1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/stropts.h> 33 #include <sys/strlog.h> 34 #include <sys/strsun.h> 35 #define _SUN_TPI_VERSION 2 36 #include <sys/tihdr.h> 37 #include <sys/timod.h> 38 #include <sys/ddi.h> 39 #include <sys/sunddi.h> 40 #include <sys/suntpi.h> 41 #include <sys/xti_inet.h> 42 #include <sys/cmn_err.h> 43 #include <sys/debug.h> 44 #include <sys/sdt.h> 45 #include <sys/vtrace.h> 46 #include <sys/kmem.h> 47 #include <sys/ethernet.h> 48 #include <sys/cpuvar.h> 49 #include <sys/dlpi.h> 50 #include <sys/multidata.h> 51 #include <sys/multidata_impl.h> 52 #include <sys/pattr.h> 53 #include <sys/policy.h> 54 #include <sys/priv.h> 55 #include <sys/zone.h> 56 #include <sys/sunldi.h> 57 58 #include <sys/errno.h> 59 #include <sys/signal.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/isa_defs.h> 63 #include <sys/md5.h> 64 #include <sys/random.h> 65 #include <sys/sodirect.h> 66 #include <sys/uio.h> 67 #include <sys/systm.h> 68 #include <netinet/in.h> 69 #include <netinet/tcp.h> 70 #include <netinet/ip6.h> 71 #include <netinet/icmp6.h> 72 #include <net/if.h> 73 #include <net/route.h> 74 #include <inet/ipsec_impl.h> 75 76 #include <inet/common.h> 77 #include <inet/ip.h> 78 #include <inet/ip_impl.h> 79 #include <inet/ip6.h> 80 #include <inet/ip_ndp.h> 81 #include <inet/mi.h> 82 #include <inet/mib2.h> 83 #include <inet/nd.h> 84 #include <inet/optcom.h> 85 #include <inet/snmpcom.h> 86 #include <inet/kstatcom.h> 87 #include <inet/tcp.h> 88 #include <inet/tcp_impl.h> 89 #include <net/pfkeyv2.h> 90 #include <inet/ipsec_info.h> 91 #include <inet/ipdrop.h> 92 93 #include <inet/ipclassifier.h> 94 #include <inet/ip_ire.h> 95 #include <inet/ip_ftable.h> 96 #include <inet/ip_if.h> 97 #include <inet/ipp_common.h> 98 #include <inet/ip_netinfo.h> 99 #include <sys/squeue.h> 100 #include <inet/kssl/ksslapi.h> 101 #include <sys/tsol/label.h> 102 #include <sys/tsol/tnet.h> 103 #include <rpc/pmap_prot.h> 104 #include <sys/callo.h> 105 106 /* 107 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 108 * 109 * (Read the detailed design doc in PSARC case directory) 110 * 111 * The entire tcp state is contained in tcp_t and conn_t structure 112 * which are allocated in tandem using ipcl_conn_create() and passing 113 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 114 * the references on the tcp_t. The tcp_t structure is never compressed 115 * and packets always land on the correct TCP perimeter from the time 116 * eager is created till the time tcp_t dies (as such the old mentat 117 * TCP global queue is not used for detached state and no IPSEC checking 118 * is required). The global queue is still allocated to send out resets 119 * for connection which have no listeners and IP directly calls 120 * tcp_xmit_listeners_reset() which does any policy check. 121 * 122 * Protection and Synchronisation mechanism: 123 * 124 * The tcp data structure does not use any kind of lock for protecting 125 * its state but instead uses 'squeues' for mutual exclusion from various 126 * read and write side threads. To access a tcp member, the thread should 127 * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or 128 * squeue_fill). Since the squeues allow a direct function call, caller 129 * can pass any tcp function having prototype of edesc_t as argument 130 * (different from traditional STREAMs model where packets come in only 131 * designated entry points). The list of functions that can be directly 132 * called via squeue are listed before the usual function prototype. 133 * 134 * Referencing: 135 * 136 * TCP is MT-Hot and we use a reference based scheme to make sure that the 137 * tcp structure doesn't disappear when its needed. When the application 138 * creates an outgoing connection or accepts an incoming connection, we 139 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 140 * The IP reference is just a symbolic reference since ip_tcpclose() 141 * looks at tcp structure after tcp_close_output() returns which could 142 * have dropped the last TCP reference. So as long as the connection is 143 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 144 * conn_t. The classifier puts its own reference when the connection is 145 * inserted in listen or connected hash. Anytime a thread needs to enter 146 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 147 * on write side or by doing a classify on read side and then puts a 148 * reference on the conn before doing squeue_enter/tryenter/fill. For 149 * read side, the classifier itself puts the reference under fanout lock 150 * to make sure that tcp can't disappear before it gets processed. The 151 * squeue will drop this reference automatically so the called function 152 * doesn't have to do a DEC_REF. 153 * 154 * Opening a new connection: 155 * 156 * The outgoing connection open is pretty simple. tcp_open() does the 157 * work in creating the conn/tcp structure and initializing it. The 158 * squeue assignment is done based on the CPU the application 159 * is running on. So for outbound connections, processing is always done 160 * on application CPU which might be different from the incoming CPU 161 * being interrupted by the NIC. An optimal way would be to figure out 162 * the NIC <-> CPU binding at listen time, and assign the outgoing 163 * connection to the squeue attached to the CPU that will be interrupted 164 * for incoming packets (we know the NIC based on the bind IP address). 165 * This might seem like a problem if more data is going out but the 166 * fact is that in most cases the transmit is ACK driven transmit where 167 * the outgoing data normally sits on TCP's xmit queue waiting to be 168 * transmitted. 169 * 170 * Accepting a connection: 171 * 172 * This is a more interesting case because of various races involved in 173 * establishing a eager in its own perimeter. Read the meta comment on 174 * top of tcp_conn_request(). But briefly, the squeue is picked by 175 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 176 * 177 * Closing a connection: 178 * 179 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 180 * via squeue to do the close and mark the tcp as detached if the connection 181 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 182 * reference but tcp_close() drop IP's reference always. So if tcp was 183 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 184 * and 1 because it is in classifier's connected hash. This is the condition 185 * we use to determine that its OK to clean up the tcp outside of squeue 186 * when time wait expires (check the ref under fanout and conn_lock and 187 * if it is 2, remove it from fanout hash and kill it). 188 * 189 * Although close just drops the necessary references and marks the 190 * tcp_detached state, tcp_close needs to know the tcp_detached has been 191 * set (under squeue) before letting the STREAM go away (because a 192 * inbound packet might attempt to go up the STREAM while the close 193 * has happened and tcp_detached is not set). So a special lock and 194 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 195 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 196 * tcp_detached. 197 * 198 * Special provisions and fast paths: 199 * 200 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 201 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 202 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 203 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 204 * check to send packets directly to tcp_rput_data via squeue. Everyone 205 * else comes through tcp_input() on the read side. 206 * 207 * We also make special provisions for sockfs by marking tcp_issocket 208 * whenever we have only sockfs on top of TCP. This allows us to skip 209 * putting the tcp in acceptor hash since a sockfs listener can never 210 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 211 * since eager has already been allocated and the accept now happens 212 * on acceptor STREAM. There is a big blob of comment on top of 213 * tcp_conn_request explaining the new accept. When socket is POP'd, 214 * sockfs sends us an ioctl to mark the fact and we go back to old 215 * behaviour. Once tcp_issocket is unset, its never set for the 216 * life of that connection. 217 * 218 * In support of on-board asynchronous DMA hardware (e.g. Intel I/OAT) 219 * two consoldiation private KAPIs are used to enqueue M_DATA mblk_t's 220 * directly to the socket (sodirect) and start an asynchronous copyout 221 * to a user-land receive-side buffer (uioa) when a blocking socket read 222 * (e.g. read, recv, ...) is pending. 223 * 224 * This is accomplished when tcp_issocket is set and tcp_sodirect is not 225 * NULL so points to an sodirect_t and if marked enabled then we enqueue 226 * all mblk_t's directly to the socket. 227 * 228 * Further, if the sodirect_t sod_uioa and if marked enabled (due to a 229 * blocking socket read, e.g. user-land read, recv, ...) then an asynchronous 230 * copyout will be started directly to the user-land uio buffer. Also, as we 231 * have a pending read, TCP's push logic can take into account the number of 232 * bytes to be received and only awake the blocked read()er when the uioa_t 233 * byte count has been satisfied. 234 * 235 * IPsec notes : 236 * 237 * Since a packet is always executed on the correct TCP perimeter 238 * all IPsec processing is defered to IP including checking new 239 * connections and setting IPSEC policies for new connection. The 240 * only exception is tcp_xmit_listeners_reset() which is called 241 * directly from IP and needs to policy check to see if TH_RST 242 * can be sent out. 243 * 244 * PFHooks notes : 245 * 246 * For mdt case, one meta buffer contains multiple packets. Mblks for every 247 * packet are assembled and passed to the hooks. When packets are blocked, 248 * or boundary of any packet is changed, the mdt processing is stopped, and 249 * packets of the meta buffer are send to the IP path one by one. 250 */ 251 252 /* 253 * Values for squeue switch: 254 * 1: squeue_enter_nodrain 255 * 2: squeue_enter 256 * 3: squeue_fill 257 */ 258 int tcp_squeue_close = 2; /* Setable in /etc/system */ 259 int tcp_squeue_wput = 2; 260 261 squeue_func_t tcp_squeue_close_proc; 262 squeue_func_t tcp_squeue_wput_proc; 263 264 /* 265 * Macros for sodirect: 266 * 267 * SOD_PTR_ENTER(tcp, sodp) - for the tcp_t pointer "tcp" set the 268 * sodirect_t pointer "sodp" to the socket/tcp shared sodirect_t 269 * if it exists and is enabled, else to NULL. Note, in the current 270 * sodirect implementation the sod_lockp must not be held across any 271 * STREAMS call (e.g. putnext) else a "recursive mutex_enter" PANIC 272 * will result as sod_lockp is the streamhead stdata.sd_lock. 273 * 274 * SOD_NOT_ENABLED(tcp) - return true if not a sodirect tcp_t or the 275 * sodirect_t isn't enabled, usefull for ASSERT()ing that a recieve 276 * side tcp code path dealing with a tcp_rcv_list or putnext() isn't 277 * being used when sodirect code paths should be. 278 */ 279 280 #define SOD_PTR_ENTER(tcp, sodp) \ 281 (sodp) = (tcp)->tcp_sodirect; \ 282 \ 283 if ((sodp) != NULL) { \ 284 mutex_enter((sodp)->sod_lockp); \ 285 if (!((sodp)->sod_state & SOD_ENABLED)) { \ 286 mutex_exit((sodp)->sod_lockp); \ 287 (sodp) = NULL; \ 288 } \ 289 } 290 291 #define SOD_NOT_ENABLED(tcp) \ 292 ((tcp)->tcp_sodirect == NULL || \ 293 !((tcp)->tcp_sodirect->sod_state & SOD_ENABLED)) 294 295 /* 296 * This controls how tiny a write must be before we try to copy it 297 * into the the mblk on the tail of the transmit queue. Not much 298 * speedup is observed for values larger than sixteen. Zero will 299 * disable the optimisation. 300 */ 301 int tcp_tx_pull_len = 16; 302 303 /* 304 * TCP Statistics. 305 * 306 * How TCP statistics work. 307 * 308 * There are two types of statistics invoked by two macros. 309 * 310 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 311 * supposed to be used in non MT-hot paths of the code. 312 * 313 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 314 * supposed to be used for DEBUG purposes and may be used on a hot path. 315 * 316 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 317 * (use "kstat tcp" to get them). 318 * 319 * There is also additional debugging facility that marks tcp_clean_death() 320 * instances and saves them in tcp_t structure. It is triggered by 321 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 322 * tcp_clean_death() calls that counts the number of times each tag was hit. It 323 * is triggered by TCP_CLD_COUNTERS define. 324 * 325 * How to add new counters. 326 * 327 * 1) Add a field in the tcp_stat structure describing your counter. 328 * 2) Add a line in the template in tcp_kstat2_init() with the name 329 * of the counter. 330 * 331 * IMPORTANT!! - make sure that both are in sync !! 332 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 333 * 334 * Please avoid using private counters which are not kstat-exported. 335 * 336 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 337 * in tcp_t structure. 338 * 339 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 340 */ 341 342 #ifndef TCP_DEBUG_COUNTER 343 #ifdef DEBUG 344 #define TCP_DEBUG_COUNTER 1 345 #else 346 #define TCP_DEBUG_COUNTER 0 347 #endif 348 #endif 349 350 #define TCP_CLD_COUNTERS 0 351 352 #define TCP_TAG_CLEAN_DEATH 1 353 #define TCP_MAX_CLEAN_DEATH_TAG 32 354 355 #ifdef lint 356 static int _lint_dummy_; 357 #endif 358 359 #if TCP_CLD_COUNTERS 360 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 361 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 362 #elif defined(lint) 363 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 364 #else 365 #define TCP_CLD_STAT(x) 366 #endif 367 368 #if TCP_DEBUG_COUNTER 369 #define TCP_DBGSTAT(tcps, x) \ 370 atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) 371 #define TCP_G_DBGSTAT(x) \ 372 atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) 373 #elif defined(lint) 374 #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); 375 #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 376 #else 377 #define TCP_DBGSTAT(tcps, x) 378 #define TCP_G_DBGSTAT(x) 379 #endif 380 381 #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) 382 383 tcp_g_stat_t tcp_g_statistics; 384 kstat_t *tcp_g_kstat; 385 386 /* 387 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 388 * tcp write side. 389 */ 390 #define CALL_IP_WPUT(connp, q, mp) { \ 391 tcp_stack_t *tcps; \ 392 \ 393 tcps = connp->conn_netstack->netstack_tcp; \ 394 ASSERT(((q)->q_flag & QREADR) == 0); \ 395 TCP_DBGSTAT(tcps, tcp_ip_output); \ 396 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 397 } 398 399 /* Macros for timestamp comparisons */ 400 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 401 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 402 403 /* 404 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 405 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 406 * by adding three components: a time component which grows by 1 every 4096 407 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 408 * a per-connection component which grows by 125000 for every new connection; 409 * and an "extra" component that grows by a random amount centered 410 * approximately on 64000. This causes the the ISS generator to cycle every 411 * 4.89 hours if no TCP connections are made, and faster if connections are 412 * made. 413 * 414 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 415 * components: a time component which grows by 250000 every second; and 416 * a per-connection component which grows by 125000 for every new connections. 417 * 418 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 419 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 420 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 421 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 422 * password. 423 */ 424 #define ISS_INCR 250000 425 #define ISS_NSEC_SHT 12 426 427 static sin_t sin_null; /* Zero address for quick clears */ 428 static sin6_t sin6_null; /* Zero address for quick clears */ 429 430 /* 431 * This implementation follows the 4.3BSD interpretation of the urgent 432 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 433 * incompatible changes in protocols like telnet and rlogin. 434 */ 435 #define TCP_OLD_URP_INTERPRETATION 1 436 437 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 438 (TCP_IS_DETACHED(tcp) && \ 439 (!(tcp)->tcp_hard_binding)) 440 441 /* 442 * TCP reassembly macros. We hide starting and ending sequence numbers in 443 * b_next and b_prev of messages on the reassembly queue. The messages are 444 * chained using b_cont. These macros are used in tcp_reass() so we don't 445 * have to see the ugly casts and assignments. 446 */ 447 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 448 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 449 (mblk_t *)(uintptr_t)(u)) 450 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 451 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 452 (mblk_t *)(uintptr_t)(u)) 453 454 /* 455 * Implementation of TCP Timers. 456 * ============================= 457 * 458 * INTERFACE: 459 * 460 * There are two basic functions dealing with tcp timers: 461 * 462 * timeout_id_t tcp_timeout(connp, func, time) 463 * clock_t tcp_timeout_cancel(connp, timeout_id) 464 * TCP_TIMER_RESTART(tcp, intvl) 465 * 466 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 467 * after 'time' ticks passed. The function called by timeout() must adhere to 468 * the same restrictions as a driver soft interrupt handler - it must not sleep 469 * or call other functions that might sleep. The value returned is the opaque 470 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 471 * cancel the request. The call to tcp_timeout() may fail in which case it 472 * returns zero. This is different from the timeout(9F) function which never 473 * fails. 474 * 475 * The call-back function 'func' always receives 'connp' as its single 476 * argument. It is always executed in the squeue corresponding to the tcp 477 * structure. The tcp structure is guaranteed to be present at the time the 478 * call-back is called. 479 * 480 * NOTE: The call-back function 'func' is never called if tcp is in 481 * the TCPS_CLOSED state. 482 * 483 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 484 * request. locks acquired by the call-back routine should not be held across 485 * the call to tcp_timeout_cancel() or a deadlock may result. 486 * 487 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 488 * Otherwise, it returns an integer value greater than or equal to 0. In 489 * particular, if the call-back function is already placed on the squeue, it can 490 * not be canceled. 491 * 492 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 493 * within squeue context corresponding to the tcp instance. Since the 494 * call-back is also called via the same squeue, there are no race 495 * conditions described in untimeout(9F) manual page since all calls are 496 * strictly serialized. 497 * 498 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 499 * stored in tcp_timer_tid and starts a new one using 500 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 501 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 502 * field. 503 * 504 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 505 * call-back may still be called, so it is possible tcp_timer() will be 506 * called several times. This should not be a problem since tcp_timer() 507 * should always check the tcp instance state. 508 * 509 * 510 * IMPLEMENTATION: 511 * 512 * TCP timers are implemented using three-stage process. The call to 513 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 514 * when the timer expires. The tcp_timer_callback() arranges the call of the 515 * tcp_timer_handler() function via squeue corresponding to the tcp 516 * instance. The tcp_timer_handler() calls actual requested timeout call-back 517 * and passes tcp instance as an argument to it. Information is passed between 518 * stages using the tcp_timer_t structure which contains the connp pointer, the 519 * tcp call-back to call and the timeout id returned by the timeout(9F). 520 * 521 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 522 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 523 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 524 * returns the pointer to this mblk. 525 * 526 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 527 * looks like a normal mblk without actual dblk attached to it. 528 * 529 * To optimize performance each tcp instance holds a small cache of timer 530 * mblocks. In the current implementation it caches up to two timer mblocks per 531 * tcp instance. The cache is preserved over tcp frees and is only freed when 532 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 533 * timer processing happens on a corresponding squeue, the cache manipulation 534 * does not require any locks. Experiments show that majority of timer mblocks 535 * allocations are satisfied from the tcp cache and do not involve kmem calls. 536 * 537 * The tcp_timeout() places a refhold on the connp instance which guarantees 538 * that it will be present at the time the call-back function fires. The 539 * tcp_timer_handler() drops the reference after calling the call-back, so the 540 * call-back function does not need to manipulate the references explicitly. 541 */ 542 543 typedef struct tcp_timer_s { 544 conn_t *connp; 545 void (*tcpt_proc)(void *); 546 callout_id_t tcpt_tid; 547 } tcp_timer_t; 548 549 static kmem_cache_t *tcp_timercache; 550 kmem_cache_t *tcp_sack_info_cache; 551 kmem_cache_t *tcp_iphc_cache; 552 553 /* 554 * For scalability, we must not run a timer for every TCP connection 555 * in TIME_WAIT state. To see why, consider (for time wait interval of 556 * 4 minutes): 557 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 558 * 559 * This list is ordered by time, so you need only delete from the head 560 * until you get to entries which aren't old enough to delete yet. 561 * The list consists of only the detached TIME_WAIT connections. 562 * 563 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 564 * becomes detached TIME_WAIT (either by changing the state and already 565 * being detached or the other way around). This means that the TIME_WAIT 566 * state can be extended (up to doubled) if the connection doesn't become 567 * detached for a long time. 568 * 569 * The list manipulations (including tcp_time_wait_next/prev) 570 * are protected by the tcp_time_wait_lock. The content of the 571 * detached TIME_WAIT connections is protected by the normal perimeters. 572 * 573 * This list is per squeue and squeues are shared across the tcp_stack_t's. 574 * Things on tcp_time_wait_head remain associated with the tcp_stack_t 575 * and conn_netstack. 576 * The tcp_t's that are added to tcp_free_list are disassociated and 577 * have NULL tcp_tcps and conn_netstack pointers. 578 */ 579 typedef struct tcp_squeue_priv_s { 580 kmutex_t tcp_time_wait_lock; 581 callout_id_t tcp_time_wait_tid; 582 tcp_t *tcp_time_wait_head; 583 tcp_t *tcp_time_wait_tail; 584 tcp_t *tcp_free_list; 585 uint_t tcp_free_list_cnt; 586 } tcp_squeue_priv_t; 587 588 /* 589 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 590 * Running it every 5 seconds seems to give the best results. 591 */ 592 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 593 594 /* 595 * To prevent memory hog, limit the number of entries in tcp_free_list 596 * to 1% of available memory / number of cpus 597 */ 598 uint_t tcp_free_list_max_cnt = 0; 599 600 #define TCP_XMIT_LOWATER 4096 601 #define TCP_XMIT_HIWATER 49152 602 #define TCP_RECV_LOWATER 2048 603 #define TCP_RECV_HIWATER 49152 604 605 /* 606 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 607 */ 608 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 609 610 #define TIDUSZ 4096 /* transport interface data unit size */ 611 612 /* 613 * Bind hash list size and has function. It has to be a power of 2 for 614 * hashing. 615 */ 616 #define TCP_BIND_FANOUT_SIZE 512 617 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 618 /* 619 * Size of listen and acceptor hash list. It has to be a power of 2 for 620 * hashing. 621 */ 622 #define TCP_FANOUT_SIZE 256 623 624 #ifdef _ILP32 625 #define TCP_ACCEPTOR_HASH(accid) \ 626 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 627 #else 628 #define TCP_ACCEPTOR_HASH(accid) \ 629 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 630 #endif /* _ILP32 */ 631 632 #define IP_ADDR_CACHE_SIZE 2048 633 #define IP_ADDR_CACHE_HASH(faddr) \ 634 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 635 636 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */ 637 #define TCP_HSP_HASH_SIZE 256 638 639 #define TCP_HSP_HASH(addr) \ 640 (((addr>>24) ^ (addr >>16) ^ \ 641 (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE) 642 643 /* 644 * TCP options struct returned from tcp_parse_options. 645 */ 646 typedef struct tcp_opt_s { 647 uint32_t tcp_opt_mss; 648 uint32_t tcp_opt_wscale; 649 uint32_t tcp_opt_ts_val; 650 uint32_t tcp_opt_ts_ecr; 651 tcp_t *tcp; 652 } tcp_opt_t; 653 654 /* 655 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 656 */ 657 658 #ifdef _BIG_ENDIAN 659 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 660 (TCPOPT_TSTAMP << 8) | 10) 661 #else 662 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 663 (TCPOPT_NOP << 8) | TCPOPT_NOP) 664 #endif 665 666 /* 667 * Flags returned from tcp_parse_options. 668 */ 669 #define TCP_OPT_MSS_PRESENT 1 670 #define TCP_OPT_WSCALE_PRESENT 2 671 #define TCP_OPT_TSTAMP_PRESENT 4 672 #define TCP_OPT_SACK_OK_PRESENT 8 673 #define TCP_OPT_SACK_PRESENT 16 674 675 /* TCP option length */ 676 #define TCPOPT_NOP_LEN 1 677 #define TCPOPT_MAXSEG_LEN 4 678 #define TCPOPT_WS_LEN 3 679 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 680 #define TCPOPT_TSTAMP_LEN 10 681 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 682 #define TCPOPT_SACK_OK_LEN 2 683 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 684 #define TCPOPT_REAL_SACK_LEN 4 685 #define TCPOPT_MAX_SACK_LEN 36 686 #define TCPOPT_HEADER_LEN 2 687 688 /* TCP cwnd burst factor. */ 689 #define TCP_CWND_INFINITE 65535 690 #define TCP_CWND_SS 3 691 #define TCP_CWND_NORMAL 5 692 693 /* Maximum TCP initial cwin (start/restart). */ 694 #define TCP_MAX_INIT_CWND 8 695 696 /* 697 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 698 * either tcp_slow_start_initial or tcp_slow_start_after idle 699 * depending on the caller. If the upper layer has not used the 700 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 701 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 702 * If the upper layer has changed set the tcp_init_cwnd, just use 703 * it to calculate the tcp_cwnd. 704 */ 705 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 706 { \ 707 if ((tcp)->tcp_init_cwnd == 0) { \ 708 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 709 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 710 } else { \ 711 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 712 } \ 713 tcp->tcp_cwnd_cnt = 0; \ 714 } 715 716 /* TCP Timer control structure */ 717 typedef struct tcpt_s { 718 pfv_t tcpt_pfv; /* The routine we are to call */ 719 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 720 } tcpt_t; 721 722 /* Host Specific Parameter structure */ 723 typedef struct tcp_hsp { 724 struct tcp_hsp *tcp_hsp_next; 725 in6_addr_t tcp_hsp_addr_v6; 726 in6_addr_t tcp_hsp_subnet_v6; 727 uint_t tcp_hsp_vers; /* IPV4_VERSION | IPV6_VERSION */ 728 int32_t tcp_hsp_sendspace; 729 int32_t tcp_hsp_recvspace; 730 int32_t tcp_hsp_tstamp; 731 } tcp_hsp_t; 732 #define tcp_hsp_addr V4_PART_OF_V6(tcp_hsp_addr_v6) 733 #define tcp_hsp_subnet V4_PART_OF_V6(tcp_hsp_subnet_v6) 734 735 /* 736 * Functions called directly via squeue having a prototype of edesc_t. 737 */ 738 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 739 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 740 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 741 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 742 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 743 void tcp_input(void *arg, mblk_t *mp, void *arg2); 744 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 745 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 746 void tcp_output(void *arg, mblk_t *mp, void *arg2); 747 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 748 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 749 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2); 750 751 752 /* Prototype for TCP functions */ 753 static void tcp_random_init(void); 754 int tcp_random(void); 755 static void tcp_accept(tcp_t *tcp, mblk_t *mp); 756 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 757 tcp_t *eager); 758 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 759 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 760 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 761 boolean_t user_specified); 762 static void tcp_closei_local(tcp_t *tcp); 763 static void tcp_close_detached(tcp_t *tcp); 764 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 765 mblk_t *idmp, mblk_t **defermp); 766 static void tcp_connect(tcp_t *tcp, mblk_t *mp); 767 static void tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, 768 in_port_t dstport, uint_t srcid); 769 static void tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 770 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 771 uint32_t scope_id); 772 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 773 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 774 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 775 static char *tcp_display(tcp_t *tcp, char *, char); 776 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 777 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 778 static void tcp_eager_unlink(tcp_t *tcp); 779 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 780 int unixerr); 781 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 782 int tlierr, int unixerr); 783 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 784 cred_t *cr); 785 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 786 char *value, caddr_t cp, cred_t *cr); 787 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 788 char *value, caddr_t cp, cred_t *cr); 789 static int tcp_tpistate(tcp_t *tcp); 790 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 791 int caller_holds_lock); 792 static void tcp_bind_hash_remove(tcp_t *tcp); 793 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); 794 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 795 static void tcp_acceptor_hash_remove(tcp_t *tcp); 796 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 797 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 798 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 799 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 800 void tcp_g_q_setup(tcp_stack_t *); 801 void tcp_g_q_create(tcp_stack_t *); 802 void tcp_g_q_destroy(tcp_stack_t *); 803 static int tcp_header_init_ipv4(tcp_t *tcp); 804 static int tcp_header_init_ipv6(tcp_t *tcp); 805 int tcp_init(tcp_t *tcp, queue_t *q); 806 static int tcp_init_values(tcp_t *tcp); 807 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 808 static mblk_t *tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, 809 t_scalar_t addr_length); 810 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 811 static void tcp_ip_notify(tcp_t *tcp); 812 static mblk_t *tcp_ire_mp(mblk_t *mp); 813 static void tcp_iss_init(tcp_t *tcp); 814 static void tcp_keepalive_killer(void *arg); 815 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 816 static void tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss); 817 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 818 int *do_disconnectp, int *t_errorp, int *sys_errorp); 819 static boolean_t tcp_allow_connopt_set(int level, int name); 820 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 821 int tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 822 int tcp_opt_set(queue_t *q, uint_t optset_context, int level, 823 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 824 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 825 mblk_t *mblk); 826 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 827 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 828 uchar_t *ptr, uint_t len); 829 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 830 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, 831 tcp_stack_t *); 832 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 833 caddr_t cp, cred_t *cr); 834 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 835 caddr_t cp, cred_t *cr); 836 static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); 837 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 838 caddr_t cp, cred_t *cr); 839 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 840 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 841 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 842 static void tcp_reinit(tcp_t *tcp); 843 static void tcp_reinit_values(tcp_t *tcp); 844 static void tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, 845 tcp_t *thisstream, cred_t *cr); 846 847 static uint_t tcp_rcv_drain(queue_t *q, tcp_t *tcp); 848 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 849 static boolean_t tcp_send_rst_chk(tcp_stack_t *); 850 static void tcp_ss_rexmit(tcp_t *tcp); 851 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 852 static void tcp_process_options(tcp_t *, tcph_t *); 853 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 854 static void tcp_rsrv(queue_t *q); 855 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 856 static int tcp_snmp_state(tcp_t *tcp); 857 static int tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 858 cred_t *cr); 859 static int tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 860 cred_t *cr); 861 static int tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 862 cred_t *cr); 863 static int tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 864 cred_t *cr); 865 static int tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 866 cred_t *cr); 867 static void tcp_timer(void *arg); 868 static void tcp_timer_callback(void *); 869 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 870 boolean_t random); 871 static in_port_t tcp_get_next_priv_port(const tcp_t *); 872 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 873 void tcp_wput_accept(queue_t *q, mblk_t *mp); 874 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 875 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 876 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 877 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 878 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 879 const int num_sack_blk, int *usable, uint_t *snxt, 880 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 881 const int mdt_thres); 882 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 883 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 884 const int num_sack_blk, int *usable, uint_t *snxt, 885 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 886 const int mdt_thres); 887 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 888 int num_sack_blk); 889 static void tcp_wsrv(queue_t *q); 890 static int tcp_xmit_end(tcp_t *tcp); 891 static void tcp_ack_timer(void *arg); 892 static mblk_t *tcp_ack_mp(tcp_t *tcp); 893 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 894 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len, 895 zoneid_t zoneid, tcp_stack_t *, conn_t *connp); 896 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 897 uint32_t ack, int ctl); 898 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *); 899 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr, tcp_stack_t *); 900 static int setmaxps(queue_t *q, int maxpsz); 901 static void tcp_set_rto(tcp_t *, time_t); 902 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 903 boolean_t, boolean_t); 904 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 905 boolean_t ipsec_mctl); 906 static mblk_t *tcp_setsockopt_mp(int level, int cmd, 907 char *opt, int optlen); 908 static int tcp_build_hdrs(queue_t *, tcp_t *); 909 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 910 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 911 tcph_t *tcph); 912 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 913 static mblk_t *tcp_mdt_info_mp(mblk_t *); 914 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 915 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 916 const boolean_t, const uint32_t, const uint32_t, 917 const uint32_t, const uint32_t, tcp_stack_t *); 918 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 919 const uint_t, const uint_t, boolean_t *); 920 static mblk_t *tcp_lso_info_mp(mblk_t *); 921 static void tcp_lso_update(tcp_t *, ill_lso_capab_t *); 922 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 923 extern mblk_t *tcp_timermp_alloc(int); 924 extern void tcp_timermp_free(tcp_t *); 925 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 926 static void tcp_stop_lingering(tcp_t *tcp); 927 static void tcp_close_linger_timeout(void *arg); 928 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 929 static void tcp_stack_shutdown(netstackid_t stackid, void *arg); 930 static void tcp_stack_fini(netstackid_t stackid, void *arg); 931 static void *tcp_g_kstat_init(tcp_g_stat_t *); 932 static void tcp_g_kstat_fini(kstat_t *); 933 static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); 934 static void tcp_kstat_fini(netstackid_t, kstat_t *); 935 static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); 936 static void tcp_kstat2_fini(netstackid_t, kstat_t *); 937 static int tcp_kstat_update(kstat_t *kp, int rw); 938 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 939 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 940 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 941 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 942 tcph_t *tcph, mblk_t *idmp); 943 static squeue_func_t tcp_squeue_switch(int); 944 945 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 946 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 947 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 948 static int tcp_close(queue_t *, int); 949 static int tcpclose_accept(queue_t *); 950 951 static void tcp_squeue_add(squeue_t *); 952 static boolean_t tcp_zcopy_check(tcp_t *); 953 static void tcp_zcopy_notify(tcp_t *); 954 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 955 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 956 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 957 958 extern void tcp_kssl_input(tcp_t *, mblk_t *); 959 960 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2); 961 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2); 962 963 /* 964 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 965 * 966 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 967 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 968 * (defined in tcp.h) needs to be filled in and passed into the kernel 969 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 970 * structure contains the four-tuple of a TCP connection and a range of TCP 971 * states (specified by ac_start and ac_end). The use of wildcard addresses 972 * and ports is allowed. Connections with a matching four tuple and a state 973 * within the specified range will be aborted. The valid states for the 974 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 975 * inclusive. 976 * 977 * An application which has its connection aborted by this ioctl will receive 978 * an error that is dependent on the connection state at the time of the abort. 979 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 980 * though a RST packet has been received. If the connection state is equal to 981 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 982 * and all resources associated with the connection will be freed. 983 */ 984 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 985 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 986 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 987 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); 988 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 989 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 990 boolean_t, tcp_stack_t *); 991 992 static struct module_info tcp_rinfo = { 993 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 994 }; 995 996 static struct module_info tcp_winfo = { 997 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 998 }; 999 1000 /* 1001 * Entry points for TCP as a device. The normal case which supports 1002 * the TCP functionality. 1003 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 1004 */ 1005 struct qinit tcp_rinitv4 = { 1006 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, NULL, &tcp_rinfo 1007 }; 1008 1009 struct qinit tcp_rinitv6 = { 1010 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_close, NULL, &tcp_rinfo 1011 }; 1012 1013 struct qinit tcp_winit = { 1014 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1015 }; 1016 1017 /* Initial entry point for TCP in socket mode. */ 1018 struct qinit tcp_sock_winit = { 1019 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1020 }; 1021 1022 /* 1023 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 1024 * an accept. Avoid allocating data structures since eager has already 1025 * been created. 1026 */ 1027 struct qinit tcp_acceptor_rinit = { 1028 NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo 1029 }; 1030 1031 struct qinit tcp_acceptor_winit = { 1032 (pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1033 }; 1034 1035 /* 1036 * Entry points for TCP loopback (read side only) 1037 * The open routine is only used for reopens, thus no need to 1038 * have a separate one for tcp_openv6. 1039 */ 1040 struct qinit tcp_loopback_rinit = { 1041 (pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, (pfi_t)0, 1042 &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD 1043 }; 1044 1045 /* For AF_INET aka /dev/tcp */ 1046 struct streamtab tcpinfov4 = { 1047 &tcp_rinitv4, &tcp_winit 1048 }; 1049 1050 /* For AF_INET6 aka /dev/tcp6 */ 1051 struct streamtab tcpinfov6 = { 1052 &tcp_rinitv6, &tcp_winit 1053 }; 1054 1055 /* 1056 * Have to ensure that tcp_g_q_close is not done by an 1057 * interrupt thread. 1058 */ 1059 static taskq_t *tcp_taskq; 1060 1061 /* Setable only in /etc/system. Move to ndd? */ 1062 boolean_t tcp_icmp_source_quench = B_FALSE; 1063 1064 /* 1065 * Following assumes TPI alignment requirements stay along 32 bit 1066 * boundaries 1067 */ 1068 #define ROUNDUP32(x) \ 1069 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1070 1071 /* Template for response to info request. */ 1072 static struct T_info_ack tcp_g_t_info_ack = { 1073 T_INFO_ACK, /* PRIM_type */ 1074 0, /* TSDU_size */ 1075 T_INFINITE, /* ETSDU_size */ 1076 T_INVALID, /* CDATA_size */ 1077 T_INVALID, /* DDATA_size */ 1078 sizeof (sin_t), /* ADDR_size */ 1079 0, /* OPT_size - not initialized here */ 1080 TIDUSZ, /* TIDU_size */ 1081 T_COTS_ORD, /* SERV_type */ 1082 TCPS_IDLE, /* CURRENT_state */ 1083 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1084 }; 1085 1086 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1087 T_INFO_ACK, /* PRIM_type */ 1088 0, /* TSDU_size */ 1089 T_INFINITE, /* ETSDU_size */ 1090 T_INVALID, /* CDATA_size */ 1091 T_INVALID, /* DDATA_size */ 1092 sizeof (sin6_t), /* ADDR_size */ 1093 0, /* OPT_size - not initialized here */ 1094 TIDUSZ, /* TIDU_size */ 1095 T_COTS_ORD, /* SERV_type */ 1096 TCPS_IDLE, /* CURRENT_state */ 1097 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1098 }; 1099 1100 #define MS 1L 1101 #define SECONDS (1000 * MS) 1102 #define MINUTES (60 * SECONDS) 1103 #define HOURS (60 * MINUTES) 1104 #define DAYS (24 * HOURS) 1105 1106 #define PARAM_MAX (~(uint32_t)0) 1107 1108 /* Max size IP datagram is 64k - 1 */ 1109 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1110 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1111 /* Max of the above */ 1112 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1113 1114 /* Largest TCP port number */ 1115 #define TCP_MAX_PORT (64 * 1024 - 1) 1116 1117 /* 1118 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1119 * layer header. It has to be a multiple of 4. 1120 */ 1121 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1122 #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val 1123 1124 /* 1125 * All of these are alterable, within the min/max values given, at run time. 1126 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1127 * per the TCP spec. 1128 */ 1129 /* BEGIN CSTYLED */ 1130 static tcpparam_t lcl_tcp_param_arr[] = { 1131 /*min max value name */ 1132 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1133 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1134 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1135 { 1, 1024, 1, "tcp_conn_req_min" }, 1136 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1137 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1138 { 0, 10, 0, "tcp_debug" }, 1139 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1140 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1141 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1142 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1143 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1144 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1145 { 1, 255, 64, "tcp_ipv4_ttl"}, 1146 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1147 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1148 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1149 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1150 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1151 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1152 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1153 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1154 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1155 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1156 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1157 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1158 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1159 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1160 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1161 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1162 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1163 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1164 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1165 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1166 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1167 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1168 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1169 /* 1170 * Question: What default value should I set for tcp_strong_iss? 1171 */ 1172 { 0, 2, 1, "tcp_strong_iss"}, 1173 { 0, 65536, 20, "tcp_rtt_updates"}, 1174 { 0, 1, 1, "tcp_wscale_always"}, 1175 { 0, 1, 0, "tcp_tstamp_always"}, 1176 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1177 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1178 { 0, 16, 2, "tcp_deferred_acks_max"}, 1179 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1180 { 1, 4, 4, "tcp_slow_start_initial"}, 1181 { 0, 2, 2, "tcp_sack_permitted"}, 1182 { 0, 1, 1, "tcp_compression_enabled"}, 1183 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1184 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1185 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1186 { 0, 1, 0, "tcp_rev_src_routes"}, 1187 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1188 { 100*MS, 60*SECONDS, 1*SECONDS, "tcp_ndd_get_info_interval"}, 1189 { 0, 16, 8, "tcp_local_dacks_max"}, 1190 { 0, 2, 1, "tcp_ecn_permitted"}, 1191 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1192 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1193 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1194 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1195 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1196 }; 1197 /* END CSTYLED */ 1198 1199 /* 1200 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1201 * each header fragment in the header buffer. Each parameter value has 1202 * to be a multiple of 4 (32-bit aligned). 1203 */ 1204 static tcpparam_t lcl_tcp_mdt_head_param = 1205 { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1206 static tcpparam_t lcl_tcp_mdt_tail_param = 1207 { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1208 #define tcps_mdt_hdr_head_min tcps_mdt_head_param->tcp_param_val 1209 #define tcps_mdt_hdr_tail_min tcps_mdt_tail_param->tcp_param_val 1210 1211 /* 1212 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1213 * the maximum number of payload buffers associated per Multidata. 1214 */ 1215 static tcpparam_t lcl_tcp_mdt_max_pbufs_param = 1216 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1217 #define tcps_mdt_max_pbufs tcps_mdt_max_pbufs_param->tcp_param_val 1218 1219 /* Round up the value to the nearest mss. */ 1220 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1221 1222 /* 1223 * Set ECN capable transport (ECT) code point in IP header. 1224 * 1225 * Note that there are 2 ECT code points '01' and '10', which are called 1226 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1227 * point ECT(0) for TCP as described in RFC 2481. 1228 */ 1229 #define SET_ECT(tcp, iph) \ 1230 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1231 /* We need to clear the code point first. */ \ 1232 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1233 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1234 } else { \ 1235 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1236 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1237 } 1238 1239 /* 1240 * The format argument to pass to tcp_display(). 1241 * DISP_PORT_ONLY means that the returned string has only port info. 1242 * DISP_ADDR_AND_PORT means that the returned string also contains the 1243 * remote and local IP address. 1244 */ 1245 #define DISP_PORT_ONLY 1 1246 #define DISP_ADDR_AND_PORT 2 1247 1248 #define NDD_TOO_QUICK_MSG \ 1249 "ndd get info rate too high for non-privileged users, try again " \ 1250 "later.\n" 1251 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 1252 1253 #define IS_VMLOANED_MBLK(mp) \ 1254 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1255 1256 1257 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1258 boolean_t tcp_mdt_chain = B_TRUE; 1259 1260 /* 1261 * MDT threshold in the form of effective send MSS multiplier; we take 1262 * the MDT path if the amount of unsent data exceeds the threshold value 1263 * (default threshold is 1*SMSS). 1264 */ 1265 uint_t tcp_mdt_smss_threshold = 1; 1266 1267 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1268 1269 /* 1270 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 1271 * tunable settable via NDD. Otherwise, the per-connection behavior is 1272 * determined dynamically during tcp_adapt_ire(), which is the default. 1273 */ 1274 boolean_t tcp_static_maxpsz = B_FALSE; 1275 1276 /* Setable in /etc/system */ 1277 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1278 uint32_t tcp_random_anon_port = 1; 1279 1280 /* 1281 * To reach to an eager in Q0 which can be dropped due to an incoming 1282 * new SYN request when Q0 is full, a new doubly linked list is 1283 * introduced. This list allows to select an eager from Q0 in O(1) time. 1284 * This is needed to avoid spending too much time walking through the 1285 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1286 * this new list has to be a member of Q0. 1287 * This list is headed by listener's tcp_t. When the list is empty, 1288 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1289 * of listener's tcp_t point to listener's tcp_t itself. 1290 * 1291 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1292 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1293 * These macros do not affect the eager's membership to Q0. 1294 */ 1295 1296 1297 #define MAKE_DROPPABLE(listener, eager) \ 1298 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1299 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1300 = (eager); \ 1301 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1302 (eager)->tcp_eager_next_drop_q0 = \ 1303 (listener)->tcp_eager_next_drop_q0; \ 1304 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1305 } 1306 1307 #define MAKE_UNDROPPABLE(eager) \ 1308 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1309 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1310 = (eager)->tcp_eager_prev_drop_q0; \ 1311 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1312 = (eager)->tcp_eager_next_drop_q0; \ 1313 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1314 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1315 } 1316 1317 /* 1318 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1319 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1320 * data, TCP will not respond with an ACK. RFC 793 requires that 1321 * TCP responds with an ACK for such a bogus ACK. By not following 1322 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1323 * an attacker successfully spoofs an acceptable segment to our 1324 * peer; or when our peer is "confused." 1325 */ 1326 uint32_t tcp_drop_ack_unsent_cnt = 10; 1327 1328 /* 1329 * Hook functions to enable cluster networking 1330 * On non-clustered systems these vectors must always be NULL. 1331 */ 1332 1333 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family, 1334 uint8_t *laddrp, in_port_t lport) = NULL; 1335 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family, 1336 uint8_t *laddrp, in_port_t lport) = NULL; 1337 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family, 1338 uint8_t *laddrp, in_port_t lport, 1339 uint8_t *faddrp, in_port_t fport) = NULL; 1340 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family, 1341 uint8_t *laddrp, in_port_t lport, 1342 uint8_t *faddrp, in_port_t fport) = NULL; 1343 1344 /* 1345 * The following are defined in ip.c 1346 */ 1347 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family, 1348 uint8_t *laddrp); 1349 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 1350 uint8_t *laddrp, uint8_t *faddrp); 1351 1352 #define CL_INET_CONNECT(tcp) { \ 1353 if (cl_inet_connect != NULL) { \ 1354 /* \ 1355 * Running in cluster mode - register active connection \ 1356 * information \ 1357 */ \ 1358 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1359 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1360 (*cl_inet_connect)(IPPROTO_TCP, AF_INET,\ 1361 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1362 (in_port_t)(tcp)->tcp_lport, \ 1363 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1364 (in_port_t)(tcp)->tcp_fport); \ 1365 } \ 1366 } else { \ 1367 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1368 &(tcp)->tcp_ip6h->ip6_src)) {\ 1369 (*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\ 1370 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1371 (in_port_t)(tcp)->tcp_lport, \ 1372 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1373 (in_port_t)(tcp)->tcp_fport); \ 1374 } \ 1375 } \ 1376 } \ 1377 } 1378 1379 #define CL_INET_DISCONNECT(tcp) { \ 1380 if (cl_inet_disconnect != NULL) { \ 1381 /* \ 1382 * Running in cluster mode - deregister active \ 1383 * connection information \ 1384 */ \ 1385 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1386 if ((tcp)->tcp_ip_src != 0) { \ 1387 (*cl_inet_disconnect)(IPPROTO_TCP, \ 1388 AF_INET, \ 1389 (uint8_t *)(&((tcp)->tcp_ip_src)),\ 1390 (in_port_t)(tcp)->tcp_lport, \ 1391 (uint8_t *) \ 1392 (&((tcp)->tcp_ipha->ipha_dst)),\ 1393 (in_port_t)(tcp)->tcp_fport); \ 1394 } \ 1395 } else { \ 1396 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1397 &(tcp)->tcp_ip_src_v6)) { \ 1398 (*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\ 1399 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1400 (in_port_t)(tcp)->tcp_lport, \ 1401 (uint8_t *) \ 1402 (&((tcp)->tcp_ip6h->ip6_dst)),\ 1403 (in_port_t)(tcp)->tcp_fport); \ 1404 } \ 1405 } \ 1406 } \ 1407 } 1408 1409 /* 1410 * Cluster networking hook for traversing current connection list. 1411 * This routine is used to extract the current list of live connections 1412 * which must continue to to be dispatched to this node. 1413 */ 1414 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg); 1415 1416 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), 1417 void *arg, tcp_stack_t *tcps); 1418 1419 #define DTRACE_IP_FASTPATH(mp, iph, ill, ipha, ip6h) \ 1420 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, \ 1421 iph, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, \ 1422 ip6_t *, ip6h, int, 0); 1423 1424 /* 1425 * Figure out the value of window scale opton. Note that the rwnd is 1426 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1427 * We cannot find the scale value and then do a round up of tcp_rwnd 1428 * because the scale value may not be correct after that. 1429 * 1430 * Set the compiler flag to make this function inline. 1431 */ 1432 static void 1433 tcp_set_ws_value(tcp_t *tcp) 1434 { 1435 int i; 1436 uint32_t rwnd = tcp->tcp_rwnd; 1437 1438 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1439 i++, rwnd >>= 1) 1440 ; 1441 tcp->tcp_rcv_ws = i; 1442 } 1443 1444 /* 1445 * Remove a connection from the list of detached TIME_WAIT connections. 1446 * It returns B_FALSE if it can't remove the connection from the list 1447 * as the connection has already been removed from the list due to an 1448 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1449 */ 1450 static boolean_t 1451 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1452 { 1453 boolean_t locked = B_FALSE; 1454 1455 if (tcp_time_wait == NULL) { 1456 tcp_time_wait = *((tcp_squeue_priv_t **) 1457 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1458 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1459 locked = B_TRUE; 1460 } else { 1461 ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); 1462 } 1463 1464 if (tcp->tcp_time_wait_expire == 0) { 1465 ASSERT(tcp->tcp_time_wait_next == NULL); 1466 ASSERT(tcp->tcp_time_wait_prev == NULL); 1467 if (locked) 1468 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1469 return (B_FALSE); 1470 } 1471 ASSERT(TCP_IS_DETACHED(tcp)); 1472 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1473 1474 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1475 ASSERT(tcp->tcp_time_wait_prev == NULL); 1476 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1477 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1478 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1479 NULL; 1480 } else { 1481 tcp_time_wait->tcp_time_wait_tail = NULL; 1482 } 1483 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1484 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1485 ASSERT(tcp->tcp_time_wait_next == NULL); 1486 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1487 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1488 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1489 } else { 1490 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1491 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1492 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1493 tcp->tcp_time_wait_next; 1494 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1495 tcp->tcp_time_wait_prev; 1496 } 1497 tcp->tcp_time_wait_next = NULL; 1498 tcp->tcp_time_wait_prev = NULL; 1499 tcp->tcp_time_wait_expire = 0; 1500 1501 if (locked) 1502 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1503 return (B_TRUE); 1504 } 1505 1506 /* 1507 * Add a connection to the list of detached TIME_WAIT connections 1508 * and set its time to expire. 1509 */ 1510 static void 1511 tcp_time_wait_append(tcp_t *tcp) 1512 { 1513 tcp_stack_t *tcps = tcp->tcp_tcps; 1514 tcp_squeue_priv_t *tcp_time_wait = 1515 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1516 SQPRIVATE_TCP)); 1517 1518 tcp_timers_stop(tcp); 1519 1520 /* Freed above */ 1521 ASSERT(tcp->tcp_timer_tid == 0); 1522 ASSERT(tcp->tcp_ack_tid == 0); 1523 1524 /* must have happened at the time of detaching the tcp */ 1525 ASSERT(tcp->tcp_ptpahn == NULL); 1526 ASSERT(tcp->tcp_flow_stopped == 0); 1527 ASSERT(tcp->tcp_time_wait_next == NULL); 1528 ASSERT(tcp->tcp_time_wait_prev == NULL); 1529 ASSERT(tcp->tcp_time_wait_expire == NULL); 1530 ASSERT(tcp->tcp_listener == NULL); 1531 1532 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1533 /* 1534 * The value computed below in tcp->tcp_time_wait_expire may 1535 * appear negative or wrap around. That is ok since our 1536 * interest is only in the difference between the current lbolt 1537 * value and tcp->tcp_time_wait_expire. But the value should not 1538 * be zero, since it means the tcp is not in the TIME_WAIT list. 1539 * The corresponding comparison in tcp_time_wait_collector() uses 1540 * modular arithmetic. 1541 */ 1542 tcp->tcp_time_wait_expire += 1543 drv_usectohz(tcps->tcps_time_wait_interval * 1000); 1544 if (tcp->tcp_time_wait_expire == 0) 1545 tcp->tcp_time_wait_expire = 1; 1546 1547 ASSERT(TCP_IS_DETACHED(tcp)); 1548 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1549 ASSERT(tcp->tcp_time_wait_next == NULL); 1550 ASSERT(tcp->tcp_time_wait_prev == NULL); 1551 TCP_DBGSTAT(tcps, tcp_time_wait); 1552 1553 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1554 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1555 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1556 tcp_time_wait->tcp_time_wait_head = tcp; 1557 } else { 1558 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1559 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1560 TCPS_TIME_WAIT); 1561 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1562 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1563 } 1564 tcp_time_wait->tcp_time_wait_tail = tcp; 1565 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1566 } 1567 1568 /* ARGSUSED */ 1569 void 1570 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1571 { 1572 conn_t *connp = (conn_t *)arg; 1573 tcp_t *tcp = connp->conn_tcp; 1574 tcp_stack_t *tcps = tcp->tcp_tcps; 1575 1576 ASSERT(tcp != NULL); 1577 if (tcp->tcp_state == TCPS_CLOSED) { 1578 return; 1579 } 1580 1581 ASSERT((tcp->tcp_family == AF_INET && 1582 tcp->tcp_ipversion == IPV4_VERSION) || 1583 (tcp->tcp_family == AF_INET6 && 1584 (tcp->tcp_ipversion == IPV4_VERSION || 1585 tcp->tcp_ipversion == IPV6_VERSION))); 1586 ASSERT(!tcp->tcp_listener); 1587 1588 TCP_STAT(tcps, tcp_time_wait_reap); 1589 ASSERT(TCP_IS_DETACHED(tcp)); 1590 1591 /* 1592 * Because they have no upstream client to rebind or tcp_close() 1593 * them later, we axe the connection here and now. 1594 */ 1595 tcp_close_detached(tcp); 1596 } 1597 1598 /* 1599 * Remove cached/latched IPsec references. 1600 */ 1601 void 1602 tcp_ipsec_cleanup(tcp_t *tcp) 1603 { 1604 conn_t *connp = tcp->tcp_connp; 1605 1606 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1607 1608 if (connp->conn_latch != NULL) { 1609 IPLATCH_REFRELE(connp->conn_latch, 1610 connp->conn_netstack); 1611 connp->conn_latch = NULL; 1612 } 1613 if (connp->conn_policy != NULL) { 1614 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 1615 connp->conn_policy = NULL; 1616 } 1617 } 1618 1619 /* 1620 * Cleaup before placing on free list. 1621 * Disassociate from the netstack/tcp_stack_t since the freelist 1622 * is per squeue and not per netstack. 1623 */ 1624 void 1625 tcp_cleanup(tcp_t *tcp) 1626 { 1627 mblk_t *mp; 1628 char *tcp_iphc; 1629 int tcp_iphc_len; 1630 int tcp_hdr_grown; 1631 tcp_sack_info_t *tcp_sack_info; 1632 conn_t *connp = tcp->tcp_connp; 1633 tcp_stack_t *tcps = tcp->tcp_tcps; 1634 netstack_t *ns = tcps->tcps_netstack; 1635 mblk_t *tcp_rsrv_mp; 1636 1637 tcp_bind_hash_remove(tcp); 1638 1639 /* Cleanup that which needs the netstack first */ 1640 tcp_ipsec_cleanup(tcp); 1641 1642 tcp_free(tcp); 1643 1644 /* Release any SSL context */ 1645 if (tcp->tcp_kssl_ent != NULL) { 1646 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1647 tcp->tcp_kssl_ent = NULL; 1648 } 1649 1650 if (tcp->tcp_kssl_ctx != NULL) { 1651 kssl_release_ctx(tcp->tcp_kssl_ctx); 1652 tcp->tcp_kssl_ctx = NULL; 1653 } 1654 tcp->tcp_kssl_pending = B_FALSE; 1655 1656 conn_delete_ire(connp, NULL); 1657 1658 /* 1659 * Since we will bzero the entire structure, we need to 1660 * remove it and reinsert it in global hash list. We 1661 * know the walkers can't get to this conn because we 1662 * had set CONDEMNED flag earlier and checked reference 1663 * under conn_lock so walker won't pick it and when we 1664 * go the ipcl_globalhash_remove() below, no walker 1665 * can get to it. 1666 */ 1667 ipcl_globalhash_remove(connp); 1668 1669 /* 1670 * Now it is safe to decrement the reference counts. 1671 * This might be the last reference on the netstack and TCPS 1672 * in which case it will cause the tcp_g_q_close and 1673 * the freeing of the IP Instance. 1674 */ 1675 connp->conn_netstack = NULL; 1676 netstack_rele(ns); 1677 ASSERT(tcps != NULL); 1678 tcp->tcp_tcps = NULL; 1679 TCPS_REFRELE(tcps); 1680 1681 /* Save some state */ 1682 mp = tcp->tcp_timercache; 1683 1684 tcp_sack_info = tcp->tcp_sack_info; 1685 tcp_iphc = tcp->tcp_iphc; 1686 tcp_iphc_len = tcp->tcp_iphc_len; 1687 tcp_hdr_grown = tcp->tcp_hdr_grown; 1688 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 1689 1690 if (connp->conn_cred != NULL) { 1691 crfree(connp->conn_cred); 1692 connp->conn_cred = NULL; 1693 } 1694 if (connp->conn_peercred != NULL) { 1695 crfree(connp->conn_peercred); 1696 connp->conn_peercred = NULL; 1697 } 1698 ipcl_conn_cleanup(connp); 1699 connp->conn_flags = IPCL_TCPCONN; 1700 bzero(tcp, sizeof (tcp_t)); 1701 1702 /* restore the state */ 1703 tcp->tcp_timercache = mp; 1704 1705 tcp->tcp_sack_info = tcp_sack_info; 1706 tcp->tcp_iphc = tcp_iphc; 1707 tcp->tcp_iphc_len = tcp_iphc_len; 1708 tcp->tcp_hdr_grown = tcp_hdr_grown; 1709 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1710 1711 tcp->tcp_connp = connp; 1712 1713 ASSERT(connp->conn_tcp == tcp); 1714 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1715 connp->conn_state_flags = CONN_INCIPIENT; 1716 ASSERT(connp->conn_ulp == IPPROTO_TCP); 1717 ASSERT(connp->conn_ref == 1); 1718 } 1719 1720 /* 1721 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1722 * is done forwards from the head. 1723 * This walks all stack instances since 1724 * tcp_time_wait remains global across all stacks. 1725 */ 1726 /* ARGSUSED */ 1727 void 1728 tcp_time_wait_collector(void *arg) 1729 { 1730 tcp_t *tcp; 1731 clock_t now; 1732 mblk_t *mp; 1733 conn_t *connp; 1734 kmutex_t *lock; 1735 boolean_t removed; 1736 1737 squeue_t *sqp = (squeue_t *)arg; 1738 tcp_squeue_priv_t *tcp_time_wait = 1739 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1740 1741 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1742 tcp_time_wait->tcp_time_wait_tid = 0; 1743 1744 if (tcp_time_wait->tcp_free_list != NULL && 1745 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1746 TCP_G_STAT(tcp_freelist_cleanup); 1747 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1748 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1749 tcp->tcp_time_wait_next = NULL; 1750 tcp_time_wait->tcp_free_list_cnt--; 1751 ASSERT(tcp->tcp_tcps == NULL); 1752 CONN_DEC_REF(tcp->tcp_connp); 1753 } 1754 ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); 1755 } 1756 1757 /* 1758 * In order to reap time waits reliably, we should use a 1759 * source of time that is not adjustable by the user -- hence 1760 * the call to ddi_get_lbolt(). 1761 */ 1762 now = ddi_get_lbolt(); 1763 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1764 /* 1765 * Compare times using modular arithmetic, since 1766 * lbolt can wrapover. 1767 */ 1768 if ((now - tcp->tcp_time_wait_expire) < 0) { 1769 break; 1770 } 1771 1772 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1773 ASSERT(removed); 1774 1775 connp = tcp->tcp_connp; 1776 ASSERT(connp->conn_fanout != NULL); 1777 lock = &connp->conn_fanout->connf_lock; 1778 /* 1779 * This is essentially a TW reclaim fast path optimization for 1780 * performance where the timewait collector checks under the 1781 * fanout lock (so that no one else can get access to the 1782 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1783 * the classifier hash list. If ref count is indeed 2, we can 1784 * just remove the conn under the fanout lock and avoid 1785 * cleaning up the conn under the squeue, provided that 1786 * clustering callbacks are not enabled. If clustering is 1787 * enabled, we need to make the clustering callback before 1788 * setting the CONDEMNED flag and after dropping all locks and 1789 * so we forego this optimization and fall back to the slow 1790 * path. Also please see the comments in tcp_closei_local 1791 * regarding the refcnt logic. 1792 * 1793 * Since we are holding the tcp_time_wait_lock, its better 1794 * not to block on the fanout_lock because other connections 1795 * can't add themselves to time_wait list. So we do a 1796 * tryenter instead of mutex_enter. 1797 */ 1798 if (mutex_tryenter(lock)) { 1799 mutex_enter(&connp->conn_lock); 1800 if ((connp->conn_ref == 2) && 1801 (cl_inet_disconnect == NULL)) { 1802 ipcl_hash_remove_locked(connp, 1803 connp->conn_fanout); 1804 /* 1805 * Set the CONDEMNED flag now itself so that 1806 * the refcnt cannot increase due to any 1807 * walker. But we have still not cleaned up 1808 * conn_ire_cache. This is still ok since 1809 * we are going to clean it up in tcp_cleanup 1810 * immediately and any interface unplumb 1811 * thread will wait till the ire is blown away 1812 */ 1813 connp->conn_state_flags |= CONN_CONDEMNED; 1814 mutex_exit(lock); 1815 mutex_exit(&connp->conn_lock); 1816 if (tcp_time_wait->tcp_free_list_cnt < 1817 tcp_free_list_max_cnt) { 1818 /* Add to head of tcp_free_list */ 1819 mutex_exit( 1820 &tcp_time_wait->tcp_time_wait_lock); 1821 tcp_cleanup(tcp); 1822 ASSERT(connp->conn_latch == NULL); 1823 ASSERT(connp->conn_policy == NULL); 1824 ASSERT(tcp->tcp_tcps == NULL); 1825 ASSERT(connp->conn_netstack == NULL); 1826 1827 mutex_enter( 1828 &tcp_time_wait->tcp_time_wait_lock); 1829 tcp->tcp_time_wait_next = 1830 tcp_time_wait->tcp_free_list; 1831 tcp_time_wait->tcp_free_list = tcp; 1832 tcp_time_wait->tcp_free_list_cnt++; 1833 continue; 1834 } else { 1835 /* Do not add to tcp_free_list */ 1836 mutex_exit( 1837 &tcp_time_wait->tcp_time_wait_lock); 1838 tcp_bind_hash_remove(tcp); 1839 conn_delete_ire(tcp->tcp_connp, NULL); 1840 tcp_ipsec_cleanup(tcp); 1841 CONN_DEC_REF(tcp->tcp_connp); 1842 } 1843 } else { 1844 CONN_INC_REF_LOCKED(connp); 1845 mutex_exit(lock); 1846 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1847 mutex_exit(&connp->conn_lock); 1848 /* 1849 * We can reuse the closemp here since conn has 1850 * detached (otherwise we wouldn't even be in 1851 * time_wait list). tcp_closemp_used can safely 1852 * be changed without taking a lock as no other 1853 * thread can concurrently access it at this 1854 * point in the connection lifecycle. 1855 */ 1856 1857 if (tcp->tcp_closemp.b_prev == NULL) 1858 tcp->tcp_closemp_used = B_TRUE; 1859 else 1860 cmn_err(CE_PANIC, 1861 "tcp_timewait_collector: " 1862 "concurrent use of tcp_closemp: " 1863 "connp %p tcp %p\n", (void *)connp, 1864 (void *)tcp); 1865 1866 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1867 mp = &tcp->tcp_closemp; 1868 squeue_fill(connp->conn_sqp, mp, 1869 tcp_timewait_output, connp, 1870 SQTAG_TCP_TIMEWAIT); 1871 } 1872 } else { 1873 mutex_enter(&connp->conn_lock); 1874 CONN_INC_REF_LOCKED(connp); 1875 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1876 mutex_exit(&connp->conn_lock); 1877 /* 1878 * We can reuse the closemp here since conn has 1879 * detached (otherwise we wouldn't even be in 1880 * time_wait list). tcp_closemp_used can safely 1881 * be changed without taking a lock as no other 1882 * thread can concurrently access it at this 1883 * point in the connection lifecycle. 1884 */ 1885 1886 if (tcp->tcp_closemp.b_prev == NULL) 1887 tcp->tcp_closemp_used = B_TRUE; 1888 else 1889 cmn_err(CE_PANIC, "tcp_timewait_collector: " 1890 "concurrent use of tcp_closemp: " 1891 "connp %p tcp %p\n", (void *)connp, 1892 (void *)tcp); 1893 1894 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1895 mp = &tcp->tcp_closemp; 1896 squeue_fill(connp->conn_sqp, mp, 1897 tcp_timewait_output, connp, 0); 1898 } 1899 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1900 } 1901 1902 if (tcp_time_wait->tcp_free_list != NULL) 1903 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1904 1905 tcp_time_wait->tcp_time_wait_tid = 1906 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 1907 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 1908 CALLOUT_FLAG_ROUNDUP); 1909 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1910 } 1911 /* 1912 * Reply to a clients T_CONN_RES TPI message. This function 1913 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1914 * on the acceptor STREAM and processed in tcp_wput_accept(). 1915 * Read the block comment on top of tcp_conn_request(). 1916 */ 1917 static void 1918 tcp_accept(tcp_t *listener, mblk_t *mp) 1919 { 1920 tcp_t *acceptor; 1921 tcp_t *eager; 1922 tcp_t *tcp; 1923 struct T_conn_res *tcr; 1924 t_uscalar_t acceptor_id; 1925 t_scalar_t seqnum; 1926 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 1927 mblk_t *ok_mp; 1928 mblk_t *mp1; 1929 tcp_stack_t *tcps = listener->tcp_tcps; 1930 1931 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1932 tcp_err_ack(listener, mp, TPROTO, 0); 1933 return; 1934 } 1935 tcr = (struct T_conn_res *)mp->b_rptr; 1936 1937 /* 1938 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1939 * read side queue of the streams device underneath us i.e. the 1940 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1941 * look it up in the queue_hash. Under LP64 it sends down the 1942 * minor_t of the accepting endpoint. 1943 * 1944 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1945 * fanout hash lock is held. 1946 * This prevents any thread from entering the acceptor queue from 1947 * below (since it has not been hard bound yet i.e. any inbound 1948 * packets will arrive on the listener or default tcp queue and 1949 * go through tcp_lookup). 1950 * The CONN_INC_REF will prevent the acceptor from closing. 1951 * 1952 * XXX It is still possible for a tli application to send down data 1953 * on the accepting stream while another thread calls t_accept. 1954 * This should not be a problem for well-behaved applications since 1955 * the T_OK_ACK is sent after the queue swapping is completed. 1956 * 1957 * If the accepting fd is the same as the listening fd, avoid 1958 * queue hash lookup since that will return an eager listener in a 1959 * already established state. 1960 */ 1961 acceptor_id = tcr->ACCEPTOR_id; 1962 mutex_enter(&listener->tcp_eager_lock); 1963 if (listener->tcp_acceptor_id == acceptor_id) { 1964 eager = listener->tcp_eager_next_q; 1965 /* only count how many T_CONN_INDs so don't count q0 */ 1966 if ((listener->tcp_conn_req_cnt_q != 1) || 1967 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1968 mutex_exit(&listener->tcp_eager_lock); 1969 tcp_err_ack(listener, mp, TBADF, 0); 1970 return; 1971 } 1972 if (listener->tcp_conn_req_cnt_q0 != 0) { 1973 /* Throw away all the eagers on q0. */ 1974 tcp_eager_cleanup(listener, 1); 1975 } 1976 if (listener->tcp_syn_defense) { 1977 listener->tcp_syn_defense = B_FALSE; 1978 if (listener->tcp_ip_addr_cache != NULL) { 1979 kmem_free(listener->tcp_ip_addr_cache, 1980 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1981 listener->tcp_ip_addr_cache = NULL; 1982 } 1983 } 1984 /* 1985 * Transfer tcp_conn_req_max to the eager so that when 1986 * a disconnect occurs we can revert the endpoint to the 1987 * listen state. 1988 */ 1989 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1990 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1991 /* 1992 * Get a reference on the acceptor just like the 1993 * tcp_acceptor_hash_lookup below. 1994 */ 1995 acceptor = listener; 1996 CONN_INC_REF(acceptor->tcp_connp); 1997 } else { 1998 acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); 1999 if (acceptor == NULL) { 2000 if (listener->tcp_debug) { 2001 (void) strlog(TCP_MOD_ID, 0, 1, 2002 SL_ERROR|SL_TRACE, 2003 "tcp_accept: did not find acceptor 0x%x\n", 2004 acceptor_id); 2005 } 2006 mutex_exit(&listener->tcp_eager_lock); 2007 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 2008 return; 2009 } 2010 /* 2011 * Verify acceptor state. The acceptable states for an acceptor 2012 * include TCPS_IDLE and TCPS_BOUND. 2013 */ 2014 switch (acceptor->tcp_state) { 2015 case TCPS_IDLE: 2016 /* FALLTHRU */ 2017 case TCPS_BOUND: 2018 break; 2019 default: 2020 CONN_DEC_REF(acceptor->tcp_connp); 2021 mutex_exit(&listener->tcp_eager_lock); 2022 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2023 return; 2024 } 2025 } 2026 2027 /* The listener must be in TCPS_LISTEN */ 2028 if (listener->tcp_state != TCPS_LISTEN) { 2029 CONN_DEC_REF(acceptor->tcp_connp); 2030 mutex_exit(&listener->tcp_eager_lock); 2031 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2032 return; 2033 } 2034 2035 /* 2036 * Rendezvous with an eager connection request packet hanging off 2037 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2038 * tcp structure when the connection packet arrived in 2039 * tcp_conn_request(). 2040 */ 2041 seqnum = tcr->SEQ_number; 2042 eager = listener; 2043 do { 2044 eager = eager->tcp_eager_next_q; 2045 if (eager == NULL) { 2046 CONN_DEC_REF(acceptor->tcp_connp); 2047 mutex_exit(&listener->tcp_eager_lock); 2048 tcp_err_ack(listener, mp, TBADSEQ, 0); 2049 return; 2050 } 2051 } while (eager->tcp_conn_req_seqnum != seqnum); 2052 mutex_exit(&listener->tcp_eager_lock); 2053 2054 /* 2055 * At this point, both acceptor and listener have 2 ref 2056 * that they begin with. Acceptor has one additional ref 2057 * we placed in lookup while listener has 3 additional 2058 * ref for being behind the squeue (tcp_accept() is 2059 * done on listener's squeue); being in classifier hash; 2060 * and eager's ref on listener. 2061 */ 2062 ASSERT(listener->tcp_connp->conn_ref >= 5); 2063 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2064 2065 /* 2066 * The eager at this point is set in its own squeue and 2067 * could easily have been killed (tcp_accept_finish will 2068 * deal with that) because of a TH_RST so we can only 2069 * ASSERT for a single ref. 2070 */ 2071 ASSERT(eager->tcp_connp->conn_ref >= 1); 2072 2073 /* Pre allocate the stroptions mblk also */ 2074 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 2075 if (opt_mp == NULL) { 2076 CONN_DEC_REF(acceptor->tcp_connp); 2077 CONN_DEC_REF(eager->tcp_connp); 2078 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2079 return; 2080 } 2081 DB_TYPE(opt_mp) = M_SETOPTS; 2082 opt_mp->b_wptr += sizeof (struct stroptions); 2083 2084 /* 2085 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2086 * from listener to acceptor. The message is chained on opt_mp 2087 * which will be sent onto eager's squeue. 2088 */ 2089 if (listener->tcp_bound_if != 0) { 2090 /* allocate optmgmt req */ 2091 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2092 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 2093 sizeof (int)); 2094 if (mp1 != NULL) 2095 linkb(opt_mp, mp1); 2096 } 2097 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2098 uint_t on = 1; 2099 2100 /* allocate optmgmt req */ 2101 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2102 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 2103 if (mp1 != NULL) 2104 linkb(opt_mp, mp1); 2105 } 2106 2107 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2108 if ((mp1 = copymsg(mp)) == NULL) { 2109 CONN_DEC_REF(acceptor->tcp_connp); 2110 CONN_DEC_REF(eager->tcp_connp); 2111 freemsg(opt_mp); 2112 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2113 return; 2114 } 2115 2116 tcr = (struct T_conn_res *)mp1->b_rptr; 2117 2118 /* 2119 * This is an expanded version of mi_tpi_ok_ack_alloc() 2120 * which allocates a larger mblk and appends the new 2121 * local address to the ok_ack. The address is copied by 2122 * soaccept() for getsockname(). 2123 */ 2124 { 2125 int extra; 2126 2127 extra = (eager->tcp_family == AF_INET) ? 2128 sizeof (sin_t) : sizeof (sin6_t); 2129 2130 /* 2131 * Try to re-use mp, if possible. Otherwise, allocate 2132 * an mblk and return it as ok_mp. In any case, mp 2133 * is no longer usable upon return. 2134 */ 2135 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2136 CONN_DEC_REF(acceptor->tcp_connp); 2137 CONN_DEC_REF(eager->tcp_connp); 2138 freemsg(opt_mp); 2139 /* Original mp has been freed by now, so use mp1 */ 2140 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2141 return; 2142 } 2143 2144 mp = NULL; /* We should never use mp after this point */ 2145 2146 switch (extra) { 2147 case sizeof (sin_t): { 2148 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2149 2150 ok_mp->b_wptr += extra; 2151 sin->sin_family = AF_INET; 2152 sin->sin_port = eager->tcp_lport; 2153 sin->sin_addr.s_addr = 2154 eager->tcp_ipha->ipha_src; 2155 break; 2156 } 2157 case sizeof (sin6_t): { 2158 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2159 2160 ok_mp->b_wptr += extra; 2161 sin6->sin6_family = AF_INET6; 2162 sin6->sin6_port = eager->tcp_lport; 2163 if (eager->tcp_ipversion == IPV4_VERSION) { 2164 sin6->sin6_flowinfo = 0; 2165 IN6_IPADDR_TO_V4MAPPED( 2166 eager->tcp_ipha->ipha_src, 2167 &sin6->sin6_addr); 2168 } else { 2169 ASSERT(eager->tcp_ip6h != NULL); 2170 sin6->sin6_flowinfo = 2171 eager->tcp_ip6h->ip6_vcf & 2172 ~IPV6_VERS_AND_FLOW_MASK; 2173 sin6->sin6_addr = 2174 eager->tcp_ip6h->ip6_src; 2175 } 2176 sin6->sin6_scope_id = 0; 2177 sin6->__sin6_src_id = 0; 2178 break; 2179 } 2180 default: 2181 break; 2182 } 2183 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2184 } 2185 2186 /* 2187 * If there are no options we know that the T_CONN_RES will 2188 * succeed. However, we can't send the T_OK_ACK upstream until 2189 * the tcp_accept_swap is done since it would be dangerous to 2190 * let the application start using the new fd prior to the swap. 2191 */ 2192 tcp_accept_swap(listener, acceptor, eager); 2193 2194 /* 2195 * tcp_accept_swap unlinks eager from listener but does not drop 2196 * the eager's reference on the listener. 2197 */ 2198 ASSERT(eager->tcp_listener == NULL); 2199 ASSERT(listener->tcp_connp->conn_ref >= 5); 2200 2201 /* 2202 * The eager is now associated with its own queue. Insert in 2203 * the hash so that the connection can be reused for a future 2204 * T_CONN_RES. 2205 */ 2206 tcp_acceptor_hash_insert(acceptor_id, eager); 2207 2208 /* 2209 * We now do the processing of options with T_CONN_RES. 2210 * We delay till now since we wanted to have queue to pass to 2211 * option processing routines that points back to the right 2212 * instance structure which does not happen until after 2213 * tcp_accept_swap(). 2214 * 2215 * Note: 2216 * The sanity of the logic here assumes that whatever options 2217 * are appropriate to inherit from listner=>eager are done 2218 * before this point, and whatever were to be overridden (or not) 2219 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2220 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2221 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2222 * This may not be true at this point in time but can be fixed 2223 * independently. This option processing code starts with 2224 * the instantiated acceptor instance and the final queue at 2225 * this point. 2226 */ 2227 2228 if (tcr->OPT_length != 0) { 2229 /* Options to process */ 2230 int t_error = 0; 2231 int sys_error = 0; 2232 int do_disconnect = 0; 2233 2234 if (tcp_conprim_opt_process(eager, mp1, 2235 &do_disconnect, &t_error, &sys_error) < 0) { 2236 eager->tcp_accept_error = 1; 2237 if (do_disconnect) { 2238 /* 2239 * An option failed which does not allow 2240 * connection to be accepted. 2241 * 2242 * We allow T_CONN_RES to succeed and 2243 * put a T_DISCON_IND on the eager queue. 2244 */ 2245 ASSERT(t_error == 0 && sys_error == 0); 2246 eager->tcp_send_discon_ind = 1; 2247 } else { 2248 ASSERT(t_error != 0); 2249 freemsg(ok_mp); 2250 /* 2251 * Original mp was either freed or set 2252 * to ok_mp above, so use mp1 instead. 2253 */ 2254 tcp_err_ack(listener, mp1, t_error, sys_error); 2255 goto finish; 2256 } 2257 } 2258 /* 2259 * Most likely success in setting options (except if 2260 * eager->tcp_send_discon_ind set). 2261 * mp1 option buffer represented by OPT_length/offset 2262 * potentially modified and contains results of setting 2263 * options at this point 2264 */ 2265 } 2266 2267 /* We no longer need mp1, since all options processing has passed */ 2268 freemsg(mp1); 2269 2270 putnext(listener->tcp_rq, ok_mp); 2271 2272 mutex_enter(&listener->tcp_eager_lock); 2273 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2274 tcp_t *tail; 2275 mblk_t *conn_ind; 2276 2277 /* 2278 * This path should not be executed if listener and 2279 * acceptor streams are the same. 2280 */ 2281 ASSERT(listener != acceptor); 2282 2283 tcp = listener->tcp_eager_prev_q0; 2284 /* 2285 * listener->tcp_eager_prev_q0 points to the TAIL of the 2286 * deferred T_conn_ind queue. We need to get to the head of 2287 * the queue in order to send up T_conn_ind the same order as 2288 * how the 3WHS is completed. 2289 */ 2290 while (tcp != listener) { 2291 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2292 break; 2293 else 2294 tcp = tcp->tcp_eager_prev_q0; 2295 } 2296 ASSERT(tcp != listener); 2297 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2298 ASSERT(conn_ind != NULL); 2299 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2300 2301 /* Move from q0 to q */ 2302 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2303 listener->tcp_conn_req_cnt_q0--; 2304 listener->tcp_conn_req_cnt_q++; 2305 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2306 tcp->tcp_eager_prev_q0; 2307 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2308 tcp->tcp_eager_next_q0; 2309 tcp->tcp_eager_prev_q0 = NULL; 2310 tcp->tcp_eager_next_q0 = NULL; 2311 tcp->tcp_conn_def_q0 = B_FALSE; 2312 2313 /* Make sure the tcp isn't in the list of droppables */ 2314 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2315 tcp->tcp_eager_prev_drop_q0 == NULL); 2316 2317 /* 2318 * Insert at end of the queue because sockfs sends 2319 * down T_CONN_RES in chronological order. Leaving 2320 * the older conn indications at front of the queue 2321 * helps reducing search time. 2322 */ 2323 tail = listener->tcp_eager_last_q; 2324 if (tail != NULL) 2325 tail->tcp_eager_next_q = tcp; 2326 else 2327 listener->tcp_eager_next_q = tcp; 2328 listener->tcp_eager_last_q = tcp; 2329 tcp->tcp_eager_next_q = NULL; 2330 mutex_exit(&listener->tcp_eager_lock); 2331 putnext(tcp->tcp_rq, conn_ind); 2332 } else { 2333 mutex_exit(&listener->tcp_eager_lock); 2334 } 2335 2336 /* 2337 * Done with the acceptor - free it 2338 * 2339 * Note: from this point on, no access to listener should be made 2340 * as listener can be equal to acceptor. 2341 */ 2342 finish: 2343 ASSERT(acceptor->tcp_detached); 2344 ASSERT(tcps->tcps_g_q != NULL); 2345 acceptor->tcp_rq = tcps->tcps_g_q; 2346 acceptor->tcp_wq = WR(tcps->tcps_g_q); 2347 (void) tcp_clean_death(acceptor, 0, 2); 2348 CONN_DEC_REF(acceptor->tcp_connp); 2349 2350 /* 2351 * In case we already received a FIN we have to make tcp_rput send 2352 * the ordrel_ind. This will also send up a window update if the window 2353 * has opened up. 2354 * 2355 * In the normal case of a successful connection acceptance 2356 * we give the O_T_BIND_REQ to the read side put procedure as an 2357 * indication that this was just accepted. This tells tcp_rput to 2358 * pass up any data queued in tcp_rcv_list. 2359 * 2360 * In the fringe case where options sent with T_CONN_RES failed and 2361 * we required, we would be indicating a T_DISCON_IND to blow 2362 * away this connection. 2363 */ 2364 2365 /* 2366 * XXX: we currently have a problem if XTI application closes the 2367 * acceptor stream in between. This problem exists in on10-gate also 2368 * and is well know but nothing can be done short of major rewrite 2369 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2370 * eager same squeue as listener (we can distinguish non socket 2371 * listeners at the time of handling a SYN in tcp_conn_request) 2372 * and do most of the work that tcp_accept_finish does here itself 2373 * and then get behind the acceptor squeue to access the acceptor 2374 * queue. 2375 */ 2376 /* 2377 * We already have a ref on tcp so no need to do one before squeue_fill 2378 */ 2379 squeue_fill(eager->tcp_connp->conn_sqp, opt_mp, 2380 tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH); 2381 } 2382 2383 /* 2384 * Swap information between the eager and acceptor for a TLI/XTI client. 2385 * The sockfs accept is done on the acceptor stream and control goes 2386 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2387 * called. In either case, both the eager and listener are in their own 2388 * perimeter (squeue) and the code has to deal with potential race. 2389 * 2390 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2391 */ 2392 static void 2393 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2394 { 2395 conn_t *econnp, *aconnp; 2396 2397 ASSERT(eager->tcp_rq == listener->tcp_rq); 2398 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2399 ASSERT(!eager->tcp_hard_bound); 2400 ASSERT(!TCP_IS_SOCKET(acceptor)); 2401 ASSERT(!TCP_IS_SOCKET(eager)); 2402 ASSERT(!TCP_IS_SOCKET(listener)); 2403 2404 acceptor->tcp_detached = B_TRUE; 2405 /* 2406 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2407 * the acceptor id. 2408 */ 2409 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2410 2411 /* remove eager from listen list... */ 2412 mutex_enter(&listener->tcp_eager_lock); 2413 tcp_eager_unlink(eager); 2414 ASSERT(eager->tcp_eager_next_q == NULL && 2415 eager->tcp_eager_last_q == NULL); 2416 ASSERT(eager->tcp_eager_next_q0 == NULL && 2417 eager->tcp_eager_prev_q0 == NULL); 2418 mutex_exit(&listener->tcp_eager_lock); 2419 eager->tcp_rq = acceptor->tcp_rq; 2420 eager->tcp_wq = acceptor->tcp_wq; 2421 2422 econnp = eager->tcp_connp; 2423 aconnp = acceptor->tcp_connp; 2424 2425 eager->tcp_rq->q_ptr = econnp; 2426 eager->tcp_wq->q_ptr = econnp; 2427 2428 /* 2429 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2430 * which might be a different squeue from our peer TCP instance. 2431 * For TCP Fusion, the peer expects that whenever tcp_detached is 2432 * clear, our TCP queues point to the acceptor's queues. Thus, use 2433 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq 2434 * above reach global visibility prior to the clearing of tcp_detached. 2435 */ 2436 membar_producer(); 2437 eager->tcp_detached = B_FALSE; 2438 2439 ASSERT(eager->tcp_ack_tid == 0); 2440 2441 econnp->conn_dev = aconnp->conn_dev; 2442 econnp->conn_minor_arena = aconnp->conn_minor_arena; 2443 ASSERT(econnp->conn_minor_arena != NULL); 2444 if (eager->tcp_cred != NULL) 2445 crfree(eager->tcp_cred); 2446 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2447 ASSERT(econnp->conn_netstack == aconnp->conn_netstack); 2448 ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); 2449 2450 aconnp->conn_cred = NULL; 2451 2452 econnp->conn_zoneid = aconnp->conn_zoneid; 2453 econnp->conn_allzones = aconnp->conn_allzones; 2454 2455 econnp->conn_mac_exempt = aconnp->conn_mac_exempt; 2456 aconnp->conn_mac_exempt = B_FALSE; 2457 2458 ASSERT(aconnp->conn_peercred == NULL); 2459 2460 /* Do the IPC initialization */ 2461 CONN_INC_REF(econnp); 2462 2463 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2464 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2465 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2466 2467 /* Done with old IPC. Drop its ref on its connp */ 2468 CONN_DEC_REF(aconnp); 2469 } 2470 2471 2472 /* 2473 * Adapt to the information, such as rtt and rtt_sd, provided from the 2474 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2475 * 2476 * Checks for multicast and broadcast destination address. 2477 * Returns zero on failure; non-zero if ok. 2478 * 2479 * Note that the MSS calculation here is based on the info given in 2480 * the IRE. We do not do any calculation based on TCP options. They 2481 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2482 * knows which options to use. 2483 * 2484 * Note on how TCP gets its parameters for a connection. 2485 * 2486 * When a tcp_t structure is allocated, it gets all the default parameters. 2487 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2488 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2489 * default. 2490 * 2491 * An incoming SYN with a multicast or broadcast destination address, is dropped 2492 * in 1 of 2 places. 2493 * 2494 * 1. If the packet was received over the wire it is dropped in 2495 * ip_rput_process_broadcast() 2496 * 2497 * 2. If the packet was received through internal IP loopback, i.e. the packet 2498 * was generated and received on the same machine, it is dropped in 2499 * ip_wput_local() 2500 * 2501 * An incoming SYN with a multicast or broadcast source address is always 2502 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2503 * reject an attempt to connect to a broadcast or multicast (destination) 2504 * address. 2505 */ 2506 static int 2507 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2508 { 2509 tcp_hsp_t *hsp; 2510 ire_t *ire; 2511 ire_t *sire = NULL; 2512 iulp_t *ire_uinfo = NULL; 2513 uint32_t mss_max; 2514 uint32_t mss; 2515 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2516 conn_t *connp = tcp->tcp_connp; 2517 boolean_t ire_cacheable = B_FALSE; 2518 zoneid_t zoneid = connp->conn_zoneid; 2519 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 2520 MATCH_IRE_SECATTR; 2521 ts_label_t *tsl = crgetlabel(CONN_CRED(connp)); 2522 ill_t *ill = NULL; 2523 boolean_t incoming = (ire_mp == NULL); 2524 tcp_stack_t *tcps = tcp->tcp_tcps; 2525 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 2526 2527 ASSERT(connp->conn_ire_cache == NULL); 2528 2529 if (tcp->tcp_ipversion == IPV4_VERSION) { 2530 2531 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2532 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 2533 return (0); 2534 } 2535 /* 2536 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2537 * for the destination with the nexthop as gateway. 2538 * ire_ctable_lookup() is used because this particular 2539 * ire, if it exists, will be marked private. 2540 * If that is not available, use the interface ire 2541 * for the nexthop. 2542 * 2543 * TSol: tcp_update_label will detect label mismatches based 2544 * only on the destination's label, but that would not 2545 * detect label mismatches based on the security attributes 2546 * of routes or next hop gateway. Hence we need to pass the 2547 * label to ire_ftable_lookup below in order to locate the 2548 * right prefix (and/or) ire cache. Similarly we also need 2549 * pass the label to the ire_cache_lookup below to locate 2550 * the right ire that also matches on the label. 2551 */ 2552 if (tcp->tcp_connp->conn_nexthop_set) { 2553 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2554 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2555 tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, 2556 ipst); 2557 if (ire == NULL) { 2558 ire = ire_ftable_lookup( 2559 tcp->tcp_connp->conn_nexthop_v4, 2560 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2561 tsl, match_flags, ipst); 2562 if (ire == NULL) 2563 return (0); 2564 } else { 2565 ire_uinfo = &ire->ire_uinfo; 2566 } 2567 } else { 2568 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2569 zoneid, tsl, ipst); 2570 if (ire != NULL) { 2571 ire_cacheable = B_TRUE; 2572 ire_uinfo = (ire_mp != NULL) ? 2573 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2574 &ire->ire_uinfo; 2575 2576 } else { 2577 if (ire_mp == NULL) { 2578 ire = ire_ftable_lookup( 2579 tcp->tcp_connp->conn_rem, 2580 0, 0, 0, NULL, &sire, zoneid, 0, 2581 tsl, (MATCH_IRE_RECURSIVE | 2582 MATCH_IRE_DEFAULT), ipst); 2583 if (ire == NULL) 2584 return (0); 2585 ire_uinfo = (sire != NULL) ? 2586 &sire->ire_uinfo : 2587 &ire->ire_uinfo; 2588 } else { 2589 ire = (ire_t *)ire_mp->b_rptr; 2590 ire_uinfo = 2591 &((ire_t *) 2592 ire_mp->b_rptr)->ire_uinfo; 2593 } 2594 } 2595 } 2596 ASSERT(ire != NULL); 2597 2598 if ((ire->ire_src_addr == INADDR_ANY) || 2599 (ire->ire_type & IRE_BROADCAST)) { 2600 /* 2601 * ire->ire_mp is non null when ire_mp passed in is used 2602 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2603 */ 2604 if (ire->ire_mp == NULL) 2605 ire_refrele(ire); 2606 if (sire != NULL) 2607 ire_refrele(sire); 2608 return (0); 2609 } 2610 2611 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2612 ipaddr_t src_addr; 2613 2614 /* 2615 * ip_bind_connected() has stored the correct source 2616 * address in conn_src. 2617 */ 2618 src_addr = tcp->tcp_connp->conn_src; 2619 tcp->tcp_ipha->ipha_src = src_addr; 2620 /* 2621 * Copy of the src addr. in tcp_t is needed 2622 * for the lookup funcs. 2623 */ 2624 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2625 } 2626 /* 2627 * Set the fragment bit so that IP will tell us if the MTU 2628 * should change. IP tells us the latest setting of 2629 * ip_path_mtu_discovery through ire_frag_flag. 2630 */ 2631 if (ipst->ips_ip_path_mtu_discovery) { 2632 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2633 htons(IPH_DF); 2634 } 2635 /* 2636 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2637 * for IP_NEXTHOP. No cache ire has been found for the 2638 * destination and we are working with the nexthop's 2639 * interface ire. Since we need to forward all packets 2640 * to the nexthop first, we "blindly" set tcp_localnet 2641 * to false, eventhough the destination may also be 2642 * onlink. 2643 */ 2644 if (ire_uinfo == NULL) 2645 tcp->tcp_localnet = 0; 2646 else 2647 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2648 } else { 2649 /* 2650 * For incoming connection ire_mp = NULL 2651 * For outgoing connection ire_mp != NULL 2652 * Technically we should check conn_incoming_ill 2653 * when ire_mp is NULL and conn_outgoing_ill when 2654 * ire_mp is non-NULL. But this is performance 2655 * critical path and for IPV*_BOUND_IF, outgoing 2656 * and incoming ill are always set to the same value. 2657 */ 2658 ill_t *dst_ill = NULL; 2659 ipif_t *dst_ipif = NULL; 2660 2661 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2662 2663 if (connp->conn_outgoing_ill != NULL) { 2664 /* Outgoing or incoming path */ 2665 int err; 2666 2667 dst_ill = conn_get_held_ill(connp, 2668 &connp->conn_outgoing_ill, &err); 2669 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2670 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2671 return (0); 2672 } 2673 match_flags |= MATCH_IRE_ILL; 2674 dst_ipif = dst_ill->ill_ipif; 2675 } 2676 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2677 0, 0, dst_ipif, zoneid, tsl, match_flags, ipst); 2678 2679 if (ire != NULL) { 2680 ire_cacheable = B_TRUE; 2681 ire_uinfo = (ire_mp != NULL) ? 2682 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2683 &ire->ire_uinfo; 2684 } else { 2685 if (ire_mp == NULL) { 2686 ire = ire_ftable_lookup_v6( 2687 &tcp->tcp_connp->conn_remv6, 2688 0, 0, 0, dst_ipif, &sire, zoneid, 2689 0, tsl, match_flags, ipst); 2690 if (ire == NULL) { 2691 if (dst_ill != NULL) 2692 ill_refrele(dst_ill); 2693 return (0); 2694 } 2695 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2696 &ire->ire_uinfo; 2697 } else { 2698 ire = (ire_t *)ire_mp->b_rptr; 2699 ire_uinfo = 2700 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2701 } 2702 } 2703 if (dst_ill != NULL) 2704 ill_refrele(dst_ill); 2705 2706 ASSERT(ire != NULL); 2707 ASSERT(ire_uinfo != NULL); 2708 2709 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2710 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2711 /* 2712 * ire->ire_mp is non null when ire_mp passed in is used 2713 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2714 */ 2715 if (ire->ire_mp == NULL) 2716 ire_refrele(ire); 2717 if (sire != NULL) 2718 ire_refrele(sire); 2719 return (0); 2720 } 2721 2722 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2723 in6_addr_t src_addr; 2724 2725 /* 2726 * ip_bind_connected_v6() has stored the correct source 2727 * address per IPv6 addr. selection policy in 2728 * conn_src_v6. 2729 */ 2730 src_addr = tcp->tcp_connp->conn_srcv6; 2731 2732 tcp->tcp_ip6h->ip6_src = src_addr; 2733 /* 2734 * Copy of the src addr. in tcp_t is needed 2735 * for the lookup funcs. 2736 */ 2737 tcp->tcp_ip_src_v6 = src_addr; 2738 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2739 &connp->conn_srcv6)); 2740 } 2741 tcp->tcp_localnet = 2742 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2743 } 2744 2745 /* 2746 * This allows applications to fail quickly when connections are made 2747 * to dead hosts. Hosts can be labeled dead by adding a reject route 2748 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2749 */ 2750 if ((ire->ire_flags & RTF_REJECT) && 2751 (ire->ire_flags & RTF_PRIVATE)) 2752 goto error; 2753 2754 /* 2755 * Make use of the cached rtt and rtt_sd values to calculate the 2756 * initial RTO. Note that they are already initialized in 2757 * tcp_init_values(). 2758 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2759 * IP_NEXTHOP, but instead are using the interface ire for the 2760 * nexthop, then we do not use the ire_uinfo from that ire to 2761 * do any initializations. 2762 */ 2763 if (ire_uinfo != NULL) { 2764 if (ire_uinfo->iulp_rtt != 0) { 2765 clock_t rto; 2766 2767 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2768 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2769 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2770 tcps->tcps_rexmit_interval_extra + 2771 (tcp->tcp_rtt_sa >> 5); 2772 2773 if (rto > tcps->tcps_rexmit_interval_max) { 2774 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 2775 } else if (rto < tcps->tcps_rexmit_interval_min) { 2776 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2777 } else { 2778 tcp->tcp_rto = rto; 2779 } 2780 } 2781 if (ire_uinfo->iulp_ssthresh != 0) 2782 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2783 else 2784 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2785 if (ire_uinfo->iulp_spipe > 0) { 2786 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2787 tcps->tcps_max_buf); 2788 if (tcps->tcps_snd_lowat_fraction != 0) 2789 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2790 tcps->tcps_snd_lowat_fraction; 2791 (void) tcp_maxpsz_set(tcp, B_TRUE); 2792 } 2793 /* 2794 * Note that up till now, acceptor always inherits receive 2795 * window from the listener. But if there is a metrics 2796 * associated with a host, we should use that instead of 2797 * inheriting it from listener. Thus we need to pass this 2798 * info back to the caller. 2799 */ 2800 if (ire_uinfo->iulp_rpipe > 0) { 2801 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, 2802 tcps->tcps_max_buf); 2803 } 2804 2805 if (ire_uinfo->iulp_rtomax > 0) { 2806 tcp->tcp_second_timer_threshold = 2807 ire_uinfo->iulp_rtomax; 2808 } 2809 2810 /* 2811 * Use the metric option settings, iulp_tstamp_ok and 2812 * iulp_wscale_ok, only for active open. What this means 2813 * is that if the other side uses timestamp or window 2814 * scale option, TCP will also use those options. That 2815 * is for passive open. If the application sets a 2816 * large window, window scale is enabled regardless of 2817 * the value in iulp_wscale_ok. This is the behavior 2818 * since 2.6. So we keep it. 2819 * The only case left in passive open processing is the 2820 * check for SACK. 2821 * For ECN, it should probably be like SACK. But the 2822 * current value is binary, so we treat it like the other 2823 * cases. The metric only controls active open.For passive 2824 * open, the ndd param, tcp_ecn_permitted, controls the 2825 * behavior. 2826 */ 2827 if (!tcp_detached) { 2828 /* 2829 * The if check means that the following can only 2830 * be turned on by the metrics only IRE, but not off. 2831 */ 2832 if (ire_uinfo->iulp_tstamp_ok) 2833 tcp->tcp_snd_ts_ok = B_TRUE; 2834 if (ire_uinfo->iulp_wscale_ok) 2835 tcp->tcp_snd_ws_ok = B_TRUE; 2836 if (ire_uinfo->iulp_sack == 2) 2837 tcp->tcp_snd_sack_ok = B_TRUE; 2838 if (ire_uinfo->iulp_ecn_ok) 2839 tcp->tcp_ecn_ok = B_TRUE; 2840 } else { 2841 /* 2842 * Passive open. 2843 * 2844 * As above, the if check means that SACK can only be 2845 * turned on by the metric only IRE. 2846 */ 2847 if (ire_uinfo->iulp_sack > 0) { 2848 tcp->tcp_snd_sack_ok = B_TRUE; 2849 } 2850 } 2851 } 2852 2853 2854 /* 2855 * XXX: Note that currently, ire_max_frag can be as small as 68 2856 * because of PMTUd. So tcp_mss may go to negative if combined 2857 * length of all those options exceeds 28 bytes. But because 2858 * of the tcp_mss_min check below, we may not have a problem if 2859 * tcp_mss_min is of a reasonable value. The default is 1 so 2860 * the negative problem still exists. And the check defeats PMTUd. 2861 * In fact, if PMTUd finds that the MSS should be smaller than 2862 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2863 * value. 2864 * 2865 * We do not deal with that now. All those problems related to 2866 * PMTUd will be fixed later. 2867 */ 2868 ASSERT(ire->ire_max_frag != 0); 2869 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2870 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2871 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2872 mss = MIN(mss, IPV6_MIN_MTU); 2873 } 2874 } 2875 2876 /* Sanity check for MSS value. */ 2877 if (tcp->tcp_ipversion == IPV4_VERSION) 2878 mss_max = tcps->tcps_mss_max_ipv4; 2879 else 2880 mss_max = tcps->tcps_mss_max_ipv6; 2881 2882 if (tcp->tcp_ipversion == IPV6_VERSION && 2883 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2884 /* 2885 * After receiving an ICMPv6 "packet too big" message with a 2886 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2887 * will insert a 8-byte fragment header in every packet; we 2888 * reduce the MSS by that amount here. 2889 */ 2890 mss -= sizeof (ip6_frag_t); 2891 } 2892 2893 if (tcp->tcp_ipsec_overhead == 0) 2894 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2895 2896 mss -= tcp->tcp_ipsec_overhead; 2897 2898 if (mss < tcps->tcps_mss_min) 2899 mss = tcps->tcps_mss_min; 2900 if (mss > mss_max) 2901 mss = mss_max; 2902 2903 /* Note that this is the maximum MSS, excluding all options. */ 2904 tcp->tcp_mss = mss; 2905 2906 /* 2907 * Initialize the ISS here now that we have the full connection ID. 2908 * The RFC 1948 method of initial sequence number generation requires 2909 * knowledge of the full connection ID before setting the ISS. 2910 */ 2911 2912 tcp_iss_init(tcp); 2913 2914 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2915 tcp->tcp_loopback = B_TRUE; 2916 2917 if (tcp->tcp_ipversion == IPV4_VERSION) { 2918 hsp = tcp_hsp_lookup(tcp->tcp_remote, tcps); 2919 } else { 2920 hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6, tcps); 2921 } 2922 2923 if (hsp != NULL) { 2924 /* Only modify if we're going to make them bigger */ 2925 if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) { 2926 tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace; 2927 if (tcps->tcps_snd_lowat_fraction != 0) 2928 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2929 tcps->tcps_snd_lowat_fraction; 2930 } 2931 2932 if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) { 2933 tcp->tcp_rwnd = hsp->tcp_hsp_recvspace; 2934 } 2935 2936 /* Copy timestamp flag only for active open */ 2937 if (!tcp_detached) 2938 tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp; 2939 } 2940 2941 if (sire != NULL) 2942 IRE_REFRELE(sire); 2943 2944 /* 2945 * If we got an IRE_CACHE and an ILL, go through their properties; 2946 * otherwise, this is deferred until later when we have an IRE_CACHE. 2947 */ 2948 if (tcp->tcp_loopback || 2949 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 2950 /* 2951 * For incoming, see if this tcp may be MDT-capable. For 2952 * outgoing, this process has been taken care of through 2953 * tcp_rput_other. 2954 */ 2955 tcp_ire_ill_check(tcp, ire, ill, incoming); 2956 tcp->tcp_ire_ill_check_done = B_TRUE; 2957 } 2958 2959 mutex_enter(&connp->conn_lock); 2960 /* 2961 * Make sure that conn is not marked incipient 2962 * for incoming connections. A blind 2963 * removal of incipient flag is cheaper than 2964 * check and removal. 2965 */ 2966 connp->conn_state_flags &= ~CONN_INCIPIENT; 2967 2968 /* 2969 * Must not cache forwarding table routes 2970 * or recache an IRE after the conn_t has 2971 * had conn_ire_cache cleared and is flagged 2972 * unusable, (see the CONN_CACHE_IRE() macro). 2973 */ 2974 if (ire_cacheable && CONN_CACHE_IRE(connp)) { 2975 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 2976 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 2977 connp->conn_ire_cache = ire; 2978 IRE_UNTRACE_REF(ire); 2979 rw_exit(&ire->ire_bucket->irb_lock); 2980 mutex_exit(&connp->conn_lock); 2981 return (1); 2982 } 2983 rw_exit(&ire->ire_bucket->irb_lock); 2984 } 2985 mutex_exit(&connp->conn_lock); 2986 2987 if (ire->ire_mp == NULL) 2988 ire_refrele(ire); 2989 return (1); 2990 2991 error: 2992 if (ire->ire_mp == NULL) 2993 ire_refrele(ire); 2994 if (sire != NULL) 2995 ire_refrele(sire); 2996 return (0); 2997 } 2998 2999 /* 3000 * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a 3001 * O_T_BIND_REQ/T_BIND_REQ message. 3002 */ 3003 static void 3004 tcp_bind(tcp_t *tcp, mblk_t *mp) 3005 { 3006 sin_t *sin; 3007 sin6_t *sin6; 3008 mblk_t *mp1; 3009 in_port_t requested_port; 3010 in_port_t allocated_port; 3011 struct T_bind_req *tbr; 3012 boolean_t bind_to_req_port_only; 3013 boolean_t backlog_update = B_FALSE; 3014 boolean_t user_specified; 3015 in6_addr_t v6addr; 3016 ipaddr_t v4addr; 3017 uint_t origipversion; 3018 int err; 3019 queue_t *q = tcp->tcp_wq; 3020 conn_t *connp = tcp->tcp_connp; 3021 mlp_type_t addrtype, mlptype; 3022 zone_t *zone; 3023 cred_t *cr; 3024 in_port_t mlp_port; 3025 tcp_stack_t *tcps = tcp->tcp_tcps; 3026 3027 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 3028 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 3029 if (tcp->tcp_debug) { 3030 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3031 "tcp_bind: bad req, len %u", 3032 (uint_t)(mp->b_wptr - mp->b_rptr)); 3033 } 3034 tcp_err_ack(tcp, mp, TPROTO, 0); 3035 return; 3036 } 3037 /* Make sure the largest address fits */ 3038 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 3039 if (mp1 == NULL) { 3040 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3041 return; 3042 } 3043 mp = mp1; 3044 tbr = (struct T_bind_req *)mp->b_rptr; 3045 if (tcp->tcp_state >= TCPS_BOUND) { 3046 if ((tcp->tcp_state == TCPS_BOUND || 3047 tcp->tcp_state == TCPS_LISTEN) && 3048 tcp->tcp_conn_req_max != tbr->CONIND_number && 3049 tbr->CONIND_number > 0) { 3050 /* 3051 * Handle listen() increasing CONIND_number. 3052 * This is more "liberal" then what the TPI spec 3053 * requires but is needed to avoid a t_unbind 3054 * when handling listen() since the port number 3055 * might be "stolen" between the unbind and bind. 3056 */ 3057 backlog_update = B_TRUE; 3058 goto do_bind; 3059 } 3060 if (tcp->tcp_debug) { 3061 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3062 "tcp_bind: bad state, %d", tcp->tcp_state); 3063 } 3064 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 3065 return; 3066 } 3067 origipversion = tcp->tcp_ipversion; 3068 3069 switch (tbr->ADDR_length) { 3070 case 0: /* request for a generic port */ 3071 tbr->ADDR_offset = sizeof (struct T_bind_req); 3072 if (tcp->tcp_family == AF_INET) { 3073 tbr->ADDR_length = sizeof (sin_t); 3074 sin = (sin_t *)&tbr[1]; 3075 *sin = sin_null; 3076 sin->sin_family = AF_INET; 3077 mp->b_wptr = (uchar_t *)&sin[1]; 3078 tcp->tcp_ipversion = IPV4_VERSION; 3079 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); 3080 } else { 3081 ASSERT(tcp->tcp_family == AF_INET6); 3082 tbr->ADDR_length = sizeof (sin6_t); 3083 sin6 = (sin6_t *)&tbr[1]; 3084 *sin6 = sin6_null; 3085 sin6->sin6_family = AF_INET6; 3086 mp->b_wptr = (uchar_t *)&sin6[1]; 3087 tcp->tcp_ipversion = IPV6_VERSION; 3088 V6_SET_ZERO(v6addr); 3089 } 3090 requested_port = 0; 3091 break; 3092 3093 case sizeof (sin_t): /* Complete IPv4 address */ 3094 sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, 3095 sizeof (sin_t)); 3096 if (sin == NULL || !OK_32PTR((char *)sin)) { 3097 if (tcp->tcp_debug) { 3098 (void) strlog(TCP_MOD_ID, 0, 1, 3099 SL_ERROR|SL_TRACE, 3100 "tcp_bind: bad address parameter, " 3101 "offset %d, len %d", 3102 tbr->ADDR_offset, tbr->ADDR_length); 3103 } 3104 tcp_err_ack(tcp, mp, TPROTO, 0); 3105 return; 3106 } 3107 /* 3108 * With sockets sockfs will accept bogus sin_family in 3109 * bind() and replace it with the family used in the socket 3110 * call. 3111 */ 3112 if (sin->sin_family != AF_INET || 3113 tcp->tcp_family != AF_INET) { 3114 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3115 return; 3116 } 3117 requested_port = ntohs(sin->sin_port); 3118 tcp->tcp_ipversion = IPV4_VERSION; 3119 v4addr = sin->sin_addr.s_addr; 3120 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 3121 break; 3122 3123 case sizeof (sin6_t): /* Complete IPv6 address */ 3124 sin6 = (sin6_t *)mi_offset_param(mp, 3125 tbr->ADDR_offset, sizeof (sin6_t)); 3126 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 3127 if (tcp->tcp_debug) { 3128 (void) strlog(TCP_MOD_ID, 0, 1, 3129 SL_ERROR|SL_TRACE, 3130 "tcp_bind: bad IPv6 address parameter, " 3131 "offset %d, len %d", tbr->ADDR_offset, 3132 tbr->ADDR_length); 3133 } 3134 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 3135 return; 3136 } 3137 if (sin6->sin6_family != AF_INET6 || 3138 tcp->tcp_family != AF_INET6) { 3139 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3140 return; 3141 } 3142 requested_port = ntohs(sin6->sin6_port); 3143 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 3144 IPV4_VERSION : IPV6_VERSION; 3145 v6addr = sin6->sin6_addr; 3146 break; 3147 3148 default: 3149 if (tcp->tcp_debug) { 3150 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3151 "tcp_bind: bad address length, %d", 3152 tbr->ADDR_length); 3153 } 3154 tcp_err_ack(tcp, mp, TBADADDR, 0); 3155 return; 3156 } 3157 tcp->tcp_bound_source_v6 = v6addr; 3158 3159 /* Check for change in ipversion */ 3160 if (origipversion != tcp->tcp_ipversion) { 3161 ASSERT(tcp->tcp_family == AF_INET6); 3162 err = tcp->tcp_ipversion == IPV6_VERSION ? 3163 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 3164 if (err) { 3165 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3166 return; 3167 } 3168 } 3169 3170 /* 3171 * Initialize family specific fields. Copy of the src addr. 3172 * in tcp_t is needed for the lookup funcs. 3173 */ 3174 if (tcp->tcp_ipversion == IPV6_VERSION) { 3175 tcp->tcp_ip6h->ip6_src = v6addr; 3176 } else { 3177 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 3178 } 3179 tcp->tcp_ip_src_v6 = v6addr; 3180 3181 /* 3182 * For O_T_BIND_REQ: 3183 * Verify that the target port/addr is available, or choose 3184 * another. 3185 * For T_BIND_REQ: 3186 * Verify that the target port/addr is available or fail. 3187 * In both cases when it succeeds the tcp is inserted in the 3188 * bind hash table. This ensures that the operation is atomic 3189 * under the lock on the hash bucket. 3190 */ 3191 bind_to_req_port_only = requested_port != 0 && 3192 tbr->PRIM_type != O_T_BIND_REQ; 3193 /* 3194 * Get a valid port (within the anonymous range and should not 3195 * be a privileged one) to use if the user has not given a port. 3196 * If multiple threads are here, they may all start with 3197 * with the same initial port. But, it should be fine as long as 3198 * tcp_bindi will ensure that no two threads will be assigned 3199 * the same port. 3200 * 3201 * NOTE: XXX If a privileged process asks for an anonymous port, we 3202 * still check for ports only in the range > tcp_smallest_non_priv_port, 3203 * unless TCP_ANONPRIVBIND option is set. 3204 */ 3205 mlptype = mlptSingle; 3206 mlp_port = requested_port; 3207 if (requested_port == 0) { 3208 requested_port = tcp->tcp_anon_priv_bind ? 3209 tcp_get_next_priv_port(tcp) : 3210 tcp_update_next_port(tcps->tcps_next_port_to_try, 3211 tcp, B_TRUE); 3212 if (requested_port == 0) { 3213 tcp_err_ack(tcp, mp, TNOADDR, 0); 3214 return; 3215 } 3216 user_specified = B_FALSE; 3217 3218 /* 3219 * If the user went through one of the RPC interfaces to create 3220 * this socket and RPC is MLP in this zone, then give him an 3221 * anonymous MLP. 3222 */ 3223 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3224 if (connp->conn_anon_mlp && is_system_labeled()) { 3225 zone = crgetzone(cr); 3226 addrtype = tsol_mlp_addr_type(zone->zone_id, 3227 IPV6_VERSION, &v6addr, 3228 tcps->tcps_netstack->netstack_ip); 3229 if (addrtype == mlptSingle) { 3230 tcp_err_ack(tcp, mp, TNOADDR, 0); 3231 return; 3232 } 3233 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3234 PMAPPORT, addrtype); 3235 mlp_port = PMAPPORT; 3236 } 3237 } else { 3238 int i; 3239 boolean_t priv = B_FALSE; 3240 3241 /* 3242 * If the requested_port is in the well-known privileged range, 3243 * verify that the stream was opened by a privileged user. 3244 * Note: No locks are held when inspecting tcp_g_*epriv_ports 3245 * but instead the code relies on: 3246 * - the fact that the address of the array and its size never 3247 * changes 3248 * - the atomic assignment of the elements of the array 3249 */ 3250 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3251 if (requested_port < tcps->tcps_smallest_nonpriv_port) { 3252 priv = B_TRUE; 3253 } else { 3254 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 3255 if (requested_port == 3256 tcps->tcps_g_epriv_ports[i]) { 3257 priv = B_TRUE; 3258 break; 3259 } 3260 } 3261 } 3262 if (priv) { 3263 if (secpolicy_net_privaddr(cr, requested_port, 3264 IPPROTO_TCP) != 0) { 3265 if (tcp->tcp_debug) { 3266 (void) strlog(TCP_MOD_ID, 0, 1, 3267 SL_ERROR|SL_TRACE, 3268 "tcp_bind: no priv for port %d", 3269 requested_port); 3270 } 3271 tcp_err_ack(tcp, mp, TACCES, 0); 3272 return; 3273 } 3274 } 3275 user_specified = B_TRUE; 3276 3277 if (is_system_labeled()) { 3278 zone = crgetzone(cr); 3279 addrtype = tsol_mlp_addr_type(zone->zone_id, 3280 IPV6_VERSION, &v6addr, 3281 tcps->tcps_netstack->netstack_ip); 3282 if (addrtype == mlptSingle) { 3283 tcp_err_ack(tcp, mp, TNOADDR, 0); 3284 return; 3285 } 3286 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3287 requested_port, addrtype); 3288 } 3289 } 3290 3291 if (mlptype != mlptSingle) { 3292 if (secpolicy_net_bindmlp(cr) != 0) { 3293 if (tcp->tcp_debug) { 3294 (void) strlog(TCP_MOD_ID, 0, 1, 3295 SL_ERROR|SL_TRACE, 3296 "tcp_bind: no priv for multilevel port %d", 3297 requested_port); 3298 } 3299 tcp_err_ack(tcp, mp, TACCES, 0); 3300 return; 3301 } 3302 3303 /* 3304 * If we're specifically binding a shared IP address and the 3305 * port is MLP on shared addresses, then check to see if this 3306 * zone actually owns the MLP. Reject if not. 3307 */ 3308 if (mlptype == mlptShared && addrtype == mlptShared) { 3309 /* 3310 * No need to handle exclusive-stack zones since 3311 * ALL_ZONES only applies to the shared stack. 3312 */ 3313 zoneid_t mlpzone; 3314 3315 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 3316 htons(mlp_port)); 3317 if (connp->conn_zoneid != mlpzone) { 3318 if (tcp->tcp_debug) { 3319 (void) strlog(TCP_MOD_ID, 0, 1, 3320 SL_ERROR|SL_TRACE, 3321 "tcp_bind: attempt to bind port " 3322 "%d on shared addr in zone %d " 3323 "(should be %d)", 3324 mlp_port, connp->conn_zoneid, 3325 mlpzone); 3326 } 3327 tcp_err_ack(tcp, mp, TACCES, 0); 3328 return; 3329 } 3330 } 3331 3332 if (!user_specified) { 3333 err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3334 requested_port, B_TRUE); 3335 if (err != 0) { 3336 if (tcp->tcp_debug) { 3337 (void) strlog(TCP_MOD_ID, 0, 1, 3338 SL_ERROR|SL_TRACE, 3339 "tcp_bind: cannot establish anon " 3340 "MLP for port %d", 3341 requested_port); 3342 } 3343 tcp_err_ack(tcp, mp, TSYSERR, err); 3344 return; 3345 } 3346 connp->conn_anon_port = B_TRUE; 3347 } 3348 connp->conn_mlp_type = mlptype; 3349 } 3350 3351 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 3352 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 3353 3354 if (allocated_port == 0) { 3355 connp->conn_mlp_type = mlptSingle; 3356 if (connp->conn_anon_port) { 3357 connp->conn_anon_port = B_FALSE; 3358 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3359 requested_port, B_FALSE); 3360 } 3361 if (bind_to_req_port_only) { 3362 if (tcp->tcp_debug) { 3363 (void) strlog(TCP_MOD_ID, 0, 1, 3364 SL_ERROR|SL_TRACE, 3365 "tcp_bind: requested addr busy"); 3366 } 3367 tcp_err_ack(tcp, mp, TADDRBUSY, 0); 3368 } else { 3369 /* If we are out of ports, fail the bind. */ 3370 if (tcp->tcp_debug) { 3371 (void) strlog(TCP_MOD_ID, 0, 1, 3372 SL_ERROR|SL_TRACE, 3373 "tcp_bind: out of ports?"); 3374 } 3375 tcp_err_ack(tcp, mp, TNOADDR, 0); 3376 } 3377 return; 3378 } 3379 ASSERT(tcp->tcp_state == TCPS_BOUND); 3380 do_bind: 3381 if (!backlog_update) { 3382 if (tcp->tcp_family == AF_INET) 3383 sin->sin_port = htons(allocated_port); 3384 else 3385 sin6->sin6_port = htons(allocated_port); 3386 } 3387 if (tcp->tcp_family == AF_INET) { 3388 if (tbr->CONIND_number != 0) { 3389 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3390 sizeof (sin_t)); 3391 } else { 3392 /* Just verify the local IP address */ 3393 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN); 3394 } 3395 } else { 3396 if (tbr->CONIND_number != 0) { 3397 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3398 sizeof (sin6_t)); 3399 } else { 3400 /* Just verify the local IP address */ 3401 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3402 IPV6_ADDR_LEN); 3403 } 3404 } 3405 if (mp1 == NULL) { 3406 if (connp->conn_anon_port) { 3407 connp->conn_anon_port = B_FALSE; 3408 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3409 requested_port, B_FALSE); 3410 } 3411 connp->conn_mlp_type = mlptSingle; 3412 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3413 return; 3414 } 3415 3416 tbr->PRIM_type = T_BIND_ACK; 3417 mp->b_datap->db_type = M_PCPROTO; 3418 3419 /* Chain in the reply mp for tcp_rput() */ 3420 mp1->b_cont = mp; 3421 mp = mp1; 3422 3423 tcp->tcp_conn_req_max = tbr->CONIND_number; 3424 if (tcp->tcp_conn_req_max) { 3425 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 3426 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 3427 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 3428 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 3429 /* 3430 * If this is a listener, do not reset the eager list 3431 * and other stuffs. Note that we don't check if the 3432 * existing eager list meets the new tcp_conn_req_max 3433 * requirement. 3434 */ 3435 if (tcp->tcp_state != TCPS_LISTEN) { 3436 tcp->tcp_state = TCPS_LISTEN; 3437 /* Initialize the chain. Don't need the eager_lock */ 3438 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 3439 tcp->tcp_eager_next_drop_q0 = tcp; 3440 tcp->tcp_eager_prev_drop_q0 = tcp; 3441 tcp->tcp_second_ctimer_threshold = 3442 tcps->tcps_ip_abort_linterval; 3443 } 3444 } 3445 3446 /* 3447 * We can call ip_bind directly which returns a T_BIND_ACK mp. The 3448 * processing continues in tcp_rput_other(). 3449 * 3450 * We need to make sure that the conn_recv is set to a non-null 3451 * value before we insert the conn into the classifier table. 3452 * This is to avoid a race with an incoming packet which does an 3453 * ipcl_classify(). 3454 */ 3455 connp->conn_recv = tcp_conn_request; 3456 if (tcp->tcp_family == AF_INET6) { 3457 ASSERT(tcp->tcp_connp->conn_af_isv6); 3458 mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp); 3459 } else { 3460 ASSERT(!tcp->tcp_connp->conn_af_isv6); 3461 mp = ip_bind_v4(q, mp, tcp->tcp_connp); 3462 } 3463 /* 3464 * If the bind cannot complete immediately 3465 * IP will arrange to call tcp_rput_other 3466 * when the bind completes. 3467 */ 3468 if (mp != NULL) { 3469 tcp_rput_other(tcp, mp); 3470 } else { 3471 /* 3472 * Bind will be resumed later. Need to ensure 3473 * that conn doesn't disappear when that happens. 3474 * This will be decremented in ip_resume_tcp_bind(). 3475 */ 3476 CONN_INC_REF(tcp->tcp_connp); 3477 } 3478 } 3479 3480 3481 /* 3482 * If the "bind_to_req_port_only" parameter is set, if the requested port 3483 * number is available, return it, If not return 0 3484 * 3485 * If "bind_to_req_port_only" parameter is not set and 3486 * If the requested port number is available, return it. If not, return 3487 * the first anonymous port we happen across. If no anonymous ports are 3488 * available, return 0. addr is the requested local address, if any. 3489 * 3490 * In either case, when succeeding update the tcp_t to record the port number 3491 * and insert it in the bind hash table. 3492 * 3493 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3494 * without setting SO_REUSEADDR. This is needed so that they 3495 * can be viewed as two independent transport protocols. 3496 */ 3497 static in_port_t 3498 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3499 int reuseaddr, boolean_t quick_connect, 3500 boolean_t bind_to_req_port_only, boolean_t user_specified) 3501 { 3502 /* number of times we have run around the loop */ 3503 int count = 0; 3504 /* maximum number of times to run around the loop */ 3505 int loopmax; 3506 conn_t *connp = tcp->tcp_connp; 3507 zoneid_t zoneid = connp->conn_zoneid; 3508 tcp_stack_t *tcps = tcp->tcp_tcps; 3509 3510 /* 3511 * Lookup for free addresses is done in a loop and "loopmax" 3512 * influences how long we spin in the loop 3513 */ 3514 if (bind_to_req_port_only) { 3515 /* 3516 * If the requested port is busy, don't bother to look 3517 * for a new one. Setting loop maximum count to 1 has 3518 * that effect. 3519 */ 3520 loopmax = 1; 3521 } else { 3522 /* 3523 * If the requested port is busy, look for a free one 3524 * in the anonymous port range. 3525 * Set loopmax appropriately so that one does not look 3526 * forever in the case all of the anonymous ports are in use. 3527 */ 3528 if (tcp->tcp_anon_priv_bind) { 3529 /* 3530 * loopmax = 3531 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3532 */ 3533 loopmax = IPPORT_RESERVED - 3534 tcps->tcps_min_anonpriv_port; 3535 } else { 3536 loopmax = (tcps->tcps_largest_anon_port - 3537 tcps->tcps_smallest_anon_port + 1); 3538 } 3539 } 3540 do { 3541 uint16_t lport; 3542 tf_t *tbf; 3543 tcp_t *ltcp; 3544 conn_t *lconnp; 3545 3546 lport = htons(port); 3547 3548 /* 3549 * Ensure that the tcp_t is not currently in the bind hash. 3550 * Hold the lock on the hash bucket to ensure that 3551 * the duplicate check plus the insertion is an atomic 3552 * operation. 3553 * 3554 * This function does an inline lookup on the bind hash list 3555 * Make sure that we access only members of tcp_t 3556 * and that we don't look at tcp_tcp, since we are not 3557 * doing a CONN_INC_REF. 3558 */ 3559 tcp_bind_hash_remove(tcp); 3560 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; 3561 mutex_enter(&tbf->tf_lock); 3562 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3563 ltcp = ltcp->tcp_bind_hash) { 3564 boolean_t not_socket; 3565 boolean_t exclbind; 3566 3567 if (lport != ltcp->tcp_lport) 3568 continue; 3569 3570 lconnp = ltcp->tcp_connp; 3571 3572 /* 3573 * On a labeled system, we must treat bindings to ports 3574 * on shared IP addresses by sockets with MAC exemption 3575 * privilege as being in all zones, as there's 3576 * otherwise no way to identify the right receiver. 3577 */ 3578 if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) || 3579 IPCL_ZONE_MATCH(connp, 3580 ltcp->tcp_connp->conn_zoneid)) && 3581 !lconnp->conn_mac_exempt && 3582 !connp->conn_mac_exempt) 3583 continue; 3584 3585 /* 3586 * If TCP_EXCLBIND is set for either the bound or 3587 * binding endpoint, the semantics of bind 3588 * is changed according to the following. 3589 * 3590 * spec = specified address (v4 or v6) 3591 * unspec = unspecified address (v4 or v6) 3592 * A = specified addresses are different for endpoints 3593 * 3594 * bound bind to allowed 3595 * ------------------------------------- 3596 * unspec unspec no 3597 * unspec spec no 3598 * spec unspec no 3599 * spec spec yes if A 3600 * 3601 * For labeled systems, SO_MAC_EXEMPT behaves the same 3602 * as TCP_EXCLBIND, except that zoneid is ignored. 3603 * 3604 * Note: 3605 * 3606 * 1. Because of TLI semantics, an endpoint can go 3607 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3608 * TCPS_BOUND, depending on whether it is originally 3609 * a listener or not. That is why we need to check 3610 * for states greater than or equal to TCPS_BOUND 3611 * here. 3612 * 3613 * 2. Ideally, we should only check for state equals 3614 * to TCPS_LISTEN. And the following check should be 3615 * added. 3616 * 3617 * if (ltcp->tcp_state == TCPS_LISTEN || 3618 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3619 * ... 3620 * } 3621 * 3622 * The semantics will be changed to this. If the 3623 * endpoint on the list is in state not equal to 3624 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3625 * set, let the bind succeed. 3626 * 3627 * Because of (1), we cannot do that for TLI 3628 * endpoints. But we can do that for socket endpoints. 3629 * If in future, we can change this going back 3630 * semantics, we can use the above check for TLI also. 3631 */ 3632 not_socket = !(TCP_IS_SOCKET(ltcp) && 3633 TCP_IS_SOCKET(tcp)); 3634 exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind; 3635 3636 if (lconnp->conn_mac_exempt || connp->conn_mac_exempt || 3637 (exclbind && (not_socket || 3638 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 3639 if (V6_OR_V4_INADDR_ANY( 3640 ltcp->tcp_bound_source_v6) || 3641 V6_OR_V4_INADDR_ANY(*laddr) || 3642 IN6_ARE_ADDR_EQUAL(laddr, 3643 <cp->tcp_bound_source_v6)) { 3644 break; 3645 } 3646 continue; 3647 } 3648 3649 /* 3650 * Check ipversion to allow IPv4 and IPv6 sockets to 3651 * have disjoint port number spaces, if *_EXCLBIND 3652 * is not set and only if the application binds to a 3653 * specific port. We use the same autoassigned port 3654 * number space for IPv4 and IPv6 sockets. 3655 */ 3656 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3657 bind_to_req_port_only) 3658 continue; 3659 3660 /* 3661 * Ideally, we should make sure that the source 3662 * address, remote address, and remote port in the 3663 * four tuple for this tcp-connection is unique. 3664 * However, trying to find out the local source 3665 * address would require too much code duplication 3666 * with IP, since IP needs needs to have that code 3667 * to support userland TCP implementations. 3668 */ 3669 if (quick_connect && 3670 (ltcp->tcp_state > TCPS_LISTEN) && 3671 ((tcp->tcp_fport != ltcp->tcp_fport) || 3672 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3673 <cp->tcp_remote_v6))) 3674 continue; 3675 3676 if (!reuseaddr) { 3677 /* 3678 * No socket option SO_REUSEADDR. 3679 * If existing port is bound to 3680 * a non-wildcard IP address 3681 * and the requesting stream is 3682 * bound to a distinct 3683 * different IP addresses 3684 * (non-wildcard, also), keep 3685 * going. 3686 */ 3687 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3688 !V6_OR_V4_INADDR_ANY( 3689 ltcp->tcp_bound_source_v6) && 3690 !IN6_ARE_ADDR_EQUAL(laddr, 3691 <cp->tcp_bound_source_v6)) 3692 continue; 3693 if (ltcp->tcp_state >= TCPS_BOUND) { 3694 /* 3695 * This port is being used and 3696 * its state is >= TCPS_BOUND, 3697 * so we can't bind to it. 3698 */ 3699 break; 3700 } 3701 } else { 3702 /* 3703 * socket option SO_REUSEADDR is set on the 3704 * binding tcp_t. 3705 * 3706 * If two streams are bound to 3707 * same IP address or both addr 3708 * and bound source are wildcards 3709 * (INADDR_ANY), we want to stop 3710 * searching. 3711 * We have found a match of IP source 3712 * address and source port, which is 3713 * refused regardless of the 3714 * SO_REUSEADDR setting, so we break. 3715 */ 3716 if (IN6_ARE_ADDR_EQUAL(laddr, 3717 <cp->tcp_bound_source_v6) && 3718 (ltcp->tcp_state == TCPS_LISTEN || 3719 ltcp->tcp_state == TCPS_BOUND)) 3720 break; 3721 } 3722 } 3723 if (ltcp != NULL) { 3724 /* The port number is busy */ 3725 mutex_exit(&tbf->tf_lock); 3726 } else { 3727 /* 3728 * This port is ours. Insert in fanout and mark as 3729 * bound to prevent others from getting the port 3730 * number. 3731 */ 3732 tcp->tcp_state = TCPS_BOUND; 3733 tcp->tcp_lport = htons(port); 3734 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3735 3736 ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( 3737 tcp->tcp_lport)] == tbf); 3738 tcp_bind_hash_insert(tbf, tcp, 1); 3739 3740 mutex_exit(&tbf->tf_lock); 3741 3742 /* 3743 * We don't want tcp_next_port_to_try to "inherit" 3744 * a port number supplied by the user in a bind. 3745 */ 3746 if (user_specified) 3747 return (port); 3748 3749 /* 3750 * This is the only place where tcp_next_port_to_try 3751 * is updated. After the update, it may or may not 3752 * be in the valid range. 3753 */ 3754 if (!tcp->tcp_anon_priv_bind) 3755 tcps->tcps_next_port_to_try = port + 1; 3756 return (port); 3757 } 3758 3759 if (tcp->tcp_anon_priv_bind) { 3760 port = tcp_get_next_priv_port(tcp); 3761 } else { 3762 if (count == 0 && user_specified) { 3763 /* 3764 * We may have to return an anonymous port. So 3765 * get one to start with. 3766 */ 3767 port = 3768 tcp_update_next_port( 3769 tcps->tcps_next_port_to_try, 3770 tcp, B_TRUE); 3771 user_specified = B_FALSE; 3772 } else { 3773 port = tcp_update_next_port(port + 1, tcp, 3774 B_FALSE); 3775 } 3776 } 3777 if (port == 0) 3778 break; 3779 3780 /* 3781 * Don't let this loop run forever in the case where 3782 * all of the anonymous ports are in use. 3783 */ 3784 } while (++count < loopmax); 3785 return (0); 3786 } 3787 3788 /* 3789 * tcp_clean_death / tcp_close_detached must not be called more than once 3790 * on a tcp. Thus every function that potentially calls tcp_clean_death 3791 * must check for the tcp state before calling tcp_clean_death. 3792 * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper, 3793 * tcp_timer_handler, all check for the tcp state. 3794 */ 3795 /* ARGSUSED */ 3796 void 3797 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2) 3798 { 3799 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3800 3801 freemsg(mp); 3802 if (tcp->tcp_state > TCPS_BOUND) 3803 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, 3804 ETIMEDOUT, 5); 3805 } 3806 3807 /* 3808 * We are dying for some reason. Try to do it gracefully. (May be called 3809 * as writer.) 3810 * 3811 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3812 * done by a service procedure). 3813 * TBD - Should the return value distinguish between the tcp_t being 3814 * freed and it being reinitialized? 3815 */ 3816 static int 3817 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3818 { 3819 mblk_t *mp; 3820 queue_t *q; 3821 tcp_stack_t *tcps = tcp->tcp_tcps; 3822 sodirect_t *sodp; 3823 3824 TCP_CLD_STAT(tag); 3825 3826 #if TCP_TAG_CLEAN_DEATH 3827 tcp->tcp_cleandeathtag = tag; 3828 #endif 3829 3830 if (tcp->tcp_fused) 3831 tcp_unfuse(tcp); 3832 3833 if (tcp->tcp_linger_tid != 0 && 3834 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3835 tcp_stop_lingering(tcp); 3836 } 3837 3838 ASSERT(tcp != NULL); 3839 ASSERT((tcp->tcp_family == AF_INET && 3840 tcp->tcp_ipversion == IPV4_VERSION) || 3841 (tcp->tcp_family == AF_INET6 && 3842 (tcp->tcp_ipversion == IPV4_VERSION || 3843 tcp->tcp_ipversion == IPV6_VERSION))); 3844 3845 if (TCP_IS_DETACHED(tcp)) { 3846 if (tcp->tcp_hard_binding) { 3847 /* 3848 * Its an eager that we are dealing with. We close the 3849 * eager but in case a conn_ind has already gone to the 3850 * listener, let tcp_accept_finish() send a discon_ind 3851 * to the listener and drop the last reference. If the 3852 * listener doesn't even know about the eager i.e. the 3853 * conn_ind hasn't gone up, blow away the eager and drop 3854 * the last reference as well. If the conn_ind has gone 3855 * up, state should be BOUND. tcp_accept_finish 3856 * will figure out that the connection has received a 3857 * RST and will send a DISCON_IND to the application. 3858 */ 3859 tcp_closei_local(tcp); 3860 if (!tcp->tcp_tconnind_started) { 3861 CONN_DEC_REF(tcp->tcp_connp); 3862 } else { 3863 tcp->tcp_state = TCPS_BOUND; 3864 } 3865 } else { 3866 tcp_close_detached(tcp); 3867 } 3868 return (0); 3869 } 3870 3871 TCP_STAT(tcps, tcp_clean_death_nondetached); 3872 3873 /* If sodirect, not anymore */ 3874 SOD_PTR_ENTER(tcp, sodp); 3875 if (sodp != NULL) { 3876 tcp->tcp_sodirect = NULL; 3877 mutex_exit(sodp->sod_lockp); 3878 } 3879 3880 q = tcp->tcp_rq; 3881 3882 /* Trash all inbound data */ 3883 flushq(q, FLUSHALL); 3884 3885 /* 3886 * If we are at least part way open and there is error 3887 * (err==0 implies no error) 3888 * notify our client by a T_DISCON_IND. 3889 */ 3890 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3891 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3892 !TCP_IS_SOCKET(tcp)) { 3893 /* 3894 * Send M_FLUSH according to TPI. Because sockets will 3895 * (and must) ignore FLUSHR we do that only for TPI 3896 * endpoints and sockets in STREAMS mode. 3897 */ 3898 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3899 } 3900 if (tcp->tcp_debug) { 3901 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3902 "tcp_clean_death: discon err %d", err); 3903 } 3904 mp = mi_tpi_discon_ind(NULL, err, 0); 3905 if (mp != NULL) { 3906 putnext(q, mp); 3907 } else { 3908 if (tcp->tcp_debug) { 3909 (void) strlog(TCP_MOD_ID, 0, 1, 3910 SL_ERROR|SL_TRACE, 3911 "tcp_clean_death, sending M_ERROR"); 3912 } 3913 (void) putnextctl1(q, M_ERROR, EPROTO); 3914 } 3915 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3916 /* SYN_SENT or SYN_RCVD */ 3917 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3918 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3919 /* ESTABLISHED or CLOSE_WAIT */ 3920 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3921 } 3922 } 3923 3924 tcp_reinit(tcp); 3925 return (-1); 3926 } 3927 3928 /* 3929 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3930 * to expire, stop the wait and finish the close. 3931 */ 3932 static void 3933 tcp_stop_lingering(tcp_t *tcp) 3934 { 3935 clock_t delta = 0; 3936 tcp_stack_t *tcps = tcp->tcp_tcps; 3937 3938 tcp->tcp_linger_tid = 0; 3939 if (tcp->tcp_state > TCPS_LISTEN) { 3940 tcp_acceptor_hash_remove(tcp); 3941 mutex_enter(&tcp->tcp_non_sq_lock); 3942 if (tcp->tcp_flow_stopped) { 3943 tcp_clrqfull(tcp); 3944 } 3945 mutex_exit(&tcp->tcp_non_sq_lock); 3946 3947 if (tcp->tcp_timer_tid != 0) { 3948 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3949 tcp->tcp_timer_tid = 0; 3950 } 3951 /* 3952 * Need to cancel those timers which will not be used when 3953 * TCP is detached. This has to be done before the tcp_wq 3954 * is set to the global queue. 3955 */ 3956 tcp_timers_stop(tcp); 3957 3958 3959 tcp->tcp_detached = B_TRUE; 3960 ASSERT(tcps->tcps_g_q != NULL); 3961 tcp->tcp_rq = tcps->tcps_g_q; 3962 tcp->tcp_wq = WR(tcps->tcps_g_q); 3963 3964 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3965 tcp_time_wait_append(tcp); 3966 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3967 goto finish; 3968 } 3969 3970 /* 3971 * If delta is zero the timer event wasn't executed and was 3972 * successfully canceled. In this case we need to restart it 3973 * with the minimal delta possible. 3974 */ 3975 if (delta >= 0) { 3976 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3977 delta ? delta : 1); 3978 } 3979 } else { 3980 tcp_closei_local(tcp); 3981 CONN_DEC_REF(tcp->tcp_connp); 3982 } 3983 finish: 3984 /* Signal closing thread that it can complete close */ 3985 mutex_enter(&tcp->tcp_closelock); 3986 tcp->tcp_detached = B_TRUE; 3987 ASSERT(tcps->tcps_g_q != NULL); 3988 tcp->tcp_rq = tcps->tcps_g_q; 3989 tcp->tcp_wq = WR(tcps->tcps_g_q); 3990 tcp->tcp_closed = 1; 3991 cv_signal(&tcp->tcp_closecv); 3992 mutex_exit(&tcp->tcp_closelock); 3993 } 3994 3995 /* 3996 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3997 * expires. 3998 */ 3999 static void 4000 tcp_close_linger_timeout(void *arg) 4001 { 4002 conn_t *connp = (conn_t *)arg; 4003 tcp_t *tcp = connp->conn_tcp; 4004 4005 tcp->tcp_client_errno = ETIMEDOUT; 4006 tcp_stop_lingering(tcp); 4007 } 4008 4009 static int 4010 tcp_close(queue_t *q, int flags) 4011 { 4012 conn_t *connp = Q_TO_CONN(q); 4013 tcp_t *tcp = connp->conn_tcp; 4014 mblk_t *mp = &tcp->tcp_closemp; 4015 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4016 mblk_t *bp; 4017 4018 ASSERT(WR(q)->q_next == NULL); 4019 ASSERT(connp->conn_ref >= 2); 4020 4021 /* 4022 * We are being closed as /dev/tcp or /dev/tcp6. 4023 * 4024 * Mark the conn as closing. ill_pending_mp_add will not 4025 * add any mp to the pending mp list, after this conn has 4026 * started closing. Same for sq_pending_mp_add 4027 */ 4028 mutex_enter(&connp->conn_lock); 4029 connp->conn_state_flags |= CONN_CLOSING; 4030 if (connp->conn_oper_pending_ill != NULL) 4031 conn_ioctl_cleanup_reqd = B_TRUE; 4032 CONN_INC_REF_LOCKED(connp); 4033 mutex_exit(&connp->conn_lock); 4034 tcp->tcp_closeflags = (uint8_t)flags; 4035 ASSERT(connp->conn_ref >= 3); 4036 4037 /* 4038 * tcp_closemp_used is used below without any protection of a lock 4039 * as we don't expect any one else to use it concurrently at this 4040 * point otherwise it would be a major defect. 4041 */ 4042 4043 if (mp->b_prev == NULL) 4044 tcp->tcp_closemp_used = B_TRUE; 4045 else 4046 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 4047 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 4048 4049 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 4050 4051 (*tcp_squeue_close_proc)(connp->conn_sqp, mp, 4052 tcp_close_output, connp, SQTAG_IP_TCP_CLOSE); 4053 4054 mutex_enter(&tcp->tcp_closelock); 4055 while (!tcp->tcp_closed) { 4056 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 4057 /* 4058 * The cv_wait_sig() was interrupted. We now do the 4059 * following: 4060 * 4061 * 1) If the endpoint was lingering, we allow this 4062 * to be interrupted by cancelling the linger timeout 4063 * and closing normally. 4064 * 4065 * 2) Revert to calling cv_wait() 4066 * 4067 * We revert to using cv_wait() to avoid an 4068 * infinite loop which can occur if the calling 4069 * thread is higher priority than the squeue worker 4070 * thread and is bound to the same cpu. 4071 */ 4072 if (tcp->tcp_linger && tcp->tcp_lingertime > 0) { 4073 mutex_exit(&tcp->tcp_closelock); 4074 /* Entering squeue, bump ref count. */ 4075 CONN_INC_REF(connp); 4076 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 4077 squeue_enter(connp->conn_sqp, bp, 4078 tcp_linger_interrupted, connp, 4079 SQTAG_IP_TCP_CLOSE); 4080 mutex_enter(&tcp->tcp_closelock); 4081 } 4082 break; 4083 } 4084 } 4085 while (!tcp->tcp_closed) 4086 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 4087 mutex_exit(&tcp->tcp_closelock); 4088 4089 /* 4090 * In the case of listener streams that have eagers in the q or q0 4091 * we wait for the eagers to drop their reference to us. tcp_rq and 4092 * tcp_wq of the eagers point to our queues. By waiting for the 4093 * refcnt to drop to 1, we are sure that the eagers have cleaned 4094 * up their queue pointers and also dropped their references to us. 4095 */ 4096 if (tcp->tcp_wait_for_eagers) { 4097 mutex_enter(&connp->conn_lock); 4098 while (connp->conn_ref != 1) { 4099 cv_wait(&connp->conn_cv, &connp->conn_lock); 4100 } 4101 mutex_exit(&connp->conn_lock); 4102 } 4103 /* 4104 * ioctl cleanup. The mp is queued in the 4105 * ill_pending_mp or in the sq_pending_mp. 4106 */ 4107 if (conn_ioctl_cleanup_reqd) 4108 conn_ioctl_cleanup(connp); 4109 4110 qprocsoff(q); 4111 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 4112 4113 tcp->tcp_cpid = -1; 4114 4115 /* 4116 * Drop IP's reference on the conn. This is the last reference 4117 * on the connp if the state was less than established. If the 4118 * connection has gone into timewait state, then we will have 4119 * one ref for the TCP and one more ref (total of two) for the 4120 * classifier connected hash list (a timewait connections stays 4121 * in connected hash till closed). 4122 * 4123 * We can't assert the references because there might be other 4124 * transient reference places because of some walkers or queued 4125 * packets in squeue for the timewait state. 4126 */ 4127 CONN_DEC_REF(connp); 4128 q->q_ptr = WR(q)->q_ptr = NULL; 4129 return (0); 4130 } 4131 4132 static int 4133 tcpclose_accept(queue_t *q) 4134 { 4135 vmem_t *minor_arena; 4136 dev_t conn_dev; 4137 4138 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 4139 4140 /* 4141 * We had opened an acceptor STREAM for sockfs which is 4142 * now being closed due to some error. 4143 */ 4144 qprocsoff(q); 4145 4146 minor_arena = (vmem_t *)WR(q)->q_ptr; 4147 conn_dev = (dev_t)RD(q)->q_ptr; 4148 ASSERT(minor_arena != NULL); 4149 ASSERT(conn_dev != 0); 4150 inet_minor_free(minor_arena, conn_dev); 4151 q->q_ptr = WR(q)->q_ptr = NULL; 4152 return (0); 4153 } 4154 4155 /* 4156 * Called by tcp_close() routine via squeue when lingering is 4157 * interrupted by a signal. 4158 */ 4159 4160 /* ARGSUSED */ 4161 static void 4162 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2) 4163 { 4164 conn_t *connp = (conn_t *)arg; 4165 tcp_t *tcp = connp->conn_tcp; 4166 4167 freeb(mp); 4168 if (tcp->tcp_linger_tid != 0 && 4169 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 4170 tcp_stop_lingering(tcp); 4171 tcp->tcp_client_errno = EINTR; 4172 } 4173 } 4174 4175 /* 4176 * Called by streams close routine via squeues when our client blows off her 4177 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 4178 * connection politely" When SO_LINGER is set (with a non-zero linger time and 4179 * it is not a nonblocking socket) then this routine sleeps until the FIN is 4180 * acked. 4181 * 4182 * NOTE: tcp_close potentially returns error when lingering. 4183 * However, the stream head currently does not pass these errors 4184 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 4185 * errors to the application (from tsleep()) and not errors 4186 * like ECONNRESET caused by receiving a reset packet. 4187 */ 4188 4189 /* ARGSUSED */ 4190 static void 4191 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 4192 { 4193 char *msg; 4194 conn_t *connp = (conn_t *)arg; 4195 tcp_t *tcp = connp->conn_tcp; 4196 clock_t delta = 0; 4197 tcp_stack_t *tcps = tcp->tcp_tcps; 4198 4199 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 4200 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 4201 4202 mutex_enter(&tcp->tcp_eager_lock); 4203 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 4204 /* Cleanup for listener */ 4205 tcp_eager_cleanup(tcp, 0); 4206 tcp->tcp_wait_for_eagers = 1; 4207 } 4208 mutex_exit(&tcp->tcp_eager_lock); 4209 4210 connp->conn_mdt_ok = B_FALSE; 4211 tcp->tcp_mdt = B_FALSE; 4212 4213 connp->conn_lso_ok = B_FALSE; 4214 tcp->tcp_lso = B_FALSE; 4215 4216 msg = NULL; 4217 switch (tcp->tcp_state) { 4218 case TCPS_CLOSED: 4219 case TCPS_IDLE: 4220 case TCPS_BOUND: 4221 case TCPS_LISTEN: 4222 break; 4223 case TCPS_SYN_SENT: 4224 msg = "tcp_close, during connect"; 4225 break; 4226 case TCPS_SYN_RCVD: 4227 /* 4228 * Close during the connect 3-way handshake 4229 * but here there may or may not be pending data 4230 * already on queue. Process almost same as in 4231 * the ESTABLISHED state. 4232 */ 4233 /* FALLTHRU */ 4234 default: 4235 if (tcp->tcp_sodirect != NULL) { 4236 /* Ok, no more sodirect */ 4237 tcp->tcp_sodirect = NULL; 4238 } 4239 4240 if (tcp->tcp_fused) 4241 tcp_unfuse(tcp); 4242 4243 /* 4244 * If SO_LINGER has set a zero linger time, abort the 4245 * connection with a reset. 4246 */ 4247 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 4248 msg = "tcp_close, zero lingertime"; 4249 break; 4250 } 4251 4252 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 4253 /* 4254 * Abort connection if there is unread data queued. 4255 */ 4256 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 4257 msg = "tcp_close, unread data"; 4258 break; 4259 } 4260 /* 4261 * tcp_hard_bound is now cleared thus all packets go through 4262 * tcp_lookup. This fact is used by tcp_detach below. 4263 * 4264 * We have done a qwait() above which could have possibly 4265 * drained more messages in turn causing transition to a 4266 * different state. Check whether we have to do the rest 4267 * of the processing or not. 4268 */ 4269 if (tcp->tcp_state <= TCPS_LISTEN) 4270 break; 4271 4272 /* 4273 * Transmit the FIN before detaching the tcp_t. 4274 * After tcp_detach returns this queue/perimeter 4275 * no longer owns the tcp_t thus others can modify it. 4276 */ 4277 (void) tcp_xmit_end(tcp); 4278 4279 /* 4280 * If lingering on close then wait until the fin is acked, 4281 * the SO_LINGER time passes, or a reset is sent/received. 4282 */ 4283 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 4284 !(tcp->tcp_fin_acked) && 4285 tcp->tcp_state >= TCPS_ESTABLISHED) { 4286 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 4287 tcp->tcp_client_errno = EWOULDBLOCK; 4288 } else if (tcp->tcp_client_errno == 0) { 4289 4290 ASSERT(tcp->tcp_linger_tid == 0); 4291 4292 tcp->tcp_linger_tid = TCP_TIMER(tcp, 4293 tcp_close_linger_timeout, 4294 tcp->tcp_lingertime * hz); 4295 4296 /* tcp_close_linger_timeout will finish close */ 4297 if (tcp->tcp_linger_tid == 0) 4298 tcp->tcp_client_errno = ENOSR; 4299 else 4300 return; 4301 } 4302 4303 /* 4304 * Check if we need to detach or just close 4305 * the instance. 4306 */ 4307 if (tcp->tcp_state <= TCPS_LISTEN) 4308 break; 4309 } 4310 4311 /* 4312 * Make sure that no other thread will access the tcp_rq of 4313 * this instance (through lookups etc.) as tcp_rq will go 4314 * away shortly. 4315 */ 4316 tcp_acceptor_hash_remove(tcp); 4317 4318 mutex_enter(&tcp->tcp_non_sq_lock); 4319 if (tcp->tcp_flow_stopped) { 4320 tcp_clrqfull(tcp); 4321 } 4322 mutex_exit(&tcp->tcp_non_sq_lock); 4323 4324 if (tcp->tcp_timer_tid != 0) { 4325 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4326 tcp->tcp_timer_tid = 0; 4327 } 4328 /* 4329 * Need to cancel those timers which will not be used when 4330 * TCP is detached. This has to be done before the tcp_wq 4331 * is set to the global queue. 4332 */ 4333 tcp_timers_stop(tcp); 4334 4335 tcp->tcp_detached = B_TRUE; 4336 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4337 tcp_time_wait_append(tcp); 4338 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 4339 ASSERT(connp->conn_ref >= 3); 4340 goto finish; 4341 } 4342 4343 /* 4344 * If delta is zero the timer event wasn't executed and was 4345 * successfully canceled. In this case we need to restart it 4346 * with the minimal delta possible. 4347 */ 4348 if (delta >= 0) 4349 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4350 delta ? delta : 1); 4351 4352 ASSERT(connp->conn_ref >= 3); 4353 goto finish; 4354 } 4355 4356 /* Detach did not complete. Still need to remove q from stream. */ 4357 if (msg) { 4358 if (tcp->tcp_state == TCPS_ESTABLISHED || 4359 tcp->tcp_state == TCPS_CLOSE_WAIT) 4360 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 4361 if (tcp->tcp_state == TCPS_SYN_SENT || 4362 tcp->tcp_state == TCPS_SYN_RCVD) 4363 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 4364 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4365 } 4366 4367 tcp_closei_local(tcp); 4368 CONN_DEC_REF(connp); 4369 ASSERT(connp->conn_ref >= 2); 4370 4371 finish: 4372 /* 4373 * Although packets are always processed on the correct 4374 * tcp's perimeter and access is serialized via squeue's, 4375 * IP still needs a queue when sending packets in time_wait 4376 * state so use WR(tcps_g_q) till ip_output() can be 4377 * changed to deal with just connp. For read side, we 4378 * could have set tcp_rq to NULL but there are some cases 4379 * in tcp_rput_data() from early days of this code which 4380 * do a putnext without checking if tcp is closed. Those 4381 * need to be identified before both tcp_rq and tcp_wq 4382 * can be set to NULL and tcps_g_q can disappear forever. 4383 */ 4384 mutex_enter(&tcp->tcp_closelock); 4385 /* 4386 * Don't change the queues in the case of a listener that has 4387 * eagers in its q or q0. It could surprise the eagers. 4388 * Instead wait for the eagers outside the squeue. 4389 */ 4390 if (!tcp->tcp_wait_for_eagers) { 4391 tcp->tcp_detached = B_TRUE; 4392 /* 4393 * When default queue is closing we set tcps_g_q to NULL 4394 * after the close is done. 4395 */ 4396 ASSERT(tcps->tcps_g_q != NULL); 4397 tcp->tcp_rq = tcps->tcps_g_q; 4398 tcp->tcp_wq = WR(tcps->tcps_g_q); 4399 } 4400 4401 /* Signal tcp_close() to finish closing. */ 4402 tcp->tcp_closed = 1; 4403 cv_signal(&tcp->tcp_closecv); 4404 mutex_exit(&tcp->tcp_closelock); 4405 } 4406 4407 4408 /* 4409 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4410 * Some stream heads get upset if they see these later on as anything but NULL. 4411 */ 4412 static void 4413 tcp_close_mpp(mblk_t **mpp) 4414 { 4415 mblk_t *mp; 4416 4417 if ((mp = *mpp) != NULL) { 4418 do { 4419 mp->b_next = NULL; 4420 mp->b_prev = NULL; 4421 } while ((mp = mp->b_cont) != NULL); 4422 4423 mp = *mpp; 4424 *mpp = NULL; 4425 freemsg(mp); 4426 } 4427 } 4428 4429 /* Do detached close. */ 4430 static void 4431 tcp_close_detached(tcp_t *tcp) 4432 { 4433 if (tcp->tcp_fused) 4434 tcp_unfuse(tcp); 4435 4436 /* 4437 * Clustering code serializes TCP disconnect callbacks and 4438 * cluster tcp list walks by blocking a TCP disconnect callback 4439 * if a cluster tcp list walk is in progress. This ensures 4440 * accurate accounting of TCPs in the cluster code even though 4441 * the TCP list walk itself is not atomic. 4442 */ 4443 tcp_closei_local(tcp); 4444 CONN_DEC_REF(tcp->tcp_connp); 4445 } 4446 4447 /* 4448 * Stop all TCP timers, and free the timer mblks if requested. 4449 */ 4450 void 4451 tcp_timers_stop(tcp_t *tcp) 4452 { 4453 if (tcp->tcp_timer_tid != 0) { 4454 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4455 tcp->tcp_timer_tid = 0; 4456 } 4457 if (tcp->tcp_ka_tid != 0) { 4458 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4459 tcp->tcp_ka_tid = 0; 4460 } 4461 if (tcp->tcp_ack_tid != 0) { 4462 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4463 tcp->tcp_ack_tid = 0; 4464 } 4465 if (tcp->tcp_push_tid != 0) { 4466 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4467 tcp->tcp_push_tid = 0; 4468 } 4469 } 4470 4471 /* 4472 * The tcp_t is going away. Remove it from all lists and set it 4473 * to TCPS_CLOSED. The freeing up of memory is deferred until 4474 * tcp_inactive. This is needed since a thread in tcp_rput might have 4475 * done a CONN_INC_REF on this structure before it was removed from the 4476 * hashes. 4477 */ 4478 static void 4479 tcp_closei_local(tcp_t *tcp) 4480 { 4481 ire_t *ire; 4482 conn_t *connp = tcp->tcp_connp; 4483 tcp_stack_t *tcps = tcp->tcp_tcps; 4484 4485 if (!TCP_IS_SOCKET(tcp)) 4486 tcp_acceptor_hash_remove(tcp); 4487 4488 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 4489 tcp->tcp_ibsegs = 0; 4490 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 4491 tcp->tcp_obsegs = 0; 4492 4493 /* 4494 * If we are an eager connection hanging off a listener that 4495 * hasn't formally accepted the connection yet, get off his 4496 * list and blow off any data that we have accumulated. 4497 */ 4498 if (tcp->tcp_listener != NULL) { 4499 tcp_t *listener = tcp->tcp_listener; 4500 mutex_enter(&listener->tcp_eager_lock); 4501 /* 4502 * tcp_tconnind_started == B_TRUE means that the 4503 * conn_ind has already gone to listener. At 4504 * this point, eager will be closed but we 4505 * leave it in listeners eager list so that 4506 * if listener decides to close without doing 4507 * accept, we can clean this up. In tcp_wput_accept 4508 * we take care of the case of accept on closed 4509 * eager. 4510 */ 4511 if (!tcp->tcp_tconnind_started) { 4512 tcp_eager_unlink(tcp); 4513 mutex_exit(&listener->tcp_eager_lock); 4514 /* 4515 * We don't want to have any pointers to the 4516 * listener queue, after we have released our 4517 * reference on the listener 4518 */ 4519 ASSERT(tcps->tcps_g_q != NULL); 4520 tcp->tcp_rq = tcps->tcps_g_q; 4521 tcp->tcp_wq = WR(tcps->tcps_g_q); 4522 CONN_DEC_REF(listener->tcp_connp); 4523 } else { 4524 mutex_exit(&listener->tcp_eager_lock); 4525 } 4526 } 4527 4528 /* Stop all the timers */ 4529 tcp_timers_stop(tcp); 4530 4531 if (tcp->tcp_state == TCPS_LISTEN) { 4532 if (tcp->tcp_ip_addr_cache) { 4533 kmem_free((void *)tcp->tcp_ip_addr_cache, 4534 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4535 tcp->tcp_ip_addr_cache = NULL; 4536 } 4537 } 4538 mutex_enter(&tcp->tcp_non_sq_lock); 4539 if (tcp->tcp_flow_stopped) 4540 tcp_clrqfull(tcp); 4541 mutex_exit(&tcp->tcp_non_sq_lock); 4542 4543 tcp_bind_hash_remove(tcp); 4544 /* 4545 * If the tcp_time_wait_collector (which runs outside the squeue) 4546 * is trying to remove this tcp from the time wait list, we will 4547 * block in tcp_time_wait_remove while trying to acquire the 4548 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4549 * requires the ipcl_hash_remove to be ordered after the 4550 * tcp_time_wait_remove for the refcnt checks to work correctly. 4551 */ 4552 if (tcp->tcp_state == TCPS_TIME_WAIT) 4553 (void) tcp_time_wait_remove(tcp, NULL); 4554 CL_INET_DISCONNECT(tcp); 4555 ipcl_hash_remove(connp); 4556 4557 /* 4558 * Delete the cached ire in conn_ire_cache and also mark 4559 * the conn as CONDEMNED 4560 */ 4561 mutex_enter(&connp->conn_lock); 4562 connp->conn_state_flags |= CONN_CONDEMNED; 4563 ire = connp->conn_ire_cache; 4564 connp->conn_ire_cache = NULL; 4565 mutex_exit(&connp->conn_lock); 4566 if (ire != NULL) 4567 IRE_REFRELE_NOTR(ire); 4568 4569 /* Need to cleanup any pending ioctls */ 4570 ASSERT(tcp->tcp_time_wait_next == NULL); 4571 ASSERT(tcp->tcp_time_wait_prev == NULL); 4572 ASSERT(tcp->tcp_time_wait_expire == 0); 4573 tcp->tcp_state = TCPS_CLOSED; 4574 4575 /* Release any SSL context */ 4576 if (tcp->tcp_kssl_ent != NULL) { 4577 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4578 tcp->tcp_kssl_ent = NULL; 4579 } 4580 if (tcp->tcp_kssl_ctx != NULL) { 4581 kssl_release_ctx(tcp->tcp_kssl_ctx); 4582 tcp->tcp_kssl_ctx = NULL; 4583 } 4584 tcp->tcp_kssl_pending = B_FALSE; 4585 4586 tcp_ipsec_cleanup(tcp); 4587 } 4588 4589 /* 4590 * tcp is dying (called from ipcl_conn_destroy and error cases). 4591 * Free the tcp_t in either case. 4592 */ 4593 void 4594 tcp_free(tcp_t *tcp) 4595 { 4596 mblk_t *mp; 4597 ip6_pkt_t *ipp; 4598 4599 ASSERT(tcp != NULL); 4600 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4601 4602 tcp->tcp_rq = NULL; 4603 tcp->tcp_wq = NULL; 4604 4605 tcp_close_mpp(&tcp->tcp_xmit_head); 4606 tcp_close_mpp(&tcp->tcp_reass_head); 4607 if (tcp->tcp_rcv_list != NULL) { 4608 /* Free b_next chain */ 4609 tcp_close_mpp(&tcp->tcp_rcv_list); 4610 } 4611 if ((mp = tcp->tcp_urp_mp) != NULL) { 4612 freemsg(mp); 4613 } 4614 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4615 freemsg(mp); 4616 } 4617 4618 if (tcp->tcp_fused_sigurg_mp != NULL) { 4619 freeb(tcp->tcp_fused_sigurg_mp); 4620 tcp->tcp_fused_sigurg_mp = NULL; 4621 } 4622 4623 if (tcp->tcp_sack_info != NULL) { 4624 if (tcp->tcp_notsack_list != NULL) { 4625 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 4626 } 4627 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4628 } 4629 4630 if (tcp->tcp_hopopts != NULL) { 4631 mi_free(tcp->tcp_hopopts); 4632 tcp->tcp_hopopts = NULL; 4633 tcp->tcp_hopoptslen = 0; 4634 } 4635 ASSERT(tcp->tcp_hopoptslen == 0); 4636 if (tcp->tcp_dstopts != NULL) { 4637 mi_free(tcp->tcp_dstopts); 4638 tcp->tcp_dstopts = NULL; 4639 tcp->tcp_dstoptslen = 0; 4640 } 4641 ASSERT(tcp->tcp_dstoptslen == 0); 4642 if (tcp->tcp_rtdstopts != NULL) { 4643 mi_free(tcp->tcp_rtdstopts); 4644 tcp->tcp_rtdstopts = NULL; 4645 tcp->tcp_rtdstoptslen = 0; 4646 } 4647 ASSERT(tcp->tcp_rtdstoptslen == 0); 4648 if (tcp->tcp_rthdr != NULL) { 4649 mi_free(tcp->tcp_rthdr); 4650 tcp->tcp_rthdr = NULL; 4651 tcp->tcp_rthdrlen = 0; 4652 } 4653 ASSERT(tcp->tcp_rthdrlen == 0); 4654 4655 ipp = &tcp->tcp_sticky_ipp; 4656 if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 4657 IPPF_RTHDR)) 4658 ip6_pkt_free(ipp); 4659 4660 /* 4661 * Free memory associated with the tcp/ip header template. 4662 */ 4663 4664 if (tcp->tcp_iphc != NULL) 4665 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4666 4667 /* 4668 * Following is really a blowing away a union. 4669 * It happens to have exactly two members of identical size 4670 * the following code is enough. 4671 */ 4672 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4673 } 4674 4675 4676 /* 4677 * Put a connection confirmation message upstream built from the 4678 * address information within 'iph' and 'tcph'. Report our success or failure. 4679 */ 4680 static boolean_t 4681 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4682 mblk_t **defermp) 4683 { 4684 sin_t sin; 4685 sin6_t sin6; 4686 mblk_t *mp; 4687 char *optp = NULL; 4688 int optlen = 0; 4689 cred_t *cr; 4690 4691 if (defermp != NULL) 4692 *defermp = NULL; 4693 4694 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4695 /* 4696 * Return in T_CONN_CON results of option negotiation through 4697 * the T_CONN_REQ. Note: If there is an real end-to-end option 4698 * negotiation, then what is received from remote end needs 4699 * to be taken into account but there is no such thing (yet?) 4700 * in our TCP/IP. 4701 * Note: We do not use mi_offset_param() here as 4702 * tcp_opts_conn_req contents do not directly come from 4703 * an application and are either generated in kernel or 4704 * from user input that was already verified. 4705 */ 4706 mp = tcp->tcp_conn.tcp_opts_conn_req; 4707 optp = (char *)(mp->b_rptr + 4708 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4709 optlen = (int) 4710 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4711 } 4712 4713 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4714 ipha_t *ipha = (ipha_t *)iphdr; 4715 4716 /* packet is IPv4 */ 4717 if (tcp->tcp_family == AF_INET) { 4718 sin = sin_null; 4719 sin.sin_addr.s_addr = ipha->ipha_src; 4720 sin.sin_port = *(uint16_t *)tcph->th_lport; 4721 sin.sin_family = AF_INET; 4722 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4723 (int)sizeof (sin_t), optp, optlen); 4724 } else { 4725 sin6 = sin6_null; 4726 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4727 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4728 sin6.sin6_family = AF_INET6; 4729 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4730 (int)sizeof (sin6_t), optp, optlen); 4731 4732 } 4733 } else { 4734 ip6_t *ip6h = (ip6_t *)iphdr; 4735 4736 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4737 ASSERT(tcp->tcp_family == AF_INET6); 4738 sin6 = sin6_null; 4739 sin6.sin6_addr = ip6h->ip6_src; 4740 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4741 sin6.sin6_family = AF_INET6; 4742 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4743 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4744 (int)sizeof (sin6_t), optp, optlen); 4745 } 4746 4747 if (!mp) 4748 return (B_FALSE); 4749 4750 if ((cr = DB_CRED(idmp)) != NULL) { 4751 mblk_setcred(mp, cr); 4752 DB_CPID(mp) = DB_CPID(idmp); 4753 } 4754 4755 if (defermp == NULL) 4756 putnext(tcp->tcp_rq, mp); 4757 else 4758 *defermp = mp; 4759 4760 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4761 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4762 return (B_TRUE); 4763 } 4764 4765 /* 4766 * Defense for the SYN attack - 4767 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4768 * one from the list of droppable eagers. This list is a subset of q0. 4769 * see comments before the definition of MAKE_DROPPABLE(). 4770 * 2. Don't drop a SYN request before its first timeout. This gives every 4771 * request at least til the first timeout to complete its 3-way handshake. 4772 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4773 * requests currently on the queue that has timed out. This will be used 4774 * as an indicator of whether an attack is under way, so that appropriate 4775 * actions can be taken. (It's incremented in tcp_timer() and decremented 4776 * either when eager goes into ESTABLISHED, or gets freed up.) 4777 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4778 * # of timeout drops back to <= q0len/32 => SYN alert off 4779 */ 4780 static boolean_t 4781 tcp_drop_q0(tcp_t *tcp) 4782 { 4783 tcp_t *eager; 4784 mblk_t *mp; 4785 tcp_stack_t *tcps = tcp->tcp_tcps; 4786 4787 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4788 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4789 4790 /* Pick oldest eager from the list of droppable eagers */ 4791 eager = tcp->tcp_eager_prev_drop_q0; 4792 4793 /* If list is empty. return B_FALSE */ 4794 if (eager == tcp) { 4795 return (B_FALSE); 4796 } 4797 4798 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4799 if ((mp = allocb(0, BPRI_HI)) == NULL) 4800 return (B_FALSE); 4801 4802 /* 4803 * Take this eager out from the list of droppable eagers since we are 4804 * going to drop it. 4805 */ 4806 MAKE_UNDROPPABLE(eager); 4807 4808 if (tcp->tcp_debug) { 4809 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4810 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4811 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 4812 tcp->tcp_conn_req_cnt_q0, 4813 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4814 } 4815 4816 BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); 4817 4818 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4819 CONN_INC_REF(eager->tcp_connp); 4820 4821 /* Mark the IRE created for this SYN request temporary */ 4822 tcp_ip_ire_mark_advice(eager); 4823 squeue_fill(eager->tcp_connp->conn_sqp, mp, 4824 tcp_clean_death_wrapper, eager->tcp_connp, SQTAG_TCP_DROP_Q0); 4825 4826 return (B_TRUE); 4827 } 4828 4829 int 4830 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4831 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4832 { 4833 tcp_t *ltcp = lconnp->conn_tcp; 4834 tcp_t *tcp = connp->conn_tcp; 4835 mblk_t *tpi_mp; 4836 ipha_t *ipha; 4837 ip6_t *ip6h; 4838 sin6_t sin6; 4839 in6_addr_t v6dst; 4840 int err; 4841 int ifindex = 0; 4842 cred_t *cr; 4843 tcp_stack_t *tcps = tcp->tcp_tcps; 4844 4845 if (ipvers == IPV4_VERSION) { 4846 ipha = (ipha_t *)mp->b_rptr; 4847 4848 connp->conn_send = ip_output; 4849 connp->conn_recv = tcp_input; 4850 4851 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4852 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4853 4854 sin6 = sin6_null; 4855 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4856 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4857 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4858 sin6.sin6_family = AF_INET6; 4859 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4860 lconnp->conn_zoneid, tcps->tcps_netstack); 4861 if (tcp->tcp_recvdstaddr) { 4862 sin6_t sin6d; 4863 4864 sin6d = sin6_null; 4865 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4866 &sin6d.sin6_addr); 4867 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4868 sin6d.sin6_family = AF_INET; 4869 tpi_mp = mi_tpi_extconn_ind(NULL, 4870 (char *)&sin6d, sizeof (sin6_t), 4871 (char *)&tcp, 4872 (t_scalar_t)sizeof (intptr_t), 4873 (char *)&sin6d, sizeof (sin6_t), 4874 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4875 } else { 4876 tpi_mp = mi_tpi_conn_ind(NULL, 4877 (char *)&sin6, sizeof (sin6_t), 4878 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4879 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4880 } 4881 } else { 4882 ip6h = (ip6_t *)mp->b_rptr; 4883 4884 connp->conn_send = ip_output_v6; 4885 connp->conn_recv = tcp_input; 4886 4887 connp->conn_srcv6 = ip6h->ip6_dst; 4888 connp->conn_remv6 = ip6h->ip6_src; 4889 4890 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4891 ifindex = (int)DB_CKSUMSTUFF(mp); 4892 DB_CKSUMSTUFF(mp) = 0; 4893 4894 sin6 = sin6_null; 4895 sin6.sin6_addr = ip6h->ip6_src; 4896 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4897 sin6.sin6_family = AF_INET6; 4898 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4899 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4900 lconnp->conn_zoneid, tcps->tcps_netstack); 4901 4902 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4903 /* Pass up the scope_id of remote addr */ 4904 sin6.sin6_scope_id = ifindex; 4905 } else { 4906 sin6.sin6_scope_id = 0; 4907 } 4908 if (tcp->tcp_recvdstaddr) { 4909 sin6_t sin6d; 4910 4911 sin6d = sin6_null; 4912 sin6.sin6_addr = ip6h->ip6_dst; 4913 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4914 sin6d.sin6_family = AF_INET; 4915 tpi_mp = mi_tpi_extconn_ind(NULL, 4916 (char *)&sin6d, sizeof (sin6_t), 4917 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4918 (char *)&sin6d, sizeof (sin6_t), 4919 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4920 } else { 4921 tpi_mp = mi_tpi_conn_ind(NULL, 4922 (char *)&sin6, sizeof (sin6_t), 4923 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4924 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4925 } 4926 } 4927 4928 if (tpi_mp == NULL) 4929 return (ENOMEM); 4930 4931 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4932 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4933 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4934 connp->conn_fully_bound = B_FALSE; 4935 4936 /* Inherit information from the "parent" */ 4937 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4938 tcp->tcp_family = ltcp->tcp_family; 4939 tcp->tcp_wq = ltcp->tcp_wq; 4940 tcp->tcp_rq = ltcp->tcp_rq; 4941 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 4942 tcp->tcp_detached = B_TRUE; 4943 if ((err = tcp_init_values(tcp)) != 0) { 4944 freemsg(tpi_mp); 4945 return (err); 4946 } 4947 4948 if (ipvers == IPV4_VERSION) { 4949 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4950 freemsg(tpi_mp); 4951 return (err); 4952 } 4953 ASSERT(tcp->tcp_ipha != NULL); 4954 } else { 4955 /* ifindex must be already set */ 4956 ASSERT(ifindex != 0); 4957 4958 if (ltcp->tcp_bound_if != 0) { 4959 /* 4960 * Set newtcp's bound_if equal to 4961 * listener's value. If ifindex is 4962 * not the same as ltcp->tcp_bound_if, 4963 * it must be a packet for the ipmp group 4964 * of interfaces 4965 */ 4966 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4967 } else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4968 tcp->tcp_bound_if = ifindex; 4969 } 4970 4971 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4972 tcp->tcp_recvifindex = 0; 4973 tcp->tcp_recvhops = 0xffffffffU; 4974 ASSERT(tcp->tcp_ip6h != NULL); 4975 } 4976 4977 tcp->tcp_lport = ltcp->tcp_lport; 4978 4979 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 4980 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 4981 /* 4982 * Listener had options of some sort; eager inherits. 4983 * Free up the eager template and allocate one 4984 * of the right size. 4985 */ 4986 if (tcp->tcp_hdr_grown) { 4987 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 4988 } else { 4989 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4990 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 4991 } 4992 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 4993 KM_NOSLEEP); 4994 if (tcp->tcp_iphc == NULL) { 4995 tcp->tcp_iphc_len = 0; 4996 freemsg(tpi_mp); 4997 return (ENOMEM); 4998 } 4999 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 5000 tcp->tcp_hdr_grown = B_TRUE; 5001 } 5002 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5003 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5004 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5005 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 5006 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 5007 5008 /* 5009 * Copy the IP+TCP header template from listener to eager 5010 */ 5011 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5012 if (tcp->tcp_ipversion == IPV6_VERSION) { 5013 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 5014 IPPROTO_RAW) { 5015 tcp->tcp_ip6h = 5016 (ip6_t *)(tcp->tcp_iphc + 5017 sizeof (ip6i_t)); 5018 } else { 5019 tcp->tcp_ip6h = 5020 (ip6_t *)(tcp->tcp_iphc); 5021 } 5022 tcp->tcp_ipha = NULL; 5023 } else { 5024 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5025 tcp->tcp_ip6h = NULL; 5026 } 5027 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5028 tcp->tcp_ip_hdr_len); 5029 } else { 5030 /* 5031 * only valid case when ipversion of listener and 5032 * eager differ is when listener is IPv6 and 5033 * eager is IPv4. 5034 * Eager header template has been initialized to the 5035 * maximum v4 header sizes, which includes space for 5036 * TCP and IP options. 5037 */ 5038 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 5039 (tcp->tcp_ipversion == IPV4_VERSION)); 5040 ASSERT(tcp->tcp_iphc_len >= 5041 TCP_MAX_COMBINED_HEADER_LENGTH); 5042 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5043 /* copy IP header fields individually */ 5044 tcp->tcp_ipha->ipha_ttl = 5045 ltcp->tcp_ip6h->ip6_hops; 5046 bcopy(ltcp->tcp_tcph->th_lport, 5047 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 5048 } 5049 5050 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5051 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 5052 sizeof (in_port_t)); 5053 5054 if (ltcp->tcp_lport == 0) { 5055 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 5056 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 5057 sizeof (in_port_t)); 5058 } 5059 5060 if (tcp->tcp_ipversion == IPV4_VERSION) { 5061 ASSERT(ipha != NULL); 5062 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5063 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5064 5065 /* Source routing option copyover (reverse it) */ 5066 if (tcps->tcps_rev_src_routes) 5067 tcp_opt_reverse(tcp, ipha); 5068 } else { 5069 ASSERT(ip6h != NULL); 5070 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 5071 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 5072 } 5073 5074 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5075 ASSERT(!tcp->tcp_tconnind_started); 5076 /* 5077 * If the SYN contains a credential, it's a loopback packet; attach 5078 * the credential to the TPI message. 5079 */ 5080 if ((cr = DB_CRED(idmp)) != NULL) { 5081 mblk_setcred(tpi_mp, cr); 5082 DB_CPID(tpi_mp) = DB_CPID(idmp); 5083 } 5084 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5085 5086 /* Inherit the listener's SSL protection state */ 5087 5088 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5089 kssl_hold_ent(tcp->tcp_kssl_ent); 5090 tcp->tcp_kssl_pending = B_TRUE; 5091 } 5092 5093 return (0); 5094 } 5095 5096 5097 int 5098 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 5099 tcph_t *tcph, mblk_t *idmp) 5100 { 5101 tcp_t *ltcp = lconnp->conn_tcp; 5102 tcp_t *tcp = connp->conn_tcp; 5103 sin_t sin; 5104 mblk_t *tpi_mp = NULL; 5105 int err; 5106 cred_t *cr; 5107 tcp_stack_t *tcps = tcp->tcp_tcps; 5108 5109 sin = sin_null; 5110 sin.sin_addr.s_addr = ipha->ipha_src; 5111 sin.sin_port = *(uint16_t *)tcph->th_lport; 5112 sin.sin_family = AF_INET; 5113 if (ltcp->tcp_recvdstaddr) { 5114 sin_t sind; 5115 5116 sind = sin_null; 5117 sind.sin_addr.s_addr = ipha->ipha_dst; 5118 sind.sin_port = *(uint16_t *)tcph->th_fport; 5119 sind.sin_family = AF_INET; 5120 tpi_mp = mi_tpi_extconn_ind(NULL, 5121 (char *)&sind, sizeof (sin_t), (char *)&tcp, 5122 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 5123 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5124 } else { 5125 tpi_mp = mi_tpi_conn_ind(NULL, 5126 (char *)&sin, sizeof (sin_t), 5127 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 5128 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5129 } 5130 5131 if (tpi_mp == NULL) { 5132 return (ENOMEM); 5133 } 5134 5135 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 5136 connp->conn_send = ip_output; 5137 connp->conn_recv = tcp_input; 5138 connp->conn_fully_bound = B_FALSE; 5139 5140 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 5141 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 5142 connp->conn_fport = *(uint16_t *)tcph->th_lport; 5143 connp->conn_lport = *(uint16_t *)tcph->th_fport; 5144 5145 /* Inherit information from the "parent" */ 5146 tcp->tcp_ipversion = ltcp->tcp_ipversion; 5147 tcp->tcp_family = ltcp->tcp_family; 5148 tcp->tcp_wq = ltcp->tcp_wq; 5149 tcp->tcp_rq = ltcp->tcp_rq; 5150 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 5151 tcp->tcp_detached = B_TRUE; 5152 if ((err = tcp_init_values(tcp)) != 0) { 5153 freemsg(tpi_mp); 5154 return (err); 5155 } 5156 5157 /* 5158 * Let's make sure that eager tcp template has enough space to 5159 * copy IPv4 listener's tcp template. Since the conn_t structure is 5160 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 5161 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 5162 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 5163 * extension headers or with ip6i_t struct). Note that bcopy() below 5164 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 5165 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 5166 */ 5167 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 5168 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 5169 5170 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5171 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5172 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5173 tcp->tcp_ttl = ltcp->tcp_ttl; 5174 tcp->tcp_tos = ltcp->tcp_tos; 5175 5176 /* Copy the IP+TCP header template from listener to eager */ 5177 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5178 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5179 tcp->tcp_ip6h = NULL; 5180 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5181 tcp->tcp_ip_hdr_len); 5182 5183 /* Initialize the IP addresses and Ports */ 5184 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5185 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5186 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5187 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 5188 5189 /* Source routing option copyover (reverse it) */ 5190 if (tcps->tcps_rev_src_routes) 5191 tcp_opt_reverse(tcp, ipha); 5192 5193 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5194 ASSERT(!tcp->tcp_tconnind_started); 5195 5196 /* 5197 * If the SYN contains a credential, it's a loopback packet; attach 5198 * the credential to the TPI message. 5199 */ 5200 if ((cr = DB_CRED(idmp)) != NULL) { 5201 mblk_setcred(tpi_mp, cr); 5202 DB_CPID(tpi_mp) = DB_CPID(idmp); 5203 } 5204 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5205 5206 /* Inherit the listener's SSL protection state */ 5207 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5208 kssl_hold_ent(tcp->tcp_kssl_ent); 5209 tcp->tcp_kssl_pending = B_TRUE; 5210 } 5211 5212 return (0); 5213 } 5214 5215 /* 5216 * sets up conn for ipsec. 5217 * if the first mblk is M_CTL it is consumed and mpp is updated. 5218 * in case of error mpp is freed. 5219 */ 5220 conn_t * 5221 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 5222 { 5223 conn_t *connp = tcp->tcp_connp; 5224 conn_t *econnp; 5225 squeue_t *new_sqp; 5226 mblk_t *first_mp = *mpp; 5227 mblk_t *mp = *mpp; 5228 boolean_t mctl_present = B_FALSE; 5229 uint_t ipvers; 5230 5231 econnp = tcp_get_conn(sqp, tcp->tcp_tcps); 5232 if (econnp == NULL) { 5233 freemsg(first_mp); 5234 return (NULL); 5235 } 5236 if (DB_TYPE(mp) == M_CTL) { 5237 if (mp->b_cont == NULL || 5238 mp->b_cont->b_datap->db_type != M_DATA) { 5239 freemsg(first_mp); 5240 return (NULL); 5241 } 5242 mp = mp->b_cont; 5243 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 5244 freemsg(first_mp); 5245 return (NULL); 5246 } 5247 5248 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5249 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5250 mctl_present = B_TRUE; 5251 } else { 5252 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 5253 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5254 } 5255 5256 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5257 DB_CKSUMSTART(mp) = 0; 5258 5259 ASSERT(OK_32PTR(mp->b_rptr)); 5260 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5261 if (ipvers == IPV4_VERSION) { 5262 uint16_t *up; 5263 uint32_t ports; 5264 ipha_t *ipha; 5265 5266 ipha = (ipha_t *)mp->b_rptr; 5267 up = (uint16_t *)((uchar_t *)ipha + 5268 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 5269 ports = *(uint32_t *)up; 5270 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 5271 ipha->ipha_dst, ipha->ipha_src, ports); 5272 } else { 5273 uint16_t *up; 5274 uint32_t ports; 5275 uint16_t ip_hdr_len; 5276 uint8_t *nexthdrp; 5277 ip6_t *ip6h; 5278 tcph_t *tcph; 5279 5280 ip6h = (ip6_t *)mp->b_rptr; 5281 if (ip6h->ip6_nxt == IPPROTO_TCP) { 5282 ip_hdr_len = IPV6_HDR_LEN; 5283 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 5284 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 5285 CONN_DEC_REF(econnp); 5286 freemsg(first_mp); 5287 return (NULL); 5288 } 5289 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5290 up = (uint16_t *)tcph->th_lport; 5291 ports = *(uint32_t *)up; 5292 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 5293 ip6h->ip6_dst, ip6h->ip6_src, ports); 5294 } 5295 5296 /* 5297 * The caller already ensured that there is a sqp present. 5298 */ 5299 econnp->conn_sqp = new_sqp; 5300 5301 if (connp->conn_policy != NULL) { 5302 ipsec_in_t *ii; 5303 ii = (ipsec_in_t *)(first_mp->b_rptr); 5304 ASSERT(ii->ipsec_in_policy == NULL); 5305 IPPH_REFHOLD(connp->conn_policy); 5306 ii->ipsec_in_policy = connp->conn_policy; 5307 5308 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 5309 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 5310 CONN_DEC_REF(econnp); 5311 freemsg(first_mp); 5312 return (NULL); 5313 } 5314 } 5315 5316 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 5317 CONN_DEC_REF(econnp); 5318 freemsg(first_mp); 5319 return (NULL); 5320 } 5321 5322 /* 5323 * If we know we have some policy, pass the "IPSEC" 5324 * options size TCP uses this adjust the MSS. 5325 */ 5326 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 5327 if (mctl_present) { 5328 freeb(first_mp); 5329 *mpp = mp; 5330 } 5331 5332 return (econnp); 5333 } 5334 5335 /* 5336 * tcp_get_conn/tcp_free_conn 5337 * 5338 * tcp_get_conn is used to get a clean tcp connection structure. 5339 * It tries to reuse the connections put on the freelist by the 5340 * time_wait_collector failing which it goes to kmem_cache. This 5341 * way has two benefits compared to just allocating from and 5342 * freeing to kmem_cache. 5343 * 1) The time_wait_collector can free (which includes the cleanup) 5344 * outside the squeue. So when the interrupt comes, we have a clean 5345 * connection sitting in the freelist. Obviously, this buys us 5346 * performance. 5347 * 5348 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5349 * has multiple disadvantages - tying up the squeue during alloc, and the 5350 * fact that IPSec policy initialization has to happen here which 5351 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5352 * But allocating the conn/tcp in IP land is also not the best since 5353 * we can't check the 'q' and 'q0' which are protected by squeue and 5354 * blindly allocate memory which might have to be freed here if we are 5355 * not allowed to accept the connection. By using the freelist and 5356 * putting the conn/tcp back in freelist, we don't pay a penalty for 5357 * allocating memory without checking 'q/q0' and freeing it if we can't 5358 * accept the connection. 5359 * 5360 * Care should be taken to put the conn back in the same squeue's freelist 5361 * from which it was allocated. Best results are obtained if conn is 5362 * allocated from listener's squeue and freed to the same. Time wait 5363 * collector will free up the freelist is the connection ends up sitting 5364 * there for too long. 5365 */ 5366 void * 5367 tcp_get_conn(void *arg, tcp_stack_t *tcps) 5368 { 5369 tcp_t *tcp = NULL; 5370 conn_t *connp = NULL; 5371 squeue_t *sqp = (squeue_t *)arg; 5372 tcp_squeue_priv_t *tcp_time_wait; 5373 netstack_t *ns; 5374 5375 tcp_time_wait = 5376 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5377 5378 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5379 tcp = tcp_time_wait->tcp_free_list; 5380 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5381 if (tcp != NULL) { 5382 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5383 tcp_time_wait->tcp_free_list_cnt--; 5384 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5385 tcp->tcp_time_wait_next = NULL; 5386 connp = tcp->tcp_connp; 5387 connp->conn_flags |= IPCL_REUSED; 5388 5389 ASSERT(tcp->tcp_tcps == NULL); 5390 ASSERT(connp->conn_netstack == NULL); 5391 ASSERT(tcp->tcp_rsrv_mp != NULL); 5392 ns = tcps->tcps_netstack; 5393 netstack_hold(ns); 5394 connp->conn_netstack = ns; 5395 tcp->tcp_tcps = tcps; 5396 TCPS_REFHOLD(tcps); 5397 ipcl_globalhash_insert(connp); 5398 return ((void *)connp); 5399 } 5400 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5401 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 5402 tcps->tcps_netstack)) == NULL) 5403 return (NULL); 5404 tcp = connp->conn_tcp; 5405 /* 5406 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed 5407 * until this conn_t/tcp_t is freed at ipcl_conn_destroy(). 5408 */ 5409 if ((tcp->tcp_rsrv_mp = allocb(0, BPRI_HI)) == NULL) { 5410 ipcl_conn_destroy(connp); 5411 return (NULL); 5412 } 5413 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 5414 tcp->tcp_tcps = tcps; 5415 TCPS_REFHOLD(tcps); 5416 5417 return ((void *)connp); 5418 } 5419 5420 /* 5421 * Update the cached label for the given tcp_t. This should be called once per 5422 * connection, and before any packets are sent or tcp_process_options is 5423 * invoked. Returns B_FALSE if the correct label could not be constructed. 5424 */ 5425 static boolean_t 5426 tcp_update_label(tcp_t *tcp, const cred_t *cr) 5427 { 5428 conn_t *connp = tcp->tcp_connp; 5429 5430 if (tcp->tcp_ipversion == IPV4_VERSION) { 5431 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 5432 int added; 5433 5434 if (tsol_compute_label(cr, tcp->tcp_remote, optbuf, 5435 connp->conn_mac_exempt, 5436 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5437 return (B_FALSE); 5438 5439 added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len); 5440 if (added == -1) 5441 return (B_FALSE); 5442 tcp->tcp_hdr_len += added; 5443 tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added); 5444 tcp->tcp_ip_hdr_len += added; 5445 if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) { 5446 tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3; 5447 added = tsol_prepend_option(optbuf, tcp->tcp_ipha, 5448 tcp->tcp_hdr_len); 5449 if (added == -1) 5450 return (B_FALSE); 5451 tcp->tcp_hdr_len += added; 5452 tcp->tcp_tcph = (tcph_t *) 5453 ((uchar_t *)tcp->tcp_tcph + added); 5454 tcp->tcp_ip_hdr_len += added; 5455 } 5456 } else { 5457 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 5458 5459 if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf, 5460 connp->conn_mac_exempt, 5461 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5462 return (B_FALSE); 5463 if (tsol_update_sticky(&tcp->tcp_sticky_ipp, 5464 &tcp->tcp_label_len, optbuf) != 0) 5465 return (B_FALSE); 5466 if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0) 5467 return (B_FALSE); 5468 } 5469 5470 connp->conn_ulp_labeled = 1; 5471 5472 return (B_TRUE); 5473 } 5474 5475 /* BEGIN CSTYLED */ 5476 /* 5477 * 5478 * The sockfs ACCEPT path: 5479 * ======================= 5480 * 5481 * The eager is now established in its own perimeter as soon as SYN is 5482 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5483 * completes the accept processing on the acceptor STREAM. The sending 5484 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5485 * listener but a TLI/XTI listener completes the accept processing 5486 * on the listener perimeter. 5487 * 5488 * Common control flow for 3 way handshake: 5489 * ---------------------------------------- 5490 * 5491 * incoming SYN (listener perimeter) -> tcp_rput_data() 5492 * -> tcp_conn_request() 5493 * 5494 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5495 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5496 * 5497 * Sockfs ACCEPT Path: 5498 * ------------------- 5499 * 5500 * open acceptor stream (tcp_open allocates tcp_wput_accept() 5501 * as STREAM entry point) 5502 * 5503 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5504 * 5505 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5506 * association (we are not behind eager's squeue but sockfs is protecting us 5507 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5508 * is changed to point at tcp_wput(). 5509 * 5510 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5511 * listener (done on listener's perimeter). 5512 * 5513 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5514 * accept. 5515 * 5516 * TLI/XTI client ACCEPT path: 5517 * --------------------------- 5518 * 5519 * soaccept() sends T_CONN_RES on the listener STREAM. 5520 * 5521 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5522 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5523 * 5524 * Locks: 5525 * ====== 5526 * 5527 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5528 * and listeners->tcp_eager_next_q. 5529 * 5530 * Referencing: 5531 * ============ 5532 * 5533 * 1) We start out in tcp_conn_request by eager placing a ref on 5534 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5535 * 5536 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5537 * doing so we place a ref on the eager. This ref is finally dropped at the 5538 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5539 * reference is dropped by the squeue framework. 5540 * 5541 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5542 * 5543 * The reference must be released by the same entity that added the reference 5544 * In the above scheme, the eager is the entity that adds and releases the 5545 * references. Note that tcp_accept_finish executes in the squeue of the eager 5546 * (albeit after it is attached to the acceptor stream). Though 1. executes 5547 * in the listener's squeue, the eager is nascent at this point and the 5548 * reference can be considered to have been added on behalf of the eager. 5549 * 5550 * Eager getting a Reset or listener closing: 5551 * ========================================== 5552 * 5553 * Once the listener and eager are linked, the listener never does the unlink. 5554 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5555 * a message on all eager perimeter. The eager then does the unlink, clears 5556 * any pointers to the listener's queue and drops the reference to the 5557 * listener. The listener waits in tcp_close outside the squeue until its 5558 * refcount has dropped to 1. This ensures that the listener has waited for 5559 * all eagers to clear their association with the listener. 5560 * 5561 * Similarly, if eager decides to go away, it can unlink itself and close. 5562 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5563 * the reference to eager is still valid because of the extra ref we put 5564 * in tcp_send_conn_ind. 5565 * 5566 * Listener can always locate the eager under the protection 5567 * of the listener->tcp_eager_lock, and then do a refhold 5568 * on the eager during the accept processing. 5569 * 5570 * The acceptor stream accesses the eager in the accept processing 5571 * based on the ref placed on eager before sending T_conn_ind. 5572 * The only entity that can negate this refhold is a listener close 5573 * which is mutually exclusive with an active acceptor stream. 5574 * 5575 * Eager's reference on the listener 5576 * =================================== 5577 * 5578 * If the accept happens (even on a closed eager) the eager drops its 5579 * reference on the listener at the start of tcp_accept_finish. If the 5580 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5581 * the reference is dropped in tcp_closei_local. If the listener closes, 5582 * the reference is dropped in tcp_eager_kill. In all cases the reference 5583 * is dropped while executing in the eager's context (squeue). 5584 */ 5585 /* END CSTYLED */ 5586 5587 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5588 5589 /* 5590 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5591 * tcp_rput_data will not see any SYN packets. 5592 */ 5593 /* ARGSUSED */ 5594 void 5595 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5596 { 5597 tcph_t *tcph; 5598 uint32_t seg_seq; 5599 tcp_t *eager; 5600 uint_t ipvers; 5601 ipha_t *ipha; 5602 ip6_t *ip6h; 5603 int err; 5604 conn_t *econnp = NULL; 5605 squeue_t *new_sqp; 5606 mblk_t *mp1; 5607 uint_t ip_hdr_len; 5608 conn_t *connp = (conn_t *)arg; 5609 tcp_t *tcp = connp->conn_tcp; 5610 cred_t *credp; 5611 tcp_stack_t *tcps = tcp->tcp_tcps; 5612 ip_stack_t *ipst; 5613 5614 if (tcp->tcp_state != TCPS_LISTEN) 5615 goto error2; 5616 5617 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5618 5619 mutex_enter(&tcp->tcp_eager_lock); 5620 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5621 mutex_exit(&tcp->tcp_eager_lock); 5622 TCP_STAT(tcps, tcp_listendrop); 5623 BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); 5624 if (tcp->tcp_debug) { 5625 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5626 "tcp_conn_request: listen backlog (max=%d) " 5627 "overflow (%d pending) on %s", 5628 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5629 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5630 } 5631 goto error2; 5632 } 5633 5634 if (tcp->tcp_conn_req_cnt_q0 >= 5635 tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 5636 /* 5637 * Q0 is full. Drop a pending half-open req from the queue 5638 * to make room for the new SYN req. Also mark the time we 5639 * drop a SYN. 5640 * 5641 * A more aggressive defense against SYN attack will 5642 * be to set the "tcp_syn_defense" flag now. 5643 */ 5644 TCP_STAT(tcps, tcp_listendropq0); 5645 tcp->tcp_last_rcv_lbolt = lbolt64; 5646 if (!tcp_drop_q0(tcp)) { 5647 mutex_exit(&tcp->tcp_eager_lock); 5648 BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); 5649 if (tcp->tcp_debug) { 5650 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5651 "tcp_conn_request: listen half-open queue " 5652 "(max=%d) full (%d pending) on %s", 5653 tcps->tcps_conn_req_max_q0, 5654 tcp->tcp_conn_req_cnt_q0, 5655 tcp_display(tcp, NULL, 5656 DISP_PORT_ONLY)); 5657 } 5658 goto error2; 5659 } 5660 } 5661 mutex_exit(&tcp->tcp_eager_lock); 5662 5663 /* 5664 * IP adds STRUIO_EAGER and ensures that the received packet is 5665 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5666 * link local address. If IPSec is enabled, db_struioflag has 5667 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5668 * otherwise an error case if neither of them is set. 5669 */ 5670 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5671 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5672 DB_CKSUMSTART(mp) = 0; 5673 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5674 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 5675 if (econnp == NULL) 5676 goto error2; 5677 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5678 econnp->conn_sqp = new_sqp; 5679 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5680 /* 5681 * mp is updated in tcp_get_ipsec_conn(). 5682 */ 5683 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5684 if (econnp == NULL) { 5685 /* 5686 * mp freed by tcp_get_ipsec_conn. 5687 */ 5688 return; 5689 } 5690 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5691 } else { 5692 goto error2; 5693 } 5694 5695 ASSERT(DB_TYPE(mp) == M_DATA); 5696 5697 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5698 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5699 ASSERT(OK_32PTR(mp->b_rptr)); 5700 if (ipvers == IPV4_VERSION) { 5701 ipha = (ipha_t *)mp->b_rptr; 5702 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5703 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5704 } else { 5705 ip6h = (ip6_t *)mp->b_rptr; 5706 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5707 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5708 } 5709 5710 if (tcp->tcp_family == AF_INET) { 5711 ASSERT(ipvers == IPV4_VERSION); 5712 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5713 } else { 5714 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5715 } 5716 5717 if (err) 5718 goto error3; 5719 5720 eager = econnp->conn_tcp; 5721 5722 /* 5723 * Pre-allocate the T_ordrel_ind mblk so that at close time, we 5724 * will always have that to send up. Otherwise, we need to do 5725 * special handling in case the allocation fails at that time. 5726 */ 5727 ASSERT(eager->tcp_ordrel_mp == NULL); 5728 if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 5729 goto error3; 5730 5731 /* Inherit various TCP parameters from the listener */ 5732 eager->tcp_naglim = tcp->tcp_naglim; 5733 eager->tcp_first_timer_threshold = 5734 tcp->tcp_first_timer_threshold; 5735 eager->tcp_second_timer_threshold = 5736 tcp->tcp_second_timer_threshold; 5737 5738 eager->tcp_first_ctimer_threshold = 5739 tcp->tcp_first_ctimer_threshold; 5740 eager->tcp_second_ctimer_threshold = 5741 tcp->tcp_second_ctimer_threshold; 5742 5743 /* 5744 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5745 * If it does not, the eager's receive window will be set to the 5746 * listener's receive window later in this function. 5747 */ 5748 eager->tcp_rwnd = 0; 5749 5750 /* 5751 * Inherit listener's tcp_init_cwnd. Need to do this before 5752 * calling tcp_process_options() where tcp_mss_set() is called 5753 * to set the initial cwnd. 5754 */ 5755 eager->tcp_init_cwnd = tcp->tcp_init_cwnd; 5756 5757 /* 5758 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5759 * zone id before the accept is completed in tcp_wput_accept(). 5760 */ 5761 econnp->conn_zoneid = connp->conn_zoneid; 5762 econnp->conn_allzones = connp->conn_allzones; 5763 5764 /* Copy nexthop information from listener to eager */ 5765 if (connp->conn_nexthop_set) { 5766 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5767 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5768 } 5769 5770 /* 5771 * TSOL: tsol_input_proc() needs the eager's cred before the 5772 * eager is accepted 5773 */ 5774 econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred; 5775 crhold(credp); 5776 5777 /* 5778 * If the caller has the process-wide flag set, then default to MAC 5779 * exempt mode. This allows read-down to unlabeled hosts. 5780 */ 5781 if (getpflags(NET_MAC_AWARE, credp) != 0) 5782 econnp->conn_mac_exempt = B_TRUE; 5783 5784 if (is_system_labeled()) { 5785 cred_t *cr; 5786 5787 if (connp->conn_mlp_type != mlptSingle) { 5788 cr = econnp->conn_peercred = DB_CRED(mp); 5789 if (cr != NULL) 5790 crhold(cr); 5791 else 5792 cr = econnp->conn_cred; 5793 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 5794 econnp, cred_t *, cr) 5795 } else { 5796 cr = econnp->conn_cred; 5797 DTRACE_PROBE2(syn_accept, conn_t *, 5798 econnp, cred_t *, cr) 5799 } 5800 5801 if (!tcp_update_label(eager, cr)) { 5802 DTRACE_PROBE3( 5803 tx__ip__log__error__connrequest__tcp, 5804 char *, "eager connp(1) label on SYN mp(2) failed", 5805 conn_t *, econnp, mblk_t *, mp); 5806 goto error3; 5807 } 5808 } 5809 5810 eager->tcp_hard_binding = B_TRUE; 5811 5812 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 5813 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5814 5815 CL_INET_CONNECT(eager); 5816 5817 /* 5818 * No need to check for multicast destination since ip will only pass 5819 * up multicasts to those that have expressed interest 5820 * TODO: what about rejecting broadcasts? 5821 * Also check that source is not a multicast or broadcast address. 5822 */ 5823 eager->tcp_state = TCPS_SYN_RCVD; 5824 5825 5826 /* 5827 * There should be no ire in the mp as we are being called after 5828 * receiving the SYN. 5829 */ 5830 ASSERT(tcp_ire_mp(mp) == NULL); 5831 5832 /* 5833 * Adapt our mss, ttl, ... according to information provided in IRE. 5834 */ 5835 5836 if (tcp_adapt_ire(eager, NULL) == 0) { 5837 /* Undo the bind_hash_insert */ 5838 tcp_bind_hash_remove(eager); 5839 goto error3; 5840 } 5841 5842 /* Process all TCP options. */ 5843 tcp_process_options(eager, tcph); 5844 5845 /* Is the other end ECN capable? */ 5846 if (tcps->tcps_ecn_permitted >= 1 && 5847 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5848 eager->tcp_ecn_ok = B_TRUE; 5849 } 5850 5851 /* 5852 * listener->tcp_rq->q_hiwat should be the default window size or a 5853 * window size changed via SO_RCVBUF option. First round up the 5854 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5855 * scale option value if needed. Call tcp_rwnd_set() to finish the 5856 * setting. 5857 * 5858 * Note if there is a rpipe metric associated with the remote host, 5859 * we should not inherit receive window size from listener. 5860 */ 5861 eager->tcp_rwnd = MSS_ROUNDUP( 5862 (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat : 5863 eager->tcp_rwnd), eager->tcp_mss); 5864 if (eager->tcp_snd_ws_ok) 5865 tcp_set_ws_value(eager); 5866 /* 5867 * Note that this is the only place tcp_rwnd_set() is called for 5868 * accepting a connection. We need to call it here instead of 5869 * after the 3-way handshake because we need to tell the other 5870 * side our rwnd in the SYN-ACK segment. 5871 */ 5872 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5873 5874 /* 5875 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5876 * via soaccept()->soinheritoptions() which essentially applies 5877 * all the listener options to the new STREAM. The options that we 5878 * need to take care of are: 5879 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5880 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5881 * SO_SNDBUF, SO_RCVBUF. 5882 * 5883 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5884 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5885 * tcp_maxpsz_set() gets called later from 5886 * tcp_accept_finish(), the option takes effect. 5887 * 5888 */ 5889 /* Set the TCP options */ 5890 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5891 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5892 eager->tcp_oobinline = tcp->tcp_oobinline; 5893 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5894 eager->tcp_broadcast = tcp->tcp_broadcast; 5895 eager->tcp_useloopback = tcp->tcp_useloopback; 5896 eager->tcp_dontroute = tcp->tcp_dontroute; 5897 eager->tcp_linger = tcp->tcp_linger; 5898 eager->tcp_lingertime = tcp->tcp_lingertime; 5899 if (tcp->tcp_ka_enabled) 5900 eager->tcp_ka_enabled = 1; 5901 5902 /* Set the IP options */ 5903 econnp->conn_broadcast = connp->conn_broadcast; 5904 econnp->conn_loopback = connp->conn_loopback; 5905 econnp->conn_dontroute = connp->conn_dontroute; 5906 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5907 5908 /* Put a ref on the listener for the eager. */ 5909 CONN_INC_REF(connp); 5910 mutex_enter(&tcp->tcp_eager_lock); 5911 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5912 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5913 tcp->tcp_eager_next_q0 = eager; 5914 eager->tcp_eager_prev_q0 = tcp; 5915 5916 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5917 eager->tcp_listener = tcp; 5918 eager->tcp_saved_listener = tcp; 5919 5920 /* 5921 * Tag this detached tcp vector for later retrieval 5922 * by our listener client in tcp_accept(). 5923 */ 5924 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5925 tcp->tcp_conn_req_cnt_q0++; 5926 if (++tcp->tcp_conn_req_seqnum == -1) { 5927 /* 5928 * -1 is "special" and defined in TPI as something 5929 * that should never be used in T_CONN_IND 5930 */ 5931 ++tcp->tcp_conn_req_seqnum; 5932 } 5933 mutex_exit(&tcp->tcp_eager_lock); 5934 5935 if (tcp->tcp_syn_defense) { 5936 /* Don't drop the SYN that comes from a good IP source */ 5937 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5938 if (addr_cache != NULL && eager->tcp_remote == 5939 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5940 eager->tcp_dontdrop = B_TRUE; 5941 } 5942 } 5943 5944 /* 5945 * We need to insert the eager in its own perimeter but as soon 5946 * as we do that, we expose the eager to the classifier and 5947 * should not touch any field outside the eager's perimeter. 5948 * So do all the work necessary before inserting the eager 5949 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5950 * will succeed but undo everything if it fails. 5951 */ 5952 seg_seq = ABE32_TO_U32(tcph->th_seq); 5953 eager->tcp_irs = seg_seq; 5954 eager->tcp_rack = seg_seq; 5955 eager->tcp_rnxt = seg_seq + 1; 5956 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5957 BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); 5958 eager->tcp_state = TCPS_SYN_RCVD; 5959 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5960 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5961 if (mp1 == NULL) { 5962 /* 5963 * Increment the ref count as we are going to 5964 * enqueueing an mp in squeue 5965 */ 5966 CONN_INC_REF(econnp); 5967 goto error; 5968 } 5969 DB_CPID(mp1) = tcp->tcp_cpid; 5970 eager->tcp_cpid = tcp->tcp_cpid; 5971 eager->tcp_open_time = lbolt64; 5972 5973 /* 5974 * We need to start the rto timer. In normal case, we start 5975 * the timer after sending the packet on the wire (or at 5976 * least believing that packet was sent by waiting for 5977 * CALL_IP_WPUT() to return). Since this is the first packet 5978 * being sent on the wire for the eager, our initial tcp_rto 5979 * is at least tcp_rexmit_interval_min which is a fairly 5980 * large value to allow the algorithm to adjust slowly to large 5981 * fluctuations of RTT during first few transmissions. 5982 * 5983 * Starting the timer first and then sending the packet in this 5984 * case shouldn't make much difference since tcp_rexmit_interval_min 5985 * is of the order of several 100ms and starting the timer 5986 * first and then sending the packet will result in difference 5987 * of few micro seconds. 5988 * 5989 * Without this optimization, we are forced to hold the fanout 5990 * lock across the ipcl_bind_insert() and sending the packet 5991 * so that we don't race against an incoming packet (maybe RST) 5992 * for this eager. 5993 * 5994 * It is necessary to acquire an extra reference on the eager 5995 * at this point and hold it until after tcp_send_data() to 5996 * ensure against an eager close race. 5997 */ 5998 5999 CONN_INC_REF(eager->tcp_connp); 6000 6001 TCP_TIMER_RESTART(eager, eager->tcp_rto); 6002 6003 /* 6004 * Insert the eager in its own perimeter now. We are ready to deal 6005 * with any packets on eager. 6006 */ 6007 if (eager->tcp_ipversion == IPV4_VERSION) { 6008 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 6009 goto error; 6010 } 6011 } else { 6012 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 6013 goto error; 6014 } 6015 } 6016 6017 /* mark conn as fully-bound */ 6018 econnp->conn_fully_bound = B_TRUE; 6019 6020 /* Send the SYN-ACK */ 6021 tcp_send_data(eager, eager->tcp_wq, mp1); 6022 CONN_DEC_REF(eager->tcp_connp); 6023 freemsg(mp); 6024 6025 return; 6026 error: 6027 freemsg(mp1); 6028 eager->tcp_closemp_used = B_TRUE; 6029 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6030 squeue_fill(econnp->conn_sqp, &eager->tcp_closemp, tcp_eager_kill, 6031 econnp, SQTAG_TCP_CONN_REQ_2); 6032 6033 /* 6034 * If a connection already exists, send the mp to that connections so 6035 * that it can be appropriately dealt with. 6036 */ 6037 ipst = tcps->tcps_netstack->netstack_ip; 6038 6039 if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) { 6040 if (!IPCL_IS_CONNECTED(econnp)) { 6041 /* 6042 * Something bad happened. ipcl_conn_insert() 6043 * failed because a connection already existed 6044 * in connected hash but we can't find it 6045 * anymore (someone blew it away). Just 6046 * free this message and hopefully remote 6047 * will retransmit at which time the SYN can be 6048 * treated as a new connection or dealth with 6049 * a TH_RST if a connection already exists. 6050 */ 6051 CONN_DEC_REF(econnp); 6052 freemsg(mp); 6053 } else { 6054 squeue_fill(econnp->conn_sqp, mp, tcp_input, 6055 econnp, SQTAG_TCP_CONN_REQ_1); 6056 } 6057 } else { 6058 /* Nobody wants this packet */ 6059 freemsg(mp); 6060 } 6061 return; 6062 error3: 6063 CONN_DEC_REF(econnp); 6064 error2: 6065 freemsg(mp); 6066 } 6067 6068 /* 6069 * In an ideal case of vertical partition in NUMA architecture, its 6070 * beneficial to have the listener and all the incoming connections 6071 * tied to the same squeue. The other constraint is that incoming 6072 * connections should be tied to the squeue attached to interrupted 6073 * CPU for obvious locality reason so this leaves the listener to 6074 * be tied to the same squeue. Our only problem is that when listener 6075 * is binding, the CPU that will get interrupted by the NIC whose 6076 * IP address the listener is binding to is not even known. So 6077 * the code below allows us to change that binding at the time the 6078 * CPU is interrupted by virtue of incoming connection's squeue. 6079 * 6080 * This is usefull only in case of a listener bound to a specific IP 6081 * address. For other kind of listeners, they get bound the 6082 * very first time and there is no attempt to rebind them. 6083 */ 6084 void 6085 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 6086 { 6087 conn_t *connp = (conn_t *)arg; 6088 squeue_t *sqp = (squeue_t *)arg2; 6089 squeue_t *new_sqp; 6090 uint32_t conn_flags; 6091 6092 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 6093 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 6094 } else { 6095 goto done; 6096 } 6097 6098 if (connp->conn_fanout == NULL) 6099 goto done; 6100 6101 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 6102 mutex_enter(&connp->conn_fanout->connf_lock); 6103 mutex_enter(&connp->conn_lock); 6104 /* 6105 * No one from read or write side can access us now 6106 * except for already queued packets on this squeue. 6107 * But since we haven't changed the squeue yet, they 6108 * can't execute. If they are processed after we have 6109 * changed the squeue, they are sent back to the 6110 * correct squeue down below. 6111 * But a listner close can race with processing of 6112 * incoming SYN. If incoming SYN processing changes 6113 * the squeue then the listener close which is waiting 6114 * to enter the squeue would operate on the wrong 6115 * squeue. Hence we don't change the squeue here unless 6116 * the refcount is exactly the minimum refcount. The 6117 * minimum refcount of 4 is counted as - 1 each for 6118 * TCP and IP, 1 for being in the classifier hash, and 6119 * 1 for the mblk being processed. 6120 */ 6121 6122 if (connp->conn_ref != 4 || 6123 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 6124 mutex_exit(&connp->conn_lock); 6125 mutex_exit(&connp->conn_fanout->connf_lock); 6126 goto done; 6127 } 6128 if (connp->conn_sqp != new_sqp) { 6129 while (connp->conn_sqp != new_sqp) 6130 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 6131 } 6132 6133 do { 6134 conn_flags = connp->conn_flags; 6135 conn_flags |= IPCL_FULLY_BOUND; 6136 (void) cas32(&connp->conn_flags, connp->conn_flags, 6137 conn_flags); 6138 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 6139 6140 mutex_exit(&connp->conn_fanout->connf_lock); 6141 mutex_exit(&connp->conn_lock); 6142 } 6143 6144 done: 6145 if (connp->conn_sqp != sqp) { 6146 CONN_INC_REF(connp); 6147 squeue_fill(connp->conn_sqp, mp, 6148 connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND); 6149 } else { 6150 tcp_conn_request(connp, mp, sqp); 6151 } 6152 } 6153 6154 /* 6155 * Successful connect request processing begins when our client passes 6156 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 6157 * our T_OK_ACK reply message upstream. The control flow looks like this: 6158 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP 6159 * upstream <- tcp_rput() <- IP 6160 * After various error checks are completed, tcp_connect() lays 6161 * the target address and port into the composite header template, 6162 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 6163 * request followed by an IRE request, and passes the three mblk message 6164 * down to IP looking like this: 6165 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 6166 * Processing continues in tcp_rput() when we receive the following message: 6167 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 6168 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 6169 * to fire off the connection request, and then passes the T_OK_ACK mblk 6170 * upstream that we filled in below. There are, of course, numerous 6171 * error conditions along the way which truncate the processing described 6172 * above. 6173 */ 6174 static void 6175 tcp_connect(tcp_t *tcp, mblk_t *mp) 6176 { 6177 sin_t *sin; 6178 sin6_t *sin6; 6179 queue_t *q = tcp->tcp_wq; 6180 struct T_conn_req *tcr; 6181 ipaddr_t *dstaddrp; 6182 in_port_t dstport; 6183 uint_t srcid; 6184 6185 tcr = (struct T_conn_req *)mp->b_rptr; 6186 6187 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6188 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 6189 tcp_err_ack(tcp, mp, TPROTO, 0); 6190 return; 6191 } 6192 6193 /* 6194 * Pre-allocate the T_ordrel_ind mblk so that at close time, we 6195 * will always have that to send up. Otherwise, we need to do 6196 * special handling in case the allocation fails at that time. 6197 */ 6198 ASSERT(tcp->tcp_ordrel_mp == NULL); 6199 if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) { 6200 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6201 return; 6202 } 6203 6204 /* 6205 * Determine packet type based on type of address passed in 6206 * the request should contain an IPv4 or IPv6 address. 6207 * Make sure that address family matches the type of 6208 * family of the the address passed down 6209 */ 6210 switch (tcr->DEST_length) { 6211 default: 6212 tcp_err_ack(tcp, mp, TBADADDR, 0); 6213 return; 6214 6215 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 6216 /* 6217 * XXX: The check for valid DEST_length was not there 6218 * in earlier releases and some buggy 6219 * TLI apps (e.g Sybase) got away with not feeding 6220 * in sin_zero part of address. 6221 * We allow that bug to keep those buggy apps humming. 6222 * Test suites require the check on DEST_length. 6223 * We construct a new mblk with valid DEST_length 6224 * free the original so the rest of the code does 6225 * not have to keep track of this special shorter 6226 * length address case. 6227 */ 6228 mblk_t *nmp; 6229 struct T_conn_req *ntcr; 6230 sin_t *nsin; 6231 6232 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 6233 tcr->OPT_length, BPRI_HI); 6234 if (nmp == NULL) { 6235 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6236 return; 6237 } 6238 ntcr = (struct T_conn_req *)nmp->b_rptr; 6239 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 6240 ntcr->PRIM_type = T_CONN_REQ; 6241 ntcr->DEST_length = sizeof (sin_t); 6242 ntcr->DEST_offset = sizeof (struct T_conn_req); 6243 6244 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 6245 *nsin = sin_null; 6246 /* Get pointer to shorter address to copy from original mp */ 6247 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6248 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 6249 if (sin == NULL || !OK_32PTR((char *)sin)) { 6250 freemsg(nmp); 6251 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6252 return; 6253 } 6254 nsin->sin_family = sin->sin_family; 6255 nsin->sin_port = sin->sin_port; 6256 nsin->sin_addr = sin->sin_addr; 6257 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 6258 nmp->b_wptr = (uchar_t *)&nsin[1]; 6259 if (tcr->OPT_length != 0) { 6260 ntcr->OPT_length = tcr->OPT_length; 6261 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 6262 bcopy((uchar_t *)tcr + tcr->OPT_offset, 6263 (uchar_t *)ntcr + ntcr->OPT_offset, 6264 tcr->OPT_length); 6265 nmp->b_wptr += tcr->OPT_length; 6266 } 6267 freemsg(mp); /* original mp freed */ 6268 mp = nmp; /* re-initialize original variables */ 6269 tcr = ntcr; 6270 } 6271 /* FALLTHRU */ 6272 6273 case sizeof (sin_t): 6274 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6275 sizeof (sin_t)); 6276 if (sin == NULL || !OK_32PTR((char *)sin)) { 6277 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6278 return; 6279 } 6280 if (tcp->tcp_family != AF_INET || 6281 sin->sin_family != AF_INET) { 6282 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6283 return; 6284 } 6285 if (sin->sin_port == 0) { 6286 tcp_err_ack(tcp, mp, TBADADDR, 0); 6287 return; 6288 } 6289 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 6290 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6291 return; 6292 } 6293 6294 break; 6295 6296 case sizeof (sin6_t): 6297 sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, 6298 sizeof (sin6_t)); 6299 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 6300 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6301 return; 6302 } 6303 if (tcp->tcp_family != AF_INET6 || 6304 sin6->sin6_family != AF_INET6) { 6305 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6306 return; 6307 } 6308 if (sin6->sin6_port == 0) { 6309 tcp_err_ack(tcp, mp, TBADADDR, 0); 6310 return; 6311 } 6312 break; 6313 } 6314 /* 6315 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6316 * should key on their sequence number and cut them loose. 6317 */ 6318 6319 /* 6320 * If options passed in, feed it for verification and handling 6321 */ 6322 if (tcr->OPT_length != 0) { 6323 mblk_t *ok_mp; 6324 mblk_t *discon_mp; 6325 mblk_t *conn_opts_mp; 6326 int t_error, sys_error, do_disconnect; 6327 6328 conn_opts_mp = NULL; 6329 6330 if (tcp_conprim_opt_process(tcp, mp, 6331 &do_disconnect, &t_error, &sys_error) < 0) { 6332 if (do_disconnect) { 6333 ASSERT(t_error == 0 && sys_error == 0); 6334 discon_mp = mi_tpi_discon_ind(NULL, 6335 ECONNREFUSED, 0); 6336 if (!discon_mp) { 6337 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6338 TSYSERR, ENOMEM); 6339 return; 6340 } 6341 ok_mp = mi_tpi_ok_ack_alloc(mp); 6342 if (!ok_mp) { 6343 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6344 TSYSERR, ENOMEM); 6345 return; 6346 } 6347 qreply(q, ok_mp); 6348 qreply(q, discon_mp); /* no flush! */ 6349 } else { 6350 ASSERT(t_error != 0); 6351 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6352 sys_error); 6353 } 6354 return; 6355 } 6356 /* 6357 * Success in setting options, the mp option buffer represented 6358 * by OPT_length/offset has been potentially modified and 6359 * contains results of option processing. We copy it in 6360 * another mp to save it for potentially influencing returning 6361 * it in T_CONN_CONN. 6362 */ 6363 if (tcr->OPT_length != 0) { /* there are resulting options */ 6364 conn_opts_mp = copyb(mp); 6365 if (!conn_opts_mp) { 6366 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6367 TSYSERR, ENOMEM); 6368 return; 6369 } 6370 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6371 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6372 /* 6373 * Note: 6374 * These resulting option negotiation can include any 6375 * end-to-end negotiation options but there no such 6376 * thing (yet?) in our TCP/IP. 6377 */ 6378 } 6379 } 6380 6381 /* 6382 * If we're connecting to an IPv4-mapped IPv6 address, we need to 6383 * make sure that the template IP header in the tcp structure is an 6384 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 6385 * need to this before we call tcp_bindi() so that the port lookup 6386 * code will look for ports in the correct port space (IPv4 and 6387 * IPv6 have separate port spaces). 6388 */ 6389 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 6390 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6391 int err = 0; 6392 6393 err = tcp_header_init_ipv4(tcp); 6394 if (err != 0) { 6395 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6396 goto connect_failed; 6397 } 6398 if (tcp->tcp_lport != 0) 6399 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 6400 } 6401 6402 if (tcp->tcp_issocket) { 6403 /* 6404 * TCP is _D_SODIRECT and sockfs is directly above so save 6405 * the shared sonode sodirect_t pointer (if any) to enable 6406 * TCP sodirect. 6407 */ 6408 tcp->tcp_sodirect = SOD_QTOSODP(tcp->tcp_rq); 6409 } 6410 6411 switch (tcp->tcp_state) { 6412 case TCPS_IDLE: 6413 /* 6414 * We support quick connect, refer to comments in 6415 * tcp_connect_*() 6416 */ 6417 /* FALLTHRU */ 6418 case TCPS_BOUND: 6419 case TCPS_LISTEN: 6420 if (tcp->tcp_family == AF_INET6) { 6421 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6422 tcp_connect_ipv6(tcp, mp, 6423 &sin6->sin6_addr, 6424 sin6->sin6_port, sin6->sin6_flowinfo, 6425 sin6->__sin6_src_id, sin6->sin6_scope_id); 6426 return; 6427 } 6428 /* 6429 * Destination adress is mapped IPv6 address. 6430 * Source bound address should be unspecified or 6431 * IPv6 mapped address as well. 6432 */ 6433 if (!IN6_IS_ADDR_UNSPECIFIED( 6434 &tcp->tcp_bound_source_v6) && 6435 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 6436 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, 6437 EADDRNOTAVAIL); 6438 break; 6439 } 6440 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 6441 dstport = sin6->sin6_port; 6442 srcid = sin6->__sin6_src_id; 6443 } else { 6444 dstaddrp = &sin->sin_addr.s_addr; 6445 dstport = sin->sin_port; 6446 srcid = 0; 6447 } 6448 6449 tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid); 6450 return; 6451 default: 6452 mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0); 6453 break; 6454 } 6455 /* 6456 * Note: Code below is the "failure" case 6457 */ 6458 /* return error ack and blow away saved option results if any */ 6459 connect_failed: 6460 if (mp != NULL) 6461 putnext(tcp->tcp_rq, mp); 6462 else { 6463 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6464 TSYSERR, ENOMEM); 6465 } 6466 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6467 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6468 } 6469 6470 /* 6471 * Handle connect to IPv4 destinations, including connections for AF_INET6 6472 * sockets connecting to IPv4 mapped IPv6 destinations. 6473 */ 6474 static void 6475 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport, 6476 uint_t srcid) 6477 { 6478 tcph_t *tcph; 6479 mblk_t *mp1; 6480 ipaddr_t dstaddr = *dstaddrp; 6481 int32_t oldstate; 6482 uint16_t lport; 6483 tcp_stack_t *tcps = tcp->tcp_tcps; 6484 6485 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6486 6487 /* Check for attempt to connect to INADDR_ANY */ 6488 if (dstaddr == INADDR_ANY) { 6489 /* 6490 * SunOS 4.x and 4.3 BSD allow an application 6491 * to connect a TCP socket to INADDR_ANY. 6492 * When they do this, the kernel picks the 6493 * address of one interface and uses it 6494 * instead. The kernel usually ends up 6495 * picking the address of the loopback 6496 * interface. This is an undocumented feature. 6497 * However, we provide the same thing here 6498 * in order to have source and binary 6499 * compatibility with SunOS 4.x. 6500 * Update the T_CONN_REQ (sin/sin6) since it is used to 6501 * generate the T_CONN_CON. 6502 */ 6503 dstaddr = htonl(INADDR_LOOPBACK); 6504 *dstaddrp = dstaddr; 6505 } 6506 6507 /* Handle __sin6_src_id if socket not bound to an IP address */ 6508 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6509 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6510 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6511 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6512 tcp->tcp_ipha->ipha_src); 6513 } 6514 6515 /* 6516 * Don't let an endpoint connect to itself. Note that 6517 * the test here does not catch the case where the 6518 * source IP addr was left unspecified by the user. In 6519 * this case, the source addr is set in tcp_adapt_ire() 6520 * using the reply to the T_BIND message that we send 6521 * down to IP here and the check is repeated in tcp_rput_other. 6522 */ 6523 if (dstaddr == tcp->tcp_ipha->ipha_src && 6524 dstport == tcp->tcp_lport) { 6525 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6526 goto failed; 6527 } 6528 6529 tcp->tcp_ipha->ipha_dst = dstaddr; 6530 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6531 6532 /* 6533 * Massage a source route if any putting the first hop 6534 * in iph_dst. Compute a starting value for the checksum which 6535 * takes into account that the original iph_dst should be 6536 * included in the checksum but that ip will include the 6537 * first hop in the source route in the tcp checksum. 6538 */ 6539 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack); 6540 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6541 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6542 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6543 if ((int)tcp->tcp_sum < 0) 6544 tcp->tcp_sum--; 6545 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6546 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6547 (tcp->tcp_sum >> 16)); 6548 tcph = tcp->tcp_tcph; 6549 *(uint16_t *)tcph->th_fport = dstport; 6550 tcp->tcp_fport = dstport; 6551 6552 oldstate = tcp->tcp_state; 6553 /* 6554 * At this point the remote destination address and remote port fields 6555 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6556 * have to see which state tcp was in so we can take apropriate action. 6557 */ 6558 if (oldstate == TCPS_IDLE) { 6559 /* 6560 * We support a quick connect capability here, allowing 6561 * clients to transition directly from IDLE to SYN_SENT 6562 * tcp_bindi will pick an unused port, insert the connection 6563 * in the bind hash and transition to BOUND state. 6564 */ 6565 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6566 tcp, B_TRUE); 6567 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6568 B_FALSE, B_FALSE); 6569 if (lport == 0) { 6570 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6571 goto failed; 6572 } 6573 } 6574 tcp->tcp_state = TCPS_SYN_SENT; 6575 6576 /* 6577 * TODO: allow data with connect requests 6578 * by unlinking M_DATA trailers here and 6579 * linking them in behind the T_OK_ACK mblk. 6580 * The tcp_rput() bind ack handler would then 6581 * feed them to tcp_wput_data() rather than call 6582 * tcp_timer(). 6583 */ 6584 mp = mi_tpi_ok_ack_alloc(mp); 6585 if (!mp) { 6586 tcp->tcp_state = oldstate; 6587 goto failed; 6588 } 6589 if (tcp->tcp_family == AF_INET) { 6590 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6591 sizeof (ipa_conn_t)); 6592 } else { 6593 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6594 sizeof (ipa6_conn_t)); 6595 } 6596 if (mp1) { 6597 /* 6598 * We need to make sure that the conn_recv is set to a non-null 6599 * value before we insert the conn_t into the classifier table. 6600 * This is to avoid a race with an incoming packet which does 6601 * an ipcl_classify(). 6602 */ 6603 tcp->tcp_connp->conn_recv = tcp_input; 6604 6605 /* Hang onto the T_OK_ACK for later. */ 6606 linkb(mp1, mp); 6607 mblk_setcred(mp1, tcp->tcp_cred); 6608 if (tcp->tcp_family == AF_INET) 6609 mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp); 6610 else { 6611 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6612 &tcp->tcp_sticky_ipp); 6613 } 6614 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6615 tcp->tcp_active_open = 1; 6616 /* 6617 * If the bind cannot complete immediately 6618 * IP will arrange to call tcp_rput_other 6619 * when the bind completes. 6620 */ 6621 if (mp1 != NULL) 6622 tcp_rput_other(tcp, mp1); 6623 return; 6624 } 6625 /* Error case */ 6626 tcp->tcp_state = oldstate; 6627 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6628 6629 failed: 6630 /* return error ack and blow away saved option results if any */ 6631 if (mp != NULL) 6632 putnext(tcp->tcp_rq, mp); 6633 else { 6634 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6635 TSYSERR, ENOMEM); 6636 } 6637 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6638 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6639 6640 } 6641 6642 /* 6643 * Handle connect to IPv6 destinations. 6644 */ 6645 static void 6646 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 6647 in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 6648 { 6649 tcph_t *tcph; 6650 mblk_t *mp1; 6651 ip6_rthdr_t *rth; 6652 int32_t oldstate; 6653 uint16_t lport; 6654 tcp_stack_t *tcps = tcp->tcp_tcps; 6655 6656 ASSERT(tcp->tcp_family == AF_INET6); 6657 6658 /* 6659 * If we're here, it means that the destination address is a native 6660 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6661 * reason why it might not be IPv6 is if the socket was bound to an 6662 * IPv4-mapped IPv6 address. 6663 */ 6664 if (tcp->tcp_ipversion != IPV6_VERSION) { 6665 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6666 goto failed; 6667 } 6668 6669 /* 6670 * Interpret a zero destination to mean loopback. 6671 * Update the T_CONN_REQ (sin/sin6) since it is used to 6672 * generate the T_CONN_CON. 6673 */ 6674 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6675 *dstaddrp = ipv6_loopback; 6676 } 6677 6678 /* Handle __sin6_src_id if socket not bound to an IP address */ 6679 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6680 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6681 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6682 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6683 } 6684 6685 /* 6686 * Take care of the scope_id now and add ip6i_t 6687 * if ip6i_t is not already allocated through TCP 6688 * sticky options. At this point tcp_ip6h does not 6689 * have dst info, thus use dstaddrp. 6690 */ 6691 if (scope_id != 0 && 6692 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6693 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6694 ip6i_t *ip6i; 6695 6696 ipp->ipp_ifindex = scope_id; 6697 ip6i = (ip6i_t *)tcp->tcp_iphc; 6698 6699 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6700 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6701 /* Already allocated */ 6702 ip6i->ip6i_flags |= IP6I_IFINDEX; 6703 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6704 ipp->ipp_fields |= IPPF_SCOPE_ID; 6705 } else { 6706 int reterr; 6707 6708 ipp->ipp_fields |= IPPF_SCOPE_ID; 6709 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6710 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6711 reterr = tcp_build_hdrs(tcp->tcp_rq, tcp); 6712 if (reterr != 0) 6713 goto failed; 6714 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6715 } 6716 } 6717 6718 /* 6719 * Don't let an endpoint connect to itself. Note that 6720 * the test here does not catch the case where the 6721 * source IP addr was left unspecified by the user. In 6722 * this case, the source addr is set in tcp_adapt_ire() 6723 * using the reply to the T_BIND message that we send 6724 * down to IP here and the check is repeated in tcp_rput_other. 6725 */ 6726 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6727 (dstport == tcp->tcp_lport)) { 6728 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6729 goto failed; 6730 } 6731 6732 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6733 tcp->tcp_remote_v6 = *dstaddrp; 6734 tcp->tcp_ip6h->ip6_vcf = 6735 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6736 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6737 6738 6739 /* 6740 * Massage a routing header (if present) putting the first hop 6741 * in ip6_dst. Compute a starting value for the checksum which 6742 * takes into account that the original ip6_dst should be 6743 * included in the checksum but that ip will include the 6744 * first hop in the source route in the tcp checksum. 6745 */ 6746 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6747 if (rth != NULL) { 6748 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth, 6749 tcps->tcps_netstack); 6750 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6751 (tcp->tcp_sum >> 16)); 6752 } else { 6753 tcp->tcp_sum = 0; 6754 } 6755 6756 tcph = tcp->tcp_tcph; 6757 *(uint16_t *)tcph->th_fport = dstport; 6758 tcp->tcp_fport = dstport; 6759 6760 oldstate = tcp->tcp_state; 6761 /* 6762 * At this point the remote destination address and remote port fields 6763 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6764 * have to see which state tcp was in so we can take apropriate action. 6765 */ 6766 if (oldstate == TCPS_IDLE) { 6767 /* 6768 * We support a quick connect capability here, allowing 6769 * clients to transition directly from IDLE to SYN_SENT 6770 * tcp_bindi will pick an unused port, insert the connection 6771 * in the bind hash and transition to BOUND state. 6772 */ 6773 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6774 tcp, B_TRUE); 6775 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6776 B_FALSE, B_FALSE); 6777 if (lport == 0) { 6778 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6779 goto failed; 6780 } 6781 } 6782 tcp->tcp_state = TCPS_SYN_SENT; 6783 /* 6784 * TODO: allow data with connect requests 6785 * by unlinking M_DATA trailers here and 6786 * linking them in behind the T_OK_ACK mblk. 6787 * The tcp_rput() bind ack handler would then 6788 * feed them to tcp_wput_data() rather than call 6789 * tcp_timer(). 6790 */ 6791 mp = mi_tpi_ok_ack_alloc(mp); 6792 if (!mp) { 6793 tcp->tcp_state = oldstate; 6794 goto failed; 6795 } 6796 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); 6797 if (mp1) { 6798 /* 6799 * We need to make sure that the conn_recv is set to a non-null 6800 * value before we insert the conn_t into the classifier table. 6801 * This is to avoid a race with an incoming packet which does 6802 * an ipcl_classify(). 6803 */ 6804 tcp->tcp_connp->conn_recv = tcp_input; 6805 6806 /* Hang onto the T_OK_ACK for later. */ 6807 linkb(mp1, mp); 6808 mblk_setcred(mp1, tcp->tcp_cred); 6809 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6810 &tcp->tcp_sticky_ipp); 6811 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6812 tcp->tcp_active_open = 1; 6813 /* ip_bind_v6() may return ACK or ERROR */ 6814 if (mp1 != NULL) 6815 tcp_rput_other(tcp, mp1); 6816 return; 6817 } 6818 /* Error case */ 6819 tcp->tcp_state = oldstate; 6820 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6821 6822 failed: 6823 /* return error ack and blow away saved option results if any */ 6824 if (mp != NULL) 6825 putnext(tcp->tcp_rq, mp); 6826 else { 6827 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6828 TSYSERR, ENOMEM); 6829 } 6830 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6831 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6832 } 6833 6834 /* 6835 * We need a stream q for detached closing tcp connections 6836 * to use. Our client hereby indicates that this q is the 6837 * one to use. 6838 */ 6839 static void 6840 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6841 { 6842 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6843 queue_t *q = tcp->tcp_wq; 6844 tcp_stack_t *tcps = tcp->tcp_tcps; 6845 6846 #ifdef NS_DEBUG 6847 (void) printf("TCP_IOC_DEFAULT_Q for stack %d\n", 6848 tcps->tcps_netstack->netstack_stackid); 6849 #endif 6850 mp->b_datap->db_type = M_IOCACK; 6851 iocp->ioc_count = 0; 6852 mutex_enter(&tcps->tcps_g_q_lock); 6853 if (tcps->tcps_g_q != NULL) { 6854 mutex_exit(&tcps->tcps_g_q_lock); 6855 iocp->ioc_error = EALREADY; 6856 } else { 6857 mblk_t *mp1; 6858 6859 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0); 6860 if (mp1 == NULL) { 6861 mutex_exit(&tcps->tcps_g_q_lock); 6862 iocp->ioc_error = ENOMEM; 6863 } else { 6864 tcps->tcps_g_q = tcp->tcp_rq; 6865 mutex_exit(&tcps->tcps_g_q_lock); 6866 iocp->ioc_error = 0; 6867 iocp->ioc_rval = 0; 6868 /* 6869 * We are passing tcp_sticky_ipp as NULL 6870 * as it is not useful for tcp_default queue 6871 * 6872 * Set conn_recv just in case. 6873 */ 6874 tcp->tcp_connp->conn_recv = tcp_conn_request; 6875 6876 mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL); 6877 if (mp1 != NULL) 6878 tcp_rput_other(tcp, mp1); 6879 } 6880 } 6881 qreply(q, mp); 6882 } 6883 6884 /* 6885 * Our client hereby directs us to reject the connection request 6886 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6887 * of sending the appropriate RST, not an ICMP error. 6888 */ 6889 static void 6890 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6891 { 6892 tcp_t *ltcp = NULL; 6893 t_scalar_t seqnum; 6894 conn_t *connp; 6895 tcp_stack_t *tcps = tcp->tcp_tcps; 6896 6897 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6898 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6899 tcp_err_ack(tcp, mp, TPROTO, 0); 6900 return; 6901 } 6902 6903 /* 6904 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6905 * when the stream is in BOUND state. Do not send a reset, 6906 * since the destination IP address is not valid, and it can 6907 * be the initialized value of all zeros (broadcast address). 6908 * 6909 * If TCP has sent down a bind request to IP and has not 6910 * received the reply, reject the request. Otherwise, TCP 6911 * will be confused. 6912 */ 6913 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) { 6914 if (tcp->tcp_debug) { 6915 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6916 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6917 } 6918 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 6919 return; 6920 } 6921 6922 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6923 6924 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6925 6926 /* 6927 * According to TPI, for non-listeners, ignore seqnum 6928 * and disconnect. 6929 * Following interpretation of -1 seqnum is historical 6930 * and implied TPI ? (TPI only states that for T_CONN_IND, 6931 * a valid seqnum should not be -1). 6932 * 6933 * -1 means disconnect everything 6934 * regardless even on a listener. 6935 */ 6936 6937 int old_state = tcp->tcp_state; 6938 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 6939 6940 /* 6941 * The connection can't be on the tcp_time_wait_head list 6942 * since it is not detached. 6943 */ 6944 ASSERT(tcp->tcp_time_wait_next == NULL); 6945 ASSERT(tcp->tcp_time_wait_prev == NULL); 6946 ASSERT(tcp->tcp_time_wait_expire == 0); 6947 ltcp = NULL; 6948 /* 6949 * If it used to be a listener, check to make sure no one else 6950 * has taken the port before switching back to LISTEN state. 6951 */ 6952 if (tcp->tcp_ipversion == IPV4_VERSION) { 6953 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6954 tcp->tcp_ipha->ipha_src, 6955 tcp->tcp_connp->conn_zoneid, ipst); 6956 if (connp != NULL) 6957 ltcp = connp->conn_tcp; 6958 } else { 6959 /* Allow tcp_bound_if listeners? */ 6960 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6961 &tcp->tcp_ip6h->ip6_src, 0, 6962 tcp->tcp_connp->conn_zoneid, ipst); 6963 if (connp != NULL) 6964 ltcp = connp->conn_tcp; 6965 } 6966 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6967 tcp->tcp_state = TCPS_LISTEN; 6968 } else if (old_state > TCPS_BOUND) { 6969 tcp->tcp_conn_req_max = 0; 6970 tcp->tcp_state = TCPS_BOUND; 6971 } 6972 if (ltcp != NULL) 6973 CONN_DEC_REF(ltcp->tcp_connp); 6974 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6975 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 6976 } else if (old_state == TCPS_ESTABLISHED || 6977 old_state == TCPS_CLOSE_WAIT) { 6978 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 6979 } 6980 6981 if (tcp->tcp_fused) 6982 tcp_unfuse(tcp); 6983 6984 mutex_enter(&tcp->tcp_eager_lock); 6985 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6986 (tcp->tcp_conn_req_cnt_q != 0)) { 6987 tcp_eager_cleanup(tcp, 0); 6988 } 6989 mutex_exit(&tcp->tcp_eager_lock); 6990 6991 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6992 tcp->tcp_rnxt, TH_RST | TH_ACK); 6993 6994 tcp_reinit(tcp); 6995 6996 if (old_state >= TCPS_ESTABLISHED) { 6997 /* Send M_FLUSH according to TPI */ 6998 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6999 } 7000 mp = mi_tpi_ok_ack_alloc(mp); 7001 if (mp) 7002 putnext(tcp->tcp_rq, mp); 7003 return; 7004 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 7005 tcp_err_ack(tcp, mp, TBADSEQ, 0); 7006 return; 7007 } 7008 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 7009 /* Send M_FLUSH according to TPI */ 7010 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 7011 } 7012 mp = mi_tpi_ok_ack_alloc(mp); 7013 if (mp) 7014 putnext(tcp->tcp_rq, mp); 7015 } 7016 7017 /* 7018 * Diagnostic routine used to return a string associated with the tcp state. 7019 * Note that if the caller does not supply a buffer, it will use an internal 7020 * static string. This means that if multiple threads call this function at 7021 * the same time, output can be corrupted... Note also that this function 7022 * does not check the size of the supplied buffer. The caller has to make 7023 * sure that it is big enough. 7024 */ 7025 static char * 7026 tcp_display(tcp_t *tcp, char *sup_buf, char format) 7027 { 7028 char buf1[30]; 7029 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 7030 char *buf; 7031 char *cp; 7032 in6_addr_t local, remote; 7033 char local_addrbuf[INET6_ADDRSTRLEN]; 7034 char remote_addrbuf[INET6_ADDRSTRLEN]; 7035 7036 if (sup_buf != NULL) 7037 buf = sup_buf; 7038 else 7039 buf = priv_buf; 7040 7041 if (tcp == NULL) 7042 return ("NULL_TCP"); 7043 switch (tcp->tcp_state) { 7044 case TCPS_CLOSED: 7045 cp = "TCP_CLOSED"; 7046 break; 7047 case TCPS_IDLE: 7048 cp = "TCP_IDLE"; 7049 break; 7050 case TCPS_BOUND: 7051 cp = "TCP_BOUND"; 7052 break; 7053 case TCPS_LISTEN: 7054 cp = "TCP_LISTEN"; 7055 break; 7056 case TCPS_SYN_SENT: 7057 cp = "TCP_SYN_SENT"; 7058 break; 7059 case TCPS_SYN_RCVD: 7060 cp = "TCP_SYN_RCVD"; 7061 break; 7062 case TCPS_ESTABLISHED: 7063 cp = "TCP_ESTABLISHED"; 7064 break; 7065 case TCPS_CLOSE_WAIT: 7066 cp = "TCP_CLOSE_WAIT"; 7067 break; 7068 case TCPS_FIN_WAIT_1: 7069 cp = "TCP_FIN_WAIT_1"; 7070 break; 7071 case TCPS_CLOSING: 7072 cp = "TCP_CLOSING"; 7073 break; 7074 case TCPS_LAST_ACK: 7075 cp = "TCP_LAST_ACK"; 7076 break; 7077 case TCPS_FIN_WAIT_2: 7078 cp = "TCP_FIN_WAIT_2"; 7079 break; 7080 case TCPS_TIME_WAIT: 7081 cp = "TCP_TIME_WAIT"; 7082 break; 7083 default: 7084 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 7085 cp = buf1; 7086 break; 7087 } 7088 switch (format) { 7089 case DISP_ADDR_AND_PORT: 7090 if (tcp->tcp_ipversion == IPV4_VERSION) { 7091 /* 7092 * Note that we use the remote address in the tcp_b 7093 * structure. This means that it will print out 7094 * the real destination address, not the next hop's 7095 * address if source routing is used. 7096 */ 7097 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 7098 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 7099 7100 } else { 7101 local = tcp->tcp_ip_src_v6; 7102 remote = tcp->tcp_remote_v6; 7103 } 7104 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 7105 sizeof (local_addrbuf)); 7106 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 7107 sizeof (remote_addrbuf)); 7108 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 7109 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 7110 ntohs(tcp->tcp_fport), cp); 7111 break; 7112 case DISP_PORT_ONLY: 7113 default: 7114 (void) mi_sprintf(buf, "[%u, %u] %s", 7115 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 7116 break; 7117 } 7118 7119 return (buf); 7120 } 7121 7122 /* 7123 * Called via squeue to get on to eager's perimeter. It sends a 7124 * TH_RST if eager is in the fanout table. The listener wants the 7125 * eager to disappear either by means of tcp_eager_blowoff() or 7126 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 7127 * called (via squeue) if the eager cannot be inserted in the 7128 * fanout table in tcp_conn_request(). 7129 */ 7130 /* ARGSUSED */ 7131 void 7132 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 7133 { 7134 conn_t *econnp = (conn_t *)arg; 7135 tcp_t *eager = econnp->conn_tcp; 7136 tcp_t *listener = eager->tcp_listener; 7137 tcp_stack_t *tcps = eager->tcp_tcps; 7138 7139 /* 7140 * We could be called because listener is closing. Since 7141 * the eager is using listener's queue's, its not safe. 7142 * Better use the default queue just to send the TH_RST 7143 * out. 7144 */ 7145 ASSERT(tcps->tcps_g_q != NULL); 7146 eager->tcp_rq = tcps->tcps_g_q; 7147 eager->tcp_wq = WR(tcps->tcps_g_q); 7148 7149 /* 7150 * An eager's conn_fanout will be NULL if it's a duplicate 7151 * for an existing 4-tuples in the conn fanout table. 7152 * We don't want to send an RST out in such case. 7153 */ 7154 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 7155 tcp_xmit_ctl("tcp_eager_kill, can't wait", 7156 eager, eager->tcp_snxt, 0, TH_RST); 7157 } 7158 7159 /* We are here because listener wants this eager gone */ 7160 if (listener != NULL) { 7161 mutex_enter(&listener->tcp_eager_lock); 7162 tcp_eager_unlink(eager); 7163 if (eager->tcp_tconnind_started) { 7164 /* 7165 * The eager has sent a conn_ind up to the 7166 * listener but listener decides to close 7167 * instead. We need to drop the extra ref 7168 * placed on eager in tcp_rput_data() before 7169 * sending the conn_ind to listener. 7170 */ 7171 CONN_DEC_REF(econnp); 7172 } 7173 mutex_exit(&listener->tcp_eager_lock); 7174 CONN_DEC_REF(listener->tcp_connp); 7175 } 7176 7177 if (eager->tcp_state > TCPS_BOUND) 7178 tcp_close_detached(eager); 7179 } 7180 7181 /* 7182 * Reset any eager connection hanging off this listener marked 7183 * with 'seqnum' and then reclaim it's resources. 7184 */ 7185 static boolean_t 7186 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 7187 { 7188 tcp_t *eager; 7189 mblk_t *mp; 7190 tcp_stack_t *tcps = listener->tcp_tcps; 7191 7192 TCP_STAT(tcps, tcp_eager_blowoff_calls); 7193 eager = listener; 7194 mutex_enter(&listener->tcp_eager_lock); 7195 do { 7196 eager = eager->tcp_eager_next_q; 7197 if (eager == NULL) { 7198 mutex_exit(&listener->tcp_eager_lock); 7199 return (B_FALSE); 7200 } 7201 } while (eager->tcp_conn_req_seqnum != seqnum); 7202 7203 if (eager->tcp_closemp_used) { 7204 mutex_exit(&listener->tcp_eager_lock); 7205 return (B_TRUE); 7206 } 7207 eager->tcp_closemp_used = B_TRUE; 7208 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7209 CONN_INC_REF(eager->tcp_connp); 7210 mutex_exit(&listener->tcp_eager_lock); 7211 mp = &eager->tcp_closemp; 7212 squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 7213 eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF); 7214 return (B_TRUE); 7215 } 7216 7217 /* 7218 * Reset any eager connection hanging off this listener 7219 * and then reclaim it's resources. 7220 */ 7221 static void 7222 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 7223 { 7224 tcp_t *eager; 7225 mblk_t *mp; 7226 tcp_stack_t *tcps = listener->tcp_tcps; 7227 7228 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7229 7230 if (!q0_only) { 7231 /* First cleanup q */ 7232 TCP_STAT(tcps, tcp_eager_blowoff_q); 7233 eager = listener->tcp_eager_next_q; 7234 while (eager != NULL) { 7235 if (!eager->tcp_closemp_used) { 7236 eager->tcp_closemp_used = B_TRUE; 7237 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7238 CONN_INC_REF(eager->tcp_connp); 7239 mp = &eager->tcp_closemp; 7240 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7241 tcp_eager_kill, eager->tcp_connp, 7242 SQTAG_TCP_EAGER_CLEANUP); 7243 } 7244 eager = eager->tcp_eager_next_q; 7245 } 7246 } 7247 /* Then cleanup q0 */ 7248 TCP_STAT(tcps, tcp_eager_blowoff_q0); 7249 eager = listener->tcp_eager_next_q0; 7250 while (eager != listener) { 7251 if (!eager->tcp_closemp_used) { 7252 eager->tcp_closemp_used = B_TRUE; 7253 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7254 CONN_INC_REF(eager->tcp_connp); 7255 mp = &eager->tcp_closemp; 7256 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7257 tcp_eager_kill, eager->tcp_connp, 7258 SQTAG_TCP_EAGER_CLEANUP_Q0); 7259 } 7260 eager = eager->tcp_eager_next_q0; 7261 } 7262 } 7263 7264 /* 7265 * If we are an eager connection hanging off a listener that hasn't 7266 * formally accepted the connection yet, get off his list and blow off 7267 * any data that we have accumulated. 7268 */ 7269 static void 7270 tcp_eager_unlink(tcp_t *tcp) 7271 { 7272 tcp_t *listener = tcp->tcp_listener; 7273 7274 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7275 ASSERT(listener != NULL); 7276 if (tcp->tcp_eager_next_q0 != NULL) { 7277 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 7278 7279 /* Remove the eager tcp from q0 */ 7280 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 7281 tcp->tcp_eager_prev_q0; 7282 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 7283 tcp->tcp_eager_next_q0; 7284 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 7285 listener->tcp_conn_req_cnt_q0--; 7286 7287 tcp->tcp_eager_next_q0 = NULL; 7288 tcp->tcp_eager_prev_q0 = NULL; 7289 7290 /* 7291 * Take the eager out, if it is in the list of droppable 7292 * eagers. 7293 */ 7294 MAKE_UNDROPPABLE(tcp); 7295 7296 if (tcp->tcp_syn_rcvd_timeout != 0) { 7297 /* we have timed out before */ 7298 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 7299 listener->tcp_syn_rcvd_timeout--; 7300 } 7301 } else { 7302 tcp_t **tcpp = &listener->tcp_eager_next_q; 7303 tcp_t *prev = NULL; 7304 7305 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 7306 if (tcpp[0] == tcp) { 7307 if (listener->tcp_eager_last_q == tcp) { 7308 /* 7309 * If we are unlinking the last 7310 * element on the list, adjust 7311 * tail pointer. Set tail pointer 7312 * to nil when list is empty. 7313 */ 7314 ASSERT(tcp->tcp_eager_next_q == NULL); 7315 if (listener->tcp_eager_last_q == 7316 listener->tcp_eager_next_q) { 7317 listener->tcp_eager_last_q = 7318 NULL; 7319 } else { 7320 /* 7321 * We won't get here if there 7322 * is only one eager in the 7323 * list. 7324 */ 7325 ASSERT(prev != NULL); 7326 listener->tcp_eager_last_q = 7327 prev; 7328 } 7329 } 7330 tcpp[0] = tcp->tcp_eager_next_q; 7331 tcp->tcp_eager_next_q = NULL; 7332 tcp->tcp_eager_last_q = NULL; 7333 ASSERT(listener->tcp_conn_req_cnt_q > 0); 7334 listener->tcp_conn_req_cnt_q--; 7335 break; 7336 } 7337 prev = tcpp[0]; 7338 } 7339 } 7340 tcp->tcp_listener = NULL; 7341 } 7342 7343 /* Shorthand to generate and send TPI error acks to our client */ 7344 static void 7345 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 7346 { 7347 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 7348 putnext(tcp->tcp_rq, mp); 7349 } 7350 7351 /* Shorthand to generate and send TPI error acks to our client */ 7352 static void 7353 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 7354 int t_error, int sys_error) 7355 { 7356 struct T_error_ack *teackp; 7357 7358 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 7359 M_PCPROTO, T_ERROR_ACK)) != NULL) { 7360 teackp = (struct T_error_ack *)mp->b_rptr; 7361 teackp->ERROR_prim = primitive; 7362 teackp->TLI_error = t_error; 7363 teackp->UNIX_error = sys_error; 7364 putnext(tcp->tcp_rq, mp); 7365 } 7366 } 7367 7368 /* 7369 * Note: No locks are held when inspecting tcp_g_*epriv_ports 7370 * but instead the code relies on: 7371 * - the fact that the address of the array and its size never changes 7372 * - the atomic assignment of the elements of the array 7373 */ 7374 /* ARGSUSED */ 7375 static int 7376 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 7377 { 7378 int i; 7379 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7380 7381 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7382 if (tcps->tcps_g_epriv_ports[i] != 0) 7383 (void) mi_mpprintf(mp, "%d ", 7384 tcps->tcps_g_epriv_ports[i]); 7385 } 7386 return (0); 7387 } 7388 7389 /* 7390 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7391 * threads from changing it at the same time. 7392 */ 7393 /* ARGSUSED */ 7394 static int 7395 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7396 cred_t *cr) 7397 { 7398 long new_value; 7399 int i; 7400 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7401 7402 /* 7403 * Fail the request if the new value does not lie within the 7404 * port number limits. 7405 */ 7406 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7407 new_value <= 0 || new_value >= 65536) { 7408 return (EINVAL); 7409 } 7410 7411 mutex_enter(&tcps->tcps_epriv_port_lock); 7412 /* Check if the value is already in the list */ 7413 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7414 if (new_value == tcps->tcps_g_epriv_ports[i]) { 7415 mutex_exit(&tcps->tcps_epriv_port_lock); 7416 return (EEXIST); 7417 } 7418 } 7419 /* Find an empty slot */ 7420 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7421 if (tcps->tcps_g_epriv_ports[i] == 0) 7422 break; 7423 } 7424 if (i == tcps->tcps_g_num_epriv_ports) { 7425 mutex_exit(&tcps->tcps_epriv_port_lock); 7426 return (EOVERFLOW); 7427 } 7428 /* Set the new value */ 7429 tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; 7430 mutex_exit(&tcps->tcps_epriv_port_lock); 7431 return (0); 7432 } 7433 7434 /* 7435 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7436 * threads from changing it at the same time. 7437 */ 7438 /* ARGSUSED */ 7439 static int 7440 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7441 cred_t *cr) 7442 { 7443 long new_value; 7444 int i; 7445 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7446 7447 /* 7448 * Fail the request if the new value does not lie within the 7449 * port number limits. 7450 */ 7451 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7452 new_value >= 65536) { 7453 return (EINVAL); 7454 } 7455 7456 mutex_enter(&tcps->tcps_epriv_port_lock); 7457 /* Check that the value is already in the list */ 7458 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7459 if (tcps->tcps_g_epriv_ports[i] == new_value) 7460 break; 7461 } 7462 if (i == tcps->tcps_g_num_epriv_ports) { 7463 mutex_exit(&tcps->tcps_epriv_port_lock); 7464 return (ESRCH); 7465 } 7466 /* Clear the value */ 7467 tcps->tcps_g_epriv_ports[i] = 0; 7468 mutex_exit(&tcps->tcps_epriv_port_lock); 7469 return (0); 7470 } 7471 7472 /* Return the TPI/TLI equivalent of our current tcp_state */ 7473 static int 7474 tcp_tpistate(tcp_t *tcp) 7475 { 7476 switch (tcp->tcp_state) { 7477 case TCPS_IDLE: 7478 return (TS_UNBND); 7479 case TCPS_LISTEN: 7480 /* 7481 * Return whether there are outstanding T_CONN_IND waiting 7482 * for the matching T_CONN_RES. Therefore don't count q0. 7483 */ 7484 if (tcp->tcp_conn_req_cnt_q > 0) 7485 return (TS_WRES_CIND); 7486 else 7487 return (TS_IDLE); 7488 case TCPS_BOUND: 7489 return (TS_IDLE); 7490 case TCPS_SYN_SENT: 7491 return (TS_WCON_CREQ); 7492 case TCPS_SYN_RCVD: 7493 /* 7494 * Note: assumption: this has to the active open SYN_RCVD. 7495 * The passive instance is detached in SYN_RCVD stage of 7496 * incoming connection processing so we cannot get request 7497 * for T_info_ack on it. 7498 */ 7499 return (TS_WACK_CRES); 7500 case TCPS_ESTABLISHED: 7501 return (TS_DATA_XFER); 7502 case TCPS_CLOSE_WAIT: 7503 return (TS_WREQ_ORDREL); 7504 case TCPS_FIN_WAIT_1: 7505 return (TS_WIND_ORDREL); 7506 case TCPS_FIN_WAIT_2: 7507 return (TS_WIND_ORDREL); 7508 7509 case TCPS_CLOSING: 7510 case TCPS_LAST_ACK: 7511 case TCPS_TIME_WAIT: 7512 case TCPS_CLOSED: 7513 /* 7514 * Following TS_WACK_DREQ7 is a rendition of "not 7515 * yet TS_IDLE" TPI state. There is no best match to any 7516 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7517 * choose a value chosen that will map to TLI/XTI level 7518 * state of TSTATECHNG (state is process of changing) which 7519 * captures what this dummy state represents. 7520 */ 7521 return (TS_WACK_DREQ7); 7522 default: 7523 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7524 tcp->tcp_state, tcp_display(tcp, NULL, 7525 DISP_PORT_ONLY)); 7526 return (TS_UNBND); 7527 } 7528 } 7529 7530 static void 7531 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7532 { 7533 tcp_stack_t *tcps = tcp->tcp_tcps; 7534 7535 if (tcp->tcp_family == AF_INET6) 7536 *tia = tcp_g_t_info_ack_v6; 7537 else 7538 *tia = tcp_g_t_info_ack; 7539 tia->CURRENT_state = tcp_tpistate(tcp); 7540 tia->OPT_size = tcp_max_optsize; 7541 if (tcp->tcp_mss == 0) { 7542 /* Not yet set - tcp_open does not set mss */ 7543 if (tcp->tcp_ipversion == IPV4_VERSION) 7544 tia->TIDU_size = tcps->tcps_mss_def_ipv4; 7545 else 7546 tia->TIDU_size = tcps->tcps_mss_def_ipv6; 7547 } else { 7548 tia->TIDU_size = tcp->tcp_mss; 7549 } 7550 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7551 } 7552 7553 /* 7554 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7555 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7556 * tcp_g_t_info_ack. The current state of the stream is copied from 7557 * tcp_state. 7558 */ 7559 static void 7560 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7561 { 7562 t_uscalar_t cap_bits1; 7563 struct T_capability_ack *tcap; 7564 7565 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7566 freemsg(mp); 7567 return; 7568 } 7569 7570 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7571 7572 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7573 mp->b_datap->db_type, T_CAPABILITY_ACK); 7574 if (mp == NULL) 7575 return; 7576 7577 tcap = (struct T_capability_ack *)mp->b_rptr; 7578 tcap->CAP_bits1 = 0; 7579 7580 if (cap_bits1 & TC1_INFO) { 7581 tcp_copy_info(&tcap->INFO_ack, tcp); 7582 tcap->CAP_bits1 |= TC1_INFO; 7583 } 7584 7585 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7586 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7587 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7588 } 7589 7590 putnext(tcp->tcp_rq, mp); 7591 } 7592 7593 /* 7594 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7595 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7596 * The current state of the stream is copied from tcp_state. 7597 */ 7598 static void 7599 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7600 { 7601 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7602 T_INFO_ACK); 7603 if (!mp) { 7604 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7605 return; 7606 } 7607 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7608 putnext(tcp->tcp_rq, mp); 7609 } 7610 7611 /* Respond to the TPI addr request */ 7612 static void 7613 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7614 { 7615 sin_t *sin; 7616 mblk_t *ackmp; 7617 struct T_addr_ack *taa; 7618 7619 /* Make it large enough for worst case */ 7620 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7621 2 * sizeof (sin6_t), 1); 7622 if (ackmp == NULL) { 7623 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7624 return; 7625 } 7626 7627 if (tcp->tcp_ipversion == IPV6_VERSION) { 7628 tcp_addr_req_ipv6(tcp, ackmp); 7629 return; 7630 } 7631 taa = (struct T_addr_ack *)ackmp->b_rptr; 7632 7633 bzero(taa, sizeof (struct T_addr_ack)); 7634 ackmp->b_wptr = (uchar_t *)&taa[1]; 7635 7636 taa->PRIM_type = T_ADDR_ACK; 7637 ackmp->b_datap->db_type = M_PCPROTO; 7638 7639 /* 7640 * Note: Following code assumes 32 bit alignment of basic 7641 * data structures like sin_t and struct T_addr_ack. 7642 */ 7643 if (tcp->tcp_state >= TCPS_BOUND) { 7644 /* 7645 * Fill in local address 7646 */ 7647 taa->LOCADDR_length = sizeof (sin_t); 7648 taa->LOCADDR_offset = sizeof (*taa); 7649 7650 sin = (sin_t *)&taa[1]; 7651 7652 /* Fill zeroes and then intialize non-zero fields */ 7653 *sin = sin_null; 7654 7655 sin->sin_family = AF_INET; 7656 7657 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7658 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7659 7660 ackmp->b_wptr = (uchar_t *)&sin[1]; 7661 7662 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7663 /* 7664 * Fill in Remote address 7665 */ 7666 taa->REMADDR_length = sizeof (sin_t); 7667 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7668 taa->LOCADDR_length); 7669 7670 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7671 *sin = sin_null; 7672 sin->sin_family = AF_INET; 7673 sin->sin_addr.s_addr = tcp->tcp_remote; 7674 sin->sin_port = tcp->tcp_fport; 7675 7676 ackmp->b_wptr = (uchar_t *)&sin[1]; 7677 } 7678 } 7679 putnext(tcp->tcp_rq, ackmp); 7680 } 7681 7682 /* Assumes that tcp_addr_req gets enough space and alignment */ 7683 static void 7684 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7685 { 7686 sin6_t *sin6; 7687 struct T_addr_ack *taa; 7688 7689 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7690 ASSERT(OK_32PTR(ackmp->b_rptr)); 7691 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7692 2 * sizeof (sin6_t)); 7693 7694 taa = (struct T_addr_ack *)ackmp->b_rptr; 7695 7696 bzero(taa, sizeof (struct T_addr_ack)); 7697 ackmp->b_wptr = (uchar_t *)&taa[1]; 7698 7699 taa->PRIM_type = T_ADDR_ACK; 7700 ackmp->b_datap->db_type = M_PCPROTO; 7701 7702 /* 7703 * Note: Following code assumes 32 bit alignment of basic 7704 * data structures like sin6_t and struct T_addr_ack. 7705 */ 7706 if (tcp->tcp_state >= TCPS_BOUND) { 7707 /* 7708 * Fill in local address 7709 */ 7710 taa->LOCADDR_length = sizeof (sin6_t); 7711 taa->LOCADDR_offset = sizeof (*taa); 7712 7713 sin6 = (sin6_t *)&taa[1]; 7714 *sin6 = sin6_null; 7715 7716 sin6->sin6_family = AF_INET6; 7717 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7718 sin6->sin6_port = tcp->tcp_lport; 7719 7720 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7721 7722 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7723 /* 7724 * Fill in Remote address 7725 */ 7726 taa->REMADDR_length = sizeof (sin6_t); 7727 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7728 taa->LOCADDR_length); 7729 7730 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7731 *sin6 = sin6_null; 7732 sin6->sin6_family = AF_INET6; 7733 sin6->sin6_flowinfo = 7734 tcp->tcp_ip6h->ip6_vcf & 7735 ~IPV6_VERS_AND_FLOW_MASK; 7736 sin6->sin6_addr = tcp->tcp_remote_v6; 7737 sin6->sin6_port = tcp->tcp_fport; 7738 7739 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7740 } 7741 } 7742 putnext(tcp->tcp_rq, ackmp); 7743 } 7744 7745 /* 7746 * Handle reinitialization of a tcp structure. 7747 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7748 */ 7749 static void 7750 tcp_reinit(tcp_t *tcp) 7751 { 7752 mblk_t *mp; 7753 int err; 7754 tcp_stack_t *tcps = tcp->tcp_tcps; 7755 7756 TCP_STAT(tcps, tcp_reinit_calls); 7757 7758 /* tcp_reinit should never be called for detached tcp_t's */ 7759 ASSERT(tcp->tcp_listener == NULL); 7760 ASSERT((tcp->tcp_family == AF_INET && 7761 tcp->tcp_ipversion == IPV4_VERSION) || 7762 (tcp->tcp_family == AF_INET6 && 7763 (tcp->tcp_ipversion == IPV4_VERSION || 7764 tcp->tcp_ipversion == IPV6_VERSION))); 7765 7766 /* Cancel outstanding timers */ 7767 tcp_timers_stop(tcp); 7768 7769 /* 7770 * Reset everything in the state vector, after updating global 7771 * MIB data from instance counters. 7772 */ 7773 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 7774 tcp->tcp_ibsegs = 0; 7775 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 7776 tcp->tcp_obsegs = 0; 7777 7778 tcp_close_mpp(&tcp->tcp_xmit_head); 7779 if (tcp->tcp_snd_zcopy_aware) 7780 tcp_zcopy_notify(tcp); 7781 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7782 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7783 mutex_enter(&tcp->tcp_non_sq_lock); 7784 if (tcp->tcp_flow_stopped && 7785 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7786 tcp_clrqfull(tcp); 7787 } 7788 mutex_exit(&tcp->tcp_non_sq_lock); 7789 tcp_close_mpp(&tcp->tcp_reass_head); 7790 tcp->tcp_reass_tail = NULL; 7791 if (tcp->tcp_rcv_list != NULL) { 7792 /* Free b_next chain */ 7793 tcp_close_mpp(&tcp->tcp_rcv_list); 7794 tcp->tcp_rcv_last_head = NULL; 7795 tcp->tcp_rcv_last_tail = NULL; 7796 tcp->tcp_rcv_cnt = 0; 7797 } 7798 tcp->tcp_rcv_last_tail = NULL; 7799 7800 if ((mp = tcp->tcp_urp_mp) != NULL) { 7801 freemsg(mp); 7802 tcp->tcp_urp_mp = NULL; 7803 } 7804 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7805 freemsg(mp); 7806 tcp->tcp_urp_mark_mp = NULL; 7807 } 7808 if (tcp->tcp_fused_sigurg_mp != NULL) { 7809 freeb(tcp->tcp_fused_sigurg_mp); 7810 tcp->tcp_fused_sigurg_mp = NULL; 7811 } 7812 if (tcp->tcp_ordrel_mp != NULL) { 7813 freeb(tcp->tcp_ordrel_mp); 7814 tcp->tcp_ordrel_mp = NULL; 7815 } 7816 7817 /* 7818 * Following is a union with two members which are 7819 * identical types and size so the following cleanup 7820 * is enough. 7821 */ 7822 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7823 7824 CL_INET_DISCONNECT(tcp); 7825 7826 /* 7827 * The connection can't be on the tcp_time_wait_head list 7828 * since it is not detached. 7829 */ 7830 ASSERT(tcp->tcp_time_wait_next == NULL); 7831 ASSERT(tcp->tcp_time_wait_prev == NULL); 7832 ASSERT(tcp->tcp_time_wait_expire == 0); 7833 7834 if (tcp->tcp_kssl_pending) { 7835 tcp->tcp_kssl_pending = B_FALSE; 7836 7837 /* Don't reset if the initialized by bind. */ 7838 if (tcp->tcp_kssl_ent != NULL) { 7839 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7840 KSSL_NO_PROXY); 7841 } 7842 } 7843 if (tcp->tcp_kssl_ctx != NULL) { 7844 kssl_release_ctx(tcp->tcp_kssl_ctx); 7845 tcp->tcp_kssl_ctx = NULL; 7846 } 7847 7848 /* 7849 * Reset/preserve other values 7850 */ 7851 tcp_reinit_values(tcp); 7852 ipcl_hash_remove(tcp->tcp_connp); 7853 conn_delete_ire(tcp->tcp_connp, NULL); 7854 tcp_ipsec_cleanup(tcp); 7855 7856 if (tcp->tcp_conn_req_max != 0) { 7857 /* 7858 * This is the case when a TLI program uses the same 7859 * transport end point to accept a connection. This 7860 * makes the TCP both a listener and acceptor. When 7861 * this connection is closed, we need to set the state 7862 * back to TCPS_LISTEN. Make sure that the eager list 7863 * is reinitialized. 7864 * 7865 * Note that this stream is still bound to the four 7866 * tuples of the previous connection in IP. If a new 7867 * SYN with different foreign address comes in, IP will 7868 * not find it and will send it to the global queue. In 7869 * the global queue, TCP will do a tcp_lookup_listener() 7870 * to find this stream. This works because this stream 7871 * is only removed from connected hash. 7872 * 7873 */ 7874 tcp->tcp_state = TCPS_LISTEN; 7875 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7876 tcp->tcp_eager_next_drop_q0 = tcp; 7877 tcp->tcp_eager_prev_drop_q0 = tcp; 7878 tcp->tcp_connp->conn_recv = tcp_conn_request; 7879 if (tcp->tcp_family == AF_INET6) { 7880 ASSERT(tcp->tcp_connp->conn_af_isv6); 7881 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7882 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7883 } else { 7884 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7885 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7886 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7887 } 7888 } else { 7889 tcp->tcp_state = TCPS_BOUND; 7890 } 7891 7892 /* 7893 * Initialize to default values 7894 * Can't fail since enough header template space already allocated 7895 * at open(). 7896 */ 7897 err = tcp_init_values(tcp); 7898 ASSERT(err == 0); 7899 /* Restore state in tcp_tcph */ 7900 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7901 if (tcp->tcp_ipversion == IPV4_VERSION) 7902 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7903 else 7904 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7905 /* 7906 * Copy of the src addr. in tcp_t is needed in tcp_t 7907 * since the lookup funcs can only lookup on tcp_t 7908 */ 7909 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7910 7911 ASSERT(tcp->tcp_ptpbhn != NULL); 7912 tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat; 7913 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 7914 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7915 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 7916 } 7917 7918 /* 7919 * Force values to zero that need be zero. 7920 * Do not touch values asociated with the BOUND or LISTEN state 7921 * since the connection will end up in that state after the reinit. 7922 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7923 * structure! 7924 */ 7925 static void 7926 tcp_reinit_values(tcp) 7927 tcp_t *tcp; 7928 { 7929 tcp_stack_t *tcps = tcp->tcp_tcps; 7930 7931 #ifndef lint 7932 #define DONTCARE(x) 7933 #define PRESERVE(x) 7934 #else 7935 #define DONTCARE(x) ((x) = (x)) 7936 #define PRESERVE(x) ((x) = (x)) 7937 #endif /* lint */ 7938 7939 PRESERVE(tcp->tcp_bind_hash); 7940 PRESERVE(tcp->tcp_ptpbhn); 7941 PRESERVE(tcp->tcp_acceptor_hash); 7942 PRESERVE(tcp->tcp_ptpahn); 7943 7944 /* Should be ASSERT NULL on these with new code! */ 7945 ASSERT(tcp->tcp_time_wait_next == NULL); 7946 ASSERT(tcp->tcp_time_wait_prev == NULL); 7947 ASSERT(tcp->tcp_time_wait_expire == 0); 7948 PRESERVE(tcp->tcp_state); 7949 PRESERVE(tcp->tcp_rq); 7950 PRESERVE(tcp->tcp_wq); 7951 7952 ASSERT(tcp->tcp_xmit_head == NULL); 7953 ASSERT(tcp->tcp_xmit_last == NULL); 7954 ASSERT(tcp->tcp_unsent == 0); 7955 ASSERT(tcp->tcp_xmit_tail == NULL); 7956 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7957 7958 tcp->tcp_snxt = 0; /* Displayed in mib */ 7959 tcp->tcp_suna = 0; /* Displayed in mib */ 7960 tcp->tcp_swnd = 0; 7961 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7962 7963 ASSERT(tcp->tcp_ibsegs == 0); 7964 ASSERT(tcp->tcp_obsegs == 0); 7965 7966 if (tcp->tcp_iphc != NULL) { 7967 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7968 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7969 } 7970 7971 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7972 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7973 DONTCARE(tcp->tcp_ipha); 7974 DONTCARE(tcp->tcp_ip6h); 7975 DONTCARE(tcp->tcp_ip_hdr_len); 7976 DONTCARE(tcp->tcp_tcph); 7977 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7978 tcp->tcp_valid_bits = 0; 7979 7980 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7981 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7982 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7983 tcp->tcp_last_rcv_lbolt = 0; 7984 7985 tcp->tcp_init_cwnd = 0; 7986 7987 tcp->tcp_urp_last_valid = 0; 7988 tcp->tcp_hard_binding = 0; 7989 tcp->tcp_hard_bound = 0; 7990 PRESERVE(tcp->tcp_cred); 7991 PRESERVE(tcp->tcp_cpid); 7992 PRESERVE(tcp->tcp_open_time); 7993 PRESERVE(tcp->tcp_exclbind); 7994 7995 tcp->tcp_fin_acked = 0; 7996 tcp->tcp_fin_rcvd = 0; 7997 tcp->tcp_fin_sent = 0; 7998 tcp->tcp_ordrel_done = 0; 7999 8000 tcp->tcp_debug = 0; 8001 tcp->tcp_dontroute = 0; 8002 tcp->tcp_broadcast = 0; 8003 8004 tcp->tcp_useloopback = 0; 8005 tcp->tcp_reuseaddr = 0; 8006 tcp->tcp_oobinline = 0; 8007 tcp->tcp_dgram_errind = 0; 8008 8009 tcp->tcp_detached = 0; 8010 tcp->tcp_bind_pending = 0; 8011 tcp->tcp_unbind_pending = 0; 8012 8013 tcp->tcp_snd_ws_ok = B_FALSE; 8014 tcp->tcp_snd_ts_ok = B_FALSE; 8015 tcp->tcp_linger = 0; 8016 tcp->tcp_ka_enabled = 0; 8017 tcp->tcp_zero_win_probe = 0; 8018 8019 tcp->tcp_loopback = 0; 8020 tcp->tcp_refuse = 0; 8021 tcp->tcp_localnet = 0; 8022 tcp->tcp_syn_defense = 0; 8023 tcp->tcp_set_timer = 0; 8024 8025 tcp->tcp_active_open = 0; 8026 tcp->tcp_rexmit = B_FALSE; 8027 tcp->tcp_xmit_zc_clean = B_FALSE; 8028 8029 tcp->tcp_snd_sack_ok = B_FALSE; 8030 PRESERVE(tcp->tcp_recvdstaddr); 8031 tcp->tcp_hwcksum = B_FALSE; 8032 8033 tcp->tcp_ire_ill_check_done = B_FALSE; 8034 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 8035 8036 tcp->tcp_mdt = B_FALSE; 8037 tcp->tcp_mdt_hdr_head = 0; 8038 tcp->tcp_mdt_hdr_tail = 0; 8039 8040 tcp->tcp_conn_def_q0 = 0; 8041 tcp->tcp_ip_forward_progress = B_FALSE; 8042 tcp->tcp_anon_priv_bind = 0; 8043 tcp->tcp_ecn_ok = B_FALSE; 8044 8045 tcp->tcp_cwr = B_FALSE; 8046 tcp->tcp_ecn_echo_on = B_FALSE; 8047 8048 if (tcp->tcp_sack_info != NULL) { 8049 if (tcp->tcp_notsack_list != NULL) { 8050 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 8051 } 8052 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 8053 tcp->tcp_sack_info = NULL; 8054 } 8055 8056 tcp->tcp_rcv_ws = 0; 8057 tcp->tcp_snd_ws = 0; 8058 tcp->tcp_ts_recent = 0; 8059 tcp->tcp_rnxt = 0; /* Displayed in mib */ 8060 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 8061 tcp->tcp_if_mtu = 0; 8062 8063 ASSERT(tcp->tcp_reass_head == NULL); 8064 ASSERT(tcp->tcp_reass_tail == NULL); 8065 8066 tcp->tcp_cwnd_cnt = 0; 8067 8068 ASSERT(tcp->tcp_rcv_list == NULL); 8069 ASSERT(tcp->tcp_rcv_last_head == NULL); 8070 ASSERT(tcp->tcp_rcv_last_tail == NULL); 8071 ASSERT(tcp->tcp_rcv_cnt == 0); 8072 8073 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 8074 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 8075 tcp->tcp_csuna = 0; 8076 8077 tcp->tcp_rto = 0; /* Displayed in MIB */ 8078 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 8079 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 8080 tcp->tcp_rtt_update = 0; 8081 8082 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8083 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8084 8085 tcp->tcp_rack = 0; /* Displayed in mib */ 8086 tcp->tcp_rack_cnt = 0; 8087 tcp->tcp_rack_cur_max = 0; 8088 tcp->tcp_rack_abs_max = 0; 8089 8090 tcp->tcp_max_swnd = 0; 8091 8092 ASSERT(tcp->tcp_listener == NULL); 8093 8094 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 8095 8096 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 8097 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 8098 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 8099 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 8100 8101 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 8102 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 8103 PRESERVE(tcp->tcp_conn_req_max); 8104 PRESERVE(tcp->tcp_conn_req_seqnum); 8105 8106 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 8107 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 8108 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 8109 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 8110 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 8111 8112 tcp->tcp_lingertime = 0; 8113 8114 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 8115 ASSERT(tcp->tcp_urp_mp == NULL); 8116 ASSERT(tcp->tcp_urp_mark_mp == NULL); 8117 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 8118 8119 ASSERT(tcp->tcp_eager_next_q == NULL); 8120 ASSERT(tcp->tcp_eager_last_q == NULL); 8121 ASSERT((tcp->tcp_eager_next_q0 == NULL && 8122 tcp->tcp_eager_prev_q0 == NULL) || 8123 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 8124 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 8125 8126 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 8127 tcp->tcp_eager_prev_drop_q0 == NULL) || 8128 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 8129 8130 tcp->tcp_client_errno = 0; 8131 8132 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 8133 8134 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 8135 8136 PRESERVE(tcp->tcp_bound_source_v6); 8137 tcp->tcp_last_sent_len = 0; 8138 tcp->tcp_dupack_cnt = 0; 8139 8140 tcp->tcp_fport = 0; /* Displayed in MIB */ 8141 PRESERVE(tcp->tcp_lport); 8142 8143 PRESERVE(tcp->tcp_acceptor_lockp); 8144 8145 ASSERT(tcp->tcp_ordrel_mp == NULL); 8146 PRESERVE(tcp->tcp_acceptor_id); 8147 DONTCARE(tcp->tcp_ipsec_overhead); 8148 8149 PRESERVE(tcp->tcp_family); 8150 if (tcp->tcp_family == AF_INET6) { 8151 tcp->tcp_ipversion = IPV6_VERSION; 8152 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 8153 } else { 8154 tcp->tcp_ipversion = IPV4_VERSION; 8155 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 8156 } 8157 8158 tcp->tcp_bound_if = 0; 8159 tcp->tcp_ipv6_recvancillary = 0; 8160 tcp->tcp_recvifindex = 0; 8161 tcp->tcp_recvhops = 0; 8162 tcp->tcp_closed = 0; 8163 tcp->tcp_cleandeathtag = 0; 8164 if (tcp->tcp_hopopts != NULL) { 8165 mi_free(tcp->tcp_hopopts); 8166 tcp->tcp_hopopts = NULL; 8167 tcp->tcp_hopoptslen = 0; 8168 } 8169 ASSERT(tcp->tcp_hopoptslen == 0); 8170 if (tcp->tcp_dstopts != NULL) { 8171 mi_free(tcp->tcp_dstopts); 8172 tcp->tcp_dstopts = NULL; 8173 tcp->tcp_dstoptslen = 0; 8174 } 8175 ASSERT(tcp->tcp_dstoptslen == 0); 8176 if (tcp->tcp_rtdstopts != NULL) { 8177 mi_free(tcp->tcp_rtdstopts); 8178 tcp->tcp_rtdstopts = NULL; 8179 tcp->tcp_rtdstoptslen = 0; 8180 } 8181 ASSERT(tcp->tcp_rtdstoptslen == 0); 8182 if (tcp->tcp_rthdr != NULL) { 8183 mi_free(tcp->tcp_rthdr); 8184 tcp->tcp_rthdr = NULL; 8185 tcp->tcp_rthdrlen = 0; 8186 } 8187 ASSERT(tcp->tcp_rthdrlen == 0); 8188 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 8189 8190 /* Reset fusion-related fields */ 8191 tcp->tcp_fused = B_FALSE; 8192 tcp->tcp_unfusable = B_FALSE; 8193 tcp->tcp_fused_sigurg = B_FALSE; 8194 tcp->tcp_direct_sockfs = B_FALSE; 8195 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 8196 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 8197 tcp->tcp_loopback_peer = NULL; 8198 tcp->tcp_fuse_rcv_hiwater = 0; 8199 tcp->tcp_fuse_rcv_unread_hiwater = 0; 8200 tcp->tcp_fuse_rcv_unread_cnt = 0; 8201 8202 tcp->tcp_lso = B_FALSE; 8203 8204 tcp->tcp_in_ack_unsent = 0; 8205 tcp->tcp_cork = B_FALSE; 8206 tcp->tcp_tconnind_started = B_FALSE; 8207 8208 PRESERVE(tcp->tcp_squeue_bytes); 8209 8210 ASSERT(tcp->tcp_kssl_ctx == NULL); 8211 ASSERT(!tcp->tcp_kssl_pending); 8212 PRESERVE(tcp->tcp_kssl_ent); 8213 8214 /* Sodirect */ 8215 tcp->tcp_sodirect = NULL; 8216 8217 tcp->tcp_closemp_used = B_FALSE; 8218 8219 PRESERVE(tcp->tcp_rsrv_mp); 8220 PRESERVE(tcp->tcp_rsrv_mp_lock); 8221 8222 #ifdef DEBUG 8223 DONTCARE(tcp->tcmp_stk[0]); 8224 #endif 8225 8226 8227 #undef DONTCARE 8228 #undef PRESERVE 8229 } 8230 8231 /* 8232 * Allocate necessary resources and initialize state vector. 8233 * Guaranteed not to fail so that when an error is returned, 8234 * the caller doesn't need to do any additional cleanup. 8235 */ 8236 int 8237 tcp_init(tcp_t *tcp, queue_t *q) 8238 { 8239 int err; 8240 8241 tcp->tcp_rq = q; 8242 tcp->tcp_wq = WR(q); 8243 tcp->tcp_state = TCPS_IDLE; 8244 if ((err = tcp_init_values(tcp)) != 0) 8245 tcp_timers_stop(tcp); 8246 return (err); 8247 } 8248 8249 static int 8250 tcp_init_values(tcp_t *tcp) 8251 { 8252 int err; 8253 tcp_stack_t *tcps = tcp->tcp_tcps; 8254 8255 ASSERT((tcp->tcp_family == AF_INET && 8256 tcp->tcp_ipversion == IPV4_VERSION) || 8257 (tcp->tcp_family == AF_INET6 && 8258 (tcp->tcp_ipversion == IPV4_VERSION || 8259 tcp->tcp_ipversion == IPV6_VERSION))); 8260 8261 /* 8262 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 8263 * will be close to tcp_rexmit_interval_initial. By doing this, we 8264 * allow the algorithm to adjust slowly to large fluctuations of RTT 8265 * during first few transmissions of a connection as seen in slow 8266 * links. 8267 */ 8268 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 8269 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 8270 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 8271 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 8272 tcps->tcps_conn_grace_period; 8273 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 8274 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 8275 tcp->tcp_timer_backoff = 0; 8276 tcp->tcp_ms_we_have_waited = 0; 8277 tcp->tcp_last_recv_time = lbolt; 8278 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 8279 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 8280 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 8281 8282 tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier; 8283 8284 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 8285 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 8286 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 8287 /* 8288 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 8289 * passive open. 8290 */ 8291 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 8292 8293 tcp->tcp_naglim = tcps->tcps_naglim_def; 8294 8295 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 8296 8297 tcp->tcp_mdt_hdr_head = 0; 8298 tcp->tcp_mdt_hdr_tail = 0; 8299 8300 /* Reset fusion-related fields */ 8301 tcp->tcp_fused = B_FALSE; 8302 tcp->tcp_unfusable = B_FALSE; 8303 tcp->tcp_fused_sigurg = B_FALSE; 8304 tcp->tcp_direct_sockfs = B_FALSE; 8305 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 8306 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 8307 tcp->tcp_loopback_peer = NULL; 8308 tcp->tcp_fuse_rcv_hiwater = 0; 8309 tcp->tcp_fuse_rcv_unread_hiwater = 0; 8310 tcp->tcp_fuse_rcv_unread_cnt = 0; 8311 8312 /* Sodirect */ 8313 tcp->tcp_sodirect = NULL; 8314 8315 /* Initialize the header template */ 8316 if (tcp->tcp_ipversion == IPV4_VERSION) { 8317 err = tcp_header_init_ipv4(tcp); 8318 } else { 8319 err = tcp_header_init_ipv6(tcp); 8320 } 8321 if (err) 8322 return (err); 8323 8324 /* 8325 * Init the window scale to the max so tcp_rwnd_set() won't pare 8326 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 8327 */ 8328 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 8329 tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat; 8330 tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat; 8331 8332 tcp->tcp_cork = B_FALSE; 8333 /* 8334 * Init the tcp_debug option. This value determines whether TCP 8335 * calls strlog() to print out debug messages. Doing this 8336 * initialization here means that this value is not inherited thru 8337 * tcp_reinit(). 8338 */ 8339 tcp->tcp_debug = tcps->tcps_dbg; 8340 8341 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 8342 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 8343 8344 return (0); 8345 } 8346 8347 /* 8348 * Initialize the IPv4 header. Loses any record of any IP options. 8349 */ 8350 static int 8351 tcp_header_init_ipv4(tcp_t *tcp) 8352 { 8353 tcph_t *tcph; 8354 uint32_t sum; 8355 conn_t *connp; 8356 tcp_stack_t *tcps = tcp->tcp_tcps; 8357 8358 /* 8359 * This is a simple initialization. If there's 8360 * already a template, it should never be too small, 8361 * so reuse it. Otherwise, allocate space for the new one. 8362 */ 8363 if (tcp->tcp_iphc == NULL) { 8364 ASSERT(tcp->tcp_iphc_len == 0); 8365 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8366 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8367 if (tcp->tcp_iphc == NULL) { 8368 tcp->tcp_iphc_len = 0; 8369 return (ENOMEM); 8370 } 8371 } 8372 8373 /* options are gone; may need a new label */ 8374 connp = tcp->tcp_connp; 8375 connp->conn_mlp_type = mlptSingle; 8376 connp->conn_ulp_labeled = !is_system_labeled(); 8377 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8378 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8379 tcp->tcp_ip6h = NULL; 8380 tcp->tcp_ipversion = IPV4_VERSION; 8381 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8382 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8383 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8384 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8385 tcp->tcp_ipha->ipha_version_and_hdr_length 8386 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8387 tcp->tcp_ipha->ipha_ident = 0; 8388 8389 tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8390 tcp->tcp_tos = 0; 8391 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8392 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8393 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8394 8395 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8396 tcp->tcp_tcph = tcph; 8397 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8398 /* 8399 * IP wants our header length in the checksum field to 8400 * allow it to perform a single pseudo-header+checksum 8401 * calculation on behalf of TCP. 8402 * Include the adjustment for a source route once IP_OPTIONS is set. 8403 */ 8404 sum = sizeof (tcph_t) + tcp->tcp_sum; 8405 sum = (sum >> 16) + (sum & 0xFFFF); 8406 U16_TO_ABE16(sum, tcph->th_sum); 8407 return (0); 8408 } 8409 8410 /* 8411 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8412 */ 8413 static int 8414 tcp_header_init_ipv6(tcp_t *tcp) 8415 { 8416 tcph_t *tcph; 8417 uint32_t sum; 8418 conn_t *connp; 8419 tcp_stack_t *tcps = tcp->tcp_tcps; 8420 8421 /* 8422 * This is a simple initialization. If there's 8423 * already a template, it should never be too small, 8424 * so reuse it. Otherwise, allocate space for the new one. 8425 * Ensure that there is enough space to "downgrade" the tcp_t 8426 * to an IPv4 tcp_t. This requires having space for a full load 8427 * of IPv4 options, as well as a full load of TCP options 8428 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8429 * than a v6 header and a TCP header with a full load of TCP options 8430 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8431 * We want to avoid reallocation in the "downgraded" case when 8432 * processing outbound IPv4 options. 8433 */ 8434 if (tcp->tcp_iphc == NULL) { 8435 ASSERT(tcp->tcp_iphc_len == 0); 8436 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8437 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8438 if (tcp->tcp_iphc == NULL) { 8439 tcp->tcp_iphc_len = 0; 8440 return (ENOMEM); 8441 } 8442 } 8443 8444 /* options are gone; may need a new label */ 8445 connp = tcp->tcp_connp; 8446 connp->conn_mlp_type = mlptSingle; 8447 connp->conn_ulp_labeled = !is_system_labeled(); 8448 8449 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8450 tcp->tcp_ipversion = IPV6_VERSION; 8451 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8452 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8453 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8454 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8455 tcp->tcp_ipha = NULL; 8456 8457 /* Initialize the header template */ 8458 8459 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8460 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8461 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8462 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit; 8463 8464 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8465 tcp->tcp_tcph = tcph; 8466 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8467 /* 8468 * IP wants our header length in the checksum field to 8469 * allow it to perform a single psuedo-header+checksum 8470 * calculation on behalf of TCP. 8471 * Include the adjustment for a source route when IPV6_RTHDR is set. 8472 */ 8473 sum = sizeof (tcph_t) + tcp->tcp_sum; 8474 sum = (sum >> 16) + (sum & 0xFFFF); 8475 U16_TO_ABE16(sum, tcph->th_sum); 8476 return (0); 8477 } 8478 8479 /* At minimum we need 8 bytes in the TCP header for the lookup */ 8480 #define ICMP_MIN_TCP_HDR 8 8481 8482 /* 8483 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8484 * passed up by IP. The message is always received on the correct tcp_t. 8485 * Assumes that IP has pulled up everything up to and including the ICMP header. 8486 */ 8487 void 8488 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8489 { 8490 icmph_t *icmph; 8491 ipha_t *ipha; 8492 int iph_hdr_length; 8493 tcph_t *tcph; 8494 boolean_t ipsec_mctl = B_FALSE; 8495 boolean_t secure; 8496 mblk_t *first_mp = mp; 8497 int32_t new_mss; 8498 uint32_t ratio; 8499 size_t mp_size = MBLKL(mp); 8500 uint32_t seg_seq; 8501 tcp_stack_t *tcps = tcp->tcp_tcps; 8502 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 8503 8504 /* Assume IP provides aligned packets - otherwise toss */ 8505 if (!OK_32PTR(mp->b_rptr)) { 8506 freemsg(mp); 8507 return; 8508 } 8509 8510 /* 8511 * Since ICMP errors are normal data marked with M_CTL when sent 8512 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8513 * packets starting with an ipsec_info_t, see ipsec_info.h. 8514 */ 8515 if ((mp_size == sizeof (ipsec_info_t)) && 8516 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8517 ASSERT(mp->b_cont != NULL); 8518 mp = mp->b_cont; 8519 /* IP should have done this */ 8520 ASSERT(OK_32PTR(mp->b_rptr)); 8521 mp_size = MBLKL(mp); 8522 ipsec_mctl = B_TRUE; 8523 } 8524 8525 /* 8526 * Verify that we have a complete outer IP header. If not, drop it. 8527 */ 8528 if (mp_size < sizeof (ipha_t)) { 8529 noticmpv4: 8530 freemsg(first_mp); 8531 return; 8532 } 8533 8534 ipha = (ipha_t *)mp->b_rptr; 8535 /* 8536 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8537 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8538 */ 8539 switch (IPH_HDR_VERSION(ipha)) { 8540 case IPV6_VERSION: 8541 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8542 return; 8543 case IPV4_VERSION: 8544 break; 8545 default: 8546 goto noticmpv4; 8547 } 8548 8549 /* Skip past the outer IP and ICMP headers */ 8550 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8551 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8552 /* 8553 * If we don't have the correct outer IP header length or if the ULP 8554 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8555 * send it upstream. 8556 */ 8557 if (iph_hdr_length < sizeof (ipha_t) || 8558 ipha->ipha_protocol != IPPROTO_ICMP || 8559 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8560 goto noticmpv4; 8561 } 8562 ipha = (ipha_t *)&icmph[1]; 8563 8564 /* Skip past the inner IP and find the ULP header */ 8565 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8566 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8567 /* 8568 * If we don't have the correct inner IP header length or if the ULP 8569 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8570 * bytes of TCP header, drop it. 8571 */ 8572 if (iph_hdr_length < sizeof (ipha_t) || 8573 ipha->ipha_protocol != IPPROTO_TCP || 8574 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8575 goto noticmpv4; 8576 } 8577 8578 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8579 if (ipsec_mctl) { 8580 secure = ipsec_in_is_secure(first_mp); 8581 } else { 8582 secure = B_FALSE; 8583 } 8584 if (secure) { 8585 /* 8586 * If we are willing to accept this in clear 8587 * we don't have to verify policy. 8588 */ 8589 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8590 if (!tcp_check_policy(tcp, first_mp, 8591 ipha, NULL, secure, ipsec_mctl)) { 8592 /* 8593 * tcp_check_policy called 8594 * ip_drop_packet() on failure. 8595 */ 8596 return; 8597 } 8598 } 8599 } 8600 } else if (ipsec_mctl) { 8601 /* 8602 * This is a hard_bound connection. IP has already 8603 * verified policy. We don't have to do it again. 8604 */ 8605 freeb(first_mp); 8606 first_mp = mp; 8607 ipsec_mctl = B_FALSE; 8608 } 8609 8610 seg_seq = ABE32_TO_U32(tcph->th_seq); 8611 /* 8612 * TCP SHOULD check that the TCP sequence number contained in 8613 * payload of the ICMP error message is within the range 8614 * SND.UNA <= SEG.SEQ < SND.NXT. 8615 */ 8616 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8617 /* 8618 * The ICMP message is bogus, just drop it. But if this is 8619 * an ICMP too big message, IP has already changed 8620 * the ire_max_frag to the bogus value. We need to change 8621 * it back. 8622 */ 8623 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && 8624 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 8625 conn_t *connp = tcp->tcp_connp; 8626 ire_t *ire; 8627 int flag; 8628 8629 if (tcp->tcp_ipversion == IPV4_VERSION) { 8630 flag = tcp->tcp_ipha-> 8631 ipha_fragment_offset_and_flags; 8632 } else { 8633 flag = 0; 8634 } 8635 mutex_enter(&connp->conn_lock); 8636 if ((ire = connp->conn_ire_cache) != NULL) { 8637 mutex_enter(&ire->ire_lock); 8638 mutex_exit(&connp->conn_lock); 8639 ire->ire_max_frag = tcp->tcp_if_mtu; 8640 ire->ire_frag_flag |= flag; 8641 mutex_exit(&ire->ire_lock); 8642 } else { 8643 mutex_exit(&connp->conn_lock); 8644 } 8645 } 8646 goto noticmpv4; 8647 } 8648 8649 switch (icmph->icmph_type) { 8650 case ICMP_DEST_UNREACHABLE: 8651 switch (icmph->icmph_code) { 8652 case ICMP_FRAGMENTATION_NEEDED: 8653 /* 8654 * Reduce the MSS based on the new MTU. This will 8655 * eliminate any fragmentation locally. 8656 * N.B. There may well be some funny side-effects on 8657 * the local send policy and the remote receive policy. 8658 * Pending further research, we provide 8659 * tcp_ignore_path_mtu just in case this proves 8660 * disastrous somewhere. 8661 * 8662 * After updating the MSS, retransmit part of the 8663 * dropped segment using the new mss by calling 8664 * tcp_wput_data(). Need to adjust all those 8665 * params to make sure tcp_wput_data() work properly. 8666 */ 8667 if (tcps->tcps_ignore_path_mtu || 8668 tcp->tcp_ipha->ipha_fragment_offset_and_flags == 0) 8669 break; 8670 8671 /* 8672 * Decrease the MSS by time stamp options 8673 * IP options and IPSEC options. tcp_hdr_len 8674 * includes time stamp option and IP option 8675 * length. Note that new_mss may be negative 8676 * if tcp_ipsec_overhead is large and the 8677 * icmph_du_mtu is the minimum value, which is 68. 8678 */ 8679 new_mss = ntohs(icmph->icmph_du_mtu) - 8680 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8681 8682 DTRACE_PROBE2(tcp__pmtu__change, tcp_t *, tcp, int, 8683 new_mss); 8684 8685 /* 8686 * Only update the MSS if the new one is 8687 * smaller than the previous one. This is 8688 * to avoid problems when getting multiple 8689 * ICMP errors for the same MTU. 8690 */ 8691 if (new_mss >= tcp->tcp_mss) 8692 break; 8693 8694 /* 8695 * Note that we are using the template header's DF 8696 * bit in the fast path sending. So we need to compare 8697 * the new mss with both tcps_mss_min and ip_pmtu_min. 8698 * And stop doing IPv4 PMTUd if new_mss is less than 8699 * MAX(tcps_mss_min, ip_pmtu_min). 8700 */ 8701 if (new_mss < tcps->tcps_mss_min || 8702 new_mss < ipst->ips_ip_pmtu_min) { 8703 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8704 0; 8705 } 8706 8707 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8708 ASSERT(ratio >= 1); 8709 tcp_mss_set(tcp, new_mss, B_TRUE); 8710 8711 /* 8712 * Make sure we have something to 8713 * send. 8714 */ 8715 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8716 (tcp->tcp_xmit_head != NULL)) { 8717 /* 8718 * Shrink tcp_cwnd in 8719 * proportion to the old MSS/new MSS. 8720 */ 8721 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8722 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8723 (tcp->tcp_unsent == 0)) { 8724 tcp->tcp_rexmit_max = tcp->tcp_fss; 8725 } else { 8726 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8727 } 8728 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8729 tcp->tcp_rexmit = B_TRUE; 8730 tcp->tcp_dupack_cnt = 0; 8731 tcp->tcp_snd_burst = TCP_CWND_SS; 8732 tcp_ss_rexmit(tcp); 8733 } 8734 break; 8735 case ICMP_PORT_UNREACHABLE: 8736 case ICMP_PROTOCOL_UNREACHABLE: 8737 switch (tcp->tcp_state) { 8738 case TCPS_SYN_SENT: 8739 case TCPS_SYN_RCVD: 8740 /* 8741 * ICMP can snipe away incipient 8742 * TCP connections as long as 8743 * seq number is same as initial 8744 * send seq number. 8745 */ 8746 if (seg_seq == tcp->tcp_iss) { 8747 (void) tcp_clean_death(tcp, 8748 ECONNREFUSED, 6); 8749 } 8750 break; 8751 } 8752 break; 8753 case ICMP_HOST_UNREACHABLE: 8754 case ICMP_NET_UNREACHABLE: 8755 /* Record the error in case we finally time out. */ 8756 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8757 tcp->tcp_client_errno = EHOSTUNREACH; 8758 else 8759 tcp->tcp_client_errno = ENETUNREACH; 8760 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8761 if (tcp->tcp_listener != NULL && 8762 tcp->tcp_listener->tcp_syn_defense) { 8763 /* 8764 * Ditch the half-open connection if we 8765 * suspect a SYN attack is under way. 8766 */ 8767 tcp_ip_ire_mark_advice(tcp); 8768 (void) tcp_clean_death(tcp, 8769 tcp->tcp_client_errno, 7); 8770 } 8771 } 8772 break; 8773 default: 8774 break; 8775 } 8776 break; 8777 case ICMP_SOURCE_QUENCH: { 8778 /* 8779 * use a global boolean to control 8780 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8781 * The default is false. 8782 */ 8783 if (tcp_icmp_source_quench) { 8784 /* 8785 * Reduce the sending rate as if we got a 8786 * retransmit timeout 8787 */ 8788 uint32_t npkt; 8789 8790 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8791 tcp->tcp_mss; 8792 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8793 tcp->tcp_cwnd = tcp->tcp_mss; 8794 tcp->tcp_cwnd_cnt = 0; 8795 } 8796 break; 8797 } 8798 } 8799 freemsg(first_mp); 8800 } 8801 8802 /* 8803 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8804 * error messages passed up by IP. 8805 * Assumes that IP has pulled up all the extension headers as well 8806 * as the ICMPv6 header. 8807 */ 8808 static void 8809 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8810 { 8811 icmp6_t *icmp6; 8812 ip6_t *ip6h; 8813 uint16_t iph_hdr_length; 8814 tcpha_t *tcpha; 8815 uint8_t *nexthdrp; 8816 uint32_t new_mss; 8817 uint32_t ratio; 8818 boolean_t secure; 8819 mblk_t *first_mp = mp; 8820 size_t mp_size; 8821 uint32_t seg_seq; 8822 tcp_stack_t *tcps = tcp->tcp_tcps; 8823 8824 /* 8825 * The caller has determined if this is an IPSEC_IN packet and 8826 * set ipsec_mctl appropriately (see tcp_icmp_error). 8827 */ 8828 if (ipsec_mctl) 8829 mp = mp->b_cont; 8830 8831 mp_size = MBLKL(mp); 8832 8833 /* 8834 * Verify that we have a complete IP header. If not, send it upstream. 8835 */ 8836 if (mp_size < sizeof (ip6_t)) { 8837 noticmpv6: 8838 freemsg(first_mp); 8839 return; 8840 } 8841 8842 /* 8843 * Verify this is an ICMPV6 packet, else send it upstream. 8844 */ 8845 ip6h = (ip6_t *)mp->b_rptr; 8846 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8847 iph_hdr_length = IPV6_HDR_LEN; 8848 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8849 &nexthdrp) || 8850 *nexthdrp != IPPROTO_ICMPV6) { 8851 goto noticmpv6; 8852 } 8853 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8854 ip6h = (ip6_t *)&icmp6[1]; 8855 /* 8856 * Verify if we have a complete ICMP and inner IP header. 8857 */ 8858 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8859 goto noticmpv6; 8860 8861 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8862 goto noticmpv6; 8863 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8864 /* 8865 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8866 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8867 * packet. 8868 */ 8869 if ((*nexthdrp != IPPROTO_TCP) || 8870 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8871 goto noticmpv6; 8872 } 8873 8874 /* 8875 * ICMP errors come on the right queue or come on 8876 * listener/global queue for detached connections and 8877 * get switched to the right queue. If it comes on the 8878 * right queue, policy check has already been done by IP 8879 * and thus free the first_mp without verifying the policy. 8880 * If it has come for a non-hard bound connection, we need 8881 * to verify policy as IP may not have done it. 8882 */ 8883 if (!tcp->tcp_hard_bound) { 8884 if (ipsec_mctl) { 8885 secure = ipsec_in_is_secure(first_mp); 8886 } else { 8887 secure = B_FALSE; 8888 } 8889 if (secure) { 8890 /* 8891 * If we are willing to accept this in clear 8892 * we don't have to verify policy. 8893 */ 8894 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8895 if (!tcp_check_policy(tcp, first_mp, 8896 NULL, ip6h, secure, ipsec_mctl)) { 8897 /* 8898 * tcp_check_policy called 8899 * ip_drop_packet() on failure. 8900 */ 8901 return; 8902 } 8903 } 8904 } 8905 } else if (ipsec_mctl) { 8906 /* 8907 * This is a hard_bound connection. IP has already 8908 * verified policy. We don't have to do it again. 8909 */ 8910 freeb(first_mp); 8911 first_mp = mp; 8912 ipsec_mctl = B_FALSE; 8913 } 8914 8915 seg_seq = ntohl(tcpha->tha_seq); 8916 /* 8917 * TCP SHOULD check that the TCP sequence number contained in 8918 * payload of the ICMP error message is within the range 8919 * SND.UNA <= SEG.SEQ < SND.NXT. 8920 */ 8921 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8922 /* 8923 * If the ICMP message is bogus, should we kill the 8924 * connection, or should we just drop the bogus ICMP 8925 * message? It would probably make more sense to just 8926 * drop the message so that if this one managed to get 8927 * in, the real connection should not suffer. 8928 */ 8929 goto noticmpv6; 8930 } 8931 8932 switch (icmp6->icmp6_type) { 8933 case ICMP6_PACKET_TOO_BIG: 8934 /* 8935 * Reduce the MSS based on the new MTU. This will 8936 * eliminate any fragmentation locally. 8937 * N.B. There may well be some funny side-effects on 8938 * the local send policy and the remote receive policy. 8939 * Pending further research, we provide 8940 * tcp_ignore_path_mtu just in case this proves 8941 * disastrous somewhere. 8942 * 8943 * After updating the MSS, retransmit part of the 8944 * dropped segment using the new mss by calling 8945 * tcp_wput_data(). Need to adjust all those 8946 * params to make sure tcp_wput_data() work properly. 8947 */ 8948 if (tcps->tcps_ignore_path_mtu) 8949 break; 8950 8951 /* 8952 * Decrease the MSS by time stamp options 8953 * IP options and IPSEC options. tcp_hdr_len 8954 * includes time stamp option and IP option 8955 * length. 8956 */ 8957 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8958 tcp->tcp_ipsec_overhead; 8959 8960 /* 8961 * Only update the MSS if the new one is 8962 * smaller than the previous one. This is 8963 * to avoid problems when getting multiple 8964 * ICMP errors for the same MTU. 8965 */ 8966 if (new_mss >= tcp->tcp_mss) 8967 break; 8968 8969 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8970 ASSERT(ratio >= 1); 8971 tcp_mss_set(tcp, new_mss, B_TRUE); 8972 8973 /* 8974 * Make sure we have something to 8975 * send. 8976 */ 8977 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8978 (tcp->tcp_xmit_head != NULL)) { 8979 /* 8980 * Shrink tcp_cwnd in 8981 * proportion to the old MSS/new MSS. 8982 */ 8983 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8984 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8985 (tcp->tcp_unsent == 0)) { 8986 tcp->tcp_rexmit_max = tcp->tcp_fss; 8987 } else { 8988 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8989 } 8990 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8991 tcp->tcp_rexmit = B_TRUE; 8992 tcp->tcp_dupack_cnt = 0; 8993 tcp->tcp_snd_burst = TCP_CWND_SS; 8994 tcp_ss_rexmit(tcp); 8995 } 8996 break; 8997 8998 case ICMP6_DST_UNREACH: 8999 switch (icmp6->icmp6_code) { 9000 case ICMP6_DST_UNREACH_NOPORT: 9001 if (((tcp->tcp_state == TCPS_SYN_SENT) || 9002 (tcp->tcp_state == TCPS_SYN_RCVD)) && 9003 (seg_seq == tcp->tcp_iss)) { 9004 (void) tcp_clean_death(tcp, 9005 ECONNREFUSED, 8); 9006 } 9007 break; 9008 9009 case ICMP6_DST_UNREACH_ADMIN: 9010 case ICMP6_DST_UNREACH_NOROUTE: 9011 case ICMP6_DST_UNREACH_BEYONDSCOPE: 9012 case ICMP6_DST_UNREACH_ADDR: 9013 /* Record the error in case we finally time out. */ 9014 tcp->tcp_client_errno = EHOSTUNREACH; 9015 if (((tcp->tcp_state == TCPS_SYN_SENT) || 9016 (tcp->tcp_state == TCPS_SYN_RCVD)) && 9017 (seg_seq == tcp->tcp_iss)) { 9018 if (tcp->tcp_listener != NULL && 9019 tcp->tcp_listener->tcp_syn_defense) { 9020 /* 9021 * Ditch the half-open connection if we 9022 * suspect a SYN attack is under way. 9023 */ 9024 tcp_ip_ire_mark_advice(tcp); 9025 (void) tcp_clean_death(tcp, 9026 tcp->tcp_client_errno, 9); 9027 } 9028 } 9029 9030 9031 break; 9032 default: 9033 break; 9034 } 9035 break; 9036 9037 case ICMP6_PARAM_PROB: 9038 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 9039 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 9040 (uchar_t *)ip6h + icmp6->icmp6_pptr == 9041 (uchar_t *)nexthdrp) { 9042 if (tcp->tcp_state == TCPS_SYN_SENT || 9043 tcp->tcp_state == TCPS_SYN_RCVD) { 9044 (void) tcp_clean_death(tcp, 9045 ECONNREFUSED, 10); 9046 } 9047 break; 9048 } 9049 break; 9050 9051 case ICMP6_TIME_EXCEEDED: 9052 default: 9053 break; 9054 } 9055 freemsg(first_mp); 9056 } 9057 9058 /* 9059 * IP recognizes seven kinds of bind requests: 9060 * 9061 * - A zero-length address binds only to the protocol number. 9062 * 9063 * - A 4-byte address is treated as a request to 9064 * validate that the address is a valid local IPv4 9065 * address, appropriate for an application to bind to. 9066 * IP does the verification, but does not make any note 9067 * of the address at this time. 9068 * 9069 * - A 16-byte address contains is treated as a request 9070 * to validate a local IPv6 address, as the 4-byte 9071 * address case above. 9072 * 9073 * - A 16-byte sockaddr_in to validate the local IPv4 address and also 9074 * use it for the inbound fanout of packets. 9075 * 9076 * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also 9077 * use it for the inbound fanout of packets. 9078 * 9079 * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout 9080 * information consisting of local and remote addresses 9081 * and ports. In this case, the addresses are both 9082 * validated as appropriate for this operation, and, if 9083 * so, the information is retained for use in the 9084 * inbound fanout. 9085 * 9086 * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 9087 * fanout information, like the 12-byte case above. 9088 * 9089 * IP will also fill in the IRE request mblk with information 9090 * regarding our peer. In all cases, we notify IP of our protocol 9091 * type by appending a single protocol byte to the bind request. 9092 */ 9093 static mblk_t * 9094 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length) 9095 { 9096 char *cp; 9097 mblk_t *mp; 9098 struct T_bind_req *tbr; 9099 ipa_conn_t *ac; 9100 ipa6_conn_t *ac6; 9101 sin_t *sin; 9102 sin6_t *sin6; 9103 9104 ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); 9105 ASSERT((tcp->tcp_family == AF_INET && 9106 tcp->tcp_ipversion == IPV4_VERSION) || 9107 (tcp->tcp_family == AF_INET6 && 9108 (tcp->tcp_ipversion == IPV4_VERSION || 9109 tcp->tcp_ipversion == IPV6_VERSION))); 9110 9111 mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); 9112 if (!mp) 9113 return (mp); 9114 mp->b_datap->db_type = M_PROTO; 9115 tbr = (struct T_bind_req *)mp->b_rptr; 9116 tbr->PRIM_type = bind_prim; 9117 tbr->ADDR_offset = sizeof (*tbr); 9118 tbr->CONIND_number = 0; 9119 tbr->ADDR_length = addr_length; 9120 cp = (char *)&tbr[1]; 9121 switch (addr_length) { 9122 case sizeof (ipa_conn_t): 9123 ASSERT(tcp->tcp_family == AF_INET); 9124 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9125 9126 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9127 if (mp->b_cont == NULL) { 9128 freemsg(mp); 9129 return (NULL); 9130 } 9131 mp->b_cont->b_wptr += sizeof (ire_t); 9132 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9133 9134 /* cp known to be 32 bit aligned */ 9135 ac = (ipa_conn_t *)cp; 9136 ac->ac_laddr = tcp->tcp_ipha->ipha_src; 9137 ac->ac_faddr = tcp->tcp_remote; 9138 ac->ac_fport = tcp->tcp_fport; 9139 ac->ac_lport = tcp->tcp_lport; 9140 tcp->tcp_hard_binding = 1; 9141 break; 9142 9143 case sizeof (ipa6_conn_t): 9144 ASSERT(tcp->tcp_family == AF_INET6); 9145 9146 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9147 if (mp->b_cont == NULL) { 9148 freemsg(mp); 9149 return (NULL); 9150 } 9151 mp->b_cont->b_wptr += sizeof (ire_t); 9152 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9153 9154 /* cp known to be 32 bit aligned */ 9155 ac6 = (ipa6_conn_t *)cp; 9156 if (tcp->tcp_ipversion == IPV4_VERSION) { 9157 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 9158 &ac6->ac6_laddr); 9159 } else { 9160 ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src; 9161 } 9162 ac6->ac6_faddr = tcp->tcp_remote_v6; 9163 ac6->ac6_fport = tcp->tcp_fport; 9164 ac6->ac6_lport = tcp->tcp_lport; 9165 tcp->tcp_hard_binding = 1; 9166 break; 9167 9168 case sizeof (sin_t): 9169 /* 9170 * NOTE: IPV6_ADDR_LEN also has same size. 9171 * Use family to discriminate. 9172 */ 9173 if (tcp->tcp_family == AF_INET) { 9174 sin = (sin_t *)cp; 9175 9176 *sin = sin_null; 9177 sin->sin_family = AF_INET; 9178 sin->sin_addr.s_addr = tcp->tcp_bound_source; 9179 sin->sin_port = tcp->tcp_lport; 9180 break; 9181 } else { 9182 *(in6_addr_t *)cp = tcp->tcp_bound_source_v6; 9183 } 9184 break; 9185 9186 case sizeof (sin6_t): 9187 ASSERT(tcp->tcp_family == AF_INET6); 9188 sin6 = (sin6_t *)cp; 9189 9190 *sin6 = sin6_null; 9191 sin6->sin6_family = AF_INET6; 9192 sin6->sin6_addr = tcp->tcp_bound_source_v6; 9193 sin6->sin6_port = tcp->tcp_lport; 9194 break; 9195 9196 case IP_ADDR_LEN: 9197 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9198 *(uint32_t *)cp = tcp->tcp_ipha->ipha_src; 9199 break; 9200 9201 } 9202 /* Add protocol number to end */ 9203 cp[addr_length] = (char)IPPROTO_TCP; 9204 mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; 9205 return (mp); 9206 } 9207 9208 /* 9209 * Notify IP that we are having trouble with this connection. IP should 9210 * blow the IRE away and start over. 9211 */ 9212 static void 9213 tcp_ip_notify(tcp_t *tcp) 9214 { 9215 struct iocblk *iocp; 9216 ipid_t *ipid; 9217 mblk_t *mp; 9218 9219 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 9220 if (tcp->tcp_ipversion == IPV6_VERSION) 9221 return; 9222 9223 mp = mkiocb(IP_IOCTL); 9224 if (mp == NULL) 9225 return; 9226 9227 iocp = (struct iocblk *)mp->b_rptr; 9228 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 9229 9230 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 9231 if (!mp->b_cont) { 9232 freeb(mp); 9233 return; 9234 } 9235 9236 ipid = (ipid_t *)mp->b_cont->b_rptr; 9237 mp->b_cont->b_wptr += iocp->ioc_count; 9238 bzero(ipid, sizeof (*ipid)); 9239 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 9240 ipid->ipid_ire_type = IRE_CACHE; 9241 ipid->ipid_addr_offset = sizeof (ipid_t); 9242 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 9243 /* 9244 * Note: in the case of source routing we want to blow away the 9245 * route to the first source route hop. 9246 */ 9247 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 9248 sizeof (tcp->tcp_ipha->ipha_dst)); 9249 9250 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 9251 } 9252 9253 /* Unlink and return any mblk that looks like it contains an ire */ 9254 static mblk_t * 9255 tcp_ire_mp(mblk_t *mp) 9256 { 9257 mblk_t *prev_mp; 9258 9259 for (;;) { 9260 prev_mp = mp; 9261 mp = mp->b_cont; 9262 if (mp == NULL) 9263 break; 9264 switch (DB_TYPE(mp)) { 9265 case IRE_DB_TYPE: 9266 case IRE_DB_REQ_TYPE: 9267 if (prev_mp != NULL) 9268 prev_mp->b_cont = mp->b_cont; 9269 mp->b_cont = NULL; 9270 return (mp); 9271 default: 9272 break; 9273 } 9274 } 9275 return (mp); 9276 } 9277 9278 /* 9279 * Timer callback routine for keepalive probe. We do a fake resend of 9280 * last ACKed byte. Then set a timer using RTO. When the timer expires, 9281 * check to see if we have heard anything from the other end for the last 9282 * RTO period. If we have, set the timer to expire for another 9283 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 9284 * RTO << 1 and check again when it expires. Keep exponentially increasing 9285 * the timeout if we have not heard from the other side. If for more than 9286 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 9287 * kill the connection unless the keepalive abort threshold is 0. In 9288 * that case, we will probe "forever." 9289 */ 9290 static void 9291 tcp_keepalive_killer(void *arg) 9292 { 9293 mblk_t *mp; 9294 conn_t *connp = (conn_t *)arg; 9295 tcp_t *tcp = connp->conn_tcp; 9296 int32_t firetime; 9297 int32_t idletime; 9298 int32_t ka_intrvl; 9299 tcp_stack_t *tcps = tcp->tcp_tcps; 9300 9301 tcp->tcp_ka_tid = 0; 9302 9303 if (tcp->tcp_fused) 9304 return; 9305 9306 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); 9307 ka_intrvl = tcp->tcp_ka_interval; 9308 9309 /* 9310 * Keepalive probe should only be sent if the application has not 9311 * done a close on the connection. 9312 */ 9313 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 9314 return; 9315 } 9316 /* Timer fired too early, restart it. */ 9317 if (tcp->tcp_state < TCPS_ESTABLISHED) { 9318 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9319 MSEC_TO_TICK(ka_intrvl)); 9320 return; 9321 } 9322 9323 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 9324 /* 9325 * If we have not heard from the other side for a long 9326 * time, kill the connection unless the keepalive abort 9327 * threshold is 0. In that case, we will probe "forever." 9328 */ 9329 if (tcp->tcp_ka_abort_thres != 0 && 9330 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 9331 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); 9332 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 9333 tcp->tcp_client_errno : ETIMEDOUT, 11); 9334 return; 9335 } 9336 9337 if (tcp->tcp_snxt == tcp->tcp_suna && 9338 idletime >= ka_intrvl) { 9339 /* Fake resend of last ACKed byte. */ 9340 mblk_t *mp1 = allocb(1, BPRI_LO); 9341 9342 if (mp1 != NULL) { 9343 *mp1->b_wptr++ = '\0'; 9344 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 9345 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 9346 freeb(mp1); 9347 /* 9348 * if allocation failed, fall through to start the 9349 * timer back. 9350 */ 9351 if (mp != NULL) { 9352 tcp_send_data(tcp, tcp->tcp_wq, mp); 9353 BUMP_MIB(&tcps->tcps_mib, 9354 tcpTimKeepaliveProbe); 9355 if (tcp->tcp_ka_last_intrvl != 0) { 9356 int max; 9357 /* 9358 * We should probe again at least 9359 * in ka_intrvl, but not more than 9360 * tcp_rexmit_interval_max. 9361 */ 9362 max = tcps->tcps_rexmit_interval_max; 9363 firetime = MIN(ka_intrvl - 1, 9364 tcp->tcp_ka_last_intrvl << 1); 9365 if (firetime > max) 9366 firetime = max; 9367 } else { 9368 firetime = tcp->tcp_rto; 9369 } 9370 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9371 tcp_keepalive_killer, 9372 MSEC_TO_TICK(firetime)); 9373 tcp->tcp_ka_last_intrvl = firetime; 9374 return; 9375 } 9376 } 9377 } else { 9378 tcp->tcp_ka_last_intrvl = 0; 9379 } 9380 9381 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 9382 if ((firetime = ka_intrvl - idletime) < 0) { 9383 firetime = ka_intrvl; 9384 } 9385 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9386 MSEC_TO_TICK(firetime)); 9387 } 9388 9389 int 9390 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 9391 { 9392 queue_t *q = tcp->tcp_rq; 9393 int32_t mss = tcp->tcp_mss; 9394 int maxpsz; 9395 9396 if (TCP_IS_DETACHED(tcp)) 9397 return (mss); 9398 9399 if (tcp->tcp_fused) { 9400 maxpsz = tcp_fuse_maxpsz_set(tcp); 9401 mss = INFPSZ; 9402 } else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) { 9403 /* 9404 * Set the sd_qn_maxpsz according to the socket send buffer 9405 * size, and sd_maxblk to INFPSZ (-1). This will essentially 9406 * instruct the stream head to copyin user data into contiguous 9407 * kernel-allocated buffers without breaking it up into smaller 9408 * chunks. We round up the buffer size to the nearest SMSS. 9409 */ 9410 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 9411 if (tcp->tcp_kssl_ctx == NULL) 9412 mss = INFPSZ; 9413 else 9414 mss = SSL3_MAX_RECORD_LEN; 9415 } else { 9416 /* 9417 * Set sd_qn_maxpsz to approx half the (receivers) buffer 9418 * (and a multiple of the mss). This instructs the stream 9419 * head to break down larger than SMSS writes into SMSS- 9420 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 9421 */ 9422 maxpsz = tcp->tcp_maxpsz * mss; 9423 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 9424 maxpsz = tcp->tcp_xmit_hiwater/2; 9425 /* Round up to nearest mss */ 9426 maxpsz = MSS_ROUNDUP(maxpsz, mss); 9427 } 9428 } 9429 (void) setmaxps(q, maxpsz); 9430 tcp->tcp_wq->q_maxpsz = maxpsz; 9431 9432 if (set_maxblk) 9433 (void) mi_set_sth_maxblk(q, mss); 9434 9435 return (mss); 9436 } 9437 9438 /* 9439 * Extract option values from a tcp header. We put any found values into the 9440 * tcpopt struct and return a bitmask saying which options were found. 9441 */ 9442 static int 9443 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 9444 { 9445 uchar_t *endp; 9446 int len; 9447 uint32_t mss; 9448 uchar_t *up = (uchar_t *)tcph; 9449 int found = 0; 9450 int32_t sack_len; 9451 tcp_seq sack_begin, sack_end; 9452 tcp_t *tcp; 9453 9454 endp = up + TCP_HDR_LENGTH(tcph); 9455 up += TCP_MIN_HEADER_LENGTH; 9456 while (up < endp) { 9457 len = endp - up; 9458 switch (*up) { 9459 case TCPOPT_EOL: 9460 break; 9461 9462 case TCPOPT_NOP: 9463 up++; 9464 continue; 9465 9466 case TCPOPT_MAXSEG: 9467 if (len < TCPOPT_MAXSEG_LEN || 9468 up[1] != TCPOPT_MAXSEG_LEN) 9469 break; 9470 9471 mss = BE16_TO_U16(up+2); 9472 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 9473 tcpopt->tcp_opt_mss = mss; 9474 found |= TCP_OPT_MSS_PRESENT; 9475 9476 up += TCPOPT_MAXSEG_LEN; 9477 continue; 9478 9479 case TCPOPT_WSCALE: 9480 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 9481 break; 9482 9483 if (up[2] > TCP_MAX_WINSHIFT) 9484 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 9485 else 9486 tcpopt->tcp_opt_wscale = up[2]; 9487 found |= TCP_OPT_WSCALE_PRESENT; 9488 9489 up += TCPOPT_WS_LEN; 9490 continue; 9491 9492 case TCPOPT_SACK_PERMITTED: 9493 if (len < TCPOPT_SACK_OK_LEN || 9494 up[1] != TCPOPT_SACK_OK_LEN) 9495 break; 9496 found |= TCP_OPT_SACK_OK_PRESENT; 9497 up += TCPOPT_SACK_OK_LEN; 9498 continue; 9499 9500 case TCPOPT_SACK: 9501 if (len <= 2 || up[1] <= 2 || len < up[1]) 9502 break; 9503 9504 /* If TCP is not interested in SACK blks... */ 9505 if ((tcp = tcpopt->tcp) == NULL) { 9506 up += up[1]; 9507 continue; 9508 } 9509 sack_len = up[1] - TCPOPT_HEADER_LEN; 9510 up += TCPOPT_HEADER_LEN; 9511 9512 /* 9513 * If the list is empty, allocate one and assume 9514 * nothing is sack'ed. 9515 */ 9516 ASSERT(tcp->tcp_sack_info != NULL); 9517 if (tcp->tcp_notsack_list == NULL) { 9518 tcp_notsack_update(&(tcp->tcp_notsack_list), 9519 tcp->tcp_suna, tcp->tcp_snxt, 9520 &(tcp->tcp_num_notsack_blk), 9521 &(tcp->tcp_cnt_notsack_list)); 9522 9523 /* 9524 * Make sure tcp_notsack_list is not NULL. 9525 * This happens when kmem_alloc(KM_NOSLEEP) 9526 * returns NULL. 9527 */ 9528 if (tcp->tcp_notsack_list == NULL) { 9529 up += sack_len; 9530 continue; 9531 } 9532 tcp->tcp_fack = tcp->tcp_suna; 9533 } 9534 9535 while (sack_len > 0) { 9536 if (up + 8 > endp) { 9537 up = endp; 9538 break; 9539 } 9540 sack_begin = BE32_TO_U32(up); 9541 up += 4; 9542 sack_end = BE32_TO_U32(up); 9543 up += 4; 9544 sack_len -= 8; 9545 /* 9546 * Bounds checking. Make sure the SACK 9547 * info is within tcp_suna and tcp_snxt. 9548 * If this SACK blk is out of bound, ignore 9549 * it but continue to parse the following 9550 * blks. 9551 */ 9552 if (SEQ_LEQ(sack_end, sack_begin) || 9553 SEQ_LT(sack_begin, tcp->tcp_suna) || 9554 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9555 continue; 9556 } 9557 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9558 sack_begin, sack_end, 9559 &(tcp->tcp_num_notsack_blk), 9560 &(tcp->tcp_cnt_notsack_list)); 9561 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9562 tcp->tcp_fack = sack_end; 9563 } 9564 } 9565 found |= TCP_OPT_SACK_PRESENT; 9566 continue; 9567 9568 case TCPOPT_TSTAMP: 9569 if (len < TCPOPT_TSTAMP_LEN || 9570 up[1] != TCPOPT_TSTAMP_LEN) 9571 break; 9572 9573 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9574 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9575 9576 found |= TCP_OPT_TSTAMP_PRESENT; 9577 9578 up += TCPOPT_TSTAMP_LEN; 9579 continue; 9580 9581 default: 9582 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9583 break; 9584 up += up[1]; 9585 continue; 9586 } 9587 break; 9588 } 9589 return (found); 9590 } 9591 9592 /* 9593 * Set the mss associated with a particular tcp based on its current value, 9594 * and a new one passed in. Observe minimums and maximums, and reset 9595 * other state variables that we want to view as multiples of mss. 9596 * 9597 * This function is called mainly because values like tcp_mss, tcp_cwnd, 9598 * highwater marks etc. need to be initialized or adjusted. 9599 * 1) From tcp_process_options() when the other side's SYN/SYN-ACK 9600 * packet arrives. 9601 * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or 9602 * ICMP6_PACKET_TOO_BIG arrives. 9603 * 3) From tcp_paws_check() if the other side stops sending the timestamp, 9604 * to increase the MSS to use the extra bytes available. 9605 * 9606 * Callers except tcp_paws_check() ensure that they only reduce mss. 9607 */ 9608 static void 9609 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss) 9610 { 9611 uint32_t mss_max; 9612 tcp_stack_t *tcps = tcp->tcp_tcps; 9613 9614 if (tcp->tcp_ipversion == IPV4_VERSION) 9615 mss_max = tcps->tcps_mss_max_ipv4; 9616 else 9617 mss_max = tcps->tcps_mss_max_ipv6; 9618 9619 if (mss < tcps->tcps_mss_min) 9620 mss = tcps->tcps_mss_min; 9621 if (mss > mss_max) 9622 mss = mss_max; 9623 /* 9624 * Unless naglim has been set by our client to 9625 * a non-mss value, force naglim to track mss. 9626 * This can help to aggregate small writes. 9627 */ 9628 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9629 tcp->tcp_naglim = mss; 9630 /* 9631 * TCP should be able to buffer at least 4 MSS data for obvious 9632 * performance reason. 9633 */ 9634 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9635 tcp->tcp_xmit_hiwater = mss << 2; 9636 9637 if (do_ss) { 9638 /* 9639 * Either the tcp_cwnd is as yet uninitialized, or mss is 9640 * changing due to a reduction in MTU, presumably as a 9641 * result of a new path component, reset cwnd to its 9642 * "initial" value, as a multiple of the new mss. 9643 */ 9644 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial); 9645 } else { 9646 /* 9647 * Called by tcp_paws_check(), the mss increased 9648 * marginally to allow use of space previously taken 9649 * by the timestamp option. It would be inappropriate 9650 * to apply slow start or tcp_init_cwnd values to 9651 * tcp_cwnd, simply adjust to a multiple of the new mss. 9652 */ 9653 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 9654 tcp->tcp_cwnd_cnt = 0; 9655 } 9656 tcp->tcp_mss = mss; 9657 (void) tcp_maxpsz_set(tcp, B_TRUE); 9658 } 9659 9660 /* For /dev/tcp aka AF_INET open */ 9661 static int 9662 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9663 { 9664 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 9665 } 9666 9667 /* For /dev/tcp6 aka AF_INET6 open */ 9668 static int 9669 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9670 { 9671 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 9672 } 9673 9674 static int 9675 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9676 boolean_t isv6) 9677 { 9678 tcp_t *tcp = NULL; 9679 conn_t *connp; 9680 int err; 9681 vmem_t *minor_arena = NULL; 9682 dev_t conn_dev; 9683 zoneid_t zoneid; 9684 tcp_stack_t *tcps = NULL; 9685 9686 if (q->q_ptr != NULL) 9687 return (0); 9688 9689 if (sflag == MODOPEN) 9690 return (EINVAL); 9691 9692 if (!(flag & SO_ACCEPTOR)) { 9693 /* 9694 * Special case for install: miniroot needs to be able to 9695 * access files via NFS as though it were always in the 9696 * global zone. 9697 */ 9698 if (credp == kcred && nfs_global_client_only != 0) { 9699 zoneid = GLOBAL_ZONEID; 9700 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 9701 netstack_tcp; 9702 ASSERT(tcps != NULL); 9703 } else { 9704 netstack_t *ns; 9705 9706 ns = netstack_find_by_cred(credp); 9707 ASSERT(ns != NULL); 9708 tcps = ns->netstack_tcp; 9709 ASSERT(tcps != NULL); 9710 9711 /* 9712 * For exclusive stacks we set the zoneid to zero 9713 * to make TCP operate as if in the global zone. 9714 */ 9715 if (tcps->tcps_netstack->netstack_stackid != 9716 GLOBAL_NETSTACKID) 9717 zoneid = GLOBAL_ZONEID; 9718 else 9719 zoneid = crgetzoneid(credp); 9720 } 9721 /* 9722 * For stackid zero this is done from strplumb.c, but 9723 * non-zero stackids are handled here. 9724 */ 9725 if (tcps->tcps_g_q == NULL && 9726 tcps->tcps_netstack->netstack_stackid != 9727 GLOBAL_NETSTACKID) { 9728 tcp_g_q_setup(tcps); 9729 } 9730 } 9731 9732 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9733 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9734 minor_arena = ip_minor_arena_la; 9735 } else { 9736 /* 9737 * Either minor numbers in the large arena were exhausted 9738 * or a non socket application is doing the open. 9739 * Try to allocate from the small arena. 9740 */ 9741 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9742 if (tcps != NULL) 9743 netstack_rele(tcps->tcps_netstack); 9744 return (EBUSY); 9745 } 9746 minor_arena = ip_minor_arena_sa; 9747 } 9748 ASSERT(minor_arena != NULL); 9749 9750 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 9751 9752 if (flag & SO_ACCEPTOR) { 9753 /* No netstack_find_by_cred, hence no netstack_rele needed */ 9754 ASSERT(tcps == NULL); 9755 q->q_qinfo = &tcp_acceptor_rinit; 9756 /* 9757 * the conn_dev and minor_arena will be subsequently used by 9758 * tcp_wput_accept() and tcpclose_accept() to figure out the 9759 * minor device number for this connection from the q_ptr. 9760 */ 9761 RD(q)->q_ptr = (void *)conn_dev; 9762 WR(q)->q_qinfo = &tcp_acceptor_winit; 9763 WR(q)->q_ptr = (void *)minor_arena; 9764 qprocson(q); 9765 return (0); 9766 } 9767 9768 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt), tcps); 9769 /* 9770 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 9771 * so we drop it by one. 9772 */ 9773 netstack_rele(tcps->tcps_netstack); 9774 if (connp == NULL) { 9775 inet_minor_free(minor_arena, conn_dev); 9776 q->q_ptr = NULL; 9777 return (ENOSR); 9778 } 9779 connp->conn_sqp = IP_SQUEUE_GET(lbolt); 9780 tcp = connp->conn_tcp; 9781 9782 q->q_ptr = WR(q)->q_ptr = connp; 9783 if (isv6) { 9784 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9785 connp->conn_send = ip_output_v6; 9786 connp->conn_af_isv6 = B_TRUE; 9787 connp->conn_pkt_isv6 = B_TRUE; 9788 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9789 tcp->tcp_ipversion = IPV6_VERSION; 9790 tcp->tcp_family = AF_INET6; 9791 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 9792 } else { 9793 connp->conn_flags |= IPCL_TCP4; 9794 connp->conn_send = ip_output; 9795 connp->conn_af_isv6 = B_FALSE; 9796 connp->conn_pkt_isv6 = B_FALSE; 9797 tcp->tcp_ipversion = IPV4_VERSION; 9798 tcp->tcp_family = AF_INET; 9799 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 9800 } 9801 9802 /* 9803 * TCP keeps a copy of cred for cache locality reasons but 9804 * we put a reference only once. If connp->conn_cred 9805 * becomes invalid, tcp_cred should also be set to NULL. 9806 */ 9807 tcp->tcp_cred = connp->conn_cred = credp; 9808 crhold(connp->conn_cred); 9809 tcp->tcp_cpid = curproc->p_pid; 9810 tcp->tcp_open_time = lbolt64; 9811 connp->conn_zoneid = zoneid; 9812 connp->conn_mlp_type = mlptSingle; 9813 connp->conn_ulp_labeled = !is_system_labeled(); 9814 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 9815 ASSERT(tcp->tcp_tcps == tcps); 9816 9817 /* 9818 * If the caller has the process-wide flag set, then default to MAC 9819 * exempt mode. This allows read-down to unlabeled hosts. 9820 */ 9821 if (getpflags(NET_MAC_AWARE, credp) != 0) 9822 connp->conn_mac_exempt = B_TRUE; 9823 9824 connp->conn_dev = conn_dev; 9825 connp->conn_minor_arena = minor_arena; 9826 9827 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 9828 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9829 9830 if (flag & SO_SOCKSTR) { 9831 /* 9832 * No need to insert a socket in tcp acceptor hash. 9833 * If it was a socket acceptor stream, we dealt with 9834 * it above. A socket listener can never accept a 9835 * connection and doesn't need acceptor_id. 9836 */ 9837 connp->conn_flags |= IPCL_SOCKET; 9838 tcp->tcp_issocket = 1; 9839 WR(q)->q_qinfo = &tcp_sock_winit; 9840 } else { 9841 #ifdef _ILP32 9842 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9843 #else 9844 tcp->tcp_acceptor_id = conn_dev; 9845 #endif /* _ILP32 */ 9846 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9847 } 9848 9849 err = tcp_init(tcp, q); 9850 if (err != 0) { 9851 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 9852 tcp_acceptor_hash_remove(tcp); 9853 CONN_DEC_REF(connp); 9854 q->q_ptr = WR(q)->q_ptr = NULL; 9855 return (err); 9856 } 9857 9858 RD(q)->q_hiwat = tcps->tcps_recv_hiwat; 9859 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 9860 9861 /* Non-zero default values */ 9862 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9863 /* 9864 * Put the ref for TCP. Ref for IP was already put 9865 * by ipcl_conn_create. Also Make the conn_t globally 9866 * visible to walkers 9867 */ 9868 mutex_enter(&connp->conn_lock); 9869 CONN_INC_REF_LOCKED(connp); 9870 ASSERT(connp->conn_ref == 2); 9871 connp->conn_state_flags &= ~CONN_INCIPIENT; 9872 mutex_exit(&connp->conn_lock); 9873 9874 qprocson(q); 9875 return (0); 9876 } 9877 9878 /* 9879 * Some TCP options can be "set" by requesting them in the option 9880 * buffer. This is needed for XTI feature test though we do not 9881 * allow it in general. We interpret that this mechanism is more 9882 * applicable to OSI protocols and need not be allowed in general. 9883 * This routine filters out options for which it is not allowed (most) 9884 * and lets through those (few) for which it is. [ The XTI interface 9885 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9886 * ever implemented will have to be allowed here ]. 9887 */ 9888 static boolean_t 9889 tcp_allow_connopt_set(int level, int name) 9890 { 9891 9892 switch (level) { 9893 case IPPROTO_TCP: 9894 switch (name) { 9895 case TCP_NODELAY: 9896 return (B_TRUE); 9897 default: 9898 return (B_FALSE); 9899 } 9900 /*NOTREACHED*/ 9901 default: 9902 return (B_FALSE); 9903 } 9904 /*NOTREACHED*/ 9905 } 9906 9907 /* 9908 * This routine gets default values of certain options whose default 9909 * values are maintained by protocol specific code 9910 */ 9911 /* ARGSUSED */ 9912 int 9913 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9914 { 9915 int32_t *i1 = (int32_t *)ptr; 9916 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 9917 9918 switch (level) { 9919 case IPPROTO_TCP: 9920 switch (name) { 9921 case TCP_NOTIFY_THRESHOLD: 9922 *i1 = tcps->tcps_ip_notify_interval; 9923 break; 9924 case TCP_ABORT_THRESHOLD: 9925 *i1 = tcps->tcps_ip_abort_interval; 9926 break; 9927 case TCP_CONN_NOTIFY_THRESHOLD: 9928 *i1 = tcps->tcps_ip_notify_cinterval; 9929 break; 9930 case TCP_CONN_ABORT_THRESHOLD: 9931 *i1 = tcps->tcps_ip_abort_cinterval; 9932 break; 9933 default: 9934 return (-1); 9935 } 9936 break; 9937 case IPPROTO_IP: 9938 switch (name) { 9939 case IP_TTL: 9940 *i1 = tcps->tcps_ipv4_ttl; 9941 break; 9942 default: 9943 return (-1); 9944 } 9945 break; 9946 case IPPROTO_IPV6: 9947 switch (name) { 9948 case IPV6_UNICAST_HOPS: 9949 *i1 = tcps->tcps_ipv6_hoplimit; 9950 break; 9951 default: 9952 return (-1); 9953 } 9954 break; 9955 default: 9956 return (-1); 9957 } 9958 return (sizeof (int)); 9959 } 9960 9961 9962 /* 9963 * TCP routine to get the values of options. 9964 */ 9965 int 9966 tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9967 { 9968 int *i1 = (int *)ptr; 9969 conn_t *connp = Q_TO_CONN(q); 9970 tcp_t *tcp = connp->conn_tcp; 9971 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9972 9973 switch (level) { 9974 case SOL_SOCKET: 9975 switch (name) { 9976 case SO_LINGER: { 9977 struct linger *lgr = (struct linger *)ptr; 9978 9979 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9980 lgr->l_linger = tcp->tcp_lingertime; 9981 } 9982 return (sizeof (struct linger)); 9983 case SO_DEBUG: 9984 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9985 break; 9986 case SO_KEEPALIVE: 9987 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9988 break; 9989 case SO_DONTROUTE: 9990 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9991 break; 9992 case SO_USELOOPBACK: 9993 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9994 break; 9995 case SO_BROADCAST: 9996 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9997 break; 9998 case SO_REUSEADDR: 9999 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 10000 break; 10001 case SO_OOBINLINE: 10002 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 10003 break; 10004 case SO_DGRAM_ERRIND: 10005 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 10006 break; 10007 case SO_TYPE: 10008 *i1 = SOCK_STREAM; 10009 break; 10010 case SO_SNDBUF: 10011 *i1 = tcp->tcp_xmit_hiwater; 10012 break; 10013 case SO_RCVBUF: 10014 *i1 = RD(q)->q_hiwat; 10015 break; 10016 case SO_SND_COPYAVOID: 10017 *i1 = tcp->tcp_snd_zcopy_on ? 10018 SO_SND_COPYAVOID : 0; 10019 break; 10020 case SO_ALLZONES: 10021 *i1 = connp->conn_allzones ? 1 : 0; 10022 break; 10023 case SO_ANON_MLP: 10024 *i1 = connp->conn_anon_mlp; 10025 break; 10026 case SO_MAC_EXEMPT: 10027 *i1 = connp->conn_mac_exempt; 10028 break; 10029 case SO_EXCLBIND: 10030 *i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0; 10031 break; 10032 case SO_PROTOTYPE: 10033 *i1 = IPPROTO_TCP; 10034 break; 10035 case SO_DOMAIN: 10036 *i1 = tcp->tcp_family; 10037 break; 10038 default: 10039 return (-1); 10040 } 10041 break; 10042 case IPPROTO_TCP: 10043 switch (name) { 10044 case TCP_NODELAY: 10045 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 10046 break; 10047 case TCP_MAXSEG: 10048 *i1 = tcp->tcp_mss; 10049 break; 10050 case TCP_NOTIFY_THRESHOLD: 10051 *i1 = (int)tcp->tcp_first_timer_threshold; 10052 break; 10053 case TCP_ABORT_THRESHOLD: 10054 *i1 = tcp->tcp_second_timer_threshold; 10055 break; 10056 case TCP_CONN_NOTIFY_THRESHOLD: 10057 *i1 = tcp->tcp_first_ctimer_threshold; 10058 break; 10059 case TCP_CONN_ABORT_THRESHOLD: 10060 *i1 = tcp->tcp_second_ctimer_threshold; 10061 break; 10062 case TCP_RECVDSTADDR: 10063 *i1 = tcp->tcp_recvdstaddr; 10064 break; 10065 case TCP_ANONPRIVBIND: 10066 *i1 = tcp->tcp_anon_priv_bind; 10067 break; 10068 case TCP_EXCLBIND: 10069 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 10070 break; 10071 case TCP_INIT_CWND: 10072 *i1 = tcp->tcp_init_cwnd; 10073 break; 10074 case TCP_KEEPALIVE_THRESHOLD: 10075 *i1 = tcp->tcp_ka_interval; 10076 break; 10077 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10078 *i1 = tcp->tcp_ka_abort_thres; 10079 break; 10080 case TCP_CORK: 10081 *i1 = tcp->tcp_cork; 10082 break; 10083 default: 10084 return (-1); 10085 } 10086 break; 10087 case IPPROTO_IP: 10088 if (tcp->tcp_family != AF_INET) 10089 return (-1); 10090 switch (name) { 10091 case IP_OPTIONS: 10092 case T_IP_OPTIONS: { 10093 /* 10094 * This is compatible with BSD in that in only return 10095 * the reverse source route with the final destination 10096 * as the last entry. The first 4 bytes of the option 10097 * will contain the final destination. 10098 */ 10099 int opt_len; 10100 10101 opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha; 10102 opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH; 10103 ASSERT(opt_len >= 0); 10104 /* Caller ensures enough space */ 10105 if (opt_len > 0) { 10106 /* 10107 * TODO: Do we have to handle getsockopt on an 10108 * initiator as well? 10109 */ 10110 return (ip_opt_get_user(tcp->tcp_ipha, ptr)); 10111 } 10112 return (0); 10113 } 10114 case IP_TOS: 10115 case T_IP_TOS: 10116 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 10117 break; 10118 case IP_TTL: 10119 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 10120 break; 10121 case IP_NEXTHOP: 10122 /* Handled at IP level */ 10123 return (-EINVAL); 10124 default: 10125 return (-1); 10126 } 10127 break; 10128 case IPPROTO_IPV6: 10129 /* 10130 * IPPROTO_IPV6 options are only supported for sockets 10131 * that are using IPv6 on the wire. 10132 */ 10133 if (tcp->tcp_ipversion != IPV6_VERSION) { 10134 return (-1); 10135 } 10136 switch (name) { 10137 case IPV6_UNICAST_HOPS: 10138 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 10139 break; /* goto sizeof (int) option return */ 10140 case IPV6_BOUND_IF: 10141 /* Zero if not set */ 10142 *i1 = tcp->tcp_bound_if; 10143 break; /* goto sizeof (int) option return */ 10144 case IPV6_RECVPKTINFO: 10145 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 10146 *i1 = 1; 10147 else 10148 *i1 = 0; 10149 break; /* goto sizeof (int) option return */ 10150 case IPV6_RECVTCLASS: 10151 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 10152 *i1 = 1; 10153 else 10154 *i1 = 0; 10155 break; /* goto sizeof (int) option return */ 10156 case IPV6_RECVHOPLIMIT: 10157 if (tcp->tcp_ipv6_recvancillary & 10158 TCP_IPV6_RECVHOPLIMIT) 10159 *i1 = 1; 10160 else 10161 *i1 = 0; 10162 break; /* goto sizeof (int) option return */ 10163 case IPV6_RECVHOPOPTS: 10164 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 10165 *i1 = 1; 10166 else 10167 *i1 = 0; 10168 break; /* goto sizeof (int) option return */ 10169 case IPV6_RECVDSTOPTS: 10170 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 10171 *i1 = 1; 10172 else 10173 *i1 = 0; 10174 break; /* goto sizeof (int) option return */ 10175 case _OLD_IPV6_RECVDSTOPTS: 10176 if (tcp->tcp_ipv6_recvancillary & 10177 TCP_OLD_IPV6_RECVDSTOPTS) 10178 *i1 = 1; 10179 else 10180 *i1 = 0; 10181 break; /* goto sizeof (int) option return */ 10182 case IPV6_RECVRTHDR: 10183 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 10184 *i1 = 1; 10185 else 10186 *i1 = 0; 10187 break; /* goto sizeof (int) option return */ 10188 case IPV6_RECVRTHDRDSTOPTS: 10189 if (tcp->tcp_ipv6_recvancillary & 10190 TCP_IPV6_RECVRTDSTOPTS) 10191 *i1 = 1; 10192 else 10193 *i1 = 0; 10194 break; /* goto sizeof (int) option return */ 10195 case IPV6_PKTINFO: { 10196 /* XXX assumes that caller has room for max size! */ 10197 struct in6_pktinfo *pkti; 10198 10199 pkti = (struct in6_pktinfo *)ptr; 10200 if (ipp->ipp_fields & IPPF_IFINDEX) 10201 pkti->ipi6_ifindex = ipp->ipp_ifindex; 10202 else 10203 pkti->ipi6_ifindex = 0; 10204 if (ipp->ipp_fields & IPPF_ADDR) 10205 pkti->ipi6_addr = ipp->ipp_addr; 10206 else 10207 pkti->ipi6_addr = ipv6_all_zeros; 10208 return (sizeof (struct in6_pktinfo)); 10209 } 10210 case IPV6_TCLASS: 10211 if (ipp->ipp_fields & IPPF_TCLASS) 10212 *i1 = ipp->ipp_tclass; 10213 else 10214 *i1 = IPV6_FLOW_TCLASS( 10215 IPV6_DEFAULT_VERS_AND_FLOW); 10216 break; /* goto sizeof (int) option return */ 10217 case IPV6_NEXTHOP: { 10218 sin6_t *sin6 = (sin6_t *)ptr; 10219 10220 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 10221 return (0); 10222 *sin6 = sin6_null; 10223 sin6->sin6_family = AF_INET6; 10224 sin6->sin6_addr = ipp->ipp_nexthop; 10225 return (sizeof (sin6_t)); 10226 } 10227 case IPV6_HOPOPTS: 10228 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 10229 return (0); 10230 if (ipp->ipp_hopoptslen <= tcp->tcp_label_len) 10231 return (0); 10232 bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len, 10233 ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len); 10234 if (tcp->tcp_label_len > 0) { 10235 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 10236 ptr[1] = (ipp->ipp_hopoptslen - 10237 tcp->tcp_label_len + 7) / 8 - 1; 10238 } 10239 return (ipp->ipp_hopoptslen - tcp->tcp_label_len); 10240 case IPV6_RTHDRDSTOPTS: 10241 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 10242 return (0); 10243 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 10244 return (ipp->ipp_rtdstoptslen); 10245 case IPV6_RTHDR: 10246 if (!(ipp->ipp_fields & IPPF_RTHDR)) 10247 return (0); 10248 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 10249 return (ipp->ipp_rthdrlen); 10250 case IPV6_DSTOPTS: 10251 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 10252 return (0); 10253 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 10254 return (ipp->ipp_dstoptslen); 10255 case IPV6_SRC_PREFERENCES: 10256 return (ip6_get_src_preferences(connp, 10257 (uint32_t *)ptr)); 10258 case IPV6_PATHMTU: { 10259 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 10260 10261 if (tcp->tcp_state < TCPS_ESTABLISHED) 10262 return (-1); 10263 10264 return (ip_fill_mtuinfo(&connp->conn_remv6, 10265 connp->conn_fport, mtuinfo, 10266 connp->conn_netstack)); 10267 } 10268 default: 10269 return (-1); 10270 } 10271 break; 10272 default: 10273 return (-1); 10274 } 10275 return (sizeof (int)); 10276 } 10277 10278 /* 10279 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 10280 * Parameters are assumed to be verified by the caller. 10281 */ 10282 /* ARGSUSED */ 10283 int 10284 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10285 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10286 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 10287 { 10288 conn_t *connp = Q_TO_CONN(q); 10289 tcp_t *tcp = connp->conn_tcp; 10290 int *i1 = (int *)invalp; 10291 boolean_t onoff = (*i1 == 0) ? 0 : 1; 10292 boolean_t checkonly; 10293 int reterr; 10294 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 10295 10296 switch (optset_context) { 10297 case SETFN_OPTCOM_CHECKONLY: 10298 checkonly = B_TRUE; 10299 /* 10300 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10301 * inlen != 0 implies value supplied and 10302 * we have to "pretend" to set it. 10303 * inlen == 0 implies that there is no 10304 * value part in T_CHECK request and just validation 10305 * done elsewhere should be enough, we just return here. 10306 */ 10307 if (inlen == 0) { 10308 *outlenp = 0; 10309 return (0); 10310 } 10311 break; 10312 case SETFN_OPTCOM_NEGOTIATE: 10313 checkonly = B_FALSE; 10314 break; 10315 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 10316 case SETFN_CONN_NEGOTIATE: 10317 checkonly = B_FALSE; 10318 /* 10319 * Negotiating local and "association-related" options 10320 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 10321 * primitives is allowed by XTI, but we choose 10322 * to not implement this style negotiation for Internet 10323 * protocols (We interpret it is a must for OSI world but 10324 * optional for Internet protocols) for all options. 10325 * [ Will do only for the few options that enable test 10326 * suites that our XTI implementation of this feature 10327 * works for transports that do allow it ] 10328 */ 10329 if (!tcp_allow_connopt_set(level, name)) { 10330 *outlenp = 0; 10331 return (EINVAL); 10332 } 10333 break; 10334 default: 10335 /* 10336 * We should never get here 10337 */ 10338 *outlenp = 0; 10339 return (EINVAL); 10340 } 10341 10342 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10343 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10344 10345 /* 10346 * For TCP, we should have no ancillary data sent down 10347 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 10348 * has to be zero. 10349 */ 10350 ASSERT(thisdg_attrs == NULL); 10351 10352 /* 10353 * For fixed length options, no sanity check 10354 * of passed in length is done. It is assumed *_optcom_req() 10355 * routines do the right thing. 10356 */ 10357 10358 switch (level) { 10359 case SOL_SOCKET: 10360 switch (name) { 10361 case SO_LINGER: { 10362 struct linger *lgr = (struct linger *)invalp; 10363 10364 if (!checkonly) { 10365 if (lgr->l_onoff) { 10366 tcp->tcp_linger = 1; 10367 tcp->tcp_lingertime = lgr->l_linger; 10368 } else { 10369 tcp->tcp_linger = 0; 10370 tcp->tcp_lingertime = 0; 10371 } 10372 /* struct copy */ 10373 *(struct linger *)outvalp = *lgr; 10374 } else { 10375 if (!lgr->l_onoff) { 10376 ((struct linger *) 10377 outvalp)->l_onoff = 0; 10378 ((struct linger *) 10379 outvalp)->l_linger = 0; 10380 } else { 10381 /* struct copy */ 10382 *(struct linger *)outvalp = *lgr; 10383 } 10384 } 10385 *outlenp = sizeof (struct linger); 10386 return (0); 10387 } 10388 case SO_DEBUG: 10389 if (!checkonly) 10390 tcp->tcp_debug = onoff; 10391 break; 10392 case SO_KEEPALIVE: 10393 if (checkonly) { 10394 /* T_CHECK case */ 10395 break; 10396 } 10397 10398 if (!onoff) { 10399 if (tcp->tcp_ka_enabled) { 10400 if (tcp->tcp_ka_tid != 0) { 10401 (void) TCP_TIMER_CANCEL(tcp, 10402 tcp->tcp_ka_tid); 10403 tcp->tcp_ka_tid = 0; 10404 } 10405 tcp->tcp_ka_enabled = 0; 10406 } 10407 break; 10408 } 10409 if (!tcp->tcp_ka_enabled) { 10410 /* Crank up the keepalive timer */ 10411 tcp->tcp_ka_last_intrvl = 0; 10412 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10413 tcp_keepalive_killer, 10414 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10415 tcp->tcp_ka_enabled = 1; 10416 } 10417 break; 10418 case SO_DONTROUTE: 10419 /* 10420 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are 10421 * only of interest to IP. We track them here only so 10422 * that we can report their current value. 10423 */ 10424 if (!checkonly) { 10425 tcp->tcp_dontroute = onoff; 10426 tcp->tcp_connp->conn_dontroute = onoff; 10427 } 10428 break; 10429 case SO_USELOOPBACK: 10430 if (!checkonly) { 10431 tcp->tcp_useloopback = onoff; 10432 tcp->tcp_connp->conn_loopback = onoff; 10433 } 10434 break; 10435 case SO_BROADCAST: 10436 if (!checkonly) { 10437 tcp->tcp_broadcast = onoff; 10438 tcp->tcp_connp->conn_broadcast = onoff; 10439 } 10440 break; 10441 case SO_REUSEADDR: 10442 if (!checkonly) { 10443 tcp->tcp_reuseaddr = onoff; 10444 tcp->tcp_connp->conn_reuseaddr = onoff; 10445 } 10446 break; 10447 case SO_OOBINLINE: 10448 if (!checkonly) 10449 tcp->tcp_oobinline = onoff; 10450 break; 10451 case SO_DGRAM_ERRIND: 10452 if (!checkonly) 10453 tcp->tcp_dgram_errind = onoff; 10454 break; 10455 case SO_SNDBUF: { 10456 if (*i1 > tcps->tcps_max_buf) { 10457 *outlenp = 0; 10458 return (ENOBUFS); 10459 } 10460 if (checkonly) 10461 break; 10462 10463 tcp->tcp_xmit_hiwater = *i1; 10464 if (tcps->tcps_snd_lowat_fraction != 0) 10465 tcp->tcp_xmit_lowater = 10466 tcp->tcp_xmit_hiwater / 10467 tcps->tcps_snd_lowat_fraction; 10468 (void) tcp_maxpsz_set(tcp, B_TRUE); 10469 /* 10470 * If we are flow-controlled, recheck the condition. 10471 * There are apps that increase SO_SNDBUF size when 10472 * flow-controlled (EWOULDBLOCK), and expect the flow 10473 * control condition to be lifted right away. 10474 */ 10475 mutex_enter(&tcp->tcp_non_sq_lock); 10476 if (tcp->tcp_flow_stopped && 10477 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 10478 tcp_clrqfull(tcp); 10479 } 10480 mutex_exit(&tcp->tcp_non_sq_lock); 10481 break; 10482 } 10483 case SO_RCVBUF: 10484 if (*i1 > tcps->tcps_max_buf) { 10485 *outlenp = 0; 10486 return (ENOBUFS); 10487 } 10488 /* Silently ignore zero */ 10489 if (!checkonly && *i1 != 0) { 10490 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10491 (void) tcp_rwnd_set(tcp, *i1); 10492 } 10493 /* 10494 * XXX should we return the rwnd here 10495 * and tcp_opt_get ? 10496 */ 10497 break; 10498 case SO_SND_COPYAVOID: 10499 if (!checkonly) { 10500 /* we only allow enable at most once for now */ 10501 if (tcp->tcp_loopback || 10502 (tcp->tcp_kssl_ctx != NULL) || 10503 (!tcp->tcp_snd_zcopy_aware && 10504 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10505 *outlenp = 0; 10506 return (EOPNOTSUPP); 10507 } 10508 tcp->tcp_snd_zcopy_aware = 1; 10509 } 10510 break; 10511 case SO_ALLZONES: 10512 /* Pass option along to IP level for handling */ 10513 return (-EINVAL); 10514 case SO_ANON_MLP: 10515 /* Pass option along to IP level for handling */ 10516 return (-EINVAL); 10517 case SO_MAC_EXEMPT: 10518 /* Pass option along to IP level for handling */ 10519 return (-EINVAL); 10520 case SO_EXCLBIND: 10521 if (!checkonly) 10522 tcp->tcp_exclbind = onoff; 10523 break; 10524 default: 10525 *outlenp = 0; 10526 return (EINVAL); 10527 } 10528 break; 10529 case IPPROTO_TCP: 10530 switch (name) { 10531 case TCP_NODELAY: 10532 if (!checkonly) 10533 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10534 break; 10535 case TCP_NOTIFY_THRESHOLD: 10536 if (!checkonly) 10537 tcp->tcp_first_timer_threshold = *i1; 10538 break; 10539 case TCP_ABORT_THRESHOLD: 10540 if (!checkonly) 10541 tcp->tcp_second_timer_threshold = *i1; 10542 break; 10543 case TCP_CONN_NOTIFY_THRESHOLD: 10544 if (!checkonly) 10545 tcp->tcp_first_ctimer_threshold = *i1; 10546 break; 10547 case TCP_CONN_ABORT_THRESHOLD: 10548 if (!checkonly) 10549 tcp->tcp_second_ctimer_threshold = *i1; 10550 break; 10551 case TCP_RECVDSTADDR: 10552 if (tcp->tcp_state > TCPS_LISTEN) 10553 return (EOPNOTSUPP); 10554 if (!checkonly) 10555 tcp->tcp_recvdstaddr = onoff; 10556 break; 10557 case TCP_ANONPRIVBIND: 10558 if ((reterr = secpolicy_net_privaddr(cr, 0, 10559 IPPROTO_TCP)) != 0) { 10560 *outlenp = 0; 10561 return (reterr); 10562 } 10563 if (!checkonly) { 10564 tcp->tcp_anon_priv_bind = onoff; 10565 } 10566 break; 10567 case TCP_EXCLBIND: 10568 if (!checkonly) 10569 tcp->tcp_exclbind = onoff; 10570 break; /* goto sizeof (int) option return */ 10571 case TCP_INIT_CWND: { 10572 uint32_t init_cwnd = *((uint32_t *)invalp); 10573 10574 if (checkonly) 10575 break; 10576 10577 /* 10578 * Only allow socket with network configuration 10579 * privilege to set the initial cwnd to be larger 10580 * than allowed by RFC 3390. 10581 */ 10582 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10583 tcp->tcp_init_cwnd = init_cwnd; 10584 break; 10585 } 10586 if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { 10587 *outlenp = 0; 10588 return (reterr); 10589 } 10590 if (init_cwnd > TCP_MAX_INIT_CWND) { 10591 *outlenp = 0; 10592 return (EINVAL); 10593 } 10594 tcp->tcp_init_cwnd = init_cwnd; 10595 break; 10596 } 10597 case TCP_KEEPALIVE_THRESHOLD: 10598 if (checkonly) 10599 break; 10600 10601 if (*i1 < tcps->tcps_keepalive_interval_low || 10602 *i1 > tcps->tcps_keepalive_interval_high) { 10603 *outlenp = 0; 10604 return (EINVAL); 10605 } 10606 if (*i1 != tcp->tcp_ka_interval) { 10607 tcp->tcp_ka_interval = *i1; 10608 /* 10609 * Check if we need to restart the 10610 * keepalive timer. 10611 */ 10612 if (tcp->tcp_ka_tid != 0) { 10613 ASSERT(tcp->tcp_ka_enabled); 10614 (void) TCP_TIMER_CANCEL(tcp, 10615 tcp->tcp_ka_tid); 10616 tcp->tcp_ka_last_intrvl = 0; 10617 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10618 tcp_keepalive_killer, 10619 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10620 } 10621 } 10622 break; 10623 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10624 if (!checkonly) { 10625 if (*i1 < 10626 tcps->tcps_keepalive_abort_interval_low || 10627 *i1 > 10628 tcps->tcps_keepalive_abort_interval_high) { 10629 *outlenp = 0; 10630 return (EINVAL); 10631 } 10632 tcp->tcp_ka_abort_thres = *i1; 10633 } 10634 break; 10635 case TCP_CORK: 10636 if (!checkonly) { 10637 /* 10638 * if tcp->tcp_cork was set and is now 10639 * being unset, we have to make sure that 10640 * the remaining data gets sent out. Also 10641 * unset tcp->tcp_cork so that tcp_wput_data() 10642 * can send data even if it is less than mss 10643 */ 10644 if (tcp->tcp_cork && onoff == 0 && 10645 tcp->tcp_unsent > 0) { 10646 tcp->tcp_cork = B_FALSE; 10647 tcp_wput_data(tcp, NULL, B_FALSE); 10648 } 10649 tcp->tcp_cork = onoff; 10650 } 10651 break; 10652 default: 10653 *outlenp = 0; 10654 return (EINVAL); 10655 } 10656 break; 10657 case IPPROTO_IP: 10658 if (tcp->tcp_family != AF_INET) { 10659 *outlenp = 0; 10660 return (ENOPROTOOPT); 10661 } 10662 switch (name) { 10663 case IP_OPTIONS: 10664 case T_IP_OPTIONS: 10665 reterr = tcp_opt_set_header(tcp, checkonly, 10666 invalp, inlen); 10667 if (reterr) { 10668 *outlenp = 0; 10669 return (reterr); 10670 } 10671 /* OK return - copy input buffer into output buffer */ 10672 if (invalp != outvalp) { 10673 /* don't trust bcopy for identical src/dst */ 10674 bcopy(invalp, outvalp, inlen); 10675 } 10676 *outlenp = inlen; 10677 return (0); 10678 case IP_TOS: 10679 case T_IP_TOS: 10680 if (!checkonly) { 10681 tcp->tcp_ipha->ipha_type_of_service = 10682 (uchar_t)*i1; 10683 tcp->tcp_tos = (uchar_t)*i1; 10684 } 10685 break; 10686 case IP_TTL: 10687 if (!checkonly) { 10688 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10689 tcp->tcp_ttl = (uchar_t)*i1; 10690 } 10691 break; 10692 case IP_BOUND_IF: 10693 case IP_NEXTHOP: 10694 /* Handled at the IP level */ 10695 return (-EINVAL); 10696 case IP_SEC_OPT: 10697 /* 10698 * We should not allow policy setting after 10699 * we start listening for connections. 10700 */ 10701 if (tcp->tcp_state == TCPS_LISTEN) { 10702 return (EINVAL); 10703 } else { 10704 /* Handled at the IP level */ 10705 return (-EINVAL); 10706 } 10707 default: 10708 *outlenp = 0; 10709 return (EINVAL); 10710 } 10711 break; 10712 case IPPROTO_IPV6: { 10713 ip6_pkt_t *ipp; 10714 10715 /* 10716 * IPPROTO_IPV6 options are only supported for sockets 10717 * that are using IPv6 on the wire. 10718 */ 10719 if (tcp->tcp_ipversion != IPV6_VERSION) { 10720 *outlenp = 0; 10721 return (ENOPROTOOPT); 10722 } 10723 /* 10724 * Only sticky options; no ancillary data 10725 */ 10726 ASSERT(thisdg_attrs == NULL); 10727 ipp = &tcp->tcp_sticky_ipp; 10728 10729 switch (name) { 10730 case IPV6_UNICAST_HOPS: 10731 /* -1 means use default */ 10732 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10733 *outlenp = 0; 10734 return (EINVAL); 10735 } 10736 if (!checkonly) { 10737 if (*i1 == -1) { 10738 tcp->tcp_ip6h->ip6_hops = 10739 ipp->ipp_unicast_hops = 10740 (uint8_t)tcps->tcps_ipv6_hoplimit; 10741 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10742 /* Pass modified value to IP. */ 10743 *i1 = tcp->tcp_ip6h->ip6_hops; 10744 } else { 10745 tcp->tcp_ip6h->ip6_hops = 10746 ipp->ipp_unicast_hops = 10747 (uint8_t)*i1; 10748 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10749 } 10750 reterr = tcp_build_hdrs(q, tcp); 10751 if (reterr != 0) 10752 return (reterr); 10753 } 10754 break; 10755 case IPV6_BOUND_IF: 10756 if (!checkonly) { 10757 int error = 0; 10758 10759 tcp->tcp_bound_if = *i1; 10760 error = ip_opt_set_ill(tcp->tcp_connp, *i1, 10761 B_TRUE, checkonly, level, name, mblk); 10762 if (error != 0) { 10763 *outlenp = 0; 10764 return (error); 10765 } 10766 } 10767 break; 10768 /* 10769 * Set boolean switches for ancillary data delivery 10770 */ 10771 case IPV6_RECVPKTINFO: 10772 if (!checkonly) { 10773 if (onoff) 10774 tcp->tcp_ipv6_recvancillary |= 10775 TCP_IPV6_RECVPKTINFO; 10776 else 10777 tcp->tcp_ipv6_recvancillary &= 10778 ~TCP_IPV6_RECVPKTINFO; 10779 /* Force it to be sent up with the next msg */ 10780 tcp->tcp_recvifindex = 0; 10781 } 10782 break; 10783 case IPV6_RECVTCLASS: 10784 if (!checkonly) { 10785 if (onoff) 10786 tcp->tcp_ipv6_recvancillary |= 10787 TCP_IPV6_RECVTCLASS; 10788 else 10789 tcp->tcp_ipv6_recvancillary &= 10790 ~TCP_IPV6_RECVTCLASS; 10791 } 10792 break; 10793 case IPV6_RECVHOPLIMIT: 10794 if (!checkonly) { 10795 if (onoff) 10796 tcp->tcp_ipv6_recvancillary |= 10797 TCP_IPV6_RECVHOPLIMIT; 10798 else 10799 tcp->tcp_ipv6_recvancillary &= 10800 ~TCP_IPV6_RECVHOPLIMIT; 10801 /* Force it to be sent up with the next msg */ 10802 tcp->tcp_recvhops = 0xffffffffU; 10803 } 10804 break; 10805 case IPV6_RECVHOPOPTS: 10806 if (!checkonly) { 10807 if (onoff) 10808 tcp->tcp_ipv6_recvancillary |= 10809 TCP_IPV6_RECVHOPOPTS; 10810 else 10811 tcp->tcp_ipv6_recvancillary &= 10812 ~TCP_IPV6_RECVHOPOPTS; 10813 } 10814 break; 10815 case IPV6_RECVDSTOPTS: 10816 if (!checkonly) { 10817 if (onoff) 10818 tcp->tcp_ipv6_recvancillary |= 10819 TCP_IPV6_RECVDSTOPTS; 10820 else 10821 tcp->tcp_ipv6_recvancillary &= 10822 ~TCP_IPV6_RECVDSTOPTS; 10823 } 10824 break; 10825 case _OLD_IPV6_RECVDSTOPTS: 10826 if (!checkonly) { 10827 if (onoff) 10828 tcp->tcp_ipv6_recvancillary |= 10829 TCP_OLD_IPV6_RECVDSTOPTS; 10830 else 10831 tcp->tcp_ipv6_recvancillary &= 10832 ~TCP_OLD_IPV6_RECVDSTOPTS; 10833 } 10834 break; 10835 case IPV6_RECVRTHDR: 10836 if (!checkonly) { 10837 if (onoff) 10838 tcp->tcp_ipv6_recvancillary |= 10839 TCP_IPV6_RECVRTHDR; 10840 else 10841 tcp->tcp_ipv6_recvancillary &= 10842 ~TCP_IPV6_RECVRTHDR; 10843 } 10844 break; 10845 case IPV6_RECVRTHDRDSTOPTS: 10846 if (!checkonly) { 10847 if (onoff) 10848 tcp->tcp_ipv6_recvancillary |= 10849 TCP_IPV6_RECVRTDSTOPTS; 10850 else 10851 tcp->tcp_ipv6_recvancillary &= 10852 ~TCP_IPV6_RECVRTDSTOPTS; 10853 } 10854 break; 10855 case IPV6_PKTINFO: 10856 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10857 return (EINVAL); 10858 if (checkonly) 10859 break; 10860 10861 if (inlen == 0) { 10862 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10863 } else { 10864 struct in6_pktinfo *pkti; 10865 10866 pkti = (struct in6_pktinfo *)invalp; 10867 /* 10868 * RFC 3542 states that ipi6_addr must be 10869 * the unspecified address when setting the 10870 * IPV6_PKTINFO sticky socket option on a 10871 * TCP socket. 10872 */ 10873 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10874 return (EINVAL); 10875 /* 10876 * ip6_set_pktinfo() validates the source 10877 * address and interface index. 10878 */ 10879 reterr = ip6_set_pktinfo(cr, tcp->tcp_connp, 10880 pkti, mblk); 10881 if (reterr != 0) 10882 return (reterr); 10883 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10884 ipp->ipp_addr = pkti->ipi6_addr; 10885 if (ipp->ipp_ifindex != 0) 10886 ipp->ipp_fields |= IPPF_IFINDEX; 10887 else 10888 ipp->ipp_fields &= ~IPPF_IFINDEX; 10889 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10890 ipp->ipp_fields |= IPPF_ADDR; 10891 else 10892 ipp->ipp_fields &= ~IPPF_ADDR; 10893 } 10894 reterr = tcp_build_hdrs(q, tcp); 10895 if (reterr != 0) 10896 return (reterr); 10897 break; 10898 case IPV6_TCLASS: 10899 if (inlen != 0 && inlen != sizeof (int)) 10900 return (EINVAL); 10901 if (checkonly) 10902 break; 10903 10904 if (inlen == 0) { 10905 ipp->ipp_fields &= ~IPPF_TCLASS; 10906 } else { 10907 if (*i1 > 255 || *i1 < -1) 10908 return (EINVAL); 10909 if (*i1 == -1) { 10910 ipp->ipp_tclass = 0; 10911 *i1 = 0; 10912 } else { 10913 ipp->ipp_tclass = *i1; 10914 } 10915 ipp->ipp_fields |= IPPF_TCLASS; 10916 } 10917 reterr = tcp_build_hdrs(q, tcp); 10918 if (reterr != 0) 10919 return (reterr); 10920 break; 10921 case IPV6_NEXTHOP: 10922 /* 10923 * IP will verify that the nexthop is reachable 10924 * and fail for sticky options. 10925 */ 10926 if (inlen != 0 && inlen != sizeof (sin6_t)) 10927 return (EINVAL); 10928 if (checkonly) 10929 break; 10930 10931 if (inlen == 0) { 10932 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10933 } else { 10934 sin6_t *sin6 = (sin6_t *)invalp; 10935 10936 if (sin6->sin6_family != AF_INET6) 10937 return (EAFNOSUPPORT); 10938 if (IN6_IS_ADDR_V4MAPPED( 10939 &sin6->sin6_addr)) 10940 return (EADDRNOTAVAIL); 10941 ipp->ipp_nexthop = sin6->sin6_addr; 10942 if (!IN6_IS_ADDR_UNSPECIFIED( 10943 &ipp->ipp_nexthop)) 10944 ipp->ipp_fields |= IPPF_NEXTHOP; 10945 else 10946 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10947 } 10948 reterr = tcp_build_hdrs(q, tcp); 10949 if (reterr != 0) 10950 return (reterr); 10951 break; 10952 case IPV6_HOPOPTS: { 10953 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10954 10955 /* 10956 * Sanity checks - minimum size, size a multiple of 10957 * eight bytes, and matching size passed in. 10958 */ 10959 if (inlen != 0 && 10960 inlen != (8 * (hopts->ip6h_len + 1))) 10961 return (EINVAL); 10962 10963 if (checkonly) 10964 break; 10965 10966 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10967 (uchar_t **)&ipp->ipp_hopopts, 10968 &ipp->ipp_hopoptslen, tcp->tcp_label_len); 10969 if (reterr != 0) 10970 return (reterr); 10971 if (ipp->ipp_hopoptslen == 0) 10972 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10973 else 10974 ipp->ipp_fields |= IPPF_HOPOPTS; 10975 reterr = tcp_build_hdrs(q, tcp); 10976 if (reterr != 0) 10977 return (reterr); 10978 break; 10979 } 10980 case IPV6_RTHDRDSTOPTS: { 10981 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10982 10983 /* 10984 * Sanity checks - minimum size, size a multiple of 10985 * eight bytes, and matching size passed in. 10986 */ 10987 if (inlen != 0 && 10988 inlen != (8 * (dopts->ip6d_len + 1))) 10989 return (EINVAL); 10990 10991 if (checkonly) 10992 break; 10993 10994 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10995 (uchar_t **)&ipp->ipp_rtdstopts, 10996 &ipp->ipp_rtdstoptslen, 0); 10997 if (reterr != 0) 10998 return (reterr); 10999 if (ipp->ipp_rtdstoptslen == 0) 11000 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 11001 else 11002 ipp->ipp_fields |= IPPF_RTDSTOPTS; 11003 reterr = tcp_build_hdrs(q, tcp); 11004 if (reterr != 0) 11005 return (reterr); 11006 break; 11007 } 11008 case IPV6_DSTOPTS: { 11009 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 11010 11011 /* 11012 * Sanity checks - minimum size, size a multiple of 11013 * eight bytes, and matching size passed in. 11014 */ 11015 if (inlen != 0 && 11016 inlen != (8 * (dopts->ip6d_len + 1))) 11017 return (EINVAL); 11018 11019 if (checkonly) 11020 break; 11021 11022 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 11023 (uchar_t **)&ipp->ipp_dstopts, 11024 &ipp->ipp_dstoptslen, 0); 11025 if (reterr != 0) 11026 return (reterr); 11027 if (ipp->ipp_dstoptslen == 0) 11028 ipp->ipp_fields &= ~IPPF_DSTOPTS; 11029 else 11030 ipp->ipp_fields |= IPPF_DSTOPTS; 11031 reterr = tcp_build_hdrs(q, tcp); 11032 if (reterr != 0) 11033 return (reterr); 11034 break; 11035 } 11036 case IPV6_RTHDR: { 11037 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 11038 11039 /* 11040 * Sanity checks - minimum size, size a multiple of 11041 * eight bytes, and matching size passed in. 11042 */ 11043 if (inlen != 0 && 11044 inlen != (8 * (rt->ip6r_len + 1))) 11045 return (EINVAL); 11046 11047 if (checkonly) 11048 break; 11049 11050 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 11051 (uchar_t **)&ipp->ipp_rthdr, 11052 &ipp->ipp_rthdrlen, 0); 11053 if (reterr != 0) 11054 return (reterr); 11055 if (ipp->ipp_rthdrlen == 0) 11056 ipp->ipp_fields &= ~IPPF_RTHDR; 11057 else 11058 ipp->ipp_fields |= IPPF_RTHDR; 11059 reterr = tcp_build_hdrs(q, tcp); 11060 if (reterr != 0) 11061 return (reterr); 11062 break; 11063 } 11064 case IPV6_V6ONLY: 11065 if (!checkonly) 11066 tcp->tcp_connp->conn_ipv6_v6only = onoff; 11067 break; 11068 case IPV6_USE_MIN_MTU: 11069 if (inlen != sizeof (int)) 11070 return (EINVAL); 11071 11072 if (*i1 < -1 || *i1 > 1) 11073 return (EINVAL); 11074 11075 if (checkonly) 11076 break; 11077 11078 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 11079 ipp->ipp_use_min_mtu = *i1; 11080 break; 11081 case IPV6_BOUND_PIF: 11082 /* Handled at the IP level */ 11083 return (-EINVAL); 11084 case IPV6_SEC_OPT: 11085 /* 11086 * We should not allow policy setting after 11087 * we start listening for connections. 11088 */ 11089 if (tcp->tcp_state == TCPS_LISTEN) { 11090 return (EINVAL); 11091 } else { 11092 /* Handled at the IP level */ 11093 return (-EINVAL); 11094 } 11095 case IPV6_SRC_PREFERENCES: 11096 if (inlen != sizeof (uint32_t)) 11097 return (EINVAL); 11098 reterr = ip6_set_src_preferences(tcp->tcp_connp, 11099 *(uint32_t *)invalp); 11100 if (reterr != 0) { 11101 *outlenp = 0; 11102 return (reterr); 11103 } 11104 break; 11105 default: 11106 *outlenp = 0; 11107 return (EINVAL); 11108 } 11109 break; 11110 } /* end IPPROTO_IPV6 */ 11111 default: 11112 *outlenp = 0; 11113 return (EINVAL); 11114 } 11115 /* 11116 * Common case of OK return with outval same as inval 11117 */ 11118 if (invalp != outvalp) { 11119 /* don't trust bcopy for identical src/dst */ 11120 (void) bcopy(invalp, outvalp, inlen); 11121 } 11122 *outlenp = inlen; 11123 return (0); 11124 } 11125 11126 /* 11127 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 11128 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 11129 * headers, and the maximum size tcp header (to avoid reallocation 11130 * on the fly for additional tcp options). 11131 * Returns failure if can't allocate memory. 11132 */ 11133 static int 11134 tcp_build_hdrs(queue_t *q, tcp_t *tcp) 11135 { 11136 char *hdrs; 11137 uint_t hdrs_len; 11138 ip6i_t *ip6i; 11139 char buf[TCP_MAX_HDR_LENGTH]; 11140 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 11141 in6_addr_t src, dst; 11142 tcp_stack_t *tcps = tcp->tcp_tcps; 11143 11144 /* 11145 * save the existing tcp header and source/dest IP addresses 11146 */ 11147 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 11148 src = tcp->tcp_ip6h->ip6_src; 11149 dst = tcp->tcp_ip6h->ip6_dst; 11150 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 11151 ASSERT(hdrs_len != 0); 11152 if (hdrs_len > tcp->tcp_iphc_len) { 11153 /* Need to reallocate */ 11154 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 11155 if (hdrs == NULL) 11156 return (ENOMEM); 11157 if (tcp->tcp_iphc != NULL) { 11158 if (tcp->tcp_hdr_grown) { 11159 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 11160 } else { 11161 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 11162 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 11163 } 11164 tcp->tcp_iphc_len = 0; 11165 } 11166 ASSERT(tcp->tcp_iphc_len == 0); 11167 tcp->tcp_iphc = hdrs; 11168 tcp->tcp_iphc_len = hdrs_len; 11169 tcp->tcp_hdr_grown = B_TRUE; 11170 } 11171 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 11172 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 11173 11174 /* Set header fields not in ipp */ 11175 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 11176 ip6i = (ip6i_t *)tcp->tcp_iphc; 11177 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 11178 } else { 11179 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 11180 } 11181 /* 11182 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 11183 * 11184 * tcp->tcp_tcp_hdr_len doesn't change here. 11185 */ 11186 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 11187 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 11188 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 11189 11190 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 11191 11192 tcp->tcp_ip6h->ip6_src = src; 11193 tcp->tcp_ip6h->ip6_dst = dst; 11194 11195 /* 11196 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 11197 * the default value for TCP. 11198 */ 11199 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 11200 tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit; 11201 11202 /* 11203 * If we're setting extension headers after a connection 11204 * has been established, and if we have a routing header 11205 * among the extension headers, call ip_massage_options_v6 to 11206 * manipulate the routing header/ip6_dst set the checksum 11207 * difference in the tcp header template. 11208 * (This happens in tcp_connect_ipv6 if the routing header 11209 * is set prior to the connect.) 11210 * Set the tcp_sum to zero first in case we've cleared a 11211 * routing header or don't have one at all. 11212 */ 11213 tcp->tcp_sum = 0; 11214 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 11215 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 11216 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 11217 (uint8_t *)tcp->tcp_tcph); 11218 if (rth != NULL) { 11219 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 11220 rth, tcps->tcps_netstack); 11221 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 11222 (tcp->tcp_sum >> 16)); 11223 } 11224 } 11225 11226 /* Try to get everything in a single mblk */ 11227 (void) mi_set_sth_wroff(RD(q), hdrs_len + tcps->tcps_wroff_xtra); 11228 return (0); 11229 } 11230 11231 /* 11232 * Transfer any source route option from ipha to buf/dst in reversed form. 11233 */ 11234 static int 11235 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 11236 { 11237 ipoptp_t opts; 11238 uchar_t *opt; 11239 uint8_t optval; 11240 uint8_t optlen; 11241 uint32_t len = 0; 11242 11243 for (optval = ipoptp_first(&opts, ipha); 11244 optval != IPOPT_EOL; 11245 optval = ipoptp_next(&opts)) { 11246 opt = opts.ipoptp_cur; 11247 optlen = opts.ipoptp_len; 11248 switch (optval) { 11249 int off1, off2; 11250 case IPOPT_SSRR: 11251 case IPOPT_LSRR: 11252 11253 /* Reverse source route */ 11254 /* 11255 * First entry should be the next to last one in the 11256 * current source route (the last entry is our 11257 * address.) 11258 * The last entry should be the final destination. 11259 */ 11260 buf[IPOPT_OPTVAL] = (uint8_t)optval; 11261 buf[IPOPT_OLEN] = (uint8_t)optlen; 11262 off1 = IPOPT_MINOFF_SR - 1; 11263 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 11264 if (off2 < 0) { 11265 /* No entries in source route */ 11266 break; 11267 } 11268 bcopy(opt + off2, dst, IP_ADDR_LEN); 11269 /* 11270 * Note: use src since ipha has not had its src 11271 * and dst reversed (it is in the state it was 11272 * received. 11273 */ 11274 bcopy(&ipha->ipha_src, buf + off2, 11275 IP_ADDR_LEN); 11276 off2 -= IP_ADDR_LEN; 11277 11278 while (off2 > 0) { 11279 bcopy(opt + off2, buf + off1, 11280 IP_ADDR_LEN); 11281 off1 += IP_ADDR_LEN; 11282 off2 -= IP_ADDR_LEN; 11283 } 11284 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 11285 buf += optlen; 11286 len += optlen; 11287 break; 11288 } 11289 } 11290 done: 11291 /* Pad the resulting options */ 11292 while (len & 0x3) { 11293 *buf++ = IPOPT_EOL; 11294 len++; 11295 } 11296 return (len); 11297 } 11298 11299 11300 /* 11301 * Extract and revert a source route from ipha (if any) 11302 * and then update the relevant fields in both tcp_t and the standard header. 11303 */ 11304 static void 11305 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 11306 { 11307 char buf[TCP_MAX_HDR_LENGTH]; 11308 uint_t tcph_len; 11309 int len; 11310 11311 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 11312 len = IPH_HDR_LENGTH(ipha); 11313 if (len == IP_SIMPLE_HDR_LENGTH) 11314 /* Nothing to do */ 11315 return; 11316 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 11317 (len & 0x3)) 11318 return; 11319 11320 tcph_len = tcp->tcp_tcp_hdr_len; 11321 bcopy(tcp->tcp_tcph, buf, tcph_len); 11322 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 11323 (tcp->tcp_ipha->ipha_dst & 0xffff); 11324 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 11325 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 11326 len += IP_SIMPLE_HDR_LENGTH; 11327 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 11328 (tcp->tcp_ipha->ipha_dst & 0xffff)); 11329 if ((int)tcp->tcp_sum < 0) 11330 tcp->tcp_sum--; 11331 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 11332 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 11333 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 11334 bcopy(buf, tcp->tcp_tcph, tcph_len); 11335 tcp->tcp_ip_hdr_len = len; 11336 tcp->tcp_ipha->ipha_version_and_hdr_length = 11337 (IP_VERSION << 4) | (len >> 2); 11338 len += tcph_len; 11339 tcp->tcp_hdr_len = len; 11340 } 11341 11342 /* 11343 * Copy the standard header into its new location, 11344 * lay in the new options and then update the relevant 11345 * fields in both tcp_t and the standard header. 11346 */ 11347 static int 11348 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 11349 { 11350 uint_t tcph_len; 11351 uint8_t *ip_optp; 11352 tcph_t *new_tcph; 11353 tcp_stack_t *tcps = tcp->tcp_tcps; 11354 11355 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11356 return (EINVAL); 11357 11358 if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len) 11359 return (EINVAL); 11360 11361 if (checkonly) { 11362 /* 11363 * do not really set, just pretend to - T_CHECK 11364 */ 11365 return (0); 11366 } 11367 11368 ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 11369 if (tcp->tcp_label_len > 0) { 11370 int padlen; 11371 uint8_t opt; 11372 11373 /* convert list termination to no-ops */ 11374 padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN]; 11375 ip_optp += ip_optp[IPOPT_OLEN]; 11376 opt = len > 0 ? IPOPT_NOP : IPOPT_EOL; 11377 while (--padlen >= 0) 11378 *ip_optp++ = opt; 11379 } 11380 tcph_len = tcp->tcp_tcp_hdr_len; 11381 new_tcph = (tcph_t *)(ip_optp + len); 11382 ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len); 11383 tcp->tcp_tcph = new_tcph; 11384 bcopy(ptr, ip_optp, len); 11385 11386 len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len; 11387 11388 tcp->tcp_ip_hdr_len = len; 11389 tcp->tcp_ipha->ipha_version_and_hdr_length = 11390 (IP_VERSION << 4) | (len >> 2); 11391 tcp->tcp_hdr_len = len + tcph_len; 11392 if (!TCP_IS_DETACHED(tcp)) { 11393 /* Always allocate room for all options. */ 11394 (void) mi_set_sth_wroff(tcp->tcp_rq, 11395 TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra); 11396 } 11397 return (0); 11398 } 11399 11400 /* Get callback routine passed to nd_load by tcp_param_register */ 11401 /* ARGSUSED */ 11402 static int 11403 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 11404 { 11405 tcpparam_t *tcppa = (tcpparam_t *)cp; 11406 11407 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 11408 return (0); 11409 } 11410 11411 /* 11412 * Walk through the param array specified registering each element with the 11413 * named dispatch handler. 11414 */ 11415 static boolean_t 11416 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) 11417 { 11418 for (; cnt-- > 0; tcppa++) { 11419 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11420 if (!nd_load(ndp, tcppa->tcp_param_name, 11421 tcp_param_get, tcp_param_set, 11422 (caddr_t)tcppa)) { 11423 nd_free(ndp); 11424 return (B_FALSE); 11425 } 11426 } 11427 } 11428 tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), 11429 KM_SLEEP); 11430 bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, 11431 sizeof (tcpparam_t)); 11432 if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, 11433 tcp_param_get, tcp_param_set_aligned, 11434 (caddr_t)tcps->tcps_wroff_xtra_param)) { 11435 nd_free(ndp); 11436 return (B_FALSE); 11437 } 11438 tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t), 11439 KM_SLEEP); 11440 bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param, 11441 sizeof (tcpparam_t)); 11442 if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name, 11443 tcp_param_get, tcp_param_set_aligned, 11444 (caddr_t)tcps->tcps_mdt_head_param)) { 11445 nd_free(ndp); 11446 return (B_FALSE); 11447 } 11448 tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t), 11449 KM_SLEEP); 11450 bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param, 11451 sizeof (tcpparam_t)); 11452 if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name, 11453 tcp_param_get, tcp_param_set_aligned, 11454 (caddr_t)tcps->tcps_mdt_tail_param)) { 11455 nd_free(ndp); 11456 return (B_FALSE); 11457 } 11458 tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t), 11459 KM_SLEEP); 11460 bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param, 11461 sizeof (tcpparam_t)); 11462 if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name, 11463 tcp_param_get, tcp_param_set_aligned, 11464 (caddr_t)tcps->tcps_mdt_max_pbufs_param)) { 11465 nd_free(ndp); 11466 return (B_FALSE); 11467 } 11468 if (!nd_load(ndp, "tcp_extra_priv_ports", 11469 tcp_extra_priv_ports_get, NULL, NULL)) { 11470 nd_free(ndp); 11471 return (B_FALSE); 11472 } 11473 if (!nd_load(ndp, "tcp_extra_priv_ports_add", 11474 NULL, tcp_extra_priv_ports_add, NULL)) { 11475 nd_free(ndp); 11476 return (B_FALSE); 11477 } 11478 if (!nd_load(ndp, "tcp_extra_priv_ports_del", 11479 NULL, tcp_extra_priv_ports_del, NULL)) { 11480 nd_free(ndp); 11481 return (B_FALSE); 11482 } 11483 if (!nd_load(ndp, "tcp_status", tcp_status_report, NULL, 11484 NULL)) { 11485 nd_free(ndp); 11486 return (B_FALSE); 11487 } 11488 if (!nd_load(ndp, "tcp_bind_hash", tcp_bind_hash_report, 11489 NULL, NULL)) { 11490 nd_free(ndp); 11491 return (B_FALSE); 11492 } 11493 if (!nd_load(ndp, "tcp_listen_hash", 11494 tcp_listen_hash_report, NULL, NULL)) { 11495 nd_free(ndp); 11496 return (B_FALSE); 11497 } 11498 if (!nd_load(ndp, "tcp_conn_hash", tcp_conn_hash_report, 11499 NULL, NULL)) { 11500 nd_free(ndp); 11501 return (B_FALSE); 11502 } 11503 if (!nd_load(ndp, "tcp_acceptor_hash", 11504 tcp_acceptor_hash_report, NULL, NULL)) { 11505 nd_free(ndp); 11506 return (B_FALSE); 11507 } 11508 if (!nd_load(ndp, "tcp_1948_phrase", NULL, 11509 tcp_1948_phrase_set, NULL)) { 11510 nd_free(ndp); 11511 return (B_FALSE); 11512 } 11513 /* 11514 * Dummy ndd variables - only to convey obsolescence information 11515 * through printing of their name (no get or set routines) 11516 * XXX Remove in future releases ? 11517 */ 11518 if (!nd_load(ndp, 11519 "tcp_close_wait_interval(obsoleted - " 11520 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11521 nd_free(ndp); 11522 return (B_FALSE); 11523 } 11524 return (B_TRUE); 11525 } 11526 11527 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11528 /* ARGSUSED */ 11529 static int 11530 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11531 cred_t *cr) 11532 { 11533 long new_value; 11534 tcpparam_t *tcppa = (tcpparam_t *)cp; 11535 11536 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11537 new_value < tcppa->tcp_param_min || 11538 new_value > tcppa->tcp_param_max) { 11539 return (EINVAL); 11540 } 11541 /* 11542 * Need to make sure new_value is a multiple of 4. If it is not, 11543 * round it up. For future 64 bit requirement, we actually make it 11544 * a multiple of 8. 11545 */ 11546 if (new_value & 0x7) { 11547 new_value = (new_value & ~0x7) + 0x8; 11548 } 11549 tcppa->tcp_param_val = new_value; 11550 return (0); 11551 } 11552 11553 /* Set callback routine passed to nd_load by tcp_param_register */ 11554 /* ARGSUSED */ 11555 static int 11556 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11557 { 11558 long new_value; 11559 tcpparam_t *tcppa = (tcpparam_t *)cp; 11560 11561 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11562 new_value < tcppa->tcp_param_min || 11563 new_value > tcppa->tcp_param_max) { 11564 return (EINVAL); 11565 } 11566 tcppa->tcp_param_val = new_value; 11567 return (0); 11568 } 11569 11570 /* 11571 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11572 * is filled, return as much as we can. The message passed in may be 11573 * multi-part, chained using b_cont. "start" is the starting sequence 11574 * number for this piece. 11575 */ 11576 static mblk_t * 11577 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11578 { 11579 uint32_t end; 11580 mblk_t *mp1; 11581 mblk_t *mp2; 11582 mblk_t *next_mp; 11583 uint32_t u1; 11584 tcp_stack_t *tcps = tcp->tcp_tcps; 11585 11586 /* Walk through all the new pieces. */ 11587 do { 11588 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11589 (uintptr_t)INT_MAX); 11590 end = start + (int)(mp->b_wptr - mp->b_rptr); 11591 next_mp = mp->b_cont; 11592 if (start == end) { 11593 /* Empty. Blast it. */ 11594 freeb(mp); 11595 continue; 11596 } 11597 mp->b_cont = NULL; 11598 TCP_REASS_SET_SEQ(mp, start); 11599 TCP_REASS_SET_END(mp, end); 11600 mp1 = tcp->tcp_reass_tail; 11601 if (!mp1) { 11602 tcp->tcp_reass_tail = mp; 11603 tcp->tcp_reass_head = mp; 11604 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11605 UPDATE_MIB(&tcps->tcps_mib, 11606 tcpInDataUnorderBytes, end - start); 11607 continue; 11608 } 11609 /* New stuff completely beyond tail? */ 11610 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11611 /* Link it on end. */ 11612 mp1->b_cont = mp; 11613 tcp->tcp_reass_tail = mp; 11614 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11615 UPDATE_MIB(&tcps->tcps_mib, 11616 tcpInDataUnorderBytes, end - start); 11617 continue; 11618 } 11619 mp1 = tcp->tcp_reass_head; 11620 u1 = TCP_REASS_SEQ(mp1); 11621 /* New stuff at the front? */ 11622 if (SEQ_LT(start, u1)) { 11623 /* Yes... Check for overlap. */ 11624 mp->b_cont = mp1; 11625 tcp->tcp_reass_head = mp; 11626 tcp_reass_elim_overlap(tcp, mp); 11627 continue; 11628 } 11629 /* 11630 * The new piece fits somewhere between the head and tail. 11631 * We find our slot, where mp1 precedes us and mp2 trails. 11632 */ 11633 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11634 u1 = TCP_REASS_SEQ(mp2); 11635 if (SEQ_LEQ(start, u1)) 11636 break; 11637 } 11638 /* Link ourselves in */ 11639 mp->b_cont = mp2; 11640 mp1->b_cont = mp; 11641 11642 /* Trim overlap with following mblk(s) first */ 11643 tcp_reass_elim_overlap(tcp, mp); 11644 11645 /* Trim overlap with preceding mblk */ 11646 tcp_reass_elim_overlap(tcp, mp1); 11647 11648 } while (start = end, mp = next_mp); 11649 mp1 = tcp->tcp_reass_head; 11650 /* Anything ready to go? */ 11651 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11652 return (NULL); 11653 /* Eat what we can off the queue */ 11654 for (;;) { 11655 mp = mp1->b_cont; 11656 end = TCP_REASS_END(mp1); 11657 TCP_REASS_SET_SEQ(mp1, 0); 11658 TCP_REASS_SET_END(mp1, 0); 11659 if (!mp) { 11660 tcp->tcp_reass_tail = NULL; 11661 break; 11662 } 11663 if (end != TCP_REASS_SEQ(mp)) { 11664 mp1->b_cont = NULL; 11665 break; 11666 } 11667 mp1 = mp; 11668 } 11669 mp1 = tcp->tcp_reass_head; 11670 tcp->tcp_reass_head = mp; 11671 return (mp1); 11672 } 11673 11674 /* Eliminate any overlap that mp may have over later mblks */ 11675 static void 11676 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11677 { 11678 uint32_t end; 11679 mblk_t *mp1; 11680 uint32_t u1; 11681 tcp_stack_t *tcps = tcp->tcp_tcps; 11682 11683 end = TCP_REASS_END(mp); 11684 while ((mp1 = mp->b_cont) != NULL) { 11685 u1 = TCP_REASS_SEQ(mp1); 11686 if (!SEQ_GT(end, u1)) 11687 break; 11688 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11689 mp->b_wptr -= end - u1; 11690 TCP_REASS_SET_END(mp, u1); 11691 BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); 11692 UPDATE_MIB(&tcps->tcps_mib, 11693 tcpInDataPartDupBytes, end - u1); 11694 break; 11695 } 11696 mp->b_cont = mp1->b_cont; 11697 TCP_REASS_SET_SEQ(mp1, 0); 11698 TCP_REASS_SET_END(mp1, 0); 11699 freeb(mp1); 11700 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 11701 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); 11702 } 11703 if (!mp1) 11704 tcp->tcp_reass_tail = mp; 11705 } 11706 11707 /* 11708 * Send up all messages queued on tcp_rcv_list. 11709 */ 11710 static uint_t 11711 tcp_rcv_drain(queue_t *q, tcp_t *tcp) 11712 { 11713 mblk_t *mp; 11714 uint_t ret = 0; 11715 uint_t thwin; 11716 #ifdef DEBUG 11717 uint_t cnt = 0; 11718 #endif 11719 tcp_stack_t *tcps = tcp->tcp_tcps; 11720 11721 /* Can't drain on an eager connection */ 11722 if (tcp->tcp_listener != NULL) 11723 return (ret); 11724 11725 /* Can't be sodirect enabled */ 11726 ASSERT(SOD_NOT_ENABLED(tcp)); 11727 11728 /* No need for the push timer now. */ 11729 if (tcp->tcp_push_tid != 0) { 11730 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11731 tcp->tcp_push_tid = 0; 11732 } 11733 11734 /* 11735 * Handle two cases here: we are currently fused or we were 11736 * previously fused and have some urgent data to be delivered 11737 * upstream. The latter happens because we either ran out of 11738 * memory or were detached and therefore sending the SIGURG was 11739 * deferred until this point. In either case we pass control 11740 * over to tcp_fuse_rcv_drain() since it may need to complete 11741 * some work. 11742 */ 11743 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11744 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 11745 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11746 &tcp->tcp_fused_sigurg_mp)) 11747 return (ret); 11748 } 11749 11750 while ((mp = tcp->tcp_rcv_list) != NULL) { 11751 tcp->tcp_rcv_list = mp->b_next; 11752 mp->b_next = NULL; 11753 #ifdef DEBUG 11754 cnt += msgdsize(mp); 11755 #endif 11756 /* Does this need SSL processing first? */ 11757 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11758 DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain, 11759 mblk_t *, mp); 11760 tcp_kssl_input(tcp, mp); 11761 continue; 11762 } 11763 putnext(q, mp); 11764 } 11765 ASSERT(cnt == tcp->tcp_rcv_cnt); 11766 tcp->tcp_rcv_last_head = NULL; 11767 tcp->tcp_rcv_last_tail = NULL; 11768 tcp->tcp_rcv_cnt = 0; 11769 11770 /* Learn the latest rwnd information that we sent to the other side. */ 11771 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11772 << tcp->tcp_rcv_ws; 11773 /* This is peer's calculated send window (our receive window). */ 11774 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11775 /* 11776 * Increase the receive window to max. But we need to do receiver 11777 * SWS avoidance. This means that we need to check the increase of 11778 * of receive window is at least 1 MSS. 11779 */ 11780 if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11781 /* 11782 * If the window that the other side knows is less than max 11783 * deferred acks segments, send an update immediately. 11784 */ 11785 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11786 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 11787 ret = TH_ACK_NEEDED; 11788 } 11789 tcp->tcp_rwnd = q->q_hiwat; 11790 } 11791 return (ret); 11792 } 11793 11794 /* 11795 * Queue data on tcp_rcv_list which is a b_next chain. 11796 * tcp_rcv_last_head/tail is the last element of this chain. 11797 * Each element of the chain is a b_cont chain. 11798 * 11799 * M_DATA messages are added to the current element. 11800 * Other messages are added as new (b_next) elements. 11801 */ 11802 void 11803 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11804 { 11805 ASSERT(seg_len == msgdsize(mp)); 11806 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11807 11808 if (tcp->tcp_rcv_list == NULL) { 11809 ASSERT(tcp->tcp_rcv_last_head == NULL); 11810 tcp->tcp_rcv_list = mp; 11811 tcp->tcp_rcv_last_head = mp; 11812 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11813 tcp->tcp_rcv_last_tail->b_cont = mp; 11814 } else { 11815 tcp->tcp_rcv_last_head->b_next = mp; 11816 tcp->tcp_rcv_last_head = mp; 11817 } 11818 11819 while (mp->b_cont) 11820 mp = mp->b_cont; 11821 11822 tcp->tcp_rcv_last_tail = mp; 11823 tcp->tcp_rcv_cnt += seg_len; 11824 tcp->tcp_rwnd -= seg_len; 11825 } 11826 11827 /* 11828 * The tcp_rcv_sod_XXX() functions enqueue data directly to the socket 11829 * above, in addition when uioa is enabled schedule an asynchronous uio 11830 * prior to enqueuing. They implement the combinhed semantics of the 11831 * tcp_rcv_XXX() functions, tcp_rcv_list push logic, and STREAMS putnext() 11832 * canputnext(), i.e. flow-control with backenable. 11833 * 11834 * tcp_sod_wakeup() is called where tcp_rcv_drain() would be called in the 11835 * non sodirect connection but as there are no tcp_tcv_list mblk_t's we deal 11836 * with the rcv_wnd and push timer and call the sodirect wakeup function. 11837 * 11838 * Must be called with sodp->sod_lockp held and will return with the lock 11839 * released. 11840 */ 11841 static uint_t 11842 tcp_rcv_sod_wakeup(tcp_t *tcp, sodirect_t *sodp) 11843 { 11844 queue_t *q = tcp->tcp_rq; 11845 uint_t thwin; 11846 tcp_stack_t *tcps = tcp->tcp_tcps; 11847 uint_t ret = 0; 11848 11849 /* Can't be an eager connection */ 11850 ASSERT(tcp->tcp_listener == NULL); 11851 11852 /* Caller must have lock held */ 11853 ASSERT(MUTEX_HELD(sodp->sod_lockp)); 11854 11855 /* Sodirect mode so must not be a tcp_rcv_list */ 11856 ASSERT(tcp->tcp_rcv_list == NULL); 11857 11858 if (SOD_QFULL(sodp)) { 11859 /* Q is full, mark Q for need backenable */ 11860 SOD_QSETBE(sodp); 11861 } 11862 /* Last advertised rwnd, i.e. rwnd last sent in a packet */ 11863 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11864 << tcp->tcp_rcv_ws; 11865 /* This is peer's calculated send window (our available rwnd). */ 11866 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11867 /* 11868 * Increase the receive window to max. But we need to do receiver 11869 * SWS avoidance. This means that we need to check the increase of 11870 * of receive window is at least 1 MSS. 11871 */ 11872 if (!SOD_QFULL(sodp) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11873 /* 11874 * If the window that the other side knows is less than max 11875 * deferred acks segments, send an update immediately. 11876 */ 11877 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11878 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 11879 ret = TH_ACK_NEEDED; 11880 } 11881 tcp->tcp_rwnd = q->q_hiwat; 11882 } 11883 11884 if (!SOD_QEMPTY(sodp)) { 11885 /* Wakeup to socket */ 11886 sodp->sod_state &= SOD_WAKE_CLR; 11887 sodp->sod_state |= SOD_WAKE_DONE; 11888 (sodp->sod_wakeup)(sodp); 11889 /* wakeup() does the mutex_ext() */ 11890 } else { 11891 /* Q is empty, no need to wake */ 11892 sodp->sod_state &= SOD_WAKE_CLR; 11893 sodp->sod_state |= SOD_WAKE_NOT; 11894 mutex_exit(sodp->sod_lockp); 11895 } 11896 11897 /* No need for the push timer now. */ 11898 if (tcp->tcp_push_tid != 0) { 11899 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11900 tcp->tcp_push_tid = 0; 11901 } 11902 11903 return (ret); 11904 } 11905 11906 /* 11907 * Called where tcp_rcv_enqueue()/putnext(RD(q)) would be. For M_DATA 11908 * mblk_t's if uioa enabled then start a uioa asynchronous copy directly 11909 * to the user-land buffer and flag the mblk_t as such. 11910 * 11911 * Also, handle tcp_rwnd. 11912 */ 11913 uint_t 11914 tcp_rcv_sod_enqueue(tcp_t *tcp, sodirect_t *sodp, mblk_t *mp, uint_t seg_len) 11915 { 11916 uioa_t *uioap = &sodp->sod_uioa; 11917 boolean_t qfull; 11918 uint_t thwin; 11919 11920 /* Can't be an eager connection */ 11921 ASSERT(tcp->tcp_listener == NULL); 11922 11923 /* Caller must have lock held */ 11924 ASSERT(MUTEX_HELD(sodp->sod_lockp)); 11925 11926 /* Sodirect mode so must not be a tcp_rcv_list */ 11927 ASSERT(tcp->tcp_rcv_list == NULL); 11928 11929 /* Passed in segment length must be equal to mblk_t chain data size */ 11930 ASSERT(seg_len == msgdsize(mp)); 11931 11932 if (DB_TYPE(mp) != M_DATA) { 11933 /* Only process M_DATA mblk_t's */ 11934 goto enq; 11935 } 11936 if (uioap->uioa_state & UIOA_ENABLED) { 11937 /* Uioa is enabled */ 11938 mblk_t *mp1 = mp; 11939 mblk_t *lmp = NULL; 11940 11941 if (seg_len > uioap->uio_resid) { 11942 /* 11943 * There isn't enough uio space for the mblk_t chain 11944 * so disable uioa such that this and any additional 11945 * mblk_t data is handled by the socket and schedule 11946 * the socket for wakeup to finish this uioa. 11947 */ 11948 uioap->uioa_state &= UIOA_CLR; 11949 uioap->uioa_state |= UIOA_FINI; 11950 if (sodp->sod_state & SOD_WAKE_NOT) { 11951 sodp->sod_state &= SOD_WAKE_CLR; 11952 sodp->sod_state |= SOD_WAKE_NEED; 11953 } 11954 goto enq; 11955 } 11956 do { 11957 uint32_t len = MBLKL(mp1); 11958 11959 if (!uioamove(mp1->b_rptr, len, UIO_READ, uioap)) { 11960 /* Scheduled, mark dblk_t as such */ 11961 DB_FLAGS(mp1) |= DBLK_UIOA; 11962 } else { 11963 /* Error, turn off async processing */ 11964 uioap->uioa_state &= UIOA_CLR; 11965 uioap->uioa_state |= UIOA_FINI; 11966 break; 11967 } 11968 lmp = mp1; 11969 } while ((mp1 = mp1->b_cont) != NULL); 11970 11971 if (mp1 != NULL || uioap->uio_resid == 0) { 11972 /* 11973 * Not all mblk_t(s) uioamoved (error) or all uio 11974 * space has been consumed so schedule the socket 11975 * for wakeup to finish this uio. 11976 */ 11977 sodp->sod_state &= SOD_WAKE_CLR; 11978 sodp->sod_state |= SOD_WAKE_NEED; 11979 11980 /* Break the mblk chain if neccessary. */ 11981 if (mp1 != NULL && lmp != NULL) { 11982 mp->b_next = mp1; 11983 lmp->b_cont = NULL; 11984 } 11985 } 11986 } else if (uioap->uioa_state & UIOA_FINI) { 11987 /* 11988 * Post UIO_ENABLED waiting for socket to finish processing 11989 * so just enqueue and update tcp_rwnd. 11990 */ 11991 if (SOD_QFULL(sodp)) 11992 tcp->tcp_rwnd -= seg_len; 11993 } else if (sodp->sod_want > 0) { 11994 /* 11995 * Uioa isn't enabled but sodirect has a pending read(). 11996 */ 11997 if (SOD_QCNT(sodp) + seg_len >= sodp->sod_want) { 11998 if (sodp->sod_state & SOD_WAKE_NOT) { 11999 /* Schedule socket for wakeup */ 12000 sodp->sod_state &= SOD_WAKE_CLR; 12001 sodp->sod_state |= SOD_WAKE_NEED; 12002 } 12003 tcp->tcp_rwnd -= seg_len; 12004 } 12005 } else if (SOD_QCNT(sodp) + seg_len >= tcp->tcp_rq->q_hiwat >> 3) { 12006 /* 12007 * No pending sodirect read() so used the default 12008 * TCP push logic to guess that a push is needed. 12009 */ 12010 if (sodp->sod_state & SOD_WAKE_NOT) { 12011 /* Schedule socket for wakeup */ 12012 sodp->sod_state &= SOD_WAKE_CLR; 12013 sodp->sod_state |= SOD_WAKE_NEED; 12014 } 12015 tcp->tcp_rwnd -= seg_len; 12016 } else { 12017 /* Just update tcp_rwnd */ 12018 tcp->tcp_rwnd -= seg_len; 12019 } 12020 enq: 12021 qfull = SOD_QFULL(sodp); 12022 12023 (sodp->sod_enqueue)(sodp, mp); 12024 12025 if (! qfull && SOD_QFULL(sodp)) { 12026 /* Wasn't QFULL, now QFULL, need back-enable */ 12027 SOD_QSETBE(sodp); 12028 } 12029 12030 /* 12031 * Check to see if remote avail swnd < mss due to delayed ACK, 12032 * first get advertised rwnd. 12033 */ 12034 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)); 12035 /* Minus delayed ACK count */ 12036 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 12037 if (thwin < tcp->tcp_mss) { 12038 /* Remote avail swnd < mss, need ACK now */ 12039 return (TH_ACK_NEEDED); 12040 } 12041 12042 return (0); 12043 } 12044 12045 /* 12046 * DEFAULT TCP ENTRY POINT via squeue on READ side. 12047 * 12048 * This is the default entry function into TCP on the read side. TCP is 12049 * always entered via squeue i.e. using squeue's for mutual exclusion. 12050 * When classifier does a lookup to find the tcp, it also puts a reference 12051 * on the conn structure associated so the tcp is guaranteed to exist 12052 * when we come here. We still need to check the state because it might 12053 * as well has been closed. The squeue processing function i.e. squeue_enter, 12054 * squeue_enter_nodrain, or squeue_drain is responsible for doing the 12055 * CONN_DEC_REF. 12056 * 12057 * Apart from the default entry point, IP also sends packets directly to 12058 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 12059 * connections. 12060 */ 12061 void 12062 tcp_input(void *arg, mblk_t *mp, void *arg2) 12063 { 12064 conn_t *connp = (conn_t *)arg; 12065 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 12066 12067 /* arg2 is the sqp */ 12068 ASSERT(arg2 != NULL); 12069 ASSERT(mp != NULL); 12070 12071 /* 12072 * Don't accept any input on a closed tcp as this TCP logically does 12073 * not exist on the system. Don't proceed further with this TCP. 12074 * For eg. this packet could trigger another close of this tcp 12075 * which would be disastrous for tcp_refcnt. tcp_close_detached / 12076 * tcp_clean_death / tcp_closei_local must be called at most once 12077 * on a TCP. In this case we need to refeed the packet into the 12078 * classifier and figure out where the packet should go. Need to 12079 * preserve the recv_ill somehow. Until we figure that out, for 12080 * now just drop the packet if we can't classify the packet. 12081 */ 12082 if (tcp->tcp_state == TCPS_CLOSED || 12083 tcp->tcp_state == TCPS_BOUND) { 12084 conn_t *new_connp; 12085 ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip; 12086 12087 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 12088 if (new_connp != NULL) { 12089 tcp_reinput(new_connp, mp, arg2); 12090 return; 12091 } 12092 /* We failed to classify. For now just drop the packet */ 12093 freemsg(mp); 12094 return; 12095 } 12096 12097 if (DB_TYPE(mp) == M_DATA) 12098 tcp_rput_data(connp, mp, arg2); 12099 else 12100 tcp_rput_common(tcp, mp); 12101 } 12102 12103 /* 12104 * The read side put procedure. 12105 * The packets passed up by ip are assume to be aligned according to 12106 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 12107 */ 12108 static void 12109 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 12110 { 12111 /* 12112 * tcp_rput_data() does not expect M_CTL except for the case 12113 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 12114 * type. Need to make sure that any other M_CTLs don't make 12115 * it to tcp_rput_data since it is not expecting any and doesn't 12116 * check for it. 12117 */ 12118 if (DB_TYPE(mp) == M_CTL) { 12119 switch (*(uint32_t *)(mp->b_rptr)) { 12120 case TCP_IOC_ABORT_CONN: 12121 /* 12122 * Handle connection abort request. 12123 */ 12124 tcp_ioctl_abort_handler(tcp, mp); 12125 return; 12126 case IPSEC_IN: 12127 /* 12128 * Only secure icmp arrive in TCP and they 12129 * don't go through data path. 12130 */ 12131 tcp_icmp_error(tcp, mp); 12132 return; 12133 case IN_PKTINFO: 12134 /* 12135 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 12136 * sockets that are receiving IPv4 traffic. tcp 12137 */ 12138 ASSERT(tcp->tcp_family == AF_INET6); 12139 ASSERT(tcp->tcp_ipv6_recvancillary & 12140 TCP_IPV6_RECVPKTINFO); 12141 tcp_rput_data(tcp->tcp_connp, mp, 12142 tcp->tcp_connp->conn_sqp); 12143 return; 12144 case MDT_IOC_INFO_UPDATE: 12145 /* 12146 * Handle Multidata information update; the 12147 * following routine will free the message. 12148 */ 12149 if (tcp->tcp_connp->conn_mdt_ok) { 12150 tcp_mdt_update(tcp, 12151 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 12152 B_FALSE); 12153 } 12154 freemsg(mp); 12155 return; 12156 case LSO_IOC_INFO_UPDATE: 12157 /* 12158 * Handle LSO information update; the following 12159 * routine will free the message. 12160 */ 12161 if (tcp->tcp_connp->conn_lso_ok) { 12162 tcp_lso_update(tcp, 12163 &((ip_lso_info_t *)mp->b_rptr)->lso_capab); 12164 } 12165 freemsg(mp); 12166 return; 12167 default: 12168 /* 12169 * tcp_icmp_err() will process the M_CTL packets. 12170 * Non-ICMP packets, if any, will be discarded in 12171 * tcp_icmp_err(). We will process the ICMP packet 12172 * even if we are TCP_IS_DETACHED_NONEAGER as the 12173 * incoming ICMP packet may result in changing 12174 * the tcp_mss, which we would need if we have 12175 * packets to retransmit. 12176 */ 12177 tcp_icmp_error(tcp, mp); 12178 return; 12179 } 12180 } 12181 12182 /* No point processing the message if tcp is already closed */ 12183 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 12184 freemsg(mp); 12185 return; 12186 } 12187 12188 tcp_rput_other(tcp, mp); 12189 } 12190 12191 12192 /* The minimum of smoothed mean deviation in RTO calculation. */ 12193 #define TCP_SD_MIN 400 12194 12195 /* 12196 * Set RTO for this connection. The formula is from Jacobson and Karels' 12197 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 12198 * are the same as those in Appendix A.2 of that paper. 12199 * 12200 * m = new measurement 12201 * sa = smoothed RTT average (8 * average estimates). 12202 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 12203 */ 12204 static void 12205 tcp_set_rto(tcp_t *tcp, clock_t rtt) 12206 { 12207 long m = TICK_TO_MSEC(rtt); 12208 clock_t sa = tcp->tcp_rtt_sa; 12209 clock_t sv = tcp->tcp_rtt_sd; 12210 clock_t rto; 12211 tcp_stack_t *tcps = tcp->tcp_tcps; 12212 12213 BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); 12214 tcp->tcp_rtt_update++; 12215 12216 /* tcp_rtt_sa is not 0 means this is a new sample. */ 12217 if (sa != 0) { 12218 /* 12219 * Update average estimator: 12220 * new rtt = 7/8 old rtt + 1/8 Error 12221 */ 12222 12223 /* m is now Error in estimate. */ 12224 m -= sa >> 3; 12225 if ((sa += m) <= 0) { 12226 /* 12227 * Don't allow the smoothed average to be negative. 12228 * We use 0 to denote reinitialization of the 12229 * variables. 12230 */ 12231 sa = 1; 12232 } 12233 12234 /* 12235 * Update deviation estimator: 12236 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 12237 */ 12238 if (m < 0) 12239 m = -m; 12240 m -= sv >> 2; 12241 sv += m; 12242 } else { 12243 /* 12244 * This follows BSD's implementation. So the reinitialized 12245 * RTO is 3 * m. We cannot go less than 2 because if the 12246 * link is bandwidth dominated, doubling the window size 12247 * during slow start means doubling the RTT. We want to be 12248 * more conservative when we reinitialize our estimates. 3 12249 * is just a convenient number. 12250 */ 12251 sa = m << 3; 12252 sv = m << 1; 12253 } 12254 if (sv < TCP_SD_MIN) { 12255 /* 12256 * We do not know that if sa captures the delay ACK 12257 * effect as in a long train of segments, a receiver 12258 * does not delay its ACKs. So set the minimum of sv 12259 * to be TCP_SD_MIN, which is default to 400 ms, twice 12260 * of BSD DATO. That means the minimum of mean 12261 * deviation is 100 ms. 12262 * 12263 */ 12264 sv = TCP_SD_MIN; 12265 } 12266 tcp->tcp_rtt_sa = sa; 12267 tcp->tcp_rtt_sd = sv; 12268 /* 12269 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 12270 * 12271 * Add tcp_rexmit_interval extra in case of extreme environment 12272 * where the algorithm fails to work. The default value of 12273 * tcp_rexmit_interval_extra should be 0. 12274 * 12275 * As we use a finer grained clock than BSD and update 12276 * RTO for every ACKs, add in another .25 of RTT to the 12277 * deviation of RTO to accomodate burstiness of 1/4 of 12278 * window size. 12279 */ 12280 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 12281 12282 if (rto > tcps->tcps_rexmit_interval_max) { 12283 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 12284 } else if (rto < tcps->tcps_rexmit_interval_min) { 12285 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 12286 } else { 12287 tcp->tcp_rto = rto; 12288 } 12289 12290 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 12291 tcp->tcp_timer_backoff = 0; 12292 } 12293 12294 /* 12295 * tcp_get_seg_mp() is called to get the pointer to a segment in the 12296 * send queue which starts at the given seq. no. 12297 * 12298 * Parameters: 12299 * tcp_t *tcp: the tcp instance pointer. 12300 * uint32_t seq: the starting seq. no of the requested segment. 12301 * int32_t *off: after the execution, *off will be the offset to 12302 * the returned mblk which points to the requested seq no. 12303 * It is the caller's responsibility to send in a non-null off. 12304 * 12305 * Return: 12306 * A mblk_t pointer pointing to the requested segment in send queue. 12307 */ 12308 static mblk_t * 12309 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 12310 { 12311 int32_t cnt; 12312 mblk_t *mp; 12313 12314 /* Defensive coding. Make sure we don't send incorrect data. */ 12315 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 12316 return (NULL); 12317 12318 cnt = seq - tcp->tcp_suna; 12319 mp = tcp->tcp_xmit_head; 12320 while (cnt > 0 && mp != NULL) { 12321 cnt -= mp->b_wptr - mp->b_rptr; 12322 if (cnt < 0) { 12323 cnt += mp->b_wptr - mp->b_rptr; 12324 break; 12325 } 12326 mp = mp->b_cont; 12327 } 12328 ASSERT(mp != NULL); 12329 *off = cnt; 12330 return (mp); 12331 } 12332 12333 /* 12334 * This function handles all retransmissions if SACK is enabled for this 12335 * connection. First it calculates how many segments can be retransmitted 12336 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 12337 * segments. A segment is eligible if sack_cnt for that segment is greater 12338 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 12339 * all eligible segments, it checks to see if TCP can send some new segments 12340 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 12341 * 12342 * Parameters: 12343 * tcp_t *tcp: the tcp structure of the connection. 12344 * uint_t *flags: in return, appropriate value will be set for 12345 * tcp_rput_data(). 12346 */ 12347 static void 12348 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 12349 { 12350 notsack_blk_t *notsack_blk; 12351 int32_t usable_swnd; 12352 int32_t mss; 12353 uint32_t seg_len; 12354 mblk_t *xmit_mp; 12355 tcp_stack_t *tcps = tcp->tcp_tcps; 12356 12357 ASSERT(tcp->tcp_sack_info != NULL); 12358 ASSERT(tcp->tcp_notsack_list != NULL); 12359 ASSERT(tcp->tcp_rexmit == B_FALSE); 12360 12361 /* Defensive coding in case there is a bug... */ 12362 if (tcp->tcp_notsack_list == NULL) { 12363 return; 12364 } 12365 notsack_blk = tcp->tcp_notsack_list; 12366 mss = tcp->tcp_mss; 12367 12368 /* 12369 * Limit the num of outstanding data in the network to be 12370 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 12371 */ 12372 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12373 12374 /* At least retransmit 1 MSS of data. */ 12375 if (usable_swnd <= 0) { 12376 usable_swnd = mss; 12377 } 12378 12379 /* Make sure no new RTT samples will be taken. */ 12380 tcp->tcp_csuna = tcp->tcp_snxt; 12381 12382 notsack_blk = tcp->tcp_notsack_list; 12383 while (usable_swnd > 0) { 12384 mblk_t *snxt_mp, *tmp_mp; 12385 tcp_seq begin = tcp->tcp_sack_snxt; 12386 tcp_seq end; 12387 int32_t off; 12388 12389 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 12390 if (SEQ_GT(notsack_blk->end, begin) && 12391 (notsack_blk->sack_cnt >= 12392 tcps->tcps_dupack_fast_retransmit)) { 12393 end = notsack_blk->end; 12394 if (SEQ_LT(begin, notsack_blk->begin)) { 12395 begin = notsack_blk->begin; 12396 } 12397 break; 12398 } 12399 } 12400 /* 12401 * All holes are filled. Manipulate tcp_cwnd to send more 12402 * if we can. Note that after the SACK recovery, tcp_cwnd is 12403 * set to tcp_cwnd_ssthresh. 12404 */ 12405 if (notsack_blk == NULL) { 12406 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12407 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 12408 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 12409 ASSERT(tcp->tcp_cwnd > 0); 12410 return; 12411 } else { 12412 usable_swnd = usable_swnd / mss; 12413 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 12414 MAX(usable_swnd * mss, mss); 12415 *flags |= TH_XMIT_NEEDED; 12416 return; 12417 } 12418 } 12419 12420 /* 12421 * Note that we may send more than usable_swnd allows here 12422 * because of round off, but no more than 1 MSS of data. 12423 */ 12424 seg_len = end - begin; 12425 if (seg_len > mss) 12426 seg_len = mss; 12427 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 12428 ASSERT(snxt_mp != NULL); 12429 /* This should not happen. Defensive coding again... */ 12430 if (snxt_mp == NULL) { 12431 return; 12432 } 12433 12434 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 12435 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 12436 if (xmit_mp == NULL) 12437 return; 12438 12439 usable_swnd -= seg_len; 12440 tcp->tcp_pipe += seg_len; 12441 tcp->tcp_sack_snxt = begin + seg_len; 12442 12443 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12444 12445 /* 12446 * Update the send timestamp to avoid false retransmission. 12447 */ 12448 snxt_mp->b_prev = (mblk_t *)lbolt; 12449 12450 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12451 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); 12452 BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); 12453 /* 12454 * Update tcp_rexmit_max to extend this SACK recovery phase. 12455 * This happens when new data sent during fast recovery is 12456 * also lost. If TCP retransmits those new data, it needs 12457 * to extend SACK recover phase to avoid starting another 12458 * fast retransmit/recovery unnecessarily. 12459 */ 12460 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 12461 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 12462 } 12463 } 12464 } 12465 12466 /* 12467 * This function handles policy checking at TCP level for non-hard_bound/ 12468 * detached connections. 12469 */ 12470 static boolean_t 12471 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 12472 boolean_t secure, boolean_t mctl_present) 12473 { 12474 ipsec_latch_t *ipl = NULL; 12475 ipsec_action_t *act = NULL; 12476 mblk_t *data_mp; 12477 ipsec_in_t *ii; 12478 const char *reason; 12479 kstat_named_t *counter; 12480 tcp_stack_t *tcps = tcp->tcp_tcps; 12481 ipsec_stack_t *ipss; 12482 ip_stack_t *ipst; 12483 12484 ASSERT(mctl_present || !secure); 12485 12486 ASSERT((ipha == NULL && ip6h != NULL) || 12487 (ip6h == NULL && ipha != NULL)); 12488 12489 /* 12490 * We don't necessarily have an ipsec_in_act action to verify 12491 * policy because of assymetrical policy where we have only 12492 * outbound policy and no inbound policy (possible with global 12493 * policy). 12494 */ 12495 if (!secure) { 12496 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 12497 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 12498 return (B_TRUE); 12499 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 12500 "tcp_check_policy", ipha, ip6h, secure, 12501 tcps->tcps_netstack); 12502 ipss = tcps->tcps_netstack->netstack_ipsec; 12503 12504 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12505 DROPPER(ipss, ipds_tcp_clear), 12506 &tcps->tcps_dropper); 12507 return (B_FALSE); 12508 } 12509 12510 /* 12511 * We have a secure packet. 12512 */ 12513 if (act == NULL) { 12514 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED, 12515 "tcp_check_policy", ipha, ip6h, secure, 12516 tcps->tcps_netstack); 12517 ipss = tcps->tcps_netstack->netstack_ipsec; 12518 12519 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12520 DROPPER(ipss, ipds_tcp_secure), 12521 &tcps->tcps_dropper); 12522 return (B_FALSE); 12523 } 12524 12525 /* 12526 * XXX This whole routine is currently incorrect. ipl should 12527 * be set to the latch pointer, but is currently not set, so 12528 * we initialize it to NULL to avoid picking up random garbage. 12529 */ 12530 if (ipl == NULL) 12531 return (B_TRUE); 12532 12533 data_mp = first_mp->b_cont; 12534 12535 ii = (ipsec_in_t *)first_mp->b_rptr; 12536 12537 ipst = tcps->tcps_netstack->netstack_ip; 12538 12539 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 12540 &counter, tcp->tcp_connp)) { 12541 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 12542 return (B_TRUE); 12543 } 12544 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 12545 "tcp inbound policy mismatch: %s, packet dropped\n", 12546 reason); 12547 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 12548 12549 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, 12550 &tcps->tcps_dropper); 12551 return (B_FALSE); 12552 } 12553 12554 /* 12555 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 12556 * retransmission after a timeout. 12557 * 12558 * To limit the number of duplicate segments, we limit the number of segment 12559 * to be sent in one time to tcp_snd_burst, the burst variable. 12560 */ 12561 static void 12562 tcp_ss_rexmit(tcp_t *tcp) 12563 { 12564 uint32_t snxt; 12565 uint32_t smax; 12566 int32_t win; 12567 int32_t mss; 12568 int32_t off; 12569 int32_t burst = tcp->tcp_snd_burst; 12570 mblk_t *snxt_mp; 12571 tcp_stack_t *tcps = tcp->tcp_tcps; 12572 12573 /* 12574 * Note that tcp_rexmit can be set even though TCP has retransmitted 12575 * all unack'ed segments. 12576 */ 12577 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 12578 smax = tcp->tcp_rexmit_max; 12579 snxt = tcp->tcp_rexmit_nxt; 12580 if (SEQ_LT(snxt, tcp->tcp_suna)) { 12581 snxt = tcp->tcp_suna; 12582 } 12583 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 12584 win -= snxt - tcp->tcp_suna; 12585 mss = tcp->tcp_mss; 12586 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 12587 12588 while (SEQ_LT(snxt, smax) && (win > 0) && 12589 (burst > 0) && (snxt_mp != NULL)) { 12590 mblk_t *xmit_mp; 12591 mblk_t *old_snxt_mp = snxt_mp; 12592 uint32_t cnt = mss; 12593 12594 if (win < cnt) { 12595 cnt = win; 12596 } 12597 if (SEQ_GT(snxt + cnt, smax)) { 12598 cnt = smax - snxt; 12599 } 12600 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 12601 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 12602 if (xmit_mp == NULL) 12603 return; 12604 12605 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12606 12607 snxt += cnt; 12608 win -= cnt; 12609 /* 12610 * Update the send timestamp to avoid false 12611 * retransmission. 12612 */ 12613 old_snxt_mp->b_prev = (mblk_t *)lbolt; 12614 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12615 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); 12616 12617 tcp->tcp_rexmit_nxt = snxt; 12618 burst--; 12619 } 12620 /* 12621 * If we have transmitted all we have at the time 12622 * we started the retranmission, we can leave 12623 * the rest of the job to tcp_wput_data(). But we 12624 * need to check the send window first. If the 12625 * win is not 0, go on with tcp_wput_data(). 12626 */ 12627 if (SEQ_LT(snxt, smax) || win == 0) { 12628 return; 12629 } 12630 } 12631 /* Only call tcp_wput_data() if there is data to be sent. */ 12632 if (tcp->tcp_unsent) { 12633 tcp_wput_data(tcp, NULL, B_FALSE); 12634 } 12635 } 12636 12637 /* 12638 * Process all TCP option in SYN segment. Note that this function should 12639 * be called after tcp_adapt_ire() is called so that the necessary info 12640 * from IRE is already set in the tcp structure. 12641 * 12642 * This function sets up the correct tcp_mss value according to the 12643 * MSS option value and our header size. It also sets up the window scale 12644 * and timestamp values, and initialize SACK info blocks. But it does not 12645 * change receive window size after setting the tcp_mss value. The caller 12646 * should do the appropriate change. 12647 */ 12648 void 12649 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 12650 { 12651 int options; 12652 tcp_opt_t tcpopt; 12653 uint32_t mss_max; 12654 char *tmp_tcph; 12655 tcp_stack_t *tcps = tcp->tcp_tcps; 12656 12657 tcpopt.tcp = NULL; 12658 options = tcp_parse_options(tcph, &tcpopt); 12659 12660 /* 12661 * Process MSS option. Note that MSS option value does not account 12662 * for IP or TCP options. This means that it is equal to MTU - minimum 12663 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 12664 * IPv6. 12665 */ 12666 if (!(options & TCP_OPT_MSS_PRESENT)) { 12667 if (tcp->tcp_ipversion == IPV4_VERSION) 12668 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 12669 else 12670 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 12671 } else { 12672 if (tcp->tcp_ipversion == IPV4_VERSION) 12673 mss_max = tcps->tcps_mss_max_ipv4; 12674 else 12675 mss_max = tcps->tcps_mss_max_ipv6; 12676 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 12677 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 12678 else if (tcpopt.tcp_opt_mss > mss_max) 12679 tcpopt.tcp_opt_mss = mss_max; 12680 } 12681 12682 /* Process Window Scale option. */ 12683 if (options & TCP_OPT_WSCALE_PRESENT) { 12684 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12685 tcp->tcp_snd_ws_ok = B_TRUE; 12686 } else { 12687 tcp->tcp_snd_ws = B_FALSE; 12688 tcp->tcp_snd_ws_ok = B_FALSE; 12689 tcp->tcp_rcv_ws = B_FALSE; 12690 } 12691 12692 /* Process Timestamp option. */ 12693 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12694 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12695 tmp_tcph = (char *)tcp->tcp_tcph; 12696 12697 tcp->tcp_snd_ts_ok = B_TRUE; 12698 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12699 tcp->tcp_last_rcv_lbolt = lbolt64; 12700 ASSERT(OK_32PTR(tmp_tcph)); 12701 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12702 12703 /* Fill in our template header with basic timestamp option. */ 12704 tmp_tcph += tcp->tcp_tcp_hdr_len; 12705 tmp_tcph[0] = TCPOPT_NOP; 12706 tmp_tcph[1] = TCPOPT_NOP; 12707 tmp_tcph[2] = TCPOPT_TSTAMP; 12708 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12709 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12710 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12711 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12712 } else { 12713 tcp->tcp_snd_ts_ok = B_FALSE; 12714 } 12715 12716 /* 12717 * Process SACK options. If SACK is enabled for this connection, 12718 * then allocate the SACK info structure. Note the following ways 12719 * when tcp_snd_sack_ok is set to true. 12720 * 12721 * For active connection: in tcp_adapt_ire() called in 12722 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12723 * is checked. 12724 * 12725 * For passive connection: in tcp_adapt_ire() called in 12726 * tcp_accept_comm(). 12727 * 12728 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12729 * That check makes sure that if we did not send a SACK OK option, 12730 * we will not enable SACK for this connection even though the other 12731 * side sends us SACK OK option. For active connection, the SACK 12732 * info structure has already been allocated. So we need to free 12733 * it if SACK is disabled. 12734 */ 12735 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12736 (tcp->tcp_snd_sack_ok || 12737 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12738 /* This should be true only in the passive case. */ 12739 if (tcp->tcp_sack_info == NULL) { 12740 ASSERT(TCP_IS_DETACHED(tcp)); 12741 tcp->tcp_sack_info = 12742 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12743 } 12744 if (tcp->tcp_sack_info == NULL) { 12745 tcp->tcp_snd_sack_ok = B_FALSE; 12746 } else { 12747 tcp->tcp_snd_sack_ok = B_TRUE; 12748 if (tcp->tcp_snd_ts_ok) { 12749 tcp->tcp_max_sack_blk = 3; 12750 } else { 12751 tcp->tcp_max_sack_blk = 4; 12752 } 12753 } 12754 } else { 12755 /* 12756 * Resetting tcp_snd_sack_ok to B_FALSE so that 12757 * no SACK info will be used for this 12758 * connection. This assumes that SACK usage 12759 * permission is negotiated. This may need 12760 * to be changed once this is clarified. 12761 */ 12762 if (tcp->tcp_sack_info != NULL) { 12763 ASSERT(tcp->tcp_notsack_list == NULL); 12764 kmem_cache_free(tcp_sack_info_cache, 12765 tcp->tcp_sack_info); 12766 tcp->tcp_sack_info = NULL; 12767 } 12768 tcp->tcp_snd_sack_ok = B_FALSE; 12769 } 12770 12771 /* 12772 * Now we know the exact TCP/IP header length, subtract 12773 * that from tcp_mss to get our side's MSS. 12774 */ 12775 tcp->tcp_mss -= tcp->tcp_hdr_len; 12776 /* 12777 * Here we assume that the other side's header size will be equal to 12778 * our header size. We calculate the real MSS accordingly. Need to 12779 * take into additional stuffs IPsec puts in. 12780 * 12781 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12782 */ 12783 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12784 ((tcp->tcp_ipversion == IPV4_VERSION ? 12785 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12786 12787 /* 12788 * Set MSS to the smaller one of both ends of the connection. 12789 * We should not have called tcp_mss_set() before, but our 12790 * side of the MSS should have been set to a proper value 12791 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12792 * STREAM head parameters properly. 12793 * 12794 * If we have a larger-than-16-bit window but the other side 12795 * didn't want to do window scale, tcp_rwnd_set() will take 12796 * care of that. 12797 */ 12798 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE); 12799 } 12800 12801 /* 12802 * Sends the T_CONN_IND to the listener. The caller calls this 12803 * functions via squeue to get inside the listener's perimeter 12804 * once the 3 way hand shake is done a T_CONN_IND needs to be 12805 * sent. As an optimization, the caller can call this directly 12806 * if listener's perimeter is same as eager's. 12807 */ 12808 /* ARGSUSED */ 12809 void 12810 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12811 { 12812 conn_t *lconnp = (conn_t *)arg; 12813 tcp_t *listener = lconnp->conn_tcp; 12814 tcp_t *tcp; 12815 struct T_conn_ind *conn_ind; 12816 ipaddr_t *addr_cache; 12817 boolean_t need_send_conn_ind = B_FALSE; 12818 tcp_stack_t *tcps = listener->tcp_tcps; 12819 12820 /* retrieve the eager */ 12821 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12822 ASSERT(conn_ind->OPT_offset != 0 && 12823 conn_ind->OPT_length == sizeof (intptr_t)); 12824 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12825 conn_ind->OPT_length); 12826 12827 /* 12828 * TLI/XTI applications will get confused by 12829 * sending eager as an option since it violates 12830 * the option semantics. So remove the eager as 12831 * option since TLI/XTI app doesn't need it anyway. 12832 */ 12833 if (!TCP_IS_SOCKET(listener)) { 12834 conn_ind->OPT_length = 0; 12835 conn_ind->OPT_offset = 0; 12836 } 12837 if (listener->tcp_state == TCPS_CLOSED || 12838 TCP_IS_DETACHED(listener)) { 12839 /* 12840 * If listener has closed, it would have caused a 12841 * a cleanup/blowoff to happen for the eager. We 12842 * just need to return. 12843 */ 12844 freemsg(mp); 12845 return; 12846 } 12847 12848 12849 /* 12850 * if the conn_req_q is full defer passing up the 12851 * T_CONN_IND until space is availabe after t_accept() 12852 * processing 12853 */ 12854 mutex_enter(&listener->tcp_eager_lock); 12855 12856 /* 12857 * Take the eager out, if it is in the list of droppable eagers 12858 * as we are here because the 3W handshake is over. 12859 */ 12860 MAKE_UNDROPPABLE(tcp); 12861 12862 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12863 tcp_t *tail; 12864 12865 /* 12866 * The eager already has an extra ref put in tcp_rput_data 12867 * so that it stays till accept comes back even though it 12868 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12869 */ 12870 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12871 listener->tcp_conn_req_cnt_q0--; 12872 listener->tcp_conn_req_cnt_q++; 12873 12874 /* Move from SYN_RCVD to ESTABLISHED list */ 12875 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12876 tcp->tcp_eager_prev_q0; 12877 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12878 tcp->tcp_eager_next_q0; 12879 tcp->tcp_eager_prev_q0 = NULL; 12880 tcp->tcp_eager_next_q0 = NULL; 12881 12882 /* 12883 * Insert at end of the queue because sockfs 12884 * sends down T_CONN_RES in chronological 12885 * order. Leaving the older conn indications 12886 * at front of the queue helps reducing search 12887 * time. 12888 */ 12889 tail = listener->tcp_eager_last_q; 12890 if (tail != NULL) 12891 tail->tcp_eager_next_q = tcp; 12892 else 12893 listener->tcp_eager_next_q = tcp; 12894 listener->tcp_eager_last_q = tcp; 12895 tcp->tcp_eager_next_q = NULL; 12896 /* 12897 * Delay sending up the T_conn_ind until we are 12898 * done with the eager. Once we have have sent up 12899 * the T_conn_ind, the accept can potentially complete 12900 * any time and release the refhold we have on the eager. 12901 */ 12902 need_send_conn_ind = B_TRUE; 12903 } else { 12904 /* 12905 * Defer connection on q0 and set deferred 12906 * connection bit true 12907 */ 12908 tcp->tcp_conn_def_q0 = B_TRUE; 12909 12910 /* take tcp out of q0 ... */ 12911 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12912 tcp->tcp_eager_next_q0; 12913 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12914 tcp->tcp_eager_prev_q0; 12915 12916 /* ... and place it at the end of q0 */ 12917 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12918 tcp->tcp_eager_next_q0 = listener; 12919 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12920 listener->tcp_eager_prev_q0 = tcp; 12921 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12922 } 12923 12924 /* we have timed out before */ 12925 if (tcp->tcp_syn_rcvd_timeout != 0) { 12926 tcp->tcp_syn_rcvd_timeout = 0; 12927 listener->tcp_syn_rcvd_timeout--; 12928 if (listener->tcp_syn_defense && 12929 listener->tcp_syn_rcvd_timeout <= 12930 (tcps->tcps_conn_req_max_q0 >> 5) && 12931 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12932 listener->tcp_last_rcv_lbolt)) { 12933 /* 12934 * Turn off the defense mode if we 12935 * believe the SYN attack is over. 12936 */ 12937 listener->tcp_syn_defense = B_FALSE; 12938 if (listener->tcp_ip_addr_cache) { 12939 kmem_free((void *)listener->tcp_ip_addr_cache, 12940 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12941 listener->tcp_ip_addr_cache = NULL; 12942 } 12943 } 12944 } 12945 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12946 if (addr_cache != NULL) { 12947 /* 12948 * We have finished a 3-way handshake with this 12949 * remote host. This proves the IP addr is good. 12950 * Cache it! 12951 */ 12952 addr_cache[IP_ADDR_CACHE_HASH( 12953 tcp->tcp_remote)] = tcp->tcp_remote; 12954 } 12955 mutex_exit(&listener->tcp_eager_lock); 12956 if (need_send_conn_ind) 12957 putnext(listener->tcp_rq, mp); 12958 } 12959 12960 mblk_t * 12961 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12962 uint_t *ifindexp, ip6_pkt_t *ippp) 12963 { 12964 ip_pktinfo_t *pinfo; 12965 ip6_t *ip6h; 12966 uchar_t *rptr; 12967 mblk_t *first_mp = mp; 12968 boolean_t mctl_present = B_FALSE; 12969 uint_t ifindex = 0; 12970 ip6_pkt_t ipp; 12971 uint_t ipvers; 12972 uint_t ip_hdr_len; 12973 tcp_stack_t *tcps = tcp->tcp_tcps; 12974 12975 rptr = mp->b_rptr; 12976 ASSERT(OK_32PTR(rptr)); 12977 ASSERT(tcp != NULL); 12978 ipp.ipp_fields = 0; 12979 12980 switch DB_TYPE(mp) { 12981 case M_CTL: 12982 mp = mp->b_cont; 12983 if (mp == NULL) { 12984 freemsg(first_mp); 12985 return (NULL); 12986 } 12987 if (DB_TYPE(mp) != M_DATA) { 12988 freemsg(first_mp); 12989 return (NULL); 12990 } 12991 mctl_present = B_TRUE; 12992 break; 12993 case M_DATA: 12994 break; 12995 default: 12996 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12997 freemsg(mp); 12998 return (NULL); 12999 } 13000 ipvers = IPH_HDR_VERSION(rptr); 13001 if (ipvers == IPV4_VERSION) { 13002 if (tcp == NULL) { 13003 ip_hdr_len = IPH_HDR_LENGTH(rptr); 13004 goto done; 13005 } 13006 13007 ipp.ipp_fields |= IPPF_HOPLIMIT; 13008 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 13009 13010 /* 13011 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 13012 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 13013 */ 13014 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 13015 mctl_present) { 13016 pinfo = (ip_pktinfo_t *)first_mp->b_rptr; 13017 if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) && 13018 (pinfo->ip_pkt_ulp_type == IN_PKTINFO) && 13019 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 13020 ipp.ipp_fields |= IPPF_IFINDEX; 13021 ipp.ipp_ifindex = pinfo->ip_pkt_ifindex; 13022 ifindex = pinfo->ip_pkt_ifindex; 13023 } 13024 freeb(first_mp); 13025 mctl_present = B_FALSE; 13026 } 13027 ip_hdr_len = IPH_HDR_LENGTH(rptr); 13028 } else { 13029 ip6h = (ip6_t *)rptr; 13030 13031 ASSERT(ipvers == IPV6_VERSION); 13032 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 13033 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 13034 ipp.ipp_hoplimit = ip6h->ip6_hops; 13035 13036 if (ip6h->ip6_nxt != IPPROTO_TCP) { 13037 uint8_t nexthdrp; 13038 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 13039 13040 /* Look for ifindex information */ 13041 if (ip6h->ip6_nxt == IPPROTO_RAW) { 13042 ip6i_t *ip6i = (ip6i_t *)ip6h; 13043 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 13044 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 13045 freemsg(first_mp); 13046 return (NULL); 13047 } 13048 13049 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 13050 ASSERT(ip6i->ip6i_ifindex != 0); 13051 ipp.ipp_fields |= IPPF_IFINDEX; 13052 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 13053 ifindex = ip6i->ip6i_ifindex; 13054 } 13055 rptr = (uchar_t *)&ip6i[1]; 13056 mp->b_rptr = rptr; 13057 if (rptr == mp->b_wptr) { 13058 mblk_t *mp1; 13059 mp1 = mp->b_cont; 13060 freeb(mp); 13061 mp = mp1; 13062 rptr = mp->b_rptr; 13063 } 13064 if (MBLKL(mp) < IPV6_HDR_LEN + 13065 sizeof (tcph_t)) { 13066 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 13067 freemsg(first_mp); 13068 return (NULL); 13069 } 13070 ip6h = (ip6_t *)rptr; 13071 } 13072 13073 /* 13074 * Find any potentially interesting extension headers 13075 * as well as the length of the IPv6 + extension 13076 * headers. 13077 */ 13078 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 13079 /* Verify if this is a TCP packet */ 13080 if (nexthdrp != IPPROTO_TCP) { 13081 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 13082 freemsg(first_mp); 13083 return (NULL); 13084 } 13085 } else { 13086 ip_hdr_len = IPV6_HDR_LEN; 13087 } 13088 } 13089 13090 done: 13091 if (ipversp != NULL) 13092 *ipversp = ipvers; 13093 if (ip_hdr_lenp != NULL) 13094 *ip_hdr_lenp = ip_hdr_len; 13095 if (ippp != NULL) 13096 *ippp = ipp; 13097 if (ifindexp != NULL) 13098 *ifindexp = ifindex; 13099 if (mctl_present) { 13100 freeb(first_mp); 13101 } 13102 return (mp); 13103 } 13104 13105 /* 13106 * Handle M_DATA messages from IP. Its called directly from IP via 13107 * squeue for AF_INET type sockets fast path. No M_CTL are expected 13108 * in this path. 13109 * 13110 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 13111 * v4 and v6), we are called through tcp_input() and a M_CTL can 13112 * be present for options but tcp_find_pktinfo() deals with it. We 13113 * only expect M_DATA packets after tcp_find_pktinfo() is done. 13114 * 13115 * The first argument is always the connp/tcp to which the mp belongs. 13116 * There are no exceptions to this rule. The caller has already put 13117 * a reference on this connp/tcp and once tcp_rput_data() returns, 13118 * the squeue will do the refrele. 13119 * 13120 * The TH_SYN for the listener directly go to tcp_conn_request via 13121 * squeue. 13122 * 13123 * sqp: NULL = recursive, sqp != NULL means called from squeue 13124 */ 13125 void 13126 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 13127 { 13128 int32_t bytes_acked; 13129 int32_t gap; 13130 mblk_t *mp1; 13131 uint_t flags; 13132 uint32_t new_swnd = 0; 13133 uchar_t *iphdr; 13134 uchar_t *rptr; 13135 int32_t rgap; 13136 uint32_t seg_ack; 13137 int seg_len; 13138 uint_t ip_hdr_len; 13139 uint32_t seg_seq; 13140 tcph_t *tcph; 13141 int urp; 13142 tcp_opt_t tcpopt; 13143 uint_t ipvers; 13144 ip6_pkt_t ipp; 13145 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 13146 uint32_t cwnd; 13147 uint32_t add; 13148 int npkt; 13149 int mss; 13150 conn_t *connp = (conn_t *)arg; 13151 squeue_t *sqp = (squeue_t *)arg2; 13152 tcp_t *tcp = connp->conn_tcp; 13153 tcp_stack_t *tcps = tcp->tcp_tcps; 13154 13155 /* 13156 * RST from fused tcp loopback peer should trigger an unfuse. 13157 */ 13158 if (tcp->tcp_fused) { 13159 TCP_STAT(tcps, tcp_fusion_aborted); 13160 tcp_unfuse(tcp); 13161 } 13162 13163 iphdr = mp->b_rptr; 13164 rptr = mp->b_rptr; 13165 ASSERT(OK_32PTR(rptr)); 13166 13167 /* 13168 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 13169 * processing here. For rest call tcp_find_pktinfo to fill up the 13170 * necessary information. 13171 */ 13172 if (IPCL_IS_TCP4(connp)) { 13173 ipvers = IPV4_VERSION; 13174 ip_hdr_len = IPH_HDR_LENGTH(rptr); 13175 } else { 13176 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 13177 NULL, &ipp); 13178 if (mp == NULL) { 13179 TCP_STAT(tcps, tcp_rput_v6_error); 13180 return; 13181 } 13182 iphdr = mp->b_rptr; 13183 rptr = mp->b_rptr; 13184 } 13185 ASSERT(DB_TYPE(mp) == M_DATA); 13186 13187 tcph = (tcph_t *)&rptr[ip_hdr_len]; 13188 seg_seq = ABE32_TO_U32(tcph->th_seq); 13189 seg_ack = ABE32_TO_U32(tcph->th_ack); 13190 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 13191 seg_len = (int)(mp->b_wptr - rptr) - 13192 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 13193 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 13194 do { 13195 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 13196 (uintptr_t)INT_MAX); 13197 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 13198 } while ((mp1 = mp1->b_cont) != NULL && 13199 mp1->b_datap->db_type == M_DATA); 13200 } 13201 13202 if (tcp->tcp_state == TCPS_TIME_WAIT) { 13203 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 13204 seg_len, tcph); 13205 return; 13206 } 13207 13208 if (sqp != NULL) { 13209 /* 13210 * This is the correct place to update tcp_last_recv_time. Note 13211 * that it is also updated for tcp structure that belongs to 13212 * global and listener queues which do not really need updating. 13213 * But that should not cause any harm. And it is updated for 13214 * all kinds of incoming segments, not only for data segments. 13215 */ 13216 tcp->tcp_last_recv_time = lbolt; 13217 } 13218 13219 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13220 13221 BUMP_LOCAL(tcp->tcp_ibsegs); 13222 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 13223 13224 if ((flags & TH_URG) && sqp != NULL) { 13225 /* 13226 * TCP can't handle urgent pointers that arrive before 13227 * the connection has been accept()ed since it can't 13228 * buffer OOB data. Discard segment if this happens. 13229 * 13230 * We can't just rely on a non-null tcp_listener to indicate 13231 * that the accept() has completed since unlinking of the 13232 * eager and completion of the accept are not atomic. 13233 * tcp_detached, when it is not set (B_FALSE) indicates 13234 * that the accept() has completed. 13235 * 13236 * Nor can it reassemble urgent pointers, so discard 13237 * if it's not the next segment expected. 13238 * 13239 * Otherwise, collapse chain into one mblk (discard if 13240 * that fails). This makes sure the headers, retransmitted 13241 * data, and new data all are in the same mblk. 13242 */ 13243 ASSERT(mp != NULL); 13244 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 13245 freemsg(mp); 13246 return; 13247 } 13248 /* Update pointers into message */ 13249 iphdr = rptr = mp->b_rptr; 13250 tcph = (tcph_t *)&rptr[ip_hdr_len]; 13251 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 13252 /* 13253 * Since we can't handle any data with this urgent 13254 * pointer that is out of sequence, we expunge 13255 * the data. This allows us to still register 13256 * the urgent mark and generate the M_PCSIG, 13257 * which we can do. 13258 */ 13259 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13260 seg_len = 0; 13261 } 13262 } 13263 13264 switch (tcp->tcp_state) { 13265 case TCPS_SYN_SENT: 13266 if (flags & TH_ACK) { 13267 /* 13268 * Note that our stack cannot send data before a 13269 * connection is established, therefore the 13270 * following check is valid. Otherwise, it has 13271 * to be changed. 13272 */ 13273 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 13274 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13275 freemsg(mp); 13276 if (flags & TH_RST) 13277 return; 13278 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 13279 tcp, seg_ack, 0, TH_RST); 13280 return; 13281 } 13282 ASSERT(tcp->tcp_suna + 1 == seg_ack); 13283 } 13284 if (flags & TH_RST) { 13285 freemsg(mp); 13286 if (flags & TH_ACK) 13287 (void) tcp_clean_death(tcp, 13288 ECONNREFUSED, 13); 13289 return; 13290 } 13291 if (!(flags & TH_SYN)) { 13292 freemsg(mp); 13293 return; 13294 } 13295 13296 /* Process all TCP options. */ 13297 tcp_process_options(tcp, tcph); 13298 /* 13299 * The following changes our rwnd to be a multiple of the 13300 * MIN(peer MSS, our MSS) for performance reason. 13301 */ 13302 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat, 13303 tcp->tcp_mss)); 13304 13305 /* Is the other end ECN capable? */ 13306 if (tcp->tcp_ecn_ok) { 13307 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 13308 tcp->tcp_ecn_ok = B_FALSE; 13309 } 13310 } 13311 /* 13312 * Clear ECN flags because it may interfere with later 13313 * processing. 13314 */ 13315 flags &= ~(TH_ECE|TH_CWR); 13316 13317 tcp->tcp_irs = seg_seq; 13318 tcp->tcp_rack = seg_seq; 13319 tcp->tcp_rnxt = seg_seq + 1; 13320 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13321 if (!TCP_IS_DETACHED(tcp)) { 13322 /* Allocate room for SACK options if needed. */ 13323 if (tcp->tcp_snd_sack_ok) { 13324 (void) mi_set_sth_wroff(tcp->tcp_rq, 13325 tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 13326 (tcp->tcp_loopback ? 0 : 13327 tcps->tcps_wroff_xtra)); 13328 } else { 13329 (void) mi_set_sth_wroff(tcp->tcp_rq, 13330 tcp->tcp_hdr_len + 13331 (tcp->tcp_loopback ? 0 : 13332 tcps->tcps_wroff_xtra)); 13333 } 13334 } 13335 if (flags & TH_ACK) { 13336 /* 13337 * If we can't get the confirmation upstream, pretend 13338 * we didn't even see this one. 13339 * 13340 * XXX: how can we pretend we didn't see it if we 13341 * have updated rnxt et. al. 13342 * 13343 * For loopback we defer sending up the T_CONN_CON 13344 * until after some checks below. 13345 */ 13346 mp1 = NULL; 13347 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 13348 tcp->tcp_loopback ? &mp1 : NULL)) { 13349 freemsg(mp); 13350 return; 13351 } 13352 /* SYN was acked - making progress */ 13353 if (tcp->tcp_ipversion == IPV6_VERSION) 13354 tcp->tcp_ip_forward_progress = B_TRUE; 13355 13356 /* One for the SYN */ 13357 tcp->tcp_suna = tcp->tcp_iss + 1; 13358 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 13359 tcp->tcp_state = TCPS_ESTABLISHED; 13360 13361 /* 13362 * If SYN was retransmitted, need to reset all 13363 * retransmission info. This is because this 13364 * segment will be treated as a dup ACK. 13365 */ 13366 if (tcp->tcp_rexmit) { 13367 tcp->tcp_rexmit = B_FALSE; 13368 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13369 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13370 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13371 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13372 tcp->tcp_ms_we_have_waited = 0; 13373 13374 /* 13375 * Set tcp_cwnd back to 1 MSS, per 13376 * recommendation from 13377 * draft-floyd-incr-init-win-01.txt, 13378 * Increasing TCP's Initial Window. 13379 */ 13380 tcp->tcp_cwnd = tcp->tcp_mss; 13381 } 13382 13383 tcp->tcp_swl1 = seg_seq; 13384 tcp->tcp_swl2 = seg_ack; 13385 13386 new_swnd = BE16_TO_U16(tcph->th_win); 13387 tcp->tcp_swnd = new_swnd; 13388 if (new_swnd > tcp->tcp_max_swnd) 13389 tcp->tcp_max_swnd = new_swnd; 13390 13391 /* 13392 * Always send the three-way handshake ack immediately 13393 * in order to make the connection complete as soon as 13394 * possible on the accepting host. 13395 */ 13396 flags |= TH_ACK_NEEDED; 13397 13398 /* 13399 * Special case for loopback. At this point we have 13400 * received SYN-ACK from the remote endpoint. In 13401 * order to ensure that both endpoints reach the 13402 * fused state prior to any data exchange, the final 13403 * ACK needs to be sent before we indicate T_CONN_CON 13404 * to the module upstream. 13405 */ 13406 if (tcp->tcp_loopback) { 13407 mblk_t *ack_mp; 13408 13409 ASSERT(!tcp->tcp_unfusable); 13410 ASSERT(mp1 != NULL); 13411 /* 13412 * For loopback, we always get a pure SYN-ACK 13413 * and only need to send back the final ACK 13414 * with no data (this is because the other 13415 * tcp is ours and we don't do T/TCP). This 13416 * final ACK triggers the passive side to 13417 * perform fusion in ESTABLISHED state. 13418 */ 13419 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 13420 if (tcp->tcp_ack_tid != 0) { 13421 (void) TCP_TIMER_CANCEL(tcp, 13422 tcp->tcp_ack_tid); 13423 tcp->tcp_ack_tid = 0; 13424 } 13425 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 13426 BUMP_LOCAL(tcp->tcp_obsegs); 13427 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 13428 13429 /* Send up T_CONN_CON */ 13430 putnext(tcp->tcp_rq, mp1); 13431 13432 freemsg(mp); 13433 return; 13434 } 13435 /* 13436 * Forget fusion; we need to handle more 13437 * complex cases below. Send the deferred 13438 * T_CONN_CON message upstream and proceed 13439 * as usual. Mark this tcp as not capable 13440 * of fusion. 13441 */ 13442 TCP_STAT(tcps, tcp_fusion_unfusable); 13443 tcp->tcp_unfusable = B_TRUE; 13444 putnext(tcp->tcp_rq, mp1); 13445 } 13446 13447 /* 13448 * Check to see if there is data to be sent. If 13449 * yes, set the transmit flag. Then check to see 13450 * if received data processing needs to be done. 13451 * If not, go straight to xmit_check. This short 13452 * cut is OK as we don't support T/TCP. 13453 */ 13454 if (tcp->tcp_unsent) 13455 flags |= TH_XMIT_NEEDED; 13456 13457 if (seg_len == 0 && !(flags & TH_URG)) { 13458 freemsg(mp); 13459 goto xmit_check; 13460 } 13461 13462 flags &= ~TH_SYN; 13463 seg_seq++; 13464 break; 13465 } 13466 tcp->tcp_state = TCPS_SYN_RCVD; 13467 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 13468 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 13469 if (mp1) { 13470 DB_CPID(mp1) = tcp->tcp_cpid; 13471 tcp_send_data(tcp, tcp->tcp_wq, mp1); 13472 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13473 } 13474 freemsg(mp); 13475 return; 13476 case TCPS_SYN_RCVD: 13477 if (flags & TH_ACK) { 13478 /* 13479 * In this state, a SYN|ACK packet is either bogus 13480 * because the other side must be ACKing our SYN which 13481 * indicates it has seen the ACK for their SYN and 13482 * shouldn't retransmit it or we're crossing SYNs 13483 * on active open. 13484 */ 13485 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 13486 freemsg(mp); 13487 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 13488 tcp, seg_ack, 0, TH_RST); 13489 return; 13490 } 13491 /* 13492 * NOTE: RFC 793 pg. 72 says this should be 13493 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 13494 * but that would mean we have an ack that ignored 13495 * our SYN. 13496 */ 13497 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 13498 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13499 freemsg(mp); 13500 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 13501 tcp, seg_ack, 0, TH_RST); 13502 return; 13503 } 13504 } 13505 break; 13506 case TCPS_LISTEN: 13507 /* 13508 * Only a TLI listener can come through this path when a 13509 * acceptor is going back to be a listener and a packet 13510 * for the acceptor hits the classifier. For a socket 13511 * listener, this can never happen because a listener 13512 * can never accept connection on itself and hence a 13513 * socket acceptor can not go back to being a listener. 13514 */ 13515 ASSERT(!TCP_IS_SOCKET(tcp)); 13516 /*FALLTHRU*/ 13517 case TCPS_CLOSED: 13518 case TCPS_BOUND: { 13519 conn_t *new_connp; 13520 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 13521 13522 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 13523 if (new_connp != NULL) { 13524 tcp_reinput(new_connp, mp, connp->conn_sqp); 13525 return; 13526 } 13527 /* We failed to classify. For now just drop the packet */ 13528 freemsg(mp); 13529 return; 13530 } 13531 case TCPS_IDLE: 13532 /* 13533 * Handle the case where the tcp_clean_death() has happened 13534 * on a connection (application hasn't closed yet) but a packet 13535 * was already queued on squeue before tcp_clean_death() 13536 * was processed. Calling tcp_clean_death() twice on same 13537 * connection can result in weird behaviour. 13538 */ 13539 freemsg(mp); 13540 return; 13541 default: 13542 break; 13543 } 13544 13545 /* 13546 * Already on the correct queue/perimeter. 13547 * If this is a detached connection and not an eager 13548 * connection hanging off a listener then new data 13549 * (past the FIN) will cause a reset. 13550 * We do a special check here where it 13551 * is out of the main line, rather than check 13552 * if we are detached every time we see new 13553 * data down below. 13554 */ 13555 if (TCP_IS_DETACHED_NONEAGER(tcp) && 13556 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 13557 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 13558 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 13559 13560 freemsg(mp); 13561 /* 13562 * This could be an SSL closure alert. We're detached so just 13563 * acknowledge it this last time. 13564 */ 13565 if (tcp->tcp_kssl_ctx != NULL) { 13566 kssl_release_ctx(tcp->tcp_kssl_ctx); 13567 tcp->tcp_kssl_ctx = NULL; 13568 13569 tcp->tcp_rnxt += seg_len; 13570 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13571 flags |= TH_ACK_NEEDED; 13572 goto ack_check; 13573 } 13574 13575 tcp_xmit_ctl("new data when detached", tcp, 13576 tcp->tcp_snxt, 0, TH_RST); 13577 (void) tcp_clean_death(tcp, EPROTO, 12); 13578 return; 13579 } 13580 13581 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13582 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 13583 new_swnd = BE16_TO_U16(tcph->th_win) << 13584 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 13585 13586 if (tcp->tcp_snd_ts_ok) { 13587 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 13588 /* 13589 * This segment is not acceptable. 13590 * Drop it and send back an ACK. 13591 */ 13592 freemsg(mp); 13593 flags |= TH_ACK_NEEDED; 13594 goto ack_check; 13595 } 13596 } else if (tcp->tcp_snd_sack_ok) { 13597 ASSERT(tcp->tcp_sack_info != NULL); 13598 tcpopt.tcp = tcp; 13599 /* 13600 * SACK info in already updated in tcp_parse_options. Ignore 13601 * all other TCP options... 13602 */ 13603 (void) tcp_parse_options(tcph, &tcpopt); 13604 } 13605 try_again:; 13606 mss = tcp->tcp_mss; 13607 gap = seg_seq - tcp->tcp_rnxt; 13608 rgap = tcp->tcp_rwnd - (gap + seg_len); 13609 /* 13610 * gap is the amount of sequence space between what we expect to see 13611 * and what we got for seg_seq. A positive value for gap means 13612 * something got lost. A negative value means we got some old stuff. 13613 */ 13614 if (gap < 0) { 13615 /* Old stuff present. Is the SYN in there? */ 13616 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 13617 (seg_len != 0)) { 13618 flags &= ~TH_SYN; 13619 seg_seq++; 13620 urp--; 13621 /* Recompute the gaps after noting the SYN. */ 13622 goto try_again; 13623 } 13624 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 13625 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 13626 (seg_len > -gap ? -gap : seg_len)); 13627 /* Remove the old stuff from seg_len. */ 13628 seg_len += gap; 13629 /* 13630 * Anything left? 13631 * Make sure to check for unack'd FIN when rest of data 13632 * has been previously ack'd. 13633 */ 13634 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 13635 /* 13636 * Resets are only valid if they lie within our offered 13637 * window. If the RST bit is set, we just ignore this 13638 * segment. 13639 */ 13640 if (flags & TH_RST) { 13641 freemsg(mp); 13642 return; 13643 } 13644 13645 /* 13646 * The arriving of dup data packets indicate that we 13647 * may have postponed an ack for too long, or the other 13648 * side's RTT estimate is out of shape. Start acking 13649 * more often. 13650 */ 13651 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 13652 tcp->tcp_rack_cnt >= 1 && 13653 tcp->tcp_rack_abs_max > 2) { 13654 tcp->tcp_rack_abs_max--; 13655 } 13656 tcp->tcp_rack_cur_max = 1; 13657 13658 /* 13659 * This segment is "unacceptable". None of its 13660 * sequence space lies within our advertized window. 13661 * 13662 * Adjust seg_len to the original value for tracing. 13663 */ 13664 seg_len -= gap; 13665 if (tcp->tcp_debug) { 13666 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13667 "tcp_rput: unacceptable, gap %d, rgap %d, " 13668 "flags 0x%x, seg_seq %u, seg_ack %u, " 13669 "seg_len %d, rnxt %u, snxt %u, %s", 13670 gap, rgap, flags, seg_seq, seg_ack, 13671 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 13672 tcp_display(tcp, NULL, 13673 DISP_ADDR_AND_PORT)); 13674 } 13675 13676 /* 13677 * Arrange to send an ACK in response to the 13678 * unacceptable segment per RFC 793 page 69. There 13679 * is only one small difference between ours and the 13680 * acceptability test in the RFC - we accept ACK-only 13681 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 13682 * will be generated. 13683 * 13684 * Note that we have to ACK an ACK-only packet at least 13685 * for stacks that send 0-length keep-alives with 13686 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 13687 * section 4.2.3.6. As long as we don't ever generate 13688 * an unacceptable packet in response to an incoming 13689 * packet that is unacceptable, it should not cause 13690 * "ACK wars". 13691 */ 13692 flags |= TH_ACK_NEEDED; 13693 13694 /* 13695 * Continue processing this segment in order to use the 13696 * ACK information it contains, but skip all other 13697 * sequence-number processing. Processing the ACK 13698 * information is necessary in order to 13699 * re-synchronize connections that may have lost 13700 * synchronization. 13701 * 13702 * We clear seg_len and flag fields related to 13703 * sequence number processing as they are not 13704 * to be trusted for an unacceptable segment. 13705 */ 13706 seg_len = 0; 13707 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13708 goto process_ack; 13709 } 13710 13711 /* Fix seg_seq, and chew the gap off the front. */ 13712 seg_seq = tcp->tcp_rnxt; 13713 urp += gap; 13714 do { 13715 mblk_t *mp2; 13716 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13717 (uintptr_t)UINT_MAX); 13718 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13719 if (gap > 0) { 13720 mp->b_rptr = mp->b_wptr - gap; 13721 break; 13722 } 13723 mp2 = mp; 13724 mp = mp->b_cont; 13725 freeb(mp2); 13726 } while (gap < 0); 13727 /* 13728 * If the urgent data has already been acknowledged, we 13729 * should ignore TH_URG below 13730 */ 13731 if (urp < 0) 13732 flags &= ~TH_URG; 13733 } 13734 /* 13735 * rgap is the amount of stuff received out of window. A negative 13736 * value is the amount out of window. 13737 */ 13738 if (rgap < 0) { 13739 mblk_t *mp2; 13740 13741 if (tcp->tcp_rwnd == 0) { 13742 BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); 13743 } else { 13744 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 13745 UPDATE_MIB(&tcps->tcps_mib, 13746 tcpInDataPastWinBytes, -rgap); 13747 } 13748 13749 /* 13750 * seg_len does not include the FIN, so if more than 13751 * just the FIN is out of window, we act like we don't 13752 * see it. (If just the FIN is out of window, rgap 13753 * will be zero and we will go ahead and acknowledge 13754 * the FIN.) 13755 */ 13756 flags &= ~TH_FIN; 13757 13758 /* Fix seg_len and make sure there is something left. */ 13759 seg_len += rgap; 13760 if (seg_len <= 0) { 13761 /* 13762 * Resets are only valid if they lie within our offered 13763 * window. If the RST bit is set, we just ignore this 13764 * segment. 13765 */ 13766 if (flags & TH_RST) { 13767 freemsg(mp); 13768 return; 13769 } 13770 13771 /* Per RFC 793, we need to send back an ACK. */ 13772 flags |= TH_ACK_NEEDED; 13773 13774 /* 13775 * Send SIGURG as soon as possible i.e. even 13776 * if the TH_URG was delivered in a window probe 13777 * packet (which will be unacceptable). 13778 * 13779 * We generate a signal if none has been generated 13780 * for this connection or if this is a new urgent 13781 * byte. Also send a zero-length "unmarked" message 13782 * to inform SIOCATMARK that this is not the mark. 13783 * 13784 * tcp_urp_last_valid is cleared when the T_exdata_ind 13785 * is sent up. This plus the check for old data 13786 * (gap >= 0) handles the wraparound of the sequence 13787 * number space without having to always track the 13788 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13789 * this max in its rcv_up variable). 13790 * 13791 * This prevents duplicate SIGURGS due to a "late" 13792 * zero-window probe when the T_EXDATA_IND has already 13793 * been sent up. 13794 */ 13795 if ((flags & TH_URG) && 13796 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13797 tcp->tcp_urp_last))) { 13798 mp1 = allocb(0, BPRI_MED); 13799 if (mp1 == NULL) { 13800 freemsg(mp); 13801 return; 13802 } 13803 if (!TCP_IS_DETACHED(tcp) && 13804 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13805 SIGURG)) { 13806 /* Try again on the rexmit. */ 13807 freemsg(mp1); 13808 freemsg(mp); 13809 return; 13810 } 13811 /* 13812 * If the next byte would be the mark 13813 * then mark with MARKNEXT else mark 13814 * with NOTMARKNEXT. 13815 */ 13816 if (gap == 0 && urp == 0) 13817 mp1->b_flag |= MSGMARKNEXT; 13818 else 13819 mp1->b_flag |= MSGNOTMARKNEXT; 13820 freemsg(tcp->tcp_urp_mark_mp); 13821 tcp->tcp_urp_mark_mp = mp1; 13822 flags |= TH_SEND_URP_MARK; 13823 tcp->tcp_urp_last_valid = B_TRUE; 13824 tcp->tcp_urp_last = urp + seg_seq; 13825 } 13826 /* 13827 * If this is a zero window probe, continue to 13828 * process the ACK part. But we need to set seg_len 13829 * to 0 to avoid data processing. Otherwise just 13830 * drop the segment and send back an ACK. 13831 */ 13832 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13833 flags &= ~(TH_SYN | TH_URG); 13834 seg_len = 0; 13835 goto process_ack; 13836 } else { 13837 freemsg(mp); 13838 goto ack_check; 13839 } 13840 } 13841 /* Pitch out of window stuff off the end. */ 13842 rgap = seg_len; 13843 mp2 = mp; 13844 do { 13845 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13846 (uintptr_t)INT_MAX); 13847 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13848 if (rgap < 0) { 13849 mp2->b_wptr += rgap; 13850 if ((mp1 = mp2->b_cont) != NULL) { 13851 mp2->b_cont = NULL; 13852 freemsg(mp1); 13853 } 13854 break; 13855 } 13856 } while ((mp2 = mp2->b_cont) != NULL); 13857 } 13858 ok:; 13859 /* 13860 * TCP should check ECN info for segments inside the window only. 13861 * Therefore the check should be done here. 13862 */ 13863 if (tcp->tcp_ecn_ok) { 13864 if (flags & TH_CWR) { 13865 tcp->tcp_ecn_echo_on = B_FALSE; 13866 } 13867 /* 13868 * Note that both ECN_CE and CWR can be set in the 13869 * same segment. In this case, we once again turn 13870 * on ECN_ECHO. 13871 */ 13872 if (tcp->tcp_ipversion == IPV4_VERSION) { 13873 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13874 13875 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13876 tcp->tcp_ecn_echo_on = B_TRUE; 13877 } 13878 } else { 13879 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13880 13881 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13882 htonl(IPH_ECN_CE << 20)) { 13883 tcp->tcp_ecn_echo_on = B_TRUE; 13884 } 13885 } 13886 } 13887 13888 /* 13889 * Check whether we can update tcp_ts_recent. This test is 13890 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13891 * Extensions for High Performance: An Update", Internet Draft. 13892 */ 13893 if (tcp->tcp_snd_ts_ok && 13894 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13895 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13896 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13897 tcp->tcp_last_rcv_lbolt = lbolt64; 13898 } 13899 13900 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13901 /* 13902 * FIN in an out of order segment. We record this in 13903 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13904 * Clear the FIN so that any check on FIN flag will fail. 13905 * Remember that FIN also counts in the sequence number 13906 * space. So we need to ack out of order FIN only segments. 13907 */ 13908 if (flags & TH_FIN) { 13909 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13910 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13911 flags &= ~TH_FIN; 13912 flags |= TH_ACK_NEEDED; 13913 } 13914 if (seg_len > 0) { 13915 /* Fill in the SACK blk list. */ 13916 if (tcp->tcp_snd_sack_ok) { 13917 ASSERT(tcp->tcp_sack_info != NULL); 13918 tcp_sack_insert(tcp->tcp_sack_list, 13919 seg_seq, seg_seq + seg_len, 13920 &(tcp->tcp_num_sack_blk)); 13921 } 13922 13923 /* 13924 * Attempt reassembly and see if we have something 13925 * ready to go. 13926 */ 13927 mp = tcp_reass(tcp, mp, seg_seq); 13928 /* Always ack out of order packets */ 13929 flags |= TH_ACK_NEEDED | TH_PUSH; 13930 if (mp) { 13931 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13932 (uintptr_t)INT_MAX); 13933 seg_len = mp->b_cont ? msgdsize(mp) : 13934 (int)(mp->b_wptr - mp->b_rptr); 13935 seg_seq = tcp->tcp_rnxt; 13936 /* 13937 * A gap is filled and the seq num and len 13938 * of the gap match that of a previously 13939 * received FIN, put the FIN flag back in. 13940 */ 13941 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13942 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13943 flags |= TH_FIN; 13944 tcp->tcp_valid_bits &= 13945 ~TCP_OFO_FIN_VALID; 13946 } 13947 } else { 13948 /* 13949 * Keep going even with NULL mp. 13950 * There may be a useful ACK or something else 13951 * we don't want to miss. 13952 * 13953 * But TCP should not perform fast retransmit 13954 * because of the ack number. TCP uses 13955 * seg_len == 0 to determine if it is a pure 13956 * ACK. And this is not a pure ACK. 13957 */ 13958 seg_len = 0; 13959 ofo_seg = B_TRUE; 13960 } 13961 } 13962 } else if (seg_len > 0) { 13963 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 13964 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 13965 /* 13966 * If an out of order FIN was received before, and the seq 13967 * num and len of the new segment match that of the FIN, 13968 * put the FIN flag back in. 13969 */ 13970 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13971 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13972 flags |= TH_FIN; 13973 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13974 } 13975 } 13976 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13977 if (flags & TH_RST) { 13978 freemsg(mp); 13979 switch (tcp->tcp_state) { 13980 case TCPS_SYN_RCVD: 13981 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13982 break; 13983 case TCPS_ESTABLISHED: 13984 case TCPS_FIN_WAIT_1: 13985 case TCPS_FIN_WAIT_2: 13986 case TCPS_CLOSE_WAIT: 13987 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13988 break; 13989 case TCPS_CLOSING: 13990 case TCPS_LAST_ACK: 13991 (void) tcp_clean_death(tcp, 0, 16); 13992 break; 13993 default: 13994 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13995 (void) tcp_clean_death(tcp, ENXIO, 17); 13996 break; 13997 } 13998 return; 13999 } 14000 if (flags & TH_SYN) { 14001 /* 14002 * See RFC 793, Page 71 14003 * 14004 * The seq number must be in the window as it should 14005 * be "fixed" above. If it is outside window, it should 14006 * be already rejected. Note that we allow seg_seq to be 14007 * rnxt + rwnd because we want to accept 0 window probe. 14008 */ 14009 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 14010 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 14011 freemsg(mp); 14012 /* 14013 * If the ACK flag is not set, just use our snxt as the 14014 * seq number of the RST segment. 14015 */ 14016 if (!(flags & TH_ACK)) { 14017 seg_ack = tcp->tcp_snxt; 14018 } 14019 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 14020 TH_RST|TH_ACK); 14021 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14022 (void) tcp_clean_death(tcp, ECONNRESET, 18); 14023 return; 14024 } 14025 /* 14026 * urp could be -1 when the urp field in the packet is 0 14027 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 14028 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 14029 */ 14030 if (flags & TH_URG && urp >= 0) { 14031 if (!tcp->tcp_urp_last_valid || 14032 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 14033 /* 14034 * If we haven't generated the signal yet for this 14035 * urgent pointer value, do it now. Also, send up a 14036 * zero-length M_DATA indicating whether or not this is 14037 * the mark. The latter is not needed when a 14038 * T_EXDATA_IND is sent up. However, if there are 14039 * allocation failures this code relies on the sender 14040 * retransmitting and the socket code for determining 14041 * the mark should not block waiting for the peer to 14042 * transmit. Thus, for simplicity we always send up the 14043 * mark indication. 14044 */ 14045 mp1 = allocb(0, BPRI_MED); 14046 if (mp1 == NULL) { 14047 freemsg(mp); 14048 return; 14049 } 14050 if (!TCP_IS_DETACHED(tcp) && 14051 !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) { 14052 /* Try again on the rexmit. */ 14053 freemsg(mp1); 14054 freemsg(mp); 14055 return; 14056 } 14057 /* 14058 * Mark with NOTMARKNEXT for now. 14059 * The code below will change this to MARKNEXT 14060 * if we are at the mark. 14061 * 14062 * If there are allocation failures (e.g. in dupmsg 14063 * below) the next time tcp_rput_data sees the urgent 14064 * segment it will send up the MSG*MARKNEXT message. 14065 */ 14066 mp1->b_flag |= MSGNOTMARKNEXT; 14067 freemsg(tcp->tcp_urp_mark_mp); 14068 tcp->tcp_urp_mark_mp = mp1; 14069 flags |= TH_SEND_URP_MARK; 14070 #ifdef DEBUG 14071 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14072 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 14073 "last %x, %s", 14074 seg_seq, urp, tcp->tcp_urp_last, 14075 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14076 #endif /* DEBUG */ 14077 tcp->tcp_urp_last_valid = B_TRUE; 14078 tcp->tcp_urp_last = urp + seg_seq; 14079 } else if (tcp->tcp_urp_mark_mp != NULL) { 14080 /* 14081 * An allocation failure prevented the previous 14082 * tcp_rput_data from sending up the allocated 14083 * MSG*MARKNEXT message - send it up this time 14084 * around. 14085 */ 14086 flags |= TH_SEND_URP_MARK; 14087 } 14088 14089 /* 14090 * If the urgent byte is in this segment, make sure that it is 14091 * all by itself. This makes it much easier to deal with the 14092 * possibility of an allocation failure on the T_exdata_ind. 14093 * Note that seg_len is the number of bytes in the segment, and 14094 * urp is the offset into the segment of the urgent byte. 14095 * urp < seg_len means that the urgent byte is in this segment. 14096 */ 14097 if (urp < seg_len) { 14098 if (seg_len != 1) { 14099 uint32_t tmp_rnxt; 14100 /* 14101 * Break it up and feed it back in. 14102 * Re-attach the IP header. 14103 */ 14104 mp->b_rptr = iphdr; 14105 if (urp > 0) { 14106 /* 14107 * There is stuff before the urgent 14108 * byte. 14109 */ 14110 mp1 = dupmsg(mp); 14111 if (!mp1) { 14112 /* 14113 * Trim from urgent byte on. 14114 * The rest will come back. 14115 */ 14116 (void) adjmsg(mp, 14117 urp - seg_len); 14118 tcp_rput_data(connp, 14119 mp, NULL); 14120 return; 14121 } 14122 (void) adjmsg(mp1, urp - seg_len); 14123 /* Feed this piece back in. */ 14124 tmp_rnxt = tcp->tcp_rnxt; 14125 tcp_rput_data(connp, mp1, NULL); 14126 /* 14127 * If the data passed back in was not 14128 * processed (ie: bad ACK) sending 14129 * the remainder back in will cause a 14130 * loop. In this case, drop the 14131 * packet and let the sender try 14132 * sending a good packet. 14133 */ 14134 if (tmp_rnxt == tcp->tcp_rnxt) { 14135 freemsg(mp); 14136 return; 14137 } 14138 } 14139 if (urp != seg_len - 1) { 14140 uint32_t tmp_rnxt; 14141 /* 14142 * There is stuff after the urgent 14143 * byte. 14144 */ 14145 mp1 = dupmsg(mp); 14146 if (!mp1) { 14147 /* 14148 * Trim everything beyond the 14149 * urgent byte. The rest will 14150 * come back. 14151 */ 14152 (void) adjmsg(mp, 14153 urp + 1 - seg_len); 14154 tcp_rput_data(connp, 14155 mp, NULL); 14156 return; 14157 } 14158 (void) adjmsg(mp1, urp + 1 - seg_len); 14159 tmp_rnxt = tcp->tcp_rnxt; 14160 tcp_rput_data(connp, mp1, NULL); 14161 /* 14162 * If the data passed back in was not 14163 * processed (ie: bad ACK) sending 14164 * the remainder back in will cause a 14165 * loop. In this case, drop the 14166 * packet and let the sender try 14167 * sending a good packet. 14168 */ 14169 if (tmp_rnxt == tcp->tcp_rnxt) { 14170 freemsg(mp); 14171 return; 14172 } 14173 } 14174 tcp_rput_data(connp, mp, NULL); 14175 return; 14176 } 14177 /* 14178 * This segment contains only the urgent byte. We 14179 * have to allocate the T_exdata_ind, if we can. 14180 */ 14181 if (!tcp->tcp_urp_mp) { 14182 struct T_exdata_ind *tei; 14183 mp1 = allocb(sizeof (struct T_exdata_ind), 14184 BPRI_MED); 14185 if (!mp1) { 14186 /* 14187 * Sigh... It'll be back. 14188 * Generate any MSG*MARK message now. 14189 */ 14190 freemsg(mp); 14191 seg_len = 0; 14192 if (flags & TH_SEND_URP_MARK) { 14193 14194 14195 ASSERT(tcp->tcp_urp_mark_mp); 14196 tcp->tcp_urp_mark_mp->b_flag &= 14197 ~MSGNOTMARKNEXT; 14198 tcp->tcp_urp_mark_mp->b_flag |= 14199 MSGMARKNEXT; 14200 } 14201 goto ack_check; 14202 } 14203 mp1->b_datap->db_type = M_PROTO; 14204 tei = (struct T_exdata_ind *)mp1->b_rptr; 14205 tei->PRIM_type = T_EXDATA_IND; 14206 tei->MORE_flag = 0; 14207 mp1->b_wptr = (uchar_t *)&tei[1]; 14208 tcp->tcp_urp_mp = mp1; 14209 #ifdef DEBUG 14210 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14211 "tcp_rput: allocated exdata_ind %s", 14212 tcp_display(tcp, NULL, 14213 DISP_PORT_ONLY)); 14214 #endif /* DEBUG */ 14215 /* 14216 * There is no need to send a separate MSG*MARK 14217 * message since the T_EXDATA_IND will be sent 14218 * now. 14219 */ 14220 flags &= ~TH_SEND_URP_MARK; 14221 freemsg(tcp->tcp_urp_mark_mp); 14222 tcp->tcp_urp_mark_mp = NULL; 14223 } 14224 /* 14225 * Now we are all set. On the next putnext upstream, 14226 * tcp_urp_mp will be non-NULL and will get prepended 14227 * to what has to be this piece containing the urgent 14228 * byte. If for any reason we abort this segment below, 14229 * if it comes back, we will have this ready, or it 14230 * will get blown off in close. 14231 */ 14232 } else if (urp == seg_len) { 14233 /* 14234 * The urgent byte is the next byte after this sequence 14235 * number. If there is data it is marked with 14236 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 14237 * since it is not needed. Otherwise, if the code 14238 * above just allocated a zero-length tcp_urp_mark_mp 14239 * message, that message is tagged with MSGMARKNEXT. 14240 * Sending up these MSGMARKNEXT messages makes 14241 * SIOCATMARK work correctly even though 14242 * the T_EXDATA_IND will not be sent up until the 14243 * urgent byte arrives. 14244 */ 14245 if (seg_len != 0) { 14246 flags |= TH_MARKNEXT_NEEDED; 14247 freemsg(tcp->tcp_urp_mark_mp); 14248 tcp->tcp_urp_mark_mp = NULL; 14249 flags &= ~TH_SEND_URP_MARK; 14250 } else if (tcp->tcp_urp_mark_mp != NULL) { 14251 flags |= TH_SEND_URP_MARK; 14252 tcp->tcp_urp_mark_mp->b_flag &= 14253 ~MSGNOTMARKNEXT; 14254 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 14255 } 14256 #ifdef DEBUG 14257 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14258 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 14259 seg_len, flags, 14260 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14261 #endif /* DEBUG */ 14262 } else { 14263 /* Data left until we hit mark */ 14264 #ifdef DEBUG 14265 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14266 "tcp_rput: URP %d bytes left, %s", 14267 urp - seg_len, tcp_display(tcp, NULL, 14268 DISP_PORT_ONLY)); 14269 #endif /* DEBUG */ 14270 } 14271 } 14272 14273 process_ack: 14274 if (!(flags & TH_ACK)) { 14275 freemsg(mp); 14276 goto xmit_check; 14277 } 14278 } 14279 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 14280 14281 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 14282 tcp->tcp_ip_forward_progress = B_TRUE; 14283 if (tcp->tcp_state == TCPS_SYN_RCVD) { 14284 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 14285 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 14286 /* 3-way handshake complete - pass up the T_CONN_IND */ 14287 tcp_t *listener = tcp->tcp_listener; 14288 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 14289 14290 tcp->tcp_tconnind_started = B_TRUE; 14291 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14292 /* 14293 * We are here means eager is fine but it can 14294 * get a TH_RST at any point between now and till 14295 * accept completes and disappear. We need to 14296 * ensure that reference to eager is valid after 14297 * we get out of eager's perimeter. So we do 14298 * an extra refhold. 14299 */ 14300 CONN_INC_REF(connp); 14301 14302 /* 14303 * The listener also exists because of the refhold 14304 * done in tcp_conn_request. Its possible that it 14305 * might have closed. We will check that once we 14306 * get inside listeners context. 14307 */ 14308 CONN_INC_REF(listener->tcp_connp); 14309 if (listener->tcp_connp->conn_sqp == 14310 connp->conn_sqp) { 14311 tcp_send_conn_ind(listener->tcp_connp, mp, 14312 listener->tcp_connp->conn_sqp); 14313 CONN_DEC_REF(listener->tcp_connp); 14314 } else if (!tcp->tcp_loopback) { 14315 squeue_fill(listener->tcp_connp->conn_sqp, mp, 14316 tcp_send_conn_ind, 14317 listener->tcp_connp, SQTAG_TCP_CONN_IND); 14318 } else { 14319 squeue_enter(listener->tcp_connp->conn_sqp, mp, 14320 tcp_send_conn_ind, listener->tcp_connp, 14321 SQTAG_TCP_CONN_IND); 14322 } 14323 } 14324 14325 if (tcp->tcp_active_open) { 14326 /* 14327 * We are seeing the final ack in the three way 14328 * hand shake of a active open'ed connection 14329 * so we must send up a T_CONN_CON 14330 */ 14331 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 14332 freemsg(mp); 14333 return; 14334 } 14335 /* 14336 * Don't fuse the loopback endpoints for 14337 * simultaneous active opens. 14338 */ 14339 if (tcp->tcp_loopback) { 14340 TCP_STAT(tcps, tcp_fusion_unfusable); 14341 tcp->tcp_unfusable = B_TRUE; 14342 } 14343 } 14344 14345 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 14346 bytes_acked--; 14347 /* SYN was acked - making progress */ 14348 if (tcp->tcp_ipversion == IPV6_VERSION) 14349 tcp->tcp_ip_forward_progress = B_TRUE; 14350 14351 /* 14352 * If SYN was retransmitted, need to reset all 14353 * retransmission info as this segment will be 14354 * treated as a dup ACK. 14355 */ 14356 if (tcp->tcp_rexmit) { 14357 tcp->tcp_rexmit = B_FALSE; 14358 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14359 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14360 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14361 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14362 tcp->tcp_ms_we_have_waited = 0; 14363 tcp->tcp_cwnd = mss; 14364 } 14365 14366 /* 14367 * We set the send window to zero here. 14368 * This is needed if there is data to be 14369 * processed already on the queue. 14370 * Later (at swnd_update label), the 14371 * "new_swnd > tcp_swnd" condition is satisfied 14372 * the XMIT_NEEDED flag is set in the current 14373 * (SYN_RCVD) state. This ensures tcp_wput_data() is 14374 * called if there is already data on queue in 14375 * this state. 14376 */ 14377 tcp->tcp_swnd = 0; 14378 14379 if (new_swnd > tcp->tcp_max_swnd) 14380 tcp->tcp_max_swnd = new_swnd; 14381 tcp->tcp_swl1 = seg_seq; 14382 tcp->tcp_swl2 = seg_ack; 14383 tcp->tcp_state = TCPS_ESTABLISHED; 14384 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 14385 14386 /* Fuse when both sides are in ESTABLISHED state */ 14387 if (tcp->tcp_loopback && do_tcp_fusion) 14388 tcp_fuse(tcp, iphdr, tcph); 14389 14390 } 14391 /* This code follows 4.4BSD-Lite2 mostly. */ 14392 if (bytes_acked < 0) 14393 goto est; 14394 14395 /* 14396 * If TCP is ECN capable and the congestion experience bit is 14397 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 14398 * done once per window (or more loosely, per RTT). 14399 */ 14400 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 14401 tcp->tcp_cwr = B_FALSE; 14402 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 14403 if (!tcp->tcp_cwr) { 14404 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 14405 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 14406 tcp->tcp_cwnd = npkt * mss; 14407 /* 14408 * If the cwnd is 0, use the timer to clock out 14409 * new segments. This is required by the ECN spec. 14410 */ 14411 if (npkt == 0) { 14412 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14413 /* 14414 * This makes sure that when the ACK comes 14415 * back, we will increase tcp_cwnd by 1 MSS. 14416 */ 14417 tcp->tcp_cwnd_cnt = 0; 14418 } 14419 tcp->tcp_cwr = B_TRUE; 14420 /* 14421 * This marks the end of the current window of in 14422 * flight data. That is why we don't use 14423 * tcp_suna + tcp_swnd. Only data in flight can 14424 * provide ECN info. 14425 */ 14426 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14427 tcp->tcp_ecn_cwr_sent = B_FALSE; 14428 } 14429 } 14430 14431 mp1 = tcp->tcp_xmit_head; 14432 if (bytes_acked == 0) { 14433 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 14434 int dupack_cnt; 14435 14436 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 14437 /* 14438 * Fast retransmit. When we have seen exactly three 14439 * identical ACKs while we have unacked data 14440 * outstanding we take it as a hint that our peer 14441 * dropped something. 14442 * 14443 * If TCP is retransmitting, don't do fast retransmit. 14444 */ 14445 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 14446 ! tcp->tcp_rexmit) { 14447 /* Do Limited Transmit */ 14448 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 14449 tcps->tcps_dupack_fast_retransmit) { 14450 /* 14451 * RFC 3042 14452 * 14453 * What we need to do is temporarily 14454 * increase tcp_cwnd so that new 14455 * data can be sent if it is allowed 14456 * by the receive window (tcp_rwnd). 14457 * tcp_wput_data() will take care of 14458 * the rest. 14459 * 14460 * If the connection is SACK capable, 14461 * only do limited xmit when there 14462 * is SACK info. 14463 * 14464 * Note how tcp_cwnd is incremented. 14465 * The first dup ACK will increase 14466 * it by 1 MSS. The second dup ACK 14467 * will increase it by 2 MSS. This 14468 * means that only 1 new segment will 14469 * be sent for each dup ACK. 14470 */ 14471 if (tcp->tcp_unsent > 0 && 14472 (!tcp->tcp_snd_sack_ok || 14473 (tcp->tcp_snd_sack_ok && 14474 tcp->tcp_notsack_list != NULL))) { 14475 tcp->tcp_cwnd += mss << 14476 (tcp->tcp_dupack_cnt - 1); 14477 flags |= TH_LIMIT_XMIT; 14478 } 14479 } else if (dupack_cnt == 14480 tcps->tcps_dupack_fast_retransmit) { 14481 14482 /* 14483 * If we have reduced tcp_ssthresh 14484 * because of ECN, do not reduce it again 14485 * unless it is already one window of data 14486 * away. After one window of data, tcp_cwr 14487 * should then be cleared. Note that 14488 * for non ECN capable connection, tcp_cwr 14489 * should always be false. 14490 * 14491 * Adjust cwnd since the duplicate 14492 * ack indicates that a packet was 14493 * dropped (due to congestion.) 14494 */ 14495 if (!tcp->tcp_cwr) { 14496 npkt = ((tcp->tcp_snxt - 14497 tcp->tcp_suna) >> 1) / mss; 14498 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 14499 mss; 14500 tcp->tcp_cwnd = (npkt + 14501 tcp->tcp_dupack_cnt) * mss; 14502 } 14503 if (tcp->tcp_ecn_ok) { 14504 tcp->tcp_cwr = B_TRUE; 14505 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14506 tcp->tcp_ecn_cwr_sent = B_FALSE; 14507 } 14508 14509 /* 14510 * We do Hoe's algorithm. Refer to her 14511 * paper "Improving the Start-up Behavior 14512 * of a Congestion Control Scheme for TCP," 14513 * appeared in SIGCOMM'96. 14514 * 14515 * Save highest seq no we have sent so far. 14516 * Be careful about the invisible FIN byte. 14517 */ 14518 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 14519 (tcp->tcp_unsent == 0)) { 14520 tcp->tcp_rexmit_max = tcp->tcp_fss; 14521 } else { 14522 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14523 } 14524 14525 /* 14526 * Do not allow bursty traffic during. 14527 * fast recovery. Refer to Fall and Floyd's 14528 * paper "Simulation-based Comparisons of 14529 * Tahoe, Reno and SACK TCP" (in CCR?) 14530 * This is a best current practise. 14531 */ 14532 tcp->tcp_snd_burst = TCP_CWND_SS; 14533 14534 /* 14535 * For SACK: 14536 * Calculate tcp_pipe, which is the 14537 * estimated number of bytes in 14538 * network. 14539 * 14540 * tcp_fack is the highest sack'ed seq num 14541 * TCP has received. 14542 * 14543 * tcp_pipe is explained in the above quoted 14544 * Fall and Floyd's paper. tcp_fack is 14545 * explained in Mathis and Mahdavi's 14546 * "Forward Acknowledgment: Refining TCP 14547 * Congestion Control" in SIGCOMM '96. 14548 */ 14549 if (tcp->tcp_snd_sack_ok) { 14550 ASSERT(tcp->tcp_sack_info != NULL); 14551 if (tcp->tcp_notsack_list != NULL) { 14552 tcp->tcp_pipe = tcp->tcp_snxt - 14553 tcp->tcp_fack; 14554 tcp->tcp_sack_snxt = seg_ack; 14555 flags |= TH_NEED_SACK_REXMIT; 14556 } else { 14557 /* 14558 * Always initialize tcp_pipe 14559 * even though we don't have 14560 * any SACK info. If later 14561 * we get SACK info and 14562 * tcp_pipe is not initialized, 14563 * funny things will happen. 14564 */ 14565 tcp->tcp_pipe = 14566 tcp->tcp_cwnd_ssthresh; 14567 } 14568 } else { 14569 flags |= TH_REXMIT_NEEDED; 14570 } /* tcp_snd_sack_ok */ 14571 14572 } else { 14573 /* 14574 * Here we perform congestion 14575 * avoidance, but NOT slow start. 14576 * This is known as the Fast 14577 * Recovery Algorithm. 14578 */ 14579 if (tcp->tcp_snd_sack_ok && 14580 tcp->tcp_notsack_list != NULL) { 14581 flags |= TH_NEED_SACK_REXMIT; 14582 tcp->tcp_pipe -= mss; 14583 if (tcp->tcp_pipe < 0) 14584 tcp->tcp_pipe = 0; 14585 } else { 14586 /* 14587 * We know that one more packet has 14588 * left the pipe thus we can update 14589 * cwnd. 14590 */ 14591 cwnd = tcp->tcp_cwnd + mss; 14592 if (cwnd > tcp->tcp_cwnd_max) 14593 cwnd = tcp->tcp_cwnd_max; 14594 tcp->tcp_cwnd = cwnd; 14595 if (tcp->tcp_unsent > 0) 14596 flags |= TH_XMIT_NEEDED; 14597 } 14598 } 14599 } 14600 } else if (tcp->tcp_zero_win_probe) { 14601 /* 14602 * If the window has opened, need to arrange 14603 * to send additional data. 14604 */ 14605 if (new_swnd != 0) { 14606 /* tcp_suna != tcp_snxt */ 14607 /* Packet contains a window update */ 14608 BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); 14609 tcp->tcp_zero_win_probe = 0; 14610 tcp->tcp_timer_backoff = 0; 14611 tcp->tcp_ms_we_have_waited = 0; 14612 14613 /* 14614 * Transmit starting with tcp_suna since 14615 * the one byte probe is not ack'ed. 14616 * If TCP has sent more than one identical 14617 * probe, tcp_rexmit will be set. That means 14618 * tcp_ss_rexmit() will send out the one 14619 * byte along with new data. Otherwise, 14620 * fake the retransmission. 14621 */ 14622 flags |= TH_XMIT_NEEDED; 14623 if (!tcp->tcp_rexmit) { 14624 tcp->tcp_rexmit = B_TRUE; 14625 tcp->tcp_dupack_cnt = 0; 14626 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 14627 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 14628 } 14629 } 14630 } 14631 goto swnd_update; 14632 } 14633 14634 /* 14635 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 14636 * If the ACK value acks something that we have not yet sent, it might 14637 * be an old duplicate segment. Send an ACK to re-synchronize the 14638 * other side. 14639 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 14640 * state is handled above, so we can always just drop the segment and 14641 * send an ACK here. 14642 * 14643 * Should we send ACKs in response to ACK only segments? 14644 */ 14645 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 14646 BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); 14647 /* drop the received segment */ 14648 freemsg(mp); 14649 14650 /* 14651 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 14652 * greater than 0, check if the number of such 14653 * bogus ACks is greater than that count. If yes, 14654 * don't send back any ACK. This prevents TCP from 14655 * getting into an ACK storm if somehow an attacker 14656 * successfully spoofs an acceptable segment to our 14657 * peer. 14658 */ 14659 if (tcp_drop_ack_unsent_cnt > 0 && 14660 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 14661 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 14662 return; 14663 } 14664 mp = tcp_ack_mp(tcp); 14665 if (mp != NULL) { 14666 BUMP_LOCAL(tcp->tcp_obsegs); 14667 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 14668 tcp_send_data(tcp, tcp->tcp_wq, mp); 14669 } 14670 return; 14671 } 14672 14673 /* 14674 * TCP gets a new ACK, update the notsack'ed list to delete those 14675 * blocks that are covered by this ACK. 14676 */ 14677 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 14678 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 14679 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 14680 } 14681 14682 /* 14683 * If we got an ACK after fast retransmit, check to see 14684 * if it is a partial ACK. If it is not and the congestion 14685 * window was inflated to account for the other side's 14686 * cached packets, retract it. If it is, do Hoe's algorithm. 14687 */ 14688 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 14689 ASSERT(tcp->tcp_rexmit == B_FALSE); 14690 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 14691 tcp->tcp_dupack_cnt = 0; 14692 /* 14693 * Restore the orig tcp_cwnd_ssthresh after 14694 * fast retransmit phase. 14695 */ 14696 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 14697 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14698 } 14699 tcp->tcp_rexmit_max = seg_ack; 14700 tcp->tcp_cwnd_cnt = 0; 14701 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14702 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14703 14704 /* 14705 * Remove all notsack info to avoid confusion with 14706 * the next fast retrasnmit/recovery phase. 14707 */ 14708 if (tcp->tcp_snd_sack_ok && 14709 tcp->tcp_notsack_list != NULL) { 14710 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 14711 } 14712 } else { 14713 if (tcp->tcp_snd_sack_ok && 14714 tcp->tcp_notsack_list != NULL) { 14715 flags |= TH_NEED_SACK_REXMIT; 14716 tcp->tcp_pipe -= mss; 14717 if (tcp->tcp_pipe < 0) 14718 tcp->tcp_pipe = 0; 14719 } else { 14720 /* 14721 * Hoe's algorithm: 14722 * 14723 * Retransmit the unack'ed segment and 14724 * restart fast recovery. Note that we 14725 * need to scale back tcp_cwnd to the 14726 * original value when we started fast 14727 * recovery. This is to prevent overly 14728 * aggressive behaviour in sending new 14729 * segments. 14730 */ 14731 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14732 tcps->tcps_dupack_fast_retransmit * mss; 14733 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14734 flags |= TH_REXMIT_NEEDED; 14735 } 14736 } 14737 } else { 14738 tcp->tcp_dupack_cnt = 0; 14739 if (tcp->tcp_rexmit) { 14740 /* 14741 * TCP is retranmitting. If the ACK ack's all 14742 * outstanding data, update tcp_rexmit_max and 14743 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14744 * to the correct value. 14745 * 14746 * Note that SEQ_LEQ() is used. This is to avoid 14747 * unnecessary fast retransmit caused by dup ACKs 14748 * received when TCP does slow start retransmission 14749 * after a time out. During this phase, TCP may 14750 * send out segments which are already received. 14751 * This causes dup ACKs to be sent back. 14752 */ 14753 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14754 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14755 tcp->tcp_rexmit_nxt = seg_ack; 14756 } 14757 if (seg_ack != tcp->tcp_rexmit_max) { 14758 flags |= TH_XMIT_NEEDED; 14759 } 14760 } else { 14761 tcp->tcp_rexmit = B_FALSE; 14762 tcp->tcp_xmit_zc_clean = B_FALSE; 14763 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14764 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14765 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14766 } 14767 tcp->tcp_ms_we_have_waited = 0; 14768 } 14769 } 14770 14771 BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); 14772 UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); 14773 tcp->tcp_suna = seg_ack; 14774 if (tcp->tcp_zero_win_probe != 0) { 14775 tcp->tcp_zero_win_probe = 0; 14776 tcp->tcp_timer_backoff = 0; 14777 } 14778 14779 /* 14780 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14781 * Note that it cannot be the SYN being ack'ed. The code flow 14782 * will not reach here. 14783 */ 14784 if (mp1 == NULL) { 14785 goto fin_acked; 14786 } 14787 14788 /* 14789 * Update the congestion window. 14790 * 14791 * If TCP is not ECN capable or TCP is ECN capable but the 14792 * congestion experience bit is not set, increase the tcp_cwnd as 14793 * usual. 14794 */ 14795 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14796 cwnd = tcp->tcp_cwnd; 14797 add = mss; 14798 14799 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14800 /* 14801 * This is to prevent an increase of less than 1 MSS of 14802 * tcp_cwnd. With partial increase, tcp_wput_data() 14803 * may send out tinygrams in order to preserve mblk 14804 * boundaries. 14805 * 14806 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14807 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14808 * increased by 1 MSS for every RTTs. 14809 */ 14810 if (tcp->tcp_cwnd_cnt <= 0) { 14811 tcp->tcp_cwnd_cnt = cwnd + add; 14812 } else { 14813 tcp->tcp_cwnd_cnt -= add; 14814 add = 0; 14815 } 14816 } 14817 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14818 } 14819 14820 /* See if the latest urgent data has been acknowledged */ 14821 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14822 SEQ_GT(seg_ack, tcp->tcp_urg)) 14823 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14824 14825 /* Can we update the RTT estimates? */ 14826 if (tcp->tcp_snd_ts_ok) { 14827 /* Ignore zero timestamp echo-reply. */ 14828 if (tcpopt.tcp_opt_ts_ecr != 0) { 14829 tcp_set_rto(tcp, (int32_t)lbolt - 14830 (int32_t)tcpopt.tcp_opt_ts_ecr); 14831 } 14832 14833 /* If needed, restart the timer. */ 14834 if (tcp->tcp_set_timer == 1) { 14835 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14836 tcp->tcp_set_timer = 0; 14837 } 14838 /* 14839 * Update tcp_csuna in case the other side stops sending 14840 * us timestamps. 14841 */ 14842 tcp->tcp_csuna = tcp->tcp_snxt; 14843 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14844 /* 14845 * An ACK sequence we haven't seen before, so get the RTT 14846 * and update the RTO. But first check if the timestamp is 14847 * valid to use. 14848 */ 14849 if ((mp1->b_next != NULL) && 14850 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14851 tcp_set_rto(tcp, (int32_t)lbolt - 14852 (int32_t)(intptr_t)mp1->b_prev); 14853 else 14854 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14855 14856 /* Remeber the last sequence to be ACKed */ 14857 tcp->tcp_csuna = seg_ack; 14858 if (tcp->tcp_set_timer == 1) { 14859 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14860 tcp->tcp_set_timer = 0; 14861 } 14862 } else { 14863 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14864 } 14865 14866 /* Eat acknowledged bytes off the xmit queue. */ 14867 for (;;) { 14868 mblk_t *mp2; 14869 uchar_t *wptr; 14870 14871 wptr = mp1->b_wptr; 14872 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14873 bytes_acked -= (int)(wptr - mp1->b_rptr); 14874 if (bytes_acked < 0) { 14875 mp1->b_rptr = wptr + bytes_acked; 14876 /* 14877 * Set a new timestamp if all the bytes timed by the 14878 * old timestamp have been ack'ed. 14879 */ 14880 if (SEQ_GT(seg_ack, 14881 (uint32_t)(uintptr_t)(mp1->b_next))) { 14882 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14883 mp1->b_next = NULL; 14884 } 14885 break; 14886 } 14887 mp1->b_next = NULL; 14888 mp1->b_prev = NULL; 14889 mp2 = mp1; 14890 mp1 = mp1->b_cont; 14891 14892 /* 14893 * This notification is required for some zero-copy 14894 * clients to maintain a copy semantic. After the data 14895 * is ack'ed, client is safe to modify or reuse the buffer. 14896 */ 14897 if (tcp->tcp_snd_zcopy_aware && 14898 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14899 tcp_zcopy_notify(tcp); 14900 freeb(mp2); 14901 if (bytes_acked == 0) { 14902 if (mp1 == NULL) { 14903 /* Everything is ack'ed, clear the tail. */ 14904 tcp->tcp_xmit_tail = NULL; 14905 /* 14906 * Cancel the timer unless we are still 14907 * waiting for an ACK for the FIN packet. 14908 */ 14909 if (tcp->tcp_timer_tid != 0 && 14910 tcp->tcp_snxt == tcp->tcp_suna) { 14911 (void) TCP_TIMER_CANCEL(tcp, 14912 tcp->tcp_timer_tid); 14913 tcp->tcp_timer_tid = 0; 14914 } 14915 goto pre_swnd_update; 14916 } 14917 if (mp2 != tcp->tcp_xmit_tail) 14918 break; 14919 tcp->tcp_xmit_tail = mp1; 14920 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14921 (uintptr_t)INT_MAX); 14922 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14923 mp1->b_rptr); 14924 break; 14925 } 14926 if (mp1 == NULL) { 14927 /* 14928 * More was acked but there is nothing more 14929 * outstanding. This means that the FIN was 14930 * just acked or that we're talking to a clown. 14931 */ 14932 fin_acked: 14933 ASSERT(tcp->tcp_fin_sent); 14934 tcp->tcp_xmit_tail = NULL; 14935 if (tcp->tcp_fin_sent) { 14936 /* FIN was acked - making progress */ 14937 if (tcp->tcp_ipversion == IPV6_VERSION && 14938 !tcp->tcp_fin_acked) 14939 tcp->tcp_ip_forward_progress = B_TRUE; 14940 tcp->tcp_fin_acked = B_TRUE; 14941 if (tcp->tcp_linger_tid != 0 && 14942 TCP_TIMER_CANCEL(tcp, 14943 tcp->tcp_linger_tid) >= 0) { 14944 tcp_stop_lingering(tcp); 14945 freemsg(mp); 14946 mp = NULL; 14947 } 14948 } else { 14949 /* 14950 * We should never get here because 14951 * we have already checked that the 14952 * number of bytes ack'ed should be 14953 * smaller than or equal to what we 14954 * have sent so far (it is the 14955 * acceptability check of the ACK). 14956 * We can only get here if the send 14957 * queue is corrupted. 14958 * 14959 * Terminate the connection and 14960 * panic the system. It is better 14961 * for us to panic instead of 14962 * continuing to avoid other disaster. 14963 */ 14964 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14965 tcp->tcp_rnxt, TH_RST|TH_ACK); 14966 panic("Memory corruption " 14967 "detected for connection %s.", 14968 tcp_display(tcp, NULL, 14969 DISP_ADDR_AND_PORT)); 14970 /*NOTREACHED*/ 14971 } 14972 goto pre_swnd_update; 14973 } 14974 ASSERT(mp2 != tcp->tcp_xmit_tail); 14975 } 14976 if (tcp->tcp_unsent) { 14977 flags |= TH_XMIT_NEEDED; 14978 } 14979 pre_swnd_update: 14980 tcp->tcp_xmit_head = mp1; 14981 swnd_update: 14982 /* 14983 * The following check is different from most other implementations. 14984 * For bi-directional transfer, when segments are dropped, the 14985 * "normal" check will not accept a window update in those 14986 * retransmitted segemnts. Failing to do that, TCP may send out 14987 * segments which are outside receiver's window. As TCP accepts 14988 * the ack in those retransmitted segments, if the window update in 14989 * the same segment is not accepted, TCP will incorrectly calculates 14990 * that it can send more segments. This can create a deadlock 14991 * with the receiver if its window becomes zero. 14992 */ 14993 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14994 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14995 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14996 /* 14997 * The criteria for update is: 14998 * 14999 * 1. the segment acknowledges some data. Or 15000 * 2. the segment is new, i.e. it has a higher seq num. Or 15001 * 3. the segment is not old and the advertised window is 15002 * larger than the previous advertised window. 15003 */ 15004 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 15005 flags |= TH_XMIT_NEEDED; 15006 tcp->tcp_swnd = new_swnd; 15007 if (new_swnd > tcp->tcp_max_swnd) 15008 tcp->tcp_max_swnd = new_swnd; 15009 tcp->tcp_swl1 = seg_seq; 15010 tcp->tcp_swl2 = seg_ack; 15011 } 15012 est: 15013 if (tcp->tcp_state > TCPS_ESTABLISHED) { 15014 15015 switch (tcp->tcp_state) { 15016 case TCPS_FIN_WAIT_1: 15017 if (tcp->tcp_fin_acked) { 15018 tcp->tcp_state = TCPS_FIN_WAIT_2; 15019 /* 15020 * We implement the non-standard BSD/SunOS 15021 * FIN_WAIT_2 flushing algorithm. 15022 * If there is no user attached to this 15023 * TCP endpoint, then this TCP struct 15024 * could hang around forever in FIN_WAIT_2 15025 * state if the peer forgets to send us 15026 * a FIN. To prevent this, we wait only 15027 * 2*MSL (a convenient time value) for 15028 * the FIN to arrive. If it doesn't show up, 15029 * we flush the TCP endpoint. This algorithm, 15030 * though a violation of RFC-793, has worked 15031 * for over 10 years in BSD systems. 15032 * Note: SunOS 4.x waits 675 seconds before 15033 * flushing the FIN_WAIT_2 connection. 15034 */ 15035 TCP_TIMER_RESTART(tcp, 15036 tcps->tcps_fin_wait_2_flush_interval); 15037 } 15038 break; 15039 case TCPS_FIN_WAIT_2: 15040 break; /* Shutdown hook? */ 15041 case TCPS_LAST_ACK: 15042 freemsg(mp); 15043 if (tcp->tcp_fin_acked) { 15044 (void) tcp_clean_death(tcp, 0, 19); 15045 return; 15046 } 15047 goto xmit_check; 15048 case TCPS_CLOSING: 15049 if (tcp->tcp_fin_acked) { 15050 tcp->tcp_state = TCPS_TIME_WAIT; 15051 /* 15052 * Unconditionally clear the exclusive binding 15053 * bit so this TIME-WAIT connection won't 15054 * interfere with new ones. 15055 */ 15056 tcp->tcp_exclbind = 0; 15057 if (!TCP_IS_DETACHED(tcp)) { 15058 TCP_TIMER_RESTART(tcp, 15059 tcps->tcps_time_wait_interval); 15060 } else { 15061 tcp_time_wait_append(tcp); 15062 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 15063 } 15064 } 15065 /*FALLTHRU*/ 15066 case TCPS_CLOSE_WAIT: 15067 freemsg(mp); 15068 goto xmit_check; 15069 default: 15070 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 15071 break; 15072 } 15073 } 15074 if (flags & TH_FIN) { 15075 /* Make sure we ack the fin */ 15076 flags |= TH_ACK_NEEDED; 15077 if (!tcp->tcp_fin_rcvd) { 15078 tcp->tcp_fin_rcvd = B_TRUE; 15079 tcp->tcp_rnxt++; 15080 tcph = tcp->tcp_tcph; 15081 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 15082 15083 /* 15084 * Generate the ordrel_ind at the end unless we 15085 * are an eager guy. 15086 * In the eager case tcp_rsrv will do this when run 15087 * after tcp_accept is done. 15088 */ 15089 if (tcp->tcp_listener == NULL && 15090 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 15091 flags |= TH_ORDREL_NEEDED; 15092 switch (tcp->tcp_state) { 15093 case TCPS_SYN_RCVD: 15094 case TCPS_ESTABLISHED: 15095 tcp->tcp_state = TCPS_CLOSE_WAIT; 15096 /* Keepalive? */ 15097 break; 15098 case TCPS_FIN_WAIT_1: 15099 if (!tcp->tcp_fin_acked) { 15100 tcp->tcp_state = TCPS_CLOSING; 15101 break; 15102 } 15103 /* FALLTHRU */ 15104 case TCPS_FIN_WAIT_2: 15105 tcp->tcp_state = TCPS_TIME_WAIT; 15106 /* 15107 * Unconditionally clear the exclusive binding 15108 * bit so this TIME-WAIT connection won't 15109 * interfere with new ones. 15110 */ 15111 tcp->tcp_exclbind = 0; 15112 if (!TCP_IS_DETACHED(tcp)) { 15113 TCP_TIMER_RESTART(tcp, 15114 tcps->tcps_time_wait_interval); 15115 } else { 15116 tcp_time_wait_append(tcp); 15117 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 15118 } 15119 if (seg_len) { 15120 /* 15121 * implies data piggybacked on FIN. 15122 * break to handle data. 15123 */ 15124 break; 15125 } 15126 freemsg(mp); 15127 goto ack_check; 15128 } 15129 } 15130 } 15131 if (mp == NULL) 15132 goto xmit_check; 15133 if (seg_len == 0) { 15134 freemsg(mp); 15135 goto xmit_check; 15136 } 15137 if (mp->b_rptr == mp->b_wptr) { 15138 /* 15139 * The header has been consumed, so we remove the 15140 * zero-length mblk here. 15141 */ 15142 mp1 = mp; 15143 mp = mp->b_cont; 15144 freeb(mp1); 15145 } 15146 tcph = tcp->tcp_tcph; 15147 tcp->tcp_rack_cnt++; 15148 { 15149 uint32_t cur_max; 15150 15151 cur_max = tcp->tcp_rack_cur_max; 15152 if (tcp->tcp_rack_cnt >= cur_max) { 15153 /* 15154 * We have more unacked data than we should - send 15155 * an ACK now. 15156 */ 15157 flags |= TH_ACK_NEEDED; 15158 cur_max++; 15159 if (cur_max > tcp->tcp_rack_abs_max) 15160 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 15161 else 15162 tcp->tcp_rack_cur_max = cur_max; 15163 } else if (TCP_IS_DETACHED(tcp)) { 15164 /* We don't have an ACK timer for detached TCP. */ 15165 flags |= TH_ACK_NEEDED; 15166 } else if (seg_len < mss) { 15167 /* 15168 * If we get a segment that is less than an mss, and we 15169 * already have unacknowledged data, and the amount 15170 * unacknowledged is not a multiple of mss, then we 15171 * better generate an ACK now. Otherwise, this may be 15172 * the tail piece of a transaction, and we would rather 15173 * wait for the response. 15174 */ 15175 uint32_t udif; 15176 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 15177 (uintptr_t)INT_MAX); 15178 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 15179 if (udif && (udif % mss)) 15180 flags |= TH_ACK_NEEDED; 15181 else 15182 flags |= TH_ACK_TIMER_NEEDED; 15183 } else { 15184 /* Start delayed ack timer */ 15185 flags |= TH_ACK_TIMER_NEEDED; 15186 } 15187 } 15188 tcp->tcp_rnxt += seg_len; 15189 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 15190 15191 /* Update SACK list */ 15192 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 15193 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 15194 &(tcp->tcp_num_sack_blk)); 15195 } 15196 15197 if (tcp->tcp_urp_mp) { 15198 tcp->tcp_urp_mp->b_cont = mp; 15199 mp = tcp->tcp_urp_mp; 15200 tcp->tcp_urp_mp = NULL; 15201 /* Ready for a new signal. */ 15202 tcp->tcp_urp_last_valid = B_FALSE; 15203 #ifdef DEBUG 15204 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15205 "tcp_rput: sending exdata_ind %s", 15206 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15207 #endif /* DEBUG */ 15208 } 15209 15210 /* 15211 * Check for ancillary data changes compared to last segment. 15212 */ 15213 if (tcp->tcp_ipv6_recvancillary != 0) { 15214 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 15215 ASSERT(mp != NULL); 15216 } 15217 15218 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 15219 /* 15220 * Side queue inbound data until the accept happens. 15221 * tcp_accept/tcp_rput drains this when the accept happens. 15222 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 15223 * T_EXDATA_IND) it is queued on b_next. 15224 * XXX Make urgent data use this. Requires: 15225 * Removing tcp_listener check for TH_URG 15226 * Making M_PCPROTO and MARK messages skip the eager case 15227 */ 15228 15229 if (tcp->tcp_kssl_pending) { 15230 DTRACE_PROBE1(kssl_mblk__ksslinput_pending, 15231 mblk_t *, mp); 15232 tcp_kssl_input(tcp, mp); 15233 } else { 15234 tcp_rcv_enqueue(tcp, mp, seg_len); 15235 } 15236 } else { 15237 sodirect_t *sodp = tcp->tcp_sodirect; 15238 15239 /* 15240 * If an sodirect connection and an enabled sodirect_t then 15241 * sodp will be set to point to the tcp_t/sonode_t shared 15242 * sodirect_t and the sodirect_t's lock will be held. 15243 */ 15244 if (sodp != NULL) { 15245 mutex_enter(sodp->sod_lockp); 15246 if (!(sodp->sod_state & SOD_ENABLED) || 15247 (tcp->tcp_kssl_ctx != NULL && 15248 DB_TYPE(mp) == M_DATA)) { 15249 mutex_exit(sodp->sod_lockp); 15250 sodp = NULL; 15251 } 15252 } 15253 if (mp->b_datap->db_type != M_DATA || 15254 (flags & TH_MARKNEXT_NEEDED)) { 15255 if (sodp != NULL) { 15256 if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) { 15257 sodp->sod_uioa.uioa_state &= UIOA_CLR; 15258 sodp->sod_uioa.uioa_state |= UIOA_FINI; 15259 } 15260 if (!SOD_QEMPTY(sodp) && 15261 (sodp->sod_state & SOD_WAKE_NOT)) { 15262 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15263 /* sod_wakeup() did the mutex_exit() */ 15264 } else { 15265 mutex_exit(sodp->sod_lockp); 15266 } 15267 } else if (tcp->tcp_rcv_list != NULL) { 15268 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15269 } 15270 ASSERT(tcp->tcp_rcv_list == NULL || 15271 tcp->tcp_fused_sigurg); 15272 15273 if (flags & TH_MARKNEXT_NEEDED) { 15274 #ifdef DEBUG 15275 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15276 "tcp_rput: sending MSGMARKNEXT %s", 15277 tcp_display(tcp, NULL, 15278 DISP_PORT_ONLY)); 15279 #endif /* DEBUG */ 15280 mp->b_flag |= MSGMARKNEXT; 15281 flags &= ~TH_MARKNEXT_NEEDED; 15282 } 15283 15284 /* Does this need SSL processing first? */ 15285 if ((tcp->tcp_kssl_ctx != NULL) && 15286 (DB_TYPE(mp) == M_DATA)) { 15287 DTRACE_PROBE1(kssl_mblk__ksslinput_data1, 15288 mblk_t *, mp); 15289 tcp_kssl_input(tcp, mp); 15290 } else { 15291 putnext(tcp->tcp_rq, mp); 15292 if (!canputnext(tcp->tcp_rq)) 15293 tcp->tcp_rwnd -= seg_len; 15294 } 15295 } else if ((tcp->tcp_kssl_ctx != NULL) && 15296 (DB_TYPE(mp) == M_DATA)) { 15297 /* Do SSL processing first */ 15298 DTRACE_PROBE1(kssl_mblk__ksslinput_data2, 15299 mblk_t *, mp); 15300 tcp_kssl_input(tcp, mp); 15301 } else if (sodp != NULL) { 15302 /* 15303 * Sodirect so all mblk_t's are queued on the 15304 * socket directly, check for wakeup of blocked 15305 * reader (if any), and last if flow-controled. 15306 */ 15307 flags |= tcp_rcv_sod_enqueue(tcp, sodp, mp, seg_len); 15308 if ((sodp->sod_state & SOD_WAKE_NEED) || 15309 (flags & (TH_PUSH|TH_FIN))) { 15310 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15311 /* sod_wakeup() did the mutex_exit() */ 15312 } else { 15313 if (SOD_QFULL(sodp)) { 15314 /* Q is full, need backenable */ 15315 SOD_QSETBE(sodp); 15316 } 15317 mutex_exit(sodp->sod_lockp); 15318 } 15319 } else if ((flags & (TH_PUSH|TH_FIN)) || 15320 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) { 15321 if (tcp->tcp_rcv_list != NULL) { 15322 /* 15323 * Enqueue the new segment first and then 15324 * call tcp_rcv_drain() to send all data 15325 * up. The other way to do this is to 15326 * send all queued data up and then call 15327 * putnext() to send the new segment up. 15328 * This way can remove the else part later 15329 * on. 15330 * 15331 * We don't this to avoid one more call to 15332 * canputnext() as tcp_rcv_drain() needs to 15333 * call canputnext(). 15334 */ 15335 tcp_rcv_enqueue(tcp, mp, seg_len); 15336 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15337 } else { 15338 putnext(tcp->tcp_rq, mp); 15339 if (!canputnext(tcp->tcp_rq)) 15340 tcp->tcp_rwnd -= seg_len; 15341 } 15342 } else { 15343 /* 15344 * Enqueue all packets when processing an mblk 15345 * from the co queue and also enqueue normal packets. 15346 */ 15347 tcp_rcv_enqueue(tcp, mp, seg_len); 15348 } 15349 /* 15350 * Make sure the timer is running if we have data waiting 15351 * for a push bit. This provides resiliency against 15352 * implementations that do not correctly generate push bits. 15353 * 15354 * Note, for sodirect if Q isn't empty and there's not a 15355 * pending wakeup then we need a timer. Also note that sodp 15356 * is assumed to be still valid after exit()ing the sod_lockp 15357 * above and while the SOD state can change it can only change 15358 * such that the Q is empty now even though data was added 15359 * above. 15360 */ 15361 if (((sodp != NULL && !SOD_QEMPTY(sodp) && 15362 (sodp->sod_state & SOD_WAKE_NOT)) || 15363 (sodp == NULL && tcp->tcp_rcv_list != NULL)) && 15364 tcp->tcp_push_tid == 0) { 15365 /* 15366 * The connection may be closed at this point, so don't 15367 * do anything for a detached tcp. 15368 */ 15369 if (!TCP_IS_DETACHED(tcp)) 15370 tcp->tcp_push_tid = TCP_TIMER(tcp, 15371 tcp_push_timer, 15372 MSEC_TO_TICK( 15373 tcps->tcps_push_timer_interval)); 15374 } 15375 } 15376 15377 xmit_check: 15378 /* Is there anything left to do? */ 15379 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15380 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 15381 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 15382 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15383 goto done; 15384 15385 /* Any transmit work to do and a non-zero window? */ 15386 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 15387 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 15388 if (flags & TH_REXMIT_NEEDED) { 15389 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 15390 15391 BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); 15392 if (snd_size > mss) 15393 snd_size = mss; 15394 if (snd_size > tcp->tcp_swnd) 15395 snd_size = tcp->tcp_swnd; 15396 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 15397 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 15398 B_TRUE); 15399 15400 if (mp1 != NULL) { 15401 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15402 tcp->tcp_csuna = tcp->tcp_snxt; 15403 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 15404 UPDATE_MIB(&tcps->tcps_mib, 15405 tcpRetransBytes, snd_size); 15406 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15407 } 15408 } 15409 if (flags & TH_NEED_SACK_REXMIT) { 15410 tcp_sack_rxmit(tcp, &flags); 15411 } 15412 /* 15413 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 15414 * out new segment. Note that tcp_rexmit should not be 15415 * set, otherwise TH_LIMIT_XMIT should not be set. 15416 */ 15417 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 15418 if (!tcp->tcp_rexmit) { 15419 tcp_wput_data(tcp, NULL, B_FALSE); 15420 } else { 15421 tcp_ss_rexmit(tcp); 15422 } 15423 } 15424 /* 15425 * Adjust tcp_cwnd back to normal value after sending 15426 * new data segments. 15427 */ 15428 if (flags & TH_LIMIT_XMIT) { 15429 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 15430 /* 15431 * This will restart the timer. Restarting the 15432 * timer is used to avoid a timeout before the 15433 * limited transmitted segment's ACK gets back. 15434 */ 15435 if (tcp->tcp_xmit_head != NULL) 15436 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15437 } 15438 15439 /* Anything more to do? */ 15440 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 15441 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15442 goto done; 15443 } 15444 ack_check: 15445 if (flags & TH_SEND_URP_MARK) { 15446 ASSERT(tcp->tcp_urp_mark_mp); 15447 /* 15448 * Send up any queued data and then send the mark message 15449 */ 15450 sodirect_t *sodp; 15451 15452 SOD_PTR_ENTER(tcp, sodp); 15453 15454 mp1 = tcp->tcp_urp_mark_mp; 15455 tcp->tcp_urp_mark_mp = NULL; 15456 if (sodp != NULL) { 15457 if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) { 15458 sodp->sod_uioa.uioa_state &= UIOA_CLR; 15459 sodp->sod_uioa.uioa_state |= UIOA_FINI; 15460 } 15461 ASSERT(tcp->tcp_rcv_list == NULL); 15462 15463 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15464 /* sod_wakeup() does the mutex_exit() */ 15465 } else if (tcp->tcp_rcv_list != NULL) { 15466 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15467 15468 ASSERT(tcp->tcp_rcv_list == NULL || 15469 tcp->tcp_fused_sigurg); 15470 15471 } 15472 putnext(tcp->tcp_rq, mp1); 15473 #ifdef DEBUG 15474 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15475 "tcp_rput: sending zero-length %s %s", 15476 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 15477 "MSGNOTMARKNEXT"), 15478 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15479 #endif /* DEBUG */ 15480 flags &= ~TH_SEND_URP_MARK; 15481 } 15482 if (flags & TH_ACK_NEEDED) { 15483 /* 15484 * Time to send an ack for some reason. 15485 */ 15486 mp1 = tcp_ack_mp(tcp); 15487 15488 if (mp1 != NULL) { 15489 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15490 BUMP_LOCAL(tcp->tcp_obsegs); 15491 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 15492 } 15493 if (tcp->tcp_ack_tid != 0) { 15494 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 15495 tcp->tcp_ack_tid = 0; 15496 } 15497 } 15498 if (flags & TH_ACK_TIMER_NEEDED) { 15499 /* 15500 * Arrange for deferred ACK or push wait timeout. 15501 * Start timer if it is not already running. 15502 */ 15503 if (tcp->tcp_ack_tid == 0) { 15504 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 15505 MSEC_TO_TICK(tcp->tcp_localnet ? 15506 (clock_t)tcps->tcps_local_dack_interval : 15507 (clock_t)tcps->tcps_deferred_ack_interval)); 15508 } 15509 } 15510 if (flags & TH_ORDREL_NEEDED) { 15511 /* 15512 * Send up the ordrel_ind unless we are an eager guy. 15513 * In the eager case tcp_rsrv will do this when run 15514 * after tcp_accept is done. 15515 */ 15516 sodirect_t *sodp; 15517 15518 ASSERT(tcp->tcp_listener == NULL); 15519 15520 SOD_PTR_ENTER(tcp, sodp); 15521 if (sodp != NULL) { 15522 if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) { 15523 sodp->sod_uioa.uioa_state &= UIOA_CLR; 15524 sodp->sod_uioa.uioa_state |= UIOA_FINI; 15525 } 15526 /* No more sodirect */ 15527 tcp->tcp_sodirect = NULL; 15528 if (!SOD_QEMPTY(sodp)) { 15529 /* Mblk(s) to process, notify */ 15530 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15531 /* sod_wakeup() does the mutex_exit() */ 15532 } else { 15533 /* Nothing to process */ 15534 mutex_exit(sodp->sod_lockp); 15535 } 15536 } else if (tcp->tcp_rcv_list != NULL) { 15537 /* 15538 * Push any mblk(s) enqueued from co processing. 15539 */ 15540 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15541 15542 ASSERT(tcp->tcp_rcv_list == NULL || 15543 tcp->tcp_fused_sigurg); 15544 } 15545 15546 mp1 = tcp->tcp_ordrel_mp; 15547 tcp->tcp_ordrel_mp = NULL; 15548 tcp->tcp_ordrel_done = B_TRUE; 15549 putnext(tcp->tcp_rq, mp1); 15550 } 15551 done: 15552 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15553 } 15554 15555 /* 15556 * This function does PAWS protection check. Returns B_TRUE if the 15557 * segment passes the PAWS test, else returns B_FALSE. 15558 */ 15559 boolean_t 15560 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 15561 { 15562 uint8_t flags; 15563 int options; 15564 uint8_t *up; 15565 15566 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 15567 /* 15568 * If timestamp option is aligned nicely, get values inline, 15569 * otherwise call general routine to parse. Only do that 15570 * if timestamp is the only option. 15571 */ 15572 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 15573 TCPOPT_REAL_TS_LEN && 15574 OK_32PTR((up = ((uint8_t *)tcph) + 15575 TCP_MIN_HEADER_LENGTH)) && 15576 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 15577 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 15578 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 15579 15580 options = TCP_OPT_TSTAMP_PRESENT; 15581 } else { 15582 if (tcp->tcp_snd_sack_ok) { 15583 tcpoptp->tcp = tcp; 15584 } else { 15585 tcpoptp->tcp = NULL; 15586 } 15587 options = tcp_parse_options(tcph, tcpoptp); 15588 } 15589 15590 if (options & TCP_OPT_TSTAMP_PRESENT) { 15591 /* 15592 * Do PAWS per RFC 1323 section 4.2. Accept RST 15593 * regardless of the timestamp, page 18 RFC 1323.bis. 15594 */ 15595 if ((flags & TH_RST) == 0 && 15596 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 15597 tcp->tcp_ts_recent)) { 15598 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 15599 PAWS_TIMEOUT)) { 15600 /* This segment is not acceptable. */ 15601 return (B_FALSE); 15602 } else { 15603 /* 15604 * Connection has been idle for 15605 * too long. Reset the timestamp 15606 * and assume the segment is valid. 15607 */ 15608 tcp->tcp_ts_recent = 15609 tcpoptp->tcp_opt_ts_val; 15610 } 15611 } 15612 } else { 15613 /* 15614 * If we don't get a timestamp on every packet, we 15615 * figure we can't really trust 'em, so we stop sending 15616 * and parsing them. 15617 */ 15618 tcp->tcp_snd_ts_ok = B_FALSE; 15619 15620 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15621 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15622 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 15623 /* 15624 * Adjust the tcp_mss accordingly. We also need to 15625 * adjust tcp_cwnd here in accordance with the new mss. 15626 * But we avoid doing a slow start here so as to not 15627 * to lose on the transfer rate built up so far. 15628 */ 15629 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE); 15630 if (tcp->tcp_snd_sack_ok) { 15631 ASSERT(tcp->tcp_sack_info != NULL); 15632 tcp->tcp_max_sack_blk = 4; 15633 } 15634 } 15635 return (B_TRUE); 15636 } 15637 15638 /* 15639 * Attach ancillary data to a received TCP segments for the 15640 * ancillary pieces requested by the application that are 15641 * different than they were in the previous data segment. 15642 * 15643 * Save the "current" values once memory allocation is ok so that 15644 * when memory allocation fails we can just wait for the next data segment. 15645 */ 15646 static mblk_t * 15647 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 15648 { 15649 struct T_optdata_ind *todi; 15650 int optlen; 15651 uchar_t *optptr; 15652 struct T_opthdr *toh; 15653 uint_t addflag; /* Which pieces to add */ 15654 mblk_t *mp1; 15655 15656 optlen = 0; 15657 addflag = 0; 15658 /* If app asked for pktinfo and the index has changed ... */ 15659 if ((ipp->ipp_fields & IPPF_IFINDEX) && 15660 ipp->ipp_ifindex != tcp->tcp_recvifindex && 15661 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 15662 optlen += sizeof (struct T_opthdr) + 15663 sizeof (struct in6_pktinfo); 15664 addflag |= TCP_IPV6_RECVPKTINFO; 15665 } 15666 /* If app asked for hoplimit and it has changed ... */ 15667 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 15668 ipp->ipp_hoplimit != tcp->tcp_recvhops && 15669 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 15670 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15671 addflag |= TCP_IPV6_RECVHOPLIMIT; 15672 } 15673 /* If app asked for tclass and it has changed ... */ 15674 if ((ipp->ipp_fields & IPPF_TCLASS) && 15675 ipp->ipp_tclass != tcp->tcp_recvtclass && 15676 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 15677 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15678 addflag |= TCP_IPV6_RECVTCLASS; 15679 } 15680 /* 15681 * If app asked for hopbyhop headers and it has changed ... 15682 * For security labels, note that (1) security labels can't change on 15683 * a connected socket at all, (2) we're connected to at most one peer, 15684 * (3) if anything changes, then it must be some other extra option. 15685 */ 15686 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 15687 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 15688 (ipp->ipp_fields & IPPF_HOPOPTS), 15689 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 15690 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen - 15691 tcp->tcp_label_len; 15692 addflag |= TCP_IPV6_RECVHOPOPTS; 15693 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 15694 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 15695 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 15696 return (mp); 15697 } 15698 /* If app asked for dst headers before routing headers ... */ 15699 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 15700 ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 15701 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15702 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 15703 optlen += sizeof (struct T_opthdr) + 15704 ipp->ipp_rtdstoptslen; 15705 addflag |= TCP_IPV6_RECVRTDSTOPTS; 15706 if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts, 15707 &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), 15708 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 15709 return (mp); 15710 } 15711 /* If app asked for routing headers and it has changed ... */ 15712 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 15713 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 15714 (ipp->ipp_fields & IPPF_RTHDR), 15715 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 15716 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 15717 addflag |= TCP_IPV6_RECVRTHDR; 15718 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 15719 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 15720 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 15721 return (mp); 15722 } 15723 /* If app asked for dest headers and it has changed ... */ 15724 if ((tcp->tcp_ipv6_recvancillary & 15725 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 15726 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 15727 (ipp->ipp_fields & IPPF_DSTOPTS), 15728 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 15729 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 15730 addflag |= TCP_IPV6_RECVDSTOPTS; 15731 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 15732 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 15733 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 15734 return (mp); 15735 } 15736 15737 if (optlen == 0) { 15738 /* Nothing to add */ 15739 return (mp); 15740 } 15741 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 15742 if (mp1 == NULL) { 15743 /* 15744 * Defer sending ancillary data until the next TCP segment 15745 * arrives. 15746 */ 15747 return (mp); 15748 } 15749 mp1->b_cont = mp; 15750 mp = mp1; 15751 mp->b_wptr += sizeof (*todi) + optlen; 15752 mp->b_datap->db_type = M_PROTO; 15753 todi = (struct T_optdata_ind *)mp->b_rptr; 15754 todi->PRIM_type = T_OPTDATA_IND; 15755 todi->DATA_flag = 1; /* MORE data */ 15756 todi->OPT_length = optlen; 15757 todi->OPT_offset = sizeof (*todi); 15758 optptr = (uchar_t *)&todi[1]; 15759 /* 15760 * If app asked for pktinfo and the index has changed ... 15761 * Note that the local address never changes for the connection. 15762 */ 15763 if (addflag & TCP_IPV6_RECVPKTINFO) { 15764 struct in6_pktinfo *pkti; 15765 15766 toh = (struct T_opthdr *)optptr; 15767 toh->level = IPPROTO_IPV6; 15768 toh->name = IPV6_PKTINFO; 15769 toh->len = sizeof (*toh) + sizeof (*pkti); 15770 toh->status = 0; 15771 optptr += sizeof (*toh); 15772 pkti = (struct in6_pktinfo *)optptr; 15773 if (tcp->tcp_ipversion == IPV6_VERSION) 15774 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 15775 else 15776 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15777 &pkti->ipi6_addr); 15778 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15779 optptr += sizeof (*pkti); 15780 ASSERT(OK_32PTR(optptr)); 15781 /* Save as "last" value */ 15782 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15783 } 15784 /* If app asked for hoplimit and it has changed ... */ 15785 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15786 toh = (struct T_opthdr *)optptr; 15787 toh->level = IPPROTO_IPV6; 15788 toh->name = IPV6_HOPLIMIT; 15789 toh->len = sizeof (*toh) + sizeof (uint_t); 15790 toh->status = 0; 15791 optptr += sizeof (*toh); 15792 *(uint_t *)optptr = ipp->ipp_hoplimit; 15793 optptr += sizeof (uint_t); 15794 ASSERT(OK_32PTR(optptr)); 15795 /* Save as "last" value */ 15796 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15797 } 15798 /* If app asked for tclass and it has changed ... */ 15799 if (addflag & TCP_IPV6_RECVTCLASS) { 15800 toh = (struct T_opthdr *)optptr; 15801 toh->level = IPPROTO_IPV6; 15802 toh->name = IPV6_TCLASS; 15803 toh->len = sizeof (*toh) + sizeof (uint_t); 15804 toh->status = 0; 15805 optptr += sizeof (*toh); 15806 *(uint_t *)optptr = ipp->ipp_tclass; 15807 optptr += sizeof (uint_t); 15808 ASSERT(OK_32PTR(optptr)); 15809 /* Save as "last" value */ 15810 tcp->tcp_recvtclass = ipp->ipp_tclass; 15811 } 15812 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15813 toh = (struct T_opthdr *)optptr; 15814 toh->level = IPPROTO_IPV6; 15815 toh->name = IPV6_HOPOPTS; 15816 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen - 15817 tcp->tcp_label_len; 15818 toh->status = 0; 15819 optptr += sizeof (*toh); 15820 bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr, 15821 ipp->ipp_hopoptslen - tcp->tcp_label_len); 15822 optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len; 15823 ASSERT(OK_32PTR(optptr)); 15824 /* Save as last value */ 15825 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 15826 (ipp->ipp_fields & IPPF_HOPOPTS), 15827 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15828 } 15829 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15830 toh = (struct T_opthdr *)optptr; 15831 toh->level = IPPROTO_IPV6; 15832 toh->name = IPV6_RTHDRDSTOPTS; 15833 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15834 toh->status = 0; 15835 optptr += sizeof (*toh); 15836 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15837 optptr += ipp->ipp_rtdstoptslen; 15838 ASSERT(OK_32PTR(optptr)); 15839 /* Save as last value */ 15840 ip_savebuf((void **)&tcp->tcp_rtdstopts, 15841 &tcp->tcp_rtdstoptslen, 15842 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15843 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15844 } 15845 if (addflag & TCP_IPV6_RECVRTHDR) { 15846 toh = (struct T_opthdr *)optptr; 15847 toh->level = IPPROTO_IPV6; 15848 toh->name = IPV6_RTHDR; 15849 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15850 toh->status = 0; 15851 optptr += sizeof (*toh); 15852 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15853 optptr += ipp->ipp_rthdrlen; 15854 ASSERT(OK_32PTR(optptr)); 15855 /* Save as last value */ 15856 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 15857 (ipp->ipp_fields & IPPF_RTHDR), 15858 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15859 } 15860 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15861 toh = (struct T_opthdr *)optptr; 15862 toh->level = IPPROTO_IPV6; 15863 toh->name = IPV6_DSTOPTS; 15864 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15865 toh->status = 0; 15866 optptr += sizeof (*toh); 15867 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15868 optptr += ipp->ipp_dstoptslen; 15869 ASSERT(OK_32PTR(optptr)); 15870 /* Save as last value */ 15871 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 15872 (ipp->ipp_fields & IPPF_DSTOPTS), 15873 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15874 } 15875 ASSERT(optptr == mp->b_wptr); 15876 return (mp); 15877 } 15878 15879 15880 /* 15881 * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK 15882 * or a "bad" IRE detected by tcp_adapt_ire. 15883 * We can't tell if the failure was due to the laddr or the faddr 15884 * thus we clear out all addresses and ports. 15885 */ 15886 static void 15887 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error) 15888 { 15889 queue_t *q = tcp->tcp_rq; 15890 tcph_t *tcph; 15891 struct T_error_ack *tea; 15892 conn_t *connp = tcp->tcp_connp; 15893 15894 15895 ASSERT(mp->b_datap->db_type == M_PCPROTO); 15896 15897 if (mp->b_cont) { 15898 freemsg(mp->b_cont); 15899 mp->b_cont = NULL; 15900 } 15901 tea = (struct T_error_ack *)mp->b_rptr; 15902 switch (tea->PRIM_type) { 15903 case T_BIND_ACK: 15904 /* 15905 * Need to unbind with classifier since we were just told that 15906 * our bind succeeded. 15907 */ 15908 tcp->tcp_hard_bound = B_FALSE; 15909 tcp->tcp_hard_binding = B_FALSE; 15910 15911 ipcl_hash_remove(connp); 15912 /* Reuse the mblk if possible */ 15913 ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >= 15914 sizeof (*tea)); 15915 mp->b_rptr = mp->b_datap->db_base; 15916 mp->b_wptr = mp->b_rptr + sizeof (*tea); 15917 tea = (struct T_error_ack *)mp->b_rptr; 15918 tea->PRIM_type = T_ERROR_ACK; 15919 tea->TLI_error = TSYSERR; 15920 tea->UNIX_error = error; 15921 if (tcp->tcp_state >= TCPS_SYN_SENT) { 15922 tea->ERROR_prim = T_CONN_REQ; 15923 } else { 15924 tea->ERROR_prim = O_T_BIND_REQ; 15925 } 15926 break; 15927 15928 case T_ERROR_ACK: 15929 if (tcp->tcp_state >= TCPS_SYN_SENT) 15930 tea->ERROR_prim = T_CONN_REQ; 15931 break; 15932 default: 15933 panic("tcp_bind_failed: unexpected TPI type"); 15934 /*NOTREACHED*/ 15935 } 15936 15937 tcp->tcp_state = TCPS_IDLE; 15938 if (tcp->tcp_ipversion == IPV4_VERSION) 15939 tcp->tcp_ipha->ipha_src = 0; 15940 else 15941 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 15942 /* 15943 * Copy of the src addr. in tcp_t is needed since 15944 * the lookup funcs. can only look at tcp_t 15945 */ 15946 V6_SET_ZERO(tcp->tcp_ip_src_v6); 15947 15948 tcph = tcp->tcp_tcph; 15949 tcph->th_lport[0] = 0; 15950 tcph->th_lport[1] = 0; 15951 tcp_bind_hash_remove(tcp); 15952 bzero(&connp->u_port, sizeof (connp->u_port)); 15953 /* blow away saved option results if any */ 15954 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 15955 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 15956 15957 conn_delete_ire(tcp->tcp_connp, NULL); 15958 putnext(q, mp); 15959 } 15960 15961 /* 15962 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15963 * messages. 15964 */ 15965 void 15966 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15967 { 15968 mblk_t *mp1; 15969 uchar_t *rptr = mp->b_rptr; 15970 queue_t *q = tcp->tcp_rq; 15971 struct T_error_ack *tea; 15972 uint32_t mss; 15973 mblk_t *syn_mp; 15974 mblk_t *mdti; 15975 mblk_t *lsoi; 15976 int retval; 15977 mblk_t *ire_mp; 15978 tcp_stack_t *tcps = tcp->tcp_tcps; 15979 15980 switch (mp->b_datap->db_type) { 15981 case M_PROTO: 15982 case M_PCPROTO: 15983 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15984 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15985 break; 15986 tea = (struct T_error_ack *)rptr; 15987 switch (tea->PRIM_type) { 15988 case T_BIND_ACK: 15989 /* 15990 * Adapt Multidata information, if any. The 15991 * following tcp_mdt_update routine will free 15992 * the message. 15993 */ 15994 if ((mdti = tcp_mdt_info_mp(mp)) != NULL) { 15995 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 15996 b_rptr)->mdt_capab, B_TRUE); 15997 freemsg(mdti); 15998 } 15999 16000 /* 16001 * Check to update LSO information with tcp, and 16002 * tcp_lso_update routine will free the message. 16003 */ 16004 if ((lsoi = tcp_lso_info_mp(mp)) != NULL) { 16005 tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi-> 16006 b_rptr)->lso_capab); 16007 freemsg(lsoi); 16008 } 16009 16010 /* Get the IRE, if we had requested for it */ 16011 ire_mp = tcp_ire_mp(mp); 16012 16013 if (tcp->tcp_hard_binding) { 16014 tcp->tcp_hard_binding = B_FALSE; 16015 tcp->tcp_hard_bound = B_TRUE; 16016 CL_INET_CONNECT(tcp); 16017 } else { 16018 if (ire_mp != NULL) 16019 freeb(ire_mp); 16020 goto after_syn_sent; 16021 } 16022 16023 retval = tcp_adapt_ire(tcp, ire_mp); 16024 if (ire_mp != NULL) 16025 freeb(ire_mp); 16026 if (retval == 0) { 16027 tcp_bind_failed(tcp, mp, 16028 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 16029 ENETUNREACH : EADDRNOTAVAIL)); 16030 return; 16031 } 16032 /* 16033 * Don't let an endpoint connect to itself. 16034 * Also checked in tcp_connect() but that 16035 * check can't handle the case when the 16036 * local IP address is INADDR_ANY. 16037 */ 16038 if (tcp->tcp_ipversion == IPV4_VERSION) { 16039 if ((tcp->tcp_ipha->ipha_dst == 16040 tcp->tcp_ipha->ipha_src) && 16041 (BE16_EQL(tcp->tcp_tcph->th_lport, 16042 tcp->tcp_tcph->th_fport))) { 16043 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 16044 return; 16045 } 16046 } else { 16047 if (IN6_ARE_ADDR_EQUAL( 16048 &tcp->tcp_ip6h->ip6_dst, 16049 &tcp->tcp_ip6h->ip6_src) && 16050 (BE16_EQL(tcp->tcp_tcph->th_lport, 16051 tcp->tcp_tcph->th_fport))) { 16052 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 16053 return; 16054 } 16055 } 16056 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 16057 /* 16058 * This should not be possible! Just for 16059 * defensive coding... 16060 */ 16061 if (tcp->tcp_state != TCPS_SYN_SENT) 16062 goto after_syn_sent; 16063 16064 if (is_system_labeled() && 16065 !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) { 16066 tcp_bind_failed(tcp, mp, EHOSTUNREACH); 16067 return; 16068 } 16069 16070 ASSERT(q == tcp->tcp_rq); 16071 /* 16072 * tcp_adapt_ire() does not adjust 16073 * for TCP/IP header length. 16074 */ 16075 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 16076 16077 /* 16078 * Just make sure our rwnd is at 16079 * least tcp_recv_hiwat_mss * MSS 16080 * large, and round up to the nearest 16081 * MSS. 16082 * 16083 * We do the round up here because 16084 * we need to get the interface 16085 * MTU first before we can do the 16086 * round up. 16087 */ 16088 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 16089 tcps->tcps_recv_hiwat_minmss * mss); 16090 q->q_hiwat = tcp->tcp_rwnd; 16091 tcp_set_ws_value(tcp); 16092 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 16093 tcp->tcp_tcph->th_win); 16094 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 16095 tcp->tcp_snd_ws_ok = B_TRUE; 16096 16097 /* 16098 * Set tcp_snd_ts_ok to true 16099 * so that tcp_xmit_mp will 16100 * include the timestamp 16101 * option in the SYN segment. 16102 */ 16103 if (tcps->tcps_tstamp_always || 16104 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 16105 tcp->tcp_snd_ts_ok = B_TRUE; 16106 } 16107 16108 /* 16109 * tcp_snd_sack_ok can be set in 16110 * tcp_adapt_ire() if the sack metric 16111 * is set. So check it here also. 16112 */ 16113 if (tcps->tcps_sack_permitted == 2 || 16114 tcp->tcp_snd_sack_ok) { 16115 if (tcp->tcp_sack_info == NULL) { 16116 tcp->tcp_sack_info = 16117 kmem_cache_alloc( 16118 tcp_sack_info_cache, 16119 KM_SLEEP); 16120 } 16121 tcp->tcp_snd_sack_ok = B_TRUE; 16122 } 16123 16124 /* 16125 * Should we use ECN? Note that the current 16126 * default value (SunOS 5.9) of tcp_ecn_permitted 16127 * is 1. The reason for doing this is that there 16128 * are equipments out there that will drop ECN 16129 * enabled IP packets. Setting it to 1 avoids 16130 * compatibility problems. 16131 */ 16132 if (tcps->tcps_ecn_permitted == 2) 16133 tcp->tcp_ecn_ok = B_TRUE; 16134 16135 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 16136 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 16137 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 16138 if (syn_mp) { 16139 cred_t *cr; 16140 pid_t pid; 16141 16142 /* 16143 * Obtain the credential from the 16144 * thread calling connect(); the credential 16145 * lives on in the second mblk which 16146 * originated from T_CONN_REQ and is echoed 16147 * with the T_BIND_ACK from ip. If none 16148 * can be found, default to the creator 16149 * of the socket. 16150 */ 16151 if (mp->b_cont == NULL || 16152 (cr = DB_CRED(mp->b_cont)) == NULL) { 16153 cr = tcp->tcp_cred; 16154 pid = tcp->tcp_cpid; 16155 } else { 16156 pid = DB_CPID(mp->b_cont); 16157 } 16158 mblk_setcred(syn_mp, cr); 16159 DB_CPID(syn_mp) = pid; 16160 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 16161 } 16162 after_syn_sent: 16163 /* 16164 * A trailer mblk indicates a waiting client upstream. 16165 * We complete here the processing begun in 16166 * either tcp_bind() or tcp_connect() by passing 16167 * upstream the reply message they supplied. 16168 */ 16169 mp1 = mp; 16170 mp = mp->b_cont; 16171 freeb(mp1); 16172 if (mp) 16173 break; 16174 return; 16175 case T_ERROR_ACK: 16176 if (tcp->tcp_debug) { 16177 (void) strlog(TCP_MOD_ID, 0, 1, 16178 SL_TRACE|SL_ERROR, 16179 "tcp_rput_other: case T_ERROR_ACK, " 16180 "ERROR_prim == %d", 16181 tea->ERROR_prim); 16182 } 16183 switch (tea->ERROR_prim) { 16184 case O_T_BIND_REQ: 16185 case T_BIND_REQ: 16186 tcp_bind_failed(tcp, mp, 16187 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 16188 ENETUNREACH : EADDRNOTAVAIL)); 16189 return; 16190 case T_UNBIND_REQ: 16191 tcp->tcp_hard_binding = B_FALSE; 16192 tcp->tcp_hard_bound = B_FALSE; 16193 if (mp->b_cont) { 16194 freemsg(mp->b_cont); 16195 mp->b_cont = NULL; 16196 } 16197 if (tcp->tcp_unbind_pending) 16198 tcp->tcp_unbind_pending = 0; 16199 else { 16200 /* From tcp_ip_unbind() - free */ 16201 freemsg(mp); 16202 return; 16203 } 16204 break; 16205 case T_SVR4_OPTMGMT_REQ: 16206 if (tcp->tcp_drop_opt_ack_cnt > 0) { 16207 /* T_OPTMGMT_REQ generated by TCP */ 16208 printf("T_SVR4_OPTMGMT_REQ failed " 16209 "%d/%d - dropped (cnt %d)\n", 16210 tea->TLI_error, tea->UNIX_error, 16211 tcp->tcp_drop_opt_ack_cnt); 16212 freemsg(mp); 16213 tcp->tcp_drop_opt_ack_cnt--; 16214 return; 16215 } 16216 break; 16217 } 16218 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 16219 tcp->tcp_drop_opt_ack_cnt > 0) { 16220 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 16221 "- dropped (cnt %d)\n", 16222 tea->TLI_error, tea->UNIX_error, 16223 tcp->tcp_drop_opt_ack_cnt); 16224 freemsg(mp); 16225 tcp->tcp_drop_opt_ack_cnt--; 16226 return; 16227 } 16228 break; 16229 case T_OPTMGMT_ACK: 16230 if (tcp->tcp_drop_opt_ack_cnt > 0) { 16231 /* T_OPTMGMT_REQ generated by TCP */ 16232 freemsg(mp); 16233 tcp->tcp_drop_opt_ack_cnt--; 16234 return; 16235 } 16236 break; 16237 default: 16238 break; 16239 } 16240 break; 16241 case M_FLUSH: 16242 if (*rptr & FLUSHR) 16243 flushq(q, FLUSHDATA); 16244 break; 16245 default: 16246 /* M_CTL will be directly sent to tcp_icmp_error() */ 16247 ASSERT(DB_TYPE(mp) != M_CTL); 16248 break; 16249 } 16250 /* 16251 * Make sure we set this bit before sending the ACK for 16252 * bind. Otherwise accept could possibly run and free 16253 * this tcp struct. 16254 */ 16255 putnext(q, mp); 16256 } 16257 16258 /* ARGSUSED */ 16259 static void 16260 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 16261 { 16262 conn_t *connp = (conn_t *)arg; 16263 tcp_t *tcp = connp->conn_tcp; 16264 queue_t *q = tcp->tcp_rq; 16265 uint_t thwin; 16266 tcp_stack_t *tcps = tcp->tcp_tcps; 16267 sodirect_t *sodp; 16268 boolean_t fc; 16269 16270 mutex_enter(&tcp->tcp_rsrv_mp_lock); 16271 tcp->tcp_rsrv_mp = mp; 16272 mutex_exit(&tcp->tcp_rsrv_mp_lock); 16273 16274 TCP_STAT(tcps, tcp_rsrv_calls); 16275 16276 if (TCP_IS_DETACHED(tcp) || q == NULL) { 16277 return; 16278 } 16279 16280 if (tcp->tcp_fused) { 16281 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 16282 16283 ASSERT(tcp->tcp_fused); 16284 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 16285 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 16286 ASSERT(!TCP_IS_DETACHED(tcp)); 16287 ASSERT(tcp->tcp_connp->conn_sqp == 16288 peer_tcp->tcp_connp->conn_sqp); 16289 16290 /* 16291 * Normally we would not get backenabled in synchronous 16292 * streams mode, but in case this happens, we need to plug 16293 * synchronous streams during our drain to prevent a race 16294 * with tcp_fuse_rrw() or tcp_fuse_rinfop(). 16295 */ 16296 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 16297 if (tcp->tcp_rcv_list != NULL) 16298 (void) tcp_rcv_drain(tcp->tcp_rq, tcp); 16299 16300 if (peer_tcp > tcp) { 16301 mutex_enter(&peer_tcp->tcp_non_sq_lock); 16302 mutex_enter(&tcp->tcp_non_sq_lock); 16303 } else { 16304 mutex_enter(&tcp->tcp_non_sq_lock); 16305 mutex_enter(&peer_tcp->tcp_non_sq_lock); 16306 } 16307 16308 if (peer_tcp->tcp_flow_stopped && 16309 (TCP_UNSENT_BYTES(peer_tcp) <= 16310 peer_tcp->tcp_xmit_lowater)) { 16311 tcp_clrqfull(peer_tcp); 16312 } 16313 mutex_exit(&peer_tcp->tcp_non_sq_lock); 16314 mutex_exit(&tcp->tcp_non_sq_lock); 16315 16316 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 16317 TCP_STAT(tcps, tcp_fusion_backenabled); 16318 return; 16319 } 16320 16321 SOD_PTR_ENTER(tcp, sodp); 16322 if (sodp != NULL) { 16323 /* An sodirect connection */ 16324 if (SOD_QFULL(sodp)) { 16325 /* Flow-controlled, need another back-enable */ 16326 fc = B_TRUE; 16327 SOD_QSETBE(sodp); 16328 } else { 16329 /* Not flow-controlled */ 16330 fc = B_FALSE; 16331 } 16332 mutex_exit(sodp->sod_lockp); 16333 } else if (canputnext(q)) { 16334 /* STREAMS, not flow-controlled */ 16335 fc = B_FALSE; 16336 } else { 16337 /* STREAMS, flow-controlled */ 16338 fc = B_TRUE; 16339 } 16340 if (!fc) { 16341 /* Not flow-controlled, open rwnd */ 16342 tcp->tcp_rwnd = q->q_hiwat; 16343 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 16344 << tcp->tcp_rcv_ws; 16345 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 16346 /* 16347 * Send back a window update immediately if TCP is above 16348 * ESTABLISHED state and the increase of the rcv window 16349 * that the other side knows is at least 1 MSS after flow 16350 * control is lifted. 16351 */ 16352 if (tcp->tcp_state >= TCPS_ESTABLISHED && 16353 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 16354 tcp_xmit_ctl(NULL, tcp, 16355 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 16356 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 16357 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 16358 } 16359 } 16360 } 16361 16362 /* 16363 * The read side service routine is called mostly when we get back-enabled as a 16364 * result of flow control relief. Since we don't actually queue anything in 16365 * TCP, we have no data to send out of here. What we do is clear the receive 16366 * window, and send out a window update. 16367 */ 16368 static void 16369 tcp_rsrv(queue_t *q) 16370 { 16371 conn_t *connp = Q_TO_CONN(q); 16372 tcp_t *tcp = connp->conn_tcp; 16373 mblk_t *mp; 16374 tcp_stack_t *tcps = tcp->tcp_tcps; 16375 16376 /* No code does a putq on the read side */ 16377 ASSERT(q->q_first == NULL); 16378 16379 /* Nothing to do for the default queue */ 16380 if (q == tcps->tcps_g_q) { 16381 return; 16382 } 16383 16384 /* 16385 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 16386 * been run. So just return. 16387 */ 16388 mutex_enter(&tcp->tcp_rsrv_mp_lock); 16389 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 16390 mutex_exit(&tcp->tcp_rsrv_mp_lock); 16391 return; 16392 } 16393 tcp->tcp_rsrv_mp = NULL; 16394 mutex_exit(&tcp->tcp_rsrv_mp_lock); 16395 16396 CONN_INC_REF(connp); 16397 squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp, 16398 SQTAG_TCP_RSRV); 16399 } 16400 16401 /* 16402 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 16403 * We do not allow the receive window to shrink. After setting rwnd, 16404 * set the flow control hiwat of the stream. 16405 * 16406 * This function is called in 2 cases: 16407 * 16408 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 16409 * connection (passive open) and in tcp_rput_data() for active connect. 16410 * This is called after tcp_mss_set() when the desired MSS value is known. 16411 * This makes sure that our window size is a mutiple of the other side's 16412 * MSS. 16413 * 2) Handling SO_RCVBUF option. 16414 * 16415 * It is ASSUMED that the requested size is a multiple of the current MSS. 16416 * 16417 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 16418 * user requests so. 16419 */ 16420 static int 16421 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 16422 { 16423 uint32_t mss = tcp->tcp_mss; 16424 uint32_t old_max_rwnd; 16425 uint32_t max_transmittable_rwnd; 16426 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 16427 tcp_stack_t *tcps = tcp->tcp_tcps; 16428 16429 if (tcp->tcp_fused) { 16430 size_t sth_hiwat; 16431 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 16432 16433 ASSERT(peer_tcp != NULL); 16434 /* 16435 * Record the stream head's high water mark for 16436 * this endpoint; this is used for flow-control 16437 * purposes in tcp_fuse_output(). 16438 */ 16439 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 16440 if (!tcp_detached) 16441 (void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat); 16442 16443 /* 16444 * In the fusion case, the maxpsz stream head value of 16445 * our peer is set according to its send buffer size 16446 * and our receive buffer size; since the latter may 16447 * have changed we need to update the peer's maxpsz. 16448 */ 16449 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 16450 return (rwnd); 16451 } 16452 16453 if (tcp_detached) 16454 old_max_rwnd = tcp->tcp_rwnd; 16455 else 16456 old_max_rwnd = tcp->tcp_rq->q_hiwat; 16457 16458 /* 16459 * Insist on a receive window that is at least 16460 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 16461 * funny TCP interactions of Nagle algorithm, SWS avoidance 16462 * and delayed acknowledgement. 16463 */ 16464 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 16465 16466 /* 16467 * If window size info has already been exchanged, TCP should not 16468 * shrink the window. Shrinking window is doable if done carefully. 16469 * We may add that support later. But so far there is not a real 16470 * need to do that. 16471 */ 16472 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 16473 /* MSS may have changed, do a round up again. */ 16474 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 16475 } 16476 16477 /* 16478 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 16479 * can be applied even before the window scale option is decided. 16480 */ 16481 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 16482 if (rwnd > max_transmittable_rwnd) { 16483 rwnd = max_transmittable_rwnd - 16484 (max_transmittable_rwnd % mss); 16485 if (rwnd < mss) 16486 rwnd = max_transmittable_rwnd; 16487 /* 16488 * If we're over the limit we may have to back down tcp_rwnd. 16489 * The increment below won't work for us. So we set all three 16490 * here and the increment below will have no effect. 16491 */ 16492 tcp->tcp_rwnd = old_max_rwnd = rwnd; 16493 } 16494 if (tcp->tcp_localnet) { 16495 tcp->tcp_rack_abs_max = 16496 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 16497 } else { 16498 /* 16499 * For a remote host on a different subnet (through a router), 16500 * we ack every other packet to be conforming to RFC1122. 16501 * tcp_deferred_acks_max is default to 2. 16502 */ 16503 tcp->tcp_rack_abs_max = 16504 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 16505 } 16506 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 16507 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 16508 else 16509 tcp->tcp_rack_cur_max = 0; 16510 /* 16511 * Increment the current rwnd by the amount the maximum grew (we 16512 * can not overwrite it since we might be in the middle of a 16513 * connection.) 16514 */ 16515 tcp->tcp_rwnd += rwnd - old_max_rwnd; 16516 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 16517 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 16518 tcp->tcp_cwnd_max = rwnd; 16519 16520 if (tcp_detached) 16521 return (rwnd); 16522 /* 16523 * We set the maximum receive window into rq->q_hiwat. 16524 * This is not actually used for flow control. 16525 */ 16526 tcp->tcp_rq->q_hiwat = rwnd; 16527 /* 16528 * Set the Stream head high water mark. This doesn't have to be 16529 * here, since we are simply using default values, but we would 16530 * prefer to choose these values algorithmically, with a likely 16531 * relationship to rwnd. 16532 */ 16533 (void) mi_set_sth_hiwat(tcp->tcp_rq, 16534 MAX(rwnd, tcps->tcps_sth_rcv_hiwat)); 16535 return (rwnd); 16536 } 16537 16538 /* 16539 * Return SNMP stuff in buffer in mpdata. 16540 */ 16541 mblk_t * 16542 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 16543 { 16544 mblk_t *mpdata; 16545 mblk_t *mp_conn_ctl = NULL; 16546 mblk_t *mp_conn_tail; 16547 mblk_t *mp_attr_ctl = NULL; 16548 mblk_t *mp_attr_tail; 16549 mblk_t *mp6_conn_ctl = NULL; 16550 mblk_t *mp6_conn_tail; 16551 mblk_t *mp6_attr_ctl = NULL; 16552 mblk_t *mp6_attr_tail; 16553 struct opthdr *optp; 16554 mib2_tcpConnEntry_t tce; 16555 mib2_tcp6ConnEntry_t tce6; 16556 mib2_transportMLPEntry_t mlp; 16557 connf_t *connfp; 16558 int i; 16559 boolean_t ispriv; 16560 zoneid_t zoneid; 16561 int v4_conn_idx; 16562 int v6_conn_idx; 16563 conn_t *connp = Q_TO_CONN(q); 16564 tcp_stack_t *tcps; 16565 ip_stack_t *ipst; 16566 mblk_t *mp2ctl; 16567 16568 /* 16569 * make a copy of the original message 16570 */ 16571 mp2ctl = copymsg(mpctl); 16572 16573 if (mpctl == NULL || 16574 (mpdata = mpctl->b_cont) == NULL || 16575 (mp_conn_ctl = copymsg(mpctl)) == NULL || 16576 (mp_attr_ctl = copymsg(mpctl)) == NULL || 16577 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 16578 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 16579 freemsg(mp_conn_ctl); 16580 freemsg(mp_attr_ctl); 16581 freemsg(mp6_conn_ctl); 16582 freemsg(mp6_attr_ctl); 16583 freemsg(mpctl); 16584 freemsg(mp2ctl); 16585 return (NULL); 16586 } 16587 16588 ipst = connp->conn_netstack->netstack_ip; 16589 tcps = connp->conn_netstack->netstack_tcp; 16590 16591 /* build table of connections -- need count in fixed part */ 16592 SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ 16593 SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); 16594 SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); 16595 SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); 16596 SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); 16597 16598 ispriv = 16599 secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 16600 zoneid = Q_TO_CONN(q)->conn_zoneid; 16601 16602 v4_conn_idx = v6_conn_idx = 0; 16603 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 16604 16605 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16606 ipst = tcps->tcps_netstack->netstack_ip; 16607 16608 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 16609 16610 connp = NULL; 16611 16612 while ((connp = 16613 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16614 tcp_t *tcp; 16615 boolean_t needattr; 16616 16617 if (connp->conn_zoneid != zoneid) 16618 continue; /* not in this zone */ 16619 16620 tcp = connp->conn_tcp; 16621 UPDATE_MIB(&tcps->tcps_mib, 16622 tcpHCInSegs, tcp->tcp_ibsegs); 16623 tcp->tcp_ibsegs = 0; 16624 UPDATE_MIB(&tcps->tcps_mib, 16625 tcpHCOutSegs, tcp->tcp_obsegs); 16626 tcp->tcp_obsegs = 0; 16627 16628 tce6.tcp6ConnState = tce.tcpConnState = 16629 tcp_snmp_state(tcp); 16630 if (tce.tcpConnState == MIB2_TCP_established || 16631 tce.tcpConnState == MIB2_TCP_closeWait) 16632 BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); 16633 16634 needattr = B_FALSE; 16635 bzero(&mlp, sizeof (mlp)); 16636 if (connp->conn_mlp_type != mlptSingle) { 16637 if (connp->conn_mlp_type == mlptShared || 16638 connp->conn_mlp_type == mlptBoth) 16639 mlp.tme_flags |= MIB2_TMEF_SHARED; 16640 if (connp->conn_mlp_type == mlptPrivate || 16641 connp->conn_mlp_type == mlptBoth) 16642 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 16643 needattr = B_TRUE; 16644 } 16645 if (connp->conn_peercred != NULL) { 16646 ts_label_t *tsl; 16647 16648 tsl = crgetlabel(connp->conn_peercred); 16649 mlp.tme_doi = label2doi(tsl); 16650 mlp.tme_label = *label2bslabel(tsl); 16651 needattr = B_TRUE; 16652 } 16653 16654 /* Create a message to report on IPv6 entries */ 16655 if (tcp->tcp_ipversion == IPV6_VERSION) { 16656 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 16657 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 16658 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 16659 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 16660 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 16661 /* Don't want just anybody seeing these... */ 16662 if (ispriv) { 16663 tce6.tcp6ConnEntryInfo.ce_snxt = 16664 tcp->tcp_snxt; 16665 tce6.tcp6ConnEntryInfo.ce_suna = 16666 tcp->tcp_suna; 16667 tce6.tcp6ConnEntryInfo.ce_rnxt = 16668 tcp->tcp_rnxt; 16669 tce6.tcp6ConnEntryInfo.ce_rack = 16670 tcp->tcp_rack; 16671 } else { 16672 /* 16673 * Netstat, unfortunately, uses this to 16674 * get send/receive queue sizes. How to fix? 16675 * Why not compute the difference only? 16676 */ 16677 tce6.tcp6ConnEntryInfo.ce_snxt = 16678 tcp->tcp_snxt - tcp->tcp_suna; 16679 tce6.tcp6ConnEntryInfo.ce_suna = 0; 16680 tce6.tcp6ConnEntryInfo.ce_rnxt = 16681 tcp->tcp_rnxt - tcp->tcp_rack; 16682 tce6.tcp6ConnEntryInfo.ce_rack = 0; 16683 } 16684 16685 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16686 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16687 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 16688 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 16689 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 16690 16691 tce6.tcp6ConnCreationProcess = 16692 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16693 tcp->tcp_cpid; 16694 tce6.tcp6ConnCreationTime = tcp->tcp_open_time; 16695 16696 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 16697 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 16698 16699 mlp.tme_connidx = v6_conn_idx++; 16700 if (needattr) 16701 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 16702 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 16703 } 16704 /* 16705 * Create an IPv4 table entry for IPv4 entries and also 16706 * for IPv6 entries which are bound to in6addr_any 16707 * but don't have IPV6_V6ONLY set. 16708 * (i.e. anything an IPv4 peer could connect to) 16709 */ 16710 if (tcp->tcp_ipversion == IPV4_VERSION || 16711 (tcp->tcp_state <= TCPS_LISTEN && 16712 !tcp->tcp_connp->conn_ipv6_v6only && 16713 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 16714 if (tcp->tcp_ipversion == IPV6_VERSION) { 16715 tce.tcpConnRemAddress = INADDR_ANY; 16716 tce.tcpConnLocalAddress = INADDR_ANY; 16717 } else { 16718 tce.tcpConnRemAddress = 16719 tcp->tcp_remote; 16720 tce.tcpConnLocalAddress = 16721 tcp->tcp_ip_src; 16722 } 16723 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 16724 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 16725 /* Don't want just anybody seeing these... */ 16726 if (ispriv) { 16727 tce.tcpConnEntryInfo.ce_snxt = 16728 tcp->tcp_snxt; 16729 tce.tcpConnEntryInfo.ce_suna = 16730 tcp->tcp_suna; 16731 tce.tcpConnEntryInfo.ce_rnxt = 16732 tcp->tcp_rnxt; 16733 tce.tcpConnEntryInfo.ce_rack = 16734 tcp->tcp_rack; 16735 } else { 16736 /* 16737 * Netstat, unfortunately, uses this to 16738 * get send/receive queue sizes. How 16739 * to fix? 16740 * Why not compute the difference only? 16741 */ 16742 tce.tcpConnEntryInfo.ce_snxt = 16743 tcp->tcp_snxt - tcp->tcp_suna; 16744 tce.tcpConnEntryInfo.ce_suna = 0; 16745 tce.tcpConnEntryInfo.ce_rnxt = 16746 tcp->tcp_rnxt - tcp->tcp_rack; 16747 tce.tcpConnEntryInfo.ce_rack = 0; 16748 } 16749 16750 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16751 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16752 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 16753 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 16754 tce.tcpConnEntryInfo.ce_state = 16755 tcp->tcp_state; 16756 16757 tce.tcpConnCreationProcess = 16758 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16759 tcp->tcp_cpid; 16760 tce.tcpConnCreationTime = tcp->tcp_open_time; 16761 16762 (void) snmp_append_data2(mp_conn_ctl->b_cont, 16763 &mp_conn_tail, (char *)&tce, sizeof (tce)); 16764 16765 mlp.tme_connidx = v4_conn_idx++; 16766 if (needattr) 16767 (void) snmp_append_data2( 16768 mp_attr_ctl->b_cont, 16769 &mp_attr_tail, (char *)&mlp, 16770 sizeof (mlp)); 16771 } 16772 } 16773 } 16774 16775 /* fixed length structure for IPv4 and IPv6 counters */ 16776 SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 16777 SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, 16778 sizeof (mib2_tcp6ConnEntry_t)); 16779 /* synchronize 32- and 64-bit counters */ 16780 SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); 16781 SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); 16782 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16783 optp->level = MIB2_TCP; 16784 optp->name = 0; 16785 (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, 16786 sizeof (tcps->tcps_mib)); 16787 optp->len = msgdsize(mpdata); 16788 qreply(q, mpctl); 16789 16790 /* table of connections... */ 16791 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 16792 sizeof (struct T_optmgmt_ack)]; 16793 optp->level = MIB2_TCP; 16794 optp->name = MIB2_TCP_CONN; 16795 optp->len = msgdsize(mp_conn_ctl->b_cont); 16796 qreply(q, mp_conn_ctl); 16797 16798 /* table of MLP attributes... */ 16799 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 16800 sizeof (struct T_optmgmt_ack)]; 16801 optp->level = MIB2_TCP; 16802 optp->name = EXPER_XPORT_MLP; 16803 optp->len = msgdsize(mp_attr_ctl->b_cont); 16804 if (optp->len == 0) 16805 freemsg(mp_attr_ctl); 16806 else 16807 qreply(q, mp_attr_ctl); 16808 16809 /* table of IPv6 connections... */ 16810 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16811 sizeof (struct T_optmgmt_ack)]; 16812 optp->level = MIB2_TCP6; 16813 optp->name = MIB2_TCP6_CONN; 16814 optp->len = msgdsize(mp6_conn_ctl->b_cont); 16815 qreply(q, mp6_conn_ctl); 16816 16817 /* table of IPv6 MLP attributes... */ 16818 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 16819 sizeof (struct T_optmgmt_ack)]; 16820 optp->level = MIB2_TCP6; 16821 optp->name = EXPER_XPORT_MLP; 16822 optp->len = msgdsize(mp6_attr_ctl->b_cont); 16823 if (optp->len == 0) 16824 freemsg(mp6_attr_ctl); 16825 else 16826 qreply(q, mp6_attr_ctl); 16827 return (mp2ctl); 16828 } 16829 16830 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16831 /* ARGSUSED */ 16832 int 16833 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16834 { 16835 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16836 16837 switch (level) { 16838 case MIB2_TCP: 16839 switch (name) { 16840 case 13: 16841 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16842 return (0); 16843 /* TODO: delete entry defined by tce */ 16844 return (1); 16845 default: 16846 return (0); 16847 } 16848 default: 16849 return (1); 16850 } 16851 } 16852 16853 /* Translate TCP state to MIB2 TCP state. */ 16854 static int 16855 tcp_snmp_state(tcp_t *tcp) 16856 { 16857 if (tcp == NULL) 16858 return (0); 16859 16860 switch (tcp->tcp_state) { 16861 case TCPS_CLOSED: 16862 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16863 case TCPS_BOUND: 16864 return (MIB2_TCP_closed); 16865 case TCPS_LISTEN: 16866 return (MIB2_TCP_listen); 16867 case TCPS_SYN_SENT: 16868 return (MIB2_TCP_synSent); 16869 case TCPS_SYN_RCVD: 16870 return (MIB2_TCP_synReceived); 16871 case TCPS_ESTABLISHED: 16872 return (MIB2_TCP_established); 16873 case TCPS_CLOSE_WAIT: 16874 return (MIB2_TCP_closeWait); 16875 case TCPS_FIN_WAIT_1: 16876 return (MIB2_TCP_finWait1); 16877 case TCPS_CLOSING: 16878 return (MIB2_TCP_closing); 16879 case TCPS_LAST_ACK: 16880 return (MIB2_TCP_lastAck); 16881 case TCPS_FIN_WAIT_2: 16882 return (MIB2_TCP_finWait2); 16883 case TCPS_TIME_WAIT: 16884 return (MIB2_TCP_timeWait); 16885 default: 16886 return (0); 16887 } 16888 } 16889 16890 static char tcp_report_header[] = 16891 "TCP " MI_COL_HDRPAD_STR 16892 "zone dest snxt suna " 16893 "swnd rnxt rack rwnd rto mss w sw rw t " 16894 "recent [lport,fport] state"; 16895 16896 /* 16897 * TCP status report triggered via the Named Dispatch mechanism. 16898 */ 16899 /* ARGSUSED */ 16900 static void 16901 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream, 16902 cred_t *cr) 16903 { 16904 char hash[10], addrbuf[INET6_ADDRSTRLEN]; 16905 boolean_t ispriv = secpolicy_ip_config(cr, B_TRUE) == 0; 16906 char cflag; 16907 in6_addr_t v6dst; 16908 char buf[80]; 16909 uint_t print_len, buf_len; 16910 16911 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16912 if (buf_len <= 0) 16913 return; 16914 16915 if (hashval >= 0) 16916 (void) sprintf(hash, "%03d ", hashval); 16917 else 16918 hash[0] = '\0'; 16919 16920 /* 16921 * Note that we use the remote address in the tcp_b structure. 16922 * This means that it will print out the real destination address, 16923 * not the next hop's address if source routing is used. This 16924 * avoid the confusion on the output because user may not 16925 * know that source routing is used for a connection. 16926 */ 16927 if (tcp->tcp_ipversion == IPV4_VERSION) { 16928 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst); 16929 } else { 16930 v6dst = tcp->tcp_remote_v6; 16931 } 16932 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16933 /* 16934 * the ispriv checks are so that normal users cannot determine 16935 * sequence number information using NDD. 16936 */ 16937 16938 if (TCP_IS_DETACHED(tcp)) 16939 cflag = '*'; 16940 else 16941 cflag = ' '; 16942 print_len = snprintf((char *)mp->b_wptr, buf_len, 16943 "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x " 16944 "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n", 16945 hash, 16946 (void *)tcp, 16947 tcp->tcp_connp->conn_zoneid, 16948 addrbuf, 16949 (ispriv) ? tcp->tcp_snxt : 0, 16950 (ispriv) ? tcp->tcp_suna : 0, 16951 tcp->tcp_swnd, 16952 (ispriv) ? tcp->tcp_rnxt : 0, 16953 (ispriv) ? tcp->tcp_rack : 0, 16954 tcp->tcp_rwnd, 16955 tcp->tcp_rto, 16956 tcp->tcp_mss, 16957 tcp->tcp_snd_ws_ok, 16958 tcp->tcp_snd_ws, 16959 tcp->tcp_rcv_ws, 16960 tcp->tcp_snd_ts_ok, 16961 tcp->tcp_ts_recent, 16962 tcp_display(tcp, buf, DISP_PORT_ONLY), cflag); 16963 if (print_len < buf_len) { 16964 ((mblk_t *)mp)->b_wptr += print_len; 16965 } else { 16966 ((mblk_t *)mp)->b_wptr += buf_len; 16967 } 16968 } 16969 16970 /* 16971 * TCP status report (for listeners only) triggered via the Named Dispatch 16972 * mechanism. 16973 */ 16974 /* ARGSUSED */ 16975 static void 16976 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval) 16977 { 16978 char addrbuf[INET6_ADDRSTRLEN]; 16979 in6_addr_t v6dst; 16980 uint_t print_len, buf_len; 16981 16982 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16983 if (buf_len <= 0) 16984 return; 16985 16986 if (tcp->tcp_ipversion == IPV4_VERSION) { 16987 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst); 16988 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16989 } else { 16990 (void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src, 16991 addrbuf, sizeof (addrbuf)); 16992 } 16993 print_len = snprintf((char *)mp->b_wptr, buf_len, 16994 "%03d " 16995 MI_COL_PTRFMT_STR 16996 "%d %s %05u %08u %d/%d/%d%c\n", 16997 hashval, (void *)tcp, 16998 tcp->tcp_connp->conn_zoneid, 16999 addrbuf, 17000 (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport), 17001 tcp->tcp_conn_req_seqnum, 17002 tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q, 17003 tcp->tcp_conn_req_max, 17004 tcp->tcp_syn_defense ? '*' : ' '); 17005 if (print_len < buf_len) { 17006 ((mblk_t *)mp)->b_wptr += print_len; 17007 } else { 17008 ((mblk_t *)mp)->b_wptr += buf_len; 17009 } 17010 } 17011 17012 /* TCP status report triggered via the Named Dispatch mechanism. */ 17013 /* ARGSUSED */ 17014 static int 17015 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 17016 { 17017 tcp_t *tcp; 17018 int i; 17019 conn_t *connp; 17020 connf_t *connfp; 17021 zoneid_t zoneid; 17022 tcp_stack_t *tcps; 17023 ip_stack_t *ipst; 17024 17025 zoneid = Q_TO_CONN(q)->conn_zoneid; 17026 tcps = Q_TO_TCP(q)->tcp_tcps; 17027 17028 /* 17029 * Because of the ndd constraint, at most we can have 64K buffer 17030 * to put in all TCP info. So to be more efficient, just 17031 * allocate a 64K buffer here, assuming we need that large buffer. 17032 * This may be a problem as any user can read tcp_status. Therefore 17033 * we limit the rate of doing this using tcp_ndd_get_info_interval. 17034 * This should be OK as normal users should not do this too often. 17035 */ 17036 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 17037 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 17038 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 17039 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 17040 return (0); 17041 } 17042 } 17043 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 17044 /* The following may work even if we cannot get a large buf. */ 17045 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 17046 return (0); 17047 } 17048 17049 (void) mi_mpprintf(mp, "%s", tcp_report_header); 17050 17051 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 17052 17053 ipst = tcps->tcps_netstack->netstack_ip; 17054 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 17055 17056 connp = NULL; 17057 17058 while ((connp = 17059 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 17060 tcp = connp->conn_tcp; 17061 if (zoneid != GLOBAL_ZONEID && 17062 zoneid != connp->conn_zoneid) 17063 continue; 17064 tcp_report_item(mp->b_cont, tcp, -1, tcp, 17065 cr); 17066 } 17067 17068 } 17069 17070 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 17071 return (0); 17072 } 17073 17074 /* TCP status report triggered via the Named Dispatch mechanism. */ 17075 /* ARGSUSED */ 17076 static int 17077 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 17078 { 17079 tf_t *tbf; 17080 tcp_t *tcp; 17081 int i; 17082 zoneid_t zoneid; 17083 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 17084 17085 zoneid = Q_TO_CONN(q)->conn_zoneid; 17086 17087 /* Refer to comments in tcp_status_report(). */ 17088 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 17089 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 17090 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 17091 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 17092 return (0); 17093 } 17094 } 17095 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 17096 /* The following may work even if we cannot get a large buf. */ 17097 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 17098 return (0); 17099 } 17100 17101 (void) mi_mpprintf(mp, " %s", tcp_report_header); 17102 17103 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 17104 tbf = &tcps->tcps_bind_fanout[i]; 17105 mutex_enter(&tbf->tf_lock); 17106 for (tcp = tbf->tf_tcp; tcp != NULL; 17107 tcp = tcp->tcp_bind_hash) { 17108 if (zoneid != GLOBAL_ZONEID && 17109 zoneid != tcp->tcp_connp->conn_zoneid) 17110 continue; 17111 CONN_INC_REF(tcp->tcp_connp); 17112 tcp_report_item(mp->b_cont, tcp, i, 17113 Q_TO_TCP(q), cr); 17114 CONN_DEC_REF(tcp->tcp_connp); 17115 } 17116 mutex_exit(&tbf->tf_lock); 17117 } 17118 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 17119 return (0); 17120 } 17121 17122 /* TCP status report triggered via the Named Dispatch mechanism. */ 17123 /* ARGSUSED */ 17124 static int 17125 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 17126 { 17127 connf_t *connfp; 17128 conn_t *connp; 17129 tcp_t *tcp; 17130 int i; 17131 zoneid_t zoneid; 17132 tcp_stack_t *tcps; 17133 ip_stack_t *ipst; 17134 17135 zoneid = Q_TO_CONN(q)->conn_zoneid; 17136 tcps = Q_TO_TCP(q)->tcp_tcps; 17137 17138 /* Refer to comments in tcp_status_report(). */ 17139 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 17140 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 17141 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 17142 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 17143 return (0); 17144 } 17145 } 17146 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 17147 /* The following may work even if we cannot get a large buf. */ 17148 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 17149 return (0); 17150 } 17151 17152 (void) mi_mpprintf(mp, 17153 " TCP " MI_COL_HDRPAD_STR 17154 "zone IP addr port seqnum backlog (q0/q/max)"); 17155 17156 ipst = tcps->tcps_netstack->netstack_ip; 17157 17158 for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) { 17159 connfp = &ipst->ips_ipcl_bind_fanout[i]; 17160 connp = NULL; 17161 while ((connp = 17162 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 17163 tcp = connp->conn_tcp; 17164 if (zoneid != GLOBAL_ZONEID && 17165 zoneid != connp->conn_zoneid) 17166 continue; 17167 tcp_report_listener(mp->b_cont, tcp, i); 17168 } 17169 } 17170 17171 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 17172 return (0); 17173 } 17174 17175 /* TCP status report triggered via the Named Dispatch mechanism. */ 17176 /* ARGSUSED */ 17177 static int 17178 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 17179 { 17180 connf_t *connfp; 17181 conn_t *connp; 17182 tcp_t *tcp; 17183 int i; 17184 zoneid_t zoneid; 17185 tcp_stack_t *tcps; 17186 ip_stack_t *ipst; 17187 17188 zoneid = Q_TO_CONN(q)->conn_zoneid; 17189 tcps = Q_TO_TCP(q)->tcp_tcps; 17190 ipst = tcps->tcps_netstack->netstack_ip; 17191 17192 /* Refer to comments in tcp_status_report(). */ 17193 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 17194 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 17195 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 17196 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 17197 return (0); 17198 } 17199 } 17200 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 17201 /* The following may work even if we cannot get a large buf. */ 17202 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 17203 return (0); 17204 } 17205 17206 (void) mi_mpprintf(mp, "tcp_conn_hash_size = %d", 17207 ipst->ips_ipcl_conn_fanout_size); 17208 (void) mi_mpprintf(mp, " %s", tcp_report_header); 17209 17210 for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) { 17211 connfp = &ipst->ips_ipcl_conn_fanout[i]; 17212 connp = NULL; 17213 while ((connp = 17214 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 17215 tcp = connp->conn_tcp; 17216 if (zoneid != GLOBAL_ZONEID && 17217 zoneid != connp->conn_zoneid) 17218 continue; 17219 tcp_report_item(mp->b_cont, tcp, i, 17220 Q_TO_TCP(q), cr); 17221 } 17222 } 17223 17224 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 17225 return (0); 17226 } 17227 17228 /* TCP status report triggered via the Named Dispatch mechanism. */ 17229 /* ARGSUSED */ 17230 static int 17231 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 17232 { 17233 tf_t *tf; 17234 tcp_t *tcp; 17235 int i; 17236 zoneid_t zoneid; 17237 tcp_stack_t *tcps; 17238 17239 zoneid = Q_TO_CONN(q)->conn_zoneid; 17240 tcps = Q_TO_TCP(q)->tcp_tcps; 17241 17242 /* Refer to comments in tcp_status_report(). */ 17243 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 17244 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 17245 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 17246 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 17247 return (0); 17248 } 17249 } 17250 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 17251 /* The following may work even if we cannot get a large buf. */ 17252 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 17253 return (0); 17254 } 17255 17256 (void) mi_mpprintf(mp, " %s", tcp_report_header); 17257 17258 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 17259 tf = &tcps->tcps_acceptor_fanout[i]; 17260 mutex_enter(&tf->tf_lock); 17261 for (tcp = tf->tf_tcp; tcp != NULL; 17262 tcp = tcp->tcp_acceptor_hash) { 17263 if (zoneid != GLOBAL_ZONEID && 17264 zoneid != tcp->tcp_connp->conn_zoneid) 17265 continue; 17266 tcp_report_item(mp->b_cont, tcp, i, 17267 Q_TO_TCP(q), cr); 17268 } 17269 mutex_exit(&tf->tf_lock); 17270 } 17271 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 17272 return (0); 17273 } 17274 17275 /* 17276 * tcp_timer is the timer service routine. It handles the retransmission, 17277 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 17278 * from the state of the tcp instance what kind of action needs to be done 17279 * at the time it is called. 17280 */ 17281 static void 17282 tcp_timer(void *arg) 17283 { 17284 mblk_t *mp; 17285 clock_t first_threshold; 17286 clock_t second_threshold; 17287 clock_t ms; 17288 uint32_t mss; 17289 conn_t *connp = (conn_t *)arg; 17290 tcp_t *tcp = connp->conn_tcp; 17291 tcp_stack_t *tcps = tcp->tcp_tcps; 17292 17293 tcp->tcp_timer_tid = 0; 17294 17295 if (tcp->tcp_fused) 17296 return; 17297 17298 first_threshold = tcp->tcp_first_timer_threshold; 17299 second_threshold = tcp->tcp_second_timer_threshold; 17300 switch (tcp->tcp_state) { 17301 case TCPS_IDLE: 17302 case TCPS_BOUND: 17303 case TCPS_LISTEN: 17304 return; 17305 case TCPS_SYN_RCVD: { 17306 tcp_t *listener = tcp->tcp_listener; 17307 17308 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 17309 ASSERT(tcp->tcp_rq == listener->tcp_rq); 17310 /* it's our first timeout */ 17311 tcp->tcp_syn_rcvd_timeout = 1; 17312 mutex_enter(&listener->tcp_eager_lock); 17313 listener->tcp_syn_rcvd_timeout++; 17314 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 17315 /* 17316 * Make this eager available for drop if we 17317 * need to drop one to accomodate a new 17318 * incoming SYN request. 17319 */ 17320 MAKE_DROPPABLE(listener, tcp); 17321 } 17322 if (!listener->tcp_syn_defense && 17323 (listener->tcp_syn_rcvd_timeout > 17324 (tcps->tcps_conn_req_max_q0 >> 2)) && 17325 (tcps->tcps_conn_req_max_q0 > 200)) { 17326 /* We may be under attack. Put on a defense. */ 17327 listener->tcp_syn_defense = B_TRUE; 17328 cmn_err(CE_WARN, "High TCP connect timeout " 17329 "rate! System (port %d) may be under a " 17330 "SYN flood attack!", 17331 BE16_TO_U16(listener->tcp_tcph->th_lport)); 17332 17333 listener->tcp_ip_addr_cache = kmem_zalloc( 17334 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 17335 KM_NOSLEEP); 17336 } 17337 mutex_exit(&listener->tcp_eager_lock); 17338 } else if (listener != NULL) { 17339 mutex_enter(&listener->tcp_eager_lock); 17340 tcp->tcp_syn_rcvd_timeout++; 17341 if (tcp->tcp_syn_rcvd_timeout > 1 && 17342 !tcp->tcp_closemp_used) { 17343 /* 17344 * This is our second timeout. Put the tcp in 17345 * the list of droppable eagers to allow it to 17346 * be dropped, if needed. We don't check 17347 * whether tcp_dontdrop is set or not to 17348 * protect ourselve from a SYN attack where a 17349 * remote host can spoof itself as one of the 17350 * good IP source and continue to hold 17351 * resources too long. 17352 */ 17353 MAKE_DROPPABLE(listener, tcp); 17354 } 17355 mutex_exit(&listener->tcp_eager_lock); 17356 } 17357 } 17358 /* FALLTHRU */ 17359 case TCPS_SYN_SENT: 17360 first_threshold = tcp->tcp_first_ctimer_threshold; 17361 second_threshold = tcp->tcp_second_ctimer_threshold; 17362 break; 17363 case TCPS_ESTABLISHED: 17364 case TCPS_FIN_WAIT_1: 17365 case TCPS_CLOSING: 17366 case TCPS_CLOSE_WAIT: 17367 case TCPS_LAST_ACK: 17368 /* If we have data to rexmit */ 17369 if (tcp->tcp_suna != tcp->tcp_snxt) { 17370 clock_t time_to_wait; 17371 17372 BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); 17373 if (!tcp->tcp_xmit_head) 17374 break; 17375 time_to_wait = lbolt - 17376 (clock_t)tcp->tcp_xmit_head->b_prev; 17377 time_to_wait = tcp->tcp_rto - 17378 TICK_TO_MSEC(time_to_wait); 17379 /* 17380 * If the timer fires too early, 1 clock tick earlier, 17381 * restart the timer. 17382 */ 17383 if (time_to_wait > msec_per_tick) { 17384 TCP_STAT(tcps, tcp_timer_fire_early); 17385 TCP_TIMER_RESTART(tcp, time_to_wait); 17386 return; 17387 } 17388 /* 17389 * When we probe zero windows, we force the swnd open. 17390 * If our peer acks with a closed window swnd will be 17391 * set to zero by tcp_rput(). As long as we are 17392 * receiving acks tcp_rput will 17393 * reset 'tcp_ms_we_have_waited' so as not to trip the 17394 * first and second interval actions. NOTE: the timer 17395 * interval is allowed to continue its exponential 17396 * backoff. 17397 */ 17398 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 17399 if (tcp->tcp_debug) { 17400 (void) strlog(TCP_MOD_ID, 0, 1, 17401 SL_TRACE, "tcp_timer: zero win"); 17402 } 17403 } else { 17404 /* 17405 * After retransmission, we need to do 17406 * slow start. Set the ssthresh to one 17407 * half of current effective window and 17408 * cwnd to one MSS. Also reset 17409 * tcp_cwnd_cnt. 17410 * 17411 * Note that if tcp_ssthresh is reduced because 17412 * of ECN, do not reduce it again unless it is 17413 * already one window of data away (tcp_cwr 17414 * should then be cleared) or this is a 17415 * timeout for a retransmitted segment. 17416 */ 17417 uint32_t npkt; 17418 17419 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 17420 npkt = ((tcp->tcp_timer_backoff ? 17421 tcp->tcp_cwnd_ssthresh : 17422 tcp->tcp_snxt - 17423 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 17424 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 17425 tcp->tcp_mss; 17426 } 17427 tcp->tcp_cwnd = tcp->tcp_mss; 17428 tcp->tcp_cwnd_cnt = 0; 17429 if (tcp->tcp_ecn_ok) { 17430 tcp->tcp_cwr = B_TRUE; 17431 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 17432 tcp->tcp_ecn_cwr_sent = B_FALSE; 17433 } 17434 } 17435 break; 17436 } 17437 /* 17438 * We have something to send yet we cannot send. The 17439 * reason can be: 17440 * 17441 * 1. Zero send window: we need to do zero window probe. 17442 * 2. Zero cwnd: because of ECN, we need to "clock out 17443 * segments. 17444 * 3. SWS avoidance: receiver may have shrunk window, 17445 * reset our knowledge. 17446 * 17447 * Note that condition 2 can happen with either 1 or 17448 * 3. But 1 and 3 are exclusive. 17449 */ 17450 if (tcp->tcp_unsent != 0) { 17451 if (tcp->tcp_cwnd == 0) { 17452 /* 17453 * Set tcp_cwnd to 1 MSS so that a 17454 * new segment can be sent out. We 17455 * are "clocking out" new data when 17456 * the network is really congested. 17457 */ 17458 ASSERT(tcp->tcp_ecn_ok); 17459 tcp->tcp_cwnd = tcp->tcp_mss; 17460 } 17461 if (tcp->tcp_swnd == 0) { 17462 /* Extend window for zero window probe */ 17463 tcp->tcp_swnd++; 17464 tcp->tcp_zero_win_probe = B_TRUE; 17465 BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); 17466 } else { 17467 /* 17468 * Handle timeout from sender SWS avoidance. 17469 * Reset our knowledge of the max send window 17470 * since the receiver might have reduced its 17471 * receive buffer. Avoid setting tcp_max_swnd 17472 * to one since that will essentially disable 17473 * the SWS checks. 17474 * 17475 * Note that since we don't have a SWS 17476 * state variable, if the timeout is set 17477 * for ECN but not for SWS, this 17478 * code will also be executed. This is 17479 * fine as tcp_max_swnd is updated 17480 * constantly and it will not affect 17481 * anything. 17482 */ 17483 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 17484 } 17485 tcp_wput_data(tcp, NULL, B_FALSE); 17486 return; 17487 } 17488 /* Is there a FIN that needs to be to re retransmitted? */ 17489 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17490 !tcp->tcp_fin_acked) 17491 break; 17492 /* Nothing to do, return without restarting timer. */ 17493 TCP_STAT(tcps, tcp_timer_fire_miss); 17494 return; 17495 case TCPS_FIN_WAIT_2: 17496 /* 17497 * User closed the TCP endpoint and peer ACK'ed our FIN. 17498 * We waited some time for for peer's FIN, but it hasn't 17499 * arrived. We flush the connection now to avoid 17500 * case where the peer has rebooted. 17501 */ 17502 if (TCP_IS_DETACHED(tcp)) { 17503 (void) tcp_clean_death(tcp, 0, 23); 17504 } else { 17505 TCP_TIMER_RESTART(tcp, 17506 tcps->tcps_fin_wait_2_flush_interval); 17507 } 17508 return; 17509 case TCPS_TIME_WAIT: 17510 (void) tcp_clean_death(tcp, 0, 24); 17511 return; 17512 default: 17513 if (tcp->tcp_debug) { 17514 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 17515 "tcp_timer: strange state (%d) %s", 17516 tcp->tcp_state, tcp_display(tcp, NULL, 17517 DISP_PORT_ONLY)); 17518 } 17519 return; 17520 } 17521 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 17522 /* 17523 * For zero window probe, we need to send indefinitely, 17524 * unless we have not heard from the other side for some 17525 * time... 17526 */ 17527 if ((tcp->tcp_zero_win_probe == 0) || 17528 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 17529 second_threshold)) { 17530 BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); 17531 /* 17532 * If TCP is in SYN_RCVD state, send back a 17533 * RST|ACK as BSD does. Note that tcp_zero_win_probe 17534 * should be zero in TCPS_SYN_RCVD state. 17535 */ 17536 if (tcp->tcp_state == TCPS_SYN_RCVD) { 17537 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 17538 "in SYN_RCVD", 17539 tcp, tcp->tcp_snxt, 17540 tcp->tcp_rnxt, TH_RST | TH_ACK); 17541 } 17542 (void) tcp_clean_death(tcp, 17543 tcp->tcp_client_errno ? 17544 tcp->tcp_client_errno : ETIMEDOUT, 25); 17545 return; 17546 } else { 17547 /* 17548 * Set tcp_ms_we_have_waited to second_threshold 17549 * so that in next timeout, we will do the above 17550 * check (lbolt - tcp_last_recv_time). This is 17551 * also to avoid overflow. 17552 * 17553 * We don't need to decrement tcp_timer_backoff 17554 * to avoid overflow because it will be decremented 17555 * later if new timeout value is greater than 17556 * tcp_rexmit_interval_max. In the case when 17557 * tcp_rexmit_interval_max is greater than 17558 * second_threshold, it means that we will wait 17559 * longer than second_threshold to send the next 17560 * window probe. 17561 */ 17562 tcp->tcp_ms_we_have_waited = second_threshold; 17563 } 17564 } else if (ms > first_threshold) { 17565 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 17566 tcp->tcp_xmit_head != NULL) { 17567 tcp->tcp_xmit_head = 17568 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 17569 } 17570 /* 17571 * We have been retransmitting for too long... The RTT 17572 * we calculated is probably incorrect. Reinitialize it. 17573 * Need to compensate for 0 tcp_rtt_sa. Reset 17574 * tcp_rtt_update so that we won't accidentally cache a 17575 * bad value. But only do this if this is not a zero 17576 * window probe. 17577 */ 17578 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 17579 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 17580 (tcp->tcp_rtt_sa >> 5); 17581 tcp->tcp_rtt_sa = 0; 17582 tcp_ip_notify(tcp); 17583 tcp->tcp_rtt_update = 0; 17584 } 17585 } 17586 tcp->tcp_timer_backoff++; 17587 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 17588 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 17589 tcps->tcps_rexmit_interval_min) { 17590 /* 17591 * This means the original RTO is tcp_rexmit_interval_min. 17592 * So we will use tcp_rexmit_interval_min as the RTO value 17593 * and do the backoff. 17594 */ 17595 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 17596 } else { 17597 ms <<= tcp->tcp_timer_backoff; 17598 } 17599 if (ms > tcps->tcps_rexmit_interval_max) { 17600 ms = tcps->tcps_rexmit_interval_max; 17601 /* 17602 * ms is at max, decrement tcp_timer_backoff to avoid 17603 * overflow. 17604 */ 17605 tcp->tcp_timer_backoff--; 17606 } 17607 tcp->tcp_ms_we_have_waited += ms; 17608 if (tcp->tcp_zero_win_probe == 0) { 17609 tcp->tcp_rto = ms; 17610 } 17611 TCP_TIMER_RESTART(tcp, ms); 17612 /* 17613 * This is after a timeout and tcp_rto is backed off. Set 17614 * tcp_set_timer to 1 so that next time RTO is updated, we will 17615 * restart the timer with a correct value. 17616 */ 17617 tcp->tcp_set_timer = 1; 17618 mss = tcp->tcp_snxt - tcp->tcp_suna; 17619 if (mss > tcp->tcp_mss) 17620 mss = tcp->tcp_mss; 17621 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 17622 mss = tcp->tcp_swnd; 17623 17624 if ((mp = tcp->tcp_xmit_head) != NULL) 17625 mp->b_prev = (mblk_t *)lbolt; 17626 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 17627 B_TRUE); 17628 17629 /* 17630 * When slow start after retransmission begins, start with 17631 * this seq no. tcp_rexmit_max marks the end of special slow 17632 * start phase. tcp_snd_burst controls how many segments 17633 * can be sent because of an ack. 17634 */ 17635 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 17636 tcp->tcp_snd_burst = TCP_CWND_SS; 17637 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17638 (tcp->tcp_unsent == 0)) { 17639 tcp->tcp_rexmit_max = tcp->tcp_fss; 17640 } else { 17641 tcp->tcp_rexmit_max = tcp->tcp_snxt; 17642 } 17643 tcp->tcp_rexmit = B_TRUE; 17644 tcp->tcp_dupack_cnt = 0; 17645 17646 /* 17647 * Remove all rexmit SACK blk to start from fresh. 17648 */ 17649 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 17650 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 17651 tcp->tcp_num_notsack_blk = 0; 17652 tcp->tcp_cnt_notsack_list = 0; 17653 } 17654 if (mp == NULL) { 17655 return; 17656 } 17657 /* Attach credentials to retransmitted initial SYNs. */ 17658 if (tcp->tcp_state == TCPS_SYN_SENT) { 17659 mblk_setcred(mp, tcp->tcp_cred); 17660 DB_CPID(mp) = tcp->tcp_cpid; 17661 } 17662 17663 tcp->tcp_csuna = tcp->tcp_snxt; 17664 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 17665 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); 17666 tcp_send_data(tcp, tcp->tcp_wq, mp); 17667 17668 } 17669 17670 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 17671 static void 17672 tcp_unbind(tcp_t *tcp, mblk_t *mp) 17673 { 17674 conn_t *connp; 17675 17676 switch (tcp->tcp_state) { 17677 case TCPS_BOUND: 17678 case TCPS_LISTEN: 17679 break; 17680 default: 17681 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 17682 return; 17683 } 17684 17685 /* 17686 * Need to clean up all the eagers since after the unbind, segments 17687 * will no longer be delivered to this listener stream. 17688 */ 17689 mutex_enter(&tcp->tcp_eager_lock); 17690 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 17691 tcp_eager_cleanup(tcp, 0); 17692 } 17693 mutex_exit(&tcp->tcp_eager_lock); 17694 17695 if (tcp->tcp_ipversion == IPV4_VERSION) { 17696 tcp->tcp_ipha->ipha_src = 0; 17697 } else { 17698 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 17699 } 17700 V6_SET_ZERO(tcp->tcp_ip_src_v6); 17701 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 17702 tcp_bind_hash_remove(tcp); 17703 tcp->tcp_state = TCPS_IDLE; 17704 tcp->tcp_mdt = B_FALSE; 17705 /* Send M_FLUSH according to TPI */ 17706 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 17707 connp = tcp->tcp_connp; 17708 connp->conn_mdt_ok = B_FALSE; 17709 ipcl_hash_remove(connp); 17710 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 17711 mp = mi_tpi_ok_ack_alloc(mp); 17712 putnext(tcp->tcp_rq, mp); 17713 } 17714 17715 /* 17716 * Don't let port fall into the privileged range. 17717 * Since the extra privileged ports can be arbitrary we also 17718 * ensure that we exclude those from consideration. 17719 * tcp_g_epriv_ports is not sorted thus we loop over it until 17720 * there are no changes. 17721 * 17722 * Note: No locks are held when inspecting tcp_g_*epriv_ports 17723 * but instead the code relies on: 17724 * - the fact that the address of the array and its size never changes 17725 * - the atomic assignment of the elements of the array 17726 * 17727 * Returns 0 if there are no more ports available. 17728 * 17729 * TS note: skip multilevel ports. 17730 */ 17731 static in_port_t 17732 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 17733 { 17734 int i; 17735 boolean_t restart = B_FALSE; 17736 tcp_stack_t *tcps = tcp->tcp_tcps; 17737 17738 if (random && tcp_random_anon_port != 0) { 17739 (void) random_get_pseudo_bytes((uint8_t *)&port, 17740 sizeof (in_port_t)); 17741 /* 17742 * Unless changed by a sys admin, the smallest anon port 17743 * is 32768 and the largest anon port is 65535. It is 17744 * very likely (50%) for the random port to be smaller 17745 * than the smallest anon port. When that happens, 17746 * add port % (anon port range) to the smallest anon 17747 * port to get the random port. It should fall into the 17748 * valid anon port range. 17749 */ 17750 if (port < tcps->tcps_smallest_anon_port) { 17751 port = tcps->tcps_smallest_anon_port + 17752 port % (tcps->tcps_largest_anon_port - 17753 tcps->tcps_smallest_anon_port); 17754 } 17755 } 17756 17757 retry: 17758 if (port < tcps->tcps_smallest_anon_port) 17759 port = (in_port_t)tcps->tcps_smallest_anon_port; 17760 17761 if (port > tcps->tcps_largest_anon_port) { 17762 if (restart) 17763 return (0); 17764 restart = B_TRUE; 17765 port = (in_port_t)tcps->tcps_smallest_anon_port; 17766 } 17767 17768 if (port < tcps->tcps_smallest_nonpriv_port) 17769 port = (in_port_t)tcps->tcps_smallest_nonpriv_port; 17770 17771 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 17772 if (port == tcps->tcps_g_epriv_ports[i]) { 17773 port++; 17774 /* 17775 * Make sure whether the port is in the 17776 * valid range. 17777 */ 17778 goto retry; 17779 } 17780 } 17781 if (is_system_labeled() && 17782 (i = tsol_next_port(crgetzone(tcp->tcp_cred), port, 17783 IPPROTO_TCP, B_TRUE)) != 0) { 17784 port = i; 17785 goto retry; 17786 } 17787 return (port); 17788 } 17789 17790 /* 17791 * Return the next anonymous port in the privileged port range for 17792 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 17793 * downwards. This is the same behavior as documented in the userland 17794 * library call rresvport(3N). 17795 * 17796 * TS note: skip multilevel ports. 17797 */ 17798 static in_port_t 17799 tcp_get_next_priv_port(const tcp_t *tcp) 17800 { 17801 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 17802 in_port_t nextport; 17803 boolean_t restart = B_FALSE; 17804 tcp_stack_t *tcps = tcp->tcp_tcps; 17805 retry: 17806 if (next_priv_port < tcps->tcps_min_anonpriv_port || 17807 next_priv_port >= IPPORT_RESERVED) { 17808 next_priv_port = IPPORT_RESERVED - 1; 17809 if (restart) 17810 return (0); 17811 restart = B_TRUE; 17812 } 17813 if (is_system_labeled() && 17814 (nextport = tsol_next_port(crgetzone(tcp->tcp_cred), 17815 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 17816 next_priv_port = nextport; 17817 goto retry; 17818 } 17819 return (next_priv_port--); 17820 } 17821 17822 /* The write side r/w procedure. */ 17823 17824 #if CCS_STATS 17825 struct { 17826 struct { 17827 int64_t count, bytes; 17828 } tot, hit; 17829 } wrw_stats; 17830 #endif 17831 17832 /* 17833 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 17834 * messages. 17835 */ 17836 /* ARGSUSED */ 17837 static void 17838 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 17839 { 17840 conn_t *connp = (conn_t *)arg; 17841 tcp_t *tcp = connp->conn_tcp; 17842 queue_t *q = tcp->tcp_wq; 17843 17844 ASSERT(DB_TYPE(mp) != M_IOCTL); 17845 /* 17846 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 17847 * Once the close starts, streamhead and sockfs will not let any data 17848 * packets come down (close ensures that there are no threads using the 17849 * queue and no new threads will come down) but since qprocsoff() 17850 * hasn't happened yet, a M_FLUSH or some non data message might 17851 * get reflected back (in response to our own FLUSHRW) and get 17852 * processed after tcp_close() is done. The conn would still be valid 17853 * because a ref would have added but we need to check the state 17854 * before actually processing the packet. 17855 */ 17856 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 17857 freemsg(mp); 17858 return; 17859 } 17860 17861 switch (DB_TYPE(mp)) { 17862 case M_IOCDATA: 17863 tcp_wput_iocdata(tcp, mp); 17864 break; 17865 case M_FLUSH: 17866 tcp_wput_flush(tcp, mp); 17867 break; 17868 default: 17869 CALL_IP_WPUT(connp, q, mp); 17870 break; 17871 } 17872 } 17873 17874 /* 17875 * The TCP fast path write put procedure. 17876 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 17877 */ 17878 /* ARGSUSED */ 17879 void 17880 tcp_output(void *arg, mblk_t *mp, void *arg2) 17881 { 17882 int len; 17883 int hdrlen; 17884 int plen; 17885 mblk_t *mp1; 17886 uchar_t *rptr; 17887 uint32_t snxt; 17888 tcph_t *tcph; 17889 struct datab *db; 17890 uint32_t suna; 17891 uint32_t mss; 17892 ipaddr_t *dst; 17893 ipaddr_t *src; 17894 uint32_t sum; 17895 int usable; 17896 conn_t *connp = (conn_t *)arg; 17897 tcp_t *tcp = connp->conn_tcp; 17898 uint32_t msize; 17899 tcp_stack_t *tcps = tcp->tcp_tcps; 17900 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 17901 17902 /* 17903 * Try and ASSERT the minimum possible references on the 17904 * conn early enough. Since we are executing on write side, 17905 * the connection is obviously not detached and that means 17906 * there is a ref each for TCP and IP. Since we are behind 17907 * the squeue, the minimum references needed are 3. If the 17908 * conn is in classifier hash list, there should be an 17909 * extra ref for that (we check both the possibilities). 17910 */ 17911 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17912 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17913 17914 ASSERT(DB_TYPE(mp) == M_DATA); 17915 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 17916 17917 mutex_enter(&tcp->tcp_non_sq_lock); 17918 tcp->tcp_squeue_bytes -= msize; 17919 mutex_exit(&tcp->tcp_non_sq_lock); 17920 17921 /* Check to see if this connection wants to be re-fused. */ 17922 if (tcp->tcp_refuse && !ipst->ips_ipobs_enabled) { 17923 if (tcp->tcp_ipversion == IPV4_VERSION) { 17924 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ipha, 17925 &tcp->tcp_saved_tcph); 17926 } else { 17927 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ip6h, 17928 &tcp->tcp_saved_tcph); 17929 } 17930 } 17931 /* Bypass tcp protocol for fused tcp loopback */ 17932 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 17933 return; 17934 17935 mss = tcp->tcp_mss; 17936 if (tcp->tcp_xmit_zc_clean) 17937 mp = tcp_zcopy_backoff(tcp, mp, 0); 17938 17939 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17940 len = (int)(mp->b_wptr - mp->b_rptr); 17941 17942 /* 17943 * Criteria for fast path: 17944 * 17945 * 1. no unsent data 17946 * 2. single mblk in request 17947 * 3. connection established 17948 * 4. data in mblk 17949 * 5. len <= mss 17950 * 6. no tcp_valid bits 17951 */ 17952 if ((tcp->tcp_unsent != 0) || 17953 (tcp->tcp_cork) || 17954 (mp->b_cont != NULL) || 17955 (tcp->tcp_state != TCPS_ESTABLISHED) || 17956 (len == 0) || 17957 (len > mss) || 17958 (tcp->tcp_valid_bits != 0)) { 17959 tcp_wput_data(tcp, mp, B_FALSE); 17960 return; 17961 } 17962 17963 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 17964 ASSERT(tcp->tcp_fin_sent == 0); 17965 17966 /* queue new packet onto retransmission queue */ 17967 if (tcp->tcp_xmit_head == NULL) { 17968 tcp->tcp_xmit_head = mp; 17969 } else { 17970 tcp->tcp_xmit_last->b_cont = mp; 17971 } 17972 tcp->tcp_xmit_last = mp; 17973 tcp->tcp_xmit_tail = mp; 17974 17975 /* find out how much we can send */ 17976 /* BEGIN CSTYLED */ 17977 /* 17978 * un-acked usable 17979 * |--------------|-----------------| 17980 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 17981 */ 17982 /* END CSTYLED */ 17983 17984 /* start sending from tcp_snxt */ 17985 snxt = tcp->tcp_snxt; 17986 17987 /* 17988 * Check to see if this connection has been idled for some 17989 * time and no ACK is expected. If it is, we need to slow 17990 * start again to get back the connection's "self-clock" as 17991 * described in VJ's paper. 17992 * 17993 * Refer to the comment in tcp_mss_set() for the calculation 17994 * of tcp_cwnd after idle. 17995 */ 17996 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 17997 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 17998 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 17999 } 18000 18001 usable = tcp->tcp_swnd; /* tcp window size */ 18002 if (usable > tcp->tcp_cwnd) 18003 usable = tcp->tcp_cwnd; /* congestion window smaller */ 18004 usable -= snxt; /* subtract stuff already sent */ 18005 suna = tcp->tcp_suna; 18006 usable += suna; 18007 /* usable can be < 0 if the congestion window is smaller */ 18008 if (len > usable) { 18009 /* Can't send complete M_DATA in one shot */ 18010 goto slow; 18011 } 18012 18013 mutex_enter(&tcp->tcp_non_sq_lock); 18014 if (tcp->tcp_flow_stopped && 18015 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 18016 tcp_clrqfull(tcp); 18017 } 18018 mutex_exit(&tcp->tcp_non_sq_lock); 18019 18020 /* 18021 * determine if anything to send (Nagle). 18022 * 18023 * 1. len < tcp_mss (i.e. small) 18024 * 2. unacknowledged data present 18025 * 3. len < nagle limit 18026 * 4. last packet sent < nagle limit (previous packet sent) 18027 */ 18028 if ((len < mss) && (snxt != suna) && 18029 (len < (int)tcp->tcp_naglim) && 18030 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 18031 /* 18032 * This was the first unsent packet and normally 18033 * mss < xmit_hiwater so there is no need to worry 18034 * about flow control. The next packet will go 18035 * through the flow control check in tcp_wput_data(). 18036 */ 18037 /* leftover work from above */ 18038 tcp->tcp_unsent = len; 18039 tcp->tcp_xmit_tail_unsent = len; 18040 18041 return; 18042 } 18043 18044 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 18045 18046 if (snxt == suna) { 18047 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18048 } 18049 18050 /* we have always sent something */ 18051 tcp->tcp_rack_cnt = 0; 18052 18053 tcp->tcp_snxt = snxt + len; 18054 tcp->tcp_rack = tcp->tcp_rnxt; 18055 18056 if ((mp1 = dupb(mp)) == 0) 18057 goto no_memory; 18058 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 18059 mp->b_next = (mblk_t *)(uintptr_t)snxt; 18060 18061 /* adjust tcp header information */ 18062 tcph = tcp->tcp_tcph; 18063 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 18064 18065 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 18066 sum = (sum >> 16) + (sum & 0xFFFF); 18067 U16_TO_ABE16(sum, tcph->th_sum); 18068 18069 U32_TO_ABE32(snxt, tcph->th_seq); 18070 18071 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 18072 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 18073 BUMP_LOCAL(tcp->tcp_obsegs); 18074 18075 /* Update the latest receive window size in TCP header. */ 18076 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 18077 tcph->th_win); 18078 18079 tcp->tcp_last_sent_len = (ushort_t)len; 18080 18081 plen = len + tcp->tcp_hdr_len; 18082 18083 if (tcp->tcp_ipversion == IPV4_VERSION) { 18084 tcp->tcp_ipha->ipha_length = htons(plen); 18085 } else { 18086 tcp->tcp_ip6h->ip6_plen = htons(plen - 18087 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 18088 } 18089 18090 /* see if we need to allocate a mblk for the headers */ 18091 hdrlen = tcp->tcp_hdr_len; 18092 rptr = mp1->b_rptr - hdrlen; 18093 db = mp1->b_datap; 18094 if ((db->db_ref != 2) || rptr < db->db_base || 18095 (!OK_32PTR(rptr))) { 18096 /* NOTE: we assume allocb returns an OK_32PTR */ 18097 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 18098 tcps->tcps_wroff_xtra, BPRI_MED); 18099 if (!mp) { 18100 freemsg(mp1); 18101 goto no_memory; 18102 } 18103 mp->b_cont = mp1; 18104 mp1 = mp; 18105 /* Leave room for Link Level header */ 18106 /* hdrlen = tcp->tcp_hdr_len; */ 18107 rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; 18108 mp1->b_wptr = &rptr[hdrlen]; 18109 } 18110 mp1->b_rptr = rptr; 18111 18112 /* Fill in the timestamp option. */ 18113 if (tcp->tcp_snd_ts_ok) { 18114 U32_TO_BE32((uint32_t)lbolt, 18115 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 18116 U32_TO_BE32(tcp->tcp_ts_recent, 18117 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 18118 } else { 18119 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 18120 } 18121 18122 /* copy header into outgoing packet */ 18123 dst = (ipaddr_t *)rptr; 18124 src = (ipaddr_t *)tcp->tcp_iphc; 18125 dst[0] = src[0]; 18126 dst[1] = src[1]; 18127 dst[2] = src[2]; 18128 dst[3] = src[3]; 18129 dst[4] = src[4]; 18130 dst[5] = src[5]; 18131 dst[6] = src[6]; 18132 dst[7] = src[7]; 18133 dst[8] = src[8]; 18134 dst[9] = src[9]; 18135 if (hdrlen -= 40) { 18136 hdrlen >>= 2; 18137 dst += 10; 18138 src += 10; 18139 do { 18140 *dst++ = *src++; 18141 } while (--hdrlen); 18142 } 18143 18144 /* 18145 * Set the ECN info in the TCP header. Note that this 18146 * is not the template header. 18147 */ 18148 if (tcp->tcp_ecn_ok) { 18149 SET_ECT(tcp, rptr); 18150 18151 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 18152 if (tcp->tcp_ecn_echo_on) 18153 tcph->th_flags[0] |= TH_ECE; 18154 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 18155 tcph->th_flags[0] |= TH_CWR; 18156 tcp->tcp_ecn_cwr_sent = B_TRUE; 18157 } 18158 } 18159 18160 if (tcp->tcp_ip_forward_progress) { 18161 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 18162 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 18163 tcp->tcp_ip_forward_progress = B_FALSE; 18164 } 18165 tcp_send_data(tcp, tcp->tcp_wq, mp1); 18166 return; 18167 18168 /* 18169 * If we ran out of memory, we pretend to have sent the packet 18170 * and that it was lost on the wire. 18171 */ 18172 no_memory: 18173 return; 18174 18175 slow: 18176 /* leftover work from above */ 18177 tcp->tcp_unsent = len; 18178 tcp->tcp_xmit_tail_unsent = len; 18179 tcp_wput_data(tcp, NULL, B_FALSE); 18180 } 18181 18182 /* 18183 * The function called through squeue to get behind eager's perimeter to 18184 * finish the accept processing. 18185 */ 18186 /* ARGSUSED */ 18187 void 18188 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 18189 { 18190 conn_t *connp = (conn_t *)arg; 18191 tcp_t *tcp = connp->conn_tcp; 18192 queue_t *q = tcp->tcp_rq; 18193 mblk_t *mp1; 18194 mblk_t *stropt_mp = mp; 18195 struct stroptions *stropt; 18196 uint_t thwin; 18197 tcp_stack_t *tcps = tcp->tcp_tcps; 18198 18199 /* 18200 * Drop the eager's ref on the listener, that was placed when 18201 * this eager began life in tcp_conn_request. 18202 */ 18203 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 18204 18205 tcp->tcp_detached = B_FALSE; 18206 18207 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 18208 /* 18209 * Someone blewoff the eager before we could finish 18210 * the accept. 18211 * 18212 * The only reason eager exists it because we put in 18213 * a ref on it when conn ind went up. We need to send 18214 * a disconnect indication up while the last reference 18215 * on the eager will be dropped by the squeue when we 18216 * return. 18217 */ 18218 ASSERT(tcp->tcp_listener == NULL); 18219 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 18220 struct T_discon_ind *tdi; 18221 18222 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 18223 /* 18224 * Let us reuse the incoming mblk to avoid memory 18225 * allocation failure problems. We know that the 18226 * size of the incoming mblk i.e. stroptions is greater 18227 * than sizeof T_discon_ind. So the reallocb below 18228 * can't fail. 18229 */ 18230 freemsg(mp->b_cont); 18231 mp->b_cont = NULL; 18232 ASSERT(DB_REF(mp) == 1); 18233 mp = reallocb(mp, sizeof (struct T_discon_ind), 18234 B_FALSE); 18235 ASSERT(mp != NULL); 18236 DB_TYPE(mp) = M_PROTO; 18237 ((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND; 18238 tdi = (struct T_discon_ind *)mp->b_rptr; 18239 if (tcp->tcp_issocket) { 18240 tdi->DISCON_reason = ECONNREFUSED; 18241 tdi->SEQ_number = 0; 18242 } else { 18243 tdi->DISCON_reason = ENOPROTOOPT; 18244 tdi->SEQ_number = 18245 tcp->tcp_conn_req_seqnum; 18246 } 18247 mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind); 18248 putnext(q, mp); 18249 } else { 18250 freemsg(mp); 18251 } 18252 if (tcp->tcp_hard_binding) { 18253 tcp->tcp_hard_binding = B_FALSE; 18254 tcp->tcp_hard_bound = B_TRUE; 18255 } 18256 return; 18257 } 18258 18259 mp1 = stropt_mp->b_cont; 18260 stropt_mp->b_cont = NULL; 18261 ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS); 18262 stropt = (struct stroptions *)stropt_mp->b_rptr; 18263 18264 while (mp1 != NULL) { 18265 mp = mp1; 18266 mp1 = mp1->b_cont; 18267 mp->b_cont = NULL; 18268 tcp->tcp_drop_opt_ack_cnt++; 18269 CALL_IP_WPUT(connp, tcp->tcp_wq, mp); 18270 } 18271 mp = NULL; 18272 18273 /* 18274 * For a loopback connection with tcp_direct_sockfs on, note that 18275 * we don't have to protect tcp_rcv_list yet because synchronous 18276 * streams has not yet been enabled and tcp_fuse_rrw() cannot 18277 * possibly race with us. 18278 */ 18279 18280 /* 18281 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 18282 * properly. This is the first time we know of the acceptor' 18283 * queue. So we do it here. 18284 */ 18285 if (tcp->tcp_rcv_list == NULL) { 18286 /* 18287 * Recv queue is empty, tcp_rwnd should not have changed. 18288 * That means it should be equal to the listener's tcp_rwnd. 18289 */ 18290 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 18291 } else { 18292 #ifdef DEBUG 18293 uint_t cnt = 0; 18294 18295 mp1 = tcp->tcp_rcv_list; 18296 while ((mp = mp1) != NULL) { 18297 mp1 = mp->b_next; 18298 cnt += msgdsize(mp); 18299 } 18300 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 18301 #endif 18302 /* There is some data, add them back to get the max. */ 18303 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 18304 } 18305 /* 18306 * This is the first time we run on the correct 18307 * queue after tcp_accept. So fix all the q parameters 18308 * here. 18309 */ 18310 stropt->so_flags = SO_HIWAT | SO_MAXBLK | SO_WROFF; 18311 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 18312 18313 /* 18314 * Record the stream head's high water mark for this endpoint; 18315 * this is used for flow-control purposes. 18316 */ 18317 stropt->so_hiwat = tcp->tcp_fused ? 18318 tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat) : 18319 MAX(q->q_hiwat, tcps->tcps_sth_rcv_hiwat); 18320 18321 /* 18322 * Determine what write offset value to use depending on SACK and 18323 * whether the endpoint is fused or not. 18324 */ 18325 if (tcp->tcp_fused) { 18326 ASSERT(tcp->tcp_loopback); 18327 ASSERT(tcp->tcp_loopback_peer != NULL); 18328 /* 18329 * For fused tcp loopback, set the stream head's write 18330 * offset value to zero since we won't be needing any room 18331 * for TCP/IP headers. This would also improve performance 18332 * since it would reduce the amount of work done by kmem. 18333 * Non-fused tcp loopback case is handled separately below. 18334 */ 18335 stropt->so_wroff = 0; 18336 /* 18337 * Update the peer's transmit parameters according to 18338 * our recently calculated high water mark value. 18339 */ 18340 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 18341 } else if (tcp->tcp_snd_sack_ok) { 18342 stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 18343 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 18344 } else { 18345 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 18346 tcps->tcps_wroff_xtra); 18347 } 18348 18349 /* 18350 * If this is endpoint is handling SSL, then reserve extra 18351 * offset and space at the end. 18352 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 18353 * overriding the previous setting. The extra cost of signing and 18354 * encrypting multiple MSS-size records (12 of them with Ethernet), 18355 * instead of a single contiguous one by the stream head 18356 * largely outweighs the statistical reduction of ACKs, when 18357 * applicable. The peer will also save on decryption and verification 18358 * costs. 18359 */ 18360 if (tcp->tcp_kssl_ctx != NULL) { 18361 stropt->so_wroff += SSL3_WROFFSET; 18362 18363 stropt->so_flags |= SO_TAIL; 18364 stropt->so_tail = SSL3_MAX_TAIL_LEN; 18365 18366 stropt->so_flags |= SO_COPYOPT; 18367 stropt->so_copyopt = ZCVMUNSAFE; 18368 18369 stropt->so_maxblk = SSL3_MAX_RECORD_LEN; 18370 } 18371 18372 /* Send the options up */ 18373 putnext(q, stropt_mp); 18374 18375 /* 18376 * Pass up any data and/or a fin that has been received. 18377 * 18378 * Adjust receive window in case it had decreased 18379 * (because there is data <=> tcp_rcv_list != NULL) 18380 * while the connection was detached. Note that 18381 * in case the eager was flow-controlled, w/o this 18382 * code, the rwnd may never open up again! 18383 */ 18384 if (tcp->tcp_rcv_list != NULL) { 18385 /* We drain directly in case of fused tcp loopback */ 18386 sodirect_t *sodp; 18387 18388 if (!tcp->tcp_fused && canputnext(q)) { 18389 tcp->tcp_rwnd = q->q_hiwat; 18390 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 18391 << tcp->tcp_rcv_ws; 18392 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 18393 if (tcp->tcp_state >= TCPS_ESTABLISHED && 18394 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 18395 tcp_xmit_ctl(NULL, 18396 tcp, (tcp->tcp_swnd == 0) ? 18397 tcp->tcp_suna : tcp->tcp_snxt, 18398 tcp->tcp_rnxt, TH_ACK); 18399 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 18400 } 18401 18402 } 18403 18404 SOD_PTR_ENTER(tcp, sodp); 18405 if (sodp != NULL) { 18406 /* Sodirect, move from rcv_list */ 18407 ASSERT(!tcp->tcp_fused); 18408 while ((mp = tcp->tcp_rcv_list) != NULL) { 18409 tcp->tcp_rcv_list = mp->b_next; 18410 mp->b_next = NULL; 18411 (void) tcp_rcv_sod_enqueue(tcp, sodp, mp, 18412 msgdsize(mp)); 18413 } 18414 tcp->tcp_rcv_last_head = NULL; 18415 tcp->tcp_rcv_last_tail = NULL; 18416 tcp->tcp_rcv_cnt = 0; 18417 (void) tcp_rcv_sod_wakeup(tcp, sodp); 18418 /* sod_wakeup() did the mutex_exit() */ 18419 } else { 18420 /* Not sodirect, drain */ 18421 (void) tcp_rcv_drain(q, tcp); 18422 } 18423 18424 /* 18425 * For fused tcp loopback, back-enable peer endpoint 18426 * if it's currently flow-controlled. 18427 */ 18428 if (tcp->tcp_fused) { 18429 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 18430 18431 ASSERT(peer_tcp != NULL); 18432 ASSERT(peer_tcp->tcp_fused); 18433 /* 18434 * In order to change the peer's tcp_flow_stopped, 18435 * we need to take locks for both end points. The 18436 * highest address is taken first. 18437 */ 18438 if (peer_tcp > tcp) { 18439 mutex_enter(&peer_tcp->tcp_non_sq_lock); 18440 mutex_enter(&tcp->tcp_non_sq_lock); 18441 } else { 18442 mutex_enter(&tcp->tcp_non_sq_lock); 18443 mutex_enter(&peer_tcp->tcp_non_sq_lock); 18444 } 18445 if (peer_tcp->tcp_flow_stopped) { 18446 tcp_clrqfull(peer_tcp); 18447 TCP_STAT(tcps, tcp_fusion_backenabled); 18448 } 18449 mutex_exit(&peer_tcp->tcp_non_sq_lock); 18450 mutex_exit(&tcp->tcp_non_sq_lock); 18451 } 18452 } 18453 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 18454 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 18455 mp = tcp->tcp_ordrel_mp; 18456 tcp->tcp_ordrel_mp = NULL; 18457 tcp->tcp_ordrel_done = B_TRUE; 18458 putnext(q, mp); 18459 } 18460 if (tcp->tcp_hard_binding) { 18461 tcp->tcp_hard_binding = B_FALSE; 18462 tcp->tcp_hard_bound = B_TRUE; 18463 } 18464 18465 /* We can enable synchronous streams now */ 18466 if (tcp->tcp_fused) { 18467 tcp_fuse_syncstr_enable_pair(tcp); 18468 } 18469 18470 if (tcp->tcp_ka_enabled) { 18471 tcp->tcp_ka_last_intrvl = 0; 18472 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 18473 MSEC_TO_TICK(tcp->tcp_ka_interval)); 18474 } 18475 18476 /* 18477 * At this point, eager is fully established and will 18478 * have the following references - 18479 * 18480 * 2 references for connection to exist (1 for TCP and 1 for IP). 18481 * 1 reference for the squeue which will be dropped by the squeue as 18482 * soon as this function returns. 18483 * There will be 1 additonal reference for being in classifier 18484 * hash list provided something bad hasn't happened. 18485 */ 18486 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 18487 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 18488 } 18489 18490 /* 18491 * The function called through squeue to get behind listener's perimeter to 18492 * send a deffered conn_ind. 18493 */ 18494 /* ARGSUSED */ 18495 void 18496 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 18497 { 18498 conn_t *connp = (conn_t *)arg; 18499 tcp_t *listener = connp->conn_tcp; 18500 18501 if (listener->tcp_state == TCPS_CLOSED || 18502 TCP_IS_DETACHED(listener)) { 18503 /* 18504 * If listener has closed, it would have caused a 18505 * a cleanup/blowoff to happen for the eager. 18506 */ 18507 tcp_t *tcp; 18508 struct T_conn_ind *conn_ind; 18509 18510 conn_ind = (struct T_conn_ind *)mp->b_rptr; 18511 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 18512 conn_ind->OPT_length); 18513 /* 18514 * We need to drop the ref on eager that was put 18515 * tcp_rput_data() before trying to send the conn_ind 18516 * to listener. The conn_ind was deferred in tcp_send_conn_ind 18517 * and tcp_wput_accept() is sending this deferred conn_ind but 18518 * listener is closed so we drop the ref. 18519 */ 18520 CONN_DEC_REF(tcp->tcp_connp); 18521 freemsg(mp); 18522 return; 18523 } 18524 putnext(listener->tcp_rq, mp); 18525 } 18526 18527 18528 /* 18529 * This is the STREAMS entry point for T_CONN_RES coming down on 18530 * Acceptor STREAM when sockfs listener does accept processing. 18531 * Read the block comment on top of tcp_conn_request(). 18532 */ 18533 void 18534 tcp_wput_accept(queue_t *q, mblk_t *mp) 18535 { 18536 queue_t *rq = RD(q); 18537 struct T_conn_res *conn_res; 18538 tcp_t *eager; 18539 tcp_t *listener; 18540 struct T_ok_ack *ok; 18541 t_scalar_t PRIM_type; 18542 mblk_t *opt_mp; 18543 conn_t *econnp; 18544 18545 ASSERT(DB_TYPE(mp) == M_PROTO); 18546 18547 conn_res = (struct T_conn_res *)mp->b_rptr; 18548 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 18549 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 18550 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18551 if (mp != NULL) 18552 putnext(rq, mp); 18553 return; 18554 } 18555 switch (conn_res->PRIM_type) { 18556 case O_T_CONN_RES: 18557 case T_CONN_RES: 18558 /* 18559 * We pass up an err ack if allocb fails. This will 18560 * cause sockfs to issue a T_DISCON_REQ which will cause 18561 * tcp_eager_blowoff to be called. sockfs will then call 18562 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 18563 * we need to do the allocb up here because we have to 18564 * make sure rq->q_qinfo->qi_qclose still points to the 18565 * correct function (tcpclose_accept) in case allocb 18566 * fails. 18567 */ 18568 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 18569 if (opt_mp == NULL) { 18570 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18571 if (mp != NULL) 18572 putnext(rq, mp); 18573 return; 18574 } 18575 18576 bcopy(mp->b_rptr + conn_res->OPT_offset, 18577 &eager, conn_res->OPT_length); 18578 PRIM_type = conn_res->PRIM_type; 18579 mp->b_datap->db_type = M_PCPROTO; 18580 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 18581 ok = (struct T_ok_ack *)mp->b_rptr; 18582 ok->PRIM_type = T_OK_ACK; 18583 ok->CORRECT_prim = PRIM_type; 18584 econnp = eager->tcp_connp; 18585 econnp->conn_dev = (dev_t)RD(q)->q_ptr; 18586 econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr); 18587 eager->tcp_rq = rq; 18588 eager->tcp_wq = q; 18589 rq->q_ptr = econnp; 18590 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 18591 q->q_ptr = econnp; 18592 q->q_qinfo = &tcp_winit; 18593 listener = eager->tcp_listener; 18594 eager->tcp_issocket = B_TRUE; 18595 18596 /* 18597 * TCP is _D_SODIRECT and sockfs is directly above so 18598 * save shared sodirect_t pointer (if any). 18599 * 18600 * If tcp_fused and sodirect enabled disable it. 18601 */ 18602 eager->tcp_sodirect = SOD_QTOSODP(eager->tcp_rq); 18603 if (eager->tcp_fused && eager->tcp_sodirect != NULL) { 18604 /* Fused, disable sodirect */ 18605 mutex_enter(eager->tcp_sodirect->sod_lockp); 18606 SOD_DISABLE(eager->tcp_sodirect); 18607 mutex_exit(eager->tcp_sodirect->sod_lockp); 18608 eager->tcp_sodirect = NULL; 18609 } 18610 18611 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 18612 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 18613 ASSERT(econnp->conn_netstack == 18614 listener->tcp_connp->conn_netstack); 18615 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 18616 18617 /* Put the ref for IP */ 18618 CONN_INC_REF(econnp); 18619 18620 /* 18621 * We should have minimum of 3 references on the conn 18622 * at this point. One each for TCP and IP and one for 18623 * the T_conn_ind that was sent up when the 3-way handshake 18624 * completed. In the normal case we would also have another 18625 * reference (making a total of 4) for the conn being in the 18626 * classifier hash list. However the eager could have received 18627 * an RST subsequently and tcp_closei_local could have removed 18628 * the eager from the classifier hash list, hence we can't 18629 * assert that reference. 18630 */ 18631 ASSERT(econnp->conn_ref >= 3); 18632 18633 /* 18634 * Send the new local address also up to sockfs. There 18635 * should already be enough space in the mp that came 18636 * down from soaccept(). 18637 */ 18638 if (eager->tcp_family == AF_INET) { 18639 sin_t *sin; 18640 18641 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18642 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 18643 sin = (sin_t *)mp->b_wptr; 18644 mp->b_wptr += sizeof (sin_t); 18645 sin->sin_family = AF_INET; 18646 sin->sin_port = eager->tcp_lport; 18647 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 18648 } else { 18649 sin6_t *sin6; 18650 18651 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18652 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 18653 sin6 = (sin6_t *)mp->b_wptr; 18654 mp->b_wptr += sizeof (sin6_t); 18655 sin6->sin6_family = AF_INET6; 18656 sin6->sin6_port = eager->tcp_lport; 18657 if (eager->tcp_ipversion == IPV4_VERSION) { 18658 sin6->sin6_flowinfo = 0; 18659 IN6_IPADDR_TO_V4MAPPED( 18660 eager->tcp_ipha->ipha_src, 18661 &sin6->sin6_addr); 18662 } else { 18663 ASSERT(eager->tcp_ip6h != NULL); 18664 sin6->sin6_flowinfo = 18665 eager->tcp_ip6h->ip6_vcf & 18666 ~IPV6_VERS_AND_FLOW_MASK; 18667 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 18668 } 18669 sin6->sin6_scope_id = 0; 18670 sin6->__sin6_src_id = 0; 18671 } 18672 18673 putnext(rq, mp); 18674 18675 opt_mp->b_datap->db_type = M_SETOPTS; 18676 opt_mp->b_wptr += sizeof (struct stroptions); 18677 18678 /* 18679 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 18680 * from listener to acceptor. The message is chained on the 18681 * bind_mp which tcp_rput_other will send down to IP. 18682 */ 18683 if (listener->tcp_bound_if != 0) { 18684 /* allocate optmgmt req */ 18685 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18686 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 18687 sizeof (int)); 18688 if (mp != NULL) 18689 linkb(opt_mp, mp); 18690 } 18691 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 18692 uint_t on = 1; 18693 18694 /* allocate optmgmt req */ 18695 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18696 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 18697 if (mp != NULL) 18698 linkb(opt_mp, mp); 18699 } 18700 18701 18702 mutex_enter(&listener->tcp_eager_lock); 18703 18704 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 18705 18706 tcp_t *tail; 18707 tcp_t *tcp; 18708 mblk_t *mp1; 18709 18710 tcp = listener->tcp_eager_prev_q0; 18711 /* 18712 * listener->tcp_eager_prev_q0 points to the TAIL of the 18713 * deferred T_conn_ind queue. We need to get to the head 18714 * of the queue in order to send up T_conn_ind the same 18715 * order as how the 3WHS is completed. 18716 */ 18717 while (tcp != listener) { 18718 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 18719 !tcp->tcp_kssl_pending) 18720 break; 18721 else 18722 tcp = tcp->tcp_eager_prev_q0; 18723 } 18724 /* None of the pending eagers can be sent up now */ 18725 if (tcp == listener) 18726 goto no_more_eagers; 18727 18728 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 18729 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 18730 /* Move from q0 to q */ 18731 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 18732 listener->tcp_conn_req_cnt_q0--; 18733 listener->tcp_conn_req_cnt_q++; 18734 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 18735 tcp->tcp_eager_prev_q0; 18736 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 18737 tcp->tcp_eager_next_q0; 18738 tcp->tcp_eager_prev_q0 = NULL; 18739 tcp->tcp_eager_next_q0 = NULL; 18740 tcp->tcp_conn_def_q0 = B_FALSE; 18741 18742 /* Make sure the tcp isn't in the list of droppables */ 18743 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 18744 tcp->tcp_eager_prev_drop_q0 == NULL); 18745 18746 /* 18747 * Insert at end of the queue because sockfs sends 18748 * down T_CONN_RES in chronological order. Leaving 18749 * the older conn indications at front of the queue 18750 * helps reducing search time. 18751 */ 18752 tail = listener->tcp_eager_last_q; 18753 if (tail != NULL) { 18754 tail->tcp_eager_next_q = tcp; 18755 } else { 18756 listener->tcp_eager_next_q = tcp; 18757 } 18758 listener->tcp_eager_last_q = tcp; 18759 tcp->tcp_eager_next_q = NULL; 18760 18761 /* Need to get inside the listener perimeter */ 18762 CONN_INC_REF(listener->tcp_connp); 18763 squeue_fill(listener->tcp_connp->conn_sqp, mp1, 18764 tcp_send_pending, listener->tcp_connp, 18765 SQTAG_TCP_SEND_PENDING); 18766 } 18767 no_more_eagers: 18768 tcp_eager_unlink(eager); 18769 mutex_exit(&listener->tcp_eager_lock); 18770 18771 /* 18772 * At this point, the eager is detached from the listener 18773 * but we still have an extra refs on eager (apart from the 18774 * usual tcp references). The ref was placed in tcp_rput_data 18775 * before sending the conn_ind in tcp_send_conn_ind. 18776 * The ref will be dropped in tcp_accept_finish(). 18777 */ 18778 squeue_enter_nodrain(econnp->conn_sqp, opt_mp, 18779 tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0); 18780 return; 18781 default: 18782 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 18783 if (mp != NULL) 18784 putnext(rq, mp); 18785 return; 18786 } 18787 } 18788 18789 static int 18790 tcp_getmyname(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 18791 { 18792 sin_t *sin = (sin_t *)sa; 18793 sin6_t *sin6 = (sin6_t *)sa; 18794 18795 switch (tcp->tcp_family) { 18796 case AF_INET: 18797 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 18798 18799 if (*salenp < sizeof (sin_t)) 18800 return (EINVAL); 18801 18802 *sin = sin_null; 18803 sin->sin_family = AF_INET; 18804 sin->sin_port = tcp->tcp_lport; 18805 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 18806 break; 18807 18808 case AF_INET6: 18809 if (*salenp < sizeof (sin6_t)) 18810 return (EINVAL); 18811 18812 *sin6 = sin6_null; 18813 sin6->sin6_family = AF_INET6; 18814 sin6->sin6_port = tcp->tcp_lport; 18815 if (tcp->tcp_ipversion == IPV4_VERSION) { 18816 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 18817 &sin6->sin6_addr); 18818 } else { 18819 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 18820 } 18821 break; 18822 } 18823 18824 return (0); 18825 } 18826 18827 static int 18828 tcp_getpeername(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 18829 { 18830 sin_t *sin = (sin_t *)sa; 18831 sin6_t *sin6 = (sin6_t *)sa; 18832 18833 if (tcp->tcp_state < TCPS_SYN_RCVD) 18834 return (ENOTCONN); 18835 18836 switch (tcp->tcp_family) { 18837 case AF_INET: 18838 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 18839 18840 if (*salenp < sizeof (sin_t)) 18841 return (EINVAL); 18842 18843 *sin = sin_null; 18844 sin->sin_family = AF_INET; 18845 sin->sin_port = tcp->tcp_fport; 18846 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 18847 sin->sin_addr.s_addr); 18848 break; 18849 18850 case AF_INET6: 18851 if (*salenp < sizeof (sin6_t)) 18852 return (EINVAL); 18853 18854 *sin6 = sin6_null; 18855 sin6->sin6_family = AF_INET6; 18856 sin6->sin6_port = tcp->tcp_fport; 18857 sin6->sin6_addr = tcp->tcp_remote_v6; 18858 if (tcp->tcp_ipversion == IPV6_VERSION) { 18859 sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf & 18860 ~IPV6_VERS_AND_FLOW_MASK; 18861 } 18862 break; 18863 } 18864 18865 return (0); 18866 } 18867 18868 /* 18869 * Handle special out-of-band ioctl requests (see PSARC/2008/265). 18870 */ 18871 static void 18872 tcp_wput_cmdblk(queue_t *q, mblk_t *mp) 18873 { 18874 void *data; 18875 mblk_t *datamp = mp->b_cont; 18876 tcp_t *tcp = Q_TO_TCP(q); 18877 cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr; 18878 18879 if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) { 18880 cmdp->cb_error = EPROTO; 18881 qreply(q, mp); 18882 return; 18883 } 18884 18885 data = datamp->b_rptr; 18886 18887 switch (cmdp->cb_cmd) { 18888 case TI_GETPEERNAME: 18889 cmdp->cb_error = tcp_getpeername(tcp, data, &cmdp->cb_len); 18890 break; 18891 case TI_GETMYNAME: 18892 cmdp->cb_error = tcp_getmyname(tcp, data, &cmdp->cb_len); 18893 break; 18894 default: 18895 cmdp->cb_error = EINVAL; 18896 break; 18897 } 18898 18899 qreply(q, mp); 18900 } 18901 18902 void 18903 tcp_wput(queue_t *q, mblk_t *mp) 18904 { 18905 conn_t *connp = Q_TO_CONN(q); 18906 tcp_t *tcp; 18907 void (*output_proc)(); 18908 t_scalar_t type; 18909 uchar_t *rptr; 18910 struct iocblk *iocp; 18911 uint32_t msize; 18912 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 18913 18914 ASSERT(connp->conn_ref >= 2); 18915 18916 switch (DB_TYPE(mp)) { 18917 case M_DATA: 18918 tcp = connp->conn_tcp; 18919 ASSERT(tcp != NULL); 18920 18921 msize = msgdsize(mp); 18922 18923 mutex_enter(&tcp->tcp_non_sq_lock); 18924 tcp->tcp_squeue_bytes += msize; 18925 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 18926 tcp_setqfull(tcp); 18927 } 18928 mutex_exit(&tcp->tcp_non_sq_lock); 18929 18930 CONN_INC_REF(connp); 18931 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 18932 tcp_output, connp, SQTAG_TCP_OUTPUT); 18933 return; 18934 18935 case M_CMD: 18936 tcp_wput_cmdblk(q, mp); 18937 return; 18938 18939 case M_PROTO: 18940 case M_PCPROTO: 18941 /* 18942 * if it is a snmp message, don't get behind the squeue 18943 */ 18944 tcp = connp->conn_tcp; 18945 rptr = mp->b_rptr; 18946 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 18947 type = ((union T_primitives *)rptr)->type; 18948 } else { 18949 if (tcp->tcp_debug) { 18950 (void) strlog(TCP_MOD_ID, 0, 1, 18951 SL_ERROR|SL_TRACE, 18952 "tcp_wput_proto, dropping one..."); 18953 } 18954 freemsg(mp); 18955 return; 18956 } 18957 if (type == T_SVR4_OPTMGMT_REQ) { 18958 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 18959 if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get, 18960 cr)) { 18961 /* 18962 * This was a SNMP request 18963 */ 18964 return; 18965 } else { 18966 output_proc = tcp_wput_proto; 18967 } 18968 } else { 18969 output_proc = tcp_wput_proto; 18970 } 18971 break; 18972 case M_IOCTL: 18973 /* 18974 * Most ioctls can be processed right away without going via 18975 * squeues - process them right here. Those that do require 18976 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 18977 * are processed by tcp_wput_ioctl(). 18978 */ 18979 iocp = (struct iocblk *)mp->b_rptr; 18980 tcp = connp->conn_tcp; 18981 18982 switch (iocp->ioc_cmd) { 18983 case TCP_IOC_ABORT_CONN: 18984 tcp_ioctl_abort_conn(q, mp); 18985 return; 18986 case TI_GETPEERNAME: 18987 case TI_GETMYNAME: 18988 mi_copyin(q, mp, NULL, 18989 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 18990 return; 18991 case ND_SET: 18992 /* nd_getset does the necessary checks */ 18993 case ND_GET: 18994 if (!nd_getset(q, tcps->tcps_g_nd, mp)) { 18995 CALL_IP_WPUT(connp, q, mp); 18996 return; 18997 } 18998 qreply(q, mp); 18999 return; 19000 case TCP_IOC_DEFAULT_Q: 19001 /* 19002 * Wants to be the default wq. Check the credentials 19003 * first, the rest is executed via squeue. 19004 */ 19005 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 19006 iocp->ioc_error = EPERM; 19007 iocp->ioc_count = 0; 19008 mp->b_datap->db_type = M_IOCACK; 19009 qreply(q, mp); 19010 return; 19011 } 19012 output_proc = tcp_wput_ioctl; 19013 break; 19014 default: 19015 output_proc = tcp_wput_ioctl; 19016 break; 19017 } 19018 break; 19019 default: 19020 output_proc = tcp_wput_nondata; 19021 break; 19022 } 19023 19024 CONN_INC_REF(connp); 19025 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 19026 output_proc, connp, SQTAG_TCP_WPUT_OTHER); 19027 } 19028 19029 /* 19030 * Initial STREAMS write side put() procedure for sockets. It tries to 19031 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 19032 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 19033 * are handled by tcp_wput() as usual. 19034 * 19035 * All further messages will also be handled by tcp_wput() because we cannot 19036 * be sure that the above short cut is safe later. 19037 */ 19038 static void 19039 tcp_wput_sock(queue_t *wq, mblk_t *mp) 19040 { 19041 conn_t *connp = Q_TO_CONN(wq); 19042 tcp_t *tcp = connp->conn_tcp; 19043 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 19044 19045 ASSERT(wq->q_qinfo == &tcp_sock_winit); 19046 wq->q_qinfo = &tcp_winit; 19047 19048 ASSERT(IPCL_IS_TCP(connp)); 19049 ASSERT(TCP_IS_SOCKET(tcp)); 19050 19051 if (DB_TYPE(mp) == M_PCPROTO && 19052 MBLKL(mp) == sizeof (struct T_capability_req) && 19053 car->PRIM_type == T_CAPABILITY_REQ) { 19054 tcp_capability_req(tcp, mp); 19055 return; 19056 } 19057 19058 tcp_wput(wq, mp); 19059 } 19060 19061 static boolean_t 19062 tcp_zcopy_check(tcp_t *tcp) 19063 { 19064 conn_t *connp = tcp->tcp_connp; 19065 ire_t *ire; 19066 boolean_t zc_enabled = B_FALSE; 19067 tcp_stack_t *tcps = tcp->tcp_tcps; 19068 19069 if (do_tcpzcopy == 2) 19070 zc_enabled = B_TRUE; 19071 else if (tcp->tcp_ipversion == IPV4_VERSION && 19072 IPCL_IS_CONNECTED(connp) && 19073 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 19074 connp->conn_dontroute == 0 && 19075 !connp->conn_nexthop_set && 19076 connp->conn_outgoing_ill == NULL && 19077 connp->conn_nofailover_ill == NULL && 19078 do_tcpzcopy == 1) { 19079 /* 19080 * the checks above closely resemble the fast path checks 19081 * in tcp_send_data(). 19082 */ 19083 mutex_enter(&connp->conn_lock); 19084 ire = connp->conn_ire_cache; 19085 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 19086 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19087 IRE_REFHOLD(ire); 19088 if (ire->ire_stq != NULL) { 19089 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 19090 19091 zc_enabled = ill && (ill->ill_capabilities & 19092 ILL_CAPAB_ZEROCOPY) && 19093 (ill->ill_zerocopy_capab-> 19094 ill_zerocopy_flags != 0); 19095 } 19096 IRE_REFRELE(ire); 19097 } 19098 mutex_exit(&connp->conn_lock); 19099 } 19100 tcp->tcp_snd_zcopy_on = zc_enabled; 19101 if (!TCP_IS_DETACHED(tcp)) { 19102 if (zc_enabled) { 19103 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE); 19104 TCP_STAT(tcps, tcp_zcopy_on); 19105 } else { 19106 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 19107 TCP_STAT(tcps, tcp_zcopy_off); 19108 } 19109 } 19110 return (zc_enabled); 19111 } 19112 19113 static mblk_t * 19114 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 19115 { 19116 tcp_stack_t *tcps = tcp->tcp_tcps; 19117 19118 if (do_tcpzcopy == 2) 19119 return (bp); 19120 else if (tcp->tcp_snd_zcopy_on) { 19121 tcp->tcp_snd_zcopy_on = B_FALSE; 19122 if (!TCP_IS_DETACHED(tcp)) { 19123 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 19124 TCP_STAT(tcps, tcp_zcopy_disable); 19125 } 19126 } 19127 return (tcp_zcopy_backoff(tcp, bp, 0)); 19128 } 19129 19130 /* 19131 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 19132 * the original desballoca'ed segmapped mblk. 19133 */ 19134 static mblk_t * 19135 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 19136 { 19137 mblk_t *head, *tail, *nbp; 19138 tcp_stack_t *tcps = tcp->tcp_tcps; 19139 19140 if (IS_VMLOANED_MBLK(bp)) { 19141 TCP_STAT(tcps, tcp_zcopy_backoff); 19142 if ((head = copyb(bp)) == NULL) { 19143 /* fail to backoff; leave it for the next backoff */ 19144 tcp->tcp_xmit_zc_clean = B_FALSE; 19145 return (bp); 19146 } 19147 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 19148 if (fix_xmitlist) 19149 tcp_zcopy_notify(tcp); 19150 else 19151 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 19152 } 19153 nbp = bp->b_cont; 19154 if (fix_xmitlist) { 19155 head->b_prev = bp->b_prev; 19156 head->b_next = bp->b_next; 19157 if (tcp->tcp_xmit_tail == bp) 19158 tcp->tcp_xmit_tail = head; 19159 } 19160 bp->b_next = NULL; 19161 bp->b_prev = NULL; 19162 freeb(bp); 19163 } else { 19164 head = bp; 19165 nbp = bp->b_cont; 19166 } 19167 tail = head; 19168 while (nbp) { 19169 if (IS_VMLOANED_MBLK(nbp)) { 19170 TCP_STAT(tcps, tcp_zcopy_backoff); 19171 if ((tail->b_cont = copyb(nbp)) == NULL) { 19172 tcp->tcp_xmit_zc_clean = B_FALSE; 19173 tail->b_cont = nbp; 19174 return (head); 19175 } 19176 tail = tail->b_cont; 19177 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 19178 if (fix_xmitlist) 19179 tcp_zcopy_notify(tcp); 19180 else 19181 tail->b_datap->db_struioflag |= 19182 STRUIO_ZCNOTIFY; 19183 } 19184 bp = nbp; 19185 nbp = nbp->b_cont; 19186 if (fix_xmitlist) { 19187 tail->b_prev = bp->b_prev; 19188 tail->b_next = bp->b_next; 19189 if (tcp->tcp_xmit_tail == bp) 19190 tcp->tcp_xmit_tail = tail; 19191 } 19192 bp->b_next = NULL; 19193 bp->b_prev = NULL; 19194 freeb(bp); 19195 } else { 19196 tail->b_cont = nbp; 19197 tail = nbp; 19198 nbp = nbp->b_cont; 19199 } 19200 } 19201 if (fix_xmitlist) { 19202 tcp->tcp_xmit_last = tail; 19203 tcp->tcp_xmit_zc_clean = B_TRUE; 19204 } 19205 return (head); 19206 } 19207 19208 static void 19209 tcp_zcopy_notify(tcp_t *tcp) 19210 { 19211 struct stdata *stp; 19212 19213 if (tcp->tcp_detached) 19214 return; 19215 stp = STREAM(tcp->tcp_rq); 19216 mutex_enter(&stp->sd_lock); 19217 stp->sd_flag |= STZCNOTIFY; 19218 cv_broadcast(&stp->sd_zcopy_wait); 19219 mutex_exit(&stp->sd_lock); 19220 } 19221 19222 static boolean_t 19223 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep) 19224 { 19225 ire_t *ire; 19226 conn_t *connp = tcp->tcp_connp; 19227 tcp_stack_t *tcps = tcp->tcp_tcps; 19228 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19229 19230 mutex_enter(&connp->conn_lock); 19231 ire = connp->conn_ire_cache; 19232 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 19233 19234 if ((ire != NULL) && 19235 (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) && 19236 IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) && 19237 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19238 IRE_REFHOLD(ire); 19239 mutex_exit(&connp->conn_lock); 19240 } else { 19241 boolean_t cached = B_FALSE; 19242 ts_label_t *tsl; 19243 19244 /* force a recheck later on */ 19245 tcp->tcp_ire_ill_check_done = B_FALSE; 19246 19247 TCP_DBGSTAT(tcps, tcp_ire_null1); 19248 connp->conn_ire_cache = NULL; 19249 mutex_exit(&connp->conn_lock); 19250 19251 if (ire != NULL) 19252 IRE_REFRELE_NOTR(ire); 19253 19254 tsl = crgetlabel(CONN_CRED(connp)); 19255 ire = (dst ? 19256 ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) : 19257 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 19258 connp->conn_zoneid, tsl, ipst)); 19259 19260 if (ire == NULL) { 19261 TCP_STAT(tcps, tcp_ire_null); 19262 return (B_FALSE); 19263 } 19264 19265 IRE_REFHOLD_NOTR(ire); 19266 19267 mutex_enter(&connp->conn_lock); 19268 if (CONN_CACHE_IRE(connp)) { 19269 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 19270 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19271 TCP_CHECK_IREINFO(tcp, ire); 19272 connp->conn_ire_cache = ire; 19273 cached = B_TRUE; 19274 } 19275 rw_exit(&ire->ire_bucket->irb_lock); 19276 } 19277 mutex_exit(&connp->conn_lock); 19278 19279 /* 19280 * We can continue to use the ire but since it was 19281 * not cached, we should drop the extra reference. 19282 */ 19283 if (!cached) 19284 IRE_REFRELE_NOTR(ire); 19285 19286 /* 19287 * Rampart note: no need to select a new label here, since 19288 * labels are not allowed to change during the life of a TCP 19289 * connection. 19290 */ 19291 } 19292 19293 *irep = ire; 19294 19295 return (B_TRUE); 19296 } 19297 19298 /* 19299 * Called from tcp_send() or tcp_send_data() to find workable IRE. 19300 * 19301 * 0 = success; 19302 * 1 = failed to find ire and ill. 19303 */ 19304 static boolean_t 19305 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp) 19306 { 19307 ipha_t *ipha; 19308 ipaddr_t dst; 19309 ire_t *ire; 19310 ill_t *ill; 19311 conn_t *connp = tcp->tcp_connp; 19312 mblk_t *ire_fp_mp; 19313 tcp_stack_t *tcps = tcp->tcp_tcps; 19314 19315 if (mp != NULL) 19316 ipha = (ipha_t *)mp->b_rptr; 19317 else 19318 ipha = tcp->tcp_ipha; 19319 dst = ipha->ipha_dst; 19320 19321 if (!tcp_send_find_ire(tcp, &dst, &ire)) 19322 return (B_FALSE); 19323 19324 if ((ire->ire_flags & RTF_MULTIRT) || 19325 (ire->ire_stq == NULL) || 19326 (ire->ire_nce == NULL) || 19327 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 19328 ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) || 19329 MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) { 19330 TCP_STAT(tcps, tcp_ip_ire_send); 19331 IRE_REFRELE(ire); 19332 return (B_FALSE); 19333 } 19334 19335 ill = ire_to_ill(ire); 19336 if (connp->conn_outgoing_ill != NULL) { 19337 ill_t *conn_outgoing_ill = NULL; 19338 /* 19339 * Choose a good ill in the group to send the packets on. 19340 */ 19341 ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill); 19342 ill = ire_to_ill(ire); 19343 } 19344 ASSERT(ill != NULL); 19345 19346 if (!tcp->tcp_ire_ill_check_done) { 19347 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19348 tcp->tcp_ire_ill_check_done = B_TRUE; 19349 } 19350 19351 *irep = ire; 19352 *illp = ill; 19353 19354 return (B_TRUE); 19355 } 19356 19357 static void 19358 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 19359 { 19360 ipha_t *ipha; 19361 ipaddr_t src; 19362 ipaddr_t dst; 19363 uint32_t cksum; 19364 ire_t *ire; 19365 uint16_t *up; 19366 ill_t *ill; 19367 conn_t *connp = tcp->tcp_connp; 19368 uint32_t hcksum_txflags = 0; 19369 mblk_t *ire_fp_mp; 19370 uint_t ire_fp_mp_len; 19371 tcp_stack_t *tcps = tcp->tcp_tcps; 19372 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19373 19374 ASSERT(DB_TYPE(mp) == M_DATA); 19375 19376 if (DB_CRED(mp) == NULL) 19377 mblk_setcred(mp, CONN_CRED(connp)); 19378 19379 ipha = (ipha_t *)mp->b_rptr; 19380 src = ipha->ipha_src; 19381 dst = ipha->ipha_dst; 19382 19383 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 19384 19385 /* 19386 * Drop off fast path for IPv6 and also if options are present or 19387 * we need to resolve a TS label. 19388 */ 19389 if (tcp->tcp_ipversion != IPV4_VERSION || 19390 !IPCL_IS_CONNECTED(connp) || 19391 !CONN_IS_LSO_MD_FASTPATH(connp) || 19392 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 19393 !connp->conn_ulp_labeled || 19394 ipha->ipha_ident == IP_HDR_INCLUDED || 19395 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 19396 IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 19397 if (tcp->tcp_snd_zcopy_aware) 19398 mp = tcp_zcopy_disable(tcp, mp); 19399 TCP_STAT(tcps, tcp_ip_send); 19400 CALL_IP_WPUT(connp, q, mp); 19401 return; 19402 } 19403 19404 if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) { 19405 if (tcp->tcp_snd_zcopy_aware) 19406 mp = tcp_zcopy_backoff(tcp, mp, 0); 19407 CALL_IP_WPUT(connp, q, mp); 19408 return; 19409 } 19410 ire_fp_mp = ire->ire_nce->nce_fp_mp; 19411 ire_fp_mp_len = MBLKL(ire_fp_mp); 19412 19413 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 19414 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 19415 #ifndef _BIG_ENDIAN 19416 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 19417 #endif 19418 19419 /* 19420 * Check to see if we need to re-enable LSO/MDT for this connection 19421 * because it was previously disabled due to changes in the ill; 19422 * note that by doing it here, this re-enabling only applies when 19423 * the packet is not dispatched through CALL_IP_WPUT(). 19424 * 19425 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath 19426 * case, since that's how we ended up here. For IPv6, we do the 19427 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 19428 */ 19429 if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 19430 /* 19431 * Restore LSO for this connection, so that next time around 19432 * it is eligible to go through tcp_lsosend() path again. 19433 */ 19434 TCP_STAT(tcps, tcp_lso_enabled); 19435 tcp->tcp_lso = B_TRUE; 19436 ip1dbg(("tcp_send_data: reenabling LSO for connp %p on " 19437 "interface %s\n", (void *)connp, ill->ill_name)); 19438 } else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 19439 /* 19440 * Restore MDT for this connection, so that next time around 19441 * it is eligible to go through tcp_multisend() path again. 19442 */ 19443 TCP_STAT(tcps, tcp_mdt_conn_resumed1); 19444 tcp->tcp_mdt = B_TRUE; 19445 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 19446 "interface %s\n", (void *)connp, ill->ill_name)); 19447 } 19448 19449 if (tcp->tcp_snd_zcopy_aware) { 19450 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 19451 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 19452 mp = tcp_zcopy_disable(tcp, mp); 19453 /* 19454 * we shouldn't need to reset ipha as the mp containing 19455 * ipha should never be a zero-copy mp. 19456 */ 19457 } 19458 19459 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 19460 ASSERT(ill->ill_hcksum_capab != NULL); 19461 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 19462 } 19463 19464 /* pseudo-header checksum (do it in parts for IP header checksum) */ 19465 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 19466 19467 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 19468 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 19469 19470 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 19471 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 19472 19473 /* Software checksum? */ 19474 if (DB_CKSUMFLAGS(mp) == 0) { 19475 TCP_STAT(tcps, tcp_out_sw_cksum); 19476 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 19477 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 19478 } 19479 19480 /* Calculate IP header checksum if hardware isn't capable */ 19481 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 19482 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 19483 ((uint16_t *)ipha)[4]); 19484 } 19485 19486 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 19487 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 19488 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 19489 19490 UPDATE_OB_PKT_COUNT(ire); 19491 ire->ire_last_used_time = lbolt; 19492 19493 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 19494 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 19495 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 19496 ntohs(ipha->ipha_length)); 19497 19498 if (ILL_DLS_CAPABLE(ill)) { 19499 /* 19500 * Send the packet directly to DLD, where it may be queued 19501 * depending on the availability of transmit resources at 19502 * the media layer. 19503 */ 19504 IP_DLS_ILL_TX(ill, ipha, mp, ipst, ire_fp_mp_len); 19505 } else { 19506 ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr; 19507 DTRACE_PROBE4(ip4__physical__out__start, 19508 ill_t *, NULL, ill_t *, out_ill, 19509 ipha_t *, ipha, mblk_t *, mp); 19510 FW_HOOKS(ipst->ips_ip4_physical_out_event, 19511 ipst->ips_ipv4firewall_physical_out, 19512 NULL, out_ill, ipha, mp, mp, 0, ipst); 19513 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 19514 19515 if (mp != NULL) { 19516 if (ipst->ips_ipobs_enabled) { 19517 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, 19518 IP_REAL_ZONEID(connp->conn_zoneid, ipst), 19519 ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, 19520 ipst); 19521 } 19522 DTRACE_IP_FASTPATH(mp, ipha, out_ill, ipha, NULL); 19523 putnext(ire->ire_stq, mp); 19524 } 19525 } 19526 IRE_REFRELE(ire); 19527 } 19528 19529 /* 19530 * This handles the case when the receiver has shrunk its win. Per RFC 1122 19531 * if the receiver shrinks the window, i.e. moves the right window to the 19532 * left, the we should not send new data, but should retransmit normally the 19533 * old unacked data between suna and suna + swnd. We might has sent data 19534 * that is now outside the new window, pretend that we didn't send it. 19535 */ 19536 static void 19537 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 19538 { 19539 uint32_t snxt = tcp->tcp_snxt; 19540 mblk_t *xmit_tail; 19541 int32_t offset; 19542 19543 ASSERT(shrunk_count > 0); 19544 19545 /* Pretend we didn't send the data outside the window */ 19546 snxt -= shrunk_count; 19547 19548 /* Get the mblk and the offset in it per the shrunk window */ 19549 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 19550 19551 ASSERT(xmit_tail != NULL); 19552 19553 /* Reset all the values per the now shrunk window */ 19554 tcp->tcp_snxt = snxt; 19555 tcp->tcp_xmit_tail = xmit_tail; 19556 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 19557 offset; 19558 tcp->tcp_unsent += shrunk_count; 19559 19560 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 19561 /* 19562 * Make sure the timer is running so that we will probe a zero 19563 * window. 19564 */ 19565 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19566 } 19567 19568 19569 /* 19570 * The TCP normal data output path. 19571 * NOTE: the logic of the fast path is duplicated from this function. 19572 */ 19573 static void 19574 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 19575 { 19576 int len; 19577 mblk_t *local_time; 19578 mblk_t *mp1; 19579 uint32_t snxt; 19580 int tail_unsent; 19581 int tcpstate; 19582 int usable = 0; 19583 mblk_t *xmit_tail; 19584 queue_t *q = tcp->tcp_wq; 19585 int32_t mss; 19586 int32_t num_sack_blk = 0; 19587 int32_t tcp_hdr_len; 19588 int32_t tcp_tcp_hdr_len; 19589 int mdt_thres; 19590 int rc; 19591 tcp_stack_t *tcps = tcp->tcp_tcps; 19592 ip_stack_t *ipst; 19593 19594 tcpstate = tcp->tcp_state; 19595 if (mp == NULL) { 19596 /* 19597 * tcp_wput_data() with NULL mp should only be called when 19598 * there is unsent data. 19599 */ 19600 ASSERT(tcp->tcp_unsent > 0); 19601 /* Really tacky... but we need this for detached closes. */ 19602 len = tcp->tcp_unsent; 19603 goto data_null; 19604 } 19605 19606 #if CCS_STATS 19607 wrw_stats.tot.count++; 19608 wrw_stats.tot.bytes += msgdsize(mp); 19609 #endif 19610 ASSERT(mp->b_datap->db_type == M_DATA); 19611 /* 19612 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 19613 * or before a connection attempt has begun. 19614 */ 19615 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 19616 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19617 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19618 #ifdef DEBUG 19619 cmn_err(CE_WARN, 19620 "tcp_wput_data: data after ordrel, %s", 19621 tcp_display(tcp, NULL, 19622 DISP_ADDR_AND_PORT)); 19623 #else 19624 if (tcp->tcp_debug) { 19625 (void) strlog(TCP_MOD_ID, 0, 1, 19626 SL_TRACE|SL_ERROR, 19627 "tcp_wput_data: data after ordrel, %s\n", 19628 tcp_display(tcp, NULL, 19629 DISP_ADDR_AND_PORT)); 19630 } 19631 #endif /* DEBUG */ 19632 } 19633 if (tcp->tcp_snd_zcopy_aware && 19634 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 19635 tcp_zcopy_notify(tcp); 19636 freemsg(mp); 19637 mutex_enter(&tcp->tcp_non_sq_lock); 19638 if (tcp->tcp_flow_stopped && 19639 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19640 tcp_clrqfull(tcp); 19641 } 19642 mutex_exit(&tcp->tcp_non_sq_lock); 19643 return; 19644 } 19645 19646 /* Strip empties */ 19647 for (;;) { 19648 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 19649 (uintptr_t)INT_MAX); 19650 len = (int)(mp->b_wptr - mp->b_rptr); 19651 if (len > 0) 19652 break; 19653 mp1 = mp; 19654 mp = mp->b_cont; 19655 freeb(mp1); 19656 if (!mp) { 19657 return; 19658 } 19659 } 19660 19661 /* If we are the first on the list ... */ 19662 if (tcp->tcp_xmit_head == NULL) { 19663 tcp->tcp_xmit_head = mp; 19664 tcp->tcp_xmit_tail = mp; 19665 tcp->tcp_xmit_tail_unsent = len; 19666 } else { 19667 /* If tiny tx and room in txq tail, pullup to save mblks. */ 19668 struct datab *dp; 19669 19670 mp1 = tcp->tcp_xmit_last; 19671 if (len < tcp_tx_pull_len && 19672 (dp = mp1->b_datap)->db_ref == 1 && 19673 dp->db_lim - mp1->b_wptr >= len) { 19674 ASSERT(len > 0); 19675 ASSERT(!mp1->b_cont); 19676 if (len == 1) { 19677 *mp1->b_wptr++ = *mp->b_rptr; 19678 } else { 19679 bcopy(mp->b_rptr, mp1->b_wptr, len); 19680 mp1->b_wptr += len; 19681 } 19682 if (mp1 == tcp->tcp_xmit_tail) 19683 tcp->tcp_xmit_tail_unsent += len; 19684 mp1->b_cont = mp->b_cont; 19685 if (tcp->tcp_snd_zcopy_aware && 19686 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 19687 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 19688 freeb(mp); 19689 mp = mp1; 19690 } else { 19691 tcp->tcp_xmit_last->b_cont = mp; 19692 } 19693 len += tcp->tcp_unsent; 19694 } 19695 19696 /* Tack on however many more positive length mblks we have */ 19697 if ((mp1 = mp->b_cont) != NULL) { 19698 do { 19699 int tlen; 19700 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 19701 (uintptr_t)INT_MAX); 19702 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 19703 if (tlen <= 0) { 19704 mp->b_cont = mp1->b_cont; 19705 freeb(mp1); 19706 } else { 19707 len += tlen; 19708 mp = mp1; 19709 } 19710 } while ((mp1 = mp->b_cont) != NULL); 19711 } 19712 tcp->tcp_xmit_last = mp; 19713 tcp->tcp_unsent = len; 19714 19715 if (urgent) 19716 usable = 1; 19717 19718 data_null: 19719 snxt = tcp->tcp_snxt; 19720 xmit_tail = tcp->tcp_xmit_tail; 19721 tail_unsent = tcp->tcp_xmit_tail_unsent; 19722 19723 /* 19724 * Note that tcp_mss has been adjusted to take into account the 19725 * timestamp option if applicable. Because SACK options do not 19726 * appear in every TCP segments and they are of variable lengths, 19727 * they cannot be included in tcp_mss. Thus we need to calculate 19728 * the actual segment length when we need to send a segment which 19729 * includes SACK options. 19730 */ 19731 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 19732 int32_t opt_len; 19733 19734 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 19735 tcp->tcp_num_sack_blk); 19736 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 19737 2 + TCPOPT_HEADER_LEN; 19738 mss = tcp->tcp_mss - opt_len; 19739 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 19740 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 19741 } else { 19742 mss = tcp->tcp_mss; 19743 tcp_hdr_len = tcp->tcp_hdr_len; 19744 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 19745 } 19746 19747 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 19748 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 19749 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 19750 } 19751 if (tcpstate == TCPS_SYN_RCVD) { 19752 /* 19753 * The three-way connection establishment handshake is not 19754 * complete yet. We want to queue the data for transmission 19755 * after entering ESTABLISHED state (RFC793). A jump to 19756 * "done" label effectively leaves data on the queue. 19757 */ 19758 goto done; 19759 } else { 19760 int usable_r; 19761 19762 /* 19763 * In the special case when cwnd is zero, which can only 19764 * happen if the connection is ECN capable, return now. 19765 * New segments is sent using tcp_timer(). The timer 19766 * is set in tcp_rput_data(). 19767 */ 19768 if (tcp->tcp_cwnd == 0) { 19769 /* 19770 * Note that tcp_cwnd is 0 before 3-way handshake is 19771 * finished. 19772 */ 19773 ASSERT(tcp->tcp_ecn_ok || 19774 tcp->tcp_state < TCPS_ESTABLISHED); 19775 return; 19776 } 19777 19778 /* NOTE: trouble if xmitting while SYN not acked? */ 19779 usable_r = snxt - tcp->tcp_suna; 19780 usable_r = tcp->tcp_swnd - usable_r; 19781 19782 /* 19783 * Check if the receiver has shrunk the window. If 19784 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 19785 * cannot be set as there is unsent data, so FIN cannot 19786 * be sent out. Otherwise, we need to take into account 19787 * of FIN as it consumes an "invisible" sequence number. 19788 */ 19789 ASSERT(tcp->tcp_fin_sent == 0); 19790 if (usable_r < 0) { 19791 /* 19792 * The receiver has shrunk the window and we have sent 19793 * -usable_r date beyond the window, re-adjust. 19794 * 19795 * If TCP window scaling is enabled, there can be 19796 * round down error as the advertised receive window 19797 * is actually right shifted n bits. This means that 19798 * the lower n bits info is wiped out. It will look 19799 * like the window is shrunk. Do a check here to 19800 * see if the shrunk amount is actually within the 19801 * error in window calculation. If it is, just 19802 * return. Note that this check is inside the 19803 * shrunk window check. This makes sure that even 19804 * though tcp_process_shrunk_swnd() is not called, 19805 * we will stop further processing. 19806 */ 19807 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 19808 tcp_process_shrunk_swnd(tcp, -usable_r); 19809 } 19810 return; 19811 } 19812 19813 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 19814 if (tcp->tcp_swnd > tcp->tcp_cwnd) 19815 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 19816 19817 /* usable = MIN(usable, unsent) */ 19818 if (usable_r > len) 19819 usable_r = len; 19820 19821 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 19822 if (usable_r > 0) { 19823 usable = usable_r; 19824 } else { 19825 /* Bypass all other unnecessary processing. */ 19826 goto done; 19827 } 19828 } 19829 19830 local_time = (mblk_t *)lbolt; 19831 19832 /* 19833 * "Our" Nagle Algorithm. This is not the same as in the old 19834 * BSD. This is more in line with the true intent of Nagle. 19835 * 19836 * The conditions are: 19837 * 1. The amount of unsent data (or amount of data which can be 19838 * sent, whichever is smaller) is less than Nagle limit. 19839 * 2. The last sent size is also less than Nagle limit. 19840 * 3. There is unack'ed data. 19841 * 4. Urgent pointer is not set. Send urgent data ignoring the 19842 * Nagle algorithm. This reduces the probability that urgent 19843 * bytes get "merged" together. 19844 * 5. The app has not closed the connection. This eliminates the 19845 * wait time of the receiving side waiting for the last piece of 19846 * (small) data. 19847 * 19848 * If all are satisified, exit without sending anything. Note 19849 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 19850 * the smaller of 1 MSS and global tcp_naglim_def (default to be 19851 * 4095). 19852 */ 19853 if (usable < (int)tcp->tcp_naglim && 19854 tcp->tcp_naglim > tcp->tcp_last_sent_len && 19855 snxt != tcp->tcp_suna && 19856 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 19857 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 19858 goto done; 19859 } 19860 19861 if (tcp->tcp_cork) { 19862 /* 19863 * if the tcp->tcp_cork option is set, then we have to force 19864 * TCP not to send partial segment (smaller than MSS bytes). 19865 * We are calculating the usable now based on full mss and 19866 * will save the rest of remaining data for later. 19867 */ 19868 if (usable < mss) 19869 goto done; 19870 usable = (usable / mss) * mss; 19871 } 19872 19873 /* Update the latest receive window size in TCP header. */ 19874 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 19875 tcp->tcp_tcph->th_win); 19876 19877 /* 19878 * Determine if it's worthwhile to attempt LSO or MDT, based on: 19879 * 19880 * 1. Simple TCP/IP{v4,v6} (no options). 19881 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 19882 * 3. If the TCP connection is in ESTABLISHED state. 19883 * 4. The TCP is not detached. 19884 * 19885 * If any of the above conditions have changed during the 19886 * connection, stop using LSO/MDT and restore the stream head 19887 * parameters accordingly. 19888 */ 19889 ipst = tcps->tcps_netstack->netstack_ip; 19890 19891 if ((tcp->tcp_lso || tcp->tcp_mdt) && 19892 ((tcp->tcp_ipversion == IPV4_VERSION && 19893 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 19894 (tcp->tcp_ipversion == IPV6_VERSION && 19895 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 19896 tcp->tcp_state != TCPS_ESTABLISHED || 19897 TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) || 19898 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 19899 IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 19900 if (tcp->tcp_lso) { 19901 tcp->tcp_connp->conn_lso_ok = B_FALSE; 19902 tcp->tcp_lso = B_FALSE; 19903 } else { 19904 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 19905 tcp->tcp_mdt = B_FALSE; 19906 } 19907 19908 /* Anything other than detached is considered pathological */ 19909 if (!TCP_IS_DETACHED(tcp)) { 19910 if (tcp->tcp_lso) 19911 TCP_STAT(tcps, tcp_lso_disabled); 19912 else 19913 TCP_STAT(tcps, tcp_mdt_conn_halted1); 19914 (void) tcp_maxpsz_set(tcp, B_TRUE); 19915 } 19916 } 19917 19918 /* Use MDT if sendable amount is greater than the threshold */ 19919 if (tcp->tcp_mdt && 19920 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 19921 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 19922 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 19923 (tcp->tcp_valid_bits == 0 || 19924 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 19925 ASSERT(tcp->tcp_connp->conn_mdt_ok); 19926 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19927 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19928 local_time, mdt_thres); 19929 } else { 19930 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19931 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19932 local_time, INT_MAX); 19933 } 19934 19935 /* Pretend that all we were trying to send really got sent */ 19936 if (rc < 0 && tail_unsent < 0) { 19937 do { 19938 xmit_tail = xmit_tail->b_cont; 19939 xmit_tail->b_prev = local_time; 19940 ASSERT((uintptr_t)(xmit_tail->b_wptr - 19941 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 19942 tail_unsent += (int)(xmit_tail->b_wptr - 19943 xmit_tail->b_rptr); 19944 } while (tail_unsent < 0); 19945 } 19946 done:; 19947 tcp->tcp_xmit_tail = xmit_tail; 19948 tcp->tcp_xmit_tail_unsent = tail_unsent; 19949 len = tcp->tcp_snxt - snxt; 19950 if (len) { 19951 /* 19952 * If new data was sent, need to update the notsack 19953 * list, which is, afterall, data blocks that have 19954 * not been sack'ed by the receiver. New data is 19955 * not sack'ed. 19956 */ 19957 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 19958 /* len is a negative value. */ 19959 tcp->tcp_pipe -= len; 19960 tcp_notsack_update(&(tcp->tcp_notsack_list), 19961 tcp->tcp_snxt, snxt, 19962 &(tcp->tcp_num_notsack_blk), 19963 &(tcp->tcp_cnt_notsack_list)); 19964 } 19965 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 19966 tcp->tcp_rack = tcp->tcp_rnxt; 19967 tcp->tcp_rack_cnt = 0; 19968 if ((snxt + len) == tcp->tcp_suna) { 19969 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19970 } 19971 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 19972 /* 19973 * Didn't send anything. Make sure the timer is running 19974 * so that we will probe a zero window. 19975 */ 19976 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19977 } 19978 /* Note that len is the amount we just sent but with a negative sign */ 19979 tcp->tcp_unsent += len; 19980 mutex_enter(&tcp->tcp_non_sq_lock); 19981 if (tcp->tcp_flow_stopped) { 19982 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19983 tcp_clrqfull(tcp); 19984 } 19985 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 19986 tcp_setqfull(tcp); 19987 } 19988 mutex_exit(&tcp->tcp_non_sq_lock); 19989 } 19990 19991 /* 19992 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 19993 * outgoing TCP header with the template header, as well as other 19994 * options such as time-stamp, ECN and/or SACK. 19995 */ 19996 static void 19997 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 19998 { 19999 tcph_t *tcp_tmpl, *tcp_h; 20000 uint32_t *dst, *src; 20001 int hdrlen; 20002 20003 ASSERT(OK_32PTR(rptr)); 20004 20005 /* Template header */ 20006 tcp_tmpl = tcp->tcp_tcph; 20007 20008 /* Header of outgoing packet */ 20009 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 20010 20011 /* dst and src are opaque 32-bit fields, used for copying */ 20012 dst = (uint32_t *)rptr; 20013 src = (uint32_t *)tcp->tcp_iphc; 20014 hdrlen = tcp->tcp_hdr_len; 20015 20016 /* Fill time-stamp option if needed */ 20017 if (tcp->tcp_snd_ts_ok) { 20018 U32_TO_BE32((uint32_t)now, 20019 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 20020 U32_TO_BE32(tcp->tcp_ts_recent, 20021 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 20022 } else { 20023 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 20024 } 20025 20026 /* 20027 * Copy the template header; is this really more efficient than 20028 * calling bcopy()? For simple IPv4/TCP, it may be the case, 20029 * but perhaps not for other scenarios. 20030 */ 20031 dst[0] = src[0]; 20032 dst[1] = src[1]; 20033 dst[2] = src[2]; 20034 dst[3] = src[3]; 20035 dst[4] = src[4]; 20036 dst[5] = src[5]; 20037 dst[6] = src[6]; 20038 dst[7] = src[7]; 20039 dst[8] = src[8]; 20040 dst[9] = src[9]; 20041 if (hdrlen -= 40) { 20042 hdrlen >>= 2; 20043 dst += 10; 20044 src += 10; 20045 do { 20046 *dst++ = *src++; 20047 } while (--hdrlen); 20048 } 20049 20050 /* 20051 * Set the ECN info in the TCP header if it is not a zero 20052 * window probe. Zero window probe is only sent in 20053 * tcp_wput_data() and tcp_timer(). 20054 */ 20055 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 20056 SET_ECT(tcp, rptr); 20057 20058 if (tcp->tcp_ecn_echo_on) 20059 tcp_h->th_flags[0] |= TH_ECE; 20060 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 20061 tcp_h->th_flags[0] |= TH_CWR; 20062 tcp->tcp_ecn_cwr_sent = B_TRUE; 20063 } 20064 } 20065 20066 /* Fill in SACK options */ 20067 if (num_sack_blk > 0) { 20068 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 20069 sack_blk_t *tmp; 20070 int32_t i; 20071 20072 wptr[0] = TCPOPT_NOP; 20073 wptr[1] = TCPOPT_NOP; 20074 wptr[2] = TCPOPT_SACK; 20075 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 20076 sizeof (sack_blk_t); 20077 wptr += TCPOPT_REAL_SACK_LEN; 20078 20079 tmp = tcp->tcp_sack_list; 20080 for (i = 0; i < num_sack_blk; i++) { 20081 U32_TO_BE32(tmp[i].begin, wptr); 20082 wptr += sizeof (tcp_seq); 20083 U32_TO_BE32(tmp[i].end, wptr); 20084 wptr += sizeof (tcp_seq); 20085 } 20086 tcp_h->th_offset_and_rsrvd[0] += 20087 ((num_sack_blk * 2 + 1) << 4); 20088 } 20089 } 20090 20091 /* 20092 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 20093 * the destination address and SAP attribute, and if necessary, the 20094 * hardware checksum offload attribute to a Multidata message. 20095 */ 20096 static int 20097 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 20098 const uint32_t start, const uint32_t stuff, const uint32_t end, 20099 const uint32_t flags, tcp_stack_t *tcps) 20100 { 20101 /* Add global destination address & SAP attribute */ 20102 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 20103 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 20104 "destination address+SAP\n")); 20105 20106 if (dlmp != NULL) 20107 TCP_STAT(tcps, tcp_mdt_allocfail); 20108 return (-1); 20109 } 20110 20111 /* Add global hwcksum attribute */ 20112 if (hwcksum && 20113 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 20114 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 20115 "checksum attribute\n")); 20116 20117 TCP_STAT(tcps, tcp_mdt_allocfail); 20118 return (-1); 20119 } 20120 20121 return (0); 20122 } 20123 20124 /* 20125 * Smaller and private version of pdescinfo_t used specifically for TCP, 20126 * which allows for only two payload spans per packet. 20127 */ 20128 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 20129 20130 /* 20131 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 20132 * scheme, and returns one the following: 20133 * 20134 * -1 = failed allocation. 20135 * 0 = success; burst count reached, or usable send window is too small, 20136 * and that we'd rather wait until later before sending again. 20137 */ 20138 static int 20139 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 20140 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 20141 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 20142 const int mdt_thres) 20143 { 20144 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 20145 multidata_t *mmd; 20146 uint_t obsegs, obbytes, hdr_frag_sz; 20147 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 20148 int num_burst_seg, max_pld; 20149 pdesc_t *pkt; 20150 tcp_pdescinfo_t tcp_pkt_info; 20151 pdescinfo_t *pkt_info; 20152 int pbuf_idx, pbuf_idx_nxt; 20153 int seg_len, len, spill, af; 20154 boolean_t add_buffer, zcopy, clusterwide; 20155 boolean_t rconfirm = B_FALSE; 20156 boolean_t done = B_FALSE; 20157 uint32_t cksum; 20158 uint32_t hwcksum_flags; 20159 ire_t *ire = NULL; 20160 ill_t *ill; 20161 ipha_t *ipha; 20162 ip6_t *ip6h; 20163 ipaddr_t src, dst; 20164 ill_zerocopy_capab_t *zc_cap = NULL; 20165 uint16_t *up; 20166 int err; 20167 conn_t *connp; 20168 tcp_stack_t *tcps = tcp->tcp_tcps; 20169 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20170 int usable_mmd, tail_unsent_mmd; 20171 uint_t snxt_mmd, obsegs_mmd, obbytes_mmd; 20172 mblk_t *xmit_tail_mmd; 20173 20174 #ifdef _BIG_ENDIAN 20175 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 20176 #else 20177 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 20178 #endif 20179 20180 #define PREP_NEW_MULTIDATA() { \ 20181 mmd = NULL; \ 20182 md_mp = md_hbuf = NULL; \ 20183 cur_hdr_off = 0; \ 20184 max_pld = tcp->tcp_mdt_max_pld; \ 20185 pbuf_idx = pbuf_idx_nxt = -1; \ 20186 add_buffer = B_TRUE; \ 20187 zcopy = B_FALSE; \ 20188 } 20189 20190 #define PREP_NEW_PBUF() { \ 20191 md_pbuf = md_pbuf_nxt = NULL; \ 20192 pbuf_idx = pbuf_idx_nxt = -1; \ 20193 cur_pld_off = 0; \ 20194 first_snxt = *snxt; \ 20195 ASSERT(*tail_unsent > 0); \ 20196 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 20197 } 20198 20199 ASSERT(mdt_thres >= mss); 20200 ASSERT(*usable > 0 && *usable > mdt_thres); 20201 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 20202 ASSERT(!TCP_IS_DETACHED(tcp)); 20203 ASSERT(tcp->tcp_valid_bits == 0 || 20204 tcp->tcp_valid_bits == TCP_FSS_VALID); 20205 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 20206 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 20207 (tcp->tcp_ipversion == IPV6_VERSION && 20208 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 20209 20210 connp = tcp->tcp_connp; 20211 ASSERT(connp != NULL); 20212 ASSERT(CONN_IS_LSO_MD_FASTPATH(connp)); 20213 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp)); 20214 20215 usable_mmd = tail_unsent_mmd = 0; 20216 snxt_mmd = obsegs_mmd = obbytes_mmd = 0; 20217 xmit_tail_mmd = NULL; 20218 /* 20219 * Note that tcp will only declare at most 2 payload spans per 20220 * packet, which is much lower than the maximum allowable number 20221 * of packet spans per Multidata. For this reason, we use the 20222 * privately declared and smaller descriptor info structure, in 20223 * order to save some stack space. 20224 */ 20225 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 20226 20227 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 20228 if (af == AF_INET) { 20229 dst = tcp->tcp_ipha->ipha_dst; 20230 src = tcp->tcp_ipha->ipha_src; 20231 ASSERT(!CLASSD(dst)); 20232 } 20233 ASSERT(af == AF_INET || 20234 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 20235 20236 obsegs = obbytes = 0; 20237 num_burst_seg = tcp->tcp_snd_burst; 20238 md_mp_head = NULL; 20239 PREP_NEW_MULTIDATA(); 20240 20241 /* 20242 * Before we go on further, make sure there is an IRE that we can 20243 * use, and that the ILL supports MDT. Otherwise, there's no point 20244 * in proceeding any further, and we should just hand everything 20245 * off to the legacy path. 20246 */ 20247 if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire)) 20248 goto legacy_send_no_md; 20249 20250 ASSERT(ire != NULL); 20251 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 20252 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 20253 ASSERT(af == AF_INET || ire->ire_nce != NULL); 20254 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 20255 /* 20256 * If we do support loopback for MDT (which requires modifications 20257 * to the receiving paths), the following assertions should go away, 20258 * and we would be sending the Multidata to loopback conn later on. 20259 */ 20260 ASSERT(!IRE_IS_LOCAL(ire)); 20261 ASSERT(ire->ire_stq != NULL); 20262 20263 ill = ire_to_ill(ire); 20264 ASSERT(ill != NULL); 20265 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 20266 20267 if (!tcp->tcp_ire_ill_check_done) { 20268 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 20269 tcp->tcp_ire_ill_check_done = B_TRUE; 20270 } 20271 20272 /* 20273 * If the underlying interface conditions have changed, or if the 20274 * new interface does not support MDT, go back to legacy path. 20275 */ 20276 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 20277 /* don't go through this path anymore for this connection */ 20278 TCP_STAT(tcps, tcp_mdt_conn_halted2); 20279 tcp->tcp_mdt = B_FALSE; 20280 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 20281 "interface %s\n", (void *)connp, ill->ill_name)); 20282 /* IRE will be released prior to returning */ 20283 goto legacy_send_no_md; 20284 } 20285 20286 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 20287 zc_cap = ill->ill_zerocopy_capab; 20288 20289 /* 20290 * Check if we can take tcp fast-path. Note that "incomplete" 20291 * ire's (where the link-layer for next hop is not resolved 20292 * or where the fast-path header in nce_fp_mp is not available 20293 * yet) are sent down the legacy (slow) path. 20294 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA 20295 */ 20296 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 20297 /* IRE will be released prior to returning */ 20298 goto legacy_send_no_md; 20299 } 20300 20301 /* go to legacy path if interface doesn't support zerocopy */ 20302 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 20303 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 20304 /* IRE will be released prior to returning */ 20305 goto legacy_send_no_md; 20306 } 20307 20308 /* does the interface support hardware checksum offload? */ 20309 hwcksum_flags = 0; 20310 if (ILL_HCKSUM_CAPABLE(ill) && 20311 (ill->ill_hcksum_capab->ill_hcksum_txflags & 20312 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 20313 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 20314 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 20315 HCKSUM_IPHDRCKSUM) 20316 hwcksum_flags = HCK_IPV4_HDRCKSUM; 20317 20318 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 20319 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 20320 hwcksum_flags |= HCK_FULLCKSUM; 20321 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 20322 HCKSUM_INET_PARTIAL) 20323 hwcksum_flags |= HCK_PARTIALCKSUM; 20324 } 20325 20326 /* 20327 * Each header fragment consists of the leading extra space, 20328 * followed by the TCP/IP header, and the trailing extra space. 20329 * We make sure that each header fragment begins on a 32-bit 20330 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 20331 * aligned in tcp_mdt_update). 20332 */ 20333 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 20334 tcp->tcp_mdt_hdr_tail), 4); 20335 20336 /* are we starting from the beginning of data block? */ 20337 if (*tail_unsent == 0) { 20338 *xmit_tail = (*xmit_tail)->b_cont; 20339 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 20340 *tail_unsent = (int)MBLKL(*xmit_tail); 20341 } 20342 20343 /* 20344 * Here we create one or more Multidata messages, each made up of 20345 * one header buffer and up to N payload buffers. This entire 20346 * operation is done within two loops: 20347 * 20348 * The outer loop mostly deals with creating the Multidata message, 20349 * as well as the header buffer that gets added to it. It also 20350 * links the Multidata messages together such that all of them can 20351 * be sent down to the lower layer in a single putnext call; this 20352 * linking behavior depends on the tcp_mdt_chain tunable. 20353 * 20354 * The inner loop takes an existing Multidata message, and adds 20355 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 20356 * packetizes those buffers by filling up the corresponding header 20357 * buffer fragments with the proper IP and TCP headers, and by 20358 * describing the layout of each packet in the packet descriptors 20359 * that get added to the Multidata. 20360 */ 20361 do { 20362 /* 20363 * If usable send window is too small, or data blocks in 20364 * transmit list are smaller than our threshold (i.e. app 20365 * performs large writes followed by small ones), we hand 20366 * off the control over to the legacy path. Note that we'll 20367 * get back the control once it encounters a large block. 20368 */ 20369 if (*usable < mss || (*tail_unsent <= mdt_thres && 20370 (*xmit_tail)->b_cont != NULL && 20371 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 20372 /* send down what we've got so far */ 20373 if (md_mp_head != NULL) { 20374 tcp_multisend_data(tcp, ire, ill, md_mp_head, 20375 obsegs, obbytes, &rconfirm); 20376 } 20377 /* 20378 * Pass control over to tcp_send(), but tell it to 20379 * return to us once a large-size transmission is 20380 * possible. 20381 */ 20382 TCP_STAT(tcps, tcp_mdt_legacy_small); 20383 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 20384 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 20385 tail_unsent, xmit_tail, local_time, 20386 mdt_thres)) <= 0) { 20387 /* burst count reached, or alloc failed */ 20388 IRE_REFRELE(ire); 20389 return (err); 20390 } 20391 20392 /* tcp_send() may have sent everything, so check */ 20393 if (*usable <= 0) { 20394 IRE_REFRELE(ire); 20395 return (0); 20396 } 20397 20398 TCP_STAT(tcps, tcp_mdt_legacy_ret); 20399 /* 20400 * We may have delivered the Multidata, so make sure 20401 * to re-initialize before the next round. 20402 */ 20403 md_mp_head = NULL; 20404 obsegs = obbytes = 0; 20405 num_burst_seg = tcp->tcp_snd_burst; 20406 PREP_NEW_MULTIDATA(); 20407 20408 /* are we starting from the beginning of data block? */ 20409 if (*tail_unsent == 0) { 20410 *xmit_tail = (*xmit_tail)->b_cont; 20411 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20412 (uintptr_t)INT_MAX); 20413 *tail_unsent = (int)MBLKL(*xmit_tail); 20414 } 20415 } 20416 /* 20417 * Record current values for parameters we may need to pass 20418 * to tcp_send() or tcp_multisend_data(). We checkpoint at 20419 * each iteration of the outer loop (each multidata message 20420 * creation). If we have a failure in the inner loop, we send 20421 * any complete multidata messages we have before reverting 20422 * to using the traditional non-md path. 20423 */ 20424 snxt_mmd = *snxt; 20425 usable_mmd = *usable; 20426 xmit_tail_mmd = *xmit_tail; 20427 tail_unsent_mmd = *tail_unsent; 20428 obsegs_mmd = obsegs; 20429 obbytes_mmd = obbytes; 20430 20431 /* 20432 * max_pld limits the number of mblks in tcp's transmit 20433 * queue that can be added to a Multidata message. Once 20434 * this counter reaches zero, no more additional mblks 20435 * can be added to it. What happens afterwards depends 20436 * on whether or not we are set to chain the Multidata 20437 * messages. If we are to link them together, reset 20438 * max_pld to its original value (tcp_mdt_max_pld) and 20439 * prepare to create a new Multidata message which will 20440 * get linked to md_mp_head. Else, leave it alone and 20441 * let the inner loop break on its own. 20442 */ 20443 if (tcp_mdt_chain && max_pld == 0) 20444 PREP_NEW_MULTIDATA(); 20445 20446 /* adding a payload buffer; re-initialize values */ 20447 if (add_buffer) 20448 PREP_NEW_PBUF(); 20449 20450 /* 20451 * If we don't have a Multidata, either because we just 20452 * (re)entered this outer loop, or after we branched off 20453 * to tcp_send above, setup the Multidata and header 20454 * buffer to be used. 20455 */ 20456 if (md_mp == NULL) { 20457 int md_hbuflen; 20458 uint32_t start, stuff; 20459 20460 /* 20461 * Calculate Multidata header buffer size large enough 20462 * to hold all of the headers that can possibly be 20463 * sent at this moment. We'd rather over-estimate 20464 * the size than running out of space; this is okay 20465 * since this buffer is small anyway. 20466 */ 20467 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 20468 20469 /* 20470 * Start and stuff offset for partial hardware 20471 * checksum offload; these are currently for IPv4. 20472 * For full checksum offload, they are set to zero. 20473 */ 20474 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 20475 if (af == AF_INET) { 20476 start = IP_SIMPLE_HDR_LENGTH; 20477 stuff = IP_SIMPLE_HDR_LENGTH + 20478 TCP_CHECKSUM_OFFSET; 20479 } else { 20480 start = IPV6_HDR_LEN; 20481 stuff = IPV6_HDR_LEN + 20482 TCP_CHECKSUM_OFFSET; 20483 } 20484 } else { 20485 start = stuff = 0; 20486 } 20487 20488 /* 20489 * Create the header buffer, Multidata, as well as 20490 * any necessary attributes (destination address, 20491 * SAP and hardware checksum offload) that should 20492 * be associated with the Multidata message. 20493 */ 20494 ASSERT(cur_hdr_off == 0); 20495 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 20496 ((md_hbuf->b_wptr += md_hbuflen), 20497 (mmd = mmd_alloc(md_hbuf, &md_mp, 20498 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 20499 /* fastpath mblk */ 20500 ire->ire_nce->nce_res_mp, 20501 /* hardware checksum enabled */ 20502 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 20503 /* hardware checksum offsets */ 20504 start, stuff, 0, 20505 /* hardware checksum flag */ 20506 hwcksum_flags, tcps) != 0)) { 20507 legacy_send: 20508 /* 20509 * We arrive here from a failure within the 20510 * inner (packetizer) loop or we fail one of 20511 * the conditionals above. We restore the 20512 * previously checkpointed values for: 20513 * xmit_tail 20514 * usable 20515 * tail_unsent 20516 * snxt 20517 * obbytes 20518 * obsegs 20519 * We should then be able to dispatch any 20520 * complete multidata before reverting to the 20521 * traditional path with consistent parameters 20522 * (the inner loop updates these as it 20523 * iterates). 20524 */ 20525 *xmit_tail = xmit_tail_mmd; 20526 *usable = usable_mmd; 20527 *tail_unsent = tail_unsent_mmd; 20528 *snxt = snxt_mmd; 20529 obbytes = obbytes_mmd; 20530 obsegs = obsegs_mmd; 20531 if (md_mp != NULL) { 20532 /* Unlink message from the chain */ 20533 if (md_mp_head != NULL) { 20534 err = (intptr_t)rmvb(md_mp_head, 20535 md_mp); 20536 /* 20537 * We can't assert that rmvb 20538 * did not return -1, since we 20539 * may get here before linkb 20540 * happens. We do, however, 20541 * check if we just removed the 20542 * only element in the list. 20543 */ 20544 if (err == 0) 20545 md_mp_head = NULL; 20546 } 20547 /* md_hbuf gets freed automatically */ 20548 TCP_STAT(tcps, tcp_mdt_discarded); 20549 freeb(md_mp); 20550 } else { 20551 /* Either allocb or mmd_alloc failed */ 20552 TCP_STAT(tcps, tcp_mdt_allocfail); 20553 if (md_hbuf != NULL) 20554 freeb(md_hbuf); 20555 } 20556 20557 /* send down what we've got so far */ 20558 if (md_mp_head != NULL) { 20559 tcp_multisend_data(tcp, ire, ill, 20560 md_mp_head, obsegs, obbytes, 20561 &rconfirm); 20562 } 20563 legacy_send_no_md: 20564 if (ire != NULL) 20565 IRE_REFRELE(ire); 20566 /* 20567 * Too bad; let the legacy path handle this. 20568 * We specify INT_MAX for the threshold, since 20569 * we gave up with the Multidata processings 20570 * and let the old path have it all. 20571 */ 20572 TCP_STAT(tcps, tcp_mdt_legacy_all); 20573 return (tcp_send(q, tcp, mss, tcp_hdr_len, 20574 tcp_tcp_hdr_len, num_sack_blk, usable, 20575 snxt, tail_unsent, xmit_tail, local_time, 20576 INT_MAX)); 20577 } 20578 20579 /* link to any existing ones, if applicable */ 20580 TCP_STAT(tcps, tcp_mdt_allocd); 20581 if (md_mp_head == NULL) { 20582 md_mp_head = md_mp; 20583 } else if (tcp_mdt_chain) { 20584 TCP_STAT(tcps, tcp_mdt_linked); 20585 linkb(md_mp_head, md_mp); 20586 } 20587 } 20588 20589 ASSERT(md_mp_head != NULL); 20590 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 20591 ASSERT(md_mp != NULL && mmd != NULL); 20592 ASSERT(md_hbuf != NULL); 20593 20594 /* 20595 * Packetize the transmittable portion of the data block; 20596 * each data block is essentially added to the Multidata 20597 * as a payload buffer. We also deal with adding more 20598 * than one payload buffers, which happens when the remaining 20599 * packetized portion of the current payload buffer is less 20600 * than MSS, while the next data block in transmit queue 20601 * has enough data to make up for one. This "spillover" 20602 * case essentially creates a split-packet, where portions 20603 * of the packet's payload fragments may span across two 20604 * virtually discontiguous address blocks. 20605 */ 20606 seg_len = mss; 20607 do { 20608 len = seg_len; 20609 20610 /* one must remain NULL for DTRACE_IP_FASTPATH */ 20611 ipha = NULL; 20612 ip6h = NULL; 20613 20614 ASSERT(len > 0); 20615 ASSERT(max_pld >= 0); 20616 ASSERT(!add_buffer || cur_pld_off == 0); 20617 20618 /* 20619 * First time around for this payload buffer; note 20620 * in the case of a spillover, the following has 20621 * been done prior to adding the split-packet 20622 * descriptor to Multidata, and we don't want to 20623 * repeat the process. 20624 */ 20625 if (add_buffer) { 20626 ASSERT(mmd != NULL); 20627 ASSERT(md_pbuf == NULL); 20628 ASSERT(md_pbuf_nxt == NULL); 20629 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 20630 20631 /* 20632 * Have we reached the limit? We'd get to 20633 * this case when we're not chaining the 20634 * Multidata messages together, and since 20635 * we're done, terminate this loop. 20636 */ 20637 if (max_pld == 0) 20638 break; /* done */ 20639 20640 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 20641 TCP_STAT(tcps, tcp_mdt_allocfail); 20642 goto legacy_send; /* out_of_mem */ 20643 } 20644 20645 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 20646 zc_cap != NULL) { 20647 if (!ip_md_zcopy_attr(mmd, NULL, 20648 zc_cap->ill_zerocopy_flags)) { 20649 freeb(md_pbuf); 20650 TCP_STAT(tcps, 20651 tcp_mdt_allocfail); 20652 /* out_of_mem */ 20653 goto legacy_send; 20654 } 20655 zcopy = B_TRUE; 20656 } 20657 20658 md_pbuf->b_rptr += base_pld_off; 20659 20660 /* 20661 * Add a payload buffer to the Multidata; this 20662 * operation must not fail, or otherwise our 20663 * logic in this routine is broken. There 20664 * is no memory allocation done by the 20665 * routine, so any returned failure simply 20666 * tells us that we've done something wrong. 20667 * 20668 * A failure tells us that either we're adding 20669 * the same payload buffer more than once, or 20670 * we're trying to add more buffers than 20671 * allowed (max_pld calculation is wrong). 20672 * None of the above cases should happen, and 20673 * we panic because either there's horrible 20674 * heap corruption, and/or programming mistake. 20675 */ 20676 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 20677 if (pbuf_idx < 0) { 20678 cmn_err(CE_PANIC, "tcp_multisend: " 20679 "payload buffer logic error " 20680 "detected for tcp %p mmd %p " 20681 "pbuf %p (%d)\n", 20682 (void *)tcp, (void *)mmd, 20683 (void *)md_pbuf, pbuf_idx); 20684 } 20685 20686 ASSERT(max_pld > 0); 20687 --max_pld; 20688 add_buffer = B_FALSE; 20689 } 20690 20691 ASSERT(md_mp_head != NULL); 20692 ASSERT(md_pbuf != NULL); 20693 ASSERT(md_pbuf_nxt == NULL); 20694 ASSERT(pbuf_idx != -1); 20695 ASSERT(pbuf_idx_nxt == -1); 20696 ASSERT(*usable > 0); 20697 20698 /* 20699 * We spillover to the next payload buffer only 20700 * if all of the following is true: 20701 * 20702 * 1. There is not enough data on the current 20703 * payload buffer to make up `len', 20704 * 2. We are allowed to send `len', 20705 * 3. The next payload buffer length is large 20706 * enough to accomodate `spill'. 20707 */ 20708 if ((spill = len - *tail_unsent) > 0 && 20709 *usable >= len && 20710 MBLKL((*xmit_tail)->b_cont) >= spill && 20711 max_pld > 0) { 20712 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 20713 if (md_pbuf_nxt == NULL) { 20714 TCP_STAT(tcps, tcp_mdt_allocfail); 20715 goto legacy_send; /* out_of_mem */ 20716 } 20717 20718 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 20719 zc_cap != NULL) { 20720 if (!ip_md_zcopy_attr(mmd, NULL, 20721 zc_cap->ill_zerocopy_flags)) { 20722 freeb(md_pbuf_nxt); 20723 TCP_STAT(tcps, 20724 tcp_mdt_allocfail); 20725 /* out_of_mem */ 20726 goto legacy_send; 20727 } 20728 zcopy = B_TRUE; 20729 } 20730 20731 /* 20732 * See comments above on the first call to 20733 * mmd_addpldbuf for explanation on the panic. 20734 */ 20735 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 20736 if (pbuf_idx_nxt < 0) { 20737 panic("tcp_multisend: " 20738 "next payload buffer logic error " 20739 "detected for tcp %p mmd %p " 20740 "pbuf %p (%d)\n", 20741 (void *)tcp, (void *)mmd, 20742 (void *)md_pbuf_nxt, pbuf_idx_nxt); 20743 } 20744 20745 ASSERT(max_pld > 0); 20746 --max_pld; 20747 } else if (spill > 0) { 20748 /* 20749 * If there's a spillover, but the following 20750 * xmit_tail couldn't give us enough octets 20751 * to reach "len", then stop the current 20752 * Multidata creation and let the legacy 20753 * tcp_send() path take over. We don't want 20754 * to send the tiny segment as part of this 20755 * Multidata for performance reasons; instead, 20756 * we let the legacy path deal with grouping 20757 * it with the subsequent small mblks. 20758 */ 20759 if (*usable >= len && 20760 MBLKL((*xmit_tail)->b_cont) < spill) { 20761 max_pld = 0; 20762 break; /* done */ 20763 } 20764 20765 /* 20766 * We can't spillover, and we are near 20767 * the end of the current payload buffer, 20768 * so send what's left. 20769 */ 20770 ASSERT(*tail_unsent > 0); 20771 len = *tail_unsent; 20772 } 20773 20774 /* tail_unsent is negated if there is a spillover */ 20775 *tail_unsent -= len; 20776 *usable -= len; 20777 ASSERT(*usable >= 0); 20778 20779 if (*usable < mss) 20780 seg_len = *usable; 20781 /* 20782 * Sender SWS avoidance; see comments in tcp_send(); 20783 * everything else is the same, except that we only 20784 * do this here if there is no more data to be sent 20785 * following the current xmit_tail. We don't check 20786 * for 1-byte urgent data because we shouldn't get 20787 * here if TCP_URG_VALID is set. 20788 */ 20789 if (*usable > 0 && *usable < mss && 20790 ((md_pbuf_nxt == NULL && 20791 (*xmit_tail)->b_cont == NULL) || 20792 (md_pbuf_nxt != NULL && 20793 (*xmit_tail)->b_cont->b_cont == NULL)) && 20794 seg_len < (tcp->tcp_max_swnd >> 1) && 20795 (tcp->tcp_unsent - 20796 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 20797 !tcp->tcp_zero_win_probe) { 20798 if ((*snxt + len) == tcp->tcp_snxt && 20799 (*snxt + len) == tcp->tcp_suna) { 20800 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20801 } 20802 done = B_TRUE; 20803 } 20804 20805 /* 20806 * Prime pump for IP's checksumming on our behalf; 20807 * include the adjustment for a source route if any. 20808 * Do this only for software/partial hardware checksum 20809 * offload, as this field gets zeroed out later for 20810 * the full hardware checksum offload case. 20811 */ 20812 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 20813 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20814 cksum = (cksum >> 16) + (cksum & 0xFFFF); 20815 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 20816 } 20817 20818 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 20819 *snxt += len; 20820 20821 tcp->tcp_tcph->th_flags[0] = TH_ACK; 20822 /* 20823 * We set the PUSH bit only if TCP has no more buffered 20824 * data to be transmitted (or if sender SWS avoidance 20825 * takes place), as opposed to setting it for every 20826 * last packet in the burst. 20827 */ 20828 if (done || 20829 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 20830 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 20831 20832 /* 20833 * Set FIN bit if this is our last segment; snxt 20834 * already includes its length, and it will not 20835 * be adjusted after this point. 20836 */ 20837 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 20838 *snxt == tcp->tcp_fss) { 20839 if (!tcp->tcp_fin_acked) { 20840 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 20841 BUMP_MIB(&tcps->tcps_mib, 20842 tcpOutControl); 20843 } 20844 if (!tcp->tcp_fin_sent) { 20845 tcp->tcp_fin_sent = B_TRUE; 20846 /* 20847 * tcp state must be ESTABLISHED 20848 * in order for us to get here in 20849 * the first place. 20850 */ 20851 tcp->tcp_state = TCPS_FIN_WAIT_1; 20852 20853 /* 20854 * Upon returning from this routine, 20855 * tcp_wput_data() will set tcp_snxt 20856 * to be equal to snxt + tcp_fin_sent. 20857 * This is essentially the same as 20858 * setting it to tcp_fss + 1. 20859 */ 20860 } 20861 } 20862 20863 tcp->tcp_last_sent_len = (ushort_t)len; 20864 20865 len += tcp_hdr_len; 20866 if (tcp->tcp_ipversion == IPV4_VERSION) 20867 tcp->tcp_ipha->ipha_length = htons(len); 20868 else 20869 tcp->tcp_ip6h->ip6_plen = htons(len - 20870 ((char *)&tcp->tcp_ip6h[1] - 20871 tcp->tcp_iphc)); 20872 20873 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 20874 20875 /* setup header fragment */ 20876 PDESC_HDR_ADD(pkt_info, 20877 md_hbuf->b_rptr + cur_hdr_off, /* base */ 20878 tcp->tcp_mdt_hdr_head, /* head room */ 20879 tcp_hdr_len, /* len */ 20880 tcp->tcp_mdt_hdr_tail); /* tail room */ 20881 20882 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 20883 hdr_frag_sz); 20884 ASSERT(MBLKIN(md_hbuf, 20885 (pkt_info->hdr_base - md_hbuf->b_rptr), 20886 PDESC_HDRSIZE(pkt_info))); 20887 20888 /* setup first payload fragment */ 20889 PDESC_PLD_INIT(pkt_info); 20890 PDESC_PLD_SPAN_ADD(pkt_info, 20891 pbuf_idx, /* index */ 20892 md_pbuf->b_rptr + cur_pld_off, /* start */ 20893 tcp->tcp_last_sent_len); /* len */ 20894 20895 /* create a split-packet in case of a spillover */ 20896 if (md_pbuf_nxt != NULL) { 20897 ASSERT(spill > 0); 20898 ASSERT(pbuf_idx_nxt > pbuf_idx); 20899 ASSERT(!add_buffer); 20900 20901 md_pbuf = md_pbuf_nxt; 20902 md_pbuf_nxt = NULL; 20903 pbuf_idx = pbuf_idx_nxt; 20904 pbuf_idx_nxt = -1; 20905 cur_pld_off = spill; 20906 20907 /* trim out first payload fragment */ 20908 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 20909 20910 /* setup second payload fragment */ 20911 PDESC_PLD_SPAN_ADD(pkt_info, 20912 pbuf_idx, /* index */ 20913 md_pbuf->b_rptr, /* start */ 20914 spill); /* len */ 20915 20916 if ((*xmit_tail)->b_next == NULL) { 20917 /* 20918 * Store the lbolt used for RTT 20919 * estimation. We can only record one 20920 * timestamp per mblk so we do it when 20921 * we reach the end of the payload 20922 * buffer. Also we only take a new 20923 * timestamp sample when the previous 20924 * timed data from the same mblk has 20925 * been ack'ed. 20926 */ 20927 (*xmit_tail)->b_prev = local_time; 20928 (*xmit_tail)->b_next = 20929 (mblk_t *)(uintptr_t)first_snxt; 20930 } 20931 20932 first_snxt = *snxt - spill; 20933 20934 /* 20935 * Advance xmit_tail; usable could be 0 by 20936 * the time we got here, but we made sure 20937 * above that we would only spillover to 20938 * the next data block if usable includes 20939 * the spilled-over amount prior to the 20940 * subtraction. Therefore, we are sure 20941 * that xmit_tail->b_cont can't be NULL. 20942 */ 20943 ASSERT((*xmit_tail)->b_cont != NULL); 20944 *xmit_tail = (*xmit_tail)->b_cont; 20945 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20946 (uintptr_t)INT_MAX); 20947 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 20948 } else { 20949 cur_pld_off += tcp->tcp_last_sent_len; 20950 } 20951 20952 /* 20953 * Fill in the header using the template header, and 20954 * add options such as time-stamp, ECN and/or SACK, 20955 * as needed. 20956 */ 20957 tcp_fill_header(tcp, pkt_info->hdr_rptr, 20958 (clock_t)local_time, num_sack_blk); 20959 20960 /* take care of some IP header businesses */ 20961 if (af == AF_INET) { 20962 ipha = (ipha_t *)pkt_info->hdr_rptr; 20963 20964 ASSERT(OK_32PTR((uchar_t *)ipha)); 20965 ASSERT(PDESC_HDRL(pkt_info) >= 20966 IP_SIMPLE_HDR_LENGTH); 20967 ASSERT(ipha->ipha_version_and_hdr_length == 20968 IP_SIMPLE_HDR_VERSION); 20969 20970 /* 20971 * Assign ident value for current packet; see 20972 * related comments in ip_wput_ire() about the 20973 * contract private interface with clustering 20974 * group. 20975 */ 20976 clusterwide = B_FALSE; 20977 if (cl_inet_ipident != NULL) { 20978 ASSERT(cl_inet_isclusterwide != NULL); 20979 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 20980 AF_INET, 20981 (uint8_t *)(uintptr_t)src)) { 20982 ipha->ipha_ident = 20983 (*cl_inet_ipident) 20984 (IPPROTO_IP, AF_INET, 20985 (uint8_t *)(uintptr_t)src, 20986 (uint8_t *)(uintptr_t)dst); 20987 clusterwide = B_TRUE; 20988 } 20989 } 20990 20991 if (!clusterwide) { 20992 ipha->ipha_ident = (uint16_t) 20993 atomic_add_32_nv( 20994 &ire->ire_ident, 1); 20995 } 20996 #ifndef _BIG_ENDIAN 20997 ipha->ipha_ident = (ipha->ipha_ident << 8) | 20998 (ipha->ipha_ident >> 8); 20999 #endif 21000 } else { 21001 ip6h = (ip6_t *)pkt_info->hdr_rptr; 21002 21003 ASSERT(OK_32PTR((uchar_t *)ip6h)); 21004 ASSERT(IPVER(ip6h) == IPV6_VERSION); 21005 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 21006 ASSERT(PDESC_HDRL(pkt_info) >= 21007 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 21008 TCP_CHECKSUM_SIZE)); 21009 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21010 21011 if (tcp->tcp_ip_forward_progress) { 21012 rconfirm = B_TRUE; 21013 tcp->tcp_ip_forward_progress = B_FALSE; 21014 } 21015 } 21016 21017 /* at least one payload span, and at most two */ 21018 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 21019 21020 /* add the packet descriptor to Multidata */ 21021 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 21022 KM_NOSLEEP)) == NULL) { 21023 /* 21024 * Any failure other than ENOMEM indicates 21025 * that we have passed in invalid pkt_info 21026 * or parameters to mmd_addpdesc, which must 21027 * not happen. 21028 * 21029 * EINVAL is a result of failure on boundary 21030 * checks against the pkt_info contents. It 21031 * should not happen, and we panic because 21032 * either there's horrible heap corruption, 21033 * and/or programming mistake. 21034 */ 21035 if (err != ENOMEM) { 21036 cmn_err(CE_PANIC, "tcp_multisend: " 21037 "pdesc logic error detected for " 21038 "tcp %p mmd %p pinfo %p (%d)\n", 21039 (void *)tcp, (void *)mmd, 21040 (void *)pkt_info, err); 21041 } 21042 TCP_STAT(tcps, tcp_mdt_addpdescfail); 21043 goto legacy_send; /* out_of_mem */ 21044 } 21045 ASSERT(pkt != NULL); 21046 21047 /* calculate IP header and TCP checksums */ 21048 if (af == AF_INET) { 21049 /* calculate pseudo-header checksum */ 21050 cksum = (dst >> 16) + (dst & 0xFFFF) + 21051 (src >> 16) + (src & 0xFFFF); 21052 21053 /* offset for TCP header checksum */ 21054 up = IPH_TCPH_CHECKSUMP(ipha, 21055 IP_SIMPLE_HDR_LENGTH); 21056 } else { 21057 up = (uint16_t *)&ip6h->ip6_src; 21058 21059 /* calculate pseudo-header checksum */ 21060 cksum = up[0] + up[1] + up[2] + up[3] + 21061 up[4] + up[5] + up[6] + up[7] + 21062 up[8] + up[9] + up[10] + up[11] + 21063 up[12] + up[13] + up[14] + up[15]; 21064 21065 /* Fold the initial sum */ 21066 cksum = (cksum & 0xffff) + (cksum >> 16); 21067 21068 up = (uint16_t *)(((uchar_t *)ip6h) + 21069 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 21070 } 21071 21072 if (hwcksum_flags & HCK_FULLCKSUM) { 21073 /* clear checksum field for hardware */ 21074 *up = 0; 21075 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 21076 uint32_t sum; 21077 21078 /* pseudo-header checksumming */ 21079 sum = *up + cksum + IP_TCP_CSUM_COMP; 21080 sum = (sum & 0xFFFF) + (sum >> 16); 21081 *up = (sum & 0xFFFF) + (sum >> 16); 21082 } else { 21083 /* software checksumming */ 21084 TCP_STAT(tcps, tcp_out_sw_cksum); 21085 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 21086 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 21087 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 21088 cksum + IP_TCP_CSUM_COMP); 21089 if (*up == 0) 21090 *up = 0xFFFF; 21091 } 21092 21093 /* IPv4 header checksum */ 21094 if (af == AF_INET) { 21095 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 21096 ipha->ipha_hdr_checksum = 0; 21097 } else { 21098 IP_HDR_CKSUM(ipha, cksum, 21099 ((uint32_t *)ipha)[0], 21100 ((uint16_t *)ipha)[4]); 21101 } 21102 } 21103 21104 if (af == AF_INET && 21105 HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) || 21106 af == AF_INET6 && 21107 HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) { 21108 mblk_t *mp, *mp1; 21109 uchar_t *hdr_rptr, *hdr_wptr; 21110 uchar_t *pld_rptr, *pld_wptr; 21111 21112 /* 21113 * We reconstruct a pseudo packet for the hooks 21114 * framework using mmd_transform_link(). 21115 * If it is a split packet we pullup the 21116 * payload. FW_HOOKS expects a pkt comprising 21117 * of two mblks: a header and the payload. 21118 */ 21119 if ((mp = mmd_transform_link(pkt)) == NULL) { 21120 TCP_STAT(tcps, tcp_mdt_allocfail); 21121 goto legacy_send; 21122 } 21123 21124 if (pkt_info->pld_cnt > 1) { 21125 /* split payload, more than one pld */ 21126 if ((mp1 = msgpullup(mp->b_cont, -1)) == 21127 NULL) { 21128 freemsg(mp); 21129 TCP_STAT(tcps, 21130 tcp_mdt_allocfail); 21131 goto legacy_send; 21132 } 21133 freemsg(mp->b_cont); 21134 mp->b_cont = mp1; 21135 } else { 21136 mp1 = mp->b_cont; 21137 } 21138 ASSERT(mp1 != NULL && mp1->b_cont == NULL); 21139 21140 /* 21141 * Remember the message offsets. This is so we 21142 * can detect changes when we return from the 21143 * FW_HOOKS callbacks. 21144 */ 21145 hdr_rptr = mp->b_rptr; 21146 hdr_wptr = mp->b_wptr; 21147 pld_rptr = mp->b_cont->b_rptr; 21148 pld_wptr = mp->b_cont->b_wptr; 21149 21150 if (af == AF_INET) { 21151 DTRACE_PROBE4( 21152 ip4__physical__out__start, 21153 ill_t *, NULL, 21154 ill_t *, ill, 21155 ipha_t *, ipha, 21156 mblk_t *, mp); 21157 FW_HOOKS( 21158 ipst->ips_ip4_physical_out_event, 21159 ipst->ips_ipv4firewall_physical_out, 21160 NULL, ill, ipha, mp, mp, 0, ipst); 21161 DTRACE_PROBE1( 21162 ip4__physical__out__end, 21163 mblk_t *, mp); 21164 } else { 21165 DTRACE_PROBE4( 21166 ip6__physical__out_start, 21167 ill_t *, NULL, 21168 ill_t *, ill, 21169 ip6_t *, ip6h, 21170 mblk_t *, mp); 21171 FW_HOOKS6( 21172 ipst->ips_ip6_physical_out_event, 21173 ipst->ips_ipv6firewall_physical_out, 21174 NULL, ill, ip6h, mp, mp, 0, ipst); 21175 DTRACE_PROBE1( 21176 ip6__physical__out__end, 21177 mblk_t *, mp); 21178 } 21179 21180 if (mp == NULL || 21181 (mp1 = mp->b_cont) == NULL || 21182 mp->b_rptr != hdr_rptr || 21183 mp->b_wptr != hdr_wptr || 21184 mp1->b_rptr != pld_rptr || 21185 mp1->b_wptr != pld_wptr || 21186 mp1->b_cont != NULL) { 21187 /* 21188 * We abandon multidata processing and 21189 * return to the normal path, either 21190 * when a packet is blocked, or when 21191 * the boundaries of header buffer or 21192 * payload buffer have been changed by 21193 * FW_HOOKS[6]. 21194 */ 21195 if (mp != NULL) 21196 freemsg(mp); 21197 goto legacy_send; 21198 } 21199 /* Finished with the pseudo packet */ 21200 freemsg(mp); 21201 } 21202 DTRACE_IP_FASTPATH(md_hbuf, pkt_info->hdr_rptr, 21203 ill, ipha, ip6h); 21204 /* advance header offset */ 21205 cur_hdr_off += hdr_frag_sz; 21206 21207 obbytes += tcp->tcp_last_sent_len; 21208 ++obsegs; 21209 } while (!done && *usable > 0 && --num_burst_seg > 0 && 21210 *tail_unsent > 0); 21211 21212 if ((*xmit_tail)->b_next == NULL) { 21213 /* 21214 * Store the lbolt used for RTT estimation. We can only 21215 * record one timestamp per mblk so we do it when we 21216 * reach the end of the payload buffer. Also we only 21217 * take a new timestamp sample when the previous timed 21218 * data from the same mblk has been ack'ed. 21219 */ 21220 (*xmit_tail)->b_prev = local_time; 21221 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 21222 } 21223 21224 ASSERT(*tail_unsent >= 0); 21225 if (*tail_unsent > 0) { 21226 /* 21227 * We got here because we broke out of the above 21228 * loop due to of one of the following cases: 21229 * 21230 * 1. len < adjusted MSS (i.e. small), 21231 * 2. Sender SWS avoidance, 21232 * 3. max_pld is zero. 21233 * 21234 * We are done for this Multidata, so trim our 21235 * last payload buffer (if any) accordingly. 21236 */ 21237 if (md_pbuf != NULL) 21238 md_pbuf->b_wptr -= *tail_unsent; 21239 } else if (*usable > 0) { 21240 *xmit_tail = (*xmit_tail)->b_cont; 21241 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 21242 (uintptr_t)INT_MAX); 21243 *tail_unsent = (int)MBLKL(*xmit_tail); 21244 add_buffer = B_TRUE; 21245 } 21246 } while (!done && *usable > 0 && num_burst_seg > 0 && 21247 (tcp_mdt_chain || max_pld > 0)); 21248 21249 if (md_mp_head != NULL) { 21250 /* send everything down */ 21251 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 21252 &rconfirm); 21253 } 21254 21255 #undef PREP_NEW_MULTIDATA 21256 #undef PREP_NEW_PBUF 21257 #undef IPVER 21258 21259 IRE_REFRELE(ire); 21260 return (0); 21261 } 21262 21263 /* 21264 * A wrapper function for sending one or more Multidata messages down to 21265 * the module below ip; this routine does not release the reference of the 21266 * IRE (caller does that). This routine is analogous to tcp_send_data(). 21267 */ 21268 static void 21269 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 21270 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 21271 { 21272 uint64_t delta; 21273 nce_t *nce; 21274 tcp_stack_t *tcps = tcp->tcp_tcps; 21275 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21276 21277 ASSERT(ire != NULL && ill != NULL); 21278 ASSERT(ire->ire_stq != NULL); 21279 ASSERT(md_mp_head != NULL); 21280 ASSERT(rconfirm != NULL); 21281 21282 /* adjust MIBs and IRE timestamp */ 21283 DTRACE_PROBE2(tcp__trace__send, mblk_t *, md_mp_head, tcp_t *, tcp); 21284 tcp->tcp_obsegs += obsegs; 21285 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs); 21286 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes); 21287 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs); 21288 21289 if (tcp->tcp_ipversion == IPV4_VERSION) { 21290 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs); 21291 } else { 21292 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs); 21293 } 21294 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs); 21295 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs); 21296 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes); 21297 21298 ire->ire_ob_pkt_count += obsegs; 21299 if (ire->ire_ipif != NULL) 21300 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 21301 ire->ire_last_used_time = lbolt; 21302 21303 if (ipst->ips_ipobs_enabled) { 21304 multidata_t *dlmdp = mmd_getmultidata(md_mp_head); 21305 pdesc_t *dl_pkt; 21306 pdescinfo_t pinfo; 21307 mblk_t *nmp; 21308 zoneid_t szone = tcp->tcp_connp->conn_zoneid; 21309 21310 for (dl_pkt = mmd_getfirstpdesc(dlmdp, &pinfo); 21311 (dl_pkt != NULL); 21312 dl_pkt = mmd_getnextpdesc(dl_pkt, &pinfo)) { 21313 if ((nmp = mmd_transform_link(dl_pkt)) == NULL) 21314 continue; 21315 ipobs_hook(nmp, IPOBS_HOOK_OUTBOUND, szone, 21316 ALL_ZONES, ill, tcp->tcp_ipversion, 0, ipst); 21317 freemsg(nmp); 21318 } 21319 } 21320 21321 /* send it down */ 21322 if (ILL_DLS_CAPABLE(ill)) { 21323 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 21324 ill_dls->ill_tx(ill_dls->ill_tx_handle, md_mp_head); 21325 } else { 21326 putnext(ire->ire_stq, md_mp_head); 21327 } 21328 21329 /* we're done for TCP/IPv4 */ 21330 if (tcp->tcp_ipversion == IPV4_VERSION) 21331 return; 21332 21333 nce = ire->ire_nce; 21334 21335 ASSERT(nce != NULL); 21336 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 21337 ASSERT(nce->nce_state != ND_INCOMPLETE); 21338 21339 /* reachability confirmation? */ 21340 if (*rconfirm) { 21341 nce->nce_last = TICK_TO_MSEC(lbolt64); 21342 if (nce->nce_state != ND_REACHABLE) { 21343 mutex_enter(&nce->nce_lock); 21344 nce->nce_state = ND_REACHABLE; 21345 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 21346 mutex_exit(&nce->nce_lock); 21347 (void) untimeout(nce->nce_timeout_id); 21348 if (ip_debug > 2) { 21349 /* ip1dbg */ 21350 pr_addr_dbg("tcp_multisend_data: state " 21351 "for %s changed to REACHABLE\n", 21352 AF_INET6, &ire->ire_addr_v6); 21353 } 21354 } 21355 /* reset transport reachability confirmation */ 21356 *rconfirm = B_FALSE; 21357 } 21358 21359 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 21360 ip1dbg(("tcp_multisend_data: delta = %" PRId64 21361 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 21362 21363 if (delta > (uint64_t)ill->ill_reachable_time) { 21364 mutex_enter(&nce->nce_lock); 21365 switch (nce->nce_state) { 21366 case ND_REACHABLE: 21367 case ND_STALE: 21368 /* 21369 * ND_REACHABLE is identical to ND_STALE in this 21370 * specific case. If reachable time has expired for 21371 * this neighbor (delta is greater than reachable 21372 * time), conceptually, the neighbor cache is no 21373 * longer in REACHABLE state, but already in STALE 21374 * state. So the correct transition here is to 21375 * ND_DELAY. 21376 */ 21377 nce->nce_state = ND_DELAY; 21378 mutex_exit(&nce->nce_lock); 21379 NDP_RESTART_TIMER(nce, 21380 ipst->ips_delay_first_probe_time); 21381 if (ip_debug > 3) { 21382 /* ip2dbg */ 21383 pr_addr_dbg("tcp_multisend_data: state " 21384 "for %s changed to DELAY\n", 21385 AF_INET6, &ire->ire_addr_v6); 21386 } 21387 break; 21388 case ND_DELAY: 21389 case ND_PROBE: 21390 mutex_exit(&nce->nce_lock); 21391 /* Timers have already started */ 21392 break; 21393 case ND_UNREACHABLE: 21394 /* 21395 * ndp timer has detected that this nce is 21396 * unreachable and initiated deleting this nce 21397 * and all its associated IREs. This is a race 21398 * where we found the ire before it was deleted 21399 * and have just sent out a packet using this 21400 * unreachable nce. 21401 */ 21402 mutex_exit(&nce->nce_lock); 21403 break; 21404 default: 21405 ASSERT(0); 21406 } 21407 } 21408 } 21409 21410 /* 21411 * Derived from tcp_send_data(). 21412 */ 21413 static void 21414 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss, 21415 int num_lso_seg) 21416 { 21417 ipha_t *ipha; 21418 mblk_t *ire_fp_mp; 21419 uint_t ire_fp_mp_len; 21420 uint32_t hcksum_txflags = 0; 21421 ipaddr_t src; 21422 ipaddr_t dst; 21423 uint32_t cksum; 21424 uint16_t *up; 21425 tcp_stack_t *tcps = tcp->tcp_tcps; 21426 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21427 21428 ASSERT(DB_TYPE(mp) == M_DATA); 21429 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 21430 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 21431 ASSERT(tcp->tcp_connp != NULL); 21432 ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)); 21433 21434 ipha = (ipha_t *)mp->b_rptr; 21435 src = ipha->ipha_src; 21436 dst = ipha->ipha_dst; 21437 21438 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 21439 21440 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 21441 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 21442 num_lso_seg); 21443 #ifndef _BIG_ENDIAN 21444 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 21445 #endif 21446 if (tcp->tcp_snd_zcopy_aware) { 21447 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 21448 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 21449 mp = tcp_zcopy_disable(tcp, mp); 21450 } 21451 21452 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 21453 ASSERT(ill->ill_hcksum_capab != NULL); 21454 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 21455 } 21456 21457 /* 21458 * Since the TCP checksum should be recalculated by h/w, we can just 21459 * zero the checksum field for HCK_FULLCKSUM, or calculate partial 21460 * pseudo-header checksum for HCK_PARTIALCKSUM. 21461 * The partial pseudo-header excludes TCP length, that was calculated 21462 * in tcp_send(), so to zero *up before further processing. 21463 */ 21464 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 21465 21466 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 21467 *up = 0; 21468 21469 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 21470 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 21471 21472 /* 21473 * Append LSO flag to DB_LSOFLAGS(mp) and set the mss to DB_LSOMSS(mp). 21474 */ 21475 DB_LSOFLAGS(mp) |= HW_LSO; 21476 DB_LSOMSS(mp) = mss; 21477 21478 ire_fp_mp = ire->ire_nce->nce_fp_mp; 21479 ire_fp_mp_len = MBLKL(ire_fp_mp); 21480 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 21481 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 21482 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 21483 21484 UPDATE_OB_PKT_COUNT(ire); 21485 ire->ire_last_used_time = lbolt; 21486 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 21487 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 21488 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 21489 ntohs(ipha->ipha_length)); 21490 21491 if (ILL_DLS_CAPABLE(ill)) { 21492 /* 21493 * Send the packet directly to DLD, where it may be queued 21494 * depending on the availability of transmit resources at 21495 * the media layer. 21496 */ 21497 IP_DLS_ILL_TX(ill, ipha, mp, ipst, ire_fp_mp_len); 21498 } else { 21499 ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr; 21500 DTRACE_PROBE4(ip4__physical__out__start, 21501 ill_t *, NULL, ill_t *, out_ill, 21502 ipha_t *, ipha, mblk_t *, mp); 21503 FW_HOOKS(ipst->ips_ip4_physical_out_event, 21504 ipst->ips_ipv4firewall_physical_out, 21505 NULL, out_ill, ipha, mp, mp, 0, ipst); 21506 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 21507 21508 if (mp != NULL) { 21509 if (ipst->ips_ipobs_enabled) { 21510 zoneid_t szone = tcp->tcp_connp->conn_zoneid; 21511 21512 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 21513 ALL_ZONES, ill, tcp->tcp_ipversion, 21514 ire_fp_mp_len, ipst); 21515 } 21516 DTRACE_IP_FASTPATH(mp, ipha, out_ill, ipha, NULL); 21517 putnext(ire->ire_stq, mp); 21518 } 21519 } 21520 } 21521 21522 /* 21523 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 21524 * scheme, and returns one of the following: 21525 * 21526 * -1 = failed allocation. 21527 * 0 = success; burst count reached, or usable send window is too small, 21528 * and that we'd rather wait until later before sending again. 21529 * 1 = success; we are called from tcp_multisend(), and both usable send 21530 * window and tail_unsent are greater than the MDT threshold, and thus 21531 * Multidata Transmit should be used instead. 21532 */ 21533 static int 21534 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 21535 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 21536 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 21537 const int mdt_thres) 21538 { 21539 int num_burst_seg = tcp->tcp_snd_burst; 21540 ire_t *ire = NULL; 21541 ill_t *ill = NULL; 21542 mblk_t *ire_fp_mp = NULL; 21543 uint_t ire_fp_mp_len = 0; 21544 int num_lso_seg = 1; 21545 uint_t lso_usable; 21546 boolean_t do_lso_send = B_FALSE; 21547 tcp_stack_t *tcps = tcp->tcp_tcps; 21548 21549 /* 21550 * Check LSO capability before any further work. And the similar check 21551 * need to be done in for(;;) loop. 21552 * LSO will be deployed when therer is more than one mss of available 21553 * data and a burst transmission is allowed. 21554 */ 21555 if (tcp->tcp_lso && 21556 (tcp->tcp_valid_bits == 0 || 21557 tcp->tcp_valid_bits == TCP_FSS_VALID) && 21558 num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 21559 /* 21560 * Try to find usable IRE/ILL and do basic check to the ILL. 21561 */ 21562 if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) { 21563 /* 21564 * Enable LSO with this transmission. 21565 * Since IRE has been hold in 21566 * tcp_send_find_ire_ill(), IRE_REFRELE(ire) 21567 * should be called before return. 21568 */ 21569 do_lso_send = B_TRUE; 21570 ire_fp_mp = ire->ire_nce->nce_fp_mp; 21571 ire_fp_mp_len = MBLKL(ire_fp_mp); 21572 /* Round up to multiple of 4 */ 21573 ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4; 21574 } else { 21575 do_lso_send = B_FALSE; 21576 ill = NULL; 21577 } 21578 } 21579 21580 for (;;) { 21581 struct datab *db; 21582 tcph_t *tcph; 21583 uint32_t sum; 21584 mblk_t *mp, *mp1; 21585 uchar_t *rptr; 21586 int len; 21587 21588 /* 21589 * If we're called by tcp_multisend(), and the amount of 21590 * sendable data as well as the size of current xmit_tail 21591 * is beyond the MDT threshold, return to the caller and 21592 * let the large data transmit be done using MDT. 21593 */ 21594 if (*usable > 0 && *usable > mdt_thres && 21595 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 21596 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 21597 ASSERT(tcp->tcp_mdt); 21598 return (1); /* success; do large send */ 21599 } 21600 21601 if (num_burst_seg == 0) 21602 break; /* success; burst count reached */ 21603 21604 /* 21605 * Calculate the maximum payload length we can send in *one* 21606 * time. 21607 */ 21608 if (do_lso_send) { 21609 /* 21610 * Check whether need to do LSO any more. 21611 */ 21612 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 21613 lso_usable = MIN(tcp->tcp_lso_max, *usable); 21614 lso_usable = MIN(lso_usable, 21615 num_burst_seg * mss); 21616 21617 num_lso_seg = lso_usable / mss; 21618 if (lso_usable % mss) { 21619 num_lso_seg++; 21620 tcp->tcp_last_sent_len = (ushort_t) 21621 (lso_usable % mss); 21622 } else { 21623 tcp->tcp_last_sent_len = (ushort_t)mss; 21624 } 21625 } else { 21626 do_lso_send = B_FALSE; 21627 num_lso_seg = 1; 21628 lso_usable = mss; 21629 } 21630 } 21631 21632 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 21633 21634 /* 21635 * Adjust num_burst_seg here. 21636 */ 21637 num_burst_seg -= num_lso_seg; 21638 21639 len = mss; 21640 if (len > *usable) { 21641 ASSERT(do_lso_send == B_FALSE); 21642 21643 len = *usable; 21644 if (len <= 0) { 21645 /* Terminate the loop */ 21646 break; /* success; too small */ 21647 } 21648 /* 21649 * Sender silly-window avoidance. 21650 * Ignore this if we are going to send a 21651 * zero window probe out. 21652 * 21653 * TODO: force data into microscopic window? 21654 * ==> (!pushed || (unsent > usable)) 21655 */ 21656 if (len < (tcp->tcp_max_swnd >> 1) && 21657 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 21658 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 21659 len == 1) && (! tcp->tcp_zero_win_probe)) { 21660 /* 21661 * If the retransmit timer is not running 21662 * we start it so that we will retransmit 21663 * in the case when the the receiver has 21664 * decremented the window. 21665 */ 21666 if (*snxt == tcp->tcp_snxt && 21667 *snxt == tcp->tcp_suna) { 21668 /* 21669 * We are not supposed to send 21670 * anything. So let's wait a little 21671 * bit longer before breaking SWS 21672 * avoidance. 21673 * 21674 * What should the value be? 21675 * Suggestion: MAX(init rexmit time, 21676 * tcp->tcp_rto) 21677 */ 21678 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21679 } 21680 break; /* success; too small */ 21681 } 21682 } 21683 21684 tcph = tcp->tcp_tcph; 21685 21686 /* 21687 * The reason to adjust len here is that we need to set flags 21688 * and calculate checksum. 21689 */ 21690 if (do_lso_send) 21691 len = lso_usable; 21692 21693 *usable -= len; /* Approximate - can be adjusted later */ 21694 if (*usable > 0) 21695 tcph->th_flags[0] = TH_ACK; 21696 else 21697 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 21698 21699 /* 21700 * Prime pump for IP's checksumming on our behalf 21701 * Include the adjustment for a source route if any. 21702 */ 21703 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 21704 sum = (sum >> 16) + (sum & 0xFFFF); 21705 U16_TO_ABE16(sum, tcph->th_sum); 21706 21707 U32_TO_ABE32(*snxt, tcph->th_seq); 21708 21709 /* 21710 * Branch off to tcp_xmit_mp() if any of the VALID bits is 21711 * set. For the case when TCP_FSS_VALID is the only valid 21712 * bit (normal active close), branch off only when we think 21713 * that the FIN flag needs to be set. Note for this case, 21714 * that (snxt + len) may not reflect the actual seg_len, 21715 * as len may be further reduced in tcp_xmit_mp(). If len 21716 * gets modified, we will end up here again. 21717 */ 21718 if (tcp->tcp_valid_bits != 0 && 21719 (tcp->tcp_valid_bits != TCP_FSS_VALID || 21720 ((*snxt + len) == tcp->tcp_fss))) { 21721 uchar_t *prev_rptr; 21722 uint32_t prev_snxt = tcp->tcp_snxt; 21723 21724 if (*tail_unsent == 0) { 21725 ASSERT((*xmit_tail)->b_cont != NULL); 21726 *xmit_tail = (*xmit_tail)->b_cont; 21727 prev_rptr = (*xmit_tail)->b_rptr; 21728 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21729 (*xmit_tail)->b_rptr); 21730 } else { 21731 prev_rptr = (*xmit_tail)->b_rptr; 21732 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 21733 *tail_unsent; 21734 } 21735 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 21736 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 21737 /* Restore tcp_snxt so we get amount sent right. */ 21738 tcp->tcp_snxt = prev_snxt; 21739 if (prev_rptr == (*xmit_tail)->b_rptr) { 21740 /* 21741 * If the previous timestamp is still in use, 21742 * don't stomp on it. 21743 */ 21744 if ((*xmit_tail)->b_next == NULL) { 21745 (*xmit_tail)->b_prev = local_time; 21746 (*xmit_tail)->b_next = 21747 (mblk_t *)(uintptr_t)(*snxt); 21748 } 21749 } else 21750 (*xmit_tail)->b_rptr = prev_rptr; 21751 21752 if (mp == NULL) { 21753 if (ire != NULL) 21754 IRE_REFRELE(ire); 21755 return (-1); 21756 } 21757 mp1 = mp->b_cont; 21758 21759 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21760 tcp->tcp_last_sent_len = (ushort_t)len; 21761 while (mp1->b_cont) { 21762 *xmit_tail = (*xmit_tail)->b_cont; 21763 (*xmit_tail)->b_prev = local_time; 21764 (*xmit_tail)->b_next = 21765 (mblk_t *)(uintptr_t)(*snxt); 21766 mp1 = mp1->b_cont; 21767 } 21768 *snxt += len; 21769 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 21770 BUMP_LOCAL(tcp->tcp_obsegs); 21771 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21772 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21773 tcp_send_data(tcp, q, mp); 21774 continue; 21775 } 21776 21777 *snxt += len; /* Adjust later if we don't send all of len */ 21778 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21779 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21780 21781 if (*tail_unsent) { 21782 /* Are the bytes above us in flight? */ 21783 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 21784 if (rptr != (*xmit_tail)->b_rptr) { 21785 *tail_unsent -= len; 21786 if (len <= mss) /* LSO is unusable */ 21787 tcp->tcp_last_sent_len = (ushort_t)len; 21788 len += tcp_hdr_len; 21789 if (tcp->tcp_ipversion == IPV4_VERSION) 21790 tcp->tcp_ipha->ipha_length = htons(len); 21791 else 21792 tcp->tcp_ip6h->ip6_plen = 21793 htons(len - 21794 ((char *)&tcp->tcp_ip6h[1] - 21795 tcp->tcp_iphc)); 21796 mp = dupb(*xmit_tail); 21797 if (mp == NULL) { 21798 if (ire != NULL) 21799 IRE_REFRELE(ire); 21800 return (-1); /* out_of_mem */ 21801 } 21802 mp->b_rptr = rptr; 21803 /* 21804 * If the old timestamp is no longer in use, 21805 * sample a new timestamp now. 21806 */ 21807 if ((*xmit_tail)->b_next == NULL) { 21808 (*xmit_tail)->b_prev = local_time; 21809 (*xmit_tail)->b_next = 21810 (mblk_t *)(uintptr_t)(*snxt-len); 21811 } 21812 goto must_alloc; 21813 } 21814 } else { 21815 *xmit_tail = (*xmit_tail)->b_cont; 21816 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 21817 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 21818 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21819 (*xmit_tail)->b_rptr); 21820 } 21821 21822 (*xmit_tail)->b_prev = local_time; 21823 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 21824 21825 *tail_unsent -= len; 21826 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21827 tcp->tcp_last_sent_len = (ushort_t)len; 21828 21829 len += tcp_hdr_len; 21830 if (tcp->tcp_ipversion == IPV4_VERSION) 21831 tcp->tcp_ipha->ipha_length = htons(len); 21832 else 21833 tcp->tcp_ip6h->ip6_plen = htons(len - 21834 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21835 21836 mp = dupb(*xmit_tail); 21837 if (mp == NULL) { 21838 if (ire != NULL) 21839 IRE_REFRELE(ire); 21840 return (-1); /* out_of_mem */ 21841 } 21842 21843 len = tcp_hdr_len; 21844 /* 21845 * There are four reasons to allocate a new hdr mblk: 21846 * 1) The bytes above us are in use by another packet 21847 * 2) We don't have good alignment 21848 * 3) The mblk is being shared 21849 * 4) We don't have enough room for a header 21850 */ 21851 rptr = mp->b_rptr - len; 21852 if (!OK_32PTR(rptr) || 21853 ((db = mp->b_datap), db->db_ref != 2) || 21854 rptr < db->db_base + ire_fp_mp_len) { 21855 /* NOTE: we assume allocb returns an OK_32PTR */ 21856 21857 must_alloc:; 21858 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 21859 tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED); 21860 if (mp1 == NULL) { 21861 freemsg(mp); 21862 if (ire != NULL) 21863 IRE_REFRELE(ire); 21864 return (-1); /* out_of_mem */ 21865 } 21866 mp1->b_cont = mp; 21867 mp = mp1; 21868 /* Leave room for Link Level header */ 21869 len = tcp_hdr_len; 21870 rptr = 21871 &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len]; 21872 mp->b_wptr = &rptr[len]; 21873 } 21874 21875 /* 21876 * Fill in the header using the template header, and add 21877 * options such as time-stamp, ECN and/or SACK, as needed. 21878 */ 21879 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 21880 21881 mp->b_rptr = rptr; 21882 21883 if (*tail_unsent) { 21884 int spill = *tail_unsent; 21885 21886 mp1 = mp->b_cont; 21887 if (mp1 == NULL) 21888 mp1 = mp; 21889 21890 /* 21891 * If we're a little short, tack on more mblks until 21892 * there is no more spillover. 21893 */ 21894 while (spill < 0) { 21895 mblk_t *nmp; 21896 int nmpsz; 21897 21898 nmp = (*xmit_tail)->b_cont; 21899 nmpsz = MBLKL(nmp); 21900 21901 /* 21902 * Excess data in mblk; can we split it? 21903 * If MDT is enabled for the connection, 21904 * keep on splitting as this is a transient 21905 * send path. 21906 */ 21907 if (!do_lso_send && !tcp->tcp_mdt && 21908 (spill + nmpsz > 0)) { 21909 /* 21910 * Don't split if stream head was 21911 * told to break up larger writes 21912 * into smaller ones. 21913 */ 21914 if (tcp->tcp_maxpsz > 0) 21915 break; 21916 21917 /* 21918 * Next mblk is less than SMSS/2 21919 * rounded up to nearest 64-byte; 21920 * let it get sent as part of the 21921 * next segment. 21922 */ 21923 if (tcp->tcp_localnet && 21924 !tcp->tcp_cork && 21925 (nmpsz < roundup((mss >> 1), 64))) 21926 break; 21927 } 21928 21929 *xmit_tail = nmp; 21930 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 21931 /* Stash for rtt use later */ 21932 (*xmit_tail)->b_prev = local_time; 21933 (*xmit_tail)->b_next = 21934 (mblk_t *)(uintptr_t)(*snxt - len); 21935 mp1->b_cont = dupb(*xmit_tail); 21936 mp1 = mp1->b_cont; 21937 21938 spill += nmpsz; 21939 if (mp1 == NULL) { 21940 *tail_unsent = spill; 21941 freemsg(mp); 21942 if (ire != NULL) 21943 IRE_REFRELE(ire); 21944 return (-1); /* out_of_mem */ 21945 } 21946 } 21947 21948 /* Trim back any surplus on the last mblk */ 21949 if (spill >= 0) { 21950 mp1->b_wptr -= spill; 21951 *tail_unsent = spill; 21952 } else { 21953 /* 21954 * We did not send everything we could in 21955 * order to remain within the b_cont limit. 21956 */ 21957 *usable -= spill; 21958 *snxt += spill; 21959 tcp->tcp_last_sent_len += spill; 21960 UPDATE_MIB(&tcps->tcps_mib, 21961 tcpOutDataBytes, spill); 21962 /* 21963 * Adjust the checksum 21964 */ 21965 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 21966 sum += spill; 21967 sum = (sum >> 16) + (sum & 0xFFFF); 21968 U16_TO_ABE16(sum, tcph->th_sum); 21969 if (tcp->tcp_ipversion == IPV4_VERSION) { 21970 sum = ntohs( 21971 ((ipha_t *)rptr)->ipha_length) + 21972 spill; 21973 ((ipha_t *)rptr)->ipha_length = 21974 htons(sum); 21975 } else { 21976 sum = ntohs( 21977 ((ip6_t *)rptr)->ip6_plen) + 21978 spill; 21979 ((ip6_t *)rptr)->ip6_plen = 21980 htons(sum); 21981 } 21982 *tail_unsent = 0; 21983 } 21984 } 21985 if (tcp->tcp_ip_forward_progress) { 21986 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21987 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 21988 tcp->tcp_ip_forward_progress = B_FALSE; 21989 } 21990 21991 if (do_lso_send) { 21992 tcp_lsosend_data(tcp, mp, ire, ill, mss, 21993 num_lso_seg); 21994 tcp->tcp_obsegs += num_lso_seg; 21995 21996 TCP_STAT(tcps, tcp_lso_times); 21997 TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); 21998 } else { 21999 tcp_send_data(tcp, q, mp); 22000 BUMP_LOCAL(tcp->tcp_obsegs); 22001 } 22002 } 22003 22004 if (ire != NULL) 22005 IRE_REFRELE(ire); 22006 return (0); 22007 } 22008 22009 /* Unlink and return any mblk that looks like it contains a MDT info */ 22010 static mblk_t * 22011 tcp_mdt_info_mp(mblk_t *mp) 22012 { 22013 mblk_t *prev_mp; 22014 22015 for (;;) { 22016 prev_mp = mp; 22017 /* no more to process? */ 22018 if ((mp = mp->b_cont) == NULL) 22019 break; 22020 22021 switch (DB_TYPE(mp)) { 22022 case M_CTL: 22023 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 22024 continue; 22025 ASSERT(prev_mp != NULL); 22026 prev_mp->b_cont = mp->b_cont; 22027 mp->b_cont = NULL; 22028 return (mp); 22029 default: 22030 break; 22031 } 22032 } 22033 return (mp); 22034 } 22035 22036 /* MDT info update routine, called when IP notifies us about MDT */ 22037 static void 22038 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 22039 { 22040 boolean_t prev_state; 22041 tcp_stack_t *tcps = tcp->tcp_tcps; 22042 22043 /* 22044 * IP is telling us to abort MDT on this connection? We know 22045 * this because the capability is only turned off when IP 22046 * encounters some pathological cases, e.g. link-layer change 22047 * where the new driver doesn't support MDT, or in situation 22048 * where MDT usage on the link-layer has been switched off. 22049 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 22050 * if the link-layer doesn't support MDT, and if it does, it 22051 * will indicate that the feature is to be turned on. 22052 */ 22053 prev_state = tcp->tcp_mdt; 22054 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 22055 if (!tcp->tcp_mdt && !first) { 22056 TCP_STAT(tcps, tcp_mdt_conn_halted3); 22057 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 22058 (void *)tcp->tcp_connp)); 22059 } 22060 22061 /* 22062 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 22063 * so disable MDT otherwise. The checks are done here 22064 * and in tcp_wput_data(). 22065 */ 22066 if (tcp->tcp_mdt && 22067 (tcp->tcp_ipversion == IPV4_VERSION && 22068 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 22069 (tcp->tcp_ipversion == IPV6_VERSION && 22070 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 22071 tcp->tcp_mdt = B_FALSE; 22072 22073 if (tcp->tcp_mdt) { 22074 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 22075 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 22076 "version (%d), expected version is %d", 22077 mdt_capab->ill_mdt_version, MDT_VERSION_2); 22078 tcp->tcp_mdt = B_FALSE; 22079 return; 22080 } 22081 22082 /* 22083 * We need the driver to be able to handle at least three 22084 * spans per packet in order for tcp MDT to be utilized. 22085 * The first is for the header portion, while the rest are 22086 * needed to handle a packet that straddles across two 22087 * virtually non-contiguous buffers; a typical tcp packet 22088 * therefore consists of only two spans. Note that we take 22089 * a zero as "don't care". 22090 */ 22091 if (mdt_capab->ill_mdt_span_limit > 0 && 22092 mdt_capab->ill_mdt_span_limit < 3) { 22093 tcp->tcp_mdt = B_FALSE; 22094 return; 22095 } 22096 22097 /* a zero means driver wants default value */ 22098 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 22099 tcps->tcps_mdt_max_pbufs); 22100 if (tcp->tcp_mdt_max_pld == 0) 22101 tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs; 22102 22103 /* ensure 32-bit alignment */ 22104 tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min, 22105 mdt_capab->ill_mdt_hdr_head), 4); 22106 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min, 22107 mdt_capab->ill_mdt_hdr_tail), 4); 22108 22109 if (!first && !prev_state) { 22110 TCP_STAT(tcps, tcp_mdt_conn_resumed2); 22111 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 22112 (void *)tcp->tcp_connp)); 22113 } 22114 } 22115 } 22116 22117 /* Unlink and return any mblk that looks like it contains a LSO info */ 22118 static mblk_t * 22119 tcp_lso_info_mp(mblk_t *mp) 22120 { 22121 mblk_t *prev_mp; 22122 22123 for (;;) { 22124 prev_mp = mp; 22125 /* no more to process? */ 22126 if ((mp = mp->b_cont) == NULL) 22127 break; 22128 22129 switch (DB_TYPE(mp)) { 22130 case M_CTL: 22131 if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE) 22132 continue; 22133 ASSERT(prev_mp != NULL); 22134 prev_mp->b_cont = mp->b_cont; 22135 mp->b_cont = NULL; 22136 return (mp); 22137 default: 22138 break; 22139 } 22140 } 22141 22142 return (mp); 22143 } 22144 22145 /* LSO info update routine, called when IP notifies us about LSO */ 22146 static void 22147 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab) 22148 { 22149 tcp_stack_t *tcps = tcp->tcp_tcps; 22150 22151 /* 22152 * IP is telling us to abort LSO on this connection? We know 22153 * this because the capability is only turned off when IP 22154 * encounters some pathological cases, e.g. link-layer change 22155 * where the new NIC/driver doesn't support LSO, or in situation 22156 * where LSO usage on the link-layer has been switched off. 22157 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE 22158 * if the link-layer doesn't support LSO, and if it does, it 22159 * will indicate that the feature is to be turned on. 22160 */ 22161 tcp->tcp_lso = (lso_capab->ill_lso_on != 0); 22162 TCP_STAT(tcps, tcp_lso_enabled); 22163 22164 /* 22165 * We currently only support LSO on simple TCP/IPv4, 22166 * so disable LSO otherwise. The checks are done here 22167 * and in tcp_wput_data(). 22168 */ 22169 if (tcp->tcp_lso && 22170 (tcp->tcp_ipversion == IPV4_VERSION && 22171 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 22172 (tcp->tcp_ipversion == IPV6_VERSION)) { 22173 tcp->tcp_lso = B_FALSE; 22174 TCP_STAT(tcps, tcp_lso_disabled); 22175 } else { 22176 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, 22177 lso_capab->ill_lso_max); 22178 } 22179 } 22180 22181 static void 22182 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt) 22183 { 22184 conn_t *connp = tcp->tcp_connp; 22185 tcp_stack_t *tcps = tcp->tcp_tcps; 22186 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 22187 22188 ASSERT(ire != NULL); 22189 22190 /* 22191 * We may be in the fastpath here, and although we essentially do 22192 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return, 22193 * we try to keep things as brief as possible. After all, these 22194 * are only best-effort checks, and we do more thorough ones prior 22195 * to calling tcp_send()/tcp_multisend(). 22196 */ 22197 if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) && 22198 check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 22199 ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 22200 !(ire->ire_flags & RTF_MULTIRT) && 22201 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 22202 CONN_IS_LSO_MD_FASTPATH(connp)) { 22203 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 22204 /* Cache the result */ 22205 connp->conn_lso_ok = B_TRUE; 22206 22207 ASSERT(ill->ill_lso_capab != NULL); 22208 if (!ill->ill_lso_capab->ill_lso_on) { 22209 ill->ill_lso_capab->ill_lso_on = 1; 22210 ip1dbg(("tcp_ire_ill_check: connp %p enables " 22211 "LSO for interface %s\n", (void *)connp, 22212 ill->ill_name)); 22213 } 22214 tcp_lso_update(tcp, ill->ill_lso_capab); 22215 } else if (ipst->ips_ip_multidata_outbound && 22216 ILL_MDT_CAPABLE(ill)) { 22217 /* Cache the result */ 22218 connp->conn_mdt_ok = B_TRUE; 22219 22220 ASSERT(ill->ill_mdt_capab != NULL); 22221 if (!ill->ill_mdt_capab->ill_mdt_on) { 22222 ill->ill_mdt_capab->ill_mdt_on = 1; 22223 ip1dbg(("tcp_ire_ill_check: connp %p enables " 22224 "MDT for interface %s\n", (void *)connp, 22225 ill->ill_name)); 22226 } 22227 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 22228 } 22229 } 22230 22231 /* 22232 * The goal is to reduce the number of generated tcp segments by 22233 * setting the maxpsz multiplier to 0; this will have an affect on 22234 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 22235 * into each packet, up to SMSS bytes. Doing this reduces the number 22236 * of outbound segments and incoming ACKs, thus allowing for better 22237 * network and system performance. In contrast the legacy behavior 22238 * may result in sending less than SMSS size, because the last mblk 22239 * for some packets may have more data than needed to make up SMSS, 22240 * and the legacy code refused to "split" it. 22241 * 22242 * We apply the new behavior on following situations: 22243 * 22244 * 1) Loopback connections, 22245 * 2) Connections in which the remote peer is not on local subnet, 22246 * 3) Local subnet connections over the bge interface (see below). 22247 * 22248 * Ideally, we would like this behavior to apply for interfaces other 22249 * than bge. However, doing so would negatively impact drivers which 22250 * perform dynamic mapping and unmapping of DMA resources, which are 22251 * increased by setting the maxpsz multiplier to 0 (more mblks per 22252 * packet will be generated by tcp). The bge driver does not suffer 22253 * from this, as it copies the mblks into pre-mapped buffers, and 22254 * therefore does not require more I/O resources than before. 22255 * 22256 * Otherwise, this behavior is present on all network interfaces when 22257 * the destination endpoint is non-local, since reducing the number 22258 * of packets in general is good for the network. 22259 * 22260 * TODO We need to remove this hard-coded conditional for bge once 22261 * a better "self-tuning" mechanism, or a way to comprehend 22262 * the driver transmit strategy is devised. Until the solution 22263 * is found and well understood, we live with this hack. 22264 */ 22265 if (!tcp_static_maxpsz && 22266 (tcp->tcp_loopback || !tcp->tcp_localnet || 22267 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 22268 /* override the default value */ 22269 tcp->tcp_maxpsz = 0; 22270 22271 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 22272 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 22273 ill != NULL ? ill->ill_name : ipif_loopback_name)); 22274 } 22275 22276 /* set the stream head parameters accordingly */ 22277 (void) tcp_maxpsz_set(tcp, B_TRUE); 22278 } 22279 22280 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 22281 static void 22282 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 22283 { 22284 uchar_t fval = *mp->b_rptr; 22285 mblk_t *tail; 22286 queue_t *q = tcp->tcp_wq; 22287 22288 /* TODO: How should flush interact with urgent data? */ 22289 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 22290 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 22291 /* 22292 * Flush only data that has not yet been put on the wire. If 22293 * we flush data that we have already transmitted, life, as we 22294 * know it, may come to an end. 22295 */ 22296 tail = tcp->tcp_xmit_tail; 22297 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 22298 tcp->tcp_xmit_tail_unsent = 0; 22299 tcp->tcp_unsent = 0; 22300 if (tail->b_wptr != tail->b_rptr) 22301 tail = tail->b_cont; 22302 if (tail) { 22303 mblk_t **excess = &tcp->tcp_xmit_head; 22304 for (;;) { 22305 mblk_t *mp1 = *excess; 22306 if (mp1 == tail) 22307 break; 22308 tcp->tcp_xmit_tail = mp1; 22309 tcp->tcp_xmit_last = mp1; 22310 excess = &mp1->b_cont; 22311 } 22312 *excess = NULL; 22313 tcp_close_mpp(&tail); 22314 if (tcp->tcp_snd_zcopy_aware) 22315 tcp_zcopy_notify(tcp); 22316 } 22317 /* 22318 * We have no unsent data, so unsent must be less than 22319 * tcp_xmit_lowater, so re-enable flow. 22320 */ 22321 mutex_enter(&tcp->tcp_non_sq_lock); 22322 if (tcp->tcp_flow_stopped) { 22323 tcp_clrqfull(tcp); 22324 } 22325 mutex_exit(&tcp->tcp_non_sq_lock); 22326 } 22327 /* 22328 * TODO: you can't just flush these, you have to increase rwnd for one 22329 * thing. For another, how should urgent data interact? 22330 */ 22331 if (fval & FLUSHR) { 22332 *mp->b_rptr = fval & ~FLUSHW; 22333 /* XXX */ 22334 qreply(q, mp); 22335 return; 22336 } 22337 freemsg(mp); 22338 } 22339 22340 /* 22341 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 22342 * messages. 22343 */ 22344 static void 22345 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 22346 { 22347 mblk_t *mp1; 22348 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 22349 STRUCT_HANDLE(strbuf, sb); 22350 queue_t *q = tcp->tcp_wq; 22351 int error; 22352 uint_t addrlen; 22353 22354 /* Make sure it is one of ours. */ 22355 switch (iocp->ioc_cmd) { 22356 case TI_GETMYNAME: 22357 case TI_GETPEERNAME: 22358 break; 22359 default: 22360 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 22361 return; 22362 } 22363 switch (mi_copy_state(q, mp, &mp1)) { 22364 case -1: 22365 return; 22366 case MI_COPY_CASE(MI_COPY_IN, 1): 22367 break; 22368 case MI_COPY_CASE(MI_COPY_OUT, 1): 22369 /* Copy out the strbuf. */ 22370 mi_copyout(q, mp); 22371 return; 22372 case MI_COPY_CASE(MI_COPY_OUT, 2): 22373 /* All done. */ 22374 mi_copy_done(q, mp, 0); 22375 return; 22376 default: 22377 mi_copy_done(q, mp, EPROTO); 22378 return; 22379 } 22380 /* Check alignment of the strbuf */ 22381 if (!OK_32PTR(mp1->b_rptr)) { 22382 mi_copy_done(q, mp, EINVAL); 22383 return; 22384 } 22385 22386 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 22387 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 22388 if (STRUCT_FGET(sb, maxlen) < addrlen) { 22389 mi_copy_done(q, mp, EINVAL); 22390 return; 22391 } 22392 22393 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 22394 if (mp1 == NULL) 22395 return; 22396 22397 switch (iocp->ioc_cmd) { 22398 case TI_GETMYNAME: 22399 error = tcp_getmyname(tcp, (void *)mp1->b_rptr, &addrlen); 22400 break; 22401 case TI_GETPEERNAME: 22402 error = tcp_getpeername(tcp, (void *)mp1->b_rptr, &addrlen); 22403 break; 22404 } 22405 22406 if (error != 0) { 22407 mi_copy_done(q, mp, error); 22408 } else { 22409 mp1->b_wptr += addrlen; 22410 STRUCT_FSET(sb, len, addrlen); 22411 22412 /* Copy out the address */ 22413 mi_copyout(q, mp); 22414 } 22415 } 22416 22417 /* 22418 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 22419 * messages. 22420 */ 22421 /* ARGSUSED */ 22422 static void 22423 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 22424 { 22425 conn_t *connp = (conn_t *)arg; 22426 tcp_t *tcp = connp->conn_tcp; 22427 queue_t *q = tcp->tcp_wq; 22428 struct iocblk *iocp; 22429 tcp_stack_t *tcps = tcp->tcp_tcps; 22430 22431 ASSERT(DB_TYPE(mp) == M_IOCTL); 22432 /* 22433 * Try and ASSERT the minimum possible references on the 22434 * conn early enough. Since we are executing on write side, 22435 * the connection is obviously not detached and that means 22436 * there is a ref each for TCP and IP. Since we are behind 22437 * the squeue, the minimum references needed are 3. If the 22438 * conn is in classifier hash list, there should be an 22439 * extra ref for that (we check both the possibilities). 22440 */ 22441 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 22442 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 22443 22444 iocp = (struct iocblk *)mp->b_rptr; 22445 switch (iocp->ioc_cmd) { 22446 case TCP_IOC_DEFAULT_Q: 22447 /* Wants to be the default wq. */ 22448 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 22449 iocp->ioc_error = EPERM; 22450 iocp->ioc_count = 0; 22451 mp->b_datap->db_type = M_IOCACK; 22452 qreply(q, mp); 22453 return; 22454 } 22455 tcp_def_q_set(tcp, mp); 22456 return; 22457 case _SIOCSOCKFALLBACK: 22458 /* 22459 * Either sockmod is about to be popped and the socket 22460 * would now be treated as a plain stream, or a module 22461 * is about to be pushed so we could no longer use read- 22462 * side synchronous streams for fused loopback tcp. 22463 * Drain any queued data and disable direct sockfs 22464 * interface from now on. 22465 */ 22466 if (!tcp->tcp_issocket) { 22467 DB_TYPE(mp) = M_IOCNAK; 22468 iocp->ioc_error = EINVAL; 22469 } else { 22470 #ifdef _ILP32 22471 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 22472 #else 22473 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 22474 #endif 22475 /* 22476 * Insert this socket into the acceptor hash. 22477 * We might need it for T_CONN_RES message 22478 */ 22479 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 22480 22481 if (tcp->tcp_fused) { 22482 /* 22483 * This is a fused loopback tcp; disable 22484 * read-side synchronous streams interface 22485 * and drain any queued data. It is okay 22486 * to do this for non-synchronous streams 22487 * fused tcp as well. 22488 */ 22489 tcp_fuse_disable_pair(tcp, B_FALSE); 22490 } 22491 tcp->tcp_issocket = B_FALSE; 22492 tcp->tcp_sodirect = NULL; 22493 TCP_STAT(tcps, tcp_sock_fallback); 22494 22495 DB_TYPE(mp) = M_IOCACK; 22496 iocp->ioc_error = 0; 22497 } 22498 iocp->ioc_count = 0; 22499 iocp->ioc_rval = 0; 22500 qreply(q, mp); 22501 return; 22502 } 22503 CALL_IP_WPUT(connp, q, mp); 22504 } 22505 22506 /* 22507 * This routine is called by tcp_wput() to handle all TPI requests. 22508 */ 22509 /* ARGSUSED */ 22510 static void 22511 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 22512 { 22513 conn_t *connp = (conn_t *)arg; 22514 tcp_t *tcp = connp->conn_tcp; 22515 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 22516 uchar_t *rptr; 22517 t_scalar_t type; 22518 int len; 22519 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 22520 22521 /* 22522 * Try and ASSERT the minimum possible references on the 22523 * conn early enough. Since we are executing on write side, 22524 * the connection is obviously not detached and that means 22525 * there is a ref each for TCP and IP. Since we are behind 22526 * the squeue, the minimum references needed are 3. If the 22527 * conn is in classifier hash list, there should be an 22528 * extra ref for that (we check both the possibilities). 22529 */ 22530 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 22531 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 22532 22533 rptr = mp->b_rptr; 22534 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 22535 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 22536 type = ((union T_primitives *)rptr)->type; 22537 if (type == T_EXDATA_REQ) { 22538 uint32_t msize = msgdsize(mp->b_cont); 22539 22540 len = msize - 1; 22541 if (len < 0) { 22542 freemsg(mp); 22543 return; 22544 } 22545 /* 22546 * Try to force urgent data out on the wire. 22547 * Even if we have unsent data this will 22548 * at least send the urgent flag. 22549 * XXX does not handle more flag correctly. 22550 */ 22551 len += tcp->tcp_unsent; 22552 len += tcp->tcp_snxt; 22553 tcp->tcp_urg = len; 22554 tcp->tcp_valid_bits |= TCP_URG_VALID; 22555 22556 /* Bypass tcp protocol for fused tcp loopback */ 22557 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 22558 return; 22559 } else if (type != T_DATA_REQ) { 22560 goto non_urgent_data; 22561 } 22562 /* TODO: options, flags, ... from user */ 22563 /* Set length to zero for reclamation below */ 22564 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 22565 freeb(mp); 22566 return; 22567 } else { 22568 if (tcp->tcp_debug) { 22569 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 22570 "tcp_wput_proto, dropping one..."); 22571 } 22572 freemsg(mp); 22573 return; 22574 } 22575 22576 non_urgent_data: 22577 22578 switch ((int)tprim->type) { 22579 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 22580 /* 22581 * save the kssl_ent_t from the next block, and convert this 22582 * back to a normal bind_req. 22583 */ 22584 if (mp->b_cont != NULL) { 22585 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 22586 22587 if (tcp->tcp_kssl_ent != NULL) { 22588 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 22589 KSSL_NO_PROXY); 22590 tcp->tcp_kssl_ent = NULL; 22591 } 22592 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 22593 sizeof (kssl_ent_t)); 22594 kssl_hold_ent(tcp->tcp_kssl_ent); 22595 freemsg(mp->b_cont); 22596 mp->b_cont = NULL; 22597 } 22598 tprim->type = T_BIND_REQ; 22599 22600 /* FALLTHROUGH */ 22601 case O_T_BIND_REQ: /* bind request */ 22602 case T_BIND_REQ: /* new semantics bind request */ 22603 tcp_bind(tcp, mp); 22604 break; 22605 case T_UNBIND_REQ: /* unbind request */ 22606 tcp_unbind(tcp, mp); 22607 break; 22608 case O_T_CONN_RES: /* old connection response XXX */ 22609 case T_CONN_RES: /* connection response */ 22610 tcp_accept(tcp, mp); 22611 break; 22612 case T_CONN_REQ: /* connection request */ 22613 tcp_connect(tcp, mp); 22614 break; 22615 case T_DISCON_REQ: /* disconnect request */ 22616 tcp_disconnect(tcp, mp); 22617 break; 22618 case T_CAPABILITY_REQ: 22619 tcp_capability_req(tcp, mp); /* capability request */ 22620 break; 22621 case T_INFO_REQ: /* information request */ 22622 tcp_info_req(tcp, mp); 22623 break; 22624 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 22625 (void) svr4_optcom_req(tcp->tcp_wq, mp, cr, 22626 &tcp_opt_obj, B_TRUE); 22627 break; 22628 case T_OPTMGMT_REQ: 22629 /* 22630 * Note: no support for snmpcom_req() through new 22631 * T_OPTMGMT_REQ. See comments in ip.c 22632 */ 22633 /* Only IP is allowed to return meaningful value */ 22634 (void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj, 22635 B_TRUE); 22636 break; 22637 22638 case T_UNITDATA_REQ: /* unitdata request */ 22639 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22640 break; 22641 case T_ORDREL_REQ: /* orderly release req */ 22642 freemsg(mp); 22643 22644 if (tcp->tcp_fused) 22645 tcp_unfuse(tcp); 22646 22647 if (tcp_xmit_end(tcp) != 0) { 22648 /* 22649 * We were crossing FINs and got a reset from 22650 * the other side. Just ignore it. 22651 */ 22652 if (tcp->tcp_debug) { 22653 (void) strlog(TCP_MOD_ID, 0, 1, 22654 SL_ERROR|SL_TRACE, 22655 "tcp_wput_proto, T_ORDREL_REQ out of " 22656 "state %s", 22657 tcp_display(tcp, NULL, 22658 DISP_ADDR_AND_PORT)); 22659 } 22660 } 22661 break; 22662 case T_ADDR_REQ: 22663 tcp_addr_req(tcp, mp); 22664 break; 22665 default: 22666 if (tcp->tcp_debug) { 22667 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 22668 "tcp_wput_proto, bogus TPI msg, type %d", 22669 tprim->type); 22670 } 22671 /* 22672 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 22673 * to recover. 22674 */ 22675 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22676 break; 22677 } 22678 } 22679 22680 /* 22681 * The TCP write service routine should never be called... 22682 */ 22683 /* ARGSUSED */ 22684 static void 22685 tcp_wsrv(queue_t *q) 22686 { 22687 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 22688 22689 TCP_STAT(tcps, tcp_wsrv_called); 22690 } 22691 22692 /* Non overlapping byte exchanger */ 22693 static void 22694 tcp_xchg(uchar_t *a, uchar_t *b, int len) 22695 { 22696 uchar_t uch; 22697 22698 while (len-- > 0) { 22699 uch = a[len]; 22700 a[len] = b[len]; 22701 b[len] = uch; 22702 } 22703 } 22704 22705 /* 22706 * Send out a control packet on the tcp connection specified. This routine 22707 * is typically called where we need a simple ACK or RST generated. 22708 */ 22709 static void 22710 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 22711 { 22712 uchar_t *rptr; 22713 tcph_t *tcph; 22714 ipha_t *ipha = NULL; 22715 ip6_t *ip6h = NULL; 22716 uint32_t sum; 22717 int tcp_hdr_len; 22718 int tcp_ip_hdr_len; 22719 mblk_t *mp; 22720 tcp_stack_t *tcps = tcp->tcp_tcps; 22721 22722 /* 22723 * Save sum for use in source route later. 22724 */ 22725 ASSERT(tcp != NULL); 22726 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 22727 tcp_hdr_len = tcp->tcp_hdr_len; 22728 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 22729 22730 /* If a text string is passed in with the request, pass it to strlog. */ 22731 if (str != NULL && tcp->tcp_debug) { 22732 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22733 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 22734 str, seq, ack, ctl); 22735 } 22736 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra, 22737 BPRI_MED); 22738 if (mp == NULL) { 22739 return; 22740 } 22741 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 22742 mp->b_rptr = rptr; 22743 mp->b_wptr = &rptr[tcp_hdr_len]; 22744 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 22745 22746 if (tcp->tcp_ipversion == IPV4_VERSION) { 22747 ipha = (ipha_t *)rptr; 22748 ipha->ipha_length = htons(tcp_hdr_len); 22749 } else { 22750 ip6h = (ip6_t *)rptr; 22751 ASSERT(tcp != NULL); 22752 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 22753 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22754 } 22755 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 22756 tcph->th_flags[0] = (uint8_t)ctl; 22757 if (ctl & TH_RST) { 22758 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22759 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22760 /* 22761 * Don't send TSopt w/ TH_RST packets per RFC 1323. 22762 */ 22763 if (tcp->tcp_snd_ts_ok && 22764 tcp->tcp_state > TCPS_SYN_SENT) { 22765 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 22766 *(mp->b_wptr) = TCPOPT_EOL; 22767 if (tcp->tcp_ipversion == IPV4_VERSION) { 22768 ipha->ipha_length = htons(tcp_hdr_len - 22769 TCPOPT_REAL_TS_LEN); 22770 } else { 22771 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 22772 TCPOPT_REAL_TS_LEN); 22773 } 22774 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 22775 sum -= TCPOPT_REAL_TS_LEN; 22776 } 22777 } 22778 if (ctl & TH_ACK) { 22779 if (tcp->tcp_snd_ts_ok) { 22780 U32_TO_BE32(lbolt, 22781 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22782 U32_TO_BE32(tcp->tcp_ts_recent, 22783 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22784 } 22785 22786 /* Update the latest receive window size in TCP header. */ 22787 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22788 tcph->th_win); 22789 tcp->tcp_rack = ack; 22790 tcp->tcp_rack_cnt = 0; 22791 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 22792 } 22793 BUMP_LOCAL(tcp->tcp_obsegs); 22794 U32_TO_BE32(seq, tcph->th_seq); 22795 U32_TO_BE32(ack, tcph->th_ack); 22796 /* 22797 * Include the adjustment for a source route if any. 22798 */ 22799 sum = (sum >> 16) + (sum & 0xFFFF); 22800 U16_TO_BE16(sum, tcph->th_sum); 22801 tcp_send_data(tcp, tcp->tcp_wq, mp); 22802 } 22803 22804 /* 22805 * If this routine returns B_TRUE, TCP can generate a RST in response 22806 * to a segment. If it returns B_FALSE, TCP should not respond. 22807 */ 22808 static boolean_t 22809 tcp_send_rst_chk(tcp_stack_t *tcps) 22810 { 22811 clock_t now; 22812 22813 /* 22814 * TCP needs to protect itself from generating too many RSTs. 22815 * This can be a DoS attack by sending us random segments 22816 * soliciting RSTs. 22817 * 22818 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 22819 * in each 1 second interval. In this way, TCP still generate 22820 * RSTs in normal cases but when under attack, the impact is 22821 * limited. 22822 */ 22823 if (tcps->tcps_rst_sent_rate_enabled != 0) { 22824 now = lbolt; 22825 /* lbolt can wrap around. */ 22826 if ((tcps->tcps_last_rst_intrvl > now) || 22827 (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 22828 1*SECONDS)) { 22829 tcps->tcps_last_rst_intrvl = now; 22830 tcps->tcps_rst_cnt = 1; 22831 } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { 22832 return (B_FALSE); 22833 } 22834 } 22835 return (B_TRUE); 22836 } 22837 22838 /* 22839 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 22840 */ 22841 static void 22842 tcp_ip_ire_mark_advice(tcp_t *tcp) 22843 { 22844 mblk_t *mp; 22845 ipic_t *ipic; 22846 22847 if (tcp->tcp_ipversion == IPV4_VERSION) { 22848 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22849 &ipic); 22850 } else { 22851 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22852 &ipic); 22853 } 22854 if (mp == NULL) 22855 return; 22856 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22857 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22858 } 22859 22860 /* 22861 * Return an IP advice ioctl mblk and set ipic to be the pointer 22862 * to the advice structure. 22863 */ 22864 static mblk_t * 22865 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 22866 { 22867 struct iocblk *ioc; 22868 mblk_t *mp, *mp1; 22869 22870 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 22871 if (mp == NULL) 22872 return (NULL); 22873 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 22874 *ipic = (ipic_t *)mp->b_rptr; 22875 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 22876 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 22877 22878 bcopy(addr, *ipic + 1, addr_len); 22879 22880 (*ipic)->ipic_addr_length = addr_len; 22881 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 22882 22883 mp1 = mkiocb(IP_IOCTL); 22884 if (mp1 == NULL) { 22885 freemsg(mp); 22886 return (NULL); 22887 } 22888 mp1->b_cont = mp; 22889 ioc = (struct iocblk *)mp1->b_rptr; 22890 ioc->ioc_count = sizeof (ipic_t) + addr_len; 22891 22892 return (mp1); 22893 } 22894 22895 /* 22896 * Generate a reset based on an inbound packet, connp is set by caller 22897 * when RST is in response to an unexpected inbound packet for which 22898 * there is active tcp state in the system. 22899 * 22900 * IPSEC NOTE : Try to send the reply with the same protection as it came 22901 * in. We still have the ipsec_mp that the packet was attached to. Thus 22902 * the packet will go out at the same level of protection as it came in by 22903 * converting the IPSEC_IN to IPSEC_OUT. 22904 */ 22905 static void 22906 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 22907 uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid, 22908 tcp_stack_t *tcps, conn_t *connp) 22909 { 22910 ipha_t *ipha = NULL; 22911 ip6_t *ip6h = NULL; 22912 ushort_t len; 22913 tcph_t *tcph; 22914 int i; 22915 mblk_t *ipsec_mp; 22916 boolean_t mctl_present; 22917 ipic_t *ipic; 22918 ipaddr_t v4addr; 22919 in6_addr_t v6addr; 22920 int addr_len; 22921 void *addr; 22922 queue_t *q = tcps->tcps_g_q; 22923 tcp_t *tcp; 22924 cred_t *cr; 22925 mblk_t *nmp; 22926 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 22927 22928 if (tcps->tcps_g_q == NULL) { 22929 /* 22930 * For non-zero stackids the default queue isn't created 22931 * until the first open, thus there can be a need to send 22932 * a reset before then. But we can't do that, hence we just 22933 * drop the packet. Later during boot, when the default queue 22934 * has been setup, a retransmitted packet from the peer 22935 * will result in a reset. 22936 */ 22937 ASSERT(tcps->tcps_netstack->netstack_stackid != 22938 GLOBAL_NETSTACKID); 22939 freemsg(mp); 22940 return; 22941 } 22942 22943 if (connp != NULL) 22944 tcp = connp->conn_tcp; 22945 else 22946 tcp = Q_TO_TCP(q); 22947 22948 if (!tcp_send_rst_chk(tcps)) { 22949 tcps->tcps_rst_unsent++; 22950 freemsg(mp); 22951 return; 22952 } 22953 22954 if (mp->b_datap->db_type == M_CTL) { 22955 ipsec_mp = mp; 22956 mp = mp->b_cont; 22957 mctl_present = B_TRUE; 22958 } else { 22959 ipsec_mp = mp; 22960 mctl_present = B_FALSE; 22961 } 22962 22963 if (str && q && tcps->tcps_dbg) { 22964 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22965 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 22966 "flags 0x%x", 22967 str, seq, ack, ctl); 22968 } 22969 if (mp->b_datap->db_ref != 1) { 22970 mblk_t *mp1 = copyb(mp); 22971 freemsg(mp); 22972 mp = mp1; 22973 if (!mp) { 22974 if (mctl_present) 22975 freeb(ipsec_mp); 22976 return; 22977 } else { 22978 if (mctl_present) { 22979 ipsec_mp->b_cont = mp; 22980 } else { 22981 ipsec_mp = mp; 22982 } 22983 } 22984 } else if (mp->b_cont) { 22985 freemsg(mp->b_cont); 22986 mp->b_cont = NULL; 22987 } 22988 /* 22989 * We skip reversing source route here. 22990 * (for now we replace all IP options with EOL) 22991 */ 22992 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22993 ipha = (ipha_t *)mp->b_rptr; 22994 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 22995 mp->b_rptr[i] = IPOPT_EOL; 22996 /* 22997 * Make sure that src address isn't flagrantly invalid. 22998 * Not all broadcast address checking for the src address 22999 * is possible, since we don't know the netmask of the src 23000 * addr. No check for destination address is done, since 23001 * IP will not pass up a packet with a broadcast dest 23002 * address to TCP. Similar checks are done below for IPv6. 23003 */ 23004 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 23005 CLASSD(ipha->ipha_src)) { 23006 freemsg(ipsec_mp); 23007 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 23008 return; 23009 } 23010 } else { 23011 ip6h = (ip6_t *)mp->b_rptr; 23012 23013 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 23014 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 23015 freemsg(ipsec_mp); 23016 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); 23017 return; 23018 } 23019 23020 /* Remove any extension headers assuming partial overlay */ 23021 if (ip_hdr_len > IPV6_HDR_LEN) { 23022 uint8_t *to; 23023 23024 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 23025 ovbcopy(ip6h, to, IPV6_HDR_LEN); 23026 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 23027 ip_hdr_len = IPV6_HDR_LEN; 23028 ip6h = (ip6_t *)mp->b_rptr; 23029 ip6h->ip6_nxt = IPPROTO_TCP; 23030 } 23031 } 23032 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 23033 if (tcph->th_flags[0] & TH_RST) { 23034 freemsg(ipsec_mp); 23035 return; 23036 } 23037 tcph->th_offset_and_rsrvd[0] = (5 << 4); 23038 len = ip_hdr_len + sizeof (tcph_t); 23039 mp->b_wptr = &mp->b_rptr[len]; 23040 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 23041 ipha->ipha_length = htons(len); 23042 /* Swap addresses */ 23043 v4addr = ipha->ipha_src; 23044 ipha->ipha_src = ipha->ipha_dst; 23045 ipha->ipha_dst = v4addr; 23046 ipha->ipha_ident = 0; 23047 ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 23048 addr_len = IP_ADDR_LEN; 23049 addr = &v4addr; 23050 } else { 23051 /* No ip6i_t in this case */ 23052 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 23053 /* Swap addresses */ 23054 v6addr = ip6h->ip6_src; 23055 ip6h->ip6_src = ip6h->ip6_dst; 23056 ip6h->ip6_dst = v6addr; 23057 ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; 23058 addr_len = IPV6_ADDR_LEN; 23059 addr = &v6addr; 23060 } 23061 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 23062 U32_TO_BE32(ack, tcph->th_ack); 23063 U32_TO_BE32(seq, tcph->th_seq); 23064 U16_TO_BE16(0, tcph->th_win); 23065 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 23066 tcph->th_flags[0] = (uint8_t)ctl; 23067 if (ctl & TH_RST) { 23068 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 23069 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23070 } 23071 23072 /* IP trusts us to set up labels when required. */ 23073 if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL && 23074 crgetlabel(cr) != NULL) { 23075 int err; 23076 23077 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) 23078 err = tsol_check_label(cr, &mp, 23079 tcp->tcp_connp->conn_mac_exempt, 23080 tcps->tcps_netstack->netstack_ip); 23081 else 23082 err = tsol_check_label_v6(cr, &mp, 23083 tcp->tcp_connp->conn_mac_exempt, 23084 tcps->tcps_netstack->netstack_ip); 23085 if (mctl_present) 23086 ipsec_mp->b_cont = mp; 23087 else 23088 ipsec_mp = mp; 23089 if (err != 0) { 23090 freemsg(ipsec_mp); 23091 return; 23092 } 23093 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 23094 ipha = (ipha_t *)mp->b_rptr; 23095 } else { 23096 ip6h = (ip6_t *)mp->b_rptr; 23097 } 23098 } 23099 23100 if (mctl_present) { 23101 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 23102 23103 ASSERT(ii->ipsec_in_type == IPSEC_IN); 23104 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 23105 return; 23106 } 23107 } 23108 if (zoneid == ALL_ZONES) 23109 zoneid = GLOBAL_ZONEID; 23110 23111 /* Add the zoneid so ip_output routes it properly */ 23112 if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) { 23113 freemsg(ipsec_mp); 23114 return; 23115 } 23116 ipsec_mp = nmp; 23117 23118 /* 23119 * NOTE: one might consider tracing a TCP packet here, but 23120 * this function has no active TCP state and no tcp structure 23121 * that has a trace buffer. If we traced here, we would have 23122 * to keep a local trace buffer in tcp_record_trace(). 23123 * 23124 * TSol note: The mblk that contains the incoming packet was 23125 * reused by tcp_xmit_listener_reset, so it already contains 23126 * the right credentials and we don't need to call mblk_setcred. 23127 * Also the conn's cred is not right since it is associated 23128 * with tcps_g_q. 23129 */ 23130 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 23131 23132 /* 23133 * Tell IP to mark the IRE used for this destination temporary. 23134 * This way, we can limit our exposure to DoS attack because IP 23135 * creates an IRE for each destination. If there are too many, 23136 * the time to do any routing lookup will be extremely long. And 23137 * the lookup can be in interrupt context. 23138 * 23139 * Note that in normal circumstances, this marking should not 23140 * affect anything. It would be nice if only 1 message is 23141 * needed to inform IP that the IRE created for this RST should 23142 * not be added to the cache table. But there is currently 23143 * not such communication mechanism between TCP and IP. So 23144 * the best we can do now is to send the advice ioctl to IP 23145 * to mark the IRE temporary. 23146 */ 23147 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 23148 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 23149 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 23150 } 23151 } 23152 23153 /* 23154 * Initiate closedown sequence on an active connection. (May be called as 23155 * writer.) Return value zero for OK return, non-zero for error return. 23156 */ 23157 static int 23158 tcp_xmit_end(tcp_t *tcp) 23159 { 23160 ipic_t *ipic; 23161 mblk_t *mp; 23162 tcp_stack_t *tcps = tcp->tcp_tcps; 23163 23164 if (tcp->tcp_state < TCPS_SYN_RCVD || 23165 tcp->tcp_state > TCPS_CLOSE_WAIT) { 23166 /* 23167 * Invalid state, only states TCPS_SYN_RCVD, 23168 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 23169 */ 23170 return (-1); 23171 } 23172 23173 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 23174 tcp->tcp_valid_bits |= TCP_FSS_VALID; 23175 /* 23176 * If there is nothing more unsent, send the FIN now. 23177 * Otherwise, it will go out with the last segment. 23178 */ 23179 if (tcp->tcp_unsent == 0) { 23180 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 23181 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 23182 23183 if (mp) { 23184 tcp_send_data(tcp, tcp->tcp_wq, mp); 23185 } else { 23186 /* 23187 * Couldn't allocate msg. Pretend we got it out. 23188 * Wait for rexmit timeout. 23189 */ 23190 tcp->tcp_snxt = tcp->tcp_fss + 1; 23191 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 23192 } 23193 23194 /* 23195 * If needed, update tcp_rexmit_snxt as tcp_snxt is 23196 * changed. 23197 */ 23198 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 23199 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 23200 } 23201 } else { 23202 /* 23203 * If tcp->tcp_cork is set, then the data will not get sent, 23204 * so we have to check that and unset it first. 23205 */ 23206 if (tcp->tcp_cork) 23207 tcp->tcp_cork = B_FALSE; 23208 tcp_wput_data(tcp, NULL, B_FALSE); 23209 } 23210 23211 /* 23212 * If TCP does not get enough samples of RTT or tcp_rtt_updates 23213 * is 0, don't update the cache. 23214 */ 23215 if (tcps->tcps_rtt_updates == 0 || 23216 tcp->tcp_rtt_update < tcps->tcps_rtt_updates) 23217 return (0); 23218 23219 /* 23220 * NOTE: should not update if source routes i.e. if tcp_remote if 23221 * different from the destination. 23222 */ 23223 if (tcp->tcp_ipversion == IPV4_VERSION) { 23224 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 23225 return (0); 23226 } 23227 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 23228 &ipic); 23229 } else { 23230 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 23231 &tcp->tcp_ip6h->ip6_dst))) { 23232 return (0); 23233 } 23234 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 23235 &ipic); 23236 } 23237 23238 /* Record route attributes in the IRE for use by future connections. */ 23239 if (mp == NULL) 23240 return (0); 23241 23242 /* 23243 * We do not have a good algorithm to update ssthresh at this time. 23244 * So don't do any update. 23245 */ 23246 ipic->ipic_rtt = tcp->tcp_rtt_sa; 23247 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 23248 23249 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 23250 return (0); 23251 } 23252 23253 /* 23254 * Generate a "no listener here" RST in response to an "unknown" segment. 23255 * connp is set by caller when RST is in response to an unexpected 23256 * inbound packet for which there is active tcp state in the system. 23257 * Note that we are reusing the incoming mp to construct the outgoing RST. 23258 */ 23259 void 23260 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid, 23261 tcp_stack_t *tcps, conn_t *connp) 23262 { 23263 uchar_t *rptr; 23264 uint32_t seg_len; 23265 tcph_t *tcph; 23266 uint32_t seg_seq; 23267 uint32_t seg_ack; 23268 uint_t flags; 23269 mblk_t *ipsec_mp; 23270 ipha_t *ipha; 23271 ip6_t *ip6h; 23272 boolean_t mctl_present = B_FALSE; 23273 boolean_t check = B_TRUE; 23274 boolean_t policy_present; 23275 ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; 23276 23277 TCP_STAT(tcps, tcp_no_listener); 23278 23279 ipsec_mp = mp; 23280 23281 if (mp->b_datap->db_type == M_CTL) { 23282 ipsec_in_t *ii; 23283 23284 mctl_present = B_TRUE; 23285 mp = mp->b_cont; 23286 23287 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 23288 ASSERT(ii->ipsec_in_type == IPSEC_IN); 23289 if (ii->ipsec_in_dont_check) { 23290 check = B_FALSE; 23291 if (!ii->ipsec_in_secure) { 23292 freeb(ipsec_mp); 23293 mctl_present = B_FALSE; 23294 ipsec_mp = mp; 23295 } 23296 } 23297 } 23298 23299 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 23300 policy_present = ipss->ipsec_inbound_v4_policy_present; 23301 ipha = (ipha_t *)mp->b_rptr; 23302 ip6h = NULL; 23303 } else { 23304 policy_present = ipss->ipsec_inbound_v6_policy_present; 23305 ipha = NULL; 23306 ip6h = (ip6_t *)mp->b_rptr; 23307 } 23308 23309 if (check && policy_present) { 23310 /* 23311 * The conn_t parameter is NULL because we already know 23312 * nobody's home. 23313 */ 23314 ipsec_mp = ipsec_check_global_policy( 23315 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present, 23316 tcps->tcps_netstack); 23317 if (ipsec_mp == NULL) 23318 return; 23319 } 23320 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 23321 DTRACE_PROBE2( 23322 tx__ip__log__error__nolistener__tcp, 23323 char *, "Could not reply with RST to mp(1)", 23324 mblk_t *, mp); 23325 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 23326 freemsg(ipsec_mp); 23327 return; 23328 } 23329 23330 rptr = mp->b_rptr; 23331 23332 tcph = (tcph_t *)&rptr[ip_hdr_len]; 23333 seg_seq = BE32_TO_U32(tcph->th_seq); 23334 seg_ack = BE32_TO_U32(tcph->th_ack); 23335 flags = tcph->th_flags[0]; 23336 23337 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 23338 if (flags & TH_RST) { 23339 freemsg(ipsec_mp); 23340 } else if (flags & TH_ACK) { 23341 tcp_xmit_early_reset("no tcp, reset", 23342 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps, 23343 connp); 23344 } else { 23345 if (flags & TH_SYN) { 23346 seg_len++; 23347 } else { 23348 /* 23349 * Here we violate the RFC. Note that a normal 23350 * TCP will never send a segment without the ACK 23351 * flag, except for RST or SYN segment. This 23352 * segment is neither. Just drop it on the 23353 * floor. 23354 */ 23355 freemsg(ipsec_mp); 23356 tcps->tcps_rst_unsent++; 23357 return; 23358 } 23359 23360 tcp_xmit_early_reset("no tcp, reset/ack", 23361 ipsec_mp, 0, seg_seq + seg_len, 23362 TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp); 23363 } 23364 } 23365 23366 /* 23367 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 23368 * ip and tcp header ready to pass down to IP. If the mp passed in is 23369 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 23370 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 23371 * otherwise it will dup partial mblks.) 23372 * Otherwise, an appropriate ACK packet will be generated. This 23373 * routine is not usually called to send new data for the first time. It 23374 * is mostly called out of the timer for retransmits, and to generate ACKs. 23375 * 23376 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 23377 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 23378 * of the original mblk chain will be returned in *offset and *end_mp. 23379 */ 23380 mblk_t * 23381 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 23382 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 23383 boolean_t rexmit) 23384 { 23385 int data_length; 23386 int32_t off = 0; 23387 uint_t flags; 23388 mblk_t *mp1; 23389 mblk_t *mp2; 23390 uchar_t *rptr; 23391 tcph_t *tcph; 23392 int32_t num_sack_blk = 0; 23393 int32_t sack_opt_len = 0; 23394 tcp_stack_t *tcps = tcp->tcp_tcps; 23395 23396 /* Allocate for our maximum TCP header + link-level */ 23397 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 23398 tcps->tcps_wroff_xtra, BPRI_MED); 23399 if (!mp1) 23400 return (NULL); 23401 data_length = 0; 23402 23403 /* 23404 * Note that tcp_mss has been adjusted to take into account the 23405 * timestamp option if applicable. Because SACK options do not 23406 * appear in every TCP segments and they are of variable lengths, 23407 * they cannot be included in tcp_mss. Thus we need to calculate 23408 * the actual segment length when we need to send a segment which 23409 * includes SACK options. 23410 */ 23411 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23412 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23413 tcp->tcp_num_sack_blk); 23414 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23415 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23416 if (max_to_send + sack_opt_len > tcp->tcp_mss) 23417 max_to_send -= sack_opt_len; 23418 } 23419 23420 if (offset != NULL) { 23421 off = *offset; 23422 /* We use offset as an indicator that end_mp is not NULL. */ 23423 *end_mp = NULL; 23424 } 23425 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 23426 /* This could be faster with cooperation from downstream */ 23427 if (mp2 != mp1 && !sendall && 23428 data_length + (int)(mp->b_wptr - mp->b_rptr) > 23429 max_to_send) 23430 /* 23431 * Don't send the next mblk since the whole mblk 23432 * does not fit. 23433 */ 23434 break; 23435 mp2->b_cont = dupb(mp); 23436 mp2 = mp2->b_cont; 23437 if (!mp2) { 23438 freemsg(mp1); 23439 return (NULL); 23440 } 23441 mp2->b_rptr += off; 23442 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 23443 (uintptr_t)INT_MAX); 23444 23445 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 23446 if (data_length > max_to_send) { 23447 mp2->b_wptr -= data_length - max_to_send; 23448 data_length = max_to_send; 23449 off = mp2->b_wptr - mp->b_rptr; 23450 break; 23451 } else { 23452 off = 0; 23453 } 23454 } 23455 if (offset != NULL) { 23456 *offset = off; 23457 *end_mp = mp; 23458 } 23459 if (seg_len != NULL) { 23460 *seg_len = data_length; 23461 } 23462 23463 /* Update the latest receive window size in TCP header. */ 23464 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23465 tcp->tcp_tcph->th_win); 23466 23467 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23468 mp1->b_rptr = rptr; 23469 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 23470 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23471 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23472 U32_TO_ABE32(seq, tcph->th_seq); 23473 23474 /* 23475 * Use tcp_unsent to determine if the PUSH bit should be used assumes 23476 * that this function was called from tcp_wput_data. Thus, when called 23477 * to retransmit data the setting of the PUSH bit may appear some 23478 * what random in that it might get set when it should not. This 23479 * should not pose any performance issues. 23480 */ 23481 if (data_length != 0 && (tcp->tcp_unsent == 0 || 23482 tcp->tcp_unsent == data_length)) { 23483 flags = TH_ACK | TH_PUSH; 23484 } else { 23485 flags = TH_ACK; 23486 } 23487 23488 if (tcp->tcp_ecn_ok) { 23489 if (tcp->tcp_ecn_echo_on) 23490 flags |= TH_ECE; 23491 23492 /* 23493 * Only set ECT bit and ECN_CWR if a segment contains new data. 23494 * There is no TCP flow control for non-data segments, and 23495 * only data segment is transmitted reliably. 23496 */ 23497 if (data_length > 0 && !rexmit) { 23498 SET_ECT(tcp, rptr); 23499 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 23500 flags |= TH_CWR; 23501 tcp->tcp_ecn_cwr_sent = B_TRUE; 23502 } 23503 } 23504 } 23505 23506 if (tcp->tcp_valid_bits) { 23507 uint32_t u1; 23508 23509 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 23510 seq == tcp->tcp_iss) { 23511 uchar_t *wptr; 23512 23513 /* 23514 * If TCP_ISS_VALID and the seq number is tcp_iss, 23515 * TCP can only be in SYN-SENT, SYN-RCVD or 23516 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 23517 * our SYN is not ack'ed but the app closes this 23518 * TCP connection. 23519 */ 23520 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 23521 tcp->tcp_state == TCPS_SYN_RCVD || 23522 tcp->tcp_state == TCPS_FIN_WAIT_1); 23523 23524 /* 23525 * Tack on the MSS option. It is always needed 23526 * for both active and passive open. 23527 * 23528 * MSS option value should be interface MTU - MIN 23529 * TCP/IP header according to RFC 793 as it means 23530 * the maximum segment size TCP can receive. But 23531 * to get around some broken middle boxes/end hosts 23532 * out there, we allow the option value to be the 23533 * same as the MSS option size on the peer side. 23534 * In this way, the other side will not send 23535 * anything larger than they can receive. 23536 * 23537 * Note that for SYN_SENT state, the ndd param 23538 * tcp_use_smss_as_mss_opt has no effect as we 23539 * don't know the peer's MSS option value. So 23540 * the only case we need to take care of is in 23541 * SYN_RCVD state, which is done later. 23542 */ 23543 wptr = mp1->b_wptr; 23544 wptr[0] = TCPOPT_MAXSEG; 23545 wptr[1] = TCPOPT_MAXSEG_LEN; 23546 wptr += 2; 23547 u1 = tcp->tcp_if_mtu - 23548 (tcp->tcp_ipversion == IPV4_VERSION ? 23549 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 23550 TCP_MIN_HEADER_LENGTH; 23551 U16_TO_BE16(u1, wptr); 23552 mp1->b_wptr = wptr + 2; 23553 /* Update the offset to cover the additional word */ 23554 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23555 23556 /* 23557 * Note that the following way of filling in 23558 * TCP options are not optimal. Some NOPs can 23559 * be saved. But there is no need at this time 23560 * to optimize it. When it is needed, we will 23561 * do it. 23562 */ 23563 switch (tcp->tcp_state) { 23564 case TCPS_SYN_SENT: 23565 flags = TH_SYN; 23566 23567 if (tcp->tcp_snd_ts_ok) { 23568 uint32_t llbolt = (uint32_t)lbolt; 23569 23570 wptr = mp1->b_wptr; 23571 wptr[0] = TCPOPT_NOP; 23572 wptr[1] = TCPOPT_NOP; 23573 wptr[2] = TCPOPT_TSTAMP; 23574 wptr[3] = TCPOPT_TSTAMP_LEN; 23575 wptr += 4; 23576 U32_TO_BE32(llbolt, wptr); 23577 wptr += 4; 23578 ASSERT(tcp->tcp_ts_recent == 0); 23579 U32_TO_BE32(0L, wptr); 23580 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 23581 tcph->th_offset_and_rsrvd[0] += 23582 (3 << 4); 23583 } 23584 23585 /* 23586 * Set up all the bits to tell other side 23587 * we are ECN capable. 23588 */ 23589 if (tcp->tcp_ecn_ok) { 23590 flags |= (TH_ECE | TH_CWR); 23591 } 23592 break; 23593 case TCPS_SYN_RCVD: 23594 flags |= TH_SYN; 23595 23596 /* 23597 * Reset the MSS option value to be SMSS 23598 * We should probably add back the bytes 23599 * for timestamp option and IPsec. We 23600 * don't do that as this is a workaround 23601 * for broken middle boxes/end hosts, it 23602 * is better for us to be more cautious. 23603 * They may not take these things into 23604 * account in their SMSS calculation. Thus 23605 * the peer's calculated SMSS may be smaller 23606 * than what it can be. This should be OK. 23607 */ 23608 if (tcps->tcps_use_smss_as_mss_opt) { 23609 u1 = tcp->tcp_mss; 23610 U16_TO_BE16(u1, wptr); 23611 } 23612 23613 /* 23614 * If the other side is ECN capable, reply 23615 * that we are also ECN capable. 23616 */ 23617 if (tcp->tcp_ecn_ok) 23618 flags |= TH_ECE; 23619 break; 23620 default: 23621 /* 23622 * The above ASSERT() makes sure that this 23623 * must be FIN-WAIT-1 state. Our SYN has 23624 * not been ack'ed so retransmit it. 23625 */ 23626 flags |= TH_SYN; 23627 break; 23628 } 23629 23630 if (tcp->tcp_snd_ws_ok) { 23631 wptr = mp1->b_wptr; 23632 wptr[0] = TCPOPT_NOP; 23633 wptr[1] = TCPOPT_WSCALE; 23634 wptr[2] = TCPOPT_WS_LEN; 23635 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 23636 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 23637 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23638 } 23639 23640 if (tcp->tcp_snd_sack_ok) { 23641 wptr = mp1->b_wptr; 23642 wptr[0] = TCPOPT_NOP; 23643 wptr[1] = TCPOPT_NOP; 23644 wptr[2] = TCPOPT_SACK_PERMITTED; 23645 wptr[3] = TCPOPT_SACK_OK_LEN; 23646 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 23647 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23648 } 23649 23650 /* allocb() of adequate mblk assures space */ 23651 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 23652 (uintptr_t)INT_MAX); 23653 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 23654 /* 23655 * Get IP set to checksum on our behalf 23656 * Include the adjustment for a source route if any. 23657 */ 23658 u1 += tcp->tcp_sum; 23659 u1 = (u1 >> 16) + (u1 & 0xFFFF); 23660 U16_TO_BE16(u1, tcph->th_sum); 23661 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23662 } 23663 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 23664 (seq + data_length) == tcp->tcp_fss) { 23665 if (!tcp->tcp_fin_acked) { 23666 flags |= TH_FIN; 23667 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23668 } 23669 if (!tcp->tcp_fin_sent) { 23670 tcp->tcp_fin_sent = B_TRUE; 23671 switch (tcp->tcp_state) { 23672 case TCPS_SYN_RCVD: 23673 case TCPS_ESTABLISHED: 23674 tcp->tcp_state = TCPS_FIN_WAIT_1; 23675 break; 23676 case TCPS_CLOSE_WAIT: 23677 tcp->tcp_state = TCPS_LAST_ACK; 23678 break; 23679 } 23680 if (tcp->tcp_suna == tcp->tcp_snxt) 23681 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 23682 tcp->tcp_snxt = tcp->tcp_fss + 1; 23683 } 23684 } 23685 /* 23686 * Note the trick here. u1 is unsigned. When tcp_urg 23687 * is smaller than seq, u1 will become a very huge value. 23688 * So the comparison will fail. Also note that tcp_urp 23689 * should be positive, see RFC 793 page 17. 23690 */ 23691 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 23692 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 23693 u1 < (uint32_t)(64 * 1024)) { 23694 flags |= TH_URG; 23695 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 23696 U32_TO_ABE16(u1, tcph->th_urp); 23697 } 23698 } 23699 tcph->th_flags[0] = (uchar_t)flags; 23700 tcp->tcp_rack = tcp->tcp_rnxt; 23701 tcp->tcp_rack_cnt = 0; 23702 23703 if (tcp->tcp_snd_ts_ok) { 23704 if (tcp->tcp_state != TCPS_SYN_SENT) { 23705 uint32_t llbolt = (uint32_t)lbolt; 23706 23707 U32_TO_BE32(llbolt, 23708 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23709 U32_TO_BE32(tcp->tcp_ts_recent, 23710 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23711 } 23712 } 23713 23714 if (num_sack_blk > 0) { 23715 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23716 sack_blk_t *tmp; 23717 int32_t i; 23718 23719 wptr[0] = TCPOPT_NOP; 23720 wptr[1] = TCPOPT_NOP; 23721 wptr[2] = TCPOPT_SACK; 23722 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23723 sizeof (sack_blk_t); 23724 wptr += TCPOPT_REAL_SACK_LEN; 23725 23726 tmp = tcp->tcp_sack_list; 23727 for (i = 0; i < num_sack_blk; i++) { 23728 U32_TO_BE32(tmp[i].begin, wptr); 23729 wptr += sizeof (tcp_seq); 23730 U32_TO_BE32(tmp[i].end, wptr); 23731 wptr += sizeof (tcp_seq); 23732 } 23733 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 23734 } 23735 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 23736 data_length += (int)(mp1->b_wptr - rptr); 23737 if (tcp->tcp_ipversion == IPV4_VERSION) { 23738 ((ipha_t *)rptr)->ipha_length = htons(data_length); 23739 } else { 23740 ip6_t *ip6 = (ip6_t *)(rptr + 23741 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23742 sizeof (ip6i_t) : 0)); 23743 23744 ip6->ip6_plen = htons(data_length - 23745 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23746 } 23747 23748 /* 23749 * Prime pump for IP 23750 * Include the adjustment for a source route if any. 23751 */ 23752 data_length -= tcp->tcp_ip_hdr_len; 23753 data_length += tcp->tcp_sum; 23754 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23755 U16_TO_ABE16(data_length, tcph->th_sum); 23756 if (tcp->tcp_ip_forward_progress) { 23757 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23758 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23759 tcp->tcp_ip_forward_progress = B_FALSE; 23760 } 23761 return (mp1); 23762 } 23763 23764 /* This function handles the push timeout. */ 23765 void 23766 tcp_push_timer(void *arg) 23767 { 23768 conn_t *connp = (conn_t *)arg; 23769 tcp_t *tcp = connp->conn_tcp; 23770 tcp_stack_t *tcps = tcp->tcp_tcps; 23771 uint_t flags; 23772 sodirect_t *sodp; 23773 23774 TCP_DBGSTAT(tcps, tcp_push_timer_cnt); 23775 23776 ASSERT(tcp->tcp_listener == NULL); 23777 23778 /* 23779 * We need to plug synchronous streams during our drain to prevent 23780 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop(). 23781 */ 23782 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 23783 tcp->tcp_push_tid = 0; 23784 23785 SOD_PTR_ENTER(tcp, sodp); 23786 if (sodp != NULL) { 23787 flags = tcp_rcv_sod_wakeup(tcp, sodp); 23788 /* sod_wakeup() does the mutex_exit() */ 23789 } else if (tcp->tcp_rcv_list != NULL) { 23790 flags = tcp_rcv_drain(tcp->tcp_rq, tcp); 23791 } 23792 if (flags == TH_ACK_NEEDED) 23793 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 23794 23795 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 23796 } 23797 23798 /* 23799 * This function handles delayed ACK timeout. 23800 */ 23801 static void 23802 tcp_ack_timer(void *arg) 23803 { 23804 conn_t *connp = (conn_t *)arg; 23805 tcp_t *tcp = connp->conn_tcp; 23806 mblk_t *mp; 23807 tcp_stack_t *tcps = tcp->tcp_tcps; 23808 23809 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 23810 23811 tcp->tcp_ack_tid = 0; 23812 23813 if (tcp->tcp_fused) 23814 return; 23815 23816 /* 23817 * Do not send ACK if there is no outstanding unack'ed data. 23818 */ 23819 if (tcp->tcp_rnxt == tcp->tcp_rack) { 23820 return; 23821 } 23822 23823 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 23824 /* 23825 * Make sure we don't allow deferred ACKs to result in 23826 * timer-based ACKing. If we have held off an ACK 23827 * when there was more than an mss here, and the timer 23828 * goes off, we have to worry about the possibility 23829 * that the sender isn't doing slow-start, or is out 23830 * of step with us for some other reason. We fall 23831 * permanently back in the direction of 23832 * ACK-every-other-packet as suggested in RFC 1122. 23833 */ 23834 if (tcp->tcp_rack_abs_max > 2) 23835 tcp->tcp_rack_abs_max--; 23836 tcp->tcp_rack_cur_max = 2; 23837 } 23838 mp = tcp_ack_mp(tcp); 23839 23840 if (mp != NULL) { 23841 BUMP_LOCAL(tcp->tcp_obsegs); 23842 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 23843 BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); 23844 tcp_send_data(tcp, tcp->tcp_wq, mp); 23845 } 23846 } 23847 23848 23849 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 23850 static mblk_t * 23851 tcp_ack_mp(tcp_t *tcp) 23852 { 23853 uint32_t seq_no; 23854 tcp_stack_t *tcps = tcp->tcp_tcps; 23855 23856 /* 23857 * There are a few cases to be considered while setting the sequence no. 23858 * Essentially, we can come here while processing an unacceptable pkt 23859 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 23860 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 23861 * If we are here for a zero window probe, stick with suna. In all 23862 * other cases, we check if suna + swnd encompasses snxt and set 23863 * the sequence number to snxt, if so. If snxt falls outside the 23864 * window (the receiver probably shrunk its window), we will go with 23865 * suna + swnd, otherwise the sequence no will be unacceptable to the 23866 * receiver. 23867 */ 23868 if (tcp->tcp_zero_win_probe) { 23869 seq_no = tcp->tcp_suna; 23870 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 23871 ASSERT(tcp->tcp_swnd == 0); 23872 seq_no = tcp->tcp_snxt; 23873 } else { 23874 seq_no = SEQ_GT(tcp->tcp_snxt, 23875 (tcp->tcp_suna + tcp->tcp_swnd)) ? 23876 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 23877 } 23878 23879 if (tcp->tcp_valid_bits) { 23880 /* 23881 * For the complex case where we have to send some 23882 * controls (FIN or SYN), let tcp_xmit_mp do it. 23883 */ 23884 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 23885 NULL, B_FALSE)); 23886 } else { 23887 /* Generate a simple ACK */ 23888 int data_length; 23889 uchar_t *rptr; 23890 tcph_t *tcph; 23891 mblk_t *mp1; 23892 int32_t tcp_hdr_len; 23893 int32_t tcp_tcp_hdr_len; 23894 int32_t num_sack_blk = 0; 23895 int32_t sack_opt_len; 23896 23897 /* 23898 * Allocate space for TCP + IP headers 23899 * and link-level header 23900 */ 23901 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23902 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23903 tcp->tcp_num_sack_blk); 23904 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23905 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23906 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 23907 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 23908 } else { 23909 tcp_hdr_len = tcp->tcp_hdr_len; 23910 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 23911 } 23912 mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 23913 if (!mp1) 23914 return (NULL); 23915 23916 /* Update the latest receive window size in TCP header. */ 23917 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23918 tcp->tcp_tcph->th_win); 23919 /* copy in prototype TCP + IP header */ 23920 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23921 mp1->b_rptr = rptr; 23922 mp1->b_wptr = rptr + tcp_hdr_len; 23923 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23924 23925 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23926 23927 /* Set the TCP sequence number. */ 23928 U32_TO_ABE32(seq_no, tcph->th_seq); 23929 23930 /* Set up the TCP flag field. */ 23931 tcph->th_flags[0] = (uchar_t)TH_ACK; 23932 if (tcp->tcp_ecn_echo_on) 23933 tcph->th_flags[0] |= TH_ECE; 23934 23935 tcp->tcp_rack = tcp->tcp_rnxt; 23936 tcp->tcp_rack_cnt = 0; 23937 23938 /* fill in timestamp option if in use */ 23939 if (tcp->tcp_snd_ts_ok) { 23940 uint32_t llbolt = (uint32_t)lbolt; 23941 23942 U32_TO_BE32(llbolt, 23943 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23944 U32_TO_BE32(tcp->tcp_ts_recent, 23945 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23946 } 23947 23948 /* Fill in SACK options */ 23949 if (num_sack_blk > 0) { 23950 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23951 sack_blk_t *tmp; 23952 int32_t i; 23953 23954 wptr[0] = TCPOPT_NOP; 23955 wptr[1] = TCPOPT_NOP; 23956 wptr[2] = TCPOPT_SACK; 23957 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23958 sizeof (sack_blk_t); 23959 wptr += TCPOPT_REAL_SACK_LEN; 23960 23961 tmp = tcp->tcp_sack_list; 23962 for (i = 0; i < num_sack_blk; i++) { 23963 U32_TO_BE32(tmp[i].begin, wptr); 23964 wptr += sizeof (tcp_seq); 23965 U32_TO_BE32(tmp[i].end, wptr); 23966 wptr += sizeof (tcp_seq); 23967 } 23968 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 23969 << 4); 23970 } 23971 23972 if (tcp->tcp_ipversion == IPV4_VERSION) { 23973 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 23974 } else { 23975 /* Check for ip6i_t header in sticky hdrs */ 23976 ip6_t *ip6 = (ip6_t *)(rptr + 23977 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23978 sizeof (ip6i_t) : 0)); 23979 23980 ip6->ip6_plen = htons(tcp_hdr_len - 23981 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23982 } 23983 23984 /* 23985 * Prime pump for checksum calculation in IP. Include the 23986 * adjustment for a source route if any. 23987 */ 23988 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 23989 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23990 U16_TO_ABE16(data_length, tcph->th_sum); 23991 23992 if (tcp->tcp_ip_forward_progress) { 23993 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23994 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23995 tcp->tcp_ip_forward_progress = B_FALSE; 23996 } 23997 return (mp1); 23998 } 23999 } 24000 24001 /* 24002 * Hash list insertion routine for tcp_t structures. 24003 * Inserts entries with the ones bound to a specific IP address first 24004 * followed by those bound to INADDR_ANY. 24005 */ 24006 static void 24007 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 24008 { 24009 tcp_t **tcpp; 24010 tcp_t *tcpnext; 24011 24012 if (tcp->tcp_ptpbhn != NULL) { 24013 ASSERT(!caller_holds_lock); 24014 tcp_bind_hash_remove(tcp); 24015 } 24016 tcpp = &tbf->tf_tcp; 24017 if (!caller_holds_lock) { 24018 mutex_enter(&tbf->tf_lock); 24019 } else { 24020 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 24021 } 24022 tcpnext = tcpp[0]; 24023 if (tcpnext) { 24024 /* 24025 * If the new tcp bound to the INADDR_ANY address 24026 * and the first one in the list is not bound to 24027 * INADDR_ANY we skip all entries until we find the 24028 * first one bound to INADDR_ANY. 24029 * This makes sure that applications binding to a 24030 * specific address get preference over those binding to 24031 * INADDR_ANY. 24032 */ 24033 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 24034 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 24035 while ((tcpnext = tcpp[0]) != NULL && 24036 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 24037 tcpp = &(tcpnext->tcp_bind_hash); 24038 if (tcpnext) 24039 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 24040 } else 24041 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 24042 } 24043 tcp->tcp_bind_hash = tcpnext; 24044 tcp->tcp_ptpbhn = tcpp; 24045 tcpp[0] = tcp; 24046 if (!caller_holds_lock) 24047 mutex_exit(&tbf->tf_lock); 24048 } 24049 24050 /* 24051 * Hash list removal routine for tcp_t structures. 24052 */ 24053 static void 24054 tcp_bind_hash_remove(tcp_t *tcp) 24055 { 24056 tcp_t *tcpnext; 24057 kmutex_t *lockp; 24058 tcp_stack_t *tcps = tcp->tcp_tcps; 24059 24060 if (tcp->tcp_ptpbhn == NULL) 24061 return; 24062 24063 /* 24064 * Extract the lock pointer in case there are concurrent 24065 * hash_remove's for this instance. 24066 */ 24067 ASSERT(tcp->tcp_lport != 0); 24068 lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 24069 24070 ASSERT(lockp != NULL); 24071 mutex_enter(lockp); 24072 if (tcp->tcp_ptpbhn) { 24073 tcpnext = tcp->tcp_bind_hash; 24074 if (tcpnext) { 24075 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 24076 tcp->tcp_bind_hash = NULL; 24077 } 24078 *tcp->tcp_ptpbhn = tcpnext; 24079 tcp->tcp_ptpbhn = NULL; 24080 } 24081 mutex_exit(lockp); 24082 } 24083 24084 24085 /* 24086 * Hash list lookup routine for tcp_t structures. 24087 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 24088 */ 24089 static tcp_t * 24090 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 24091 { 24092 tf_t *tf; 24093 tcp_t *tcp; 24094 24095 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 24096 mutex_enter(&tf->tf_lock); 24097 for (tcp = tf->tf_tcp; tcp != NULL; 24098 tcp = tcp->tcp_acceptor_hash) { 24099 if (tcp->tcp_acceptor_id == id) { 24100 CONN_INC_REF(tcp->tcp_connp); 24101 mutex_exit(&tf->tf_lock); 24102 return (tcp); 24103 } 24104 } 24105 mutex_exit(&tf->tf_lock); 24106 return (NULL); 24107 } 24108 24109 24110 /* 24111 * Hash list insertion routine for tcp_t structures. 24112 */ 24113 void 24114 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 24115 { 24116 tf_t *tf; 24117 tcp_t **tcpp; 24118 tcp_t *tcpnext; 24119 tcp_stack_t *tcps = tcp->tcp_tcps; 24120 24121 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 24122 24123 if (tcp->tcp_ptpahn != NULL) 24124 tcp_acceptor_hash_remove(tcp); 24125 tcpp = &tf->tf_tcp; 24126 mutex_enter(&tf->tf_lock); 24127 tcpnext = tcpp[0]; 24128 if (tcpnext) 24129 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 24130 tcp->tcp_acceptor_hash = tcpnext; 24131 tcp->tcp_ptpahn = tcpp; 24132 tcpp[0] = tcp; 24133 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 24134 mutex_exit(&tf->tf_lock); 24135 } 24136 24137 /* 24138 * Hash list removal routine for tcp_t structures. 24139 */ 24140 static void 24141 tcp_acceptor_hash_remove(tcp_t *tcp) 24142 { 24143 tcp_t *tcpnext; 24144 kmutex_t *lockp; 24145 24146 /* 24147 * Extract the lock pointer in case there are concurrent 24148 * hash_remove's for this instance. 24149 */ 24150 lockp = tcp->tcp_acceptor_lockp; 24151 24152 if (tcp->tcp_ptpahn == NULL) 24153 return; 24154 24155 ASSERT(lockp != NULL); 24156 mutex_enter(lockp); 24157 if (tcp->tcp_ptpahn) { 24158 tcpnext = tcp->tcp_acceptor_hash; 24159 if (tcpnext) { 24160 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 24161 tcp->tcp_acceptor_hash = NULL; 24162 } 24163 *tcp->tcp_ptpahn = tcpnext; 24164 tcp->tcp_ptpahn = NULL; 24165 } 24166 mutex_exit(lockp); 24167 tcp->tcp_acceptor_lockp = NULL; 24168 } 24169 24170 /* Data for fast netmask macro used by tcp_hsp_lookup */ 24171 24172 static ipaddr_t netmasks[] = { 24173 IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET, 24174 IN_CLASSC_NET | IN_CLASSD_NET /* Class C,D,E */ 24175 }; 24176 24177 #define netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30]) 24178 24179 /* 24180 * XXX This routine should go away and instead we should use the metrics 24181 * associated with the routes to determine the default sndspace and rcvspace. 24182 */ 24183 static tcp_hsp_t * 24184 tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *tcps) 24185 { 24186 tcp_hsp_t *hsp = NULL; 24187 24188 /* Quick check without acquiring the lock. */ 24189 if (tcps->tcps_hsp_hash == NULL) 24190 return (NULL); 24191 24192 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24193 24194 /* This routine finds the best-matching HSP for address addr. */ 24195 24196 if (tcps->tcps_hsp_hash) { 24197 int i; 24198 ipaddr_t srchaddr; 24199 tcp_hsp_t *hsp_net; 24200 24201 /* We do three passes: host, network, and subnet. */ 24202 24203 srchaddr = addr; 24204 24205 for (i = 1; i <= 3; i++) { 24206 /* Look for exact match on srchaddr */ 24207 24208 hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(srchaddr)]; 24209 while (hsp) { 24210 if (hsp->tcp_hsp_vers == IPV4_VERSION && 24211 hsp->tcp_hsp_addr == srchaddr) 24212 break; 24213 hsp = hsp->tcp_hsp_next; 24214 } 24215 ASSERT(hsp == NULL || 24216 hsp->tcp_hsp_vers == IPV4_VERSION); 24217 24218 /* 24219 * If this is the first pass: 24220 * If we found a match, great, return it. 24221 * If not, search for the network on the second pass. 24222 */ 24223 24224 if (i == 1) 24225 if (hsp) 24226 break; 24227 else 24228 { 24229 srchaddr = addr & netmask(addr); 24230 continue; 24231 } 24232 24233 /* 24234 * If this is the second pass: 24235 * If we found a match, but there's a subnet mask, 24236 * save the match but try again using the subnet 24237 * mask on the third pass. 24238 * Otherwise, return whatever we found. 24239 */ 24240 24241 if (i == 2) { 24242 if (hsp && hsp->tcp_hsp_subnet) { 24243 hsp_net = hsp; 24244 srchaddr = addr & hsp->tcp_hsp_subnet; 24245 continue; 24246 } else { 24247 break; 24248 } 24249 } 24250 24251 /* 24252 * This must be the third pass. If we didn't find 24253 * anything, return the saved network HSP instead. 24254 */ 24255 24256 if (!hsp) 24257 hsp = hsp_net; 24258 } 24259 } 24260 24261 rw_exit(&tcps->tcps_hsp_lock); 24262 return (hsp); 24263 } 24264 24265 /* 24266 * XXX Equally broken as the IPv4 routine. Doesn't handle longest 24267 * match lookup. 24268 */ 24269 static tcp_hsp_t * 24270 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr, tcp_stack_t *tcps) 24271 { 24272 tcp_hsp_t *hsp = NULL; 24273 24274 /* Quick check without acquiring the lock. */ 24275 if (tcps->tcps_hsp_hash == NULL) 24276 return (NULL); 24277 24278 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24279 24280 /* This routine finds the best-matching HSP for address addr. */ 24281 24282 if (tcps->tcps_hsp_hash) { 24283 int i; 24284 in6_addr_t v6srchaddr; 24285 tcp_hsp_t *hsp_net; 24286 24287 /* We do three passes: host, network, and subnet. */ 24288 24289 v6srchaddr = *v6addr; 24290 24291 for (i = 1; i <= 3; i++) { 24292 /* Look for exact match on srchaddr */ 24293 24294 hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH( 24295 V4_PART_OF_V6(v6srchaddr))]; 24296 while (hsp) { 24297 if (hsp->tcp_hsp_vers == IPV6_VERSION && 24298 IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 24299 &v6srchaddr)) 24300 break; 24301 hsp = hsp->tcp_hsp_next; 24302 } 24303 24304 /* 24305 * If this is the first pass: 24306 * If we found a match, great, return it. 24307 * If not, search for the network on the second pass. 24308 */ 24309 24310 if (i == 1) 24311 if (hsp) 24312 break; 24313 else { 24314 /* Assume a 64 bit mask */ 24315 v6srchaddr.s6_addr32[0] = 24316 v6addr->s6_addr32[0]; 24317 v6srchaddr.s6_addr32[1] = 24318 v6addr->s6_addr32[1]; 24319 v6srchaddr.s6_addr32[2] = 0; 24320 v6srchaddr.s6_addr32[3] = 0; 24321 continue; 24322 } 24323 24324 /* 24325 * If this is the second pass: 24326 * If we found a match, but there's a subnet mask, 24327 * save the match but try again using the subnet 24328 * mask on the third pass. 24329 * Otherwise, return whatever we found. 24330 */ 24331 24332 if (i == 2) { 24333 ASSERT(hsp == NULL || 24334 hsp->tcp_hsp_vers == IPV6_VERSION); 24335 if (hsp && 24336 !IN6_IS_ADDR_UNSPECIFIED( 24337 &hsp->tcp_hsp_subnet_v6)) { 24338 hsp_net = hsp; 24339 V6_MASK_COPY(*v6addr, 24340 hsp->tcp_hsp_subnet_v6, v6srchaddr); 24341 continue; 24342 } else { 24343 break; 24344 } 24345 } 24346 24347 /* 24348 * This must be the third pass. If we didn't find 24349 * anything, return the saved network HSP instead. 24350 */ 24351 24352 if (!hsp) 24353 hsp = hsp_net; 24354 } 24355 } 24356 24357 rw_exit(&tcps->tcps_hsp_lock); 24358 return (hsp); 24359 } 24360 24361 /* 24362 * Type three generator adapted from the random() function in 4.4 BSD: 24363 */ 24364 24365 /* 24366 * Copyright (c) 1983, 1993 24367 * The Regents of the University of California. All rights reserved. 24368 * 24369 * Redistribution and use in source and binary forms, with or without 24370 * modification, are permitted provided that the following conditions 24371 * are met: 24372 * 1. Redistributions of source code must retain the above copyright 24373 * notice, this list of conditions and the following disclaimer. 24374 * 2. Redistributions in binary form must reproduce the above copyright 24375 * notice, this list of conditions and the following disclaimer in the 24376 * documentation and/or other materials provided with the distribution. 24377 * 3. All advertising materials mentioning features or use of this software 24378 * must display the following acknowledgement: 24379 * This product includes software developed by the University of 24380 * California, Berkeley and its contributors. 24381 * 4. Neither the name of the University nor the names of its contributors 24382 * may be used to endorse or promote products derived from this software 24383 * without specific prior written permission. 24384 * 24385 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24386 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24387 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24388 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24389 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24390 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24391 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24392 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24393 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24394 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24395 * SUCH DAMAGE. 24396 */ 24397 24398 /* Type 3 -- x**31 + x**3 + 1 */ 24399 #define DEG_3 31 24400 #define SEP_3 3 24401 24402 24403 /* Protected by tcp_random_lock */ 24404 static int tcp_randtbl[DEG_3 + 1]; 24405 24406 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 24407 static int *tcp_random_rptr = &tcp_randtbl[1]; 24408 24409 static int *tcp_random_state = &tcp_randtbl[1]; 24410 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 24411 24412 kmutex_t tcp_random_lock; 24413 24414 void 24415 tcp_random_init(void) 24416 { 24417 int i; 24418 hrtime_t hrt; 24419 time_t wallclock; 24420 uint64_t result; 24421 24422 /* 24423 * Use high-res timer and current time for seed. Gethrtime() returns 24424 * a longlong, which may contain resolution down to nanoseconds. 24425 * The current time will either be a 32-bit or a 64-bit quantity. 24426 * XOR the two together in a 64-bit result variable. 24427 * Convert the result to a 32-bit value by multiplying the high-order 24428 * 32-bits by the low-order 32-bits. 24429 */ 24430 24431 hrt = gethrtime(); 24432 (void) drv_getparm(TIME, &wallclock); 24433 result = (uint64_t)wallclock ^ (uint64_t)hrt; 24434 mutex_enter(&tcp_random_lock); 24435 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 24436 (result & 0xffffffff); 24437 24438 for (i = 1; i < DEG_3; i++) 24439 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 24440 + 12345; 24441 tcp_random_fptr = &tcp_random_state[SEP_3]; 24442 tcp_random_rptr = &tcp_random_state[0]; 24443 mutex_exit(&tcp_random_lock); 24444 for (i = 0; i < 10 * DEG_3; i++) 24445 (void) tcp_random(); 24446 } 24447 24448 /* 24449 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 24450 * This range is selected to be approximately centered on TCP_ISS / 2, 24451 * and easy to compute. We get this value by generating a 32-bit random 24452 * number, selecting out the high-order 17 bits, and then adding one so 24453 * that we never return zero. 24454 */ 24455 int 24456 tcp_random(void) 24457 { 24458 int i; 24459 24460 mutex_enter(&tcp_random_lock); 24461 *tcp_random_fptr += *tcp_random_rptr; 24462 24463 /* 24464 * The high-order bits are more random than the low-order bits, 24465 * so we select out the high-order 17 bits and add one so that 24466 * we never return zero. 24467 */ 24468 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 24469 if (++tcp_random_fptr >= tcp_random_end_ptr) { 24470 tcp_random_fptr = tcp_random_state; 24471 ++tcp_random_rptr; 24472 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 24473 tcp_random_rptr = tcp_random_state; 24474 24475 mutex_exit(&tcp_random_lock); 24476 return (i); 24477 } 24478 24479 /* 24480 * XXX This will go away when TPI is extended to send 24481 * info reqs to sockfs/timod ..... 24482 * Given a queue, set the max packet size for the write 24483 * side of the queue below stream head. This value is 24484 * cached on the stream head. 24485 * Returns 1 on success, 0 otherwise. 24486 */ 24487 static int 24488 setmaxps(queue_t *q, int maxpsz) 24489 { 24490 struct stdata *stp; 24491 queue_t *wq; 24492 stp = STREAM(q); 24493 24494 /* 24495 * At this point change of a queue parameter is not allowed 24496 * when a multiplexor is sitting on top. 24497 */ 24498 if (stp->sd_flag & STPLEX) 24499 return (0); 24500 24501 claimstr(stp->sd_wrq); 24502 wq = stp->sd_wrq->q_next; 24503 ASSERT(wq != NULL); 24504 (void) strqset(wq, QMAXPSZ, 0, maxpsz); 24505 releasestr(stp->sd_wrq); 24506 return (1); 24507 } 24508 24509 static int 24510 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 24511 int *t_errorp, int *sys_errorp) 24512 { 24513 int error; 24514 int is_absreq_failure; 24515 t_scalar_t *opt_lenp; 24516 t_scalar_t opt_offset; 24517 int prim_type; 24518 struct T_conn_req *tcreqp; 24519 struct T_conn_res *tcresp; 24520 cred_t *cr; 24521 24522 cr = DB_CREDDEF(mp, tcp->tcp_cred); 24523 24524 prim_type = ((union T_primitives *)mp->b_rptr)->type; 24525 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 24526 prim_type == T_CONN_RES); 24527 24528 switch (prim_type) { 24529 case T_CONN_REQ: 24530 tcreqp = (struct T_conn_req *)mp->b_rptr; 24531 opt_offset = tcreqp->OPT_offset; 24532 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 24533 break; 24534 case O_T_CONN_RES: 24535 case T_CONN_RES: 24536 tcresp = (struct T_conn_res *)mp->b_rptr; 24537 opt_offset = tcresp->OPT_offset; 24538 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 24539 break; 24540 } 24541 24542 *t_errorp = 0; 24543 *sys_errorp = 0; 24544 *do_disconnectp = 0; 24545 24546 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 24547 opt_offset, cr, &tcp_opt_obj, 24548 NULL, &is_absreq_failure); 24549 24550 switch (error) { 24551 case 0: /* no error */ 24552 ASSERT(is_absreq_failure == 0); 24553 return (0); 24554 case ENOPROTOOPT: 24555 *t_errorp = TBADOPT; 24556 break; 24557 case EACCES: 24558 *t_errorp = TACCES; 24559 break; 24560 default: 24561 *t_errorp = TSYSERR; *sys_errorp = error; 24562 break; 24563 } 24564 if (is_absreq_failure != 0) { 24565 /* 24566 * The connection request should get the local ack 24567 * T_OK_ACK and then a T_DISCON_IND. 24568 */ 24569 *do_disconnectp = 1; 24570 } 24571 return (-1); 24572 } 24573 24574 /* 24575 * Split this function out so that if the secret changes, I'm okay. 24576 * 24577 * Initialize the tcp_iss_cookie and tcp_iss_key. 24578 */ 24579 24580 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 24581 24582 static void 24583 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 24584 { 24585 struct { 24586 int32_t current_time; 24587 uint32_t randnum; 24588 uint16_t pad; 24589 uint8_t ether[6]; 24590 uint8_t passwd[PASSWD_SIZE]; 24591 } tcp_iss_cookie; 24592 time_t t; 24593 24594 /* 24595 * Start with the current absolute time. 24596 */ 24597 (void) drv_getparm(TIME, &t); 24598 tcp_iss_cookie.current_time = t; 24599 24600 /* 24601 * XXX - Need a more random number per RFC 1750, not this crap. 24602 * OTOH, if what follows is pretty random, then I'm in better shape. 24603 */ 24604 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 24605 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 24606 24607 /* 24608 * The cpu_type_info is pretty non-random. Ugggh. It does serve 24609 * as a good template. 24610 */ 24611 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 24612 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 24613 24614 /* 24615 * The pass-phrase. Normally this is supplied by user-called NDD. 24616 */ 24617 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 24618 24619 /* 24620 * See 4010593 if this section becomes a problem again, 24621 * but the local ethernet address is useful here. 24622 */ 24623 (void) localetheraddr(NULL, 24624 (struct ether_addr *)&tcp_iss_cookie.ether); 24625 24626 /* 24627 * Hash 'em all together. The MD5Final is called per-connection. 24628 */ 24629 mutex_enter(&tcps->tcps_iss_key_lock); 24630 MD5Init(&tcps->tcps_iss_key); 24631 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 24632 sizeof (tcp_iss_cookie)); 24633 mutex_exit(&tcps->tcps_iss_key_lock); 24634 } 24635 24636 /* 24637 * Set the RFC 1948 pass phrase 24638 */ 24639 /* ARGSUSED */ 24640 static int 24641 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 24642 cred_t *cr) 24643 { 24644 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 24645 24646 /* 24647 * Basically, value contains a new pass phrase. Pass it along! 24648 */ 24649 tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); 24650 return (0); 24651 } 24652 24653 /* ARGSUSED */ 24654 static int 24655 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 24656 { 24657 bzero(buf, sizeof (tcp_sack_info_t)); 24658 return (0); 24659 } 24660 24661 /* ARGSUSED */ 24662 static int 24663 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 24664 { 24665 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 24666 return (0); 24667 } 24668 24669 /* 24670 * Make sure we wait until the default queue is setup, yet allow 24671 * tcp_g_q_create() to open a TCP stream. 24672 * We need to allow tcp_g_q_create() do do an open 24673 * of tcp, hence we compare curhread. 24674 * All others have to wait until the tcps_g_q has been 24675 * setup. 24676 */ 24677 void 24678 tcp_g_q_setup(tcp_stack_t *tcps) 24679 { 24680 mutex_enter(&tcps->tcps_g_q_lock); 24681 if (tcps->tcps_g_q != NULL) { 24682 mutex_exit(&tcps->tcps_g_q_lock); 24683 return; 24684 } 24685 if (tcps->tcps_g_q_creator == NULL) { 24686 /* This thread will set it up */ 24687 tcps->tcps_g_q_creator = curthread; 24688 mutex_exit(&tcps->tcps_g_q_lock); 24689 tcp_g_q_create(tcps); 24690 mutex_enter(&tcps->tcps_g_q_lock); 24691 ASSERT(tcps->tcps_g_q_creator == curthread); 24692 tcps->tcps_g_q_creator = NULL; 24693 cv_signal(&tcps->tcps_g_q_cv); 24694 ASSERT(tcps->tcps_g_q != NULL); 24695 mutex_exit(&tcps->tcps_g_q_lock); 24696 return; 24697 } 24698 /* Everybody but the creator has to wait */ 24699 if (tcps->tcps_g_q_creator != curthread) { 24700 while (tcps->tcps_g_q == NULL) 24701 cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock); 24702 } 24703 mutex_exit(&tcps->tcps_g_q_lock); 24704 } 24705 24706 #define IP "ip" 24707 24708 #define TCP6DEV "/devices/pseudo/tcp6@0:tcp6" 24709 24710 /* 24711 * Create a default tcp queue here instead of in strplumb 24712 */ 24713 void 24714 tcp_g_q_create(tcp_stack_t *tcps) 24715 { 24716 int error; 24717 ldi_handle_t lh = NULL; 24718 ldi_ident_t li = NULL; 24719 int rval; 24720 cred_t *cr; 24721 major_t IP_MAJ; 24722 24723 #ifdef NS_DEBUG 24724 (void) printf("tcp_g_q_create()\n"); 24725 #endif 24726 24727 IP_MAJ = ddi_name_to_major(IP); 24728 24729 ASSERT(tcps->tcps_g_q_creator == curthread); 24730 24731 error = ldi_ident_from_major(IP_MAJ, &li); 24732 if (error) { 24733 #ifdef DEBUG 24734 printf("tcp_g_q_create: lyr ident get failed error %d\n", 24735 error); 24736 #endif 24737 return; 24738 } 24739 24740 cr = zone_get_kcred(netstackid_to_zoneid( 24741 tcps->tcps_netstack->netstack_stackid)); 24742 ASSERT(cr != NULL); 24743 /* 24744 * We set the tcp default queue to IPv6 because IPv4 falls 24745 * back to IPv6 when it can't find a client, but 24746 * IPv6 does not fall back to IPv4. 24747 */ 24748 error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li); 24749 if (error) { 24750 #ifdef DEBUG 24751 printf("tcp_g_q_create: open of TCP6DEV failed error %d\n", 24752 error); 24753 #endif 24754 goto out; 24755 } 24756 24757 /* 24758 * This ioctl causes the tcp framework to cache a pointer to 24759 * this stream, so we don't want to close the stream after 24760 * this operation. 24761 * Use the kernel credentials that are for the zone we're in. 24762 */ 24763 error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q, 24764 (intptr_t)0, FKIOCTL, cr, &rval); 24765 if (error) { 24766 #ifdef DEBUG 24767 printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed " 24768 "error %d\n", error); 24769 #endif 24770 goto out; 24771 } 24772 tcps->tcps_g_q_lh = lh; /* For tcp_g_q_close */ 24773 lh = NULL; 24774 out: 24775 /* Close layered handles */ 24776 if (li) 24777 ldi_ident_release(li); 24778 /* Keep cred around until _inactive needs it */ 24779 tcps->tcps_g_q_cr = cr; 24780 } 24781 24782 /* 24783 * We keep tcp_g_q set until all other tcp_t's in the zone 24784 * has gone away, and then when tcp_g_q_inactive() is called 24785 * we clear it. 24786 */ 24787 void 24788 tcp_g_q_destroy(tcp_stack_t *tcps) 24789 { 24790 #ifdef NS_DEBUG 24791 (void) printf("tcp_g_q_destroy()for stack %d\n", 24792 tcps->tcps_netstack->netstack_stackid); 24793 #endif 24794 24795 if (tcps->tcps_g_q == NULL) { 24796 return; /* Nothing to cleanup */ 24797 } 24798 /* 24799 * Drop reference corresponding to the default queue. 24800 * This reference was added from tcp_open when the default queue 24801 * was created, hence we compensate for this extra drop in 24802 * tcp_g_q_close. If the refcnt drops to zero here it means 24803 * the default queue was the last one to be open, in which 24804 * case, then tcp_g_q_inactive will be 24805 * called as a result of the refrele. 24806 */ 24807 TCPS_REFRELE(tcps); 24808 } 24809 24810 /* 24811 * Called when last tcp_t drops reference count using TCPS_REFRELE. 24812 * Run by tcp_q_q_inactive using a taskq. 24813 */ 24814 static void 24815 tcp_g_q_close(void *arg) 24816 { 24817 tcp_stack_t *tcps = arg; 24818 int error; 24819 ldi_handle_t lh = NULL; 24820 ldi_ident_t li = NULL; 24821 cred_t *cr; 24822 major_t IP_MAJ; 24823 24824 IP_MAJ = ddi_name_to_major(IP); 24825 24826 #ifdef NS_DEBUG 24827 (void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n", 24828 tcps->tcps_netstack->netstack_stackid, 24829 tcps->tcps_netstack->netstack_refcnt); 24830 #endif 24831 lh = tcps->tcps_g_q_lh; 24832 if (lh == NULL) 24833 return; /* Nothing to cleanup */ 24834 24835 ASSERT(tcps->tcps_refcnt == 1); 24836 ASSERT(tcps->tcps_g_q != NULL); 24837 24838 error = ldi_ident_from_major(IP_MAJ, &li); 24839 if (error) { 24840 #ifdef DEBUG 24841 printf("tcp_g_q_inactive: lyr ident get failed error %d\n", 24842 error); 24843 #endif 24844 return; 24845 } 24846 24847 cr = tcps->tcps_g_q_cr; 24848 tcps->tcps_g_q_cr = NULL; 24849 ASSERT(cr != NULL); 24850 24851 /* 24852 * Make sure we can break the recursion when tcp_close decrements 24853 * the reference count causing g_q_inactive to be called again. 24854 */ 24855 tcps->tcps_g_q_lh = NULL; 24856 24857 /* close the default queue */ 24858 (void) ldi_close(lh, FREAD|FWRITE, cr); 24859 /* 24860 * At this point in time tcps and the rest of netstack_t might 24861 * have been deleted. 24862 */ 24863 tcps = NULL; 24864 24865 /* Close layered handles */ 24866 ldi_ident_release(li); 24867 crfree(cr); 24868 } 24869 24870 /* 24871 * Called when last tcp_t drops reference count using TCPS_REFRELE. 24872 * 24873 * Have to ensure that the ldi routines are not used by an 24874 * interrupt thread by using a taskq. 24875 */ 24876 void 24877 tcp_g_q_inactive(tcp_stack_t *tcps) 24878 { 24879 if (tcps->tcps_g_q_lh == NULL) 24880 return; /* Nothing to cleanup */ 24881 24882 ASSERT(tcps->tcps_refcnt == 0); 24883 TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */ 24884 24885 if (servicing_interrupt()) { 24886 (void) taskq_dispatch(tcp_taskq, tcp_g_q_close, 24887 (void *) tcps, TQ_SLEEP); 24888 } else { 24889 tcp_g_q_close(tcps); 24890 } 24891 } 24892 24893 /* 24894 * Called by IP when IP is loaded into the kernel 24895 */ 24896 void 24897 tcp_ddi_g_init(void) 24898 { 24899 tcp_timercache = kmem_cache_create("tcp_timercache", 24900 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 24901 NULL, NULL, NULL, NULL, NULL, 0); 24902 24903 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 24904 sizeof (tcp_sack_info_t), 0, 24905 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 24906 24907 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 24908 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 24909 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 24910 24911 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 24912 24913 /* Initialize the random number generator */ 24914 tcp_random_init(); 24915 24916 tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput); 24917 tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close); 24918 24919 /* A single callback independently of how many netstacks we have */ 24920 ip_squeue_init(tcp_squeue_add); 24921 24922 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 24923 24924 tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1, 24925 TASKQ_PREPOPULATE); 24926 24927 /* 24928 * We want to be informed each time a stack is created or 24929 * destroyed in the kernel, so we can maintain the 24930 * set of tcp_stack_t's. 24931 */ 24932 netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown, 24933 tcp_stack_fini); 24934 } 24935 24936 24937 /* 24938 * Initialize the TCP stack instance. 24939 */ 24940 static void * 24941 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 24942 { 24943 tcp_stack_t *tcps; 24944 tcpparam_t *pa; 24945 int i; 24946 24947 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 24948 tcps->tcps_netstack = ns; 24949 24950 /* Initialize locks */ 24951 rw_init(&tcps->tcps_hsp_lock, NULL, RW_DEFAULT, NULL); 24952 mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 24953 cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL); 24954 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 24955 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 24956 24957 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 24958 tcps->tcps_g_epriv_ports[0] = 2049; 24959 tcps->tcps_g_epriv_ports[1] = 4045; 24960 tcps->tcps_min_anonpriv_port = 512; 24961 24962 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 24963 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 24964 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 24965 TCP_FANOUT_SIZE, KM_SLEEP); 24966 24967 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 24968 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 24969 MUTEX_DEFAULT, NULL); 24970 } 24971 24972 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 24973 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 24974 MUTEX_DEFAULT, NULL); 24975 } 24976 24977 /* TCP's IPsec code calls the packet dropper. */ 24978 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 24979 24980 pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); 24981 tcps->tcps_params = pa; 24982 bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 24983 24984 (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, 24985 A_CNT(lcl_tcp_param_arr), tcps); 24986 24987 /* 24988 * Note: To really walk the device tree you need the devinfo 24989 * pointer to your device which is only available after probe/attach. 24990 * The following is safe only because it uses ddi_root_node() 24991 */ 24992 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 24993 tcp_opt_obj.odb_opt_arr_cnt); 24994 24995 /* 24996 * Initialize RFC 1948 secret values. This will probably be reset once 24997 * by the boot scripts. 24998 * 24999 * Use NULL name, as the name is caught by the new lockstats. 25000 * 25001 * Initialize with some random, non-guessable string, like the global 25002 * T_INFO_ACK. 25003 */ 25004 25005 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 25006 sizeof (tcp_g_t_info_ack), tcps); 25007 25008 tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); 25009 tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); 25010 25011 return (tcps); 25012 } 25013 25014 /* 25015 * Called when the IP module is about to be unloaded. 25016 */ 25017 void 25018 tcp_ddi_g_destroy(void) 25019 { 25020 tcp_g_kstat_fini(tcp_g_kstat); 25021 tcp_g_kstat = NULL; 25022 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 25023 25024 mutex_destroy(&tcp_random_lock); 25025 25026 kmem_cache_destroy(tcp_timercache); 25027 kmem_cache_destroy(tcp_sack_info_cache); 25028 kmem_cache_destroy(tcp_iphc_cache); 25029 25030 netstack_unregister(NS_TCP); 25031 taskq_destroy(tcp_taskq); 25032 } 25033 25034 /* 25035 * Shut down the TCP stack instance. 25036 */ 25037 /* ARGSUSED */ 25038 static void 25039 tcp_stack_shutdown(netstackid_t stackid, void *arg) 25040 { 25041 tcp_stack_t *tcps = (tcp_stack_t *)arg; 25042 25043 tcp_g_q_destroy(tcps); 25044 } 25045 25046 /* 25047 * Free the TCP stack instance. 25048 */ 25049 static void 25050 tcp_stack_fini(netstackid_t stackid, void *arg) 25051 { 25052 tcp_stack_t *tcps = (tcp_stack_t *)arg; 25053 int i; 25054 25055 nd_free(&tcps->tcps_g_nd); 25056 kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 25057 tcps->tcps_params = NULL; 25058 kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); 25059 tcps->tcps_wroff_xtra_param = NULL; 25060 kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t)); 25061 tcps->tcps_mdt_head_param = NULL; 25062 kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t)); 25063 tcps->tcps_mdt_tail_param = NULL; 25064 kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t)); 25065 tcps->tcps_mdt_max_pbufs_param = NULL; 25066 25067 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 25068 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 25069 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 25070 } 25071 25072 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 25073 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 25074 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 25075 } 25076 25077 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 25078 tcps->tcps_bind_fanout = NULL; 25079 25080 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE); 25081 tcps->tcps_acceptor_fanout = NULL; 25082 25083 mutex_destroy(&tcps->tcps_iss_key_lock); 25084 rw_destroy(&tcps->tcps_hsp_lock); 25085 mutex_destroy(&tcps->tcps_g_q_lock); 25086 cv_destroy(&tcps->tcps_g_q_cv); 25087 mutex_destroy(&tcps->tcps_epriv_port_lock); 25088 25089 ip_drop_unregister(&tcps->tcps_dropper); 25090 25091 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 25092 tcps->tcps_kstat = NULL; 25093 bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); 25094 25095 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 25096 tcps->tcps_mibkp = NULL; 25097 25098 kmem_free(tcps, sizeof (*tcps)); 25099 } 25100 25101 /* 25102 * Generate ISS, taking into account NDD changes may happen halfway through. 25103 * (If the iss is not zero, set it.) 25104 */ 25105 25106 static void 25107 tcp_iss_init(tcp_t *tcp) 25108 { 25109 MD5_CTX context; 25110 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 25111 uint32_t answer[4]; 25112 tcp_stack_t *tcps = tcp->tcp_tcps; 25113 25114 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 25115 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 25116 switch (tcps->tcps_strong_iss) { 25117 case 2: 25118 mutex_enter(&tcps->tcps_iss_key_lock); 25119 context = tcps->tcps_iss_key; 25120 mutex_exit(&tcps->tcps_iss_key_lock); 25121 arg.ports = tcp->tcp_ports; 25122 if (tcp->tcp_ipversion == IPV4_VERSION) { 25123 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 25124 &arg.src); 25125 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 25126 &arg.dst); 25127 } else { 25128 arg.src = tcp->tcp_ip6h->ip6_src; 25129 arg.dst = tcp->tcp_ip6h->ip6_dst; 25130 } 25131 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 25132 MD5Final((uchar_t *)answer, &context); 25133 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 25134 /* 25135 * Now that we've hashed into a unique per-connection sequence 25136 * space, add a random increment per strong_iss == 1. So I 25137 * guess we'll have to... 25138 */ 25139 /* FALLTHRU */ 25140 case 1: 25141 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 25142 break; 25143 default: 25144 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 25145 break; 25146 } 25147 tcp->tcp_valid_bits = TCP_ISS_VALID; 25148 tcp->tcp_fss = tcp->tcp_iss - 1; 25149 tcp->tcp_suna = tcp->tcp_iss; 25150 tcp->tcp_snxt = tcp->tcp_iss + 1; 25151 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 25152 tcp->tcp_csuna = tcp->tcp_snxt; 25153 } 25154 25155 /* 25156 * Exported routine for extracting active tcp connection status. 25157 * 25158 * This is used by the Solaris Cluster Networking software to 25159 * gather a list of connections that need to be forwarded to 25160 * specific nodes in the cluster when configuration changes occur. 25161 * 25162 * The callback is invoked for each tcp_t structure. Returning 25163 * non-zero from the callback routine terminates the search. 25164 */ 25165 int 25166 cl_tcp_walk_list(int (*cl_callback)(cl_tcp_info_t *, void *), 25167 void *arg) 25168 { 25169 netstack_handle_t nh; 25170 netstack_t *ns; 25171 int ret = 0; 25172 25173 netstack_next_init(&nh); 25174 while ((ns = netstack_next(&nh)) != NULL) { 25175 ret = cl_tcp_walk_list_stack(cl_callback, arg, 25176 ns->netstack_tcp); 25177 netstack_rele(ns); 25178 } 25179 netstack_next_fini(&nh); 25180 return (ret); 25181 } 25182 25183 static int 25184 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, 25185 tcp_stack_t *tcps) 25186 { 25187 tcp_t *tcp; 25188 cl_tcp_info_t cl_tcpi; 25189 connf_t *connfp; 25190 conn_t *connp; 25191 int i; 25192 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25193 25194 ASSERT(callback != NULL); 25195 25196 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25197 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 25198 connp = NULL; 25199 25200 while ((connp = 25201 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 25202 25203 tcp = connp->conn_tcp; 25204 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 25205 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 25206 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 25207 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 25208 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 25209 /* 25210 * The macros tcp_laddr and tcp_faddr give the IPv4 25211 * addresses. They are copied implicitly below as 25212 * mapped addresses. 25213 */ 25214 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 25215 if (tcp->tcp_ipversion == IPV4_VERSION) { 25216 cl_tcpi.cl_tcpi_faddr = 25217 tcp->tcp_ipha->ipha_dst; 25218 } else { 25219 cl_tcpi.cl_tcpi_faddr_v6 = 25220 tcp->tcp_ip6h->ip6_dst; 25221 } 25222 25223 /* 25224 * If the callback returns non-zero 25225 * we terminate the traversal. 25226 */ 25227 if ((*callback)(&cl_tcpi, arg) != 0) { 25228 CONN_DEC_REF(tcp->tcp_connp); 25229 return (1); 25230 } 25231 } 25232 } 25233 25234 return (0); 25235 } 25236 25237 /* 25238 * Macros used for accessing the different types of sockaddr 25239 * structures inside a tcp_ioc_abort_conn_t. 25240 */ 25241 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 25242 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 25243 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 25244 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 25245 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 25246 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 25247 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 25248 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 25249 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 25250 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 25251 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 25252 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 25253 25254 /* 25255 * Return the correct error code to mimic the behavior 25256 * of a connection reset. 25257 */ 25258 #define TCP_AC_GET_ERRCODE(state, err) { \ 25259 switch ((state)) { \ 25260 case TCPS_SYN_SENT: \ 25261 case TCPS_SYN_RCVD: \ 25262 (err) = ECONNREFUSED; \ 25263 break; \ 25264 case TCPS_ESTABLISHED: \ 25265 case TCPS_FIN_WAIT_1: \ 25266 case TCPS_FIN_WAIT_2: \ 25267 case TCPS_CLOSE_WAIT: \ 25268 (err) = ECONNRESET; \ 25269 break; \ 25270 case TCPS_CLOSING: \ 25271 case TCPS_LAST_ACK: \ 25272 case TCPS_TIME_WAIT: \ 25273 (err) = 0; \ 25274 break; \ 25275 default: \ 25276 (err) = ENXIO; \ 25277 } \ 25278 } 25279 25280 /* 25281 * Check if a tcp structure matches the info in acp. 25282 */ 25283 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 25284 (((acp)->ac_local.ss_family == AF_INET) ? \ 25285 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 25286 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 25287 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 25288 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 25289 (TCP_AC_V4LPORT((acp)) == 0 || \ 25290 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 25291 (TCP_AC_V4RPORT((acp)) == 0 || \ 25292 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 25293 (acp)->ac_start <= (tcp)->tcp_state && \ 25294 (acp)->ac_end >= (tcp)->tcp_state) : \ 25295 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 25296 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 25297 &(tcp)->tcp_ip_src_v6)) && \ 25298 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 25299 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 25300 &(tcp)->tcp_remote_v6)) && \ 25301 (TCP_AC_V6LPORT((acp)) == 0 || \ 25302 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 25303 (TCP_AC_V6RPORT((acp)) == 0 || \ 25304 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 25305 (acp)->ac_start <= (tcp)->tcp_state && \ 25306 (acp)->ac_end >= (tcp)->tcp_state)) 25307 25308 #define TCP_AC_MATCH(acp, tcp) \ 25309 (((acp)->ac_zoneid == ALL_ZONES || \ 25310 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 25311 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 25312 25313 /* 25314 * Build a message containing a tcp_ioc_abort_conn_t structure 25315 * which is filled in with information from acp and tp. 25316 */ 25317 static mblk_t * 25318 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 25319 { 25320 mblk_t *mp; 25321 tcp_ioc_abort_conn_t *tacp; 25322 25323 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 25324 if (mp == NULL) 25325 return (NULL); 25326 25327 mp->b_datap->db_type = M_CTL; 25328 25329 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 25330 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 25331 sizeof (uint32_t)); 25332 25333 tacp->ac_start = acp->ac_start; 25334 tacp->ac_end = acp->ac_end; 25335 tacp->ac_zoneid = acp->ac_zoneid; 25336 25337 if (acp->ac_local.ss_family == AF_INET) { 25338 tacp->ac_local.ss_family = AF_INET; 25339 tacp->ac_remote.ss_family = AF_INET; 25340 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 25341 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 25342 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 25343 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 25344 } else { 25345 tacp->ac_local.ss_family = AF_INET6; 25346 tacp->ac_remote.ss_family = AF_INET6; 25347 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 25348 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 25349 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 25350 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 25351 } 25352 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 25353 return (mp); 25354 } 25355 25356 /* 25357 * Print a tcp_ioc_abort_conn_t structure. 25358 */ 25359 static void 25360 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 25361 { 25362 char lbuf[128]; 25363 char rbuf[128]; 25364 sa_family_t af; 25365 in_port_t lport, rport; 25366 ushort_t logflags; 25367 25368 af = acp->ac_local.ss_family; 25369 25370 if (af == AF_INET) { 25371 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 25372 lbuf, 128); 25373 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 25374 rbuf, 128); 25375 lport = ntohs(TCP_AC_V4LPORT(acp)); 25376 rport = ntohs(TCP_AC_V4RPORT(acp)); 25377 } else { 25378 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 25379 lbuf, 128); 25380 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 25381 rbuf, 128); 25382 lport = ntohs(TCP_AC_V6LPORT(acp)); 25383 rport = ntohs(TCP_AC_V6RPORT(acp)); 25384 } 25385 25386 logflags = SL_TRACE | SL_NOTE; 25387 /* 25388 * Don't print this message to the console if the operation was done 25389 * to a non-global zone. 25390 */ 25391 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 25392 logflags |= SL_CONSOLE; 25393 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 25394 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 25395 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 25396 acp->ac_start, acp->ac_end); 25397 } 25398 25399 /* 25400 * Called inside tcp_rput when a message built using 25401 * tcp_ioctl_abort_build_msg is put into a queue. 25402 * Note that when we get here there is no wildcard in acp any more. 25403 */ 25404 static void 25405 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 25406 { 25407 tcp_ioc_abort_conn_t *acp; 25408 25409 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 25410 if (tcp->tcp_state <= acp->ac_end) { 25411 /* 25412 * If we get here, we are already on the correct 25413 * squeue. This ioctl follows the following path 25414 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 25415 * ->tcp_ioctl_abort->squeue_fill (if on a 25416 * different squeue) 25417 */ 25418 int errcode; 25419 25420 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 25421 (void) tcp_clean_death(tcp, errcode, 26); 25422 } 25423 freemsg(mp); 25424 } 25425 25426 /* 25427 * Abort all matching connections on a hash chain. 25428 */ 25429 static int 25430 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 25431 boolean_t exact, tcp_stack_t *tcps) 25432 { 25433 int nmatch, err = 0; 25434 tcp_t *tcp; 25435 MBLKP mp, last, listhead = NULL; 25436 conn_t *tconnp; 25437 connf_t *connfp; 25438 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25439 25440 connfp = &ipst->ips_ipcl_conn_fanout[index]; 25441 25442 startover: 25443 nmatch = 0; 25444 25445 mutex_enter(&connfp->connf_lock); 25446 for (tconnp = connfp->connf_head; tconnp != NULL; 25447 tconnp = tconnp->conn_next) { 25448 tcp = tconnp->conn_tcp; 25449 if (TCP_AC_MATCH(acp, tcp)) { 25450 CONN_INC_REF(tcp->tcp_connp); 25451 mp = tcp_ioctl_abort_build_msg(acp, tcp); 25452 if (mp == NULL) { 25453 err = ENOMEM; 25454 CONN_DEC_REF(tcp->tcp_connp); 25455 break; 25456 } 25457 mp->b_prev = (mblk_t *)tcp; 25458 25459 if (listhead == NULL) { 25460 listhead = mp; 25461 last = mp; 25462 } else { 25463 last->b_next = mp; 25464 last = mp; 25465 } 25466 nmatch++; 25467 if (exact) 25468 break; 25469 } 25470 25471 /* Avoid holding lock for too long. */ 25472 if (nmatch >= 500) 25473 break; 25474 } 25475 mutex_exit(&connfp->connf_lock); 25476 25477 /* Pass mp into the correct tcp */ 25478 while ((mp = listhead) != NULL) { 25479 listhead = listhead->b_next; 25480 tcp = (tcp_t *)mp->b_prev; 25481 mp->b_next = mp->b_prev = NULL; 25482 squeue_fill(tcp->tcp_connp->conn_sqp, mp, 25483 tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET); 25484 } 25485 25486 *count += nmatch; 25487 if (nmatch >= 500 && err == 0) 25488 goto startover; 25489 return (err); 25490 } 25491 25492 /* 25493 * Abort all connections that matches the attributes specified in acp. 25494 */ 25495 static int 25496 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) 25497 { 25498 sa_family_t af; 25499 uint32_t ports; 25500 uint16_t *pports; 25501 int err = 0, count = 0; 25502 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 25503 int index = -1; 25504 ushort_t logflags; 25505 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25506 25507 af = acp->ac_local.ss_family; 25508 25509 if (af == AF_INET) { 25510 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 25511 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 25512 pports = (uint16_t *)&ports; 25513 pports[1] = TCP_AC_V4LPORT(acp); 25514 pports[0] = TCP_AC_V4RPORT(acp); 25515 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 25516 } 25517 } else { 25518 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 25519 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 25520 pports = (uint16_t *)&ports; 25521 pports[1] = TCP_AC_V6LPORT(acp); 25522 pports[0] = TCP_AC_V6RPORT(acp); 25523 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 25524 } 25525 } 25526 25527 /* 25528 * For cases where remote addr, local port, and remote port are non- 25529 * wildcards, tcp_ioctl_abort_bucket will only be called once. 25530 */ 25531 if (index != -1) { 25532 err = tcp_ioctl_abort_bucket(acp, index, 25533 &count, exact, tcps); 25534 } else { 25535 /* 25536 * loop through all entries for wildcard case 25537 */ 25538 for (index = 0; 25539 index < ipst->ips_ipcl_conn_fanout_size; 25540 index++) { 25541 err = tcp_ioctl_abort_bucket(acp, index, 25542 &count, exact, tcps); 25543 if (err != 0) 25544 break; 25545 } 25546 } 25547 25548 logflags = SL_TRACE | SL_NOTE; 25549 /* 25550 * Don't print this message to the console if the operation was done 25551 * to a non-global zone. 25552 */ 25553 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 25554 logflags |= SL_CONSOLE; 25555 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 25556 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 25557 if (err == 0 && count == 0) 25558 err = ENOENT; 25559 return (err); 25560 } 25561 25562 /* 25563 * Process the TCP_IOC_ABORT_CONN ioctl request. 25564 */ 25565 static void 25566 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 25567 { 25568 int err; 25569 IOCP iocp; 25570 MBLKP mp1; 25571 sa_family_t laf, raf; 25572 tcp_ioc_abort_conn_t *acp; 25573 zone_t *zptr; 25574 conn_t *connp = Q_TO_CONN(q); 25575 zoneid_t zoneid = connp->conn_zoneid; 25576 tcp_t *tcp = connp->conn_tcp; 25577 tcp_stack_t *tcps = tcp->tcp_tcps; 25578 25579 iocp = (IOCP)mp->b_rptr; 25580 25581 if ((mp1 = mp->b_cont) == NULL || 25582 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 25583 err = EINVAL; 25584 goto out; 25585 } 25586 25587 /* check permissions */ 25588 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 25589 err = EPERM; 25590 goto out; 25591 } 25592 25593 if (mp1->b_cont != NULL) { 25594 freemsg(mp1->b_cont); 25595 mp1->b_cont = NULL; 25596 } 25597 25598 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 25599 laf = acp->ac_local.ss_family; 25600 raf = acp->ac_remote.ss_family; 25601 25602 /* check that a zone with the supplied zoneid exists */ 25603 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 25604 zptr = zone_find_by_id(zoneid); 25605 if (zptr != NULL) { 25606 zone_rele(zptr); 25607 } else { 25608 err = EINVAL; 25609 goto out; 25610 } 25611 } 25612 25613 /* 25614 * For exclusive stacks we set the zoneid to zero 25615 * to make TCP operate as if in the global zone. 25616 */ 25617 if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) 25618 acp->ac_zoneid = GLOBAL_ZONEID; 25619 25620 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 25621 acp->ac_start > acp->ac_end || laf != raf || 25622 (laf != AF_INET && laf != AF_INET6)) { 25623 err = EINVAL; 25624 goto out; 25625 } 25626 25627 tcp_ioctl_abort_dump(acp); 25628 err = tcp_ioctl_abort(acp, tcps); 25629 25630 out: 25631 if (mp1 != NULL) { 25632 freemsg(mp1); 25633 mp->b_cont = NULL; 25634 } 25635 25636 if (err != 0) 25637 miocnak(q, mp, 0, err); 25638 else 25639 miocack(q, mp, 0, 0); 25640 } 25641 25642 /* 25643 * tcp_time_wait_processing() handles processing of incoming packets when 25644 * the tcp is in the TIME_WAIT state. 25645 * A TIME_WAIT tcp that has an associated open TCP stream is never put 25646 * on the time wait list. 25647 */ 25648 void 25649 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 25650 uint32_t seg_ack, int seg_len, tcph_t *tcph) 25651 { 25652 int32_t bytes_acked; 25653 int32_t gap; 25654 int32_t rgap; 25655 tcp_opt_t tcpopt; 25656 uint_t flags; 25657 uint32_t new_swnd = 0; 25658 conn_t *connp; 25659 tcp_stack_t *tcps = tcp->tcp_tcps; 25660 25661 BUMP_LOCAL(tcp->tcp_ibsegs); 25662 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 25663 25664 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 25665 new_swnd = BE16_TO_U16(tcph->th_win) << 25666 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 25667 if (tcp->tcp_snd_ts_ok) { 25668 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 25669 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25670 tcp->tcp_rnxt, TH_ACK); 25671 goto done; 25672 } 25673 } 25674 gap = seg_seq - tcp->tcp_rnxt; 25675 rgap = tcp->tcp_rwnd - (gap + seg_len); 25676 if (gap < 0) { 25677 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 25678 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 25679 (seg_len > -gap ? -gap : seg_len)); 25680 seg_len += gap; 25681 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 25682 if (flags & TH_RST) { 25683 goto done; 25684 } 25685 if ((flags & TH_FIN) && seg_len == -1) { 25686 /* 25687 * When TCP receives a duplicate FIN in 25688 * TIME_WAIT state, restart the 2 MSL timer. 25689 * See page 73 in RFC 793. Make sure this TCP 25690 * is already on the TIME_WAIT list. If not, 25691 * just restart the timer. 25692 */ 25693 if (TCP_IS_DETACHED(tcp)) { 25694 if (tcp_time_wait_remove(tcp, NULL) == 25695 B_TRUE) { 25696 tcp_time_wait_append(tcp); 25697 TCP_DBGSTAT(tcps, 25698 tcp_rput_time_wait); 25699 } 25700 } else { 25701 ASSERT(tcp != NULL); 25702 TCP_TIMER_RESTART(tcp, 25703 tcps->tcps_time_wait_interval); 25704 } 25705 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25706 tcp->tcp_rnxt, TH_ACK); 25707 goto done; 25708 } 25709 flags |= TH_ACK_NEEDED; 25710 seg_len = 0; 25711 goto process_ack; 25712 } 25713 25714 /* Fix seg_seq, and chew the gap off the front. */ 25715 seg_seq = tcp->tcp_rnxt; 25716 } 25717 25718 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 25719 /* 25720 * Make sure that when we accept the connection, pick 25721 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 25722 * old connection. 25723 * 25724 * The next ISS generated is equal to tcp_iss_incr_extra 25725 * + ISS_INCR/2 + other components depending on the 25726 * value of tcp_strong_iss. We pre-calculate the new 25727 * ISS here and compare with tcp_snxt to determine if 25728 * we need to make adjustment to tcp_iss_incr_extra. 25729 * 25730 * The above calculation is ugly and is a 25731 * waste of CPU cycles... 25732 */ 25733 uint32_t new_iss = tcps->tcps_iss_incr_extra; 25734 int32_t adj; 25735 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25736 25737 switch (tcps->tcps_strong_iss) { 25738 case 2: { 25739 /* Add time and MD5 components. */ 25740 uint32_t answer[4]; 25741 struct { 25742 uint32_t ports; 25743 in6_addr_t src; 25744 in6_addr_t dst; 25745 } arg; 25746 MD5_CTX context; 25747 25748 mutex_enter(&tcps->tcps_iss_key_lock); 25749 context = tcps->tcps_iss_key; 25750 mutex_exit(&tcps->tcps_iss_key_lock); 25751 arg.ports = tcp->tcp_ports; 25752 /* We use MAPPED addresses in tcp_iss_init */ 25753 arg.src = tcp->tcp_ip_src_v6; 25754 if (tcp->tcp_ipversion == IPV4_VERSION) { 25755 IN6_IPADDR_TO_V4MAPPED( 25756 tcp->tcp_ipha->ipha_dst, 25757 &arg.dst); 25758 } else { 25759 arg.dst = 25760 tcp->tcp_ip6h->ip6_dst; 25761 } 25762 MD5Update(&context, (uchar_t *)&arg, 25763 sizeof (arg)); 25764 MD5Final((uchar_t *)answer, &context); 25765 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 25766 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 25767 break; 25768 } 25769 case 1: 25770 /* Add time component and min random (i.e. 1). */ 25771 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 25772 break; 25773 default: 25774 /* Add only time component. */ 25775 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 25776 break; 25777 } 25778 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 25779 /* 25780 * New ISS not guaranteed to be ISS_INCR/2 25781 * ahead of the current tcp_snxt, so add the 25782 * difference to tcp_iss_incr_extra. 25783 */ 25784 tcps->tcps_iss_incr_extra += adj; 25785 } 25786 /* 25787 * If tcp_clean_death() can not perform the task now, 25788 * drop the SYN packet and let the other side re-xmit. 25789 * Otherwise pass the SYN packet back in, since the 25790 * old tcp state has been cleaned up or freed. 25791 */ 25792 if (tcp_clean_death(tcp, 0, 27) == -1) 25793 goto done; 25794 /* 25795 * We will come back to tcp_rput_data 25796 * on the global queue. Packets destined 25797 * for the global queue will be checked 25798 * with global policy. But the policy for 25799 * this packet has already been checked as 25800 * this was destined for the detached 25801 * connection. We need to bypass policy 25802 * check this time by attaching a dummy 25803 * ipsec_in with ipsec_in_dont_check set. 25804 */ 25805 connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst); 25806 if (connp != NULL) { 25807 TCP_STAT(tcps, tcp_time_wait_syn_success); 25808 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 25809 return; 25810 } 25811 goto done; 25812 } 25813 25814 /* 25815 * rgap is the amount of stuff received out of window. A negative 25816 * value is the amount out of window. 25817 */ 25818 if (rgap < 0) { 25819 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 25820 UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); 25821 /* Fix seg_len and make sure there is something left. */ 25822 seg_len += rgap; 25823 if (seg_len <= 0) { 25824 if (flags & TH_RST) { 25825 goto done; 25826 } 25827 flags |= TH_ACK_NEEDED; 25828 seg_len = 0; 25829 goto process_ack; 25830 } 25831 } 25832 /* 25833 * Check whether we can update tcp_ts_recent. This test is 25834 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 25835 * Extensions for High Performance: An Update", Internet Draft. 25836 */ 25837 if (tcp->tcp_snd_ts_ok && 25838 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 25839 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 25840 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 25841 tcp->tcp_last_rcv_lbolt = lbolt64; 25842 } 25843 25844 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 25845 /* Always ack out of order packets */ 25846 flags |= TH_ACK_NEEDED; 25847 seg_len = 0; 25848 } else if (seg_len > 0) { 25849 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 25850 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 25851 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 25852 } 25853 if (flags & TH_RST) { 25854 (void) tcp_clean_death(tcp, 0, 28); 25855 goto done; 25856 } 25857 if (flags & TH_SYN) { 25858 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 25859 TH_RST|TH_ACK); 25860 /* 25861 * Do not delete the TCP structure if it is in 25862 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 25863 */ 25864 goto done; 25865 } 25866 process_ack: 25867 if (flags & TH_ACK) { 25868 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 25869 if (bytes_acked <= 0) { 25870 if (bytes_acked == 0 && seg_len == 0 && 25871 new_swnd == tcp->tcp_swnd) 25872 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 25873 } else { 25874 /* Acks something not sent */ 25875 flags |= TH_ACK_NEEDED; 25876 } 25877 } 25878 if (flags & TH_ACK_NEEDED) { 25879 /* 25880 * Time to send an ack for some reason. 25881 */ 25882 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25883 tcp->tcp_rnxt, TH_ACK); 25884 } 25885 done: 25886 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25887 DB_CKSUMSTART(mp) = 0; 25888 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 25889 TCP_STAT(tcps, tcp_time_wait_syn_fail); 25890 } 25891 freemsg(mp); 25892 } 25893 25894 /* 25895 * Allocate a T_SVR4_OPTMGMT_REQ. 25896 * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so 25897 * that tcp_rput_other can drop the acks. 25898 */ 25899 static mblk_t * 25900 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen) 25901 { 25902 mblk_t *mp; 25903 struct T_optmgmt_req *tor; 25904 struct opthdr *oh; 25905 uint_t size; 25906 char *optptr; 25907 25908 size = sizeof (*tor) + sizeof (*oh) + optlen; 25909 mp = allocb(size, BPRI_MED); 25910 if (mp == NULL) 25911 return (NULL); 25912 25913 mp->b_wptr += size; 25914 mp->b_datap->db_type = M_PROTO; 25915 tor = (struct T_optmgmt_req *)mp->b_rptr; 25916 tor->PRIM_type = T_SVR4_OPTMGMT_REQ; 25917 tor->MGMT_flags = T_NEGOTIATE; 25918 tor->OPT_length = sizeof (*oh) + optlen; 25919 tor->OPT_offset = (t_scalar_t)sizeof (*tor); 25920 25921 oh = (struct opthdr *)&tor[1]; 25922 oh->level = level; 25923 oh->name = cmd; 25924 oh->len = optlen; 25925 if (optlen != 0) { 25926 optptr = (char *)&oh[1]; 25927 bcopy(opt, optptr, optlen); 25928 } 25929 return (mp); 25930 } 25931 25932 /* 25933 * TCP Timers Implementation. 25934 */ 25935 timeout_id_t 25936 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 25937 { 25938 mblk_t *mp; 25939 tcp_timer_t *tcpt; 25940 tcp_t *tcp = connp->conn_tcp; 25941 tcp_stack_t *tcps = tcp->tcp_tcps; 25942 25943 ASSERT(connp->conn_sqp != NULL); 25944 25945 TCP_DBGSTAT(tcps, tcp_timeout_calls); 25946 25947 if (tcp->tcp_timercache == NULL) { 25948 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 25949 } else { 25950 TCP_DBGSTAT(tcps, tcp_timeout_cached_alloc); 25951 mp = tcp->tcp_timercache; 25952 tcp->tcp_timercache = mp->b_next; 25953 mp->b_next = NULL; 25954 ASSERT(mp->b_wptr == NULL); 25955 } 25956 25957 CONN_INC_REF(connp); 25958 tcpt = (tcp_timer_t *)mp->b_rptr; 25959 tcpt->connp = connp; 25960 tcpt->tcpt_proc = f; 25961 /* 25962 * TCP timers are normal timeouts. Plus, they do not require more than 25963 * a 10 millisecond resolution. By choosing a coarser resolution and by 25964 * rounding up the expiration to the next resolution boundary, we can 25965 * batch timers in the callout subsystem to make TCP timers more 25966 * efficient. The roundup also protects short timers from expiring too 25967 * early before they have a chance to be cancelled. 25968 */ 25969 tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp, 25970 TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP); 25971 25972 return ((timeout_id_t)mp); 25973 } 25974 25975 static void 25976 tcp_timer_callback(void *arg) 25977 { 25978 mblk_t *mp = (mblk_t *)arg; 25979 tcp_timer_t *tcpt; 25980 conn_t *connp; 25981 25982 tcpt = (tcp_timer_t *)mp->b_rptr; 25983 connp = tcpt->connp; 25984 squeue_fill(connp->conn_sqp, mp, 25985 tcp_timer_handler, connp, SQTAG_TCP_TIMER); 25986 } 25987 25988 static void 25989 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 25990 { 25991 tcp_timer_t *tcpt; 25992 conn_t *connp = (conn_t *)arg; 25993 tcp_t *tcp = connp->conn_tcp; 25994 25995 tcpt = (tcp_timer_t *)mp->b_rptr; 25996 ASSERT(connp == tcpt->connp); 25997 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 25998 25999 /* 26000 * If the TCP has reached the closed state, don't proceed any 26001 * further. This TCP logically does not exist on the system. 26002 * tcpt_proc could for example access queues, that have already 26003 * been qprocoff'ed off. Also see comments at the start of tcp_input 26004 */ 26005 if (tcp->tcp_state != TCPS_CLOSED) { 26006 (*tcpt->tcpt_proc)(connp); 26007 } else { 26008 tcp->tcp_timer_tid = 0; 26009 } 26010 tcp_timer_free(connp->conn_tcp, mp); 26011 } 26012 26013 /* 26014 * There is potential race with untimeout and the handler firing at the same 26015 * time. The mblock may be freed by the handler while we are trying to use 26016 * it. But since both should execute on the same squeue, this race should not 26017 * occur. 26018 */ 26019 clock_t 26020 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 26021 { 26022 mblk_t *mp = (mblk_t *)id; 26023 tcp_timer_t *tcpt; 26024 clock_t delta; 26025 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 26026 26027 TCP_DBGSTAT(tcps, tcp_timeout_cancel_reqs); 26028 26029 if (mp == NULL) 26030 return (-1); 26031 26032 tcpt = (tcp_timer_t *)mp->b_rptr; 26033 ASSERT(tcpt->connp == connp); 26034 26035 delta = untimeout_default(tcpt->tcpt_tid, 0); 26036 26037 if (delta >= 0) { 26038 TCP_DBGSTAT(tcps, tcp_timeout_canceled); 26039 tcp_timer_free(connp->conn_tcp, mp); 26040 CONN_DEC_REF(connp); 26041 } 26042 26043 return (delta); 26044 } 26045 26046 /* 26047 * Allocate space for the timer event. The allocation looks like mblk, but it is 26048 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 26049 * 26050 * Dealing with failures: If we can't allocate from the timer cache we try 26051 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 26052 * points to b_rptr. 26053 * If we can't allocate anything using allocb_tryhard(), we perform a last 26054 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 26055 * save the actual allocation size in b_datap. 26056 */ 26057 mblk_t * 26058 tcp_timermp_alloc(int kmflags) 26059 { 26060 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 26061 kmflags & ~KM_PANIC); 26062 26063 if (mp != NULL) { 26064 mp->b_next = mp->b_prev = NULL; 26065 mp->b_rptr = (uchar_t *)(&mp[1]); 26066 mp->b_wptr = NULL; 26067 mp->b_datap = NULL; 26068 mp->b_queue = NULL; 26069 mp->b_cont = NULL; 26070 } else if (kmflags & KM_PANIC) { 26071 /* 26072 * Failed to allocate memory for the timer. Try allocating from 26073 * dblock caches. 26074 */ 26075 /* ipclassifier calls this from a constructor - hence no tcps */ 26076 TCP_G_STAT(tcp_timermp_allocfail); 26077 mp = allocb_tryhard(sizeof (tcp_timer_t)); 26078 if (mp == NULL) { 26079 size_t size = 0; 26080 /* 26081 * Memory is really low. Try tryhard allocation. 26082 * 26083 * ipclassifier calls this from a constructor - 26084 * hence no tcps 26085 */ 26086 TCP_G_STAT(tcp_timermp_allocdblfail); 26087 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 26088 sizeof (tcp_timer_t), &size, kmflags); 26089 mp->b_rptr = (uchar_t *)(&mp[1]); 26090 mp->b_next = mp->b_prev = NULL; 26091 mp->b_wptr = (uchar_t *)-1; 26092 mp->b_datap = (dblk_t *)size; 26093 mp->b_queue = NULL; 26094 mp->b_cont = NULL; 26095 } 26096 ASSERT(mp->b_wptr != NULL); 26097 } 26098 /* ipclassifier calls this from a constructor - hence no tcps */ 26099 TCP_G_DBGSTAT(tcp_timermp_alloced); 26100 26101 return (mp); 26102 } 26103 26104 /* 26105 * Free per-tcp timer cache. 26106 * It can only contain entries from tcp_timercache. 26107 */ 26108 void 26109 tcp_timermp_free(tcp_t *tcp) 26110 { 26111 mblk_t *mp; 26112 26113 while ((mp = tcp->tcp_timercache) != NULL) { 26114 ASSERT(mp->b_wptr == NULL); 26115 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 26116 kmem_cache_free(tcp_timercache, mp); 26117 } 26118 } 26119 26120 /* 26121 * Free timer event. Put it on the per-tcp timer cache if there is not too many 26122 * events there already (currently at most two events are cached). 26123 * If the event is not allocated from the timer cache, free it right away. 26124 */ 26125 static void 26126 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 26127 { 26128 mblk_t *mp1 = tcp->tcp_timercache; 26129 tcp_stack_t *tcps = tcp->tcp_tcps; 26130 26131 if (mp->b_wptr != NULL) { 26132 /* 26133 * This allocation is not from a timer cache, free it right 26134 * away. 26135 */ 26136 if (mp->b_wptr != (uchar_t *)-1) 26137 freeb(mp); 26138 else 26139 kmem_free(mp, (size_t)mp->b_datap); 26140 } else if (mp1 == NULL || mp1->b_next == NULL) { 26141 /* Cache this timer block for future allocations */ 26142 mp->b_rptr = (uchar_t *)(&mp[1]); 26143 mp->b_next = mp1; 26144 tcp->tcp_timercache = mp; 26145 } else { 26146 kmem_cache_free(tcp_timercache, mp); 26147 TCP_DBGSTAT(tcps, tcp_timermp_freed); 26148 } 26149 } 26150 26151 /* 26152 * End of TCP Timers implementation. 26153 */ 26154 26155 /* 26156 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 26157 * on the specified backing STREAMS q. Note, the caller may make the 26158 * decision to call based on the tcp_t.tcp_flow_stopped value which 26159 * when check outside the q's lock is only an advisory check ... 26160 */ 26161 26162 void 26163 tcp_setqfull(tcp_t *tcp) 26164 { 26165 queue_t *q = tcp->tcp_wq; 26166 tcp_stack_t *tcps = tcp->tcp_tcps; 26167 26168 if (!(q->q_flag & QFULL)) { 26169 mutex_enter(QLOCK(q)); 26170 if (!(q->q_flag & QFULL)) { 26171 /* still need to set QFULL */ 26172 q->q_flag |= QFULL; 26173 tcp->tcp_flow_stopped = B_TRUE; 26174 mutex_exit(QLOCK(q)); 26175 TCP_STAT(tcps, tcp_flwctl_on); 26176 } else { 26177 mutex_exit(QLOCK(q)); 26178 } 26179 } 26180 } 26181 26182 void 26183 tcp_clrqfull(tcp_t *tcp) 26184 { 26185 queue_t *q = tcp->tcp_wq; 26186 26187 if (q->q_flag & QFULL) { 26188 mutex_enter(QLOCK(q)); 26189 if (q->q_flag & QFULL) { 26190 q->q_flag &= ~QFULL; 26191 tcp->tcp_flow_stopped = B_FALSE; 26192 mutex_exit(QLOCK(q)); 26193 if (q->q_flag & QWANTW) 26194 qbackenable(q, 0); 26195 } else { 26196 mutex_exit(QLOCK(q)); 26197 } 26198 } 26199 } 26200 26201 26202 /* 26203 * kstats related to squeues i.e. not per IP instance 26204 */ 26205 static void * 26206 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) 26207 { 26208 kstat_t *ksp; 26209 26210 tcp_g_stat_t template = { 26211 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 26212 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 26213 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 26214 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 26215 }; 26216 26217 ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", 26218 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 26219 KSTAT_FLAG_VIRTUAL); 26220 26221 if (ksp == NULL) 26222 return (NULL); 26223 26224 bcopy(&template, tcp_g_statp, sizeof (template)); 26225 ksp->ks_data = (void *)tcp_g_statp; 26226 26227 kstat_install(ksp); 26228 return (ksp); 26229 } 26230 26231 static void 26232 tcp_g_kstat_fini(kstat_t *ksp) 26233 { 26234 if (ksp != NULL) { 26235 kstat_delete(ksp); 26236 } 26237 } 26238 26239 26240 static void * 26241 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) 26242 { 26243 kstat_t *ksp; 26244 26245 tcp_stat_t template = { 26246 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 26247 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 26248 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 26249 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 26250 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 26251 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 26252 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 26253 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 26254 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 26255 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 26256 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 26257 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 26258 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 26259 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 26260 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 26261 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 26262 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 26263 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 26264 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 26265 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 26266 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 26267 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 26268 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 26269 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 26270 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 26271 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 26272 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 26273 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 26274 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 26275 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 26276 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 26277 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 26278 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 26279 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 26280 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 26281 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 26282 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 26283 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 26284 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 26285 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 26286 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 26287 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 26288 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 26289 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 26290 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 26291 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 26292 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 26293 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 26294 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 26295 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 26296 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 26297 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 26298 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 26299 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 26300 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 26301 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 26302 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 26303 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 26304 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 26305 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 26306 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 26307 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 26308 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 26309 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 26310 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 26311 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 26312 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 26313 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 26314 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 26315 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 26316 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 26317 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 26318 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 26319 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 26320 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 26321 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 26322 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 26323 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 26324 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 26325 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 26326 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 26327 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 26328 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 26329 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 26330 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 26331 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 26332 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 26333 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 26334 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 26335 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 26336 }; 26337 26338 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", 26339 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 26340 KSTAT_FLAG_VIRTUAL, stackid); 26341 26342 if (ksp == NULL) 26343 return (NULL); 26344 26345 bcopy(&template, tcps_statisticsp, sizeof (template)); 26346 ksp->ks_data = (void *)tcps_statisticsp; 26347 ksp->ks_private = (void *)(uintptr_t)stackid; 26348 26349 kstat_install(ksp); 26350 return (ksp); 26351 } 26352 26353 static void 26354 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 26355 { 26356 if (ksp != NULL) { 26357 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 26358 kstat_delete_netstack(ksp, stackid); 26359 } 26360 } 26361 26362 /* 26363 * TCP Kstats implementation 26364 */ 26365 static void * 26366 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) 26367 { 26368 kstat_t *ksp; 26369 26370 tcp_named_kstat_t template = { 26371 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 26372 { "rtoMin", KSTAT_DATA_INT32, 0 }, 26373 { "rtoMax", KSTAT_DATA_INT32, 0 }, 26374 { "maxConn", KSTAT_DATA_INT32, 0 }, 26375 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 26376 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 26377 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 26378 { "estabResets", KSTAT_DATA_UINT32, 0 }, 26379 { "currEstab", KSTAT_DATA_UINT32, 0 }, 26380 { "inSegs", KSTAT_DATA_UINT64, 0 }, 26381 { "outSegs", KSTAT_DATA_UINT64, 0 }, 26382 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 26383 { "connTableSize", KSTAT_DATA_INT32, 0 }, 26384 { "outRsts", KSTAT_DATA_UINT32, 0 }, 26385 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 26386 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 26387 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 26388 { "outAck", KSTAT_DATA_UINT32, 0 }, 26389 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 26390 { "outUrg", KSTAT_DATA_UINT32, 0 }, 26391 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 26392 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 26393 { "outControl", KSTAT_DATA_UINT32, 0 }, 26394 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 26395 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 26396 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 26397 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 26398 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 26399 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 26400 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 26401 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 26402 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 26403 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 26404 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 26405 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 26406 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 26407 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 26408 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 26409 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 26410 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 26411 { "inClosed", KSTAT_DATA_UINT32, 0 }, 26412 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 26413 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 26414 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 26415 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 26416 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 26417 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 26418 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 26419 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 26420 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 26421 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 26422 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 26423 { "connTableSize6", KSTAT_DATA_INT32, 0 } 26424 }; 26425 26426 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", 26427 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); 26428 26429 if (ksp == NULL) 26430 return (NULL); 26431 26432 template.rtoAlgorithm.value.ui32 = 4; 26433 template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; 26434 template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; 26435 template.maxConn.value.i32 = -1; 26436 26437 bcopy(&template, ksp->ks_data, sizeof (template)); 26438 ksp->ks_update = tcp_kstat_update; 26439 ksp->ks_private = (void *)(uintptr_t)stackid; 26440 26441 kstat_install(ksp); 26442 return (ksp); 26443 } 26444 26445 static void 26446 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 26447 { 26448 if (ksp != NULL) { 26449 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 26450 kstat_delete_netstack(ksp, stackid); 26451 } 26452 } 26453 26454 static int 26455 tcp_kstat_update(kstat_t *kp, int rw) 26456 { 26457 tcp_named_kstat_t *tcpkp; 26458 tcp_t *tcp; 26459 connf_t *connfp; 26460 conn_t *connp; 26461 int i; 26462 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 26463 netstack_t *ns; 26464 tcp_stack_t *tcps; 26465 ip_stack_t *ipst; 26466 26467 if ((kp == NULL) || (kp->ks_data == NULL)) 26468 return (EIO); 26469 26470 if (rw == KSTAT_WRITE) 26471 return (EACCES); 26472 26473 ns = netstack_find_by_stackid(stackid); 26474 if (ns == NULL) 26475 return (-1); 26476 tcps = ns->netstack_tcp; 26477 if (tcps == NULL) { 26478 netstack_rele(ns); 26479 return (-1); 26480 } 26481 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 26482 26483 tcpkp->currEstab.value.ui32 = 0; 26484 26485 ipst = ns->netstack_ip; 26486 26487 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 26488 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 26489 connp = NULL; 26490 while ((connp = 26491 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 26492 tcp = connp->conn_tcp; 26493 switch (tcp_snmp_state(tcp)) { 26494 case MIB2_TCP_established: 26495 case MIB2_TCP_closeWait: 26496 tcpkp->currEstab.value.ui32++; 26497 break; 26498 } 26499 } 26500 } 26501 26502 tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; 26503 tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; 26504 tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; 26505 tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; 26506 tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; 26507 tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; 26508 tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; 26509 tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; 26510 tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; 26511 tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; 26512 tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; 26513 tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; 26514 tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; 26515 tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; 26516 tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; 26517 tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; 26518 tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; 26519 tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; 26520 tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; 26521 tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; 26522 tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; 26523 tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; 26524 tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; 26525 tcpkp->inDataInorderSegs.value.ui32 = 26526 tcps->tcps_mib.tcpInDataInorderSegs; 26527 tcpkp->inDataInorderBytes.value.ui32 = 26528 tcps->tcps_mib.tcpInDataInorderBytes; 26529 tcpkp->inDataUnorderSegs.value.ui32 = 26530 tcps->tcps_mib.tcpInDataUnorderSegs; 26531 tcpkp->inDataUnorderBytes.value.ui32 = 26532 tcps->tcps_mib.tcpInDataUnorderBytes; 26533 tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; 26534 tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; 26535 tcpkp->inDataPartDupSegs.value.ui32 = 26536 tcps->tcps_mib.tcpInDataPartDupSegs; 26537 tcpkp->inDataPartDupBytes.value.ui32 = 26538 tcps->tcps_mib.tcpInDataPartDupBytes; 26539 tcpkp->inDataPastWinSegs.value.ui32 = 26540 tcps->tcps_mib.tcpInDataPastWinSegs; 26541 tcpkp->inDataPastWinBytes.value.ui32 = 26542 tcps->tcps_mib.tcpInDataPastWinBytes; 26543 tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; 26544 tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; 26545 tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; 26546 tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; 26547 tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; 26548 tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; 26549 tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; 26550 tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; 26551 tcpkp->timKeepaliveProbe.value.ui32 = 26552 tcps->tcps_mib.tcpTimKeepaliveProbe; 26553 tcpkp->timKeepaliveDrop.value.ui32 = 26554 tcps->tcps_mib.tcpTimKeepaliveDrop; 26555 tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; 26556 tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; 26557 tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; 26558 tcpkp->outSackRetransSegs.value.ui32 = 26559 tcps->tcps_mib.tcpOutSackRetransSegs; 26560 tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; 26561 26562 netstack_rele(ns); 26563 return (0); 26564 } 26565 26566 void 26567 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 26568 { 26569 uint16_t hdr_len; 26570 ipha_t *ipha; 26571 uint8_t *nexthdrp; 26572 tcph_t *tcph; 26573 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 26574 26575 /* Already has an eager */ 26576 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 26577 TCP_STAT(tcps, tcp_reinput_syn); 26578 squeue_enter(connp->conn_sqp, mp, connp->conn_recv, 26579 connp, SQTAG_TCP_REINPUT_EAGER); 26580 return; 26581 } 26582 26583 switch (IPH_HDR_VERSION(mp->b_rptr)) { 26584 case IPV4_VERSION: 26585 ipha = (ipha_t *)mp->b_rptr; 26586 hdr_len = IPH_HDR_LENGTH(ipha); 26587 break; 26588 case IPV6_VERSION: 26589 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 26590 &hdr_len, &nexthdrp)) { 26591 CONN_DEC_REF(connp); 26592 freemsg(mp); 26593 return; 26594 } 26595 break; 26596 } 26597 26598 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 26599 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 26600 mp->b_datap->db_struioflag |= STRUIO_EAGER; 26601 DB_CKSUMSTART(mp) = (intptr_t)sqp; 26602 } 26603 26604 squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp, 26605 SQTAG_TCP_REINPUT); 26606 } 26607 26608 static squeue_func_t 26609 tcp_squeue_switch(int val) 26610 { 26611 squeue_func_t rval = squeue_fill; 26612 26613 switch (val) { 26614 case 1: 26615 rval = squeue_enter_nodrain; 26616 break; 26617 case 2: 26618 rval = squeue_enter; 26619 break; 26620 default: 26621 break; 26622 } 26623 return (rval); 26624 } 26625 26626 /* 26627 * This is called once for each squeue - globally for all stack 26628 * instances. 26629 */ 26630 static void 26631 tcp_squeue_add(squeue_t *sqp) 26632 { 26633 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 26634 sizeof (tcp_squeue_priv_t), KM_SLEEP); 26635 26636 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 26637 tcp_time_wait->tcp_time_wait_tid = 26638 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 26639 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 26640 CALLOUT_FLAG_ROUNDUP); 26641 if (tcp_free_list_max_cnt == 0) { 26642 int tcp_ncpus = ((boot_max_ncpus == -1) ? 26643 max_ncpus : boot_max_ncpus); 26644 26645 /* 26646 * Limit number of entries to 1% of availble memory / tcp_ncpus 26647 */ 26648 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 26649 (tcp_ncpus * sizeof (tcp_t) * 100); 26650 } 26651 tcp_time_wait->tcp_free_list_cnt = 0; 26652 } 26653