848 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5849 	} else {
5850 		goto done;
5851 	}
5852 
5853 	if (connp->conn_fanout == NULL)
5854 		goto done;
5855 
5856 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
5857 		mutex_enter(&connp->conn_fanout->connf_lock);
5858 		mutex_enter(&connp->conn_lock);
5859 		/*
5860 		 * No one from read or write side can access us now
5861 		 * except for already queued packets on this squeue.
5862 		 * But since we haven't changed the squeue yet, they
5863 		 * can't execute. If they are processed after we have
5864 		 * changed the squeue, they are sent back to the
5865 		 * correct squeue down below.
5866 		 * But a listner close can race with processing of
5867 		 * incoming SYN. If incoming SYN processing changes
5868 		 * the squeue then the listener close which is waiting
5869 		 * to enter the squeue would operate on the wrong
5870 		 * squeue. Hence we don't change the squeue here unless
5871 		 * the refcount is exactly the minimum refcount. The
5872 		 * minimum refcount of 4 is counted as - 1 each for
5873 		 * TCP and IP, 1 for being in the classifier hash, and
5874 		 * 1 for the mblk being processed.
5875 		 */
5876 
5877 		if (connp->conn_ref != 4 ||
5878 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
5879 			mutex_exit(&connp->conn_lock);
5880 			mutex_exit(&connp->conn_fanout->connf_lock);
5881 			goto done;
5882 		}
5883 		if (connp->conn_sqp != new_sqp) {
5884 			while (connp->conn_sqp != new_sqp)
5885 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
5886 		}
5887 
5888 		do {
5889 			conn_flags = connp->conn_flags;
5890 			conn_flags |= IPCL_FULLY_BOUND;
5891 			(void) cas32(&connp->conn_flags, connp->conn_flags,
5892 			    conn_flags);
5893 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
5894 
5895 		mutex_exit(&connp->conn_fanout->connf_lock);
5896 		mutex_exit(&connp->conn_lock);
5897 	}
5898 
5899 done:
5900 	if (connp->conn_sqp != sqp) {
5901 		CONN_INC_REF(connp);
5902 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
5903 		    SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND);
5904 	} else {
5905 		tcp_conn_request(connp, mp, sqp);
5906 	}
5907 }
5908 
5909 /*
5910  * Successful connect request processing begins when our client passes
5911  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
5912  * our T_OK_ACK reply message upstream.  The control flow looks like this:
5913  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_tpi_connect() -> IP
5914  *   upstream <- tcp_rput()		<- IP
5915  * After various error checks are completed, tcp_tpi_connect() lays
5916  * the target address and port into the composite header template,
5917  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
5918  * request followed by an IRE request, and passes the three mblk message
5919  * down to IP looking like this:
5920  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
5921  * Processing continues in tcp_rput() when we receive the following message:
5922  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
5923  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
5924  * to fire off the connection request, and then passes the T_OK_ACK mblk
5925  * upstream that we filled in below.  There are, of course, numerous
5926  * error conditions along the way which truncate the processing described
5927  * above.
5928  */
5929 static void
5930 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp)
5931 {
5932 	sin_t		*sin;
5933 	queue_t		*q = tcp->tcp_wq;
5934 	struct T_conn_req	*tcr;
5935 	struct sockaddr	*sa;
5936 	socklen_t	len;
5937 	int		error;
5938 
5939 	tcr = (struct T_conn_req *)mp->b_rptr;
5940 
5941 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
5942 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
5943 		tcp_err_ack(tcp, mp, TPROTO, 0);
5944 		return;
5945 	}
5946 
5947 	/*
5948 	 * Pre-allocate the T_ordrel_ind mblk so that at close time, we
5949 	 * will always have that to send up.  Otherwise, we need to do
5950 	 * special handling in case the allocation fails at that time.
5951 	 * If the end point is TPI, the tcp_t can be reused and the
5952 	 * tcp_ordrel_mp may be allocated already.
5953 	 */
5954 	if (tcp->tcp_ordrel_mp == NULL) {
5955 		if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) {
5956 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
5957 			return;
5958 		}
5959 	}
5960 
5961 	/*
5962 	 * Determine packet type based on type of address passed in
5963 	 * the request should contain an IPv4 or IPv6 address.
5964 	 * Make sure that address family matches the type of
5965 	 * family of the the address passed down
5966 	 */
5967 	switch (tcr->DEST_length) {
5968 	default:
5969 		tcp_err_ack(tcp, mp, TBADADDR, 0);
5970 		return;
5971 
5972 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
5973 		/*
5974 		 * XXX: The check for valid DEST_length was not there
5975 		 * in earlier releases and some buggy
5976 		 * TLI apps (e.g Sybase) got away with not feeding
5977 		 * in sin_zero part of address.
5978 		 * We allow that bug to keep those buggy apps humming.
5979 		 * Test suites require the check on DEST_length.
5980 		 * We construct a new mblk with valid DEST_length
5981 		 * free the original so the rest of the code does
5982 		 * not have to keep track of this special shorter
5983 		 * length address case.
5984 		 */
5985 		mblk_t *nmp;
5986 		struct T_conn_req *ntcr;
5987 		sin_t *nsin;
5988 
5989 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
5990 		    tcr->OPT_length, BPRI_HI);
5991 		if (nmp == NULL) {
5992 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
5993 			return;
5994 		}
5995 		ntcr = (struct T_conn_req *)nmp->b_rptr;
5996 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
5997 		ntcr->PRIM_type = T_CONN_REQ;
5998 		ntcr->DEST_length = sizeof (sin_t);
5999 		ntcr->DEST_offset = sizeof (struct T_conn_req);
6000 
6001 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
6002 		*nsin = sin_null;
6003 		/* Get pointer to shorter address to copy from original mp */
6004 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6005 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
6006 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6007 			freemsg(nmp);
6008 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6009 			return;
6010 		}
6011 		nsin->sin_family = sin->sin_family;
6012 		nsin->sin_port = sin->sin_port;
6013 		nsin->sin_addr = sin->sin_addr;
6014 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
6015 		nmp->b_wptr = (uchar_t *)&nsin[1];
6016 		if (tcr->OPT_length != 0) {
6017 			ntcr->OPT_length = tcr->OPT_length;
6018 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
6019 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
6020 			    (uchar_t *)ntcr + ntcr->OPT_offset,
6021 			    tcr->OPT_length);
6022 			nmp->b_wptr += tcr->OPT_length;
6023 		}
6024 		freemsg(mp);	/* original mp freed */
6025 		mp = nmp;	/* re-initialize original variables */
6026 		tcr = ntcr;
6027 	}
6028 	/* FALLTHRU */
6029 
6030 	case sizeof (sin_t):
6031 		sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset,
6032 		    sizeof (sin_t));
6033 		len = sizeof (sin_t);
6034 		break;
6035 
6036 	case sizeof (sin6_t):
6037 		sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset,
6038 		    sizeof (sin6_t));
6039 		len = sizeof (sin6_t);
6040 		break;
6041 	}
6042 
6043 	error = proto_verify_ip_addr(tcp->tcp_family, sa, len);
6044 	if (error != 0) {
6045 		tcp_err_ack(tcp, mp, TSYSERR, error);
6046 		return;
6047 	}
6048 
6049 	/*
6050 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
6051 	 * should key on their sequence number and cut them loose.
6052 	 */
6053 
6054 	/*
6055 	 * If options passed in, feed it for verification and handling
6056 	 */
6057 	if (tcr->OPT_length != 0) {
6058 		mblk_t	*ok_mp;
6059 		mblk_t	*discon_mp;
6060 		mblk_t  *conn_opts_mp;
6061 		int t_error, sys_error, do_disconnect;
6062 
6063 		conn_opts_mp = NULL;
6064 
6065 		if (tcp_conprim_opt_process(tcp, mp,
6066 		    &do_disconnect, &t_error, &sys_error) < 0) {
6067 			if (do_disconnect) {
6068 				ASSERT(t_error == 0 && sys_error == 0);
6069 				discon_mp = mi_tpi_discon_ind(NULL,
6070 				    ECONNREFUSED, 0);
6071 				if (!discon_mp) {
6072 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6073 					    TSYSERR, ENOMEM);
6074 					return;
6075 				}
6076 				ok_mp = mi_tpi_ok_ack_alloc(mp);
6077 				if (!ok_mp) {
6078 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6079 					    TSYSERR, ENOMEM);
6080 					return;
6081 				}
6082 				qreply(q, ok_mp);
6083 				qreply(q, discon_mp); /* no flush! */
6084 			} else {
6085 				ASSERT(t_error != 0);
6086 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
6087 				    sys_error);
6088 			}
6089 			return;
6090 		}
6091 		/*
6092 		 * Success in setting options, the mp option buffer represented
6093 		 * by OPT_length/offset has been potentially modified and
6094 		 * contains results of option processing. We copy it in
6095 		 * another mp to save it for potentially influencing returning
6096 		 * it in T_CONN_CONN.
6097 		 */
6098 		if (tcr->OPT_length != 0) { /* there are resulting options */
6099 			conn_opts_mp = copyb(mp);
6100 			if (!conn_opts_mp) {
6101 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6102 				    TSYSERR, ENOMEM);
6103 				return;
6104 			}
6105 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
6106 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
6107 			/*
6108 			 * Note:
6109 			 * These resulting option negotiation can include any
6110 			 * end-to-end negotiation options but there no such
6111 			 * thing (yet?) in our TCP/IP.
6112 			 */
6113 		}
6114 	}
6115 
6116 	/* call the non-TPI version */
6117 	error = tcp_do_connect(tcp->tcp_connp, sa, len, DB_CRED(mp),
6118 	    DB_CPID(mp));
6119 	if (error < 0) {
6120 		mp = mi_tpi_err_ack_alloc(mp, -error, 0);
6121 	} else if (error > 0) {
6122 		mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error);
6123 	} else {
6124 		mp = mi_tpi_ok_ack_alloc(mp);
6125 	}
6126 
6127 	/*
6128 	 * Note: Code below is the "failure" case
6129 	 */
6130 	/* return error ack and blow away saved option results if any */
6131 connect_failed:
6132 	if (mp != NULL)
6133 		putnext(tcp->tcp_rq, mp);
6134 	else {
6135 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6136 		    TSYSERR, ENOMEM);
6137 	}
6138 }
6139 
6140 /*
6141  * Handle connect to IPv4 destinations, including connections for AF_INET6
6142  * sockets connecting to IPv4 mapped IPv6 destinations.
6143  */
6144 static int
6145 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport,
6146     uint_t srcid, cred_t *cr, pid_t pid)
6147 {
6148 	tcph_t	*tcph;
6149 	mblk_t	*mp;
6150 	ipaddr_t dstaddr = *dstaddrp;
6151 	int32_t	oldstate;
6152 	uint16_t lport;
6153 	int	error = 0;
6154 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6155 
6156 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6157 
6158 	/* Check for attempt to connect to INADDR_ANY */
6159 	if (dstaddr == INADDR_ANY)  {
6160 		/*
6161 		 * SunOS 4.x and 4.3 BSD allow an application
6162 		 * to connect a TCP socket to INADDR_ANY.
6163 		 * When they do this, the kernel picks the
6164 		 * address of one interface and uses it
6165 		 * instead.  The kernel usually ends up
6166 		 * picking the address of the loopback
6167 		 * interface.  This is an undocumented feature.
6168 		 * However, we provide the same thing here
6169 		 * in order to have source and binary
6170 		 * compatibility with SunOS 4.x.
6171 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6172 		 * generate the T_CONN_CON.
6173 		 */
6174 		dstaddr = htonl(INADDR_LOOPBACK);
6175 		*dstaddrp = dstaddr;
6176 	}
6177 
6178 	/* Handle __sin6_src_id if socket not bound to an IP address */
6179 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6180 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6181 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6182 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6183 		    tcp->tcp_ipha->ipha_src);
6184 	}
6185 
6186 	/*
6187 	 * Don't let an endpoint connect to itself.  Note that
6188 	 * the test here does not catch the case where the
6189 	 * source IP addr was left unspecified by the user. In
6190 	 * this case, the source addr is set in tcp_adapt_ire()
6191 	 * using the reply to the T_BIND message that we send
6192 	 * down to IP here and the check is repeated in tcp_rput_other.
6193 	 */
6194 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6195 	    dstport == tcp->tcp_lport) {
6196 		error = -TBADADDR;
6197 		goto failed;
6198 	}
6199 
6200 	tcp->tcp_ipha->ipha_dst = dstaddr;
6201 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6202 
6203 	/*
6204 	 * Massage a source route if any putting the first hop
6205 	 * in iph_dst. Compute a starting value for the checksum which
6206 	 * takes into account that the original iph_dst should be
6207 	 * included in the checksum but that ip will include the
6208 	 * first hop in the source route in the tcp checksum.
6209 	 */
6210 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack);
6211 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6212 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6213 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6214 	if ((int)tcp->tcp_sum < 0)
6215 		tcp->tcp_sum--;
6216 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6217 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6218 	    (tcp->tcp_sum >> 16));
6219 	tcph = tcp->tcp_tcph;
6220 	*(uint16_t *)tcph->th_fport = dstport;
6221 	tcp->tcp_fport = dstport;
6222 
6223 	oldstate = tcp->tcp_state;
6224 	/*
6225 	 * At this point the remote destination address and remote port fields
6226 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6227 	 * have to see which state tcp was in so we can take apropriate action.
6228 	 */
6229 	if (oldstate == TCPS_IDLE) {
6230 		/*
6231 		 * We support a quick connect capability here, allowing
6232 		 * clients to transition directly from IDLE to SYN_SENT
6233 		 * tcp_bindi will pick an unused port, insert the connection
6234 		 * in the bind hash and transition to BOUND state.
6235 		 */
6236 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6237 		    tcp, B_TRUE);
6238 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6239 		    B_FALSE, B_FALSE);
6240 		if (lport == 0) {
6241 			error = -TNOADDR;
6242 			goto failed;
6243 		}
6244 	}
6245 	tcp->tcp_state = TCPS_SYN_SENT;
6246 
6247 	mp = allocb(sizeof (ire_t), BPRI_HI);
6248 	if (mp == NULL) {
6249 		tcp->tcp_state = oldstate;
6250 		error = ENOMEM;
6251 		goto failed;
6252 	}
6253 	mp->b_wptr += sizeof (ire_t);
6254 	mp->b_datap->db_type = IRE_DB_REQ_TYPE;
6255 	tcp->tcp_hard_binding = 1;
6256 	if (cr == NULL) {
6257 		cr = tcp->tcp_cred;
6258 		pid = tcp->tcp_cpid;
6259 	}
6260 	mblk_setcred(mp, cr);
6261 	DB_CPID(mp) = pid;
6262 
6263 	/*
6264 	 * We need to make sure that the conn_recv is set to a non-null
6265 	 * value before we insert the conn_t into the classifier table.
6266 	 * This is to avoid a race with an incoming packet which does
6267 	 * an ipcl_classify().
6268 	 */
6269 	tcp->tcp_connp->conn_recv = tcp_input;
6270 
6271 	if (tcp->tcp_family == AF_INET) {
6272 		error = ip_proto_bind_connected_v4(tcp->tcp_connp, &mp,
6273 		    IPPROTO_TCP, &tcp->tcp_ipha->ipha_src, tcp->tcp_lport,
6274 		    tcp->tcp_remote, tcp->tcp_fport, B_TRUE, B_TRUE);
6275 	} else {
6276 		in6_addr_t v6src;
6277 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6278 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src);
6279 		} else {
6280 			v6src = tcp->tcp_ip6h->ip6_src;
6281 		}
6282 		error = ip_proto_bind_connected_v6(tcp->tcp_connp, &mp,
6283 		    IPPROTO_TCP, &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6,
6284 		    &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE);
6285 	}
6286 	BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6287 	tcp->tcp_active_open = 1;
6288 
6289 	return (tcp_post_ip_bind(tcp, mp, error));
6290 failed:
6291 	/* return error ack and blow away saved option results if any */
6292 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6293 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6294 	return (error);
6295 }
6296 
6297 /*
6298  * Handle connect to IPv6 destinations.
6299  */
6300 static int
6301 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport,
6302     uint32_t flowinfo, uint_t srcid, uint32_t scope_id, cred_t *cr, pid_t pid)
6303 {
6304 	tcph_t	*tcph;
6305 	mblk_t	*mp;
6306 	ip6_rthdr_t *rth;
6307 	int32_t  oldstate;
6308 	uint16_t lport;
6309 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6310 	int	error = 0;
6311 	conn_t	*connp = tcp->tcp_connp;
6312 
6313 	ASSERT(tcp->tcp_family == AF_INET6);
6314 
6315 	/*
6316 	 * If we're here, it means that the destination address is a native
6317 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6318 	 * reason why it might not be IPv6 is if the socket was bound to an
6319 	 * IPv4-mapped IPv6 address.
6320 	 */
6321 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6322 		return (-TBADADDR);
6323 	}
6324 
6325 	/*
6326 	 * Interpret a zero destination to mean loopback.
6327 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6328 	 * generate the T_CONN_CON.
6329 	 */
6330 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6331 		*dstaddrp = ipv6_loopback;
6332 	}
6333 
6334 	/* Handle __sin6_src_id if socket not bound to an IP address */
6335 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6336 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6337 		    connp->conn_zoneid, tcps->tcps_netstack);
6338 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6339 	}
6340 
6341 	/*
6342 	 * Take care of the scope_id now and add ip6i_t
6343 	 * if ip6i_t is not already allocated through TCP
6344 	 * sticky options. At this point tcp_ip6h does not
6345 	 * have dst info, thus use dstaddrp.
6346 	 */
6347 	if (scope_id != 0 &&
6348 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6349 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6350 		ip6i_t  *ip6i;
6351 
6352 		ipp->ipp_ifindex = scope_id;
6353 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6354 
6355 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6356 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6357 			/* Already allocated */
6358 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6359 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6360 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6361 		} else {
6362 			int reterr;
6363 
6364 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6365 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6366 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6367 			reterr = tcp_build_hdrs(tcp);
6368 			if (reterr != 0)
6369 				goto failed;
6370 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6371 		}
6372 	}
6373 
6374 	/*
6375 	 * Don't let an endpoint connect to itself.  Note that
6376 	 * the test here does not catch the case where the
6377 	 * source IP addr was left unspecified by the user. In
6378 	 * this case, the source addr is set in tcp_adapt_ire()
6379 	 * using the reply to the T_BIND message that we send
6380 	 * down to IP here and the check is repeated in tcp_rput_other.
6381 	 */
6382 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6383 	    (dstport == tcp->tcp_lport)) {
6384 		error = -TBADADDR;
6385 		goto failed;
6386 	}
6387 
6388 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6389 	tcp->tcp_remote_v6 = *dstaddrp;
6390 	tcp->tcp_ip6h->ip6_vcf =
6391 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6392 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6393 
6394 	/*
6395 	 * Massage a routing header (if present) putting the first hop
6396 	 * in ip6_dst. Compute a starting value for the checksum which
6397 	 * takes into account that the original ip6_dst should be
6398 	 * included in the checksum but that ip will include the
6399 	 * first hop in the source route in the tcp checksum.
6400 	 */
6401 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
6402 	if (rth != NULL) {
6403 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth,
6404 		    tcps->tcps_netstack);
6405 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6406 		    (tcp->tcp_sum >> 16));
6407 	} else {
6408 		tcp->tcp_sum = 0;
6409 	}
6410 
6411 	tcph = tcp->tcp_tcph;
6412 	*(uint16_t *)tcph->th_fport = dstport;
6413 	tcp->tcp_fport = dstport;
6414 
6415 	oldstate = tcp->tcp_state;
6416 	/*
6417 	 * At this point the remote destination address and remote port fields
6418 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6419 	 * have to see which state tcp was in so we can take apropriate action.
6420 	 */
6421 	if (oldstate == TCPS_IDLE) {
6422 		/*
6423 		 * We support a quick connect capability here, allowing
6424 		 * clients to transition directly from IDLE to SYN_SENT
6425 		 * tcp_bindi will pick an unused port, insert the connection
6426 		 * in the bind hash and transition to BOUND state.
6427 		 */
6428 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6429 		    tcp, B_TRUE);
6430 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6431 		    B_FALSE, B_FALSE);
6432 		if (lport == 0) {
6433 			error = -TNOADDR;
6434 			goto failed;
6435 		}
6436 	}
6437 	tcp->tcp_state = TCPS_SYN_SENT;
6438 
6439 	mp = allocb(sizeof (ire_t), BPRI_HI);
6440 	if (mp != NULL) {
6441 		in6_addr_t v6src;
6442 
6443 		mp->b_wptr += sizeof (ire_t);
6444 		mp->b_datap->db_type = IRE_DB_REQ_TYPE;
6445 		if (cr == NULL) {
6446 			cr = tcp->tcp_cred;
6447 			pid = tcp->tcp_cpid;
6448 		}
6449 		mblk_setcred(mp, cr);
6450 		DB_CPID(mp) = pid;
6451 		tcp->tcp_hard_binding = 1;
6452 
6453 		/*
6454 		 * We need to make sure that the conn_recv is set to a non-null
6455 		 * value before we insert the conn_t into the classifier table.
6456 		 * This is to avoid a race with an incoming packet which does
6457 		 * an ipcl_classify().
6458 		 */
6459 		tcp->tcp_connp->conn_recv = tcp_input;
6460 
6461 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6462 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src);
6463 		} else {
6464 			v6src = tcp->tcp_ip6h->ip6_src;
6465 		}
6466 		error = ip_proto_bind_connected_v6(connp, &mp, IPPROTO_TCP,
6467 		    &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6,
6468 		    &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE);
6469 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6470 		tcp->tcp_active_open = 1;
6471 
6472 		return (tcp_post_ip_bind(tcp, mp, error));
6473 	}
6474 	/* Error case */
6475 	tcp->tcp_state = oldstate;
6476 	error = ENOMEM;
6477 
6478 failed:
6479 	/* return error ack and blow away saved option results if any */
6480 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6481 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6482 	return (error);
6483 }
6484 
6485 /*
6486  * We need a stream q for detached closing tcp connections
6487  * to use.  Our client hereby indicates that this q is the
6488  * one to use.
6489  */
6490 static void
6491 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
6492 {
6493 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
6494 	queue_t	*q = tcp->tcp_wq;
6495 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6496 
6497 #ifdef NS_DEBUG
6498 	(void) printf("TCP_IOC_DEFAULT_Q for stack %d\n",
6499 	    tcps->tcps_netstack->netstack_stackid);
6500 #endif
6501 	mp->b_datap->db_type = M_IOCACK;
6502 	iocp->ioc_count = 0;
6503 	mutex_enter(&tcps->tcps_g_q_lock);
6504 	if (tcps->tcps_g_q != NULL) {
6505 		mutex_exit(&tcps->tcps_g_q_lock);
6506 		iocp->ioc_error = EALREADY;
6507 	} else {
6508 		int error = 0;
6509 		conn_t *connp = tcp->tcp_connp;
6510 		ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
6511 
6512 		tcps->tcps_g_q = tcp->tcp_rq;
6513 		mutex_exit(&tcps->tcps_g_q_lock);
6514 		iocp->ioc_error = 0;
6515 		iocp->ioc_rval = 0;
6516 		/*
6517 		 * We are passing tcp_sticky_ipp as NULL
6518 		 * as it is not useful for tcp_default queue
6519 		 *
6520 		 * Set conn_recv just in case.
6521 		 */
6522 		tcp->tcp_connp->conn_recv = tcp_conn_request;
6523 
6524 		ASSERT(connp->conn_af_isv6);
6525 		connp->conn_ulp = IPPROTO_TCP;
6526 
6527 		if (ipst->ips_ipcl_proto_fanout_v6[IPPROTO_TCP].connf_head !=
6528 		    NULL || connp->conn_mac_exempt) {
6529 			error = -TBADADDR;
6530 		} else {
6531 			connp->conn_srcv6 = ipv6_all_zeros;
6532 			ipcl_proto_insert_v6(connp, IPPROTO_TCP);
6533 		}
6534 
6535 		(void) tcp_post_ip_bind(tcp, NULL, error);
6536 	}
6537 	qreply(q, mp);
6538 }
6539 
6540 static int
6541 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum)
6542 {
6543 	tcp_t	*ltcp = NULL;
6544 	conn_t	*connp;
6545 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6546 
6547 	/*
6548 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
6549 	 * when the stream is in BOUND state. Do not send a reset,
6550 	 * since the destination IP address is not valid, and it can
6551 	 * be the initialized value of all zeros (broadcast address).
6552 	 *
6553 	 * XXX There won't be any pending bind request to IP.
6554 	 */
6555 	if (tcp->tcp_state <= TCPS_BOUND) {
6556 		if (tcp->tcp_debug) {
6557 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
6558 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
6559 		}
6560 		return (TOUTSTATE);
6561 	}
6562 
6563 
6564 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
6565 
6566 		/*
6567 		 * According to TPI, for non-listeners, ignore seqnum
6568 		 * and disconnect.
6569 		 * Following interpretation of -1 seqnum is historical
6570 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
6571 		 * a valid seqnum should not be -1).
6572 		 *
6573 		 *	-1 means disconnect everything
6574 		 *	regardless even on a listener.
6575 		 */
6576 
6577 		int old_state = tcp->tcp_state;
6578 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
6579 
6580 		/*
6581 		 * The connection can't be on the tcp_time_wait_head list
6582 		 * since it is not detached.
6583 		 */
6584 		ASSERT(tcp->tcp_time_wait_next == NULL);
6585 		ASSERT(tcp->tcp_time_wait_prev == NULL);
6586 		ASSERT(tcp->tcp_time_wait_expire == 0);
6587 		ltcp = NULL;
6588 		/*
6589 		 * If it used to be a listener, check to make sure no one else
6590 		 * has taken the port before switching back to LISTEN state.
6591 		 */
6592 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6593 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
6594 			    tcp->tcp_ipha->ipha_src,
6595 			    tcp->tcp_connp->conn_zoneid, ipst);
6596 			if (connp != NULL)
6597 				ltcp = connp->conn_tcp;
6598 		} else {
6599 			/* Allow tcp_bound_if listeners? */
6600 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
6601 			    &tcp->tcp_ip6h->ip6_src, 0,
6602 			    tcp->tcp_connp->conn_zoneid, ipst);
6603 			if (connp != NULL)
6604 				ltcp = connp->conn_tcp;
6605 		}
6606 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
6607 			tcp->tcp_state = TCPS_LISTEN;
6608 		} else if (old_state > TCPS_BOUND) {
6609 			tcp->tcp_conn_req_max = 0;
6610 			tcp->tcp_state = TCPS_BOUND;
6611 		}
6612 		if (ltcp != NULL)
6613 			CONN_DEC_REF(ltcp->tcp_connp);
6614 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
6615 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
6616 		} else if (old_state == TCPS_ESTABLISHED ||
6617 		    old_state == TCPS_CLOSE_WAIT) {
6618 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
6619 		}
6620 
6621 		if (tcp->tcp_fused)
6622 			tcp_unfuse(tcp);
6623 
6624 		mutex_enter(&tcp->tcp_eager_lock);
6625 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
6626 		    (tcp->tcp_conn_req_cnt_q != 0)) {
6627 			tcp_eager_cleanup(tcp, 0);
6628 		}
6629 		mutex_exit(&tcp->tcp_eager_lock);
6630 
6631 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
6632 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
6633 
6634 		tcp_reinit(tcp);
6635 
6636 		return (0);
6637 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
6638 		return (TBADSEQ);
6639 	}
6640 	return (0);
6641 }
6642 
6643 /*
6644  * Our client hereby directs us to reject the connection request
6645  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
6646  * of sending the appropriate RST, not an ICMP error.
6647  */
6648 static void
6649 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
6650 {
6651 	t_scalar_t seqnum;
6652 	int	error;
6653 
6654 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6655 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
6656 		tcp_err_ack(tcp, mp, TPROTO, 0);
6657 		return;
6658 	}
6659 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
6660 	error = tcp_disconnect_common(tcp, seqnum);
6661 	if (error != 0)
6662 		tcp_err_ack(tcp, mp, error, 0);
6663 	else {
6664 		if (tcp->tcp_state >= TCPS_ESTABLISHED) {
6665 			/* Send M_FLUSH according to TPI */
6666 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6667 		}
6668 		mp = mi_tpi_ok_ack_alloc(mp);
6669 		if (mp)
6670 			putnext(tcp->tcp_rq, mp);
6671 	}
6672 }
6673 
6674 /*
6675  * Diagnostic routine used to return a string associated with the tcp state.
6676  * Note that if the caller does not supply a buffer, it will use an internal
6677  * static string.  This means that if multiple threads call this function at
6678  * the same time, output can be corrupted...  Note also that this function
6679  * does not check the size of the supplied buffer.  The caller has to make
6680  * sure that it is big enough.
6681  */
6682 static char *
6683 tcp_display(tcp_t *tcp, char *sup_buf, char format)
6684 {
6685 	char		buf1[30];
6686 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
6687 	char		*buf;
6688 	char		*cp;
6689 	in6_addr_t	local, remote;
6690 	char		local_addrbuf[INET6_ADDRSTRLEN];
6691 	char		remote_addrbuf[INET6_ADDRSTRLEN];
6692 
6693 	if (sup_buf != NULL)
6694 		buf = sup_buf;
6695 	else
6696 		buf = priv_buf;
6697 
6698 	if (tcp == NULL)
6699 		return ("NULL_TCP");
6700 	switch (tcp->tcp_state) {
6701 	case TCPS_CLOSED:
6702 		cp = "TCP_CLOSED";
6703 		break;
6704 	case TCPS_IDLE:
6705 		cp = "TCP_IDLE";
6706 		break;
6707 	case TCPS_BOUND:
6708 		cp = "TCP_BOUND";
6709 		break;
6710 	case TCPS_LISTEN:
6711 		cp = "TCP_LISTEN";
6712 		break;
6713 	case TCPS_SYN_SENT:
6714 		cp = "TCP_SYN_SENT";
6715 		break;
6716 	case TCPS_SYN_RCVD:
6717 		cp = "TCP_SYN_RCVD";
6718 		break;
6719 	case TCPS_ESTABLISHED:
6720 		cp = "TCP_ESTABLISHED";
6721 		break;
6722 	case TCPS_CLOSE_WAIT:
6723 		cp = "TCP_CLOSE_WAIT";
6724 		break;
6725 	case TCPS_FIN_WAIT_1:
6726 		cp = "TCP_FIN_WAIT_1";
6727 		break;
6728 	case TCPS_CLOSING:
6729 		cp = "TCP_CLOSING";
6730 		break;
6731 	case TCPS_LAST_ACK:
6732 		cp = "TCP_LAST_ACK";
6733 		break;
6734 	case TCPS_FIN_WAIT_2:
6735 		cp = "TCP_FIN_WAIT_2";
6736 		break;
6737 	case TCPS_TIME_WAIT:
6738 		cp = "TCP_TIME_WAIT";
6739 		break;
6740 	default:
6741 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
6742 		cp = buf1;
6743 		break;
6744 	}
6745 	switch (format) {
6746 	case DISP_ADDR_AND_PORT:
6747 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6748 			/*
6749 			 * Note that we use the remote address in the tcp_b
6750 			 * structure.  This means that it will print out
6751 			 * the real destination address, not the next hop's
6752 			 * address if source routing is used.
6753 			 */
6754 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
6755 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
6756 
6757 		} else {
6758 			local = tcp->tcp_ip_src_v6;
6759 			remote = tcp->tcp_remote_v6;
6760 		}
6761 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
6762 		    sizeof (local_addrbuf));
6763 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
6764 		    sizeof (remote_addrbuf));
6765 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
6766 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
6767 		    ntohs(tcp->tcp_fport), cp);
6768 		break;
6769 	case DISP_PORT_ONLY:
6770 	default:
6771 		(void) mi_sprintf(buf, "[%u, %u] %s",
6772 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
6773 		break;
6774 	}
6775 
6776 	return (buf);
6777 }
6778 
6779 /*
6780  * Called via squeue to get on to eager's perimeter. It sends a
6781  * TH_RST if eager is in the fanout table. The listener wants the
6782  * eager to disappear either by means of tcp_eager_blowoff() or
6783  * tcp_eager_cleanup() being called. tcp_eager_kill() can also be
6784  * called (via squeue) if the eager cannot be inserted in the
6785  * fanout table in tcp_conn_request().
6786  */
6787 /* ARGSUSED */
6788 void
6789 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
6790 {
6791 	conn_t	*econnp = (conn_t *)arg;
6792 	tcp_t	*eager = econnp->conn_tcp;
6793 	tcp_t	*listener = eager->tcp_listener;
6794 	tcp_stack_t	*tcps = eager->tcp_tcps;
6795 
6796 	/*
6797 	 * We could be called because listener is closing. Since
6798 	 * the eager is using listener's queue's, its not safe.
6799 	 * Better use the default queue just to send the TH_RST
6800 	 * out.
6801 	 */
6802 	ASSERT(tcps->tcps_g_q != NULL);
6803 	eager->tcp_rq = tcps->tcps_g_q;
6804 	eager->tcp_wq = WR(tcps->tcps_g_q);
6805 
6806 	/*
6807 	 * An eager's conn_fanout will be NULL if it's a duplicate
6808 	 * for an existing 4-tuples in the conn fanout table.
6809 	 * We don't want to send an RST out in such case.
6810 	 */
6811 	if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) {
6812 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
6813 		    eager, eager->tcp_snxt, 0, TH_RST);
6814 	}
6815 
6816 	/* We are here because listener wants this eager gone */
6817 	if (listener != NULL) {
6818 		mutex_enter(&listener->tcp_eager_lock);
6819 		tcp_eager_unlink(eager);
6820 		if (eager->tcp_tconnind_started) {
6821 			/*
6822 			 * The eager has sent a conn_ind up to the
6823 			 * listener but listener decides to close
6824 			 * instead. We need to drop the extra ref
6825 			 * placed on eager in tcp_rput_data() before
6826 			 * sending the conn_ind to listener.
6827 			 */
6828 			CONN_DEC_REF(econnp);
6829 		}
6830 		mutex_exit(&listener->tcp_eager_lock);
6831 		CONN_DEC_REF(listener->tcp_connp);
6832 	}
6833 
6834 	if (eager->tcp_state > TCPS_BOUND)
6835 		tcp_close_detached(eager);
6836 }
6837 
6838 /*
6839  * Reset any eager connection hanging off this listener marked
6840  * with 'seqnum' and then reclaim it's resources.
6841  */
6842 static boolean_t
6843 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
6844 {
6845 	tcp_t	*eager;
6846 	mblk_t 	*mp;
6847 	tcp_stack_t	*tcps = listener->tcp_tcps;
6848 
6849 	TCP_STAT(tcps, tcp_eager_blowoff_calls);
6850 	eager = listener;
6851 	mutex_enter(&listener->tcp_eager_lock);
6852 	do {
6853 		eager = eager->tcp_eager_next_q;
6854 		if (eager == NULL) {
6855 			mutex_exit(&listener->tcp_eager_lock);
6856 			return (B_FALSE);
6857 		}
6858 	} while (eager->tcp_conn_req_seqnum != seqnum);
6859 
6860 	if (eager->tcp_closemp_used) {
6861 		mutex_exit(&listener->tcp_eager_lock);
6862 		return (B_TRUE);
6863 	}
6864 	eager->tcp_closemp_used = B_TRUE;
6865 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6866 	CONN_INC_REF(eager->tcp_connp);
6867 	mutex_exit(&listener->tcp_eager_lock);
6868 	mp = &eager->tcp_closemp;
6869 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
6870 	    eager->tcp_connp, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF);
6871 	return (B_TRUE);
6872 }
6873 
6874 /*
6875  * Reset any eager connection hanging off this listener
6876  * and then reclaim it's resources.
6877  */
6878 static void
6879 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
6880 {
6881 	tcp_t	*eager;
6882 	mblk_t	*mp;
6883 	tcp_stack_t	*tcps = listener->tcp_tcps;
6884 
6885 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
6886 
6887 	if (!q0_only) {
6888 		/* First cleanup q */
6889 		TCP_STAT(tcps, tcp_eager_blowoff_q);
6890 		eager = listener->tcp_eager_next_q;
6891 		while (eager != NULL) {
6892 			if (!eager->tcp_closemp_used) {
6893 				eager->tcp_closemp_used = B_TRUE;
6894 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6895 				CONN_INC_REF(eager->tcp_connp);
6896 				mp = &eager->tcp_closemp;
6897 				SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
6898 				    tcp_eager_kill, eager->tcp_connp,
6899 				    SQ_FILL, SQTAG_TCP_EAGER_CLEANUP);
6900 			}
6901 			eager = eager->tcp_eager_next_q;
6902 		}
6903 	}
6904 	/* Then cleanup q0 */
6905 	TCP_STAT(tcps, tcp_eager_blowoff_q0);
6906 	eager = listener->tcp_eager_next_q0;
6907 	while (eager != listener) {
6908 		if (!eager->tcp_closemp_used) {
6909 			eager->tcp_closemp_used = B_TRUE;
6910 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6911 			CONN_INC_REF(eager->tcp_connp);
6912 			mp = &eager->tcp_closemp;
6913 			SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
6914 			    tcp_eager_kill, eager->tcp_connp, SQ_FILL,
6915 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
6916 		}
6917 		eager = eager->tcp_eager_next_q0;
6918 	}
6919 }
6920 
6921 /*
6922  * If we are an eager connection hanging off a listener that hasn't
6923  * formally accepted the connection yet, get off his list and blow off
6924  * any data that we have accumulated.
6925  */
6926 static void
6927 tcp_eager_unlink(tcp_t *tcp)
6928 {
6929 	tcp_t	*listener = tcp->tcp_listener;
6930 
6931 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
6932 	ASSERT(listener != NULL);
6933 	if (tcp->tcp_eager_next_q0 != NULL) {
6934 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
6935 
6936 		/* Remove the eager tcp from q0 */
6937 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
6938 		    tcp->tcp_eager_prev_q0;
6939 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
6940 		    tcp->tcp_eager_next_q0;
6941 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
6942 		listener->tcp_conn_req_cnt_q0--;
6943 
6944 		tcp->tcp_eager_next_q0 = NULL;
6945 		tcp->tcp_eager_prev_q0 = NULL;
6946 
6947 		/*
6948 		 * Take the eager out, if it is in the list of droppable
6949 		 * eagers.
6950 		 */
6951 		MAKE_UNDROPPABLE(tcp);
6952 
6953 		if (tcp->tcp_syn_rcvd_timeout != 0) {
6954 			/* we have timed out before */
6955 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
6956 			listener->tcp_syn_rcvd_timeout--;
6957 		}
6958 	} else {
6959 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
6960 		tcp_t	*prev = NULL;
6961 
6962 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
6963 			if (tcpp[0] == tcp) {
6964 				if (listener->tcp_eager_last_q == tcp) {
6965 					/*
6966 					 * If we are unlinking the last
6967 					 * element on the list, adjust
6968 					 * tail pointer. Set tail pointer
6969 					 * to nil when list is empty.
6970 					 */
6971 					ASSERT(tcp->tcp_eager_next_q == NULL);
6972 					if (listener->tcp_eager_last_q ==
6973 					    listener->tcp_eager_next_q) {
6974 						listener->tcp_eager_last_q =
6975 						    NULL;
6976 					} else {
6977 						/*
6978 						 * We won't get here if there
6979 						 * is only one eager in the
6980 						 * list.
6981 						 */
6982 						ASSERT(prev != NULL);
6983 						listener->tcp_eager_last_q =
6984 						    prev;
6985 					}
6986 				}
6987 				tcpp[0] = tcp->tcp_eager_next_q;
6988 				tcp->tcp_eager_next_q = NULL;
6989 				tcp->tcp_eager_last_q = NULL;
6990 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
6991 				listener->tcp_conn_req_cnt_q--;
6992 				break;
6993 			}
6994 			prev = tcpp[0];
6995 		}
6996 	}
6997 	tcp->tcp_listener = NULL;
6998 }
6999 
7000 /* Shorthand to generate and send TPI error acks to our client */
7001 static void
7002 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
7003 {
7004 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
7005 		putnext(tcp->tcp_rq, mp);
7006 }
7007 
7008 /* Shorthand to generate and send TPI error acks to our client */
7009 static void
7010 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
7011     int t_error, int sys_error)
7012 {
7013 	struct T_error_ack	*teackp;
7014 
7015 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
7016 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
7017 		teackp = (struct T_error_ack *)mp->b_rptr;
7018 		teackp->ERROR_prim = primitive;
7019 		teackp->TLI_error = t_error;
7020 		teackp->UNIX_error = sys_error;
7021 		putnext(tcp->tcp_rq, mp);
7022 	}
7023 }
7024 
7025 /*
7026  * Note: No locks are held when inspecting tcp_g_*epriv_ports
7027  * but instead the code relies on:
7028  * - the fact that the address of the array and its size never changes
7029  * - the atomic assignment of the elements of the array
7030  */
7031 /* ARGSUSED */
7032 static int
7033 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
7034 {
7035 	int i;
7036 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7037 
7038 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7039 		if (tcps->tcps_g_epriv_ports[i] != 0)
7040 			(void) mi_mpprintf(mp, "%d ",
7041 			    tcps->tcps_g_epriv_ports[i]);
7042 	}
7043 	return (0);
7044 }
7045 
7046 /*
7047  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7048  * threads from changing it at the same time.
7049  */
7050 /* ARGSUSED */
7051 static int
7052 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7053     cred_t *cr)
7054 {
7055 	long	new_value;
7056 	int	i;
7057 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7058 
7059 	/*
7060 	 * Fail the request if the new value does not lie within the
7061 	 * port number limits.
7062 	 */
7063 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
7064 	    new_value <= 0 || new_value >= 65536) {
7065 		return (EINVAL);
7066 	}
7067 
7068 	mutex_enter(&tcps->tcps_epriv_port_lock);
7069 	/* Check if the value is already in the list */
7070 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7071 		if (new_value == tcps->tcps_g_epriv_ports[i]) {
7072 			mutex_exit(&tcps->tcps_epriv_port_lock);
7073 			return (EEXIST);
7074 		}
7075 	}
7076 	/* Find an empty slot */
7077 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7078 		if (tcps->tcps_g_epriv_ports[i] == 0)
7079 			break;
7080 	}
7081 	if (i == tcps->tcps_g_num_epriv_ports) {
7082 		mutex_exit(&tcps->tcps_epriv_port_lock);
7083 		return (EOVERFLOW);
7084 	}
7085 	/* Set the new value */
7086 	tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value;
7087 	mutex_exit(&tcps->tcps_epriv_port_lock);
7088 	return (0);
7089 }
7090 
7091 /*
7092  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7093  * threads from changing it at the same time.
7094  */
7095 /* ARGSUSED */
7096 static int
7097 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7098     cred_t *cr)
7099 {
7100 	long	new_value;
7101 	int	i;
7102 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7103 
7104 	/*
7105 	 * Fail the request if the new value does not lie within the
7106 	 * port number limits.
7107 	 */
7108 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
7109 	    new_value >= 65536) {
7110 		return (EINVAL);
7111 	}
7112 
7113 	mutex_enter(&tcps->tcps_epriv_port_lock);
7114 	/* Check that the value is already in the list */
7115 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7116 		if (tcps->tcps_g_epriv_ports[i] == new_value)
7117 			break;
7118 	}
7119 	if (i == tcps->tcps_g_num_epriv_ports) {
7120 		mutex_exit(&tcps->tcps_epriv_port_lock);
7121 		return (ESRCH);
7122 	}
7123 	/* Clear the value */
7124 	tcps->tcps_g_epriv_ports[i] = 0;
7125 	mutex_exit(&tcps->tcps_epriv_port_lock);
7126 	return (0);
7127 }
7128 
7129 /* Return the TPI/TLI equivalent of our current tcp_state */
7130 static int
7131 tcp_tpistate(tcp_t *tcp)
7132 {
7133 	switch (tcp->tcp_state) {
7134 	case TCPS_IDLE:
7135 		return (TS_UNBND);
7136 	case TCPS_LISTEN:
7137 		/*
7138 		 * Return whether there are outstanding T_CONN_IND waiting
7139 		 * for the matching T_CONN_RES. Therefore don't count q0.
7140 		 */
7141 		if (tcp->tcp_conn_req_cnt_q > 0)
7142 			return (TS_WRES_CIND);
7143 		else
7144 			return (TS_IDLE);
7145 	case TCPS_BOUND:
7146 		return (TS_IDLE);
7147 	case TCPS_SYN_SENT:
7148 		return (TS_WCON_CREQ);
7149 	case TCPS_SYN_RCVD:
7150 		/*
7151 		 * Note: assumption: this has to the active open SYN_RCVD.
7152 		 * The passive instance is detached in SYN_RCVD stage of
7153 		 * incoming connection processing so we cannot get request
7154 		 * for T_info_ack on it.
7155 		 */
7156 		return (TS_WACK_CRES);
7157 	case TCPS_ESTABLISHED:
7158 		return (TS_DATA_XFER);
7159 	case TCPS_CLOSE_WAIT:
7160 		return (TS_WREQ_ORDREL);
7161 	case TCPS_FIN_WAIT_1:
7162 		return (TS_WIND_ORDREL);
7163 	case TCPS_FIN_WAIT_2:
7164 		return (TS_WIND_ORDREL);
7165 
7166 	case TCPS_CLOSING:
7167 	case TCPS_LAST_ACK:
7168 	case TCPS_TIME_WAIT:
7169 	case TCPS_CLOSED:
7170 		/*
7171 		 * Following TS_WACK_DREQ7 is a rendition of "not
7172 		 * yet TS_IDLE" TPI state. There is no best match to any
7173 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
7174 		 * choose a value chosen that will map to TLI/XTI level
7175 		 * state of TSTATECHNG (state is process of changing) which
7176 		 * captures what this dummy state represents.
7177 		 */
7178 		return (TS_WACK_DREQ7);
7179 	default:
7180 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7181 		    tcp->tcp_state, tcp_display(tcp, NULL,
7182 		    DISP_PORT_ONLY));
7183 		return (TS_UNBND);
7184 	}
7185 }
7186 
7187 static void
7188 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7189 {
7190 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7191 
7192 	if (tcp->tcp_family == AF_INET6)
7193 		*tia = tcp_g_t_info_ack_v6;
7194 	else
7195 		*tia = tcp_g_t_info_ack;
7196 	tia->CURRENT_state = tcp_tpistate(tcp);
7197 	tia->OPT_size = tcp_max_optsize;
7198 	if (tcp->tcp_mss == 0) {
7199 		/* Not yet set - tcp_open does not set mss */
7200 		if (tcp->tcp_ipversion == IPV4_VERSION)
7201 			tia->TIDU_size = tcps->tcps_mss_def_ipv4;
7202 		else
7203 			tia->TIDU_size = tcps->tcps_mss_def_ipv6;
7204 	} else {
7205 		tia->TIDU_size = tcp->tcp_mss;
7206 	}
7207 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7208 }
7209 
7210 static void
7211 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap,
7212     t_uscalar_t cap_bits1)
7213 {
7214 	tcap->CAP_bits1 = 0;
7215 
7216 	if (cap_bits1 & TC1_INFO) {
7217 		tcp_copy_info(&tcap->INFO_ack, tcp);
7218 		tcap->CAP_bits1 |= TC1_INFO;
7219 	}
7220 
7221 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7222 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7223 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7224 	}
7225 
7226 }
7227 
7228 /*
7229  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7230  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7231  * tcp_g_t_info_ack.  The current state of the stream is copied from
7232  * tcp_state.
7233  */
7234 static void
7235 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7236 {
7237 	t_uscalar_t		cap_bits1;
7238 	struct T_capability_ack	*tcap;
7239 
7240 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7241 		freemsg(mp);
7242 		return;
7243 	}
7244 
7245 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7246 
7247 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7248 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7249 	if (mp == NULL)
7250 		return;
7251 
7252 	tcap = (struct T_capability_ack *)mp->b_rptr;
7253 	tcp_do_capability_ack(tcp, tcap, cap_bits1);
7254 
7255 	putnext(tcp->tcp_rq, mp);
7256 }
7257 
7258 /*
7259  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7260  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7261  * The current state of the stream is copied from tcp_state.
7262  */
7263 static void
7264 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7265 {
7266 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7267 	    T_INFO_ACK);
7268 	if (!mp) {
7269 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7270 		return;
7271 	}
7272 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7273 	putnext(tcp->tcp_rq, mp);
7274 }
7275 
7276 /* Respond to the TPI addr request */
7277 static void
7278 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7279 {
7280 	sin_t	*sin;
7281 	mblk_t	*ackmp;
7282 	struct T_addr_ack *taa;
7283 
7284 	/* Make it large enough for worst case */
7285 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7286 	    2 * sizeof (sin6_t), 1);
7287 	if (ackmp == NULL) {
7288 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7289 		return;
7290 	}
7291 
7292 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7293 		tcp_addr_req_ipv6(tcp, ackmp);
7294 		return;
7295 	}
7296 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7297 
7298 	bzero(taa, sizeof (struct T_addr_ack));
7299 	ackmp->b_wptr = (uchar_t *)&taa[1];
7300 
7301 	taa->PRIM_type = T_ADDR_ACK;
7302 	ackmp->b_datap->db_type = M_PCPROTO;
7303 
7304 	/*
7305 	 * Note: Following code assumes 32 bit alignment of basic
7306 	 * data structures like sin_t and struct T_addr_ack.
7307 	 */
7308 	if (tcp->tcp_state >= TCPS_BOUND) {
7309 		/*
7310 		 * Fill in local address
7311 		 */
7312 		taa->LOCADDR_length = sizeof (sin_t);
7313 		taa->LOCADDR_offset = sizeof (*taa);
7314 
7315 		sin = (sin_t *)&taa[1];
7316 
7317 		/* Fill zeroes and then intialize non-zero fields */
7318 		*sin = sin_null;
7319 
7320 		sin->sin_family = AF_INET;
7321 
7322 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7323 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7324 
7325 		ackmp->b_wptr = (uchar_t *)&sin[1];
7326 
7327 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7328 			/*
7329 			 * Fill in Remote address
7330 			 */
7331 			taa->REMADDR_length = sizeof (sin_t);
7332 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7333 			    taa->LOCADDR_length);
7334 
7335 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7336 			*sin = sin_null;
7337 			sin->sin_family = AF_INET;
7338 			sin->sin_addr.s_addr = tcp->tcp_remote;
7339 			sin->sin_port = tcp->tcp_fport;
7340 
7341 			ackmp->b_wptr = (uchar_t *)&sin[1];
7342 		}
7343 	}
7344 	putnext(tcp->tcp_rq, ackmp);
7345 }
7346 
7347 /* Assumes that tcp_addr_req gets enough space and alignment */
7348 static void
7349 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7350 {
7351 	sin6_t	*sin6;
7352 	struct T_addr_ack *taa;
7353 
7354 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7355 	ASSERT(OK_32PTR(ackmp->b_rptr));
7356 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7357 	    2 * sizeof (sin6_t));
7358 
7359 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7360 
7361 	bzero(taa, sizeof (struct T_addr_ack));
7362 	ackmp->b_wptr = (uchar_t *)&taa[1];
7363 
7364 	taa->PRIM_type = T_ADDR_ACK;
7365 	ackmp->b_datap->db_type = M_PCPROTO;
7366 
7367 	/*
7368 	 * Note: Following code assumes 32 bit alignment of basic
7369 	 * data structures like sin6_t and struct T_addr_ack.
7370 	 */
7371 	if (tcp->tcp_state >= TCPS_BOUND) {
7372 		/*
7373 		 * Fill in local address
7374 		 */
7375 		taa->LOCADDR_length = sizeof (sin6_t);
7376 		taa->LOCADDR_offset = sizeof (*taa);
7377 
7378 		sin6 = (sin6_t *)&taa[1];
7379 		*sin6 = sin6_null;
7380 
7381 		sin6->sin6_family = AF_INET6;
7382 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7383 		sin6->sin6_port = tcp->tcp_lport;
7384 
7385 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7386 
7387 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7388 			/*
7389 			 * Fill in Remote address
7390 			 */
7391 			taa->REMADDR_length = sizeof (sin6_t);
7392 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7393 			    taa->LOCADDR_length);
7394 
7395 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7396 			*sin6 = sin6_null;
7397 			sin6->sin6_family = AF_INET6;
7398 			sin6->sin6_flowinfo =
7399 			    tcp->tcp_ip6h->ip6_vcf &
7400 			    ~IPV6_VERS_AND_FLOW_MASK;
7401 			sin6->sin6_addr = tcp->tcp_remote_v6;
7402 			sin6->sin6_port = tcp->tcp_fport;
7403 
7404 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7405 		}
7406 	}
7407 	putnext(tcp->tcp_rq, ackmp);
7408 }
7409 
7410 /*
7411  * Handle reinitialization of a tcp structure.
7412  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7413  */
7414 static void
7415 tcp_reinit(tcp_t *tcp)
7416 {
7417 	mblk_t	*mp;
7418 	int 	err;
7419 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7420 
7421 	TCP_STAT(tcps, tcp_reinit_calls);
7422 
7423 	/* tcp_reinit should never be called for detached tcp_t's */
7424 	ASSERT(tcp->tcp_listener == NULL);
7425 	ASSERT((tcp->tcp_family == AF_INET &&
7426 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7427 	    (tcp->tcp_family == AF_INET6 &&
7428 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7429 	    tcp->tcp_ipversion == IPV6_VERSION)));
7430 
7431 	/* Cancel outstanding timers */
7432 	tcp_timers_stop(tcp);
7433 
7434 	/*
7435 	 * Reset everything in the state vector, after updating global
7436 	 * MIB data from instance counters.
7437 	 */
7438 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
7439 	tcp->tcp_ibsegs = 0;
7440 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
7441 	tcp->tcp_obsegs = 0;
7442 
7443 	tcp_close_mpp(&tcp->tcp_xmit_head);
7444 	if (tcp->tcp_snd_zcopy_aware)
7445 		tcp_zcopy_notify(tcp);
7446 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7447 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7448 	mutex_enter(&tcp->tcp_non_sq_lock);
7449 	if (tcp->tcp_flow_stopped &&
7450 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
7451 		tcp_clrqfull(tcp);
7452 	}
7453 	mutex_exit(&tcp->tcp_non_sq_lock);
7454 	tcp_close_mpp(&tcp->tcp_reass_head);
7455 	tcp->tcp_reass_tail = NULL;
7456 	if (tcp->tcp_rcv_list != NULL) {
7457 		/* Free b_next chain */
7458 		tcp_close_mpp(&tcp->tcp_rcv_list);
7459 		tcp->tcp_rcv_last_head = NULL;
7460 		tcp->tcp_rcv_last_tail = NULL;
7461 		tcp->tcp_rcv_cnt = 0;
7462 	}
7463 	tcp->tcp_rcv_last_tail = NULL;
7464 
7465 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7466 		freemsg(mp);
7467 		tcp->tcp_urp_mp = NULL;
7468 	}
7469 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7470 		freemsg(mp);
7471 		tcp->tcp_urp_mark_mp = NULL;
7472 	}
7473 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7474 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
7475 		freeb(tcp->tcp_fused_sigurg_mp);
7476 		tcp->tcp_fused_sigurg_mp = NULL;
7477 	}
7478 	if (tcp->tcp_ordrel_mp != NULL) {
7479 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
7480 		freeb(tcp->tcp_ordrel_mp);
7481 		tcp->tcp_ordrel_mp = NULL;
7482 	}
7483 
7484 	/*
7485 	 * Following is a union with two members which are
7486 	 * identical types and size so the following cleanup
7487 	 * is enough.
7488 	 */
7489 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7490 
7491 	CL_INET_DISCONNECT(tcp->tcp_connp, tcp);
7492 
7493 	/*
7494 	 * The connection can't be on the tcp_time_wait_head list
7495 	 * since it is not detached.
7496 	 */
7497 	ASSERT(tcp->tcp_time_wait_next == NULL);
7498 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7499 	ASSERT(tcp->tcp_time_wait_expire == 0);
7500 
7501 	if (tcp->tcp_kssl_pending) {
7502 		tcp->tcp_kssl_pending = B_FALSE;
7503 
7504 		/* Don't reset if the initialized by bind. */
7505 		if (tcp->tcp_kssl_ent != NULL) {
7506 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
7507 			    KSSL_NO_PROXY);
7508 		}
7509 	}
7510 	if (tcp->tcp_kssl_ctx != NULL) {
7511 		kssl_release_ctx(tcp->tcp_kssl_ctx);
7512 		tcp->tcp_kssl_ctx = NULL;
7513 	}
7514 
7515 	/*
7516 	 * Reset/preserve other values
7517 	 */
7518 	tcp_reinit_values(tcp);
7519 	ipcl_hash_remove(tcp->tcp_connp);
7520 	conn_delete_ire(tcp->tcp_connp, NULL);
7521 	tcp_ipsec_cleanup(tcp);
7522 
7523 	if (tcp->tcp_conn_req_max != 0) {
7524 		/*
7525 		 * This is the case when a TLI program uses the same
7526 		 * transport end point to accept a connection.  This
7527 		 * makes the TCP both a listener and acceptor.  When
7528 		 * this connection is closed, we need to set the state
7529 		 * back to TCPS_LISTEN.  Make sure that the eager list
7530 		 * is reinitialized.
7531 		 *
7532 		 * Note that this stream is still bound to the four
7533 		 * tuples of the previous connection in IP.  If a new
7534 		 * SYN with different foreign address comes in, IP will
7535 		 * not find it and will send it to the global queue.  In
7536 		 * the global queue, TCP will do a tcp_lookup_listener()
7537 		 * to find this stream.  This works because this stream
7538 		 * is only removed from connected hash.
7539 		 *
7540 		 */
7541 		tcp->tcp_state = TCPS_LISTEN;
7542 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
7543 		tcp->tcp_eager_next_drop_q0 = tcp;
7544 		tcp->tcp_eager_prev_drop_q0 = tcp;
7545 		tcp->tcp_connp->conn_recv = tcp_conn_request;
7546 		if (tcp->tcp_family == AF_INET6) {
7547 			ASSERT(tcp->tcp_connp->conn_af_isv6);
7548 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
7549 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
7550 		} else {
7551 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
7552 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
7553 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
7554 		}
7555 	} else {
7556 		tcp->tcp_state = TCPS_BOUND;
7557 	}
7558 
7559 	/*
7560 	 * Initialize to default values
7561 	 * Can't fail since enough header template space already allocated
7562 	 * at open().
7563 	 */
7564 	err = tcp_init_values(tcp);
7565 	ASSERT(err == 0);
7566 	/* Restore state in tcp_tcph */
7567 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
7568 	if (tcp->tcp_ipversion == IPV4_VERSION)
7569 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
7570 	else
7571 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
7572 	/*
7573 	 * Copy of the src addr. in tcp_t is needed in tcp_t
7574 	 * since the lookup funcs can only lookup on tcp_t
7575 	 */
7576 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
7577 
7578 	ASSERT(tcp->tcp_ptpbhn != NULL);
7579 	if (!IPCL_IS_NONSTR(tcp->tcp_connp))
7580 		tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat;
7581 	tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat;
7582 	tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat;
7583 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
7584 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
7585 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
7586 }
7587 
7588 /*
7589  * Force values to zero that need be zero.
7590  * Do not touch values asociated with the BOUND or LISTEN state
7591  * since the connection will end up in that state after the reinit.
7592  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
7593  * structure!
7594  */
7595 static void
7596 tcp_reinit_values(tcp)
7597 	tcp_t *tcp;
7598 {
7599 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7600 
7601 #ifndef	lint
7602 #define	DONTCARE(x)
7603 #define	PRESERVE(x)
7604 #else
7605 #define	DONTCARE(x)	((x) = (x))
7606 #define	PRESERVE(x)	((x) = (x))
7607 #endif	/* lint */
7608 
7609 	PRESERVE(tcp->tcp_bind_hash_port);
7610 	PRESERVE(tcp->tcp_bind_hash);
7611 	PRESERVE(tcp->tcp_ptpbhn);
7612 	PRESERVE(tcp->tcp_acceptor_hash);
7613 	PRESERVE(tcp->tcp_ptpahn);
7614 
7615 	/* Should be ASSERT NULL on these with new code! */
7616 	ASSERT(tcp->tcp_time_wait_next == NULL);
7617 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7618 	ASSERT(tcp->tcp_time_wait_expire == 0);
7619 	PRESERVE(tcp->tcp_state);
7620 	PRESERVE(tcp->tcp_rq);
7621 	PRESERVE(tcp->tcp_wq);
7622 
7623 	ASSERT(tcp->tcp_xmit_head == NULL);
7624 	ASSERT(tcp->tcp_xmit_last == NULL);
7625 	ASSERT(tcp->tcp_unsent == 0);
7626 	ASSERT(tcp->tcp_xmit_tail == NULL);
7627 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
7628 
7629 	tcp->tcp_snxt = 0;			/* Displayed in mib */
7630 	tcp->tcp_suna = 0;			/* Displayed in mib */
7631 	tcp->tcp_swnd = 0;
7632 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
7633 
7634 	ASSERT(tcp->tcp_ibsegs == 0);
7635 	ASSERT(tcp->tcp_obsegs == 0);
7636 
7637 	if (tcp->tcp_iphc != NULL) {
7638 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7639 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
7640 	}
7641 
7642 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
7643 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
7644 	DONTCARE(tcp->tcp_ipha);
7645 	DONTCARE(tcp->tcp_ip6h);
7646 	DONTCARE(tcp->tcp_ip_hdr_len);
7647 	DONTCARE(tcp->tcp_tcph);
7648 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
7649 	tcp->tcp_valid_bits = 0;
7650 
7651 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
7652 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
7653 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
7654 	tcp->tcp_last_rcv_lbolt = 0;
7655 
7656 	tcp->tcp_init_cwnd = 0;
7657 
7658 	tcp->tcp_urp_last_valid = 0;
7659 	tcp->tcp_hard_binding = 0;
7660 	tcp->tcp_hard_bound = 0;
7661 	PRESERVE(tcp->tcp_cred);
7662 	PRESERVE(tcp->tcp_cpid);
7663 	PRESERVE(tcp->tcp_open_time);
7664 	PRESERVE(tcp->tcp_exclbind);
7665 
7666 	tcp->tcp_fin_acked = 0;
7667 	tcp->tcp_fin_rcvd = 0;
7668 	tcp->tcp_fin_sent = 0;
7669 	tcp->tcp_ordrel_done = 0;
7670 
7671 	tcp->tcp_debug = 0;
7672 	tcp->tcp_dontroute = 0;
7673 	tcp->tcp_broadcast = 0;
7674 
7675 	tcp->tcp_useloopback = 0;
7676 	tcp->tcp_reuseaddr = 0;
7677 	tcp->tcp_oobinline = 0;
7678 	tcp->tcp_dgram_errind = 0;
7679 
7680 	tcp->tcp_detached = 0;
7681 	tcp->tcp_bind_pending = 0;
7682 	tcp->tcp_unbind_pending = 0;
7683 
7684 	tcp->tcp_snd_ws_ok = B_FALSE;
7685 	tcp->tcp_snd_ts_ok = B_FALSE;
7686 	tcp->tcp_linger = 0;
7687 	tcp->tcp_ka_enabled = 0;
7688 	tcp->tcp_zero_win_probe = 0;
7689 
7690 	tcp->tcp_loopback = 0;
7691 	tcp->tcp_refuse = 0;
7692 	tcp->tcp_localnet = 0;
7693 	tcp->tcp_syn_defense = 0;
7694 	tcp->tcp_set_timer = 0;
7695 
7696 	tcp->tcp_active_open = 0;
7697 	tcp->tcp_rexmit = B_FALSE;
7698 	tcp->tcp_xmit_zc_clean = B_FALSE;
7699 
7700 	tcp->tcp_snd_sack_ok = B_FALSE;
7701 	PRESERVE(tcp->tcp_recvdstaddr);
7702 	tcp->tcp_hwcksum = B_FALSE;
7703 
7704 	tcp->tcp_ire_ill_check_done = B_FALSE;
7705 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
7706 
7707 	tcp->tcp_mdt = B_FALSE;
7708 	tcp->tcp_mdt_hdr_head = 0;
7709 	tcp->tcp_mdt_hdr_tail = 0;
7710 
7711 	tcp->tcp_conn_def_q0 = 0;
7712 	tcp->tcp_ip_forward_progress = B_FALSE;
7713 	tcp->tcp_anon_priv_bind = 0;
7714 	tcp->tcp_ecn_ok = B_FALSE;
7715 
7716 	tcp->tcp_cwr = B_FALSE;
7717 	tcp->tcp_ecn_echo_on = B_FALSE;
7718 
7719 	if (tcp->tcp_sack_info != NULL) {
7720 		if (tcp->tcp_notsack_list != NULL) {
7721 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
7722 		}
7723 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
7724 		tcp->tcp_sack_info = NULL;
7725 	}
7726 
7727 	tcp->tcp_rcv_ws = 0;
7728 	tcp->tcp_snd_ws = 0;
7729 	tcp->tcp_ts_recent = 0;
7730 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
7731 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
7732 	tcp->tcp_if_mtu = 0;
7733 
7734 	ASSERT(tcp->tcp_reass_head == NULL);
7735 	ASSERT(tcp->tcp_reass_tail == NULL);
7736 
7737 	tcp->tcp_cwnd_cnt = 0;
7738 
7739 	ASSERT(tcp->tcp_rcv_list == NULL);
7740 	ASSERT(tcp->tcp_rcv_last_head == NULL);
7741 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
7742 	ASSERT(tcp->tcp_rcv_cnt == 0);
7743 
7744 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
7745 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
7746 	tcp->tcp_csuna = 0;
7747 
7748 	tcp->tcp_rto = 0;			/* Displayed in MIB */
7749 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
7750 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
7751 	tcp->tcp_rtt_update = 0;
7752 
7753 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
7754 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
7755 
7756 	tcp->tcp_rack = 0;			/* Displayed in mib */
7757 	tcp->tcp_rack_cnt = 0;
7758 	tcp->tcp_rack_cur_max = 0;
7759 	tcp->tcp_rack_abs_max = 0;
7760 
7761 	tcp->tcp_max_swnd = 0;
7762 
7763 	ASSERT(tcp->tcp_listener == NULL);
7764 
7765 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
7766 
7767 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
7768 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
7769 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
7770 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
7771 
7772 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
7773 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
7774 	PRESERVE(tcp->tcp_conn_req_max);
7775 	PRESERVE(tcp->tcp_conn_req_seqnum);
7776 
7777 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
7778 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
7779 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
7780 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
7781 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
7782 
7783 	tcp->tcp_lingertime = 0;
7784 
7785 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
7786 	ASSERT(tcp->tcp_urp_mp == NULL);
7787 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
7788 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
7789 
7790 	ASSERT(tcp->tcp_eager_next_q == NULL);
7791 	ASSERT(tcp->tcp_eager_last_q == NULL);
7792 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
7793 	    tcp->tcp_eager_prev_q0 == NULL) ||
7794 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
7795 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
7796 
7797 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
7798 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
7799 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
7800 
7801 	tcp->tcp_client_errno = 0;
7802 
7803 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
7804 
7805 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
7806 
7807 	PRESERVE(tcp->tcp_bound_source_v6);
7808 	tcp->tcp_last_sent_len = 0;
7809 	tcp->tcp_dupack_cnt = 0;
7810 
7811 	tcp->tcp_fport = 0;			/* Displayed in MIB */
7812 	PRESERVE(tcp->tcp_lport);
7813 
7814 	PRESERVE(tcp->tcp_acceptor_lockp);
7815 
7816 	ASSERT(tcp->tcp_ordrel_mp == NULL);
7817 	PRESERVE(tcp->tcp_acceptor_id);
7818 	DONTCARE(tcp->tcp_ipsec_overhead);
7819 
7820 	PRESERVE(tcp->tcp_family);
7821 	if (tcp->tcp_family == AF_INET6) {
7822 		tcp->tcp_ipversion = IPV6_VERSION;
7823 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
7824 	} else {
7825 		tcp->tcp_ipversion = IPV4_VERSION;
7826 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
7827 	}
7828 
7829 	tcp->tcp_bound_if = 0;
7830 	tcp->tcp_ipv6_recvancillary = 0;
7831 	tcp->tcp_recvifindex = 0;
7832 	tcp->tcp_recvhops = 0;
7833 	tcp->tcp_closed = 0;
7834 	tcp->tcp_cleandeathtag = 0;
7835 	if (tcp->tcp_hopopts != NULL) {
7836 		mi_free(tcp->tcp_hopopts);
7837 		tcp->tcp_hopopts = NULL;
7838 		tcp->tcp_hopoptslen = 0;
7839 	}
7840 	ASSERT(tcp->tcp_hopoptslen == 0);
7841 	if (tcp->tcp_dstopts != NULL) {
7842 		mi_free(tcp->tcp_dstopts);
7843 		tcp->tcp_dstopts = NULL;
7844 		tcp->tcp_dstoptslen = 0;
7845 	}
7846 	ASSERT(tcp->tcp_dstoptslen == 0);
7847 	if (tcp->tcp_rtdstopts != NULL) {
7848 		mi_free(tcp->tcp_rtdstopts);
7849 		tcp->tcp_rtdstopts = NULL;
7850 		tcp->tcp_rtdstoptslen = 0;
7851 	}
7852 	ASSERT(tcp->tcp_rtdstoptslen == 0);
7853 	if (tcp->tcp_rthdr != NULL) {
7854 		mi_free(tcp->tcp_rthdr);
7855 		tcp->tcp_rthdr = NULL;
7856 		tcp->tcp_rthdrlen = 0;
7857 	}
7858 	ASSERT(tcp->tcp_rthdrlen == 0);
7859 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
7860 
7861 	/* Reset fusion-related fields */
7862 	tcp->tcp_fused = B_FALSE;
7863 	tcp->tcp_unfusable = B_FALSE;
7864 	tcp->tcp_fused_sigurg = B_FALSE;
7865 	tcp->tcp_direct_sockfs = B_FALSE;
7866 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
7867 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
7868 	tcp->tcp_loopback_peer = NULL;
7869 	tcp->tcp_fuse_rcv_hiwater = 0;
7870 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
7871 	tcp->tcp_fuse_rcv_unread_cnt = 0;
7872 
7873 	tcp->tcp_lso = B_FALSE;
7874 
7875 	tcp->tcp_in_ack_unsent = 0;
7876 	tcp->tcp_cork = B_FALSE;
7877 	tcp->tcp_tconnind_started = B_FALSE;
7878 
7879 	PRESERVE(tcp->tcp_squeue_bytes);
7880 
7881 	ASSERT(tcp->tcp_kssl_ctx == NULL);
7882 	ASSERT(!tcp->tcp_kssl_pending);
7883 	PRESERVE(tcp->tcp_kssl_ent);
7884 
7885 	/* Sodirect */
7886 	tcp->tcp_sodirect = NULL;
7887 
7888 	tcp->tcp_closemp_used = B_FALSE;
7889 
7890 	PRESERVE(tcp->tcp_rsrv_mp);
7891 	PRESERVE(tcp->tcp_rsrv_mp_lock);
7892 
7893 #ifdef DEBUG
7894 	DONTCARE(tcp->tcmp_stk[0]);
7895 #endif
7896 
7897 	PRESERVE(tcp->tcp_connid);
7898 
7899 
7900 #undef	DONTCARE
7901 #undef	PRESERVE
7902 }
7903 
7904 /*
7905  * Allocate necessary resources and initialize state vector.
7906  * Guaranteed not to fail so that when an error is returned,
7907  * the caller doesn't need to do any additional cleanup.
7908  */
7909 int
7910 tcp_init(tcp_t *tcp, queue_t *q)
7911 {
7912 	int	err;
7913 
7914 	tcp->tcp_rq = q;
7915 	tcp->tcp_wq = WR(q);
7916 	tcp->tcp_state = TCPS_IDLE;
7917 	if ((err = tcp_init_values(tcp)) != 0)
7918 		tcp_timers_stop(tcp);
7919 	return (err);
7920 }
7921 
7922 static int
7923 tcp_init_values(tcp_t *tcp)
7924 {
7925 	int	err;
7926 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7927 
7928 	ASSERT((tcp->tcp_family == AF_INET &&
7929 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7930 	    (tcp->tcp_family == AF_INET6 &&
7931 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7932 	    tcp->tcp_ipversion == IPV6_VERSION)));
7933 
7934 	/*
7935 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
7936 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
7937 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
7938 	 * during first few transmissions of a connection as seen in slow
7939 	 * links.
7940 	 */
7941 	tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2;
7942 	tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1;
7943 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
7944 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
7945 	    tcps->tcps_conn_grace_period;
7946 	if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min)
7947 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
7948 	tcp->tcp_timer_backoff = 0;
7949 	tcp->tcp_ms_we_have_waited = 0;
7950 	tcp->tcp_last_recv_time = lbolt;
7951 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
7952 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
7953 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
7954 
7955 	tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier;
7956 
7957 	tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
7958 	tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval;
7959 	tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
7960 	/*
7961 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
7962 	 * passive open.
7963 	 */
7964 	tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval;
7965 
7966 	tcp->tcp_naglim = tcps->tcps_naglim_def;
7967 
7968 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
7969 
7970 	tcp->tcp_mdt_hdr_head = 0;
7971 	tcp->tcp_mdt_hdr_tail = 0;
7972 
7973 	/* Reset fusion-related fields */
7974 	tcp->tcp_fused = B_FALSE;
7975 	tcp->tcp_unfusable = B_FALSE;
7976 	tcp->tcp_fused_sigurg = B_FALSE;
7977 	tcp->tcp_direct_sockfs = B_FALSE;
7978 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
7979 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
7980 	tcp->tcp_loopback_peer = NULL;
7981 	tcp->tcp_fuse_rcv_hiwater = 0;
7982 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
7983 	tcp->tcp_fuse_rcv_unread_cnt = 0;
7984 
7985 	/* Sodirect */
7986 	tcp->tcp_sodirect = NULL;
7987 
7988 	/* Initialize the header template */
7989 	if (tcp->tcp_ipversion == IPV4_VERSION) {
7990 		err = tcp_header_init_ipv4(tcp);
7991 	} else {
7992 		err = tcp_header_init_ipv6(tcp);
7993 	}
7994 	if (err)
7995 		return (err);
7996 
7997 	/*
7998 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
7999 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
8000 	 */
8001 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
8002 	tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat;
8003 	tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat;
8004 
8005 	tcp->tcp_cork = B_FALSE;
8006 	/*
8007 	 * Init the tcp_debug option.  This value determines whether TCP
8008 	 * calls strlog() to print out debug messages.  Doing this
8009 	 * initialization here means that this value is not inherited thru
8010 	 * tcp_reinit().
8011 	 */
8012 	tcp->tcp_debug = tcps->tcps_dbg;
8013 
8014 	tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
8015 	tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
8016 
8017 	return (0);
8018 }
8019 
8020 /*
8021  * Initialize the IPv4 header. Loses any record of any IP options.
8022  */
8023 static int
8024 tcp_header_init_ipv4(tcp_t *tcp)
8025 {
8026 	tcph_t		*tcph;
8027 	uint32_t	sum;
8028 	conn_t		*connp;
8029 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8030 
8031 	/*
8032 	 * This is a simple initialization. If there's
8033 	 * already a template, it should never be too small,
8034 	 * so reuse it.  Otherwise, allocate space for the new one.
8035 	 */
8036 	if (tcp->tcp_iphc == NULL) {
8037 		ASSERT(tcp->tcp_iphc_len == 0);
8038 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8039 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8040 		if (tcp->tcp_iphc == NULL) {
8041 			tcp->tcp_iphc_len = 0;
8042 			return (ENOMEM);
8043 		}
8044 	}
8045 
8046 	/* options are gone; may need a new label */
8047 	connp = tcp->tcp_connp;
8048 	connp->conn_mlp_type = mlptSingle;
8049 	connp->conn_ulp_labeled = !is_system_labeled();
8050 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8051 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
8052 	tcp->tcp_ip6h = NULL;
8053 	tcp->tcp_ipversion = IPV4_VERSION;
8054 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
8055 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8056 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
8057 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
8058 	tcp->tcp_ipha->ipha_version_and_hdr_length
8059 	    = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
8060 	tcp->tcp_ipha->ipha_ident = 0;
8061 
8062 	tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8063 	tcp->tcp_tos = 0;
8064 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
8065 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8066 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
8067 
8068 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
8069 	tcp->tcp_tcph = tcph;
8070 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8071 	/*
8072 	 * IP wants our header length in the checksum field to
8073 	 * allow it to perform a single pseudo-header+checksum
8074 	 * calculation on behalf of TCP.
8075 	 * Include the adjustment for a source route once IP_OPTIONS is set.
8076 	 */
8077 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8078 	sum = (sum >> 16) + (sum & 0xFFFF);
8079 	U16_TO_ABE16(sum, tcph->th_sum);
8080 	return (0);
8081 }
8082 
8083 /*
8084  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
8085  */
8086 static int
8087 tcp_header_init_ipv6(tcp_t *tcp)
8088 {
8089 	tcph_t	*tcph;
8090 	uint32_t	sum;
8091 	conn_t	*connp;
8092 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8093 
8094 	/*
8095 	 * This is a simple initialization. If there's
8096 	 * already a template, it should never be too small,
8097 	 * so reuse it. Otherwise, allocate space for the new one.
8098 	 * Ensure that there is enough space to "downgrade" the tcp_t
8099 	 * to an IPv4 tcp_t. This requires having space for a full load
8100 	 * of IPv4 options, as well as a full load of TCP options
8101 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
8102 	 * than a v6 header and a TCP header with a full load of TCP options
8103 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
8104 	 * We want to avoid reallocation in the "downgraded" case when
8105 	 * processing outbound IPv4 options.
8106 	 */
8107 	if (tcp->tcp_iphc == NULL) {
8108 		ASSERT(tcp->tcp_iphc_len == 0);
8109 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8110 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8111 		if (tcp->tcp_iphc == NULL) {
8112 			tcp->tcp_iphc_len = 0;
8113 			return (ENOMEM);
8114 		}
8115 	}
8116 
8117 	/* options are gone; may need a new label */
8118 	connp = tcp->tcp_connp;
8119 	connp->conn_mlp_type = mlptSingle;
8120 	connp->conn_ulp_labeled = !is_system_labeled();
8121 
8122 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8123 	tcp->tcp_ipversion = IPV6_VERSION;
8124 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
8125 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8126 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
8127 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
8128 	tcp->tcp_ipha = NULL;
8129 
8130 	/* Initialize the header template */
8131 
8132 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
8133 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
8134 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
8135 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit;
8136 
8137 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
8138 	tcp->tcp_tcph = tcph;
8139 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8140 	/*
8141 	 * IP wants our header length in the checksum field to
8142 	 * allow it to perform a single psuedo-header+checksum
8143 	 * calculation on behalf of TCP.
8144 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
8145 	 */
8146 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8147 	sum = (sum >> 16) + (sum & 0xFFFF);
8148 	U16_TO_ABE16(sum, tcph->th_sum);
8149 	return (0);
8150 }
8151 
8152 /* At minimum we need 8 bytes in the TCP header for the lookup */
8153 #define	ICMP_MIN_TCP_HDR	8
8154 
8155 /*
8156  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
8157  * passed up by IP. The message is always received on the correct tcp_t.
8158  * Assumes that IP has pulled up everything up to and including the ICMP header.
8159  */
8160 void
8161 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
8162 {
8163 	icmph_t *icmph;
8164 	ipha_t	*ipha;
8165 	int	iph_hdr_length;
8166 	tcph_t	*tcph;
8167 	boolean_t ipsec_mctl = B_FALSE;
8168 	boolean_t secure;
8169 	mblk_t *first_mp = mp;
8170 	int32_t new_mss;
8171 	uint32_t ratio;
8172 	size_t mp_size = MBLKL(mp);
8173 	uint32_t seg_seq;
8174 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8175 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
8176 
8177 	/* Assume IP provides aligned packets - otherwise toss */
8178 	if (!OK_32PTR(mp->b_rptr)) {
8179 		freemsg(mp);
8180 		return;
8181 	}
8182 
8183 	/*
8184 	 * Since ICMP errors are normal data marked with M_CTL when sent
8185 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
8186 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
8187 	 */
8188 	if ((mp_size == sizeof (ipsec_info_t)) &&
8189 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
8190 		ASSERT(mp->b_cont != NULL);
8191 		mp = mp->b_cont;
8192 		/* IP should have done this */
8193 		ASSERT(OK_32PTR(mp->b_rptr));
8194 		mp_size = MBLKL(mp);
8195 		ipsec_mctl = B_TRUE;
8196 	}
8197 
8198 	/*
8199 	 * Verify that we have a complete outer IP header. If not, drop it.
8200 	 */
8201 	if (mp_size < sizeof (ipha_t)) {
8202 noticmpv4:
8203 		freemsg(first_mp);
8204 		return;
8205 	}
8206 
8207 	ipha = (ipha_t *)mp->b_rptr;
8208 	/*
8209 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
8210 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
8211 	 */
8212 	switch (IPH_HDR_VERSION(ipha)) {
8213 	case IPV6_VERSION:
8214 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
8215 		return;
8216 	case IPV4_VERSION:
8217 		break;
8218 	default:
8219 		goto noticmpv4;
8220 	}
8221 
8222 	/* Skip past the outer IP and ICMP headers */
8223 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8224 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
8225 	/*
8226 	 * If we don't have the correct outer IP header length or if the ULP
8227 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
8228 	 * send it upstream.
8229 	 */
8230 	if (iph_hdr_length < sizeof (ipha_t) ||
8231 	    ipha->ipha_protocol != IPPROTO_ICMP ||
8232 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
8233 		goto noticmpv4;
8234 	}
8235 	ipha = (ipha_t *)&icmph[1];
8236 
8237 	/* Skip past the inner IP and find the ULP header */
8238 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8239 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
8240 	/*
8241 	 * If we don't have the correct inner IP header length or if the ULP
8242 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8243 	 * bytes of TCP header, drop it.
8244 	 */
8245 	if (iph_hdr_length < sizeof (ipha_t) ||
8246 	    ipha->ipha_protocol != IPPROTO_TCP ||
8247 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8248 		goto noticmpv4;
8249 	}
8250 
8251 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8252 		if (ipsec_mctl) {
8253 			secure = ipsec_in_is_secure(first_mp);
8254 		} else {
8255 			secure = B_FALSE;
8256 		}
8257 		if (secure) {
8258 			/*
8259 			 * If we are willing to accept this in clear
8260 			 * we don't have to verify policy.
8261 			 */
8262 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8263 				if (!tcp_check_policy(tcp, first_mp,
8264 				    ipha, NULL, secure, ipsec_mctl)) {
8265 					/*
8266 					 * tcp_check_policy called
8267 					 * ip_drop_packet() on failure.
8268 					 */
8269 					return;
8270 				}
8271 			}
8272 		}
8273 	} else if (ipsec_mctl) {
8274 		/*
8275 		 * This is a hard_bound connection. IP has already
8276 		 * verified policy. We don't have to do it again.
8277 		 */
8278 		freeb(first_mp);
8279 		first_mp = mp;
8280 		ipsec_mctl = B_FALSE;
8281 	}
8282 
8283 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8284 	/*
8285 	 * TCP SHOULD check that the TCP sequence number contained in
8286 	 * payload of the ICMP error message is within the range
8287 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8288 	 */
8289 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8290 		/*
8291 		 * The ICMP message is bogus, just drop it.  But if this is
8292 		 * an ICMP too big message, IP has already changed
8293 		 * the ire_max_frag to the bogus value.  We need to change
8294 		 * it back.
8295 		 */
8296 		if (icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
8297 		    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
8298 			conn_t *connp = tcp->tcp_connp;
8299 			ire_t *ire;
8300 			int flag;
8301 
8302 			if (tcp->tcp_ipversion == IPV4_VERSION) {
8303 				flag = tcp->tcp_ipha->
8304 				    ipha_fragment_offset_and_flags;
8305 			} else {
8306 				flag = 0;
8307 			}
8308 			mutex_enter(&connp->conn_lock);
8309 			if ((ire = connp->conn_ire_cache) != NULL) {
8310 				mutex_enter(&ire->ire_lock);
8311 				mutex_exit(&connp->conn_lock);
8312 				ire->ire_max_frag = tcp->tcp_if_mtu;
8313 				ire->ire_frag_flag |= flag;
8314 				mutex_exit(&ire->ire_lock);
8315 			} else {
8316 				mutex_exit(&connp->conn_lock);
8317 			}
8318 		}
8319 		goto noticmpv4;
8320 	}
8321 
8322 	switch (icmph->icmph_type) {
8323 	case ICMP_DEST_UNREACHABLE:
8324 		switch (icmph->icmph_code) {
8325 		case ICMP_FRAGMENTATION_NEEDED:
8326 			/*
8327 			 * Reduce the MSS based on the new MTU.  This will
8328 			 * eliminate any fragmentation locally.
8329 			 * N.B.  There may well be some funny side-effects on
8330 			 * the local send policy and the remote receive policy.
8331 			 * Pending further research, we provide
8332 			 * tcp_ignore_path_mtu just in case this proves
8333 			 * disastrous somewhere.
8334 			 *
8335 			 * After updating the MSS, retransmit part of the
8336 			 * dropped segment using the new mss by calling
8337 			 * tcp_wput_data().  Need to adjust all those
8338 			 * params to make sure tcp_wput_data() work properly.
8339 			 */
8340 			if (tcps->tcps_ignore_path_mtu ||
8341 			    tcp->tcp_ipha->ipha_fragment_offset_and_flags == 0)
8342 				break;
8343 
8344 			/*
8345 			 * Decrease the MSS by time stamp options
8346 			 * IP options and IPSEC options. tcp_hdr_len
8347 			 * includes time stamp option and IP option
8348 			 * length.  Note that new_mss may be negative
8349 			 * if tcp_ipsec_overhead is large and the
8350 			 * icmph_du_mtu is the minimum value, which is 68.
8351 			 */
8352 			new_mss = ntohs(icmph->icmph_du_mtu) -
8353 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8354 
8355 			DTRACE_PROBE2(tcp__pmtu__change, tcp_t *, tcp, int,
8356 			    new_mss);
8357 
8358 			/*
8359 			 * Only update the MSS if the new one is
8360 			 * smaller than the previous one.  This is
8361 			 * to avoid problems when getting multiple
8362 			 * ICMP errors for the same MTU.
8363 			 */
8364 			if (new_mss >= tcp->tcp_mss)
8365 				break;
8366 
8367 			/*
8368 			 * Note that we are using the template header's DF
8369 			 * bit in the fast path sending.  So we need to compare
8370 			 * the new mss with both tcps_mss_min and ip_pmtu_min.
8371 			 * And stop doing IPv4 PMTUd if new_mss is less than
8372 			 * MAX(tcps_mss_min, ip_pmtu_min).
8373 			 */
8374 			if (new_mss < tcps->tcps_mss_min ||
8375 			    new_mss < ipst->ips_ip_pmtu_min) {
8376 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8377 				    0;
8378 			}
8379 
8380 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8381 			ASSERT(ratio >= 1);
8382 			tcp_mss_set(tcp, new_mss, B_TRUE);
8383 
8384 			/*
8385 			 * Make sure we have something to
8386 			 * send.
8387 			 */
8388 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8389 			    (tcp->tcp_xmit_head != NULL)) {
8390 				/*
8391 				 * Shrink tcp_cwnd in
8392 				 * proportion to the old MSS/new MSS.
8393 				 */
8394 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8395 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8396 				    (tcp->tcp_unsent == 0)) {
8397 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8398 				} else {
8399 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8400 				}
8401 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8402 				tcp->tcp_rexmit = B_TRUE;
8403 				tcp->tcp_dupack_cnt = 0;
8404 				tcp->tcp_snd_burst = TCP_CWND_SS;
8405 				tcp_ss_rexmit(tcp);
8406 			}
8407 			break;
8408 		case ICMP_PORT_UNREACHABLE:
8409 		case ICMP_PROTOCOL_UNREACHABLE:
8410 			switch (tcp->tcp_state) {
8411 			case TCPS_SYN_SENT:
8412 			case TCPS_SYN_RCVD:
8413 				/*
8414 				 * ICMP can snipe away incipient
8415 				 * TCP connections as long as
8416 				 * seq number is same as initial
8417 				 * send seq number.
8418 				 */
8419 				if (seg_seq == tcp->tcp_iss) {
8420 					(void) tcp_clean_death(tcp,
8421 					    ECONNREFUSED, 6);
8422 				}
8423 				break;
8424 			}
8425 			break;
8426 		case ICMP_HOST_UNREACHABLE:
8427 		case ICMP_NET_UNREACHABLE:
8428 			/* Record the error in case we finally time out. */
8429 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8430 				tcp->tcp_client_errno = EHOSTUNREACH;
8431 			else
8432 				tcp->tcp_client_errno = ENETUNREACH;
8433 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8434 				if (tcp->tcp_listener != NULL &&
8435 				    tcp->tcp_listener->tcp_syn_defense) {
8436 					/*
8437 					 * Ditch the half-open connection if we
8438 					 * suspect a SYN attack is under way.
8439 					 */
8440 					tcp_ip_ire_mark_advice(tcp);
8441 					(void) tcp_clean_death(tcp,
8442 					    tcp->tcp_client_errno, 7);
8443 				}
8444 			}
8445 			break;
8446 		default:
8447 			break;
8448 		}
8449 		break;
8450 	case ICMP_SOURCE_QUENCH: {
8451 		/*
8452 		 * use a global boolean to control
8453 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8454 		 * The default is false.
8455 		 */
8456 		if (tcp_icmp_source_quench) {
8457 			/*
8458 			 * Reduce the sending rate as if we got a
8459 			 * retransmit timeout
8460 			 */
8461 			uint32_t npkt;
8462 
8463 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8464 			    tcp->tcp_mss;
8465 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8466 			tcp->tcp_cwnd = tcp->tcp_mss;
8467 			tcp->tcp_cwnd_cnt = 0;
8468 		}
8469 		break;
8470 	}
8471 	}
8472 	freemsg(first_mp);
8473 }
8474 
8475 /*
8476  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8477  * error messages passed up by IP.
8478  * Assumes that IP has pulled up all the extension headers as well
8479  * as the ICMPv6 header.
8480  */
8481 static void
8482 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8483 {
8484 	icmp6_t *icmp6;
8485 	ip6_t	*ip6h;
8486 	uint16_t	iph_hdr_length;
8487 	tcpha_t	*tcpha;
8488 	uint8_t	*nexthdrp;
8489 	uint32_t new_mss;
8490 	uint32_t ratio;
8491 	boolean_t secure;
8492 	mblk_t *first_mp = mp;
8493 	size_t mp_size;
8494 	uint32_t seg_seq;
8495 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8496 
8497 	/*
8498 	 * The caller has determined if this is an IPSEC_IN packet and
8499 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8500 	 */
8501 	if (ipsec_mctl)
8502 		mp = mp->b_cont;
8503 
8504 	mp_size = MBLKL(mp);
8505 
8506 	/*
8507 	 * Verify that we have a complete IP header. If not, send it upstream.
8508 	 */
8509 	if (mp_size < sizeof (ip6_t)) {
8510 noticmpv6:
8511 		freemsg(first_mp);
8512 		return;
8513 	}
8514 
8515 	/*
8516 	 * Verify this is an ICMPV6 packet, else send it upstream.
8517 	 */
8518 	ip6h = (ip6_t *)mp->b_rptr;
8519 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8520 		iph_hdr_length = IPV6_HDR_LEN;
8521 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8522 	    &nexthdrp) ||
8523 	    *nexthdrp != IPPROTO_ICMPV6) {
8524 		goto noticmpv6;
8525 	}
8526 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8527 	ip6h = (ip6_t *)&icmp6[1];
8528 	/*
8529 	 * Verify if we have a complete ICMP and inner IP header.
8530 	 */
8531 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8532 		goto noticmpv6;
8533 
8534 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8535 		goto noticmpv6;
8536 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8537 	/*
8538 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8539 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8540 	 * packet.
8541 	 */
8542 	if ((*nexthdrp != IPPROTO_TCP) ||
8543 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8544 		goto noticmpv6;
8545 	}
8546 
8547 	/*
8548 	 * ICMP errors come on the right queue or come on
8549 	 * listener/global queue for detached connections and
8550 	 * get switched to the right queue. If it comes on the
8551 	 * right queue, policy check has already been done by IP
8552 	 * and thus free the first_mp without verifying the policy.
8553 	 * If it has come for a non-hard bound connection, we need
8554 	 * to verify policy as IP may not have done it.
8555 	 */
8556 	if (!tcp->tcp_hard_bound) {
8557 		if (ipsec_mctl) {
8558 			secure = ipsec_in_is_secure(first_mp);
8559 		} else {
8560 			secure = B_FALSE;
8561 		}
8562 		if (secure) {
8563 			/*
8564 			 * If we are willing to accept this in clear
8565 			 * we don't have to verify policy.
8566 			 */
8567 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8568 				if (!tcp_check_policy(tcp, first_mp,
8569 				    NULL, ip6h, secure, ipsec_mctl)) {
8570 					/*
8571 					 * tcp_check_policy called
8572 					 * ip_drop_packet() on failure.
8573 					 */
8574 					return;
8575 				}
8576 			}
8577 		}
8578 	} else if (ipsec_mctl) {
8579 		/*
8580 		 * This is a hard_bound connection. IP has already
8581 		 * verified policy. We don't have to do it again.
8582 		 */
8583 		freeb(first_mp);
8584 		first_mp = mp;
8585 		ipsec_mctl = B_FALSE;
8586 	}
8587 
8588 	seg_seq = ntohl(tcpha->tha_seq);
8589 	/*
8590 	 * TCP SHOULD check that the TCP sequence number contained in
8591 	 * payload of the ICMP error message is within the range
8592 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8593 	 */
8594 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8595 		/*
8596 		 * If the ICMP message is bogus, should we kill the
8597 		 * connection, or should we just drop the bogus ICMP
8598 		 * message? It would probably make more sense to just
8599 		 * drop the message so that if this one managed to get
8600 		 * in, the real connection should not suffer.
8601 		 */
8602 		goto noticmpv6;
8603 	}
8604 
8605 	switch (icmp6->icmp6_type) {
8606 	case ICMP6_PACKET_TOO_BIG:
8607 		/*
8608 		 * Reduce the MSS based on the new MTU.  This will
8609 		 * eliminate any fragmentation locally.
8610 		 * N.B.  There may well be some funny side-effects on
8611 		 * the local send policy and the remote receive policy.
8612 		 * Pending further research, we provide
8613 		 * tcp_ignore_path_mtu just in case this proves
8614 		 * disastrous somewhere.
8615 		 *
8616 		 * After updating the MSS, retransmit part of the
8617 		 * dropped segment using the new mss by calling
8618 		 * tcp_wput_data().  Need to adjust all those
8619 		 * params to make sure tcp_wput_data() work properly.
8620 		 */
8621 		if (tcps->tcps_ignore_path_mtu)
8622 			break;
8623 
8624 		/*
8625 		 * Decrease the MSS by time stamp options
8626 		 * IP options and IPSEC options. tcp_hdr_len
8627 		 * includes time stamp option and IP option
8628 		 * length.
8629 		 */
8630 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
8631 		    tcp->tcp_ipsec_overhead;
8632 
8633 		/*
8634 		 * Only update the MSS if the new one is
8635 		 * smaller than the previous one.  This is
8636 		 * to avoid problems when getting multiple
8637 		 * ICMP errors for the same MTU.
8638 		 */
8639 		if (new_mss >= tcp->tcp_mss)
8640 			break;
8641 
8642 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8643 		ASSERT(ratio >= 1);
8644 		tcp_mss_set(tcp, new_mss, B_TRUE);
8645 
8646 		/*
8647 		 * Make sure we have something to
8648 		 * send.
8649 		 */
8650 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8651 		    (tcp->tcp_xmit_head != NULL)) {
8652 			/*
8653 			 * Shrink tcp_cwnd in
8654 			 * proportion to the old MSS/new MSS.
8655 			 */
8656 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8657 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8658 			    (tcp->tcp_unsent == 0)) {
8659 				tcp->tcp_rexmit_max = tcp->tcp_fss;
8660 			} else {
8661 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
8662 			}
8663 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8664 			tcp->tcp_rexmit = B_TRUE;
8665 			tcp->tcp_dupack_cnt = 0;
8666 			tcp->tcp_snd_burst = TCP_CWND_SS;
8667 			tcp_ss_rexmit(tcp);
8668 		}
8669 		break;
8670 
8671 	case ICMP6_DST_UNREACH:
8672 		switch (icmp6->icmp6_code) {
8673 		case ICMP6_DST_UNREACH_NOPORT:
8674 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8675 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8676 			    (seg_seq == tcp->tcp_iss)) {
8677 				(void) tcp_clean_death(tcp,
8678 				    ECONNREFUSED, 8);
8679 			}
8680 			break;
8681 
8682 		case ICMP6_DST_UNREACH_ADMIN:
8683 		case ICMP6_DST_UNREACH_NOROUTE:
8684 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
8685 		case ICMP6_DST_UNREACH_ADDR:
8686 			/* Record the error in case we finally time out. */
8687 			tcp->tcp_client_errno = EHOSTUNREACH;
8688 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8689 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8690 			    (seg_seq == tcp->tcp_iss)) {
8691 				if (tcp->tcp_listener != NULL &&
8692 				    tcp->tcp_listener->tcp_syn_defense) {
8693 					/*
8694 					 * Ditch the half-open connection if we
8695 					 * suspect a SYN attack is under way.
8696 					 */
8697 					tcp_ip_ire_mark_advice(tcp);
8698 					(void) tcp_clean_death(tcp,
8699 					    tcp->tcp_client_errno, 9);
8700 				}
8701 			}
8702 
8703 
8704 			break;
8705 		default:
8706 			break;
8707 		}
8708 		break;
8709 
8710 	case ICMP6_PARAM_PROB:
8711 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
8712 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
8713 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
8714 		    (uchar_t *)nexthdrp) {
8715 			if (tcp->tcp_state == TCPS_SYN_SENT ||
8716 			    tcp->tcp_state == TCPS_SYN_RCVD) {
8717 				(void) tcp_clean_death(tcp,
8718 				    ECONNREFUSED, 10);
8719 			}
8720 			break;
8721 		}
8722 		break;
8723 
8724 	case ICMP6_TIME_EXCEEDED:
8725 	default:
8726 		break;
8727 	}
8728 	freemsg(first_mp);
8729 }
8730 
8731 /*
8732  * Notify IP that we are having trouble with this connection.  IP should
8733  * blow the IRE away and start over.
8734  */
8735 static void
8736 tcp_ip_notify(tcp_t *tcp)
8737 {
8738 	struct iocblk	*iocp;
8739 	ipid_t	*ipid;
8740 	mblk_t	*mp;
8741 
8742 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
8743 	if (tcp->tcp_ipversion == IPV6_VERSION)
8744 		return;
8745 
8746 	mp = mkiocb(IP_IOCTL);
8747 	if (mp == NULL)
8748 		return;
8749 
8750 	iocp = (struct iocblk *)mp->b_rptr;
8751 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
8752 
8753 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
8754 	if (!mp->b_cont) {
8755 		freeb(mp);
8756 		return;
8757 	}
8758 
8759 	ipid = (ipid_t *)mp->b_cont->b_rptr;
8760 	mp->b_cont->b_wptr += iocp->ioc_count;
8761 	bzero(ipid, sizeof (*ipid));
8762 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
8763 	ipid->ipid_ire_type = IRE_CACHE;
8764 	ipid->ipid_addr_offset = sizeof (ipid_t);
8765 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
8766 	/*
8767 	 * Note: in the case of source routing we want to blow away the
8768 	 * route to the first source route hop.
8769 	 */
8770 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
8771 	    sizeof (tcp->tcp_ipha->ipha_dst));
8772 
8773 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
8774 }
8775 
8776 /* Unlink and return any mblk that looks like it contains an ire */
8777 static mblk_t *
8778 tcp_ire_mp(mblk_t **mpp)
8779 {
8780 	mblk_t 	*mp = *mpp;
8781 	mblk_t	*prev_mp = NULL;
8782 
8783 	for (;;) {
8784 		switch (DB_TYPE(mp)) {
8785 		case IRE_DB_TYPE:
8786 		case IRE_DB_REQ_TYPE:
8787 			if (mp == *mpp) {
8788 				*mpp = mp->b_cont;
8789 			} else {
8790 				prev_mp->b_cont = mp->b_cont;
8791 			}
8792 			mp->b_cont = NULL;
8793 			return (mp);
8794 		default:
8795 			break;
8796 		}
8797 		prev_mp = mp;
8798 		mp = mp->b_cont;
8799 		if (mp == NULL)
8800 			break;
8801 	}
8802 	return (mp);
8803 }
8804 
8805 /*
8806  * Timer callback routine for keepalive probe.  We do a fake resend of
8807  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
8808  * check to see if we have heard anything from the other end for the last
8809  * RTO period.  If we have, set the timer to expire for another
8810  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
8811  * RTO << 1 and check again when it expires.  Keep exponentially increasing
8812  * the timeout if we have not heard from the other side.  If for more than
8813  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
8814  * kill the connection unless the keepalive abort threshold is 0.  In
8815  * that case, we will probe "forever."
8816  */
8817 static void
8818 tcp_keepalive_killer(void *arg)
8819 {
8820 	mblk_t	*mp;
8821 	conn_t	*connp = (conn_t *)arg;
8822 	tcp_t  	*tcp = connp->conn_tcp;
8823 	int32_t	firetime;
8824 	int32_t	idletime;
8825 	int32_t	ka_intrvl;
8826 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8827 
8828 	tcp->tcp_ka_tid = 0;
8829 
8830 	if (tcp->tcp_fused)
8831 		return;
8832 
8833 	BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive);
8834 	ka_intrvl = tcp->tcp_ka_interval;
8835 
8836 	/*
8837 	 * Keepalive probe should only be sent if the application has not
8838 	 * done a close on the connection.
8839 	 */
8840 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
8841 		return;
8842 	}
8843 	/* Timer fired too early, restart it. */
8844 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
8845 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
8846 		    MSEC_TO_TICK(ka_intrvl));
8847 		return;
8848 	}
8849 
8850 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
8851 	/*
8852 	 * If we have not heard from the other side for a long
8853 	 * time, kill the connection unless the keepalive abort
8854 	 * threshold is 0.  In that case, we will probe "forever."
8855 	 */
8856 	if (tcp->tcp_ka_abort_thres != 0 &&
8857 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
8858 		BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop);
8859 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
8860 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
8861 		return;
8862 	}
8863 
8864 	if (tcp->tcp_snxt == tcp->tcp_suna &&
8865 	    idletime >= ka_intrvl) {
8866 		/* Fake resend of last ACKed byte. */
8867 		mblk_t	*mp1 = allocb(1, BPRI_LO);
8868 
8869 		if (mp1 != NULL) {
8870 			*mp1->b_wptr++ = '\0';
8871 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
8872 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
8873 			freeb(mp1);
8874 			/*
8875 			 * if allocation failed, fall through to start the
8876 			 * timer back.
8877 			 */
8878 			if (mp != NULL) {
8879 				tcp_send_data(tcp, tcp->tcp_wq, mp);
8880 				BUMP_MIB(&tcps->tcps_mib,
8881 				    tcpTimKeepaliveProbe);
8882 				if (tcp->tcp_ka_last_intrvl != 0) {
8883 					int max;
8884 					/*
8885 					 * We should probe again at least
8886 					 * in ka_intrvl, but not more than
8887 					 * tcp_rexmit_interval_max.
8888 					 */
8889 					max = tcps->tcps_rexmit_interval_max;
8890 					firetime = MIN(ka_intrvl - 1,
8891 					    tcp->tcp_ka_last_intrvl << 1);
8892 					if (firetime > max)
8893 						firetime = max;
8894 				} else {
8895 					firetime = tcp->tcp_rto;
8896 				}
8897 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
8898 				    tcp_keepalive_killer,
8899 				    MSEC_TO_TICK(firetime));
8900 				tcp->tcp_ka_last_intrvl = firetime;
8901 				return;
8902 			}
8903 		}
8904 	} else {
8905 		tcp->tcp_ka_last_intrvl = 0;
8906 	}
8907 
8908 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
8909 	if ((firetime = ka_intrvl - idletime) < 0) {
8910 		firetime = ka_intrvl;
8911 	}
8912 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
8913 	    MSEC_TO_TICK(firetime));
8914 }
8915 
8916 int
8917 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
8918 {
8919 	queue_t	*q = tcp->tcp_rq;
8920 	int32_t	mss = tcp->tcp_mss;
8921 	int	maxpsz;
8922 	conn_t	*connp = tcp->tcp_connp;
8923 
8924 	if (TCP_IS_DETACHED(tcp))
8925 		return (mss);
8926 	if (tcp->tcp_fused) {
8927 		maxpsz = tcp_fuse_maxpsz_set(tcp);
8928 		mss = INFPSZ;
8929 	} else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) {
8930 		/*
8931 		 * Set the sd_qn_maxpsz according to the socket send buffer
8932 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
8933 		 * instruct the stream head to copyin user data into contiguous
8934 		 * kernel-allocated buffers without breaking it up into smaller
8935 		 * chunks.  We round up the buffer size to the nearest SMSS.
8936 		 */
8937 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
8938 		if (tcp->tcp_kssl_ctx == NULL)
8939 			mss = INFPSZ;
8940 		else
8941 			mss = SSL3_MAX_RECORD_LEN;
8942 	} else {
8943 		/*
8944 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
8945 		 * (and a multiple of the mss).  This instructs the stream
8946 		 * head to break down larger than SMSS writes into SMSS-
8947 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
8948 		 */
8949 		/* XXX tune this with ndd tcp_maxpsz_multiplier */
8950 		maxpsz = tcp->tcp_maxpsz * mss;
8951 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
8952 			maxpsz = tcp->tcp_xmit_hiwater/2;
8953 			/* Round up to nearest mss */
8954 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
8955 		}
8956 	}
8957 
8958 	(void) proto_set_maxpsz(q, connp, maxpsz);
8959 	if (!(IPCL_IS_NONSTR(connp))) {
8960 		/* XXX do it in set_maxpsz()? */
8961 		tcp->tcp_wq->q_maxpsz = maxpsz;
8962 	}
8963 
8964 	if (set_maxblk)
8965 		(void) proto_set_tx_maxblk(q, connp, mss);
8966 	return (mss);
8967 }
8968 
8969 /*
8970  * Extract option values from a tcp header.  We put any found values into the
8971  * tcpopt struct and return a bitmask saying which options were found.
8972  */
8973 static int
8974 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
8975 {
8976 	uchar_t		*endp;
8977 	int		len;
8978 	uint32_t	mss;
8979 	uchar_t		*up = (uchar_t *)tcph;
8980 	int		found = 0;
8981 	int32_t		sack_len;
8982 	tcp_seq		sack_begin, sack_end;
8983 	tcp_t		*tcp;
8984 
8985 	endp = up + TCP_HDR_LENGTH(tcph);
8986 	up += TCP_MIN_HEADER_LENGTH;
8987 	while (up < endp) {
8988 		len = endp - up;
8989 		switch (*up) {
8990 		case TCPOPT_EOL:
8991 			break;
8992 
8993 		case TCPOPT_NOP:
8994 			up++;
8995 			continue;
8996 
8997 		case TCPOPT_MAXSEG:
8998 			if (len < TCPOPT_MAXSEG_LEN ||
8999 			    up[1] != TCPOPT_MAXSEG_LEN)
9000 				break;
9001 
9002 			mss = BE16_TO_U16(up+2);
9003 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
9004 			tcpopt->tcp_opt_mss = mss;
9005 			found |= TCP_OPT_MSS_PRESENT;
9006 
9007 			up += TCPOPT_MAXSEG_LEN;
9008 			continue;
9009 
9010 		case TCPOPT_WSCALE:
9011 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
9012 				break;
9013 
9014 			if (up[2] > TCP_MAX_WINSHIFT)
9015 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
9016 			else
9017 				tcpopt->tcp_opt_wscale = up[2];
9018 			found |= TCP_OPT_WSCALE_PRESENT;
9019 
9020 			up += TCPOPT_WS_LEN;
9021 			continue;
9022 
9023 		case TCPOPT_SACK_PERMITTED:
9024 			if (len < TCPOPT_SACK_OK_LEN ||
9025 			    up[1] != TCPOPT_SACK_OK_LEN)
9026 				break;
9027 			found |= TCP_OPT_SACK_OK_PRESENT;
9028 			up += TCPOPT_SACK_OK_LEN;
9029 			continue;
9030 
9031 		case TCPOPT_SACK:
9032 			if (len <= 2 || up[1] <= 2 || len < up[1])
9033 				break;
9034 
9035 			/* If TCP is not interested in SACK blks... */
9036 			if ((tcp = tcpopt->tcp) == NULL) {
9037 				up += up[1];
9038 				continue;
9039 			}
9040 			sack_len = up[1] - TCPOPT_HEADER_LEN;
9041 			up += TCPOPT_HEADER_LEN;
9042 
9043 			/*
9044 			 * If the list is empty, allocate one and assume
9045 			 * nothing is sack'ed.
9046 			 */
9047 			ASSERT(tcp->tcp_sack_info != NULL);
9048 			if (tcp->tcp_notsack_list == NULL) {
9049 				tcp_notsack_update(&(tcp->tcp_notsack_list),
9050 				    tcp->tcp_suna, tcp->tcp_snxt,
9051 				    &(tcp->tcp_num_notsack_blk),
9052 				    &(tcp->tcp_cnt_notsack_list));
9053 
9054 				/*
9055 				 * Make sure tcp_notsack_list is not NULL.
9056 				 * This happens when kmem_alloc(KM_NOSLEEP)
9057 				 * returns NULL.
9058 				 */
9059 				if (tcp->tcp_notsack_list == NULL) {
9060 					up += sack_len;
9061 					continue;
9062 				}
9063 				tcp->tcp_fack = tcp->tcp_suna;
9064 			}
9065 
9066 			while (sack_len > 0) {
9067 				if (up + 8 > endp) {
9068 					up = endp;
9069 					break;
9070 				}
9071 				sack_begin = BE32_TO_U32(up);
9072 				up += 4;
9073 				sack_end = BE32_TO_U32(up);
9074 				up += 4;
9075 				sack_len -= 8;
9076 				/*
9077 				 * Bounds checking.  Make sure the SACK
9078 				 * info is within tcp_suna and tcp_snxt.
9079 				 * If this SACK blk is out of bound, ignore
9080 				 * it but continue to parse the following
9081 				 * blks.
9082 				 */
9083 				if (SEQ_LEQ(sack_end, sack_begin) ||
9084 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
9085 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
9086 					continue;
9087 				}
9088 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
9089 				    sack_begin, sack_end,
9090 				    &(tcp->tcp_num_notsack_blk),
9091 				    &(tcp->tcp_cnt_notsack_list));
9092 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
9093 					tcp->tcp_fack = sack_end;
9094 				}
9095 			}
9096 			found |= TCP_OPT_SACK_PRESENT;
9097 			continue;
9098 
9099 		case TCPOPT_TSTAMP:
9100 			if (len < TCPOPT_TSTAMP_LEN ||
9101 			    up[1] != TCPOPT_TSTAMP_LEN)
9102 				break;
9103 
9104 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
9105 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
9106 
9107 			found |= TCP_OPT_TSTAMP_PRESENT;
9108 
9109 			up += TCPOPT_TSTAMP_LEN;
9110 			continue;
9111 
9112 		default:
9113 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
9114 				break;
9115 			up += up[1];
9116 			continue;
9117 		}
9118 		break;
9119 	}
9120 	return (found);
9121 }
9122 
9123 /*
9124  * Set the mss associated with a particular tcp based on its current value,
9125  * and a new one passed in. Observe minimums and maximums, and reset
9126  * other state variables that we want to view as multiples of mss.
9127  *
9128  * This function is called mainly because values like tcp_mss, tcp_cwnd,
9129  * highwater marks etc. need to be initialized or adjusted.
9130  * 1) From tcp_process_options() when the other side's SYN/SYN-ACK
9131  *    packet arrives.
9132  * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or
9133  *    ICMP6_PACKET_TOO_BIG arrives.
9134  * 3) From tcp_paws_check() if the other side stops sending the timestamp,
9135  *    to increase the MSS to use the extra bytes available.
9136  *
9137  * Callers except tcp_paws_check() ensure that they only reduce mss.
9138  */
9139 static void
9140 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss)
9141 {
9142 	uint32_t	mss_max;
9143 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9144 
9145 	if (tcp->tcp_ipversion == IPV4_VERSION)
9146 		mss_max = tcps->tcps_mss_max_ipv4;
9147 	else
9148 		mss_max = tcps->tcps_mss_max_ipv6;
9149 
9150 	if (mss < tcps->tcps_mss_min)
9151 		mss = tcps->tcps_mss_min;
9152 	if (mss > mss_max)
9153 		mss = mss_max;
9154 	/*
9155 	 * Unless naglim has been set by our client to
9156 	 * a non-mss value, force naglim to track mss.
9157 	 * This can help to aggregate small writes.
9158 	 */
9159 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9160 		tcp->tcp_naglim = mss;
9161 	/*
9162 	 * TCP should be able to buffer at least 4 MSS data for obvious
9163 	 * performance reason.
9164 	 */
9165 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9166 		tcp->tcp_xmit_hiwater = mss << 2;
9167 
9168 	if (do_ss) {
9169 		/*
9170 		 * Either the tcp_cwnd is as yet uninitialized, or mss is
9171 		 * changing due to a reduction in MTU, presumably as a
9172 		 * result of a new path component, reset cwnd to its
9173 		 * "initial" value, as a multiple of the new mss.
9174 		 */
9175 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial);
9176 	} else {
9177 		/*
9178 		 * Called by tcp_paws_check(), the mss increased
9179 		 * marginally to allow use of space previously taken
9180 		 * by the timestamp option. It would be inappropriate
9181 		 * to apply slow start or tcp_init_cwnd values to
9182 		 * tcp_cwnd, simply adjust to a multiple of the new mss.
9183 		 */
9184 		tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss;
9185 		tcp->tcp_cwnd_cnt = 0;
9186 	}
9187 	tcp->tcp_mss = mss;
9188 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9189 }
9190 
9191 /* For /dev/tcp aka AF_INET open */
9192 static int
9193 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9194 {
9195 	return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
9196 }
9197 
9198 /* For /dev/tcp6 aka AF_INET6 open */
9199 static int
9200 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9201 {
9202 	return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
9203 }
9204 
9205 static conn_t *
9206 tcp_create_common(queue_t *q, cred_t *credp, boolean_t isv6,
9207     boolean_t issocket, int *errorp)
9208 {
9209 	tcp_t		*tcp = NULL;
9210 	conn_t		*connp;
9211 	int		err;
9212 	zoneid_t	zoneid;
9213 	tcp_stack_t	*tcps;
9214 	squeue_t	*sqp;
9215 
9216 	ASSERT(errorp != NULL);
9217 	/*
9218 	 * Find the proper zoneid and netstack.
9219 	 */
9220 	/*
9221 	 * Special case for install: miniroot needs to be able to
9222 	 * access files via NFS as though it were always in the
9223 	 * global zone.
9224 	 */
9225 	if (credp == kcred && nfs_global_client_only != 0) {
9226 		zoneid = GLOBAL_ZONEID;
9227 		tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
9228 		    netstack_tcp;
9229 		ASSERT(tcps != NULL);
9230 	} else {
9231 		netstack_t *ns;
9232 
9233 		ns = netstack_find_by_cred(credp);
9234 		ASSERT(ns != NULL);
9235 		tcps = ns->netstack_tcp;
9236 		ASSERT(tcps != NULL);
9237 
9238 		/*
9239 		 * For exclusive stacks we set the zoneid to zero
9240 		 * to make TCP operate as if in the global zone.
9241 		 */
9242 		if (tcps->tcps_netstack->netstack_stackid !=
9243 		    GLOBAL_NETSTACKID)
9244 			zoneid = GLOBAL_ZONEID;
9245 		else
9246 			zoneid = crgetzoneid(credp);
9247 	}
9248 	/*
9249 	 * For stackid zero this is done from strplumb.c, but
9250 	 * non-zero stackids are handled here.
9251 	 */
9252 	if (tcps->tcps_g_q == NULL &&
9253 	    tcps->tcps_netstack->netstack_stackid !=
9254 	    GLOBAL_NETSTACKID) {
9255 		tcp_g_q_setup(tcps);
9256 	}
9257 
9258 	sqp = IP_SQUEUE_GET((uint_t)gethrtime());
9259 	connp = (conn_t *)tcp_get_conn(sqp, tcps);
9260 	/*
9261 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
9262 	 * so we drop it by one.
9263 	 */
9264 	netstack_rele(tcps->tcps_netstack);
9265 	if (connp == NULL) {
9266 		*errorp = ENOSR;
9267 		return (NULL);
9268 	}
9269 	connp->conn_sqp = sqp;
9270 	connp->conn_initial_sqp = connp->conn_sqp;
9271 	tcp = connp->conn_tcp;
9272 
9273 	if (isv6) {
9274 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9275 		connp->conn_send = ip_output_v6;
9276 		connp->conn_af_isv6 = B_TRUE;
9277 		connp->conn_pkt_isv6 = B_TRUE;
9278 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9279 		tcp->tcp_ipversion = IPV6_VERSION;
9280 		tcp->tcp_family = AF_INET6;
9281 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
9282 	} else {
9283 		connp->conn_flags |= IPCL_TCP4;
9284 		connp->conn_send = ip_output;
9285 		connp->conn_af_isv6 = B_FALSE;
9286 		connp->conn_pkt_isv6 = B_FALSE;
9287 		tcp->tcp_ipversion = IPV4_VERSION;
9288 		tcp->tcp_family = AF_INET;
9289 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
9290 	}
9291 
9292 	/*
9293 	 * TCP keeps a copy of cred for cache locality reasons but
9294 	 * we put a reference only once. If connp->conn_cred
9295 	 * becomes invalid, tcp_cred should also be set to NULL.
9296 	 */
9297 	tcp->tcp_cred = connp->conn_cred = credp;
9298 	crhold(connp->conn_cred);
9299 	tcp->tcp_cpid = curproc->p_pid;
9300 	tcp->tcp_open_time = lbolt64;
9301 	connp->conn_zoneid = zoneid;
9302 	connp->conn_mlp_type = mlptSingle;
9303 	connp->conn_ulp_labeled = !is_system_labeled();
9304 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
9305 	ASSERT(tcp->tcp_tcps == tcps);
9306 
9307 	/*
9308 	 * If the caller has the process-wide flag set, then default to MAC
9309 	 * exempt mode.  This allows read-down to unlabeled hosts.
9310 	 */
9311 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9312 		connp->conn_mac_exempt = B_TRUE;
9313 
9314 	connp->conn_dev = NULL;
9315 	if (issocket) {
9316 		connp->conn_flags |= IPCL_SOCKET;
9317 		tcp->tcp_issocket = 1;
9318 	}
9319 
9320 	tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat;
9321 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
9322 	tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat;
9323 
9324 	/* Non-zero default values */
9325 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9326 
9327 	if (q == NULL) {
9328 		/*
9329 		 * Create a helper stream for non-STREAMS socket.
9330 		 */
9331 		err = ip_create_helper_stream(connp, tcps->tcps_ldi_ident);
9332 		if (err != 0) {
9333 			ip1dbg(("tcp_create: create of IP helper stream "
9334 			    "failed\n"));
9335 			CONN_DEC_REF(connp);
9336 			*errorp = err;
9337 			return (NULL);
9338 		}
9339 		q = connp->conn_rq;
9340 	} else {
9341 		RD(q)->q_hiwat = tcps->tcps_recv_hiwat;
9342 	}
9343 
9344 	SOCK_CONNID_INIT(tcp->tcp_connid);
9345 	err = tcp_init(tcp, q);
9346 	if (err != 0) {
9347 		CONN_DEC_REF(connp);
9348 		*errorp = err;
9349 		return (NULL);
9350 	}
9351 
9352 	return (connp);
9353 }
9354 
9355 static int
9356 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
9357     boolean_t isv6)
9358 {
9359 	tcp_t		*tcp = NULL;
9360 	conn_t		*connp = NULL;
9361 	int		err;
9362 	vmem_t		*minor_arena = NULL;
9363 	dev_t		conn_dev;
9364 	boolean_t	issocket;
9365 
9366 	if (q->q_ptr != NULL)
9367 		return (0);
9368 
9369 	if (sflag == MODOPEN)
9370 		return (EINVAL);
9371 
9372 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
9373 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
9374 		minor_arena = ip_minor_arena_la;
9375 	} else {
9376 		/*
9377 		 * Either minor numbers in the large arena were exhausted
9378 		 * or a non socket application is doing the open.
9379 		 * Try to allocate from the small arena.
9380 		 */
9381 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
9382 			return (EBUSY);
9383 		}
9384 		minor_arena = ip_minor_arena_sa;
9385 	}
9386 
9387 	ASSERT(minor_arena != NULL);
9388 
9389 	*devp = makedevice(getmajor(*devp), (minor_t)conn_dev);
9390 
9391 	if (flag & SO_FALLBACK) {
9392 		/*
9393 		 * Non streams socket needs a stream to fallback to
9394 		 */
9395 		RD(q)->q_ptr = (void *)conn_dev;
9396 		WR(q)->q_qinfo = &tcp_fallback_sock_winit;
9397 		WR(q)->q_ptr = (void *)minor_arena;
9398 		qprocson(q);
9399 		return (0);
9400 	} else if (flag & SO_ACCEPTOR) {
9401 		q->q_qinfo = &tcp_acceptor_rinit;
9402 		/*
9403 		 * the conn_dev and minor_arena will be subsequently used by
9404 		 * tcp_wput_accept() and tcpclose_accept() to figure out the
9405 		 * minor device number for this connection from the q_ptr.
9406 		 */
9407 		RD(q)->q_ptr = (void *)conn_dev;
9408 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9409 		WR(q)->q_ptr = (void *)minor_arena;
9410 		qprocson(q);
9411 		return (0);
9412 	}
9413 
9414 	issocket = flag & SO_SOCKSTR;
9415 	connp = tcp_create_common(q, credp, isv6, issocket, &err);
9416 
9417 	if (connp == NULL) {
9418 		inet_minor_free(minor_arena, conn_dev);
9419 		q->q_ptr = WR(q)->q_ptr = NULL;
9420 		return (err);
9421 	}
9422 
9423 	q->q_ptr = WR(q)->q_ptr = connp;
9424 
9425 	connp->conn_dev = conn_dev;
9426 	connp->conn_minor_arena = minor_arena;
9427 
9428 	ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
9429 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9430 
9431 	if (issocket) {
9432 		WR(q)->q_qinfo = &tcp_sock_winit;
9433 	} else {
9434 		tcp = connp->conn_tcp;
9435 #ifdef  _ILP32
9436 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9437 #else
9438 		tcp->tcp_acceptor_id = conn_dev;
9439 #endif  /* _ILP32 */
9440 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9441 	}
9442 
9443 	/*
9444 	 * Put the ref for TCP. Ref for IP was already put
9445 	 * by ipcl_conn_create. Also Make the conn_t globally
9446 	 * visible to walkers
9447 	 */
9448 	mutex_enter(&connp->conn_lock);
9449 	CONN_INC_REF_LOCKED(connp);
9450 	ASSERT(connp->conn_ref == 2);
9451 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9452 	mutex_exit(&connp->conn_lock);
9453 
9454 	qprocson(q);
9455 	return (0);
9456 }
9457 
9458 /*
9459  * Some TCP options can be "set" by requesting them in the option
9460  * buffer. This is needed for XTI feature test though we do not
9461  * allow it in general. We interpret that this mechanism is more
9462  * applicable to OSI protocols and need not be allowed in general.
9463  * This routine filters out options for which it is not allowed (most)
9464  * and lets through those (few) for which it is. [ The XTI interface
9465  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9466  * ever implemented will have to be allowed here ].
9467  */
9468 static boolean_t
9469 tcp_allow_connopt_set(int level, int name)
9470 {
9471 
9472 	switch (level) {
9473 	case IPPROTO_TCP:
9474 		switch (name) {
9475 		case TCP_NODELAY:
9476 			return (B_TRUE);
9477 		default:
9478 			return (B_FALSE);
9479 		}
9480 		/*NOTREACHED*/
9481 	default:
9482 		return (B_FALSE);
9483 	}
9484 	/*NOTREACHED*/
9485 }
9486 
9487 /*
9488  * this routine gets default values of certain options whose default
9489  * values are maintained by protocol specific code
9490  */
9491 /* ARGSUSED */
9492 int
9493 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9494 {
9495 	int32_t	*i1 = (int32_t *)ptr;
9496 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
9497 
9498 	switch (level) {
9499 	case IPPROTO_TCP:
9500 		switch (name) {
9501 		case TCP_NOTIFY_THRESHOLD:
9502 			*i1 = tcps->tcps_ip_notify_interval;
9503 			break;
9504 		case TCP_ABORT_THRESHOLD:
9505 			*i1 = tcps->tcps_ip_abort_interval;
9506 			break;
9507 		case TCP_CONN_NOTIFY_THRESHOLD:
9508 			*i1 = tcps->tcps_ip_notify_cinterval;
9509 			break;
9510 		case TCP_CONN_ABORT_THRESHOLD:
9511 			*i1 = tcps->tcps_ip_abort_cinterval;
9512 			break;
9513 		default:
9514 			return (-1);
9515 		}
9516 		break;
9517 	case IPPROTO_IP:
9518 		switch (name) {
9519 		case IP_TTL:
9520 			*i1 = tcps->tcps_ipv4_ttl;
9521 			break;
9522 		default:
9523 			return (-1);
9524 		}
9525 		break;
9526 	case IPPROTO_IPV6:
9527 		switch (name) {
9528 		case IPV6_UNICAST_HOPS:
9529 			*i1 = tcps->tcps_ipv6_hoplimit;
9530 			break;
9531 		default:
9532 			return (-1);
9533 		}
9534 		break;
9535 	default:
9536 		return (-1);
9537 	}
9538 	return (sizeof (int));
9539 }
9540 
9541 static int
9542 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr)
9543 {
9544 	int		*i1 = (int *)ptr;
9545 	tcp_t		*tcp = connp->conn_tcp;
9546 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9547 
9548 	switch (level) {
9549 	case SOL_SOCKET:
9550 		switch (name) {
9551 		case SO_LINGER:	{
9552 			struct linger *lgr = (struct linger *)ptr;
9553 
9554 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
9555 			lgr->l_linger = tcp->tcp_lingertime;
9556 			}
9557 			return (sizeof (struct linger));
9558 		case SO_DEBUG:
9559 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
9560 			break;
9561 		case SO_KEEPALIVE:
9562 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
9563 			break;
9564 		case SO_DONTROUTE:
9565 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
9566 			break;
9567 		case SO_USELOOPBACK:
9568 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
9569 			break;
9570 		case SO_BROADCAST:
9571 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
9572 			break;
9573 		case SO_REUSEADDR:
9574 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
9575 			break;
9576 		case SO_OOBINLINE:
9577 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
9578 			break;
9579 		case SO_DGRAM_ERRIND:
9580 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
9581 			break;
9582 		case SO_TYPE:
9583 			*i1 = SOCK_STREAM;
9584 			break;
9585 		case SO_SNDBUF:
9586 			*i1 = tcp->tcp_xmit_hiwater;
9587 			break;
9588 		case SO_RCVBUF:
9589 			*i1 = tcp->tcp_recv_hiwater;
9590 			break;
9591 		case SO_SND_COPYAVOID:
9592 			*i1 = tcp->tcp_snd_zcopy_on ?
9593 			    SO_SND_COPYAVOID : 0;
9594 			break;
9595 		case SO_ALLZONES:
9596 			*i1 = connp->conn_allzones ? 1 : 0;
9597 			break;
9598 		case SO_ANON_MLP:
9599 			*i1 = connp->conn_anon_mlp;
9600 			break;
9601 		case SO_MAC_EXEMPT:
9602 			*i1 = connp->conn_mac_exempt;
9603 			break;
9604 		case SO_EXCLBIND:
9605 			*i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0;
9606 			break;
9607 		case SO_PROTOTYPE:
9608 			*i1 = IPPROTO_TCP;
9609 			break;
9610 		case SO_DOMAIN:
9611 			*i1 = tcp->tcp_family;
9612 			break;
9613 		case SO_ACCEPTCONN:
9614 			*i1 = (tcp->tcp_state == TCPS_LISTEN);
9615 		default:
9616 			return (-1);
9617 		}
9618 		break;
9619 	case IPPROTO_TCP:
9620 		switch (name) {
9621 		case TCP_NODELAY:
9622 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
9623 			break;
9624 		case TCP_MAXSEG:
9625 			*i1 = tcp->tcp_mss;
9626 			break;
9627 		case TCP_NOTIFY_THRESHOLD:
9628 			*i1 = (int)tcp->tcp_first_timer_threshold;
9629 			break;
9630 		case TCP_ABORT_THRESHOLD:
9631 			*i1 = tcp->tcp_second_timer_threshold;
9632 			break;
9633 		case TCP_CONN_NOTIFY_THRESHOLD:
9634 			*i1 = tcp->tcp_first_ctimer_threshold;
9635 			break;
9636 		case TCP_CONN_ABORT_THRESHOLD:
9637 			*i1 = tcp->tcp_second_ctimer_threshold;
9638 			break;
9639 		case TCP_RECVDSTADDR:
9640 			*i1 = tcp->tcp_recvdstaddr;
9641 			break;
9642 		case TCP_ANONPRIVBIND:
9643 			*i1 = tcp->tcp_anon_priv_bind;
9644 			break;
9645 		case TCP_EXCLBIND:
9646 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
9647 			break;
9648 		case TCP_INIT_CWND:
9649 			*i1 = tcp->tcp_init_cwnd;
9650 			break;
9651 		case TCP_KEEPALIVE_THRESHOLD:
9652 			*i1 = tcp->tcp_ka_interval;
9653 			break;
9654 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
9655 			*i1 = tcp->tcp_ka_abort_thres;
9656 			break;
9657 		case TCP_CORK:
9658 			*i1 = tcp->tcp_cork;
9659 			break;
9660 		default:
9661 			return (-1);
9662 		}
9663 		break;
9664 	case IPPROTO_IP:
9665 		if (tcp->tcp_family != AF_INET)
9666 			return (-1);
9667 		switch (name) {
9668 		case IP_OPTIONS:
9669 		case T_IP_OPTIONS: {
9670 			/*
9671 			 * This is compatible with BSD in that in only return
9672 			 * the reverse source route with the final destination
9673 			 * as the last entry. The first 4 bytes of the option
9674 			 * will contain the final destination.
9675 			 */
9676 			int	opt_len;
9677 
9678 			opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha;
9679 			opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH;
9680 			ASSERT(opt_len >= 0);
9681 			/* Caller ensures enough space */
9682 			if (opt_len > 0) {
9683 				/*
9684 				 * TODO: Do we have to handle getsockopt on an
9685 				 * initiator as well?
9686 				 */
9687 				return (ip_opt_get_user(tcp->tcp_ipha, ptr));
9688 			}
9689 			return (0);
9690 			}
9691 		case IP_TOS:
9692 		case T_IP_TOS:
9693 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
9694 			break;
9695 		case IP_TTL:
9696 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
9697 			break;
9698 		case IP_NEXTHOP:
9699 			/* Handled at IP level */
9700 			return (-EINVAL);
9701 		default:
9702 			return (-1);
9703 		}
9704 		break;
9705 	case IPPROTO_IPV6:
9706 		/*
9707 		 * IPPROTO_IPV6 options are only supported for sockets
9708 		 * that are using IPv6 on the wire.
9709 		 */
9710 		if (tcp->tcp_ipversion != IPV6_VERSION) {
9711 			return (-1);
9712 		}
9713 		switch (name) {
9714 		case IPV6_UNICAST_HOPS:
9715 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
9716 			break;	/* goto sizeof (int) option return */
9717 		case IPV6_BOUND_IF:
9718 			/* Zero if not set */
9719 			*i1 = tcp->tcp_bound_if;
9720 			break;	/* goto sizeof (int) option return */
9721 		case IPV6_RECVPKTINFO:
9722 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
9723 				*i1 = 1;
9724 			else
9725 				*i1 = 0;
9726 			break;	/* goto sizeof (int) option return */
9727 		case IPV6_RECVTCLASS:
9728 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
9729 				*i1 = 1;
9730 			else
9731 				*i1 = 0;
9732 			break;	/* goto sizeof (int) option return */
9733 		case IPV6_RECVHOPLIMIT:
9734 			if (tcp->tcp_ipv6_recvancillary &
9735 			    TCP_IPV6_RECVHOPLIMIT)
9736 				*i1 = 1;
9737 			else
9738 				*i1 = 0;
9739 			break;	/* goto sizeof (int) option return */
9740 		case IPV6_RECVHOPOPTS:
9741 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
9742 				*i1 = 1;
9743 			else
9744 				*i1 = 0;
9745 			break;	/* goto sizeof (int) option return */
9746 		case IPV6_RECVDSTOPTS:
9747 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
9748 				*i1 = 1;
9749 			else
9750 				*i1 = 0;
9751 			break;	/* goto sizeof (int) option return */
9752 		case _OLD_IPV6_RECVDSTOPTS:
9753 			if (tcp->tcp_ipv6_recvancillary &
9754 			    TCP_OLD_IPV6_RECVDSTOPTS)
9755 				*i1 = 1;
9756 			else
9757 				*i1 = 0;
9758 			break;	/* goto sizeof (int) option return */
9759 		case IPV6_RECVRTHDR:
9760 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
9761 				*i1 = 1;
9762 			else
9763 				*i1 = 0;
9764 			break;	/* goto sizeof (int) option return */
9765 		case IPV6_RECVRTHDRDSTOPTS:
9766 			if (tcp->tcp_ipv6_recvancillary &
9767 			    TCP_IPV6_RECVRTDSTOPTS)
9768 				*i1 = 1;
9769 			else
9770 				*i1 = 0;
9771 			break;	/* goto sizeof (int) option return */
9772 		case IPV6_PKTINFO: {
9773 			/* XXX assumes that caller has room for max size! */
9774 			struct in6_pktinfo *pkti;
9775 
9776 			pkti = (struct in6_pktinfo *)ptr;
9777 			if (ipp->ipp_fields & IPPF_IFINDEX)
9778 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
9779 			else
9780 				pkti->ipi6_ifindex = 0;
9781 			if (ipp->ipp_fields & IPPF_ADDR)
9782 				pkti->ipi6_addr = ipp->ipp_addr;
9783 			else
9784 				pkti->ipi6_addr = ipv6_all_zeros;
9785 			return (sizeof (struct in6_pktinfo));
9786 		}
9787 		case IPV6_TCLASS:
9788 			if (ipp->ipp_fields & IPPF_TCLASS)
9789 				*i1 = ipp->ipp_tclass;
9790 			else
9791 				*i1 = IPV6_FLOW_TCLASS(
9792 				    IPV6_DEFAULT_VERS_AND_FLOW);
9793 			break;	/* goto sizeof (int) option return */
9794 		case IPV6_NEXTHOP: {
9795 			sin6_t *sin6 = (sin6_t *)ptr;
9796 
9797 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
9798 				return (0);
9799 			*sin6 = sin6_null;
9800 			sin6->sin6_family = AF_INET6;
9801 			sin6->sin6_addr = ipp->ipp_nexthop;
9802 			return (sizeof (sin6_t));
9803 		}
9804 		case IPV6_HOPOPTS:
9805 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
9806 				return (0);
9807 			if (ipp->ipp_hopoptslen <= tcp->tcp_label_len)
9808 				return (0);
9809 			bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len,
9810 			    ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len);
9811 			if (tcp->tcp_label_len > 0) {
9812 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
9813 				ptr[1] = (ipp->ipp_hopoptslen -
9814 				    tcp->tcp_label_len + 7) / 8 - 1;
9815 			}
9816 			return (ipp->ipp_hopoptslen - tcp->tcp_label_len);
9817 		case IPV6_RTHDRDSTOPTS:
9818 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
9819 				return (0);
9820 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
9821 			return (ipp->ipp_rtdstoptslen);
9822 		case IPV6_RTHDR:
9823 			if (!(ipp->ipp_fields & IPPF_RTHDR))
9824 				return (0);
9825 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
9826 			return (ipp->ipp_rthdrlen);
9827 		case IPV6_DSTOPTS:
9828 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
9829 				return (0);
9830 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
9831 			return (ipp->ipp_dstoptslen);
9832 		case IPV6_SRC_PREFERENCES:
9833 			return (ip6_get_src_preferences(connp,
9834 			    (uint32_t *)ptr));
9835 		case IPV6_PATHMTU: {
9836 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
9837 
9838 			if (tcp->tcp_state < TCPS_ESTABLISHED)
9839 				return (-1);
9840 
9841 			return (ip_fill_mtuinfo(&connp->conn_remv6,
9842 			    connp->conn_fport, mtuinfo,
9843 			    connp->conn_netstack));
9844 		}
9845 		default:
9846 			return (-1);
9847 		}
9848 		break;
9849 	default:
9850 		return (-1);
9851 	}
9852 	return (sizeof (int));
9853 }
9854 
9855 /*
9856  * TCP routine to get the values of options.
9857  */
9858 int
9859 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr)
9860 {
9861 	return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr));
9862 }
9863 
9864 /* returns UNIX error, the optlen is a value-result arg */
9865 int
9866 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
9867     void *optvalp, socklen_t *optlen, cred_t *cr)
9868 {
9869 	conn_t		*connp = (conn_t *)proto_handle;
9870 	squeue_t	*sqp = connp->conn_sqp;
9871 	int		error;
9872 	t_uscalar_t	max_optbuf_len;
9873 	void		*optvalp_buf;
9874 	int		len;
9875 
9876 	error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len,
9877 	    tcp_opt_obj.odb_opt_des_arr,
9878 	    tcp_opt_obj.odb_opt_arr_cnt,
9879 	    tcp_opt_obj.odb_topmost_tpiprovider,
9880 	    B_FALSE, B_TRUE, cr);
9881 	if (error != 0) {
9882 		if (error < 0) {
9883 			error = proto_tlitosyserr(-error);
9884 		}
9885 		return (error);
9886 	}
9887 
9888 	optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP);
9889 
9890 	error = squeue_synch_enter(sqp, connp, 0);
9891 	if (error == ENOMEM) {
9892 		return (ENOMEM);
9893 	}
9894 
9895 	len = tcp_opt_get(connp, level, option_name, optvalp_buf);
9896 	squeue_synch_exit(sqp, connp);
9897 
9898 	if (len < 0) {
9899 		/*
9900 		 * Pass on to IP
9901 		 */
9902 		kmem_free(optvalp_buf, max_optbuf_len);
9903 		return (ip_get_options(connp, level, option_name,
9904 		    optvalp, optlen, cr));
9905 	} else {
9906 		/*
9907 		 * update optlen and copy option value
9908 		 */
9909 		t_uscalar_t size = MIN(len, *optlen);
9910 		bcopy(optvalp_buf, optvalp, size);
9911 		bcopy(&size, optlen, sizeof (size));
9912 
9913 		kmem_free(optvalp_buf, max_optbuf_len);
9914 		return (0);
9915 	}
9916 }
9917 
9918 /*
9919  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
9920  * Parameters are assumed to be verified by the caller.
9921  */
9922 /* ARGSUSED */
9923 int
9924 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name,
9925     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
9926     void *thisdg_attrs, cred_t *cr)
9927 {
9928 	tcp_t	*tcp = connp->conn_tcp;
9929 	int	*i1 = (int *)invalp;
9930 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
9931 	boolean_t checkonly;
9932 	int	reterr;
9933 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9934 
9935 	switch (optset_context) {
9936 	case SETFN_OPTCOM_CHECKONLY:
9937 		checkonly = B_TRUE;
9938 		/*
9939 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
9940 		 * inlen != 0 implies value supplied and
9941 		 * 	we have to "pretend" to set it.
9942 		 * inlen == 0 implies that there is no
9943 		 * 	value part in T_CHECK request and just validation
9944 		 * done elsewhere should be enough, we just return here.
9945 		 */
9946 		if (inlen == 0) {
9947 			*outlenp = 0;
9948 			return (0);
9949 		}
9950 		break;
9951 	case SETFN_OPTCOM_NEGOTIATE:
9952 		checkonly = B_FALSE;
9953 		break;
9954 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
9955 	case SETFN_CONN_NEGOTIATE:
9956 		checkonly = B_FALSE;
9957 		/*
9958 		 * Negotiating local and "association-related" options
9959 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
9960 		 * primitives is allowed by XTI, but we choose
9961 		 * to not implement this style negotiation for Internet
9962 		 * protocols (We interpret it is a must for OSI world but
9963 		 * optional for Internet protocols) for all options.
9964 		 * [ Will do only for the few options that enable test
9965 		 * suites that our XTI implementation of this feature
9966 		 * works for transports that do allow it ]
9967 		 */
9968 		if (!tcp_allow_connopt_set(level, name)) {
9969 			*outlenp = 0;
9970 			return (EINVAL);
9971 		}
9972 		break;
9973 	default:
9974 		/*
9975 		 * We should never get here
9976 		 */
9977 		*outlenp = 0;
9978 		return (EINVAL);
9979 	}
9980 
9981 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
9982 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
9983 
9984 	/*
9985 	 * For TCP, we should have no ancillary data sent down
9986 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
9987 	 * has to be zero.
9988 	 */
9989 	ASSERT(thisdg_attrs == NULL);
9990 
9991 	/*
9992 	 * For fixed length options, no sanity check
9993 	 * of passed in length is done. It is assumed *_optcom_req()
9994 	 * routines do the right thing.
9995 	 */
9996 	switch (level) {
9997 	case SOL_SOCKET:
9998 		switch (name) {
9999 		case SO_LINGER: {
10000 			struct linger *lgr = (struct linger *)invalp;
10001 
10002 			if (!checkonly) {
10003 				if (lgr->l_onoff) {
10004 					tcp->tcp_linger = 1;
10005 					tcp->tcp_lingertime = lgr->l_linger;
10006 				} else {
10007 					tcp->tcp_linger = 0;
10008 					tcp->tcp_lingertime = 0;
10009 				}
10010 				/* struct copy */
10011 				*(struct linger *)outvalp = *lgr;
10012 			} else {
10013 				if (!lgr->l_onoff) {
10014 					((struct linger *)
10015 					    outvalp)->l_onoff = 0;
10016 					((struct linger *)
10017 					    outvalp)->l_linger = 0;
10018 				} else {
10019 					/* struct copy */
10020 					*(struct linger *)outvalp = *lgr;
10021 				}
10022 			}
10023 			*outlenp = sizeof (struct linger);
10024 			return (0);
10025 		}
10026 		case SO_DEBUG:
10027 			if (!checkonly)
10028 				tcp->tcp_debug = onoff;
10029 			break;
10030 		case SO_KEEPALIVE:
10031 			if (checkonly) {
10032 				/* check only case */
10033 				break;
10034 			}
10035 
10036 			if (!onoff) {
10037 				if (tcp->tcp_ka_enabled) {
10038 					if (tcp->tcp_ka_tid != 0) {
10039 						(void) TCP_TIMER_CANCEL(tcp,
10040 						    tcp->tcp_ka_tid);
10041 						tcp->tcp_ka_tid = 0;
10042 					}
10043 					tcp->tcp_ka_enabled = 0;
10044 				}
10045 				break;
10046 			}
10047 			if (!tcp->tcp_ka_enabled) {
10048 				/* Crank up the keepalive timer */
10049 				tcp->tcp_ka_last_intrvl = 0;
10050 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
10051 				    tcp_keepalive_killer,
10052 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
10053 				tcp->tcp_ka_enabled = 1;
10054 			}
10055 			break;
10056 		case SO_DONTROUTE:
10057 			/*
10058 			 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are
10059 			 * only of interest to IP.  We track them here only so
10060 			 * that we can report their current value.
10061 			 */
10062 			if (!checkonly) {
10063 				tcp->tcp_dontroute = onoff;
10064 				tcp->tcp_connp->conn_dontroute = onoff;
10065 			}
10066 			break;
10067 		case SO_USELOOPBACK:
10068 			if (!checkonly) {
10069 				tcp->tcp_useloopback = onoff;
10070 				tcp->tcp_connp->conn_loopback = onoff;
10071 			}
10072 			break;
10073 		case SO_BROADCAST:
10074 			if (!checkonly) {
10075 				tcp->tcp_broadcast = onoff;
10076 				tcp->tcp_connp->conn_broadcast = onoff;
10077 			}
10078 			break;
10079 		case SO_REUSEADDR:
10080 			if (!checkonly) {
10081 				tcp->tcp_reuseaddr = onoff;
10082 				tcp->tcp_connp->conn_reuseaddr = onoff;
10083 			}
10084 			break;
10085 		case SO_OOBINLINE:
10086 			if (!checkonly) {
10087 				tcp->tcp_oobinline = onoff;
10088 				if (IPCL_IS_NONSTR(tcp->tcp_connp))
10089 					proto_set_rx_oob_opt(connp, onoff);
10090 			}
10091 			break;
10092 		case SO_DGRAM_ERRIND:
10093 			if (!checkonly)
10094 				tcp->tcp_dgram_errind = onoff;
10095 			break;
10096 		case SO_SNDBUF: {
10097 			if (*i1 > tcps->tcps_max_buf) {
10098 				*outlenp = 0;
10099 				return (ENOBUFS);
10100 			}
10101 			if (checkonly)
10102 				break;
10103 
10104 			tcp->tcp_xmit_hiwater = *i1;
10105 			if (tcps->tcps_snd_lowat_fraction != 0)
10106 				tcp->tcp_xmit_lowater =
10107 				    tcp->tcp_xmit_hiwater /
10108 				    tcps->tcps_snd_lowat_fraction;
10109 			(void) tcp_maxpsz_set(tcp, B_TRUE);
10110 			/*
10111 			 * If we are flow-controlled, recheck the condition.
10112 			 * There are apps that increase SO_SNDBUF size when
10113 			 * flow-controlled (EWOULDBLOCK), and expect the flow
10114 			 * control condition to be lifted right away.
10115 			 */
10116 			mutex_enter(&tcp->tcp_non_sq_lock);
10117 			if (tcp->tcp_flow_stopped &&
10118 			    TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) {
10119 				tcp_clrqfull(tcp);
10120 			}
10121 			mutex_exit(&tcp->tcp_non_sq_lock);
10122 			break;
10123 		}
10124 		case SO_RCVBUF:
10125 			if (*i1 > tcps->tcps_max_buf) {
10126 				*outlenp = 0;
10127 				return (ENOBUFS);
10128 			}
10129 			/* Silently ignore zero */
10130 			if (!checkonly && *i1 != 0) {
10131 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
10132 				(void) tcp_rwnd_set(tcp, *i1);
10133 			}
10134 			/*
10135 			 * XXX should we return the rwnd here
10136 			 * and tcp_opt_get ?
10137 			 */
10138 			break;
10139 		case SO_SND_COPYAVOID:
10140 			if (!checkonly) {
10141 				/* we only allow enable at most once for now */
10142 				if (tcp->tcp_loopback ||
10143 				    (tcp->tcp_kssl_ctx != NULL) ||
10144 				    (!tcp->tcp_snd_zcopy_aware &&
10145 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
10146 					*outlenp = 0;
10147 					return (EOPNOTSUPP);
10148 				}
10149 				tcp->tcp_snd_zcopy_aware = 1;
10150 			}
10151 			break;
10152 		case SO_ALLZONES:
10153 			/* Pass option along to IP level for handling */
10154 			return (-EINVAL);
10155 		case SO_ANON_MLP:
10156 			/* Pass option along to IP level for handling */
10157 			return (-EINVAL);
10158 		case SO_MAC_EXEMPT:
10159 			/* Pass option along to IP level for handling */
10160 			return (-EINVAL);
10161 		case SO_EXCLBIND:
10162 			if (!checkonly)
10163 				tcp->tcp_exclbind = onoff;
10164 			break;
10165 		default:
10166 			*outlenp = 0;
10167 			return (EINVAL);
10168 		}
10169 		break;
10170 	case IPPROTO_TCP:
10171 		switch (name) {
10172 		case TCP_NODELAY:
10173 			if (!checkonly)
10174 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
10175 			break;
10176 		case TCP_NOTIFY_THRESHOLD:
10177 			if (!checkonly)
10178 				tcp->tcp_first_timer_threshold = *i1;
10179 			break;
10180 		case TCP_ABORT_THRESHOLD:
10181 			if (!checkonly)
10182 				tcp->tcp_second_timer_threshold = *i1;
10183 			break;
10184 		case TCP_CONN_NOTIFY_THRESHOLD:
10185 			if (!checkonly)
10186 				tcp->tcp_first_ctimer_threshold = *i1;
10187 			break;
10188 		case TCP_CONN_ABORT_THRESHOLD:
10189 			if (!checkonly)
10190 				tcp->tcp_second_ctimer_threshold = *i1;
10191 			break;
10192 		case TCP_RECVDSTADDR:
10193 			if (tcp->tcp_state > TCPS_LISTEN)
10194 				return (EOPNOTSUPP);
10195 			if (!checkonly)
10196 				tcp->tcp_recvdstaddr = onoff;
10197 			break;
10198 		case TCP_ANONPRIVBIND:
10199 			if ((reterr = secpolicy_net_privaddr(cr, 0,
10200 			    IPPROTO_TCP)) != 0) {
10201 				*outlenp = 0;
10202 				return (reterr);
10203 			}
10204 			if (!checkonly) {
10205 				tcp->tcp_anon_priv_bind = onoff;
10206 			}
10207 			break;
10208 		case TCP_EXCLBIND:
10209 			if (!checkonly)
10210 				tcp->tcp_exclbind = onoff;
10211 			break;	/* goto sizeof (int) option return */
10212 		case TCP_INIT_CWND: {
10213 			uint32_t init_cwnd = *((uint32_t *)invalp);
10214 
10215 			if (checkonly)
10216 				break;
10217 
10218 			/*
10219 			 * Only allow socket with network configuration
10220 			 * privilege to set the initial cwnd to be larger
10221 			 * than allowed by RFC 3390.
10222 			 */
10223 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
10224 				tcp->tcp_init_cwnd = init_cwnd;
10225 				break;
10226 			}
10227 			if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) {
10228 				*outlenp = 0;
10229 				return (reterr);
10230 			}
10231 			if (init_cwnd > TCP_MAX_INIT_CWND) {
10232 				*outlenp = 0;
10233 				return (EINVAL);
10234 			}
10235 			tcp->tcp_init_cwnd = init_cwnd;
10236 			break;
10237 		}
10238 		case TCP_KEEPALIVE_THRESHOLD:
10239 			if (checkonly)
10240 				break;
10241 
10242 			if (*i1 < tcps->tcps_keepalive_interval_low ||
10243 			    *i1 > tcps->tcps_keepalive_interval_high) {
10244 				*outlenp = 0;
10245 				return (EINVAL);
10246 			}
10247 			if (*i1 != tcp->tcp_ka_interval) {
10248 				tcp->tcp_ka_interval = *i1;
10249 				/*
10250 				 * Check if we need to restart the
10251 				 * keepalive timer.
10252 				 */
10253 				if (tcp->tcp_ka_tid != 0) {
10254 					ASSERT(tcp->tcp_ka_enabled);
10255 					(void) TCP_TIMER_CANCEL(tcp,
10256 					    tcp->tcp_ka_tid);
10257 					tcp->tcp_ka_last_intrvl = 0;
10258 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
10259 					    tcp_keepalive_killer,
10260 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
10261 				}
10262 			}
10263 			break;
10264 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10265 			if (!checkonly) {
10266 				if (*i1 <
10267 				    tcps->tcps_keepalive_abort_interval_low ||
10268 				    *i1 >
10269 				    tcps->tcps_keepalive_abort_interval_high) {
10270 					*outlenp = 0;
10271 					return (EINVAL);
10272 				}
10273 				tcp->tcp_ka_abort_thres = *i1;
10274 			}
10275 			break;
10276 		case TCP_CORK:
10277 			if (!checkonly) {
10278 				/*
10279 				 * if tcp->tcp_cork was set and is now
10280 				 * being unset, we have to make sure that
10281 				 * the remaining data gets sent out. Also
10282 				 * unset tcp->tcp_cork so that tcp_wput_data()
10283 				 * can send data even if it is less than mss
10284 				 */
10285 				if (tcp->tcp_cork && onoff == 0 &&
10286 				    tcp->tcp_unsent > 0) {
10287 					tcp->tcp_cork = B_FALSE;
10288 					tcp_wput_data(tcp, NULL, B_FALSE);
10289 				}
10290 				tcp->tcp_cork = onoff;
10291 			}
10292 			break;
10293 		default:
10294 			*outlenp = 0;
10295 			return (EINVAL);
10296 		}
10297 		break;
10298 	case IPPROTO_IP:
10299 		if (tcp->tcp_family != AF_INET) {
10300 			*outlenp = 0;
10301 			return (ENOPROTOOPT);
10302 		}
10303 		switch (name) {
10304 		case IP_OPTIONS:
10305 		case T_IP_OPTIONS:
10306 			reterr = tcp_opt_set_header(tcp, checkonly,
10307 			    invalp, inlen);
10308 			if (reterr) {
10309 				*outlenp = 0;
10310 				return (reterr);
10311 			}
10312 			/* OK return - copy input buffer into output buffer */
10313 			if (invalp != outvalp) {
10314 				/* don't trust bcopy for identical src/dst */
10315 				bcopy(invalp, outvalp, inlen);
10316 			}
10317 			*outlenp = inlen;
10318 			return (0);
10319 		case IP_TOS:
10320 		case T_IP_TOS:
10321 			if (!checkonly) {
10322 				tcp->tcp_ipha->ipha_type_of_service =
10323 				    (uchar_t)*i1;
10324 				tcp->tcp_tos = (uchar_t)*i1;
10325 			}
10326 			break;
10327 		case IP_TTL:
10328 			if (!checkonly) {
10329 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
10330 				tcp->tcp_ttl = (uchar_t)*i1;
10331 			}
10332 			break;
10333 		case IP_BOUND_IF:
10334 		case IP_NEXTHOP:
10335 			/* Handled at the IP level */
10336 			return (-EINVAL);
10337 		case IP_SEC_OPT:
10338 			/*
10339 			 * We should not allow policy setting after
10340 			 * we start listening for connections.
10341 			 */
10342 			if (tcp->tcp_state == TCPS_LISTEN) {
10343 				return (EINVAL);
10344 			} else {
10345 				/* Handled at the IP level */
10346 				return (-EINVAL);
10347 			}
10348 		default:
10349 			*outlenp = 0;
10350 			return (EINVAL);
10351 		}
10352 		break;
10353 	case IPPROTO_IPV6: {
10354 		ip6_pkt_t		*ipp;
10355 
10356 		/*
10357 		 * IPPROTO_IPV6 options are only supported for sockets
10358 		 * that are using IPv6 on the wire.
10359 		 */
10360 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10361 			*outlenp = 0;
10362 			return (ENOPROTOOPT);
10363 		}
10364 		/*
10365 		 * Only sticky options; no ancillary data
10366 		 */
10367 		ipp = &tcp->tcp_sticky_ipp;
10368 
10369 		switch (name) {
10370 		case IPV6_UNICAST_HOPS:
10371 			/* -1 means use default */
10372 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10373 				*outlenp = 0;
10374 				return (EINVAL);
10375 			}
10376 			if (!checkonly) {
10377 				if (*i1 == -1) {
10378 					tcp->tcp_ip6h->ip6_hops =
10379 					    ipp->ipp_unicast_hops =
10380 					    (uint8_t)tcps->tcps_ipv6_hoplimit;
10381 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
10382 					/* Pass modified value to IP. */
10383 					*i1 = tcp->tcp_ip6h->ip6_hops;
10384 				} else {
10385 					tcp->tcp_ip6h->ip6_hops =
10386 					    ipp->ipp_unicast_hops =
10387 					    (uint8_t)*i1;
10388 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
10389 				}
10390 				reterr = tcp_build_hdrs(tcp);
10391 				if (reterr != 0)
10392 					return (reterr);
10393 			}
10394 			break;
10395 		case IPV6_BOUND_IF:
10396 			if (!checkonly) {
10397 				tcp->tcp_bound_if = *i1;
10398 				PASS_OPT_TO_IP(connp);
10399 			}
10400 			break;
10401 		/*
10402 		 * Set boolean switches for ancillary data delivery
10403 		 */
10404 		case IPV6_RECVPKTINFO:
10405 			if (!checkonly) {
10406 				if (onoff)
10407 					tcp->tcp_ipv6_recvancillary |=
10408 					    TCP_IPV6_RECVPKTINFO;
10409 				else
10410 					tcp->tcp_ipv6_recvancillary &=
10411 					    ~TCP_IPV6_RECVPKTINFO;
10412 				/* Force it to be sent up with the next msg */
10413 				tcp->tcp_recvifindex = 0;
10414 				PASS_OPT_TO_IP(connp);
10415 			}
10416 			break;
10417 		case IPV6_RECVTCLASS:
10418 			if (!checkonly) {
10419 				if (onoff)
10420 					tcp->tcp_ipv6_recvancillary |=
10421 					    TCP_IPV6_RECVTCLASS;
10422 				else
10423 					tcp->tcp_ipv6_recvancillary &=
10424 					    ~TCP_IPV6_RECVTCLASS;
10425 				PASS_OPT_TO_IP(connp);
10426 			}
10427 			break;
10428 		case IPV6_RECVHOPLIMIT:
10429 			if (!checkonly) {
10430 				if (onoff)
10431 					tcp->tcp_ipv6_recvancillary |=
10432 					    TCP_IPV6_RECVHOPLIMIT;
10433 				else
10434 					tcp->tcp_ipv6_recvancillary &=
10435 					    ~TCP_IPV6_RECVHOPLIMIT;
10436 				/* Force it to be sent up with the next msg */
10437 				tcp->tcp_recvhops = 0xffffffffU;
10438 				PASS_OPT_TO_IP(connp);
10439 			}
10440 			break;
10441 		case IPV6_RECVHOPOPTS:
10442 			if (!checkonly) {
10443 				if (onoff)
10444 					tcp->tcp_ipv6_recvancillary |=
10445 					    TCP_IPV6_RECVHOPOPTS;
10446 				else
10447 					tcp->tcp_ipv6_recvancillary &=
10448 					    ~TCP_IPV6_RECVHOPOPTS;
10449 				PASS_OPT_TO_IP(connp);
10450 			}
10451 			break;
10452 		case IPV6_RECVDSTOPTS:
10453 			if (!checkonly) {
10454 				if (onoff)
10455 					tcp->tcp_ipv6_recvancillary |=
10456 					    TCP_IPV6_RECVDSTOPTS;
10457 				else
10458 					tcp->tcp_ipv6_recvancillary &=
10459 					    ~TCP_IPV6_RECVDSTOPTS;
10460 				PASS_OPT_TO_IP(connp);
10461 			}
10462 			break;
10463 		case _OLD_IPV6_RECVDSTOPTS:
10464 			if (!checkonly) {
10465 				if (onoff)
10466 					tcp->tcp_ipv6_recvancillary |=
10467 					    TCP_OLD_IPV6_RECVDSTOPTS;
10468 				else
10469 					tcp->tcp_ipv6_recvancillary &=
10470 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10471 			}
10472 			break;
10473 		case IPV6_RECVRTHDR:
10474 			if (!checkonly) {
10475 				if (onoff)
10476 					tcp->tcp_ipv6_recvancillary |=
10477 					    TCP_IPV6_RECVRTHDR;
10478 				else
10479 					tcp->tcp_ipv6_recvancillary &=
10480 					    ~TCP_IPV6_RECVRTHDR;
10481 				PASS_OPT_TO_IP(connp);
10482 			}
10483 			break;
10484 		case IPV6_RECVRTHDRDSTOPTS:
10485 			if (!checkonly) {
10486 				if (onoff)
10487 					tcp->tcp_ipv6_recvancillary |=
10488 					    TCP_IPV6_RECVRTDSTOPTS;
10489 				else
10490 					tcp->tcp_ipv6_recvancillary &=
10491 					    ~TCP_IPV6_RECVRTDSTOPTS;
10492 				PASS_OPT_TO_IP(connp);
10493 			}
10494 			break;
10495 		case IPV6_PKTINFO:
10496 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10497 				return (EINVAL);
10498 			if (checkonly)
10499 				break;
10500 
10501 			if (inlen == 0) {
10502 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10503 			} else {
10504 				struct in6_pktinfo *pkti;
10505 
10506 				pkti = (struct in6_pktinfo *)invalp;
10507 				/*
10508 				 * RFC 3542 states that ipi6_addr must be
10509 				 * the unspecified address when setting the
10510 				 * IPV6_PKTINFO sticky socket option on a
10511 				 * TCP socket.
10512 				 */
10513 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10514 					return (EINVAL);
10515 				/*
10516 				 * IP will validate the source address and
10517 				 * interface index.
10518 				 */
10519 				reterr = ip_set_options(tcp->tcp_connp, level,
10520 				    name, invalp, inlen, cr);
10521 				if (reterr != 0)
10522 					return (reterr);
10523 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10524 				ipp->ipp_addr = pkti->ipi6_addr;
10525 				if (ipp->ipp_ifindex != 0)
10526 					ipp->ipp_fields |= IPPF_IFINDEX;
10527 				else
10528 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10529 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10530 					ipp->ipp_fields |= IPPF_ADDR;
10531 				else
10532 					ipp->ipp_fields &= ~IPPF_ADDR;
10533 			}
10534 			reterr = tcp_build_hdrs(tcp);
10535 			if (reterr != 0)
10536 				return (reterr);
10537 			PASS_OPT_TO_IP(connp);
10538 			break;
10539 		case IPV6_TCLASS:
10540 			if (inlen != 0 && inlen != sizeof (int))
10541 				return (EINVAL);
10542 			if (checkonly)
10543 				break;
10544 
10545 			if (inlen == 0) {
10546 				ipp->ipp_fields &= ~IPPF_TCLASS;
10547 			} else {
10548 				if (*i1 > 255 || *i1 < -1)
10549 					return (EINVAL);
10550 				if (*i1 == -1) {
10551 					ipp->ipp_tclass = 0;
10552 					*i1 = 0;
10553 				} else {
10554 					ipp->ipp_tclass = *i1;
10555 				}
10556 				ipp->ipp_fields |= IPPF_TCLASS;
10557 			}
10558 			reterr = tcp_build_hdrs(tcp);
10559 			if (reterr != 0)
10560 				return (reterr);
10561 			break;
10562 		case IPV6_NEXTHOP:
10563 			/*
10564 			 * IP will verify that the nexthop is reachable
10565 			 * and fail for sticky options.
10566 			 */
10567 			if (inlen != 0 && inlen != sizeof (sin6_t))
10568 				return (EINVAL);
10569 			if (checkonly)
10570 				break;
10571 
10572 			if (inlen == 0) {
10573 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10574 			} else {
10575 				sin6_t *sin6 = (sin6_t *)invalp;
10576 
10577 				if (sin6->sin6_family != AF_INET6)
10578 					return (EAFNOSUPPORT);
10579 				if (IN6_IS_ADDR_V4MAPPED(
10580 				    &sin6->sin6_addr))
10581 					return (EADDRNOTAVAIL);
10582 				ipp->ipp_nexthop = sin6->sin6_addr;
10583 				if (!IN6_IS_ADDR_UNSPECIFIED(
10584 				    &ipp->ipp_nexthop))
10585 					ipp->ipp_fields |= IPPF_NEXTHOP;
10586 				else
10587 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10588 			}
10589 			reterr = tcp_build_hdrs(tcp);
10590 			if (reterr != 0)
10591 				return (reterr);
10592 			PASS_OPT_TO_IP(connp);
10593 			break;
10594 		case IPV6_HOPOPTS: {
10595 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10596 
10597 			/*
10598 			 * Sanity checks - minimum size, size a multiple of
10599 			 * eight bytes, and matching size passed in.
10600 			 */
10601 			if (inlen != 0 &&
10602 			    inlen != (8 * (hopts->ip6h_len + 1)))
10603 				return (EINVAL);
10604 
10605 			if (checkonly)
10606 				break;
10607 
10608 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10609 			    (uchar_t **)&ipp->ipp_hopopts,
10610 			    &ipp->ipp_hopoptslen, tcp->tcp_label_len);
10611 			if (reterr != 0)
10612 				return (reterr);
10613 			if (ipp->ipp_hopoptslen == 0)
10614 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
10615 			else
10616 				ipp->ipp_fields |= IPPF_HOPOPTS;
10617 			reterr = tcp_build_hdrs(tcp);
10618 			if (reterr != 0)
10619 				return (reterr);
10620 			break;
10621 		}
10622 		case IPV6_RTHDRDSTOPTS: {
10623 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10624 
10625 			/*
10626 			 * Sanity checks - minimum size, size a multiple of
10627 			 * eight bytes, and matching size passed in.
10628 			 */
10629 			if (inlen != 0 &&
10630 			    inlen != (8 * (dopts->ip6d_len + 1)))
10631 				return (EINVAL);
10632 
10633 			if (checkonly)
10634 				break;
10635 
10636 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10637 			    (uchar_t **)&ipp->ipp_rtdstopts,
10638 			    &ipp->ipp_rtdstoptslen, 0);
10639 			if (reterr != 0)
10640 				return (reterr);
10641 			if (ipp->ipp_rtdstoptslen == 0)
10642 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
10643 			else
10644 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
10645 			reterr = tcp_build_hdrs(tcp);
10646 			if (reterr != 0)
10647 				return (reterr);
10648 			break;
10649 		}
10650 		case IPV6_DSTOPTS: {
10651 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10652 
10653 			/*
10654 			 * Sanity checks - minimum size, size a multiple of
10655 			 * eight bytes, and matching size passed in.
10656 			 */
10657 			if (inlen != 0 &&
10658 			    inlen != (8 * (dopts->ip6d_len + 1)))
10659 				return (EINVAL);
10660 
10661 			if (checkonly)
10662 				break;
10663 
10664 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10665 			    (uchar_t **)&ipp->ipp_dstopts,
10666 			    &ipp->ipp_dstoptslen, 0);
10667 			if (reterr != 0)
10668 				return (reterr);
10669 			if (ipp->ipp_dstoptslen == 0)
10670 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
10671 			else
10672 				ipp->ipp_fields |= IPPF_DSTOPTS;
10673 			reterr = tcp_build_hdrs(tcp);
10674 			if (reterr != 0)
10675 				return (reterr);
10676 			break;
10677 		}
10678 		case IPV6_RTHDR: {
10679 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
10680 
10681 			/*
10682 			 * Sanity checks - minimum size, size a multiple of
10683 			 * eight bytes, and matching size passed in.
10684 			 */
10685 			if (inlen != 0 &&
10686 			    inlen != (8 * (rt->ip6r_len + 1)))
10687 				return (EINVAL);
10688 
10689 			if (checkonly)
10690 				break;
10691 
10692 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10693 			    (uchar_t **)&ipp->ipp_rthdr,
10694 			    &ipp->ipp_rthdrlen, 0);
10695 			if (reterr != 0)
10696 				return (reterr);
10697 			if (ipp->ipp_rthdrlen == 0)
10698 				ipp->ipp_fields &= ~IPPF_RTHDR;
10699 			else
10700 				ipp->ipp_fields |= IPPF_RTHDR;
10701 			reterr = tcp_build_hdrs(tcp);
10702 			if (reterr != 0)
10703 				return (reterr);
10704 			break;
10705 		}
10706 		case IPV6_V6ONLY:
10707 			if (!checkonly) {
10708 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
10709 			}
10710 			break;
10711 		case IPV6_USE_MIN_MTU:
10712 			if (inlen != sizeof (int))
10713 				return (EINVAL);
10714 
10715 			if (*i1 < -1 || *i1 > 1)
10716 				return (EINVAL);
10717 
10718 			if (checkonly)
10719 				break;
10720 
10721 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
10722 			ipp->ipp_use_min_mtu = *i1;
10723 			break;
10724 		case IPV6_BOUND_PIF:
10725 			/* Handled at the IP level */
10726 			return (-EINVAL);
10727 		case IPV6_SEC_OPT:
10728 			/*
10729 			 * We should not allow policy setting after
10730 			 * we start listening for connections.
10731 			 */
10732 			if (tcp->tcp_state == TCPS_LISTEN) {
10733 				return (EINVAL);
10734 			} else {
10735 				/* Handled at the IP level */
10736 				return (-EINVAL);
10737 			}
10738 		case IPV6_SRC_PREFERENCES:
10739 			if (inlen != sizeof (uint32_t))
10740 				return (EINVAL);
10741 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
10742 			    *(uint32_t *)invalp);
10743 			if (reterr != 0) {
10744 				*outlenp = 0;
10745 				return (reterr);
10746 			}
10747 			break;
10748 		default:
10749 			*outlenp = 0;
10750 			return (EINVAL);
10751 		}
10752 		break;
10753 	}		/* end IPPROTO_IPV6 */
10754 	default:
10755 		*outlenp = 0;
10756 		return (EINVAL);
10757 	}
10758 	/*
10759 	 * Common case of OK return with outval same as inval
10760 	 */
10761 	if (invalp != outvalp) {
10762 		/* don't trust bcopy for identical src/dst */
10763 		(void) bcopy(invalp, outvalp, inlen);
10764 	}
10765 	*outlenp = inlen;
10766 	return (0);
10767 }
10768 
10769 /* ARGSUSED */
10770 int
10771 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name,
10772     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
10773     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
10774 {
10775 	conn_t	*connp =  Q_TO_CONN(q);
10776 
10777 	return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp,
10778 	    outlenp, outvalp, thisdg_attrs, cr));
10779 }
10780 
10781 int
10782 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
10783     const void *optvalp, socklen_t optlen, cred_t *cr)
10784 {
10785 	conn_t		*connp = (conn_t *)proto_handle;
10786 	squeue_t	*sqp = connp->conn_sqp;
10787 	int		error;
10788 
10789 	/*
10790 	 * Entering the squeue synchronously can result in a context switch,
10791 	 * which can cause a rather sever performance degradation. So we try to
10792 	 * handle whatever options we can without entering the squeue.
10793 	 */
10794 	if (level == IPPROTO_TCP) {
10795 		switch (option_name) {
10796 		case TCP_NODELAY:
10797 			if (optlen != sizeof (int32_t))
10798 				return (EINVAL);
10799 			mutex_enter(&connp->conn_tcp->tcp_non_sq_lock);
10800 			connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 :
10801 			    connp->conn_tcp->tcp_mss;
10802 			mutex_exit(&connp->conn_tcp->tcp_non_sq_lock);
10803 			return (0);
10804 		default:
10805 			break;
10806 		}
10807 	}
10808 
10809 	error = squeue_synch_enter(sqp, connp, 0);
10810 	if (error == ENOMEM) {
10811 		return (ENOMEM);
10812 	}
10813 
10814 	error = proto_opt_check(level, option_name, optlen, NULL,
10815 	    tcp_opt_obj.odb_opt_des_arr,
10816 	    tcp_opt_obj.odb_opt_arr_cnt,
10817 	    tcp_opt_obj.odb_topmost_tpiprovider,
10818 	    B_TRUE, B_FALSE, cr);
10819 
10820 	if (error != 0) {
10821 		if (error < 0) {
10822 			error = proto_tlitosyserr(-error);
10823 		}
10824 		squeue_synch_exit(sqp, connp);
10825 		return (error);
10826 	}
10827 
10828 	error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name,
10829 	    optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp,
10830 	    NULL, cr);
10831 	squeue_synch_exit(sqp, connp);
10832 
10833 	if (error < 0) {
10834 		/*
10835 		 * Pass on to ip
10836 		 */
10837 		error = ip_set_options(connp, level, option_name, optvalp,
10838 		    optlen, cr);
10839 	}
10840 	return (error);
10841 }
10842 
10843 /*
10844  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
10845  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
10846  * headers, and the maximum size tcp header (to avoid reallocation
10847  * on the fly for additional tcp options).
10848  * Returns failure if can't allocate memory.
10849  */
10850 static int
10851 tcp_build_hdrs(tcp_t *tcp)
10852 {
10853 	char	*hdrs;
10854 	uint_t	hdrs_len;
10855 	ip6i_t	*ip6i;
10856 	char	buf[TCP_MAX_HDR_LENGTH];
10857 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
10858 	in6_addr_t src, dst;
10859 	tcp_stack_t	*tcps = tcp->tcp_tcps;
10860 	conn_t *connp = tcp->tcp_connp;
10861 
10862 	/*
10863 	 * save the existing tcp header and source/dest IP addresses
10864 	 */
10865 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
10866 	src = tcp->tcp_ip6h->ip6_src;
10867 	dst = tcp->tcp_ip6h->ip6_dst;
10868 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
10869 	ASSERT(hdrs_len != 0);
10870 	if (hdrs_len > tcp->tcp_iphc_len) {
10871 		/* Need to reallocate */
10872 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
10873 		if (hdrs == NULL)
10874 			return (ENOMEM);
10875 		if (tcp->tcp_iphc != NULL) {
10876 			if (tcp->tcp_hdr_grown) {
10877 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
10878 			} else {
10879 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
10880 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
10881 			}
10882 			tcp->tcp_iphc_len = 0;
10883 		}
10884 		ASSERT(tcp->tcp_iphc_len == 0);
10885 		tcp->tcp_iphc = hdrs;
10886 		tcp->tcp_iphc_len = hdrs_len;
10887 		tcp->tcp_hdr_grown = B_TRUE;
10888 	}
10889 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
10890 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
10891 
10892 	/* Set header fields not in ipp */
10893 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
10894 		ip6i = (ip6i_t *)tcp->tcp_iphc;
10895 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
10896 	} else {
10897 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
10898 	}
10899 	/*
10900 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
10901 	 *
10902 	 * tcp->tcp_tcp_hdr_len doesn't change here.
10903 	 */
10904 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
10905 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
10906 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
10907 
10908 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
10909 
10910 	tcp->tcp_ip6h->ip6_src = src;
10911 	tcp->tcp_ip6h->ip6_dst = dst;
10912 
10913 	/*
10914 	 * If the hop limit was not set by ip_build_hdrs_v6(), set it to
10915 	 * the default value for TCP.
10916 	 */
10917 	if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS))
10918 		tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit;
10919 
10920 	/*
10921 	 * If we're setting extension headers after a connection
10922 	 * has been established, and if we have a routing header
10923 	 * among the extension headers, call ip_massage_options_v6 to
10924 	 * manipulate the routing header/ip6_dst set the checksum
10925 	 * difference in the tcp header template.
10926 	 * (This happens in tcp_connect_ipv6 if the routing header
10927 	 * is set prior to the connect.)
10928 	 * Set the tcp_sum to zero first in case we've cleared a
10929 	 * routing header or don't have one at all.
10930 	 */
10931 	tcp->tcp_sum = 0;
10932 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
10933 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
10934 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
10935 		    (uint8_t *)tcp->tcp_tcph);
10936 		if (rth != NULL) {
10937 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
10938 			    rth, tcps->tcps_netstack);
10939 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
10940 			    (tcp->tcp_sum >> 16));
10941 		}
10942 	}
10943 
10944 	/* Try to get everything in a single mblk */
10945 	(void) proto_set_tx_wroff(tcp->tcp_rq, connp,
10946 	    hdrs_len + tcps->tcps_wroff_xtra);
10947 	return (0);
10948 }
10949 
10950 /*
10951  * Transfer any source route option from ipha to buf/dst in reversed form.
10952  */
10953 static int
10954 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
10955 {
10956 	ipoptp_t	opts;
10957 	uchar_t		*opt;
10958 	uint8_t		optval;
10959 	uint8_t		optlen;
10960 	uint32_t	len = 0;
10961 
10962 	for (optval = ipoptp_first(&opts, ipha);
10963 	    optval != IPOPT_EOL;
10964 	    optval = ipoptp_next(&opts)) {
10965 		opt = opts.ipoptp_cur;
10966 		optlen = opts.ipoptp_len;
10967 		switch (optval) {
10968 			int	off1, off2;
10969 		case IPOPT_SSRR:
10970 		case IPOPT_LSRR:
10971 
10972 			/* Reverse source route */
10973 			/*
10974 			 * First entry should be the next to last one in the
10975 			 * current source route (the last entry is our
10976 			 * address.)
10977 			 * The last entry should be the final destination.
10978 			 */
10979 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
10980 			buf[IPOPT_OLEN] = (uint8_t)optlen;
10981 			off1 = IPOPT_MINOFF_SR - 1;
10982 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
10983 			if (off2 < 0) {
10984 				/* No entries in source route */
10985 				break;
10986 			}
10987 			bcopy(opt + off2, dst, IP_ADDR_LEN);
10988 			/*
10989 			 * Note: use src since ipha has not had its src
10990 			 * and dst reversed (it is in the state it was
10991 			 * received.
10992 			 */
10993 			bcopy(&ipha->ipha_src, buf + off2,
10994 			    IP_ADDR_LEN);
10995 			off2 -= IP_ADDR_LEN;
10996 
10997 			while (off2 > 0) {
10998 				bcopy(opt + off2, buf + off1,
10999 				    IP_ADDR_LEN);
11000 				off1 += IP_ADDR_LEN;
11001 				off2 -= IP_ADDR_LEN;
11002 			}
11003 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
11004 			buf += optlen;
11005 			len += optlen;
11006 			break;
11007 		}
11008 	}
11009 done:
11010 	/* Pad the resulting options */
11011 	while (len & 0x3) {
11012 		*buf++ = IPOPT_EOL;
11013 		len++;
11014 	}
11015 	return (len);
11016 }
11017 
11018 
11019 /*
11020  * Extract and revert a source route from ipha (if any)
11021  * and then update the relevant fields in both tcp_t and the standard header.
11022  */
11023 static void
11024 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
11025 {
11026 	char	buf[TCP_MAX_HDR_LENGTH];
11027 	uint_t	tcph_len;
11028 	int	len;
11029 
11030 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
11031 	len = IPH_HDR_LENGTH(ipha);
11032 	if (len == IP_SIMPLE_HDR_LENGTH)
11033 		/* Nothing to do */
11034 		return;
11035 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
11036 	    (len & 0x3))
11037 		return;
11038 
11039 	tcph_len = tcp->tcp_tcp_hdr_len;
11040 	bcopy(tcp->tcp_tcph, buf, tcph_len);
11041 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
11042 	    (tcp->tcp_ipha->ipha_dst & 0xffff);
11043 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
11044 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
11045 	len += IP_SIMPLE_HDR_LENGTH;
11046 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
11047 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
11048 	if ((int)tcp->tcp_sum < 0)
11049 		tcp->tcp_sum--;
11050 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
11051 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
11052 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
11053 	bcopy(buf, tcp->tcp_tcph, tcph_len);
11054 	tcp->tcp_ip_hdr_len = len;
11055 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11056 	    (IP_VERSION << 4) | (len >> 2);
11057 	len += tcph_len;
11058 	tcp->tcp_hdr_len = len;
11059 }
11060 
11061 /*
11062  * Copy the standard header into its new location,
11063  * lay in the new options and then update the relevant
11064  * fields in both tcp_t and the standard header.
11065  */
11066 static int
11067 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
11068 {
11069 	uint_t	tcph_len;
11070 	uint8_t	*ip_optp;
11071 	tcph_t	*new_tcph;
11072 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11073 	conn_t	*connp = tcp->tcp_connp;
11074 
11075 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
11076 		return (EINVAL);
11077 
11078 	if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len)
11079 		return (EINVAL);
11080 
11081 	if (checkonly) {
11082 		/*
11083 		 * do not really set, just pretend to - T_CHECK
11084 		 */
11085 		return (0);
11086 	}
11087 
11088 	ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
11089 	if (tcp->tcp_label_len > 0) {
11090 		int padlen;
11091 		uint8_t opt;
11092 
11093 		/* convert list termination to no-ops */
11094 		padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN];
11095 		ip_optp += ip_optp[IPOPT_OLEN];
11096 		opt = len > 0 ? IPOPT_NOP : IPOPT_EOL;
11097 		while (--padlen >= 0)
11098 			*ip_optp++ = opt;
11099 	}
11100 	tcph_len = tcp->tcp_tcp_hdr_len;
11101 	new_tcph = (tcph_t *)(ip_optp + len);
11102 	ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len);
11103 	tcp->tcp_tcph = new_tcph;
11104 	bcopy(ptr, ip_optp, len);
11105 
11106 	len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len;
11107 
11108 	tcp->tcp_ip_hdr_len = len;
11109 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11110 	    (IP_VERSION << 4) | (len >> 2);
11111 	tcp->tcp_hdr_len = len + tcph_len;
11112 	if (!TCP_IS_DETACHED(tcp)) {
11113 		/* Always allocate room for all options. */
11114 		(void) proto_set_tx_wroff(tcp->tcp_rq, connp,
11115 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra);
11116 	}
11117 	return (0);
11118 }
11119 
11120 /* Get callback routine passed to nd_load by tcp_param_register */
11121 /* ARGSUSED */
11122 static int
11123 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
11124 {
11125 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11126 
11127 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
11128 	return (0);
11129 }
11130 
11131 /*
11132  * Walk through the param array specified registering each element with the
11133  * named dispatch handler.
11134  */
11135 static boolean_t
11136 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps)
11137 {
11138 	for (; cnt-- > 0; tcppa++) {
11139 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
11140 			if (!nd_load(ndp, tcppa->tcp_param_name,
11141 			    tcp_param_get, tcp_param_set,
11142 			    (caddr_t)tcppa)) {
11143 				nd_free(ndp);
11144 				return (B_FALSE);
11145 			}
11146 		}
11147 	}
11148 	tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t),
11149 	    KM_SLEEP);
11150 	bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param,
11151 	    sizeof (tcpparam_t));
11152 	if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name,
11153 	    tcp_param_get, tcp_param_set_aligned,
11154 	    (caddr_t)tcps->tcps_wroff_xtra_param)) {
11155 		nd_free(ndp);
11156 		return (B_FALSE);
11157 	}
11158 	tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t),
11159 	    KM_SLEEP);
11160 	bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param,
11161 	    sizeof (tcpparam_t));
11162 	if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name,
11163 	    tcp_param_get, tcp_param_set_aligned,
11164 	    (caddr_t)tcps->tcps_mdt_head_param)) {
11165 		nd_free(ndp);
11166 		return (B_FALSE);
11167 	}
11168 	tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t),
11169 	    KM_SLEEP);
11170 	bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param,
11171 	    sizeof (tcpparam_t));
11172 	if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name,
11173 	    tcp_param_get, tcp_param_set_aligned,
11174 	    (caddr_t)tcps->tcps_mdt_tail_param)) {
11175 		nd_free(ndp);
11176 		return (B_FALSE);
11177 	}
11178 	tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t),
11179 	    KM_SLEEP);
11180 	bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param,
11181 	    sizeof (tcpparam_t));
11182 	if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name,
11183 	    tcp_param_get, tcp_param_set_aligned,
11184 	    (caddr_t)tcps->tcps_mdt_max_pbufs_param)) {
11185 		nd_free(ndp);
11186 		return (B_FALSE);
11187 	}
11188 	if (!nd_load(ndp, "tcp_extra_priv_ports",
11189 	    tcp_extra_priv_ports_get, NULL, NULL)) {
11190 		nd_free(ndp);
11191 		return (B_FALSE);
11192 	}
11193 	if (!nd_load(ndp, "tcp_extra_priv_ports_add",
11194 	    NULL, tcp_extra_priv_ports_add, NULL)) {
11195 		nd_free(ndp);
11196 		return (B_FALSE);
11197 	}
11198 	if (!nd_load(ndp, "tcp_extra_priv_ports_del",
11199 	    NULL, tcp_extra_priv_ports_del, NULL)) {
11200 		nd_free(ndp);
11201 		return (B_FALSE);
11202 	}
11203 	if (!nd_load(ndp, "tcp_status", tcp_status_report, NULL,
11204 	    NULL)) {
11205 		nd_free(ndp);
11206 		return (B_FALSE);
11207 	}
11208 	if (!nd_load(ndp, "tcp_bind_hash", tcp_bind_hash_report,
11209 	    NULL, NULL)) {
11210 		nd_free(ndp);
11211 		return (B_FALSE);
11212 	}
11213 	if (!nd_load(ndp, "tcp_listen_hash",
11214 	    tcp_listen_hash_report, NULL, NULL)) {
11215 		nd_free(ndp);
11216 		return (B_FALSE);
11217 	}
11218 	if (!nd_load(ndp, "tcp_conn_hash", tcp_conn_hash_report,
11219 	    NULL, NULL)) {
11220 		nd_free(ndp);
11221 		return (B_FALSE);
11222 	}
11223 	if (!nd_load(ndp, "tcp_acceptor_hash",
11224 	    tcp_acceptor_hash_report, NULL, NULL)) {
11225 		nd_free(ndp);
11226 		return (B_FALSE);
11227 	}
11228 	if (!nd_load(ndp, "tcp_1948_phrase", NULL,
11229 	    tcp_1948_phrase_set, NULL)) {
11230 		nd_free(ndp);
11231 		return (B_FALSE);
11232 	}
11233 	/*
11234 	 * Dummy ndd variables - only to convey obsolescence information
11235 	 * through printing of their name (no get or set routines)
11236 	 * XXX Remove in future releases ?
11237 	 */
11238 	if (!nd_load(ndp,
11239 	    "tcp_close_wait_interval(obsoleted - "
11240 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
11241 		nd_free(ndp);
11242 		return (B_FALSE);
11243 	}
11244 	return (B_TRUE);
11245 }
11246 
11247 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
11248 /* ARGSUSED */
11249 static int
11250 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
11251     cred_t *cr)
11252 {
11253 	long new_value;
11254 	tcpparam_t *tcppa = (tcpparam_t *)cp;
11255 
11256 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11257 	    new_value < tcppa->tcp_param_min ||
11258 	    new_value > tcppa->tcp_param_max) {
11259 		return (EINVAL);
11260 	}
11261 	/*
11262 	 * Need to make sure new_value is a multiple of 4.  If it is not,
11263 	 * round it up.  For future 64 bit requirement, we actually make it
11264 	 * a multiple of 8.
11265 	 */
11266 	if (new_value & 0x7) {
11267 		new_value = (new_value & ~0x7) + 0x8;
11268 	}
11269 	tcppa->tcp_param_val = new_value;
11270 	return (0);
11271 }
11272 
11273 /* Set callback routine passed to nd_load by tcp_param_register */
11274 /* ARGSUSED */
11275 static int
11276 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
11277 {
11278 	long	new_value;
11279 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11280 
11281 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11282 	    new_value < tcppa->tcp_param_min ||
11283 	    new_value > tcppa->tcp_param_max) {
11284 		return (EINVAL);
11285 	}
11286 	tcppa->tcp_param_val = new_value;
11287 	return (0);
11288 }
11289 
11290 /*
11291  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
11292  * is filled, return as much as we can.  The message passed in may be
11293  * multi-part, chained using b_cont.  "start" is the starting sequence
11294  * number for this piece.
11295  */
11296 static mblk_t *
11297 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
11298 {
11299 	uint32_t	end;
11300 	mblk_t		*mp1;
11301 	mblk_t		*mp2;
11302 	mblk_t		*next_mp;
11303 	uint32_t	u1;
11304 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11305 
11306 	/* Walk through all the new pieces. */
11307 	do {
11308 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11309 		    (uintptr_t)INT_MAX);
11310 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11311 		next_mp = mp->b_cont;
11312 		if (start == end) {
11313 			/* Empty.  Blast it. */
11314 			freeb(mp);
11315 			continue;
11316 		}
11317 		mp->b_cont = NULL;
11318 		TCP_REASS_SET_SEQ(mp, start);
11319 		TCP_REASS_SET_END(mp, end);
11320 		mp1 = tcp->tcp_reass_tail;
11321 		if (!mp1) {
11322 			tcp->tcp_reass_tail = mp;
11323 			tcp->tcp_reass_head = mp;
11324 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11325 			UPDATE_MIB(&tcps->tcps_mib,
11326 			    tcpInDataUnorderBytes, end - start);
11327 			continue;
11328 		}
11329 		/* New stuff completely beyond tail? */
11330 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11331 			/* Link it on end. */
11332 			mp1->b_cont = mp;
11333 			tcp->tcp_reass_tail = mp;
11334 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11335 			UPDATE_MIB(&tcps->tcps_mib,
11336 			    tcpInDataUnorderBytes, end - start);
11337 			continue;
11338 		}
11339 		mp1 = tcp->tcp_reass_head;
11340 		u1 = TCP_REASS_SEQ(mp1);
11341 		/* New stuff at the front? */
11342 		if (SEQ_LT(start, u1)) {
11343 			/* Yes... Check for overlap. */
11344 			mp->b_cont = mp1;
11345 			tcp->tcp_reass_head = mp;
11346 			tcp_reass_elim_overlap(tcp, mp);
11347 			continue;
11348 		}
11349 		/*
11350 		 * The new piece fits somewhere between the head and tail.
11351 		 * We find our slot, where mp1 precedes us and mp2 trails.
11352 		 */
11353 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11354 			u1 = TCP_REASS_SEQ(mp2);
11355 			if (SEQ_LEQ(start, u1))
11356 				break;
11357 		}
11358 		/* Link ourselves in */
11359 		mp->b_cont = mp2;
11360 		mp1->b_cont = mp;
11361 
11362 		/* Trim overlap with following mblk(s) first */
11363 		tcp_reass_elim_overlap(tcp, mp);
11364 
11365 		/* Trim overlap with preceding mblk */
11366 		tcp_reass_elim_overlap(tcp, mp1);
11367 
11368 	} while (start = end, mp = next_mp);
11369 	mp1 = tcp->tcp_reass_head;
11370 	/* Anything ready to go? */
11371 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11372 		return (NULL);
11373 	/* Eat what we can off the queue */
11374 	for (;;) {
11375 		mp = mp1->b_cont;
11376 		end = TCP_REASS_END(mp1);
11377 		TCP_REASS_SET_SEQ(mp1, 0);
11378 		TCP_REASS_SET_END(mp1, 0);
11379 		if (!mp) {
11380 			tcp->tcp_reass_tail = NULL;
11381 			break;
11382 		}
11383 		if (end != TCP_REASS_SEQ(mp)) {
11384 			mp1->b_cont = NULL;
11385 			break;
11386 		}
11387 		mp1 = mp;
11388 	}
11389 	mp1 = tcp->tcp_reass_head;
11390 	tcp->tcp_reass_head = mp;
11391 	return (mp1);
11392 }
11393 
11394 /* Eliminate any overlap that mp may have over later mblks */
11395 static void
11396 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11397 {
11398 	uint32_t	end;
11399 	mblk_t		*mp1;
11400 	uint32_t	u1;
11401 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11402 
11403 	end = TCP_REASS_END(mp);
11404 	while ((mp1 = mp->b_cont) != NULL) {
11405 		u1 = TCP_REASS_SEQ(mp1);
11406 		if (!SEQ_GT(end, u1))
11407 			break;
11408 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11409 			mp->b_wptr -= end - u1;
11410 			TCP_REASS_SET_END(mp, u1);
11411 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs);
11412 			UPDATE_MIB(&tcps->tcps_mib,
11413 			    tcpInDataPartDupBytes, end - u1);
11414 			break;
11415 		}
11416 		mp->b_cont = mp1->b_cont;
11417 		TCP_REASS_SET_SEQ(mp1, 0);
11418 		TCP_REASS_SET_END(mp1, 0);
11419 		freeb(mp1);
11420 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
11421 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1);
11422 	}
11423 	if (!mp1)
11424 		tcp->tcp_reass_tail = mp;
11425 }
11426 
11427 static uint_t
11428 tcp_rwnd_reopen(tcp_t *tcp)
11429 {
11430 	uint_t ret = 0;
11431 	uint_t thwin;
11432 
11433 	/* Learn the latest rwnd information that we sent to the other side. */
11434 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11435 	    << tcp->tcp_rcv_ws;
11436 	/* This is peer's calculated send window (our receive window). */
11437 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11438 	/*
11439 	 * Increase the receive window to max.  But we need to do receiver
11440 	 * SWS avoidance.  This means that we need to check the increase of
11441 	 * of receive window is at least 1 MSS.
11442 	 */
11443 	if (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss) {
11444 		/*
11445 		 * If the window that the other side knows is less than max
11446 		 * deferred acks segments, send an update immediately.
11447 		 */
11448 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11449 			BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate);
11450 			ret = TH_ACK_NEEDED;
11451 		}
11452 		tcp->tcp_rwnd = tcp->tcp_recv_hiwater;
11453 	}
11454 	return (ret);
11455 }
11456 
11457 /*
11458  * Send up all messages queued on tcp_rcv_list.
11459  */
11460 static uint_t
11461 tcp_rcv_drain(tcp_t *tcp)
11462 {
11463 	mblk_t *mp;
11464 	uint_t ret = 0;
11465 #ifdef DEBUG
11466 	uint_t cnt = 0;
11467 #endif
11468 	queue_t	*q = tcp->tcp_rq;
11469 
11470 	/* Can't drain on an eager connection */
11471 	if (tcp->tcp_listener != NULL)
11472 		return (ret);
11473 
11474 	/* Can't be a non-STREAMS connection or sodirect enabled */
11475 	ASSERT((!IPCL_IS_NONSTR(tcp->tcp_connp)) && SOD_NOT_ENABLED(tcp));
11476 
11477 	/* No need for the push timer now. */
11478 	if (tcp->tcp_push_tid != 0) {
11479 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11480 		tcp->tcp_push_tid = 0;
11481 	}
11482 
11483 	/*
11484 	 * Handle two cases here: we are currently fused or we were
11485 	 * previously fused and have some urgent data to be delivered
11486 	 * upstream.  The latter happens because we either ran out of
11487 	 * memory or were detached and therefore sending the SIGURG was
11488 	 * deferred until this point.  In either case we pass control
11489 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11490 	 * some work.
11491 	 */
11492 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11493 		ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) ||
11494 		    tcp->tcp_fused_sigurg_mp != NULL);
11495 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11496 		    &tcp->tcp_fused_sigurg_mp))
11497 			return (ret);
11498 	}
11499 
11500 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11501 		tcp->tcp_rcv_list = mp->b_next;
11502 		mp->b_next = NULL;
11503 #ifdef DEBUG
11504 		cnt += msgdsize(mp);
11505 #endif
11506 		/* Does this need SSL processing first? */
11507 		if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) {
11508 			DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain,
11509 			    mblk_t *, mp);
11510 			tcp_kssl_input(tcp, mp);
11511 			continue;
11512 		}
11513 		putnext(q, mp);
11514 	}
11515 #ifdef DEBUG
11516 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11517 #endif
11518 	tcp->tcp_rcv_last_head = NULL;
11519 	tcp->tcp_rcv_last_tail = NULL;
11520 	tcp->tcp_rcv_cnt = 0;
11521 
11522 	if (canputnext(q))
11523 		return (tcp_rwnd_reopen(tcp));
11524 
11525 	return (ret);
11526 }
11527 
11528 /*
11529  * Queue data on tcp_rcv_list which is a b_next chain.
11530  * tcp_rcv_last_head/tail is the last element of this chain.
11531  * Each element of the chain is a b_cont chain.
11532  *
11533  * M_DATA messages are added to the current element.
11534  * Other messages are added as new (b_next) elements.
11535  */
11536 void
11537 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11538 {
11539 	ASSERT(seg_len == msgdsize(mp));
11540 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11541 
11542 	if (tcp->tcp_rcv_list == NULL) {
11543 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11544 		tcp->tcp_rcv_list = mp;
11545 		tcp->tcp_rcv_last_head = mp;
11546 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11547 		tcp->tcp_rcv_last_tail->b_cont = mp;
11548 	} else {
11549 		tcp->tcp_rcv_last_head->b_next = mp;
11550 		tcp->tcp_rcv_last_head = mp;
11551 	}
11552 
11553 	while (mp->b_cont)
11554 		mp = mp->b_cont;
11555 
11556 	tcp->tcp_rcv_last_tail = mp;
11557 	tcp->tcp_rcv_cnt += seg_len;
11558 	tcp->tcp_rwnd -= seg_len;
11559 }
11560 
11561 /*
11562  * The tcp_rcv_sod_XXX() functions enqueue data directly to the socket
11563  * above, in addition when uioa is enabled schedule an asynchronous uio
11564  * prior to enqueuing. They implement the combinhed semantics of the
11565  * tcp_rcv_XXX() functions, tcp_rcv_list push logic, and STREAMS putnext()
11566  * canputnext(), i.e. flow-control with backenable.
11567  *
11568  * tcp_sod_wakeup() is called where tcp_rcv_drain() would be called in the
11569  * non sodirect connection but as there are no tcp_tcv_list mblk_t's we deal
11570  * with the rcv_wnd and push timer and call the sodirect wakeup function.
11571  *
11572  * Must be called with sodp->sod_lockp held and will return with the lock
11573  * released.
11574  */
11575 static uint_t
11576 tcp_rcv_sod_wakeup(tcp_t *tcp, sodirect_t *sodp)
11577 {
11578 	queue_t		*q = tcp->tcp_rq;
11579 	uint_t		thwin;
11580 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11581 	uint_t		ret = 0;
11582 
11583 	/* Can't be an eager connection */
11584 	ASSERT(tcp->tcp_listener == NULL);
11585 
11586 	/* Caller must have lock held */
11587 	ASSERT(MUTEX_HELD(sodp->sod_lockp));
11588 
11589 	/* Sodirect mode so must not be a tcp_rcv_list */
11590 	ASSERT(tcp->tcp_rcv_list == NULL);
11591 
11592 	if (SOD_QFULL(sodp)) {
11593 		/* Q is full, mark Q for need backenable */
11594 		SOD_QSETBE(sodp);
11595 	}
11596 	/* Last advertised rwnd, i.e. rwnd last sent in a packet */
11597 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11598 	    << tcp->tcp_rcv_ws;
11599 	/* This is peer's calculated send window (our available rwnd). */
11600 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11601 	/*
11602 	 * Increase the receive window to max.  But we need to do receiver
11603 	 * SWS avoidance.  This means that we need to check the increase of
11604 	 * of receive window is at least 1 MSS.
11605 	 */
11606 	if (!SOD_QFULL(sodp) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11607 		/*
11608 		 * If the window that the other side knows is less than max
11609 		 * deferred acks segments, send an update immediately.
11610 		 */
11611 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11612 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
11613 			ret = TH_ACK_NEEDED;
11614 		}
11615 		tcp->tcp_rwnd = q->q_hiwat;
11616 	}
11617 
11618 	if (!SOD_QEMPTY(sodp)) {
11619 		/* Wakeup to socket */
11620 		sodp->sod_state &= SOD_WAKE_CLR;
11621 		sodp->sod_state |= SOD_WAKE_DONE;
11622 		(sodp->sod_wakeup)(sodp);
11623 		/* wakeup() does the mutex_ext() */
11624 	} else {
11625 		/* Q is empty, no need to wake */
11626 		sodp->sod_state &= SOD_WAKE_CLR;
11627 		sodp->sod_state |= SOD_WAKE_NOT;
11628 		mutex_exit(sodp->sod_lockp);
11629 	}
11630 
11631 	/* No need for the push timer now. */
11632 	if (tcp->tcp_push_tid != 0) {
11633 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11634 		tcp->tcp_push_tid = 0;
11635 	}
11636 
11637 	return (ret);
11638 }
11639 
11640 /*
11641  * Called where tcp_rcv_enqueue()/putnext(RD(q)) would be. For M_DATA
11642  * mblk_t's if uioa enabled then start a uioa asynchronous copy directly
11643  * to the user-land buffer and flag the mblk_t as such.
11644  *
11645  * Also, handle tcp_rwnd.
11646  */
11647 uint_t
11648 tcp_rcv_sod_enqueue(tcp_t *tcp, sodirect_t *sodp, mblk_t *mp, uint_t seg_len)
11649 {
11650 	uioa_t		*uioap = &sodp->sod_uioa;
11651 	boolean_t	qfull;
11652 	uint_t		thwin;
11653 
11654 	/* Can't be an eager connection */
11655 	ASSERT(tcp->tcp_listener == NULL);
11656 
11657 	/* Caller must have lock held */
11658 	ASSERT(MUTEX_HELD(sodp->sod_lockp));
11659 
11660 	/* Sodirect mode so must not be a tcp_rcv_list */
11661 	ASSERT(tcp->tcp_rcv_list == NULL);
11662 
11663 	/* Passed in segment length must be equal to mblk_t chain data size */
11664 	ASSERT(seg_len == msgdsize(mp));
11665 
11666 	if (DB_TYPE(mp) != M_DATA) {
11667 		/* Only process M_DATA mblk_t's */
11668 		goto enq;
11669 	}
11670 	if (uioap->uioa_state & UIOA_ENABLED) {
11671 		/* Uioa is enabled */
11672 		mblk_t		*mp1 = mp;
11673 		mblk_t		*lmp = NULL;
11674 
11675 		if (seg_len > uioap->uio_resid) {
11676 			/*
11677 			 * There isn't enough uio space for the mblk_t chain
11678 			 * so disable uioa such that this and any additional
11679 			 * mblk_t data is handled by the socket and schedule
11680 			 * the socket for wakeup to finish this uioa.
11681 			 */
11682 			uioap->uioa_state &= UIOA_CLR;
11683 			uioap->uioa_state |= UIOA_FINI;
11684 			if (sodp->sod_state & SOD_WAKE_NOT) {
11685 				sodp->sod_state &= SOD_WAKE_CLR;
11686 				sodp->sod_state |= SOD_WAKE_NEED;
11687 			}
11688 			goto enq;
11689 		}
11690 		do {
11691 			uint32_t	len = MBLKL(mp1);
11692 
11693 			if (!uioamove(mp1->b_rptr, len, UIO_READ, uioap)) {
11694 				/* Scheduled, mark dblk_t as such */
11695 				DB_FLAGS(mp1) |= DBLK_UIOA;
11696 			} else {
11697 				/* Error, turn off async processing */
11698 				uioap->uioa_state &= UIOA_CLR;
11699 				uioap->uioa_state |= UIOA_FINI;
11700 				break;
11701 			}
11702 			lmp = mp1;
11703 		} while ((mp1 = mp1->b_cont) != NULL);
11704 
11705 		if (mp1 != NULL || uioap->uio_resid == 0) {
11706 			/*
11707 			 * Not all mblk_t(s) uioamoved (error) or all uio
11708 			 * space has been consumed so schedule the socket
11709 			 * for wakeup to finish this uio.
11710 			 */
11711 			sodp->sod_state &= SOD_WAKE_CLR;
11712 			sodp->sod_state |= SOD_WAKE_NEED;
11713 
11714 			/* Break the mblk chain if neccessary. */
11715 			if (mp1 != NULL && lmp != NULL) {
11716 				mp->b_next = mp1;
11717 				lmp->b_cont = NULL;
11718 			}
11719 		}
11720 	} else if (uioap->uioa_state & UIOA_FINI) {
11721 		/*
11722 		 * Post UIO_ENABLED waiting for socket to finish processing
11723 		 * so just enqueue and update tcp_rwnd.
11724 		 */
11725 		if (SOD_QFULL(sodp))
11726 			tcp->tcp_rwnd -= seg_len;
11727 	} else if (sodp->sod_want > 0) {
11728 		/*
11729 		 * Uioa isn't enabled but sodirect has a pending read().
11730 		 */
11731 		if (SOD_QCNT(sodp) + seg_len >= sodp->sod_want) {
11732 			if (sodp->sod_state & SOD_WAKE_NOT) {
11733 				/* Schedule socket for wakeup */
11734 				sodp->sod_state &= SOD_WAKE_CLR;
11735 				sodp->sod_state |= SOD_WAKE_NEED;
11736 			}
11737 			tcp->tcp_rwnd -= seg_len;
11738 		}
11739 	} else if (SOD_QCNT(sodp) + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
11740 		/*
11741 		 * No pending sodirect read() so used the default
11742 		 * TCP push logic to guess that a push is needed.
11743 		 */
11744 		if (sodp->sod_state & SOD_WAKE_NOT) {
11745 			/* Schedule socket for wakeup */
11746 			sodp->sod_state &= SOD_WAKE_CLR;
11747 			sodp->sod_state |= SOD_WAKE_NEED;
11748 		}
11749 		tcp->tcp_rwnd -= seg_len;
11750 	} else {
11751 		/* Just update tcp_rwnd */
11752 		tcp->tcp_rwnd -= seg_len;
11753 	}
11754 enq:
11755 	qfull = SOD_QFULL(sodp);
11756 
11757 	(sodp->sod_enqueue)(sodp, mp);
11758 
11759 	if (! qfull && SOD_QFULL(sodp)) {
11760 		/* Wasn't QFULL, now QFULL, need back-enable */
11761 		SOD_QSETBE(sodp);
11762 	}
11763 
11764 	/*
11765 	 * Check to see if remote avail swnd < mss due to delayed ACK,
11766 	 * first get advertised rwnd.
11767 	 */
11768 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win));
11769 	/* Minus delayed ACK count */
11770 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11771 	if (thwin < tcp->tcp_mss) {
11772 		/* Remote avail swnd < mss, need ACK now */
11773 		return (TH_ACK_NEEDED);
11774 	}
11775 
11776 	return (0);
11777 }
11778 
11779 /*
11780  * DEFAULT TCP ENTRY POINT via squeue on READ side.
11781  *
11782  * This is the default entry function into TCP on the read side. TCP is
11783  * always entered via squeue i.e. using squeue's for mutual exclusion.
11784  * When classifier does a lookup to find the tcp, it also puts a reference
11785  * on the conn structure associated so the tcp is guaranteed to exist
11786  * when we come here. We still need to check the state because it might
11787  * as well has been closed. The squeue processing function i.e. squeue_enter,
11788  * is responsible for doing the CONN_DEC_REF.
11789  *
11790  * Apart from the default entry point, IP also sends packets directly to
11791  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
11792  * connections.
11793  */
11794 boolean_t tcp_outbound_squeue_switch = B_FALSE;
11795 void
11796 tcp_input(void *arg, mblk_t *mp, void *arg2)
11797 {
11798 	conn_t	*connp = (conn_t *)arg;
11799 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
11800 
11801 	/* arg2 is the sqp */
11802 	ASSERT(arg2 != NULL);
11803 	ASSERT(mp != NULL);
11804 
11805 	/*
11806 	 * Don't accept any input on a closed tcp as this TCP logically does
11807 	 * not exist on the system. Don't proceed further with this TCP.
11808 	 * For eg. this packet could trigger another close of this tcp
11809 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
11810 	 * tcp_clean_death / tcp_closei_local must be called at most once
11811 	 * on a TCP. In this case we need to refeed the packet into the
11812 	 * classifier and figure out where the packet should go. Need to
11813 	 * preserve the recv_ill somehow. Until we figure that out, for
11814 	 * now just drop the packet if we can't classify the packet.
11815 	 */
11816 	if (tcp->tcp_state == TCPS_CLOSED ||
11817 	    tcp->tcp_state == TCPS_BOUND) {
11818 		conn_t	*new_connp;
11819 		ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip;
11820 
11821 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
11822 		if (new_connp != NULL) {
11823 			tcp_reinput(new_connp, mp, arg2);
11824 			return;
11825 		}
11826 		/* We failed to classify. For now just drop the packet */
11827 		freemsg(mp);
11828 		return;
11829 	}
11830 
11831 	if (DB_TYPE(mp) != M_DATA) {
11832 		tcp_rput_common(tcp, mp);
11833 		return;
11834 	}
11835 
11836 	if (mp->b_datap->db_struioflag & STRUIO_CONNECT) {
11837 		squeue_t	*final_sqp;
11838 
11839 		mp->b_datap->db_struioflag &= ~STRUIO_CONNECT;
11840 		final_sqp = (squeue_t *)DB_CKSUMSTART(mp);
11841 		DB_CKSUMSTART(mp) = 0;
11842 		if (tcp->tcp_state == TCPS_SYN_SENT &&
11843 		    connp->conn_final_sqp == NULL &&
11844 		    tcp_outbound_squeue_switch) {
11845 			ASSERT(connp->conn_initial_sqp == connp->conn_sqp);
11846 			connp->conn_final_sqp = final_sqp;
11847 			if (connp->conn_final_sqp != connp->conn_sqp) {
11848 				CONN_INC_REF(connp);
11849 				SQUEUE_SWITCH(connp, connp->conn_final_sqp);
11850 				SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
11851 				    tcp_rput_data, connp, ip_squeue_flag,
11852 				    SQTAG_CONNECT_FINISH);
11853 				return;
11854 			}
11855 		}
11856 	}
11857 	tcp_rput_data(connp, mp, arg2);
11858 }
11859 
11860 /*
11861  * The read side put procedure.
11862  * The packets passed up by ip are assume to be aligned according to
11863  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
11864  */
11865 static void
11866 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
11867 {
11868 	/*
11869 	 * tcp_rput_data() does not expect M_CTL except for the case
11870 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
11871 	 * type. Need to make sure that any other M_CTLs don't make
11872 	 * it to tcp_rput_data since it is not expecting any and doesn't
11873 	 * check for it.
11874 	 */
11875 	if (DB_TYPE(mp) == M_CTL) {
11876 		switch (*(uint32_t *)(mp->b_rptr)) {
11877 		case TCP_IOC_ABORT_CONN:
11878 			/*
11879 			 * Handle connection abort request.
11880 			 */
11881 			tcp_ioctl_abort_handler(tcp, mp);
11882 			return;
11883 		case IPSEC_IN:
11884 			/*
11885 			 * Only secure icmp arrive in TCP and they
11886 			 * don't go through data path.
11887 			 */
11888 			tcp_icmp_error(tcp, mp);
11889 			return;
11890 		case IN_PKTINFO:
11891 			/*
11892 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
11893 			 * sockets that are receiving IPv4 traffic. tcp
11894 			 */
11895 			ASSERT(tcp->tcp_family == AF_INET6);
11896 			ASSERT(tcp->tcp_ipv6_recvancillary &
11897 			    TCP_IPV6_RECVPKTINFO);
11898 			tcp_rput_data(tcp->tcp_connp, mp,
11899 			    tcp->tcp_connp->conn_sqp);
11900 			return;
11901 		case MDT_IOC_INFO_UPDATE:
11902 			/*
11903 			 * Handle Multidata information update; the
11904 			 * following routine will free the message.
11905 			 */
11906 			if (tcp->tcp_connp->conn_mdt_ok) {
11907 				tcp_mdt_update(tcp,
11908 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
11909 				    B_FALSE);
11910 			}
11911 			freemsg(mp);
11912 			return;
11913 		case LSO_IOC_INFO_UPDATE:
11914 			/*
11915 			 * Handle LSO information update; the following
11916 			 * routine will free the message.
11917 			 */
11918 			if (tcp->tcp_connp->conn_lso_ok) {
11919 				tcp_lso_update(tcp,
11920 				    &((ip_lso_info_t *)mp->b_rptr)->lso_capab);
11921 			}
11922 			freemsg(mp);
11923 			return;
11924 		default:
11925 			/*
11926 			 * tcp_icmp_err() will process the M_CTL packets.
11927 			 * Non-ICMP packets, if any, will be discarded in
11928 			 * tcp_icmp_err(). We will process the ICMP packet
11929 			 * even if we are TCP_IS_DETACHED_NONEAGER as the
11930 			 * incoming ICMP packet may result in changing
11931 			 * the tcp_mss, which we would need if we have
11932 			 * packets to retransmit.
11933 			 */
11934 			tcp_icmp_error(tcp, mp);
11935 			return;
11936 		}
11937 	}
11938 
11939 	/* No point processing the message if tcp is already closed */
11940 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
11941 		freemsg(mp);
11942 		return;
11943 	}
11944 
11945 	tcp_rput_other(tcp, mp);
11946 }
11947 
11948 
11949 /* The minimum of smoothed mean deviation in RTO calculation. */
11950 #define	TCP_SD_MIN	400
11951 
11952 /*
11953  * Set RTO for this connection.  The formula is from Jacobson and Karels'
11954  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
11955  * are the same as those in Appendix A.2 of that paper.
11956  *
11957  * m = new measurement
11958  * sa = smoothed RTT average (8 * average estimates).
11959  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
11960  */
11961 static void
11962 tcp_set_rto(tcp_t *tcp, clock_t rtt)
11963 {
11964 	long m = TICK_TO_MSEC(rtt);
11965 	clock_t sa = tcp->tcp_rtt_sa;
11966 	clock_t sv = tcp->tcp_rtt_sd;
11967 	clock_t rto;
11968 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11969 
11970 	BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate);
11971 	tcp->tcp_rtt_update++;
11972 
11973 	/* tcp_rtt_sa is not 0 means this is a new sample. */
11974 	if (sa != 0) {
11975 		/*
11976 		 * Update average estimator:
11977 		 *	new rtt = 7/8 old rtt + 1/8 Error
11978 		 */
11979 
11980 		/* m is now Error in estimate. */
11981 		m -= sa >> 3;
11982 		if ((sa += m) <= 0) {
11983 			/*
11984 			 * Don't allow the smoothed average to be negative.
11985 			 * We use 0 to denote reinitialization of the
11986 			 * variables.
11987 			 */
11988 			sa = 1;
11989 		}
11990 
11991 		/*
11992 		 * Update deviation estimator:
11993 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
11994 		 */
11995 		if (m < 0)
11996 			m = -m;
11997 		m -= sv >> 2;
11998 		sv += m;
11999 	} else {
12000 		/*
12001 		 * This follows BSD's implementation.  So the reinitialized
12002 		 * RTO is 3 * m.  We cannot go less than 2 because if the
12003 		 * link is bandwidth dominated, doubling the window size
12004 		 * during slow start means doubling the RTT.  We want to be
12005 		 * more conservative when we reinitialize our estimates.  3
12006 		 * is just a convenient number.
12007 		 */
12008 		sa = m << 3;
12009 		sv = m << 1;
12010 	}
12011 	if (sv < TCP_SD_MIN) {
12012 		/*
12013 		 * We do not know that if sa captures the delay ACK
12014 		 * effect as in a long train of segments, a receiver
12015 		 * does not delay its ACKs.  So set the minimum of sv
12016 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
12017 		 * of BSD DATO.  That means the minimum of mean
12018 		 * deviation is 100 ms.
12019 		 *
12020 		 */
12021 		sv = TCP_SD_MIN;
12022 	}
12023 	tcp->tcp_rtt_sa = sa;
12024 	tcp->tcp_rtt_sd = sv;
12025 	/*
12026 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
12027 	 *
12028 	 * Add tcp_rexmit_interval extra in case of extreme environment
12029 	 * where the algorithm fails to work.  The default value of
12030 	 * tcp_rexmit_interval_extra should be 0.
12031 	 *
12032 	 * As we use a finer grained clock than BSD and update
12033 	 * RTO for every ACKs, add in another .25 of RTT to the
12034 	 * deviation of RTO to accomodate burstiness of 1/4 of
12035 	 * window size.
12036 	 */
12037 	rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5);
12038 
12039 	if (rto > tcps->tcps_rexmit_interval_max) {
12040 		tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
12041 	} else if (rto < tcps->tcps_rexmit_interval_min) {
12042 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
12043 	} else {
12044 		tcp->tcp_rto = rto;
12045 	}
12046 
12047 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
12048 	tcp->tcp_timer_backoff = 0;
12049 }
12050 
12051 /*
12052  * tcp_get_seg_mp() is called to get the pointer to a segment in the
12053  * send queue which starts at the given seq. no.
12054  *
12055  * Parameters:
12056  *	tcp_t *tcp: the tcp instance pointer.
12057  *	uint32_t seq: the starting seq. no of the requested segment.
12058  *	int32_t *off: after the execution, *off will be the offset to
12059  *		the returned mblk which points to the requested seq no.
12060  *		It is the caller's responsibility to send in a non-null off.
12061  *
12062  * Return:
12063  *	A mblk_t pointer pointing to the requested segment in send queue.
12064  */
12065 static mblk_t *
12066 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
12067 {
12068 	int32_t	cnt;
12069 	mblk_t	*mp;
12070 
12071 	/* Defensive coding.  Make sure we don't send incorrect data. */
12072 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
12073 		return (NULL);
12074 
12075 	cnt = seq - tcp->tcp_suna;
12076 	mp = tcp->tcp_xmit_head;
12077 	while (cnt > 0 && mp != NULL) {
12078 		cnt -= mp->b_wptr - mp->b_rptr;
12079 		if (cnt < 0) {
12080 			cnt += mp->b_wptr - mp->b_rptr;
12081 			break;
12082 		}
12083 		mp = mp->b_cont;
12084 	}
12085 	ASSERT(mp != NULL);
12086 	*off = cnt;
12087 	return (mp);
12088 }
12089 
12090 /*
12091  * This function handles all retransmissions if SACK is enabled for this
12092  * connection.  First it calculates how many segments can be retransmitted
12093  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
12094  * segments.  A segment is eligible if sack_cnt for that segment is greater
12095  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
12096  * all eligible segments, it checks to see if TCP can send some new segments
12097  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
12098  *
12099  * Parameters:
12100  *	tcp_t *tcp: the tcp structure of the connection.
12101  *	uint_t *flags: in return, appropriate value will be set for
12102  *	tcp_rput_data().
12103  */
12104 static void
12105 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
12106 {
12107 	notsack_blk_t	*notsack_blk;
12108 	int32_t		usable_swnd;
12109 	int32_t		mss;
12110 	uint32_t	seg_len;
12111 	mblk_t		*xmit_mp;
12112 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12113 
12114 	ASSERT(tcp->tcp_sack_info != NULL);
12115 	ASSERT(tcp->tcp_notsack_list != NULL);
12116 	ASSERT(tcp->tcp_rexmit == B_FALSE);
12117 
12118 	/* Defensive coding in case there is a bug... */
12119 	if (tcp->tcp_notsack_list == NULL) {
12120 		return;
12121 	}
12122 	notsack_blk = tcp->tcp_notsack_list;
12123 	mss = tcp->tcp_mss;
12124 
12125 	/*
12126 	 * Limit the num of outstanding data in the network to be
12127 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
12128 	 */
12129 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12130 
12131 	/* At least retransmit 1 MSS of data. */
12132 	if (usable_swnd <= 0) {
12133 		usable_swnd = mss;
12134 	}
12135 
12136 	/* Make sure no new RTT samples will be taken. */
12137 	tcp->tcp_csuna = tcp->tcp_snxt;
12138 
12139 	notsack_blk = tcp->tcp_notsack_list;
12140 	while (usable_swnd > 0) {
12141 		mblk_t		*snxt_mp, *tmp_mp;
12142 		tcp_seq		begin = tcp->tcp_sack_snxt;
12143 		tcp_seq		end;
12144 		int32_t		off;
12145 
12146 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
12147 			if (SEQ_GT(notsack_blk->end, begin) &&
12148 			    (notsack_blk->sack_cnt >=
12149 			    tcps->tcps_dupack_fast_retransmit)) {
12150 				end = notsack_blk->end;
12151 				if (SEQ_LT(begin, notsack_blk->begin)) {
12152 					begin = notsack_blk->begin;
12153 				}
12154 				break;
12155 			}
12156 		}
12157 		/*
12158 		 * All holes are filled.  Manipulate tcp_cwnd to send more
12159 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
12160 		 * set to tcp_cwnd_ssthresh.
12161 		 */
12162 		if (notsack_blk == NULL) {
12163 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12164 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
12165 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
12166 				ASSERT(tcp->tcp_cwnd > 0);
12167 				return;
12168 			} else {
12169 				usable_swnd = usable_swnd / mss;
12170 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
12171 				    MAX(usable_swnd * mss, mss);
12172 				*flags |= TH_XMIT_NEEDED;
12173 				return;
12174 			}
12175 		}
12176 
12177 		/*
12178 		 * Note that we may send more than usable_swnd allows here
12179 		 * because of round off, but no more than 1 MSS of data.
12180 		 */
12181 		seg_len = end - begin;
12182 		if (seg_len > mss)
12183 			seg_len = mss;
12184 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
12185 		ASSERT(snxt_mp != NULL);
12186 		/* This should not happen.  Defensive coding again... */
12187 		if (snxt_mp == NULL) {
12188 			return;
12189 		}
12190 
12191 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
12192 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
12193 		if (xmit_mp == NULL)
12194 			return;
12195 
12196 		usable_swnd -= seg_len;
12197 		tcp->tcp_pipe += seg_len;
12198 		tcp->tcp_sack_snxt = begin + seg_len;
12199 
12200 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12201 
12202 		/*
12203 		 * Update the send timestamp to avoid false retransmission.
12204 		 */
12205 		snxt_mp->b_prev = (mblk_t *)lbolt;
12206 
12207 		BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12208 		UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len);
12209 		BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs);
12210 		/*
12211 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
12212 		 * This happens when new data sent during fast recovery is
12213 		 * also lost.  If TCP retransmits those new data, it needs
12214 		 * to extend SACK recover phase to avoid starting another
12215 		 * fast retransmit/recovery unnecessarily.
12216 		 */
12217 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
12218 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
12219 		}
12220 	}
12221 }
12222 
12223 /*
12224  * This function handles policy checking at TCP level for non-hard_bound/
12225  * detached connections.
12226  */
12227 static boolean_t
12228 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
12229     boolean_t secure, boolean_t mctl_present)
12230 {
12231 	ipsec_latch_t *ipl = NULL;
12232 	ipsec_action_t *act = NULL;
12233 	mblk_t *data_mp;
12234 	ipsec_in_t *ii;
12235 	const char *reason;
12236 	kstat_named_t *counter;
12237 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12238 	ipsec_stack_t	*ipss;
12239 	ip_stack_t	*ipst;
12240 
12241 	ASSERT(mctl_present || !secure);
12242 
12243 	ASSERT((ipha == NULL && ip6h != NULL) ||
12244 	    (ip6h == NULL && ipha != NULL));
12245 
12246 	/*
12247 	 * We don't necessarily have an ipsec_in_act action to verify
12248 	 * policy because of assymetrical policy where we have only
12249 	 * outbound policy and no inbound policy (possible with global
12250 	 * policy).
12251 	 */
12252 	if (!secure) {
12253 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
12254 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
12255 			return (B_TRUE);
12256 		ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
12257 		    "tcp_check_policy", ipha, ip6h, secure,
12258 		    tcps->tcps_netstack);
12259 		ipss = tcps->tcps_netstack->netstack_ipsec;
12260 
12261 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12262 		    DROPPER(ipss, ipds_tcp_clear),
12263 		    &tcps->tcps_dropper);
12264 		return (B_FALSE);
12265 	}
12266 
12267 	/*
12268 	 * We have a secure packet.
12269 	 */
12270 	if (act == NULL) {
12271 		ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
12272 		    "tcp_check_policy", ipha, ip6h, secure,
12273 		    tcps->tcps_netstack);
12274 		ipss = tcps->tcps_netstack->netstack_ipsec;
12275 
12276 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12277 		    DROPPER(ipss, ipds_tcp_secure),
12278 		    &tcps->tcps_dropper);
12279 		return (B_FALSE);
12280 	}
12281 
12282 	/*
12283 	 * XXX This whole routine is currently incorrect.  ipl should
12284 	 * be set to the latch pointer, but is currently not set, so
12285 	 * we initialize it to NULL to avoid picking up random garbage.
12286 	 */
12287 	if (ipl == NULL)
12288 		return (B_TRUE);
12289 
12290 	data_mp = first_mp->b_cont;
12291 
12292 	ii = (ipsec_in_t *)first_mp->b_rptr;
12293 
12294 	ipst = tcps->tcps_netstack->netstack_ip;
12295 
12296 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
12297 	    &counter, tcp->tcp_connp)) {
12298 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
12299 		return (B_TRUE);
12300 	}
12301 	(void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
12302 	    "tcp inbound policy mismatch: %s, packet dropped\n",
12303 	    reason);
12304 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
12305 
12306 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
12307 	    &tcps->tcps_dropper);
12308 	return (B_FALSE);
12309 }
12310 
12311 /*
12312  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
12313  * retransmission after a timeout.
12314  *
12315  * To limit the number of duplicate segments, we limit the number of segment
12316  * to be sent in one time to tcp_snd_burst, the burst variable.
12317  */
12318 static void
12319 tcp_ss_rexmit(tcp_t *tcp)
12320 {
12321 	uint32_t	snxt;
12322 	uint32_t	smax;
12323 	int32_t		win;
12324 	int32_t		mss;
12325 	int32_t		off;
12326 	int32_t		burst = tcp->tcp_snd_burst;
12327 	mblk_t		*snxt_mp;
12328 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12329 
12330 	/*
12331 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
12332 	 * all unack'ed segments.
12333 	 */
12334 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
12335 		smax = tcp->tcp_rexmit_max;
12336 		snxt = tcp->tcp_rexmit_nxt;
12337 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
12338 			snxt = tcp->tcp_suna;
12339 		}
12340 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
12341 		win -= snxt - tcp->tcp_suna;
12342 		mss = tcp->tcp_mss;
12343 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
12344 
12345 		while (SEQ_LT(snxt, smax) && (win > 0) &&
12346 		    (burst > 0) && (snxt_mp != NULL)) {
12347 			mblk_t	*xmit_mp;
12348 			mblk_t	*old_snxt_mp = snxt_mp;
12349 			uint32_t cnt = mss;
12350 
12351 			if (win < cnt) {
12352 				cnt = win;
12353 			}
12354 			if (SEQ_GT(snxt + cnt, smax)) {
12355 				cnt = smax - snxt;
12356 			}
12357 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
12358 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
12359 			if (xmit_mp == NULL)
12360 				return;
12361 
12362 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12363 
12364 			snxt += cnt;
12365 			win -= cnt;
12366 			/*
12367 			 * Update the send timestamp to avoid false
12368 			 * retransmission.
12369 			 */
12370 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
12371 			BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12372 			UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt);
12373 
12374 			tcp->tcp_rexmit_nxt = snxt;
12375 			burst--;
12376 		}
12377 		/*
12378 		 * If we have transmitted all we have at the time
12379 		 * we started the retranmission, we can leave
12380 		 * the rest of the job to tcp_wput_data().  But we
12381 		 * need to check the send window first.  If the
12382 		 * win is not 0, go on with tcp_wput_data().
12383 		 */
12384 		if (SEQ_LT(snxt, smax) || win == 0) {
12385 			return;
12386 		}
12387 	}
12388 	/* Only call tcp_wput_data() if there is data to be sent. */
12389 	if (tcp->tcp_unsent) {
12390 		tcp_wput_data(tcp, NULL, B_FALSE);
12391 	}
12392 }
12393 
12394 /*
12395  * Process all TCP option in SYN segment.  Note that this function should
12396  * be called after tcp_adapt_ire() is called so that the necessary info
12397  * from IRE is already set in the tcp structure.
12398  *
12399  * This function sets up the correct tcp_mss value according to the
12400  * MSS option value and our header size.  It also sets up the window scale
12401  * and timestamp values, and initialize SACK info blocks.  But it does not
12402  * change receive window size after setting the tcp_mss value.  The caller
12403  * should do the appropriate change.
12404  */
12405 void
12406 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
12407 {
12408 	int options;
12409 	tcp_opt_t tcpopt;
12410 	uint32_t mss_max;
12411 	char *tmp_tcph;
12412 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12413 
12414 	tcpopt.tcp = NULL;
12415 	options = tcp_parse_options(tcph, &tcpopt);
12416 
12417 	/*
12418 	 * Process MSS option.  Note that MSS option value does not account
12419 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
12420 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
12421 	 * IPv6.
12422 	 */
12423 	if (!(options & TCP_OPT_MSS_PRESENT)) {
12424 		if (tcp->tcp_ipversion == IPV4_VERSION)
12425 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
12426 		else
12427 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
12428 	} else {
12429 		if (tcp->tcp_ipversion == IPV4_VERSION)
12430 			mss_max = tcps->tcps_mss_max_ipv4;
12431 		else
12432 			mss_max = tcps->tcps_mss_max_ipv6;
12433 		if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
12434 			tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
12435 		else if (tcpopt.tcp_opt_mss > mss_max)
12436 			tcpopt.tcp_opt_mss = mss_max;
12437 	}
12438 
12439 	/* Process Window Scale option. */
12440 	if (options & TCP_OPT_WSCALE_PRESENT) {
12441 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
12442 		tcp->tcp_snd_ws_ok = B_TRUE;
12443 	} else {
12444 		tcp->tcp_snd_ws = B_FALSE;
12445 		tcp->tcp_snd_ws_ok = B_FALSE;
12446 		tcp->tcp_rcv_ws = B_FALSE;
12447 	}
12448 
12449 	/* Process Timestamp option. */
12450 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
12451 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
12452 		tmp_tcph = (char *)tcp->tcp_tcph;
12453 
12454 		tcp->tcp_snd_ts_ok = B_TRUE;
12455 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
12456 		tcp->tcp_last_rcv_lbolt = lbolt64;
12457 		ASSERT(OK_32PTR(tmp_tcph));
12458 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
12459 
12460 		/* Fill in our template header with basic timestamp option. */
12461 		tmp_tcph += tcp->tcp_tcp_hdr_len;
12462 		tmp_tcph[0] = TCPOPT_NOP;
12463 		tmp_tcph[1] = TCPOPT_NOP;
12464 		tmp_tcph[2] = TCPOPT_TSTAMP;
12465 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
12466 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12467 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12468 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
12469 	} else {
12470 		tcp->tcp_snd_ts_ok = B_FALSE;
12471 	}
12472 
12473 	/*
12474 	 * Process SACK options.  If SACK is enabled for this connection,
12475 	 * then allocate the SACK info structure.  Note the following ways
12476 	 * when tcp_snd_sack_ok is set to true.
12477 	 *
12478 	 * For active connection: in tcp_adapt_ire() called in
12479 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
12480 	 * is checked.
12481 	 *
12482 	 * For passive connection: in tcp_adapt_ire() called in
12483 	 * tcp_accept_comm().
12484 	 *
12485 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
12486 	 * That check makes sure that if we did not send a SACK OK option,
12487 	 * we will not enable SACK for this connection even though the other
12488 	 * side sends us SACK OK option.  For active connection, the SACK
12489 	 * info structure has already been allocated.  So we need to free
12490 	 * it if SACK is disabled.
12491 	 */
12492 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
12493 	    (tcp->tcp_snd_sack_ok ||
12494 	    (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
12495 		/* This should be true only in the passive case. */
12496 		if (tcp->tcp_sack_info == NULL) {
12497 			ASSERT(TCP_IS_DETACHED(tcp));
12498 			tcp->tcp_sack_info =
12499 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
12500 		}
12501 		if (tcp->tcp_sack_info == NULL) {
12502 			tcp->tcp_snd_sack_ok = B_FALSE;
12503 		} else {
12504 			tcp->tcp_snd_sack_ok = B_TRUE;
12505 			if (tcp->tcp_snd_ts_ok) {
12506 				tcp->tcp_max_sack_blk = 3;
12507 			} else {
12508 				tcp->tcp_max_sack_blk = 4;
12509 			}
12510 		}
12511 	} else {
12512 		/*
12513 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
12514 		 * no SACK info will be used for this
12515 		 * connection.  This assumes that SACK usage
12516 		 * permission is negotiated.  This may need
12517 		 * to be changed once this is clarified.
12518 		 */
12519 		if (tcp->tcp_sack_info != NULL) {
12520 			ASSERT(tcp->tcp_notsack_list == NULL);
12521 			kmem_cache_free(tcp_sack_info_cache,
12522 			    tcp->tcp_sack_info);
12523 			tcp->tcp_sack_info = NULL;
12524 		}
12525 		tcp->tcp_snd_sack_ok = B_FALSE;
12526 	}
12527 
12528 	/*
12529 	 * Now we know the exact TCP/IP header length, subtract
12530 	 * that from tcp_mss to get our side's MSS.
12531 	 */
12532 	tcp->tcp_mss -= tcp->tcp_hdr_len;
12533 	/*
12534 	 * Here we assume that the other side's header size will be equal to
12535 	 * our header size.  We calculate the real MSS accordingly.  Need to
12536 	 * take into additional stuffs IPsec puts in.
12537 	 *
12538 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
12539 	 */
12540 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
12541 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
12542 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
12543 
12544 	/*
12545 	 * Set MSS to the smaller one of both ends of the connection.
12546 	 * We should not have called tcp_mss_set() before, but our
12547 	 * side of the MSS should have been set to a proper value
12548 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
12549 	 * STREAM head parameters properly.
12550 	 *
12551 	 * If we have a larger-than-16-bit window but the other side
12552 	 * didn't want to do window scale, tcp_rwnd_set() will take
12553 	 * care of that.
12554 	 */
12555 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE);
12556 }
12557 
12558 /*
12559  * Sends the T_CONN_IND to the listener. The caller calls this
12560  * functions via squeue to get inside the listener's perimeter
12561  * once the 3 way hand shake is done a T_CONN_IND needs to be
12562  * sent. As an optimization, the caller can call this directly
12563  * if listener's perimeter is same as eager's.
12564  */
12565 /* ARGSUSED */
12566 void
12567 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
12568 {
12569 	conn_t			*lconnp = (conn_t *)arg;
12570 	tcp_t			*listener = lconnp->conn_tcp;
12571 	tcp_t			*tcp;
12572 	struct T_conn_ind	*conn_ind;
12573 	ipaddr_t 		*addr_cache;
12574 	boolean_t		need_send_conn_ind = B_FALSE;
12575 	tcp_stack_t		*tcps = listener->tcp_tcps;
12576 
12577 	/* retrieve the eager */
12578 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
12579 	ASSERT(conn_ind->OPT_offset != 0 &&
12580 	    conn_ind->OPT_length == sizeof (intptr_t));
12581 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
12582 	    conn_ind->OPT_length);
12583 
12584 	/*
12585 	 * TLI/XTI applications will get confused by
12586 	 * sending eager as an option since it violates
12587 	 * the option semantics. So remove the eager as
12588 	 * option since TLI/XTI app doesn't need it anyway.
12589 	 */
12590 	if (!TCP_IS_SOCKET(listener)) {
12591 		conn_ind->OPT_length = 0;
12592 		conn_ind->OPT_offset = 0;
12593 	}
12594 	if (listener->tcp_state == TCPS_CLOSED ||
12595 	    TCP_IS_DETACHED(listener)) {
12596 		/*
12597 		 * If listener has closed, it would have caused a
12598 		 * a cleanup/blowoff to happen for the eager. We
12599 		 * just need to return.
12600 		 */
12601 		freemsg(mp);
12602 		return;
12603 	}
12604 
12605 
12606 	/*
12607 	 * if the conn_req_q is full defer passing up the
12608 	 * T_CONN_IND until space is availabe after t_accept()
12609 	 * processing
12610 	 */
12611 	mutex_enter(&listener->tcp_eager_lock);
12612 
12613 	/*
12614 	 * Take the eager out, if it is in the list of droppable eagers
12615 	 * as we are here because the 3W handshake is over.
12616 	 */
12617 	MAKE_UNDROPPABLE(tcp);
12618 
12619 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12620 		tcp_t *tail;
12621 
12622 		/*
12623 		 * The eager already has an extra ref put in tcp_rput_data
12624 		 * so that it stays till accept comes back even though it
12625 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12626 		 */
12627 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12628 		listener->tcp_conn_req_cnt_q0--;
12629 		listener->tcp_conn_req_cnt_q++;
12630 
12631 		/* Move from SYN_RCVD to ESTABLISHED list  */
12632 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12633 		    tcp->tcp_eager_prev_q0;
12634 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12635 		    tcp->tcp_eager_next_q0;
12636 		tcp->tcp_eager_prev_q0 = NULL;
12637 		tcp->tcp_eager_next_q0 = NULL;
12638 
12639 		/*
12640 		 * Insert at end of the queue because sockfs
12641 		 * sends down T_CONN_RES in chronological
12642 		 * order. Leaving the older conn indications
12643 		 * at front of the queue helps reducing search
12644 		 * time.
12645 		 */
12646 		tail = listener->tcp_eager_last_q;
12647 		if (tail != NULL)
12648 			tail->tcp_eager_next_q = tcp;
12649 		else
12650 			listener->tcp_eager_next_q = tcp;
12651 		listener->tcp_eager_last_q = tcp;
12652 		tcp->tcp_eager_next_q = NULL;
12653 		/*
12654 		 * Delay sending up the T_conn_ind until we are
12655 		 * done with the eager. Once we have have sent up
12656 		 * the T_conn_ind, the accept can potentially complete
12657 		 * any time and release the refhold we have on the eager.
12658 		 */
12659 		need_send_conn_ind = B_TRUE;
12660 	} else {
12661 		/*
12662 		 * Defer connection on q0 and set deferred
12663 		 * connection bit true
12664 		 */
12665 		tcp->tcp_conn_def_q0 = B_TRUE;
12666 
12667 		/* take tcp out of q0 ... */
12668 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12669 		    tcp->tcp_eager_next_q0;
12670 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12671 		    tcp->tcp_eager_prev_q0;
12672 
12673 		/* ... and place it at the end of q0 */
12674 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12675 		tcp->tcp_eager_next_q0 = listener;
12676 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12677 		listener->tcp_eager_prev_q0 = tcp;
12678 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12679 	}
12680 
12681 	/* we have timed out before */
12682 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12683 		tcp->tcp_syn_rcvd_timeout = 0;
12684 		listener->tcp_syn_rcvd_timeout--;
12685 		if (listener->tcp_syn_defense &&
12686 		    listener->tcp_syn_rcvd_timeout <=
12687 		    (tcps->tcps_conn_req_max_q0 >> 5) &&
12688 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12689 		    listener->tcp_last_rcv_lbolt)) {
12690 			/*
12691 			 * Turn off the defense mode if we
12692 			 * believe the SYN attack is over.
12693 			 */
12694 			listener->tcp_syn_defense = B_FALSE;
12695 			if (listener->tcp_ip_addr_cache) {
12696 				kmem_free((void *)listener->tcp_ip_addr_cache,
12697 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12698 				listener->tcp_ip_addr_cache = NULL;
12699 			}
12700 		}
12701 	}
12702 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12703 	if (addr_cache != NULL) {
12704 		/*
12705 		 * We have finished a 3-way handshake with this
12706 		 * remote host. This proves the IP addr is good.
12707 		 * Cache it!
12708 		 */
12709 		addr_cache[IP_ADDR_CACHE_HASH(
12710 		    tcp->tcp_remote)] = tcp->tcp_remote;
12711 	}
12712 	mutex_exit(&listener->tcp_eager_lock);
12713 	if (need_send_conn_ind) {
12714 		if (IPCL_IS_NONSTR(lconnp)) {
12715 			ASSERT(tcp->tcp_listener == listener);
12716 			ASSERT(tcp->tcp_saved_listener == listener);
12717 			if ((*lconnp->conn_upcalls->su_newconn)
12718 			    (lconnp->conn_upper_handle,
12719 			    (sock_lower_handle_t)tcp->tcp_connp,
12720 			    &sock_tcp_downcalls, DB_CRED(mp), DB_CPID(mp),
12721 			    &tcp->tcp_connp->conn_upcalls) != NULL) {
12722 				/*
12723 				 * Keep the message around
12724 				 * in case of fallback
12725 				 */
12726 				tcp->tcp_conn.tcp_eager_conn_ind = mp;
12727 			} else {
12728 				freemsg(mp);
12729 			}
12730 		} else {
12731 			putnext(listener->tcp_rq, mp);
12732 		}
12733 	}
12734 }
12735 
12736 mblk_t *
12737 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
12738     uint_t *ifindexp, ip6_pkt_t *ippp)
12739 {
12740 	ip_pktinfo_t	*pinfo;
12741 	ip6_t		*ip6h;
12742 	uchar_t		*rptr;
12743 	mblk_t		*first_mp = mp;
12744 	boolean_t	mctl_present = B_FALSE;
12745 	uint_t 		ifindex = 0;
12746 	ip6_pkt_t	ipp;
12747 	uint_t		ipvers;
12748 	uint_t		ip_hdr_len;
12749 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12750 
12751 	rptr = mp->b_rptr;
12752 	ASSERT(OK_32PTR(rptr));
12753 	ASSERT(tcp != NULL);
12754 	ipp.ipp_fields = 0;
12755 
12756 	switch DB_TYPE(mp) {
12757 	case M_CTL:
12758 		mp = mp->b_cont;
12759 		if (mp == NULL) {
12760 			freemsg(first_mp);
12761 			return (NULL);
12762 		}
12763 		if (DB_TYPE(mp) != M_DATA) {
12764 			freemsg(first_mp);
12765 			return (NULL);
12766 		}
12767 		mctl_present = B_TRUE;
12768 		break;
12769 	case M_DATA:
12770 		break;
12771 	default:
12772 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
12773 		freemsg(mp);
12774 		return (NULL);
12775 	}
12776 	ipvers = IPH_HDR_VERSION(rptr);
12777 	if (ipvers == IPV4_VERSION) {
12778 		if (tcp == NULL) {
12779 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
12780 			goto done;
12781 		}
12782 
12783 		ipp.ipp_fields |= IPPF_HOPLIMIT;
12784 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
12785 
12786 		/*
12787 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
12788 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
12789 		 */
12790 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
12791 		    mctl_present) {
12792 			pinfo = (ip_pktinfo_t *)first_mp->b_rptr;
12793 			if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) &&
12794 			    (pinfo->ip_pkt_ulp_type == IN_PKTINFO) &&
12795 			    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
12796 				ipp.ipp_fields |= IPPF_IFINDEX;
12797 				ipp.ipp_ifindex = pinfo->ip_pkt_ifindex;
12798 				ifindex = pinfo->ip_pkt_ifindex;
12799 			}
12800 			freeb(first_mp);
12801 			mctl_present = B_FALSE;
12802 		}
12803 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12804 	} else {
12805 		ip6h = (ip6_t *)rptr;
12806 
12807 		ASSERT(ipvers == IPV6_VERSION);
12808 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
12809 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
12810 		ipp.ipp_hoplimit = ip6h->ip6_hops;
12811 
12812 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
12813 			uint8_t	nexthdrp;
12814 			ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
12815 
12816 			/* Look for ifindex information */
12817 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
12818 				ip6i_t *ip6i = (ip6i_t *)ip6h;
12819 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
12820 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12821 					freemsg(first_mp);
12822 					return (NULL);
12823 				}
12824 
12825 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
12826 					ASSERT(ip6i->ip6i_ifindex != 0);
12827 					ipp.ipp_fields |= IPPF_IFINDEX;
12828 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
12829 					ifindex = ip6i->ip6i_ifindex;
12830 				}
12831 				rptr = (uchar_t *)&ip6i[1];
12832 				mp->b_rptr = rptr;
12833 				if (rptr == mp->b_wptr) {
12834 					mblk_t *mp1;
12835 					mp1 = mp->b_cont;
12836 					freeb(mp);
12837 					mp = mp1;
12838 					rptr = mp->b_rptr;
12839 				}
12840 				if (MBLKL(mp) < IPV6_HDR_LEN +
12841 				    sizeof (tcph_t)) {
12842 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12843 					freemsg(first_mp);
12844 					return (NULL);
12845 				}
12846 				ip6h = (ip6_t *)rptr;
12847 			}
12848 
12849 			/*
12850 			 * Find any potentially interesting extension headers
12851 			 * as well as the length of the IPv6 + extension
12852 			 * headers.
12853 			 */
12854 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
12855 			/* Verify if this is a TCP packet */
12856 			if (nexthdrp != IPPROTO_TCP) {
12857 				BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12858 				freemsg(first_mp);
12859 				return (NULL);
12860 			}
12861 		} else {
12862 			ip_hdr_len = IPV6_HDR_LEN;
12863 		}
12864 	}
12865 
12866 done:
12867 	if (ipversp != NULL)
12868 		*ipversp = ipvers;
12869 	if (ip_hdr_lenp != NULL)
12870 		*ip_hdr_lenp = ip_hdr_len;
12871 	if (ippp != NULL)
12872 		*ippp = ipp;
12873 	if (ifindexp != NULL)
12874 		*ifindexp = ifindex;
12875 	if (mctl_present) {
12876 		freeb(first_mp);
12877 	}
12878 	return (mp);
12879 }
12880 
12881 /*
12882  * Handle M_DATA messages from IP. Its called directly from IP via
12883  * squeue for AF_INET type sockets fast path. No M_CTL are expected
12884  * in this path.
12885  *
12886  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
12887  * v4 and v6), we are called through tcp_input() and a M_CTL can
12888  * be present for options but tcp_find_pktinfo() deals with it. We
12889  * only expect M_DATA packets after tcp_find_pktinfo() is done.
12890  *
12891  * The first argument is always the connp/tcp to which the mp belongs.
12892  * There are no exceptions to this rule. The caller has already put
12893  * a reference on this connp/tcp and once tcp_rput_data() returns,
12894  * the squeue will do the refrele.
12895  *
12896  * The TH_SYN for the listener directly go to tcp_conn_request via
12897  * squeue.
12898  *
12899  * sqp: NULL = recursive, sqp != NULL means called from squeue
12900  */
12901 void
12902 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
12903 {
12904 	int32_t		bytes_acked;
12905 	int32_t		gap;
12906 	mblk_t		*mp1;
12907 	uint_t		flags;
12908 	uint32_t	new_swnd = 0;
12909 	uchar_t		*iphdr;
12910 	uchar_t		*rptr;
12911 	int32_t		rgap;
12912 	uint32_t	seg_ack;
12913 	int		seg_len;
12914 	uint_t		ip_hdr_len;
12915 	uint32_t	seg_seq;
12916 	tcph_t		*tcph;
12917 	int		urp;
12918 	tcp_opt_t	tcpopt;
12919 	uint_t		ipvers;
12920 	ip6_pkt_t	ipp;
12921 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
12922 	uint32_t	cwnd;
12923 	uint32_t	add;
12924 	int		npkt;
12925 	int		mss;
12926 	conn_t		*connp = (conn_t *)arg;
12927 	squeue_t	*sqp = (squeue_t *)arg2;
12928 	tcp_t		*tcp = connp->conn_tcp;
12929 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12930 
12931 	/*
12932 	 * RST from fused tcp loopback peer should trigger an unfuse.
12933 	 */
12934 	if (tcp->tcp_fused) {
12935 		TCP_STAT(tcps, tcp_fusion_aborted);
12936 		tcp_unfuse(tcp);
12937 	}
12938 
12939 	iphdr = mp->b_rptr;
12940 	rptr = mp->b_rptr;
12941 	ASSERT(OK_32PTR(rptr));
12942 
12943 	/*
12944 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
12945 	 * processing here. For rest call tcp_find_pktinfo to fill up the
12946 	 * necessary information.
12947 	 */
12948 	if (IPCL_IS_TCP4(connp)) {
12949 		ipvers = IPV4_VERSION;
12950 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12951 	} else {
12952 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
12953 		    NULL, &ipp);
12954 		if (mp == NULL) {
12955 			TCP_STAT(tcps, tcp_rput_v6_error);
12956 			return;
12957 		}
12958 		iphdr = mp->b_rptr;
12959 		rptr = mp->b_rptr;
12960 	}
12961 	ASSERT(DB_TYPE(mp) == M_DATA);
12962 	ASSERT(mp->b_next == NULL);
12963 
12964 	tcph = (tcph_t *)&rptr[ip_hdr_len];
12965 	seg_seq = ABE32_TO_U32(tcph->th_seq);
12966 	seg_ack = ABE32_TO_U32(tcph->th_ack);
12967 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
12968 	seg_len = (int)(mp->b_wptr - rptr) -
12969 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
12970 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
12971 		do {
12972 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
12973 			    (uintptr_t)INT_MAX);
12974 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
12975 		} while ((mp1 = mp1->b_cont) != NULL &&
12976 		    mp1->b_datap->db_type == M_DATA);
12977 	}
12978 
12979 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
12980 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
12981 		    seg_len, tcph);
12982 		return;
12983 	}
12984 
12985 	if (sqp != NULL) {
12986 		/*
12987 		 * This is the correct place to update tcp_last_recv_time. Note
12988 		 * that it is also updated for tcp structure that belongs to
12989 		 * global and listener queues which do not really need updating.
12990 		 * But that should not cause any harm.  And it is updated for
12991 		 * all kinds of incoming segments, not only for data segments.
12992 		 */
12993 		tcp->tcp_last_recv_time = lbolt;
12994 	}
12995 
12996 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
12997 
12998 	BUMP_LOCAL(tcp->tcp_ibsegs);
12999 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
13000 
13001 	if ((flags & TH_URG) && sqp != NULL) {
13002 		/*
13003 		 * TCP can't handle urgent pointers that arrive before
13004 		 * the connection has been accept()ed since it can't
13005 		 * buffer OOB data.  Discard segment if this happens.
13006 		 *
13007 		 * We can't just rely on a non-null tcp_listener to indicate
13008 		 * that the accept() has completed since unlinking of the
13009 		 * eager and completion of the accept are not atomic.
13010 		 * tcp_detached, when it is not set (B_FALSE) indicates
13011 		 * that the accept() has completed.
13012 		 *
13013 		 * Nor can it reassemble urgent pointers, so discard
13014 		 * if it's not the next segment expected.
13015 		 *
13016 		 * Otherwise, collapse chain into one mblk (discard if
13017 		 * that fails).  This makes sure the headers, retransmitted
13018 		 * data, and new data all are in the same mblk.
13019 		 */
13020 		ASSERT(mp != NULL);
13021 		if (tcp->tcp_detached || !pullupmsg(mp, -1)) {
13022 			freemsg(mp);
13023 			return;
13024 		}
13025 		/* Update pointers into message */
13026 		iphdr = rptr = mp->b_rptr;
13027 		tcph = (tcph_t *)&rptr[ip_hdr_len];
13028 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
13029 			/*
13030 			 * Since we can't handle any data with this urgent
13031 			 * pointer that is out of sequence, we expunge
13032 			 * the data.  This allows us to still register
13033 			 * the urgent mark and generate the M_PCSIG,
13034 			 * which we can do.
13035 			 */
13036 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13037 			seg_len = 0;
13038 		}
13039 	}
13040 
13041 	switch (tcp->tcp_state) {
13042 	case TCPS_SYN_SENT:
13043 		if (flags & TH_ACK) {
13044 			/*
13045 			 * Note that our stack cannot send data before a
13046 			 * connection is established, therefore the
13047 			 * following check is valid.  Otherwise, it has
13048 			 * to be changed.
13049 			 */
13050 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
13051 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13052 				freemsg(mp);
13053 				if (flags & TH_RST)
13054 					return;
13055 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
13056 				    tcp, seg_ack, 0, TH_RST);
13057 				return;
13058 			}
13059 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
13060 		}
13061 		if (flags & TH_RST) {
13062 			freemsg(mp);
13063 			if (flags & TH_ACK)
13064 				(void) tcp_clean_death(tcp,
13065 				    ECONNREFUSED, 13);
13066 			return;
13067 		}
13068 		if (!(flags & TH_SYN)) {
13069 			freemsg(mp);
13070 			return;
13071 		}
13072 
13073 		/* Process all TCP options. */
13074 		tcp_process_options(tcp, tcph);
13075 		/*
13076 		 * The following changes our rwnd to be a multiple of the
13077 		 * MIN(peer MSS, our MSS) for performance reason.
13078 		 */
13079 		(void) tcp_rwnd_set(tcp,
13080 		    MSS_ROUNDUP(tcp->tcp_recv_hiwater, tcp->tcp_mss));
13081 
13082 		/* Is the other end ECN capable? */
13083 		if (tcp->tcp_ecn_ok) {
13084 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
13085 				tcp->tcp_ecn_ok = B_FALSE;
13086 			}
13087 		}
13088 		/*
13089 		 * Clear ECN flags because it may interfere with later
13090 		 * processing.
13091 		 */
13092 		flags &= ~(TH_ECE|TH_CWR);
13093 
13094 		tcp->tcp_irs = seg_seq;
13095 		tcp->tcp_rack = seg_seq;
13096 		tcp->tcp_rnxt = seg_seq + 1;
13097 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13098 		if (!TCP_IS_DETACHED(tcp)) {
13099 			/* Allocate room for SACK options if needed. */
13100 			if (tcp->tcp_snd_sack_ok) {
13101 				(void) proto_set_tx_wroff(tcp->tcp_rq, connp,
13102 				    tcp->tcp_hdr_len +
13103 				    TCPOPT_MAX_SACK_LEN +
13104 				    (tcp->tcp_loopback ? 0 :
13105 				    tcps->tcps_wroff_xtra));
13106 			} else {
13107 				(void) proto_set_tx_wroff(tcp->tcp_rq, connp,
13108 				    tcp->tcp_hdr_len +
13109 				    (tcp->tcp_loopback ? 0 :
13110 				    tcps->tcps_wroff_xtra));
13111 			}
13112 		}
13113 		if (flags & TH_ACK) {
13114 			/*
13115 			 * If we can't get the confirmation upstream, pretend
13116 			 * we didn't even see this one.
13117 			 *
13118 			 * XXX: how can we pretend we didn't see it if we
13119 			 * have updated rnxt et. al.
13120 			 *
13121 			 * For loopback we defer sending up the T_CONN_CON
13122 			 * until after some checks below.
13123 			 */
13124 			mp1 = NULL;
13125 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
13126 			    tcp->tcp_loopback ? &mp1 : NULL)) {
13127 				freemsg(mp);
13128 				return;
13129 			}
13130 			/* SYN was acked - making progress */
13131 			if (tcp->tcp_ipversion == IPV6_VERSION)
13132 				tcp->tcp_ip_forward_progress = B_TRUE;
13133 
13134 			/* One for the SYN */
13135 			tcp->tcp_suna = tcp->tcp_iss + 1;
13136 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
13137 			tcp->tcp_state = TCPS_ESTABLISHED;
13138 
13139 			/*
13140 			 * If SYN was retransmitted, need to reset all
13141 			 * retransmission info.  This is because this
13142 			 * segment will be treated as a dup ACK.
13143 			 */
13144 			if (tcp->tcp_rexmit) {
13145 				tcp->tcp_rexmit = B_FALSE;
13146 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13147 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
13148 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
13149 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13150 				tcp->tcp_ms_we_have_waited = 0;
13151 
13152 				/*
13153 				 * Set tcp_cwnd back to 1 MSS, per
13154 				 * recommendation from
13155 				 * draft-floyd-incr-init-win-01.txt,
13156 				 * Increasing TCP's Initial Window.
13157 				 */
13158 				tcp->tcp_cwnd = tcp->tcp_mss;
13159 			}
13160 
13161 			tcp->tcp_swl1 = seg_seq;
13162 			tcp->tcp_swl2 = seg_ack;
13163 
13164 			new_swnd = BE16_TO_U16(tcph->th_win);
13165 			tcp->tcp_swnd = new_swnd;
13166 			if (new_swnd > tcp->tcp_max_swnd)
13167 				tcp->tcp_max_swnd = new_swnd;
13168 
13169 			/*
13170 			 * Always send the three-way handshake ack immediately
13171 			 * in order to make the connection complete as soon as
13172 			 * possible on the accepting host.
13173 			 */
13174 			flags |= TH_ACK_NEEDED;
13175 
13176 			/*
13177 			 * Special case for loopback.  At this point we have
13178 			 * received SYN-ACK from the remote endpoint.  In
13179 			 * order to ensure that both endpoints reach the
13180 			 * fused state prior to any data exchange, the final
13181 			 * ACK needs to be sent before we indicate T_CONN_CON
13182 			 * to the module upstream.
13183 			 */
13184 			if (tcp->tcp_loopback) {
13185 				mblk_t *ack_mp;
13186 
13187 				ASSERT(!tcp->tcp_unfusable);
13188 				ASSERT(mp1 != NULL);
13189 				/*
13190 				 * For loopback, we always get a pure SYN-ACK
13191 				 * and only need to send back the final ACK
13192 				 * with no data (this is because the other
13193 				 * tcp is ours and we don't do T/TCP).  This
13194 				 * final ACK triggers the passive side to
13195 				 * perform fusion in ESTABLISHED state.
13196 				 */
13197 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
13198 					if (tcp->tcp_ack_tid != 0) {
13199 						(void) TCP_TIMER_CANCEL(tcp,
13200 						    tcp->tcp_ack_tid);
13201 						tcp->tcp_ack_tid = 0;
13202 					}
13203 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
13204 					BUMP_LOCAL(tcp->tcp_obsegs);
13205 					BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
13206 
13207 					if (!IPCL_IS_NONSTR(connp)) {
13208 						/* Send up T_CONN_CON */
13209 						putnext(tcp->tcp_rq, mp1);
13210 					} else {
13211 						(*connp->conn_upcalls->
13212 						    su_connected)
13213 						    (connp->conn_upper_handle,
13214 						    tcp->tcp_connid,
13215 						    DB_CRED(mp1),
13216 						    DB_CPID(mp1));
13217 						freemsg(mp1);
13218 					}
13219 
13220 					freemsg(mp);
13221 					return;
13222 				}
13223 				/*
13224 				 * Forget fusion; we need to handle more
13225 				 * complex cases below.  Send the deferred
13226 				 * T_CONN_CON message upstream and proceed
13227 				 * as usual.  Mark this tcp as not capable
13228 				 * of fusion.
13229 				 */
13230 				TCP_STAT(tcps, tcp_fusion_unfusable);
13231 				tcp->tcp_unfusable = B_TRUE;
13232 				if (!IPCL_IS_NONSTR(connp)) {
13233 					putnext(tcp->tcp_rq, mp1);
13234 				} else {
13235 					(*connp->conn_upcalls->su_connected)
13236 					    (connp->conn_upper_handle,
13237 					    tcp->tcp_connid, DB_CRED(mp1),
13238 					    DB_CPID(mp1));
13239 					freemsg(mp1);
13240 				}
13241 			}
13242 
13243 			/*
13244 			 * Check to see if there is data to be sent.  If
13245 			 * yes, set the transmit flag.  Then check to see
13246 			 * if received data processing needs to be done.
13247 			 * If not, go straight to xmit_check.  This short
13248 			 * cut is OK as we don't support T/TCP.
13249 			 */
13250 			if (tcp->tcp_unsent)
13251 				flags |= TH_XMIT_NEEDED;
13252 
13253 			if (seg_len == 0 && !(flags & TH_URG)) {
13254 				freemsg(mp);
13255 				goto xmit_check;
13256 			}
13257 
13258 			flags &= ~TH_SYN;
13259 			seg_seq++;
13260 			break;
13261 		}
13262 		tcp->tcp_state = TCPS_SYN_RCVD;
13263 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
13264 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
13265 		if (mp1) {
13266 			DB_CPID(mp1) = tcp->tcp_cpid;
13267 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
13268 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13269 		}
13270 		freemsg(mp);
13271 		return;
13272 	case TCPS_SYN_RCVD:
13273 		if (flags & TH_ACK) {
13274 			/*
13275 			 * In this state, a SYN|ACK packet is either bogus
13276 			 * because the other side must be ACKing our SYN which
13277 			 * indicates it has seen the ACK for their SYN and
13278 			 * shouldn't retransmit it or we're crossing SYNs
13279 			 * on active open.
13280 			 */
13281 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
13282 				freemsg(mp);
13283 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
13284 				    tcp, seg_ack, 0, TH_RST);
13285 				return;
13286 			}
13287 			/*
13288 			 * NOTE: RFC 793 pg. 72 says this should be
13289 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
13290 			 * but that would mean we have an ack that ignored
13291 			 * our SYN.
13292 			 */
13293 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
13294 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13295 				freemsg(mp);
13296 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
13297 				    tcp, seg_ack, 0, TH_RST);
13298 				return;
13299 			}
13300 		}
13301 		break;
13302 	case TCPS_LISTEN:
13303 		/*
13304 		 * Only a TLI listener can come through this path when a
13305 		 * acceptor is going back to be a listener and a packet
13306 		 * for the acceptor hits the classifier. For a socket
13307 		 * listener, this can never happen because a listener
13308 		 * can never accept connection on itself and hence a
13309 		 * socket acceptor can not go back to being a listener.
13310 		 */
13311 		ASSERT(!TCP_IS_SOCKET(tcp));
13312 		/*FALLTHRU*/
13313 	case TCPS_CLOSED:
13314 	case TCPS_BOUND: {
13315 		conn_t	*new_connp;
13316 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
13317 
13318 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
13319 		if (new_connp != NULL) {
13320 			tcp_reinput(new_connp, mp, connp->conn_sqp);
13321 			return;
13322 		}
13323 		/* We failed to classify. For now just drop the packet */
13324 		freemsg(mp);
13325 		return;
13326 	}
13327 	case TCPS_IDLE:
13328 		/*
13329 		 * Handle the case where the tcp_clean_death() has happened
13330 		 * on a connection (application hasn't closed yet) but a packet
13331 		 * was already queued on squeue before tcp_clean_death()
13332 		 * was processed. Calling tcp_clean_death() twice on same
13333 		 * connection can result in weird behaviour.
13334 		 */
13335 		freemsg(mp);
13336 		return;
13337 	default:
13338 		break;
13339 	}
13340 
13341 	/*
13342 	 * Already on the correct queue/perimeter.
13343 	 * If this is a detached connection and not an eager
13344 	 * connection hanging off a listener then new data
13345 	 * (past the FIN) will cause a reset.
13346 	 * We do a special check here where it
13347 	 * is out of the main line, rather than check
13348 	 * if we are detached every time we see new
13349 	 * data down below.
13350 	 */
13351 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
13352 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
13353 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
13354 		DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
13355 
13356 		freemsg(mp);
13357 		/*
13358 		 * This could be an SSL closure alert. We're detached so just
13359 		 * acknowledge it this last time.
13360 		 */
13361 		if (tcp->tcp_kssl_ctx != NULL) {
13362 			kssl_release_ctx(tcp->tcp_kssl_ctx);
13363 			tcp->tcp_kssl_ctx = NULL;
13364 
13365 			tcp->tcp_rnxt += seg_len;
13366 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13367 			flags |= TH_ACK_NEEDED;
13368 			goto ack_check;
13369 		}
13370 
13371 		tcp_xmit_ctl("new data when detached", tcp,
13372 		    tcp->tcp_snxt, 0, TH_RST);
13373 		(void) tcp_clean_death(tcp, EPROTO, 12);
13374 		return;
13375 	}
13376 
13377 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13378 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
13379 	new_swnd = BE16_TO_U16(tcph->th_win) <<
13380 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
13381 
13382 	if (tcp->tcp_snd_ts_ok) {
13383 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
13384 			/*
13385 			 * This segment is not acceptable.
13386 			 * Drop it and send back an ACK.
13387 			 */
13388 			freemsg(mp);
13389 			flags |= TH_ACK_NEEDED;
13390 			goto ack_check;
13391 		}
13392 	} else if (tcp->tcp_snd_sack_ok) {
13393 		ASSERT(tcp->tcp_sack_info != NULL);
13394 		tcpopt.tcp = tcp;
13395 		/*
13396 		 * SACK info in already updated in tcp_parse_options.  Ignore
13397 		 * all other TCP options...
13398 		 */
13399 		(void) tcp_parse_options(tcph, &tcpopt);
13400 	}
13401 try_again:;
13402 	mss = tcp->tcp_mss;
13403 	gap = seg_seq - tcp->tcp_rnxt;
13404 	rgap = tcp->tcp_rwnd - (gap + seg_len);
13405 	/*
13406 	 * gap is the amount of sequence space between what we expect to see
13407 	 * and what we got for seg_seq.  A positive value for gap means
13408 	 * something got lost.  A negative value means we got some old stuff.
13409 	 */
13410 	if (gap < 0) {
13411 		/* Old stuff present.  Is the SYN in there? */
13412 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
13413 		    (seg_len != 0)) {
13414 			flags &= ~TH_SYN;
13415 			seg_seq++;
13416 			urp--;
13417 			/* Recompute the gaps after noting the SYN. */
13418 			goto try_again;
13419 		}
13420 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
13421 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
13422 		    (seg_len > -gap ? -gap : seg_len));
13423 		/* Remove the old stuff from seg_len. */
13424 		seg_len += gap;
13425 		/*
13426 		 * Anything left?
13427 		 * Make sure to check for unack'd FIN when rest of data
13428 		 * has been previously ack'd.
13429 		 */
13430 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
13431 			/*
13432 			 * Resets are only valid if they lie within our offered
13433 			 * window.  If the RST bit is set, we just ignore this
13434 			 * segment.
13435 			 */
13436 			if (flags & TH_RST) {
13437 				freemsg(mp);
13438 				return;
13439 			}
13440 
13441 			/*
13442 			 * The arriving of dup data packets indicate that we
13443 			 * may have postponed an ack for too long, or the other
13444 			 * side's RTT estimate is out of shape. Start acking
13445 			 * more often.
13446 			 */
13447 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
13448 			    tcp->tcp_rack_cnt >= 1 &&
13449 			    tcp->tcp_rack_abs_max > 2) {
13450 				tcp->tcp_rack_abs_max--;
13451 			}
13452 			tcp->tcp_rack_cur_max = 1;
13453 
13454 			/*
13455 			 * This segment is "unacceptable".  None of its
13456 			 * sequence space lies within our advertized window.
13457 			 *
13458 			 * Adjust seg_len to the original value for tracing.
13459 			 */
13460 			seg_len -= gap;
13461 			if (tcp->tcp_debug) {
13462 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13463 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
13464 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
13465 				    "seg_len %d, rnxt %u, snxt %u, %s",
13466 				    gap, rgap, flags, seg_seq, seg_ack,
13467 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
13468 				    tcp_display(tcp, NULL,
13469 				    DISP_ADDR_AND_PORT));
13470 			}
13471 
13472 			/*
13473 			 * Arrange to send an ACK in response to the
13474 			 * unacceptable segment per RFC 793 page 69. There
13475 			 * is only one small difference between ours and the
13476 			 * acceptability test in the RFC - we accept ACK-only
13477 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
13478 			 * will be generated.
13479 			 *
13480 			 * Note that we have to ACK an ACK-only packet at least
13481 			 * for stacks that send 0-length keep-alives with
13482 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
13483 			 * section 4.2.3.6. As long as we don't ever generate
13484 			 * an unacceptable packet in response to an incoming
13485 			 * packet that is unacceptable, it should not cause
13486 			 * "ACK wars".
13487 			 */
13488 			flags |=  TH_ACK_NEEDED;
13489 
13490 			/*
13491 			 * Continue processing this segment in order to use the
13492 			 * ACK information it contains, but skip all other
13493 			 * sequence-number processing.	Processing the ACK
13494 			 * information is necessary in order to
13495 			 * re-synchronize connections that may have lost
13496 			 * synchronization.
13497 			 *
13498 			 * We clear seg_len and flag fields related to
13499 			 * sequence number processing as they are not
13500 			 * to be trusted for an unacceptable segment.
13501 			 */
13502 			seg_len = 0;
13503 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
13504 			goto process_ack;
13505 		}
13506 
13507 		/* Fix seg_seq, and chew the gap off the front. */
13508 		seg_seq = tcp->tcp_rnxt;
13509 		urp += gap;
13510 		do {
13511 			mblk_t	*mp2;
13512 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13513 			    (uintptr_t)UINT_MAX);
13514 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
13515 			if (gap > 0) {
13516 				mp->b_rptr = mp->b_wptr - gap;
13517 				break;
13518 			}
13519 			mp2 = mp;
13520 			mp = mp->b_cont;
13521 			freeb(mp2);
13522 		} while (gap < 0);
13523 		/*
13524 		 * If the urgent data has already been acknowledged, we
13525 		 * should ignore TH_URG below
13526 		 */
13527 		if (urp < 0)
13528 			flags &= ~TH_URG;
13529 	}
13530 	/*
13531 	 * rgap is the amount of stuff received out of window.  A negative
13532 	 * value is the amount out of window.
13533 	 */
13534 	if (rgap < 0) {
13535 		mblk_t	*mp2;
13536 
13537 		if (tcp->tcp_rwnd == 0) {
13538 			BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe);
13539 		} else {
13540 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
13541 			UPDATE_MIB(&tcps->tcps_mib,
13542 			    tcpInDataPastWinBytes, -rgap);
13543 		}
13544 
13545 		/*
13546 		 * seg_len does not include the FIN, so if more than
13547 		 * just the FIN is out of window, we act like we don't
13548 		 * see it.  (If just the FIN is out of window, rgap
13549 		 * will be zero and we will go ahead and acknowledge
13550 		 * the FIN.)
13551 		 */
13552 		flags &= ~TH_FIN;
13553 
13554 		/* Fix seg_len and make sure there is something left. */
13555 		seg_len += rgap;
13556 		if (seg_len <= 0) {
13557 			/*
13558 			 * Resets are only valid if they lie within our offered
13559 			 * window.  If the RST bit is set, we just ignore this
13560 			 * segment.
13561 			 */
13562 			if (flags & TH_RST) {
13563 				freemsg(mp);
13564 				return;
13565 			}
13566 
13567 			/* Per RFC 793, we need to send back an ACK. */
13568 			flags |= TH_ACK_NEEDED;
13569 
13570 			/*
13571 			 * Send SIGURG as soon as possible i.e. even
13572 			 * if the TH_URG was delivered in a window probe
13573 			 * packet (which will be unacceptable).
13574 			 *
13575 			 * We generate a signal if none has been generated
13576 			 * for this connection or if this is a new urgent
13577 			 * byte. Also send a zero-length "unmarked" message
13578 			 * to inform SIOCATMARK that this is not the mark.
13579 			 *
13580 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
13581 			 * is sent up. This plus the check for old data
13582 			 * (gap >= 0) handles the wraparound of the sequence
13583 			 * number space without having to always track the
13584 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
13585 			 * this max in its rcv_up variable).
13586 			 *
13587 			 * This prevents duplicate SIGURGS due to a "late"
13588 			 * zero-window probe when the T_EXDATA_IND has already
13589 			 * been sent up.
13590 			 */
13591 			if ((flags & TH_URG) &&
13592 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
13593 			    tcp->tcp_urp_last))) {
13594 				if (IPCL_IS_NONSTR(connp)) {
13595 					if (!TCP_IS_DETACHED(tcp)) {
13596 						(*connp->conn_upcalls->
13597 						    su_signal_oob)
13598 						    (connp->conn_upper_handle,
13599 						    urp);
13600 					}
13601 				} else {
13602 					mp1 = allocb(0, BPRI_MED);
13603 					if (mp1 == NULL) {
13604 						freemsg(mp);
13605 						return;
13606 					}
13607 					if (!TCP_IS_DETACHED(tcp) &&
13608 					    !putnextctl1(tcp->tcp_rq,
13609 					    M_PCSIG, SIGURG)) {
13610 						/* Try again on the rexmit. */
13611 						freemsg(mp1);
13612 						freemsg(mp);
13613 						return;
13614 					}
13615 					/*
13616 					 * If the next byte would be the mark
13617 					 * then mark with MARKNEXT else mark
13618 					 * with NOTMARKNEXT.
13619 					 */
13620 					if (gap == 0 && urp == 0)
13621 						mp1->b_flag |= MSGMARKNEXT;
13622 					else
13623 						mp1->b_flag |= MSGNOTMARKNEXT;
13624 					freemsg(tcp->tcp_urp_mark_mp);
13625 					tcp->tcp_urp_mark_mp = mp1;
13626 					flags |= TH_SEND_URP_MARK;
13627 				}
13628 				tcp->tcp_urp_last_valid = B_TRUE;
13629 				tcp->tcp_urp_last = urp + seg_seq;
13630 			}
13631 			/*
13632 			 * If this is a zero window probe, continue to
13633 			 * process the ACK part.  But we need to set seg_len
13634 			 * to 0 to avoid data processing.  Otherwise just
13635 			 * drop the segment and send back an ACK.
13636 			 */
13637 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
13638 				flags &= ~(TH_SYN | TH_URG);
13639 				seg_len = 0;
13640 				goto process_ack;
13641 			} else {
13642 				freemsg(mp);
13643 				goto ack_check;
13644 			}
13645 		}
13646 		/* Pitch out of window stuff off the end. */
13647 		rgap = seg_len;
13648 		mp2 = mp;
13649 		do {
13650 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
13651 			    (uintptr_t)INT_MAX);
13652 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
13653 			if (rgap < 0) {
13654 				mp2->b_wptr += rgap;
13655 				if ((mp1 = mp2->b_cont) != NULL) {
13656 					mp2->b_cont = NULL;
13657 					freemsg(mp1);
13658 				}
13659 				break;
13660 			}
13661 		} while ((mp2 = mp2->b_cont) != NULL);
13662 	}
13663 ok:;
13664 	/*
13665 	 * TCP should check ECN info for segments inside the window only.
13666 	 * Therefore the check should be done here.
13667 	 */
13668 	if (tcp->tcp_ecn_ok) {
13669 		if (flags & TH_CWR) {
13670 			tcp->tcp_ecn_echo_on = B_FALSE;
13671 		}
13672 		/*
13673 		 * Note that both ECN_CE and CWR can be set in the
13674 		 * same segment.  In this case, we once again turn
13675 		 * on ECN_ECHO.
13676 		 */
13677 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13678 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13679 
13680 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13681 				tcp->tcp_ecn_echo_on = B_TRUE;
13682 			}
13683 		} else {
13684 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13685 
13686 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13687 			    htonl(IPH_ECN_CE << 20)) {
13688 				tcp->tcp_ecn_echo_on = B_TRUE;
13689 			}
13690 		}
13691 	}
13692 
13693 	/*
13694 	 * Check whether we can update tcp_ts_recent.  This test is
13695 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13696 	 * Extensions for High Performance: An Update", Internet Draft.
13697 	 */
13698 	if (tcp->tcp_snd_ts_ok &&
13699 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13700 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13701 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13702 		tcp->tcp_last_rcv_lbolt = lbolt64;
13703 	}
13704 
13705 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13706 		/*
13707 		 * FIN in an out of order segment.  We record this in
13708 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13709 		 * Clear the FIN so that any check on FIN flag will fail.
13710 		 * Remember that FIN also counts in the sequence number
13711 		 * space.  So we need to ack out of order FIN only segments.
13712 		 */
13713 		if (flags & TH_FIN) {
13714 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13715 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13716 			flags &= ~TH_FIN;
13717 			flags |= TH_ACK_NEEDED;
13718 		}
13719 		if (seg_len > 0) {
13720 			/* Fill in the SACK blk list. */
13721 			if (tcp->tcp_snd_sack_ok) {
13722 				ASSERT(tcp->tcp_sack_info != NULL);
13723 				tcp_sack_insert(tcp->tcp_sack_list,
13724 				    seg_seq, seg_seq + seg_len,
13725 				    &(tcp->tcp_num_sack_blk));
13726 			}
13727 
13728 			/*
13729 			 * Attempt reassembly and see if we have something
13730 			 * ready to go.
13731 			 */
13732 			mp = tcp_reass(tcp, mp, seg_seq);
13733 			/* Always ack out of order packets */
13734 			flags |= TH_ACK_NEEDED | TH_PUSH;
13735 			if (mp) {
13736 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13737 				    (uintptr_t)INT_MAX);
13738 				seg_len = mp->b_cont ? msgdsize(mp) :
13739 				    (int)(mp->b_wptr - mp->b_rptr);
13740 				seg_seq = tcp->tcp_rnxt;
13741 				/*
13742 				 * A gap is filled and the seq num and len
13743 				 * of the gap match that of a previously
13744 				 * received FIN, put the FIN flag back in.
13745 				 */
13746 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13747 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13748 					flags |= TH_FIN;
13749 					tcp->tcp_valid_bits &=
13750 					    ~TCP_OFO_FIN_VALID;
13751 				}
13752 			} else {
13753 				/*
13754 				 * Keep going even with NULL mp.
13755 				 * There may be a useful ACK or something else
13756 				 * we don't want to miss.
13757 				 *
13758 				 * But TCP should not perform fast retransmit
13759 				 * because of the ack number.  TCP uses
13760 				 * seg_len == 0 to determine if it is a pure
13761 				 * ACK.  And this is not a pure ACK.
13762 				 */
13763 				seg_len = 0;
13764 				ofo_seg = B_TRUE;
13765 			}
13766 		}
13767 	} else if (seg_len > 0) {
13768 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
13769 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
13770 		/*
13771 		 * If an out of order FIN was received before, and the seq
13772 		 * num and len of the new segment match that of the FIN,
13773 		 * put the FIN flag back in.
13774 		 */
13775 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13776 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13777 			flags |= TH_FIN;
13778 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
13779 		}
13780 	}
13781 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
13782 	if (flags & TH_RST) {
13783 		freemsg(mp);
13784 		switch (tcp->tcp_state) {
13785 		case TCPS_SYN_RCVD:
13786 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
13787 			break;
13788 		case TCPS_ESTABLISHED:
13789 		case TCPS_FIN_WAIT_1:
13790 		case TCPS_FIN_WAIT_2:
13791 		case TCPS_CLOSE_WAIT:
13792 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
13793 			break;
13794 		case TCPS_CLOSING:
13795 		case TCPS_LAST_ACK:
13796 			(void) tcp_clean_death(tcp, 0, 16);
13797 			break;
13798 		default:
13799 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13800 			(void) tcp_clean_death(tcp, ENXIO, 17);
13801 			break;
13802 		}
13803 		return;
13804 	}
13805 	if (flags & TH_SYN) {
13806 		/*
13807 		 * See RFC 793, Page 71
13808 		 *
13809 		 * The seq number must be in the window as it should
13810 		 * be "fixed" above.  If it is outside window, it should
13811 		 * be already rejected.  Note that we allow seg_seq to be
13812 		 * rnxt + rwnd because we want to accept 0 window probe.
13813 		 */
13814 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
13815 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
13816 		freemsg(mp);
13817 		/*
13818 		 * If the ACK flag is not set, just use our snxt as the
13819 		 * seq number of the RST segment.
13820 		 */
13821 		if (!(flags & TH_ACK)) {
13822 			seg_ack = tcp->tcp_snxt;
13823 		}
13824 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
13825 		    TH_RST|TH_ACK);
13826 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13827 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
13828 		return;
13829 	}
13830 	/*
13831 	 * urp could be -1 when the urp field in the packet is 0
13832 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
13833 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
13834 	 */
13835 	if (flags & TH_URG && urp >= 0) {
13836 		if (!tcp->tcp_urp_last_valid ||
13837 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
13838 			if (IPCL_IS_NONSTR(connp)) {
13839 				if (!TCP_IS_DETACHED(tcp)) {
13840 					(*connp->conn_upcalls->su_signal_oob)
13841 					    (connp->conn_upper_handle, urp);
13842 				}
13843 			} else {
13844 				/*
13845 				 * If we haven't generated the signal yet for
13846 				 * this urgent pointer value, do it now.  Also,
13847 				 * send up a zero-length M_DATA indicating
13848 				 * whether or not this is the mark. The latter
13849 				 * is not needed when a T_EXDATA_IND is sent up.
13850 				 * However, if there are allocation failures
13851 				 * this code relies on the sender retransmitting
13852 				 * and the socket code for determining the mark
13853 				 * should not block waiting for the peer to
13854 				 * transmit. Thus, for simplicity we always
13855 				 * send up the mark indication.
13856 				 */
13857 				mp1 = allocb(0, BPRI_MED);
13858 				if (mp1 == NULL) {
13859 					freemsg(mp);
13860 					return;
13861 				}
13862 				if (!TCP_IS_DETACHED(tcp) &&
13863 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
13864 				    SIGURG)) {
13865 					/* Try again on the rexmit. */
13866 					freemsg(mp1);
13867 					freemsg(mp);
13868 					return;
13869 				}
13870 				/*
13871 				 * Mark with NOTMARKNEXT for now.
13872 				 * The code below will change this to MARKNEXT
13873 				 * if we are at the mark.
13874 				 *
13875 				 * If there are allocation failures (e.g. in
13876 				 * dupmsg below) the next time tcp_rput_data
13877 				 * sees the urgent segment it will send up the
13878 				 * MSGMARKNEXT message.
13879 				 */
13880 				mp1->b_flag |= MSGNOTMARKNEXT;
13881 				freemsg(tcp->tcp_urp_mark_mp);
13882 				tcp->tcp_urp_mark_mp = mp1;
13883 				flags |= TH_SEND_URP_MARK;
13884 #ifdef DEBUG
13885 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13886 				    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
13887 				    "last %x, %s",
13888 				    seg_seq, urp, tcp->tcp_urp_last,
13889 				    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13890 #endif /* DEBUG */
13891 			}
13892 			tcp->tcp_urp_last_valid = B_TRUE;
13893 			tcp->tcp_urp_last = urp + seg_seq;
13894 		} else if (tcp->tcp_urp_mark_mp != NULL) {
13895 			/*
13896 			 * An allocation failure prevented the previous
13897 			 * tcp_rput_data from sending up the allocated
13898 			 * MSG*MARKNEXT message - send it up this time
13899 			 * around.
13900 			 */
13901 			flags |= TH_SEND_URP_MARK;
13902 		}
13903 
13904 		/*
13905 		 * If the urgent byte is in this segment, make sure that it is
13906 		 * all by itself.  This makes it much easier to deal with the
13907 		 * possibility of an allocation failure on the T_exdata_ind.
13908 		 * Note that seg_len is the number of bytes in the segment, and
13909 		 * urp is the offset into the segment of the urgent byte.
13910 		 * urp < seg_len means that the urgent byte is in this segment.
13911 		 */
13912 		if (urp < seg_len) {
13913 			if (seg_len != 1) {
13914 				uint32_t  tmp_rnxt;
13915 				/*
13916 				 * Break it up and feed it back in.
13917 				 * Re-attach the IP header.
13918 				 */
13919 				mp->b_rptr = iphdr;
13920 				if (urp > 0) {
13921 					/*
13922 					 * There is stuff before the urgent
13923 					 * byte.
13924 					 */
13925 					mp1 = dupmsg(mp);
13926 					if (!mp1) {
13927 						/*
13928 						 * Trim from urgent byte on.
13929 						 * The rest will come back.
13930 						 */
13931 						(void) adjmsg(mp,
13932 						    urp - seg_len);
13933 						tcp_rput_data(connp,
13934 						    mp, NULL);
13935 						return;
13936 					}
13937 					(void) adjmsg(mp1, urp - seg_len);
13938 					/* Feed this piece back in. */
13939 					tmp_rnxt = tcp->tcp_rnxt;
13940 					tcp_rput_data(connp, mp1, NULL);
13941 					/*
13942 					 * If the data passed back in was not
13943 					 * processed (ie: bad ACK) sending
13944 					 * the remainder back in will cause a
13945 					 * loop. In this case, drop the
13946 					 * packet and let the sender try
13947 					 * sending a good packet.
13948 					 */
13949 					if (tmp_rnxt == tcp->tcp_rnxt) {
13950 						freemsg(mp);
13951 						return;
13952 					}
13953 				}
13954 				if (urp != seg_len - 1) {
13955 					uint32_t  tmp_rnxt;
13956 					/*
13957 					 * There is stuff after the urgent
13958 					 * byte.
13959 					 */
13960 					mp1 = dupmsg(mp);
13961 					if (!mp1) {
13962 						/*
13963 						 * Trim everything beyond the
13964 						 * urgent byte.  The rest will
13965 						 * come back.
13966 						 */
13967 						(void) adjmsg(mp,
13968 						    urp + 1 - seg_len);
13969 						tcp_rput_data(connp,
13970 						    mp, NULL);
13971 						return;
13972 					}
13973 					(void) adjmsg(mp1, urp + 1 - seg_len);
13974 					tmp_rnxt = tcp->tcp_rnxt;
13975 					tcp_rput_data(connp, mp1, NULL);
13976 					/*
13977 					 * If the data passed back in was not
13978 					 * processed (ie: bad ACK) sending
13979 					 * the remainder back in will cause a
13980 					 * loop. In this case, drop the
13981 					 * packet and let the sender try
13982 					 * sending a good packet.
13983 					 */
13984 					if (tmp_rnxt == tcp->tcp_rnxt) {
13985 						freemsg(mp);
13986 						return;
13987 					}
13988 				}
13989 				tcp_rput_data(connp, mp, NULL);
13990 				return;
13991 			}
13992 			/*
13993 			 * This segment contains only the urgent byte.  We
13994 			 * have to allocate the T_exdata_ind, if we can.
13995 			 */
13996 			if (IPCL_IS_NONSTR(connp)) {
13997 				int error;
13998 
13999 				(*connp->conn_upcalls->su_recv)
14000 				    (connp->conn_upper_handle, mp, seg_len,
14001 				    MSG_OOB, &error, NULL);
14002 				mp = NULL;
14003 				goto update_ack;
14004 			} else if (!tcp->tcp_urp_mp) {
14005 				struct T_exdata_ind *tei;
14006 				mp1 = allocb(sizeof (struct T_exdata_ind),
14007 				    BPRI_MED);
14008 				if (!mp1) {
14009 					/*
14010 					 * Sigh... It'll be back.
14011 					 * Generate any MSG*MARK message now.
14012 					 */
14013 					freemsg(mp);
14014 					seg_len = 0;
14015 					if (flags & TH_SEND_URP_MARK) {
14016 
14017 
14018 						ASSERT(tcp->tcp_urp_mark_mp);
14019 						tcp->tcp_urp_mark_mp->b_flag &=
14020 						    ~MSGNOTMARKNEXT;
14021 						tcp->tcp_urp_mark_mp->b_flag |=
14022 						    MSGMARKNEXT;
14023 					}
14024 					goto ack_check;
14025 				}
14026 				mp1->b_datap->db_type = M_PROTO;
14027 				tei = (struct T_exdata_ind *)mp1->b_rptr;
14028 				tei->PRIM_type = T_EXDATA_IND;
14029 				tei->MORE_flag = 0;
14030 				mp1->b_wptr = (uchar_t *)&tei[1];
14031 				tcp->tcp_urp_mp = mp1;
14032 #ifdef DEBUG
14033 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14034 				    "tcp_rput: allocated exdata_ind %s",
14035 				    tcp_display(tcp, NULL,
14036 				    DISP_PORT_ONLY));
14037 #endif /* DEBUG */
14038 				/*
14039 				 * There is no need to send a separate MSG*MARK
14040 				 * message since the T_EXDATA_IND will be sent
14041 				 * now.
14042 				 */
14043 				flags &= ~TH_SEND_URP_MARK;
14044 				freemsg(tcp->tcp_urp_mark_mp);
14045 				tcp->tcp_urp_mark_mp = NULL;
14046 			}
14047 			/*
14048 			 * Now we are all set.  On the next putnext upstream,
14049 			 * tcp_urp_mp will be non-NULL and will get prepended
14050 			 * to what has to be this piece containing the urgent
14051 			 * byte.  If for any reason we abort this segment below,
14052 			 * if it comes back, we will have this ready, or it
14053 			 * will get blown off in close.
14054 			 */
14055 		} else if (urp == seg_len) {
14056 			/*
14057 			 * The urgent byte is the next byte after this sequence
14058 			 * number. If there is data it is marked with
14059 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
14060 			 * since it is not needed. Otherwise, if the code
14061 			 * above just allocated a zero-length tcp_urp_mark_mp
14062 			 * message, that message is tagged with MSGMARKNEXT.
14063 			 * Sending up these MSGMARKNEXT messages makes
14064 			 * SIOCATMARK work correctly even though
14065 			 * the T_EXDATA_IND will not be sent up until the
14066 			 * urgent byte arrives.
14067 			 */
14068 			if (seg_len != 0) {
14069 				flags |= TH_MARKNEXT_NEEDED;
14070 				freemsg(tcp->tcp_urp_mark_mp);
14071 				tcp->tcp_urp_mark_mp = NULL;
14072 				flags &= ~TH_SEND_URP_MARK;
14073 			} else if (tcp->tcp_urp_mark_mp != NULL) {
14074 				flags |= TH_SEND_URP_MARK;
14075 				tcp->tcp_urp_mark_mp->b_flag &=
14076 				    ~MSGNOTMARKNEXT;
14077 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
14078 			}
14079 #ifdef DEBUG
14080 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14081 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
14082 			    seg_len, flags,
14083 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14084 #endif /* DEBUG */
14085 		}
14086 #ifdef DEBUG
14087 		else {
14088 			/* Data left until we hit mark */
14089 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14090 			    "tcp_rput: URP %d bytes left, %s",
14091 			    urp - seg_len, tcp_display(tcp, NULL,
14092 			    DISP_PORT_ONLY));
14093 		}
14094 #endif /* DEBUG */
14095 	}
14096 
14097 process_ack:
14098 	if (!(flags & TH_ACK)) {
14099 		freemsg(mp);
14100 		goto xmit_check;
14101 	}
14102 	}
14103 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
14104 
14105 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
14106 		tcp->tcp_ip_forward_progress = B_TRUE;
14107 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
14108 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
14109 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
14110 			/* 3-way handshake complete - pass up the T_CONN_IND */
14111 			tcp_t	*listener = tcp->tcp_listener;
14112 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
14113 
14114 			tcp->tcp_tconnind_started = B_TRUE;
14115 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
14116 			/*
14117 			 * We are here means eager is fine but it can
14118 			 * get a TH_RST at any point between now and till
14119 			 * accept completes and disappear. We need to
14120 			 * ensure that reference to eager is valid after
14121 			 * we get out of eager's perimeter. So we do
14122 			 * an extra refhold.
14123 			 */
14124 			CONN_INC_REF(connp);
14125 
14126 			/*
14127 			 * The listener also exists because of the refhold
14128 			 * done in tcp_conn_request. Its possible that it
14129 			 * might have closed. We will check that once we
14130 			 * get inside listeners context.
14131 			 */
14132 			CONN_INC_REF(listener->tcp_connp);
14133 			if (listener->tcp_connp->conn_sqp ==
14134 			    connp->conn_sqp) {
14135 				/*
14136 				 * We optimize by not calling an SQUEUE_ENTER
14137 				 * on the listener since we know that the
14138 				 * listener and eager squeues are the same.
14139 				 * We are able to make this check safely only
14140 				 * because neither the eager nor the listener
14141 				 * can change its squeue. Only an active connect
14142 				 * can change its squeue
14143 				 */
14144 				tcp_send_conn_ind(listener->tcp_connp, mp,
14145 				    listener->tcp_connp->conn_sqp);
14146 				CONN_DEC_REF(listener->tcp_connp);
14147 			} else if (!tcp->tcp_loopback) {
14148 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
14149 				    mp, tcp_send_conn_ind,
14150 				    listener->tcp_connp, SQ_FILL,
14151 				    SQTAG_TCP_CONN_IND);
14152 			} else {
14153 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
14154 				    mp, tcp_send_conn_ind,
14155 				    listener->tcp_connp, SQ_PROCESS,
14156 				    SQTAG_TCP_CONN_IND);
14157 			}
14158 		}
14159 
14160 		if (tcp->tcp_active_open) {
14161 			/*
14162 			 * We are seeing the final ack in the three way
14163 			 * hand shake of a active open'ed connection
14164 			 * so we must send up a T_CONN_CON
14165 			 */
14166 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
14167 				freemsg(mp);
14168 				return;
14169 			}
14170 			/*
14171 			 * Don't fuse the loopback endpoints for
14172 			 * simultaneous active opens.
14173 			 */
14174 			if (tcp->tcp_loopback) {
14175 				TCP_STAT(tcps, tcp_fusion_unfusable);
14176 				tcp->tcp_unfusable = B_TRUE;
14177 			}
14178 		}
14179 
14180 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
14181 		bytes_acked--;
14182 		/* SYN was acked - making progress */
14183 		if (tcp->tcp_ipversion == IPV6_VERSION)
14184 			tcp->tcp_ip_forward_progress = B_TRUE;
14185 
14186 		/*
14187 		 * If SYN was retransmitted, need to reset all
14188 		 * retransmission info as this segment will be
14189 		 * treated as a dup ACK.
14190 		 */
14191 		if (tcp->tcp_rexmit) {
14192 			tcp->tcp_rexmit = B_FALSE;
14193 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14194 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
14195 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14196 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14197 			tcp->tcp_ms_we_have_waited = 0;
14198 			tcp->tcp_cwnd = mss;
14199 		}
14200 
14201 		/*
14202 		 * We set the send window to zero here.
14203 		 * This is needed if there is data to be
14204 		 * processed already on the queue.
14205 		 * Later (at swnd_update label), the
14206 		 * "new_swnd > tcp_swnd" condition is satisfied
14207 		 * the XMIT_NEEDED flag is set in the current
14208 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
14209 		 * called if there is already data on queue in
14210 		 * this state.
14211 		 */
14212 		tcp->tcp_swnd = 0;
14213 
14214 		if (new_swnd > tcp->tcp_max_swnd)
14215 			tcp->tcp_max_swnd = new_swnd;
14216 		tcp->tcp_swl1 = seg_seq;
14217 		tcp->tcp_swl2 = seg_ack;
14218 		tcp->tcp_state = TCPS_ESTABLISHED;
14219 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
14220 
14221 		/* Fuse when both sides are in ESTABLISHED state */
14222 		if (tcp->tcp_loopback && do_tcp_fusion)
14223 			tcp_fuse(tcp, iphdr, tcph);
14224 
14225 	}
14226 	/* This code follows 4.4BSD-Lite2 mostly. */
14227 	if (bytes_acked < 0)
14228 		goto est;
14229 
14230 	/*
14231 	 * If TCP is ECN capable and the congestion experience bit is
14232 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
14233 	 * done once per window (or more loosely, per RTT).
14234 	 */
14235 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
14236 		tcp->tcp_cwr = B_FALSE;
14237 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
14238 		if (!tcp->tcp_cwr) {
14239 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
14240 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
14241 			tcp->tcp_cwnd = npkt * mss;
14242 			/*
14243 			 * If the cwnd is 0, use the timer to clock out
14244 			 * new segments.  This is required by the ECN spec.
14245 			 */
14246 			if (npkt == 0) {
14247 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14248 				/*
14249 				 * This makes sure that when the ACK comes
14250 				 * back, we will increase tcp_cwnd by 1 MSS.
14251 				 */
14252 				tcp->tcp_cwnd_cnt = 0;
14253 			}
14254 			tcp->tcp_cwr = B_TRUE;
14255 			/*
14256 			 * This marks the end of the current window of in
14257 			 * flight data.  That is why we don't use
14258 			 * tcp_suna + tcp_swnd.  Only data in flight can
14259 			 * provide ECN info.
14260 			 */
14261 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14262 			tcp->tcp_ecn_cwr_sent = B_FALSE;
14263 		}
14264 	}
14265 
14266 	mp1 = tcp->tcp_xmit_head;
14267 	if (bytes_acked == 0) {
14268 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
14269 			int dupack_cnt;
14270 
14271 			BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
14272 			/*
14273 			 * Fast retransmit.  When we have seen exactly three
14274 			 * identical ACKs while we have unacked data
14275 			 * outstanding we take it as a hint that our peer
14276 			 * dropped something.
14277 			 *
14278 			 * If TCP is retransmitting, don't do fast retransmit.
14279 			 */
14280 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
14281 			    ! tcp->tcp_rexmit) {
14282 				/* Do Limited Transmit */
14283 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
14284 				    tcps->tcps_dupack_fast_retransmit) {
14285 					/*
14286 					 * RFC 3042
14287 					 *
14288 					 * What we need to do is temporarily
14289 					 * increase tcp_cwnd so that new
14290 					 * data can be sent if it is allowed
14291 					 * by the receive window (tcp_rwnd).
14292 					 * tcp_wput_data() will take care of
14293 					 * the rest.
14294 					 *
14295 					 * If the connection is SACK capable,
14296 					 * only do limited xmit when there
14297 					 * is SACK info.
14298 					 *
14299 					 * Note how tcp_cwnd is incremented.
14300 					 * The first dup ACK will increase
14301 					 * it by 1 MSS.  The second dup ACK
14302 					 * will increase it by 2 MSS.  This
14303 					 * means that only 1 new segment will
14304 					 * be sent for each dup ACK.
14305 					 */
14306 					if (tcp->tcp_unsent > 0 &&
14307 					    (!tcp->tcp_snd_sack_ok ||
14308 					    (tcp->tcp_snd_sack_ok &&
14309 					    tcp->tcp_notsack_list != NULL))) {
14310 						tcp->tcp_cwnd += mss <<
14311 						    (tcp->tcp_dupack_cnt - 1);
14312 						flags |= TH_LIMIT_XMIT;
14313 					}
14314 				} else if (dupack_cnt ==
14315 				    tcps->tcps_dupack_fast_retransmit) {
14316 
14317 				/*
14318 				 * If we have reduced tcp_ssthresh
14319 				 * because of ECN, do not reduce it again
14320 				 * unless it is already one window of data
14321 				 * away.  After one window of data, tcp_cwr
14322 				 * should then be cleared.  Note that
14323 				 * for non ECN capable connection, tcp_cwr
14324 				 * should always be false.
14325 				 *
14326 				 * Adjust cwnd since the duplicate
14327 				 * ack indicates that a packet was
14328 				 * dropped (due to congestion.)
14329 				 */
14330 				if (!tcp->tcp_cwr) {
14331 					npkt = ((tcp->tcp_snxt -
14332 					    tcp->tcp_suna) >> 1) / mss;
14333 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
14334 					    mss;
14335 					tcp->tcp_cwnd = (npkt +
14336 					    tcp->tcp_dupack_cnt) * mss;
14337 				}
14338 				if (tcp->tcp_ecn_ok) {
14339 					tcp->tcp_cwr = B_TRUE;
14340 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14341 					tcp->tcp_ecn_cwr_sent = B_FALSE;
14342 				}
14343 
14344 				/*
14345 				 * We do Hoe's algorithm.  Refer to her
14346 				 * paper "Improving the Start-up Behavior
14347 				 * of a Congestion Control Scheme for TCP,"
14348 				 * appeared in SIGCOMM'96.
14349 				 *
14350 				 * Save highest seq no we have sent so far.
14351 				 * Be careful about the invisible FIN byte.
14352 				 */
14353 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
14354 				    (tcp->tcp_unsent == 0)) {
14355 					tcp->tcp_rexmit_max = tcp->tcp_fss;
14356 				} else {
14357 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
14358 				}
14359 
14360 				/*
14361 				 * Do not allow bursty traffic during.
14362 				 * fast recovery.  Refer to Fall and Floyd's
14363 				 * paper "Simulation-based Comparisons of
14364 				 * Tahoe, Reno and SACK TCP" (in CCR?)
14365 				 * This is a best current practise.
14366 				 */
14367 				tcp->tcp_snd_burst = TCP_CWND_SS;
14368 
14369 				/*
14370 				 * For SACK:
14371 				 * Calculate tcp_pipe, which is the
14372 				 * estimated number of bytes in
14373 				 * network.
14374 				 *
14375 				 * tcp_fack is the highest sack'ed seq num
14376 				 * TCP has received.
14377 				 *
14378 				 * tcp_pipe is explained in the above quoted
14379 				 * Fall and Floyd's paper.  tcp_fack is
14380 				 * explained in Mathis and Mahdavi's
14381 				 * "Forward Acknowledgment: Refining TCP
14382 				 * Congestion Control" in SIGCOMM '96.
14383 				 */
14384 				if (tcp->tcp_snd_sack_ok) {
14385 					ASSERT(tcp->tcp_sack_info != NULL);
14386 					if (tcp->tcp_notsack_list != NULL) {
14387 						tcp->tcp_pipe = tcp->tcp_snxt -
14388 						    tcp->tcp_fack;
14389 						tcp->tcp_sack_snxt = seg_ack;
14390 						flags |= TH_NEED_SACK_REXMIT;
14391 					} else {
14392 						/*
14393 						 * Always initialize tcp_pipe
14394 						 * even though we don't have
14395 						 * any SACK info.  If later
14396 						 * we get SACK info and
14397 						 * tcp_pipe is not initialized,
14398 						 * funny things will happen.
14399 						 */
14400 						tcp->tcp_pipe =
14401 						    tcp->tcp_cwnd_ssthresh;
14402 					}
14403 				} else {
14404 					flags |= TH_REXMIT_NEEDED;
14405 				} /* tcp_snd_sack_ok */
14406 
14407 				} else {
14408 					/*
14409 					 * Here we perform congestion
14410 					 * avoidance, but NOT slow start.
14411 					 * This is known as the Fast
14412 					 * Recovery Algorithm.
14413 					 */
14414 					if (tcp->tcp_snd_sack_ok &&
14415 					    tcp->tcp_notsack_list != NULL) {
14416 						flags |= TH_NEED_SACK_REXMIT;
14417 						tcp->tcp_pipe -= mss;
14418 						if (tcp->tcp_pipe < 0)
14419 							tcp->tcp_pipe = 0;
14420 					} else {
14421 					/*
14422 					 * We know that one more packet has
14423 					 * left the pipe thus we can update
14424 					 * cwnd.
14425 					 */
14426 					cwnd = tcp->tcp_cwnd + mss;
14427 					if (cwnd > tcp->tcp_cwnd_max)
14428 						cwnd = tcp->tcp_cwnd_max;
14429 					tcp->tcp_cwnd = cwnd;
14430 					if (tcp->tcp_unsent > 0)
14431 						flags |= TH_XMIT_NEEDED;
14432 					}
14433 				}
14434 			}
14435 		} else if (tcp->tcp_zero_win_probe) {
14436 			/*
14437 			 * If the window has opened, need to arrange
14438 			 * to send additional data.
14439 			 */
14440 			if (new_swnd != 0) {
14441 				/* tcp_suna != tcp_snxt */
14442 				/* Packet contains a window update */
14443 				BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate);
14444 				tcp->tcp_zero_win_probe = 0;
14445 				tcp->tcp_timer_backoff = 0;
14446 				tcp->tcp_ms_we_have_waited = 0;
14447 
14448 				/*
14449 				 * Transmit starting with tcp_suna since
14450 				 * the one byte probe is not ack'ed.
14451 				 * If TCP has sent more than one identical
14452 				 * probe, tcp_rexmit will be set.  That means
14453 				 * tcp_ss_rexmit() will send out the one
14454 				 * byte along with new data.  Otherwise,
14455 				 * fake the retransmission.
14456 				 */
14457 				flags |= TH_XMIT_NEEDED;
14458 				if (!tcp->tcp_rexmit) {
14459 					tcp->tcp_rexmit = B_TRUE;
14460 					tcp->tcp_dupack_cnt = 0;
14461 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
14462 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
14463 				}
14464 			}
14465 		}
14466 		goto swnd_update;
14467 	}
14468 
14469 	/*
14470 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
14471 	 * If the ACK value acks something that we have not yet sent, it might
14472 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
14473 	 * other side.
14474 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
14475 	 * state is handled above, so we can always just drop the segment and
14476 	 * send an ACK here.
14477 	 *
14478 	 * Should we send ACKs in response to ACK only segments?
14479 	 */
14480 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
14481 		BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent);
14482 		/* drop the received segment */
14483 		freemsg(mp);
14484 
14485 		/*
14486 		 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
14487 		 * greater than 0, check if the number of such
14488 		 * bogus ACks is greater than that count.  If yes,
14489 		 * don't send back any ACK.  This prevents TCP from
14490 		 * getting into an ACK storm if somehow an attacker
14491 		 * successfully spoofs an acceptable segment to our
14492 		 * peer.
14493 		 */
14494 		if (tcp_drop_ack_unsent_cnt > 0 &&
14495 		    ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) {
14496 			TCP_STAT(tcps, tcp_in_ack_unsent_drop);
14497 			return;
14498 		}
14499 		mp = tcp_ack_mp(tcp);
14500 		if (mp != NULL) {
14501 			BUMP_LOCAL(tcp->tcp_obsegs);
14502 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
14503 			tcp_send_data(tcp, tcp->tcp_wq, mp);
14504 		}
14505 		return;
14506 	}
14507 
14508 	/*
14509 	 * TCP gets a new ACK, update the notsack'ed list to delete those
14510 	 * blocks that are covered by this ACK.
14511 	 */
14512 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
14513 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
14514 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
14515 	}
14516 
14517 	/*
14518 	 * If we got an ACK after fast retransmit, check to see
14519 	 * if it is a partial ACK.  If it is not and the congestion
14520 	 * window was inflated to account for the other side's
14521 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
14522 	 */
14523 	if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
14524 		ASSERT(tcp->tcp_rexmit == B_FALSE);
14525 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
14526 			tcp->tcp_dupack_cnt = 0;
14527 			/*
14528 			 * Restore the orig tcp_cwnd_ssthresh after
14529 			 * fast retransmit phase.
14530 			 */
14531 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
14532 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
14533 			}
14534 			tcp->tcp_rexmit_max = seg_ack;
14535 			tcp->tcp_cwnd_cnt = 0;
14536 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14537 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14538 
14539 			/*
14540 			 * Remove all notsack info to avoid confusion with
14541 			 * the next fast retrasnmit/recovery phase.
14542 			 */
14543 			if (tcp->tcp_snd_sack_ok &&
14544 			    tcp->tcp_notsack_list != NULL) {
14545 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
14546 			}
14547 		} else {
14548 			if (tcp->tcp_snd_sack_ok &&
14549 			    tcp->tcp_notsack_list != NULL) {
14550 				flags |= TH_NEED_SACK_REXMIT;
14551 				tcp->tcp_pipe -= mss;
14552 				if (tcp->tcp_pipe < 0)
14553 					tcp->tcp_pipe = 0;
14554 			} else {
14555 				/*
14556 				 * Hoe's algorithm:
14557 				 *
14558 				 * Retransmit the unack'ed segment and
14559 				 * restart fast recovery.  Note that we
14560 				 * need to scale back tcp_cwnd to the
14561 				 * original value when we started fast
14562 				 * recovery.  This is to prevent overly
14563 				 * aggressive behaviour in sending new
14564 				 * segments.
14565 				 */
14566 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
14567 				    tcps->tcps_dupack_fast_retransmit * mss;
14568 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
14569 				flags |= TH_REXMIT_NEEDED;
14570 			}
14571 		}
14572 	} else {
14573 		tcp->tcp_dupack_cnt = 0;
14574 		if (tcp->tcp_rexmit) {
14575 			/*
14576 			 * TCP is retranmitting.  If the ACK ack's all
14577 			 * outstanding data, update tcp_rexmit_max and
14578 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
14579 			 * to the correct value.
14580 			 *
14581 			 * Note that SEQ_LEQ() is used.  This is to avoid
14582 			 * unnecessary fast retransmit caused by dup ACKs
14583 			 * received when TCP does slow start retransmission
14584 			 * after a time out.  During this phase, TCP may
14585 			 * send out segments which are already received.
14586 			 * This causes dup ACKs to be sent back.
14587 			 */
14588 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
14589 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
14590 					tcp->tcp_rexmit_nxt = seg_ack;
14591 				}
14592 				if (seg_ack != tcp->tcp_rexmit_max) {
14593 					flags |= TH_XMIT_NEEDED;
14594 				}
14595 			} else {
14596 				tcp->tcp_rexmit = B_FALSE;
14597 				tcp->tcp_xmit_zc_clean = B_FALSE;
14598 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14599 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
14600 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14601 			}
14602 			tcp->tcp_ms_we_have_waited = 0;
14603 		}
14604 	}
14605 
14606 	BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs);
14607 	UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked);
14608 	tcp->tcp_suna = seg_ack;
14609 	if (tcp->tcp_zero_win_probe != 0) {
14610 		tcp->tcp_zero_win_probe = 0;
14611 		tcp->tcp_timer_backoff = 0;
14612 	}
14613 
14614 	/*
14615 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
14616 	 * Note that it cannot be the SYN being ack'ed.  The code flow
14617 	 * will not reach here.
14618 	 */
14619 	if (mp1 == NULL) {
14620 		goto fin_acked;
14621 	}
14622 
14623 	/*
14624 	 * Update the congestion window.
14625 	 *
14626 	 * If TCP is not ECN capable or TCP is ECN capable but the
14627 	 * congestion experience bit is not set, increase the tcp_cwnd as
14628 	 * usual.
14629 	 */
14630 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
14631 		cwnd = tcp->tcp_cwnd;
14632 		add = mss;
14633 
14634 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
14635 			/*
14636 			 * This is to prevent an increase of less than 1 MSS of
14637 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
14638 			 * may send out tinygrams in order to preserve mblk
14639 			 * boundaries.
14640 			 *
14641 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
14642 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
14643 			 * increased by 1 MSS for every RTTs.
14644 			 */
14645 			if (tcp->tcp_cwnd_cnt <= 0) {
14646 				tcp->tcp_cwnd_cnt = cwnd + add;
14647 			} else {
14648 				tcp->tcp_cwnd_cnt -= add;
14649 				add = 0;
14650 			}
14651 		}
14652 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
14653 	}
14654 
14655 	/* See if the latest urgent data has been acknowledged */
14656 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
14657 	    SEQ_GT(seg_ack, tcp->tcp_urg))
14658 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
14659 
14660 	/* Can we update the RTT estimates? */
14661 	if (tcp->tcp_snd_ts_ok) {
14662 		/* Ignore zero timestamp echo-reply. */
14663 		if (tcpopt.tcp_opt_ts_ecr != 0) {
14664 			tcp_set_rto(tcp, (int32_t)lbolt -
14665 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
14666 		}
14667 
14668 		/* If needed, restart the timer. */
14669 		if (tcp->tcp_set_timer == 1) {
14670 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14671 			tcp->tcp_set_timer = 0;
14672 		}
14673 		/*
14674 		 * Update tcp_csuna in case the other side stops sending
14675 		 * us timestamps.
14676 		 */
14677 		tcp->tcp_csuna = tcp->tcp_snxt;
14678 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
14679 		/*
14680 		 * An ACK sequence we haven't seen before, so get the RTT
14681 		 * and update the RTO. But first check if the timestamp is
14682 		 * valid to use.
14683 		 */
14684 		if ((mp1->b_next != NULL) &&
14685 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
14686 			tcp_set_rto(tcp, (int32_t)lbolt -
14687 			    (int32_t)(intptr_t)mp1->b_prev);
14688 		else
14689 			BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14690 
14691 		/* Remeber the last sequence to be ACKed */
14692 		tcp->tcp_csuna = seg_ack;
14693 		if (tcp->tcp_set_timer == 1) {
14694 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14695 			tcp->tcp_set_timer = 0;
14696 		}
14697 	} else {
14698 		BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14699 	}
14700 
14701 	/* Eat acknowledged bytes off the xmit queue. */
14702 	for (;;) {
14703 		mblk_t	*mp2;
14704 		uchar_t	*wptr;
14705 
14706 		wptr = mp1->b_wptr;
14707 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14708 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14709 		if (bytes_acked < 0) {
14710 			mp1->b_rptr = wptr + bytes_acked;
14711 			/*
14712 			 * Set a new timestamp if all the bytes timed by the
14713 			 * old timestamp have been ack'ed.
14714 			 */
14715 			if (SEQ_GT(seg_ack,
14716 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14717 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14718 				mp1->b_next = NULL;
14719 			}
14720 			break;
14721 		}
14722 		mp1->b_next = NULL;
14723 		mp1->b_prev = NULL;
14724 		mp2 = mp1;
14725 		mp1 = mp1->b_cont;
14726 
14727 		/*
14728 		 * This notification is required for some zero-copy
14729 		 * clients to maintain a copy semantic. After the data
14730 		 * is ack'ed, client is safe to modify or reuse the buffer.
14731 		 */
14732 		if (tcp->tcp_snd_zcopy_aware &&
14733 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14734 			tcp_zcopy_notify(tcp);
14735 		freeb(mp2);
14736 		if (bytes_acked == 0) {
14737 			if (mp1 == NULL) {
14738 				/* Everything is ack'ed, clear the tail. */
14739 				tcp->tcp_xmit_tail = NULL;
14740 				/*
14741 				 * Cancel the timer unless we are still
14742 				 * waiting for an ACK for the FIN packet.
14743 				 */
14744 				if (tcp->tcp_timer_tid != 0 &&
14745 				    tcp->tcp_snxt == tcp->tcp_suna) {
14746 					(void) TCP_TIMER_CANCEL(tcp,
14747 					    tcp->tcp_timer_tid);
14748 					tcp->tcp_timer_tid = 0;
14749 				}
14750 				goto pre_swnd_update;
14751 			}
14752 			if (mp2 != tcp->tcp_xmit_tail)
14753 				break;
14754 			tcp->tcp_xmit_tail = mp1;
14755 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14756 			    (uintptr_t)INT_MAX);
14757 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14758 			    mp1->b_rptr);
14759 			break;
14760 		}
14761 		if (mp1 == NULL) {
14762 			/*
14763 			 * More was acked but there is nothing more
14764 			 * outstanding.  This means that the FIN was
14765 			 * just acked or that we're talking to a clown.
14766 			 */
14767 fin_acked:
14768 			ASSERT(tcp->tcp_fin_sent);
14769 			tcp->tcp_xmit_tail = NULL;
14770 			if (tcp->tcp_fin_sent) {
14771 				/* FIN was acked - making progress */
14772 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14773 				    !tcp->tcp_fin_acked)
14774 					tcp->tcp_ip_forward_progress = B_TRUE;
14775 				tcp->tcp_fin_acked = B_TRUE;
14776 				if (tcp->tcp_linger_tid != 0 &&
14777 				    TCP_TIMER_CANCEL(tcp,
14778 				    tcp->tcp_linger_tid) >= 0) {
14779 					tcp_stop_lingering(tcp);
14780 					freemsg(mp);
14781 					mp = NULL;
14782 				}
14783 			} else {
14784 				/*
14785 				 * We should never get here because
14786 				 * we have already checked that the
14787 				 * number of bytes ack'ed should be
14788 				 * smaller than or equal to what we
14789 				 * have sent so far (it is the
14790 				 * acceptability check of the ACK).
14791 				 * We can only get here if the send
14792 				 * queue is corrupted.
14793 				 *
14794 				 * Terminate the connection and
14795 				 * panic the system.  It is better
14796 				 * for us to panic instead of
14797 				 * continuing to avoid other disaster.
14798 				 */
14799 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
14800 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
14801 				panic("Memory corruption "
14802 				    "detected for connection %s.",
14803 				    tcp_display(tcp, NULL,
14804 				    DISP_ADDR_AND_PORT));
14805 				/*NOTREACHED*/
14806 			}
14807 			goto pre_swnd_update;
14808 		}
14809 		ASSERT(mp2 != tcp->tcp_xmit_tail);
14810 	}
14811 	if (tcp->tcp_unsent) {
14812 		flags |= TH_XMIT_NEEDED;
14813 	}
14814 pre_swnd_update:
14815 	tcp->tcp_xmit_head = mp1;
14816 swnd_update:
14817 	/*
14818 	 * The following check is different from most other implementations.
14819 	 * For bi-directional transfer, when segments are dropped, the
14820 	 * "normal" check will not accept a window update in those
14821 	 * retransmitted segemnts.  Failing to do that, TCP may send out
14822 	 * segments which are outside receiver's window.  As TCP accepts
14823 	 * the ack in those retransmitted segments, if the window update in
14824 	 * the same segment is not accepted, TCP will incorrectly calculates
14825 	 * that it can send more segments.  This can create a deadlock
14826 	 * with the receiver if its window becomes zero.
14827 	 */
14828 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
14829 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
14830 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
14831 		/*
14832 		 * The criteria for update is:
14833 		 *
14834 		 * 1. the segment acknowledges some data.  Or
14835 		 * 2. the segment is new, i.e. it has a higher seq num. Or
14836 		 * 3. the segment is not old and the advertised window is
14837 		 * larger than the previous advertised window.
14838 		 */
14839 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
14840 			flags |= TH_XMIT_NEEDED;
14841 		tcp->tcp_swnd = new_swnd;
14842 		if (new_swnd > tcp->tcp_max_swnd)
14843 			tcp->tcp_max_swnd = new_swnd;
14844 		tcp->tcp_swl1 = seg_seq;
14845 		tcp->tcp_swl2 = seg_ack;
14846 	}
14847 est:
14848 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
14849 
14850 		switch (tcp->tcp_state) {
14851 		case TCPS_FIN_WAIT_1:
14852 			if (tcp->tcp_fin_acked) {
14853 				tcp->tcp_state = TCPS_FIN_WAIT_2;
14854 				/*
14855 				 * We implement the non-standard BSD/SunOS
14856 				 * FIN_WAIT_2 flushing algorithm.
14857 				 * If there is no user attached to this
14858 				 * TCP endpoint, then this TCP struct
14859 				 * could hang around forever in FIN_WAIT_2
14860 				 * state if the peer forgets to send us
14861 				 * a FIN.  To prevent this, we wait only
14862 				 * 2*MSL (a convenient time value) for
14863 				 * the FIN to arrive.  If it doesn't show up,
14864 				 * we flush the TCP endpoint.  This algorithm,
14865 				 * though a violation of RFC-793, has worked
14866 				 * for over 10 years in BSD systems.
14867 				 * Note: SunOS 4.x waits 675 seconds before
14868 				 * flushing the FIN_WAIT_2 connection.
14869 				 */
14870 				TCP_TIMER_RESTART(tcp,
14871 				    tcps->tcps_fin_wait_2_flush_interval);
14872 			}
14873 			break;
14874 		case TCPS_FIN_WAIT_2:
14875 			break;	/* Shutdown hook? */
14876 		case TCPS_LAST_ACK:
14877 			freemsg(mp);
14878 			if (tcp->tcp_fin_acked) {
14879 				(void) tcp_clean_death(tcp, 0, 19);
14880 				return;
14881 			}
14882 			goto xmit_check;
14883 		case TCPS_CLOSING:
14884 			if (tcp->tcp_fin_acked) {
14885 				tcp->tcp_state = TCPS_TIME_WAIT;
14886 				/*
14887 				 * Unconditionally clear the exclusive binding
14888 				 * bit so this TIME-WAIT connection won't
14889 				 * interfere with new ones.
14890 				 */
14891 				tcp->tcp_exclbind = 0;
14892 				if (!TCP_IS_DETACHED(tcp)) {
14893 					TCP_TIMER_RESTART(tcp,
14894 					    tcps->tcps_time_wait_interval);
14895 				} else {
14896 					tcp_time_wait_append(tcp);
14897 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
14898 				}
14899 			}
14900 			/*FALLTHRU*/
14901 		case TCPS_CLOSE_WAIT:
14902 			freemsg(mp);
14903 			goto xmit_check;
14904 		default:
14905 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14906 			break;
14907 		}
14908 	}
14909 	if (flags & TH_FIN) {
14910 		/* Make sure we ack the fin */
14911 		flags |= TH_ACK_NEEDED;
14912 		if (!tcp->tcp_fin_rcvd) {
14913 			tcp->tcp_fin_rcvd = B_TRUE;
14914 			tcp->tcp_rnxt++;
14915 			tcph = tcp->tcp_tcph;
14916 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14917 
14918 			/*
14919 			 * Generate the ordrel_ind at the end unless we
14920 			 * are an eager guy.
14921 			 * In the eager case tcp_rsrv will do this when run
14922 			 * after tcp_accept is done.
14923 			 */
14924 			if (tcp->tcp_listener == NULL &&
14925 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
14926 				flags |= TH_ORDREL_NEEDED;
14927 			switch (tcp->tcp_state) {
14928 			case TCPS_SYN_RCVD:
14929 			case TCPS_ESTABLISHED:
14930 				tcp->tcp_state = TCPS_CLOSE_WAIT;
14931 				/* Keepalive? */
14932 				break;
14933 			case TCPS_FIN_WAIT_1:
14934 				if (!tcp->tcp_fin_acked) {
14935 					tcp->tcp_state = TCPS_CLOSING;
14936 					break;
14937 				}
14938 				/* FALLTHRU */
14939 			case TCPS_FIN_WAIT_2:
14940 				tcp->tcp_state = TCPS_TIME_WAIT;
14941 				/*
14942 				 * Unconditionally clear the exclusive binding
14943 				 * bit so this TIME-WAIT connection won't
14944 				 * interfere with new ones.
14945 				 */
14946 				tcp->tcp_exclbind = 0;
14947 				if (!TCP_IS_DETACHED(tcp)) {
14948 					TCP_TIMER_RESTART(tcp,
14949 					    tcps->tcps_time_wait_interval);
14950 				} else {
14951 					tcp_time_wait_append(tcp);
14952 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
14953 				}
14954 				if (seg_len) {
14955 					/*
14956 					 * implies data piggybacked on FIN.
14957 					 * break to handle data.
14958 					 */
14959 					break;
14960 				}
14961 				freemsg(mp);
14962 				goto ack_check;
14963 			}
14964 		}
14965 	}
14966 	if (mp == NULL)
14967 		goto xmit_check;
14968 	if (seg_len == 0) {
14969 		freemsg(mp);
14970 		goto xmit_check;
14971 	}
14972 	if (mp->b_rptr == mp->b_wptr) {
14973 		/*
14974 		 * The header has been consumed, so we remove the
14975 		 * zero-length mblk here.
14976 		 */
14977 		mp1 = mp;
14978 		mp = mp->b_cont;
14979 		freeb(mp1);
14980 	}
14981 update_ack:
14982 	tcph = tcp->tcp_tcph;
14983 	tcp->tcp_rack_cnt++;
14984 	{
14985 		uint32_t cur_max;
14986 
14987 		cur_max = tcp->tcp_rack_cur_max;
14988 		if (tcp->tcp_rack_cnt >= cur_max) {
14989 			/*
14990 			 * We have more unacked data than we should - send
14991 			 * an ACK now.
14992 			 */
14993 			flags |= TH_ACK_NEEDED;
14994 			cur_max++;
14995 			if (cur_max > tcp->tcp_rack_abs_max)
14996 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
14997 			else
14998 				tcp->tcp_rack_cur_max = cur_max;
14999 		} else if (TCP_IS_DETACHED(tcp)) {
15000 			/* We don't have an ACK timer for detached TCP. */
15001 			flags |= TH_ACK_NEEDED;
15002 		} else if (seg_len < mss) {
15003 			/*
15004 			 * If we get a segment that is less than an mss, and we
15005 			 * already have unacknowledged data, and the amount
15006 			 * unacknowledged is not a multiple of mss, then we
15007 			 * better generate an ACK now.  Otherwise, this may be
15008 			 * the tail piece of a transaction, and we would rather
15009 			 * wait for the response.
15010 			 */
15011 			uint32_t udif;
15012 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
15013 			    (uintptr_t)INT_MAX);
15014 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
15015 			if (udif && (udif % mss))
15016 				flags |= TH_ACK_NEEDED;
15017 			else
15018 				flags |= TH_ACK_TIMER_NEEDED;
15019 		} else {
15020 			/* Start delayed ack timer */
15021 			flags |= TH_ACK_TIMER_NEEDED;
15022 		}
15023 	}
15024 	tcp->tcp_rnxt += seg_len;
15025 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
15026 
15027 	if (mp == NULL)
15028 		goto xmit_check;
15029 
15030 	/* Update SACK list */
15031 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
15032 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
15033 		    &(tcp->tcp_num_sack_blk));
15034 	}
15035 
15036 	if (tcp->tcp_urp_mp) {
15037 		tcp->tcp_urp_mp->b_cont = mp;
15038 		mp = tcp->tcp_urp_mp;
15039 		tcp->tcp_urp_mp = NULL;
15040 		/* Ready for a new signal. */
15041 		tcp->tcp_urp_last_valid = B_FALSE;
15042 #ifdef DEBUG
15043 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15044 		    "tcp_rput: sending exdata_ind %s",
15045 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
15046 #endif /* DEBUG */
15047 	}
15048 
15049 	/*
15050 	 * Check for ancillary data changes compared to last segment.
15051 	 */
15052 	if (tcp->tcp_ipv6_recvancillary != 0) {
15053 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
15054 		ASSERT(mp != NULL);
15055 	}
15056 
15057 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
15058 		/*
15059 		 * Side queue inbound data until the accept happens.
15060 		 * tcp_accept/tcp_rput drains this when the accept happens.
15061 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
15062 		 * T_EXDATA_IND) it is queued on b_next.
15063 		 * XXX Make urgent data use this. Requires:
15064 		 *	Removing tcp_listener check for TH_URG
15065 		 *	Making M_PCPROTO and MARK messages skip the eager case
15066 		 */
15067 
15068 		if (tcp->tcp_kssl_pending) {
15069 			DTRACE_PROBE1(kssl_mblk__ksslinput_pending,
15070 			    mblk_t *, mp);
15071 			tcp_kssl_input(tcp, mp);
15072 		} else {
15073 			tcp_rcv_enqueue(tcp, mp, seg_len);
15074 		}
15075 	} else {
15076 		sodirect_t	*sodp = tcp->tcp_sodirect;
15077 
15078 		/*
15079 		 * If an sodirect connection and an enabled sodirect_t then
15080 		 * sodp will be set to point to the tcp_t/sonode_t shared
15081 		 * sodirect_t and the sodirect_t's lock will be held.
15082 		 */
15083 		if (sodp != NULL) {
15084 			mutex_enter(sodp->sod_lockp);
15085 			if (!(sodp->sod_state & SOD_ENABLED) ||
15086 			    (tcp->tcp_kssl_ctx != NULL &&
15087 			    DB_TYPE(mp) == M_DATA)) {
15088 				sodp = NULL;
15089 			}
15090 			mutex_exit(sodp->sod_lockp);
15091 		}
15092 		if (mp->b_datap->db_type != M_DATA ||
15093 		    (flags & TH_MARKNEXT_NEEDED)) {
15094 			if (IPCL_IS_NONSTR(connp)) {
15095 				int error;
15096 
15097 				if ((*connp->conn_upcalls->su_recv)
15098 				    (connp->conn_upper_handle, mp,
15099 				    seg_len, 0, &error, NULL) <= 0) {
15100 					if (error == ENOSPC) {
15101 						tcp->tcp_rwnd -= seg_len;
15102 					} else if (error == EOPNOTSUPP) {
15103 						tcp_rcv_enqueue(tcp, mp,
15104 						    seg_len);
15105 					}
15106 				}
15107 			} else if (sodp != NULL) {
15108 				mutex_enter(sodp->sod_lockp);
15109 				SOD_UIOAFINI(sodp);
15110 				if (!SOD_QEMPTY(sodp) &&
15111 				    (sodp->sod_state & SOD_WAKE_NOT)) {
15112 					flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15113 					/* sod_wakeup() did the mutex_exit() */
15114 				} else {
15115 					mutex_exit(sodp->sod_lockp);
15116 				}
15117 			} else if (tcp->tcp_rcv_list != NULL) {
15118 				flags |= tcp_rcv_drain(tcp);
15119 			}
15120 			ASSERT(tcp->tcp_rcv_list == NULL ||
15121 			    tcp->tcp_fused_sigurg);
15122 
15123 			if (flags & TH_MARKNEXT_NEEDED) {
15124 #ifdef DEBUG
15125 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15126 				    "tcp_rput: sending MSGMARKNEXT %s",
15127 				    tcp_display(tcp, NULL,
15128 				    DISP_PORT_ONLY));
15129 #endif /* DEBUG */
15130 				mp->b_flag |= MSGMARKNEXT;
15131 				flags &= ~TH_MARKNEXT_NEEDED;
15132 			}
15133 
15134 			/* Does this need SSL processing first? */
15135 			if ((tcp->tcp_kssl_ctx != NULL) &&
15136 			    (DB_TYPE(mp) == M_DATA)) {
15137 				DTRACE_PROBE1(kssl_mblk__ksslinput_data1,
15138 				    mblk_t *, mp);
15139 				tcp_kssl_input(tcp, mp);
15140 			} else if (!IPCL_IS_NONSTR(connp)) {
15141 				/* Already handled non-STREAMS case. */
15142 				putnext(tcp->tcp_rq, mp);
15143 				if (!canputnext(tcp->tcp_rq))
15144 					tcp->tcp_rwnd -= seg_len;
15145 			}
15146 		} else if ((tcp->tcp_kssl_ctx != NULL) &&
15147 		    (DB_TYPE(mp) == M_DATA)) {
15148 			/* Does this need SSL processing first? */
15149 			DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp);
15150 			tcp_kssl_input(tcp, mp);
15151 		} else if (IPCL_IS_NONSTR(connp)) {
15152 			/* Non-STREAMS socket */
15153 			boolean_t push = flags & (TH_PUSH|TH_FIN);
15154 			int	error;
15155 
15156 			if ((*connp->conn_upcalls->su_recv)(
15157 			    connp->conn_upper_handle,
15158 			    mp, seg_len, 0, &error, &push) <= 0) {
15159 				if (error == ENOSPC) {
15160 					tcp->tcp_rwnd -= seg_len;
15161 				} else if (error == EOPNOTSUPP) {
15162 					tcp_rcv_enqueue(tcp, mp, seg_len);
15163 				}
15164 			} else if (push) {
15165 				/*
15166 				 * PUSH bit set and sockfs is not
15167 				 * flow controlled
15168 				 */
15169 				flags |= tcp_rwnd_reopen(tcp);
15170 			}
15171 		} else if (sodp != NULL) {
15172 			/*
15173 			 * Sodirect so all mblk_t's are queued on the
15174 			 * socket directly, check for wakeup of blocked
15175 			 * reader (if any), and last if flow-controled.
15176 			 */
15177 			mutex_enter(sodp->sod_lockp);
15178 			flags |= tcp_rcv_sod_enqueue(tcp, sodp, mp, seg_len);
15179 			if ((sodp->sod_state & SOD_WAKE_NEED) ||
15180 			    (flags & (TH_PUSH|TH_FIN))) {
15181 				flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15182 				/* sod_wakeup() did the mutex_exit() */
15183 			} else {
15184 				if (SOD_QFULL(sodp)) {
15185 					/* Q is full, need backenable */
15186 					SOD_QSETBE(sodp);
15187 				}
15188 				mutex_exit(sodp->sod_lockp);
15189 			}
15190 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
15191 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_recv_hiwater >> 3) {
15192 			if (tcp->tcp_rcv_list != NULL) {
15193 				/*
15194 				 * Enqueue the new segment first and then
15195 				 * call tcp_rcv_drain() to send all data
15196 				 * up.  The other way to do this is to
15197 				 * send all queued data up and then call
15198 				 * putnext() to send the new segment up.
15199 				 * This way can remove the else part later
15200 				 * on.
15201 				 *
15202 				 * We don't do this to avoid one more call to
15203 				 * canputnext() as tcp_rcv_drain() needs to
15204 				 * call canputnext().
15205 				 */
15206 				tcp_rcv_enqueue(tcp, mp, seg_len);
15207 				flags |= tcp_rcv_drain(tcp);
15208 			} else {
15209 				putnext(tcp->tcp_rq, mp);
15210 				if (!canputnext(tcp->tcp_rq))
15211 					tcp->tcp_rwnd -= seg_len;
15212 			}
15213 		} else {
15214 			/*
15215 			 * Enqueue all packets when processing an mblk
15216 			 * from the co queue and also enqueue normal packets.
15217 			 * For packets which belong to SSL stream do SSL
15218 			 * processing first.
15219 			 */
15220 			tcp_rcv_enqueue(tcp, mp, seg_len);
15221 		}
15222 		/*
15223 		 * Make sure the timer is running if we have data waiting
15224 		 * for a push bit. This provides resiliency against
15225 		 * implementations that do not correctly generate push bits.
15226 		 *
15227 		 * Note, for sodirect if Q isn't empty and there's not a
15228 		 * pending wakeup then we need a timer. Also note that sodp
15229 		 * is assumed to be still valid after exit()ing the sod_lockp
15230 		 * above and while the SOD state can change it can only change
15231 		 * such that the Q is empty now even though data was added
15232 		 * above.
15233 		 */
15234 		if (!IPCL_IS_NONSTR(connp) &&
15235 		    ((sodp != NULL && !SOD_QEMPTY(sodp) &&
15236 		    (sodp->sod_state & SOD_WAKE_NOT)) ||
15237 		    (sodp == NULL && tcp->tcp_rcv_list != NULL)) &&
15238 		    tcp->tcp_push_tid == 0) {
15239 			/*
15240 			 * The connection may be closed at this point, so don't
15241 			 * do anything for a detached tcp.
15242 			 */
15243 			if (!TCP_IS_DETACHED(tcp))
15244 				tcp->tcp_push_tid = TCP_TIMER(tcp,
15245 				    tcp_push_timer,
15246 				    MSEC_TO_TICK(
15247 				    tcps->tcps_push_timer_interval));
15248 		}
15249 	}
15250 
15251 xmit_check:
15252 	/* Is there anything left to do? */
15253 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15254 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
15255 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
15256 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15257 		goto done;
15258 
15259 	/* Any transmit work to do and a non-zero window? */
15260 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
15261 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
15262 		if (flags & TH_REXMIT_NEEDED) {
15263 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
15264 
15265 			BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans);
15266 			if (snd_size > mss)
15267 				snd_size = mss;
15268 			if (snd_size > tcp->tcp_swnd)
15269 				snd_size = tcp->tcp_swnd;
15270 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
15271 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
15272 			    B_TRUE);
15273 
15274 			if (mp1 != NULL) {
15275 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15276 				tcp->tcp_csuna = tcp->tcp_snxt;
15277 				BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
15278 				UPDATE_MIB(&tcps->tcps_mib,
15279 				    tcpRetransBytes, snd_size);
15280 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
15281 			}
15282 		}
15283 		if (flags & TH_NEED_SACK_REXMIT) {
15284 			tcp_sack_rxmit(tcp, &flags);
15285 		}
15286 		/*
15287 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
15288 		 * out new segment.  Note that tcp_rexmit should not be
15289 		 * set, otherwise TH_LIMIT_XMIT should not be set.
15290 		 */
15291 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
15292 			if (!tcp->tcp_rexmit) {
15293 				tcp_wput_data(tcp, NULL, B_FALSE);
15294 			} else {
15295 				tcp_ss_rexmit(tcp);
15296 			}
15297 		}
15298 		/*
15299 		 * Adjust tcp_cwnd back to normal value after sending
15300 		 * new data segments.
15301 		 */
15302 		if (flags & TH_LIMIT_XMIT) {
15303 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
15304 			/*
15305 			 * This will restart the timer.  Restarting the
15306 			 * timer is used to avoid a timeout before the
15307 			 * limited transmitted segment's ACK gets back.
15308 			 */
15309 			if (tcp->tcp_xmit_head != NULL)
15310 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15311 		}
15312 
15313 		/* Anything more to do? */
15314 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
15315 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15316 			goto done;
15317 	}
15318 ack_check:
15319 	if (flags & TH_SEND_URP_MARK) {
15320 		ASSERT(tcp->tcp_urp_mark_mp);
15321 		ASSERT(!IPCL_IS_NONSTR(connp));
15322 		/*
15323 		 * Send up any queued data and then send the mark message
15324 		 */
15325 		sodirect_t *sodp;
15326 
15327 		SOD_PTR_ENTER(tcp, sodp);
15328 
15329 		mp1 = tcp->tcp_urp_mark_mp;
15330 		tcp->tcp_urp_mark_mp = NULL;
15331 		if (sodp != NULL) {
15332 			if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) {
15333 				sodp->sod_uioa.uioa_state &= UIOA_CLR;
15334 				sodp->sod_uioa.uioa_state |= UIOA_FINI;
15335 			}
15336 			ASSERT(tcp->tcp_rcv_list == NULL);
15337 
15338 			flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15339 			/* sod_wakeup() does the mutex_exit() */
15340 		} else if (tcp->tcp_rcv_list != NULL) {
15341 			flags |= tcp_rcv_drain(tcp);
15342 
15343 			ASSERT(tcp->tcp_rcv_list == NULL ||
15344 			    tcp->tcp_fused_sigurg);
15345 
15346 		}
15347 		putnext(tcp->tcp_rq, mp1);
15348 #ifdef DEBUG
15349 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15350 		    "tcp_rput: sending zero-length %s %s",
15351 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
15352 		    "MSGNOTMARKNEXT"),
15353 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
15354 #endif /* DEBUG */
15355 		flags &= ~TH_SEND_URP_MARK;
15356 	}
15357 	if (flags & TH_ACK_NEEDED) {
15358 		/*
15359 		 * Time to send an ack for some reason.
15360 		 */
15361 		mp1 = tcp_ack_mp(tcp);
15362 
15363 		if (mp1 != NULL) {
15364 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
15365 			BUMP_LOCAL(tcp->tcp_obsegs);
15366 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
15367 		}
15368 		if (tcp->tcp_ack_tid != 0) {
15369 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
15370 			tcp->tcp_ack_tid = 0;
15371 		}
15372 	}
15373 	if (flags & TH_ACK_TIMER_NEEDED) {
15374 		/*
15375 		 * Arrange for deferred ACK or push wait timeout.
15376 		 * Start timer if it is not already running.
15377 		 */
15378 		if (tcp->tcp_ack_tid == 0) {
15379 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
15380 			    MSEC_TO_TICK(tcp->tcp_localnet ?
15381 			    (clock_t)tcps->tcps_local_dack_interval :
15382 			    (clock_t)tcps->tcps_deferred_ack_interval));
15383 		}
15384 	}
15385 	if (flags & TH_ORDREL_NEEDED) {
15386 		/*
15387 		 * Send up the ordrel_ind unless we are an eager guy.
15388 		 * In the eager case tcp_rsrv will do this when run
15389 		 * after tcp_accept is done.
15390 		 */
15391 		sodirect_t *sodp;
15392 
15393 		ASSERT(tcp->tcp_listener == NULL);
15394 
15395 		if (IPCL_IS_NONSTR(connp)) {
15396 			ASSERT(tcp->tcp_ordrel_mp == NULL);
15397 			tcp->tcp_ordrel_done = B_TRUE;
15398 			(*connp->conn_upcalls->su_opctl)
15399 			    (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0);
15400 			goto done;
15401 		}
15402 
15403 		SOD_PTR_ENTER(tcp, sodp);
15404 		if (sodp != NULL) {
15405 			if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) {
15406 				sodp->sod_uioa.uioa_state &= UIOA_CLR;
15407 				sodp->sod_uioa.uioa_state |= UIOA_FINI;
15408 			}
15409 			/* No more sodirect */
15410 			tcp->tcp_sodirect = NULL;
15411 			if (!SOD_QEMPTY(sodp)) {
15412 				/* Mblk(s) to process, notify */
15413 				flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15414 				/* sod_wakeup() does the mutex_exit() */
15415 			} else {
15416 				/* Nothing to process */
15417 				mutex_exit(sodp->sod_lockp);
15418 			}
15419 		} else if (tcp->tcp_rcv_list != NULL) {
15420 			/*
15421 			 * Push any mblk(s) enqueued from co processing.
15422 			 */
15423 			flags |= tcp_rcv_drain(tcp);
15424 
15425 			ASSERT(tcp->tcp_rcv_list == NULL ||
15426 			    tcp->tcp_fused_sigurg);
15427 		}
15428 
15429 		mp1 = tcp->tcp_ordrel_mp;
15430 		tcp->tcp_ordrel_mp = NULL;
15431 		tcp->tcp_ordrel_done = B_TRUE;
15432 		putnext(tcp->tcp_rq, mp1);
15433 	}
15434 done:
15435 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15436 }
15437 
15438 /*
15439  * This function does PAWS protection check. Returns B_TRUE if the
15440  * segment passes the PAWS test, else returns B_FALSE.
15441  */
15442 boolean_t
15443 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
15444 {
15445 	uint8_t	flags;
15446 	int	options;
15447 	uint8_t *up;
15448 
15449 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
15450 	/*
15451 	 * If timestamp option is aligned nicely, get values inline,
15452 	 * otherwise call general routine to parse.  Only do that
15453 	 * if timestamp is the only option.
15454 	 */
15455 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
15456 	    TCPOPT_REAL_TS_LEN &&
15457 	    OK_32PTR((up = ((uint8_t *)tcph) +
15458 	    TCP_MIN_HEADER_LENGTH)) &&
15459 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
15460 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
15461 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
15462 
15463 		options = TCP_OPT_TSTAMP_PRESENT;
15464 	} else {
15465 		if (tcp->tcp_snd_sack_ok) {
15466 			tcpoptp->tcp = tcp;
15467 		} else {
15468 			tcpoptp->tcp = NULL;
15469 		}
15470 		options = tcp_parse_options(tcph, tcpoptp);
15471 	}
15472 
15473 	if (options & TCP_OPT_TSTAMP_PRESENT) {
15474 		/*
15475 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
15476 		 * regardless of the timestamp, page 18 RFC 1323.bis.
15477 		 */
15478 		if ((flags & TH_RST) == 0 &&
15479 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
15480 		    tcp->tcp_ts_recent)) {
15481 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
15482 			    PAWS_TIMEOUT)) {
15483 				/* This segment is not acceptable. */
15484 				return (B_FALSE);
15485 			} else {
15486 				/*
15487 				 * Connection has been idle for
15488 				 * too long.  Reset the timestamp
15489 				 * and assume the segment is valid.
15490 				 */
15491 				tcp->tcp_ts_recent =
15492 				    tcpoptp->tcp_opt_ts_val;
15493 			}
15494 		}
15495 	} else {
15496 		/*
15497 		 * If we don't get a timestamp on every packet, we
15498 		 * figure we can't really trust 'em, so we stop sending
15499 		 * and parsing them.
15500 		 */
15501 		tcp->tcp_snd_ts_ok = B_FALSE;
15502 
15503 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15504 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15505 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
15506 		/*
15507 		 * Adjust the tcp_mss accordingly. We also need to
15508 		 * adjust tcp_cwnd here in accordance with the new mss.
15509 		 * But we avoid doing a slow start here so as to not
15510 		 * to lose on the transfer rate built up so far.
15511 		 */
15512 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE);
15513 		if (tcp->tcp_snd_sack_ok) {
15514 			ASSERT(tcp->tcp_sack_info != NULL);
15515 			tcp->tcp_max_sack_blk = 4;
15516 		}
15517 	}
15518 	return (B_TRUE);
15519 }
15520 
15521 /*
15522  * Attach ancillary data to a received TCP segments for the
15523  * ancillary pieces requested by the application that are
15524  * different than they were in the previous data segment.
15525  *
15526  * Save the "current" values once memory allocation is ok so that
15527  * when memory allocation fails we can just wait for the next data segment.
15528  */
15529 static mblk_t *
15530 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
15531 {
15532 	struct T_optdata_ind *todi;
15533 	int optlen;
15534 	uchar_t *optptr;
15535 	struct T_opthdr *toh;
15536 	uint_t addflag;	/* Which pieces to add */
15537 	mblk_t *mp1;
15538 
15539 	optlen = 0;
15540 	addflag = 0;
15541 	/* If app asked for pktinfo and the index has changed ... */
15542 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
15543 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
15544 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
15545 		optlen += sizeof (struct T_opthdr) +
15546 		    sizeof (struct in6_pktinfo);
15547 		addflag |= TCP_IPV6_RECVPKTINFO;
15548 	}
15549 	/* If app asked for hoplimit and it has changed ... */
15550 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
15551 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
15552 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
15553 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15554 		addflag |= TCP_IPV6_RECVHOPLIMIT;
15555 	}
15556 	/* If app asked for tclass and it has changed ... */
15557 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
15558 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
15559 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
15560 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15561 		addflag |= TCP_IPV6_RECVTCLASS;
15562 	}
15563 	/*
15564 	 * If app asked for hopbyhop headers and it has changed ...
15565 	 * For security labels, note that (1) security labels can't change on
15566 	 * a connected socket at all, (2) we're connected to at most one peer,
15567 	 * (3) if anything changes, then it must be some other extra option.
15568 	 */
15569 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
15570 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
15571 	    (ipp->ipp_fields & IPPF_HOPOPTS),
15572 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
15573 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen -
15574 		    tcp->tcp_label_len;
15575 		addflag |= TCP_IPV6_RECVHOPOPTS;
15576 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
15577 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
15578 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
15579 			return (mp);
15580 	}
15581 	/* If app asked for dst headers before routing headers ... */
15582 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
15583 	    ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
15584 	    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15585 	    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
15586 		optlen += sizeof (struct T_opthdr) +
15587 		    ipp->ipp_rtdstoptslen;
15588 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
15589 		if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts,
15590 		    &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS),
15591 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
15592 			return (mp);
15593 	}
15594 	/* If app asked for routing headers and it has changed ... */
15595 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
15596 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
15597 	    (ipp->ipp_fields & IPPF_RTHDR),
15598 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
15599 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
15600 		addflag |= TCP_IPV6_RECVRTHDR;
15601 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
15602 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
15603 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
15604 			return (mp);
15605 	}
15606 	/* If app asked for dest headers and it has changed ... */
15607 	if ((tcp->tcp_ipv6_recvancillary &
15608 	    (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
15609 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
15610 	    (ipp->ipp_fields & IPPF_DSTOPTS),
15611 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
15612 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
15613 		addflag |= TCP_IPV6_RECVDSTOPTS;
15614 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
15615 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
15616 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
15617 			return (mp);
15618 	}
15619 
15620 	if (optlen == 0) {
15621 		/* Nothing to add */
15622 		return (mp);
15623 	}
15624 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
15625 	if (mp1 == NULL) {
15626 		/*
15627 		 * Defer sending ancillary data until the next TCP segment
15628 		 * arrives.
15629 		 */
15630 		return (mp);
15631 	}
15632 	mp1->b_cont = mp;
15633 	mp = mp1;
15634 	mp->b_wptr += sizeof (*todi) + optlen;
15635 	mp->b_datap->db_type = M_PROTO;
15636 	todi = (struct T_optdata_ind *)mp->b_rptr;
15637 	todi->PRIM_type = T_OPTDATA_IND;
15638 	todi->DATA_flag = 1;	/* MORE data */
15639 	todi->OPT_length = optlen;
15640 	todi->OPT_offset = sizeof (*todi);
15641 	optptr = (uchar_t *)&todi[1];
15642 	/*
15643 	 * If app asked for pktinfo and the index has changed ...
15644 	 * Note that the local address never changes for the connection.
15645 	 */
15646 	if (addflag & TCP_IPV6_RECVPKTINFO) {
15647 		struct in6_pktinfo *pkti;
15648 
15649 		toh = (struct T_opthdr *)optptr;
15650 		toh->level = IPPROTO_IPV6;
15651 		toh->name = IPV6_PKTINFO;
15652 		toh->len = sizeof (*toh) + sizeof (*pkti);
15653 		toh->status = 0;
15654 		optptr += sizeof (*toh);
15655 		pkti = (struct in6_pktinfo *)optptr;
15656 		if (tcp->tcp_ipversion == IPV6_VERSION)
15657 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
15658 		else
15659 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
15660 			    &pkti->ipi6_addr);
15661 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
15662 		optptr += sizeof (*pkti);
15663 		ASSERT(OK_32PTR(optptr));
15664 		/* Save as "last" value */
15665 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
15666 	}
15667 	/* If app asked for hoplimit and it has changed ... */
15668 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
15669 		toh = (struct T_opthdr *)optptr;
15670 		toh->level = IPPROTO_IPV6;
15671 		toh->name = IPV6_HOPLIMIT;
15672 		toh->len = sizeof (*toh) + sizeof (uint_t);
15673 		toh->status = 0;
15674 		optptr += sizeof (*toh);
15675 		*(uint_t *)optptr = ipp->ipp_hoplimit;
15676 		optptr += sizeof (uint_t);
15677 		ASSERT(OK_32PTR(optptr));
15678 		/* Save as "last" value */
15679 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
15680 	}
15681 	/* If app asked for tclass and it has changed ... */
15682 	if (addflag & TCP_IPV6_RECVTCLASS) {
15683 		toh = (struct T_opthdr *)optptr;
15684 		toh->level = IPPROTO_IPV6;
15685 		toh->name = IPV6_TCLASS;
15686 		toh->len = sizeof (*toh) + sizeof (uint_t);
15687 		toh->status = 0;
15688 		optptr += sizeof (*toh);
15689 		*(uint_t *)optptr = ipp->ipp_tclass;
15690 		optptr += sizeof (uint_t);
15691 		ASSERT(OK_32PTR(optptr));
15692 		/* Save as "last" value */
15693 		tcp->tcp_recvtclass = ipp->ipp_tclass;
15694 	}
15695 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
15696 		toh = (struct T_opthdr *)optptr;
15697 		toh->level = IPPROTO_IPV6;
15698 		toh->name = IPV6_HOPOPTS;
15699 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen -
15700 		    tcp->tcp_label_len;
15701 		toh->status = 0;
15702 		optptr += sizeof (*toh);
15703 		bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr,
15704 		    ipp->ipp_hopoptslen - tcp->tcp_label_len);
15705 		optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len;
15706 		ASSERT(OK_32PTR(optptr));
15707 		/* Save as last value */
15708 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
15709 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15710 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
15711 	}
15712 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
15713 		toh = (struct T_opthdr *)optptr;
15714 		toh->level = IPPROTO_IPV6;
15715 		toh->name = IPV6_RTHDRDSTOPTS;
15716 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
15717 		toh->status = 0;
15718 		optptr += sizeof (*toh);
15719 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
15720 		optptr += ipp->ipp_rtdstoptslen;
15721 		ASSERT(OK_32PTR(optptr));
15722 		/* Save as last value */
15723 		ip_savebuf((void **)&tcp->tcp_rtdstopts,
15724 		    &tcp->tcp_rtdstoptslen,
15725 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15726 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
15727 	}
15728 	if (addflag & TCP_IPV6_RECVRTHDR) {
15729 		toh = (struct T_opthdr *)optptr;
15730 		toh->level = IPPROTO_IPV6;
15731 		toh->name = IPV6_RTHDR;
15732 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
15733 		toh->status = 0;
15734 		optptr += sizeof (*toh);
15735 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
15736 		optptr += ipp->ipp_rthdrlen;
15737 		ASSERT(OK_32PTR(optptr));
15738 		/* Save as last value */
15739 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
15740 		    (ipp->ipp_fields & IPPF_RTHDR),
15741 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15742 	}
15743 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
15744 		toh = (struct T_opthdr *)optptr;
15745 		toh->level = IPPROTO_IPV6;
15746 		toh->name = IPV6_DSTOPTS;
15747 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
15748 		toh->status = 0;
15749 		optptr += sizeof (*toh);
15750 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
15751 		optptr += ipp->ipp_dstoptslen;
15752 		ASSERT(OK_32PTR(optptr));
15753 		/* Save as last value */
15754 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
15755 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15756 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
15757 	}
15758 	ASSERT(optptr == mp->b_wptr);
15759 	return (mp);
15760 }
15761 
15762 /*
15763  * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK
15764  * or a "bad" IRE detected by tcp_adapt_ire.
15765  * We can't tell if the failure was due to the laddr or the faddr
15766  * thus we clear out all addresses and ports.
15767  */
15768 static void
15769 tcp_tpi_bind_failed(tcp_t *tcp, mblk_t *mp, int error)
15770 {
15771 	queue_t	*q = tcp->tcp_rq;
15772 	tcph_t	*tcph;
15773 	struct T_error_ack *tea;
15774 	conn_t	*connp = tcp->tcp_connp;
15775 
15776 
15777 	ASSERT(mp->b_datap->db_type == M_PCPROTO);
15778 
15779 	if (mp->b_cont) {
15780 		freemsg(mp->b_cont);
15781 		mp->b_cont = NULL;
15782 	}
15783 	tea = (struct T_error_ack *)mp->b_rptr;
15784 	switch (tea->PRIM_type) {
15785 	case T_BIND_ACK:
15786 		/*
15787 		 * Need to unbind with classifier since we were just told that
15788 		 * our bind succeeded.
15789 		 */
15790 		tcp->tcp_hard_bound = B_FALSE;
15791 		tcp->tcp_hard_binding = B_FALSE;
15792 
15793 		ipcl_hash_remove(connp);
15794 		/* Reuse the mblk if possible */
15795 		ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >=
15796 		    sizeof (*tea));
15797 		mp->b_rptr = mp->b_datap->db_base;
15798 		mp->b_wptr = mp->b_rptr + sizeof (*tea);
15799 		tea = (struct T_error_ack *)mp->b_rptr;
15800 		tea->PRIM_type = T_ERROR_ACK;
15801 		tea->TLI_error = TSYSERR;
15802 		tea->UNIX_error = error;
15803 		if (tcp->tcp_state >= TCPS_SYN_SENT) {
15804 			tea->ERROR_prim = T_CONN_REQ;
15805 		} else {
15806 			tea->ERROR_prim = O_T_BIND_REQ;
15807 		}
15808 		break;
15809 
15810 	case T_ERROR_ACK:
15811 		if (tcp->tcp_state >= TCPS_SYN_SENT)
15812 			tea->ERROR_prim = T_CONN_REQ;
15813 		break;
15814 	default:
15815 		panic("tcp_tpi_bind_failed: unexpected TPI type");
15816 		/*NOTREACHED*/
15817 	}
15818 
15819 	tcp->tcp_state = TCPS_IDLE;
15820 	if (tcp->tcp_ipversion == IPV4_VERSION)
15821 		tcp->tcp_ipha->ipha_src = 0;
15822 	else
15823 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
15824 	/*
15825 	 * Copy of the src addr. in tcp_t is needed since
15826 	 * the lookup funcs. can only look at tcp_t
15827 	 */
15828 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
15829 
15830 	tcph = tcp->tcp_tcph;
15831 	tcph->th_lport[0] = 0;
15832 	tcph->th_lport[1] = 0;
15833 	tcp_bind_hash_remove(tcp);
15834 	bzero(&connp->u_port, sizeof (connp->u_port));
15835 	/* blow away saved option results if any */
15836 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
15837 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
15838 
15839 	conn_delete_ire(tcp->tcp_connp, NULL);
15840 	putnext(q, mp);
15841 }
15842 
15843 /*
15844  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
15845  * messages.
15846  */
15847 void
15848 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
15849 {
15850 	uchar_t	*rptr = mp->b_rptr;
15851 	queue_t	*q = tcp->tcp_rq;
15852 	struct T_error_ack *tea;
15853 
15854 	switch (mp->b_datap->db_type) {
15855 	case M_PROTO:
15856 	case M_PCPROTO:
15857 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
15858 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
15859 			break;
15860 		tea = (struct T_error_ack *)rptr;
15861 		switch (tea->PRIM_type) {
15862 		case T_BIND_ACK:
15863 			/*
15864 			 * AF_INET socket should not be here.
15865 			 */
15866 			ASSERT(tcp->tcp_family != AF_INET &&
15867 			    tcp->tcp_family != AF_INET6);
15868 			(void) tcp_post_ip_bind(tcp, mp->b_cont, 0);
15869 			return;
15870 		case T_ERROR_ACK:
15871 			if (tcp->tcp_debug) {
15872 				(void) strlog(TCP_MOD_ID, 0, 1,
15873 				    SL_TRACE|SL_ERROR,
15874 				    "tcp_rput_other: case T_ERROR_ACK, "
15875 				    "ERROR_prim == %d",
15876 				    tea->ERROR_prim);
15877 			}
15878 			switch (tea->ERROR_prim) {
15879 			case O_T_BIND_REQ:
15880 			case T_BIND_REQ:
15881 				ASSERT(tcp->tcp_family != AF_INET);
15882 				tcp_tpi_bind_failed(tcp, mp,
15883 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15884 				    ENETUNREACH : EADDRNOTAVAIL));
15885 				return;
15886 			case T_SVR4_OPTMGMT_REQ:
15887 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
15888 					/* T_OPTMGMT_REQ generated by TCP */
15889 					printf("T_SVR4_OPTMGMT_REQ failed "
15890 					    "%d/%d - dropped (cnt %d)\n",
15891 					    tea->TLI_error, tea->UNIX_error,
15892 					    tcp->tcp_drop_opt_ack_cnt);
15893 					freemsg(mp);
15894 					tcp->tcp_drop_opt_ack_cnt--;
15895 					return;
15896 				}
15897 				break;
15898 			}
15899 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
15900 			    tcp->tcp_drop_opt_ack_cnt > 0) {
15901 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
15902 				    "- dropped (cnt %d)\n",
15903 				    tea->TLI_error, tea->UNIX_error,
15904 				    tcp->tcp_drop_opt_ack_cnt);
15905 				freemsg(mp);
15906 				tcp->tcp_drop_opt_ack_cnt--;
15907 				return;
15908 			}
15909 			break;
15910 		case T_OPTMGMT_ACK:
15911 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
15912 				/* T_OPTMGMT_REQ generated by TCP */
15913 				freemsg(mp);
15914 				tcp->tcp_drop_opt_ack_cnt--;
15915 				return;
15916 			}
15917 			break;
15918 		default:
15919 			ASSERT(tea->ERROR_prim != T_UNBIND_REQ);
15920 			break;
15921 		}
15922 		break;
15923 	case M_FLUSH:
15924 		if (*rptr & FLUSHR)
15925 			flushq(q, FLUSHDATA);
15926 		break;
15927 	default:
15928 		/* M_CTL will be directly sent to tcp_icmp_error() */
15929 		ASSERT(DB_TYPE(mp) != M_CTL);
15930 		break;
15931 	}
15932 	/*
15933 	 * Make sure we set this bit before sending the ACK for
15934 	 * bind. Otherwise accept could possibly run and free
15935 	 * this tcp struct.
15936 	 */
15937 	ASSERT(q != NULL);
15938 	putnext(q, mp);
15939 }
15940 
15941 /* ARGSUSED */
15942 static void
15943 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
15944 {
15945 	conn_t	*connp = (conn_t *)arg;
15946 	tcp_t	*tcp = connp->conn_tcp;
15947 	queue_t	*q = tcp->tcp_rq;
15948 	uint_t	thwin;
15949 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15950 	sodirect_t	*sodp;
15951 	boolean_t	fc;
15952 
15953 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
15954 	tcp->tcp_rsrv_mp = mp;
15955 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
15956 
15957 	TCP_STAT(tcps, tcp_rsrv_calls);
15958 
15959 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
15960 		return;
15961 	}
15962 
15963 	if (tcp->tcp_fused) {
15964 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15965 
15966 		ASSERT(tcp->tcp_fused);
15967 		ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
15968 		ASSERT(peer_tcp->tcp_loopback_peer == tcp);
15969 		ASSERT(!TCP_IS_DETACHED(tcp));
15970 		ASSERT(tcp->tcp_connp->conn_sqp ==
15971 		    peer_tcp->tcp_connp->conn_sqp);
15972 
15973 		/*
15974 		 * Normally we would not get backenabled in synchronous
15975 		 * streams mode, but in case this happens, we need to plug
15976 		 * synchronous streams during our drain to prevent a race
15977 		 * with tcp_fuse_rrw() or tcp_fuse_rinfop().
15978 		 */
15979 		TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
15980 		if (tcp->tcp_rcv_list != NULL)
15981 			(void) tcp_rcv_drain(tcp);
15982 
15983 		if (peer_tcp > tcp) {
15984 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
15985 			mutex_enter(&tcp->tcp_non_sq_lock);
15986 		} else {
15987 			mutex_enter(&tcp->tcp_non_sq_lock);
15988 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
15989 		}
15990 
15991 		if (peer_tcp->tcp_flow_stopped &&
15992 		    (TCP_UNSENT_BYTES(peer_tcp) <=
15993 		    peer_tcp->tcp_xmit_lowater)) {
15994 			tcp_clrqfull(peer_tcp);
15995 		}
15996 		mutex_exit(&peer_tcp->tcp_non_sq_lock);
15997 		mutex_exit(&tcp->tcp_non_sq_lock);
15998 
15999 		TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
16000 		TCP_STAT(tcps, tcp_fusion_backenabled);
16001 		return;
16002 	}
16003 
16004 	SOD_PTR_ENTER(tcp, sodp);
16005 	if (sodp != NULL) {
16006 		/* An sodirect connection */
16007 		if (SOD_QFULL(sodp)) {
16008 			/* Flow-controlled, need another back-enable */
16009 			fc = B_TRUE;
16010 			SOD_QSETBE(sodp);
16011 		} else {
16012 			/* Not flow-controlled */
16013 			fc = B_FALSE;
16014 		}
16015 		mutex_exit(sodp->sod_lockp);
16016 	} else if (canputnext(q)) {
16017 		/* STREAMS, not flow-controlled */
16018 		fc = B_FALSE;
16019 	} else {
16020 		/* STREAMS, flow-controlled */
16021 		fc = B_TRUE;
16022 	}
16023 	if (!fc) {
16024 		/* Not flow-controlled, open rwnd */
16025 		tcp->tcp_rwnd = q->q_hiwat;
16026 		thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
16027 		    << tcp->tcp_rcv_ws;
16028 		thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
16029 		/*
16030 		 * Send back a window update immediately if TCP is above
16031 		 * ESTABLISHED state and the increase of the rcv window
16032 		 * that the other side knows is at least 1 MSS after flow
16033 		 * control is lifted.
16034 		 */
16035 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
16036 		    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
16037 			tcp_xmit_ctl(NULL, tcp,
16038 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
16039 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
16040 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
16041 		}
16042 	}
16043 }
16044 
16045 /*
16046  * The read side service routine is called mostly when we get back-enabled as a
16047  * result of flow control relief.  Since we don't actually queue anything in
16048  * TCP, we have no data to send out of here.  What we do is clear the receive
16049  * window, and send out a window update.
16050  */
16051 static void
16052 tcp_rsrv(queue_t *q)
16053 {
16054 	conn_t		*connp = Q_TO_CONN(q);
16055 	tcp_t		*tcp = connp->conn_tcp;
16056 	mblk_t		*mp;
16057 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16058 
16059 	/* No code does a putq on the read side */
16060 	ASSERT(q->q_first == NULL);
16061 
16062 	/* Nothing to do for the default queue */
16063 	if (q == tcps->tcps_g_q) {
16064 		return;
16065 	}
16066 
16067 	/*
16068 	 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already
16069 	 * been run.  So just return.
16070 	 */
16071 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
16072 	if ((mp = tcp->tcp_rsrv_mp) == NULL) {
16073 		mutex_exit(&tcp->tcp_rsrv_mp_lock);
16074 		return;
16075 	}
16076 	tcp->tcp_rsrv_mp = NULL;
16077 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
16078 
16079 	CONN_INC_REF(connp);
16080 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp,
16081 	    SQ_PROCESS, SQTAG_TCP_RSRV);
16082 }
16083 
16084 /*
16085  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
16086  * We do not allow the receive window to shrink.  After setting rwnd,
16087  * set the flow control hiwat of the stream.
16088  *
16089  * This function is called in 2 cases:
16090  *
16091  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
16092  *    connection (passive open) and in tcp_rput_data() for active connect.
16093  *    This is called after tcp_mss_set() when the desired MSS value is known.
16094  *    This makes sure that our window size is a mutiple of the other side's
16095  *    MSS.
16096  * 2) Handling SO_RCVBUF option.
16097  *
16098  * It is ASSUMED that the requested size is a multiple of the current MSS.
16099  *
16100  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
16101  * user requests so.
16102  */
16103 static int
16104 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
16105 {
16106 	uint32_t	mss = tcp->tcp_mss;
16107 	uint32_t	old_max_rwnd;
16108 	uint32_t	max_transmittable_rwnd;
16109 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
16110 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16111 
16112 	if (tcp->tcp_fused) {
16113 		size_t sth_hiwat;
16114 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
16115 
16116 		ASSERT(peer_tcp != NULL);
16117 		/*
16118 		 * Record the stream head's high water mark for
16119 		 * this endpoint; this is used for flow-control
16120 		 * purposes in tcp_fuse_output().
16121 		 */
16122 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
16123 		if (!tcp_detached) {
16124 			(void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp,
16125 			    sth_hiwat);
16126 			if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
16127 				conn_t *connp = tcp->tcp_connp;
16128 				struct sock_proto_props sopp;
16129 
16130 				sopp.sopp_flags = SOCKOPT_RCVTHRESH;
16131 				sopp.sopp_rcvthresh = sth_hiwat >> 3;
16132 
16133 				(*connp->conn_upcalls->su_set_proto_props)
16134 				    (connp->conn_upper_handle, &sopp);
16135 			}
16136 		}
16137 
16138 		/*
16139 		 * In the fusion case, the maxpsz stream head value of
16140 		 * our peer is set according to its send buffer size
16141 		 * and our receive buffer size; since the latter may
16142 		 * have changed we need to update the peer's maxpsz.
16143 		 */
16144 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
16145 		return (rwnd);
16146 	}
16147 
16148 	if (tcp_detached) {
16149 		old_max_rwnd = tcp->tcp_rwnd;
16150 	} else {
16151 		old_max_rwnd = tcp->tcp_recv_hiwater;
16152 	}
16153 
16154 	/*
16155 	 * Insist on a receive window that is at least
16156 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
16157 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
16158 	 * and delayed acknowledgement.
16159 	 */
16160 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
16161 
16162 	/*
16163 	 * If window size info has already been exchanged, TCP should not
16164 	 * shrink the window.  Shrinking window is doable if done carefully.
16165 	 * We may add that support later.  But so far there is not a real
16166 	 * need to do that.
16167 	 */
16168 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
16169 		/* MSS may have changed, do a round up again. */
16170 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
16171 	}
16172 
16173 	/*
16174 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
16175 	 * can be applied even before the window scale option is decided.
16176 	 */
16177 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
16178 	if (rwnd > max_transmittable_rwnd) {
16179 		rwnd = max_transmittable_rwnd -
16180 		    (max_transmittable_rwnd % mss);
16181 		if (rwnd < mss)
16182 			rwnd = max_transmittable_rwnd;
16183 		/*
16184 		 * If we're over the limit we may have to back down tcp_rwnd.
16185 		 * The increment below won't work for us. So we set all three
16186 		 * here and the increment below will have no effect.
16187 		 */
16188 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
16189 	}
16190 	if (tcp->tcp_localnet) {
16191 		tcp->tcp_rack_abs_max =
16192 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
16193 	} else {
16194 		/*
16195 		 * For a remote host on a different subnet (through a router),
16196 		 * we ack every other packet to be conforming to RFC1122.
16197 		 * tcp_deferred_acks_max is default to 2.
16198 		 */
16199 		tcp->tcp_rack_abs_max =
16200 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
16201 	}
16202 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
16203 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
16204 	else
16205 		tcp->tcp_rack_cur_max = 0;
16206 	/*
16207 	 * Increment the current rwnd by the amount the maximum grew (we
16208 	 * can not overwrite it since we might be in the middle of a
16209 	 * connection.)
16210 	 */
16211 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
16212 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
16213 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
16214 		tcp->tcp_cwnd_max = rwnd;
16215 
16216 	if (tcp_detached)
16217 		return (rwnd);
16218 	/*
16219 	 * We set the maximum receive window into rq->q_hiwat if it is
16220 	 * a STREAMS socket.
16221 	 * This is not actually used for flow control.
16222 	 */
16223 	if (!IPCL_IS_NONSTR(tcp->tcp_connp))
16224 		tcp->tcp_rq->q_hiwat = rwnd;
16225 	tcp->tcp_recv_hiwater = rwnd;
16226 	/*
16227 	 * Set the STREAM head high water mark. This doesn't have to be
16228 	 * here, since we are simply using default values, but we would
16229 	 * prefer to choose these values algorithmically, with a likely
16230 	 * relationship to rwnd.
16231 	 */
16232 	(void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp,
16233 	    MAX(rwnd, tcps->tcps_sth_rcv_hiwat));
16234 	return (rwnd);
16235 }
16236 
16237 /*
16238  * Return SNMP stuff in buffer in mpdata.
16239  */
16240 mblk_t *
16241 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
16242 {
16243 	mblk_t			*mpdata;
16244 	mblk_t			*mp_conn_ctl = NULL;
16245 	mblk_t			*mp_conn_tail;
16246 	mblk_t			*mp_attr_ctl = NULL;
16247 	mblk_t			*mp_attr_tail;
16248 	mblk_t			*mp6_conn_ctl = NULL;
16249 	mblk_t			*mp6_conn_tail;
16250 	mblk_t			*mp6_attr_ctl = NULL;
16251 	mblk_t			*mp6_attr_tail;
16252 	struct opthdr		*optp;
16253 	mib2_tcpConnEntry_t	tce;
16254 	mib2_tcp6ConnEntry_t	tce6;
16255 	mib2_transportMLPEntry_t mlp;
16256 	connf_t			*connfp;
16257 	int			i;
16258 	boolean_t 		ispriv;
16259 	zoneid_t 		zoneid;
16260 	int			v4_conn_idx;
16261 	int			v6_conn_idx;
16262 	conn_t			*connp = Q_TO_CONN(q);
16263 	tcp_stack_t		*tcps;
16264 	ip_stack_t		*ipst;
16265 	mblk_t			*mp2ctl;
16266 
16267 	/*
16268 	 * make a copy of the original message
16269 	 */
16270 	mp2ctl = copymsg(mpctl);
16271 
16272 	if (mpctl == NULL ||
16273 	    (mpdata = mpctl->b_cont) == NULL ||
16274 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
16275 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
16276 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
16277 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
16278 		freemsg(mp_conn_ctl);
16279 		freemsg(mp_attr_ctl);
16280 		freemsg(mp6_conn_ctl);
16281 		freemsg(mp6_attr_ctl);
16282 		freemsg(mpctl);
16283 		freemsg(mp2ctl);
16284 		return (NULL);
16285 	}
16286 
16287 	ipst = connp->conn_netstack->netstack_ip;
16288 	tcps = connp->conn_netstack->netstack_tcp;
16289 
16290 	/* build table of connections -- need count in fixed part */
16291 	SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4);   /* vanj */
16292 	SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min);
16293 	SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max);
16294 	SET_MIB(tcps->tcps_mib.tcpMaxConn, -1);
16295 	SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0);
16296 
16297 	ispriv =
16298 	    secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
16299 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16300 
16301 	v4_conn_idx = v6_conn_idx = 0;
16302 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
16303 
16304 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16305 		ipst = tcps->tcps_netstack->netstack_ip;
16306 
16307 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
16308 
16309 		connp = NULL;
16310 
16311 		while ((connp =
16312 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16313 			tcp_t *tcp;
16314 			boolean_t needattr;
16315 
16316 			if (connp->conn_zoneid != zoneid)
16317 				continue;	/* not in this zone */
16318 
16319 			tcp = connp->conn_tcp;
16320 			UPDATE_MIB(&tcps->tcps_mib,
16321 			    tcpHCInSegs, tcp->tcp_ibsegs);
16322 			tcp->tcp_ibsegs = 0;
16323 			UPDATE_MIB(&tcps->tcps_mib,
16324 			    tcpHCOutSegs, tcp->tcp_obsegs);
16325 			tcp->tcp_obsegs = 0;
16326 
16327 			tce6.tcp6ConnState = tce.tcpConnState =
16328 			    tcp_snmp_state(tcp);
16329 			if (tce.tcpConnState == MIB2_TCP_established ||
16330 			    tce.tcpConnState == MIB2_TCP_closeWait)
16331 				BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab);
16332 
16333 			needattr = B_FALSE;
16334 			bzero(&mlp, sizeof (mlp));
16335 			if (connp->conn_mlp_type != mlptSingle) {
16336 				if (connp->conn_mlp_type == mlptShared ||
16337 				    connp->conn_mlp_type == mlptBoth)
16338 					mlp.tme_flags |= MIB2_TMEF_SHARED;
16339 				if (connp->conn_mlp_type == mlptPrivate ||
16340 				    connp->conn_mlp_type == mlptBoth)
16341 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
16342 				needattr = B_TRUE;
16343 			}
16344 			if (connp->conn_peercred != NULL) {
16345 				ts_label_t *tsl;
16346 
16347 				tsl = crgetlabel(connp->conn_peercred);
16348 				mlp.tme_doi = label2doi(tsl);
16349 				mlp.tme_label = *label2bslabel(tsl);
16350 				needattr = B_TRUE;
16351 			}
16352 
16353 			/* Create a message to report on IPv6 entries */
16354 			if (tcp->tcp_ipversion == IPV6_VERSION) {
16355 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
16356 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
16357 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
16358 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
16359 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
16360 			/* Don't want just anybody seeing these... */
16361 			if (ispriv) {
16362 				tce6.tcp6ConnEntryInfo.ce_snxt =
16363 				    tcp->tcp_snxt;
16364 				tce6.tcp6ConnEntryInfo.ce_suna =
16365 				    tcp->tcp_suna;
16366 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16367 				    tcp->tcp_rnxt;
16368 				tce6.tcp6ConnEntryInfo.ce_rack =
16369 				    tcp->tcp_rack;
16370 			} else {
16371 				/*
16372 				 * Netstat, unfortunately, uses this to
16373 				 * get send/receive queue sizes.  How to fix?
16374 				 * Why not compute the difference only?
16375 				 */
16376 				tce6.tcp6ConnEntryInfo.ce_snxt =
16377 				    tcp->tcp_snxt - tcp->tcp_suna;
16378 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
16379 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16380 				    tcp->tcp_rnxt - tcp->tcp_rack;
16381 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
16382 			}
16383 
16384 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16385 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16386 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
16387 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
16388 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
16389 
16390 			tce6.tcp6ConnCreationProcess =
16391 			    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16392 			    tcp->tcp_cpid;
16393 			tce6.tcp6ConnCreationTime = tcp->tcp_open_time;
16394 
16395 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
16396 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
16397 
16398 			mlp.tme_connidx = v6_conn_idx++;
16399 			if (needattr)
16400 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
16401 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
16402 			}
16403 			/*
16404 			 * Create an IPv4 table entry for IPv4 entries and also
16405 			 * for IPv6 entries which are bound to in6addr_any
16406 			 * but don't have IPV6_V6ONLY set.
16407 			 * (i.e. anything an IPv4 peer could connect to)
16408 			 */
16409 			if (tcp->tcp_ipversion == IPV4_VERSION ||
16410 			    (tcp->tcp_state <= TCPS_LISTEN &&
16411 			    !tcp->tcp_connp->conn_ipv6_v6only &&
16412 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
16413 				if (tcp->tcp_ipversion == IPV6_VERSION) {
16414 					tce.tcpConnRemAddress = INADDR_ANY;
16415 					tce.tcpConnLocalAddress = INADDR_ANY;
16416 				} else {
16417 					tce.tcpConnRemAddress =
16418 					    tcp->tcp_remote;
16419 					tce.tcpConnLocalAddress =
16420 					    tcp->tcp_ip_src;
16421 				}
16422 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
16423 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
16424 				/* Don't want just anybody seeing these... */
16425 				if (ispriv) {
16426 					tce.tcpConnEntryInfo.ce_snxt =
16427 					    tcp->tcp_snxt;
16428 					tce.tcpConnEntryInfo.ce_suna =
16429 					    tcp->tcp_suna;
16430 					tce.tcpConnEntryInfo.ce_rnxt =
16431 					    tcp->tcp_rnxt;
16432 					tce.tcpConnEntryInfo.ce_rack =
16433 					    tcp->tcp_rack;
16434 				} else {
16435 					/*
16436 					 * Netstat, unfortunately, uses this to
16437 					 * get send/receive queue sizes.  How
16438 					 * to fix?
16439 					 * Why not compute the difference only?
16440 					 */
16441 					tce.tcpConnEntryInfo.ce_snxt =
16442 					    tcp->tcp_snxt - tcp->tcp_suna;
16443 					tce.tcpConnEntryInfo.ce_suna = 0;
16444 					tce.tcpConnEntryInfo.ce_rnxt =
16445 					    tcp->tcp_rnxt - tcp->tcp_rack;
16446 					tce.tcpConnEntryInfo.ce_rack = 0;
16447 				}
16448 
16449 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16450 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16451 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
16452 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
16453 				tce.tcpConnEntryInfo.ce_state =
16454 				    tcp->tcp_state;
16455 
16456 				tce.tcpConnCreationProcess =
16457 				    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16458 				    tcp->tcp_cpid;
16459 				tce.tcpConnCreationTime = tcp->tcp_open_time;
16460 
16461 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
16462 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
16463 
16464 				mlp.tme_connidx = v4_conn_idx++;
16465 				if (needattr)
16466 					(void) snmp_append_data2(
16467 					    mp_attr_ctl->b_cont,
16468 					    &mp_attr_tail, (char *)&mlp,
16469 					    sizeof (mlp));
16470 			}
16471 		}
16472 	}
16473 
16474 	/* fixed length structure for IPv4 and IPv6 counters */
16475 	SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
16476 	SET_MIB(tcps->tcps_mib.tcp6ConnTableSize,
16477 	    sizeof (mib2_tcp6ConnEntry_t));
16478 	/* synchronize 32- and 64-bit counters */
16479 	SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs);
16480 	SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs);
16481 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
16482 	optp->level = MIB2_TCP;
16483 	optp->name = 0;
16484 	(void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib,
16485 	    sizeof (tcps->tcps_mib));
16486 	optp->len = msgdsize(mpdata);
16487 	qreply(q, mpctl);
16488 
16489 	/* table of connections... */
16490 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
16491 	    sizeof (struct T_optmgmt_ack)];
16492 	optp->level = MIB2_TCP;
16493 	optp->name = MIB2_TCP_CONN;
16494 	optp->len = msgdsize(mp_conn_ctl->b_cont);
16495 	qreply(q, mp_conn_ctl);
16496 
16497 	/* table of MLP attributes... */
16498 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
16499 	    sizeof (struct T_optmgmt_ack)];
16500 	optp->level = MIB2_TCP;
16501 	optp->name = EXPER_XPORT_MLP;
16502 	optp->len = msgdsize(mp_attr_ctl->b_cont);
16503 	if (optp->len == 0)
16504 		freemsg(mp_attr_ctl);
16505 	else
16506 		qreply(q, mp_attr_ctl);
16507 
16508 	/* table of IPv6 connections... */
16509 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
16510 	    sizeof (struct T_optmgmt_ack)];
16511 	optp->level = MIB2_TCP6;
16512 	optp->name = MIB2_TCP6_CONN;
16513 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
16514 	qreply(q, mp6_conn_ctl);
16515 
16516 	/* table of IPv6 MLP attributes... */
16517 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
16518 	    sizeof (struct T_optmgmt_ack)];
16519 	optp->level = MIB2_TCP6;
16520 	optp->name = EXPER_XPORT_MLP;
16521 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
16522 	if (optp->len == 0)
16523 		freemsg(mp6_attr_ctl);
16524 	else
16525 		qreply(q, mp6_attr_ctl);
16526 	return (mp2ctl);
16527 }
16528 
16529 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
16530 /* ARGSUSED */
16531 int
16532 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
16533 {
16534 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
16535 
16536 	switch (level) {
16537 	case MIB2_TCP:
16538 		switch (name) {
16539 		case 13:
16540 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
16541 				return (0);
16542 			/* TODO: delete entry defined by tce */
16543 			return (1);
16544 		default:
16545 			return (0);
16546 		}
16547 	default:
16548 		return (1);
16549 	}
16550 }
16551 
16552 /* Translate TCP state to MIB2 TCP state. */
16553 static int
16554 tcp_snmp_state(tcp_t *tcp)
16555 {
16556 	if (tcp == NULL)
16557 		return (0);
16558 
16559 	switch (tcp->tcp_state) {
16560 	case TCPS_CLOSED:
16561 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
16562 	case TCPS_BOUND:
16563 		return (MIB2_TCP_closed);
16564 	case TCPS_LISTEN:
16565 		return (MIB2_TCP_listen);
16566 	case TCPS_SYN_SENT:
16567 		return (MIB2_TCP_synSent);
16568 	case TCPS_SYN_RCVD:
16569 		return (MIB2_TCP_synReceived);
16570 	case TCPS_ESTABLISHED:
16571 		return (MIB2_TCP_established);
16572 	case TCPS_CLOSE_WAIT:
16573 		return (MIB2_TCP_closeWait);
16574 	case TCPS_FIN_WAIT_1:
16575 		return (MIB2_TCP_finWait1);
16576 	case TCPS_CLOSING:
16577 		return (MIB2_TCP_closing);
16578 	case TCPS_LAST_ACK:
16579 		return (MIB2_TCP_lastAck);
16580 	case TCPS_FIN_WAIT_2:
16581 		return (MIB2_TCP_finWait2);
16582 	case TCPS_TIME_WAIT:
16583 		return (MIB2_TCP_timeWait);
16584 	default:
16585 		return (0);
16586 	}
16587 }
16588 
16589 static char tcp_report_header[] =
16590 	"TCP     " MI_COL_HDRPAD_STR
16591 	"zone dest	    snxt     suna     "
16592 	"swnd       rnxt     rack     rwnd       rto   mss   w sw rw t "
16593 	"recent   [lport,fport] state";
16594 
16595 /*
16596  * TCP status report triggered via the Named Dispatch mechanism.
16597  */
16598 /* ARGSUSED */
16599 static void
16600 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream,
16601     cred_t *cr)
16602 {
16603 	char hash[10], addrbuf[INET6_ADDRSTRLEN];
16604 	boolean_t ispriv = secpolicy_ip_config(cr, B_TRUE) == 0;
16605 	char cflag;
16606 	in6_addr_t	v6dst;
16607 	char buf[80];
16608 	uint_t print_len, buf_len;
16609 
16610 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16611 	if (buf_len <= 0)
16612 		return;
16613 
16614 	if (hashval >= 0)
16615 		(void) sprintf(hash, "%03d ", hashval);
16616 	else
16617 		hash[0] = '\0';
16618 
16619 	/*
16620 	 * Note that we use the remote address in the tcp_b  structure.
16621 	 * This means that it will print out the real destination address,
16622 	 * not the next hop's address if source routing is used.  This
16623 	 * avoid the confusion on the output because user may not
16624 	 * know that source routing is used for a connection.
16625 	 */
16626 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16627 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst);
16628 	} else {
16629 		v6dst = tcp->tcp_remote_v6;
16630 	}
16631 	(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16632 	/*
16633 	 * the ispriv checks are so that normal users cannot determine
16634 	 * sequence number information using NDD.
16635 	 */
16636 
16637 	if (TCP_IS_DETACHED(tcp))
16638 		cflag = '*';
16639 	else
16640 		cflag = ' ';
16641 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16642 	    "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x "
16643 	    "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n",
16644 	    hash,
16645 	    (void *)tcp,
16646 	    tcp->tcp_connp->conn_zoneid,
16647 	    addrbuf,
16648 	    (ispriv) ? tcp->tcp_snxt : 0,
16649 	    (ispriv) ? tcp->tcp_suna : 0,
16650 	    tcp->tcp_swnd,
16651 	    (ispriv) ? tcp->tcp_rnxt : 0,
16652 	    (ispriv) ? tcp->tcp_rack : 0,
16653 	    tcp->tcp_rwnd,
16654 	    tcp->tcp_rto,
16655 	    tcp->tcp_mss,
16656 	    tcp->tcp_snd_ws_ok,
16657 	    tcp->tcp_snd_ws,
16658 	    tcp->tcp_rcv_ws,
16659 	    tcp->tcp_snd_ts_ok,
16660 	    tcp->tcp_ts_recent,
16661 	    tcp_display(tcp, buf, DISP_PORT_ONLY), cflag);
16662 	if (print_len < buf_len) {
16663 		((mblk_t *)mp)->b_wptr += print_len;
16664 	} else {
16665 		((mblk_t *)mp)->b_wptr += buf_len;
16666 	}
16667 }
16668 
16669 /*
16670  * TCP status report (for listeners only) triggered via the Named Dispatch
16671  * mechanism.
16672  */
16673 /* ARGSUSED */
16674 static void
16675 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval)
16676 {
16677 	char addrbuf[INET6_ADDRSTRLEN];
16678 	in6_addr_t	v6dst;
16679 	uint_t print_len, buf_len;
16680 
16681 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16682 	if (buf_len <= 0)
16683 		return;
16684 
16685 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16686 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst);
16687 		(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16688 	} else {
16689 		(void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src,
16690 		    addrbuf, sizeof (addrbuf));
16691 	}
16692 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16693 	    "%03d "
16694 	    MI_COL_PTRFMT_STR
16695 	    "%d %s %05u %08u %d/%d/%d%c\n",
16696 	    hashval, (void *)tcp,
16697 	    tcp->tcp_connp->conn_zoneid,
16698 	    addrbuf,
16699 	    (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport),
16700 	    tcp->tcp_conn_req_seqnum,
16701 	    tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q,
16702 	    tcp->tcp_conn_req_max,
16703 	    tcp->tcp_syn_defense ? '*' : ' ');
16704 	if (print_len < buf_len) {
16705 		((mblk_t *)mp)->b_wptr += print_len;
16706 	} else {
16707 		((mblk_t *)mp)->b_wptr += buf_len;
16708 	}
16709 }
16710 
16711 /* TCP status report triggered via the Named Dispatch mechanism. */
16712 /* ARGSUSED */
16713 static int
16714 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16715 {
16716 	tcp_t	*tcp;
16717 	int	i;
16718 	conn_t	*connp;
16719 	connf_t	*connfp;
16720 	zoneid_t zoneid;
16721 	tcp_stack_t *tcps;
16722 	ip_stack_t *ipst;
16723 
16724 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16725 	tcps = Q_TO_TCP(q)->tcp_tcps;
16726 
16727 	/*
16728 	 * Because of the ndd constraint, at most we can have 64K buffer
16729 	 * to put in all TCP info.  So to be more efficient, just
16730 	 * allocate a 64K buffer here, assuming we need that large buffer.
16731 	 * This may be a problem as any user can read tcp_status.  Therefore
16732 	 * we limit the rate of doing this using tcp_ndd_get_info_interval.
16733 	 * This should be OK as normal users should not do this too often.
16734 	 */
16735 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16736 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16737 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16738 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16739 			return (0);
16740 		}
16741 	}
16742 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16743 		/* The following may work even if we cannot get a large buf. */
16744 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16745 		return (0);
16746 	}
16747 
16748 	(void) mi_mpprintf(mp, "%s", tcp_report_header);
16749 
16750 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16751 
16752 		ipst = tcps->tcps_netstack->netstack_ip;
16753 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
16754 
16755 		connp = NULL;
16756 
16757 		while ((connp =
16758 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16759 			tcp = connp->conn_tcp;
16760 			if (zoneid != GLOBAL_ZONEID &&
16761 			    zoneid != connp->conn_zoneid)
16762 				continue;
16763 			tcp_report_item(mp->b_cont, tcp, -1, tcp,
16764 			    cr);
16765 		}
16766 
16767 	}
16768 
16769 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16770 	return (0);
16771 }
16772 
16773 /* TCP status report triggered via the Named Dispatch mechanism. */
16774 /* ARGSUSED */
16775 static int
16776 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16777 {
16778 	tf_t	*tbf;
16779 	tcp_t	*tcp, *ltcp;
16780 	int	i;
16781 	zoneid_t zoneid;
16782 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
16783 
16784 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16785 
16786 	/* Refer to comments in tcp_status_report(). */
16787 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16788 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16789 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16790 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16791 			return (0);
16792 		}
16793 	}
16794 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16795 		/* The following may work even if we cannot get a large buf. */
16796 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16797 		return (0);
16798 	}
16799 
16800 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16801 
16802 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
16803 		tbf = &tcps->tcps_bind_fanout[i];
16804 		mutex_enter(&tbf->tf_lock);
16805 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
16806 		    ltcp = ltcp->tcp_bind_hash) {
16807 			for (tcp = ltcp; tcp != NULL;
16808 			    tcp = tcp->tcp_bind_hash_port) {
16809 				if (zoneid != GLOBAL_ZONEID &&
16810 				    zoneid != tcp->tcp_connp->conn_zoneid)
16811 					continue;
16812 				CONN_INC_REF(tcp->tcp_connp);
16813 				tcp_report_item(mp->b_cont, tcp, i,
16814 				    Q_TO_TCP(q), cr);
16815 				CONN_DEC_REF(tcp->tcp_connp);
16816 			}
16817 		}
16818 		mutex_exit(&tbf->tf_lock);
16819 	}
16820 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16821 	return (0);
16822 }
16823 
16824 /* TCP status report triggered via the Named Dispatch mechanism. */
16825 /* ARGSUSED */
16826 static int
16827 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16828 {
16829 	connf_t	*connfp;
16830 	conn_t	*connp;
16831 	tcp_t	*tcp;
16832 	int	i;
16833 	zoneid_t zoneid;
16834 	tcp_stack_t *tcps;
16835 	ip_stack_t	*ipst;
16836 
16837 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16838 	tcps = Q_TO_TCP(q)->tcp_tcps;
16839 
16840 	/* Refer to comments in tcp_status_report(). */
16841 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16842 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16843 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16844 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16845 			return (0);
16846 		}
16847 	}
16848 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16849 		/* The following may work even if we cannot get a large buf. */
16850 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16851 		return (0);
16852 	}
16853 
16854 	(void) mi_mpprintf(mp,
16855 	    "    TCP    " MI_COL_HDRPAD_STR
16856 	    "zone IP addr	 port  seqnum   backlog (q0/q/max)");
16857 
16858 	ipst = tcps->tcps_netstack->netstack_ip;
16859 
16860 	for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) {
16861 		connfp = &ipst->ips_ipcl_bind_fanout[i];
16862 		connp = NULL;
16863 		while ((connp =
16864 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16865 			tcp = connp->conn_tcp;
16866 			if (zoneid != GLOBAL_ZONEID &&
16867 			    zoneid != connp->conn_zoneid)
16868 				continue;
16869 			tcp_report_listener(mp->b_cont, tcp, i);
16870 		}
16871 	}
16872 
16873 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16874 	return (0);
16875 }
16876 
16877 /* TCP status report triggered via the Named Dispatch mechanism. */
16878 /* ARGSUSED */
16879 static int
16880 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16881 {
16882 	connf_t	*connfp;
16883 	conn_t	*connp;
16884 	tcp_t	*tcp;
16885 	int	i;
16886 	zoneid_t zoneid;
16887 	tcp_stack_t *tcps;
16888 	ip_stack_t *ipst;
16889 
16890 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16891 	tcps = Q_TO_TCP(q)->tcp_tcps;
16892 	ipst = tcps->tcps_netstack->netstack_ip;
16893 
16894 	/* Refer to comments in tcp_status_report(). */
16895 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16896 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16897 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16898 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16899 			return (0);
16900 		}
16901 	}
16902 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16903 		/* The following may work even if we cannot get a large buf. */
16904 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16905 		return (0);
16906 	}
16907 
16908 	(void) mi_mpprintf(mp, "tcp_conn_hash_size = %d",
16909 	    ipst->ips_ipcl_conn_fanout_size);
16910 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16911 
16912 	for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) {
16913 		connfp =  &ipst->ips_ipcl_conn_fanout[i];
16914 		connp = NULL;
16915 		while ((connp =
16916 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16917 			tcp = connp->conn_tcp;
16918 			if (zoneid != GLOBAL_ZONEID &&
16919 			    zoneid != connp->conn_zoneid)
16920 				continue;
16921 			tcp_report_item(mp->b_cont, tcp, i,
16922 			    Q_TO_TCP(q), cr);
16923 		}
16924 	}
16925 
16926 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16927 	return (0);
16928 }
16929 
16930 /* TCP status report triggered via the Named Dispatch mechanism. */
16931 /* ARGSUSED */
16932 static int
16933 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16934 {
16935 	tf_t	*tf;
16936 	tcp_t	*tcp;
16937 	int	i;
16938 	zoneid_t zoneid;
16939 	tcp_stack_t	*tcps;
16940 
16941 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16942 	tcps = Q_TO_TCP(q)->tcp_tcps;
16943 
16944 	/* Refer to comments in tcp_status_report(). */
16945 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16946 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16947 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16948 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16949 			return (0);
16950 		}
16951 	}
16952 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16953 		/* The following may work even if we cannot get a large buf. */
16954 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16955 		return (0);
16956 	}
16957 
16958 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16959 
16960 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
16961 		tf = &tcps->tcps_acceptor_fanout[i];
16962 		mutex_enter(&tf->tf_lock);
16963 		for (tcp = tf->tf_tcp; tcp != NULL;
16964 		    tcp = tcp->tcp_acceptor_hash) {
16965 			if (zoneid != GLOBAL_ZONEID &&
16966 			    zoneid != tcp->tcp_connp->conn_zoneid)
16967 				continue;
16968 			tcp_report_item(mp->b_cont, tcp, i,
16969 			    Q_TO_TCP(q), cr);
16970 		}
16971 		mutex_exit(&tf->tf_lock);
16972 	}
16973 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16974 	return (0);
16975 }
16976 
16977 /*
16978  * tcp_timer is the timer service routine.  It handles the retransmission,
16979  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
16980  * from the state of the tcp instance what kind of action needs to be done
16981  * at the time it is called.
16982  */
16983 static void
16984 tcp_timer(void *arg)
16985 {
16986 	mblk_t		*mp;
16987 	clock_t		first_threshold;
16988 	clock_t		second_threshold;
16989 	clock_t		ms;
16990 	uint32_t	mss;
16991 	conn_t		*connp = (conn_t *)arg;
16992 	tcp_t		*tcp = connp->conn_tcp;
16993 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16994 
16995 	tcp->tcp_timer_tid = 0;
16996 
16997 	if (tcp->tcp_fused)
16998 		return;
16999 
17000 	first_threshold =  tcp->tcp_first_timer_threshold;
17001 	second_threshold = tcp->tcp_second_timer_threshold;
17002 	switch (tcp->tcp_state) {
17003 	case TCPS_IDLE:
17004 	case TCPS_BOUND:
17005 	case TCPS_LISTEN:
17006 		return;
17007 	case TCPS_SYN_RCVD: {
17008 		tcp_t	*listener = tcp->tcp_listener;
17009 
17010 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
17011 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
17012 			/* it's our first timeout */
17013 			tcp->tcp_syn_rcvd_timeout = 1;
17014 			mutex_enter(&listener->tcp_eager_lock);
17015 			listener->tcp_syn_rcvd_timeout++;
17016 			if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) {
17017 				/*
17018 				 * Make this eager available for drop if we
17019 				 * need to drop one to accomodate a new
17020 				 * incoming SYN request.
17021 				 */
17022 				MAKE_DROPPABLE(listener, tcp);
17023 			}
17024 			if (!listener->tcp_syn_defense &&
17025 			    (listener->tcp_syn_rcvd_timeout >
17026 			    (tcps->tcps_conn_req_max_q0 >> 2)) &&
17027 			    (tcps->tcps_conn_req_max_q0 > 200)) {
17028 				/* We may be under attack. Put on a defense. */
17029 				listener->tcp_syn_defense = B_TRUE;
17030 				cmn_err(CE_WARN, "High TCP connect timeout "
17031 				    "rate! System (port %d) may be under a "
17032 				    "SYN flood attack!",
17033 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
17034 
17035 				listener->tcp_ip_addr_cache = kmem_zalloc(
17036 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
17037 				    KM_NOSLEEP);
17038 			}
17039 			mutex_exit(&listener->tcp_eager_lock);
17040 		} else if (listener != NULL) {
17041 			mutex_enter(&listener->tcp_eager_lock);
17042 			tcp->tcp_syn_rcvd_timeout++;
17043 			if (tcp->tcp_syn_rcvd_timeout > 1 &&
17044 			    !tcp->tcp_closemp_used) {
17045 				/*
17046 				 * This is our second timeout. Put the tcp in
17047 				 * the list of droppable eagers to allow it to
17048 				 * be dropped, if needed. We don't check
17049 				 * whether tcp_dontdrop is set or not to
17050 				 * protect ourselve from a SYN attack where a
17051 				 * remote host can spoof itself as one of the
17052 				 * good IP source and continue to hold
17053 				 * resources too long.
17054 				 */
17055 				MAKE_DROPPABLE(listener, tcp);
17056 			}
17057 			mutex_exit(&listener->tcp_eager_lock);
17058 		}
17059 	}
17060 		/* FALLTHRU */
17061 	case TCPS_SYN_SENT:
17062 		first_threshold =  tcp->tcp_first_ctimer_threshold;
17063 		second_threshold = tcp->tcp_second_ctimer_threshold;
17064 		break;
17065 	case TCPS_ESTABLISHED:
17066 	case TCPS_FIN_WAIT_1:
17067 	case TCPS_CLOSING:
17068 	case TCPS_CLOSE_WAIT:
17069 	case TCPS_LAST_ACK:
17070 		/* If we have data to rexmit */
17071 		if (tcp->tcp_suna != tcp->tcp_snxt) {
17072 			clock_t	time_to_wait;
17073 
17074 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans);
17075 			if (!tcp->tcp_xmit_head)
17076 				break;
17077 			time_to_wait = lbolt -
17078 			    (clock_t)tcp->tcp_xmit_head->b_prev;
17079 			time_to_wait = tcp->tcp_rto -
17080 			    TICK_TO_MSEC(time_to_wait);
17081 			/*
17082 			 * If the timer fires too early, 1 clock tick earlier,
17083 			 * restart the timer.
17084 			 */
17085 			if (time_to_wait > msec_per_tick) {
17086 				TCP_STAT(tcps, tcp_timer_fire_early);
17087 				TCP_TIMER_RESTART(tcp, time_to_wait);
17088 				return;
17089 			}
17090 			/*
17091 			 * When we probe zero windows, we force the swnd open.
17092 			 * If our peer acks with a closed window swnd will be
17093 			 * set to zero by tcp_rput(). As long as we are
17094 			 * receiving acks tcp_rput will
17095 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
17096 			 * first and second interval actions.  NOTE: the timer
17097 			 * interval is allowed to continue its exponential
17098 			 * backoff.
17099 			 */
17100 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
17101 				if (tcp->tcp_debug) {
17102 					(void) strlog(TCP_MOD_ID, 0, 1,
17103 					    SL_TRACE, "tcp_timer: zero win");
17104 				}
17105 			} else {
17106 				/*
17107 				 * After retransmission, we need to do
17108 				 * slow start.  Set the ssthresh to one
17109 				 * half of current effective window and
17110 				 * cwnd to one MSS.  Also reset
17111 				 * tcp_cwnd_cnt.
17112 				 *
17113 				 * Note that if tcp_ssthresh is reduced because
17114 				 * of ECN, do not reduce it again unless it is
17115 				 * already one window of data away (tcp_cwr
17116 				 * should then be cleared) or this is a
17117 				 * timeout for a retransmitted segment.
17118 				 */
17119 				uint32_t npkt;
17120 
17121 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
17122 					npkt = ((tcp->tcp_timer_backoff ?
17123 					    tcp->tcp_cwnd_ssthresh :
17124 					    tcp->tcp_snxt -
17125 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
17126 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
17127 					    tcp->tcp_mss;
17128 				}
17129 				tcp->tcp_cwnd = tcp->tcp_mss;
17130 				tcp->tcp_cwnd_cnt = 0;
17131 				if (tcp->tcp_ecn_ok) {
17132 					tcp->tcp_cwr = B_TRUE;
17133 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
17134 					tcp->tcp_ecn_cwr_sent = B_FALSE;
17135 				}
17136 			}
17137 			break;
17138 		}
17139 		/*
17140 		 * We have something to send yet we cannot send.  The
17141 		 * reason can be:
17142 		 *
17143 		 * 1. Zero send window: we need to do zero window probe.
17144 		 * 2. Zero cwnd: because of ECN, we need to "clock out
17145 		 * segments.
17146 		 * 3. SWS avoidance: receiver may have shrunk window,
17147 		 * reset our knowledge.
17148 		 *
17149 		 * Note that condition 2 can happen with either 1 or
17150 		 * 3.  But 1 and 3 are exclusive.
17151 		 */
17152 		if (tcp->tcp_unsent != 0) {
17153 			if (tcp->tcp_cwnd == 0) {
17154 				/*
17155 				 * Set tcp_cwnd to 1 MSS so that a
17156 				 * new segment can be sent out.  We
17157 				 * are "clocking out" new data when
17158 				 * the network is really congested.
17159 				 */
17160 				ASSERT(tcp->tcp_ecn_ok);
17161 				tcp->tcp_cwnd = tcp->tcp_mss;
17162 			}
17163 			if (tcp->tcp_swnd == 0) {
17164 				/* Extend window for zero window probe */
17165 				tcp->tcp_swnd++;
17166 				tcp->tcp_zero_win_probe = B_TRUE;
17167 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe);
17168 			} else {
17169 				/*
17170 				 * Handle timeout from sender SWS avoidance.
17171 				 * Reset our knowledge of the max send window
17172 				 * since the receiver might have reduced its
17173 				 * receive buffer.  Avoid setting tcp_max_swnd
17174 				 * to one since that will essentially disable
17175 				 * the SWS checks.
17176 				 *
17177 				 * Note that since we don't have a SWS
17178 				 * state variable, if the timeout is set
17179 				 * for ECN but not for SWS, this
17180 				 * code will also be executed.  This is
17181 				 * fine as tcp_max_swnd is updated
17182 				 * constantly and it will not affect
17183 				 * anything.
17184 				 */
17185 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
17186 			}
17187 			tcp_wput_data(tcp, NULL, B_FALSE);
17188 			return;
17189 		}
17190 		/* Is there a FIN that needs to be to re retransmitted? */
17191 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17192 		    !tcp->tcp_fin_acked)
17193 			break;
17194 		/* Nothing to do, return without restarting timer. */
17195 		TCP_STAT(tcps, tcp_timer_fire_miss);
17196 		return;
17197 	case TCPS_FIN_WAIT_2:
17198 		/*
17199 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
17200 		 * We waited some time for for peer's FIN, but it hasn't
17201 		 * arrived.  We flush the connection now to avoid
17202 		 * case where the peer has rebooted.
17203 		 */
17204 		if (TCP_IS_DETACHED(tcp)) {
17205 			(void) tcp_clean_death(tcp, 0, 23);
17206 		} else {
17207 			TCP_TIMER_RESTART(tcp,
17208 			    tcps->tcps_fin_wait_2_flush_interval);
17209 		}
17210 		return;
17211 	case TCPS_TIME_WAIT:
17212 		(void) tcp_clean_death(tcp, 0, 24);
17213 		return;
17214 	default:
17215 		if (tcp->tcp_debug) {
17216 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
17217 			    "tcp_timer: strange state (%d) %s",
17218 			    tcp->tcp_state, tcp_display(tcp, NULL,
17219 			    DISP_PORT_ONLY));
17220 		}
17221 		return;
17222 	}
17223 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
17224 		/*
17225 		 * For zero window probe, we need to send indefinitely,
17226 		 * unless we have not heard from the other side for some
17227 		 * time...
17228 		 */
17229 		if ((tcp->tcp_zero_win_probe == 0) ||
17230 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
17231 		    second_threshold)) {
17232 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop);
17233 			/*
17234 			 * If TCP is in SYN_RCVD state, send back a
17235 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
17236 			 * should be zero in TCPS_SYN_RCVD state.
17237 			 */
17238 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
17239 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
17240 				    "in SYN_RCVD",
17241 				    tcp, tcp->tcp_snxt,
17242 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
17243 			}
17244 			(void) tcp_clean_death(tcp,
17245 			    tcp->tcp_client_errno ?
17246 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
17247 			return;
17248 		} else {
17249 			/*
17250 			 * Set tcp_ms_we_have_waited to second_threshold
17251 			 * so that in next timeout, we will do the above
17252 			 * check (lbolt - tcp_last_recv_time).  This is
17253 			 * also to avoid overflow.
17254 			 *
17255 			 * We don't need to decrement tcp_timer_backoff
17256 			 * to avoid overflow because it will be decremented
17257 			 * later if new timeout value is greater than
17258 			 * tcp_rexmit_interval_max.  In the case when
17259 			 * tcp_rexmit_interval_max is greater than
17260 			 * second_threshold, it means that we will wait
17261 			 * longer than second_threshold to send the next
17262 			 * window probe.
17263 			 */
17264 			tcp->tcp_ms_we_have_waited = second_threshold;
17265 		}
17266 	} else if (ms > first_threshold) {
17267 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
17268 		    tcp->tcp_xmit_head != NULL) {
17269 			tcp->tcp_xmit_head =
17270 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
17271 		}
17272 		/*
17273 		 * We have been retransmitting for too long...  The RTT
17274 		 * we calculated is probably incorrect.  Reinitialize it.
17275 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
17276 		 * tcp_rtt_update so that we won't accidentally cache a
17277 		 * bad value.  But only do this if this is not a zero
17278 		 * window probe.
17279 		 */
17280 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
17281 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
17282 			    (tcp->tcp_rtt_sa >> 5);
17283 			tcp->tcp_rtt_sa = 0;
17284 			tcp_ip_notify(tcp);
17285 			tcp->tcp_rtt_update = 0;
17286 		}
17287 	}
17288 	tcp->tcp_timer_backoff++;
17289 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
17290 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
17291 	    tcps->tcps_rexmit_interval_min) {
17292 		/*
17293 		 * This means the original RTO is tcp_rexmit_interval_min.
17294 		 * So we will use tcp_rexmit_interval_min as the RTO value
17295 		 * and do the backoff.
17296 		 */
17297 		ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff;
17298 	} else {
17299 		ms <<= tcp->tcp_timer_backoff;
17300 	}
17301 	if (ms > tcps->tcps_rexmit_interval_max) {
17302 		ms = tcps->tcps_rexmit_interval_max;
17303 		/*
17304 		 * ms is at max, decrement tcp_timer_backoff to avoid
17305 		 * overflow.
17306 		 */
17307 		tcp->tcp_timer_backoff--;
17308 	}
17309 	tcp->tcp_ms_we_have_waited += ms;
17310 	if (tcp->tcp_zero_win_probe == 0) {
17311 		tcp->tcp_rto = ms;
17312 	}
17313 	TCP_TIMER_RESTART(tcp, ms);
17314 	/*
17315 	 * This is after a timeout and tcp_rto is backed off.  Set
17316 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
17317 	 * restart the timer with a correct value.
17318 	 */
17319 	tcp->tcp_set_timer = 1;
17320 	mss = tcp->tcp_snxt - tcp->tcp_suna;
17321 	if (mss > tcp->tcp_mss)
17322 		mss = tcp->tcp_mss;
17323 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
17324 		mss = tcp->tcp_swnd;
17325 
17326 	if ((mp = tcp->tcp_xmit_head) != NULL)
17327 		mp->b_prev = (mblk_t *)lbolt;
17328 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
17329 	    B_TRUE);
17330 
17331 	/*
17332 	 * When slow start after retransmission begins, start with
17333 	 * this seq no.  tcp_rexmit_max marks the end of special slow
17334 	 * start phase.  tcp_snd_burst controls how many segments
17335 	 * can be sent because of an ack.
17336 	 */
17337 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
17338 	tcp->tcp_snd_burst = TCP_CWND_SS;
17339 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17340 	    (tcp->tcp_unsent == 0)) {
17341 		tcp->tcp_rexmit_max = tcp->tcp_fss;
17342 	} else {
17343 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
17344 	}
17345 	tcp->tcp_rexmit = B_TRUE;
17346 	tcp->tcp_dupack_cnt = 0;
17347 
17348 	/*
17349 	 * Remove all rexmit SACK blk to start from fresh.
17350 	 */
17351 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
17352 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
17353 		tcp->tcp_num_notsack_blk = 0;
17354 		tcp->tcp_cnt_notsack_list = 0;
17355 	}
17356 	if (mp == NULL) {
17357 		return;
17358 	}
17359 	/* Attach credentials to retransmitted initial SYNs. */
17360 	if (tcp->tcp_state == TCPS_SYN_SENT) {
17361 		mblk_setcred(mp, tcp->tcp_cred);
17362 		DB_CPID(mp) = tcp->tcp_cpid;
17363 	}
17364 
17365 	tcp->tcp_csuna = tcp->tcp_snxt;
17366 	BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
17367 	UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss);
17368 	tcp_send_data(tcp, tcp->tcp_wq, mp);
17369 
17370 }
17371 
17372 static int
17373 tcp_do_unbind(conn_t *connp)
17374 {
17375 	tcp_t *tcp = connp->conn_tcp;
17376 	int error = 0;
17377 
17378 	switch (tcp->tcp_state) {
17379 	case TCPS_BOUND:
17380 	case TCPS_LISTEN:
17381 		break;
17382 	default:
17383 		return (-TOUTSTATE);
17384 	}
17385 
17386 	/*
17387 	 * Need to clean up all the eagers since after the unbind, segments
17388 	 * will no longer be delivered to this listener stream.
17389 	 */
17390 	mutex_enter(&tcp->tcp_eager_lock);
17391 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
17392 		tcp_eager_cleanup(tcp, 0);
17393 	}
17394 	mutex_exit(&tcp->tcp_eager_lock);
17395 
17396 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17397 		tcp->tcp_ipha->ipha_src = 0;
17398 	} else {
17399 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
17400 	}
17401 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
17402 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
17403 	tcp_bind_hash_remove(tcp);
17404 	tcp->tcp_state = TCPS_IDLE;
17405 	tcp->tcp_mdt = B_FALSE;
17406 
17407 	connp = tcp->tcp_connp;
17408 	connp->conn_mdt_ok = B_FALSE;
17409 	ipcl_hash_remove(connp);
17410 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
17411 
17412 	return (error);
17413 }
17414 
17415 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
17416 static void
17417 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp)
17418 {
17419 	int error = tcp_do_unbind(tcp->tcp_connp);
17420 
17421 	if (error > 0) {
17422 		tcp_err_ack(tcp, mp, TSYSERR, error);
17423 	} else if (error < 0) {
17424 		tcp_err_ack(tcp, mp, -error, 0);
17425 	} else {
17426 		/* Send M_FLUSH according to TPI */
17427 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
17428 
17429 		mp = mi_tpi_ok_ack_alloc(mp);
17430 		putnext(tcp->tcp_rq, mp);
17431 	}
17432 }
17433 
17434 /*
17435  * Don't let port fall into the privileged range.
17436  * Since the extra privileged ports can be arbitrary we also
17437  * ensure that we exclude those from consideration.
17438  * tcp_g_epriv_ports is not sorted thus we loop over it until
17439  * there are no changes.
17440  *
17441  * Note: No locks are held when inspecting tcp_g_*epriv_ports
17442  * but instead the code relies on:
17443  * - the fact that the address of the array and its size never changes
17444  * - the atomic assignment of the elements of the array
17445  *
17446  * Returns 0 if there are no more ports available.
17447  *
17448  * TS note: skip multilevel ports.
17449  */
17450 static in_port_t
17451 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
17452 {
17453 	int i;
17454 	boolean_t restart = B_FALSE;
17455 	tcp_stack_t *tcps = tcp->tcp_tcps;
17456 
17457 	if (random && tcp_random_anon_port != 0) {
17458 		(void) random_get_pseudo_bytes((uint8_t *)&port,
17459 		    sizeof (in_port_t));
17460 		/*
17461 		 * Unless changed by a sys admin, the smallest anon port
17462 		 * is 32768 and the largest anon port is 65535.  It is
17463 		 * very likely (50%) for the random port to be smaller
17464 		 * than the smallest anon port.  When that happens,
17465 		 * add port % (anon port range) to the smallest anon
17466 		 * port to get the random port.  It should fall into the
17467 		 * valid anon port range.
17468 		 */
17469 		if (port < tcps->tcps_smallest_anon_port) {
17470 			port = tcps->tcps_smallest_anon_port +
17471 			    port % (tcps->tcps_largest_anon_port -
17472 			    tcps->tcps_smallest_anon_port);
17473 		}
17474 	}
17475 
17476 retry:
17477 	if (port < tcps->tcps_smallest_anon_port)
17478 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17479 
17480 	if (port > tcps->tcps_largest_anon_port) {
17481 		if (restart)
17482 			return (0);
17483 		restart = B_TRUE;
17484 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17485 	}
17486 
17487 	if (port < tcps->tcps_smallest_nonpriv_port)
17488 		port = (in_port_t)tcps->tcps_smallest_nonpriv_port;
17489 
17490 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
17491 		if (port == tcps->tcps_g_epriv_ports[i]) {
17492 			port++;
17493 			/*
17494 			 * Make sure whether the port is in the
17495 			 * valid range.
17496 			 */
17497 			goto retry;
17498 		}
17499 	}
17500 	if (is_system_labeled() &&
17501 	    (i = tsol_next_port(crgetzone(tcp->tcp_cred), port,
17502 	    IPPROTO_TCP, B_TRUE)) != 0) {
17503 		port = i;
17504 		goto retry;
17505 	}
17506 	return (port);
17507 }
17508 
17509 /*
17510  * Return the next anonymous port in the privileged port range for
17511  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
17512  * downwards.  This is the same behavior as documented in the userland
17513  * library call rresvport(3N).
17514  *
17515  * TS note: skip multilevel ports.
17516  */
17517 static in_port_t
17518 tcp_get_next_priv_port(const tcp_t *tcp)
17519 {
17520 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
17521 	in_port_t nextport;
17522 	boolean_t restart = B_FALSE;
17523 	tcp_stack_t *tcps = tcp->tcp_tcps;
17524 retry:
17525 	if (next_priv_port < tcps->tcps_min_anonpriv_port ||
17526 	    next_priv_port >= IPPORT_RESERVED) {
17527 		next_priv_port = IPPORT_RESERVED - 1;
17528 		if (restart)
17529 			return (0);
17530 		restart = B_TRUE;
17531 	}
17532 	if (is_system_labeled() &&
17533 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_cred),
17534 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
17535 		next_priv_port = nextport;
17536 		goto retry;
17537 	}
17538 	return (next_priv_port--);
17539 }
17540 
17541 /* The write side r/w procedure. */
17542 
17543 #if CCS_STATS
17544 struct {
17545 	struct {
17546 		int64_t count, bytes;
17547 	} tot, hit;
17548 } wrw_stats;
17549 #endif
17550 
17551 /*
17552  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
17553  * messages.
17554  */
17555 /* ARGSUSED */
17556 static void
17557 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
17558 {
17559 	conn_t	*connp = (conn_t *)arg;
17560 	tcp_t	*tcp = connp->conn_tcp;
17561 	queue_t	*q = tcp->tcp_wq;
17562 
17563 	ASSERT(DB_TYPE(mp) != M_IOCTL);
17564 	/*
17565 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
17566 	 * Once the close starts, streamhead and sockfs will not let any data
17567 	 * packets come down (close ensures that there are no threads using the
17568 	 * queue and no new threads will come down) but since qprocsoff()
17569 	 * hasn't happened yet, a M_FLUSH or some non data message might
17570 	 * get reflected back (in response to our own FLUSHRW) and get
17571 	 * processed after tcp_close() is done. The conn would still be valid
17572 	 * because a ref would have added but we need to check the state
17573 	 * before actually processing the packet.
17574 	 */
17575 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
17576 		freemsg(mp);
17577 		return;
17578 	}
17579 
17580 	switch (DB_TYPE(mp)) {
17581 	case M_IOCDATA:
17582 		tcp_wput_iocdata(tcp, mp);
17583 		break;
17584 	case M_FLUSH:
17585 		tcp_wput_flush(tcp, mp);
17586 		break;
17587 	default:
17588 		CALL_IP_WPUT(connp, q, mp);
17589 		break;
17590 	}
17591 }
17592 
17593 /*
17594  * The TCP fast path write put procedure.
17595  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
17596  */
17597 /* ARGSUSED */
17598 void
17599 tcp_output(void *arg, mblk_t *mp, void *arg2)
17600 {
17601 	int		len;
17602 	int		hdrlen;
17603 	int		plen;
17604 	mblk_t		*mp1;
17605 	uchar_t		*rptr;
17606 	uint32_t	snxt;
17607 	tcph_t		*tcph;
17608 	struct datab	*db;
17609 	uint32_t	suna;
17610 	uint32_t	mss;
17611 	ipaddr_t	*dst;
17612 	ipaddr_t	*src;
17613 	uint32_t	sum;
17614 	int		usable;
17615 	conn_t		*connp = (conn_t *)arg;
17616 	tcp_t		*tcp = connp->conn_tcp;
17617 	uint32_t	msize;
17618 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17619 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
17620 
17621 	/*
17622 	 * Try and ASSERT the minimum possible references on the
17623 	 * conn early enough. Since we are executing on write side,
17624 	 * the connection is obviously not detached and that means
17625 	 * there is a ref each for TCP and IP. Since we are behind
17626 	 * the squeue, the minimum references needed are 3. If the
17627 	 * conn is in classifier hash list, there should be an
17628 	 * extra ref for that (we check both the possibilities).
17629 	 */
17630 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17631 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17632 
17633 	ASSERT(DB_TYPE(mp) == M_DATA);
17634 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
17635 
17636 	mutex_enter(&tcp->tcp_non_sq_lock);
17637 	tcp->tcp_squeue_bytes -= msize;
17638 	mutex_exit(&tcp->tcp_non_sq_lock);
17639 
17640 	/* Check to see if this connection wants to be re-fused. */
17641 	if (tcp->tcp_refuse && !ipst->ips_ipobs_enabled) {
17642 		if (tcp->tcp_ipversion == IPV4_VERSION) {
17643 			tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ipha,
17644 			    &tcp->tcp_saved_tcph);
17645 		} else {
17646 			tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ip6h,
17647 			    &tcp->tcp_saved_tcph);
17648 		}
17649 	}
17650 	/* Bypass tcp protocol for fused tcp loopback */
17651 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
17652 		return;
17653 
17654 	mss = tcp->tcp_mss;
17655 	if (tcp->tcp_xmit_zc_clean)
17656 		mp = tcp_zcopy_backoff(tcp, mp, 0);
17657 
17658 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17659 	len = (int)(mp->b_wptr - mp->b_rptr);
17660 
17661 	/*
17662 	 * Criteria for fast path:
17663 	 *
17664 	 *   1. no unsent data
17665 	 *   2. single mblk in request
17666 	 *   3. connection established
17667 	 *   4. data in mblk
17668 	 *   5. len <= mss
17669 	 *   6. no tcp_valid bits
17670 	 */
17671 	if ((tcp->tcp_unsent != 0) ||
17672 	    (tcp->tcp_cork) ||
17673 	    (mp->b_cont != NULL) ||
17674 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
17675 	    (len == 0) ||
17676 	    (len > mss) ||
17677 	    (tcp->tcp_valid_bits != 0)) {
17678 		tcp_wput_data(tcp, mp, B_FALSE);
17679 		return;
17680 	}
17681 
17682 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
17683 	ASSERT(tcp->tcp_fin_sent == 0);
17684 
17685 	/* queue new packet onto retransmission queue */
17686 	if (tcp->tcp_xmit_head == NULL) {
17687 		tcp->tcp_xmit_head = mp;
17688 	} else {
17689 		tcp->tcp_xmit_last->b_cont = mp;
17690 	}
17691 	tcp->tcp_xmit_last = mp;
17692 	tcp->tcp_xmit_tail = mp;
17693 
17694 	/* find out how much we can send */
17695 	/* BEGIN CSTYLED */
17696 	/*
17697 	 *    un-acked	   usable
17698 	 *  |--------------|-----------------|
17699 	 *  tcp_suna       tcp_snxt	  tcp_suna+tcp_swnd
17700 	 */
17701 	/* END CSTYLED */
17702 
17703 	/* start sending from tcp_snxt */
17704 	snxt = tcp->tcp_snxt;
17705 
17706 	/*
17707 	 * Check to see if this connection has been idled for some
17708 	 * time and no ACK is expected.  If it is, we need to slow
17709 	 * start again to get back the connection's "self-clock" as
17710 	 * described in VJ's paper.
17711 	 *
17712 	 * Refer to the comment in tcp_mss_set() for the calculation
17713 	 * of tcp_cwnd after idle.
17714 	 */
17715 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
17716 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
17717 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
17718 	}
17719 
17720 	usable = tcp->tcp_swnd;		/* tcp window size */
17721 	if (usable > tcp->tcp_cwnd)
17722 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
17723 	usable -= snxt;		/* subtract stuff already sent */
17724 	suna = tcp->tcp_suna;
17725 	usable += suna;
17726 	/* usable can be < 0 if the congestion window is smaller */
17727 	if (len > usable) {
17728 		/* Can't send complete M_DATA in one shot */
17729 		goto slow;
17730 	}
17731 
17732 	mutex_enter(&tcp->tcp_non_sq_lock);
17733 	if (tcp->tcp_flow_stopped &&
17734 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
17735 		tcp_clrqfull(tcp);
17736 	}
17737 	mutex_exit(&tcp->tcp_non_sq_lock);
17738 
17739 	/*
17740 	 * determine if anything to send (Nagle).
17741 	 *
17742 	 *   1. len < tcp_mss (i.e. small)
17743 	 *   2. unacknowledged data present
17744 	 *   3. len < nagle limit
17745 	 *   4. last packet sent < nagle limit (previous packet sent)
17746 	 */
17747 	if ((len < mss) && (snxt != suna) &&
17748 	    (len < (int)tcp->tcp_naglim) &&
17749 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
17750 		/*
17751 		 * This was the first unsent packet and normally
17752 		 * mss < xmit_hiwater so there is no need to worry
17753 		 * about flow control. The next packet will go
17754 		 * through the flow control check in tcp_wput_data().
17755 		 */
17756 		/* leftover work from above */
17757 		tcp->tcp_unsent = len;
17758 		tcp->tcp_xmit_tail_unsent = len;
17759 
17760 		return;
17761 	}
17762 
17763 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
17764 
17765 	if (snxt == suna) {
17766 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
17767 	}
17768 
17769 	/* we have always sent something */
17770 	tcp->tcp_rack_cnt = 0;
17771 
17772 	tcp->tcp_snxt = snxt + len;
17773 	tcp->tcp_rack = tcp->tcp_rnxt;
17774 
17775 	if ((mp1 = dupb(mp)) == 0)
17776 		goto no_memory;
17777 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
17778 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
17779 
17780 	/* adjust tcp header information */
17781 	tcph = tcp->tcp_tcph;
17782 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
17783 
17784 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
17785 	sum = (sum >> 16) + (sum & 0xFFFF);
17786 	U16_TO_ABE16(sum, tcph->th_sum);
17787 
17788 	U32_TO_ABE32(snxt, tcph->th_seq);
17789 
17790 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
17791 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
17792 	BUMP_LOCAL(tcp->tcp_obsegs);
17793 
17794 	/* Update the latest receive window size in TCP header. */
17795 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
17796 	    tcph->th_win);
17797 
17798 	tcp->tcp_last_sent_len = (ushort_t)len;
17799 
17800 	plen = len + tcp->tcp_hdr_len;
17801 
17802 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17803 		tcp->tcp_ipha->ipha_length = htons(plen);
17804 	} else {
17805 		tcp->tcp_ip6h->ip6_plen = htons(plen -
17806 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
17807 	}
17808 
17809 	/* see if we need to allocate a mblk for the headers */
17810 	hdrlen = tcp->tcp_hdr_len;
17811 	rptr = mp1->b_rptr - hdrlen;
17812 	db = mp1->b_datap;
17813 	if ((db->db_ref != 2) || rptr < db->db_base ||
17814 	    (!OK_32PTR(rptr))) {
17815 		/* NOTE: we assume allocb returns an OK_32PTR */
17816 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
17817 		    tcps->tcps_wroff_xtra, BPRI_MED);
17818 		if (!mp) {
17819 			freemsg(mp1);
17820 			goto no_memory;
17821 		}
17822 		mp->b_cont = mp1;
17823 		mp1 = mp;
17824 		/* Leave room for Link Level header */
17825 		/* hdrlen = tcp->tcp_hdr_len; */
17826 		rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra];
17827 		mp1->b_wptr = &rptr[hdrlen];
17828 	}
17829 	mp1->b_rptr = rptr;
17830 
17831 	/* Fill in the timestamp option. */
17832 	if (tcp->tcp_snd_ts_ok) {
17833 		U32_TO_BE32((uint32_t)lbolt,
17834 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
17835 		U32_TO_BE32(tcp->tcp_ts_recent,
17836 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
17837 	} else {
17838 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
17839 	}
17840 
17841 	/* copy header into outgoing packet */
17842 	dst = (ipaddr_t *)rptr;
17843 	src = (ipaddr_t *)tcp->tcp_iphc;
17844 	dst[0] = src[0];
17845 	dst[1] = src[1];
17846 	dst[2] = src[2];
17847 	dst[3] = src[3];
17848 	dst[4] = src[4];
17849 	dst[5] = src[5];
17850 	dst[6] = src[6];
17851 	dst[7] = src[7];
17852 	dst[8] = src[8];
17853 	dst[9] = src[9];
17854 	if (hdrlen -= 40) {
17855 		hdrlen >>= 2;
17856 		dst += 10;
17857 		src += 10;
17858 		do {
17859 			*dst++ = *src++;
17860 		} while (--hdrlen);
17861 	}
17862 
17863 	/*
17864 	 * Set the ECN info in the TCP header.  Note that this
17865 	 * is not the template header.
17866 	 */
17867 	if (tcp->tcp_ecn_ok) {
17868 		SET_ECT(tcp, rptr);
17869 
17870 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
17871 		if (tcp->tcp_ecn_echo_on)
17872 			tcph->th_flags[0] |= TH_ECE;
17873 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
17874 			tcph->th_flags[0] |= TH_CWR;
17875 			tcp->tcp_ecn_cwr_sent = B_TRUE;
17876 		}
17877 	}
17878 
17879 	if (tcp->tcp_ip_forward_progress) {
17880 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
17881 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
17882 		tcp->tcp_ip_forward_progress = B_FALSE;
17883 	}
17884 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
17885 	return;
17886 
17887 	/*
17888 	 * If we ran out of memory, we pretend to have sent the packet
17889 	 * and that it was lost on the wire.
17890 	 */
17891 no_memory:
17892 	return;
17893 
17894 slow:
17895 	/* leftover work from above */
17896 	tcp->tcp_unsent = len;
17897 	tcp->tcp_xmit_tail_unsent = len;
17898 	tcp_wput_data(tcp, NULL, B_FALSE);
17899 }
17900 
17901 /* ARGSUSED */
17902 void
17903 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
17904 {
17905 	conn_t			*connp = (conn_t *)arg;
17906 	tcp_t			*tcp = connp->conn_tcp;
17907 	queue_t			*q = tcp->tcp_rq;
17908 	struct tcp_options	*tcpopt;
17909 	tcp_stack_t		*tcps = tcp->tcp_tcps;
17910 
17911 	/* socket options */
17912 	uint_t 			sopp_flags;
17913 	ssize_t			sopp_rxhiwat;
17914 	ssize_t			sopp_maxblk;
17915 	ushort_t		sopp_wroff;
17916 	ushort_t		sopp_tail;
17917 	ushort_t		sopp_copyopt;
17918 
17919 	tcpopt = (struct tcp_options *)mp->b_rptr;
17920 
17921 	/*
17922 	 * Drop the eager's ref on the listener, that was placed when
17923 	 * this eager began life in tcp_conn_request.
17924 	 */
17925 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
17926 	if (IPCL_IS_NONSTR(connp)) {
17927 		/* Safe to free conn_ind message */
17928 		freemsg(tcp->tcp_conn.tcp_eager_conn_ind);
17929 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
17930 
17931 		/* The listener tells us which upper handle to use */
17932 		ASSERT(tcpopt->to_flags & TCPOPT_UPPERHANDLE);
17933 		connp->conn_upper_handle = tcpopt->to_handle;
17934 	}
17935 
17936 	tcp->tcp_detached = B_FALSE;
17937 
17938 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
17939 		/*
17940 		 * Someone blewoff the eager before we could finish
17941 		 * the accept.
17942 		 *
17943 		 * The only reason eager exists it because we put in
17944 		 * a ref on it when conn ind went up. We need to send
17945 		 * a disconnect indication up while the last reference
17946 		 * on the eager will be dropped by the squeue when we
17947 		 * return.
17948 		 */
17949 		ASSERT(tcp->tcp_listener == NULL);
17950 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
17951 			if (IPCL_IS_NONSTR(connp)) {
17952 				ASSERT(tcp->tcp_issocket);
17953 				(*connp->conn_upcalls->su_disconnected)(
17954 				    connp->conn_upper_handle, tcp->tcp_connid,
17955 				    ECONNREFUSED);
17956 				freemsg(mp);
17957 			} else {
17958 				struct	T_discon_ind	*tdi;
17959 
17960 				(void) putnextctl1(q, M_FLUSH, FLUSHRW);
17961 				/*
17962 				 * Let us reuse the incoming mblk to avoid
17963 				 * memory allocation failure problems. We know
17964 				 * that the size of the incoming mblk i.e.
17965 				 * stroptions is greater than sizeof
17966 				 * T_discon_ind. So the reallocb below can't
17967 				 * fail.
17968 				 */
17969 				freemsg(mp->b_cont);
17970 				mp->b_cont = NULL;
17971 				ASSERT(DB_REF(mp) == 1);
17972 				mp = reallocb(mp, sizeof (struct T_discon_ind),
17973 				    B_FALSE);
17974 				ASSERT(mp != NULL);
17975 				DB_TYPE(mp) = M_PROTO;
17976 				((union T_primitives *)mp->b_rptr)->type =
17977 				    T_DISCON_IND;
17978 				tdi = (struct T_discon_ind *)mp->b_rptr;
17979 				if (tcp->tcp_issocket) {
17980 					tdi->DISCON_reason = ECONNREFUSED;
17981 					tdi->SEQ_number = 0;
17982 				} else {
17983 					tdi->DISCON_reason = ENOPROTOOPT;
17984 					tdi->SEQ_number =
17985 					    tcp->tcp_conn_req_seqnum;
17986 				}
17987 				mp->b_wptr = mp->b_rptr +
17988 				    sizeof (struct T_discon_ind);
17989 				putnext(q, mp);
17990 				return;
17991 			}
17992 		}
17993 		if (tcp->tcp_hard_binding) {
17994 			tcp->tcp_hard_binding = B_FALSE;
17995 			tcp->tcp_hard_bound = B_TRUE;
17996 		}
17997 		return;
17998 	}
17999 
18000 	if (tcpopt->to_flags & TCPOPT_BOUNDIF) {
18001 		int boundif = tcpopt->to_boundif;
18002 		uint_t len = sizeof (int);
18003 
18004 		(void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6,
18005 		    IPV6_BOUND_IF, len, (uchar_t *)&boundif, &len,
18006 		    (uchar_t *)&boundif, NULL, tcp->tcp_cred);
18007 	}
18008 	if (tcpopt->to_flags & TCPOPT_RECVPKTINFO) {
18009 		uint_t on = 1;
18010 		uint_t len = sizeof (uint_t);
18011 		(void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6,
18012 		    IPV6_RECVPKTINFO, len, (uchar_t *)&on, &len,
18013 		    (uchar_t *)&on, NULL, tcp->tcp_cred);
18014 	}
18015 
18016 	/*
18017 	 * For a loopback connection with tcp_direct_sockfs on, note that
18018 	 * we don't have to protect tcp_rcv_list yet because synchronous
18019 	 * streams has not yet been enabled and tcp_fuse_rrw() cannot
18020 	 * possibly race with us.
18021 	 */
18022 
18023 	/*
18024 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
18025 	 * properly.  This is the first time we know of the acceptor'
18026 	 * queue.  So we do it here.
18027 	 *
18028 	 * XXX
18029 	 */
18030 	if (tcp->tcp_rcv_list == NULL) {
18031 		/*
18032 		 * Recv queue is empty, tcp_rwnd should not have changed.
18033 		 * That means it should be equal to the listener's tcp_rwnd.
18034 		 */
18035 		if (!IPCL_IS_NONSTR(connp))
18036 			tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
18037 		tcp->tcp_recv_hiwater = tcp->tcp_rwnd;
18038 	} else {
18039 #ifdef DEBUG
18040 		mblk_t *tmp;
18041 		mblk_t	*mp1;
18042 		uint_t	cnt = 0;
18043 
18044 		mp1 = tcp->tcp_rcv_list;
18045 		while ((tmp = mp1) != NULL) {
18046 			mp1 = tmp->b_next;
18047 			cnt += msgdsize(tmp);
18048 		}
18049 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
18050 #endif
18051 		/* There is some data, add them back to get the max. */
18052 		if (!IPCL_IS_NONSTR(connp))
18053 			tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
18054 		tcp->tcp_recv_hiwater = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
18055 	}
18056 	/*
18057 	 * This is the first time we run on the correct
18058 	 * queue after tcp_accept. So fix all the q parameters
18059 	 * here.
18060 	 */
18061 	sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF;
18062 	sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
18063 
18064 	/*
18065 	 * Record the stream head's high water mark for this endpoint;
18066 	 * this is used for flow-control purposes.
18067 	 */
18068 	sopp_rxhiwat = tcp->tcp_fused ?
18069 	    tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) :
18070 	    MAX(tcp->tcp_recv_hiwater, tcps->tcps_sth_rcv_hiwat);
18071 
18072 	/*
18073 	 * Determine what write offset value to use depending on SACK and
18074 	 * whether the endpoint is fused or not.
18075 	 */
18076 	if (tcp->tcp_fused) {
18077 		ASSERT(tcp->tcp_loopback);
18078 		ASSERT(tcp->tcp_loopback_peer != NULL);
18079 		/*
18080 		 * For fused tcp loopback, set the stream head's write
18081 		 * offset value to zero since we won't be needing any room
18082 		 * for TCP/IP headers.  This would also improve performance
18083 		 * since it would reduce the amount of work done by kmem.
18084 		 * Non-fused tcp loopback case is handled separately below.
18085 		 */
18086 		sopp_wroff = 0;
18087 		/*
18088 		 * Update the peer's transmit parameters according to
18089 		 * our recently calculated high water mark value.
18090 		 */
18091 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
18092 	} else if (tcp->tcp_snd_sack_ok) {
18093 		sopp_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
18094 		    (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra);
18095 	} else {
18096 		sopp_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
18097 		    tcps->tcps_wroff_xtra);
18098 	}
18099 
18100 	/*
18101 	 * If this is endpoint is handling SSL, then reserve extra
18102 	 * offset and space at the end.
18103 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
18104 	 * overriding the previous setting. The extra cost of signing and
18105 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
18106 	 * instead of a single contiguous one by the stream head
18107 	 * largely outweighs the statistical reduction of ACKs, when
18108 	 * applicable. The peer will also save on decryption and verification
18109 	 * costs.
18110 	 */
18111 	if (tcp->tcp_kssl_ctx != NULL) {
18112 		sopp_wroff += SSL3_WROFFSET;
18113 
18114 		sopp_flags |= SOCKOPT_TAIL;
18115 		sopp_tail = SSL3_MAX_TAIL_LEN;
18116 
18117 		sopp_flags |= SOCKOPT_ZCOPY;
18118 		sopp_copyopt = ZCVMUNSAFE;
18119 
18120 		sopp_maxblk = SSL3_MAX_RECORD_LEN;
18121 	}
18122 
18123 	/* Send the options up */
18124 	if (IPCL_IS_NONSTR(connp)) {
18125 		struct sock_proto_props sopp;
18126 
18127 		sopp.sopp_flags = sopp_flags;
18128 		sopp.sopp_wroff = sopp_wroff;
18129 		sopp.sopp_maxblk = sopp_maxblk;
18130 		sopp.sopp_rxhiwat = sopp_rxhiwat;
18131 		if (sopp_flags & SOCKOPT_TAIL) {
18132 			ASSERT(tcp->tcp_kssl_ctx != NULL);
18133 			ASSERT(sopp_flags & SOCKOPT_ZCOPY);
18134 			sopp.sopp_tail = sopp_tail;
18135 			sopp.sopp_zcopyflag = sopp_copyopt;
18136 		}
18137 		(*connp->conn_upcalls->su_set_proto_props)
18138 		    (connp->conn_upper_handle, &sopp);
18139 	} else {
18140 		struct stroptions *stropt;
18141 		mblk_t *stropt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
18142 		if (stropt_mp == NULL) {
18143 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
18144 			return;
18145 		}
18146 		DB_TYPE(stropt_mp) = M_SETOPTS;
18147 		stropt = (struct stroptions *)stropt_mp->b_rptr;
18148 		stropt_mp->b_wptr += sizeof (struct stroptions);
18149 		stropt = (struct stroptions *)stropt_mp->b_rptr;
18150 		stropt->so_flags |= SO_HIWAT | SO_WROFF | SO_MAXBLK;
18151 		stropt->so_hiwat = sopp_rxhiwat;
18152 		stropt->so_wroff = sopp_wroff;
18153 		stropt->so_maxblk = sopp_maxblk;
18154 
18155 		if (sopp_flags & SOCKOPT_TAIL) {
18156 			ASSERT(tcp->tcp_kssl_ctx != NULL);
18157 
18158 			stropt->so_flags |= SO_TAIL | SO_COPYOPT;
18159 			stropt->so_tail = sopp_tail;
18160 			stropt->so_copyopt = sopp_copyopt;
18161 		}
18162 
18163 		/* Send the options up */
18164 		putnext(q, stropt_mp);
18165 	}
18166 
18167 	freemsg(mp);
18168 	/*
18169 	 * Pass up any data and/or a fin that has been received.
18170 	 *
18171 	 * Adjust receive window in case it had decreased
18172 	 * (because there is data <=> tcp_rcv_list != NULL)
18173 	 * while the connection was detached. Note that
18174 	 * in case the eager was flow-controlled, w/o this
18175 	 * code, the rwnd may never open up again!
18176 	 */
18177 	if (tcp->tcp_rcv_list != NULL) {
18178 		if (IPCL_IS_NONSTR(connp)) {
18179 			mblk_t *mp;
18180 			int space_left;
18181 			int error;
18182 			boolean_t push = B_TRUE;
18183 
18184 			if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv)
18185 			    (connp->conn_upper_handle, NULL, 0, 0, &error,
18186 			    &push) >= 0) {
18187 				tcp->tcp_rwnd = tcp->tcp_recv_hiwater;
18188 				if (tcp->tcp_state >= TCPS_ESTABLISHED &&
18189 				    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
18190 					tcp_xmit_ctl(NULL,
18191 					    tcp, (tcp->tcp_swnd == 0) ?
18192 					    tcp->tcp_suna : tcp->tcp_snxt,
18193 					    tcp->tcp_rnxt, TH_ACK);
18194 				}
18195 			}
18196 			while ((mp = tcp->tcp_rcv_list) != NULL) {
18197 				push = B_TRUE;
18198 				tcp->tcp_rcv_list = mp->b_next;
18199 				mp->b_next = NULL;
18200 				space_left = (*connp->conn_upcalls->su_recv)
18201 				    (connp->conn_upper_handle, mp, msgdsize(mp),
18202 				    0, &error, &push);
18203 				if (space_left < 0) {
18204 					/*
18205 					 * At this point the eager is not
18206 					 * visible to anyone, so fallback
18207 					 * can not happen.
18208 					 */
18209 					ASSERT(error != EOPNOTSUPP);
18210 				}
18211 			}
18212 			tcp->tcp_rcv_last_head = NULL;
18213 			tcp->tcp_rcv_last_tail = NULL;
18214 			tcp->tcp_rcv_cnt = 0;
18215 		} else {
18216 			/* We drain directly in case of fused tcp loopback */
18217 			sodirect_t *sodp;
18218 
18219 			if (!tcp->tcp_fused && canputnext(q)) {
18220 				tcp->tcp_rwnd = q->q_hiwat;
18221 				if (tcp->tcp_state >= TCPS_ESTABLISHED &&
18222 				    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
18223 					tcp_xmit_ctl(NULL,
18224 					    tcp, (tcp->tcp_swnd == 0) ?
18225 					    tcp->tcp_suna : tcp->tcp_snxt,
18226 					    tcp->tcp_rnxt, TH_ACK);
18227 				}
18228 			}
18229 
18230 			SOD_PTR_ENTER(tcp, sodp);
18231 			if (sodp != NULL) {
18232 				/* Sodirect, move from rcv_list */
18233 				ASSERT(!tcp->tcp_fused);
18234 				while ((mp = tcp->tcp_rcv_list) != NULL) {
18235 					tcp->tcp_rcv_list = mp->b_next;
18236 					mp->b_next = NULL;
18237 					(void) tcp_rcv_sod_enqueue(tcp, sodp,
18238 					    mp, msgdsize(mp));
18239 				}
18240 				tcp->tcp_rcv_last_head = NULL;
18241 				tcp->tcp_rcv_last_tail = NULL;
18242 				tcp->tcp_rcv_cnt = 0;
18243 				(void) tcp_rcv_sod_wakeup(tcp, sodp);
18244 				/* sod_wakeup() did the mutex_exit() */
18245 			} else {
18246 				/* Not sodirect, drain */
18247 				(void) tcp_rcv_drain(tcp);
18248 			}
18249 		}
18250 
18251 		/*
18252 		 * For fused tcp loopback, back-enable peer endpoint
18253 		 * if it's currently flow-controlled.
18254 		 */
18255 		if (tcp->tcp_fused) {
18256 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
18257 
18258 			ASSERT(peer_tcp != NULL);
18259 			ASSERT(peer_tcp->tcp_fused);
18260 			/*
18261 			 * In order to change the peer's tcp_flow_stopped,
18262 			 * we need to take locks for both end points. The
18263 			 * highest address is taken first.
18264 			 */
18265 			if (peer_tcp > tcp) {
18266 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18267 				mutex_enter(&tcp->tcp_non_sq_lock);
18268 			} else {
18269 				mutex_enter(&tcp->tcp_non_sq_lock);
18270 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18271 			}
18272 			if (peer_tcp->tcp_flow_stopped) {
18273 				tcp_clrqfull(peer_tcp);
18274 				TCP_STAT(tcps, tcp_fusion_backenabled);
18275 			}
18276 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
18277 			mutex_exit(&tcp->tcp_non_sq_lock);
18278 		}
18279 	}
18280 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
18281 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
18282 		tcp->tcp_ordrel_done = B_TRUE;
18283 		if (IPCL_IS_NONSTR(connp)) {
18284 			ASSERT(tcp->tcp_ordrel_mp == NULL);
18285 			(*connp->conn_upcalls->su_opctl)(
18286 			    connp->conn_upper_handle,
18287 			    SOCK_OPCTL_SHUT_RECV, 0);
18288 		} else {
18289 			mp = tcp->tcp_ordrel_mp;
18290 			tcp->tcp_ordrel_mp = NULL;
18291 			putnext(q, mp);
18292 		}
18293 	}
18294 	if (tcp->tcp_hard_binding) {
18295 		tcp->tcp_hard_binding = B_FALSE;
18296 		tcp->tcp_hard_bound = B_TRUE;
18297 	}
18298 
18299 	/* We can enable synchronous streams for STREAMS tcp endpoint now */
18300 	if (tcp->tcp_fused && !IPCL_IS_NONSTR(connp) &&
18301 	    tcp->tcp_loopback_peer != NULL &&
18302 	    !IPCL_IS_NONSTR(tcp->tcp_loopback_peer->tcp_connp)) {
18303 		tcp_fuse_syncstr_enable_pair(tcp);
18304 	}
18305 
18306 	if (tcp->tcp_ka_enabled) {
18307 		tcp->tcp_ka_last_intrvl = 0;
18308 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
18309 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
18310 	}
18311 
18312 	/*
18313 	 * At this point, eager is fully established and will
18314 	 * have the following references -
18315 	 *
18316 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
18317 	 * 1 reference for the squeue which will be dropped by the squeue as
18318 	 *	soon as this function returns.
18319 	 * There will be 1 additonal reference for being in classifier
18320 	 *	hash list provided something bad hasn't happened.
18321 	 */
18322 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
18323 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
18324 }
18325 
18326 /*
18327  * The function called through squeue to get behind listener's perimeter to
18328  * send a deffered conn_ind.
18329  */
18330 /* ARGSUSED */
18331 void
18332 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
18333 {
18334 	conn_t	*connp = (conn_t *)arg;
18335 	tcp_t *listener = connp->conn_tcp;
18336 	struct T_conn_ind *conn_ind;
18337 	tcp_t *tcp;
18338 
18339 	if (listener->tcp_state == TCPS_CLOSED ||
18340 	    TCP_IS_DETACHED(listener)) {
18341 		/*
18342 		 * If listener has closed, it would have caused a
18343 		 * a cleanup/blowoff to happen for the eager.
18344 		 */
18345 
18346 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
18347 		bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
18348 		    conn_ind->OPT_length);
18349 		/*
18350 		 * We need to drop the ref on eager that was put
18351 		 * tcp_rput_data() before trying to send the conn_ind
18352 		 * to listener. The conn_ind was deferred in tcp_send_conn_ind
18353 		 * and tcp_wput_accept() is sending this deferred conn_ind but
18354 		 * listener is closed so we drop the ref.
18355 		 */
18356 		CONN_DEC_REF(tcp->tcp_connp);
18357 		freemsg(mp);
18358 		return;
18359 	}
18360 	if (IPCL_IS_NONSTR(connp)) {
18361 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
18362 		bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
18363 		    conn_ind->OPT_length);
18364 
18365 		if ((*connp->conn_upcalls->su_newconn)
18366 		    (connp->conn_upper_handle,
18367 		    (sock_lower_handle_t)tcp->tcp_connp,
18368 		    &sock_tcp_downcalls, DB_CRED(mp), DB_CPID(mp),
18369 		    &tcp->tcp_connp->conn_upcalls) != NULL) {
18370 			/* Keep the message around in case of fallback */
18371 			tcp->tcp_conn.tcp_eager_conn_ind = mp;
18372 		} else {
18373 			freemsg(mp);
18374 		}
18375 	} else {
18376 		putnext(listener->tcp_rq, mp);
18377 	}
18378 }
18379 
18380 /* ARGSUSED */
18381 static int
18382 tcp_accept_common(conn_t *lconnp, conn_t *econnp,
18383     sock_upper_handle_t sock_handle, cred_t *cr)
18384 {
18385 	tcp_t *listener, *eager;
18386 	mblk_t *opt_mp;
18387 	struct tcp_options *tcpopt;
18388 
18389 	listener = lconnp->conn_tcp;
18390 	ASSERT(listener->tcp_state == TCPS_LISTEN);
18391 	eager = econnp->conn_tcp;
18392 	ASSERT(eager->tcp_listener != NULL);
18393 
18394 	ASSERT(eager->tcp_rq != NULL);
18395 
18396 	/* If tcp_fused and sodirect enabled disable it */
18397 	if (eager->tcp_fused && eager->tcp_sodirect != NULL) {
18398 		/* Fused, disable sodirect */
18399 		mutex_enter(eager->tcp_sodirect->sod_lockp);
18400 		SOD_DISABLE(eager->tcp_sodirect);
18401 		mutex_exit(eager->tcp_sodirect->sod_lockp);
18402 		eager->tcp_sodirect = NULL;
18403 	}
18404 
18405 	opt_mp = allocb(sizeof (struct tcp_options), BPRI_HI);
18406 	if (opt_mp == NULL) {
18407 		return (-TPROTO);
18408 	}
18409 	bzero((char *)opt_mp->b_rptr, sizeof (struct tcp_options));
18410 	eager->tcp_issocket = B_TRUE;
18411 
18412 	econnp->conn_upcalls = lconnp->conn_upcalls;
18413 	econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
18414 	econnp->conn_allzones = listener->tcp_connp->conn_allzones;
18415 	ASSERT(econnp->conn_netstack ==
18416 	    listener->tcp_connp->conn_netstack);
18417 	ASSERT(eager->tcp_tcps == listener->tcp_tcps);
18418 
18419 	/* Put the ref for IP */
18420 	CONN_INC_REF(econnp);
18421 
18422 	/*
18423 	 * We should have minimum of 3 references on the conn
18424 	 * at this point. One each for TCP and IP and one for
18425 	 * the T_conn_ind that was sent up when the 3-way handshake
18426 	 * completed. In the normal case we would also have another
18427 	 * reference (making a total of 4) for the conn being in the
18428 	 * classifier hash list. However the eager could have received
18429 	 * an RST subsequently and tcp_closei_local could have removed
18430 	 * the eager from the classifier hash list, hence we can't
18431 	 * assert that reference.
18432 	 */
18433 	ASSERT(econnp->conn_ref >= 3);
18434 
18435 	opt_mp->b_datap->db_type = M_SETOPTS;
18436 	opt_mp->b_wptr += sizeof (struct tcp_options);
18437 
18438 	/*
18439 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
18440 	 * from listener to acceptor. In case of non-STREAMS sockets,
18441 	 * we also need to pass the upper handle along.
18442 	 */
18443 	tcpopt = (struct tcp_options *)opt_mp->b_rptr;
18444 	tcpopt->to_flags = 0;
18445 
18446 	if (IPCL_IS_NONSTR(econnp)) {
18447 		ASSERT(sock_handle != NULL);
18448 		tcpopt->to_flags |= TCPOPT_UPPERHANDLE;
18449 		tcpopt->to_handle = sock_handle;
18450 	}
18451 	if (listener->tcp_bound_if != 0) {
18452 		tcpopt->to_flags |= TCPOPT_BOUNDIF;
18453 		tcpopt->to_boundif = listener->tcp_bound_if;
18454 	}
18455 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
18456 		tcpopt->to_flags |= TCPOPT_RECVPKTINFO;
18457 	}
18458 
18459 	mutex_enter(&listener->tcp_eager_lock);
18460 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
18461 
18462 		tcp_t *tail;
18463 		tcp_t *tcp;
18464 		mblk_t *mp1;
18465 
18466 		tcp = listener->tcp_eager_prev_q0;
18467 		/*
18468 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
18469 		 * deferred T_conn_ind queue. We need to get to the head
18470 		 * of the queue in order to send up T_conn_ind the same
18471 		 * order as how the 3WHS is completed.
18472 		 */
18473 		while (tcp != listener) {
18474 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
18475 			    !tcp->tcp_kssl_pending)
18476 				break;
18477 			else
18478 				tcp = tcp->tcp_eager_prev_q0;
18479 		}
18480 		/* None of the pending eagers can be sent up now */
18481 		if (tcp == listener)
18482 			goto no_more_eagers;
18483 
18484 		mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
18485 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
18486 		/* Move from q0 to q */
18487 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
18488 		listener->tcp_conn_req_cnt_q0--;
18489 		listener->tcp_conn_req_cnt_q++;
18490 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
18491 		    tcp->tcp_eager_prev_q0;
18492 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
18493 		    tcp->tcp_eager_next_q0;
18494 		tcp->tcp_eager_prev_q0 = NULL;
18495 		tcp->tcp_eager_next_q0 = NULL;
18496 		tcp->tcp_conn_def_q0 = B_FALSE;
18497 
18498 		/* Make sure the tcp isn't in the list of droppables */
18499 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
18500 		    tcp->tcp_eager_prev_drop_q0 == NULL);
18501 
18502 		/*
18503 		 * Insert at end of the queue because sockfs sends
18504 		 * down T_CONN_RES in chronological order. Leaving
18505 		 * the older conn indications at front of the queue
18506 		 * helps reducing search time.
18507 		 */
18508 		tail = listener->tcp_eager_last_q;
18509 		if (tail != NULL) {
18510 			tail->tcp_eager_next_q = tcp;
18511 		} else {
18512 			listener->tcp_eager_next_q = tcp;
18513 		}
18514 		listener->tcp_eager_last_q = tcp;
18515 		tcp->tcp_eager_next_q = NULL;
18516 
18517 		/* Need to get inside the listener perimeter */
18518 		CONN_INC_REF(listener->tcp_connp);
18519 		SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1,
18520 		    tcp_send_pending, listener->tcp_connp, SQ_FILL,
18521 		    SQTAG_TCP_SEND_PENDING);
18522 	}
18523 no_more_eagers:
18524 	tcp_eager_unlink(eager);
18525 	mutex_exit(&listener->tcp_eager_lock);
18526 
18527 	/*
18528 	 * At this point, the eager is detached from the listener
18529 	 * but we still have an extra refs on eager (apart from the
18530 	 * usual tcp references). The ref was placed in tcp_rput_data
18531 	 * before sending the conn_ind in tcp_send_conn_ind.
18532 	 * The ref will be dropped in tcp_accept_finish().
18533 	 */
18534 	SQUEUE_ENTER_ONE(econnp->conn_sqp, opt_mp, tcp_accept_finish,
18535 	    econnp, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0);
18536 	return (0);
18537 }
18538 
18539 int
18540 tcp_accept(sock_lower_handle_t lproto_handle,
18541     sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle,
18542     cred_t *cr)
18543 {
18544 	conn_t *lconnp, *econnp;
18545 	tcp_t *listener, *eager;
18546 	tcp_stack_t	*tcps;
18547 
18548 	lconnp = (conn_t *)lproto_handle;
18549 	listener = lconnp->conn_tcp;
18550 	ASSERT(listener->tcp_state == TCPS_LISTEN);
18551 	econnp = (conn_t *)eproto_handle;
18552 	eager = econnp->conn_tcp;
18553 	ASSERT(eager->tcp_listener != NULL);
18554 	tcps = eager->tcp_tcps;
18555 
18556 	ASSERT(IPCL_IS_NONSTR(econnp));
18557 	/*
18558 	 * Create helper stream if it is a non-TPI TCP connection.
18559 	 */
18560 	if (ip_create_helper_stream(econnp, tcps->tcps_ldi_ident)) {
18561 		ip1dbg(("tcp_accept: create of IP helper stream"
18562 		    " failed\n"));
18563 		return (EPROTO);
18564 	}
18565 	eager->tcp_rq = econnp->conn_rq;
18566 	eager->tcp_wq = econnp->conn_wq;
18567 
18568 	ASSERT(eager->tcp_rq != NULL);
18569 
18570 	eager->tcp_sodirect = SOD_SOTOSODP(sock_handle);
18571 	return (tcp_accept_common(lconnp, econnp, sock_handle, cr));
18572 }
18573 
18574 
18575 /*
18576  * This is the STREAMS entry point for T_CONN_RES coming down on
18577  * Acceptor STREAM when  sockfs listener does accept processing.
18578  * Read the block comment on top of tcp_conn_request().
18579  */
18580 void
18581 tcp_tpi_accept(queue_t *q, mblk_t *mp)
18582 {
18583 	queue_t *rq = RD(q);
18584 	struct T_conn_res *conn_res;
18585 	tcp_t *eager;
18586 	tcp_t *listener;
18587 	struct T_ok_ack *ok;
18588 	t_scalar_t PRIM_type;
18589 	conn_t *econnp;
18590 
18591 	ASSERT(DB_TYPE(mp) == M_PROTO);
18592 
18593 	conn_res = (struct T_conn_res *)mp->b_rptr;
18594 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
18595 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
18596 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18597 		if (mp != NULL)
18598 			putnext(rq, mp);
18599 		return;
18600 	}
18601 	switch (conn_res->PRIM_type) {
18602 	case O_T_CONN_RES:
18603 	case T_CONN_RES:
18604 		/*
18605 		 * We pass up an err ack if allocb fails. This will
18606 		 * cause sockfs to issue a T_DISCON_REQ which will cause
18607 		 * tcp_eager_blowoff to be called. sockfs will then call
18608 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
18609 		 * we need to do the allocb up here because we have to
18610 		 * make sure rq->q_qinfo->qi_qclose still points to the
18611 		 * correct function (tcpclose_accept) in case allocb
18612 		 * fails.
18613 		 */
18614 		bcopy(mp->b_rptr + conn_res->OPT_offset,
18615 		    &eager, conn_res->OPT_length);
18616 		PRIM_type = conn_res->PRIM_type;
18617 		mp->b_datap->db_type = M_PCPROTO;
18618 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
18619 		ok = (struct T_ok_ack *)mp->b_rptr;
18620 		ok->PRIM_type = T_OK_ACK;
18621 		ok->CORRECT_prim = PRIM_type;
18622 		econnp = eager->tcp_connp;
18623 		econnp->conn_dev = (dev_t)RD(q)->q_ptr;
18624 		econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr);
18625 		eager->tcp_rq = rq;
18626 		eager->tcp_wq = q;
18627 		rq->q_ptr = econnp;
18628 		rq->q_qinfo = &tcp_rinitv4;	/* No open - same as rinitv6 */
18629 		q->q_ptr = econnp;
18630 		q->q_qinfo = &tcp_winit;
18631 		listener = eager->tcp_listener;
18632 
18633 		/*
18634 		 * TCP is _D_SODIRECT and sockfs is directly above so
18635 		 * save shared sodirect_t pointer (if any).
18636 		 */
18637 		eager->tcp_sodirect = SOD_QTOSODP(eager->tcp_rq);
18638 		if (tcp_accept_common(listener->tcp_connp,
18639 		    econnp, NULL, CRED()) < 0) {
18640 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18641 			if (mp != NULL)
18642 				putnext(rq, mp);
18643 			return;
18644 		}
18645 
18646 		/*
18647 		 * Send the new local address also up to sockfs. There
18648 		 * should already be enough space in the mp that came
18649 		 * down from soaccept().
18650 		 */
18651 		if (eager->tcp_family == AF_INET) {
18652 			sin_t *sin;
18653 
18654 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18655 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
18656 			sin = (sin_t *)mp->b_wptr;
18657 			mp->b_wptr += sizeof (sin_t);
18658 			sin->sin_family = AF_INET;
18659 			sin->sin_port = eager->tcp_lport;
18660 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
18661 		} else {
18662 			sin6_t *sin6;
18663 
18664 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18665 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
18666 			sin6 = (sin6_t *)mp->b_wptr;
18667 			mp->b_wptr += sizeof (sin6_t);
18668 			sin6->sin6_family = AF_INET6;
18669 			sin6->sin6_port = eager->tcp_lport;
18670 			if (eager->tcp_ipversion == IPV4_VERSION) {
18671 				sin6->sin6_flowinfo = 0;
18672 				IN6_IPADDR_TO_V4MAPPED(
18673 				    eager->tcp_ipha->ipha_src,
18674 				    &sin6->sin6_addr);
18675 			} else {
18676 				ASSERT(eager->tcp_ip6h != NULL);
18677 				sin6->sin6_flowinfo =
18678 				    eager->tcp_ip6h->ip6_vcf &
18679 				    ~IPV6_VERS_AND_FLOW_MASK;
18680 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
18681 			}
18682 			sin6->sin6_scope_id = 0;
18683 			sin6->__sin6_src_id = 0;
18684 		}
18685 
18686 		putnext(rq, mp);
18687 		return;
18688 	default:
18689 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
18690 		if (mp != NULL)
18691 			putnext(rq, mp);
18692 		return;
18693 	}
18694 }
18695 
18696 static int
18697 tcp_getmyname(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp)
18698 {
18699 	sin_t *sin = (sin_t *)sa;
18700 	sin6_t *sin6 = (sin6_t *)sa;
18701 
18702 	switch (tcp->tcp_family) {
18703 	case AF_INET:
18704 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
18705 
18706 		if (*salenp < sizeof (sin_t))
18707 			return (EINVAL);
18708 
18709 		*sin = sin_null;
18710 		sin->sin_family = AF_INET;
18711 		sin->sin_port = tcp->tcp_lport;
18712 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
18713 		break;
18714 
18715 	case AF_INET6:
18716 		if (*salenp < sizeof (sin6_t))
18717 			return (EINVAL);
18718 
18719 		*sin6 = sin6_null;
18720 		sin6->sin6_family = AF_INET6;
18721 		sin6->sin6_port = tcp->tcp_lport;
18722 		if (tcp->tcp_ipversion == IPV4_VERSION) {
18723 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
18724 			    &sin6->sin6_addr);
18725 		} else {
18726 			sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
18727 		}
18728 		break;
18729 	}
18730 
18731 	return (0);
18732 }
18733 
18734 static int
18735 i_tcp_getpeername(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp)
18736 {
18737 	sin_t *sin = (sin_t *)sa;
18738 	sin6_t *sin6 = (sin6_t *)sa;
18739 
18740 	if (tcp->tcp_state < TCPS_SYN_RCVD)
18741 		return (ENOTCONN);
18742 
18743 	switch (tcp->tcp_family) {
18744 	case AF_INET:
18745 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
18746 
18747 		if (*salenp < sizeof (sin_t))
18748 			return (EINVAL);
18749 
18750 		*sin = sin_null;
18751 		sin->sin_family = AF_INET;
18752 		sin->sin_port = tcp->tcp_fport;
18753 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
18754 		    sin->sin_addr.s_addr);
18755 		*salenp = sizeof (sin_t);
18756 		break;
18757 
18758 	case AF_INET6:
18759 		if (*salenp < sizeof (sin6_t))
18760 			return (EINVAL);
18761 
18762 		*sin6 = sin6_null;
18763 		sin6->sin6_family = AF_INET6;
18764 		sin6->sin6_port = tcp->tcp_fport;
18765 		sin6->sin6_addr = tcp->tcp_remote_v6;
18766 		if (tcp->tcp_ipversion == IPV6_VERSION) {
18767 			sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf &
18768 			    ~IPV6_VERS_AND_FLOW_MASK;
18769 		}
18770 		*salenp = sizeof (sin6_t);
18771 		break;
18772 	}
18773 
18774 	return (0);
18775 }
18776 
18777 /*
18778  * Handle special out-of-band ioctl requests (see PSARC/2008/265).
18779  */
18780 static void
18781 tcp_wput_cmdblk(queue_t *q, mblk_t *mp)
18782 {
18783 	void	*data;
18784 	mblk_t	*datamp = mp->b_cont;
18785 	tcp_t	*tcp = Q_TO_TCP(q);
18786 	cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr;
18787 
18788 	if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) {
18789 		cmdp->cb_error = EPROTO;
18790 		qreply(q, mp);
18791 		return;
18792 	}
18793 
18794 	data = datamp->b_rptr;
18795 
18796 	switch (cmdp->cb_cmd) {
18797 	case TI_GETPEERNAME:
18798 		cmdp->cb_error = i_tcp_getpeername(tcp, data, &cmdp->cb_len);
18799 		break;
18800 	case TI_GETMYNAME:
18801 		cmdp->cb_error = tcp_getmyname(tcp, data, &cmdp->cb_len);
18802 		break;
18803 	default:
18804 		cmdp->cb_error = EINVAL;
18805 		break;
18806 	}
18807 
18808 	qreply(q, mp);
18809 }
18810 
18811 void
18812 tcp_wput(queue_t *q, mblk_t *mp)
18813 {
18814 	conn_t	*connp = Q_TO_CONN(q);
18815 	tcp_t	*tcp;
18816 	void (*output_proc)();
18817 	t_scalar_t type;
18818 	uchar_t *rptr;
18819 	struct iocblk	*iocp;
18820 	size_t size;
18821 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
18822 
18823 	ASSERT(connp->conn_ref >= 2);
18824 
18825 	switch (DB_TYPE(mp)) {
18826 	case M_DATA:
18827 		tcp = connp->conn_tcp;
18828 		ASSERT(tcp != NULL);
18829 
18830 		size = msgdsize(mp);
18831 
18832 		mutex_enter(&tcp->tcp_non_sq_lock);
18833 		tcp->tcp_squeue_bytes += size;
18834 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
18835 			tcp_setqfull(tcp);
18836 		}
18837 		mutex_exit(&tcp->tcp_non_sq_lock);
18838 
18839 		if (DB_CRED(mp) == NULL && is_system_labeled())
18840 			msg_setcredpid(mp, CONN_CRED(connp), curproc->p_pid);
18841 
18842 		CONN_INC_REF(connp);
18843 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp,
18844 		    tcp_squeue_flag, SQTAG_TCP_OUTPUT);
18845 		return;
18846 
18847 	case M_CMD:
18848 		tcp_wput_cmdblk(q, mp);
18849 		return;
18850 
18851 	case M_PROTO:
18852 	case M_PCPROTO:
18853 		/*
18854 		 * if it is a snmp message, don't get behind the squeue
18855 		 */
18856 		tcp = connp->conn_tcp;
18857 		rptr = mp->b_rptr;
18858 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
18859 			type = ((union T_primitives *)rptr)->type;
18860 		} else {
18861 			if (tcp->tcp_debug) {
18862 				(void) strlog(TCP_MOD_ID, 0, 1,
18863 				    SL_ERROR|SL_TRACE,
18864 				    "tcp_wput_proto, dropping one...");
18865 			}
18866 			freemsg(mp);
18867 			return;
18868 		}
18869 		if (type == T_SVR4_OPTMGMT_REQ) {
18870 			cred_t	*cr = DB_CREDDEF(mp, tcp->tcp_cred);
18871 			if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get,
18872 			    cr)) {
18873 				/*
18874 				 * This was a SNMP request
18875 				 */
18876 				return;
18877 			} else {
18878 				output_proc = tcp_wput_proto;
18879 			}
18880 		} else {
18881 			output_proc = tcp_wput_proto;
18882 		}
18883 		break;
18884 	case M_IOCTL:
18885 		/*
18886 		 * Most ioctls can be processed right away without going via
18887 		 * squeues - process them right here. Those that do require
18888 		 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK)
18889 		 * are processed by tcp_wput_ioctl().
18890 		 */
18891 		iocp = (struct iocblk *)mp->b_rptr;
18892 		tcp = connp->conn_tcp;
18893 
18894 		switch (iocp->ioc_cmd) {
18895 		case TCP_IOC_ABORT_CONN:
18896 			tcp_ioctl_abort_conn(q, mp);
18897 			return;
18898 		case TI_GETPEERNAME:
18899 		case TI_GETMYNAME:
18900 			mi_copyin(q, mp, NULL,
18901 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
18902 			return;
18903 		case ND_SET:
18904 			/* nd_getset does the necessary checks */
18905 		case ND_GET:
18906 			if (!nd_getset(q, tcps->tcps_g_nd, mp)) {
18907 				CALL_IP_WPUT(connp, q, mp);
18908 				return;
18909 			}
18910 			qreply(q, mp);
18911 			return;
18912 		case TCP_IOC_DEFAULT_Q:
18913 			/*
18914 			 * Wants to be the default wq. Check the credentials
18915 			 * first, the rest is executed via squeue.
18916 			 */
18917 			if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
18918 				iocp->ioc_error = EPERM;
18919 				iocp->ioc_count = 0;
18920 				mp->b_datap->db_type = M_IOCACK;
18921 				qreply(q, mp);
18922 				return;
18923 			}
18924 			output_proc = tcp_wput_ioctl;
18925 			break;
18926 		default:
18927 			output_proc = tcp_wput_ioctl;
18928 			break;
18929 		}
18930 		break;
18931 	default:
18932 		output_proc = tcp_wput_nondata;
18933 		break;
18934 	}
18935 
18936 	CONN_INC_REF(connp);
18937 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp,
18938 	    tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER);
18939 }
18940 
18941 /*
18942  * Initial STREAMS write side put() procedure for sockets. It tries to
18943  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
18944  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
18945  * are handled by tcp_wput() as usual.
18946  *
18947  * All further messages will also be handled by tcp_wput() because we cannot
18948  * be sure that the above short cut is safe later.
18949  */
18950 static void
18951 tcp_wput_sock(queue_t *wq, mblk_t *mp)
18952 {
18953 	conn_t			*connp = Q_TO_CONN(wq);
18954 	tcp_t			*tcp = connp->conn_tcp;
18955 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
18956 
18957 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
18958 	wq->q_qinfo = &tcp_winit;
18959 
18960 	ASSERT(IPCL_IS_TCP(connp));
18961 	ASSERT(TCP_IS_SOCKET(tcp));
18962 
18963 	if (DB_TYPE(mp) == M_PCPROTO &&
18964 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
18965 	    car->PRIM_type == T_CAPABILITY_REQ) {
18966 		tcp_capability_req(tcp, mp);
18967 		return;
18968 	}
18969 
18970 	tcp_wput(wq, mp);
18971 }
18972 
18973 /* ARGSUSED */
18974 static void
18975 tcp_wput_fallback(queue_t *wq, mblk_t *mp)
18976 {
18977 #ifdef DEBUG
18978 	cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n");
18979 #endif
18980 	freemsg(mp);
18981 }
18982 
18983 static boolean_t
18984 tcp_zcopy_check(tcp_t *tcp)
18985 {
18986 	conn_t	*connp = tcp->tcp_connp;
18987 	ire_t	*ire;
18988 	boolean_t	zc_enabled = B_FALSE;
18989 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18990 
18991 	if (do_tcpzcopy == 2)
18992 		zc_enabled = B_TRUE;
18993 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
18994 	    IPCL_IS_CONNECTED(connp) &&
18995 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
18996 	    connp->conn_dontroute == 0 &&
18997 	    !connp->conn_nexthop_set &&
18998 	    connp->conn_outgoing_ill == NULL &&
18999 	    connp->conn_nofailover_ill == NULL &&
19000 	    do_tcpzcopy == 1) {
19001 		/*
19002 		 * the checks above  closely resemble the fast path checks
19003 		 * in tcp_send_data().
19004 		 */
19005 		mutex_enter(&connp->conn_lock);
19006 		ire = connp->conn_ire_cache;
19007 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
19008 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19009 			IRE_REFHOLD(ire);
19010 			if (ire->ire_stq != NULL) {
19011 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
19012 
19013 				zc_enabled = ill && (ill->ill_capabilities &
19014 				    ILL_CAPAB_ZEROCOPY) &&
19015 				    (ill->ill_zerocopy_capab->
19016 				    ill_zerocopy_flags != 0);
19017 			}
19018 			IRE_REFRELE(ire);
19019 		}
19020 		mutex_exit(&connp->conn_lock);
19021 	}
19022 	tcp->tcp_snd_zcopy_on = zc_enabled;
19023 	if (!TCP_IS_DETACHED(tcp)) {
19024 		if (zc_enabled) {
19025 			(void) proto_set_tx_copyopt(tcp->tcp_rq, connp,
19026 			    ZCVMSAFE);
19027 			TCP_STAT(tcps, tcp_zcopy_on);
19028 		} else {
19029 			(void) proto_set_tx_copyopt(tcp->tcp_rq, connp,
19030 			    ZCVMUNSAFE);
19031 			TCP_STAT(tcps, tcp_zcopy_off);
19032 		}
19033 	}
19034 	return (zc_enabled);
19035 }
19036 
19037 static mblk_t *
19038 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
19039 {
19040 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19041 
19042 	if (do_tcpzcopy == 2)
19043 		return (bp);
19044 	else if (tcp->tcp_snd_zcopy_on) {
19045 		tcp->tcp_snd_zcopy_on = B_FALSE;
19046 		if (!TCP_IS_DETACHED(tcp)) {
19047 			(void) proto_set_tx_copyopt(tcp->tcp_rq, tcp->tcp_connp,
19048 			    ZCVMUNSAFE);
19049 			TCP_STAT(tcps, tcp_zcopy_disable);
19050 		}
19051 	}
19052 	return (tcp_zcopy_backoff(tcp, bp, 0));
19053 }
19054 
19055 /*
19056  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
19057  * the original desballoca'ed segmapped mblk.
19058  */
19059 static mblk_t *
19060 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
19061 {
19062 	mblk_t *head, *tail, *nbp;
19063 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19064 
19065 	if (IS_VMLOANED_MBLK(bp)) {
19066 		TCP_STAT(tcps, tcp_zcopy_backoff);
19067 		if ((head = copyb(bp)) == NULL) {
19068 			/* fail to backoff; leave it for the next backoff */
19069 			tcp->tcp_xmit_zc_clean = B_FALSE;
19070 			return (bp);
19071 		}
19072 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
19073 			if (fix_xmitlist)
19074 				tcp_zcopy_notify(tcp);
19075 			else
19076 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
19077 		}
19078 		nbp = bp->b_cont;
19079 		if (fix_xmitlist) {
19080 			head->b_prev = bp->b_prev;
19081 			head->b_next = bp->b_next;
19082 			if (tcp->tcp_xmit_tail == bp)
19083 				tcp->tcp_xmit_tail = head;
19084 		}
19085 		bp->b_next = NULL;
19086 		bp->b_prev = NULL;
19087 		freeb(bp);
19088 	} else {
19089 		head = bp;
19090 		nbp = bp->b_cont;
19091 	}
19092 	tail = head;
19093 	while (nbp) {
19094 		if (IS_VMLOANED_MBLK(nbp)) {
19095 			TCP_STAT(tcps, tcp_zcopy_backoff);
19096 			if ((tail->b_cont = copyb(nbp)) == NULL) {
19097 				tcp->tcp_xmit_zc_clean = B_FALSE;
19098 				tail->b_cont = nbp;
19099 				return (head);
19100 			}
19101 			tail = tail->b_cont;
19102 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
19103 				if (fix_xmitlist)
19104 					tcp_zcopy_notify(tcp);
19105 				else
19106 					tail->b_datap->db_struioflag |=
19107 					    STRUIO_ZCNOTIFY;
19108 			}
19109 			bp = nbp;
19110 			nbp = nbp->b_cont;
19111 			if (fix_xmitlist) {
19112 				tail->b_prev = bp->b_prev;
19113 				tail->b_next = bp->b_next;
19114 				if (tcp->tcp_xmit_tail == bp)
19115 					tcp->tcp_xmit_tail = tail;
19116 			}
19117 			bp->b_next = NULL;
19118 			bp->b_prev = NULL;
19119 			freeb(bp);
19120 		} else {
19121 			tail->b_cont = nbp;
19122 			tail = nbp;
19123 			nbp = nbp->b_cont;
19124 		}
19125 	}
19126 	if (fix_xmitlist) {
19127 		tcp->tcp_xmit_last = tail;
19128 		tcp->tcp_xmit_zc_clean = B_TRUE;
19129 	}
19130 	return (head);
19131 }
19132 
19133 static void
19134 tcp_zcopy_notify(tcp_t *tcp)
19135 {
19136 	struct stdata	*stp;
19137 	conn_t *connp;
19138 
19139 	if (tcp->tcp_detached)
19140 		return;
19141 	connp = tcp->tcp_connp;
19142 	if (IPCL_IS_NONSTR(connp)) {
19143 		(*connp->conn_upcalls->su_zcopy_notify)
19144 		    (connp->conn_upper_handle);
19145 		return;
19146 	}
19147 	stp = STREAM(tcp->tcp_rq);
19148 	mutex_enter(&stp->sd_lock);
19149 	stp->sd_flag |= STZCNOTIFY;
19150 	cv_broadcast(&stp->sd_zcopy_wait);
19151 	mutex_exit(&stp->sd_lock);
19152 }
19153 
19154 static boolean_t
19155 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep)
19156 {
19157 	ire_t	*ire;
19158 	conn_t	*connp = tcp->tcp_connp;
19159 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19160 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
19161 
19162 	mutex_enter(&connp->conn_lock);
19163 	ire = connp->conn_ire_cache;
19164 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
19165 
19166 	if ((ire != NULL) &&
19167 	    (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) &&
19168 	    IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) &&
19169 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19170 		IRE_REFHOLD(ire);
19171 		mutex_exit(&connp->conn_lock);
19172 	} else {
19173 		boolean_t cached = B_FALSE;
19174 		ts_label_t *tsl;
19175 
19176 		/* force a recheck later on */
19177 		tcp->tcp_ire_ill_check_done = B_FALSE;
19178 
19179 		TCP_DBGSTAT(tcps, tcp_ire_null1);
19180 		connp->conn_ire_cache = NULL;
19181 		mutex_exit(&connp->conn_lock);
19182 
19183 		if (ire != NULL)
19184 			IRE_REFRELE_NOTR(ire);
19185 
19186 		tsl = crgetlabel(CONN_CRED(connp));
19187 		ire = (dst ?
19188 		    ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) :
19189 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
19190 		    connp->conn_zoneid, tsl, ipst));
19191 
19192 		if (ire == NULL) {
19193 			TCP_STAT(tcps, tcp_ire_null);
19194 			return (B_FALSE);
19195 		}
19196 
19197 		IRE_REFHOLD_NOTR(ire);
19198 
19199 		mutex_enter(&connp->conn_lock);
19200 		if (CONN_CACHE_IRE(connp)) {
19201 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
19202 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19203 				TCP_CHECK_IREINFO(tcp, ire);
19204 				connp->conn_ire_cache = ire;
19205 				cached = B_TRUE;
19206 			}
19207 			rw_exit(&ire->ire_bucket->irb_lock);
19208 		}
19209 		mutex_exit(&connp->conn_lock);
19210 
19211 		/*
19212 		 * We can continue to use the ire but since it was
19213 		 * not cached, we should drop the extra reference.
19214 		 */
19215 		if (!cached)
19216 			IRE_REFRELE_NOTR(ire);
19217 
19218 		/*
19219 		 * Rampart note: no need to select a new label here, since
19220 		 * labels are not allowed to change during the life of a TCP
19221 		 * connection.
19222 		 */
19223 	}
19224 
19225 	*irep = ire;
19226 
19227 	return (B_TRUE);
19228 }
19229 
19230 /*
19231  * Called from tcp_send() or tcp_send_data() to find workable IRE.
19232  *
19233  * 0 = success;
19234  * 1 = failed to find ire and ill.
19235  */
19236 static boolean_t
19237 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp)
19238 {
19239 	ipha_t		*ipha;
19240 	ipaddr_t	dst;
19241 	ire_t		*ire;
19242 	ill_t		*ill;
19243 	conn_t		*connp = tcp->tcp_connp;
19244 	mblk_t		*ire_fp_mp;
19245 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19246 
19247 	if (mp != NULL)
19248 		ipha = (ipha_t *)mp->b_rptr;
19249 	else
19250 		ipha = tcp->tcp_ipha;
19251 	dst = ipha->ipha_dst;
19252 
19253 	if (!tcp_send_find_ire(tcp, &dst, &ire))
19254 		return (B_FALSE);
19255 
19256 	if ((ire->ire_flags & RTF_MULTIRT) ||
19257 	    (ire->ire_stq == NULL) ||
19258 	    (ire->ire_nce == NULL) ||
19259 	    ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) ||
19260 	    ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) ||
19261 	    MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) {
19262 		TCP_STAT(tcps, tcp_ip_ire_send);
19263 		IRE_REFRELE(ire);
19264 		return (B_FALSE);
19265 	}
19266 
19267 	ill = ire_to_ill(ire);
19268 	if (connp->conn_outgoing_ill != NULL) {
19269 		ill_t *conn_outgoing_ill = NULL;
19270 		/*
19271 		 * Choose a good ill in the group to send the packets on.
19272 		 */
19273 		ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill);
19274 		ill = ire_to_ill(ire);
19275 	}
19276 	ASSERT(ill != NULL);
19277 
19278 	if (!tcp->tcp_ire_ill_check_done) {
19279 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19280 		tcp->tcp_ire_ill_check_done = B_TRUE;
19281 	}
19282 
19283 	*irep = ire;
19284 	*illp = ill;
19285 
19286 	return (B_TRUE);
19287 }
19288 
19289 static void
19290 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
19291 {
19292 	ipha_t		*ipha;
19293 	ipaddr_t	src;
19294 	ipaddr_t	dst;
19295 	uint32_t	cksum;
19296 	ire_t		*ire;
19297 	uint16_t	*up;
19298 	ill_t		*ill;
19299 	conn_t		*connp = tcp->tcp_connp;
19300 	uint32_t	hcksum_txflags = 0;
19301 	mblk_t		*ire_fp_mp;
19302 	uint_t		ire_fp_mp_len;
19303 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19304 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
19305 
19306 	ASSERT(DB_TYPE(mp) == M_DATA);
19307 
19308 	if (is_system_labeled() && DB_CRED(mp) == NULL)
19309 		mblk_setcred(mp, CONN_CRED(tcp->tcp_connp));
19310 
19311 	ipha = (ipha_t *)mp->b_rptr;
19312 	src = ipha->ipha_src;
19313 	dst = ipha->ipha_dst;
19314 
19315 	ASSERT(q != NULL);
19316 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp);
19317 
19318 	/*
19319 	 * Drop off fast path for IPv6 and also if options are present or
19320 	 * we need to resolve a TS label.
19321 	 */
19322 	if (tcp->tcp_ipversion != IPV4_VERSION ||
19323 	    !IPCL_IS_CONNECTED(connp) ||
19324 	    !CONN_IS_LSO_MD_FASTPATH(connp) ||
19325 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
19326 	    !connp->conn_ulp_labeled ||
19327 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
19328 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
19329 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst)) {
19330 		if (tcp->tcp_snd_zcopy_aware)
19331 			mp = tcp_zcopy_disable(tcp, mp);
19332 		TCP_STAT(tcps, tcp_ip_send);
19333 		CALL_IP_WPUT(connp, q, mp);
19334 		return;
19335 	}
19336 
19337 	if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) {
19338 		if (tcp->tcp_snd_zcopy_aware)
19339 			mp = tcp_zcopy_backoff(tcp, mp, 0);
19340 		CALL_IP_WPUT(connp, q, mp);
19341 		return;
19342 	}
19343 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
19344 	ire_fp_mp_len = MBLKL(ire_fp_mp);
19345 
19346 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
19347 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
19348 #ifndef _BIG_ENDIAN
19349 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
19350 #endif
19351 
19352 	/*
19353 	 * Check to see if we need to re-enable LSO/MDT for this connection
19354 	 * because it was previously disabled due to changes in the ill;
19355 	 * note that by doing it here, this re-enabling only applies when
19356 	 * the packet is not dispatched through CALL_IP_WPUT().
19357 	 *
19358 	 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath
19359 	 * case, since that's how we ended up here.  For IPv6, we do the
19360 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
19361 	 */
19362 	if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) {
19363 		/*
19364 		 * Restore LSO for this connection, so that next time around
19365 		 * it is eligible to go through tcp_lsosend() path again.
19366 		 */
19367 		TCP_STAT(tcps, tcp_lso_enabled);
19368 		tcp->tcp_lso = B_TRUE;
19369 		ip1dbg(("tcp_send_data: reenabling LSO for connp %p on "
19370 		    "interface %s\n", (void *)connp, ill->ill_name));
19371 	} else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
19372 		/*
19373 		 * Restore MDT for this connection, so that next time around
19374 		 * it is eligible to go through tcp_multisend() path again.
19375 		 */
19376 		TCP_STAT(tcps, tcp_mdt_conn_resumed1);
19377 		tcp->tcp_mdt = B_TRUE;
19378 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
19379 		    "interface %s\n", (void *)connp, ill->ill_name));
19380 	}
19381 
19382 	if (tcp->tcp_snd_zcopy_aware) {
19383 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
19384 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
19385 			mp = tcp_zcopy_disable(tcp, mp);
19386 		/*
19387 		 * we shouldn't need to reset ipha as the mp containing
19388 		 * ipha should never be a zero-copy mp.
19389 		 */
19390 	}
19391 
19392 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
19393 		ASSERT(ill->ill_hcksum_capab != NULL);
19394 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
19395 	}
19396 
19397 	/* pseudo-header checksum (do it in parts for IP header checksum) */
19398 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
19399 
19400 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
19401 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
19402 
19403 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
19404 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
19405 
19406 	/* Software checksum? */
19407 	if (DB_CKSUMFLAGS(mp) == 0) {
19408 		TCP_STAT(tcps, tcp_out_sw_cksum);
19409 		TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
19410 		    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
19411 	}
19412 
19413 	/* Calculate IP header checksum if hardware isn't capable */
19414 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
19415 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
19416 		    ((uint16_t *)ipha)[4]);
19417 	}
19418 
19419 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
19420 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
19421 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
19422 
19423 	UPDATE_OB_PKT_COUNT(ire);
19424 	ire->ire_last_used_time = lbolt;
19425 
19426 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
19427 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
19428 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
19429 	    ntohs(ipha->ipha_length));
19430 
19431 	DTRACE_PROBE4(ip4__physical__out__start,
19432 	    ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp);
19433 	FW_HOOKS(ipst->ips_ip4_physical_out_event,
19434 	    ipst->ips_ipv4firewall_physical_out,
19435 	    NULL, ill, ipha, mp, mp, 0, ipst);
19436 	DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
19437 	DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL);
19438 
19439 	if (mp != NULL) {
19440 		if (ipst->ips_ipobs_enabled) {
19441 			zoneid_t szone;
19442 
19443 			szone = ip_get_zoneid_v4(ipha->ipha_src, mp,
19444 			    ipst, ALL_ZONES);
19445 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone,
19446 			    ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst);
19447 		}
19448 
19449 		ILL_SEND_TX(ill, ire, connp, mp, 0);
19450 	}
19451 
19452 	IRE_REFRELE(ire);
19453 }
19454 
19455 /*
19456  * This handles the case when the receiver has shrunk its win. Per RFC 1122
19457  * if the receiver shrinks the window, i.e. moves the right window to the
19458  * left, the we should not send new data, but should retransmit normally the
19459  * old unacked data between suna and suna + swnd. We might has sent data
19460  * that is now outside the new window, pretend that we didn't send  it.
19461  */
19462 static void
19463 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
19464 {
19465 	uint32_t	snxt = tcp->tcp_snxt;
19466 	mblk_t		*xmit_tail;
19467 	int32_t		offset;
19468 
19469 	ASSERT(shrunk_count > 0);
19470 
19471 	/* Pretend we didn't send the data outside the window */
19472 	snxt -= shrunk_count;
19473 
19474 	/* Get the mblk and the offset in it per the shrunk window */
19475 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
19476 
19477 	ASSERT(xmit_tail != NULL);
19478 
19479 	/* Reset all the values per the now shrunk window */
19480 	tcp->tcp_snxt = snxt;
19481 	tcp->tcp_xmit_tail = xmit_tail;
19482 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr -
19483 	    offset;
19484 	tcp->tcp_unsent += shrunk_count;
19485 
19486 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
19487 		/*
19488 		 * Make sure the timer is running so that we will probe a zero
19489 		 * window.
19490 		 */
19491 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19492 }
19493 
19494 
19495 /*
19496  * The TCP normal data output path.
19497  * NOTE: the logic of the fast path is duplicated from this function.
19498  */
19499 static void
19500 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
19501 {
19502 	int		len;
19503 	mblk_t		*local_time;
19504 	mblk_t		*mp1;
19505 	uint32_t	snxt;
19506 	int		tail_unsent;
19507 	int		tcpstate;
19508 	int		usable = 0;
19509 	mblk_t		*xmit_tail;
19510 	queue_t		*q = tcp->tcp_wq;
19511 	int32_t		mss;
19512 	int32_t		num_sack_blk = 0;
19513 	int32_t		tcp_hdr_len;
19514 	int32_t		tcp_tcp_hdr_len;
19515 	int		mdt_thres;
19516 	int		rc;
19517 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19518 	ip_stack_t	*ipst;
19519 
19520 	tcpstate = tcp->tcp_state;
19521 	if (mp == NULL) {
19522 		/*
19523 		 * tcp_wput_data() with NULL mp should only be called when
19524 		 * there is unsent data.
19525 		 */
19526 		ASSERT(tcp->tcp_unsent > 0);
19527 		/* Really tacky... but we need this for detached closes. */
19528 		len = tcp->tcp_unsent;
19529 		goto data_null;
19530 	}
19531 
19532 #if CCS_STATS
19533 	wrw_stats.tot.count++;
19534 	wrw_stats.tot.bytes += msgdsize(mp);
19535 #endif
19536 	ASSERT(mp->b_datap->db_type == M_DATA);
19537 	/*
19538 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
19539 	 * or before a connection attempt has begun.
19540 	 */
19541 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
19542 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19543 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19544 #ifdef DEBUG
19545 			cmn_err(CE_WARN,
19546 			    "tcp_wput_data: data after ordrel, %s",
19547 			    tcp_display(tcp, NULL,
19548 			    DISP_ADDR_AND_PORT));
19549 #else
19550 			if (tcp->tcp_debug) {
19551 				(void) strlog(TCP_MOD_ID, 0, 1,
19552 				    SL_TRACE|SL_ERROR,
19553 				    "tcp_wput_data: data after ordrel, %s\n",
19554 				    tcp_display(tcp, NULL,
19555 				    DISP_ADDR_AND_PORT));
19556 			}
19557 #endif /* DEBUG */
19558 		}
19559 		if (tcp->tcp_snd_zcopy_aware &&
19560 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
19561 			tcp_zcopy_notify(tcp);
19562 		freemsg(mp);
19563 		mutex_enter(&tcp->tcp_non_sq_lock);
19564 		if (tcp->tcp_flow_stopped &&
19565 		    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19566 			tcp_clrqfull(tcp);
19567 		}
19568 		mutex_exit(&tcp->tcp_non_sq_lock);
19569 		return;
19570 	}
19571 
19572 	/* Strip empties */
19573 	for (;;) {
19574 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
19575 		    (uintptr_t)INT_MAX);
19576 		len = (int)(mp->b_wptr - mp->b_rptr);
19577 		if (len > 0)
19578 			break;
19579 		mp1 = mp;
19580 		mp = mp->b_cont;
19581 		freeb(mp1);
19582 		if (!mp) {
19583 			return;
19584 		}
19585 	}
19586 
19587 	/* If we are the first on the list ... */
19588 	if (tcp->tcp_xmit_head == NULL) {
19589 		tcp->tcp_xmit_head = mp;
19590 		tcp->tcp_xmit_tail = mp;
19591 		tcp->tcp_xmit_tail_unsent = len;
19592 	} else {
19593 		/* If tiny tx and room in txq tail, pullup to save mblks. */
19594 		struct datab *dp;
19595 
19596 		mp1 = tcp->tcp_xmit_last;
19597 		if (len < tcp_tx_pull_len &&
19598 		    (dp = mp1->b_datap)->db_ref == 1 &&
19599 		    dp->db_lim - mp1->b_wptr >= len) {
19600 			ASSERT(len > 0);
19601 			ASSERT(!mp1->b_cont);
19602 			if (len == 1) {
19603 				*mp1->b_wptr++ = *mp->b_rptr;
19604 			} else {
19605 				bcopy(mp->b_rptr, mp1->b_wptr, len);
19606 				mp1->b_wptr += len;
19607 			}
19608 			if (mp1 == tcp->tcp_xmit_tail)
19609 				tcp->tcp_xmit_tail_unsent += len;
19610 			mp1->b_cont = mp->b_cont;
19611 			if (tcp->tcp_snd_zcopy_aware &&
19612 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
19613 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
19614 			freeb(mp);
19615 			mp = mp1;
19616 		} else {
19617 			tcp->tcp_xmit_last->b_cont = mp;
19618 		}
19619 		len += tcp->tcp_unsent;
19620 	}
19621 
19622 	/* Tack on however many more positive length mblks we have */
19623 	if ((mp1 = mp->b_cont) != NULL) {
19624 		do {
19625 			int tlen;
19626 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
19627 			    (uintptr_t)INT_MAX);
19628 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
19629 			if (tlen <= 0) {
19630 				mp->b_cont = mp1->b_cont;
19631 				freeb(mp1);
19632 			} else {
19633 				len += tlen;
19634 				mp = mp1;
19635 			}
19636 		} while ((mp1 = mp->b_cont) != NULL);
19637 	}
19638 	tcp->tcp_xmit_last = mp;
19639 	tcp->tcp_unsent = len;
19640 
19641 	if (urgent)
19642 		usable = 1;
19643 
19644 data_null:
19645 	snxt = tcp->tcp_snxt;
19646 	xmit_tail = tcp->tcp_xmit_tail;
19647 	tail_unsent = tcp->tcp_xmit_tail_unsent;
19648 
19649 	/*
19650 	 * Note that tcp_mss has been adjusted to take into account the
19651 	 * timestamp option if applicable.  Because SACK options do not
19652 	 * appear in every TCP segments and they are of variable lengths,
19653 	 * they cannot be included in tcp_mss.  Thus we need to calculate
19654 	 * the actual segment length when we need to send a segment which
19655 	 * includes SACK options.
19656 	 */
19657 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
19658 		int32_t	opt_len;
19659 
19660 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
19661 		    tcp->tcp_num_sack_blk);
19662 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
19663 		    2 + TCPOPT_HEADER_LEN;
19664 		mss = tcp->tcp_mss - opt_len;
19665 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
19666 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
19667 	} else {
19668 		mss = tcp->tcp_mss;
19669 		tcp_hdr_len = tcp->tcp_hdr_len;
19670 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
19671 	}
19672 
19673 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
19674 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
19675 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
19676 	}
19677 	if (tcpstate == TCPS_SYN_RCVD) {
19678 		/*
19679 		 * The three-way connection establishment handshake is not
19680 		 * complete yet. We want to queue the data for transmission
19681 		 * after entering ESTABLISHED state (RFC793). A jump to
19682 		 * "done" label effectively leaves data on the queue.
19683 		 */
19684 		goto done;
19685 	} else {
19686 		int usable_r;
19687 
19688 		/*
19689 		 * In the special case when cwnd is zero, which can only
19690 		 * happen if the connection is ECN capable, return now.
19691 		 * New segments is sent using tcp_timer().  The timer
19692 		 * is set in tcp_rput_data().
19693 		 */
19694 		if (tcp->tcp_cwnd == 0) {
19695 			/*
19696 			 * Note that tcp_cwnd is 0 before 3-way handshake is
19697 			 * finished.
19698 			 */
19699 			ASSERT(tcp->tcp_ecn_ok ||
19700 			    tcp->tcp_state < TCPS_ESTABLISHED);
19701 			return;
19702 		}
19703 
19704 		/* NOTE: trouble if xmitting while SYN not acked? */
19705 		usable_r = snxt - tcp->tcp_suna;
19706 		usable_r = tcp->tcp_swnd - usable_r;
19707 
19708 		/*
19709 		 * Check if the receiver has shrunk the window.  If
19710 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
19711 		 * cannot be set as there is unsent data, so FIN cannot
19712 		 * be sent out.  Otherwise, we need to take into account
19713 		 * of FIN as it consumes an "invisible" sequence number.
19714 		 */
19715 		ASSERT(tcp->tcp_fin_sent == 0);
19716 		if (usable_r < 0) {
19717 			/*
19718 			 * The receiver has shrunk the window and we have sent
19719 			 * -usable_r date beyond the window, re-adjust.
19720 			 *
19721 			 * If TCP window scaling is enabled, there can be
19722 			 * round down error as the advertised receive window
19723 			 * is actually right shifted n bits.  This means that
19724 			 * the lower n bits info is wiped out.  It will look
19725 			 * like the window is shrunk.  Do a check here to
19726 			 * see if the shrunk amount is actually within the
19727 			 * error in window calculation.  If it is, just
19728 			 * return.  Note that this check is inside the
19729 			 * shrunk window check.  This makes sure that even
19730 			 * though tcp_process_shrunk_swnd() is not called,
19731 			 * we will stop further processing.
19732 			 */
19733 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
19734 				tcp_process_shrunk_swnd(tcp, -usable_r);
19735 			}
19736 			return;
19737 		}
19738 
19739 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
19740 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
19741 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
19742 
19743 		/* usable = MIN(usable, unsent) */
19744 		if (usable_r > len)
19745 			usable_r = len;
19746 
19747 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
19748 		if (usable_r > 0) {
19749 			usable = usable_r;
19750 		} else {
19751 			/* Bypass all other unnecessary processing. */
19752 			goto done;
19753 		}
19754 	}
19755 
19756 	local_time = (mblk_t *)lbolt;
19757 
19758 	/*
19759 	 * "Our" Nagle Algorithm.  This is not the same as in the old
19760 	 * BSD.  This is more in line with the true intent of Nagle.
19761 	 *
19762 	 * The conditions are:
19763 	 * 1. The amount of unsent data (or amount of data which can be
19764 	 *    sent, whichever is smaller) is less than Nagle limit.
19765 	 * 2. The last sent size is also less than Nagle limit.
19766 	 * 3. There is unack'ed data.
19767 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
19768 	 *    Nagle algorithm.  This reduces the probability that urgent
19769 	 *    bytes get "merged" together.
19770 	 * 5. The app has not closed the connection.  This eliminates the
19771 	 *    wait time of the receiving side waiting for the last piece of
19772 	 *    (small) data.
19773 	 *
19774 	 * If all are satisified, exit without sending anything.  Note
19775 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
19776 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
19777 	 * 4095).
19778 	 */
19779 	if (usable < (int)tcp->tcp_naglim &&
19780 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
19781 	    snxt != tcp->tcp_suna &&
19782 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
19783 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
19784 		goto done;
19785 	}
19786 
19787 	if (tcp->tcp_cork) {
19788 		/*
19789 		 * if the tcp->tcp_cork option is set, then we have to force
19790 		 * TCP not to send partial segment (smaller than MSS bytes).
19791 		 * We are calculating the usable now based on full mss and
19792 		 * will save the rest of remaining data for later.
19793 		 */
19794 		if (usable < mss)
19795 			goto done;
19796 		usable = (usable / mss) * mss;
19797 	}
19798 
19799 	/* Update the latest receive window size in TCP header. */
19800 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
19801 	    tcp->tcp_tcph->th_win);
19802 
19803 	/*
19804 	 * Determine if it's worthwhile to attempt LSO or MDT, based on:
19805 	 *
19806 	 * 1. Simple TCP/IP{v4,v6} (no options).
19807 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
19808 	 * 3. If the TCP connection is in ESTABLISHED state.
19809 	 * 4. The TCP is not detached.
19810 	 *
19811 	 * If any of the above conditions have changed during the
19812 	 * connection, stop using LSO/MDT and restore the stream head
19813 	 * parameters accordingly.
19814 	 */
19815 	ipst = tcps->tcps_netstack->netstack_ip;
19816 
19817 	if ((tcp->tcp_lso || tcp->tcp_mdt) &&
19818 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
19819 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
19820 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19821 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
19822 	    tcp->tcp_state != TCPS_ESTABLISHED ||
19823 	    TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) ||
19824 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
19825 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst))) {
19826 		if (tcp->tcp_lso) {
19827 			tcp->tcp_connp->conn_lso_ok = B_FALSE;
19828 			tcp->tcp_lso = B_FALSE;
19829 		} else {
19830 			tcp->tcp_connp->conn_mdt_ok = B_FALSE;
19831 			tcp->tcp_mdt = B_FALSE;
19832 		}
19833 
19834 		/* Anything other than detached is considered pathological */
19835 		if (!TCP_IS_DETACHED(tcp)) {
19836 			if (tcp->tcp_lso)
19837 				TCP_STAT(tcps, tcp_lso_disabled);
19838 			else
19839 				TCP_STAT(tcps, tcp_mdt_conn_halted1);
19840 			(void) tcp_maxpsz_set(tcp, B_TRUE);
19841 		}
19842 	}
19843 
19844 	/* Use MDT if sendable amount is greater than the threshold */
19845 	if (tcp->tcp_mdt &&
19846 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
19847 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
19848 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
19849 	    (tcp->tcp_valid_bits == 0 ||
19850 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
19851 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
19852 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19853 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19854 		    local_time, mdt_thres);
19855 	} else {
19856 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19857 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19858 		    local_time, INT_MAX);
19859 	}
19860 
19861 	/* Pretend that all we were trying to send really got sent */
19862 	if (rc < 0 && tail_unsent < 0) {
19863 		do {
19864 			xmit_tail = xmit_tail->b_cont;
19865 			xmit_tail->b_prev = local_time;
19866 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
19867 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
19868 			tail_unsent += (int)(xmit_tail->b_wptr -
19869 			    xmit_tail->b_rptr);
19870 		} while (tail_unsent < 0);
19871 	}
19872 done:;
19873 	tcp->tcp_xmit_tail = xmit_tail;
19874 	tcp->tcp_xmit_tail_unsent = tail_unsent;
19875 	len = tcp->tcp_snxt - snxt;
19876 	if (len) {
19877 		/*
19878 		 * If new data was sent, need to update the notsack
19879 		 * list, which is, afterall, data blocks that have
19880 		 * not been sack'ed by the receiver.  New data is
19881 		 * not sack'ed.
19882 		 */
19883 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
19884 			/* len is a negative value. */
19885 			tcp->tcp_pipe -= len;
19886 			tcp_notsack_update(&(tcp->tcp_notsack_list),
19887 			    tcp->tcp_snxt, snxt,
19888 			    &(tcp->tcp_num_notsack_blk),
19889 			    &(tcp->tcp_cnt_notsack_list));
19890 		}
19891 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
19892 		tcp->tcp_rack = tcp->tcp_rnxt;
19893 		tcp->tcp_rack_cnt = 0;
19894 		if ((snxt + len) == tcp->tcp_suna) {
19895 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19896 		}
19897 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
19898 		/*
19899 		 * Didn't send anything. Make sure the timer is running
19900 		 * so that we will probe a zero window.
19901 		 */
19902 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19903 	}
19904 	/* Note that len is the amount we just sent but with a negative sign */
19905 	tcp->tcp_unsent += len;
19906 	mutex_enter(&tcp->tcp_non_sq_lock);
19907 	if (tcp->tcp_flow_stopped) {
19908 		if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19909 			tcp_clrqfull(tcp);
19910 		}
19911 	} else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) {
19912 		tcp_setqfull(tcp);
19913 	}
19914 	mutex_exit(&tcp->tcp_non_sq_lock);
19915 }
19916 
19917 /*
19918  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
19919  * outgoing TCP header with the template header, as well as other
19920  * options such as time-stamp, ECN and/or SACK.
19921  */
19922 static void
19923 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
19924 {
19925 	tcph_t *tcp_tmpl, *tcp_h;
19926 	uint32_t *dst, *src;
19927 	int hdrlen;
19928 
19929 	ASSERT(OK_32PTR(rptr));
19930 
19931 	/* Template header */
19932 	tcp_tmpl = tcp->tcp_tcph;
19933 
19934 	/* Header of outgoing packet */
19935 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
19936 
19937 	/* dst and src are opaque 32-bit fields, used for copying */
19938 	dst = (uint32_t *)rptr;
19939 	src = (uint32_t *)tcp->tcp_iphc;
19940 	hdrlen = tcp->tcp_hdr_len;
19941 
19942 	/* Fill time-stamp option if needed */
19943 	if (tcp->tcp_snd_ts_ok) {
19944 		U32_TO_BE32((uint32_t)now,
19945 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
19946 		U32_TO_BE32(tcp->tcp_ts_recent,
19947 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
19948 	} else {
19949 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
19950 	}
19951 
19952 	/*
19953 	 * Copy the template header; is this really more efficient than
19954 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
19955 	 * but perhaps not for other scenarios.
19956 	 */
19957 	dst[0] = src[0];
19958 	dst[1] = src[1];
19959 	dst[2] = src[2];
19960 	dst[3] = src[3];
19961 	dst[4] = src[4];
19962 	dst[5] = src[5];
19963 	dst[6] = src[6];
19964 	dst[7] = src[7];
19965 	dst[8] = src[8];
19966 	dst[9] = src[9];
19967 	if (hdrlen -= 40) {
19968 		hdrlen >>= 2;
19969 		dst += 10;
19970 		src += 10;
19971 		do {
19972 			*dst++ = *src++;
19973 		} while (--hdrlen);
19974 	}
19975 
19976 	/*
19977 	 * Set the ECN info in the TCP header if it is not a zero
19978 	 * window probe.  Zero window probe is only sent in
19979 	 * tcp_wput_data() and tcp_timer().
19980 	 */
19981 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
19982 		SET_ECT(tcp, rptr);
19983 
19984 		if (tcp->tcp_ecn_echo_on)
19985 			tcp_h->th_flags[0] |= TH_ECE;
19986 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
19987 			tcp_h->th_flags[0] |= TH_CWR;
19988 			tcp->tcp_ecn_cwr_sent = B_TRUE;
19989 		}
19990 	}
19991 
19992 	/* Fill in SACK options */
19993 	if (num_sack_blk > 0) {
19994 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
19995 		sack_blk_t *tmp;
19996 		int32_t	i;
19997 
19998 		wptr[0] = TCPOPT_NOP;
19999 		wptr[1] = TCPOPT_NOP;
20000 		wptr[2] = TCPOPT_SACK;
20001 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
20002 		    sizeof (sack_blk_t);
20003 		wptr += TCPOPT_REAL_SACK_LEN;
20004 
20005 		tmp = tcp->tcp_sack_list;
20006 		for (i = 0; i < num_sack_blk; i++) {
20007 			U32_TO_BE32(tmp[i].begin, wptr);
20008 			wptr += sizeof (tcp_seq);
20009 			U32_TO_BE32(tmp[i].end, wptr);
20010 			wptr += sizeof (tcp_seq);
20011 		}
20012 		tcp_h->th_offset_and_rsrvd[0] +=
20013 		    ((num_sack_blk * 2 + 1) << 4);
20014 	}
20015 }
20016 
20017 /*
20018  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
20019  * the destination address and SAP attribute, and if necessary, the
20020  * hardware checksum offload attribute to a Multidata message.
20021  */
20022 static int
20023 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
20024     const uint32_t start, const uint32_t stuff, const uint32_t end,
20025     const uint32_t flags, tcp_stack_t *tcps)
20026 {
20027 	/* Add global destination address & SAP attribute */
20028 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
20029 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
20030 		    "destination address+SAP\n"));
20031 
20032 		if (dlmp != NULL)
20033 			TCP_STAT(tcps, tcp_mdt_allocfail);
20034 		return (-1);
20035 	}
20036 
20037 	/* Add global hwcksum attribute */
20038 	if (hwcksum &&
20039 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
20040 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
20041 		    "checksum attribute\n"));
20042 
20043 		TCP_STAT(tcps, tcp_mdt_allocfail);
20044 		return (-1);
20045 	}
20046 
20047 	return (0);
20048 }
20049 
20050 /*
20051  * Smaller and private version of pdescinfo_t used specifically for TCP,
20052  * which allows for only two payload spans per packet.
20053  */
20054 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t;
20055 
20056 /*
20057  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
20058  * scheme, and returns one the following:
20059  *
20060  * -1 = failed allocation.
20061  *  0 = success; burst count reached, or usable send window is too small,
20062  *      and that we'd rather wait until later before sending again.
20063  */
20064 static int
20065 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
20066     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
20067     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
20068     const int mdt_thres)
20069 {
20070 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
20071 	multidata_t	*mmd;
20072 	uint_t		obsegs, obbytes, hdr_frag_sz;
20073 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
20074 	int		num_burst_seg, max_pld;
20075 	pdesc_t		*pkt;
20076 	tcp_pdescinfo_t	tcp_pkt_info;
20077 	pdescinfo_t	*pkt_info;
20078 	int		pbuf_idx, pbuf_idx_nxt;
20079 	int		seg_len, len, spill, af;
20080 	boolean_t	add_buffer, zcopy, clusterwide;
20081 	boolean_t	rconfirm = B_FALSE;
20082 	boolean_t	done = B_FALSE;
20083 	uint32_t	cksum;
20084 	uint32_t	hwcksum_flags;
20085 	ire_t		*ire = NULL;
20086 	ill_t		*ill;
20087 	ipha_t		*ipha;
20088 	ip6_t		*ip6h;
20089 	ipaddr_t	src, dst;
20090 	ill_zerocopy_capab_t *zc_cap = NULL;
20091 	uint16_t	*up;
20092 	int		err;
20093 	conn_t		*connp;
20094 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20095 	ip_stack_t 	*ipst = tcps->tcps_netstack->netstack_ip;
20096 	int		usable_mmd, tail_unsent_mmd;
20097 	uint_t		snxt_mmd, obsegs_mmd, obbytes_mmd;
20098 	mblk_t		*xmit_tail_mmd;
20099 	netstackid_t	stack_id;
20100 
20101 #ifdef	_BIG_ENDIAN
20102 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
20103 #else
20104 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
20105 #endif
20106 
20107 #define	PREP_NEW_MULTIDATA() {			\
20108 	mmd = NULL;				\
20109 	md_mp = md_hbuf = NULL;			\
20110 	cur_hdr_off = 0;			\
20111 	max_pld = tcp->tcp_mdt_max_pld;		\
20112 	pbuf_idx = pbuf_idx_nxt = -1;		\
20113 	add_buffer = B_TRUE;			\
20114 	zcopy = B_FALSE;			\
20115 }
20116 
20117 #define	PREP_NEW_PBUF() {			\
20118 	md_pbuf = md_pbuf_nxt = NULL;		\
20119 	pbuf_idx = pbuf_idx_nxt = -1;		\
20120 	cur_pld_off = 0;			\
20121 	first_snxt = *snxt;			\
20122 	ASSERT(*tail_unsent > 0);		\
20123 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
20124 }
20125 
20126 	ASSERT(mdt_thres >= mss);
20127 	ASSERT(*usable > 0 && *usable > mdt_thres);
20128 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
20129 	ASSERT(!TCP_IS_DETACHED(tcp));
20130 	ASSERT(tcp->tcp_valid_bits == 0 ||
20131 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
20132 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
20133 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
20134 	    (tcp->tcp_ipversion == IPV6_VERSION &&
20135 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
20136 
20137 	connp = tcp->tcp_connp;
20138 	ASSERT(connp != NULL);
20139 	ASSERT(CONN_IS_LSO_MD_FASTPATH(connp));
20140 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp));
20141 
20142 	stack_id = connp->conn_netstack->netstack_stackid;
20143 
20144 	usable_mmd = tail_unsent_mmd = 0;
20145 	snxt_mmd = obsegs_mmd = obbytes_mmd = 0;
20146 	xmit_tail_mmd = NULL;
20147 	/*
20148 	 * Note that tcp will only declare at most 2 payload spans per
20149 	 * packet, which is much lower than the maximum allowable number
20150 	 * of packet spans per Multidata.  For this reason, we use the
20151 	 * privately declared and smaller descriptor info structure, in
20152 	 * order to save some stack space.
20153 	 */
20154 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
20155 
20156 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
20157 	if (af == AF_INET) {
20158 		dst = tcp->tcp_ipha->ipha_dst;
20159 		src = tcp->tcp_ipha->ipha_src;
20160 		ASSERT(!CLASSD(dst));
20161 	}
20162 	ASSERT(af == AF_INET ||
20163 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
20164 
20165 	obsegs = obbytes = 0;
20166 	num_burst_seg = tcp->tcp_snd_burst;
20167 	md_mp_head = NULL;
20168 	PREP_NEW_MULTIDATA();
20169 
20170 	/*
20171 	 * Before we go on further, make sure there is an IRE that we can
20172 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
20173 	 * in proceeding any further, and we should just hand everything
20174 	 * off to the legacy path.
20175 	 */
20176 	if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire))
20177 		goto legacy_send_no_md;
20178 
20179 	ASSERT(ire != NULL);
20180 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
20181 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
20182 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
20183 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
20184 	/*
20185 	 * If we do support loopback for MDT (which requires modifications
20186 	 * to the receiving paths), the following assertions should go away,
20187 	 * and we would be sending the Multidata to loopback conn later on.
20188 	 */
20189 	ASSERT(!IRE_IS_LOCAL(ire));
20190 	ASSERT(ire->ire_stq != NULL);
20191 
20192 	ill = ire_to_ill(ire);
20193 	ASSERT(ill != NULL);
20194 	ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL);
20195 
20196 	if (!tcp->tcp_ire_ill_check_done) {
20197 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
20198 		tcp->tcp_ire_ill_check_done = B_TRUE;
20199 	}
20200 
20201 	/*
20202 	 * If the underlying interface conditions have changed, or if the
20203 	 * new interface does not support MDT, go back to legacy path.
20204 	 */
20205 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
20206 		/* don't go through this path anymore for this connection */
20207 		TCP_STAT(tcps, tcp_mdt_conn_halted2);
20208 		tcp->tcp_mdt = B_FALSE;
20209 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
20210 		    "interface %s\n", (void *)connp, ill->ill_name));
20211 		/* IRE will be released prior to returning */
20212 		goto legacy_send_no_md;
20213 	}
20214 
20215 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
20216 		zc_cap = ill->ill_zerocopy_capab;
20217 
20218 	/*
20219 	 * Check if we can take tcp fast-path. Note that "incomplete"
20220 	 * ire's (where the link-layer for next hop is not resolved
20221 	 * or where the fast-path header in nce_fp_mp is not available
20222 	 * yet) are sent down the legacy (slow) path.
20223 	 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA
20224 	 */
20225 	if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) {
20226 		/* IRE will be released prior to returning */
20227 		goto legacy_send_no_md;
20228 	}
20229 
20230 	/* go to legacy path if interface doesn't support zerocopy */
20231 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
20232 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
20233 		/* IRE will be released prior to returning */
20234 		goto legacy_send_no_md;
20235 	}
20236 
20237 	/* does the interface support hardware checksum offload? */
20238 	hwcksum_flags = 0;
20239 	if (ILL_HCKSUM_CAPABLE(ill) &&
20240 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
20241 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL |
20242 	    HCKSUM_IPHDRCKSUM)) && dohwcksum) {
20243 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
20244 		    HCKSUM_IPHDRCKSUM)
20245 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
20246 
20247 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
20248 		    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
20249 			hwcksum_flags |= HCK_FULLCKSUM;
20250 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
20251 		    HCKSUM_INET_PARTIAL)
20252 			hwcksum_flags |= HCK_PARTIALCKSUM;
20253 	}
20254 
20255 	/*
20256 	 * Each header fragment consists of the leading extra space,
20257 	 * followed by the TCP/IP header, and the trailing extra space.
20258 	 * We make sure that each header fragment begins on a 32-bit
20259 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
20260 	 * aligned in tcp_mdt_update).
20261 	 */
20262 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
20263 	    tcp->tcp_mdt_hdr_tail), 4);
20264 
20265 	/* are we starting from the beginning of data block? */
20266 	if (*tail_unsent == 0) {
20267 		*xmit_tail = (*xmit_tail)->b_cont;
20268 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
20269 		*tail_unsent = (int)MBLKL(*xmit_tail);
20270 	}
20271 
20272 	/*
20273 	 * Here we create one or more Multidata messages, each made up of
20274 	 * one header buffer and up to N payload buffers.  This entire
20275 	 * operation is done within two loops:
20276 	 *
20277 	 * The outer loop mostly deals with creating the Multidata message,
20278 	 * as well as the header buffer that gets added to it.  It also
20279 	 * links the Multidata messages together such that all of them can
20280 	 * be sent down to the lower layer in a single putnext call; this
20281 	 * linking behavior depends on the tcp_mdt_chain tunable.
20282 	 *
20283 	 * The inner loop takes an existing Multidata message, and adds
20284 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
20285 	 * packetizes those buffers by filling up the corresponding header
20286 	 * buffer fragments with the proper IP and TCP headers, and by
20287 	 * describing the layout of each packet in the packet descriptors
20288 	 * that get added to the Multidata.
20289 	 */
20290 	do {
20291 		/*
20292 		 * If usable send window is too small, or data blocks in
20293 		 * transmit list are smaller than our threshold (i.e. app
20294 		 * performs large writes followed by small ones), we hand
20295 		 * off the control over to the legacy path.  Note that we'll
20296 		 * get back the control once it encounters a large block.
20297 		 */
20298 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
20299 		    (*xmit_tail)->b_cont != NULL &&
20300 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
20301 			/* send down what we've got so far */
20302 			if (md_mp_head != NULL) {
20303 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
20304 				    obsegs, obbytes, &rconfirm);
20305 			}
20306 			/*
20307 			 * Pass control over to tcp_send(), but tell it to
20308 			 * return to us once a large-size transmission is
20309 			 * possible.
20310 			 */
20311 			TCP_STAT(tcps, tcp_mdt_legacy_small);
20312 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
20313 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
20314 			    tail_unsent, xmit_tail, local_time,
20315 			    mdt_thres)) <= 0) {
20316 				/* burst count reached, or alloc failed */
20317 				IRE_REFRELE(ire);
20318 				return (err);
20319 			}
20320 
20321 			/* tcp_send() may have sent everything, so check */
20322 			if (*usable <= 0) {
20323 				IRE_REFRELE(ire);
20324 				return (0);
20325 			}
20326 
20327 			TCP_STAT(tcps, tcp_mdt_legacy_ret);
20328 			/*
20329 			 * We may have delivered the Multidata, so make sure
20330 			 * to re-initialize before the next round.
20331 			 */
20332 			md_mp_head = NULL;
20333 			obsegs = obbytes = 0;
20334 			num_burst_seg = tcp->tcp_snd_burst;
20335 			PREP_NEW_MULTIDATA();
20336 
20337 			/* are we starting from the beginning of data block? */
20338 			if (*tail_unsent == 0) {
20339 				*xmit_tail = (*xmit_tail)->b_cont;
20340 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20341 				    (uintptr_t)INT_MAX);
20342 				*tail_unsent = (int)MBLKL(*xmit_tail);
20343 			}
20344 		}
20345 		/*
20346 		 * Record current values for parameters we may need to pass
20347 		 * to tcp_send() or tcp_multisend_data(). We checkpoint at
20348 		 * each iteration of the outer loop (each multidata message
20349 		 * creation). If we have a failure in the inner loop, we send
20350 		 * any complete multidata messages we have before reverting
20351 		 * to using the traditional non-md path.
20352 		 */
20353 		snxt_mmd = *snxt;
20354 		usable_mmd = *usable;
20355 		xmit_tail_mmd = *xmit_tail;
20356 		tail_unsent_mmd = *tail_unsent;
20357 		obsegs_mmd = obsegs;
20358 		obbytes_mmd = obbytes;
20359 
20360 		/*
20361 		 * max_pld limits the number of mblks in tcp's transmit
20362 		 * queue that can be added to a Multidata message.  Once
20363 		 * this counter reaches zero, no more additional mblks
20364 		 * can be added to it.  What happens afterwards depends
20365 		 * on whether or not we are set to chain the Multidata
20366 		 * messages.  If we are to link them together, reset
20367 		 * max_pld to its original value (tcp_mdt_max_pld) and
20368 		 * prepare to create a new Multidata message which will
20369 		 * get linked to md_mp_head.  Else, leave it alone and
20370 		 * let the inner loop break on its own.
20371 		 */
20372 		if (tcp_mdt_chain && max_pld == 0)
20373 			PREP_NEW_MULTIDATA();
20374 
20375 		/* adding a payload buffer; re-initialize values */
20376 		if (add_buffer)
20377 			PREP_NEW_PBUF();
20378 
20379 		/*
20380 		 * If we don't have a Multidata, either because we just
20381 		 * (re)entered this outer loop, or after we branched off
20382 		 * to tcp_send above, setup the Multidata and header
20383 		 * buffer to be used.
20384 		 */
20385 		if (md_mp == NULL) {
20386 			int md_hbuflen;
20387 			uint32_t start, stuff;
20388 
20389 			/*
20390 			 * Calculate Multidata header buffer size large enough
20391 			 * to hold all of the headers that can possibly be
20392 			 * sent at this moment.  We'd rather over-estimate
20393 			 * the size than running out of space; this is okay
20394 			 * since this buffer is small anyway.
20395 			 */
20396 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
20397 
20398 			/*
20399 			 * Start and stuff offset for partial hardware
20400 			 * checksum offload; these are currently for IPv4.
20401 			 * For full checksum offload, they are set to zero.
20402 			 */
20403 			if ((hwcksum_flags & HCK_PARTIALCKSUM)) {
20404 				if (af == AF_INET) {
20405 					start = IP_SIMPLE_HDR_LENGTH;
20406 					stuff = IP_SIMPLE_HDR_LENGTH +
20407 					    TCP_CHECKSUM_OFFSET;
20408 				} else {
20409 					start = IPV6_HDR_LEN;
20410 					stuff = IPV6_HDR_LEN +
20411 					    TCP_CHECKSUM_OFFSET;
20412 				}
20413 			} else {
20414 				start = stuff = 0;
20415 			}
20416 
20417 			/*
20418 			 * Create the header buffer, Multidata, as well as
20419 			 * any necessary attributes (destination address,
20420 			 * SAP and hardware checksum offload) that should
20421 			 * be associated with the Multidata message.
20422 			 */
20423 			ASSERT(cur_hdr_off == 0);
20424 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
20425 			    ((md_hbuf->b_wptr += md_hbuflen),
20426 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
20427 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
20428 			    /* fastpath mblk */
20429 			    ire->ire_nce->nce_res_mp,
20430 			    /* hardware checksum enabled */
20431 			    (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)),
20432 			    /* hardware checksum offsets */
20433 			    start, stuff, 0,
20434 			    /* hardware checksum flag */
20435 			    hwcksum_flags, tcps) != 0)) {
20436 legacy_send:
20437 				/*
20438 				 * We arrive here from a failure within the
20439 				 * inner (packetizer) loop or we fail one of
20440 				 * the conditionals above. We restore the
20441 				 * previously checkpointed values for:
20442 				 *    xmit_tail
20443 				 *    usable
20444 				 *    tail_unsent
20445 				 *    snxt
20446 				 *    obbytes
20447 				 *    obsegs
20448 				 * We should then be able to dispatch any
20449 				 * complete multidata before reverting to the
20450 				 * traditional path with consistent parameters
20451 				 * (the inner loop updates these as it
20452 				 * iterates).
20453 				 */
20454 				*xmit_tail = xmit_tail_mmd;
20455 				*usable = usable_mmd;
20456 				*tail_unsent = tail_unsent_mmd;
20457 				*snxt = snxt_mmd;
20458 				obbytes = obbytes_mmd;
20459 				obsegs = obsegs_mmd;
20460 				if (md_mp != NULL) {
20461 					/* Unlink message from the chain */
20462 					if (md_mp_head != NULL) {
20463 						err = (intptr_t)rmvb(md_mp_head,
20464 						    md_mp);
20465 						/*
20466 						 * We can't assert that rmvb
20467 						 * did not return -1, since we
20468 						 * may get here before linkb
20469 						 * happens.  We do, however,
20470 						 * check if we just removed the
20471 						 * only element in the list.
20472 						 */
20473 						if (err == 0)
20474 							md_mp_head = NULL;
20475 					}
20476 					/* md_hbuf gets freed automatically */
20477 					TCP_STAT(tcps, tcp_mdt_discarded);
20478 					freeb(md_mp);
20479 				} else {
20480 					/* Either allocb or mmd_alloc failed */
20481 					TCP_STAT(tcps, tcp_mdt_allocfail);
20482 					if (md_hbuf != NULL)
20483 						freeb(md_hbuf);
20484 				}
20485 
20486 				/* send down what we've got so far */
20487 				if (md_mp_head != NULL) {
20488 					tcp_multisend_data(tcp, ire, ill,
20489 					    md_mp_head, obsegs, obbytes,
20490 					    &rconfirm);
20491 				}
20492 legacy_send_no_md:
20493 				if (ire != NULL)
20494 					IRE_REFRELE(ire);
20495 				/*
20496 				 * Too bad; let the legacy path handle this.
20497 				 * We specify INT_MAX for the threshold, since
20498 				 * we gave up with the Multidata processings
20499 				 * and let the old path have it all.
20500 				 */
20501 				TCP_STAT(tcps, tcp_mdt_legacy_all);
20502 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
20503 				    tcp_tcp_hdr_len, num_sack_blk, usable,
20504 				    snxt, tail_unsent, xmit_tail, local_time,
20505 				    INT_MAX));
20506 			}
20507 
20508 			/* link to any existing ones, if applicable */
20509 			TCP_STAT(tcps, tcp_mdt_allocd);
20510 			if (md_mp_head == NULL) {
20511 				md_mp_head = md_mp;
20512 			} else if (tcp_mdt_chain) {
20513 				TCP_STAT(tcps, tcp_mdt_linked);
20514 				linkb(md_mp_head, md_mp);
20515 			}
20516 		}
20517 
20518 		ASSERT(md_mp_head != NULL);
20519 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
20520 		ASSERT(md_mp != NULL && mmd != NULL);
20521 		ASSERT(md_hbuf != NULL);
20522 
20523 		/*
20524 		 * Packetize the transmittable portion of the data block;
20525 		 * each data block is essentially added to the Multidata
20526 		 * as a payload buffer.  We also deal with adding more
20527 		 * than one payload buffers, which happens when the remaining
20528 		 * packetized portion of the current payload buffer is less
20529 		 * than MSS, while the next data block in transmit queue
20530 		 * has enough data to make up for one.  This "spillover"
20531 		 * case essentially creates a split-packet, where portions
20532 		 * of the packet's payload fragments may span across two
20533 		 * virtually discontiguous address blocks.
20534 		 */
20535 		seg_len = mss;
20536 		do {
20537 			len = seg_len;
20538 
20539 			/* one must remain NULL for DTRACE_IP_FASTPATH */
20540 			ipha = NULL;
20541 			ip6h = NULL;
20542 
20543 			ASSERT(len > 0);
20544 			ASSERT(max_pld >= 0);
20545 			ASSERT(!add_buffer || cur_pld_off == 0);
20546 
20547 			/*
20548 			 * First time around for this payload buffer; note
20549 			 * in the case of a spillover, the following has
20550 			 * been done prior to adding the split-packet
20551 			 * descriptor to Multidata, and we don't want to
20552 			 * repeat the process.
20553 			 */
20554 			if (add_buffer) {
20555 				ASSERT(mmd != NULL);
20556 				ASSERT(md_pbuf == NULL);
20557 				ASSERT(md_pbuf_nxt == NULL);
20558 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
20559 
20560 				/*
20561 				 * Have we reached the limit?  We'd get to
20562 				 * this case when we're not chaining the
20563 				 * Multidata messages together, and since
20564 				 * we're done, terminate this loop.
20565 				 */
20566 				if (max_pld == 0)
20567 					break; /* done */
20568 
20569 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
20570 					TCP_STAT(tcps, tcp_mdt_allocfail);
20571 					goto legacy_send; /* out_of_mem */
20572 				}
20573 
20574 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
20575 				    zc_cap != NULL) {
20576 					if (!ip_md_zcopy_attr(mmd, NULL,
20577 					    zc_cap->ill_zerocopy_flags)) {
20578 						freeb(md_pbuf);
20579 						TCP_STAT(tcps,
20580 						    tcp_mdt_allocfail);
20581 						/* out_of_mem */
20582 						goto legacy_send;
20583 					}
20584 					zcopy = B_TRUE;
20585 				}
20586 
20587 				md_pbuf->b_rptr += base_pld_off;
20588 
20589 				/*
20590 				 * Add a payload buffer to the Multidata; this
20591 				 * operation must not fail, or otherwise our
20592 				 * logic in this routine is broken.  There
20593 				 * is no memory allocation done by the
20594 				 * routine, so any returned failure simply
20595 				 * tells us that we've done something wrong.
20596 				 *
20597 				 * A failure tells us that either we're adding
20598 				 * the same payload buffer more than once, or
20599 				 * we're trying to add more buffers than
20600 				 * allowed (max_pld calculation is wrong).
20601 				 * None of the above cases should happen, and
20602 				 * we panic because either there's horrible
20603 				 * heap corruption, and/or programming mistake.
20604 				 */
20605 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
20606 				if (pbuf_idx < 0) {
20607 					cmn_err(CE_PANIC, "tcp_multisend: "
20608 					    "payload buffer logic error "
20609 					    "detected for tcp %p mmd %p "
20610 					    "pbuf %p (%d)\n",
20611 					    (void *)tcp, (void *)mmd,
20612 					    (void *)md_pbuf, pbuf_idx);
20613 				}
20614 
20615 				ASSERT(max_pld > 0);
20616 				--max_pld;
20617 				add_buffer = B_FALSE;
20618 			}
20619 
20620 			ASSERT(md_mp_head != NULL);
20621 			ASSERT(md_pbuf != NULL);
20622 			ASSERT(md_pbuf_nxt == NULL);
20623 			ASSERT(pbuf_idx != -1);
20624 			ASSERT(pbuf_idx_nxt == -1);
20625 			ASSERT(*usable > 0);
20626 
20627 			/*
20628 			 * We spillover to the next payload buffer only
20629 			 * if all of the following is true:
20630 			 *
20631 			 *   1. There is not enough data on the current
20632 			 *	payload buffer to make up `len',
20633 			 *   2. We are allowed to send `len',
20634 			 *   3. The next payload buffer length is large
20635 			 *	enough to accomodate `spill'.
20636 			 */
20637 			if ((spill = len - *tail_unsent) > 0 &&
20638 			    *usable >= len &&
20639 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
20640 			    max_pld > 0) {
20641 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
20642 				if (md_pbuf_nxt == NULL) {
20643 					TCP_STAT(tcps, tcp_mdt_allocfail);
20644 					goto legacy_send; /* out_of_mem */
20645 				}
20646 
20647 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
20648 				    zc_cap != NULL) {
20649 					if (!ip_md_zcopy_attr(mmd, NULL,
20650 					    zc_cap->ill_zerocopy_flags)) {
20651 						freeb(md_pbuf_nxt);
20652 						TCP_STAT(tcps,
20653 						    tcp_mdt_allocfail);
20654 						/* out_of_mem */
20655 						goto legacy_send;
20656 					}
20657 					zcopy = B_TRUE;
20658 				}
20659 
20660 				/*
20661 				 * See comments above on the first call to
20662 				 * mmd_addpldbuf for explanation on the panic.
20663 				 */
20664 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
20665 				if (pbuf_idx_nxt < 0) {
20666 					panic("tcp_multisend: "
20667 					    "next payload buffer logic error "
20668 					    "detected for tcp %p mmd %p "
20669 					    "pbuf %p (%d)\n",
20670 					    (void *)tcp, (void *)mmd,
20671 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
20672 				}
20673 
20674 				ASSERT(max_pld > 0);
20675 				--max_pld;
20676 			} else if (spill > 0) {
20677 				/*
20678 				 * If there's a spillover, but the following
20679 				 * xmit_tail couldn't give us enough octets
20680 				 * to reach "len", then stop the current
20681 				 * Multidata creation and let the legacy
20682 				 * tcp_send() path take over.  We don't want
20683 				 * to send the tiny segment as part of this
20684 				 * Multidata for performance reasons; instead,
20685 				 * we let the legacy path deal with grouping
20686 				 * it with the subsequent small mblks.
20687 				 */
20688 				if (*usable >= len &&
20689 				    MBLKL((*xmit_tail)->b_cont) < spill) {
20690 					max_pld = 0;
20691 					break;	/* done */
20692 				}
20693 
20694 				/*
20695 				 * We can't spillover, and we are near
20696 				 * the end of the current payload buffer,
20697 				 * so send what's left.
20698 				 */
20699 				ASSERT(*tail_unsent > 0);
20700 				len = *tail_unsent;
20701 			}
20702 
20703 			/* tail_unsent is negated if there is a spillover */
20704 			*tail_unsent -= len;
20705 			*usable -= len;
20706 			ASSERT(*usable >= 0);
20707 
20708 			if (*usable < mss)
20709 				seg_len = *usable;
20710 			/*
20711 			 * Sender SWS avoidance; see comments in tcp_send();
20712 			 * everything else is the same, except that we only
20713 			 * do this here if there is no more data to be sent
20714 			 * following the current xmit_tail.  We don't check
20715 			 * for 1-byte urgent data because we shouldn't get
20716 			 * here if TCP_URG_VALID is set.
20717 			 */
20718 			if (*usable > 0 && *usable < mss &&
20719 			    ((md_pbuf_nxt == NULL &&
20720 			    (*xmit_tail)->b_cont == NULL) ||
20721 			    (md_pbuf_nxt != NULL &&
20722 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
20723 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
20724 			    (tcp->tcp_unsent -
20725 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
20726 			    !tcp->tcp_zero_win_probe) {
20727 				if ((*snxt + len) == tcp->tcp_snxt &&
20728 				    (*snxt + len) == tcp->tcp_suna) {
20729 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20730 				}
20731 				done = B_TRUE;
20732 			}
20733 
20734 			/*
20735 			 * Prime pump for IP's checksumming on our behalf;
20736 			 * include the adjustment for a source route if any.
20737 			 * Do this only for software/partial hardware checksum
20738 			 * offload, as this field gets zeroed out later for
20739 			 * the full hardware checksum offload case.
20740 			 */
20741 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
20742 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20743 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
20744 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
20745 			}
20746 
20747 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
20748 			*snxt += len;
20749 
20750 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
20751 			/*
20752 			 * We set the PUSH bit only if TCP has no more buffered
20753 			 * data to be transmitted (or if sender SWS avoidance
20754 			 * takes place), as opposed to setting it for every
20755 			 * last packet in the burst.
20756 			 */
20757 			if (done ||
20758 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
20759 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
20760 
20761 			/*
20762 			 * Set FIN bit if this is our last segment; snxt
20763 			 * already includes its length, and it will not
20764 			 * be adjusted after this point.
20765 			 */
20766 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
20767 			    *snxt == tcp->tcp_fss) {
20768 				if (!tcp->tcp_fin_acked) {
20769 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
20770 					BUMP_MIB(&tcps->tcps_mib,
20771 					    tcpOutControl);
20772 				}
20773 				if (!tcp->tcp_fin_sent) {
20774 					tcp->tcp_fin_sent = B_TRUE;
20775 					/*
20776 					 * tcp state must be ESTABLISHED
20777 					 * in order for us to get here in
20778 					 * the first place.
20779 					 */
20780 					tcp->tcp_state = TCPS_FIN_WAIT_1;
20781 
20782 					/*
20783 					 * Upon returning from this routine,
20784 					 * tcp_wput_data() will set tcp_snxt
20785 					 * to be equal to snxt + tcp_fin_sent.
20786 					 * This is essentially the same as
20787 					 * setting it to tcp_fss + 1.
20788 					 */
20789 				}
20790 			}
20791 
20792 			tcp->tcp_last_sent_len = (ushort_t)len;
20793 
20794 			len += tcp_hdr_len;
20795 			if (tcp->tcp_ipversion == IPV4_VERSION)
20796 				tcp->tcp_ipha->ipha_length = htons(len);
20797 			else
20798 				tcp->tcp_ip6h->ip6_plen = htons(len -
20799 				    ((char *)&tcp->tcp_ip6h[1] -
20800 				    tcp->tcp_iphc));
20801 
20802 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
20803 
20804 			/* setup header fragment */
20805 			PDESC_HDR_ADD(pkt_info,
20806 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
20807 			    tcp->tcp_mdt_hdr_head,		/* head room */
20808 			    tcp_hdr_len,			/* len */
20809 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
20810 
20811 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
20812 			    hdr_frag_sz);
20813 			ASSERT(MBLKIN(md_hbuf,
20814 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
20815 			    PDESC_HDRSIZE(pkt_info)));
20816 
20817 			/* setup first payload fragment */
20818 			PDESC_PLD_INIT(pkt_info);
20819 			PDESC_PLD_SPAN_ADD(pkt_info,
20820 			    pbuf_idx,				/* index */
20821 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
20822 			    tcp->tcp_last_sent_len);		/* len */
20823 
20824 			/* create a split-packet in case of a spillover */
20825 			if (md_pbuf_nxt != NULL) {
20826 				ASSERT(spill > 0);
20827 				ASSERT(pbuf_idx_nxt > pbuf_idx);
20828 				ASSERT(!add_buffer);
20829 
20830 				md_pbuf = md_pbuf_nxt;
20831 				md_pbuf_nxt = NULL;
20832 				pbuf_idx = pbuf_idx_nxt;
20833 				pbuf_idx_nxt = -1;
20834 				cur_pld_off = spill;
20835 
20836 				/* trim out first payload fragment */
20837 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
20838 
20839 				/* setup second payload fragment */
20840 				PDESC_PLD_SPAN_ADD(pkt_info,
20841 				    pbuf_idx,			/* index */
20842 				    md_pbuf->b_rptr,		/* start */
20843 				    spill);			/* len */
20844 
20845 				if ((*xmit_tail)->b_next == NULL) {
20846 					/*
20847 					 * Store the lbolt used for RTT
20848 					 * estimation. We can only record one
20849 					 * timestamp per mblk so we do it when
20850 					 * we reach the end of the payload
20851 					 * buffer.  Also we only take a new
20852 					 * timestamp sample when the previous
20853 					 * timed data from the same mblk has
20854 					 * been ack'ed.
20855 					 */
20856 					(*xmit_tail)->b_prev = local_time;
20857 					(*xmit_tail)->b_next =
20858 					    (mblk_t *)(uintptr_t)first_snxt;
20859 				}
20860 
20861 				first_snxt = *snxt - spill;
20862 
20863 				/*
20864 				 * Advance xmit_tail; usable could be 0 by
20865 				 * the time we got here, but we made sure
20866 				 * above that we would only spillover to
20867 				 * the next data block if usable includes
20868 				 * the spilled-over amount prior to the
20869 				 * subtraction.  Therefore, we are sure
20870 				 * that xmit_tail->b_cont can't be NULL.
20871 				 */
20872 				ASSERT((*xmit_tail)->b_cont != NULL);
20873 				*xmit_tail = (*xmit_tail)->b_cont;
20874 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20875 				    (uintptr_t)INT_MAX);
20876 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
20877 			} else {
20878 				cur_pld_off += tcp->tcp_last_sent_len;
20879 			}
20880 
20881 			/*
20882 			 * Fill in the header using the template header, and
20883 			 * add options such as time-stamp, ECN and/or SACK,
20884 			 * as needed.
20885 			 */
20886 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
20887 			    (clock_t)local_time, num_sack_blk);
20888 
20889 			/* take care of some IP header businesses */
20890 			if (af == AF_INET) {
20891 				ipha = (ipha_t *)pkt_info->hdr_rptr;
20892 
20893 				ASSERT(OK_32PTR((uchar_t *)ipha));
20894 				ASSERT(PDESC_HDRL(pkt_info) >=
20895 				    IP_SIMPLE_HDR_LENGTH);
20896 				ASSERT(ipha->ipha_version_and_hdr_length ==
20897 				    IP_SIMPLE_HDR_VERSION);
20898 
20899 				/*
20900 				 * Assign ident value for current packet; see
20901 				 * related comments in ip_wput_ire() about the
20902 				 * contract private interface with clustering
20903 				 * group.
20904 				 */
20905 				clusterwide = B_FALSE;
20906 				if (cl_inet_ipident != NULL) {
20907 					ASSERT(cl_inet_isclusterwide != NULL);
20908 					if ((*cl_inet_isclusterwide)(stack_id,
20909 					    IPPROTO_IP, AF_INET,
20910 					    (uint8_t *)(uintptr_t)src, NULL)) {
20911 						ipha->ipha_ident =
20912 						    (*cl_inet_ipident)(stack_id,
20913 						    IPPROTO_IP, AF_INET,
20914 						    (uint8_t *)(uintptr_t)src,
20915 						    (uint8_t *)(uintptr_t)dst,
20916 						    NULL);
20917 						clusterwide = B_TRUE;
20918 					}
20919 				}
20920 
20921 				if (!clusterwide) {
20922 					ipha->ipha_ident = (uint16_t)
20923 					    atomic_add_32_nv(
20924 						&ire->ire_ident, 1);
20925 				}
20926 #ifndef _BIG_ENDIAN
20927 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
20928 				    (ipha->ipha_ident >> 8);
20929 #endif
20930 			} else {
20931 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
20932 
20933 				ASSERT(OK_32PTR((uchar_t *)ip6h));
20934 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
20935 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
20936 				ASSERT(PDESC_HDRL(pkt_info) >=
20937 				    (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET +
20938 				    TCP_CHECKSUM_SIZE));
20939 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20940 
20941 				if (tcp->tcp_ip_forward_progress) {
20942 					rconfirm = B_TRUE;
20943 					tcp->tcp_ip_forward_progress = B_FALSE;
20944 				}
20945 			}
20946 
20947 			/* at least one payload span, and at most two */
20948 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
20949 
20950 			/* add the packet descriptor to Multidata */
20951 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
20952 			    KM_NOSLEEP)) == NULL) {
20953 				/*
20954 				 * Any failure other than ENOMEM indicates
20955 				 * that we have passed in invalid pkt_info
20956 				 * or parameters to mmd_addpdesc, which must
20957 				 * not happen.
20958 				 *
20959 				 * EINVAL is a result of failure on boundary
20960 				 * checks against the pkt_info contents.  It
20961 				 * should not happen, and we panic because
20962 				 * either there's horrible heap corruption,
20963 				 * and/or programming mistake.
20964 				 */
20965 				if (err != ENOMEM) {
20966 					cmn_err(CE_PANIC, "tcp_multisend: "
20967 					    "pdesc logic error detected for "
20968 					    "tcp %p mmd %p pinfo %p (%d)\n",
20969 					    (void *)tcp, (void *)mmd,
20970 					    (void *)pkt_info, err);
20971 				}
20972 				TCP_STAT(tcps, tcp_mdt_addpdescfail);
20973 				goto legacy_send; /* out_of_mem */
20974 			}
20975 			ASSERT(pkt != NULL);
20976 
20977 			/* calculate IP header and TCP checksums */
20978 			if (af == AF_INET) {
20979 				/* calculate pseudo-header checksum */
20980 				cksum = (dst >> 16) + (dst & 0xFFFF) +
20981 				    (src >> 16) + (src & 0xFFFF);
20982 
20983 				/* offset for TCP header checksum */
20984 				up = IPH_TCPH_CHECKSUMP(ipha,
20985 				    IP_SIMPLE_HDR_LENGTH);
20986 			} else {
20987 				up = (uint16_t *)&ip6h->ip6_src;
20988 
20989 				/* calculate pseudo-header checksum */
20990 				cksum = up[0] + up[1] + up[2] + up[3] +
20991 				    up[4] + up[5] + up[6] + up[7] +
20992 				    up[8] + up[9] + up[10] + up[11] +
20993 				    up[12] + up[13] + up[14] + up[15];
20994 
20995 				/* Fold the initial sum */
20996 				cksum = (cksum & 0xffff) + (cksum >> 16);
20997 
20998 				up = (uint16_t *)(((uchar_t *)ip6h) +
20999 				    IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET);
21000 			}
21001 
21002 			if (hwcksum_flags & HCK_FULLCKSUM) {
21003 				/* clear checksum field for hardware */
21004 				*up = 0;
21005 			} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
21006 				uint32_t sum;
21007 
21008 				/* pseudo-header checksumming */
21009 				sum = *up + cksum + IP_TCP_CSUM_COMP;
21010 				sum = (sum & 0xFFFF) + (sum >> 16);
21011 				*up = (sum & 0xFFFF) + (sum >> 16);
21012 			} else {
21013 				/* software checksumming */
21014 				TCP_STAT(tcps, tcp_out_sw_cksum);
21015 				TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
21016 				    tcp->tcp_hdr_len + tcp->tcp_last_sent_len);
21017 				*up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len,
21018 				    cksum + IP_TCP_CSUM_COMP);
21019 				if (*up == 0)
21020 					*up = 0xFFFF;
21021 			}
21022 
21023 			/* IPv4 header checksum */
21024 			if (af == AF_INET) {
21025 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
21026 					ipha->ipha_hdr_checksum = 0;
21027 				} else {
21028 					IP_HDR_CKSUM(ipha, cksum,
21029 					    ((uint32_t *)ipha)[0],
21030 					    ((uint16_t *)ipha)[4]);
21031 				}
21032 			}
21033 
21034 			if (af == AF_INET &&
21035 			    HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) ||
21036 			    af == AF_INET6 &&
21037 			    HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) {
21038 				mblk_t	*mp, *mp1;
21039 				uchar_t	*hdr_rptr, *hdr_wptr;
21040 				uchar_t	*pld_rptr, *pld_wptr;
21041 
21042 				/*
21043 				 * We reconstruct a pseudo packet for the hooks
21044 				 * framework using mmd_transform_link().
21045 				 * If it is a split packet we pullup the
21046 				 * payload. FW_HOOKS expects a pkt comprising
21047 				 * of two mblks: a header and the payload.
21048 				 */
21049 				if ((mp = mmd_transform_link(pkt)) == NULL) {
21050 					TCP_STAT(tcps, tcp_mdt_allocfail);
21051 					goto legacy_send;
21052 				}
21053 
21054 				if (pkt_info->pld_cnt > 1) {
21055 					/* split payload, more than one pld */
21056 					if ((mp1 = msgpullup(mp->b_cont, -1)) ==
21057 					    NULL) {
21058 						freemsg(mp);
21059 						TCP_STAT(tcps,
21060 						    tcp_mdt_allocfail);
21061 						goto legacy_send;
21062 					}
21063 					freemsg(mp->b_cont);
21064 					mp->b_cont = mp1;
21065 				} else {
21066 					mp1 = mp->b_cont;
21067 				}
21068 				ASSERT(mp1 != NULL && mp1->b_cont == NULL);
21069 
21070 				/*
21071 				 * Remember the message offsets. This is so we
21072 				 * can detect changes when we return from the
21073 				 * FW_HOOKS callbacks.
21074 				 */
21075 				hdr_rptr = mp->b_rptr;
21076 				hdr_wptr = mp->b_wptr;
21077 				pld_rptr = mp->b_cont->b_rptr;
21078 				pld_wptr = mp->b_cont->b_wptr;
21079 
21080 				if (af == AF_INET) {
21081 					DTRACE_PROBE4(
21082 					    ip4__physical__out__start,
21083 					    ill_t *, NULL,
21084 					    ill_t *, ill,
21085 					    ipha_t *, ipha,
21086 					    mblk_t *, mp);
21087 					FW_HOOKS(
21088 					    ipst->ips_ip4_physical_out_event,
21089 					    ipst->ips_ipv4firewall_physical_out,
21090 					    NULL, ill, ipha, mp, mp, 0, ipst);
21091 					DTRACE_PROBE1(
21092 					    ip4__physical__out__end,
21093 					    mblk_t *, mp);
21094 				} else {
21095 					DTRACE_PROBE4(
21096 					    ip6__physical__out_start,
21097 					    ill_t *, NULL,
21098 					    ill_t *, ill,
21099 					    ip6_t *, ip6h,
21100 					    mblk_t *, mp);
21101 					FW_HOOKS6(
21102 					    ipst->ips_ip6_physical_out_event,
21103 					    ipst->ips_ipv6firewall_physical_out,
21104 					    NULL, ill, ip6h, mp, mp, 0, ipst);
21105 					DTRACE_PROBE1(
21106 					    ip6__physical__out__end,
21107 					    mblk_t *, mp);
21108 				}
21109 
21110 				if (mp == NULL ||
21111 				    (mp1 = mp->b_cont) == NULL ||
21112 				    mp->b_rptr != hdr_rptr ||
21113 				    mp->b_wptr != hdr_wptr ||
21114 				    mp1->b_rptr != pld_rptr ||
21115 				    mp1->b_wptr != pld_wptr ||
21116 				    mp1->b_cont != NULL) {
21117 					/*
21118 					 * We abandon multidata processing and
21119 					 * return to the normal path, either
21120 					 * when a packet is blocked, or when
21121 					 * the boundaries of header buffer or
21122 					 * payload buffer have been changed by
21123 					 * FW_HOOKS[6].
21124 					 */
21125 					if (mp != NULL)
21126 						freemsg(mp);
21127 					goto legacy_send;
21128 				}
21129 				/* Finished with the pseudo packet */
21130 				freemsg(mp);
21131 			}
21132 			DTRACE_IP_FASTPATH(md_hbuf, pkt_info->hdr_rptr,
21133 			    ill, ipha, ip6h);
21134 			/* advance header offset */
21135 			cur_hdr_off += hdr_frag_sz;
21136 
21137 			obbytes += tcp->tcp_last_sent_len;
21138 			++obsegs;
21139 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
21140 		    *tail_unsent > 0);
21141 
21142 		if ((*xmit_tail)->b_next == NULL) {
21143 			/*
21144 			 * Store the lbolt used for RTT estimation. We can only
21145 			 * record one timestamp per mblk so we do it when we
21146 			 * reach the end of the payload buffer. Also we only
21147 			 * take a new timestamp sample when the previous timed
21148 			 * data from the same mblk has been ack'ed.
21149 			 */
21150 			(*xmit_tail)->b_prev = local_time;
21151 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
21152 		}
21153 
21154 		ASSERT(*tail_unsent >= 0);
21155 		if (*tail_unsent > 0) {
21156 			/*
21157 			 * We got here because we broke out of the above
21158 			 * loop due to of one of the following cases:
21159 			 *
21160 			 *   1. len < adjusted MSS (i.e. small),
21161 			 *   2. Sender SWS avoidance,
21162 			 *   3. max_pld is zero.
21163 			 *
21164 			 * We are done for this Multidata, so trim our
21165 			 * last payload buffer (if any) accordingly.
21166 			 */
21167 			if (md_pbuf != NULL)
21168 				md_pbuf->b_wptr -= *tail_unsent;
21169 		} else if (*usable > 0) {
21170 			*xmit_tail = (*xmit_tail)->b_cont;
21171 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
21172 			    (uintptr_t)INT_MAX);
21173 			*tail_unsent = (int)MBLKL(*xmit_tail);
21174 			add_buffer = B_TRUE;
21175 		}
21176 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
21177 	    (tcp_mdt_chain || max_pld > 0));
21178 
21179 	if (md_mp_head != NULL) {
21180 		/* send everything down */
21181 		tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
21182 		    &rconfirm);
21183 	}
21184 
21185 #undef PREP_NEW_MULTIDATA
21186 #undef PREP_NEW_PBUF
21187 #undef IPVER
21188 
21189 	IRE_REFRELE(ire);
21190 	return (0);
21191 }
21192 
21193 /*
21194  * A wrapper function for sending one or more Multidata messages down to
21195  * the module below ip; this routine does not release the reference of the
21196  * IRE (caller does that).  This routine is analogous to tcp_send_data().
21197  */
21198 static void
21199 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
21200     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
21201 {
21202 	uint64_t delta;
21203 	nce_t *nce;
21204 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21205 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21206 
21207 	ASSERT(ire != NULL && ill != NULL);
21208 	ASSERT(ire->ire_stq != NULL);
21209 	ASSERT(md_mp_head != NULL);
21210 	ASSERT(rconfirm != NULL);
21211 
21212 	/* adjust MIBs and IRE timestamp */
21213 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, md_mp_head, tcp_t *, tcp);
21214 	tcp->tcp_obsegs += obsegs;
21215 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs);
21216 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes);
21217 	TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs);
21218 
21219 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21220 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs);
21221 	} else {
21222 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs);
21223 	}
21224 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs);
21225 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs);
21226 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes);
21227 
21228 	ire->ire_ob_pkt_count += obsegs;
21229 	if (ire->ire_ipif != NULL)
21230 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
21231 	ire->ire_last_used_time = lbolt;
21232 
21233 	if (ipst->ips_ipobs_enabled) {
21234 		multidata_t *dlmdp = mmd_getmultidata(md_mp_head);
21235 		pdesc_t *dl_pkt;
21236 		pdescinfo_t pinfo;
21237 		mblk_t *nmp;
21238 		zoneid_t szone = tcp->tcp_connp->conn_zoneid;
21239 
21240 		for (dl_pkt = mmd_getfirstpdesc(dlmdp, &pinfo);
21241 		    (dl_pkt != NULL);
21242 		    dl_pkt = mmd_getnextpdesc(dl_pkt, &pinfo)) {
21243 			if ((nmp = mmd_transform_link(dl_pkt)) == NULL)
21244 				continue;
21245 			ipobs_hook(nmp, IPOBS_HOOK_OUTBOUND, szone,
21246 			    ALL_ZONES, ill, tcp->tcp_ipversion, 0, ipst);
21247 			freemsg(nmp);
21248 		}
21249 	}
21250 
21251 	/* send it down */
21252 	putnext(ire->ire_stq, md_mp_head);
21253 
21254 	/* we're done for TCP/IPv4 */
21255 	if (tcp->tcp_ipversion == IPV4_VERSION)
21256 		return;
21257 
21258 	nce = ire->ire_nce;
21259 
21260 	ASSERT(nce != NULL);
21261 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
21262 	ASSERT(nce->nce_state != ND_INCOMPLETE);
21263 
21264 	/* reachability confirmation? */
21265 	if (*rconfirm) {
21266 		nce->nce_last = TICK_TO_MSEC(lbolt64);
21267 		if (nce->nce_state != ND_REACHABLE) {
21268 			mutex_enter(&nce->nce_lock);
21269 			nce->nce_state = ND_REACHABLE;
21270 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
21271 			mutex_exit(&nce->nce_lock);
21272 			(void) untimeout(nce->nce_timeout_id);
21273 			if (ip_debug > 2) {
21274 				/* ip1dbg */
21275 				pr_addr_dbg("tcp_multisend_data: state "
21276 				    "for %s changed to REACHABLE\n",
21277 				    AF_INET6, &ire->ire_addr_v6);
21278 			}
21279 		}
21280 		/* reset transport reachability confirmation */
21281 		*rconfirm = B_FALSE;
21282 	}
21283 
21284 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
21285 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
21286 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
21287 
21288 	if (delta > (uint64_t)ill->ill_reachable_time) {
21289 		mutex_enter(&nce->nce_lock);
21290 		switch (nce->nce_state) {
21291 		case ND_REACHABLE:
21292 		case ND_STALE:
21293 			/*
21294 			 * ND_REACHABLE is identical to ND_STALE in this
21295 			 * specific case. If reachable time has expired for
21296 			 * this neighbor (delta is greater than reachable
21297 			 * time), conceptually, the neighbor cache is no
21298 			 * longer in REACHABLE state, but already in STALE
21299 			 * state.  So the correct transition here is to
21300 			 * ND_DELAY.
21301 			 */
21302 			nce->nce_state = ND_DELAY;
21303 			mutex_exit(&nce->nce_lock);
21304 			NDP_RESTART_TIMER(nce,
21305 			    ipst->ips_delay_first_probe_time);
21306 			if (ip_debug > 3) {
21307 				/* ip2dbg */
21308 				pr_addr_dbg("tcp_multisend_data: state "
21309 				    "for %s changed to DELAY\n",
21310 				    AF_INET6, &ire->ire_addr_v6);
21311 			}
21312 			break;
21313 		case ND_DELAY:
21314 		case ND_PROBE:
21315 			mutex_exit(&nce->nce_lock);
21316 			/* Timers have already started */
21317 			break;
21318 		case ND_UNREACHABLE:
21319 			/*
21320 			 * ndp timer has detected that this nce is
21321 			 * unreachable and initiated deleting this nce
21322 			 * and all its associated IREs. This is a race
21323 			 * where we found the ire before it was deleted
21324 			 * and have just sent out a packet using this
21325 			 * unreachable nce.
21326 			 */
21327 			mutex_exit(&nce->nce_lock);
21328 			break;
21329 		default:
21330 			ASSERT(0);
21331 		}
21332 	}
21333 }
21334 
21335 /*
21336  * Derived from tcp_send_data().
21337  */
21338 static void
21339 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss,
21340     int num_lso_seg)
21341 {
21342 	ipha_t		*ipha;
21343 	mblk_t		*ire_fp_mp;
21344 	uint_t		ire_fp_mp_len;
21345 	uint32_t	hcksum_txflags = 0;
21346 	ipaddr_t	src;
21347 	ipaddr_t	dst;
21348 	uint32_t	cksum;
21349 	uint16_t	*up;
21350 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21351 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21352 
21353 	ASSERT(DB_TYPE(mp) == M_DATA);
21354 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
21355 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
21356 	ASSERT(tcp->tcp_connp != NULL);
21357 	ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp));
21358 
21359 	ipha = (ipha_t *)mp->b_rptr;
21360 	src = ipha->ipha_src;
21361 	dst = ipha->ipha_dst;
21362 
21363 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp);
21364 
21365 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
21366 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident,
21367 	    num_lso_seg);
21368 #ifndef _BIG_ENDIAN
21369 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
21370 #endif
21371 	if (tcp->tcp_snd_zcopy_aware) {
21372 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
21373 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
21374 			mp = tcp_zcopy_disable(tcp, mp);
21375 	}
21376 
21377 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
21378 		ASSERT(ill->ill_hcksum_capab != NULL);
21379 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
21380 	}
21381 
21382 	/*
21383 	 * Since the TCP checksum should be recalculated by h/w, we can just
21384 	 * zero the checksum field for HCK_FULLCKSUM, or calculate partial
21385 	 * pseudo-header checksum for HCK_PARTIALCKSUM.
21386 	 * The partial pseudo-header excludes TCP length, that was calculated
21387 	 * in tcp_send(), so to zero *up before further processing.
21388 	 */
21389 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
21390 
21391 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
21392 	*up = 0;
21393 
21394 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
21395 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
21396 
21397 	/*
21398 	 * Append LSO flags and mss to the mp.
21399 	 */
21400 	lso_info_set(mp, mss, HW_LSO);
21401 
21402 	ipha->ipha_fragment_offset_and_flags |=
21403 	    (uint32_t)htons(ire->ire_frag_flag);
21404 
21405 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
21406 	ire_fp_mp_len = MBLKL(ire_fp_mp);
21407 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
21408 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
21409 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
21410 
21411 	UPDATE_OB_PKT_COUNT(ire);
21412 	ire->ire_last_used_time = lbolt;
21413 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
21414 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
21415 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
21416 	    ntohs(ipha->ipha_length));
21417 
21418 	DTRACE_PROBE4(ip4__physical__out__start,
21419 	    ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp);
21420 	FW_HOOKS(ipst->ips_ip4_physical_out_event,
21421 	    ipst->ips_ipv4firewall_physical_out, NULL,
21422 	    ill, ipha, mp, mp, 0, ipst);
21423 	DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
21424 	DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL);
21425 
21426 	if (mp != NULL) {
21427 		if (ipst->ips_ipobs_enabled) {
21428 			zoneid_t szone;
21429 
21430 			szone = ip_get_zoneid_v4(ipha->ipha_src, mp,
21431 			    ipst, ALL_ZONES);
21432 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone,
21433 			    ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst);
21434 		}
21435 
21436 		ILL_SEND_TX(ill, ire, tcp->tcp_connp, mp, 0);
21437 	}
21438 }
21439 
21440 /*
21441  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
21442  * scheme, and returns one of the following:
21443  *
21444  * -1 = failed allocation.
21445  *  0 = success; burst count reached, or usable send window is too small,
21446  *      and that we'd rather wait until later before sending again.
21447  *  1 = success; we are called from tcp_multisend(), and both usable send
21448  *      window and tail_unsent are greater than the MDT threshold, and thus
21449  *      Multidata Transmit should be used instead.
21450  */
21451 static int
21452 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
21453     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
21454     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
21455     const int mdt_thres)
21456 {
21457 	int num_burst_seg = tcp->tcp_snd_burst;
21458 	ire_t		*ire = NULL;
21459 	ill_t		*ill = NULL;
21460 	mblk_t		*ire_fp_mp = NULL;
21461 	uint_t		ire_fp_mp_len = 0;
21462 	int		num_lso_seg = 1;
21463 	uint_t		lso_usable;
21464 	boolean_t	do_lso_send = B_FALSE;
21465 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21466 
21467 	/*
21468 	 * Check LSO capability before any further work. And the similar check
21469 	 * need to be done in for(;;) loop.
21470 	 * LSO will be deployed when therer is more than one mss of available
21471 	 * data and a burst transmission is allowed.
21472 	 */
21473 	if (tcp->tcp_lso &&
21474 	    (tcp->tcp_valid_bits == 0 ||
21475 	    tcp->tcp_valid_bits == TCP_FSS_VALID) &&
21476 	    num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21477 		/*
21478 		 * Try to find usable IRE/ILL and do basic check to the ILL.
21479 		 */
21480 		if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) {
21481 			/*
21482 			 * Enable LSO with this transmission.
21483 			 * Since IRE has been hold in
21484 			 * tcp_send_find_ire_ill(), IRE_REFRELE(ire)
21485 			 * should be called before return.
21486 			 */
21487 			do_lso_send = B_TRUE;
21488 			ire_fp_mp = ire->ire_nce->nce_fp_mp;
21489 			ire_fp_mp_len = MBLKL(ire_fp_mp);
21490 			/* Round up to multiple of 4 */
21491 			ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4;
21492 		} else {
21493 			do_lso_send = B_FALSE;
21494 			ill = NULL;
21495 		}
21496 	}
21497 
21498 	for (;;) {
21499 		struct datab	*db;
21500 		tcph_t		*tcph;
21501 		uint32_t	sum;
21502 		mblk_t		*mp, *mp1;
21503 		uchar_t		*rptr;
21504 		int		len;
21505 
21506 		/*
21507 		 * If we're called by tcp_multisend(), and the amount of
21508 		 * sendable data as well as the size of current xmit_tail
21509 		 * is beyond the MDT threshold, return to the caller and
21510 		 * let the large data transmit be done using MDT.
21511 		 */
21512 		if (*usable > 0 && *usable > mdt_thres &&
21513 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
21514 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
21515 			ASSERT(tcp->tcp_mdt);
21516 			return (1);	/* success; do large send */
21517 		}
21518 
21519 		if (num_burst_seg == 0)
21520 			break;		/* success; burst count reached */
21521 
21522 		/*
21523 		 * Calculate the maximum payload length we can send in *one*
21524 		 * time.
21525 		 */
21526 		if (do_lso_send) {
21527 			/*
21528 			 * Check whether need to do LSO any more.
21529 			 */
21530 			if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21531 				lso_usable = MIN(tcp->tcp_lso_max, *usable);
21532 				lso_usable = MIN(lso_usable,
21533 				    num_burst_seg * mss);
21534 
21535 				num_lso_seg = lso_usable / mss;
21536 				if (lso_usable % mss) {
21537 					num_lso_seg++;
21538 					tcp->tcp_last_sent_len = (ushort_t)
21539 					    (lso_usable % mss);
21540 				} else {
21541 					tcp->tcp_last_sent_len = (ushort_t)mss;
21542 				}
21543 			} else {
21544 				do_lso_send = B_FALSE;
21545 				num_lso_seg = 1;
21546 				lso_usable = mss;
21547 			}
21548 		}
21549 
21550 		ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1);
21551 
21552 		/*
21553 		 * Adjust num_burst_seg here.
21554 		 */
21555 		num_burst_seg -= num_lso_seg;
21556 
21557 		len = mss;
21558 		if (len > *usable) {
21559 			ASSERT(do_lso_send == B_FALSE);
21560 
21561 			len = *usable;
21562 			if (len <= 0) {
21563 				/* Terminate the loop */
21564 				break;	/* success; too small */
21565 			}
21566 			/*
21567 			 * Sender silly-window avoidance.
21568 			 * Ignore this if we are going to send a
21569 			 * zero window probe out.
21570 			 *
21571 			 * TODO: force data into microscopic window?
21572 			 *	==> (!pushed || (unsent > usable))
21573 			 */
21574 			if (len < (tcp->tcp_max_swnd >> 1) &&
21575 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
21576 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
21577 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
21578 				/*
21579 				 * If the retransmit timer is not running
21580 				 * we start it so that we will retransmit
21581 				 * in the case when the the receiver has
21582 				 * decremented the window.
21583 				 */
21584 				if (*snxt == tcp->tcp_snxt &&
21585 				    *snxt == tcp->tcp_suna) {
21586 					/*
21587 					 * We are not supposed to send
21588 					 * anything.  So let's wait a little
21589 					 * bit longer before breaking SWS
21590 					 * avoidance.
21591 					 *
21592 					 * What should the value be?
21593 					 * Suggestion: MAX(init rexmit time,
21594 					 * tcp->tcp_rto)
21595 					 */
21596 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
21597 				}
21598 				break;	/* success; too small */
21599 			}
21600 		}
21601 
21602 		tcph = tcp->tcp_tcph;
21603 
21604 		/*
21605 		 * The reason to adjust len here is that we need to set flags
21606 		 * and calculate checksum.
21607 		 */
21608 		if (do_lso_send)
21609 			len = lso_usable;
21610 
21611 		*usable -= len; /* Approximate - can be adjusted later */
21612 		if (*usable > 0)
21613 			tcph->th_flags[0] = TH_ACK;
21614 		else
21615 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
21616 
21617 		/*
21618 		 * Prime pump for IP's checksumming on our behalf
21619 		 * Include the adjustment for a source route if any.
21620 		 */
21621 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
21622 		sum = (sum >> 16) + (sum & 0xFFFF);
21623 		U16_TO_ABE16(sum, tcph->th_sum);
21624 
21625 		U32_TO_ABE32(*snxt, tcph->th_seq);
21626 
21627 		/*
21628 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
21629 		 * set.  For the case when TCP_FSS_VALID is the only valid
21630 		 * bit (normal active close), branch off only when we think
21631 		 * that the FIN flag needs to be set.  Note for this case,
21632 		 * that (snxt + len) may not reflect the actual seg_len,
21633 		 * as len may be further reduced in tcp_xmit_mp().  If len
21634 		 * gets modified, we will end up here again.
21635 		 */
21636 		if (tcp->tcp_valid_bits != 0 &&
21637 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
21638 		    ((*snxt + len) == tcp->tcp_fss))) {
21639 			uchar_t		*prev_rptr;
21640 			uint32_t	prev_snxt = tcp->tcp_snxt;
21641 
21642 			if (*tail_unsent == 0) {
21643 				ASSERT((*xmit_tail)->b_cont != NULL);
21644 				*xmit_tail = (*xmit_tail)->b_cont;
21645 				prev_rptr = (*xmit_tail)->b_rptr;
21646 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
21647 				    (*xmit_tail)->b_rptr);
21648 			} else {
21649 				prev_rptr = (*xmit_tail)->b_rptr;
21650 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
21651 				    *tail_unsent;
21652 			}
21653 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
21654 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
21655 			/* Restore tcp_snxt so we get amount sent right. */
21656 			tcp->tcp_snxt = prev_snxt;
21657 			if (prev_rptr == (*xmit_tail)->b_rptr) {
21658 				/*
21659 				 * If the previous timestamp is still in use,
21660 				 * don't stomp on it.
21661 				 */
21662 				if ((*xmit_tail)->b_next == NULL) {
21663 					(*xmit_tail)->b_prev = local_time;
21664 					(*xmit_tail)->b_next =
21665 					    (mblk_t *)(uintptr_t)(*snxt);
21666 				}
21667 			} else
21668 				(*xmit_tail)->b_rptr = prev_rptr;
21669 
21670 			if (mp == NULL) {
21671 				if (ire != NULL)
21672 					IRE_REFRELE(ire);
21673 				return (-1);
21674 			}
21675 			mp1 = mp->b_cont;
21676 
21677 			if (len <= mss) /* LSO is unusable (!do_lso_send) */
21678 				tcp->tcp_last_sent_len = (ushort_t)len;
21679 			while (mp1->b_cont) {
21680 				*xmit_tail = (*xmit_tail)->b_cont;
21681 				(*xmit_tail)->b_prev = local_time;
21682 				(*xmit_tail)->b_next =
21683 				    (mblk_t *)(uintptr_t)(*snxt);
21684 				mp1 = mp1->b_cont;
21685 			}
21686 			*snxt += len;
21687 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
21688 			BUMP_LOCAL(tcp->tcp_obsegs);
21689 			BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21690 			UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21691 			tcp_send_data(tcp, q, mp);
21692 			continue;
21693 		}
21694 
21695 		*snxt += len;	/* Adjust later if we don't send all of len */
21696 		BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21697 		UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21698 
21699 		if (*tail_unsent) {
21700 			/* Are the bytes above us in flight? */
21701 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
21702 			if (rptr != (*xmit_tail)->b_rptr) {
21703 				*tail_unsent -= len;
21704 				if (len <= mss) /* LSO is unusable */
21705 					tcp->tcp_last_sent_len = (ushort_t)len;
21706 				len += tcp_hdr_len;
21707 				if (tcp->tcp_ipversion == IPV4_VERSION)
21708 					tcp->tcp_ipha->ipha_length = htons(len);
21709 				else
21710 					tcp->tcp_ip6h->ip6_plen =
21711 					    htons(len -
21712 					    ((char *)&tcp->tcp_ip6h[1] -
21713 					    tcp->tcp_iphc));
21714 				mp = dupb(*xmit_tail);
21715 				if (mp == NULL) {
21716 					if (ire != NULL)
21717 						IRE_REFRELE(ire);
21718 					return (-1);	/* out_of_mem */
21719 				}
21720 				mp->b_rptr = rptr;
21721 				/*
21722 				 * If the old timestamp is no longer in use,
21723 				 * sample a new timestamp now.
21724 				 */
21725 				if ((*xmit_tail)->b_next == NULL) {
21726 					(*xmit_tail)->b_prev = local_time;
21727 					(*xmit_tail)->b_next =
21728 					    (mblk_t *)(uintptr_t)(*snxt-len);
21729 				}
21730 				goto must_alloc;
21731 			}
21732 		} else {
21733 			*xmit_tail = (*xmit_tail)->b_cont;
21734 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
21735 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
21736 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
21737 			    (*xmit_tail)->b_rptr);
21738 		}
21739 
21740 		(*xmit_tail)->b_prev = local_time;
21741 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
21742 
21743 		*tail_unsent -= len;
21744 		if (len <= mss) /* LSO is unusable (!do_lso_send) */
21745 			tcp->tcp_last_sent_len = (ushort_t)len;
21746 
21747 		len += tcp_hdr_len;
21748 		if (tcp->tcp_ipversion == IPV4_VERSION)
21749 			tcp->tcp_ipha->ipha_length = htons(len);
21750 		else
21751 			tcp->tcp_ip6h->ip6_plen = htons(len -
21752 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21753 
21754 		mp = dupb(*xmit_tail);
21755 		if (mp == NULL) {
21756 			if (ire != NULL)
21757 				IRE_REFRELE(ire);
21758 			return (-1);	/* out_of_mem */
21759 		}
21760 
21761 		len = tcp_hdr_len;
21762 		/*
21763 		 * There are four reasons to allocate a new hdr mblk:
21764 		 *  1) The bytes above us are in use by another packet
21765 		 *  2) We don't have good alignment
21766 		 *  3) The mblk is being shared
21767 		 *  4) We don't have enough room for a header
21768 		 */
21769 		rptr = mp->b_rptr - len;
21770 		if (!OK_32PTR(rptr) ||
21771 		    ((db = mp->b_datap), db->db_ref != 2) ||
21772 		    rptr < db->db_base + ire_fp_mp_len) {
21773 			/* NOTE: we assume allocb returns an OK_32PTR */
21774 
21775 		must_alloc:;
21776 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
21777 			    tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED);
21778 			if (mp1 == NULL) {
21779 				freemsg(mp);
21780 				if (ire != NULL)
21781 					IRE_REFRELE(ire);
21782 				return (-1);	/* out_of_mem */
21783 			}
21784 			mp1->b_cont = mp;
21785 			mp = mp1;
21786 			/* Leave room for Link Level header */
21787 			len = tcp_hdr_len;
21788 			rptr =
21789 			    &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len];
21790 			mp->b_wptr = &rptr[len];
21791 		}
21792 
21793 		/*
21794 		 * Fill in the header using the template header, and add
21795 		 * options such as time-stamp, ECN and/or SACK, as needed.
21796 		 */
21797 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
21798 
21799 		mp->b_rptr = rptr;
21800 
21801 		if (*tail_unsent) {
21802 			int spill = *tail_unsent;
21803 
21804 			mp1 = mp->b_cont;
21805 			if (mp1 == NULL)
21806 				mp1 = mp;
21807 
21808 			/*
21809 			 * If we're a little short, tack on more mblks until
21810 			 * there is no more spillover.
21811 			 */
21812 			while (spill < 0) {
21813 				mblk_t *nmp;
21814 				int nmpsz;
21815 
21816 				nmp = (*xmit_tail)->b_cont;
21817 				nmpsz = MBLKL(nmp);
21818 
21819 				/*
21820 				 * Excess data in mblk; can we split it?
21821 				 * If MDT is enabled for the connection,
21822 				 * keep on splitting as this is a transient
21823 				 * send path.
21824 				 */
21825 				if (!do_lso_send && !tcp->tcp_mdt &&
21826 				    (spill + nmpsz > 0)) {
21827 					/*
21828 					 * Don't split if stream head was
21829 					 * told to break up larger writes
21830 					 * into smaller ones.
21831 					 */
21832 					if (tcp->tcp_maxpsz > 0)
21833 						break;
21834 
21835 					/*
21836 					 * Next mblk is less than SMSS/2
21837 					 * rounded up to nearest 64-byte;
21838 					 * let it get sent as part of the
21839 					 * next segment.
21840 					 */
21841 					if (tcp->tcp_localnet &&
21842 					    !tcp->tcp_cork &&
21843 					    (nmpsz < roundup((mss >> 1), 64)))
21844 						break;
21845 				}
21846 
21847 				*xmit_tail = nmp;
21848 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
21849 				/* Stash for rtt use later */
21850 				(*xmit_tail)->b_prev = local_time;
21851 				(*xmit_tail)->b_next =
21852 				    (mblk_t *)(uintptr_t)(*snxt - len);
21853 				mp1->b_cont = dupb(*xmit_tail);
21854 				mp1 = mp1->b_cont;
21855 
21856 				spill += nmpsz;
21857 				if (mp1 == NULL) {
21858 					*tail_unsent = spill;
21859 					freemsg(mp);
21860 					if (ire != NULL)
21861 						IRE_REFRELE(ire);
21862 					return (-1);	/* out_of_mem */
21863 				}
21864 			}
21865 
21866 			/* Trim back any surplus on the last mblk */
21867 			if (spill >= 0) {
21868 				mp1->b_wptr -= spill;
21869 				*tail_unsent = spill;
21870 			} else {
21871 				/*
21872 				 * We did not send everything we could in
21873 				 * order to remain within the b_cont limit.
21874 				 */
21875 				*usable -= spill;
21876 				*snxt += spill;
21877 				tcp->tcp_last_sent_len += spill;
21878 				UPDATE_MIB(&tcps->tcps_mib,
21879 				    tcpOutDataBytes, spill);
21880 				/*
21881 				 * Adjust the checksum
21882 				 */
21883 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
21884 				sum += spill;
21885 				sum = (sum >> 16) + (sum & 0xFFFF);
21886 				U16_TO_ABE16(sum, tcph->th_sum);
21887 				if (tcp->tcp_ipversion == IPV4_VERSION) {
21888 					sum = ntohs(
21889 					    ((ipha_t *)rptr)->ipha_length) +
21890 					    spill;
21891 					((ipha_t *)rptr)->ipha_length =
21892 					    htons(sum);
21893 				} else {
21894 					sum = ntohs(
21895 					    ((ip6_t *)rptr)->ip6_plen) +
21896 					    spill;
21897 					((ip6_t *)rptr)->ip6_plen =
21898 					    htons(sum);
21899 				}
21900 				*tail_unsent = 0;
21901 			}
21902 		}
21903 		if (tcp->tcp_ip_forward_progress) {
21904 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
21905 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
21906 			tcp->tcp_ip_forward_progress = B_FALSE;
21907 		}
21908 
21909 		if (do_lso_send) {
21910 			tcp_lsosend_data(tcp, mp, ire, ill, mss,
21911 			    num_lso_seg);
21912 			tcp->tcp_obsegs += num_lso_seg;
21913 
21914 			TCP_STAT(tcps, tcp_lso_times);
21915 			TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg);
21916 		} else {
21917 			tcp_send_data(tcp, q, mp);
21918 			BUMP_LOCAL(tcp->tcp_obsegs);
21919 		}
21920 	}
21921 
21922 	if (ire != NULL)
21923 		IRE_REFRELE(ire);
21924 	return (0);
21925 }
21926 
21927 /* Unlink and return any mblk that looks like it contains a MDT info */
21928 static mblk_t *
21929 tcp_mdt_info_mp(mblk_t *mp)
21930 {
21931 	mblk_t	*prev_mp;
21932 
21933 	for (;;) {
21934 		prev_mp = mp;
21935 		/* no more to process? */
21936 		if ((mp = mp->b_cont) == NULL)
21937 			break;
21938 
21939 		switch (DB_TYPE(mp)) {
21940 		case M_CTL:
21941 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
21942 				continue;
21943 			ASSERT(prev_mp != NULL);
21944 			prev_mp->b_cont = mp->b_cont;
21945 			mp->b_cont = NULL;
21946 			return (mp);
21947 		default:
21948 			break;
21949 		}
21950 	}
21951 	return (mp);
21952 }
21953 
21954 /* MDT info update routine, called when IP notifies us about MDT */
21955 static void
21956 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
21957 {
21958 	boolean_t prev_state;
21959 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21960 
21961 	/*
21962 	 * IP is telling us to abort MDT on this connection?  We know
21963 	 * this because the capability is only turned off when IP
21964 	 * encounters some pathological cases, e.g. link-layer change
21965 	 * where the new driver doesn't support MDT, or in situation
21966 	 * where MDT usage on the link-layer has been switched off.
21967 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
21968 	 * if the link-layer doesn't support MDT, and if it does, it
21969 	 * will indicate that the feature is to be turned on.
21970 	 */
21971 	prev_state = tcp->tcp_mdt;
21972 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
21973 	if (!tcp->tcp_mdt && !first) {
21974 		TCP_STAT(tcps, tcp_mdt_conn_halted3);
21975 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
21976 		    (void *)tcp->tcp_connp));
21977 	}
21978 
21979 	/*
21980 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
21981 	 * so disable MDT otherwise.  The checks are done here
21982 	 * and in tcp_wput_data().
21983 	 */
21984 	if (tcp->tcp_mdt &&
21985 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21986 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21987 	    (tcp->tcp_ipversion == IPV6_VERSION &&
21988 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
21989 		tcp->tcp_mdt = B_FALSE;
21990 
21991 	if (tcp->tcp_mdt) {
21992 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
21993 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
21994 			    "version (%d), expected version is %d",
21995 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
21996 			tcp->tcp_mdt = B_FALSE;
21997 			return;
21998 		}
21999 
22000 		/*
22001 		 * We need the driver to be able to handle at least three
22002 		 * spans per packet in order for tcp MDT to be utilized.
22003 		 * The first is for the header portion, while the rest are
22004 		 * needed to handle a packet that straddles across two
22005 		 * virtually non-contiguous buffers; a typical tcp packet
22006 		 * therefore consists of only two spans.  Note that we take
22007 		 * a zero as "don't care".
22008 		 */
22009 		if (mdt_capab->ill_mdt_span_limit > 0 &&
22010 		    mdt_capab->ill_mdt_span_limit < 3) {
22011 			tcp->tcp_mdt = B_FALSE;
22012 			return;
22013 		}
22014 
22015 		/* a zero means driver wants default value */
22016 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
22017 		    tcps->tcps_mdt_max_pbufs);
22018 		if (tcp->tcp_mdt_max_pld == 0)
22019 			tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs;
22020 
22021 		/* ensure 32-bit alignment */
22022 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min,
22023 		    mdt_capab->ill_mdt_hdr_head), 4);
22024 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min,
22025 		    mdt_capab->ill_mdt_hdr_tail), 4);
22026 
22027 		if (!first && !prev_state) {
22028 			TCP_STAT(tcps, tcp_mdt_conn_resumed2);
22029 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
22030 			    (void *)tcp->tcp_connp));
22031 		}
22032 	}
22033 }
22034 
22035 /* Unlink and return any mblk that looks like it contains a LSO info */
22036 static mblk_t *
22037 tcp_lso_info_mp(mblk_t *mp)
22038 {
22039 	mblk_t	*prev_mp;
22040 
22041 	for (;;) {
22042 		prev_mp = mp;
22043 		/* no more to process? */
22044 		if ((mp = mp->b_cont) == NULL)
22045 			break;
22046 
22047 		switch (DB_TYPE(mp)) {
22048 		case M_CTL:
22049 			if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE)
22050 				continue;
22051 			ASSERT(prev_mp != NULL);
22052 			prev_mp->b_cont = mp->b_cont;
22053 			mp->b_cont = NULL;
22054 			return (mp);
22055 		default:
22056 			break;
22057 		}
22058 	}
22059 
22060 	return (mp);
22061 }
22062 
22063 /* LSO info update routine, called when IP notifies us about LSO */
22064 static void
22065 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab)
22066 {
22067 	tcp_stack_t *tcps = tcp->tcp_tcps;
22068 
22069 	/*
22070 	 * IP is telling us to abort LSO on this connection?  We know
22071 	 * this because the capability is only turned off when IP
22072 	 * encounters some pathological cases, e.g. link-layer change
22073 	 * where the new NIC/driver doesn't support LSO, or in situation
22074 	 * where LSO usage on the link-layer has been switched off.
22075 	 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE
22076 	 * if the link-layer doesn't support LSO, and if it does, it
22077 	 * will indicate that the feature is to be turned on.
22078 	 */
22079 	tcp->tcp_lso = (lso_capab->ill_lso_on != 0);
22080 	TCP_STAT(tcps, tcp_lso_enabled);
22081 
22082 	/*
22083 	 * We currently only support LSO on simple TCP/IPv4,
22084 	 * so disable LSO otherwise.  The checks are done here
22085 	 * and in tcp_wput_data().
22086 	 */
22087 	if (tcp->tcp_lso &&
22088 	    (tcp->tcp_ipversion == IPV4_VERSION &&
22089 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
22090 	    (tcp->tcp_ipversion == IPV6_VERSION)) {
22091 		tcp->tcp_lso = B_FALSE;
22092 		TCP_STAT(tcps, tcp_lso_disabled);
22093 	} else {
22094 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH,
22095 		    lso_capab->ill_lso_max);
22096 	}
22097 }
22098 
22099 static void
22100 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt)
22101 {
22102 	conn_t *connp = tcp->tcp_connp;
22103 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22104 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
22105 
22106 	ASSERT(ire != NULL);
22107 
22108 	/*
22109 	 * We may be in the fastpath here, and although we essentially do
22110 	 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return,
22111 	 * we try to keep things as brief as possible.  After all, these
22112 	 * are only best-effort checks, and we do more thorough ones prior
22113 	 * to calling tcp_send()/tcp_multisend().
22114 	 */
22115 	if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) &&
22116 	    check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
22117 	    ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
22118 	    !(ire->ire_flags & RTF_MULTIRT) &&
22119 	    !IPP_ENABLED(IPP_LOCAL_OUT, ipst) &&
22120 	    CONN_IS_LSO_MD_FASTPATH(connp)) {
22121 		if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) {
22122 			/* Cache the result */
22123 			connp->conn_lso_ok = B_TRUE;
22124 
22125 			ASSERT(ill->ill_lso_capab != NULL);
22126 			if (!ill->ill_lso_capab->ill_lso_on) {
22127 				ill->ill_lso_capab->ill_lso_on = 1;
22128 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
22129 				    "LSO for interface %s\n", (void *)connp,
22130 				    ill->ill_name));
22131 			}
22132 			tcp_lso_update(tcp, ill->ill_lso_capab);
22133 		} else if (ipst->ips_ip_multidata_outbound &&
22134 		    ILL_MDT_CAPABLE(ill)) {
22135 			/* Cache the result */
22136 			connp->conn_mdt_ok = B_TRUE;
22137 
22138 			ASSERT(ill->ill_mdt_capab != NULL);
22139 			if (!ill->ill_mdt_capab->ill_mdt_on) {
22140 				ill->ill_mdt_capab->ill_mdt_on = 1;
22141 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
22142 				    "MDT for interface %s\n", (void *)connp,
22143 				    ill->ill_name));
22144 			}
22145 			tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
22146 		}
22147 	}
22148 
22149 	/*
22150 	 * The goal is to reduce the number of generated tcp segments by
22151 	 * setting the maxpsz multiplier to 0; this will have an affect on
22152 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
22153 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
22154 	 * of outbound segments and incoming ACKs, thus allowing for better
22155 	 * network and system performance.  In contrast the legacy behavior
22156 	 * may result in sending less than SMSS size, because the last mblk
22157 	 * for some packets may have more data than needed to make up SMSS,
22158 	 * and the legacy code refused to "split" it.
22159 	 *
22160 	 * We apply the new behavior on following situations:
22161 	 *
22162 	 *   1) Loopback connections,
22163 	 *   2) Connections in which the remote peer is not on local subnet,
22164 	 *   3) Local subnet connections over the bge interface (see below).
22165 	 *
22166 	 * Ideally, we would like this behavior to apply for interfaces other
22167 	 * than bge.  However, doing so would negatively impact drivers which
22168 	 * perform dynamic mapping and unmapping of DMA resources, which are
22169 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
22170 	 * packet will be generated by tcp).  The bge driver does not suffer
22171 	 * from this, as it copies the mblks into pre-mapped buffers, and
22172 	 * therefore does not require more I/O resources than before.
22173 	 *
22174 	 * Otherwise, this behavior is present on all network interfaces when
22175 	 * the destination endpoint is non-local, since reducing the number
22176 	 * of packets in general is good for the network.
22177 	 *
22178 	 * TODO We need to remove this hard-coded conditional for bge once
22179 	 *	a better "self-tuning" mechanism, or a way to comprehend
22180 	 *	the driver transmit strategy is devised.  Until the solution
22181 	 *	is found and well understood, we live with this hack.
22182 	 */
22183 	if (!tcp_static_maxpsz &&
22184 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
22185 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
22186 		/* override the default value */
22187 		tcp->tcp_maxpsz = 0;
22188 
22189 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
22190 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
22191 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
22192 	}
22193 
22194 	/* set the stream head parameters accordingly */
22195 	(void) tcp_maxpsz_set(tcp, B_TRUE);
22196 }
22197 
22198 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
22199 static void
22200 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
22201 {
22202 	uchar_t	fval = *mp->b_rptr;
22203 	mblk_t	*tail;
22204 	queue_t	*q = tcp->tcp_wq;
22205 
22206 	/* TODO: How should flush interact with urgent data? */
22207 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
22208 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
22209 		/*
22210 		 * Flush only data that has not yet been put on the wire.  If
22211 		 * we flush data that we have already transmitted, life, as we
22212 		 * know it, may come to an end.
22213 		 */
22214 		tail = tcp->tcp_xmit_tail;
22215 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
22216 		tcp->tcp_xmit_tail_unsent = 0;
22217 		tcp->tcp_unsent = 0;
22218 		if (tail->b_wptr != tail->b_rptr)
22219 			tail = tail->b_cont;
22220 		if (tail) {
22221 			mblk_t **excess = &tcp->tcp_xmit_head;
22222 			for (;;) {
22223 				mblk_t *mp1 = *excess;
22224 				if (mp1 == tail)
22225 					break;
22226 				tcp->tcp_xmit_tail = mp1;
22227 				tcp->tcp_xmit_last = mp1;
22228 				excess = &mp1->b_cont;
22229 			}
22230 			*excess = NULL;
22231 			tcp_close_mpp(&tail);
22232 			if (tcp->tcp_snd_zcopy_aware)
22233 				tcp_zcopy_notify(tcp);
22234 		}
22235 		/*
22236 		 * We have no unsent data, so unsent must be less than
22237 		 * tcp_xmit_lowater, so re-enable flow.
22238 		 */
22239 		mutex_enter(&tcp->tcp_non_sq_lock);
22240 		if (tcp->tcp_flow_stopped) {
22241 			tcp_clrqfull(tcp);
22242 		}
22243 		mutex_exit(&tcp->tcp_non_sq_lock);
22244 	}
22245 	/*
22246 	 * TODO: you can't just flush these, you have to increase rwnd for one
22247 	 * thing.  For another, how should urgent data interact?
22248 	 */
22249 	if (fval & FLUSHR) {
22250 		*mp->b_rptr = fval & ~FLUSHW;
22251 		/* XXX */
22252 		qreply(q, mp);
22253 		return;
22254 	}
22255 	freemsg(mp);
22256 }
22257 
22258 /*
22259  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
22260  * messages.
22261  */
22262 static void
22263 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
22264 {
22265 	mblk_t	*mp1;
22266 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
22267 	STRUCT_HANDLE(strbuf, sb);
22268 	queue_t *q = tcp->tcp_wq;
22269 	int	error;
22270 	uint_t	addrlen;
22271 
22272 	/* Make sure it is one of ours. */
22273 	switch (iocp->ioc_cmd) {
22274 	case TI_GETMYNAME:
22275 	case TI_GETPEERNAME:
22276 		break;
22277 	default:
22278 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
22279 		return;
22280 	}
22281 	switch (mi_copy_state(q, mp, &mp1)) {
22282 	case -1:
22283 		return;
22284 	case MI_COPY_CASE(MI_COPY_IN, 1):
22285 		break;
22286 	case MI_COPY_CASE(MI_COPY_OUT, 1):
22287 		/* Copy out the strbuf. */
22288 		mi_copyout(q, mp);
22289 		return;
22290 	case MI_COPY_CASE(MI_COPY_OUT, 2):
22291 		/* All done. */
22292 		mi_copy_done(q, mp, 0);
22293 		return;
22294 	default:
22295 		mi_copy_done(q, mp, EPROTO);
22296 		return;
22297 	}
22298 	/* Check alignment of the strbuf */
22299 	if (!OK_32PTR(mp1->b_rptr)) {
22300 		mi_copy_done(q, mp, EINVAL);
22301 		return;
22302 	}
22303 
22304 	STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr);
22305 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
22306 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
22307 		mi_copy_done(q, mp, EINVAL);
22308 		return;
22309 	}
22310 
22311 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
22312 	if (mp1 == NULL)
22313 		return;
22314 
22315 	switch (iocp->ioc_cmd) {
22316 	case TI_GETMYNAME:
22317 		error = tcp_getmyname(tcp, (void *)mp1->b_rptr, &addrlen);
22318 		break;
22319 	case TI_GETPEERNAME:
22320 		error = i_tcp_getpeername(tcp, (void *)mp1->b_rptr, &addrlen);
22321 		break;
22322 	}
22323 
22324 	if (error != 0) {
22325 		mi_copy_done(q, mp, error);
22326 	} else {
22327 		mp1->b_wptr += addrlen;
22328 		STRUCT_FSET(sb, len, addrlen);
22329 
22330 		/* Copy out the address */
22331 		mi_copyout(q, mp);
22332 	}
22333 }
22334 
22335 static void
22336 tcp_disable_direct_sockfs(tcp_t *tcp)
22337 {
22338 #ifdef	_ILP32
22339 	tcp->tcp_acceptor_id = (t_uscalar_t)tcp->tcp_rq;
22340 #else
22341 	tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
22342 #endif
22343 	/*
22344 	 * Insert this socket into the acceptor hash.
22345 	 * We might need it for T_CONN_RES message
22346 	 */
22347 	tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
22348 
22349 	if (tcp->tcp_fused) {
22350 		/*
22351 		 * This is a fused loopback tcp; disable
22352 		 * read-side synchronous streams interface
22353 		 * and drain any queued data.  It is okay
22354 		 * to do this for non-synchronous streams
22355 		 * fused tcp as well.
22356 		 */
22357 		tcp_fuse_disable_pair(tcp, B_FALSE);
22358 	}
22359 	tcp->tcp_issocket = B_FALSE;
22360 	tcp->tcp_sodirect = NULL;
22361 	TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback);
22362 }
22363 
22364 /*
22365  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
22366  * messages.
22367  */
22368 /* ARGSUSED */
22369 static void
22370 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
22371 {
22372 	conn_t 	*connp = (conn_t *)arg;
22373 	tcp_t	*tcp = connp->conn_tcp;
22374 	queue_t	*q = tcp->tcp_wq;
22375 	struct iocblk	*iocp;
22376 
22377 	ASSERT(DB_TYPE(mp) == M_IOCTL);
22378 	/*
22379 	 * Try and ASSERT the minimum possible references on the
22380 	 * conn early enough. Since we are executing on write side,
22381 	 * the connection is obviously not detached and that means
22382 	 * there is a ref each for TCP and IP. Since we are behind
22383 	 * the squeue, the minimum references needed are 3. If the
22384 	 * conn is in classifier hash list, there should be an
22385 	 * extra ref for that (we check both the possibilities).
22386 	 */
22387 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
22388 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
22389 
22390 	iocp = (struct iocblk *)mp->b_rptr;
22391 	switch (iocp->ioc_cmd) {
22392 	case TCP_IOC_DEFAULT_Q:
22393 		/* Wants to be the default wq. */
22394 		if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
22395 			iocp->ioc_error = EPERM;
22396 			iocp->ioc_count = 0;
22397 			mp->b_datap->db_type = M_IOCACK;
22398 			qreply(q, mp);
22399 			return;
22400 		}
22401 		tcp_def_q_set(tcp, mp);
22402 		return;
22403 	case _SIOCSOCKFALLBACK:
22404 		/*
22405 		 * Either sockmod is about to be popped and the socket
22406 		 * would now be treated as a plain stream, or a module
22407 		 * is about to be pushed so we could no longer use read-
22408 		 * side synchronous streams for fused loopback tcp.
22409 		 * Drain any queued data and disable direct sockfs
22410 		 * interface from now on.
22411 		 */
22412 		if (!tcp->tcp_issocket) {
22413 			DB_TYPE(mp) = M_IOCNAK;
22414 			iocp->ioc_error = EINVAL;
22415 		} else {
22416 			tcp_disable_direct_sockfs(tcp);
22417 			DB_TYPE(mp) = M_IOCACK;
22418 			iocp->ioc_error = 0;
22419 		}
22420 		iocp->ioc_count = 0;
22421 		iocp->ioc_rval = 0;
22422 		qreply(q, mp);
22423 		return;
22424 	}
22425 	CALL_IP_WPUT(connp, q, mp);
22426 }
22427 
22428 /*
22429  * This routine is called by tcp_wput() to handle all TPI requests.
22430  */
22431 /* ARGSUSED */
22432 static void
22433 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
22434 {
22435 	conn_t 	*connp = (conn_t *)arg;
22436 	tcp_t	*tcp = connp->conn_tcp;
22437 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
22438 	uchar_t *rptr;
22439 	t_scalar_t type;
22440 	cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred);
22441 
22442 	/*
22443 	 * Try and ASSERT the minimum possible references on the
22444 	 * conn early enough. Since we are executing on write side,
22445 	 * the connection is obviously not detached and that means
22446 	 * there is a ref each for TCP and IP. Since we are behind
22447 	 * the squeue, the minimum references needed are 3. If the
22448 	 * conn is in classifier hash list, there should be an
22449 	 * extra ref for that (we check both the possibilities).
22450 	 */
22451 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
22452 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
22453 
22454 	rptr = mp->b_rptr;
22455 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
22456 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
22457 		type = ((union T_primitives *)rptr)->type;
22458 		if (type == T_EXDATA_REQ) {
22459 			tcp_output_urgent(connp, mp->b_cont, arg2);
22460 			freeb(mp);
22461 		} else if (type != T_DATA_REQ) {
22462 			goto non_urgent_data;
22463 		} else {
22464 			/* TODO: options, flags, ... from user */
22465 			/* Set length to zero for reclamation below */
22466 			tcp_wput_data(tcp, mp->b_cont, B_TRUE);
22467 			freeb(mp);
22468 		}
22469 		return;
22470 	} else {
22471 		if (tcp->tcp_debug) {
22472 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22473 			    "tcp_wput_proto, dropping one...");
22474 		}
22475 		freemsg(mp);
22476 		return;
22477 	}
22478 
22479 non_urgent_data:
22480 
22481 	switch ((int)tprim->type) {
22482 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
22483 		/*
22484 		 * save the kssl_ent_t from the next block, and convert this
22485 		 * back to a normal bind_req.
22486 		 */
22487 		if (mp->b_cont != NULL) {
22488 			ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
22489 
22490 			if (tcp->tcp_kssl_ent != NULL) {
22491 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
22492 				    KSSL_NO_PROXY);
22493 				tcp->tcp_kssl_ent = NULL;
22494 			}
22495 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
22496 			    sizeof (kssl_ent_t));
22497 			kssl_hold_ent(tcp->tcp_kssl_ent);
22498 			freemsg(mp->b_cont);
22499 			mp->b_cont = NULL;
22500 		}
22501 		tprim->type = T_BIND_REQ;
22502 
22503 	/* FALLTHROUGH */
22504 	case O_T_BIND_REQ:	/* bind request */
22505 	case T_BIND_REQ:	/* new semantics bind request */
22506 		tcp_tpi_bind(tcp, mp);
22507 		break;
22508 	case T_UNBIND_REQ:	/* unbind request */
22509 		tcp_tpi_unbind(tcp, mp);
22510 		break;
22511 	case O_T_CONN_RES:	/* old connection response XXX */
22512 	case T_CONN_RES:	/* connection response */
22513 		tcp_tli_accept(tcp, mp);
22514 		break;
22515 	case T_CONN_REQ:	/* connection request */
22516 		tcp_tpi_connect(tcp, mp);
22517 		break;
22518 	case T_DISCON_REQ:	/* disconnect request */
22519 		tcp_disconnect(tcp, mp);
22520 		break;
22521 	case T_CAPABILITY_REQ:
22522 		tcp_capability_req(tcp, mp);	/* capability request */
22523 		break;
22524 	case T_INFO_REQ:	/* information request */
22525 		tcp_info_req(tcp, mp);
22526 		break;
22527 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
22528 		(void) svr4_optcom_req(tcp->tcp_wq, mp, cr,
22529 		    &tcp_opt_obj, B_TRUE);
22530 		break;
22531 	case T_OPTMGMT_REQ:
22532 		/*
22533 		 * Note:  no support for snmpcom_req() through new
22534 		 * T_OPTMGMT_REQ. See comments in ip.c
22535 		 */
22536 		/* Only IP is allowed to return meaningful value */
22537 		(void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj,
22538 		    B_TRUE);
22539 		break;
22540 
22541 	case T_UNITDATA_REQ:	/* unitdata request */
22542 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22543 		break;
22544 	case T_ORDREL_REQ:	/* orderly release req */
22545 		freemsg(mp);
22546 
22547 		if (tcp->tcp_fused)
22548 			tcp_unfuse(tcp);
22549 
22550 		if (tcp_xmit_end(tcp) != 0) {
22551 			/*
22552 			 * We were crossing FINs and got a reset from
22553 			 * the other side. Just ignore it.
22554 			 */
22555 			if (tcp->tcp_debug) {
22556 				(void) strlog(TCP_MOD_ID, 0, 1,
22557 				    SL_ERROR|SL_TRACE,
22558 				    "tcp_wput_proto, T_ORDREL_REQ out of "
22559 				    "state %s",
22560 				    tcp_display(tcp, NULL,
22561 				    DISP_ADDR_AND_PORT));
22562 			}
22563 		}
22564 		break;
22565 	case T_ADDR_REQ:
22566 		tcp_addr_req(tcp, mp);
22567 		break;
22568 	default:
22569 		if (tcp->tcp_debug) {
22570 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22571 			    "tcp_wput_proto, bogus TPI msg, type %d",
22572 			    tprim->type);
22573 		}
22574 		/*
22575 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
22576 		 * to recover.
22577 		 */
22578 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22579 		break;
22580 	}
22581 }
22582 
22583 /*
22584  * The TCP write service routine should never be called...
22585  */
22586 /* ARGSUSED */
22587 static void
22588 tcp_wsrv(queue_t *q)
22589 {
22590 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
22591 
22592 	TCP_STAT(tcps, tcp_wsrv_called);
22593 }
22594 
22595 /* Non overlapping byte exchanger */
22596 static void
22597 tcp_xchg(uchar_t *a, uchar_t *b, int len)
22598 {
22599 	uchar_t	uch;
22600 
22601 	while (len-- > 0) {
22602 		uch = a[len];
22603 		a[len] = b[len];
22604 		b[len] = uch;
22605 	}
22606 }
22607 
22608 /*
22609  * Send out a control packet on the tcp connection specified.  This routine
22610  * is typically called where we need a simple ACK or RST generated.
22611  */
22612 static void
22613 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
22614 {
22615 	uchar_t		*rptr;
22616 	tcph_t		*tcph;
22617 	ipha_t		*ipha = NULL;
22618 	ip6_t		*ip6h = NULL;
22619 	uint32_t	sum;
22620 	int		tcp_hdr_len;
22621 	int		tcp_ip_hdr_len;
22622 	mblk_t		*mp;
22623 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22624 
22625 	/*
22626 	 * Save sum for use in source route later.
22627 	 */
22628 	ASSERT(tcp != NULL);
22629 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
22630 	tcp_hdr_len = tcp->tcp_hdr_len;
22631 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
22632 
22633 	/* If a text string is passed in with the request, pass it to strlog. */
22634 	if (str != NULL && tcp->tcp_debug) {
22635 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22636 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
22637 		    str, seq, ack, ctl);
22638 	}
22639 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra,
22640 	    BPRI_MED);
22641 	if (mp == NULL) {
22642 		return;
22643 	}
22644 	rptr = &mp->b_rptr[tcps->tcps_wroff_xtra];
22645 	mp->b_rptr = rptr;
22646 	mp->b_wptr = &rptr[tcp_hdr_len];
22647 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
22648 
22649 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22650 		ipha = (ipha_t *)rptr;
22651 		ipha->ipha_length = htons(tcp_hdr_len);
22652 	} else {
22653 		ip6h = (ip6_t *)rptr;
22654 		ASSERT(tcp != NULL);
22655 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
22656 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22657 	}
22658 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
22659 	tcph->th_flags[0] = (uint8_t)ctl;
22660 	if (ctl & TH_RST) {
22661 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22662 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22663 		/*
22664 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
22665 		 */
22666 		if (tcp->tcp_snd_ts_ok &&
22667 		    tcp->tcp_state > TCPS_SYN_SENT) {
22668 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
22669 			*(mp->b_wptr) = TCPOPT_EOL;
22670 			if (tcp->tcp_ipversion == IPV4_VERSION) {
22671 				ipha->ipha_length = htons(tcp_hdr_len -
22672 				    TCPOPT_REAL_TS_LEN);
22673 			} else {
22674 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
22675 				    TCPOPT_REAL_TS_LEN);
22676 			}
22677 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
22678 			sum -= TCPOPT_REAL_TS_LEN;
22679 		}
22680 	}
22681 	if (ctl & TH_ACK) {
22682 		if (tcp->tcp_snd_ts_ok) {
22683 			U32_TO_BE32(lbolt,
22684 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22685 			U32_TO_BE32(tcp->tcp_ts_recent,
22686 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22687 		}
22688 
22689 		/* Update the latest receive window size in TCP header. */
22690 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22691 		    tcph->th_win);
22692 		tcp->tcp_rack = ack;
22693 		tcp->tcp_rack_cnt = 0;
22694 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
22695 	}
22696 	BUMP_LOCAL(tcp->tcp_obsegs);
22697 	U32_TO_BE32(seq, tcph->th_seq);
22698 	U32_TO_BE32(ack, tcph->th_ack);
22699 	/*
22700 	 * Include the adjustment for a source route if any.
22701 	 */
22702 	sum = (sum >> 16) + (sum & 0xFFFF);
22703 	U16_TO_BE16(sum, tcph->th_sum);
22704 	tcp_send_data(tcp, tcp->tcp_wq, mp);
22705 }
22706 
22707 /*
22708  * If this routine returns B_TRUE, TCP can generate a RST in response
22709  * to a segment.  If it returns B_FALSE, TCP should not respond.
22710  */
22711 static boolean_t
22712 tcp_send_rst_chk(tcp_stack_t *tcps)
22713 {
22714 	clock_t	now;
22715 
22716 	/*
22717 	 * TCP needs to protect itself from generating too many RSTs.
22718 	 * This can be a DoS attack by sending us random segments
22719 	 * soliciting RSTs.
22720 	 *
22721 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
22722 	 * in each 1 second interval.  In this way, TCP still generate
22723 	 * RSTs in normal cases but when under attack, the impact is
22724 	 * limited.
22725 	 */
22726 	if (tcps->tcps_rst_sent_rate_enabled != 0) {
22727 		now = lbolt;
22728 		/* lbolt can wrap around. */
22729 		if ((tcps->tcps_last_rst_intrvl > now) ||
22730 		    (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) >
22731 		    1*SECONDS)) {
22732 			tcps->tcps_last_rst_intrvl = now;
22733 			tcps->tcps_rst_cnt = 1;
22734 		} else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) {
22735 			return (B_FALSE);
22736 		}
22737 	}
22738 	return (B_TRUE);
22739 }
22740 
22741 /*
22742  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
22743  */
22744 static void
22745 tcp_ip_ire_mark_advice(tcp_t *tcp)
22746 {
22747 	mblk_t *mp;
22748 	ipic_t *ipic;
22749 
22750 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22751 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22752 		    &ipic);
22753 	} else {
22754 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22755 		    &ipic);
22756 	}
22757 	if (mp == NULL)
22758 		return;
22759 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22760 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22761 }
22762 
22763 /*
22764  * Return an IP advice ioctl mblk and set ipic to be the pointer
22765  * to the advice structure.
22766  */
22767 static mblk_t *
22768 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
22769 {
22770 	struct iocblk *ioc;
22771 	mblk_t *mp, *mp1;
22772 
22773 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
22774 	if (mp == NULL)
22775 		return (NULL);
22776 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
22777 	*ipic = (ipic_t *)mp->b_rptr;
22778 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
22779 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
22780 
22781 	bcopy(addr, *ipic + 1, addr_len);
22782 
22783 	(*ipic)->ipic_addr_length = addr_len;
22784 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
22785 
22786 	mp1 = mkiocb(IP_IOCTL);
22787 	if (mp1 == NULL) {
22788 		freemsg(mp);
22789 		return (NULL);
22790 	}
22791 	mp1->b_cont = mp;
22792 	ioc = (struct iocblk *)mp1->b_rptr;
22793 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
22794 
22795 	return (mp1);
22796 }
22797 
22798 /*
22799  * Generate a reset based on an inbound packet, connp is set by caller
22800  * when RST is in response to an unexpected inbound packet for which
22801  * there is active tcp state in the system.
22802  *
22803  * IPSEC NOTE : Try to send the reply with the same protection as it came
22804  * in.  We still have the ipsec_mp that the packet was attached to. Thus
22805  * the packet will go out at the same level of protection as it came in by
22806  * converting the IPSEC_IN to IPSEC_OUT.
22807  */
22808 static void
22809 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
22810     uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid,
22811     tcp_stack_t *tcps, conn_t *connp)
22812 {
22813 	ipha_t		*ipha = NULL;
22814 	ip6_t		*ip6h = NULL;
22815 	ushort_t	len;
22816 	tcph_t		*tcph;
22817 	int		i;
22818 	mblk_t		*ipsec_mp;
22819 	boolean_t	mctl_present;
22820 	ipic_t		*ipic;
22821 	ipaddr_t	v4addr;
22822 	in6_addr_t	v6addr;
22823 	int		addr_len;
22824 	void		*addr;
22825 	queue_t		*q = tcps->tcps_g_q;
22826 	tcp_t		*tcp;
22827 	cred_t		*cr;
22828 	mblk_t		*nmp;
22829 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
22830 
22831 	if (tcps->tcps_g_q == NULL) {
22832 		/*
22833 		 * For non-zero stackids the default queue isn't created
22834 		 * until the first open, thus there can be a need to send
22835 		 * a reset before then. But we can't do that, hence we just
22836 		 * drop the packet. Later during boot, when the default queue
22837 		 * has been setup, a retransmitted packet from the peer
22838 		 * will result in a reset.
22839 		 */
22840 		ASSERT(tcps->tcps_netstack->netstack_stackid !=
22841 		    GLOBAL_NETSTACKID);
22842 		freemsg(mp);
22843 		return;
22844 	}
22845 
22846 	if (connp != NULL)
22847 		tcp = connp->conn_tcp;
22848 	else
22849 		tcp = Q_TO_TCP(q);
22850 
22851 	if (!tcp_send_rst_chk(tcps)) {
22852 		tcps->tcps_rst_unsent++;
22853 		freemsg(mp);
22854 		return;
22855 	}
22856 
22857 	if (mp->b_datap->db_type == M_CTL) {
22858 		ipsec_mp = mp;
22859 		mp = mp->b_cont;
22860 		mctl_present = B_TRUE;
22861 	} else {
22862 		ipsec_mp = mp;
22863 		mctl_present = B_FALSE;
22864 	}
22865 
22866 	if (str && q && tcps->tcps_dbg) {
22867 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22868 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
22869 		    "flags 0x%x",
22870 		    str, seq, ack, ctl);
22871 	}
22872 	if (mp->b_datap->db_ref != 1) {
22873 		mblk_t *mp1 = copyb(mp);
22874 		freemsg(mp);
22875 		mp = mp1;
22876 		if (!mp) {
22877 			if (mctl_present)
22878 				freeb(ipsec_mp);
22879 			return;
22880 		} else {
22881 			if (mctl_present) {
22882 				ipsec_mp->b_cont = mp;
22883 			} else {
22884 				ipsec_mp = mp;
22885 			}
22886 		}
22887 	} else if (mp->b_cont) {
22888 		freemsg(mp->b_cont);
22889 		mp->b_cont = NULL;
22890 	}
22891 	/*
22892 	 * We skip reversing source route here.
22893 	 * (for now we replace all IP options with EOL)
22894 	 */
22895 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22896 		ipha = (ipha_t *)mp->b_rptr;
22897 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
22898 			mp->b_rptr[i] = IPOPT_EOL;
22899 		/*
22900 		 * Make sure that src address isn't flagrantly invalid.
22901 		 * Not all broadcast address checking for the src address
22902 		 * is possible, since we don't know the netmask of the src
22903 		 * addr.  No check for destination address is done, since
22904 		 * IP will not pass up a packet with a broadcast dest
22905 		 * address to TCP.  Similar checks are done below for IPv6.
22906 		 */
22907 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
22908 		    CLASSD(ipha->ipha_src)) {
22909 			freemsg(ipsec_mp);
22910 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
22911 			return;
22912 		}
22913 	} else {
22914 		ip6h = (ip6_t *)mp->b_rptr;
22915 
22916 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
22917 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
22918 			freemsg(ipsec_mp);
22919 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards);
22920 			return;
22921 		}
22922 
22923 		/* Remove any extension headers assuming partial overlay */
22924 		if (ip_hdr_len > IPV6_HDR_LEN) {
22925 			uint8_t *to;
22926 
22927 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
22928 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
22929 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
22930 			ip_hdr_len = IPV6_HDR_LEN;
22931 			ip6h = (ip6_t *)mp->b_rptr;
22932 			ip6h->ip6_nxt = IPPROTO_TCP;
22933 		}
22934 	}
22935 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
22936 	if (tcph->th_flags[0] & TH_RST) {
22937 		freemsg(ipsec_mp);
22938 		return;
22939 	}
22940 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
22941 	len = ip_hdr_len + sizeof (tcph_t);
22942 	mp->b_wptr = &mp->b_rptr[len];
22943 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22944 		ipha->ipha_length = htons(len);
22945 		/* Swap addresses */
22946 		v4addr = ipha->ipha_src;
22947 		ipha->ipha_src = ipha->ipha_dst;
22948 		ipha->ipha_dst = v4addr;
22949 		ipha->ipha_ident = 0;
22950 		ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
22951 		addr_len = IP_ADDR_LEN;
22952 		addr = &v4addr;
22953 	} else {
22954 		/* No ip6i_t in this case */
22955 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
22956 		/* Swap addresses */
22957 		v6addr = ip6h->ip6_src;
22958 		ip6h->ip6_src = ip6h->ip6_dst;
22959 		ip6h->ip6_dst = v6addr;
22960 		ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit;
22961 		addr_len = IPV6_ADDR_LEN;
22962 		addr = &v6addr;
22963 	}
22964 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
22965 	U32_TO_BE32(ack, tcph->th_ack);
22966 	U32_TO_BE32(seq, tcph->th_seq);
22967 	U16_TO_BE16(0, tcph->th_win);
22968 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
22969 	tcph->th_flags[0] = (uint8_t)ctl;
22970 	if (ctl & TH_RST) {
22971 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22972 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22973 	}
22974 
22975 	/* IP trusts us to set up labels when required. */
22976 	if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL &&
22977 	    crgetlabel(cr) != NULL) {
22978 		int err;
22979 
22980 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION)
22981 			err = tsol_check_label(cr, &mp,
22982 			    tcp->tcp_connp->conn_mac_exempt,
22983 			    tcps->tcps_netstack->netstack_ip);
22984 		else
22985 			err = tsol_check_label_v6(cr, &mp,
22986 			    tcp->tcp_connp->conn_mac_exempt,
22987 			    tcps->tcps_netstack->netstack_ip);
22988 		if (mctl_present)
22989 			ipsec_mp->b_cont = mp;
22990 		else
22991 			ipsec_mp = mp;
22992 		if (err != 0) {
22993 			freemsg(ipsec_mp);
22994 			return;
22995 		}
22996 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22997 			ipha = (ipha_t *)mp->b_rptr;
22998 		} else {
22999 			ip6h = (ip6_t *)mp->b_rptr;
23000 		}
23001 	}
23002 
23003 	if (mctl_present) {
23004 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
23005 
23006 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
23007 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
23008 			return;
23009 		}
23010 	}
23011 	if (zoneid == ALL_ZONES)
23012 		zoneid = GLOBAL_ZONEID;
23013 
23014 	/* Add the zoneid so ip_output routes it properly */
23015 	if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) {
23016 		freemsg(ipsec_mp);
23017 		return;
23018 	}
23019 	ipsec_mp = nmp;
23020 
23021 	/*
23022 	 * NOTE:  one might consider tracing a TCP packet here, but
23023 	 * this function has no active TCP state and no tcp structure
23024 	 * that has a trace buffer.  If we traced here, we would have
23025 	 * to keep a local trace buffer in tcp_record_trace().
23026 	 *
23027 	 * TSol note: The mblk that contains the incoming packet was
23028 	 * reused by tcp_xmit_listener_reset, so it already contains
23029 	 * the right credentials and we don't need to call mblk_setcred.
23030 	 * Also the conn's cred is not right since it is associated
23031 	 * with tcps_g_q.
23032 	 */
23033 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
23034 
23035 	/*
23036 	 * Tell IP to mark the IRE used for this destination temporary.
23037 	 * This way, we can limit our exposure to DoS attack because IP
23038 	 * creates an IRE for each destination.  If there are too many,
23039 	 * the time to do any routing lookup will be extremely long.  And
23040 	 * the lookup can be in interrupt context.
23041 	 *
23042 	 * Note that in normal circumstances, this marking should not
23043 	 * affect anything.  It would be nice if only 1 message is
23044 	 * needed to inform IP that the IRE created for this RST should
23045 	 * not be added to the cache table.  But there is currently
23046 	 * not such communication mechanism between TCP and IP.  So
23047 	 * the best we can do now is to send the advice ioctl to IP
23048 	 * to mark the IRE temporary.
23049 	 */
23050 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
23051 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
23052 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
23053 	}
23054 }
23055 
23056 /*
23057  * Initiate closedown sequence on an active connection.  (May be called as
23058  * writer.)  Return value zero for OK return, non-zero for error return.
23059  */
23060 static int
23061 tcp_xmit_end(tcp_t *tcp)
23062 {
23063 	ipic_t	*ipic;
23064 	mblk_t	*mp;
23065 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23066 
23067 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
23068 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
23069 		/*
23070 		 * Invalid state, only states TCPS_SYN_RCVD,
23071 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
23072 		 */
23073 		return (-1);
23074 	}
23075 
23076 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
23077 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
23078 	/*
23079 	 * If there is nothing more unsent, send the FIN now.
23080 	 * Otherwise, it will go out with the last segment.
23081 	 */
23082 	if (tcp->tcp_unsent == 0) {
23083 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
23084 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
23085 
23086 		if (mp) {
23087 			tcp_send_data(tcp, tcp->tcp_wq, mp);
23088 		} else {
23089 			/*
23090 			 * Couldn't allocate msg.  Pretend we got it out.
23091 			 * Wait for rexmit timeout.
23092 			 */
23093 			tcp->tcp_snxt = tcp->tcp_fss + 1;
23094 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
23095 		}
23096 
23097 		/*
23098 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
23099 		 * changed.
23100 		 */
23101 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
23102 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
23103 		}
23104 	} else {
23105 		/*
23106 		 * If tcp->tcp_cork is set, then the data will not get sent,
23107 		 * so we have to check that and unset it first.
23108 		 */
23109 		if (tcp->tcp_cork)
23110 			tcp->tcp_cork = B_FALSE;
23111 		tcp_wput_data(tcp, NULL, B_FALSE);
23112 	}
23113 
23114 	/*
23115 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
23116 	 * is 0, don't update the cache.
23117 	 */
23118 	if (tcps->tcps_rtt_updates == 0 ||
23119 	    tcp->tcp_rtt_update < tcps->tcps_rtt_updates)
23120 		return (0);
23121 
23122 	/*
23123 	 * NOTE: should not update if source routes i.e. if tcp_remote if
23124 	 * different from the destination.
23125 	 */
23126 	if (tcp->tcp_ipversion == IPV4_VERSION) {
23127 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
23128 			return (0);
23129 		}
23130 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
23131 		    &ipic);
23132 	} else {
23133 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
23134 		    &tcp->tcp_ip6h->ip6_dst))) {
23135 			return (0);
23136 		}
23137 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
23138 		    &ipic);
23139 	}
23140 
23141 	/* Record route attributes in the IRE for use by future connections. */
23142 	if (mp == NULL)
23143 		return (0);
23144 
23145 	/*
23146 	 * We do not have a good algorithm to update ssthresh at this time.
23147 	 * So don't do any update.
23148 	 */
23149 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
23150 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
23151 
23152 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
23153 
23154 	return (0);
23155 }
23156 
23157 /*
23158  * Generate a "no listener here" RST in response to an "unknown" segment.
23159  * connp is set by caller when RST is in response to an unexpected
23160  * inbound packet for which there is active tcp state in the system.
23161  * Note that we are reusing the incoming mp to construct the outgoing RST.
23162  */
23163 void
23164 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid,
23165     tcp_stack_t *tcps, conn_t *connp)
23166 {
23167 	uchar_t		*rptr;
23168 	uint32_t	seg_len;
23169 	tcph_t		*tcph;
23170 	uint32_t	seg_seq;
23171 	uint32_t	seg_ack;
23172 	uint_t		flags;
23173 	mblk_t		*ipsec_mp;
23174 	ipha_t 		*ipha;
23175 	ip6_t 		*ip6h;
23176 	boolean_t	mctl_present = B_FALSE;
23177 	boolean_t	check = B_TRUE;
23178 	boolean_t	policy_present;
23179 	ipsec_stack_t	*ipss = tcps->tcps_netstack->netstack_ipsec;
23180 
23181 	TCP_STAT(tcps, tcp_no_listener);
23182 
23183 	ipsec_mp = mp;
23184 
23185 	if (mp->b_datap->db_type == M_CTL) {
23186 		ipsec_in_t *ii;
23187 
23188 		mctl_present = B_TRUE;
23189 		mp = mp->b_cont;
23190 
23191 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
23192 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
23193 		if (ii->ipsec_in_dont_check) {
23194 			check = B_FALSE;
23195 			if (!ii->ipsec_in_secure) {
23196 				freeb(ipsec_mp);
23197 				mctl_present = B_FALSE;
23198 				ipsec_mp = mp;
23199 			}
23200 		}
23201 	}
23202 
23203 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
23204 		policy_present = ipss->ipsec_inbound_v4_policy_present;
23205 		ipha = (ipha_t *)mp->b_rptr;
23206 		ip6h = NULL;
23207 	} else {
23208 		policy_present = ipss->ipsec_inbound_v6_policy_present;
23209 		ipha = NULL;
23210 		ip6h = (ip6_t *)mp->b_rptr;
23211 	}
23212 
23213 	if (check && policy_present) {
23214 		/*
23215 		 * The conn_t parameter is NULL because we already know
23216 		 * nobody's home.
23217 		 */
23218 		ipsec_mp = ipsec_check_global_policy(
23219 		    ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present,
23220 		    tcps->tcps_netstack);
23221 		if (ipsec_mp == NULL)
23222 			return;
23223 	}
23224 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
23225 		DTRACE_PROBE2(
23226 		    tx__ip__log__error__nolistener__tcp,
23227 		    char *, "Could not reply with RST to mp(1)",
23228 		    mblk_t *, mp);
23229 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
23230 		freemsg(ipsec_mp);
23231 		return;
23232 	}
23233 
23234 	rptr = mp->b_rptr;
23235 
23236 	tcph = (tcph_t *)&rptr[ip_hdr_len];
23237 	seg_seq = BE32_TO_U32(tcph->th_seq);
23238 	seg_ack = BE32_TO_U32(tcph->th_ack);
23239 	flags = tcph->th_flags[0];
23240 
23241 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
23242 	if (flags & TH_RST) {
23243 		freemsg(ipsec_mp);
23244 	} else if (flags & TH_ACK) {
23245 		tcp_xmit_early_reset("no tcp, reset",
23246 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps,
23247 		    connp);
23248 	} else {
23249 		if (flags & TH_SYN) {
23250 			seg_len++;
23251 		} else {
23252 			/*
23253 			 * Here we violate the RFC.  Note that a normal
23254 			 * TCP will never send a segment without the ACK
23255 			 * flag, except for RST or SYN segment.  This
23256 			 * segment is neither.  Just drop it on the
23257 			 * floor.
23258 			 */
23259 			freemsg(ipsec_mp);
23260 			tcps->tcps_rst_unsent++;
23261 			return;
23262 		}
23263 
23264 		tcp_xmit_early_reset("no tcp, reset/ack",
23265 		    ipsec_mp, 0, seg_seq + seg_len,
23266 		    TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp);
23267 	}
23268 }
23269 
23270 /*
23271  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
23272  * ip and tcp header ready to pass down to IP.  If the mp passed in is
23273  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
23274  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
23275  * otherwise it will dup partial mblks.)
23276  * Otherwise, an appropriate ACK packet will be generated.  This
23277  * routine is not usually called to send new data for the first time.  It
23278  * is mostly called out of the timer for retransmits, and to generate ACKs.
23279  *
23280  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
23281  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
23282  * of the original mblk chain will be returned in *offset and *end_mp.
23283  */
23284 mblk_t *
23285 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
23286     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
23287     boolean_t rexmit)
23288 {
23289 	int	data_length;
23290 	int32_t	off = 0;
23291 	uint_t	flags;
23292 	mblk_t	*mp1;
23293 	mblk_t	*mp2;
23294 	uchar_t	*rptr;
23295 	tcph_t	*tcph;
23296 	int32_t	num_sack_blk = 0;
23297 	int32_t	sack_opt_len = 0;
23298 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23299 
23300 	/* Allocate for our maximum TCP header + link-level */
23301 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
23302 	    tcps->tcps_wroff_xtra, BPRI_MED);
23303 	if (!mp1)
23304 		return (NULL);
23305 	data_length = 0;
23306 
23307 	/*
23308 	 * Note that tcp_mss has been adjusted to take into account the
23309 	 * timestamp option if applicable.  Because SACK options do not
23310 	 * appear in every TCP segments and they are of variable lengths,
23311 	 * they cannot be included in tcp_mss.  Thus we need to calculate
23312 	 * the actual segment length when we need to send a segment which
23313 	 * includes SACK options.
23314 	 */
23315 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23316 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23317 		    tcp->tcp_num_sack_blk);
23318 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23319 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23320 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
23321 			max_to_send -= sack_opt_len;
23322 	}
23323 
23324 	if (offset != NULL) {
23325 		off = *offset;
23326 		/* We use offset as an indicator that end_mp is not NULL. */
23327 		*end_mp = NULL;
23328 	}
23329 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
23330 		/* This could be faster with cooperation from downstream */
23331 		if (mp2 != mp1 && !sendall &&
23332 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
23333 		    max_to_send)
23334 			/*
23335 			 * Don't send the next mblk since the whole mblk
23336 			 * does not fit.
23337 			 */
23338 			break;
23339 		mp2->b_cont = dupb(mp);
23340 		mp2 = mp2->b_cont;
23341 		if (!mp2) {
23342 			freemsg(mp1);
23343 			return (NULL);
23344 		}
23345 		mp2->b_rptr += off;
23346 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
23347 		    (uintptr_t)INT_MAX);
23348 
23349 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
23350 		if (data_length > max_to_send) {
23351 			mp2->b_wptr -= data_length - max_to_send;
23352 			data_length = max_to_send;
23353 			off = mp2->b_wptr - mp->b_rptr;
23354 			break;
23355 		} else {
23356 			off = 0;
23357 		}
23358 	}
23359 	if (offset != NULL) {
23360 		*offset = off;
23361 		*end_mp = mp;
23362 	}
23363 	if (seg_len != NULL) {
23364 		*seg_len = data_length;
23365 	}
23366 
23367 	/* Update the latest receive window size in TCP header. */
23368 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23369 	    tcp->tcp_tcph->th_win);
23370 
23371 	rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23372 	mp1->b_rptr = rptr;
23373 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
23374 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23375 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23376 	U32_TO_ABE32(seq, tcph->th_seq);
23377 
23378 	/*
23379 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
23380 	 * that this function was called from tcp_wput_data. Thus, when called
23381 	 * to retransmit data the setting of the PUSH bit may appear some
23382 	 * what random in that it might get set when it should not. This
23383 	 * should not pose any performance issues.
23384 	 */
23385 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
23386 	    tcp->tcp_unsent == data_length)) {
23387 		flags = TH_ACK | TH_PUSH;
23388 	} else {
23389 		flags = TH_ACK;
23390 	}
23391 
23392 	if (tcp->tcp_ecn_ok) {
23393 		if (tcp->tcp_ecn_echo_on)
23394 			flags |= TH_ECE;
23395 
23396 		/*
23397 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
23398 		 * There is no TCP flow control for non-data segments, and
23399 		 * only data segment is transmitted reliably.
23400 		 */
23401 		if (data_length > 0 && !rexmit) {
23402 			SET_ECT(tcp, rptr);
23403 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
23404 				flags |= TH_CWR;
23405 				tcp->tcp_ecn_cwr_sent = B_TRUE;
23406 			}
23407 		}
23408 	}
23409 
23410 	if (tcp->tcp_valid_bits) {
23411 		uint32_t u1;
23412 
23413 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
23414 		    seq == tcp->tcp_iss) {
23415 			uchar_t	*wptr;
23416 
23417 			/*
23418 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
23419 			 * TCP can only be in SYN-SENT, SYN-RCVD or
23420 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
23421 			 * our SYN is not ack'ed but the app closes this
23422 			 * TCP connection.
23423 			 */
23424 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
23425 			    tcp->tcp_state == TCPS_SYN_RCVD ||
23426 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
23427 
23428 			/*
23429 			 * Tack on the MSS option.  It is always needed
23430 			 * for both active and passive open.
23431 			 *
23432 			 * MSS option value should be interface MTU - MIN
23433 			 * TCP/IP header according to RFC 793 as it means
23434 			 * the maximum segment size TCP can receive.  But
23435 			 * to get around some broken middle boxes/end hosts
23436 			 * out there, we allow the option value to be the
23437 			 * same as the MSS option size on the peer side.
23438 			 * In this way, the other side will not send
23439 			 * anything larger than they can receive.
23440 			 *
23441 			 * Note that for SYN_SENT state, the ndd param
23442 			 * tcp_use_smss_as_mss_opt has no effect as we
23443 			 * don't know the peer's MSS option value. So
23444 			 * the only case we need to take care of is in
23445 			 * SYN_RCVD state, which is done later.
23446 			 */
23447 			wptr = mp1->b_wptr;
23448 			wptr[0] = TCPOPT_MAXSEG;
23449 			wptr[1] = TCPOPT_MAXSEG_LEN;
23450 			wptr += 2;
23451 			u1 = tcp->tcp_if_mtu -
23452 			    (tcp->tcp_ipversion == IPV4_VERSION ?
23453 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
23454 			    TCP_MIN_HEADER_LENGTH;
23455 			U16_TO_BE16(u1, wptr);
23456 			mp1->b_wptr = wptr + 2;
23457 			/* Update the offset to cover the additional word */
23458 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
23459 
23460 			/*
23461 			 * Note that the following way of filling in
23462 			 * TCP options are not optimal.  Some NOPs can
23463 			 * be saved.  But there is no need at this time
23464 			 * to optimize it.  When it is needed, we will
23465 			 * do it.
23466 			 */
23467 			switch (tcp->tcp_state) {
23468 			case TCPS_SYN_SENT:
23469 				flags = TH_SYN;
23470 
23471 				if (tcp->tcp_snd_ts_ok) {
23472 					uint32_t llbolt = (uint32_t)lbolt;
23473 
23474 					wptr = mp1->b_wptr;
23475 					wptr[0] = TCPOPT_NOP;
23476 					wptr[1] = TCPOPT_NOP;
23477 					wptr[2] = TCPOPT_TSTAMP;
23478 					wptr[3] = TCPOPT_TSTAMP_LEN;
23479 					wptr += 4;
23480 					U32_TO_BE32(llbolt, wptr);
23481 					wptr += 4;
23482 					ASSERT(tcp->tcp_ts_recent == 0);
23483 					U32_TO_BE32(0L, wptr);
23484 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
23485 					tcph->th_offset_and_rsrvd[0] +=
23486 					    (3 << 4);
23487 				}
23488 
23489 				/*
23490 				 * Set up all the bits to tell other side
23491 				 * we are ECN capable.
23492 				 */
23493 				if (tcp->tcp_ecn_ok) {
23494 					flags |= (TH_ECE | TH_CWR);
23495 				}
23496 				break;
23497 			case TCPS_SYN_RCVD:
23498 				flags |= TH_SYN;
23499 
23500 				/*
23501 				 * Reset the MSS option value to be SMSS
23502 				 * We should probably add back the bytes
23503 				 * for timestamp option and IPsec.  We
23504 				 * don't do that as this is a workaround
23505 				 * for broken middle boxes/end hosts, it
23506 				 * is better for us to be more cautious.
23507 				 * They may not take these things into
23508 				 * account in their SMSS calculation.  Thus
23509 				 * the peer's calculated SMSS may be smaller
23510 				 * than what it can be.  This should be OK.
23511 				 */
23512 				if (tcps->tcps_use_smss_as_mss_opt) {
23513 					u1 = tcp->tcp_mss;
23514 					U16_TO_BE16(u1, wptr);
23515 				}
23516 
23517 				/*
23518 				 * If the other side is ECN capable, reply
23519 				 * that we are also ECN capable.
23520 				 */
23521 				if (tcp->tcp_ecn_ok)
23522 					flags |= TH_ECE;
23523 				break;
23524 			default:
23525 				/*
23526 				 * The above ASSERT() makes sure that this
23527 				 * must be FIN-WAIT-1 state.  Our SYN has
23528 				 * not been ack'ed so retransmit it.
23529 				 */
23530 				flags |= TH_SYN;
23531 				break;
23532 			}
23533 
23534 			if (tcp->tcp_snd_ws_ok) {
23535 				wptr = mp1->b_wptr;
23536 				wptr[0] =  TCPOPT_NOP;
23537 				wptr[1] =  TCPOPT_WSCALE;
23538 				wptr[2] =  TCPOPT_WS_LEN;
23539 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
23540 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
23541 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23542 			}
23543 
23544 			if (tcp->tcp_snd_sack_ok) {
23545 				wptr = mp1->b_wptr;
23546 				wptr[0] = TCPOPT_NOP;
23547 				wptr[1] = TCPOPT_NOP;
23548 				wptr[2] = TCPOPT_SACK_PERMITTED;
23549 				wptr[3] = TCPOPT_SACK_OK_LEN;
23550 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
23551 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23552 			}
23553 
23554 			/* allocb() of adequate mblk assures space */
23555 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
23556 			    (uintptr_t)INT_MAX);
23557 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
23558 			/*
23559 			 * Get IP set to checksum on our behalf
23560 			 * Include the adjustment for a source route if any.
23561 			 */
23562 			u1 += tcp->tcp_sum;
23563 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
23564 			U16_TO_BE16(u1, tcph->th_sum);
23565 			BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23566 		}
23567 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
23568 		    (seq + data_length) == tcp->tcp_fss) {
23569 			if (!tcp->tcp_fin_acked) {
23570 				flags |= TH_FIN;
23571 				BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23572 			}
23573 			if (!tcp->tcp_fin_sent) {
23574 				tcp->tcp_fin_sent = B_TRUE;
23575 				switch (tcp->tcp_state) {
23576 				case TCPS_SYN_RCVD:
23577 				case TCPS_ESTABLISHED:
23578 					tcp->tcp_state = TCPS_FIN_WAIT_1;
23579 					break;
23580 				case TCPS_CLOSE_WAIT:
23581 					tcp->tcp_state = TCPS_LAST_ACK;
23582 					break;
23583 				}
23584 				if (tcp->tcp_suna == tcp->tcp_snxt)
23585 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
23586 				tcp->tcp_snxt = tcp->tcp_fss + 1;
23587 			}
23588 		}
23589 		/*
23590 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
23591 		 * is smaller than seq, u1 will become a very huge value.
23592 		 * So the comparison will fail.  Also note that tcp_urp
23593 		 * should be positive, see RFC 793 page 17.
23594 		 */
23595 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
23596 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
23597 		    u1 < (uint32_t)(64 * 1024)) {
23598 			flags |= TH_URG;
23599 			BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
23600 			U32_TO_ABE16(u1, tcph->th_urp);
23601 		}
23602 	}
23603 	tcph->th_flags[0] = (uchar_t)flags;
23604 	tcp->tcp_rack = tcp->tcp_rnxt;
23605 	tcp->tcp_rack_cnt = 0;
23606 
23607 	if (tcp->tcp_snd_ts_ok) {
23608 		if (tcp->tcp_state != TCPS_SYN_SENT) {
23609 			uint32_t llbolt = (uint32_t)lbolt;
23610 
23611 			U32_TO_BE32(llbolt,
23612 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23613 			U32_TO_BE32(tcp->tcp_ts_recent,
23614 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23615 		}
23616 	}
23617 
23618 	if (num_sack_blk > 0) {
23619 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23620 		sack_blk_t *tmp;
23621 		int32_t	i;
23622 
23623 		wptr[0] = TCPOPT_NOP;
23624 		wptr[1] = TCPOPT_NOP;
23625 		wptr[2] = TCPOPT_SACK;
23626 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23627 		    sizeof (sack_blk_t);
23628 		wptr += TCPOPT_REAL_SACK_LEN;
23629 
23630 		tmp = tcp->tcp_sack_list;
23631 		for (i = 0; i < num_sack_blk; i++) {
23632 			U32_TO_BE32(tmp[i].begin, wptr);
23633 			wptr += sizeof (tcp_seq);
23634 			U32_TO_BE32(tmp[i].end, wptr);
23635 			wptr += sizeof (tcp_seq);
23636 		}
23637 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
23638 	}
23639 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
23640 	data_length += (int)(mp1->b_wptr - rptr);
23641 	if (tcp->tcp_ipversion == IPV4_VERSION) {
23642 		((ipha_t *)rptr)->ipha_length = htons(data_length);
23643 	} else {
23644 		ip6_t *ip6 = (ip6_t *)(rptr +
23645 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23646 		    sizeof (ip6i_t) : 0));
23647 
23648 		ip6->ip6_plen = htons(data_length -
23649 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23650 	}
23651 
23652 	/*
23653 	 * Prime pump for IP
23654 	 * Include the adjustment for a source route if any.
23655 	 */
23656 	data_length -= tcp->tcp_ip_hdr_len;
23657 	data_length += tcp->tcp_sum;
23658 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
23659 	U16_TO_ABE16(data_length, tcph->th_sum);
23660 	if (tcp->tcp_ip_forward_progress) {
23661 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23662 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23663 		tcp->tcp_ip_forward_progress = B_FALSE;
23664 	}
23665 	return (mp1);
23666 }
23667 
23668 /* This function handles the push timeout. */
23669 void
23670 tcp_push_timer(void *arg)
23671 {
23672 	conn_t	*connp = (conn_t *)arg;
23673 	tcp_t *tcp = connp->conn_tcp;
23674 	uint_t		flags;
23675 	sodirect_t	*sodp;
23676 
23677 	TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt);
23678 
23679 	ASSERT(tcp->tcp_listener == NULL);
23680 
23681 	ASSERT(!IPCL_IS_NONSTR(connp));
23682 
23683 	/*
23684 	 * We need to plug synchronous streams during our drain to prevent
23685 	 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop().
23686 	 */
23687 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
23688 	tcp->tcp_push_tid = 0;
23689 
23690 	SOD_PTR_ENTER(tcp, sodp);
23691 	if (sodp != NULL) {
23692 		flags = tcp_rcv_sod_wakeup(tcp, sodp);
23693 		/* sod_wakeup() does the mutex_exit() */
23694 	} else if (tcp->tcp_rcv_list != NULL) {
23695 		flags = tcp_rcv_drain(tcp);
23696 	}
23697 	if (flags == TH_ACK_NEEDED)
23698 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
23699 
23700 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
23701 }
23702 
23703 /*
23704  * This function handles delayed ACK timeout.
23705  */
23706 static void
23707 tcp_ack_timer(void *arg)
23708 {
23709 	conn_t	*connp = (conn_t *)arg;
23710 	tcp_t *tcp = connp->conn_tcp;
23711 	mblk_t *mp;
23712 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23713 
23714 	TCP_DBGSTAT(tcps, tcp_ack_timer_cnt);
23715 
23716 	tcp->tcp_ack_tid = 0;
23717 
23718 	if (tcp->tcp_fused)
23719 		return;
23720 
23721 	/*
23722 	 * Do not send ACK if there is no outstanding unack'ed data.
23723 	 */
23724 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
23725 		return;
23726 	}
23727 
23728 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
23729 		/*
23730 		 * Make sure we don't allow deferred ACKs to result in
23731 		 * timer-based ACKing.  If we have held off an ACK
23732 		 * when there was more than an mss here, and the timer
23733 		 * goes off, we have to worry about the possibility
23734 		 * that the sender isn't doing slow-start, or is out
23735 		 * of step with us for some other reason.  We fall
23736 		 * permanently back in the direction of
23737 		 * ACK-every-other-packet as suggested in RFC 1122.
23738 		 */
23739 		if (tcp->tcp_rack_abs_max > 2)
23740 			tcp->tcp_rack_abs_max--;
23741 		tcp->tcp_rack_cur_max = 2;
23742 	}
23743 	mp = tcp_ack_mp(tcp);
23744 
23745 	if (mp != NULL) {
23746 		BUMP_LOCAL(tcp->tcp_obsegs);
23747 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
23748 		BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed);
23749 		tcp_send_data(tcp, tcp->tcp_wq, mp);
23750 	}
23751 }
23752 
23753 
23754 /* Generate an ACK-only (no data) segment for a TCP endpoint */
23755 static mblk_t *
23756 tcp_ack_mp(tcp_t *tcp)
23757 {
23758 	uint32_t	seq_no;
23759 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23760 
23761 	/*
23762 	 * There are a few cases to be considered while setting the sequence no.
23763 	 * Essentially, we can come here while processing an unacceptable pkt
23764 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
23765 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
23766 	 * If we are here for a zero window probe, stick with suna. In all
23767 	 * other cases, we check if suna + swnd encompasses snxt and set
23768 	 * the sequence number to snxt, if so. If snxt falls outside the
23769 	 * window (the receiver probably shrunk its window), we will go with
23770 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
23771 	 * receiver.
23772 	 */
23773 	if (tcp->tcp_zero_win_probe) {
23774 		seq_no = tcp->tcp_suna;
23775 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
23776 		ASSERT(tcp->tcp_swnd == 0);
23777 		seq_no = tcp->tcp_snxt;
23778 	} else {
23779 		seq_no = SEQ_GT(tcp->tcp_snxt,
23780 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
23781 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
23782 	}
23783 
23784 	if (tcp->tcp_valid_bits) {
23785 		/*
23786 		 * For the complex case where we have to send some
23787 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
23788 		 */
23789 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
23790 		    NULL, B_FALSE));
23791 	} else {
23792 		/* Generate a simple ACK */
23793 		int	data_length;
23794 		uchar_t	*rptr;
23795 		tcph_t	*tcph;
23796 		mblk_t	*mp1;
23797 		int32_t	tcp_hdr_len;
23798 		int32_t	tcp_tcp_hdr_len;
23799 		int32_t	num_sack_blk = 0;
23800 		int32_t sack_opt_len;
23801 
23802 		/*
23803 		 * Allocate space for TCP + IP headers
23804 		 * and link-level header
23805 		 */
23806 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23807 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23808 			    tcp->tcp_num_sack_blk);
23809 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23810 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23811 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
23812 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
23813 		} else {
23814 			tcp_hdr_len = tcp->tcp_hdr_len;
23815 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
23816 		}
23817 		mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
23818 		if (!mp1)
23819 			return (NULL);
23820 
23821 		/* Update the latest receive window size in TCP header. */
23822 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23823 		    tcp->tcp_tcph->th_win);
23824 		/* copy in prototype TCP + IP header */
23825 		rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23826 		mp1->b_rptr = rptr;
23827 		mp1->b_wptr = rptr + tcp_hdr_len;
23828 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23829 
23830 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23831 
23832 		/* Set the TCP sequence number. */
23833 		U32_TO_ABE32(seq_no, tcph->th_seq);
23834 
23835 		/* Set up the TCP flag field. */
23836 		tcph->th_flags[0] = (uchar_t)TH_ACK;
23837 		if (tcp->tcp_ecn_echo_on)
23838 			tcph->th_flags[0] |= TH_ECE;
23839 
23840 		tcp->tcp_rack = tcp->tcp_rnxt;
23841 		tcp->tcp_rack_cnt = 0;
23842 
23843 		/* fill in timestamp option if in use */
23844 		if (tcp->tcp_snd_ts_ok) {
23845 			uint32_t llbolt = (uint32_t)lbolt;
23846 
23847 			U32_TO_BE32(llbolt,
23848 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23849 			U32_TO_BE32(tcp->tcp_ts_recent,
23850 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23851 		}
23852 
23853 		/* Fill in SACK options */
23854 		if (num_sack_blk > 0) {
23855 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23856 			sack_blk_t *tmp;
23857 			int32_t	i;
23858 
23859 			wptr[0] = TCPOPT_NOP;
23860 			wptr[1] = TCPOPT_NOP;
23861 			wptr[2] = TCPOPT_SACK;
23862 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23863 			    sizeof (sack_blk_t);
23864 			wptr += TCPOPT_REAL_SACK_LEN;
23865 
23866 			tmp = tcp->tcp_sack_list;
23867 			for (i = 0; i < num_sack_blk; i++) {
23868 				U32_TO_BE32(tmp[i].begin, wptr);
23869 				wptr += sizeof (tcp_seq);
23870 				U32_TO_BE32(tmp[i].end, wptr);
23871 				wptr += sizeof (tcp_seq);
23872 			}
23873 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
23874 			    << 4);
23875 		}
23876 
23877 		if (tcp->tcp_ipversion == IPV4_VERSION) {
23878 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
23879 		} else {
23880 			/* Check for ip6i_t header in sticky hdrs */
23881 			ip6_t *ip6 = (ip6_t *)(rptr +
23882 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23883 			    sizeof (ip6i_t) : 0));
23884 
23885 			ip6->ip6_plen = htons(tcp_hdr_len -
23886 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23887 		}
23888 
23889 		/*
23890 		 * Prime pump for checksum calculation in IP.  Include the
23891 		 * adjustment for a source route if any.
23892 		 */
23893 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
23894 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
23895 		U16_TO_ABE16(data_length, tcph->th_sum);
23896 
23897 		if (tcp->tcp_ip_forward_progress) {
23898 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23899 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23900 			tcp->tcp_ip_forward_progress = B_FALSE;
23901 		}
23902 		return (mp1);
23903 	}
23904 }
23905 
23906 /*
23907  * Hash list insertion routine for tcp_t structures. Each hash bucket
23908  * contains a list of tcp_t entries, and each entry is bound to a unique
23909  * port. If there are multiple tcp_t's that are bound to the same port, then
23910  * one of them will be linked into the hash bucket list, and the rest will
23911  * hang off of that one entry. For each port, entries bound to a specific IP
23912  * address will be inserted before those those bound to INADDR_ANY.
23913  */
23914 static void
23915 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
23916 {
23917 	tcp_t	**tcpp;
23918 	tcp_t	*tcpnext;
23919 	tcp_t	*tcphash;
23920 
23921 	if (tcp->tcp_ptpbhn != NULL) {
23922 		ASSERT(!caller_holds_lock);
23923 		tcp_bind_hash_remove(tcp);
23924 	}
23925 	tcpp = &tbf->tf_tcp;
23926 	if (!caller_holds_lock) {
23927 		mutex_enter(&tbf->tf_lock);
23928 	} else {
23929 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
23930 	}
23931 	tcphash = tcpp[0];
23932 	tcpnext = NULL;
23933 	if (tcphash != NULL) {
23934 		/* Look for an entry using the same port */
23935 		while ((tcphash = tcpp[0]) != NULL &&
23936 		    tcp->tcp_lport != tcphash->tcp_lport)
23937 			tcpp = &(tcphash->tcp_bind_hash);
23938 
23939 		/* The port was not found, just add to the end */
23940 		if (tcphash == NULL)
23941 			goto insert;
23942 
23943 		/*
23944 		 * OK, there already exists an entry bound to the
23945 		 * same port.
23946 		 *
23947 		 * If the new tcp bound to the INADDR_ANY address
23948 		 * and the first one in the list is not bound to
23949 		 * INADDR_ANY we skip all entries until we find the
23950 		 * first one bound to INADDR_ANY.
23951 		 * This makes sure that applications binding to a
23952 		 * specific address get preference over those binding to
23953 		 * INADDR_ANY.
23954 		 */
23955 		tcpnext = tcphash;
23956 		tcphash = NULL;
23957 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
23958 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
23959 			while ((tcpnext = tcpp[0]) != NULL &&
23960 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
23961 				tcpp = &(tcpnext->tcp_bind_hash_port);
23962 
23963 			if (tcpnext) {
23964 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port;
23965 				tcphash = tcpnext->tcp_bind_hash;
23966 				if (tcphash != NULL) {
23967 					tcphash->tcp_ptpbhn =
23968 					    &(tcp->tcp_bind_hash);
23969 					tcpnext->tcp_bind_hash = NULL;
23970 				}
23971 			}
23972 		} else {
23973 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port;
23974 			tcphash = tcpnext->tcp_bind_hash;
23975 			if (tcphash != NULL) {
23976 				tcphash->tcp_ptpbhn =
23977 				    &(tcp->tcp_bind_hash);
23978 				tcpnext->tcp_bind_hash = NULL;
23979 			}
23980 		}
23981 	}
23982 insert:
23983 	tcp->tcp_bind_hash_port = tcpnext;
23984 	tcp->tcp_bind_hash = tcphash;
23985 	tcp->tcp_ptpbhn = tcpp;
23986 	tcpp[0] = tcp;
23987 	if (!caller_holds_lock)
23988 		mutex_exit(&tbf->tf_lock);
23989 }
23990 
23991 /*
23992  * Hash list removal routine for tcp_t structures.
23993  */
23994 static void
23995 tcp_bind_hash_remove(tcp_t *tcp)
23996 {
23997 	tcp_t	*tcpnext;
23998 	kmutex_t *lockp;
23999 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24000 
24001 	if (tcp->tcp_ptpbhn == NULL)
24002 		return;
24003 
24004 	/*
24005 	 * Extract the lock pointer in case there are concurrent
24006 	 * hash_remove's for this instance.
24007 	 */
24008 	ASSERT(tcp->tcp_lport != 0);
24009 	lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
24010 
24011 	ASSERT(lockp != NULL);
24012 	mutex_enter(lockp);
24013 	if (tcp->tcp_ptpbhn) {
24014 		tcpnext = tcp->tcp_bind_hash_port;
24015 		if (tcpnext != NULL) {
24016 			tcp->tcp_bind_hash_port = NULL;
24017 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
24018 			tcpnext->tcp_bind_hash = tcp->tcp_bind_hash;
24019 			if (tcpnext->tcp_bind_hash != NULL) {
24020 				tcpnext->tcp_bind_hash->tcp_ptpbhn =
24021 				    &(tcpnext->tcp_bind_hash);
24022 				tcp->tcp_bind_hash = NULL;
24023 			}
24024 		} else if ((tcpnext = tcp->tcp_bind_hash) != NULL) {
24025 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
24026 			tcp->tcp_bind_hash = NULL;
24027 		}
24028 		*tcp->tcp_ptpbhn = tcpnext;
24029 		tcp->tcp_ptpbhn = NULL;
24030 	}
24031 	mutex_exit(lockp);
24032 }
24033 
24034 
24035 /*
24036  * Hash list lookup routine for tcp_t structures.
24037  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
24038  */
24039 static tcp_t *
24040 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
24041 {
24042 	tf_t	*tf;
24043 	tcp_t	*tcp;
24044 
24045 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
24046 	mutex_enter(&tf->tf_lock);
24047 	for (tcp = tf->tf_tcp; tcp != NULL;
24048 	    tcp = tcp->tcp_acceptor_hash) {
24049 		if (tcp->tcp_acceptor_id == id) {
24050 			CONN_INC_REF(tcp->tcp_connp);
24051 			mutex_exit(&tf->tf_lock);
24052 			return (tcp);
24053 		}
24054 	}
24055 	mutex_exit(&tf->tf_lock);
24056 	return (NULL);
24057 }
24058 
24059 
24060 /*
24061  * Hash list insertion routine for tcp_t structures.
24062  */
24063 void
24064 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
24065 {
24066 	tf_t	*tf;
24067 	tcp_t	**tcpp;
24068 	tcp_t	*tcpnext;
24069 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24070 
24071 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
24072 
24073 	if (tcp->tcp_ptpahn != NULL)
24074 		tcp_acceptor_hash_remove(tcp);
24075 	tcpp = &tf->tf_tcp;
24076 	mutex_enter(&tf->tf_lock);
24077 	tcpnext = tcpp[0];
24078 	if (tcpnext)
24079 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
24080 	tcp->tcp_acceptor_hash = tcpnext;
24081 	tcp->tcp_ptpahn = tcpp;
24082 	tcpp[0] = tcp;
24083 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
24084 	mutex_exit(&tf->tf_lock);
24085 }
24086 
24087 /*
24088  * Hash list removal routine for tcp_t structures.
24089  */
24090 static void
24091 tcp_acceptor_hash_remove(tcp_t *tcp)
24092 {
24093 	tcp_t	*tcpnext;
24094 	kmutex_t *lockp;
24095 
24096 	/*
24097 	 * Extract the lock pointer in case there are concurrent
24098 	 * hash_remove's for this instance.
24099 	 */
24100 	lockp = tcp->tcp_acceptor_lockp;
24101 
24102 	if (tcp->tcp_ptpahn == NULL)
24103 		return;
24104 
24105 	ASSERT(lockp != NULL);
24106 	mutex_enter(lockp);
24107 	if (tcp->tcp_ptpahn) {
24108 		tcpnext = tcp->tcp_acceptor_hash;
24109 		if (tcpnext) {
24110 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
24111 			tcp->tcp_acceptor_hash = NULL;
24112 		}
24113 		*tcp->tcp_ptpahn = tcpnext;
24114 		tcp->tcp_ptpahn = NULL;
24115 	}
24116 	mutex_exit(lockp);
24117 	tcp->tcp_acceptor_lockp = NULL;
24118 }
24119 
24120 /* Data for fast netmask macro used by tcp_hsp_lookup */
24121 
24122 static ipaddr_t netmasks[] = {
24123 	IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET,
24124 	IN_CLASSC_NET | IN_CLASSD_NET  /* Class C,D,E */
24125 };
24126 
24127 #define	netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30])
24128 
24129 /*
24130  * XXX This routine should go away and instead we should use the metrics
24131  * associated with the routes to determine the default sndspace and rcvspace.
24132  */
24133 static tcp_hsp_t *
24134 tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *tcps)
24135 {
24136 	tcp_hsp_t *hsp = NULL;
24137 
24138 	/* Quick check without acquiring the lock. */
24139 	if (tcps->tcps_hsp_hash == NULL)
24140 		return (NULL);
24141 
24142 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24143 
24144 	/* This routine finds the best-matching HSP for address addr. */
24145 
24146 	if (tcps->tcps_hsp_hash) {
24147 		int i;
24148 		ipaddr_t srchaddr;
24149 		tcp_hsp_t *hsp_net;
24150 
24151 		/* We do three passes: host, network, and subnet. */
24152 
24153 		srchaddr = addr;
24154 
24155 		for (i = 1; i <= 3; i++) {
24156 			/* Look for exact match on srchaddr */
24157 
24158 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(srchaddr)];
24159 			while (hsp) {
24160 				if (hsp->tcp_hsp_vers == IPV4_VERSION &&
24161 				    hsp->tcp_hsp_addr == srchaddr)
24162 					break;
24163 				hsp = hsp->tcp_hsp_next;
24164 			}
24165 			ASSERT(hsp == NULL ||
24166 			    hsp->tcp_hsp_vers == IPV4_VERSION);
24167 
24168 			/*
24169 			 * If this is the first pass:
24170 			 *   If we found a match, great, return it.
24171 			 *   If not, search for the network on the second pass.
24172 			 */
24173 
24174 			if (i == 1)
24175 				if (hsp)
24176 					break;
24177 				else
24178 				{
24179 					srchaddr = addr & netmask(addr);
24180 					continue;
24181 				}
24182 
24183 			/*
24184 			 * If this is the second pass:
24185 			 *   If we found a match, but there's a subnet mask,
24186 			 *    save the match but try again using the subnet
24187 			 *    mask on the third pass.
24188 			 *   Otherwise, return whatever we found.
24189 			 */
24190 
24191 			if (i == 2) {
24192 				if (hsp && hsp->tcp_hsp_subnet) {
24193 					hsp_net = hsp;
24194 					srchaddr = addr & hsp->tcp_hsp_subnet;
24195 					continue;
24196 				} else {
24197 					break;
24198 				}
24199 			}
24200 
24201 			/*
24202 			 * This must be the third pass.  If we didn't find
24203 			 * anything, return the saved network HSP instead.
24204 			 */
24205 
24206 			if (!hsp)
24207 				hsp = hsp_net;
24208 		}
24209 	}
24210 
24211 	rw_exit(&tcps->tcps_hsp_lock);
24212 	return (hsp);
24213 }
24214 
24215 /*
24216  * XXX Equally broken as the IPv4 routine. Doesn't handle longest
24217  * match lookup.
24218  */
24219 static tcp_hsp_t *
24220 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr, tcp_stack_t *tcps)
24221 {
24222 	tcp_hsp_t *hsp = NULL;
24223 
24224 	/* Quick check without acquiring the lock. */
24225 	if (tcps->tcps_hsp_hash == NULL)
24226 		return (NULL);
24227 
24228 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24229 
24230 	/* This routine finds the best-matching HSP for address addr. */
24231 
24232 	if (tcps->tcps_hsp_hash) {
24233 		int i;
24234 		in6_addr_t v6srchaddr;
24235 		tcp_hsp_t *hsp_net;
24236 
24237 		/* We do three passes: host, network, and subnet. */
24238 
24239 		v6srchaddr = *v6addr;
24240 
24241 		for (i = 1; i <= 3; i++) {
24242 			/* Look for exact match on srchaddr */
24243 
24244 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(
24245 			    V4_PART_OF_V6(v6srchaddr))];
24246 			while (hsp) {
24247 				if (hsp->tcp_hsp_vers == IPV6_VERSION &&
24248 				    IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
24249 				    &v6srchaddr))
24250 					break;
24251 				hsp = hsp->tcp_hsp_next;
24252 			}
24253 
24254 			/*
24255 			 * If this is the first pass:
24256 			 *   If we found a match, great, return it.
24257 			 *   If not, search for the network on the second pass.
24258 			 */
24259 
24260 			if (i == 1)
24261 				if (hsp)
24262 					break;
24263 				else {
24264 					/* Assume a 64 bit mask */
24265 					v6srchaddr.s6_addr32[0] =
24266 					    v6addr->s6_addr32[0];
24267 					v6srchaddr.s6_addr32[1] =
24268 					    v6addr->s6_addr32[1];
24269 					v6srchaddr.s6_addr32[2] = 0;
24270 					v6srchaddr.s6_addr32[3] = 0;
24271 					continue;
24272 				}
24273 
24274 			/*
24275 			 * If this is the second pass:
24276 			 *   If we found a match, but there's a subnet mask,
24277 			 *    save the match but try again using the subnet
24278 			 *    mask on the third pass.
24279 			 *   Otherwise, return whatever we found.
24280 			 */
24281 
24282 			if (i == 2) {
24283 				ASSERT(hsp == NULL ||
24284 				    hsp->tcp_hsp_vers == IPV6_VERSION);
24285 				if (hsp &&
24286 				    !IN6_IS_ADDR_UNSPECIFIED(
24287 				    &hsp->tcp_hsp_subnet_v6)) {
24288 					hsp_net = hsp;
24289 					V6_MASK_COPY(*v6addr,
24290 					    hsp->tcp_hsp_subnet_v6, v6srchaddr);
24291 					continue;
24292 				} else {
24293 					break;
24294 				}
24295 			}
24296 
24297 			/*
24298 			 * This must be the third pass.  If we didn't find
24299 			 * anything, return the saved network HSP instead.
24300 			 */
24301 
24302 			if (!hsp)
24303 				hsp = hsp_net;
24304 		}
24305 	}
24306 
24307 	rw_exit(&tcps->tcps_hsp_lock);
24308 	return (hsp);
24309 }
24310 
24311 /*
24312  * Type three generator adapted from the random() function in 4.4 BSD:
24313  */
24314 
24315 /*
24316  * Copyright (c) 1983, 1993
24317  *	The Regents of the University of California.  All rights reserved.
24318  *
24319  * Redistribution and use in source and binary forms, with or without
24320  * modification, are permitted provided that the following conditions
24321  * are met:
24322  * 1. Redistributions of source code must retain the above copyright
24323  *    notice, this list of conditions and the following disclaimer.
24324  * 2. Redistributions in binary form must reproduce the above copyright
24325  *    notice, this list of conditions and the following disclaimer in the
24326  *    documentation and/or other materials provided with the distribution.
24327  * 3. All advertising materials mentioning features or use of this software
24328  *    must display the following acknowledgement:
24329  *	This product includes software developed by the University of
24330  *	California, Berkeley and its contributors.
24331  * 4. Neither the name of the University nor the names of its contributors
24332  *    may be used to endorse or promote products derived from this software
24333  *    without specific prior written permission.
24334  *
24335  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24336  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24337  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24338  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24339  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24340  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24341  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24342  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24343  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24344  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24345  * SUCH DAMAGE.
24346  */
24347 
24348 /* Type 3 -- x**31 + x**3 + 1 */
24349 #define	DEG_3		31
24350 #define	SEP_3		3
24351 
24352 
24353 /* Protected by tcp_random_lock */
24354 static int tcp_randtbl[DEG_3 + 1];
24355 
24356 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
24357 static int *tcp_random_rptr = &tcp_randtbl[1];
24358 
24359 static int *tcp_random_state = &tcp_randtbl[1];
24360 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
24361 
24362 kmutex_t tcp_random_lock;
24363 
24364 void
24365 tcp_random_init(void)
24366 {
24367 	int i;
24368 	hrtime_t hrt;
24369 	time_t wallclock;
24370 	uint64_t result;
24371 
24372 	/*
24373 	 * Use high-res timer and current time for seed.  Gethrtime() returns
24374 	 * a longlong, which may contain resolution down to nanoseconds.
24375 	 * The current time will either be a 32-bit or a 64-bit quantity.
24376 	 * XOR the two together in a 64-bit result variable.
24377 	 * Convert the result to a 32-bit value by multiplying the high-order
24378 	 * 32-bits by the low-order 32-bits.
24379 	 */
24380 
24381 	hrt = gethrtime();
24382 	(void) drv_getparm(TIME, &wallclock);
24383 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
24384 	mutex_enter(&tcp_random_lock);
24385 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
24386 	    (result & 0xffffffff);
24387 
24388 	for (i = 1; i < DEG_3; i++)
24389 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
24390 		    + 12345;
24391 	tcp_random_fptr = &tcp_random_state[SEP_3];
24392 	tcp_random_rptr = &tcp_random_state[0];
24393 	mutex_exit(&tcp_random_lock);
24394 	for (i = 0; i < 10 * DEG_3; i++)
24395 		(void) tcp_random();
24396 }
24397 
24398 /*
24399  * tcp_random: Return a random number in the range [1 - (128K + 1)].
24400  * This range is selected to be approximately centered on TCP_ISS / 2,
24401  * and easy to compute. We get this value by generating a 32-bit random
24402  * number, selecting out the high-order 17 bits, and then adding one so
24403  * that we never return zero.
24404  */
24405 int
24406 tcp_random(void)
24407 {
24408 	int i;
24409 
24410 	mutex_enter(&tcp_random_lock);
24411 	*tcp_random_fptr += *tcp_random_rptr;
24412 
24413 	/*
24414 	 * The high-order bits are more random than the low-order bits,
24415 	 * so we select out the high-order 17 bits and add one so that
24416 	 * we never return zero.
24417 	 */
24418 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
24419 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
24420 		tcp_random_fptr = tcp_random_state;
24421 		++tcp_random_rptr;
24422 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
24423 		tcp_random_rptr = tcp_random_state;
24424 
24425 	mutex_exit(&tcp_random_lock);
24426 	return (i);
24427 }
24428 
24429 static int
24430 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
24431     int *t_errorp, int *sys_errorp)
24432 {
24433 	int error;
24434 	int is_absreq_failure;
24435 	t_scalar_t *opt_lenp;
24436 	t_scalar_t opt_offset;
24437 	int prim_type;
24438 	struct T_conn_req *tcreqp;
24439 	struct T_conn_res *tcresp;
24440 	cred_t *cr;
24441 
24442 	cr = DB_CREDDEF(mp, tcp->tcp_cred);
24443 
24444 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
24445 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
24446 	    prim_type == T_CONN_RES);
24447 
24448 	switch (prim_type) {
24449 	case T_CONN_REQ:
24450 		tcreqp = (struct T_conn_req *)mp->b_rptr;
24451 		opt_offset = tcreqp->OPT_offset;
24452 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
24453 		break;
24454 	case O_T_CONN_RES:
24455 	case T_CONN_RES:
24456 		tcresp = (struct T_conn_res *)mp->b_rptr;
24457 		opt_offset = tcresp->OPT_offset;
24458 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
24459 		break;
24460 	}
24461 
24462 	*t_errorp = 0;
24463 	*sys_errorp = 0;
24464 	*do_disconnectp = 0;
24465 
24466 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
24467 	    opt_offset, cr, &tcp_opt_obj,
24468 	    NULL, &is_absreq_failure);
24469 
24470 	switch (error) {
24471 	case  0:		/* no error */
24472 		ASSERT(is_absreq_failure == 0);
24473 		return (0);
24474 	case ENOPROTOOPT:
24475 		*t_errorp = TBADOPT;
24476 		break;
24477 	case EACCES:
24478 		*t_errorp = TACCES;
24479 		break;
24480 	default:
24481 		*t_errorp = TSYSERR; *sys_errorp = error;
24482 		break;
24483 	}
24484 	if (is_absreq_failure != 0) {
24485 		/*
24486 		 * The connection request should get the local ack
24487 		 * T_OK_ACK and then a T_DISCON_IND.
24488 		 */
24489 		*do_disconnectp = 1;
24490 	}
24491 	return (-1);
24492 }
24493 
24494 /*
24495  * Split this function out so that if the secret changes, I'm okay.
24496  *
24497  * Initialize the tcp_iss_cookie and tcp_iss_key.
24498  */
24499 
24500 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
24501 
24502 static void
24503 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
24504 {
24505 	struct {
24506 		int32_t current_time;
24507 		uint32_t randnum;
24508 		uint16_t pad;
24509 		uint8_t ether[6];
24510 		uint8_t passwd[PASSWD_SIZE];
24511 	} tcp_iss_cookie;
24512 	time_t t;
24513 
24514 	/*
24515 	 * Start with the current absolute time.
24516 	 */
24517 	(void) drv_getparm(TIME, &t);
24518 	tcp_iss_cookie.current_time = t;
24519 
24520 	/*
24521 	 * XXX - Need a more random number per RFC 1750, not this crap.
24522 	 * OTOH, if what follows is pretty random, then I'm in better shape.
24523 	 */
24524 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
24525 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
24526 
24527 	/*
24528 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
24529 	 * as a good template.
24530 	 */
24531 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
24532 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
24533 
24534 	/*
24535 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
24536 	 */
24537 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
24538 
24539 	/*
24540 	 * See 4010593 if this section becomes a problem again,
24541 	 * but the local ethernet address is useful here.
24542 	 */
24543 	(void) localetheraddr(NULL,
24544 	    (struct ether_addr *)&tcp_iss_cookie.ether);
24545 
24546 	/*
24547 	 * Hash 'em all together.  The MD5Final is called per-connection.
24548 	 */
24549 	mutex_enter(&tcps->tcps_iss_key_lock);
24550 	MD5Init(&tcps->tcps_iss_key);
24551 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
24552 	    sizeof (tcp_iss_cookie));
24553 	mutex_exit(&tcps->tcps_iss_key_lock);
24554 }
24555 
24556 /*
24557  * Set the RFC 1948 pass phrase
24558  */
24559 /* ARGSUSED */
24560 static int
24561 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
24562     cred_t *cr)
24563 {
24564 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24565 
24566 	/*
24567 	 * Basically, value contains a new pass phrase.  Pass it along!
24568 	 */
24569 	tcp_iss_key_init((uint8_t *)value, strlen(value), tcps);
24570 	return (0);
24571 }
24572 
24573 /* ARGSUSED */
24574 static int
24575 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
24576 {
24577 	bzero(buf, sizeof (tcp_sack_info_t));
24578 	return (0);
24579 }
24580 
24581 /* ARGSUSED */
24582 static int
24583 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
24584 {
24585 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
24586 	return (0);
24587 }
24588 
24589 /*
24590  * Make sure we wait until the default queue is setup, yet allow
24591  * tcp_g_q_create() to open a TCP stream.
24592  * We need to allow tcp_g_q_create() do do an open
24593  * of tcp, hence we compare curhread.
24594  * All others have to wait until the tcps_g_q has been
24595  * setup.
24596  */
24597 void
24598 tcp_g_q_setup(tcp_stack_t *tcps)
24599 {
24600 	mutex_enter(&tcps->tcps_g_q_lock);
24601 	if (tcps->tcps_g_q != NULL) {
24602 		mutex_exit(&tcps->tcps_g_q_lock);
24603 		return;
24604 	}
24605 	if (tcps->tcps_g_q_creator == NULL) {
24606 		/* This thread will set it up */
24607 		tcps->tcps_g_q_creator = curthread;
24608 		mutex_exit(&tcps->tcps_g_q_lock);
24609 		tcp_g_q_create(tcps);
24610 		mutex_enter(&tcps->tcps_g_q_lock);
24611 		ASSERT(tcps->tcps_g_q_creator == curthread);
24612 		tcps->tcps_g_q_creator = NULL;
24613 		cv_signal(&tcps->tcps_g_q_cv);
24614 		ASSERT(tcps->tcps_g_q != NULL);
24615 		mutex_exit(&tcps->tcps_g_q_lock);
24616 		return;
24617 	}
24618 	/* Everybody but the creator has to wait */
24619 	if (tcps->tcps_g_q_creator != curthread) {
24620 		while (tcps->tcps_g_q == NULL)
24621 			cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock);
24622 	}
24623 	mutex_exit(&tcps->tcps_g_q_lock);
24624 }
24625 
24626 #define	IP	"ip"
24627 
24628 #define	TCP6DEV		"/devices/pseudo/tcp6@0:tcp6"
24629 
24630 /*
24631  * Create a default tcp queue here instead of in strplumb
24632  */
24633 void
24634 tcp_g_q_create(tcp_stack_t *tcps)
24635 {
24636 	int error;
24637 	ldi_handle_t	lh = NULL;
24638 	ldi_ident_t	li = NULL;
24639 	int		rval;
24640 	cred_t		*cr;
24641 	major_t IP_MAJ;
24642 
24643 #ifdef NS_DEBUG
24644 	(void) printf("tcp_g_q_create()\n");
24645 #endif
24646 
24647 	IP_MAJ = ddi_name_to_major(IP);
24648 
24649 	ASSERT(tcps->tcps_g_q_creator == curthread);
24650 
24651 	error = ldi_ident_from_major(IP_MAJ, &li);
24652 	if (error) {
24653 #ifdef DEBUG
24654 		printf("tcp_g_q_create: lyr ident get failed error %d\n",
24655 		    error);
24656 #endif
24657 		return;
24658 	}
24659 
24660 	cr = zone_get_kcred(netstackid_to_zoneid(
24661 	    tcps->tcps_netstack->netstack_stackid));
24662 	ASSERT(cr != NULL);
24663 	/*
24664 	 * We set the tcp default queue to IPv6 because IPv4 falls
24665 	 * back to IPv6 when it can't find a client, but
24666 	 * IPv6 does not fall back to IPv4.
24667 	 */
24668 	error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li);
24669 	if (error) {
24670 #ifdef DEBUG
24671 		printf("tcp_g_q_create: open of TCP6DEV failed error %d\n",
24672 		    error);
24673 #endif
24674 		goto out;
24675 	}
24676 
24677 	/*
24678 	 * This ioctl causes the tcp framework to cache a pointer to
24679 	 * this stream, so we don't want to close the stream after
24680 	 * this operation.
24681 	 * Use the kernel credentials that are for the zone we're in.
24682 	 */
24683 	error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q,
24684 	    (intptr_t)0, FKIOCTL, cr, &rval);
24685 	if (error) {
24686 #ifdef DEBUG
24687 		printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed "
24688 		    "error %d\n", error);
24689 #endif
24690 		goto out;
24691 	}
24692 	tcps->tcps_g_q_lh = lh;	/* For tcp_g_q_close */
24693 	lh = NULL;
24694 out:
24695 	/* Close layered handles */
24696 	if (li)
24697 		ldi_ident_release(li);
24698 	/* Keep cred around until _inactive needs it */
24699 	tcps->tcps_g_q_cr = cr;
24700 }
24701 
24702 /*
24703  * We keep tcp_g_q set until all other tcp_t's in the zone
24704  * has gone away, and then when tcp_g_q_inactive() is called
24705  * we clear it.
24706  */
24707 void
24708 tcp_g_q_destroy(tcp_stack_t *tcps)
24709 {
24710 #ifdef NS_DEBUG
24711 	(void) printf("tcp_g_q_destroy()for stack %d\n",
24712 	    tcps->tcps_netstack->netstack_stackid);
24713 #endif
24714 
24715 	if (tcps->tcps_g_q == NULL) {
24716 		return;	/* Nothing to cleanup */
24717 	}
24718 	/*
24719 	 * Drop reference corresponding to the default queue.
24720 	 * This reference was added from tcp_open when the default queue
24721 	 * was created, hence we compensate for this extra drop in
24722 	 * tcp_g_q_close. If the refcnt drops to zero here it means
24723 	 * the default queue was the last one to be open, in which
24724 	 * case, then tcp_g_q_inactive will be
24725 	 * called as a result of the refrele.
24726 	 */
24727 	TCPS_REFRELE(tcps);
24728 }
24729 
24730 /*
24731  * Called when last tcp_t drops reference count using TCPS_REFRELE.
24732  * Run by tcp_q_q_inactive using a taskq.
24733  */
24734 static void
24735 tcp_g_q_close(void *arg)
24736 {
24737 	tcp_stack_t *tcps = arg;
24738 	int error;
24739 	ldi_handle_t	lh = NULL;
24740 	ldi_ident_t	li = NULL;
24741 	cred_t		*cr;
24742 	major_t IP_MAJ;
24743 
24744 	IP_MAJ = ddi_name_to_major(IP);
24745 
24746 #ifdef NS_DEBUG
24747 	(void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n",
24748 	    tcps->tcps_netstack->netstack_stackid,
24749 	    tcps->tcps_netstack->netstack_refcnt);
24750 #endif
24751 	lh = tcps->tcps_g_q_lh;
24752 	if (lh == NULL)
24753 		return;	/* Nothing to cleanup */
24754 
24755 	ASSERT(tcps->tcps_refcnt == 1);
24756 	ASSERT(tcps->tcps_g_q != NULL);
24757 
24758 	error = ldi_ident_from_major(IP_MAJ, &li);
24759 	if (error) {
24760 #ifdef DEBUG
24761 		printf("tcp_g_q_inactive: lyr ident get failed error %d\n",
24762 		    error);
24763 #endif
24764 		return;
24765 	}
24766 
24767 	cr = tcps->tcps_g_q_cr;
24768 	tcps->tcps_g_q_cr = NULL;
24769 	ASSERT(cr != NULL);
24770 
24771 	/*
24772 	 * Make sure we can break the recursion when tcp_close decrements
24773 	 * the reference count causing g_q_inactive to be called again.
24774 	 */
24775 	tcps->tcps_g_q_lh = NULL;
24776 
24777 	/* close the default queue */
24778 	(void) ldi_close(lh, FREAD|FWRITE, cr);
24779 	/*
24780 	 * At this point in time tcps and the rest of netstack_t might
24781 	 * have been deleted.
24782 	 */
24783 	tcps = NULL;
24784 
24785 	/* Close layered handles */
24786 	ldi_ident_release(li);
24787 	crfree(cr);
24788 }
24789 
24790 /*
24791  * Called when last tcp_t drops reference count using TCPS_REFRELE.
24792  *
24793  * Have to ensure that the ldi routines are not used by an
24794  * interrupt thread by using a taskq.
24795  */
24796 void
24797 tcp_g_q_inactive(tcp_stack_t *tcps)
24798 {
24799 	if (tcps->tcps_g_q_lh == NULL)
24800 		return;	/* Nothing to cleanup */
24801 
24802 	ASSERT(tcps->tcps_refcnt == 0);
24803 	TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */
24804 
24805 	if (servicing_interrupt()) {
24806 		(void) taskq_dispatch(tcp_taskq, tcp_g_q_close,
24807 		    (void *) tcps, TQ_SLEEP);
24808 	} else {
24809 		tcp_g_q_close(tcps);
24810 	}
24811 }
24812 
24813 /*
24814  * Called by IP when IP is loaded into the kernel
24815  */
24816 void
24817 tcp_ddi_g_init(void)
24818 {
24819 	tcp_timercache = kmem_cache_create("tcp_timercache",
24820 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
24821 	    NULL, NULL, NULL, NULL, NULL, 0);
24822 
24823 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
24824 	    sizeof (tcp_sack_info_t), 0,
24825 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
24826 
24827 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
24828 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
24829 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
24830 
24831 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
24832 
24833 	/* Initialize the random number generator */
24834 	tcp_random_init();
24835 
24836 	/* A single callback independently of how many netstacks we have */
24837 	ip_squeue_init(tcp_squeue_add);
24838 
24839 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
24840 
24841 	tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1,
24842 	    TASKQ_PREPOPULATE);
24843 
24844 	tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput);
24845 
24846 	/*
24847 	 * We want to be informed each time a stack is created or
24848 	 * destroyed in the kernel, so we can maintain the
24849 	 * set of tcp_stack_t's.
24850 	 */
24851 	netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown,
24852 	    tcp_stack_fini);
24853 }
24854 
24855 
24856 #define	INET_NAME	"ip"
24857 
24858 /*
24859  * Initialize the TCP stack instance.
24860  */
24861 static void *
24862 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
24863 {
24864 	tcp_stack_t	*tcps;
24865 	tcpparam_t	*pa;
24866 	int		i;
24867 	int		error = 0;
24868 	major_t		major;
24869 
24870 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
24871 	tcps->tcps_netstack = ns;
24872 
24873 	/* Initialize locks */
24874 	rw_init(&tcps->tcps_hsp_lock, NULL, RW_DEFAULT, NULL);
24875 	mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
24876 	cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL);
24877 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
24878 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
24879 
24880 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
24881 	tcps->tcps_g_epriv_ports[0] = 2049;
24882 	tcps->tcps_g_epriv_ports[1] = 4045;
24883 	tcps->tcps_min_anonpriv_port = 512;
24884 
24885 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
24886 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
24887 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
24888 	    TCP_FANOUT_SIZE, KM_SLEEP);
24889 
24890 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
24891 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
24892 		    MUTEX_DEFAULT, NULL);
24893 	}
24894 
24895 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
24896 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
24897 		    MUTEX_DEFAULT, NULL);
24898 	}
24899 
24900 	/* TCP's IPsec code calls the packet dropper. */
24901 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
24902 
24903 	pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP);
24904 	tcps->tcps_params = pa;
24905 	bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr));
24906 
24907 	(void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params,
24908 	    A_CNT(lcl_tcp_param_arr), tcps);
24909 
24910 	/*
24911 	 * Note: To really walk the device tree you need the devinfo
24912 	 * pointer to your device which is only available after probe/attach.
24913 	 * The following is safe only because it uses ddi_root_node()
24914 	 */
24915 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
24916 	    tcp_opt_obj.odb_opt_arr_cnt);
24917 
24918 	/*
24919 	 * Initialize RFC 1948 secret values.  This will probably be reset once
24920 	 * by the boot scripts.
24921 	 *
24922 	 * Use NULL name, as the name is caught by the new lockstats.
24923 	 *
24924 	 * Initialize with some random, non-guessable string, like the global
24925 	 * T_INFO_ACK.
24926 	 */
24927 
24928 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
24929 	    sizeof (tcp_g_t_info_ack), tcps);
24930 
24931 	tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics);
24932 	tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps);
24933 
24934 	major = mod_name_to_major(INET_NAME);
24935 	error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident);
24936 	ASSERT(error == 0);
24937 	return (tcps);
24938 }
24939 
24940 /*
24941  * Called when the IP module is about to be unloaded.
24942  */
24943 void
24944 tcp_ddi_g_destroy(void)
24945 {
24946 	tcp_g_kstat_fini(tcp_g_kstat);
24947 	tcp_g_kstat = NULL;
24948 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
24949 
24950 	mutex_destroy(&tcp_random_lock);
24951 
24952 	kmem_cache_destroy(tcp_timercache);
24953 	kmem_cache_destroy(tcp_sack_info_cache);
24954 	kmem_cache_destroy(tcp_iphc_cache);
24955 
24956 	netstack_unregister(NS_TCP);
24957 	taskq_destroy(tcp_taskq);
24958 }
24959 
24960 /*
24961  * Shut down the TCP stack instance.
24962  */
24963 /* ARGSUSED */
24964 static void
24965 tcp_stack_shutdown(netstackid_t stackid, void *arg)
24966 {
24967 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
24968 
24969 	tcp_g_q_destroy(tcps);
24970 }
24971 
24972 /*
24973  * Free the TCP stack instance.
24974  */
24975 static void
24976 tcp_stack_fini(netstackid_t stackid, void *arg)
24977 {
24978 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
24979 	int i;
24980 
24981 	nd_free(&tcps->tcps_g_nd);
24982 	kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr));
24983 	tcps->tcps_params = NULL;
24984 	kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t));
24985 	tcps->tcps_wroff_xtra_param = NULL;
24986 	kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t));
24987 	tcps->tcps_mdt_head_param = NULL;
24988 	kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t));
24989 	tcps->tcps_mdt_tail_param = NULL;
24990 	kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t));
24991 	tcps->tcps_mdt_max_pbufs_param = NULL;
24992 
24993 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
24994 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
24995 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
24996 	}
24997 
24998 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
24999 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
25000 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
25001 	}
25002 
25003 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
25004 	tcps->tcps_bind_fanout = NULL;
25005 
25006 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE);
25007 	tcps->tcps_acceptor_fanout = NULL;
25008 
25009 	mutex_destroy(&tcps->tcps_iss_key_lock);
25010 	rw_destroy(&tcps->tcps_hsp_lock);
25011 	mutex_destroy(&tcps->tcps_g_q_lock);
25012 	cv_destroy(&tcps->tcps_g_q_cv);
25013 	mutex_destroy(&tcps->tcps_epriv_port_lock);
25014 
25015 	ip_drop_unregister(&tcps->tcps_dropper);
25016 
25017 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
25018 	tcps->tcps_kstat = NULL;
25019 	bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics));
25020 
25021 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
25022 	tcps->tcps_mibkp = NULL;
25023 
25024 	ldi_ident_release(tcps->tcps_ldi_ident);
25025 	kmem_free(tcps, sizeof (*tcps));
25026 }
25027 
25028 /*
25029  * Generate ISS, taking into account NDD changes may happen halfway through.
25030  * (If the iss is not zero, set it.)
25031  */
25032 
25033 static void
25034 tcp_iss_init(tcp_t *tcp)
25035 {
25036 	MD5_CTX context;
25037 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
25038 	uint32_t answer[4];
25039 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25040 
25041 	tcps->tcps_iss_incr_extra += (ISS_INCR >> 1);
25042 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
25043 	switch (tcps->tcps_strong_iss) {
25044 	case 2:
25045 		mutex_enter(&tcps->tcps_iss_key_lock);
25046 		context = tcps->tcps_iss_key;
25047 		mutex_exit(&tcps->tcps_iss_key_lock);
25048 		arg.ports = tcp->tcp_ports;
25049 		if (tcp->tcp_ipversion == IPV4_VERSION) {
25050 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
25051 			    &arg.src);
25052 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
25053 			    &arg.dst);
25054 		} else {
25055 			arg.src = tcp->tcp_ip6h->ip6_src;
25056 			arg.dst = tcp->tcp_ip6h->ip6_dst;
25057 		}
25058 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
25059 		MD5Final((uchar_t *)answer, &context);
25060 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
25061 		/*
25062 		 * Now that we've hashed into a unique per-connection sequence
25063 		 * space, add a random increment per strong_iss == 1.  So I
25064 		 * guess we'll have to...
25065 		 */
25066 		/* FALLTHRU */
25067 	case 1:
25068 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
25069 		break;
25070 	default:
25071 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
25072 		break;
25073 	}
25074 	tcp->tcp_valid_bits = TCP_ISS_VALID;
25075 	tcp->tcp_fss = tcp->tcp_iss - 1;
25076 	tcp->tcp_suna = tcp->tcp_iss;
25077 	tcp->tcp_snxt = tcp->tcp_iss + 1;
25078 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
25079 	tcp->tcp_csuna = tcp->tcp_snxt;
25080 }
25081 
25082 /*
25083  * Exported routine for extracting active tcp connection status.
25084  *
25085  * This is used by the Solaris Cluster Networking software to
25086  * gather a list of connections that need to be forwarded to
25087  * specific nodes in the cluster when configuration changes occur.
25088  *
25089  * The callback is invoked for each tcp_t structure from all netstacks,
25090  * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures
25091  * from the netstack with the specified stack_id. Returning
25092  * non-zero from the callback routine terminates the search.
25093  */
25094 int
25095 cl_tcp_walk_list(netstackid_t stack_id,
25096     int (*cl_callback)(cl_tcp_info_t *, void *), void *arg)
25097 {
25098 	netstack_handle_t nh;
25099 	netstack_t *ns;
25100 	int ret = 0;
25101 
25102 	if (stack_id >= 0) {
25103 		if ((ns = netstack_find_by_stackid(stack_id)) == NULL)
25104 			return (EINVAL);
25105 
25106 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
25107 		    ns->netstack_tcp);
25108 		netstack_rele(ns);
25109 		return (ret);
25110 	}
25111 
25112 	netstack_next_init(&nh);
25113 	while ((ns = netstack_next(&nh)) != NULL) {
25114 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
25115 		    ns->netstack_tcp);
25116 		netstack_rele(ns);
25117 	}
25118 	netstack_next_fini(&nh);
25119 	return (ret);
25120 }
25121 
25122 static int
25123 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg,
25124     tcp_stack_t *tcps)
25125 {
25126 	tcp_t *tcp;
25127 	cl_tcp_info_t	cl_tcpi;
25128 	connf_t	*connfp;
25129 	conn_t	*connp;
25130 	int	i;
25131 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25132 
25133 	ASSERT(callback != NULL);
25134 
25135 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
25136 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
25137 		connp = NULL;
25138 
25139 		while ((connp =
25140 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
25141 
25142 			tcp = connp->conn_tcp;
25143 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
25144 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
25145 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
25146 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
25147 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
25148 			/*
25149 			 * The macros tcp_laddr and tcp_faddr give the IPv4
25150 			 * addresses. They are copied implicitly below as
25151 			 * mapped addresses.
25152 			 */
25153 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
25154 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25155 				cl_tcpi.cl_tcpi_faddr =
25156 				    tcp->tcp_ipha->ipha_dst;
25157 			} else {
25158 				cl_tcpi.cl_tcpi_faddr_v6 =
25159 				    tcp->tcp_ip6h->ip6_dst;
25160 			}
25161 
25162 			/*
25163 			 * If the callback returns non-zero
25164 			 * we terminate the traversal.
25165 			 */
25166 			if ((*callback)(&cl_tcpi, arg) != 0) {
25167 				CONN_DEC_REF(tcp->tcp_connp);
25168 				return (1);
25169 			}
25170 		}
25171 	}
25172 
25173 	return (0);
25174 }
25175 
25176 /*
25177  * Macros used for accessing the different types of sockaddr
25178  * structures inside a tcp_ioc_abort_conn_t.
25179  */
25180 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
25181 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
25182 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
25183 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
25184 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
25185 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
25186 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
25187 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
25188 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
25189 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
25190 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
25191 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
25192 
25193 /*
25194  * Return the correct error code to mimic the behavior
25195  * of a connection reset.
25196  */
25197 #define	TCP_AC_GET_ERRCODE(state, err) {	\
25198 		switch ((state)) {		\
25199 		case TCPS_SYN_SENT:		\
25200 		case TCPS_SYN_RCVD:		\
25201 			(err) = ECONNREFUSED;	\
25202 			break;			\
25203 		case TCPS_ESTABLISHED:		\
25204 		case TCPS_FIN_WAIT_1:		\
25205 		case TCPS_FIN_WAIT_2:		\
25206 		case TCPS_CLOSE_WAIT:		\
25207 			(err) = ECONNRESET;	\
25208 			break;			\
25209 		case TCPS_CLOSING:		\
25210 		case TCPS_LAST_ACK:		\
25211 		case TCPS_TIME_WAIT:		\
25212 			(err) = 0;		\
25213 			break;			\
25214 		default:			\
25215 			(err) = ENXIO;		\
25216 		}				\
25217 	}
25218 
25219 /*
25220  * Check if a tcp structure matches the info in acp.
25221  */
25222 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
25223 	(((acp)->ac_local.ss_family == AF_INET) ?		\
25224 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
25225 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
25226 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
25227 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
25228 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
25229 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
25230 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
25231 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
25232 	(acp)->ac_start <= (tcp)->tcp_state &&	\
25233 	(acp)->ac_end >= (tcp)->tcp_state) :		\
25234 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
25235 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
25236 	&(tcp)->tcp_ip_src_v6)) &&				\
25237 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
25238 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
25239 	&(tcp)->tcp_remote_v6)) &&				\
25240 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
25241 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
25242 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
25243 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
25244 	(acp)->ac_start <= (tcp)->tcp_state &&	\
25245 	(acp)->ac_end >= (tcp)->tcp_state))
25246 
25247 #define	TCP_AC_MATCH(acp, tcp)					\
25248 	(((acp)->ac_zoneid == ALL_ZONES ||			\
25249 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
25250 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
25251 
25252 /*
25253  * Build a message containing a tcp_ioc_abort_conn_t structure
25254  * which is filled in with information from acp and tp.
25255  */
25256 static mblk_t *
25257 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
25258 {
25259 	mblk_t *mp;
25260 	tcp_ioc_abort_conn_t *tacp;
25261 
25262 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
25263 	if (mp == NULL)
25264 		return (NULL);
25265 
25266 	mp->b_datap->db_type = M_CTL;
25267 
25268 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
25269 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
25270 	    sizeof (uint32_t));
25271 
25272 	tacp->ac_start = acp->ac_start;
25273 	tacp->ac_end = acp->ac_end;
25274 	tacp->ac_zoneid = acp->ac_zoneid;
25275 
25276 	if (acp->ac_local.ss_family == AF_INET) {
25277 		tacp->ac_local.ss_family = AF_INET;
25278 		tacp->ac_remote.ss_family = AF_INET;
25279 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
25280 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
25281 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
25282 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
25283 	} else {
25284 		tacp->ac_local.ss_family = AF_INET6;
25285 		tacp->ac_remote.ss_family = AF_INET6;
25286 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
25287 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
25288 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
25289 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
25290 	}
25291 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
25292 	return (mp);
25293 }
25294 
25295 /*
25296  * Print a tcp_ioc_abort_conn_t structure.
25297  */
25298 static void
25299 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
25300 {
25301 	char lbuf[128];
25302 	char rbuf[128];
25303 	sa_family_t af;
25304 	in_port_t lport, rport;
25305 	ushort_t logflags;
25306 
25307 	af = acp->ac_local.ss_family;
25308 
25309 	if (af == AF_INET) {
25310 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
25311 		    lbuf, 128);
25312 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
25313 		    rbuf, 128);
25314 		lport = ntohs(TCP_AC_V4LPORT(acp));
25315 		rport = ntohs(TCP_AC_V4RPORT(acp));
25316 	} else {
25317 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
25318 		    lbuf, 128);
25319 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
25320 		    rbuf, 128);
25321 		lport = ntohs(TCP_AC_V6LPORT(acp));
25322 		rport = ntohs(TCP_AC_V6RPORT(acp));
25323 	}
25324 
25325 	logflags = SL_TRACE | SL_NOTE;
25326 	/*
25327 	 * Don't print this message to the console if the operation was done
25328 	 * to a non-global zone.
25329 	 */
25330 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25331 		logflags |= SL_CONSOLE;
25332 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
25333 	    "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
25334 	    "start = %d, end = %d\n", lbuf, lport, rbuf, rport,
25335 	    acp->ac_start, acp->ac_end);
25336 }
25337 
25338 /*
25339  * Called inside tcp_rput when a message built using
25340  * tcp_ioctl_abort_build_msg is put into a queue.
25341  * Note that when we get here there is no wildcard in acp any more.
25342  */
25343 static void
25344 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
25345 {
25346 	tcp_ioc_abort_conn_t *acp;
25347 
25348 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
25349 	if (tcp->tcp_state <= acp->ac_end) {
25350 		/*
25351 		 * If we get here, we are already on the correct
25352 		 * squeue. This ioctl follows the following path
25353 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
25354 		 * ->tcp_ioctl_abort->squeue_enter (if on a
25355 		 * different squeue)
25356 		 */
25357 		int errcode;
25358 
25359 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
25360 		(void) tcp_clean_death(tcp, errcode, 26);
25361 	}
25362 	freemsg(mp);
25363 }
25364 
25365 /*
25366  * Abort all matching connections on a hash chain.
25367  */
25368 static int
25369 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
25370     boolean_t exact, tcp_stack_t *tcps)
25371 {
25372 	int nmatch, err = 0;
25373 	tcp_t *tcp;
25374 	MBLKP mp, last, listhead = NULL;
25375 	conn_t	*tconnp;
25376 	connf_t	*connfp;
25377 	ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
25378 
25379 	connfp = &ipst->ips_ipcl_conn_fanout[index];
25380 
25381 startover:
25382 	nmatch = 0;
25383 
25384 	mutex_enter(&connfp->connf_lock);
25385 	for (tconnp = connfp->connf_head; tconnp != NULL;
25386 	    tconnp = tconnp->conn_next) {
25387 		tcp = tconnp->conn_tcp;
25388 		if (TCP_AC_MATCH(acp, tcp)) {
25389 			CONN_INC_REF(tcp->tcp_connp);
25390 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
25391 			if (mp == NULL) {
25392 				err = ENOMEM;
25393 				CONN_DEC_REF(tcp->tcp_connp);
25394 				break;
25395 			}
25396 			mp->b_prev = (mblk_t *)tcp;
25397 
25398 			if (listhead == NULL) {
25399 				listhead = mp;
25400 				last = mp;
25401 			} else {
25402 				last->b_next = mp;
25403 				last = mp;
25404 			}
25405 			nmatch++;
25406 			if (exact)
25407 				break;
25408 		}
25409 
25410 		/* Avoid holding lock for too long. */
25411 		if (nmatch >= 500)
25412 			break;
25413 	}
25414 	mutex_exit(&connfp->connf_lock);
25415 
25416 	/* Pass mp into the correct tcp */
25417 	while ((mp = listhead) != NULL) {
25418 		listhead = listhead->b_next;
25419 		tcp = (tcp_t *)mp->b_prev;
25420 		mp->b_next = mp->b_prev = NULL;
25421 		SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp, tcp_input,
25422 		    tcp->tcp_connp, SQ_FILL, SQTAG_TCP_ABORT_BUCKET);
25423 	}
25424 
25425 	*count += nmatch;
25426 	if (nmatch >= 500 && err == 0)
25427 		goto startover;
25428 	return (err);
25429 }
25430 
25431 /*
25432  * Abort all connections that matches the attributes specified in acp.
25433  */
25434 static int
25435 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps)
25436 {
25437 	sa_family_t af;
25438 	uint32_t  ports;
25439 	uint16_t *pports;
25440 	int err = 0, count = 0;
25441 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
25442 	int index = -1;
25443 	ushort_t logflags;
25444 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25445 
25446 	af = acp->ac_local.ss_family;
25447 
25448 	if (af == AF_INET) {
25449 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
25450 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
25451 			pports = (uint16_t *)&ports;
25452 			pports[1] = TCP_AC_V4LPORT(acp);
25453 			pports[0] = TCP_AC_V4RPORT(acp);
25454 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
25455 		}
25456 	} else {
25457 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
25458 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
25459 			pports = (uint16_t *)&ports;
25460 			pports[1] = TCP_AC_V6LPORT(acp);
25461 			pports[0] = TCP_AC_V6RPORT(acp);
25462 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
25463 		}
25464 	}
25465 
25466 	/*
25467 	 * For cases where remote addr, local port, and remote port are non-
25468 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
25469 	 */
25470 	if (index != -1) {
25471 		err = tcp_ioctl_abort_bucket(acp, index,
25472 		    &count, exact, tcps);
25473 	} else {
25474 		/*
25475 		 * loop through all entries for wildcard case
25476 		 */
25477 		for (index = 0;
25478 		    index < ipst->ips_ipcl_conn_fanout_size;
25479 		    index++) {
25480 			err = tcp_ioctl_abort_bucket(acp, index,
25481 			    &count, exact, tcps);
25482 			if (err != 0)
25483 				break;
25484 		}
25485 	}
25486 
25487 	logflags = SL_TRACE | SL_NOTE;
25488 	/*
25489 	 * Don't print this message to the console if the operation was done
25490 	 * to a non-global zone.
25491 	 */
25492 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25493 		logflags |= SL_CONSOLE;
25494 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
25495 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
25496 	if (err == 0 && count == 0)
25497 		err = ENOENT;
25498 	return (err);
25499 }
25500 
25501 /*
25502  * Process the TCP_IOC_ABORT_CONN ioctl request.
25503  */
25504 static void
25505 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
25506 {
25507 	int	err;
25508 	IOCP    iocp;
25509 	MBLKP   mp1;
25510 	sa_family_t laf, raf;
25511 	tcp_ioc_abort_conn_t *acp;
25512 	zone_t		*zptr;
25513 	conn_t		*connp = Q_TO_CONN(q);
25514 	zoneid_t	zoneid = connp->conn_zoneid;
25515 	tcp_t		*tcp = connp->conn_tcp;
25516 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25517 
25518 	iocp = (IOCP)mp->b_rptr;
25519 
25520 	if ((mp1 = mp->b_cont) == NULL ||
25521 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
25522 		err = EINVAL;
25523 		goto out;
25524 	}
25525 
25526 	/* check permissions */
25527 	if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
25528 		err = EPERM;
25529 		goto out;
25530 	}
25531 
25532 	if (mp1->b_cont != NULL) {
25533 		freemsg(mp1->b_cont);
25534 		mp1->b_cont = NULL;
25535 	}
25536 
25537 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
25538 	laf = acp->ac_local.ss_family;
25539 	raf = acp->ac_remote.ss_family;
25540 
25541 	/* check that a zone with the supplied zoneid exists */
25542 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
25543 		zptr = zone_find_by_id(zoneid);
25544 		if (zptr != NULL) {
25545 			zone_rele(zptr);
25546 		} else {
25547 			err = EINVAL;
25548 			goto out;
25549 		}
25550 	}
25551 
25552 	/*
25553 	 * For exclusive stacks we set the zoneid to zero
25554 	 * to make TCP operate as if in the global zone.
25555 	 */
25556 	if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID)
25557 		acp->ac_zoneid = GLOBAL_ZONEID;
25558 
25559 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
25560 	    acp->ac_start > acp->ac_end || laf != raf ||
25561 	    (laf != AF_INET && laf != AF_INET6)) {
25562 		err = EINVAL;
25563 		goto out;
25564 	}
25565 
25566 	tcp_ioctl_abort_dump(acp);
25567 	err = tcp_ioctl_abort(acp, tcps);
25568 
25569 out:
25570 	if (mp1 != NULL) {
25571 		freemsg(mp1);
25572 		mp->b_cont = NULL;
25573 	}
25574 
25575 	if (err != 0)
25576 		miocnak(q, mp, 0, err);
25577 	else
25578 		miocack(q, mp, 0, 0);
25579 }
25580 
25581 /*
25582  * tcp_time_wait_processing() handles processing of incoming packets when
25583  * the tcp is in the TIME_WAIT state.
25584  * A TIME_WAIT tcp that has an associated open TCP stream is never put
25585  * on the time wait list.
25586  */
25587 void
25588 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
25589     uint32_t seg_ack, int seg_len, tcph_t *tcph)
25590 {
25591 	int32_t		bytes_acked;
25592 	int32_t		gap;
25593 	int32_t		rgap;
25594 	tcp_opt_t	tcpopt;
25595 	uint_t		flags;
25596 	uint32_t	new_swnd = 0;
25597 	conn_t		*connp;
25598 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25599 
25600 	BUMP_LOCAL(tcp->tcp_ibsegs);
25601 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
25602 
25603 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
25604 	new_swnd = BE16_TO_U16(tcph->th_win) <<
25605 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
25606 	if (tcp->tcp_snd_ts_ok) {
25607 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
25608 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25609 			    tcp->tcp_rnxt, TH_ACK);
25610 			goto done;
25611 		}
25612 	}
25613 	gap = seg_seq - tcp->tcp_rnxt;
25614 	rgap = tcp->tcp_rwnd - (gap + seg_len);
25615 	if (gap < 0) {
25616 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
25617 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
25618 		    (seg_len > -gap ? -gap : seg_len));
25619 		seg_len += gap;
25620 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
25621 			if (flags & TH_RST) {
25622 				goto done;
25623 			}
25624 			if ((flags & TH_FIN) && seg_len == -1) {
25625 				/*
25626 				 * When TCP receives a duplicate FIN in
25627 				 * TIME_WAIT state, restart the 2 MSL timer.
25628 				 * See page 73 in RFC 793. Make sure this TCP
25629 				 * is already on the TIME_WAIT list. If not,
25630 				 * just restart the timer.
25631 				 */
25632 				if (TCP_IS_DETACHED(tcp)) {
25633 					if (tcp_time_wait_remove(tcp, NULL) ==
25634 					    B_TRUE) {
25635 						tcp_time_wait_append(tcp);
25636 						TCP_DBGSTAT(tcps,
25637 						    tcp_rput_time_wait);
25638 					}
25639 				} else {
25640 					ASSERT(tcp != NULL);
25641 					TCP_TIMER_RESTART(tcp,
25642 					    tcps->tcps_time_wait_interval);
25643 				}
25644 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25645 				    tcp->tcp_rnxt, TH_ACK);
25646 				goto done;
25647 			}
25648 			flags |=  TH_ACK_NEEDED;
25649 			seg_len = 0;
25650 			goto process_ack;
25651 		}
25652 
25653 		/* Fix seg_seq, and chew the gap off the front. */
25654 		seg_seq = tcp->tcp_rnxt;
25655 	}
25656 
25657 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
25658 		/*
25659 		 * Make sure that when we accept the connection, pick
25660 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
25661 		 * old connection.
25662 		 *
25663 		 * The next ISS generated is equal to tcp_iss_incr_extra
25664 		 * + ISS_INCR/2 + other components depending on the
25665 		 * value of tcp_strong_iss.  We pre-calculate the new
25666 		 * ISS here and compare with tcp_snxt to determine if
25667 		 * we need to make adjustment to tcp_iss_incr_extra.
25668 		 *
25669 		 * The above calculation is ugly and is a
25670 		 * waste of CPU cycles...
25671 		 */
25672 		uint32_t new_iss = tcps->tcps_iss_incr_extra;
25673 		int32_t adj;
25674 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
25675 
25676 		switch (tcps->tcps_strong_iss) {
25677 		case 2: {
25678 			/* Add time and MD5 components. */
25679 			uint32_t answer[4];
25680 			struct {
25681 				uint32_t ports;
25682 				in6_addr_t src;
25683 				in6_addr_t dst;
25684 			} arg;
25685 			MD5_CTX context;
25686 
25687 			mutex_enter(&tcps->tcps_iss_key_lock);
25688 			context = tcps->tcps_iss_key;
25689 			mutex_exit(&tcps->tcps_iss_key_lock);
25690 			arg.ports = tcp->tcp_ports;
25691 			/* We use MAPPED addresses in tcp_iss_init */
25692 			arg.src = tcp->tcp_ip_src_v6;
25693 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25694 				IN6_IPADDR_TO_V4MAPPED(
25695 				    tcp->tcp_ipha->ipha_dst,
25696 				    &arg.dst);
25697 			} else {
25698 				arg.dst =
25699 				    tcp->tcp_ip6h->ip6_dst;
25700 			}
25701 			MD5Update(&context, (uchar_t *)&arg,
25702 			    sizeof (arg));
25703 			MD5Final((uchar_t *)answer, &context);
25704 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
25705 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
25706 			break;
25707 		}
25708 		case 1:
25709 			/* Add time component and min random (i.e. 1). */
25710 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
25711 			break;
25712 		default:
25713 			/* Add only time component. */
25714 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
25715 			break;
25716 		}
25717 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
25718 			/*
25719 			 * New ISS not guaranteed to be ISS_INCR/2
25720 			 * ahead of the current tcp_snxt, so add the
25721 			 * difference to tcp_iss_incr_extra.
25722 			 */
25723 			tcps->tcps_iss_incr_extra += adj;
25724 		}
25725 		/*
25726 		 * If tcp_clean_death() can not perform the task now,
25727 		 * drop the SYN packet and let the other side re-xmit.
25728 		 * Otherwise pass the SYN packet back in, since the
25729 		 * old tcp state has been cleaned up or freed.
25730 		 */
25731 		if (tcp_clean_death(tcp, 0, 27) == -1)
25732 			goto done;
25733 		/*
25734 		 * We will come back to tcp_rput_data
25735 		 * on the global queue. Packets destined
25736 		 * for the global queue will be checked
25737 		 * with global policy. But the policy for
25738 		 * this packet has already been checked as
25739 		 * this was destined for the detached
25740 		 * connection. We need to bypass policy
25741 		 * check this time by attaching a dummy
25742 		 * ipsec_in with ipsec_in_dont_check set.
25743 		 */
25744 		connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst);
25745 		if (connp != NULL) {
25746 			TCP_STAT(tcps, tcp_time_wait_syn_success);
25747 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
25748 			return;
25749 		}
25750 		goto done;
25751 	}
25752 
25753 	/*
25754 	 * rgap is the amount of stuff received out of window.  A negative
25755 	 * value is the amount out of window.
25756 	 */
25757 	if (rgap < 0) {
25758 		BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
25759 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap);
25760 		/* Fix seg_len and make sure there is something left. */
25761 		seg_len += rgap;
25762 		if (seg_len <= 0) {
25763 			if (flags & TH_RST) {
25764 				goto done;
25765 			}
25766 			flags |=  TH_ACK_NEEDED;
25767 			seg_len = 0;
25768 			goto process_ack;
25769 		}
25770 	}
25771 	/*
25772 	 * Check whether we can update tcp_ts_recent.  This test is
25773 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
25774 	 * Extensions for High Performance: An Update", Internet Draft.
25775 	 */
25776 	if (tcp->tcp_snd_ts_ok &&
25777 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
25778 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
25779 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
25780 		tcp->tcp_last_rcv_lbolt = lbolt64;
25781 	}
25782 
25783 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
25784 		/* Always ack out of order packets */
25785 		flags |= TH_ACK_NEEDED;
25786 		seg_len = 0;
25787 	} else if (seg_len > 0) {
25788 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
25789 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
25790 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
25791 	}
25792 	if (flags & TH_RST) {
25793 		(void) tcp_clean_death(tcp, 0, 28);
25794 		goto done;
25795 	}
25796 	if (flags & TH_SYN) {
25797 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
25798 		    TH_RST|TH_ACK);
25799 		/*
25800 		 * Do not delete the TCP structure if it is in
25801 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
25802 		 */
25803 		goto done;
25804 	}
25805 process_ack:
25806 	if (flags & TH_ACK) {
25807 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
25808 		if (bytes_acked <= 0) {
25809 			if (bytes_acked == 0 && seg_len == 0 &&
25810 			    new_swnd == tcp->tcp_swnd)
25811 				BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
25812 		} else {
25813 			/* Acks something not sent */
25814 			flags |= TH_ACK_NEEDED;
25815 		}
25816 	}
25817 	if (flags & TH_ACK_NEEDED) {
25818 		/*
25819 		 * Time to send an ack for some reason.
25820 		 */
25821 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25822 		    tcp->tcp_rnxt, TH_ACK);
25823 	}
25824 done:
25825 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
25826 		DB_CKSUMSTART(mp) = 0;
25827 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
25828 		TCP_STAT(tcps, tcp_time_wait_syn_fail);
25829 	}
25830 	freemsg(mp);
25831 }
25832 
25833 /*
25834  * TCP Timers Implementation.
25835  */
25836 timeout_id_t
25837 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
25838 {
25839 	mblk_t *mp;
25840 	tcp_timer_t *tcpt;
25841 	tcp_t *tcp = connp->conn_tcp;
25842 
25843 	ASSERT(connp->conn_sqp != NULL);
25844 
25845 	TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls);
25846 
25847 	if (tcp->tcp_timercache == NULL) {
25848 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
25849 	} else {
25850 		TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc);
25851 		mp = tcp->tcp_timercache;
25852 		tcp->tcp_timercache = mp->b_next;
25853 		mp->b_next = NULL;
25854 		ASSERT(mp->b_wptr == NULL);
25855 	}
25856 
25857 	CONN_INC_REF(connp);
25858 	tcpt = (tcp_timer_t *)mp->b_rptr;
25859 	tcpt->connp = connp;
25860 	tcpt->tcpt_proc = f;
25861 	/*
25862 	 * TCP timers are normal timeouts. Plus, they do not require more than
25863 	 * a 10 millisecond resolution. By choosing a coarser resolution and by
25864 	 * rounding up the expiration to the next resolution boundary, we can
25865 	 * batch timers in the callout subsystem to make TCP timers more
25866 	 * efficient. The roundup also protects short timers from expiring too
25867 	 * early before they have a chance to be cancelled.
25868 	 */
25869 	tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp,
25870 	    TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP);
25871 
25872 	return ((timeout_id_t)mp);
25873 }
25874 
25875 static void
25876 tcp_timer_callback(void *arg)
25877 {
25878 	mblk_t *mp = (mblk_t *)arg;
25879 	tcp_timer_t *tcpt;
25880 	conn_t	*connp;
25881 
25882 	tcpt = (tcp_timer_t *)mp->b_rptr;
25883 	connp = tcpt->connp;
25884 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp,
25885 	    SQ_FILL, SQTAG_TCP_TIMER);
25886 }
25887 
25888 static void
25889 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
25890 {
25891 	tcp_timer_t *tcpt;
25892 	conn_t *connp = (conn_t *)arg;
25893 	tcp_t *tcp = connp->conn_tcp;
25894 
25895 	tcpt = (tcp_timer_t *)mp->b_rptr;
25896 	ASSERT(connp == tcpt->connp);
25897 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
25898 
25899 	/*
25900 	 * If the TCP has reached the closed state, don't proceed any
25901 	 * further. This TCP logically does not exist on the system.
25902 	 * tcpt_proc could for example access queues, that have already
25903 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
25904 	 */
25905 	if (tcp->tcp_state != TCPS_CLOSED) {
25906 		(*tcpt->tcpt_proc)(connp);
25907 	} else {
25908 		tcp->tcp_timer_tid = 0;
25909 	}
25910 	tcp_timer_free(connp->conn_tcp, mp);
25911 }
25912 
25913 /*
25914  * There is potential race with untimeout and the handler firing at the same
25915  * time. The mblock may be freed by the handler while we are trying to use
25916  * it. But since both should execute on the same squeue, this race should not
25917  * occur.
25918  */
25919 clock_t
25920 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
25921 {
25922 	mblk_t	*mp = (mblk_t *)id;
25923 	tcp_timer_t *tcpt;
25924 	clock_t delta;
25925 
25926 	TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs);
25927 
25928 	if (mp == NULL)
25929 		return (-1);
25930 
25931 	tcpt = (tcp_timer_t *)mp->b_rptr;
25932 	ASSERT(tcpt->connp == connp);
25933 
25934 	delta = untimeout_default(tcpt->tcpt_tid, 0);
25935 
25936 	if (delta >= 0) {
25937 		TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled);
25938 		tcp_timer_free(connp->conn_tcp, mp);
25939 		CONN_DEC_REF(connp);
25940 	}
25941 
25942 	return (delta);
25943 }
25944 
25945 /*
25946  * Allocate space for the timer event. The allocation looks like mblk, but it is
25947  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
25948  *
25949  * Dealing with failures: If we can't allocate from the timer cache we try
25950  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
25951  * points to b_rptr.
25952  * If we can't allocate anything using allocb_tryhard(), we perform a last
25953  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
25954  * save the actual allocation size in b_datap.
25955  */
25956 mblk_t *
25957 tcp_timermp_alloc(int kmflags)
25958 {
25959 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
25960 	    kmflags & ~KM_PANIC);
25961 
25962 	if (mp != NULL) {
25963 		mp->b_next = mp->b_prev = NULL;
25964 		mp->b_rptr = (uchar_t *)(&mp[1]);
25965 		mp->b_wptr = NULL;
25966 		mp->b_datap = NULL;
25967 		mp->b_queue = NULL;
25968 		mp->b_cont = NULL;
25969 	} else if (kmflags & KM_PANIC) {
25970 		/*
25971 		 * Failed to allocate memory for the timer. Try allocating from
25972 		 * dblock caches.
25973 		 */
25974 		/* ipclassifier calls this from a constructor - hence no tcps */
25975 		TCP_G_STAT(tcp_timermp_allocfail);
25976 		mp = allocb_tryhard(sizeof (tcp_timer_t));
25977 		if (mp == NULL) {
25978 			size_t size = 0;
25979 			/*
25980 			 * Memory is really low. Try tryhard allocation.
25981 			 *
25982 			 * ipclassifier calls this from a constructor -
25983 			 * hence no tcps
25984 			 */
25985 			TCP_G_STAT(tcp_timermp_allocdblfail);
25986 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
25987 			    sizeof (tcp_timer_t), &size, kmflags);
25988 			mp->b_rptr = (uchar_t *)(&mp[1]);
25989 			mp->b_next = mp->b_prev = NULL;
25990 			mp->b_wptr = (uchar_t *)-1;
25991 			mp->b_datap = (dblk_t *)size;
25992 			mp->b_queue = NULL;
25993 			mp->b_cont = NULL;
25994 		}
25995 		ASSERT(mp->b_wptr != NULL);
25996 	}
25997 	/* ipclassifier calls this from a constructor - hence no tcps */
25998 	TCP_G_DBGSTAT(tcp_timermp_alloced);
25999 
26000 	return (mp);
26001 }
26002 
26003 /*
26004  * Free per-tcp timer cache.
26005  * It can only contain entries from tcp_timercache.
26006  */
26007 void
26008 tcp_timermp_free(tcp_t *tcp)
26009 {
26010 	mblk_t *mp;
26011 
26012 	while ((mp = tcp->tcp_timercache) != NULL) {
26013 		ASSERT(mp->b_wptr == NULL);
26014 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
26015 		kmem_cache_free(tcp_timercache, mp);
26016 	}
26017 }
26018 
26019 /*
26020  * Free timer event. Put it on the per-tcp timer cache if there is not too many
26021  * events there already (currently at most two events are cached).
26022  * If the event is not allocated from the timer cache, free it right away.
26023  */
26024 static void
26025 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
26026 {
26027 	mblk_t *mp1 = tcp->tcp_timercache;
26028 
26029 	if (mp->b_wptr != NULL) {
26030 		/*
26031 		 * This allocation is not from a timer cache, free it right
26032 		 * away.
26033 		 */
26034 		if (mp->b_wptr != (uchar_t *)-1)
26035 			freeb(mp);
26036 		else
26037 			kmem_free(mp, (size_t)mp->b_datap);
26038 	} else if (mp1 == NULL || mp1->b_next == NULL) {
26039 		/* Cache this timer block for future allocations */
26040 		mp->b_rptr = (uchar_t *)(&mp[1]);
26041 		mp->b_next = mp1;
26042 		tcp->tcp_timercache = mp;
26043 	} else {
26044 		kmem_cache_free(tcp_timercache, mp);
26045 		TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed);
26046 	}
26047 }
26048 
26049 /*
26050  * End of TCP Timers implementation.
26051  */
26052 
26053 /*
26054  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
26055  * on the specified backing STREAMS q. Note, the caller may make the
26056  * decision to call based on the tcp_t.tcp_flow_stopped value which
26057  * when check outside the q's lock is only an advisory check ...
26058  */
26059 void
26060 tcp_setqfull(tcp_t *tcp)
26061 {
26062 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26063 	conn_t	*connp = tcp->tcp_connp;
26064 
26065 	if (tcp->tcp_closed)
26066 		return;
26067 
26068 	if (IPCL_IS_NONSTR(connp)) {
26069 		(*connp->conn_upcalls->su_txq_full)
26070 		    (tcp->tcp_connp->conn_upper_handle, B_TRUE);
26071 		tcp->tcp_flow_stopped = B_TRUE;
26072 	} else {
26073 		queue_t *q = tcp->tcp_wq;
26074 
26075 		if (!(q->q_flag & QFULL)) {
26076 			mutex_enter(QLOCK(q));
26077 			if (!(q->q_flag & QFULL)) {
26078 				/* still need to set QFULL */
26079 				q->q_flag |= QFULL;
26080 				tcp->tcp_flow_stopped = B_TRUE;
26081 				mutex_exit(QLOCK(q));
26082 				TCP_STAT(tcps, tcp_flwctl_on);
26083 			} else {
26084 				mutex_exit(QLOCK(q));
26085 			}
26086 		}
26087 	}
26088 }
26089 
26090 void
26091 tcp_clrqfull(tcp_t *tcp)
26092 {
26093 	conn_t  *connp = tcp->tcp_connp;
26094 
26095 	if (tcp->tcp_closed)
26096 		return;
26097 
26098 	if (IPCL_IS_NONSTR(connp)) {
26099 		(*connp->conn_upcalls->su_txq_full)
26100 		    (tcp->tcp_connp->conn_upper_handle, B_FALSE);
26101 		tcp->tcp_flow_stopped = B_FALSE;
26102 	} else {
26103 		queue_t *q = tcp->tcp_wq;
26104 
26105 		if (q->q_flag & QFULL) {
26106 			mutex_enter(QLOCK(q));
26107 			if (q->q_flag & QFULL) {
26108 				q->q_flag &= ~QFULL;
26109 				tcp->tcp_flow_stopped = B_FALSE;
26110 				mutex_exit(QLOCK(q));
26111 				if (q->q_flag & QWANTW)
26112 					qbackenable(q, 0);
26113 			} else {
26114 				mutex_exit(QLOCK(q));
26115 			}
26116 		}
26117 	}
26118 }
26119 
26120 /*
26121  * kstats related to squeues i.e. not per IP instance
26122  */
26123 static void *
26124 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp)
26125 {
26126 	kstat_t *ksp;
26127 
26128 	tcp_g_stat_t template = {
26129 		{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
26130 		{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
26131 		{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
26132 		{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
26133 	};
26134 
26135 	ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net",
26136 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26137 	    KSTAT_FLAG_VIRTUAL);
26138 
26139 	if (ksp == NULL)
26140 		return (NULL);
26141 
26142 	bcopy(&template, tcp_g_statp, sizeof (template));
26143 	ksp->ks_data = (void *)tcp_g_statp;
26144 
26145 	kstat_install(ksp);
26146 	return (ksp);
26147 }
26148 
26149 static void
26150 tcp_g_kstat_fini(kstat_t *ksp)
26151 {
26152 	if (ksp != NULL) {
26153 		kstat_delete(ksp);
26154 	}
26155 }
26156 
26157 
26158 static void *
26159 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp)
26160 {
26161 	kstat_t *ksp;
26162 
26163 	tcp_stat_t template = {
26164 		{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
26165 		{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
26166 		{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
26167 		{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
26168 		{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
26169 		{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
26170 		{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
26171 		{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
26172 		{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
26173 		{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
26174 		{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
26175 		{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
26176 		{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
26177 		{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
26178 		{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
26179 		{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
26180 		{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
26181 		{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
26182 		{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
26183 		{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
26184 		{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
26185 		{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
26186 		{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
26187 		{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
26188 		{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
26189 		{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
26190 		{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
26191 		{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
26192 		{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
26193 		{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
26194 		{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
26195 		{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
26196 		{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
26197 		{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
26198 		{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
26199 		{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
26200 		{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
26201 		{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
26202 		{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
26203 		{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
26204 		{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
26205 		{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
26206 		{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
26207 		{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
26208 		{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
26209 		{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
26210 		{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
26211 		{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
26212 		{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
26213 		{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
26214 		{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
26215 		{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
26216 		{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
26217 		{ "tcp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
26218 		{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
26219 		{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
26220 		{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
26221 		{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
26222 		{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
26223 		{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
26224 		{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
26225 		{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
26226 		{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
26227 		{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
26228 		{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
26229 		{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
26230 		{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
26231 		{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
26232 		{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
26233 		{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
26234 		{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
26235 		{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
26236 		{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
26237 		{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
26238 		{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
26239 		{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
26240 		{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
26241 		{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
26242 		{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
26243 		{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
26244 		{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
26245 		{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
26246 		{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
26247 		{ "tcp_fusion_rrw_plugged",	KSTAT_DATA_UINT64 },
26248 		{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
26249 		{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
26250 		{ "tcp_lso_enabled",		KSTAT_DATA_UINT64 },
26251 		{ "tcp_lso_disabled",		KSTAT_DATA_UINT64 },
26252 		{ "tcp_lso_times",		KSTAT_DATA_UINT64 },
26253 		{ "tcp_lso_pkt_out",		KSTAT_DATA_UINT64 },
26254 	};
26255 
26256 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net",
26257 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26258 	    KSTAT_FLAG_VIRTUAL, stackid);
26259 
26260 	if (ksp == NULL)
26261 		return (NULL);
26262 
26263 	bcopy(&template, tcps_statisticsp, sizeof (template));
26264 	ksp->ks_data = (void *)tcps_statisticsp;
26265 	ksp->ks_private = (void *)(uintptr_t)stackid;
26266 
26267 	kstat_install(ksp);
26268 	return (ksp);
26269 }
26270 
26271 static void
26272 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
26273 {
26274 	if (ksp != NULL) {
26275 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
26276 		kstat_delete_netstack(ksp, stackid);
26277 	}
26278 }
26279 
26280 /*
26281  * TCP Kstats implementation
26282  */
26283 static void *
26284 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps)
26285 {
26286 	kstat_t	*ksp;
26287 
26288 	tcp_named_kstat_t template = {
26289 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
26290 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
26291 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
26292 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
26293 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
26294 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
26295 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
26296 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
26297 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
26298 		{ "inSegs",		KSTAT_DATA_UINT64, 0 },
26299 		{ "outSegs",		KSTAT_DATA_UINT64, 0 },
26300 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
26301 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
26302 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
26303 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
26304 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
26305 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
26306 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
26307 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
26308 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
26309 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
26310 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
26311 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
26312 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
26313 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
26314 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
26315 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
26316 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
26317 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
26318 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
26319 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
26320 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
26321 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
26322 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
26323 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
26324 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
26325 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
26326 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
26327 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
26328 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
26329 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
26330 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
26331 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
26332 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
26333 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
26334 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
26335 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
26336 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
26337 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
26338 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
26339 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
26340 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
26341 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
26342 	};
26343 
26344 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2",
26345 	    KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid);
26346 
26347 	if (ksp == NULL)
26348 		return (NULL);
26349 
26350 	template.rtoAlgorithm.value.ui32 = 4;
26351 	template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min;
26352 	template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max;
26353 	template.maxConn.value.i32 = -1;
26354 
26355 	bcopy(&template, ksp->ks_data, sizeof (template));
26356 	ksp->ks_update = tcp_kstat_update;
26357 	ksp->ks_private = (void *)(uintptr_t)stackid;
26358 
26359 	kstat_install(ksp);
26360 	return (ksp);
26361 }
26362 
26363 static void
26364 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
26365 {
26366 	if (ksp != NULL) {
26367 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
26368 		kstat_delete_netstack(ksp, stackid);
26369 	}
26370 }
26371 
26372 static int
26373 tcp_kstat_update(kstat_t *kp, int rw)
26374 {
26375 	tcp_named_kstat_t *tcpkp;
26376 	tcp_t		*tcp;
26377 	connf_t		*connfp;
26378 	conn_t		*connp;
26379 	int 		i;
26380 	netstackid_t	stackid = (netstackid_t)(uintptr_t)kp->ks_private;
26381 	netstack_t	*ns;
26382 	tcp_stack_t	*tcps;
26383 	ip_stack_t	*ipst;
26384 
26385 	if ((kp == NULL) || (kp->ks_data == NULL))
26386 		return (EIO);
26387 
26388 	if (rw == KSTAT_WRITE)
26389 		return (EACCES);
26390 
26391 	ns = netstack_find_by_stackid(stackid);
26392 	if (ns == NULL)
26393 		return (-1);
26394 	tcps = ns->netstack_tcp;
26395 	if (tcps == NULL) {
26396 		netstack_rele(ns);
26397 		return (-1);
26398 	}
26399 
26400 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
26401 
26402 	tcpkp->currEstab.value.ui32 = 0;
26403 
26404 	ipst = ns->netstack_ip;
26405 
26406 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
26407 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
26408 		connp = NULL;
26409 		while ((connp =
26410 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
26411 			tcp = connp->conn_tcp;
26412 			switch (tcp_snmp_state(tcp)) {
26413 			case MIB2_TCP_established:
26414 			case MIB2_TCP_closeWait:
26415 				tcpkp->currEstab.value.ui32++;
26416 				break;
26417 			}
26418 		}
26419 	}
26420 
26421 	tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens;
26422 	tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens;
26423 	tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails;
26424 	tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets;
26425 	tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs;
26426 	tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs;
26427 	tcpkp->retransSegs.value.ui32 =	tcps->tcps_mib.tcpRetransSegs;
26428 	tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize;
26429 	tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts;
26430 	tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs;
26431 	tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes;
26432 	tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes;
26433 	tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck;
26434 	tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed;
26435 	tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg;
26436 	tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate;
26437 	tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe;
26438 	tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl;
26439 	tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans;
26440 	tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs;
26441 	tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes;
26442 	tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck;
26443 	tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent;
26444 	tcpkp->inDataInorderSegs.value.ui32 =
26445 	    tcps->tcps_mib.tcpInDataInorderSegs;
26446 	tcpkp->inDataInorderBytes.value.ui32 =
26447 	    tcps->tcps_mib.tcpInDataInorderBytes;
26448 	tcpkp->inDataUnorderSegs.value.ui32 =
26449 	    tcps->tcps_mib.tcpInDataUnorderSegs;
26450 	tcpkp->inDataUnorderBytes.value.ui32 =
26451 	    tcps->tcps_mib.tcpInDataUnorderBytes;
26452 	tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs;
26453 	tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes;
26454 	tcpkp->inDataPartDupSegs.value.ui32 =
26455 	    tcps->tcps_mib.tcpInDataPartDupSegs;
26456 	tcpkp->inDataPartDupBytes.value.ui32 =
26457 	    tcps->tcps_mib.tcpInDataPartDupBytes;
26458 	tcpkp->inDataPastWinSegs.value.ui32 =
26459 	    tcps->tcps_mib.tcpInDataPastWinSegs;
26460 	tcpkp->inDataPastWinBytes.value.ui32 =
26461 	    tcps->tcps_mib.tcpInDataPastWinBytes;
26462 	tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe;
26463 	tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate;
26464 	tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed;
26465 	tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate;
26466 	tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate;
26467 	tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans;
26468 	tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop;
26469 	tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive;
26470 	tcpkp->timKeepaliveProbe.value.ui32 =
26471 	    tcps->tcps_mib.tcpTimKeepaliveProbe;
26472 	tcpkp->timKeepaliveDrop.value.ui32 =
26473 	    tcps->tcps_mib.tcpTimKeepaliveDrop;
26474 	tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop;
26475 	tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0;
26476 	tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop;
26477 	tcpkp->outSackRetransSegs.value.ui32 =
26478 	    tcps->tcps_mib.tcpOutSackRetransSegs;
26479 	tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize;
26480 
26481 	netstack_rele(ns);
26482 	return (0);
26483 }
26484 
26485 void
26486 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
26487 {
26488 	uint16_t	hdr_len;
26489 	ipha_t		*ipha;
26490 	uint8_t		*nexthdrp;
26491 	tcph_t		*tcph;
26492 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
26493 
26494 	/* Already has an eager */
26495 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
26496 		TCP_STAT(tcps, tcp_reinput_syn);
26497 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
26498 		    SQ_PROCESS, SQTAG_TCP_REINPUT_EAGER);
26499 		return;
26500 	}
26501 
26502 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
26503 	case IPV4_VERSION:
26504 		ipha = (ipha_t *)mp->b_rptr;
26505 		hdr_len = IPH_HDR_LENGTH(ipha);
26506 		break;
26507 	case IPV6_VERSION:
26508 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
26509 		    &hdr_len, &nexthdrp)) {
26510 			CONN_DEC_REF(connp);
26511 			freemsg(mp);
26512 			return;
26513 		}
26514 		break;
26515 	}
26516 
26517 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
26518 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
26519 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
26520 		DB_CKSUMSTART(mp) = (intptr_t)sqp;
26521 	}
26522 
26523 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
26524 	    SQ_FILL, SQTAG_TCP_REINPUT);
26525 }
26526 
26527 static int
26528 tcp_squeue_switch(int val)
26529 {
26530 	int rval = SQ_FILL;
26531 
26532 	switch (val) {
26533 	case 1:
26534 		rval = SQ_NODRAIN;
26535 		break;
26536 	case 2:
26537 		rval = SQ_PROCESS;
26538 		break;
26539 	default:
26540 		break;
26541 	}
26542 	return (rval);
26543 }
26544 
26545 /*
26546  * This is called once for each squeue - globally for all stack
26547  * instances.
26548  */
26549 static void
26550 tcp_squeue_add(squeue_t *sqp)
26551 {
26552 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
26553 	    sizeof (tcp_squeue_priv_t), KM_SLEEP);
26554 
26555 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
26556 	tcp_time_wait->tcp_time_wait_tid =
26557 	    timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp,
26558 	    TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION,
26559 	    CALLOUT_FLAG_ROUNDUP);
26560 	if (tcp_free_list_max_cnt == 0) {
26561 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
26562 		    max_ncpus : boot_max_ncpus);
26563 
26564 		/*
26565 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
26566 		 */
26567 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
26568 		    (tcp_ncpus * sizeof (tcp_t) * 100);
26569 	}
26570 	tcp_time_wait->tcp_free_list_cnt = 0;
26571 }
26572 
26573 static int
26574 tcp_post_ip_bind(tcp_t *tcp, mblk_t *mp, int error)
26575 {
26576 	mblk_t	*ire_mp = NULL;
26577 	mblk_t	*syn_mp;
26578 	mblk_t	*mdti;
26579 	mblk_t	*lsoi;
26580 	int	retval;
26581 	tcph_t	*tcph;
26582 	uint32_t	mss;
26583 	queue_t	*q = tcp->tcp_rq;
26584 	conn_t	*connp = tcp->tcp_connp;
26585 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26586 
26587 	if (error == 0) {
26588 		/*
26589 		 * Adapt Multidata information, if any.  The
26590 		 * following tcp_mdt_update routine will free
26591 		 * the message.
26592 		 */
26593 		if (mp != NULL && ((mdti = tcp_mdt_info_mp(mp)) != NULL)) {
26594 			tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
26595 			    b_rptr)->mdt_capab, B_TRUE);
26596 			freemsg(mdti);
26597 		}
26598 
26599 		/*
26600 		 * Check to update LSO information with tcp, and
26601 		 * tcp_lso_update routine will free the message.
26602 		 */
26603 		if (mp != NULL && ((lsoi = tcp_lso_info_mp(mp)) != NULL)) {
26604 			tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi->
26605 			    b_rptr)->lso_capab);
26606 			freemsg(lsoi);
26607 		}
26608 
26609 		/* Get the IRE, if we had requested for it */
26610 		if (mp != NULL)
26611 			ire_mp = tcp_ire_mp(&mp);
26612 
26613 		if (tcp->tcp_hard_binding) {
26614 			tcp->tcp_hard_binding = B_FALSE;
26615 			tcp->tcp_hard_bound = B_TRUE;
26616 			CL_INET_CONNECT(tcp->tcp_connp, tcp, B_TRUE, retval);
26617 			if (retval != 0) {
26618 				error = EADDRINUSE;
26619 				goto bind_failed;
26620 			}
26621 		} else {
26622 			if (ire_mp != NULL)
26623 				freeb(ire_mp);
26624 			goto after_syn_sent;
26625 		}
26626 
26627 		retval = tcp_adapt_ire(tcp, ire_mp);
26628 		if (ire_mp != NULL)
26629 			freeb(ire_mp);
26630 		if (retval == 0) {
26631 			error = (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
26632 			    ENETUNREACH : EADDRNOTAVAIL);
26633 			goto ipcl_rm;
26634 		}
26635 		/*
26636 		 * Don't let an endpoint connect to itself.
26637 		 * Also checked in tcp_connect() but that
26638 		 * check can't handle the case when the
26639 		 * local IP address is INADDR_ANY.
26640 		 */
26641 		if (tcp->tcp_ipversion == IPV4_VERSION) {
26642 			if ((tcp->tcp_ipha->ipha_dst ==
26643 			    tcp->tcp_ipha->ipha_src) &&
26644 			    (BE16_EQL(tcp->tcp_tcph->th_lport,
26645 			    tcp->tcp_tcph->th_fport))) {
26646 				error = EADDRNOTAVAIL;
26647 				goto ipcl_rm;
26648 			}
26649 		} else {
26650 			if (IN6_ARE_ADDR_EQUAL(
26651 			    &tcp->tcp_ip6h->ip6_dst,
26652 			    &tcp->tcp_ip6h->ip6_src) &&
26653 			    (BE16_EQL(tcp->tcp_tcph->th_lport,
26654 			    tcp->tcp_tcph->th_fport))) {
26655 				error = EADDRNOTAVAIL;
26656 				goto ipcl_rm;
26657 			}
26658 		}
26659 		ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
26660 		/*
26661 		 * This should not be possible!  Just for
26662 		 * defensive coding...
26663 		 */
26664 		if (tcp->tcp_state != TCPS_SYN_SENT)
26665 			goto after_syn_sent;
26666 
26667 		if (is_system_labeled() &&
26668 		    !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) {
26669 			error = EHOSTUNREACH;
26670 			goto ipcl_rm;
26671 		}
26672 
26673 		/*
26674 		 * tcp_adapt_ire() does not adjust
26675 		 * for TCP/IP header length.
26676 		 */
26677 		mss = tcp->tcp_mss - tcp->tcp_hdr_len;
26678 
26679 		/*
26680 		 * Just make sure our rwnd is at
26681 		 * least tcp_recv_hiwat_mss * MSS
26682 		 * large, and round up to the nearest
26683 		 * MSS.
26684 		 *
26685 		 * We do the round up here because
26686 		 * we need to get the interface
26687 		 * MTU first before we can do the
26688 		 * round up.
26689 		 */
26690 		tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
26691 		    tcps->tcps_recv_hiwat_minmss * mss);
26692 		if (!IPCL_IS_NONSTR(connp))
26693 			q->q_hiwat = tcp->tcp_rwnd;
26694 		tcp->tcp_recv_hiwater = tcp->tcp_rwnd;
26695 		tcp_set_ws_value(tcp);
26696 		U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
26697 		    tcp->tcp_tcph->th_win);
26698 		if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
26699 			tcp->tcp_snd_ws_ok = B_TRUE;
26700 
26701 		/*
26702 		 * Set tcp_snd_ts_ok to true
26703 		 * so that tcp_xmit_mp will
26704 		 * include the timestamp
26705 		 * option in the SYN segment.
26706 		 */
26707 		if (tcps->tcps_tstamp_always ||
26708 		    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
26709 			tcp->tcp_snd_ts_ok = B_TRUE;
26710 		}
26711 
26712 		/*
26713 		 * tcp_snd_sack_ok can be set in
26714 		 * tcp_adapt_ire() if the sack metric
26715 		 * is set.  So check it here also.
26716 		 */
26717 		if (tcps->tcps_sack_permitted == 2 ||
26718 		    tcp->tcp_snd_sack_ok) {
26719 			if (tcp->tcp_sack_info == NULL) {
26720 				tcp->tcp_sack_info =
26721 				    kmem_cache_alloc(tcp_sack_info_cache,
26722 				    KM_SLEEP);
26723 			}
26724 			tcp->tcp_snd_sack_ok = B_TRUE;
26725 		}
26726 
26727 		/*
26728 		 * Should we use ECN?  Note that the current
26729 		 * default value (SunOS 5.9) of tcp_ecn_permitted
26730 		 * is 1.  The reason for doing this is that there
26731 		 * are equipments out there that will drop ECN
26732 		 * enabled IP packets.  Setting it to 1 avoids
26733 		 * compatibility problems.
26734 		 */
26735 		if (tcps->tcps_ecn_permitted == 2)
26736 			tcp->tcp_ecn_ok = B_TRUE;
26737 
26738 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
26739 		syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
26740 		    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
26741 		if (syn_mp) {
26742 			cred_t *cr;
26743 			pid_t pid;
26744 
26745 			/*
26746 			 * Obtain the credential from the
26747 			 * thread calling connect().
26748 			 * If none can be found, default to
26749 			 * the creator  of the socket.
26750 			 */
26751 			if (mp == NULL ||
26752 			    (cr = DB_CRED(mp)) == NULL) {
26753 				cr = tcp->tcp_cred;
26754 				pid = tcp->tcp_cpid;
26755 			} else {
26756 				pid = DB_CPID(mp);
26757 			}
26758 
26759 			mblk_setcred(syn_mp, cr);
26760 			DB_CPID(syn_mp) = pid;
26761 			tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
26762 		}
26763 	after_syn_sent:
26764 		/*
26765 		 * A trailer mblk indicates a waiting client upstream.
26766 		 * We complete here the processing begun in
26767 		 * either tcp_bind() or tcp_connect() by passing
26768 		 * upstream the reply message they supplied.
26769 		 */
26770 		if (mp != NULL) {
26771 			ASSERT(mp->b_cont == NULL);
26772 			freeb(mp);
26773 		}
26774 		return (error);
26775 	} else {
26776 		/* error */
26777 		if (tcp->tcp_debug) {
26778 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
26779 			    "tcp_post_ip_bind: error == %d", error);
26780 		}
26781 		if (mp != NULL) {
26782 			freeb(mp);
26783 		}
26784 	}
26785 
26786 ipcl_rm:
26787 	/*
26788 	 * Need to unbind with classifier since we were just
26789 	 * told that our bind succeeded. a.k.a error == 0 at the entry.
26790 	 */
26791 	tcp->tcp_hard_bound = B_FALSE;
26792 	tcp->tcp_hard_binding = B_FALSE;
26793 
26794 	ipcl_hash_remove(connp);
26795 
26796 bind_failed:
26797 	tcp->tcp_state = TCPS_IDLE;
26798 	if (tcp->tcp_ipversion == IPV4_VERSION)
26799 		tcp->tcp_ipha->ipha_src = 0;
26800 	else
26801 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
26802 	/*
26803 	 * Copy of the src addr. in tcp_t is needed since
26804 	 * the lookup funcs. can only look at tcp_t
26805 	 */
26806 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
26807 
26808 	tcph = tcp->tcp_tcph;
26809 	tcph->th_lport[0] = 0;
26810 	tcph->th_lport[1] = 0;
26811 	tcp_bind_hash_remove(tcp);
26812 	bzero(&connp->u_port, sizeof (connp->u_port));
26813 	/* blow away saved option results if any */
26814 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
26815 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
26816 
26817 	conn_delete_ire(tcp->tcp_connp, NULL);
26818 
26819 	return (error);
26820 }
26821 
26822 static int
26823 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr,
26824     boolean_t bind_to_req_port_only, cred_t *cr)
26825 {
26826 	in_port_t	mlp_port;
26827 	mlp_type_t 	addrtype, mlptype;
26828 	boolean_t	user_specified;
26829 	in_port_t	allocated_port;
26830 	in_port_t	requested_port = *requested_port_ptr;
26831 	conn_t		*connp;
26832 	zone_t		*zone;
26833 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26834 	in6_addr_t	v6addr = tcp->tcp_ip_src_v6;
26835 
26836 	/*
26837 	 * XXX It's up to the caller to specify bind_to_req_port_only or not.
26838 	 */
26839 	if (cr == NULL)
26840 		cr = tcp->tcp_cred;
26841 	/*
26842 	 * Get a valid port (within the anonymous range and should not
26843 	 * be a privileged one) to use if the user has not given a port.
26844 	 * If multiple threads are here, they may all start with
26845 	 * with the same initial port. But, it should be fine as long as
26846 	 * tcp_bindi will ensure that no two threads will be assigned
26847 	 * the same port.
26848 	 *
26849 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
26850 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
26851 	 * unless TCP_ANONPRIVBIND option is set.
26852 	 */
26853 	mlptype = mlptSingle;
26854 	mlp_port = requested_port;
26855 	if (requested_port == 0) {
26856 		requested_port = tcp->tcp_anon_priv_bind ?
26857 		    tcp_get_next_priv_port(tcp) :
26858 		    tcp_update_next_port(tcps->tcps_next_port_to_try,
26859 		    tcp, B_TRUE);
26860 		if (requested_port == 0) {
26861 			return (-TNOADDR);
26862 		}
26863 		user_specified = B_FALSE;
26864 
26865 		/*
26866 		 * If the user went through one of the RPC interfaces to create
26867 		 * this socket and RPC is MLP in this zone, then give him an
26868 		 * anonymous MLP.
26869 		 */
26870 		connp = tcp->tcp_connp;
26871 		if (connp->conn_anon_mlp && is_system_labeled()) {
26872 			zone = crgetzone(cr);
26873 			addrtype = tsol_mlp_addr_type(zone->zone_id,
26874 			    IPV6_VERSION, &v6addr,
26875 			    tcps->tcps_netstack->netstack_ip);
26876 			if (addrtype == mlptSingle) {
26877 				return (-TNOADDR);
26878 			}
26879 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
26880 			    PMAPPORT, addrtype);
26881 			mlp_port = PMAPPORT;
26882 		}
26883 	} else {
26884 		int i;
26885 		boolean_t priv = B_FALSE;
26886 
26887 		/*
26888 		 * If the requested_port is in the well-known privileged range,
26889 		 * verify that the stream was opened by a privileged user.
26890 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
26891 		 * but instead the code relies on:
26892 		 * - the fact that the address of the array and its size never
26893 		 *   changes
26894 		 * - the atomic assignment of the elements of the array
26895 		 */
26896 		if (requested_port < tcps->tcps_smallest_nonpriv_port) {
26897 			priv = B_TRUE;
26898 		} else {
26899 			for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
26900 				if (requested_port ==
26901 				    tcps->tcps_g_epriv_ports[i]) {
26902 					priv = B_TRUE;
26903 					break;
26904 				}
26905 			}
26906 		}
26907 		if (priv) {
26908 			if (secpolicy_net_privaddr(cr, requested_port,
26909 			    IPPROTO_TCP) != 0) {
26910 				if (tcp->tcp_debug) {
26911 					(void) strlog(TCP_MOD_ID, 0, 1,
26912 					    SL_ERROR|SL_TRACE,
26913 					    "tcp_bind: no priv for port %d",
26914 					    requested_port);
26915 				}
26916 				return (-TACCES);
26917 			}
26918 		}
26919 		user_specified = B_TRUE;
26920 
26921 		connp = tcp->tcp_connp;
26922 		if (is_system_labeled()) {
26923 			zone = crgetzone(cr);
26924 			addrtype = tsol_mlp_addr_type(zone->zone_id,
26925 			    IPV6_VERSION, &v6addr,
26926 			    tcps->tcps_netstack->netstack_ip);
26927 			if (addrtype == mlptSingle) {
26928 				return (-TNOADDR);
26929 			}
26930 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
26931 			    requested_port, addrtype);
26932 		}
26933 	}
26934 
26935 	if (mlptype != mlptSingle) {
26936 		if (secpolicy_net_bindmlp(cr) != 0) {
26937 			if (tcp->tcp_debug) {
26938 				(void) strlog(TCP_MOD_ID, 0, 1,
26939 				    SL_ERROR|SL_TRACE,
26940 				    "tcp_bind: no priv for multilevel port %d",
26941 				    requested_port);
26942 			}
26943 			return (-TACCES);
26944 		}
26945 
26946 		/*
26947 		 * If we're specifically binding a shared IP address and the
26948 		 * port is MLP on shared addresses, then check to see if this
26949 		 * zone actually owns the MLP.  Reject if not.
26950 		 */
26951 		if (mlptype == mlptShared && addrtype == mlptShared) {
26952 			/*
26953 			 * No need to handle exclusive-stack zones since
26954 			 * ALL_ZONES only applies to the shared stack.
26955 			 */
26956 			zoneid_t mlpzone;
26957 
26958 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
26959 			    htons(mlp_port));
26960 			if (connp->conn_zoneid != mlpzone) {
26961 				if (tcp->tcp_debug) {
26962 					(void) strlog(TCP_MOD_ID, 0, 1,
26963 					    SL_ERROR|SL_TRACE,
26964 					    "tcp_bind: attempt to bind port "
26965 					    "%d on shared addr in zone %d "
26966 					    "(should be %d)",
26967 					    mlp_port, connp->conn_zoneid,
26968 					    mlpzone);
26969 				}
26970 				return (-TACCES);
26971 			}
26972 		}
26973 
26974 		if (!user_specified) {
26975 			int err;
26976 			err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
26977 			    requested_port, B_TRUE);
26978 			if (err != 0) {
26979 				if (tcp->tcp_debug) {
26980 					(void) strlog(TCP_MOD_ID, 0, 1,
26981 					    SL_ERROR|SL_TRACE,
26982 					    "tcp_bind: cannot establish anon "
26983 					    "MLP for port %d",
26984 					    requested_port);
26985 				}
26986 				return (err);
26987 			}
26988 			connp->conn_anon_port = B_TRUE;
26989 		}
26990 		connp->conn_mlp_type = mlptype;
26991 	}
26992 
26993 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
26994 	    tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified);
26995 
26996 	if (allocated_port == 0) {
26997 		connp->conn_mlp_type = mlptSingle;
26998 		if (connp->conn_anon_port) {
26999 			connp->conn_anon_port = B_FALSE;
27000 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
27001 			    requested_port, B_FALSE);
27002 		}
27003 		if (bind_to_req_port_only) {
27004 			if (tcp->tcp_debug) {
27005 				(void) strlog(TCP_MOD_ID, 0, 1,
27006 				    SL_ERROR|SL_TRACE,
27007 				    "tcp_bind: requested addr busy");
27008 			}
27009 			return (-TADDRBUSY);
27010 		} else {
27011 			/* If we are out of ports, fail the bind. */
27012 			if (tcp->tcp_debug) {
27013 				(void) strlog(TCP_MOD_ID, 0, 1,
27014 				    SL_ERROR|SL_TRACE,
27015 				    "tcp_bind: out of ports?");
27016 			}
27017 			return (-TNOADDR);
27018 		}
27019 	}
27020 
27021 	/* Pass the allocated port back */
27022 	*requested_port_ptr = allocated_port;
27023 	return (0);
27024 }
27025 
27026 static int
27027 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
27028     boolean_t bind_to_req_port_only)
27029 {
27030 	tcp_t	*tcp = connp->conn_tcp;
27031 
27032 	sin_t	*sin;
27033 	sin6_t  *sin6;
27034 	sin6_t		sin6addr;
27035 	in_port_t requested_port;
27036 	ipaddr_t	v4addr;
27037 	in6_addr_t	v6addr;
27038 	uint_t	origipversion;
27039 	int	error = 0;
27040 
27041 	ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX);
27042 
27043 	if (tcp->tcp_state == TCPS_BOUND) {
27044 		return (0);
27045 	} else if (tcp->tcp_state > TCPS_BOUND) {
27046 		if (tcp->tcp_debug) {
27047 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
27048 			    "tcp_bind: bad state, %d", tcp->tcp_state);
27049 		}
27050 		return (-TOUTSTATE);
27051 	}
27052 	origipversion = tcp->tcp_ipversion;
27053 
27054 	if (sa != NULL && !OK_32PTR((char *)sa)) {
27055 		if (tcp->tcp_debug) {
27056 			(void) strlog(TCP_MOD_ID, 0, 1,
27057 			    SL_ERROR|SL_TRACE,
27058 			    "tcp_bind: bad address parameter, "
27059 			    "address %p, len %d",
27060 			    (void *)sa, len);
27061 		}
27062 		return (-TPROTO);
27063 	}
27064 
27065 	switch (len) {
27066 	case 0:		/* request for a generic port */
27067 		if (tcp->tcp_family == AF_INET) {
27068 			sin = (sin_t *)&sin6addr;
27069 			*sin = sin_null;
27070 			sin->sin_family = AF_INET;
27071 			tcp->tcp_ipversion = IPV4_VERSION;
27072 			IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr);
27073 		} else {
27074 			ASSERT(tcp->tcp_family == AF_INET6);
27075 			sin6 = (sin6_t *)&sin6addr;
27076 			*sin6 = sin6_null;
27077 			sin6->sin6_family = AF_INET6;
27078 			tcp->tcp_ipversion = IPV6_VERSION;
27079 			V6_SET_ZERO(v6addr);
27080 		}
27081 		requested_port = 0;
27082 		break;
27083 
27084 	case sizeof (sin_t):	/* Complete IPv4 address */
27085 		sin = (sin_t *)sa;
27086 		/*
27087 		 * With sockets sockfs will accept bogus sin_family in
27088 		 * bind() and replace it with the family used in the socket
27089 		 * call.
27090 		 */
27091 		if (sin->sin_family != AF_INET ||
27092 		    tcp->tcp_family != AF_INET) {
27093 			return (EAFNOSUPPORT);
27094 		}
27095 		requested_port = ntohs(sin->sin_port);
27096 		tcp->tcp_ipversion = IPV4_VERSION;
27097 		v4addr = sin->sin_addr.s_addr;
27098 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
27099 		break;
27100 
27101 	case sizeof (sin6_t): /* Complete IPv6 address */
27102 		sin6 = (sin6_t *)sa;
27103 		if (sin6->sin6_family != AF_INET6 ||
27104 		    tcp->tcp_family != AF_INET6) {
27105 			return (EAFNOSUPPORT);
27106 		}
27107 		requested_port = ntohs(sin6->sin6_port);
27108 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
27109 		    IPV4_VERSION : IPV6_VERSION;
27110 		v6addr = sin6->sin6_addr;
27111 		break;
27112 
27113 	default:
27114 		if (tcp->tcp_debug) {
27115 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
27116 			    "tcp_bind: bad address length, %d", len);
27117 		}
27118 		return (EAFNOSUPPORT);
27119 		/* return (-TBADADDR); */
27120 	}
27121 
27122 	tcp->tcp_bound_source_v6 = v6addr;
27123 
27124 	/* Check for change in ipversion */
27125 	if (origipversion != tcp->tcp_ipversion) {
27126 		ASSERT(tcp->tcp_family == AF_INET6);
27127 		error = tcp->tcp_ipversion == IPV6_VERSION ?
27128 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
27129 		if (error) {
27130 			return (ENOMEM);
27131 		}
27132 	}
27133 
27134 	/*
27135 	 * Initialize family specific fields. Copy of the src addr.
27136 	 * in tcp_t is needed for the lookup funcs.
27137 	 */
27138 	if (tcp->tcp_ipversion == IPV6_VERSION) {
27139 		tcp->tcp_ip6h->ip6_src = v6addr;
27140 	} else {
27141 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
27142 	}
27143 	tcp->tcp_ip_src_v6 = v6addr;
27144 
27145 	bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only;
27146 
27147 	error = tcp_bind_select_lport(tcp, &requested_port,
27148 	    bind_to_req_port_only, cr);
27149 
27150 	return (error);
27151 }
27152 
27153 /*
27154  * Return unix error is tli error is TSYSERR, otherwise return a negative
27155  * tli error.
27156  */
27157 int
27158 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
27159     boolean_t bind_to_req_port_only)
27160 {
27161 	int error;
27162 	tcp_t *tcp = connp->conn_tcp;
27163 
27164 	if (tcp->tcp_state >= TCPS_BOUND) {
27165 		if (tcp->tcp_debug) {
27166 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
27167 			    "tcp_bind: bad state, %d", tcp->tcp_state);
27168 		}
27169 		return (-TOUTSTATE);
27170 	}
27171 
27172 	error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only);
27173 	if (error != 0)
27174 		return (error);
27175 
27176 	ASSERT(tcp->tcp_state == TCPS_BOUND);
27177 
27178 	tcp->tcp_conn_req_max = 0;
27179 
27180 	/*
27181 	 * We need to make sure that the conn_recv is set to a non-null
27182 	 * value before we insert the conn into the classifier table.
27183 	 * This is to avoid a race with an incoming packet which does an
27184 	 * ipcl_classify().
27185 	 */
27186 	connp->conn_recv = tcp_conn_request;
27187 
27188 	if (tcp->tcp_family == AF_INET6) {
27189 		ASSERT(tcp->tcp_connp->conn_af_isv6);
27190 		error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP,
27191 		    &tcp->tcp_bound_source_v6, 0, B_FALSE);
27192 	} else {
27193 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
27194 		error = ip_proto_bind_laddr_v4(connp, NULL, IPPROTO_TCP,
27195 		    tcp->tcp_ipha->ipha_src, 0, B_FALSE);
27196 	}
27197 	return (tcp_post_ip_bind(tcp, NULL, error));
27198 }
27199 
27200 int
27201 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa,
27202     socklen_t len, cred_t *cr)
27203 {
27204 	int 		error;
27205 	conn_t		*connp = (conn_t *)proto_handle;
27206 	squeue_t	*sqp = connp->conn_sqp;
27207 
27208 	ASSERT(sqp != NULL);
27209 
27210 	error = squeue_synch_enter(sqp, connp, 0);
27211 	if (error != 0) {
27212 		/* failed to enter */
27213 		return (ENOSR);
27214 	}
27215 
27216 	/* binding to a NULL address really means unbind */
27217 	if (sa == NULL) {
27218 		if (connp->conn_tcp->tcp_state < TCPS_LISTEN)
27219 			error = tcp_do_unbind(connp);
27220 		else
27221 			error = EINVAL;
27222 	} else {
27223 		error = tcp_do_bind(connp, sa, len, cr, B_TRUE);
27224 	}
27225 
27226 	squeue_synch_exit(sqp, connp);
27227 
27228 	if (error < 0) {
27229 		if (error == -TOUTSTATE)
27230 			error = EINVAL;
27231 		else
27232 			error = proto_tlitosyserr(-error);
27233 	}
27234 
27235 	return (error);
27236 }
27237 
27238 /*
27239  * If the return value from this function is positive, it's a UNIX error.
27240  * Otherwise, if it's negative, then the absolute value is a TLI error.
27241  * the TPI routine tcp_tpi_connect() is a wrapper function for this.
27242  */
27243 int
27244 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len,
27245     cred_t *cr, pid_t pid)
27246 {
27247 	tcp_t		*tcp = connp->conn_tcp;
27248 	sin_t		*sin = (sin_t *)sa;
27249 	sin6_t		*sin6 = (sin6_t *)sa;
27250 	ipaddr_t	*dstaddrp;
27251 	in_port_t	dstport;
27252 	uint_t		srcid;
27253 	int		error = 0;
27254 
27255 	switch (len) {
27256 	default:
27257 		/*
27258 		 * Should never happen
27259 		 */
27260 		return (EINVAL);
27261 
27262 	case sizeof (sin_t):
27263 		sin = (sin_t *)sa;
27264 		if (sin->sin_port == 0) {
27265 			return (-TBADADDR);
27266 		}
27267 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
27268 			return (EAFNOSUPPORT);
27269 		}
27270 		break;
27271 
27272 	case sizeof (sin6_t):
27273 		sin6 = (sin6_t *)sa;
27274 		if (sin6->sin6_port == 0) {
27275 			return (-TBADADDR);
27276 		}
27277 		break;
27278 	}
27279 	/*
27280 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
27281 	 * make sure that the template IP header in the tcp structure is an
27282 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
27283 	 * need to this before we call tcp_bindi() so that the port lookup
27284 	 * code will look for ports in the correct port space (IPv4 and
27285 	 * IPv6 have separate port spaces).
27286 	 */
27287 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
27288 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
27289 		int err = 0;
27290 
27291 		err = tcp_header_init_ipv4(tcp);
27292 			if (err != 0) {
27293 				error = ENOMEM;
27294 				goto connect_failed;
27295 			}
27296 		if (tcp->tcp_lport != 0)
27297 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
27298 	}
27299 
27300 	switch (tcp->tcp_state) {
27301 	case TCPS_LISTEN:
27302 		/*
27303 		 * Listening sockets are not allowed to issue connect().
27304 		 */
27305 		if (IPCL_IS_NONSTR(connp))
27306 			return (EOPNOTSUPP);
27307 		/* FALLTHRU */
27308 	case TCPS_IDLE:
27309 		/*
27310 		 * We support quick connect, refer to comments in
27311 		 * tcp_connect_*()
27312 		 */
27313 		/* FALLTHRU */
27314 	case TCPS_BOUND:
27315 		/*
27316 		 * We must bump the generation before the operation start.
27317 		 * This is done to ensure that any upcall made later on sends
27318 		 * up the right generation to the socket.
27319 		 */
27320 		SOCK_CONNID_BUMP(tcp->tcp_connid);
27321 
27322 		if (tcp->tcp_family == AF_INET6) {
27323 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
27324 				return (tcp_connect_ipv6(tcp,
27325 				    &sin6->sin6_addr,
27326 				    sin6->sin6_port, sin6->sin6_flowinfo,
27327 				    sin6->__sin6_src_id, sin6->sin6_scope_id,
27328 				    cr, pid));
27329 			}
27330 			/*
27331 			 * Destination adress is mapped IPv6 address.
27332 			 * Source bound address should be unspecified or
27333 			 * IPv6 mapped address as well.
27334 			 */
27335 			if (!IN6_IS_ADDR_UNSPECIFIED(
27336 			    &tcp->tcp_bound_source_v6) &&
27337 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
27338 				return (EADDRNOTAVAIL);
27339 			}
27340 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
27341 			dstport = sin6->sin6_port;
27342 			srcid = sin6->__sin6_src_id;
27343 		} else {
27344 			dstaddrp = &sin->sin_addr.s_addr;
27345 			dstport = sin->sin_port;
27346 			srcid = 0;
27347 		}
27348 
27349 		error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid, cr,
27350 		    pid);
27351 		break;
27352 	default:
27353 		return (-TOUTSTATE);
27354 	}
27355 	/*
27356 	 * Note: Code below is the "failure" case
27357 	 */
27358 connect_failed:
27359 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
27360 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
27361 	return (error);
27362 }
27363 
27364 int
27365 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa,
27366     socklen_t len, sock_connid_t *id, cred_t *cr)
27367 {
27368 	conn_t		*connp = (conn_t *)proto_handle;
27369 	tcp_t		*tcp = connp->conn_tcp;
27370 	squeue_t	*sqp = connp->conn_sqp;
27371 	int		error;
27372 
27373 	error = proto_verify_ip_addr(tcp->tcp_family, sa, len);
27374 	if (error != 0) {
27375 		return (error);
27376 	}
27377 
27378 	error = squeue_synch_enter(sqp, connp, 0);
27379 	if (error != 0) {
27380 		/* failed to enter */
27381 		return (ENOSR);
27382 	}
27383 
27384 	/*
27385 	 * TCP supports quick connect, so no need to do an implicit bind
27386 	 */
27387 	error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid);
27388 	if (error == 0) {
27389 		*id = connp->conn_tcp->tcp_connid;
27390 	} else if (error < 0) {
27391 		if (error == -TOUTSTATE) {
27392 			switch (connp->conn_tcp->tcp_state) {
27393 			case TCPS_SYN_SENT:
27394 				error = EALREADY;
27395 				break;
27396 			case TCPS_ESTABLISHED:
27397 				error = EISCONN;
27398 				break;
27399 			case TCPS_LISTEN:
27400 				error = EOPNOTSUPP;
27401 				break;
27402 			default:
27403 				error = EINVAL;
27404 				break;
27405 			}
27406 		} else {
27407 			error = proto_tlitosyserr(-error);
27408 		}
27409 	}
27410 done:
27411 	squeue_synch_exit(sqp, connp);
27412 
27413 	return ((error == 0) ? EINPROGRESS : error);
27414 }
27415 
27416 /* ARGSUSED */
27417 sock_lower_handle_t
27418 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls,
27419     uint_t *smodep, int *errorp, int flags, cred_t *credp)
27420 {
27421 	conn_t		*connp;
27422 	boolean_t	isv6 = family == AF_INET6;
27423 	if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) ||
27424 	    (proto != 0 && proto != IPPROTO_TCP)) {
27425 		*errorp = EPROTONOSUPPORT;
27426 		return (NULL);
27427 	}
27428 
27429 	connp = tcp_create_common(NULL, credp, isv6, B_TRUE, errorp);
27430 	if (connp == NULL) {
27431 		return (NULL);
27432 	}
27433 
27434 	/*
27435 	 * Put the ref for TCP. Ref for IP was already put
27436 	 * by ipcl_conn_create. Also Make the conn_t globally
27437 	 * visible to walkers
27438 	 */
27439 	mutex_enter(&connp->conn_lock);
27440 	CONN_INC_REF_LOCKED(connp);
27441 	ASSERT(connp->conn_ref == 2);
27442 	connp->conn_state_flags &= ~CONN_INCIPIENT;
27443 
27444 	connp->conn_flags |= IPCL_NONSTR;
27445 	mutex_exit(&connp->conn_lock);
27446 
27447 	ASSERT(errorp != NULL);
27448 	*errorp = 0;
27449 	*sock_downcalls = &sock_tcp_downcalls;
27450 	*smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP |
27451 	    SM_SENDFILESUPP;
27452 
27453 	return ((sock_lower_handle_t)connp);
27454 }
27455 
27456 /* ARGSUSED */
27457 void
27458 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle,
27459     sock_upcalls_t *sock_upcalls, int flags, cred_t *cr)
27460 {
27461 	conn_t *connp = (conn_t *)proto_handle;
27462 	struct sock_proto_props sopp;
27463 
27464 	sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT |
27465 	    SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER |
27466 	    SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ;
27467 
27468 	sopp.sopp_rxhiwat = SOCKET_RECVHIWATER;
27469 	sopp.sopp_rxlowat = SOCKET_RECVLOWATER;
27470 	sopp.sopp_maxpsz = INFPSZ;
27471 	sopp.sopp_maxblk = INFPSZ;
27472 	sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL;
27473 	sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3;
27474 	sopp.sopp_maxaddrlen = sizeof (sin6_t);
27475 	sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 :
27476 	    tcp_rinfo.mi_minpsz;
27477 
27478 	connp->conn_upcalls = sock_upcalls;
27479 	connp->conn_upper_handle = sock_handle;
27480 
27481 	(*sock_upcalls->su_set_proto_props)(sock_handle, &sopp);
27482 }
27483 
27484 /* ARGSUSED */
27485 int
27486 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr)
27487 {
27488 	conn_t *connp = (conn_t *)proto_handle;
27489 
27490 	tcp_close_common(connp, flags);
27491 
27492 	ip_close_helper_stream(connp);
27493 
27494 	/*
27495 	 * Drop IP's reference on the conn. This is the last reference
27496 	 * on the connp if the state was less than established. If the
27497 	 * connection has gone into timewait state, then we will have
27498 	 * one ref for the TCP and one more ref (total of two) for the
27499 	 * classifier connected hash list (a timewait connections stays
27500 	 * in connected hash till closed).
27501 	 *
27502 	 * We can't assert the references because there might be other
27503 	 * transient reference places because of some walkers or queued
27504 	 * packets in squeue for the timewait state.
27505 	 */
27506 	CONN_DEC_REF(connp);
27507 	return (0);
27508 }
27509 
27510 /* ARGSUSED */
27511 int
27512 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg,
27513     cred_t *cr)
27514 {
27515 	tcp_t		*tcp;
27516 	uint32_t	msize;
27517 	conn_t *connp = (conn_t *)proto_handle;
27518 	int32_t		tcpstate;
27519 
27520 	ASSERT(connp->conn_ref >= 2);
27521 
27522 	if (msg->msg_controllen != 0) {
27523 		return (EOPNOTSUPP);
27524 
27525 	}
27526 	switch (DB_TYPE(mp)) {
27527 	case M_DATA:
27528 		tcp = connp->conn_tcp;
27529 		ASSERT(tcp != NULL);
27530 
27531 		tcpstate = tcp->tcp_state;
27532 		if (tcpstate < TCPS_ESTABLISHED) {
27533 			freemsg(mp);
27534 			return (ENOTCONN);
27535 		} else if (tcpstate > TCPS_CLOSE_WAIT) {
27536 			freemsg(mp);
27537 			return (EPIPE);
27538 		}
27539 
27540 		if (is_system_labeled())
27541 			msg_setcredpid(mp, cr, curproc->p_pid);
27542 
27543 		/* XXX pass the size down and to the squeue */
27544 		msize = msgdsize(mp);
27545 
27546 		mutex_enter(&tcp->tcp_non_sq_lock);
27547 		tcp->tcp_squeue_bytes += msize;
27548 		/*
27549 		 * Squeue Flow Control
27550 		 */
27551 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
27552 			tcp_setqfull(tcp);
27553 		}
27554 		mutex_exit(&tcp->tcp_non_sq_lock);
27555 
27556 		/*
27557 		 * The application may pass in an address in the msghdr, but
27558 		 * we ignore the address on connection-oriented sockets.
27559 		 * Just like BSD this code does not generate an error for
27560 		 * TCP (a CONNREQUIRED socket) when sending to an address
27561 		 * passed in with sendto/sendmsg. Instead the data is
27562 		 * delivered on the connection as if no address had been
27563 		 * supplied.
27564 		 */
27565 		CONN_INC_REF(connp);
27566 
27567 		if (msg != NULL && msg->msg_flags & MSG_OOB) {
27568 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
27569 			    tcp_output_urgent, connp, tcp_squeue_flag,
27570 			    SQTAG_TCP_OUTPUT);
27571 		} else {
27572 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output,
27573 			    connp, tcp_squeue_flag, SQTAG_TCP_OUTPUT);
27574 		}
27575 
27576 		return (0);
27577 
27578 	default:
27579 		ASSERT(0);
27580 	}
27581 
27582 	freemsg(mp);
27583 	return (0);
27584 }
27585 
27586 /* ARGSUSED */
27587 void
27588 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2)
27589 {
27590 	int len;
27591 	uint32_t msize;
27592 	conn_t *connp = (conn_t *)arg;
27593 	tcp_t *tcp = connp->conn_tcp;
27594 
27595 	msize = msgdsize(mp);
27596 
27597 	len = msize - 1;
27598 	if (len < 0) {
27599 		freemsg(mp);
27600 		return;
27601 	}
27602 
27603 	/*
27604 	 * Try to force urgent data out on the wire.
27605 	 * Even if we have unsent data this will
27606 	 * at least send the urgent flag.
27607 	 * XXX does not handle more flag correctly.
27608 	 */
27609 	len += tcp->tcp_unsent;
27610 	len += tcp->tcp_snxt;
27611 	tcp->tcp_urg = len;
27612 	tcp->tcp_valid_bits |= TCP_URG_VALID;
27613 
27614 	/* Bypass tcp protocol for fused tcp loopback */
27615 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
27616 		return;
27617 	tcp_wput_data(tcp, mp, B_TRUE);
27618 }
27619 
27620 /* ARGSUSED */
27621 int
27622 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr,
27623     socklen_t *addrlen, cred_t *cr)
27624 {
27625 	sin_t   *sin;
27626 	sin6_t  *sin6;
27627 	conn_t	*connp = (conn_t *)proto_handle;
27628 	tcp_t	*tcp = connp->conn_tcp;
27629 
27630 	ASSERT(tcp != NULL);
27631 	if (tcp->tcp_state < TCPS_SYN_RCVD)
27632 		return (ENOTCONN);
27633 
27634 	addr->sa_family = tcp->tcp_family;
27635 	switch (tcp->tcp_family) {
27636 	case AF_INET:
27637 		if (*addrlen < sizeof (sin_t))
27638 			return (EINVAL);
27639 
27640 		sin = (sin_t *)addr;
27641 		*sin = sin_null;
27642 		sin->sin_family = AF_INET;
27643 		if (tcp->tcp_ipversion == IPV4_VERSION) {
27644 			IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
27645 			    sin->sin_addr.s_addr);
27646 		}
27647 		sin->sin_port = tcp->tcp_fport;
27648 		*addrlen = sizeof (struct sockaddr_in);
27649 		break;
27650 	case AF_INET6:
27651 		sin6 = (sin6_t *)addr;
27652 		*sin6 = sin6_null;
27653 		sin6->sin6_family = AF_INET6;
27654 
27655 		if (*addrlen < sizeof (struct sockaddr_in6))
27656 			return (EINVAL);
27657 
27658 		if (tcp->tcp_ipversion == IPV6_VERSION) {
27659 			sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf &
27660 			    ~IPV6_VERS_AND_FLOW_MASK;
27661 		}
27662 
27663 		sin6->sin6_addr = tcp->tcp_remote_v6;
27664 		sin6->sin6_port = tcp->tcp_fport;
27665 		*addrlen = sizeof (struct sockaddr_in6);
27666 		break;
27667 	}
27668 	return (0);
27669 }
27670 
27671 /* ARGSUSED */
27672 int
27673 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr,
27674     socklen_t *addrlenp, cred_t *cr)
27675 {
27676 	sin_t   *sin;
27677 	sin6_t  *sin6;
27678 	conn_t	*connp = (conn_t *)proto_handle;
27679 	tcp_t	*tcp = connp->conn_tcp;
27680 
27681 	switch (tcp->tcp_family) {
27682 	case AF_INET:
27683 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
27684 		if (*addrlenp < sizeof (sin_t))
27685 			return (EINVAL);
27686 		sin = (sin_t *)addr;
27687 		*sin = sin_null;
27688 		sin->sin_family = AF_INET;
27689 		*addrlenp = sizeof (sin_t);
27690 		if (tcp->tcp_state >= TCPS_BOUND) {
27691 			sin->sin_addr.s_addr =  tcp->tcp_ipha->ipha_src;
27692 			sin->sin_port = tcp->tcp_lport;
27693 		}
27694 		break;
27695 
27696 	case AF_INET6:
27697 		if (*addrlenp < sizeof (sin6_t))
27698 			return (EINVAL);
27699 		sin6 = (sin6_t *)addr;
27700 		*sin6 = sin6_null;
27701 		sin6->sin6_family = AF_INET6;
27702 		*addrlenp = sizeof (sin6_t);
27703 		if (tcp->tcp_state >= TCPS_BOUND) {
27704 			sin6->sin6_port = tcp->tcp_lport;
27705 			if (tcp->tcp_ipversion == IPV4_VERSION) {
27706 				IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
27707 				    &sin6->sin6_addr);
27708 			} else {
27709 				sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
27710 			}
27711 		}
27712 		break;
27713 	}
27714 	return (0);
27715 }
27716 
27717 /*
27718  * tcp_fallback
27719  *
27720  * A direct socket is falling back to using STREAMS. Hanging
27721  * off of the queue is a temporary tcp_t, which was created using
27722  * tcp_open(). The tcp_open() was called as part of the regular
27723  * sockfs create path, i.e., the SO_SOCKSTR flag is passed down,
27724  * and therefore the temporary tcp_t is marked to be a socket
27725  * (i.e., IPCL_SOCKET, tcp_issocket). So the optimizations
27726  * introduced by FireEngine will be used.
27727  *
27728  * The tcp_t associated with the socket falling back will
27729  * still be marked as a socket, although the direct socket flag
27730  * (IPCL_NONSTR) is removed. A fall back to true TPI semantics
27731  * will not take place until a _SIOCSOCKFALLBACK ioctl is issued.
27732  *
27733  * If the above mentioned behavior, i.e., the tmp tcp_t is created
27734  * as a STREAMS/TPI endpoint, then we will need to do more work here.
27735  * Such as inserting the direct socket into the acceptor hash.
27736  */
27737 void
27738 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q,
27739     boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb)
27740 {
27741 	tcp_t			*tcp, *eager;
27742 	conn_t 			*connp = (conn_t *)proto_handle;
27743 	int			error;
27744 	struct T_capability_ack tca;
27745 	struct sockaddr_in6	laddr, faddr;
27746 	socklen_t 		laddrlen, faddrlen;
27747 	short			opts;
27748 	struct stroptions	*stropt;
27749 	mblk_t			*stropt_mp;
27750 	mblk_t			*mp;
27751 	mblk_t			*conn_ind_head = NULL;
27752 	mblk_t			*conn_ind_tail = NULL;
27753 	mblk_t			*ordrel_mp;
27754 	mblk_t			*fused_sigurp_mp;
27755 
27756 	tcp = connp->conn_tcp;
27757 	/*
27758 	 * No support for acceptor fallback
27759 	 */
27760 	ASSERT(q->q_qinfo != &tcp_acceptor_rinit);
27761 
27762 	stropt_mp = allocb_wait(sizeof (*stropt), BPRI_HI, STR_NOSIG, NULL);
27763 
27764 	/* Pre-allocate the T_ordrel_ind mblk. */
27765 	ASSERT(tcp->tcp_ordrel_mp == NULL);
27766 	ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI,
27767 	    STR_NOSIG, NULL);
27768 	ordrel_mp->b_datap->db_type = M_PROTO;
27769 	((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND;
27770 	ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind);
27771 
27772 	/* Pre-allocate the M_PCSIG anyway */
27773 	fused_sigurp_mp = allocb_wait(1, BPRI_HI, STR_NOSIG, NULL);
27774 
27775 	/*
27776 	 * Enter the squeue so that no new packets can come in
27777 	 */
27778 	error = squeue_synch_enter(connp->conn_sqp, connp, 0);
27779 	if (error != 0) {
27780 		/* failed to enter, free all the pre-allocated messages. */
27781 		freeb(stropt_mp);
27782 		freeb(ordrel_mp);
27783 		freeb(fused_sigurp_mp);
27784 		return;
27785 	}
27786 
27787 	/* Disable I/OAT during fallback */
27788 	tcp->tcp_sodirect = NULL;
27789 
27790 	connp->conn_dev = (dev_t)RD(q)->q_ptr;
27791 	connp->conn_minor_arena = WR(q)->q_ptr;
27792 
27793 	RD(q)->q_ptr = WR(q)->q_ptr = connp;
27794 
27795 	connp->conn_tcp->tcp_rq = connp->conn_rq = RD(q);
27796 	connp->conn_tcp->tcp_wq = connp->conn_wq = WR(q);
27797 
27798 	WR(q)->q_qinfo = &tcp_sock_winit;
27799 
27800 	if (!direct_sockfs)
27801 		tcp_disable_direct_sockfs(tcp);
27802 
27803 	/*
27804 	 * free the helper stream
27805 	 */
27806 	ip_close_helper_stream(connp);
27807 
27808 	/*
27809 	 * Notify the STREAM head about options
27810 	 */
27811 	DB_TYPE(stropt_mp) = M_SETOPTS;
27812 	stropt = (struct stroptions *)stropt_mp->b_rptr;
27813 	stropt_mp->b_wptr += sizeof (struct stroptions);
27814 	stropt = (struct stroptions *)stropt_mp->b_rptr;
27815 	stropt->so_flags |= SO_HIWAT | SO_WROFF | SO_MAXBLK;
27816 
27817 	stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
27818 	    tcp->tcp_tcps->tcps_wroff_xtra);
27819 	if (tcp->tcp_snd_sack_ok)
27820 		stropt->so_wroff += TCPOPT_MAX_SACK_LEN;
27821 	stropt->so_hiwat = tcp->tcp_fused ?
27822 	    tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) :
27823 	    MAX(tcp->tcp_recv_hiwater, tcp->tcp_tcps->tcps_sth_rcv_hiwat);
27824 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
27825 
27826 	putnext(RD(q), stropt_mp);
27827 
27828 	/*
27829 	 * Collect the information needed to sync with the sonode
27830 	 */
27831 	tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID);
27832 
27833 	laddrlen = faddrlen = sizeof (sin6_t);
27834 	(void) tcp_getsockname(proto_handle, (struct sockaddr *)&laddr,
27835 	    &laddrlen, CRED());
27836 	error = tcp_getpeername(proto_handle, (struct sockaddr *)&faddr,
27837 	    &faddrlen, CRED());
27838 	if (error != 0)
27839 		faddrlen = 0;
27840 
27841 	opts = 0;
27842 	if (tcp->tcp_oobinline)
27843 		opts |= SO_OOBINLINE;
27844 	if (tcp->tcp_dontroute)
27845 		opts |= SO_DONTROUTE;
27846 
27847 	/*
27848 	 * Notify the socket that the protocol is now quiescent,
27849 	 * and it's therefore safe move data from the socket
27850 	 * to the stream head.
27851 	 */
27852 	(*quiesced_cb)(connp->conn_upper_handle, q, &tca,
27853 	    (struct sockaddr *)&laddr, laddrlen,
27854 	    (struct sockaddr *)&faddr, faddrlen, opts);
27855 
27856 	while ((mp = tcp->tcp_rcv_list) != NULL) {
27857 		tcp->tcp_rcv_list = mp->b_next;
27858 		mp->b_next = NULL;
27859 		putnext(q, mp);
27860 	}
27861 	tcp->tcp_rcv_last_head = NULL;
27862 	tcp->tcp_rcv_last_tail = NULL;
27863 	tcp->tcp_rcv_cnt = 0;
27864 
27865 	/*
27866 	 * No longer a direct socket
27867 	 */
27868 	connp->conn_flags &= ~IPCL_NONSTR;
27869 
27870 	tcp->tcp_ordrel_mp = ordrel_mp;
27871 
27872 	if (tcp->tcp_fused) {
27873 		ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
27874 		tcp->tcp_fused_sigurg_mp = fused_sigurp_mp;
27875 	} else {
27876 		freeb(fused_sigurp_mp);
27877 	}
27878 
27879 	/*
27880 	 * Send T_CONN_IND messages for all ESTABLISHED connections.
27881 	 */
27882 	mutex_enter(&tcp->tcp_eager_lock);
27883 	for (eager = tcp->tcp_eager_next_q; eager != NULL;
27884 	    eager = eager->tcp_eager_next_q) {
27885 		mp = eager->tcp_conn.tcp_eager_conn_ind;
27886 
27887 		eager->tcp_conn.tcp_eager_conn_ind = NULL;
27888 		ASSERT(mp != NULL);
27889 		/*
27890 		 * TLI/XTI applications will get confused by
27891 		 * sending eager as an option since it violates
27892 		 * the option semantics. So remove the eager as
27893 		 * option since TLI/XTI app doesn't need it anyway.
27894 		 */
27895 		if (!TCP_IS_SOCKET(tcp)) {
27896 			struct T_conn_ind *conn_ind;
27897 
27898 			conn_ind = (struct T_conn_ind *)mp->b_rptr;
27899 			conn_ind->OPT_length = 0;
27900 			conn_ind->OPT_offset = 0;
27901 		}
27902 		if (conn_ind_head == NULL) {
27903 			conn_ind_head = mp;
27904 		} else {
27905 			conn_ind_tail->b_next = mp;
27906 		}
27907 		conn_ind_tail = mp;
27908 	}
27909 	mutex_exit(&tcp->tcp_eager_lock);
27910 
27911 	mp = conn_ind_head;
27912 	while (mp != NULL) {
27913 		mblk_t *nmp = mp->b_next;
27914 		mp->b_next = NULL;
27915 
27916 		putnext(tcp->tcp_rq, mp);
27917 		mp = nmp;
27918 	}
27919 
27920 	/*
27921 	 * There should be atleast two ref's (IP + TCP)
27922 	 */
27923 	ASSERT(connp->conn_ref >= 2);
27924 	squeue_synch_exit(connp->conn_sqp, connp);
27925 }
27926 
27927 /* ARGSUSED */
27928 static void
27929 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2)
27930 {
27931 	conn_t 	*connp = (conn_t *)arg;
27932 	tcp_t	*tcp = connp->conn_tcp;
27933 
27934 	freemsg(mp);
27935 
27936 	if (tcp->tcp_fused)
27937 		tcp_unfuse(tcp);
27938 
27939 	if (tcp_xmit_end(tcp) != 0) {
27940 		/*
27941 		 * We were crossing FINs and got a reset from
27942 		 * the other side. Just ignore it.
27943 		 */
27944 		if (tcp->tcp_debug) {
27945 			(void) strlog(TCP_MOD_ID, 0, 1,
27946 			    SL_ERROR|SL_TRACE,
27947 			    "tcp_shutdown_output() out of state %s",
27948 			    tcp_display(tcp, NULL, DISP_ADDR_AND_PORT));
27949 		}
27950 	}
27951 }
27952 
27953 /* ARGSUSED */
27954 int
27955 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr)
27956 {
27957 	conn_t  *connp = (conn_t *)proto_handle;
27958 	tcp_t   *tcp = connp->conn_tcp;
27959 
27960 	/*
27961 	 * X/Open requires that we check the connected state.
27962 	 */
27963 	if (tcp->tcp_state < TCPS_SYN_SENT)
27964 		return (ENOTCONN);
27965 
27966 	/* shutdown the send side */
27967 	if (how != SHUT_RD) {
27968 		mblk_t *bp;
27969 
27970 		bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
27971 		CONN_INC_REF(connp);
27972 		SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output,
27973 		    connp, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT);
27974 
27975 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
27976 		    SOCK_OPCTL_SHUT_SEND, 0);
27977 	}
27978 
27979 	/* shutdown the recv side */
27980 	if (how != SHUT_WR)
27981 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
27982 		    SOCK_OPCTL_SHUT_RECV, 0);
27983 
27984 	return (0);
27985 }
27986 
27987 /*
27988  * SOP_LISTEN() calls into tcp_listen().
27989  */
27990 /* ARGSUSED */
27991 int
27992 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr)
27993 {
27994 	conn_t	*connp = (conn_t *)proto_handle;
27995 	int 	error;
27996 	squeue_t *sqp = connp->conn_sqp;
27997 
27998 	error = squeue_synch_enter(sqp, connp, 0);
27999 	if (error != 0) {
28000 		/* failed to enter */
28001 		return (ENOBUFS);
28002 	}
28003 
28004 	error = tcp_do_listen(connp, backlog, cr);
28005 	if (error == 0) {
28006 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
28007 		    SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog);
28008 	} else if (error < 0) {
28009 		if (error == -TOUTSTATE)
28010 			error = EINVAL;
28011 		else
28012 			error = proto_tlitosyserr(-error);
28013 	}
28014 	squeue_synch_exit(sqp, connp);
28015 	return (error);
28016 }
28017 
28018 static int
28019 tcp_do_listen(conn_t *connp, int backlog, cred_t *cr)
28020 {
28021 	tcp_t		*tcp = connp->conn_tcp;
28022 	sin_t		*sin;
28023 	sin6_t  	*sin6;
28024 	int		error = 0;
28025 	tcp_stack_t	*tcps = tcp->tcp_tcps;
28026 
28027 	if (tcp->tcp_state >= TCPS_BOUND) {
28028 		if ((tcp->tcp_state == TCPS_BOUND ||
28029 		    tcp->tcp_state == TCPS_LISTEN) &&
28030 		    backlog > 0) {
28031 			/*
28032 			 * Handle listen() increasing backlog.
28033 			 * This is more "liberal" then what the TPI spec
28034 			 * requires but is needed to avoid a t_unbind
28035 			 * when handling listen() since the port number
28036 			 * might be "stolen" between the unbind and bind.
28037 			 */
28038 			goto do_listen;
28039 		}
28040 		if (tcp->tcp_debug) {
28041 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
28042 			    "tcp_bind: bad state, %d", tcp->tcp_state);
28043 		}
28044 		return (-TOUTSTATE);
28045 	} else {
28046 		int32_t len;
28047 		sin6_t	addr;
28048 
28049 		/* Do an implicit bind: Request for a generic port. */
28050 		if (tcp->tcp_family == AF_INET) {
28051 			len = sizeof (sin_t);
28052 			sin = (sin_t *)&addr;
28053 			*sin = sin_null;
28054 			sin->sin_family = AF_INET;
28055 			tcp->tcp_ipversion = IPV4_VERSION;
28056 		} else {
28057 			ASSERT(tcp->tcp_family == AF_INET6);
28058 			len = sizeof (sin6_t);
28059 			sin6 = (sin6_t *)&addr;
28060 			*sin6 = sin6_null;
28061 			sin6->sin6_family = AF_INET6;
28062 			tcp->tcp_ipversion = IPV6_VERSION;
28063 		}
28064 
28065 		error = tcp_bind_check(connp, (struct sockaddr *)&addr, len,
28066 		    cr, B_FALSE);
28067 		if (error)
28068 			return (error);
28069 		/* Fall through and do the fanout insertion */
28070 	}
28071 
28072 do_listen:
28073 	ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN);
28074 	tcp->tcp_conn_req_max = backlog;
28075 	if (tcp->tcp_conn_req_max) {
28076 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
28077 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
28078 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
28079 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
28080 		/*
28081 		 * If this is a listener, do not reset the eager list
28082 		 * and other stuffs.  Note that we don't check if the
28083 		 * existing eager list meets the new tcp_conn_req_max
28084 		 * requirement.
28085 		 */
28086 		if (tcp->tcp_state != TCPS_LISTEN) {
28087 			tcp->tcp_state = TCPS_LISTEN;
28088 			/* Initialize the chain. Don't need the eager_lock */
28089 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
28090 			tcp->tcp_eager_next_drop_q0 = tcp;
28091 			tcp->tcp_eager_prev_drop_q0 = tcp;
28092 			tcp->tcp_second_ctimer_threshold =
28093 			    tcps->tcps_ip_abort_linterval;
28094 		}
28095 	}
28096 
28097 	/*
28098 	 * We can call ip_bind directly which returns a T_BIND_ACK mp. The
28099 	 * processing continues in tcp_rput_other().
28100 	 *
28101 	 * We need to make sure that the conn_recv is set to a non-null
28102 	 * value before we insert the conn into the classifier table.
28103 	 * This is to avoid a race with an incoming packet which does an
28104 	 * ipcl_classify().
28105 	 */
28106 	connp->conn_recv = tcp_conn_request;
28107 	if (tcp->tcp_family == AF_INET) {
28108 		error = ip_proto_bind_laddr_v4(connp, NULL,
28109 		    IPPROTO_TCP, tcp->tcp_bound_source, tcp->tcp_lport, B_TRUE);
28110 	} else {
28111 		error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP,
28112 		    &tcp->tcp_bound_source_v6, tcp->tcp_lport, B_TRUE);
28113 	}
28114 	return (tcp_post_ip_bind(tcp, NULL, error));
28115 }
28116 
28117 void
28118 tcp_clr_flowctrl(sock_lower_handle_t proto_handle)
28119 {
28120 	conn_t  *connp = (conn_t *)proto_handle;
28121 	tcp_t	*tcp = connp->conn_tcp;
28122 	tcp_stack_t	*tcps = tcp->tcp_tcps;
28123 	uint_t thwin;
28124 
28125 	(void) squeue_synch_enter(connp->conn_sqp, connp, 0);
28126 
28127 	/* Flow control condition has been removed. */
28128 	tcp->tcp_rwnd = tcp->tcp_recv_hiwater;
28129 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
28130 	    << tcp->tcp_rcv_ws;
28131 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
28132 	/*
28133 	 * Send back a window update immediately if TCP is above
28134 	 * ESTABLISHED state and the increase of the rcv window
28135 	 * that the other side knows is at least 1 MSS after flow
28136 	 * control is lifted.
28137 	 */
28138 	if (tcp->tcp_state >= TCPS_ESTABLISHED &&
28139 	    (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss)) {
28140 		tcp_xmit_ctl(NULL, tcp,
28141 		    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
28142 		    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
28143 		BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
28144 	}
28145 
28146 	squeue_synch_exit(connp->conn_sqp, connp);
28147 }
28148 
28149 /* ARGSUSED */
28150 int
28151 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg,
28152     int mode, int32_t *rvalp, cred_t *cr)
28153 {
28154 	conn_t  	*connp = (conn_t *)proto_handle;
28155 	int		error;
28156 
28157 	switch (cmd) {
28158 		case ND_SET:
28159 		case ND_GET:
28160 		case TCP_IOC_DEFAULT_Q:
28161 		case _SIOCSOCKFALLBACK:
28162 		case TCP_IOC_ABORT_CONN:
28163 		case TI_GETPEERNAME:
28164 		case TI_GETMYNAME:
28165 			ip1dbg(("tcp_ioctl: cmd 0x%x on non sreams socket",
28166 			    cmd));
28167 			error = EINVAL;
28168 			break;
28169 		default:
28170 			/*
28171 			 * Pass on to IP using helper stream
28172 			 */
28173 			error = ldi_ioctl(
28174 			    connp->conn_helper_info->ip_helper_stream_handle,
28175 			    cmd, arg, mode, cr, rvalp);
28176 			break;
28177 	}
28178 	return (error);
28179 }
28180 
28181 sock_downcalls_t sock_tcp_downcalls = {
28182 	tcp_activate,
28183 	tcp_accept,
28184 	tcp_bind,
28185 	tcp_listen,
28186 	tcp_connect,
28187 	tcp_getpeername,
28188 	tcp_getsockname,
28189 	tcp_getsockopt,
28190 	tcp_setsockopt,
28191 	tcp_sendmsg,
28192 	NULL,
28193 	NULL,
28194 	NULL,
28195 	tcp_shutdown,
28196 	tcp_clr_flowctrl,
28197 	tcp_ioctl,
28198 	tcp_close,
28199 };
28200