1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/stropts.h> 33 #include <sys/strlog.h> 34 #define _SUN_TPI_VERSION 2 35 #include <sys/tihdr.h> 36 #include <sys/timod.h> 37 #include <sys/ddi.h> 38 #include <sys/sunddi.h> 39 #include <sys/suntpi.h> 40 #include <sys/xti_inet.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/sdt.h> 44 #include <sys/vtrace.h> 45 #include <sys/kmem.h> 46 #include <sys/ethernet.h> 47 #include <sys/cpuvar.h> 48 #include <sys/dlpi.h> 49 #include <sys/pattr.h> 50 #include <sys/policy.h> 51 #include <sys/priv.h> 52 #include <sys/zone.h> 53 #include <sys/sunldi.h> 54 55 #include <sys/errno.h> 56 #include <sys/signal.h> 57 #include <sys/socket.h> 58 #include <sys/socketvar.h> 59 #include <sys/sockio.h> 60 #include <sys/isa_defs.h> 61 #include <sys/md5.h> 62 #include <sys/random.h> 63 #include <sys/uio.h> 64 #include <sys/systm.h> 65 #include <netinet/in.h> 66 #include <netinet/tcp.h> 67 #include <netinet/ip6.h> 68 #include <netinet/icmp6.h> 69 #include <net/if.h> 70 #include <net/route.h> 71 #include <inet/ipsec_impl.h> 72 73 #include <inet/common.h> 74 #include <inet/ip.h> 75 #include <inet/ip_impl.h> 76 #include <inet/ip6.h> 77 #include <inet/ip_ndp.h> 78 #include <inet/proto_set.h> 79 #include <inet/mib2.h> 80 #include <inet/nd.h> 81 #include <inet/optcom.h> 82 #include <inet/snmpcom.h> 83 #include <inet/kstatcom.h> 84 #include <inet/tcp.h> 85 #include <inet/tcp_impl.h> 86 #include <inet/udp_impl.h> 87 #include <net/pfkeyv2.h> 88 #include <inet/ipdrop.h> 89 90 #include <inet/ipclassifier.h> 91 #include <inet/ip_ire.h> 92 #include <inet/ip_ftable.h> 93 #include <inet/ip_if.h> 94 #include <inet/ipp_common.h> 95 #include <inet/ip_rts.h> 96 #include <inet/ip_netinfo.h> 97 #include <sys/squeue_impl.h> 98 #include <sys/squeue.h> 99 #include <inet/kssl/ksslapi.h> 100 #include <sys/tsol/label.h> 101 #include <sys/tsol/tnet.h> 102 #include <rpc/pmap_prot.h> 103 #include <sys/callo.h> 104 105 #include <sys/clock_impl.h> 106 107 /* 108 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 109 * 110 * (Read the detailed design doc in PSARC case directory) 111 * 112 * The entire tcp state is contained in tcp_t and conn_t structure 113 * which are allocated in tandem using ipcl_conn_create() and passing 114 * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect 115 * the references on the tcp_t. The tcp_t structure is never compressed 116 * and packets always land on the correct TCP perimeter from the time 117 * eager is created till the time tcp_t dies (as such the old mentat 118 * TCP global queue is not used for detached state and no IPSEC checking 119 * is required). The global queue is still allocated to send out resets 120 * for connection which have no listeners and IP directly calls 121 * tcp_xmit_listeners_reset() which does any policy check. 122 * 123 * Protection and Synchronisation mechanism: 124 * 125 * The tcp data structure does not use any kind of lock for protecting 126 * its state but instead uses 'squeues' for mutual exclusion from various 127 * read and write side threads. To access a tcp member, the thread should 128 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 129 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 130 * can pass any tcp function having prototype of edesc_t as argument 131 * (different from traditional STREAMs model where packets come in only 132 * designated entry points). The list of functions that can be directly 133 * called via squeue are listed before the usual function prototype. 134 * 135 * Referencing: 136 * 137 * TCP is MT-Hot and we use a reference based scheme to make sure that the 138 * tcp structure doesn't disappear when its needed. When the application 139 * creates an outgoing connection or accepts an incoming connection, we 140 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 141 * The IP reference is just a symbolic reference since ip_tcpclose() 142 * looks at tcp structure after tcp_close_output() returns which could 143 * have dropped the last TCP reference. So as long as the connection is 144 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 145 * conn_t. The classifier puts its own reference when the connection is 146 * inserted in listen or connected hash. Anytime a thread needs to enter 147 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 148 * on write side or by doing a classify on read side and then puts a 149 * reference on the conn before doing squeue_enter/tryenter/fill. For 150 * read side, the classifier itself puts the reference under fanout lock 151 * to make sure that tcp can't disappear before it gets processed. The 152 * squeue will drop this reference automatically so the called function 153 * doesn't have to do a DEC_REF. 154 * 155 * Opening a new connection: 156 * 157 * The outgoing connection open is pretty simple. tcp_open() does the 158 * work in creating the conn/tcp structure and initializing it. The 159 * squeue assignment is done based on the CPU the application 160 * is running on. So for outbound connections, processing is always done 161 * on application CPU which might be different from the incoming CPU 162 * being interrupted by the NIC. An optimal way would be to figure out 163 * the NIC <-> CPU binding at listen time, and assign the outgoing 164 * connection to the squeue attached to the CPU that will be interrupted 165 * for incoming packets (we know the NIC based on the bind IP address). 166 * This might seem like a problem if more data is going out but the 167 * fact is that in most cases the transmit is ACK driven transmit where 168 * the outgoing data normally sits on TCP's xmit queue waiting to be 169 * transmitted. 170 * 171 * Accepting a connection: 172 * 173 * This is a more interesting case because of various races involved in 174 * establishing a eager in its own perimeter. Read the meta comment on 175 * top of tcp_input_listener(). But briefly, the squeue is picked by 176 * ip_fanout based on the ring or the sender (if loopback). 177 * 178 * Closing a connection: 179 * 180 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 181 * via squeue to do the close and mark the tcp as detached if the connection 182 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 183 * reference but tcp_close() drop IP's reference always. So if tcp was 184 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 185 * and 1 because it is in classifier's connected hash. This is the condition 186 * we use to determine that its OK to clean up the tcp outside of squeue 187 * when time wait expires (check the ref under fanout and conn_lock and 188 * if it is 2, remove it from fanout hash and kill it). 189 * 190 * Although close just drops the necessary references and marks the 191 * tcp_detached state, tcp_close needs to know the tcp_detached has been 192 * set (under squeue) before letting the STREAM go away (because a 193 * inbound packet might attempt to go up the STREAM while the close 194 * has happened and tcp_detached is not set). So a special lock and 195 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 196 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 197 * tcp_detached. 198 * 199 * Special provisions and fast paths: 200 * 201 * We make special provisions for sockfs by marking tcp_issocket 202 * whenever we have only sockfs on top of TCP. This allows us to skip 203 * putting the tcp in acceptor hash since a sockfs listener can never 204 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 205 * since eager has already been allocated and the accept now happens 206 * on acceptor STREAM. There is a big blob of comment on top of 207 * tcp_input_listener explaining the new accept. When socket is POP'd, 208 * sockfs sends us an ioctl to mark the fact and we go back to old 209 * behaviour. Once tcp_issocket is unset, its never set for the 210 * life of that connection. 211 * 212 * IPsec notes : 213 * 214 * Since a packet is always executed on the correct TCP perimeter 215 * all IPsec processing is defered to IP including checking new 216 * connections and setting IPSEC policies for new connection. The 217 * only exception is tcp_xmit_listeners_reset() which is called 218 * directly from IP and needs to policy check to see if TH_RST 219 * can be sent out. 220 */ 221 222 /* 223 * Values for squeue switch: 224 * 1: SQ_NODRAIN 225 * 2: SQ_PROCESS 226 * 3: SQ_FILL 227 */ 228 int tcp_squeue_wput = 2; /* /etc/systems */ 229 int tcp_squeue_flag; 230 231 /* 232 * This controls how tiny a write must be before we try to copy it 233 * into the mblk on the tail of the transmit queue. Not much 234 * speedup is observed for values larger than sixteen. Zero will 235 * disable the optimisation. 236 */ 237 int tcp_tx_pull_len = 16; 238 239 /* 240 * TCP Statistics. 241 * 242 * How TCP statistics work. 243 * 244 * There are two types of statistics invoked by two macros. 245 * 246 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 247 * supposed to be used in non MT-hot paths of the code. 248 * 249 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 250 * supposed to be used for DEBUG purposes and may be used on a hot path. 251 * 252 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 253 * (use "kstat tcp" to get them). 254 * 255 * There is also additional debugging facility that marks tcp_clean_death() 256 * instances and saves them in tcp_t structure. It is triggered by 257 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 258 * tcp_clean_death() calls that counts the number of times each tag was hit. It 259 * is triggered by TCP_CLD_COUNTERS define. 260 * 261 * How to add new counters. 262 * 263 * 1) Add a field in the tcp_stat structure describing your counter. 264 * 2) Add a line in the template in tcp_kstat2_init() with the name 265 * of the counter. 266 * 267 * IMPORTANT!! - make sure that both are in sync !! 268 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 269 * 270 * Please avoid using private counters which are not kstat-exported. 271 * 272 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 273 * in tcp_t structure. 274 * 275 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 276 */ 277 278 #ifndef TCP_DEBUG_COUNTER 279 #ifdef DEBUG 280 #define TCP_DEBUG_COUNTER 1 281 #else 282 #define TCP_DEBUG_COUNTER 0 283 #endif 284 #endif 285 286 #define TCP_CLD_COUNTERS 0 287 288 #define TCP_TAG_CLEAN_DEATH 1 289 #define TCP_MAX_CLEAN_DEATH_TAG 32 290 291 #ifdef lint 292 static int _lint_dummy_; 293 #endif 294 295 #if TCP_CLD_COUNTERS 296 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 297 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 298 #elif defined(lint) 299 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 300 #else 301 #define TCP_CLD_STAT(x) 302 #endif 303 304 #if TCP_DEBUG_COUNTER 305 #define TCP_DBGSTAT(tcps, x) \ 306 atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) 307 #define TCP_G_DBGSTAT(x) \ 308 atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) 309 #elif defined(lint) 310 #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); 311 #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 312 #else 313 #define TCP_DBGSTAT(tcps, x) 314 #define TCP_G_DBGSTAT(x) 315 #endif 316 317 #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) 318 319 tcp_g_stat_t tcp_g_statistics; 320 kstat_t *tcp_g_kstat; 321 322 /* Macros for timestamp comparisons */ 323 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 324 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 325 326 /* 327 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 328 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 329 * by adding three components: a time component which grows by 1 every 4096 330 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 331 * a per-connection component which grows by 125000 for every new connection; 332 * and an "extra" component that grows by a random amount centered 333 * approximately on 64000. This causes the ISS generator to cycle every 334 * 4.89 hours if no TCP connections are made, and faster if connections are 335 * made. 336 * 337 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 338 * components: a time component which grows by 250000 every second; and 339 * a per-connection component which grows by 125000 for every new connections. 340 * 341 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 342 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 343 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 344 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 345 * password. 346 */ 347 #define ISS_INCR 250000 348 #define ISS_NSEC_SHT 12 349 350 static sin_t sin_null; /* Zero address for quick clears */ 351 static sin6_t sin6_null; /* Zero address for quick clears */ 352 353 /* 354 * This implementation follows the 4.3BSD interpretation of the urgent 355 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 356 * incompatible changes in protocols like telnet and rlogin. 357 */ 358 #define TCP_OLD_URP_INTERPRETATION 1 359 360 /* 361 * Since tcp_listener is not cleared atomically with tcp_detached 362 * being cleared we need this extra bit to tell a detached connection 363 * apart from one that is in the process of being accepted. 364 */ 365 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 366 (TCP_IS_DETACHED(tcp) && \ 367 (!(tcp)->tcp_hard_binding)) 368 369 /* 370 * TCP reassembly macros. We hide starting and ending sequence numbers in 371 * b_next and b_prev of messages on the reassembly queue. The messages are 372 * chained using b_cont. These macros are used in tcp_reass() so we don't 373 * have to see the ugly casts and assignments. 374 */ 375 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 376 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 377 (mblk_t *)(uintptr_t)(u)) 378 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 379 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 380 (mblk_t *)(uintptr_t)(u)) 381 382 /* 383 * Implementation of TCP Timers. 384 * ============================= 385 * 386 * INTERFACE: 387 * 388 * There are two basic functions dealing with tcp timers: 389 * 390 * timeout_id_t tcp_timeout(connp, func, time) 391 * clock_t tcp_timeout_cancel(connp, timeout_id) 392 * TCP_TIMER_RESTART(tcp, intvl) 393 * 394 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 395 * after 'time' ticks passed. The function called by timeout() must adhere to 396 * the same restrictions as a driver soft interrupt handler - it must not sleep 397 * or call other functions that might sleep. The value returned is the opaque 398 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 399 * cancel the request. The call to tcp_timeout() may fail in which case it 400 * returns zero. This is different from the timeout(9F) function which never 401 * fails. 402 * 403 * The call-back function 'func' always receives 'connp' as its single 404 * argument. It is always executed in the squeue corresponding to the tcp 405 * structure. The tcp structure is guaranteed to be present at the time the 406 * call-back is called. 407 * 408 * NOTE: The call-back function 'func' is never called if tcp is in 409 * the TCPS_CLOSED state. 410 * 411 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 412 * request. locks acquired by the call-back routine should not be held across 413 * the call to tcp_timeout_cancel() or a deadlock may result. 414 * 415 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 416 * Otherwise, it returns an integer value greater than or equal to 0. In 417 * particular, if the call-back function is already placed on the squeue, it can 418 * not be canceled. 419 * 420 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 421 * within squeue context corresponding to the tcp instance. Since the 422 * call-back is also called via the same squeue, there are no race 423 * conditions described in untimeout(9F) manual page since all calls are 424 * strictly serialized. 425 * 426 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 427 * stored in tcp_timer_tid and starts a new one using 428 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 429 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 430 * field. 431 * 432 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 433 * call-back may still be called, so it is possible tcp_timer() will be 434 * called several times. This should not be a problem since tcp_timer() 435 * should always check the tcp instance state. 436 * 437 * 438 * IMPLEMENTATION: 439 * 440 * TCP timers are implemented using three-stage process. The call to 441 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 442 * when the timer expires. The tcp_timer_callback() arranges the call of the 443 * tcp_timer_handler() function via squeue corresponding to the tcp 444 * instance. The tcp_timer_handler() calls actual requested timeout call-back 445 * and passes tcp instance as an argument to it. Information is passed between 446 * stages using the tcp_timer_t structure which contains the connp pointer, the 447 * tcp call-back to call and the timeout id returned by the timeout(9F). 448 * 449 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 450 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 451 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 452 * returns the pointer to this mblk. 453 * 454 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 455 * looks like a normal mblk without actual dblk attached to it. 456 * 457 * To optimize performance each tcp instance holds a small cache of timer 458 * mblocks. In the current implementation it caches up to two timer mblocks per 459 * tcp instance. The cache is preserved over tcp frees and is only freed when 460 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 461 * timer processing happens on a corresponding squeue, the cache manipulation 462 * does not require any locks. Experiments show that majority of timer mblocks 463 * allocations are satisfied from the tcp cache and do not involve kmem calls. 464 * 465 * The tcp_timeout() places a refhold on the connp instance which guarantees 466 * that it will be present at the time the call-back function fires. The 467 * tcp_timer_handler() drops the reference after calling the call-back, so the 468 * call-back function does not need to manipulate the references explicitly. 469 */ 470 471 typedef struct tcp_timer_s { 472 conn_t *connp; 473 void (*tcpt_proc)(void *); 474 callout_id_t tcpt_tid; 475 } tcp_timer_t; 476 477 static kmem_cache_t *tcp_timercache; 478 kmem_cache_t *tcp_sack_info_cache; 479 480 /* 481 * For scalability, we must not run a timer for every TCP connection 482 * in TIME_WAIT state. To see why, consider (for time wait interval of 483 * 4 minutes): 484 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 485 * 486 * This list is ordered by time, so you need only delete from the head 487 * until you get to entries which aren't old enough to delete yet. 488 * The list consists of only the detached TIME_WAIT connections. 489 * 490 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 491 * becomes detached TIME_WAIT (either by changing the state and already 492 * being detached or the other way around). This means that the TIME_WAIT 493 * state can be extended (up to doubled) if the connection doesn't become 494 * detached for a long time. 495 * 496 * The list manipulations (including tcp_time_wait_next/prev) 497 * are protected by the tcp_time_wait_lock. The content of the 498 * detached TIME_WAIT connections is protected by the normal perimeters. 499 * 500 * This list is per squeue and squeues are shared across the tcp_stack_t's. 501 * Things on tcp_time_wait_head remain associated with the tcp_stack_t 502 * and conn_netstack. 503 * The tcp_t's that are added to tcp_free_list are disassociated and 504 * have NULL tcp_tcps and conn_netstack pointers. 505 */ 506 typedef struct tcp_squeue_priv_s { 507 kmutex_t tcp_time_wait_lock; 508 callout_id_t tcp_time_wait_tid; 509 tcp_t *tcp_time_wait_head; 510 tcp_t *tcp_time_wait_tail; 511 tcp_t *tcp_free_list; 512 uint_t tcp_free_list_cnt; 513 } tcp_squeue_priv_t; 514 515 /* 516 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 517 * Running it every 5 seconds seems to give the best results. 518 */ 519 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 520 521 /* 522 * To prevent memory hog, limit the number of entries in tcp_free_list 523 * to 1% of available memory / number of cpus 524 */ 525 uint_t tcp_free_list_max_cnt = 0; 526 527 #define TCP_XMIT_LOWATER 4096 528 #define TCP_XMIT_HIWATER 49152 529 #define TCP_RECV_LOWATER 2048 530 #define TCP_RECV_HIWATER 128000 531 532 /* 533 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 534 */ 535 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 536 537 #define TIDUSZ 4096 /* transport interface data unit size */ 538 539 /* 540 * Bind hash list size and has function. It has to be a power of 2 for 541 * hashing. 542 */ 543 #define TCP_BIND_FANOUT_SIZE 512 544 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 545 /* 546 * Size of listen and acceptor hash list. It has to be a power of 2 for 547 * hashing. 548 */ 549 #define TCP_FANOUT_SIZE 256 550 551 #ifdef _ILP32 552 #define TCP_ACCEPTOR_HASH(accid) \ 553 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 554 #else 555 #define TCP_ACCEPTOR_HASH(accid) \ 556 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 557 #endif /* _ILP32 */ 558 559 #define IP_ADDR_CACHE_SIZE 2048 560 #define IP_ADDR_CACHE_HASH(faddr) \ 561 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 562 563 /* 564 * TCP options struct returned from tcp_parse_options. 565 */ 566 typedef struct tcp_opt_s { 567 uint32_t tcp_opt_mss; 568 uint32_t tcp_opt_wscale; 569 uint32_t tcp_opt_ts_val; 570 uint32_t tcp_opt_ts_ecr; 571 tcp_t *tcp; 572 } tcp_opt_t; 573 574 /* 575 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 576 */ 577 578 #ifdef _BIG_ENDIAN 579 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 580 (TCPOPT_TSTAMP << 8) | 10) 581 #else 582 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 583 (TCPOPT_NOP << 8) | TCPOPT_NOP) 584 #endif 585 586 /* 587 * Flags returned from tcp_parse_options. 588 */ 589 #define TCP_OPT_MSS_PRESENT 1 590 #define TCP_OPT_WSCALE_PRESENT 2 591 #define TCP_OPT_TSTAMP_PRESENT 4 592 #define TCP_OPT_SACK_OK_PRESENT 8 593 #define TCP_OPT_SACK_PRESENT 16 594 595 /* TCP option length */ 596 #define TCPOPT_NOP_LEN 1 597 #define TCPOPT_MAXSEG_LEN 4 598 #define TCPOPT_WS_LEN 3 599 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 600 #define TCPOPT_TSTAMP_LEN 10 601 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 602 #define TCPOPT_SACK_OK_LEN 2 603 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 604 #define TCPOPT_REAL_SACK_LEN 4 605 #define TCPOPT_MAX_SACK_LEN 36 606 #define TCPOPT_HEADER_LEN 2 607 608 /* TCP cwnd burst factor. */ 609 #define TCP_CWND_INFINITE 65535 610 #define TCP_CWND_SS 3 611 #define TCP_CWND_NORMAL 5 612 613 /* Maximum TCP initial cwin (start/restart). */ 614 #define TCP_MAX_INIT_CWND 8 615 616 /* 617 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 618 * either tcp_slow_start_initial or tcp_slow_start_after idle 619 * depending on the caller. If the upper layer has not used the 620 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 621 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 622 * If the upper layer has changed set the tcp_init_cwnd, just use 623 * it to calculate the tcp_cwnd. 624 */ 625 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 626 { \ 627 if ((tcp)->tcp_init_cwnd == 0) { \ 628 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 629 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 630 } else { \ 631 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 632 } \ 633 tcp->tcp_cwnd_cnt = 0; \ 634 } 635 636 /* TCP Timer control structure */ 637 typedef struct tcpt_s { 638 pfv_t tcpt_pfv; /* The routine we are to call */ 639 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 640 } tcpt_t; 641 642 /* 643 * Functions called directly via squeue having a prototype of edesc_t. 644 */ 645 void tcp_input_listener(void *arg, mblk_t *mp, void *arg2, 646 ip_recv_attr_t *ira); 647 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2, 648 ip_recv_attr_t *dummy); 649 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2, 650 ip_recv_attr_t *dummy); 651 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2, 652 ip_recv_attr_t *dummy); 653 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2, 654 ip_recv_attr_t *dummy); 655 void tcp_input_data(void *arg, mblk_t *mp, void *arg2, 656 ip_recv_attr_t *ira); 657 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2, 658 ip_recv_attr_t *dummy); 659 void tcp_output(void *arg, mblk_t *mp, void *arg2, 660 ip_recv_attr_t *dummy); 661 void tcp_output_urgent(void *arg, mblk_t *mp, void *arg2, 662 ip_recv_attr_t *dummy); 663 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, 664 ip_recv_attr_t *dummy); 665 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2, 666 ip_recv_attr_t *dummy); 667 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, 668 ip_recv_attr_t *dummy); 669 670 671 /* Prototype for TCP functions */ 672 static void tcp_random_init(void); 673 int tcp_random(void); 674 static void tcp_tli_accept(tcp_t *tcp, mblk_t *mp); 675 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 676 tcp_t *eager); 677 static int tcp_set_destination(tcp_t *tcp); 678 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 679 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 680 boolean_t user_specified); 681 static void tcp_closei_local(tcp_t *tcp); 682 static void tcp_close_detached(tcp_t *tcp); 683 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, 684 mblk_t *idmp, mblk_t **defermp, ip_recv_attr_t *ira); 685 static void tcp_tpi_connect(tcp_t *tcp, mblk_t *mp); 686 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 687 in_port_t dstport, uint_t srcid); 688 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 689 in_port_t dstport, uint32_t flowinfo, 690 uint_t srcid, uint32_t scope_id); 691 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 692 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 693 static char *tcp_display(tcp_t *tcp, char *, char); 694 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 695 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 696 static void tcp_eager_unlink(tcp_t *tcp); 697 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 698 int unixerr); 699 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 700 int tlierr, int unixerr); 701 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 702 cred_t *cr); 703 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 704 char *value, caddr_t cp, cred_t *cr); 705 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 706 char *value, caddr_t cp, cred_t *cr); 707 static int tcp_tpistate(tcp_t *tcp); 708 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 709 int caller_holds_lock); 710 static void tcp_bind_hash_remove(tcp_t *tcp); 711 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); 712 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 713 static void tcp_acceptor_hash_remove(tcp_t *tcp); 714 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 715 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 716 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 717 static void tcp_init_values(tcp_t *tcp); 718 static void tcp_ip_notify(tcp_t *tcp); 719 static void tcp_iss_init(tcp_t *tcp); 720 static void tcp_keepalive_killer(void *arg); 721 static int tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt); 722 static void tcp_mss_set(tcp_t *tcp, uint32_t size); 723 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 724 int *do_disconnectp, int *t_errorp, int *sys_errorp); 725 static boolean_t tcp_allow_connopt_set(int level, int name); 726 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 727 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 728 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, 729 tcp_stack_t *); 730 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 731 caddr_t cp, cred_t *cr); 732 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 733 caddr_t cp, cred_t *cr); 734 static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); 735 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 736 caddr_t cp, cred_t *cr); 737 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 738 static void tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt); 739 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 740 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 741 static void tcp_reinit(tcp_t *tcp); 742 static void tcp_reinit_values(tcp_t *tcp); 743 744 static uint_t tcp_rwnd_reopen(tcp_t *tcp); 745 static uint_t tcp_rcv_drain(tcp_t *tcp); 746 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 747 static boolean_t tcp_send_rst_chk(tcp_stack_t *); 748 static void tcp_ss_rexmit(tcp_t *tcp); 749 static mblk_t *tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp, 750 ip_recv_attr_t *); 751 static void tcp_process_options(tcp_t *, tcpha_t *); 752 static void tcp_rsrv(queue_t *q); 753 static int tcp_snmp_state(tcp_t *tcp); 754 static void tcp_timer(void *arg); 755 static void tcp_timer_callback(void *); 756 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 757 boolean_t random); 758 static in_port_t tcp_get_next_priv_port(const tcp_t *); 759 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 760 static void tcp_wput_fallback(queue_t *q, mblk_t *mp); 761 void tcp_tpi_accept(queue_t *q, mblk_t *mp); 762 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 763 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 764 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 765 static int tcp_send(tcp_t *tcp, const int mss, 766 const int total_hdr_len, const int tcp_hdr_len, 767 const int num_sack_blk, int *usable, uint_t *snxt, 768 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time); 769 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 770 int num_sack_blk); 771 static void tcp_wsrv(queue_t *q); 772 static int tcp_xmit_end(tcp_t *tcp); 773 static void tcp_ack_timer(void *arg); 774 static mblk_t *tcp_ack_mp(tcp_t *tcp); 775 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 776 uint32_t seq, uint32_t ack, int ctl, ip_recv_attr_t *, 777 ip_stack_t *, conn_t *); 778 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 779 uint32_t ack, int ctl); 780 static void tcp_set_rto(tcp_t *, time_t); 781 static void tcp_icmp_input(void *, mblk_t *, void *, ip_recv_attr_t *); 782 static void tcp_icmp_error_ipv6(tcp_t *, mblk_t *, ip_recv_attr_t *); 783 static boolean_t tcp_verifyicmp(conn_t *, void *, icmph_t *, icmp6_t *, 784 ip_recv_attr_t *); 785 static int tcp_build_hdrs(tcp_t *); 786 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 787 uint32_t seg_seq, uint32_t seg_ack, int seg_len, tcpha_t *tcpha, 788 ip_recv_attr_t *ira); 789 boolean_t tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp); 790 static boolean_t tcp_zcopy_check(tcp_t *); 791 static void tcp_zcopy_notify(tcp_t *); 792 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, boolean_t); 793 static void tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa); 794 static void tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only); 795 static void tcp_update_zcopy(tcp_t *tcp); 796 static void tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t, 797 ixa_notify_arg_t); 798 static void tcp_rexmit_after_error(tcp_t *tcp); 799 static void tcp_send_data(tcp_t *, mblk_t *); 800 extern mblk_t *tcp_timermp_alloc(int); 801 extern void tcp_timermp_free(tcp_t *); 802 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 803 static void tcp_stop_lingering(tcp_t *tcp); 804 static void tcp_close_linger_timeout(void *arg); 805 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 806 static void tcp_stack_fini(netstackid_t stackid, void *arg); 807 static void *tcp_g_kstat_init(tcp_g_stat_t *); 808 static void tcp_g_kstat_fini(kstat_t *); 809 static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); 810 static void tcp_kstat_fini(netstackid_t, kstat_t *); 811 static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); 812 static void tcp_kstat2_fini(netstackid_t, kstat_t *); 813 static int tcp_kstat_update(kstat_t *kp, int rw); 814 static mblk_t *tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 815 ip_recv_attr_t *ira); 816 static mblk_t *tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp, 817 ip_recv_attr_t *ira); 818 static int tcp_squeue_switch(int); 819 820 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 821 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 822 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 823 static int tcp_tpi_close(queue_t *, int); 824 static int tcp_tpi_close_accept(queue_t *); 825 826 static void tcp_squeue_add(squeue_t *); 827 static void tcp_setcred_data(mblk_t *, ip_recv_attr_t *); 828 829 extern void tcp_kssl_input(tcp_t *, mblk_t *, cred_t *); 830 831 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy); 832 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2, 833 ip_recv_attr_t *dummy); 834 835 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t, 836 sock_upper_handle_t, cred_t *); 837 static int tcp_listen(sock_lower_handle_t, int, cred_t *); 838 static int tcp_do_listen(conn_t *, struct sockaddr *, socklen_t, int, cred_t *, 839 boolean_t); 840 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t, 841 cred_t *, pid_t); 842 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *, 843 boolean_t); 844 static int tcp_do_unbind(conn_t *); 845 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *, 846 boolean_t); 847 848 static void tcp_ulp_newconn(conn_t *, conn_t *, mblk_t *); 849 850 /* 851 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 852 * 853 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 854 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 855 * (defined in tcp.h) needs to be filled in and passed into the kernel 856 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 857 * structure contains the four-tuple of a TCP connection and a range of TCP 858 * states (specified by ac_start and ac_end). The use of wildcard addresses 859 * and ports is allowed. Connections with a matching four tuple and a state 860 * within the specified range will be aborted. The valid states for the 861 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 862 * inclusive. 863 * 864 * An application which has its connection aborted by this ioctl will receive 865 * an error that is dependent on the connection state at the time of the abort. 866 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 867 * though a RST packet has been received. If the connection state is equal to 868 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 869 * and all resources associated with the connection will be freed. 870 */ 871 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 872 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 873 static void tcp_ioctl_abort_handler(void *arg, mblk_t *mp, void *arg2, 874 ip_recv_attr_t *dummy); 875 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); 876 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 877 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 878 boolean_t, tcp_stack_t *); 879 880 static struct module_info tcp_rinfo = { 881 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 882 }; 883 884 static struct module_info tcp_winfo = { 885 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 886 }; 887 888 /* 889 * Entry points for TCP as a device. The normal case which supports 890 * the TCP functionality. 891 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 892 */ 893 struct qinit tcp_rinitv4 = { 894 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 895 }; 896 897 struct qinit tcp_rinitv6 = { 898 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 899 }; 900 901 struct qinit tcp_winit = { 902 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 903 }; 904 905 /* Initial entry point for TCP in socket mode. */ 906 struct qinit tcp_sock_winit = { 907 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 908 }; 909 910 /* TCP entry point during fallback */ 911 struct qinit tcp_fallback_sock_winit = { 912 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 913 }; 914 915 /* 916 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 917 * an accept. Avoid allocating data structures since eager has already 918 * been created. 919 */ 920 struct qinit tcp_acceptor_rinit = { 921 NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo 922 }; 923 924 struct qinit tcp_acceptor_winit = { 925 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 926 }; 927 928 /* For AF_INET aka /dev/tcp */ 929 struct streamtab tcpinfov4 = { 930 &tcp_rinitv4, &tcp_winit 931 }; 932 933 /* For AF_INET6 aka /dev/tcp6 */ 934 struct streamtab tcpinfov6 = { 935 &tcp_rinitv6, &tcp_winit 936 }; 937 938 sock_downcalls_t sock_tcp_downcalls; 939 940 /* Setable only in /etc/system. Move to ndd? */ 941 boolean_t tcp_icmp_source_quench = B_FALSE; 942 943 /* 944 * Following assumes TPI alignment requirements stay along 32 bit 945 * boundaries 946 */ 947 #define ROUNDUP32(x) \ 948 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 949 950 /* Template for response to info request. */ 951 static struct T_info_ack tcp_g_t_info_ack = { 952 T_INFO_ACK, /* PRIM_type */ 953 0, /* TSDU_size */ 954 T_INFINITE, /* ETSDU_size */ 955 T_INVALID, /* CDATA_size */ 956 T_INVALID, /* DDATA_size */ 957 sizeof (sin_t), /* ADDR_size */ 958 0, /* OPT_size - not initialized here */ 959 TIDUSZ, /* TIDU_size */ 960 T_COTS_ORD, /* SERV_type */ 961 TCPS_IDLE, /* CURRENT_state */ 962 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 963 }; 964 965 static struct T_info_ack tcp_g_t_info_ack_v6 = { 966 T_INFO_ACK, /* PRIM_type */ 967 0, /* TSDU_size */ 968 T_INFINITE, /* ETSDU_size */ 969 T_INVALID, /* CDATA_size */ 970 T_INVALID, /* DDATA_size */ 971 sizeof (sin6_t), /* ADDR_size */ 972 0, /* OPT_size - not initialized here */ 973 TIDUSZ, /* TIDU_size */ 974 T_COTS_ORD, /* SERV_type */ 975 TCPS_IDLE, /* CURRENT_state */ 976 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 977 }; 978 979 #define MS 1L 980 #define SECONDS (1000 * MS) 981 #define MINUTES (60 * SECONDS) 982 #define HOURS (60 * MINUTES) 983 #define DAYS (24 * HOURS) 984 985 #define PARAM_MAX (~(uint32_t)0) 986 987 /* Max size IP datagram is 64k - 1 */ 988 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcpha_t))) 989 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcpha_t))) 990 /* Max of the above */ 991 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 992 993 /* Largest TCP port number */ 994 #define TCP_MAX_PORT (64 * 1024 - 1) 995 996 /* 997 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 998 * layer header. It has to be a multiple of 4. 999 */ 1000 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1001 #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val 1002 1003 /* 1004 * All of these are alterable, within the min/max values given, at run time. 1005 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1006 * per the TCP spec. 1007 */ 1008 /* BEGIN CSTYLED */ 1009 static tcpparam_t lcl_tcp_param_arr[] = { 1010 /*min max value name */ 1011 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1012 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1013 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1014 { 1, 1024, 1, "tcp_conn_req_min" }, 1015 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1016 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1017 { 0, 10, 0, "tcp_debug" }, 1018 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1019 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1020 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1021 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1022 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1023 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1024 { 1, 255, 64, "tcp_ipv4_ttl"}, 1025 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1026 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1027 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1028 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1029 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1030 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1031 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1032 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1033 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1034 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1035 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1036 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1037 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1038 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1039 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1040 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1041 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1042 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1043 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1044 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1045 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1046 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1047 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1048 /* 1049 * Question: What default value should I set for tcp_strong_iss? 1050 */ 1051 { 0, 2, 1, "tcp_strong_iss"}, 1052 { 0, 65536, 20, "tcp_rtt_updates"}, 1053 { 0, 1, 1, "tcp_wscale_always"}, 1054 { 0, 1, 0, "tcp_tstamp_always"}, 1055 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1056 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1057 { 0, 16, 2, "tcp_deferred_acks_max"}, 1058 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1059 { 1, 4, 4, "tcp_slow_start_initial"}, 1060 { 0, 2, 2, "tcp_sack_permitted"}, 1061 { 0, 1, 1, "tcp_compression_enabled"}, 1062 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1063 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1064 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1065 { 0, 1, 0, "tcp_rev_src_routes"}, 1066 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1067 { 0, 16, 8, "tcp_local_dacks_max"}, 1068 { 0, 2, 1, "tcp_ecn_permitted"}, 1069 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1070 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1071 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1072 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1073 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1074 { 0, 1, 0, "tcp_dev_flow_ctl"}, 1075 }; 1076 /* END CSTYLED */ 1077 1078 /* Round up the value to the nearest mss. */ 1079 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1080 1081 /* 1082 * Set ECN capable transport (ECT) code point in IP header. 1083 * 1084 * Note that there are 2 ECT code points '01' and '10', which are called 1085 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1086 * point ECT(0) for TCP as described in RFC 2481. 1087 */ 1088 #define SET_ECT(tcp, iph) \ 1089 if ((tcp)->tcp_connp->conn_ipversion == IPV4_VERSION) { \ 1090 /* We need to clear the code point first. */ \ 1091 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1092 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1093 } else { \ 1094 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1095 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1096 } 1097 1098 /* 1099 * The format argument to pass to tcp_display(). 1100 * DISP_PORT_ONLY means that the returned string has only port info. 1101 * DISP_ADDR_AND_PORT means that the returned string also contains the 1102 * remote and local IP address. 1103 */ 1104 #define DISP_PORT_ONLY 1 1105 #define DISP_ADDR_AND_PORT 2 1106 1107 #define IS_VMLOANED_MBLK(mp) \ 1108 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1109 1110 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1111 1112 /* 1113 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 1114 * tunable settable via NDD. Otherwise, the per-connection behavior is 1115 * determined dynamically during tcp_set_destination(), which is the default. 1116 */ 1117 boolean_t tcp_static_maxpsz = B_FALSE; 1118 1119 /* Setable in /etc/system */ 1120 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1121 uint32_t tcp_random_anon_port = 1; 1122 1123 /* 1124 * To reach to an eager in Q0 which can be dropped due to an incoming 1125 * new SYN request when Q0 is full, a new doubly linked list is 1126 * introduced. This list allows to select an eager from Q0 in O(1) time. 1127 * This is needed to avoid spending too much time walking through the 1128 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1129 * this new list has to be a member of Q0. 1130 * This list is headed by listener's tcp_t. When the list is empty, 1131 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1132 * of listener's tcp_t point to listener's tcp_t itself. 1133 * 1134 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1135 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1136 * These macros do not affect the eager's membership to Q0. 1137 */ 1138 1139 1140 #define MAKE_DROPPABLE(listener, eager) \ 1141 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1142 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1143 = (eager); \ 1144 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1145 (eager)->tcp_eager_next_drop_q0 = \ 1146 (listener)->tcp_eager_next_drop_q0; \ 1147 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1148 } 1149 1150 #define MAKE_UNDROPPABLE(eager) \ 1151 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1152 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1153 = (eager)->tcp_eager_prev_drop_q0; \ 1154 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1155 = (eager)->tcp_eager_next_drop_q0; \ 1156 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1157 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1158 } 1159 1160 /* 1161 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1162 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1163 * data, TCP will not respond with an ACK. RFC 793 requires that 1164 * TCP responds with an ACK for such a bogus ACK. By not following 1165 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1166 * an attacker successfully spoofs an acceptable segment to our 1167 * peer; or when our peer is "confused." 1168 */ 1169 uint32_t tcp_drop_ack_unsent_cnt = 10; 1170 1171 /* 1172 * Hook functions to enable cluster networking 1173 * On non-clustered systems these vectors must always be NULL. 1174 */ 1175 1176 void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol, 1177 sa_family_t addr_family, uint8_t *laddrp, 1178 in_port_t lport, void *args) = NULL; 1179 void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol, 1180 sa_family_t addr_family, uint8_t *laddrp, 1181 in_port_t lport, void *args) = NULL; 1182 1183 int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol, 1184 boolean_t is_outgoing, 1185 sa_family_t addr_family, 1186 uint8_t *laddrp, in_port_t lport, 1187 uint8_t *faddrp, in_port_t fport, 1188 void *args) = NULL; 1189 void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol, 1190 sa_family_t addr_family, uint8_t *laddrp, 1191 in_port_t lport, uint8_t *faddrp, 1192 in_port_t fport, void *args) = NULL; 1193 1194 1195 /* 1196 * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err) 1197 */ 1198 #define CL_INET_CONNECT(connp, is_outgoing, err) { \ 1199 (err) = 0; \ 1200 if (cl_inet_connect2 != NULL) { \ 1201 /* \ 1202 * Running in cluster mode - register active connection \ 1203 * information \ 1204 */ \ 1205 if ((connp)->conn_ipversion == IPV4_VERSION) { \ 1206 if ((connp)->conn_laddr_v4 != 0) { \ 1207 (err) = (*cl_inet_connect2)( \ 1208 (connp)->conn_netstack->netstack_stackid,\ 1209 IPPROTO_TCP, is_outgoing, AF_INET, \ 1210 (uint8_t *)(&((connp)->conn_laddr_v4)),\ 1211 (in_port_t)(connp)->conn_lport, \ 1212 (uint8_t *)(&((connp)->conn_faddr_v4)),\ 1213 (in_port_t)(connp)->conn_fport, NULL); \ 1214 } \ 1215 } else { \ 1216 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1217 &(connp)->conn_laddr_v6)) { \ 1218 (err) = (*cl_inet_connect2)( \ 1219 (connp)->conn_netstack->netstack_stackid,\ 1220 IPPROTO_TCP, is_outgoing, AF_INET6, \ 1221 (uint8_t *)(&((connp)->conn_laddr_v6)),\ 1222 (in_port_t)(connp)->conn_lport, \ 1223 (uint8_t *)(&((connp)->conn_faddr_v6)), \ 1224 (in_port_t)(connp)->conn_fport, NULL); \ 1225 } \ 1226 } \ 1227 } \ 1228 } 1229 1230 #define CL_INET_DISCONNECT(connp) { \ 1231 if (cl_inet_disconnect != NULL) { \ 1232 /* \ 1233 * Running in cluster mode - deregister active \ 1234 * connection information \ 1235 */ \ 1236 if ((connp)->conn_ipversion == IPV4_VERSION) { \ 1237 if ((connp)->conn_laddr_v4 != 0) { \ 1238 (*cl_inet_disconnect)( \ 1239 (connp)->conn_netstack->netstack_stackid,\ 1240 IPPROTO_TCP, AF_INET, \ 1241 (uint8_t *)(&((connp)->conn_laddr_v4)),\ 1242 (in_port_t)(connp)->conn_lport, \ 1243 (uint8_t *)(&((connp)->conn_faddr_v4)),\ 1244 (in_port_t)(connp)->conn_fport, NULL); \ 1245 } \ 1246 } else { \ 1247 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1248 &(connp)->conn_laddr_v6)) { \ 1249 (*cl_inet_disconnect)( \ 1250 (connp)->conn_netstack->netstack_stackid,\ 1251 IPPROTO_TCP, AF_INET6, \ 1252 (uint8_t *)(&((connp)->conn_laddr_v6)),\ 1253 (in_port_t)(connp)->conn_lport, \ 1254 (uint8_t *)(&((connp)->conn_faddr_v6)), \ 1255 (in_port_t)(connp)->conn_fport, NULL); \ 1256 } \ 1257 } \ 1258 } \ 1259 } 1260 1261 /* 1262 * Cluster networking hook for traversing current connection list. 1263 * This routine is used to extract the current list of live connections 1264 * which must continue to to be dispatched to this node. 1265 */ 1266 int cl_tcp_walk_list(netstackid_t stack_id, 1267 int (*callback)(cl_tcp_info_t *, void *), void *arg); 1268 1269 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), 1270 void *arg, tcp_stack_t *tcps); 1271 1272 static void 1273 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh) 1274 { 1275 uint32_t default_threshold = SOCKET_RECVHIWATER >> 3; 1276 1277 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 1278 conn_t *connp = tcp->tcp_connp; 1279 struct sock_proto_props sopp; 1280 1281 /* 1282 * only increase rcvthresh upto default_threshold 1283 */ 1284 if (new_rcvthresh > default_threshold) 1285 new_rcvthresh = default_threshold; 1286 1287 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 1288 sopp.sopp_rcvthresh = new_rcvthresh; 1289 1290 (*connp->conn_upcalls->su_set_proto_props) 1291 (connp->conn_upper_handle, &sopp); 1292 } 1293 } 1294 /* 1295 * Figure out the value of window scale opton. Note that the rwnd is 1296 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1297 * We cannot find the scale value and then do a round up of tcp_rwnd 1298 * because the scale value may not be correct after that. 1299 * 1300 * Set the compiler flag to make this function inline. 1301 */ 1302 static void 1303 tcp_set_ws_value(tcp_t *tcp) 1304 { 1305 int i; 1306 uint32_t rwnd = tcp->tcp_rwnd; 1307 1308 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1309 i++, rwnd >>= 1) 1310 ; 1311 tcp->tcp_rcv_ws = i; 1312 } 1313 1314 /* 1315 * Remove a connection from the list of detached TIME_WAIT connections. 1316 * It returns B_FALSE if it can't remove the connection from the list 1317 * as the connection has already been removed from the list due to an 1318 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1319 */ 1320 static boolean_t 1321 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1322 { 1323 boolean_t locked = B_FALSE; 1324 1325 if (tcp_time_wait == NULL) { 1326 tcp_time_wait = *((tcp_squeue_priv_t **) 1327 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1328 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1329 locked = B_TRUE; 1330 } else { 1331 ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); 1332 } 1333 1334 if (tcp->tcp_time_wait_expire == 0) { 1335 ASSERT(tcp->tcp_time_wait_next == NULL); 1336 ASSERT(tcp->tcp_time_wait_prev == NULL); 1337 if (locked) 1338 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1339 return (B_FALSE); 1340 } 1341 ASSERT(TCP_IS_DETACHED(tcp)); 1342 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1343 1344 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1345 ASSERT(tcp->tcp_time_wait_prev == NULL); 1346 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1347 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1348 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1349 NULL; 1350 } else { 1351 tcp_time_wait->tcp_time_wait_tail = NULL; 1352 } 1353 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1354 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1355 ASSERT(tcp->tcp_time_wait_next == NULL); 1356 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1357 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1358 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1359 } else { 1360 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1361 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1362 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1363 tcp->tcp_time_wait_next; 1364 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1365 tcp->tcp_time_wait_prev; 1366 } 1367 tcp->tcp_time_wait_next = NULL; 1368 tcp->tcp_time_wait_prev = NULL; 1369 tcp->tcp_time_wait_expire = 0; 1370 1371 if (locked) 1372 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1373 return (B_TRUE); 1374 } 1375 1376 /* 1377 * Add a connection to the list of detached TIME_WAIT connections 1378 * and set its time to expire. 1379 */ 1380 static void 1381 tcp_time_wait_append(tcp_t *tcp) 1382 { 1383 tcp_stack_t *tcps = tcp->tcp_tcps; 1384 tcp_squeue_priv_t *tcp_time_wait = 1385 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1386 SQPRIVATE_TCP)); 1387 1388 tcp_timers_stop(tcp); 1389 1390 /* Freed above */ 1391 ASSERT(tcp->tcp_timer_tid == 0); 1392 ASSERT(tcp->tcp_ack_tid == 0); 1393 1394 /* must have happened at the time of detaching the tcp */ 1395 ASSERT(tcp->tcp_ptpahn == NULL); 1396 ASSERT(tcp->tcp_flow_stopped == 0); 1397 ASSERT(tcp->tcp_time_wait_next == NULL); 1398 ASSERT(tcp->tcp_time_wait_prev == NULL); 1399 ASSERT(tcp->tcp_time_wait_expire == NULL); 1400 ASSERT(tcp->tcp_listener == NULL); 1401 1402 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1403 /* 1404 * The value computed below in tcp->tcp_time_wait_expire may 1405 * appear negative or wrap around. That is ok since our 1406 * interest is only in the difference between the current lbolt 1407 * value and tcp->tcp_time_wait_expire. But the value should not 1408 * be zero, since it means the tcp is not in the TIME_WAIT list. 1409 * The corresponding comparison in tcp_time_wait_collector() uses 1410 * modular arithmetic. 1411 */ 1412 tcp->tcp_time_wait_expire += 1413 drv_usectohz(tcps->tcps_time_wait_interval * 1000); 1414 if (tcp->tcp_time_wait_expire == 0) 1415 tcp->tcp_time_wait_expire = 1; 1416 1417 ASSERT(TCP_IS_DETACHED(tcp)); 1418 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1419 ASSERT(tcp->tcp_time_wait_next == NULL); 1420 ASSERT(tcp->tcp_time_wait_prev == NULL); 1421 TCP_DBGSTAT(tcps, tcp_time_wait); 1422 1423 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1424 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1425 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1426 tcp_time_wait->tcp_time_wait_head = tcp; 1427 } else { 1428 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1429 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1430 TCPS_TIME_WAIT); 1431 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1432 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1433 } 1434 tcp_time_wait->tcp_time_wait_tail = tcp; 1435 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1436 } 1437 1438 /* ARGSUSED */ 1439 void 1440 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 1441 { 1442 conn_t *connp = (conn_t *)arg; 1443 tcp_t *tcp = connp->conn_tcp; 1444 tcp_stack_t *tcps = tcp->tcp_tcps; 1445 1446 ASSERT(tcp != NULL); 1447 if (tcp->tcp_state == TCPS_CLOSED) { 1448 return; 1449 } 1450 1451 ASSERT((connp->conn_family == AF_INET && 1452 connp->conn_ipversion == IPV4_VERSION) || 1453 (connp->conn_family == AF_INET6 && 1454 (connp->conn_ipversion == IPV4_VERSION || 1455 connp->conn_ipversion == IPV6_VERSION))); 1456 ASSERT(!tcp->tcp_listener); 1457 1458 TCP_STAT(tcps, tcp_time_wait_reap); 1459 ASSERT(TCP_IS_DETACHED(tcp)); 1460 1461 /* 1462 * Because they have no upstream client to rebind or tcp_close() 1463 * them later, we axe the connection here and now. 1464 */ 1465 tcp_close_detached(tcp); 1466 } 1467 1468 /* 1469 * Remove cached/latched IPsec references. 1470 */ 1471 void 1472 tcp_ipsec_cleanup(tcp_t *tcp) 1473 { 1474 conn_t *connp = tcp->tcp_connp; 1475 1476 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1477 1478 if (connp->conn_latch != NULL) { 1479 IPLATCH_REFRELE(connp->conn_latch); 1480 connp->conn_latch = NULL; 1481 } 1482 if (connp->conn_latch_in_policy != NULL) { 1483 IPPOL_REFRELE(connp->conn_latch_in_policy); 1484 connp->conn_latch_in_policy = NULL; 1485 } 1486 if (connp->conn_latch_in_action != NULL) { 1487 IPACT_REFRELE(connp->conn_latch_in_action); 1488 connp->conn_latch_in_action = NULL; 1489 } 1490 if (connp->conn_policy != NULL) { 1491 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 1492 connp->conn_policy = NULL; 1493 } 1494 } 1495 1496 /* 1497 * Cleaup before placing on free list. 1498 * Disassociate from the netstack/tcp_stack_t since the freelist 1499 * is per squeue and not per netstack. 1500 */ 1501 void 1502 tcp_cleanup(tcp_t *tcp) 1503 { 1504 mblk_t *mp; 1505 tcp_sack_info_t *tcp_sack_info; 1506 conn_t *connp = tcp->tcp_connp; 1507 tcp_stack_t *tcps = tcp->tcp_tcps; 1508 netstack_t *ns = tcps->tcps_netstack; 1509 mblk_t *tcp_rsrv_mp; 1510 1511 tcp_bind_hash_remove(tcp); 1512 1513 /* Cleanup that which needs the netstack first */ 1514 tcp_ipsec_cleanup(tcp); 1515 ixa_cleanup(connp->conn_ixa); 1516 1517 if (connp->conn_ht_iphc != NULL) { 1518 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 1519 connp->conn_ht_iphc = NULL; 1520 connp->conn_ht_iphc_allocated = 0; 1521 connp->conn_ht_iphc_len = 0; 1522 connp->conn_ht_ulp = NULL; 1523 connp->conn_ht_ulp_len = 0; 1524 tcp->tcp_ipha = NULL; 1525 tcp->tcp_ip6h = NULL; 1526 tcp->tcp_tcpha = NULL; 1527 } 1528 1529 /* We clear any IP_OPTIONS and extension headers */ 1530 ip_pkt_free(&connp->conn_xmit_ipp); 1531 1532 tcp_free(tcp); 1533 1534 /* Release any SSL context */ 1535 if (tcp->tcp_kssl_ent != NULL) { 1536 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1537 tcp->tcp_kssl_ent = NULL; 1538 } 1539 1540 if (tcp->tcp_kssl_ctx != NULL) { 1541 kssl_release_ctx(tcp->tcp_kssl_ctx); 1542 tcp->tcp_kssl_ctx = NULL; 1543 } 1544 tcp->tcp_kssl_pending = B_FALSE; 1545 1546 /* 1547 * Since we will bzero the entire structure, we need to 1548 * remove it and reinsert it in global hash list. We 1549 * know the walkers can't get to this conn because we 1550 * had set CONDEMNED flag earlier and checked reference 1551 * under conn_lock so walker won't pick it and when we 1552 * go the ipcl_globalhash_remove() below, no walker 1553 * can get to it. 1554 */ 1555 ipcl_globalhash_remove(connp); 1556 1557 /* Save some state */ 1558 mp = tcp->tcp_timercache; 1559 1560 tcp_sack_info = tcp->tcp_sack_info; 1561 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 1562 1563 if (connp->conn_cred != NULL) { 1564 crfree(connp->conn_cred); 1565 connp->conn_cred = NULL; 1566 } 1567 ipcl_conn_cleanup(connp); 1568 connp->conn_flags = IPCL_TCPCONN; 1569 1570 /* 1571 * Now it is safe to decrement the reference counts. 1572 * This might be the last reference on the netstack 1573 * in which case it will cause the freeing of the IP Instance. 1574 */ 1575 connp->conn_netstack = NULL; 1576 connp->conn_ixa->ixa_ipst = NULL; 1577 netstack_rele(ns); 1578 ASSERT(tcps != NULL); 1579 tcp->tcp_tcps = NULL; 1580 1581 bzero(tcp, sizeof (tcp_t)); 1582 1583 /* restore the state */ 1584 tcp->tcp_timercache = mp; 1585 1586 tcp->tcp_sack_info = tcp_sack_info; 1587 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1588 1589 tcp->tcp_connp = connp; 1590 1591 ASSERT(connp->conn_tcp == tcp); 1592 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1593 connp->conn_state_flags = CONN_INCIPIENT; 1594 ASSERT(connp->conn_proto == IPPROTO_TCP); 1595 ASSERT(connp->conn_ref == 1); 1596 } 1597 1598 /* 1599 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1600 * is done forwards from the head. 1601 * This walks all stack instances since 1602 * tcp_time_wait remains global across all stacks. 1603 */ 1604 /* ARGSUSED */ 1605 void 1606 tcp_time_wait_collector(void *arg) 1607 { 1608 tcp_t *tcp; 1609 clock_t now; 1610 mblk_t *mp; 1611 conn_t *connp; 1612 kmutex_t *lock; 1613 boolean_t removed; 1614 1615 squeue_t *sqp = (squeue_t *)arg; 1616 tcp_squeue_priv_t *tcp_time_wait = 1617 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1618 1619 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1620 tcp_time_wait->tcp_time_wait_tid = 0; 1621 1622 if (tcp_time_wait->tcp_free_list != NULL && 1623 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1624 TCP_G_STAT(tcp_freelist_cleanup); 1625 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1626 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1627 tcp->tcp_time_wait_next = NULL; 1628 tcp_time_wait->tcp_free_list_cnt--; 1629 ASSERT(tcp->tcp_tcps == NULL); 1630 CONN_DEC_REF(tcp->tcp_connp); 1631 } 1632 ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); 1633 } 1634 1635 /* 1636 * In order to reap time waits reliably, we should use a 1637 * source of time that is not adjustable by the user -- hence 1638 * the call to ddi_get_lbolt(). 1639 */ 1640 now = ddi_get_lbolt(); 1641 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1642 /* 1643 * Compare times using modular arithmetic, since 1644 * lbolt can wrapover. 1645 */ 1646 if ((now - tcp->tcp_time_wait_expire) < 0) { 1647 break; 1648 } 1649 1650 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1651 ASSERT(removed); 1652 1653 connp = tcp->tcp_connp; 1654 ASSERT(connp->conn_fanout != NULL); 1655 lock = &connp->conn_fanout->connf_lock; 1656 /* 1657 * This is essentially a TW reclaim fast path optimization for 1658 * performance where the timewait collector checks under the 1659 * fanout lock (so that no one else can get access to the 1660 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1661 * the classifier hash list. If ref count is indeed 2, we can 1662 * just remove the conn under the fanout lock and avoid 1663 * cleaning up the conn under the squeue, provided that 1664 * clustering callbacks are not enabled. If clustering is 1665 * enabled, we need to make the clustering callback before 1666 * setting the CONDEMNED flag and after dropping all locks and 1667 * so we forego this optimization and fall back to the slow 1668 * path. Also please see the comments in tcp_closei_local 1669 * regarding the refcnt logic. 1670 * 1671 * Since we are holding the tcp_time_wait_lock, its better 1672 * not to block on the fanout_lock because other connections 1673 * can't add themselves to time_wait list. So we do a 1674 * tryenter instead of mutex_enter. 1675 */ 1676 if (mutex_tryenter(lock)) { 1677 mutex_enter(&connp->conn_lock); 1678 if ((connp->conn_ref == 2) && 1679 (cl_inet_disconnect == NULL)) { 1680 ipcl_hash_remove_locked(connp, 1681 connp->conn_fanout); 1682 /* 1683 * Set the CONDEMNED flag now itself so that 1684 * the refcnt cannot increase due to any 1685 * walker. 1686 */ 1687 connp->conn_state_flags |= CONN_CONDEMNED; 1688 mutex_exit(lock); 1689 mutex_exit(&connp->conn_lock); 1690 if (tcp_time_wait->tcp_free_list_cnt < 1691 tcp_free_list_max_cnt) { 1692 /* Add to head of tcp_free_list */ 1693 mutex_exit( 1694 &tcp_time_wait->tcp_time_wait_lock); 1695 tcp_cleanup(tcp); 1696 ASSERT(connp->conn_latch == NULL); 1697 ASSERT(connp->conn_policy == NULL); 1698 ASSERT(tcp->tcp_tcps == NULL); 1699 ASSERT(connp->conn_netstack == NULL); 1700 1701 mutex_enter( 1702 &tcp_time_wait->tcp_time_wait_lock); 1703 tcp->tcp_time_wait_next = 1704 tcp_time_wait->tcp_free_list; 1705 tcp_time_wait->tcp_free_list = tcp; 1706 tcp_time_wait->tcp_free_list_cnt++; 1707 continue; 1708 } else { 1709 /* Do not add to tcp_free_list */ 1710 mutex_exit( 1711 &tcp_time_wait->tcp_time_wait_lock); 1712 tcp_bind_hash_remove(tcp); 1713 ixa_cleanup(tcp->tcp_connp->conn_ixa); 1714 tcp_ipsec_cleanup(tcp); 1715 CONN_DEC_REF(tcp->tcp_connp); 1716 } 1717 } else { 1718 CONN_INC_REF_LOCKED(connp); 1719 mutex_exit(lock); 1720 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1721 mutex_exit(&connp->conn_lock); 1722 /* 1723 * We can reuse the closemp here since conn has 1724 * detached (otherwise we wouldn't even be in 1725 * time_wait list). tcp_closemp_used can safely 1726 * be changed without taking a lock as no other 1727 * thread can concurrently access it at this 1728 * point in the connection lifecycle. 1729 */ 1730 1731 if (tcp->tcp_closemp.b_prev == NULL) 1732 tcp->tcp_closemp_used = B_TRUE; 1733 else 1734 cmn_err(CE_PANIC, 1735 "tcp_timewait_collector: " 1736 "concurrent use of tcp_closemp: " 1737 "connp %p tcp %p\n", (void *)connp, 1738 (void *)tcp); 1739 1740 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1741 mp = &tcp->tcp_closemp; 1742 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1743 tcp_timewait_output, connp, NULL, 1744 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1745 } 1746 } else { 1747 mutex_enter(&connp->conn_lock); 1748 CONN_INC_REF_LOCKED(connp); 1749 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1750 mutex_exit(&connp->conn_lock); 1751 /* 1752 * We can reuse the closemp here since conn has 1753 * detached (otherwise we wouldn't even be in 1754 * time_wait list). tcp_closemp_used can safely 1755 * be changed without taking a lock as no other 1756 * thread can concurrently access it at this 1757 * point in the connection lifecycle. 1758 */ 1759 1760 if (tcp->tcp_closemp.b_prev == NULL) 1761 tcp->tcp_closemp_used = B_TRUE; 1762 else 1763 cmn_err(CE_PANIC, "tcp_timewait_collector: " 1764 "concurrent use of tcp_closemp: " 1765 "connp %p tcp %p\n", (void *)connp, 1766 (void *)tcp); 1767 1768 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1769 mp = &tcp->tcp_closemp; 1770 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1771 tcp_timewait_output, connp, NULL, 1772 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1773 } 1774 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1775 } 1776 1777 if (tcp_time_wait->tcp_free_list != NULL) 1778 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1779 1780 tcp_time_wait->tcp_time_wait_tid = 1781 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 1782 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 1783 CALLOUT_FLAG_ROUNDUP); 1784 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1785 } 1786 1787 /* 1788 * Reply to a clients T_CONN_RES TPI message. This function 1789 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1790 * on the acceptor STREAM and processed in tcp_accept_common(). 1791 * Read the block comment on top of tcp_input_listener(). 1792 */ 1793 static void 1794 tcp_tli_accept(tcp_t *listener, mblk_t *mp) 1795 { 1796 tcp_t *acceptor; 1797 tcp_t *eager; 1798 tcp_t *tcp; 1799 struct T_conn_res *tcr; 1800 t_uscalar_t acceptor_id; 1801 t_scalar_t seqnum; 1802 mblk_t *discon_mp = NULL; 1803 mblk_t *ok_mp; 1804 mblk_t *mp1; 1805 tcp_stack_t *tcps = listener->tcp_tcps; 1806 conn_t *econnp; 1807 1808 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1809 tcp_err_ack(listener, mp, TPROTO, 0); 1810 return; 1811 } 1812 tcr = (struct T_conn_res *)mp->b_rptr; 1813 1814 /* 1815 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1816 * read side queue of the streams device underneath us i.e. the 1817 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1818 * look it up in the queue_hash. Under LP64 it sends down the 1819 * minor_t of the accepting endpoint. 1820 * 1821 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1822 * fanout hash lock is held. 1823 * This prevents any thread from entering the acceptor queue from 1824 * below (since it has not been hard bound yet i.e. any inbound 1825 * packets will arrive on the listener conn_t and 1826 * go through the classifier). 1827 * The CONN_INC_REF will prevent the acceptor from closing. 1828 * 1829 * XXX It is still possible for a tli application to send down data 1830 * on the accepting stream while another thread calls t_accept. 1831 * This should not be a problem for well-behaved applications since 1832 * the T_OK_ACK is sent after the queue swapping is completed. 1833 * 1834 * If the accepting fd is the same as the listening fd, avoid 1835 * queue hash lookup since that will return an eager listener in a 1836 * already established state. 1837 */ 1838 acceptor_id = tcr->ACCEPTOR_id; 1839 mutex_enter(&listener->tcp_eager_lock); 1840 if (listener->tcp_acceptor_id == acceptor_id) { 1841 eager = listener->tcp_eager_next_q; 1842 /* only count how many T_CONN_INDs so don't count q0 */ 1843 if ((listener->tcp_conn_req_cnt_q != 1) || 1844 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1845 mutex_exit(&listener->tcp_eager_lock); 1846 tcp_err_ack(listener, mp, TBADF, 0); 1847 return; 1848 } 1849 if (listener->tcp_conn_req_cnt_q0 != 0) { 1850 /* Throw away all the eagers on q0. */ 1851 tcp_eager_cleanup(listener, 1); 1852 } 1853 if (listener->tcp_syn_defense) { 1854 listener->tcp_syn_defense = B_FALSE; 1855 if (listener->tcp_ip_addr_cache != NULL) { 1856 kmem_free(listener->tcp_ip_addr_cache, 1857 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1858 listener->tcp_ip_addr_cache = NULL; 1859 } 1860 } 1861 /* 1862 * Transfer tcp_conn_req_max to the eager so that when 1863 * a disconnect occurs we can revert the endpoint to the 1864 * listen state. 1865 */ 1866 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1867 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1868 /* 1869 * Get a reference on the acceptor just like the 1870 * tcp_acceptor_hash_lookup below. 1871 */ 1872 acceptor = listener; 1873 CONN_INC_REF(acceptor->tcp_connp); 1874 } else { 1875 acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); 1876 if (acceptor == NULL) { 1877 if (listener->tcp_connp->conn_debug) { 1878 (void) strlog(TCP_MOD_ID, 0, 1, 1879 SL_ERROR|SL_TRACE, 1880 "tcp_accept: did not find acceptor 0x%x\n", 1881 acceptor_id); 1882 } 1883 mutex_exit(&listener->tcp_eager_lock); 1884 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 1885 return; 1886 } 1887 /* 1888 * Verify acceptor state. The acceptable states for an acceptor 1889 * include TCPS_IDLE and TCPS_BOUND. 1890 */ 1891 switch (acceptor->tcp_state) { 1892 case TCPS_IDLE: 1893 /* FALLTHRU */ 1894 case TCPS_BOUND: 1895 break; 1896 default: 1897 CONN_DEC_REF(acceptor->tcp_connp); 1898 mutex_exit(&listener->tcp_eager_lock); 1899 tcp_err_ack(listener, mp, TOUTSTATE, 0); 1900 return; 1901 } 1902 } 1903 1904 /* The listener must be in TCPS_LISTEN */ 1905 if (listener->tcp_state != TCPS_LISTEN) { 1906 CONN_DEC_REF(acceptor->tcp_connp); 1907 mutex_exit(&listener->tcp_eager_lock); 1908 tcp_err_ack(listener, mp, TOUTSTATE, 0); 1909 return; 1910 } 1911 1912 /* 1913 * Rendezvous with an eager connection request packet hanging off 1914 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 1915 * tcp structure when the connection packet arrived in 1916 * tcp_input_listener(). 1917 */ 1918 seqnum = tcr->SEQ_number; 1919 eager = listener; 1920 do { 1921 eager = eager->tcp_eager_next_q; 1922 if (eager == NULL) { 1923 CONN_DEC_REF(acceptor->tcp_connp); 1924 mutex_exit(&listener->tcp_eager_lock); 1925 tcp_err_ack(listener, mp, TBADSEQ, 0); 1926 return; 1927 } 1928 } while (eager->tcp_conn_req_seqnum != seqnum); 1929 mutex_exit(&listener->tcp_eager_lock); 1930 1931 /* 1932 * At this point, both acceptor and listener have 2 ref 1933 * that they begin with. Acceptor has one additional ref 1934 * we placed in lookup while listener has 3 additional 1935 * ref for being behind the squeue (tcp_accept() is 1936 * done on listener's squeue); being in classifier hash; 1937 * and eager's ref on listener. 1938 */ 1939 ASSERT(listener->tcp_connp->conn_ref >= 5); 1940 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 1941 1942 /* 1943 * The eager at this point is set in its own squeue and 1944 * could easily have been killed (tcp_accept_finish will 1945 * deal with that) because of a TH_RST so we can only 1946 * ASSERT for a single ref. 1947 */ 1948 ASSERT(eager->tcp_connp->conn_ref >= 1); 1949 1950 /* 1951 * Pre allocate the discon_ind mblk also. tcp_accept_finish will 1952 * use it if something failed. 1953 */ 1954 discon_mp = allocb(MAX(sizeof (struct T_discon_ind), 1955 sizeof (struct stroptions)), BPRI_HI); 1956 if (discon_mp == NULL) { 1957 CONN_DEC_REF(acceptor->tcp_connp); 1958 CONN_DEC_REF(eager->tcp_connp); 1959 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 1960 return; 1961 } 1962 1963 econnp = eager->tcp_connp; 1964 1965 /* Hold a copy of mp, in case reallocb fails */ 1966 if ((mp1 = copymsg(mp)) == NULL) { 1967 CONN_DEC_REF(acceptor->tcp_connp); 1968 CONN_DEC_REF(eager->tcp_connp); 1969 freemsg(discon_mp); 1970 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 1971 return; 1972 } 1973 1974 tcr = (struct T_conn_res *)mp1->b_rptr; 1975 1976 /* 1977 * This is an expanded version of mi_tpi_ok_ack_alloc() 1978 * which allocates a larger mblk and appends the new 1979 * local address to the ok_ack. The address is copied by 1980 * soaccept() for getsockname(). 1981 */ 1982 { 1983 int extra; 1984 1985 extra = (econnp->conn_family == AF_INET) ? 1986 sizeof (sin_t) : sizeof (sin6_t); 1987 1988 /* 1989 * Try to re-use mp, if possible. Otherwise, allocate 1990 * an mblk and return it as ok_mp. In any case, mp 1991 * is no longer usable upon return. 1992 */ 1993 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 1994 CONN_DEC_REF(acceptor->tcp_connp); 1995 CONN_DEC_REF(eager->tcp_connp); 1996 freemsg(discon_mp); 1997 /* Original mp has been freed by now, so use mp1 */ 1998 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 1999 return; 2000 } 2001 2002 mp = NULL; /* We should never use mp after this point */ 2003 2004 switch (extra) { 2005 case sizeof (sin_t): { 2006 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2007 2008 ok_mp->b_wptr += extra; 2009 sin->sin_family = AF_INET; 2010 sin->sin_port = econnp->conn_lport; 2011 sin->sin_addr.s_addr = econnp->conn_laddr_v4; 2012 break; 2013 } 2014 case sizeof (sin6_t): { 2015 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2016 2017 ok_mp->b_wptr += extra; 2018 sin6->sin6_family = AF_INET6; 2019 sin6->sin6_port = econnp->conn_lport; 2020 sin6->sin6_addr = econnp->conn_laddr_v6; 2021 sin6->sin6_flowinfo = econnp->conn_flowinfo; 2022 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6) && 2023 (econnp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)) { 2024 sin6->sin6_scope_id = 2025 econnp->conn_ixa->ixa_scopeid; 2026 } else { 2027 sin6->sin6_scope_id = 0; 2028 } 2029 sin6->__sin6_src_id = 0; 2030 break; 2031 } 2032 default: 2033 break; 2034 } 2035 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2036 } 2037 2038 /* 2039 * If there are no options we know that the T_CONN_RES will 2040 * succeed. However, we can't send the T_OK_ACK upstream until 2041 * the tcp_accept_swap is done since it would be dangerous to 2042 * let the application start using the new fd prior to the swap. 2043 */ 2044 tcp_accept_swap(listener, acceptor, eager); 2045 2046 /* 2047 * tcp_accept_swap unlinks eager from listener but does not drop 2048 * the eager's reference on the listener. 2049 */ 2050 ASSERT(eager->tcp_listener == NULL); 2051 ASSERT(listener->tcp_connp->conn_ref >= 5); 2052 2053 /* 2054 * The eager is now associated with its own queue. Insert in 2055 * the hash so that the connection can be reused for a future 2056 * T_CONN_RES. 2057 */ 2058 tcp_acceptor_hash_insert(acceptor_id, eager); 2059 2060 /* 2061 * We now do the processing of options with T_CONN_RES. 2062 * We delay till now since we wanted to have queue to pass to 2063 * option processing routines that points back to the right 2064 * instance structure which does not happen until after 2065 * tcp_accept_swap(). 2066 * 2067 * Note: 2068 * The sanity of the logic here assumes that whatever options 2069 * are appropriate to inherit from listner=>eager are done 2070 * before this point, and whatever were to be overridden (or not) 2071 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2072 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2073 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2074 * This may not be true at this point in time but can be fixed 2075 * independently. This option processing code starts with 2076 * the instantiated acceptor instance and the final queue at 2077 * this point. 2078 */ 2079 2080 if (tcr->OPT_length != 0) { 2081 /* Options to process */ 2082 int t_error = 0; 2083 int sys_error = 0; 2084 int do_disconnect = 0; 2085 2086 if (tcp_conprim_opt_process(eager, mp1, 2087 &do_disconnect, &t_error, &sys_error) < 0) { 2088 eager->tcp_accept_error = 1; 2089 if (do_disconnect) { 2090 /* 2091 * An option failed which does not allow 2092 * connection to be accepted. 2093 * 2094 * We allow T_CONN_RES to succeed and 2095 * put a T_DISCON_IND on the eager queue. 2096 */ 2097 ASSERT(t_error == 0 && sys_error == 0); 2098 eager->tcp_send_discon_ind = 1; 2099 } else { 2100 ASSERT(t_error != 0); 2101 freemsg(ok_mp); 2102 /* 2103 * Original mp was either freed or set 2104 * to ok_mp above, so use mp1 instead. 2105 */ 2106 tcp_err_ack(listener, mp1, t_error, sys_error); 2107 goto finish; 2108 } 2109 } 2110 /* 2111 * Most likely success in setting options (except if 2112 * eager->tcp_send_discon_ind set). 2113 * mp1 option buffer represented by OPT_length/offset 2114 * potentially modified and contains results of setting 2115 * options at this point 2116 */ 2117 } 2118 2119 /* We no longer need mp1, since all options processing has passed */ 2120 freemsg(mp1); 2121 2122 putnext(listener->tcp_connp->conn_rq, ok_mp); 2123 2124 mutex_enter(&listener->tcp_eager_lock); 2125 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2126 tcp_t *tail; 2127 mblk_t *conn_ind; 2128 2129 /* 2130 * This path should not be executed if listener and 2131 * acceptor streams are the same. 2132 */ 2133 ASSERT(listener != acceptor); 2134 2135 tcp = listener->tcp_eager_prev_q0; 2136 /* 2137 * listener->tcp_eager_prev_q0 points to the TAIL of the 2138 * deferred T_conn_ind queue. We need to get to the head of 2139 * the queue in order to send up T_conn_ind the same order as 2140 * how the 3WHS is completed. 2141 */ 2142 while (tcp != listener) { 2143 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2144 break; 2145 else 2146 tcp = tcp->tcp_eager_prev_q0; 2147 } 2148 ASSERT(tcp != listener); 2149 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2150 ASSERT(conn_ind != NULL); 2151 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2152 2153 /* Move from q0 to q */ 2154 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2155 listener->tcp_conn_req_cnt_q0--; 2156 listener->tcp_conn_req_cnt_q++; 2157 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2158 tcp->tcp_eager_prev_q0; 2159 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2160 tcp->tcp_eager_next_q0; 2161 tcp->tcp_eager_prev_q0 = NULL; 2162 tcp->tcp_eager_next_q0 = NULL; 2163 tcp->tcp_conn_def_q0 = B_FALSE; 2164 2165 /* Make sure the tcp isn't in the list of droppables */ 2166 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2167 tcp->tcp_eager_prev_drop_q0 == NULL); 2168 2169 /* 2170 * Insert at end of the queue because sockfs sends 2171 * down T_CONN_RES in chronological order. Leaving 2172 * the older conn indications at front of the queue 2173 * helps reducing search time. 2174 */ 2175 tail = listener->tcp_eager_last_q; 2176 if (tail != NULL) 2177 tail->tcp_eager_next_q = tcp; 2178 else 2179 listener->tcp_eager_next_q = tcp; 2180 listener->tcp_eager_last_q = tcp; 2181 tcp->tcp_eager_next_q = NULL; 2182 mutex_exit(&listener->tcp_eager_lock); 2183 putnext(tcp->tcp_connp->conn_rq, conn_ind); 2184 } else { 2185 mutex_exit(&listener->tcp_eager_lock); 2186 } 2187 2188 /* 2189 * Done with the acceptor - free it 2190 * 2191 * Note: from this point on, no access to listener should be made 2192 * as listener can be equal to acceptor. 2193 */ 2194 finish: 2195 ASSERT(acceptor->tcp_detached); 2196 acceptor->tcp_connp->conn_rq = NULL; 2197 ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp)); 2198 acceptor->tcp_connp->conn_wq = NULL; 2199 (void) tcp_clean_death(acceptor, 0, 2); 2200 CONN_DEC_REF(acceptor->tcp_connp); 2201 2202 /* 2203 * We pass discon_mp to tcp_accept_finish to get on the right squeue. 2204 * 2205 * It will update the setting for sockfs/stream head and also take 2206 * care of any data that arrived before accept() wad called. 2207 * In case we already received a FIN then tcp_accept_finish will send up 2208 * the ordrel. It will also send up a window update if the window 2209 * has opened up. 2210 */ 2211 2212 /* 2213 * XXX: we currently have a problem if XTI application closes the 2214 * acceptor stream in between. This problem exists in on10-gate also 2215 * and is well know but nothing can be done short of major rewrite 2216 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2217 * eager same squeue as listener (we can distinguish non socket 2218 * listeners at the time of handling a SYN in tcp_input_listener) 2219 * and do most of the work that tcp_accept_finish does here itself 2220 * and then get behind the acceptor squeue to access the acceptor 2221 * queue. 2222 */ 2223 /* 2224 * We already have a ref on tcp so no need to do one before squeue_enter 2225 */ 2226 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, discon_mp, 2227 tcp_accept_finish, eager->tcp_connp, NULL, SQ_FILL, 2228 SQTAG_TCP_ACCEPT_FINISH); 2229 } 2230 2231 /* 2232 * Swap information between the eager and acceptor for a TLI/XTI client. 2233 * The sockfs accept is done on the acceptor stream and control goes 2234 * through tcp_tli_accept() and tcp_accept()/tcp_accept_swap() is not 2235 * called. In either case, both the eager and listener are in their own 2236 * perimeter (squeue) and the code has to deal with potential race. 2237 * 2238 * See the block comment on top of tcp_accept() and tcp_tli_accept(). 2239 */ 2240 static void 2241 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2242 { 2243 conn_t *econnp, *aconnp; 2244 2245 ASSERT(eager->tcp_connp->conn_rq == listener->tcp_connp->conn_rq); 2246 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2247 ASSERT(!TCP_IS_SOCKET(acceptor)); 2248 ASSERT(!TCP_IS_SOCKET(eager)); 2249 ASSERT(!TCP_IS_SOCKET(listener)); 2250 2251 /* 2252 * Trusted Extensions may need to use a security label that is 2253 * different from the acceptor's label on MLP and MAC-Exempt 2254 * sockets. If this is the case, the required security label 2255 * already exists in econnp->conn_ixa->ixa_tsl. Since we make the 2256 * acceptor stream refer to econnp we atomatically get that label. 2257 */ 2258 2259 acceptor->tcp_detached = B_TRUE; 2260 /* 2261 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2262 * the acceptor id. 2263 */ 2264 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2265 2266 /* remove eager from listen list... */ 2267 mutex_enter(&listener->tcp_eager_lock); 2268 tcp_eager_unlink(eager); 2269 ASSERT(eager->tcp_eager_next_q == NULL && 2270 eager->tcp_eager_last_q == NULL); 2271 ASSERT(eager->tcp_eager_next_q0 == NULL && 2272 eager->tcp_eager_prev_q0 == NULL); 2273 mutex_exit(&listener->tcp_eager_lock); 2274 2275 econnp = eager->tcp_connp; 2276 aconnp = acceptor->tcp_connp; 2277 econnp->conn_rq = aconnp->conn_rq; 2278 econnp->conn_wq = aconnp->conn_wq; 2279 econnp->conn_rq->q_ptr = econnp; 2280 econnp->conn_wq->q_ptr = econnp; 2281 2282 /* 2283 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2284 * which might be a different squeue from our peer TCP instance. 2285 * For TCP Fusion, the peer expects that whenever tcp_detached is 2286 * clear, our TCP queues point to the acceptor's queues. Thus, use 2287 * membar_producer() to ensure that the assignments of conn_rq/conn_wq 2288 * above reach global visibility prior to the clearing of tcp_detached. 2289 */ 2290 membar_producer(); 2291 eager->tcp_detached = B_FALSE; 2292 2293 ASSERT(eager->tcp_ack_tid == 0); 2294 2295 econnp->conn_dev = aconnp->conn_dev; 2296 econnp->conn_minor_arena = aconnp->conn_minor_arena; 2297 2298 ASSERT(econnp->conn_minor_arena != NULL); 2299 if (econnp->conn_cred != NULL) 2300 crfree(econnp->conn_cred); 2301 econnp->conn_cred = aconnp->conn_cred; 2302 aconnp->conn_cred = NULL; 2303 econnp->conn_cpid = aconnp->conn_cpid; 2304 ASSERT(econnp->conn_netstack == aconnp->conn_netstack); 2305 ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); 2306 2307 econnp->conn_zoneid = aconnp->conn_zoneid; 2308 econnp->conn_allzones = aconnp->conn_allzones; 2309 econnp->conn_ixa->ixa_zoneid = aconnp->conn_ixa->ixa_zoneid; 2310 2311 econnp->conn_mac_mode = aconnp->conn_mac_mode; 2312 econnp->conn_zone_is_global = aconnp->conn_zone_is_global; 2313 aconnp->conn_mac_mode = CONN_MAC_DEFAULT; 2314 2315 /* Do the IPC initialization */ 2316 CONN_INC_REF(econnp); 2317 2318 econnp->conn_family = aconnp->conn_family; 2319 econnp->conn_ipversion = aconnp->conn_ipversion; 2320 2321 /* Done with old IPC. Drop its ref on its connp */ 2322 CONN_DEC_REF(aconnp); 2323 } 2324 2325 2326 /* 2327 * Adapt to the information, such as rtt and rtt_sd, provided from the 2328 * DCE and IRE maintained by IP. 2329 * 2330 * Checks for multicast and broadcast destination address. 2331 * Returns zero if ok; an errno on failure. 2332 * 2333 * Note that the MSS calculation here is based on the info given in 2334 * the DCE and IRE. We do not do any calculation based on TCP options. They 2335 * will be handled in tcp_input_data() when TCP knows which options to use. 2336 * 2337 * Note on how TCP gets its parameters for a connection. 2338 * 2339 * When a tcp_t structure is allocated, it gets all the default parameters. 2340 * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd, 2341 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2342 * default. 2343 * 2344 * An incoming SYN with a multicast or broadcast destination address is dropped 2345 * in ip_fanout_v4/v6. 2346 * 2347 * An incoming SYN with a multicast or broadcast source address is always 2348 * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in 2349 * conn_connect. 2350 * The same logic in tcp_set_destination also serves to 2351 * reject an attempt to connect to a broadcast or multicast (destination) 2352 * address. 2353 */ 2354 static int 2355 tcp_set_destination(tcp_t *tcp) 2356 { 2357 uint32_t mss_max; 2358 uint32_t mss; 2359 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2360 conn_t *connp = tcp->tcp_connp; 2361 tcp_stack_t *tcps = tcp->tcp_tcps; 2362 iulp_t uinfo; 2363 int error; 2364 uint32_t flags; 2365 2366 flags = IPDF_LSO | IPDF_ZCOPY; 2367 /* 2368 * Make sure we have a dce for the destination to avoid dce_ident 2369 * contention for connected sockets. 2370 */ 2371 flags |= IPDF_UNIQUE_DCE; 2372 2373 if (!tcps->tcps_ignore_path_mtu) 2374 connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY; 2375 2376 /* Use conn_lock to satify ASSERT; tcp is already serialized */ 2377 mutex_enter(&connp->conn_lock); 2378 error = conn_connect(connp, &uinfo, flags); 2379 mutex_exit(&connp->conn_lock); 2380 if (error != 0) 2381 return (error); 2382 2383 error = tcp_build_hdrs(tcp); 2384 if (error != 0) 2385 return (error); 2386 2387 tcp->tcp_localnet = uinfo.iulp_localnet; 2388 2389 if (uinfo.iulp_rtt != 0) { 2390 clock_t rto; 2391 2392 tcp->tcp_rtt_sa = uinfo.iulp_rtt; 2393 tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd; 2394 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2395 tcps->tcps_rexmit_interval_extra + 2396 (tcp->tcp_rtt_sa >> 5); 2397 2398 if (rto > tcps->tcps_rexmit_interval_max) { 2399 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 2400 } else if (rto < tcps->tcps_rexmit_interval_min) { 2401 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2402 } else { 2403 tcp->tcp_rto = rto; 2404 } 2405 } 2406 if (uinfo.iulp_ssthresh != 0) 2407 tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh; 2408 else 2409 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2410 if (uinfo.iulp_spipe > 0) { 2411 connp->conn_sndbuf = MIN(uinfo.iulp_spipe, 2412 tcps->tcps_max_buf); 2413 if (tcps->tcps_snd_lowat_fraction != 0) { 2414 connp->conn_sndlowat = connp->conn_sndbuf / 2415 tcps->tcps_snd_lowat_fraction; 2416 } 2417 (void) tcp_maxpsz_set(tcp, B_TRUE); 2418 } 2419 /* 2420 * Note that up till now, acceptor always inherits receive 2421 * window from the listener. But if there is a metrics 2422 * associated with a host, we should use that instead of 2423 * inheriting it from listener. Thus we need to pass this 2424 * info back to the caller. 2425 */ 2426 if (uinfo.iulp_rpipe > 0) { 2427 tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe, 2428 tcps->tcps_max_buf); 2429 } 2430 2431 if (uinfo.iulp_rtomax > 0) { 2432 tcp->tcp_second_timer_threshold = 2433 uinfo.iulp_rtomax; 2434 } 2435 2436 /* 2437 * Use the metric option settings, iulp_tstamp_ok and 2438 * iulp_wscale_ok, only for active open. What this means 2439 * is that if the other side uses timestamp or window 2440 * scale option, TCP will also use those options. That 2441 * is for passive open. If the application sets a 2442 * large window, window scale is enabled regardless of 2443 * the value in iulp_wscale_ok. This is the behavior 2444 * since 2.6. So we keep it. 2445 * The only case left in passive open processing is the 2446 * check for SACK. 2447 * For ECN, it should probably be like SACK. But the 2448 * current value is binary, so we treat it like the other 2449 * cases. The metric only controls active open.For passive 2450 * open, the ndd param, tcp_ecn_permitted, controls the 2451 * behavior. 2452 */ 2453 if (!tcp_detached) { 2454 /* 2455 * The if check means that the following can only 2456 * be turned on by the metrics only IRE, but not off. 2457 */ 2458 if (uinfo.iulp_tstamp_ok) 2459 tcp->tcp_snd_ts_ok = B_TRUE; 2460 if (uinfo.iulp_wscale_ok) 2461 tcp->tcp_snd_ws_ok = B_TRUE; 2462 if (uinfo.iulp_sack == 2) 2463 tcp->tcp_snd_sack_ok = B_TRUE; 2464 if (uinfo.iulp_ecn_ok) 2465 tcp->tcp_ecn_ok = B_TRUE; 2466 } else { 2467 /* 2468 * Passive open. 2469 * 2470 * As above, the if check means that SACK can only be 2471 * turned on by the metric only IRE. 2472 */ 2473 if (uinfo.iulp_sack > 0) { 2474 tcp->tcp_snd_sack_ok = B_TRUE; 2475 } 2476 } 2477 2478 /* 2479 * XXX Note that currently, iulp_mtu can be as small as 68 2480 * because of PMTUd. So tcp_mss may go to negative if combined 2481 * length of all those options exceeds 28 bytes. But because 2482 * of the tcp_mss_min check below, we may not have a problem if 2483 * tcp_mss_min is of a reasonable value. The default is 1 so 2484 * the negative problem still exists. And the check defeats PMTUd. 2485 * In fact, if PMTUd finds that the MSS should be smaller than 2486 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2487 * value. 2488 * 2489 * We do not deal with that now. All those problems related to 2490 * PMTUd will be fixed later. 2491 */ 2492 ASSERT(uinfo.iulp_mtu != 0); 2493 mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu; 2494 2495 /* Sanity check for MSS value. */ 2496 if (connp->conn_ipversion == IPV4_VERSION) 2497 mss_max = tcps->tcps_mss_max_ipv4; 2498 else 2499 mss_max = tcps->tcps_mss_max_ipv6; 2500 2501 if (tcp->tcp_ipsec_overhead == 0) 2502 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2503 2504 mss -= tcp->tcp_ipsec_overhead; 2505 2506 if (mss < tcps->tcps_mss_min) 2507 mss = tcps->tcps_mss_min; 2508 if (mss > mss_max) 2509 mss = mss_max; 2510 2511 /* Note that this is the maximum MSS, excluding all options. */ 2512 tcp->tcp_mss = mss; 2513 2514 /* 2515 * Update the tcp connection with LSO capability. 2516 */ 2517 tcp_update_lso(tcp, connp->conn_ixa); 2518 2519 /* 2520 * Initialize the ISS here now that we have the full connection ID. 2521 * The RFC 1948 method of initial sequence number generation requires 2522 * knowledge of the full connection ID before setting the ISS. 2523 */ 2524 tcp_iss_init(tcp); 2525 2526 tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local); 2527 2528 /* 2529 * Make sure that conn is not marked incipient 2530 * for incoming connections. A blind 2531 * removal of incipient flag is cheaper than 2532 * check and removal. 2533 */ 2534 mutex_enter(&connp->conn_lock); 2535 connp->conn_state_flags &= ~CONN_INCIPIENT; 2536 mutex_exit(&connp->conn_lock); 2537 return (0); 2538 } 2539 2540 static void 2541 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp) 2542 { 2543 int error; 2544 conn_t *connp = tcp->tcp_connp; 2545 struct sockaddr *sa; 2546 mblk_t *mp1; 2547 struct T_bind_req *tbr; 2548 int backlog; 2549 socklen_t len; 2550 sin_t *sin; 2551 sin6_t *sin6; 2552 cred_t *cr; 2553 2554 /* 2555 * All Solaris components should pass a db_credp 2556 * for this TPI message, hence we ASSERT. 2557 * But in case there is some other M_PROTO that looks 2558 * like a TPI message sent by some other kernel 2559 * component, we check and return an error. 2560 */ 2561 cr = msg_getcred(mp, NULL); 2562 ASSERT(cr != NULL); 2563 if (cr == NULL) { 2564 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 2565 return; 2566 } 2567 2568 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 2569 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 2570 if (connp->conn_debug) { 2571 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2572 "tcp_tpi_bind: bad req, len %u", 2573 (uint_t)(mp->b_wptr - mp->b_rptr)); 2574 } 2575 tcp_err_ack(tcp, mp, TPROTO, 0); 2576 return; 2577 } 2578 /* Make sure the largest address fits */ 2579 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t), 1); 2580 if (mp1 == NULL) { 2581 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 2582 return; 2583 } 2584 mp = mp1; 2585 tbr = (struct T_bind_req *)mp->b_rptr; 2586 2587 backlog = tbr->CONIND_number; 2588 len = tbr->ADDR_length; 2589 2590 switch (len) { 2591 case 0: /* request for a generic port */ 2592 tbr->ADDR_offset = sizeof (struct T_bind_req); 2593 if (connp->conn_family == AF_INET) { 2594 tbr->ADDR_length = sizeof (sin_t); 2595 sin = (sin_t *)&tbr[1]; 2596 *sin = sin_null; 2597 sin->sin_family = AF_INET; 2598 sa = (struct sockaddr *)sin; 2599 len = sizeof (sin_t); 2600 mp->b_wptr = (uchar_t *)&sin[1]; 2601 } else { 2602 ASSERT(connp->conn_family == AF_INET6); 2603 tbr->ADDR_length = sizeof (sin6_t); 2604 sin6 = (sin6_t *)&tbr[1]; 2605 *sin6 = sin6_null; 2606 sin6->sin6_family = AF_INET6; 2607 sa = (struct sockaddr *)sin6; 2608 len = sizeof (sin6_t); 2609 mp->b_wptr = (uchar_t *)&sin6[1]; 2610 } 2611 break; 2612 2613 case sizeof (sin_t): /* Complete IPv4 address */ 2614 sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset, 2615 sizeof (sin_t)); 2616 break; 2617 2618 case sizeof (sin6_t): /* Complete IPv6 address */ 2619 sa = (struct sockaddr *)mi_offset_param(mp, 2620 tbr->ADDR_offset, sizeof (sin6_t)); 2621 break; 2622 2623 default: 2624 if (connp->conn_debug) { 2625 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2626 "tcp_tpi_bind: bad address length, %d", 2627 tbr->ADDR_length); 2628 } 2629 tcp_err_ack(tcp, mp, TBADADDR, 0); 2630 return; 2631 } 2632 2633 if (backlog > 0) { 2634 error = tcp_do_listen(connp, sa, len, backlog, DB_CRED(mp), 2635 tbr->PRIM_type != O_T_BIND_REQ); 2636 } else { 2637 error = tcp_do_bind(connp, sa, len, DB_CRED(mp), 2638 tbr->PRIM_type != O_T_BIND_REQ); 2639 } 2640 done: 2641 if (error > 0) { 2642 tcp_err_ack(tcp, mp, TSYSERR, error); 2643 } else if (error < 0) { 2644 tcp_err_ack(tcp, mp, -error, 0); 2645 } else { 2646 /* 2647 * Update port information as sockfs/tpi needs it for checking 2648 */ 2649 if (connp->conn_family == AF_INET) { 2650 sin = (sin_t *)sa; 2651 sin->sin_port = connp->conn_lport; 2652 } else { 2653 sin6 = (sin6_t *)sa; 2654 sin6->sin6_port = connp->conn_lport; 2655 } 2656 mp->b_datap->db_type = M_PCPROTO; 2657 tbr->PRIM_type = T_BIND_ACK; 2658 putnext(connp->conn_rq, mp); 2659 } 2660 } 2661 2662 /* 2663 * If the "bind_to_req_port_only" parameter is set, if the requested port 2664 * number is available, return it, If not return 0 2665 * 2666 * If "bind_to_req_port_only" parameter is not set and 2667 * If the requested port number is available, return it. If not, return 2668 * the first anonymous port we happen across. If no anonymous ports are 2669 * available, return 0. addr is the requested local address, if any. 2670 * 2671 * In either case, when succeeding update the tcp_t to record the port number 2672 * and insert it in the bind hash table. 2673 * 2674 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 2675 * without setting SO_REUSEADDR. This is needed so that they 2676 * can be viewed as two independent transport protocols. 2677 */ 2678 static in_port_t 2679 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 2680 int reuseaddr, boolean_t quick_connect, 2681 boolean_t bind_to_req_port_only, boolean_t user_specified) 2682 { 2683 /* number of times we have run around the loop */ 2684 int count = 0; 2685 /* maximum number of times to run around the loop */ 2686 int loopmax; 2687 conn_t *connp = tcp->tcp_connp; 2688 tcp_stack_t *tcps = tcp->tcp_tcps; 2689 2690 /* 2691 * Lookup for free addresses is done in a loop and "loopmax" 2692 * influences how long we spin in the loop 2693 */ 2694 if (bind_to_req_port_only) { 2695 /* 2696 * If the requested port is busy, don't bother to look 2697 * for a new one. Setting loop maximum count to 1 has 2698 * that effect. 2699 */ 2700 loopmax = 1; 2701 } else { 2702 /* 2703 * If the requested port is busy, look for a free one 2704 * in the anonymous port range. 2705 * Set loopmax appropriately so that one does not look 2706 * forever in the case all of the anonymous ports are in use. 2707 */ 2708 if (connp->conn_anon_priv_bind) { 2709 /* 2710 * loopmax = 2711 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 2712 */ 2713 loopmax = IPPORT_RESERVED - 2714 tcps->tcps_min_anonpriv_port; 2715 } else { 2716 loopmax = (tcps->tcps_largest_anon_port - 2717 tcps->tcps_smallest_anon_port + 1); 2718 } 2719 } 2720 do { 2721 uint16_t lport; 2722 tf_t *tbf; 2723 tcp_t *ltcp; 2724 conn_t *lconnp; 2725 2726 lport = htons(port); 2727 2728 /* 2729 * Ensure that the tcp_t is not currently in the bind hash. 2730 * Hold the lock on the hash bucket to ensure that 2731 * the duplicate check plus the insertion is an atomic 2732 * operation. 2733 * 2734 * This function does an inline lookup on the bind hash list 2735 * Make sure that we access only members of tcp_t 2736 * and that we don't look at tcp_tcp, since we are not 2737 * doing a CONN_INC_REF. 2738 */ 2739 tcp_bind_hash_remove(tcp); 2740 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; 2741 mutex_enter(&tbf->tf_lock); 2742 for (ltcp = tbf->tf_tcp; ltcp != NULL; 2743 ltcp = ltcp->tcp_bind_hash) { 2744 if (lport == ltcp->tcp_connp->conn_lport) 2745 break; 2746 } 2747 2748 for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) { 2749 boolean_t not_socket; 2750 boolean_t exclbind; 2751 2752 lconnp = ltcp->tcp_connp; 2753 2754 /* 2755 * On a labeled system, we must treat bindings to ports 2756 * on shared IP addresses by sockets with MAC exemption 2757 * privilege as being in all zones, as there's 2758 * otherwise no way to identify the right receiver. 2759 */ 2760 if (!IPCL_BIND_ZONE_MATCH(lconnp, connp)) 2761 continue; 2762 2763 /* 2764 * If TCP_EXCLBIND is set for either the bound or 2765 * binding endpoint, the semantics of bind 2766 * is changed according to the following. 2767 * 2768 * spec = specified address (v4 or v6) 2769 * unspec = unspecified address (v4 or v6) 2770 * A = specified addresses are different for endpoints 2771 * 2772 * bound bind to allowed 2773 * ------------------------------------- 2774 * unspec unspec no 2775 * unspec spec no 2776 * spec unspec no 2777 * spec spec yes if A 2778 * 2779 * For labeled systems, SO_MAC_EXEMPT behaves the same 2780 * as TCP_EXCLBIND, except that zoneid is ignored. 2781 * 2782 * Note: 2783 * 2784 * 1. Because of TLI semantics, an endpoint can go 2785 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 2786 * TCPS_BOUND, depending on whether it is originally 2787 * a listener or not. That is why we need to check 2788 * for states greater than or equal to TCPS_BOUND 2789 * here. 2790 * 2791 * 2. Ideally, we should only check for state equals 2792 * to TCPS_LISTEN. And the following check should be 2793 * added. 2794 * 2795 * if (ltcp->tcp_state == TCPS_LISTEN || 2796 * !reuseaddr || !lconnp->conn_reuseaddr) { 2797 * ... 2798 * } 2799 * 2800 * The semantics will be changed to this. If the 2801 * endpoint on the list is in state not equal to 2802 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 2803 * set, let the bind succeed. 2804 * 2805 * Because of (1), we cannot do that for TLI 2806 * endpoints. But we can do that for socket endpoints. 2807 * If in future, we can change this going back 2808 * semantics, we can use the above check for TLI also. 2809 */ 2810 not_socket = !(TCP_IS_SOCKET(ltcp) && 2811 TCP_IS_SOCKET(tcp)); 2812 exclbind = lconnp->conn_exclbind || 2813 connp->conn_exclbind; 2814 2815 if ((lconnp->conn_mac_mode != CONN_MAC_DEFAULT) || 2816 (connp->conn_mac_mode != CONN_MAC_DEFAULT) || 2817 (exclbind && (not_socket || 2818 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 2819 if (V6_OR_V4_INADDR_ANY( 2820 lconnp->conn_bound_addr_v6) || 2821 V6_OR_V4_INADDR_ANY(*laddr) || 2822 IN6_ARE_ADDR_EQUAL(laddr, 2823 &lconnp->conn_bound_addr_v6)) { 2824 break; 2825 } 2826 continue; 2827 } 2828 2829 /* 2830 * Check ipversion to allow IPv4 and IPv6 sockets to 2831 * have disjoint port number spaces, if *_EXCLBIND 2832 * is not set and only if the application binds to a 2833 * specific port. We use the same autoassigned port 2834 * number space for IPv4 and IPv6 sockets. 2835 */ 2836 if (connp->conn_ipversion != lconnp->conn_ipversion && 2837 bind_to_req_port_only) 2838 continue; 2839 2840 /* 2841 * Ideally, we should make sure that the source 2842 * address, remote address, and remote port in the 2843 * four tuple for this tcp-connection is unique. 2844 * However, trying to find out the local source 2845 * address would require too much code duplication 2846 * with IP, since IP needs needs to have that code 2847 * to support userland TCP implementations. 2848 */ 2849 if (quick_connect && 2850 (ltcp->tcp_state > TCPS_LISTEN) && 2851 ((connp->conn_fport != lconnp->conn_fport) || 2852 !IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, 2853 &lconnp->conn_faddr_v6))) 2854 continue; 2855 2856 if (!reuseaddr) { 2857 /* 2858 * No socket option SO_REUSEADDR. 2859 * If existing port is bound to 2860 * a non-wildcard IP address 2861 * and the requesting stream is 2862 * bound to a distinct 2863 * different IP addresses 2864 * (non-wildcard, also), keep 2865 * going. 2866 */ 2867 if (!V6_OR_V4_INADDR_ANY(*laddr) && 2868 !V6_OR_V4_INADDR_ANY( 2869 lconnp->conn_bound_addr_v6) && 2870 !IN6_ARE_ADDR_EQUAL(laddr, 2871 &lconnp->conn_bound_addr_v6)) 2872 continue; 2873 if (ltcp->tcp_state >= TCPS_BOUND) { 2874 /* 2875 * This port is being used and 2876 * its state is >= TCPS_BOUND, 2877 * so we can't bind to it. 2878 */ 2879 break; 2880 } 2881 } else { 2882 /* 2883 * socket option SO_REUSEADDR is set on the 2884 * binding tcp_t. 2885 * 2886 * If two streams are bound to 2887 * same IP address or both addr 2888 * and bound source are wildcards 2889 * (INADDR_ANY), we want to stop 2890 * searching. 2891 * We have found a match of IP source 2892 * address and source port, which is 2893 * refused regardless of the 2894 * SO_REUSEADDR setting, so we break. 2895 */ 2896 if (IN6_ARE_ADDR_EQUAL(laddr, 2897 &lconnp->conn_bound_addr_v6) && 2898 (ltcp->tcp_state == TCPS_LISTEN || 2899 ltcp->tcp_state == TCPS_BOUND)) 2900 break; 2901 } 2902 } 2903 if (ltcp != NULL) { 2904 /* The port number is busy */ 2905 mutex_exit(&tbf->tf_lock); 2906 } else { 2907 /* 2908 * This port is ours. Insert in fanout and mark as 2909 * bound to prevent others from getting the port 2910 * number. 2911 */ 2912 tcp->tcp_state = TCPS_BOUND; 2913 connp->conn_lport = htons(port); 2914 2915 ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( 2916 connp->conn_lport)] == tbf); 2917 tcp_bind_hash_insert(tbf, tcp, 1); 2918 2919 mutex_exit(&tbf->tf_lock); 2920 2921 /* 2922 * We don't want tcp_next_port_to_try to "inherit" 2923 * a port number supplied by the user in a bind. 2924 */ 2925 if (user_specified) 2926 return (port); 2927 2928 /* 2929 * This is the only place where tcp_next_port_to_try 2930 * is updated. After the update, it may or may not 2931 * be in the valid range. 2932 */ 2933 if (!connp->conn_anon_priv_bind) 2934 tcps->tcps_next_port_to_try = port + 1; 2935 return (port); 2936 } 2937 2938 if (connp->conn_anon_priv_bind) { 2939 port = tcp_get_next_priv_port(tcp); 2940 } else { 2941 if (count == 0 && user_specified) { 2942 /* 2943 * We may have to return an anonymous port. So 2944 * get one to start with. 2945 */ 2946 port = 2947 tcp_update_next_port( 2948 tcps->tcps_next_port_to_try, 2949 tcp, B_TRUE); 2950 user_specified = B_FALSE; 2951 } else { 2952 port = tcp_update_next_port(port + 1, tcp, 2953 B_FALSE); 2954 } 2955 } 2956 if (port == 0) 2957 break; 2958 2959 /* 2960 * Don't let this loop run forever in the case where 2961 * all of the anonymous ports are in use. 2962 */ 2963 } while (++count < loopmax); 2964 return (0); 2965 } 2966 2967 /* 2968 * tcp_clean_death / tcp_close_detached must not be called more than once 2969 * on a tcp. Thus every function that potentially calls tcp_clean_death 2970 * must check for the tcp state before calling tcp_clean_death. 2971 * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper, 2972 * tcp_timer_handler, all check for the tcp state. 2973 */ 2974 /* ARGSUSED */ 2975 void 2976 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2, 2977 ip_recv_attr_t *dummy) 2978 { 2979 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 2980 2981 freemsg(mp); 2982 if (tcp->tcp_state > TCPS_BOUND) 2983 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, 2984 ETIMEDOUT, 5); 2985 } 2986 2987 /* 2988 * We are dying for some reason. Try to do it gracefully. (May be called 2989 * as writer.) 2990 * 2991 * Return -1 if the structure was not cleaned up (if the cleanup had to be 2992 * done by a service procedure). 2993 * TBD - Should the return value distinguish between the tcp_t being 2994 * freed and it being reinitialized? 2995 */ 2996 static int 2997 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 2998 { 2999 mblk_t *mp; 3000 queue_t *q; 3001 conn_t *connp = tcp->tcp_connp; 3002 tcp_stack_t *tcps = tcp->tcp_tcps; 3003 3004 TCP_CLD_STAT(tag); 3005 3006 #if TCP_TAG_CLEAN_DEATH 3007 tcp->tcp_cleandeathtag = tag; 3008 #endif 3009 3010 if (tcp->tcp_fused) 3011 tcp_unfuse(tcp); 3012 3013 if (tcp->tcp_linger_tid != 0 && 3014 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3015 tcp_stop_lingering(tcp); 3016 } 3017 3018 ASSERT(tcp != NULL); 3019 ASSERT((connp->conn_family == AF_INET && 3020 connp->conn_ipversion == IPV4_VERSION) || 3021 (connp->conn_family == AF_INET6 && 3022 (connp->conn_ipversion == IPV4_VERSION || 3023 connp->conn_ipversion == IPV6_VERSION))); 3024 3025 if (TCP_IS_DETACHED(tcp)) { 3026 if (tcp->tcp_hard_binding) { 3027 /* 3028 * Its an eager that we are dealing with. We close the 3029 * eager but in case a conn_ind has already gone to the 3030 * listener, let tcp_accept_finish() send a discon_ind 3031 * to the listener and drop the last reference. If the 3032 * listener doesn't even know about the eager i.e. the 3033 * conn_ind hasn't gone up, blow away the eager and drop 3034 * the last reference as well. If the conn_ind has gone 3035 * up, state should be BOUND. tcp_accept_finish 3036 * will figure out that the connection has received a 3037 * RST and will send a DISCON_IND to the application. 3038 */ 3039 tcp_closei_local(tcp); 3040 if (!tcp->tcp_tconnind_started) { 3041 CONN_DEC_REF(connp); 3042 } else { 3043 tcp->tcp_state = TCPS_BOUND; 3044 } 3045 } else { 3046 tcp_close_detached(tcp); 3047 } 3048 return (0); 3049 } 3050 3051 TCP_STAT(tcps, tcp_clean_death_nondetached); 3052 3053 q = connp->conn_rq; 3054 3055 /* Trash all inbound data */ 3056 if (!IPCL_IS_NONSTR(connp)) { 3057 ASSERT(q != NULL); 3058 flushq(q, FLUSHALL); 3059 } 3060 3061 /* 3062 * If we are at least part way open and there is error 3063 * (err==0 implies no error) 3064 * notify our client by a T_DISCON_IND. 3065 */ 3066 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3067 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3068 !TCP_IS_SOCKET(tcp)) { 3069 /* 3070 * Send M_FLUSH according to TPI. Because sockets will 3071 * (and must) ignore FLUSHR we do that only for TPI 3072 * endpoints and sockets in STREAMS mode. 3073 */ 3074 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3075 } 3076 if (connp->conn_debug) { 3077 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3078 "tcp_clean_death: discon err %d", err); 3079 } 3080 if (IPCL_IS_NONSTR(connp)) { 3081 /* Direct socket, use upcall */ 3082 (*connp->conn_upcalls->su_disconnected)( 3083 connp->conn_upper_handle, tcp->tcp_connid, err); 3084 } else { 3085 mp = mi_tpi_discon_ind(NULL, err, 0); 3086 if (mp != NULL) { 3087 putnext(q, mp); 3088 } else { 3089 if (connp->conn_debug) { 3090 (void) strlog(TCP_MOD_ID, 0, 1, 3091 SL_ERROR|SL_TRACE, 3092 "tcp_clean_death, sending M_ERROR"); 3093 } 3094 (void) putnextctl1(q, M_ERROR, EPROTO); 3095 } 3096 } 3097 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3098 /* SYN_SENT or SYN_RCVD */ 3099 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3100 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3101 /* ESTABLISHED or CLOSE_WAIT */ 3102 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3103 } 3104 } 3105 3106 tcp_reinit(tcp); 3107 if (IPCL_IS_NONSTR(connp)) 3108 (void) tcp_do_unbind(connp); 3109 3110 return (-1); 3111 } 3112 3113 /* 3114 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3115 * to expire, stop the wait and finish the close. 3116 */ 3117 static void 3118 tcp_stop_lingering(tcp_t *tcp) 3119 { 3120 clock_t delta = 0; 3121 tcp_stack_t *tcps = tcp->tcp_tcps; 3122 conn_t *connp = tcp->tcp_connp; 3123 3124 tcp->tcp_linger_tid = 0; 3125 if (tcp->tcp_state > TCPS_LISTEN) { 3126 tcp_acceptor_hash_remove(tcp); 3127 mutex_enter(&tcp->tcp_non_sq_lock); 3128 if (tcp->tcp_flow_stopped) { 3129 tcp_clrqfull(tcp); 3130 } 3131 mutex_exit(&tcp->tcp_non_sq_lock); 3132 3133 if (tcp->tcp_timer_tid != 0) { 3134 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3135 tcp->tcp_timer_tid = 0; 3136 } 3137 /* 3138 * Need to cancel those timers which will not be used when 3139 * TCP is detached. This has to be done before the conn_wq 3140 * is cleared. 3141 */ 3142 tcp_timers_stop(tcp); 3143 3144 tcp->tcp_detached = B_TRUE; 3145 connp->conn_rq = NULL; 3146 connp->conn_wq = NULL; 3147 3148 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3149 tcp_time_wait_append(tcp); 3150 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3151 goto finish; 3152 } 3153 3154 /* 3155 * If delta is zero the timer event wasn't executed and was 3156 * successfully canceled. In this case we need to restart it 3157 * with the minimal delta possible. 3158 */ 3159 if (delta >= 0) { 3160 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3161 delta ? delta : 1); 3162 } 3163 } else { 3164 tcp_closei_local(tcp); 3165 CONN_DEC_REF(connp); 3166 } 3167 finish: 3168 /* Signal closing thread that it can complete close */ 3169 mutex_enter(&tcp->tcp_closelock); 3170 tcp->tcp_detached = B_TRUE; 3171 connp->conn_rq = NULL; 3172 connp->conn_wq = NULL; 3173 3174 tcp->tcp_closed = 1; 3175 cv_signal(&tcp->tcp_closecv); 3176 mutex_exit(&tcp->tcp_closelock); 3177 } 3178 3179 /* 3180 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3181 * expires. 3182 */ 3183 static void 3184 tcp_close_linger_timeout(void *arg) 3185 { 3186 conn_t *connp = (conn_t *)arg; 3187 tcp_t *tcp = connp->conn_tcp; 3188 3189 tcp->tcp_client_errno = ETIMEDOUT; 3190 tcp_stop_lingering(tcp); 3191 } 3192 3193 static void 3194 tcp_close_common(conn_t *connp, int flags) 3195 { 3196 tcp_t *tcp = connp->conn_tcp; 3197 mblk_t *mp = &tcp->tcp_closemp; 3198 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 3199 mblk_t *bp; 3200 3201 ASSERT(connp->conn_ref >= 2); 3202 3203 /* 3204 * Mark the conn as closing. ipsq_pending_mp_add will not 3205 * add any mp to the pending mp list, after this conn has 3206 * started closing. 3207 */ 3208 mutex_enter(&connp->conn_lock); 3209 connp->conn_state_flags |= CONN_CLOSING; 3210 if (connp->conn_oper_pending_ill != NULL) 3211 conn_ioctl_cleanup_reqd = B_TRUE; 3212 CONN_INC_REF_LOCKED(connp); 3213 mutex_exit(&connp->conn_lock); 3214 tcp->tcp_closeflags = (uint8_t)flags; 3215 ASSERT(connp->conn_ref >= 3); 3216 3217 /* 3218 * tcp_closemp_used is used below without any protection of a lock 3219 * as we don't expect any one else to use it concurrently at this 3220 * point otherwise it would be a major defect. 3221 */ 3222 3223 if (mp->b_prev == NULL) 3224 tcp->tcp_closemp_used = B_TRUE; 3225 else 3226 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 3227 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 3228 3229 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 3230 3231 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 3232 NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3233 3234 mutex_enter(&tcp->tcp_closelock); 3235 while (!tcp->tcp_closed) { 3236 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 3237 /* 3238 * The cv_wait_sig() was interrupted. We now do the 3239 * following: 3240 * 3241 * 1) If the endpoint was lingering, we allow this 3242 * to be interrupted by cancelling the linger timeout 3243 * and closing normally. 3244 * 3245 * 2) Revert to calling cv_wait() 3246 * 3247 * We revert to using cv_wait() to avoid an 3248 * infinite loop which can occur if the calling 3249 * thread is higher priority than the squeue worker 3250 * thread and is bound to the same cpu. 3251 */ 3252 if (connp->conn_linger && connp->conn_lingertime > 0) { 3253 mutex_exit(&tcp->tcp_closelock); 3254 /* Entering squeue, bump ref count. */ 3255 CONN_INC_REF(connp); 3256 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 3257 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 3258 tcp_linger_interrupted, connp, NULL, 3259 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3260 mutex_enter(&tcp->tcp_closelock); 3261 } 3262 break; 3263 } 3264 } 3265 while (!tcp->tcp_closed) 3266 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 3267 mutex_exit(&tcp->tcp_closelock); 3268 3269 /* 3270 * In the case of listener streams that have eagers in the q or q0 3271 * we wait for the eagers to drop their reference to us. conn_rq and 3272 * conn_wq of the eagers point to our queues. By waiting for the 3273 * refcnt to drop to 1, we are sure that the eagers have cleaned 3274 * up their queue pointers and also dropped their references to us. 3275 */ 3276 if (tcp->tcp_wait_for_eagers) { 3277 mutex_enter(&connp->conn_lock); 3278 while (connp->conn_ref != 1) { 3279 cv_wait(&connp->conn_cv, &connp->conn_lock); 3280 } 3281 mutex_exit(&connp->conn_lock); 3282 } 3283 /* 3284 * ioctl cleanup. The mp is queued in the ipx_pending_mp. 3285 */ 3286 if (conn_ioctl_cleanup_reqd) 3287 conn_ioctl_cleanup(connp); 3288 3289 connp->conn_cpid = NOPID; 3290 } 3291 3292 static int 3293 tcp_tpi_close(queue_t *q, int flags) 3294 { 3295 conn_t *connp; 3296 3297 ASSERT(WR(q)->q_next == NULL); 3298 3299 if (flags & SO_FALLBACK) { 3300 /* 3301 * stream is being closed while in fallback 3302 * simply free the resources that were allocated 3303 */ 3304 inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr)); 3305 qprocsoff(q); 3306 goto done; 3307 } 3308 3309 connp = Q_TO_CONN(q); 3310 /* 3311 * We are being closed as /dev/tcp or /dev/tcp6. 3312 */ 3313 tcp_close_common(connp, flags); 3314 3315 qprocsoff(q); 3316 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 3317 3318 /* 3319 * Drop IP's reference on the conn. This is the last reference 3320 * on the connp if the state was less than established. If the 3321 * connection has gone into timewait state, then we will have 3322 * one ref for the TCP and one more ref (total of two) for the 3323 * classifier connected hash list (a timewait connections stays 3324 * in connected hash till closed). 3325 * 3326 * We can't assert the references because there might be other 3327 * transient reference places because of some walkers or queued 3328 * packets in squeue for the timewait state. 3329 */ 3330 CONN_DEC_REF(connp); 3331 done: 3332 q->q_ptr = WR(q)->q_ptr = NULL; 3333 return (0); 3334 } 3335 3336 static int 3337 tcp_tpi_close_accept(queue_t *q) 3338 { 3339 vmem_t *minor_arena; 3340 dev_t conn_dev; 3341 3342 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 3343 3344 /* 3345 * We had opened an acceptor STREAM for sockfs which is 3346 * now being closed due to some error. 3347 */ 3348 qprocsoff(q); 3349 3350 minor_arena = (vmem_t *)WR(q)->q_ptr; 3351 conn_dev = (dev_t)RD(q)->q_ptr; 3352 ASSERT(minor_arena != NULL); 3353 ASSERT(conn_dev != 0); 3354 inet_minor_free(minor_arena, conn_dev); 3355 q->q_ptr = WR(q)->q_ptr = NULL; 3356 return (0); 3357 } 3358 3359 /* 3360 * Called by tcp_close() routine via squeue when lingering is 3361 * interrupted by a signal. 3362 */ 3363 3364 /* ARGSUSED */ 3365 static void 3366 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 3367 { 3368 conn_t *connp = (conn_t *)arg; 3369 tcp_t *tcp = connp->conn_tcp; 3370 3371 freeb(mp); 3372 if (tcp->tcp_linger_tid != 0 && 3373 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3374 tcp_stop_lingering(tcp); 3375 tcp->tcp_client_errno = EINTR; 3376 } 3377 } 3378 3379 /* 3380 * Called by streams close routine via squeues when our client blows off her 3381 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 3382 * connection politely" When SO_LINGER is set (with a non-zero linger time and 3383 * it is not a nonblocking socket) then this routine sleeps until the FIN is 3384 * acked. 3385 * 3386 * NOTE: tcp_close potentially returns error when lingering. 3387 * However, the stream head currently does not pass these errors 3388 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 3389 * errors to the application (from tsleep()) and not errors 3390 * like ECONNRESET caused by receiving a reset packet. 3391 */ 3392 3393 /* ARGSUSED */ 3394 static void 3395 tcp_close_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 3396 { 3397 char *msg; 3398 conn_t *connp = (conn_t *)arg; 3399 tcp_t *tcp = connp->conn_tcp; 3400 clock_t delta = 0; 3401 tcp_stack_t *tcps = tcp->tcp_tcps; 3402 3403 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 3404 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 3405 3406 mutex_enter(&tcp->tcp_eager_lock); 3407 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3408 /* Cleanup for listener */ 3409 tcp_eager_cleanup(tcp, 0); 3410 tcp->tcp_wait_for_eagers = 1; 3411 } 3412 mutex_exit(&tcp->tcp_eager_lock); 3413 3414 tcp->tcp_lso = B_FALSE; 3415 3416 msg = NULL; 3417 switch (tcp->tcp_state) { 3418 case TCPS_CLOSED: 3419 case TCPS_IDLE: 3420 case TCPS_BOUND: 3421 case TCPS_LISTEN: 3422 break; 3423 case TCPS_SYN_SENT: 3424 msg = "tcp_close, during connect"; 3425 break; 3426 case TCPS_SYN_RCVD: 3427 /* 3428 * Close during the connect 3-way handshake 3429 * but here there may or may not be pending data 3430 * already on queue. Process almost same as in 3431 * the ESTABLISHED state. 3432 */ 3433 /* FALLTHRU */ 3434 default: 3435 if (tcp->tcp_fused) 3436 tcp_unfuse(tcp); 3437 3438 /* 3439 * If SO_LINGER has set a zero linger time, abort the 3440 * connection with a reset. 3441 */ 3442 if (connp->conn_linger && connp->conn_lingertime == 0) { 3443 msg = "tcp_close, zero lingertime"; 3444 break; 3445 } 3446 3447 /* 3448 * Abort connection if there is unread data queued. 3449 */ 3450 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 3451 msg = "tcp_close, unread data"; 3452 break; 3453 } 3454 /* 3455 * We have done a qwait() above which could have possibly 3456 * drained more messages in turn causing transition to a 3457 * different state. Check whether we have to do the rest 3458 * of the processing or not. 3459 */ 3460 if (tcp->tcp_state <= TCPS_LISTEN) 3461 break; 3462 3463 /* 3464 * Transmit the FIN before detaching the tcp_t. 3465 * After tcp_detach returns this queue/perimeter 3466 * no longer owns the tcp_t thus others can modify it. 3467 */ 3468 (void) tcp_xmit_end(tcp); 3469 3470 /* 3471 * If lingering on close then wait until the fin is acked, 3472 * the SO_LINGER time passes, or a reset is sent/received. 3473 */ 3474 if (connp->conn_linger && connp->conn_lingertime > 0 && 3475 !(tcp->tcp_fin_acked) && 3476 tcp->tcp_state >= TCPS_ESTABLISHED) { 3477 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 3478 tcp->tcp_client_errno = EWOULDBLOCK; 3479 } else if (tcp->tcp_client_errno == 0) { 3480 3481 ASSERT(tcp->tcp_linger_tid == 0); 3482 3483 tcp->tcp_linger_tid = TCP_TIMER(tcp, 3484 tcp_close_linger_timeout, 3485 connp->conn_lingertime * hz); 3486 3487 /* tcp_close_linger_timeout will finish close */ 3488 if (tcp->tcp_linger_tid == 0) 3489 tcp->tcp_client_errno = ENOSR; 3490 else 3491 return; 3492 } 3493 3494 /* 3495 * Check if we need to detach or just close 3496 * the instance. 3497 */ 3498 if (tcp->tcp_state <= TCPS_LISTEN) 3499 break; 3500 } 3501 3502 /* 3503 * Make sure that no other thread will access the conn_rq of 3504 * this instance (through lookups etc.) as conn_rq will go 3505 * away shortly. 3506 */ 3507 tcp_acceptor_hash_remove(tcp); 3508 3509 mutex_enter(&tcp->tcp_non_sq_lock); 3510 if (tcp->tcp_flow_stopped) { 3511 tcp_clrqfull(tcp); 3512 } 3513 mutex_exit(&tcp->tcp_non_sq_lock); 3514 3515 if (tcp->tcp_timer_tid != 0) { 3516 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3517 tcp->tcp_timer_tid = 0; 3518 } 3519 /* 3520 * Need to cancel those timers which will not be used when 3521 * TCP is detached. This has to be done before the conn_wq 3522 * is set to NULL. 3523 */ 3524 tcp_timers_stop(tcp); 3525 3526 tcp->tcp_detached = B_TRUE; 3527 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3528 tcp_time_wait_append(tcp); 3529 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3530 ASSERT(connp->conn_ref >= 3); 3531 goto finish; 3532 } 3533 3534 /* 3535 * If delta is zero the timer event wasn't executed and was 3536 * successfully canceled. In this case we need to restart it 3537 * with the minimal delta possible. 3538 */ 3539 if (delta >= 0) 3540 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3541 delta ? delta : 1); 3542 3543 ASSERT(connp->conn_ref >= 3); 3544 goto finish; 3545 } 3546 3547 /* Detach did not complete. Still need to remove q from stream. */ 3548 if (msg) { 3549 if (tcp->tcp_state == TCPS_ESTABLISHED || 3550 tcp->tcp_state == TCPS_CLOSE_WAIT) 3551 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3552 if (tcp->tcp_state == TCPS_SYN_SENT || 3553 tcp->tcp_state == TCPS_SYN_RCVD) 3554 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3555 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 3556 } 3557 3558 tcp_closei_local(tcp); 3559 CONN_DEC_REF(connp); 3560 ASSERT(connp->conn_ref >= 2); 3561 3562 finish: 3563 mutex_enter(&tcp->tcp_closelock); 3564 /* 3565 * Don't change the queues in the case of a listener that has 3566 * eagers in its q or q0. It could surprise the eagers. 3567 * Instead wait for the eagers outside the squeue. 3568 */ 3569 if (!tcp->tcp_wait_for_eagers) { 3570 tcp->tcp_detached = B_TRUE; 3571 connp->conn_rq = NULL; 3572 connp->conn_wq = NULL; 3573 } 3574 3575 /* Signal tcp_close() to finish closing. */ 3576 tcp->tcp_closed = 1; 3577 cv_signal(&tcp->tcp_closecv); 3578 mutex_exit(&tcp->tcp_closelock); 3579 } 3580 3581 /* 3582 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 3583 * Some stream heads get upset if they see these later on as anything but NULL. 3584 */ 3585 static void 3586 tcp_close_mpp(mblk_t **mpp) 3587 { 3588 mblk_t *mp; 3589 3590 if ((mp = *mpp) != NULL) { 3591 do { 3592 mp->b_next = NULL; 3593 mp->b_prev = NULL; 3594 } while ((mp = mp->b_cont) != NULL); 3595 3596 mp = *mpp; 3597 *mpp = NULL; 3598 freemsg(mp); 3599 } 3600 } 3601 3602 /* Do detached close. */ 3603 static void 3604 tcp_close_detached(tcp_t *tcp) 3605 { 3606 if (tcp->tcp_fused) 3607 tcp_unfuse(tcp); 3608 3609 /* 3610 * Clustering code serializes TCP disconnect callbacks and 3611 * cluster tcp list walks by blocking a TCP disconnect callback 3612 * if a cluster tcp list walk is in progress. This ensures 3613 * accurate accounting of TCPs in the cluster code even though 3614 * the TCP list walk itself is not atomic. 3615 */ 3616 tcp_closei_local(tcp); 3617 CONN_DEC_REF(tcp->tcp_connp); 3618 } 3619 3620 /* 3621 * Stop all TCP timers, and free the timer mblks if requested. 3622 */ 3623 void 3624 tcp_timers_stop(tcp_t *tcp) 3625 { 3626 if (tcp->tcp_timer_tid != 0) { 3627 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3628 tcp->tcp_timer_tid = 0; 3629 } 3630 if (tcp->tcp_ka_tid != 0) { 3631 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 3632 tcp->tcp_ka_tid = 0; 3633 } 3634 if (tcp->tcp_ack_tid != 0) { 3635 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 3636 tcp->tcp_ack_tid = 0; 3637 } 3638 if (tcp->tcp_push_tid != 0) { 3639 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 3640 tcp->tcp_push_tid = 0; 3641 } 3642 } 3643 3644 /* 3645 * The tcp_t is going away. Remove it from all lists and set it 3646 * to TCPS_CLOSED. The freeing up of memory is deferred until 3647 * tcp_inactive. This is needed since a thread in tcp_rput might have 3648 * done a CONN_INC_REF on this structure before it was removed from the 3649 * hashes. 3650 */ 3651 static void 3652 tcp_closei_local(tcp_t *tcp) 3653 { 3654 conn_t *connp = tcp->tcp_connp; 3655 tcp_stack_t *tcps = tcp->tcp_tcps; 3656 3657 if (!TCP_IS_SOCKET(tcp)) 3658 tcp_acceptor_hash_remove(tcp); 3659 3660 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 3661 tcp->tcp_ibsegs = 0; 3662 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 3663 tcp->tcp_obsegs = 0; 3664 3665 /* 3666 * If we are an eager connection hanging off a listener that 3667 * hasn't formally accepted the connection yet, get off his 3668 * list and blow off any data that we have accumulated. 3669 */ 3670 if (tcp->tcp_listener != NULL) { 3671 tcp_t *listener = tcp->tcp_listener; 3672 mutex_enter(&listener->tcp_eager_lock); 3673 /* 3674 * tcp_tconnind_started == B_TRUE means that the 3675 * conn_ind has already gone to listener. At 3676 * this point, eager will be closed but we 3677 * leave it in listeners eager list so that 3678 * if listener decides to close without doing 3679 * accept, we can clean this up. In tcp_tli_accept 3680 * we take care of the case of accept on closed 3681 * eager. 3682 */ 3683 if (!tcp->tcp_tconnind_started) { 3684 tcp_eager_unlink(tcp); 3685 mutex_exit(&listener->tcp_eager_lock); 3686 /* 3687 * We don't want to have any pointers to the 3688 * listener queue, after we have released our 3689 * reference on the listener 3690 */ 3691 ASSERT(tcp->tcp_detached); 3692 connp->conn_rq = NULL; 3693 connp->conn_wq = NULL; 3694 CONN_DEC_REF(listener->tcp_connp); 3695 } else { 3696 mutex_exit(&listener->tcp_eager_lock); 3697 } 3698 } 3699 3700 /* Stop all the timers */ 3701 tcp_timers_stop(tcp); 3702 3703 if (tcp->tcp_state == TCPS_LISTEN) { 3704 if (tcp->tcp_ip_addr_cache) { 3705 kmem_free((void *)tcp->tcp_ip_addr_cache, 3706 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 3707 tcp->tcp_ip_addr_cache = NULL; 3708 } 3709 } 3710 mutex_enter(&tcp->tcp_non_sq_lock); 3711 if (tcp->tcp_flow_stopped) 3712 tcp_clrqfull(tcp); 3713 mutex_exit(&tcp->tcp_non_sq_lock); 3714 3715 tcp_bind_hash_remove(tcp); 3716 /* 3717 * If the tcp_time_wait_collector (which runs outside the squeue) 3718 * is trying to remove this tcp from the time wait list, we will 3719 * block in tcp_time_wait_remove while trying to acquire the 3720 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 3721 * requires the ipcl_hash_remove to be ordered after the 3722 * tcp_time_wait_remove for the refcnt checks to work correctly. 3723 */ 3724 if (tcp->tcp_state == TCPS_TIME_WAIT) 3725 (void) tcp_time_wait_remove(tcp, NULL); 3726 CL_INET_DISCONNECT(connp); 3727 ipcl_hash_remove(connp); 3728 ixa_cleanup(connp->conn_ixa); 3729 3730 /* 3731 * Mark the conn as CONDEMNED 3732 */ 3733 mutex_enter(&connp->conn_lock); 3734 connp->conn_state_flags |= CONN_CONDEMNED; 3735 mutex_exit(&connp->conn_lock); 3736 3737 /* Need to cleanup any pending ioctls */ 3738 ASSERT(tcp->tcp_time_wait_next == NULL); 3739 ASSERT(tcp->tcp_time_wait_prev == NULL); 3740 ASSERT(tcp->tcp_time_wait_expire == 0); 3741 tcp->tcp_state = TCPS_CLOSED; 3742 3743 /* Release any SSL context */ 3744 if (tcp->tcp_kssl_ent != NULL) { 3745 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 3746 tcp->tcp_kssl_ent = NULL; 3747 } 3748 if (tcp->tcp_kssl_ctx != NULL) { 3749 kssl_release_ctx(tcp->tcp_kssl_ctx); 3750 tcp->tcp_kssl_ctx = NULL; 3751 } 3752 tcp->tcp_kssl_pending = B_FALSE; 3753 3754 tcp_ipsec_cleanup(tcp); 3755 } 3756 3757 /* 3758 * tcp is dying (called from ipcl_conn_destroy and error cases). 3759 * Free the tcp_t in either case. 3760 */ 3761 void 3762 tcp_free(tcp_t *tcp) 3763 { 3764 mblk_t *mp; 3765 conn_t *connp = tcp->tcp_connp; 3766 3767 ASSERT(tcp != NULL); 3768 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 3769 3770 connp->conn_rq = NULL; 3771 connp->conn_wq = NULL; 3772 3773 tcp_close_mpp(&tcp->tcp_xmit_head); 3774 tcp_close_mpp(&tcp->tcp_reass_head); 3775 if (tcp->tcp_rcv_list != NULL) { 3776 /* Free b_next chain */ 3777 tcp_close_mpp(&tcp->tcp_rcv_list); 3778 } 3779 if ((mp = tcp->tcp_urp_mp) != NULL) { 3780 freemsg(mp); 3781 } 3782 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 3783 freemsg(mp); 3784 } 3785 3786 if (tcp->tcp_fused_sigurg_mp != NULL) { 3787 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 3788 freeb(tcp->tcp_fused_sigurg_mp); 3789 tcp->tcp_fused_sigurg_mp = NULL; 3790 } 3791 3792 if (tcp->tcp_ordrel_mp != NULL) { 3793 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 3794 freeb(tcp->tcp_ordrel_mp); 3795 tcp->tcp_ordrel_mp = NULL; 3796 } 3797 3798 if (tcp->tcp_sack_info != NULL) { 3799 if (tcp->tcp_notsack_list != NULL) { 3800 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 3801 tcp); 3802 } 3803 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 3804 } 3805 3806 if (tcp->tcp_hopopts != NULL) { 3807 mi_free(tcp->tcp_hopopts); 3808 tcp->tcp_hopopts = NULL; 3809 tcp->tcp_hopoptslen = 0; 3810 } 3811 ASSERT(tcp->tcp_hopoptslen == 0); 3812 if (tcp->tcp_dstopts != NULL) { 3813 mi_free(tcp->tcp_dstopts); 3814 tcp->tcp_dstopts = NULL; 3815 tcp->tcp_dstoptslen = 0; 3816 } 3817 ASSERT(tcp->tcp_dstoptslen == 0); 3818 if (tcp->tcp_rthdrdstopts != NULL) { 3819 mi_free(tcp->tcp_rthdrdstopts); 3820 tcp->tcp_rthdrdstopts = NULL; 3821 tcp->tcp_rthdrdstoptslen = 0; 3822 } 3823 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 3824 if (tcp->tcp_rthdr != NULL) { 3825 mi_free(tcp->tcp_rthdr); 3826 tcp->tcp_rthdr = NULL; 3827 tcp->tcp_rthdrlen = 0; 3828 } 3829 ASSERT(tcp->tcp_rthdrlen == 0); 3830 3831 /* 3832 * Following is really a blowing away a union. 3833 * It happens to have exactly two members of identical size 3834 * the following code is enough. 3835 */ 3836 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 3837 } 3838 3839 3840 /* 3841 * Put a connection confirmation message upstream built from the 3842 * address/flowid information with the conn and iph. Report our success or 3843 * failure. 3844 */ 3845 static boolean_t 3846 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, mblk_t *idmp, 3847 mblk_t **defermp, ip_recv_attr_t *ira) 3848 { 3849 sin_t sin; 3850 sin6_t sin6; 3851 mblk_t *mp; 3852 char *optp = NULL; 3853 int optlen = 0; 3854 conn_t *connp = tcp->tcp_connp; 3855 3856 if (defermp != NULL) 3857 *defermp = NULL; 3858 3859 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 3860 /* 3861 * Return in T_CONN_CON results of option negotiation through 3862 * the T_CONN_REQ. Note: If there is an real end-to-end option 3863 * negotiation, then what is received from remote end needs 3864 * to be taken into account but there is no such thing (yet?) 3865 * in our TCP/IP. 3866 * Note: We do not use mi_offset_param() here as 3867 * tcp_opts_conn_req contents do not directly come from 3868 * an application and are either generated in kernel or 3869 * from user input that was already verified. 3870 */ 3871 mp = tcp->tcp_conn.tcp_opts_conn_req; 3872 optp = (char *)(mp->b_rptr + 3873 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 3874 optlen = (int) 3875 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 3876 } 3877 3878 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 3879 3880 /* packet is IPv4 */ 3881 if (connp->conn_family == AF_INET) { 3882 sin = sin_null; 3883 sin.sin_addr.s_addr = connp->conn_faddr_v4; 3884 sin.sin_port = connp->conn_fport; 3885 sin.sin_family = AF_INET; 3886 mp = mi_tpi_conn_con(NULL, (char *)&sin, 3887 (int)sizeof (sin_t), optp, optlen); 3888 } else { 3889 sin6 = sin6_null; 3890 sin6.sin6_addr = connp->conn_faddr_v6; 3891 sin6.sin6_port = connp->conn_fport; 3892 sin6.sin6_family = AF_INET6; 3893 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 3894 (int)sizeof (sin6_t), optp, optlen); 3895 3896 } 3897 } else { 3898 ip6_t *ip6h = (ip6_t *)iphdr; 3899 3900 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 3901 ASSERT(connp->conn_family == AF_INET6); 3902 sin6 = sin6_null; 3903 sin6.sin6_addr = connp->conn_faddr_v6; 3904 sin6.sin6_port = connp->conn_fport; 3905 sin6.sin6_family = AF_INET6; 3906 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 3907 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 3908 (int)sizeof (sin6_t), optp, optlen); 3909 } 3910 3911 if (!mp) 3912 return (B_FALSE); 3913 3914 mblk_copycred(mp, idmp); 3915 3916 if (defermp == NULL) { 3917 conn_t *connp = tcp->tcp_connp; 3918 if (IPCL_IS_NONSTR(connp)) { 3919 (*connp->conn_upcalls->su_connected) 3920 (connp->conn_upper_handle, tcp->tcp_connid, 3921 ira->ira_cred, ira->ira_cpid); 3922 freemsg(mp); 3923 } else { 3924 if (ira->ira_cred != NULL) { 3925 /* So that getpeerucred works for TPI sockfs */ 3926 mblk_setcred(mp, ira->ira_cred, ira->ira_cpid); 3927 } 3928 putnext(connp->conn_rq, mp); 3929 } 3930 } else { 3931 *defermp = mp; 3932 } 3933 3934 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 3935 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 3936 return (B_TRUE); 3937 } 3938 3939 /* 3940 * Defense for the SYN attack - 3941 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 3942 * one from the list of droppable eagers. This list is a subset of q0. 3943 * see comments before the definition of MAKE_DROPPABLE(). 3944 * 2. Don't drop a SYN request before its first timeout. This gives every 3945 * request at least til the first timeout to complete its 3-way handshake. 3946 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 3947 * requests currently on the queue that has timed out. This will be used 3948 * as an indicator of whether an attack is under way, so that appropriate 3949 * actions can be taken. (It's incremented in tcp_timer() and decremented 3950 * either when eager goes into ESTABLISHED, or gets freed up.) 3951 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 3952 * # of timeout drops back to <= q0len/32 => SYN alert off 3953 */ 3954 static boolean_t 3955 tcp_drop_q0(tcp_t *tcp) 3956 { 3957 tcp_t *eager; 3958 mblk_t *mp; 3959 tcp_stack_t *tcps = tcp->tcp_tcps; 3960 3961 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 3962 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 3963 3964 /* Pick oldest eager from the list of droppable eagers */ 3965 eager = tcp->tcp_eager_prev_drop_q0; 3966 3967 /* If list is empty. return B_FALSE */ 3968 if (eager == tcp) { 3969 return (B_FALSE); 3970 } 3971 3972 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 3973 if ((mp = allocb(0, BPRI_HI)) == NULL) 3974 return (B_FALSE); 3975 3976 /* 3977 * Take this eager out from the list of droppable eagers since we are 3978 * going to drop it. 3979 */ 3980 MAKE_UNDROPPABLE(eager); 3981 3982 if (tcp->tcp_connp->conn_debug) { 3983 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 3984 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 3985 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 3986 tcp->tcp_conn_req_cnt_q0, 3987 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 3988 } 3989 3990 BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); 3991 3992 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 3993 CONN_INC_REF(eager->tcp_connp); 3994 3995 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 3996 tcp_clean_death_wrapper, eager->tcp_connp, NULL, 3997 SQ_FILL, SQTAG_TCP_DROP_Q0); 3998 3999 return (B_TRUE); 4000 } 4001 4002 /* 4003 * Handle a SYN on an AF_INET6 socket; can be either IPv4 or IPv6 4004 */ 4005 static mblk_t * 4006 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4007 ip_recv_attr_t *ira) 4008 { 4009 tcp_t *ltcp = lconnp->conn_tcp; 4010 tcp_t *tcp = connp->conn_tcp; 4011 mblk_t *tpi_mp; 4012 ipha_t *ipha; 4013 ip6_t *ip6h; 4014 sin6_t sin6; 4015 uint_t ifindex = ira->ira_ruifindex; 4016 tcp_stack_t *tcps = tcp->tcp_tcps; 4017 4018 if (ira->ira_flags & IRAF_IS_IPV4) { 4019 ipha = (ipha_t *)mp->b_rptr; 4020 4021 connp->conn_ipversion = IPV4_VERSION; 4022 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 4023 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 4024 connp->conn_saddr_v6 = connp->conn_laddr_v6; 4025 4026 sin6 = sin6_null; 4027 sin6.sin6_addr = connp->conn_faddr_v6; 4028 sin6.sin6_port = connp->conn_fport; 4029 sin6.sin6_family = AF_INET6; 4030 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 4031 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 4032 4033 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 4034 sin6_t sin6d; 4035 4036 sin6d = sin6_null; 4037 sin6d.sin6_addr = connp->conn_laddr_v6; 4038 sin6d.sin6_port = connp->conn_lport; 4039 sin6d.sin6_family = AF_INET; 4040 tpi_mp = mi_tpi_extconn_ind(NULL, 4041 (char *)&sin6d, sizeof (sin6_t), 4042 (char *)&tcp, 4043 (t_scalar_t)sizeof (intptr_t), 4044 (char *)&sin6d, sizeof (sin6_t), 4045 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4046 } else { 4047 tpi_mp = mi_tpi_conn_ind(NULL, 4048 (char *)&sin6, sizeof (sin6_t), 4049 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4050 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4051 } 4052 } else { 4053 ip6h = (ip6_t *)mp->b_rptr; 4054 4055 connp->conn_ipversion = IPV6_VERSION; 4056 connp->conn_laddr_v6 = ip6h->ip6_dst; 4057 connp->conn_faddr_v6 = ip6h->ip6_src; 4058 connp->conn_saddr_v6 = connp->conn_laddr_v6; 4059 4060 sin6 = sin6_null; 4061 sin6.sin6_addr = connp->conn_faddr_v6; 4062 sin6.sin6_port = connp->conn_fport; 4063 sin6.sin6_family = AF_INET6; 4064 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4065 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 4066 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 4067 4068 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4069 /* Pass up the scope_id of remote addr */ 4070 sin6.sin6_scope_id = ifindex; 4071 } else { 4072 sin6.sin6_scope_id = 0; 4073 } 4074 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 4075 sin6_t sin6d; 4076 4077 sin6d = sin6_null; 4078 sin6.sin6_addr = connp->conn_laddr_v6; 4079 sin6d.sin6_port = connp->conn_lport; 4080 sin6d.sin6_family = AF_INET6; 4081 if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_laddr_v6)) 4082 sin6d.sin6_scope_id = ifindex; 4083 4084 tpi_mp = mi_tpi_extconn_ind(NULL, 4085 (char *)&sin6d, sizeof (sin6_t), 4086 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4087 (char *)&sin6d, sizeof (sin6_t), 4088 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4089 } else { 4090 tpi_mp = mi_tpi_conn_ind(NULL, 4091 (char *)&sin6, sizeof (sin6_t), 4092 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4093 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4094 } 4095 } 4096 4097 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 4098 return (tpi_mp); 4099 } 4100 4101 /* Handle a SYN on an AF_INET socket */ 4102 mblk_t * 4103 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4104 ip_recv_attr_t *ira) 4105 { 4106 tcp_t *ltcp = lconnp->conn_tcp; 4107 tcp_t *tcp = connp->conn_tcp; 4108 sin_t sin; 4109 mblk_t *tpi_mp = NULL; 4110 tcp_stack_t *tcps = tcp->tcp_tcps; 4111 ipha_t *ipha; 4112 4113 ASSERT(ira->ira_flags & IRAF_IS_IPV4); 4114 ipha = (ipha_t *)mp->b_rptr; 4115 4116 connp->conn_ipversion = IPV4_VERSION; 4117 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 4118 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 4119 connp->conn_saddr_v6 = connp->conn_laddr_v6; 4120 4121 sin = sin_null; 4122 sin.sin_addr.s_addr = connp->conn_faddr_v4; 4123 sin.sin_port = connp->conn_fport; 4124 sin.sin_family = AF_INET; 4125 if (lconnp->conn_recv_ancillary.crb_recvdstaddr) { 4126 sin_t sind; 4127 4128 sind = sin_null; 4129 sind.sin_addr.s_addr = connp->conn_laddr_v4; 4130 sind.sin_port = connp->conn_lport; 4131 sind.sin_family = AF_INET; 4132 tpi_mp = mi_tpi_extconn_ind(NULL, 4133 (char *)&sind, sizeof (sin_t), (char *)&tcp, 4134 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 4135 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4136 } else { 4137 tpi_mp = mi_tpi_conn_ind(NULL, 4138 (char *)&sin, sizeof (sin_t), 4139 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4140 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4141 } 4142 4143 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 4144 return (tpi_mp); 4145 } 4146 4147 /* 4148 * tcp_get_conn/tcp_free_conn 4149 * 4150 * tcp_get_conn is used to get a clean tcp connection structure. 4151 * It tries to reuse the connections put on the freelist by the 4152 * time_wait_collector failing which it goes to kmem_cache. This 4153 * way has two benefits compared to just allocating from and 4154 * freeing to kmem_cache. 4155 * 1) The time_wait_collector can free (which includes the cleanup) 4156 * outside the squeue. So when the interrupt comes, we have a clean 4157 * connection sitting in the freelist. Obviously, this buys us 4158 * performance. 4159 * 4160 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener 4161 * has multiple disadvantages - tying up the squeue during alloc. 4162 * But allocating the conn/tcp in IP land is also not the best since 4163 * we can't check the 'q' and 'q0' which are protected by squeue and 4164 * blindly allocate memory which might have to be freed here if we are 4165 * not allowed to accept the connection. By using the freelist and 4166 * putting the conn/tcp back in freelist, we don't pay a penalty for 4167 * allocating memory without checking 'q/q0' and freeing it if we can't 4168 * accept the connection. 4169 * 4170 * Care should be taken to put the conn back in the same squeue's freelist 4171 * from which it was allocated. Best results are obtained if conn is 4172 * allocated from listener's squeue and freed to the same. Time wait 4173 * collector will free up the freelist is the connection ends up sitting 4174 * there for too long. 4175 */ 4176 void * 4177 tcp_get_conn(void *arg, tcp_stack_t *tcps) 4178 { 4179 tcp_t *tcp = NULL; 4180 conn_t *connp = NULL; 4181 squeue_t *sqp = (squeue_t *)arg; 4182 tcp_squeue_priv_t *tcp_time_wait; 4183 netstack_t *ns; 4184 mblk_t *tcp_rsrv_mp = NULL; 4185 4186 tcp_time_wait = 4187 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 4188 4189 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 4190 tcp = tcp_time_wait->tcp_free_list; 4191 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 4192 if (tcp != NULL) { 4193 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 4194 tcp_time_wait->tcp_free_list_cnt--; 4195 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 4196 tcp->tcp_time_wait_next = NULL; 4197 connp = tcp->tcp_connp; 4198 connp->conn_flags |= IPCL_REUSED; 4199 4200 ASSERT(tcp->tcp_tcps == NULL); 4201 ASSERT(connp->conn_netstack == NULL); 4202 ASSERT(tcp->tcp_rsrv_mp != NULL); 4203 ns = tcps->tcps_netstack; 4204 netstack_hold(ns); 4205 connp->conn_netstack = ns; 4206 connp->conn_ixa->ixa_ipst = ns->netstack_ip; 4207 tcp->tcp_tcps = tcps; 4208 ipcl_globalhash_insert(connp); 4209 4210 connp->conn_ixa->ixa_notify_cookie = tcp; 4211 ASSERT(connp->conn_ixa->ixa_notify == tcp_notify); 4212 connp->conn_recv = tcp_input_data; 4213 ASSERT(connp->conn_recvicmp == tcp_icmp_input); 4214 ASSERT(connp->conn_verifyicmp == tcp_verifyicmp); 4215 return ((void *)connp); 4216 } 4217 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 4218 /* 4219 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until 4220 * this conn_t/tcp_t is freed at ipcl_conn_destroy(). 4221 */ 4222 tcp_rsrv_mp = allocb(0, BPRI_HI); 4223 if (tcp_rsrv_mp == NULL) 4224 return (NULL); 4225 4226 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 4227 tcps->tcps_netstack)) == NULL) { 4228 freeb(tcp_rsrv_mp); 4229 return (NULL); 4230 } 4231 4232 tcp = connp->conn_tcp; 4233 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 4234 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 4235 4236 tcp->tcp_tcps = tcps; 4237 4238 connp->conn_recv = tcp_input_data; 4239 connp->conn_recvicmp = tcp_icmp_input; 4240 connp->conn_verifyicmp = tcp_verifyicmp; 4241 4242 /* 4243 * Register tcp_notify to listen to capability changes detected by IP. 4244 * This upcall is made in the context of the call to conn_ip_output 4245 * thus it is inside the squeue. 4246 */ 4247 connp->conn_ixa->ixa_notify = tcp_notify; 4248 connp->conn_ixa->ixa_notify_cookie = tcp; 4249 4250 return ((void *)connp); 4251 } 4252 4253 /* BEGIN CSTYLED */ 4254 /* 4255 * 4256 * The sockfs ACCEPT path: 4257 * ======================= 4258 * 4259 * The eager is now established in its own perimeter as soon as SYN is 4260 * received in tcp_input_listener(). When sockfs receives conn_ind, it 4261 * completes the accept processing on the acceptor STREAM. The sending 4262 * of conn_ind part is common for both sockfs listener and a TLI/XTI 4263 * listener but a TLI/XTI listener completes the accept processing 4264 * on the listener perimeter. 4265 * 4266 * Common control flow for 3 way handshake: 4267 * ---------------------------------------- 4268 * 4269 * incoming SYN (listener perimeter) -> tcp_input_listener() 4270 * 4271 * incoming SYN-ACK-ACK (eager perim) -> tcp_input_data() 4272 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 4273 * 4274 * Sockfs ACCEPT Path: 4275 * ------------------- 4276 * 4277 * open acceptor stream (tcp_open allocates tcp_tli_accept() 4278 * as STREAM entry point) 4279 * 4280 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_tli_accept() 4281 * 4282 * tcp_tli_accept() extracts the eager and makes the q->q_ptr <-> eager 4283 * association (we are not behind eager's squeue but sockfs is protecting us 4284 * and no one knows about this stream yet. The STREAMS entry point q->q_info 4285 * is changed to point at tcp_wput(). 4286 * 4287 * tcp_accept_common() sends any deferred eagers via tcp_send_pending() to 4288 * listener (done on listener's perimeter). 4289 * 4290 * tcp_tli_accept() calls tcp_accept_finish() on eagers perimeter to finish 4291 * accept. 4292 * 4293 * TLI/XTI client ACCEPT path: 4294 * --------------------------- 4295 * 4296 * soaccept() sends T_CONN_RES on the listener STREAM. 4297 * 4298 * tcp_tli_accept() -> tcp_accept_swap() complete the processing and send 4299 * a M_SETOPS mblk to eager perimeter to finish accept (tcp_accept_finish()). 4300 * 4301 * Locks: 4302 * ====== 4303 * 4304 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 4305 * and listeners->tcp_eager_next_q. 4306 * 4307 * Referencing: 4308 * ============ 4309 * 4310 * 1) We start out in tcp_input_listener by eager placing a ref on 4311 * listener and listener adding eager to listeners->tcp_eager_next_q0. 4312 * 4313 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 4314 * doing so we place a ref on the eager. This ref is finally dropped at the 4315 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 4316 * reference is dropped by the squeue framework. 4317 * 4318 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 4319 * 4320 * The reference must be released by the same entity that added the reference 4321 * In the above scheme, the eager is the entity that adds and releases the 4322 * references. Note that tcp_accept_finish executes in the squeue of the eager 4323 * (albeit after it is attached to the acceptor stream). Though 1. executes 4324 * in the listener's squeue, the eager is nascent at this point and the 4325 * reference can be considered to have been added on behalf of the eager. 4326 * 4327 * Eager getting a Reset or listener closing: 4328 * ========================================== 4329 * 4330 * Once the listener and eager are linked, the listener never does the unlink. 4331 * If the listener needs to close, tcp_eager_cleanup() is called which queues 4332 * a message on all eager perimeter. The eager then does the unlink, clears 4333 * any pointers to the listener's queue and drops the reference to the 4334 * listener. The listener waits in tcp_close outside the squeue until its 4335 * refcount has dropped to 1. This ensures that the listener has waited for 4336 * all eagers to clear their association with the listener. 4337 * 4338 * Similarly, if eager decides to go away, it can unlink itself and close. 4339 * When the T_CONN_RES comes down, we check if eager has closed. Note that 4340 * the reference to eager is still valid because of the extra ref we put 4341 * in tcp_send_conn_ind. 4342 * 4343 * Listener can always locate the eager under the protection 4344 * of the listener->tcp_eager_lock, and then do a refhold 4345 * on the eager during the accept processing. 4346 * 4347 * The acceptor stream accesses the eager in the accept processing 4348 * based on the ref placed on eager before sending T_conn_ind. 4349 * The only entity that can negate this refhold is a listener close 4350 * which is mutually exclusive with an active acceptor stream. 4351 * 4352 * Eager's reference on the listener 4353 * =================================== 4354 * 4355 * If the accept happens (even on a closed eager) the eager drops its 4356 * reference on the listener at the start of tcp_accept_finish. If the 4357 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 4358 * the reference is dropped in tcp_closei_local. If the listener closes, 4359 * the reference is dropped in tcp_eager_kill. In all cases the reference 4360 * is dropped while executing in the eager's context (squeue). 4361 */ 4362 /* END CSTYLED */ 4363 4364 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 4365 4366 /* 4367 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 4368 * tcp_input_data will not see any packets for listeners since the listener 4369 * has conn_recv set to tcp_input_listener. 4370 */ 4371 /* ARGSUSED */ 4372 void 4373 tcp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4374 { 4375 tcpha_t *tcpha; 4376 uint32_t seg_seq; 4377 tcp_t *eager; 4378 int err; 4379 conn_t *econnp = NULL; 4380 squeue_t *new_sqp; 4381 mblk_t *mp1; 4382 uint_t ip_hdr_len; 4383 conn_t *lconnp = (conn_t *)arg; 4384 tcp_t *listener = lconnp->conn_tcp; 4385 tcp_stack_t *tcps = listener->tcp_tcps; 4386 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 4387 uint_t flags; 4388 mblk_t *tpi_mp; 4389 uint_t ifindex = ira->ira_ruifindex; 4390 4391 ip_hdr_len = ira->ira_ip_hdr_length; 4392 tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len]; 4393 flags = (unsigned int)tcpha->tha_flags & 0xFF; 4394 4395 if (!(flags & TH_SYN)) { 4396 if ((flags & TH_RST) || (flags & TH_URG)) { 4397 freemsg(mp); 4398 return; 4399 } 4400 if (flags & TH_ACK) { 4401 /* Note this executes in listener's squeue */ 4402 tcp_xmit_listeners_reset(mp, ira, ipst, lconnp); 4403 return; 4404 } 4405 4406 freemsg(mp); 4407 return; 4408 } 4409 4410 if (listener->tcp_state != TCPS_LISTEN) 4411 goto error2; 4412 4413 ASSERT(IPCL_IS_BOUND(lconnp)); 4414 4415 mutex_enter(&listener->tcp_eager_lock); 4416 if (listener->tcp_conn_req_cnt_q >= listener->tcp_conn_req_max) { 4417 mutex_exit(&listener->tcp_eager_lock); 4418 TCP_STAT(tcps, tcp_listendrop); 4419 BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); 4420 if (lconnp->conn_debug) { 4421 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 4422 "tcp_input_listener: listen backlog (max=%d) " 4423 "overflow (%d pending) on %s", 4424 listener->tcp_conn_req_max, 4425 listener->tcp_conn_req_cnt_q, 4426 tcp_display(listener, NULL, DISP_PORT_ONLY)); 4427 } 4428 goto error2; 4429 } 4430 4431 if (listener->tcp_conn_req_cnt_q0 >= 4432 listener->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 4433 /* 4434 * Q0 is full. Drop a pending half-open req from the queue 4435 * to make room for the new SYN req. Also mark the time we 4436 * drop a SYN. 4437 * 4438 * A more aggressive defense against SYN attack will 4439 * be to set the "tcp_syn_defense" flag now. 4440 */ 4441 TCP_STAT(tcps, tcp_listendropq0); 4442 listener->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 4443 if (!tcp_drop_q0(listener)) { 4444 mutex_exit(&listener->tcp_eager_lock); 4445 BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); 4446 if (lconnp->conn_debug) { 4447 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4448 "tcp_input_listener: listen half-open " 4449 "queue (max=%d) full (%d pending) on %s", 4450 tcps->tcps_conn_req_max_q0, 4451 listener->tcp_conn_req_cnt_q0, 4452 tcp_display(listener, NULL, 4453 DISP_PORT_ONLY)); 4454 } 4455 goto error2; 4456 } 4457 } 4458 mutex_exit(&listener->tcp_eager_lock); 4459 4460 /* 4461 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 4462 * or based on the ring (for packets from GLD). Otherwise it is 4463 * set based on lbolt i.e., a somewhat random number. 4464 */ 4465 ASSERT(ira->ira_sqp != NULL); 4466 new_sqp = ira->ira_sqp; 4467 4468 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 4469 if (econnp == NULL) 4470 goto error2; 4471 4472 ASSERT(econnp->conn_netstack == lconnp->conn_netstack); 4473 econnp->conn_sqp = new_sqp; 4474 econnp->conn_initial_sqp = new_sqp; 4475 econnp->conn_ixa->ixa_sqp = new_sqp; 4476 4477 econnp->conn_fport = tcpha->tha_lport; 4478 econnp->conn_lport = tcpha->tha_fport; 4479 4480 err = conn_inherit_parent(lconnp, econnp); 4481 if (err != 0) 4482 goto error3; 4483 4484 ASSERT(OK_32PTR(mp->b_rptr)); 4485 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION || 4486 IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 4487 4488 if (lconnp->conn_family == AF_INET) { 4489 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 4490 tpi_mp = tcp_conn_create_v4(lconnp, econnp, mp, ira); 4491 } else { 4492 tpi_mp = tcp_conn_create_v6(lconnp, econnp, mp, ira); 4493 } 4494 4495 if (tpi_mp == NULL) 4496 goto error3; 4497 4498 eager = econnp->conn_tcp; 4499 eager->tcp_detached = B_TRUE; 4500 SOCK_CONNID_INIT(eager->tcp_connid); 4501 4502 tcp_init_values(eager); 4503 4504 ASSERT((econnp->conn_ixa->ixa_flags & 4505 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 4506 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)) == 4507 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 4508 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)); 4509 4510 if (!tcps->tcps_dev_flow_ctl) 4511 econnp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 4512 4513 /* Prepare for diffing against previous packets */ 4514 eager->tcp_recvifindex = 0; 4515 eager->tcp_recvhops = 0xffffffffU; 4516 4517 if (!(ira->ira_flags & IRAF_IS_IPV4) && econnp->conn_bound_if == 0) { 4518 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_faddr_v6) || 4519 IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6)) { 4520 econnp->conn_incoming_ifindex = ifindex; 4521 econnp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 4522 econnp->conn_ixa->ixa_scopeid = ifindex; 4523 } 4524 } 4525 4526 if ((ira->ira_flags & (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS)) == 4527 (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS) && 4528 tcps->tcps_rev_src_routes) { 4529 ipha_t *ipha = (ipha_t *)mp->b_rptr; 4530 ip_pkt_t *ipp = &econnp->conn_xmit_ipp; 4531 4532 /* Source routing option copyover (reverse it) */ 4533 err = ip_find_hdr_v4(ipha, ipp, B_TRUE); 4534 if (err != 0) { 4535 freemsg(tpi_mp); 4536 goto error3; 4537 } 4538 ip_pkt_source_route_reverse_v4(ipp); 4539 } 4540 4541 ASSERT(eager->tcp_conn.tcp_eager_conn_ind == NULL); 4542 ASSERT(!eager->tcp_tconnind_started); 4543 /* 4544 * If the SYN came with a credential, it's a loopback packet or a 4545 * labeled packet; attach the credential to the TPI message. 4546 */ 4547 if (ira->ira_cred != NULL) 4548 mblk_setcred(tpi_mp, ira->ira_cred, ira->ira_cpid); 4549 4550 eager->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4551 4552 /* Inherit the listener's SSL protection state */ 4553 if ((eager->tcp_kssl_ent = listener->tcp_kssl_ent) != NULL) { 4554 kssl_hold_ent(eager->tcp_kssl_ent); 4555 eager->tcp_kssl_pending = B_TRUE; 4556 } 4557 4558 /* Inherit the listener's non-STREAMS flag */ 4559 if (IPCL_IS_NONSTR(lconnp)) { 4560 econnp->conn_flags |= IPCL_NONSTR; 4561 } 4562 4563 ASSERT(eager->tcp_ordrel_mp == NULL); 4564 4565 if (!IPCL_IS_NONSTR(econnp)) { 4566 /* 4567 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that 4568 * at close time, we will always have that to send up. 4569 * Otherwise, we need to do special handling in case the 4570 * allocation fails at that time. 4571 */ 4572 if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 4573 goto error3; 4574 } 4575 /* 4576 * Now that the IP addresses and ports are setup in econnp we 4577 * can do the IPsec policy work. 4578 */ 4579 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 4580 if (lconnp->conn_policy != NULL) { 4581 /* 4582 * Inherit the policy from the listener; use 4583 * actions from ira 4584 */ 4585 if (!ip_ipsec_policy_inherit(econnp, lconnp, ira)) { 4586 CONN_DEC_REF(econnp); 4587 freemsg(mp); 4588 goto error3; 4589 } 4590 } 4591 } 4592 4593 /* Inherit various TCP parameters from the listener */ 4594 eager->tcp_naglim = listener->tcp_naglim; 4595 eager->tcp_first_timer_threshold = listener->tcp_first_timer_threshold; 4596 eager->tcp_second_timer_threshold = 4597 listener->tcp_second_timer_threshold; 4598 eager->tcp_first_ctimer_threshold = 4599 listener->tcp_first_ctimer_threshold; 4600 eager->tcp_second_ctimer_threshold = 4601 listener->tcp_second_ctimer_threshold; 4602 4603 /* 4604 * tcp_set_destination() may set tcp_rwnd according to the route 4605 * metrics. If it does not, the eager's receive window will be set 4606 * to the listener's receive window later in this function. 4607 */ 4608 eager->tcp_rwnd = 0; 4609 4610 /* 4611 * Inherit listener's tcp_init_cwnd. Need to do this before 4612 * calling tcp_process_options() which set the initial cwnd. 4613 */ 4614 eager->tcp_init_cwnd = listener->tcp_init_cwnd; 4615 4616 if (is_system_labeled()) { 4617 ip_xmit_attr_t *ixa = econnp->conn_ixa; 4618 4619 ASSERT(ira->ira_tsl != NULL); 4620 /* Discard any old label */ 4621 if (ixa->ixa_free_flags & IXA_FREE_TSL) { 4622 ASSERT(ixa->ixa_tsl != NULL); 4623 label_rele(ixa->ixa_tsl); 4624 ixa->ixa_free_flags &= ~IXA_FREE_TSL; 4625 ixa->ixa_tsl = NULL; 4626 } 4627 if ((lconnp->conn_mlp_type != mlptSingle || 4628 lconnp->conn_mac_mode != CONN_MAC_DEFAULT) && 4629 ira->ira_tsl != NULL) { 4630 /* 4631 * If this is an MLP connection or a MAC-Exempt 4632 * connection with an unlabeled node, packets are to be 4633 * exchanged using the security label of the received 4634 * SYN packet instead of the server application's label. 4635 * tsol_check_dest called from ip_set_destination 4636 * might later update TSF_UNLABELED by replacing 4637 * ixa_tsl with a new label. 4638 */ 4639 label_hold(ira->ira_tsl); 4640 ip_xmit_attr_replace_tsl(ixa, ira->ira_tsl); 4641 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 4642 econnp, ts_label_t *, ixa->ixa_tsl) 4643 } else { 4644 ixa->ixa_tsl = crgetlabel(econnp->conn_cred); 4645 DTRACE_PROBE2(syn_accept, conn_t *, 4646 econnp, ts_label_t *, ixa->ixa_tsl) 4647 } 4648 /* 4649 * conn_connect() called from tcp_set_destination will verify 4650 * the destination is allowed to receive packets at the 4651 * security label of the SYN-ACK we are generating. As part of 4652 * that, tsol_check_dest() may create a new effective label for 4653 * this connection. 4654 * Finally conn_connect() will call conn_update_label. 4655 * All that remains for TCP to do is to call 4656 * conn_build_hdr_template which is done as part of 4657 * tcp_set_destination. 4658 */ 4659 } 4660 4661 /* 4662 * Since we will clear tcp_listener before we clear tcp_detached 4663 * in the accept code we need tcp_hard_binding aka tcp_accept_inprogress 4664 * so we can tell a TCP_DETACHED_NONEAGER apart. 4665 */ 4666 eager->tcp_hard_binding = B_TRUE; 4667 4668 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 4669 TCP_BIND_HASH(econnp->conn_lport)], eager, 0); 4670 4671 CL_INET_CONNECT(econnp, B_FALSE, err); 4672 if (err != 0) { 4673 tcp_bind_hash_remove(eager); 4674 goto error3; 4675 } 4676 4677 /* 4678 * No need to check for multicast destination since ip will only pass 4679 * up multicasts to those that have expressed interest 4680 * TODO: what about rejecting broadcasts? 4681 * Also check that source is not a multicast or broadcast address. 4682 */ 4683 eager->tcp_state = TCPS_SYN_RCVD; 4684 SOCK_CONNID_BUMP(eager->tcp_connid); 4685 4686 /* 4687 * Adapt our mss, ttl, ... based on the remote address. 4688 */ 4689 4690 if (tcp_set_destination(eager) != 0) { 4691 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 4692 /* Undo the bind_hash_insert */ 4693 tcp_bind_hash_remove(eager); 4694 goto error3; 4695 } 4696 4697 /* Process all TCP options. */ 4698 tcp_process_options(eager, tcpha); 4699 4700 /* Is the other end ECN capable? */ 4701 if (tcps->tcps_ecn_permitted >= 1 && 4702 (tcpha->tha_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 4703 eager->tcp_ecn_ok = B_TRUE; 4704 } 4705 4706 /* 4707 * The listener's conn_rcvbuf should be the default window size or a 4708 * window size changed via SO_RCVBUF option. First round up the 4709 * eager's tcp_rwnd to the nearest MSS. Then find out the window 4710 * scale option value if needed. Call tcp_rwnd_set() to finish the 4711 * setting. 4712 * 4713 * Note if there is a rpipe metric associated with the remote host, 4714 * we should not inherit receive window size from listener. 4715 */ 4716 eager->tcp_rwnd = MSS_ROUNDUP( 4717 (eager->tcp_rwnd == 0 ? econnp->conn_rcvbuf : 4718 eager->tcp_rwnd), eager->tcp_mss); 4719 if (eager->tcp_snd_ws_ok) 4720 tcp_set_ws_value(eager); 4721 /* 4722 * Note that this is the only place tcp_rwnd_set() is called for 4723 * accepting a connection. We need to call it here instead of 4724 * after the 3-way handshake because we need to tell the other 4725 * side our rwnd in the SYN-ACK segment. 4726 */ 4727 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 4728 4729 ASSERT(eager->tcp_connp->conn_rcvbuf != 0 && 4730 eager->tcp_connp->conn_rcvbuf == eager->tcp_rwnd); 4731 4732 ASSERT(econnp->conn_rcvbuf != 0 && 4733 econnp->conn_rcvbuf == eager->tcp_rwnd); 4734 4735 /* Put a ref on the listener for the eager. */ 4736 CONN_INC_REF(lconnp); 4737 mutex_enter(&listener->tcp_eager_lock); 4738 listener->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 4739 eager->tcp_eager_next_q0 = listener->tcp_eager_next_q0; 4740 listener->tcp_eager_next_q0 = eager; 4741 eager->tcp_eager_prev_q0 = listener; 4742 4743 /* Set tcp_listener before adding it to tcp_conn_fanout */ 4744 eager->tcp_listener = listener; 4745 eager->tcp_saved_listener = listener; 4746 4747 /* 4748 * Tag this detached tcp vector for later retrieval 4749 * by our listener client in tcp_accept(). 4750 */ 4751 eager->tcp_conn_req_seqnum = listener->tcp_conn_req_seqnum; 4752 listener->tcp_conn_req_cnt_q0++; 4753 if (++listener->tcp_conn_req_seqnum == -1) { 4754 /* 4755 * -1 is "special" and defined in TPI as something 4756 * that should never be used in T_CONN_IND 4757 */ 4758 ++listener->tcp_conn_req_seqnum; 4759 } 4760 mutex_exit(&listener->tcp_eager_lock); 4761 4762 if (listener->tcp_syn_defense) { 4763 /* Don't drop the SYN that comes from a good IP source */ 4764 ipaddr_t *addr_cache; 4765 4766 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 4767 if (addr_cache != NULL && econnp->conn_faddr_v4 == 4768 addr_cache[IP_ADDR_CACHE_HASH(econnp->conn_faddr_v4)]) { 4769 eager->tcp_dontdrop = B_TRUE; 4770 } 4771 } 4772 4773 /* 4774 * We need to insert the eager in its own perimeter but as soon 4775 * as we do that, we expose the eager to the classifier and 4776 * should not touch any field outside the eager's perimeter. 4777 * So do all the work necessary before inserting the eager 4778 * in its own perimeter. Be optimistic that conn_connect() 4779 * will succeed but undo everything if it fails. 4780 */ 4781 seg_seq = ntohl(tcpha->tha_seq); 4782 eager->tcp_irs = seg_seq; 4783 eager->tcp_rack = seg_seq; 4784 eager->tcp_rnxt = seg_seq + 1; 4785 eager->tcp_tcpha->tha_ack = htonl(eager->tcp_rnxt); 4786 BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); 4787 eager->tcp_state = TCPS_SYN_RCVD; 4788 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 4789 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 4790 if (mp1 == NULL) { 4791 /* 4792 * Increment the ref count as we are going to 4793 * enqueueing an mp in squeue 4794 */ 4795 CONN_INC_REF(econnp); 4796 goto error; 4797 } 4798 4799 /* 4800 * We need to start the rto timer. In normal case, we start 4801 * the timer after sending the packet on the wire (or at 4802 * least believing that packet was sent by waiting for 4803 * conn_ip_output() to return). Since this is the first packet 4804 * being sent on the wire for the eager, our initial tcp_rto 4805 * is at least tcp_rexmit_interval_min which is a fairly 4806 * large value to allow the algorithm to adjust slowly to large 4807 * fluctuations of RTT during first few transmissions. 4808 * 4809 * Starting the timer first and then sending the packet in this 4810 * case shouldn't make much difference since tcp_rexmit_interval_min 4811 * is of the order of several 100ms and starting the timer 4812 * first and then sending the packet will result in difference 4813 * of few micro seconds. 4814 * 4815 * Without this optimization, we are forced to hold the fanout 4816 * lock across the ipcl_bind_insert() and sending the packet 4817 * so that we don't race against an incoming packet (maybe RST) 4818 * for this eager. 4819 * 4820 * It is necessary to acquire an extra reference on the eager 4821 * at this point and hold it until after tcp_send_data() to 4822 * ensure against an eager close race. 4823 */ 4824 4825 CONN_INC_REF(econnp); 4826 4827 TCP_TIMER_RESTART(eager, eager->tcp_rto); 4828 4829 /* 4830 * Insert the eager in its own perimeter now. We are ready to deal 4831 * with any packets on eager. 4832 */ 4833 if (ipcl_conn_insert(econnp) != 0) 4834 goto error; 4835 4836 /* 4837 * Send the SYN-ACK. Can't use tcp_send_data since we can't update 4838 * pmtu etc; we are not on the eager's squeue 4839 */ 4840 ASSERT(econnp->conn_ixa->ixa_notify_cookie == econnp->conn_tcp); 4841 (void) conn_ip_output(mp1, econnp->conn_ixa); 4842 CONN_DEC_REF(econnp); 4843 freemsg(mp); 4844 4845 return; 4846 error: 4847 freemsg(mp1); 4848 eager->tcp_closemp_used = B_TRUE; 4849 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 4850 mp1 = &eager->tcp_closemp; 4851 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, 4852 econnp, NULL, SQ_FILL, SQTAG_TCP_CONN_REQ_2); 4853 4854 /* 4855 * If a connection already exists, send the mp to that connections so 4856 * that it can be appropriately dealt with. 4857 */ 4858 ipst = tcps->tcps_netstack->netstack_ip; 4859 4860 if ((econnp = ipcl_classify(mp, ira, ipst)) != NULL) { 4861 if (!IPCL_IS_CONNECTED(econnp)) { 4862 /* 4863 * Something bad happened. ipcl_conn_insert() 4864 * failed because a connection already existed 4865 * in connected hash but we can't find it 4866 * anymore (someone blew it away). Just 4867 * free this message and hopefully remote 4868 * will retransmit at which time the SYN can be 4869 * treated as a new connection or dealth with 4870 * a TH_RST if a connection already exists. 4871 */ 4872 CONN_DEC_REF(econnp); 4873 freemsg(mp); 4874 } else { 4875 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, tcp_input_data, 4876 econnp, ira, SQ_FILL, SQTAG_TCP_CONN_REQ_1); 4877 } 4878 } else { 4879 /* Nobody wants this packet */ 4880 freemsg(mp); 4881 } 4882 return; 4883 error3: 4884 CONN_DEC_REF(econnp); 4885 error2: 4886 freemsg(mp); 4887 } 4888 4889 /* 4890 * In an ideal case of vertical partition in NUMA architecture, its 4891 * beneficial to have the listener and all the incoming connections 4892 * tied to the same squeue. The other constraint is that incoming 4893 * connections should be tied to the squeue attached to interrupted 4894 * CPU for obvious locality reason so this leaves the listener to 4895 * be tied to the same squeue. Our only problem is that when listener 4896 * is binding, the CPU that will get interrupted by the NIC whose 4897 * IP address the listener is binding to is not even known. So 4898 * the code below allows us to change that binding at the time the 4899 * CPU is interrupted by virtue of incoming connection's squeue. 4900 * 4901 * This is usefull only in case of a listener bound to a specific IP 4902 * address. For other kind of listeners, they get bound the 4903 * very first time and there is no attempt to rebind them. 4904 */ 4905 void 4906 tcp_input_listener_unbound(void *arg, mblk_t *mp, void *arg2, 4907 ip_recv_attr_t *ira) 4908 { 4909 conn_t *connp = (conn_t *)arg; 4910 squeue_t *sqp = (squeue_t *)arg2; 4911 squeue_t *new_sqp; 4912 uint32_t conn_flags; 4913 4914 /* 4915 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 4916 * or based on the ring (for packets from GLD). Otherwise it is 4917 * set based on lbolt i.e., a somewhat random number. 4918 */ 4919 ASSERT(ira->ira_sqp != NULL); 4920 new_sqp = ira->ira_sqp; 4921 4922 if (connp->conn_fanout == NULL) 4923 goto done; 4924 4925 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 4926 mutex_enter(&connp->conn_fanout->connf_lock); 4927 mutex_enter(&connp->conn_lock); 4928 /* 4929 * No one from read or write side can access us now 4930 * except for already queued packets on this squeue. 4931 * But since we haven't changed the squeue yet, they 4932 * can't execute. If they are processed after we have 4933 * changed the squeue, they are sent back to the 4934 * correct squeue down below. 4935 * But a listner close can race with processing of 4936 * incoming SYN. If incoming SYN processing changes 4937 * the squeue then the listener close which is waiting 4938 * to enter the squeue would operate on the wrong 4939 * squeue. Hence we don't change the squeue here unless 4940 * the refcount is exactly the minimum refcount. The 4941 * minimum refcount of 4 is counted as - 1 each for 4942 * TCP and IP, 1 for being in the classifier hash, and 4943 * 1 for the mblk being processed. 4944 */ 4945 4946 if (connp->conn_ref != 4 || 4947 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 4948 mutex_exit(&connp->conn_lock); 4949 mutex_exit(&connp->conn_fanout->connf_lock); 4950 goto done; 4951 } 4952 if (connp->conn_sqp != new_sqp) { 4953 while (connp->conn_sqp != new_sqp) 4954 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 4955 /* No special MT issues for outbound ixa_sqp hint */ 4956 connp->conn_ixa->ixa_sqp = new_sqp; 4957 } 4958 4959 do { 4960 conn_flags = connp->conn_flags; 4961 conn_flags |= IPCL_FULLY_BOUND; 4962 (void) cas32(&connp->conn_flags, connp->conn_flags, 4963 conn_flags); 4964 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 4965 4966 mutex_exit(&connp->conn_fanout->connf_lock); 4967 mutex_exit(&connp->conn_lock); 4968 4969 /* 4970 * Assume we have picked a good squeue for the listener. Make 4971 * subsequent SYNs not try to change the squeue. 4972 */ 4973 connp->conn_recv = tcp_input_listener; 4974 } 4975 4976 done: 4977 if (connp->conn_sqp != sqp) { 4978 CONN_INC_REF(connp); 4979 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 4980 ira, SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); 4981 } else { 4982 tcp_input_listener(connp, mp, sqp, ira); 4983 } 4984 } 4985 4986 /* 4987 * Successful connect request processing begins when our client passes 4988 * a T_CONN_REQ message into tcp_wput(), which performs function calls into 4989 * IP and the passes a T_OK_ACK (or T_ERROR_ACK upstream). 4990 * 4991 * After various error checks are completed, tcp_tpi_connect() lays 4992 * the target address and port into the composite header template. 4993 * Then we ask IP for information, including a source address if we didn't 4994 * already have one. Finally we prepare to send the SYN packet, and then 4995 * send up the T_OK_ACK reply message. 4996 */ 4997 static void 4998 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp) 4999 { 5000 sin_t *sin; 5001 struct T_conn_req *tcr; 5002 struct sockaddr *sa; 5003 socklen_t len; 5004 int error; 5005 cred_t *cr; 5006 pid_t cpid; 5007 conn_t *connp = tcp->tcp_connp; 5008 queue_t *q = connp->conn_wq; 5009 5010 /* 5011 * All Solaris components should pass a db_credp 5012 * for this TPI message, hence we ASSERT. 5013 * But in case there is some other M_PROTO that looks 5014 * like a TPI message sent by some other kernel 5015 * component, we check and return an error. 5016 */ 5017 cr = msg_getcred(mp, &cpid); 5018 ASSERT(cr != NULL); 5019 if (cr == NULL) { 5020 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5021 return; 5022 } 5023 5024 tcr = (struct T_conn_req *)mp->b_rptr; 5025 5026 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5027 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 5028 tcp_err_ack(tcp, mp, TPROTO, 0); 5029 return; 5030 } 5031 5032 /* 5033 * Pre-allocate the T_ordrel_ind mblk so that at close time, we 5034 * will always have that to send up. Otherwise, we need to do 5035 * special handling in case the allocation fails at that time. 5036 * If the end point is TPI, the tcp_t can be reused and the 5037 * tcp_ordrel_mp may be allocated already. 5038 */ 5039 if (tcp->tcp_ordrel_mp == NULL) { 5040 if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) { 5041 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5042 return; 5043 } 5044 } 5045 5046 /* 5047 * Determine packet type based on type of address passed in 5048 * the request should contain an IPv4 or IPv6 address. 5049 * Make sure that address family matches the type of 5050 * family of the address passed down. 5051 */ 5052 switch (tcr->DEST_length) { 5053 default: 5054 tcp_err_ack(tcp, mp, TBADADDR, 0); 5055 return; 5056 5057 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 5058 /* 5059 * XXX: The check for valid DEST_length was not there 5060 * in earlier releases and some buggy 5061 * TLI apps (e.g Sybase) got away with not feeding 5062 * in sin_zero part of address. 5063 * We allow that bug to keep those buggy apps humming. 5064 * Test suites require the check on DEST_length. 5065 * We construct a new mblk with valid DEST_length 5066 * free the original so the rest of the code does 5067 * not have to keep track of this special shorter 5068 * length address case. 5069 */ 5070 mblk_t *nmp; 5071 struct T_conn_req *ntcr; 5072 sin_t *nsin; 5073 5074 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 5075 tcr->OPT_length, BPRI_HI); 5076 if (nmp == NULL) { 5077 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5078 return; 5079 } 5080 ntcr = (struct T_conn_req *)nmp->b_rptr; 5081 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 5082 ntcr->PRIM_type = T_CONN_REQ; 5083 ntcr->DEST_length = sizeof (sin_t); 5084 ntcr->DEST_offset = sizeof (struct T_conn_req); 5085 5086 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 5087 *nsin = sin_null; 5088 /* Get pointer to shorter address to copy from original mp */ 5089 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 5090 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 5091 if (sin == NULL || !OK_32PTR((char *)sin)) { 5092 freemsg(nmp); 5093 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5094 return; 5095 } 5096 nsin->sin_family = sin->sin_family; 5097 nsin->sin_port = sin->sin_port; 5098 nsin->sin_addr = sin->sin_addr; 5099 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 5100 nmp->b_wptr = (uchar_t *)&nsin[1]; 5101 if (tcr->OPT_length != 0) { 5102 ntcr->OPT_length = tcr->OPT_length; 5103 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 5104 bcopy((uchar_t *)tcr + tcr->OPT_offset, 5105 (uchar_t *)ntcr + ntcr->OPT_offset, 5106 tcr->OPT_length); 5107 nmp->b_wptr += tcr->OPT_length; 5108 } 5109 freemsg(mp); /* original mp freed */ 5110 mp = nmp; /* re-initialize original variables */ 5111 tcr = ntcr; 5112 } 5113 /* FALLTHRU */ 5114 5115 case sizeof (sin_t): 5116 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 5117 sizeof (sin_t)); 5118 len = sizeof (sin_t); 5119 break; 5120 5121 case sizeof (sin6_t): 5122 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 5123 sizeof (sin6_t)); 5124 len = sizeof (sin6_t); 5125 break; 5126 } 5127 5128 error = proto_verify_ip_addr(connp->conn_family, sa, len); 5129 if (error != 0) { 5130 tcp_err_ack(tcp, mp, TSYSERR, error); 5131 return; 5132 } 5133 5134 /* 5135 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 5136 * should key on their sequence number and cut them loose. 5137 */ 5138 5139 /* 5140 * If options passed in, feed it for verification and handling 5141 */ 5142 if (tcr->OPT_length != 0) { 5143 mblk_t *ok_mp; 5144 mblk_t *discon_mp; 5145 mblk_t *conn_opts_mp; 5146 int t_error, sys_error, do_disconnect; 5147 5148 conn_opts_mp = NULL; 5149 5150 if (tcp_conprim_opt_process(tcp, mp, 5151 &do_disconnect, &t_error, &sys_error) < 0) { 5152 if (do_disconnect) { 5153 ASSERT(t_error == 0 && sys_error == 0); 5154 discon_mp = mi_tpi_discon_ind(NULL, 5155 ECONNREFUSED, 0); 5156 if (!discon_mp) { 5157 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 5158 TSYSERR, ENOMEM); 5159 return; 5160 } 5161 ok_mp = mi_tpi_ok_ack_alloc(mp); 5162 if (!ok_mp) { 5163 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 5164 TSYSERR, ENOMEM); 5165 return; 5166 } 5167 qreply(q, ok_mp); 5168 qreply(q, discon_mp); /* no flush! */ 5169 } else { 5170 ASSERT(t_error != 0); 5171 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 5172 sys_error); 5173 } 5174 return; 5175 } 5176 /* 5177 * Success in setting options, the mp option buffer represented 5178 * by OPT_length/offset has been potentially modified and 5179 * contains results of option processing. We copy it in 5180 * another mp to save it for potentially influencing returning 5181 * it in T_CONN_CONN. 5182 */ 5183 if (tcr->OPT_length != 0) { /* there are resulting options */ 5184 conn_opts_mp = copyb(mp); 5185 if (!conn_opts_mp) { 5186 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 5187 TSYSERR, ENOMEM); 5188 return; 5189 } 5190 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 5191 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 5192 /* 5193 * Note: 5194 * These resulting option negotiation can include any 5195 * end-to-end negotiation options but there no such 5196 * thing (yet?) in our TCP/IP. 5197 */ 5198 } 5199 } 5200 5201 /* call the non-TPI version */ 5202 error = tcp_do_connect(tcp->tcp_connp, sa, len, cr, cpid); 5203 if (error < 0) { 5204 mp = mi_tpi_err_ack_alloc(mp, -error, 0); 5205 } else if (error > 0) { 5206 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 5207 } else { 5208 mp = mi_tpi_ok_ack_alloc(mp); 5209 } 5210 5211 /* 5212 * Note: Code below is the "failure" case 5213 */ 5214 /* return error ack and blow away saved option results if any */ 5215 connect_failed: 5216 if (mp != NULL) 5217 putnext(connp->conn_rq, mp); 5218 else { 5219 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 5220 TSYSERR, ENOMEM); 5221 } 5222 } 5223 5224 /* 5225 * Handle connect to IPv4 destinations, including connections for AF_INET6 5226 * sockets connecting to IPv4 mapped IPv6 destinations. 5227 * Returns zero if OK, a positive errno, or a negative TLI error. 5228 */ 5229 static int 5230 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 5231 uint_t srcid) 5232 { 5233 ipaddr_t dstaddr = *dstaddrp; 5234 uint16_t lport; 5235 conn_t *connp = tcp->tcp_connp; 5236 tcp_stack_t *tcps = tcp->tcp_tcps; 5237 int error; 5238 5239 ASSERT(connp->conn_ipversion == IPV4_VERSION); 5240 5241 /* Check for attempt to connect to INADDR_ANY */ 5242 if (dstaddr == INADDR_ANY) { 5243 /* 5244 * SunOS 4.x and 4.3 BSD allow an application 5245 * to connect a TCP socket to INADDR_ANY. 5246 * When they do this, the kernel picks the 5247 * address of one interface and uses it 5248 * instead. The kernel usually ends up 5249 * picking the address of the loopback 5250 * interface. This is an undocumented feature. 5251 * However, we provide the same thing here 5252 * in order to have source and binary 5253 * compatibility with SunOS 4.x. 5254 * Update the T_CONN_REQ (sin/sin6) since it is used to 5255 * generate the T_CONN_CON. 5256 */ 5257 dstaddr = htonl(INADDR_LOOPBACK); 5258 *dstaddrp = dstaddr; 5259 } 5260 5261 /* Handle __sin6_src_id if socket not bound to an IP address */ 5262 if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) { 5263 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 5264 IPCL_ZONEID(connp), tcps->tcps_netstack); 5265 connp->conn_saddr_v6 = connp->conn_laddr_v6; 5266 } 5267 5268 IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6); 5269 connp->conn_fport = dstport; 5270 5271 /* 5272 * At this point the remote destination address and remote port fields 5273 * in the tcp-four-tuple have been filled in the tcp structure. Now we 5274 * have to see which state tcp was in so we can take appropriate action. 5275 */ 5276 if (tcp->tcp_state == TCPS_IDLE) { 5277 /* 5278 * We support a quick connect capability here, allowing 5279 * clients to transition directly from IDLE to SYN_SENT 5280 * tcp_bindi will pick an unused port, insert the connection 5281 * in the bind hash and transition to BOUND state. 5282 */ 5283 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 5284 tcp, B_TRUE); 5285 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 5286 B_FALSE, B_FALSE); 5287 if (lport == 0) 5288 return (-TNOADDR); 5289 } 5290 5291 /* 5292 * Lookup the route to determine a source address and the uinfo. 5293 * Setup TCP parameters based on the metrics/DCE. 5294 */ 5295 error = tcp_set_destination(tcp); 5296 if (error != 0) 5297 return (error); 5298 5299 /* 5300 * Don't let an endpoint connect to itself. 5301 */ 5302 if (connp->conn_faddr_v4 == connp->conn_laddr_v4 && 5303 connp->conn_fport == connp->conn_lport) 5304 return (-TBADADDR); 5305 5306 tcp->tcp_state = TCPS_SYN_SENT; 5307 5308 return (ipcl_conn_insert_v4(connp)); 5309 } 5310 5311 /* 5312 * Handle connect to IPv6 destinations. 5313 * Returns zero if OK, a positive errno, or a negative TLI error. 5314 */ 5315 static int 5316 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 5317 uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 5318 { 5319 uint16_t lport; 5320 conn_t *connp = tcp->tcp_connp; 5321 tcp_stack_t *tcps = tcp->tcp_tcps; 5322 int error; 5323 5324 ASSERT(connp->conn_family == AF_INET6); 5325 5326 /* 5327 * If we're here, it means that the destination address is a native 5328 * IPv6 address. Return an error if conn_ipversion is not IPv6. A 5329 * reason why it might not be IPv6 is if the socket was bound to an 5330 * IPv4-mapped IPv6 address. 5331 */ 5332 if (connp->conn_ipversion != IPV6_VERSION) 5333 return (-TBADADDR); 5334 5335 /* 5336 * Interpret a zero destination to mean loopback. 5337 * Update the T_CONN_REQ (sin/sin6) since it is used to 5338 * generate the T_CONN_CON. 5339 */ 5340 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) 5341 *dstaddrp = ipv6_loopback; 5342 5343 /* Handle __sin6_src_id if socket not bound to an IP address */ 5344 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) { 5345 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 5346 IPCL_ZONEID(connp), tcps->tcps_netstack); 5347 connp->conn_saddr_v6 = connp->conn_laddr_v6; 5348 } 5349 5350 /* 5351 * Take care of the scope_id now. 5352 */ 5353 if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 5354 connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 5355 connp->conn_ixa->ixa_scopeid = scope_id; 5356 } else { 5357 connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET; 5358 } 5359 5360 connp->conn_flowinfo = flowinfo; 5361 connp->conn_faddr_v6 = *dstaddrp; 5362 connp->conn_fport = dstport; 5363 5364 /* 5365 * At this point the remote destination address and remote port fields 5366 * in the tcp-four-tuple have been filled in the tcp structure. Now we 5367 * have to see which state tcp was in so we can take appropriate action. 5368 */ 5369 if (tcp->tcp_state == TCPS_IDLE) { 5370 /* 5371 * We support a quick connect capability here, allowing 5372 * clients to transition directly from IDLE to SYN_SENT 5373 * tcp_bindi will pick an unused port, insert the connection 5374 * in the bind hash and transition to BOUND state. 5375 */ 5376 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 5377 tcp, B_TRUE); 5378 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 5379 B_FALSE, B_FALSE); 5380 if (lport == 0) 5381 return (-TNOADDR); 5382 } 5383 5384 /* 5385 * Lookup the route to determine a source address and the uinfo. 5386 * Setup TCP parameters based on the metrics/DCE. 5387 */ 5388 error = tcp_set_destination(tcp); 5389 if (error != 0) 5390 return (error); 5391 5392 /* 5393 * Don't let an endpoint connect to itself. 5394 */ 5395 if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) && 5396 connp->conn_fport == connp->conn_lport) 5397 return (-TBADADDR); 5398 5399 tcp->tcp_state = TCPS_SYN_SENT; 5400 5401 return (ipcl_conn_insert_v6(connp)); 5402 } 5403 5404 /* 5405 * Disconnect 5406 * Note that unlike other functions this returns a positive tli error 5407 * when it fails; it never returns an errno. 5408 */ 5409 static int 5410 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 5411 { 5412 conn_t *lconnp; 5413 tcp_stack_t *tcps = tcp->tcp_tcps; 5414 conn_t *connp = tcp->tcp_connp; 5415 5416 /* 5417 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 5418 * when the stream is in BOUND state. Do not send a reset, 5419 * since the destination IP address is not valid, and it can 5420 * be the initialized value of all zeros (broadcast address). 5421 */ 5422 if (tcp->tcp_state <= TCPS_BOUND) { 5423 if (connp->conn_debug) { 5424 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 5425 "tcp_disconnect: bad state, %d", tcp->tcp_state); 5426 } 5427 return (TOUTSTATE); 5428 } 5429 5430 5431 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 5432 5433 /* 5434 * According to TPI, for non-listeners, ignore seqnum 5435 * and disconnect. 5436 * Following interpretation of -1 seqnum is historical 5437 * and implied TPI ? (TPI only states that for T_CONN_IND, 5438 * a valid seqnum should not be -1). 5439 * 5440 * -1 means disconnect everything 5441 * regardless even on a listener. 5442 */ 5443 5444 int old_state = tcp->tcp_state; 5445 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 5446 5447 /* 5448 * The connection can't be on the tcp_time_wait_head list 5449 * since it is not detached. 5450 */ 5451 ASSERT(tcp->tcp_time_wait_next == NULL); 5452 ASSERT(tcp->tcp_time_wait_prev == NULL); 5453 ASSERT(tcp->tcp_time_wait_expire == 0); 5454 /* 5455 * If it used to be a listener, check to make sure no one else 5456 * has taken the port before switching back to LISTEN state. 5457 */ 5458 if (connp->conn_ipversion == IPV4_VERSION) { 5459 lconnp = ipcl_lookup_listener_v4(connp->conn_lport, 5460 connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst); 5461 } else { 5462 uint_t ifindex = 0; 5463 5464 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) 5465 ifindex = connp->conn_ixa->ixa_scopeid; 5466 5467 /* Allow conn_bound_if listeners? */ 5468 lconnp = ipcl_lookup_listener_v6(connp->conn_lport, 5469 &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp), 5470 ipst); 5471 } 5472 if (tcp->tcp_conn_req_max && lconnp == NULL) { 5473 tcp->tcp_state = TCPS_LISTEN; 5474 } else if (old_state > TCPS_BOUND) { 5475 tcp->tcp_conn_req_max = 0; 5476 tcp->tcp_state = TCPS_BOUND; 5477 } 5478 if (lconnp != NULL) 5479 CONN_DEC_REF(lconnp); 5480 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 5481 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 5482 } else if (old_state == TCPS_ESTABLISHED || 5483 old_state == TCPS_CLOSE_WAIT) { 5484 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 5485 } 5486 5487 if (tcp->tcp_fused) 5488 tcp_unfuse(tcp); 5489 5490 mutex_enter(&tcp->tcp_eager_lock); 5491 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 5492 (tcp->tcp_conn_req_cnt_q != 0)) { 5493 tcp_eager_cleanup(tcp, 0); 5494 } 5495 mutex_exit(&tcp->tcp_eager_lock); 5496 5497 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 5498 tcp->tcp_rnxt, TH_RST | TH_ACK); 5499 5500 tcp_reinit(tcp); 5501 5502 return (0); 5503 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 5504 return (TBADSEQ); 5505 } 5506 return (0); 5507 } 5508 5509 /* 5510 * Our client hereby directs us to reject the connection request 5511 * that tcp_input_listener() marked with 'seqnum'. Rejection consists 5512 * of sending the appropriate RST, not an ICMP error. 5513 */ 5514 static void 5515 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 5516 { 5517 t_scalar_t seqnum; 5518 int error; 5519 conn_t *connp = tcp->tcp_connp; 5520 5521 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5522 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 5523 tcp_err_ack(tcp, mp, TPROTO, 0); 5524 return; 5525 } 5526 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 5527 error = tcp_disconnect_common(tcp, seqnum); 5528 if (error != 0) 5529 tcp_err_ack(tcp, mp, error, 0); 5530 else { 5531 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 5532 /* Send M_FLUSH according to TPI */ 5533 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW); 5534 } 5535 mp = mi_tpi_ok_ack_alloc(mp); 5536 if (mp != NULL) 5537 putnext(connp->conn_rq, mp); 5538 } 5539 } 5540 5541 /* 5542 * Diagnostic routine used to return a string associated with the tcp state. 5543 * Note that if the caller does not supply a buffer, it will use an internal 5544 * static string. This means that if multiple threads call this function at 5545 * the same time, output can be corrupted... Note also that this function 5546 * does not check the size of the supplied buffer. The caller has to make 5547 * sure that it is big enough. 5548 */ 5549 static char * 5550 tcp_display(tcp_t *tcp, char *sup_buf, char format) 5551 { 5552 char buf1[30]; 5553 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 5554 char *buf; 5555 char *cp; 5556 in6_addr_t local, remote; 5557 char local_addrbuf[INET6_ADDRSTRLEN]; 5558 char remote_addrbuf[INET6_ADDRSTRLEN]; 5559 conn_t *connp; 5560 5561 if (sup_buf != NULL) 5562 buf = sup_buf; 5563 else 5564 buf = priv_buf; 5565 5566 if (tcp == NULL) 5567 return ("NULL_TCP"); 5568 5569 connp = tcp->tcp_connp; 5570 switch (tcp->tcp_state) { 5571 case TCPS_CLOSED: 5572 cp = "TCP_CLOSED"; 5573 break; 5574 case TCPS_IDLE: 5575 cp = "TCP_IDLE"; 5576 break; 5577 case TCPS_BOUND: 5578 cp = "TCP_BOUND"; 5579 break; 5580 case TCPS_LISTEN: 5581 cp = "TCP_LISTEN"; 5582 break; 5583 case TCPS_SYN_SENT: 5584 cp = "TCP_SYN_SENT"; 5585 break; 5586 case TCPS_SYN_RCVD: 5587 cp = "TCP_SYN_RCVD"; 5588 break; 5589 case TCPS_ESTABLISHED: 5590 cp = "TCP_ESTABLISHED"; 5591 break; 5592 case TCPS_CLOSE_WAIT: 5593 cp = "TCP_CLOSE_WAIT"; 5594 break; 5595 case TCPS_FIN_WAIT_1: 5596 cp = "TCP_FIN_WAIT_1"; 5597 break; 5598 case TCPS_CLOSING: 5599 cp = "TCP_CLOSING"; 5600 break; 5601 case TCPS_LAST_ACK: 5602 cp = "TCP_LAST_ACK"; 5603 break; 5604 case TCPS_FIN_WAIT_2: 5605 cp = "TCP_FIN_WAIT_2"; 5606 break; 5607 case TCPS_TIME_WAIT: 5608 cp = "TCP_TIME_WAIT"; 5609 break; 5610 default: 5611 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 5612 cp = buf1; 5613 break; 5614 } 5615 switch (format) { 5616 case DISP_ADDR_AND_PORT: 5617 if (connp->conn_ipversion == IPV4_VERSION) { 5618 /* 5619 * Note that we use the remote address in the tcp_b 5620 * structure. This means that it will print out 5621 * the real destination address, not the next hop's 5622 * address if source routing is used. 5623 */ 5624 IN6_IPADDR_TO_V4MAPPED(connp->conn_laddr_v4, &local); 5625 IN6_IPADDR_TO_V4MAPPED(connp->conn_faddr_v4, &remote); 5626 5627 } else { 5628 local = connp->conn_laddr_v6; 5629 remote = connp->conn_faddr_v6; 5630 } 5631 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 5632 sizeof (local_addrbuf)); 5633 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 5634 sizeof (remote_addrbuf)); 5635 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 5636 local_addrbuf, ntohs(connp->conn_lport), remote_addrbuf, 5637 ntohs(connp->conn_fport), cp); 5638 break; 5639 case DISP_PORT_ONLY: 5640 default: 5641 (void) mi_sprintf(buf, "[%u, %u] %s", 5642 ntohs(connp->conn_lport), ntohs(connp->conn_fport), cp); 5643 break; 5644 } 5645 5646 return (buf); 5647 } 5648 5649 /* 5650 * Called via squeue to get on to eager's perimeter. It sends a 5651 * TH_RST if eager is in the fanout table. The listener wants the 5652 * eager to disappear either by means of tcp_eager_blowoff() or 5653 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 5654 * called (via squeue) if the eager cannot be inserted in the 5655 * fanout table in tcp_input_listener(). 5656 */ 5657 /* ARGSUSED */ 5658 void 5659 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 5660 { 5661 conn_t *econnp = (conn_t *)arg; 5662 tcp_t *eager = econnp->conn_tcp; 5663 tcp_t *listener = eager->tcp_listener; 5664 5665 /* 5666 * We could be called because listener is closing. Since 5667 * the eager was using listener's queue's, we avoid 5668 * using the listeners queues from now on. 5669 */ 5670 ASSERT(eager->tcp_detached); 5671 econnp->conn_rq = NULL; 5672 econnp->conn_wq = NULL; 5673 5674 /* 5675 * An eager's conn_fanout will be NULL if it's a duplicate 5676 * for an existing 4-tuples in the conn fanout table. 5677 * We don't want to send an RST out in such case. 5678 */ 5679 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 5680 tcp_xmit_ctl("tcp_eager_kill, can't wait", 5681 eager, eager->tcp_snxt, 0, TH_RST); 5682 } 5683 5684 /* We are here because listener wants this eager gone */ 5685 if (listener != NULL) { 5686 mutex_enter(&listener->tcp_eager_lock); 5687 tcp_eager_unlink(eager); 5688 if (eager->tcp_tconnind_started) { 5689 /* 5690 * The eager has sent a conn_ind up to the 5691 * listener but listener decides to close 5692 * instead. We need to drop the extra ref 5693 * placed on eager in tcp_input_data() before 5694 * sending the conn_ind to listener. 5695 */ 5696 CONN_DEC_REF(econnp); 5697 } 5698 mutex_exit(&listener->tcp_eager_lock); 5699 CONN_DEC_REF(listener->tcp_connp); 5700 } 5701 5702 if (eager->tcp_state != TCPS_CLOSED) 5703 tcp_close_detached(eager); 5704 } 5705 5706 /* 5707 * Reset any eager connection hanging off this listener marked 5708 * with 'seqnum' and then reclaim it's resources. 5709 */ 5710 static boolean_t 5711 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 5712 { 5713 tcp_t *eager; 5714 mblk_t *mp; 5715 tcp_stack_t *tcps = listener->tcp_tcps; 5716 5717 TCP_STAT(tcps, tcp_eager_blowoff_calls); 5718 eager = listener; 5719 mutex_enter(&listener->tcp_eager_lock); 5720 do { 5721 eager = eager->tcp_eager_next_q; 5722 if (eager == NULL) { 5723 mutex_exit(&listener->tcp_eager_lock); 5724 return (B_FALSE); 5725 } 5726 } while (eager->tcp_conn_req_seqnum != seqnum); 5727 5728 if (eager->tcp_closemp_used) { 5729 mutex_exit(&listener->tcp_eager_lock); 5730 return (B_TRUE); 5731 } 5732 eager->tcp_closemp_used = B_TRUE; 5733 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5734 CONN_INC_REF(eager->tcp_connp); 5735 mutex_exit(&listener->tcp_eager_lock); 5736 mp = &eager->tcp_closemp; 5737 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 5738 eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); 5739 return (B_TRUE); 5740 } 5741 5742 /* 5743 * Reset any eager connection hanging off this listener 5744 * and then reclaim it's resources. 5745 */ 5746 static void 5747 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 5748 { 5749 tcp_t *eager; 5750 mblk_t *mp; 5751 tcp_stack_t *tcps = listener->tcp_tcps; 5752 5753 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 5754 5755 if (!q0_only) { 5756 /* First cleanup q */ 5757 TCP_STAT(tcps, tcp_eager_blowoff_q); 5758 eager = listener->tcp_eager_next_q; 5759 while (eager != NULL) { 5760 if (!eager->tcp_closemp_used) { 5761 eager->tcp_closemp_used = B_TRUE; 5762 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5763 CONN_INC_REF(eager->tcp_connp); 5764 mp = &eager->tcp_closemp; 5765 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 5766 tcp_eager_kill, eager->tcp_connp, NULL, 5767 SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); 5768 } 5769 eager = eager->tcp_eager_next_q; 5770 } 5771 } 5772 /* Then cleanup q0 */ 5773 TCP_STAT(tcps, tcp_eager_blowoff_q0); 5774 eager = listener->tcp_eager_next_q0; 5775 while (eager != listener) { 5776 if (!eager->tcp_closemp_used) { 5777 eager->tcp_closemp_used = B_TRUE; 5778 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5779 CONN_INC_REF(eager->tcp_connp); 5780 mp = &eager->tcp_closemp; 5781 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 5782 tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL, 5783 SQTAG_TCP_EAGER_CLEANUP_Q0); 5784 } 5785 eager = eager->tcp_eager_next_q0; 5786 } 5787 } 5788 5789 /* 5790 * If we are an eager connection hanging off a listener that hasn't 5791 * formally accepted the connection yet, get off his list and blow off 5792 * any data that we have accumulated. 5793 */ 5794 static void 5795 tcp_eager_unlink(tcp_t *tcp) 5796 { 5797 tcp_t *listener = tcp->tcp_listener; 5798 5799 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 5800 ASSERT(listener != NULL); 5801 if (tcp->tcp_eager_next_q0 != NULL) { 5802 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 5803 5804 /* Remove the eager tcp from q0 */ 5805 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 5806 tcp->tcp_eager_prev_q0; 5807 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 5808 tcp->tcp_eager_next_q0; 5809 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 5810 listener->tcp_conn_req_cnt_q0--; 5811 5812 tcp->tcp_eager_next_q0 = NULL; 5813 tcp->tcp_eager_prev_q0 = NULL; 5814 5815 /* 5816 * Take the eager out, if it is in the list of droppable 5817 * eagers. 5818 */ 5819 MAKE_UNDROPPABLE(tcp); 5820 5821 if (tcp->tcp_syn_rcvd_timeout != 0) { 5822 /* we have timed out before */ 5823 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 5824 listener->tcp_syn_rcvd_timeout--; 5825 } 5826 } else { 5827 tcp_t **tcpp = &listener->tcp_eager_next_q; 5828 tcp_t *prev = NULL; 5829 5830 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 5831 if (tcpp[0] == tcp) { 5832 if (listener->tcp_eager_last_q == tcp) { 5833 /* 5834 * If we are unlinking the last 5835 * element on the list, adjust 5836 * tail pointer. Set tail pointer 5837 * to nil when list is empty. 5838 */ 5839 ASSERT(tcp->tcp_eager_next_q == NULL); 5840 if (listener->tcp_eager_last_q == 5841 listener->tcp_eager_next_q) { 5842 listener->tcp_eager_last_q = 5843 NULL; 5844 } else { 5845 /* 5846 * We won't get here if there 5847 * is only one eager in the 5848 * list. 5849 */ 5850 ASSERT(prev != NULL); 5851 listener->tcp_eager_last_q = 5852 prev; 5853 } 5854 } 5855 tcpp[0] = tcp->tcp_eager_next_q; 5856 tcp->tcp_eager_next_q = NULL; 5857 tcp->tcp_eager_last_q = NULL; 5858 ASSERT(listener->tcp_conn_req_cnt_q > 0); 5859 listener->tcp_conn_req_cnt_q--; 5860 break; 5861 } 5862 prev = tcpp[0]; 5863 } 5864 } 5865 tcp->tcp_listener = NULL; 5866 } 5867 5868 /* Shorthand to generate and send TPI error acks to our client */ 5869 static void 5870 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 5871 { 5872 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 5873 putnext(tcp->tcp_connp->conn_rq, mp); 5874 } 5875 5876 /* Shorthand to generate and send TPI error acks to our client */ 5877 static void 5878 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 5879 int t_error, int sys_error) 5880 { 5881 struct T_error_ack *teackp; 5882 5883 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 5884 M_PCPROTO, T_ERROR_ACK)) != NULL) { 5885 teackp = (struct T_error_ack *)mp->b_rptr; 5886 teackp->ERROR_prim = primitive; 5887 teackp->TLI_error = t_error; 5888 teackp->UNIX_error = sys_error; 5889 putnext(tcp->tcp_connp->conn_rq, mp); 5890 } 5891 } 5892 5893 /* 5894 * Note: No locks are held when inspecting tcp_g_*epriv_ports 5895 * but instead the code relies on: 5896 * - the fact that the address of the array and its size never changes 5897 * - the atomic assignment of the elements of the array 5898 */ 5899 /* ARGSUSED */ 5900 static int 5901 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 5902 { 5903 int i; 5904 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 5905 5906 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 5907 if (tcps->tcps_g_epriv_ports[i] != 0) 5908 (void) mi_mpprintf(mp, "%d ", 5909 tcps->tcps_g_epriv_ports[i]); 5910 } 5911 return (0); 5912 } 5913 5914 /* 5915 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 5916 * threads from changing it at the same time. 5917 */ 5918 /* ARGSUSED */ 5919 static int 5920 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 5921 cred_t *cr) 5922 { 5923 long new_value; 5924 int i; 5925 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 5926 5927 /* 5928 * Fail the request if the new value does not lie within the 5929 * port number limits. 5930 */ 5931 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 5932 new_value <= 0 || new_value >= 65536) { 5933 return (EINVAL); 5934 } 5935 5936 mutex_enter(&tcps->tcps_epriv_port_lock); 5937 /* Check if the value is already in the list */ 5938 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 5939 if (new_value == tcps->tcps_g_epriv_ports[i]) { 5940 mutex_exit(&tcps->tcps_epriv_port_lock); 5941 return (EEXIST); 5942 } 5943 } 5944 /* Find an empty slot */ 5945 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 5946 if (tcps->tcps_g_epriv_ports[i] == 0) 5947 break; 5948 } 5949 if (i == tcps->tcps_g_num_epriv_ports) { 5950 mutex_exit(&tcps->tcps_epriv_port_lock); 5951 return (EOVERFLOW); 5952 } 5953 /* Set the new value */ 5954 tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; 5955 mutex_exit(&tcps->tcps_epriv_port_lock); 5956 return (0); 5957 } 5958 5959 /* 5960 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 5961 * threads from changing it at the same time. 5962 */ 5963 /* ARGSUSED */ 5964 static int 5965 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 5966 cred_t *cr) 5967 { 5968 long new_value; 5969 int i; 5970 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 5971 5972 /* 5973 * Fail the request if the new value does not lie within the 5974 * port number limits. 5975 */ 5976 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 5977 new_value >= 65536) { 5978 return (EINVAL); 5979 } 5980 5981 mutex_enter(&tcps->tcps_epriv_port_lock); 5982 /* Check that the value is already in the list */ 5983 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 5984 if (tcps->tcps_g_epriv_ports[i] == new_value) 5985 break; 5986 } 5987 if (i == tcps->tcps_g_num_epriv_ports) { 5988 mutex_exit(&tcps->tcps_epriv_port_lock); 5989 return (ESRCH); 5990 } 5991 /* Clear the value */ 5992 tcps->tcps_g_epriv_ports[i] = 0; 5993 mutex_exit(&tcps->tcps_epriv_port_lock); 5994 return (0); 5995 } 5996 5997 /* Return the TPI/TLI equivalent of our current tcp_state */ 5998 static int 5999 tcp_tpistate(tcp_t *tcp) 6000 { 6001 switch (tcp->tcp_state) { 6002 case TCPS_IDLE: 6003 return (TS_UNBND); 6004 case TCPS_LISTEN: 6005 /* 6006 * Return whether there are outstanding T_CONN_IND waiting 6007 * for the matching T_CONN_RES. Therefore don't count q0. 6008 */ 6009 if (tcp->tcp_conn_req_cnt_q > 0) 6010 return (TS_WRES_CIND); 6011 else 6012 return (TS_IDLE); 6013 case TCPS_BOUND: 6014 return (TS_IDLE); 6015 case TCPS_SYN_SENT: 6016 return (TS_WCON_CREQ); 6017 case TCPS_SYN_RCVD: 6018 /* 6019 * Note: assumption: this has to the active open SYN_RCVD. 6020 * The passive instance is detached in SYN_RCVD stage of 6021 * incoming connection processing so we cannot get request 6022 * for T_info_ack on it. 6023 */ 6024 return (TS_WACK_CRES); 6025 case TCPS_ESTABLISHED: 6026 return (TS_DATA_XFER); 6027 case TCPS_CLOSE_WAIT: 6028 return (TS_WREQ_ORDREL); 6029 case TCPS_FIN_WAIT_1: 6030 return (TS_WIND_ORDREL); 6031 case TCPS_FIN_WAIT_2: 6032 return (TS_WIND_ORDREL); 6033 6034 case TCPS_CLOSING: 6035 case TCPS_LAST_ACK: 6036 case TCPS_TIME_WAIT: 6037 case TCPS_CLOSED: 6038 /* 6039 * Following TS_WACK_DREQ7 is a rendition of "not 6040 * yet TS_IDLE" TPI state. There is no best match to any 6041 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 6042 * choose a value chosen that will map to TLI/XTI level 6043 * state of TSTATECHNG (state is process of changing) which 6044 * captures what this dummy state represents. 6045 */ 6046 return (TS_WACK_DREQ7); 6047 default: 6048 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 6049 tcp->tcp_state, tcp_display(tcp, NULL, 6050 DISP_PORT_ONLY)); 6051 return (TS_UNBND); 6052 } 6053 } 6054 6055 static void 6056 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 6057 { 6058 tcp_stack_t *tcps = tcp->tcp_tcps; 6059 conn_t *connp = tcp->tcp_connp; 6060 6061 if (connp->conn_family == AF_INET6) 6062 *tia = tcp_g_t_info_ack_v6; 6063 else 6064 *tia = tcp_g_t_info_ack; 6065 tia->CURRENT_state = tcp_tpistate(tcp); 6066 tia->OPT_size = tcp_max_optsize; 6067 if (tcp->tcp_mss == 0) { 6068 /* Not yet set - tcp_open does not set mss */ 6069 if (connp->conn_ipversion == IPV4_VERSION) 6070 tia->TIDU_size = tcps->tcps_mss_def_ipv4; 6071 else 6072 tia->TIDU_size = tcps->tcps_mss_def_ipv6; 6073 } else { 6074 tia->TIDU_size = tcp->tcp_mss; 6075 } 6076 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 6077 } 6078 6079 static void 6080 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap, 6081 t_uscalar_t cap_bits1) 6082 { 6083 tcap->CAP_bits1 = 0; 6084 6085 if (cap_bits1 & TC1_INFO) { 6086 tcp_copy_info(&tcap->INFO_ack, tcp); 6087 tcap->CAP_bits1 |= TC1_INFO; 6088 } 6089 6090 if (cap_bits1 & TC1_ACCEPTOR_ID) { 6091 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 6092 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 6093 } 6094 6095 } 6096 6097 /* 6098 * This routine responds to T_CAPABILITY_REQ messages. It is called by 6099 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 6100 * tcp_g_t_info_ack. The current state of the stream is copied from 6101 * tcp_state. 6102 */ 6103 static void 6104 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 6105 { 6106 t_uscalar_t cap_bits1; 6107 struct T_capability_ack *tcap; 6108 6109 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 6110 freemsg(mp); 6111 return; 6112 } 6113 6114 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 6115 6116 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 6117 mp->b_datap->db_type, T_CAPABILITY_ACK); 6118 if (mp == NULL) 6119 return; 6120 6121 tcap = (struct T_capability_ack *)mp->b_rptr; 6122 tcp_do_capability_ack(tcp, tcap, cap_bits1); 6123 6124 putnext(tcp->tcp_connp->conn_rq, mp); 6125 } 6126 6127 /* 6128 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 6129 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 6130 * The current state of the stream is copied from tcp_state. 6131 */ 6132 static void 6133 tcp_info_req(tcp_t *tcp, mblk_t *mp) 6134 { 6135 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 6136 T_INFO_ACK); 6137 if (!mp) { 6138 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6139 return; 6140 } 6141 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 6142 putnext(tcp->tcp_connp->conn_rq, mp); 6143 } 6144 6145 /* Respond to the TPI addr request */ 6146 static void 6147 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 6148 { 6149 struct sockaddr *sa; 6150 mblk_t *ackmp; 6151 struct T_addr_ack *taa; 6152 conn_t *connp = tcp->tcp_connp; 6153 uint_t addrlen; 6154 6155 /* Make it large enough for worst case */ 6156 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 6157 2 * sizeof (sin6_t), 1); 6158 if (ackmp == NULL) { 6159 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6160 return; 6161 } 6162 6163 taa = (struct T_addr_ack *)ackmp->b_rptr; 6164 6165 bzero(taa, sizeof (struct T_addr_ack)); 6166 ackmp->b_wptr = (uchar_t *)&taa[1]; 6167 6168 taa->PRIM_type = T_ADDR_ACK; 6169 ackmp->b_datap->db_type = M_PCPROTO; 6170 6171 if (connp->conn_family == AF_INET) 6172 addrlen = sizeof (sin_t); 6173 else 6174 addrlen = sizeof (sin6_t); 6175 6176 /* 6177 * Note: Following code assumes 32 bit alignment of basic 6178 * data structures like sin_t and struct T_addr_ack. 6179 */ 6180 if (tcp->tcp_state >= TCPS_BOUND) { 6181 /* 6182 * Fill in local address first 6183 */ 6184 taa->LOCADDR_offset = sizeof (*taa); 6185 taa->LOCADDR_length = addrlen; 6186 sa = (struct sockaddr *)&taa[1]; 6187 (void) conn_getsockname(connp, sa, &addrlen); 6188 ackmp->b_wptr += addrlen; 6189 } 6190 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 6191 /* 6192 * Fill in Remote address 6193 */ 6194 taa->REMADDR_length = addrlen; 6195 /* assumed 32-bit alignment */ 6196 taa->REMADDR_offset = taa->LOCADDR_offset + taa->LOCADDR_length; 6197 sa = (struct sockaddr *)(ackmp->b_rptr + taa->REMADDR_offset); 6198 (void) conn_getpeername(connp, sa, &addrlen); 6199 ackmp->b_wptr += addrlen; 6200 } 6201 ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim); 6202 putnext(tcp->tcp_connp->conn_rq, ackmp); 6203 } 6204 6205 /* 6206 * Handle reinitialization of a tcp structure. 6207 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 6208 */ 6209 static void 6210 tcp_reinit(tcp_t *tcp) 6211 { 6212 mblk_t *mp; 6213 tcp_stack_t *tcps = tcp->tcp_tcps; 6214 conn_t *connp = tcp->tcp_connp; 6215 6216 TCP_STAT(tcps, tcp_reinit_calls); 6217 6218 /* tcp_reinit should never be called for detached tcp_t's */ 6219 ASSERT(tcp->tcp_listener == NULL); 6220 ASSERT((connp->conn_family == AF_INET && 6221 connp->conn_ipversion == IPV4_VERSION) || 6222 (connp->conn_family == AF_INET6 && 6223 (connp->conn_ipversion == IPV4_VERSION || 6224 connp->conn_ipversion == IPV6_VERSION))); 6225 6226 /* Cancel outstanding timers */ 6227 tcp_timers_stop(tcp); 6228 6229 /* 6230 * Reset everything in the state vector, after updating global 6231 * MIB data from instance counters. 6232 */ 6233 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 6234 tcp->tcp_ibsegs = 0; 6235 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 6236 tcp->tcp_obsegs = 0; 6237 6238 tcp_close_mpp(&tcp->tcp_xmit_head); 6239 if (tcp->tcp_snd_zcopy_aware) 6240 tcp_zcopy_notify(tcp); 6241 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 6242 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 6243 mutex_enter(&tcp->tcp_non_sq_lock); 6244 if (tcp->tcp_flow_stopped && 6245 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 6246 tcp_clrqfull(tcp); 6247 } 6248 mutex_exit(&tcp->tcp_non_sq_lock); 6249 tcp_close_mpp(&tcp->tcp_reass_head); 6250 tcp->tcp_reass_tail = NULL; 6251 if (tcp->tcp_rcv_list != NULL) { 6252 /* Free b_next chain */ 6253 tcp_close_mpp(&tcp->tcp_rcv_list); 6254 tcp->tcp_rcv_last_head = NULL; 6255 tcp->tcp_rcv_last_tail = NULL; 6256 tcp->tcp_rcv_cnt = 0; 6257 } 6258 tcp->tcp_rcv_last_tail = NULL; 6259 6260 if ((mp = tcp->tcp_urp_mp) != NULL) { 6261 freemsg(mp); 6262 tcp->tcp_urp_mp = NULL; 6263 } 6264 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 6265 freemsg(mp); 6266 tcp->tcp_urp_mark_mp = NULL; 6267 } 6268 if (tcp->tcp_fused_sigurg_mp != NULL) { 6269 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 6270 freeb(tcp->tcp_fused_sigurg_mp); 6271 tcp->tcp_fused_sigurg_mp = NULL; 6272 } 6273 if (tcp->tcp_ordrel_mp != NULL) { 6274 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 6275 freeb(tcp->tcp_ordrel_mp); 6276 tcp->tcp_ordrel_mp = NULL; 6277 } 6278 6279 /* 6280 * Following is a union with two members which are 6281 * identical types and size so the following cleanup 6282 * is enough. 6283 */ 6284 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 6285 6286 CL_INET_DISCONNECT(connp); 6287 6288 /* 6289 * The connection can't be on the tcp_time_wait_head list 6290 * since it is not detached. 6291 */ 6292 ASSERT(tcp->tcp_time_wait_next == NULL); 6293 ASSERT(tcp->tcp_time_wait_prev == NULL); 6294 ASSERT(tcp->tcp_time_wait_expire == 0); 6295 6296 if (tcp->tcp_kssl_pending) { 6297 tcp->tcp_kssl_pending = B_FALSE; 6298 6299 /* Don't reset if the initialized by bind. */ 6300 if (tcp->tcp_kssl_ent != NULL) { 6301 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 6302 KSSL_NO_PROXY); 6303 } 6304 } 6305 if (tcp->tcp_kssl_ctx != NULL) { 6306 kssl_release_ctx(tcp->tcp_kssl_ctx); 6307 tcp->tcp_kssl_ctx = NULL; 6308 } 6309 6310 /* 6311 * Reset/preserve other values 6312 */ 6313 tcp_reinit_values(tcp); 6314 ipcl_hash_remove(connp); 6315 ixa_cleanup(connp->conn_ixa); 6316 tcp_ipsec_cleanup(tcp); 6317 6318 connp->conn_laddr_v6 = connp->conn_bound_addr_v6; 6319 connp->conn_saddr_v6 = connp->conn_bound_addr_v6; 6320 6321 if (tcp->tcp_conn_req_max != 0) { 6322 /* 6323 * This is the case when a TLI program uses the same 6324 * transport end point to accept a connection. This 6325 * makes the TCP both a listener and acceptor. When 6326 * this connection is closed, we need to set the state 6327 * back to TCPS_LISTEN. Make sure that the eager list 6328 * is reinitialized. 6329 * 6330 * Note that this stream is still bound to the four 6331 * tuples of the previous connection in IP. If a new 6332 * SYN with different foreign address comes in, IP will 6333 * not find it and will send it to the global queue. In 6334 * the global queue, TCP will do a tcp_lookup_listener() 6335 * to find this stream. This works because this stream 6336 * is only removed from connected hash. 6337 * 6338 */ 6339 tcp->tcp_state = TCPS_LISTEN; 6340 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 6341 tcp->tcp_eager_next_drop_q0 = tcp; 6342 tcp->tcp_eager_prev_drop_q0 = tcp; 6343 /* 6344 * Initially set conn_recv to tcp_input_listener_unbound to try 6345 * to pick a good squeue for the listener when the first SYN 6346 * arrives. tcp_input_listener_unbound sets it to 6347 * tcp_input_listener on that first SYN. 6348 */ 6349 connp->conn_recv = tcp_input_listener_unbound; 6350 6351 connp->conn_proto = IPPROTO_TCP; 6352 connp->conn_faddr_v6 = ipv6_all_zeros; 6353 connp->conn_fport = 0; 6354 6355 (void) ipcl_bind_insert(connp); 6356 } else { 6357 tcp->tcp_state = TCPS_BOUND; 6358 } 6359 6360 /* 6361 * Initialize to default values 6362 */ 6363 tcp_init_values(tcp); 6364 6365 ASSERT(tcp->tcp_ptpbhn != NULL); 6366 tcp->tcp_rwnd = connp->conn_rcvbuf; 6367 tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ? 6368 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 6369 } 6370 6371 /* 6372 * Force values to zero that need be zero. 6373 * Do not touch values asociated with the BOUND or LISTEN state 6374 * since the connection will end up in that state after the reinit. 6375 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 6376 * structure! 6377 */ 6378 static void 6379 tcp_reinit_values(tcp) 6380 tcp_t *tcp; 6381 { 6382 tcp_stack_t *tcps = tcp->tcp_tcps; 6383 conn_t *connp = tcp->tcp_connp; 6384 6385 #ifndef lint 6386 #define DONTCARE(x) 6387 #define PRESERVE(x) 6388 #else 6389 #define DONTCARE(x) ((x) = (x)) 6390 #define PRESERVE(x) ((x) = (x)) 6391 #endif /* lint */ 6392 6393 PRESERVE(tcp->tcp_bind_hash_port); 6394 PRESERVE(tcp->tcp_bind_hash); 6395 PRESERVE(tcp->tcp_ptpbhn); 6396 PRESERVE(tcp->tcp_acceptor_hash); 6397 PRESERVE(tcp->tcp_ptpahn); 6398 6399 /* Should be ASSERT NULL on these with new code! */ 6400 ASSERT(tcp->tcp_time_wait_next == NULL); 6401 ASSERT(tcp->tcp_time_wait_prev == NULL); 6402 ASSERT(tcp->tcp_time_wait_expire == 0); 6403 PRESERVE(tcp->tcp_state); 6404 PRESERVE(connp->conn_rq); 6405 PRESERVE(connp->conn_wq); 6406 6407 ASSERT(tcp->tcp_xmit_head == NULL); 6408 ASSERT(tcp->tcp_xmit_last == NULL); 6409 ASSERT(tcp->tcp_unsent == 0); 6410 ASSERT(tcp->tcp_xmit_tail == NULL); 6411 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 6412 6413 tcp->tcp_snxt = 0; /* Displayed in mib */ 6414 tcp->tcp_suna = 0; /* Displayed in mib */ 6415 tcp->tcp_swnd = 0; 6416 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_process_options */ 6417 6418 ASSERT(tcp->tcp_ibsegs == 0); 6419 ASSERT(tcp->tcp_obsegs == 0); 6420 6421 if (connp->conn_ht_iphc != NULL) { 6422 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 6423 connp->conn_ht_iphc = NULL; 6424 connp->conn_ht_iphc_allocated = 0; 6425 connp->conn_ht_iphc_len = 0; 6426 connp->conn_ht_ulp = NULL; 6427 connp->conn_ht_ulp_len = 0; 6428 tcp->tcp_ipha = NULL; 6429 tcp->tcp_ip6h = NULL; 6430 tcp->tcp_tcpha = NULL; 6431 } 6432 6433 /* We clear any IP_OPTIONS and extension headers */ 6434 ip_pkt_free(&connp->conn_xmit_ipp); 6435 6436 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 6437 DONTCARE(tcp->tcp_ipha); 6438 DONTCARE(tcp->tcp_ip6h); 6439 DONTCARE(tcp->tcp_tcpha); 6440 tcp->tcp_valid_bits = 0; 6441 6442 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 6443 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 6444 tcp->tcp_last_rcv_lbolt = 0; 6445 6446 tcp->tcp_init_cwnd = 0; 6447 6448 tcp->tcp_urp_last_valid = 0; 6449 tcp->tcp_hard_binding = 0; 6450 6451 tcp->tcp_fin_acked = 0; 6452 tcp->tcp_fin_rcvd = 0; 6453 tcp->tcp_fin_sent = 0; 6454 tcp->tcp_ordrel_done = 0; 6455 6456 tcp->tcp_detached = 0; 6457 6458 tcp->tcp_snd_ws_ok = B_FALSE; 6459 tcp->tcp_snd_ts_ok = B_FALSE; 6460 tcp->tcp_zero_win_probe = 0; 6461 6462 tcp->tcp_loopback = 0; 6463 tcp->tcp_localnet = 0; 6464 tcp->tcp_syn_defense = 0; 6465 tcp->tcp_set_timer = 0; 6466 6467 tcp->tcp_active_open = 0; 6468 tcp->tcp_rexmit = B_FALSE; 6469 tcp->tcp_xmit_zc_clean = B_FALSE; 6470 6471 tcp->tcp_snd_sack_ok = B_FALSE; 6472 tcp->tcp_hwcksum = B_FALSE; 6473 6474 DONTCARE(tcp->tcp_maxpsz_multiplier); /* Init in tcp_init_values */ 6475 6476 tcp->tcp_conn_def_q0 = 0; 6477 tcp->tcp_ip_forward_progress = B_FALSE; 6478 tcp->tcp_ecn_ok = B_FALSE; 6479 6480 tcp->tcp_cwr = B_FALSE; 6481 tcp->tcp_ecn_echo_on = B_FALSE; 6482 tcp->tcp_is_wnd_shrnk = B_FALSE; 6483 6484 if (tcp->tcp_sack_info != NULL) { 6485 if (tcp->tcp_notsack_list != NULL) { 6486 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 6487 tcp); 6488 } 6489 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 6490 tcp->tcp_sack_info = NULL; 6491 } 6492 6493 tcp->tcp_rcv_ws = 0; 6494 tcp->tcp_snd_ws = 0; 6495 tcp->tcp_ts_recent = 0; 6496 tcp->tcp_rnxt = 0; /* Displayed in mib */ 6497 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 6498 tcp->tcp_initial_pmtu = 0; 6499 6500 ASSERT(tcp->tcp_reass_head == NULL); 6501 ASSERT(tcp->tcp_reass_tail == NULL); 6502 6503 tcp->tcp_cwnd_cnt = 0; 6504 6505 ASSERT(tcp->tcp_rcv_list == NULL); 6506 ASSERT(tcp->tcp_rcv_last_head == NULL); 6507 ASSERT(tcp->tcp_rcv_last_tail == NULL); 6508 ASSERT(tcp->tcp_rcv_cnt == 0); 6509 6510 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */ 6511 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 6512 tcp->tcp_csuna = 0; 6513 6514 tcp->tcp_rto = 0; /* Displayed in MIB */ 6515 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 6516 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 6517 tcp->tcp_rtt_update = 0; 6518 6519 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 6520 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 6521 6522 tcp->tcp_rack = 0; /* Displayed in mib */ 6523 tcp->tcp_rack_cnt = 0; 6524 tcp->tcp_rack_cur_max = 0; 6525 tcp->tcp_rack_abs_max = 0; 6526 6527 tcp->tcp_max_swnd = 0; 6528 6529 ASSERT(tcp->tcp_listener == NULL); 6530 6531 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 6532 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 6533 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 6534 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 6535 6536 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 6537 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 6538 PRESERVE(tcp->tcp_conn_req_max); 6539 PRESERVE(tcp->tcp_conn_req_seqnum); 6540 6541 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 6542 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 6543 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 6544 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 6545 6546 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 6547 ASSERT(tcp->tcp_urp_mp == NULL); 6548 ASSERT(tcp->tcp_urp_mark_mp == NULL); 6549 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 6550 6551 ASSERT(tcp->tcp_eager_next_q == NULL); 6552 ASSERT(tcp->tcp_eager_last_q == NULL); 6553 ASSERT((tcp->tcp_eager_next_q0 == NULL && 6554 tcp->tcp_eager_prev_q0 == NULL) || 6555 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 6556 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 6557 6558 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 6559 tcp->tcp_eager_prev_drop_q0 == NULL) || 6560 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 6561 6562 tcp->tcp_client_errno = 0; 6563 6564 DONTCARE(connp->conn_sum); /* Init in tcp_init_values */ 6565 6566 connp->conn_faddr_v6 = ipv6_all_zeros; /* Displayed in MIB */ 6567 6568 PRESERVE(connp->conn_bound_addr_v6); 6569 tcp->tcp_last_sent_len = 0; 6570 tcp->tcp_dupack_cnt = 0; 6571 6572 connp->conn_fport = 0; /* Displayed in MIB */ 6573 PRESERVE(connp->conn_lport); 6574 6575 PRESERVE(tcp->tcp_acceptor_lockp); 6576 6577 ASSERT(tcp->tcp_ordrel_mp == NULL); 6578 PRESERVE(tcp->tcp_acceptor_id); 6579 DONTCARE(tcp->tcp_ipsec_overhead); 6580 6581 PRESERVE(connp->conn_family); 6582 /* Remove any remnants of mapped address binding */ 6583 if (connp->conn_family == AF_INET6) { 6584 connp->conn_ipversion = IPV6_VERSION; 6585 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 6586 } else { 6587 connp->conn_ipversion = IPV4_VERSION; 6588 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 6589 } 6590 6591 connp->conn_bound_if = 0; 6592 connp->conn_recv_ancillary.crb_all = 0; 6593 tcp->tcp_recvifindex = 0; 6594 tcp->tcp_recvhops = 0; 6595 tcp->tcp_closed = 0; 6596 tcp->tcp_cleandeathtag = 0; 6597 if (tcp->tcp_hopopts != NULL) { 6598 mi_free(tcp->tcp_hopopts); 6599 tcp->tcp_hopopts = NULL; 6600 tcp->tcp_hopoptslen = 0; 6601 } 6602 ASSERT(tcp->tcp_hopoptslen == 0); 6603 if (tcp->tcp_dstopts != NULL) { 6604 mi_free(tcp->tcp_dstopts); 6605 tcp->tcp_dstopts = NULL; 6606 tcp->tcp_dstoptslen = 0; 6607 } 6608 ASSERT(tcp->tcp_dstoptslen == 0); 6609 if (tcp->tcp_rthdrdstopts != NULL) { 6610 mi_free(tcp->tcp_rthdrdstopts); 6611 tcp->tcp_rthdrdstopts = NULL; 6612 tcp->tcp_rthdrdstoptslen = 0; 6613 } 6614 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 6615 if (tcp->tcp_rthdr != NULL) { 6616 mi_free(tcp->tcp_rthdr); 6617 tcp->tcp_rthdr = NULL; 6618 tcp->tcp_rthdrlen = 0; 6619 } 6620 ASSERT(tcp->tcp_rthdrlen == 0); 6621 6622 /* Reset fusion-related fields */ 6623 tcp->tcp_fused = B_FALSE; 6624 tcp->tcp_unfusable = B_FALSE; 6625 tcp->tcp_fused_sigurg = B_FALSE; 6626 tcp->tcp_loopback_peer = NULL; 6627 6628 tcp->tcp_lso = B_FALSE; 6629 6630 tcp->tcp_in_ack_unsent = 0; 6631 tcp->tcp_cork = B_FALSE; 6632 tcp->tcp_tconnind_started = B_FALSE; 6633 6634 PRESERVE(tcp->tcp_squeue_bytes); 6635 6636 ASSERT(tcp->tcp_kssl_ctx == NULL); 6637 ASSERT(!tcp->tcp_kssl_pending); 6638 PRESERVE(tcp->tcp_kssl_ent); 6639 6640 tcp->tcp_closemp_used = B_FALSE; 6641 6642 PRESERVE(tcp->tcp_rsrv_mp); 6643 PRESERVE(tcp->tcp_rsrv_mp_lock); 6644 6645 #ifdef DEBUG 6646 DONTCARE(tcp->tcmp_stk[0]); 6647 #endif 6648 6649 PRESERVE(tcp->tcp_connid); 6650 6651 6652 #undef DONTCARE 6653 #undef PRESERVE 6654 } 6655 6656 static void 6657 tcp_init_values(tcp_t *tcp) 6658 { 6659 tcp_stack_t *tcps = tcp->tcp_tcps; 6660 conn_t *connp = tcp->tcp_connp; 6661 6662 ASSERT((connp->conn_family == AF_INET && 6663 connp->conn_ipversion == IPV4_VERSION) || 6664 (connp->conn_family == AF_INET6 && 6665 (connp->conn_ipversion == IPV4_VERSION || 6666 connp->conn_ipversion == IPV6_VERSION))); 6667 6668 /* 6669 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 6670 * will be close to tcp_rexmit_interval_initial. By doing this, we 6671 * allow the algorithm to adjust slowly to large fluctuations of RTT 6672 * during first few transmissions of a connection as seen in slow 6673 * links. 6674 */ 6675 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 6676 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 6677 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 6678 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 6679 tcps->tcps_conn_grace_period; 6680 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 6681 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 6682 tcp->tcp_timer_backoff = 0; 6683 tcp->tcp_ms_we_have_waited = 0; 6684 tcp->tcp_last_recv_time = ddi_get_lbolt(); 6685 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 6686 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 6687 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 6688 6689 tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier; 6690 6691 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 6692 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 6693 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 6694 /* 6695 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 6696 * passive open. 6697 */ 6698 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 6699 6700 tcp->tcp_naglim = tcps->tcps_naglim_def; 6701 6702 /* NOTE: ISS is now set in tcp_set_destination(). */ 6703 6704 /* Reset fusion-related fields */ 6705 tcp->tcp_fused = B_FALSE; 6706 tcp->tcp_unfusable = B_FALSE; 6707 tcp->tcp_fused_sigurg = B_FALSE; 6708 tcp->tcp_loopback_peer = NULL; 6709 6710 /* We rebuild the header template on the next connect/conn_request */ 6711 6712 connp->conn_mlp_type = mlptSingle; 6713 6714 /* 6715 * Init the window scale to the max so tcp_rwnd_set() won't pare 6716 * down tcp_rwnd. tcp_set_destination() will set the right value later. 6717 */ 6718 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 6719 tcp->tcp_rwnd = connp->conn_rcvbuf; 6720 6721 tcp->tcp_cork = B_FALSE; 6722 /* 6723 * Init the tcp_debug option if it wasn't already set. This value 6724 * determines whether TCP 6725 * calls strlog() to print out debug messages. Doing this 6726 * initialization here means that this value is not inherited thru 6727 * tcp_reinit(). 6728 */ 6729 if (!connp->conn_debug) 6730 connp->conn_debug = tcps->tcps_dbg; 6731 6732 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 6733 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 6734 } 6735 6736 /* At minimum we need 8 bytes in the TCP header for the lookup */ 6737 #define ICMP_MIN_TCP_HDR 8 6738 6739 /* 6740 * tcp_icmp_input is called as conn_recvicmp to process ICMP error messages 6741 * passed up by IP. The message is always received on the correct tcp_t. 6742 * Assumes that IP has pulled up everything up to and including the ICMP header. 6743 */ 6744 /* ARGSUSED2 */ 6745 static void 6746 tcp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 6747 { 6748 conn_t *connp = (conn_t *)arg1; 6749 icmph_t *icmph; 6750 ipha_t *ipha; 6751 int iph_hdr_length; 6752 tcpha_t *tcpha; 6753 uint32_t seg_seq; 6754 tcp_t *tcp = connp->conn_tcp; 6755 6756 /* Assume IP provides aligned packets */ 6757 ASSERT(OK_32PTR(mp->b_rptr)); 6758 ASSERT((MBLKL(mp) >= sizeof (ipha_t))); 6759 6760 /* 6761 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 6762 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 6763 */ 6764 if (!(ira->ira_flags & IRAF_IS_IPV4)) { 6765 tcp_icmp_error_ipv6(tcp, mp, ira); 6766 return; 6767 } 6768 6769 /* Skip past the outer IP and ICMP headers */ 6770 iph_hdr_length = ira->ira_ip_hdr_length; 6771 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 6772 /* 6773 * If we don't have the correct outer IP header length 6774 * or if we don't have a complete inner IP header 6775 * drop it. 6776 */ 6777 if (iph_hdr_length < sizeof (ipha_t) || 6778 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 6779 noticmpv4: 6780 freemsg(mp); 6781 return; 6782 } 6783 ipha = (ipha_t *)&icmph[1]; 6784 6785 /* Skip past the inner IP and find the ULP header */ 6786 iph_hdr_length = IPH_HDR_LENGTH(ipha); 6787 tcpha = (tcpha_t *)((char *)ipha + iph_hdr_length); 6788 /* 6789 * If we don't have the correct inner IP header length or if the ULP 6790 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 6791 * bytes of TCP header, drop it. 6792 */ 6793 if (iph_hdr_length < sizeof (ipha_t) || 6794 ipha->ipha_protocol != IPPROTO_TCP || 6795 (uchar_t *)tcpha + ICMP_MIN_TCP_HDR > mp->b_wptr) { 6796 goto noticmpv4; 6797 } 6798 6799 seg_seq = ntohl(tcpha->tha_seq); 6800 switch (icmph->icmph_type) { 6801 case ICMP_DEST_UNREACHABLE: 6802 switch (icmph->icmph_code) { 6803 case ICMP_FRAGMENTATION_NEEDED: 6804 /* 6805 * Update Path MTU, then try to send something out. 6806 */ 6807 tcp_update_pmtu(tcp, B_TRUE); 6808 tcp_rexmit_after_error(tcp); 6809 break; 6810 case ICMP_PORT_UNREACHABLE: 6811 case ICMP_PROTOCOL_UNREACHABLE: 6812 switch (tcp->tcp_state) { 6813 case TCPS_SYN_SENT: 6814 case TCPS_SYN_RCVD: 6815 /* 6816 * ICMP can snipe away incipient 6817 * TCP connections as long as 6818 * seq number is same as initial 6819 * send seq number. 6820 */ 6821 if (seg_seq == tcp->tcp_iss) { 6822 (void) tcp_clean_death(tcp, 6823 ECONNREFUSED, 6); 6824 } 6825 break; 6826 } 6827 break; 6828 case ICMP_HOST_UNREACHABLE: 6829 case ICMP_NET_UNREACHABLE: 6830 /* Record the error in case we finally time out. */ 6831 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 6832 tcp->tcp_client_errno = EHOSTUNREACH; 6833 else 6834 tcp->tcp_client_errno = ENETUNREACH; 6835 if (tcp->tcp_state == TCPS_SYN_RCVD) { 6836 if (tcp->tcp_listener != NULL && 6837 tcp->tcp_listener->tcp_syn_defense) { 6838 /* 6839 * Ditch the half-open connection if we 6840 * suspect a SYN attack is under way. 6841 */ 6842 (void) tcp_clean_death(tcp, 6843 tcp->tcp_client_errno, 7); 6844 } 6845 } 6846 break; 6847 default: 6848 break; 6849 } 6850 break; 6851 case ICMP_SOURCE_QUENCH: { 6852 /* 6853 * use a global boolean to control 6854 * whether TCP should respond to ICMP_SOURCE_QUENCH. 6855 * The default is false. 6856 */ 6857 if (tcp_icmp_source_quench) { 6858 /* 6859 * Reduce the sending rate as if we got a 6860 * retransmit timeout 6861 */ 6862 uint32_t npkt; 6863 6864 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 6865 tcp->tcp_mss; 6866 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 6867 tcp->tcp_cwnd = tcp->tcp_mss; 6868 tcp->tcp_cwnd_cnt = 0; 6869 } 6870 break; 6871 } 6872 } 6873 freemsg(mp); 6874 } 6875 6876 /* 6877 * CALLED OUTSIDE OF SQUEUE! It can not follow any pointers that tcp might 6878 * change. But it can refer to fields like tcp_suna and tcp_snxt. 6879 * 6880 * Function tcp_verifyicmp is called as conn_verifyicmp to verify the ICMP 6881 * error messages received by IP. The message is always received on the correct 6882 * tcp_t. 6883 */ 6884 /* ARGSUSED */ 6885 static boolean_t 6886 tcp_verifyicmp(conn_t *connp, void *arg2, icmph_t *icmph, icmp6_t *icmp6, 6887 ip_recv_attr_t *ira) 6888 { 6889 tcpha_t *tcpha = (tcpha_t *)arg2; 6890 uint32_t seq = ntohl(tcpha->tha_seq); 6891 tcp_t *tcp = connp->conn_tcp; 6892 6893 /* 6894 * TCP sequence number contained in payload of the ICMP error message 6895 * should be within the range SND.UNA <= SEG.SEQ < SND.NXT. Otherwise, 6896 * the message is either a stale ICMP error, or an attack from the 6897 * network. Fail the verification. 6898 */ 6899 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 6900 return (B_FALSE); 6901 6902 /* For "too big" we also check the ignore flag */ 6903 if (ira->ira_flags & IRAF_IS_IPV4) { 6904 ASSERT(icmph != NULL); 6905 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && 6906 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 6907 tcp->tcp_tcps->tcps_ignore_path_mtu) 6908 return (B_FALSE); 6909 } else { 6910 ASSERT(icmp6 != NULL); 6911 if (icmp6->icmp6_type == ICMP6_PACKET_TOO_BIG && 6912 tcp->tcp_tcps->tcps_ignore_path_mtu) 6913 return (B_FALSE); 6914 } 6915 return (B_TRUE); 6916 } 6917 6918 /* 6919 * Update the TCP connection according to change of PMTU. 6920 * 6921 * Path MTU might have changed by either increase or decrease, so need to 6922 * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny 6923 * or negative MSS, since tcp_mss_set() will do it. 6924 */ 6925 static void 6926 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only) 6927 { 6928 uint32_t pmtu; 6929 int32_t mss; 6930 conn_t *connp = tcp->tcp_connp; 6931 ip_xmit_attr_t *ixa = connp->conn_ixa; 6932 iaflags_t ixaflags; 6933 6934 if (tcp->tcp_tcps->tcps_ignore_path_mtu) 6935 return; 6936 6937 if (tcp->tcp_state < TCPS_ESTABLISHED) 6938 return; 6939 6940 /* 6941 * Always call ip_get_pmtu() to make sure that IP has updated 6942 * ixa_flags properly. 6943 */ 6944 pmtu = ip_get_pmtu(ixa); 6945 ixaflags = ixa->ixa_flags; 6946 6947 /* 6948 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and 6949 * IPsec overhead if applied. Make sure to use the most recent 6950 * IPsec information. 6951 */ 6952 mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp); 6953 6954 /* 6955 * Nothing to change, so just return. 6956 */ 6957 if (mss == tcp->tcp_mss) 6958 return; 6959 6960 /* 6961 * Currently, for ICMP errors, only PMTU decrease is handled. 6962 */ 6963 if (mss > tcp->tcp_mss && decrease_only) 6964 return; 6965 6966 DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss); 6967 6968 /* 6969 * Update ixa_fragsize and ixa_pmtu. 6970 */ 6971 ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu; 6972 6973 /* 6974 * Adjust MSS and all relevant variables. 6975 */ 6976 tcp_mss_set(tcp, mss); 6977 6978 /* 6979 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu 6980 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP 6981 * has a (potentially different) min size we do the same. Make sure to 6982 * clear IXAF_DONTFRAG, which is used by IP to decide whether to 6983 * fragment the packet. 6984 * 6985 * LSO over IPv6 can not be fragmented. So need to disable LSO 6986 * when IPv6 fragmentation is needed. 6987 */ 6988 if (mss < tcp->tcp_tcps->tcps_mss_min) 6989 ixaflags |= IXAF_PMTU_TOO_SMALL; 6990 6991 if (ixaflags & IXAF_PMTU_TOO_SMALL) 6992 ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF); 6993 6994 if ((connp->conn_ipversion == IPV4_VERSION) && 6995 !(ixaflags & IXAF_PMTU_IPV4_DF)) { 6996 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 6997 } 6998 ixa->ixa_flags = ixaflags; 6999 } 7000 7001 /* 7002 * Do slow start retransmission after ICMP errors of PMTU changes. 7003 */ 7004 static void 7005 tcp_rexmit_after_error(tcp_t *tcp) 7006 { 7007 /* 7008 * All sent data has been acknowledged or no data left to send, just 7009 * to return. 7010 */ 7011 if (!SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) || 7012 (tcp->tcp_xmit_head == NULL)) 7013 return; 7014 7015 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && (tcp->tcp_unsent == 0)) 7016 tcp->tcp_rexmit_max = tcp->tcp_fss; 7017 else 7018 tcp->tcp_rexmit_max = tcp->tcp_snxt; 7019 7020 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 7021 tcp->tcp_rexmit = B_TRUE; 7022 tcp->tcp_dupack_cnt = 0; 7023 tcp->tcp_snd_burst = TCP_CWND_SS; 7024 tcp_ss_rexmit(tcp); 7025 } 7026 7027 /* 7028 * tcp_icmp_error_ipv6 is called from tcp_icmp_input to process ICMPv6 7029 * error messages passed up by IP. 7030 * Assumes that IP has pulled up all the extension headers as well 7031 * as the ICMPv6 header. 7032 */ 7033 static void 7034 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, ip_recv_attr_t *ira) 7035 { 7036 icmp6_t *icmp6; 7037 ip6_t *ip6h; 7038 uint16_t iph_hdr_length = ira->ira_ip_hdr_length; 7039 tcpha_t *tcpha; 7040 uint8_t *nexthdrp; 7041 uint32_t seg_seq; 7042 7043 /* 7044 * Verify that we have a complete IP header. 7045 */ 7046 ASSERT((MBLKL(mp) >= sizeof (ip6_t))); 7047 7048 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 7049 ip6h = (ip6_t *)&icmp6[1]; 7050 /* 7051 * Verify if we have a complete ICMP and inner IP header. 7052 */ 7053 if ((uchar_t *)&ip6h[1] > mp->b_wptr) { 7054 noticmpv6: 7055 freemsg(mp); 7056 return; 7057 } 7058 7059 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 7060 goto noticmpv6; 7061 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 7062 /* 7063 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 7064 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 7065 * packet. 7066 */ 7067 if ((*nexthdrp != IPPROTO_TCP) || 7068 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 7069 goto noticmpv6; 7070 } 7071 7072 seg_seq = ntohl(tcpha->tha_seq); 7073 switch (icmp6->icmp6_type) { 7074 case ICMP6_PACKET_TOO_BIG: 7075 /* 7076 * Update Path MTU, then try to send something out. 7077 */ 7078 tcp_update_pmtu(tcp, B_TRUE); 7079 tcp_rexmit_after_error(tcp); 7080 break; 7081 case ICMP6_DST_UNREACH: 7082 switch (icmp6->icmp6_code) { 7083 case ICMP6_DST_UNREACH_NOPORT: 7084 if (((tcp->tcp_state == TCPS_SYN_SENT) || 7085 (tcp->tcp_state == TCPS_SYN_RCVD)) && 7086 (seg_seq == tcp->tcp_iss)) { 7087 (void) tcp_clean_death(tcp, 7088 ECONNREFUSED, 8); 7089 } 7090 break; 7091 case ICMP6_DST_UNREACH_ADMIN: 7092 case ICMP6_DST_UNREACH_NOROUTE: 7093 case ICMP6_DST_UNREACH_BEYONDSCOPE: 7094 case ICMP6_DST_UNREACH_ADDR: 7095 /* Record the error in case we finally time out. */ 7096 tcp->tcp_client_errno = EHOSTUNREACH; 7097 if (((tcp->tcp_state == TCPS_SYN_SENT) || 7098 (tcp->tcp_state == TCPS_SYN_RCVD)) && 7099 (seg_seq == tcp->tcp_iss)) { 7100 if (tcp->tcp_listener != NULL && 7101 tcp->tcp_listener->tcp_syn_defense) { 7102 /* 7103 * Ditch the half-open connection if we 7104 * suspect a SYN attack is under way. 7105 */ 7106 (void) tcp_clean_death(tcp, 7107 tcp->tcp_client_errno, 9); 7108 } 7109 } 7110 7111 7112 break; 7113 default: 7114 break; 7115 } 7116 break; 7117 case ICMP6_PARAM_PROB: 7118 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 7119 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 7120 (uchar_t *)ip6h + icmp6->icmp6_pptr == 7121 (uchar_t *)nexthdrp) { 7122 if (tcp->tcp_state == TCPS_SYN_SENT || 7123 tcp->tcp_state == TCPS_SYN_RCVD) { 7124 (void) tcp_clean_death(tcp, 7125 ECONNREFUSED, 10); 7126 } 7127 break; 7128 } 7129 break; 7130 7131 case ICMP6_TIME_EXCEEDED: 7132 default: 7133 break; 7134 } 7135 freemsg(mp); 7136 } 7137 7138 /* 7139 * Notify IP that we are having trouble with this connection. IP should 7140 * make note so it can potentially use a different IRE. 7141 */ 7142 static void 7143 tcp_ip_notify(tcp_t *tcp) 7144 { 7145 conn_t *connp = tcp->tcp_connp; 7146 ire_t *ire; 7147 7148 /* 7149 * Note: in the case of source routing we want to blow away the 7150 * route to the first source route hop. 7151 */ 7152 ire = connp->conn_ixa->ixa_ire; 7153 if (ire != NULL && !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 7154 if (ire->ire_ipversion == IPV4_VERSION) { 7155 /* 7156 * As per RFC 1122, we send an RTM_LOSING to inform 7157 * routing protocols. 7158 */ 7159 ip_rts_change(RTM_LOSING, ire->ire_addr, 7160 ire->ire_gateway_addr, ire->ire_mask, 7161 connp->conn_laddr_v4, 0, 0, 0, 7162 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), 7163 ire->ire_ipst); 7164 } 7165 (void) ire_no_good(ire); 7166 } 7167 } 7168 7169 #pragma inline(tcp_send_data) 7170 7171 /* 7172 * Timer callback routine for keepalive probe. We do a fake resend of 7173 * last ACKed byte. Then set a timer using RTO. When the timer expires, 7174 * check to see if we have heard anything from the other end for the last 7175 * RTO period. If we have, set the timer to expire for another 7176 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 7177 * RTO << 1 and check again when it expires. Keep exponentially increasing 7178 * the timeout if we have not heard from the other side. If for more than 7179 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 7180 * kill the connection unless the keepalive abort threshold is 0. In 7181 * that case, we will probe "forever." 7182 */ 7183 static void 7184 tcp_keepalive_killer(void *arg) 7185 { 7186 mblk_t *mp; 7187 conn_t *connp = (conn_t *)arg; 7188 tcp_t *tcp = connp->conn_tcp; 7189 int32_t firetime; 7190 int32_t idletime; 7191 int32_t ka_intrvl; 7192 tcp_stack_t *tcps = tcp->tcp_tcps; 7193 7194 tcp->tcp_ka_tid = 0; 7195 7196 if (tcp->tcp_fused) 7197 return; 7198 7199 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); 7200 ka_intrvl = tcp->tcp_ka_interval; 7201 7202 /* 7203 * Keepalive probe should only be sent if the application has not 7204 * done a close on the connection. 7205 */ 7206 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 7207 return; 7208 } 7209 /* Timer fired too early, restart it. */ 7210 if (tcp->tcp_state < TCPS_ESTABLISHED) { 7211 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 7212 MSEC_TO_TICK(ka_intrvl)); 7213 return; 7214 } 7215 7216 idletime = TICK_TO_MSEC(ddi_get_lbolt() - tcp->tcp_last_recv_time); 7217 /* 7218 * If we have not heard from the other side for a long 7219 * time, kill the connection unless the keepalive abort 7220 * threshold is 0. In that case, we will probe "forever." 7221 */ 7222 if (tcp->tcp_ka_abort_thres != 0 && 7223 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 7224 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); 7225 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 7226 tcp->tcp_client_errno : ETIMEDOUT, 11); 7227 return; 7228 } 7229 7230 if (tcp->tcp_snxt == tcp->tcp_suna && 7231 idletime >= ka_intrvl) { 7232 /* Fake resend of last ACKed byte. */ 7233 mblk_t *mp1 = allocb(1, BPRI_LO); 7234 7235 if (mp1 != NULL) { 7236 *mp1->b_wptr++ = '\0'; 7237 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 7238 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 7239 freeb(mp1); 7240 /* 7241 * if allocation failed, fall through to start the 7242 * timer back. 7243 */ 7244 if (mp != NULL) { 7245 tcp_send_data(tcp, mp); 7246 BUMP_MIB(&tcps->tcps_mib, 7247 tcpTimKeepaliveProbe); 7248 if (tcp->tcp_ka_last_intrvl != 0) { 7249 int max; 7250 /* 7251 * We should probe again at least 7252 * in ka_intrvl, but not more than 7253 * tcp_rexmit_interval_max. 7254 */ 7255 max = tcps->tcps_rexmit_interval_max; 7256 firetime = MIN(ka_intrvl - 1, 7257 tcp->tcp_ka_last_intrvl << 1); 7258 if (firetime > max) 7259 firetime = max; 7260 } else { 7261 firetime = tcp->tcp_rto; 7262 } 7263 tcp->tcp_ka_tid = TCP_TIMER(tcp, 7264 tcp_keepalive_killer, 7265 MSEC_TO_TICK(firetime)); 7266 tcp->tcp_ka_last_intrvl = firetime; 7267 return; 7268 } 7269 } 7270 } else { 7271 tcp->tcp_ka_last_intrvl = 0; 7272 } 7273 7274 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 7275 if ((firetime = ka_intrvl - idletime) < 0) { 7276 firetime = ka_intrvl; 7277 } 7278 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 7279 MSEC_TO_TICK(firetime)); 7280 } 7281 7282 int 7283 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 7284 { 7285 conn_t *connp = tcp->tcp_connp; 7286 queue_t *q = connp->conn_rq; 7287 int32_t mss = tcp->tcp_mss; 7288 int maxpsz; 7289 7290 if (TCP_IS_DETACHED(tcp)) 7291 return (mss); 7292 if (tcp->tcp_fused) { 7293 maxpsz = tcp_fuse_maxpsz(tcp); 7294 mss = INFPSZ; 7295 } else if (tcp->tcp_maxpsz_multiplier == 0) { 7296 /* 7297 * Set the sd_qn_maxpsz according to the socket send buffer 7298 * size, and sd_maxblk to INFPSZ (-1). This will essentially 7299 * instruct the stream head to copyin user data into contiguous 7300 * kernel-allocated buffers without breaking it up into smaller 7301 * chunks. We round up the buffer size to the nearest SMSS. 7302 */ 7303 maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss); 7304 if (tcp->tcp_kssl_ctx == NULL) 7305 mss = INFPSZ; 7306 else 7307 mss = SSL3_MAX_RECORD_LEN; 7308 } else { 7309 /* 7310 * Set sd_qn_maxpsz to approx half the (receivers) buffer 7311 * (and a multiple of the mss). This instructs the stream 7312 * head to break down larger than SMSS writes into SMSS- 7313 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 7314 */ 7315 maxpsz = tcp->tcp_maxpsz_multiplier * mss; 7316 if (maxpsz > connp->conn_sndbuf / 2) { 7317 maxpsz = connp->conn_sndbuf / 2; 7318 /* Round up to nearest mss */ 7319 maxpsz = MSS_ROUNDUP(maxpsz, mss); 7320 } 7321 } 7322 7323 (void) proto_set_maxpsz(q, connp, maxpsz); 7324 if (!(IPCL_IS_NONSTR(connp))) 7325 connp->conn_wq->q_maxpsz = maxpsz; 7326 if (set_maxblk) 7327 (void) proto_set_tx_maxblk(q, connp, mss); 7328 return (mss); 7329 } 7330 7331 /* 7332 * Extract option values from a tcp header. We put any found values into the 7333 * tcpopt struct and return a bitmask saying which options were found. 7334 */ 7335 static int 7336 tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt) 7337 { 7338 uchar_t *endp; 7339 int len; 7340 uint32_t mss; 7341 uchar_t *up = (uchar_t *)tcpha; 7342 int found = 0; 7343 int32_t sack_len; 7344 tcp_seq sack_begin, sack_end; 7345 tcp_t *tcp; 7346 7347 endp = up + TCP_HDR_LENGTH(tcpha); 7348 up += TCP_MIN_HEADER_LENGTH; 7349 while (up < endp) { 7350 len = endp - up; 7351 switch (*up) { 7352 case TCPOPT_EOL: 7353 break; 7354 7355 case TCPOPT_NOP: 7356 up++; 7357 continue; 7358 7359 case TCPOPT_MAXSEG: 7360 if (len < TCPOPT_MAXSEG_LEN || 7361 up[1] != TCPOPT_MAXSEG_LEN) 7362 break; 7363 7364 mss = BE16_TO_U16(up+2); 7365 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 7366 tcpopt->tcp_opt_mss = mss; 7367 found |= TCP_OPT_MSS_PRESENT; 7368 7369 up += TCPOPT_MAXSEG_LEN; 7370 continue; 7371 7372 case TCPOPT_WSCALE: 7373 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 7374 break; 7375 7376 if (up[2] > TCP_MAX_WINSHIFT) 7377 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 7378 else 7379 tcpopt->tcp_opt_wscale = up[2]; 7380 found |= TCP_OPT_WSCALE_PRESENT; 7381 7382 up += TCPOPT_WS_LEN; 7383 continue; 7384 7385 case TCPOPT_SACK_PERMITTED: 7386 if (len < TCPOPT_SACK_OK_LEN || 7387 up[1] != TCPOPT_SACK_OK_LEN) 7388 break; 7389 found |= TCP_OPT_SACK_OK_PRESENT; 7390 up += TCPOPT_SACK_OK_LEN; 7391 continue; 7392 7393 case TCPOPT_SACK: 7394 if (len <= 2 || up[1] <= 2 || len < up[1]) 7395 break; 7396 7397 /* If TCP is not interested in SACK blks... */ 7398 if ((tcp = tcpopt->tcp) == NULL) { 7399 up += up[1]; 7400 continue; 7401 } 7402 sack_len = up[1] - TCPOPT_HEADER_LEN; 7403 up += TCPOPT_HEADER_LEN; 7404 7405 /* 7406 * If the list is empty, allocate one and assume 7407 * nothing is sack'ed. 7408 */ 7409 ASSERT(tcp->tcp_sack_info != NULL); 7410 if (tcp->tcp_notsack_list == NULL) { 7411 tcp_notsack_update(&(tcp->tcp_notsack_list), 7412 tcp->tcp_suna, tcp->tcp_snxt, 7413 &(tcp->tcp_num_notsack_blk), 7414 &(tcp->tcp_cnt_notsack_list)); 7415 7416 /* 7417 * Make sure tcp_notsack_list is not NULL. 7418 * This happens when kmem_alloc(KM_NOSLEEP) 7419 * returns NULL. 7420 */ 7421 if (tcp->tcp_notsack_list == NULL) { 7422 up += sack_len; 7423 continue; 7424 } 7425 tcp->tcp_fack = tcp->tcp_suna; 7426 } 7427 7428 while (sack_len > 0) { 7429 if (up + 8 > endp) { 7430 up = endp; 7431 break; 7432 } 7433 sack_begin = BE32_TO_U32(up); 7434 up += 4; 7435 sack_end = BE32_TO_U32(up); 7436 up += 4; 7437 sack_len -= 8; 7438 /* 7439 * Bounds checking. Make sure the SACK 7440 * info is within tcp_suna and tcp_snxt. 7441 * If this SACK blk is out of bound, ignore 7442 * it but continue to parse the following 7443 * blks. 7444 */ 7445 if (SEQ_LEQ(sack_end, sack_begin) || 7446 SEQ_LT(sack_begin, tcp->tcp_suna) || 7447 SEQ_GT(sack_end, tcp->tcp_snxt)) { 7448 continue; 7449 } 7450 tcp_notsack_insert(&(tcp->tcp_notsack_list), 7451 sack_begin, sack_end, 7452 &(tcp->tcp_num_notsack_blk), 7453 &(tcp->tcp_cnt_notsack_list)); 7454 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 7455 tcp->tcp_fack = sack_end; 7456 } 7457 } 7458 found |= TCP_OPT_SACK_PRESENT; 7459 continue; 7460 7461 case TCPOPT_TSTAMP: 7462 if (len < TCPOPT_TSTAMP_LEN || 7463 up[1] != TCPOPT_TSTAMP_LEN) 7464 break; 7465 7466 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 7467 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 7468 7469 found |= TCP_OPT_TSTAMP_PRESENT; 7470 7471 up += TCPOPT_TSTAMP_LEN; 7472 continue; 7473 7474 default: 7475 if (len <= 1 || len < (int)up[1] || up[1] == 0) 7476 break; 7477 up += up[1]; 7478 continue; 7479 } 7480 break; 7481 } 7482 return (found); 7483 } 7484 7485 /* 7486 * Set the MSS associated with a particular tcp based on its current value, 7487 * and a new one passed in. Observe minimums and maximums, and reset other 7488 * state variables that we want to view as multiples of MSS. 7489 * 7490 * The value of MSS could be either increased or descreased. 7491 */ 7492 static void 7493 tcp_mss_set(tcp_t *tcp, uint32_t mss) 7494 { 7495 uint32_t mss_max; 7496 tcp_stack_t *tcps = tcp->tcp_tcps; 7497 conn_t *connp = tcp->tcp_connp; 7498 7499 if (connp->conn_ipversion == IPV4_VERSION) 7500 mss_max = tcps->tcps_mss_max_ipv4; 7501 else 7502 mss_max = tcps->tcps_mss_max_ipv6; 7503 7504 if (mss < tcps->tcps_mss_min) 7505 mss = tcps->tcps_mss_min; 7506 if (mss > mss_max) 7507 mss = mss_max; 7508 /* 7509 * Unless naglim has been set by our client to 7510 * a non-mss value, force naglim to track mss. 7511 * This can help to aggregate small writes. 7512 */ 7513 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 7514 tcp->tcp_naglim = mss; 7515 /* 7516 * TCP should be able to buffer at least 4 MSS data for obvious 7517 * performance reason. 7518 */ 7519 if ((mss << 2) > connp->conn_sndbuf) 7520 connp->conn_sndbuf = mss << 2; 7521 7522 /* 7523 * Set the send lowater to at least twice of MSS. 7524 */ 7525 if ((mss << 1) > connp->conn_sndlowat) 7526 connp->conn_sndlowat = mss << 1; 7527 7528 /* 7529 * Update tcp_cwnd according to the new value of MSS. Keep the 7530 * previous ratio to preserve the transmit rate. 7531 */ 7532 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 7533 tcp->tcp_cwnd_cnt = 0; 7534 7535 tcp->tcp_mss = mss; 7536 (void) tcp_maxpsz_set(tcp, B_TRUE); 7537 } 7538 7539 /* For /dev/tcp aka AF_INET open */ 7540 static int 7541 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 7542 { 7543 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 7544 } 7545 7546 /* For /dev/tcp6 aka AF_INET6 open */ 7547 static int 7548 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 7549 { 7550 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 7551 } 7552 7553 static conn_t * 7554 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket, 7555 int *errorp) 7556 { 7557 tcp_t *tcp = NULL; 7558 conn_t *connp; 7559 zoneid_t zoneid; 7560 tcp_stack_t *tcps; 7561 squeue_t *sqp; 7562 7563 ASSERT(errorp != NULL); 7564 /* 7565 * Find the proper zoneid and netstack. 7566 */ 7567 /* 7568 * Special case for install: miniroot needs to be able to 7569 * access files via NFS as though it were always in the 7570 * global zone. 7571 */ 7572 if (credp == kcred && nfs_global_client_only != 0) { 7573 zoneid = GLOBAL_ZONEID; 7574 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 7575 netstack_tcp; 7576 ASSERT(tcps != NULL); 7577 } else { 7578 netstack_t *ns; 7579 7580 ns = netstack_find_by_cred(credp); 7581 ASSERT(ns != NULL); 7582 tcps = ns->netstack_tcp; 7583 ASSERT(tcps != NULL); 7584 7585 /* 7586 * For exclusive stacks we set the zoneid to zero 7587 * to make TCP operate as if in the global zone. 7588 */ 7589 if (tcps->tcps_netstack->netstack_stackid != 7590 GLOBAL_NETSTACKID) 7591 zoneid = GLOBAL_ZONEID; 7592 else 7593 zoneid = crgetzoneid(credp); 7594 } 7595 7596 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 7597 connp = (conn_t *)tcp_get_conn(sqp, tcps); 7598 /* 7599 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 7600 * so we drop it by one. 7601 */ 7602 netstack_rele(tcps->tcps_netstack); 7603 if (connp == NULL) { 7604 *errorp = ENOSR; 7605 return (NULL); 7606 } 7607 ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto); 7608 7609 connp->conn_sqp = sqp; 7610 connp->conn_initial_sqp = connp->conn_sqp; 7611 connp->conn_ixa->ixa_sqp = connp->conn_sqp; 7612 tcp = connp->conn_tcp; 7613 7614 /* 7615 * Besides asking IP to set the checksum for us, have conn_ip_output 7616 * to do the following checks when necessary: 7617 * 7618 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid 7619 * IXAF_VERIFY_PMTU: verify PMTU changes 7620 * IXAF_VERIFY_LSO: verify LSO capability changes 7621 */ 7622 connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 7623 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO; 7624 7625 if (!tcps->tcps_dev_flow_ctl) 7626 connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 7627 7628 if (isv6) { 7629 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 7630 connp->conn_ipversion = IPV6_VERSION; 7631 connp->conn_family = AF_INET6; 7632 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 7633 connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit; 7634 } else { 7635 connp->conn_ipversion = IPV4_VERSION; 7636 connp->conn_family = AF_INET; 7637 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 7638 connp->conn_default_ttl = tcps->tcps_ipv4_ttl; 7639 } 7640 connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl; 7641 7642 crhold(credp); 7643 connp->conn_cred = credp; 7644 connp->conn_cpid = curproc->p_pid; 7645 connp->conn_open_time = ddi_get_lbolt64(); 7646 7647 connp->conn_zoneid = zoneid; 7648 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 7649 connp->conn_ixa->ixa_zoneid = zoneid; 7650 connp->conn_mlp_type = mlptSingle; 7651 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 7652 ASSERT(tcp->tcp_tcps == tcps); 7653 7654 /* 7655 * If the caller has the process-wide flag set, then default to MAC 7656 * exempt mode. This allows read-down to unlabeled hosts. 7657 */ 7658 if (getpflags(NET_MAC_AWARE, credp) != 0) 7659 connp->conn_mac_mode = CONN_MAC_AWARE; 7660 7661 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 7662 7663 if (issocket) { 7664 tcp->tcp_issocket = 1; 7665 } 7666 7667 connp->conn_rcvbuf = tcps->tcps_recv_hiwat; 7668 connp->conn_sndbuf = tcps->tcps_xmit_hiwat; 7669 connp->conn_sndlowat = tcps->tcps_xmit_lowat; 7670 connp->conn_so_type = SOCK_STREAM; 7671 connp->conn_wroff = connp->conn_ht_iphc_allocated + 7672 tcps->tcps_wroff_xtra; 7673 7674 SOCK_CONNID_INIT(tcp->tcp_connid); 7675 tcp->tcp_state = TCPS_IDLE; 7676 tcp_init_values(tcp); 7677 return (connp); 7678 } 7679 7680 static int 7681 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 7682 boolean_t isv6) 7683 { 7684 tcp_t *tcp = NULL; 7685 conn_t *connp = NULL; 7686 int err; 7687 vmem_t *minor_arena = NULL; 7688 dev_t conn_dev; 7689 boolean_t issocket; 7690 7691 if (q->q_ptr != NULL) 7692 return (0); 7693 7694 if (sflag == MODOPEN) 7695 return (EINVAL); 7696 7697 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 7698 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 7699 minor_arena = ip_minor_arena_la; 7700 } else { 7701 /* 7702 * Either minor numbers in the large arena were exhausted 7703 * or a non socket application is doing the open. 7704 * Try to allocate from the small arena. 7705 */ 7706 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 7707 return (EBUSY); 7708 } 7709 minor_arena = ip_minor_arena_sa; 7710 } 7711 7712 ASSERT(minor_arena != NULL); 7713 7714 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 7715 7716 if (flag & SO_FALLBACK) { 7717 /* 7718 * Non streams socket needs a stream to fallback to 7719 */ 7720 RD(q)->q_ptr = (void *)conn_dev; 7721 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 7722 WR(q)->q_ptr = (void *)minor_arena; 7723 qprocson(q); 7724 return (0); 7725 } else if (flag & SO_ACCEPTOR) { 7726 q->q_qinfo = &tcp_acceptor_rinit; 7727 /* 7728 * the conn_dev and minor_arena will be subsequently used by 7729 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out 7730 * the minor device number for this connection from the q_ptr. 7731 */ 7732 RD(q)->q_ptr = (void *)conn_dev; 7733 WR(q)->q_qinfo = &tcp_acceptor_winit; 7734 WR(q)->q_ptr = (void *)minor_arena; 7735 qprocson(q); 7736 return (0); 7737 } 7738 7739 issocket = flag & SO_SOCKSTR; 7740 connp = tcp_create_common(credp, isv6, issocket, &err); 7741 7742 if (connp == NULL) { 7743 inet_minor_free(minor_arena, conn_dev); 7744 q->q_ptr = WR(q)->q_ptr = NULL; 7745 return (err); 7746 } 7747 7748 connp->conn_rq = q; 7749 connp->conn_wq = WR(q); 7750 q->q_ptr = WR(q)->q_ptr = connp; 7751 7752 connp->conn_dev = conn_dev; 7753 connp->conn_minor_arena = minor_arena; 7754 7755 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 7756 ASSERT(WR(q)->q_qinfo == &tcp_winit); 7757 7758 tcp = connp->conn_tcp; 7759 7760 if (issocket) { 7761 WR(q)->q_qinfo = &tcp_sock_winit; 7762 } else { 7763 #ifdef _ILP32 7764 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 7765 #else 7766 tcp->tcp_acceptor_id = conn_dev; 7767 #endif /* _ILP32 */ 7768 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 7769 } 7770 7771 /* 7772 * Put the ref for TCP. Ref for IP was already put 7773 * by ipcl_conn_create. Also Make the conn_t globally 7774 * visible to walkers 7775 */ 7776 mutex_enter(&connp->conn_lock); 7777 CONN_INC_REF_LOCKED(connp); 7778 ASSERT(connp->conn_ref == 2); 7779 connp->conn_state_flags &= ~CONN_INCIPIENT; 7780 mutex_exit(&connp->conn_lock); 7781 7782 qprocson(q); 7783 return (0); 7784 } 7785 7786 /* 7787 * Some TCP options can be "set" by requesting them in the option 7788 * buffer. This is needed for XTI feature test though we do not 7789 * allow it in general. We interpret that this mechanism is more 7790 * applicable to OSI protocols and need not be allowed in general. 7791 * This routine filters out options for which it is not allowed (most) 7792 * and lets through those (few) for which it is. [ The XTI interface 7793 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 7794 * ever implemented will have to be allowed here ]. 7795 */ 7796 static boolean_t 7797 tcp_allow_connopt_set(int level, int name) 7798 { 7799 7800 switch (level) { 7801 case IPPROTO_TCP: 7802 switch (name) { 7803 case TCP_NODELAY: 7804 return (B_TRUE); 7805 default: 7806 return (B_FALSE); 7807 } 7808 /*NOTREACHED*/ 7809 default: 7810 return (B_FALSE); 7811 } 7812 /*NOTREACHED*/ 7813 } 7814 7815 /* 7816 * This routine gets default values of certain options whose default 7817 * values are maintained by protocol specific code 7818 */ 7819 /* ARGSUSED */ 7820 int 7821 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 7822 { 7823 int32_t *i1 = (int32_t *)ptr; 7824 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7825 7826 switch (level) { 7827 case IPPROTO_TCP: 7828 switch (name) { 7829 case TCP_NOTIFY_THRESHOLD: 7830 *i1 = tcps->tcps_ip_notify_interval; 7831 break; 7832 case TCP_ABORT_THRESHOLD: 7833 *i1 = tcps->tcps_ip_abort_interval; 7834 break; 7835 case TCP_CONN_NOTIFY_THRESHOLD: 7836 *i1 = tcps->tcps_ip_notify_cinterval; 7837 break; 7838 case TCP_CONN_ABORT_THRESHOLD: 7839 *i1 = tcps->tcps_ip_abort_cinterval; 7840 break; 7841 default: 7842 return (-1); 7843 } 7844 break; 7845 case IPPROTO_IP: 7846 switch (name) { 7847 case IP_TTL: 7848 *i1 = tcps->tcps_ipv4_ttl; 7849 break; 7850 default: 7851 return (-1); 7852 } 7853 break; 7854 case IPPROTO_IPV6: 7855 switch (name) { 7856 case IPV6_UNICAST_HOPS: 7857 *i1 = tcps->tcps_ipv6_hoplimit; 7858 break; 7859 default: 7860 return (-1); 7861 } 7862 break; 7863 default: 7864 return (-1); 7865 } 7866 return (sizeof (int)); 7867 } 7868 7869 /* 7870 * TCP routine to get the values of options. 7871 */ 7872 static int 7873 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr) 7874 { 7875 int *i1 = (int *)ptr; 7876 tcp_t *tcp = connp->conn_tcp; 7877 conn_opt_arg_t coas; 7878 int retval; 7879 7880 coas.coa_connp = connp; 7881 coas.coa_ixa = connp->conn_ixa; 7882 coas.coa_ipp = &connp->conn_xmit_ipp; 7883 coas.coa_ancillary = B_FALSE; 7884 coas.coa_changed = 0; 7885 7886 switch (level) { 7887 case SOL_SOCKET: 7888 switch (name) { 7889 case SO_SND_COPYAVOID: 7890 *i1 = tcp->tcp_snd_zcopy_on ? 7891 SO_SND_COPYAVOID : 0; 7892 return (sizeof (int)); 7893 case SO_ACCEPTCONN: 7894 *i1 = (tcp->tcp_state == TCPS_LISTEN); 7895 return (sizeof (int)); 7896 } 7897 break; 7898 case IPPROTO_TCP: 7899 switch (name) { 7900 case TCP_NODELAY: 7901 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 7902 return (sizeof (int)); 7903 case TCP_MAXSEG: 7904 *i1 = tcp->tcp_mss; 7905 return (sizeof (int)); 7906 case TCP_NOTIFY_THRESHOLD: 7907 *i1 = (int)tcp->tcp_first_timer_threshold; 7908 return (sizeof (int)); 7909 case TCP_ABORT_THRESHOLD: 7910 *i1 = tcp->tcp_second_timer_threshold; 7911 return (sizeof (int)); 7912 case TCP_CONN_NOTIFY_THRESHOLD: 7913 *i1 = tcp->tcp_first_ctimer_threshold; 7914 return (sizeof (int)); 7915 case TCP_CONN_ABORT_THRESHOLD: 7916 *i1 = tcp->tcp_second_ctimer_threshold; 7917 return (sizeof (int)); 7918 case TCP_INIT_CWND: 7919 *i1 = tcp->tcp_init_cwnd; 7920 return (sizeof (int)); 7921 case TCP_KEEPALIVE_THRESHOLD: 7922 *i1 = tcp->tcp_ka_interval; 7923 return (sizeof (int)); 7924 case TCP_KEEPALIVE_ABORT_THRESHOLD: 7925 *i1 = tcp->tcp_ka_abort_thres; 7926 return (sizeof (int)); 7927 case TCP_CORK: 7928 *i1 = tcp->tcp_cork; 7929 return (sizeof (int)); 7930 } 7931 break; 7932 case IPPROTO_IP: 7933 if (connp->conn_family != AF_INET) 7934 return (-1); 7935 switch (name) { 7936 case IP_OPTIONS: 7937 case T_IP_OPTIONS: 7938 /* Caller ensures enough space */ 7939 return (ip_opt_get_user(connp, ptr)); 7940 default: 7941 break; 7942 } 7943 break; 7944 7945 case IPPROTO_IPV6: 7946 /* 7947 * IPPROTO_IPV6 options are only supported for sockets 7948 * that are using IPv6 on the wire. 7949 */ 7950 if (connp->conn_ipversion != IPV6_VERSION) { 7951 return (-1); 7952 } 7953 switch (name) { 7954 case IPV6_PATHMTU: 7955 if (tcp->tcp_state < TCPS_ESTABLISHED) 7956 return (-1); 7957 break; 7958 } 7959 break; 7960 } 7961 mutex_enter(&connp->conn_lock); 7962 retval = conn_opt_get(&coas, level, name, ptr); 7963 mutex_exit(&connp->conn_lock); 7964 return (retval); 7965 } 7966 7967 /* 7968 * TCP routine to get the values of options. 7969 */ 7970 int 7971 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 7972 { 7973 return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr)); 7974 } 7975 7976 /* returns UNIX error, the optlen is a value-result arg */ 7977 int 7978 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 7979 void *optvalp, socklen_t *optlen, cred_t *cr) 7980 { 7981 conn_t *connp = (conn_t *)proto_handle; 7982 squeue_t *sqp = connp->conn_sqp; 7983 int error; 7984 t_uscalar_t max_optbuf_len; 7985 void *optvalp_buf; 7986 int len; 7987 7988 ASSERT(connp->conn_upper_handle != NULL); 7989 7990 error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len, 7991 tcp_opt_obj.odb_opt_des_arr, 7992 tcp_opt_obj.odb_opt_arr_cnt, 7993 B_FALSE, B_TRUE, cr); 7994 if (error != 0) { 7995 if (error < 0) { 7996 error = proto_tlitosyserr(-error); 7997 } 7998 return (error); 7999 } 8000 8001 optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP); 8002 8003 error = squeue_synch_enter(sqp, connp, NULL); 8004 if (error == ENOMEM) { 8005 kmem_free(optvalp_buf, max_optbuf_len); 8006 return (ENOMEM); 8007 } 8008 8009 len = tcp_opt_get(connp, level, option_name, optvalp_buf); 8010 squeue_synch_exit(sqp, connp); 8011 8012 if (len == -1) { 8013 kmem_free(optvalp_buf, max_optbuf_len); 8014 return (EINVAL); 8015 } 8016 8017 /* 8018 * update optlen and copy option value 8019 */ 8020 t_uscalar_t size = MIN(len, *optlen); 8021 8022 bcopy(optvalp_buf, optvalp, size); 8023 bcopy(&size, optlen, sizeof (size)); 8024 8025 kmem_free(optvalp_buf, max_optbuf_len); 8026 return (0); 8027 } 8028 8029 /* 8030 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 8031 * Parameters are assumed to be verified by the caller. 8032 */ 8033 /* ARGSUSED */ 8034 int 8035 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name, 8036 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 8037 void *thisdg_attrs, cred_t *cr) 8038 { 8039 tcp_t *tcp = connp->conn_tcp; 8040 int *i1 = (int *)invalp; 8041 boolean_t onoff = (*i1 == 0) ? 0 : 1; 8042 boolean_t checkonly; 8043 int reterr; 8044 tcp_stack_t *tcps = tcp->tcp_tcps; 8045 conn_opt_arg_t coas; 8046 8047 coas.coa_connp = connp; 8048 coas.coa_ixa = connp->conn_ixa; 8049 coas.coa_ipp = &connp->conn_xmit_ipp; 8050 coas.coa_ancillary = B_FALSE; 8051 coas.coa_changed = 0; 8052 8053 switch (optset_context) { 8054 case SETFN_OPTCOM_CHECKONLY: 8055 checkonly = B_TRUE; 8056 /* 8057 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 8058 * inlen != 0 implies value supplied and 8059 * we have to "pretend" to set it. 8060 * inlen == 0 implies that there is no 8061 * value part in T_CHECK request and just validation 8062 * done elsewhere should be enough, we just return here. 8063 */ 8064 if (inlen == 0) { 8065 *outlenp = 0; 8066 return (0); 8067 } 8068 break; 8069 case SETFN_OPTCOM_NEGOTIATE: 8070 checkonly = B_FALSE; 8071 break; 8072 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 8073 case SETFN_CONN_NEGOTIATE: 8074 checkonly = B_FALSE; 8075 /* 8076 * Negotiating local and "association-related" options 8077 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 8078 * primitives is allowed by XTI, but we choose 8079 * to not implement this style negotiation for Internet 8080 * protocols (We interpret it is a must for OSI world but 8081 * optional for Internet protocols) for all options. 8082 * [ Will do only for the few options that enable test 8083 * suites that our XTI implementation of this feature 8084 * works for transports that do allow it ] 8085 */ 8086 if (!tcp_allow_connopt_set(level, name)) { 8087 *outlenp = 0; 8088 return (EINVAL); 8089 } 8090 break; 8091 default: 8092 /* 8093 * We should never get here 8094 */ 8095 *outlenp = 0; 8096 return (EINVAL); 8097 } 8098 8099 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 8100 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 8101 8102 /* 8103 * For TCP, we should have no ancillary data sent down 8104 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 8105 * has to be zero. 8106 */ 8107 ASSERT(thisdg_attrs == NULL); 8108 8109 /* 8110 * For fixed length options, no sanity check 8111 * of passed in length is done. It is assumed *_optcom_req() 8112 * routines do the right thing. 8113 */ 8114 switch (level) { 8115 case SOL_SOCKET: 8116 switch (name) { 8117 case SO_KEEPALIVE: 8118 if (checkonly) { 8119 /* check only case */ 8120 break; 8121 } 8122 8123 if (!onoff) { 8124 if (connp->conn_keepalive) { 8125 if (tcp->tcp_ka_tid != 0) { 8126 (void) TCP_TIMER_CANCEL(tcp, 8127 tcp->tcp_ka_tid); 8128 tcp->tcp_ka_tid = 0; 8129 } 8130 connp->conn_keepalive = 0; 8131 } 8132 break; 8133 } 8134 if (!connp->conn_keepalive) { 8135 /* Crank up the keepalive timer */ 8136 tcp->tcp_ka_last_intrvl = 0; 8137 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8138 tcp_keepalive_killer, 8139 MSEC_TO_TICK(tcp->tcp_ka_interval)); 8140 connp->conn_keepalive = 1; 8141 } 8142 break; 8143 case SO_SNDBUF: { 8144 if (*i1 > tcps->tcps_max_buf) { 8145 *outlenp = 0; 8146 return (ENOBUFS); 8147 } 8148 if (checkonly) 8149 break; 8150 8151 connp->conn_sndbuf = *i1; 8152 if (tcps->tcps_snd_lowat_fraction != 0) { 8153 connp->conn_sndlowat = connp->conn_sndbuf / 8154 tcps->tcps_snd_lowat_fraction; 8155 } 8156 (void) tcp_maxpsz_set(tcp, B_TRUE); 8157 /* 8158 * If we are flow-controlled, recheck the condition. 8159 * There are apps that increase SO_SNDBUF size when 8160 * flow-controlled (EWOULDBLOCK), and expect the flow 8161 * control condition to be lifted right away. 8162 */ 8163 mutex_enter(&tcp->tcp_non_sq_lock); 8164 if (tcp->tcp_flow_stopped && 8165 TCP_UNSENT_BYTES(tcp) < connp->conn_sndbuf) { 8166 tcp_clrqfull(tcp); 8167 } 8168 mutex_exit(&tcp->tcp_non_sq_lock); 8169 *outlenp = inlen; 8170 return (0); 8171 } 8172 case SO_RCVBUF: 8173 if (*i1 > tcps->tcps_max_buf) { 8174 *outlenp = 0; 8175 return (ENOBUFS); 8176 } 8177 /* Silently ignore zero */ 8178 if (!checkonly && *i1 != 0) { 8179 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 8180 (void) tcp_rwnd_set(tcp, *i1); 8181 } 8182 /* 8183 * XXX should we return the rwnd here 8184 * and tcp_opt_get ? 8185 */ 8186 *outlenp = inlen; 8187 return (0); 8188 case SO_SND_COPYAVOID: 8189 if (!checkonly) { 8190 if (tcp->tcp_loopback || 8191 (tcp->tcp_kssl_ctx != NULL) || 8192 (onoff != 1) || !tcp_zcopy_check(tcp)) { 8193 *outlenp = 0; 8194 return (EOPNOTSUPP); 8195 } 8196 tcp->tcp_snd_zcopy_aware = 1; 8197 } 8198 *outlenp = inlen; 8199 return (0); 8200 } 8201 break; 8202 case IPPROTO_TCP: 8203 switch (name) { 8204 case TCP_NODELAY: 8205 if (!checkonly) 8206 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 8207 break; 8208 case TCP_NOTIFY_THRESHOLD: 8209 if (!checkonly) 8210 tcp->tcp_first_timer_threshold = *i1; 8211 break; 8212 case TCP_ABORT_THRESHOLD: 8213 if (!checkonly) 8214 tcp->tcp_second_timer_threshold = *i1; 8215 break; 8216 case TCP_CONN_NOTIFY_THRESHOLD: 8217 if (!checkonly) 8218 tcp->tcp_first_ctimer_threshold = *i1; 8219 break; 8220 case TCP_CONN_ABORT_THRESHOLD: 8221 if (!checkonly) 8222 tcp->tcp_second_ctimer_threshold = *i1; 8223 break; 8224 case TCP_RECVDSTADDR: 8225 if (tcp->tcp_state > TCPS_LISTEN) { 8226 *outlenp = 0; 8227 return (EOPNOTSUPP); 8228 } 8229 /* Setting done in conn_opt_set */ 8230 break; 8231 case TCP_INIT_CWND: { 8232 uint32_t init_cwnd = *((uint32_t *)invalp); 8233 8234 if (checkonly) 8235 break; 8236 8237 /* 8238 * Only allow socket with network configuration 8239 * privilege to set the initial cwnd to be larger 8240 * than allowed by RFC 3390. 8241 */ 8242 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 8243 tcp->tcp_init_cwnd = init_cwnd; 8244 break; 8245 } 8246 if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { 8247 *outlenp = 0; 8248 return (reterr); 8249 } 8250 if (init_cwnd > TCP_MAX_INIT_CWND) { 8251 *outlenp = 0; 8252 return (EINVAL); 8253 } 8254 tcp->tcp_init_cwnd = init_cwnd; 8255 break; 8256 } 8257 case TCP_KEEPALIVE_THRESHOLD: 8258 if (checkonly) 8259 break; 8260 8261 if (*i1 < tcps->tcps_keepalive_interval_low || 8262 *i1 > tcps->tcps_keepalive_interval_high) { 8263 *outlenp = 0; 8264 return (EINVAL); 8265 } 8266 if (*i1 != tcp->tcp_ka_interval) { 8267 tcp->tcp_ka_interval = *i1; 8268 /* 8269 * Check if we need to restart the 8270 * keepalive timer. 8271 */ 8272 if (tcp->tcp_ka_tid != 0) { 8273 ASSERT(connp->conn_keepalive); 8274 (void) TCP_TIMER_CANCEL(tcp, 8275 tcp->tcp_ka_tid); 8276 tcp->tcp_ka_last_intrvl = 0; 8277 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8278 tcp_keepalive_killer, 8279 MSEC_TO_TICK(tcp->tcp_ka_interval)); 8280 } 8281 } 8282 break; 8283 case TCP_KEEPALIVE_ABORT_THRESHOLD: 8284 if (!checkonly) { 8285 if (*i1 < 8286 tcps->tcps_keepalive_abort_interval_low || 8287 *i1 > 8288 tcps->tcps_keepalive_abort_interval_high) { 8289 *outlenp = 0; 8290 return (EINVAL); 8291 } 8292 tcp->tcp_ka_abort_thres = *i1; 8293 } 8294 break; 8295 case TCP_CORK: 8296 if (!checkonly) { 8297 /* 8298 * if tcp->tcp_cork was set and is now 8299 * being unset, we have to make sure that 8300 * the remaining data gets sent out. Also 8301 * unset tcp->tcp_cork so that tcp_wput_data() 8302 * can send data even if it is less than mss 8303 */ 8304 if (tcp->tcp_cork && onoff == 0 && 8305 tcp->tcp_unsent > 0) { 8306 tcp->tcp_cork = B_FALSE; 8307 tcp_wput_data(tcp, NULL, B_FALSE); 8308 } 8309 tcp->tcp_cork = onoff; 8310 } 8311 break; 8312 default: 8313 break; 8314 } 8315 break; 8316 case IPPROTO_IP: 8317 if (connp->conn_family != AF_INET) { 8318 *outlenp = 0; 8319 return (EINVAL); 8320 } 8321 switch (name) { 8322 case IP_SEC_OPT: 8323 /* 8324 * We should not allow policy setting after 8325 * we start listening for connections. 8326 */ 8327 if (tcp->tcp_state == TCPS_LISTEN) { 8328 return (EINVAL); 8329 } 8330 break; 8331 } 8332 break; 8333 case IPPROTO_IPV6: 8334 /* 8335 * IPPROTO_IPV6 options are only supported for sockets 8336 * that are using IPv6 on the wire. 8337 */ 8338 if (connp->conn_ipversion != IPV6_VERSION) { 8339 *outlenp = 0; 8340 return (EINVAL); 8341 } 8342 8343 switch (name) { 8344 case IPV6_RECVPKTINFO: 8345 if (!checkonly) { 8346 /* Force it to be sent up with the next msg */ 8347 tcp->tcp_recvifindex = 0; 8348 } 8349 break; 8350 case IPV6_RECVTCLASS: 8351 if (!checkonly) { 8352 /* Force it to be sent up with the next msg */ 8353 tcp->tcp_recvtclass = 0xffffffffU; 8354 } 8355 break; 8356 case IPV6_RECVHOPLIMIT: 8357 if (!checkonly) { 8358 /* Force it to be sent up with the next msg */ 8359 tcp->tcp_recvhops = 0xffffffffU; 8360 } 8361 break; 8362 case IPV6_PKTINFO: 8363 /* This is an extra check for TCP */ 8364 if (inlen == sizeof (struct in6_pktinfo)) { 8365 struct in6_pktinfo *pkti; 8366 8367 pkti = (struct in6_pktinfo *)invalp; 8368 /* 8369 * RFC 3542 states that ipi6_addr must be 8370 * the unspecified address when setting the 8371 * IPV6_PKTINFO sticky socket option on a 8372 * TCP socket. 8373 */ 8374 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 8375 return (EINVAL); 8376 } 8377 break; 8378 case IPV6_SEC_OPT: 8379 /* 8380 * We should not allow policy setting after 8381 * we start listening for connections. 8382 */ 8383 if (tcp->tcp_state == TCPS_LISTEN) { 8384 return (EINVAL); 8385 } 8386 break; 8387 } 8388 break; 8389 } 8390 reterr = conn_opt_set(&coas, level, name, inlen, invalp, 8391 checkonly, cr); 8392 if (reterr != 0) { 8393 *outlenp = 0; 8394 return (reterr); 8395 } 8396 8397 /* 8398 * Common case of OK return with outval same as inval 8399 */ 8400 if (invalp != outvalp) { 8401 /* don't trust bcopy for identical src/dst */ 8402 (void) bcopy(invalp, outvalp, inlen); 8403 } 8404 *outlenp = inlen; 8405 8406 if (coas.coa_changed & COA_HEADER_CHANGED) { 8407 reterr = tcp_build_hdrs(tcp); 8408 if (reterr != 0) 8409 return (reterr); 8410 } 8411 if (coas.coa_changed & COA_ROUTE_CHANGED) { 8412 in6_addr_t nexthop; 8413 8414 /* 8415 * If we are connected we re-cache the information. 8416 * We ignore errors to preserve BSD behavior. 8417 * Note that we don't redo IPsec policy lookup here 8418 * since the final destination (or source) didn't change. 8419 */ 8420 ip_attr_nexthop(&connp->conn_xmit_ipp, connp->conn_ixa, 8421 &connp->conn_faddr_v6, &nexthop); 8422 8423 if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6) && 8424 !IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_faddr_v6)) { 8425 (void) ip_attr_connect(connp, connp->conn_ixa, 8426 &connp->conn_laddr_v6, &connp->conn_faddr_v6, 8427 &nexthop, connp->conn_fport, NULL, NULL, 8428 IPDF_VERIFY_DST); 8429 } 8430 } 8431 if ((coas.coa_changed & COA_SNDBUF_CHANGED) && !IPCL_IS_NONSTR(connp)) { 8432 connp->conn_wq->q_hiwat = connp->conn_sndbuf; 8433 } 8434 if (coas.coa_changed & COA_WROFF_CHANGED) { 8435 connp->conn_wroff = connp->conn_ht_iphc_allocated + 8436 tcps->tcps_wroff_xtra; 8437 (void) proto_set_tx_wroff(connp->conn_rq, connp, 8438 connp->conn_wroff); 8439 } 8440 if (coas.coa_changed & COA_OOBINLINE_CHANGED) { 8441 if (IPCL_IS_NONSTR(connp)) 8442 proto_set_rx_oob_opt(connp, onoff); 8443 } 8444 return (0); 8445 } 8446 8447 /* ARGSUSED */ 8448 int 8449 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name, 8450 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 8451 void *thisdg_attrs, cred_t *cr) 8452 { 8453 conn_t *connp = Q_TO_CONN(q); 8454 8455 return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp, 8456 outlenp, outvalp, thisdg_attrs, cr)); 8457 } 8458 8459 int 8460 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 8461 const void *optvalp, socklen_t optlen, cred_t *cr) 8462 { 8463 conn_t *connp = (conn_t *)proto_handle; 8464 squeue_t *sqp = connp->conn_sqp; 8465 int error; 8466 8467 ASSERT(connp->conn_upper_handle != NULL); 8468 /* 8469 * Entering the squeue synchronously can result in a context switch, 8470 * which can cause a rather sever performance degradation. So we try to 8471 * handle whatever options we can without entering the squeue. 8472 */ 8473 if (level == IPPROTO_TCP) { 8474 switch (option_name) { 8475 case TCP_NODELAY: 8476 if (optlen != sizeof (int32_t)) 8477 return (EINVAL); 8478 mutex_enter(&connp->conn_tcp->tcp_non_sq_lock); 8479 connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 : 8480 connp->conn_tcp->tcp_mss; 8481 mutex_exit(&connp->conn_tcp->tcp_non_sq_lock); 8482 return (0); 8483 default: 8484 break; 8485 } 8486 } 8487 8488 error = squeue_synch_enter(sqp, connp, NULL); 8489 if (error == ENOMEM) { 8490 return (ENOMEM); 8491 } 8492 8493 error = proto_opt_check(level, option_name, optlen, NULL, 8494 tcp_opt_obj.odb_opt_des_arr, 8495 tcp_opt_obj.odb_opt_arr_cnt, 8496 B_TRUE, B_FALSE, cr); 8497 8498 if (error != 0) { 8499 if (error < 0) { 8500 error = proto_tlitosyserr(-error); 8501 } 8502 squeue_synch_exit(sqp, connp); 8503 return (error); 8504 } 8505 8506 error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name, 8507 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp, 8508 NULL, cr); 8509 squeue_synch_exit(sqp, connp); 8510 8511 ASSERT(error >= 0); 8512 8513 return (error); 8514 } 8515 8516 /* 8517 * Build/update the tcp header template (in conn_ht_iphc) based on 8518 * conn_xmit_ipp. The headers include ip6_t, any extension 8519 * headers, and the maximum size tcp header (to avoid reallocation 8520 * on the fly for additional tcp options). 8521 * 8522 * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}. 8523 * Returns failure if can't allocate memory. 8524 */ 8525 static int 8526 tcp_build_hdrs(tcp_t *tcp) 8527 { 8528 tcp_stack_t *tcps = tcp->tcp_tcps; 8529 conn_t *connp = tcp->tcp_connp; 8530 tcpha_t *tcpha; 8531 uint32_t cksum; 8532 int error; 8533 8534 /* Grab lock to satisfy ASSERT; TCP is serialized using squeue */ 8535 mutex_enter(&connp->conn_lock); 8536 error = conn_build_hdr_template(connp, TCP_MIN_HEADER_LENGTH, 8537 TCP_MAX_TCP_OPTIONS_LENGTH, &connp->conn_laddr_v6, 8538 &connp->conn_faddr_v6, connp->conn_flowinfo); 8539 mutex_exit(&connp->conn_lock); 8540 if (error != 0) 8541 return (error); 8542 8543 /* 8544 * Any routing header/option has been massaged. The checksum difference 8545 * is stored in conn_sum for later use. 8546 */ 8547 tcpha = (tcpha_t *)connp->conn_ht_ulp; 8548 tcp->tcp_tcpha = tcpha; 8549 8550 tcpha->tha_lport = connp->conn_lport; 8551 tcpha->tha_fport = connp->conn_fport; 8552 tcpha->tha_sum = 0; 8553 tcpha->tha_offset_and_reserved = (5 << 4); 8554 8555 /* 8556 * IP wants our header length in the checksum field to 8557 * allow it to perform a single pseudo-header+checksum 8558 * calculation on behalf of TCP. 8559 * Include the adjustment for a source route once IP_OPTIONS is set. 8560 */ 8561 cksum = sizeof (tcpha_t) + connp->conn_sum; 8562 cksum = (cksum >> 16) + (cksum & 0xFFFF); 8563 ASSERT(cksum < 0x10000); 8564 tcpha->tha_sum = htons(cksum); 8565 8566 if (connp->conn_ipversion == IPV4_VERSION) 8567 tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc; 8568 else 8569 tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc; 8570 8571 if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra > 8572 connp->conn_wroff) { 8573 connp->conn_wroff = connp->conn_ht_iphc_allocated + 8574 tcps->tcps_wroff_xtra; 8575 (void) proto_set_tx_wroff(connp->conn_rq, connp, 8576 connp->conn_wroff); 8577 } 8578 return (0); 8579 } 8580 8581 /* Get callback routine passed to nd_load by tcp_param_register */ 8582 /* ARGSUSED */ 8583 static int 8584 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 8585 { 8586 tcpparam_t *tcppa = (tcpparam_t *)cp; 8587 8588 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 8589 return (0); 8590 } 8591 8592 /* 8593 * Walk through the param array specified registering each element with the 8594 * named dispatch handler. 8595 */ 8596 static boolean_t 8597 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) 8598 { 8599 for (; cnt-- > 0; tcppa++) { 8600 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 8601 if (!nd_load(ndp, tcppa->tcp_param_name, 8602 tcp_param_get, tcp_param_set, 8603 (caddr_t)tcppa)) { 8604 nd_free(ndp); 8605 return (B_FALSE); 8606 } 8607 } 8608 } 8609 tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), 8610 KM_SLEEP); 8611 bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, 8612 sizeof (tcpparam_t)); 8613 if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, 8614 tcp_param_get, tcp_param_set_aligned, 8615 (caddr_t)tcps->tcps_wroff_xtra_param)) { 8616 nd_free(ndp); 8617 return (B_FALSE); 8618 } 8619 if (!nd_load(ndp, "tcp_extra_priv_ports", 8620 tcp_extra_priv_ports_get, NULL, NULL)) { 8621 nd_free(ndp); 8622 return (B_FALSE); 8623 } 8624 if (!nd_load(ndp, "tcp_extra_priv_ports_add", 8625 NULL, tcp_extra_priv_ports_add, NULL)) { 8626 nd_free(ndp); 8627 return (B_FALSE); 8628 } 8629 if (!nd_load(ndp, "tcp_extra_priv_ports_del", 8630 NULL, tcp_extra_priv_ports_del, NULL)) { 8631 nd_free(ndp); 8632 return (B_FALSE); 8633 } 8634 if (!nd_load(ndp, "tcp_1948_phrase", NULL, 8635 tcp_1948_phrase_set, NULL)) { 8636 nd_free(ndp); 8637 return (B_FALSE); 8638 } 8639 /* 8640 * Dummy ndd variables - only to convey obsolescence information 8641 * through printing of their name (no get or set routines) 8642 * XXX Remove in future releases ? 8643 */ 8644 if (!nd_load(ndp, 8645 "tcp_close_wait_interval(obsoleted - " 8646 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 8647 nd_free(ndp); 8648 return (B_FALSE); 8649 } 8650 return (B_TRUE); 8651 } 8652 8653 /* ndd set routine for tcp_wroff_xtra. */ 8654 /* ARGSUSED */ 8655 static int 8656 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 8657 cred_t *cr) 8658 { 8659 long new_value; 8660 tcpparam_t *tcppa = (tcpparam_t *)cp; 8661 8662 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 8663 new_value < tcppa->tcp_param_min || 8664 new_value > tcppa->tcp_param_max) { 8665 return (EINVAL); 8666 } 8667 /* 8668 * Need to make sure new_value is a multiple of 4. If it is not, 8669 * round it up. For future 64 bit requirement, we actually make it 8670 * a multiple of 8. 8671 */ 8672 if (new_value & 0x7) { 8673 new_value = (new_value & ~0x7) + 0x8; 8674 } 8675 tcppa->tcp_param_val = new_value; 8676 return (0); 8677 } 8678 8679 /* Set callback routine passed to nd_load by tcp_param_register */ 8680 /* ARGSUSED */ 8681 static int 8682 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 8683 { 8684 long new_value; 8685 tcpparam_t *tcppa = (tcpparam_t *)cp; 8686 8687 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 8688 new_value < tcppa->tcp_param_min || 8689 new_value > tcppa->tcp_param_max) { 8690 return (EINVAL); 8691 } 8692 tcppa->tcp_param_val = new_value; 8693 return (0); 8694 } 8695 8696 /* 8697 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 8698 * is filled, return as much as we can. The message passed in may be 8699 * multi-part, chained using b_cont. "start" is the starting sequence 8700 * number for this piece. 8701 */ 8702 static mblk_t * 8703 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 8704 { 8705 uint32_t end; 8706 mblk_t *mp1; 8707 mblk_t *mp2; 8708 mblk_t *next_mp; 8709 uint32_t u1; 8710 tcp_stack_t *tcps = tcp->tcp_tcps; 8711 8712 8713 /* Walk through all the new pieces. */ 8714 do { 8715 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 8716 (uintptr_t)INT_MAX); 8717 end = start + (int)(mp->b_wptr - mp->b_rptr); 8718 next_mp = mp->b_cont; 8719 if (start == end) { 8720 /* Empty. Blast it. */ 8721 freeb(mp); 8722 continue; 8723 } 8724 mp->b_cont = NULL; 8725 TCP_REASS_SET_SEQ(mp, start); 8726 TCP_REASS_SET_END(mp, end); 8727 mp1 = tcp->tcp_reass_tail; 8728 if (!mp1) { 8729 tcp->tcp_reass_tail = mp; 8730 tcp->tcp_reass_head = mp; 8731 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 8732 UPDATE_MIB(&tcps->tcps_mib, 8733 tcpInDataUnorderBytes, end - start); 8734 continue; 8735 } 8736 /* New stuff completely beyond tail? */ 8737 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 8738 /* Link it on end. */ 8739 mp1->b_cont = mp; 8740 tcp->tcp_reass_tail = mp; 8741 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 8742 UPDATE_MIB(&tcps->tcps_mib, 8743 tcpInDataUnorderBytes, end - start); 8744 continue; 8745 } 8746 mp1 = tcp->tcp_reass_head; 8747 u1 = TCP_REASS_SEQ(mp1); 8748 /* New stuff at the front? */ 8749 if (SEQ_LT(start, u1)) { 8750 /* Yes... Check for overlap. */ 8751 mp->b_cont = mp1; 8752 tcp->tcp_reass_head = mp; 8753 tcp_reass_elim_overlap(tcp, mp); 8754 continue; 8755 } 8756 /* 8757 * The new piece fits somewhere between the head and tail. 8758 * We find our slot, where mp1 precedes us and mp2 trails. 8759 */ 8760 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 8761 u1 = TCP_REASS_SEQ(mp2); 8762 if (SEQ_LEQ(start, u1)) 8763 break; 8764 } 8765 /* Link ourselves in */ 8766 mp->b_cont = mp2; 8767 mp1->b_cont = mp; 8768 8769 /* Trim overlap with following mblk(s) first */ 8770 tcp_reass_elim_overlap(tcp, mp); 8771 8772 /* Trim overlap with preceding mblk */ 8773 tcp_reass_elim_overlap(tcp, mp1); 8774 8775 } while (start = end, mp = next_mp); 8776 mp1 = tcp->tcp_reass_head; 8777 /* Anything ready to go? */ 8778 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 8779 return (NULL); 8780 /* Eat what we can off the queue */ 8781 for (;;) { 8782 mp = mp1->b_cont; 8783 end = TCP_REASS_END(mp1); 8784 TCP_REASS_SET_SEQ(mp1, 0); 8785 TCP_REASS_SET_END(mp1, 0); 8786 if (!mp) { 8787 tcp->tcp_reass_tail = NULL; 8788 break; 8789 } 8790 if (end != TCP_REASS_SEQ(mp)) { 8791 mp1->b_cont = NULL; 8792 break; 8793 } 8794 mp1 = mp; 8795 } 8796 mp1 = tcp->tcp_reass_head; 8797 tcp->tcp_reass_head = mp; 8798 return (mp1); 8799 } 8800 8801 /* Eliminate any overlap that mp may have over later mblks */ 8802 static void 8803 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 8804 { 8805 uint32_t end; 8806 mblk_t *mp1; 8807 uint32_t u1; 8808 tcp_stack_t *tcps = tcp->tcp_tcps; 8809 8810 end = TCP_REASS_END(mp); 8811 while ((mp1 = mp->b_cont) != NULL) { 8812 u1 = TCP_REASS_SEQ(mp1); 8813 if (!SEQ_GT(end, u1)) 8814 break; 8815 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 8816 mp->b_wptr -= end - u1; 8817 TCP_REASS_SET_END(mp, u1); 8818 BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); 8819 UPDATE_MIB(&tcps->tcps_mib, 8820 tcpInDataPartDupBytes, end - u1); 8821 break; 8822 } 8823 mp->b_cont = mp1->b_cont; 8824 TCP_REASS_SET_SEQ(mp1, 0); 8825 TCP_REASS_SET_END(mp1, 0); 8826 freeb(mp1); 8827 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 8828 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); 8829 } 8830 if (!mp1) 8831 tcp->tcp_reass_tail = mp; 8832 } 8833 8834 static uint_t 8835 tcp_rwnd_reopen(tcp_t *tcp) 8836 { 8837 uint_t ret = 0; 8838 uint_t thwin; 8839 conn_t *connp = tcp->tcp_connp; 8840 8841 /* Learn the latest rwnd information that we sent to the other side. */ 8842 thwin = ((uint_t)ntohs(tcp->tcp_tcpha->tha_win)) 8843 << tcp->tcp_rcv_ws; 8844 /* This is peer's calculated send window (our receive window). */ 8845 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 8846 /* 8847 * Increase the receive window to max. But we need to do receiver 8848 * SWS avoidance. This means that we need to check the increase of 8849 * of receive window is at least 1 MSS. 8850 */ 8851 if (connp->conn_rcvbuf - thwin >= tcp->tcp_mss) { 8852 /* 8853 * If the window that the other side knows is less than max 8854 * deferred acks segments, send an update immediately. 8855 */ 8856 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 8857 BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate); 8858 ret = TH_ACK_NEEDED; 8859 } 8860 tcp->tcp_rwnd = connp->conn_rcvbuf; 8861 } 8862 return (ret); 8863 } 8864 8865 /* 8866 * Send up all messages queued on tcp_rcv_list. 8867 */ 8868 static uint_t 8869 tcp_rcv_drain(tcp_t *tcp) 8870 { 8871 mblk_t *mp; 8872 uint_t ret = 0; 8873 #ifdef DEBUG 8874 uint_t cnt = 0; 8875 #endif 8876 queue_t *q = tcp->tcp_connp->conn_rq; 8877 8878 /* Can't drain on an eager connection */ 8879 if (tcp->tcp_listener != NULL) 8880 return (ret); 8881 8882 /* Can't be a non-STREAMS connection */ 8883 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 8884 8885 /* No need for the push timer now. */ 8886 if (tcp->tcp_push_tid != 0) { 8887 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 8888 tcp->tcp_push_tid = 0; 8889 } 8890 8891 /* 8892 * Handle two cases here: we are currently fused or we were 8893 * previously fused and have some urgent data to be delivered 8894 * upstream. The latter happens because we either ran out of 8895 * memory or were detached and therefore sending the SIGURG was 8896 * deferred until this point. In either case we pass control 8897 * over to tcp_fuse_rcv_drain() since it may need to complete 8898 * some work. 8899 */ 8900 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 8901 ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) || 8902 tcp->tcp_fused_sigurg_mp != NULL); 8903 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 8904 &tcp->tcp_fused_sigurg_mp)) 8905 return (ret); 8906 } 8907 8908 while ((mp = tcp->tcp_rcv_list) != NULL) { 8909 tcp->tcp_rcv_list = mp->b_next; 8910 mp->b_next = NULL; 8911 #ifdef DEBUG 8912 cnt += msgdsize(mp); 8913 #endif 8914 /* Does this need SSL processing first? */ 8915 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 8916 DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain, 8917 mblk_t *, mp); 8918 tcp_kssl_input(tcp, mp, NULL); 8919 continue; 8920 } 8921 putnext(q, mp); 8922 } 8923 #ifdef DEBUG 8924 ASSERT(cnt == tcp->tcp_rcv_cnt); 8925 #endif 8926 tcp->tcp_rcv_last_head = NULL; 8927 tcp->tcp_rcv_last_tail = NULL; 8928 tcp->tcp_rcv_cnt = 0; 8929 8930 if (canputnext(q)) 8931 return (tcp_rwnd_reopen(tcp)); 8932 8933 return (ret); 8934 } 8935 8936 /* 8937 * Queue data on tcp_rcv_list which is a b_next chain. 8938 * tcp_rcv_last_head/tail is the last element of this chain. 8939 * Each element of the chain is a b_cont chain. 8940 * 8941 * M_DATA messages are added to the current element. 8942 * Other messages are added as new (b_next) elements. 8943 */ 8944 void 8945 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len, cred_t *cr) 8946 { 8947 ASSERT(seg_len == msgdsize(mp)); 8948 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 8949 8950 if (is_system_labeled()) { 8951 ASSERT(cr != NULL || msg_getcred(mp, NULL) != NULL); 8952 /* 8953 * Provide for protocols above TCP such as RPC. NOPID leaves 8954 * db_cpid unchanged. 8955 * The cred could have already been set. 8956 */ 8957 if (cr != NULL) 8958 mblk_setcred(mp, cr, NOPID); 8959 } 8960 8961 if (tcp->tcp_rcv_list == NULL) { 8962 ASSERT(tcp->tcp_rcv_last_head == NULL); 8963 tcp->tcp_rcv_list = mp; 8964 tcp->tcp_rcv_last_head = mp; 8965 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 8966 tcp->tcp_rcv_last_tail->b_cont = mp; 8967 } else { 8968 tcp->tcp_rcv_last_head->b_next = mp; 8969 tcp->tcp_rcv_last_head = mp; 8970 } 8971 8972 while (mp->b_cont) 8973 mp = mp->b_cont; 8974 8975 tcp->tcp_rcv_last_tail = mp; 8976 tcp->tcp_rcv_cnt += seg_len; 8977 tcp->tcp_rwnd -= seg_len; 8978 } 8979 8980 /* The minimum of smoothed mean deviation in RTO calculation. */ 8981 #define TCP_SD_MIN 400 8982 8983 /* 8984 * Set RTO for this connection. The formula is from Jacobson and Karels' 8985 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 8986 * are the same as those in Appendix A.2 of that paper. 8987 * 8988 * m = new measurement 8989 * sa = smoothed RTT average (8 * average estimates). 8990 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 8991 */ 8992 static void 8993 tcp_set_rto(tcp_t *tcp, clock_t rtt) 8994 { 8995 long m = TICK_TO_MSEC(rtt); 8996 clock_t sa = tcp->tcp_rtt_sa; 8997 clock_t sv = tcp->tcp_rtt_sd; 8998 clock_t rto; 8999 tcp_stack_t *tcps = tcp->tcp_tcps; 9000 9001 BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); 9002 tcp->tcp_rtt_update++; 9003 9004 /* tcp_rtt_sa is not 0 means this is a new sample. */ 9005 if (sa != 0) { 9006 /* 9007 * Update average estimator: 9008 * new rtt = 7/8 old rtt + 1/8 Error 9009 */ 9010 9011 /* m is now Error in estimate. */ 9012 m -= sa >> 3; 9013 if ((sa += m) <= 0) { 9014 /* 9015 * Don't allow the smoothed average to be negative. 9016 * We use 0 to denote reinitialization of the 9017 * variables. 9018 */ 9019 sa = 1; 9020 } 9021 9022 /* 9023 * Update deviation estimator: 9024 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 9025 */ 9026 if (m < 0) 9027 m = -m; 9028 m -= sv >> 2; 9029 sv += m; 9030 } else { 9031 /* 9032 * This follows BSD's implementation. So the reinitialized 9033 * RTO is 3 * m. We cannot go less than 2 because if the 9034 * link is bandwidth dominated, doubling the window size 9035 * during slow start means doubling the RTT. We want to be 9036 * more conservative when we reinitialize our estimates. 3 9037 * is just a convenient number. 9038 */ 9039 sa = m << 3; 9040 sv = m << 1; 9041 } 9042 if (sv < TCP_SD_MIN) { 9043 /* 9044 * We do not know that if sa captures the delay ACK 9045 * effect as in a long train of segments, a receiver 9046 * does not delay its ACKs. So set the minimum of sv 9047 * to be TCP_SD_MIN, which is default to 400 ms, twice 9048 * of BSD DATO. That means the minimum of mean 9049 * deviation is 100 ms. 9050 * 9051 */ 9052 sv = TCP_SD_MIN; 9053 } 9054 tcp->tcp_rtt_sa = sa; 9055 tcp->tcp_rtt_sd = sv; 9056 /* 9057 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 9058 * 9059 * Add tcp_rexmit_interval extra in case of extreme environment 9060 * where the algorithm fails to work. The default value of 9061 * tcp_rexmit_interval_extra should be 0. 9062 * 9063 * As we use a finer grained clock than BSD and update 9064 * RTO for every ACKs, add in another .25 of RTT to the 9065 * deviation of RTO to accomodate burstiness of 1/4 of 9066 * window size. 9067 */ 9068 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 9069 9070 if (rto > tcps->tcps_rexmit_interval_max) { 9071 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 9072 } else if (rto < tcps->tcps_rexmit_interval_min) { 9073 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 9074 } else { 9075 tcp->tcp_rto = rto; 9076 } 9077 9078 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 9079 tcp->tcp_timer_backoff = 0; 9080 } 9081 9082 /* 9083 * tcp_get_seg_mp() is called to get the pointer to a segment in the 9084 * send queue which starts at the given sequence number. If the given 9085 * sequence number is equal to last valid sequence number (tcp_snxt), the 9086 * returned mblk is the last valid mblk, and off is set to the length of 9087 * that mblk. 9088 * 9089 * send queue which starts at the given seq. no. 9090 * 9091 * Parameters: 9092 * tcp_t *tcp: the tcp instance pointer. 9093 * uint32_t seq: the starting seq. no of the requested segment. 9094 * int32_t *off: after the execution, *off will be the offset to 9095 * the returned mblk which points to the requested seq no. 9096 * It is the caller's responsibility to send in a non-null off. 9097 * 9098 * Return: 9099 * A mblk_t pointer pointing to the requested segment in send queue. 9100 */ 9101 static mblk_t * 9102 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 9103 { 9104 int32_t cnt; 9105 mblk_t *mp; 9106 9107 /* Defensive coding. Make sure we don't send incorrect data. */ 9108 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GT(seq, tcp->tcp_snxt)) 9109 return (NULL); 9110 9111 cnt = seq - tcp->tcp_suna; 9112 mp = tcp->tcp_xmit_head; 9113 while (cnt > 0 && mp != NULL) { 9114 cnt -= mp->b_wptr - mp->b_rptr; 9115 if (cnt <= 0) { 9116 cnt += mp->b_wptr - mp->b_rptr; 9117 break; 9118 } 9119 mp = mp->b_cont; 9120 } 9121 ASSERT(mp != NULL); 9122 *off = cnt; 9123 return (mp); 9124 } 9125 9126 /* 9127 * This function handles all retransmissions if SACK is enabled for this 9128 * connection. First it calculates how many segments can be retransmitted 9129 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 9130 * segments. A segment is eligible if sack_cnt for that segment is greater 9131 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 9132 * all eligible segments, it checks to see if TCP can send some new segments 9133 * (fast recovery). If it can, set the appropriate flag for tcp_input_data(). 9134 * 9135 * Parameters: 9136 * tcp_t *tcp: the tcp structure of the connection. 9137 * uint_t *flags: in return, appropriate value will be set for 9138 * tcp_input_data(). 9139 */ 9140 static void 9141 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 9142 { 9143 notsack_blk_t *notsack_blk; 9144 int32_t usable_swnd; 9145 int32_t mss; 9146 uint32_t seg_len; 9147 mblk_t *xmit_mp; 9148 tcp_stack_t *tcps = tcp->tcp_tcps; 9149 9150 ASSERT(tcp->tcp_sack_info != NULL); 9151 ASSERT(tcp->tcp_notsack_list != NULL); 9152 ASSERT(tcp->tcp_rexmit == B_FALSE); 9153 9154 /* Defensive coding in case there is a bug... */ 9155 if (tcp->tcp_notsack_list == NULL) { 9156 return; 9157 } 9158 notsack_blk = tcp->tcp_notsack_list; 9159 mss = tcp->tcp_mss; 9160 9161 /* 9162 * Limit the num of outstanding data in the network to be 9163 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 9164 */ 9165 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 9166 9167 /* At least retransmit 1 MSS of data. */ 9168 if (usable_swnd <= 0) { 9169 usable_swnd = mss; 9170 } 9171 9172 /* Make sure no new RTT samples will be taken. */ 9173 tcp->tcp_csuna = tcp->tcp_snxt; 9174 9175 notsack_blk = tcp->tcp_notsack_list; 9176 while (usable_swnd > 0) { 9177 mblk_t *snxt_mp, *tmp_mp; 9178 tcp_seq begin = tcp->tcp_sack_snxt; 9179 tcp_seq end; 9180 int32_t off; 9181 9182 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 9183 if (SEQ_GT(notsack_blk->end, begin) && 9184 (notsack_blk->sack_cnt >= 9185 tcps->tcps_dupack_fast_retransmit)) { 9186 end = notsack_blk->end; 9187 if (SEQ_LT(begin, notsack_blk->begin)) { 9188 begin = notsack_blk->begin; 9189 } 9190 break; 9191 } 9192 } 9193 /* 9194 * All holes are filled. Manipulate tcp_cwnd to send more 9195 * if we can. Note that after the SACK recovery, tcp_cwnd is 9196 * set to tcp_cwnd_ssthresh. 9197 */ 9198 if (notsack_blk == NULL) { 9199 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 9200 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 9201 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 9202 ASSERT(tcp->tcp_cwnd > 0); 9203 return; 9204 } else { 9205 usable_swnd = usable_swnd / mss; 9206 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 9207 MAX(usable_swnd * mss, mss); 9208 *flags |= TH_XMIT_NEEDED; 9209 return; 9210 } 9211 } 9212 9213 /* 9214 * Note that we may send more than usable_swnd allows here 9215 * because of round off, but no more than 1 MSS of data. 9216 */ 9217 seg_len = end - begin; 9218 if (seg_len > mss) 9219 seg_len = mss; 9220 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 9221 ASSERT(snxt_mp != NULL); 9222 /* This should not happen. Defensive coding again... */ 9223 if (snxt_mp == NULL) { 9224 return; 9225 } 9226 9227 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 9228 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 9229 if (xmit_mp == NULL) 9230 return; 9231 9232 usable_swnd -= seg_len; 9233 tcp->tcp_pipe += seg_len; 9234 tcp->tcp_sack_snxt = begin + seg_len; 9235 9236 tcp_send_data(tcp, xmit_mp); 9237 9238 /* 9239 * Update the send timestamp to avoid false retransmission. 9240 */ 9241 snxt_mp->b_prev = (mblk_t *)ddi_get_lbolt(); 9242 9243 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 9244 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); 9245 BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); 9246 /* 9247 * Update tcp_rexmit_max to extend this SACK recovery phase. 9248 * This happens when new data sent during fast recovery is 9249 * also lost. If TCP retransmits those new data, it needs 9250 * to extend SACK recover phase to avoid starting another 9251 * fast retransmit/recovery unnecessarily. 9252 */ 9253 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 9254 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 9255 } 9256 } 9257 } 9258 9259 /* 9260 * tcp_ss_rexmit() is called to do slow start retransmission after a timeout 9261 * or ICMP errors. 9262 * 9263 * To limit the number of duplicate segments, we limit the number of segment 9264 * to be sent in one time to tcp_snd_burst, the burst variable. 9265 */ 9266 static void 9267 tcp_ss_rexmit(tcp_t *tcp) 9268 { 9269 uint32_t snxt; 9270 uint32_t smax; 9271 int32_t win; 9272 int32_t mss; 9273 int32_t off; 9274 int32_t burst = tcp->tcp_snd_burst; 9275 mblk_t *snxt_mp; 9276 tcp_stack_t *tcps = tcp->tcp_tcps; 9277 9278 /* 9279 * Note that tcp_rexmit can be set even though TCP has retransmitted 9280 * all unack'ed segments. 9281 */ 9282 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 9283 smax = tcp->tcp_rexmit_max; 9284 snxt = tcp->tcp_rexmit_nxt; 9285 if (SEQ_LT(snxt, tcp->tcp_suna)) { 9286 snxt = tcp->tcp_suna; 9287 } 9288 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 9289 win -= snxt - tcp->tcp_suna; 9290 mss = tcp->tcp_mss; 9291 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 9292 9293 while (SEQ_LT(snxt, smax) && (win > 0) && 9294 (burst > 0) && (snxt_mp != NULL)) { 9295 mblk_t *xmit_mp; 9296 mblk_t *old_snxt_mp = snxt_mp; 9297 uint32_t cnt = mss; 9298 9299 if (win < cnt) { 9300 cnt = win; 9301 } 9302 if (SEQ_GT(snxt + cnt, smax)) { 9303 cnt = smax - snxt; 9304 } 9305 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 9306 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 9307 if (xmit_mp == NULL) 9308 return; 9309 9310 tcp_send_data(tcp, xmit_mp); 9311 9312 snxt += cnt; 9313 win -= cnt; 9314 /* 9315 * Update the send timestamp to avoid false 9316 * retransmission. 9317 */ 9318 old_snxt_mp->b_prev = (mblk_t *)ddi_get_lbolt(); 9319 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 9320 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); 9321 9322 tcp->tcp_rexmit_nxt = snxt; 9323 burst--; 9324 } 9325 /* 9326 * If we have transmitted all we have at the time 9327 * we started the retranmission, we can leave 9328 * the rest of the job to tcp_wput_data(). But we 9329 * need to check the send window first. If the 9330 * win is not 0, go on with tcp_wput_data(). 9331 */ 9332 if (SEQ_LT(snxt, smax) || win == 0) { 9333 return; 9334 } 9335 } 9336 /* Only call tcp_wput_data() if there is data to be sent. */ 9337 if (tcp->tcp_unsent) { 9338 tcp_wput_data(tcp, NULL, B_FALSE); 9339 } 9340 } 9341 9342 /* 9343 * Process all TCP option in SYN segment. Note that this function should 9344 * be called after tcp_set_destination() is called so that the necessary info 9345 * from IRE is already set in the tcp structure. 9346 * 9347 * This function sets up the correct tcp_mss value according to the 9348 * MSS option value and our header size. It also sets up the window scale 9349 * and timestamp values, and initialize SACK info blocks. But it does not 9350 * change receive window size after setting the tcp_mss value. The caller 9351 * should do the appropriate change. 9352 */ 9353 void 9354 tcp_process_options(tcp_t *tcp, tcpha_t *tcpha) 9355 { 9356 int options; 9357 tcp_opt_t tcpopt; 9358 uint32_t mss_max; 9359 char *tmp_tcph; 9360 tcp_stack_t *tcps = tcp->tcp_tcps; 9361 conn_t *connp = tcp->tcp_connp; 9362 9363 tcpopt.tcp = NULL; 9364 options = tcp_parse_options(tcpha, &tcpopt); 9365 9366 /* 9367 * Process MSS option. Note that MSS option value does not account 9368 * for IP or TCP options. This means that it is equal to MTU - minimum 9369 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 9370 * IPv6. 9371 */ 9372 if (!(options & TCP_OPT_MSS_PRESENT)) { 9373 if (connp->conn_ipversion == IPV4_VERSION) 9374 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 9375 else 9376 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 9377 } else { 9378 if (connp->conn_ipversion == IPV4_VERSION) 9379 mss_max = tcps->tcps_mss_max_ipv4; 9380 else 9381 mss_max = tcps->tcps_mss_max_ipv6; 9382 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 9383 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 9384 else if (tcpopt.tcp_opt_mss > mss_max) 9385 tcpopt.tcp_opt_mss = mss_max; 9386 } 9387 9388 /* Process Window Scale option. */ 9389 if (options & TCP_OPT_WSCALE_PRESENT) { 9390 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 9391 tcp->tcp_snd_ws_ok = B_TRUE; 9392 } else { 9393 tcp->tcp_snd_ws = B_FALSE; 9394 tcp->tcp_snd_ws_ok = B_FALSE; 9395 tcp->tcp_rcv_ws = B_FALSE; 9396 } 9397 9398 /* Process Timestamp option. */ 9399 if ((options & TCP_OPT_TSTAMP_PRESENT) && 9400 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 9401 tmp_tcph = (char *)tcp->tcp_tcpha; 9402 9403 tcp->tcp_snd_ts_ok = B_TRUE; 9404 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 9405 tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 9406 ASSERT(OK_32PTR(tmp_tcph)); 9407 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 9408 9409 /* Fill in our template header with basic timestamp option. */ 9410 tmp_tcph += connp->conn_ht_ulp_len; 9411 tmp_tcph[0] = TCPOPT_NOP; 9412 tmp_tcph[1] = TCPOPT_NOP; 9413 tmp_tcph[2] = TCPOPT_TSTAMP; 9414 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 9415 connp->conn_ht_iphc_len += TCPOPT_REAL_TS_LEN; 9416 connp->conn_ht_ulp_len += TCPOPT_REAL_TS_LEN; 9417 tcp->tcp_tcpha->tha_offset_and_reserved += (3 << 4); 9418 } else { 9419 tcp->tcp_snd_ts_ok = B_FALSE; 9420 } 9421 9422 /* 9423 * Process SACK options. If SACK is enabled for this connection, 9424 * then allocate the SACK info structure. Note the following ways 9425 * when tcp_snd_sack_ok is set to true. 9426 * 9427 * For active connection: in tcp_set_destination() called in 9428 * tcp_connect(). 9429 * 9430 * For passive connection: in tcp_set_destination() called in 9431 * tcp_input_listener(). 9432 * 9433 * That's the reason why the extra TCP_IS_DETACHED() check is there. 9434 * That check makes sure that if we did not send a SACK OK option, 9435 * we will not enable SACK for this connection even though the other 9436 * side sends us SACK OK option. For active connection, the SACK 9437 * info structure has already been allocated. So we need to free 9438 * it if SACK is disabled. 9439 */ 9440 if ((options & TCP_OPT_SACK_OK_PRESENT) && 9441 (tcp->tcp_snd_sack_ok || 9442 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 9443 /* This should be true only in the passive case. */ 9444 if (tcp->tcp_sack_info == NULL) { 9445 ASSERT(TCP_IS_DETACHED(tcp)); 9446 tcp->tcp_sack_info = 9447 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 9448 } 9449 if (tcp->tcp_sack_info == NULL) { 9450 tcp->tcp_snd_sack_ok = B_FALSE; 9451 } else { 9452 tcp->tcp_snd_sack_ok = B_TRUE; 9453 if (tcp->tcp_snd_ts_ok) { 9454 tcp->tcp_max_sack_blk = 3; 9455 } else { 9456 tcp->tcp_max_sack_blk = 4; 9457 } 9458 } 9459 } else { 9460 /* 9461 * Resetting tcp_snd_sack_ok to B_FALSE so that 9462 * no SACK info will be used for this 9463 * connection. This assumes that SACK usage 9464 * permission is negotiated. This may need 9465 * to be changed once this is clarified. 9466 */ 9467 if (tcp->tcp_sack_info != NULL) { 9468 ASSERT(tcp->tcp_notsack_list == NULL); 9469 kmem_cache_free(tcp_sack_info_cache, 9470 tcp->tcp_sack_info); 9471 tcp->tcp_sack_info = NULL; 9472 } 9473 tcp->tcp_snd_sack_ok = B_FALSE; 9474 } 9475 9476 /* 9477 * Now we know the exact TCP/IP header length, subtract 9478 * that from tcp_mss to get our side's MSS. 9479 */ 9480 tcp->tcp_mss -= connp->conn_ht_iphc_len; 9481 9482 /* 9483 * Here we assume that the other side's header size will be equal to 9484 * our header size. We calculate the real MSS accordingly. Need to 9485 * take into additional stuffs IPsec puts in. 9486 * 9487 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 9488 */ 9489 tcpopt.tcp_opt_mss -= connp->conn_ht_iphc_len + 9490 tcp->tcp_ipsec_overhead - 9491 ((connp->conn_ipversion == IPV4_VERSION ? 9492 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 9493 9494 /* 9495 * Set MSS to the smaller one of both ends of the connection. 9496 * We should not have called tcp_mss_set() before, but our 9497 * side of the MSS should have been set to a proper value 9498 * by tcp_set_destination(). tcp_mss_set() will also set up the 9499 * STREAM head parameters properly. 9500 * 9501 * If we have a larger-than-16-bit window but the other side 9502 * didn't want to do window scale, tcp_rwnd_set() will take 9503 * care of that. 9504 */ 9505 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); 9506 9507 /* 9508 * Initialize tcp_cwnd value. After tcp_mss_set(), tcp_mss has been 9509 * updated properly. 9510 */ 9511 SET_TCP_INIT_CWND(tcp, tcp->tcp_mss, tcps->tcps_slow_start_initial); 9512 } 9513 9514 /* 9515 * Sends the T_CONN_IND to the listener. The caller calls this 9516 * functions via squeue to get inside the listener's perimeter 9517 * once the 3 way hand shake is done a T_CONN_IND needs to be 9518 * sent. As an optimization, the caller can call this directly 9519 * if listener's perimeter is same as eager's. 9520 */ 9521 /* ARGSUSED */ 9522 void 9523 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 9524 { 9525 conn_t *lconnp = (conn_t *)arg; 9526 tcp_t *listener = lconnp->conn_tcp; 9527 tcp_t *tcp; 9528 struct T_conn_ind *conn_ind; 9529 ipaddr_t *addr_cache; 9530 boolean_t need_send_conn_ind = B_FALSE; 9531 tcp_stack_t *tcps = listener->tcp_tcps; 9532 9533 /* retrieve the eager */ 9534 conn_ind = (struct T_conn_ind *)mp->b_rptr; 9535 ASSERT(conn_ind->OPT_offset != 0 && 9536 conn_ind->OPT_length == sizeof (intptr_t)); 9537 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 9538 conn_ind->OPT_length); 9539 9540 /* 9541 * TLI/XTI applications will get confused by 9542 * sending eager as an option since it violates 9543 * the option semantics. So remove the eager as 9544 * option since TLI/XTI app doesn't need it anyway. 9545 */ 9546 if (!TCP_IS_SOCKET(listener)) { 9547 conn_ind->OPT_length = 0; 9548 conn_ind->OPT_offset = 0; 9549 } 9550 if (listener->tcp_state != TCPS_LISTEN) { 9551 /* 9552 * If listener has closed, it would have caused a 9553 * a cleanup/blowoff to happen for the eager. We 9554 * just need to return. 9555 */ 9556 freemsg(mp); 9557 return; 9558 } 9559 9560 9561 /* 9562 * if the conn_req_q is full defer passing up the 9563 * T_CONN_IND until space is availabe after t_accept() 9564 * processing 9565 */ 9566 mutex_enter(&listener->tcp_eager_lock); 9567 9568 /* 9569 * Take the eager out, if it is in the list of droppable eagers 9570 * as we are here because the 3W handshake is over. 9571 */ 9572 MAKE_UNDROPPABLE(tcp); 9573 9574 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 9575 tcp_t *tail; 9576 9577 /* 9578 * The eager already has an extra ref put in tcp_input_data 9579 * so that it stays till accept comes back even though it 9580 * might get into TCPS_CLOSED as a result of a TH_RST etc. 9581 */ 9582 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 9583 listener->tcp_conn_req_cnt_q0--; 9584 listener->tcp_conn_req_cnt_q++; 9585 9586 /* Move from SYN_RCVD to ESTABLISHED list */ 9587 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 9588 tcp->tcp_eager_prev_q0; 9589 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 9590 tcp->tcp_eager_next_q0; 9591 tcp->tcp_eager_prev_q0 = NULL; 9592 tcp->tcp_eager_next_q0 = NULL; 9593 9594 /* 9595 * Insert at end of the queue because sockfs 9596 * sends down T_CONN_RES in chronological 9597 * order. Leaving the older conn indications 9598 * at front of the queue helps reducing search 9599 * time. 9600 */ 9601 tail = listener->tcp_eager_last_q; 9602 if (tail != NULL) 9603 tail->tcp_eager_next_q = tcp; 9604 else 9605 listener->tcp_eager_next_q = tcp; 9606 listener->tcp_eager_last_q = tcp; 9607 tcp->tcp_eager_next_q = NULL; 9608 /* 9609 * Delay sending up the T_conn_ind until we are 9610 * done with the eager. Once we have have sent up 9611 * the T_conn_ind, the accept can potentially complete 9612 * any time and release the refhold we have on the eager. 9613 */ 9614 need_send_conn_ind = B_TRUE; 9615 } else { 9616 /* 9617 * Defer connection on q0 and set deferred 9618 * connection bit true 9619 */ 9620 tcp->tcp_conn_def_q0 = B_TRUE; 9621 9622 /* take tcp out of q0 ... */ 9623 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 9624 tcp->tcp_eager_next_q0; 9625 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 9626 tcp->tcp_eager_prev_q0; 9627 9628 /* ... and place it at the end of q0 */ 9629 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 9630 tcp->tcp_eager_next_q0 = listener; 9631 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 9632 listener->tcp_eager_prev_q0 = tcp; 9633 tcp->tcp_conn.tcp_eager_conn_ind = mp; 9634 } 9635 9636 /* we have timed out before */ 9637 if (tcp->tcp_syn_rcvd_timeout != 0) { 9638 tcp->tcp_syn_rcvd_timeout = 0; 9639 listener->tcp_syn_rcvd_timeout--; 9640 if (listener->tcp_syn_defense && 9641 listener->tcp_syn_rcvd_timeout <= 9642 (tcps->tcps_conn_req_max_q0 >> 5) && 9643 10*MINUTES < TICK_TO_MSEC(ddi_get_lbolt64() - 9644 listener->tcp_last_rcv_lbolt)) { 9645 /* 9646 * Turn off the defense mode if we 9647 * believe the SYN attack is over. 9648 */ 9649 listener->tcp_syn_defense = B_FALSE; 9650 if (listener->tcp_ip_addr_cache) { 9651 kmem_free((void *)listener->tcp_ip_addr_cache, 9652 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 9653 listener->tcp_ip_addr_cache = NULL; 9654 } 9655 } 9656 } 9657 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 9658 if (addr_cache != NULL) { 9659 /* 9660 * We have finished a 3-way handshake with this 9661 * remote host. This proves the IP addr is good. 9662 * Cache it! 9663 */ 9664 addr_cache[IP_ADDR_CACHE_HASH(tcp->tcp_connp->conn_faddr_v4)] = 9665 tcp->tcp_connp->conn_faddr_v4; 9666 } 9667 mutex_exit(&listener->tcp_eager_lock); 9668 if (need_send_conn_ind) 9669 tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp); 9670 } 9671 9672 /* 9673 * Send the newconn notification to ulp. The eager is blown off if the 9674 * notification fails. 9675 */ 9676 static void 9677 tcp_ulp_newconn(conn_t *lconnp, conn_t *econnp, mblk_t *mp) 9678 { 9679 if (IPCL_IS_NONSTR(lconnp)) { 9680 cred_t *cr; 9681 pid_t cpid = NOPID; 9682 9683 ASSERT(econnp->conn_tcp->tcp_listener == lconnp->conn_tcp); 9684 ASSERT(econnp->conn_tcp->tcp_saved_listener == 9685 lconnp->conn_tcp); 9686 9687 cr = msg_getcred(mp, &cpid); 9688 9689 /* Keep the message around in case of a fallback to TPI */ 9690 econnp->conn_tcp->tcp_conn.tcp_eager_conn_ind = mp; 9691 /* 9692 * Notify the ULP about the newconn. It is guaranteed that no 9693 * tcp_accept() call will be made for the eager if the 9694 * notification fails, so it's safe to blow it off in that 9695 * case. 9696 * 9697 * The upper handle will be assigned when tcp_accept() is 9698 * called. 9699 */ 9700 if ((*lconnp->conn_upcalls->su_newconn) 9701 (lconnp->conn_upper_handle, 9702 (sock_lower_handle_t)econnp, 9703 &sock_tcp_downcalls, cr, cpid, 9704 &econnp->conn_upcalls) == NULL) { 9705 /* Failed to allocate a socket */ 9706 BUMP_MIB(&lconnp->conn_tcp->tcp_tcps->tcps_mib, 9707 tcpEstabResets); 9708 (void) tcp_eager_blowoff(lconnp->conn_tcp, 9709 econnp->conn_tcp->tcp_conn_req_seqnum); 9710 } 9711 } else { 9712 putnext(lconnp->conn_rq, mp); 9713 } 9714 } 9715 9716 /* 9717 * Handle a packet that has been reclassified by TCP. 9718 * This function drops the ref on connp that the caller had. 9719 */ 9720 static void 9721 tcp_reinput(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst) 9722 { 9723 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 9724 9725 if (connp->conn_incoming_ifindex != 0 && 9726 connp->conn_incoming_ifindex != ira->ira_ruifindex) { 9727 freemsg(mp); 9728 CONN_DEC_REF(connp); 9729 return; 9730 } 9731 9732 if (CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) || 9733 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 9734 ip6_t *ip6h; 9735 ipha_t *ipha; 9736 9737 if (ira->ira_flags & IRAF_IS_IPV4) { 9738 ipha = (ipha_t *)mp->b_rptr; 9739 ip6h = NULL; 9740 } else { 9741 ipha = NULL; 9742 ip6h = (ip6_t *)mp->b_rptr; 9743 } 9744 mp = ipsec_check_inbound_policy(mp, connp, ipha, ip6h, ira); 9745 if (mp == NULL) { 9746 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 9747 /* Note that mp is NULL */ 9748 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 9749 CONN_DEC_REF(connp); 9750 return; 9751 } 9752 } 9753 9754 if (IPCL_IS_TCP(connp)) { 9755 /* 9756 * do not drain, certain use cases can blow 9757 * the stack 9758 */ 9759 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 9760 connp->conn_recv, connp, ira, 9761 SQ_NODRAIN, SQTAG_IP_TCP_INPUT); 9762 } else { 9763 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 9764 (connp->conn_recv)(connp, mp, NULL, 9765 ira); 9766 CONN_DEC_REF(connp); 9767 } 9768 9769 } 9770 9771 boolean_t tcp_outbound_squeue_switch = B_FALSE; 9772 9773 /* 9774 * Handle M_DATA messages from IP. Its called directly from IP via 9775 * squeue for received IP packets. 9776 * 9777 * The first argument is always the connp/tcp to which the mp belongs. 9778 * There are no exceptions to this rule. The caller has already put 9779 * a reference on this connp/tcp and once tcp_input_data() returns, 9780 * the squeue will do the refrele. 9781 * 9782 * The TH_SYN for the listener directly go to tcp_input_listener via 9783 * squeue. ICMP errors go directly to tcp_icmp_input(). 9784 * 9785 * sqp: NULL = recursive, sqp != NULL means called from squeue 9786 */ 9787 void 9788 tcp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 9789 { 9790 int32_t bytes_acked; 9791 int32_t gap; 9792 mblk_t *mp1; 9793 uint_t flags; 9794 uint32_t new_swnd = 0; 9795 uchar_t *iphdr; 9796 uchar_t *rptr; 9797 int32_t rgap; 9798 uint32_t seg_ack; 9799 int seg_len; 9800 uint_t ip_hdr_len; 9801 uint32_t seg_seq; 9802 tcpha_t *tcpha; 9803 int urp; 9804 tcp_opt_t tcpopt; 9805 ip_pkt_t ipp; 9806 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 9807 uint32_t cwnd; 9808 uint32_t add; 9809 int npkt; 9810 int mss; 9811 conn_t *connp = (conn_t *)arg; 9812 squeue_t *sqp = (squeue_t *)arg2; 9813 tcp_t *tcp = connp->conn_tcp; 9814 tcp_stack_t *tcps = tcp->tcp_tcps; 9815 9816 /* 9817 * RST from fused tcp loopback peer should trigger an unfuse. 9818 */ 9819 if (tcp->tcp_fused) { 9820 TCP_STAT(tcps, tcp_fusion_aborted); 9821 tcp_unfuse(tcp); 9822 } 9823 9824 iphdr = mp->b_rptr; 9825 rptr = mp->b_rptr; 9826 ASSERT(OK_32PTR(rptr)); 9827 9828 ip_hdr_len = ira->ira_ip_hdr_length; 9829 if (connp->conn_recv_ancillary.crb_all != 0) { 9830 /* 9831 * Record packet information in the ip_pkt_t 9832 */ 9833 ipp.ipp_fields = 0; 9834 if (ira->ira_flags & IRAF_IS_IPV4) { 9835 (void) ip_find_hdr_v4((ipha_t *)rptr, &ipp, 9836 B_FALSE); 9837 } else { 9838 uint8_t nexthdrp; 9839 9840 /* 9841 * IPv6 packets can only be received by applications 9842 * that are prepared to receive IPv6 addresses. 9843 * The IP fanout must ensure this. 9844 */ 9845 ASSERT(connp->conn_family == AF_INET6); 9846 9847 (void) ip_find_hdr_v6(mp, (ip6_t *)rptr, B_TRUE, &ipp, 9848 &nexthdrp); 9849 ASSERT(nexthdrp == IPPROTO_TCP); 9850 9851 /* Could have caused a pullup? */ 9852 iphdr = mp->b_rptr; 9853 rptr = mp->b_rptr; 9854 } 9855 } 9856 ASSERT(DB_TYPE(mp) == M_DATA); 9857 ASSERT(mp->b_next == NULL); 9858 9859 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 9860 seg_seq = ntohl(tcpha->tha_seq); 9861 seg_ack = ntohl(tcpha->tha_ack); 9862 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 9863 seg_len = (int)(mp->b_wptr - rptr) - 9864 (ip_hdr_len + TCP_HDR_LENGTH(tcpha)); 9865 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 9866 do { 9867 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 9868 (uintptr_t)INT_MAX); 9869 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 9870 } while ((mp1 = mp1->b_cont) != NULL && 9871 mp1->b_datap->db_type == M_DATA); 9872 } 9873 9874 if (tcp->tcp_state == TCPS_TIME_WAIT) { 9875 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 9876 seg_len, tcpha, ira); 9877 return; 9878 } 9879 9880 if (sqp != NULL) { 9881 /* 9882 * This is the correct place to update tcp_last_recv_time. Note 9883 * that it is also updated for tcp structure that belongs to 9884 * global and listener queues which do not really need updating. 9885 * But that should not cause any harm. And it is updated for 9886 * all kinds of incoming segments, not only for data segments. 9887 */ 9888 tcp->tcp_last_recv_time = LBOLT_FASTPATH; 9889 } 9890 9891 flags = (unsigned int)tcpha->tha_flags & 0xFF; 9892 9893 BUMP_LOCAL(tcp->tcp_ibsegs); 9894 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 9895 9896 if ((flags & TH_URG) && sqp != NULL) { 9897 /* 9898 * TCP can't handle urgent pointers that arrive before 9899 * the connection has been accept()ed since it can't 9900 * buffer OOB data. Discard segment if this happens. 9901 * 9902 * We can't just rely on a non-null tcp_listener to indicate 9903 * that the accept() has completed since unlinking of the 9904 * eager and completion of the accept are not atomic. 9905 * tcp_detached, when it is not set (B_FALSE) indicates 9906 * that the accept() has completed. 9907 * 9908 * Nor can it reassemble urgent pointers, so discard 9909 * if it's not the next segment expected. 9910 * 9911 * Otherwise, collapse chain into one mblk (discard if 9912 * that fails). This makes sure the headers, retransmitted 9913 * data, and new data all are in the same mblk. 9914 */ 9915 ASSERT(mp != NULL); 9916 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 9917 freemsg(mp); 9918 return; 9919 } 9920 /* Update pointers into message */ 9921 iphdr = rptr = mp->b_rptr; 9922 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 9923 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 9924 /* 9925 * Since we can't handle any data with this urgent 9926 * pointer that is out of sequence, we expunge 9927 * the data. This allows us to still register 9928 * the urgent mark and generate the M_PCSIG, 9929 * which we can do. 9930 */ 9931 mp->b_wptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 9932 seg_len = 0; 9933 } 9934 } 9935 9936 switch (tcp->tcp_state) { 9937 case TCPS_SYN_SENT: 9938 if (connp->conn_final_sqp == NULL && 9939 tcp_outbound_squeue_switch && sqp != NULL) { 9940 ASSERT(connp->conn_initial_sqp == connp->conn_sqp); 9941 connp->conn_final_sqp = sqp; 9942 if (connp->conn_final_sqp != connp->conn_sqp) { 9943 DTRACE_PROBE1(conn__final__sqp__switch, 9944 conn_t *, connp); 9945 CONN_INC_REF(connp); 9946 SQUEUE_SWITCH(connp, connp->conn_final_sqp); 9947 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 9948 tcp_input_data, connp, ira, ip_squeue_flag, 9949 SQTAG_CONNECT_FINISH); 9950 return; 9951 } 9952 DTRACE_PROBE1(conn__final__sqp__same, conn_t *, connp); 9953 } 9954 if (flags & TH_ACK) { 9955 /* 9956 * Note that our stack cannot send data before a 9957 * connection is established, therefore the 9958 * following check is valid. Otherwise, it has 9959 * to be changed. 9960 */ 9961 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 9962 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 9963 freemsg(mp); 9964 if (flags & TH_RST) 9965 return; 9966 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 9967 tcp, seg_ack, 0, TH_RST); 9968 return; 9969 } 9970 ASSERT(tcp->tcp_suna + 1 == seg_ack); 9971 } 9972 if (flags & TH_RST) { 9973 freemsg(mp); 9974 if (flags & TH_ACK) 9975 (void) tcp_clean_death(tcp, 9976 ECONNREFUSED, 13); 9977 return; 9978 } 9979 if (!(flags & TH_SYN)) { 9980 freemsg(mp); 9981 return; 9982 } 9983 9984 /* Process all TCP options. */ 9985 tcp_process_options(tcp, tcpha); 9986 /* 9987 * The following changes our rwnd to be a multiple of the 9988 * MIN(peer MSS, our MSS) for performance reason. 9989 */ 9990 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(connp->conn_rcvbuf, 9991 tcp->tcp_mss)); 9992 9993 /* Is the other end ECN capable? */ 9994 if (tcp->tcp_ecn_ok) { 9995 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 9996 tcp->tcp_ecn_ok = B_FALSE; 9997 } 9998 } 9999 /* 10000 * Clear ECN flags because it may interfere with later 10001 * processing. 10002 */ 10003 flags &= ~(TH_ECE|TH_CWR); 10004 10005 tcp->tcp_irs = seg_seq; 10006 tcp->tcp_rack = seg_seq; 10007 tcp->tcp_rnxt = seg_seq + 1; 10008 tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); 10009 if (!TCP_IS_DETACHED(tcp)) { 10010 /* Allocate room for SACK options if needed. */ 10011 connp->conn_wroff = connp->conn_ht_iphc_len; 10012 if (tcp->tcp_snd_sack_ok) 10013 connp->conn_wroff += TCPOPT_MAX_SACK_LEN; 10014 if (!tcp->tcp_loopback) 10015 connp->conn_wroff += tcps->tcps_wroff_xtra; 10016 10017 (void) proto_set_tx_wroff(connp->conn_rq, connp, 10018 connp->conn_wroff); 10019 } 10020 if (flags & TH_ACK) { 10021 /* 10022 * If we can't get the confirmation upstream, pretend 10023 * we didn't even see this one. 10024 * 10025 * XXX: how can we pretend we didn't see it if we 10026 * have updated rnxt et. al. 10027 * 10028 * For loopback we defer sending up the T_CONN_CON 10029 * until after some checks below. 10030 */ 10031 mp1 = NULL; 10032 /* 10033 * tcp_sendmsg() checks tcp_state without entering 10034 * the squeue so tcp_state should be updated before 10035 * sending up connection confirmation 10036 */ 10037 tcp->tcp_state = TCPS_ESTABLISHED; 10038 if (!tcp_conn_con(tcp, iphdr, mp, 10039 tcp->tcp_loopback ? &mp1 : NULL, ira)) { 10040 tcp->tcp_state = TCPS_SYN_SENT; 10041 freemsg(mp); 10042 return; 10043 } 10044 /* SYN was acked - making progress */ 10045 tcp->tcp_ip_forward_progress = B_TRUE; 10046 10047 /* One for the SYN */ 10048 tcp->tcp_suna = tcp->tcp_iss + 1; 10049 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 10050 10051 /* 10052 * If SYN was retransmitted, need to reset all 10053 * retransmission info. This is because this 10054 * segment will be treated as a dup ACK. 10055 */ 10056 if (tcp->tcp_rexmit) { 10057 tcp->tcp_rexmit = B_FALSE; 10058 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 10059 tcp->tcp_rexmit_max = tcp->tcp_snxt; 10060 tcp->tcp_snd_burst = tcp->tcp_localnet ? 10061 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 10062 tcp->tcp_ms_we_have_waited = 0; 10063 10064 /* 10065 * Set tcp_cwnd back to 1 MSS, per 10066 * recommendation from 10067 * draft-floyd-incr-init-win-01.txt, 10068 * Increasing TCP's Initial Window. 10069 */ 10070 tcp->tcp_cwnd = tcp->tcp_mss; 10071 } 10072 10073 tcp->tcp_swl1 = seg_seq; 10074 tcp->tcp_swl2 = seg_ack; 10075 10076 new_swnd = ntohs(tcpha->tha_win); 10077 tcp->tcp_swnd = new_swnd; 10078 if (new_swnd > tcp->tcp_max_swnd) 10079 tcp->tcp_max_swnd = new_swnd; 10080 10081 /* 10082 * Always send the three-way handshake ack immediately 10083 * in order to make the connection complete as soon as 10084 * possible on the accepting host. 10085 */ 10086 flags |= TH_ACK_NEEDED; 10087 10088 /* 10089 * Special case for loopback. At this point we have 10090 * received SYN-ACK from the remote endpoint. In 10091 * order to ensure that both endpoints reach the 10092 * fused state prior to any data exchange, the final 10093 * ACK needs to be sent before we indicate T_CONN_CON 10094 * to the module upstream. 10095 */ 10096 if (tcp->tcp_loopback) { 10097 mblk_t *ack_mp; 10098 10099 ASSERT(!tcp->tcp_unfusable); 10100 ASSERT(mp1 != NULL); 10101 /* 10102 * For loopback, we always get a pure SYN-ACK 10103 * and only need to send back the final ACK 10104 * with no data (this is because the other 10105 * tcp is ours and we don't do T/TCP). This 10106 * final ACK triggers the passive side to 10107 * perform fusion in ESTABLISHED state. 10108 */ 10109 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 10110 if (tcp->tcp_ack_tid != 0) { 10111 (void) TCP_TIMER_CANCEL(tcp, 10112 tcp->tcp_ack_tid); 10113 tcp->tcp_ack_tid = 0; 10114 } 10115 tcp_send_data(tcp, ack_mp); 10116 BUMP_LOCAL(tcp->tcp_obsegs); 10117 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 10118 10119 if (!IPCL_IS_NONSTR(connp)) { 10120 /* Send up T_CONN_CON */ 10121 if (ira->ira_cred != NULL) { 10122 mblk_setcred(mp1, 10123 ira->ira_cred, 10124 ira->ira_cpid); 10125 } 10126 putnext(connp->conn_rq, mp1); 10127 } else { 10128 (*connp->conn_upcalls-> 10129 su_connected) 10130 (connp->conn_upper_handle, 10131 tcp->tcp_connid, 10132 ira->ira_cred, 10133 ira->ira_cpid); 10134 freemsg(mp1); 10135 } 10136 10137 freemsg(mp); 10138 return; 10139 } 10140 /* 10141 * Forget fusion; we need to handle more 10142 * complex cases below. Send the deferred 10143 * T_CONN_CON message upstream and proceed 10144 * as usual. Mark this tcp as not capable 10145 * of fusion. 10146 */ 10147 TCP_STAT(tcps, tcp_fusion_unfusable); 10148 tcp->tcp_unfusable = B_TRUE; 10149 if (!IPCL_IS_NONSTR(connp)) { 10150 if (ira->ira_cred != NULL) { 10151 mblk_setcred(mp1, ira->ira_cred, 10152 ira->ira_cpid); 10153 } 10154 putnext(connp->conn_rq, mp1); 10155 } else { 10156 (*connp->conn_upcalls->su_connected) 10157 (connp->conn_upper_handle, 10158 tcp->tcp_connid, ira->ira_cred, 10159 ira->ira_cpid); 10160 freemsg(mp1); 10161 } 10162 } 10163 10164 /* 10165 * Check to see if there is data to be sent. If 10166 * yes, set the transmit flag. Then check to see 10167 * if received data processing needs to be done. 10168 * If not, go straight to xmit_check. This short 10169 * cut is OK as we don't support T/TCP. 10170 */ 10171 if (tcp->tcp_unsent) 10172 flags |= TH_XMIT_NEEDED; 10173 10174 if (seg_len == 0 && !(flags & TH_URG)) { 10175 freemsg(mp); 10176 goto xmit_check; 10177 } 10178 10179 flags &= ~TH_SYN; 10180 seg_seq++; 10181 break; 10182 } 10183 tcp->tcp_state = TCPS_SYN_RCVD; 10184 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 10185 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 10186 if (mp1 != NULL) { 10187 tcp_send_data(tcp, mp1); 10188 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 10189 } 10190 freemsg(mp); 10191 return; 10192 case TCPS_SYN_RCVD: 10193 if (flags & TH_ACK) { 10194 /* 10195 * In this state, a SYN|ACK packet is either bogus 10196 * because the other side must be ACKing our SYN which 10197 * indicates it has seen the ACK for their SYN and 10198 * shouldn't retransmit it or we're crossing SYNs 10199 * on active open. 10200 */ 10201 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 10202 freemsg(mp); 10203 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 10204 tcp, seg_ack, 0, TH_RST); 10205 return; 10206 } 10207 /* 10208 * NOTE: RFC 793 pg. 72 says this should be 10209 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 10210 * but that would mean we have an ack that ignored 10211 * our SYN. 10212 */ 10213 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 10214 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 10215 freemsg(mp); 10216 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 10217 tcp, seg_ack, 0, TH_RST); 10218 return; 10219 } 10220 } 10221 break; 10222 case TCPS_LISTEN: 10223 /* 10224 * Only a TLI listener can come through this path when a 10225 * acceptor is going back to be a listener and a packet 10226 * for the acceptor hits the classifier. For a socket 10227 * listener, this can never happen because a listener 10228 * can never accept connection on itself and hence a 10229 * socket acceptor can not go back to being a listener. 10230 */ 10231 ASSERT(!TCP_IS_SOCKET(tcp)); 10232 /*FALLTHRU*/ 10233 case TCPS_CLOSED: 10234 case TCPS_BOUND: { 10235 conn_t *new_connp; 10236 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 10237 10238 /* 10239 * Don't accept any input on a closed tcp as this TCP logically 10240 * does not exist on the system. Don't proceed further with 10241 * this TCP. For instance, this packet could trigger another 10242 * close of this tcp which would be disastrous for tcp_refcnt. 10243 * tcp_close_detached / tcp_clean_death / tcp_closei_local must 10244 * be called at most once on a TCP. In this case we need to 10245 * refeed the packet into the classifier and figure out where 10246 * the packet should go. 10247 */ 10248 new_connp = ipcl_classify(mp, ira, ipst); 10249 if (new_connp != NULL) { 10250 /* Drops ref on new_connp */ 10251 tcp_reinput(new_connp, mp, ira, ipst); 10252 return; 10253 } 10254 /* We failed to classify. For now just drop the packet */ 10255 freemsg(mp); 10256 return; 10257 } 10258 case TCPS_IDLE: 10259 /* 10260 * Handle the case where the tcp_clean_death() has happened 10261 * on a connection (application hasn't closed yet) but a packet 10262 * was already queued on squeue before tcp_clean_death() 10263 * was processed. Calling tcp_clean_death() twice on same 10264 * connection can result in weird behaviour. 10265 */ 10266 freemsg(mp); 10267 return; 10268 default: 10269 break; 10270 } 10271 10272 /* 10273 * Already on the correct queue/perimeter. 10274 * If this is a detached connection and not an eager 10275 * connection hanging off a listener then new data 10276 * (past the FIN) will cause a reset. 10277 * We do a special check here where it 10278 * is out of the main line, rather than check 10279 * if we are detached every time we see new 10280 * data down below. 10281 */ 10282 if (TCP_IS_DETACHED_NONEAGER(tcp) && 10283 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 10284 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 10285 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 10286 10287 freemsg(mp); 10288 /* 10289 * This could be an SSL closure alert. We're detached so just 10290 * acknowledge it this last time. 10291 */ 10292 if (tcp->tcp_kssl_ctx != NULL) { 10293 kssl_release_ctx(tcp->tcp_kssl_ctx); 10294 tcp->tcp_kssl_ctx = NULL; 10295 10296 tcp->tcp_rnxt += seg_len; 10297 tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); 10298 flags |= TH_ACK_NEEDED; 10299 goto ack_check; 10300 } 10301 10302 tcp_xmit_ctl("new data when detached", tcp, 10303 tcp->tcp_snxt, 0, TH_RST); 10304 (void) tcp_clean_death(tcp, EPROTO, 12); 10305 return; 10306 } 10307 10308 mp->b_rptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 10309 urp = ntohs(tcpha->tha_urp) - TCP_OLD_URP_INTERPRETATION; 10310 new_swnd = ntohs(tcpha->tha_win) << 10311 ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws); 10312 10313 if (tcp->tcp_snd_ts_ok) { 10314 if (!tcp_paws_check(tcp, tcpha, &tcpopt)) { 10315 /* 10316 * This segment is not acceptable. 10317 * Drop it and send back an ACK. 10318 */ 10319 freemsg(mp); 10320 flags |= TH_ACK_NEEDED; 10321 goto ack_check; 10322 } 10323 } else if (tcp->tcp_snd_sack_ok) { 10324 ASSERT(tcp->tcp_sack_info != NULL); 10325 tcpopt.tcp = tcp; 10326 /* 10327 * SACK info in already updated in tcp_parse_options. Ignore 10328 * all other TCP options... 10329 */ 10330 (void) tcp_parse_options(tcpha, &tcpopt); 10331 } 10332 try_again:; 10333 mss = tcp->tcp_mss; 10334 gap = seg_seq - tcp->tcp_rnxt; 10335 rgap = tcp->tcp_rwnd - (gap + seg_len); 10336 /* 10337 * gap is the amount of sequence space between what we expect to see 10338 * and what we got for seg_seq. A positive value for gap means 10339 * something got lost. A negative value means we got some old stuff. 10340 */ 10341 if (gap < 0) { 10342 /* Old stuff present. Is the SYN in there? */ 10343 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 10344 (seg_len != 0)) { 10345 flags &= ~TH_SYN; 10346 seg_seq++; 10347 urp--; 10348 /* Recompute the gaps after noting the SYN. */ 10349 goto try_again; 10350 } 10351 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 10352 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 10353 (seg_len > -gap ? -gap : seg_len)); 10354 /* Remove the old stuff from seg_len. */ 10355 seg_len += gap; 10356 /* 10357 * Anything left? 10358 * Make sure to check for unack'd FIN when rest of data 10359 * has been previously ack'd. 10360 */ 10361 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 10362 /* 10363 * Resets are only valid if they lie within our offered 10364 * window. If the RST bit is set, we just ignore this 10365 * segment. 10366 */ 10367 if (flags & TH_RST) { 10368 freemsg(mp); 10369 return; 10370 } 10371 10372 /* 10373 * The arriving of dup data packets indicate that we 10374 * may have postponed an ack for too long, or the other 10375 * side's RTT estimate is out of shape. Start acking 10376 * more often. 10377 */ 10378 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 10379 tcp->tcp_rack_cnt >= 1 && 10380 tcp->tcp_rack_abs_max > 2) { 10381 tcp->tcp_rack_abs_max--; 10382 } 10383 tcp->tcp_rack_cur_max = 1; 10384 10385 /* 10386 * This segment is "unacceptable". None of its 10387 * sequence space lies within our advertized window. 10388 * 10389 * Adjust seg_len to the original value for tracing. 10390 */ 10391 seg_len -= gap; 10392 if (connp->conn_debug) { 10393 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 10394 "tcp_rput: unacceptable, gap %d, rgap %d, " 10395 "flags 0x%x, seg_seq %u, seg_ack %u, " 10396 "seg_len %d, rnxt %u, snxt %u, %s", 10397 gap, rgap, flags, seg_seq, seg_ack, 10398 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 10399 tcp_display(tcp, NULL, 10400 DISP_ADDR_AND_PORT)); 10401 } 10402 10403 /* 10404 * Arrange to send an ACK in response to the 10405 * unacceptable segment per RFC 793 page 69. There 10406 * is only one small difference between ours and the 10407 * acceptability test in the RFC - we accept ACK-only 10408 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 10409 * will be generated. 10410 * 10411 * Note that we have to ACK an ACK-only packet at least 10412 * for stacks that send 0-length keep-alives with 10413 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 10414 * section 4.2.3.6. As long as we don't ever generate 10415 * an unacceptable packet in response to an incoming 10416 * packet that is unacceptable, it should not cause 10417 * "ACK wars". 10418 */ 10419 flags |= TH_ACK_NEEDED; 10420 10421 /* 10422 * Continue processing this segment in order to use the 10423 * ACK information it contains, but skip all other 10424 * sequence-number processing. Processing the ACK 10425 * information is necessary in order to 10426 * re-synchronize connections that may have lost 10427 * synchronization. 10428 * 10429 * We clear seg_len and flag fields related to 10430 * sequence number processing as they are not 10431 * to be trusted for an unacceptable segment. 10432 */ 10433 seg_len = 0; 10434 flags &= ~(TH_SYN | TH_FIN | TH_URG); 10435 goto process_ack; 10436 } 10437 10438 /* Fix seg_seq, and chew the gap off the front. */ 10439 seg_seq = tcp->tcp_rnxt; 10440 urp += gap; 10441 do { 10442 mblk_t *mp2; 10443 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 10444 (uintptr_t)UINT_MAX); 10445 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 10446 if (gap > 0) { 10447 mp->b_rptr = mp->b_wptr - gap; 10448 break; 10449 } 10450 mp2 = mp; 10451 mp = mp->b_cont; 10452 freeb(mp2); 10453 } while (gap < 0); 10454 /* 10455 * If the urgent data has already been acknowledged, we 10456 * should ignore TH_URG below 10457 */ 10458 if (urp < 0) 10459 flags &= ~TH_URG; 10460 } 10461 /* 10462 * rgap is the amount of stuff received out of window. A negative 10463 * value is the amount out of window. 10464 */ 10465 if (rgap < 0) { 10466 mblk_t *mp2; 10467 10468 if (tcp->tcp_rwnd == 0) { 10469 BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); 10470 } else { 10471 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 10472 UPDATE_MIB(&tcps->tcps_mib, 10473 tcpInDataPastWinBytes, -rgap); 10474 } 10475 10476 /* 10477 * seg_len does not include the FIN, so if more than 10478 * just the FIN is out of window, we act like we don't 10479 * see it. (If just the FIN is out of window, rgap 10480 * will be zero and we will go ahead and acknowledge 10481 * the FIN.) 10482 */ 10483 flags &= ~TH_FIN; 10484 10485 /* Fix seg_len and make sure there is something left. */ 10486 seg_len += rgap; 10487 if (seg_len <= 0) { 10488 /* 10489 * Resets are only valid if they lie within our offered 10490 * window. If the RST bit is set, we just ignore this 10491 * segment. 10492 */ 10493 if (flags & TH_RST) { 10494 freemsg(mp); 10495 return; 10496 } 10497 10498 /* Per RFC 793, we need to send back an ACK. */ 10499 flags |= TH_ACK_NEEDED; 10500 10501 /* 10502 * Send SIGURG as soon as possible i.e. even 10503 * if the TH_URG was delivered in a window probe 10504 * packet (which will be unacceptable). 10505 * 10506 * We generate a signal if none has been generated 10507 * for this connection or if this is a new urgent 10508 * byte. Also send a zero-length "unmarked" message 10509 * to inform SIOCATMARK that this is not the mark. 10510 * 10511 * tcp_urp_last_valid is cleared when the T_exdata_ind 10512 * is sent up. This plus the check for old data 10513 * (gap >= 0) handles the wraparound of the sequence 10514 * number space without having to always track the 10515 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 10516 * this max in its rcv_up variable). 10517 * 10518 * This prevents duplicate SIGURGS due to a "late" 10519 * zero-window probe when the T_EXDATA_IND has already 10520 * been sent up. 10521 */ 10522 if ((flags & TH_URG) && 10523 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 10524 tcp->tcp_urp_last))) { 10525 if (IPCL_IS_NONSTR(connp)) { 10526 if (!TCP_IS_DETACHED(tcp)) { 10527 (*connp->conn_upcalls-> 10528 su_signal_oob) 10529 (connp->conn_upper_handle, 10530 urp); 10531 } 10532 } else { 10533 mp1 = allocb(0, BPRI_MED); 10534 if (mp1 == NULL) { 10535 freemsg(mp); 10536 return; 10537 } 10538 if (!TCP_IS_DETACHED(tcp) && 10539 !putnextctl1(connp->conn_rq, 10540 M_PCSIG, SIGURG)) { 10541 /* Try again on the rexmit. */ 10542 freemsg(mp1); 10543 freemsg(mp); 10544 return; 10545 } 10546 /* 10547 * If the next byte would be the mark 10548 * then mark with MARKNEXT else mark 10549 * with NOTMARKNEXT. 10550 */ 10551 if (gap == 0 && urp == 0) 10552 mp1->b_flag |= MSGMARKNEXT; 10553 else 10554 mp1->b_flag |= MSGNOTMARKNEXT; 10555 freemsg(tcp->tcp_urp_mark_mp); 10556 tcp->tcp_urp_mark_mp = mp1; 10557 flags |= TH_SEND_URP_MARK; 10558 } 10559 tcp->tcp_urp_last_valid = B_TRUE; 10560 tcp->tcp_urp_last = urp + seg_seq; 10561 } 10562 /* 10563 * If this is a zero window probe, continue to 10564 * process the ACK part. But we need to set seg_len 10565 * to 0 to avoid data processing. Otherwise just 10566 * drop the segment and send back an ACK. 10567 */ 10568 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 10569 flags &= ~(TH_SYN | TH_URG); 10570 seg_len = 0; 10571 goto process_ack; 10572 } else { 10573 freemsg(mp); 10574 goto ack_check; 10575 } 10576 } 10577 /* Pitch out of window stuff off the end. */ 10578 rgap = seg_len; 10579 mp2 = mp; 10580 do { 10581 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 10582 (uintptr_t)INT_MAX); 10583 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 10584 if (rgap < 0) { 10585 mp2->b_wptr += rgap; 10586 if ((mp1 = mp2->b_cont) != NULL) { 10587 mp2->b_cont = NULL; 10588 freemsg(mp1); 10589 } 10590 break; 10591 } 10592 } while ((mp2 = mp2->b_cont) != NULL); 10593 } 10594 ok:; 10595 /* 10596 * TCP should check ECN info for segments inside the window only. 10597 * Therefore the check should be done here. 10598 */ 10599 if (tcp->tcp_ecn_ok) { 10600 if (flags & TH_CWR) { 10601 tcp->tcp_ecn_echo_on = B_FALSE; 10602 } 10603 /* 10604 * Note that both ECN_CE and CWR can be set in the 10605 * same segment. In this case, we once again turn 10606 * on ECN_ECHO. 10607 */ 10608 if (connp->conn_ipversion == IPV4_VERSION) { 10609 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 10610 10611 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 10612 tcp->tcp_ecn_echo_on = B_TRUE; 10613 } 10614 } else { 10615 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 10616 10617 if ((vcf & htonl(IPH_ECN_CE << 20)) == 10618 htonl(IPH_ECN_CE << 20)) { 10619 tcp->tcp_ecn_echo_on = B_TRUE; 10620 } 10621 } 10622 } 10623 10624 /* 10625 * Check whether we can update tcp_ts_recent. This test is 10626 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 10627 * Extensions for High Performance: An Update", Internet Draft. 10628 */ 10629 if (tcp->tcp_snd_ts_ok && 10630 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 10631 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 10632 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 10633 tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 10634 } 10635 10636 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 10637 /* 10638 * FIN in an out of order segment. We record this in 10639 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 10640 * Clear the FIN so that any check on FIN flag will fail. 10641 * Remember that FIN also counts in the sequence number 10642 * space. So we need to ack out of order FIN only segments. 10643 */ 10644 if (flags & TH_FIN) { 10645 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 10646 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 10647 flags &= ~TH_FIN; 10648 flags |= TH_ACK_NEEDED; 10649 } 10650 if (seg_len > 0) { 10651 /* Fill in the SACK blk list. */ 10652 if (tcp->tcp_snd_sack_ok) { 10653 ASSERT(tcp->tcp_sack_info != NULL); 10654 tcp_sack_insert(tcp->tcp_sack_list, 10655 seg_seq, seg_seq + seg_len, 10656 &(tcp->tcp_num_sack_blk)); 10657 } 10658 10659 /* 10660 * Attempt reassembly and see if we have something 10661 * ready to go. 10662 */ 10663 mp = tcp_reass(tcp, mp, seg_seq); 10664 /* Always ack out of order packets */ 10665 flags |= TH_ACK_NEEDED | TH_PUSH; 10666 if (mp) { 10667 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 10668 (uintptr_t)INT_MAX); 10669 seg_len = mp->b_cont ? msgdsize(mp) : 10670 (int)(mp->b_wptr - mp->b_rptr); 10671 seg_seq = tcp->tcp_rnxt; 10672 /* 10673 * A gap is filled and the seq num and len 10674 * of the gap match that of a previously 10675 * received FIN, put the FIN flag back in. 10676 */ 10677 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 10678 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 10679 flags |= TH_FIN; 10680 tcp->tcp_valid_bits &= 10681 ~TCP_OFO_FIN_VALID; 10682 } 10683 } else { 10684 /* 10685 * Keep going even with NULL mp. 10686 * There may be a useful ACK or something else 10687 * we don't want to miss. 10688 * 10689 * But TCP should not perform fast retransmit 10690 * because of the ack number. TCP uses 10691 * seg_len == 0 to determine if it is a pure 10692 * ACK. And this is not a pure ACK. 10693 */ 10694 seg_len = 0; 10695 ofo_seg = B_TRUE; 10696 } 10697 } 10698 } else if (seg_len > 0) { 10699 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 10700 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 10701 /* 10702 * If an out of order FIN was received before, and the seq 10703 * num and len of the new segment match that of the FIN, 10704 * put the FIN flag back in. 10705 */ 10706 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 10707 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 10708 flags |= TH_FIN; 10709 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 10710 } 10711 } 10712 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 10713 if (flags & TH_RST) { 10714 freemsg(mp); 10715 switch (tcp->tcp_state) { 10716 case TCPS_SYN_RCVD: 10717 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 10718 break; 10719 case TCPS_ESTABLISHED: 10720 case TCPS_FIN_WAIT_1: 10721 case TCPS_FIN_WAIT_2: 10722 case TCPS_CLOSE_WAIT: 10723 (void) tcp_clean_death(tcp, ECONNRESET, 15); 10724 break; 10725 case TCPS_CLOSING: 10726 case TCPS_LAST_ACK: 10727 (void) tcp_clean_death(tcp, 0, 16); 10728 break; 10729 default: 10730 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 10731 (void) tcp_clean_death(tcp, ENXIO, 17); 10732 break; 10733 } 10734 return; 10735 } 10736 if (flags & TH_SYN) { 10737 /* 10738 * See RFC 793, Page 71 10739 * 10740 * The seq number must be in the window as it should 10741 * be "fixed" above. If it is outside window, it should 10742 * be already rejected. Note that we allow seg_seq to be 10743 * rnxt + rwnd because we want to accept 0 window probe. 10744 */ 10745 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 10746 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 10747 freemsg(mp); 10748 /* 10749 * If the ACK flag is not set, just use our snxt as the 10750 * seq number of the RST segment. 10751 */ 10752 if (!(flags & TH_ACK)) { 10753 seg_ack = tcp->tcp_snxt; 10754 } 10755 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 10756 TH_RST|TH_ACK); 10757 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 10758 (void) tcp_clean_death(tcp, ECONNRESET, 18); 10759 return; 10760 } 10761 /* 10762 * urp could be -1 when the urp field in the packet is 0 10763 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 10764 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 10765 */ 10766 if (flags & TH_URG && urp >= 0) { 10767 if (!tcp->tcp_urp_last_valid || 10768 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 10769 /* 10770 * Non-STREAMS sockets handle the urgent data a litte 10771 * differently from STREAMS based sockets. There is no 10772 * need to mark any mblks with the MSG{NOT,}MARKNEXT 10773 * flags to keep SIOCATMARK happy. Instead a 10774 * su_signal_oob upcall is made to update the mark. 10775 * Neither is a T_EXDATA_IND mblk needed to be 10776 * prepended to the urgent data. The urgent data is 10777 * delivered using the su_recv upcall, where we set 10778 * the MSG_OOB flag to indicate that it is urg data. 10779 * 10780 * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED 10781 * are used by non-STREAMS sockets. 10782 */ 10783 if (IPCL_IS_NONSTR(connp)) { 10784 if (!TCP_IS_DETACHED(tcp)) { 10785 (*connp->conn_upcalls->su_signal_oob) 10786 (connp->conn_upper_handle, urp); 10787 } 10788 } else { 10789 /* 10790 * If we haven't generated the signal yet for 10791 * this urgent pointer value, do it now. Also, 10792 * send up a zero-length M_DATA indicating 10793 * whether or not this is the mark. The latter 10794 * is not needed when a T_EXDATA_IND is sent up. 10795 * However, if there are allocation failures 10796 * this code relies on the sender retransmitting 10797 * and the socket code for determining the mark 10798 * should not block waiting for the peer to 10799 * transmit. Thus, for simplicity we always 10800 * send up the mark indication. 10801 */ 10802 mp1 = allocb(0, BPRI_MED); 10803 if (mp1 == NULL) { 10804 freemsg(mp); 10805 return; 10806 } 10807 if (!TCP_IS_DETACHED(tcp) && 10808 !putnextctl1(connp->conn_rq, M_PCSIG, 10809 SIGURG)) { 10810 /* Try again on the rexmit. */ 10811 freemsg(mp1); 10812 freemsg(mp); 10813 return; 10814 } 10815 /* 10816 * Mark with NOTMARKNEXT for now. 10817 * The code below will change this to MARKNEXT 10818 * if we are at the mark. 10819 * 10820 * If there are allocation failures (e.g. in 10821 * dupmsg below) the next time tcp_rput_data 10822 * sees the urgent segment it will send up the 10823 * MSGMARKNEXT message. 10824 */ 10825 mp1->b_flag |= MSGNOTMARKNEXT; 10826 freemsg(tcp->tcp_urp_mark_mp); 10827 tcp->tcp_urp_mark_mp = mp1; 10828 flags |= TH_SEND_URP_MARK; 10829 #ifdef DEBUG 10830 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 10831 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 10832 "last %x, %s", 10833 seg_seq, urp, tcp->tcp_urp_last, 10834 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 10835 #endif /* DEBUG */ 10836 } 10837 tcp->tcp_urp_last_valid = B_TRUE; 10838 tcp->tcp_urp_last = urp + seg_seq; 10839 } else if (tcp->tcp_urp_mark_mp != NULL) { 10840 /* 10841 * An allocation failure prevented the previous 10842 * tcp_input_data from sending up the allocated 10843 * MSG*MARKNEXT message - send it up this time 10844 * around. 10845 */ 10846 flags |= TH_SEND_URP_MARK; 10847 } 10848 10849 /* 10850 * If the urgent byte is in this segment, make sure that it is 10851 * all by itself. This makes it much easier to deal with the 10852 * possibility of an allocation failure on the T_exdata_ind. 10853 * Note that seg_len is the number of bytes in the segment, and 10854 * urp is the offset into the segment of the urgent byte. 10855 * urp < seg_len means that the urgent byte is in this segment. 10856 */ 10857 if (urp < seg_len) { 10858 if (seg_len != 1) { 10859 uint32_t tmp_rnxt; 10860 /* 10861 * Break it up and feed it back in. 10862 * Re-attach the IP header. 10863 */ 10864 mp->b_rptr = iphdr; 10865 if (urp > 0) { 10866 /* 10867 * There is stuff before the urgent 10868 * byte. 10869 */ 10870 mp1 = dupmsg(mp); 10871 if (!mp1) { 10872 /* 10873 * Trim from urgent byte on. 10874 * The rest will come back. 10875 */ 10876 (void) adjmsg(mp, 10877 urp - seg_len); 10878 tcp_input_data(connp, 10879 mp, NULL, ira); 10880 return; 10881 } 10882 (void) adjmsg(mp1, urp - seg_len); 10883 /* Feed this piece back in. */ 10884 tmp_rnxt = tcp->tcp_rnxt; 10885 tcp_input_data(connp, mp1, NULL, ira); 10886 /* 10887 * If the data passed back in was not 10888 * processed (ie: bad ACK) sending 10889 * the remainder back in will cause a 10890 * loop. In this case, drop the 10891 * packet and let the sender try 10892 * sending a good packet. 10893 */ 10894 if (tmp_rnxt == tcp->tcp_rnxt) { 10895 freemsg(mp); 10896 return; 10897 } 10898 } 10899 if (urp != seg_len - 1) { 10900 uint32_t tmp_rnxt; 10901 /* 10902 * There is stuff after the urgent 10903 * byte. 10904 */ 10905 mp1 = dupmsg(mp); 10906 if (!mp1) { 10907 /* 10908 * Trim everything beyond the 10909 * urgent byte. The rest will 10910 * come back. 10911 */ 10912 (void) adjmsg(mp, 10913 urp + 1 - seg_len); 10914 tcp_input_data(connp, 10915 mp, NULL, ira); 10916 return; 10917 } 10918 (void) adjmsg(mp1, urp + 1 - seg_len); 10919 tmp_rnxt = tcp->tcp_rnxt; 10920 tcp_input_data(connp, mp1, NULL, ira); 10921 /* 10922 * If the data passed back in was not 10923 * processed (ie: bad ACK) sending 10924 * the remainder back in will cause a 10925 * loop. In this case, drop the 10926 * packet and let the sender try 10927 * sending a good packet. 10928 */ 10929 if (tmp_rnxt == tcp->tcp_rnxt) { 10930 freemsg(mp); 10931 return; 10932 } 10933 } 10934 tcp_input_data(connp, mp, NULL, ira); 10935 return; 10936 } 10937 /* 10938 * This segment contains only the urgent byte. We 10939 * have to allocate the T_exdata_ind, if we can. 10940 */ 10941 if (IPCL_IS_NONSTR(connp)) { 10942 int error; 10943 10944 (*connp->conn_upcalls->su_recv) 10945 (connp->conn_upper_handle, mp, seg_len, 10946 MSG_OOB, &error, NULL); 10947 /* 10948 * We should never be in middle of a 10949 * fallback, the squeue guarantees that. 10950 */ 10951 ASSERT(error != EOPNOTSUPP); 10952 mp = NULL; 10953 goto update_ack; 10954 } else if (!tcp->tcp_urp_mp) { 10955 struct T_exdata_ind *tei; 10956 mp1 = allocb(sizeof (struct T_exdata_ind), 10957 BPRI_MED); 10958 if (!mp1) { 10959 /* 10960 * Sigh... It'll be back. 10961 * Generate any MSG*MARK message now. 10962 */ 10963 freemsg(mp); 10964 seg_len = 0; 10965 if (flags & TH_SEND_URP_MARK) { 10966 10967 10968 ASSERT(tcp->tcp_urp_mark_mp); 10969 tcp->tcp_urp_mark_mp->b_flag &= 10970 ~MSGNOTMARKNEXT; 10971 tcp->tcp_urp_mark_mp->b_flag |= 10972 MSGMARKNEXT; 10973 } 10974 goto ack_check; 10975 } 10976 mp1->b_datap->db_type = M_PROTO; 10977 tei = (struct T_exdata_ind *)mp1->b_rptr; 10978 tei->PRIM_type = T_EXDATA_IND; 10979 tei->MORE_flag = 0; 10980 mp1->b_wptr = (uchar_t *)&tei[1]; 10981 tcp->tcp_urp_mp = mp1; 10982 #ifdef DEBUG 10983 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 10984 "tcp_rput: allocated exdata_ind %s", 10985 tcp_display(tcp, NULL, 10986 DISP_PORT_ONLY)); 10987 #endif /* DEBUG */ 10988 /* 10989 * There is no need to send a separate MSG*MARK 10990 * message since the T_EXDATA_IND will be sent 10991 * now. 10992 */ 10993 flags &= ~TH_SEND_URP_MARK; 10994 freemsg(tcp->tcp_urp_mark_mp); 10995 tcp->tcp_urp_mark_mp = NULL; 10996 } 10997 /* 10998 * Now we are all set. On the next putnext upstream, 10999 * tcp_urp_mp will be non-NULL and will get prepended 11000 * to what has to be this piece containing the urgent 11001 * byte. If for any reason we abort this segment below, 11002 * if it comes back, we will have this ready, or it 11003 * will get blown off in close. 11004 */ 11005 } else if (urp == seg_len) { 11006 /* 11007 * The urgent byte is the next byte after this sequence 11008 * number. If this endpoint is non-STREAMS, then there 11009 * is nothing to do here since the socket has already 11010 * been notified about the urg pointer by the 11011 * su_signal_oob call above. 11012 * 11013 * In case of STREAMS, some more work might be needed. 11014 * If there is data it is marked with MSGMARKNEXT and 11015 * and any tcp_urp_mark_mp is discarded since it is not 11016 * needed. Otherwise, if the code above just allocated 11017 * a zero-length tcp_urp_mark_mp message, that message 11018 * is tagged with MSGMARKNEXT. Sending up these 11019 * MSGMARKNEXT messages makes SIOCATMARK work correctly 11020 * even though the T_EXDATA_IND will not be sent up 11021 * until the urgent byte arrives. 11022 */ 11023 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { 11024 if (seg_len != 0) { 11025 flags |= TH_MARKNEXT_NEEDED; 11026 freemsg(tcp->tcp_urp_mark_mp); 11027 tcp->tcp_urp_mark_mp = NULL; 11028 flags &= ~TH_SEND_URP_MARK; 11029 } else if (tcp->tcp_urp_mark_mp != NULL) { 11030 flags |= TH_SEND_URP_MARK; 11031 tcp->tcp_urp_mark_mp->b_flag &= 11032 ~MSGNOTMARKNEXT; 11033 tcp->tcp_urp_mark_mp->b_flag |= 11034 MSGMARKNEXT; 11035 } 11036 } 11037 #ifdef DEBUG 11038 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 11039 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 11040 seg_len, flags, 11041 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 11042 #endif /* DEBUG */ 11043 } 11044 #ifdef DEBUG 11045 else { 11046 /* Data left until we hit mark */ 11047 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 11048 "tcp_rput: URP %d bytes left, %s", 11049 urp - seg_len, tcp_display(tcp, NULL, 11050 DISP_PORT_ONLY)); 11051 } 11052 #endif /* DEBUG */ 11053 } 11054 11055 process_ack: 11056 if (!(flags & TH_ACK)) { 11057 freemsg(mp); 11058 goto xmit_check; 11059 } 11060 } 11061 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 11062 11063 if (bytes_acked > 0) 11064 tcp->tcp_ip_forward_progress = B_TRUE; 11065 if (tcp->tcp_state == TCPS_SYN_RCVD) { 11066 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 11067 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 11068 /* 3-way handshake complete - pass up the T_CONN_IND */ 11069 tcp_t *listener = tcp->tcp_listener; 11070 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 11071 11072 tcp->tcp_tconnind_started = B_TRUE; 11073 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 11074 /* 11075 * We are here means eager is fine but it can 11076 * get a TH_RST at any point between now and till 11077 * accept completes and disappear. We need to 11078 * ensure that reference to eager is valid after 11079 * we get out of eager's perimeter. So we do 11080 * an extra refhold. 11081 */ 11082 CONN_INC_REF(connp); 11083 11084 /* 11085 * The listener also exists because of the refhold 11086 * done in tcp_input_listener. Its possible that it 11087 * might have closed. We will check that once we 11088 * get inside listeners context. 11089 */ 11090 CONN_INC_REF(listener->tcp_connp); 11091 if (listener->tcp_connp->conn_sqp == 11092 connp->conn_sqp) { 11093 /* 11094 * We optimize by not calling an SQUEUE_ENTER 11095 * on the listener since we know that the 11096 * listener and eager squeues are the same. 11097 * We are able to make this check safely only 11098 * because neither the eager nor the listener 11099 * can change its squeue. Only an active connect 11100 * can change its squeue 11101 */ 11102 tcp_send_conn_ind(listener->tcp_connp, mp, 11103 listener->tcp_connp->conn_sqp); 11104 CONN_DEC_REF(listener->tcp_connp); 11105 } else if (!tcp->tcp_loopback) { 11106 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 11107 mp, tcp_send_conn_ind, 11108 listener->tcp_connp, NULL, SQ_FILL, 11109 SQTAG_TCP_CONN_IND); 11110 } else { 11111 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 11112 mp, tcp_send_conn_ind, 11113 listener->tcp_connp, NULL, SQ_PROCESS, 11114 SQTAG_TCP_CONN_IND); 11115 } 11116 } 11117 11118 /* 11119 * We are seeing the final ack in the three way 11120 * hand shake of a active open'ed connection 11121 * so we must send up a T_CONN_CON 11122 * 11123 * tcp_sendmsg() checks tcp_state without entering 11124 * the squeue so tcp_state should be updated before 11125 * sending up connection confirmation. 11126 */ 11127 tcp->tcp_state = TCPS_ESTABLISHED; 11128 if (tcp->tcp_active_open) { 11129 if (!tcp_conn_con(tcp, iphdr, mp, NULL, ira)) { 11130 freemsg(mp); 11131 tcp->tcp_state = TCPS_SYN_RCVD; 11132 return; 11133 } 11134 /* 11135 * Don't fuse the loopback endpoints for 11136 * simultaneous active opens. 11137 */ 11138 if (tcp->tcp_loopback) { 11139 TCP_STAT(tcps, tcp_fusion_unfusable); 11140 tcp->tcp_unfusable = B_TRUE; 11141 } 11142 } 11143 11144 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 11145 bytes_acked--; 11146 /* SYN was acked - making progress */ 11147 tcp->tcp_ip_forward_progress = B_TRUE; 11148 11149 /* 11150 * If SYN was retransmitted, need to reset all 11151 * retransmission info as this segment will be 11152 * treated as a dup ACK. 11153 */ 11154 if (tcp->tcp_rexmit) { 11155 tcp->tcp_rexmit = B_FALSE; 11156 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 11157 tcp->tcp_rexmit_max = tcp->tcp_snxt; 11158 tcp->tcp_snd_burst = tcp->tcp_localnet ? 11159 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 11160 tcp->tcp_ms_we_have_waited = 0; 11161 tcp->tcp_cwnd = mss; 11162 } 11163 11164 /* 11165 * We set the send window to zero here. 11166 * This is needed if there is data to be 11167 * processed already on the queue. 11168 * Later (at swnd_update label), the 11169 * "new_swnd > tcp_swnd" condition is satisfied 11170 * the XMIT_NEEDED flag is set in the current 11171 * (SYN_RCVD) state. This ensures tcp_wput_data() is 11172 * called if there is already data on queue in 11173 * this state. 11174 */ 11175 tcp->tcp_swnd = 0; 11176 11177 if (new_swnd > tcp->tcp_max_swnd) 11178 tcp->tcp_max_swnd = new_swnd; 11179 tcp->tcp_swl1 = seg_seq; 11180 tcp->tcp_swl2 = seg_ack; 11181 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 11182 11183 /* Fuse when both sides are in ESTABLISHED state */ 11184 if (tcp->tcp_loopback && do_tcp_fusion) 11185 tcp_fuse(tcp, iphdr, tcpha); 11186 11187 } 11188 /* This code follows 4.4BSD-Lite2 mostly. */ 11189 if (bytes_acked < 0) 11190 goto est; 11191 11192 /* 11193 * If TCP is ECN capable and the congestion experience bit is 11194 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 11195 * done once per window (or more loosely, per RTT). 11196 */ 11197 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 11198 tcp->tcp_cwr = B_FALSE; 11199 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 11200 if (!tcp->tcp_cwr) { 11201 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 11202 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 11203 tcp->tcp_cwnd = npkt * mss; 11204 /* 11205 * If the cwnd is 0, use the timer to clock out 11206 * new segments. This is required by the ECN spec. 11207 */ 11208 if (npkt == 0) { 11209 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 11210 /* 11211 * This makes sure that when the ACK comes 11212 * back, we will increase tcp_cwnd by 1 MSS. 11213 */ 11214 tcp->tcp_cwnd_cnt = 0; 11215 } 11216 tcp->tcp_cwr = B_TRUE; 11217 /* 11218 * This marks the end of the current window of in 11219 * flight data. That is why we don't use 11220 * tcp_suna + tcp_swnd. Only data in flight can 11221 * provide ECN info. 11222 */ 11223 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 11224 tcp->tcp_ecn_cwr_sent = B_FALSE; 11225 } 11226 } 11227 11228 mp1 = tcp->tcp_xmit_head; 11229 if (bytes_acked == 0) { 11230 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 11231 int dupack_cnt; 11232 11233 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 11234 /* 11235 * Fast retransmit. When we have seen exactly three 11236 * identical ACKs while we have unacked data 11237 * outstanding we take it as a hint that our peer 11238 * dropped something. 11239 * 11240 * If TCP is retransmitting, don't do fast retransmit. 11241 */ 11242 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 11243 ! tcp->tcp_rexmit) { 11244 /* Do Limited Transmit */ 11245 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 11246 tcps->tcps_dupack_fast_retransmit) { 11247 /* 11248 * RFC 3042 11249 * 11250 * What we need to do is temporarily 11251 * increase tcp_cwnd so that new 11252 * data can be sent if it is allowed 11253 * by the receive window (tcp_rwnd). 11254 * tcp_wput_data() will take care of 11255 * the rest. 11256 * 11257 * If the connection is SACK capable, 11258 * only do limited xmit when there 11259 * is SACK info. 11260 * 11261 * Note how tcp_cwnd is incremented. 11262 * The first dup ACK will increase 11263 * it by 1 MSS. The second dup ACK 11264 * will increase it by 2 MSS. This 11265 * means that only 1 new segment will 11266 * be sent for each dup ACK. 11267 */ 11268 if (tcp->tcp_unsent > 0 && 11269 (!tcp->tcp_snd_sack_ok || 11270 (tcp->tcp_snd_sack_ok && 11271 tcp->tcp_notsack_list != NULL))) { 11272 tcp->tcp_cwnd += mss << 11273 (tcp->tcp_dupack_cnt - 1); 11274 flags |= TH_LIMIT_XMIT; 11275 } 11276 } else if (dupack_cnt == 11277 tcps->tcps_dupack_fast_retransmit) { 11278 11279 /* 11280 * If we have reduced tcp_ssthresh 11281 * because of ECN, do not reduce it again 11282 * unless it is already one window of data 11283 * away. After one window of data, tcp_cwr 11284 * should then be cleared. Note that 11285 * for non ECN capable connection, tcp_cwr 11286 * should always be false. 11287 * 11288 * Adjust cwnd since the duplicate 11289 * ack indicates that a packet was 11290 * dropped (due to congestion.) 11291 */ 11292 if (!tcp->tcp_cwr) { 11293 npkt = ((tcp->tcp_snxt - 11294 tcp->tcp_suna) >> 1) / mss; 11295 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 11296 mss; 11297 tcp->tcp_cwnd = (npkt + 11298 tcp->tcp_dupack_cnt) * mss; 11299 } 11300 if (tcp->tcp_ecn_ok) { 11301 tcp->tcp_cwr = B_TRUE; 11302 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 11303 tcp->tcp_ecn_cwr_sent = B_FALSE; 11304 } 11305 11306 /* 11307 * We do Hoe's algorithm. Refer to her 11308 * paper "Improving the Start-up Behavior 11309 * of a Congestion Control Scheme for TCP," 11310 * appeared in SIGCOMM'96. 11311 * 11312 * Save highest seq no we have sent so far. 11313 * Be careful about the invisible FIN byte. 11314 */ 11315 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 11316 (tcp->tcp_unsent == 0)) { 11317 tcp->tcp_rexmit_max = tcp->tcp_fss; 11318 } else { 11319 tcp->tcp_rexmit_max = tcp->tcp_snxt; 11320 } 11321 11322 /* 11323 * Do not allow bursty traffic during. 11324 * fast recovery. Refer to Fall and Floyd's 11325 * paper "Simulation-based Comparisons of 11326 * Tahoe, Reno and SACK TCP" (in CCR?) 11327 * This is a best current practise. 11328 */ 11329 tcp->tcp_snd_burst = TCP_CWND_SS; 11330 11331 /* 11332 * For SACK: 11333 * Calculate tcp_pipe, which is the 11334 * estimated number of bytes in 11335 * network. 11336 * 11337 * tcp_fack is the highest sack'ed seq num 11338 * TCP has received. 11339 * 11340 * tcp_pipe is explained in the above quoted 11341 * Fall and Floyd's paper. tcp_fack is 11342 * explained in Mathis and Mahdavi's 11343 * "Forward Acknowledgment: Refining TCP 11344 * Congestion Control" in SIGCOMM '96. 11345 */ 11346 if (tcp->tcp_snd_sack_ok) { 11347 ASSERT(tcp->tcp_sack_info != NULL); 11348 if (tcp->tcp_notsack_list != NULL) { 11349 tcp->tcp_pipe = tcp->tcp_snxt - 11350 tcp->tcp_fack; 11351 tcp->tcp_sack_snxt = seg_ack; 11352 flags |= TH_NEED_SACK_REXMIT; 11353 } else { 11354 /* 11355 * Always initialize tcp_pipe 11356 * even though we don't have 11357 * any SACK info. If later 11358 * we get SACK info and 11359 * tcp_pipe is not initialized, 11360 * funny things will happen. 11361 */ 11362 tcp->tcp_pipe = 11363 tcp->tcp_cwnd_ssthresh; 11364 } 11365 } else { 11366 flags |= TH_REXMIT_NEEDED; 11367 } /* tcp_snd_sack_ok */ 11368 11369 } else { 11370 /* 11371 * Here we perform congestion 11372 * avoidance, but NOT slow start. 11373 * This is known as the Fast 11374 * Recovery Algorithm. 11375 */ 11376 if (tcp->tcp_snd_sack_ok && 11377 tcp->tcp_notsack_list != NULL) { 11378 flags |= TH_NEED_SACK_REXMIT; 11379 tcp->tcp_pipe -= mss; 11380 if (tcp->tcp_pipe < 0) 11381 tcp->tcp_pipe = 0; 11382 } else { 11383 /* 11384 * We know that one more packet has 11385 * left the pipe thus we can update 11386 * cwnd. 11387 */ 11388 cwnd = tcp->tcp_cwnd + mss; 11389 if (cwnd > tcp->tcp_cwnd_max) 11390 cwnd = tcp->tcp_cwnd_max; 11391 tcp->tcp_cwnd = cwnd; 11392 if (tcp->tcp_unsent > 0) 11393 flags |= TH_XMIT_NEEDED; 11394 } 11395 } 11396 } 11397 } else if (tcp->tcp_zero_win_probe) { 11398 /* 11399 * If the window has opened, need to arrange 11400 * to send additional data. 11401 */ 11402 if (new_swnd != 0) { 11403 /* tcp_suna != tcp_snxt */ 11404 /* Packet contains a window update */ 11405 BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); 11406 tcp->tcp_zero_win_probe = 0; 11407 tcp->tcp_timer_backoff = 0; 11408 tcp->tcp_ms_we_have_waited = 0; 11409 11410 /* 11411 * Transmit starting with tcp_suna since 11412 * the one byte probe is not ack'ed. 11413 * If TCP has sent more than one identical 11414 * probe, tcp_rexmit will be set. That means 11415 * tcp_ss_rexmit() will send out the one 11416 * byte along with new data. Otherwise, 11417 * fake the retransmission. 11418 */ 11419 flags |= TH_XMIT_NEEDED; 11420 if (!tcp->tcp_rexmit) { 11421 tcp->tcp_rexmit = B_TRUE; 11422 tcp->tcp_dupack_cnt = 0; 11423 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 11424 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 11425 } 11426 } 11427 } 11428 goto swnd_update; 11429 } 11430 11431 /* 11432 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 11433 * If the ACK value acks something that we have not yet sent, it might 11434 * be an old duplicate segment. Send an ACK to re-synchronize the 11435 * other side. 11436 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 11437 * state is handled above, so we can always just drop the segment and 11438 * send an ACK here. 11439 * 11440 * In the case where the peer shrinks the window, we see the new window 11441 * update, but all the data sent previously is queued up by the peer. 11442 * To account for this, in tcp_process_shrunk_swnd(), the sequence 11443 * number, which was already sent, and within window, is recorded. 11444 * tcp_snxt is then updated. 11445 * 11446 * If the window has previously shrunk, and an ACK for data not yet 11447 * sent, according to tcp_snxt is recieved, it may still be valid. If 11448 * the ACK is for data within the window at the time the window was 11449 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to 11450 * the sequence number ACK'ed. 11451 * 11452 * If the ACK covers all the data sent at the time the window was 11453 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE. 11454 * 11455 * Should we send ACKs in response to ACK only segments? 11456 */ 11457 11458 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 11459 if ((tcp->tcp_is_wnd_shrnk) && 11460 (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) { 11461 uint32_t data_acked_ahead_snxt; 11462 11463 data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt; 11464 tcp_update_xmit_tail(tcp, seg_ack); 11465 tcp->tcp_unsent -= data_acked_ahead_snxt; 11466 } else { 11467 BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); 11468 /* drop the received segment */ 11469 freemsg(mp); 11470 11471 /* 11472 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 11473 * greater than 0, check if the number of such 11474 * bogus ACks is greater than that count. If yes, 11475 * don't send back any ACK. This prevents TCP from 11476 * getting into an ACK storm if somehow an attacker 11477 * successfully spoofs an acceptable segment to our 11478 * peer. 11479 */ 11480 if (tcp_drop_ack_unsent_cnt > 0 && 11481 ++tcp->tcp_in_ack_unsent > 11482 tcp_drop_ack_unsent_cnt) { 11483 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 11484 return; 11485 } 11486 mp = tcp_ack_mp(tcp); 11487 if (mp != NULL) { 11488 BUMP_LOCAL(tcp->tcp_obsegs); 11489 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 11490 tcp_send_data(tcp, mp); 11491 } 11492 return; 11493 } 11494 } else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack, 11495 tcp->tcp_snxt_shrunk)) { 11496 tcp->tcp_is_wnd_shrnk = B_FALSE; 11497 } 11498 11499 /* 11500 * TCP gets a new ACK, update the notsack'ed list to delete those 11501 * blocks that are covered by this ACK. 11502 */ 11503 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 11504 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 11505 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 11506 } 11507 11508 /* 11509 * If we got an ACK after fast retransmit, check to see 11510 * if it is a partial ACK. If it is not and the congestion 11511 * window was inflated to account for the other side's 11512 * cached packets, retract it. If it is, do Hoe's algorithm. 11513 */ 11514 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 11515 ASSERT(tcp->tcp_rexmit == B_FALSE); 11516 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 11517 tcp->tcp_dupack_cnt = 0; 11518 /* 11519 * Restore the orig tcp_cwnd_ssthresh after 11520 * fast retransmit phase. 11521 */ 11522 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 11523 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 11524 } 11525 tcp->tcp_rexmit_max = seg_ack; 11526 tcp->tcp_cwnd_cnt = 0; 11527 tcp->tcp_snd_burst = tcp->tcp_localnet ? 11528 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 11529 11530 /* 11531 * Remove all notsack info to avoid confusion with 11532 * the next fast retrasnmit/recovery phase. 11533 */ 11534 if (tcp->tcp_snd_sack_ok && 11535 tcp->tcp_notsack_list != NULL) { 11536 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 11537 tcp); 11538 } 11539 } else { 11540 if (tcp->tcp_snd_sack_ok && 11541 tcp->tcp_notsack_list != NULL) { 11542 flags |= TH_NEED_SACK_REXMIT; 11543 tcp->tcp_pipe -= mss; 11544 if (tcp->tcp_pipe < 0) 11545 tcp->tcp_pipe = 0; 11546 } else { 11547 /* 11548 * Hoe's algorithm: 11549 * 11550 * Retransmit the unack'ed segment and 11551 * restart fast recovery. Note that we 11552 * need to scale back tcp_cwnd to the 11553 * original value when we started fast 11554 * recovery. This is to prevent overly 11555 * aggressive behaviour in sending new 11556 * segments. 11557 */ 11558 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 11559 tcps->tcps_dupack_fast_retransmit * mss; 11560 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 11561 flags |= TH_REXMIT_NEEDED; 11562 } 11563 } 11564 } else { 11565 tcp->tcp_dupack_cnt = 0; 11566 if (tcp->tcp_rexmit) { 11567 /* 11568 * TCP is retranmitting. If the ACK ack's all 11569 * outstanding data, update tcp_rexmit_max and 11570 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 11571 * to the correct value. 11572 * 11573 * Note that SEQ_LEQ() is used. This is to avoid 11574 * unnecessary fast retransmit caused by dup ACKs 11575 * received when TCP does slow start retransmission 11576 * after a time out. During this phase, TCP may 11577 * send out segments which are already received. 11578 * This causes dup ACKs to be sent back. 11579 */ 11580 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 11581 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 11582 tcp->tcp_rexmit_nxt = seg_ack; 11583 } 11584 if (seg_ack != tcp->tcp_rexmit_max) { 11585 flags |= TH_XMIT_NEEDED; 11586 } 11587 } else { 11588 tcp->tcp_rexmit = B_FALSE; 11589 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 11590 tcp->tcp_snd_burst = tcp->tcp_localnet ? 11591 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 11592 } 11593 tcp->tcp_ms_we_have_waited = 0; 11594 } 11595 } 11596 11597 BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); 11598 UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); 11599 tcp->tcp_suna = seg_ack; 11600 if (tcp->tcp_zero_win_probe != 0) { 11601 tcp->tcp_zero_win_probe = 0; 11602 tcp->tcp_timer_backoff = 0; 11603 } 11604 11605 /* 11606 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 11607 * Note that it cannot be the SYN being ack'ed. The code flow 11608 * will not reach here. 11609 */ 11610 if (mp1 == NULL) { 11611 goto fin_acked; 11612 } 11613 11614 /* 11615 * Update the congestion window. 11616 * 11617 * If TCP is not ECN capable or TCP is ECN capable but the 11618 * congestion experience bit is not set, increase the tcp_cwnd as 11619 * usual. 11620 */ 11621 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 11622 cwnd = tcp->tcp_cwnd; 11623 add = mss; 11624 11625 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 11626 /* 11627 * This is to prevent an increase of less than 1 MSS of 11628 * tcp_cwnd. With partial increase, tcp_wput_data() 11629 * may send out tinygrams in order to preserve mblk 11630 * boundaries. 11631 * 11632 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 11633 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 11634 * increased by 1 MSS for every RTTs. 11635 */ 11636 if (tcp->tcp_cwnd_cnt <= 0) { 11637 tcp->tcp_cwnd_cnt = cwnd + add; 11638 } else { 11639 tcp->tcp_cwnd_cnt -= add; 11640 add = 0; 11641 } 11642 } 11643 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 11644 } 11645 11646 /* See if the latest urgent data has been acknowledged */ 11647 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 11648 SEQ_GT(seg_ack, tcp->tcp_urg)) 11649 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 11650 11651 /* Can we update the RTT estimates? */ 11652 if (tcp->tcp_snd_ts_ok) { 11653 /* Ignore zero timestamp echo-reply. */ 11654 if (tcpopt.tcp_opt_ts_ecr != 0) { 11655 tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH - 11656 (int32_t)tcpopt.tcp_opt_ts_ecr); 11657 } 11658 11659 /* If needed, restart the timer. */ 11660 if (tcp->tcp_set_timer == 1) { 11661 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 11662 tcp->tcp_set_timer = 0; 11663 } 11664 /* 11665 * Update tcp_csuna in case the other side stops sending 11666 * us timestamps. 11667 */ 11668 tcp->tcp_csuna = tcp->tcp_snxt; 11669 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 11670 /* 11671 * An ACK sequence we haven't seen before, so get the RTT 11672 * and update the RTO. But first check if the timestamp is 11673 * valid to use. 11674 */ 11675 if ((mp1->b_next != NULL) && 11676 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 11677 tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH - 11678 (int32_t)(intptr_t)mp1->b_prev); 11679 else 11680 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 11681 11682 /* Remeber the last sequence to be ACKed */ 11683 tcp->tcp_csuna = seg_ack; 11684 if (tcp->tcp_set_timer == 1) { 11685 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 11686 tcp->tcp_set_timer = 0; 11687 } 11688 } else { 11689 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 11690 } 11691 11692 /* Eat acknowledged bytes off the xmit queue. */ 11693 for (;;) { 11694 mblk_t *mp2; 11695 uchar_t *wptr; 11696 11697 wptr = mp1->b_wptr; 11698 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 11699 bytes_acked -= (int)(wptr - mp1->b_rptr); 11700 if (bytes_acked < 0) { 11701 mp1->b_rptr = wptr + bytes_acked; 11702 /* 11703 * Set a new timestamp if all the bytes timed by the 11704 * old timestamp have been ack'ed. 11705 */ 11706 if (SEQ_GT(seg_ack, 11707 (uint32_t)(uintptr_t)(mp1->b_next))) { 11708 mp1->b_prev = 11709 (mblk_t *)(uintptr_t)LBOLT_FASTPATH; 11710 mp1->b_next = NULL; 11711 } 11712 break; 11713 } 11714 mp1->b_next = NULL; 11715 mp1->b_prev = NULL; 11716 mp2 = mp1; 11717 mp1 = mp1->b_cont; 11718 11719 /* 11720 * This notification is required for some zero-copy 11721 * clients to maintain a copy semantic. After the data 11722 * is ack'ed, client is safe to modify or reuse the buffer. 11723 */ 11724 if (tcp->tcp_snd_zcopy_aware && 11725 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 11726 tcp_zcopy_notify(tcp); 11727 freeb(mp2); 11728 if (bytes_acked == 0) { 11729 if (mp1 == NULL) { 11730 /* Everything is ack'ed, clear the tail. */ 11731 tcp->tcp_xmit_tail = NULL; 11732 /* 11733 * Cancel the timer unless we are still 11734 * waiting for an ACK for the FIN packet. 11735 */ 11736 if (tcp->tcp_timer_tid != 0 && 11737 tcp->tcp_snxt == tcp->tcp_suna) { 11738 (void) TCP_TIMER_CANCEL(tcp, 11739 tcp->tcp_timer_tid); 11740 tcp->tcp_timer_tid = 0; 11741 } 11742 goto pre_swnd_update; 11743 } 11744 if (mp2 != tcp->tcp_xmit_tail) 11745 break; 11746 tcp->tcp_xmit_tail = mp1; 11747 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 11748 (uintptr_t)INT_MAX); 11749 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 11750 mp1->b_rptr); 11751 break; 11752 } 11753 if (mp1 == NULL) { 11754 /* 11755 * More was acked but there is nothing more 11756 * outstanding. This means that the FIN was 11757 * just acked or that we're talking to a clown. 11758 */ 11759 fin_acked: 11760 ASSERT(tcp->tcp_fin_sent); 11761 tcp->tcp_xmit_tail = NULL; 11762 if (tcp->tcp_fin_sent) { 11763 /* FIN was acked - making progress */ 11764 if (!tcp->tcp_fin_acked) 11765 tcp->tcp_ip_forward_progress = B_TRUE; 11766 tcp->tcp_fin_acked = B_TRUE; 11767 if (tcp->tcp_linger_tid != 0 && 11768 TCP_TIMER_CANCEL(tcp, 11769 tcp->tcp_linger_tid) >= 0) { 11770 tcp_stop_lingering(tcp); 11771 freemsg(mp); 11772 mp = NULL; 11773 } 11774 } else { 11775 /* 11776 * We should never get here because 11777 * we have already checked that the 11778 * number of bytes ack'ed should be 11779 * smaller than or equal to what we 11780 * have sent so far (it is the 11781 * acceptability check of the ACK). 11782 * We can only get here if the send 11783 * queue is corrupted. 11784 * 11785 * Terminate the connection and 11786 * panic the system. It is better 11787 * for us to panic instead of 11788 * continuing to avoid other disaster. 11789 */ 11790 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 11791 tcp->tcp_rnxt, TH_RST|TH_ACK); 11792 panic("Memory corruption " 11793 "detected for connection %s.", 11794 tcp_display(tcp, NULL, 11795 DISP_ADDR_AND_PORT)); 11796 /*NOTREACHED*/ 11797 } 11798 goto pre_swnd_update; 11799 } 11800 ASSERT(mp2 != tcp->tcp_xmit_tail); 11801 } 11802 if (tcp->tcp_unsent) { 11803 flags |= TH_XMIT_NEEDED; 11804 } 11805 pre_swnd_update: 11806 tcp->tcp_xmit_head = mp1; 11807 swnd_update: 11808 /* 11809 * The following check is different from most other implementations. 11810 * For bi-directional transfer, when segments are dropped, the 11811 * "normal" check will not accept a window update in those 11812 * retransmitted segemnts. Failing to do that, TCP may send out 11813 * segments which are outside receiver's window. As TCP accepts 11814 * the ack in those retransmitted segments, if the window update in 11815 * the same segment is not accepted, TCP will incorrectly calculates 11816 * that it can send more segments. This can create a deadlock 11817 * with the receiver if its window becomes zero. 11818 */ 11819 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 11820 SEQ_LT(tcp->tcp_swl1, seg_seq) || 11821 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 11822 /* 11823 * The criteria for update is: 11824 * 11825 * 1. the segment acknowledges some data. Or 11826 * 2. the segment is new, i.e. it has a higher seq num. Or 11827 * 3. the segment is not old and the advertised window is 11828 * larger than the previous advertised window. 11829 */ 11830 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 11831 flags |= TH_XMIT_NEEDED; 11832 tcp->tcp_swnd = new_swnd; 11833 if (new_swnd > tcp->tcp_max_swnd) 11834 tcp->tcp_max_swnd = new_swnd; 11835 tcp->tcp_swl1 = seg_seq; 11836 tcp->tcp_swl2 = seg_ack; 11837 } 11838 est: 11839 if (tcp->tcp_state > TCPS_ESTABLISHED) { 11840 11841 switch (tcp->tcp_state) { 11842 case TCPS_FIN_WAIT_1: 11843 if (tcp->tcp_fin_acked) { 11844 tcp->tcp_state = TCPS_FIN_WAIT_2; 11845 /* 11846 * We implement the non-standard BSD/SunOS 11847 * FIN_WAIT_2 flushing algorithm. 11848 * If there is no user attached to this 11849 * TCP endpoint, then this TCP struct 11850 * could hang around forever in FIN_WAIT_2 11851 * state if the peer forgets to send us 11852 * a FIN. To prevent this, we wait only 11853 * 2*MSL (a convenient time value) for 11854 * the FIN to arrive. If it doesn't show up, 11855 * we flush the TCP endpoint. This algorithm, 11856 * though a violation of RFC-793, has worked 11857 * for over 10 years in BSD systems. 11858 * Note: SunOS 4.x waits 675 seconds before 11859 * flushing the FIN_WAIT_2 connection. 11860 */ 11861 TCP_TIMER_RESTART(tcp, 11862 tcps->tcps_fin_wait_2_flush_interval); 11863 } 11864 break; 11865 case TCPS_FIN_WAIT_2: 11866 break; /* Shutdown hook? */ 11867 case TCPS_LAST_ACK: 11868 freemsg(mp); 11869 if (tcp->tcp_fin_acked) { 11870 (void) tcp_clean_death(tcp, 0, 19); 11871 return; 11872 } 11873 goto xmit_check; 11874 case TCPS_CLOSING: 11875 if (tcp->tcp_fin_acked) { 11876 tcp->tcp_state = TCPS_TIME_WAIT; 11877 /* 11878 * Unconditionally clear the exclusive binding 11879 * bit so this TIME-WAIT connection won't 11880 * interfere with new ones. 11881 */ 11882 connp->conn_exclbind = 0; 11883 if (!TCP_IS_DETACHED(tcp)) { 11884 TCP_TIMER_RESTART(tcp, 11885 tcps->tcps_time_wait_interval); 11886 } else { 11887 tcp_time_wait_append(tcp); 11888 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 11889 } 11890 } 11891 /*FALLTHRU*/ 11892 case TCPS_CLOSE_WAIT: 11893 freemsg(mp); 11894 goto xmit_check; 11895 default: 11896 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 11897 break; 11898 } 11899 } 11900 if (flags & TH_FIN) { 11901 /* Make sure we ack the fin */ 11902 flags |= TH_ACK_NEEDED; 11903 if (!tcp->tcp_fin_rcvd) { 11904 tcp->tcp_fin_rcvd = B_TRUE; 11905 tcp->tcp_rnxt++; 11906 tcpha = tcp->tcp_tcpha; 11907 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 11908 11909 /* 11910 * Generate the ordrel_ind at the end unless we 11911 * are an eager guy. 11912 * In the eager case tcp_rsrv will do this when run 11913 * after tcp_accept is done. 11914 */ 11915 if (tcp->tcp_listener == NULL && 11916 !TCP_IS_DETACHED(tcp) && !tcp->tcp_hard_binding) 11917 flags |= TH_ORDREL_NEEDED; 11918 switch (tcp->tcp_state) { 11919 case TCPS_SYN_RCVD: 11920 case TCPS_ESTABLISHED: 11921 tcp->tcp_state = TCPS_CLOSE_WAIT; 11922 /* Keepalive? */ 11923 break; 11924 case TCPS_FIN_WAIT_1: 11925 if (!tcp->tcp_fin_acked) { 11926 tcp->tcp_state = TCPS_CLOSING; 11927 break; 11928 } 11929 /* FALLTHRU */ 11930 case TCPS_FIN_WAIT_2: 11931 tcp->tcp_state = TCPS_TIME_WAIT; 11932 /* 11933 * Unconditionally clear the exclusive binding 11934 * bit so this TIME-WAIT connection won't 11935 * interfere with new ones. 11936 */ 11937 connp->conn_exclbind = 0; 11938 if (!TCP_IS_DETACHED(tcp)) { 11939 TCP_TIMER_RESTART(tcp, 11940 tcps->tcps_time_wait_interval); 11941 } else { 11942 tcp_time_wait_append(tcp); 11943 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 11944 } 11945 if (seg_len) { 11946 /* 11947 * implies data piggybacked on FIN. 11948 * break to handle data. 11949 */ 11950 break; 11951 } 11952 freemsg(mp); 11953 goto ack_check; 11954 } 11955 } 11956 } 11957 if (mp == NULL) 11958 goto xmit_check; 11959 if (seg_len == 0) { 11960 freemsg(mp); 11961 goto xmit_check; 11962 } 11963 if (mp->b_rptr == mp->b_wptr) { 11964 /* 11965 * The header has been consumed, so we remove the 11966 * zero-length mblk here. 11967 */ 11968 mp1 = mp; 11969 mp = mp->b_cont; 11970 freeb(mp1); 11971 } 11972 update_ack: 11973 tcpha = tcp->tcp_tcpha; 11974 tcp->tcp_rack_cnt++; 11975 { 11976 uint32_t cur_max; 11977 11978 cur_max = tcp->tcp_rack_cur_max; 11979 if (tcp->tcp_rack_cnt >= cur_max) { 11980 /* 11981 * We have more unacked data than we should - send 11982 * an ACK now. 11983 */ 11984 flags |= TH_ACK_NEEDED; 11985 cur_max++; 11986 if (cur_max > tcp->tcp_rack_abs_max) 11987 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 11988 else 11989 tcp->tcp_rack_cur_max = cur_max; 11990 } else if (TCP_IS_DETACHED(tcp)) { 11991 /* We don't have an ACK timer for detached TCP. */ 11992 flags |= TH_ACK_NEEDED; 11993 } else if (seg_len < mss) { 11994 /* 11995 * If we get a segment that is less than an mss, and we 11996 * already have unacknowledged data, and the amount 11997 * unacknowledged is not a multiple of mss, then we 11998 * better generate an ACK now. Otherwise, this may be 11999 * the tail piece of a transaction, and we would rather 12000 * wait for the response. 12001 */ 12002 uint32_t udif; 12003 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 12004 (uintptr_t)INT_MAX); 12005 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 12006 if (udif && (udif % mss)) 12007 flags |= TH_ACK_NEEDED; 12008 else 12009 flags |= TH_ACK_TIMER_NEEDED; 12010 } else { 12011 /* Start delayed ack timer */ 12012 flags |= TH_ACK_TIMER_NEEDED; 12013 } 12014 } 12015 tcp->tcp_rnxt += seg_len; 12016 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 12017 12018 if (mp == NULL) 12019 goto xmit_check; 12020 12021 /* Update SACK list */ 12022 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 12023 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 12024 &(tcp->tcp_num_sack_blk)); 12025 } 12026 12027 if (tcp->tcp_urp_mp) { 12028 tcp->tcp_urp_mp->b_cont = mp; 12029 mp = tcp->tcp_urp_mp; 12030 tcp->tcp_urp_mp = NULL; 12031 /* Ready for a new signal. */ 12032 tcp->tcp_urp_last_valid = B_FALSE; 12033 #ifdef DEBUG 12034 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12035 "tcp_rput: sending exdata_ind %s", 12036 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 12037 #endif /* DEBUG */ 12038 } 12039 12040 /* 12041 * Check for ancillary data changes compared to last segment. 12042 */ 12043 if (connp->conn_recv_ancillary.crb_all != 0) { 12044 mp = tcp_input_add_ancillary(tcp, mp, &ipp, ira); 12045 if (mp == NULL) 12046 return; 12047 } 12048 12049 if (tcp->tcp_listener != NULL || tcp->tcp_hard_binding) { 12050 /* 12051 * Side queue inbound data until the accept happens. 12052 * tcp_accept/tcp_rput drains this when the accept happens. 12053 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 12054 * T_EXDATA_IND) it is queued on b_next. 12055 * XXX Make urgent data use this. Requires: 12056 * Removing tcp_listener check for TH_URG 12057 * Making M_PCPROTO and MARK messages skip the eager case 12058 */ 12059 12060 if (tcp->tcp_kssl_pending) { 12061 DTRACE_PROBE1(kssl_mblk__ksslinput_pending, 12062 mblk_t *, mp); 12063 tcp_kssl_input(tcp, mp, ira->ira_cred); 12064 } else { 12065 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 12066 } 12067 } else if (IPCL_IS_NONSTR(connp)) { 12068 /* 12069 * Non-STREAMS socket 12070 * 12071 * Note that no KSSL processing is done here, because 12072 * KSSL is not supported for non-STREAMS sockets. 12073 */ 12074 boolean_t push = flags & (TH_PUSH|TH_FIN); 12075 int error; 12076 12077 if ((*connp->conn_upcalls->su_recv)( 12078 connp->conn_upper_handle, 12079 mp, seg_len, 0, &error, &push) <= 0) { 12080 /* 12081 * We should never be in middle of a 12082 * fallback, the squeue guarantees that. 12083 */ 12084 ASSERT(error != EOPNOTSUPP); 12085 if (error == ENOSPC) 12086 tcp->tcp_rwnd -= seg_len; 12087 } else if (push) { 12088 /* PUSH bit set and sockfs is not flow controlled */ 12089 flags |= tcp_rwnd_reopen(tcp); 12090 } 12091 } else { 12092 /* STREAMS socket */ 12093 if (mp->b_datap->db_type != M_DATA || 12094 (flags & TH_MARKNEXT_NEEDED)) { 12095 if (tcp->tcp_rcv_list != NULL) { 12096 flags |= tcp_rcv_drain(tcp); 12097 } 12098 ASSERT(tcp->tcp_rcv_list == NULL || 12099 tcp->tcp_fused_sigurg); 12100 12101 if (flags & TH_MARKNEXT_NEEDED) { 12102 #ifdef DEBUG 12103 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12104 "tcp_rput: sending MSGMARKNEXT %s", 12105 tcp_display(tcp, NULL, 12106 DISP_PORT_ONLY)); 12107 #endif /* DEBUG */ 12108 mp->b_flag |= MSGMARKNEXT; 12109 flags &= ~TH_MARKNEXT_NEEDED; 12110 } 12111 12112 /* Does this need SSL processing first? */ 12113 if ((tcp->tcp_kssl_ctx != NULL) && 12114 (DB_TYPE(mp) == M_DATA)) { 12115 DTRACE_PROBE1(kssl_mblk__ksslinput_data1, 12116 mblk_t *, mp); 12117 tcp_kssl_input(tcp, mp, ira->ira_cred); 12118 } else { 12119 if (is_system_labeled()) 12120 tcp_setcred_data(mp, ira); 12121 12122 putnext(connp->conn_rq, mp); 12123 if (!canputnext(connp->conn_rq)) 12124 tcp->tcp_rwnd -= seg_len; 12125 } 12126 } else if ((tcp->tcp_kssl_ctx != NULL) && 12127 (DB_TYPE(mp) == M_DATA)) { 12128 /* Does this need SSL processing first? */ 12129 DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp); 12130 tcp_kssl_input(tcp, mp, ira->ira_cred); 12131 } else if ((flags & (TH_PUSH|TH_FIN)) || 12132 tcp->tcp_rcv_cnt + seg_len >= connp->conn_rcvbuf >> 3) { 12133 if (tcp->tcp_rcv_list != NULL) { 12134 /* 12135 * Enqueue the new segment first and then 12136 * call tcp_rcv_drain() to send all data 12137 * up. The other way to do this is to 12138 * send all queued data up and then call 12139 * putnext() to send the new segment up. 12140 * This way can remove the else part later 12141 * on. 12142 * 12143 * We don't do this to avoid one more call to 12144 * canputnext() as tcp_rcv_drain() needs to 12145 * call canputnext(). 12146 */ 12147 tcp_rcv_enqueue(tcp, mp, seg_len, 12148 ira->ira_cred); 12149 flags |= tcp_rcv_drain(tcp); 12150 } else { 12151 if (is_system_labeled()) 12152 tcp_setcred_data(mp, ira); 12153 12154 putnext(connp->conn_rq, mp); 12155 if (!canputnext(connp->conn_rq)) 12156 tcp->tcp_rwnd -= seg_len; 12157 } 12158 } else { 12159 /* 12160 * Enqueue all packets when processing an mblk 12161 * from the co queue and also enqueue normal packets. 12162 */ 12163 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 12164 } 12165 /* 12166 * Make sure the timer is running if we have data waiting 12167 * for a push bit. This provides resiliency against 12168 * implementations that do not correctly generate push bits. 12169 */ 12170 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 12171 /* 12172 * The connection may be closed at this point, so don't 12173 * do anything for a detached tcp. 12174 */ 12175 if (!TCP_IS_DETACHED(tcp)) 12176 tcp->tcp_push_tid = TCP_TIMER(tcp, 12177 tcp_push_timer, 12178 MSEC_TO_TICK( 12179 tcps->tcps_push_timer_interval)); 12180 } 12181 } 12182 12183 xmit_check: 12184 /* Is there anything left to do? */ 12185 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 12186 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 12187 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 12188 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 12189 goto done; 12190 12191 /* Any transmit work to do and a non-zero window? */ 12192 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 12193 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 12194 if (flags & TH_REXMIT_NEEDED) { 12195 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 12196 12197 BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); 12198 if (snd_size > mss) 12199 snd_size = mss; 12200 if (snd_size > tcp->tcp_swnd) 12201 snd_size = tcp->tcp_swnd; 12202 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 12203 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 12204 B_TRUE); 12205 12206 if (mp1 != NULL) { 12207 tcp->tcp_xmit_head->b_prev = 12208 (mblk_t *)LBOLT_FASTPATH; 12209 tcp->tcp_csuna = tcp->tcp_snxt; 12210 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12211 UPDATE_MIB(&tcps->tcps_mib, 12212 tcpRetransBytes, snd_size); 12213 tcp_send_data(tcp, mp1); 12214 } 12215 } 12216 if (flags & TH_NEED_SACK_REXMIT) { 12217 tcp_sack_rxmit(tcp, &flags); 12218 } 12219 /* 12220 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 12221 * out new segment. Note that tcp_rexmit should not be 12222 * set, otherwise TH_LIMIT_XMIT should not be set. 12223 */ 12224 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 12225 if (!tcp->tcp_rexmit) { 12226 tcp_wput_data(tcp, NULL, B_FALSE); 12227 } else { 12228 tcp_ss_rexmit(tcp); 12229 } 12230 } 12231 /* 12232 * Adjust tcp_cwnd back to normal value after sending 12233 * new data segments. 12234 */ 12235 if (flags & TH_LIMIT_XMIT) { 12236 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 12237 /* 12238 * This will restart the timer. Restarting the 12239 * timer is used to avoid a timeout before the 12240 * limited transmitted segment's ACK gets back. 12241 */ 12242 if (tcp->tcp_xmit_head != NULL) 12243 tcp->tcp_xmit_head->b_prev = 12244 (mblk_t *)LBOLT_FASTPATH; 12245 } 12246 12247 /* Anything more to do? */ 12248 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 12249 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 12250 goto done; 12251 } 12252 ack_check: 12253 if (flags & TH_SEND_URP_MARK) { 12254 ASSERT(tcp->tcp_urp_mark_mp); 12255 ASSERT(!IPCL_IS_NONSTR(connp)); 12256 /* 12257 * Send up any queued data and then send the mark message 12258 */ 12259 if (tcp->tcp_rcv_list != NULL) { 12260 flags |= tcp_rcv_drain(tcp); 12261 12262 } 12263 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 12264 mp1 = tcp->tcp_urp_mark_mp; 12265 tcp->tcp_urp_mark_mp = NULL; 12266 if (is_system_labeled()) 12267 tcp_setcred_data(mp1, ira); 12268 12269 putnext(connp->conn_rq, mp1); 12270 #ifdef DEBUG 12271 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12272 "tcp_rput: sending zero-length %s %s", 12273 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 12274 "MSGNOTMARKNEXT"), 12275 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 12276 #endif /* DEBUG */ 12277 flags &= ~TH_SEND_URP_MARK; 12278 } 12279 if (flags & TH_ACK_NEEDED) { 12280 /* 12281 * Time to send an ack for some reason. 12282 */ 12283 mp1 = tcp_ack_mp(tcp); 12284 12285 if (mp1 != NULL) { 12286 tcp_send_data(tcp, mp1); 12287 BUMP_LOCAL(tcp->tcp_obsegs); 12288 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 12289 } 12290 if (tcp->tcp_ack_tid != 0) { 12291 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 12292 tcp->tcp_ack_tid = 0; 12293 } 12294 } 12295 if (flags & TH_ACK_TIMER_NEEDED) { 12296 /* 12297 * Arrange for deferred ACK or push wait timeout. 12298 * Start timer if it is not already running. 12299 */ 12300 if (tcp->tcp_ack_tid == 0) { 12301 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 12302 MSEC_TO_TICK(tcp->tcp_localnet ? 12303 (clock_t)tcps->tcps_local_dack_interval : 12304 (clock_t)tcps->tcps_deferred_ack_interval)); 12305 } 12306 } 12307 if (flags & TH_ORDREL_NEEDED) { 12308 /* 12309 * Send up the ordrel_ind unless we are an eager guy. 12310 * In the eager case tcp_rsrv will do this when run 12311 * after tcp_accept is done. 12312 */ 12313 ASSERT(tcp->tcp_listener == NULL); 12314 ASSERT(!tcp->tcp_detached); 12315 12316 if (IPCL_IS_NONSTR(connp)) { 12317 ASSERT(tcp->tcp_ordrel_mp == NULL); 12318 tcp->tcp_ordrel_done = B_TRUE; 12319 (*connp->conn_upcalls->su_opctl) 12320 (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0); 12321 goto done; 12322 } 12323 12324 if (tcp->tcp_rcv_list != NULL) { 12325 /* 12326 * Push any mblk(s) enqueued from co processing. 12327 */ 12328 flags |= tcp_rcv_drain(tcp); 12329 } 12330 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 12331 12332 mp1 = tcp->tcp_ordrel_mp; 12333 tcp->tcp_ordrel_mp = NULL; 12334 tcp->tcp_ordrel_done = B_TRUE; 12335 putnext(connp->conn_rq, mp1); 12336 } 12337 done: 12338 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 12339 } 12340 12341 /* 12342 * This routine adjusts next-to-send sequence number variables, in the 12343 * case where the reciever has shrunk it's window. 12344 */ 12345 static void 12346 tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt) 12347 { 12348 mblk_t *xmit_tail; 12349 int32_t offset; 12350 12351 tcp->tcp_snxt = snxt; 12352 12353 /* Get the mblk, and the offset in it, as per the shrunk window */ 12354 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 12355 ASSERT(xmit_tail != NULL); 12356 tcp->tcp_xmit_tail = xmit_tail; 12357 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - 12358 xmit_tail->b_rptr - offset; 12359 } 12360 12361 /* 12362 * This function does PAWS protection check. Returns B_TRUE if the 12363 * segment passes the PAWS test, else returns B_FALSE. 12364 */ 12365 boolean_t 12366 tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp) 12367 { 12368 uint8_t flags; 12369 int options; 12370 uint8_t *up; 12371 conn_t *connp = tcp->tcp_connp; 12372 12373 flags = (unsigned int)tcpha->tha_flags & 0xFF; 12374 /* 12375 * If timestamp option is aligned nicely, get values inline, 12376 * otherwise call general routine to parse. Only do that 12377 * if timestamp is the only option. 12378 */ 12379 if (TCP_HDR_LENGTH(tcpha) == (uint32_t)TCP_MIN_HEADER_LENGTH + 12380 TCPOPT_REAL_TS_LEN && 12381 OK_32PTR((up = ((uint8_t *)tcpha) + 12382 TCP_MIN_HEADER_LENGTH)) && 12383 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 12384 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 12385 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 12386 12387 options = TCP_OPT_TSTAMP_PRESENT; 12388 } else { 12389 if (tcp->tcp_snd_sack_ok) { 12390 tcpoptp->tcp = tcp; 12391 } else { 12392 tcpoptp->tcp = NULL; 12393 } 12394 options = tcp_parse_options(tcpha, tcpoptp); 12395 } 12396 12397 if (options & TCP_OPT_TSTAMP_PRESENT) { 12398 /* 12399 * Do PAWS per RFC 1323 section 4.2. Accept RST 12400 * regardless of the timestamp, page 18 RFC 1323.bis. 12401 */ 12402 if ((flags & TH_RST) == 0 && 12403 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 12404 tcp->tcp_ts_recent)) { 12405 if (TSTMP_LT(LBOLT_FASTPATH, 12406 tcp->tcp_last_rcv_lbolt + PAWS_TIMEOUT)) { 12407 /* This segment is not acceptable. */ 12408 return (B_FALSE); 12409 } else { 12410 /* 12411 * Connection has been idle for 12412 * too long. Reset the timestamp 12413 * and assume the segment is valid. 12414 */ 12415 tcp->tcp_ts_recent = 12416 tcpoptp->tcp_opt_ts_val; 12417 } 12418 } 12419 } else { 12420 /* 12421 * If we don't get a timestamp on every packet, we 12422 * figure we can't really trust 'em, so we stop sending 12423 * and parsing them. 12424 */ 12425 tcp->tcp_snd_ts_ok = B_FALSE; 12426 12427 connp->conn_ht_iphc_len -= TCPOPT_REAL_TS_LEN; 12428 connp->conn_ht_ulp_len -= TCPOPT_REAL_TS_LEN; 12429 tcp->tcp_tcpha->tha_offset_and_reserved -= (3 << 4); 12430 /* 12431 * Adjust the tcp_mss and tcp_cwnd accordingly. We avoid 12432 * doing a slow start here so as to not to lose on the 12433 * transfer rate built up so far. 12434 */ 12435 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN); 12436 if (tcp->tcp_snd_sack_ok) { 12437 ASSERT(tcp->tcp_sack_info != NULL); 12438 tcp->tcp_max_sack_blk = 4; 12439 } 12440 } 12441 return (B_TRUE); 12442 } 12443 12444 /* 12445 * Attach ancillary data to a received TCP segments for the 12446 * ancillary pieces requested by the application that are 12447 * different than they were in the previous data segment. 12448 * 12449 * Save the "current" values once memory allocation is ok so that 12450 * when memory allocation fails we can just wait for the next data segment. 12451 */ 12452 static mblk_t * 12453 tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp, 12454 ip_recv_attr_t *ira) 12455 { 12456 struct T_optdata_ind *todi; 12457 int optlen; 12458 uchar_t *optptr; 12459 struct T_opthdr *toh; 12460 crb_t addflag; /* Which pieces to add */ 12461 mblk_t *mp1; 12462 conn_t *connp = tcp->tcp_connp; 12463 12464 optlen = 0; 12465 addflag.crb_all = 0; 12466 /* If app asked for pktinfo and the index has changed ... */ 12467 if (connp->conn_recv_ancillary.crb_ip_recvpktinfo && 12468 ira->ira_ruifindex != tcp->tcp_recvifindex) { 12469 optlen += sizeof (struct T_opthdr) + 12470 sizeof (struct in6_pktinfo); 12471 addflag.crb_ip_recvpktinfo = 1; 12472 } 12473 /* If app asked for hoplimit and it has changed ... */ 12474 if (connp->conn_recv_ancillary.crb_ipv6_recvhoplimit && 12475 ipp->ipp_hoplimit != tcp->tcp_recvhops) { 12476 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 12477 addflag.crb_ipv6_recvhoplimit = 1; 12478 } 12479 /* If app asked for tclass and it has changed ... */ 12480 if (connp->conn_recv_ancillary.crb_ipv6_recvtclass && 12481 ipp->ipp_tclass != tcp->tcp_recvtclass) { 12482 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 12483 addflag.crb_ipv6_recvtclass = 1; 12484 } 12485 /* 12486 * If app asked for hopbyhop headers and it has changed ... 12487 * For security labels, note that (1) security labels can't change on 12488 * a connected socket at all, (2) we're connected to at most one peer, 12489 * (3) if anything changes, then it must be some other extra option. 12490 */ 12491 if (connp->conn_recv_ancillary.crb_ipv6_recvhopopts && 12492 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 12493 (ipp->ipp_fields & IPPF_HOPOPTS), 12494 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 12495 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen; 12496 addflag.crb_ipv6_recvhopopts = 1; 12497 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 12498 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 12499 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 12500 return (mp); 12501 } 12502 /* If app asked for dst headers before routing headers ... */ 12503 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdrdstopts && 12504 ip_cmpbuf(tcp->tcp_rthdrdstopts, tcp->tcp_rthdrdstoptslen, 12505 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 12506 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) { 12507 optlen += sizeof (struct T_opthdr) + 12508 ipp->ipp_rthdrdstoptslen; 12509 addflag.crb_ipv6_recvrthdrdstopts = 1; 12510 if (!ip_allocbuf((void **)&tcp->tcp_rthdrdstopts, 12511 &tcp->tcp_rthdrdstoptslen, 12512 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 12513 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) 12514 return (mp); 12515 } 12516 /* If app asked for routing headers and it has changed ... */ 12517 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdr && 12518 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 12519 (ipp->ipp_fields & IPPF_RTHDR), 12520 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 12521 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 12522 addflag.crb_ipv6_recvrthdr = 1; 12523 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 12524 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 12525 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 12526 return (mp); 12527 } 12528 /* If app asked for dest headers and it has changed ... */ 12529 if ((connp->conn_recv_ancillary.crb_ipv6_recvdstopts || 12530 connp->conn_recv_ancillary.crb_old_ipv6_recvdstopts) && 12531 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 12532 (ipp->ipp_fields & IPPF_DSTOPTS), 12533 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 12534 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 12535 addflag.crb_ipv6_recvdstopts = 1; 12536 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 12537 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 12538 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 12539 return (mp); 12540 } 12541 12542 if (optlen == 0) { 12543 /* Nothing to add */ 12544 return (mp); 12545 } 12546 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 12547 if (mp1 == NULL) { 12548 /* 12549 * Defer sending ancillary data until the next TCP segment 12550 * arrives. 12551 */ 12552 return (mp); 12553 } 12554 mp1->b_cont = mp; 12555 mp = mp1; 12556 mp->b_wptr += sizeof (*todi) + optlen; 12557 mp->b_datap->db_type = M_PROTO; 12558 todi = (struct T_optdata_ind *)mp->b_rptr; 12559 todi->PRIM_type = T_OPTDATA_IND; 12560 todi->DATA_flag = 1; /* MORE data */ 12561 todi->OPT_length = optlen; 12562 todi->OPT_offset = sizeof (*todi); 12563 optptr = (uchar_t *)&todi[1]; 12564 /* 12565 * If app asked for pktinfo and the index has changed ... 12566 * Note that the local address never changes for the connection. 12567 */ 12568 if (addflag.crb_ip_recvpktinfo) { 12569 struct in6_pktinfo *pkti; 12570 uint_t ifindex; 12571 12572 ifindex = ira->ira_ruifindex; 12573 toh = (struct T_opthdr *)optptr; 12574 toh->level = IPPROTO_IPV6; 12575 toh->name = IPV6_PKTINFO; 12576 toh->len = sizeof (*toh) + sizeof (*pkti); 12577 toh->status = 0; 12578 optptr += sizeof (*toh); 12579 pkti = (struct in6_pktinfo *)optptr; 12580 pkti->ipi6_addr = connp->conn_laddr_v6; 12581 pkti->ipi6_ifindex = ifindex; 12582 optptr += sizeof (*pkti); 12583 ASSERT(OK_32PTR(optptr)); 12584 /* Save as "last" value */ 12585 tcp->tcp_recvifindex = ifindex; 12586 } 12587 /* If app asked for hoplimit and it has changed ... */ 12588 if (addflag.crb_ipv6_recvhoplimit) { 12589 toh = (struct T_opthdr *)optptr; 12590 toh->level = IPPROTO_IPV6; 12591 toh->name = IPV6_HOPLIMIT; 12592 toh->len = sizeof (*toh) + sizeof (uint_t); 12593 toh->status = 0; 12594 optptr += sizeof (*toh); 12595 *(uint_t *)optptr = ipp->ipp_hoplimit; 12596 optptr += sizeof (uint_t); 12597 ASSERT(OK_32PTR(optptr)); 12598 /* Save as "last" value */ 12599 tcp->tcp_recvhops = ipp->ipp_hoplimit; 12600 } 12601 /* If app asked for tclass and it has changed ... */ 12602 if (addflag.crb_ipv6_recvtclass) { 12603 toh = (struct T_opthdr *)optptr; 12604 toh->level = IPPROTO_IPV6; 12605 toh->name = IPV6_TCLASS; 12606 toh->len = sizeof (*toh) + sizeof (uint_t); 12607 toh->status = 0; 12608 optptr += sizeof (*toh); 12609 *(uint_t *)optptr = ipp->ipp_tclass; 12610 optptr += sizeof (uint_t); 12611 ASSERT(OK_32PTR(optptr)); 12612 /* Save as "last" value */ 12613 tcp->tcp_recvtclass = ipp->ipp_tclass; 12614 } 12615 if (addflag.crb_ipv6_recvhopopts) { 12616 toh = (struct T_opthdr *)optptr; 12617 toh->level = IPPROTO_IPV6; 12618 toh->name = IPV6_HOPOPTS; 12619 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen; 12620 toh->status = 0; 12621 optptr += sizeof (*toh); 12622 bcopy((uchar_t *)ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen); 12623 optptr += ipp->ipp_hopoptslen; 12624 ASSERT(OK_32PTR(optptr)); 12625 /* Save as last value */ 12626 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 12627 (ipp->ipp_fields & IPPF_HOPOPTS), 12628 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 12629 } 12630 if (addflag.crb_ipv6_recvrthdrdstopts) { 12631 toh = (struct T_opthdr *)optptr; 12632 toh->level = IPPROTO_IPV6; 12633 toh->name = IPV6_RTHDRDSTOPTS; 12634 toh->len = sizeof (*toh) + ipp->ipp_rthdrdstoptslen; 12635 toh->status = 0; 12636 optptr += sizeof (*toh); 12637 bcopy(ipp->ipp_rthdrdstopts, optptr, ipp->ipp_rthdrdstoptslen); 12638 optptr += ipp->ipp_rthdrdstoptslen; 12639 ASSERT(OK_32PTR(optptr)); 12640 /* Save as last value */ 12641 ip_savebuf((void **)&tcp->tcp_rthdrdstopts, 12642 &tcp->tcp_rthdrdstoptslen, 12643 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 12644 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 12645 } 12646 if (addflag.crb_ipv6_recvrthdr) { 12647 toh = (struct T_opthdr *)optptr; 12648 toh->level = IPPROTO_IPV6; 12649 toh->name = IPV6_RTHDR; 12650 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 12651 toh->status = 0; 12652 optptr += sizeof (*toh); 12653 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 12654 optptr += ipp->ipp_rthdrlen; 12655 ASSERT(OK_32PTR(optptr)); 12656 /* Save as last value */ 12657 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 12658 (ipp->ipp_fields & IPPF_RTHDR), 12659 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 12660 } 12661 if (addflag.crb_ipv6_recvdstopts) { 12662 toh = (struct T_opthdr *)optptr; 12663 toh->level = IPPROTO_IPV6; 12664 toh->name = IPV6_DSTOPTS; 12665 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 12666 toh->status = 0; 12667 optptr += sizeof (*toh); 12668 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 12669 optptr += ipp->ipp_dstoptslen; 12670 ASSERT(OK_32PTR(optptr)); 12671 /* Save as last value */ 12672 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 12673 (ipp->ipp_fields & IPPF_DSTOPTS), 12674 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 12675 } 12676 ASSERT(optptr == mp->b_wptr); 12677 return (mp); 12678 } 12679 12680 /* ARGSUSED */ 12681 static void 12682 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 12683 { 12684 conn_t *connp = (conn_t *)arg; 12685 tcp_t *tcp = connp->conn_tcp; 12686 queue_t *q = connp->conn_rq; 12687 tcp_stack_t *tcps = tcp->tcp_tcps; 12688 12689 ASSERT(!IPCL_IS_NONSTR(connp)); 12690 mutex_enter(&tcp->tcp_rsrv_mp_lock); 12691 tcp->tcp_rsrv_mp = mp; 12692 mutex_exit(&tcp->tcp_rsrv_mp_lock); 12693 12694 TCP_STAT(tcps, tcp_rsrv_calls); 12695 12696 if (TCP_IS_DETACHED(tcp) || q == NULL) { 12697 return; 12698 } 12699 12700 if (tcp->tcp_fused) { 12701 tcp_fuse_backenable(tcp); 12702 return; 12703 } 12704 12705 if (canputnext(q)) { 12706 /* Not flow-controlled, open rwnd */ 12707 tcp->tcp_rwnd = connp->conn_rcvbuf; 12708 12709 /* 12710 * Send back a window update immediately if TCP is above 12711 * ESTABLISHED state and the increase of the rcv window 12712 * that the other side knows is at least 1 MSS after flow 12713 * control is lifted. 12714 */ 12715 if (tcp->tcp_state >= TCPS_ESTABLISHED && 12716 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 12717 tcp_xmit_ctl(NULL, tcp, 12718 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 12719 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 12720 } 12721 } 12722 } 12723 12724 /* 12725 * The read side service routine is called mostly when we get back-enabled as a 12726 * result of flow control relief. Since we don't actually queue anything in 12727 * TCP, we have no data to send out of here. What we do is clear the receive 12728 * window, and send out a window update. 12729 */ 12730 static void 12731 tcp_rsrv(queue_t *q) 12732 { 12733 conn_t *connp = Q_TO_CONN(q); 12734 tcp_t *tcp = connp->conn_tcp; 12735 mblk_t *mp; 12736 12737 /* No code does a putq on the read side */ 12738 ASSERT(q->q_first == NULL); 12739 12740 /* 12741 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 12742 * been run. So just return. 12743 */ 12744 mutex_enter(&tcp->tcp_rsrv_mp_lock); 12745 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 12746 mutex_exit(&tcp->tcp_rsrv_mp_lock); 12747 return; 12748 } 12749 tcp->tcp_rsrv_mp = NULL; 12750 mutex_exit(&tcp->tcp_rsrv_mp_lock); 12751 12752 CONN_INC_REF(connp); 12753 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, 12754 NULL, SQ_PROCESS, SQTAG_TCP_RSRV); 12755 } 12756 12757 /* 12758 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 12759 * We do not allow the receive window to shrink. After setting rwnd, 12760 * set the flow control hiwat of the stream. 12761 * 12762 * This function is called in 2 cases: 12763 * 12764 * 1) Before data transfer begins, in tcp_input_listener() for accepting a 12765 * connection (passive open) and in tcp_input_data() for active connect. 12766 * This is called after tcp_mss_set() when the desired MSS value is known. 12767 * This makes sure that our window size is a mutiple of the other side's 12768 * MSS. 12769 * 2) Handling SO_RCVBUF option. 12770 * 12771 * It is ASSUMED that the requested size is a multiple of the current MSS. 12772 * 12773 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 12774 * user requests so. 12775 */ 12776 int 12777 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 12778 { 12779 uint32_t mss = tcp->tcp_mss; 12780 uint32_t old_max_rwnd; 12781 uint32_t max_transmittable_rwnd; 12782 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 12783 tcp_stack_t *tcps = tcp->tcp_tcps; 12784 conn_t *connp = tcp->tcp_connp; 12785 12786 /* 12787 * Insist on a receive window that is at least 12788 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 12789 * funny TCP interactions of Nagle algorithm, SWS avoidance 12790 * and delayed acknowledgement. 12791 */ 12792 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 12793 12794 if (tcp->tcp_fused) { 12795 size_t sth_hiwat; 12796 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 12797 12798 ASSERT(peer_tcp != NULL); 12799 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 12800 if (!tcp_detached) { 12801 (void) proto_set_rx_hiwat(connp->conn_rq, connp, 12802 sth_hiwat); 12803 tcp_set_recv_threshold(tcp, sth_hiwat >> 3); 12804 } 12805 12806 /* 12807 * In the fusion case, the maxpsz stream head value of 12808 * our peer is set according to its send buffer size 12809 * and our receive buffer size; since the latter may 12810 * have changed we need to update the peer's maxpsz. 12811 */ 12812 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 12813 return (sth_hiwat); 12814 } 12815 12816 if (tcp_detached) 12817 old_max_rwnd = tcp->tcp_rwnd; 12818 else 12819 old_max_rwnd = connp->conn_rcvbuf; 12820 12821 12822 /* 12823 * If window size info has already been exchanged, TCP should not 12824 * shrink the window. Shrinking window is doable if done carefully. 12825 * We may add that support later. But so far there is not a real 12826 * need to do that. 12827 */ 12828 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 12829 /* MSS may have changed, do a round up again. */ 12830 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 12831 } 12832 12833 /* 12834 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 12835 * can be applied even before the window scale option is decided. 12836 */ 12837 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 12838 if (rwnd > max_transmittable_rwnd) { 12839 rwnd = max_transmittable_rwnd - 12840 (max_transmittable_rwnd % mss); 12841 if (rwnd < mss) 12842 rwnd = max_transmittable_rwnd; 12843 /* 12844 * If we're over the limit we may have to back down tcp_rwnd. 12845 * The increment below won't work for us. So we set all three 12846 * here and the increment below will have no effect. 12847 */ 12848 tcp->tcp_rwnd = old_max_rwnd = rwnd; 12849 } 12850 if (tcp->tcp_localnet) { 12851 tcp->tcp_rack_abs_max = 12852 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 12853 } else { 12854 /* 12855 * For a remote host on a different subnet (through a router), 12856 * we ack every other packet to be conforming to RFC1122. 12857 * tcp_deferred_acks_max is default to 2. 12858 */ 12859 tcp->tcp_rack_abs_max = 12860 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 12861 } 12862 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 12863 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 12864 else 12865 tcp->tcp_rack_cur_max = 0; 12866 /* 12867 * Increment the current rwnd by the amount the maximum grew (we 12868 * can not overwrite it since we might be in the middle of a 12869 * connection.) 12870 */ 12871 tcp->tcp_rwnd += rwnd - old_max_rwnd; 12872 connp->conn_rcvbuf = rwnd; 12873 12874 /* Are we already connected? */ 12875 if (tcp->tcp_tcpha != NULL) { 12876 tcp->tcp_tcpha->tha_win = 12877 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 12878 } 12879 12880 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 12881 tcp->tcp_cwnd_max = rwnd; 12882 12883 if (tcp_detached) 12884 return (rwnd); 12885 12886 tcp_set_recv_threshold(tcp, rwnd >> 3); 12887 12888 (void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd); 12889 return (rwnd); 12890 } 12891 12892 /* 12893 * Return SNMP stuff in buffer in mpdata. 12894 */ 12895 mblk_t * 12896 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 12897 { 12898 mblk_t *mpdata; 12899 mblk_t *mp_conn_ctl = NULL; 12900 mblk_t *mp_conn_tail; 12901 mblk_t *mp_attr_ctl = NULL; 12902 mblk_t *mp_attr_tail; 12903 mblk_t *mp6_conn_ctl = NULL; 12904 mblk_t *mp6_conn_tail; 12905 mblk_t *mp6_attr_ctl = NULL; 12906 mblk_t *mp6_attr_tail; 12907 struct opthdr *optp; 12908 mib2_tcpConnEntry_t tce; 12909 mib2_tcp6ConnEntry_t tce6; 12910 mib2_transportMLPEntry_t mlp; 12911 connf_t *connfp; 12912 int i; 12913 boolean_t ispriv; 12914 zoneid_t zoneid; 12915 int v4_conn_idx; 12916 int v6_conn_idx; 12917 conn_t *connp = Q_TO_CONN(q); 12918 tcp_stack_t *tcps; 12919 ip_stack_t *ipst; 12920 mblk_t *mp2ctl; 12921 12922 /* 12923 * make a copy of the original message 12924 */ 12925 mp2ctl = copymsg(mpctl); 12926 12927 if (mpctl == NULL || 12928 (mpdata = mpctl->b_cont) == NULL || 12929 (mp_conn_ctl = copymsg(mpctl)) == NULL || 12930 (mp_attr_ctl = copymsg(mpctl)) == NULL || 12931 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 12932 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 12933 freemsg(mp_conn_ctl); 12934 freemsg(mp_attr_ctl); 12935 freemsg(mp6_conn_ctl); 12936 freemsg(mp6_attr_ctl); 12937 freemsg(mpctl); 12938 freemsg(mp2ctl); 12939 return (NULL); 12940 } 12941 12942 ipst = connp->conn_netstack->netstack_ip; 12943 tcps = connp->conn_netstack->netstack_tcp; 12944 12945 /* build table of connections -- need count in fixed part */ 12946 SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ 12947 SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); 12948 SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); 12949 SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); 12950 SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); 12951 12952 ispriv = 12953 secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 12954 zoneid = Q_TO_CONN(q)->conn_zoneid; 12955 12956 v4_conn_idx = v6_conn_idx = 0; 12957 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 12958 12959 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 12960 ipst = tcps->tcps_netstack->netstack_ip; 12961 12962 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 12963 12964 connp = NULL; 12965 12966 while ((connp = 12967 ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) { 12968 tcp_t *tcp; 12969 boolean_t needattr; 12970 12971 if (connp->conn_zoneid != zoneid) 12972 continue; /* not in this zone */ 12973 12974 tcp = connp->conn_tcp; 12975 UPDATE_MIB(&tcps->tcps_mib, 12976 tcpHCInSegs, tcp->tcp_ibsegs); 12977 tcp->tcp_ibsegs = 0; 12978 UPDATE_MIB(&tcps->tcps_mib, 12979 tcpHCOutSegs, tcp->tcp_obsegs); 12980 tcp->tcp_obsegs = 0; 12981 12982 tce6.tcp6ConnState = tce.tcpConnState = 12983 tcp_snmp_state(tcp); 12984 if (tce.tcpConnState == MIB2_TCP_established || 12985 tce.tcpConnState == MIB2_TCP_closeWait) 12986 BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); 12987 12988 needattr = B_FALSE; 12989 bzero(&mlp, sizeof (mlp)); 12990 if (connp->conn_mlp_type != mlptSingle) { 12991 if (connp->conn_mlp_type == mlptShared || 12992 connp->conn_mlp_type == mlptBoth) 12993 mlp.tme_flags |= MIB2_TMEF_SHARED; 12994 if (connp->conn_mlp_type == mlptPrivate || 12995 connp->conn_mlp_type == mlptBoth) 12996 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 12997 needattr = B_TRUE; 12998 } 12999 if (connp->conn_anon_mlp) { 13000 mlp.tme_flags |= MIB2_TMEF_ANONMLP; 13001 needattr = B_TRUE; 13002 } 13003 switch (connp->conn_mac_mode) { 13004 case CONN_MAC_DEFAULT: 13005 break; 13006 case CONN_MAC_AWARE: 13007 mlp.tme_flags |= MIB2_TMEF_MACEXEMPT; 13008 needattr = B_TRUE; 13009 break; 13010 case CONN_MAC_IMPLICIT: 13011 mlp.tme_flags |= MIB2_TMEF_MACIMPLICIT; 13012 needattr = B_TRUE; 13013 break; 13014 } 13015 if (connp->conn_ixa->ixa_tsl != NULL) { 13016 ts_label_t *tsl; 13017 13018 tsl = connp->conn_ixa->ixa_tsl; 13019 mlp.tme_flags |= MIB2_TMEF_IS_LABELED; 13020 mlp.tme_doi = label2doi(tsl); 13021 mlp.tme_label = *label2bslabel(tsl); 13022 needattr = B_TRUE; 13023 } 13024 13025 /* Create a message to report on IPv6 entries */ 13026 if (connp->conn_ipversion == IPV6_VERSION) { 13027 tce6.tcp6ConnLocalAddress = connp->conn_laddr_v6; 13028 tce6.tcp6ConnRemAddress = connp->conn_faddr_v6; 13029 tce6.tcp6ConnLocalPort = ntohs(connp->conn_lport); 13030 tce6.tcp6ConnRemPort = ntohs(connp->conn_fport); 13031 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) { 13032 tce6.tcp6ConnIfIndex = 13033 connp->conn_ixa->ixa_scopeid; 13034 } else { 13035 tce6.tcp6ConnIfIndex = connp->conn_bound_if; 13036 } 13037 /* Don't want just anybody seeing these... */ 13038 if (ispriv) { 13039 tce6.tcp6ConnEntryInfo.ce_snxt = 13040 tcp->tcp_snxt; 13041 tce6.tcp6ConnEntryInfo.ce_suna = 13042 tcp->tcp_suna; 13043 tce6.tcp6ConnEntryInfo.ce_rnxt = 13044 tcp->tcp_rnxt; 13045 tce6.tcp6ConnEntryInfo.ce_rack = 13046 tcp->tcp_rack; 13047 } else { 13048 /* 13049 * Netstat, unfortunately, uses this to 13050 * get send/receive queue sizes. How to fix? 13051 * Why not compute the difference only? 13052 */ 13053 tce6.tcp6ConnEntryInfo.ce_snxt = 13054 tcp->tcp_snxt - tcp->tcp_suna; 13055 tce6.tcp6ConnEntryInfo.ce_suna = 0; 13056 tce6.tcp6ConnEntryInfo.ce_rnxt = 13057 tcp->tcp_rnxt - tcp->tcp_rack; 13058 tce6.tcp6ConnEntryInfo.ce_rack = 0; 13059 } 13060 13061 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 13062 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 13063 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 13064 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 13065 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 13066 13067 tce6.tcp6ConnCreationProcess = 13068 (connp->conn_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 13069 connp->conn_cpid; 13070 tce6.tcp6ConnCreationTime = connp->conn_open_time; 13071 13072 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 13073 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 13074 13075 mlp.tme_connidx = v6_conn_idx++; 13076 if (needattr) 13077 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 13078 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 13079 } 13080 /* 13081 * Create an IPv4 table entry for IPv4 entries and also 13082 * for IPv6 entries which are bound to in6addr_any 13083 * but don't have IPV6_V6ONLY set. 13084 * (i.e. anything an IPv4 peer could connect to) 13085 */ 13086 if (connp->conn_ipversion == IPV4_VERSION || 13087 (tcp->tcp_state <= TCPS_LISTEN && 13088 !connp->conn_ipv6_v6only && 13089 IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6))) { 13090 if (connp->conn_ipversion == IPV6_VERSION) { 13091 tce.tcpConnRemAddress = INADDR_ANY; 13092 tce.tcpConnLocalAddress = INADDR_ANY; 13093 } else { 13094 tce.tcpConnRemAddress = 13095 connp->conn_faddr_v4; 13096 tce.tcpConnLocalAddress = 13097 connp->conn_laddr_v4; 13098 } 13099 tce.tcpConnLocalPort = ntohs(connp->conn_lport); 13100 tce.tcpConnRemPort = ntohs(connp->conn_fport); 13101 /* Don't want just anybody seeing these... */ 13102 if (ispriv) { 13103 tce.tcpConnEntryInfo.ce_snxt = 13104 tcp->tcp_snxt; 13105 tce.tcpConnEntryInfo.ce_suna = 13106 tcp->tcp_suna; 13107 tce.tcpConnEntryInfo.ce_rnxt = 13108 tcp->tcp_rnxt; 13109 tce.tcpConnEntryInfo.ce_rack = 13110 tcp->tcp_rack; 13111 } else { 13112 /* 13113 * Netstat, unfortunately, uses this to 13114 * get send/receive queue sizes. How 13115 * to fix? 13116 * Why not compute the difference only? 13117 */ 13118 tce.tcpConnEntryInfo.ce_snxt = 13119 tcp->tcp_snxt - tcp->tcp_suna; 13120 tce.tcpConnEntryInfo.ce_suna = 0; 13121 tce.tcpConnEntryInfo.ce_rnxt = 13122 tcp->tcp_rnxt - tcp->tcp_rack; 13123 tce.tcpConnEntryInfo.ce_rack = 0; 13124 } 13125 13126 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 13127 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 13128 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 13129 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 13130 tce.tcpConnEntryInfo.ce_state = 13131 tcp->tcp_state; 13132 13133 tce.tcpConnCreationProcess = 13134 (connp->conn_cpid < 0) ? 13135 MIB2_UNKNOWN_PROCESS : 13136 connp->conn_cpid; 13137 tce.tcpConnCreationTime = connp->conn_open_time; 13138 13139 (void) snmp_append_data2(mp_conn_ctl->b_cont, 13140 &mp_conn_tail, (char *)&tce, sizeof (tce)); 13141 13142 mlp.tme_connidx = v4_conn_idx++; 13143 if (needattr) 13144 (void) snmp_append_data2( 13145 mp_attr_ctl->b_cont, 13146 &mp_attr_tail, (char *)&mlp, 13147 sizeof (mlp)); 13148 } 13149 } 13150 } 13151 13152 /* fixed length structure for IPv4 and IPv6 counters */ 13153 SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 13154 SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, 13155 sizeof (mib2_tcp6ConnEntry_t)); 13156 /* synchronize 32- and 64-bit counters */ 13157 SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); 13158 SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); 13159 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 13160 optp->level = MIB2_TCP; 13161 optp->name = 0; 13162 (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, 13163 sizeof (tcps->tcps_mib)); 13164 optp->len = msgdsize(mpdata); 13165 qreply(q, mpctl); 13166 13167 /* table of connections... */ 13168 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 13169 sizeof (struct T_optmgmt_ack)]; 13170 optp->level = MIB2_TCP; 13171 optp->name = MIB2_TCP_CONN; 13172 optp->len = msgdsize(mp_conn_ctl->b_cont); 13173 qreply(q, mp_conn_ctl); 13174 13175 /* table of MLP attributes... */ 13176 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 13177 sizeof (struct T_optmgmt_ack)]; 13178 optp->level = MIB2_TCP; 13179 optp->name = EXPER_XPORT_MLP; 13180 optp->len = msgdsize(mp_attr_ctl->b_cont); 13181 if (optp->len == 0) 13182 freemsg(mp_attr_ctl); 13183 else 13184 qreply(q, mp_attr_ctl); 13185 13186 /* table of IPv6 connections... */ 13187 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 13188 sizeof (struct T_optmgmt_ack)]; 13189 optp->level = MIB2_TCP6; 13190 optp->name = MIB2_TCP6_CONN; 13191 optp->len = msgdsize(mp6_conn_ctl->b_cont); 13192 qreply(q, mp6_conn_ctl); 13193 13194 /* table of IPv6 MLP attributes... */ 13195 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 13196 sizeof (struct T_optmgmt_ack)]; 13197 optp->level = MIB2_TCP6; 13198 optp->name = EXPER_XPORT_MLP; 13199 optp->len = msgdsize(mp6_attr_ctl->b_cont); 13200 if (optp->len == 0) 13201 freemsg(mp6_attr_ctl); 13202 else 13203 qreply(q, mp6_attr_ctl); 13204 return (mp2ctl); 13205 } 13206 13207 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 13208 /* ARGSUSED */ 13209 int 13210 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 13211 { 13212 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 13213 13214 switch (level) { 13215 case MIB2_TCP: 13216 switch (name) { 13217 case 13: 13218 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 13219 return (0); 13220 /* TODO: delete entry defined by tce */ 13221 return (1); 13222 default: 13223 return (0); 13224 } 13225 default: 13226 return (1); 13227 } 13228 } 13229 13230 /* Translate TCP state to MIB2 TCP state. */ 13231 static int 13232 tcp_snmp_state(tcp_t *tcp) 13233 { 13234 if (tcp == NULL) 13235 return (0); 13236 13237 switch (tcp->tcp_state) { 13238 case TCPS_CLOSED: 13239 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 13240 case TCPS_BOUND: 13241 return (MIB2_TCP_closed); 13242 case TCPS_LISTEN: 13243 return (MIB2_TCP_listen); 13244 case TCPS_SYN_SENT: 13245 return (MIB2_TCP_synSent); 13246 case TCPS_SYN_RCVD: 13247 return (MIB2_TCP_synReceived); 13248 case TCPS_ESTABLISHED: 13249 return (MIB2_TCP_established); 13250 case TCPS_CLOSE_WAIT: 13251 return (MIB2_TCP_closeWait); 13252 case TCPS_FIN_WAIT_1: 13253 return (MIB2_TCP_finWait1); 13254 case TCPS_CLOSING: 13255 return (MIB2_TCP_closing); 13256 case TCPS_LAST_ACK: 13257 return (MIB2_TCP_lastAck); 13258 case TCPS_FIN_WAIT_2: 13259 return (MIB2_TCP_finWait2); 13260 case TCPS_TIME_WAIT: 13261 return (MIB2_TCP_timeWait); 13262 default: 13263 return (0); 13264 } 13265 } 13266 13267 /* 13268 * tcp_timer is the timer service routine. It handles the retransmission, 13269 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 13270 * from the state of the tcp instance what kind of action needs to be done 13271 * at the time it is called. 13272 */ 13273 static void 13274 tcp_timer(void *arg) 13275 { 13276 mblk_t *mp; 13277 clock_t first_threshold; 13278 clock_t second_threshold; 13279 clock_t ms; 13280 uint32_t mss; 13281 conn_t *connp = (conn_t *)arg; 13282 tcp_t *tcp = connp->conn_tcp; 13283 tcp_stack_t *tcps = tcp->tcp_tcps; 13284 13285 tcp->tcp_timer_tid = 0; 13286 13287 if (tcp->tcp_fused) 13288 return; 13289 13290 first_threshold = tcp->tcp_first_timer_threshold; 13291 second_threshold = tcp->tcp_second_timer_threshold; 13292 switch (tcp->tcp_state) { 13293 case TCPS_IDLE: 13294 case TCPS_BOUND: 13295 case TCPS_LISTEN: 13296 return; 13297 case TCPS_SYN_RCVD: { 13298 tcp_t *listener = tcp->tcp_listener; 13299 13300 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 13301 /* it's our first timeout */ 13302 tcp->tcp_syn_rcvd_timeout = 1; 13303 mutex_enter(&listener->tcp_eager_lock); 13304 listener->tcp_syn_rcvd_timeout++; 13305 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 13306 /* 13307 * Make this eager available for drop if we 13308 * need to drop one to accomodate a new 13309 * incoming SYN request. 13310 */ 13311 MAKE_DROPPABLE(listener, tcp); 13312 } 13313 if (!listener->tcp_syn_defense && 13314 (listener->tcp_syn_rcvd_timeout > 13315 (tcps->tcps_conn_req_max_q0 >> 2)) && 13316 (tcps->tcps_conn_req_max_q0 > 200)) { 13317 /* We may be under attack. Put on a defense. */ 13318 listener->tcp_syn_defense = B_TRUE; 13319 cmn_err(CE_WARN, "High TCP connect timeout " 13320 "rate! System (port %d) may be under a " 13321 "SYN flood attack!", 13322 ntohs(listener->tcp_connp->conn_lport)); 13323 13324 listener->tcp_ip_addr_cache = kmem_zalloc( 13325 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 13326 KM_NOSLEEP); 13327 } 13328 mutex_exit(&listener->tcp_eager_lock); 13329 } else if (listener != NULL) { 13330 mutex_enter(&listener->tcp_eager_lock); 13331 tcp->tcp_syn_rcvd_timeout++; 13332 if (tcp->tcp_syn_rcvd_timeout > 1 && 13333 !tcp->tcp_closemp_used) { 13334 /* 13335 * This is our second timeout. Put the tcp in 13336 * the list of droppable eagers to allow it to 13337 * be dropped, if needed. We don't check 13338 * whether tcp_dontdrop is set or not to 13339 * protect ourselve from a SYN attack where a 13340 * remote host can spoof itself as one of the 13341 * good IP source and continue to hold 13342 * resources too long. 13343 */ 13344 MAKE_DROPPABLE(listener, tcp); 13345 } 13346 mutex_exit(&listener->tcp_eager_lock); 13347 } 13348 } 13349 /* FALLTHRU */ 13350 case TCPS_SYN_SENT: 13351 first_threshold = tcp->tcp_first_ctimer_threshold; 13352 second_threshold = tcp->tcp_second_ctimer_threshold; 13353 break; 13354 case TCPS_ESTABLISHED: 13355 case TCPS_FIN_WAIT_1: 13356 case TCPS_CLOSING: 13357 case TCPS_CLOSE_WAIT: 13358 case TCPS_LAST_ACK: 13359 /* If we have data to rexmit */ 13360 if (tcp->tcp_suna != tcp->tcp_snxt) { 13361 clock_t time_to_wait; 13362 13363 BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); 13364 if (!tcp->tcp_xmit_head) 13365 break; 13366 time_to_wait = ddi_get_lbolt() - 13367 (clock_t)tcp->tcp_xmit_head->b_prev; 13368 time_to_wait = tcp->tcp_rto - 13369 TICK_TO_MSEC(time_to_wait); 13370 /* 13371 * If the timer fires too early, 1 clock tick earlier, 13372 * restart the timer. 13373 */ 13374 if (time_to_wait > msec_per_tick) { 13375 TCP_STAT(tcps, tcp_timer_fire_early); 13376 TCP_TIMER_RESTART(tcp, time_to_wait); 13377 return; 13378 } 13379 /* 13380 * When we probe zero windows, we force the swnd open. 13381 * If our peer acks with a closed window swnd will be 13382 * set to zero by tcp_rput(). As long as we are 13383 * receiving acks tcp_rput will 13384 * reset 'tcp_ms_we_have_waited' so as not to trip the 13385 * first and second interval actions. NOTE: the timer 13386 * interval is allowed to continue its exponential 13387 * backoff. 13388 */ 13389 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 13390 if (connp->conn_debug) { 13391 (void) strlog(TCP_MOD_ID, 0, 1, 13392 SL_TRACE, "tcp_timer: zero win"); 13393 } 13394 } else { 13395 /* 13396 * After retransmission, we need to do 13397 * slow start. Set the ssthresh to one 13398 * half of current effective window and 13399 * cwnd to one MSS. Also reset 13400 * tcp_cwnd_cnt. 13401 * 13402 * Note that if tcp_ssthresh is reduced because 13403 * of ECN, do not reduce it again unless it is 13404 * already one window of data away (tcp_cwr 13405 * should then be cleared) or this is a 13406 * timeout for a retransmitted segment. 13407 */ 13408 uint32_t npkt; 13409 13410 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 13411 npkt = ((tcp->tcp_timer_backoff ? 13412 tcp->tcp_cwnd_ssthresh : 13413 tcp->tcp_snxt - 13414 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 13415 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 13416 tcp->tcp_mss; 13417 } 13418 tcp->tcp_cwnd = tcp->tcp_mss; 13419 tcp->tcp_cwnd_cnt = 0; 13420 if (tcp->tcp_ecn_ok) { 13421 tcp->tcp_cwr = B_TRUE; 13422 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 13423 tcp->tcp_ecn_cwr_sent = B_FALSE; 13424 } 13425 } 13426 break; 13427 } 13428 /* 13429 * We have something to send yet we cannot send. The 13430 * reason can be: 13431 * 13432 * 1. Zero send window: we need to do zero window probe. 13433 * 2. Zero cwnd: because of ECN, we need to "clock out 13434 * segments. 13435 * 3. SWS avoidance: receiver may have shrunk window, 13436 * reset our knowledge. 13437 * 13438 * Note that condition 2 can happen with either 1 or 13439 * 3. But 1 and 3 are exclusive. 13440 */ 13441 if (tcp->tcp_unsent != 0) { 13442 /* 13443 * Should not hold the zero-copy messages for too long. 13444 */ 13445 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) 13446 tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, 13447 tcp->tcp_xmit_head, B_TRUE); 13448 13449 if (tcp->tcp_cwnd == 0) { 13450 /* 13451 * Set tcp_cwnd to 1 MSS so that a 13452 * new segment can be sent out. We 13453 * are "clocking out" new data when 13454 * the network is really congested. 13455 */ 13456 ASSERT(tcp->tcp_ecn_ok); 13457 tcp->tcp_cwnd = tcp->tcp_mss; 13458 } 13459 if (tcp->tcp_swnd == 0) { 13460 /* Extend window for zero window probe */ 13461 tcp->tcp_swnd++; 13462 tcp->tcp_zero_win_probe = B_TRUE; 13463 BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); 13464 } else { 13465 /* 13466 * Handle timeout from sender SWS avoidance. 13467 * Reset our knowledge of the max send window 13468 * since the receiver might have reduced its 13469 * receive buffer. Avoid setting tcp_max_swnd 13470 * to one since that will essentially disable 13471 * the SWS checks. 13472 * 13473 * Note that since we don't have a SWS 13474 * state variable, if the timeout is set 13475 * for ECN but not for SWS, this 13476 * code will also be executed. This is 13477 * fine as tcp_max_swnd is updated 13478 * constantly and it will not affect 13479 * anything. 13480 */ 13481 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 13482 } 13483 tcp_wput_data(tcp, NULL, B_FALSE); 13484 return; 13485 } 13486 /* Is there a FIN that needs to be to re retransmitted? */ 13487 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 13488 !tcp->tcp_fin_acked) 13489 break; 13490 /* Nothing to do, return without restarting timer. */ 13491 TCP_STAT(tcps, tcp_timer_fire_miss); 13492 return; 13493 case TCPS_FIN_WAIT_2: 13494 /* 13495 * User closed the TCP endpoint and peer ACK'ed our FIN. 13496 * We waited some time for for peer's FIN, but it hasn't 13497 * arrived. We flush the connection now to avoid 13498 * case where the peer has rebooted. 13499 */ 13500 if (TCP_IS_DETACHED(tcp)) { 13501 (void) tcp_clean_death(tcp, 0, 23); 13502 } else { 13503 TCP_TIMER_RESTART(tcp, 13504 tcps->tcps_fin_wait_2_flush_interval); 13505 } 13506 return; 13507 case TCPS_TIME_WAIT: 13508 (void) tcp_clean_death(tcp, 0, 24); 13509 return; 13510 default: 13511 if (connp->conn_debug) { 13512 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 13513 "tcp_timer: strange state (%d) %s", 13514 tcp->tcp_state, tcp_display(tcp, NULL, 13515 DISP_PORT_ONLY)); 13516 } 13517 return; 13518 } 13519 13520 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 13521 /* 13522 * Should not hold the zero-copy messages for too long. 13523 */ 13524 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) 13525 tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, 13526 tcp->tcp_xmit_head, B_TRUE); 13527 13528 /* 13529 * For zero window probe, we need to send indefinitely, 13530 * unless we have not heard from the other side for some 13531 * time... 13532 */ 13533 if ((tcp->tcp_zero_win_probe == 0) || 13534 (TICK_TO_MSEC(ddi_get_lbolt() - tcp->tcp_last_recv_time) > 13535 second_threshold)) { 13536 BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); 13537 /* 13538 * If TCP is in SYN_RCVD state, send back a 13539 * RST|ACK as BSD does. Note that tcp_zero_win_probe 13540 * should be zero in TCPS_SYN_RCVD state. 13541 */ 13542 if (tcp->tcp_state == TCPS_SYN_RCVD) { 13543 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 13544 "in SYN_RCVD", 13545 tcp, tcp->tcp_snxt, 13546 tcp->tcp_rnxt, TH_RST | TH_ACK); 13547 } 13548 (void) tcp_clean_death(tcp, 13549 tcp->tcp_client_errno ? 13550 tcp->tcp_client_errno : ETIMEDOUT, 25); 13551 return; 13552 } else { 13553 /* 13554 * Set tcp_ms_we_have_waited to second_threshold 13555 * so that in next timeout, we will do the above 13556 * check (ddi_get_lbolt() - tcp_last_recv_time). 13557 * This is also to avoid overflow. 13558 * 13559 * We don't need to decrement tcp_timer_backoff 13560 * to avoid overflow because it will be decremented 13561 * later if new timeout value is greater than 13562 * tcp_rexmit_interval_max. In the case when 13563 * tcp_rexmit_interval_max is greater than 13564 * second_threshold, it means that we will wait 13565 * longer than second_threshold to send the next 13566 * window probe. 13567 */ 13568 tcp->tcp_ms_we_have_waited = second_threshold; 13569 } 13570 } else if (ms > first_threshold) { 13571 /* 13572 * Should not hold the zero-copy messages for too long. 13573 */ 13574 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) 13575 tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, 13576 tcp->tcp_xmit_head, B_TRUE); 13577 13578 /* 13579 * We have been retransmitting for too long... The RTT 13580 * we calculated is probably incorrect. Reinitialize it. 13581 * Need to compensate for 0 tcp_rtt_sa. Reset 13582 * tcp_rtt_update so that we won't accidentally cache a 13583 * bad value. But only do this if this is not a zero 13584 * window probe. 13585 */ 13586 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 13587 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 13588 (tcp->tcp_rtt_sa >> 5); 13589 tcp->tcp_rtt_sa = 0; 13590 tcp_ip_notify(tcp); 13591 tcp->tcp_rtt_update = 0; 13592 } 13593 } 13594 tcp->tcp_timer_backoff++; 13595 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 13596 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 13597 tcps->tcps_rexmit_interval_min) { 13598 /* 13599 * This means the original RTO is tcp_rexmit_interval_min. 13600 * So we will use tcp_rexmit_interval_min as the RTO value 13601 * and do the backoff. 13602 */ 13603 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 13604 } else { 13605 ms <<= tcp->tcp_timer_backoff; 13606 } 13607 if (ms > tcps->tcps_rexmit_interval_max) { 13608 ms = tcps->tcps_rexmit_interval_max; 13609 /* 13610 * ms is at max, decrement tcp_timer_backoff to avoid 13611 * overflow. 13612 */ 13613 tcp->tcp_timer_backoff--; 13614 } 13615 tcp->tcp_ms_we_have_waited += ms; 13616 if (tcp->tcp_zero_win_probe == 0) { 13617 tcp->tcp_rto = ms; 13618 } 13619 TCP_TIMER_RESTART(tcp, ms); 13620 /* 13621 * This is after a timeout and tcp_rto is backed off. Set 13622 * tcp_set_timer to 1 so that next time RTO is updated, we will 13623 * restart the timer with a correct value. 13624 */ 13625 tcp->tcp_set_timer = 1; 13626 mss = tcp->tcp_snxt - tcp->tcp_suna; 13627 if (mss > tcp->tcp_mss) 13628 mss = tcp->tcp_mss; 13629 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 13630 mss = tcp->tcp_swnd; 13631 13632 if ((mp = tcp->tcp_xmit_head) != NULL) 13633 mp->b_prev = (mblk_t *)ddi_get_lbolt(); 13634 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 13635 B_TRUE); 13636 13637 /* 13638 * When slow start after retransmission begins, start with 13639 * this seq no. tcp_rexmit_max marks the end of special slow 13640 * start phase. tcp_snd_burst controls how many segments 13641 * can be sent because of an ack. 13642 */ 13643 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 13644 tcp->tcp_snd_burst = TCP_CWND_SS; 13645 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 13646 (tcp->tcp_unsent == 0)) { 13647 tcp->tcp_rexmit_max = tcp->tcp_fss; 13648 } else { 13649 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13650 } 13651 tcp->tcp_rexmit = B_TRUE; 13652 tcp->tcp_dupack_cnt = 0; 13653 13654 /* 13655 * Remove all rexmit SACK blk to start from fresh. 13656 */ 13657 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) 13658 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 13659 if (mp == NULL) { 13660 return; 13661 } 13662 13663 tcp->tcp_csuna = tcp->tcp_snxt; 13664 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 13665 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); 13666 tcp_send_data(tcp, mp); 13667 13668 } 13669 13670 static int 13671 tcp_do_unbind(conn_t *connp) 13672 { 13673 tcp_t *tcp = connp->conn_tcp; 13674 13675 switch (tcp->tcp_state) { 13676 case TCPS_BOUND: 13677 case TCPS_LISTEN: 13678 break; 13679 default: 13680 return (-TOUTSTATE); 13681 } 13682 13683 /* 13684 * Need to clean up all the eagers since after the unbind, segments 13685 * will no longer be delivered to this listener stream. 13686 */ 13687 mutex_enter(&tcp->tcp_eager_lock); 13688 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 13689 tcp_eager_cleanup(tcp, 0); 13690 } 13691 mutex_exit(&tcp->tcp_eager_lock); 13692 13693 connp->conn_laddr_v6 = ipv6_all_zeros; 13694 connp->conn_saddr_v6 = ipv6_all_zeros; 13695 tcp_bind_hash_remove(tcp); 13696 tcp->tcp_state = TCPS_IDLE; 13697 13698 ip_unbind(connp); 13699 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 13700 13701 return (0); 13702 } 13703 13704 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 13705 static void 13706 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp) 13707 { 13708 conn_t *connp = tcp->tcp_connp; 13709 int error; 13710 13711 error = tcp_do_unbind(connp); 13712 if (error > 0) { 13713 tcp_err_ack(tcp, mp, TSYSERR, error); 13714 } else if (error < 0) { 13715 tcp_err_ack(tcp, mp, -error, 0); 13716 } else { 13717 /* Send M_FLUSH according to TPI */ 13718 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW); 13719 13720 mp = mi_tpi_ok_ack_alloc(mp); 13721 if (mp != NULL) 13722 putnext(connp->conn_rq, mp); 13723 } 13724 } 13725 13726 /* 13727 * Don't let port fall into the privileged range. 13728 * Since the extra privileged ports can be arbitrary we also 13729 * ensure that we exclude those from consideration. 13730 * tcp_g_epriv_ports is not sorted thus we loop over it until 13731 * there are no changes. 13732 * 13733 * Note: No locks are held when inspecting tcp_g_*epriv_ports 13734 * but instead the code relies on: 13735 * - the fact that the address of the array and its size never changes 13736 * - the atomic assignment of the elements of the array 13737 * 13738 * Returns 0 if there are no more ports available. 13739 * 13740 * TS note: skip multilevel ports. 13741 */ 13742 static in_port_t 13743 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 13744 { 13745 int i; 13746 boolean_t restart = B_FALSE; 13747 tcp_stack_t *tcps = tcp->tcp_tcps; 13748 13749 if (random && tcp_random_anon_port != 0) { 13750 (void) random_get_pseudo_bytes((uint8_t *)&port, 13751 sizeof (in_port_t)); 13752 /* 13753 * Unless changed by a sys admin, the smallest anon port 13754 * is 32768 and the largest anon port is 65535. It is 13755 * very likely (50%) for the random port to be smaller 13756 * than the smallest anon port. When that happens, 13757 * add port % (anon port range) to the smallest anon 13758 * port to get the random port. It should fall into the 13759 * valid anon port range. 13760 */ 13761 if (port < tcps->tcps_smallest_anon_port) { 13762 port = tcps->tcps_smallest_anon_port + 13763 port % (tcps->tcps_largest_anon_port - 13764 tcps->tcps_smallest_anon_port); 13765 } 13766 } 13767 13768 retry: 13769 if (port < tcps->tcps_smallest_anon_port) 13770 port = (in_port_t)tcps->tcps_smallest_anon_port; 13771 13772 if (port > tcps->tcps_largest_anon_port) { 13773 if (restart) 13774 return (0); 13775 restart = B_TRUE; 13776 port = (in_port_t)tcps->tcps_smallest_anon_port; 13777 } 13778 13779 if (port < tcps->tcps_smallest_nonpriv_port) 13780 port = (in_port_t)tcps->tcps_smallest_nonpriv_port; 13781 13782 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 13783 if (port == tcps->tcps_g_epriv_ports[i]) { 13784 port++; 13785 /* 13786 * Make sure whether the port is in the 13787 * valid range. 13788 */ 13789 goto retry; 13790 } 13791 } 13792 if (is_system_labeled() && 13793 (i = tsol_next_port(crgetzone(tcp->tcp_connp->conn_cred), port, 13794 IPPROTO_TCP, B_TRUE)) != 0) { 13795 port = i; 13796 goto retry; 13797 } 13798 return (port); 13799 } 13800 13801 /* 13802 * Return the next anonymous port in the privileged port range for 13803 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 13804 * downwards. This is the same behavior as documented in the userland 13805 * library call rresvport(3N). 13806 * 13807 * TS note: skip multilevel ports. 13808 */ 13809 static in_port_t 13810 tcp_get_next_priv_port(const tcp_t *tcp) 13811 { 13812 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 13813 in_port_t nextport; 13814 boolean_t restart = B_FALSE; 13815 tcp_stack_t *tcps = tcp->tcp_tcps; 13816 retry: 13817 if (next_priv_port < tcps->tcps_min_anonpriv_port || 13818 next_priv_port >= IPPORT_RESERVED) { 13819 next_priv_port = IPPORT_RESERVED - 1; 13820 if (restart) 13821 return (0); 13822 restart = B_TRUE; 13823 } 13824 if (is_system_labeled() && 13825 (nextport = tsol_next_port(crgetzone(tcp->tcp_connp->conn_cred), 13826 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 13827 next_priv_port = nextport; 13828 goto retry; 13829 } 13830 return (next_priv_port--); 13831 } 13832 13833 /* The write side r/w procedure. */ 13834 13835 #if CCS_STATS 13836 struct { 13837 struct { 13838 int64_t count, bytes; 13839 } tot, hit; 13840 } wrw_stats; 13841 #endif 13842 13843 /* 13844 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 13845 * messages. 13846 */ 13847 /* ARGSUSED */ 13848 static void 13849 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 13850 { 13851 conn_t *connp = (conn_t *)arg; 13852 tcp_t *tcp = connp->conn_tcp; 13853 13854 ASSERT(DB_TYPE(mp) != M_IOCTL); 13855 /* 13856 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 13857 * Once the close starts, streamhead and sockfs will not let any data 13858 * packets come down (close ensures that there are no threads using the 13859 * queue and no new threads will come down) but since qprocsoff() 13860 * hasn't happened yet, a M_FLUSH or some non data message might 13861 * get reflected back (in response to our own FLUSHRW) and get 13862 * processed after tcp_close() is done. The conn would still be valid 13863 * because a ref would have added but we need to check the state 13864 * before actually processing the packet. 13865 */ 13866 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 13867 freemsg(mp); 13868 return; 13869 } 13870 13871 switch (DB_TYPE(mp)) { 13872 case M_IOCDATA: 13873 tcp_wput_iocdata(tcp, mp); 13874 break; 13875 case M_FLUSH: 13876 tcp_wput_flush(tcp, mp); 13877 break; 13878 default: 13879 ip_wput_nondata(connp->conn_wq, mp); 13880 break; 13881 } 13882 } 13883 13884 /* 13885 * The TCP fast path write put procedure. 13886 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 13887 */ 13888 /* ARGSUSED */ 13889 void 13890 tcp_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 13891 { 13892 int len; 13893 int hdrlen; 13894 int plen; 13895 mblk_t *mp1; 13896 uchar_t *rptr; 13897 uint32_t snxt; 13898 tcpha_t *tcpha; 13899 struct datab *db; 13900 uint32_t suna; 13901 uint32_t mss; 13902 ipaddr_t *dst; 13903 ipaddr_t *src; 13904 uint32_t sum; 13905 int usable; 13906 conn_t *connp = (conn_t *)arg; 13907 tcp_t *tcp = connp->conn_tcp; 13908 uint32_t msize; 13909 tcp_stack_t *tcps = tcp->tcp_tcps; 13910 ip_xmit_attr_t *ixa; 13911 13912 /* 13913 * Try and ASSERT the minimum possible references on the 13914 * conn early enough. Since we are executing on write side, 13915 * the connection is obviously not detached and that means 13916 * there is a ref each for TCP and IP. Since we are behind 13917 * the squeue, the minimum references needed are 3. If the 13918 * conn is in classifier hash list, there should be an 13919 * extra ref for that (we check both the possibilities). 13920 */ 13921 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 13922 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 13923 13924 ASSERT(DB_TYPE(mp) == M_DATA); 13925 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 13926 13927 mutex_enter(&tcp->tcp_non_sq_lock); 13928 tcp->tcp_squeue_bytes -= msize; 13929 mutex_exit(&tcp->tcp_non_sq_lock); 13930 13931 /* Bypass tcp protocol for fused tcp loopback */ 13932 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 13933 return; 13934 13935 mss = tcp->tcp_mss; 13936 /* 13937 * If ZEROCOPY has turned off, try not to send any zero-copy message 13938 * down. Do backoff, now. 13939 */ 13940 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_snd_zcopy_on) 13941 mp = tcp_zcopy_backoff(tcp, mp, B_FALSE); 13942 13943 13944 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 13945 len = (int)(mp->b_wptr - mp->b_rptr); 13946 13947 /* 13948 * Criteria for fast path: 13949 * 13950 * 1. no unsent data 13951 * 2. single mblk in request 13952 * 3. connection established 13953 * 4. data in mblk 13954 * 5. len <= mss 13955 * 6. no tcp_valid bits 13956 */ 13957 if ((tcp->tcp_unsent != 0) || 13958 (tcp->tcp_cork) || 13959 (mp->b_cont != NULL) || 13960 (tcp->tcp_state != TCPS_ESTABLISHED) || 13961 (len == 0) || 13962 (len > mss) || 13963 (tcp->tcp_valid_bits != 0)) { 13964 tcp_wput_data(tcp, mp, B_FALSE); 13965 return; 13966 } 13967 13968 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 13969 ASSERT(tcp->tcp_fin_sent == 0); 13970 13971 /* queue new packet onto retransmission queue */ 13972 if (tcp->tcp_xmit_head == NULL) { 13973 tcp->tcp_xmit_head = mp; 13974 } else { 13975 tcp->tcp_xmit_last->b_cont = mp; 13976 } 13977 tcp->tcp_xmit_last = mp; 13978 tcp->tcp_xmit_tail = mp; 13979 13980 /* find out how much we can send */ 13981 /* BEGIN CSTYLED */ 13982 /* 13983 * un-acked usable 13984 * |--------------|-----------------| 13985 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 13986 */ 13987 /* END CSTYLED */ 13988 13989 /* start sending from tcp_snxt */ 13990 snxt = tcp->tcp_snxt; 13991 13992 /* 13993 * Check to see if this connection has been idled for some 13994 * time and no ACK is expected. If it is, we need to slow 13995 * start again to get back the connection's "self-clock" as 13996 * described in VJ's paper. 13997 * 13998 * Reinitialize tcp_cwnd after idle. 13999 */ 14000 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 14001 (TICK_TO_MSEC(ddi_get_lbolt() - tcp->tcp_last_recv_time) >= 14002 tcp->tcp_rto)) { 14003 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 14004 } 14005 14006 usable = tcp->tcp_swnd; /* tcp window size */ 14007 if (usable > tcp->tcp_cwnd) 14008 usable = tcp->tcp_cwnd; /* congestion window smaller */ 14009 usable -= snxt; /* subtract stuff already sent */ 14010 suna = tcp->tcp_suna; 14011 usable += suna; 14012 /* usable can be < 0 if the congestion window is smaller */ 14013 if (len > usable) { 14014 /* Can't send complete M_DATA in one shot */ 14015 goto slow; 14016 } 14017 14018 mutex_enter(&tcp->tcp_non_sq_lock); 14019 if (tcp->tcp_flow_stopped && 14020 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 14021 tcp_clrqfull(tcp); 14022 } 14023 mutex_exit(&tcp->tcp_non_sq_lock); 14024 14025 /* 14026 * determine if anything to send (Nagle). 14027 * 14028 * 1. len < tcp_mss (i.e. small) 14029 * 2. unacknowledged data present 14030 * 3. len < nagle limit 14031 * 4. last packet sent < nagle limit (previous packet sent) 14032 */ 14033 if ((len < mss) && (snxt != suna) && 14034 (len < (int)tcp->tcp_naglim) && 14035 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 14036 /* 14037 * This was the first unsent packet and normally 14038 * mss < xmit_hiwater so there is no need to worry 14039 * about flow control. The next packet will go 14040 * through the flow control check in tcp_wput_data(). 14041 */ 14042 /* leftover work from above */ 14043 tcp->tcp_unsent = len; 14044 tcp->tcp_xmit_tail_unsent = len; 14045 14046 return; 14047 } 14048 14049 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 14050 14051 if (snxt == suna) { 14052 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14053 } 14054 14055 /* we have always sent something */ 14056 tcp->tcp_rack_cnt = 0; 14057 14058 tcp->tcp_snxt = snxt + len; 14059 tcp->tcp_rack = tcp->tcp_rnxt; 14060 14061 if ((mp1 = dupb(mp)) == 0) 14062 goto no_memory; 14063 mp->b_prev = (mblk_t *)(uintptr_t)ddi_get_lbolt(); 14064 mp->b_next = (mblk_t *)(uintptr_t)snxt; 14065 14066 /* adjust tcp header information */ 14067 tcpha = tcp->tcp_tcpha; 14068 tcpha->tha_flags = (TH_ACK|TH_PUSH); 14069 14070 sum = len + connp->conn_ht_ulp_len + connp->conn_sum; 14071 sum = (sum >> 16) + (sum & 0xFFFF); 14072 tcpha->tha_sum = htons(sum); 14073 14074 tcpha->tha_seq = htonl(snxt); 14075 14076 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 14077 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 14078 BUMP_LOCAL(tcp->tcp_obsegs); 14079 14080 /* Update the latest receive window size in TCP header. */ 14081 tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 14082 14083 tcp->tcp_last_sent_len = (ushort_t)len; 14084 14085 plen = len + connp->conn_ht_iphc_len; 14086 14087 ixa = connp->conn_ixa; 14088 ixa->ixa_pktlen = plen; 14089 14090 if (ixa->ixa_flags & IXAF_IS_IPV4) { 14091 tcp->tcp_ipha->ipha_length = htons(plen); 14092 } else { 14093 tcp->tcp_ip6h->ip6_plen = htons(plen - IPV6_HDR_LEN); 14094 } 14095 14096 /* see if we need to allocate a mblk for the headers */ 14097 hdrlen = connp->conn_ht_iphc_len; 14098 rptr = mp1->b_rptr - hdrlen; 14099 db = mp1->b_datap; 14100 if ((db->db_ref != 2) || rptr < db->db_base || 14101 (!OK_32PTR(rptr))) { 14102 /* NOTE: we assume allocb returns an OK_32PTR */ 14103 mp = allocb(hdrlen + tcps->tcps_wroff_xtra, BPRI_MED); 14104 if (!mp) { 14105 freemsg(mp1); 14106 goto no_memory; 14107 } 14108 mp->b_cont = mp1; 14109 mp1 = mp; 14110 /* Leave room for Link Level header */ 14111 rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; 14112 mp1->b_wptr = &rptr[hdrlen]; 14113 } 14114 mp1->b_rptr = rptr; 14115 14116 /* Fill in the timestamp option. */ 14117 if (tcp->tcp_snd_ts_ok) { 14118 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 14119 14120 U32_TO_BE32(llbolt, 14121 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 14122 U32_TO_BE32(tcp->tcp_ts_recent, 14123 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 14124 } else { 14125 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 14126 } 14127 14128 /* copy header into outgoing packet */ 14129 dst = (ipaddr_t *)rptr; 14130 src = (ipaddr_t *)connp->conn_ht_iphc; 14131 dst[0] = src[0]; 14132 dst[1] = src[1]; 14133 dst[2] = src[2]; 14134 dst[3] = src[3]; 14135 dst[4] = src[4]; 14136 dst[5] = src[5]; 14137 dst[6] = src[6]; 14138 dst[7] = src[7]; 14139 dst[8] = src[8]; 14140 dst[9] = src[9]; 14141 if (hdrlen -= 40) { 14142 hdrlen >>= 2; 14143 dst += 10; 14144 src += 10; 14145 do { 14146 *dst++ = *src++; 14147 } while (--hdrlen); 14148 } 14149 14150 /* 14151 * Set the ECN info in the TCP header. Note that this 14152 * is not the template header. 14153 */ 14154 if (tcp->tcp_ecn_ok) { 14155 SET_ECT(tcp, rptr); 14156 14157 tcpha = (tcpha_t *)(rptr + ixa->ixa_ip_hdr_length); 14158 if (tcp->tcp_ecn_echo_on) 14159 tcpha->tha_flags |= TH_ECE; 14160 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 14161 tcpha->tha_flags |= TH_CWR; 14162 tcp->tcp_ecn_cwr_sent = B_TRUE; 14163 } 14164 } 14165 14166 if (tcp->tcp_ip_forward_progress) { 14167 tcp->tcp_ip_forward_progress = B_FALSE; 14168 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 14169 } else { 14170 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 14171 } 14172 tcp_send_data(tcp, mp1); 14173 return; 14174 14175 /* 14176 * If we ran out of memory, we pretend to have sent the packet 14177 * and that it was lost on the wire. 14178 */ 14179 no_memory: 14180 return; 14181 14182 slow: 14183 /* leftover work from above */ 14184 tcp->tcp_unsent = len; 14185 tcp->tcp_xmit_tail_unsent = len; 14186 tcp_wput_data(tcp, NULL, B_FALSE); 14187 } 14188 14189 /* 14190 * This runs at the tail end of accept processing on the squeue of the 14191 * new connection. 14192 */ 14193 /* ARGSUSED */ 14194 void 14195 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 14196 { 14197 conn_t *connp = (conn_t *)arg; 14198 tcp_t *tcp = connp->conn_tcp; 14199 queue_t *q = connp->conn_rq; 14200 tcp_stack_t *tcps = tcp->tcp_tcps; 14201 /* socket options */ 14202 struct sock_proto_props sopp; 14203 14204 /* We should just receive a single mblk that fits a T_discon_ind */ 14205 ASSERT(mp->b_cont == NULL); 14206 14207 /* 14208 * Drop the eager's ref on the listener, that was placed when 14209 * this eager began life in tcp_input_listener. 14210 */ 14211 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 14212 if (IPCL_IS_NONSTR(connp)) { 14213 /* Safe to free conn_ind message */ 14214 freemsg(tcp->tcp_conn.tcp_eager_conn_ind); 14215 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14216 } 14217 14218 tcp->tcp_detached = B_FALSE; 14219 14220 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 14221 /* 14222 * Someone blewoff the eager before we could finish 14223 * the accept. 14224 * 14225 * The only reason eager exists it because we put in 14226 * a ref on it when conn ind went up. We need to send 14227 * a disconnect indication up while the last reference 14228 * on the eager will be dropped by the squeue when we 14229 * return. 14230 */ 14231 ASSERT(tcp->tcp_listener == NULL); 14232 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 14233 if (IPCL_IS_NONSTR(connp)) { 14234 ASSERT(tcp->tcp_issocket); 14235 (*connp->conn_upcalls->su_disconnected)( 14236 connp->conn_upper_handle, tcp->tcp_connid, 14237 ECONNREFUSED); 14238 freemsg(mp); 14239 } else { 14240 struct T_discon_ind *tdi; 14241 14242 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 14243 /* 14244 * Let us reuse the incoming mblk to avoid 14245 * memory allocation failure problems. We know 14246 * that the size of the incoming mblk i.e. 14247 * stroptions is greater than sizeof 14248 * T_discon_ind. 14249 */ 14250 ASSERT(DB_REF(mp) == 1); 14251 ASSERT(MBLKSIZE(mp) >= 14252 sizeof (struct T_discon_ind)); 14253 14254 DB_TYPE(mp) = M_PROTO; 14255 ((union T_primitives *)mp->b_rptr)->type = 14256 T_DISCON_IND; 14257 tdi = (struct T_discon_ind *)mp->b_rptr; 14258 if (tcp->tcp_issocket) { 14259 tdi->DISCON_reason = ECONNREFUSED; 14260 tdi->SEQ_number = 0; 14261 } else { 14262 tdi->DISCON_reason = ENOPROTOOPT; 14263 tdi->SEQ_number = 14264 tcp->tcp_conn_req_seqnum; 14265 } 14266 mp->b_wptr = mp->b_rptr + 14267 sizeof (struct T_discon_ind); 14268 putnext(q, mp); 14269 } 14270 } 14271 tcp->tcp_hard_binding = B_FALSE; 14272 return; 14273 } 14274 14275 /* 14276 * Set max window size (conn_rcvbuf) of the acceptor. 14277 */ 14278 if (tcp->tcp_rcv_list == NULL) { 14279 /* 14280 * Recv queue is empty, tcp_rwnd should not have changed. 14281 * That means it should be equal to the listener's tcp_rwnd. 14282 */ 14283 connp->conn_rcvbuf = tcp->tcp_rwnd; 14284 } else { 14285 #ifdef DEBUG 14286 mblk_t *tmp; 14287 mblk_t *mp1; 14288 uint_t cnt = 0; 14289 14290 mp1 = tcp->tcp_rcv_list; 14291 while ((tmp = mp1) != NULL) { 14292 mp1 = tmp->b_next; 14293 cnt += msgdsize(tmp); 14294 } 14295 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 14296 #endif 14297 /* There is some data, add them back to get the max. */ 14298 connp->conn_rcvbuf = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 14299 } 14300 /* 14301 * This is the first time we run on the correct 14302 * queue after tcp_accept. So fix all the q parameters 14303 * here. 14304 */ 14305 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 14306 sopp.sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 14307 14308 sopp.sopp_rxhiwat = tcp->tcp_fused ? 14309 tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) : 14310 connp->conn_rcvbuf; 14311 14312 /* 14313 * Determine what write offset value to use depending on SACK and 14314 * whether the endpoint is fused or not. 14315 */ 14316 if (tcp->tcp_fused) { 14317 ASSERT(tcp->tcp_loopback); 14318 ASSERT(tcp->tcp_loopback_peer != NULL); 14319 /* 14320 * For fused tcp loopback, set the stream head's write 14321 * offset value to zero since we won't be needing any room 14322 * for TCP/IP headers. This would also improve performance 14323 * since it would reduce the amount of work done by kmem. 14324 * Non-fused tcp loopback case is handled separately below. 14325 */ 14326 sopp.sopp_wroff = 0; 14327 /* 14328 * Update the peer's transmit parameters according to 14329 * our recently calculated high water mark value. 14330 */ 14331 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 14332 } else if (tcp->tcp_snd_sack_ok) { 14333 sopp.sopp_wroff = connp->conn_ht_iphc_allocated + 14334 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 14335 } else { 14336 sopp.sopp_wroff = connp->conn_ht_iphc_len + 14337 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 14338 } 14339 14340 /* 14341 * If this is endpoint is handling SSL, then reserve extra 14342 * offset and space at the end. 14343 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 14344 * overriding the previous setting. The extra cost of signing and 14345 * encrypting multiple MSS-size records (12 of them with Ethernet), 14346 * instead of a single contiguous one by the stream head 14347 * largely outweighs the statistical reduction of ACKs, when 14348 * applicable. The peer will also save on decryption and verification 14349 * costs. 14350 */ 14351 if (tcp->tcp_kssl_ctx != NULL) { 14352 sopp.sopp_wroff += SSL3_WROFFSET; 14353 14354 sopp.sopp_flags |= SOCKOPT_TAIL; 14355 sopp.sopp_tail = SSL3_MAX_TAIL_LEN; 14356 14357 sopp.sopp_flags |= SOCKOPT_ZCOPY; 14358 sopp.sopp_zcopyflag = ZCVMUNSAFE; 14359 14360 sopp.sopp_maxblk = SSL3_MAX_RECORD_LEN; 14361 } 14362 14363 /* Send the options up */ 14364 if (IPCL_IS_NONSTR(connp)) { 14365 if (sopp.sopp_flags & SOCKOPT_TAIL) { 14366 ASSERT(tcp->tcp_kssl_ctx != NULL); 14367 ASSERT(sopp.sopp_flags & SOCKOPT_ZCOPY); 14368 } 14369 if (tcp->tcp_loopback) { 14370 sopp.sopp_flags |= SOCKOPT_LOOPBACK; 14371 sopp.sopp_loopback = B_TRUE; 14372 } 14373 (*connp->conn_upcalls->su_set_proto_props) 14374 (connp->conn_upper_handle, &sopp); 14375 freemsg(mp); 14376 } else { 14377 /* 14378 * Let us reuse the incoming mblk to avoid 14379 * memory allocation failure problems. We know 14380 * that the size of the incoming mblk is at least 14381 * stroptions 14382 */ 14383 struct stroptions *stropt; 14384 14385 ASSERT(DB_REF(mp) == 1); 14386 ASSERT(MBLKSIZE(mp) >= sizeof (struct stroptions)); 14387 14388 DB_TYPE(mp) = M_SETOPTS; 14389 stropt = (struct stroptions *)mp->b_rptr; 14390 mp->b_wptr = mp->b_rptr + sizeof (struct stroptions); 14391 stropt = (struct stroptions *)mp->b_rptr; 14392 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 14393 stropt->so_hiwat = sopp.sopp_rxhiwat; 14394 stropt->so_wroff = sopp.sopp_wroff; 14395 stropt->so_maxblk = sopp.sopp_maxblk; 14396 14397 if (sopp.sopp_flags & SOCKOPT_TAIL) { 14398 ASSERT(tcp->tcp_kssl_ctx != NULL); 14399 14400 stropt->so_flags |= SO_TAIL | SO_COPYOPT; 14401 stropt->so_tail = sopp.sopp_tail; 14402 stropt->so_copyopt = sopp.sopp_zcopyflag; 14403 } 14404 14405 /* Send the options up */ 14406 putnext(q, mp); 14407 } 14408 14409 /* 14410 * Pass up any data and/or a fin that has been received. 14411 * 14412 * Adjust receive window in case it had decreased 14413 * (because there is data <=> tcp_rcv_list != NULL) 14414 * while the connection was detached. Note that 14415 * in case the eager was flow-controlled, w/o this 14416 * code, the rwnd may never open up again! 14417 */ 14418 if (tcp->tcp_rcv_list != NULL) { 14419 if (IPCL_IS_NONSTR(connp)) { 14420 mblk_t *mp; 14421 int space_left; 14422 int error; 14423 boolean_t push = B_TRUE; 14424 14425 if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv) 14426 (connp->conn_upper_handle, NULL, 0, 0, &error, 14427 &push) >= 0) { 14428 tcp->tcp_rwnd = connp->conn_rcvbuf; 14429 if (tcp->tcp_state >= TCPS_ESTABLISHED && 14430 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 14431 tcp_xmit_ctl(NULL, 14432 tcp, (tcp->tcp_swnd == 0) ? 14433 tcp->tcp_suna : tcp->tcp_snxt, 14434 tcp->tcp_rnxt, TH_ACK); 14435 } 14436 } 14437 while ((mp = tcp->tcp_rcv_list) != NULL) { 14438 push = B_TRUE; 14439 tcp->tcp_rcv_list = mp->b_next; 14440 mp->b_next = NULL; 14441 space_left = (*connp->conn_upcalls->su_recv) 14442 (connp->conn_upper_handle, mp, msgdsize(mp), 14443 0, &error, &push); 14444 if (space_left < 0) { 14445 /* 14446 * We should never be in middle of a 14447 * fallback, the squeue guarantees that. 14448 */ 14449 ASSERT(error != EOPNOTSUPP); 14450 } 14451 } 14452 tcp->tcp_rcv_last_head = NULL; 14453 tcp->tcp_rcv_last_tail = NULL; 14454 tcp->tcp_rcv_cnt = 0; 14455 } else { 14456 /* We drain directly in case of fused tcp loopback */ 14457 14458 if (!tcp->tcp_fused && canputnext(q)) { 14459 tcp->tcp_rwnd = connp->conn_rcvbuf; 14460 if (tcp->tcp_state >= TCPS_ESTABLISHED && 14461 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 14462 tcp_xmit_ctl(NULL, 14463 tcp, (tcp->tcp_swnd == 0) ? 14464 tcp->tcp_suna : tcp->tcp_snxt, 14465 tcp->tcp_rnxt, TH_ACK); 14466 } 14467 } 14468 14469 (void) tcp_rcv_drain(tcp); 14470 } 14471 14472 /* 14473 * For fused tcp loopback, back-enable peer endpoint 14474 * if it's currently flow-controlled. 14475 */ 14476 if (tcp->tcp_fused) { 14477 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 14478 14479 ASSERT(peer_tcp != NULL); 14480 ASSERT(peer_tcp->tcp_fused); 14481 14482 mutex_enter(&peer_tcp->tcp_non_sq_lock); 14483 if (peer_tcp->tcp_flow_stopped) { 14484 tcp_clrqfull(peer_tcp); 14485 TCP_STAT(tcps, tcp_fusion_backenabled); 14486 } 14487 mutex_exit(&peer_tcp->tcp_non_sq_lock); 14488 } 14489 } 14490 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 14491 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 14492 tcp->tcp_ordrel_done = B_TRUE; 14493 if (IPCL_IS_NONSTR(connp)) { 14494 ASSERT(tcp->tcp_ordrel_mp == NULL); 14495 (*connp->conn_upcalls->su_opctl)( 14496 connp->conn_upper_handle, 14497 SOCK_OPCTL_SHUT_RECV, 0); 14498 } else { 14499 mp = tcp->tcp_ordrel_mp; 14500 tcp->tcp_ordrel_mp = NULL; 14501 putnext(q, mp); 14502 } 14503 } 14504 tcp->tcp_hard_binding = B_FALSE; 14505 14506 if (connp->conn_keepalive) { 14507 tcp->tcp_ka_last_intrvl = 0; 14508 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 14509 MSEC_TO_TICK(tcp->tcp_ka_interval)); 14510 } 14511 14512 /* 14513 * At this point, eager is fully established and will 14514 * have the following references - 14515 * 14516 * 2 references for connection to exist (1 for TCP and 1 for IP). 14517 * 1 reference for the squeue which will be dropped by the squeue as 14518 * soon as this function returns. 14519 * There will be 1 additonal reference for being in classifier 14520 * hash list provided something bad hasn't happened. 14521 */ 14522 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 14523 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 14524 } 14525 14526 /* 14527 * The function called through squeue to get behind listener's perimeter to 14528 * send a deferred conn_ind. 14529 */ 14530 /* ARGSUSED */ 14531 void 14532 tcp_send_pending(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 14533 { 14534 conn_t *lconnp = (conn_t *)arg; 14535 tcp_t *listener = lconnp->conn_tcp; 14536 struct T_conn_ind *conn_ind; 14537 tcp_t *tcp; 14538 14539 conn_ind = (struct T_conn_ind *)mp->b_rptr; 14540 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 14541 conn_ind->OPT_length); 14542 14543 if (listener->tcp_state != TCPS_LISTEN) { 14544 /* 14545 * If listener has closed, it would have caused a 14546 * a cleanup/blowoff to happen for the eager, so 14547 * we don't need to do anything more. 14548 */ 14549 freemsg(mp); 14550 return; 14551 } 14552 14553 tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp); 14554 } 14555 14556 /* 14557 * Common to TPI and sockfs accept code. 14558 */ 14559 /* ARGSUSED2 */ 14560 static int 14561 tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr) 14562 { 14563 tcp_t *listener, *eager; 14564 mblk_t *discon_mp; 14565 14566 listener = lconnp->conn_tcp; 14567 ASSERT(listener->tcp_state == TCPS_LISTEN); 14568 eager = econnp->conn_tcp; 14569 ASSERT(eager->tcp_listener != NULL); 14570 14571 /* 14572 * Pre allocate the discon_ind mblk also. tcp_accept_finish will 14573 * use it if something failed. 14574 */ 14575 discon_mp = allocb(MAX(sizeof (struct T_discon_ind), 14576 sizeof (struct stroptions)), BPRI_HI); 14577 14578 if (discon_mp == NULL) { 14579 return (-TPROTO); 14580 } 14581 eager->tcp_issocket = B_TRUE; 14582 14583 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 14584 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 14585 ASSERT(econnp->conn_netstack == 14586 listener->tcp_connp->conn_netstack); 14587 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 14588 14589 /* Put the ref for IP */ 14590 CONN_INC_REF(econnp); 14591 14592 /* 14593 * We should have minimum of 3 references on the conn 14594 * at this point. One each for TCP and IP and one for 14595 * the T_conn_ind that was sent up when the 3-way handshake 14596 * completed. In the normal case we would also have another 14597 * reference (making a total of 4) for the conn being in the 14598 * classifier hash list. However the eager could have received 14599 * an RST subsequently and tcp_closei_local could have removed 14600 * the eager from the classifier hash list, hence we can't 14601 * assert that reference. 14602 */ 14603 ASSERT(econnp->conn_ref >= 3); 14604 14605 mutex_enter(&listener->tcp_eager_lock); 14606 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 14607 14608 tcp_t *tail; 14609 tcp_t *tcp; 14610 mblk_t *mp1; 14611 14612 tcp = listener->tcp_eager_prev_q0; 14613 /* 14614 * listener->tcp_eager_prev_q0 points to the TAIL of the 14615 * deferred T_conn_ind queue. We need to get to the head 14616 * of the queue in order to send up T_conn_ind the same 14617 * order as how the 3WHS is completed. 14618 */ 14619 while (tcp != listener) { 14620 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 14621 !tcp->tcp_kssl_pending) 14622 break; 14623 else 14624 tcp = tcp->tcp_eager_prev_q0; 14625 } 14626 /* None of the pending eagers can be sent up now */ 14627 if (tcp == listener) 14628 goto no_more_eagers; 14629 14630 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 14631 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14632 /* Move from q0 to q */ 14633 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 14634 listener->tcp_conn_req_cnt_q0--; 14635 listener->tcp_conn_req_cnt_q++; 14636 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 14637 tcp->tcp_eager_prev_q0; 14638 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 14639 tcp->tcp_eager_next_q0; 14640 tcp->tcp_eager_prev_q0 = NULL; 14641 tcp->tcp_eager_next_q0 = NULL; 14642 tcp->tcp_conn_def_q0 = B_FALSE; 14643 14644 /* Make sure the tcp isn't in the list of droppables */ 14645 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 14646 tcp->tcp_eager_prev_drop_q0 == NULL); 14647 14648 /* 14649 * Insert at end of the queue because sockfs sends 14650 * down T_CONN_RES in chronological order. Leaving 14651 * the older conn indications at front of the queue 14652 * helps reducing search time. 14653 */ 14654 tail = listener->tcp_eager_last_q; 14655 if (tail != NULL) { 14656 tail->tcp_eager_next_q = tcp; 14657 } else { 14658 listener->tcp_eager_next_q = tcp; 14659 } 14660 listener->tcp_eager_last_q = tcp; 14661 tcp->tcp_eager_next_q = NULL; 14662 14663 /* Need to get inside the listener perimeter */ 14664 CONN_INC_REF(listener->tcp_connp); 14665 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1, 14666 tcp_send_pending, listener->tcp_connp, NULL, SQ_FILL, 14667 SQTAG_TCP_SEND_PENDING); 14668 } 14669 no_more_eagers: 14670 tcp_eager_unlink(eager); 14671 mutex_exit(&listener->tcp_eager_lock); 14672 14673 /* 14674 * At this point, the eager is detached from the listener 14675 * but we still have an extra refs on eager (apart from the 14676 * usual tcp references). The ref was placed in tcp_rput_data 14677 * before sending the conn_ind in tcp_send_conn_ind. 14678 * The ref will be dropped in tcp_accept_finish(). 14679 */ 14680 SQUEUE_ENTER_ONE(econnp->conn_sqp, discon_mp, tcp_accept_finish, 14681 econnp, NULL, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0); 14682 return (0); 14683 } 14684 14685 int 14686 tcp_accept(sock_lower_handle_t lproto_handle, 14687 sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle, 14688 cred_t *cr) 14689 { 14690 conn_t *lconnp, *econnp; 14691 tcp_t *listener, *eager; 14692 14693 lconnp = (conn_t *)lproto_handle; 14694 listener = lconnp->conn_tcp; 14695 ASSERT(listener->tcp_state == TCPS_LISTEN); 14696 econnp = (conn_t *)eproto_handle; 14697 eager = econnp->conn_tcp; 14698 ASSERT(eager->tcp_listener != NULL); 14699 14700 /* 14701 * It is OK to manipulate these fields outside the eager's squeue 14702 * because they will not start being used until tcp_accept_finish 14703 * has been called. 14704 */ 14705 ASSERT(lconnp->conn_upper_handle != NULL); 14706 ASSERT(econnp->conn_upper_handle == NULL); 14707 econnp->conn_upper_handle = sock_handle; 14708 econnp->conn_upcalls = lconnp->conn_upcalls; 14709 ASSERT(IPCL_IS_NONSTR(econnp)); 14710 return (tcp_accept_common(lconnp, econnp, cr)); 14711 } 14712 14713 14714 /* 14715 * This is the STREAMS entry point for T_CONN_RES coming down on 14716 * Acceptor STREAM when sockfs listener does accept processing. 14717 * Read the block comment on top of tcp_input_listener(). 14718 */ 14719 void 14720 tcp_tpi_accept(queue_t *q, mblk_t *mp) 14721 { 14722 queue_t *rq = RD(q); 14723 struct T_conn_res *conn_res; 14724 tcp_t *eager; 14725 tcp_t *listener; 14726 struct T_ok_ack *ok; 14727 t_scalar_t PRIM_type; 14728 conn_t *econnp; 14729 cred_t *cr; 14730 14731 ASSERT(DB_TYPE(mp) == M_PROTO); 14732 14733 /* 14734 * All Solaris components should pass a db_credp 14735 * for this TPI message, hence we ASSERT. 14736 * But in case there is some other M_PROTO that looks 14737 * like a TPI message sent by some other kernel 14738 * component, we check and return an error. 14739 */ 14740 cr = msg_getcred(mp, NULL); 14741 ASSERT(cr != NULL); 14742 if (cr == NULL) { 14743 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 14744 if (mp != NULL) 14745 putnext(rq, mp); 14746 return; 14747 } 14748 conn_res = (struct T_conn_res *)mp->b_rptr; 14749 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 14750 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 14751 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 14752 if (mp != NULL) 14753 putnext(rq, mp); 14754 return; 14755 } 14756 switch (conn_res->PRIM_type) { 14757 case O_T_CONN_RES: 14758 case T_CONN_RES: 14759 /* 14760 * We pass up an err ack if allocb fails. This will 14761 * cause sockfs to issue a T_DISCON_REQ which will cause 14762 * tcp_eager_blowoff to be called. sockfs will then call 14763 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 14764 * we need to do the allocb up here because we have to 14765 * make sure rq->q_qinfo->qi_qclose still points to the 14766 * correct function (tcp_tpi_close_accept) in case allocb 14767 * fails. 14768 */ 14769 bcopy(mp->b_rptr + conn_res->OPT_offset, 14770 &eager, conn_res->OPT_length); 14771 PRIM_type = conn_res->PRIM_type; 14772 mp->b_datap->db_type = M_PCPROTO; 14773 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 14774 ok = (struct T_ok_ack *)mp->b_rptr; 14775 ok->PRIM_type = T_OK_ACK; 14776 ok->CORRECT_prim = PRIM_type; 14777 econnp = eager->tcp_connp; 14778 econnp->conn_dev = (dev_t)RD(q)->q_ptr; 14779 econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr); 14780 econnp->conn_rq = rq; 14781 econnp->conn_wq = q; 14782 rq->q_ptr = econnp; 14783 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 14784 q->q_ptr = econnp; 14785 q->q_qinfo = &tcp_winit; 14786 listener = eager->tcp_listener; 14787 14788 if (tcp_accept_common(listener->tcp_connp, 14789 econnp, cr) < 0) { 14790 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 14791 if (mp != NULL) 14792 putnext(rq, mp); 14793 return; 14794 } 14795 14796 /* 14797 * Send the new local address also up to sockfs. There 14798 * should already be enough space in the mp that came 14799 * down from soaccept(). 14800 */ 14801 if (econnp->conn_family == AF_INET) { 14802 sin_t *sin; 14803 14804 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 14805 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 14806 sin = (sin_t *)mp->b_wptr; 14807 mp->b_wptr += sizeof (sin_t); 14808 sin->sin_family = AF_INET; 14809 sin->sin_port = econnp->conn_lport; 14810 sin->sin_addr.s_addr = econnp->conn_laddr_v4; 14811 } else { 14812 sin6_t *sin6; 14813 14814 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 14815 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 14816 sin6 = (sin6_t *)mp->b_wptr; 14817 mp->b_wptr += sizeof (sin6_t); 14818 sin6->sin6_family = AF_INET6; 14819 sin6->sin6_port = econnp->conn_lport; 14820 sin6->sin6_addr = econnp->conn_laddr_v6; 14821 if (econnp->conn_ipversion == IPV4_VERSION) { 14822 sin6->sin6_flowinfo = 0; 14823 } else { 14824 ASSERT(eager->tcp_ip6h != NULL); 14825 sin6->sin6_flowinfo = 14826 eager->tcp_ip6h->ip6_vcf & 14827 ~IPV6_VERS_AND_FLOW_MASK; 14828 } 14829 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6) && 14830 (econnp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)) { 14831 sin6->sin6_scope_id = 14832 econnp->conn_ixa->ixa_scopeid; 14833 } else { 14834 sin6->sin6_scope_id = 0; 14835 } 14836 sin6->__sin6_src_id = 0; 14837 } 14838 14839 putnext(rq, mp); 14840 return; 14841 default: 14842 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 14843 if (mp != NULL) 14844 putnext(rq, mp); 14845 return; 14846 } 14847 } 14848 14849 /* 14850 * Handle special out-of-band ioctl requests (see PSARC/2008/265). 14851 */ 14852 static void 14853 tcp_wput_cmdblk(queue_t *q, mblk_t *mp) 14854 { 14855 void *data; 14856 mblk_t *datamp = mp->b_cont; 14857 conn_t *connp = Q_TO_CONN(q); 14858 tcp_t *tcp = connp->conn_tcp; 14859 cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr; 14860 14861 if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) { 14862 cmdp->cb_error = EPROTO; 14863 qreply(q, mp); 14864 return; 14865 } 14866 14867 data = datamp->b_rptr; 14868 14869 switch (cmdp->cb_cmd) { 14870 case TI_GETPEERNAME: 14871 if (tcp->tcp_state < TCPS_SYN_RCVD) 14872 cmdp->cb_error = ENOTCONN; 14873 else 14874 cmdp->cb_error = conn_getpeername(connp, data, 14875 &cmdp->cb_len); 14876 break; 14877 case TI_GETMYNAME: 14878 cmdp->cb_error = conn_getsockname(connp, data, &cmdp->cb_len); 14879 break; 14880 default: 14881 cmdp->cb_error = EINVAL; 14882 break; 14883 } 14884 14885 qreply(q, mp); 14886 } 14887 14888 void 14889 tcp_wput(queue_t *q, mblk_t *mp) 14890 { 14891 conn_t *connp = Q_TO_CONN(q); 14892 tcp_t *tcp; 14893 void (*output_proc)(); 14894 t_scalar_t type; 14895 uchar_t *rptr; 14896 struct iocblk *iocp; 14897 size_t size; 14898 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 14899 14900 ASSERT(connp->conn_ref >= 2); 14901 14902 switch (DB_TYPE(mp)) { 14903 case M_DATA: 14904 tcp = connp->conn_tcp; 14905 ASSERT(tcp != NULL); 14906 14907 size = msgdsize(mp); 14908 14909 mutex_enter(&tcp->tcp_non_sq_lock); 14910 tcp->tcp_squeue_bytes += size; 14911 if (TCP_UNSENT_BYTES(tcp) > connp->conn_sndbuf) { 14912 tcp_setqfull(tcp); 14913 } 14914 mutex_exit(&tcp->tcp_non_sq_lock); 14915 14916 CONN_INC_REF(connp); 14917 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp, 14918 NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 14919 return; 14920 14921 case M_CMD: 14922 tcp_wput_cmdblk(q, mp); 14923 return; 14924 14925 case M_PROTO: 14926 case M_PCPROTO: 14927 /* 14928 * if it is a snmp message, don't get behind the squeue 14929 */ 14930 tcp = connp->conn_tcp; 14931 rptr = mp->b_rptr; 14932 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 14933 type = ((union T_primitives *)rptr)->type; 14934 } else { 14935 if (connp->conn_debug) { 14936 (void) strlog(TCP_MOD_ID, 0, 1, 14937 SL_ERROR|SL_TRACE, 14938 "tcp_wput_proto, dropping one..."); 14939 } 14940 freemsg(mp); 14941 return; 14942 } 14943 if (type == T_SVR4_OPTMGMT_REQ) { 14944 /* 14945 * All Solaris components should pass a db_credp 14946 * for this TPI message, hence we ASSERT. 14947 * But in case there is some other M_PROTO that looks 14948 * like a TPI message sent by some other kernel 14949 * component, we check and return an error. 14950 */ 14951 cred_t *cr = msg_getcred(mp, NULL); 14952 14953 ASSERT(cr != NULL); 14954 if (cr == NULL) { 14955 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 14956 return; 14957 } 14958 if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get, 14959 cr)) { 14960 /* 14961 * This was a SNMP request 14962 */ 14963 return; 14964 } else { 14965 output_proc = tcp_wput_proto; 14966 } 14967 } else { 14968 output_proc = tcp_wput_proto; 14969 } 14970 break; 14971 case M_IOCTL: 14972 /* 14973 * Most ioctls can be processed right away without going via 14974 * squeues - process them right here. Those that do require 14975 * squeue (currently _SIOCSOCKFALLBACK) 14976 * are processed by tcp_wput_ioctl(). 14977 */ 14978 iocp = (struct iocblk *)mp->b_rptr; 14979 tcp = connp->conn_tcp; 14980 14981 switch (iocp->ioc_cmd) { 14982 case TCP_IOC_ABORT_CONN: 14983 tcp_ioctl_abort_conn(q, mp); 14984 return; 14985 case TI_GETPEERNAME: 14986 case TI_GETMYNAME: 14987 mi_copyin(q, mp, NULL, 14988 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 14989 return; 14990 case ND_SET: 14991 /* nd_getset does the necessary checks */ 14992 case ND_GET: 14993 if (nd_getset(q, tcps->tcps_g_nd, mp)) { 14994 qreply(q, mp); 14995 return; 14996 } 14997 ip_wput_nondata(q, mp); 14998 return; 14999 15000 default: 15001 output_proc = tcp_wput_ioctl; 15002 break; 15003 } 15004 break; 15005 default: 15006 output_proc = tcp_wput_nondata; 15007 break; 15008 } 15009 15010 CONN_INC_REF(connp); 15011 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp, 15012 NULL, tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER); 15013 } 15014 15015 /* 15016 * Initial STREAMS write side put() procedure for sockets. It tries to 15017 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 15018 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 15019 * are handled by tcp_wput() as usual. 15020 * 15021 * All further messages will also be handled by tcp_wput() because we cannot 15022 * be sure that the above short cut is safe later. 15023 */ 15024 static void 15025 tcp_wput_sock(queue_t *wq, mblk_t *mp) 15026 { 15027 conn_t *connp = Q_TO_CONN(wq); 15028 tcp_t *tcp = connp->conn_tcp; 15029 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 15030 15031 ASSERT(wq->q_qinfo == &tcp_sock_winit); 15032 wq->q_qinfo = &tcp_winit; 15033 15034 ASSERT(IPCL_IS_TCP(connp)); 15035 ASSERT(TCP_IS_SOCKET(tcp)); 15036 15037 if (DB_TYPE(mp) == M_PCPROTO && 15038 MBLKL(mp) == sizeof (struct T_capability_req) && 15039 car->PRIM_type == T_CAPABILITY_REQ) { 15040 tcp_capability_req(tcp, mp); 15041 return; 15042 } 15043 15044 tcp_wput(wq, mp); 15045 } 15046 15047 /* ARGSUSED */ 15048 static void 15049 tcp_wput_fallback(queue_t *wq, mblk_t *mp) 15050 { 15051 #ifdef DEBUG 15052 cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n"); 15053 #endif 15054 freemsg(mp); 15055 } 15056 15057 /* 15058 * Check the usability of ZEROCOPY. It's instead checking the flag set by IP. 15059 */ 15060 static boolean_t 15061 tcp_zcopy_check(tcp_t *tcp) 15062 { 15063 conn_t *connp = tcp->tcp_connp; 15064 ip_xmit_attr_t *ixa = connp->conn_ixa; 15065 boolean_t zc_enabled = B_FALSE; 15066 tcp_stack_t *tcps = tcp->tcp_tcps; 15067 15068 if (do_tcpzcopy == 2) 15069 zc_enabled = B_TRUE; 15070 else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB)) 15071 zc_enabled = B_TRUE; 15072 15073 tcp->tcp_snd_zcopy_on = zc_enabled; 15074 if (!TCP_IS_DETACHED(tcp)) { 15075 if (zc_enabled) { 15076 ixa->ixa_flags |= IXAF_VERIFY_ZCOPY; 15077 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15078 ZCVMSAFE); 15079 TCP_STAT(tcps, tcp_zcopy_on); 15080 } else { 15081 ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY; 15082 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15083 ZCVMUNSAFE); 15084 TCP_STAT(tcps, tcp_zcopy_off); 15085 } 15086 } 15087 return (zc_enabled); 15088 } 15089 15090 /* 15091 * Backoff from a zero-copy message by copying data to a new allocated 15092 * message and freeing the original desballoca'ed segmapped message. 15093 * 15094 * This function is called by following two callers: 15095 * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free 15096 * the origial desballoca'ed message and notify sockfs. This is in re- 15097 * transmit state. 15098 * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need 15099 * to be copied to new message. 15100 */ 15101 static mblk_t * 15102 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist) 15103 { 15104 mblk_t *nbp; 15105 mblk_t *head = NULL; 15106 mblk_t *tail = NULL; 15107 tcp_stack_t *tcps = tcp->tcp_tcps; 15108 15109 ASSERT(bp != NULL); 15110 while (bp != NULL) { 15111 if (IS_VMLOANED_MBLK(bp)) { 15112 TCP_STAT(tcps, tcp_zcopy_backoff); 15113 if ((nbp = copyb(bp)) == NULL) { 15114 tcp->tcp_xmit_zc_clean = B_FALSE; 15115 if (tail != NULL) 15116 tail->b_cont = bp; 15117 return ((head == NULL) ? bp : head); 15118 } 15119 15120 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 15121 if (fix_xmitlist) 15122 tcp_zcopy_notify(tcp); 15123 else 15124 nbp->b_datap->db_struioflag |= 15125 STRUIO_ZCNOTIFY; 15126 } 15127 nbp->b_cont = bp->b_cont; 15128 15129 /* 15130 * Copy saved information and adjust tcp_xmit_tail 15131 * if needed. 15132 */ 15133 if (fix_xmitlist) { 15134 nbp->b_prev = bp->b_prev; 15135 nbp->b_next = bp->b_next; 15136 15137 if (tcp->tcp_xmit_tail == bp) 15138 tcp->tcp_xmit_tail = nbp; 15139 } 15140 15141 /* Free the original message. */ 15142 bp->b_prev = NULL; 15143 bp->b_next = NULL; 15144 freeb(bp); 15145 15146 bp = nbp; 15147 } 15148 15149 if (head == NULL) { 15150 head = bp; 15151 } 15152 if (tail == NULL) { 15153 tail = bp; 15154 } else { 15155 tail->b_cont = bp; 15156 tail = bp; 15157 } 15158 15159 /* Move forward. */ 15160 bp = bp->b_cont; 15161 } 15162 15163 if (fix_xmitlist) { 15164 tcp->tcp_xmit_last = tail; 15165 tcp->tcp_xmit_zc_clean = B_TRUE; 15166 } 15167 15168 return (head); 15169 } 15170 15171 static void 15172 tcp_zcopy_notify(tcp_t *tcp) 15173 { 15174 struct stdata *stp; 15175 conn_t *connp; 15176 15177 if (tcp->tcp_detached) 15178 return; 15179 connp = tcp->tcp_connp; 15180 if (IPCL_IS_NONSTR(connp)) { 15181 (*connp->conn_upcalls->su_zcopy_notify) 15182 (connp->conn_upper_handle); 15183 return; 15184 } 15185 stp = STREAM(connp->conn_rq); 15186 mutex_enter(&stp->sd_lock); 15187 stp->sd_flag |= STZCNOTIFY; 15188 cv_broadcast(&stp->sd_zcopy_wait); 15189 mutex_exit(&stp->sd_lock); 15190 } 15191 15192 /* 15193 * Update the TCP connection according to change of LSO capability. 15194 */ 15195 static void 15196 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa) 15197 { 15198 /* 15199 * We check against IPv4 header length to preserve the old behavior 15200 * of only enabling LSO when there are no IP options. 15201 * But this restriction might not be necessary at all. Before removing 15202 * it, need to verify how LSO is handled for source routing case, with 15203 * which IP does software checksum. 15204 * 15205 * For IPv6, whenever any extension header is needed, LSO is supressed. 15206 */ 15207 if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ? 15208 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN)) 15209 return; 15210 15211 /* 15212 * Either the LSO capability newly became usable, or it has changed. 15213 */ 15214 if (ixa->ixa_flags & IXAF_LSO_CAPAB) { 15215 ill_lso_capab_t *lsoc = &ixa->ixa_lso_capab; 15216 15217 ASSERT(lsoc->ill_lso_max > 0); 15218 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max); 15219 15220 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 15221 boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max); 15222 15223 /* 15224 * If LSO to be enabled, notify the STREAM header with larger 15225 * data block. 15226 */ 15227 if (!tcp->tcp_lso) 15228 tcp->tcp_maxpsz_multiplier = 0; 15229 15230 tcp->tcp_lso = B_TRUE; 15231 TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled); 15232 } else { /* LSO capability is not usable any more. */ 15233 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 15234 boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max); 15235 15236 /* 15237 * If LSO to be disabled, notify the STREAM header with smaller 15238 * data block. And need to restore fragsize to PMTU. 15239 */ 15240 if (tcp->tcp_lso) { 15241 tcp->tcp_maxpsz_multiplier = 15242 tcp->tcp_tcps->tcps_maxpsz_multiplier; 15243 ixa->ixa_fragsize = ixa->ixa_pmtu; 15244 tcp->tcp_lso = B_FALSE; 15245 TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled); 15246 } 15247 } 15248 15249 (void) tcp_maxpsz_set(tcp, B_TRUE); 15250 } 15251 15252 /* 15253 * Update the TCP connection according to change of ZEROCOPY capability. 15254 */ 15255 static void 15256 tcp_update_zcopy(tcp_t *tcp) 15257 { 15258 conn_t *connp = tcp->tcp_connp; 15259 tcp_stack_t *tcps = tcp->tcp_tcps; 15260 15261 if (tcp->tcp_snd_zcopy_on) { 15262 tcp->tcp_snd_zcopy_on = B_FALSE; 15263 if (!TCP_IS_DETACHED(tcp)) { 15264 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15265 ZCVMUNSAFE); 15266 TCP_STAT(tcps, tcp_zcopy_off); 15267 } 15268 } else { 15269 tcp->tcp_snd_zcopy_on = B_TRUE; 15270 if (!TCP_IS_DETACHED(tcp)) { 15271 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15272 ZCVMSAFE); 15273 TCP_STAT(tcps, tcp_zcopy_on); 15274 } 15275 } 15276 } 15277 15278 /* 15279 * Notify function registered with ip_xmit_attr_t. It's called in the squeue 15280 * so it's safe to update the TCP connection. 15281 */ 15282 /* ARGSUSED1 */ 15283 static void 15284 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype, 15285 ixa_notify_arg_t narg) 15286 { 15287 tcp_t *tcp = (tcp_t *)arg; 15288 conn_t *connp = tcp->tcp_connp; 15289 15290 switch (ntype) { 15291 case IXAN_LSO: 15292 tcp_update_lso(tcp, connp->conn_ixa); 15293 break; 15294 case IXAN_PMTU: 15295 tcp_update_pmtu(tcp, B_FALSE); 15296 break; 15297 case IXAN_ZCOPY: 15298 tcp_update_zcopy(tcp); 15299 break; 15300 default: 15301 break; 15302 } 15303 } 15304 15305 static void 15306 tcp_send_data(tcp_t *tcp, mblk_t *mp) 15307 { 15308 conn_t *connp = tcp->tcp_connp; 15309 15310 /* 15311 * Check here to avoid sending zero-copy message down to IP when 15312 * ZEROCOPY capability has turned off. We only need to deal with 15313 * the race condition between sockfs and the notification here. 15314 * Since we have tried to backoff the tcp_xmit_head when turning 15315 * zero-copy off and new messages in tcp_output(), we simply drop 15316 * the dup'ed packet here and let tcp retransmit, if tcp_xmit_zc_clean 15317 * is not true. 15318 */ 15319 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_snd_zcopy_on && 15320 !tcp->tcp_xmit_zc_clean) { 15321 ip_drop_output("TCP ZC was disabled but not clean", mp, NULL); 15322 freemsg(mp); 15323 return; 15324 } 15325 15326 ASSERT(connp->conn_ixa->ixa_notify_cookie == connp->conn_tcp); 15327 (void) conn_ip_output(mp, connp->conn_ixa); 15328 } 15329 15330 /* 15331 * This handles the case when the receiver has shrunk its win. Per RFC 1122 15332 * if the receiver shrinks the window, i.e. moves the right window to the 15333 * left, the we should not send new data, but should retransmit normally the 15334 * old unacked data between suna and suna + swnd. We might has sent data 15335 * that is now outside the new window, pretend that we didn't send it. 15336 */ 15337 static void 15338 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 15339 { 15340 uint32_t snxt = tcp->tcp_snxt; 15341 15342 ASSERT(shrunk_count > 0); 15343 15344 if (!tcp->tcp_is_wnd_shrnk) { 15345 tcp->tcp_snxt_shrunk = snxt; 15346 tcp->tcp_is_wnd_shrnk = B_TRUE; 15347 } else if (SEQ_GT(snxt, tcp->tcp_snxt_shrunk)) { 15348 tcp->tcp_snxt_shrunk = snxt; 15349 } 15350 15351 /* Pretend we didn't send the data outside the window */ 15352 snxt -= shrunk_count; 15353 15354 /* Reset all the values per the now shrunk window */ 15355 tcp_update_xmit_tail(tcp, snxt); 15356 tcp->tcp_unsent += shrunk_count; 15357 15358 /* 15359 * If the SACK option is set, delete the entire list of 15360 * notsack'ed blocks. 15361 */ 15362 if (tcp->tcp_sack_info != NULL) { 15363 if (tcp->tcp_notsack_list != NULL) 15364 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 15365 } 15366 15367 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 15368 /* 15369 * Make sure the timer is running so that we will probe a zero 15370 * window. 15371 */ 15372 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15373 } 15374 15375 15376 /* 15377 * The TCP normal data output path. 15378 * NOTE: the logic of the fast path is duplicated from this function. 15379 */ 15380 static void 15381 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 15382 { 15383 int len; 15384 mblk_t *local_time; 15385 mblk_t *mp1; 15386 uint32_t snxt; 15387 int tail_unsent; 15388 int tcpstate; 15389 int usable = 0; 15390 mblk_t *xmit_tail; 15391 int32_t mss; 15392 int32_t num_sack_blk = 0; 15393 int32_t total_hdr_len; 15394 int32_t tcp_hdr_len; 15395 int rc; 15396 tcp_stack_t *tcps = tcp->tcp_tcps; 15397 conn_t *connp = tcp->tcp_connp; 15398 15399 tcpstate = tcp->tcp_state; 15400 if (mp == NULL) { 15401 /* 15402 * tcp_wput_data() with NULL mp should only be called when 15403 * there is unsent data. 15404 */ 15405 ASSERT(tcp->tcp_unsent > 0); 15406 /* Really tacky... but we need this for detached closes. */ 15407 len = tcp->tcp_unsent; 15408 goto data_null; 15409 } 15410 15411 #if CCS_STATS 15412 wrw_stats.tot.count++; 15413 wrw_stats.tot.bytes += msgdsize(mp); 15414 #endif 15415 ASSERT(mp->b_datap->db_type == M_DATA); 15416 /* 15417 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 15418 * or before a connection attempt has begun. 15419 */ 15420 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 15421 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 15422 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 15423 #ifdef DEBUG 15424 cmn_err(CE_WARN, 15425 "tcp_wput_data: data after ordrel, %s", 15426 tcp_display(tcp, NULL, 15427 DISP_ADDR_AND_PORT)); 15428 #else 15429 if (connp->conn_debug) { 15430 (void) strlog(TCP_MOD_ID, 0, 1, 15431 SL_TRACE|SL_ERROR, 15432 "tcp_wput_data: data after ordrel, %s\n", 15433 tcp_display(tcp, NULL, 15434 DISP_ADDR_AND_PORT)); 15435 } 15436 #endif /* DEBUG */ 15437 } 15438 if (tcp->tcp_snd_zcopy_aware && 15439 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 15440 tcp_zcopy_notify(tcp); 15441 freemsg(mp); 15442 mutex_enter(&tcp->tcp_non_sq_lock); 15443 if (tcp->tcp_flow_stopped && 15444 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 15445 tcp_clrqfull(tcp); 15446 } 15447 mutex_exit(&tcp->tcp_non_sq_lock); 15448 return; 15449 } 15450 15451 /* Strip empties */ 15452 for (;;) { 15453 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 15454 (uintptr_t)INT_MAX); 15455 len = (int)(mp->b_wptr - mp->b_rptr); 15456 if (len > 0) 15457 break; 15458 mp1 = mp; 15459 mp = mp->b_cont; 15460 freeb(mp1); 15461 if (!mp) { 15462 return; 15463 } 15464 } 15465 15466 /* If we are the first on the list ... */ 15467 if (tcp->tcp_xmit_head == NULL) { 15468 tcp->tcp_xmit_head = mp; 15469 tcp->tcp_xmit_tail = mp; 15470 tcp->tcp_xmit_tail_unsent = len; 15471 } else { 15472 /* If tiny tx and room in txq tail, pullup to save mblks. */ 15473 struct datab *dp; 15474 15475 mp1 = tcp->tcp_xmit_last; 15476 if (len < tcp_tx_pull_len && 15477 (dp = mp1->b_datap)->db_ref == 1 && 15478 dp->db_lim - mp1->b_wptr >= len) { 15479 ASSERT(len > 0); 15480 ASSERT(!mp1->b_cont); 15481 if (len == 1) { 15482 *mp1->b_wptr++ = *mp->b_rptr; 15483 } else { 15484 bcopy(mp->b_rptr, mp1->b_wptr, len); 15485 mp1->b_wptr += len; 15486 } 15487 if (mp1 == tcp->tcp_xmit_tail) 15488 tcp->tcp_xmit_tail_unsent += len; 15489 mp1->b_cont = mp->b_cont; 15490 if (tcp->tcp_snd_zcopy_aware && 15491 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 15492 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 15493 freeb(mp); 15494 mp = mp1; 15495 } else { 15496 tcp->tcp_xmit_last->b_cont = mp; 15497 } 15498 len += tcp->tcp_unsent; 15499 } 15500 15501 /* Tack on however many more positive length mblks we have */ 15502 if ((mp1 = mp->b_cont) != NULL) { 15503 do { 15504 int tlen; 15505 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 15506 (uintptr_t)INT_MAX); 15507 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 15508 if (tlen <= 0) { 15509 mp->b_cont = mp1->b_cont; 15510 freeb(mp1); 15511 } else { 15512 len += tlen; 15513 mp = mp1; 15514 } 15515 } while ((mp1 = mp->b_cont) != NULL); 15516 } 15517 tcp->tcp_xmit_last = mp; 15518 tcp->tcp_unsent = len; 15519 15520 if (urgent) 15521 usable = 1; 15522 15523 data_null: 15524 snxt = tcp->tcp_snxt; 15525 xmit_tail = tcp->tcp_xmit_tail; 15526 tail_unsent = tcp->tcp_xmit_tail_unsent; 15527 15528 /* 15529 * Note that tcp_mss has been adjusted to take into account the 15530 * timestamp option if applicable. Because SACK options do not 15531 * appear in every TCP segments and they are of variable lengths, 15532 * they cannot be included in tcp_mss. Thus we need to calculate 15533 * the actual segment length when we need to send a segment which 15534 * includes SACK options. 15535 */ 15536 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 15537 int32_t opt_len; 15538 15539 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 15540 tcp->tcp_num_sack_blk); 15541 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 15542 2 + TCPOPT_HEADER_LEN; 15543 mss = tcp->tcp_mss - opt_len; 15544 total_hdr_len = connp->conn_ht_iphc_len + opt_len; 15545 tcp_hdr_len = connp->conn_ht_ulp_len + opt_len; 15546 } else { 15547 mss = tcp->tcp_mss; 15548 total_hdr_len = connp->conn_ht_iphc_len; 15549 tcp_hdr_len = connp->conn_ht_ulp_len; 15550 } 15551 15552 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 15553 (TICK_TO_MSEC((clock_t)LBOLT_FASTPATH - tcp->tcp_last_recv_time) >= 15554 tcp->tcp_rto)) { 15555 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 15556 } 15557 if (tcpstate == TCPS_SYN_RCVD) { 15558 /* 15559 * The three-way connection establishment handshake is not 15560 * complete yet. We want to queue the data for transmission 15561 * after entering ESTABLISHED state (RFC793). A jump to 15562 * "done" label effectively leaves data on the queue. 15563 */ 15564 goto done; 15565 } else { 15566 int usable_r; 15567 15568 /* 15569 * In the special case when cwnd is zero, which can only 15570 * happen if the connection is ECN capable, return now. 15571 * New segments is sent using tcp_timer(). The timer 15572 * is set in tcp_input_data(). 15573 */ 15574 if (tcp->tcp_cwnd == 0) { 15575 /* 15576 * Note that tcp_cwnd is 0 before 3-way handshake is 15577 * finished. 15578 */ 15579 ASSERT(tcp->tcp_ecn_ok || 15580 tcp->tcp_state < TCPS_ESTABLISHED); 15581 return; 15582 } 15583 15584 /* NOTE: trouble if xmitting while SYN not acked? */ 15585 usable_r = snxt - tcp->tcp_suna; 15586 usable_r = tcp->tcp_swnd - usable_r; 15587 15588 /* 15589 * Check if the receiver has shrunk the window. If 15590 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 15591 * cannot be set as there is unsent data, so FIN cannot 15592 * be sent out. Otherwise, we need to take into account 15593 * of FIN as it consumes an "invisible" sequence number. 15594 */ 15595 ASSERT(tcp->tcp_fin_sent == 0); 15596 if (usable_r < 0) { 15597 /* 15598 * The receiver has shrunk the window and we have sent 15599 * -usable_r date beyond the window, re-adjust. 15600 * 15601 * If TCP window scaling is enabled, there can be 15602 * round down error as the advertised receive window 15603 * is actually right shifted n bits. This means that 15604 * the lower n bits info is wiped out. It will look 15605 * like the window is shrunk. Do a check here to 15606 * see if the shrunk amount is actually within the 15607 * error in window calculation. If it is, just 15608 * return. Note that this check is inside the 15609 * shrunk window check. This makes sure that even 15610 * though tcp_process_shrunk_swnd() is not called, 15611 * we will stop further processing. 15612 */ 15613 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 15614 tcp_process_shrunk_swnd(tcp, -usable_r); 15615 } 15616 return; 15617 } 15618 15619 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 15620 if (tcp->tcp_swnd > tcp->tcp_cwnd) 15621 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 15622 15623 /* usable = MIN(usable, unsent) */ 15624 if (usable_r > len) 15625 usable_r = len; 15626 15627 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 15628 if (usable_r > 0) { 15629 usable = usable_r; 15630 } else { 15631 /* Bypass all other unnecessary processing. */ 15632 goto done; 15633 } 15634 } 15635 15636 local_time = (mblk_t *)LBOLT_FASTPATH; 15637 15638 /* 15639 * "Our" Nagle Algorithm. This is not the same as in the old 15640 * BSD. This is more in line with the true intent of Nagle. 15641 * 15642 * The conditions are: 15643 * 1. The amount of unsent data (or amount of data which can be 15644 * sent, whichever is smaller) is less than Nagle limit. 15645 * 2. The last sent size is also less than Nagle limit. 15646 * 3. There is unack'ed data. 15647 * 4. Urgent pointer is not set. Send urgent data ignoring the 15648 * Nagle algorithm. This reduces the probability that urgent 15649 * bytes get "merged" together. 15650 * 5. The app has not closed the connection. This eliminates the 15651 * wait time of the receiving side waiting for the last piece of 15652 * (small) data. 15653 * 15654 * If all are satisified, exit without sending anything. Note 15655 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 15656 * the smaller of 1 MSS and global tcp_naglim_def (default to be 15657 * 4095). 15658 */ 15659 if (usable < (int)tcp->tcp_naglim && 15660 tcp->tcp_naglim > tcp->tcp_last_sent_len && 15661 snxt != tcp->tcp_suna && 15662 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 15663 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 15664 goto done; 15665 } 15666 15667 /* 15668 * If tcp_zero_win_probe is not set and the tcp->tcp_cork option 15669 * is set, then we have to force TCP not to send partial segment 15670 * (smaller than MSS bytes). We are calculating the usable now 15671 * based on full mss and will save the rest of remaining data for 15672 * later. When tcp_zero_win_probe is set, TCP needs to send out 15673 * something to do zero window probe. 15674 */ 15675 if (tcp->tcp_cork && !tcp->tcp_zero_win_probe) { 15676 if (usable < mss) 15677 goto done; 15678 usable = (usable / mss) * mss; 15679 } 15680 15681 /* Update the latest receive window size in TCP header. */ 15682 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 15683 15684 /* Send the packet. */ 15685 rc = tcp_send(tcp, mss, total_hdr_len, tcp_hdr_len, 15686 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 15687 local_time); 15688 15689 /* Pretend that all we were trying to send really got sent */ 15690 if (rc < 0 && tail_unsent < 0) { 15691 do { 15692 xmit_tail = xmit_tail->b_cont; 15693 xmit_tail->b_prev = local_time; 15694 ASSERT((uintptr_t)(xmit_tail->b_wptr - 15695 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 15696 tail_unsent += (int)(xmit_tail->b_wptr - 15697 xmit_tail->b_rptr); 15698 } while (tail_unsent < 0); 15699 } 15700 done:; 15701 tcp->tcp_xmit_tail = xmit_tail; 15702 tcp->tcp_xmit_tail_unsent = tail_unsent; 15703 len = tcp->tcp_snxt - snxt; 15704 if (len) { 15705 /* 15706 * If new data was sent, need to update the notsack 15707 * list, which is, afterall, data blocks that have 15708 * not been sack'ed by the receiver. New data is 15709 * not sack'ed. 15710 */ 15711 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 15712 /* len is a negative value. */ 15713 tcp->tcp_pipe -= len; 15714 tcp_notsack_update(&(tcp->tcp_notsack_list), 15715 tcp->tcp_snxt, snxt, 15716 &(tcp->tcp_num_notsack_blk), 15717 &(tcp->tcp_cnt_notsack_list)); 15718 } 15719 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 15720 tcp->tcp_rack = tcp->tcp_rnxt; 15721 tcp->tcp_rack_cnt = 0; 15722 if ((snxt + len) == tcp->tcp_suna) { 15723 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15724 } 15725 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 15726 /* 15727 * Didn't send anything. Make sure the timer is running 15728 * so that we will probe a zero window. 15729 */ 15730 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15731 } 15732 /* Note that len is the amount we just sent but with a negative sign */ 15733 tcp->tcp_unsent += len; 15734 mutex_enter(&tcp->tcp_non_sq_lock); 15735 if (tcp->tcp_flow_stopped) { 15736 if (TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 15737 tcp_clrqfull(tcp); 15738 } 15739 } else if (TCP_UNSENT_BYTES(tcp) >= connp->conn_sndbuf) { 15740 if (!(tcp->tcp_detached)) 15741 tcp_setqfull(tcp); 15742 } 15743 mutex_exit(&tcp->tcp_non_sq_lock); 15744 } 15745 15746 /* 15747 * tcp_fill_header is called by tcp_send() to fill the outgoing TCP header 15748 * with the template header, as well as other options such as time-stamp, 15749 * ECN and/or SACK. 15750 */ 15751 static void 15752 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 15753 { 15754 tcpha_t *tcp_tmpl, *tcpha; 15755 uint32_t *dst, *src; 15756 int hdrlen; 15757 conn_t *connp = tcp->tcp_connp; 15758 15759 ASSERT(OK_32PTR(rptr)); 15760 15761 /* Template header */ 15762 tcp_tmpl = tcp->tcp_tcpha; 15763 15764 /* Header of outgoing packet */ 15765 tcpha = (tcpha_t *)(rptr + connp->conn_ixa->ixa_ip_hdr_length); 15766 15767 /* dst and src are opaque 32-bit fields, used for copying */ 15768 dst = (uint32_t *)rptr; 15769 src = (uint32_t *)connp->conn_ht_iphc; 15770 hdrlen = connp->conn_ht_iphc_len; 15771 15772 /* Fill time-stamp option if needed */ 15773 if (tcp->tcp_snd_ts_ok) { 15774 U32_TO_BE32((uint32_t)now, 15775 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 15776 U32_TO_BE32(tcp->tcp_ts_recent, 15777 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 15778 } else { 15779 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 15780 } 15781 15782 /* 15783 * Copy the template header; is this really more efficient than 15784 * calling bcopy()? For simple IPv4/TCP, it may be the case, 15785 * but perhaps not for other scenarios. 15786 */ 15787 dst[0] = src[0]; 15788 dst[1] = src[1]; 15789 dst[2] = src[2]; 15790 dst[3] = src[3]; 15791 dst[4] = src[4]; 15792 dst[5] = src[5]; 15793 dst[6] = src[6]; 15794 dst[7] = src[7]; 15795 dst[8] = src[8]; 15796 dst[9] = src[9]; 15797 if (hdrlen -= 40) { 15798 hdrlen >>= 2; 15799 dst += 10; 15800 src += 10; 15801 do { 15802 *dst++ = *src++; 15803 } while (--hdrlen); 15804 } 15805 15806 /* 15807 * Set the ECN info in the TCP header if it is not a zero 15808 * window probe. Zero window probe is only sent in 15809 * tcp_wput_data() and tcp_timer(). 15810 */ 15811 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 15812 SET_ECT(tcp, rptr); 15813 15814 if (tcp->tcp_ecn_echo_on) 15815 tcpha->tha_flags |= TH_ECE; 15816 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 15817 tcpha->tha_flags |= TH_CWR; 15818 tcp->tcp_ecn_cwr_sent = B_TRUE; 15819 } 15820 } 15821 15822 /* Fill in SACK options */ 15823 if (num_sack_blk > 0) { 15824 uchar_t *wptr = rptr + connp->conn_ht_iphc_len; 15825 sack_blk_t *tmp; 15826 int32_t i; 15827 15828 wptr[0] = TCPOPT_NOP; 15829 wptr[1] = TCPOPT_NOP; 15830 wptr[2] = TCPOPT_SACK; 15831 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 15832 sizeof (sack_blk_t); 15833 wptr += TCPOPT_REAL_SACK_LEN; 15834 15835 tmp = tcp->tcp_sack_list; 15836 for (i = 0; i < num_sack_blk; i++) { 15837 U32_TO_BE32(tmp[i].begin, wptr); 15838 wptr += sizeof (tcp_seq); 15839 U32_TO_BE32(tmp[i].end, wptr); 15840 wptr += sizeof (tcp_seq); 15841 } 15842 tcpha->tha_offset_and_reserved += 15843 ((num_sack_blk * 2 + 1) << 4); 15844 } 15845 } 15846 15847 /* 15848 * tcp_send() is called by tcp_wput_data() and returns one of the following: 15849 * 15850 * -1 = failed allocation. 15851 * 0 = success; burst count reached, or usable send window is too small, 15852 * and that we'd rather wait until later before sending again. 15853 */ 15854 static int 15855 tcp_send(tcp_t *tcp, const int mss, const int total_hdr_len, 15856 const int tcp_hdr_len, const int num_sack_blk, int *usable, 15857 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time) 15858 { 15859 int num_burst_seg = tcp->tcp_snd_burst; 15860 int num_lso_seg = 1; 15861 uint_t lso_usable; 15862 boolean_t do_lso_send = B_FALSE; 15863 tcp_stack_t *tcps = tcp->tcp_tcps; 15864 conn_t *connp = tcp->tcp_connp; 15865 ip_xmit_attr_t *ixa = connp->conn_ixa; 15866 15867 /* 15868 * Check LSO possibility. The value of tcp->tcp_lso indicates whether 15869 * the underlying connection is LSO capable. Will check whether having 15870 * enough available data to initiate LSO transmission in the for(){} 15871 * loops. 15872 */ 15873 if (tcp->tcp_lso && (tcp->tcp_valid_bits & ~TCP_FSS_VALID) == 0) 15874 do_lso_send = B_TRUE; 15875 15876 for (;;) { 15877 struct datab *db; 15878 tcpha_t *tcpha; 15879 uint32_t sum; 15880 mblk_t *mp, *mp1; 15881 uchar_t *rptr; 15882 int len; 15883 15884 /* 15885 * Burst count reached, return successfully. 15886 */ 15887 if (num_burst_seg == 0) 15888 break; 15889 15890 /* 15891 * Calculate the maximum payload length we can send at one 15892 * time. 15893 */ 15894 if (do_lso_send) { 15895 /* 15896 * Check whether be able to to do LSO for the current 15897 * available data. 15898 */ 15899 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 15900 lso_usable = MIN(tcp->tcp_lso_max, *usable); 15901 lso_usable = MIN(lso_usable, 15902 num_burst_seg * mss); 15903 15904 num_lso_seg = lso_usable / mss; 15905 if (lso_usable % mss) { 15906 num_lso_seg++; 15907 tcp->tcp_last_sent_len = (ushort_t) 15908 (lso_usable % mss); 15909 } else { 15910 tcp->tcp_last_sent_len = (ushort_t)mss; 15911 } 15912 } else { 15913 do_lso_send = B_FALSE; 15914 num_lso_seg = 1; 15915 lso_usable = mss; 15916 } 15917 } 15918 15919 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 15920 #ifdef DEBUG 15921 DTRACE_PROBE2(tcp_send_lso, int, num_lso_seg, boolean_t, 15922 do_lso_send); 15923 #endif 15924 /* 15925 * Adjust num_burst_seg here. 15926 */ 15927 num_burst_seg -= num_lso_seg; 15928 15929 len = mss; 15930 if (len > *usable) { 15931 ASSERT(do_lso_send == B_FALSE); 15932 15933 len = *usable; 15934 if (len <= 0) { 15935 /* Terminate the loop */ 15936 break; /* success; too small */ 15937 } 15938 /* 15939 * Sender silly-window avoidance. 15940 * Ignore this if we are going to send a 15941 * zero window probe out. 15942 * 15943 * TODO: force data into microscopic window? 15944 * ==> (!pushed || (unsent > usable)) 15945 */ 15946 if (len < (tcp->tcp_max_swnd >> 1) && 15947 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 15948 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 15949 len == 1) && (! tcp->tcp_zero_win_probe)) { 15950 /* 15951 * If the retransmit timer is not running 15952 * we start it so that we will retransmit 15953 * in the case when the receiver has 15954 * decremented the window. 15955 */ 15956 if (*snxt == tcp->tcp_snxt && 15957 *snxt == tcp->tcp_suna) { 15958 /* 15959 * We are not supposed to send 15960 * anything. So let's wait a little 15961 * bit longer before breaking SWS 15962 * avoidance. 15963 * 15964 * What should the value be? 15965 * Suggestion: MAX(init rexmit time, 15966 * tcp->tcp_rto) 15967 */ 15968 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15969 } 15970 break; /* success; too small */ 15971 } 15972 } 15973 15974 tcpha = tcp->tcp_tcpha; 15975 15976 /* 15977 * The reason to adjust len here is that we need to set flags 15978 * and calculate checksum. 15979 */ 15980 if (do_lso_send) 15981 len = lso_usable; 15982 15983 *usable -= len; /* Approximate - can be adjusted later */ 15984 if (*usable > 0) 15985 tcpha->tha_flags = TH_ACK; 15986 else 15987 tcpha->tha_flags = (TH_ACK | TH_PUSH); 15988 15989 /* 15990 * Prime pump for IP's checksumming on our behalf. 15991 * Include the adjustment for a source route if any. 15992 * In case of LSO, the partial pseudo-header checksum should 15993 * exclusive TCP length, so zero tha_sum before IP calculate 15994 * pseudo-header checksum for partial checksum offload. 15995 */ 15996 if (do_lso_send) { 15997 sum = 0; 15998 } else { 15999 sum = len + tcp_hdr_len + connp->conn_sum; 16000 sum = (sum >> 16) + (sum & 0xFFFF); 16001 } 16002 tcpha->tha_sum = htons(sum); 16003 tcpha->tha_seq = htonl(*snxt); 16004 16005 /* 16006 * Branch off to tcp_xmit_mp() if any of the VALID bits is 16007 * set. For the case when TCP_FSS_VALID is the only valid 16008 * bit (normal active close), branch off only when we think 16009 * that the FIN flag needs to be set. Note for this case, 16010 * that (snxt + len) may not reflect the actual seg_len, 16011 * as len may be further reduced in tcp_xmit_mp(). If len 16012 * gets modified, we will end up here again. 16013 */ 16014 if (tcp->tcp_valid_bits != 0 && 16015 (tcp->tcp_valid_bits != TCP_FSS_VALID || 16016 ((*snxt + len) == tcp->tcp_fss))) { 16017 uchar_t *prev_rptr; 16018 uint32_t prev_snxt = tcp->tcp_snxt; 16019 16020 if (*tail_unsent == 0) { 16021 ASSERT((*xmit_tail)->b_cont != NULL); 16022 *xmit_tail = (*xmit_tail)->b_cont; 16023 prev_rptr = (*xmit_tail)->b_rptr; 16024 *tail_unsent = (int)((*xmit_tail)->b_wptr - 16025 (*xmit_tail)->b_rptr); 16026 } else { 16027 prev_rptr = (*xmit_tail)->b_rptr; 16028 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 16029 *tail_unsent; 16030 } 16031 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 16032 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 16033 /* Restore tcp_snxt so we get amount sent right. */ 16034 tcp->tcp_snxt = prev_snxt; 16035 if (prev_rptr == (*xmit_tail)->b_rptr) { 16036 /* 16037 * If the previous timestamp is still in use, 16038 * don't stomp on it. 16039 */ 16040 if ((*xmit_tail)->b_next == NULL) { 16041 (*xmit_tail)->b_prev = local_time; 16042 (*xmit_tail)->b_next = 16043 (mblk_t *)(uintptr_t)(*snxt); 16044 } 16045 } else 16046 (*xmit_tail)->b_rptr = prev_rptr; 16047 16048 if (mp == NULL) { 16049 return (-1); 16050 } 16051 mp1 = mp->b_cont; 16052 16053 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 16054 tcp->tcp_last_sent_len = (ushort_t)len; 16055 while (mp1->b_cont) { 16056 *xmit_tail = (*xmit_tail)->b_cont; 16057 (*xmit_tail)->b_prev = local_time; 16058 (*xmit_tail)->b_next = 16059 (mblk_t *)(uintptr_t)(*snxt); 16060 mp1 = mp1->b_cont; 16061 } 16062 *snxt += len; 16063 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 16064 BUMP_LOCAL(tcp->tcp_obsegs); 16065 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 16066 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 16067 tcp_send_data(tcp, mp); 16068 continue; 16069 } 16070 16071 *snxt += len; /* Adjust later if we don't send all of len */ 16072 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 16073 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 16074 16075 if (*tail_unsent) { 16076 /* Are the bytes above us in flight? */ 16077 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 16078 if (rptr != (*xmit_tail)->b_rptr) { 16079 *tail_unsent -= len; 16080 if (len <= mss) /* LSO is unusable */ 16081 tcp->tcp_last_sent_len = (ushort_t)len; 16082 len += total_hdr_len; 16083 ixa->ixa_pktlen = len; 16084 16085 if (ixa->ixa_flags & IXAF_IS_IPV4) { 16086 tcp->tcp_ipha->ipha_length = htons(len); 16087 } else { 16088 tcp->tcp_ip6h->ip6_plen = 16089 htons(len - IPV6_HDR_LEN); 16090 } 16091 16092 mp = dupb(*xmit_tail); 16093 if (mp == NULL) { 16094 return (-1); /* out_of_mem */ 16095 } 16096 mp->b_rptr = rptr; 16097 /* 16098 * If the old timestamp is no longer in use, 16099 * sample a new timestamp now. 16100 */ 16101 if ((*xmit_tail)->b_next == NULL) { 16102 (*xmit_tail)->b_prev = local_time; 16103 (*xmit_tail)->b_next = 16104 (mblk_t *)(uintptr_t)(*snxt-len); 16105 } 16106 goto must_alloc; 16107 } 16108 } else { 16109 *xmit_tail = (*xmit_tail)->b_cont; 16110 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 16111 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 16112 *tail_unsent = (int)((*xmit_tail)->b_wptr - 16113 (*xmit_tail)->b_rptr); 16114 } 16115 16116 (*xmit_tail)->b_prev = local_time; 16117 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 16118 16119 *tail_unsent -= len; 16120 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 16121 tcp->tcp_last_sent_len = (ushort_t)len; 16122 16123 len += total_hdr_len; 16124 ixa->ixa_pktlen = len; 16125 16126 if (ixa->ixa_flags & IXAF_IS_IPV4) { 16127 tcp->tcp_ipha->ipha_length = htons(len); 16128 } else { 16129 tcp->tcp_ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 16130 } 16131 16132 mp = dupb(*xmit_tail); 16133 if (mp == NULL) { 16134 return (-1); /* out_of_mem */ 16135 } 16136 16137 len = total_hdr_len; 16138 /* 16139 * There are four reasons to allocate a new hdr mblk: 16140 * 1) The bytes above us are in use by another packet 16141 * 2) We don't have good alignment 16142 * 3) The mblk is being shared 16143 * 4) We don't have enough room for a header 16144 */ 16145 rptr = mp->b_rptr - len; 16146 if (!OK_32PTR(rptr) || 16147 ((db = mp->b_datap), db->db_ref != 2) || 16148 rptr < db->db_base) { 16149 /* NOTE: we assume allocb returns an OK_32PTR */ 16150 16151 must_alloc:; 16152 mp1 = allocb(connp->conn_ht_iphc_allocated + 16153 tcps->tcps_wroff_xtra, BPRI_MED); 16154 if (mp1 == NULL) { 16155 freemsg(mp); 16156 return (-1); /* out_of_mem */ 16157 } 16158 mp1->b_cont = mp; 16159 mp = mp1; 16160 /* Leave room for Link Level header */ 16161 len = total_hdr_len; 16162 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 16163 mp->b_wptr = &rptr[len]; 16164 } 16165 16166 /* 16167 * Fill in the header using the template header, and add 16168 * options such as time-stamp, ECN and/or SACK, as needed. 16169 */ 16170 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 16171 16172 mp->b_rptr = rptr; 16173 16174 if (*tail_unsent) { 16175 int spill = *tail_unsent; 16176 16177 mp1 = mp->b_cont; 16178 if (mp1 == NULL) 16179 mp1 = mp; 16180 16181 /* 16182 * If we're a little short, tack on more mblks until 16183 * there is no more spillover. 16184 */ 16185 while (spill < 0) { 16186 mblk_t *nmp; 16187 int nmpsz; 16188 16189 nmp = (*xmit_tail)->b_cont; 16190 nmpsz = MBLKL(nmp); 16191 16192 /* 16193 * Excess data in mblk; can we split it? 16194 * If LSO is enabled for the connection, 16195 * keep on splitting as this is a transient 16196 * send path. 16197 */ 16198 if (!do_lso_send && (spill + nmpsz > 0)) { 16199 /* 16200 * Don't split if stream head was 16201 * told to break up larger writes 16202 * into smaller ones. 16203 */ 16204 if (tcp->tcp_maxpsz_multiplier > 0) 16205 break; 16206 16207 /* 16208 * Next mblk is less than SMSS/2 16209 * rounded up to nearest 64-byte; 16210 * let it get sent as part of the 16211 * next segment. 16212 */ 16213 if (tcp->tcp_localnet && 16214 !tcp->tcp_cork && 16215 (nmpsz < roundup((mss >> 1), 64))) 16216 break; 16217 } 16218 16219 *xmit_tail = nmp; 16220 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 16221 /* Stash for rtt use later */ 16222 (*xmit_tail)->b_prev = local_time; 16223 (*xmit_tail)->b_next = 16224 (mblk_t *)(uintptr_t)(*snxt - len); 16225 mp1->b_cont = dupb(*xmit_tail); 16226 mp1 = mp1->b_cont; 16227 16228 spill += nmpsz; 16229 if (mp1 == NULL) { 16230 *tail_unsent = spill; 16231 freemsg(mp); 16232 return (-1); /* out_of_mem */ 16233 } 16234 } 16235 16236 /* Trim back any surplus on the last mblk */ 16237 if (spill >= 0) { 16238 mp1->b_wptr -= spill; 16239 *tail_unsent = spill; 16240 } else { 16241 /* 16242 * We did not send everything we could in 16243 * order to remain within the b_cont limit. 16244 */ 16245 *usable -= spill; 16246 *snxt += spill; 16247 tcp->tcp_last_sent_len += spill; 16248 UPDATE_MIB(&tcps->tcps_mib, 16249 tcpOutDataBytes, spill); 16250 /* 16251 * Adjust the checksum 16252 */ 16253 tcpha = (tcpha_t *)(rptr + 16254 ixa->ixa_ip_hdr_length); 16255 sum += spill; 16256 sum = (sum >> 16) + (sum & 0xFFFF); 16257 tcpha->tha_sum = htons(sum); 16258 if (connp->conn_ipversion == IPV4_VERSION) { 16259 sum = ntohs( 16260 ((ipha_t *)rptr)->ipha_length) + 16261 spill; 16262 ((ipha_t *)rptr)->ipha_length = 16263 htons(sum); 16264 } else { 16265 sum = ntohs( 16266 ((ip6_t *)rptr)->ip6_plen) + 16267 spill; 16268 ((ip6_t *)rptr)->ip6_plen = 16269 htons(sum); 16270 } 16271 ixa->ixa_pktlen += spill; 16272 *tail_unsent = 0; 16273 } 16274 } 16275 if (tcp->tcp_ip_forward_progress) { 16276 tcp->tcp_ip_forward_progress = B_FALSE; 16277 ixa->ixa_flags |= IXAF_REACH_CONF; 16278 } else { 16279 ixa->ixa_flags &= ~IXAF_REACH_CONF; 16280 } 16281 16282 /* 16283 * Append LSO information, both flags and mss, to the mp. 16284 */ 16285 if (do_lso_send) { 16286 lso_info_set(mp, mss, HW_LSO); 16287 ixa->ixa_fragsize = IP_MAXPACKET; 16288 ixa->ixa_extra_ident = num_lso_seg - 1; 16289 16290 DTRACE_PROBE2(tcp_send_lso, int, num_lso_seg, 16291 boolean_t, B_TRUE); 16292 16293 tcp_send_data(tcp, mp); 16294 16295 /* 16296 * Restore values of ixa_fragsize and ixa_extra_ident. 16297 */ 16298 ixa->ixa_fragsize = ixa->ixa_pmtu; 16299 ixa->ixa_extra_ident = 0; 16300 tcp->tcp_obsegs += num_lso_seg; 16301 TCP_STAT(tcps, tcp_lso_times); 16302 TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); 16303 } else { 16304 tcp_send_data(tcp, mp); 16305 BUMP_LOCAL(tcp->tcp_obsegs); 16306 } 16307 } 16308 16309 return (0); 16310 } 16311 16312 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 16313 static void 16314 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 16315 { 16316 uchar_t fval = *mp->b_rptr; 16317 mblk_t *tail; 16318 conn_t *connp = tcp->tcp_connp; 16319 queue_t *q = connp->conn_wq; 16320 16321 /* TODO: How should flush interact with urgent data? */ 16322 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 16323 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 16324 /* 16325 * Flush only data that has not yet been put on the wire. If 16326 * we flush data that we have already transmitted, life, as we 16327 * know it, may come to an end. 16328 */ 16329 tail = tcp->tcp_xmit_tail; 16330 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 16331 tcp->tcp_xmit_tail_unsent = 0; 16332 tcp->tcp_unsent = 0; 16333 if (tail->b_wptr != tail->b_rptr) 16334 tail = tail->b_cont; 16335 if (tail) { 16336 mblk_t **excess = &tcp->tcp_xmit_head; 16337 for (;;) { 16338 mblk_t *mp1 = *excess; 16339 if (mp1 == tail) 16340 break; 16341 tcp->tcp_xmit_tail = mp1; 16342 tcp->tcp_xmit_last = mp1; 16343 excess = &mp1->b_cont; 16344 } 16345 *excess = NULL; 16346 tcp_close_mpp(&tail); 16347 if (tcp->tcp_snd_zcopy_aware) 16348 tcp_zcopy_notify(tcp); 16349 } 16350 /* 16351 * We have no unsent data, so unsent must be less than 16352 * conn_sndlowat, so re-enable flow. 16353 */ 16354 mutex_enter(&tcp->tcp_non_sq_lock); 16355 if (tcp->tcp_flow_stopped) { 16356 tcp_clrqfull(tcp); 16357 } 16358 mutex_exit(&tcp->tcp_non_sq_lock); 16359 } 16360 /* 16361 * TODO: you can't just flush these, you have to increase rwnd for one 16362 * thing. For another, how should urgent data interact? 16363 */ 16364 if (fval & FLUSHR) { 16365 *mp->b_rptr = fval & ~FLUSHW; 16366 /* XXX */ 16367 qreply(q, mp); 16368 return; 16369 } 16370 freemsg(mp); 16371 } 16372 16373 /* 16374 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 16375 * messages. 16376 */ 16377 static void 16378 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 16379 { 16380 mblk_t *mp1; 16381 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 16382 STRUCT_HANDLE(strbuf, sb); 16383 uint_t addrlen; 16384 conn_t *connp = tcp->tcp_connp; 16385 queue_t *q = connp->conn_wq; 16386 16387 /* Make sure it is one of ours. */ 16388 switch (iocp->ioc_cmd) { 16389 case TI_GETMYNAME: 16390 case TI_GETPEERNAME: 16391 break; 16392 default: 16393 ip_wput_nondata(q, mp); 16394 return; 16395 } 16396 switch (mi_copy_state(q, mp, &mp1)) { 16397 case -1: 16398 return; 16399 case MI_COPY_CASE(MI_COPY_IN, 1): 16400 break; 16401 case MI_COPY_CASE(MI_COPY_OUT, 1): 16402 /* Copy out the strbuf. */ 16403 mi_copyout(q, mp); 16404 return; 16405 case MI_COPY_CASE(MI_COPY_OUT, 2): 16406 /* All done. */ 16407 mi_copy_done(q, mp, 0); 16408 return; 16409 default: 16410 mi_copy_done(q, mp, EPROTO); 16411 return; 16412 } 16413 /* Check alignment of the strbuf */ 16414 if (!OK_32PTR(mp1->b_rptr)) { 16415 mi_copy_done(q, mp, EINVAL); 16416 return; 16417 } 16418 16419 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 16420 16421 if (connp->conn_family == AF_INET) 16422 addrlen = sizeof (sin_t); 16423 else 16424 addrlen = sizeof (sin6_t); 16425 16426 if (STRUCT_FGET(sb, maxlen) < addrlen) { 16427 mi_copy_done(q, mp, EINVAL); 16428 return; 16429 } 16430 16431 switch (iocp->ioc_cmd) { 16432 case TI_GETMYNAME: 16433 break; 16434 case TI_GETPEERNAME: 16435 if (tcp->tcp_state < TCPS_SYN_RCVD) { 16436 mi_copy_done(q, mp, ENOTCONN); 16437 return; 16438 } 16439 break; 16440 } 16441 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 16442 if (!mp1) 16443 return; 16444 16445 STRUCT_FSET(sb, len, addrlen); 16446 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 16447 case TI_GETMYNAME: 16448 (void) conn_getsockname(connp, (struct sockaddr *)mp1->b_wptr, 16449 &addrlen); 16450 break; 16451 case TI_GETPEERNAME: 16452 (void) conn_getpeername(connp, (struct sockaddr *)mp1->b_wptr, 16453 &addrlen); 16454 break; 16455 } 16456 mp1->b_wptr += addrlen; 16457 /* Copy out the address */ 16458 mi_copyout(q, mp); 16459 } 16460 16461 static void 16462 tcp_use_pure_tpi(tcp_t *tcp) 16463 { 16464 conn_t *connp = tcp->tcp_connp; 16465 16466 #ifdef _ILP32 16467 tcp->tcp_acceptor_id = (t_uscalar_t)connp->conn_rq; 16468 #else 16469 tcp->tcp_acceptor_id = connp->conn_dev; 16470 #endif 16471 /* 16472 * Insert this socket into the acceptor hash. 16473 * We might need it for T_CONN_RES message 16474 */ 16475 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 16476 16477 tcp->tcp_issocket = B_FALSE; 16478 TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback); 16479 } 16480 16481 /* 16482 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 16483 * messages. 16484 */ 16485 /* ARGSUSED */ 16486 static void 16487 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 16488 { 16489 conn_t *connp = (conn_t *)arg; 16490 tcp_t *tcp = connp->conn_tcp; 16491 queue_t *q = connp->conn_wq; 16492 struct iocblk *iocp; 16493 16494 ASSERT(DB_TYPE(mp) == M_IOCTL); 16495 /* 16496 * Try and ASSERT the minimum possible references on the 16497 * conn early enough. Since we are executing on write side, 16498 * the connection is obviously not detached and that means 16499 * there is a ref each for TCP and IP. Since we are behind 16500 * the squeue, the minimum references needed are 3. If the 16501 * conn is in classifier hash list, there should be an 16502 * extra ref for that (we check both the possibilities). 16503 */ 16504 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 16505 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 16506 16507 iocp = (struct iocblk *)mp->b_rptr; 16508 switch (iocp->ioc_cmd) { 16509 case _SIOCSOCKFALLBACK: 16510 /* 16511 * Either sockmod is about to be popped and the socket 16512 * would now be treated as a plain stream, or a module 16513 * is about to be pushed so we could no longer use read- 16514 * side synchronous streams for fused loopback tcp. 16515 * Drain any queued data and disable direct sockfs 16516 * interface from now on. 16517 */ 16518 if (!tcp->tcp_issocket) { 16519 DB_TYPE(mp) = M_IOCNAK; 16520 iocp->ioc_error = EINVAL; 16521 } else { 16522 tcp_use_pure_tpi(tcp); 16523 DB_TYPE(mp) = M_IOCACK; 16524 iocp->ioc_error = 0; 16525 } 16526 iocp->ioc_count = 0; 16527 iocp->ioc_rval = 0; 16528 qreply(q, mp); 16529 return; 16530 } 16531 ip_wput_nondata(q, mp); 16532 } 16533 16534 /* 16535 * This routine is called by tcp_wput() to handle all TPI requests. 16536 */ 16537 /* ARGSUSED */ 16538 static void 16539 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 16540 { 16541 conn_t *connp = (conn_t *)arg; 16542 tcp_t *tcp = connp->conn_tcp; 16543 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 16544 uchar_t *rptr; 16545 t_scalar_t type; 16546 cred_t *cr; 16547 16548 /* 16549 * Try and ASSERT the minimum possible references on the 16550 * conn early enough. Since we are executing on write side, 16551 * the connection is obviously not detached and that means 16552 * there is a ref each for TCP and IP. Since we are behind 16553 * the squeue, the minimum references needed are 3. If the 16554 * conn is in classifier hash list, there should be an 16555 * extra ref for that (we check both the possibilities). 16556 */ 16557 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 16558 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 16559 16560 rptr = mp->b_rptr; 16561 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 16562 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 16563 type = ((union T_primitives *)rptr)->type; 16564 if (type == T_EXDATA_REQ) { 16565 tcp_output_urgent(connp, mp, arg2, NULL); 16566 } else if (type != T_DATA_REQ) { 16567 goto non_urgent_data; 16568 } else { 16569 /* TODO: options, flags, ... from user */ 16570 /* Set length to zero for reclamation below */ 16571 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 16572 freeb(mp); 16573 } 16574 return; 16575 } else { 16576 if (connp->conn_debug) { 16577 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 16578 "tcp_wput_proto, dropping one..."); 16579 } 16580 freemsg(mp); 16581 return; 16582 } 16583 16584 non_urgent_data: 16585 16586 switch ((int)tprim->type) { 16587 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 16588 /* 16589 * save the kssl_ent_t from the next block, and convert this 16590 * back to a normal bind_req. 16591 */ 16592 if (mp->b_cont != NULL) { 16593 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 16594 16595 if (tcp->tcp_kssl_ent != NULL) { 16596 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 16597 KSSL_NO_PROXY); 16598 tcp->tcp_kssl_ent = NULL; 16599 } 16600 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 16601 sizeof (kssl_ent_t)); 16602 kssl_hold_ent(tcp->tcp_kssl_ent); 16603 freemsg(mp->b_cont); 16604 mp->b_cont = NULL; 16605 } 16606 tprim->type = T_BIND_REQ; 16607 16608 /* FALLTHROUGH */ 16609 case O_T_BIND_REQ: /* bind request */ 16610 case T_BIND_REQ: /* new semantics bind request */ 16611 tcp_tpi_bind(tcp, mp); 16612 break; 16613 case T_UNBIND_REQ: /* unbind request */ 16614 tcp_tpi_unbind(tcp, mp); 16615 break; 16616 case O_T_CONN_RES: /* old connection response XXX */ 16617 case T_CONN_RES: /* connection response */ 16618 tcp_tli_accept(tcp, mp); 16619 break; 16620 case T_CONN_REQ: /* connection request */ 16621 tcp_tpi_connect(tcp, mp); 16622 break; 16623 case T_DISCON_REQ: /* disconnect request */ 16624 tcp_disconnect(tcp, mp); 16625 break; 16626 case T_CAPABILITY_REQ: 16627 tcp_capability_req(tcp, mp); /* capability request */ 16628 break; 16629 case T_INFO_REQ: /* information request */ 16630 tcp_info_req(tcp, mp); 16631 break; 16632 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 16633 case T_OPTMGMT_REQ: 16634 /* 16635 * Note: no support for snmpcom_req() through new 16636 * T_OPTMGMT_REQ. See comments in ip.c 16637 */ 16638 16639 /* 16640 * All Solaris components should pass a db_credp 16641 * for this TPI message, hence we ASSERT. 16642 * But in case there is some other M_PROTO that looks 16643 * like a TPI message sent by some other kernel 16644 * component, we check and return an error. 16645 */ 16646 cr = msg_getcred(mp, NULL); 16647 ASSERT(cr != NULL); 16648 if (cr == NULL) { 16649 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 16650 return; 16651 } 16652 /* 16653 * If EINPROGRESS is returned, the request has been queued 16654 * for subsequent processing by ip_restart_optmgmt(), which 16655 * will do the CONN_DEC_REF(). 16656 */ 16657 if ((int)tprim->type == T_SVR4_OPTMGMT_REQ) { 16658 svr4_optcom_req(connp->conn_wq, mp, cr, &tcp_opt_obj); 16659 } else { 16660 tpi_optcom_req(connp->conn_wq, mp, cr, &tcp_opt_obj); 16661 } 16662 break; 16663 16664 case T_UNITDATA_REQ: /* unitdata request */ 16665 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 16666 break; 16667 case T_ORDREL_REQ: /* orderly release req */ 16668 freemsg(mp); 16669 16670 if (tcp->tcp_fused) 16671 tcp_unfuse(tcp); 16672 16673 if (tcp_xmit_end(tcp) != 0) { 16674 /* 16675 * We were crossing FINs and got a reset from 16676 * the other side. Just ignore it. 16677 */ 16678 if (connp->conn_debug) { 16679 (void) strlog(TCP_MOD_ID, 0, 1, 16680 SL_ERROR|SL_TRACE, 16681 "tcp_wput_proto, T_ORDREL_REQ out of " 16682 "state %s", 16683 tcp_display(tcp, NULL, 16684 DISP_ADDR_AND_PORT)); 16685 } 16686 } 16687 break; 16688 case T_ADDR_REQ: 16689 tcp_addr_req(tcp, mp); 16690 break; 16691 default: 16692 if (connp->conn_debug) { 16693 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 16694 "tcp_wput_proto, bogus TPI msg, type %d", 16695 tprim->type); 16696 } 16697 /* 16698 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 16699 * to recover. 16700 */ 16701 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 16702 break; 16703 } 16704 } 16705 16706 /* 16707 * The TCP write service routine should never be called... 16708 */ 16709 /* ARGSUSED */ 16710 static void 16711 tcp_wsrv(queue_t *q) 16712 { 16713 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 16714 16715 TCP_STAT(tcps, tcp_wsrv_called); 16716 } 16717 16718 /* 16719 * Send out a control packet on the tcp connection specified. This routine 16720 * is typically called where we need a simple ACK or RST generated. 16721 */ 16722 static void 16723 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 16724 { 16725 uchar_t *rptr; 16726 tcpha_t *tcpha; 16727 ipha_t *ipha = NULL; 16728 ip6_t *ip6h = NULL; 16729 uint32_t sum; 16730 int total_hdr_len; 16731 int ip_hdr_len; 16732 mblk_t *mp; 16733 tcp_stack_t *tcps = tcp->tcp_tcps; 16734 conn_t *connp = tcp->tcp_connp; 16735 ip_xmit_attr_t *ixa = connp->conn_ixa; 16736 16737 /* 16738 * Save sum for use in source route later. 16739 */ 16740 sum = connp->conn_ht_ulp_len + connp->conn_sum; 16741 total_hdr_len = connp->conn_ht_iphc_len; 16742 ip_hdr_len = ixa->ixa_ip_hdr_length; 16743 16744 /* If a text string is passed in with the request, pass it to strlog. */ 16745 if (str != NULL && connp->conn_debug) { 16746 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 16747 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 16748 str, seq, ack, ctl); 16749 } 16750 mp = allocb(connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra, 16751 BPRI_MED); 16752 if (mp == NULL) { 16753 return; 16754 } 16755 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 16756 mp->b_rptr = rptr; 16757 mp->b_wptr = &rptr[total_hdr_len]; 16758 bcopy(connp->conn_ht_iphc, rptr, total_hdr_len); 16759 16760 ixa->ixa_pktlen = total_hdr_len; 16761 16762 if (ixa->ixa_flags & IXAF_IS_IPV4) { 16763 ipha = (ipha_t *)rptr; 16764 ipha->ipha_length = htons(total_hdr_len); 16765 } else { 16766 ip6h = (ip6_t *)rptr; 16767 ip6h->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN); 16768 } 16769 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 16770 tcpha->tha_flags = (uint8_t)ctl; 16771 if (ctl & TH_RST) { 16772 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 16773 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 16774 /* 16775 * Don't send TSopt w/ TH_RST packets per RFC 1323. 16776 */ 16777 if (tcp->tcp_snd_ts_ok && 16778 tcp->tcp_state > TCPS_SYN_SENT) { 16779 mp->b_wptr = &rptr[total_hdr_len - TCPOPT_REAL_TS_LEN]; 16780 *(mp->b_wptr) = TCPOPT_EOL; 16781 16782 ixa->ixa_pktlen = total_hdr_len - TCPOPT_REAL_TS_LEN; 16783 16784 if (connp->conn_ipversion == IPV4_VERSION) { 16785 ipha->ipha_length = htons(total_hdr_len - 16786 TCPOPT_REAL_TS_LEN); 16787 } else { 16788 ip6h->ip6_plen = htons(total_hdr_len - 16789 IPV6_HDR_LEN - TCPOPT_REAL_TS_LEN); 16790 } 16791 tcpha->tha_offset_and_reserved -= (3 << 4); 16792 sum -= TCPOPT_REAL_TS_LEN; 16793 } 16794 } 16795 if (ctl & TH_ACK) { 16796 if (tcp->tcp_snd_ts_ok) { 16797 uint32_t llbolt = (uint32_t)ddi_get_lbolt(); 16798 16799 U32_TO_BE32(llbolt, 16800 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 16801 U32_TO_BE32(tcp->tcp_ts_recent, 16802 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 16803 } 16804 16805 /* Update the latest receive window size in TCP header. */ 16806 tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 16807 tcp->tcp_rack = ack; 16808 tcp->tcp_rack_cnt = 0; 16809 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 16810 } 16811 BUMP_LOCAL(tcp->tcp_obsegs); 16812 tcpha->tha_seq = htonl(seq); 16813 tcpha->tha_ack = htonl(ack); 16814 /* 16815 * Include the adjustment for a source route if any. 16816 */ 16817 sum = (sum >> 16) + (sum & 0xFFFF); 16818 tcpha->tha_sum = htons(sum); 16819 tcp_send_data(tcp, mp); 16820 } 16821 16822 /* 16823 * If this routine returns B_TRUE, TCP can generate a RST in response 16824 * to a segment. If it returns B_FALSE, TCP should not respond. 16825 */ 16826 static boolean_t 16827 tcp_send_rst_chk(tcp_stack_t *tcps) 16828 { 16829 clock_t now; 16830 16831 /* 16832 * TCP needs to protect itself from generating too many RSTs. 16833 * This can be a DoS attack by sending us random segments 16834 * soliciting RSTs. 16835 * 16836 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 16837 * in each 1 second interval. In this way, TCP still generate 16838 * RSTs in normal cases but when under attack, the impact is 16839 * limited. 16840 */ 16841 if (tcps->tcps_rst_sent_rate_enabled != 0) { 16842 now = ddi_get_lbolt(); 16843 /* lbolt can wrap around. */ 16844 if ((tcps->tcps_last_rst_intrvl > now) || 16845 (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 16846 1*SECONDS)) { 16847 tcps->tcps_last_rst_intrvl = now; 16848 tcps->tcps_rst_cnt = 1; 16849 } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { 16850 return (B_FALSE); 16851 } 16852 } 16853 return (B_TRUE); 16854 } 16855 16856 /* 16857 * Generate a reset based on an inbound packet, connp is set by caller 16858 * when RST is in response to an unexpected inbound packet for which 16859 * there is active tcp state in the system. 16860 * 16861 * IPSEC NOTE : Try to send the reply with the same protection as it came 16862 * in. We have the ip_recv_attr_t which is reversed to form the ip_xmit_attr_t. 16863 * That way the packet will go out at the same level of protection as it 16864 * came in with. 16865 */ 16866 static void 16867 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, uint32_t ack, int ctl, 16868 ip_recv_attr_t *ira, ip_stack_t *ipst, conn_t *connp) 16869 { 16870 ipha_t *ipha = NULL; 16871 ip6_t *ip6h = NULL; 16872 ushort_t len; 16873 tcpha_t *tcpha; 16874 int i; 16875 ipaddr_t v4addr; 16876 in6_addr_t v6addr; 16877 netstack_t *ns = ipst->ips_netstack; 16878 tcp_stack_t *tcps = ns->netstack_tcp; 16879 ip_xmit_attr_t ixas, *ixa; 16880 uint_t ip_hdr_len = ira->ira_ip_hdr_length; 16881 boolean_t need_refrele = B_FALSE; /* ixa_refrele(ixa) */ 16882 ushort_t port; 16883 16884 if (!tcp_send_rst_chk(tcps)) { 16885 tcps->tcps_rst_unsent++; 16886 freemsg(mp); 16887 return; 16888 } 16889 16890 /* 16891 * If connp != NULL we use conn_ixa to keep IP_NEXTHOP and other 16892 * options from the listener. In that case the caller must ensure that 16893 * we are running on the listener = connp squeue. 16894 * 16895 * We get a safe copy of conn_ixa so we don't need to restore anything 16896 * we or ip_output_simple might change in the ixa. 16897 */ 16898 if (connp != NULL) { 16899 ASSERT(connp->conn_on_sqp); 16900 16901 ixa = conn_get_ixa_exclusive(connp); 16902 if (ixa == NULL) { 16903 tcps->tcps_rst_unsent++; 16904 freemsg(mp); 16905 return; 16906 } 16907 need_refrele = B_TRUE; 16908 } else { 16909 bzero(&ixas, sizeof (ixas)); 16910 ixa = &ixas; 16911 /* 16912 * IXAF_VERIFY_SOURCE is overkill since we know the 16913 * packet was for us. 16914 */ 16915 ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE; 16916 ixa->ixa_protocol = IPPROTO_TCP; 16917 ixa->ixa_zoneid = ira->ira_zoneid; 16918 ixa->ixa_ifindex = 0; 16919 ixa->ixa_ipst = ipst; 16920 ixa->ixa_cred = kcred; 16921 ixa->ixa_cpid = NOPID; 16922 } 16923 16924 if (str && tcps->tcps_dbg) { 16925 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 16926 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 16927 "flags 0x%x", 16928 str, seq, ack, ctl); 16929 } 16930 if (mp->b_datap->db_ref != 1) { 16931 mblk_t *mp1 = copyb(mp); 16932 freemsg(mp); 16933 mp = mp1; 16934 if (mp == NULL) 16935 goto done; 16936 } else if (mp->b_cont) { 16937 freemsg(mp->b_cont); 16938 mp->b_cont = NULL; 16939 DB_CKSUMFLAGS(mp) = 0; 16940 } 16941 /* 16942 * We skip reversing source route here. 16943 * (for now we replace all IP options with EOL) 16944 */ 16945 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 16946 ipha = (ipha_t *)mp->b_rptr; 16947 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 16948 mp->b_rptr[i] = IPOPT_EOL; 16949 /* 16950 * Make sure that src address isn't flagrantly invalid. 16951 * Not all broadcast address checking for the src address 16952 * is possible, since we don't know the netmask of the src 16953 * addr. No check for destination address is done, since 16954 * IP will not pass up a packet with a broadcast dest 16955 * address to TCP. Similar checks are done below for IPv6. 16956 */ 16957 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 16958 CLASSD(ipha->ipha_src)) { 16959 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 16960 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 16961 freemsg(mp); 16962 goto done; 16963 } 16964 } else { 16965 ip6h = (ip6_t *)mp->b_rptr; 16966 16967 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 16968 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 16969 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); 16970 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 16971 freemsg(mp); 16972 goto done; 16973 } 16974 16975 /* Remove any extension headers assuming partial overlay */ 16976 if (ip_hdr_len > IPV6_HDR_LEN) { 16977 uint8_t *to; 16978 16979 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 16980 ovbcopy(ip6h, to, IPV6_HDR_LEN); 16981 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 16982 ip_hdr_len = IPV6_HDR_LEN; 16983 ip6h = (ip6_t *)mp->b_rptr; 16984 ip6h->ip6_nxt = IPPROTO_TCP; 16985 } 16986 } 16987 tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len]; 16988 if (tcpha->tha_flags & TH_RST) { 16989 freemsg(mp); 16990 goto done; 16991 } 16992 tcpha->tha_offset_and_reserved = (5 << 4); 16993 len = ip_hdr_len + sizeof (tcpha_t); 16994 mp->b_wptr = &mp->b_rptr[len]; 16995 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 16996 ipha->ipha_length = htons(len); 16997 /* Swap addresses */ 16998 v4addr = ipha->ipha_src; 16999 ipha->ipha_src = ipha->ipha_dst; 17000 ipha->ipha_dst = v4addr; 17001 ipha->ipha_ident = 0; 17002 ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 17003 ixa->ixa_flags |= IXAF_IS_IPV4; 17004 ixa->ixa_ip_hdr_length = ip_hdr_len; 17005 } else { 17006 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 17007 /* Swap addresses */ 17008 v6addr = ip6h->ip6_src; 17009 ip6h->ip6_src = ip6h->ip6_dst; 17010 ip6h->ip6_dst = v6addr; 17011 ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; 17012 ixa->ixa_flags &= ~IXAF_IS_IPV4; 17013 17014 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_dst)) { 17015 ixa->ixa_flags |= IXAF_SCOPEID_SET; 17016 ixa->ixa_scopeid = ira->ira_ruifindex; 17017 } 17018 ixa->ixa_ip_hdr_length = IPV6_HDR_LEN; 17019 } 17020 ixa->ixa_pktlen = len; 17021 17022 /* Swap the ports */ 17023 port = tcpha->tha_fport; 17024 tcpha->tha_fport = tcpha->tha_lport; 17025 tcpha->tha_lport = port; 17026 17027 tcpha->tha_ack = htonl(ack); 17028 tcpha->tha_seq = htonl(seq); 17029 tcpha->tha_win = 0; 17030 tcpha->tha_sum = htons(sizeof (tcpha_t)); 17031 tcpha->tha_flags = (uint8_t)ctl; 17032 if (ctl & TH_RST) { 17033 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 17034 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 17035 } 17036 17037 /* Discard any old label */ 17038 if (ixa->ixa_free_flags & IXA_FREE_TSL) { 17039 ASSERT(ixa->ixa_tsl != NULL); 17040 label_rele(ixa->ixa_tsl); 17041 ixa->ixa_free_flags &= ~IXA_FREE_TSL; 17042 } 17043 ixa->ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 17044 17045 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 17046 /* 17047 * Apply IPsec based on how IPsec was applied to 17048 * the packet that caused the RST. 17049 */ 17050 if (!ipsec_in_to_out(ira, ixa, mp, ipha, ip6h)) { 17051 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 17052 /* Note: mp already consumed and ip_drop_packet done */ 17053 goto done; 17054 } 17055 } else { 17056 /* 17057 * This is in clear. The RST message we are building 17058 * here should go out in clear, independent of our policy. 17059 */ 17060 ixa->ixa_flags |= IXAF_NO_IPSEC; 17061 } 17062 17063 /* 17064 * NOTE: one might consider tracing a TCP packet here, but 17065 * this function has no active TCP state and no tcp structure 17066 * that has a trace buffer. If we traced here, we would have 17067 * to keep a local trace buffer in tcp_record_trace(). 17068 */ 17069 17070 (void) ip_output_simple(mp, ixa); 17071 done: 17072 ixa_cleanup(ixa); 17073 if (need_refrele) { 17074 ASSERT(ixa != &ixas); 17075 ixa_refrele(ixa); 17076 } 17077 } 17078 17079 /* 17080 * Initiate closedown sequence on an active connection. (May be called as 17081 * writer.) Return value zero for OK return, non-zero for error return. 17082 */ 17083 static int 17084 tcp_xmit_end(tcp_t *tcp) 17085 { 17086 mblk_t *mp; 17087 tcp_stack_t *tcps = tcp->tcp_tcps; 17088 iulp_t uinfo; 17089 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 17090 conn_t *connp = tcp->tcp_connp; 17091 17092 if (tcp->tcp_state < TCPS_SYN_RCVD || 17093 tcp->tcp_state > TCPS_CLOSE_WAIT) { 17094 /* 17095 * Invalid state, only states TCPS_SYN_RCVD, 17096 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 17097 */ 17098 return (-1); 17099 } 17100 17101 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 17102 tcp->tcp_valid_bits |= TCP_FSS_VALID; 17103 /* 17104 * If there is nothing more unsent, send the FIN now. 17105 * Otherwise, it will go out with the last segment. 17106 */ 17107 if (tcp->tcp_unsent == 0) { 17108 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 17109 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 17110 17111 if (mp) { 17112 tcp_send_data(tcp, mp); 17113 } else { 17114 /* 17115 * Couldn't allocate msg. Pretend we got it out. 17116 * Wait for rexmit timeout. 17117 */ 17118 tcp->tcp_snxt = tcp->tcp_fss + 1; 17119 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17120 } 17121 17122 /* 17123 * If needed, update tcp_rexmit_snxt as tcp_snxt is 17124 * changed. 17125 */ 17126 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 17127 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 17128 } 17129 } else { 17130 /* 17131 * If tcp->tcp_cork is set, then the data will not get sent, 17132 * so we have to check that and unset it first. 17133 */ 17134 if (tcp->tcp_cork) 17135 tcp->tcp_cork = B_FALSE; 17136 tcp_wput_data(tcp, NULL, B_FALSE); 17137 } 17138 17139 /* 17140 * If TCP does not get enough samples of RTT or tcp_rtt_updates 17141 * is 0, don't update the cache. 17142 */ 17143 if (tcps->tcps_rtt_updates == 0 || 17144 tcp->tcp_rtt_update < tcps->tcps_rtt_updates) 17145 return (0); 17146 17147 /* 17148 * We do not have a good algorithm to update ssthresh at this time. 17149 * So don't do any update. 17150 */ 17151 bzero(&uinfo, sizeof (uinfo)); 17152 uinfo.iulp_rtt = tcp->tcp_rtt_sa; 17153 uinfo.iulp_rtt_sd = tcp->tcp_rtt_sd; 17154 17155 /* 17156 * Note that uinfo is kept for conn_faddr in the DCE. Could update even 17157 * if source routed but we don't. 17158 */ 17159 if (connp->conn_ipversion == IPV4_VERSION) { 17160 if (connp->conn_faddr_v4 != tcp->tcp_ipha->ipha_dst) { 17161 return (0); 17162 } 17163 (void) dce_update_uinfo_v4(connp->conn_faddr_v4, &uinfo, ipst); 17164 } else { 17165 uint_t ifindex; 17166 17167 if (!(IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, 17168 &tcp->tcp_ip6h->ip6_dst))) { 17169 return (0); 17170 } 17171 ifindex = 0; 17172 if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_faddr_v6)) { 17173 ip_xmit_attr_t *ixa = connp->conn_ixa; 17174 17175 /* 17176 * If we are going to create a DCE we'd better have 17177 * an ifindex 17178 */ 17179 if (ixa->ixa_nce != NULL) { 17180 ifindex = ixa->ixa_nce->nce_common->ncec_ill-> 17181 ill_phyint->phyint_ifindex; 17182 } else { 17183 return (0); 17184 } 17185 } 17186 17187 (void) dce_update_uinfo(&connp->conn_faddr_v6, ifindex, &uinfo, 17188 ipst); 17189 } 17190 return (0); 17191 } 17192 17193 /* 17194 * Generate a "no listener here" RST in response to an "unknown" segment. 17195 * connp is set by caller when RST is in response to an unexpected 17196 * inbound packet for which there is active tcp state in the system. 17197 * Note that we are reusing the incoming mp to construct the outgoing RST. 17198 */ 17199 void 17200 tcp_xmit_listeners_reset(mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst, 17201 conn_t *connp) 17202 { 17203 uchar_t *rptr; 17204 uint32_t seg_len; 17205 tcpha_t *tcpha; 17206 uint32_t seg_seq; 17207 uint32_t seg_ack; 17208 uint_t flags; 17209 ipha_t *ipha; 17210 ip6_t *ip6h; 17211 boolean_t policy_present; 17212 netstack_t *ns = ipst->ips_netstack; 17213 tcp_stack_t *tcps = ns->netstack_tcp; 17214 ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; 17215 uint_t ip_hdr_len = ira->ira_ip_hdr_length; 17216 17217 TCP_STAT(tcps, tcp_no_listener); 17218 17219 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 17220 policy_present = ipss->ipsec_inbound_v4_policy_present; 17221 ipha = (ipha_t *)mp->b_rptr; 17222 ip6h = NULL; 17223 } else { 17224 policy_present = ipss->ipsec_inbound_v6_policy_present; 17225 ipha = NULL; 17226 ip6h = (ip6_t *)mp->b_rptr; 17227 } 17228 17229 if (policy_present) { 17230 /* 17231 * The conn_t parameter is NULL because we already know 17232 * nobody's home. 17233 */ 17234 mp = ipsec_check_global_policy(mp, (conn_t *)NULL, ipha, ip6h, 17235 ira, ns); 17236 if (mp == NULL) 17237 return; 17238 } 17239 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 17240 DTRACE_PROBE2( 17241 tx__ip__log__error__nolistener__tcp, 17242 char *, "Could not reply with RST to mp(1)", 17243 mblk_t *, mp); 17244 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 17245 freemsg(mp); 17246 return; 17247 } 17248 17249 rptr = mp->b_rptr; 17250 17251 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 17252 seg_seq = ntohl(tcpha->tha_seq); 17253 seg_ack = ntohl(tcpha->tha_ack); 17254 flags = tcpha->tha_flags; 17255 17256 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcpha) + ip_hdr_len); 17257 if (flags & TH_RST) { 17258 freemsg(mp); 17259 } else if (flags & TH_ACK) { 17260 tcp_xmit_early_reset("no tcp, reset", mp, seg_ack, 0, TH_RST, 17261 ira, ipst, connp); 17262 } else { 17263 if (flags & TH_SYN) { 17264 seg_len++; 17265 } else { 17266 /* 17267 * Here we violate the RFC. Note that a normal 17268 * TCP will never send a segment without the ACK 17269 * flag, except for RST or SYN segment. This 17270 * segment is neither. Just drop it on the 17271 * floor. 17272 */ 17273 freemsg(mp); 17274 tcps->tcps_rst_unsent++; 17275 return; 17276 } 17277 17278 tcp_xmit_early_reset("no tcp, reset/ack", mp, 0, 17279 seg_seq + seg_len, TH_RST | TH_ACK, ira, ipst, connp); 17280 } 17281 } 17282 17283 /* 17284 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 17285 * ip and tcp header ready to pass down to IP. If the mp passed in is 17286 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 17287 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 17288 * otherwise it will dup partial mblks.) 17289 * Otherwise, an appropriate ACK packet will be generated. This 17290 * routine is not usually called to send new data for the first time. It 17291 * is mostly called out of the timer for retransmits, and to generate ACKs. 17292 * 17293 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 17294 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 17295 * of the original mblk chain will be returned in *offset and *end_mp. 17296 */ 17297 mblk_t * 17298 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 17299 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 17300 boolean_t rexmit) 17301 { 17302 int data_length; 17303 int32_t off = 0; 17304 uint_t flags; 17305 mblk_t *mp1; 17306 mblk_t *mp2; 17307 uchar_t *rptr; 17308 tcpha_t *tcpha; 17309 int32_t num_sack_blk = 0; 17310 int32_t sack_opt_len = 0; 17311 tcp_stack_t *tcps = tcp->tcp_tcps; 17312 conn_t *connp = tcp->tcp_connp; 17313 ip_xmit_attr_t *ixa = connp->conn_ixa; 17314 17315 /* Allocate for our maximum TCP header + link-level */ 17316 mp1 = allocb(connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra, 17317 BPRI_MED); 17318 if (!mp1) 17319 return (NULL); 17320 data_length = 0; 17321 17322 /* 17323 * Note that tcp_mss has been adjusted to take into account the 17324 * timestamp option if applicable. Because SACK options do not 17325 * appear in every TCP segments and they are of variable lengths, 17326 * they cannot be included in tcp_mss. Thus we need to calculate 17327 * the actual segment length when we need to send a segment which 17328 * includes SACK options. 17329 */ 17330 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 17331 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 17332 tcp->tcp_num_sack_blk); 17333 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 17334 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 17335 if (max_to_send + sack_opt_len > tcp->tcp_mss) 17336 max_to_send -= sack_opt_len; 17337 } 17338 17339 if (offset != NULL) { 17340 off = *offset; 17341 /* We use offset as an indicator that end_mp is not NULL. */ 17342 *end_mp = NULL; 17343 } 17344 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 17345 /* This could be faster with cooperation from downstream */ 17346 if (mp2 != mp1 && !sendall && 17347 data_length + (int)(mp->b_wptr - mp->b_rptr) > 17348 max_to_send) 17349 /* 17350 * Don't send the next mblk since the whole mblk 17351 * does not fit. 17352 */ 17353 break; 17354 mp2->b_cont = dupb(mp); 17355 mp2 = mp2->b_cont; 17356 if (!mp2) { 17357 freemsg(mp1); 17358 return (NULL); 17359 } 17360 mp2->b_rptr += off; 17361 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 17362 (uintptr_t)INT_MAX); 17363 17364 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 17365 if (data_length > max_to_send) { 17366 mp2->b_wptr -= data_length - max_to_send; 17367 data_length = max_to_send; 17368 off = mp2->b_wptr - mp->b_rptr; 17369 break; 17370 } else { 17371 off = 0; 17372 } 17373 } 17374 if (offset != NULL) { 17375 *offset = off; 17376 *end_mp = mp; 17377 } 17378 if (seg_len != NULL) { 17379 *seg_len = data_length; 17380 } 17381 17382 /* Update the latest receive window size in TCP header. */ 17383 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 17384 17385 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 17386 mp1->b_rptr = rptr; 17387 mp1->b_wptr = rptr + connp->conn_ht_iphc_len + sack_opt_len; 17388 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len); 17389 tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length]; 17390 tcpha->tha_seq = htonl(seq); 17391 17392 /* 17393 * Use tcp_unsent to determine if the PUSH bit should be used assumes 17394 * that this function was called from tcp_wput_data. Thus, when called 17395 * to retransmit data the setting of the PUSH bit may appear some 17396 * what random in that it might get set when it should not. This 17397 * should not pose any performance issues. 17398 */ 17399 if (data_length != 0 && (tcp->tcp_unsent == 0 || 17400 tcp->tcp_unsent == data_length)) { 17401 flags = TH_ACK | TH_PUSH; 17402 } else { 17403 flags = TH_ACK; 17404 } 17405 17406 if (tcp->tcp_ecn_ok) { 17407 if (tcp->tcp_ecn_echo_on) 17408 flags |= TH_ECE; 17409 17410 /* 17411 * Only set ECT bit and ECN_CWR if a segment contains new data. 17412 * There is no TCP flow control for non-data segments, and 17413 * only data segment is transmitted reliably. 17414 */ 17415 if (data_length > 0 && !rexmit) { 17416 SET_ECT(tcp, rptr); 17417 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17418 flags |= TH_CWR; 17419 tcp->tcp_ecn_cwr_sent = B_TRUE; 17420 } 17421 } 17422 } 17423 17424 if (tcp->tcp_valid_bits) { 17425 uint32_t u1; 17426 17427 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 17428 seq == tcp->tcp_iss) { 17429 uchar_t *wptr; 17430 17431 /* 17432 * If TCP_ISS_VALID and the seq number is tcp_iss, 17433 * TCP can only be in SYN-SENT, SYN-RCVD or 17434 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 17435 * our SYN is not ack'ed but the app closes this 17436 * TCP connection. 17437 */ 17438 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 17439 tcp->tcp_state == TCPS_SYN_RCVD || 17440 tcp->tcp_state == TCPS_FIN_WAIT_1); 17441 17442 /* 17443 * Tack on the MSS option. It is always needed 17444 * for both active and passive open. 17445 * 17446 * MSS option value should be interface MTU - MIN 17447 * TCP/IP header according to RFC 793 as it means 17448 * the maximum segment size TCP can receive. But 17449 * to get around some broken middle boxes/end hosts 17450 * out there, we allow the option value to be the 17451 * same as the MSS option size on the peer side. 17452 * In this way, the other side will not send 17453 * anything larger than they can receive. 17454 * 17455 * Note that for SYN_SENT state, the ndd param 17456 * tcp_use_smss_as_mss_opt has no effect as we 17457 * don't know the peer's MSS option value. So 17458 * the only case we need to take care of is in 17459 * SYN_RCVD state, which is done later. 17460 */ 17461 wptr = mp1->b_wptr; 17462 wptr[0] = TCPOPT_MAXSEG; 17463 wptr[1] = TCPOPT_MAXSEG_LEN; 17464 wptr += 2; 17465 u1 = tcp->tcp_initial_pmtu - 17466 (connp->conn_ipversion == IPV4_VERSION ? 17467 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 17468 TCP_MIN_HEADER_LENGTH; 17469 U16_TO_BE16(u1, wptr); 17470 mp1->b_wptr = wptr + 2; 17471 /* Update the offset to cover the additional word */ 17472 tcpha->tha_offset_and_reserved += (1 << 4); 17473 17474 /* 17475 * Note that the following way of filling in 17476 * TCP options are not optimal. Some NOPs can 17477 * be saved. But there is no need at this time 17478 * to optimize it. When it is needed, we will 17479 * do it. 17480 */ 17481 switch (tcp->tcp_state) { 17482 case TCPS_SYN_SENT: 17483 flags = TH_SYN; 17484 17485 if (tcp->tcp_snd_ts_ok) { 17486 uint32_t llbolt = 17487 (uint32_t)ddi_get_lbolt(); 17488 17489 wptr = mp1->b_wptr; 17490 wptr[0] = TCPOPT_NOP; 17491 wptr[1] = TCPOPT_NOP; 17492 wptr[2] = TCPOPT_TSTAMP; 17493 wptr[3] = TCPOPT_TSTAMP_LEN; 17494 wptr += 4; 17495 U32_TO_BE32(llbolt, wptr); 17496 wptr += 4; 17497 ASSERT(tcp->tcp_ts_recent == 0); 17498 U32_TO_BE32(0L, wptr); 17499 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 17500 tcpha->tha_offset_and_reserved += 17501 (3 << 4); 17502 } 17503 17504 /* 17505 * Set up all the bits to tell other side 17506 * we are ECN capable. 17507 */ 17508 if (tcp->tcp_ecn_ok) { 17509 flags |= (TH_ECE | TH_CWR); 17510 } 17511 break; 17512 case TCPS_SYN_RCVD: 17513 flags |= TH_SYN; 17514 17515 /* 17516 * Reset the MSS option value to be SMSS 17517 * We should probably add back the bytes 17518 * for timestamp option and IPsec. We 17519 * don't do that as this is a workaround 17520 * for broken middle boxes/end hosts, it 17521 * is better for us to be more cautious. 17522 * They may not take these things into 17523 * account in their SMSS calculation. Thus 17524 * the peer's calculated SMSS may be smaller 17525 * than what it can be. This should be OK. 17526 */ 17527 if (tcps->tcps_use_smss_as_mss_opt) { 17528 u1 = tcp->tcp_mss; 17529 U16_TO_BE16(u1, wptr); 17530 } 17531 17532 /* 17533 * If the other side is ECN capable, reply 17534 * that we are also ECN capable. 17535 */ 17536 if (tcp->tcp_ecn_ok) 17537 flags |= TH_ECE; 17538 break; 17539 default: 17540 /* 17541 * The above ASSERT() makes sure that this 17542 * must be FIN-WAIT-1 state. Our SYN has 17543 * not been ack'ed so retransmit it. 17544 */ 17545 flags |= TH_SYN; 17546 break; 17547 } 17548 17549 if (tcp->tcp_snd_ws_ok) { 17550 wptr = mp1->b_wptr; 17551 wptr[0] = TCPOPT_NOP; 17552 wptr[1] = TCPOPT_WSCALE; 17553 wptr[2] = TCPOPT_WS_LEN; 17554 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 17555 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 17556 tcpha->tha_offset_and_reserved += (1 << 4); 17557 } 17558 17559 if (tcp->tcp_snd_sack_ok) { 17560 wptr = mp1->b_wptr; 17561 wptr[0] = TCPOPT_NOP; 17562 wptr[1] = TCPOPT_NOP; 17563 wptr[2] = TCPOPT_SACK_PERMITTED; 17564 wptr[3] = TCPOPT_SACK_OK_LEN; 17565 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 17566 tcpha->tha_offset_and_reserved += (1 << 4); 17567 } 17568 17569 /* allocb() of adequate mblk assures space */ 17570 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 17571 (uintptr_t)INT_MAX); 17572 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 17573 /* 17574 * Get IP set to checksum on our behalf 17575 * Include the adjustment for a source route if any. 17576 */ 17577 u1 += connp->conn_sum; 17578 u1 = (u1 >> 16) + (u1 & 0xFFFF); 17579 tcpha->tha_sum = htons(u1); 17580 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 17581 } 17582 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17583 (seq + data_length) == tcp->tcp_fss) { 17584 if (!tcp->tcp_fin_acked) { 17585 flags |= TH_FIN; 17586 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 17587 } 17588 if (!tcp->tcp_fin_sent) { 17589 tcp->tcp_fin_sent = B_TRUE; 17590 switch (tcp->tcp_state) { 17591 case TCPS_SYN_RCVD: 17592 case TCPS_ESTABLISHED: 17593 tcp->tcp_state = TCPS_FIN_WAIT_1; 17594 break; 17595 case TCPS_CLOSE_WAIT: 17596 tcp->tcp_state = TCPS_LAST_ACK; 17597 break; 17598 } 17599 if (tcp->tcp_suna == tcp->tcp_snxt) 17600 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17601 tcp->tcp_snxt = tcp->tcp_fss + 1; 17602 } 17603 } 17604 /* 17605 * Note the trick here. u1 is unsigned. When tcp_urg 17606 * is smaller than seq, u1 will become a very huge value. 17607 * So the comparison will fail. Also note that tcp_urp 17608 * should be positive, see RFC 793 page 17. 17609 */ 17610 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 17611 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 17612 u1 < (uint32_t)(64 * 1024)) { 17613 flags |= TH_URG; 17614 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 17615 tcpha->tha_urp = htons(u1); 17616 } 17617 } 17618 tcpha->tha_flags = (uchar_t)flags; 17619 tcp->tcp_rack = tcp->tcp_rnxt; 17620 tcp->tcp_rack_cnt = 0; 17621 17622 if (tcp->tcp_snd_ts_ok) { 17623 if (tcp->tcp_state != TCPS_SYN_SENT) { 17624 uint32_t llbolt = (uint32_t)ddi_get_lbolt(); 17625 17626 U32_TO_BE32(llbolt, 17627 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 17628 U32_TO_BE32(tcp->tcp_ts_recent, 17629 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 17630 } 17631 } 17632 17633 if (num_sack_blk > 0) { 17634 uchar_t *wptr = (uchar_t *)tcpha + connp->conn_ht_ulp_len; 17635 sack_blk_t *tmp; 17636 int32_t i; 17637 17638 wptr[0] = TCPOPT_NOP; 17639 wptr[1] = TCPOPT_NOP; 17640 wptr[2] = TCPOPT_SACK; 17641 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 17642 sizeof (sack_blk_t); 17643 wptr += TCPOPT_REAL_SACK_LEN; 17644 17645 tmp = tcp->tcp_sack_list; 17646 for (i = 0; i < num_sack_blk; i++) { 17647 U32_TO_BE32(tmp[i].begin, wptr); 17648 wptr += sizeof (tcp_seq); 17649 U32_TO_BE32(tmp[i].end, wptr); 17650 wptr += sizeof (tcp_seq); 17651 } 17652 tcpha->tha_offset_and_reserved += ((num_sack_blk * 2 + 1) << 4); 17653 } 17654 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 17655 data_length += (int)(mp1->b_wptr - rptr); 17656 17657 ixa->ixa_pktlen = data_length; 17658 17659 if (ixa->ixa_flags & IXAF_IS_IPV4) { 17660 ((ipha_t *)rptr)->ipha_length = htons(data_length); 17661 } else { 17662 ip6_t *ip6 = (ip6_t *)rptr; 17663 17664 ip6->ip6_plen = htons(data_length - IPV6_HDR_LEN); 17665 } 17666 17667 /* 17668 * Prime pump for IP 17669 * Include the adjustment for a source route if any. 17670 */ 17671 data_length -= ixa->ixa_ip_hdr_length; 17672 data_length += connp->conn_sum; 17673 data_length = (data_length >> 16) + (data_length & 0xFFFF); 17674 tcpha->tha_sum = htons(data_length); 17675 if (tcp->tcp_ip_forward_progress) { 17676 tcp->tcp_ip_forward_progress = B_FALSE; 17677 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 17678 } else { 17679 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 17680 } 17681 return (mp1); 17682 } 17683 17684 /* This function handles the push timeout. */ 17685 void 17686 tcp_push_timer(void *arg) 17687 { 17688 conn_t *connp = (conn_t *)arg; 17689 tcp_t *tcp = connp->conn_tcp; 17690 17691 TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt); 17692 17693 ASSERT(tcp->tcp_listener == NULL); 17694 17695 ASSERT(!IPCL_IS_NONSTR(connp)); 17696 17697 tcp->tcp_push_tid = 0; 17698 17699 if (tcp->tcp_rcv_list != NULL && 17700 tcp_rcv_drain(tcp) == TH_ACK_NEEDED) 17701 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 17702 } 17703 17704 /* 17705 * This function handles delayed ACK timeout. 17706 */ 17707 static void 17708 tcp_ack_timer(void *arg) 17709 { 17710 conn_t *connp = (conn_t *)arg; 17711 tcp_t *tcp = connp->conn_tcp; 17712 mblk_t *mp; 17713 tcp_stack_t *tcps = tcp->tcp_tcps; 17714 17715 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 17716 17717 tcp->tcp_ack_tid = 0; 17718 17719 if (tcp->tcp_fused) 17720 return; 17721 17722 /* 17723 * Do not send ACK if there is no outstanding unack'ed data. 17724 */ 17725 if (tcp->tcp_rnxt == tcp->tcp_rack) { 17726 return; 17727 } 17728 17729 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 17730 /* 17731 * Make sure we don't allow deferred ACKs to result in 17732 * timer-based ACKing. If we have held off an ACK 17733 * when there was more than an mss here, and the timer 17734 * goes off, we have to worry about the possibility 17735 * that the sender isn't doing slow-start, or is out 17736 * of step with us for some other reason. We fall 17737 * permanently back in the direction of 17738 * ACK-every-other-packet as suggested in RFC 1122. 17739 */ 17740 if (tcp->tcp_rack_abs_max > 2) 17741 tcp->tcp_rack_abs_max--; 17742 tcp->tcp_rack_cur_max = 2; 17743 } 17744 mp = tcp_ack_mp(tcp); 17745 17746 if (mp != NULL) { 17747 BUMP_LOCAL(tcp->tcp_obsegs); 17748 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 17749 BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); 17750 tcp_send_data(tcp, mp); 17751 } 17752 } 17753 17754 17755 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 17756 static mblk_t * 17757 tcp_ack_mp(tcp_t *tcp) 17758 { 17759 uint32_t seq_no; 17760 tcp_stack_t *tcps = tcp->tcp_tcps; 17761 conn_t *connp = tcp->tcp_connp; 17762 17763 /* 17764 * There are a few cases to be considered while setting the sequence no. 17765 * Essentially, we can come here while processing an unacceptable pkt 17766 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 17767 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 17768 * If we are here for a zero window probe, stick with suna. In all 17769 * other cases, we check if suna + swnd encompasses snxt and set 17770 * the sequence number to snxt, if so. If snxt falls outside the 17771 * window (the receiver probably shrunk its window), we will go with 17772 * suna + swnd, otherwise the sequence no will be unacceptable to the 17773 * receiver. 17774 */ 17775 if (tcp->tcp_zero_win_probe) { 17776 seq_no = tcp->tcp_suna; 17777 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 17778 ASSERT(tcp->tcp_swnd == 0); 17779 seq_no = tcp->tcp_snxt; 17780 } else { 17781 seq_no = SEQ_GT(tcp->tcp_snxt, 17782 (tcp->tcp_suna + tcp->tcp_swnd)) ? 17783 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 17784 } 17785 17786 if (tcp->tcp_valid_bits) { 17787 /* 17788 * For the complex case where we have to send some 17789 * controls (FIN or SYN), let tcp_xmit_mp do it. 17790 */ 17791 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 17792 NULL, B_FALSE)); 17793 } else { 17794 /* Generate a simple ACK */ 17795 int data_length; 17796 uchar_t *rptr; 17797 tcpha_t *tcpha; 17798 mblk_t *mp1; 17799 int32_t total_hdr_len; 17800 int32_t tcp_hdr_len; 17801 int32_t num_sack_blk = 0; 17802 int32_t sack_opt_len; 17803 ip_xmit_attr_t *ixa = connp->conn_ixa; 17804 17805 /* 17806 * Allocate space for TCP + IP headers 17807 * and link-level header 17808 */ 17809 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 17810 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 17811 tcp->tcp_num_sack_blk); 17812 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 17813 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 17814 total_hdr_len = connp->conn_ht_iphc_len + sack_opt_len; 17815 tcp_hdr_len = connp->conn_ht_ulp_len + sack_opt_len; 17816 } else { 17817 total_hdr_len = connp->conn_ht_iphc_len; 17818 tcp_hdr_len = connp->conn_ht_ulp_len; 17819 } 17820 mp1 = allocb(total_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 17821 if (!mp1) 17822 return (NULL); 17823 17824 /* Update the latest receive window size in TCP header. */ 17825 tcp->tcp_tcpha->tha_win = 17826 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 17827 /* copy in prototype TCP + IP header */ 17828 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 17829 mp1->b_rptr = rptr; 17830 mp1->b_wptr = rptr + total_hdr_len; 17831 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len); 17832 17833 tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length]; 17834 17835 /* Set the TCP sequence number. */ 17836 tcpha->tha_seq = htonl(seq_no); 17837 17838 /* Set up the TCP flag field. */ 17839 tcpha->tha_flags = (uchar_t)TH_ACK; 17840 if (tcp->tcp_ecn_echo_on) 17841 tcpha->tha_flags |= TH_ECE; 17842 17843 tcp->tcp_rack = tcp->tcp_rnxt; 17844 tcp->tcp_rack_cnt = 0; 17845 17846 /* fill in timestamp option if in use */ 17847 if (tcp->tcp_snd_ts_ok) { 17848 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 17849 17850 U32_TO_BE32(llbolt, 17851 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 17852 U32_TO_BE32(tcp->tcp_ts_recent, 17853 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 17854 } 17855 17856 /* Fill in SACK options */ 17857 if (num_sack_blk > 0) { 17858 uchar_t *wptr = (uchar_t *)tcpha + 17859 connp->conn_ht_ulp_len; 17860 sack_blk_t *tmp; 17861 int32_t i; 17862 17863 wptr[0] = TCPOPT_NOP; 17864 wptr[1] = TCPOPT_NOP; 17865 wptr[2] = TCPOPT_SACK; 17866 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 17867 sizeof (sack_blk_t); 17868 wptr += TCPOPT_REAL_SACK_LEN; 17869 17870 tmp = tcp->tcp_sack_list; 17871 for (i = 0; i < num_sack_blk; i++) { 17872 U32_TO_BE32(tmp[i].begin, wptr); 17873 wptr += sizeof (tcp_seq); 17874 U32_TO_BE32(tmp[i].end, wptr); 17875 wptr += sizeof (tcp_seq); 17876 } 17877 tcpha->tha_offset_and_reserved += 17878 ((num_sack_blk * 2 + 1) << 4); 17879 } 17880 17881 ixa->ixa_pktlen = total_hdr_len; 17882 17883 if (ixa->ixa_flags & IXAF_IS_IPV4) { 17884 ((ipha_t *)rptr)->ipha_length = htons(total_hdr_len); 17885 } else { 17886 ip6_t *ip6 = (ip6_t *)rptr; 17887 17888 ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN); 17889 } 17890 17891 /* 17892 * Prime pump for checksum calculation in IP. Include the 17893 * adjustment for a source route if any. 17894 */ 17895 data_length = tcp_hdr_len + connp->conn_sum; 17896 data_length = (data_length >> 16) + (data_length & 0xFFFF); 17897 tcpha->tha_sum = htons(data_length); 17898 17899 if (tcp->tcp_ip_forward_progress) { 17900 tcp->tcp_ip_forward_progress = B_FALSE; 17901 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 17902 } else { 17903 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 17904 } 17905 return (mp1); 17906 } 17907 } 17908 17909 /* 17910 * Hash list insertion routine for tcp_t structures. Each hash bucket 17911 * contains a list of tcp_t entries, and each entry is bound to a unique 17912 * port. If there are multiple tcp_t's that are bound to the same port, then 17913 * one of them will be linked into the hash bucket list, and the rest will 17914 * hang off of that one entry. For each port, entries bound to a specific IP 17915 * address will be inserted before those those bound to INADDR_ANY. 17916 */ 17917 static void 17918 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 17919 { 17920 tcp_t **tcpp; 17921 tcp_t *tcpnext; 17922 tcp_t *tcphash; 17923 conn_t *connp = tcp->tcp_connp; 17924 conn_t *connext; 17925 17926 if (tcp->tcp_ptpbhn != NULL) { 17927 ASSERT(!caller_holds_lock); 17928 tcp_bind_hash_remove(tcp); 17929 } 17930 tcpp = &tbf->tf_tcp; 17931 if (!caller_holds_lock) { 17932 mutex_enter(&tbf->tf_lock); 17933 } else { 17934 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 17935 } 17936 tcphash = tcpp[0]; 17937 tcpnext = NULL; 17938 if (tcphash != NULL) { 17939 /* Look for an entry using the same port */ 17940 while ((tcphash = tcpp[0]) != NULL && 17941 connp->conn_lport != tcphash->tcp_connp->conn_lport) 17942 tcpp = &(tcphash->tcp_bind_hash); 17943 17944 /* The port was not found, just add to the end */ 17945 if (tcphash == NULL) 17946 goto insert; 17947 17948 /* 17949 * OK, there already exists an entry bound to the 17950 * same port. 17951 * 17952 * If the new tcp bound to the INADDR_ANY address 17953 * and the first one in the list is not bound to 17954 * INADDR_ANY we skip all entries until we find the 17955 * first one bound to INADDR_ANY. 17956 * This makes sure that applications binding to a 17957 * specific address get preference over those binding to 17958 * INADDR_ANY. 17959 */ 17960 tcpnext = tcphash; 17961 connext = tcpnext->tcp_connp; 17962 tcphash = NULL; 17963 if (V6_OR_V4_INADDR_ANY(connp->conn_bound_addr_v6) && 17964 !V6_OR_V4_INADDR_ANY(connext->conn_bound_addr_v6)) { 17965 while ((tcpnext = tcpp[0]) != NULL) { 17966 connext = tcpnext->tcp_connp; 17967 if (!V6_OR_V4_INADDR_ANY( 17968 connext->conn_bound_addr_v6)) 17969 tcpp = &(tcpnext->tcp_bind_hash_port); 17970 else 17971 break; 17972 } 17973 if (tcpnext != NULL) { 17974 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 17975 tcphash = tcpnext->tcp_bind_hash; 17976 if (tcphash != NULL) { 17977 tcphash->tcp_ptpbhn = 17978 &(tcp->tcp_bind_hash); 17979 tcpnext->tcp_bind_hash = NULL; 17980 } 17981 } 17982 } else { 17983 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 17984 tcphash = tcpnext->tcp_bind_hash; 17985 if (tcphash != NULL) { 17986 tcphash->tcp_ptpbhn = 17987 &(tcp->tcp_bind_hash); 17988 tcpnext->tcp_bind_hash = NULL; 17989 } 17990 } 17991 } 17992 insert: 17993 tcp->tcp_bind_hash_port = tcpnext; 17994 tcp->tcp_bind_hash = tcphash; 17995 tcp->tcp_ptpbhn = tcpp; 17996 tcpp[0] = tcp; 17997 if (!caller_holds_lock) 17998 mutex_exit(&tbf->tf_lock); 17999 } 18000 18001 /* 18002 * Hash list removal routine for tcp_t structures. 18003 */ 18004 static void 18005 tcp_bind_hash_remove(tcp_t *tcp) 18006 { 18007 tcp_t *tcpnext; 18008 kmutex_t *lockp; 18009 tcp_stack_t *tcps = tcp->tcp_tcps; 18010 conn_t *connp = tcp->tcp_connp; 18011 18012 if (tcp->tcp_ptpbhn == NULL) 18013 return; 18014 18015 /* 18016 * Extract the lock pointer in case there are concurrent 18017 * hash_remove's for this instance. 18018 */ 18019 ASSERT(connp->conn_lport != 0); 18020 lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH( 18021 connp->conn_lport)].tf_lock; 18022 18023 ASSERT(lockp != NULL); 18024 mutex_enter(lockp); 18025 if (tcp->tcp_ptpbhn) { 18026 tcpnext = tcp->tcp_bind_hash_port; 18027 if (tcpnext != NULL) { 18028 tcp->tcp_bind_hash_port = NULL; 18029 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 18030 tcpnext->tcp_bind_hash = tcp->tcp_bind_hash; 18031 if (tcpnext->tcp_bind_hash != NULL) { 18032 tcpnext->tcp_bind_hash->tcp_ptpbhn = 18033 &(tcpnext->tcp_bind_hash); 18034 tcp->tcp_bind_hash = NULL; 18035 } 18036 } else if ((tcpnext = tcp->tcp_bind_hash) != NULL) { 18037 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 18038 tcp->tcp_bind_hash = NULL; 18039 } 18040 *tcp->tcp_ptpbhn = tcpnext; 18041 tcp->tcp_ptpbhn = NULL; 18042 } 18043 mutex_exit(lockp); 18044 } 18045 18046 18047 /* 18048 * Hash list lookup routine for tcp_t structures. 18049 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 18050 */ 18051 static tcp_t * 18052 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 18053 { 18054 tf_t *tf; 18055 tcp_t *tcp; 18056 18057 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 18058 mutex_enter(&tf->tf_lock); 18059 for (tcp = tf->tf_tcp; tcp != NULL; 18060 tcp = tcp->tcp_acceptor_hash) { 18061 if (tcp->tcp_acceptor_id == id) { 18062 CONN_INC_REF(tcp->tcp_connp); 18063 mutex_exit(&tf->tf_lock); 18064 return (tcp); 18065 } 18066 } 18067 mutex_exit(&tf->tf_lock); 18068 return (NULL); 18069 } 18070 18071 18072 /* 18073 * Hash list insertion routine for tcp_t structures. 18074 */ 18075 void 18076 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 18077 { 18078 tf_t *tf; 18079 tcp_t **tcpp; 18080 tcp_t *tcpnext; 18081 tcp_stack_t *tcps = tcp->tcp_tcps; 18082 18083 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 18084 18085 if (tcp->tcp_ptpahn != NULL) 18086 tcp_acceptor_hash_remove(tcp); 18087 tcpp = &tf->tf_tcp; 18088 mutex_enter(&tf->tf_lock); 18089 tcpnext = tcpp[0]; 18090 if (tcpnext) 18091 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 18092 tcp->tcp_acceptor_hash = tcpnext; 18093 tcp->tcp_ptpahn = tcpp; 18094 tcpp[0] = tcp; 18095 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 18096 mutex_exit(&tf->tf_lock); 18097 } 18098 18099 /* 18100 * Hash list removal routine for tcp_t structures. 18101 */ 18102 static void 18103 tcp_acceptor_hash_remove(tcp_t *tcp) 18104 { 18105 tcp_t *tcpnext; 18106 kmutex_t *lockp; 18107 18108 /* 18109 * Extract the lock pointer in case there are concurrent 18110 * hash_remove's for this instance. 18111 */ 18112 lockp = tcp->tcp_acceptor_lockp; 18113 18114 if (tcp->tcp_ptpahn == NULL) 18115 return; 18116 18117 ASSERT(lockp != NULL); 18118 mutex_enter(lockp); 18119 if (tcp->tcp_ptpahn) { 18120 tcpnext = tcp->tcp_acceptor_hash; 18121 if (tcpnext) { 18122 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 18123 tcp->tcp_acceptor_hash = NULL; 18124 } 18125 *tcp->tcp_ptpahn = tcpnext; 18126 tcp->tcp_ptpahn = NULL; 18127 } 18128 mutex_exit(lockp); 18129 tcp->tcp_acceptor_lockp = NULL; 18130 } 18131 18132 /* 18133 * Type three generator adapted from the random() function in 4.4 BSD: 18134 */ 18135 18136 /* 18137 * Copyright (c) 1983, 1993 18138 * The Regents of the University of California. All rights reserved. 18139 * 18140 * Redistribution and use in source and binary forms, with or without 18141 * modification, are permitted provided that the following conditions 18142 * are met: 18143 * 1. Redistributions of source code must retain the above copyright 18144 * notice, this list of conditions and the following disclaimer. 18145 * 2. Redistributions in binary form must reproduce the above copyright 18146 * notice, this list of conditions and the following disclaimer in the 18147 * documentation and/or other materials provided with the distribution. 18148 * 3. All advertising materials mentioning features or use of this software 18149 * must display the following acknowledgement: 18150 * This product includes software developed by the University of 18151 * California, Berkeley and its contributors. 18152 * 4. Neither the name of the University nor the names of its contributors 18153 * may be used to endorse or promote products derived from this software 18154 * without specific prior written permission. 18155 * 18156 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18157 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18158 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18159 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 18160 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18161 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 18162 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 18163 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 18164 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 18165 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 18166 * SUCH DAMAGE. 18167 */ 18168 18169 /* Type 3 -- x**31 + x**3 + 1 */ 18170 #define DEG_3 31 18171 #define SEP_3 3 18172 18173 18174 /* Protected by tcp_random_lock */ 18175 static int tcp_randtbl[DEG_3 + 1]; 18176 18177 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 18178 static int *tcp_random_rptr = &tcp_randtbl[1]; 18179 18180 static int *tcp_random_state = &tcp_randtbl[1]; 18181 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 18182 18183 kmutex_t tcp_random_lock; 18184 18185 void 18186 tcp_random_init(void) 18187 { 18188 int i; 18189 hrtime_t hrt; 18190 time_t wallclock; 18191 uint64_t result; 18192 18193 /* 18194 * Use high-res timer and current time for seed. Gethrtime() returns 18195 * a longlong, which may contain resolution down to nanoseconds. 18196 * The current time will either be a 32-bit or a 64-bit quantity. 18197 * XOR the two together in a 64-bit result variable. 18198 * Convert the result to a 32-bit value by multiplying the high-order 18199 * 32-bits by the low-order 32-bits. 18200 */ 18201 18202 hrt = gethrtime(); 18203 (void) drv_getparm(TIME, &wallclock); 18204 result = (uint64_t)wallclock ^ (uint64_t)hrt; 18205 mutex_enter(&tcp_random_lock); 18206 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 18207 (result & 0xffffffff); 18208 18209 for (i = 1; i < DEG_3; i++) 18210 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 18211 + 12345; 18212 tcp_random_fptr = &tcp_random_state[SEP_3]; 18213 tcp_random_rptr = &tcp_random_state[0]; 18214 mutex_exit(&tcp_random_lock); 18215 for (i = 0; i < 10 * DEG_3; i++) 18216 (void) tcp_random(); 18217 } 18218 18219 /* 18220 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 18221 * This range is selected to be approximately centered on TCP_ISS / 2, 18222 * and easy to compute. We get this value by generating a 32-bit random 18223 * number, selecting out the high-order 17 bits, and then adding one so 18224 * that we never return zero. 18225 */ 18226 int 18227 tcp_random(void) 18228 { 18229 int i; 18230 18231 mutex_enter(&tcp_random_lock); 18232 *tcp_random_fptr += *tcp_random_rptr; 18233 18234 /* 18235 * The high-order bits are more random than the low-order bits, 18236 * so we select out the high-order 17 bits and add one so that 18237 * we never return zero. 18238 */ 18239 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 18240 if (++tcp_random_fptr >= tcp_random_end_ptr) { 18241 tcp_random_fptr = tcp_random_state; 18242 ++tcp_random_rptr; 18243 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 18244 tcp_random_rptr = tcp_random_state; 18245 18246 mutex_exit(&tcp_random_lock); 18247 return (i); 18248 } 18249 18250 static int 18251 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 18252 int *t_errorp, int *sys_errorp) 18253 { 18254 int error; 18255 int is_absreq_failure; 18256 t_scalar_t *opt_lenp; 18257 t_scalar_t opt_offset; 18258 int prim_type; 18259 struct T_conn_req *tcreqp; 18260 struct T_conn_res *tcresp; 18261 cred_t *cr; 18262 18263 /* 18264 * All Solaris components should pass a db_credp 18265 * for this TPI message, hence we ASSERT. 18266 * But in case there is some other M_PROTO that looks 18267 * like a TPI message sent by some other kernel 18268 * component, we check and return an error. 18269 */ 18270 cr = msg_getcred(mp, NULL); 18271 ASSERT(cr != NULL); 18272 if (cr == NULL) 18273 return (-1); 18274 18275 prim_type = ((union T_primitives *)mp->b_rptr)->type; 18276 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 18277 prim_type == T_CONN_RES); 18278 18279 switch (prim_type) { 18280 case T_CONN_REQ: 18281 tcreqp = (struct T_conn_req *)mp->b_rptr; 18282 opt_offset = tcreqp->OPT_offset; 18283 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 18284 break; 18285 case O_T_CONN_RES: 18286 case T_CONN_RES: 18287 tcresp = (struct T_conn_res *)mp->b_rptr; 18288 opt_offset = tcresp->OPT_offset; 18289 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 18290 break; 18291 } 18292 18293 *t_errorp = 0; 18294 *sys_errorp = 0; 18295 *do_disconnectp = 0; 18296 18297 error = tpi_optcom_buf(tcp->tcp_connp->conn_wq, mp, opt_lenp, 18298 opt_offset, cr, &tcp_opt_obj, 18299 NULL, &is_absreq_failure); 18300 18301 switch (error) { 18302 case 0: /* no error */ 18303 ASSERT(is_absreq_failure == 0); 18304 return (0); 18305 case ENOPROTOOPT: 18306 *t_errorp = TBADOPT; 18307 break; 18308 case EACCES: 18309 *t_errorp = TACCES; 18310 break; 18311 default: 18312 *t_errorp = TSYSERR; *sys_errorp = error; 18313 break; 18314 } 18315 if (is_absreq_failure != 0) { 18316 /* 18317 * The connection request should get the local ack 18318 * T_OK_ACK and then a T_DISCON_IND. 18319 */ 18320 *do_disconnectp = 1; 18321 } 18322 return (-1); 18323 } 18324 18325 /* 18326 * Split this function out so that if the secret changes, I'm okay. 18327 * 18328 * Initialize the tcp_iss_cookie and tcp_iss_key. 18329 */ 18330 18331 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 18332 18333 static void 18334 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 18335 { 18336 struct { 18337 int32_t current_time; 18338 uint32_t randnum; 18339 uint16_t pad; 18340 uint8_t ether[6]; 18341 uint8_t passwd[PASSWD_SIZE]; 18342 } tcp_iss_cookie; 18343 time_t t; 18344 18345 /* 18346 * Start with the current absolute time. 18347 */ 18348 (void) drv_getparm(TIME, &t); 18349 tcp_iss_cookie.current_time = t; 18350 18351 /* 18352 * XXX - Need a more random number per RFC 1750, not this crap. 18353 * OTOH, if what follows is pretty random, then I'm in better shape. 18354 */ 18355 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 18356 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 18357 18358 /* 18359 * The cpu_type_info is pretty non-random. Ugggh. It does serve 18360 * as a good template. 18361 */ 18362 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 18363 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 18364 18365 /* 18366 * The pass-phrase. Normally this is supplied by user-called NDD. 18367 */ 18368 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 18369 18370 /* 18371 * See 4010593 if this section becomes a problem again, 18372 * but the local ethernet address is useful here. 18373 */ 18374 (void) localetheraddr(NULL, 18375 (struct ether_addr *)&tcp_iss_cookie.ether); 18376 18377 /* 18378 * Hash 'em all together. The MD5Final is called per-connection. 18379 */ 18380 mutex_enter(&tcps->tcps_iss_key_lock); 18381 MD5Init(&tcps->tcps_iss_key); 18382 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 18383 sizeof (tcp_iss_cookie)); 18384 mutex_exit(&tcps->tcps_iss_key_lock); 18385 } 18386 18387 /* 18388 * Set the RFC 1948 pass phrase 18389 */ 18390 /* ARGSUSED */ 18391 static int 18392 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 18393 cred_t *cr) 18394 { 18395 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 18396 18397 /* 18398 * Basically, value contains a new pass phrase. Pass it along! 18399 */ 18400 tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); 18401 return (0); 18402 } 18403 18404 /* ARGSUSED */ 18405 static int 18406 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 18407 { 18408 bzero(buf, sizeof (tcp_sack_info_t)); 18409 return (0); 18410 } 18411 18412 /* 18413 * Called by IP when IP is loaded into the kernel 18414 */ 18415 void 18416 tcp_ddi_g_init(void) 18417 { 18418 tcp_timercache = kmem_cache_create("tcp_timercache", 18419 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 18420 NULL, NULL, NULL, NULL, NULL, 0); 18421 18422 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 18423 sizeof (tcp_sack_info_t), 0, 18424 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 18425 18426 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 18427 18428 /* Initialize the random number generator */ 18429 tcp_random_init(); 18430 18431 /* A single callback independently of how many netstacks we have */ 18432 ip_squeue_init(tcp_squeue_add); 18433 18434 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 18435 18436 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 18437 18438 /* 18439 * We want to be informed each time a stack is created or 18440 * destroyed in the kernel, so we can maintain the 18441 * set of tcp_stack_t's. 18442 */ 18443 netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini); 18444 } 18445 18446 18447 #define INET_NAME "ip" 18448 18449 /* 18450 * Initialize the TCP stack instance. 18451 */ 18452 static void * 18453 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 18454 { 18455 tcp_stack_t *tcps; 18456 tcpparam_t *pa; 18457 int i; 18458 int error = 0; 18459 major_t major; 18460 18461 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 18462 tcps->tcps_netstack = ns; 18463 18464 /* Initialize locks */ 18465 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 18466 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 18467 18468 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 18469 tcps->tcps_g_epriv_ports[0] = 2049; 18470 tcps->tcps_g_epriv_ports[1] = 4045; 18471 tcps->tcps_min_anonpriv_port = 512; 18472 18473 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 18474 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 18475 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 18476 TCP_FANOUT_SIZE, KM_SLEEP); 18477 18478 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 18479 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 18480 MUTEX_DEFAULT, NULL); 18481 } 18482 18483 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 18484 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 18485 MUTEX_DEFAULT, NULL); 18486 } 18487 18488 /* TCP's IPsec code calls the packet dropper. */ 18489 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 18490 18491 pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); 18492 tcps->tcps_params = pa; 18493 bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 18494 18495 (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, 18496 A_CNT(lcl_tcp_param_arr), tcps); 18497 18498 /* 18499 * Note: To really walk the device tree you need the devinfo 18500 * pointer to your device which is only available after probe/attach. 18501 * The following is safe only because it uses ddi_root_node() 18502 */ 18503 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 18504 tcp_opt_obj.odb_opt_arr_cnt); 18505 18506 /* 18507 * Initialize RFC 1948 secret values. This will probably be reset once 18508 * by the boot scripts. 18509 * 18510 * Use NULL name, as the name is caught by the new lockstats. 18511 * 18512 * Initialize with some random, non-guessable string, like the global 18513 * T_INFO_ACK. 18514 */ 18515 18516 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 18517 sizeof (tcp_g_t_info_ack), tcps); 18518 18519 tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); 18520 tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); 18521 18522 major = mod_name_to_major(INET_NAME); 18523 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 18524 ASSERT(error == 0); 18525 tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL); 18526 ASSERT(tcps->tcps_ixa_cleanup_mp != NULL); 18527 cv_init(&tcps->tcps_ixa_cleanup_cv, NULL, CV_DEFAULT, NULL); 18528 mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL); 18529 18530 return (tcps); 18531 } 18532 18533 /* 18534 * Called when the IP module is about to be unloaded. 18535 */ 18536 void 18537 tcp_ddi_g_destroy(void) 18538 { 18539 tcp_g_kstat_fini(tcp_g_kstat); 18540 tcp_g_kstat = NULL; 18541 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 18542 18543 mutex_destroy(&tcp_random_lock); 18544 18545 kmem_cache_destroy(tcp_timercache); 18546 kmem_cache_destroy(tcp_sack_info_cache); 18547 18548 netstack_unregister(NS_TCP); 18549 } 18550 18551 /* 18552 * Free the TCP stack instance. 18553 */ 18554 static void 18555 tcp_stack_fini(netstackid_t stackid, void *arg) 18556 { 18557 tcp_stack_t *tcps = (tcp_stack_t *)arg; 18558 int i; 18559 18560 freeb(tcps->tcps_ixa_cleanup_mp); 18561 tcps->tcps_ixa_cleanup_mp = NULL; 18562 cv_destroy(&tcps->tcps_ixa_cleanup_cv); 18563 mutex_destroy(&tcps->tcps_ixa_cleanup_lock); 18564 18565 nd_free(&tcps->tcps_g_nd); 18566 kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 18567 tcps->tcps_params = NULL; 18568 kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); 18569 tcps->tcps_wroff_xtra_param = NULL; 18570 18571 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 18572 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 18573 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 18574 } 18575 18576 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 18577 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 18578 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 18579 } 18580 18581 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 18582 tcps->tcps_bind_fanout = NULL; 18583 18584 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE); 18585 tcps->tcps_acceptor_fanout = NULL; 18586 18587 mutex_destroy(&tcps->tcps_iss_key_lock); 18588 mutex_destroy(&tcps->tcps_epriv_port_lock); 18589 18590 ip_drop_unregister(&tcps->tcps_dropper); 18591 18592 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 18593 tcps->tcps_kstat = NULL; 18594 bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); 18595 18596 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 18597 tcps->tcps_mibkp = NULL; 18598 18599 ldi_ident_release(tcps->tcps_ldi_ident); 18600 kmem_free(tcps, sizeof (*tcps)); 18601 } 18602 18603 /* 18604 * Generate ISS, taking into account NDD changes may happen halfway through. 18605 * (If the iss is not zero, set it.) 18606 */ 18607 18608 static void 18609 tcp_iss_init(tcp_t *tcp) 18610 { 18611 MD5_CTX context; 18612 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 18613 uint32_t answer[4]; 18614 tcp_stack_t *tcps = tcp->tcp_tcps; 18615 conn_t *connp = tcp->tcp_connp; 18616 18617 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 18618 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 18619 switch (tcps->tcps_strong_iss) { 18620 case 2: 18621 mutex_enter(&tcps->tcps_iss_key_lock); 18622 context = tcps->tcps_iss_key; 18623 mutex_exit(&tcps->tcps_iss_key_lock); 18624 arg.ports = connp->conn_ports; 18625 arg.src = connp->conn_laddr_v6; 18626 arg.dst = connp->conn_faddr_v6; 18627 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 18628 MD5Final((uchar_t *)answer, &context); 18629 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 18630 /* 18631 * Now that we've hashed into a unique per-connection sequence 18632 * space, add a random increment per strong_iss == 1. So I 18633 * guess we'll have to... 18634 */ 18635 /* FALLTHRU */ 18636 case 1: 18637 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 18638 break; 18639 default: 18640 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 18641 break; 18642 } 18643 tcp->tcp_valid_bits = TCP_ISS_VALID; 18644 tcp->tcp_fss = tcp->tcp_iss - 1; 18645 tcp->tcp_suna = tcp->tcp_iss; 18646 tcp->tcp_snxt = tcp->tcp_iss + 1; 18647 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 18648 tcp->tcp_csuna = tcp->tcp_snxt; 18649 } 18650 18651 /* 18652 * Exported routine for extracting active tcp connection status. 18653 * 18654 * This is used by the Solaris Cluster Networking software to 18655 * gather a list of connections that need to be forwarded to 18656 * specific nodes in the cluster when configuration changes occur. 18657 * 18658 * The callback is invoked for each tcp_t structure from all netstacks, 18659 * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures 18660 * from the netstack with the specified stack_id. Returning 18661 * non-zero from the callback routine terminates the search. 18662 */ 18663 int 18664 cl_tcp_walk_list(netstackid_t stack_id, 18665 int (*cl_callback)(cl_tcp_info_t *, void *), void *arg) 18666 { 18667 netstack_handle_t nh; 18668 netstack_t *ns; 18669 int ret = 0; 18670 18671 if (stack_id >= 0) { 18672 if ((ns = netstack_find_by_stackid(stack_id)) == NULL) 18673 return (EINVAL); 18674 18675 ret = cl_tcp_walk_list_stack(cl_callback, arg, 18676 ns->netstack_tcp); 18677 netstack_rele(ns); 18678 return (ret); 18679 } 18680 18681 netstack_next_init(&nh); 18682 while ((ns = netstack_next(&nh)) != NULL) { 18683 ret = cl_tcp_walk_list_stack(cl_callback, arg, 18684 ns->netstack_tcp); 18685 netstack_rele(ns); 18686 } 18687 netstack_next_fini(&nh); 18688 return (ret); 18689 } 18690 18691 static int 18692 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, 18693 tcp_stack_t *tcps) 18694 { 18695 tcp_t *tcp; 18696 cl_tcp_info_t cl_tcpi; 18697 connf_t *connfp; 18698 conn_t *connp; 18699 int i; 18700 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18701 18702 ASSERT(callback != NULL); 18703 18704 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 18705 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 18706 connp = NULL; 18707 18708 while ((connp = 18709 ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) { 18710 18711 tcp = connp->conn_tcp; 18712 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 18713 cl_tcpi.cl_tcpi_ipversion = connp->conn_ipversion; 18714 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 18715 cl_tcpi.cl_tcpi_lport = connp->conn_lport; 18716 cl_tcpi.cl_tcpi_fport = connp->conn_fport; 18717 cl_tcpi.cl_tcpi_laddr_v6 = connp->conn_laddr_v6; 18718 cl_tcpi.cl_tcpi_faddr_v6 = connp->conn_faddr_v6; 18719 18720 /* 18721 * If the callback returns non-zero 18722 * we terminate the traversal. 18723 */ 18724 if ((*callback)(&cl_tcpi, arg) != 0) { 18725 CONN_DEC_REF(tcp->tcp_connp); 18726 return (1); 18727 } 18728 } 18729 } 18730 18731 return (0); 18732 } 18733 18734 /* 18735 * Macros used for accessing the different types of sockaddr 18736 * structures inside a tcp_ioc_abort_conn_t. 18737 */ 18738 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 18739 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 18740 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 18741 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 18742 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 18743 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 18744 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 18745 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 18746 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 18747 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 18748 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 18749 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 18750 18751 /* 18752 * Return the correct error code to mimic the behavior 18753 * of a connection reset. 18754 */ 18755 #define TCP_AC_GET_ERRCODE(state, err) { \ 18756 switch ((state)) { \ 18757 case TCPS_SYN_SENT: \ 18758 case TCPS_SYN_RCVD: \ 18759 (err) = ECONNREFUSED; \ 18760 break; \ 18761 case TCPS_ESTABLISHED: \ 18762 case TCPS_FIN_WAIT_1: \ 18763 case TCPS_FIN_WAIT_2: \ 18764 case TCPS_CLOSE_WAIT: \ 18765 (err) = ECONNRESET; \ 18766 break; \ 18767 case TCPS_CLOSING: \ 18768 case TCPS_LAST_ACK: \ 18769 case TCPS_TIME_WAIT: \ 18770 (err) = 0; \ 18771 break; \ 18772 default: \ 18773 (err) = ENXIO; \ 18774 } \ 18775 } 18776 18777 /* 18778 * Check if a tcp structure matches the info in acp. 18779 */ 18780 #define TCP_AC_ADDR_MATCH(acp, connp, tcp) \ 18781 (((acp)->ac_local.ss_family == AF_INET) ? \ 18782 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 18783 TCP_AC_V4LOCAL((acp)) == (connp)->conn_laddr_v4) && \ 18784 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 18785 TCP_AC_V4REMOTE((acp)) == (connp)->conn_faddr_v4) && \ 18786 (TCP_AC_V4LPORT((acp)) == 0 || \ 18787 TCP_AC_V4LPORT((acp)) == (connp)->conn_lport) && \ 18788 (TCP_AC_V4RPORT((acp)) == 0 || \ 18789 TCP_AC_V4RPORT((acp)) == (connp)->conn_fport) && \ 18790 (acp)->ac_start <= (tcp)->tcp_state && \ 18791 (acp)->ac_end >= (tcp)->tcp_state) : \ 18792 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 18793 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 18794 &(connp)->conn_laddr_v6)) && \ 18795 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 18796 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 18797 &(connp)->conn_faddr_v6)) && \ 18798 (TCP_AC_V6LPORT((acp)) == 0 || \ 18799 TCP_AC_V6LPORT((acp)) == (connp)->conn_lport) && \ 18800 (TCP_AC_V6RPORT((acp)) == 0 || \ 18801 TCP_AC_V6RPORT((acp)) == (connp)->conn_fport) && \ 18802 (acp)->ac_start <= (tcp)->tcp_state && \ 18803 (acp)->ac_end >= (tcp)->tcp_state)) 18804 18805 #define TCP_AC_MATCH(acp, connp, tcp) \ 18806 (((acp)->ac_zoneid == ALL_ZONES || \ 18807 (acp)->ac_zoneid == (connp)->conn_zoneid) ? \ 18808 TCP_AC_ADDR_MATCH(acp, connp, tcp) : 0) 18809 18810 /* 18811 * Build a message containing a tcp_ioc_abort_conn_t structure 18812 * which is filled in with information from acp and tp. 18813 */ 18814 static mblk_t * 18815 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 18816 { 18817 mblk_t *mp; 18818 tcp_ioc_abort_conn_t *tacp; 18819 18820 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 18821 if (mp == NULL) 18822 return (NULL); 18823 18824 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 18825 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 18826 sizeof (uint32_t)); 18827 18828 tacp->ac_start = acp->ac_start; 18829 tacp->ac_end = acp->ac_end; 18830 tacp->ac_zoneid = acp->ac_zoneid; 18831 18832 if (acp->ac_local.ss_family == AF_INET) { 18833 tacp->ac_local.ss_family = AF_INET; 18834 tacp->ac_remote.ss_family = AF_INET; 18835 TCP_AC_V4LOCAL(tacp) = tp->tcp_connp->conn_laddr_v4; 18836 TCP_AC_V4REMOTE(tacp) = tp->tcp_connp->conn_faddr_v4; 18837 TCP_AC_V4LPORT(tacp) = tp->tcp_connp->conn_lport; 18838 TCP_AC_V4RPORT(tacp) = tp->tcp_connp->conn_fport; 18839 } else { 18840 tacp->ac_local.ss_family = AF_INET6; 18841 tacp->ac_remote.ss_family = AF_INET6; 18842 TCP_AC_V6LOCAL(tacp) = tp->tcp_connp->conn_laddr_v6; 18843 TCP_AC_V6REMOTE(tacp) = tp->tcp_connp->conn_faddr_v6; 18844 TCP_AC_V6LPORT(tacp) = tp->tcp_connp->conn_lport; 18845 TCP_AC_V6RPORT(tacp) = tp->tcp_connp->conn_fport; 18846 } 18847 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 18848 return (mp); 18849 } 18850 18851 /* 18852 * Print a tcp_ioc_abort_conn_t structure. 18853 */ 18854 static void 18855 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 18856 { 18857 char lbuf[128]; 18858 char rbuf[128]; 18859 sa_family_t af; 18860 in_port_t lport, rport; 18861 ushort_t logflags; 18862 18863 af = acp->ac_local.ss_family; 18864 18865 if (af == AF_INET) { 18866 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 18867 lbuf, 128); 18868 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 18869 rbuf, 128); 18870 lport = ntohs(TCP_AC_V4LPORT(acp)); 18871 rport = ntohs(TCP_AC_V4RPORT(acp)); 18872 } else { 18873 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 18874 lbuf, 128); 18875 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 18876 rbuf, 128); 18877 lport = ntohs(TCP_AC_V6LPORT(acp)); 18878 rport = ntohs(TCP_AC_V6RPORT(acp)); 18879 } 18880 18881 logflags = SL_TRACE | SL_NOTE; 18882 /* 18883 * Don't print this message to the console if the operation was done 18884 * to a non-global zone. 18885 */ 18886 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 18887 logflags |= SL_CONSOLE; 18888 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 18889 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 18890 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 18891 acp->ac_start, acp->ac_end); 18892 } 18893 18894 /* 18895 * Called using SQ_FILL when a message built using 18896 * tcp_ioctl_abort_build_msg is put into a queue. 18897 * Note that when we get here there is no wildcard in acp any more. 18898 */ 18899 /* ARGSUSED2 */ 18900 static void 18901 tcp_ioctl_abort_handler(void *arg, mblk_t *mp, void *arg2, 18902 ip_recv_attr_t *dummy) 18903 { 18904 conn_t *connp = (conn_t *)arg; 18905 tcp_t *tcp = connp->conn_tcp; 18906 tcp_ioc_abort_conn_t *acp; 18907 18908 /* 18909 * Don't accept any input on a closed tcp as this TCP logically does 18910 * not exist on the system. Don't proceed further with this TCP. 18911 * For eg. this packet could trigger another close of this tcp 18912 * which would be disastrous for tcp_refcnt. tcp_close_detached / 18913 * tcp_clean_death / tcp_closei_local must be called at most once 18914 * on a TCP. 18915 */ 18916 if (tcp->tcp_state == TCPS_CLOSED || 18917 tcp->tcp_state == TCPS_BOUND) { 18918 freemsg(mp); 18919 return; 18920 } 18921 18922 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 18923 if (tcp->tcp_state <= acp->ac_end) { 18924 /* 18925 * If we get here, we are already on the correct 18926 * squeue. This ioctl follows the following path 18927 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 18928 * ->tcp_ioctl_abort->squeue_enter (if on a 18929 * different squeue) 18930 */ 18931 int errcode; 18932 18933 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 18934 (void) tcp_clean_death(tcp, errcode, 26); 18935 } 18936 freemsg(mp); 18937 } 18938 18939 /* 18940 * Abort all matching connections on a hash chain. 18941 */ 18942 static int 18943 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 18944 boolean_t exact, tcp_stack_t *tcps) 18945 { 18946 int nmatch, err = 0; 18947 tcp_t *tcp; 18948 MBLKP mp, last, listhead = NULL; 18949 conn_t *tconnp; 18950 connf_t *connfp; 18951 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18952 18953 connfp = &ipst->ips_ipcl_conn_fanout[index]; 18954 18955 startover: 18956 nmatch = 0; 18957 18958 mutex_enter(&connfp->connf_lock); 18959 for (tconnp = connfp->connf_head; tconnp != NULL; 18960 tconnp = tconnp->conn_next) { 18961 tcp = tconnp->conn_tcp; 18962 /* 18963 * We are missing a check on sin6_scope_id for linklocals here, 18964 * but current usage is just for aborting based on zoneid 18965 * for shared-IP zones. 18966 */ 18967 if (TCP_AC_MATCH(acp, tconnp, tcp)) { 18968 CONN_INC_REF(tconnp); 18969 mp = tcp_ioctl_abort_build_msg(acp, tcp); 18970 if (mp == NULL) { 18971 err = ENOMEM; 18972 CONN_DEC_REF(tconnp); 18973 break; 18974 } 18975 mp->b_prev = (mblk_t *)tcp; 18976 18977 if (listhead == NULL) { 18978 listhead = mp; 18979 last = mp; 18980 } else { 18981 last->b_next = mp; 18982 last = mp; 18983 } 18984 nmatch++; 18985 if (exact) 18986 break; 18987 } 18988 18989 /* Avoid holding lock for too long. */ 18990 if (nmatch >= 500) 18991 break; 18992 } 18993 mutex_exit(&connfp->connf_lock); 18994 18995 /* Pass mp into the correct tcp */ 18996 while ((mp = listhead) != NULL) { 18997 listhead = listhead->b_next; 18998 tcp = (tcp_t *)mp->b_prev; 18999 mp->b_next = mp->b_prev = NULL; 19000 SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp, 19001 tcp_ioctl_abort_handler, tcp->tcp_connp, NULL, 19002 SQ_FILL, SQTAG_TCP_ABORT_BUCKET); 19003 } 19004 19005 *count += nmatch; 19006 if (nmatch >= 500 && err == 0) 19007 goto startover; 19008 return (err); 19009 } 19010 19011 /* 19012 * Abort all connections that matches the attributes specified in acp. 19013 */ 19014 static int 19015 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) 19016 { 19017 sa_family_t af; 19018 uint32_t ports; 19019 uint16_t *pports; 19020 int err = 0, count = 0; 19021 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 19022 int index = -1; 19023 ushort_t logflags; 19024 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19025 19026 af = acp->ac_local.ss_family; 19027 19028 if (af == AF_INET) { 19029 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 19030 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 19031 pports = (uint16_t *)&ports; 19032 pports[1] = TCP_AC_V4LPORT(acp); 19033 pports[0] = TCP_AC_V4RPORT(acp); 19034 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 19035 } 19036 } else { 19037 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 19038 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 19039 pports = (uint16_t *)&ports; 19040 pports[1] = TCP_AC_V6LPORT(acp); 19041 pports[0] = TCP_AC_V6RPORT(acp); 19042 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 19043 } 19044 } 19045 19046 /* 19047 * For cases where remote addr, local port, and remote port are non- 19048 * wildcards, tcp_ioctl_abort_bucket will only be called once. 19049 */ 19050 if (index != -1) { 19051 err = tcp_ioctl_abort_bucket(acp, index, 19052 &count, exact, tcps); 19053 } else { 19054 /* 19055 * loop through all entries for wildcard case 19056 */ 19057 for (index = 0; 19058 index < ipst->ips_ipcl_conn_fanout_size; 19059 index++) { 19060 err = tcp_ioctl_abort_bucket(acp, index, 19061 &count, exact, tcps); 19062 if (err != 0) 19063 break; 19064 } 19065 } 19066 19067 logflags = SL_TRACE | SL_NOTE; 19068 /* 19069 * Don't print this message to the console if the operation was done 19070 * to a non-global zone. 19071 */ 19072 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 19073 logflags |= SL_CONSOLE; 19074 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 19075 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 19076 if (err == 0 && count == 0) 19077 err = ENOENT; 19078 return (err); 19079 } 19080 19081 /* 19082 * Process the TCP_IOC_ABORT_CONN ioctl request. 19083 */ 19084 static void 19085 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 19086 { 19087 int err; 19088 IOCP iocp; 19089 MBLKP mp1; 19090 sa_family_t laf, raf; 19091 tcp_ioc_abort_conn_t *acp; 19092 zone_t *zptr; 19093 conn_t *connp = Q_TO_CONN(q); 19094 zoneid_t zoneid = connp->conn_zoneid; 19095 tcp_t *tcp = connp->conn_tcp; 19096 tcp_stack_t *tcps = tcp->tcp_tcps; 19097 19098 iocp = (IOCP)mp->b_rptr; 19099 19100 if ((mp1 = mp->b_cont) == NULL || 19101 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 19102 err = EINVAL; 19103 goto out; 19104 } 19105 19106 /* check permissions */ 19107 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 19108 err = EPERM; 19109 goto out; 19110 } 19111 19112 if (mp1->b_cont != NULL) { 19113 freemsg(mp1->b_cont); 19114 mp1->b_cont = NULL; 19115 } 19116 19117 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 19118 laf = acp->ac_local.ss_family; 19119 raf = acp->ac_remote.ss_family; 19120 19121 /* check that a zone with the supplied zoneid exists */ 19122 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 19123 zptr = zone_find_by_id(zoneid); 19124 if (zptr != NULL) { 19125 zone_rele(zptr); 19126 } else { 19127 err = EINVAL; 19128 goto out; 19129 } 19130 } 19131 19132 /* 19133 * For exclusive stacks we set the zoneid to zero 19134 * to make TCP operate as if in the global zone. 19135 */ 19136 if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) 19137 acp->ac_zoneid = GLOBAL_ZONEID; 19138 19139 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 19140 acp->ac_start > acp->ac_end || laf != raf || 19141 (laf != AF_INET && laf != AF_INET6)) { 19142 err = EINVAL; 19143 goto out; 19144 } 19145 19146 tcp_ioctl_abort_dump(acp); 19147 err = tcp_ioctl_abort(acp, tcps); 19148 19149 out: 19150 if (mp1 != NULL) { 19151 freemsg(mp1); 19152 mp->b_cont = NULL; 19153 } 19154 19155 if (err != 0) 19156 miocnak(q, mp, 0, err); 19157 else 19158 miocack(q, mp, 0, 0); 19159 } 19160 19161 /* 19162 * tcp_time_wait_processing() handles processing of incoming packets when 19163 * the tcp is in the TIME_WAIT state. 19164 * A TIME_WAIT tcp that has an associated open TCP stream is never put 19165 * on the time wait list. 19166 */ 19167 void 19168 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 19169 uint32_t seg_ack, int seg_len, tcpha_t *tcpha, ip_recv_attr_t *ira) 19170 { 19171 int32_t bytes_acked; 19172 int32_t gap; 19173 int32_t rgap; 19174 tcp_opt_t tcpopt; 19175 uint_t flags; 19176 uint32_t new_swnd = 0; 19177 conn_t *nconnp; 19178 conn_t *connp = tcp->tcp_connp; 19179 tcp_stack_t *tcps = tcp->tcp_tcps; 19180 19181 BUMP_LOCAL(tcp->tcp_ibsegs); 19182 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 19183 19184 flags = (unsigned int)tcpha->tha_flags & 0xFF; 19185 new_swnd = ntohs(tcpha->tha_win) << 19186 ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws); 19187 if (tcp->tcp_snd_ts_ok) { 19188 if (!tcp_paws_check(tcp, tcpha, &tcpopt)) { 19189 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 19190 tcp->tcp_rnxt, TH_ACK); 19191 goto done; 19192 } 19193 } 19194 gap = seg_seq - tcp->tcp_rnxt; 19195 rgap = tcp->tcp_rwnd - (gap + seg_len); 19196 if (gap < 0) { 19197 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 19198 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 19199 (seg_len > -gap ? -gap : seg_len)); 19200 seg_len += gap; 19201 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 19202 if (flags & TH_RST) { 19203 goto done; 19204 } 19205 if ((flags & TH_FIN) && seg_len == -1) { 19206 /* 19207 * When TCP receives a duplicate FIN in 19208 * TIME_WAIT state, restart the 2 MSL timer. 19209 * See page 73 in RFC 793. Make sure this TCP 19210 * is already on the TIME_WAIT list. If not, 19211 * just restart the timer. 19212 */ 19213 if (TCP_IS_DETACHED(tcp)) { 19214 if (tcp_time_wait_remove(tcp, NULL) == 19215 B_TRUE) { 19216 tcp_time_wait_append(tcp); 19217 TCP_DBGSTAT(tcps, 19218 tcp_rput_time_wait); 19219 } 19220 } else { 19221 ASSERT(tcp != NULL); 19222 TCP_TIMER_RESTART(tcp, 19223 tcps->tcps_time_wait_interval); 19224 } 19225 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 19226 tcp->tcp_rnxt, TH_ACK); 19227 goto done; 19228 } 19229 flags |= TH_ACK_NEEDED; 19230 seg_len = 0; 19231 goto process_ack; 19232 } 19233 19234 /* Fix seg_seq, and chew the gap off the front. */ 19235 seg_seq = tcp->tcp_rnxt; 19236 } 19237 19238 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 19239 /* 19240 * Make sure that when we accept the connection, pick 19241 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 19242 * old connection. 19243 * 19244 * The next ISS generated is equal to tcp_iss_incr_extra 19245 * + ISS_INCR/2 + other components depending on the 19246 * value of tcp_strong_iss. We pre-calculate the new 19247 * ISS here and compare with tcp_snxt to determine if 19248 * we need to make adjustment to tcp_iss_incr_extra. 19249 * 19250 * The above calculation is ugly and is a 19251 * waste of CPU cycles... 19252 */ 19253 uint32_t new_iss = tcps->tcps_iss_incr_extra; 19254 int32_t adj; 19255 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19256 19257 switch (tcps->tcps_strong_iss) { 19258 case 2: { 19259 /* Add time and MD5 components. */ 19260 uint32_t answer[4]; 19261 struct { 19262 uint32_t ports; 19263 in6_addr_t src; 19264 in6_addr_t dst; 19265 } arg; 19266 MD5_CTX context; 19267 19268 mutex_enter(&tcps->tcps_iss_key_lock); 19269 context = tcps->tcps_iss_key; 19270 mutex_exit(&tcps->tcps_iss_key_lock); 19271 arg.ports = connp->conn_ports; 19272 /* We use MAPPED addresses in tcp_iss_init */ 19273 arg.src = connp->conn_laddr_v6; 19274 arg.dst = connp->conn_faddr_v6; 19275 MD5Update(&context, (uchar_t *)&arg, 19276 sizeof (arg)); 19277 MD5Final((uchar_t *)answer, &context); 19278 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 19279 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 19280 break; 19281 } 19282 case 1: 19283 /* Add time component and min random (i.e. 1). */ 19284 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 19285 break; 19286 default: 19287 /* Add only time component. */ 19288 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 19289 break; 19290 } 19291 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 19292 /* 19293 * New ISS not guaranteed to be ISS_INCR/2 19294 * ahead of the current tcp_snxt, so add the 19295 * difference to tcp_iss_incr_extra. 19296 */ 19297 tcps->tcps_iss_incr_extra += adj; 19298 } 19299 /* 19300 * If tcp_clean_death() can not perform the task now, 19301 * drop the SYN packet and let the other side re-xmit. 19302 * Otherwise pass the SYN packet back in, since the 19303 * old tcp state has been cleaned up or freed. 19304 */ 19305 if (tcp_clean_death(tcp, 0, 27) == -1) 19306 goto done; 19307 nconnp = ipcl_classify(mp, ira, ipst); 19308 if (nconnp != NULL) { 19309 TCP_STAT(tcps, tcp_time_wait_syn_success); 19310 /* Drops ref on nconnp */ 19311 tcp_reinput(nconnp, mp, ira, ipst); 19312 return; 19313 } 19314 goto done; 19315 } 19316 19317 /* 19318 * rgap is the amount of stuff received out of window. A negative 19319 * value is the amount out of window. 19320 */ 19321 if (rgap < 0) { 19322 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 19323 UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); 19324 /* Fix seg_len and make sure there is something left. */ 19325 seg_len += rgap; 19326 if (seg_len <= 0) { 19327 if (flags & TH_RST) { 19328 goto done; 19329 } 19330 flags |= TH_ACK_NEEDED; 19331 seg_len = 0; 19332 goto process_ack; 19333 } 19334 } 19335 /* 19336 * Check whether we can update tcp_ts_recent. This test is 19337 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 19338 * Extensions for High Performance: An Update", Internet Draft. 19339 */ 19340 if (tcp->tcp_snd_ts_ok && 19341 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 19342 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 19343 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 19344 tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 19345 } 19346 19347 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 19348 /* Always ack out of order packets */ 19349 flags |= TH_ACK_NEEDED; 19350 seg_len = 0; 19351 } else if (seg_len > 0) { 19352 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 19353 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 19354 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 19355 } 19356 if (flags & TH_RST) { 19357 (void) tcp_clean_death(tcp, 0, 28); 19358 goto done; 19359 } 19360 if (flags & TH_SYN) { 19361 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 19362 TH_RST|TH_ACK); 19363 /* 19364 * Do not delete the TCP structure if it is in 19365 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 19366 */ 19367 goto done; 19368 } 19369 process_ack: 19370 if (flags & TH_ACK) { 19371 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 19372 if (bytes_acked <= 0) { 19373 if (bytes_acked == 0 && seg_len == 0 && 19374 new_swnd == tcp->tcp_swnd) 19375 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 19376 } else { 19377 /* Acks something not sent */ 19378 flags |= TH_ACK_NEEDED; 19379 } 19380 } 19381 if (flags & TH_ACK_NEEDED) { 19382 /* 19383 * Time to send an ack for some reason. 19384 */ 19385 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 19386 tcp->tcp_rnxt, TH_ACK); 19387 } 19388 done: 19389 freemsg(mp); 19390 } 19391 19392 /* 19393 * TCP Timers Implementation. 19394 */ 19395 timeout_id_t 19396 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 19397 { 19398 mblk_t *mp; 19399 tcp_timer_t *tcpt; 19400 tcp_t *tcp = connp->conn_tcp; 19401 19402 ASSERT(connp->conn_sqp != NULL); 19403 19404 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls); 19405 19406 if (tcp->tcp_timercache == NULL) { 19407 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 19408 } else { 19409 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc); 19410 mp = tcp->tcp_timercache; 19411 tcp->tcp_timercache = mp->b_next; 19412 mp->b_next = NULL; 19413 ASSERT(mp->b_wptr == NULL); 19414 } 19415 19416 CONN_INC_REF(connp); 19417 tcpt = (tcp_timer_t *)mp->b_rptr; 19418 tcpt->connp = connp; 19419 tcpt->tcpt_proc = f; 19420 /* 19421 * TCP timers are normal timeouts. Plus, they do not require more than 19422 * a 10 millisecond resolution. By choosing a coarser resolution and by 19423 * rounding up the expiration to the next resolution boundary, we can 19424 * batch timers in the callout subsystem to make TCP timers more 19425 * efficient. The roundup also protects short timers from expiring too 19426 * early before they have a chance to be cancelled. 19427 */ 19428 tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp, 19429 TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP); 19430 19431 return ((timeout_id_t)mp); 19432 } 19433 19434 static void 19435 tcp_timer_callback(void *arg) 19436 { 19437 mblk_t *mp = (mblk_t *)arg; 19438 tcp_timer_t *tcpt; 19439 conn_t *connp; 19440 19441 tcpt = (tcp_timer_t *)mp->b_rptr; 19442 connp = tcpt->connp; 19443 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp, 19444 NULL, SQ_FILL, SQTAG_TCP_TIMER); 19445 } 19446 19447 /* ARGSUSED */ 19448 static void 19449 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 19450 { 19451 tcp_timer_t *tcpt; 19452 conn_t *connp = (conn_t *)arg; 19453 tcp_t *tcp = connp->conn_tcp; 19454 19455 tcpt = (tcp_timer_t *)mp->b_rptr; 19456 ASSERT(connp == tcpt->connp); 19457 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 19458 19459 /* 19460 * If the TCP has reached the closed state, don't proceed any 19461 * further. This TCP logically does not exist on the system. 19462 * tcpt_proc could for example access queues, that have already 19463 * been qprocoff'ed off. 19464 */ 19465 if (tcp->tcp_state != TCPS_CLOSED) { 19466 (*tcpt->tcpt_proc)(connp); 19467 } else { 19468 tcp->tcp_timer_tid = 0; 19469 } 19470 tcp_timer_free(connp->conn_tcp, mp); 19471 } 19472 19473 /* 19474 * There is potential race with untimeout and the handler firing at the same 19475 * time. The mblock may be freed by the handler while we are trying to use 19476 * it. But since both should execute on the same squeue, this race should not 19477 * occur. 19478 */ 19479 clock_t 19480 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 19481 { 19482 mblk_t *mp = (mblk_t *)id; 19483 tcp_timer_t *tcpt; 19484 clock_t delta; 19485 19486 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs); 19487 19488 if (mp == NULL) 19489 return (-1); 19490 19491 tcpt = (tcp_timer_t *)mp->b_rptr; 19492 ASSERT(tcpt->connp == connp); 19493 19494 delta = untimeout_default(tcpt->tcpt_tid, 0); 19495 19496 if (delta >= 0) { 19497 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled); 19498 tcp_timer_free(connp->conn_tcp, mp); 19499 CONN_DEC_REF(connp); 19500 } 19501 19502 return (delta); 19503 } 19504 19505 /* 19506 * Allocate space for the timer event. The allocation looks like mblk, but it is 19507 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 19508 * 19509 * Dealing with failures: If we can't allocate from the timer cache we try 19510 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 19511 * points to b_rptr. 19512 * If we can't allocate anything using allocb_tryhard(), we perform a last 19513 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 19514 * save the actual allocation size in b_datap. 19515 */ 19516 mblk_t * 19517 tcp_timermp_alloc(int kmflags) 19518 { 19519 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 19520 kmflags & ~KM_PANIC); 19521 19522 if (mp != NULL) { 19523 mp->b_next = mp->b_prev = NULL; 19524 mp->b_rptr = (uchar_t *)(&mp[1]); 19525 mp->b_wptr = NULL; 19526 mp->b_datap = NULL; 19527 mp->b_queue = NULL; 19528 mp->b_cont = NULL; 19529 } else if (kmflags & KM_PANIC) { 19530 /* 19531 * Failed to allocate memory for the timer. Try allocating from 19532 * dblock caches. 19533 */ 19534 /* ipclassifier calls this from a constructor - hence no tcps */ 19535 TCP_G_STAT(tcp_timermp_allocfail); 19536 mp = allocb_tryhard(sizeof (tcp_timer_t)); 19537 if (mp == NULL) { 19538 size_t size = 0; 19539 /* 19540 * Memory is really low. Try tryhard allocation. 19541 * 19542 * ipclassifier calls this from a constructor - 19543 * hence no tcps 19544 */ 19545 TCP_G_STAT(tcp_timermp_allocdblfail); 19546 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 19547 sizeof (tcp_timer_t), &size, kmflags); 19548 mp->b_rptr = (uchar_t *)(&mp[1]); 19549 mp->b_next = mp->b_prev = NULL; 19550 mp->b_wptr = (uchar_t *)-1; 19551 mp->b_datap = (dblk_t *)size; 19552 mp->b_queue = NULL; 19553 mp->b_cont = NULL; 19554 } 19555 ASSERT(mp->b_wptr != NULL); 19556 } 19557 /* ipclassifier calls this from a constructor - hence no tcps */ 19558 TCP_G_DBGSTAT(tcp_timermp_alloced); 19559 19560 return (mp); 19561 } 19562 19563 /* 19564 * Free per-tcp timer cache. 19565 * It can only contain entries from tcp_timercache. 19566 */ 19567 void 19568 tcp_timermp_free(tcp_t *tcp) 19569 { 19570 mblk_t *mp; 19571 19572 while ((mp = tcp->tcp_timercache) != NULL) { 19573 ASSERT(mp->b_wptr == NULL); 19574 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 19575 kmem_cache_free(tcp_timercache, mp); 19576 } 19577 } 19578 19579 /* 19580 * Free timer event. Put it on the per-tcp timer cache if there is not too many 19581 * events there already (currently at most two events are cached). 19582 * If the event is not allocated from the timer cache, free it right away. 19583 */ 19584 static void 19585 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 19586 { 19587 mblk_t *mp1 = tcp->tcp_timercache; 19588 19589 if (mp->b_wptr != NULL) { 19590 /* 19591 * This allocation is not from a timer cache, free it right 19592 * away. 19593 */ 19594 if (mp->b_wptr != (uchar_t *)-1) 19595 freeb(mp); 19596 else 19597 kmem_free(mp, (size_t)mp->b_datap); 19598 } else if (mp1 == NULL || mp1->b_next == NULL) { 19599 /* Cache this timer block for future allocations */ 19600 mp->b_rptr = (uchar_t *)(&mp[1]); 19601 mp->b_next = mp1; 19602 tcp->tcp_timercache = mp; 19603 } else { 19604 kmem_cache_free(tcp_timercache, mp); 19605 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed); 19606 } 19607 } 19608 19609 /* 19610 * End of TCP Timers implementation. 19611 */ 19612 19613 /* 19614 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 19615 * on the specified backing STREAMS q. Note, the caller may make the 19616 * decision to call based on the tcp_t.tcp_flow_stopped value which 19617 * when check outside the q's lock is only an advisory check ... 19618 */ 19619 void 19620 tcp_setqfull(tcp_t *tcp) 19621 { 19622 tcp_stack_t *tcps = tcp->tcp_tcps; 19623 conn_t *connp = tcp->tcp_connp; 19624 19625 if (tcp->tcp_closed) 19626 return; 19627 19628 conn_setqfull(connp, &tcp->tcp_flow_stopped); 19629 if (tcp->tcp_flow_stopped) 19630 TCP_STAT(tcps, tcp_flwctl_on); 19631 } 19632 19633 void 19634 tcp_clrqfull(tcp_t *tcp) 19635 { 19636 conn_t *connp = tcp->tcp_connp; 19637 19638 if (tcp->tcp_closed) 19639 return; 19640 conn_clrqfull(connp, &tcp->tcp_flow_stopped); 19641 } 19642 19643 /* 19644 * kstats related to squeues i.e. not per IP instance 19645 */ 19646 static void * 19647 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) 19648 { 19649 kstat_t *ksp; 19650 19651 tcp_g_stat_t template = { 19652 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 19653 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 19654 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 19655 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 19656 }; 19657 19658 ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", 19659 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 19660 KSTAT_FLAG_VIRTUAL); 19661 19662 if (ksp == NULL) 19663 return (NULL); 19664 19665 bcopy(&template, tcp_g_statp, sizeof (template)); 19666 ksp->ks_data = (void *)tcp_g_statp; 19667 19668 kstat_install(ksp); 19669 return (ksp); 19670 } 19671 19672 static void 19673 tcp_g_kstat_fini(kstat_t *ksp) 19674 { 19675 if (ksp != NULL) { 19676 kstat_delete(ksp); 19677 } 19678 } 19679 19680 19681 static void * 19682 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) 19683 { 19684 kstat_t *ksp; 19685 19686 tcp_stat_t template = { 19687 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 19688 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 19689 { "tcp_time_wait_syn_success", KSTAT_DATA_UINT64 }, 19690 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 19691 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 19692 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 19693 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 19694 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 19695 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 19696 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 19697 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 19698 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 19699 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 19700 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 19701 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 19702 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 19703 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 19704 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 19705 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 19706 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 19707 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 19708 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 19709 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 19710 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 19711 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 19712 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 19713 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 19714 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 19715 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 19716 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 19717 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 19718 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 19719 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 19720 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 19721 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 19722 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 19723 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 19724 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 19725 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 19726 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 19727 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 19728 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 19729 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 19730 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 19731 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 19732 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 19733 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 19734 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 19735 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 19736 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 19737 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 19738 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 19739 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 19740 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 19741 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 19742 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 19743 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 19744 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 19745 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 19746 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 19747 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 19748 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 19749 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 19750 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 19751 }; 19752 19753 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", 19754 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 19755 KSTAT_FLAG_VIRTUAL, stackid); 19756 19757 if (ksp == NULL) 19758 return (NULL); 19759 19760 bcopy(&template, tcps_statisticsp, sizeof (template)); 19761 ksp->ks_data = (void *)tcps_statisticsp; 19762 ksp->ks_private = (void *)(uintptr_t)stackid; 19763 19764 kstat_install(ksp); 19765 return (ksp); 19766 } 19767 19768 static void 19769 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 19770 { 19771 if (ksp != NULL) { 19772 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 19773 kstat_delete_netstack(ksp, stackid); 19774 } 19775 } 19776 19777 /* 19778 * TCP Kstats implementation 19779 */ 19780 static void * 19781 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) 19782 { 19783 kstat_t *ksp; 19784 19785 tcp_named_kstat_t template = { 19786 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 19787 { "rtoMin", KSTAT_DATA_INT32, 0 }, 19788 { "rtoMax", KSTAT_DATA_INT32, 0 }, 19789 { "maxConn", KSTAT_DATA_INT32, 0 }, 19790 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 19791 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 19792 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 19793 { "estabResets", KSTAT_DATA_UINT32, 0 }, 19794 { "currEstab", KSTAT_DATA_UINT32, 0 }, 19795 { "inSegs", KSTAT_DATA_UINT64, 0 }, 19796 { "outSegs", KSTAT_DATA_UINT64, 0 }, 19797 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 19798 { "connTableSize", KSTAT_DATA_INT32, 0 }, 19799 { "outRsts", KSTAT_DATA_UINT32, 0 }, 19800 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 19801 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 19802 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 19803 { "outAck", KSTAT_DATA_UINT32, 0 }, 19804 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 19805 { "outUrg", KSTAT_DATA_UINT32, 0 }, 19806 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 19807 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 19808 { "outControl", KSTAT_DATA_UINT32, 0 }, 19809 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 19810 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 19811 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 19812 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 19813 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 19814 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 19815 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 19816 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 19817 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 19818 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 19819 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 19820 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 19821 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 19822 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 19823 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 19824 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 19825 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 19826 { "inClosed", KSTAT_DATA_UINT32, 0 }, 19827 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 19828 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 19829 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 19830 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 19831 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 19832 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 19833 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 19834 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 19835 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 19836 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 19837 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 19838 { "connTableSize6", KSTAT_DATA_INT32, 0 } 19839 }; 19840 19841 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", 19842 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); 19843 19844 if (ksp == NULL) 19845 return (NULL); 19846 19847 template.rtoAlgorithm.value.ui32 = 4; 19848 template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; 19849 template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; 19850 template.maxConn.value.i32 = -1; 19851 19852 bcopy(&template, ksp->ks_data, sizeof (template)); 19853 ksp->ks_update = tcp_kstat_update; 19854 ksp->ks_private = (void *)(uintptr_t)stackid; 19855 19856 kstat_install(ksp); 19857 return (ksp); 19858 } 19859 19860 static void 19861 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 19862 { 19863 if (ksp != NULL) { 19864 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 19865 kstat_delete_netstack(ksp, stackid); 19866 } 19867 } 19868 19869 static int 19870 tcp_kstat_update(kstat_t *kp, int rw) 19871 { 19872 tcp_named_kstat_t *tcpkp; 19873 tcp_t *tcp; 19874 connf_t *connfp; 19875 conn_t *connp; 19876 int i; 19877 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 19878 netstack_t *ns; 19879 tcp_stack_t *tcps; 19880 ip_stack_t *ipst; 19881 19882 if ((kp == NULL) || (kp->ks_data == NULL)) 19883 return (EIO); 19884 19885 if (rw == KSTAT_WRITE) 19886 return (EACCES); 19887 19888 ns = netstack_find_by_stackid(stackid); 19889 if (ns == NULL) 19890 return (-1); 19891 tcps = ns->netstack_tcp; 19892 if (tcps == NULL) { 19893 netstack_rele(ns); 19894 return (-1); 19895 } 19896 19897 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 19898 19899 tcpkp->currEstab.value.ui32 = 0; 19900 19901 ipst = ns->netstack_ip; 19902 19903 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 19904 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 19905 connp = NULL; 19906 while ((connp = 19907 ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) { 19908 tcp = connp->conn_tcp; 19909 switch (tcp_snmp_state(tcp)) { 19910 case MIB2_TCP_established: 19911 case MIB2_TCP_closeWait: 19912 tcpkp->currEstab.value.ui32++; 19913 break; 19914 } 19915 } 19916 } 19917 19918 tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; 19919 tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; 19920 tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; 19921 tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; 19922 tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; 19923 tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; 19924 tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; 19925 tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; 19926 tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; 19927 tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; 19928 tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; 19929 tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; 19930 tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; 19931 tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; 19932 tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; 19933 tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; 19934 tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; 19935 tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; 19936 tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; 19937 tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; 19938 tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; 19939 tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; 19940 tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; 19941 tcpkp->inDataInorderSegs.value.ui32 = 19942 tcps->tcps_mib.tcpInDataInorderSegs; 19943 tcpkp->inDataInorderBytes.value.ui32 = 19944 tcps->tcps_mib.tcpInDataInorderBytes; 19945 tcpkp->inDataUnorderSegs.value.ui32 = 19946 tcps->tcps_mib.tcpInDataUnorderSegs; 19947 tcpkp->inDataUnorderBytes.value.ui32 = 19948 tcps->tcps_mib.tcpInDataUnorderBytes; 19949 tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; 19950 tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; 19951 tcpkp->inDataPartDupSegs.value.ui32 = 19952 tcps->tcps_mib.tcpInDataPartDupSegs; 19953 tcpkp->inDataPartDupBytes.value.ui32 = 19954 tcps->tcps_mib.tcpInDataPartDupBytes; 19955 tcpkp->inDataPastWinSegs.value.ui32 = 19956 tcps->tcps_mib.tcpInDataPastWinSegs; 19957 tcpkp->inDataPastWinBytes.value.ui32 = 19958 tcps->tcps_mib.tcpInDataPastWinBytes; 19959 tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; 19960 tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; 19961 tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; 19962 tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; 19963 tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; 19964 tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; 19965 tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; 19966 tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; 19967 tcpkp->timKeepaliveProbe.value.ui32 = 19968 tcps->tcps_mib.tcpTimKeepaliveProbe; 19969 tcpkp->timKeepaliveDrop.value.ui32 = 19970 tcps->tcps_mib.tcpTimKeepaliveDrop; 19971 tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; 19972 tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; 19973 tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; 19974 tcpkp->outSackRetransSegs.value.ui32 = 19975 tcps->tcps_mib.tcpOutSackRetransSegs; 19976 tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; 19977 19978 netstack_rele(ns); 19979 return (0); 19980 } 19981 19982 static int 19983 tcp_squeue_switch(int val) 19984 { 19985 int rval = SQ_FILL; 19986 19987 switch (val) { 19988 case 1: 19989 rval = SQ_NODRAIN; 19990 break; 19991 case 2: 19992 rval = SQ_PROCESS; 19993 break; 19994 default: 19995 break; 19996 } 19997 return (rval); 19998 } 19999 20000 /* 20001 * This is called once for each squeue - globally for all stack 20002 * instances. 20003 */ 20004 static void 20005 tcp_squeue_add(squeue_t *sqp) 20006 { 20007 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 20008 sizeof (tcp_squeue_priv_t), KM_SLEEP); 20009 20010 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 20011 tcp_time_wait->tcp_time_wait_tid = 20012 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 20013 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 20014 CALLOUT_FLAG_ROUNDUP); 20015 if (tcp_free_list_max_cnt == 0) { 20016 int tcp_ncpus = ((boot_max_ncpus == -1) ? 20017 max_ncpus : boot_max_ncpus); 20018 20019 /* 20020 * Limit number of entries to 1% of availble memory / tcp_ncpus 20021 */ 20022 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 20023 (tcp_ncpus * sizeof (tcp_t) * 100); 20024 } 20025 tcp_time_wait->tcp_free_list_cnt = 0; 20026 } 20027 20028 /* 20029 * On a labeled system we have some protocols above TCP, such as RPC, which 20030 * appear to assume that every mblk in a chain has a db_credp. 20031 */ 20032 static void 20033 tcp_setcred_data(mblk_t *mp, ip_recv_attr_t *ira) 20034 { 20035 ASSERT(is_system_labeled()); 20036 ASSERT(ira->ira_cred != NULL); 20037 20038 while (mp != NULL) { 20039 mblk_setcred(mp, ira->ira_cred, NOPID); 20040 mp = mp->b_cont; 20041 } 20042 } 20043 20044 static int 20045 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr, 20046 boolean_t bind_to_req_port_only, cred_t *cr) 20047 { 20048 in_port_t mlp_port; 20049 mlp_type_t addrtype, mlptype; 20050 boolean_t user_specified; 20051 in_port_t allocated_port; 20052 in_port_t requested_port = *requested_port_ptr; 20053 conn_t *connp = tcp->tcp_connp; 20054 zone_t *zone; 20055 tcp_stack_t *tcps = tcp->tcp_tcps; 20056 in6_addr_t v6addr = connp->conn_laddr_v6; 20057 20058 /* 20059 * XXX It's up to the caller to specify bind_to_req_port_only or not. 20060 */ 20061 ASSERT(cr != NULL); 20062 20063 /* 20064 * Get a valid port (within the anonymous range and should not 20065 * be a privileged one) to use if the user has not given a port. 20066 * If multiple threads are here, they may all start with 20067 * with the same initial port. But, it should be fine as long as 20068 * tcp_bindi will ensure that no two threads will be assigned 20069 * the same port. 20070 * 20071 * NOTE: XXX If a privileged process asks for an anonymous port, we 20072 * still check for ports only in the range > tcp_smallest_non_priv_port, 20073 * unless TCP_ANONPRIVBIND option is set. 20074 */ 20075 mlptype = mlptSingle; 20076 mlp_port = requested_port; 20077 if (requested_port == 0) { 20078 requested_port = connp->conn_anon_priv_bind ? 20079 tcp_get_next_priv_port(tcp) : 20080 tcp_update_next_port(tcps->tcps_next_port_to_try, 20081 tcp, B_TRUE); 20082 if (requested_port == 0) { 20083 return (-TNOADDR); 20084 } 20085 user_specified = B_FALSE; 20086 20087 /* 20088 * If the user went through one of the RPC interfaces to create 20089 * this socket and RPC is MLP in this zone, then give him an 20090 * anonymous MLP. 20091 */ 20092 if (connp->conn_anon_mlp && is_system_labeled()) { 20093 zone = crgetzone(cr); 20094 addrtype = tsol_mlp_addr_type( 20095 connp->conn_allzones ? ALL_ZONES : zone->zone_id, 20096 IPV6_VERSION, &v6addr, 20097 tcps->tcps_netstack->netstack_ip); 20098 if (addrtype == mlptSingle) { 20099 return (-TNOADDR); 20100 } 20101 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 20102 PMAPPORT, addrtype); 20103 mlp_port = PMAPPORT; 20104 } 20105 } else { 20106 int i; 20107 boolean_t priv = B_FALSE; 20108 20109 /* 20110 * If the requested_port is in the well-known privileged range, 20111 * verify that the stream was opened by a privileged user. 20112 * Note: No locks are held when inspecting tcp_g_*epriv_ports 20113 * but instead the code relies on: 20114 * - the fact that the address of the array and its size never 20115 * changes 20116 * - the atomic assignment of the elements of the array 20117 */ 20118 if (requested_port < tcps->tcps_smallest_nonpriv_port) { 20119 priv = B_TRUE; 20120 } else { 20121 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 20122 if (requested_port == 20123 tcps->tcps_g_epriv_ports[i]) { 20124 priv = B_TRUE; 20125 break; 20126 } 20127 } 20128 } 20129 if (priv) { 20130 if (secpolicy_net_privaddr(cr, requested_port, 20131 IPPROTO_TCP) != 0) { 20132 if (connp->conn_debug) { 20133 (void) strlog(TCP_MOD_ID, 0, 1, 20134 SL_ERROR|SL_TRACE, 20135 "tcp_bind: no priv for port %d", 20136 requested_port); 20137 } 20138 return (-TACCES); 20139 } 20140 } 20141 user_specified = B_TRUE; 20142 20143 connp = tcp->tcp_connp; 20144 if (is_system_labeled()) { 20145 zone = crgetzone(cr); 20146 addrtype = tsol_mlp_addr_type( 20147 connp->conn_allzones ? ALL_ZONES : zone->zone_id, 20148 IPV6_VERSION, &v6addr, 20149 tcps->tcps_netstack->netstack_ip); 20150 if (addrtype == mlptSingle) { 20151 return (-TNOADDR); 20152 } 20153 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 20154 requested_port, addrtype); 20155 } 20156 } 20157 20158 if (mlptype != mlptSingle) { 20159 if (secpolicy_net_bindmlp(cr) != 0) { 20160 if (connp->conn_debug) { 20161 (void) strlog(TCP_MOD_ID, 0, 1, 20162 SL_ERROR|SL_TRACE, 20163 "tcp_bind: no priv for multilevel port %d", 20164 requested_port); 20165 } 20166 return (-TACCES); 20167 } 20168 20169 /* 20170 * If we're specifically binding a shared IP address and the 20171 * port is MLP on shared addresses, then check to see if this 20172 * zone actually owns the MLP. Reject if not. 20173 */ 20174 if (mlptype == mlptShared && addrtype == mlptShared) { 20175 /* 20176 * No need to handle exclusive-stack zones since 20177 * ALL_ZONES only applies to the shared stack. 20178 */ 20179 zoneid_t mlpzone; 20180 20181 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 20182 htons(mlp_port)); 20183 if (connp->conn_zoneid != mlpzone) { 20184 if (connp->conn_debug) { 20185 (void) strlog(TCP_MOD_ID, 0, 1, 20186 SL_ERROR|SL_TRACE, 20187 "tcp_bind: attempt to bind port " 20188 "%d on shared addr in zone %d " 20189 "(should be %d)", 20190 mlp_port, connp->conn_zoneid, 20191 mlpzone); 20192 } 20193 return (-TACCES); 20194 } 20195 } 20196 20197 if (!user_specified) { 20198 int err; 20199 err = tsol_mlp_anon(zone, mlptype, connp->conn_proto, 20200 requested_port, B_TRUE); 20201 if (err != 0) { 20202 if (connp->conn_debug) { 20203 (void) strlog(TCP_MOD_ID, 0, 1, 20204 SL_ERROR|SL_TRACE, 20205 "tcp_bind: cannot establish anon " 20206 "MLP for port %d", 20207 requested_port); 20208 } 20209 return (err); 20210 } 20211 connp->conn_anon_port = B_TRUE; 20212 } 20213 connp->conn_mlp_type = mlptype; 20214 } 20215 20216 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 20217 connp->conn_reuseaddr, B_FALSE, bind_to_req_port_only, 20218 user_specified); 20219 20220 if (allocated_port == 0) { 20221 connp->conn_mlp_type = mlptSingle; 20222 if (connp->conn_anon_port) { 20223 connp->conn_anon_port = B_FALSE; 20224 (void) tsol_mlp_anon(zone, mlptype, connp->conn_proto, 20225 requested_port, B_FALSE); 20226 } 20227 if (bind_to_req_port_only) { 20228 if (connp->conn_debug) { 20229 (void) strlog(TCP_MOD_ID, 0, 1, 20230 SL_ERROR|SL_TRACE, 20231 "tcp_bind: requested addr busy"); 20232 } 20233 return (-TADDRBUSY); 20234 } else { 20235 /* If we are out of ports, fail the bind. */ 20236 if (connp->conn_debug) { 20237 (void) strlog(TCP_MOD_ID, 0, 1, 20238 SL_ERROR|SL_TRACE, 20239 "tcp_bind: out of ports?"); 20240 } 20241 return (-TNOADDR); 20242 } 20243 } 20244 20245 /* Pass the allocated port back */ 20246 *requested_port_ptr = allocated_port; 20247 return (0); 20248 } 20249 20250 /* 20251 * Check the address and check/pick a local port number. 20252 */ 20253 static int 20254 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 20255 boolean_t bind_to_req_port_only) 20256 { 20257 tcp_t *tcp = connp->conn_tcp; 20258 sin_t *sin; 20259 sin6_t *sin6; 20260 in_port_t requested_port; 20261 ipaddr_t v4addr; 20262 in6_addr_t v6addr; 20263 ip_laddr_t laddr_type = IPVL_UNICAST_UP; /* INADDR_ANY */ 20264 zoneid_t zoneid = IPCL_ZONEID(connp); 20265 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 20266 uint_t scopeid = 0; 20267 int error = 0; 20268 ip_xmit_attr_t *ixa = connp->conn_ixa; 20269 20270 ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX); 20271 20272 if (tcp->tcp_state == TCPS_BOUND) { 20273 return (0); 20274 } else if (tcp->tcp_state > TCPS_BOUND) { 20275 if (connp->conn_debug) { 20276 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20277 "tcp_bind: bad state, %d", tcp->tcp_state); 20278 } 20279 return (-TOUTSTATE); 20280 } 20281 20282 ASSERT(sa != NULL && len != 0); 20283 20284 if (!OK_32PTR((char *)sa)) { 20285 if (connp->conn_debug) { 20286 (void) strlog(TCP_MOD_ID, 0, 1, 20287 SL_ERROR|SL_TRACE, 20288 "tcp_bind: bad address parameter, " 20289 "address %p, len %d", 20290 (void *)sa, len); 20291 } 20292 return (-TPROTO); 20293 } 20294 20295 error = proto_verify_ip_addr(connp->conn_family, sa, len); 20296 if (error != 0) { 20297 return (error); 20298 } 20299 20300 switch (len) { 20301 case sizeof (sin_t): /* Complete IPv4 address */ 20302 sin = (sin_t *)sa; 20303 requested_port = ntohs(sin->sin_port); 20304 v4addr = sin->sin_addr.s_addr; 20305 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 20306 if (v4addr != INADDR_ANY) { 20307 laddr_type = ip_laddr_verify_v4(v4addr, zoneid, ipst, 20308 B_FALSE); 20309 } 20310 break; 20311 20312 case sizeof (sin6_t): /* Complete IPv6 address */ 20313 sin6 = (sin6_t *)sa; 20314 v6addr = sin6->sin6_addr; 20315 requested_port = ntohs(sin6->sin6_port); 20316 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) { 20317 if (connp->conn_ipv6_v6only) 20318 return (EADDRNOTAVAIL); 20319 20320 IN6_V4MAPPED_TO_IPADDR(&v6addr, v4addr); 20321 if (v4addr != INADDR_ANY) { 20322 laddr_type = ip_laddr_verify_v4(v4addr, 20323 zoneid, ipst, B_FALSE); 20324 } 20325 } else { 20326 if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr)) { 20327 if (IN6_IS_ADDR_LINKSCOPE(&v6addr)) 20328 scopeid = sin6->sin6_scope_id; 20329 laddr_type = ip_laddr_verify_v6(&v6addr, 20330 zoneid, ipst, B_FALSE, scopeid); 20331 } 20332 } 20333 break; 20334 20335 default: 20336 if (connp->conn_debug) { 20337 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20338 "tcp_bind: bad address length, %d", len); 20339 } 20340 return (EAFNOSUPPORT); 20341 /* return (-TBADADDR); */ 20342 } 20343 20344 /* Is the local address a valid unicast address? */ 20345 if (laddr_type == IPVL_BAD) 20346 return (EADDRNOTAVAIL); 20347 20348 connp->conn_bound_addr_v6 = v6addr; 20349 if (scopeid != 0) { 20350 ixa->ixa_flags |= IXAF_SCOPEID_SET; 20351 ixa->ixa_scopeid = scopeid; 20352 connp->conn_incoming_ifindex = scopeid; 20353 } else { 20354 ixa->ixa_flags &= ~IXAF_SCOPEID_SET; 20355 connp->conn_incoming_ifindex = connp->conn_bound_if; 20356 } 20357 20358 connp->conn_laddr_v6 = v6addr; 20359 connp->conn_saddr_v6 = v6addr; 20360 20361 bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only; 20362 20363 error = tcp_bind_select_lport(tcp, &requested_port, 20364 bind_to_req_port_only, cr); 20365 if (error != 0) { 20366 connp->conn_laddr_v6 = ipv6_all_zeros; 20367 connp->conn_saddr_v6 = ipv6_all_zeros; 20368 connp->conn_bound_addr_v6 = ipv6_all_zeros; 20369 } 20370 return (error); 20371 } 20372 20373 /* 20374 * Return unix error is tli error is TSYSERR, otherwise return a negative 20375 * tli error. 20376 */ 20377 int 20378 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 20379 boolean_t bind_to_req_port_only) 20380 { 20381 int error; 20382 tcp_t *tcp = connp->conn_tcp; 20383 20384 if (tcp->tcp_state >= TCPS_BOUND) { 20385 if (connp->conn_debug) { 20386 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20387 "tcp_bind: bad state, %d", tcp->tcp_state); 20388 } 20389 return (-TOUTSTATE); 20390 } 20391 20392 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 20393 if (error != 0) 20394 return (error); 20395 20396 ASSERT(tcp->tcp_state == TCPS_BOUND); 20397 tcp->tcp_conn_req_max = 0; 20398 return (0); 20399 } 20400 20401 int 20402 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa, 20403 socklen_t len, cred_t *cr) 20404 { 20405 int error; 20406 conn_t *connp = (conn_t *)proto_handle; 20407 squeue_t *sqp = connp->conn_sqp; 20408 20409 /* All Solaris components should pass a cred for this operation. */ 20410 ASSERT(cr != NULL); 20411 20412 ASSERT(sqp != NULL); 20413 ASSERT(connp->conn_upper_handle != NULL); 20414 20415 error = squeue_synch_enter(sqp, connp, NULL); 20416 if (error != 0) { 20417 /* failed to enter */ 20418 return (ENOSR); 20419 } 20420 20421 /* binding to a NULL address really means unbind */ 20422 if (sa == NULL) { 20423 if (connp->conn_tcp->tcp_state < TCPS_LISTEN) 20424 error = tcp_do_unbind(connp); 20425 else 20426 error = EINVAL; 20427 } else { 20428 error = tcp_do_bind(connp, sa, len, cr, B_TRUE); 20429 } 20430 20431 squeue_synch_exit(sqp, connp); 20432 20433 if (error < 0) { 20434 if (error == -TOUTSTATE) 20435 error = EINVAL; 20436 else 20437 error = proto_tlitosyserr(-error); 20438 } 20439 20440 return (error); 20441 } 20442 20443 /* 20444 * If the return value from this function is positive, it's a UNIX error. 20445 * Otherwise, if it's negative, then the absolute value is a TLI error. 20446 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 20447 */ 20448 int 20449 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 20450 cred_t *cr, pid_t pid) 20451 { 20452 tcp_t *tcp = connp->conn_tcp; 20453 sin_t *sin = (sin_t *)sa; 20454 sin6_t *sin6 = (sin6_t *)sa; 20455 ipaddr_t *dstaddrp; 20456 in_port_t dstport; 20457 uint_t srcid; 20458 int error; 20459 uint32_t mss; 20460 mblk_t *syn_mp; 20461 tcp_stack_t *tcps = tcp->tcp_tcps; 20462 int32_t oldstate; 20463 ip_xmit_attr_t *ixa = connp->conn_ixa; 20464 20465 oldstate = tcp->tcp_state; 20466 20467 switch (len) { 20468 default: 20469 /* 20470 * Should never happen 20471 */ 20472 return (EINVAL); 20473 20474 case sizeof (sin_t): 20475 sin = (sin_t *)sa; 20476 if (sin->sin_port == 0) { 20477 return (-TBADADDR); 20478 } 20479 if (connp->conn_ipv6_v6only) { 20480 return (EAFNOSUPPORT); 20481 } 20482 break; 20483 20484 case sizeof (sin6_t): 20485 sin6 = (sin6_t *)sa; 20486 if (sin6->sin6_port == 0) { 20487 return (-TBADADDR); 20488 } 20489 break; 20490 } 20491 /* 20492 * If we're connecting to an IPv4-mapped IPv6 address, we need to 20493 * make sure that the conn_ipversion is IPV4_VERSION. We 20494 * need to this before we call tcp_bindi() so that the port lookup 20495 * code will look for ports in the correct port space (IPv4 and 20496 * IPv6 have separate port spaces). 20497 */ 20498 if (connp->conn_family == AF_INET6 && 20499 connp->conn_ipversion == IPV6_VERSION && 20500 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 20501 if (connp->conn_ipv6_v6only) 20502 return (EADDRNOTAVAIL); 20503 20504 connp->conn_ipversion = IPV4_VERSION; 20505 } 20506 20507 switch (tcp->tcp_state) { 20508 case TCPS_LISTEN: 20509 /* 20510 * Listening sockets are not allowed to issue connect(). 20511 */ 20512 if (IPCL_IS_NONSTR(connp)) 20513 return (EOPNOTSUPP); 20514 /* FALLTHRU */ 20515 case TCPS_IDLE: 20516 /* 20517 * We support quick connect, refer to comments in 20518 * tcp_connect_*() 20519 */ 20520 /* FALLTHRU */ 20521 case TCPS_BOUND: 20522 break; 20523 default: 20524 return (-TOUTSTATE); 20525 } 20526 20527 /* 20528 * We update our cred/cpid based on the caller of connect 20529 */ 20530 if (connp->conn_cred != cr) { 20531 crhold(cr); 20532 crfree(connp->conn_cred); 20533 connp->conn_cred = cr; 20534 } 20535 connp->conn_cpid = pid; 20536 20537 /* Cache things in the ixa without any refhold */ 20538 ixa->ixa_cred = cr; 20539 ixa->ixa_cpid = pid; 20540 if (is_system_labeled()) { 20541 /* We need to restart with a label based on the cred */ 20542 ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred); 20543 } 20544 20545 if (connp->conn_family == AF_INET6) { 20546 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 20547 error = tcp_connect_ipv6(tcp, &sin6->sin6_addr, 20548 sin6->sin6_port, sin6->sin6_flowinfo, 20549 sin6->__sin6_src_id, sin6->sin6_scope_id); 20550 } else { 20551 /* 20552 * Destination adress is mapped IPv6 address. 20553 * Source bound address should be unspecified or 20554 * IPv6 mapped address as well. 20555 */ 20556 if (!IN6_IS_ADDR_UNSPECIFIED( 20557 &connp->conn_bound_addr_v6) && 20558 !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) { 20559 return (EADDRNOTAVAIL); 20560 } 20561 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 20562 dstport = sin6->sin6_port; 20563 srcid = sin6->__sin6_src_id; 20564 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, 20565 srcid); 20566 } 20567 } else { 20568 dstaddrp = &sin->sin_addr.s_addr; 20569 dstport = sin->sin_port; 20570 srcid = 0; 20571 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid); 20572 } 20573 20574 if (error != 0) 20575 goto connect_failed; 20576 20577 CL_INET_CONNECT(connp, B_TRUE, error); 20578 if (error != 0) 20579 goto connect_failed; 20580 20581 /* connect succeeded */ 20582 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 20583 tcp->tcp_active_open = 1; 20584 20585 /* 20586 * tcp_set_destination() does not adjust for TCP/IP header length. 20587 */ 20588 mss = tcp->tcp_mss - connp->conn_ht_iphc_len; 20589 20590 /* 20591 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up 20592 * to the nearest MSS. 20593 * 20594 * We do the round up here because we need to get the interface MTU 20595 * first before we can do the round up. 20596 */ 20597 tcp->tcp_rwnd = connp->conn_rcvbuf; 20598 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 20599 tcps->tcps_recv_hiwat_minmss * mss); 20600 connp->conn_rcvbuf = tcp->tcp_rwnd; 20601 tcp_set_ws_value(tcp); 20602 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 20603 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 20604 tcp->tcp_snd_ws_ok = B_TRUE; 20605 20606 /* 20607 * Set tcp_snd_ts_ok to true 20608 * so that tcp_xmit_mp will 20609 * include the timestamp 20610 * option in the SYN segment. 20611 */ 20612 if (tcps->tcps_tstamp_always || 20613 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 20614 tcp->tcp_snd_ts_ok = B_TRUE; 20615 } 20616 20617 /* 20618 * tcp_snd_sack_ok can be set in 20619 * tcp_set_destination() if the sack metric 20620 * is set. So check it here also. 20621 */ 20622 if (tcps->tcps_sack_permitted == 2 || 20623 tcp->tcp_snd_sack_ok) { 20624 if (tcp->tcp_sack_info == NULL) { 20625 tcp->tcp_sack_info = kmem_cache_alloc( 20626 tcp_sack_info_cache, KM_SLEEP); 20627 } 20628 tcp->tcp_snd_sack_ok = B_TRUE; 20629 } 20630 20631 /* 20632 * Should we use ECN? Note that the current 20633 * default value (SunOS 5.9) of tcp_ecn_permitted 20634 * is 1. The reason for doing this is that there 20635 * are equipments out there that will drop ECN 20636 * enabled IP packets. Setting it to 1 avoids 20637 * compatibility problems. 20638 */ 20639 if (tcps->tcps_ecn_permitted == 2) 20640 tcp->tcp_ecn_ok = B_TRUE; 20641 20642 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20643 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 20644 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 20645 if (syn_mp != NULL) { 20646 /* 20647 * We must bump the generation before sending the syn 20648 * to ensure that we use the right generation in case 20649 * this thread issues a "connected" up call. 20650 */ 20651 SOCK_CONNID_BUMP(tcp->tcp_connid); 20652 tcp_send_data(tcp, syn_mp); 20653 } 20654 20655 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 20656 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 20657 return (0); 20658 20659 connect_failed: 20660 connp->conn_faddr_v6 = ipv6_all_zeros; 20661 connp->conn_fport = 0; 20662 tcp->tcp_state = oldstate; 20663 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 20664 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 20665 return (error); 20666 } 20667 20668 int 20669 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa, 20670 socklen_t len, sock_connid_t *id, cred_t *cr) 20671 { 20672 conn_t *connp = (conn_t *)proto_handle; 20673 squeue_t *sqp = connp->conn_sqp; 20674 int error; 20675 20676 ASSERT(connp->conn_upper_handle != NULL); 20677 20678 /* All Solaris components should pass a cred for this operation. */ 20679 ASSERT(cr != NULL); 20680 20681 error = proto_verify_ip_addr(connp->conn_family, sa, len); 20682 if (error != 0) { 20683 return (error); 20684 } 20685 20686 error = squeue_synch_enter(sqp, connp, NULL); 20687 if (error != 0) { 20688 /* failed to enter */ 20689 return (ENOSR); 20690 } 20691 20692 /* 20693 * TCP supports quick connect, so no need to do an implicit bind 20694 */ 20695 error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid); 20696 if (error == 0) { 20697 *id = connp->conn_tcp->tcp_connid; 20698 } else if (error < 0) { 20699 if (error == -TOUTSTATE) { 20700 switch (connp->conn_tcp->tcp_state) { 20701 case TCPS_SYN_SENT: 20702 error = EALREADY; 20703 break; 20704 case TCPS_ESTABLISHED: 20705 error = EISCONN; 20706 break; 20707 case TCPS_LISTEN: 20708 error = EOPNOTSUPP; 20709 break; 20710 default: 20711 error = EINVAL; 20712 break; 20713 } 20714 } else { 20715 error = proto_tlitosyserr(-error); 20716 } 20717 } 20718 20719 if (connp->conn_tcp->tcp_loopback) { 20720 struct sock_proto_props sopp; 20721 20722 sopp.sopp_flags = SOCKOPT_LOOPBACK; 20723 sopp.sopp_loopback = B_TRUE; 20724 20725 (*connp->conn_upcalls->su_set_proto_props)( 20726 connp->conn_upper_handle, &sopp); 20727 } 20728 done: 20729 squeue_synch_exit(sqp, connp); 20730 20731 return ((error == 0) ? EINPROGRESS : error); 20732 } 20733 20734 /* ARGSUSED */ 20735 sock_lower_handle_t 20736 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls, 20737 uint_t *smodep, int *errorp, int flags, cred_t *credp) 20738 { 20739 conn_t *connp; 20740 boolean_t isv6 = family == AF_INET6; 20741 if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) || 20742 (proto != 0 && proto != IPPROTO_TCP)) { 20743 *errorp = EPROTONOSUPPORT; 20744 return (NULL); 20745 } 20746 20747 connp = tcp_create_common(credp, isv6, B_TRUE, errorp); 20748 if (connp == NULL) { 20749 return (NULL); 20750 } 20751 20752 /* 20753 * Put the ref for TCP. Ref for IP was already put 20754 * by ipcl_conn_create. Also Make the conn_t globally 20755 * visible to walkers 20756 */ 20757 mutex_enter(&connp->conn_lock); 20758 CONN_INC_REF_LOCKED(connp); 20759 ASSERT(connp->conn_ref == 2); 20760 connp->conn_state_flags &= ~CONN_INCIPIENT; 20761 20762 connp->conn_flags |= IPCL_NONSTR; 20763 mutex_exit(&connp->conn_lock); 20764 20765 ASSERT(errorp != NULL); 20766 *errorp = 0; 20767 *sock_downcalls = &sock_tcp_downcalls; 20768 *smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP | 20769 SM_SENDFILESUPP; 20770 20771 return ((sock_lower_handle_t)connp); 20772 } 20773 20774 /* ARGSUSED */ 20775 void 20776 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle, 20777 sock_upcalls_t *sock_upcalls, int flags, cred_t *cr) 20778 { 20779 conn_t *connp = (conn_t *)proto_handle; 20780 struct sock_proto_props sopp; 20781 20782 ASSERT(connp->conn_upper_handle == NULL); 20783 20784 /* All Solaris components should pass a cred for this operation. */ 20785 ASSERT(cr != NULL); 20786 20787 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT | 20788 SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER | 20789 SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ; 20790 20791 sopp.sopp_rxhiwat = SOCKET_RECVHIWATER; 20792 sopp.sopp_rxlowat = SOCKET_RECVLOWATER; 20793 sopp.sopp_maxpsz = INFPSZ; 20794 sopp.sopp_maxblk = INFPSZ; 20795 sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL; 20796 sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3; 20797 sopp.sopp_maxaddrlen = sizeof (sin6_t); 20798 sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 : 20799 tcp_rinfo.mi_minpsz; 20800 20801 connp->conn_upcalls = sock_upcalls; 20802 connp->conn_upper_handle = sock_handle; 20803 20804 ASSERT(connp->conn_rcvbuf != 0 && 20805 connp->conn_rcvbuf == connp->conn_tcp->tcp_rwnd); 20806 (*sock_upcalls->su_set_proto_props)(sock_handle, &sopp); 20807 } 20808 20809 /* ARGSUSED */ 20810 int 20811 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr) 20812 { 20813 conn_t *connp = (conn_t *)proto_handle; 20814 20815 ASSERT(connp->conn_upper_handle != NULL); 20816 20817 /* All Solaris components should pass a cred for this operation. */ 20818 ASSERT(cr != NULL); 20819 20820 tcp_close_common(connp, flags); 20821 20822 ip_free_helper_stream(connp); 20823 20824 /* 20825 * Drop IP's reference on the conn. This is the last reference 20826 * on the connp if the state was less than established. If the 20827 * connection has gone into timewait state, then we will have 20828 * one ref for the TCP and one more ref (total of two) for the 20829 * classifier connected hash list (a timewait connections stays 20830 * in connected hash till closed). 20831 * 20832 * We can't assert the references because there might be other 20833 * transient reference places because of some walkers or queued 20834 * packets in squeue for the timewait state. 20835 */ 20836 CONN_DEC_REF(connp); 20837 return (0); 20838 } 20839 20840 /* ARGSUSED */ 20841 int 20842 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg, 20843 cred_t *cr) 20844 { 20845 tcp_t *tcp; 20846 uint32_t msize; 20847 conn_t *connp = (conn_t *)proto_handle; 20848 int32_t tcpstate; 20849 20850 /* All Solaris components should pass a cred for this operation. */ 20851 ASSERT(cr != NULL); 20852 20853 ASSERT(connp->conn_ref >= 2); 20854 ASSERT(connp->conn_upper_handle != NULL); 20855 20856 if (msg->msg_controllen != 0) { 20857 freemsg(mp); 20858 return (EOPNOTSUPP); 20859 } 20860 20861 switch (DB_TYPE(mp)) { 20862 case M_DATA: 20863 tcp = connp->conn_tcp; 20864 ASSERT(tcp != NULL); 20865 20866 tcpstate = tcp->tcp_state; 20867 if (tcpstate < TCPS_ESTABLISHED) { 20868 freemsg(mp); 20869 /* 20870 * We return ENOTCONN if the endpoint is trying to 20871 * connect or has never been connected, and EPIPE if it 20872 * has been disconnected. The connection id helps us 20873 * distinguish between the last two cases. 20874 */ 20875 return ((tcpstate == TCPS_SYN_SENT) ? ENOTCONN : 20876 ((tcp->tcp_connid > 0) ? EPIPE : ENOTCONN)); 20877 } else if (tcpstate > TCPS_CLOSE_WAIT) { 20878 freemsg(mp); 20879 return (EPIPE); 20880 } 20881 20882 msize = msgdsize(mp); 20883 20884 mutex_enter(&tcp->tcp_non_sq_lock); 20885 tcp->tcp_squeue_bytes += msize; 20886 /* 20887 * Squeue Flow Control 20888 */ 20889 if (TCP_UNSENT_BYTES(tcp) > connp->conn_sndbuf) { 20890 tcp_setqfull(tcp); 20891 } 20892 mutex_exit(&tcp->tcp_non_sq_lock); 20893 20894 /* 20895 * The application may pass in an address in the msghdr, but 20896 * we ignore the address on connection-oriented sockets. 20897 * Just like BSD this code does not generate an error for 20898 * TCP (a CONNREQUIRED socket) when sending to an address 20899 * passed in with sendto/sendmsg. Instead the data is 20900 * delivered on the connection as if no address had been 20901 * supplied. 20902 */ 20903 CONN_INC_REF(connp); 20904 20905 if (msg->msg_flags & MSG_OOB) { 20906 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output_urgent, 20907 connp, NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 20908 } else { 20909 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, 20910 connp, NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 20911 } 20912 20913 return (0); 20914 20915 default: 20916 ASSERT(0); 20917 } 20918 20919 freemsg(mp); 20920 return (0); 20921 } 20922 20923 /* ARGSUSED2 */ 20924 void 20925 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 20926 { 20927 int len; 20928 uint32_t msize; 20929 conn_t *connp = (conn_t *)arg; 20930 tcp_t *tcp = connp->conn_tcp; 20931 20932 msize = msgdsize(mp); 20933 20934 len = msize - 1; 20935 if (len < 0) { 20936 freemsg(mp); 20937 return; 20938 } 20939 20940 /* 20941 * Try to force urgent data out on the wire. Even if we have unsent 20942 * data this will at least send the urgent flag. 20943 * XXX does not handle more flag correctly. 20944 */ 20945 len += tcp->tcp_unsent; 20946 len += tcp->tcp_snxt; 20947 tcp->tcp_urg = len; 20948 tcp->tcp_valid_bits |= TCP_URG_VALID; 20949 20950 /* Bypass tcp protocol for fused tcp loopback */ 20951 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 20952 return; 20953 20954 /* Strip off the T_EXDATA_REQ if the data is from TPI */ 20955 if (DB_TYPE(mp) != M_DATA) { 20956 mblk_t *mp1 = mp; 20957 ASSERT(!IPCL_IS_NONSTR(connp)); 20958 mp = mp->b_cont; 20959 freeb(mp1); 20960 } 20961 tcp_wput_data(tcp, mp, B_TRUE); 20962 } 20963 20964 /* ARGSUSED3 */ 20965 int 20966 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr, 20967 socklen_t *addrlenp, cred_t *cr) 20968 { 20969 conn_t *connp = (conn_t *)proto_handle; 20970 tcp_t *tcp = connp->conn_tcp; 20971 20972 ASSERT(connp->conn_upper_handle != NULL); 20973 /* All Solaris components should pass a cred for this operation. */ 20974 ASSERT(cr != NULL); 20975 20976 ASSERT(tcp != NULL); 20977 if (tcp->tcp_state < TCPS_SYN_RCVD) 20978 return (ENOTCONN); 20979 20980 return (conn_getpeername(connp, addr, addrlenp)); 20981 } 20982 20983 /* ARGSUSED3 */ 20984 int 20985 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr, 20986 socklen_t *addrlenp, cred_t *cr) 20987 { 20988 conn_t *connp = (conn_t *)proto_handle; 20989 20990 /* All Solaris components should pass a cred for this operation. */ 20991 ASSERT(cr != NULL); 20992 20993 ASSERT(connp->conn_upper_handle != NULL); 20994 return (conn_getsockname(connp, addr, addrlenp)); 20995 } 20996 20997 /* 20998 * tcp_fallback 20999 * 21000 * A direct socket is falling back to using STREAMS. The queue 21001 * that is being passed down was created using tcp_open() with 21002 * the SO_FALLBACK flag set. As a result, the queue is not 21003 * associated with a conn, and the q_ptrs instead contain the 21004 * dev and minor area that should be used. 21005 * 21006 * The 'issocket' flag indicates whether the FireEngine 21007 * optimizations should be used. The common case would be that 21008 * optimizations are enabled, and they might be subsequently 21009 * disabled using the _SIOCSOCKFALLBACK ioctl. 21010 */ 21011 21012 /* 21013 * An active connection is falling back to TPI. Gather all the information 21014 * required by the STREAM head and TPI sonode and send it up. 21015 */ 21016 void 21017 tcp_fallback_noneager(tcp_t *tcp, mblk_t *stropt_mp, queue_t *q, 21018 boolean_t issocket, so_proto_quiesced_cb_t quiesced_cb) 21019 { 21020 conn_t *connp = tcp->tcp_connp; 21021 struct stroptions *stropt; 21022 struct T_capability_ack tca; 21023 struct sockaddr_in6 laddr, faddr; 21024 socklen_t laddrlen, faddrlen; 21025 short opts; 21026 int error; 21027 mblk_t *mp; 21028 21029 connp->conn_dev = (dev_t)RD(q)->q_ptr; 21030 connp->conn_minor_arena = WR(q)->q_ptr; 21031 21032 RD(q)->q_ptr = WR(q)->q_ptr = connp; 21033 21034 connp->conn_rq = RD(q); 21035 connp->conn_wq = WR(q); 21036 21037 WR(q)->q_qinfo = &tcp_sock_winit; 21038 21039 if (!issocket) 21040 tcp_use_pure_tpi(tcp); 21041 21042 /* 21043 * free the helper stream 21044 */ 21045 ip_free_helper_stream(connp); 21046 21047 /* 21048 * Notify the STREAM head about options 21049 */ 21050 DB_TYPE(stropt_mp) = M_SETOPTS; 21051 stropt = (struct stroptions *)stropt_mp->b_rptr; 21052 stropt_mp->b_wptr += sizeof (struct stroptions); 21053 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 21054 21055 stropt->so_wroff = connp->conn_ht_iphc_len + (tcp->tcp_loopback ? 0 : 21056 tcp->tcp_tcps->tcps_wroff_xtra); 21057 if (tcp->tcp_snd_sack_ok) 21058 stropt->so_wroff += TCPOPT_MAX_SACK_LEN; 21059 stropt->so_hiwat = connp->conn_rcvbuf; 21060 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 21061 21062 putnext(RD(q), stropt_mp); 21063 21064 /* 21065 * Collect the information needed to sync with the sonode 21066 */ 21067 tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID); 21068 21069 laddrlen = faddrlen = sizeof (sin6_t); 21070 (void) tcp_getsockname((sock_lower_handle_t)connp, 21071 (struct sockaddr *)&laddr, &laddrlen, CRED()); 21072 error = tcp_getpeername((sock_lower_handle_t)connp, 21073 (struct sockaddr *)&faddr, &faddrlen, CRED()); 21074 if (error != 0) 21075 faddrlen = 0; 21076 21077 opts = 0; 21078 if (connp->conn_oobinline) 21079 opts |= SO_OOBINLINE; 21080 if (connp->conn_ixa->ixa_flags & IXAF_DONTROUTE) 21081 opts |= SO_DONTROUTE; 21082 21083 /* 21084 * Notify the socket that the protocol is now quiescent, 21085 * and it's therefore safe move data from the socket 21086 * to the stream head. 21087 */ 21088 (*quiesced_cb)(connp->conn_upper_handle, q, &tca, 21089 (struct sockaddr *)&laddr, laddrlen, 21090 (struct sockaddr *)&faddr, faddrlen, opts); 21091 21092 while ((mp = tcp->tcp_rcv_list) != NULL) { 21093 tcp->tcp_rcv_list = mp->b_next; 21094 mp->b_next = NULL; 21095 /* We never do fallback for kernel RPC */ 21096 putnext(q, mp); 21097 } 21098 tcp->tcp_rcv_last_head = NULL; 21099 tcp->tcp_rcv_last_tail = NULL; 21100 tcp->tcp_rcv_cnt = 0; 21101 } 21102 21103 /* 21104 * An eager is falling back to TPI. All we have to do is send 21105 * up a T_CONN_IND. 21106 */ 21107 void 21108 tcp_fallback_eager(tcp_t *eager, boolean_t direct_sockfs) 21109 { 21110 tcp_t *listener = eager->tcp_listener; 21111 mblk_t *mp = eager->tcp_conn.tcp_eager_conn_ind; 21112 21113 ASSERT(listener != NULL); 21114 ASSERT(mp != NULL); 21115 21116 eager->tcp_conn.tcp_eager_conn_ind = NULL; 21117 21118 /* 21119 * TLI/XTI applications will get confused by 21120 * sending eager as an option since it violates 21121 * the option semantics. So remove the eager as 21122 * option since TLI/XTI app doesn't need it anyway. 21123 */ 21124 if (!direct_sockfs) { 21125 struct T_conn_ind *conn_ind; 21126 21127 conn_ind = (struct T_conn_ind *)mp->b_rptr; 21128 conn_ind->OPT_length = 0; 21129 conn_ind->OPT_offset = 0; 21130 } 21131 21132 /* 21133 * Sockfs guarantees that the listener will not be closed 21134 * during fallback. So we can safely use the listener's queue. 21135 */ 21136 putnext(listener->tcp_connp->conn_rq, mp); 21137 } 21138 21139 int 21140 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q, 21141 boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb) 21142 { 21143 tcp_t *tcp; 21144 conn_t *connp = (conn_t *)proto_handle; 21145 int error; 21146 mblk_t *stropt_mp; 21147 mblk_t *ordrel_mp; 21148 21149 tcp = connp->conn_tcp; 21150 21151 stropt_mp = allocb_wait(sizeof (struct stroptions), BPRI_HI, STR_NOSIG, 21152 NULL); 21153 21154 /* Pre-allocate the T_ordrel_ind mblk. */ 21155 ASSERT(tcp->tcp_ordrel_mp == NULL); 21156 ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI, 21157 STR_NOSIG, NULL); 21158 ordrel_mp->b_datap->db_type = M_PROTO; 21159 ((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND; 21160 ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind); 21161 21162 /* 21163 * Enter the squeue so that no new packets can come in 21164 */ 21165 error = squeue_synch_enter(connp->conn_sqp, connp, NULL); 21166 if (error != 0) { 21167 /* failed to enter, free all the pre-allocated messages. */ 21168 freeb(stropt_mp); 21169 freeb(ordrel_mp); 21170 /* 21171 * We cannot process the eager, so at least send out a 21172 * RST so the peer can reconnect. 21173 */ 21174 if (tcp->tcp_listener != NULL) { 21175 (void) tcp_eager_blowoff(tcp->tcp_listener, 21176 tcp->tcp_conn_req_seqnum); 21177 } 21178 return (ENOMEM); 21179 } 21180 21181 /* 21182 * Both endpoints must be of the same type (either STREAMS or 21183 * non-STREAMS) for fusion to be enabled. So if we are fused, 21184 * we have to unfuse. 21185 */ 21186 if (tcp->tcp_fused) 21187 tcp_unfuse(tcp); 21188 21189 /* 21190 * No longer a direct socket 21191 */ 21192 connp->conn_flags &= ~IPCL_NONSTR; 21193 tcp->tcp_ordrel_mp = ordrel_mp; 21194 21195 if (tcp->tcp_listener != NULL) { 21196 /* The eager will deal with opts when accept() is called */ 21197 freeb(stropt_mp); 21198 tcp_fallback_eager(tcp, direct_sockfs); 21199 } else { 21200 tcp_fallback_noneager(tcp, stropt_mp, q, direct_sockfs, 21201 quiesced_cb); 21202 } 21203 21204 /* 21205 * There should be atleast two ref's (IP + TCP) 21206 */ 21207 ASSERT(connp->conn_ref >= 2); 21208 squeue_synch_exit(connp->conn_sqp, connp); 21209 21210 return (0); 21211 } 21212 21213 /* ARGSUSED */ 21214 static void 21215 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 21216 { 21217 conn_t *connp = (conn_t *)arg; 21218 tcp_t *tcp = connp->conn_tcp; 21219 21220 freemsg(mp); 21221 21222 if (tcp->tcp_fused) 21223 tcp_unfuse(tcp); 21224 21225 if (tcp_xmit_end(tcp) != 0) { 21226 /* 21227 * We were crossing FINs and got a reset from 21228 * the other side. Just ignore it. 21229 */ 21230 if (connp->conn_debug) { 21231 (void) strlog(TCP_MOD_ID, 0, 1, 21232 SL_ERROR|SL_TRACE, 21233 "tcp_shutdown_output() out of state %s", 21234 tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); 21235 } 21236 } 21237 } 21238 21239 /* ARGSUSED */ 21240 int 21241 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr) 21242 { 21243 conn_t *connp = (conn_t *)proto_handle; 21244 tcp_t *tcp = connp->conn_tcp; 21245 21246 ASSERT(connp->conn_upper_handle != NULL); 21247 21248 /* All Solaris components should pass a cred for this operation. */ 21249 ASSERT(cr != NULL); 21250 21251 /* 21252 * X/Open requires that we check the connected state. 21253 */ 21254 if (tcp->tcp_state < TCPS_SYN_SENT) 21255 return (ENOTCONN); 21256 21257 /* shutdown the send side */ 21258 if (how != SHUT_RD) { 21259 mblk_t *bp; 21260 21261 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 21262 CONN_INC_REF(connp); 21263 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output, 21264 connp, NULL, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT); 21265 21266 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 21267 SOCK_OPCTL_SHUT_SEND, 0); 21268 } 21269 21270 /* shutdown the recv side */ 21271 if (how != SHUT_WR) 21272 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 21273 SOCK_OPCTL_SHUT_RECV, 0); 21274 21275 return (0); 21276 } 21277 21278 /* 21279 * SOP_LISTEN() calls into tcp_listen(). 21280 */ 21281 /* ARGSUSED */ 21282 int 21283 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr) 21284 { 21285 conn_t *connp = (conn_t *)proto_handle; 21286 int error; 21287 squeue_t *sqp = connp->conn_sqp; 21288 21289 ASSERT(connp->conn_upper_handle != NULL); 21290 21291 /* All Solaris components should pass a cred for this operation. */ 21292 ASSERT(cr != NULL); 21293 21294 error = squeue_synch_enter(sqp, connp, NULL); 21295 if (error != 0) { 21296 /* failed to enter */ 21297 return (ENOBUFS); 21298 } 21299 21300 error = tcp_do_listen(connp, NULL, 0, backlog, cr, FALSE); 21301 if (error == 0) { 21302 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 21303 SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog); 21304 } else if (error < 0) { 21305 if (error == -TOUTSTATE) 21306 error = EINVAL; 21307 else 21308 error = proto_tlitosyserr(-error); 21309 } 21310 squeue_synch_exit(sqp, connp); 21311 return (error); 21312 } 21313 21314 static int 21315 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len, 21316 int backlog, cred_t *cr, boolean_t bind_to_req_port_only) 21317 { 21318 tcp_t *tcp = connp->conn_tcp; 21319 int error = 0; 21320 tcp_stack_t *tcps = tcp->tcp_tcps; 21321 21322 /* All Solaris components should pass a cred for this operation. */ 21323 ASSERT(cr != NULL); 21324 21325 if (tcp->tcp_state >= TCPS_BOUND) { 21326 if ((tcp->tcp_state == TCPS_BOUND || 21327 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { 21328 /* 21329 * Handle listen() increasing backlog. 21330 * This is more "liberal" then what the TPI spec 21331 * requires but is needed to avoid a t_unbind 21332 * when handling listen() since the port number 21333 * might be "stolen" between the unbind and bind. 21334 */ 21335 goto do_listen; 21336 } 21337 if (connp->conn_debug) { 21338 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21339 "tcp_listen: bad state, %d", tcp->tcp_state); 21340 } 21341 return (-TOUTSTATE); 21342 } else { 21343 if (sa == NULL) { 21344 sin6_t addr; 21345 sin_t *sin; 21346 sin6_t *sin6; 21347 21348 ASSERT(IPCL_IS_NONSTR(connp)); 21349 /* Do an implicit bind: Request for a generic port. */ 21350 if (connp->conn_family == AF_INET) { 21351 len = sizeof (sin_t); 21352 sin = (sin_t *)&addr; 21353 *sin = sin_null; 21354 sin->sin_family = AF_INET; 21355 } else { 21356 ASSERT(connp->conn_family == AF_INET6); 21357 len = sizeof (sin6_t); 21358 sin6 = (sin6_t *)&addr; 21359 *sin6 = sin6_null; 21360 sin6->sin6_family = AF_INET6; 21361 } 21362 sa = (struct sockaddr *)&addr; 21363 } 21364 21365 error = tcp_bind_check(connp, sa, len, cr, 21366 bind_to_req_port_only); 21367 if (error) 21368 return (error); 21369 /* Fall through and do the fanout insertion */ 21370 } 21371 21372 do_listen: 21373 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 21374 tcp->tcp_conn_req_max = backlog; 21375 if (tcp->tcp_conn_req_max) { 21376 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 21377 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 21378 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 21379 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 21380 /* 21381 * If this is a listener, do not reset the eager list 21382 * and other stuffs. Note that we don't check if the 21383 * existing eager list meets the new tcp_conn_req_max 21384 * requirement. 21385 */ 21386 if (tcp->tcp_state != TCPS_LISTEN) { 21387 tcp->tcp_state = TCPS_LISTEN; 21388 /* Initialize the chain. Don't need the eager_lock */ 21389 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 21390 tcp->tcp_eager_next_drop_q0 = tcp; 21391 tcp->tcp_eager_prev_drop_q0 = tcp; 21392 tcp->tcp_second_ctimer_threshold = 21393 tcps->tcps_ip_abort_linterval; 21394 } 21395 } 21396 21397 /* 21398 * We need to make sure that the conn_recv is set to a non-null 21399 * value before we insert the conn into the classifier table. 21400 * This is to avoid a race with an incoming packet which does an 21401 * ipcl_classify(). 21402 * We initially set it to tcp_input_listener_unbound to try to 21403 * pick a good squeue for the listener when the first SYN arrives. 21404 * tcp_input_listener_unbound sets it to tcp_input_listener on that 21405 * first SYN. 21406 */ 21407 connp->conn_recv = tcp_input_listener_unbound; 21408 21409 /* Insert the listener in the classifier table */ 21410 error = ip_laddr_fanout_insert(connp); 21411 if (error != 0) { 21412 /* Undo the bind - release the port number */ 21413 tcp->tcp_state = TCPS_IDLE; 21414 connp->conn_bound_addr_v6 = ipv6_all_zeros; 21415 21416 connp->conn_laddr_v6 = ipv6_all_zeros; 21417 connp->conn_saddr_v6 = ipv6_all_zeros; 21418 connp->conn_ports = 0; 21419 21420 if (connp->conn_anon_port) { 21421 zone_t *zone; 21422 21423 zone = crgetzone(cr); 21424 connp->conn_anon_port = B_FALSE; 21425 (void) tsol_mlp_anon(zone, connp->conn_mlp_type, 21426 connp->conn_proto, connp->conn_lport, B_FALSE); 21427 } 21428 connp->conn_mlp_type = mlptSingle; 21429 21430 tcp_bind_hash_remove(tcp); 21431 return (error); 21432 } 21433 return (error); 21434 } 21435 21436 void 21437 tcp_clr_flowctrl(sock_lower_handle_t proto_handle) 21438 { 21439 conn_t *connp = (conn_t *)proto_handle; 21440 tcp_t *tcp = connp->conn_tcp; 21441 mblk_t *mp; 21442 int error; 21443 21444 ASSERT(connp->conn_upper_handle != NULL); 21445 21446 /* 21447 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_clr_flowctrl() 21448 * is currently running. 21449 */ 21450 mutex_enter(&tcp->tcp_rsrv_mp_lock); 21451 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 21452 mutex_exit(&tcp->tcp_rsrv_mp_lock); 21453 return; 21454 } 21455 tcp->tcp_rsrv_mp = NULL; 21456 mutex_exit(&tcp->tcp_rsrv_mp_lock); 21457 21458 error = squeue_synch_enter(connp->conn_sqp, connp, mp); 21459 ASSERT(error == 0); 21460 21461 mutex_enter(&tcp->tcp_rsrv_mp_lock); 21462 tcp->tcp_rsrv_mp = mp; 21463 mutex_exit(&tcp->tcp_rsrv_mp_lock); 21464 21465 if (tcp->tcp_fused) { 21466 tcp_fuse_backenable(tcp); 21467 } else { 21468 tcp->tcp_rwnd = connp->conn_rcvbuf; 21469 /* 21470 * Send back a window update immediately if TCP is above 21471 * ESTABLISHED state and the increase of the rcv window 21472 * that the other side knows is at least 1 MSS after flow 21473 * control is lifted. 21474 */ 21475 if (tcp->tcp_state >= TCPS_ESTABLISHED && 21476 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 21477 tcp_xmit_ctl(NULL, tcp, 21478 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 21479 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 21480 } 21481 } 21482 21483 squeue_synch_exit(connp->conn_sqp, connp); 21484 } 21485 21486 /* ARGSUSED */ 21487 int 21488 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg, 21489 int mode, int32_t *rvalp, cred_t *cr) 21490 { 21491 conn_t *connp = (conn_t *)proto_handle; 21492 int error; 21493 21494 ASSERT(connp->conn_upper_handle != NULL); 21495 21496 /* All Solaris components should pass a cred for this operation. */ 21497 ASSERT(cr != NULL); 21498 21499 /* 21500 * If we don't have a helper stream then create one. 21501 * ip_create_helper_stream takes care of locking the conn_t, 21502 * so this check for NULL is just a performance optimization. 21503 */ 21504 if (connp->conn_helper_info == NULL) { 21505 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 21506 21507 /* 21508 * Create a helper stream for non-STREAMS socket. 21509 */ 21510 error = ip_create_helper_stream(connp, tcps->tcps_ldi_ident); 21511 if (error != 0) { 21512 ip0dbg(("tcp_ioctl: create of IP helper stream " 21513 "failed %d\n", error)); 21514 return (error); 21515 } 21516 } 21517 21518 switch (cmd) { 21519 case ND_SET: 21520 case ND_GET: 21521 case _SIOCSOCKFALLBACK: 21522 case TCP_IOC_ABORT_CONN: 21523 case TI_GETPEERNAME: 21524 case TI_GETMYNAME: 21525 ip1dbg(("tcp_ioctl: cmd 0x%x on non sreams socket", 21526 cmd)); 21527 error = EINVAL; 21528 break; 21529 default: 21530 /* 21531 * Pass on to IP using helper stream 21532 */ 21533 error = ldi_ioctl(connp->conn_helper_info->iphs_handle, 21534 cmd, arg, mode, cr, rvalp); 21535 break; 21536 } 21537 return (error); 21538 } 21539 21540 sock_downcalls_t sock_tcp_downcalls = { 21541 tcp_activate, 21542 tcp_accept, 21543 tcp_bind, 21544 tcp_listen, 21545 tcp_connect, 21546 tcp_getpeername, 21547 tcp_getsockname, 21548 tcp_getsockopt, 21549 tcp_setsockopt, 21550 tcp_sendmsg, 21551 NULL, 21552 NULL, 21553 NULL, 21554 tcp_shutdown, 21555 tcp_clr_flowctrl, 21556 tcp_ioctl, 21557 tcp_close, 21558 }; 21559