1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/stropts.h> 33 #include <sys/strlog.h> 34 #define _SUN_TPI_VERSION 2 35 #include <sys/tihdr.h> 36 #include <sys/timod.h> 37 #include <sys/ddi.h> 38 #include <sys/sunddi.h> 39 #include <sys/suntpi.h> 40 #include <sys/xti_inet.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/sdt.h> 44 #include <sys/vtrace.h> 45 #include <sys/kmem.h> 46 #include <sys/ethernet.h> 47 #include <sys/cpuvar.h> 48 #include <sys/dlpi.h> 49 #include <sys/pattr.h> 50 #include <sys/policy.h> 51 #include <sys/priv.h> 52 #include <sys/zone.h> 53 #include <sys/sunldi.h> 54 55 #include <sys/errno.h> 56 #include <sys/signal.h> 57 #include <sys/socket.h> 58 #include <sys/socketvar.h> 59 #include <sys/sockio.h> 60 #include <sys/isa_defs.h> 61 #include <sys/md5.h> 62 #include <sys/random.h> 63 #include <sys/uio.h> 64 #include <sys/systm.h> 65 #include <netinet/in.h> 66 #include <netinet/tcp.h> 67 #include <netinet/ip6.h> 68 #include <netinet/icmp6.h> 69 #include <net/if.h> 70 #include <net/route.h> 71 #include <inet/ipsec_impl.h> 72 73 #include <inet/common.h> 74 #include <inet/ip.h> 75 #include <inet/ip_impl.h> 76 #include <inet/ip6.h> 77 #include <inet/ip_ndp.h> 78 #include <inet/proto_set.h> 79 #include <inet/mib2.h> 80 #include <inet/nd.h> 81 #include <inet/optcom.h> 82 #include <inet/snmpcom.h> 83 #include <inet/kstatcom.h> 84 #include <inet/tcp.h> 85 #include <inet/tcp_impl.h> 86 #include <inet/udp_impl.h> 87 #include <net/pfkeyv2.h> 88 #include <inet/ipdrop.h> 89 90 #include <inet/ipclassifier.h> 91 #include <inet/ip_ire.h> 92 #include <inet/ip_ftable.h> 93 #include <inet/ip_if.h> 94 #include <inet/ipp_common.h> 95 #include <inet/ip_rts.h> 96 #include <inet/ip_netinfo.h> 97 #include <sys/squeue_impl.h> 98 #include <sys/squeue.h> 99 #include <inet/kssl/ksslapi.h> 100 #include <sys/tsol/label.h> 101 #include <sys/tsol/tnet.h> 102 #include <rpc/pmap_prot.h> 103 #include <sys/callo.h> 104 105 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */ 106 107 /* 108 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 109 * 110 * (Read the detailed design doc in PSARC case directory) 111 * 112 * The entire tcp state is contained in tcp_t and conn_t structure 113 * which are allocated in tandem using ipcl_conn_create() and passing 114 * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect 115 * the references on the tcp_t. The tcp_t structure is never compressed 116 * and packets always land on the correct TCP perimeter from the time 117 * eager is created till the time tcp_t dies (as such the old mentat 118 * TCP global queue is not used for detached state and no IPSEC checking 119 * is required). The global queue is still allocated to send out resets 120 * for connection which have no listeners and IP directly calls 121 * tcp_xmit_listeners_reset() which does any policy check. 122 * 123 * Protection and Synchronisation mechanism: 124 * 125 * The tcp data structure does not use any kind of lock for protecting 126 * its state but instead uses 'squeues' for mutual exclusion from various 127 * read and write side threads. To access a tcp member, the thread should 128 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 129 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 130 * can pass any tcp function having prototype of edesc_t as argument 131 * (different from traditional STREAMs model where packets come in only 132 * designated entry points). The list of functions that can be directly 133 * called via squeue are listed before the usual function prototype. 134 * 135 * Referencing: 136 * 137 * TCP is MT-Hot and we use a reference based scheme to make sure that the 138 * tcp structure doesn't disappear when its needed. When the application 139 * creates an outgoing connection or accepts an incoming connection, we 140 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 141 * The IP reference is just a symbolic reference since ip_tcpclose() 142 * looks at tcp structure after tcp_close_output() returns which could 143 * have dropped the last TCP reference. So as long as the connection is 144 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 145 * conn_t. The classifier puts its own reference when the connection is 146 * inserted in listen or connected hash. Anytime a thread needs to enter 147 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 148 * on write side or by doing a classify on read side and then puts a 149 * reference on the conn before doing squeue_enter/tryenter/fill. For 150 * read side, the classifier itself puts the reference under fanout lock 151 * to make sure that tcp can't disappear before it gets processed. The 152 * squeue will drop this reference automatically so the called function 153 * doesn't have to do a DEC_REF. 154 * 155 * Opening a new connection: 156 * 157 * The outgoing connection open is pretty simple. tcp_open() does the 158 * work in creating the conn/tcp structure and initializing it. The 159 * squeue assignment is done based on the CPU the application 160 * is running on. So for outbound connections, processing is always done 161 * on application CPU which might be different from the incoming CPU 162 * being interrupted by the NIC. An optimal way would be to figure out 163 * the NIC <-> CPU binding at listen time, and assign the outgoing 164 * connection to the squeue attached to the CPU that will be interrupted 165 * for incoming packets (we know the NIC based on the bind IP address). 166 * This might seem like a problem if more data is going out but the 167 * fact is that in most cases the transmit is ACK driven transmit where 168 * the outgoing data normally sits on TCP's xmit queue waiting to be 169 * transmitted. 170 * 171 * Accepting a connection: 172 * 173 * This is a more interesting case because of various races involved in 174 * establishing a eager in its own perimeter. Read the meta comment on 175 * top of tcp_input_listener(). But briefly, the squeue is picked by 176 * ip_fanout based on the ring or the sender (if loopback). 177 * 178 * Closing a connection: 179 * 180 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 181 * via squeue to do the close and mark the tcp as detached if the connection 182 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 183 * reference but tcp_close() drop IP's reference always. So if tcp was 184 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 185 * and 1 because it is in classifier's connected hash. This is the condition 186 * we use to determine that its OK to clean up the tcp outside of squeue 187 * when time wait expires (check the ref under fanout and conn_lock and 188 * if it is 2, remove it from fanout hash and kill it). 189 * 190 * Although close just drops the necessary references and marks the 191 * tcp_detached state, tcp_close needs to know the tcp_detached has been 192 * set (under squeue) before letting the STREAM go away (because a 193 * inbound packet might attempt to go up the STREAM while the close 194 * has happened and tcp_detached is not set). So a special lock and 195 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 196 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 197 * tcp_detached. 198 * 199 * Special provisions and fast paths: 200 * 201 * We make special provisions for sockfs by marking tcp_issocket 202 * whenever we have only sockfs on top of TCP. This allows us to skip 203 * putting the tcp in acceptor hash since a sockfs listener can never 204 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 205 * since eager has already been allocated and the accept now happens 206 * on acceptor STREAM. There is a big blob of comment on top of 207 * tcp_input_listener explaining the new accept. When socket is POP'd, 208 * sockfs sends us an ioctl to mark the fact and we go back to old 209 * behaviour. Once tcp_issocket is unset, its never set for the 210 * life of that connection. 211 * 212 * IPsec notes : 213 * 214 * Since a packet is always executed on the correct TCP perimeter 215 * all IPsec processing is defered to IP including checking new 216 * connections and setting IPSEC policies for new connection. The 217 * only exception is tcp_xmit_listeners_reset() which is called 218 * directly from IP and needs to policy check to see if TH_RST 219 * can be sent out. 220 */ 221 222 /* 223 * Values for squeue switch: 224 * 1: SQ_NODRAIN 225 * 2: SQ_PROCESS 226 * 3: SQ_FILL 227 */ 228 int tcp_squeue_wput = 2; /* /etc/systems */ 229 int tcp_squeue_flag; 230 231 /* 232 * This controls how tiny a write must be before we try to copy it 233 * into the mblk on the tail of the transmit queue. Not much 234 * speedup is observed for values larger than sixteen. Zero will 235 * disable the optimisation. 236 */ 237 int tcp_tx_pull_len = 16; 238 239 /* 240 * TCP Statistics. 241 * 242 * How TCP statistics work. 243 * 244 * There are two types of statistics invoked by two macros. 245 * 246 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 247 * supposed to be used in non MT-hot paths of the code. 248 * 249 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 250 * supposed to be used for DEBUG purposes and may be used on a hot path. 251 * 252 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 253 * (use "kstat tcp" to get them). 254 * 255 * There is also additional debugging facility that marks tcp_clean_death() 256 * instances and saves them in tcp_t structure. It is triggered by 257 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 258 * tcp_clean_death() calls that counts the number of times each tag was hit. It 259 * is triggered by TCP_CLD_COUNTERS define. 260 * 261 * How to add new counters. 262 * 263 * 1) Add a field in the tcp_stat structure describing your counter. 264 * 2) Add a line in the template in tcp_kstat2_init() with the name 265 * of the counter. 266 * 267 * IMPORTANT!! - make sure that both are in sync !! 268 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 269 * 270 * Please avoid using private counters which are not kstat-exported. 271 * 272 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 273 * in tcp_t structure. 274 * 275 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 276 */ 277 278 #ifndef TCP_DEBUG_COUNTER 279 #ifdef DEBUG 280 #define TCP_DEBUG_COUNTER 1 281 #else 282 #define TCP_DEBUG_COUNTER 0 283 #endif 284 #endif 285 286 #define TCP_CLD_COUNTERS 0 287 288 #define TCP_TAG_CLEAN_DEATH 1 289 #define TCP_MAX_CLEAN_DEATH_TAG 32 290 291 #ifdef lint 292 static int _lint_dummy_; 293 #endif 294 295 #if TCP_CLD_COUNTERS 296 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 297 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 298 #elif defined(lint) 299 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 300 #else 301 #define TCP_CLD_STAT(x) 302 #endif 303 304 #if TCP_DEBUG_COUNTER 305 #define TCP_DBGSTAT(tcps, x) \ 306 atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) 307 #define TCP_G_DBGSTAT(x) \ 308 atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) 309 #elif defined(lint) 310 #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); 311 #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 312 #else 313 #define TCP_DBGSTAT(tcps, x) 314 #define TCP_G_DBGSTAT(x) 315 #endif 316 317 #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) 318 319 tcp_g_stat_t tcp_g_statistics; 320 kstat_t *tcp_g_kstat; 321 322 /* Macros for timestamp comparisons */ 323 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 324 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 325 326 /* 327 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 328 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 329 * by adding three components: a time component which grows by 1 every 4096 330 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 331 * a per-connection component which grows by 125000 for every new connection; 332 * and an "extra" component that grows by a random amount centered 333 * approximately on 64000. This causes the ISS generator to cycle every 334 * 4.89 hours if no TCP connections are made, and faster if connections are 335 * made. 336 * 337 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 338 * components: a time component which grows by 250000 every second; and 339 * a per-connection component which grows by 125000 for every new connections. 340 * 341 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 342 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 343 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 344 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 345 * password. 346 */ 347 #define ISS_INCR 250000 348 #define ISS_NSEC_SHT 12 349 350 static sin_t sin_null; /* Zero address for quick clears */ 351 static sin6_t sin6_null; /* Zero address for quick clears */ 352 353 /* 354 * This implementation follows the 4.3BSD interpretation of the urgent 355 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 356 * incompatible changes in protocols like telnet and rlogin. 357 */ 358 #define TCP_OLD_URP_INTERPRETATION 1 359 360 /* 361 * Since tcp_listener is not cleared atomically with tcp_detached 362 * being cleared we need this extra bit to tell a detached connection 363 * apart from one that is in the process of being accepted. 364 */ 365 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 366 (TCP_IS_DETACHED(tcp) && \ 367 (!(tcp)->tcp_hard_binding)) 368 369 /* 370 * TCP reassembly macros. We hide starting and ending sequence numbers in 371 * b_next and b_prev of messages on the reassembly queue. The messages are 372 * chained using b_cont. These macros are used in tcp_reass() so we don't 373 * have to see the ugly casts and assignments. 374 */ 375 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 376 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 377 (mblk_t *)(uintptr_t)(u)) 378 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 379 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 380 (mblk_t *)(uintptr_t)(u)) 381 382 /* 383 * Implementation of TCP Timers. 384 * ============================= 385 * 386 * INTERFACE: 387 * 388 * There are two basic functions dealing with tcp timers: 389 * 390 * timeout_id_t tcp_timeout(connp, func, time) 391 * clock_t tcp_timeout_cancel(connp, timeout_id) 392 * TCP_TIMER_RESTART(tcp, intvl) 393 * 394 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 395 * after 'time' ticks passed. The function called by timeout() must adhere to 396 * the same restrictions as a driver soft interrupt handler - it must not sleep 397 * or call other functions that might sleep. The value returned is the opaque 398 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 399 * cancel the request. The call to tcp_timeout() may fail in which case it 400 * returns zero. This is different from the timeout(9F) function which never 401 * fails. 402 * 403 * The call-back function 'func' always receives 'connp' as its single 404 * argument. It is always executed in the squeue corresponding to the tcp 405 * structure. The tcp structure is guaranteed to be present at the time the 406 * call-back is called. 407 * 408 * NOTE: The call-back function 'func' is never called if tcp is in 409 * the TCPS_CLOSED state. 410 * 411 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 412 * request. locks acquired by the call-back routine should not be held across 413 * the call to tcp_timeout_cancel() or a deadlock may result. 414 * 415 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 416 * Otherwise, it returns an integer value greater than or equal to 0. In 417 * particular, if the call-back function is already placed on the squeue, it can 418 * not be canceled. 419 * 420 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 421 * within squeue context corresponding to the tcp instance. Since the 422 * call-back is also called via the same squeue, there are no race 423 * conditions described in untimeout(9F) manual page since all calls are 424 * strictly serialized. 425 * 426 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 427 * stored in tcp_timer_tid and starts a new one using 428 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 429 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 430 * field. 431 * 432 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 433 * call-back may still be called, so it is possible tcp_timer() will be 434 * called several times. This should not be a problem since tcp_timer() 435 * should always check the tcp instance state. 436 * 437 * 438 * IMPLEMENTATION: 439 * 440 * TCP timers are implemented using three-stage process. The call to 441 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 442 * when the timer expires. The tcp_timer_callback() arranges the call of the 443 * tcp_timer_handler() function via squeue corresponding to the tcp 444 * instance. The tcp_timer_handler() calls actual requested timeout call-back 445 * and passes tcp instance as an argument to it. Information is passed between 446 * stages using the tcp_timer_t structure which contains the connp pointer, the 447 * tcp call-back to call and the timeout id returned by the timeout(9F). 448 * 449 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 450 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 451 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 452 * returns the pointer to this mblk. 453 * 454 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 455 * looks like a normal mblk without actual dblk attached to it. 456 * 457 * To optimize performance each tcp instance holds a small cache of timer 458 * mblocks. In the current implementation it caches up to two timer mblocks per 459 * tcp instance. The cache is preserved over tcp frees and is only freed when 460 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 461 * timer processing happens on a corresponding squeue, the cache manipulation 462 * does not require any locks. Experiments show that majority of timer mblocks 463 * allocations are satisfied from the tcp cache and do not involve kmem calls. 464 * 465 * The tcp_timeout() places a refhold on the connp instance which guarantees 466 * that it will be present at the time the call-back function fires. The 467 * tcp_timer_handler() drops the reference after calling the call-back, so the 468 * call-back function does not need to manipulate the references explicitly. 469 */ 470 471 typedef struct tcp_timer_s { 472 conn_t *connp; 473 void (*tcpt_proc)(void *); 474 callout_id_t tcpt_tid; 475 } tcp_timer_t; 476 477 static kmem_cache_t *tcp_timercache; 478 kmem_cache_t *tcp_sack_info_cache; 479 480 /* 481 * For scalability, we must not run a timer for every TCP connection 482 * in TIME_WAIT state. To see why, consider (for time wait interval of 483 * 4 minutes): 484 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 485 * 486 * This list is ordered by time, so you need only delete from the head 487 * until you get to entries which aren't old enough to delete yet. 488 * The list consists of only the detached TIME_WAIT connections. 489 * 490 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 491 * becomes detached TIME_WAIT (either by changing the state and already 492 * being detached or the other way around). This means that the TIME_WAIT 493 * state can be extended (up to doubled) if the connection doesn't become 494 * detached for a long time. 495 * 496 * The list manipulations (including tcp_time_wait_next/prev) 497 * are protected by the tcp_time_wait_lock. The content of the 498 * detached TIME_WAIT connections is protected by the normal perimeters. 499 * 500 * This list is per squeue and squeues are shared across the tcp_stack_t's. 501 * Things on tcp_time_wait_head remain associated with the tcp_stack_t 502 * and conn_netstack. 503 * The tcp_t's that are added to tcp_free_list are disassociated and 504 * have NULL tcp_tcps and conn_netstack pointers. 505 */ 506 typedef struct tcp_squeue_priv_s { 507 kmutex_t tcp_time_wait_lock; 508 callout_id_t tcp_time_wait_tid; 509 tcp_t *tcp_time_wait_head; 510 tcp_t *tcp_time_wait_tail; 511 tcp_t *tcp_free_list; 512 uint_t tcp_free_list_cnt; 513 } tcp_squeue_priv_t; 514 515 /* 516 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 517 * Running it every 5 seconds seems to give the best results. 518 */ 519 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 520 521 /* 522 * To prevent memory hog, limit the number of entries in tcp_free_list 523 * to 1% of available memory / number of cpus 524 */ 525 uint_t tcp_free_list_max_cnt = 0; 526 527 #define TCP_XMIT_LOWATER 4096 528 #define TCP_XMIT_HIWATER 49152 529 #define TCP_RECV_LOWATER 2048 530 #define TCP_RECV_HIWATER 128000 531 532 /* 533 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 534 */ 535 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 536 537 #define TIDUSZ 4096 /* transport interface data unit size */ 538 539 /* 540 * Bind hash list size and has function. It has to be a power of 2 for 541 * hashing. 542 */ 543 #define TCP_BIND_FANOUT_SIZE 512 544 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 545 546 /* 547 * Size of acceptor hash list. It has to be a power of 2 for hashing. 548 */ 549 #define TCP_ACCEPTOR_FANOUT_SIZE 256 550 551 #ifdef _ILP32 552 #define TCP_ACCEPTOR_HASH(accid) \ 553 (((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 554 #else 555 #define TCP_ACCEPTOR_HASH(accid) \ 556 ((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 557 #endif /* _ILP32 */ 558 559 #define IP_ADDR_CACHE_SIZE 2048 560 #define IP_ADDR_CACHE_HASH(faddr) \ 561 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 562 563 /* 564 * If there is a limit set on the number of connections allowed per each 565 * listener, the following struct is used to store that counter. This needs 566 * to be separated from the listener since the listener can go away before 567 * all the connections are gone. When the struct is allocated, tlc_cnt is set 568 * to 1. When the listener goes away, tlc_cnt is decremented by one. And 569 * the last connection (or the listener) which decrements tlc_cnt to zero 570 * frees the struct. 571 * 572 * tlc_max is the threshold value tcps_conn_listen_port. It is set when the 573 * tcp_listen_cnt_t is allocated. 574 * 575 * tlc_report_time stores the time when cmn_err() is called to report that the 576 * max has been exceeeded. Report is done at most once every 577 * TCP_TLC_REPORT_INTERVAL mins for a listener. 578 * 579 * tlc_drop stores the number of connection attempt dropped because the 580 * limit has reached. 581 */ 582 typedef struct tcp_listen_cnt_s { 583 uint32_t tlc_max; 584 uint32_t tlc_cnt; 585 int64_t tlc_report_time; 586 uint32_t tlc_drop; 587 } tcp_listen_cnt_t; 588 589 #define TCP_TLC_REPORT_INTERVAL (1 * MINUTES) 590 591 #define TCP_DECR_LISTEN_CNT(tcp) \ 592 { \ 593 ASSERT((tcp)->tcp_listen_cnt->tlc_cnt > 0); \ 594 if (atomic_add_32_nv(&(tcp)->tcp_listen_cnt->tlc_cnt, -1) == 0) \ 595 kmem_free((tcp)->tcp_listen_cnt, sizeof (tcp_listen_cnt_t)); \ 596 (tcp)->tcp_listen_cnt = NULL; \ 597 } 598 599 /* Minimum number of connections per listener. */ 600 uint32_t tcp_min_conn_listener = 2; 601 602 /* 603 * Linked list struct to store listener connection limit configuration per 604 * IP stack. 605 */ 606 typedef struct tcp_listener_s { 607 in_port_t tl_port; 608 uint32_t tl_ratio; 609 list_node_t tl_link; 610 } tcp_listener_t; 611 612 /* 613 * The shift factor applied to tcp_mss to decide if the peer sends us a 614 * valid initial receive window. By default, if the peer receive window 615 * is smaller than 1 MSS (shift factor is 0), it is considered as invalid. 616 */ 617 uint32_t tcp_init_wnd_shft = 0; 618 619 /* Control whether TCP can enter defensive mode when under memory pressure. */ 620 boolean_t tcp_do_reclaim = B_TRUE; 621 622 /* 623 * When the system is under memory pressure, stack variable tcps_reclaim is 624 * true, we shorten the connection timeout abort interval to tcp_early_abort 625 * seconds. 626 */ 627 uint32_t tcp_early_abort = 30; 628 629 /* 630 * TCP options struct returned from tcp_parse_options. 631 */ 632 typedef struct tcp_opt_s { 633 uint32_t tcp_opt_mss; 634 uint32_t tcp_opt_wscale; 635 uint32_t tcp_opt_ts_val; 636 uint32_t tcp_opt_ts_ecr; 637 tcp_t *tcp; 638 } tcp_opt_t; 639 640 /* 641 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 642 */ 643 644 #ifdef _BIG_ENDIAN 645 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 646 (TCPOPT_TSTAMP << 8) | 10) 647 #else 648 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 649 (TCPOPT_NOP << 8) | TCPOPT_NOP) 650 #endif 651 652 /* 653 * Flags returned from tcp_parse_options. 654 */ 655 #define TCP_OPT_MSS_PRESENT 1 656 #define TCP_OPT_WSCALE_PRESENT 2 657 #define TCP_OPT_TSTAMP_PRESENT 4 658 #define TCP_OPT_SACK_OK_PRESENT 8 659 #define TCP_OPT_SACK_PRESENT 16 660 661 /* TCP option length */ 662 #define TCPOPT_NOP_LEN 1 663 #define TCPOPT_MAXSEG_LEN 4 664 #define TCPOPT_WS_LEN 3 665 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 666 #define TCPOPT_TSTAMP_LEN 10 667 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 668 #define TCPOPT_SACK_OK_LEN 2 669 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 670 #define TCPOPT_REAL_SACK_LEN 4 671 #define TCPOPT_MAX_SACK_LEN 36 672 #define TCPOPT_HEADER_LEN 2 673 674 /* TCP cwnd burst factor. */ 675 #define TCP_CWND_INFINITE 65535 676 #define TCP_CWND_SS 3 677 #define TCP_CWND_NORMAL 5 678 679 /* Maximum TCP initial cwin (start/restart). */ 680 #define TCP_MAX_INIT_CWND 8 681 682 /* 683 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 684 * either tcp_slow_start_initial or tcp_slow_start_after idle 685 * depending on the caller. If the upper layer has not used the 686 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 687 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 688 * If the upper layer has changed set the tcp_init_cwnd, just use 689 * it to calculate the tcp_cwnd. 690 */ 691 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 692 { \ 693 if ((tcp)->tcp_init_cwnd == 0) { \ 694 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 695 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 696 } else { \ 697 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 698 } \ 699 tcp->tcp_cwnd_cnt = 0; \ 700 } 701 702 /* TCP Timer control structure */ 703 typedef struct tcpt_s { 704 pfv_t tcpt_pfv; /* The routine we are to call */ 705 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 706 } tcpt_t; 707 708 /* 709 * Functions called directly via squeue having a prototype of edesc_t. 710 */ 711 void tcp_input_listener(void *arg, mblk_t *mp, void *arg2, 712 ip_recv_attr_t *ira); 713 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2, 714 ip_recv_attr_t *dummy); 715 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2, 716 ip_recv_attr_t *dummy); 717 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2, 718 ip_recv_attr_t *dummy); 719 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2, 720 ip_recv_attr_t *dummy); 721 void tcp_input_data(void *arg, mblk_t *mp, void *arg2, 722 ip_recv_attr_t *ira); 723 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2, 724 ip_recv_attr_t *dummy); 725 void tcp_output(void *arg, mblk_t *mp, void *arg2, 726 ip_recv_attr_t *dummy); 727 void tcp_output_urgent(void *arg, mblk_t *mp, void *arg2, 728 ip_recv_attr_t *dummy); 729 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, 730 ip_recv_attr_t *dummy); 731 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2, 732 ip_recv_attr_t *dummy); 733 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, 734 ip_recv_attr_t *dummy); 735 static void tcp_send_synack(void *arg, mblk_t *mp, void *arg2, 736 ip_recv_attr_t *dummy); 737 738 739 /* Prototype for TCP functions */ 740 static void tcp_random_init(void); 741 int tcp_random(void); 742 static void tcp_tli_accept(tcp_t *tcp, mblk_t *mp); 743 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 744 tcp_t *eager); 745 static int tcp_set_destination(tcp_t *tcp); 746 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 747 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 748 boolean_t user_specified); 749 static void tcp_closei_local(tcp_t *tcp); 750 static void tcp_close_detached(tcp_t *tcp); 751 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, 752 mblk_t *idmp, mblk_t **defermp, ip_recv_attr_t *ira); 753 static void tcp_tpi_connect(tcp_t *tcp, mblk_t *mp); 754 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 755 in_port_t dstport, uint_t srcid); 756 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 757 in_port_t dstport, uint32_t flowinfo, 758 uint_t srcid, uint32_t scope_id); 759 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 760 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 761 static char *tcp_display(tcp_t *tcp, char *, char); 762 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 763 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 764 static void tcp_eager_unlink(tcp_t *tcp); 765 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 766 int unixerr); 767 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 768 int tlierr, int unixerr); 769 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 770 cred_t *cr); 771 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 772 char *value, caddr_t cp, cred_t *cr); 773 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 774 char *value, caddr_t cp, cred_t *cr); 775 static int tcp_tpistate(tcp_t *tcp); 776 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 777 int caller_holds_lock); 778 static void tcp_bind_hash_remove(tcp_t *tcp); 779 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); 780 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 781 static void tcp_acceptor_hash_remove(tcp_t *tcp); 782 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 783 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 784 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 785 static void tcp_init_values(tcp_t *tcp); 786 static void tcp_ip_notify(tcp_t *tcp); 787 static void tcp_iss_init(tcp_t *tcp); 788 static void tcp_keepalive_killer(void *arg); 789 static int tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt); 790 static void tcp_mss_set(tcp_t *tcp, uint32_t size); 791 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 792 int *do_disconnectp, int *t_errorp, int *sys_errorp); 793 static boolean_t tcp_allow_connopt_set(int level, int name); 794 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 795 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 796 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, 797 tcp_stack_t *); 798 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 799 caddr_t cp, cred_t *cr); 800 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 801 caddr_t cp, cred_t *cr); 802 static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); 803 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 804 caddr_t cp, cred_t *cr); 805 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 806 static void tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt); 807 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 808 static void tcp_reass_timer(void *arg); 809 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 810 static void tcp_reinit(tcp_t *tcp); 811 static void tcp_reinit_values(tcp_t *tcp); 812 813 static uint_t tcp_rwnd_reopen(tcp_t *tcp); 814 static uint_t tcp_rcv_drain(tcp_t *tcp); 815 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 816 static boolean_t tcp_send_rst_chk(tcp_stack_t *); 817 static void tcp_ss_rexmit(tcp_t *tcp); 818 static mblk_t *tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp, 819 ip_recv_attr_t *); 820 static void tcp_process_options(tcp_t *, tcpha_t *); 821 static void tcp_rsrv(queue_t *q); 822 static int tcp_snmp_state(tcp_t *tcp); 823 static void tcp_timer(void *arg); 824 static void tcp_timer_callback(void *); 825 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 826 boolean_t random); 827 static in_port_t tcp_get_next_priv_port(const tcp_t *); 828 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 829 static void tcp_wput_fallback(queue_t *q, mblk_t *mp); 830 void tcp_tpi_accept(queue_t *q, mblk_t *mp); 831 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 832 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 833 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 834 static int tcp_send(tcp_t *tcp, const int mss, 835 const int total_hdr_len, const int tcp_hdr_len, 836 const int num_sack_blk, int *usable, uint_t *snxt, 837 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time); 838 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 839 int num_sack_blk); 840 static void tcp_wsrv(queue_t *q); 841 static int tcp_xmit_end(tcp_t *tcp); 842 static void tcp_ack_timer(void *arg); 843 static mblk_t *tcp_ack_mp(tcp_t *tcp); 844 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 845 uint32_t seq, uint32_t ack, int ctl, ip_recv_attr_t *, 846 ip_stack_t *, conn_t *); 847 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 848 uint32_t ack, int ctl); 849 static void tcp_set_rto(tcp_t *, time_t); 850 static void tcp_icmp_input(void *, mblk_t *, void *, ip_recv_attr_t *); 851 static void tcp_icmp_error_ipv6(tcp_t *, mblk_t *, ip_recv_attr_t *); 852 static boolean_t tcp_verifyicmp(conn_t *, void *, icmph_t *, icmp6_t *, 853 ip_recv_attr_t *); 854 static int tcp_build_hdrs(tcp_t *); 855 static void tcp_time_wait_append(tcp_t *tcp); 856 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 857 uint32_t seg_seq, uint32_t seg_ack, int seg_len, tcpha_t *tcpha, 858 ip_recv_attr_t *ira); 859 boolean_t tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp); 860 static boolean_t tcp_zcopy_check(tcp_t *); 861 static void tcp_zcopy_notify(tcp_t *); 862 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, boolean_t); 863 static void tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa); 864 static void tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only); 865 static void tcp_update_zcopy(tcp_t *tcp); 866 static void tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t, 867 ixa_notify_arg_t); 868 static void tcp_rexmit_after_error(tcp_t *tcp); 869 static void tcp_send_data(tcp_t *, mblk_t *); 870 extern mblk_t *tcp_timermp_alloc(int); 871 extern void tcp_timermp_free(tcp_t *); 872 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 873 static void tcp_stop_lingering(tcp_t *tcp); 874 static void tcp_close_linger_timeout(void *arg); 875 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 876 static void tcp_stack_fini(netstackid_t stackid, void *arg); 877 static void *tcp_g_kstat_init(tcp_g_stat_t *); 878 static void tcp_g_kstat_fini(kstat_t *); 879 static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); 880 static void tcp_kstat_fini(netstackid_t, kstat_t *); 881 static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); 882 static void tcp_kstat2_fini(netstackid_t, kstat_t *); 883 static int tcp_kstat_update(kstat_t *kp, int rw); 884 static mblk_t *tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 885 ip_recv_attr_t *ira); 886 static mblk_t *tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp, 887 ip_recv_attr_t *ira); 888 static int tcp_squeue_switch(int); 889 890 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 891 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 892 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 893 static int tcp_tpi_close(queue_t *, int); 894 static int tcp_tpi_close_accept(queue_t *); 895 896 static void tcp_squeue_add(squeue_t *); 897 static void tcp_setcred_data(mblk_t *, ip_recv_attr_t *); 898 899 extern void tcp_kssl_input(tcp_t *, mblk_t *, cred_t *); 900 901 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy); 902 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2, 903 ip_recv_attr_t *dummy); 904 905 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t, 906 sock_upper_handle_t, cred_t *); 907 static int tcp_listen(sock_lower_handle_t, int, cred_t *); 908 static int tcp_do_listen(conn_t *, struct sockaddr *, socklen_t, int, cred_t *, 909 boolean_t); 910 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t, 911 cred_t *, pid_t); 912 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *, 913 boolean_t); 914 static int tcp_do_unbind(conn_t *); 915 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *, 916 boolean_t); 917 918 static void tcp_ulp_newconn(conn_t *, conn_t *, mblk_t *); 919 920 static uint32_t tcp_find_listener_conf(tcp_stack_t *, in_port_t); 921 static int tcp_listener_conf_get(queue_t *, mblk_t *, caddr_t, cred_t *); 922 static int tcp_listener_conf_add(queue_t *, mblk_t *, char *, caddr_t, 923 cred_t *); 924 static int tcp_listener_conf_del(queue_t *, mblk_t *, char *, caddr_t, 925 cred_t *); 926 static void tcp_listener_conf_cleanup(tcp_stack_t *); 927 928 /* 929 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 930 * 931 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 932 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 933 * (defined in tcp.h) needs to be filled in and passed into the kernel 934 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 935 * structure contains the four-tuple of a TCP connection and a range of TCP 936 * states (specified by ac_start and ac_end). The use of wildcard addresses 937 * and ports is allowed. Connections with a matching four tuple and a state 938 * within the specified range will be aborted. The valid states for the 939 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 940 * inclusive. 941 * 942 * An application which has its connection aborted by this ioctl will receive 943 * an error that is dependent on the connection state at the time of the abort. 944 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 945 * though a RST packet has been received. If the connection state is equal to 946 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 947 * and all resources associated with the connection will be freed. 948 */ 949 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 950 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 951 static void tcp_ioctl_abort_handler(void *arg, mblk_t *mp, void *arg2, 952 ip_recv_attr_t *dummy); 953 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); 954 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 955 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 956 boolean_t, tcp_stack_t *); 957 958 static struct module_info tcp_rinfo = { 959 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 960 }; 961 962 static struct module_info tcp_winfo = { 963 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 964 }; 965 966 /* 967 * Entry points for TCP as a device. The normal case which supports 968 * the TCP functionality. 969 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 970 */ 971 struct qinit tcp_rinitv4 = { 972 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 973 }; 974 975 struct qinit tcp_rinitv6 = { 976 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 977 }; 978 979 struct qinit tcp_winit = { 980 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 981 }; 982 983 /* Initial entry point for TCP in socket mode. */ 984 struct qinit tcp_sock_winit = { 985 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 986 }; 987 988 /* TCP entry point during fallback */ 989 struct qinit tcp_fallback_sock_winit = { 990 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 991 }; 992 993 /* 994 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 995 * an accept. Avoid allocating data structures since eager has already 996 * been created. 997 */ 998 struct qinit tcp_acceptor_rinit = { 999 NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo 1000 }; 1001 1002 struct qinit tcp_acceptor_winit = { 1003 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1004 }; 1005 1006 /* For AF_INET aka /dev/tcp */ 1007 struct streamtab tcpinfov4 = { 1008 &tcp_rinitv4, &tcp_winit 1009 }; 1010 1011 /* For AF_INET6 aka /dev/tcp6 */ 1012 struct streamtab tcpinfov6 = { 1013 &tcp_rinitv6, &tcp_winit 1014 }; 1015 1016 sock_downcalls_t sock_tcp_downcalls; 1017 1018 /* Setable only in /etc/system. Move to ndd? */ 1019 boolean_t tcp_icmp_source_quench = B_FALSE; 1020 1021 /* 1022 * Following assumes TPI alignment requirements stay along 32 bit 1023 * boundaries 1024 */ 1025 #define ROUNDUP32(x) \ 1026 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1027 1028 /* Template for response to info request. */ 1029 static struct T_info_ack tcp_g_t_info_ack = { 1030 T_INFO_ACK, /* PRIM_type */ 1031 0, /* TSDU_size */ 1032 T_INFINITE, /* ETSDU_size */ 1033 T_INVALID, /* CDATA_size */ 1034 T_INVALID, /* DDATA_size */ 1035 sizeof (sin_t), /* ADDR_size */ 1036 0, /* OPT_size - not initialized here */ 1037 TIDUSZ, /* TIDU_size */ 1038 T_COTS_ORD, /* SERV_type */ 1039 TCPS_IDLE, /* CURRENT_state */ 1040 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1041 }; 1042 1043 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1044 T_INFO_ACK, /* PRIM_type */ 1045 0, /* TSDU_size */ 1046 T_INFINITE, /* ETSDU_size */ 1047 T_INVALID, /* CDATA_size */ 1048 T_INVALID, /* DDATA_size */ 1049 sizeof (sin6_t), /* ADDR_size */ 1050 0, /* OPT_size - not initialized here */ 1051 TIDUSZ, /* TIDU_size */ 1052 T_COTS_ORD, /* SERV_type */ 1053 TCPS_IDLE, /* CURRENT_state */ 1054 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1055 }; 1056 1057 #define MS 1L 1058 #define SECONDS (1000 * MS) 1059 #define MINUTES (60 * SECONDS) 1060 #define HOURS (60 * MINUTES) 1061 #define DAYS (24 * HOURS) 1062 1063 #define PARAM_MAX (~(uint32_t)0) 1064 1065 /* Max size IP datagram is 64k - 1 */ 1066 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcpha_t))) 1067 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcpha_t))) 1068 /* Max of the above */ 1069 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1070 1071 /* Largest TCP port number */ 1072 #define TCP_MAX_PORT (64 * 1024 - 1) 1073 1074 /* 1075 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1076 * layer header. It has to be a multiple of 4. 1077 */ 1078 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1079 #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val 1080 1081 #define MB (1024 * 1024) 1082 1083 /* 1084 * All of these are alterable, within the min/max values given, at run time. 1085 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1086 * per the TCP spec. 1087 */ 1088 /* BEGIN CSTYLED */ 1089 static tcpparam_t lcl_tcp_param_arr[] = { 1090 /*min max value name */ 1091 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1092 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1093 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1094 { 1, 1024, 1, "tcp_conn_req_min" }, 1095 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1096 { 128, (1<<30), 1*MB, "tcp_cwnd_max" }, 1097 { 0, 10, 0, "tcp_debug" }, 1098 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1099 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1100 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1101 { 500*MS, PARAM_MAX, 5*MINUTES, "tcp_ip_abort_interval"}, 1102 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1103 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1104 { 1, 255, 64, "tcp_ipv4_ttl"}, 1105 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1106 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1107 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1108 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1109 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1110 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1111 { 1*MS, 20*SECONDS, 1*SECONDS, "tcp_rexmit_interval_initial"}, 1112 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1113 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1114 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1115 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1116 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1117 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1118 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1119 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1120 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1121 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1122 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1123 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1124 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1125 { 8192, (1<<30), 1*MB, "tcp_max_buf"}, 1126 /* 1127 * Question: What default value should I set for tcp_strong_iss? 1128 */ 1129 { 0, 2, 1, "tcp_strong_iss"}, 1130 { 0, 65536, 20, "tcp_rtt_updates"}, 1131 { 0, 1, 1, "tcp_wscale_always"}, 1132 { 0, 1, 0, "tcp_tstamp_always"}, 1133 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1134 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1135 { 0, 16, 2, "tcp_deferred_acks_max"}, 1136 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1137 { 1, 4, 4, "tcp_slow_start_initial"}, 1138 { 0, 2, 2, "tcp_sack_permitted"}, 1139 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1140 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1141 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1142 { 0, 1, 0, "tcp_rev_src_routes"}, 1143 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1144 { 0, 16, 8, "tcp_local_dacks_max"}, 1145 { 0, 2, 1, "tcp_ecn_permitted"}, 1146 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1147 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1148 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1149 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1150 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1151 { 0, 1, 0, "tcp_dev_flow_ctl"}, 1152 { 0, PARAM_MAX, 100*SECONDS, "tcp_reass_timeout"} 1153 }; 1154 /* END CSTYLED */ 1155 1156 /* Round up the value to the nearest mss. */ 1157 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1158 1159 /* 1160 * Set ECN capable transport (ECT) code point in IP header. 1161 * 1162 * Note that there are 2 ECT code points '01' and '10', which are called 1163 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1164 * point ECT(0) for TCP as described in RFC 2481. 1165 */ 1166 #define SET_ECT(tcp, iph) \ 1167 if ((tcp)->tcp_connp->conn_ipversion == IPV4_VERSION) { \ 1168 /* We need to clear the code point first. */ \ 1169 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1170 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1171 } else { \ 1172 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1173 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1174 } 1175 1176 /* 1177 * The format argument to pass to tcp_display(). 1178 * DISP_PORT_ONLY means that the returned string has only port info. 1179 * DISP_ADDR_AND_PORT means that the returned string also contains the 1180 * remote and local IP address. 1181 */ 1182 #define DISP_PORT_ONLY 1 1183 #define DISP_ADDR_AND_PORT 2 1184 1185 #define IS_VMLOANED_MBLK(mp) \ 1186 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1187 1188 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1189 1190 /* 1191 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 1192 * tunable settable via NDD. Otherwise, the per-connection behavior is 1193 * determined dynamically during tcp_set_destination(), which is the default. 1194 */ 1195 boolean_t tcp_static_maxpsz = B_FALSE; 1196 1197 /* Setable in /etc/system */ 1198 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1199 uint32_t tcp_random_anon_port = 1; 1200 1201 /* 1202 * To reach to an eager in Q0 which can be dropped due to an incoming 1203 * new SYN request when Q0 is full, a new doubly linked list is 1204 * introduced. This list allows to select an eager from Q0 in O(1) time. 1205 * This is needed to avoid spending too much time walking through the 1206 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1207 * this new list has to be a member of Q0. 1208 * This list is headed by listener's tcp_t. When the list is empty, 1209 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1210 * of listener's tcp_t point to listener's tcp_t itself. 1211 * 1212 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1213 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1214 * These macros do not affect the eager's membership to Q0. 1215 */ 1216 1217 1218 #define MAKE_DROPPABLE(listener, eager) \ 1219 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1220 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1221 = (eager); \ 1222 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1223 (eager)->tcp_eager_next_drop_q0 = \ 1224 (listener)->tcp_eager_next_drop_q0; \ 1225 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1226 } 1227 1228 #define MAKE_UNDROPPABLE(eager) \ 1229 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1230 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1231 = (eager)->tcp_eager_prev_drop_q0; \ 1232 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1233 = (eager)->tcp_eager_next_drop_q0; \ 1234 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1235 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1236 } 1237 1238 /* 1239 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1240 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1241 * data, TCP will not respond with an ACK. RFC 793 requires that 1242 * TCP responds with an ACK for such a bogus ACK. By not following 1243 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1244 * an attacker successfully spoofs an acceptable segment to our 1245 * peer; or when our peer is "confused." 1246 */ 1247 uint32_t tcp_drop_ack_unsent_cnt = 10; 1248 1249 /* 1250 * Hook functions to enable cluster networking 1251 * On non-clustered systems these vectors must always be NULL. 1252 */ 1253 1254 void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol, 1255 sa_family_t addr_family, uint8_t *laddrp, 1256 in_port_t lport, void *args) = NULL; 1257 void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol, 1258 sa_family_t addr_family, uint8_t *laddrp, 1259 in_port_t lport, void *args) = NULL; 1260 1261 int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol, 1262 boolean_t is_outgoing, 1263 sa_family_t addr_family, 1264 uint8_t *laddrp, in_port_t lport, 1265 uint8_t *faddrp, in_port_t fport, 1266 void *args) = NULL; 1267 void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol, 1268 sa_family_t addr_family, uint8_t *laddrp, 1269 in_port_t lport, uint8_t *faddrp, 1270 in_port_t fport, void *args) = NULL; 1271 1272 1273 /* 1274 * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err) 1275 */ 1276 #define CL_INET_CONNECT(connp, is_outgoing, err) { \ 1277 (err) = 0; \ 1278 if (cl_inet_connect2 != NULL) { \ 1279 /* \ 1280 * Running in cluster mode - register active connection \ 1281 * information \ 1282 */ \ 1283 if ((connp)->conn_ipversion == IPV4_VERSION) { \ 1284 if ((connp)->conn_laddr_v4 != 0) { \ 1285 (err) = (*cl_inet_connect2)( \ 1286 (connp)->conn_netstack->netstack_stackid,\ 1287 IPPROTO_TCP, is_outgoing, AF_INET, \ 1288 (uint8_t *)(&((connp)->conn_laddr_v4)),\ 1289 (in_port_t)(connp)->conn_lport, \ 1290 (uint8_t *)(&((connp)->conn_faddr_v4)),\ 1291 (in_port_t)(connp)->conn_fport, NULL); \ 1292 } \ 1293 } else { \ 1294 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1295 &(connp)->conn_laddr_v6)) { \ 1296 (err) = (*cl_inet_connect2)( \ 1297 (connp)->conn_netstack->netstack_stackid,\ 1298 IPPROTO_TCP, is_outgoing, AF_INET6, \ 1299 (uint8_t *)(&((connp)->conn_laddr_v6)),\ 1300 (in_port_t)(connp)->conn_lport, \ 1301 (uint8_t *)(&((connp)->conn_faddr_v6)), \ 1302 (in_port_t)(connp)->conn_fport, NULL); \ 1303 } \ 1304 } \ 1305 } \ 1306 } 1307 1308 #define CL_INET_DISCONNECT(connp) { \ 1309 if (cl_inet_disconnect != NULL) { \ 1310 /* \ 1311 * Running in cluster mode - deregister active \ 1312 * connection information \ 1313 */ \ 1314 if ((connp)->conn_ipversion == IPV4_VERSION) { \ 1315 if ((connp)->conn_laddr_v4 != 0) { \ 1316 (*cl_inet_disconnect)( \ 1317 (connp)->conn_netstack->netstack_stackid,\ 1318 IPPROTO_TCP, AF_INET, \ 1319 (uint8_t *)(&((connp)->conn_laddr_v4)),\ 1320 (in_port_t)(connp)->conn_lport, \ 1321 (uint8_t *)(&((connp)->conn_faddr_v4)),\ 1322 (in_port_t)(connp)->conn_fport, NULL); \ 1323 } \ 1324 } else { \ 1325 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1326 &(connp)->conn_laddr_v6)) { \ 1327 (*cl_inet_disconnect)( \ 1328 (connp)->conn_netstack->netstack_stackid,\ 1329 IPPROTO_TCP, AF_INET6, \ 1330 (uint8_t *)(&((connp)->conn_laddr_v6)),\ 1331 (in_port_t)(connp)->conn_lport, \ 1332 (uint8_t *)(&((connp)->conn_faddr_v6)), \ 1333 (in_port_t)(connp)->conn_fport, NULL); \ 1334 } \ 1335 } \ 1336 } \ 1337 } 1338 1339 /* 1340 * Steps to do when a tcp_t moves to TIME-WAIT state. 1341 * 1342 * This connection is done, we don't need to account for it. Decrement 1343 * the listener connection counter if needed. 1344 * 1345 * Unconditionally clear the exclusive binding bit so this TIME-WAIT 1346 * connection won't interfere with new ones. 1347 * 1348 * Start the TIME-WAIT timer. If upper layer has not closed the connection, 1349 * the timer is handled within the context of this tcp_t. When the timer 1350 * fires, tcp_clean_death() is called. If upper layer closes the connection 1351 * during this period, tcp_time_wait_append() will be called to add this 1352 * tcp_t to the global TIME-WAIT list. Note that this means that the 1353 * actual wait time in TIME-WAIT state will be longer than the 1354 * tcps_time_wait_interval since the period before upper layer closes the 1355 * connection is not accounted for when tcp_time_wait_append() is called. 1356 * 1357 * If uppser layer has closed the connection, call tcp_time_wait_append() 1358 * directly. 1359 */ 1360 #define SET_TIME_WAIT(tcps, tcp, connp) \ 1361 { \ 1362 (tcp)->tcp_state = TCPS_TIME_WAIT; \ 1363 if ((tcp)->tcp_listen_cnt != NULL) \ 1364 TCP_DECR_LISTEN_CNT(tcp); \ 1365 (connp)->conn_exclbind = 0; \ 1366 if (!TCP_IS_DETACHED(tcp)) { \ 1367 TCP_TIMER_RESTART(tcp, (tcps)->tcps_time_wait_interval); \ 1368 } else { \ 1369 tcp_time_wait_append(tcp); \ 1370 TCP_DBGSTAT(tcps, tcp_rput_time_wait); \ 1371 } \ 1372 } 1373 1374 /* 1375 * Cluster networking hook for traversing current connection list. 1376 * This routine is used to extract the current list of live connections 1377 * which must continue to to be dispatched to this node. 1378 */ 1379 int cl_tcp_walk_list(netstackid_t stack_id, 1380 int (*callback)(cl_tcp_info_t *, void *), void *arg); 1381 1382 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), 1383 void *arg, tcp_stack_t *tcps); 1384 1385 static void 1386 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh) 1387 { 1388 uint32_t default_threshold = SOCKET_RECVHIWATER >> 3; 1389 1390 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 1391 conn_t *connp = tcp->tcp_connp; 1392 struct sock_proto_props sopp; 1393 1394 /* 1395 * only increase rcvthresh upto default_threshold 1396 */ 1397 if (new_rcvthresh > default_threshold) 1398 new_rcvthresh = default_threshold; 1399 1400 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 1401 sopp.sopp_rcvthresh = new_rcvthresh; 1402 1403 (*connp->conn_upcalls->su_set_proto_props) 1404 (connp->conn_upper_handle, &sopp); 1405 } 1406 } 1407 /* 1408 * Figure out the value of window scale opton. Note that the rwnd is 1409 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1410 * We cannot find the scale value and then do a round up of tcp_rwnd 1411 * because the scale value may not be correct after that. 1412 * 1413 * Set the compiler flag to make this function inline. 1414 */ 1415 static void 1416 tcp_set_ws_value(tcp_t *tcp) 1417 { 1418 int i; 1419 uint32_t rwnd = tcp->tcp_rwnd; 1420 1421 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1422 i++, rwnd >>= 1) 1423 ; 1424 tcp->tcp_rcv_ws = i; 1425 } 1426 1427 /* 1428 * Remove a connection from the list of detached TIME_WAIT connections. 1429 * It returns B_FALSE if it can't remove the connection from the list 1430 * as the connection has already been removed from the list due to an 1431 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1432 */ 1433 static boolean_t 1434 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1435 { 1436 boolean_t locked = B_FALSE; 1437 1438 if (tcp_time_wait == NULL) { 1439 tcp_time_wait = *((tcp_squeue_priv_t **) 1440 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1441 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1442 locked = B_TRUE; 1443 } else { 1444 ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); 1445 } 1446 1447 if (tcp->tcp_time_wait_expire == 0) { 1448 ASSERT(tcp->tcp_time_wait_next == NULL); 1449 ASSERT(tcp->tcp_time_wait_prev == NULL); 1450 if (locked) 1451 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1452 return (B_FALSE); 1453 } 1454 ASSERT(TCP_IS_DETACHED(tcp)); 1455 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1456 1457 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1458 ASSERT(tcp->tcp_time_wait_prev == NULL); 1459 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1460 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1461 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1462 NULL; 1463 } else { 1464 tcp_time_wait->tcp_time_wait_tail = NULL; 1465 } 1466 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1467 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1468 ASSERT(tcp->tcp_time_wait_next == NULL); 1469 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1470 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1471 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1472 } else { 1473 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1474 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1475 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1476 tcp->tcp_time_wait_next; 1477 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1478 tcp->tcp_time_wait_prev; 1479 } 1480 tcp->tcp_time_wait_next = NULL; 1481 tcp->tcp_time_wait_prev = NULL; 1482 tcp->tcp_time_wait_expire = 0; 1483 1484 if (locked) 1485 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1486 return (B_TRUE); 1487 } 1488 1489 /* 1490 * Add a connection to the list of detached TIME_WAIT connections 1491 * and set its time to expire. 1492 */ 1493 static void 1494 tcp_time_wait_append(tcp_t *tcp) 1495 { 1496 tcp_stack_t *tcps = tcp->tcp_tcps; 1497 tcp_squeue_priv_t *tcp_time_wait = 1498 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1499 SQPRIVATE_TCP)); 1500 1501 tcp_timers_stop(tcp); 1502 1503 /* Freed above */ 1504 ASSERT(tcp->tcp_timer_tid == 0); 1505 ASSERT(tcp->tcp_ack_tid == 0); 1506 1507 /* must have happened at the time of detaching the tcp */ 1508 ASSERT(tcp->tcp_ptpahn == NULL); 1509 ASSERT(tcp->tcp_flow_stopped == 0); 1510 ASSERT(tcp->tcp_time_wait_next == NULL); 1511 ASSERT(tcp->tcp_time_wait_prev == NULL); 1512 ASSERT(tcp->tcp_time_wait_expire == NULL); 1513 ASSERT(tcp->tcp_listener == NULL); 1514 1515 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1516 /* 1517 * The value computed below in tcp->tcp_time_wait_expire may 1518 * appear negative or wrap around. That is ok since our 1519 * interest is only in the difference between the current lbolt 1520 * value and tcp->tcp_time_wait_expire. But the value should not 1521 * be zero, since it means the tcp is not in the TIME_WAIT list. 1522 * The corresponding comparison in tcp_time_wait_collector() uses 1523 * modular arithmetic. 1524 */ 1525 tcp->tcp_time_wait_expire += 1526 drv_usectohz(tcps->tcps_time_wait_interval * 1000); 1527 if (tcp->tcp_time_wait_expire == 0) 1528 tcp->tcp_time_wait_expire = 1; 1529 1530 ASSERT(TCP_IS_DETACHED(tcp)); 1531 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1532 ASSERT(tcp->tcp_time_wait_next == NULL); 1533 ASSERT(tcp->tcp_time_wait_prev == NULL); 1534 TCP_DBGSTAT(tcps, tcp_time_wait); 1535 1536 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1537 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1538 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1539 tcp_time_wait->tcp_time_wait_head = tcp; 1540 } else { 1541 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1542 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1543 TCPS_TIME_WAIT); 1544 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1545 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1546 } 1547 tcp_time_wait->tcp_time_wait_tail = tcp; 1548 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1549 } 1550 1551 /* ARGSUSED */ 1552 void 1553 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 1554 { 1555 conn_t *connp = (conn_t *)arg; 1556 tcp_t *tcp = connp->conn_tcp; 1557 tcp_stack_t *tcps = tcp->tcp_tcps; 1558 1559 ASSERT(tcp != NULL); 1560 if (tcp->tcp_state == TCPS_CLOSED) { 1561 return; 1562 } 1563 1564 ASSERT((connp->conn_family == AF_INET && 1565 connp->conn_ipversion == IPV4_VERSION) || 1566 (connp->conn_family == AF_INET6 && 1567 (connp->conn_ipversion == IPV4_VERSION || 1568 connp->conn_ipversion == IPV6_VERSION))); 1569 ASSERT(!tcp->tcp_listener); 1570 1571 TCP_STAT(tcps, tcp_time_wait_reap); 1572 ASSERT(TCP_IS_DETACHED(tcp)); 1573 1574 /* 1575 * Because they have no upstream client to rebind or tcp_close() 1576 * them later, we axe the connection here and now. 1577 */ 1578 tcp_close_detached(tcp); 1579 } 1580 1581 /* 1582 * Remove cached/latched IPsec references. 1583 */ 1584 void 1585 tcp_ipsec_cleanup(tcp_t *tcp) 1586 { 1587 conn_t *connp = tcp->tcp_connp; 1588 1589 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1590 1591 if (connp->conn_latch != NULL) { 1592 IPLATCH_REFRELE(connp->conn_latch); 1593 connp->conn_latch = NULL; 1594 } 1595 if (connp->conn_latch_in_policy != NULL) { 1596 IPPOL_REFRELE(connp->conn_latch_in_policy); 1597 connp->conn_latch_in_policy = NULL; 1598 } 1599 if (connp->conn_latch_in_action != NULL) { 1600 IPACT_REFRELE(connp->conn_latch_in_action); 1601 connp->conn_latch_in_action = NULL; 1602 } 1603 if (connp->conn_policy != NULL) { 1604 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 1605 connp->conn_policy = NULL; 1606 } 1607 } 1608 1609 /* 1610 * Cleaup before placing on free list. 1611 * Disassociate from the netstack/tcp_stack_t since the freelist 1612 * is per squeue and not per netstack. 1613 */ 1614 void 1615 tcp_cleanup(tcp_t *tcp) 1616 { 1617 mblk_t *mp; 1618 tcp_sack_info_t *tcp_sack_info; 1619 conn_t *connp = tcp->tcp_connp; 1620 tcp_stack_t *tcps = tcp->tcp_tcps; 1621 netstack_t *ns = tcps->tcps_netstack; 1622 mblk_t *tcp_rsrv_mp; 1623 1624 tcp_bind_hash_remove(tcp); 1625 1626 /* Cleanup that which needs the netstack first */ 1627 tcp_ipsec_cleanup(tcp); 1628 ixa_cleanup(connp->conn_ixa); 1629 1630 if (connp->conn_ht_iphc != NULL) { 1631 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 1632 connp->conn_ht_iphc = NULL; 1633 connp->conn_ht_iphc_allocated = 0; 1634 connp->conn_ht_iphc_len = 0; 1635 connp->conn_ht_ulp = NULL; 1636 connp->conn_ht_ulp_len = 0; 1637 tcp->tcp_ipha = NULL; 1638 tcp->tcp_ip6h = NULL; 1639 tcp->tcp_tcpha = NULL; 1640 } 1641 1642 /* We clear any IP_OPTIONS and extension headers */ 1643 ip_pkt_free(&connp->conn_xmit_ipp); 1644 1645 tcp_free(tcp); 1646 1647 /* Release any SSL context */ 1648 if (tcp->tcp_kssl_ent != NULL) { 1649 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1650 tcp->tcp_kssl_ent = NULL; 1651 } 1652 1653 if (tcp->tcp_kssl_ctx != NULL) { 1654 kssl_release_ctx(tcp->tcp_kssl_ctx); 1655 tcp->tcp_kssl_ctx = NULL; 1656 } 1657 tcp->tcp_kssl_pending = B_FALSE; 1658 1659 /* 1660 * Since we will bzero the entire structure, we need to 1661 * remove it and reinsert it in global hash list. We 1662 * know the walkers can't get to this conn because we 1663 * had set CONDEMNED flag earlier and checked reference 1664 * under conn_lock so walker won't pick it and when we 1665 * go the ipcl_globalhash_remove() below, no walker 1666 * can get to it. 1667 */ 1668 ipcl_globalhash_remove(connp); 1669 1670 /* Save some state */ 1671 mp = tcp->tcp_timercache; 1672 1673 tcp_sack_info = tcp->tcp_sack_info; 1674 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 1675 1676 if (connp->conn_cred != NULL) { 1677 crfree(connp->conn_cred); 1678 connp->conn_cred = NULL; 1679 } 1680 ipcl_conn_cleanup(connp); 1681 connp->conn_flags = IPCL_TCPCONN; 1682 1683 /* 1684 * Now it is safe to decrement the reference counts. 1685 * This might be the last reference on the netstack 1686 * in which case it will cause the freeing of the IP Instance. 1687 */ 1688 connp->conn_netstack = NULL; 1689 connp->conn_ixa->ixa_ipst = NULL; 1690 netstack_rele(ns); 1691 ASSERT(tcps != NULL); 1692 tcp->tcp_tcps = NULL; 1693 1694 bzero(tcp, sizeof (tcp_t)); 1695 1696 /* restore the state */ 1697 tcp->tcp_timercache = mp; 1698 1699 tcp->tcp_sack_info = tcp_sack_info; 1700 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1701 1702 tcp->tcp_connp = connp; 1703 1704 ASSERT(connp->conn_tcp == tcp); 1705 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1706 connp->conn_state_flags = CONN_INCIPIENT; 1707 ASSERT(connp->conn_proto == IPPROTO_TCP); 1708 ASSERT(connp->conn_ref == 1); 1709 } 1710 1711 /* 1712 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1713 * is done forwards from the head. 1714 * This walks all stack instances since 1715 * tcp_time_wait remains global across all stacks. 1716 */ 1717 /* ARGSUSED */ 1718 void 1719 tcp_time_wait_collector(void *arg) 1720 { 1721 tcp_t *tcp; 1722 clock_t now; 1723 mblk_t *mp; 1724 conn_t *connp; 1725 kmutex_t *lock; 1726 boolean_t removed; 1727 1728 squeue_t *sqp = (squeue_t *)arg; 1729 tcp_squeue_priv_t *tcp_time_wait = 1730 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1731 1732 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1733 tcp_time_wait->tcp_time_wait_tid = 0; 1734 1735 if (tcp_time_wait->tcp_free_list != NULL && 1736 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1737 TCP_G_STAT(tcp_freelist_cleanup); 1738 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1739 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1740 tcp->tcp_time_wait_next = NULL; 1741 tcp_time_wait->tcp_free_list_cnt--; 1742 ASSERT(tcp->tcp_tcps == NULL); 1743 CONN_DEC_REF(tcp->tcp_connp); 1744 } 1745 ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); 1746 } 1747 1748 /* 1749 * In order to reap time waits reliably, we should use a 1750 * source of time that is not adjustable by the user -- hence 1751 * the call to ddi_get_lbolt(). 1752 */ 1753 now = ddi_get_lbolt(); 1754 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1755 /* 1756 * Compare times using modular arithmetic, since 1757 * lbolt can wrapover. 1758 */ 1759 if ((now - tcp->tcp_time_wait_expire) < 0) { 1760 break; 1761 } 1762 1763 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1764 ASSERT(removed); 1765 1766 connp = tcp->tcp_connp; 1767 ASSERT(connp->conn_fanout != NULL); 1768 lock = &connp->conn_fanout->connf_lock; 1769 /* 1770 * This is essentially a TW reclaim fast path optimization for 1771 * performance where the timewait collector checks under the 1772 * fanout lock (so that no one else can get access to the 1773 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1774 * the classifier hash list. If ref count is indeed 2, we can 1775 * just remove the conn under the fanout lock and avoid 1776 * cleaning up the conn under the squeue, provided that 1777 * clustering callbacks are not enabled. If clustering is 1778 * enabled, we need to make the clustering callback before 1779 * setting the CONDEMNED flag and after dropping all locks and 1780 * so we forego this optimization and fall back to the slow 1781 * path. Also please see the comments in tcp_closei_local 1782 * regarding the refcnt logic. 1783 * 1784 * Since we are holding the tcp_time_wait_lock, its better 1785 * not to block on the fanout_lock because other connections 1786 * can't add themselves to time_wait list. So we do a 1787 * tryenter instead of mutex_enter. 1788 */ 1789 if (mutex_tryenter(lock)) { 1790 mutex_enter(&connp->conn_lock); 1791 if ((connp->conn_ref == 2) && 1792 (cl_inet_disconnect == NULL)) { 1793 ipcl_hash_remove_locked(connp, 1794 connp->conn_fanout); 1795 /* 1796 * Set the CONDEMNED flag now itself so that 1797 * the refcnt cannot increase due to any 1798 * walker. 1799 */ 1800 connp->conn_state_flags |= CONN_CONDEMNED; 1801 mutex_exit(lock); 1802 mutex_exit(&connp->conn_lock); 1803 if (tcp_time_wait->tcp_free_list_cnt < 1804 tcp_free_list_max_cnt) { 1805 /* Add to head of tcp_free_list */ 1806 mutex_exit( 1807 &tcp_time_wait->tcp_time_wait_lock); 1808 tcp_cleanup(tcp); 1809 ASSERT(connp->conn_latch == NULL); 1810 ASSERT(connp->conn_policy == NULL); 1811 ASSERT(tcp->tcp_tcps == NULL); 1812 ASSERT(connp->conn_netstack == NULL); 1813 1814 mutex_enter( 1815 &tcp_time_wait->tcp_time_wait_lock); 1816 tcp->tcp_time_wait_next = 1817 tcp_time_wait->tcp_free_list; 1818 tcp_time_wait->tcp_free_list = tcp; 1819 tcp_time_wait->tcp_free_list_cnt++; 1820 continue; 1821 } else { 1822 /* Do not add to tcp_free_list */ 1823 mutex_exit( 1824 &tcp_time_wait->tcp_time_wait_lock); 1825 tcp_bind_hash_remove(tcp); 1826 ixa_cleanup(tcp->tcp_connp->conn_ixa); 1827 tcp_ipsec_cleanup(tcp); 1828 CONN_DEC_REF(tcp->tcp_connp); 1829 } 1830 } else { 1831 CONN_INC_REF_LOCKED(connp); 1832 mutex_exit(lock); 1833 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1834 mutex_exit(&connp->conn_lock); 1835 /* 1836 * We can reuse the closemp here since conn has 1837 * detached (otherwise we wouldn't even be in 1838 * time_wait list). tcp_closemp_used can safely 1839 * be changed without taking a lock as no other 1840 * thread can concurrently access it at this 1841 * point in the connection lifecycle. 1842 */ 1843 1844 if (tcp->tcp_closemp.b_prev == NULL) 1845 tcp->tcp_closemp_used = B_TRUE; 1846 else 1847 cmn_err(CE_PANIC, 1848 "tcp_timewait_collector: " 1849 "concurrent use of tcp_closemp: " 1850 "connp %p tcp %p\n", (void *)connp, 1851 (void *)tcp); 1852 1853 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1854 mp = &tcp->tcp_closemp; 1855 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1856 tcp_timewait_output, connp, NULL, 1857 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1858 } 1859 } else { 1860 mutex_enter(&connp->conn_lock); 1861 CONN_INC_REF_LOCKED(connp); 1862 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1863 mutex_exit(&connp->conn_lock); 1864 /* 1865 * We can reuse the closemp here since conn has 1866 * detached (otherwise we wouldn't even be in 1867 * time_wait list). tcp_closemp_used can safely 1868 * be changed without taking a lock as no other 1869 * thread can concurrently access it at this 1870 * point in the connection lifecycle. 1871 */ 1872 1873 if (tcp->tcp_closemp.b_prev == NULL) 1874 tcp->tcp_closemp_used = B_TRUE; 1875 else 1876 cmn_err(CE_PANIC, "tcp_timewait_collector: " 1877 "concurrent use of tcp_closemp: " 1878 "connp %p tcp %p\n", (void *)connp, 1879 (void *)tcp); 1880 1881 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1882 mp = &tcp->tcp_closemp; 1883 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1884 tcp_timewait_output, connp, NULL, 1885 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1886 } 1887 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1888 } 1889 1890 if (tcp_time_wait->tcp_free_list != NULL) 1891 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1892 1893 tcp_time_wait->tcp_time_wait_tid = 1894 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 1895 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 1896 CALLOUT_FLAG_ROUNDUP); 1897 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1898 } 1899 1900 /* 1901 * Reply to a clients T_CONN_RES TPI message. This function 1902 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1903 * on the acceptor STREAM and processed in tcp_accept_common(). 1904 * Read the block comment on top of tcp_input_listener(). 1905 */ 1906 static void 1907 tcp_tli_accept(tcp_t *listener, mblk_t *mp) 1908 { 1909 tcp_t *acceptor; 1910 tcp_t *eager; 1911 tcp_t *tcp; 1912 struct T_conn_res *tcr; 1913 t_uscalar_t acceptor_id; 1914 t_scalar_t seqnum; 1915 mblk_t *discon_mp = NULL; 1916 mblk_t *ok_mp; 1917 mblk_t *mp1; 1918 tcp_stack_t *tcps = listener->tcp_tcps; 1919 conn_t *econnp; 1920 1921 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1922 tcp_err_ack(listener, mp, TPROTO, 0); 1923 return; 1924 } 1925 tcr = (struct T_conn_res *)mp->b_rptr; 1926 1927 /* 1928 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1929 * read side queue of the streams device underneath us i.e. the 1930 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1931 * look it up in the queue_hash. Under LP64 it sends down the 1932 * minor_t of the accepting endpoint. 1933 * 1934 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1935 * fanout hash lock is held. 1936 * This prevents any thread from entering the acceptor queue from 1937 * below (since it has not been hard bound yet i.e. any inbound 1938 * packets will arrive on the listener conn_t and 1939 * go through the classifier). 1940 * The CONN_INC_REF will prevent the acceptor from closing. 1941 * 1942 * XXX It is still possible for a tli application to send down data 1943 * on the accepting stream while another thread calls t_accept. 1944 * This should not be a problem for well-behaved applications since 1945 * the T_OK_ACK is sent after the queue swapping is completed. 1946 * 1947 * If the accepting fd is the same as the listening fd, avoid 1948 * queue hash lookup since that will return an eager listener in a 1949 * already established state. 1950 */ 1951 acceptor_id = tcr->ACCEPTOR_id; 1952 mutex_enter(&listener->tcp_eager_lock); 1953 if (listener->tcp_acceptor_id == acceptor_id) { 1954 eager = listener->tcp_eager_next_q; 1955 /* only count how many T_CONN_INDs so don't count q0 */ 1956 if ((listener->tcp_conn_req_cnt_q != 1) || 1957 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1958 mutex_exit(&listener->tcp_eager_lock); 1959 tcp_err_ack(listener, mp, TBADF, 0); 1960 return; 1961 } 1962 if (listener->tcp_conn_req_cnt_q0 != 0) { 1963 /* Throw away all the eagers on q0. */ 1964 tcp_eager_cleanup(listener, 1); 1965 } 1966 if (listener->tcp_syn_defense) { 1967 listener->tcp_syn_defense = B_FALSE; 1968 if (listener->tcp_ip_addr_cache != NULL) { 1969 kmem_free(listener->tcp_ip_addr_cache, 1970 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1971 listener->tcp_ip_addr_cache = NULL; 1972 } 1973 } 1974 /* 1975 * Transfer tcp_conn_req_max to the eager so that when 1976 * a disconnect occurs we can revert the endpoint to the 1977 * listen state. 1978 */ 1979 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1980 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1981 /* 1982 * Get a reference on the acceptor just like the 1983 * tcp_acceptor_hash_lookup below. 1984 */ 1985 acceptor = listener; 1986 CONN_INC_REF(acceptor->tcp_connp); 1987 } else { 1988 acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); 1989 if (acceptor == NULL) { 1990 if (listener->tcp_connp->conn_debug) { 1991 (void) strlog(TCP_MOD_ID, 0, 1, 1992 SL_ERROR|SL_TRACE, 1993 "tcp_accept: did not find acceptor 0x%x\n", 1994 acceptor_id); 1995 } 1996 mutex_exit(&listener->tcp_eager_lock); 1997 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 1998 return; 1999 } 2000 /* 2001 * Verify acceptor state. The acceptable states for an acceptor 2002 * include TCPS_IDLE and TCPS_BOUND. 2003 */ 2004 switch (acceptor->tcp_state) { 2005 case TCPS_IDLE: 2006 /* FALLTHRU */ 2007 case TCPS_BOUND: 2008 break; 2009 default: 2010 CONN_DEC_REF(acceptor->tcp_connp); 2011 mutex_exit(&listener->tcp_eager_lock); 2012 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2013 return; 2014 } 2015 } 2016 2017 /* The listener must be in TCPS_LISTEN */ 2018 if (listener->tcp_state != TCPS_LISTEN) { 2019 CONN_DEC_REF(acceptor->tcp_connp); 2020 mutex_exit(&listener->tcp_eager_lock); 2021 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2022 return; 2023 } 2024 2025 /* 2026 * Rendezvous with an eager connection request packet hanging off 2027 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2028 * tcp structure when the connection packet arrived in 2029 * tcp_input_listener(). 2030 */ 2031 seqnum = tcr->SEQ_number; 2032 eager = listener; 2033 do { 2034 eager = eager->tcp_eager_next_q; 2035 if (eager == NULL) { 2036 CONN_DEC_REF(acceptor->tcp_connp); 2037 mutex_exit(&listener->tcp_eager_lock); 2038 tcp_err_ack(listener, mp, TBADSEQ, 0); 2039 return; 2040 } 2041 } while (eager->tcp_conn_req_seqnum != seqnum); 2042 mutex_exit(&listener->tcp_eager_lock); 2043 2044 /* 2045 * At this point, both acceptor and listener have 2 ref 2046 * that they begin with. Acceptor has one additional ref 2047 * we placed in lookup while listener has 3 additional 2048 * ref for being behind the squeue (tcp_accept() is 2049 * done on listener's squeue); being in classifier hash; 2050 * and eager's ref on listener. 2051 */ 2052 ASSERT(listener->tcp_connp->conn_ref >= 5); 2053 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2054 2055 /* 2056 * The eager at this point is set in its own squeue and 2057 * could easily have been killed (tcp_accept_finish will 2058 * deal with that) because of a TH_RST so we can only 2059 * ASSERT for a single ref. 2060 */ 2061 ASSERT(eager->tcp_connp->conn_ref >= 1); 2062 2063 /* 2064 * Pre allocate the discon_ind mblk also. tcp_accept_finish will 2065 * use it if something failed. 2066 */ 2067 discon_mp = allocb(MAX(sizeof (struct T_discon_ind), 2068 sizeof (struct stroptions)), BPRI_HI); 2069 if (discon_mp == NULL) { 2070 CONN_DEC_REF(acceptor->tcp_connp); 2071 CONN_DEC_REF(eager->tcp_connp); 2072 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2073 return; 2074 } 2075 2076 econnp = eager->tcp_connp; 2077 2078 /* Hold a copy of mp, in case reallocb fails */ 2079 if ((mp1 = copymsg(mp)) == NULL) { 2080 CONN_DEC_REF(acceptor->tcp_connp); 2081 CONN_DEC_REF(eager->tcp_connp); 2082 freemsg(discon_mp); 2083 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2084 return; 2085 } 2086 2087 tcr = (struct T_conn_res *)mp1->b_rptr; 2088 2089 /* 2090 * This is an expanded version of mi_tpi_ok_ack_alloc() 2091 * which allocates a larger mblk and appends the new 2092 * local address to the ok_ack. The address is copied by 2093 * soaccept() for getsockname(). 2094 */ 2095 { 2096 int extra; 2097 2098 extra = (econnp->conn_family == AF_INET) ? 2099 sizeof (sin_t) : sizeof (sin6_t); 2100 2101 /* 2102 * Try to re-use mp, if possible. Otherwise, allocate 2103 * an mblk and return it as ok_mp. In any case, mp 2104 * is no longer usable upon return. 2105 */ 2106 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2107 CONN_DEC_REF(acceptor->tcp_connp); 2108 CONN_DEC_REF(eager->tcp_connp); 2109 freemsg(discon_mp); 2110 /* Original mp has been freed by now, so use mp1 */ 2111 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2112 return; 2113 } 2114 2115 mp = NULL; /* We should never use mp after this point */ 2116 2117 switch (extra) { 2118 case sizeof (sin_t): { 2119 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2120 2121 ok_mp->b_wptr += extra; 2122 sin->sin_family = AF_INET; 2123 sin->sin_port = econnp->conn_lport; 2124 sin->sin_addr.s_addr = econnp->conn_laddr_v4; 2125 break; 2126 } 2127 case sizeof (sin6_t): { 2128 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2129 2130 ok_mp->b_wptr += extra; 2131 sin6->sin6_family = AF_INET6; 2132 sin6->sin6_port = econnp->conn_lport; 2133 sin6->sin6_addr = econnp->conn_laddr_v6; 2134 sin6->sin6_flowinfo = econnp->conn_flowinfo; 2135 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6) && 2136 (econnp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)) { 2137 sin6->sin6_scope_id = 2138 econnp->conn_ixa->ixa_scopeid; 2139 } else { 2140 sin6->sin6_scope_id = 0; 2141 } 2142 sin6->__sin6_src_id = 0; 2143 break; 2144 } 2145 default: 2146 break; 2147 } 2148 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2149 } 2150 2151 /* 2152 * If there are no options we know that the T_CONN_RES will 2153 * succeed. However, we can't send the T_OK_ACK upstream until 2154 * the tcp_accept_swap is done since it would be dangerous to 2155 * let the application start using the new fd prior to the swap. 2156 */ 2157 tcp_accept_swap(listener, acceptor, eager); 2158 2159 /* 2160 * tcp_accept_swap unlinks eager from listener but does not drop 2161 * the eager's reference on the listener. 2162 */ 2163 ASSERT(eager->tcp_listener == NULL); 2164 ASSERT(listener->tcp_connp->conn_ref >= 5); 2165 2166 /* 2167 * The eager is now associated with its own queue. Insert in 2168 * the hash so that the connection can be reused for a future 2169 * T_CONN_RES. 2170 */ 2171 tcp_acceptor_hash_insert(acceptor_id, eager); 2172 2173 /* 2174 * We now do the processing of options with T_CONN_RES. 2175 * We delay till now since we wanted to have queue to pass to 2176 * option processing routines that points back to the right 2177 * instance structure which does not happen until after 2178 * tcp_accept_swap(). 2179 * 2180 * Note: 2181 * The sanity of the logic here assumes that whatever options 2182 * are appropriate to inherit from listner=>eager are done 2183 * before this point, and whatever were to be overridden (or not) 2184 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2185 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2186 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2187 * This may not be true at this point in time but can be fixed 2188 * independently. This option processing code starts with 2189 * the instantiated acceptor instance and the final queue at 2190 * this point. 2191 */ 2192 2193 if (tcr->OPT_length != 0) { 2194 /* Options to process */ 2195 int t_error = 0; 2196 int sys_error = 0; 2197 int do_disconnect = 0; 2198 2199 if (tcp_conprim_opt_process(eager, mp1, 2200 &do_disconnect, &t_error, &sys_error) < 0) { 2201 eager->tcp_accept_error = 1; 2202 if (do_disconnect) { 2203 /* 2204 * An option failed which does not allow 2205 * connection to be accepted. 2206 * 2207 * We allow T_CONN_RES to succeed and 2208 * put a T_DISCON_IND on the eager queue. 2209 */ 2210 ASSERT(t_error == 0 && sys_error == 0); 2211 eager->tcp_send_discon_ind = 1; 2212 } else { 2213 ASSERT(t_error != 0); 2214 freemsg(ok_mp); 2215 /* 2216 * Original mp was either freed or set 2217 * to ok_mp above, so use mp1 instead. 2218 */ 2219 tcp_err_ack(listener, mp1, t_error, sys_error); 2220 goto finish; 2221 } 2222 } 2223 /* 2224 * Most likely success in setting options (except if 2225 * eager->tcp_send_discon_ind set). 2226 * mp1 option buffer represented by OPT_length/offset 2227 * potentially modified and contains results of setting 2228 * options at this point 2229 */ 2230 } 2231 2232 /* We no longer need mp1, since all options processing has passed */ 2233 freemsg(mp1); 2234 2235 putnext(listener->tcp_connp->conn_rq, ok_mp); 2236 2237 mutex_enter(&listener->tcp_eager_lock); 2238 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2239 tcp_t *tail; 2240 mblk_t *conn_ind; 2241 2242 /* 2243 * This path should not be executed if listener and 2244 * acceptor streams are the same. 2245 */ 2246 ASSERT(listener != acceptor); 2247 2248 tcp = listener->tcp_eager_prev_q0; 2249 /* 2250 * listener->tcp_eager_prev_q0 points to the TAIL of the 2251 * deferred T_conn_ind queue. We need to get to the head of 2252 * the queue in order to send up T_conn_ind the same order as 2253 * how the 3WHS is completed. 2254 */ 2255 while (tcp != listener) { 2256 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2257 break; 2258 else 2259 tcp = tcp->tcp_eager_prev_q0; 2260 } 2261 ASSERT(tcp != listener); 2262 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2263 ASSERT(conn_ind != NULL); 2264 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2265 2266 /* Move from q0 to q */ 2267 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2268 listener->tcp_conn_req_cnt_q0--; 2269 listener->tcp_conn_req_cnt_q++; 2270 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2271 tcp->tcp_eager_prev_q0; 2272 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2273 tcp->tcp_eager_next_q0; 2274 tcp->tcp_eager_prev_q0 = NULL; 2275 tcp->tcp_eager_next_q0 = NULL; 2276 tcp->tcp_conn_def_q0 = B_FALSE; 2277 2278 /* Make sure the tcp isn't in the list of droppables */ 2279 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2280 tcp->tcp_eager_prev_drop_q0 == NULL); 2281 2282 /* 2283 * Insert at end of the queue because sockfs sends 2284 * down T_CONN_RES in chronological order. Leaving 2285 * the older conn indications at front of the queue 2286 * helps reducing search time. 2287 */ 2288 tail = listener->tcp_eager_last_q; 2289 if (tail != NULL) 2290 tail->tcp_eager_next_q = tcp; 2291 else 2292 listener->tcp_eager_next_q = tcp; 2293 listener->tcp_eager_last_q = tcp; 2294 tcp->tcp_eager_next_q = NULL; 2295 mutex_exit(&listener->tcp_eager_lock); 2296 putnext(tcp->tcp_connp->conn_rq, conn_ind); 2297 } else { 2298 mutex_exit(&listener->tcp_eager_lock); 2299 } 2300 2301 /* 2302 * Done with the acceptor - free it 2303 * 2304 * Note: from this point on, no access to listener should be made 2305 * as listener can be equal to acceptor. 2306 */ 2307 finish: 2308 ASSERT(acceptor->tcp_detached); 2309 acceptor->tcp_connp->conn_rq = NULL; 2310 ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp)); 2311 acceptor->tcp_connp->conn_wq = NULL; 2312 (void) tcp_clean_death(acceptor, 0, 2); 2313 CONN_DEC_REF(acceptor->tcp_connp); 2314 2315 /* 2316 * We pass discon_mp to tcp_accept_finish to get on the right squeue. 2317 * 2318 * It will update the setting for sockfs/stream head and also take 2319 * care of any data that arrived before accept() wad called. 2320 * In case we already received a FIN then tcp_accept_finish will send up 2321 * the ordrel. It will also send up a window update if the window 2322 * has opened up. 2323 */ 2324 2325 /* 2326 * XXX: we currently have a problem if XTI application closes the 2327 * acceptor stream in between. This problem exists in on10-gate also 2328 * and is well know but nothing can be done short of major rewrite 2329 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2330 * eager same squeue as listener (we can distinguish non socket 2331 * listeners at the time of handling a SYN in tcp_input_listener) 2332 * and do most of the work that tcp_accept_finish does here itself 2333 * and then get behind the acceptor squeue to access the acceptor 2334 * queue. 2335 */ 2336 /* 2337 * We already have a ref on tcp so no need to do one before squeue_enter 2338 */ 2339 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, discon_mp, 2340 tcp_accept_finish, eager->tcp_connp, NULL, SQ_FILL, 2341 SQTAG_TCP_ACCEPT_FINISH); 2342 } 2343 2344 /* 2345 * Swap information between the eager and acceptor for a TLI/XTI client. 2346 * The sockfs accept is done on the acceptor stream and control goes 2347 * through tcp_tli_accept() and tcp_accept()/tcp_accept_swap() is not 2348 * called. In either case, both the eager and listener are in their own 2349 * perimeter (squeue) and the code has to deal with potential race. 2350 * 2351 * See the block comment on top of tcp_accept() and tcp_tli_accept(). 2352 */ 2353 static void 2354 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2355 { 2356 conn_t *econnp, *aconnp; 2357 2358 ASSERT(eager->tcp_connp->conn_rq == listener->tcp_connp->conn_rq); 2359 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2360 ASSERT(!TCP_IS_SOCKET(acceptor)); 2361 ASSERT(!TCP_IS_SOCKET(eager)); 2362 ASSERT(!TCP_IS_SOCKET(listener)); 2363 2364 /* 2365 * Trusted Extensions may need to use a security label that is 2366 * different from the acceptor's label on MLP and MAC-Exempt 2367 * sockets. If this is the case, the required security label 2368 * already exists in econnp->conn_ixa->ixa_tsl. Since we make the 2369 * acceptor stream refer to econnp we atomatically get that label. 2370 */ 2371 2372 acceptor->tcp_detached = B_TRUE; 2373 /* 2374 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2375 * the acceptor id. 2376 */ 2377 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2378 2379 /* remove eager from listen list... */ 2380 mutex_enter(&listener->tcp_eager_lock); 2381 tcp_eager_unlink(eager); 2382 ASSERT(eager->tcp_eager_next_q == NULL && 2383 eager->tcp_eager_last_q == NULL); 2384 ASSERT(eager->tcp_eager_next_q0 == NULL && 2385 eager->tcp_eager_prev_q0 == NULL); 2386 mutex_exit(&listener->tcp_eager_lock); 2387 2388 econnp = eager->tcp_connp; 2389 aconnp = acceptor->tcp_connp; 2390 econnp->conn_rq = aconnp->conn_rq; 2391 econnp->conn_wq = aconnp->conn_wq; 2392 econnp->conn_rq->q_ptr = econnp; 2393 econnp->conn_wq->q_ptr = econnp; 2394 2395 /* 2396 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2397 * which might be a different squeue from our peer TCP instance. 2398 * For TCP Fusion, the peer expects that whenever tcp_detached is 2399 * clear, our TCP queues point to the acceptor's queues. Thus, use 2400 * membar_producer() to ensure that the assignments of conn_rq/conn_wq 2401 * above reach global visibility prior to the clearing of tcp_detached. 2402 */ 2403 membar_producer(); 2404 eager->tcp_detached = B_FALSE; 2405 2406 ASSERT(eager->tcp_ack_tid == 0); 2407 2408 econnp->conn_dev = aconnp->conn_dev; 2409 econnp->conn_minor_arena = aconnp->conn_minor_arena; 2410 2411 ASSERT(econnp->conn_minor_arena != NULL); 2412 if (econnp->conn_cred != NULL) 2413 crfree(econnp->conn_cred); 2414 econnp->conn_cred = aconnp->conn_cred; 2415 econnp->conn_ixa->ixa_cred = econnp->conn_cred; 2416 aconnp->conn_cred = NULL; 2417 econnp->conn_cpid = aconnp->conn_cpid; 2418 ASSERT(econnp->conn_netstack == aconnp->conn_netstack); 2419 ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); 2420 2421 econnp->conn_zoneid = aconnp->conn_zoneid; 2422 econnp->conn_allzones = aconnp->conn_allzones; 2423 econnp->conn_ixa->ixa_zoneid = aconnp->conn_ixa->ixa_zoneid; 2424 2425 econnp->conn_mac_mode = aconnp->conn_mac_mode; 2426 econnp->conn_zone_is_global = aconnp->conn_zone_is_global; 2427 aconnp->conn_mac_mode = CONN_MAC_DEFAULT; 2428 2429 /* Do the IPC initialization */ 2430 CONN_INC_REF(econnp); 2431 2432 /* Done with old IPC. Drop its ref on its connp */ 2433 CONN_DEC_REF(aconnp); 2434 } 2435 2436 2437 /* 2438 * Adapt to the information, such as rtt and rtt_sd, provided from the 2439 * DCE and IRE maintained by IP. 2440 * 2441 * Checks for multicast and broadcast destination address. 2442 * Returns zero if ok; an errno on failure. 2443 * 2444 * Note that the MSS calculation here is based on the info given in 2445 * the DCE and IRE. We do not do any calculation based on TCP options. They 2446 * will be handled in tcp_input_data() when TCP knows which options to use. 2447 * 2448 * Note on how TCP gets its parameters for a connection. 2449 * 2450 * When a tcp_t structure is allocated, it gets all the default parameters. 2451 * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd, 2452 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2453 * default. 2454 * 2455 * An incoming SYN with a multicast or broadcast destination address is dropped 2456 * in ip_fanout_v4/v6. 2457 * 2458 * An incoming SYN with a multicast or broadcast source address is always 2459 * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in 2460 * conn_connect. 2461 * The same logic in tcp_set_destination also serves to 2462 * reject an attempt to connect to a broadcast or multicast (destination) 2463 * address. 2464 */ 2465 static int 2466 tcp_set_destination(tcp_t *tcp) 2467 { 2468 uint32_t mss_max; 2469 uint32_t mss; 2470 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2471 conn_t *connp = tcp->tcp_connp; 2472 tcp_stack_t *tcps = tcp->tcp_tcps; 2473 iulp_t uinfo; 2474 int error; 2475 uint32_t flags; 2476 2477 flags = IPDF_LSO | IPDF_ZCOPY; 2478 /* 2479 * Make sure we have a dce for the destination to avoid dce_ident 2480 * contention for connected sockets. 2481 */ 2482 flags |= IPDF_UNIQUE_DCE; 2483 2484 if (!tcps->tcps_ignore_path_mtu) 2485 connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY; 2486 2487 /* Use conn_lock to satify ASSERT; tcp is already serialized */ 2488 mutex_enter(&connp->conn_lock); 2489 error = conn_connect(connp, &uinfo, flags); 2490 mutex_exit(&connp->conn_lock); 2491 if (error != 0) 2492 return (error); 2493 2494 error = tcp_build_hdrs(tcp); 2495 if (error != 0) 2496 return (error); 2497 2498 tcp->tcp_localnet = uinfo.iulp_localnet; 2499 2500 if (uinfo.iulp_rtt != 0) { 2501 clock_t rto; 2502 2503 tcp->tcp_rtt_sa = uinfo.iulp_rtt; 2504 tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd; 2505 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2506 tcps->tcps_rexmit_interval_extra + 2507 (tcp->tcp_rtt_sa >> 5); 2508 2509 if (rto > tcps->tcps_rexmit_interval_max) { 2510 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 2511 } else if (rto < tcps->tcps_rexmit_interval_min) { 2512 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2513 } else { 2514 tcp->tcp_rto = rto; 2515 } 2516 } 2517 if (uinfo.iulp_ssthresh != 0) 2518 tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh; 2519 else 2520 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2521 if (uinfo.iulp_spipe > 0) { 2522 connp->conn_sndbuf = MIN(uinfo.iulp_spipe, 2523 tcps->tcps_max_buf); 2524 if (tcps->tcps_snd_lowat_fraction != 0) { 2525 connp->conn_sndlowat = connp->conn_sndbuf / 2526 tcps->tcps_snd_lowat_fraction; 2527 } 2528 (void) tcp_maxpsz_set(tcp, B_TRUE); 2529 } 2530 /* 2531 * Note that up till now, acceptor always inherits receive 2532 * window from the listener. But if there is a metrics 2533 * associated with a host, we should use that instead of 2534 * inheriting it from listener. Thus we need to pass this 2535 * info back to the caller. 2536 */ 2537 if (uinfo.iulp_rpipe > 0) { 2538 tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe, 2539 tcps->tcps_max_buf); 2540 } 2541 2542 if (uinfo.iulp_rtomax > 0) { 2543 tcp->tcp_second_timer_threshold = 2544 uinfo.iulp_rtomax; 2545 } 2546 2547 /* 2548 * Use the metric option settings, iulp_tstamp_ok and 2549 * iulp_wscale_ok, only for active open. What this means 2550 * is that if the other side uses timestamp or window 2551 * scale option, TCP will also use those options. That 2552 * is for passive open. If the application sets a 2553 * large window, window scale is enabled regardless of 2554 * the value in iulp_wscale_ok. This is the behavior 2555 * since 2.6. So we keep it. 2556 * The only case left in passive open processing is the 2557 * check for SACK. 2558 * For ECN, it should probably be like SACK. But the 2559 * current value is binary, so we treat it like the other 2560 * cases. The metric only controls active open.For passive 2561 * open, the ndd param, tcp_ecn_permitted, controls the 2562 * behavior. 2563 */ 2564 if (!tcp_detached) { 2565 /* 2566 * The if check means that the following can only 2567 * be turned on by the metrics only IRE, but not off. 2568 */ 2569 if (uinfo.iulp_tstamp_ok) 2570 tcp->tcp_snd_ts_ok = B_TRUE; 2571 if (uinfo.iulp_wscale_ok) 2572 tcp->tcp_snd_ws_ok = B_TRUE; 2573 if (uinfo.iulp_sack == 2) 2574 tcp->tcp_snd_sack_ok = B_TRUE; 2575 if (uinfo.iulp_ecn_ok) 2576 tcp->tcp_ecn_ok = B_TRUE; 2577 } else { 2578 /* 2579 * Passive open. 2580 * 2581 * As above, the if check means that SACK can only be 2582 * turned on by the metric only IRE. 2583 */ 2584 if (uinfo.iulp_sack > 0) { 2585 tcp->tcp_snd_sack_ok = B_TRUE; 2586 } 2587 } 2588 2589 /* 2590 * XXX Note that currently, iulp_mtu can be as small as 68 2591 * because of PMTUd. So tcp_mss may go to negative if combined 2592 * length of all those options exceeds 28 bytes. But because 2593 * of the tcp_mss_min check below, we may not have a problem if 2594 * tcp_mss_min is of a reasonable value. The default is 1 so 2595 * the negative problem still exists. And the check defeats PMTUd. 2596 * In fact, if PMTUd finds that the MSS should be smaller than 2597 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2598 * value. 2599 * 2600 * We do not deal with that now. All those problems related to 2601 * PMTUd will be fixed later. 2602 */ 2603 ASSERT(uinfo.iulp_mtu != 0); 2604 mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu; 2605 2606 /* Sanity check for MSS value. */ 2607 if (connp->conn_ipversion == IPV4_VERSION) 2608 mss_max = tcps->tcps_mss_max_ipv4; 2609 else 2610 mss_max = tcps->tcps_mss_max_ipv6; 2611 2612 if (tcp->tcp_ipsec_overhead == 0) 2613 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2614 2615 mss -= tcp->tcp_ipsec_overhead; 2616 2617 if (mss < tcps->tcps_mss_min) 2618 mss = tcps->tcps_mss_min; 2619 if (mss > mss_max) 2620 mss = mss_max; 2621 2622 /* Note that this is the maximum MSS, excluding all options. */ 2623 tcp->tcp_mss = mss; 2624 2625 /* 2626 * Update the tcp connection with LSO capability. 2627 */ 2628 tcp_update_lso(tcp, connp->conn_ixa); 2629 2630 /* 2631 * Initialize the ISS here now that we have the full connection ID. 2632 * The RFC 1948 method of initial sequence number generation requires 2633 * knowledge of the full connection ID before setting the ISS. 2634 */ 2635 tcp_iss_init(tcp); 2636 2637 tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local); 2638 2639 /* 2640 * Make sure that conn is not marked incipient 2641 * for incoming connections. A blind 2642 * removal of incipient flag is cheaper than 2643 * check and removal. 2644 */ 2645 mutex_enter(&connp->conn_lock); 2646 connp->conn_state_flags &= ~CONN_INCIPIENT; 2647 mutex_exit(&connp->conn_lock); 2648 return (0); 2649 } 2650 2651 static void 2652 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp) 2653 { 2654 int error; 2655 conn_t *connp = tcp->tcp_connp; 2656 struct sockaddr *sa; 2657 mblk_t *mp1; 2658 struct T_bind_req *tbr; 2659 int backlog; 2660 socklen_t len; 2661 sin_t *sin; 2662 sin6_t *sin6; 2663 cred_t *cr; 2664 2665 /* 2666 * All Solaris components should pass a db_credp 2667 * for this TPI message, hence we ASSERT. 2668 * But in case there is some other M_PROTO that looks 2669 * like a TPI message sent by some other kernel 2670 * component, we check and return an error. 2671 */ 2672 cr = msg_getcred(mp, NULL); 2673 ASSERT(cr != NULL); 2674 if (cr == NULL) { 2675 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 2676 return; 2677 } 2678 2679 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 2680 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 2681 if (connp->conn_debug) { 2682 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2683 "tcp_tpi_bind: bad req, len %u", 2684 (uint_t)(mp->b_wptr - mp->b_rptr)); 2685 } 2686 tcp_err_ack(tcp, mp, TPROTO, 0); 2687 return; 2688 } 2689 /* Make sure the largest address fits */ 2690 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t), 1); 2691 if (mp1 == NULL) { 2692 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 2693 return; 2694 } 2695 mp = mp1; 2696 tbr = (struct T_bind_req *)mp->b_rptr; 2697 2698 backlog = tbr->CONIND_number; 2699 len = tbr->ADDR_length; 2700 2701 switch (len) { 2702 case 0: /* request for a generic port */ 2703 tbr->ADDR_offset = sizeof (struct T_bind_req); 2704 if (connp->conn_family == AF_INET) { 2705 tbr->ADDR_length = sizeof (sin_t); 2706 sin = (sin_t *)&tbr[1]; 2707 *sin = sin_null; 2708 sin->sin_family = AF_INET; 2709 sa = (struct sockaddr *)sin; 2710 len = sizeof (sin_t); 2711 mp->b_wptr = (uchar_t *)&sin[1]; 2712 } else { 2713 ASSERT(connp->conn_family == AF_INET6); 2714 tbr->ADDR_length = sizeof (sin6_t); 2715 sin6 = (sin6_t *)&tbr[1]; 2716 *sin6 = sin6_null; 2717 sin6->sin6_family = AF_INET6; 2718 sa = (struct sockaddr *)sin6; 2719 len = sizeof (sin6_t); 2720 mp->b_wptr = (uchar_t *)&sin6[1]; 2721 } 2722 break; 2723 2724 case sizeof (sin_t): /* Complete IPv4 address */ 2725 sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset, 2726 sizeof (sin_t)); 2727 break; 2728 2729 case sizeof (sin6_t): /* Complete IPv6 address */ 2730 sa = (struct sockaddr *)mi_offset_param(mp, 2731 tbr->ADDR_offset, sizeof (sin6_t)); 2732 break; 2733 2734 default: 2735 if (connp->conn_debug) { 2736 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2737 "tcp_tpi_bind: bad address length, %d", 2738 tbr->ADDR_length); 2739 } 2740 tcp_err_ack(tcp, mp, TBADADDR, 0); 2741 return; 2742 } 2743 2744 if (backlog > 0) { 2745 error = tcp_do_listen(connp, sa, len, backlog, DB_CRED(mp), 2746 tbr->PRIM_type != O_T_BIND_REQ); 2747 } else { 2748 error = tcp_do_bind(connp, sa, len, DB_CRED(mp), 2749 tbr->PRIM_type != O_T_BIND_REQ); 2750 } 2751 done: 2752 if (error > 0) { 2753 tcp_err_ack(tcp, mp, TSYSERR, error); 2754 } else if (error < 0) { 2755 tcp_err_ack(tcp, mp, -error, 0); 2756 } else { 2757 /* 2758 * Update port information as sockfs/tpi needs it for checking 2759 */ 2760 if (connp->conn_family == AF_INET) { 2761 sin = (sin_t *)sa; 2762 sin->sin_port = connp->conn_lport; 2763 } else { 2764 sin6 = (sin6_t *)sa; 2765 sin6->sin6_port = connp->conn_lport; 2766 } 2767 mp->b_datap->db_type = M_PCPROTO; 2768 tbr->PRIM_type = T_BIND_ACK; 2769 putnext(connp->conn_rq, mp); 2770 } 2771 } 2772 2773 /* 2774 * If the "bind_to_req_port_only" parameter is set, if the requested port 2775 * number is available, return it, If not return 0 2776 * 2777 * If "bind_to_req_port_only" parameter is not set and 2778 * If the requested port number is available, return it. If not, return 2779 * the first anonymous port we happen across. If no anonymous ports are 2780 * available, return 0. addr is the requested local address, if any. 2781 * 2782 * In either case, when succeeding update the tcp_t to record the port number 2783 * and insert it in the bind hash table. 2784 * 2785 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 2786 * without setting SO_REUSEADDR. This is needed so that they 2787 * can be viewed as two independent transport protocols. 2788 */ 2789 static in_port_t 2790 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 2791 int reuseaddr, boolean_t quick_connect, 2792 boolean_t bind_to_req_port_only, boolean_t user_specified) 2793 { 2794 /* number of times we have run around the loop */ 2795 int count = 0; 2796 /* maximum number of times to run around the loop */ 2797 int loopmax; 2798 conn_t *connp = tcp->tcp_connp; 2799 tcp_stack_t *tcps = tcp->tcp_tcps; 2800 2801 /* 2802 * Lookup for free addresses is done in a loop and "loopmax" 2803 * influences how long we spin in the loop 2804 */ 2805 if (bind_to_req_port_only) { 2806 /* 2807 * If the requested port is busy, don't bother to look 2808 * for a new one. Setting loop maximum count to 1 has 2809 * that effect. 2810 */ 2811 loopmax = 1; 2812 } else { 2813 /* 2814 * If the requested port is busy, look for a free one 2815 * in the anonymous port range. 2816 * Set loopmax appropriately so that one does not look 2817 * forever in the case all of the anonymous ports are in use. 2818 */ 2819 if (connp->conn_anon_priv_bind) { 2820 /* 2821 * loopmax = 2822 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 2823 */ 2824 loopmax = IPPORT_RESERVED - 2825 tcps->tcps_min_anonpriv_port; 2826 } else { 2827 loopmax = (tcps->tcps_largest_anon_port - 2828 tcps->tcps_smallest_anon_port + 1); 2829 } 2830 } 2831 do { 2832 uint16_t lport; 2833 tf_t *tbf; 2834 tcp_t *ltcp; 2835 conn_t *lconnp; 2836 2837 lport = htons(port); 2838 2839 /* 2840 * Ensure that the tcp_t is not currently in the bind hash. 2841 * Hold the lock on the hash bucket to ensure that 2842 * the duplicate check plus the insertion is an atomic 2843 * operation. 2844 * 2845 * This function does an inline lookup on the bind hash list 2846 * Make sure that we access only members of tcp_t 2847 * and that we don't look at tcp_tcp, since we are not 2848 * doing a CONN_INC_REF. 2849 */ 2850 tcp_bind_hash_remove(tcp); 2851 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; 2852 mutex_enter(&tbf->tf_lock); 2853 for (ltcp = tbf->tf_tcp; ltcp != NULL; 2854 ltcp = ltcp->tcp_bind_hash) { 2855 if (lport == ltcp->tcp_connp->conn_lport) 2856 break; 2857 } 2858 2859 for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) { 2860 boolean_t not_socket; 2861 boolean_t exclbind; 2862 2863 lconnp = ltcp->tcp_connp; 2864 2865 /* 2866 * On a labeled system, we must treat bindings to ports 2867 * on shared IP addresses by sockets with MAC exemption 2868 * privilege as being in all zones, as there's 2869 * otherwise no way to identify the right receiver. 2870 */ 2871 if (!IPCL_BIND_ZONE_MATCH(lconnp, connp)) 2872 continue; 2873 2874 /* 2875 * If TCP_EXCLBIND is set for either the bound or 2876 * binding endpoint, the semantics of bind 2877 * is changed according to the following. 2878 * 2879 * spec = specified address (v4 or v6) 2880 * unspec = unspecified address (v4 or v6) 2881 * A = specified addresses are different for endpoints 2882 * 2883 * bound bind to allowed 2884 * ------------------------------------- 2885 * unspec unspec no 2886 * unspec spec no 2887 * spec unspec no 2888 * spec spec yes if A 2889 * 2890 * For labeled systems, SO_MAC_EXEMPT behaves the same 2891 * as TCP_EXCLBIND, except that zoneid is ignored. 2892 * 2893 * Note: 2894 * 2895 * 1. Because of TLI semantics, an endpoint can go 2896 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 2897 * TCPS_BOUND, depending on whether it is originally 2898 * a listener or not. That is why we need to check 2899 * for states greater than or equal to TCPS_BOUND 2900 * here. 2901 * 2902 * 2. Ideally, we should only check for state equals 2903 * to TCPS_LISTEN. And the following check should be 2904 * added. 2905 * 2906 * if (ltcp->tcp_state == TCPS_LISTEN || 2907 * !reuseaddr || !lconnp->conn_reuseaddr) { 2908 * ... 2909 * } 2910 * 2911 * The semantics will be changed to this. If the 2912 * endpoint on the list is in state not equal to 2913 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 2914 * set, let the bind succeed. 2915 * 2916 * Because of (1), we cannot do that for TLI 2917 * endpoints. But we can do that for socket endpoints. 2918 * If in future, we can change this going back 2919 * semantics, we can use the above check for TLI also. 2920 */ 2921 not_socket = !(TCP_IS_SOCKET(ltcp) && 2922 TCP_IS_SOCKET(tcp)); 2923 exclbind = lconnp->conn_exclbind || 2924 connp->conn_exclbind; 2925 2926 if ((lconnp->conn_mac_mode != CONN_MAC_DEFAULT) || 2927 (connp->conn_mac_mode != CONN_MAC_DEFAULT) || 2928 (exclbind && (not_socket || 2929 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 2930 if (V6_OR_V4_INADDR_ANY( 2931 lconnp->conn_bound_addr_v6) || 2932 V6_OR_V4_INADDR_ANY(*laddr) || 2933 IN6_ARE_ADDR_EQUAL(laddr, 2934 &lconnp->conn_bound_addr_v6)) { 2935 break; 2936 } 2937 continue; 2938 } 2939 2940 /* 2941 * Check ipversion to allow IPv4 and IPv6 sockets to 2942 * have disjoint port number spaces, if *_EXCLBIND 2943 * is not set and only if the application binds to a 2944 * specific port. We use the same autoassigned port 2945 * number space for IPv4 and IPv6 sockets. 2946 */ 2947 if (connp->conn_ipversion != lconnp->conn_ipversion && 2948 bind_to_req_port_only) 2949 continue; 2950 2951 /* 2952 * Ideally, we should make sure that the source 2953 * address, remote address, and remote port in the 2954 * four tuple for this tcp-connection is unique. 2955 * However, trying to find out the local source 2956 * address would require too much code duplication 2957 * with IP, since IP needs needs to have that code 2958 * to support userland TCP implementations. 2959 */ 2960 if (quick_connect && 2961 (ltcp->tcp_state > TCPS_LISTEN) && 2962 ((connp->conn_fport != lconnp->conn_fport) || 2963 !IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, 2964 &lconnp->conn_faddr_v6))) 2965 continue; 2966 2967 if (!reuseaddr) { 2968 /* 2969 * No socket option SO_REUSEADDR. 2970 * If existing port is bound to 2971 * a non-wildcard IP address 2972 * and the requesting stream is 2973 * bound to a distinct 2974 * different IP addresses 2975 * (non-wildcard, also), keep 2976 * going. 2977 */ 2978 if (!V6_OR_V4_INADDR_ANY(*laddr) && 2979 !V6_OR_V4_INADDR_ANY( 2980 lconnp->conn_bound_addr_v6) && 2981 !IN6_ARE_ADDR_EQUAL(laddr, 2982 &lconnp->conn_bound_addr_v6)) 2983 continue; 2984 if (ltcp->tcp_state >= TCPS_BOUND) { 2985 /* 2986 * This port is being used and 2987 * its state is >= TCPS_BOUND, 2988 * so we can't bind to it. 2989 */ 2990 break; 2991 } 2992 } else { 2993 /* 2994 * socket option SO_REUSEADDR is set on the 2995 * binding tcp_t. 2996 * 2997 * If two streams are bound to 2998 * same IP address or both addr 2999 * and bound source are wildcards 3000 * (INADDR_ANY), we want to stop 3001 * searching. 3002 * We have found a match of IP source 3003 * address and source port, which is 3004 * refused regardless of the 3005 * SO_REUSEADDR setting, so we break. 3006 */ 3007 if (IN6_ARE_ADDR_EQUAL(laddr, 3008 &lconnp->conn_bound_addr_v6) && 3009 (ltcp->tcp_state == TCPS_LISTEN || 3010 ltcp->tcp_state == TCPS_BOUND)) 3011 break; 3012 } 3013 } 3014 if (ltcp != NULL) { 3015 /* The port number is busy */ 3016 mutex_exit(&tbf->tf_lock); 3017 } else { 3018 /* 3019 * This port is ours. Insert in fanout and mark as 3020 * bound to prevent others from getting the port 3021 * number. 3022 */ 3023 tcp->tcp_state = TCPS_BOUND; 3024 connp->conn_lport = htons(port); 3025 3026 ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( 3027 connp->conn_lport)] == tbf); 3028 tcp_bind_hash_insert(tbf, tcp, 1); 3029 3030 mutex_exit(&tbf->tf_lock); 3031 3032 /* 3033 * We don't want tcp_next_port_to_try to "inherit" 3034 * a port number supplied by the user in a bind. 3035 */ 3036 if (user_specified) 3037 return (port); 3038 3039 /* 3040 * This is the only place where tcp_next_port_to_try 3041 * is updated. After the update, it may or may not 3042 * be in the valid range. 3043 */ 3044 if (!connp->conn_anon_priv_bind) 3045 tcps->tcps_next_port_to_try = port + 1; 3046 return (port); 3047 } 3048 3049 if (connp->conn_anon_priv_bind) { 3050 port = tcp_get_next_priv_port(tcp); 3051 } else { 3052 if (count == 0 && user_specified) { 3053 /* 3054 * We may have to return an anonymous port. So 3055 * get one to start with. 3056 */ 3057 port = 3058 tcp_update_next_port( 3059 tcps->tcps_next_port_to_try, 3060 tcp, B_TRUE); 3061 user_specified = B_FALSE; 3062 } else { 3063 port = tcp_update_next_port(port + 1, tcp, 3064 B_FALSE); 3065 } 3066 } 3067 if (port == 0) 3068 break; 3069 3070 /* 3071 * Don't let this loop run forever in the case where 3072 * all of the anonymous ports are in use. 3073 */ 3074 } while (++count < loopmax); 3075 return (0); 3076 } 3077 3078 /* 3079 * tcp_clean_death / tcp_close_detached must not be called more than once 3080 * on a tcp. Thus every function that potentially calls tcp_clean_death 3081 * must check for the tcp state before calling tcp_clean_death. 3082 * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper, 3083 * tcp_timer_handler, all check for the tcp state. 3084 */ 3085 /* ARGSUSED */ 3086 void 3087 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2, 3088 ip_recv_attr_t *dummy) 3089 { 3090 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3091 3092 freemsg(mp); 3093 if (tcp->tcp_state > TCPS_BOUND) 3094 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, 3095 ETIMEDOUT, 5); 3096 } 3097 3098 /* 3099 * We are dying for some reason. Try to do it gracefully. (May be called 3100 * as writer.) 3101 * 3102 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3103 * done by a service procedure). 3104 * TBD - Should the return value distinguish between the tcp_t being 3105 * freed and it being reinitialized? 3106 */ 3107 static int 3108 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3109 { 3110 mblk_t *mp; 3111 queue_t *q; 3112 conn_t *connp = tcp->tcp_connp; 3113 tcp_stack_t *tcps = tcp->tcp_tcps; 3114 3115 TCP_CLD_STAT(tag); 3116 3117 #if TCP_TAG_CLEAN_DEATH 3118 tcp->tcp_cleandeathtag = tag; 3119 #endif 3120 3121 if (tcp->tcp_fused) 3122 tcp_unfuse(tcp); 3123 3124 if (tcp->tcp_linger_tid != 0 && 3125 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3126 tcp_stop_lingering(tcp); 3127 } 3128 3129 ASSERT(tcp != NULL); 3130 ASSERT((connp->conn_family == AF_INET && 3131 connp->conn_ipversion == IPV4_VERSION) || 3132 (connp->conn_family == AF_INET6 && 3133 (connp->conn_ipversion == IPV4_VERSION || 3134 connp->conn_ipversion == IPV6_VERSION))); 3135 3136 if (TCP_IS_DETACHED(tcp)) { 3137 if (tcp->tcp_hard_binding) { 3138 /* 3139 * Its an eager that we are dealing with. We close the 3140 * eager but in case a conn_ind has already gone to the 3141 * listener, let tcp_accept_finish() send a discon_ind 3142 * to the listener and drop the last reference. If the 3143 * listener doesn't even know about the eager i.e. the 3144 * conn_ind hasn't gone up, blow away the eager and drop 3145 * the last reference as well. If the conn_ind has gone 3146 * up, state should be BOUND. tcp_accept_finish 3147 * will figure out that the connection has received a 3148 * RST and will send a DISCON_IND to the application. 3149 */ 3150 tcp_closei_local(tcp); 3151 if (!tcp->tcp_tconnind_started) { 3152 CONN_DEC_REF(connp); 3153 } else { 3154 tcp->tcp_state = TCPS_BOUND; 3155 } 3156 } else { 3157 tcp_close_detached(tcp); 3158 } 3159 return (0); 3160 } 3161 3162 TCP_STAT(tcps, tcp_clean_death_nondetached); 3163 3164 /* 3165 * The connection is dead. Decrement listener connection counter if 3166 * necessary. 3167 */ 3168 if (tcp->tcp_listen_cnt != NULL) 3169 TCP_DECR_LISTEN_CNT(tcp); 3170 3171 q = connp->conn_rq; 3172 3173 /* Trash all inbound data */ 3174 if (!IPCL_IS_NONSTR(connp)) { 3175 ASSERT(q != NULL); 3176 flushq(q, FLUSHALL); 3177 } 3178 3179 /* 3180 * If we are at least part way open and there is error 3181 * (err==0 implies no error) 3182 * notify our client by a T_DISCON_IND. 3183 */ 3184 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3185 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3186 !TCP_IS_SOCKET(tcp)) { 3187 /* 3188 * Send M_FLUSH according to TPI. Because sockets will 3189 * (and must) ignore FLUSHR we do that only for TPI 3190 * endpoints and sockets in STREAMS mode. 3191 */ 3192 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3193 } 3194 if (connp->conn_debug) { 3195 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3196 "tcp_clean_death: discon err %d", err); 3197 } 3198 if (IPCL_IS_NONSTR(connp)) { 3199 /* Direct socket, use upcall */ 3200 (*connp->conn_upcalls->su_disconnected)( 3201 connp->conn_upper_handle, tcp->tcp_connid, err); 3202 } else { 3203 mp = mi_tpi_discon_ind(NULL, err, 0); 3204 if (mp != NULL) { 3205 putnext(q, mp); 3206 } else { 3207 if (connp->conn_debug) { 3208 (void) strlog(TCP_MOD_ID, 0, 1, 3209 SL_ERROR|SL_TRACE, 3210 "tcp_clean_death, sending M_ERROR"); 3211 } 3212 (void) putnextctl1(q, M_ERROR, EPROTO); 3213 } 3214 } 3215 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3216 /* SYN_SENT or SYN_RCVD */ 3217 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3218 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3219 /* ESTABLISHED or CLOSE_WAIT */ 3220 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3221 } 3222 } 3223 3224 tcp_reinit(tcp); 3225 if (IPCL_IS_NONSTR(connp)) 3226 (void) tcp_do_unbind(connp); 3227 3228 return (-1); 3229 } 3230 3231 /* 3232 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3233 * to expire, stop the wait and finish the close. 3234 */ 3235 static void 3236 tcp_stop_lingering(tcp_t *tcp) 3237 { 3238 clock_t delta = 0; 3239 tcp_stack_t *tcps = tcp->tcp_tcps; 3240 conn_t *connp = tcp->tcp_connp; 3241 3242 tcp->tcp_linger_tid = 0; 3243 if (tcp->tcp_state > TCPS_LISTEN) { 3244 tcp_acceptor_hash_remove(tcp); 3245 mutex_enter(&tcp->tcp_non_sq_lock); 3246 if (tcp->tcp_flow_stopped) { 3247 tcp_clrqfull(tcp); 3248 } 3249 mutex_exit(&tcp->tcp_non_sq_lock); 3250 3251 if (tcp->tcp_timer_tid != 0) { 3252 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3253 tcp->tcp_timer_tid = 0; 3254 } 3255 /* 3256 * Need to cancel those timers which will not be used when 3257 * TCP is detached. This has to be done before the conn_wq 3258 * is cleared. 3259 */ 3260 tcp_timers_stop(tcp); 3261 3262 tcp->tcp_detached = B_TRUE; 3263 connp->conn_rq = NULL; 3264 connp->conn_wq = NULL; 3265 3266 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3267 tcp_time_wait_append(tcp); 3268 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3269 goto finish; 3270 } 3271 3272 /* 3273 * If delta is zero the timer event wasn't executed and was 3274 * successfully canceled. In this case we need to restart it 3275 * with the minimal delta possible. 3276 */ 3277 if (delta >= 0) { 3278 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3279 delta ? delta : 1); 3280 } 3281 } else { 3282 tcp_closei_local(tcp); 3283 CONN_DEC_REF(connp); 3284 } 3285 finish: 3286 /* Signal closing thread that it can complete close */ 3287 mutex_enter(&tcp->tcp_closelock); 3288 tcp->tcp_detached = B_TRUE; 3289 connp->conn_rq = NULL; 3290 connp->conn_wq = NULL; 3291 3292 tcp->tcp_closed = 1; 3293 cv_signal(&tcp->tcp_closecv); 3294 mutex_exit(&tcp->tcp_closelock); 3295 } 3296 3297 /* 3298 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3299 * expires. 3300 */ 3301 static void 3302 tcp_close_linger_timeout(void *arg) 3303 { 3304 conn_t *connp = (conn_t *)arg; 3305 tcp_t *tcp = connp->conn_tcp; 3306 3307 tcp->tcp_client_errno = ETIMEDOUT; 3308 tcp_stop_lingering(tcp); 3309 } 3310 3311 static void 3312 tcp_close_common(conn_t *connp, int flags) 3313 { 3314 tcp_t *tcp = connp->conn_tcp; 3315 mblk_t *mp = &tcp->tcp_closemp; 3316 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 3317 mblk_t *bp; 3318 3319 ASSERT(connp->conn_ref >= 2); 3320 3321 /* 3322 * Mark the conn as closing. ipsq_pending_mp_add will not 3323 * add any mp to the pending mp list, after this conn has 3324 * started closing. 3325 */ 3326 mutex_enter(&connp->conn_lock); 3327 connp->conn_state_flags |= CONN_CLOSING; 3328 if (connp->conn_oper_pending_ill != NULL) 3329 conn_ioctl_cleanup_reqd = B_TRUE; 3330 CONN_INC_REF_LOCKED(connp); 3331 mutex_exit(&connp->conn_lock); 3332 tcp->tcp_closeflags = (uint8_t)flags; 3333 ASSERT(connp->conn_ref >= 3); 3334 3335 /* 3336 * tcp_closemp_used is used below without any protection of a lock 3337 * as we don't expect any one else to use it concurrently at this 3338 * point otherwise it would be a major defect. 3339 */ 3340 3341 if (mp->b_prev == NULL) 3342 tcp->tcp_closemp_used = B_TRUE; 3343 else 3344 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 3345 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 3346 3347 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 3348 3349 /* 3350 * Cleanup any queued ioctls here. This must be done before the wq/rq 3351 * are re-written by tcp_close_output(). 3352 */ 3353 if (conn_ioctl_cleanup_reqd) 3354 conn_ioctl_cleanup(connp); 3355 3356 /* 3357 * As CONN_CLOSING is set, no further ioctls should be passed down to 3358 * IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and 3359 * tcp_wput_iocdata). If the ioctl was queued on an ipsq, 3360 * conn_ioctl_cleanup should have found it and removed it. If the ioctl 3361 * was still in flight at the time, we wait for it here. See comments 3362 * for CONN_INC_IOCTLREF in ip.h for details. 3363 */ 3364 mutex_enter(&connp->conn_lock); 3365 while (connp->conn_ioctlref > 0) 3366 cv_wait(&connp->conn_cv, &connp->conn_lock); 3367 ASSERT(connp->conn_ioctlref == 0); 3368 ASSERT(connp->conn_oper_pending_ill == NULL); 3369 mutex_exit(&connp->conn_lock); 3370 3371 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 3372 NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3373 3374 mutex_enter(&tcp->tcp_closelock); 3375 while (!tcp->tcp_closed) { 3376 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 3377 /* 3378 * The cv_wait_sig() was interrupted. We now do the 3379 * following: 3380 * 3381 * 1) If the endpoint was lingering, we allow this 3382 * to be interrupted by cancelling the linger timeout 3383 * and closing normally. 3384 * 3385 * 2) Revert to calling cv_wait() 3386 * 3387 * We revert to using cv_wait() to avoid an 3388 * infinite loop which can occur if the calling 3389 * thread is higher priority than the squeue worker 3390 * thread and is bound to the same cpu. 3391 */ 3392 if (connp->conn_linger && connp->conn_lingertime > 0) { 3393 mutex_exit(&tcp->tcp_closelock); 3394 /* Entering squeue, bump ref count. */ 3395 CONN_INC_REF(connp); 3396 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 3397 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 3398 tcp_linger_interrupted, connp, NULL, 3399 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3400 mutex_enter(&tcp->tcp_closelock); 3401 } 3402 break; 3403 } 3404 } 3405 while (!tcp->tcp_closed) 3406 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 3407 mutex_exit(&tcp->tcp_closelock); 3408 3409 /* 3410 * In the case of listener streams that have eagers in the q or q0 3411 * we wait for the eagers to drop their reference to us. conn_rq and 3412 * conn_wq of the eagers point to our queues. By waiting for the 3413 * refcnt to drop to 1, we are sure that the eagers have cleaned 3414 * up their queue pointers and also dropped their references to us. 3415 */ 3416 if (tcp->tcp_wait_for_eagers) { 3417 mutex_enter(&connp->conn_lock); 3418 while (connp->conn_ref != 1) { 3419 cv_wait(&connp->conn_cv, &connp->conn_lock); 3420 } 3421 mutex_exit(&connp->conn_lock); 3422 } 3423 3424 connp->conn_cpid = NOPID; 3425 } 3426 3427 static int 3428 tcp_tpi_close(queue_t *q, int flags) 3429 { 3430 conn_t *connp; 3431 3432 ASSERT(WR(q)->q_next == NULL); 3433 3434 if (flags & SO_FALLBACK) { 3435 /* 3436 * stream is being closed while in fallback 3437 * simply free the resources that were allocated 3438 */ 3439 inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr)); 3440 qprocsoff(q); 3441 goto done; 3442 } 3443 3444 connp = Q_TO_CONN(q); 3445 /* 3446 * We are being closed as /dev/tcp or /dev/tcp6. 3447 */ 3448 tcp_close_common(connp, flags); 3449 3450 qprocsoff(q); 3451 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 3452 3453 /* 3454 * Drop IP's reference on the conn. This is the last reference 3455 * on the connp if the state was less than established. If the 3456 * connection has gone into timewait state, then we will have 3457 * one ref for the TCP and one more ref (total of two) for the 3458 * classifier connected hash list (a timewait connections stays 3459 * in connected hash till closed). 3460 * 3461 * We can't assert the references because there might be other 3462 * transient reference places because of some walkers or queued 3463 * packets in squeue for the timewait state. 3464 */ 3465 CONN_DEC_REF(connp); 3466 done: 3467 q->q_ptr = WR(q)->q_ptr = NULL; 3468 return (0); 3469 } 3470 3471 static int 3472 tcp_tpi_close_accept(queue_t *q) 3473 { 3474 vmem_t *minor_arena; 3475 dev_t conn_dev; 3476 3477 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 3478 3479 /* 3480 * We had opened an acceptor STREAM for sockfs which is 3481 * now being closed due to some error. 3482 */ 3483 qprocsoff(q); 3484 3485 minor_arena = (vmem_t *)WR(q)->q_ptr; 3486 conn_dev = (dev_t)RD(q)->q_ptr; 3487 ASSERT(minor_arena != NULL); 3488 ASSERT(conn_dev != 0); 3489 inet_minor_free(minor_arena, conn_dev); 3490 q->q_ptr = WR(q)->q_ptr = NULL; 3491 return (0); 3492 } 3493 3494 /* 3495 * Called by tcp_close() routine via squeue when lingering is 3496 * interrupted by a signal. 3497 */ 3498 3499 /* ARGSUSED */ 3500 static void 3501 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 3502 { 3503 conn_t *connp = (conn_t *)arg; 3504 tcp_t *tcp = connp->conn_tcp; 3505 3506 freeb(mp); 3507 if (tcp->tcp_linger_tid != 0 && 3508 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3509 tcp_stop_lingering(tcp); 3510 tcp->tcp_client_errno = EINTR; 3511 } 3512 } 3513 3514 /* 3515 * Called by streams close routine via squeues when our client blows off her 3516 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 3517 * connection politely" When SO_LINGER is set (with a non-zero linger time and 3518 * it is not a nonblocking socket) then this routine sleeps until the FIN is 3519 * acked. 3520 * 3521 * NOTE: tcp_close potentially returns error when lingering. 3522 * However, the stream head currently does not pass these errors 3523 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 3524 * errors to the application (from tsleep()) and not errors 3525 * like ECONNRESET caused by receiving a reset packet. 3526 */ 3527 3528 /* ARGSUSED */ 3529 static void 3530 tcp_close_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 3531 { 3532 char *msg; 3533 conn_t *connp = (conn_t *)arg; 3534 tcp_t *tcp = connp->conn_tcp; 3535 clock_t delta = 0; 3536 tcp_stack_t *tcps = tcp->tcp_tcps; 3537 3538 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 3539 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 3540 3541 mutex_enter(&tcp->tcp_eager_lock); 3542 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3543 /* Cleanup for listener */ 3544 tcp_eager_cleanup(tcp, 0); 3545 tcp->tcp_wait_for_eagers = 1; 3546 } 3547 mutex_exit(&tcp->tcp_eager_lock); 3548 3549 tcp->tcp_lso = B_FALSE; 3550 3551 msg = NULL; 3552 switch (tcp->tcp_state) { 3553 case TCPS_CLOSED: 3554 case TCPS_IDLE: 3555 case TCPS_BOUND: 3556 case TCPS_LISTEN: 3557 break; 3558 case TCPS_SYN_SENT: 3559 msg = "tcp_close, during connect"; 3560 break; 3561 case TCPS_SYN_RCVD: 3562 /* 3563 * Close during the connect 3-way handshake 3564 * but here there may or may not be pending data 3565 * already on queue. Process almost same as in 3566 * the ESTABLISHED state. 3567 */ 3568 /* FALLTHRU */ 3569 default: 3570 if (tcp->tcp_fused) 3571 tcp_unfuse(tcp); 3572 3573 /* 3574 * If SO_LINGER has set a zero linger time, abort the 3575 * connection with a reset. 3576 */ 3577 if (connp->conn_linger && connp->conn_lingertime == 0) { 3578 msg = "tcp_close, zero lingertime"; 3579 break; 3580 } 3581 3582 /* 3583 * Abort connection if there is unread data queued. 3584 */ 3585 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 3586 msg = "tcp_close, unread data"; 3587 break; 3588 } 3589 /* 3590 * We have done a qwait() above which could have possibly 3591 * drained more messages in turn causing transition to a 3592 * different state. Check whether we have to do the rest 3593 * of the processing or not. 3594 */ 3595 if (tcp->tcp_state <= TCPS_LISTEN) 3596 break; 3597 3598 /* 3599 * Transmit the FIN before detaching the tcp_t. 3600 * After tcp_detach returns this queue/perimeter 3601 * no longer owns the tcp_t thus others can modify it. 3602 */ 3603 (void) tcp_xmit_end(tcp); 3604 3605 /* 3606 * If lingering on close then wait until the fin is acked, 3607 * the SO_LINGER time passes, or a reset is sent/received. 3608 */ 3609 if (connp->conn_linger && connp->conn_lingertime > 0 && 3610 !(tcp->tcp_fin_acked) && 3611 tcp->tcp_state >= TCPS_ESTABLISHED) { 3612 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 3613 tcp->tcp_client_errno = EWOULDBLOCK; 3614 } else if (tcp->tcp_client_errno == 0) { 3615 3616 ASSERT(tcp->tcp_linger_tid == 0); 3617 3618 tcp->tcp_linger_tid = TCP_TIMER(tcp, 3619 tcp_close_linger_timeout, 3620 connp->conn_lingertime * hz); 3621 3622 /* tcp_close_linger_timeout will finish close */ 3623 if (tcp->tcp_linger_tid == 0) 3624 tcp->tcp_client_errno = ENOSR; 3625 else 3626 return; 3627 } 3628 3629 /* 3630 * Check if we need to detach or just close 3631 * the instance. 3632 */ 3633 if (tcp->tcp_state <= TCPS_LISTEN) 3634 break; 3635 } 3636 3637 /* 3638 * Make sure that no other thread will access the conn_rq of 3639 * this instance (through lookups etc.) as conn_rq will go 3640 * away shortly. 3641 */ 3642 tcp_acceptor_hash_remove(tcp); 3643 3644 mutex_enter(&tcp->tcp_non_sq_lock); 3645 if (tcp->tcp_flow_stopped) { 3646 tcp_clrqfull(tcp); 3647 } 3648 mutex_exit(&tcp->tcp_non_sq_lock); 3649 3650 if (tcp->tcp_timer_tid != 0) { 3651 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3652 tcp->tcp_timer_tid = 0; 3653 } 3654 /* 3655 * Need to cancel those timers which will not be used when 3656 * TCP is detached. This has to be done before the conn_wq 3657 * is set to NULL. 3658 */ 3659 tcp_timers_stop(tcp); 3660 3661 tcp->tcp_detached = B_TRUE; 3662 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3663 tcp_time_wait_append(tcp); 3664 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3665 ASSERT(connp->conn_ref >= 3); 3666 goto finish; 3667 } 3668 3669 /* 3670 * If delta is zero the timer event wasn't executed and was 3671 * successfully canceled. In this case we need to restart it 3672 * with the minimal delta possible. 3673 */ 3674 if (delta >= 0) 3675 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3676 delta ? delta : 1); 3677 3678 ASSERT(connp->conn_ref >= 3); 3679 goto finish; 3680 } 3681 3682 /* Detach did not complete. Still need to remove q from stream. */ 3683 if (msg) { 3684 if (tcp->tcp_state == TCPS_ESTABLISHED || 3685 tcp->tcp_state == TCPS_CLOSE_WAIT) 3686 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3687 if (tcp->tcp_state == TCPS_SYN_SENT || 3688 tcp->tcp_state == TCPS_SYN_RCVD) 3689 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3690 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 3691 } 3692 3693 tcp_closei_local(tcp); 3694 CONN_DEC_REF(connp); 3695 ASSERT(connp->conn_ref >= 2); 3696 3697 finish: 3698 mutex_enter(&tcp->tcp_closelock); 3699 /* 3700 * Don't change the queues in the case of a listener that has 3701 * eagers in its q or q0. It could surprise the eagers. 3702 * Instead wait for the eagers outside the squeue. 3703 */ 3704 if (!tcp->tcp_wait_for_eagers) { 3705 tcp->tcp_detached = B_TRUE; 3706 connp->conn_rq = NULL; 3707 connp->conn_wq = NULL; 3708 } 3709 3710 /* Signal tcp_close() to finish closing. */ 3711 tcp->tcp_closed = 1; 3712 cv_signal(&tcp->tcp_closecv); 3713 mutex_exit(&tcp->tcp_closelock); 3714 } 3715 3716 /* 3717 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 3718 * Some stream heads get upset if they see these later on as anything but NULL. 3719 */ 3720 static void 3721 tcp_close_mpp(mblk_t **mpp) 3722 { 3723 mblk_t *mp; 3724 3725 if ((mp = *mpp) != NULL) { 3726 do { 3727 mp->b_next = NULL; 3728 mp->b_prev = NULL; 3729 } while ((mp = mp->b_cont) != NULL); 3730 3731 mp = *mpp; 3732 *mpp = NULL; 3733 freemsg(mp); 3734 } 3735 } 3736 3737 /* Do detached close. */ 3738 static void 3739 tcp_close_detached(tcp_t *tcp) 3740 { 3741 if (tcp->tcp_fused) 3742 tcp_unfuse(tcp); 3743 3744 /* 3745 * Clustering code serializes TCP disconnect callbacks and 3746 * cluster tcp list walks by blocking a TCP disconnect callback 3747 * if a cluster tcp list walk is in progress. This ensures 3748 * accurate accounting of TCPs in the cluster code even though 3749 * the TCP list walk itself is not atomic. 3750 */ 3751 tcp_closei_local(tcp); 3752 CONN_DEC_REF(tcp->tcp_connp); 3753 } 3754 3755 /* 3756 * Stop all TCP timers, and free the timer mblks if requested. 3757 */ 3758 void 3759 tcp_timers_stop(tcp_t *tcp) 3760 { 3761 if (tcp->tcp_timer_tid != 0) { 3762 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3763 tcp->tcp_timer_tid = 0; 3764 } 3765 if (tcp->tcp_ka_tid != 0) { 3766 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 3767 tcp->tcp_ka_tid = 0; 3768 } 3769 if (tcp->tcp_ack_tid != 0) { 3770 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 3771 tcp->tcp_ack_tid = 0; 3772 } 3773 if (tcp->tcp_push_tid != 0) { 3774 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 3775 tcp->tcp_push_tid = 0; 3776 } 3777 if (tcp->tcp_reass_tid != 0) { 3778 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_reass_tid); 3779 tcp->tcp_reass_tid = 0; 3780 } 3781 } 3782 3783 /* 3784 * The tcp_t is going away. Remove it from all lists and set it 3785 * to TCPS_CLOSED. The freeing up of memory is deferred until 3786 * tcp_inactive. This is needed since a thread in tcp_rput might have 3787 * done a CONN_INC_REF on this structure before it was removed from the 3788 * hashes. 3789 */ 3790 static void 3791 tcp_closei_local(tcp_t *tcp) 3792 { 3793 conn_t *connp = tcp->tcp_connp; 3794 tcp_stack_t *tcps = tcp->tcp_tcps; 3795 3796 if (!TCP_IS_SOCKET(tcp)) 3797 tcp_acceptor_hash_remove(tcp); 3798 3799 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 3800 tcp->tcp_ibsegs = 0; 3801 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 3802 tcp->tcp_obsegs = 0; 3803 3804 /* 3805 * If we are an eager connection hanging off a listener that 3806 * hasn't formally accepted the connection yet, get off his 3807 * list and blow off any data that we have accumulated. 3808 */ 3809 if (tcp->tcp_listener != NULL) { 3810 tcp_t *listener = tcp->tcp_listener; 3811 mutex_enter(&listener->tcp_eager_lock); 3812 /* 3813 * tcp_tconnind_started == B_TRUE means that the 3814 * conn_ind has already gone to listener. At 3815 * this point, eager will be closed but we 3816 * leave it in listeners eager list so that 3817 * if listener decides to close without doing 3818 * accept, we can clean this up. In tcp_tli_accept 3819 * we take care of the case of accept on closed 3820 * eager. 3821 */ 3822 if (!tcp->tcp_tconnind_started) { 3823 tcp_eager_unlink(tcp); 3824 mutex_exit(&listener->tcp_eager_lock); 3825 /* 3826 * We don't want to have any pointers to the 3827 * listener queue, after we have released our 3828 * reference on the listener 3829 */ 3830 ASSERT(tcp->tcp_detached); 3831 connp->conn_rq = NULL; 3832 connp->conn_wq = NULL; 3833 CONN_DEC_REF(listener->tcp_connp); 3834 } else { 3835 mutex_exit(&listener->tcp_eager_lock); 3836 } 3837 } 3838 3839 /* Stop all the timers */ 3840 tcp_timers_stop(tcp); 3841 3842 if (tcp->tcp_state == TCPS_LISTEN) { 3843 if (tcp->tcp_ip_addr_cache) { 3844 kmem_free((void *)tcp->tcp_ip_addr_cache, 3845 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 3846 tcp->tcp_ip_addr_cache = NULL; 3847 } 3848 } 3849 3850 /* Decrement listerner connection counter if necessary. */ 3851 if (tcp->tcp_listen_cnt != NULL) 3852 TCP_DECR_LISTEN_CNT(tcp); 3853 3854 mutex_enter(&tcp->tcp_non_sq_lock); 3855 if (tcp->tcp_flow_stopped) 3856 tcp_clrqfull(tcp); 3857 mutex_exit(&tcp->tcp_non_sq_lock); 3858 3859 tcp_bind_hash_remove(tcp); 3860 /* 3861 * If the tcp_time_wait_collector (which runs outside the squeue) 3862 * is trying to remove this tcp from the time wait list, we will 3863 * block in tcp_time_wait_remove while trying to acquire the 3864 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 3865 * requires the ipcl_hash_remove to be ordered after the 3866 * tcp_time_wait_remove for the refcnt checks to work correctly. 3867 */ 3868 if (tcp->tcp_state == TCPS_TIME_WAIT) 3869 (void) tcp_time_wait_remove(tcp, NULL); 3870 CL_INET_DISCONNECT(connp); 3871 ipcl_hash_remove(connp); 3872 ixa_cleanup(connp->conn_ixa); 3873 3874 /* 3875 * Mark the conn as CONDEMNED 3876 */ 3877 mutex_enter(&connp->conn_lock); 3878 connp->conn_state_flags |= CONN_CONDEMNED; 3879 mutex_exit(&connp->conn_lock); 3880 3881 ASSERT(tcp->tcp_time_wait_next == NULL); 3882 ASSERT(tcp->tcp_time_wait_prev == NULL); 3883 ASSERT(tcp->tcp_time_wait_expire == 0); 3884 tcp->tcp_state = TCPS_CLOSED; 3885 3886 /* Release any SSL context */ 3887 if (tcp->tcp_kssl_ent != NULL) { 3888 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 3889 tcp->tcp_kssl_ent = NULL; 3890 } 3891 if (tcp->tcp_kssl_ctx != NULL) { 3892 kssl_release_ctx(tcp->tcp_kssl_ctx); 3893 tcp->tcp_kssl_ctx = NULL; 3894 } 3895 tcp->tcp_kssl_pending = B_FALSE; 3896 3897 tcp_ipsec_cleanup(tcp); 3898 } 3899 3900 /* 3901 * tcp is dying (called from ipcl_conn_destroy and error cases). 3902 * Free the tcp_t in either case. 3903 */ 3904 void 3905 tcp_free(tcp_t *tcp) 3906 { 3907 mblk_t *mp; 3908 conn_t *connp = tcp->tcp_connp; 3909 3910 ASSERT(tcp != NULL); 3911 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 3912 3913 connp->conn_rq = NULL; 3914 connp->conn_wq = NULL; 3915 3916 tcp_close_mpp(&tcp->tcp_xmit_head); 3917 tcp_close_mpp(&tcp->tcp_reass_head); 3918 if (tcp->tcp_rcv_list != NULL) { 3919 /* Free b_next chain */ 3920 tcp_close_mpp(&tcp->tcp_rcv_list); 3921 } 3922 if ((mp = tcp->tcp_urp_mp) != NULL) { 3923 freemsg(mp); 3924 } 3925 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 3926 freemsg(mp); 3927 } 3928 3929 if (tcp->tcp_fused_sigurg_mp != NULL) { 3930 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 3931 freeb(tcp->tcp_fused_sigurg_mp); 3932 tcp->tcp_fused_sigurg_mp = NULL; 3933 } 3934 3935 if (tcp->tcp_ordrel_mp != NULL) { 3936 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 3937 freeb(tcp->tcp_ordrel_mp); 3938 tcp->tcp_ordrel_mp = NULL; 3939 } 3940 3941 if (tcp->tcp_sack_info != NULL) { 3942 if (tcp->tcp_notsack_list != NULL) { 3943 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 3944 tcp); 3945 } 3946 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 3947 } 3948 3949 if (tcp->tcp_hopopts != NULL) { 3950 mi_free(tcp->tcp_hopopts); 3951 tcp->tcp_hopopts = NULL; 3952 tcp->tcp_hopoptslen = 0; 3953 } 3954 ASSERT(tcp->tcp_hopoptslen == 0); 3955 if (tcp->tcp_dstopts != NULL) { 3956 mi_free(tcp->tcp_dstopts); 3957 tcp->tcp_dstopts = NULL; 3958 tcp->tcp_dstoptslen = 0; 3959 } 3960 ASSERT(tcp->tcp_dstoptslen == 0); 3961 if (tcp->tcp_rthdrdstopts != NULL) { 3962 mi_free(tcp->tcp_rthdrdstopts); 3963 tcp->tcp_rthdrdstopts = NULL; 3964 tcp->tcp_rthdrdstoptslen = 0; 3965 } 3966 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 3967 if (tcp->tcp_rthdr != NULL) { 3968 mi_free(tcp->tcp_rthdr); 3969 tcp->tcp_rthdr = NULL; 3970 tcp->tcp_rthdrlen = 0; 3971 } 3972 ASSERT(tcp->tcp_rthdrlen == 0); 3973 3974 /* 3975 * Following is really a blowing away a union. 3976 * It happens to have exactly two members of identical size 3977 * the following code is enough. 3978 */ 3979 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 3980 } 3981 3982 3983 /* 3984 * Put a connection confirmation message upstream built from the 3985 * address/flowid information with the conn and iph. Report our success or 3986 * failure. 3987 */ 3988 static boolean_t 3989 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, mblk_t *idmp, 3990 mblk_t **defermp, ip_recv_attr_t *ira) 3991 { 3992 sin_t sin; 3993 sin6_t sin6; 3994 mblk_t *mp; 3995 char *optp = NULL; 3996 int optlen = 0; 3997 conn_t *connp = tcp->tcp_connp; 3998 3999 if (defermp != NULL) 4000 *defermp = NULL; 4001 4002 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4003 /* 4004 * Return in T_CONN_CON results of option negotiation through 4005 * the T_CONN_REQ. Note: If there is an real end-to-end option 4006 * negotiation, then what is received from remote end needs 4007 * to be taken into account but there is no such thing (yet?) 4008 * in our TCP/IP. 4009 * Note: We do not use mi_offset_param() here as 4010 * tcp_opts_conn_req contents do not directly come from 4011 * an application and are either generated in kernel or 4012 * from user input that was already verified. 4013 */ 4014 mp = tcp->tcp_conn.tcp_opts_conn_req; 4015 optp = (char *)(mp->b_rptr + 4016 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4017 optlen = (int) 4018 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4019 } 4020 4021 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4022 4023 /* packet is IPv4 */ 4024 if (connp->conn_family == AF_INET) { 4025 sin = sin_null; 4026 sin.sin_addr.s_addr = connp->conn_faddr_v4; 4027 sin.sin_port = connp->conn_fport; 4028 sin.sin_family = AF_INET; 4029 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4030 (int)sizeof (sin_t), optp, optlen); 4031 } else { 4032 sin6 = sin6_null; 4033 sin6.sin6_addr = connp->conn_faddr_v6; 4034 sin6.sin6_port = connp->conn_fport; 4035 sin6.sin6_family = AF_INET6; 4036 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4037 (int)sizeof (sin6_t), optp, optlen); 4038 4039 } 4040 } else { 4041 ip6_t *ip6h = (ip6_t *)iphdr; 4042 4043 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4044 ASSERT(connp->conn_family == AF_INET6); 4045 sin6 = sin6_null; 4046 sin6.sin6_addr = connp->conn_faddr_v6; 4047 sin6.sin6_port = connp->conn_fport; 4048 sin6.sin6_family = AF_INET6; 4049 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4050 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4051 (int)sizeof (sin6_t), optp, optlen); 4052 } 4053 4054 if (!mp) 4055 return (B_FALSE); 4056 4057 mblk_copycred(mp, idmp); 4058 4059 if (defermp == NULL) { 4060 conn_t *connp = tcp->tcp_connp; 4061 if (IPCL_IS_NONSTR(connp)) { 4062 (*connp->conn_upcalls->su_connected) 4063 (connp->conn_upper_handle, tcp->tcp_connid, 4064 ira->ira_cred, ira->ira_cpid); 4065 freemsg(mp); 4066 } else { 4067 if (ira->ira_cred != NULL) { 4068 /* So that getpeerucred works for TPI sockfs */ 4069 mblk_setcred(mp, ira->ira_cred, ira->ira_cpid); 4070 } 4071 putnext(connp->conn_rq, mp); 4072 } 4073 } else { 4074 *defermp = mp; 4075 } 4076 4077 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4078 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4079 return (B_TRUE); 4080 } 4081 4082 /* 4083 * Defense for the SYN attack - 4084 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4085 * one from the list of droppable eagers. This list is a subset of q0. 4086 * see comments before the definition of MAKE_DROPPABLE(). 4087 * 2. Don't drop a SYN request before its first timeout. This gives every 4088 * request at least til the first timeout to complete its 3-way handshake. 4089 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4090 * requests currently on the queue that has timed out. This will be used 4091 * as an indicator of whether an attack is under way, so that appropriate 4092 * actions can be taken. (It's incremented in tcp_timer() and decremented 4093 * either when eager goes into ESTABLISHED, or gets freed up.) 4094 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4095 * # of timeout drops back to <= q0len/32 => SYN alert off 4096 */ 4097 static boolean_t 4098 tcp_drop_q0(tcp_t *tcp) 4099 { 4100 tcp_t *eager; 4101 mblk_t *mp; 4102 tcp_stack_t *tcps = tcp->tcp_tcps; 4103 4104 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4105 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4106 4107 /* Pick oldest eager from the list of droppable eagers */ 4108 eager = tcp->tcp_eager_prev_drop_q0; 4109 4110 /* If list is empty. return B_FALSE */ 4111 if (eager == tcp) { 4112 return (B_FALSE); 4113 } 4114 4115 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4116 if ((mp = allocb(0, BPRI_HI)) == NULL) 4117 return (B_FALSE); 4118 4119 /* 4120 * Take this eager out from the list of droppable eagers since we are 4121 * going to drop it. 4122 */ 4123 MAKE_UNDROPPABLE(eager); 4124 4125 if (tcp->tcp_connp->conn_debug) { 4126 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4127 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4128 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 4129 tcp->tcp_conn_req_cnt_q0, 4130 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4131 } 4132 4133 BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); 4134 4135 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4136 CONN_INC_REF(eager->tcp_connp); 4137 4138 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 4139 tcp_clean_death_wrapper, eager->tcp_connp, NULL, 4140 SQ_FILL, SQTAG_TCP_DROP_Q0); 4141 4142 return (B_TRUE); 4143 } 4144 4145 /* 4146 * Handle a SYN on an AF_INET6 socket; can be either IPv4 or IPv6 4147 */ 4148 static mblk_t * 4149 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4150 ip_recv_attr_t *ira) 4151 { 4152 tcp_t *ltcp = lconnp->conn_tcp; 4153 tcp_t *tcp = connp->conn_tcp; 4154 mblk_t *tpi_mp; 4155 ipha_t *ipha; 4156 ip6_t *ip6h; 4157 sin6_t sin6; 4158 uint_t ifindex = ira->ira_ruifindex; 4159 tcp_stack_t *tcps = tcp->tcp_tcps; 4160 4161 if (ira->ira_flags & IRAF_IS_IPV4) { 4162 ipha = (ipha_t *)mp->b_rptr; 4163 4164 connp->conn_ipversion = IPV4_VERSION; 4165 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 4166 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 4167 connp->conn_saddr_v6 = connp->conn_laddr_v6; 4168 4169 sin6 = sin6_null; 4170 sin6.sin6_addr = connp->conn_faddr_v6; 4171 sin6.sin6_port = connp->conn_fport; 4172 sin6.sin6_family = AF_INET6; 4173 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 4174 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 4175 4176 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 4177 sin6_t sin6d; 4178 4179 sin6d = sin6_null; 4180 sin6d.sin6_addr = connp->conn_laddr_v6; 4181 sin6d.sin6_port = connp->conn_lport; 4182 sin6d.sin6_family = AF_INET; 4183 tpi_mp = mi_tpi_extconn_ind(NULL, 4184 (char *)&sin6d, sizeof (sin6_t), 4185 (char *)&tcp, 4186 (t_scalar_t)sizeof (intptr_t), 4187 (char *)&sin6d, sizeof (sin6_t), 4188 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4189 } else { 4190 tpi_mp = mi_tpi_conn_ind(NULL, 4191 (char *)&sin6, sizeof (sin6_t), 4192 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4193 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4194 } 4195 } else { 4196 ip6h = (ip6_t *)mp->b_rptr; 4197 4198 connp->conn_ipversion = IPV6_VERSION; 4199 connp->conn_laddr_v6 = ip6h->ip6_dst; 4200 connp->conn_faddr_v6 = ip6h->ip6_src; 4201 connp->conn_saddr_v6 = connp->conn_laddr_v6; 4202 4203 sin6 = sin6_null; 4204 sin6.sin6_addr = connp->conn_faddr_v6; 4205 sin6.sin6_port = connp->conn_fport; 4206 sin6.sin6_family = AF_INET6; 4207 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4208 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 4209 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 4210 4211 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4212 /* Pass up the scope_id of remote addr */ 4213 sin6.sin6_scope_id = ifindex; 4214 } else { 4215 sin6.sin6_scope_id = 0; 4216 } 4217 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 4218 sin6_t sin6d; 4219 4220 sin6d = sin6_null; 4221 sin6.sin6_addr = connp->conn_laddr_v6; 4222 sin6d.sin6_port = connp->conn_lport; 4223 sin6d.sin6_family = AF_INET6; 4224 if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_laddr_v6)) 4225 sin6d.sin6_scope_id = ifindex; 4226 4227 tpi_mp = mi_tpi_extconn_ind(NULL, 4228 (char *)&sin6d, sizeof (sin6_t), 4229 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4230 (char *)&sin6d, sizeof (sin6_t), 4231 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4232 } else { 4233 tpi_mp = mi_tpi_conn_ind(NULL, 4234 (char *)&sin6, sizeof (sin6_t), 4235 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4236 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4237 } 4238 } 4239 4240 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 4241 return (tpi_mp); 4242 } 4243 4244 /* Handle a SYN on an AF_INET socket */ 4245 mblk_t * 4246 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4247 ip_recv_attr_t *ira) 4248 { 4249 tcp_t *ltcp = lconnp->conn_tcp; 4250 tcp_t *tcp = connp->conn_tcp; 4251 sin_t sin; 4252 mblk_t *tpi_mp = NULL; 4253 tcp_stack_t *tcps = tcp->tcp_tcps; 4254 ipha_t *ipha; 4255 4256 ASSERT(ira->ira_flags & IRAF_IS_IPV4); 4257 ipha = (ipha_t *)mp->b_rptr; 4258 4259 connp->conn_ipversion = IPV4_VERSION; 4260 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 4261 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 4262 connp->conn_saddr_v6 = connp->conn_laddr_v6; 4263 4264 sin = sin_null; 4265 sin.sin_addr.s_addr = connp->conn_faddr_v4; 4266 sin.sin_port = connp->conn_fport; 4267 sin.sin_family = AF_INET; 4268 if (lconnp->conn_recv_ancillary.crb_recvdstaddr) { 4269 sin_t sind; 4270 4271 sind = sin_null; 4272 sind.sin_addr.s_addr = connp->conn_laddr_v4; 4273 sind.sin_port = connp->conn_lport; 4274 sind.sin_family = AF_INET; 4275 tpi_mp = mi_tpi_extconn_ind(NULL, 4276 (char *)&sind, sizeof (sin_t), (char *)&tcp, 4277 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 4278 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4279 } else { 4280 tpi_mp = mi_tpi_conn_ind(NULL, 4281 (char *)&sin, sizeof (sin_t), 4282 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4283 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4284 } 4285 4286 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 4287 return (tpi_mp); 4288 } 4289 4290 /* 4291 * tcp_get_conn/tcp_free_conn 4292 * 4293 * tcp_get_conn is used to get a clean tcp connection structure. 4294 * It tries to reuse the connections put on the freelist by the 4295 * time_wait_collector failing which it goes to kmem_cache. This 4296 * way has two benefits compared to just allocating from and 4297 * freeing to kmem_cache. 4298 * 1) The time_wait_collector can free (which includes the cleanup) 4299 * outside the squeue. So when the interrupt comes, we have a clean 4300 * connection sitting in the freelist. Obviously, this buys us 4301 * performance. 4302 * 4303 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener 4304 * has multiple disadvantages - tying up the squeue during alloc. 4305 * But allocating the conn/tcp in IP land is also not the best since 4306 * we can't check the 'q' and 'q0' which are protected by squeue and 4307 * blindly allocate memory which might have to be freed here if we are 4308 * not allowed to accept the connection. By using the freelist and 4309 * putting the conn/tcp back in freelist, we don't pay a penalty for 4310 * allocating memory without checking 'q/q0' and freeing it if we can't 4311 * accept the connection. 4312 * 4313 * Care should be taken to put the conn back in the same squeue's freelist 4314 * from which it was allocated. Best results are obtained if conn is 4315 * allocated from listener's squeue and freed to the same. Time wait 4316 * collector will free up the freelist is the connection ends up sitting 4317 * there for too long. 4318 */ 4319 void * 4320 tcp_get_conn(void *arg, tcp_stack_t *tcps) 4321 { 4322 tcp_t *tcp = NULL; 4323 conn_t *connp = NULL; 4324 squeue_t *sqp = (squeue_t *)arg; 4325 tcp_squeue_priv_t *tcp_time_wait; 4326 netstack_t *ns; 4327 mblk_t *tcp_rsrv_mp = NULL; 4328 4329 tcp_time_wait = 4330 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 4331 4332 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 4333 tcp = tcp_time_wait->tcp_free_list; 4334 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 4335 if (tcp != NULL) { 4336 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 4337 tcp_time_wait->tcp_free_list_cnt--; 4338 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 4339 tcp->tcp_time_wait_next = NULL; 4340 connp = tcp->tcp_connp; 4341 connp->conn_flags |= IPCL_REUSED; 4342 4343 ASSERT(tcp->tcp_tcps == NULL); 4344 ASSERT(connp->conn_netstack == NULL); 4345 ASSERT(tcp->tcp_rsrv_mp != NULL); 4346 ns = tcps->tcps_netstack; 4347 netstack_hold(ns); 4348 connp->conn_netstack = ns; 4349 connp->conn_ixa->ixa_ipst = ns->netstack_ip; 4350 tcp->tcp_tcps = tcps; 4351 ipcl_globalhash_insert(connp); 4352 4353 connp->conn_ixa->ixa_notify_cookie = tcp; 4354 ASSERT(connp->conn_ixa->ixa_notify == tcp_notify); 4355 connp->conn_recv = tcp_input_data; 4356 ASSERT(connp->conn_recvicmp == tcp_icmp_input); 4357 ASSERT(connp->conn_verifyicmp == tcp_verifyicmp); 4358 return ((void *)connp); 4359 } 4360 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 4361 /* 4362 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until 4363 * this conn_t/tcp_t is freed at ipcl_conn_destroy(). 4364 */ 4365 tcp_rsrv_mp = allocb(0, BPRI_HI); 4366 if (tcp_rsrv_mp == NULL) 4367 return (NULL); 4368 4369 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 4370 tcps->tcps_netstack)) == NULL) { 4371 freeb(tcp_rsrv_mp); 4372 return (NULL); 4373 } 4374 4375 tcp = connp->conn_tcp; 4376 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 4377 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 4378 4379 tcp->tcp_tcps = tcps; 4380 4381 connp->conn_recv = tcp_input_data; 4382 connp->conn_recvicmp = tcp_icmp_input; 4383 connp->conn_verifyicmp = tcp_verifyicmp; 4384 4385 /* 4386 * Register tcp_notify to listen to capability changes detected by IP. 4387 * This upcall is made in the context of the call to conn_ip_output 4388 * thus it is inside the squeue. 4389 */ 4390 connp->conn_ixa->ixa_notify = tcp_notify; 4391 connp->conn_ixa->ixa_notify_cookie = tcp; 4392 4393 return ((void *)connp); 4394 } 4395 4396 /* BEGIN CSTYLED */ 4397 /* 4398 * 4399 * The sockfs ACCEPT path: 4400 * ======================= 4401 * 4402 * The eager is now established in its own perimeter as soon as SYN is 4403 * received in tcp_input_listener(). When sockfs receives conn_ind, it 4404 * completes the accept processing on the acceptor STREAM. The sending 4405 * of conn_ind part is common for both sockfs listener and a TLI/XTI 4406 * listener but a TLI/XTI listener completes the accept processing 4407 * on the listener perimeter. 4408 * 4409 * Common control flow for 3 way handshake: 4410 * ---------------------------------------- 4411 * 4412 * incoming SYN (listener perimeter) -> tcp_input_listener() 4413 * 4414 * incoming SYN-ACK-ACK (eager perim) -> tcp_input_data() 4415 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 4416 * 4417 * Sockfs ACCEPT Path: 4418 * ------------------- 4419 * 4420 * open acceptor stream (tcp_open allocates tcp_tli_accept() 4421 * as STREAM entry point) 4422 * 4423 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_tli_accept() 4424 * 4425 * tcp_tli_accept() extracts the eager and makes the q->q_ptr <-> eager 4426 * association (we are not behind eager's squeue but sockfs is protecting us 4427 * and no one knows about this stream yet. The STREAMS entry point q->q_info 4428 * is changed to point at tcp_wput(). 4429 * 4430 * tcp_accept_common() sends any deferred eagers via tcp_send_pending() to 4431 * listener (done on listener's perimeter). 4432 * 4433 * tcp_tli_accept() calls tcp_accept_finish() on eagers perimeter to finish 4434 * accept. 4435 * 4436 * TLI/XTI client ACCEPT path: 4437 * --------------------------- 4438 * 4439 * soaccept() sends T_CONN_RES on the listener STREAM. 4440 * 4441 * tcp_tli_accept() -> tcp_accept_swap() complete the processing and send 4442 * a M_SETOPS mblk to eager perimeter to finish accept (tcp_accept_finish()). 4443 * 4444 * Locks: 4445 * ====== 4446 * 4447 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 4448 * and listeners->tcp_eager_next_q. 4449 * 4450 * Referencing: 4451 * ============ 4452 * 4453 * 1) We start out in tcp_input_listener by eager placing a ref on 4454 * listener and listener adding eager to listeners->tcp_eager_next_q0. 4455 * 4456 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 4457 * doing so we place a ref on the eager. This ref is finally dropped at the 4458 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 4459 * reference is dropped by the squeue framework. 4460 * 4461 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 4462 * 4463 * The reference must be released by the same entity that added the reference 4464 * In the above scheme, the eager is the entity that adds and releases the 4465 * references. Note that tcp_accept_finish executes in the squeue of the eager 4466 * (albeit after it is attached to the acceptor stream). Though 1. executes 4467 * in the listener's squeue, the eager is nascent at this point and the 4468 * reference can be considered to have been added on behalf of the eager. 4469 * 4470 * Eager getting a Reset or listener closing: 4471 * ========================================== 4472 * 4473 * Once the listener and eager are linked, the listener never does the unlink. 4474 * If the listener needs to close, tcp_eager_cleanup() is called which queues 4475 * a message on all eager perimeter. The eager then does the unlink, clears 4476 * any pointers to the listener's queue and drops the reference to the 4477 * listener. The listener waits in tcp_close outside the squeue until its 4478 * refcount has dropped to 1. This ensures that the listener has waited for 4479 * all eagers to clear their association with the listener. 4480 * 4481 * Similarly, if eager decides to go away, it can unlink itself and close. 4482 * When the T_CONN_RES comes down, we check if eager has closed. Note that 4483 * the reference to eager is still valid because of the extra ref we put 4484 * in tcp_send_conn_ind. 4485 * 4486 * Listener can always locate the eager under the protection 4487 * of the listener->tcp_eager_lock, and then do a refhold 4488 * on the eager during the accept processing. 4489 * 4490 * The acceptor stream accesses the eager in the accept processing 4491 * based on the ref placed on eager before sending T_conn_ind. 4492 * The only entity that can negate this refhold is a listener close 4493 * which is mutually exclusive with an active acceptor stream. 4494 * 4495 * Eager's reference on the listener 4496 * =================================== 4497 * 4498 * If the accept happens (even on a closed eager) the eager drops its 4499 * reference on the listener at the start of tcp_accept_finish. If the 4500 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 4501 * the reference is dropped in tcp_closei_local. If the listener closes, 4502 * the reference is dropped in tcp_eager_kill. In all cases the reference 4503 * is dropped while executing in the eager's context (squeue). 4504 */ 4505 /* END CSTYLED */ 4506 4507 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 4508 4509 /* 4510 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 4511 * tcp_input_data will not see any packets for listeners since the listener 4512 * has conn_recv set to tcp_input_listener. 4513 */ 4514 /* ARGSUSED */ 4515 void 4516 tcp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4517 { 4518 tcpha_t *tcpha; 4519 uint32_t seg_seq; 4520 tcp_t *eager; 4521 int err; 4522 conn_t *econnp = NULL; 4523 squeue_t *new_sqp; 4524 mblk_t *mp1; 4525 uint_t ip_hdr_len; 4526 conn_t *lconnp = (conn_t *)arg; 4527 tcp_t *listener = lconnp->conn_tcp; 4528 tcp_stack_t *tcps = listener->tcp_tcps; 4529 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 4530 uint_t flags; 4531 mblk_t *tpi_mp; 4532 uint_t ifindex = ira->ira_ruifindex; 4533 boolean_t tlc_set = B_FALSE; 4534 4535 ip_hdr_len = ira->ira_ip_hdr_length; 4536 tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len]; 4537 flags = (unsigned int)tcpha->tha_flags & 0xFF; 4538 4539 if (!(flags & TH_SYN)) { 4540 if ((flags & TH_RST) || (flags & TH_URG)) { 4541 freemsg(mp); 4542 return; 4543 } 4544 if (flags & TH_ACK) { 4545 /* Note this executes in listener's squeue */ 4546 tcp_xmit_listeners_reset(mp, ira, ipst, lconnp); 4547 return; 4548 } 4549 4550 freemsg(mp); 4551 return; 4552 } 4553 4554 if (listener->tcp_state != TCPS_LISTEN) 4555 goto error2; 4556 4557 ASSERT(IPCL_IS_BOUND(lconnp)); 4558 4559 mutex_enter(&listener->tcp_eager_lock); 4560 4561 /* 4562 * The system is under memory pressure, so we need to do our part 4563 * to relieve the pressure. So we only accept new request if there 4564 * is nothing waiting to be accepted or waiting to complete the 3-way 4565 * handshake. This means that busy listener will not get too many 4566 * new requests which they cannot handle in time while non-busy 4567 * listener is still functioning properly. 4568 */ 4569 if (tcps->tcps_reclaim && (listener->tcp_conn_req_cnt_q > 0 || 4570 listener->tcp_conn_req_cnt_q0 > 0)) { 4571 mutex_exit(&listener->tcp_eager_lock); 4572 TCP_STAT(tcps, tcp_listen_mem_drop); 4573 goto error2; 4574 } 4575 4576 if (listener->tcp_conn_req_cnt_q >= listener->tcp_conn_req_max) { 4577 mutex_exit(&listener->tcp_eager_lock); 4578 TCP_STAT(tcps, tcp_listendrop); 4579 BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); 4580 if (lconnp->conn_debug) { 4581 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 4582 "tcp_input_listener: listen backlog (max=%d) " 4583 "overflow (%d pending) on %s", 4584 listener->tcp_conn_req_max, 4585 listener->tcp_conn_req_cnt_q, 4586 tcp_display(listener, NULL, DISP_PORT_ONLY)); 4587 } 4588 goto error2; 4589 } 4590 4591 if (listener->tcp_conn_req_cnt_q0 >= 4592 listener->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 4593 /* 4594 * Q0 is full. Drop a pending half-open req from the queue 4595 * to make room for the new SYN req. Also mark the time we 4596 * drop a SYN. 4597 * 4598 * A more aggressive defense against SYN attack will 4599 * be to set the "tcp_syn_defense" flag now. 4600 */ 4601 TCP_STAT(tcps, tcp_listendropq0); 4602 listener->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 4603 if (!tcp_drop_q0(listener)) { 4604 mutex_exit(&listener->tcp_eager_lock); 4605 BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); 4606 if (lconnp->conn_debug) { 4607 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4608 "tcp_input_listener: listen half-open " 4609 "queue (max=%d) full (%d pending) on %s", 4610 tcps->tcps_conn_req_max_q0, 4611 listener->tcp_conn_req_cnt_q0, 4612 tcp_display(listener, NULL, 4613 DISP_PORT_ONLY)); 4614 } 4615 goto error2; 4616 } 4617 } 4618 4619 /* 4620 * Enforce the limit set on the number of connections per listener. 4621 * Note that tlc_cnt starts with 1. So need to add 1 to tlc_max 4622 * for comparison. 4623 */ 4624 if (listener->tcp_listen_cnt != NULL) { 4625 tcp_listen_cnt_t *tlc = listener->tcp_listen_cnt; 4626 int64_t now; 4627 4628 if (atomic_add_32_nv(&tlc->tlc_cnt, 1) > tlc->tlc_max + 1) { 4629 mutex_exit(&listener->tcp_eager_lock); 4630 now = ddi_get_lbolt64(); 4631 atomic_add_32(&tlc->tlc_cnt, -1); 4632 TCP_STAT(tcps, tcp_listen_cnt_drop); 4633 tlc->tlc_drop++; 4634 if (now - tlc->tlc_report_time > 4635 MSEC_TO_TICK(TCP_TLC_REPORT_INTERVAL)) { 4636 zcmn_err(lconnp->conn_zoneid, CE_WARN, 4637 "Listener (port %d) connection max (%u) " 4638 "reached: %u attempts dropped total\n", 4639 ntohs(listener->tcp_connp->conn_lport), 4640 tlc->tlc_max, tlc->tlc_drop); 4641 tlc->tlc_report_time = now; 4642 } 4643 goto error2; 4644 } 4645 tlc_set = B_TRUE; 4646 } 4647 4648 mutex_exit(&listener->tcp_eager_lock); 4649 4650 /* 4651 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 4652 * or based on the ring (for packets from GLD). Otherwise it is 4653 * set based on lbolt i.e., a somewhat random number. 4654 */ 4655 ASSERT(ira->ira_sqp != NULL); 4656 new_sqp = ira->ira_sqp; 4657 4658 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 4659 if (econnp == NULL) 4660 goto error2; 4661 4662 ASSERT(econnp->conn_netstack == lconnp->conn_netstack); 4663 econnp->conn_sqp = new_sqp; 4664 econnp->conn_initial_sqp = new_sqp; 4665 econnp->conn_ixa->ixa_sqp = new_sqp; 4666 4667 econnp->conn_fport = tcpha->tha_lport; 4668 econnp->conn_lport = tcpha->tha_fport; 4669 4670 err = conn_inherit_parent(lconnp, econnp); 4671 if (err != 0) 4672 goto error3; 4673 4674 /* We already know the laddr of the new connection is ours */ 4675 econnp->conn_ixa->ixa_src_generation = ipst->ips_src_generation; 4676 4677 ASSERT(OK_32PTR(mp->b_rptr)); 4678 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION || 4679 IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 4680 4681 if (lconnp->conn_family == AF_INET) { 4682 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 4683 tpi_mp = tcp_conn_create_v4(lconnp, econnp, mp, ira); 4684 } else { 4685 tpi_mp = tcp_conn_create_v6(lconnp, econnp, mp, ira); 4686 } 4687 4688 if (tpi_mp == NULL) 4689 goto error3; 4690 4691 eager = econnp->conn_tcp; 4692 eager->tcp_detached = B_TRUE; 4693 SOCK_CONNID_INIT(eager->tcp_connid); 4694 4695 tcp_init_values(eager); 4696 4697 ASSERT((econnp->conn_ixa->ixa_flags & 4698 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 4699 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)) == 4700 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 4701 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)); 4702 4703 if (!tcps->tcps_dev_flow_ctl) 4704 econnp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 4705 4706 /* Prepare for diffing against previous packets */ 4707 eager->tcp_recvifindex = 0; 4708 eager->tcp_recvhops = 0xffffffffU; 4709 4710 if (!(ira->ira_flags & IRAF_IS_IPV4) && econnp->conn_bound_if == 0) { 4711 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_faddr_v6) || 4712 IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6)) { 4713 econnp->conn_incoming_ifindex = ifindex; 4714 econnp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 4715 econnp->conn_ixa->ixa_scopeid = ifindex; 4716 } 4717 } 4718 4719 if ((ira->ira_flags & (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS)) == 4720 (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS) && 4721 tcps->tcps_rev_src_routes) { 4722 ipha_t *ipha = (ipha_t *)mp->b_rptr; 4723 ip_pkt_t *ipp = &econnp->conn_xmit_ipp; 4724 4725 /* Source routing option copyover (reverse it) */ 4726 err = ip_find_hdr_v4(ipha, ipp, B_TRUE); 4727 if (err != 0) { 4728 freemsg(tpi_mp); 4729 goto error3; 4730 } 4731 ip_pkt_source_route_reverse_v4(ipp); 4732 } 4733 4734 ASSERT(eager->tcp_conn.tcp_eager_conn_ind == NULL); 4735 ASSERT(!eager->tcp_tconnind_started); 4736 /* 4737 * If the SYN came with a credential, it's a loopback packet or a 4738 * labeled packet; attach the credential to the TPI message. 4739 */ 4740 if (ira->ira_cred != NULL) 4741 mblk_setcred(tpi_mp, ira->ira_cred, ira->ira_cpid); 4742 4743 eager->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4744 4745 /* Inherit the listener's SSL protection state */ 4746 if ((eager->tcp_kssl_ent = listener->tcp_kssl_ent) != NULL) { 4747 kssl_hold_ent(eager->tcp_kssl_ent); 4748 eager->tcp_kssl_pending = B_TRUE; 4749 } 4750 4751 /* Inherit the listener's non-STREAMS flag */ 4752 if (IPCL_IS_NONSTR(lconnp)) { 4753 econnp->conn_flags |= IPCL_NONSTR; 4754 } 4755 4756 ASSERT(eager->tcp_ordrel_mp == NULL); 4757 4758 if (!IPCL_IS_NONSTR(econnp)) { 4759 /* 4760 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that 4761 * at close time, we will always have that to send up. 4762 * Otherwise, we need to do special handling in case the 4763 * allocation fails at that time. 4764 */ 4765 if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 4766 goto error3; 4767 } 4768 /* 4769 * Now that the IP addresses and ports are setup in econnp we 4770 * can do the IPsec policy work. 4771 */ 4772 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 4773 if (lconnp->conn_policy != NULL) { 4774 /* 4775 * Inherit the policy from the listener; use 4776 * actions from ira 4777 */ 4778 if (!ip_ipsec_policy_inherit(econnp, lconnp, ira)) { 4779 CONN_DEC_REF(econnp); 4780 freemsg(mp); 4781 goto error3; 4782 } 4783 } 4784 } 4785 4786 /* Inherit various TCP parameters from the listener */ 4787 eager->tcp_naglim = listener->tcp_naglim; 4788 eager->tcp_first_timer_threshold = listener->tcp_first_timer_threshold; 4789 eager->tcp_second_timer_threshold = 4790 listener->tcp_second_timer_threshold; 4791 eager->tcp_first_ctimer_threshold = 4792 listener->tcp_first_ctimer_threshold; 4793 eager->tcp_second_ctimer_threshold = 4794 listener->tcp_second_ctimer_threshold; 4795 4796 /* 4797 * tcp_set_destination() may set tcp_rwnd according to the route 4798 * metrics. If it does not, the eager's receive window will be set 4799 * to the listener's receive window later in this function. 4800 */ 4801 eager->tcp_rwnd = 0; 4802 4803 /* 4804 * Inherit listener's tcp_init_cwnd. Need to do this before 4805 * calling tcp_process_options() which set the initial cwnd. 4806 */ 4807 eager->tcp_init_cwnd = listener->tcp_init_cwnd; 4808 4809 if (is_system_labeled()) { 4810 ip_xmit_attr_t *ixa = econnp->conn_ixa; 4811 4812 ASSERT(ira->ira_tsl != NULL); 4813 /* Discard any old label */ 4814 if (ixa->ixa_free_flags & IXA_FREE_TSL) { 4815 ASSERT(ixa->ixa_tsl != NULL); 4816 label_rele(ixa->ixa_tsl); 4817 ixa->ixa_free_flags &= ~IXA_FREE_TSL; 4818 ixa->ixa_tsl = NULL; 4819 } 4820 if ((lconnp->conn_mlp_type != mlptSingle || 4821 lconnp->conn_mac_mode != CONN_MAC_DEFAULT) && 4822 ira->ira_tsl != NULL) { 4823 /* 4824 * If this is an MLP connection or a MAC-Exempt 4825 * connection with an unlabeled node, packets are to be 4826 * exchanged using the security label of the received 4827 * SYN packet instead of the server application's label. 4828 * tsol_check_dest called from ip_set_destination 4829 * might later update TSF_UNLABELED by replacing 4830 * ixa_tsl with a new label. 4831 */ 4832 label_hold(ira->ira_tsl); 4833 ip_xmit_attr_replace_tsl(ixa, ira->ira_tsl); 4834 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 4835 econnp, ts_label_t *, ixa->ixa_tsl) 4836 } else { 4837 ixa->ixa_tsl = crgetlabel(econnp->conn_cred); 4838 DTRACE_PROBE2(syn_accept, conn_t *, 4839 econnp, ts_label_t *, ixa->ixa_tsl) 4840 } 4841 /* 4842 * conn_connect() called from tcp_set_destination will verify 4843 * the destination is allowed to receive packets at the 4844 * security label of the SYN-ACK we are generating. As part of 4845 * that, tsol_check_dest() may create a new effective label for 4846 * this connection. 4847 * Finally conn_connect() will call conn_update_label. 4848 * All that remains for TCP to do is to call 4849 * conn_build_hdr_template which is done as part of 4850 * tcp_set_destination. 4851 */ 4852 } 4853 4854 /* 4855 * Since we will clear tcp_listener before we clear tcp_detached 4856 * in the accept code we need tcp_hard_binding aka tcp_accept_inprogress 4857 * so we can tell a TCP_DETACHED_NONEAGER apart. 4858 */ 4859 eager->tcp_hard_binding = B_TRUE; 4860 4861 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 4862 TCP_BIND_HASH(econnp->conn_lport)], eager, 0); 4863 4864 CL_INET_CONNECT(econnp, B_FALSE, err); 4865 if (err != 0) { 4866 tcp_bind_hash_remove(eager); 4867 goto error3; 4868 } 4869 4870 /* 4871 * No need to check for multicast destination since ip will only pass 4872 * up multicasts to those that have expressed interest 4873 * TODO: what about rejecting broadcasts? 4874 * Also check that source is not a multicast or broadcast address. 4875 */ 4876 eager->tcp_state = TCPS_SYN_RCVD; 4877 SOCK_CONNID_BUMP(eager->tcp_connid); 4878 4879 /* 4880 * Adapt our mss, ttl, ... based on the remote address. 4881 */ 4882 4883 if (tcp_set_destination(eager) != 0) { 4884 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 4885 /* Undo the bind_hash_insert */ 4886 tcp_bind_hash_remove(eager); 4887 goto error3; 4888 } 4889 4890 /* Process all TCP options. */ 4891 tcp_process_options(eager, tcpha); 4892 4893 /* Is the other end ECN capable? */ 4894 if (tcps->tcps_ecn_permitted >= 1 && 4895 (tcpha->tha_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 4896 eager->tcp_ecn_ok = B_TRUE; 4897 } 4898 4899 /* 4900 * The listener's conn_rcvbuf should be the default window size or a 4901 * window size changed via SO_RCVBUF option. First round up the 4902 * eager's tcp_rwnd to the nearest MSS. Then find out the window 4903 * scale option value if needed. Call tcp_rwnd_set() to finish the 4904 * setting. 4905 * 4906 * Note if there is a rpipe metric associated with the remote host, 4907 * we should not inherit receive window size from listener. 4908 */ 4909 eager->tcp_rwnd = MSS_ROUNDUP( 4910 (eager->tcp_rwnd == 0 ? econnp->conn_rcvbuf : 4911 eager->tcp_rwnd), eager->tcp_mss); 4912 if (eager->tcp_snd_ws_ok) 4913 tcp_set_ws_value(eager); 4914 /* 4915 * Note that this is the only place tcp_rwnd_set() is called for 4916 * accepting a connection. We need to call it here instead of 4917 * after the 3-way handshake because we need to tell the other 4918 * side our rwnd in the SYN-ACK segment. 4919 */ 4920 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 4921 4922 ASSERT(eager->tcp_connp->conn_rcvbuf != 0 && 4923 eager->tcp_connp->conn_rcvbuf == eager->tcp_rwnd); 4924 4925 ASSERT(econnp->conn_rcvbuf != 0 && 4926 econnp->conn_rcvbuf == eager->tcp_rwnd); 4927 4928 /* Put a ref on the listener for the eager. */ 4929 CONN_INC_REF(lconnp); 4930 mutex_enter(&listener->tcp_eager_lock); 4931 listener->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 4932 eager->tcp_eager_next_q0 = listener->tcp_eager_next_q0; 4933 listener->tcp_eager_next_q0 = eager; 4934 eager->tcp_eager_prev_q0 = listener; 4935 4936 /* Set tcp_listener before adding it to tcp_conn_fanout */ 4937 eager->tcp_listener = listener; 4938 eager->tcp_saved_listener = listener; 4939 4940 /* 4941 * Set tcp_listen_cnt so that when the connection is done, the counter 4942 * is decremented. 4943 */ 4944 eager->tcp_listen_cnt = listener->tcp_listen_cnt; 4945 4946 /* 4947 * Tag this detached tcp vector for later retrieval 4948 * by our listener client in tcp_accept(). 4949 */ 4950 eager->tcp_conn_req_seqnum = listener->tcp_conn_req_seqnum; 4951 listener->tcp_conn_req_cnt_q0++; 4952 if (++listener->tcp_conn_req_seqnum == -1) { 4953 /* 4954 * -1 is "special" and defined in TPI as something 4955 * that should never be used in T_CONN_IND 4956 */ 4957 ++listener->tcp_conn_req_seqnum; 4958 } 4959 mutex_exit(&listener->tcp_eager_lock); 4960 4961 if (listener->tcp_syn_defense) { 4962 /* Don't drop the SYN that comes from a good IP source */ 4963 ipaddr_t *addr_cache; 4964 4965 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 4966 if (addr_cache != NULL && econnp->conn_faddr_v4 == 4967 addr_cache[IP_ADDR_CACHE_HASH(econnp->conn_faddr_v4)]) { 4968 eager->tcp_dontdrop = B_TRUE; 4969 } 4970 } 4971 4972 /* 4973 * We need to insert the eager in its own perimeter but as soon 4974 * as we do that, we expose the eager to the classifier and 4975 * should not touch any field outside the eager's perimeter. 4976 * So do all the work necessary before inserting the eager 4977 * in its own perimeter. Be optimistic that conn_connect() 4978 * will succeed but undo everything if it fails. 4979 */ 4980 seg_seq = ntohl(tcpha->tha_seq); 4981 eager->tcp_irs = seg_seq; 4982 eager->tcp_rack = seg_seq; 4983 eager->tcp_rnxt = seg_seq + 1; 4984 eager->tcp_tcpha->tha_ack = htonl(eager->tcp_rnxt); 4985 BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); 4986 eager->tcp_state = TCPS_SYN_RCVD; 4987 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 4988 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 4989 if (mp1 == NULL) { 4990 /* 4991 * Increment the ref count as we are going to 4992 * enqueueing an mp in squeue 4993 */ 4994 CONN_INC_REF(econnp); 4995 goto error; 4996 } 4997 4998 /* 4999 * We need to start the rto timer. In normal case, we start 5000 * the timer after sending the packet on the wire (or at 5001 * least believing that packet was sent by waiting for 5002 * conn_ip_output() to return). Since this is the first packet 5003 * being sent on the wire for the eager, our initial tcp_rto 5004 * is at least tcp_rexmit_interval_min which is a fairly 5005 * large value to allow the algorithm to adjust slowly to large 5006 * fluctuations of RTT during first few transmissions. 5007 * 5008 * Starting the timer first and then sending the packet in this 5009 * case shouldn't make much difference since tcp_rexmit_interval_min 5010 * is of the order of several 100ms and starting the timer 5011 * first and then sending the packet will result in difference 5012 * of few micro seconds. 5013 * 5014 * Without this optimization, we are forced to hold the fanout 5015 * lock across the ipcl_bind_insert() and sending the packet 5016 * so that we don't race against an incoming packet (maybe RST) 5017 * for this eager. 5018 * 5019 * It is necessary to acquire an extra reference on the eager 5020 * at this point and hold it until after tcp_send_data() to 5021 * ensure against an eager close race. 5022 */ 5023 5024 CONN_INC_REF(econnp); 5025 5026 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5027 5028 /* 5029 * Insert the eager in its own perimeter now. We are ready to deal 5030 * with any packets on eager. 5031 */ 5032 if (ipcl_conn_insert(econnp) != 0) 5033 goto error; 5034 5035 ASSERT(econnp->conn_ixa->ixa_notify_cookie == econnp->conn_tcp); 5036 freemsg(mp); 5037 /* 5038 * Send the SYN-ACK. Use the right squeue so that conn_ixa is 5039 * only used by one thread at a time. 5040 */ 5041 if (econnp->conn_sqp == lconnp->conn_sqp) { 5042 (void) conn_ip_output(mp1, econnp->conn_ixa); 5043 CONN_DEC_REF(econnp); 5044 } else { 5045 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_send_synack, 5046 econnp, NULL, SQ_PROCESS, SQTAG_TCP_SEND_SYNACK); 5047 } 5048 return; 5049 error: 5050 freemsg(mp1); 5051 eager->tcp_closemp_used = B_TRUE; 5052 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5053 mp1 = &eager->tcp_closemp; 5054 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, 5055 econnp, NULL, SQ_FILL, SQTAG_TCP_CONN_REQ_2); 5056 5057 /* 5058 * If a connection already exists, send the mp to that connections so 5059 * that it can be appropriately dealt with. 5060 */ 5061 ipst = tcps->tcps_netstack->netstack_ip; 5062 5063 if ((econnp = ipcl_classify(mp, ira, ipst)) != NULL) { 5064 if (!IPCL_IS_CONNECTED(econnp)) { 5065 /* 5066 * Something bad happened. ipcl_conn_insert() 5067 * failed because a connection already existed 5068 * in connected hash but we can't find it 5069 * anymore (someone blew it away). Just 5070 * free this message and hopefully remote 5071 * will retransmit at which time the SYN can be 5072 * treated as a new connection or dealth with 5073 * a TH_RST if a connection already exists. 5074 */ 5075 CONN_DEC_REF(econnp); 5076 freemsg(mp); 5077 } else { 5078 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, tcp_input_data, 5079 econnp, ira, SQ_FILL, SQTAG_TCP_CONN_REQ_1); 5080 } 5081 } else { 5082 /* Nobody wants this packet */ 5083 freemsg(mp); 5084 } 5085 return; 5086 error3: 5087 CONN_DEC_REF(econnp); 5088 error2: 5089 freemsg(mp); 5090 if (tlc_set) 5091 atomic_add_32(&listener->tcp_listen_cnt->tlc_cnt, -1); 5092 } 5093 5094 /* ARGSUSED2 */ 5095 void 5096 tcp_send_synack(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 5097 { 5098 conn_t *econnp = (conn_t *)arg; 5099 tcp_t *tcp = econnp->conn_tcp; 5100 5101 /* Guard against a RST having blown it away while on the squeue */ 5102 if (tcp->tcp_state == TCPS_CLOSED) { 5103 freemsg(mp); 5104 return; 5105 } 5106 5107 (void) conn_ip_output(mp, econnp->conn_ixa); 5108 } 5109 5110 /* 5111 * In an ideal case of vertical partition in NUMA architecture, its 5112 * beneficial to have the listener and all the incoming connections 5113 * tied to the same squeue. The other constraint is that incoming 5114 * connections should be tied to the squeue attached to interrupted 5115 * CPU for obvious locality reason so this leaves the listener to 5116 * be tied to the same squeue. Our only problem is that when listener 5117 * is binding, the CPU that will get interrupted by the NIC whose 5118 * IP address the listener is binding to is not even known. So 5119 * the code below allows us to change that binding at the time the 5120 * CPU is interrupted by virtue of incoming connection's squeue. 5121 * 5122 * This is usefull only in case of a listener bound to a specific IP 5123 * address. For other kind of listeners, they get bound the 5124 * very first time and there is no attempt to rebind them. 5125 */ 5126 void 5127 tcp_input_listener_unbound(void *arg, mblk_t *mp, void *arg2, 5128 ip_recv_attr_t *ira) 5129 { 5130 conn_t *connp = (conn_t *)arg; 5131 squeue_t *sqp = (squeue_t *)arg2; 5132 squeue_t *new_sqp; 5133 uint32_t conn_flags; 5134 5135 /* 5136 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 5137 * or based on the ring (for packets from GLD). Otherwise it is 5138 * set based on lbolt i.e., a somewhat random number. 5139 */ 5140 ASSERT(ira->ira_sqp != NULL); 5141 new_sqp = ira->ira_sqp; 5142 5143 if (connp->conn_fanout == NULL) 5144 goto done; 5145 5146 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 5147 mutex_enter(&connp->conn_fanout->connf_lock); 5148 mutex_enter(&connp->conn_lock); 5149 /* 5150 * No one from read or write side can access us now 5151 * except for already queued packets on this squeue. 5152 * But since we haven't changed the squeue yet, they 5153 * can't execute. If they are processed after we have 5154 * changed the squeue, they are sent back to the 5155 * correct squeue down below. 5156 * But a listner close can race with processing of 5157 * incoming SYN. If incoming SYN processing changes 5158 * the squeue then the listener close which is waiting 5159 * to enter the squeue would operate on the wrong 5160 * squeue. Hence we don't change the squeue here unless 5161 * the refcount is exactly the minimum refcount. The 5162 * minimum refcount of 4 is counted as - 1 each for 5163 * TCP and IP, 1 for being in the classifier hash, and 5164 * 1 for the mblk being processed. 5165 */ 5166 5167 if (connp->conn_ref != 4 || 5168 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 5169 mutex_exit(&connp->conn_lock); 5170 mutex_exit(&connp->conn_fanout->connf_lock); 5171 goto done; 5172 } 5173 if (connp->conn_sqp != new_sqp) { 5174 while (connp->conn_sqp != new_sqp) 5175 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 5176 /* No special MT issues for outbound ixa_sqp hint */ 5177 connp->conn_ixa->ixa_sqp = new_sqp; 5178 } 5179 5180 do { 5181 conn_flags = connp->conn_flags; 5182 conn_flags |= IPCL_FULLY_BOUND; 5183 (void) cas32(&connp->conn_flags, connp->conn_flags, 5184 conn_flags); 5185 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 5186 5187 mutex_exit(&connp->conn_fanout->connf_lock); 5188 mutex_exit(&connp->conn_lock); 5189 5190 /* 5191 * Assume we have picked a good squeue for the listener. Make 5192 * subsequent SYNs not try to change the squeue. 5193 */ 5194 connp->conn_recv = tcp_input_listener; 5195 } 5196 5197 done: 5198 if (connp->conn_sqp != sqp) { 5199 CONN_INC_REF(connp); 5200 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 5201 ira, SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); 5202 } else { 5203 tcp_input_listener(connp, mp, sqp, ira); 5204 } 5205 } 5206 5207 /* 5208 * Successful connect request processing begins when our client passes 5209 * a T_CONN_REQ message into tcp_wput(), which performs function calls into 5210 * IP and the passes a T_OK_ACK (or T_ERROR_ACK upstream). 5211 * 5212 * After various error checks are completed, tcp_tpi_connect() lays 5213 * the target address and port into the composite header template. 5214 * Then we ask IP for information, including a source address if we didn't 5215 * already have one. Finally we prepare to send the SYN packet, and then 5216 * send up the T_OK_ACK reply message. 5217 */ 5218 static void 5219 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp) 5220 { 5221 sin_t *sin; 5222 struct T_conn_req *tcr; 5223 struct sockaddr *sa; 5224 socklen_t len; 5225 int error; 5226 cred_t *cr; 5227 pid_t cpid; 5228 conn_t *connp = tcp->tcp_connp; 5229 queue_t *q = connp->conn_wq; 5230 5231 /* 5232 * All Solaris components should pass a db_credp 5233 * for this TPI message, hence we ASSERT. 5234 * But in case there is some other M_PROTO that looks 5235 * like a TPI message sent by some other kernel 5236 * component, we check and return an error. 5237 */ 5238 cr = msg_getcred(mp, &cpid); 5239 ASSERT(cr != NULL); 5240 if (cr == NULL) { 5241 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5242 return; 5243 } 5244 5245 tcr = (struct T_conn_req *)mp->b_rptr; 5246 5247 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5248 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 5249 tcp_err_ack(tcp, mp, TPROTO, 0); 5250 return; 5251 } 5252 5253 /* 5254 * Pre-allocate the T_ordrel_ind mblk so that at close time, we 5255 * will always have that to send up. Otherwise, we need to do 5256 * special handling in case the allocation fails at that time. 5257 * If the end point is TPI, the tcp_t can be reused and the 5258 * tcp_ordrel_mp may be allocated already. 5259 */ 5260 if (tcp->tcp_ordrel_mp == NULL) { 5261 if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) { 5262 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5263 return; 5264 } 5265 } 5266 5267 /* 5268 * Determine packet type based on type of address passed in 5269 * the request should contain an IPv4 or IPv6 address. 5270 * Make sure that address family matches the type of 5271 * family of the address passed down. 5272 */ 5273 switch (tcr->DEST_length) { 5274 default: 5275 tcp_err_ack(tcp, mp, TBADADDR, 0); 5276 return; 5277 5278 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 5279 /* 5280 * XXX: The check for valid DEST_length was not there 5281 * in earlier releases and some buggy 5282 * TLI apps (e.g Sybase) got away with not feeding 5283 * in sin_zero part of address. 5284 * We allow that bug to keep those buggy apps humming. 5285 * Test suites require the check on DEST_length. 5286 * We construct a new mblk with valid DEST_length 5287 * free the original so the rest of the code does 5288 * not have to keep track of this special shorter 5289 * length address case. 5290 */ 5291 mblk_t *nmp; 5292 struct T_conn_req *ntcr; 5293 sin_t *nsin; 5294 5295 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 5296 tcr->OPT_length, BPRI_HI); 5297 if (nmp == NULL) { 5298 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5299 return; 5300 } 5301 ntcr = (struct T_conn_req *)nmp->b_rptr; 5302 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 5303 ntcr->PRIM_type = T_CONN_REQ; 5304 ntcr->DEST_length = sizeof (sin_t); 5305 ntcr->DEST_offset = sizeof (struct T_conn_req); 5306 5307 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 5308 *nsin = sin_null; 5309 /* Get pointer to shorter address to copy from original mp */ 5310 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 5311 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 5312 if (sin == NULL || !OK_32PTR((char *)sin)) { 5313 freemsg(nmp); 5314 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5315 return; 5316 } 5317 nsin->sin_family = sin->sin_family; 5318 nsin->sin_port = sin->sin_port; 5319 nsin->sin_addr = sin->sin_addr; 5320 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 5321 nmp->b_wptr = (uchar_t *)&nsin[1]; 5322 if (tcr->OPT_length != 0) { 5323 ntcr->OPT_length = tcr->OPT_length; 5324 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 5325 bcopy((uchar_t *)tcr + tcr->OPT_offset, 5326 (uchar_t *)ntcr + ntcr->OPT_offset, 5327 tcr->OPT_length); 5328 nmp->b_wptr += tcr->OPT_length; 5329 } 5330 freemsg(mp); /* original mp freed */ 5331 mp = nmp; /* re-initialize original variables */ 5332 tcr = ntcr; 5333 } 5334 /* FALLTHRU */ 5335 5336 case sizeof (sin_t): 5337 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 5338 sizeof (sin_t)); 5339 len = sizeof (sin_t); 5340 break; 5341 5342 case sizeof (sin6_t): 5343 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 5344 sizeof (sin6_t)); 5345 len = sizeof (sin6_t); 5346 break; 5347 } 5348 5349 error = proto_verify_ip_addr(connp->conn_family, sa, len); 5350 if (error != 0) { 5351 tcp_err_ack(tcp, mp, TSYSERR, error); 5352 return; 5353 } 5354 5355 /* 5356 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 5357 * should key on their sequence number and cut them loose. 5358 */ 5359 5360 /* 5361 * If options passed in, feed it for verification and handling 5362 */ 5363 if (tcr->OPT_length != 0) { 5364 mblk_t *ok_mp; 5365 mblk_t *discon_mp; 5366 mblk_t *conn_opts_mp; 5367 int t_error, sys_error, do_disconnect; 5368 5369 conn_opts_mp = NULL; 5370 5371 if (tcp_conprim_opt_process(tcp, mp, 5372 &do_disconnect, &t_error, &sys_error) < 0) { 5373 if (do_disconnect) { 5374 ASSERT(t_error == 0 && sys_error == 0); 5375 discon_mp = mi_tpi_discon_ind(NULL, 5376 ECONNREFUSED, 0); 5377 if (!discon_mp) { 5378 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 5379 TSYSERR, ENOMEM); 5380 return; 5381 } 5382 ok_mp = mi_tpi_ok_ack_alloc(mp); 5383 if (!ok_mp) { 5384 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 5385 TSYSERR, ENOMEM); 5386 return; 5387 } 5388 qreply(q, ok_mp); 5389 qreply(q, discon_mp); /* no flush! */ 5390 } else { 5391 ASSERT(t_error != 0); 5392 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 5393 sys_error); 5394 } 5395 return; 5396 } 5397 /* 5398 * Success in setting options, the mp option buffer represented 5399 * by OPT_length/offset has been potentially modified and 5400 * contains results of option processing. We copy it in 5401 * another mp to save it for potentially influencing returning 5402 * it in T_CONN_CONN. 5403 */ 5404 if (tcr->OPT_length != 0) { /* there are resulting options */ 5405 conn_opts_mp = copyb(mp); 5406 if (!conn_opts_mp) { 5407 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 5408 TSYSERR, ENOMEM); 5409 return; 5410 } 5411 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 5412 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 5413 /* 5414 * Note: 5415 * These resulting option negotiation can include any 5416 * end-to-end negotiation options but there no such 5417 * thing (yet?) in our TCP/IP. 5418 */ 5419 } 5420 } 5421 5422 /* call the non-TPI version */ 5423 error = tcp_do_connect(tcp->tcp_connp, sa, len, cr, cpid); 5424 if (error < 0) { 5425 mp = mi_tpi_err_ack_alloc(mp, -error, 0); 5426 } else if (error > 0) { 5427 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 5428 } else { 5429 mp = mi_tpi_ok_ack_alloc(mp); 5430 } 5431 5432 /* 5433 * Note: Code below is the "failure" case 5434 */ 5435 /* return error ack and blow away saved option results if any */ 5436 connect_failed: 5437 if (mp != NULL) 5438 putnext(connp->conn_rq, mp); 5439 else { 5440 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 5441 TSYSERR, ENOMEM); 5442 } 5443 } 5444 5445 /* 5446 * Handle connect to IPv4 destinations, including connections for AF_INET6 5447 * sockets connecting to IPv4 mapped IPv6 destinations. 5448 * Returns zero if OK, a positive errno, or a negative TLI error. 5449 */ 5450 static int 5451 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 5452 uint_t srcid) 5453 { 5454 ipaddr_t dstaddr = *dstaddrp; 5455 uint16_t lport; 5456 conn_t *connp = tcp->tcp_connp; 5457 tcp_stack_t *tcps = tcp->tcp_tcps; 5458 int error; 5459 5460 ASSERT(connp->conn_ipversion == IPV4_VERSION); 5461 5462 /* Check for attempt to connect to INADDR_ANY */ 5463 if (dstaddr == INADDR_ANY) { 5464 /* 5465 * SunOS 4.x and 4.3 BSD allow an application 5466 * to connect a TCP socket to INADDR_ANY. 5467 * When they do this, the kernel picks the 5468 * address of one interface and uses it 5469 * instead. The kernel usually ends up 5470 * picking the address of the loopback 5471 * interface. This is an undocumented feature. 5472 * However, we provide the same thing here 5473 * in order to have source and binary 5474 * compatibility with SunOS 4.x. 5475 * Update the T_CONN_REQ (sin/sin6) since it is used to 5476 * generate the T_CONN_CON. 5477 */ 5478 dstaddr = htonl(INADDR_LOOPBACK); 5479 *dstaddrp = dstaddr; 5480 } 5481 5482 /* Handle __sin6_src_id if socket not bound to an IP address */ 5483 if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) { 5484 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 5485 IPCL_ZONEID(connp), tcps->tcps_netstack); 5486 connp->conn_saddr_v6 = connp->conn_laddr_v6; 5487 } 5488 5489 IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6); 5490 connp->conn_fport = dstport; 5491 5492 /* 5493 * At this point the remote destination address and remote port fields 5494 * in the tcp-four-tuple have been filled in the tcp structure. Now we 5495 * have to see which state tcp was in so we can take appropriate action. 5496 */ 5497 if (tcp->tcp_state == TCPS_IDLE) { 5498 /* 5499 * We support a quick connect capability here, allowing 5500 * clients to transition directly from IDLE to SYN_SENT 5501 * tcp_bindi will pick an unused port, insert the connection 5502 * in the bind hash and transition to BOUND state. 5503 */ 5504 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 5505 tcp, B_TRUE); 5506 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 5507 B_FALSE, B_FALSE); 5508 if (lport == 0) 5509 return (-TNOADDR); 5510 } 5511 5512 /* 5513 * Lookup the route to determine a source address and the uinfo. 5514 * Setup TCP parameters based on the metrics/DCE. 5515 */ 5516 error = tcp_set_destination(tcp); 5517 if (error != 0) 5518 return (error); 5519 5520 /* 5521 * Don't let an endpoint connect to itself. 5522 */ 5523 if (connp->conn_faddr_v4 == connp->conn_laddr_v4 && 5524 connp->conn_fport == connp->conn_lport) 5525 return (-TBADADDR); 5526 5527 tcp->tcp_state = TCPS_SYN_SENT; 5528 5529 return (ipcl_conn_insert_v4(connp)); 5530 } 5531 5532 /* 5533 * Handle connect to IPv6 destinations. 5534 * Returns zero if OK, a positive errno, or a negative TLI error. 5535 */ 5536 static int 5537 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 5538 uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 5539 { 5540 uint16_t lport; 5541 conn_t *connp = tcp->tcp_connp; 5542 tcp_stack_t *tcps = tcp->tcp_tcps; 5543 int error; 5544 5545 ASSERT(connp->conn_family == AF_INET6); 5546 5547 /* 5548 * If we're here, it means that the destination address is a native 5549 * IPv6 address. Return an error if conn_ipversion is not IPv6. A 5550 * reason why it might not be IPv6 is if the socket was bound to an 5551 * IPv4-mapped IPv6 address. 5552 */ 5553 if (connp->conn_ipversion != IPV6_VERSION) 5554 return (-TBADADDR); 5555 5556 /* 5557 * Interpret a zero destination to mean loopback. 5558 * Update the T_CONN_REQ (sin/sin6) since it is used to 5559 * generate the T_CONN_CON. 5560 */ 5561 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) 5562 *dstaddrp = ipv6_loopback; 5563 5564 /* Handle __sin6_src_id if socket not bound to an IP address */ 5565 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) { 5566 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 5567 IPCL_ZONEID(connp), tcps->tcps_netstack); 5568 connp->conn_saddr_v6 = connp->conn_laddr_v6; 5569 } 5570 5571 /* 5572 * Take care of the scope_id now. 5573 */ 5574 if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 5575 connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 5576 connp->conn_ixa->ixa_scopeid = scope_id; 5577 } else { 5578 connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET; 5579 } 5580 5581 connp->conn_flowinfo = flowinfo; 5582 connp->conn_faddr_v6 = *dstaddrp; 5583 connp->conn_fport = dstport; 5584 5585 /* 5586 * At this point the remote destination address and remote port fields 5587 * in the tcp-four-tuple have been filled in the tcp structure. Now we 5588 * have to see which state tcp was in so we can take appropriate action. 5589 */ 5590 if (tcp->tcp_state == TCPS_IDLE) { 5591 /* 5592 * We support a quick connect capability here, allowing 5593 * clients to transition directly from IDLE to SYN_SENT 5594 * tcp_bindi will pick an unused port, insert the connection 5595 * in the bind hash and transition to BOUND state. 5596 */ 5597 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 5598 tcp, B_TRUE); 5599 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 5600 B_FALSE, B_FALSE); 5601 if (lport == 0) 5602 return (-TNOADDR); 5603 } 5604 5605 /* 5606 * Lookup the route to determine a source address and the uinfo. 5607 * Setup TCP parameters based on the metrics/DCE. 5608 */ 5609 error = tcp_set_destination(tcp); 5610 if (error != 0) 5611 return (error); 5612 5613 /* 5614 * Don't let an endpoint connect to itself. 5615 */ 5616 if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) && 5617 connp->conn_fport == connp->conn_lport) 5618 return (-TBADADDR); 5619 5620 tcp->tcp_state = TCPS_SYN_SENT; 5621 5622 return (ipcl_conn_insert_v6(connp)); 5623 } 5624 5625 /* 5626 * Disconnect 5627 * Note that unlike other functions this returns a positive tli error 5628 * when it fails; it never returns an errno. 5629 */ 5630 static int 5631 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 5632 { 5633 conn_t *lconnp; 5634 tcp_stack_t *tcps = tcp->tcp_tcps; 5635 conn_t *connp = tcp->tcp_connp; 5636 5637 /* 5638 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 5639 * when the stream is in BOUND state. Do not send a reset, 5640 * since the destination IP address is not valid, and it can 5641 * be the initialized value of all zeros (broadcast address). 5642 */ 5643 if (tcp->tcp_state <= TCPS_BOUND) { 5644 if (connp->conn_debug) { 5645 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 5646 "tcp_disconnect: bad state, %d", tcp->tcp_state); 5647 } 5648 return (TOUTSTATE); 5649 } 5650 5651 5652 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 5653 5654 /* 5655 * According to TPI, for non-listeners, ignore seqnum 5656 * and disconnect. 5657 * Following interpretation of -1 seqnum is historical 5658 * and implied TPI ? (TPI only states that for T_CONN_IND, 5659 * a valid seqnum should not be -1). 5660 * 5661 * -1 means disconnect everything 5662 * regardless even on a listener. 5663 */ 5664 5665 int old_state = tcp->tcp_state; 5666 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 5667 5668 /* 5669 * The connection can't be on the tcp_time_wait_head list 5670 * since it is not detached. 5671 */ 5672 ASSERT(tcp->tcp_time_wait_next == NULL); 5673 ASSERT(tcp->tcp_time_wait_prev == NULL); 5674 ASSERT(tcp->tcp_time_wait_expire == 0); 5675 /* 5676 * If it used to be a listener, check to make sure no one else 5677 * has taken the port before switching back to LISTEN state. 5678 */ 5679 if (connp->conn_ipversion == IPV4_VERSION) { 5680 lconnp = ipcl_lookup_listener_v4(connp->conn_lport, 5681 connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst); 5682 } else { 5683 uint_t ifindex = 0; 5684 5685 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) 5686 ifindex = connp->conn_ixa->ixa_scopeid; 5687 5688 /* Allow conn_bound_if listeners? */ 5689 lconnp = ipcl_lookup_listener_v6(connp->conn_lport, 5690 &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp), 5691 ipst); 5692 } 5693 if (tcp->tcp_conn_req_max && lconnp == NULL) { 5694 tcp->tcp_state = TCPS_LISTEN; 5695 } else if (old_state > TCPS_BOUND) { 5696 tcp->tcp_conn_req_max = 0; 5697 tcp->tcp_state = TCPS_BOUND; 5698 5699 /* 5700 * If this end point is not going to become a listener, 5701 * decrement the listener connection count if 5702 * necessary. Note that we do not do this if it is 5703 * going to be a listner (the above if case) since 5704 * then it may remove the counter struct. 5705 */ 5706 if (tcp->tcp_listen_cnt != NULL) 5707 TCP_DECR_LISTEN_CNT(tcp); 5708 } 5709 if (lconnp != NULL) 5710 CONN_DEC_REF(lconnp); 5711 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 5712 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 5713 } else if (old_state == TCPS_ESTABLISHED || 5714 old_state == TCPS_CLOSE_WAIT) { 5715 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 5716 } 5717 5718 if (tcp->tcp_fused) 5719 tcp_unfuse(tcp); 5720 5721 mutex_enter(&tcp->tcp_eager_lock); 5722 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 5723 (tcp->tcp_conn_req_cnt_q != 0)) { 5724 tcp_eager_cleanup(tcp, 0); 5725 } 5726 mutex_exit(&tcp->tcp_eager_lock); 5727 5728 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 5729 tcp->tcp_rnxt, TH_RST | TH_ACK); 5730 5731 tcp_reinit(tcp); 5732 5733 return (0); 5734 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 5735 return (TBADSEQ); 5736 } 5737 return (0); 5738 } 5739 5740 /* 5741 * Our client hereby directs us to reject the connection request 5742 * that tcp_input_listener() marked with 'seqnum'. Rejection consists 5743 * of sending the appropriate RST, not an ICMP error. 5744 */ 5745 static void 5746 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 5747 { 5748 t_scalar_t seqnum; 5749 int error; 5750 conn_t *connp = tcp->tcp_connp; 5751 5752 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5753 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 5754 tcp_err_ack(tcp, mp, TPROTO, 0); 5755 return; 5756 } 5757 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 5758 error = tcp_disconnect_common(tcp, seqnum); 5759 if (error != 0) 5760 tcp_err_ack(tcp, mp, error, 0); 5761 else { 5762 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 5763 /* Send M_FLUSH according to TPI */ 5764 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW); 5765 } 5766 mp = mi_tpi_ok_ack_alloc(mp); 5767 if (mp != NULL) 5768 putnext(connp->conn_rq, mp); 5769 } 5770 } 5771 5772 /* 5773 * Diagnostic routine used to return a string associated with the tcp state. 5774 * Note that if the caller does not supply a buffer, it will use an internal 5775 * static string. This means that if multiple threads call this function at 5776 * the same time, output can be corrupted... Note also that this function 5777 * does not check the size of the supplied buffer. The caller has to make 5778 * sure that it is big enough. 5779 */ 5780 static char * 5781 tcp_display(tcp_t *tcp, char *sup_buf, char format) 5782 { 5783 char buf1[30]; 5784 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 5785 char *buf; 5786 char *cp; 5787 in6_addr_t local, remote; 5788 char local_addrbuf[INET6_ADDRSTRLEN]; 5789 char remote_addrbuf[INET6_ADDRSTRLEN]; 5790 conn_t *connp; 5791 5792 if (sup_buf != NULL) 5793 buf = sup_buf; 5794 else 5795 buf = priv_buf; 5796 5797 if (tcp == NULL) 5798 return ("NULL_TCP"); 5799 5800 connp = tcp->tcp_connp; 5801 switch (tcp->tcp_state) { 5802 case TCPS_CLOSED: 5803 cp = "TCP_CLOSED"; 5804 break; 5805 case TCPS_IDLE: 5806 cp = "TCP_IDLE"; 5807 break; 5808 case TCPS_BOUND: 5809 cp = "TCP_BOUND"; 5810 break; 5811 case TCPS_LISTEN: 5812 cp = "TCP_LISTEN"; 5813 break; 5814 case TCPS_SYN_SENT: 5815 cp = "TCP_SYN_SENT"; 5816 break; 5817 case TCPS_SYN_RCVD: 5818 cp = "TCP_SYN_RCVD"; 5819 break; 5820 case TCPS_ESTABLISHED: 5821 cp = "TCP_ESTABLISHED"; 5822 break; 5823 case TCPS_CLOSE_WAIT: 5824 cp = "TCP_CLOSE_WAIT"; 5825 break; 5826 case TCPS_FIN_WAIT_1: 5827 cp = "TCP_FIN_WAIT_1"; 5828 break; 5829 case TCPS_CLOSING: 5830 cp = "TCP_CLOSING"; 5831 break; 5832 case TCPS_LAST_ACK: 5833 cp = "TCP_LAST_ACK"; 5834 break; 5835 case TCPS_FIN_WAIT_2: 5836 cp = "TCP_FIN_WAIT_2"; 5837 break; 5838 case TCPS_TIME_WAIT: 5839 cp = "TCP_TIME_WAIT"; 5840 break; 5841 default: 5842 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 5843 cp = buf1; 5844 break; 5845 } 5846 switch (format) { 5847 case DISP_ADDR_AND_PORT: 5848 if (connp->conn_ipversion == IPV4_VERSION) { 5849 /* 5850 * Note that we use the remote address in the tcp_b 5851 * structure. This means that it will print out 5852 * the real destination address, not the next hop's 5853 * address if source routing is used. 5854 */ 5855 IN6_IPADDR_TO_V4MAPPED(connp->conn_laddr_v4, &local); 5856 IN6_IPADDR_TO_V4MAPPED(connp->conn_faddr_v4, &remote); 5857 5858 } else { 5859 local = connp->conn_laddr_v6; 5860 remote = connp->conn_faddr_v6; 5861 } 5862 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 5863 sizeof (local_addrbuf)); 5864 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 5865 sizeof (remote_addrbuf)); 5866 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 5867 local_addrbuf, ntohs(connp->conn_lport), remote_addrbuf, 5868 ntohs(connp->conn_fport), cp); 5869 break; 5870 case DISP_PORT_ONLY: 5871 default: 5872 (void) mi_sprintf(buf, "[%u, %u] %s", 5873 ntohs(connp->conn_lport), ntohs(connp->conn_fport), cp); 5874 break; 5875 } 5876 5877 return (buf); 5878 } 5879 5880 /* 5881 * Called via squeue to get on to eager's perimeter. It sends a 5882 * TH_RST if eager is in the fanout table. The listener wants the 5883 * eager to disappear either by means of tcp_eager_blowoff() or 5884 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 5885 * called (via squeue) if the eager cannot be inserted in the 5886 * fanout table in tcp_input_listener(). 5887 */ 5888 /* ARGSUSED */ 5889 void 5890 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 5891 { 5892 conn_t *econnp = (conn_t *)arg; 5893 tcp_t *eager = econnp->conn_tcp; 5894 tcp_t *listener = eager->tcp_listener; 5895 5896 /* 5897 * We could be called because listener is closing. Since 5898 * the eager was using listener's queue's, we avoid 5899 * using the listeners queues from now on. 5900 */ 5901 ASSERT(eager->tcp_detached); 5902 econnp->conn_rq = NULL; 5903 econnp->conn_wq = NULL; 5904 5905 /* 5906 * An eager's conn_fanout will be NULL if it's a duplicate 5907 * for an existing 4-tuples in the conn fanout table. 5908 * We don't want to send an RST out in such case. 5909 */ 5910 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 5911 tcp_xmit_ctl("tcp_eager_kill, can't wait", 5912 eager, eager->tcp_snxt, 0, TH_RST); 5913 } 5914 5915 /* We are here because listener wants this eager gone */ 5916 if (listener != NULL) { 5917 mutex_enter(&listener->tcp_eager_lock); 5918 tcp_eager_unlink(eager); 5919 if (eager->tcp_tconnind_started) { 5920 /* 5921 * The eager has sent a conn_ind up to the 5922 * listener but listener decides to close 5923 * instead. We need to drop the extra ref 5924 * placed on eager in tcp_input_data() before 5925 * sending the conn_ind to listener. 5926 */ 5927 CONN_DEC_REF(econnp); 5928 } 5929 mutex_exit(&listener->tcp_eager_lock); 5930 CONN_DEC_REF(listener->tcp_connp); 5931 } 5932 5933 if (eager->tcp_state != TCPS_CLOSED) 5934 tcp_close_detached(eager); 5935 } 5936 5937 /* 5938 * Reset any eager connection hanging off this listener marked 5939 * with 'seqnum' and then reclaim it's resources. 5940 */ 5941 static boolean_t 5942 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 5943 { 5944 tcp_t *eager; 5945 mblk_t *mp; 5946 tcp_stack_t *tcps = listener->tcp_tcps; 5947 5948 TCP_STAT(tcps, tcp_eager_blowoff_calls); 5949 eager = listener; 5950 mutex_enter(&listener->tcp_eager_lock); 5951 do { 5952 eager = eager->tcp_eager_next_q; 5953 if (eager == NULL) { 5954 mutex_exit(&listener->tcp_eager_lock); 5955 return (B_FALSE); 5956 } 5957 } while (eager->tcp_conn_req_seqnum != seqnum); 5958 5959 if (eager->tcp_closemp_used) { 5960 mutex_exit(&listener->tcp_eager_lock); 5961 return (B_TRUE); 5962 } 5963 eager->tcp_closemp_used = B_TRUE; 5964 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5965 CONN_INC_REF(eager->tcp_connp); 5966 mutex_exit(&listener->tcp_eager_lock); 5967 mp = &eager->tcp_closemp; 5968 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 5969 eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); 5970 return (B_TRUE); 5971 } 5972 5973 /* 5974 * Reset any eager connection hanging off this listener 5975 * and then reclaim it's resources. 5976 */ 5977 static void 5978 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 5979 { 5980 tcp_t *eager; 5981 mblk_t *mp; 5982 tcp_stack_t *tcps = listener->tcp_tcps; 5983 5984 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 5985 5986 if (!q0_only) { 5987 /* First cleanup q */ 5988 TCP_STAT(tcps, tcp_eager_blowoff_q); 5989 eager = listener->tcp_eager_next_q; 5990 while (eager != NULL) { 5991 if (!eager->tcp_closemp_used) { 5992 eager->tcp_closemp_used = B_TRUE; 5993 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5994 CONN_INC_REF(eager->tcp_connp); 5995 mp = &eager->tcp_closemp; 5996 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 5997 tcp_eager_kill, eager->tcp_connp, NULL, 5998 SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); 5999 } 6000 eager = eager->tcp_eager_next_q; 6001 } 6002 } 6003 /* Then cleanup q0 */ 6004 TCP_STAT(tcps, tcp_eager_blowoff_q0); 6005 eager = listener->tcp_eager_next_q0; 6006 while (eager != listener) { 6007 if (!eager->tcp_closemp_used) { 6008 eager->tcp_closemp_used = B_TRUE; 6009 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6010 CONN_INC_REF(eager->tcp_connp); 6011 mp = &eager->tcp_closemp; 6012 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 6013 tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL, 6014 SQTAG_TCP_EAGER_CLEANUP_Q0); 6015 } 6016 eager = eager->tcp_eager_next_q0; 6017 } 6018 } 6019 6020 /* 6021 * If we are an eager connection hanging off a listener that hasn't 6022 * formally accepted the connection yet, get off his list and blow off 6023 * any data that we have accumulated. 6024 */ 6025 static void 6026 tcp_eager_unlink(tcp_t *tcp) 6027 { 6028 tcp_t *listener = tcp->tcp_listener; 6029 6030 ASSERT(listener != NULL); 6031 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6032 if (tcp->tcp_eager_next_q0 != NULL) { 6033 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 6034 6035 /* Remove the eager tcp from q0 */ 6036 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 6037 tcp->tcp_eager_prev_q0; 6038 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 6039 tcp->tcp_eager_next_q0; 6040 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 6041 listener->tcp_conn_req_cnt_q0--; 6042 6043 tcp->tcp_eager_next_q0 = NULL; 6044 tcp->tcp_eager_prev_q0 = NULL; 6045 6046 /* 6047 * Take the eager out, if it is in the list of droppable 6048 * eagers. 6049 */ 6050 MAKE_UNDROPPABLE(tcp); 6051 6052 if (tcp->tcp_syn_rcvd_timeout != 0) { 6053 /* we have timed out before */ 6054 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 6055 listener->tcp_syn_rcvd_timeout--; 6056 } 6057 } else { 6058 tcp_t **tcpp = &listener->tcp_eager_next_q; 6059 tcp_t *prev = NULL; 6060 6061 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 6062 if (tcpp[0] == tcp) { 6063 if (listener->tcp_eager_last_q == tcp) { 6064 /* 6065 * If we are unlinking the last 6066 * element on the list, adjust 6067 * tail pointer. Set tail pointer 6068 * to nil when list is empty. 6069 */ 6070 ASSERT(tcp->tcp_eager_next_q == NULL); 6071 if (listener->tcp_eager_last_q == 6072 listener->tcp_eager_next_q) { 6073 listener->tcp_eager_last_q = 6074 NULL; 6075 } else { 6076 /* 6077 * We won't get here if there 6078 * is only one eager in the 6079 * list. 6080 */ 6081 ASSERT(prev != NULL); 6082 listener->tcp_eager_last_q = 6083 prev; 6084 } 6085 } 6086 tcpp[0] = tcp->tcp_eager_next_q; 6087 tcp->tcp_eager_next_q = NULL; 6088 tcp->tcp_eager_last_q = NULL; 6089 ASSERT(listener->tcp_conn_req_cnt_q > 0); 6090 listener->tcp_conn_req_cnt_q--; 6091 break; 6092 } 6093 prev = tcpp[0]; 6094 } 6095 } 6096 tcp->tcp_listener = NULL; 6097 } 6098 6099 /* Shorthand to generate and send TPI error acks to our client */ 6100 static void 6101 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 6102 { 6103 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 6104 putnext(tcp->tcp_connp->conn_rq, mp); 6105 } 6106 6107 /* Shorthand to generate and send TPI error acks to our client */ 6108 static void 6109 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 6110 int t_error, int sys_error) 6111 { 6112 struct T_error_ack *teackp; 6113 6114 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 6115 M_PCPROTO, T_ERROR_ACK)) != NULL) { 6116 teackp = (struct T_error_ack *)mp->b_rptr; 6117 teackp->ERROR_prim = primitive; 6118 teackp->TLI_error = t_error; 6119 teackp->UNIX_error = sys_error; 6120 putnext(tcp->tcp_connp->conn_rq, mp); 6121 } 6122 } 6123 6124 /* 6125 * Note: No locks are held when inspecting tcp_g_*epriv_ports 6126 * but instead the code relies on: 6127 * - the fact that the address of the array and its size never changes 6128 * - the atomic assignment of the elements of the array 6129 */ 6130 /* ARGSUSED */ 6131 static int 6132 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 6133 { 6134 int i; 6135 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 6136 6137 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 6138 if (tcps->tcps_g_epriv_ports[i] != 0) 6139 (void) mi_mpprintf(mp, "%d ", 6140 tcps->tcps_g_epriv_ports[i]); 6141 } 6142 return (0); 6143 } 6144 6145 /* 6146 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 6147 * threads from changing it at the same time. 6148 */ 6149 /* ARGSUSED */ 6150 static int 6151 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 6152 cred_t *cr) 6153 { 6154 long new_value; 6155 int i; 6156 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 6157 6158 /* 6159 * Fail the request if the new value does not lie within the 6160 * port number limits. 6161 */ 6162 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 6163 new_value <= 0 || new_value >= 65536) { 6164 return (EINVAL); 6165 } 6166 6167 mutex_enter(&tcps->tcps_epriv_port_lock); 6168 /* Check if the value is already in the list */ 6169 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 6170 if (new_value == tcps->tcps_g_epriv_ports[i]) { 6171 mutex_exit(&tcps->tcps_epriv_port_lock); 6172 return (EEXIST); 6173 } 6174 } 6175 /* Find an empty slot */ 6176 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 6177 if (tcps->tcps_g_epriv_ports[i] == 0) 6178 break; 6179 } 6180 if (i == tcps->tcps_g_num_epriv_ports) { 6181 mutex_exit(&tcps->tcps_epriv_port_lock); 6182 return (EOVERFLOW); 6183 } 6184 /* Set the new value */ 6185 tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; 6186 mutex_exit(&tcps->tcps_epriv_port_lock); 6187 return (0); 6188 } 6189 6190 /* 6191 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 6192 * threads from changing it at the same time. 6193 */ 6194 /* ARGSUSED */ 6195 static int 6196 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 6197 cred_t *cr) 6198 { 6199 long new_value; 6200 int i; 6201 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 6202 6203 /* 6204 * Fail the request if the new value does not lie within the 6205 * port number limits. 6206 */ 6207 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 6208 new_value >= 65536) { 6209 return (EINVAL); 6210 } 6211 6212 mutex_enter(&tcps->tcps_epriv_port_lock); 6213 /* Check that the value is already in the list */ 6214 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 6215 if (tcps->tcps_g_epriv_ports[i] == new_value) 6216 break; 6217 } 6218 if (i == tcps->tcps_g_num_epriv_ports) { 6219 mutex_exit(&tcps->tcps_epriv_port_lock); 6220 return (ESRCH); 6221 } 6222 /* Clear the value */ 6223 tcps->tcps_g_epriv_ports[i] = 0; 6224 mutex_exit(&tcps->tcps_epriv_port_lock); 6225 return (0); 6226 } 6227 6228 /* Return the TPI/TLI equivalent of our current tcp_state */ 6229 static int 6230 tcp_tpistate(tcp_t *tcp) 6231 { 6232 switch (tcp->tcp_state) { 6233 case TCPS_IDLE: 6234 return (TS_UNBND); 6235 case TCPS_LISTEN: 6236 /* 6237 * Return whether there are outstanding T_CONN_IND waiting 6238 * for the matching T_CONN_RES. Therefore don't count q0. 6239 */ 6240 if (tcp->tcp_conn_req_cnt_q > 0) 6241 return (TS_WRES_CIND); 6242 else 6243 return (TS_IDLE); 6244 case TCPS_BOUND: 6245 return (TS_IDLE); 6246 case TCPS_SYN_SENT: 6247 return (TS_WCON_CREQ); 6248 case TCPS_SYN_RCVD: 6249 /* 6250 * Note: assumption: this has to the active open SYN_RCVD. 6251 * The passive instance is detached in SYN_RCVD stage of 6252 * incoming connection processing so we cannot get request 6253 * for T_info_ack on it. 6254 */ 6255 return (TS_WACK_CRES); 6256 case TCPS_ESTABLISHED: 6257 return (TS_DATA_XFER); 6258 case TCPS_CLOSE_WAIT: 6259 return (TS_WREQ_ORDREL); 6260 case TCPS_FIN_WAIT_1: 6261 return (TS_WIND_ORDREL); 6262 case TCPS_FIN_WAIT_2: 6263 return (TS_WIND_ORDREL); 6264 6265 case TCPS_CLOSING: 6266 case TCPS_LAST_ACK: 6267 case TCPS_TIME_WAIT: 6268 case TCPS_CLOSED: 6269 /* 6270 * Following TS_WACK_DREQ7 is a rendition of "not 6271 * yet TS_IDLE" TPI state. There is no best match to any 6272 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 6273 * choose a value chosen that will map to TLI/XTI level 6274 * state of TSTATECHNG (state is process of changing) which 6275 * captures what this dummy state represents. 6276 */ 6277 return (TS_WACK_DREQ7); 6278 default: 6279 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 6280 tcp->tcp_state, tcp_display(tcp, NULL, 6281 DISP_PORT_ONLY)); 6282 return (TS_UNBND); 6283 } 6284 } 6285 6286 static void 6287 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 6288 { 6289 tcp_stack_t *tcps = tcp->tcp_tcps; 6290 conn_t *connp = tcp->tcp_connp; 6291 6292 if (connp->conn_family == AF_INET6) 6293 *tia = tcp_g_t_info_ack_v6; 6294 else 6295 *tia = tcp_g_t_info_ack; 6296 tia->CURRENT_state = tcp_tpistate(tcp); 6297 tia->OPT_size = tcp_max_optsize; 6298 if (tcp->tcp_mss == 0) { 6299 /* Not yet set - tcp_open does not set mss */ 6300 if (connp->conn_ipversion == IPV4_VERSION) 6301 tia->TIDU_size = tcps->tcps_mss_def_ipv4; 6302 else 6303 tia->TIDU_size = tcps->tcps_mss_def_ipv6; 6304 } else { 6305 tia->TIDU_size = tcp->tcp_mss; 6306 } 6307 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 6308 } 6309 6310 static void 6311 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap, 6312 t_uscalar_t cap_bits1) 6313 { 6314 tcap->CAP_bits1 = 0; 6315 6316 if (cap_bits1 & TC1_INFO) { 6317 tcp_copy_info(&tcap->INFO_ack, tcp); 6318 tcap->CAP_bits1 |= TC1_INFO; 6319 } 6320 6321 if (cap_bits1 & TC1_ACCEPTOR_ID) { 6322 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 6323 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 6324 } 6325 6326 } 6327 6328 /* 6329 * This routine responds to T_CAPABILITY_REQ messages. It is called by 6330 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 6331 * tcp_g_t_info_ack. The current state of the stream is copied from 6332 * tcp_state. 6333 */ 6334 static void 6335 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 6336 { 6337 t_uscalar_t cap_bits1; 6338 struct T_capability_ack *tcap; 6339 6340 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 6341 freemsg(mp); 6342 return; 6343 } 6344 6345 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 6346 6347 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 6348 mp->b_datap->db_type, T_CAPABILITY_ACK); 6349 if (mp == NULL) 6350 return; 6351 6352 tcap = (struct T_capability_ack *)mp->b_rptr; 6353 tcp_do_capability_ack(tcp, tcap, cap_bits1); 6354 6355 putnext(tcp->tcp_connp->conn_rq, mp); 6356 } 6357 6358 /* 6359 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 6360 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 6361 * The current state of the stream is copied from tcp_state. 6362 */ 6363 static void 6364 tcp_info_req(tcp_t *tcp, mblk_t *mp) 6365 { 6366 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 6367 T_INFO_ACK); 6368 if (!mp) { 6369 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6370 return; 6371 } 6372 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 6373 putnext(tcp->tcp_connp->conn_rq, mp); 6374 } 6375 6376 /* Respond to the TPI addr request */ 6377 static void 6378 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 6379 { 6380 struct sockaddr *sa; 6381 mblk_t *ackmp; 6382 struct T_addr_ack *taa; 6383 conn_t *connp = tcp->tcp_connp; 6384 uint_t addrlen; 6385 6386 /* Make it large enough for worst case */ 6387 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 6388 2 * sizeof (sin6_t), 1); 6389 if (ackmp == NULL) { 6390 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6391 return; 6392 } 6393 6394 taa = (struct T_addr_ack *)ackmp->b_rptr; 6395 6396 bzero(taa, sizeof (struct T_addr_ack)); 6397 ackmp->b_wptr = (uchar_t *)&taa[1]; 6398 6399 taa->PRIM_type = T_ADDR_ACK; 6400 ackmp->b_datap->db_type = M_PCPROTO; 6401 6402 if (connp->conn_family == AF_INET) 6403 addrlen = sizeof (sin_t); 6404 else 6405 addrlen = sizeof (sin6_t); 6406 6407 /* 6408 * Note: Following code assumes 32 bit alignment of basic 6409 * data structures like sin_t and struct T_addr_ack. 6410 */ 6411 if (tcp->tcp_state >= TCPS_BOUND) { 6412 /* 6413 * Fill in local address first 6414 */ 6415 taa->LOCADDR_offset = sizeof (*taa); 6416 taa->LOCADDR_length = addrlen; 6417 sa = (struct sockaddr *)&taa[1]; 6418 (void) conn_getsockname(connp, sa, &addrlen); 6419 ackmp->b_wptr += addrlen; 6420 } 6421 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 6422 /* 6423 * Fill in Remote address 6424 */ 6425 taa->REMADDR_length = addrlen; 6426 /* assumed 32-bit alignment */ 6427 taa->REMADDR_offset = taa->LOCADDR_offset + taa->LOCADDR_length; 6428 sa = (struct sockaddr *)(ackmp->b_rptr + taa->REMADDR_offset); 6429 (void) conn_getpeername(connp, sa, &addrlen); 6430 ackmp->b_wptr += addrlen; 6431 } 6432 ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim); 6433 putnext(tcp->tcp_connp->conn_rq, ackmp); 6434 } 6435 6436 /* 6437 * Handle reinitialization of a tcp structure. 6438 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 6439 */ 6440 static void 6441 tcp_reinit(tcp_t *tcp) 6442 { 6443 mblk_t *mp; 6444 tcp_stack_t *tcps = tcp->tcp_tcps; 6445 conn_t *connp = tcp->tcp_connp; 6446 6447 TCP_STAT(tcps, tcp_reinit_calls); 6448 6449 /* tcp_reinit should never be called for detached tcp_t's */ 6450 ASSERT(tcp->tcp_listener == NULL); 6451 ASSERT((connp->conn_family == AF_INET && 6452 connp->conn_ipversion == IPV4_VERSION) || 6453 (connp->conn_family == AF_INET6 && 6454 (connp->conn_ipversion == IPV4_VERSION || 6455 connp->conn_ipversion == IPV6_VERSION))); 6456 6457 /* Cancel outstanding timers */ 6458 tcp_timers_stop(tcp); 6459 6460 /* 6461 * Reset everything in the state vector, after updating global 6462 * MIB data from instance counters. 6463 */ 6464 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 6465 tcp->tcp_ibsegs = 0; 6466 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 6467 tcp->tcp_obsegs = 0; 6468 6469 tcp_close_mpp(&tcp->tcp_xmit_head); 6470 if (tcp->tcp_snd_zcopy_aware) 6471 tcp_zcopy_notify(tcp); 6472 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 6473 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 6474 mutex_enter(&tcp->tcp_non_sq_lock); 6475 if (tcp->tcp_flow_stopped && 6476 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 6477 tcp_clrqfull(tcp); 6478 } 6479 mutex_exit(&tcp->tcp_non_sq_lock); 6480 tcp_close_mpp(&tcp->tcp_reass_head); 6481 tcp->tcp_reass_tail = NULL; 6482 if (tcp->tcp_rcv_list != NULL) { 6483 /* Free b_next chain */ 6484 tcp_close_mpp(&tcp->tcp_rcv_list); 6485 tcp->tcp_rcv_last_head = NULL; 6486 tcp->tcp_rcv_last_tail = NULL; 6487 tcp->tcp_rcv_cnt = 0; 6488 } 6489 tcp->tcp_rcv_last_tail = NULL; 6490 6491 if ((mp = tcp->tcp_urp_mp) != NULL) { 6492 freemsg(mp); 6493 tcp->tcp_urp_mp = NULL; 6494 } 6495 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 6496 freemsg(mp); 6497 tcp->tcp_urp_mark_mp = NULL; 6498 } 6499 if (tcp->tcp_fused_sigurg_mp != NULL) { 6500 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 6501 freeb(tcp->tcp_fused_sigurg_mp); 6502 tcp->tcp_fused_sigurg_mp = NULL; 6503 } 6504 if (tcp->tcp_ordrel_mp != NULL) { 6505 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 6506 freeb(tcp->tcp_ordrel_mp); 6507 tcp->tcp_ordrel_mp = NULL; 6508 } 6509 6510 /* 6511 * Following is a union with two members which are 6512 * identical types and size so the following cleanup 6513 * is enough. 6514 */ 6515 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 6516 6517 CL_INET_DISCONNECT(connp); 6518 6519 /* 6520 * The connection can't be on the tcp_time_wait_head list 6521 * since it is not detached. 6522 */ 6523 ASSERT(tcp->tcp_time_wait_next == NULL); 6524 ASSERT(tcp->tcp_time_wait_prev == NULL); 6525 ASSERT(tcp->tcp_time_wait_expire == 0); 6526 6527 if (tcp->tcp_kssl_pending) { 6528 tcp->tcp_kssl_pending = B_FALSE; 6529 6530 /* Don't reset if the initialized by bind. */ 6531 if (tcp->tcp_kssl_ent != NULL) { 6532 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 6533 KSSL_NO_PROXY); 6534 } 6535 } 6536 if (tcp->tcp_kssl_ctx != NULL) { 6537 kssl_release_ctx(tcp->tcp_kssl_ctx); 6538 tcp->tcp_kssl_ctx = NULL; 6539 } 6540 6541 /* 6542 * Reset/preserve other values 6543 */ 6544 tcp_reinit_values(tcp); 6545 ipcl_hash_remove(connp); 6546 /* Note that ixa_cred gets cleared in ixa_cleanup */ 6547 ixa_cleanup(connp->conn_ixa); 6548 tcp_ipsec_cleanup(tcp); 6549 6550 connp->conn_laddr_v6 = connp->conn_bound_addr_v6; 6551 connp->conn_saddr_v6 = connp->conn_bound_addr_v6; 6552 6553 if (tcp->tcp_conn_req_max != 0) { 6554 /* 6555 * This is the case when a TLI program uses the same 6556 * transport end point to accept a connection. This 6557 * makes the TCP both a listener and acceptor. When 6558 * this connection is closed, we need to set the state 6559 * back to TCPS_LISTEN. Make sure that the eager list 6560 * is reinitialized. 6561 * 6562 * Note that this stream is still bound to the four 6563 * tuples of the previous connection in IP. If a new 6564 * SYN with different foreign address comes in, IP will 6565 * not find it and will send it to the global queue. In 6566 * the global queue, TCP will do a tcp_lookup_listener() 6567 * to find this stream. This works because this stream 6568 * is only removed from connected hash. 6569 * 6570 */ 6571 tcp->tcp_state = TCPS_LISTEN; 6572 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 6573 tcp->tcp_eager_next_drop_q0 = tcp; 6574 tcp->tcp_eager_prev_drop_q0 = tcp; 6575 /* 6576 * Initially set conn_recv to tcp_input_listener_unbound to try 6577 * to pick a good squeue for the listener when the first SYN 6578 * arrives. tcp_input_listener_unbound sets it to 6579 * tcp_input_listener on that first SYN. 6580 */ 6581 connp->conn_recv = tcp_input_listener_unbound; 6582 6583 connp->conn_proto = IPPROTO_TCP; 6584 connp->conn_faddr_v6 = ipv6_all_zeros; 6585 connp->conn_fport = 0; 6586 6587 (void) ipcl_bind_insert(connp); 6588 } else { 6589 tcp->tcp_state = TCPS_BOUND; 6590 } 6591 6592 /* 6593 * Initialize to default values 6594 */ 6595 tcp_init_values(tcp); 6596 6597 ASSERT(tcp->tcp_ptpbhn != NULL); 6598 tcp->tcp_rwnd = connp->conn_rcvbuf; 6599 tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ? 6600 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 6601 } 6602 6603 /* 6604 * Force values to zero that need be zero. 6605 * Do not touch values asociated with the BOUND or LISTEN state 6606 * since the connection will end up in that state after the reinit. 6607 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 6608 * structure! 6609 */ 6610 static void 6611 tcp_reinit_values(tcp) 6612 tcp_t *tcp; 6613 { 6614 tcp_stack_t *tcps = tcp->tcp_tcps; 6615 conn_t *connp = tcp->tcp_connp; 6616 6617 #ifndef lint 6618 #define DONTCARE(x) 6619 #define PRESERVE(x) 6620 #else 6621 #define DONTCARE(x) ((x) = (x)) 6622 #define PRESERVE(x) ((x) = (x)) 6623 #endif /* lint */ 6624 6625 PRESERVE(tcp->tcp_bind_hash_port); 6626 PRESERVE(tcp->tcp_bind_hash); 6627 PRESERVE(tcp->tcp_ptpbhn); 6628 PRESERVE(tcp->tcp_acceptor_hash); 6629 PRESERVE(tcp->tcp_ptpahn); 6630 6631 /* Should be ASSERT NULL on these with new code! */ 6632 ASSERT(tcp->tcp_time_wait_next == NULL); 6633 ASSERT(tcp->tcp_time_wait_prev == NULL); 6634 ASSERT(tcp->tcp_time_wait_expire == 0); 6635 PRESERVE(tcp->tcp_state); 6636 PRESERVE(connp->conn_rq); 6637 PRESERVE(connp->conn_wq); 6638 6639 ASSERT(tcp->tcp_xmit_head == NULL); 6640 ASSERT(tcp->tcp_xmit_last == NULL); 6641 ASSERT(tcp->tcp_unsent == 0); 6642 ASSERT(tcp->tcp_xmit_tail == NULL); 6643 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 6644 6645 tcp->tcp_snxt = 0; /* Displayed in mib */ 6646 tcp->tcp_suna = 0; /* Displayed in mib */ 6647 tcp->tcp_swnd = 0; 6648 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_process_options */ 6649 6650 ASSERT(tcp->tcp_ibsegs == 0); 6651 ASSERT(tcp->tcp_obsegs == 0); 6652 6653 if (connp->conn_ht_iphc != NULL) { 6654 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 6655 connp->conn_ht_iphc = NULL; 6656 connp->conn_ht_iphc_allocated = 0; 6657 connp->conn_ht_iphc_len = 0; 6658 connp->conn_ht_ulp = NULL; 6659 connp->conn_ht_ulp_len = 0; 6660 tcp->tcp_ipha = NULL; 6661 tcp->tcp_ip6h = NULL; 6662 tcp->tcp_tcpha = NULL; 6663 } 6664 6665 /* We clear any IP_OPTIONS and extension headers */ 6666 ip_pkt_free(&connp->conn_xmit_ipp); 6667 6668 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 6669 DONTCARE(tcp->tcp_ipha); 6670 DONTCARE(tcp->tcp_ip6h); 6671 DONTCARE(tcp->tcp_tcpha); 6672 tcp->tcp_valid_bits = 0; 6673 6674 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 6675 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 6676 tcp->tcp_last_rcv_lbolt = 0; 6677 6678 tcp->tcp_init_cwnd = 0; 6679 6680 tcp->tcp_urp_last_valid = 0; 6681 tcp->tcp_hard_binding = 0; 6682 6683 tcp->tcp_fin_acked = 0; 6684 tcp->tcp_fin_rcvd = 0; 6685 tcp->tcp_fin_sent = 0; 6686 tcp->tcp_ordrel_done = 0; 6687 6688 tcp->tcp_detached = 0; 6689 6690 tcp->tcp_snd_ws_ok = B_FALSE; 6691 tcp->tcp_snd_ts_ok = B_FALSE; 6692 tcp->tcp_zero_win_probe = 0; 6693 6694 tcp->tcp_loopback = 0; 6695 tcp->tcp_localnet = 0; 6696 tcp->tcp_syn_defense = 0; 6697 tcp->tcp_set_timer = 0; 6698 6699 tcp->tcp_active_open = 0; 6700 tcp->tcp_rexmit = B_FALSE; 6701 tcp->tcp_xmit_zc_clean = B_FALSE; 6702 6703 tcp->tcp_snd_sack_ok = B_FALSE; 6704 tcp->tcp_hwcksum = B_FALSE; 6705 6706 DONTCARE(tcp->tcp_maxpsz_multiplier); /* Init in tcp_init_values */ 6707 6708 tcp->tcp_conn_def_q0 = 0; 6709 tcp->tcp_ip_forward_progress = B_FALSE; 6710 tcp->tcp_ecn_ok = B_FALSE; 6711 6712 tcp->tcp_cwr = B_FALSE; 6713 tcp->tcp_ecn_echo_on = B_FALSE; 6714 tcp->tcp_is_wnd_shrnk = B_FALSE; 6715 6716 if (tcp->tcp_sack_info != NULL) { 6717 if (tcp->tcp_notsack_list != NULL) { 6718 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 6719 tcp); 6720 } 6721 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 6722 tcp->tcp_sack_info = NULL; 6723 } 6724 6725 tcp->tcp_rcv_ws = 0; 6726 tcp->tcp_snd_ws = 0; 6727 tcp->tcp_ts_recent = 0; 6728 tcp->tcp_rnxt = 0; /* Displayed in mib */ 6729 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 6730 tcp->tcp_initial_pmtu = 0; 6731 6732 ASSERT(tcp->tcp_reass_head == NULL); 6733 ASSERT(tcp->tcp_reass_tail == NULL); 6734 6735 tcp->tcp_cwnd_cnt = 0; 6736 6737 ASSERT(tcp->tcp_rcv_list == NULL); 6738 ASSERT(tcp->tcp_rcv_last_head == NULL); 6739 ASSERT(tcp->tcp_rcv_last_tail == NULL); 6740 ASSERT(tcp->tcp_rcv_cnt == 0); 6741 6742 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */ 6743 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 6744 tcp->tcp_csuna = 0; 6745 6746 tcp->tcp_rto = 0; /* Displayed in MIB */ 6747 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 6748 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 6749 tcp->tcp_rtt_update = 0; 6750 6751 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 6752 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 6753 6754 tcp->tcp_rack = 0; /* Displayed in mib */ 6755 tcp->tcp_rack_cnt = 0; 6756 tcp->tcp_rack_cur_max = 0; 6757 tcp->tcp_rack_abs_max = 0; 6758 6759 tcp->tcp_max_swnd = 0; 6760 6761 ASSERT(tcp->tcp_listener == NULL); 6762 6763 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 6764 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 6765 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 6766 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 6767 6768 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 6769 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 6770 PRESERVE(tcp->tcp_conn_req_max); 6771 PRESERVE(tcp->tcp_conn_req_seqnum); 6772 6773 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 6774 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 6775 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 6776 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 6777 6778 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 6779 ASSERT(tcp->tcp_urp_mp == NULL); 6780 ASSERT(tcp->tcp_urp_mark_mp == NULL); 6781 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 6782 6783 ASSERT(tcp->tcp_eager_next_q == NULL); 6784 ASSERT(tcp->tcp_eager_last_q == NULL); 6785 ASSERT((tcp->tcp_eager_next_q0 == NULL && 6786 tcp->tcp_eager_prev_q0 == NULL) || 6787 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 6788 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 6789 6790 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 6791 tcp->tcp_eager_prev_drop_q0 == NULL) || 6792 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 6793 6794 tcp->tcp_client_errno = 0; 6795 6796 DONTCARE(connp->conn_sum); /* Init in tcp_init_values */ 6797 6798 connp->conn_faddr_v6 = ipv6_all_zeros; /* Displayed in MIB */ 6799 6800 PRESERVE(connp->conn_bound_addr_v6); 6801 tcp->tcp_last_sent_len = 0; 6802 tcp->tcp_dupack_cnt = 0; 6803 6804 connp->conn_fport = 0; /* Displayed in MIB */ 6805 PRESERVE(connp->conn_lport); 6806 6807 PRESERVE(tcp->tcp_acceptor_lockp); 6808 6809 ASSERT(tcp->tcp_ordrel_mp == NULL); 6810 PRESERVE(tcp->tcp_acceptor_id); 6811 DONTCARE(tcp->tcp_ipsec_overhead); 6812 6813 PRESERVE(connp->conn_family); 6814 /* Remove any remnants of mapped address binding */ 6815 if (connp->conn_family == AF_INET6) { 6816 connp->conn_ipversion = IPV6_VERSION; 6817 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 6818 } else { 6819 connp->conn_ipversion = IPV4_VERSION; 6820 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 6821 } 6822 6823 connp->conn_bound_if = 0; 6824 connp->conn_recv_ancillary.crb_all = 0; 6825 tcp->tcp_recvifindex = 0; 6826 tcp->tcp_recvhops = 0; 6827 tcp->tcp_closed = 0; 6828 tcp->tcp_cleandeathtag = 0; 6829 if (tcp->tcp_hopopts != NULL) { 6830 mi_free(tcp->tcp_hopopts); 6831 tcp->tcp_hopopts = NULL; 6832 tcp->tcp_hopoptslen = 0; 6833 } 6834 ASSERT(tcp->tcp_hopoptslen == 0); 6835 if (tcp->tcp_dstopts != NULL) { 6836 mi_free(tcp->tcp_dstopts); 6837 tcp->tcp_dstopts = NULL; 6838 tcp->tcp_dstoptslen = 0; 6839 } 6840 ASSERT(tcp->tcp_dstoptslen == 0); 6841 if (tcp->tcp_rthdrdstopts != NULL) { 6842 mi_free(tcp->tcp_rthdrdstopts); 6843 tcp->tcp_rthdrdstopts = NULL; 6844 tcp->tcp_rthdrdstoptslen = 0; 6845 } 6846 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 6847 if (tcp->tcp_rthdr != NULL) { 6848 mi_free(tcp->tcp_rthdr); 6849 tcp->tcp_rthdr = NULL; 6850 tcp->tcp_rthdrlen = 0; 6851 } 6852 ASSERT(tcp->tcp_rthdrlen == 0); 6853 6854 /* Reset fusion-related fields */ 6855 tcp->tcp_fused = B_FALSE; 6856 tcp->tcp_unfusable = B_FALSE; 6857 tcp->tcp_fused_sigurg = B_FALSE; 6858 tcp->tcp_loopback_peer = NULL; 6859 6860 tcp->tcp_lso = B_FALSE; 6861 6862 tcp->tcp_in_ack_unsent = 0; 6863 tcp->tcp_cork = B_FALSE; 6864 tcp->tcp_tconnind_started = B_FALSE; 6865 6866 PRESERVE(tcp->tcp_squeue_bytes); 6867 6868 ASSERT(tcp->tcp_kssl_ctx == NULL); 6869 ASSERT(!tcp->tcp_kssl_pending); 6870 PRESERVE(tcp->tcp_kssl_ent); 6871 6872 tcp->tcp_closemp_used = B_FALSE; 6873 6874 PRESERVE(tcp->tcp_rsrv_mp); 6875 PRESERVE(tcp->tcp_rsrv_mp_lock); 6876 6877 #ifdef DEBUG 6878 DONTCARE(tcp->tcmp_stk[0]); 6879 #endif 6880 6881 PRESERVE(tcp->tcp_connid); 6882 6883 ASSERT(tcp->tcp_listen_cnt == NULL); 6884 ASSERT(tcp->tcp_reass_tid == 0); 6885 6886 #undef DONTCARE 6887 #undef PRESERVE 6888 } 6889 6890 static void 6891 tcp_init_values(tcp_t *tcp) 6892 { 6893 tcp_stack_t *tcps = tcp->tcp_tcps; 6894 conn_t *connp = tcp->tcp_connp; 6895 6896 ASSERT((connp->conn_family == AF_INET && 6897 connp->conn_ipversion == IPV4_VERSION) || 6898 (connp->conn_family == AF_INET6 && 6899 (connp->conn_ipversion == IPV4_VERSION || 6900 connp->conn_ipversion == IPV6_VERSION))); 6901 6902 /* 6903 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 6904 * will be close to tcp_rexmit_interval_initial. By doing this, we 6905 * allow the algorithm to adjust slowly to large fluctuations of RTT 6906 * during first few transmissions of a connection as seen in slow 6907 * links. 6908 */ 6909 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 6910 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 6911 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 6912 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 6913 tcps->tcps_conn_grace_period; 6914 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 6915 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 6916 tcp->tcp_timer_backoff = 0; 6917 tcp->tcp_ms_we_have_waited = 0; 6918 tcp->tcp_last_recv_time = ddi_get_lbolt(); 6919 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 6920 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 6921 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 6922 6923 tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier; 6924 6925 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 6926 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 6927 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 6928 /* 6929 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 6930 * passive open. 6931 */ 6932 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 6933 6934 tcp->tcp_naglim = tcps->tcps_naglim_def; 6935 6936 /* NOTE: ISS is now set in tcp_set_destination(). */ 6937 6938 /* Reset fusion-related fields */ 6939 tcp->tcp_fused = B_FALSE; 6940 tcp->tcp_unfusable = B_FALSE; 6941 tcp->tcp_fused_sigurg = B_FALSE; 6942 tcp->tcp_loopback_peer = NULL; 6943 6944 /* We rebuild the header template on the next connect/conn_request */ 6945 6946 connp->conn_mlp_type = mlptSingle; 6947 6948 /* 6949 * Init the window scale to the max so tcp_rwnd_set() won't pare 6950 * down tcp_rwnd. tcp_set_destination() will set the right value later. 6951 */ 6952 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 6953 tcp->tcp_rwnd = connp->conn_rcvbuf; 6954 6955 tcp->tcp_cork = B_FALSE; 6956 /* 6957 * Init the tcp_debug option if it wasn't already set. This value 6958 * determines whether TCP 6959 * calls strlog() to print out debug messages. Doing this 6960 * initialization here means that this value is not inherited thru 6961 * tcp_reinit(). 6962 */ 6963 if (!connp->conn_debug) 6964 connp->conn_debug = tcps->tcps_dbg; 6965 6966 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 6967 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 6968 } 6969 6970 /* At minimum we need 8 bytes in the TCP header for the lookup */ 6971 #define ICMP_MIN_TCP_HDR 8 6972 6973 /* 6974 * tcp_icmp_input is called as conn_recvicmp to process ICMP error messages 6975 * passed up by IP. The message is always received on the correct tcp_t. 6976 * Assumes that IP has pulled up everything up to and including the ICMP header. 6977 */ 6978 /* ARGSUSED2 */ 6979 static void 6980 tcp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 6981 { 6982 conn_t *connp = (conn_t *)arg1; 6983 icmph_t *icmph; 6984 ipha_t *ipha; 6985 int iph_hdr_length; 6986 tcpha_t *tcpha; 6987 uint32_t seg_seq; 6988 tcp_t *tcp = connp->conn_tcp; 6989 6990 /* Assume IP provides aligned packets */ 6991 ASSERT(OK_32PTR(mp->b_rptr)); 6992 ASSERT((MBLKL(mp) >= sizeof (ipha_t))); 6993 6994 /* 6995 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 6996 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 6997 */ 6998 if (!(ira->ira_flags & IRAF_IS_IPV4)) { 6999 tcp_icmp_error_ipv6(tcp, mp, ira); 7000 return; 7001 } 7002 7003 /* Skip past the outer IP and ICMP headers */ 7004 iph_hdr_length = ira->ira_ip_hdr_length; 7005 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 7006 /* 7007 * If we don't have the correct outer IP header length 7008 * or if we don't have a complete inner IP header 7009 * drop it. 7010 */ 7011 if (iph_hdr_length < sizeof (ipha_t) || 7012 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 7013 noticmpv4: 7014 freemsg(mp); 7015 return; 7016 } 7017 ipha = (ipha_t *)&icmph[1]; 7018 7019 /* Skip past the inner IP and find the ULP header */ 7020 iph_hdr_length = IPH_HDR_LENGTH(ipha); 7021 tcpha = (tcpha_t *)((char *)ipha + iph_hdr_length); 7022 /* 7023 * If we don't have the correct inner IP header length or if the ULP 7024 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 7025 * bytes of TCP header, drop it. 7026 */ 7027 if (iph_hdr_length < sizeof (ipha_t) || 7028 ipha->ipha_protocol != IPPROTO_TCP || 7029 (uchar_t *)tcpha + ICMP_MIN_TCP_HDR > mp->b_wptr) { 7030 goto noticmpv4; 7031 } 7032 7033 seg_seq = ntohl(tcpha->tha_seq); 7034 switch (icmph->icmph_type) { 7035 case ICMP_DEST_UNREACHABLE: 7036 switch (icmph->icmph_code) { 7037 case ICMP_FRAGMENTATION_NEEDED: 7038 /* 7039 * Update Path MTU, then try to send something out. 7040 */ 7041 tcp_update_pmtu(tcp, B_TRUE); 7042 tcp_rexmit_after_error(tcp); 7043 break; 7044 case ICMP_PORT_UNREACHABLE: 7045 case ICMP_PROTOCOL_UNREACHABLE: 7046 switch (tcp->tcp_state) { 7047 case TCPS_SYN_SENT: 7048 case TCPS_SYN_RCVD: 7049 /* 7050 * ICMP can snipe away incipient 7051 * TCP connections as long as 7052 * seq number is same as initial 7053 * send seq number. 7054 */ 7055 if (seg_seq == tcp->tcp_iss) { 7056 (void) tcp_clean_death(tcp, 7057 ECONNREFUSED, 6); 7058 } 7059 break; 7060 } 7061 break; 7062 case ICMP_HOST_UNREACHABLE: 7063 case ICMP_NET_UNREACHABLE: 7064 /* Record the error in case we finally time out. */ 7065 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 7066 tcp->tcp_client_errno = EHOSTUNREACH; 7067 else 7068 tcp->tcp_client_errno = ENETUNREACH; 7069 if (tcp->tcp_state == TCPS_SYN_RCVD) { 7070 if (tcp->tcp_listener != NULL && 7071 tcp->tcp_listener->tcp_syn_defense) { 7072 /* 7073 * Ditch the half-open connection if we 7074 * suspect a SYN attack is under way. 7075 */ 7076 (void) tcp_clean_death(tcp, 7077 tcp->tcp_client_errno, 7); 7078 } 7079 } 7080 break; 7081 default: 7082 break; 7083 } 7084 break; 7085 case ICMP_SOURCE_QUENCH: { 7086 /* 7087 * use a global boolean to control 7088 * whether TCP should respond to ICMP_SOURCE_QUENCH. 7089 * The default is false. 7090 */ 7091 if (tcp_icmp_source_quench) { 7092 /* 7093 * Reduce the sending rate as if we got a 7094 * retransmit timeout 7095 */ 7096 uint32_t npkt; 7097 7098 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 7099 tcp->tcp_mss; 7100 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 7101 tcp->tcp_cwnd = tcp->tcp_mss; 7102 tcp->tcp_cwnd_cnt = 0; 7103 } 7104 break; 7105 } 7106 } 7107 freemsg(mp); 7108 } 7109 7110 /* 7111 * CALLED OUTSIDE OF SQUEUE! It can not follow any pointers that tcp might 7112 * change. But it can refer to fields like tcp_suna and tcp_snxt. 7113 * 7114 * Function tcp_verifyicmp is called as conn_verifyicmp to verify the ICMP 7115 * error messages received by IP. The message is always received on the correct 7116 * tcp_t. 7117 */ 7118 /* ARGSUSED */ 7119 static boolean_t 7120 tcp_verifyicmp(conn_t *connp, void *arg2, icmph_t *icmph, icmp6_t *icmp6, 7121 ip_recv_attr_t *ira) 7122 { 7123 tcpha_t *tcpha = (tcpha_t *)arg2; 7124 uint32_t seq = ntohl(tcpha->tha_seq); 7125 tcp_t *tcp = connp->conn_tcp; 7126 7127 /* 7128 * TCP sequence number contained in payload of the ICMP error message 7129 * should be within the range SND.UNA <= SEG.SEQ < SND.NXT. Otherwise, 7130 * the message is either a stale ICMP error, or an attack from the 7131 * network. Fail the verification. 7132 */ 7133 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 7134 return (B_FALSE); 7135 7136 /* For "too big" we also check the ignore flag */ 7137 if (ira->ira_flags & IRAF_IS_IPV4) { 7138 ASSERT(icmph != NULL); 7139 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && 7140 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 7141 tcp->tcp_tcps->tcps_ignore_path_mtu) 7142 return (B_FALSE); 7143 } else { 7144 ASSERT(icmp6 != NULL); 7145 if (icmp6->icmp6_type == ICMP6_PACKET_TOO_BIG && 7146 tcp->tcp_tcps->tcps_ignore_path_mtu) 7147 return (B_FALSE); 7148 } 7149 return (B_TRUE); 7150 } 7151 7152 /* 7153 * Update the TCP connection according to change of PMTU. 7154 * 7155 * Path MTU might have changed by either increase or decrease, so need to 7156 * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny 7157 * or negative MSS, since tcp_mss_set() will do it. 7158 */ 7159 static void 7160 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only) 7161 { 7162 uint32_t pmtu; 7163 int32_t mss; 7164 conn_t *connp = tcp->tcp_connp; 7165 ip_xmit_attr_t *ixa = connp->conn_ixa; 7166 iaflags_t ixaflags; 7167 7168 if (tcp->tcp_tcps->tcps_ignore_path_mtu) 7169 return; 7170 7171 if (tcp->tcp_state < TCPS_ESTABLISHED) 7172 return; 7173 7174 /* 7175 * Always call ip_get_pmtu() to make sure that IP has updated 7176 * ixa_flags properly. 7177 */ 7178 pmtu = ip_get_pmtu(ixa); 7179 ixaflags = ixa->ixa_flags; 7180 7181 /* 7182 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and 7183 * IPsec overhead if applied. Make sure to use the most recent 7184 * IPsec information. 7185 */ 7186 mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp); 7187 7188 /* 7189 * Nothing to change, so just return. 7190 */ 7191 if (mss == tcp->tcp_mss) 7192 return; 7193 7194 /* 7195 * Currently, for ICMP errors, only PMTU decrease is handled. 7196 */ 7197 if (mss > tcp->tcp_mss && decrease_only) 7198 return; 7199 7200 DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss); 7201 7202 /* 7203 * Update ixa_fragsize and ixa_pmtu. 7204 */ 7205 ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu; 7206 7207 /* 7208 * Adjust MSS and all relevant variables. 7209 */ 7210 tcp_mss_set(tcp, mss); 7211 7212 /* 7213 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu 7214 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP 7215 * has a (potentially different) min size we do the same. Make sure to 7216 * clear IXAF_DONTFRAG, which is used by IP to decide whether to 7217 * fragment the packet. 7218 * 7219 * LSO over IPv6 can not be fragmented. So need to disable LSO 7220 * when IPv6 fragmentation is needed. 7221 */ 7222 if (mss < tcp->tcp_tcps->tcps_mss_min) 7223 ixaflags |= IXAF_PMTU_TOO_SMALL; 7224 7225 if (ixaflags & IXAF_PMTU_TOO_SMALL) 7226 ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF); 7227 7228 if ((connp->conn_ipversion == IPV4_VERSION) && 7229 !(ixaflags & IXAF_PMTU_IPV4_DF)) { 7230 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 7231 } 7232 ixa->ixa_flags = ixaflags; 7233 } 7234 7235 /* 7236 * Do slow start retransmission after ICMP errors of PMTU changes. 7237 */ 7238 static void 7239 tcp_rexmit_after_error(tcp_t *tcp) 7240 { 7241 /* 7242 * All sent data has been acknowledged or no data left to send, just 7243 * to return. 7244 */ 7245 if (!SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) || 7246 (tcp->tcp_xmit_head == NULL)) 7247 return; 7248 7249 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && (tcp->tcp_unsent == 0)) 7250 tcp->tcp_rexmit_max = tcp->tcp_fss; 7251 else 7252 tcp->tcp_rexmit_max = tcp->tcp_snxt; 7253 7254 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 7255 tcp->tcp_rexmit = B_TRUE; 7256 tcp->tcp_dupack_cnt = 0; 7257 tcp->tcp_snd_burst = TCP_CWND_SS; 7258 tcp_ss_rexmit(tcp); 7259 } 7260 7261 /* 7262 * tcp_icmp_error_ipv6 is called from tcp_icmp_input to process ICMPv6 7263 * error messages passed up by IP. 7264 * Assumes that IP has pulled up all the extension headers as well 7265 * as the ICMPv6 header. 7266 */ 7267 static void 7268 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, ip_recv_attr_t *ira) 7269 { 7270 icmp6_t *icmp6; 7271 ip6_t *ip6h; 7272 uint16_t iph_hdr_length = ira->ira_ip_hdr_length; 7273 tcpha_t *tcpha; 7274 uint8_t *nexthdrp; 7275 uint32_t seg_seq; 7276 7277 /* 7278 * Verify that we have a complete IP header. 7279 */ 7280 ASSERT((MBLKL(mp) >= sizeof (ip6_t))); 7281 7282 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 7283 ip6h = (ip6_t *)&icmp6[1]; 7284 /* 7285 * Verify if we have a complete ICMP and inner IP header. 7286 */ 7287 if ((uchar_t *)&ip6h[1] > mp->b_wptr) { 7288 noticmpv6: 7289 freemsg(mp); 7290 return; 7291 } 7292 7293 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 7294 goto noticmpv6; 7295 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 7296 /* 7297 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 7298 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 7299 * packet. 7300 */ 7301 if ((*nexthdrp != IPPROTO_TCP) || 7302 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 7303 goto noticmpv6; 7304 } 7305 7306 seg_seq = ntohl(tcpha->tha_seq); 7307 switch (icmp6->icmp6_type) { 7308 case ICMP6_PACKET_TOO_BIG: 7309 /* 7310 * Update Path MTU, then try to send something out. 7311 */ 7312 tcp_update_pmtu(tcp, B_TRUE); 7313 tcp_rexmit_after_error(tcp); 7314 break; 7315 case ICMP6_DST_UNREACH: 7316 switch (icmp6->icmp6_code) { 7317 case ICMP6_DST_UNREACH_NOPORT: 7318 if (((tcp->tcp_state == TCPS_SYN_SENT) || 7319 (tcp->tcp_state == TCPS_SYN_RCVD)) && 7320 (seg_seq == tcp->tcp_iss)) { 7321 (void) tcp_clean_death(tcp, 7322 ECONNREFUSED, 8); 7323 } 7324 break; 7325 case ICMP6_DST_UNREACH_ADMIN: 7326 case ICMP6_DST_UNREACH_NOROUTE: 7327 case ICMP6_DST_UNREACH_BEYONDSCOPE: 7328 case ICMP6_DST_UNREACH_ADDR: 7329 /* Record the error in case we finally time out. */ 7330 tcp->tcp_client_errno = EHOSTUNREACH; 7331 if (((tcp->tcp_state == TCPS_SYN_SENT) || 7332 (tcp->tcp_state == TCPS_SYN_RCVD)) && 7333 (seg_seq == tcp->tcp_iss)) { 7334 if (tcp->tcp_listener != NULL && 7335 tcp->tcp_listener->tcp_syn_defense) { 7336 /* 7337 * Ditch the half-open connection if we 7338 * suspect a SYN attack is under way. 7339 */ 7340 (void) tcp_clean_death(tcp, 7341 tcp->tcp_client_errno, 9); 7342 } 7343 } 7344 7345 7346 break; 7347 default: 7348 break; 7349 } 7350 break; 7351 case ICMP6_PARAM_PROB: 7352 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 7353 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 7354 (uchar_t *)ip6h + icmp6->icmp6_pptr == 7355 (uchar_t *)nexthdrp) { 7356 if (tcp->tcp_state == TCPS_SYN_SENT || 7357 tcp->tcp_state == TCPS_SYN_RCVD) { 7358 (void) tcp_clean_death(tcp, 7359 ECONNREFUSED, 10); 7360 } 7361 break; 7362 } 7363 break; 7364 7365 case ICMP6_TIME_EXCEEDED: 7366 default: 7367 break; 7368 } 7369 freemsg(mp); 7370 } 7371 7372 /* 7373 * Notify IP that we are having trouble with this connection. IP should 7374 * make note so it can potentially use a different IRE. 7375 */ 7376 static void 7377 tcp_ip_notify(tcp_t *tcp) 7378 { 7379 conn_t *connp = tcp->tcp_connp; 7380 ire_t *ire; 7381 7382 /* 7383 * Note: in the case of source routing we want to blow away the 7384 * route to the first source route hop. 7385 */ 7386 ire = connp->conn_ixa->ixa_ire; 7387 if (ire != NULL && !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 7388 if (ire->ire_ipversion == IPV4_VERSION) { 7389 /* 7390 * As per RFC 1122, we send an RTM_LOSING to inform 7391 * routing protocols. 7392 */ 7393 ip_rts_change(RTM_LOSING, ire->ire_addr, 7394 ire->ire_gateway_addr, ire->ire_mask, 7395 connp->conn_laddr_v4, 0, 0, 0, 7396 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), 7397 ire->ire_ipst); 7398 } 7399 (void) ire_no_good(ire); 7400 } 7401 } 7402 7403 #pragma inline(tcp_send_data) 7404 7405 /* 7406 * Timer callback routine for keepalive probe. We do a fake resend of 7407 * last ACKed byte. Then set a timer using RTO. When the timer expires, 7408 * check to see if we have heard anything from the other end for the last 7409 * RTO period. If we have, set the timer to expire for another 7410 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 7411 * RTO << 1 and check again when it expires. Keep exponentially increasing 7412 * the timeout if we have not heard from the other side. If for more than 7413 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 7414 * kill the connection unless the keepalive abort threshold is 0. In 7415 * that case, we will probe "forever." 7416 */ 7417 static void 7418 tcp_keepalive_killer(void *arg) 7419 { 7420 mblk_t *mp; 7421 conn_t *connp = (conn_t *)arg; 7422 tcp_t *tcp = connp->conn_tcp; 7423 int32_t firetime; 7424 int32_t idletime; 7425 int32_t ka_intrvl; 7426 tcp_stack_t *tcps = tcp->tcp_tcps; 7427 7428 tcp->tcp_ka_tid = 0; 7429 7430 if (tcp->tcp_fused) 7431 return; 7432 7433 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); 7434 ka_intrvl = tcp->tcp_ka_interval; 7435 7436 /* 7437 * Keepalive probe should only be sent if the application has not 7438 * done a close on the connection. 7439 */ 7440 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 7441 return; 7442 } 7443 /* Timer fired too early, restart it. */ 7444 if (tcp->tcp_state < TCPS_ESTABLISHED) { 7445 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 7446 MSEC_TO_TICK(ka_intrvl)); 7447 return; 7448 } 7449 7450 idletime = TICK_TO_MSEC(ddi_get_lbolt() - tcp->tcp_last_recv_time); 7451 /* 7452 * If we have not heard from the other side for a long 7453 * time, kill the connection unless the keepalive abort 7454 * threshold is 0. In that case, we will probe "forever." 7455 */ 7456 if (tcp->tcp_ka_abort_thres != 0 && 7457 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 7458 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); 7459 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 7460 tcp->tcp_client_errno : ETIMEDOUT, 11); 7461 return; 7462 } 7463 7464 if (tcp->tcp_snxt == tcp->tcp_suna && 7465 idletime >= ka_intrvl) { 7466 /* Fake resend of last ACKed byte. */ 7467 mblk_t *mp1 = allocb(1, BPRI_LO); 7468 7469 if (mp1 != NULL) { 7470 *mp1->b_wptr++ = '\0'; 7471 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 7472 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 7473 freeb(mp1); 7474 /* 7475 * if allocation failed, fall through to start the 7476 * timer back. 7477 */ 7478 if (mp != NULL) { 7479 tcp_send_data(tcp, mp); 7480 BUMP_MIB(&tcps->tcps_mib, 7481 tcpTimKeepaliveProbe); 7482 if (tcp->tcp_ka_last_intrvl != 0) { 7483 int max; 7484 /* 7485 * We should probe again at least 7486 * in ka_intrvl, but not more than 7487 * tcp_rexmit_interval_max. 7488 */ 7489 max = tcps->tcps_rexmit_interval_max; 7490 firetime = MIN(ka_intrvl - 1, 7491 tcp->tcp_ka_last_intrvl << 1); 7492 if (firetime > max) 7493 firetime = max; 7494 } else { 7495 firetime = tcp->tcp_rto; 7496 } 7497 tcp->tcp_ka_tid = TCP_TIMER(tcp, 7498 tcp_keepalive_killer, 7499 MSEC_TO_TICK(firetime)); 7500 tcp->tcp_ka_last_intrvl = firetime; 7501 return; 7502 } 7503 } 7504 } else { 7505 tcp->tcp_ka_last_intrvl = 0; 7506 } 7507 7508 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 7509 if ((firetime = ka_intrvl - idletime) < 0) { 7510 firetime = ka_intrvl; 7511 } 7512 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 7513 MSEC_TO_TICK(firetime)); 7514 } 7515 7516 int 7517 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 7518 { 7519 conn_t *connp = tcp->tcp_connp; 7520 queue_t *q = connp->conn_rq; 7521 int32_t mss = tcp->tcp_mss; 7522 int maxpsz; 7523 7524 if (TCP_IS_DETACHED(tcp)) 7525 return (mss); 7526 if (tcp->tcp_fused) { 7527 maxpsz = tcp_fuse_maxpsz(tcp); 7528 mss = INFPSZ; 7529 } else if (tcp->tcp_maxpsz_multiplier == 0) { 7530 /* 7531 * Set the sd_qn_maxpsz according to the socket send buffer 7532 * size, and sd_maxblk to INFPSZ (-1). This will essentially 7533 * instruct the stream head to copyin user data into contiguous 7534 * kernel-allocated buffers without breaking it up into smaller 7535 * chunks. We round up the buffer size to the nearest SMSS. 7536 */ 7537 maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss); 7538 if (tcp->tcp_kssl_ctx == NULL) 7539 mss = INFPSZ; 7540 else 7541 mss = SSL3_MAX_RECORD_LEN; 7542 } else { 7543 /* 7544 * Set sd_qn_maxpsz to approx half the (receivers) buffer 7545 * (and a multiple of the mss). This instructs the stream 7546 * head to break down larger than SMSS writes into SMSS- 7547 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 7548 */ 7549 maxpsz = tcp->tcp_maxpsz_multiplier * mss; 7550 if (maxpsz > connp->conn_sndbuf / 2) { 7551 maxpsz = connp->conn_sndbuf / 2; 7552 /* Round up to nearest mss */ 7553 maxpsz = MSS_ROUNDUP(maxpsz, mss); 7554 } 7555 } 7556 7557 (void) proto_set_maxpsz(q, connp, maxpsz); 7558 if (!(IPCL_IS_NONSTR(connp))) 7559 connp->conn_wq->q_maxpsz = maxpsz; 7560 if (set_maxblk) 7561 (void) proto_set_tx_maxblk(q, connp, mss); 7562 return (mss); 7563 } 7564 7565 /* 7566 * Extract option values from a tcp header. We put any found values into the 7567 * tcpopt struct and return a bitmask saying which options were found. 7568 */ 7569 static int 7570 tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt) 7571 { 7572 uchar_t *endp; 7573 int len; 7574 uint32_t mss; 7575 uchar_t *up = (uchar_t *)tcpha; 7576 int found = 0; 7577 int32_t sack_len; 7578 tcp_seq sack_begin, sack_end; 7579 tcp_t *tcp; 7580 7581 endp = up + TCP_HDR_LENGTH(tcpha); 7582 up += TCP_MIN_HEADER_LENGTH; 7583 while (up < endp) { 7584 len = endp - up; 7585 switch (*up) { 7586 case TCPOPT_EOL: 7587 break; 7588 7589 case TCPOPT_NOP: 7590 up++; 7591 continue; 7592 7593 case TCPOPT_MAXSEG: 7594 if (len < TCPOPT_MAXSEG_LEN || 7595 up[1] != TCPOPT_MAXSEG_LEN) 7596 break; 7597 7598 mss = BE16_TO_U16(up+2); 7599 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 7600 tcpopt->tcp_opt_mss = mss; 7601 found |= TCP_OPT_MSS_PRESENT; 7602 7603 up += TCPOPT_MAXSEG_LEN; 7604 continue; 7605 7606 case TCPOPT_WSCALE: 7607 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 7608 break; 7609 7610 if (up[2] > TCP_MAX_WINSHIFT) 7611 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 7612 else 7613 tcpopt->tcp_opt_wscale = up[2]; 7614 found |= TCP_OPT_WSCALE_PRESENT; 7615 7616 up += TCPOPT_WS_LEN; 7617 continue; 7618 7619 case TCPOPT_SACK_PERMITTED: 7620 if (len < TCPOPT_SACK_OK_LEN || 7621 up[1] != TCPOPT_SACK_OK_LEN) 7622 break; 7623 found |= TCP_OPT_SACK_OK_PRESENT; 7624 up += TCPOPT_SACK_OK_LEN; 7625 continue; 7626 7627 case TCPOPT_SACK: 7628 if (len <= 2 || up[1] <= 2 || len < up[1]) 7629 break; 7630 7631 /* If TCP is not interested in SACK blks... */ 7632 if ((tcp = tcpopt->tcp) == NULL) { 7633 up += up[1]; 7634 continue; 7635 } 7636 sack_len = up[1] - TCPOPT_HEADER_LEN; 7637 up += TCPOPT_HEADER_LEN; 7638 7639 /* 7640 * If the list is empty, allocate one and assume 7641 * nothing is sack'ed. 7642 */ 7643 ASSERT(tcp->tcp_sack_info != NULL); 7644 if (tcp->tcp_notsack_list == NULL) { 7645 tcp_notsack_update(&(tcp->tcp_notsack_list), 7646 tcp->tcp_suna, tcp->tcp_snxt, 7647 &(tcp->tcp_num_notsack_blk), 7648 &(tcp->tcp_cnt_notsack_list)); 7649 7650 /* 7651 * Make sure tcp_notsack_list is not NULL. 7652 * This happens when kmem_alloc(KM_NOSLEEP) 7653 * returns NULL. 7654 */ 7655 if (tcp->tcp_notsack_list == NULL) { 7656 up += sack_len; 7657 continue; 7658 } 7659 tcp->tcp_fack = tcp->tcp_suna; 7660 } 7661 7662 while (sack_len > 0) { 7663 if (up + 8 > endp) { 7664 up = endp; 7665 break; 7666 } 7667 sack_begin = BE32_TO_U32(up); 7668 up += 4; 7669 sack_end = BE32_TO_U32(up); 7670 up += 4; 7671 sack_len -= 8; 7672 /* 7673 * Bounds checking. Make sure the SACK 7674 * info is within tcp_suna and tcp_snxt. 7675 * If this SACK blk is out of bound, ignore 7676 * it but continue to parse the following 7677 * blks. 7678 */ 7679 if (SEQ_LEQ(sack_end, sack_begin) || 7680 SEQ_LT(sack_begin, tcp->tcp_suna) || 7681 SEQ_GT(sack_end, tcp->tcp_snxt)) { 7682 continue; 7683 } 7684 tcp_notsack_insert(&(tcp->tcp_notsack_list), 7685 sack_begin, sack_end, 7686 &(tcp->tcp_num_notsack_blk), 7687 &(tcp->tcp_cnt_notsack_list)); 7688 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 7689 tcp->tcp_fack = sack_end; 7690 } 7691 } 7692 found |= TCP_OPT_SACK_PRESENT; 7693 continue; 7694 7695 case TCPOPT_TSTAMP: 7696 if (len < TCPOPT_TSTAMP_LEN || 7697 up[1] != TCPOPT_TSTAMP_LEN) 7698 break; 7699 7700 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 7701 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 7702 7703 found |= TCP_OPT_TSTAMP_PRESENT; 7704 7705 up += TCPOPT_TSTAMP_LEN; 7706 continue; 7707 7708 default: 7709 if (len <= 1 || len < (int)up[1] || up[1] == 0) 7710 break; 7711 up += up[1]; 7712 continue; 7713 } 7714 break; 7715 } 7716 return (found); 7717 } 7718 7719 /* 7720 * Set the MSS associated with a particular tcp based on its current value, 7721 * and a new one passed in. Observe minimums and maximums, and reset other 7722 * state variables that we want to view as multiples of MSS. 7723 * 7724 * The value of MSS could be either increased or descreased. 7725 */ 7726 static void 7727 tcp_mss_set(tcp_t *tcp, uint32_t mss) 7728 { 7729 uint32_t mss_max; 7730 tcp_stack_t *tcps = tcp->tcp_tcps; 7731 conn_t *connp = tcp->tcp_connp; 7732 7733 if (connp->conn_ipversion == IPV4_VERSION) 7734 mss_max = tcps->tcps_mss_max_ipv4; 7735 else 7736 mss_max = tcps->tcps_mss_max_ipv6; 7737 7738 if (mss < tcps->tcps_mss_min) 7739 mss = tcps->tcps_mss_min; 7740 if (mss > mss_max) 7741 mss = mss_max; 7742 /* 7743 * Unless naglim has been set by our client to 7744 * a non-mss value, force naglim to track mss. 7745 * This can help to aggregate small writes. 7746 */ 7747 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 7748 tcp->tcp_naglim = mss; 7749 /* 7750 * TCP should be able to buffer at least 4 MSS data for obvious 7751 * performance reason. 7752 */ 7753 if ((mss << 2) > connp->conn_sndbuf) 7754 connp->conn_sndbuf = mss << 2; 7755 7756 /* 7757 * Set the send lowater to at least twice of MSS. 7758 */ 7759 if ((mss << 1) > connp->conn_sndlowat) 7760 connp->conn_sndlowat = mss << 1; 7761 7762 /* 7763 * Update tcp_cwnd according to the new value of MSS. Keep the 7764 * previous ratio to preserve the transmit rate. 7765 */ 7766 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 7767 tcp->tcp_cwnd_cnt = 0; 7768 7769 tcp->tcp_mss = mss; 7770 (void) tcp_maxpsz_set(tcp, B_TRUE); 7771 } 7772 7773 /* For /dev/tcp aka AF_INET open */ 7774 static int 7775 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 7776 { 7777 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 7778 } 7779 7780 /* For /dev/tcp6 aka AF_INET6 open */ 7781 static int 7782 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 7783 { 7784 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 7785 } 7786 7787 static conn_t * 7788 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket, 7789 int *errorp) 7790 { 7791 tcp_t *tcp = NULL; 7792 conn_t *connp; 7793 zoneid_t zoneid; 7794 tcp_stack_t *tcps; 7795 squeue_t *sqp; 7796 7797 ASSERT(errorp != NULL); 7798 /* 7799 * Find the proper zoneid and netstack. 7800 */ 7801 /* 7802 * Special case for install: miniroot needs to be able to 7803 * access files via NFS as though it were always in the 7804 * global zone. 7805 */ 7806 if (credp == kcred && nfs_global_client_only != 0) { 7807 zoneid = GLOBAL_ZONEID; 7808 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 7809 netstack_tcp; 7810 ASSERT(tcps != NULL); 7811 } else { 7812 netstack_t *ns; 7813 int err; 7814 7815 if ((err = secpolicy_basic_net_access(credp)) != 0) { 7816 *errorp = err; 7817 return (NULL); 7818 } 7819 7820 ns = netstack_find_by_cred(credp); 7821 ASSERT(ns != NULL); 7822 tcps = ns->netstack_tcp; 7823 ASSERT(tcps != NULL); 7824 7825 /* 7826 * For exclusive stacks we set the zoneid to zero 7827 * to make TCP operate as if in the global zone. 7828 */ 7829 if (tcps->tcps_netstack->netstack_stackid != 7830 GLOBAL_NETSTACKID) 7831 zoneid = GLOBAL_ZONEID; 7832 else 7833 zoneid = crgetzoneid(credp); 7834 } 7835 7836 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 7837 connp = (conn_t *)tcp_get_conn(sqp, tcps); 7838 /* 7839 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 7840 * so we drop it by one. 7841 */ 7842 netstack_rele(tcps->tcps_netstack); 7843 if (connp == NULL) { 7844 *errorp = ENOSR; 7845 return (NULL); 7846 } 7847 ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto); 7848 7849 connp->conn_sqp = sqp; 7850 connp->conn_initial_sqp = connp->conn_sqp; 7851 connp->conn_ixa->ixa_sqp = connp->conn_sqp; 7852 tcp = connp->conn_tcp; 7853 7854 /* 7855 * Besides asking IP to set the checksum for us, have conn_ip_output 7856 * to do the following checks when necessary: 7857 * 7858 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid 7859 * IXAF_VERIFY_PMTU: verify PMTU changes 7860 * IXAF_VERIFY_LSO: verify LSO capability changes 7861 */ 7862 connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 7863 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO; 7864 7865 if (!tcps->tcps_dev_flow_ctl) 7866 connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 7867 7868 if (isv6) { 7869 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 7870 connp->conn_ipversion = IPV6_VERSION; 7871 connp->conn_family = AF_INET6; 7872 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 7873 connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit; 7874 } else { 7875 connp->conn_ipversion = IPV4_VERSION; 7876 connp->conn_family = AF_INET; 7877 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 7878 connp->conn_default_ttl = tcps->tcps_ipv4_ttl; 7879 } 7880 connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl; 7881 7882 crhold(credp); 7883 connp->conn_cred = credp; 7884 connp->conn_cpid = curproc->p_pid; 7885 connp->conn_open_time = ddi_get_lbolt64(); 7886 7887 /* Cache things in the ixa without any refhold */ 7888 connp->conn_ixa->ixa_cred = credp; 7889 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 7890 7891 connp->conn_zoneid = zoneid; 7892 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 7893 connp->conn_ixa->ixa_zoneid = zoneid; 7894 connp->conn_mlp_type = mlptSingle; 7895 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 7896 ASSERT(tcp->tcp_tcps == tcps); 7897 7898 /* 7899 * If the caller has the process-wide flag set, then default to MAC 7900 * exempt mode. This allows read-down to unlabeled hosts. 7901 */ 7902 if (getpflags(NET_MAC_AWARE, credp) != 0) 7903 connp->conn_mac_mode = CONN_MAC_AWARE; 7904 7905 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 7906 7907 if (issocket) { 7908 tcp->tcp_issocket = 1; 7909 } 7910 7911 connp->conn_rcvbuf = tcps->tcps_recv_hiwat; 7912 connp->conn_sndbuf = tcps->tcps_xmit_hiwat; 7913 connp->conn_sndlowat = tcps->tcps_xmit_lowat; 7914 connp->conn_so_type = SOCK_STREAM; 7915 connp->conn_wroff = connp->conn_ht_iphc_allocated + 7916 tcps->tcps_wroff_xtra; 7917 7918 SOCK_CONNID_INIT(tcp->tcp_connid); 7919 tcp->tcp_state = TCPS_IDLE; 7920 tcp_init_values(tcp); 7921 return (connp); 7922 } 7923 7924 static int 7925 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 7926 boolean_t isv6) 7927 { 7928 tcp_t *tcp = NULL; 7929 conn_t *connp = NULL; 7930 int err; 7931 vmem_t *minor_arena = NULL; 7932 dev_t conn_dev; 7933 boolean_t issocket; 7934 7935 if (q->q_ptr != NULL) 7936 return (0); 7937 7938 if (sflag == MODOPEN) 7939 return (EINVAL); 7940 7941 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 7942 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 7943 minor_arena = ip_minor_arena_la; 7944 } else { 7945 /* 7946 * Either minor numbers in the large arena were exhausted 7947 * or a non socket application is doing the open. 7948 * Try to allocate from the small arena. 7949 */ 7950 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 7951 return (EBUSY); 7952 } 7953 minor_arena = ip_minor_arena_sa; 7954 } 7955 7956 ASSERT(minor_arena != NULL); 7957 7958 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 7959 7960 if (flag & SO_FALLBACK) { 7961 /* 7962 * Non streams socket needs a stream to fallback to 7963 */ 7964 RD(q)->q_ptr = (void *)conn_dev; 7965 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 7966 WR(q)->q_ptr = (void *)minor_arena; 7967 qprocson(q); 7968 return (0); 7969 } else if (flag & SO_ACCEPTOR) { 7970 q->q_qinfo = &tcp_acceptor_rinit; 7971 /* 7972 * the conn_dev and minor_arena will be subsequently used by 7973 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out 7974 * the minor device number for this connection from the q_ptr. 7975 */ 7976 RD(q)->q_ptr = (void *)conn_dev; 7977 WR(q)->q_qinfo = &tcp_acceptor_winit; 7978 WR(q)->q_ptr = (void *)minor_arena; 7979 qprocson(q); 7980 return (0); 7981 } 7982 7983 issocket = flag & SO_SOCKSTR; 7984 connp = tcp_create_common(credp, isv6, issocket, &err); 7985 7986 if (connp == NULL) { 7987 inet_minor_free(minor_arena, conn_dev); 7988 q->q_ptr = WR(q)->q_ptr = NULL; 7989 return (err); 7990 } 7991 7992 connp->conn_rq = q; 7993 connp->conn_wq = WR(q); 7994 q->q_ptr = WR(q)->q_ptr = connp; 7995 7996 connp->conn_dev = conn_dev; 7997 connp->conn_minor_arena = minor_arena; 7998 7999 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 8000 ASSERT(WR(q)->q_qinfo == &tcp_winit); 8001 8002 tcp = connp->conn_tcp; 8003 8004 if (issocket) { 8005 WR(q)->q_qinfo = &tcp_sock_winit; 8006 } else { 8007 #ifdef _ILP32 8008 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 8009 #else 8010 tcp->tcp_acceptor_id = conn_dev; 8011 #endif /* _ILP32 */ 8012 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 8013 } 8014 8015 /* 8016 * Put the ref for TCP. Ref for IP was already put 8017 * by ipcl_conn_create. Also Make the conn_t globally 8018 * visible to walkers 8019 */ 8020 mutex_enter(&connp->conn_lock); 8021 CONN_INC_REF_LOCKED(connp); 8022 ASSERT(connp->conn_ref == 2); 8023 connp->conn_state_flags &= ~CONN_INCIPIENT; 8024 mutex_exit(&connp->conn_lock); 8025 8026 qprocson(q); 8027 return (0); 8028 } 8029 8030 /* 8031 * Some TCP options can be "set" by requesting them in the option 8032 * buffer. This is needed for XTI feature test though we do not 8033 * allow it in general. We interpret that this mechanism is more 8034 * applicable to OSI protocols and need not be allowed in general. 8035 * This routine filters out options for which it is not allowed (most) 8036 * and lets through those (few) for which it is. [ The XTI interface 8037 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 8038 * ever implemented will have to be allowed here ]. 8039 */ 8040 static boolean_t 8041 tcp_allow_connopt_set(int level, int name) 8042 { 8043 8044 switch (level) { 8045 case IPPROTO_TCP: 8046 switch (name) { 8047 case TCP_NODELAY: 8048 return (B_TRUE); 8049 default: 8050 return (B_FALSE); 8051 } 8052 /*NOTREACHED*/ 8053 default: 8054 return (B_FALSE); 8055 } 8056 /*NOTREACHED*/ 8057 } 8058 8059 /* 8060 * This routine gets default values of certain options whose default 8061 * values are maintained by protocol specific code 8062 */ 8063 /* ARGSUSED */ 8064 int 8065 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 8066 { 8067 int32_t *i1 = (int32_t *)ptr; 8068 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 8069 8070 switch (level) { 8071 case IPPROTO_TCP: 8072 switch (name) { 8073 case TCP_NOTIFY_THRESHOLD: 8074 *i1 = tcps->tcps_ip_notify_interval; 8075 break; 8076 case TCP_ABORT_THRESHOLD: 8077 *i1 = tcps->tcps_ip_abort_interval; 8078 break; 8079 case TCP_CONN_NOTIFY_THRESHOLD: 8080 *i1 = tcps->tcps_ip_notify_cinterval; 8081 break; 8082 case TCP_CONN_ABORT_THRESHOLD: 8083 *i1 = tcps->tcps_ip_abort_cinterval; 8084 break; 8085 default: 8086 return (-1); 8087 } 8088 break; 8089 case IPPROTO_IP: 8090 switch (name) { 8091 case IP_TTL: 8092 *i1 = tcps->tcps_ipv4_ttl; 8093 break; 8094 default: 8095 return (-1); 8096 } 8097 break; 8098 case IPPROTO_IPV6: 8099 switch (name) { 8100 case IPV6_UNICAST_HOPS: 8101 *i1 = tcps->tcps_ipv6_hoplimit; 8102 break; 8103 default: 8104 return (-1); 8105 } 8106 break; 8107 default: 8108 return (-1); 8109 } 8110 return (sizeof (int)); 8111 } 8112 8113 /* 8114 * TCP routine to get the values of options. 8115 */ 8116 static int 8117 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr) 8118 { 8119 int *i1 = (int *)ptr; 8120 tcp_t *tcp = connp->conn_tcp; 8121 conn_opt_arg_t coas; 8122 int retval; 8123 8124 coas.coa_connp = connp; 8125 coas.coa_ixa = connp->conn_ixa; 8126 coas.coa_ipp = &connp->conn_xmit_ipp; 8127 coas.coa_ancillary = B_FALSE; 8128 coas.coa_changed = 0; 8129 8130 switch (level) { 8131 case SOL_SOCKET: 8132 switch (name) { 8133 case SO_SND_COPYAVOID: 8134 *i1 = tcp->tcp_snd_zcopy_on ? 8135 SO_SND_COPYAVOID : 0; 8136 return (sizeof (int)); 8137 case SO_ACCEPTCONN: 8138 *i1 = (tcp->tcp_state == TCPS_LISTEN); 8139 return (sizeof (int)); 8140 } 8141 break; 8142 case IPPROTO_TCP: 8143 switch (name) { 8144 case TCP_NODELAY: 8145 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 8146 return (sizeof (int)); 8147 case TCP_MAXSEG: 8148 *i1 = tcp->tcp_mss; 8149 return (sizeof (int)); 8150 case TCP_NOTIFY_THRESHOLD: 8151 *i1 = (int)tcp->tcp_first_timer_threshold; 8152 return (sizeof (int)); 8153 case TCP_ABORT_THRESHOLD: 8154 *i1 = tcp->tcp_second_timer_threshold; 8155 return (sizeof (int)); 8156 case TCP_CONN_NOTIFY_THRESHOLD: 8157 *i1 = tcp->tcp_first_ctimer_threshold; 8158 return (sizeof (int)); 8159 case TCP_CONN_ABORT_THRESHOLD: 8160 *i1 = tcp->tcp_second_ctimer_threshold; 8161 return (sizeof (int)); 8162 case TCP_INIT_CWND: 8163 *i1 = tcp->tcp_init_cwnd; 8164 return (sizeof (int)); 8165 case TCP_KEEPALIVE_THRESHOLD: 8166 *i1 = tcp->tcp_ka_interval; 8167 return (sizeof (int)); 8168 case TCP_KEEPALIVE_ABORT_THRESHOLD: 8169 *i1 = tcp->tcp_ka_abort_thres; 8170 return (sizeof (int)); 8171 case TCP_CORK: 8172 *i1 = tcp->tcp_cork; 8173 return (sizeof (int)); 8174 } 8175 break; 8176 case IPPROTO_IP: 8177 if (connp->conn_family != AF_INET) 8178 return (-1); 8179 switch (name) { 8180 case IP_OPTIONS: 8181 case T_IP_OPTIONS: 8182 /* Caller ensures enough space */ 8183 return (ip_opt_get_user(connp, ptr)); 8184 default: 8185 break; 8186 } 8187 break; 8188 8189 case IPPROTO_IPV6: 8190 /* 8191 * IPPROTO_IPV6 options are only supported for sockets 8192 * that are using IPv6 on the wire. 8193 */ 8194 if (connp->conn_ipversion != IPV6_VERSION) { 8195 return (-1); 8196 } 8197 switch (name) { 8198 case IPV6_PATHMTU: 8199 if (tcp->tcp_state < TCPS_ESTABLISHED) 8200 return (-1); 8201 break; 8202 } 8203 break; 8204 } 8205 mutex_enter(&connp->conn_lock); 8206 retval = conn_opt_get(&coas, level, name, ptr); 8207 mutex_exit(&connp->conn_lock); 8208 return (retval); 8209 } 8210 8211 /* 8212 * TCP routine to get the values of options. 8213 */ 8214 int 8215 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 8216 { 8217 return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr)); 8218 } 8219 8220 /* returns UNIX error, the optlen is a value-result arg */ 8221 int 8222 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 8223 void *optvalp, socklen_t *optlen, cred_t *cr) 8224 { 8225 conn_t *connp = (conn_t *)proto_handle; 8226 squeue_t *sqp = connp->conn_sqp; 8227 int error; 8228 t_uscalar_t max_optbuf_len; 8229 void *optvalp_buf; 8230 int len; 8231 8232 ASSERT(connp->conn_upper_handle != NULL); 8233 8234 error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len, 8235 tcp_opt_obj.odb_opt_des_arr, 8236 tcp_opt_obj.odb_opt_arr_cnt, 8237 B_FALSE, B_TRUE, cr); 8238 if (error != 0) { 8239 if (error < 0) { 8240 error = proto_tlitosyserr(-error); 8241 } 8242 return (error); 8243 } 8244 8245 optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP); 8246 8247 error = squeue_synch_enter(sqp, connp, NULL); 8248 if (error == ENOMEM) { 8249 kmem_free(optvalp_buf, max_optbuf_len); 8250 return (ENOMEM); 8251 } 8252 8253 len = tcp_opt_get(connp, level, option_name, optvalp_buf); 8254 squeue_synch_exit(sqp, connp); 8255 8256 if (len == -1) { 8257 kmem_free(optvalp_buf, max_optbuf_len); 8258 return (EINVAL); 8259 } 8260 8261 /* 8262 * update optlen and copy option value 8263 */ 8264 t_uscalar_t size = MIN(len, *optlen); 8265 8266 bcopy(optvalp_buf, optvalp, size); 8267 bcopy(&size, optlen, sizeof (size)); 8268 8269 kmem_free(optvalp_buf, max_optbuf_len); 8270 return (0); 8271 } 8272 8273 /* 8274 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 8275 * Parameters are assumed to be verified by the caller. 8276 */ 8277 /* ARGSUSED */ 8278 int 8279 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name, 8280 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 8281 void *thisdg_attrs, cred_t *cr) 8282 { 8283 tcp_t *tcp = connp->conn_tcp; 8284 int *i1 = (int *)invalp; 8285 boolean_t onoff = (*i1 == 0) ? 0 : 1; 8286 boolean_t checkonly; 8287 int reterr; 8288 tcp_stack_t *tcps = tcp->tcp_tcps; 8289 conn_opt_arg_t coas; 8290 8291 coas.coa_connp = connp; 8292 coas.coa_ixa = connp->conn_ixa; 8293 coas.coa_ipp = &connp->conn_xmit_ipp; 8294 coas.coa_ancillary = B_FALSE; 8295 coas.coa_changed = 0; 8296 8297 switch (optset_context) { 8298 case SETFN_OPTCOM_CHECKONLY: 8299 checkonly = B_TRUE; 8300 /* 8301 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 8302 * inlen != 0 implies value supplied and 8303 * we have to "pretend" to set it. 8304 * inlen == 0 implies that there is no 8305 * value part in T_CHECK request and just validation 8306 * done elsewhere should be enough, we just return here. 8307 */ 8308 if (inlen == 0) { 8309 *outlenp = 0; 8310 return (0); 8311 } 8312 break; 8313 case SETFN_OPTCOM_NEGOTIATE: 8314 checkonly = B_FALSE; 8315 break; 8316 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 8317 case SETFN_CONN_NEGOTIATE: 8318 checkonly = B_FALSE; 8319 /* 8320 * Negotiating local and "association-related" options 8321 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 8322 * primitives is allowed by XTI, but we choose 8323 * to not implement this style negotiation for Internet 8324 * protocols (We interpret it is a must for OSI world but 8325 * optional for Internet protocols) for all options. 8326 * [ Will do only for the few options that enable test 8327 * suites that our XTI implementation of this feature 8328 * works for transports that do allow it ] 8329 */ 8330 if (!tcp_allow_connopt_set(level, name)) { 8331 *outlenp = 0; 8332 return (EINVAL); 8333 } 8334 break; 8335 default: 8336 /* 8337 * We should never get here 8338 */ 8339 *outlenp = 0; 8340 return (EINVAL); 8341 } 8342 8343 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 8344 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 8345 8346 /* 8347 * For TCP, we should have no ancillary data sent down 8348 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 8349 * has to be zero. 8350 */ 8351 ASSERT(thisdg_attrs == NULL); 8352 8353 /* 8354 * For fixed length options, no sanity check 8355 * of passed in length is done. It is assumed *_optcom_req() 8356 * routines do the right thing. 8357 */ 8358 switch (level) { 8359 case SOL_SOCKET: 8360 switch (name) { 8361 case SO_KEEPALIVE: 8362 if (checkonly) { 8363 /* check only case */ 8364 break; 8365 } 8366 8367 if (!onoff) { 8368 if (connp->conn_keepalive) { 8369 if (tcp->tcp_ka_tid != 0) { 8370 (void) TCP_TIMER_CANCEL(tcp, 8371 tcp->tcp_ka_tid); 8372 tcp->tcp_ka_tid = 0; 8373 } 8374 connp->conn_keepalive = 0; 8375 } 8376 break; 8377 } 8378 if (!connp->conn_keepalive) { 8379 /* Crank up the keepalive timer */ 8380 tcp->tcp_ka_last_intrvl = 0; 8381 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8382 tcp_keepalive_killer, 8383 MSEC_TO_TICK(tcp->tcp_ka_interval)); 8384 connp->conn_keepalive = 1; 8385 } 8386 break; 8387 case SO_SNDBUF: { 8388 if (*i1 > tcps->tcps_max_buf) { 8389 *outlenp = 0; 8390 return (ENOBUFS); 8391 } 8392 if (checkonly) 8393 break; 8394 8395 connp->conn_sndbuf = *i1; 8396 if (tcps->tcps_snd_lowat_fraction != 0) { 8397 connp->conn_sndlowat = connp->conn_sndbuf / 8398 tcps->tcps_snd_lowat_fraction; 8399 } 8400 (void) tcp_maxpsz_set(tcp, B_TRUE); 8401 /* 8402 * If we are flow-controlled, recheck the condition. 8403 * There are apps that increase SO_SNDBUF size when 8404 * flow-controlled (EWOULDBLOCK), and expect the flow 8405 * control condition to be lifted right away. 8406 */ 8407 mutex_enter(&tcp->tcp_non_sq_lock); 8408 if (tcp->tcp_flow_stopped && 8409 TCP_UNSENT_BYTES(tcp) < connp->conn_sndbuf) { 8410 tcp_clrqfull(tcp); 8411 } 8412 mutex_exit(&tcp->tcp_non_sq_lock); 8413 *outlenp = inlen; 8414 return (0); 8415 } 8416 case SO_RCVBUF: 8417 if (*i1 > tcps->tcps_max_buf) { 8418 *outlenp = 0; 8419 return (ENOBUFS); 8420 } 8421 /* Silently ignore zero */ 8422 if (!checkonly && *i1 != 0) { 8423 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 8424 (void) tcp_rwnd_set(tcp, *i1); 8425 } 8426 /* 8427 * XXX should we return the rwnd here 8428 * and tcp_opt_get ? 8429 */ 8430 *outlenp = inlen; 8431 return (0); 8432 case SO_SND_COPYAVOID: 8433 if (!checkonly) { 8434 if (tcp->tcp_loopback || 8435 (tcp->tcp_kssl_ctx != NULL) || 8436 (onoff != 1) || !tcp_zcopy_check(tcp)) { 8437 *outlenp = 0; 8438 return (EOPNOTSUPP); 8439 } 8440 tcp->tcp_snd_zcopy_aware = 1; 8441 } 8442 *outlenp = inlen; 8443 return (0); 8444 } 8445 break; 8446 case IPPROTO_TCP: 8447 switch (name) { 8448 case TCP_NODELAY: 8449 if (!checkonly) 8450 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 8451 break; 8452 case TCP_NOTIFY_THRESHOLD: 8453 if (!checkonly) 8454 tcp->tcp_first_timer_threshold = *i1; 8455 break; 8456 case TCP_ABORT_THRESHOLD: 8457 if (!checkonly) 8458 tcp->tcp_second_timer_threshold = *i1; 8459 break; 8460 case TCP_CONN_NOTIFY_THRESHOLD: 8461 if (!checkonly) 8462 tcp->tcp_first_ctimer_threshold = *i1; 8463 break; 8464 case TCP_CONN_ABORT_THRESHOLD: 8465 if (!checkonly) 8466 tcp->tcp_second_ctimer_threshold = *i1; 8467 break; 8468 case TCP_RECVDSTADDR: 8469 if (tcp->tcp_state > TCPS_LISTEN) { 8470 *outlenp = 0; 8471 return (EOPNOTSUPP); 8472 } 8473 /* Setting done in conn_opt_set */ 8474 break; 8475 case TCP_INIT_CWND: { 8476 uint32_t init_cwnd = *((uint32_t *)invalp); 8477 8478 if (checkonly) 8479 break; 8480 8481 /* 8482 * Only allow socket with network configuration 8483 * privilege to set the initial cwnd to be larger 8484 * than allowed by RFC 3390. 8485 */ 8486 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 8487 tcp->tcp_init_cwnd = init_cwnd; 8488 break; 8489 } 8490 if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { 8491 *outlenp = 0; 8492 return (reterr); 8493 } 8494 if (init_cwnd > TCP_MAX_INIT_CWND) { 8495 *outlenp = 0; 8496 return (EINVAL); 8497 } 8498 tcp->tcp_init_cwnd = init_cwnd; 8499 break; 8500 } 8501 case TCP_KEEPALIVE_THRESHOLD: 8502 if (checkonly) 8503 break; 8504 8505 if (*i1 < tcps->tcps_keepalive_interval_low || 8506 *i1 > tcps->tcps_keepalive_interval_high) { 8507 *outlenp = 0; 8508 return (EINVAL); 8509 } 8510 if (*i1 != tcp->tcp_ka_interval) { 8511 tcp->tcp_ka_interval = *i1; 8512 /* 8513 * Check if we need to restart the 8514 * keepalive timer. 8515 */ 8516 if (tcp->tcp_ka_tid != 0) { 8517 ASSERT(connp->conn_keepalive); 8518 (void) TCP_TIMER_CANCEL(tcp, 8519 tcp->tcp_ka_tid); 8520 tcp->tcp_ka_last_intrvl = 0; 8521 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8522 tcp_keepalive_killer, 8523 MSEC_TO_TICK(tcp->tcp_ka_interval)); 8524 } 8525 } 8526 break; 8527 case TCP_KEEPALIVE_ABORT_THRESHOLD: 8528 if (!checkonly) { 8529 if (*i1 < 8530 tcps->tcps_keepalive_abort_interval_low || 8531 *i1 > 8532 tcps->tcps_keepalive_abort_interval_high) { 8533 *outlenp = 0; 8534 return (EINVAL); 8535 } 8536 tcp->tcp_ka_abort_thres = *i1; 8537 } 8538 break; 8539 case TCP_CORK: 8540 if (!checkonly) { 8541 /* 8542 * if tcp->tcp_cork was set and is now 8543 * being unset, we have to make sure that 8544 * the remaining data gets sent out. Also 8545 * unset tcp->tcp_cork so that tcp_wput_data() 8546 * can send data even if it is less than mss 8547 */ 8548 if (tcp->tcp_cork && onoff == 0 && 8549 tcp->tcp_unsent > 0) { 8550 tcp->tcp_cork = B_FALSE; 8551 tcp_wput_data(tcp, NULL, B_FALSE); 8552 } 8553 tcp->tcp_cork = onoff; 8554 } 8555 break; 8556 default: 8557 break; 8558 } 8559 break; 8560 case IPPROTO_IP: 8561 if (connp->conn_family != AF_INET) { 8562 *outlenp = 0; 8563 return (EINVAL); 8564 } 8565 switch (name) { 8566 case IP_SEC_OPT: 8567 /* 8568 * We should not allow policy setting after 8569 * we start listening for connections. 8570 */ 8571 if (tcp->tcp_state == TCPS_LISTEN) { 8572 return (EINVAL); 8573 } 8574 break; 8575 } 8576 break; 8577 case IPPROTO_IPV6: 8578 /* 8579 * IPPROTO_IPV6 options are only supported for sockets 8580 * that are using IPv6 on the wire. 8581 */ 8582 if (connp->conn_ipversion != IPV6_VERSION) { 8583 *outlenp = 0; 8584 return (EINVAL); 8585 } 8586 8587 switch (name) { 8588 case IPV6_RECVPKTINFO: 8589 if (!checkonly) { 8590 /* Force it to be sent up with the next msg */ 8591 tcp->tcp_recvifindex = 0; 8592 } 8593 break; 8594 case IPV6_RECVTCLASS: 8595 if (!checkonly) { 8596 /* Force it to be sent up with the next msg */ 8597 tcp->tcp_recvtclass = 0xffffffffU; 8598 } 8599 break; 8600 case IPV6_RECVHOPLIMIT: 8601 if (!checkonly) { 8602 /* Force it to be sent up with the next msg */ 8603 tcp->tcp_recvhops = 0xffffffffU; 8604 } 8605 break; 8606 case IPV6_PKTINFO: 8607 /* This is an extra check for TCP */ 8608 if (inlen == sizeof (struct in6_pktinfo)) { 8609 struct in6_pktinfo *pkti; 8610 8611 pkti = (struct in6_pktinfo *)invalp; 8612 /* 8613 * RFC 3542 states that ipi6_addr must be 8614 * the unspecified address when setting the 8615 * IPV6_PKTINFO sticky socket option on a 8616 * TCP socket. 8617 */ 8618 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 8619 return (EINVAL); 8620 } 8621 break; 8622 case IPV6_SEC_OPT: 8623 /* 8624 * We should not allow policy setting after 8625 * we start listening for connections. 8626 */ 8627 if (tcp->tcp_state == TCPS_LISTEN) { 8628 return (EINVAL); 8629 } 8630 break; 8631 } 8632 break; 8633 } 8634 reterr = conn_opt_set(&coas, level, name, inlen, invalp, 8635 checkonly, cr); 8636 if (reterr != 0) { 8637 *outlenp = 0; 8638 return (reterr); 8639 } 8640 8641 /* 8642 * Common case of OK return with outval same as inval 8643 */ 8644 if (invalp != outvalp) { 8645 /* don't trust bcopy for identical src/dst */ 8646 (void) bcopy(invalp, outvalp, inlen); 8647 } 8648 *outlenp = inlen; 8649 8650 if (coas.coa_changed & COA_HEADER_CHANGED) { 8651 /* If we are connected we rebuilt the headers */ 8652 if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6) && 8653 !IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_faddr_v6)) { 8654 reterr = tcp_build_hdrs(tcp); 8655 if (reterr != 0) 8656 return (reterr); 8657 } 8658 } 8659 if (coas.coa_changed & COA_ROUTE_CHANGED) { 8660 in6_addr_t nexthop; 8661 8662 /* 8663 * If we are connected we re-cache the information. 8664 * We ignore errors to preserve BSD behavior. 8665 * Note that we don't redo IPsec policy lookup here 8666 * since the final destination (or source) didn't change. 8667 */ 8668 ip_attr_nexthop(&connp->conn_xmit_ipp, connp->conn_ixa, 8669 &connp->conn_faddr_v6, &nexthop); 8670 8671 if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6) && 8672 !IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_faddr_v6)) { 8673 (void) ip_attr_connect(connp, connp->conn_ixa, 8674 &connp->conn_laddr_v6, &connp->conn_faddr_v6, 8675 &nexthop, connp->conn_fport, NULL, NULL, 8676 IPDF_VERIFY_DST); 8677 } 8678 } 8679 if ((coas.coa_changed & COA_SNDBUF_CHANGED) && !IPCL_IS_NONSTR(connp)) { 8680 connp->conn_wq->q_hiwat = connp->conn_sndbuf; 8681 } 8682 if (coas.coa_changed & COA_WROFF_CHANGED) { 8683 connp->conn_wroff = connp->conn_ht_iphc_allocated + 8684 tcps->tcps_wroff_xtra; 8685 (void) proto_set_tx_wroff(connp->conn_rq, connp, 8686 connp->conn_wroff); 8687 } 8688 if (coas.coa_changed & COA_OOBINLINE_CHANGED) { 8689 if (IPCL_IS_NONSTR(connp)) 8690 proto_set_rx_oob_opt(connp, onoff); 8691 } 8692 return (0); 8693 } 8694 8695 /* ARGSUSED */ 8696 int 8697 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name, 8698 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 8699 void *thisdg_attrs, cred_t *cr) 8700 { 8701 conn_t *connp = Q_TO_CONN(q); 8702 8703 return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp, 8704 outlenp, outvalp, thisdg_attrs, cr)); 8705 } 8706 8707 int 8708 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 8709 const void *optvalp, socklen_t optlen, cred_t *cr) 8710 { 8711 conn_t *connp = (conn_t *)proto_handle; 8712 squeue_t *sqp = connp->conn_sqp; 8713 int error; 8714 8715 ASSERT(connp->conn_upper_handle != NULL); 8716 /* 8717 * Entering the squeue synchronously can result in a context switch, 8718 * which can cause a rather sever performance degradation. So we try to 8719 * handle whatever options we can without entering the squeue. 8720 */ 8721 if (level == IPPROTO_TCP) { 8722 switch (option_name) { 8723 case TCP_NODELAY: 8724 if (optlen != sizeof (int32_t)) 8725 return (EINVAL); 8726 mutex_enter(&connp->conn_tcp->tcp_non_sq_lock); 8727 connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 : 8728 connp->conn_tcp->tcp_mss; 8729 mutex_exit(&connp->conn_tcp->tcp_non_sq_lock); 8730 return (0); 8731 default: 8732 break; 8733 } 8734 } 8735 8736 error = squeue_synch_enter(sqp, connp, NULL); 8737 if (error == ENOMEM) { 8738 return (ENOMEM); 8739 } 8740 8741 error = proto_opt_check(level, option_name, optlen, NULL, 8742 tcp_opt_obj.odb_opt_des_arr, 8743 tcp_opt_obj.odb_opt_arr_cnt, 8744 B_TRUE, B_FALSE, cr); 8745 8746 if (error != 0) { 8747 if (error < 0) { 8748 error = proto_tlitosyserr(-error); 8749 } 8750 squeue_synch_exit(sqp, connp); 8751 return (error); 8752 } 8753 8754 error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name, 8755 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp, 8756 NULL, cr); 8757 squeue_synch_exit(sqp, connp); 8758 8759 ASSERT(error >= 0); 8760 8761 return (error); 8762 } 8763 8764 /* 8765 * Build/update the tcp header template (in conn_ht_iphc) based on 8766 * conn_xmit_ipp. The headers include ip6_t, any extension 8767 * headers, and the maximum size tcp header (to avoid reallocation 8768 * on the fly for additional tcp options). 8769 * 8770 * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}. 8771 * Returns failure if can't allocate memory. 8772 */ 8773 static int 8774 tcp_build_hdrs(tcp_t *tcp) 8775 { 8776 tcp_stack_t *tcps = tcp->tcp_tcps; 8777 conn_t *connp = tcp->tcp_connp; 8778 char buf[TCP_MAX_HDR_LENGTH]; 8779 uint_t buflen; 8780 uint_t ulplen = TCP_MIN_HEADER_LENGTH; 8781 uint_t extralen = TCP_MAX_TCP_OPTIONS_LENGTH; 8782 tcpha_t *tcpha; 8783 uint32_t cksum; 8784 int error; 8785 8786 /* 8787 * We might be called after the connection is set up, and we might 8788 * have TS options already in the TCP header. Thus we save any 8789 * existing tcp header. 8790 */ 8791 buflen = connp->conn_ht_ulp_len; 8792 if (buflen != 0) { 8793 bcopy(connp->conn_ht_ulp, buf, buflen); 8794 extralen -= buflen - ulplen; 8795 ulplen = buflen; 8796 } 8797 8798 /* Grab lock to satisfy ASSERT; TCP is serialized using squeue */ 8799 mutex_enter(&connp->conn_lock); 8800 error = conn_build_hdr_template(connp, ulplen, extralen, 8801 &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo); 8802 mutex_exit(&connp->conn_lock); 8803 if (error != 0) 8804 return (error); 8805 8806 /* 8807 * Any routing header/option has been massaged. The checksum difference 8808 * is stored in conn_sum for later use. 8809 */ 8810 tcpha = (tcpha_t *)connp->conn_ht_ulp; 8811 tcp->tcp_tcpha = tcpha; 8812 8813 /* restore any old tcp header */ 8814 if (buflen != 0) { 8815 bcopy(buf, connp->conn_ht_ulp, buflen); 8816 } else { 8817 tcpha->tha_sum = 0; 8818 tcpha->tha_urp = 0; 8819 tcpha->tha_ack = 0; 8820 tcpha->tha_offset_and_reserved = (5 << 4); 8821 tcpha->tha_lport = connp->conn_lport; 8822 tcpha->tha_fport = connp->conn_fport; 8823 } 8824 8825 /* 8826 * IP wants our header length in the checksum field to 8827 * allow it to perform a single pseudo-header+checksum 8828 * calculation on behalf of TCP. 8829 * Include the adjustment for a source route once IP_OPTIONS is set. 8830 */ 8831 cksum = sizeof (tcpha_t) + connp->conn_sum; 8832 cksum = (cksum >> 16) + (cksum & 0xFFFF); 8833 ASSERT(cksum < 0x10000); 8834 tcpha->tha_sum = htons(cksum); 8835 8836 if (connp->conn_ipversion == IPV4_VERSION) 8837 tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc; 8838 else 8839 tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc; 8840 8841 if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra > 8842 connp->conn_wroff) { 8843 connp->conn_wroff = connp->conn_ht_iphc_allocated + 8844 tcps->tcps_wroff_xtra; 8845 (void) proto_set_tx_wroff(connp->conn_rq, connp, 8846 connp->conn_wroff); 8847 } 8848 return (0); 8849 } 8850 8851 /* Get callback routine passed to nd_load by tcp_param_register */ 8852 /* ARGSUSED */ 8853 static int 8854 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 8855 { 8856 tcpparam_t *tcppa = (tcpparam_t *)cp; 8857 8858 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 8859 return (0); 8860 } 8861 8862 /* 8863 * Walk through the param array specified registering each element with the 8864 * named dispatch handler. 8865 */ 8866 static boolean_t 8867 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) 8868 { 8869 for (; cnt-- > 0; tcppa++) { 8870 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 8871 if (!nd_load(ndp, tcppa->tcp_param_name, 8872 tcp_param_get, tcp_param_set, 8873 (caddr_t)tcppa)) { 8874 nd_free(ndp); 8875 return (B_FALSE); 8876 } 8877 } 8878 } 8879 tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), 8880 KM_SLEEP); 8881 bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, 8882 sizeof (tcpparam_t)); 8883 if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, 8884 tcp_param_get, tcp_param_set_aligned, 8885 (caddr_t)tcps->tcps_wroff_xtra_param)) { 8886 nd_free(ndp); 8887 return (B_FALSE); 8888 } 8889 if (!nd_load(ndp, "tcp_extra_priv_ports", 8890 tcp_extra_priv_ports_get, NULL, NULL)) { 8891 nd_free(ndp); 8892 return (B_FALSE); 8893 } 8894 if (!nd_load(ndp, "tcp_extra_priv_ports_add", 8895 NULL, tcp_extra_priv_ports_add, NULL)) { 8896 nd_free(ndp); 8897 return (B_FALSE); 8898 } 8899 if (!nd_load(ndp, "tcp_extra_priv_ports_del", 8900 NULL, tcp_extra_priv_ports_del, NULL)) { 8901 nd_free(ndp); 8902 return (B_FALSE); 8903 } 8904 if (!nd_load(ndp, "tcp_1948_phrase", NULL, 8905 tcp_1948_phrase_set, NULL)) { 8906 nd_free(ndp); 8907 return (B_FALSE); 8908 } 8909 8910 8911 if (!nd_load(ndp, "tcp_listener_limit_conf", 8912 tcp_listener_conf_get, NULL, NULL)) { 8913 nd_free(ndp); 8914 return (B_FALSE); 8915 } 8916 if (!nd_load(ndp, "tcp_listener_limit_conf_add", 8917 NULL, tcp_listener_conf_add, NULL)) { 8918 nd_free(ndp); 8919 return (B_FALSE); 8920 } 8921 if (!nd_load(ndp, "tcp_listener_limit_conf_del", 8922 NULL, tcp_listener_conf_del, NULL)) { 8923 nd_free(ndp); 8924 return (B_FALSE); 8925 } 8926 8927 /* 8928 * Dummy ndd variables - only to convey obsolescence information 8929 * through printing of their name (no get or set routines) 8930 * XXX Remove in future releases ? 8931 */ 8932 if (!nd_load(ndp, 8933 "tcp_close_wait_interval(obsoleted - " 8934 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 8935 nd_free(ndp); 8936 return (B_FALSE); 8937 } 8938 return (B_TRUE); 8939 } 8940 8941 /* ndd set routine for tcp_wroff_xtra. */ 8942 /* ARGSUSED */ 8943 static int 8944 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 8945 cred_t *cr) 8946 { 8947 long new_value; 8948 tcpparam_t *tcppa = (tcpparam_t *)cp; 8949 8950 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 8951 new_value < tcppa->tcp_param_min || 8952 new_value > tcppa->tcp_param_max) { 8953 return (EINVAL); 8954 } 8955 /* 8956 * Need to make sure new_value is a multiple of 4. If it is not, 8957 * round it up. For future 64 bit requirement, we actually make it 8958 * a multiple of 8. 8959 */ 8960 if (new_value & 0x7) { 8961 new_value = (new_value & ~0x7) + 0x8; 8962 } 8963 tcppa->tcp_param_val = new_value; 8964 return (0); 8965 } 8966 8967 /* Set callback routine passed to nd_load by tcp_param_register */ 8968 /* ARGSUSED */ 8969 static int 8970 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 8971 { 8972 long new_value; 8973 tcpparam_t *tcppa = (tcpparam_t *)cp; 8974 8975 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 8976 new_value < tcppa->tcp_param_min || 8977 new_value > tcppa->tcp_param_max) { 8978 return (EINVAL); 8979 } 8980 tcppa->tcp_param_val = new_value; 8981 return (0); 8982 } 8983 8984 static void 8985 tcp_reass_timer(void *arg) 8986 { 8987 conn_t *connp = (conn_t *)arg; 8988 tcp_t *tcp = connp->conn_tcp; 8989 8990 tcp->tcp_reass_tid = 0; 8991 if (tcp->tcp_reass_head == NULL) 8992 return; 8993 ASSERT(tcp->tcp_reass_tail != NULL); 8994 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 8995 tcp_sack_remove(tcp->tcp_sack_list, 8996 TCP_REASS_END(tcp->tcp_reass_tail), &tcp->tcp_num_sack_blk); 8997 } 8998 tcp_close_mpp(&tcp->tcp_reass_head); 8999 tcp->tcp_reass_tail = NULL; 9000 } 9001 9002 /* 9003 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 9004 * is filled, return as much as we can. The message passed in may be 9005 * multi-part, chained using b_cont. "start" is the starting sequence 9006 * number for this piece. 9007 */ 9008 static mblk_t * 9009 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 9010 { 9011 uint32_t end; 9012 mblk_t *mp1; 9013 mblk_t *mp2; 9014 mblk_t *next_mp; 9015 uint32_t u1; 9016 tcp_stack_t *tcps = tcp->tcp_tcps; 9017 9018 9019 /* Walk through all the new pieces. */ 9020 do { 9021 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 9022 (uintptr_t)INT_MAX); 9023 end = start + (int)(mp->b_wptr - mp->b_rptr); 9024 next_mp = mp->b_cont; 9025 if (start == end) { 9026 /* Empty. Blast it. */ 9027 freeb(mp); 9028 continue; 9029 } 9030 mp->b_cont = NULL; 9031 TCP_REASS_SET_SEQ(mp, start); 9032 TCP_REASS_SET_END(mp, end); 9033 mp1 = tcp->tcp_reass_tail; 9034 if (!mp1) { 9035 tcp->tcp_reass_tail = mp; 9036 tcp->tcp_reass_head = mp; 9037 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 9038 UPDATE_MIB(&tcps->tcps_mib, 9039 tcpInDataUnorderBytes, end - start); 9040 continue; 9041 } 9042 /* New stuff completely beyond tail? */ 9043 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 9044 /* Link it on end. */ 9045 mp1->b_cont = mp; 9046 tcp->tcp_reass_tail = mp; 9047 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 9048 UPDATE_MIB(&tcps->tcps_mib, 9049 tcpInDataUnorderBytes, end - start); 9050 continue; 9051 } 9052 mp1 = tcp->tcp_reass_head; 9053 u1 = TCP_REASS_SEQ(mp1); 9054 /* New stuff at the front? */ 9055 if (SEQ_LT(start, u1)) { 9056 /* Yes... Check for overlap. */ 9057 mp->b_cont = mp1; 9058 tcp->tcp_reass_head = mp; 9059 tcp_reass_elim_overlap(tcp, mp); 9060 continue; 9061 } 9062 /* 9063 * The new piece fits somewhere between the head and tail. 9064 * We find our slot, where mp1 precedes us and mp2 trails. 9065 */ 9066 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 9067 u1 = TCP_REASS_SEQ(mp2); 9068 if (SEQ_LEQ(start, u1)) 9069 break; 9070 } 9071 /* Link ourselves in */ 9072 mp->b_cont = mp2; 9073 mp1->b_cont = mp; 9074 9075 /* Trim overlap with following mblk(s) first */ 9076 tcp_reass_elim_overlap(tcp, mp); 9077 9078 /* Trim overlap with preceding mblk */ 9079 tcp_reass_elim_overlap(tcp, mp1); 9080 9081 } while (start = end, mp = next_mp); 9082 mp1 = tcp->tcp_reass_head; 9083 /* Anything ready to go? */ 9084 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 9085 return (NULL); 9086 /* Eat what we can off the queue */ 9087 for (;;) { 9088 mp = mp1->b_cont; 9089 end = TCP_REASS_END(mp1); 9090 TCP_REASS_SET_SEQ(mp1, 0); 9091 TCP_REASS_SET_END(mp1, 0); 9092 if (!mp) { 9093 tcp->tcp_reass_tail = NULL; 9094 break; 9095 } 9096 if (end != TCP_REASS_SEQ(mp)) { 9097 mp1->b_cont = NULL; 9098 break; 9099 } 9100 mp1 = mp; 9101 } 9102 mp1 = tcp->tcp_reass_head; 9103 tcp->tcp_reass_head = mp; 9104 return (mp1); 9105 } 9106 9107 /* Eliminate any overlap that mp may have over later mblks */ 9108 static void 9109 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 9110 { 9111 uint32_t end; 9112 mblk_t *mp1; 9113 uint32_t u1; 9114 tcp_stack_t *tcps = tcp->tcp_tcps; 9115 9116 end = TCP_REASS_END(mp); 9117 while ((mp1 = mp->b_cont) != NULL) { 9118 u1 = TCP_REASS_SEQ(mp1); 9119 if (!SEQ_GT(end, u1)) 9120 break; 9121 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 9122 mp->b_wptr -= end - u1; 9123 TCP_REASS_SET_END(mp, u1); 9124 BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); 9125 UPDATE_MIB(&tcps->tcps_mib, 9126 tcpInDataPartDupBytes, end - u1); 9127 break; 9128 } 9129 mp->b_cont = mp1->b_cont; 9130 TCP_REASS_SET_SEQ(mp1, 0); 9131 TCP_REASS_SET_END(mp1, 0); 9132 freeb(mp1); 9133 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 9134 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); 9135 } 9136 if (!mp1) 9137 tcp->tcp_reass_tail = mp; 9138 } 9139 9140 static uint_t 9141 tcp_rwnd_reopen(tcp_t *tcp) 9142 { 9143 uint_t ret = 0; 9144 uint_t thwin; 9145 conn_t *connp = tcp->tcp_connp; 9146 9147 /* Learn the latest rwnd information that we sent to the other side. */ 9148 thwin = ((uint_t)ntohs(tcp->tcp_tcpha->tha_win)) 9149 << tcp->tcp_rcv_ws; 9150 /* This is peer's calculated send window (our receive window). */ 9151 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 9152 /* 9153 * Increase the receive window to max. But we need to do receiver 9154 * SWS avoidance. This means that we need to check the increase of 9155 * of receive window is at least 1 MSS. 9156 */ 9157 if (connp->conn_rcvbuf - thwin >= tcp->tcp_mss) { 9158 /* 9159 * If the window that the other side knows is less than max 9160 * deferred acks segments, send an update immediately. 9161 */ 9162 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 9163 BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate); 9164 ret = TH_ACK_NEEDED; 9165 } 9166 tcp->tcp_rwnd = connp->conn_rcvbuf; 9167 } 9168 return (ret); 9169 } 9170 9171 /* 9172 * Send up all messages queued on tcp_rcv_list. 9173 */ 9174 static uint_t 9175 tcp_rcv_drain(tcp_t *tcp) 9176 { 9177 mblk_t *mp; 9178 uint_t ret = 0; 9179 #ifdef DEBUG 9180 uint_t cnt = 0; 9181 #endif 9182 queue_t *q = tcp->tcp_connp->conn_rq; 9183 9184 /* Can't drain on an eager connection */ 9185 if (tcp->tcp_listener != NULL) 9186 return (ret); 9187 9188 /* Can't be a non-STREAMS connection */ 9189 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 9190 9191 /* No need for the push timer now. */ 9192 if (tcp->tcp_push_tid != 0) { 9193 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 9194 tcp->tcp_push_tid = 0; 9195 } 9196 9197 /* 9198 * Handle two cases here: we are currently fused or we were 9199 * previously fused and have some urgent data to be delivered 9200 * upstream. The latter happens because we either ran out of 9201 * memory or were detached and therefore sending the SIGURG was 9202 * deferred until this point. In either case we pass control 9203 * over to tcp_fuse_rcv_drain() since it may need to complete 9204 * some work. 9205 */ 9206 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 9207 ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) || 9208 tcp->tcp_fused_sigurg_mp != NULL); 9209 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 9210 &tcp->tcp_fused_sigurg_mp)) 9211 return (ret); 9212 } 9213 9214 while ((mp = tcp->tcp_rcv_list) != NULL) { 9215 tcp->tcp_rcv_list = mp->b_next; 9216 mp->b_next = NULL; 9217 #ifdef DEBUG 9218 cnt += msgdsize(mp); 9219 #endif 9220 /* Does this need SSL processing first? */ 9221 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 9222 DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain, 9223 mblk_t *, mp); 9224 tcp_kssl_input(tcp, mp, NULL); 9225 continue; 9226 } 9227 putnext(q, mp); 9228 } 9229 #ifdef DEBUG 9230 ASSERT(cnt == tcp->tcp_rcv_cnt); 9231 #endif 9232 tcp->tcp_rcv_last_head = NULL; 9233 tcp->tcp_rcv_last_tail = NULL; 9234 tcp->tcp_rcv_cnt = 0; 9235 9236 if (canputnext(q)) 9237 return (tcp_rwnd_reopen(tcp)); 9238 9239 return (ret); 9240 } 9241 9242 /* 9243 * Queue data on tcp_rcv_list which is a b_next chain. 9244 * tcp_rcv_last_head/tail is the last element of this chain. 9245 * Each element of the chain is a b_cont chain. 9246 * 9247 * M_DATA messages are added to the current element. 9248 * Other messages are added as new (b_next) elements. 9249 */ 9250 void 9251 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len, cred_t *cr) 9252 { 9253 ASSERT(seg_len == msgdsize(mp)); 9254 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 9255 9256 if (is_system_labeled()) { 9257 ASSERT(cr != NULL || msg_getcred(mp, NULL) != NULL); 9258 /* 9259 * Provide for protocols above TCP such as RPC. NOPID leaves 9260 * db_cpid unchanged. 9261 * The cred could have already been set. 9262 */ 9263 if (cr != NULL) 9264 mblk_setcred(mp, cr, NOPID); 9265 } 9266 9267 if (tcp->tcp_rcv_list == NULL) { 9268 ASSERT(tcp->tcp_rcv_last_head == NULL); 9269 tcp->tcp_rcv_list = mp; 9270 tcp->tcp_rcv_last_head = mp; 9271 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 9272 tcp->tcp_rcv_last_tail->b_cont = mp; 9273 } else { 9274 tcp->tcp_rcv_last_head->b_next = mp; 9275 tcp->tcp_rcv_last_head = mp; 9276 } 9277 9278 while (mp->b_cont) 9279 mp = mp->b_cont; 9280 9281 tcp->tcp_rcv_last_tail = mp; 9282 tcp->tcp_rcv_cnt += seg_len; 9283 tcp->tcp_rwnd -= seg_len; 9284 } 9285 9286 /* The minimum of smoothed mean deviation in RTO calculation. */ 9287 #define TCP_SD_MIN 400 9288 9289 /* 9290 * Set RTO for this connection. The formula is from Jacobson and Karels' 9291 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 9292 * are the same as those in Appendix A.2 of that paper. 9293 * 9294 * m = new measurement 9295 * sa = smoothed RTT average (8 * average estimates). 9296 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 9297 */ 9298 static void 9299 tcp_set_rto(tcp_t *tcp, clock_t rtt) 9300 { 9301 long m = TICK_TO_MSEC(rtt); 9302 clock_t sa = tcp->tcp_rtt_sa; 9303 clock_t sv = tcp->tcp_rtt_sd; 9304 clock_t rto; 9305 tcp_stack_t *tcps = tcp->tcp_tcps; 9306 9307 BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); 9308 tcp->tcp_rtt_update++; 9309 9310 /* tcp_rtt_sa is not 0 means this is a new sample. */ 9311 if (sa != 0) { 9312 /* 9313 * Update average estimator: 9314 * new rtt = 7/8 old rtt + 1/8 Error 9315 */ 9316 9317 /* m is now Error in estimate. */ 9318 m -= sa >> 3; 9319 if ((sa += m) <= 0) { 9320 /* 9321 * Don't allow the smoothed average to be negative. 9322 * We use 0 to denote reinitialization of the 9323 * variables. 9324 */ 9325 sa = 1; 9326 } 9327 9328 /* 9329 * Update deviation estimator: 9330 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 9331 */ 9332 if (m < 0) 9333 m = -m; 9334 m -= sv >> 2; 9335 sv += m; 9336 } else { 9337 /* 9338 * This follows BSD's implementation. So the reinitialized 9339 * RTO is 3 * m. We cannot go less than 2 because if the 9340 * link is bandwidth dominated, doubling the window size 9341 * during slow start means doubling the RTT. We want to be 9342 * more conservative when we reinitialize our estimates. 3 9343 * is just a convenient number. 9344 */ 9345 sa = m << 3; 9346 sv = m << 1; 9347 } 9348 if (sv < TCP_SD_MIN) { 9349 /* 9350 * We do not know that if sa captures the delay ACK 9351 * effect as in a long train of segments, a receiver 9352 * does not delay its ACKs. So set the minimum of sv 9353 * to be TCP_SD_MIN, which is default to 400 ms, twice 9354 * of BSD DATO. That means the minimum of mean 9355 * deviation is 100 ms. 9356 * 9357 */ 9358 sv = TCP_SD_MIN; 9359 } 9360 tcp->tcp_rtt_sa = sa; 9361 tcp->tcp_rtt_sd = sv; 9362 /* 9363 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 9364 * 9365 * Add tcp_rexmit_interval extra in case of extreme environment 9366 * where the algorithm fails to work. The default value of 9367 * tcp_rexmit_interval_extra should be 0. 9368 * 9369 * As we use a finer grained clock than BSD and update 9370 * RTO for every ACKs, add in another .25 of RTT to the 9371 * deviation of RTO to accomodate burstiness of 1/4 of 9372 * window size. 9373 */ 9374 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 9375 9376 if (rto > tcps->tcps_rexmit_interval_max) { 9377 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 9378 } else if (rto < tcps->tcps_rexmit_interval_min) { 9379 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 9380 } else { 9381 tcp->tcp_rto = rto; 9382 } 9383 9384 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 9385 tcp->tcp_timer_backoff = 0; 9386 } 9387 9388 /* 9389 * tcp_get_seg_mp() is called to get the pointer to a segment in the 9390 * send queue which starts at the given sequence number. If the given 9391 * sequence number is equal to last valid sequence number (tcp_snxt), the 9392 * returned mblk is the last valid mblk, and off is set to the length of 9393 * that mblk. 9394 * 9395 * send queue which starts at the given seq. no. 9396 * 9397 * Parameters: 9398 * tcp_t *tcp: the tcp instance pointer. 9399 * uint32_t seq: the starting seq. no of the requested segment. 9400 * int32_t *off: after the execution, *off will be the offset to 9401 * the returned mblk which points to the requested seq no. 9402 * It is the caller's responsibility to send in a non-null off. 9403 * 9404 * Return: 9405 * A mblk_t pointer pointing to the requested segment in send queue. 9406 */ 9407 static mblk_t * 9408 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 9409 { 9410 int32_t cnt; 9411 mblk_t *mp; 9412 9413 /* Defensive coding. Make sure we don't send incorrect data. */ 9414 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GT(seq, tcp->tcp_snxt)) 9415 return (NULL); 9416 9417 cnt = seq - tcp->tcp_suna; 9418 mp = tcp->tcp_xmit_head; 9419 while (cnt > 0 && mp != NULL) { 9420 cnt -= mp->b_wptr - mp->b_rptr; 9421 if (cnt <= 0) { 9422 cnt += mp->b_wptr - mp->b_rptr; 9423 break; 9424 } 9425 mp = mp->b_cont; 9426 } 9427 ASSERT(mp != NULL); 9428 *off = cnt; 9429 return (mp); 9430 } 9431 9432 /* 9433 * This function handles all retransmissions if SACK is enabled for this 9434 * connection. First it calculates how many segments can be retransmitted 9435 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 9436 * segments. A segment is eligible if sack_cnt for that segment is greater 9437 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 9438 * all eligible segments, it checks to see if TCP can send some new segments 9439 * (fast recovery). If it can, set the appropriate flag for tcp_input_data(). 9440 * 9441 * Parameters: 9442 * tcp_t *tcp: the tcp structure of the connection. 9443 * uint_t *flags: in return, appropriate value will be set for 9444 * tcp_input_data(). 9445 */ 9446 static void 9447 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 9448 { 9449 notsack_blk_t *notsack_blk; 9450 int32_t usable_swnd; 9451 int32_t mss; 9452 uint32_t seg_len; 9453 mblk_t *xmit_mp; 9454 tcp_stack_t *tcps = tcp->tcp_tcps; 9455 9456 ASSERT(tcp->tcp_sack_info != NULL); 9457 ASSERT(tcp->tcp_notsack_list != NULL); 9458 ASSERT(tcp->tcp_rexmit == B_FALSE); 9459 9460 /* Defensive coding in case there is a bug... */ 9461 if (tcp->tcp_notsack_list == NULL) { 9462 return; 9463 } 9464 notsack_blk = tcp->tcp_notsack_list; 9465 mss = tcp->tcp_mss; 9466 9467 /* 9468 * Limit the num of outstanding data in the network to be 9469 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 9470 */ 9471 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 9472 9473 /* At least retransmit 1 MSS of data. */ 9474 if (usable_swnd <= 0) { 9475 usable_swnd = mss; 9476 } 9477 9478 /* Make sure no new RTT samples will be taken. */ 9479 tcp->tcp_csuna = tcp->tcp_snxt; 9480 9481 notsack_blk = tcp->tcp_notsack_list; 9482 while (usable_swnd > 0) { 9483 mblk_t *snxt_mp, *tmp_mp; 9484 tcp_seq begin = tcp->tcp_sack_snxt; 9485 tcp_seq end; 9486 int32_t off; 9487 9488 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 9489 if (SEQ_GT(notsack_blk->end, begin) && 9490 (notsack_blk->sack_cnt >= 9491 tcps->tcps_dupack_fast_retransmit)) { 9492 end = notsack_blk->end; 9493 if (SEQ_LT(begin, notsack_blk->begin)) { 9494 begin = notsack_blk->begin; 9495 } 9496 break; 9497 } 9498 } 9499 /* 9500 * All holes are filled. Manipulate tcp_cwnd to send more 9501 * if we can. Note that after the SACK recovery, tcp_cwnd is 9502 * set to tcp_cwnd_ssthresh. 9503 */ 9504 if (notsack_blk == NULL) { 9505 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 9506 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 9507 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 9508 ASSERT(tcp->tcp_cwnd > 0); 9509 return; 9510 } else { 9511 usable_swnd = usable_swnd / mss; 9512 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 9513 MAX(usable_swnd * mss, mss); 9514 *flags |= TH_XMIT_NEEDED; 9515 return; 9516 } 9517 } 9518 9519 /* 9520 * Note that we may send more than usable_swnd allows here 9521 * because of round off, but no more than 1 MSS of data. 9522 */ 9523 seg_len = end - begin; 9524 if (seg_len > mss) 9525 seg_len = mss; 9526 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 9527 ASSERT(snxt_mp != NULL); 9528 /* This should not happen. Defensive coding again... */ 9529 if (snxt_mp == NULL) { 9530 return; 9531 } 9532 9533 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 9534 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 9535 if (xmit_mp == NULL) 9536 return; 9537 9538 usable_swnd -= seg_len; 9539 tcp->tcp_pipe += seg_len; 9540 tcp->tcp_sack_snxt = begin + seg_len; 9541 9542 tcp_send_data(tcp, xmit_mp); 9543 9544 /* 9545 * Update the send timestamp to avoid false retransmission. 9546 */ 9547 snxt_mp->b_prev = (mblk_t *)ddi_get_lbolt(); 9548 9549 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 9550 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); 9551 BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); 9552 /* 9553 * Update tcp_rexmit_max to extend this SACK recovery phase. 9554 * This happens when new data sent during fast recovery is 9555 * also lost. If TCP retransmits those new data, it needs 9556 * to extend SACK recover phase to avoid starting another 9557 * fast retransmit/recovery unnecessarily. 9558 */ 9559 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 9560 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 9561 } 9562 } 9563 } 9564 9565 /* 9566 * tcp_ss_rexmit() is called to do slow start retransmission after a timeout 9567 * or ICMP errors. 9568 * 9569 * To limit the number of duplicate segments, we limit the number of segment 9570 * to be sent in one time to tcp_snd_burst, the burst variable. 9571 */ 9572 static void 9573 tcp_ss_rexmit(tcp_t *tcp) 9574 { 9575 uint32_t snxt; 9576 uint32_t smax; 9577 int32_t win; 9578 int32_t mss; 9579 int32_t off; 9580 int32_t burst = tcp->tcp_snd_burst; 9581 mblk_t *snxt_mp; 9582 tcp_stack_t *tcps = tcp->tcp_tcps; 9583 9584 /* 9585 * Note that tcp_rexmit can be set even though TCP has retransmitted 9586 * all unack'ed segments. 9587 */ 9588 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 9589 smax = tcp->tcp_rexmit_max; 9590 snxt = tcp->tcp_rexmit_nxt; 9591 if (SEQ_LT(snxt, tcp->tcp_suna)) { 9592 snxt = tcp->tcp_suna; 9593 } 9594 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 9595 win -= snxt - tcp->tcp_suna; 9596 mss = tcp->tcp_mss; 9597 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 9598 9599 while (SEQ_LT(snxt, smax) && (win > 0) && 9600 (burst > 0) && (snxt_mp != NULL)) { 9601 mblk_t *xmit_mp; 9602 mblk_t *old_snxt_mp = snxt_mp; 9603 uint32_t cnt = mss; 9604 9605 if (win < cnt) { 9606 cnt = win; 9607 } 9608 if (SEQ_GT(snxt + cnt, smax)) { 9609 cnt = smax - snxt; 9610 } 9611 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 9612 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 9613 if (xmit_mp == NULL) 9614 return; 9615 9616 tcp_send_data(tcp, xmit_mp); 9617 9618 snxt += cnt; 9619 win -= cnt; 9620 /* 9621 * Update the send timestamp to avoid false 9622 * retransmission. 9623 */ 9624 old_snxt_mp->b_prev = (mblk_t *)ddi_get_lbolt(); 9625 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 9626 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); 9627 9628 tcp->tcp_rexmit_nxt = snxt; 9629 burst--; 9630 } 9631 /* 9632 * If we have transmitted all we have at the time 9633 * we started the retranmission, we can leave 9634 * the rest of the job to tcp_wput_data(). But we 9635 * need to check the send window first. If the 9636 * win is not 0, go on with tcp_wput_data(). 9637 */ 9638 if (SEQ_LT(snxt, smax) || win == 0) { 9639 return; 9640 } 9641 } 9642 /* Only call tcp_wput_data() if there is data to be sent. */ 9643 if (tcp->tcp_unsent) { 9644 tcp_wput_data(tcp, NULL, B_FALSE); 9645 } 9646 } 9647 9648 /* 9649 * Process all TCP option in SYN segment. Note that this function should 9650 * be called after tcp_set_destination() is called so that the necessary info 9651 * from IRE is already set in the tcp structure. 9652 * 9653 * This function sets up the correct tcp_mss value according to the 9654 * MSS option value and our header size. It also sets up the window scale 9655 * and timestamp values, and initialize SACK info blocks. But it does not 9656 * change receive window size after setting the tcp_mss value. The caller 9657 * should do the appropriate change. 9658 */ 9659 void 9660 tcp_process_options(tcp_t *tcp, tcpha_t *tcpha) 9661 { 9662 int options; 9663 tcp_opt_t tcpopt; 9664 uint32_t mss_max; 9665 char *tmp_tcph; 9666 tcp_stack_t *tcps = tcp->tcp_tcps; 9667 conn_t *connp = tcp->tcp_connp; 9668 9669 tcpopt.tcp = NULL; 9670 options = tcp_parse_options(tcpha, &tcpopt); 9671 9672 /* 9673 * Process MSS option. Note that MSS option value does not account 9674 * for IP or TCP options. This means that it is equal to MTU - minimum 9675 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 9676 * IPv6. 9677 */ 9678 if (!(options & TCP_OPT_MSS_PRESENT)) { 9679 if (connp->conn_ipversion == IPV4_VERSION) 9680 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 9681 else 9682 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 9683 } else { 9684 if (connp->conn_ipversion == IPV4_VERSION) 9685 mss_max = tcps->tcps_mss_max_ipv4; 9686 else 9687 mss_max = tcps->tcps_mss_max_ipv6; 9688 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 9689 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 9690 else if (tcpopt.tcp_opt_mss > mss_max) 9691 tcpopt.tcp_opt_mss = mss_max; 9692 } 9693 9694 /* Process Window Scale option. */ 9695 if (options & TCP_OPT_WSCALE_PRESENT) { 9696 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 9697 tcp->tcp_snd_ws_ok = B_TRUE; 9698 } else { 9699 tcp->tcp_snd_ws = B_FALSE; 9700 tcp->tcp_snd_ws_ok = B_FALSE; 9701 tcp->tcp_rcv_ws = B_FALSE; 9702 } 9703 9704 /* Process Timestamp option. */ 9705 if ((options & TCP_OPT_TSTAMP_PRESENT) && 9706 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 9707 tmp_tcph = (char *)tcp->tcp_tcpha; 9708 9709 tcp->tcp_snd_ts_ok = B_TRUE; 9710 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 9711 tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 9712 ASSERT(OK_32PTR(tmp_tcph)); 9713 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 9714 9715 /* Fill in our template header with basic timestamp option. */ 9716 tmp_tcph += connp->conn_ht_ulp_len; 9717 tmp_tcph[0] = TCPOPT_NOP; 9718 tmp_tcph[1] = TCPOPT_NOP; 9719 tmp_tcph[2] = TCPOPT_TSTAMP; 9720 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 9721 connp->conn_ht_iphc_len += TCPOPT_REAL_TS_LEN; 9722 connp->conn_ht_ulp_len += TCPOPT_REAL_TS_LEN; 9723 tcp->tcp_tcpha->tha_offset_and_reserved += (3 << 4); 9724 } else { 9725 tcp->tcp_snd_ts_ok = B_FALSE; 9726 } 9727 9728 /* 9729 * Process SACK options. If SACK is enabled for this connection, 9730 * then allocate the SACK info structure. Note the following ways 9731 * when tcp_snd_sack_ok is set to true. 9732 * 9733 * For active connection: in tcp_set_destination() called in 9734 * tcp_connect(). 9735 * 9736 * For passive connection: in tcp_set_destination() called in 9737 * tcp_input_listener(). 9738 * 9739 * That's the reason why the extra TCP_IS_DETACHED() check is there. 9740 * That check makes sure that if we did not send a SACK OK option, 9741 * we will not enable SACK for this connection even though the other 9742 * side sends us SACK OK option. For active connection, the SACK 9743 * info structure has already been allocated. So we need to free 9744 * it if SACK is disabled. 9745 */ 9746 if ((options & TCP_OPT_SACK_OK_PRESENT) && 9747 (tcp->tcp_snd_sack_ok || 9748 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 9749 /* This should be true only in the passive case. */ 9750 if (tcp->tcp_sack_info == NULL) { 9751 ASSERT(TCP_IS_DETACHED(tcp)); 9752 tcp->tcp_sack_info = 9753 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 9754 } 9755 if (tcp->tcp_sack_info == NULL) { 9756 tcp->tcp_snd_sack_ok = B_FALSE; 9757 } else { 9758 tcp->tcp_snd_sack_ok = B_TRUE; 9759 if (tcp->tcp_snd_ts_ok) { 9760 tcp->tcp_max_sack_blk = 3; 9761 } else { 9762 tcp->tcp_max_sack_blk = 4; 9763 } 9764 } 9765 } else { 9766 /* 9767 * Resetting tcp_snd_sack_ok to B_FALSE so that 9768 * no SACK info will be used for this 9769 * connection. This assumes that SACK usage 9770 * permission is negotiated. This may need 9771 * to be changed once this is clarified. 9772 */ 9773 if (tcp->tcp_sack_info != NULL) { 9774 ASSERT(tcp->tcp_notsack_list == NULL); 9775 kmem_cache_free(tcp_sack_info_cache, 9776 tcp->tcp_sack_info); 9777 tcp->tcp_sack_info = NULL; 9778 } 9779 tcp->tcp_snd_sack_ok = B_FALSE; 9780 } 9781 9782 /* 9783 * Now we know the exact TCP/IP header length, subtract 9784 * that from tcp_mss to get our side's MSS. 9785 */ 9786 tcp->tcp_mss -= connp->conn_ht_iphc_len; 9787 9788 /* 9789 * Here we assume that the other side's header size will be equal to 9790 * our header size. We calculate the real MSS accordingly. Need to 9791 * take into additional stuffs IPsec puts in. 9792 * 9793 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 9794 */ 9795 tcpopt.tcp_opt_mss -= connp->conn_ht_iphc_len + 9796 tcp->tcp_ipsec_overhead - 9797 ((connp->conn_ipversion == IPV4_VERSION ? 9798 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 9799 9800 /* 9801 * Set MSS to the smaller one of both ends of the connection. 9802 * We should not have called tcp_mss_set() before, but our 9803 * side of the MSS should have been set to a proper value 9804 * by tcp_set_destination(). tcp_mss_set() will also set up the 9805 * STREAM head parameters properly. 9806 * 9807 * If we have a larger-than-16-bit window but the other side 9808 * didn't want to do window scale, tcp_rwnd_set() will take 9809 * care of that. 9810 */ 9811 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); 9812 9813 /* 9814 * Initialize tcp_cwnd value. After tcp_mss_set(), tcp_mss has been 9815 * updated properly. 9816 */ 9817 SET_TCP_INIT_CWND(tcp, tcp->tcp_mss, tcps->tcps_slow_start_initial); 9818 } 9819 9820 /* 9821 * Sends the T_CONN_IND to the listener. The caller calls this 9822 * functions via squeue to get inside the listener's perimeter 9823 * once the 3 way hand shake is done a T_CONN_IND needs to be 9824 * sent. As an optimization, the caller can call this directly 9825 * if listener's perimeter is same as eager's. 9826 */ 9827 /* ARGSUSED */ 9828 void 9829 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 9830 { 9831 conn_t *lconnp = (conn_t *)arg; 9832 tcp_t *listener = lconnp->conn_tcp; 9833 tcp_t *tcp; 9834 struct T_conn_ind *conn_ind; 9835 ipaddr_t *addr_cache; 9836 boolean_t need_send_conn_ind = B_FALSE; 9837 tcp_stack_t *tcps = listener->tcp_tcps; 9838 9839 /* retrieve the eager */ 9840 conn_ind = (struct T_conn_ind *)mp->b_rptr; 9841 ASSERT(conn_ind->OPT_offset != 0 && 9842 conn_ind->OPT_length == sizeof (intptr_t)); 9843 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 9844 conn_ind->OPT_length); 9845 9846 /* 9847 * TLI/XTI applications will get confused by 9848 * sending eager as an option since it violates 9849 * the option semantics. So remove the eager as 9850 * option since TLI/XTI app doesn't need it anyway. 9851 */ 9852 if (!TCP_IS_SOCKET(listener)) { 9853 conn_ind->OPT_length = 0; 9854 conn_ind->OPT_offset = 0; 9855 } 9856 if (listener->tcp_state != TCPS_LISTEN) { 9857 /* 9858 * If listener has closed, it would have caused a 9859 * a cleanup/blowoff to happen for the eager. We 9860 * just need to return. 9861 */ 9862 freemsg(mp); 9863 return; 9864 } 9865 9866 9867 /* 9868 * if the conn_req_q is full defer passing up the 9869 * T_CONN_IND until space is availabe after t_accept() 9870 * processing 9871 */ 9872 mutex_enter(&listener->tcp_eager_lock); 9873 9874 /* 9875 * Take the eager out, if it is in the list of droppable eagers 9876 * as we are here because the 3W handshake is over. 9877 */ 9878 MAKE_UNDROPPABLE(tcp); 9879 9880 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 9881 tcp_t *tail; 9882 9883 /* 9884 * The eager already has an extra ref put in tcp_input_data 9885 * so that it stays till accept comes back even though it 9886 * might get into TCPS_CLOSED as a result of a TH_RST etc. 9887 */ 9888 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 9889 listener->tcp_conn_req_cnt_q0--; 9890 listener->tcp_conn_req_cnt_q++; 9891 9892 /* Move from SYN_RCVD to ESTABLISHED list */ 9893 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 9894 tcp->tcp_eager_prev_q0; 9895 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 9896 tcp->tcp_eager_next_q0; 9897 tcp->tcp_eager_prev_q0 = NULL; 9898 tcp->tcp_eager_next_q0 = NULL; 9899 9900 /* 9901 * Insert at end of the queue because sockfs 9902 * sends down T_CONN_RES in chronological 9903 * order. Leaving the older conn indications 9904 * at front of the queue helps reducing search 9905 * time. 9906 */ 9907 tail = listener->tcp_eager_last_q; 9908 if (tail != NULL) 9909 tail->tcp_eager_next_q = tcp; 9910 else 9911 listener->tcp_eager_next_q = tcp; 9912 listener->tcp_eager_last_q = tcp; 9913 tcp->tcp_eager_next_q = NULL; 9914 /* 9915 * Delay sending up the T_conn_ind until we are 9916 * done with the eager. Once we have have sent up 9917 * the T_conn_ind, the accept can potentially complete 9918 * any time and release the refhold we have on the eager. 9919 */ 9920 need_send_conn_ind = B_TRUE; 9921 } else { 9922 /* 9923 * Defer connection on q0 and set deferred 9924 * connection bit true 9925 */ 9926 tcp->tcp_conn_def_q0 = B_TRUE; 9927 9928 /* take tcp out of q0 ... */ 9929 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 9930 tcp->tcp_eager_next_q0; 9931 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 9932 tcp->tcp_eager_prev_q0; 9933 9934 /* ... and place it at the end of q0 */ 9935 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 9936 tcp->tcp_eager_next_q0 = listener; 9937 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 9938 listener->tcp_eager_prev_q0 = tcp; 9939 tcp->tcp_conn.tcp_eager_conn_ind = mp; 9940 } 9941 9942 /* we have timed out before */ 9943 if (tcp->tcp_syn_rcvd_timeout != 0) { 9944 tcp->tcp_syn_rcvd_timeout = 0; 9945 listener->tcp_syn_rcvd_timeout--; 9946 if (listener->tcp_syn_defense && 9947 listener->tcp_syn_rcvd_timeout <= 9948 (tcps->tcps_conn_req_max_q0 >> 5) && 9949 10*MINUTES < TICK_TO_MSEC(ddi_get_lbolt64() - 9950 listener->tcp_last_rcv_lbolt)) { 9951 /* 9952 * Turn off the defense mode if we 9953 * believe the SYN attack is over. 9954 */ 9955 listener->tcp_syn_defense = B_FALSE; 9956 if (listener->tcp_ip_addr_cache) { 9957 kmem_free((void *)listener->tcp_ip_addr_cache, 9958 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 9959 listener->tcp_ip_addr_cache = NULL; 9960 } 9961 } 9962 } 9963 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 9964 if (addr_cache != NULL) { 9965 /* 9966 * We have finished a 3-way handshake with this 9967 * remote host. This proves the IP addr is good. 9968 * Cache it! 9969 */ 9970 addr_cache[IP_ADDR_CACHE_HASH(tcp->tcp_connp->conn_faddr_v4)] = 9971 tcp->tcp_connp->conn_faddr_v4; 9972 } 9973 mutex_exit(&listener->tcp_eager_lock); 9974 if (need_send_conn_ind) 9975 tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp); 9976 } 9977 9978 /* 9979 * Send the newconn notification to ulp. The eager is blown off if the 9980 * notification fails. 9981 */ 9982 static void 9983 tcp_ulp_newconn(conn_t *lconnp, conn_t *econnp, mblk_t *mp) 9984 { 9985 if (IPCL_IS_NONSTR(lconnp)) { 9986 cred_t *cr; 9987 pid_t cpid = NOPID; 9988 9989 ASSERT(econnp->conn_tcp->tcp_listener == lconnp->conn_tcp); 9990 ASSERT(econnp->conn_tcp->tcp_saved_listener == 9991 lconnp->conn_tcp); 9992 9993 cr = msg_getcred(mp, &cpid); 9994 9995 /* Keep the message around in case of a fallback to TPI */ 9996 econnp->conn_tcp->tcp_conn.tcp_eager_conn_ind = mp; 9997 /* 9998 * Notify the ULP about the newconn. It is guaranteed that no 9999 * tcp_accept() call will be made for the eager if the 10000 * notification fails, so it's safe to blow it off in that 10001 * case. 10002 * 10003 * The upper handle will be assigned when tcp_accept() is 10004 * called. 10005 */ 10006 if ((*lconnp->conn_upcalls->su_newconn) 10007 (lconnp->conn_upper_handle, 10008 (sock_lower_handle_t)econnp, 10009 &sock_tcp_downcalls, cr, cpid, 10010 &econnp->conn_upcalls) == NULL) { 10011 /* Failed to allocate a socket */ 10012 BUMP_MIB(&lconnp->conn_tcp->tcp_tcps->tcps_mib, 10013 tcpEstabResets); 10014 (void) tcp_eager_blowoff(lconnp->conn_tcp, 10015 econnp->conn_tcp->tcp_conn_req_seqnum); 10016 } 10017 } else { 10018 putnext(lconnp->conn_rq, mp); 10019 } 10020 } 10021 10022 /* 10023 * Handle a packet that has been reclassified by TCP. 10024 * This function drops the ref on connp that the caller had. 10025 */ 10026 static void 10027 tcp_reinput(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst) 10028 { 10029 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 10030 10031 if (connp->conn_incoming_ifindex != 0 && 10032 connp->conn_incoming_ifindex != ira->ira_ruifindex) { 10033 freemsg(mp); 10034 CONN_DEC_REF(connp); 10035 return; 10036 } 10037 10038 if (CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) || 10039 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 10040 ip6_t *ip6h; 10041 ipha_t *ipha; 10042 10043 if (ira->ira_flags & IRAF_IS_IPV4) { 10044 ipha = (ipha_t *)mp->b_rptr; 10045 ip6h = NULL; 10046 } else { 10047 ipha = NULL; 10048 ip6h = (ip6_t *)mp->b_rptr; 10049 } 10050 mp = ipsec_check_inbound_policy(mp, connp, ipha, ip6h, ira); 10051 if (mp == NULL) { 10052 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 10053 /* Note that mp is NULL */ 10054 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 10055 CONN_DEC_REF(connp); 10056 return; 10057 } 10058 } 10059 10060 if (IPCL_IS_TCP(connp)) { 10061 /* 10062 * do not drain, certain use cases can blow 10063 * the stack 10064 */ 10065 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 10066 connp->conn_recv, connp, ira, 10067 SQ_NODRAIN, SQTAG_IP_TCP_INPUT); 10068 } else { 10069 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 10070 (connp->conn_recv)(connp, mp, NULL, 10071 ira); 10072 CONN_DEC_REF(connp); 10073 } 10074 10075 } 10076 10077 boolean_t tcp_outbound_squeue_switch = B_FALSE; 10078 10079 /* 10080 * Handle M_DATA messages from IP. Its called directly from IP via 10081 * squeue for received IP packets. 10082 * 10083 * The first argument is always the connp/tcp to which the mp belongs. 10084 * There are no exceptions to this rule. The caller has already put 10085 * a reference on this connp/tcp and once tcp_input_data() returns, 10086 * the squeue will do the refrele. 10087 * 10088 * The TH_SYN for the listener directly go to tcp_input_listener via 10089 * squeue. ICMP errors go directly to tcp_icmp_input(). 10090 * 10091 * sqp: NULL = recursive, sqp != NULL means called from squeue 10092 */ 10093 void 10094 tcp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 10095 { 10096 int32_t bytes_acked; 10097 int32_t gap; 10098 mblk_t *mp1; 10099 uint_t flags; 10100 uint32_t new_swnd = 0; 10101 uchar_t *iphdr; 10102 uchar_t *rptr; 10103 int32_t rgap; 10104 uint32_t seg_ack; 10105 int seg_len; 10106 uint_t ip_hdr_len; 10107 uint32_t seg_seq; 10108 tcpha_t *tcpha; 10109 int urp; 10110 tcp_opt_t tcpopt; 10111 ip_pkt_t ipp; 10112 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 10113 uint32_t cwnd; 10114 uint32_t add; 10115 int npkt; 10116 int mss; 10117 conn_t *connp = (conn_t *)arg; 10118 squeue_t *sqp = (squeue_t *)arg2; 10119 tcp_t *tcp = connp->conn_tcp; 10120 tcp_stack_t *tcps = tcp->tcp_tcps; 10121 10122 /* 10123 * RST from fused tcp loopback peer should trigger an unfuse. 10124 */ 10125 if (tcp->tcp_fused) { 10126 TCP_STAT(tcps, tcp_fusion_aborted); 10127 tcp_unfuse(tcp); 10128 } 10129 10130 iphdr = mp->b_rptr; 10131 rptr = mp->b_rptr; 10132 ASSERT(OK_32PTR(rptr)); 10133 10134 ip_hdr_len = ira->ira_ip_hdr_length; 10135 if (connp->conn_recv_ancillary.crb_all != 0) { 10136 /* 10137 * Record packet information in the ip_pkt_t 10138 */ 10139 ipp.ipp_fields = 0; 10140 if (ira->ira_flags & IRAF_IS_IPV4) { 10141 (void) ip_find_hdr_v4((ipha_t *)rptr, &ipp, 10142 B_FALSE); 10143 } else { 10144 uint8_t nexthdrp; 10145 10146 /* 10147 * IPv6 packets can only be received by applications 10148 * that are prepared to receive IPv6 addresses. 10149 * The IP fanout must ensure this. 10150 */ 10151 ASSERT(connp->conn_family == AF_INET6); 10152 10153 (void) ip_find_hdr_v6(mp, (ip6_t *)rptr, B_TRUE, &ipp, 10154 &nexthdrp); 10155 ASSERT(nexthdrp == IPPROTO_TCP); 10156 10157 /* Could have caused a pullup? */ 10158 iphdr = mp->b_rptr; 10159 rptr = mp->b_rptr; 10160 } 10161 } 10162 ASSERT(DB_TYPE(mp) == M_DATA); 10163 ASSERT(mp->b_next == NULL); 10164 10165 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 10166 seg_seq = ntohl(tcpha->tha_seq); 10167 seg_ack = ntohl(tcpha->tha_ack); 10168 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 10169 seg_len = (int)(mp->b_wptr - rptr) - 10170 (ip_hdr_len + TCP_HDR_LENGTH(tcpha)); 10171 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 10172 do { 10173 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 10174 (uintptr_t)INT_MAX); 10175 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 10176 } while ((mp1 = mp1->b_cont) != NULL && 10177 mp1->b_datap->db_type == M_DATA); 10178 } 10179 10180 if (tcp->tcp_state == TCPS_TIME_WAIT) { 10181 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 10182 seg_len, tcpha, ira); 10183 return; 10184 } 10185 10186 if (sqp != NULL) { 10187 /* 10188 * This is the correct place to update tcp_last_recv_time. Note 10189 * that it is also updated for tcp structure that belongs to 10190 * global and listener queues which do not really need updating. 10191 * But that should not cause any harm. And it is updated for 10192 * all kinds of incoming segments, not only for data segments. 10193 */ 10194 tcp->tcp_last_recv_time = LBOLT_FASTPATH; 10195 } 10196 10197 flags = (unsigned int)tcpha->tha_flags & 0xFF; 10198 10199 BUMP_LOCAL(tcp->tcp_ibsegs); 10200 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 10201 10202 if ((flags & TH_URG) && sqp != NULL) { 10203 /* 10204 * TCP can't handle urgent pointers that arrive before 10205 * the connection has been accept()ed since it can't 10206 * buffer OOB data. Discard segment if this happens. 10207 * 10208 * We can't just rely on a non-null tcp_listener to indicate 10209 * that the accept() has completed since unlinking of the 10210 * eager and completion of the accept are not atomic. 10211 * tcp_detached, when it is not set (B_FALSE) indicates 10212 * that the accept() has completed. 10213 * 10214 * Nor can it reassemble urgent pointers, so discard 10215 * if it's not the next segment expected. 10216 * 10217 * Otherwise, collapse chain into one mblk (discard if 10218 * that fails). This makes sure the headers, retransmitted 10219 * data, and new data all are in the same mblk. 10220 */ 10221 ASSERT(mp != NULL); 10222 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 10223 freemsg(mp); 10224 return; 10225 } 10226 /* Update pointers into message */ 10227 iphdr = rptr = mp->b_rptr; 10228 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 10229 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 10230 /* 10231 * Since we can't handle any data with this urgent 10232 * pointer that is out of sequence, we expunge 10233 * the data. This allows us to still register 10234 * the urgent mark and generate the M_PCSIG, 10235 * which we can do. 10236 */ 10237 mp->b_wptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 10238 seg_len = 0; 10239 } 10240 } 10241 10242 switch (tcp->tcp_state) { 10243 case TCPS_SYN_SENT: 10244 if (connp->conn_final_sqp == NULL && 10245 tcp_outbound_squeue_switch && sqp != NULL) { 10246 ASSERT(connp->conn_initial_sqp == connp->conn_sqp); 10247 connp->conn_final_sqp = sqp; 10248 if (connp->conn_final_sqp != connp->conn_sqp) { 10249 DTRACE_PROBE1(conn__final__sqp__switch, 10250 conn_t *, connp); 10251 CONN_INC_REF(connp); 10252 SQUEUE_SWITCH(connp, connp->conn_final_sqp); 10253 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 10254 tcp_input_data, connp, ira, ip_squeue_flag, 10255 SQTAG_CONNECT_FINISH); 10256 return; 10257 } 10258 DTRACE_PROBE1(conn__final__sqp__same, conn_t *, connp); 10259 } 10260 if (flags & TH_ACK) { 10261 /* 10262 * Note that our stack cannot send data before a 10263 * connection is established, therefore the 10264 * following check is valid. Otherwise, it has 10265 * to be changed. 10266 */ 10267 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 10268 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 10269 freemsg(mp); 10270 if (flags & TH_RST) 10271 return; 10272 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 10273 tcp, seg_ack, 0, TH_RST); 10274 return; 10275 } 10276 ASSERT(tcp->tcp_suna + 1 == seg_ack); 10277 } 10278 if (flags & TH_RST) { 10279 freemsg(mp); 10280 if (flags & TH_ACK) 10281 (void) tcp_clean_death(tcp, 10282 ECONNREFUSED, 13); 10283 return; 10284 } 10285 if (!(flags & TH_SYN)) { 10286 freemsg(mp); 10287 return; 10288 } 10289 10290 /* Process all TCP options. */ 10291 tcp_process_options(tcp, tcpha); 10292 /* 10293 * The following changes our rwnd to be a multiple of the 10294 * MIN(peer MSS, our MSS) for performance reason. 10295 */ 10296 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(connp->conn_rcvbuf, 10297 tcp->tcp_mss)); 10298 10299 /* Is the other end ECN capable? */ 10300 if (tcp->tcp_ecn_ok) { 10301 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 10302 tcp->tcp_ecn_ok = B_FALSE; 10303 } 10304 } 10305 /* 10306 * Clear ECN flags because it may interfere with later 10307 * processing. 10308 */ 10309 flags &= ~(TH_ECE|TH_CWR); 10310 10311 tcp->tcp_irs = seg_seq; 10312 tcp->tcp_rack = seg_seq; 10313 tcp->tcp_rnxt = seg_seq + 1; 10314 tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); 10315 if (!TCP_IS_DETACHED(tcp)) { 10316 /* Allocate room for SACK options if needed. */ 10317 connp->conn_wroff = connp->conn_ht_iphc_len; 10318 if (tcp->tcp_snd_sack_ok) 10319 connp->conn_wroff += TCPOPT_MAX_SACK_LEN; 10320 if (!tcp->tcp_loopback) 10321 connp->conn_wroff += tcps->tcps_wroff_xtra; 10322 10323 (void) proto_set_tx_wroff(connp->conn_rq, connp, 10324 connp->conn_wroff); 10325 } 10326 if (flags & TH_ACK) { 10327 /* 10328 * If we can't get the confirmation upstream, pretend 10329 * we didn't even see this one. 10330 * 10331 * XXX: how can we pretend we didn't see it if we 10332 * have updated rnxt et. al. 10333 * 10334 * For loopback we defer sending up the T_CONN_CON 10335 * until after some checks below. 10336 */ 10337 mp1 = NULL; 10338 /* 10339 * tcp_sendmsg() checks tcp_state without entering 10340 * the squeue so tcp_state should be updated before 10341 * sending up connection confirmation 10342 */ 10343 tcp->tcp_state = TCPS_ESTABLISHED; 10344 if (!tcp_conn_con(tcp, iphdr, mp, 10345 tcp->tcp_loopback ? &mp1 : NULL, ira)) { 10346 tcp->tcp_state = TCPS_SYN_SENT; 10347 freemsg(mp); 10348 return; 10349 } 10350 /* SYN was acked - making progress */ 10351 tcp->tcp_ip_forward_progress = B_TRUE; 10352 10353 /* One for the SYN */ 10354 tcp->tcp_suna = tcp->tcp_iss + 1; 10355 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 10356 10357 /* 10358 * If SYN was retransmitted, need to reset all 10359 * retransmission info. This is because this 10360 * segment will be treated as a dup ACK. 10361 */ 10362 if (tcp->tcp_rexmit) { 10363 tcp->tcp_rexmit = B_FALSE; 10364 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 10365 tcp->tcp_rexmit_max = tcp->tcp_snxt; 10366 tcp->tcp_snd_burst = tcp->tcp_localnet ? 10367 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 10368 tcp->tcp_ms_we_have_waited = 0; 10369 10370 /* 10371 * Set tcp_cwnd back to 1 MSS, per 10372 * recommendation from 10373 * draft-floyd-incr-init-win-01.txt, 10374 * Increasing TCP's Initial Window. 10375 */ 10376 tcp->tcp_cwnd = tcp->tcp_mss; 10377 } 10378 10379 tcp->tcp_swl1 = seg_seq; 10380 tcp->tcp_swl2 = seg_ack; 10381 10382 new_swnd = ntohs(tcpha->tha_win); 10383 tcp->tcp_swnd = new_swnd; 10384 if (new_swnd > tcp->tcp_max_swnd) 10385 tcp->tcp_max_swnd = new_swnd; 10386 10387 /* 10388 * Always send the three-way handshake ack immediately 10389 * in order to make the connection complete as soon as 10390 * possible on the accepting host. 10391 */ 10392 flags |= TH_ACK_NEEDED; 10393 10394 /* 10395 * Special case for loopback. At this point we have 10396 * received SYN-ACK from the remote endpoint. In 10397 * order to ensure that both endpoints reach the 10398 * fused state prior to any data exchange, the final 10399 * ACK needs to be sent before we indicate T_CONN_CON 10400 * to the module upstream. 10401 */ 10402 if (tcp->tcp_loopback) { 10403 mblk_t *ack_mp; 10404 10405 ASSERT(!tcp->tcp_unfusable); 10406 ASSERT(mp1 != NULL); 10407 /* 10408 * For loopback, we always get a pure SYN-ACK 10409 * and only need to send back the final ACK 10410 * with no data (this is because the other 10411 * tcp is ours and we don't do T/TCP). This 10412 * final ACK triggers the passive side to 10413 * perform fusion in ESTABLISHED state. 10414 */ 10415 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 10416 if (tcp->tcp_ack_tid != 0) { 10417 (void) TCP_TIMER_CANCEL(tcp, 10418 tcp->tcp_ack_tid); 10419 tcp->tcp_ack_tid = 0; 10420 } 10421 tcp_send_data(tcp, ack_mp); 10422 BUMP_LOCAL(tcp->tcp_obsegs); 10423 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 10424 10425 if (!IPCL_IS_NONSTR(connp)) { 10426 /* Send up T_CONN_CON */ 10427 if (ira->ira_cred != NULL) { 10428 mblk_setcred(mp1, 10429 ira->ira_cred, 10430 ira->ira_cpid); 10431 } 10432 putnext(connp->conn_rq, mp1); 10433 } else { 10434 (*connp->conn_upcalls-> 10435 su_connected) 10436 (connp->conn_upper_handle, 10437 tcp->tcp_connid, 10438 ira->ira_cred, 10439 ira->ira_cpid); 10440 freemsg(mp1); 10441 } 10442 10443 freemsg(mp); 10444 return; 10445 } 10446 /* 10447 * Forget fusion; we need to handle more 10448 * complex cases below. Send the deferred 10449 * T_CONN_CON message upstream and proceed 10450 * as usual. Mark this tcp as not capable 10451 * of fusion. 10452 */ 10453 TCP_STAT(tcps, tcp_fusion_unfusable); 10454 tcp->tcp_unfusable = B_TRUE; 10455 if (!IPCL_IS_NONSTR(connp)) { 10456 if (ira->ira_cred != NULL) { 10457 mblk_setcred(mp1, ira->ira_cred, 10458 ira->ira_cpid); 10459 } 10460 putnext(connp->conn_rq, mp1); 10461 } else { 10462 (*connp->conn_upcalls->su_connected) 10463 (connp->conn_upper_handle, 10464 tcp->tcp_connid, ira->ira_cred, 10465 ira->ira_cpid); 10466 freemsg(mp1); 10467 } 10468 } 10469 10470 /* 10471 * Check to see if there is data to be sent. If 10472 * yes, set the transmit flag. Then check to see 10473 * if received data processing needs to be done. 10474 * If not, go straight to xmit_check. This short 10475 * cut is OK as we don't support T/TCP. 10476 */ 10477 if (tcp->tcp_unsent) 10478 flags |= TH_XMIT_NEEDED; 10479 10480 if (seg_len == 0 && !(flags & TH_URG)) { 10481 freemsg(mp); 10482 goto xmit_check; 10483 } 10484 10485 flags &= ~TH_SYN; 10486 seg_seq++; 10487 break; 10488 } 10489 tcp->tcp_state = TCPS_SYN_RCVD; 10490 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 10491 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 10492 if (mp1 != NULL) { 10493 tcp_send_data(tcp, mp1); 10494 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 10495 } 10496 freemsg(mp); 10497 return; 10498 case TCPS_SYN_RCVD: 10499 if (flags & TH_ACK) { 10500 /* 10501 * In this state, a SYN|ACK packet is either bogus 10502 * because the other side must be ACKing our SYN which 10503 * indicates it has seen the ACK for their SYN and 10504 * shouldn't retransmit it or we're crossing SYNs 10505 * on active open. 10506 */ 10507 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 10508 freemsg(mp); 10509 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 10510 tcp, seg_ack, 0, TH_RST); 10511 return; 10512 } 10513 /* 10514 * NOTE: RFC 793 pg. 72 says this should be 10515 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 10516 * but that would mean we have an ack that ignored 10517 * our SYN. 10518 */ 10519 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 10520 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 10521 freemsg(mp); 10522 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 10523 tcp, seg_ack, 0, TH_RST); 10524 return; 10525 } 10526 /* 10527 * No sane TCP stack will send such a small window 10528 * without receiving any data. Just drop this invalid 10529 * ACK. We also shorten the abort timeout in case 10530 * this is an attack. 10531 */ 10532 if ((ntohs(tcpha->tha_win) << tcp->tcp_snd_ws) < 10533 (tcp->tcp_mss >> tcp_init_wnd_shft)) { 10534 freemsg(mp); 10535 TCP_STAT(tcps, tcp_zwin_ack_syn); 10536 tcp->tcp_second_ctimer_threshold = 10537 tcp_early_abort * SECONDS; 10538 return; 10539 } 10540 } 10541 break; 10542 case TCPS_LISTEN: 10543 /* 10544 * Only a TLI listener can come through this path when a 10545 * acceptor is going back to be a listener and a packet 10546 * for the acceptor hits the classifier. For a socket 10547 * listener, this can never happen because a listener 10548 * can never accept connection on itself and hence a 10549 * socket acceptor can not go back to being a listener. 10550 */ 10551 ASSERT(!TCP_IS_SOCKET(tcp)); 10552 /*FALLTHRU*/ 10553 case TCPS_CLOSED: 10554 case TCPS_BOUND: { 10555 conn_t *new_connp; 10556 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 10557 10558 /* 10559 * Don't accept any input on a closed tcp as this TCP logically 10560 * does not exist on the system. Don't proceed further with 10561 * this TCP. For instance, this packet could trigger another 10562 * close of this tcp which would be disastrous for tcp_refcnt. 10563 * tcp_close_detached / tcp_clean_death / tcp_closei_local must 10564 * be called at most once on a TCP. In this case we need to 10565 * refeed the packet into the classifier and figure out where 10566 * the packet should go. 10567 */ 10568 new_connp = ipcl_classify(mp, ira, ipst); 10569 if (new_connp != NULL) { 10570 /* Drops ref on new_connp */ 10571 tcp_reinput(new_connp, mp, ira, ipst); 10572 return; 10573 } 10574 /* We failed to classify. For now just drop the packet */ 10575 freemsg(mp); 10576 return; 10577 } 10578 case TCPS_IDLE: 10579 /* 10580 * Handle the case where the tcp_clean_death() has happened 10581 * on a connection (application hasn't closed yet) but a packet 10582 * was already queued on squeue before tcp_clean_death() 10583 * was processed. Calling tcp_clean_death() twice on same 10584 * connection can result in weird behaviour. 10585 */ 10586 freemsg(mp); 10587 return; 10588 default: 10589 break; 10590 } 10591 10592 /* 10593 * Already on the correct queue/perimeter. 10594 * If this is a detached connection and not an eager 10595 * connection hanging off a listener then new data 10596 * (past the FIN) will cause a reset. 10597 * We do a special check here where it 10598 * is out of the main line, rather than check 10599 * if we are detached every time we see new 10600 * data down below. 10601 */ 10602 if (TCP_IS_DETACHED_NONEAGER(tcp) && 10603 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 10604 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 10605 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 10606 10607 freemsg(mp); 10608 /* 10609 * This could be an SSL closure alert. We're detached so just 10610 * acknowledge it this last time. 10611 */ 10612 if (tcp->tcp_kssl_ctx != NULL) { 10613 kssl_release_ctx(tcp->tcp_kssl_ctx); 10614 tcp->tcp_kssl_ctx = NULL; 10615 10616 tcp->tcp_rnxt += seg_len; 10617 tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); 10618 flags |= TH_ACK_NEEDED; 10619 goto ack_check; 10620 } 10621 10622 tcp_xmit_ctl("new data when detached", tcp, 10623 tcp->tcp_snxt, 0, TH_RST); 10624 (void) tcp_clean_death(tcp, EPROTO, 12); 10625 return; 10626 } 10627 10628 mp->b_rptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 10629 urp = ntohs(tcpha->tha_urp) - TCP_OLD_URP_INTERPRETATION; 10630 new_swnd = ntohs(tcpha->tha_win) << 10631 ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws); 10632 10633 if (tcp->tcp_snd_ts_ok) { 10634 if (!tcp_paws_check(tcp, tcpha, &tcpopt)) { 10635 /* 10636 * This segment is not acceptable. 10637 * Drop it and send back an ACK. 10638 */ 10639 freemsg(mp); 10640 flags |= TH_ACK_NEEDED; 10641 goto ack_check; 10642 } 10643 } else if (tcp->tcp_snd_sack_ok) { 10644 ASSERT(tcp->tcp_sack_info != NULL); 10645 tcpopt.tcp = tcp; 10646 /* 10647 * SACK info in already updated in tcp_parse_options. Ignore 10648 * all other TCP options... 10649 */ 10650 (void) tcp_parse_options(tcpha, &tcpopt); 10651 } 10652 try_again:; 10653 mss = tcp->tcp_mss; 10654 gap = seg_seq - tcp->tcp_rnxt; 10655 rgap = tcp->tcp_rwnd - (gap + seg_len); 10656 /* 10657 * gap is the amount of sequence space between what we expect to see 10658 * and what we got for seg_seq. A positive value for gap means 10659 * something got lost. A negative value means we got some old stuff. 10660 */ 10661 if (gap < 0) { 10662 /* Old stuff present. Is the SYN in there? */ 10663 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 10664 (seg_len != 0)) { 10665 flags &= ~TH_SYN; 10666 seg_seq++; 10667 urp--; 10668 /* Recompute the gaps after noting the SYN. */ 10669 goto try_again; 10670 } 10671 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 10672 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 10673 (seg_len > -gap ? -gap : seg_len)); 10674 /* Remove the old stuff from seg_len. */ 10675 seg_len += gap; 10676 /* 10677 * Anything left? 10678 * Make sure to check for unack'd FIN when rest of data 10679 * has been previously ack'd. 10680 */ 10681 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 10682 /* 10683 * Resets are only valid if they lie within our offered 10684 * window. If the RST bit is set, we just ignore this 10685 * segment. 10686 */ 10687 if (flags & TH_RST) { 10688 freemsg(mp); 10689 return; 10690 } 10691 10692 /* 10693 * The arriving of dup data packets indicate that we 10694 * may have postponed an ack for too long, or the other 10695 * side's RTT estimate is out of shape. Start acking 10696 * more often. 10697 */ 10698 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 10699 tcp->tcp_rack_cnt >= 1 && 10700 tcp->tcp_rack_abs_max > 2) { 10701 tcp->tcp_rack_abs_max--; 10702 } 10703 tcp->tcp_rack_cur_max = 1; 10704 10705 /* 10706 * This segment is "unacceptable". None of its 10707 * sequence space lies within our advertized window. 10708 * 10709 * Adjust seg_len to the original value for tracing. 10710 */ 10711 seg_len -= gap; 10712 if (connp->conn_debug) { 10713 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 10714 "tcp_rput: unacceptable, gap %d, rgap %d, " 10715 "flags 0x%x, seg_seq %u, seg_ack %u, " 10716 "seg_len %d, rnxt %u, snxt %u, %s", 10717 gap, rgap, flags, seg_seq, seg_ack, 10718 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 10719 tcp_display(tcp, NULL, 10720 DISP_ADDR_AND_PORT)); 10721 } 10722 10723 /* 10724 * Arrange to send an ACK in response to the 10725 * unacceptable segment per RFC 793 page 69. There 10726 * is only one small difference between ours and the 10727 * acceptability test in the RFC - we accept ACK-only 10728 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 10729 * will be generated. 10730 * 10731 * Note that we have to ACK an ACK-only packet at least 10732 * for stacks that send 0-length keep-alives with 10733 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 10734 * section 4.2.3.6. As long as we don't ever generate 10735 * an unacceptable packet in response to an incoming 10736 * packet that is unacceptable, it should not cause 10737 * "ACK wars". 10738 */ 10739 flags |= TH_ACK_NEEDED; 10740 10741 /* 10742 * Continue processing this segment in order to use the 10743 * ACK information it contains, but skip all other 10744 * sequence-number processing. Processing the ACK 10745 * information is necessary in order to 10746 * re-synchronize connections that may have lost 10747 * synchronization. 10748 * 10749 * We clear seg_len and flag fields related to 10750 * sequence number processing as they are not 10751 * to be trusted for an unacceptable segment. 10752 */ 10753 seg_len = 0; 10754 flags &= ~(TH_SYN | TH_FIN | TH_URG); 10755 goto process_ack; 10756 } 10757 10758 /* Fix seg_seq, and chew the gap off the front. */ 10759 seg_seq = tcp->tcp_rnxt; 10760 urp += gap; 10761 do { 10762 mblk_t *mp2; 10763 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 10764 (uintptr_t)UINT_MAX); 10765 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 10766 if (gap > 0) { 10767 mp->b_rptr = mp->b_wptr - gap; 10768 break; 10769 } 10770 mp2 = mp; 10771 mp = mp->b_cont; 10772 freeb(mp2); 10773 } while (gap < 0); 10774 /* 10775 * If the urgent data has already been acknowledged, we 10776 * should ignore TH_URG below 10777 */ 10778 if (urp < 0) 10779 flags &= ~TH_URG; 10780 } 10781 /* 10782 * rgap is the amount of stuff received out of window. A negative 10783 * value is the amount out of window. 10784 */ 10785 if (rgap < 0) { 10786 mblk_t *mp2; 10787 10788 if (tcp->tcp_rwnd == 0) { 10789 BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); 10790 } else { 10791 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 10792 UPDATE_MIB(&tcps->tcps_mib, 10793 tcpInDataPastWinBytes, -rgap); 10794 } 10795 10796 /* 10797 * seg_len does not include the FIN, so if more than 10798 * just the FIN is out of window, we act like we don't 10799 * see it. (If just the FIN is out of window, rgap 10800 * will be zero and we will go ahead and acknowledge 10801 * the FIN.) 10802 */ 10803 flags &= ~TH_FIN; 10804 10805 /* Fix seg_len and make sure there is something left. */ 10806 seg_len += rgap; 10807 if (seg_len <= 0) { 10808 /* 10809 * Resets are only valid if they lie within our offered 10810 * window. If the RST bit is set, we just ignore this 10811 * segment. 10812 */ 10813 if (flags & TH_RST) { 10814 freemsg(mp); 10815 return; 10816 } 10817 10818 /* Per RFC 793, we need to send back an ACK. */ 10819 flags |= TH_ACK_NEEDED; 10820 10821 /* 10822 * Send SIGURG as soon as possible i.e. even 10823 * if the TH_URG was delivered in a window probe 10824 * packet (which will be unacceptable). 10825 * 10826 * We generate a signal if none has been generated 10827 * for this connection or if this is a new urgent 10828 * byte. Also send a zero-length "unmarked" message 10829 * to inform SIOCATMARK that this is not the mark. 10830 * 10831 * tcp_urp_last_valid is cleared when the T_exdata_ind 10832 * is sent up. This plus the check for old data 10833 * (gap >= 0) handles the wraparound of the sequence 10834 * number space without having to always track the 10835 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 10836 * this max in its rcv_up variable). 10837 * 10838 * This prevents duplicate SIGURGS due to a "late" 10839 * zero-window probe when the T_EXDATA_IND has already 10840 * been sent up. 10841 */ 10842 if ((flags & TH_URG) && 10843 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 10844 tcp->tcp_urp_last))) { 10845 if (IPCL_IS_NONSTR(connp)) { 10846 if (!TCP_IS_DETACHED(tcp)) { 10847 (*connp->conn_upcalls-> 10848 su_signal_oob) 10849 (connp->conn_upper_handle, 10850 urp); 10851 } 10852 } else { 10853 mp1 = allocb(0, BPRI_MED); 10854 if (mp1 == NULL) { 10855 freemsg(mp); 10856 return; 10857 } 10858 if (!TCP_IS_DETACHED(tcp) && 10859 !putnextctl1(connp->conn_rq, 10860 M_PCSIG, SIGURG)) { 10861 /* Try again on the rexmit. */ 10862 freemsg(mp1); 10863 freemsg(mp); 10864 return; 10865 } 10866 /* 10867 * If the next byte would be the mark 10868 * then mark with MARKNEXT else mark 10869 * with NOTMARKNEXT. 10870 */ 10871 if (gap == 0 && urp == 0) 10872 mp1->b_flag |= MSGMARKNEXT; 10873 else 10874 mp1->b_flag |= MSGNOTMARKNEXT; 10875 freemsg(tcp->tcp_urp_mark_mp); 10876 tcp->tcp_urp_mark_mp = mp1; 10877 flags |= TH_SEND_URP_MARK; 10878 } 10879 tcp->tcp_urp_last_valid = B_TRUE; 10880 tcp->tcp_urp_last = urp + seg_seq; 10881 } 10882 /* 10883 * If this is a zero window probe, continue to 10884 * process the ACK part. But we need to set seg_len 10885 * to 0 to avoid data processing. Otherwise just 10886 * drop the segment and send back an ACK. 10887 */ 10888 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 10889 flags &= ~(TH_SYN | TH_URG); 10890 seg_len = 0; 10891 goto process_ack; 10892 } else { 10893 freemsg(mp); 10894 goto ack_check; 10895 } 10896 } 10897 /* Pitch out of window stuff off the end. */ 10898 rgap = seg_len; 10899 mp2 = mp; 10900 do { 10901 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 10902 (uintptr_t)INT_MAX); 10903 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 10904 if (rgap < 0) { 10905 mp2->b_wptr += rgap; 10906 if ((mp1 = mp2->b_cont) != NULL) { 10907 mp2->b_cont = NULL; 10908 freemsg(mp1); 10909 } 10910 break; 10911 } 10912 } while ((mp2 = mp2->b_cont) != NULL); 10913 } 10914 ok:; 10915 /* 10916 * TCP should check ECN info for segments inside the window only. 10917 * Therefore the check should be done here. 10918 */ 10919 if (tcp->tcp_ecn_ok) { 10920 if (flags & TH_CWR) { 10921 tcp->tcp_ecn_echo_on = B_FALSE; 10922 } 10923 /* 10924 * Note that both ECN_CE and CWR can be set in the 10925 * same segment. In this case, we once again turn 10926 * on ECN_ECHO. 10927 */ 10928 if (connp->conn_ipversion == IPV4_VERSION) { 10929 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 10930 10931 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 10932 tcp->tcp_ecn_echo_on = B_TRUE; 10933 } 10934 } else { 10935 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 10936 10937 if ((vcf & htonl(IPH_ECN_CE << 20)) == 10938 htonl(IPH_ECN_CE << 20)) { 10939 tcp->tcp_ecn_echo_on = B_TRUE; 10940 } 10941 } 10942 } 10943 10944 /* 10945 * Check whether we can update tcp_ts_recent. This test is 10946 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 10947 * Extensions for High Performance: An Update", Internet Draft. 10948 */ 10949 if (tcp->tcp_snd_ts_ok && 10950 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 10951 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 10952 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 10953 tcp->tcp_last_rcv_lbolt = LBOLT_FASTPATH64; 10954 } 10955 10956 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 10957 /* 10958 * FIN in an out of order segment. We record this in 10959 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 10960 * Clear the FIN so that any check on FIN flag will fail. 10961 * Remember that FIN also counts in the sequence number 10962 * space. So we need to ack out of order FIN only segments. 10963 */ 10964 if (flags & TH_FIN) { 10965 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 10966 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 10967 flags &= ~TH_FIN; 10968 flags |= TH_ACK_NEEDED; 10969 } 10970 if (seg_len > 0) { 10971 /* Fill in the SACK blk list. */ 10972 if (tcp->tcp_snd_sack_ok) { 10973 ASSERT(tcp->tcp_sack_info != NULL); 10974 tcp_sack_insert(tcp->tcp_sack_list, 10975 seg_seq, seg_seq + seg_len, 10976 &(tcp->tcp_num_sack_blk)); 10977 } 10978 10979 /* 10980 * Attempt reassembly and see if we have something 10981 * ready to go. 10982 */ 10983 mp = tcp_reass(tcp, mp, seg_seq); 10984 /* Always ack out of order packets */ 10985 flags |= TH_ACK_NEEDED | TH_PUSH; 10986 if (mp) { 10987 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 10988 (uintptr_t)INT_MAX); 10989 seg_len = mp->b_cont ? msgdsize(mp) : 10990 (int)(mp->b_wptr - mp->b_rptr); 10991 seg_seq = tcp->tcp_rnxt; 10992 /* 10993 * A gap is filled and the seq num and len 10994 * of the gap match that of a previously 10995 * received FIN, put the FIN flag back in. 10996 */ 10997 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 10998 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 10999 flags |= TH_FIN; 11000 tcp->tcp_valid_bits &= 11001 ~TCP_OFO_FIN_VALID; 11002 } 11003 if (tcp->tcp_reass_tid != 0) { 11004 (void) TCP_TIMER_CANCEL(tcp, 11005 tcp->tcp_reass_tid); 11006 /* 11007 * Restart the timer if there is still 11008 * data in the reassembly queue. 11009 */ 11010 if (tcp->tcp_reass_head != NULL) { 11011 tcp->tcp_reass_tid = TCP_TIMER( 11012 tcp, tcp_reass_timer, 11013 MSEC_TO_TICK( 11014 tcps->tcps_reass_timeout)); 11015 } else { 11016 tcp->tcp_reass_tid = 0; 11017 } 11018 } 11019 } else { 11020 /* 11021 * Keep going even with NULL mp. 11022 * There may be a useful ACK or something else 11023 * we don't want to miss. 11024 * 11025 * But TCP should not perform fast retransmit 11026 * because of the ack number. TCP uses 11027 * seg_len == 0 to determine if it is a pure 11028 * ACK. And this is not a pure ACK. 11029 */ 11030 seg_len = 0; 11031 ofo_seg = B_TRUE; 11032 11033 if (tcps->tcps_reass_timeout != 0 && 11034 tcp->tcp_reass_tid == 0) { 11035 tcp->tcp_reass_tid = TCP_TIMER(tcp, 11036 tcp_reass_timer, MSEC_TO_TICK( 11037 tcps->tcps_reass_timeout)); 11038 } 11039 } 11040 } 11041 } else if (seg_len > 0) { 11042 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 11043 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 11044 /* 11045 * If an out of order FIN was received before, and the seq 11046 * num and len of the new segment match that of the FIN, 11047 * put the FIN flag back in. 11048 */ 11049 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 11050 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 11051 flags |= TH_FIN; 11052 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 11053 } 11054 } 11055 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 11056 if (flags & TH_RST) { 11057 freemsg(mp); 11058 switch (tcp->tcp_state) { 11059 case TCPS_SYN_RCVD: 11060 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 11061 break; 11062 case TCPS_ESTABLISHED: 11063 case TCPS_FIN_WAIT_1: 11064 case TCPS_FIN_WAIT_2: 11065 case TCPS_CLOSE_WAIT: 11066 (void) tcp_clean_death(tcp, ECONNRESET, 15); 11067 break; 11068 case TCPS_CLOSING: 11069 case TCPS_LAST_ACK: 11070 (void) tcp_clean_death(tcp, 0, 16); 11071 break; 11072 default: 11073 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 11074 (void) tcp_clean_death(tcp, ENXIO, 17); 11075 break; 11076 } 11077 return; 11078 } 11079 if (flags & TH_SYN) { 11080 /* 11081 * See RFC 793, Page 71 11082 * 11083 * The seq number must be in the window as it should 11084 * be "fixed" above. If it is outside window, it should 11085 * be already rejected. Note that we allow seg_seq to be 11086 * rnxt + rwnd because we want to accept 0 window probe. 11087 */ 11088 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 11089 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 11090 freemsg(mp); 11091 /* 11092 * If the ACK flag is not set, just use our snxt as the 11093 * seq number of the RST segment. 11094 */ 11095 if (!(flags & TH_ACK)) { 11096 seg_ack = tcp->tcp_snxt; 11097 } 11098 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 11099 TH_RST|TH_ACK); 11100 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 11101 (void) tcp_clean_death(tcp, ECONNRESET, 18); 11102 return; 11103 } 11104 /* 11105 * urp could be -1 when the urp field in the packet is 0 11106 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 11107 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 11108 */ 11109 if (flags & TH_URG && urp >= 0) { 11110 if (!tcp->tcp_urp_last_valid || 11111 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 11112 /* 11113 * Non-STREAMS sockets handle the urgent data a litte 11114 * differently from STREAMS based sockets. There is no 11115 * need to mark any mblks with the MSG{NOT,}MARKNEXT 11116 * flags to keep SIOCATMARK happy. Instead a 11117 * su_signal_oob upcall is made to update the mark. 11118 * Neither is a T_EXDATA_IND mblk needed to be 11119 * prepended to the urgent data. The urgent data is 11120 * delivered using the su_recv upcall, where we set 11121 * the MSG_OOB flag to indicate that it is urg data. 11122 * 11123 * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED 11124 * are used by non-STREAMS sockets. 11125 */ 11126 if (IPCL_IS_NONSTR(connp)) { 11127 if (!TCP_IS_DETACHED(tcp)) { 11128 (*connp->conn_upcalls->su_signal_oob) 11129 (connp->conn_upper_handle, urp); 11130 } 11131 } else { 11132 /* 11133 * If we haven't generated the signal yet for 11134 * this urgent pointer value, do it now. Also, 11135 * send up a zero-length M_DATA indicating 11136 * whether or not this is the mark. The latter 11137 * is not needed when a T_EXDATA_IND is sent up. 11138 * However, if there are allocation failures 11139 * this code relies on the sender retransmitting 11140 * and the socket code for determining the mark 11141 * should not block waiting for the peer to 11142 * transmit. Thus, for simplicity we always 11143 * send up the mark indication. 11144 */ 11145 mp1 = allocb(0, BPRI_MED); 11146 if (mp1 == NULL) { 11147 freemsg(mp); 11148 return; 11149 } 11150 if (!TCP_IS_DETACHED(tcp) && 11151 !putnextctl1(connp->conn_rq, M_PCSIG, 11152 SIGURG)) { 11153 /* Try again on the rexmit. */ 11154 freemsg(mp1); 11155 freemsg(mp); 11156 return; 11157 } 11158 /* 11159 * Mark with NOTMARKNEXT for now. 11160 * The code below will change this to MARKNEXT 11161 * if we are at the mark. 11162 * 11163 * If there are allocation failures (e.g. in 11164 * dupmsg below) the next time tcp_input_data 11165 * sees the urgent segment it will send up the 11166 * MSGMARKNEXT message. 11167 */ 11168 mp1->b_flag |= MSGNOTMARKNEXT; 11169 freemsg(tcp->tcp_urp_mark_mp); 11170 tcp->tcp_urp_mark_mp = mp1; 11171 flags |= TH_SEND_URP_MARK; 11172 #ifdef DEBUG 11173 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 11174 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 11175 "last %x, %s", 11176 seg_seq, urp, tcp->tcp_urp_last, 11177 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 11178 #endif /* DEBUG */ 11179 } 11180 tcp->tcp_urp_last_valid = B_TRUE; 11181 tcp->tcp_urp_last = urp + seg_seq; 11182 } else if (tcp->tcp_urp_mark_mp != NULL) { 11183 /* 11184 * An allocation failure prevented the previous 11185 * tcp_input_data from sending up the allocated 11186 * MSG*MARKNEXT message - send it up this time 11187 * around. 11188 */ 11189 flags |= TH_SEND_URP_MARK; 11190 } 11191 11192 /* 11193 * If the urgent byte is in this segment, make sure that it is 11194 * all by itself. This makes it much easier to deal with the 11195 * possibility of an allocation failure on the T_exdata_ind. 11196 * Note that seg_len is the number of bytes in the segment, and 11197 * urp is the offset into the segment of the urgent byte. 11198 * urp < seg_len means that the urgent byte is in this segment. 11199 */ 11200 if (urp < seg_len) { 11201 if (seg_len != 1) { 11202 uint32_t tmp_rnxt; 11203 /* 11204 * Break it up and feed it back in. 11205 * Re-attach the IP header. 11206 */ 11207 mp->b_rptr = iphdr; 11208 if (urp > 0) { 11209 /* 11210 * There is stuff before the urgent 11211 * byte. 11212 */ 11213 mp1 = dupmsg(mp); 11214 if (!mp1) { 11215 /* 11216 * Trim from urgent byte on. 11217 * The rest will come back. 11218 */ 11219 (void) adjmsg(mp, 11220 urp - seg_len); 11221 tcp_input_data(connp, 11222 mp, NULL, ira); 11223 return; 11224 } 11225 (void) adjmsg(mp1, urp - seg_len); 11226 /* Feed this piece back in. */ 11227 tmp_rnxt = tcp->tcp_rnxt; 11228 tcp_input_data(connp, mp1, NULL, ira); 11229 /* 11230 * If the data passed back in was not 11231 * processed (ie: bad ACK) sending 11232 * the remainder back in will cause a 11233 * loop. In this case, drop the 11234 * packet and let the sender try 11235 * sending a good packet. 11236 */ 11237 if (tmp_rnxt == tcp->tcp_rnxt) { 11238 freemsg(mp); 11239 return; 11240 } 11241 } 11242 if (urp != seg_len - 1) { 11243 uint32_t tmp_rnxt; 11244 /* 11245 * There is stuff after the urgent 11246 * byte. 11247 */ 11248 mp1 = dupmsg(mp); 11249 if (!mp1) { 11250 /* 11251 * Trim everything beyond the 11252 * urgent byte. The rest will 11253 * come back. 11254 */ 11255 (void) adjmsg(mp, 11256 urp + 1 - seg_len); 11257 tcp_input_data(connp, 11258 mp, NULL, ira); 11259 return; 11260 } 11261 (void) adjmsg(mp1, urp + 1 - seg_len); 11262 tmp_rnxt = tcp->tcp_rnxt; 11263 tcp_input_data(connp, mp1, NULL, ira); 11264 /* 11265 * If the data passed back in was not 11266 * processed (ie: bad ACK) sending 11267 * the remainder back in will cause a 11268 * loop. In this case, drop the 11269 * packet and let the sender try 11270 * sending a good packet. 11271 */ 11272 if (tmp_rnxt == tcp->tcp_rnxt) { 11273 freemsg(mp); 11274 return; 11275 } 11276 } 11277 tcp_input_data(connp, mp, NULL, ira); 11278 return; 11279 } 11280 /* 11281 * This segment contains only the urgent byte. We 11282 * have to allocate the T_exdata_ind, if we can. 11283 */ 11284 if (IPCL_IS_NONSTR(connp)) { 11285 int error; 11286 11287 (*connp->conn_upcalls->su_recv) 11288 (connp->conn_upper_handle, mp, seg_len, 11289 MSG_OOB, &error, NULL); 11290 /* 11291 * We should never be in middle of a 11292 * fallback, the squeue guarantees that. 11293 */ 11294 ASSERT(error != EOPNOTSUPP); 11295 mp = NULL; 11296 goto update_ack; 11297 } else if (!tcp->tcp_urp_mp) { 11298 struct T_exdata_ind *tei; 11299 mp1 = allocb(sizeof (struct T_exdata_ind), 11300 BPRI_MED); 11301 if (!mp1) { 11302 /* 11303 * Sigh... It'll be back. 11304 * Generate any MSG*MARK message now. 11305 */ 11306 freemsg(mp); 11307 seg_len = 0; 11308 if (flags & TH_SEND_URP_MARK) { 11309 11310 11311 ASSERT(tcp->tcp_urp_mark_mp); 11312 tcp->tcp_urp_mark_mp->b_flag &= 11313 ~MSGNOTMARKNEXT; 11314 tcp->tcp_urp_mark_mp->b_flag |= 11315 MSGMARKNEXT; 11316 } 11317 goto ack_check; 11318 } 11319 mp1->b_datap->db_type = M_PROTO; 11320 tei = (struct T_exdata_ind *)mp1->b_rptr; 11321 tei->PRIM_type = T_EXDATA_IND; 11322 tei->MORE_flag = 0; 11323 mp1->b_wptr = (uchar_t *)&tei[1]; 11324 tcp->tcp_urp_mp = mp1; 11325 #ifdef DEBUG 11326 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 11327 "tcp_rput: allocated exdata_ind %s", 11328 tcp_display(tcp, NULL, 11329 DISP_PORT_ONLY)); 11330 #endif /* DEBUG */ 11331 /* 11332 * There is no need to send a separate MSG*MARK 11333 * message since the T_EXDATA_IND will be sent 11334 * now. 11335 */ 11336 flags &= ~TH_SEND_URP_MARK; 11337 freemsg(tcp->tcp_urp_mark_mp); 11338 tcp->tcp_urp_mark_mp = NULL; 11339 } 11340 /* 11341 * Now we are all set. On the next putnext upstream, 11342 * tcp_urp_mp will be non-NULL and will get prepended 11343 * to what has to be this piece containing the urgent 11344 * byte. If for any reason we abort this segment below, 11345 * if it comes back, we will have this ready, or it 11346 * will get blown off in close. 11347 */ 11348 } else if (urp == seg_len) { 11349 /* 11350 * The urgent byte is the next byte after this sequence 11351 * number. If this endpoint is non-STREAMS, then there 11352 * is nothing to do here since the socket has already 11353 * been notified about the urg pointer by the 11354 * su_signal_oob call above. 11355 * 11356 * In case of STREAMS, some more work might be needed. 11357 * If there is data it is marked with MSGMARKNEXT and 11358 * and any tcp_urp_mark_mp is discarded since it is not 11359 * needed. Otherwise, if the code above just allocated 11360 * a zero-length tcp_urp_mark_mp message, that message 11361 * is tagged with MSGMARKNEXT. Sending up these 11362 * MSGMARKNEXT messages makes SIOCATMARK work correctly 11363 * even though the T_EXDATA_IND will not be sent up 11364 * until the urgent byte arrives. 11365 */ 11366 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { 11367 if (seg_len != 0) { 11368 flags |= TH_MARKNEXT_NEEDED; 11369 freemsg(tcp->tcp_urp_mark_mp); 11370 tcp->tcp_urp_mark_mp = NULL; 11371 flags &= ~TH_SEND_URP_MARK; 11372 } else if (tcp->tcp_urp_mark_mp != NULL) { 11373 flags |= TH_SEND_URP_MARK; 11374 tcp->tcp_urp_mark_mp->b_flag &= 11375 ~MSGNOTMARKNEXT; 11376 tcp->tcp_urp_mark_mp->b_flag |= 11377 MSGMARKNEXT; 11378 } 11379 } 11380 #ifdef DEBUG 11381 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 11382 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 11383 seg_len, flags, 11384 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 11385 #endif /* DEBUG */ 11386 } 11387 #ifdef DEBUG 11388 else { 11389 /* Data left until we hit mark */ 11390 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 11391 "tcp_rput: URP %d bytes left, %s", 11392 urp - seg_len, tcp_display(tcp, NULL, 11393 DISP_PORT_ONLY)); 11394 } 11395 #endif /* DEBUG */ 11396 } 11397 11398 process_ack: 11399 if (!(flags & TH_ACK)) { 11400 freemsg(mp); 11401 goto xmit_check; 11402 } 11403 } 11404 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 11405 11406 if (bytes_acked > 0) 11407 tcp->tcp_ip_forward_progress = B_TRUE; 11408 if (tcp->tcp_state == TCPS_SYN_RCVD) { 11409 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 11410 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 11411 /* 3-way handshake complete - pass up the T_CONN_IND */ 11412 tcp_t *listener = tcp->tcp_listener; 11413 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 11414 11415 tcp->tcp_tconnind_started = B_TRUE; 11416 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 11417 /* 11418 * We are here means eager is fine but it can 11419 * get a TH_RST at any point between now and till 11420 * accept completes and disappear. We need to 11421 * ensure that reference to eager is valid after 11422 * we get out of eager's perimeter. So we do 11423 * an extra refhold. 11424 */ 11425 CONN_INC_REF(connp); 11426 11427 /* 11428 * The listener also exists because of the refhold 11429 * done in tcp_input_listener. Its possible that it 11430 * might have closed. We will check that once we 11431 * get inside listeners context. 11432 */ 11433 CONN_INC_REF(listener->tcp_connp); 11434 if (listener->tcp_connp->conn_sqp == 11435 connp->conn_sqp) { 11436 /* 11437 * We optimize by not calling an SQUEUE_ENTER 11438 * on the listener since we know that the 11439 * listener and eager squeues are the same. 11440 * We are able to make this check safely only 11441 * because neither the eager nor the listener 11442 * can change its squeue. Only an active connect 11443 * can change its squeue 11444 */ 11445 tcp_send_conn_ind(listener->tcp_connp, mp, 11446 listener->tcp_connp->conn_sqp); 11447 CONN_DEC_REF(listener->tcp_connp); 11448 } else if (!tcp->tcp_loopback) { 11449 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 11450 mp, tcp_send_conn_ind, 11451 listener->tcp_connp, NULL, SQ_FILL, 11452 SQTAG_TCP_CONN_IND); 11453 } else { 11454 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 11455 mp, tcp_send_conn_ind, 11456 listener->tcp_connp, NULL, SQ_PROCESS, 11457 SQTAG_TCP_CONN_IND); 11458 } 11459 } 11460 11461 /* 11462 * We are seeing the final ack in the three way 11463 * hand shake of a active open'ed connection 11464 * so we must send up a T_CONN_CON 11465 * 11466 * tcp_sendmsg() checks tcp_state without entering 11467 * the squeue so tcp_state should be updated before 11468 * sending up connection confirmation. 11469 */ 11470 tcp->tcp_state = TCPS_ESTABLISHED; 11471 if (tcp->tcp_active_open) { 11472 if (!tcp_conn_con(tcp, iphdr, mp, NULL, ira)) { 11473 freemsg(mp); 11474 tcp->tcp_state = TCPS_SYN_RCVD; 11475 return; 11476 } 11477 /* 11478 * Don't fuse the loopback endpoints for 11479 * simultaneous active opens. 11480 */ 11481 if (tcp->tcp_loopback) { 11482 TCP_STAT(tcps, tcp_fusion_unfusable); 11483 tcp->tcp_unfusable = B_TRUE; 11484 } 11485 } 11486 11487 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 11488 bytes_acked--; 11489 /* SYN was acked - making progress */ 11490 tcp->tcp_ip_forward_progress = B_TRUE; 11491 11492 /* 11493 * If SYN was retransmitted, need to reset all 11494 * retransmission info as this segment will be 11495 * treated as a dup ACK. 11496 */ 11497 if (tcp->tcp_rexmit) { 11498 tcp->tcp_rexmit = B_FALSE; 11499 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 11500 tcp->tcp_rexmit_max = tcp->tcp_snxt; 11501 tcp->tcp_snd_burst = tcp->tcp_localnet ? 11502 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 11503 tcp->tcp_ms_we_have_waited = 0; 11504 tcp->tcp_cwnd = mss; 11505 } 11506 11507 /* 11508 * We set the send window to zero here. 11509 * This is needed if there is data to be 11510 * processed already on the queue. 11511 * Later (at swnd_update label), the 11512 * "new_swnd > tcp_swnd" condition is satisfied 11513 * the XMIT_NEEDED flag is set in the current 11514 * (SYN_RCVD) state. This ensures tcp_wput_data() is 11515 * called if there is already data on queue in 11516 * this state. 11517 */ 11518 tcp->tcp_swnd = 0; 11519 11520 if (new_swnd > tcp->tcp_max_swnd) 11521 tcp->tcp_max_swnd = new_swnd; 11522 tcp->tcp_swl1 = seg_seq; 11523 tcp->tcp_swl2 = seg_ack; 11524 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 11525 11526 /* Fuse when both sides are in ESTABLISHED state */ 11527 if (tcp->tcp_loopback && do_tcp_fusion) 11528 tcp_fuse(tcp, iphdr, tcpha); 11529 11530 } 11531 /* This code follows 4.4BSD-Lite2 mostly. */ 11532 if (bytes_acked < 0) 11533 goto est; 11534 11535 /* 11536 * If TCP is ECN capable and the congestion experience bit is 11537 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 11538 * done once per window (or more loosely, per RTT). 11539 */ 11540 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 11541 tcp->tcp_cwr = B_FALSE; 11542 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 11543 if (!tcp->tcp_cwr) { 11544 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 11545 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 11546 tcp->tcp_cwnd = npkt * mss; 11547 /* 11548 * If the cwnd is 0, use the timer to clock out 11549 * new segments. This is required by the ECN spec. 11550 */ 11551 if (npkt == 0) { 11552 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 11553 /* 11554 * This makes sure that when the ACK comes 11555 * back, we will increase tcp_cwnd by 1 MSS. 11556 */ 11557 tcp->tcp_cwnd_cnt = 0; 11558 } 11559 tcp->tcp_cwr = B_TRUE; 11560 /* 11561 * This marks the end of the current window of in 11562 * flight data. That is why we don't use 11563 * tcp_suna + tcp_swnd. Only data in flight can 11564 * provide ECN info. 11565 */ 11566 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 11567 tcp->tcp_ecn_cwr_sent = B_FALSE; 11568 } 11569 } 11570 11571 mp1 = tcp->tcp_xmit_head; 11572 if (bytes_acked == 0) { 11573 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 11574 int dupack_cnt; 11575 11576 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 11577 /* 11578 * Fast retransmit. When we have seen exactly three 11579 * identical ACKs while we have unacked data 11580 * outstanding we take it as a hint that our peer 11581 * dropped something. 11582 * 11583 * If TCP is retransmitting, don't do fast retransmit. 11584 */ 11585 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 11586 ! tcp->tcp_rexmit) { 11587 /* Do Limited Transmit */ 11588 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 11589 tcps->tcps_dupack_fast_retransmit) { 11590 /* 11591 * RFC 3042 11592 * 11593 * What we need to do is temporarily 11594 * increase tcp_cwnd so that new 11595 * data can be sent if it is allowed 11596 * by the receive window (tcp_rwnd). 11597 * tcp_wput_data() will take care of 11598 * the rest. 11599 * 11600 * If the connection is SACK capable, 11601 * only do limited xmit when there 11602 * is SACK info. 11603 * 11604 * Note how tcp_cwnd is incremented. 11605 * The first dup ACK will increase 11606 * it by 1 MSS. The second dup ACK 11607 * will increase it by 2 MSS. This 11608 * means that only 1 new segment will 11609 * be sent for each dup ACK. 11610 */ 11611 if (tcp->tcp_unsent > 0 && 11612 (!tcp->tcp_snd_sack_ok || 11613 (tcp->tcp_snd_sack_ok && 11614 tcp->tcp_notsack_list != NULL))) { 11615 tcp->tcp_cwnd += mss << 11616 (tcp->tcp_dupack_cnt - 1); 11617 flags |= TH_LIMIT_XMIT; 11618 } 11619 } else if (dupack_cnt == 11620 tcps->tcps_dupack_fast_retransmit) { 11621 11622 /* 11623 * If we have reduced tcp_ssthresh 11624 * because of ECN, do not reduce it again 11625 * unless it is already one window of data 11626 * away. After one window of data, tcp_cwr 11627 * should then be cleared. Note that 11628 * for non ECN capable connection, tcp_cwr 11629 * should always be false. 11630 * 11631 * Adjust cwnd since the duplicate 11632 * ack indicates that a packet was 11633 * dropped (due to congestion.) 11634 */ 11635 if (!tcp->tcp_cwr) { 11636 npkt = ((tcp->tcp_snxt - 11637 tcp->tcp_suna) >> 1) / mss; 11638 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 11639 mss; 11640 tcp->tcp_cwnd = (npkt + 11641 tcp->tcp_dupack_cnt) * mss; 11642 } 11643 if (tcp->tcp_ecn_ok) { 11644 tcp->tcp_cwr = B_TRUE; 11645 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 11646 tcp->tcp_ecn_cwr_sent = B_FALSE; 11647 } 11648 11649 /* 11650 * We do Hoe's algorithm. Refer to her 11651 * paper "Improving the Start-up Behavior 11652 * of a Congestion Control Scheme for TCP," 11653 * appeared in SIGCOMM'96. 11654 * 11655 * Save highest seq no we have sent so far. 11656 * Be careful about the invisible FIN byte. 11657 */ 11658 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 11659 (tcp->tcp_unsent == 0)) { 11660 tcp->tcp_rexmit_max = tcp->tcp_fss; 11661 } else { 11662 tcp->tcp_rexmit_max = tcp->tcp_snxt; 11663 } 11664 11665 /* 11666 * Do not allow bursty traffic during. 11667 * fast recovery. Refer to Fall and Floyd's 11668 * paper "Simulation-based Comparisons of 11669 * Tahoe, Reno and SACK TCP" (in CCR?) 11670 * This is a best current practise. 11671 */ 11672 tcp->tcp_snd_burst = TCP_CWND_SS; 11673 11674 /* 11675 * For SACK: 11676 * Calculate tcp_pipe, which is the 11677 * estimated number of bytes in 11678 * network. 11679 * 11680 * tcp_fack is the highest sack'ed seq num 11681 * TCP has received. 11682 * 11683 * tcp_pipe is explained in the above quoted 11684 * Fall and Floyd's paper. tcp_fack is 11685 * explained in Mathis and Mahdavi's 11686 * "Forward Acknowledgment: Refining TCP 11687 * Congestion Control" in SIGCOMM '96. 11688 */ 11689 if (tcp->tcp_snd_sack_ok) { 11690 ASSERT(tcp->tcp_sack_info != NULL); 11691 if (tcp->tcp_notsack_list != NULL) { 11692 tcp->tcp_pipe = tcp->tcp_snxt - 11693 tcp->tcp_fack; 11694 tcp->tcp_sack_snxt = seg_ack; 11695 flags |= TH_NEED_SACK_REXMIT; 11696 } else { 11697 /* 11698 * Always initialize tcp_pipe 11699 * even though we don't have 11700 * any SACK info. If later 11701 * we get SACK info and 11702 * tcp_pipe is not initialized, 11703 * funny things will happen. 11704 */ 11705 tcp->tcp_pipe = 11706 tcp->tcp_cwnd_ssthresh; 11707 } 11708 } else { 11709 flags |= TH_REXMIT_NEEDED; 11710 } /* tcp_snd_sack_ok */ 11711 11712 } else { 11713 /* 11714 * Here we perform congestion 11715 * avoidance, but NOT slow start. 11716 * This is known as the Fast 11717 * Recovery Algorithm. 11718 */ 11719 if (tcp->tcp_snd_sack_ok && 11720 tcp->tcp_notsack_list != NULL) { 11721 flags |= TH_NEED_SACK_REXMIT; 11722 tcp->tcp_pipe -= mss; 11723 if (tcp->tcp_pipe < 0) 11724 tcp->tcp_pipe = 0; 11725 } else { 11726 /* 11727 * We know that one more packet has 11728 * left the pipe thus we can update 11729 * cwnd. 11730 */ 11731 cwnd = tcp->tcp_cwnd + mss; 11732 if (cwnd > tcp->tcp_cwnd_max) 11733 cwnd = tcp->tcp_cwnd_max; 11734 tcp->tcp_cwnd = cwnd; 11735 if (tcp->tcp_unsent > 0) 11736 flags |= TH_XMIT_NEEDED; 11737 } 11738 } 11739 } 11740 } else if (tcp->tcp_zero_win_probe) { 11741 /* 11742 * If the window has opened, need to arrange 11743 * to send additional data. 11744 */ 11745 if (new_swnd != 0) { 11746 /* tcp_suna != tcp_snxt */ 11747 /* Packet contains a window update */ 11748 BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); 11749 tcp->tcp_zero_win_probe = 0; 11750 tcp->tcp_timer_backoff = 0; 11751 tcp->tcp_ms_we_have_waited = 0; 11752 11753 /* 11754 * Transmit starting with tcp_suna since 11755 * the one byte probe is not ack'ed. 11756 * If TCP has sent more than one identical 11757 * probe, tcp_rexmit will be set. That means 11758 * tcp_ss_rexmit() will send out the one 11759 * byte along with new data. Otherwise, 11760 * fake the retransmission. 11761 */ 11762 flags |= TH_XMIT_NEEDED; 11763 if (!tcp->tcp_rexmit) { 11764 tcp->tcp_rexmit = B_TRUE; 11765 tcp->tcp_dupack_cnt = 0; 11766 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 11767 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 11768 } 11769 } 11770 } 11771 goto swnd_update; 11772 } 11773 11774 /* 11775 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 11776 * If the ACK value acks something that we have not yet sent, it might 11777 * be an old duplicate segment. Send an ACK to re-synchronize the 11778 * other side. 11779 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 11780 * state is handled above, so we can always just drop the segment and 11781 * send an ACK here. 11782 * 11783 * In the case where the peer shrinks the window, we see the new window 11784 * update, but all the data sent previously is queued up by the peer. 11785 * To account for this, in tcp_process_shrunk_swnd(), the sequence 11786 * number, which was already sent, and within window, is recorded. 11787 * tcp_snxt is then updated. 11788 * 11789 * If the window has previously shrunk, and an ACK for data not yet 11790 * sent, according to tcp_snxt is recieved, it may still be valid. If 11791 * the ACK is for data within the window at the time the window was 11792 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to 11793 * the sequence number ACK'ed. 11794 * 11795 * If the ACK covers all the data sent at the time the window was 11796 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE. 11797 * 11798 * Should we send ACKs in response to ACK only segments? 11799 */ 11800 11801 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 11802 if ((tcp->tcp_is_wnd_shrnk) && 11803 (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) { 11804 uint32_t data_acked_ahead_snxt; 11805 11806 data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt; 11807 tcp_update_xmit_tail(tcp, seg_ack); 11808 tcp->tcp_unsent -= data_acked_ahead_snxt; 11809 } else { 11810 BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); 11811 /* drop the received segment */ 11812 freemsg(mp); 11813 11814 /* 11815 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 11816 * greater than 0, check if the number of such 11817 * bogus ACks is greater than that count. If yes, 11818 * don't send back any ACK. This prevents TCP from 11819 * getting into an ACK storm if somehow an attacker 11820 * successfully spoofs an acceptable segment to our 11821 * peer. If this continues (count > 2 X threshold), 11822 * we should abort this connection. 11823 */ 11824 if (tcp_drop_ack_unsent_cnt > 0 && 11825 ++tcp->tcp_in_ack_unsent > 11826 tcp_drop_ack_unsent_cnt) { 11827 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 11828 if (tcp->tcp_in_ack_unsent > 2 * 11829 tcp_drop_ack_unsent_cnt) { 11830 (void) tcp_clean_death(tcp, EPROTO, 20); 11831 } 11832 return; 11833 } 11834 mp = tcp_ack_mp(tcp); 11835 if (mp != NULL) { 11836 BUMP_LOCAL(tcp->tcp_obsegs); 11837 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 11838 tcp_send_data(tcp, mp); 11839 } 11840 return; 11841 } 11842 } else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack, 11843 tcp->tcp_snxt_shrunk)) { 11844 tcp->tcp_is_wnd_shrnk = B_FALSE; 11845 } 11846 11847 /* 11848 * TCP gets a new ACK, update the notsack'ed list to delete those 11849 * blocks that are covered by this ACK. 11850 */ 11851 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 11852 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 11853 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 11854 } 11855 11856 /* 11857 * If we got an ACK after fast retransmit, check to see 11858 * if it is a partial ACK. If it is not and the congestion 11859 * window was inflated to account for the other side's 11860 * cached packets, retract it. If it is, do Hoe's algorithm. 11861 */ 11862 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 11863 ASSERT(tcp->tcp_rexmit == B_FALSE); 11864 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 11865 tcp->tcp_dupack_cnt = 0; 11866 /* 11867 * Restore the orig tcp_cwnd_ssthresh after 11868 * fast retransmit phase. 11869 */ 11870 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 11871 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 11872 } 11873 tcp->tcp_rexmit_max = seg_ack; 11874 tcp->tcp_cwnd_cnt = 0; 11875 tcp->tcp_snd_burst = tcp->tcp_localnet ? 11876 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 11877 11878 /* 11879 * Remove all notsack info to avoid confusion with 11880 * the next fast retrasnmit/recovery phase. 11881 */ 11882 if (tcp->tcp_snd_sack_ok && 11883 tcp->tcp_notsack_list != NULL) { 11884 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 11885 tcp); 11886 } 11887 } else { 11888 if (tcp->tcp_snd_sack_ok && 11889 tcp->tcp_notsack_list != NULL) { 11890 flags |= TH_NEED_SACK_REXMIT; 11891 tcp->tcp_pipe -= mss; 11892 if (tcp->tcp_pipe < 0) 11893 tcp->tcp_pipe = 0; 11894 } else { 11895 /* 11896 * Hoe's algorithm: 11897 * 11898 * Retransmit the unack'ed segment and 11899 * restart fast recovery. Note that we 11900 * need to scale back tcp_cwnd to the 11901 * original value when we started fast 11902 * recovery. This is to prevent overly 11903 * aggressive behaviour in sending new 11904 * segments. 11905 */ 11906 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 11907 tcps->tcps_dupack_fast_retransmit * mss; 11908 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 11909 flags |= TH_REXMIT_NEEDED; 11910 } 11911 } 11912 } else { 11913 tcp->tcp_dupack_cnt = 0; 11914 if (tcp->tcp_rexmit) { 11915 /* 11916 * TCP is retranmitting. If the ACK ack's all 11917 * outstanding data, update tcp_rexmit_max and 11918 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 11919 * to the correct value. 11920 * 11921 * Note that SEQ_LEQ() is used. This is to avoid 11922 * unnecessary fast retransmit caused by dup ACKs 11923 * received when TCP does slow start retransmission 11924 * after a time out. During this phase, TCP may 11925 * send out segments which are already received. 11926 * This causes dup ACKs to be sent back. 11927 */ 11928 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 11929 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 11930 tcp->tcp_rexmit_nxt = seg_ack; 11931 } 11932 if (seg_ack != tcp->tcp_rexmit_max) { 11933 flags |= TH_XMIT_NEEDED; 11934 } 11935 } else { 11936 tcp->tcp_rexmit = B_FALSE; 11937 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 11938 tcp->tcp_snd_burst = tcp->tcp_localnet ? 11939 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 11940 } 11941 tcp->tcp_ms_we_have_waited = 0; 11942 } 11943 } 11944 11945 BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); 11946 UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); 11947 tcp->tcp_suna = seg_ack; 11948 if (tcp->tcp_zero_win_probe != 0) { 11949 tcp->tcp_zero_win_probe = 0; 11950 tcp->tcp_timer_backoff = 0; 11951 } 11952 11953 /* 11954 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 11955 * Note that it cannot be the SYN being ack'ed. The code flow 11956 * will not reach here. 11957 */ 11958 if (mp1 == NULL) { 11959 goto fin_acked; 11960 } 11961 11962 /* 11963 * Update the congestion window. 11964 * 11965 * If TCP is not ECN capable or TCP is ECN capable but the 11966 * congestion experience bit is not set, increase the tcp_cwnd as 11967 * usual. 11968 */ 11969 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 11970 cwnd = tcp->tcp_cwnd; 11971 add = mss; 11972 11973 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 11974 /* 11975 * This is to prevent an increase of less than 1 MSS of 11976 * tcp_cwnd. With partial increase, tcp_wput_data() 11977 * may send out tinygrams in order to preserve mblk 11978 * boundaries. 11979 * 11980 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 11981 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 11982 * increased by 1 MSS for every RTTs. 11983 */ 11984 if (tcp->tcp_cwnd_cnt <= 0) { 11985 tcp->tcp_cwnd_cnt = cwnd + add; 11986 } else { 11987 tcp->tcp_cwnd_cnt -= add; 11988 add = 0; 11989 } 11990 } 11991 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 11992 } 11993 11994 /* See if the latest urgent data has been acknowledged */ 11995 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 11996 SEQ_GT(seg_ack, tcp->tcp_urg)) 11997 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 11998 11999 /* Can we update the RTT estimates? */ 12000 if (tcp->tcp_snd_ts_ok) { 12001 /* Ignore zero timestamp echo-reply. */ 12002 if (tcpopt.tcp_opt_ts_ecr != 0) { 12003 tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH - 12004 (int32_t)tcpopt.tcp_opt_ts_ecr); 12005 } 12006 12007 /* If needed, restart the timer. */ 12008 if (tcp->tcp_set_timer == 1) { 12009 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 12010 tcp->tcp_set_timer = 0; 12011 } 12012 /* 12013 * Update tcp_csuna in case the other side stops sending 12014 * us timestamps. 12015 */ 12016 tcp->tcp_csuna = tcp->tcp_snxt; 12017 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 12018 /* 12019 * An ACK sequence we haven't seen before, so get the RTT 12020 * and update the RTO. But first check if the timestamp is 12021 * valid to use. 12022 */ 12023 if ((mp1->b_next != NULL) && 12024 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 12025 tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH - 12026 (int32_t)(intptr_t)mp1->b_prev); 12027 else 12028 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 12029 12030 /* Remeber the last sequence to be ACKed */ 12031 tcp->tcp_csuna = seg_ack; 12032 if (tcp->tcp_set_timer == 1) { 12033 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 12034 tcp->tcp_set_timer = 0; 12035 } 12036 } else { 12037 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 12038 } 12039 12040 /* Eat acknowledged bytes off the xmit queue. */ 12041 for (;;) { 12042 mblk_t *mp2; 12043 uchar_t *wptr; 12044 12045 wptr = mp1->b_wptr; 12046 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 12047 bytes_acked -= (int)(wptr - mp1->b_rptr); 12048 if (bytes_acked < 0) { 12049 mp1->b_rptr = wptr + bytes_acked; 12050 /* 12051 * Set a new timestamp if all the bytes timed by the 12052 * old timestamp have been ack'ed. 12053 */ 12054 if (SEQ_GT(seg_ack, 12055 (uint32_t)(uintptr_t)(mp1->b_next))) { 12056 mp1->b_prev = 12057 (mblk_t *)(uintptr_t)LBOLT_FASTPATH; 12058 mp1->b_next = NULL; 12059 } 12060 break; 12061 } 12062 mp1->b_next = NULL; 12063 mp1->b_prev = NULL; 12064 mp2 = mp1; 12065 mp1 = mp1->b_cont; 12066 12067 /* 12068 * This notification is required for some zero-copy 12069 * clients to maintain a copy semantic. After the data 12070 * is ack'ed, client is safe to modify or reuse the buffer. 12071 */ 12072 if (tcp->tcp_snd_zcopy_aware && 12073 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 12074 tcp_zcopy_notify(tcp); 12075 freeb(mp2); 12076 if (bytes_acked == 0) { 12077 if (mp1 == NULL) { 12078 /* Everything is ack'ed, clear the tail. */ 12079 tcp->tcp_xmit_tail = NULL; 12080 /* 12081 * Cancel the timer unless we are still 12082 * waiting for an ACK for the FIN packet. 12083 */ 12084 if (tcp->tcp_timer_tid != 0 && 12085 tcp->tcp_snxt == tcp->tcp_suna) { 12086 (void) TCP_TIMER_CANCEL(tcp, 12087 tcp->tcp_timer_tid); 12088 tcp->tcp_timer_tid = 0; 12089 } 12090 goto pre_swnd_update; 12091 } 12092 if (mp2 != tcp->tcp_xmit_tail) 12093 break; 12094 tcp->tcp_xmit_tail = mp1; 12095 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12096 (uintptr_t)INT_MAX); 12097 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 12098 mp1->b_rptr); 12099 break; 12100 } 12101 if (mp1 == NULL) { 12102 /* 12103 * More was acked but there is nothing more 12104 * outstanding. This means that the FIN was 12105 * just acked or that we're talking to a clown. 12106 */ 12107 fin_acked: 12108 ASSERT(tcp->tcp_fin_sent); 12109 tcp->tcp_xmit_tail = NULL; 12110 if (tcp->tcp_fin_sent) { 12111 /* FIN was acked - making progress */ 12112 if (!tcp->tcp_fin_acked) 12113 tcp->tcp_ip_forward_progress = B_TRUE; 12114 tcp->tcp_fin_acked = B_TRUE; 12115 if (tcp->tcp_linger_tid != 0 && 12116 TCP_TIMER_CANCEL(tcp, 12117 tcp->tcp_linger_tid) >= 0) { 12118 tcp_stop_lingering(tcp); 12119 freemsg(mp); 12120 mp = NULL; 12121 } 12122 } else { 12123 /* 12124 * We should never get here because 12125 * we have already checked that the 12126 * number of bytes ack'ed should be 12127 * smaller than or equal to what we 12128 * have sent so far (it is the 12129 * acceptability check of the ACK). 12130 * We can only get here if the send 12131 * queue is corrupted. 12132 * 12133 * Terminate the connection and 12134 * panic the system. It is better 12135 * for us to panic instead of 12136 * continuing to avoid other disaster. 12137 */ 12138 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 12139 tcp->tcp_rnxt, TH_RST|TH_ACK); 12140 panic("Memory corruption " 12141 "detected for connection %s.", 12142 tcp_display(tcp, NULL, 12143 DISP_ADDR_AND_PORT)); 12144 /*NOTREACHED*/ 12145 } 12146 goto pre_swnd_update; 12147 } 12148 ASSERT(mp2 != tcp->tcp_xmit_tail); 12149 } 12150 if (tcp->tcp_unsent) { 12151 flags |= TH_XMIT_NEEDED; 12152 } 12153 pre_swnd_update: 12154 tcp->tcp_xmit_head = mp1; 12155 swnd_update: 12156 /* 12157 * The following check is different from most other implementations. 12158 * For bi-directional transfer, when segments are dropped, the 12159 * "normal" check will not accept a window update in those 12160 * retransmitted segemnts. Failing to do that, TCP may send out 12161 * segments which are outside receiver's window. As TCP accepts 12162 * the ack in those retransmitted segments, if the window update in 12163 * the same segment is not accepted, TCP will incorrectly calculates 12164 * that it can send more segments. This can create a deadlock 12165 * with the receiver if its window becomes zero. 12166 */ 12167 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 12168 SEQ_LT(tcp->tcp_swl1, seg_seq) || 12169 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 12170 /* 12171 * The criteria for update is: 12172 * 12173 * 1. the segment acknowledges some data. Or 12174 * 2. the segment is new, i.e. it has a higher seq num. Or 12175 * 3. the segment is not old and the advertised window is 12176 * larger than the previous advertised window. 12177 */ 12178 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 12179 flags |= TH_XMIT_NEEDED; 12180 tcp->tcp_swnd = new_swnd; 12181 if (new_swnd > tcp->tcp_max_swnd) 12182 tcp->tcp_max_swnd = new_swnd; 12183 tcp->tcp_swl1 = seg_seq; 12184 tcp->tcp_swl2 = seg_ack; 12185 } 12186 est: 12187 if (tcp->tcp_state > TCPS_ESTABLISHED) { 12188 12189 switch (tcp->tcp_state) { 12190 case TCPS_FIN_WAIT_1: 12191 if (tcp->tcp_fin_acked) { 12192 tcp->tcp_state = TCPS_FIN_WAIT_2; 12193 /* 12194 * We implement the non-standard BSD/SunOS 12195 * FIN_WAIT_2 flushing algorithm. 12196 * If there is no user attached to this 12197 * TCP endpoint, then this TCP struct 12198 * could hang around forever in FIN_WAIT_2 12199 * state if the peer forgets to send us 12200 * a FIN. To prevent this, we wait only 12201 * 2*MSL (a convenient time value) for 12202 * the FIN to arrive. If it doesn't show up, 12203 * we flush the TCP endpoint. This algorithm, 12204 * though a violation of RFC-793, has worked 12205 * for over 10 years in BSD systems. 12206 * Note: SunOS 4.x waits 675 seconds before 12207 * flushing the FIN_WAIT_2 connection. 12208 */ 12209 TCP_TIMER_RESTART(tcp, 12210 tcps->tcps_fin_wait_2_flush_interval); 12211 } 12212 break; 12213 case TCPS_FIN_WAIT_2: 12214 break; /* Shutdown hook? */ 12215 case TCPS_LAST_ACK: 12216 freemsg(mp); 12217 if (tcp->tcp_fin_acked) { 12218 (void) tcp_clean_death(tcp, 0, 19); 12219 return; 12220 } 12221 goto xmit_check; 12222 case TCPS_CLOSING: 12223 if (tcp->tcp_fin_acked) 12224 SET_TIME_WAIT(tcps, tcp, connp); 12225 /*FALLTHRU*/ 12226 case TCPS_CLOSE_WAIT: 12227 freemsg(mp); 12228 goto xmit_check; 12229 default: 12230 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 12231 break; 12232 } 12233 } 12234 if (flags & TH_FIN) { 12235 /* Make sure we ack the fin */ 12236 flags |= TH_ACK_NEEDED; 12237 if (!tcp->tcp_fin_rcvd) { 12238 tcp->tcp_fin_rcvd = B_TRUE; 12239 tcp->tcp_rnxt++; 12240 tcpha = tcp->tcp_tcpha; 12241 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 12242 12243 /* 12244 * Generate the ordrel_ind at the end unless we 12245 * are an eager guy. 12246 * In the eager case tcp_rsrv will do this when run 12247 * after tcp_accept is done. 12248 */ 12249 if (tcp->tcp_listener == NULL && 12250 !TCP_IS_DETACHED(tcp) && !tcp->tcp_hard_binding) 12251 flags |= TH_ORDREL_NEEDED; 12252 switch (tcp->tcp_state) { 12253 case TCPS_SYN_RCVD: 12254 case TCPS_ESTABLISHED: 12255 tcp->tcp_state = TCPS_CLOSE_WAIT; 12256 /* Keepalive? */ 12257 break; 12258 case TCPS_FIN_WAIT_1: 12259 if (!tcp->tcp_fin_acked) { 12260 tcp->tcp_state = TCPS_CLOSING; 12261 break; 12262 } 12263 /* FALLTHRU */ 12264 case TCPS_FIN_WAIT_2: 12265 SET_TIME_WAIT(tcps, tcp, connp); 12266 if (seg_len) { 12267 /* 12268 * implies data piggybacked on FIN. 12269 * break to handle data. 12270 */ 12271 break; 12272 } 12273 freemsg(mp); 12274 goto ack_check; 12275 } 12276 } 12277 } 12278 if (mp == NULL) 12279 goto xmit_check; 12280 if (seg_len == 0) { 12281 freemsg(mp); 12282 goto xmit_check; 12283 } 12284 if (mp->b_rptr == mp->b_wptr) { 12285 /* 12286 * The header has been consumed, so we remove the 12287 * zero-length mblk here. 12288 */ 12289 mp1 = mp; 12290 mp = mp->b_cont; 12291 freeb(mp1); 12292 } 12293 update_ack: 12294 tcpha = tcp->tcp_tcpha; 12295 tcp->tcp_rack_cnt++; 12296 { 12297 uint32_t cur_max; 12298 12299 cur_max = tcp->tcp_rack_cur_max; 12300 if (tcp->tcp_rack_cnt >= cur_max) { 12301 /* 12302 * We have more unacked data than we should - send 12303 * an ACK now. 12304 */ 12305 flags |= TH_ACK_NEEDED; 12306 cur_max++; 12307 if (cur_max > tcp->tcp_rack_abs_max) 12308 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 12309 else 12310 tcp->tcp_rack_cur_max = cur_max; 12311 } else if (TCP_IS_DETACHED(tcp)) { 12312 /* We don't have an ACK timer for detached TCP. */ 12313 flags |= TH_ACK_NEEDED; 12314 } else if (seg_len < mss) { 12315 /* 12316 * If we get a segment that is less than an mss, and we 12317 * already have unacknowledged data, and the amount 12318 * unacknowledged is not a multiple of mss, then we 12319 * better generate an ACK now. Otherwise, this may be 12320 * the tail piece of a transaction, and we would rather 12321 * wait for the response. 12322 */ 12323 uint32_t udif; 12324 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 12325 (uintptr_t)INT_MAX); 12326 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 12327 if (udif && (udif % mss)) 12328 flags |= TH_ACK_NEEDED; 12329 else 12330 flags |= TH_ACK_TIMER_NEEDED; 12331 } else { 12332 /* Start delayed ack timer */ 12333 flags |= TH_ACK_TIMER_NEEDED; 12334 } 12335 } 12336 tcp->tcp_rnxt += seg_len; 12337 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 12338 12339 if (mp == NULL) 12340 goto xmit_check; 12341 12342 /* Update SACK list */ 12343 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 12344 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 12345 &(tcp->tcp_num_sack_blk)); 12346 } 12347 12348 if (tcp->tcp_urp_mp) { 12349 tcp->tcp_urp_mp->b_cont = mp; 12350 mp = tcp->tcp_urp_mp; 12351 tcp->tcp_urp_mp = NULL; 12352 /* Ready for a new signal. */ 12353 tcp->tcp_urp_last_valid = B_FALSE; 12354 #ifdef DEBUG 12355 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12356 "tcp_rput: sending exdata_ind %s", 12357 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 12358 #endif /* DEBUG */ 12359 } 12360 12361 /* 12362 * Check for ancillary data changes compared to last segment. 12363 */ 12364 if (connp->conn_recv_ancillary.crb_all != 0) { 12365 mp = tcp_input_add_ancillary(tcp, mp, &ipp, ira); 12366 if (mp == NULL) 12367 return; 12368 } 12369 12370 if (tcp->tcp_listener != NULL || tcp->tcp_hard_binding) { 12371 /* 12372 * Side queue inbound data until the accept happens. 12373 * tcp_accept/tcp_rput drains this when the accept happens. 12374 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 12375 * T_EXDATA_IND) it is queued on b_next. 12376 * XXX Make urgent data use this. Requires: 12377 * Removing tcp_listener check for TH_URG 12378 * Making M_PCPROTO and MARK messages skip the eager case 12379 */ 12380 12381 if (tcp->tcp_kssl_pending) { 12382 DTRACE_PROBE1(kssl_mblk__ksslinput_pending, 12383 mblk_t *, mp); 12384 tcp_kssl_input(tcp, mp, ira->ira_cred); 12385 } else { 12386 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 12387 } 12388 } else if (IPCL_IS_NONSTR(connp)) { 12389 /* 12390 * Non-STREAMS socket 12391 * 12392 * Note that no KSSL processing is done here, because 12393 * KSSL is not supported for non-STREAMS sockets. 12394 */ 12395 boolean_t push = flags & (TH_PUSH|TH_FIN); 12396 int error; 12397 12398 if ((*connp->conn_upcalls->su_recv)( 12399 connp->conn_upper_handle, 12400 mp, seg_len, 0, &error, &push) <= 0) { 12401 /* 12402 * We should never be in middle of a 12403 * fallback, the squeue guarantees that. 12404 */ 12405 ASSERT(error != EOPNOTSUPP); 12406 if (error == ENOSPC) 12407 tcp->tcp_rwnd -= seg_len; 12408 } else if (push) { 12409 /* PUSH bit set and sockfs is not flow controlled */ 12410 flags |= tcp_rwnd_reopen(tcp); 12411 } 12412 } else { 12413 /* STREAMS socket */ 12414 if (mp->b_datap->db_type != M_DATA || 12415 (flags & TH_MARKNEXT_NEEDED)) { 12416 if (tcp->tcp_rcv_list != NULL) { 12417 flags |= tcp_rcv_drain(tcp); 12418 } 12419 ASSERT(tcp->tcp_rcv_list == NULL || 12420 tcp->tcp_fused_sigurg); 12421 12422 if (flags & TH_MARKNEXT_NEEDED) { 12423 #ifdef DEBUG 12424 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12425 "tcp_rput: sending MSGMARKNEXT %s", 12426 tcp_display(tcp, NULL, 12427 DISP_PORT_ONLY)); 12428 #endif /* DEBUG */ 12429 mp->b_flag |= MSGMARKNEXT; 12430 flags &= ~TH_MARKNEXT_NEEDED; 12431 } 12432 12433 /* Does this need SSL processing first? */ 12434 if ((tcp->tcp_kssl_ctx != NULL) && 12435 (DB_TYPE(mp) == M_DATA)) { 12436 DTRACE_PROBE1(kssl_mblk__ksslinput_data1, 12437 mblk_t *, mp); 12438 tcp_kssl_input(tcp, mp, ira->ira_cred); 12439 } else { 12440 if (is_system_labeled()) 12441 tcp_setcred_data(mp, ira); 12442 12443 putnext(connp->conn_rq, mp); 12444 if (!canputnext(connp->conn_rq)) 12445 tcp->tcp_rwnd -= seg_len; 12446 } 12447 } else if ((tcp->tcp_kssl_ctx != NULL) && 12448 (DB_TYPE(mp) == M_DATA)) { 12449 /* Does this need SSL processing first? */ 12450 DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp); 12451 tcp_kssl_input(tcp, mp, ira->ira_cred); 12452 } else if ((flags & (TH_PUSH|TH_FIN)) || 12453 tcp->tcp_rcv_cnt + seg_len >= connp->conn_rcvbuf >> 3) { 12454 if (tcp->tcp_rcv_list != NULL) { 12455 /* 12456 * Enqueue the new segment first and then 12457 * call tcp_rcv_drain() to send all data 12458 * up. The other way to do this is to 12459 * send all queued data up and then call 12460 * putnext() to send the new segment up. 12461 * This way can remove the else part later 12462 * on. 12463 * 12464 * We don't do this to avoid one more call to 12465 * canputnext() as tcp_rcv_drain() needs to 12466 * call canputnext(). 12467 */ 12468 tcp_rcv_enqueue(tcp, mp, seg_len, 12469 ira->ira_cred); 12470 flags |= tcp_rcv_drain(tcp); 12471 } else { 12472 if (is_system_labeled()) 12473 tcp_setcred_data(mp, ira); 12474 12475 putnext(connp->conn_rq, mp); 12476 if (!canputnext(connp->conn_rq)) 12477 tcp->tcp_rwnd -= seg_len; 12478 } 12479 } else { 12480 /* 12481 * Enqueue all packets when processing an mblk 12482 * from the co queue and also enqueue normal packets. 12483 */ 12484 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 12485 } 12486 /* 12487 * Make sure the timer is running if we have data waiting 12488 * for a push bit. This provides resiliency against 12489 * implementations that do not correctly generate push bits. 12490 */ 12491 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 12492 /* 12493 * The connection may be closed at this point, so don't 12494 * do anything for a detached tcp. 12495 */ 12496 if (!TCP_IS_DETACHED(tcp)) 12497 tcp->tcp_push_tid = TCP_TIMER(tcp, 12498 tcp_push_timer, 12499 MSEC_TO_TICK( 12500 tcps->tcps_push_timer_interval)); 12501 } 12502 } 12503 12504 xmit_check: 12505 /* Is there anything left to do? */ 12506 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 12507 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 12508 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 12509 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 12510 goto done; 12511 12512 /* Any transmit work to do and a non-zero window? */ 12513 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 12514 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 12515 if (flags & TH_REXMIT_NEEDED) { 12516 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 12517 12518 BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); 12519 if (snd_size > mss) 12520 snd_size = mss; 12521 if (snd_size > tcp->tcp_swnd) 12522 snd_size = tcp->tcp_swnd; 12523 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 12524 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 12525 B_TRUE); 12526 12527 if (mp1 != NULL) { 12528 tcp->tcp_xmit_head->b_prev = 12529 (mblk_t *)LBOLT_FASTPATH; 12530 tcp->tcp_csuna = tcp->tcp_snxt; 12531 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12532 UPDATE_MIB(&tcps->tcps_mib, 12533 tcpRetransBytes, snd_size); 12534 tcp_send_data(tcp, mp1); 12535 } 12536 } 12537 if (flags & TH_NEED_SACK_REXMIT) { 12538 tcp_sack_rxmit(tcp, &flags); 12539 } 12540 /* 12541 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 12542 * out new segment. Note that tcp_rexmit should not be 12543 * set, otherwise TH_LIMIT_XMIT should not be set. 12544 */ 12545 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 12546 if (!tcp->tcp_rexmit) { 12547 tcp_wput_data(tcp, NULL, B_FALSE); 12548 } else { 12549 tcp_ss_rexmit(tcp); 12550 } 12551 } 12552 /* 12553 * Adjust tcp_cwnd back to normal value after sending 12554 * new data segments. 12555 */ 12556 if (flags & TH_LIMIT_XMIT) { 12557 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 12558 /* 12559 * This will restart the timer. Restarting the 12560 * timer is used to avoid a timeout before the 12561 * limited transmitted segment's ACK gets back. 12562 */ 12563 if (tcp->tcp_xmit_head != NULL) 12564 tcp->tcp_xmit_head->b_prev = 12565 (mblk_t *)LBOLT_FASTPATH; 12566 } 12567 12568 /* Anything more to do? */ 12569 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 12570 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 12571 goto done; 12572 } 12573 ack_check: 12574 if (flags & TH_SEND_URP_MARK) { 12575 ASSERT(tcp->tcp_urp_mark_mp); 12576 ASSERT(!IPCL_IS_NONSTR(connp)); 12577 /* 12578 * Send up any queued data and then send the mark message 12579 */ 12580 if (tcp->tcp_rcv_list != NULL) { 12581 flags |= tcp_rcv_drain(tcp); 12582 12583 } 12584 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 12585 mp1 = tcp->tcp_urp_mark_mp; 12586 tcp->tcp_urp_mark_mp = NULL; 12587 if (is_system_labeled()) 12588 tcp_setcred_data(mp1, ira); 12589 12590 putnext(connp->conn_rq, mp1); 12591 #ifdef DEBUG 12592 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12593 "tcp_rput: sending zero-length %s %s", 12594 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 12595 "MSGNOTMARKNEXT"), 12596 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 12597 #endif /* DEBUG */ 12598 flags &= ~TH_SEND_URP_MARK; 12599 } 12600 if (flags & TH_ACK_NEEDED) { 12601 /* 12602 * Time to send an ack for some reason. 12603 */ 12604 mp1 = tcp_ack_mp(tcp); 12605 12606 if (mp1 != NULL) { 12607 tcp_send_data(tcp, mp1); 12608 BUMP_LOCAL(tcp->tcp_obsegs); 12609 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 12610 } 12611 if (tcp->tcp_ack_tid != 0) { 12612 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 12613 tcp->tcp_ack_tid = 0; 12614 } 12615 } 12616 if (flags & TH_ACK_TIMER_NEEDED) { 12617 /* 12618 * Arrange for deferred ACK or push wait timeout. 12619 * Start timer if it is not already running. 12620 */ 12621 if (tcp->tcp_ack_tid == 0) { 12622 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 12623 MSEC_TO_TICK(tcp->tcp_localnet ? 12624 (clock_t)tcps->tcps_local_dack_interval : 12625 (clock_t)tcps->tcps_deferred_ack_interval)); 12626 } 12627 } 12628 if (flags & TH_ORDREL_NEEDED) { 12629 /* 12630 * Send up the ordrel_ind unless we are an eager guy. 12631 * In the eager case tcp_rsrv will do this when run 12632 * after tcp_accept is done. 12633 */ 12634 ASSERT(tcp->tcp_listener == NULL); 12635 ASSERT(!tcp->tcp_detached); 12636 12637 if (IPCL_IS_NONSTR(connp)) { 12638 ASSERT(tcp->tcp_ordrel_mp == NULL); 12639 tcp->tcp_ordrel_done = B_TRUE; 12640 (*connp->conn_upcalls->su_opctl) 12641 (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0); 12642 goto done; 12643 } 12644 12645 if (tcp->tcp_rcv_list != NULL) { 12646 /* 12647 * Push any mblk(s) enqueued from co processing. 12648 */ 12649 flags |= tcp_rcv_drain(tcp); 12650 } 12651 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 12652 12653 mp1 = tcp->tcp_ordrel_mp; 12654 tcp->tcp_ordrel_mp = NULL; 12655 tcp->tcp_ordrel_done = B_TRUE; 12656 putnext(connp->conn_rq, mp1); 12657 } 12658 done: 12659 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 12660 } 12661 12662 /* 12663 * This routine adjusts next-to-send sequence number variables, in the 12664 * case where the reciever has shrunk it's window. 12665 */ 12666 static void 12667 tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt) 12668 { 12669 mblk_t *xmit_tail; 12670 int32_t offset; 12671 12672 tcp->tcp_snxt = snxt; 12673 12674 /* Get the mblk, and the offset in it, as per the shrunk window */ 12675 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 12676 ASSERT(xmit_tail != NULL); 12677 tcp->tcp_xmit_tail = xmit_tail; 12678 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - 12679 xmit_tail->b_rptr - offset; 12680 } 12681 12682 /* 12683 * This function does PAWS protection check. Returns B_TRUE if the 12684 * segment passes the PAWS test, else returns B_FALSE. 12685 */ 12686 boolean_t 12687 tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp) 12688 { 12689 uint8_t flags; 12690 int options; 12691 uint8_t *up; 12692 conn_t *connp = tcp->tcp_connp; 12693 12694 flags = (unsigned int)tcpha->tha_flags & 0xFF; 12695 /* 12696 * If timestamp option is aligned nicely, get values inline, 12697 * otherwise call general routine to parse. Only do that 12698 * if timestamp is the only option. 12699 */ 12700 if (TCP_HDR_LENGTH(tcpha) == (uint32_t)TCP_MIN_HEADER_LENGTH + 12701 TCPOPT_REAL_TS_LEN && 12702 OK_32PTR((up = ((uint8_t *)tcpha) + 12703 TCP_MIN_HEADER_LENGTH)) && 12704 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 12705 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 12706 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 12707 12708 options = TCP_OPT_TSTAMP_PRESENT; 12709 } else { 12710 if (tcp->tcp_snd_sack_ok) { 12711 tcpoptp->tcp = tcp; 12712 } else { 12713 tcpoptp->tcp = NULL; 12714 } 12715 options = tcp_parse_options(tcpha, tcpoptp); 12716 } 12717 12718 if (options & TCP_OPT_TSTAMP_PRESENT) { 12719 /* 12720 * Do PAWS per RFC 1323 section 4.2. Accept RST 12721 * regardless of the timestamp, page 18 RFC 1323.bis. 12722 */ 12723 if ((flags & TH_RST) == 0 && 12724 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 12725 tcp->tcp_ts_recent)) { 12726 if (TSTMP_LT(LBOLT_FASTPATH64, 12727 tcp->tcp_last_rcv_lbolt + PAWS_TIMEOUT)) { 12728 /* This segment is not acceptable. */ 12729 return (B_FALSE); 12730 } else { 12731 /* 12732 * Connection has been idle for 12733 * too long. Reset the timestamp 12734 * and assume the segment is valid. 12735 */ 12736 tcp->tcp_ts_recent = 12737 tcpoptp->tcp_opt_ts_val; 12738 } 12739 } 12740 } else { 12741 /* 12742 * If we don't get a timestamp on every packet, we 12743 * figure we can't really trust 'em, so we stop sending 12744 * and parsing them. 12745 */ 12746 tcp->tcp_snd_ts_ok = B_FALSE; 12747 12748 connp->conn_ht_iphc_len -= TCPOPT_REAL_TS_LEN; 12749 connp->conn_ht_ulp_len -= TCPOPT_REAL_TS_LEN; 12750 tcp->tcp_tcpha->tha_offset_and_reserved -= (3 << 4); 12751 /* 12752 * Adjust the tcp_mss and tcp_cwnd accordingly. We avoid 12753 * doing a slow start here so as to not to lose on the 12754 * transfer rate built up so far. 12755 */ 12756 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN); 12757 if (tcp->tcp_snd_sack_ok) { 12758 ASSERT(tcp->tcp_sack_info != NULL); 12759 tcp->tcp_max_sack_blk = 4; 12760 } 12761 } 12762 return (B_TRUE); 12763 } 12764 12765 /* 12766 * Attach ancillary data to a received TCP segments for the 12767 * ancillary pieces requested by the application that are 12768 * different than they were in the previous data segment. 12769 * 12770 * Save the "current" values once memory allocation is ok so that 12771 * when memory allocation fails we can just wait for the next data segment. 12772 */ 12773 static mblk_t * 12774 tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp, 12775 ip_recv_attr_t *ira) 12776 { 12777 struct T_optdata_ind *todi; 12778 int optlen; 12779 uchar_t *optptr; 12780 struct T_opthdr *toh; 12781 crb_t addflag; /* Which pieces to add */ 12782 mblk_t *mp1; 12783 conn_t *connp = tcp->tcp_connp; 12784 12785 optlen = 0; 12786 addflag.crb_all = 0; 12787 /* If app asked for pktinfo and the index has changed ... */ 12788 if (connp->conn_recv_ancillary.crb_ip_recvpktinfo && 12789 ira->ira_ruifindex != tcp->tcp_recvifindex) { 12790 optlen += sizeof (struct T_opthdr) + 12791 sizeof (struct in6_pktinfo); 12792 addflag.crb_ip_recvpktinfo = 1; 12793 } 12794 /* If app asked for hoplimit and it has changed ... */ 12795 if (connp->conn_recv_ancillary.crb_ipv6_recvhoplimit && 12796 ipp->ipp_hoplimit != tcp->tcp_recvhops) { 12797 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 12798 addflag.crb_ipv6_recvhoplimit = 1; 12799 } 12800 /* If app asked for tclass and it has changed ... */ 12801 if (connp->conn_recv_ancillary.crb_ipv6_recvtclass && 12802 ipp->ipp_tclass != tcp->tcp_recvtclass) { 12803 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 12804 addflag.crb_ipv6_recvtclass = 1; 12805 } 12806 /* 12807 * If app asked for hopbyhop headers and it has changed ... 12808 * For security labels, note that (1) security labels can't change on 12809 * a connected socket at all, (2) we're connected to at most one peer, 12810 * (3) if anything changes, then it must be some other extra option. 12811 */ 12812 if (connp->conn_recv_ancillary.crb_ipv6_recvhopopts && 12813 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 12814 (ipp->ipp_fields & IPPF_HOPOPTS), 12815 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 12816 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen; 12817 addflag.crb_ipv6_recvhopopts = 1; 12818 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 12819 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 12820 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 12821 return (mp); 12822 } 12823 /* If app asked for dst headers before routing headers ... */ 12824 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdrdstopts && 12825 ip_cmpbuf(tcp->tcp_rthdrdstopts, tcp->tcp_rthdrdstoptslen, 12826 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 12827 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) { 12828 optlen += sizeof (struct T_opthdr) + 12829 ipp->ipp_rthdrdstoptslen; 12830 addflag.crb_ipv6_recvrthdrdstopts = 1; 12831 if (!ip_allocbuf((void **)&tcp->tcp_rthdrdstopts, 12832 &tcp->tcp_rthdrdstoptslen, 12833 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 12834 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) 12835 return (mp); 12836 } 12837 /* If app asked for routing headers and it has changed ... */ 12838 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdr && 12839 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 12840 (ipp->ipp_fields & IPPF_RTHDR), 12841 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 12842 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 12843 addflag.crb_ipv6_recvrthdr = 1; 12844 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 12845 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 12846 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 12847 return (mp); 12848 } 12849 /* If app asked for dest headers and it has changed ... */ 12850 if ((connp->conn_recv_ancillary.crb_ipv6_recvdstopts || 12851 connp->conn_recv_ancillary.crb_old_ipv6_recvdstopts) && 12852 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 12853 (ipp->ipp_fields & IPPF_DSTOPTS), 12854 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 12855 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 12856 addflag.crb_ipv6_recvdstopts = 1; 12857 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 12858 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 12859 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 12860 return (mp); 12861 } 12862 12863 if (optlen == 0) { 12864 /* Nothing to add */ 12865 return (mp); 12866 } 12867 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 12868 if (mp1 == NULL) { 12869 /* 12870 * Defer sending ancillary data until the next TCP segment 12871 * arrives. 12872 */ 12873 return (mp); 12874 } 12875 mp1->b_cont = mp; 12876 mp = mp1; 12877 mp->b_wptr += sizeof (*todi) + optlen; 12878 mp->b_datap->db_type = M_PROTO; 12879 todi = (struct T_optdata_ind *)mp->b_rptr; 12880 todi->PRIM_type = T_OPTDATA_IND; 12881 todi->DATA_flag = 1; /* MORE data */ 12882 todi->OPT_length = optlen; 12883 todi->OPT_offset = sizeof (*todi); 12884 optptr = (uchar_t *)&todi[1]; 12885 /* 12886 * If app asked for pktinfo and the index has changed ... 12887 * Note that the local address never changes for the connection. 12888 */ 12889 if (addflag.crb_ip_recvpktinfo) { 12890 struct in6_pktinfo *pkti; 12891 uint_t ifindex; 12892 12893 ifindex = ira->ira_ruifindex; 12894 toh = (struct T_opthdr *)optptr; 12895 toh->level = IPPROTO_IPV6; 12896 toh->name = IPV6_PKTINFO; 12897 toh->len = sizeof (*toh) + sizeof (*pkti); 12898 toh->status = 0; 12899 optptr += sizeof (*toh); 12900 pkti = (struct in6_pktinfo *)optptr; 12901 pkti->ipi6_addr = connp->conn_laddr_v6; 12902 pkti->ipi6_ifindex = ifindex; 12903 optptr += sizeof (*pkti); 12904 ASSERT(OK_32PTR(optptr)); 12905 /* Save as "last" value */ 12906 tcp->tcp_recvifindex = ifindex; 12907 } 12908 /* If app asked for hoplimit and it has changed ... */ 12909 if (addflag.crb_ipv6_recvhoplimit) { 12910 toh = (struct T_opthdr *)optptr; 12911 toh->level = IPPROTO_IPV6; 12912 toh->name = IPV6_HOPLIMIT; 12913 toh->len = sizeof (*toh) + sizeof (uint_t); 12914 toh->status = 0; 12915 optptr += sizeof (*toh); 12916 *(uint_t *)optptr = ipp->ipp_hoplimit; 12917 optptr += sizeof (uint_t); 12918 ASSERT(OK_32PTR(optptr)); 12919 /* Save as "last" value */ 12920 tcp->tcp_recvhops = ipp->ipp_hoplimit; 12921 } 12922 /* If app asked for tclass and it has changed ... */ 12923 if (addflag.crb_ipv6_recvtclass) { 12924 toh = (struct T_opthdr *)optptr; 12925 toh->level = IPPROTO_IPV6; 12926 toh->name = IPV6_TCLASS; 12927 toh->len = sizeof (*toh) + sizeof (uint_t); 12928 toh->status = 0; 12929 optptr += sizeof (*toh); 12930 *(uint_t *)optptr = ipp->ipp_tclass; 12931 optptr += sizeof (uint_t); 12932 ASSERT(OK_32PTR(optptr)); 12933 /* Save as "last" value */ 12934 tcp->tcp_recvtclass = ipp->ipp_tclass; 12935 } 12936 if (addflag.crb_ipv6_recvhopopts) { 12937 toh = (struct T_opthdr *)optptr; 12938 toh->level = IPPROTO_IPV6; 12939 toh->name = IPV6_HOPOPTS; 12940 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen; 12941 toh->status = 0; 12942 optptr += sizeof (*toh); 12943 bcopy((uchar_t *)ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen); 12944 optptr += ipp->ipp_hopoptslen; 12945 ASSERT(OK_32PTR(optptr)); 12946 /* Save as last value */ 12947 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 12948 (ipp->ipp_fields & IPPF_HOPOPTS), 12949 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 12950 } 12951 if (addflag.crb_ipv6_recvrthdrdstopts) { 12952 toh = (struct T_opthdr *)optptr; 12953 toh->level = IPPROTO_IPV6; 12954 toh->name = IPV6_RTHDRDSTOPTS; 12955 toh->len = sizeof (*toh) + ipp->ipp_rthdrdstoptslen; 12956 toh->status = 0; 12957 optptr += sizeof (*toh); 12958 bcopy(ipp->ipp_rthdrdstopts, optptr, ipp->ipp_rthdrdstoptslen); 12959 optptr += ipp->ipp_rthdrdstoptslen; 12960 ASSERT(OK_32PTR(optptr)); 12961 /* Save as last value */ 12962 ip_savebuf((void **)&tcp->tcp_rthdrdstopts, 12963 &tcp->tcp_rthdrdstoptslen, 12964 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 12965 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 12966 } 12967 if (addflag.crb_ipv6_recvrthdr) { 12968 toh = (struct T_opthdr *)optptr; 12969 toh->level = IPPROTO_IPV6; 12970 toh->name = IPV6_RTHDR; 12971 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 12972 toh->status = 0; 12973 optptr += sizeof (*toh); 12974 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 12975 optptr += ipp->ipp_rthdrlen; 12976 ASSERT(OK_32PTR(optptr)); 12977 /* Save as last value */ 12978 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 12979 (ipp->ipp_fields & IPPF_RTHDR), 12980 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 12981 } 12982 if (addflag.crb_ipv6_recvdstopts) { 12983 toh = (struct T_opthdr *)optptr; 12984 toh->level = IPPROTO_IPV6; 12985 toh->name = IPV6_DSTOPTS; 12986 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 12987 toh->status = 0; 12988 optptr += sizeof (*toh); 12989 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 12990 optptr += ipp->ipp_dstoptslen; 12991 ASSERT(OK_32PTR(optptr)); 12992 /* Save as last value */ 12993 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 12994 (ipp->ipp_fields & IPPF_DSTOPTS), 12995 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 12996 } 12997 ASSERT(optptr == mp->b_wptr); 12998 return (mp); 12999 } 13000 13001 /* ARGSUSED */ 13002 static void 13003 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 13004 { 13005 conn_t *connp = (conn_t *)arg; 13006 tcp_t *tcp = connp->conn_tcp; 13007 queue_t *q = connp->conn_rq; 13008 tcp_stack_t *tcps = tcp->tcp_tcps; 13009 13010 ASSERT(!IPCL_IS_NONSTR(connp)); 13011 mutex_enter(&tcp->tcp_rsrv_mp_lock); 13012 tcp->tcp_rsrv_mp = mp; 13013 mutex_exit(&tcp->tcp_rsrv_mp_lock); 13014 13015 TCP_STAT(tcps, tcp_rsrv_calls); 13016 13017 if (TCP_IS_DETACHED(tcp) || q == NULL) { 13018 return; 13019 } 13020 13021 if (tcp->tcp_fused) { 13022 tcp_fuse_backenable(tcp); 13023 return; 13024 } 13025 13026 if (canputnext(q)) { 13027 /* Not flow-controlled, open rwnd */ 13028 tcp->tcp_rwnd = connp->conn_rcvbuf; 13029 13030 /* 13031 * Send back a window update immediately if TCP is above 13032 * ESTABLISHED state and the increase of the rcv window 13033 * that the other side knows is at least 1 MSS after flow 13034 * control is lifted. 13035 */ 13036 if (tcp->tcp_state >= TCPS_ESTABLISHED && 13037 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 13038 tcp_xmit_ctl(NULL, tcp, 13039 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 13040 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 13041 } 13042 } 13043 } 13044 13045 /* 13046 * The read side service routine is called mostly when we get back-enabled as a 13047 * result of flow control relief. Since we don't actually queue anything in 13048 * TCP, we have no data to send out of here. What we do is clear the receive 13049 * window, and send out a window update. 13050 */ 13051 static void 13052 tcp_rsrv(queue_t *q) 13053 { 13054 conn_t *connp = Q_TO_CONN(q); 13055 tcp_t *tcp = connp->conn_tcp; 13056 mblk_t *mp; 13057 13058 /* No code does a putq on the read side */ 13059 ASSERT(q->q_first == NULL); 13060 13061 /* 13062 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 13063 * been run. So just return. 13064 */ 13065 mutex_enter(&tcp->tcp_rsrv_mp_lock); 13066 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 13067 mutex_exit(&tcp->tcp_rsrv_mp_lock); 13068 return; 13069 } 13070 tcp->tcp_rsrv_mp = NULL; 13071 mutex_exit(&tcp->tcp_rsrv_mp_lock); 13072 13073 CONN_INC_REF(connp); 13074 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, 13075 NULL, SQ_PROCESS, SQTAG_TCP_RSRV); 13076 } 13077 13078 /* 13079 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 13080 * We do not allow the receive window to shrink. After setting rwnd, 13081 * set the flow control hiwat of the stream. 13082 * 13083 * This function is called in 2 cases: 13084 * 13085 * 1) Before data transfer begins, in tcp_input_listener() for accepting a 13086 * connection (passive open) and in tcp_input_data() for active connect. 13087 * This is called after tcp_mss_set() when the desired MSS value is known. 13088 * This makes sure that our window size is a mutiple of the other side's 13089 * MSS. 13090 * 2) Handling SO_RCVBUF option. 13091 * 13092 * It is ASSUMED that the requested size is a multiple of the current MSS. 13093 * 13094 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 13095 * user requests so. 13096 */ 13097 int 13098 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 13099 { 13100 uint32_t mss = tcp->tcp_mss; 13101 uint32_t old_max_rwnd; 13102 uint32_t max_transmittable_rwnd; 13103 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 13104 tcp_stack_t *tcps = tcp->tcp_tcps; 13105 conn_t *connp = tcp->tcp_connp; 13106 13107 /* 13108 * Insist on a receive window that is at least 13109 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 13110 * funny TCP interactions of Nagle algorithm, SWS avoidance 13111 * and delayed acknowledgement. 13112 */ 13113 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 13114 13115 if (tcp->tcp_fused) { 13116 size_t sth_hiwat; 13117 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 13118 13119 ASSERT(peer_tcp != NULL); 13120 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 13121 if (!tcp_detached) { 13122 (void) proto_set_rx_hiwat(connp->conn_rq, connp, 13123 sth_hiwat); 13124 tcp_set_recv_threshold(tcp, sth_hiwat >> 3); 13125 } 13126 13127 /* Caller could have changed tcp_rwnd; update tha_win */ 13128 if (tcp->tcp_tcpha != NULL) { 13129 tcp->tcp_tcpha->tha_win = 13130 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 13131 } 13132 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 13133 tcp->tcp_cwnd_max = rwnd; 13134 13135 /* 13136 * In the fusion case, the maxpsz stream head value of 13137 * our peer is set according to its send buffer size 13138 * and our receive buffer size; since the latter may 13139 * have changed we need to update the peer's maxpsz. 13140 */ 13141 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 13142 return (sth_hiwat); 13143 } 13144 13145 if (tcp_detached) 13146 old_max_rwnd = tcp->tcp_rwnd; 13147 else 13148 old_max_rwnd = connp->conn_rcvbuf; 13149 13150 13151 /* 13152 * If window size info has already been exchanged, TCP should not 13153 * shrink the window. Shrinking window is doable if done carefully. 13154 * We may add that support later. But so far there is not a real 13155 * need to do that. 13156 */ 13157 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 13158 /* MSS may have changed, do a round up again. */ 13159 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 13160 } 13161 13162 /* 13163 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 13164 * can be applied even before the window scale option is decided. 13165 */ 13166 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 13167 if (rwnd > max_transmittable_rwnd) { 13168 rwnd = max_transmittable_rwnd - 13169 (max_transmittable_rwnd % mss); 13170 if (rwnd < mss) 13171 rwnd = max_transmittable_rwnd; 13172 /* 13173 * If we're over the limit we may have to back down tcp_rwnd. 13174 * The increment below won't work for us. So we set all three 13175 * here and the increment below will have no effect. 13176 */ 13177 tcp->tcp_rwnd = old_max_rwnd = rwnd; 13178 } 13179 if (tcp->tcp_localnet) { 13180 tcp->tcp_rack_abs_max = 13181 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 13182 } else { 13183 /* 13184 * For a remote host on a different subnet (through a router), 13185 * we ack every other packet to be conforming to RFC1122. 13186 * tcp_deferred_acks_max is default to 2. 13187 */ 13188 tcp->tcp_rack_abs_max = 13189 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 13190 } 13191 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 13192 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 13193 else 13194 tcp->tcp_rack_cur_max = 0; 13195 /* 13196 * Increment the current rwnd by the amount the maximum grew (we 13197 * can not overwrite it since we might be in the middle of a 13198 * connection.) 13199 */ 13200 tcp->tcp_rwnd += rwnd - old_max_rwnd; 13201 connp->conn_rcvbuf = rwnd; 13202 13203 /* Are we already connected? */ 13204 if (tcp->tcp_tcpha != NULL) { 13205 tcp->tcp_tcpha->tha_win = 13206 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 13207 } 13208 13209 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 13210 tcp->tcp_cwnd_max = rwnd; 13211 13212 if (tcp_detached) 13213 return (rwnd); 13214 13215 tcp_set_recv_threshold(tcp, rwnd >> 3); 13216 13217 (void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd); 13218 return (rwnd); 13219 } 13220 13221 /* 13222 * Return SNMP stuff in buffer in mpdata. 13223 */ 13224 mblk_t * 13225 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 13226 { 13227 mblk_t *mpdata; 13228 mblk_t *mp_conn_ctl = NULL; 13229 mblk_t *mp_conn_tail; 13230 mblk_t *mp_attr_ctl = NULL; 13231 mblk_t *mp_attr_tail; 13232 mblk_t *mp6_conn_ctl = NULL; 13233 mblk_t *mp6_conn_tail; 13234 mblk_t *mp6_attr_ctl = NULL; 13235 mblk_t *mp6_attr_tail; 13236 struct opthdr *optp; 13237 mib2_tcpConnEntry_t tce; 13238 mib2_tcp6ConnEntry_t tce6; 13239 mib2_transportMLPEntry_t mlp; 13240 connf_t *connfp; 13241 int i; 13242 boolean_t ispriv; 13243 zoneid_t zoneid; 13244 int v4_conn_idx; 13245 int v6_conn_idx; 13246 conn_t *connp = Q_TO_CONN(q); 13247 tcp_stack_t *tcps; 13248 ip_stack_t *ipst; 13249 mblk_t *mp2ctl; 13250 13251 /* 13252 * make a copy of the original message 13253 */ 13254 mp2ctl = copymsg(mpctl); 13255 13256 if (mpctl == NULL || 13257 (mpdata = mpctl->b_cont) == NULL || 13258 (mp_conn_ctl = copymsg(mpctl)) == NULL || 13259 (mp_attr_ctl = copymsg(mpctl)) == NULL || 13260 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 13261 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 13262 freemsg(mp_conn_ctl); 13263 freemsg(mp_attr_ctl); 13264 freemsg(mp6_conn_ctl); 13265 freemsg(mp6_attr_ctl); 13266 freemsg(mpctl); 13267 freemsg(mp2ctl); 13268 return (NULL); 13269 } 13270 13271 ipst = connp->conn_netstack->netstack_ip; 13272 tcps = connp->conn_netstack->netstack_tcp; 13273 13274 /* build table of connections -- need count in fixed part */ 13275 SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ 13276 SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); 13277 SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); 13278 SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); 13279 SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); 13280 13281 ispriv = 13282 secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 13283 zoneid = Q_TO_CONN(q)->conn_zoneid; 13284 13285 v4_conn_idx = v6_conn_idx = 0; 13286 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 13287 13288 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 13289 ipst = tcps->tcps_netstack->netstack_ip; 13290 13291 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 13292 13293 connp = NULL; 13294 13295 while ((connp = 13296 ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) { 13297 tcp_t *tcp; 13298 boolean_t needattr; 13299 13300 if (connp->conn_zoneid != zoneid) 13301 continue; /* not in this zone */ 13302 13303 tcp = connp->conn_tcp; 13304 UPDATE_MIB(&tcps->tcps_mib, 13305 tcpHCInSegs, tcp->tcp_ibsegs); 13306 tcp->tcp_ibsegs = 0; 13307 UPDATE_MIB(&tcps->tcps_mib, 13308 tcpHCOutSegs, tcp->tcp_obsegs); 13309 tcp->tcp_obsegs = 0; 13310 13311 tce6.tcp6ConnState = tce.tcpConnState = 13312 tcp_snmp_state(tcp); 13313 if (tce.tcpConnState == MIB2_TCP_established || 13314 tce.tcpConnState == MIB2_TCP_closeWait) 13315 BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); 13316 13317 needattr = B_FALSE; 13318 bzero(&mlp, sizeof (mlp)); 13319 if (connp->conn_mlp_type != mlptSingle) { 13320 if (connp->conn_mlp_type == mlptShared || 13321 connp->conn_mlp_type == mlptBoth) 13322 mlp.tme_flags |= MIB2_TMEF_SHARED; 13323 if (connp->conn_mlp_type == mlptPrivate || 13324 connp->conn_mlp_type == mlptBoth) 13325 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 13326 needattr = B_TRUE; 13327 } 13328 if (connp->conn_anon_mlp) { 13329 mlp.tme_flags |= MIB2_TMEF_ANONMLP; 13330 needattr = B_TRUE; 13331 } 13332 switch (connp->conn_mac_mode) { 13333 case CONN_MAC_DEFAULT: 13334 break; 13335 case CONN_MAC_AWARE: 13336 mlp.tme_flags |= MIB2_TMEF_MACEXEMPT; 13337 needattr = B_TRUE; 13338 break; 13339 case CONN_MAC_IMPLICIT: 13340 mlp.tme_flags |= MIB2_TMEF_MACIMPLICIT; 13341 needattr = B_TRUE; 13342 break; 13343 } 13344 if (connp->conn_ixa->ixa_tsl != NULL) { 13345 ts_label_t *tsl; 13346 13347 tsl = connp->conn_ixa->ixa_tsl; 13348 mlp.tme_flags |= MIB2_TMEF_IS_LABELED; 13349 mlp.tme_doi = label2doi(tsl); 13350 mlp.tme_label = *label2bslabel(tsl); 13351 needattr = B_TRUE; 13352 } 13353 13354 /* Create a message to report on IPv6 entries */ 13355 if (connp->conn_ipversion == IPV6_VERSION) { 13356 tce6.tcp6ConnLocalAddress = connp->conn_laddr_v6; 13357 tce6.tcp6ConnRemAddress = connp->conn_faddr_v6; 13358 tce6.tcp6ConnLocalPort = ntohs(connp->conn_lport); 13359 tce6.tcp6ConnRemPort = ntohs(connp->conn_fport); 13360 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) { 13361 tce6.tcp6ConnIfIndex = 13362 connp->conn_ixa->ixa_scopeid; 13363 } else { 13364 tce6.tcp6ConnIfIndex = connp->conn_bound_if; 13365 } 13366 /* Don't want just anybody seeing these... */ 13367 if (ispriv) { 13368 tce6.tcp6ConnEntryInfo.ce_snxt = 13369 tcp->tcp_snxt; 13370 tce6.tcp6ConnEntryInfo.ce_suna = 13371 tcp->tcp_suna; 13372 tce6.tcp6ConnEntryInfo.ce_rnxt = 13373 tcp->tcp_rnxt; 13374 tce6.tcp6ConnEntryInfo.ce_rack = 13375 tcp->tcp_rack; 13376 } else { 13377 /* 13378 * Netstat, unfortunately, uses this to 13379 * get send/receive queue sizes. How to fix? 13380 * Why not compute the difference only? 13381 */ 13382 tce6.tcp6ConnEntryInfo.ce_snxt = 13383 tcp->tcp_snxt - tcp->tcp_suna; 13384 tce6.tcp6ConnEntryInfo.ce_suna = 0; 13385 tce6.tcp6ConnEntryInfo.ce_rnxt = 13386 tcp->tcp_rnxt - tcp->tcp_rack; 13387 tce6.tcp6ConnEntryInfo.ce_rack = 0; 13388 } 13389 13390 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 13391 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 13392 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 13393 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 13394 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 13395 13396 tce6.tcp6ConnCreationProcess = 13397 (connp->conn_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 13398 connp->conn_cpid; 13399 tce6.tcp6ConnCreationTime = connp->conn_open_time; 13400 13401 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 13402 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 13403 13404 mlp.tme_connidx = v6_conn_idx++; 13405 if (needattr) 13406 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 13407 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 13408 } 13409 /* 13410 * Create an IPv4 table entry for IPv4 entries and also 13411 * for IPv6 entries which are bound to in6addr_any 13412 * but don't have IPV6_V6ONLY set. 13413 * (i.e. anything an IPv4 peer could connect to) 13414 */ 13415 if (connp->conn_ipversion == IPV4_VERSION || 13416 (tcp->tcp_state <= TCPS_LISTEN && 13417 !connp->conn_ipv6_v6only && 13418 IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6))) { 13419 if (connp->conn_ipversion == IPV6_VERSION) { 13420 tce.tcpConnRemAddress = INADDR_ANY; 13421 tce.tcpConnLocalAddress = INADDR_ANY; 13422 } else { 13423 tce.tcpConnRemAddress = 13424 connp->conn_faddr_v4; 13425 tce.tcpConnLocalAddress = 13426 connp->conn_laddr_v4; 13427 } 13428 tce.tcpConnLocalPort = ntohs(connp->conn_lport); 13429 tce.tcpConnRemPort = ntohs(connp->conn_fport); 13430 /* Don't want just anybody seeing these... */ 13431 if (ispriv) { 13432 tce.tcpConnEntryInfo.ce_snxt = 13433 tcp->tcp_snxt; 13434 tce.tcpConnEntryInfo.ce_suna = 13435 tcp->tcp_suna; 13436 tce.tcpConnEntryInfo.ce_rnxt = 13437 tcp->tcp_rnxt; 13438 tce.tcpConnEntryInfo.ce_rack = 13439 tcp->tcp_rack; 13440 } else { 13441 /* 13442 * Netstat, unfortunately, uses this to 13443 * get send/receive queue sizes. How 13444 * to fix? 13445 * Why not compute the difference only? 13446 */ 13447 tce.tcpConnEntryInfo.ce_snxt = 13448 tcp->tcp_snxt - tcp->tcp_suna; 13449 tce.tcpConnEntryInfo.ce_suna = 0; 13450 tce.tcpConnEntryInfo.ce_rnxt = 13451 tcp->tcp_rnxt - tcp->tcp_rack; 13452 tce.tcpConnEntryInfo.ce_rack = 0; 13453 } 13454 13455 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 13456 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 13457 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 13458 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 13459 tce.tcpConnEntryInfo.ce_state = 13460 tcp->tcp_state; 13461 13462 tce.tcpConnCreationProcess = 13463 (connp->conn_cpid < 0) ? 13464 MIB2_UNKNOWN_PROCESS : 13465 connp->conn_cpid; 13466 tce.tcpConnCreationTime = connp->conn_open_time; 13467 13468 (void) snmp_append_data2(mp_conn_ctl->b_cont, 13469 &mp_conn_tail, (char *)&tce, sizeof (tce)); 13470 13471 mlp.tme_connidx = v4_conn_idx++; 13472 if (needattr) 13473 (void) snmp_append_data2( 13474 mp_attr_ctl->b_cont, 13475 &mp_attr_tail, (char *)&mlp, 13476 sizeof (mlp)); 13477 } 13478 } 13479 } 13480 13481 /* fixed length structure for IPv4 and IPv6 counters */ 13482 SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 13483 SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, 13484 sizeof (mib2_tcp6ConnEntry_t)); 13485 /* synchronize 32- and 64-bit counters */ 13486 SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); 13487 SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); 13488 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 13489 optp->level = MIB2_TCP; 13490 optp->name = 0; 13491 (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, 13492 sizeof (tcps->tcps_mib)); 13493 optp->len = msgdsize(mpdata); 13494 qreply(q, mpctl); 13495 13496 /* table of connections... */ 13497 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 13498 sizeof (struct T_optmgmt_ack)]; 13499 optp->level = MIB2_TCP; 13500 optp->name = MIB2_TCP_CONN; 13501 optp->len = msgdsize(mp_conn_ctl->b_cont); 13502 qreply(q, mp_conn_ctl); 13503 13504 /* table of MLP attributes... */ 13505 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 13506 sizeof (struct T_optmgmt_ack)]; 13507 optp->level = MIB2_TCP; 13508 optp->name = EXPER_XPORT_MLP; 13509 optp->len = msgdsize(mp_attr_ctl->b_cont); 13510 if (optp->len == 0) 13511 freemsg(mp_attr_ctl); 13512 else 13513 qreply(q, mp_attr_ctl); 13514 13515 /* table of IPv6 connections... */ 13516 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 13517 sizeof (struct T_optmgmt_ack)]; 13518 optp->level = MIB2_TCP6; 13519 optp->name = MIB2_TCP6_CONN; 13520 optp->len = msgdsize(mp6_conn_ctl->b_cont); 13521 qreply(q, mp6_conn_ctl); 13522 13523 /* table of IPv6 MLP attributes... */ 13524 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 13525 sizeof (struct T_optmgmt_ack)]; 13526 optp->level = MIB2_TCP6; 13527 optp->name = EXPER_XPORT_MLP; 13528 optp->len = msgdsize(mp6_attr_ctl->b_cont); 13529 if (optp->len == 0) 13530 freemsg(mp6_attr_ctl); 13531 else 13532 qreply(q, mp6_attr_ctl); 13533 return (mp2ctl); 13534 } 13535 13536 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 13537 /* ARGSUSED */ 13538 int 13539 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 13540 { 13541 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 13542 13543 switch (level) { 13544 case MIB2_TCP: 13545 switch (name) { 13546 case 13: 13547 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 13548 return (0); 13549 /* TODO: delete entry defined by tce */ 13550 return (1); 13551 default: 13552 return (0); 13553 } 13554 default: 13555 return (1); 13556 } 13557 } 13558 13559 /* Translate TCP state to MIB2 TCP state. */ 13560 static int 13561 tcp_snmp_state(tcp_t *tcp) 13562 { 13563 if (tcp == NULL) 13564 return (0); 13565 13566 switch (tcp->tcp_state) { 13567 case TCPS_CLOSED: 13568 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 13569 case TCPS_BOUND: 13570 return (MIB2_TCP_closed); 13571 case TCPS_LISTEN: 13572 return (MIB2_TCP_listen); 13573 case TCPS_SYN_SENT: 13574 return (MIB2_TCP_synSent); 13575 case TCPS_SYN_RCVD: 13576 return (MIB2_TCP_synReceived); 13577 case TCPS_ESTABLISHED: 13578 return (MIB2_TCP_established); 13579 case TCPS_CLOSE_WAIT: 13580 return (MIB2_TCP_closeWait); 13581 case TCPS_FIN_WAIT_1: 13582 return (MIB2_TCP_finWait1); 13583 case TCPS_CLOSING: 13584 return (MIB2_TCP_closing); 13585 case TCPS_LAST_ACK: 13586 return (MIB2_TCP_lastAck); 13587 case TCPS_FIN_WAIT_2: 13588 return (MIB2_TCP_finWait2); 13589 case TCPS_TIME_WAIT: 13590 return (MIB2_TCP_timeWait); 13591 default: 13592 return (0); 13593 } 13594 } 13595 13596 /* 13597 * tcp_timer is the timer service routine. It handles the retransmission, 13598 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 13599 * from the state of the tcp instance what kind of action needs to be done 13600 * at the time it is called. 13601 */ 13602 static void 13603 tcp_timer(void *arg) 13604 { 13605 mblk_t *mp; 13606 clock_t first_threshold; 13607 clock_t second_threshold; 13608 clock_t ms; 13609 uint32_t mss; 13610 conn_t *connp = (conn_t *)arg; 13611 tcp_t *tcp = connp->conn_tcp; 13612 tcp_stack_t *tcps = tcp->tcp_tcps; 13613 13614 tcp->tcp_timer_tid = 0; 13615 13616 if (tcp->tcp_fused) 13617 return; 13618 13619 first_threshold = tcp->tcp_first_timer_threshold; 13620 second_threshold = tcp->tcp_second_timer_threshold; 13621 switch (tcp->tcp_state) { 13622 case TCPS_IDLE: 13623 case TCPS_BOUND: 13624 case TCPS_LISTEN: 13625 return; 13626 case TCPS_SYN_RCVD: { 13627 tcp_t *listener = tcp->tcp_listener; 13628 13629 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 13630 /* it's our first timeout */ 13631 tcp->tcp_syn_rcvd_timeout = 1; 13632 mutex_enter(&listener->tcp_eager_lock); 13633 listener->tcp_syn_rcvd_timeout++; 13634 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 13635 /* 13636 * Make this eager available for drop if we 13637 * need to drop one to accomodate a new 13638 * incoming SYN request. 13639 */ 13640 MAKE_DROPPABLE(listener, tcp); 13641 } 13642 if (!listener->tcp_syn_defense && 13643 (listener->tcp_syn_rcvd_timeout > 13644 (tcps->tcps_conn_req_max_q0 >> 2)) && 13645 (tcps->tcps_conn_req_max_q0 > 200)) { 13646 /* We may be under attack. Put on a defense. */ 13647 listener->tcp_syn_defense = B_TRUE; 13648 cmn_err(CE_WARN, "High TCP connect timeout " 13649 "rate! System (port %d) may be under a " 13650 "SYN flood attack!", 13651 ntohs(listener->tcp_connp->conn_lport)); 13652 13653 listener->tcp_ip_addr_cache = kmem_zalloc( 13654 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 13655 KM_NOSLEEP); 13656 } 13657 mutex_exit(&listener->tcp_eager_lock); 13658 } else if (listener != NULL) { 13659 mutex_enter(&listener->tcp_eager_lock); 13660 tcp->tcp_syn_rcvd_timeout++; 13661 if (tcp->tcp_syn_rcvd_timeout > 1 && 13662 !tcp->tcp_closemp_used) { 13663 /* 13664 * This is our second timeout. Put the tcp in 13665 * the list of droppable eagers to allow it to 13666 * be dropped, if needed. We don't check 13667 * whether tcp_dontdrop is set or not to 13668 * protect ourselve from a SYN attack where a 13669 * remote host can spoof itself as one of the 13670 * good IP source and continue to hold 13671 * resources too long. 13672 */ 13673 MAKE_DROPPABLE(listener, tcp); 13674 } 13675 mutex_exit(&listener->tcp_eager_lock); 13676 } 13677 } 13678 /* FALLTHRU */ 13679 case TCPS_SYN_SENT: 13680 first_threshold = tcp->tcp_first_ctimer_threshold; 13681 second_threshold = tcp->tcp_second_ctimer_threshold; 13682 break; 13683 case TCPS_ESTABLISHED: 13684 case TCPS_FIN_WAIT_1: 13685 case TCPS_CLOSING: 13686 case TCPS_CLOSE_WAIT: 13687 case TCPS_LAST_ACK: 13688 /* If we have data to rexmit */ 13689 if (tcp->tcp_suna != tcp->tcp_snxt) { 13690 clock_t time_to_wait; 13691 13692 BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); 13693 if (!tcp->tcp_xmit_head) 13694 break; 13695 time_to_wait = ddi_get_lbolt() - 13696 (clock_t)tcp->tcp_xmit_head->b_prev; 13697 time_to_wait = tcp->tcp_rto - 13698 TICK_TO_MSEC(time_to_wait); 13699 /* 13700 * If the timer fires too early, 1 clock tick earlier, 13701 * restart the timer. 13702 */ 13703 if (time_to_wait > msec_per_tick) { 13704 TCP_STAT(tcps, tcp_timer_fire_early); 13705 TCP_TIMER_RESTART(tcp, time_to_wait); 13706 return; 13707 } 13708 /* 13709 * When we probe zero windows, we force the swnd open. 13710 * If our peer acks with a closed window swnd will be 13711 * set to zero by tcp_rput(). As long as we are 13712 * receiving acks tcp_rput will 13713 * reset 'tcp_ms_we_have_waited' so as not to trip the 13714 * first and second interval actions. NOTE: the timer 13715 * interval is allowed to continue its exponential 13716 * backoff. 13717 */ 13718 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 13719 if (connp->conn_debug) { 13720 (void) strlog(TCP_MOD_ID, 0, 1, 13721 SL_TRACE, "tcp_timer: zero win"); 13722 } 13723 } else { 13724 /* 13725 * After retransmission, we need to do 13726 * slow start. Set the ssthresh to one 13727 * half of current effective window and 13728 * cwnd to one MSS. Also reset 13729 * tcp_cwnd_cnt. 13730 * 13731 * Note that if tcp_ssthresh is reduced because 13732 * of ECN, do not reduce it again unless it is 13733 * already one window of data away (tcp_cwr 13734 * should then be cleared) or this is a 13735 * timeout for a retransmitted segment. 13736 */ 13737 uint32_t npkt; 13738 13739 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 13740 npkt = ((tcp->tcp_timer_backoff ? 13741 tcp->tcp_cwnd_ssthresh : 13742 tcp->tcp_snxt - 13743 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 13744 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 13745 tcp->tcp_mss; 13746 } 13747 tcp->tcp_cwnd = tcp->tcp_mss; 13748 tcp->tcp_cwnd_cnt = 0; 13749 if (tcp->tcp_ecn_ok) { 13750 tcp->tcp_cwr = B_TRUE; 13751 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 13752 tcp->tcp_ecn_cwr_sent = B_FALSE; 13753 } 13754 } 13755 break; 13756 } 13757 /* 13758 * We have something to send yet we cannot send. The 13759 * reason can be: 13760 * 13761 * 1. Zero send window: we need to do zero window probe. 13762 * 2. Zero cwnd: because of ECN, we need to "clock out 13763 * segments. 13764 * 3. SWS avoidance: receiver may have shrunk window, 13765 * reset our knowledge. 13766 * 13767 * Note that condition 2 can happen with either 1 or 13768 * 3. But 1 and 3 are exclusive. 13769 */ 13770 if (tcp->tcp_unsent != 0) { 13771 /* 13772 * Should not hold the zero-copy messages for too long. 13773 */ 13774 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) 13775 tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, 13776 tcp->tcp_xmit_head, B_TRUE); 13777 13778 if (tcp->tcp_cwnd == 0) { 13779 /* 13780 * Set tcp_cwnd to 1 MSS so that a 13781 * new segment can be sent out. We 13782 * are "clocking out" new data when 13783 * the network is really congested. 13784 */ 13785 ASSERT(tcp->tcp_ecn_ok); 13786 tcp->tcp_cwnd = tcp->tcp_mss; 13787 } 13788 if (tcp->tcp_swnd == 0) { 13789 /* Extend window for zero window probe */ 13790 tcp->tcp_swnd++; 13791 tcp->tcp_zero_win_probe = B_TRUE; 13792 BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); 13793 } else { 13794 /* 13795 * Handle timeout from sender SWS avoidance. 13796 * Reset our knowledge of the max send window 13797 * since the receiver might have reduced its 13798 * receive buffer. Avoid setting tcp_max_swnd 13799 * to one since that will essentially disable 13800 * the SWS checks. 13801 * 13802 * Note that since we don't have a SWS 13803 * state variable, if the timeout is set 13804 * for ECN but not for SWS, this 13805 * code will also be executed. This is 13806 * fine as tcp_max_swnd is updated 13807 * constantly and it will not affect 13808 * anything. 13809 */ 13810 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 13811 } 13812 tcp_wput_data(tcp, NULL, B_FALSE); 13813 return; 13814 } 13815 /* Is there a FIN that needs to be to re retransmitted? */ 13816 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 13817 !tcp->tcp_fin_acked) 13818 break; 13819 /* Nothing to do, return without restarting timer. */ 13820 TCP_STAT(tcps, tcp_timer_fire_miss); 13821 return; 13822 case TCPS_FIN_WAIT_2: 13823 /* 13824 * User closed the TCP endpoint and peer ACK'ed our FIN. 13825 * We waited some time for for peer's FIN, but it hasn't 13826 * arrived. We flush the connection now to avoid 13827 * case where the peer has rebooted. 13828 */ 13829 if (TCP_IS_DETACHED(tcp)) { 13830 (void) tcp_clean_death(tcp, 0, 23); 13831 } else { 13832 TCP_TIMER_RESTART(tcp, 13833 tcps->tcps_fin_wait_2_flush_interval); 13834 } 13835 return; 13836 case TCPS_TIME_WAIT: 13837 (void) tcp_clean_death(tcp, 0, 24); 13838 return; 13839 default: 13840 if (connp->conn_debug) { 13841 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 13842 "tcp_timer: strange state (%d) %s", 13843 tcp->tcp_state, tcp_display(tcp, NULL, 13844 DISP_PORT_ONLY)); 13845 } 13846 return; 13847 } 13848 13849 /* 13850 * If the system is under memory pressure or the max number of 13851 * connections have been established for the listener, be more 13852 * aggressive in aborting connections. 13853 */ 13854 if (tcps->tcps_reclaim || (tcp->tcp_listen_cnt != NULL && 13855 tcp->tcp_listen_cnt->tlc_cnt > tcp->tcp_listen_cnt->tlc_max)) { 13856 second_threshold = tcp_early_abort * SECONDS; 13857 } 13858 13859 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 13860 /* 13861 * Should not hold the zero-copy messages for too long. 13862 */ 13863 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) 13864 tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, 13865 tcp->tcp_xmit_head, B_TRUE); 13866 13867 /* 13868 * For zero window probe, we need to send indefinitely, 13869 * unless we have not heard from the other side for some 13870 * time... 13871 */ 13872 if ((tcp->tcp_zero_win_probe == 0) || 13873 (TICK_TO_MSEC(ddi_get_lbolt() - tcp->tcp_last_recv_time) > 13874 second_threshold)) { 13875 BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); 13876 /* 13877 * If TCP is in SYN_RCVD state, send back a 13878 * RST|ACK as BSD does. Note that tcp_zero_win_probe 13879 * should be zero in TCPS_SYN_RCVD state. 13880 */ 13881 if (tcp->tcp_state == TCPS_SYN_RCVD) { 13882 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 13883 "in SYN_RCVD", 13884 tcp, tcp->tcp_snxt, 13885 tcp->tcp_rnxt, TH_RST | TH_ACK); 13886 } 13887 (void) tcp_clean_death(tcp, 13888 tcp->tcp_client_errno ? 13889 tcp->tcp_client_errno : ETIMEDOUT, 25); 13890 return; 13891 } else { 13892 /* 13893 * If the system is under memory pressure, we also 13894 * abort connection in zero window probing. 13895 */ 13896 if (tcps->tcps_reclaim) { 13897 (void) tcp_clean_death(tcp, 13898 tcp->tcp_client_errno ? 13899 tcp->tcp_client_errno : ETIMEDOUT, 25); 13900 return; 13901 } 13902 /* 13903 * Set tcp_ms_we_have_waited to second_threshold 13904 * so that in next timeout, we will do the above 13905 * check (ddi_get_lbolt() - tcp_last_recv_time). 13906 * This is also to avoid overflow. 13907 * 13908 * We don't need to decrement tcp_timer_backoff 13909 * to avoid overflow because it will be decremented 13910 * later if new timeout value is greater than 13911 * tcp_rexmit_interval_max. In the case when 13912 * tcp_rexmit_interval_max is greater than 13913 * second_threshold, it means that we will wait 13914 * longer than second_threshold to send the next 13915 * window probe. 13916 */ 13917 tcp->tcp_ms_we_have_waited = second_threshold; 13918 } 13919 } else if (ms > first_threshold) { 13920 /* 13921 * Should not hold the zero-copy messages for too long. 13922 */ 13923 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) 13924 tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, 13925 tcp->tcp_xmit_head, B_TRUE); 13926 13927 /* 13928 * We have been retransmitting for too long... The RTT 13929 * we calculated is probably incorrect. Reinitialize it. 13930 * Need to compensate for 0 tcp_rtt_sa. Reset 13931 * tcp_rtt_update so that we won't accidentally cache a 13932 * bad value. But only do this if this is not a zero 13933 * window probe. 13934 */ 13935 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 13936 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 13937 (tcp->tcp_rtt_sa >> 5); 13938 tcp->tcp_rtt_sa = 0; 13939 tcp_ip_notify(tcp); 13940 tcp->tcp_rtt_update = 0; 13941 } 13942 } 13943 tcp->tcp_timer_backoff++; 13944 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 13945 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 13946 tcps->tcps_rexmit_interval_min) { 13947 /* 13948 * This means the original RTO is tcp_rexmit_interval_min. 13949 * So we will use tcp_rexmit_interval_min as the RTO value 13950 * and do the backoff. 13951 */ 13952 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 13953 } else { 13954 ms <<= tcp->tcp_timer_backoff; 13955 } 13956 if (ms > tcps->tcps_rexmit_interval_max) { 13957 ms = tcps->tcps_rexmit_interval_max; 13958 /* 13959 * ms is at max, decrement tcp_timer_backoff to avoid 13960 * overflow. 13961 */ 13962 tcp->tcp_timer_backoff--; 13963 } 13964 tcp->tcp_ms_we_have_waited += ms; 13965 if (tcp->tcp_zero_win_probe == 0) { 13966 tcp->tcp_rto = ms; 13967 } 13968 TCP_TIMER_RESTART(tcp, ms); 13969 /* 13970 * This is after a timeout and tcp_rto is backed off. Set 13971 * tcp_set_timer to 1 so that next time RTO is updated, we will 13972 * restart the timer with a correct value. 13973 */ 13974 tcp->tcp_set_timer = 1; 13975 mss = tcp->tcp_snxt - tcp->tcp_suna; 13976 if (mss > tcp->tcp_mss) 13977 mss = tcp->tcp_mss; 13978 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 13979 mss = tcp->tcp_swnd; 13980 13981 if ((mp = tcp->tcp_xmit_head) != NULL) 13982 mp->b_prev = (mblk_t *)ddi_get_lbolt(); 13983 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 13984 B_TRUE); 13985 13986 /* 13987 * When slow start after retransmission begins, start with 13988 * this seq no. tcp_rexmit_max marks the end of special slow 13989 * start phase. tcp_snd_burst controls how many segments 13990 * can be sent because of an ack. 13991 */ 13992 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 13993 tcp->tcp_snd_burst = TCP_CWND_SS; 13994 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 13995 (tcp->tcp_unsent == 0)) { 13996 tcp->tcp_rexmit_max = tcp->tcp_fss; 13997 } else { 13998 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13999 } 14000 tcp->tcp_rexmit = B_TRUE; 14001 tcp->tcp_dupack_cnt = 0; 14002 14003 /* 14004 * Remove all rexmit SACK blk to start from fresh. 14005 */ 14006 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) 14007 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 14008 if (mp == NULL) { 14009 return; 14010 } 14011 14012 tcp->tcp_csuna = tcp->tcp_snxt; 14013 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 14014 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); 14015 tcp_send_data(tcp, mp); 14016 14017 } 14018 14019 static int 14020 tcp_do_unbind(conn_t *connp) 14021 { 14022 tcp_t *tcp = connp->conn_tcp; 14023 14024 switch (tcp->tcp_state) { 14025 case TCPS_BOUND: 14026 case TCPS_LISTEN: 14027 break; 14028 default: 14029 return (-TOUTSTATE); 14030 } 14031 14032 /* 14033 * Need to clean up all the eagers since after the unbind, segments 14034 * will no longer be delivered to this listener stream. 14035 */ 14036 mutex_enter(&tcp->tcp_eager_lock); 14037 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 14038 tcp_eager_cleanup(tcp, 0); 14039 } 14040 mutex_exit(&tcp->tcp_eager_lock); 14041 14042 /* Clean up the listener connection counter if necessary. */ 14043 if (tcp->tcp_listen_cnt != NULL) 14044 TCP_DECR_LISTEN_CNT(tcp); 14045 connp->conn_laddr_v6 = ipv6_all_zeros; 14046 connp->conn_saddr_v6 = ipv6_all_zeros; 14047 tcp_bind_hash_remove(tcp); 14048 tcp->tcp_state = TCPS_IDLE; 14049 14050 ip_unbind(connp); 14051 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 14052 14053 return (0); 14054 } 14055 14056 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 14057 static void 14058 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp) 14059 { 14060 conn_t *connp = tcp->tcp_connp; 14061 int error; 14062 14063 error = tcp_do_unbind(connp); 14064 if (error > 0) { 14065 tcp_err_ack(tcp, mp, TSYSERR, error); 14066 } else if (error < 0) { 14067 tcp_err_ack(tcp, mp, -error, 0); 14068 } else { 14069 /* Send M_FLUSH according to TPI */ 14070 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW); 14071 14072 mp = mi_tpi_ok_ack_alloc(mp); 14073 if (mp != NULL) 14074 putnext(connp->conn_rq, mp); 14075 } 14076 } 14077 14078 /* 14079 * Don't let port fall into the privileged range. 14080 * Since the extra privileged ports can be arbitrary we also 14081 * ensure that we exclude those from consideration. 14082 * tcp_g_epriv_ports is not sorted thus we loop over it until 14083 * there are no changes. 14084 * 14085 * Note: No locks are held when inspecting tcp_g_*epriv_ports 14086 * but instead the code relies on: 14087 * - the fact that the address of the array and its size never changes 14088 * - the atomic assignment of the elements of the array 14089 * 14090 * Returns 0 if there are no more ports available. 14091 * 14092 * TS note: skip multilevel ports. 14093 */ 14094 static in_port_t 14095 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 14096 { 14097 int i; 14098 boolean_t restart = B_FALSE; 14099 tcp_stack_t *tcps = tcp->tcp_tcps; 14100 14101 if (random && tcp_random_anon_port != 0) { 14102 (void) random_get_pseudo_bytes((uint8_t *)&port, 14103 sizeof (in_port_t)); 14104 /* 14105 * Unless changed by a sys admin, the smallest anon port 14106 * is 32768 and the largest anon port is 65535. It is 14107 * very likely (50%) for the random port to be smaller 14108 * than the smallest anon port. When that happens, 14109 * add port % (anon port range) to the smallest anon 14110 * port to get the random port. It should fall into the 14111 * valid anon port range. 14112 */ 14113 if (port < tcps->tcps_smallest_anon_port) { 14114 port = tcps->tcps_smallest_anon_port + 14115 port % (tcps->tcps_largest_anon_port - 14116 tcps->tcps_smallest_anon_port); 14117 } 14118 } 14119 14120 retry: 14121 if (port < tcps->tcps_smallest_anon_port) 14122 port = (in_port_t)tcps->tcps_smallest_anon_port; 14123 14124 if (port > tcps->tcps_largest_anon_port) { 14125 if (restart) 14126 return (0); 14127 restart = B_TRUE; 14128 port = (in_port_t)tcps->tcps_smallest_anon_port; 14129 } 14130 14131 if (port < tcps->tcps_smallest_nonpriv_port) 14132 port = (in_port_t)tcps->tcps_smallest_nonpriv_port; 14133 14134 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 14135 if (port == tcps->tcps_g_epriv_ports[i]) { 14136 port++; 14137 /* 14138 * Make sure whether the port is in the 14139 * valid range. 14140 */ 14141 goto retry; 14142 } 14143 } 14144 if (is_system_labeled() && 14145 (i = tsol_next_port(crgetzone(tcp->tcp_connp->conn_cred), port, 14146 IPPROTO_TCP, B_TRUE)) != 0) { 14147 port = i; 14148 goto retry; 14149 } 14150 return (port); 14151 } 14152 14153 /* 14154 * Return the next anonymous port in the privileged port range for 14155 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 14156 * downwards. This is the same behavior as documented in the userland 14157 * library call rresvport(3N). 14158 * 14159 * TS note: skip multilevel ports. 14160 */ 14161 static in_port_t 14162 tcp_get_next_priv_port(const tcp_t *tcp) 14163 { 14164 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 14165 in_port_t nextport; 14166 boolean_t restart = B_FALSE; 14167 tcp_stack_t *tcps = tcp->tcp_tcps; 14168 retry: 14169 if (next_priv_port < tcps->tcps_min_anonpriv_port || 14170 next_priv_port >= IPPORT_RESERVED) { 14171 next_priv_port = IPPORT_RESERVED - 1; 14172 if (restart) 14173 return (0); 14174 restart = B_TRUE; 14175 } 14176 if (is_system_labeled() && 14177 (nextport = tsol_next_port(crgetzone(tcp->tcp_connp->conn_cred), 14178 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 14179 next_priv_port = nextport; 14180 goto retry; 14181 } 14182 return (next_priv_port--); 14183 } 14184 14185 /* The write side r/w procedure. */ 14186 14187 #if CCS_STATS 14188 struct { 14189 struct { 14190 int64_t count, bytes; 14191 } tot, hit; 14192 } wrw_stats; 14193 #endif 14194 14195 /* 14196 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 14197 * messages. 14198 */ 14199 /* ARGSUSED */ 14200 static void 14201 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 14202 { 14203 conn_t *connp = (conn_t *)arg; 14204 tcp_t *tcp = connp->conn_tcp; 14205 14206 ASSERT(DB_TYPE(mp) != M_IOCTL); 14207 /* 14208 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 14209 * Once the close starts, streamhead and sockfs will not let any data 14210 * packets come down (close ensures that there are no threads using the 14211 * queue and no new threads will come down) but since qprocsoff() 14212 * hasn't happened yet, a M_FLUSH or some non data message might 14213 * get reflected back (in response to our own FLUSHRW) and get 14214 * processed after tcp_close() is done. The conn would still be valid 14215 * because a ref would have added but we need to check the state 14216 * before actually processing the packet. 14217 */ 14218 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 14219 freemsg(mp); 14220 return; 14221 } 14222 14223 switch (DB_TYPE(mp)) { 14224 case M_IOCDATA: 14225 tcp_wput_iocdata(tcp, mp); 14226 break; 14227 case M_FLUSH: 14228 tcp_wput_flush(tcp, mp); 14229 break; 14230 default: 14231 ip_wput_nondata(connp->conn_wq, mp); 14232 break; 14233 } 14234 } 14235 14236 /* 14237 * The TCP fast path write put procedure. 14238 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 14239 */ 14240 /* ARGSUSED */ 14241 void 14242 tcp_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 14243 { 14244 int len; 14245 int hdrlen; 14246 int plen; 14247 mblk_t *mp1; 14248 uchar_t *rptr; 14249 uint32_t snxt; 14250 tcpha_t *tcpha; 14251 struct datab *db; 14252 uint32_t suna; 14253 uint32_t mss; 14254 ipaddr_t *dst; 14255 ipaddr_t *src; 14256 uint32_t sum; 14257 int usable; 14258 conn_t *connp = (conn_t *)arg; 14259 tcp_t *tcp = connp->conn_tcp; 14260 uint32_t msize; 14261 tcp_stack_t *tcps = tcp->tcp_tcps; 14262 ip_xmit_attr_t *ixa; 14263 clock_t now; 14264 14265 /* 14266 * Try and ASSERT the minimum possible references on the 14267 * conn early enough. Since we are executing on write side, 14268 * the connection is obviously not detached and that means 14269 * there is a ref each for TCP and IP. Since we are behind 14270 * the squeue, the minimum references needed are 3. If the 14271 * conn is in classifier hash list, there should be an 14272 * extra ref for that (we check both the possibilities). 14273 */ 14274 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 14275 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 14276 14277 ASSERT(DB_TYPE(mp) == M_DATA); 14278 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 14279 14280 mutex_enter(&tcp->tcp_non_sq_lock); 14281 tcp->tcp_squeue_bytes -= msize; 14282 mutex_exit(&tcp->tcp_non_sq_lock); 14283 14284 /* Bypass tcp protocol for fused tcp loopback */ 14285 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 14286 return; 14287 14288 mss = tcp->tcp_mss; 14289 /* 14290 * If ZEROCOPY has turned off, try not to send any zero-copy message 14291 * down. Do backoff, now. 14292 */ 14293 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_snd_zcopy_on) 14294 mp = tcp_zcopy_backoff(tcp, mp, B_FALSE); 14295 14296 14297 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 14298 len = (int)(mp->b_wptr - mp->b_rptr); 14299 14300 /* 14301 * Criteria for fast path: 14302 * 14303 * 1. no unsent data 14304 * 2. single mblk in request 14305 * 3. connection established 14306 * 4. data in mblk 14307 * 5. len <= mss 14308 * 6. no tcp_valid bits 14309 */ 14310 if ((tcp->tcp_unsent != 0) || 14311 (tcp->tcp_cork) || 14312 (mp->b_cont != NULL) || 14313 (tcp->tcp_state != TCPS_ESTABLISHED) || 14314 (len == 0) || 14315 (len > mss) || 14316 (tcp->tcp_valid_bits != 0)) { 14317 tcp_wput_data(tcp, mp, B_FALSE); 14318 return; 14319 } 14320 14321 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 14322 ASSERT(tcp->tcp_fin_sent == 0); 14323 14324 /* queue new packet onto retransmission queue */ 14325 if (tcp->tcp_xmit_head == NULL) { 14326 tcp->tcp_xmit_head = mp; 14327 } else { 14328 tcp->tcp_xmit_last->b_cont = mp; 14329 } 14330 tcp->tcp_xmit_last = mp; 14331 tcp->tcp_xmit_tail = mp; 14332 14333 /* find out how much we can send */ 14334 /* BEGIN CSTYLED */ 14335 /* 14336 * un-acked usable 14337 * |--------------|-----------------| 14338 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 14339 */ 14340 /* END CSTYLED */ 14341 14342 /* start sending from tcp_snxt */ 14343 snxt = tcp->tcp_snxt; 14344 14345 /* 14346 * Check to see if this connection has been idled for some 14347 * time and no ACK is expected. If it is, we need to slow 14348 * start again to get back the connection's "self-clock" as 14349 * described in VJ's paper. 14350 * 14351 * Reinitialize tcp_cwnd after idle. 14352 */ 14353 now = LBOLT_FASTPATH; 14354 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 14355 (TICK_TO_MSEC(now - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 14356 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 14357 } 14358 14359 usable = tcp->tcp_swnd; /* tcp window size */ 14360 if (usable > tcp->tcp_cwnd) 14361 usable = tcp->tcp_cwnd; /* congestion window smaller */ 14362 usable -= snxt; /* subtract stuff already sent */ 14363 suna = tcp->tcp_suna; 14364 usable += suna; 14365 /* usable can be < 0 if the congestion window is smaller */ 14366 if (len > usable) { 14367 /* Can't send complete M_DATA in one shot */ 14368 goto slow; 14369 } 14370 14371 mutex_enter(&tcp->tcp_non_sq_lock); 14372 if (tcp->tcp_flow_stopped && 14373 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 14374 tcp_clrqfull(tcp); 14375 } 14376 mutex_exit(&tcp->tcp_non_sq_lock); 14377 14378 /* 14379 * determine if anything to send (Nagle). 14380 * 14381 * 1. len < tcp_mss (i.e. small) 14382 * 2. unacknowledged data present 14383 * 3. len < nagle limit 14384 * 4. last packet sent < nagle limit (previous packet sent) 14385 */ 14386 if ((len < mss) && (snxt != suna) && 14387 (len < (int)tcp->tcp_naglim) && 14388 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 14389 /* 14390 * This was the first unsent packet and normally 14391 * mss < xmit_hiwater so there is no need to worry 14392 * about flow control. The next packet will go 14393 * through the flow control check in tcp_wput_data(). 14394 */ 14395 /* leftover work from above */ 14396 tcp->tcp_unsent = len; 14397 tcp->tcp_xmit_tail_unsent = len; 14398 14399 return; 14400 } 14401 14402 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 14403 14404 if (snxt == suna) { 14405 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14406 } 14407 14408 /* we have always sent something */ 14409 tcp->tcp_rack_cnt = 0; 14410 14411 tcp->tcp_snxt = snxt + len; 14412 tcp->tcp_rack = tcp->tcp_rnxt; 14413 14414 if ((mp1 = dupb(mp)) == 0) 14415 goto no_memory; 14416 mp->b_prev = (mblk_t *)(uintptr_t)now; 14417 mp->b_next = (mblk_t *)(uintptr_t)snxt; 14418 14419 /* adjust tcp header information */ 14420 tcpha = tcp->tcp_tcpha; 14421 tcpha->tha_flags = (TH_ACK|TH_PUSH); 14422 14423 sum = len + connp->conn_ht_ulp_len + connp->conn_sum; 14424 sum = (sum >> 16) + (sum & 0xFFFF); 14425 tcpha->tha_sum = htons(sum); 14426 14427 tcpha->tha_seq = htonl(snxt); 14428 14429 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 14430 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 14431 BUMP_LOCAL(tcp->tcp_obsegs); 14432 14433 /* Update the latest receive window size in TCP header. */ 14434 tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 14435 14436 tcp->tcp_last_sent_len = (ushort_t)len; 14437 14438 plen = len + connp->conn_ht_iphc_len; 14439 14440 ixa = connp->conn_ixa; 14441 ixa->ixa_pktlen = plen; 14442 14443 if (ixa->ixa_flags & IXAF_IS_IPV4) { 14444 tcp->tcp_ipha->ipha_length = htons(plen); 14445 } else { 14446 tcp->tcp_ip6h->ip6_plen = htons(plen - IPV6_HDR_LEN); 14447 } 14448 14449 /* see if we need to allocate a mblk for the headers */ 14450 hdrlen = connp->conn_ht_iphc_len; 14451 rptr = mp1->b_rptr - hdrlen; 14452 db = mp1->b_datap; 14453 if ((db->db_ref != 2) || rptr < db->db_base || 14454 (!OK_32PTR(rptr))) { 14455 /* NOTE: we assume allocb returns an OK_32PTR */ 14456 mp = allocb(hdrlen + tcps->tcps_wroff_xtra, BPRI_MED); 14457 if (!mp) { 14458 freemsg(mp1); 14459 goto no_memory; 14460 } 14461 mp->b_cont = mp1; 14462 mp1 = mp; 14463 /* Leave room for Link Level header */ 14464 rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; 14465 mp1->b_wptr = &rptr[hdrlen]; 14466 } 14467 mp1->b_rptr = rptr; 14468 14469 /* Fill in the timestamp option. */ 14470 if (tcp->tcp_snd_ts_ok) { 14471 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 14472 14473 U32_TO_BE32(llbolt, 14474 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 14475 U32_TO_BE32(tcp->tcp_ts_recent, 14476 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 14477 } else { 14478 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 14479 } 14480 14481 /* copy header into outgoing packet */ 14482 dst = (ipaddr_t *)rptr; 14483 src = (ipaddr_t *)connp->conn_ht_iphc; 14484 dst[0] = src[0]; 14485 dst[1] = src[1]; 14486 dst[2] = src[2]; 14487 dst[3] = src[3]; 14488 dst[4] = src[4]; 14489 dst[5] = src[5]; 14490 dst[6] = src[6]; 14491 dst[7] = src[7]; 14492 dst[8] = src[8]; 14493 dst[9] = src[9]; 14494 if (hdrlen -= 40) { 14495 hdrlen >>= 2; 14496 dst += 10; 14497 src += 10; 14498 do { 14499 *dst++ = *src++; 14500 } while (--hdrlen); 14501 } 14502 14503 /* 14504 * Set the ECN info in the TCP header. Note that this 14505 * is not the template header. 14506 */ 14507 if (tcp->tcp_ecn_ok) { 14508 SET_ECT(tcp, rptr); 14509 14510 tcpha = (tcpha_t *)(rptr + ixa->ixa_ip_hdr_length); 14511 if (tcp->tcp_ecn_echo_on) 14512 tcpha->tha_flags |= TH_ECE; 14513 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 14514 tcpha->tha_flags |= TH_CWR; 14515 tcp->tcp_ecn_cwr_sent = B_TRUE; 14516 } 14517 } 14518 14519 if (tcp->tcp_ip_forward_progress) { 14520 tcp->tcp_ip_forward_progress = B_FALSE; 14521 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 14522 } else { 14523 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 14524 } 14525 tcp_send_data(tcp, mp1); 14526 return; 14527 14528 /* 14529 * If we ran out of memory, we pretend to have sent the packet 14530 * and that it was lost on the wire. 14531 */ 14532 no_memory: 14533 return; 14534 14535 slow: 14536 /* leftover work from above */ 14537 tcp->tcp_unsent = len; 14538 tcp->tcp_xmit_tail_unsent = len; 14539 tcp_wput_data(tcp, NULL, B_FALSE); 14540 } 14541 14542 /* 14543 * This runs at the tail end of accept processing on the squeue of the 14544 * new connection. 14545 */ 14546 /* ARGSUSED */ 14547 void 14548 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 14549 { 14550 conn_t *connp = (conn_t *)arg; 14551 tcp_t *tcp = connp->conn_tcp; 14552 queue_t *q = connp->conn_rq; 14553 tcp_stack_t *tcps = tcp->tcp_tcps; 14554 /* socket options */ 14555 struct sock_proto_props sopp; 14556 14557 /* We should just receive a single mblk that fits a T_discon_ind */ 14558 ASSERT(mp->b_cont == NULL); 14559 14560 /* 14561 * Drop the eager's ref on the listener, that was placed when 14562 * this eager began life in tcp_input_listener. 14563 */ 14564 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 14565 if (IPCL_IS_NONSTR(connp)) { 14566 /* Safe to free conn_ind message */ 14567 freemsg(tcp->tcp_conn.tcp_eager_conn_ind); 14568 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14569 } 14570 14571 tcp->tcp_detached = B_FALSE; 14572 14573 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 14574 /* 14575 * Someone blewoff the eager before we could finish 14576 * the accept. 14577 * 14578 * The only reason eager exists it because we put in 14579 * a ref on it when conn ind went up. We need to send 14580 * a disconnect indication up while the last reference 14581 * on the eager will be dropped by the squeue when we 14582 * return. 14583 */ 14584 ASSERT(tcp->tcp_listener == NULL); 14585 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 14586 if (IPCL_IS_NONSTR(connp)) { 14587 ASSERT(tcp->tcp_issocket); 14588 (*connp->conn_upcalls->su_disconnected)( 14589 connp->conn_upper_handle, tcp->tcp_connid, 14590 ECONNREFUSED); 14591 freemsg(mp); 14592 } else { 14593 struct T_discon_ind *tdi; 14594 14595 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 14596 /* 14597 * Let us reuse the incoming mblk to avoid 14598 * memory allocation failure problems. We know 14599 * that the size of the incoming mblk i.e. 14600 * stroptions is greater than sizeof 14601 * T_discon_ind. 14602 */ 14603 ASSERT(DB_REF(mp) == 1); 14604 ASSERT(MBLKSIZE(mp) >= 14605 sizeof (struct T_discon_ind)); 14606 14607 DB_TYPE(mp) = M_PROTO; 14608 ((union T_primitives *)mp->b_rptr)->type = 14609 T_DISCON_IND; 14610 tdi = (struct T_discon_ind *)mp->b_rptr; 14611 if (tcp->tcp_issocket) { 14612 tdi->DISCON_reason = ECONNREFUSED; 14613 tdi->SEQ_number = 0; 14614 } else { 14615 tdi->DISCON_reason = ENOPROTOOPT; 14616 tdi->SEQ_number = 14617 tcp->tcp_conn_req_seqnum; 14618 } 14619 mp->b_wptr = mp->b_rptr + 14620 sizeof (struct T_discon_ind); 14621 putnext(q, mp); 14622 } 14623 } 14624 tcp->tcp_hard_binding = B_FALSE; 14625 return; 14626 } 14627 14628 /* 14629 * This is the first time we run on the correct 14630 * queue after tcp_accept. So fix all the q parameters 14631 * here. 14632 */ 14633 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 14634 sopp.sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 14635 14636 sopp.sopp_rxhiwat = tcp->tcp_fused ? 14637 tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) : 14638 connp->conn_rcvbuf; 14639 14640 /* 14641 * Determine what write offset value to use depending on SACK and 14642 * whether the endpoint is fused or not. 14643 */ 14644 if (tcp->tcp_fused) { 14645 ASSERT(tcp->tcp_loopback); 14646 ASSERT(tcp->tcp_loopback_peer != NULL); 14647 /* 14648 * For fused tcp loopback, set the stream head's write 14649 * offset value to zero since we won't be needing any room 14650 * for TCP/IP headers. This would also improve performance 14651 * since it would reduce the amount of work done by kmem. 14652 * Non-fused tcp loopback case is handled separately below. 14653 */ 14654 sopp.sopp_wroff = 0; 14655 /* 14656 * Update the peer's transmit parameters according to 14657 * our recently calculated high water mark value. 14658 */ 14659 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 14660 } else if (tcp->tcp_snd_sack_ok) { 14661 sopp.sopp_wroff = connp->conn_ht_iphc_allocated + 14662 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 14663 } else { 14664 sopp.sopp_wroff = connp->conn_ht_iphc_len + 14665 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 14666 } 14667 14668 /* 14669 * If this is endpoint is handling SSL, then reserve extra 14670 * offset and space at the end. 14671 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 14672 * overriding the previous setting. The extra cost of signing and 14673 * encrypting multiple MSS-size records (12 of them with Ethernet), 14674 * instead of a single contiguous one by the stream head 14675 * largely outweighs the statistical reduction of ACKs, when 14676 * applicable. The peer will also save on decryption and verification 14677 * costs. 14678 */ 14679 if (tcp->tcp_kssl_ctx != NULL) { 14680 sopp.sopp_wroff += SSL3_WROFFSET; 14681 14682 sopp.sopp_flags |= SOCKOPT_TAIL; 14683 sopp.sopp_tail = SSL3_MAX_TAIL_LEN; 14684 14685 sopp.sopp_flags |= SOCKOPT_ZCOPY; 14686 sopp.sopp_zcopyflag = ZCVMUNSAFE; 14687 14688 sopp.sopp_maxblk = SSL3_MAX_RECORD_LEN; 14689 } 14690 14691 /* Send the options up */ 14692 if (IPCL_IS_NONSTR(connp)) { 14693 if (sopp.sopp_flags & SOCKOPT_TAIL) { 14694 ASSERT(tcp->tcp_kssl_ctx != NULL); 14695 ASSERT(sopp.sopp_flags & SOCKOPT_ZCOPY); 14696 } 14697 if (tcp->tcp_loopback) { 14698 sopp.sopp_flags |= SOCKOPT_LOOPBACK; 14699 sopp.sopp_loopback = B_TRUE; 14700 } 14701 (*connp->conn_upcalls->su_set_proto_props) 14702 (connp->conn_upper_handle, &sopp); 14703 freemsg(mp); 14704 } else { 14705 /* 14706 * Let us reuse the incoming mblk to avoid 14707 * memory allocation failure problems. We know 14708 * that the size of the incoming mblk is at least 14709 * stroptions 14710 */ 14711 struct stroptions *stropt; 14712 14713 ASSERT(DB_REF(mp) == 1); 14714 ASSERT(MBLKSIZE(mp) >= sizeof (struct stroptions)); 14715 14716 DB_TYPE(mp) = M_SETOPTS; 14717 stropt = (struct stroptions *)mp->b_rptr; 14718 mp->b_wptr = mp->b_rptr + sizeof (struct stroptions); 14719 stropt = (struct stroptions *)mp->b_rptr; 14720 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 14721 stropt->so_hiwat = sopp.sopp_rxhiwat; 14722 stropt->so_wroff = sopp.sopp_wroff; 14723 stropt->so_maxblk = sopp.sopp_maxblk; 14724 14725 if (sopp.sopp_flags & SOCKOPT_TAIL) { 14726 ASSERT(tcp->tcp_kssl_ctx != NULL); 14727 14728 stropt->so_flags |= SO_TAIL | SO_COPYOPT; 14729 stropt->so_tail = sopp.sopp_tail; 14730 stropt->so_copyopt = sopp.sopp_zcopyflag; 14731 } 14732 14733 /* Send the options up */ 14734 putnext(q, mp); 14735 } 14736 14737 /* 14738 * Pass up any data and/or a fin that has been received. 14739 * 14740 * Adjust receive window in case it had decreased 14741 * (because there is data <=> tcp_rcv_list != NULL) 14742 * while the connection was detached. Note that 14743 * in case the eager was flow-controlled, w/o this 14744 * code, the rwnd may never open up again! 14745 */ 14746 if (tcp->tcp_rcv_list != NULL) { 14747 if (IPCL_IS_NONSTR(connp)) { 14748 mblk_t *mp; 14749 int space_left; 14750 int error; 14751 boolean_t push = B_TRUE; 14752 14753 if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv) 14754 (connp->conn_upper_handle, NULL, 0, 0, &error, 14755 &push) >= 0) { 14756 tcp->tcp_rwnd = connp->conn_rcvbuf; 14757 if (tcp->tcp_state >= TCPS_ESTABLISHED && 14758 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 14759 tcp_xmit_ctl(NULL, 14760 tcp, (tcp->tcp_swnd == 0) ? 14761 tcp->tcp_suna : tcp->tcp_snxt, 14762 tcp->tcp_rnxt, TH_ACK); 14763 } 14764 } 14765 while ((mp = tcp->tcp_rcv_list) != NULL) { 14766 push = B_TRUE; 14767 tcp->tcp_rcv_list = mp->b_next; 14768 mp->b_next = NULL; 14769 space_left = (*connp->conn_upcalls->su_recv) 14770 (connp->conn_upper_handle, mp, msgdsize(mp), 14771 0, &error, &push); 14772 if (space_left < 0) { 14773 /* 14774 * We should never be in middle of a 14775 * fallback, the squeue guarantees that. 14776 */ 14777 ASSERT(error != EOPNOTSUPP); 14778 } 14779 } 14780 tcp->tcp_rcv_last_head = NULL; 14781 tcp->tcp_rcv_last_tail = NULL; 14782 tcp->tcp_rcv_cnt = 0; 14783 } else { 14784 /* We drain directly in case of fused tcp loopback */ 14785 14786 if (!tcp->tcp_fused && canputnext(q)) { 14787 tcp->tcp_rwnd = connp->conn_rcvbuf; 14788 if (tcp->tcp_state >= TCPS_ESTABLISHED && 14789 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 14790 tcp_xmit_ctl(NULL, 14791 tcp, (tcp->tcp_swnd == 0) ? 14792 tcp->tcp_suna : tcp->tcp_snxt, 14793 tcp->tcp_rnxt, TH_ACK); 14794 } 14795 } 14796 14797 (void) tcp_rcv_drain(tcp); 14798 } 14799 14800 /* 14801 * For fused tcp loopback, back-enable peer endpoint 14802 * if it's currently flow-controlled. 14803 */ 14804 if (tcp->tcp_fused) { 14805 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 14806 14807 ASSERT(peer_tcp != NULL); 14808 ASSERT(peer_tcp->tcp_fused); 14809 14810 mutex_enter(&peer_tcp->tcp_non_sq_lock); 14811 if (peer_tcp->tcp_flow_stopped) { 14812 tcp_clrqfull(peer_tcp); 14813 TCP_STAT(tcps, tcp_fusion_backenabled); 14814 } 14815 mutex_exit(&peer_tcp->tcp_non_sq_lock); 14816 } 14817 } 14818 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 14819 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 14820 tcp->tcp_ordrel_done = B_TRUE; 14821 if (IPCL_IS_NONSTR(connp)) { 14822 ASSERT(tcp->tcp_ordrel_mp == NULL); 14823 (*connp->conn_upcalls->su_opctl)( 14824 connp->conn_upper_handle, 14825 SOCK_OPCTL_SHUT_RECV, 0); 14826 } else { 14827 mp = tcp->tcp_ordrel_mp; 14828 tcp->tcp_ordrel_mp = NULL; 14829 putnext(q, mp); 14830 } 14831 } 14832 tcp->tcp_hard_binding = B_FALSE; 14833 14834 if (connp->conn_keepalive) { 14835 tcp->tcp_ka_last_intrvl = 0; 14836 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 14837 MSEC_TO_TICK(tcp->tcp_ka_interval)); 14838 } 14839 14840 /* 14841 * At this point, eager is fully established and will 14842 * have the following references - 14843 * 14844 * 2 references for connection to exist (1 for TCP and 1 for IP). 14845 * 1 reference for the squeue which will be dropped by the squeue as 14846 * soon as this function returns. 14847 * There will be 1 additonal reference for being in classifier 14848 * hash list provided something bad hasn't happened. 14849 */ 14850 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 14851 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 14852 } 14853 14854 /* 14855 * The function called through squeue to get behind listener's perimeter to 14856 * send a deferred conn_ind. 14857 */ 14858 /* ARGSUSED */ 14859 void 14860 tcp_send_pending(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 14861 { 14862 conn_t *lconnp = (conn_t *)arg; 14863 tcp_t *listener = lconnp->conn_tcp; 14864 struct T_conn_ind *conn_ind; 14865 tcp_t *tcp; 14866 14867 conn_ind = (struct T_conn_ind *)mp->b_rptr; 14868 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 14869 conn_ind->OPT_length); 14870 14871 if (listener->tcp_state != TCPS_LISTEN) { 14872 /* 14873 * If listener has closed, it would have caused a 14874 * a cleanup/blowoff to happen for the eager, so 14875 * we don't need to do anything more. 14876 */ 14877 freemsg(mp); 14878 return; 14879 } 14880 14881 tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp); 14882 } 14883 14884 /* 14885 * Common to TPI and sockfs accept code. 14886 */ 14887 /* ARGSUSED2 */ 14888 static int 14889 tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr) 14890 { 14891 tcp_t *listener, *eager; 14892 mblk_t *discon_mp; 14893 14894 listener = lconnp->conn_tcp; 14895 ASSERT(listener->tcp_state == TCPS_LISTEN); 14896 eager = econnp->conn_tcp; 14897 ASSERT(eager->tcp_listener != NULL); 14898 14899 /* 14900 * Pre allocate the discon_ind mblk also. tcp_accept_finish will 14901 * use it if something failed. 14902 */ 14903 discon_mp = allocb(MAX(sizeof (struct T_discon_ind), 14904 sizeof (struct stroptions)), BPRI_HI); 14905 14906 if (discon_mp == NULL) { 14907 return (-TPROTO); 14908 } 14909 eager->tcp_issocket = B_TRUE; 14910 14911 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 14912 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 14913 ASSERT(econnp->conn_netstack == 14914 listener->tcp_connp->conn_netstack); 14915 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 14916 14917 /* Put the ref for IP */ 14918 CONN_INC_REF(econnp); 14919 14920 /* 14921 * We should have minimum of 3 references on the conn 14922 * at this point. One each for TCP and IP and one for 14923 * the T_conn_ind that was sent up when the 3-way handshake 14924 * completed. In the normal case we would also have another 14925 * reference (making a total of 4) for the conn being in the 14926 * classifier hash list. However the eager could have received 14927 * an RST subsequently and tcp_closei_local could have removed 14928 * the eager from the classifier hash list, hence we can't 14929 * assert that reference. 14930 */ 14931 ASSERT(econnp->conn_ref >= 3); 14932 14933 mutex_enter(&listener->tcp_eager_lock); 14934 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 14935 14936 tcp_t *tail; 14937 tcp_t *tcp; 14938 mblk_t *mp1; 14939 14940 tcp = listener->tcp_eager_prev_q0; 14941 /* 14942 * listener->tcp_eager_prev_q0 points to the TAIL of the 14943 * deferred T_conn_ind queue. We need to get to the head 14944 * of the queue in order to send up T_conn_ind the same 14945 * order as how the 3WHS is completed. 14946 */ 14947 while (tcp != listener) { 14948 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 14949 !tcp->tcp_kssl_pending) 14950 break; 14951 else 14952 tcp = tcp->tcp_eager_prev_q0; 14953 } 14954 /* None of the pending eagers can be sent up now */ 14955 if (tcp == listener) 14956 goto no_more_eagers; 14957 14958 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 14959 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14960 /* Move from q0 to q */ 14961 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 14962 listener->tcp_conn_req_cnt_q0--; 14963 listener->tcp_conn_req_cnt_q++; 14964 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 14965 tcp->tcp_eager_prev_q0; 14966 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 14967 tcp->tcp_eager_next_q0; 14968 tcp->tcp_eager_prev_q0 = NULL; 14969 tcp->tcp_eager_next_q0 = NULL; 14970 tcp->tcp_conn_def_q0 = B_FALSE; 14971 14972 /* Make sure the tcp isn't in the list of droppables */ 14973 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 14974 tcp->tcp_eager_prev_drop_q0 == NULL); 14975 14976 /* 14977 * Insert at end of the queue because sockfs sends 14978 * down T_CONN_RES in chronological order. Leaving 14979 * the older conn indications at front of the queue 14980 * helps reducing search time. 14981 */ 14982 tail = listener->tcp_eager_last_q; 14983 if (tail != NULL) { 14984 tail->tcp_eager_next_q = tcp; 14985 } else { 14986 listener->tcp_eager_next_q = tcp; 14987 } 14988 listener->tcp_eager_last_q = tcp; 14989 tcp->tcp_eager_next_q = NULL; 14990 14991 /* Need to get inside the listener perimeter */ 14992 CONN_INC_REF(listener->tcp_connp); 14993 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1, 14994 tcp_send_pending, listener->tcp_connp, NULL, SQ_FILL, 14995 SQTAG_TCP_SEND_PENDING); 14996 } 14997 no_more_eagers: 14998 tcp_eager_unlink(eager); 14999 mutex_exit(&listener->tcp_eager_lock); 15000 15001 /* 15002 * At this point, the eager is detached from the listener 15003 * but we still have an extra refs on eager (apart from the 15004 * usual tcp references). The ref was placed in tcp_input_data 15005 * before sending the conn_ind in tcp_send_conn_ind. 15006 * The ref will be dropped in tcp_accept_finish(). 15007 */ 15008 SQUEUE_ENTER_ONE(econnp->conn_sqp, discon_mp, tcp_accept_finish, 15009 econnp, NULL, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0); 15010 return (0); 15011 } 15012 15013 int 15014 tcp_accept(sock_lower_handle_t lproto_handle, 15015 sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle, 15016 cred_t *cr) 15017 { 15018 conn_t *lconnp, *econnp; 15019 tcp_t *listener, *eager; 15020 15021 lconnp = (conn_t *)lproto_handle; 15022 listener = lconnp->conn_tcp; 15023 ASSERT(listener->tcp_state == TCPS_LISTEN); 15024 econnp = (conn_t *)eproto_handle; 15025 eager = econnp->conn_tcp; 15026 ASSERT(eager->tcp_listener != NULL); 15027 15028 /* 15029 * It is OK to manipulate these fields outside the eager's squeue 15030 * because they will not start being used until tcp_accept_finish 15031 * has been called. 15032 */ 15033 ASSERT(lconnp->conn_upper_handle != NULL); 15034 ASSERT(econnp->conn_upper_handle == NULL); 15035 econnp->conn_upper_handle = sock_handle; 15036 econnp->conn_upcalls = lconnp->conn_upcalls; 15037 ASSERT(IPCL_IS_NONSTR(econnp)); 15038 return (tcp_accept_common(lconnp, econnp, cr)); 15039 } 15040 15041 15042 /* 15043 * This is the STREAMS entry point for T_CONN_RES coming down on 15044 * Acceptor STREAM when sockfs listener does accept processing. 15045 * Read the block comment on top of tcp_input_listener(). 15046 */ 15047 void 15048 tcp_tpi_accept(queue_t *q, mblk_t *mp) 15049 { 15050 queue_t *rq = RD(q); 15051 struct T_conn_res *conn_res; 15052 tcp_t *eager; 15053 tcp_t *listener; 15054 struct T_ok_ack *ok; 15055 t_scalar_t PRIM_type; 15056 conn_t *econnp; 15057 cred_t *cr; 15058 15059 ASSERT(DB_TYPE(mp) == M_PROTO); 15060 15061 /* 15062 * All Solaris components should pass a db_credp 15063 * for this TPI message, hence we ASSERT. 15064 * But in case there is some other M_PROTO that looks 15065 * like a TPI message sent by some other kernel 15066 * component, we check and return an error. 15067 */ 15068 cr = msg_getcred(mp, NULL); 15069 ASSERT(cr != NULL); 15070 if (cr == NULL) { 15071 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 15072 if (mp != NULL) 15073 putnext(rq, mp); 15074 return; 15075 } 15076 conn_res = (struct T_conn_res *)mp->b_rptr; 15077 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 15078 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 15079 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 15080 if (mp != NULL) 15081 putnext(rq, mp); 15082 return; 15083 } 15084 switch (conn_res->PRIM_type) { 15085 case O_T_CONN_RES: 15086 case T_CONN_RES: 15087 /* 15088 * We pass up an err ack if allocb fails. This will 15089 * cause sockfs to issue a T_DISCON_REQ which will cause 15090 * tcp_eager_blowoff to be called. sockfs will then call 15091 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 15092 * we need to do the allocb up here because we have to 15093 * make sure rq->q_qinfo->qi_qclose still points to the 15094 * correct function (tcp_tpi_close_accept) in case allocb 15095 * fails. 15096 */ 15097 bcopy(mp->b_rptr + conn_res->OPT_offset, 15098 &eager, conn_res->OPT_length); 15099 PRIM_type = conn_res->PRIM_type; 15100 mp->b_datap->db_type = M_PCPROTO; 15101 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 15102 ok = (struct T_ok_ack *)mp->b_rptr; 15103 ok->PRIM_type = T_OK_ACK; 15104 ok->CORRECT_prim = PRIM_type; 15105 econnp = eager->tcp_connp; 15106 econnp->conn_dev = (dev_t)RD(q)->q_ptr; 15107 econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr); 15108 econnp->conn_rq = rq; 15109 econnp->conn_wq = q; 15110 rq->q_ptr = econnp; 15111 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 15112 q->q_ptr = econnp; 15113 q->q_qinfo = &tcp_winit; 15114 listener = eager->tcp_listener; 15115 15116 if (tcp_accept_common(listener->tcp_connp, 15117 econnp, cr) < 0) { 15118 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 15119 if (mp != NULL) 15120 putnext(rq, mp); 15121 return; 15122 } 15123 15124 /* 15125 * Send the new local address also up to sockfs. There 15126 * should already be enough space in the mp that came 15127 * down from soaccept(). 15128 */ 15129 if (econnp->conn_family == AF_INET) { 15130 sin_t *sin; 15131 15132 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 15133 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 15134 sin = (sin_t *)mp->b_wptr; 15135 mp->b_wptr += sizeof (sin_t); 15136 sin->sin_family = AF_INET; 15137 sin->sin_port = econnp->conn_lport; 15138 sin->sin_addr.s_addr = econnp->conn_laddr_v4; 15139 } else { 15140 sin6_t *sin6; 15141 15142 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 15143 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 15144 sin6 = (sin6_t *)mp->b_wptr; 15145 mp->b_wptr += sizeof (sin6_t); 15146 sin6->sin6_family = AF_INET6; 15147 sin6->sin6_port = econnp->conn_lport; 15148 sin6->sin6_addr = econnp->conn_laddr_v6; 15149 if (econnp->conn_ipversion == IPV4_VERSION) 15150 sin6->sin6_flowinfo = 0; 15151 else 15152 sin6->sin6_flowinfo = econnp->conn_flowinfo; 15153 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6) && 15154 (econnp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)) { 15155 sin6->sin6_scope_id = 15156 econnp->conn_ixa->ixa_scopeid; 15157 } else { 15158 sin6->sin6_scope_id = 0; 15159 } 15160 sin6->__sin6_src_id = 0; 15161 } 15162 15163 putnext(rq, mp); 15164 return; 15165 default: 15166 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 15167 if (mp != NULL) 15168 putnext(rq, mp); 15169 return; 15170 } 15171 } 15172 15173 /* 15174 * Handle special out-of-band ioctl requests (see PSARC/2008/265). 15175 */ 15176 static void 15177 tcp_wput_cmdblk(queue_t *q, mblk_t *mp) 15178 { 15179 void *data; 15180 mblk_t *datamp = mp->b_cont; 15181 conn_t *connp = Q_TO_CONN(q); 15182 tcp_t *tcp = connp->conn_tcp; 15183 cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr; 15184 15185 if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) { 15186 cmdp->cb_error = EPROTO; 15187 qreply(q, mp); 15188 return; 15189 } 15190 15191 data = datamp->b_rptr; 15192 15193 switch (cmdp->cb_cmd) { 15194 case TI_GETPEERNAME: 15195 if (tcp->tcp_state < TCPS_SYN_RCVD) 15196 cmdp->cb_error = ENOTCONN; 15197 else 15198 cmdp->cb_error = conn_getpeername(connp, data, 15199 &cmdp->cb_len); 15200 break; 15201 case TI_GETMYNAME: 15202 cmdp->cb_error = conn_getsockname(connp, data, &cmdp->cb_len); 15203 break; 15204 default: 15205 cmdp->cb_error = EINVAL; 15206 break; 15207 } 15208 15209 qreply(q, mp); 15210 } 15211 15212 void 15213 tcp_wput(queue_t *q, mblk_t *mp) 15214 { 15215 conn_t *connp = Q_TO_CONN(q); 15216 tcp_t *tcp; 15217 void (*output_proc)(); 15218 t_scalar_t type; 15219 uchar_t *rptr; 15220 struct iocblk *iocp; 15221 size_t size; 15222 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 15223 15224 ASSERT(connp->conn_ref >= 2); 15225 15226 switch (DB_TYPE(mp)) { 15227 case M_DATA: 15228 tcp = connp->conn_tcp; 15229 ASSERT(tcp != NULL); 15230 15231 size = msgdsize(mp); 15232 15233 mutex_enter(&tcp->tcp_non_sq_lock); 15234 tcp->tcp_squeue_bytes += size; 15235 if (TCP_UNSENT_BYTES(tcp) > connp->conn_sndbuf) { 15236 tcp_setqfull(tcp); 15237 } 15238 mutex_exit(&tcp->tcp_non_sq_lock); 15239 15240 CONN_INC_REF(connp); 15241 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp, 15242 NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 15243 return; 15244 15245 case M_CMD: 15246 tcp_wput_cmdblk(q, mp); 15247 return; 15248 15249 case M_PROTO: 15250 case M_PCPROTO: 15251 /* 15252 * if it is a snmp message, don't get behind the squeue 15253 */ 15254 tcp = connp->conn_tcp; 15255 rptr = mp->b_rptr; 15256 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 15257 type = ((union T_primitives *)rptr)->type; 15258 } else { 15259 if (connp->conn_debug) { 15260 (void) strlog(TCP_MOD_ID, 0, 1, 15261 SL_ERROR|SL_TRACE, 15262 "tcp_wput_proto, dropping one..."); 15263 } 15264 freemsg(mp); 15265 return; 15266 } 15267 if (type == T_SVR4_OPTMGMT_REQ) { 15268 /* 15269 * All Solaris components should pass a db_credp 15270 * for this TPI message, hence we ASSERT. 15271 * But in case there is some other M_PROTO that looks 15272 * like a TPI message sent by some other kernel 15273 * component, we check and return an error. 15274 */ 15275 cred_t *cr = msg_getcred(mp, NULL); 15276 15277 ASSERT(cr != NULL); 15278 if (cr == NULL) { 15279 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 15280 return; 15281 } 15282 if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get, 15283 cr)) { 15284 /* 15285 * This was a SNMP request 15286 */ 15287 return; 15288 } else { 15289 output_proc = tcp_wput_proto; 15290 } 15291 } else { 15292 output_proc = tcp_wput_proto; 15293 } 15294 break; 15295 case M_IOCTL: 15296 /* 15297 * Most ioctls can be processed right away without going via 15298 * squeues - process them right here. Those that do require 15299 * squeue (currently _SIOCSOCKFALLBACK) 15300 * are processed by tcp_wput_ioctl(). 15301 */ 15302 iocp = (struct iocblk *)mp->b_rptr; 15303 tcp = connp->conn_tcp; 15304 15305 switch (iocp->ioc_cmd) { 15306 case TCP_IOC_ABORT_CONN: 15307 tcp_ioctl_abort_conn(q, mp); 15308 return; 15309 case TI_GETPEERNAME: 15310 case TI_GETMYNAME: 15311 mi_copyin(q, mp, NULL, 15312 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 15313 return; 15314 case ND_SET: 15315 /* nd_getset does the necessary checks */ 15316 case ND_GET: 15317 if (nd_getset(q, tcps->tcps_g_nd, mp)) { 15318 qreply(q, mp); 15319 return; 15320 } 15321 CONN_INC_IOCTLREF(connp); 15322 ip_wput_nondata(q, mp); 15323 CONN_DEC_IOCTLREF(connp); 15324 return; 15325 15326 default: 15327 output_proc = tcp_wput_ioctl; 15328 break; 15329 } 15330 break; 15331 default: 15332 output_proc = tcp_wput_nondata; 15333 break; 15334 } 15335 15336 CONN_INC_REF(connp); 15337 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp, 15338 NULL, tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER); 15339 } 15340 15341 /* 15342 * Initial STREAMS write side put() procedure for sockets. It tries to 15343 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 15344 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 15345 * are handled by tcp_wput() as usual. 15346 * 15347 * All further messages will also be handled by tcp_wput() because we cannot 15348 * be sure that the above short cut is safe later. 15349 */ 15350 static void 15351 tcp_wput_sock(queue_t *wq, mblk_t *mp) 15352 { 15353 conn_t *connp = Q_TO_CONN(wq); 15354 tcp_t *tcp = connp->conn_tcp; 15355 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 15356 15357 ASSERT(wq->q_qinfo == &tcp_sock_winit); 15358 wq->q_qinfo = &tcp_winit; 15359 15360 ASSERT(IPCL_IS_TCP(connp)); 15361 ASSERT(TCP_IS_SOCKET(tcp)); 15362 15363 if (DB_TYPE(mp) == M_PCPROTO && 15364 MBLKL(mp) == sizeof (struct T_capability_req) && 15365 car->PRIM_type == T_CAPABILITY_REQ) { 15366 tcp_capability_req(tcp, mp); 15367 return; 15368 } 15369 15370 tcp_wput(wq, mp); 15371 } 15372 15373 /* ARGSUSED */ 15374 static void 15375 tcp_wput_fallback(queue_t *wq, mblk_t *mp) 15376 { 15377 #ifdef DEBUG 15378 cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n"); 15379 #endif 15380 freemsg(mp); 15381 } 15382 15383 /* 15384 * Check the usability of ZEROCOPY. It's instead checking the flag set by IP. 15385 */ 15386 static boolean_t 15387 tcp_zcopy_check(tcp_t *tcp) 15388 { 15389 conn_t *connp = tcp->tcp_connp; 15390 ip_xmit_attr_t *ixa = connp->conn_ixa; 15391 boolean_t zc_enabled = B_FALSE; 15392 tcp_stack_t *tcps = tcp->tcp_tcps; 15393 15394 if (do_tcpzcopy == 2) 15395 zc_enabled = B_TRUE; 15396 else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB)) 15397 zc_enabled = B_TRUE; 15398 15399 tcp->tcp_snd_zcopy_on = zc_enabled; 15400 if (!TCP_IS_DETACHED(tcp)) { 15401 if (zc_enabled) { 15402 ixa->ixa_flags |= IXAF_VERIFY_ZCOPY; 15403 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15404 ZCVMSAFE); 15405 TCP_STAT(tcps, tcp_zcopy_on); 15406 } else { 15407 ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY; 15408 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15409 ZCVMUNSAFE); 15410 TCP_STAT(tcps, tcp_zcopy_off); 15411 } 15412 } 15413 return (zc_enabled); 15414 } 15415 15416 /* 15417 * Backoff from a zero-copy message by copying data to a new allocated 15418 * message and freeing the original desballoca'ed segmapped message. 15419 * 15420 * This function is called by following two callers: 15421 * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free 15422 * the origial desballoca'ed message and notify sockfs. This is in re- 15423 * transmit state. 15424 * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need 15425 * to be copied to new message. 15426 */ 15427 static mblk_t * 15428 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist) 15429 { 15430 mblk_t *nbp; 15431 mblk_t *head = NULL; 15432 mblk_t *tail = NULL; 15433 tcp_stack_t *tcps = tcp->tcp_tcps; 15434 15435 ASSERT(bp != NULL); 15436 while (bp != NULL) { 15437 if (IS_VMLOANED_MBLK(bp)) { 15438 TCP_STAT(tcps, tcp_zcopy_backoff); 15439 if ((nbp = copyb(bp)) == NULL) { 15440 tcp->tcp_xmit_zc_clean = B_FALSE; 15441 if (tail != NULL) 15442 tail->b_cont = bp; 15443 return ((head == NULL) ? bp : head); 15444 } 15445 15446 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 15447 if (fix_xmitlist) 15448 tcp_zcopy_notify(tcp); 15449 else 15450 nbp->b_datap->db_struioflag |= 15451 STRUIO_ZCNOTIFY; 15452 } 15453 nbp->b_cont = bp->b_cont; 15454 15455 /* 15456 * Copy saved information and adjust tcp_xmit_tail 15457 * if needed. 15458 */ 15459 if (fix_xmitlist) { 15460 nbp->b_prev = bp->b_prev; 15461 nbp->b_next = bp->b_next; 15462 15463 if (tcp->tcp_xmit_tail == bp) 15464 tcp->tcp_xmit_tail = nbp; 15465 } 15466 15467 /* Free the original message. */ 15468 bp->b_prev = NULL; 15469 bp->b_next = NULL; 15470 freeb(bp); 15471 15472 bp = nbp; 15473 } 15474 15475 if (head == NULL) { 15476 head = bp; 15477 } 15478 if (tail == NULL) { 15479 tail = bp; 15480 } else { 15481 tail->b_cont = bp; 15482 tail = bp; 15483 } 15484 15485 /* Move forward. */ 15486 bp = bp->b_cont; 15487 } 15488 15489 if (fix_xmitlist) { 15490 tcp->tcp_xmit_last = tail; 15491 tcp->tcp_xmit_zc_clean = B_TRUE; 15492 } 15493 15494 return (head); 15495 } 15496 15497 static void 15498 tcp_zcopy_notify(tcp_t *tcp) 15499 { 15500 struct stdata *stp; 15501 conn_t *connp; 15502 15503 if (tcp->tcp_detached) 15504 return; 15505 connp = tcp->tcp_connp; 15506 if (IPCL_IS_NONSTR(connp)) { 15507 (*connp->conn_upcalls->su_zcopy_notify) 15508 (connp->conn_upper_handle); 15509 return; 15510 } 15511 stp = STREAM(connp->conn_rq); 15512 mutex_enter(&stp->sd_lock); 15513 stp->sd_flag |= STZCNOTIFY; 15514 cv_broadcast(&stp->sd_zcopy_wait); 15515 mutex_exit(&stp->sd_lock); 15516 } 15517 15518 /* 15519 * Update the TCP connection according to change of LSO capability. 15520 */ 15521 static void 15522 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa) 15523 { 15524 /* 15525 * We check against IPv4 header length to preserve the old behavior 15526 * of only enabling LSO when there are no IP options. 15527 * But this restriction might not be necessary at all. Before removing 15528 * it, need to verify how LSO is handled for source routing case, with 15529 * which IP does software checksum. 15530 * 15531 * For IPv6, whenever any extension header is needed, LSO is supressed. 15532 */ 15533 if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ? 15534 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN)) 15535 return; 15536 15537 /* 15538 * Either the LSO capability newly became usable, or it has changed. 15539 */ 15540 if (ixa->ixa_flags & IXAF_LSO_CAPAB) { 15541 ill_lso_capab_t *lsoc = &ixa->ixa_lso_capab; 15542 15543 ASSERT(lsoc->ill_lso_max > 0); 15544 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max); 15545 15546 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 15547 boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max); 15548 15549 /* 15550 * If LSO to be enabled, notify the STREAM header with larger 15551 * data block. 15552 */ 15553 if (!tcp->tcp_lso) 15554 tcp->tcp_maxpsz_multiplier = 0; 15555 15556 tcp->tcp_lso = B_TRUE; 15557 TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled); 15558 } else { /* LSO capability is not usable any more. */ 15559 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 15560 boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max); 15561 15562 /* 15563 * If LSO to be disabled, notify the STREAM header with smaller 15564 * data block. And need to restore fragsize to PMTU. 15565 */ 15566 if (tcp->tcp_lso) { 15567 tcp->tcp_maxpsz_multiplier = 15568 tcp->tcp_tcps->tcps_maxpsz_multiplier; 15569 ixa->ixa_fragsize = ixa->ixa_pmtu; 15570 tcp->tcp_lso = B_FALSE; 15571 TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled); 15572 } 15573 } 15574 15575 (void) tcp_maxpsz_set(tcp, B_TRUE); 15576 } 15577 15578 /* 15579 * Update the TCP connection according to change of ZEROCOPY capability. 15580 */ 15581 static void 15582 tcp_update_zcopy(tcp_t *tcp) 15583 { 15584 conn_t *connp = tcp->tcp_connp; 15585 tcp_stack_t *tcps = tcp->tcp_tcps; 15586 15587 if (tcp->tcp_snd_zcopy_on) { 15588 tcp->tcp_snd_zcopy_on = B_FALSE; 15589 if (!TCP_IS_DETACHED(tcp)) { 15590 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15591 ZCVMUNSAFE); 15592 TCP_STAT(tcps, tcp_zcopy_off); 15593 } 15594 } else { 15595 tcp->tcp_snd_zcopy_on = B_TRUE; 15596 if (!TCP_IS_DETACHED(tcp)) { 15597 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15598 ZCVMSAFE); 15599 TCP_STAT(tcps, tcp_zcopy_on); 15600 } 15601 } 15602 } 15603 15604 /* 15605 * Notify function registered with ip_xmit_attr_t. It's called in the squeue 15606 * so it's safe to update the TCP connection. 15607 */ 15608 /* ARGSUSED1 */ 15609 static void 15610 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype, 15611 ixa_notify_arg_t narg) 15612 { 15613 tcp_t *tcp = (tcp_t *)arg; 15614 conn_t *connp = tcp->tcp_connp; 15615 15616 switch (ntype) { 15617 case IXAN_LSO: 15618 tcp_update_lso(tcp, connp->conn_ixa); 15619 break; 15620 case IXAN_PMTU: 15621 tcp_update_pmtu(tcp, B_FALSE); 15622 break; 15623 case IXAN_ZCOPY: 15624 tcp_update_zcopy(tcp); 15625 break; 15626 default: 15627 break; 15628 } 15629 } 15630 15631 static void 15632 tcp_send_data(tcp_t *tcp, mblk_t *mp) 15633 { 15634 conn_t *connp = tcp->tcp_connp; 15635 15636 /* 15637 * Check here to avoid sending zero-copy message down to IP when 15638 * ZEROCOPY capability has turned off. We only need to deal with 15639 * the race condition between sockfs and the notification here. 15640 * Since we have tried to backoff the tcp_xmit_head when turning 15641 * zero-copy off and new messages in tcp_output(), we simply drop 15642 * the dup'ed packet here and let tcp retransmit, if tcp_xmit_zc_clean 15643 * is not true. 15644 */ 15645 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_snd_zcopy_on && 15646 !tcp->tcp_xmit_zc_clean) { 15647 ip_drop_output("TCP ZC was disabled but not clean", mp, NULL); 15648 freemsg(mp); 15649 return; 15650 } 15651 15652 ASSERT(connp->conn_ixa->ixa_notify_cookie == connp->conn_tcp); 15653 (void) conn_ip_output(mp, connp->conn_ixa); 15654 } 15655 15656 /* 15657 * This handles the case when the receiver has shrunk its win. Per RFC 1122 15658 * if the receiver shrinks the window, i.e. moves the right window to the 15659 * left, the we should not send new data, but should retransmit normally the 15660 * old unacked data between suna and suna + swnd. We might has sent data 15661 * that is now outside the new window, pretend that we didn't send it. 15662 */ 15663 static void 15664 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 15665 { 15666 uint32_t snxt = tcp->tcp_snxt; 15667 15668 ASSERT(shrunk_count > 0); 15669 15670 if (!tcp->tcp_is_wnd_shrnk) { 15671 tcp->tcp_snxt_shrunk = snxt; 15672 tcp->tcp_is_wnd_shrnk = B_TRUE; 15673 } else if (SEQ_GT(snxt, tcp->tcp_snxt_shrunk)) { 15674 tcp->tcp_snxt_shrunk = snxt; 15675 } 15676 15677 /* Pretend we didn't send the data outside the window */ 15678 snxt -= shrunk_count; 15679 15680 /* Reset all the values per the now shrunk window */ 15681 tcp_update_xmit_tail(tcp, snxt); 15682 tcp->tcp_unsent += shrunk_count; 15683 15684 /* 15685 * If the SACK option is set, delete the entire list of 15686 * notsack'ed blocks. 15687 */ 15688 if (tcp->tcp_sack_info != NULL) { 15689 if (tcp->tcp_notsack_list != NULL) 15690 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 15691 } 15692 15693 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 15694 /* 15695 * Make sure the timer is running so that we will probe a zero 15696 * window. 15697 */ 15698 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15699 } 15700 15701 15702 /* 15703 * The TCP normal data output path. 15704 * NOTE: the logic of the fast path is duplicated from this function. 15705 */ 15706 static void 15707 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 15708 { 15709 int len; 15710 mblk_t *local_time; 15711 mblk_t *mp1; 15712 uint32_t snxt; 15713 int tail_unsent; 15714 int tcpstate; 15715 int usable = 0; 15716 mblk_t *xmit_tail; 15717 int32_t mss; 15718 int32_t num_sack_blk = 0; 15719 int32_t total_hdr_len; 15720 int32_t tcp_hdr_len; 15721 int rc; 15722 tcp_stack_t *tcps = tcp->tcp_tcps; 15723 conn_t *connp = tcp->tcp_connp; 15724 clock_t now = LBOLT_FASTPATH; 15725 15726 tcpstate = tcp->tcp_state; 15727 if (mp == NULL) { 15728 /* 15729 * tcp_wput_data() with NULL mp should only be called when 15730 * there is unsent data. 15731 */ 15732 ASSERT(tcp->tcp_unsent > 0); 15733 /* Really tacky... but we need this for detached closes. */ 15734 len = tcp->tcp_unsent; 15735 goto data_null; 15736 } 15737 15738 #if CCS_STATS 15739 wrw_stats.tot.count++; 15740 wrw_stats.tot.bytes += msgdsize(mp); 15741 #endif 15742 ASSERT(mp->b_datap->db_type == M_DATA); 15743 /* 15744 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 15745 * or before a connection attempt has begun. 15746 */ 15747 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 15748 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 15749 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 15750 #ifdef DEBUG 15751 cmn_err(CE_WARN, 15752 "tcp_wput_data: data after ordrel, %s", 15753 tcp_display(tcp, NULL, 15754 DISP_ADDR_AND_PORT)); 15755 #else 15756 if (connp->conn_debug) { 15757 (void) strlog(TCP_MOD_ID, 0, 1, 15758 SL_TRACE|SL_ERROR, 15759 "tcp_wput_data: data after ordrel, %s\n", 15760 tcp_display(tcp, NULL, 15761 DISP_ADDR_AND_PORT)); 15762 } 15763 #endif /* DEBUG */ 15764 } 15765 if (tcp->tcp_snd_zcopy_aware && 15766 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 15767 tcp_zcopy_notify(tcp); 15768 freemsg(mp); 15769 mutex_enter(&tcp->tcp_non_sq_lock); 15770 if (tcp->tcp_flow_stopped && 15771 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 15772 tcp_clrqfull(tcp); 15773 } 15774 mutex_exit(&tcp->tcp_non_sq_lock); 15775 return; 15776 } 15777 15778 /* Strip empties */ 15779 for (;;) { 15780 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 15781 (uintptr_t)INT_MAX); 15782 len = (int)(mp->b_wptr - mp->b_rptr); 15783 if (len > 0) 15784 break; 15785 mp1 = mp; 15786 mp = mp->b_cont; 15787 freeb(mp1); 15788 if (!mp) { 15789 return; 15790 } 15791 } 15792 15793 /* If we are the first on the list ... */ 15794 if (tcp->tcp_xmit_head == NULL) { 15795 tcp->tcp_xmit_head = mp; 15796 tcp->tcp_xmit_tail = mp; 15797 tcp->tcp_xmit_tail_unsent = len; 15798 } else { 15799 /* If tiny tx and room in txq tail, pullup to save mblks. */ 15800 struct datab *dp; 15801 15802 mp1 = tcp->tcp_xmit_last; 15803 if (len < tcp_tx_pull_len && 15804 (dp = mp1->b_datap)->db_ref == 1 && 15805 dp->db_lim - mp1->b_wptr >= len) { 15806 ASSERT(len > 0); 15807 ASSERT(!mp1->b_cont); 15808 if (len == 1) { 15809 *mp1->b_wptr++ = *mp->b_rptr; 15810 } else { 15811 bcopy(mp->b_rptr, mp1->b_wptr, len); 15812 mp1->b_wptr += len; 15813 } 15814 if (mp1 == tcp->tcp_xmit_tail) 15815 tcp->tcp_xmit_tail_unsent += len; 15816 mp1->b_cont = mp->b_cont; 15817 if (tcp->tcp_snd_zcopy_aware && 15818 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 15819 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 15820 freeb(mp); 15821 mp = mp1; 15822 } else { 15823 tcp->tcp_xmit_last->b_cont = mp; 15824 } 15825 len += tcp->tcp_unsent; 15826 } 15827 15828 /* Tack on however many more positive length mblks we have */ 15829 if ((mp1 = mp->b_cont) != NULL) { 15830 do { 15831 int tlen; 15832 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 15833 (uintptr_t)INT_MAX); 15834 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 15835 if (tlen <= 0) { 15836 mp->b_cont = mp1->b_cont; 15837 freeb(mp1); 15838 } else { 15839 len += tlen; 15840 mp = mp1; 15841 } 15842 } while ((mp1 = mp->b_cont) != NULL); 15843 } 15844 tcp->tcp_xmit_last = mp; 15845 tcp->tcp_unsent = len; 15846 15847 if (urgent) 15848 usable = 1; 15849 15850 data_null: 15851 snxt = tcp->tcp_snxt; 15852 xmit_tail = tcp->tcp_xmit_tail; 15853 tail_unsent = tcp->tcp_xmit_tail_unsent; 15854 15855 /* 15856 * Note that tcp_mss has been adjusted to take into account the 15857 * timestamp option if applicable. Because SACK options do not 15858 * appear in every TCP segments and they are of variable lengths, 15859 * they cannot be included in tcp_mss. Thus we need to calculate 15860 * the actual segment length when we need to send a segment which 15861 * includes SACK options. 15862 */ 15863 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 15864 int32_t opt_len; 15865 15866 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 15867 tcp->tcp_num_sack_blk); 15868 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 15869 2 + TCPOPT_HEADER_LEN; 15870 mss = tcp->tcp_mss - opt_len; 15871 total_hdr_len = connp->conn_ht_iphc_len + opt_len; 15872 tcp_hdr_len = connp->conn_ht_ulp_len + opt_len; 15873 } else { 15874 mss = tcp->tcp_mss; 15875 total_hdr_len = connp->conn_ht_iphc_len; 15876 tcp_hdr_len = connp->conn_ht_ulp_len; 15877 } 15878 15879 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 15880 (TICK_TO_MSEC(now - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 15881 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 15882 } 15883 if (tcpstate == TCPS_SYN_RCVD) { 15884 /* 15885 * The three-way connection establishment handshake is not 15886 * complete yet. We want to queue the data for transmission 15887 * after entering ESTABLISHED state (RFC793). A jump to 15888 * "done" label effectively leaves data on the queue. 15889 */ 15890 goto done; 15891 } else { 15892 int usable_r; 15893 15894 /* 15895 * In the special case when cwnd is zero, which can only 15896 * happen if the connection is ECN capable, return now. 15897 * New segments is sent using tcp_timer(). The timer 15898 * is set in tcp_input_data(). 15899 */ 15900 if (tcp->tcp_cwnd == 0) { 15901 /* 15902 * Note that tcp_cwnd is 0 before 3-way handshake is 15903 * finished. 15904 */ 15905 ASSERT(tcp->tcp_ecn_ok || 15906 tcp->tcp_state < TCPS_ESTABLISHED); 15907 return; 15908 } 15909 15910 /* NOTE: trouble if xmitting while SYN not acked? */ 15911 usable_r = snxt - tcp->tcp_suna; 15912 usable_r = tcp->tcp_swnd - usable_r; 15913 15914 /* 15915 * Check if the receiver has shrunk the window. If 15916 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 15917 * cannot be set as there is unsent data, so FIN cannot 15918 * be sent out. Otherwise, we need to take into account 15919 * of FIN as it consumes an "invisible" sequence number. 15920 */ 15921 ASSERT(tcp->tcp_fin_sent == 0); 15922 if (usable_r < 0) { 15923 /* 15924 * The receiver has shrunk the window and we have sent 15925 * -usable_r date beyond the window, re-adjust. 15926 * 15927 * If TCP window scaling is enabled, there can be 15928 * round down error as the advertised receive window 15929 * is actually right shifted n bits. This means that 15930 * the lower n bits info is wiped out. It will look 15931 * like the window is shrunk. Do a check here to 15932 * see if the shrunk amount is actually within the 15933 * error in window calculation. If it is, just 15934 * return. Note that this check is inside the 15935 * shrunk window check. This makes sure that even 15936 * though tcp_process_shrunk_swnd() is not called, 15937 * we will stop further processing. 15938 */ 15939 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 15940 tcp_process_shrunk_swnd(tcp, -usable_r); 15941 } 15942 return; 15943 } 15944 15945 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 15946 if (tcp->tcp_swnd > tcp->tcp_cwnd) 15947 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 15948 15949 /* usable = MIN(usable, unsent) */ 15950 if (usable_r > len) 15951 usable_r = len; 15952 15953 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 15954 if (usable_r > 0) { 15955 usable = usable_r; 15956 } else { 15957 /* Bypass all other unnecessary processing. */ 15958 goto done; 15959 } 15960 } 15961 15962 local_time = (mblk_t *)now; 15963 15964 /* 15965 * "Our" Nagle Algorithm. This is not the same as in the old 15966 * BSD. This is more in line with the true intent of Nagle. 15967 * 15968 * The conditions are: 15969 * 1. The amount of unsent data (or amount of data which can be 15970 * sent, whichever is smaller) is less than Nagle limit. 15971 * 2. The last sent size is also less than Nagle limit. 15972 * 3. There is unack'ed data. 15973 * 4. Urgent pointer is not set. Send urgent data ignoring the 15974 * Nagle algorithm. This reduces the probability that urgent 15975 * bytes get "merged" together. 15976 * 5. The app has not closed the connection. This eliminates the 15977 * wait time of the receiving side waiting for the last piece of 15978 * (small) data. 15979 * 15980 * If all are satisified, exit without sending anything. Note 15981 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 15982 * the smaller of 1 MSS and global tcp_naglim_def (default to be 15983 * 4095). 15984 */ 15985 if (usable < (int)tcp->tcp_naglim && 15986 tcp->tcp_naglim > tcp->tcp_last_sent_len && 15987 snxt != tcp->tcp_suna && 15988 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 15989 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 15990 goto done; 15991 } 15992 15993 /* 15994 * If tcp_zero_win_probe is not set and the tcp->tcp_cork option 15995 * is set, then we have to force TCP not to send partial segment 15996 * (smaller than MSS bytes). We are calculating the usable now 15997 * based on full mss and will save the rest of remaining data for 15998 * later. When tcp_zero_win_probe is set, TCP needs to send out 15999 * something to do zero window probe. 16000 */ 16001 if (tcp->tcp_cork && !tcp->tcp_zero_win_probe) { 16002 if (usable < mss) 16003 goto done; 16004 usable = (usable / mss) * mss; 16005 } 16006 16007 /* Update the latest receive window size in TCP header. */ 16008 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 16009 16010 /* Send the packet. */ 16011 rc = tcp_send(tcp, mss, total_hdr_len, tcp_hdr_len, 16012 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 16013 local_time); 16014 16015 /* Pretend that all we were trying to send really got sent */ 16016 if (rc < 0 && tail_unsent < 0) { 16017 do { 16018 xmit_tail = xmit_tail->b_cont; 16019 xmit_tail->b_prev = local_time; 16020 ASSERT((uintptr_t)(xmit_tail->b_wptr - 16021 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 16022 tail_unsent += (int)(xmit_tail->b_wptr - 16023 xmit_tail->b_rptr); 16024 } while (tail_unsent < 0); 16025 } 16026 done:; 16027 tcp->tcp_xmit_tail = xmit_tail; 16028 tcp->tcp_xmit_tail_unsent = tail_unsent; 16029 len = tcp->tcp_snxt - snxt; 16030 if (len) { 16031 /* 16032 * If new data was sent, need to update the notsack 16033 * list, which is, afterall, data blocks that have 16034 * not been sack'ed by the receiver. New data is 16035 * not sack'ed. 16036 */ 16037 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 16038 /* len is a negative value. */ 16039 tcp->tcp_pipe -= len; 16040 tcp_notsack_update(&(tcp->tcp_notsack_list), 16041 tcp->tcp_snxt, snxt, 16042 &(tcp->tcp_num_notsack_blk), 16043 &(tcp->tcp_cnt_notsack_list)); 16044 } 16045 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 16046 tcp->tcp_rack = tcp->tcp_rnxt; 16047 tcp->tcp_rack_cnt = 0; 16048 if ((snxt + len) == tcp->tcp_suna) { 16049 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 16050 } 16051 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 16052 /* 16053 * Didn't send anything. Make sure the timer is running 16054 * so that we will probe a zero window. 16055 */ 16056 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 16057 } 16058 /* Note that len is the amount we just sent but with a negative sign */ 16059 tcp->tcp_unsent += len; 16060 mutex_enter(&tcp->tcp_non_sq_lock); 16061 if (tcp->tcp_flow_stopped) { 16062 if (TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 16063 tcp_clrqfull(tcp); 16064 } 16065 } else if (TCP_UNSENT_BYTES(tcp) >= connp->conn_sndbuf) { 16066 if (!(tcp->tcp_detached)) 16067 tcp_setqfull(tcp); 16068 } 16069 mutex_exit(&tcp->tcp_non_sq_lock); 16070 } 16071 16072 /* 16073 * tcp_fill_header is called by tcp_send() to fill the outgoing TCP header 16074 * with the template header, as well as other options such as time-stamp, 16075 * ECN and/or SACK. 16076 */ 16077 static void 16078 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 16079 { 16080 tcpha_t *tcp_tmpl, *tcpha; 16081 uint32_t *dst, *src; 16082 int hdrlen; 16083 conn_t *connp = tcp->tcp_connp; 16084 16085 ASSERT(OK_32PTR(rptr)); 16086 16087 /* Template header */ 16088 tcp_tmpl = tcp->tcp_tcpha; 16089 16090 /* Header of outgoing packet */ 16091 tcpha = (tcpha_t *)(rptr + connp->conn_ixa->ixa_ip_hdr_length); 16092 16093 /* dst and src are opaque 32-bit fields, used for copying */ 16094 dst = (uint32_t *)rptr; 16095 src = (uint32_t *)connp->conn_ht_iphc; 16096 hdrlen = connp->conn_ht_iphc_len; 16097 16098 /* Fill time-stamp option if needed */ 16099 if (tcp->tcp_snd_ts_ok) { 16100 U32_TO_BE32((uint32_t)now, 16101 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 16102 U32_TO_BE32(tcp->tcp_ts_recent, 16103 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 16104 } else { 16105 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 16106 } 16107 16108 /* 16109 * Copy the template header; is this really more efficient than 16110 * calling bcopy()? For simple IPv4/TCP, it may be the case, 16111 * but perhaps not for other scenarios. 16112 */ 16113 dst[0] = src[0]; 16114 dst[1] = src[1]; 16115 dst[2] = src[2]; 16116 dst[3] = src[3]; 16117 dst[4] = src[4]; 16118 dst[5] = src[5]; 16119 dst[6] = src[6]; 16120 dst[7] = src[7]; 16121 dst[8] = src[8]; 16122 dst[9] = src[9]; 16123 if (hdrlen -= 40) { 16124 hdrlen >>= 2; 16125 dst += 10; 16126 src += 10; 16127 do { 16128 *dst++ = *src++; 16129 } while (--hdrlen); 16130 } 16131 16132 /* 16133 * Set the ECN info in the TCP header if it is not a zero 16134 * window probe. Zero window probe is only sent in 16135 * tcp_wput_data() and tcp_timer(). 16136 */ 16137 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 16138 SET_ECT(tcp, rptr); 16139 16140 if (tcp->tcp_ecn_echo_on) 16141 tcpha->tha_flags |= TH_ECE; 16142 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 16143 tcpha->tha_flags |= TH_CWR; 16144 tcp->tcp_ecn_cwr_sent = B_TRUE; 16145 } 16146 } 16147 16148 /* Fill in SACK options */ 16149 if (num_sack_blk > 0) { 16150 uchar_t *wptr = rptr + connp->conn_ht_iphc_len; 16151 sack_blk_t *tmp; 16152 int32_t i; 16153 16154 wptr[0] = TCPOPT_NOP; 16155 wptr[1] = TCPOPT_NOP; 16156 wptr[2] = TCPOPT_SACK; 16157 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 16158 sizeof (sack_blk_t); 16159 wptr += TCPOPT_REAL_SACK_LEN; 16160 16161 tmp = tcp->tcp_sack_list; 16162 for (i = 0; i < num_sack_blk; i++) { 16163 U32_TO_BE32(tmp[i].begin, wptr); 16164 wptr += sizeof (tcp_seq); 16165 U32_TO_BE32(tmp[i].end, wptr); 16166 wptr += sizeof (tcp_seq); 16167 } 16168 tcpha->tha_offset_and_reserved += 16169 ((num_sack_blk * 2 + 1) << 4); 16170 } 16171 } 16172 16173 /* 16174 * tcp_send() is called by tcp_wput_data() and returns one of the following: 16175 * 16176 * -1 = failed allocation. 16177 * 0 = success; burst count reached, or usable send window is too small, 16178 * and that we'd rather wait until later before sending again. 16179 */ 16180 static int 16181 tcp_send(tcp_t *tcp, const int mss, const int total_hdr_len, 16182 const int tcp_hdr_len, const int num_sack_blk, int *usable, 16183 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time) 16184 { 16185 int num_burst_seg = tcp->tcp_snd_burst; 16186 int num_lso_seg = 1; 16187 uint_t lso_usable; 16188 boolean_t do_lso_send = B_FALSE; 16189 tcp_stack_t *tcps = tcp->tcp_tcps; 16190 conn_t *connp = tcp->tcp_connp; 16191 ip_xmit_attr_t *ixa = connp->conn_ixa; 16192 16193 /* 16194 * Check LSO possibility. The value of tcp->tcp_lso indicates whether 16195 * the underlying connection is LSO capable. Will check whether having 16196 * enough available data to initiate LSO transmission in the for(){} 16197 * loops. 16198 */ 16199 if (tcp->tcp_lso && (tcp->tcp_valid_bits & ~TCP_FSS_VALID) == 0) 16200 do_lso_send = B_TRUE; 16201 16202 for (;;) { 16203 struct datab *db; 16204 tcpha_t *tcpha; 16205 uint32_t sum; 16206 mblk_t *mp, *mp1; 16207 uchar_t *rptr; 16208 int len; 16209 16210 /* 16211 * Burst count reached, return successfully. 16212 */ 16213 if (num_burst_seg == 0) 16214 break; 16215 16216 /* 16217 * Calculate the maximum payload length we can send at one 16218 * time. 16219 */ 16220 if (do_lso_send) { 16221 /* 16222 * Check whether be able to to do LSO for the current 16223 * available data. 16224 */ 16225 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 16226 lso_usable = MIN(tcp->tcp_lso_max, *usable); 16227 lso_usable = MIN(lso_usable, 16228 num_burst_seg * mss); 16229 16230 num_lso_seg = lso_usable / mss; 16231 if (lso_usable % mss) { 16232 num_lso_seg++; 16233 tcp->tcp_last_sent_len = (ushort_t) 16234 (lso_usable % mss); 16235 } else { 16236 tcp->tcp_last_sent_len = (ushort_t)mss; 16237 } 16238 } else { 16239 do_lso_send = B_FALSE; 16240 num_lso_seg = 1; 16241 lso_usable = mss; 16242 } 16243 } 16244 16245 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 16246 #ifdef DEBUG 16247 DTRACE_PROBE2(tcp_send_lso, int, num_lso_seg, boolean_t, 16248 do_lso_send); 16249 #endif 16250 /* 16251 * Adjust num_burst_seg here. 16252 */ 16253 num_burst_seg -= num_lso_seg; 16254 16255 len = mss; 16256 if (len > *usable) { 16257 ASSERT(do_lso_send == B_FALSE); 16258 16259 len = *usable; 16260 if (len <= 0) { 16261 /* Terminate the loop */ 16262 break; /* success; too small */ 16263 } 16264 /* 16265 * Sender silly-window avoidance. 16266 * Ignore this if we are going to send a 16267 * zero window probe out. 16268 * 16269 * TODO: force data into microscopic window? 16270 * ==> (!pushed || (unsent > usable)) 16271 */ 16272 if (len < (tcp->tcp_max_swnd >> 1) && 16273 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 16274 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 16275 len == 1) && (! tcp->tcp_zero_win_probe)) { 16276 /* 16277 * If the retransmit timer is not running 16278 * we start it so that we will retransmit 16279 * in the case when the receiver has 16280 * decremented the window. 16281 */ 16282 if (*snxt == tcp->tcp_snxt && 16283 *snxt == tcp->tcp_suna) { 16284 /* 16285 * We are not supposed to send 16286 * anything. So let's wait a little 16287 * bit longer before breaking SWS 16288 * avoidance. 16289 * 16290 * What should the value be? 16291 * Suggestion: MAX(init rexmit time, 16292 * tcp->tcp_rto) 16293 */ 16294 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 16295 } 16296 break; /* success; too small */ 16297 } 16298 } 16299 16300 tcpha = tcp->tcp_tcpha; 16301 16302 /* 16303 * The reason to adjust len here is that we need to set flags 16304 * and calculate checksum. 16305 */ 16306 if (do_lso_send) 16307 len = lso_usable; 16308 16309 *usable -= len; /* Approximate - can be adjusted later */ 16310 if (*usable > 0) 16311 tcpha->tha_flags = TH_ACK; 16312 else 16313 tcpha->tha_flags = (TH_ACK | TH_PUSH); 16314 16315 /* 16316 * Prime pump for IP's checksumming on our behalf. 16317 * Include the adjustment for a source route if any. 16318 * In case of LSO, the partial pseudo-header checksum should 16319 * exclusive TCP length, so zero tha_sum before IP calculate 16320 * pseudo-header checksum for partial checksum offload. 16321 */ 16322 if (do_lso_send) { 16323 sum = 0; 16324 } else { 16325 sum = len + tcp_hdr_len + connp->conn_sum; 16326 sum = (sum >> 16) + (sum & 0xFFFF); 16327 } 16328 tcpha->tha_sum = htons(sum); 16329 tcpha->tha_seq = htonl(*snxt); 16330 16331 /* 16332 * Branch off to tcp_xmit_mp() if any of the VALID bits is 16333 * set. For the case when TCP_FSS_VALID is the only valid 16334 * bit (normal active close), branch off only when we think 16335 * that the FIN flag needs to be set. Note for this case, 16336 * that (snxt + len) may not reflect the actual seg_len, 16337 * as len may be further reduced in tcp_xmit_mp(). If len 16338 * gets modified, we will end up here again. 16339 */ 16340 if (tcp->tcp_valid_bits != 0 && 16341 (tcp->tcp_valid_bits != TCP_FSS_VALID || 16342 ((*snxt + len) == tcp->tcp_fss))) { 16343 uchar_t *prev_rptr; 16344 uint32_t prev_snxt = tcp->tcp_snxt; 16345 16346 if (*tail_unsent == 0) { 16347 ASSERT((*xmit_tail)->b_cont != NULL); 16348 *xmit_tail = (*xmit_tail)->b_cont; 16349 prev_rptr = (*xmit_tail)->b_rptr; 16350 *tail_unsent = (int)((*xmit_tail)->b_wptr - 16351 (*xmit_tail)->b_rptr); 16352 } else { 16353 prev_rptr = (*xmit_tail)->b_rptr; 16354 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 16355 *tail_unsent; 16356 } 16357 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 16358 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 16359 /* Restore tcp_snxt so we get amount sent right. */ 16360 tcp->tcp_snxt = prev_snxt; 16361 if (prev_rptr == (*xmit_tail)->b_rptr) { 16362 /* 16363 * If the previous timestamp is still in use, 16364 * don't stomp on it. 16365 */ 16366 if ((*xmit_tail)->b_next == NULL) { 16367 (*xmit_tail)->b_prev = local_time; 16368 (*xmit_tail)->b_next = 16369 (mblk_t *)(uintptr_t)(*snxt); 16370 } 16371 } else 16372 (*xmit_tail)->b_rptr = prev_rptr; 16373 16374 if (mp == NULL) { 16375 return (-1); 16376 } 16377 mp1 = mp->b_cont; 16378 16379 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 16380 tcp->tcp_last_sent_len = (ushort_t)len; 16381 while (mp1->b_cont) { 16382 *xmit_tail = (*xmit_tail)->b_cont; 16383 (*xmit_tail)->b_prev = local_time; 16384 (*xmit_tail)->b_next = 16385 (mblk_t *)(uintptr_t)(*snxt); 16386 mp1 = mp1->b_cont; 16387 } 16388 *snxt += len; 16389 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 16390 BUMP_LOCAL(tcp->tcp_obsegs); 16391 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 16392 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 16393 tcp_send_data(tcp, mp); 16394 continue; 16395 } 16396 16397 *snxt += len; /* Adjust later if we don't send all of len */ 16398 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 16399 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 16400 16401 if (*tail_unsent) { 16402 /* Are the bytes above us in flight? */ 16403 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 16404 if (rptr != (*xmit_tail)->b_rptr) { 16405 *tail_unsent -= len; 16406 if (len <= mss) /* LSO is unusable */ 16407 tcp->tcp_last_sent_len = (ushort_t)len; 16408 len += total_hdr_len; 16409 ixa->ixa_pktlen = len; 16410 16411 if (ixa->ixa_flags & IXAF_IS_IPV4) { 16412 tcp->tcp_ipha->ipha_length = htons(len); 16413 } else { 16414 tcp->tcp_ip6h->ip6_plen = 16415 htons(len - IPV6_HDR_LEN); 16416 } 16417 16418 mp = dupb(*xmit_tail); 16419 if (mp == NULL) { 16420 return (-1); /* out_of_mem */ 16421 } 16422 mp->b_rptr = rptr; 16423 /* 16424 * If the old timestamp is no longer in use, 16425 * sample a new timestamp now. 16426 */ 16427 if ((*xmit_tail)->b_next == NULL) { 16428 (*xmit_tail)->b_prev = local_time; 16429 (*xmit_tail)->b_next = 16430 (mblk_t *)(uintptr_t)(*snxt-len); 16431 } 16432 goto must_alloc; 16433 } 16434 } else { 16435 *xmit_tail = (*xmit_tail)->b_cont; 16436 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 16437 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 16438 *tail_unsent = (int)((*xmit_tail)->b_wptr - 16439 (*xmit_tail)->b_rptr); 16440 } 16441 16442 (*xmit_tail)->b_prev = local_time; 16443 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 16444 16445 *tail_unsent -= len; 16446 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 16447 tcp->tcp_last_sent_len = (ushort_t)len; 16448 16449 len += total_hdr_len; 16450 ixa->ixa_pktlen = len; 16451 16452 if (ixa->ixa_flags & IXAF_IS_IPV4) { 16453 tcp->tcp_ipha->ipha_length = htons(len); 16454 } else { 16455 tcp->tcp_ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 16456 } 16457 16458 mp = dupb(*xmit_tail); 16459 if (mp == NULL) { 16460 return (-1); /* out_of_mem */ 16461 } 16462 16463 len = total_hdr_len; 16464 /* 16465 * There are four reasons to allocate a new hdr mblk: 16466 * 1) The bytes above us are in use by another packet 16467 * 2) We don't have good alignment 16468 * 3) The mblk is being shared 16469 * 4) We don't have enough room for a header 16470 */ 16471 rptr = mp->b_rptr - len; 16472 if (!OK_32PTR(rptr) || 16473 ((db = mp->b_datap), db->db_ref != 2) || 16474 rptr < db->db_base) { 16475 /* NOTE: we assume allocb returns an OK_32PTR */ 16476 16477 must_alloc:; 16478 mp1 = allocb(connp->conn_ht_iphc_allocated + 16479 tcps->tcps_wroff_xtra, BPRI_MED); 16480 if (mp1 == NULL) { 16481 freemsg(mp); 16482 return (-1); /* out_of_mem */ 16483 } 16484 mp1->b_cont = mp; 16485 mp = mp1; 16486 /* Leave room for Link Level header */ 16487 len = total_hdr_len; 16488 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 16489 mp->b_wptr = &rptr[len]; 16490 } 16491 16492 /* 16493 * Fill in the header using the template header, and add 16494 * options such as time-stamp, ECN and/or SACK, as needed. 16495 */ 16496 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 16497 16498 mp->b_rptr = rptr; 16499 16500 if (*tail_unsent) { 16501 int spill = *tail_unsent; 16502 16503 mp1 = mp->b_cont; 16504 if (mp1 == NULL) 16505 mp1 = mp; 16506 16507 /* 16508 * If we're a little short, tack on more mblks until 16509 * there is no more spillover. 16510 */ 16511 while (spill < 0) { 16512 mblk_t *nmp; 16513 int nmpsz; 16514 16515 nmp = (*xmit_tail)->b_cont; 16516 nmpsz = MBLKL(nmp); 16517 16518 /* 16519 * Excess data in mblk; can we split it? 16520 * If LSO is enabled for the connection, 16521 * keep on splitting as this is a transient 16522 * send path. 16523 */ 16524 if (!do_lso_send && (spill + nmpsz > 0)) { 16525 /* 16526 * Don't split if stream head was 16527 * told to break up larger writes 16528 * into smaller ones. 16529 */ 16530 if (tcp->tcp_maxpsz_multiplier > 0) 16531 break; 16532 16533 /* 16534 * Next mblk is less than SMSS/2 16535 * rounded up to nearest 64-byte; 16536 * let it get sent as part of the 16537 * next segment. 16538 */ 16539 if (tcp->tcp_localnet && 16540 !tcp->tcp_cork && 16541 (nmpsz < roundup((mss >> 1), 64))) 16542 break; 16543 } 16544 16545 *xmit_tail = nmp; 16546 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 16547 /* Stash for rtt use later */ 16548 (*xmit_tail)->b_prev = local_time; 16549 (*xmit_tail)->b_next = 16550 (mblk_t *)(uintptr_t)(*snxt - len); 16551 mp1->b_cont = dupb(*xmit_tail); 16552 mp1 = mp1->b_cont; 16553 16554 spill += nmpsz; 16555 if (mp1 == NULL) { 16556 *tail_unsent = spill; 16557 freemsg(mp); 16558 return (-1); /* out_of_mem */ 16559 } 16560 } 16561 16562 /* Trim back any surplus on the last mblk */ 16563 if (spill >= 0) { 16564 mp1->b_wptr -= spill; 16565 *tail_unsent = spill; 16566 } else { 16567 /* 16568 * We did not send everything we could in 16569 * order to remain within the b_cont limit. 16570 */ 16571 *usable -= spill; 16572 *snxt += spill; 16573 tcp->tcp_last_sent_len += spill; 16574 UPDATE_MIB(&tcps->tcps_mib, 16575 tcpOutDataBytes, spill); 16576 /* 16577 * Adjust the checksum 16578 */ 16579 tcpha = (tcpha_t *)(rptr + 16580 ixa->ixa_ip_hdr_length); 16581 sum += spill; 16582 sum = (sum >> 16) + (sum & 0xFFFF); 16583 tcpha->tha_sum = htons(sum); 16584 if (connp->conn_ipversion == IPV4_VERSION) { 16585 sum = ntohs( 16586 ((ipha_t *)rptr)->ipha_length) + 16587 spill; 16588 ((ipha_t *)rptr)->ipha_length = 16589 htons(sum); 16590 } else { 16591 sum = ntohs( 16592 ((ip6_t *)rptr)->ip6_plen) + 16593 spill; 16594 ((ip6_t *)rptr)->ip6_plen = 16595 htons(sum); 16596 } 16597 ixa->ixa_pktlen += spill; 16598 *tail_unsent = 0; 16599 } 16600 } 16601 if (tcp->tcp_ip_forward_progress) { 16602 tcp->tcp_ip_forward_progress = B_FALSE; 16603 ixa->ixa_flags |= IXAF_REACH_CONF; 16604 } else { 16605 ixa->ixa_flags &= ~IXAF_REACH_CONF; 16606 } 16607 16608 if (do_lso_send) { 16609 /* Append LSO information to the mp. */ 16610 lso_info_set(mp, mss, HW_LSO); 16611 ixa->ixa_fragsize = IP_MAXPACKET; 16612 ixa->ixa_extra_ident = num_lso_seg - 1; 16613 16614 DTRACE_PROBE2(tcp_send_lso, int, num_lso_seg, 16615 boolean_t, B_TRUE); 16616 16617 tcp_send_data(tcp, mp); 16618 16619 /* 16620 * Restore values of ixa_fragsize and ixa_extra_ident. 16621 */ 16622 ixa->ixa_fragsize = ixa->ixa_pmtu; 16623 ixa->ixa_extra_ident = 0; 16624 tcp->tcp_obsegs += num_lso_seg; 16625 TCP_STAT(tcps, tcp_lso_times); 16626 TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); 16627 } else { 16628 /* 16629 * Make sure to clean up LSO information. Wherever a 16630 * new mp uses the prepended header room after dupb(), 16631 * lso_info_cleanup() should be called. 16632 */ 16633 lso_info_cleanup(mp); 16634 tcp_send_data(tcp, mp); 16635 BUMP_LOCAL(tcp->tcp_obsegs); 16636 } 16637 } 16638 16639 return (0); 16640 } 16641 16642 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 16643 static void 16644 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 16645 { 16646 uchar_t fval = *mp->b_rptr; 16647 mblk_t *tail; 16648 conn_t *connp = tcp->tcp_connp; 16649 queue_t *q = connp->conn_wq; 16650 16651 /* TODO: How should flush interact with urgent data? */ 16652 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 16653 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 16654 /* 16655 * Flush only data that has not yet been put on the wire. If 16656 * we flush data that we have already transmitted, life, as we 16657 * know it, may come to an end. 16658 */ 16659 tail = tcp->tcp_xmit_tail; 16660 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 16661 tcp->tcp_xmit_tail_unsent = 0; 16662 tcp->tcp_unsent = 0; 16663 if (tail->b_wptr != tail->b_rptr) 16664 tail = tail->b_cont; 16665 if (tail) { 16666 mblk_t **excess = &tcp->tcp_xmit_head; 16667 for (;;) { 16668 mblk_t *mp1 = *excess; 16669 if (mp1 == tail) 16670 break; 16671 tcp->tcp_xmit_tail = mp1; 16672 tcp->tcp_xmit_last = mp1; 16673 excess = &mp1->b_cont; 16674 } 16675 *excess = NULL; 16676 tcp_close_mpp(&tail); 16677 if (tcp->tcp_snd_zcopy_aware) 16678 tcp_zcopy_notify(tcp); 16679 } 16680 /* 16681 * We have no unsent data, so unsent must be less than 16682 * conn_sndlowat, so re-enable flow. 16683 */ 16684 mutex_enter(&tcp->tcp_non_sq_lock); 16685 if (tcp->tcp_flow_stopped) { 16686 tcp_clrqfull(tcp); 16687 } 16688 mutex_exit(&tcp->tcp_non_sq_lock); 16689 } 16690 /* 16691 * TODO: you can't just flush these, you have to increase rwnd for one 16692 * thing. For another, how should urgent data interact? 16693 */ 16694 if (fval & FLUSHR) { 16695 *mp->b_rptr = fval & ~FLUSHW; 16696 /* XXX */ 16697 qreply(q, mp); 16698 return; 16699 } 16700 freemsg(mp); 16701 } 16702 16703 /* 16704 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 16705 * messages. 16706 */ 16707 static void 16708 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 16709 { 16710 mblk_t *mp1; 16711 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 16712 STRUCT_HANDLE(strbuf, sb); 16713 uint_t addrlen; 16714 conn_t *connp = tcp->tcp_connp; 16715 queue_t *q = connp->conn_wq; 16716 16717 /* Make sure it is one of ours. */ 16718 switch (iocp->ioc_cmd) { 16719 case TI_GETMYNAME: 16720 case TI_GETPEERNAME: 16721 break; 16722 default: 16723 /* 16724 * If the conn is closing, then error the ioctl here. Otherwise 16725 * use the CONN_IOCTLREF_* macros to hold off tcp_close until 16726 * we're done here. 16727 */ 16728 mutex_enter(&connp->conn_lock); 16729 if (connp->conn_state_flags & CONN_CLOSING) { 16730 mutex_exit(&connp->conn_lock); 16731 iocp->ioc_error = EINVAL; 16732 mp->b_datap->db_type = M_IOCNAK; 16733 iocp->ioc_count = 0; 16734 qreply(q, mp); 16735 return; 16736 } 16737 16738 CONN_INC_IOCTLREF_LOCKED(connp); 16739 ip_wput_nondata(q, mp); 16740 CONN_DEC_IOCTLREF(connp); 16741 return; 16742 } 16743 switch (mi_copy_state(q, mp, &mp1)) { 16744 case -1: 16745 return; 16746 case MI_COPY_CASE(MI_COPY_IN, 1): 16747 break; 16748 case MI_COPY_CASE(MI_COPY_OUT, 1): 16749 /* Copy out the strbuf. */ 16750 mi_copyout(q, mp); 16751 return; 16752 case MI_COPY_CASE(MI_COPY_OUT, 2): 16753 /* All done. */ 16754 mi_copy_done(q, mp, 0); 16755 return; 16756 default: 16757 mi_copy_done(q, mp, EPROTO); 16758 return; 16759 } 16760 /* Check alignment of the strbuf */ 16761 if (!OK_32PTR(mp1->b_rptr)) { 16762 mi_copy_done(q, mp, EINVAL); 16763 return; 16764 } 16765 16766 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 16767 16768 if (connp->conn_family == AF_INET) 16769 addrlen = sizeof (sin_t); 16770 else 16771 addrlen = sizeof (sin6_t); 16772 16773 if (STRUCT_FGET(sb, maxlen) < addrlen) { 16774 mi_copy_done(q, mp, EINVAL); 16775 return; 16776 } 16777 16778 switch (iocp->ioc_cmd) { 16779 case TI_GETMYNAME: 16780 break; 16781 case TI_GETPEERNAME: 16782 if (tcp->tcp_state < TCPS_SYN_RCVD) { 16783 mi_copy_done(q, mp, ENOTCONN); 16784 return; 16785 } 16786 break; 16787 } 16788 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 16789 if (!mp1) 16790 return; 16791 16792 STRUCT_FSET(sb, len, addrlen); 16793 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 16794 case TI_GETMYNAME: 16795 (void) conn_getsockname(connp, (struct sockaddr *)mp1->b_wptr, 16796 &addrlen); 16797 break; 16798 case TI_GETPEERNAME: 16799 (void) conn_getpeername(connp, (struct sockaddr *)mp1->b_wptr, 16800 &addrlen); 16801 break; 16802 } 16803 mp1->b_wptr += addrlen; 16804 /* Copy out the address */ 16805 mi_copyout(q, mp); 16806 } 16807 16808 static void 16809 tcp_use_pure_tpi(tcp_t *tcp) 16810 { 16811 conn_t *connp = tcp->tcp_connp; 16812 16813 #ifdef _ILP32 16814 tcp->tcp_acceptor_id = (t_uscalar_t)connp->conn_rq; 16815 #else 16816 tcp->tcp_acceptor_id = connp->conn_dev; 16817 #endif 16818 /* 16819 * Insert this socket into the acceptor hash. 16820 * We might need it for T_CONN_RES message 16821 */ 16822 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 16823 16824 tcp->tcp_issocket = B_FALSE; 16825 TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback); 16826 } 16827 16828 /* 16829 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 16830 * messages. 16831 */ 16832 /* ARGSUSED */ 16833 static void 16834 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 16835 { 16836 conn_t *connp = (conn_t *)arg; 16837 tcp_t *tcp = connp->conn_tcp; 16838 queue_t *q = connp->conn_wq; 16839 struct iocblk *iocp; 16840 16841 ASSERT(DB_TYPE(mp) == M_IOCTL); 16842 /* 16843 * Try and ASSERT the minimum possible references on the 16844 * conn early enough. Since we are executing on write side, 16845 * the connection is obviously not detached and that means 16846 * there is a ref each for TCP and IP. Since we are behind 16847 * the squeue, the minimum references needed are 3. If the 16848 * conn is in classifier hash list, there should be an 16849 * extra ref for that (we check both the possibilities). 16850 */ 16851 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 16852 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 16853 16854 iocp = (struct iocblk *)mp->b_rptr; 16855 switch (iocp->ioc_cmd) { 16856 case _SIOCSOCKFALLBACK: 16857 /* 16858 * Either sockmod is about to be popped and the socket 16859 * would now be treated as a plain stream, or a module 16860 * is about to be pushed so we could no longer use read- 16861 * side synchronous streams for fused loopback tcp. 16862 * Drain any queued data and disable direct sockfs 16863 * interface from now on. 16864 */ 16865 if (!tcp->tcp_issocket) { 16866 DB_TYPE(mp) = M_IOCNAK; 16867 iocp->ioc_error = EINVAL; 16868 } else { 16869 tcp_use_pure_tpi(tcp); 16870 DB_TYPE(mp) = M_IOCACK; 16871 iocp->ioc_error = 0; 16872 } 16873 iocp->ioc_count = 0; 16874 iocp->ioc_rval = 0; 16875 qreply(q, mp); 16876 return; 16877 } 16878 16879 /* 16880 * If the conn is closing, then error the ioctl here. Otherwise bump the 16881 * conn_ioctlref to hold off tcp_close until we're done here. 16882 */ 16883 mutex_enter(&(connp)->conn_lock); 16884 if ((connp)->conn_state_flags & CONN_CLOSING) { 16885 mutex_exit(&(connp)->conn_lock); 16886 iocp->ioc_error = EINVAL; 16887 mp->b_datap->db_type = M_IOCNAK; 16888 iocp->ioc_count = 0; 16889 qreply(q, mp); 16890 return; 16891 } 16892 16893 CONN_INC_IOCTLREF_LOCKED(connp); 16894 ip_wput_nondata(q, mp); 16895 CONN_DEC_IOCTLREF(connp); 16896 } 16897 16898 /* 16899 * This routine is called by tcp_wput() to handle all TPI requests. 16900 */ 16901 /* ARGSUSED */ 16902 static void 16903 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 16904 { 16905 conn_t *connp = (conn_t *)arg; 16906 tcp_t *tcp = connp->conn_tcp; 16907 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 16908 uchar_t *rptr; 16909 t_scalar_t type; 16910 cred_t *cr; 16911 16912 /* 16913 * Try and ASSERT the minimum possible references on the 16914 * conn early enough. Since we are executing on write side, 16915 * the connection is obviously not detached and that means 16916 * there is a ref each for TCP and IP. Since we are behind 16917 * the squeue, the minimum references needed are 3. If the 16918 * conn is in classifier hash list, there should be an 16919 * extra ref for that (we check both the possibilities). 16920 */ 16921 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 16922 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 16923 16924 rptr = mp->b_rptr; 16925 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 16926 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 16927 type = ((union T_primitives *)rptr)->type; 16928 if (type == T_EXDATA_REQ) { 16929 tcp_output_urgent(connp, mp, arg2, NULL); 16930 } else if (type != T_DATA_REQ) { 16931 goto non_urgent_data; 16932 } else { 16933 /* TODO: options, flags, ... from user */ 16934 /* Set length to zero for reclamation below */ 16935 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 16936 freeb(mp); 16937 } 16938 return; 16939 } else { 16940 if (connp->conn_debug) { 16941 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 16942 "tcp_wput_proto, dropping one..."); 16943 } 16944 freemsg(mp); 16945 return; 16946 } 16947 16948 non_urgent_data: 16949 16950 switch ((int)tprim->type) { 16951 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 16952 /* 16953 * save the kssl_ent_t from the next block, and convert this 16954 * back to a normal bind_req. 16955 */ 16956 if (mp->b_cont != NULL) { 16957 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 16958 16959 if (tcp->tcp_kssl_ent != NULL) { 16960 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 16961 KSSL_NO_PROXY); 16962 tcp->tcp_kssl_ent = NULL; 16963 } 16964 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 16965 sizeof (kssl_ent_t)); 16966 kssl_hold_ent(tcp->tcp_kssl_ent); 16967 freemsg(mp->b_cont); 16968 mp->b_cont = NULL; 16969 } 16970 tprim->type = T_BIND_REQ; 16971 16972 /* FALLTHROUGH */ 16973 case O_T_BIND_REQ: /* bind request */ 16974 case T_BIND_REQ: /* new semantics bind request */ 16975 tcp_tpi_bind(tcp, mp); 16976 break; 16977 case T_UNBIND_REQ: /* unbind request */ 16978 tcp_tpi_unbind(tcp, mp); 16979 break; 16980 case O_T_CONN_RES: /* old connection response XXX */ 16981 case T_CONN_RES: /* connection response */ 16982 tcp_tli_accept(tcp, mp); 16983 break; 16984 case T_CONN_REQ: /* connection request */ 16985 tcp_tpi_connect(tcp, mp); 16986 break; 16987 case T_DISCON_REQ: /* disconnect request */ 16988 tcp_disconnect(tcp, mp); 16989 break; 16990 case T_CAPABILITY_REQ: 16991 tcp_capability_req(tcp, mp); /* capability request */ 16992 break; 16993 case T_INFO_REQ: /* information request */ 16994 tcp_info_req(tcp, mp); 16995 break; 16996 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 16997 case T_OPTMGMT_REQ: 16998 /* 16999 * Note: no support for snmpcom_req() through new 17000 * T_OPTMGMT_REQ. See comments in ip.c 17001 */ 17002 17003 /* 17004 * All Solaris components should pass a db_credp 17005 * for this TPI message, hence we ASSERT. 17006 * But in case there is some other M_PROTO that looks 17007 * like a TPI message sent by some other kernel 17008 * component, we check and return an error. 17009 */ 17010 cr = msg_getcred(mp, NULL); 17011 ASSERT(cr != NULL); 17012 if (cr == NULL) { 17013 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 17014 return; 17015 } 17016 /* 17017 * If EINPROGRESS is returned, the request has been queued 17018 * for subsequent processing by ip_restart_optmgmt(), which 17019 * will do the CONN_DEC_REF(). 17020 */ 17021 if ((int)tprim->type == T_SVR4_OPTMGMT_REQ) { 17022 svr4_optcom_req(connp->conn_wq, mp, cr, &tcp_opt_obj); 17023 } else { 17024 tpi_optcom_req(connp->conn_wq, mp, cr, &tcp_opt_obj); 17025 } 17026 break; 17027 17028 case T_UNITDATA_REQ: /* unitdata request */ 17029 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 17030 break; 17031 case T_ORDREL_REQ: /* orderly release req */ 17032 freemsg(mp); 17033 17034 if (tcp->tcp_fused) 17035 tcp_unfuse(tcp); 17036 17037 if (tcp_xmit_end(tcp) != 0) { 17038 /* 17039 * We were crossing FINs and got a reset from 17040 * the other side. Just ignore it. 17041 */ 17042 if (connp->conn_debug) { 17043 (void) strlog(TCP_MOD_ID, 0, 1, 17044 SL_ERROR|SL_TRACE, 17045 "tcp_wput_proto, T_ORDREL_REQ out of " 17046 "state %s", 17047 tcp_display(tcp, NULL, 17048 DISP_ADDR_AND_PORT)); 17049 } 17050 } 17051 break; 17052 case T_ADDR_REQ: 17053 tcp_addr_req(tcp, mp); 17054 break; 17055 default: 17056 if (connp->conn_debug) { 17057 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 17058 "tcp_wput_proto, bogus TPI msg, type %d", 17059 tprim->type); 17060 } 17061 /* 17062 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 17063 * to recover. 17064 */ 17065 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 17066 break; 17067 } 17068 } 17069 17070 /* 17071 * The TCP write service routine should never be called... 17072 */ 17073 /* ARGSUSED */ 17074 static void 17075 tcp_wsrv(queue_t *q) 17076 { 17077 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 17078 17079 TCP_STAT(tcps, tcp_wsrv_called); 17080 } 17081 17082 /* 17083 * Send out a control packet on the tcp connection specified. This routine 17084 * is typically called where we need a simple ACK or RST generated. 17085 */ 17086 static void 17087 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 17088 { 17089 uchar_t *rptr; 17090 tcpha_t *tcpha; 17091 ipha_t *ipha = NULL; 17092 ip6_t *ip6h = NULL; 17093 uint32_t sum; 17094 int total_hdr_len; 17095 int ip_hdr_len; 17096 mblk_t *mp; 17097 tcp_stack_t *tcps = tcp->tcp_tcps; 17098 conn_t *connp = tcp->tcp_connp; 17099 ip_xmit_attr_t *ixa = connp->conn_ixa; 17100 17101 /* 17102 * Save sum for use in source route later. 17103 */ 17104 sum = connp->conn_ht_ulp_len + connp->conn_sum; 17105 total_hdr_len = connp->conn_ht_iphc_len; 17106 ip_hdr_len = ixa->ixa_ip_hdr_length; 17107 17108 /* If a text string is passed in with the request, pass it to strlog. */ 17109 if (str != NULL && connp->conn_debug) { 17110 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 17111 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 17112 str, seq, ack, ctl); 17113 } 17114 mp = allocb(connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra, 17115 BPRI_MED); 17116 if (mp == NULL) { 17117 return; 17118 } 17119 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 17120 mp->b_rptr = rptr; 17121 mp->b_wptr = &rptr[total_hdr_len]; 17122 bcopy(connp->conn_ht_iphc, rptr, total_hdr_len); 17123 17124 ixa->ixa_pktlen = total_hdr_len; 17125 17126 if (ixa->ixa_flags & IXAF_IS_IPV4) { 17127 ipha = (ipha_t *)rptr; 17128 ipha->ipha_length = htons(total_hdr_len); 17129 } else { 17130 ip6h = (ip6_t *)rptr; 17131 ip6h->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN); 17132 } 17133 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 17134 tcpha->tha_flags = (uint8_t)ctl; 17135 if (ctl & TH_RST) { 17136 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 17137 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 17138 /* 17139 * Don't send TSopt w/ TH_RST packets per RFC 1323. 17140 */ 17141 if (tcp->tcp_snd_ts_ok && 17142 tcp->tcp_state > TCPS_SYN_SENT) { 17143 mp->b_wptr = &rptr[total_hdr_len - TCPOPT_REAL_TS_LEN]; 17144 *(mp->b_wptr) = TCPOPT_EOL; 17145 17146 ixa->ixa_pktlen = total_hdr_len - TCPOPT_REAL_TS_LEN; 17147 17148 if (connp->conn_ipversion == IPV4_VERSION) { 17149 ipha->ipha_length = htons(total_hdr_len - 17150 TCPOPT_REAL_TS_LEN); 17151 } else { 17152 ip6h->ip6_plen = htons(total_hdr_len - 17153 IPV6_HDR_LEN - TCPOPT_REAL_TS_LEN); 17154 } 17155 tcpha->tha_offset_and_reserved -= (3 << 4); 17156 sum -= TCPOPT_REAL_TS_LEN; 17157 } 17158 } 17159 if (ctl & TH_ACK) { 17160 if (tcp->tcp_snd_ts_ok) { 17161 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 17162 17163 U32_TO_BE32(llbolt, 17164 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 17165 U32_TO_BE32(tcp->tcp_ts_recent, 17166 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 17167 } 17168 17169 /* Update the latest receive window size in TCP header. */ 17170 tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 17171 /* Track what we sent to the peer */ 17172 tcp->tcp_tcpha->tha_win = tcpha->tha_win; 17173 tcp->tcp_rack = ack; 17174 tcp->tcp_rack_cnt = 0; 17175 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 17176 } 17177 BUMP_LOCAL(tcp->tcp_obsegs); 17178 tcpha->tha_seq = htonl(seq); 17179 tcpha->tha_ack = htonl(ack); 17180 /* 17181 * Include the adjustment for a source route if any. 17182 */ 17183 sum = (sum >> 16) + (sum & 0xFFFF); 17184 tcpha->tha_sum = htons(sum); 17185 tcp_send_data(tcp, mp); 17186 } 17187 17188 /* 17189 * If this routine returns B_TRUE, TCP can generate a RST in response 17190 * to a segment. If it returns B_FALSE, TCP should not respond. 17191 */ 17192 static boolean_t 17193 tcp_send_rst_chk(tcp_stack_t *tcps) 17194 { 17195 int64_t now; 17196 17197 /* 17198 * TCP needs to protect itself from generating too many RSTs. 17199 * This can be a DoS attack by sending us random segments 17200 * soliciting RSTs. 17201 * 17202 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 17203 * in each 1 second interval. In this way, TCP still generate 17204 * RSTs in normal cases but when under attack, the impact is 17205 * limited. 17206 */ 17207 if (tcps->tcps_rst_sent_rate_enabled != 0) { 17208 now = ddi_get_lbolt64(); 17209 if (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 17210 1*SECONDS) { 17211 tcps->tcps_last_rst_intrvl = now; 17212 tcps->tcps_rst_cnt = 1; 17213 } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { 17214 return (B_FALSE); 17215 } 17216 } 17217 return (B_TRUE); 17218 } 17219 17220 /* 17221 * Generate a reset based on an inbound packet, connp is set by caller 17222 * when RST is in response to an unexpected inbound packet for which 17223 * there is active tcp state in the system. 17224 * 17225 * IPSEC NOTE : Try to send the reply with the same protection as it came 17226 * in. We have the ip_recv_attr_t which is reversed to form the ip_xmit_attr_t. 17227 * That way the packet will go out at the same level of protection as it 17228 * came in with. 17229 */ 17230 static void 17231 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, uint32_t ack, int ctl, 17232 ip_recv_attr_t *ira, ip_stack_t *ipst, conn_t *connp) 17233 { 17234 ipha_t *ipha = NULL; 17235 ip6_t *ip6h = NULL; 17236 ushort_t len; 17237 tcpha_t *tcpha; 17238 int i; 17239 ipaddr_t v4addr; 17240 in6_addr_t v6addr; 17241 netstack_t *ns = ipst->ips_netstack; 17242 tcp_stack_t *tcps = ns->netstack_tcp; 17243 ip_xmit_attr_t ixas, *ixa; 17244 uint_t ip_hdr_len = ira->ira_ip_hdr_length; 17245 boolean_t need_refrele = B_FALSE; /* ixa_refrele(ixa) */ 17246 ushort_t port; 17247 17248 if (!tcp_send_rst_chk(tcps)) { 17249 TCP_STAT(tcps, tcp_rst_unsent); 17250 freemsg(mp); 17251 return; 17252 } 17253 17254 /* 17255 * If connp != NULL we use conn_ixa to keep IP_NEXTHOP and other 17256 * options from the listener. In that case the caller must ensure that 17257 * we are running on the listener = connp squeue. 17258 * 17259 * We get a safe copy of conn_ixa so we don't need to restore anything 17260 * we or ip_output_simple might change in the ixa. 17261 */ 17262 if (connp != NULL) { 17263 ASSERT(connp->conn_on_sqp); 17264 17265 ixa = conn_get_ixa_exclusive(connp); 17266 if (ixa == NULL) { 17267 TCP_STAT(tcps, tcp_rst_unsent); 17268 freemsg(mp); 17269 return; 17270 } 17271 need_refrele = B_TRUE; 17272 } else { 17273 bzero(&ixas, sizeof (ixas)); 17274 ixa = &ixas; 17275 /* 17276 * IXAF_VERIFY_SOURCE is overkill since we know the 17277 * packet was for us. 17278 */ 17279 ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE; 17280 ixa->ixa_protocol = IPPROTO_TCP; 17281 ixa->ixa_zoneid = ira->ira_zoneid; 17282 ixa->ixa_ifindex = 0; 17283 ixa->ixa_ipst = ipst; 17284 ixa->ixa_cred = kcred; 17285 ixa->ixa_cpid = NOPID; 17286 } 17287 17288 if (str && tcps->tcps_dbg) { 17289 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 17290 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 17291 "flags 0x%x", 17292 str, seq, ack, ctl); 17293 } 17294 if (mp->b_datap->db_ref != 1) { 17295 mblk_t *mp1 = copyb(mp); 17296 freemsg(mp); 17297 mp = mp1; 17298 if (mp == NULL) 17299 goto done; 17300 } else if (mp->b_cont) { 17301 freemsg(mp->b_cont); 17302 mp->b_cont = NULL; 17303 DB_CKSUMFLAGS(mp) = 0; 17304 } 17305 /* 17306 * We skip reversing source route here. 17307 * (for now we replace all IP options with EOL) 17308 */ 17309 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 17310 ipha = (ipha_t *)mp->b_rptr; 17311 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 17312 mp->b_rptr[i] = IPOPT_EOL; 17313 /* 17314 * Make sure that src address isn't flagrantly invalid. 17315 * Not all broadcast address checking for the src address 17316 * is possible, since we don't know the netmask of the src 17317 * addr. No check for destination address is done, since 17318 * IP will not pass up a packet with a broadcast dest 17319 * address to TCP. Similar checks are done below for IPv6. 17320 */ 17321 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 17322 CLASSD(ipha->ipha_src)) { 17323 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 17324 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 17325 freemsg(mp); 17326 goto done; 17327 } 17328 } else { 17329 ip6h = (ip6_t *)mp->b_rptr; 17330 17331 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 17332 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 17333 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); 17334 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 17335 freemsg(mp); 17336 goto done; 17337 } 17338 17339 /* Remove any extension headers assuming partial overlay */ 17340 if (ip_hdr_len > IPV6_HDR_LEN) { 17341 uint8_t *to; 17342 17343 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 17344 ovbcopy(ip6h, to, IPV6_HDR_LEN); 17345 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 17346 ip_hdr_len = IPV6_HDR_LEN; 17347 ip6h = (ip6_t *)mp->b_rptr; 17348 ip6h->ip6_nxt = IPPROTO_TCP; 17349 } 17350 } 17351 tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len]; 17352 if (tcpha->tha_flags & TH_RST) { 17353 freemsg(mp); 17354 goto done; 17355 } 17356 tcpha->tha_offset_and_reserved = (5 << 4); 17357 len = ip_hdr_len + sizeof (tcpha_t); 17358 mp->b_wptr = &mp->b_rptr[len]; 17359 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 17360 ipha->ipha_length = htons(len); 17361 /* Swap addresses */ 17362 v4addr = ipha->ipha_src; 17363 ipha->ipha_src = ipha->ipha_dst; 17364 ipha->ipha_dst = v4addr; 17365 ipha->ipha_ident = 0; 17366 ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 17367 ixa->ixa_flags |= IXAF_IS_IPV4; 17368 ixa->ixa_ip_hdr_length = ip_hdr_len; 17369 } else { 17370 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 17371 /* Swap addresses */ 17372 v6addr = ip6h->ip6_src; 17373 ip6h->ip6_src = ip6h->ip6_dst; 17374 ip6h->ip6_dst = v6addr; 17375 ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; 17376 ixa->ixa_flags &= ~IXAF_IS_IPV4; 17377 17378 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_dst)) { 17379 ixa->ixa_flags |= IXAF_SCOPEID_SET; 17380 ixa->ixa_scopeid = ira->ira_ruifindex; 17381 } 17382 ixa->ixa_ip_hdr_length = IPV6_HDR_LEN; 17383 } 17384 ixa->ixa_pktlen = len; 17385 17386 /* Swap the ports */ 17387 port = tcpha->tha_fport; 17388 tcpha->tha_fport = tcpha->tha_lport; 17389 tcpha->tha_lport = port; 17390 17391 tcpha->tha_ack = htonl(ack); 17392 tcpha->tha_seq = htonl(seq); 17393 tcpha->tha_win = 0; 17394 tcpha->tha_sum = htons(sizeof (tcpha_t)); 17395 tcpha->tha_flags = (uint8_t)ctl; 17396 if (ctl & TH_RST) { 17397 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 17398 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 17399 } 17400 17401 /* Discard any old label */ 17402 if (ixa->ixa_free_flags & IXA_FREE_TSL) { 17403 ASSERT(ixa->ixa_tsl != NULL); 17404 label_rele(ixa->ixa_tsl); 17405 ixa->ixa_free_flags &= ~IXA_FREE_TSL; 17406 } 17407 ixa->ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 17408 17409 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 17410 /* 17411 * Apply IPsec based on how IPsec was applied to 17412 * the packet that caused the RST. 17413 */ 17414 if (!ipsec_in_to_out(ira, ixa, mp, ipha, ip6h)) { 17415 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 17416 /* Note: mp already consumed and ip_drop_packet done */ 17417 goto done; 17418 } 17419 } else { 17420 /* 17421 * This is in clear. The RST message we are building 17422 * here should go out in clear, independent of our policy. 17423 */ 17424 ixa->ixa_flags |= IXAF_NO_IPSEC; 17425 } 17426 17427 /* 17428 * NOTE: one might consider tracing a TCP packet here, but 17429 * this function has no active TCP state and no tcp structure 17430 * that has a trace buffer. If we traced here, we would have 17431 * to keep a local trace buffer in tcp_record_trace(). 17432 */ 17433 17434 (void) ip_output_simple(mp, ixa); 17435 done: 17436 ixa_cleanup(ixa); 17437 if (need_refrele) { 17438 ASSERT(ixa != &ixas); 17439 ixa_refrele(ixa); 17440 } 17441 } 17442 17443 /* 17444 * Initiate closedown sequence on an active connection. (May be called as 17445 * writer.) Return value zero for OK return, non-zero for error return. 17446 */ 17447 static int 17448 tcp_xmit_end(tcp_t *tcp) 17449 { 17450 mblk_t *mp; 17451 tcp_stack_t *tcps = tcp->tcp_tcps; 17452 iulp_t uinfo; 17453 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 17454 conn_t *connp = tcp->tcp_connp; 17455 17456 if (tcp->tcp_state < TCPS_SYN_RCVD || 17457 tcp->tcp_state > TCPS_CLOSE_WAIT) { 17458 /* 17459 * Invalid state, only states TCPS_SYN_RCVD, 17460 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 17461 */ 17462 return (-1); 17463 } 17464 17465 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 17466 tcp->tcp_valid_bits |= TCP_FSS_VALID; 17467 /* 17468 * If there is nothing more unsent, send the FIN now. 17469 * Otherwise, it will go out with the last segment. 17470 */ 17471 if (tcp->tcp_unsent == 0) { 17472 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 17473 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 17474 17475 if (mp) { 17476 tcp_send_data(tcp, mp); 17477 } else { 17478 /* 17479 * Couldn't allocate msg. Pretend we got it out. 17480 * Wait for rexmit timeout. 17481 */ 17482 tcp->tcp_snxt = tcp->tcp_fss + 1; 17483 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17484 } 17485 17486 /* 17487 * If needed, update tcp_rexmit_snxt as tcp_snxt is 17488 * changed. 17489 */ 17490 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 17491 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 17492 } 17493 } else { 17494 /* 17495 * If tcp->tcp_cork is set, then the data will not get sent, 17496 * so we have to check that and unset it first. 17497 */ 17498 if (tcp->tcp_cork) 17499 tcp->tcp_cork = B_FALSE; 17500 tcp_wput_data(tcp, NULL, B_FALSE); 17501 } 17502 17503 /* 17504 * If TCP does not get enough samples of RTT or tcp_rtt_updates 17505 * is 0, don't update the cache. 17506 */ 17507 if (tcps->tcps_rtt_updates == 0 || 17508 tcp->tcp_rtt_update < tcps->tcps_rtt_updates) 17509 return (0); 17510 17511 /* 17512 * We do not have a good algorithm to update ssthresh at this time. 17513 * So don't do any update. 17514 */ 17515 bzero(&uinfo, sizeof (uinfo)); 17516 uinfo.iulp_rtt = tcp->tcp_rtt_sa; 17517 uinfo.iulp_rtt_sd = tcp->tcp_rtt_sd; 17518 17519 /* 17520 * Note that uinfo is kept for conn_faddr in the DCE. Could update even 17521 * if source routed but we don't. 17522 */ 17523 if (connp->conn_ipversion == IPV4_VERSION) { 17524 if (connp->conn_faddr_v4 != tcp->tcp_ipha->ipha_dst) { 17525 return (0); 17526 } 17527 (void) dce_update_uinfo_v4(connp->conn_faddr_v4, &uinfo, ipst); 17528 } else { 17529 uint_t ifindex; 17530 17531 if (!(IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, 17532 &tcp->tcp_ip6h->ip6_dst))) { 17533 return (0); 17534 } 17535 ifindex = 0; 17536 if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_faddr_v6)) { 17537 ip_xmit_attr_t *ixa = connp->conn_ixa; 17538 17539 /* 17540 * If we are going to create a DCE we'd better have 17541 * an ifindex 17542 */ 17543 if (ixa->ixa_nce != NULL) { 17544 ifindex = ixa->ixa_nce->nce_common->ncec_ill-> 17545 ill_phyint->phyint_ifindex; 17546 } else { 17547 return (0); 17548 } 17549 } 17550 17551 (void) dce_update_uinfo(&connp->conn_faddr_v6, ifindex, &uinfo, 17552 ipst); 17553 } 17554 return (0); 17555 } 17556 17557 /* 17558 * Generate a "no listener here" RST in response to an "unknown" segment. 17559 * connp is set by caller when RST is in response to an unexpected 17560 * inbound packet for which there is active tcp state in the system. 17561 * Note that we are reusing the incoming mp to construct the outgoing RST. 17562 */ 17563 void 17564 tcp_xmit_listeners_reset(mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst, 17565 conn_t *connp) 17566 { 17567 uchar_t *rptr; 17568 uint32_t seg_len; 17569 tcpha_t *tcpha; 17570 uint32_t seg_seq; 17571 uint32_t seg_ack; 17572 uint_t flags; 17573 ipha_t *ipha; 17574 ip6_t *ip6h; 17575 boolean_t policy_present; 17576 netstack_t *ns = ipst->ips_netstack; 17577 tcp_stack_t *tcps = ns->netstack_tcp; 17578 ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; 17579 uint_t ip_hdr_len = ira->ira_ip_hdr_length; 17580 17581 TCP_STAT(tcps, tcp_no_listener); 17582 17583 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 17584 policy_present = ipss->ipsec_inbound_v4_policy_present; 17585 ipha = (ipha_t *)mp->b_rptr; 17586 ip6h = NULL; 17587 } else { 17588 policy_present = ipss->ipsec_inbound_v6_policy_present; 17589 ipha = NULL; 17590 ip6h = (ip6_t *)mp->b_rptr; 17591 } 17592 17593 if (policy_present) { 17594 /* 17595 * The conn_t parameter is NULL because we already know 17596 * nobody's home. 17597 */ 17598 mp = ipsec_check_global_policy(mp, (conn_t *)NULL, ipha, ip6h, 17599 ira, ns); 17600 if (mp == NULL) 17601 return; 17602 } 17603 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 17604 DTRACE_PROBE2( 17605 tx__ip__log__error__nolistener__tcp, 17606 char *, "Could not reply with RST to mp(1)", 17607 mblk_t *, mp); 17608 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 17609 freemsg(mp); 17610 return; 17611 } 17612 17613 rptr = mp->b_rptr; 17614 17615 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 17616 seg_seq = ntohl(tcpha->tha_seq); 17617 seg_ack = ntohl(tcpha->tha_ack); 17618 flags = tcpha->tha_flags; 17619 17620 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcpha) + ip_hdr_len); 17621 if (flags & TH_RST) { 17622 freemsg(mp); 17623 } else if (flags & TH_ACK) { 17624 tcp_xmit_early_reset("no tcp, reset", mp, seg_ack, 0, TH_RST, 17625 ira, ipst, connp); 17626 } else { 17627 if (flags & TH_SYN) { 17628 seg_len++; 17629 } else { 17630 /* 17631 * Here we violate the RFC. Note that a normal 17632 * TCP will never send a segment without the ACK 17633 * flag, except for RST or SYN segment. This 17634 * segment is neither. Just drop it on the 17635 * floor. 17636 */ 17637 freemsg(mp); 17638 TCP_STAT(tcps, tcp_rst_unsent); 17639 return; 17640 } 17641 17642 tcp_xmit_early_reset("no tcp, reset/ack", mp, 0, 17643 seg_seq + seg_len, TH_RST | TH_ACK, ira, ipst, connp); 17644 } 17645 } 17646 17647 /* 17648 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 17649 * ip and tcp header ready to pass down to IP. If the mp passed in is 17650 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 17651 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 17652 * otherwise it will dup partial mblks.) 17653 * Otherwise, an appropriate ACK packet will be generated. This 17654 * routine is not usually called to send new data for the first time. It 17655 * is mostly called out of the timer for retransmits, and to generate ACKs. 17656 * 17657 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 17658 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 17659 * of the original mblk chain will be returned in *offset and *end_mp. 17660 */ 17661 mblk_t * 17662 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 17663 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 17664 boolean_t rexmit) 17665 { 17666 int data_length; 17667 int32_t off = 0; 17668 uint_t flags; 17669 mblk_t *mp1; 17670 mblk_t *mp2; 17671 uchar_t *rptr; 17672 tcpha_t *tcpha; 17673 int32_t num_sack_blk = 0; 17674 int32_t sack_opt_len = 0; 17675 tcp_stack_t *tcps = tcp->tcp_tcps; 17676 conn_t *connp = tcp->tcp_connp; 17677 ip_xmit_attr_t *ixa = connp->conn_ixa; 17678 17679 /* Allocate for our maximum TCP header + link-level */ 17680 mp1 = allocb(connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra, 17681 BPRI_MED); 17682 if (!mp1) 17683 return (NULL); 17684 data_length = 0; 17685 17686 /* 17687 * Note that tcp_mss has been adjusted to take into account the 17688 * timestamp option if applicable. Because SACK options do not 17689 * appear in every TCP segments and they are of variable lengths, 17690 * they cannot be included in tcp_mss. Thus we need to calculate 17691 * the actual segment length when we need to send a segment which 17692 * includes SACK options. 17693 */ 17694 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 17695 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 17696 tcp->tcp_num_sack_blk); 17697 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 17698 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 17699 if (max_to_send + sack_opt_len > tcp->tcp_mss) 17700 max_to_send -= sack_opt_len; 17701 } 17702 17703 if (offset != NULL) { 17704 off = *offset; 17705 /* We use offset as an indicator that end_mp is not NULL. */ 17706 *end_mp = NULL; 17707 } 17708 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 17709 /* This could be faster with cooperation from downstream */ 17710 if (mp2 != mp1 && !sendall && 17711 data_length + (int)(mp->b_wptr - mp->b_rptr) > 17712 max_to_send) 17713 /* 17714 * Don't send the next mblk since the whole mblk 17715 * does not fit. 17716 */ 17717 break; 17718 mp2->b_cont = dupb(mp); 17719 mp2 = mp2->b_cont; 17720 if (!mp2) { 17721 freemsg(mp1); 17722 return (NULL); 17723 } 17724 mp2->b_rptr += off; 17725 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 17726 (uintptr_t)INT_MAX); 17727 17728 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 17729 if (data_length > max_to_send) { 17730 mp2->b_wptr -= data_length - max_to_send; 17731 data_length = max_to_send; 17732 off = mp2->b_wptr - mp->b_rptr; 17733 break; 17734 } else { 17735 off = 0; 17736 } 17737 } 17738 if (offset != NULL) { 17739 *offset = off; 17740 *end_mp = mp; 17741 } 17742 if (seg_len != NULL) { 17743 *seg_len = data_length; 17744 } 17745 17746 /* Update the latest receive window size in TCP header. */ 17747 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 17748 17749 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 17750 mp1->b_rptr = rptr; 17751 mp1->b_wptr = rptr + connp->conn_ht_iphc_len + sack_opt_len; 17752 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len); 17753 tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length]; 17754 tcpha->tha_seq = htonl(seq); 17755 17756 /* 17757 * Use tcp_unsent to determine if the PUSH bit should be used assumes 17758 * that this function was called from tcp_wput_data. Thus, when called 17759 * to retransmit data the setting of the PUSH bit may appear some 17760 * what random in that it might get set when it should not. This 17761 * should not pose any performance issues. 17762 */ 17763 if (data_length != 0 && (tcp->tcp_unsent == 0 || 17764 tcp->tcp_unsent == data_length)) { 17765 flags = TH_ACK | TH_PUSH; 17766 } else { 17767 flags = TH_ACK; 17768 } 17769 17770 if (tcp->tcp_ecn_ok) { 17771 if (tcp->tcp_ecn_echo_on) 17772 flags |= TH_ECE; 17773 17774 /* 17775 * Only set ECT bit and ECN_CWR if a segment contains new data. 17776 * There is no TCP flow control for non-data segments, and 17777 * only data segment is transmitted reliably. 17778 */ 17779 if (data_length > 0 && !rexmit) { 17780 SET_ECT(tcp, rptr); 17781 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17782 flags |= TH_CWR; 17783 tcp->tcp_ecn_cwr_sent = B_TRUE; 17784 } 17785 } 17786 } 17787 17788 if (tcp->tcp_valid_bits) { 17789 uint32_t u1; 17790 17791 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 17792 seq == tcp->tcp_iss) { 17793 uchar_t *wptr; 17794 17795 /* 17796 * If TCP_ISS_VALID and the seq number is tcp_iss, 17797 * TCP can only be in SYN-SENT, SYN-RCVD or 17798 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 17799 * our SYN is not ack'ed but the app closes this 17800 * TCP connection. 17801 */ 17802 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 17803 tcp->tcp_state == TCPS_SYN_RCVD || 17804 tcp->tcp_state == TCPS_FIN_WAIT_1); 17805 17806 /* 17807 * Tack on the MSS option. It is always needed 17808 * for both active and passive open. 17809 * 17810 * MSS option value should be interface MTU - MIN 17811 * TCP/IP header according to RFC 793 as it means 17812 * the maximum segment size TCP can receive. But 17813 * to get around some broken middle boxes/end hosts 17814 * out there, we allow the option value to be the 17815 * same as the MSS option size on the peer side. 17816 * In this way, the other side will not send 17817 * anything larger than they can receive. 17818 * 17819 * Note that for SYN_SENT state, the ndd param 17820 * tcp_use_smss_as_mss_opt has no effect as we 17821 * don't know the peer's MSS option value. So 17822 * the only case we need to take care of is in 17823 * SYN_RCVD state, which is done later. 17824 */ 17825 wptr = mp1->b_wptr; 17826 wptr[0] = TCPOPT_MAXSEG; 17827 wptr[1] = TCPOPT_MAXSEG_LEN; 17828 wptr += 2; 17829 u1 = tcp->tcp_initial_pmtu - 17830 (connp->conn_ipversion == IPV4_VERSION ? 17831 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 17832 TCP_MIN_HEADER_LENGTH; 17833 U16_TO_BE16(u1, wptr); 17834 mp1->b_wptr = wptr + 2; 17835 /* Update the offset to cover the additional word */ 17836 tcpha->tha_offset_and_reserved += (1 << 4); 17837 17838 /* 17839 * Note that the following way of filling in 17840 * TCP options are not optimal. Some NOPs can 17841 * be saved. But there is no need at this time 17842 * to optimize it. When it is needed, we will 17843 * do it. 17844 */ 17845 switch (tcp->tcp_state) { 17846 case TCPS_SYN_SENT: 17847 flags = TH_SYN; 17848 17849 if (tcp->tcp_snd_ts_ok) { 17850 uint32_t llbolt = 17851 (uint32_t)LBOLT_FASTPATH; 17852 17853 wptr = mp1->b_wptr; 17854 wptr[0] = TCPOPT_NOP; 17855 wptr[1] = TCPOPT_NOP; 17856 wptr[2] = TCPOPT_TSTAMP; 17857 wptr[3] = TCPOPT_TSTAMP_LEN; 17858 wptr += 4; 17859 U32_TO_BE32(llbolt, wptr); 17860 wptr += 4; 17861 ASSERT(tcp->tcp_ts_recent == 0); 17862 U32_TO_BE32(0L, wptr); 17863 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 17864 tcpha->tha_offset_and_reserved += 17865 (3 << 4); 17866 } 17867 17868 /* 17869 * Set up all the bits to tell other side 17870 * we are ECN capable. 17871 */ 17872 if (tcp->tcp_ecn_ok) { 17873 flags |= (TH_ECE | TH_CWR); 17874 } 17875 break; 17876 case TCPS_SYN_RCVD: 17877 flags |= TH_SYN; 17878 17879 /* 17880 * Reset the MSS option value to be SMSS 17881 * We should probably add back the bytes 17882 * for timestamp option and IPsec. We 17883 * don't do that as this is a workaround 17884 * for broken middle boxes/end hosts, it 17885 * is better for us to be more cautious. 17886 * They may not take these things into 17887 * account in their SMSS calculation. Thus 17888 * the peer's calculated SMSS may be smaller 17889 * than what it can be. This should be OK. 17890 */ 17891 if (tcps->tcps_use_smss_as_mss_opt) { 17892 u1 = tcp->tcp_mss; 17893 U16_TO_BE16(u1, wptr); 17894 } 17895 17896 /* 17897 * If the other side is ECN capable, reply 17898 * that we are also ECN capable. 17899 */ 17900 if (tcp->tcp_ecn_ok) 17901 flags |= TH_ECE; 17902 break; 17903 default: 17904 /* 17905 * The above ASSERT() makes sure that this 17906 * must be FIN-WAIT-1 state. Our SYN has 17907 * not been ack'ed so retransmit it. 17908 */ 17909 flags |= TH_SYN; 17910 break; 17911 } 17912 17913 if (tcp->tcp_snd_ws_ok) { 17914 wptr = mp1->b_wptr; 17915 wptr[0] = TCPOPT_NOP; 17916 wptr[1] = TCPOPT_WSCALE; 17917 wptr[2] = TCPOPT_WS_LEN; 17918 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 17919 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 17920 tcpha->tha_offset_and_reserved += (1 << 4); 17921 } 17922 17923 if (tcp->tcp_snd_sack_ok) { 17924 wptr = mp1->b_wptr; 17925 wptr[0] = TCPOPT_NOP; 17926 wptr[1] = TCPOPT_NOP; 17927 wptr[2] = TCPOPT_SACK_PERMITTED; 17928 wptr[3] = TCPOPT_SACK_OK_LEN; 17929 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 17930 tcpha->tha_offset_and_reserved += (1 << 4); 17931 } 17932 17933 /* allocb() of adequate mblk assures space */ 17934 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 17935 (uintptr_t)INT_MAX); 17936 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 17937 /* 17938 * Get IP set to checksum on our behalf 17939 * Include the adjustment for a source route if any. 17940 */ 17941 u1 += connp->conn_sum; 17942 u1 = (u1 >> 16) + (u1 & 0xFFFF); 17943 tcpha->tha_sum = htons(u1); 17944 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 17945 } 17946 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17947 (seq + data_length) == tcp->tcp_fss) { 17948 if (!tcp->tcp_fin_acked) { 17949 flags |= TH_FIN; 17950 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 17951 } 17952 if (!tcp->tcp_fin_sent) { 17953 tcp->tcp_fin_sent = B_TRUE; 17954 switch (tcp->tcp_state) { 17955 case TCPS_SYN_RCVD: 17956 case TCPS_ESTABLISHED: 17957 tcp->tcp_state = TCPS_FIN_WAIT_1; 17958 break; 17959 case TCPS_CLOSE_WAIT: 17960 tcp->tcp_state = TCPS_LAST_ACK; 17961 break; 17962 } 17963 if (tcp->tcp_suna == tcp->tcp_snxt) 17964 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17965 tcp->tcp_snxt = tcp->tcp_fss + 1; 17966 } 17967 } 17968 /* 17969 * Note the trick here. u1 is unsigned. When tcp_urg 17970 * is smaller than seq, u1 will become a very huge value. 17971 * So the comparison will fail. Also note that tcp_urp 17972 * should be positive, see RFC 793 page 17. 17973 */ 17974 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 17975 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 17976 u1 < (uint32_t)(64 * 1024)) { 17977 flags |= TH_URG; 17978 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 17979 tcpha->tha_urp = htons(u1); 17980 } 17981 } 17982 tcpha->tha_flags = (uchar_t)flags; 17983 tcp->tcp_rack = tcp->tcp_rnxt; 17984 tcp->tcp_rack_cnt = 0; 17985 17986 if (tcp->tcp_snd_ts_ok) { 17987 if (tcp->tcp_state != TCPS_SYN_SENT) { 17988 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 17989 17990 U32_TO_BE32(llbolt, 17991 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 17992 U32_TO_BE32(tcp->tcp_ts_recent, 17993 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 17994 } 17995 } 17996 17997 if (num_sack_blk > 0) { 17998 uchar_t *wptr = (uchar_t *)tcpha + connp->conn_ht_ulp_len; 17999 sack_blk_t *tmp; 18000 int32_t i; 18001 18002 wptr[0] = TCPOPT_NOP; 18003 wptr[1] = TCPOPT_NOP; 18004 wptr[2] = TCPOPT_SACK; 18005 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 18006 sizeof (sack_blk_t); 18007 wptr += TCPOPT_REAL_SACK_LEN; 18008 18009 tmp = tcp->tcp_sack_list; 18010 for (i = 0; i < num_sack_blk; i++) { 18011 U32_TO_BE32(tmp[i].begin, wptr); 18012 wptr += sizeof (tcp_seq); 18013 U32_TO_BE32(tmp[i].end, wptr); 18014 wptr += sizeof (tcp_seq); 18015 } 18016 tcpha->tha_offset_and_reserved += ((num_sack_blk * 2 + 1) << 4); 18017 } 18018 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 18019 data_length += (int)(mp1->b_wptr - rptr); 18020 18021 ixa->ixa_pktlen = data_length; 18022 18023 if (ixa->ixa_flags & IXAF_IS_IPV4) { 18024 ((ipha_t *)rptr)->ipha_length = htons(data_length); 18025 } else { 18026 ip6_t *ip6 = (ip6_t *)rptr; 18027 18028 ip6->ip6_plen = htons(data_length - IPV6_HDR_LEN); 18029 } 18030 18031 /* 18032 * Prime pump for IP 18033 * Include the adjustment for a source route if any. 18034 */ 18035 data_length -= ixa->ixa_ip_hdr_length; 18036 data_length += connp->conn_sum; 18037 data_length = (data_length >> 16) + (data_length & 0xFFFF); 18038 tcpha->tha_sum = htons(data_length); 18039 if (tcp->tcp_ip_forward_progress) { 18040 tcp->tcp_ip_forward_progress = B_FALSE; 18041 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 18042 } else { 18043 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 18044 } 18045 return (mp1); 18046 } 18047 18048 /* This function handles the push timeout. */ 18049 void 18050 tcp_push_timer(void *arg) 18051 { 18052 conn_t *connp = (conn_t *)arg; 18053 tcp_t *tcp = connp->conn_tcp; 18054 18055 TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt); 18056 18057 ASSERT(tcp->tcp_listener == NULL); 18058 18059 ASSERT(!IPCL_IS_NONSTR(connp)); 18060 18061 tcp->tcp_push_tid = 0; 18062 18063 if (tcp->tcp_rcv_list != NULL && 18064 tcp_rcv_drain(tcp) == TH_ACK_NEEDED) 18065 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 18066 } 18067 18068 /* 18069 * This function handles delayed ACK timeout. 18070 */ 18071 static void 18072 tcp_ack_timer(void *arg) 18073 { 18074 conn_t *connp = (conn_t *)arg; 18075 tcp_t *tcp = connp->conn_tcp; 18076 mblk_t *mp; 18077 tcp_stack_t *tcps = tcp->tcp_tcps; 18078 18079 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 18080 18081 tcp->tcp_ack_tid = 0; 18082 18083 if (tcp->tcp_fused) 18084 return; 18085 18086 /* 18087 * Do not send ACK if there is no outstanding unack'ed data. 18088 */ 18089 if (tcp->tcp_rnxt == tcp->tcp_rack) { 18090 return; 18091 } 18092 18093 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 18094 /* 18095 * Make sure we don't allow deferred ACKs to result in 18096 * timer-based ACKing. If we have held off an ACK 18097 * when there was more than an mss here, and the timer 18098 * goes off, we have to worry about the possibility 18099 * that the sender isn't doing slow-start, or is out 18100 * of step with us for some other reason. We fall 18101 * permanently back in the direction of 18102 * ACK-every-other-packet as suggested in RFC 1122. 18103 */ 18104 if (tcp->tcp_rack_abs_max > 2) 18105 tcp->tcp_rack_abs_max--; 18106 tcp->tcp_rack_cur_max = 2; 18107 } 18108 mp = tcp_ack_mp(tcp); 18109 18110 if (mp != NULL) { 18111 BUMP_LOCAL(tcp->tcp_obsegs); 18112 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 18113 BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); 18114 tcp_send_data(tcp, mp); 18115 } 18116 } 18117 18118 18119 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 18120 static mblk_t * 18121 tcp_ack_mp(tcp_t *tcp) 18122 { 18123 uint32_t seq_no; 18124 tcp_stack_t *tcps = tcp->tcp_tcps; 18125 conn_t *connp = tcp->tcp_connp; 18126 18127 /* 18128 * There are a few cases to be considered while setting the sequence no. 18129 * Essentially, we can come here while processing an unacceptable pkt 18130 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 18131 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 18132 * If we are here for a zero window probe, stick with suna. In all 18133 * other cases, we check if suna + swnd encompasses snxt and set 18134 * the sequence number to snxt, if so. If snxt falls outside the 18135 * window (the receiver probably shrunk its window), we will go with 18136 * suna + swnd, otherwise the sequence no will be unacceptable to the 18137 * receiver. 18138 */ 18139 if (tcp->tcp_zero_win_probe) { 18140 seq_no = tcp->tcp_suna; 18141 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 18142 ASSERT(tcp->tcp_swnd == 0); 18143 seq_no = tcp->tcp_snxt; 18144 } else { 18145 seq_no = SEQ_GT(tcp->tcp_snxt, 18146 (tcp->tcp_suna + tcp->tcp_swnd)) ? 18147 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 18148 } 18149 18150 if (tcp->tcp_valid_bits) { 18151 /* 18152 * For the complex case where we have to send some 18153 * controls (FIN or SYN), let tcp_xmit_mp do it. 18154 */ 18155 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 18156 NULL, B_FALSE)); 18157 } else { 18158 /* Generate a simple ACK */ 18159 int data_length; 18160 uchar_t *rptr; 18161 tcpha_t *tcpha; 18162 mblk_t *mp1; 18163 int32_t total_hdr_len; 18164 int32_t tcp_hdr_len; 18165 int32_t num_sack_blk = 0; 18166 int32_t sack_opt_len; 18167 ip_xmit_attr_t *ixa = connp->conn_ixa; 18168 18169 /* 18170 * Allocate space for TCP + IP headers 18171 * and link-level header 18172 */ 18173 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 18174 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 18175 tcp->tcp_num_sack_blk); 18176 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 18177 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 18178 total_hdr_len = connp->conn_ht_iphc_len + sack_opt_len; 18179 tcp_hdr_len = connp->conn_ht_ulp_len + sack_opt_len; 18180 } else { 18181 total_hdr_len = connp->conn_ht_iphc_len; 18182 tcp_hdr_len = connp->conn_ht_ulp_len; 18183 } 18184 mp1 = allocb(total_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 18185 if (!mp1) 18186 return (NULL); 18187 18188 /* Update the latest receive window size in TCP header. */ 18189 tcp->tcp_tcpha->tha_win = 18190 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 18191 /* copy in prototype TCP + IP header */ 18192 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 18193 mp1->b_rptr = rptr; 18194 mp1->b_wptr = rptr + total_hdr_len; 18195 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len); 18196 18197 tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length]; 18198 18199 /* Set the TCP sequence number. */ 18200 tcpha->tha_seq = htonl(seq_no); 18201 18202 /* Set up the TCP flag field. */ 18203 tcpha->tha_flags = (uchar_t)TH_ACK; 18204 if (tcp->tcp_ecn_echo_on) 18205 tcpha->tha_flags |= TH_ECE; 18206 18207 tcp->tcp_rack = tcp->tcp_rnxt; 18208 tcp->tcp_rack_cnt = 0; 18209 18210 /* fill in timestamp option if in use */ 18211 if (tcp->tcp_snd_ts_ok) { 18212 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 18213 18214 U32_TO_BE32(llbolt, 18215 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 18216 U32_TO_BE32(tcp->tcp_ts_recent, 18217 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 18218 } 18219 18220 /* Fill in SACK options */ 18221 if (num_sack_blk > 0) { 18222 uchar_t *wptr = (uchar_t *)tcpha + 18223 connp->conn_ht_ulp_len; 18224 sack_blk_t *tmp; 18225 int32_t i; 18226 18227 wptr[0] = TCPOPT_NOP; 18228 wptr[1] = TCPOPT_NOP; 18229 wptr[2] = TCPOPT_SACK; 18230 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 18231 sizeof (sack_blk_t); 18232 wptr += TCPOPT_REAL_SACK_LEN; 18233 18234 tmp = tcp->tcp_sack_list; 18235 for (i = 0; i < num_sack_blk; i++) { 18236 U32_TO_BE32(tmp[i].begin, wptr); 18237 wptr += sizeof (tcp_seq); 18238 U32_TO_BE32(tmp[i].end, wptr); 18239 wptr += sizeof (tcp_seq); 18240 } 18241 tcpha->tha_offset_and_reserved += 18242 ((num_sack_blk * 2 + 1) << 4); 18243 } 18244 18245 ixa->ixa_pktlen = total_hdr_len; 18246 18247 if (ixa->ixa_flags & IXAF_IS_IPV4) { 18248 ((ipha_t *)rptr)->ipha_length = htons(total_hdr_len); 18249 } else { 18250 ip6_t *ip6 = (ip6_t *)rptr; 18251 18252 ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN); 18253 } 18254 18255 /* 18256 * Prime pump for checksum calculation in IP. Include the 18257 * adjustment for a source route if any. 18258 */ 18259 data_length = tcp_hdr_len + connp->conn_sum; 18260 data_length = (data_length >> 16) + (data_length & 0xFFFF); 18261 tcpha->tha_sum = htons(data_length); 18262 18263 if (tcp->tcp_ip_forward_progress) { 18264 tcp->tcp_ip_forward_progress = B_FALSE; 18265 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 18266 } else { 18267 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 18268 } 18269 return (mp1); 18270 } 18271 } 18272 18273 /* 18274 * Hash list insertion routine for tcp_t structures. Each hash bucket 18275 * contains a list of tcp_t entries, and each entry is bound to a unique 18276 * port. If there are multiple tcp_t's that are bound to the same port, then 18277 * one of them will be linked into the hash bucket list, and the rest will 18278 * hang off of that one entry. For each port, entries bound to a specific IP 18279 * address will be inserted before those those bound to INADDR_ANY. 18280 */ 18281 static void 18282 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 18283 { 18284 tcp_t **tcpp; 18285 tcp_t *tcpnext; 18286 tcp_t *tcphash; 18287 conn_t *connp = tcp->tcp_connp; 18288 conn_t *connext; 18289 18290 if (tcp->tcp_ptpbhn != NULL) { 18291 ASSERT(!caller_holds_lock); 18292 tcp_bind_hash_remove(tcp); 18293 } 18294 tcpp = &tbf->tf_tcp; 18295 if (!caller_holds_lock) { 18296 mutex_enter(&tbf->tf_lock); 18297 } else { 18298 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 18299 } 18300 tcphash = tcpp[0]; 18301 tcpnext = NULL; 18302 if (tcphash != NULL) { 18303 /* Look for an entry using the same port */ 18304 while ((tcphash = tcpp[0]) != NULL && 18305 connp->conn_lport != tcphash->tcp_connp->conn_lport) 18306 tcpp = &(tcphash->tcp_bind_hash); 18307 18308 /* The port was not found, just add to the end */ 18309 if (tcphash == NULL) 18310 goto insert; 18311 18312 /* 18313 * OK, there already exists an entry bound to the 18314 * same port. 18315 * 18316 * If the new tcp bound to the INADDR_ANY address 18317 * and the first one in the list is not bound to 18318 * INADDR_ANY we skip all entries until we find the 18319 * first one bound to INADDR_ANY. 18320 * This makes sure that applications binding to a 18321 * specific address get preference over those binding to 18322 * INADDR_ANY. 18323 */ 18324 tcpnext = tcphash; 18325 connext = tcpnext->tcp_connp; 18326 tcphash = NULL; 18327 if (V6_OR_V4_INADDR_ANY(connp->conn_bound_addr_v6) && 18328 !V6_OR_V4_INADDR_ANY(connext->conn_bound_addr_v6)) { 18329 while ((tcpnext = tcpp[0]) != NULL) { 18330 connext = tcpnext->tcp_connp; 18331 if (!V6_OR_V4_INADDR_ANY( 18332 connext->conn_bound_addr_v6)) 18333 tcpp = &(tcpnext->tcp_bind_hash_port); 18334 else 18335 break; 18336 } 18337 if (tcpnext != NULL) { 18338 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 18339 tcphash = tcpnext->tcp_bind_hash; 18340 if (tcphash != NULL) { 18341 tcphash->tcp_ptpbhn = 18342 &(tcp->tcp_bind_hash); 18343 tcpnext->tcp_bind_hash = NULL; 18344 } 18345 } 18346 } else { 18347 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 18348 tcphash = tcpnext->tcp_bind_hash; 18349 if (tcphash != NULL) { 18350 tcphash->tcp_ptpbhn = 18351 &(tcp->tcp_bind_hash); 18352 tcpnext->tcp_bind_hash = NULL; 18353 } 18354 } 18355 } 18356 insert: 18357 tcp->tcp_bind_hash_port = tcpnext; 18358 tcp->tcp_bind_hash = tcphash; 18359 tcp->tcp_ptpbhn = tcpp; 18360 tcpp[0] = tcp; 18361 if (!caller_holds_lock) 18362 mutex_exit(&tbf->tf_lock); 18363 } 18364 18365 /* 18366 * Hash list removal routine for tcp_t structures. 18367 */ 18368 static void 18369 tcp_bind_hash_remove(tcp_t *tcp) 18370 { 18371 tcp_t *tcpnext; 18372 kmutex_t *lockp; 18373 tcp_stack_t *tcps = tcp->tcp_tcps; 18374 conn_t *connp = tcp->tcp_connp; 18375 18376 if (tcp->tcp_ptpbhn == NULL) 18377 return; 18378 18379 /* 18380 * Extract the lock pointer in case there are concurrent 18381 * hash_remove's for this instance. 18382 */ 18383 ASSERT(connp->conn_lport != 0); 18384 lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH( 18385 connp->conn_lport)].tf_lock; 18386 18387 ASSERT(lockp != NULL); 18388 mutex_enter(lockp); 18389 if (tcp->tcp_ptpbhn) { 18390 tcpnext = tcp->tcp_bind_hash_port; 18391 if (tcpnext != NULL) { 18392 tcp->tcp_bind_hash_port = NULL; 18393 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 18394 tcpnext->tcp_bind_hash = tcp->tcp_bind_hash; 18395 if (tcpnext->tcp_bind_hash != NULL) { 18396 tcpnext->tcp_bind_hash->tcp_ptpbhn = 18397 &(tcpnext->tcp_bind_hash); 18398 tcp->tcp_bind_hash = NULL; 18399 } 18400 } else if ((tcpnext = tcp->tcp_bind_hash) != NULL) { 18401 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 18402 tcp->tcp_bind_hash = NULL; 18403 } 18404 *tcp->tcp_ptpbhn = tcpnext; 18405 tcp->tcp_ptpbhn = NULL; 18406 } 18407 mutex_exit(lockp); 18408 } 18409 18410 18411 /* 18412 * Hash list lookup routine for tcp_t structures. 18413 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 18414 */ 18415 static tcp_t * 18416 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 18417 { 18418 tf_t *tf; 18419 tcp_t *tcp; 18420 18421 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 18422 mutex_enter(&tf->tf_lock); 18423 for (tcp = tf->tf_tcp; tcp != NULL; 18424 tcp = tcp->tcp_acceptor_hash) { 18425 if (tcp->tcp_acceptor_id == id) { 18426 CONN_INC_REF(tcp->tcp_connp); 18427 mutex_exit(&tf->tf_lock); 18428 return (tcp); 18429 } 18430 } 18431 mutex_exit(&tf->tf_lock); 18432 return (NULL); 18433 } 18434 18435 18436 /* 18437 * Hash list insertion routine for tcp_t structures. 18438 */ 18439 void 18440 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 18441 { 18442 tf_t *tf; 18443 tcp_t **tcpp; 18444 tcp_t *tcpnext; 18445 tcp_stack_t *tcps = tcp->tcp_tcps; 18446 18447 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 18448 18449 if (tcp->tcp_ptpahn != NULL) 18450 tcp_acceptor_hash_remove(tcp); 18451 tcpp = &tf->tf_tcp; 18452 mutex_enter(&tf->tf_lock); 18453 tcpnext = tcpp[0]; 18454 if (tcpnext) 18455 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 18456 tcp->tcp_acceptor_hash = tcpnext; 18457 tcp->tcp_ptpahn = tcpp; 18458 tcpp[0] = tcp; 18459 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 18460 mutex_exit(&tf->tf_lock); 18461 } 18462 18463 /* 18464 * Hash list removal routine for tcp_t structures. 18465 */ 18466 static void 18467 tcp_acceptor_hash_remove(tcp_t *tcp) 18468 { 18469 tcp_t *tcpnext; 18470 kmutex_t *lockp; 18471 18472 /* 18473 * Extract the lock pointer in case there are concurrent 18474 * hash_remove's for this instance. 18475 */ 18476 lockp = tcp->tcp_acceptor_lockp; 18477 18478 if (tcp->tcp_ptpahn == NULL) 18479 return; 18480 18481 ASSERT(lockp != NULL); 18482 mutex_enter(lockp); 18483 if (tcp->tcp_ptpahn) { 18484 tcpnext = tcp->tcp_acceptor_hash; 18485 if (tcpnext) { 18486 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 18487 tcp->tcp_acceptor_hash = NULL; 18488 } 18489 *tcp->tcp_ptpahn = tcpnext; 18490 tcp->tcp_ptpahn = NULL; 18491 } 18492 mutex_exit(lockp); 18493 tcp->tcp_acceptor_lockp = NULL; 18494 } 18495 18496 /* 18497 * Type three generator adapted from the random() function in 4.4 BSD: 18498 */ 18499 18500 /* 18501 * Copyright (c) 1983, 1993 18502 * The Regents of the University of California. All rights reserved. 18503 * 18504 * Redistribution and use in source and binary forms, with or without 18505 * modification, are permitted provided that the following conditions 18506 * are met: 18507 * 1. Redistributions of source code must retain the above copyright 18508 * notice, this list of conditions and the following disclaimer. 18509 * 2. Redistributions in binary form must reproduce the above copyright 18510 * notice, this list of conditions and the following disclaimer in the 18511 * documentation and/or other materials provided with the distribution. 18512 * 3. All advertising materials mentioning features or use of this software 18513 * must display the following acknowledgement: 18514 * This product includes software developed by the University of 18515 * California, Berkeley and its contributors. 18516 * 4. Neither the name of the University nor the names of its contributors 18517 * may be used to endorse or promote products derived from this software 18518 * without specific prior written permission. 18519 * 18520 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18521 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18522 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18523 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 18524 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18525 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 18526 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 18527 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 18528 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 18529 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 18530 * SUCH DAMAGE. 18531 */ 18532 18533 /* Type 3 -- x**31 + x**3 + 1 */ 18534 #define DEG_3 31 18535 #define SEP_3 3 18536 18537 18538 /* Protected by tcp_random_lock */ 18539 static int tcp_randtbl[DEG_3 + 1]; 18540 18541 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 18542 static int *tcp_random_rptr = &tcp_randtbl[1]; 18543 18544 static int *tcp_random_state = &tcp_randtbl[1]; 18545 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 18546 18547 kmutex_t tcp_random_lock; 18548 18549 void 18550 tcp_random_init(void) 18551 { 18552 int i; 18553 hrtime_t hrt; 18554 time_t wallclock; 18555 uint64_t result; 18556 18557 /* 18558 * Use high-res timer and current time for seed. Gethrtime() returns 18559 * a longlong, which may contain resolution down to nanoseconds. 18560 * The current time will either be a 32-bit or a 64-bit quantity. 18561 * XOR the two together in a 64-bit result variable. 18562 * Convert the result to a 32-bit value by multiplying the high-order 18563 * 32-bits by the low-order 32-bits. 18564 */ 18565 18566 hrt = gethrtime(); 18567 (void) drv_getparm(TIME, &wallclock); 18568 result = (uint64_t)wallclock ^ (uint64_t)hrt; 18569 mutex_enter(&tcp_random_lock); 18570 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 18571 (result & 0xffffffff); 18572 18573 for (i = 1; i < DEG_3; i++) 18574 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 18575 + 12345; 18576 tcp_random_fptr = &tcp_random_state[SEP_3]; 18577 tcp_random_rptr = &tcp_random_state[0]; 18578 mutex_exit(&tcp_random_lock); 18579 for (i = 0; i < 10 * DEG_3; i++) 18580 (void) tcp_random(); 18581 } 18582 18583 /* 18584 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 18585 * This range is selected to be approximately centered on TCP_ISS / 2, 18586 * and easy to compute. We get this value by generating a 32-bit random 18587 * number, selecting out the high-order 17 bits, and then adding one so 18588 * that we never return zero. 18589 */ 18590 int 18591 tcp_random(void) 18592 { 18593 int i; 18594 18595 mutex_enter(&tcp_random_lock); 18596 *tcp_random_fptr += *tcp_random_rptr; 18597 18598 /* 18599 * The high-order bits are more random than the low-order bits, 18600 * so we select out the high-order 17 bits and add one so that 18601 * we never return zero. 18602 */ 18603 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 18604 if (++tcp_random_fptr >= tcp_random_end_ptr) { 18605 tcp_random_fptr = tcp_random_state; 18606 ++tcp_random_rptr; 18607 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 18608 tcp_random_rptr = tcp_random_state; 18609 18610 mutex_exit(&tcp_random_lock); 18611 return (i); 18612 } 18613 18614 static int 18615 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 18616 int *t_errorp, int *sys_errorp) 18617 { 18618 int error; 18619 int is_absreq_failure; 18620 t_scalar_t *opt_lenp; 18621 t_scalar_t opt_offset; 18622 int prim_type; 18623 struct T_conn_req *tcreqp; 18624 struct T_conn_res *tcresp; 18625 cred_t *cr; 18626 18627 /* 18628 * All Solaris components should pass a db_credp 18629 * for this TPI message, hence we ASSERT. 18630 * But in case there is some other M_PROTO that looks 18631 * like a TPI message sent by some other kernel 18632 * component, we check and return an error. 18633 */ 18634 cr = msg_getcred(mp, NULL); 18635 ASSERT(cr != NULL); 18636 if (cr == NULL) 18637 return (-1); 18638 18639 prim_type = ((union T_primitives *)mp->b_rptr)->type; 18640 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 18641 prim_type == T_CONN_RES); 18642 18643 switch (prim_type) { 18644 case T_CONN_REQ: 18645 tcreqp = (struct T_conn_req *)mp->b_rptr; 18646 opt_offset = tcreqp->OPT_offset; 18647 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 18648 break; 18649 case O_T_CONN_RES: 18650 case T_CONN_RES: 18651 tcresp = (struct T_conn_res *)mp->b_rptr; 18652 opt_offset = tcresp->OPT_offset; 18653 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 18654 break; 18655 } 18656 18657 *t_errorp = 0; 18658 *sys_errorp = 0; 18659 *do_disconnectp = 0; 18660 18661 error = tpi_optcom_buf(tcp->tcp_connp->conn_wq, mp, opt_lenp, 18662 opt_offset, cr, &tcp_opt_obj, 18663 NULL, &is_absreq_failure); 18664 18665 switch (error) { 18666 case 0: /* no error */ 18667 ASSERT(is_absreq_failure == 0); 18668 return (0); 18669 case ENOPROTOOPT: 18670 *t_errorp = TBADOPT; 18671 break; 18672 case EACCES: 18673 *t_errorp = TACCES; 18674 break; 18675 default: 18676 *t_errorp = TSYSERR; *sys_errorp = error; 18677 break; 18678 } 18679 if (is_absreq_failure != 0) { 18680 /* 18681 * The connection request should get the local ack 18682 * T_OK_ACK and then a T_DISCON_IND. 18683 */ 18684 *do_disconnectp = 1; 18685 } 18686 return (-1); 18687 } 18688 18689 /* 18690 * Split this function out so that if the secret changes, I'm okay. 18691 * 18692 * Initialize the tcp_iss_cookie and tcp_iss_key. 18693 */ 18694 18695 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 18696 18697 static void 18698 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 18699 { 18700 struct { 18701 int32_t current_time; 18702 uint32_t randnum; 18703 uint16_t pad; 18704 uint8_t ether[6]; 18705 uint8_t passwd[PASSWD_SIZE]; 18706 } tcp_iss_cookie; 18707 time_t t; 18708 18709 /* 18710 * Start with the current absolute time. 18711 */ 18712 (void) drv_getparm(TIME, &t); 18713 tcp_iss_cookie.current_time = t; 18714 18715 /* 18716 * XXX - Need a more random number per RFC 1750, not this crap. 18717 * OTOH, if what follows is pretty random, then I'm in better shape. 18718 */ 18719 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 18720 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 18721 18722 /* 18723 * The cpu_type_info is pretty non-random. Ugggh. It does serve 18724 * as a good template. 18725 */ 18726 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 18727 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 18728 18729 /* 18730 * The pass-phrase. Normally this is supplied by user-called NDD. 18731 */ 18732 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 18733 18734 /* 18735 * See 4010593 if this section becomes a problem again, 18736 * but the local ethernet address is useful here. 18737 */ 18738 (void) localetheraddr(NULL, 18739 (struct ether_addr *)&tcp_iss_cookie.ether); 18740 18741 /* 18742 * Hash 'em all together. The MD5Final is called per-connection. 18743 */ 18744 mutex_enter(&tcps->tcps_iss_key_lock); 18745 MD5Init(&tcps->tcps_iss_key); 18746 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 18747 sizeof (tcp_iss_cookie)); 18748 mutex_exit(&tcps->tcps_iss_key_lock); 18749 } 18750 18751 /* 18752 * Set the RFC 1948 pass phrase 18753 */ 18754 /* ARGSUSED */ 18755 static int 18756 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 18757 cred_t *cr) 18758 { 18759 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 18760 18761 /* 18762 * Basically, value contains a new pass phrase. Pass it along! 18763 */ 18764 tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); 18765 return (0); 18766 } 18767 18768 /* ARGSUSED */ 18769 static int 18770 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 18771 { 18772 bzero(buf, sizeof (tcp_sack_info_t)); 18773 return (0); 18774 } 18775 18776 /* 18777 * Called by IP when IP is loaded into the kernel 18778 */ 18779 void 18780 tcp_ddi_g_init(void) 18781 { 18782 tcp_timercache = kmem_cache_create("tcp_timercache", 18783 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 18784 NULL, NULL, NULL, NULL, NULL, 0); 18785 18786 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 18787 sizeof (tcp_sack_info_t), 0, 18788 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 18789 18790 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 18791 18792 /* Initialize the random number generator */ 18793 tcp_random_init(); 18794 18795 /* A single callback independently of how many netstacks we have */ 18796 ip_squeue_init(tcp_squeue_add); 18797 18798 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 18799 18800 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 18801 18802 /* 18803 * We want to be informed each time a stack is created or 18804 * destroyed in the kernel, so we can maintain the 18805 * set of tcp_stack_t's. 18806 */ 18807 netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini); 18808 } 18809 18810 18811 #define INET_NAME "ip" 18812 18813 /* 18814 * Initialize the TCP stack instance. 18815 */ 18816 static void * 18817 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 18818 { 18819 tcp_stack_t *tcps; 18820 tcpparam_t *pa; 18821 int i; 18822 int error = 0; 18823 major_t major; 18824 18825 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 18826 tcps->tcps_netstack = ns; 18827 18828 /* Initialize locks */ 18829 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 18830 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 18831 18832 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 18833 tcps->tcps_g_epriv_ports[0] = 2049; 18834 tcps->tcps_g_epriv_ports[1] = 4045; 18835 tcps->tcps_min_anonpriv_port = 512; 18836 18837 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 18838 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 18839 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 18840 TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP); 18841 18842 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 18843 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 18844 MUTEX_DEFAULT, NULL); 18845 } 18846 18847 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 18848 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 18849 MUTEX_DEFAULT, NULL); 18850 } 18851 18852 /* TCP's IPsec code calls the packet dropper. */ 18853 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 18854 18855 pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); 18856 tcps->tcps_params = pa; 18857 bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 18858 18859 (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, 18860 A_CNT(lcl_tcp_param_arr), tcps); 18861 18862 /* 18863 * Note: To really walk the device tree you need the devinfo 18864 * pointer to your device which is only available after probe/attach. 18865 * The following is safe only because it uses ddi_root_node() 18866 */ 18867 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 18868 tcp_opt_obj.odb_opt_arr_cnt); 18869 18870 /* 18871 * Initialize RFC 1948 secret values. This will probably be reset once 18872 * by the boot scripts. 18873 * 18874 * Use NULL name, as the name is caught by the new lockstats. 18875 * 18876 * Initialize with some random, non-guessable string, like the global 18877 * T_INFO_ACK. 18878 */ 18879 18880 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 18881 sizeof (tcp_g_t_info_ack), tcps); 18882 18883 tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); 18884 tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); 18885 18886 major = mod_name_to_major(INET_NAME); 18887 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 18888 ASSERT(error == 0); 18889 tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL); 18890 ASSERT(tcps->tcps_ixa_cleanup_mp != NULL); 18891 cv_init(&tcps->tcps_ixa_cleanup_cv, NULL, CV_DEFAULT, NULL); 18892 mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL); 18893 18894 mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 18895 tcps->tcps_reclaim = B_FALSE; 18896 tcps->tcps_reclaim_tid = 0; 18897 tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max * 3; 18898 18899 mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL); 18900 list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t), 18901 offsetof(tcp_listener_t, tl_link)); 18902 18903 return (tcps); 18904 } 18905 18906 /* 18907 * Called when the IP module is about to be unloaded. 18908 */ 18909 void 18910 tcp_ddi_g_destroy(void) 18911 { 18912 tcp_g_kstat_fini(tcp_g_kstat); 18913 tcp_g_kstat = NULL; 18914 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 18915 18916 mutex_destroy(&tcp_random_lock); 18917 18918 kmem_cache_destroy(tcp_timercache); 18919 kmem_cache_destroy(tcp_sack_info_cache); 18920 18921 netstack_unregister(NS_TCP); 18922 } 18923 18924 /* 18925 * Free the TCP stack instance. 18926 */ 18927 static void 18928 tcp_stack_fini(netstackid_t stackid, void *arg) 18929 { 18930 tcp_stack_t *tcps = (tcp_stack_t *)arg; 18931 int i; 18932 18933 freeb(tcps->tcps_ixa_cleanup_mp); 18934 tcps->tcps_ixa_cleanup_mp = NULL; 18935 cv_destroy(&tcps->tcps_ixa_cleanup_cv); 18936 mutex_destroy(&tcps->tcps_ixa_cleanup_lock); 18937 18938 if (tcps->tcps_reclaim_tid != 0) 18939 (void) untimeout(tcps->tcps_reclaim_tid); 18940 mutex_destroy(&tcps->tcps_reclaim_lock); 18941 18942 tcp_listener_conf_cleanup(tcps); 18943 18944 nd_free(&tcps->tcps_g_nd); 18945 kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 18946 tcps->tcps_params = NULL; 18947 kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); 18948 tcps->tcps_wroff_xtra_param = NULL; 18949 18950 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 18951 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 18952 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 18953 } 18954 18955 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 18956 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 18957 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 18958 } 18959 18960 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 18961 tcps->tcps_bind_fanout = NULL; 18962 18963 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * 18964 TCP_ACCEPTOR_FANOUT_SIZE); 18965 tcps->tcps_acceptor_fanout = NULL; 18966 18967 mutex_destroy(&tcps->tcps_iss_key_lock); 18968 mutex_destroy(&tcps->tcps_epriv_port_lock); 18969 18970 ip_drop_unregister(&tcps->tcps_dropper); 18971 18972 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 18973 tcps->tcps_kstat = NULL; 18974 bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); 18975 18976 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 18977 tcps->tcps_mibkp = NULL; 18978 18979 ldi_ident_release(tcps->tcps_ldi_ident); 18980 kmem_free(tcps, sizeof (*tcps)); 18981 } 18982 18983 /* 18984 * Generate ISS, taking into account NDD changes may happen halfway through. 18985 * (If the iss is not zero, set it.) 18986 */ 18987 18988 static void 18989 tcp_iss_init(tcp_t *tcp) 18990 { 18991 MD5_CTX context; 18992 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 18993 uint32_t answer[4]; 18994 tcp_stack_t *tcps = tcp->tcp_tcps; 18995 conn_t *connp = tcp->tcp_connp; 18996 18997 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 18998 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 18999 switch (tcps->tcps_strong_iss) { 19000 case 2: 19001 mutex_enter(&tcps->tcps_iss_key_lock); 19002 context = tcps->tcps_iss_key; 19003 mutex_exit(&tcps->tcps_iss_key_lock); 19004 arg.ports = connp->conn_ports; 19005 arg.src = connp->conn_laddr_v6; 19006 arg.dst = connp->conn_faddr_v6; 19007 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 19008 MD5Final((uchar_t *)answer, &context); 19009 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 19010 /* 19011 * Now that we've hashed into a unique per-connection sequence 19012 * space, add a random increment per strong_iss == 1. So I 19013 * guess we'll have to... 19014 */ 19015 /* FALLTHRU */ 19016 case 1: 19017 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 19018 break; 19019 default: 19020 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 19021 break; 19022 } 19023 tcp->tcp_valid_bits = TCP_ISS_VALID; 19024 tcp->tcp_fss = tcp->tcp_iss - 1; 19025 tcp->tcp_suna = tcp->tcp_iss; 19026 tcp->tcp_snxt = tcp->tcp_iss + 1; 19027 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 19028 tcp->tcp_csuna = tcp->tcp_snxt; 19029 } 19030 19031 /* 19032 * Exported routine for extracting active tcp connection status. 19033 * 19034 * This is used by the Solaris Cluster Networking software to 19035 * gather a list of connections that need to be forwarded to 19036 * specific nodes in the cluster when configuration changes occur. 19037 * 19038 * The callback is invoked for each tcp_t structure from all netstacks, 19039 * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures 19040 * from the netstack with the specified stack_id. Returning 19041 * non-zero from the callback routine terminates the search. 19042 */ 19043 int 19044 cl_tcp_walk_list(netstackid_t stack_id, 19045 int (*cl_callback)(cl_tcp_info_t *, void *), void *arg) 19046 { 19047 netstack_handle_t nh; 19048 netstack_t *ns; 19049 int ret = 0; 19050 19051 if (stack_id >= 0) { 19052 if ((ns = netstack_find_by_stackid(stack_id)) == NULL) 19053 return (EINVAL); 19054 19055 ret = cl_tcp_walk_list_stack(cl_callback, arg, 19056 ns->netstack_tcp); 19057 netstack_rele(ns); 19058 return (ret); 19059 } 19060 19061 netstack_next_init(&nh); 19062 while ((ns = netstack_next(&nh)) != NULL) { 19063 ret = cl_tcp_walk_list_stack(cl_callback, arg, 19064 ns->netstack_tcp); 19065 netstack_rele(ns); 19066 } 19067 netstack_next_fini(&nh); 19068 return (ret); 19069 } 19070 19071 static int 19072 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, 19073 tcp_stack_t *tcps) 19074 { 19075 tcp_t *tcp; 19076 cl_tcp_info_t cl_tcpi; 19077 connf_t *connfp; 19078 conn_t *connp; 19079 int i; 19080 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19081 19082 ASSERT(callback != NULL); 19083 19084 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 19085 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 19086 connp = NULL; 19087 19088 while ((connp = 19089 ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) { 19090 19091 tcp = connp->conn_tcp; 19092 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 19093 cl_tcpi.cl_tcpi_ipversion = connp->conn_ipversion; 19094 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 19095 cl_tcpi.cl_tcpi_lport = connp->conn_lport; 19096 cl_tcpi.cl_tcpi_fport = connp->conn_fport; 19097 cl_tcpi.cl_tcpi_laddr_v6 = connp->conn_laddr_v6; 19098 cl_tcpi.cl_tcpi_faddr_v6 = connp->conn_faddr_v6; 19099 19100 /* 19101 * If the callback returns non-zero 19102 * we terminate the traversal. 19103 */ 19104 if ((*callback)(&cl_tcpi, arg) != 0) { 19105 CONN_DEC_REF(tcp->tcp_connp); 19106 return (1); 19107 } 19108 } 19109 } 19110 19111 return (0); 19112 } 19113 19114 /* 19115 * Macros used for accessing the different types of sockaddr 19116 * structures inside a tcp_ioc_abort_conn_t. 19117 */ 19118 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 19119 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 19120 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 19121 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 19122 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 19123 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 19124 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 19125 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 19126 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 19127 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 19128 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 19129 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 19130 19131 /* 19132 * Return the correct error code to mimic the behavior 19133 * of a connection reset. 19134 */ 19135 #define TCP_AC_GET_ERRCODE(state, err) { \ 19136 switch ((state)) { \ 19137 case TCPS_SYN_SENT: \ 19138 case TCPS_SYN_RCVD: \ 19139 (err) = ECONNREFUSED; \ 19140 break; \ 19141 case TCPS_ESTABLISHED: \ 19142 case TCPS_FIN_WAIT_1: \ 19143 case TCPS_FIN_WAIT_2: \ 19144 case TCPS_CLOSE_WAIT: \ 19145 (err) = ECONNRESET; \ 19146 break; \ 19147 case TCPS_CLOSING: \ 19148 case TCPS_LAST_ACK: \ 19149 case TCPS_TIME_WAIT: \ 19150 (err) = 0; \ 19151 break; \ 19152 default: \ 19153 (err) = ENXIO; \ 19154 } \ 19155 } 19156 19157 /* 19158 * Check if a tcp structure matches the info in acp. 19159 */ 19160 #define TCP_AC_ADDR_MATCH(acp, connp, tcp) \ 19161 (((acp)->ac_local.ss_family == AF_INET) ? \ 19162 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 19163 TCP_AC_V4LOCAL((acp)) == (connp)->conn_laddr_v4) && \ 19164 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 19165 TCP_AC_V4REMOTE((acp)) == (connp)->conn_faddr_v4) && \ 19166 (TCP_AC_V4LPORT((acp)) == 0 || \ 19167 TCP_AC_V4LPORT((acp)) == (connp)->conn_lport) && \ 19168 (TCP_AC_V4RPORT((acp)) == 0 || \ 19169 TCP_AC_V4RPORT((acp)) == (connp)->conn_fport) && \ 19170 (acp)->ac_start <= (tcp)->tcp_state && \ 19171 (acp)->ac_end >= (tcp)->tcp_state) : \ 19172 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 19173 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 19174 &(connp)->conn_laddr_v6)) && \ 19175 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 19176 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 19177 &(connp)->conn_faddr_v6)) && \ 19178 (TCP_AC_V6LPORT((acp)) == 0 || \ 19179 TCP_AC_V6LPORT((acp)) == (connp)->conn_lport) && \ 19180 (TCP_AC_V6RPORT((acp)) == 0 || \ 19181 TCP_AC_V6RPORT((acp)) == (connp)->conn_fport) && \ 19182 (acp)->ac_start <= (tcp)->tcp_state && \ 19183 (acp)->ac_end >= (tcp)->tcp_state)) 19184 19185 #define TCP_AC_MATCH(acp, connp, tcp) \ 19186 (((acp)->ac_zoneid == ALL_ZONES || \ 19187 (acp)->ac_zoneid == (connp)->conn_zoneid) ? \ 19188 TCP_AC_ADDR_MATCH(acp, connp, tcp) : 0) 19189 19190 /* 19191 * Build a message containing a tcp_ioc_abort_conn_t structure 19192 * which is filled in with information from acp and tp. 19193 */ 19194 static mblk_t * 19195 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 19196 { 19197 mblk_t *mp; 19198 tcp_ioc_abort_conn_t *tacp; 19199 19200 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 19201 if (mp == NULL) 19202 return (NULL); 19203 19204 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 19205 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 19206 sizeof (uint32_t)); 19207 19208 tacp->ac_start = acp->ac_start; 19209 tacp->ac_end = acp->ac_end; 19210 tacp->ac_zoneid = acp->ac_zoneid; 19211 19212 if (acp->ac_local.ss_family == AF_INET) { 19213 tacp->ac_local.ss_family = AF_INET; 19214 tacp->ac_remote.ss_family = AF_INET; 19215 TCP_AC_V4LOCAL(tacp) = tp->tcp_connp->conn_laddr_v4; 19216 TCP_AC_V4REMOTE(tacp) = tp->tcp_connp->conn_faddr_v4; 19217 TCP_AC_V4LPORT(tacp) = tp->tcp_connp->conn_lport; 19218 TCP_AC_V4RPORT(tacp) = tp->tcp_connp->conn_fport; 19219 } else { 19220 tacp->ac_local.ss_family = AF_INET6; 19221 tacp->ac_remote.ss_family = AF_INET6; 19222 TCP_AC_V6LOCAL(tacp) = tp->tcp_connp->conn_laddr_v6; 19223 TCP_AC_V6REMOTE(tacp) = tp->tcp_connp->conn_faddr_v6; 19224 TCP_AC_V6LPORT(tacp) = tp->tcp_connp->conn_lport; 19225 TCP_AC_V6RPORT(tacp) = tp->tcp_connp->conn_fport; 19226 } 19227 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 19228 return (mp); 19229 } 19230 19231 /* 19232 * Print a tcp_ioc_abort_conn_t structure. 19233 */ 19234 static void 19235 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 19236 { 19237 char lbuf[128]; 19238 char rbuf[128]; 19239 sa_family_t af; 19240 in_port_t lport, rport; 19241 ushort_t logflags; 19242 19243 af = acp->ac_local.ss_family; 19244 19245 if (af == AF_INET) { 19246 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 19247 lbuf, 128); 19248 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 19249 rbuf, 128); 19250 lport = ntohs(TCP_AC_V4LPORT(acp)); 19251 rport = ntohs(TCP_AC_V4RPORT(acp)); 19252 } else { 19253 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 19254 lbuf, 128); 19255 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 19256 rbuf, 128); 19257 lport = ntohs(TCP_AC_V6LPORT(acp)); 19258 rport = ntohs(TCP_AC_V6RPORT(acp)); 19259 } 19260 19261 logflags = SL_TRACE | SL_NOTE; 19262 /* 19263 * Don't print this message to the console if the operation was done 19264 * to a non-global zone. 19265 */ 19266 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 19267 logflags |= SL_CONSOLE; 19268 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 19269 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 19270 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 19271 acp->ac_start, acp->ac_end); 19272 } 19273 19274 /* 19275 * Called using SQ_FILL when a message built using 19276 * tcp_ioctl_abort_build_msg is put into a queue. 19277 * Note that when we get here there is no wildcard in acp any more. 19278 */ 19279 /* ARGSUSED2 */ 19280 static void 19281 tcp_ioctl_abort_handler(void *arg, mblk_t *mp, void *arg2, 19282 ip_recv_attr_t *dummy) 19283 { 19284 conn_t *connp = (conn_t *)arg; 19285 tcp_t *tcp = connp->conn_tcp; 19286 tcp_ioc_abort_conn_t *acp; 19287 19288 /* 19289 * Don't accept any input on a closed tcp as this TCP logically does 19290 * not exist on the system. Don't proceed further with this TCP. 19291 * For eg. this packet could trigger another close of this tcp 19292 * which would be disastrous for tcp_refcnt. tcp_close_detached / 19293 * tcp_clean_death / tcp_closei_local must be called at most once 19294 * on a TCP. 19295 */ 19296 if (tcp->tcp_state == TCPS_CLOSED || 19297 tcp->tcp_state == TCPS_BOUND) { 19298 freemsg(mp); 19299 return; 19300 } 19301 19302 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 19303 if (tcp->tcp_state <= acp->ac_end) { 19304 /* 19305 * If we get here, we are already on the correct 19306 * squeue. This ioctl follows the following path 19307 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 19308 * ->tcp_ioctl_abort->squeue_enter (if on a 19309 * different squeue) 19310 */ 19311 int errcode; 19312 19313 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 19314 (void) tcp_clean_death(tcp, errcode, 26); 19315 } 19316 freemsg(mp); 19317 } 19318 19319 /* 19320 * Abort all matching connections on a hash chain. 19321 */ 19322 static int 19323 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 19324 boolean_t exact, tcp_stack_t *tcps) 19325 { 19326 int nmatch, err = 0; 19327 tcp_t *tcp; 19328 MBLKP mp, last, listhead = NULL; 19329 conn_t *tconnp; 19330 connf_t *connfp; 19331 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19332 19333 connfp = &ipst->ips_ipcl_conn_fanout[index]; 19334 19335 startover: 19336 nmatch = 0; 19337 19338 mutex_enter(&connfp->connf_lock); 19339 for (tconnp = connfp->connf_head; tconnp != NULL; 19340 tconnp = tconnp->conn_next) { 19341 tcp = tconnp->conn_tcp; 19342 /* 19343 * We are missing a check on sin6_scope_id for linklocals here, 19344 * but current usage is just for aborting based on zoneid 19345 * for shared-IP zones. 19346 */ 19347 if (TCP_AC_MATCH(acp, tconnp, tcp)) { 19348 CONN_INC_REF(tconnp); 19349 mp = tcp_ioctl_abort_build_msg(acp, tcp); 19350 if (mp == NULL) { 19351 err = ENOMEM; 19352 CONN_DEC_REF(tconnp); 19353 break; 19354 } 19355 mp->b_prev = (mblk_t *)tcp; 19356 19357 if (listhead == NULL) { 19358 listhead = mp; 19359 last = mp; 19360 } else { 19361 last->b_next = mp; 19362 last = mp; 19363 } 19364 nmatch++; 19365 if (exact) 19366 break; 19367 } 19368 19369 /* Avoid holding lock for too long. */ 19370 if (nmatch >= 500) 19371 break; 19372 } 19373 mutex_exit(&connfp->connf_lock); 19374 19375 /* Pass mp into the correct tcp */ 19376 while ((mp = listhead) != NULL) { 19377 listhead = listhead->b_next; 19378 tcp = (tcp_t *)mp->b_prev; 19379 mp->b_next = mp->b_prev = NULL; 19380 SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp, 19381 tcp_ioctl_abort_handler, tcp->tcp_connp, NULL, 19382 SQ_FILL, SQTAG_TCP_ABORT_BUCKET); 19383 } 19384 19385 *count += nmatch; 19386 if (nmatch >= 500 && err == 0) 19387 goto startover; 19388 return (err); 19389 } 19390 19391 /* 19392 * Abort all connections that matches the attributes specified in acp. 19393 */ 19394 static int 19395 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) 19396 { 19397 sa_family_t af; 19398 uint32_t ports; 19399 uint16_t *pports; 19400 int err = 0, count = 0; 19401 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 19402 int index = -1; 19403 ushort_t logflags; 19404 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19405 19406 af = acp->ac_local.ss_family; 19407 19408 if (af == AF_INET) { 19409 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 19410 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 19411 pports = (uint16_t *)&ports; 19412 pports[1] = TCP_AC_V4LPORT(acp); 19413 pports[0] = TCP_AC_V4RPORT(acp); 19414 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 19415 } 19416 } else { 19417 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 19418 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 19419 pports = (uint16_t *)&ports; 19420 pports[1] = TCP_AC_V6LPORT(acp); 19421 pports[0] = TCP_AC_V6RPORT(acp); 19422 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 19423 } 19424 } 19425 19426 /* 19427 * For cases where remote addr, local port, and remote port are non- 19428 * wildcards, tcp_ioctl_abort_bucket will only be called once. 19429 */ 19430 if (index != -1) { 19431 err = tcp_ioctl_abort_bucket(acp, index, 19432 &count, exact, tcps); 19433 } else { 19434 /* 19435 * loop through all entries for wildcard case 19436 */ 19437 for (index = 0; 19438 index < ipst->ips_ipcl_conn_fanout_size; 19439 index++) { 19440 err = tcp_ioctl_abort_bucket(acp, index, 19441 &count, exact, tcps); 19442 if (err != 0) 19443 break; 19444 } 19445 } 19446 19447 logflags = SL_TRACE | SL_NOTE; 19448 /* 19449 * Don't print this message to the console if the operation was done 19450 * to a non-global zone. 19451 */ 19452 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 19453 logflags |= SL_CONSOLE; 19454 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 19455 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 19456 if (err == 0 && count == 0) 19457 err = ENOENT; 19458 return (err); 19459 } 19460 19461 /* 19462 * Process the TCP_IOC_ABORT_CONN ioctl request. 19463 */ 19464 static void 19465 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 19466 { 19467 int err; 19468 IOCP iocp; 19469 MBLKP mp1; 19470 sa_family_t laf, raf; 19471 tcp_ioc_abort_conn_t *acp; 19472 zone_t *zptr; 19473 conn_t *connp = Q_TO_CONN(q); 19474 zoneid_t zoneid = connp->conn_zoneid; 19475 tcp_t *tcp = connp->conn_tcp; 19476 tcp_stack_t *tcps = tcp->tcp_tcps; 19477 19478 iocp = (IOCP)mp->b_rptr; 19479 19480 if ((mp1 = mp->b_cont) == NULL || 19481 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 19482 err = EINVAL; 19483 goto out; 19484 } 19485 19486 /* check permissions */ 19487 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 19488 err = EPERM; 19489 goto out; 19490 } 19491 19492 if (mp1->b_cont != NULL) { 19493 freemsg(mp1->b_cont); 19494 mp1->b_cont = NULL; 19495 } 19496 19497 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 19498 laf = acp->ac_local.ss_family; 19499 raf = acp->ac_remote.ss_family; 19500 19501 /* check that a zone with the supplied zoneid exists */ 19502 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 19503 zptr = zone_find_by_id(zoneid); 19504 if (zptr != NULL) { 19505 zone_rele(zptr); 19506 } else { 19507 err = EINVAL; 19508 goto out; 19509 } 19510 } 19511 19512 /* 19513 * For exclusive stacks we set the zoneid to zero 19514 * to make TCP operate as if in the global zone. 19515 */ 19516 if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) 19517 acp->ac_zoneid = GLOBAL_ZONEID; 19518 19519 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 19520 acp->ac_start > acp->ac_end || laf != raf || 19521 (laf != AF_INET && laf != AF_INET6)) { 19522 err = EINVAL; 19523 goto out; 19524 } 19525 19526 tcp_ioctl_abort_dump(acp); 19527 err = tcp_ioctl_abort(acp, tcps); 19528 19529 out: 19530 if (mp1 != NULL) { 19531 freemsg(mp1); 19532 mp->b_cont = NULL; 19533 } 19534 19535 if (err != 0) 19536 miocnak(q, mp, 0, err); 19537 else 19538 miocack(q, mp, 0, 0); 19539 } 19540 19541 /* 19542 * tcp_time_wait_processing() handles processing of incoming packets when 19543 * the tcp is in the TIME_WAIT state. 19544 * A TIME_WAIT tcp that has an associated open TCP stream is never put 19545 * on the time wait list. 19546 */ 19547 void 19548 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 19549 uint32_t seg_ack, int seg_len, tcpha_t *tcpha, ip_recv_attr_t *ira) 19550 { 19551 int32_t bytes_acked; 19552 int32_t gap; 19553 int32_t rgap; 19554 tcp_opt_t tcpopt; 19555 uint_t flags; 19556 uint32_t new_swnd = 0; 19557 conn_t *nconnp; 19558 conn_t *connp = tcp->tcp_connp; 19559 tcp_stack_t *tcps = tcp->tcp_tcps; 19560 19561 BUMP_LOCAL(tcp->tcp_ibsegs); 19562 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 19563 19564 flags = (unsigned int)tcpha->tha_flags & 0xFF; 19565 new_swnd = ntohs(tcpha->tha_win) << 19566 ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws); 19567 if (tcp->tcp_snd_ts_ok) { 19568 if (!tcp_paws_check(tcp, tcpha, &tcpopt)) { 19569 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 19570 tcp->tcp_rnxt, TH_ACK); 19571 goto done; 19572 } 19573 } 19574 gap = seg_seq - tcp->tcp_rnxt; 19575 rgap = tcp->tcp_rwnd - (gap + seg_len); 19576 if (gap < 0) { 19577 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 19578 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 19579 (seg_len > -gap ? -gap : seg_len)); 19580 seg_len += gap; 19581 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 19582 if (flags & TH_RST) { 19583 goto done; 19584 } 19585 if ((flags & TH_FIN) && seg_len == -1) { 19586 /* 19587 * When TCP receives a duplicate FIN in 19588 * TIME_WAIT state, restart the 2 MSL timer. 19589 * See page 73 in RFC 793. Make sure this TCP 19590 * is already on the TIME_WAIT list. If not, 19591 * just restart the timer. 19592 */ 19593 if (TCP_IS_DETACHED(tcp)) { 19594 if (tcp_time_wait_remove(tcp, NULL) == 19595 B_TRUE) { 19596 tcp_time_wait_append(tcp); 19597 TCP_DBGSTAT(tcps, 19598 tcp_rput_time_wait); 19599 } 19600 } else { 19601 ASSERT(tcp != NULL); 19602 TCP_TIMER_RESTART(tcp, 19603 tcps->tcps_time_wait_interval); 19604 } 19605 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 19606 tcp->tcp_rnxt, TH_ACK); 19607 goto done; 19608 } 19609 flags |= TH_ACK_NEEDED; 19610 seg_len = 0; 19611 goto process_ack; 19612 } 19613 19614 /* Fix seg_seq, and chew the gap off the front. */ 19615 seg_seq = tcp->tcp_rnxt; 19616 } 19617 19618 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 19619 /* 19620 * Make sure that when we accept the connection, pick 19621 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 19622 * old connection. 19623 * 19624 * The next ISS generated is equal to tcp_iss_incr_extra 19625 * + ISS_INCR/2 + other components depending on the 19626 * value of tcp_strong_iss. We pre-calculate the new 19627 * ISS here and compare with tcp_snxt to determine if 19628 * we need to make adjustment to tcp_iss_incr_extra. 19629 * 19630 * The above calculation is ugly and is a 19631 * waste of CPU cycles... 19632 */ 19633 uint32_t new_iss = tcps->tcps_iss_incr_extra; 19634 int32_t adj; 19635 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19636 19637 switch (tcps->tcps_strong_iss) { 19638 case 2: { 19639 /* Add time and MD5 components. */ 19640 uint32_t answer[4]; 19641 struct { 19642 uint32_t ports; 19643 in6_addr_t src; 19644 in6_addr_t dst; 19645 } arg; 19646 MD5_CTX context; 19647 19648 mutex_enter(&tcps->tcps_iss_key_lock); 19649 context = tcps->tcps_iss_key; 19650 mutex_exit(&tcps->tcps_iss_key_lock); 19651 arg.ports = connp->conn_ports; 19652 /* We use MAPPED addresses in tcp_iss_init */ 19653 arg.src = connp->conn_laddr_v6; 19654 arg.dst = connp->conn_faddr_v6; 19655 MD5Update(&context, (uchar_t *)&arg, 19656 sizeof (arg)); 19657 MD5Final((uchar_t *)answer, &context); 19658 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 19659 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 19660 break; 19661 } 19662 case 1: 19663 /* Add time component and min random (i.e. 1). */ 19664 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 19665 break; 19666 default: 19667 /* Add only time component. */ 19668 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 19669 break; 19670 } 19671 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 19672 /* 19673 * New ISS not guaranteed to be ISS_INCR/2 19674 * ahead of the current tcp_snxt, so add the 19675 * difference to tcp_iss_incr_extra. 19676 */ 19677 tcps->tcps_iss_incr_extra += adj; 19678 } 19679 /* 19680 * If tcp_clean_death() can not perform the task now, 19681 * drop the SYN packet and let the other side re-xmit. 19682 * Otherwise pass the SYN packet back in, since the 19683 * old tcp state has been cleaned up or freed. 19684 */ 19685 if (tcp_clean_death(tcp, 0, 27) == -1) 19686 goto done; 19687 nconnp = ipcl_classify(mp, ira, ipst); 19688 if (nconnp != NULL) { 19689 TCP_STAT(tcps, tcp_time_wait_syn_success); 19690 /* Drops ref on nconnp */ 19691 tcp_reinput(nconnp, mp, ira, ipst); 19692 return; 19693 } 19694 goto done; 19695 } 19696 19697 /* 19698 * rgap is the amount of stuff received out of window. A negative 19699 * value is the amount out of window. 19700 */ 19701 if (rgap < 0) { 19702 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 19703 UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); 19704 /* Fix seg_len and make sure there is something left. */ 19705 seg_len += rgap; 19706 if (seg_len <= 0) { 19707 if (flags & TH_RST) { 19708 goto done; 19709 } 19710 flags |= TH_ACK_NEEDED; 19711 seg_len = 0; 19712 goto process_ack; 19713 } 19714 } 19715 /* 19716 * Check whether we can update tcp_ts_recent. This test is 19717 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 19718 * Extensions for High Performance: An Update", Internet Draft. 19719 */ 19720 if (tcp->tcp_snd_ts_ok && 19721 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 19722 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 19723 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 19724 tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 19725 } 19726 19727 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 19728 /* Always ack out of order packets */ 19729 flags |= TH_ACK_NEEDED; 19730 seg_len = 0; 19731 } else if (seg_len > 0) { 19732 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 19733 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 19734 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 19735 } 19736 if (flags & TH_RST) { 19737 (void) tcp_clean_death(tcp, 0, 28); 19738 goto done; 19739 } 19740 if (flags & TH_SYN) { 19741 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 19742 TH_RST|TH_ACK); 19743 /* 19744 * Do not delete the TCP structure if it is in 19745 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 19746 */ 19747 goto done; 19748 } 19749 process_ack: 19750 if (flags & TH_ACK) { 19751 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 19752 if (bytes_acked <= 0) { 19753 if (bytes_acked == 0 && seg_len == 0 && 19754 new_swnd == tcp->tcp_swnd) 19755 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 19756 } else { 19757 /* Acks something not sent */ 19758 flags |= TH_ACK_NEEDED; 19759 } 19760 } 19761 if (flags & TH_ACK_NEEDED) { 19762 /* 19763 * Time to send an ack for some reason. 19764 */ 19765 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 19766 tcp->tcp_rnxt, TH_ACK); 19767 } 19768 done: 19769 freemsg(mp); 19770 } 19771 19772 /* 19773 * TCP Timers Implementation. 19774 */ 19775 timeout_id_t 19776 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 19777 { 19778 mblk_t *mp; 19779 tcp_timer_t *tcpt; 19780 tcp_t *tcp = connp->conn_tcp; 19781 19782 ASSERT(connp->conn_sqp != NULL); 19783 19784 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls); 19785 19786 if (tcp->tcp_timercache == NULL) { 19787 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 19788 } else { 19789 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc); 19790 mp = tcp->tcp_timercache; 19791 tcp->tcp_timercache = mp->b_next; 19792 mp->b_next = NULL; 19793 ASSERT(mp->b_wptr == NULL); 19794 } 19795 19796 CONN_INC_REF(connp); 19797 tcpt = (tcp_timer_t *)mp->b_rptr; 19798 tcpt->connp = connp; 19799 tcpt->tcpt_proc = f; 19800 /* 19801 * TCP timers are normal timeouts. Plus, they do not require more than 19802 * a 10 millisecond resolution. By choosing a coarser resolution and by 19803 * rounding up the expiration to the next resolution boundary, we can 19804 * batch timers in the callout subsystem to make TCP timers more 19805 * efficient. The roundup also protects short timers from expiring too 19806 * early before they have a chance to be cancelled. 19807 */ 19808 tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp, 19809 TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP); 19810 19811 return ((timeout_id_t)mp); 19812 } 19813 19814 static void 19815 tcp_timer_callback(void *arg) 19816 { 19817 mblk_t *mp = (mblk_t *)arg; 19818 tcp_timer_t *tcpt; 19819 conn_t *connp; 19820 19821 tcpt = (tcp_timer_t *)mp->b_rptr; 19822 connp = tcpt->connp; 19823 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp, 19824 NULL, SQ_FILL, SQTAG_TCP_TIMER); 19825 } 19826 19827 /* ARGSUSED */ 19828 static void 19829 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 19830 { 19831 tcp_timer_t *tcpt; 19832 conn_t *connp = (conn_t *)arg; 19833 tcp_t *tcp = connp->conn_tcp; 19834 19835 tcpt = (tcp_timer_t *)mp->b_rptr; 19836 ASSERT(connp == tcpt->connp); 19837 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 19838 19839 /* 19840 * If the TCP has reached the closed state, don't proceed any 19841 * further. This TCP logically does not exist on the system. 19842 * tcpt_proc could for example access queues, that have already 19843 * been qprocoff'ed off. 19844 */ 19845 if (tcp->tcp_state != TCPS_CLOSED) { 19846 (*tcpt->tcpt_proc)(connp); 19847 } else { 19848 tcp->tcp_timer_tid = 0; 19849 } 19850 tcp_timer_free(connp->conn_tcp, mp); 19851 } 19852 19853 /* 19854 * There is potential race with untimeout and the handler firing at the same 19855 * time. The mblock may be freed by the handler while we are trying to use 19856 * it. But since both should execute on the same squeue, this race should not 19857 * occur. 19858 */ 19859 clock_t 19860 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 19861 { 19862 mblk_t *mp = (mblk_t *)id; 19863 tcp_timer_t *tcpt; 19864 clock_t delta; 19865 19866 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs); 19867 19868 if (mp == NULL) 19869 return (-1); 19870 19871 tcpt = (tcp_timer_t *)mp->b_rptr; 19872 ASSERT(tcpt->connp == connp); 19873 19874 delta = untimeout_default(tcpt->tcpt_tid, 0); 19875 19876 if (delta >= 0) { 19877 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled); 19878 tcp_timer_free(connp->conn_tcp, mp); 19879 CONN_DEC_REF(connp); 19880 } 19881 19882 return (delta); 19883 } 19884 19885 /* 19886 * Allocate space for the timer event. The allocation looks like mblk, but it is 19887 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 19888 * 19889 * Dealing with failures: If we can't allocate from the timer cache we try 19890 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 19891 * points to b_rptr. 19892 * If we can't allocate anything using allocb_tryhard(), we perform a last 19893 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 19894 * save the actual allocation size in b_datap. 19895 */ 19896 mblk_t * 19897 tcp_timermp_alloc(int kmflags) 19898 { 19899 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 19900 kmflags & ~KM_PANIC); 19901 19902 if (mp != NULL) { 19903 mp->b_next = mp->b_prev = NULL; 19904 mp->b_rptr = (uchar_t *)(&mp[1]); 19905 mp->b_wptr = NULL; 19906 mp->b_datap = NULL; 19907 mp->b_queue = NULL; 19908 mp->b_cont = NULL; 19909 } else if (kmflags & KM_PANIC) { 19910 /* 19911 * Failed to allocate memory for the timer. Try allocating from 19912 * dblock caches. 19913 */ 19914 /* ipclassifier calls this from a constructor - hence no tcps */ 19915 TCP_G_STAT(tcp_timermp_allocfail); 19916 mp = allocb_tryhard(sizeof (tcp_timer_t)); 19917 if (mp == NULL) { 19918 size_t size = 0; 19919 /* 19920 * Memory is really low. Try tryhard allocation. 19921 * 19922 * ipclassifier calls this from a constructor - 19923 * hence no tcps 19924 */ 19925 TCP_G_STAT(tcp_timermp_allocdblfail); 19926 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 19927 sizeof (tcp_timer_t), &size, kmflags); 19928 mp->b_rptr = (uchar_t *)(&mp[1]); 19929 mp->b_next = mp->b_prev = NULL; 19930 mp->b_wptr = (uchar_t *)-1; 19931 mp->b_datap = (dblk_t *)size; 19932 mp->b_queue = NULL; 19933 mp->b_cont = NULL; 19934 } 19935 ASSERT(mp->b_wptr != NULL); 19936 } 19937 /* ipclassifier calls this from a constructor - hence no tcps */ 19938 TCP_G_DBGSTAT(tcp_timermp_alloced); 19939 19940 return (mp); 19941 } 19942 19943 /* 19944 * Free per-tcp timer cache. 19945 * It can only contain entries from tcp_timercache. 19946 */ 19947 void 19948 tcp_timermp_free(tcp_t *tcp) 19949 { 19950 mblk_t *mp; 19951 19952 while ((mp = tcp->tcp_timercache) != NULL) { 19953 ASSERT(mp->b_wptr == NULL); 19954 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 19955 kmem_cache_free(tcp_timercache, mp); 19956 } 19957 } 19958 19959 /* 19960 * Free timer event. Put it on the per-tcp timer cache if there is not too many 19961 * events there already (currently at most two events are cached). 19962 * If the event is not allocated from the timer cache, free it right away. 19963 */ 19964 static void 19965 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 19966 { 19967 mblk_t *mp1 = tcp->tcp_timercache; 19968 19969 if (mp->b_wptr != NULL) { 19970 /* 19971 * This allocation is not from a timer cache, free it right 19972 * away. 19973 */ 19974 if (mp->b_wptr != (uchar_t *)-1) 19975 freeb(mp); 19976 else 19977 kmem_free(mp, (size_t)mp->b_datap); 19978 } else if (mp1 == NULL || mp1->b_next == NULL) { 19979 /* Cache this timer block for future allocations */ 19980 mp->b_rptr = (uchar_t *)(&mp[1]); 19981 mp->b_next = mp1; 19982 tcp->tcp_timercache = mp; 19983 } else { 19984 kmem_cache_free(tcp_timercache, mp); 19985 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed); 19986 } 19987 } 19988 19989 /* 19990 * End of TCP Timers implementation. 19991 */ 19992 19993 /* 19994 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 19995 * on the specified backing STREAMS q. Note, the caller may make the 19996 * decision to call based on the tcp_t.tcp_flow_stopped value which 19997 * when check outside the q's lock is only an advisory check ... 19998 */ 19999 void 20000 tcp_setqfull(tcp_t *tcp) 20001 { 20002 tcp_stack_t *tcps = tcp->tcp_tcps; 20003 conn_t *connp = tcp->tcp_connp; 20004 20005 if (tcp->tcp_closed) 20006 return; 20007 20008 conn_setqfull(connp, &tcp->tcp_flow_stopped); 20009 if (tcp->tcp_flow_stopped) 20010 TCP_STAT(tcps, tcp_flwctl_on); 20011 } 20012 20013 void 20014 tcp_clrqfull(tcp_t *tcp) 20015 { 20016 conn_t *connp = tcp->tcp_connp; 20017 20018 if (tcp->tcp_closed) 20019 return; 20020 conn_clrqfull(connp, &tcp->tcp_flow_stopped); 20021 } 20022 20023 /* 20024 * kstats related to squeues i.e. not per IP instance 20025 */ 20026 static void * 20027 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) 20028 { 20029 kstat_t *ksp; 20030 20031 tcp_g_stat_t template = { 20032 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 20033 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 20034 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 20035 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 20036 }; 20037 20038 ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", 20039 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 20040 KSTAT_FLAG_VIRTUAL); 20041 20042 if (ksp == NULL) 20043 return (NULL); 20044 20045 bcopy(&template, tcp_g_statp, sizeof (template)); 20046 ksp->ks_data = (void *)tcp_g_statp; 20047 20048 kstat_install(ksp); 20049 return (ksp); 20050 } 20051 20052 static void 20053 tcp_g_kstat_fini(kstat_t *ksp) 20054 { 20055 if (ksp != NULL) { 20056 kstat_delete(ksp); 20057 } 20058 } 20059 20060 20061 static void * 20062 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) 20063 { 20064 kstat_t *ksp; 20065 20066 tcp_stat_t template = { 20067 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 20068 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 20069 { "tcp_time_wait_syn_success", KSTAT_DATA_UINT64 }, 20070 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 20071 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 20072 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 20073 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 20074 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 20075 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 20076 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 20077 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 20078 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 20079 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 20080 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 20081 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 20082 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 20083 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 20084 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 20085 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 20086 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 20087 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 20088 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 20089 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 20090 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 20091 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 20092 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 20093 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 20094 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 20095 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 20096 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 20097 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 20098 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 20099 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 20100 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 20101 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 20102 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 20103 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 20104 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 20105 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 20106 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 20107 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 20108 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 20109 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 20110 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 20111 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 20112 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 20113 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 20114 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 20115 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 20116 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 20117 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 20118 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 20119 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 20120 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 20121 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 20122 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 20123 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 20124 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 20125 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 20126 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 20127 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 20128 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 20129 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 20130 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 20131 { "tcp_listen_cnt_drop", KSTAT_DATA_UINT64 }, 20132 { "tcp_listen_mem_drop", KSTAT_DATA_UINT64 }, 20133 { "tcp_zwin_ack_syn", KSTAT_DATA_UINT64 }, 20134 { "tcp_rst_unsent", KSTAT_DATA_UINT64 } 20135 }; 20136 20137 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", 20138 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 20139 KSTAT_FLAG_VIRTUAL, stackid); 20140 20141 if (ksp == NULL) 20142 return (NULL); 20143 20144 bcopy(&template, tcps_statisticsp, sizeof (template)); 20145 ksp->ks_data = (void *)tcps_statisticsp; 20146 ksp->ks_private = (void *)(uintptr_t)stackid; 20147 20148 kstat_install(ksp); 20149 return (ksp); 20150 } 20151 20152 static void 20153 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 20154 { 20155 if (ksp != NULL) { 20156 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 20157 kstat_delete_netstack(ksp, stackid); 20158 } 20159 } 20160 20161 /* 20162 * TCP Kstats implementation 20163 */ 20164 static void * 20165 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) 20166 { 20167 kstat_t *ksp; 20168 20169 tcp_named_kstat_t template = { 20170 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 20171 { "rtoMin", KSTAT_DATA_INT32, 0 }, 20172 { "rtoMax", KSTAT_DATA_INT32, 0 }, 20173 { "maxConn", KSTAT_DATA_INT32, 0 }, 20174 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 20175 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 20176 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 20177 { "estabResets", KSTAT_DATA_UINT32, 0 }, 20178 { "currEstab", KSTAT_DATA_UINT32, 0 }, 20179 { "inSegs", KSTAT_DATA_UINT64, 0 }, 20180 { "outSegs", KSTAT_DATA_UINT64, 0 }, 20181 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 20182 { "connTableSize", KSTAT_DATA_INT32, 0 }, 20183 { "outRsts", KSTAT_DATA_UINT32, 0 }, 20184 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 20185 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 20186 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 20187 { "outAck", KSTAT_DATA_UINT32, 0 }, 20188 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 20189 { "outUrg", KSTAT_DATA_UINT32, 0 }, 20190 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 20191 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 20192 { "outControl", KSTAT_DATA_UINT32, 0 }, 20193 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 20194 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 20195 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 20196 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 20197 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 20198 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 20199 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 20200 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 20201 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 20202 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 20203 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 20204 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 20205 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 20206 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 20207 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 20208 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 20209 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 20210 { "inClosed", KSTAT_DATA_UINT32, 0 }, 20211 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 20212 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 20213 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 20214 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 20215 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 20216 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 20217 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 20218 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 20219 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 20220 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 20221 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 20222 { "connTableSize6", KSTAT_DATA_INT32, 0 } 20223 }; 20224 20225 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", 20226 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); 20227 20228 if (ksp == NULL) 20229 return (NULL); 20230 20231 template.rtoAlgorithm.value.ui32 = 4; 20232 template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; 20233 template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; 20234 template.maxConn.value.i32 = -1; 20235 20236 bcopy(&template, ksp->ks_data, sizeof (template)); 20237 ksp->ks_update = tcp_kstat_update; 20238 ksp->ks_private = (void *)(uintptr_t)stackid; 20239 20240 kstat_install(ksp); 20241 return (ksp); 20242 } 20243 20244 static void 20245 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 20246 { 20247 if (ksp != NULL) { 20248 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 20249 kstat_delete_netstack(ksp, stackid); 20250 } 20251 } 20252 20253 static int 20254 tcp_kstat_update(kstat_t *kp, int rw) 20255 { 20256 tcp_named_kstat_t *tcpkp; 20257 tcp_t *tcp; 20258 connf_t *connfp; 20259 conn_t *connp; 20260 int i; 20261 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 20262 netstack_t *ns; 20263 tcp_stack_t *tcps; 20264 ip_stack_t *ipst; 20265 20266 if ((kp == NULL) || (kp->ks_data == NULL)) 20267 return (EIO); 20268 20269 if (rw == KSTAT_WRITE) 20270 return (EACCES); 20271 20272 ns = netstack_find_by_stackid(stackid); 20273 if (ns == NULL) 20274 return (-1); 20275 tcps = ns->netstack_tcp; 20276 if (tcps == NULL) { 20277 netstack_rele(ns); 20278 return (-1); 20279 } 20280 20281 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 20282 20283 tcpkp->currEstab.value.ui32 = 0; 20284 20285 ipst = ns->netstack_ip; 20286 20287 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 20288 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 20289 connp = NULL; 20290 while ((connp = 20291 ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) { 20292 tcp = connp->conn_tcp; 20293 switch (tcp_snmp_state(tcp)) { 20294 case MIB2_TCP_established: 20295 case MIB2_TCP_closeWait: 20296 tcpkp->currEstab.value.ui32++; 20297 break; 20298 } 20299 } 20300 } 20301 20302 tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; 20303 tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; 20304 tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; 20305 tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; 20306 tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; 20307 tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; 20308 tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; 20309 tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; 20310 tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; 20311 tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; 20312 tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; 20313 tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; 20314 tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; 20315 tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; 20316 tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; 20317 tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; 20318 tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; 20319 tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; 20320 tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; 20321 tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; 20322 tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; 20323 tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; 20324 tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; 20325 tcpkp->inDataInorderSegs.value.ui32 = 20326 tcps->tcps_mib.tcpInDataInorderSegs; 20327 tcpkp->inDataInorderBytes.value.ui32 = 20328 tcps->tcps_mib.tcpInDataInorderBytes; 20329 tcpkp->inDataUnorderSegs.value.ui32 = 20330 tcps->tcps_mib.tcpInDataUnorderSegs; 20331 tcpkp->inDataUnorderBytes.value.ui32 = 20332 tcps->tcps_mib.tcpInDataUnorderBytes; 20333 tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; 20334 tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; 20335 tcpkp->inDataPartDupSegs.value.ui32 = 20336 tcps->tcps_mib.tcpInDataPartDupSegs; 20337 tcpkp->inDataPartDupBytes.value.ui32 = 20338 tcps->tcps_mib.tcpInDataPartDupBytes; 20339 tcpkp->inDataPastWinSegs.value.ui32 = 20340 tcps->tcps_mib.tcpInDataPastWinSegs; 20341 tcpkp->inDataPastWinBytes.value.ui32 = 20342 tcps->tcps_mib.tcpInDataPastWinBytes; 20343 tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; 20344 tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; 20345 tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; 20346 tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; 20347 tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; 20348 tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; 20349 tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; 20350 tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; 20351 tcpkp->timKeepaliveProbe.value.ui32 = 20352 tcps->tcps_mib.tcpTimKeepaliveProbe; 20353 tcpkp->timKeepaliveDrop.value.ui32 = 20354 tcps->tcps_mib.tcpTimKeepaliveDrop; 20355 tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; 20356 tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; 20357 tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; 20358 tcpkp->outSackRetransSegs.value.ui32 = 20359 tcps->tcps_mib.tcpOutSackRetransSegs; 20360 tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; 20361 20362 netstack_rele(ns); 20363 return (0); 20364 } 20365 20366 static int 20367 tcp_squeue_switch(int val) 20368 { 20369 int rval = SQ_FILL; 20370 20371 switch (val) { 20372 case 1: 20373 rval = SQ_NODRAIN; 20374 break; 20375 case 2: 20376 rval = SQ_PROCESS; 20377 break; 20378 default: 20379 break; 20380 } 20381 return (rval); 20382 } 20383 20384 /* 20385 * This is called once for each squeue - globally for all stack 20386 * instances. 20387 */ 20388 static void 20389 tcp_squeue_add(squeue_t *sqp) 20390 { 20391 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 20392 sizeof (tcp_squeue_priv_t), KM_SLEEP); 20393 20394 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 20395 tcp_time_wait->tcp_time_wait_tid = 20396 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 20397 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 20398 CALLOUT_FLAG_ROUNDUP); 20399 if (tcp_free_list_max_cnt == 0) { 20400 int tcp_ncpus = ((boot_max_ncpus == -1) ? 20401 max_ncpus : boot_max_ncpus); 20402 20403 /* 20404 * Limit number of entries to 1% of availble memory / tcp_ncpus 20405 */ 20406 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 20407 (tcp_ncpus * sizeof (tcp_t) * 100); 20408 } 20409 tcp_time_wait->tcp_free_list_cnt = 0; 20410 } 20411 20412 /* 20413 * On a labeled system we have some protocols above TCP, such as RPC, which 20414 * appear to assume that every mblk in a chain has a db_credp. 20415 */ 20416 static void 20417 tcp_setcred_data(mblk_t *mp, ip_recv_attr_t *ira) 20418 { 20419 ASSERT(is_system_labeled()); 20420 ASSERT(ira->ira_cred != NULL); 20421 20422 while (mp != NULL) { 20423 mblk_setcred(mp, ira->ira_cred, NOPID); 20424 mp = mp->b_cont; 20425 } 20426 } 20427 20428 static int 20429 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr, 20430 boolean_t bind_to_req_port_only, cred_t *cr) 20431 { 20432 in_port_t mlp_port; 20433 mlp_type_t addrtype, mlptype; 20434 boolean_t user_specified; 20435 in_port_t allocated_port; 20436 in_port_t requested_port = *requested_port_ptr; 20437 conn_t *connp = tcp->tcp_connp; 20438 zone_t *zone; 20439 tcp_stack_t *tcps = tcp->tcp_tcps; 20440 in6_addr_t v6addr = connp->conn_laddr_v6; 20441 20442 /* 20443 * XXX It's up to the caller to specify bind_to_req_port_only or not. 20444 */ 20445 ASSERT(cr != NULL); 20446 20447 /* 20448 * Get a valid port (within the anonymous range and should not 20449 * be a privileged one) to use if the user has not given a port. 20450 * If multiple threads are here, they may all start with 20451 * with the same initial port. But, it should be fine as long as 20452 * tcp_bindi will ensure that no two threads will be assigned 20453 * the same port. 20454 * 20455 * NOTE: XXX If a privileged process asks for an anonymous port, we 20456 * still check for ports only in the range > tcp_smallest_non_priv_port, 20457 * unless TCP_ANONPRIVBIND option is set. 20458 */ 20459 mlptype = mlptSingle; 20460 mlp_port = requested_port; 20461 if (requested_port == 0) { 20462 requested_port = connp->conn_anon_priv_bind ? 20463 tcp_get_next_priv_port(tcp) : 20464 tcp_update_next_port(tcps->tcps_next_port_to_try, 20465 tcp, B_TRUE); 20466 if (requested_port == 0) { 20467 return (-TNOADDR); 20468 } 20469 user_specified = B_FALSE; 20470 20471 /* 20472 * If the user went through one of the RPC interfaces to create 20473 * this socket and RPC is MLP in this zone, then give him an 20474 * anonymous MLP. 20475 */ 20476 if (connp->conn_anon_mlp && is_system_labeled()) { 20477 zone = crgetzone(cr); 20478 addrtype = tsol_mlp_addr_type( 20479 connp->conn_allzones ? ALL_ZONES : zone->zone_id, 20480 IPV6_VERSION, &v6addr, 20481 tcps->tcps_netstack->netstack_ip); 20482 if (addrtype == mlptSingle) { 20483 return (-TNOADDR); 20484 } 20485 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 20486 PMAPPORT, addrtype); 20487 mlp_port = PMAPPORT; 20488 } 20489 } else { 20490 int i; 20491 boolean_t priv = B_FALSE; 20492 20493 /* 20494 * If the requested_port is in the well-known privileged range, 20495 * verify that the stream was opened by a privileged user. 20496 * Note: No locks are held when inspecting tcp_g_*epriv_ports 20497 * but instead the code relies on: 20498 * - the fact that the address of the array and its size never 20499 * changes 20500 * - the atomic assignment of the elements of the array 20501 */ 20502 if (requested_port < tcps->tcps_smallest_nonpriv_port) { 20503 priv = B_TRUE; 20504 } else { 20505 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 20506 if (requested_port == 20507 tcps->tcps_g_epriv_ports[i]) { 20508 priv = B_TRUE; 20509 break; 20510 } 20511 } 20512 } 20513 if (priv) { 20514 if (secpolicy_net_privaddr(cr, requested_port, 20515 IPPROTO_TCP) != 0) { 20516 if (connp->conn_debug) { 20517 (void) strlog(TCP_MOD_ID, 0, 1, 20518 SL_ERROR|SL_TRACE, 20519 "tcp_bind: no priv for port %d", 20520 requested_port); 20521 } 20522 return (-TACCES); 20523 } 20524 } 20525 user_specified = B_TRUE; 20526 20527 connp = tcp->tcp_connp; 20528 if (is_system_labeled()) { 20529 zone = crgetzone(cr); 20530 addrtype = tsol_mlp_addr_type( 20531 connp->conn_allzones ? ALL_ZONES : zone->zone_id, 20532 IPV6_VERSION, &v6addr, 20533 tcps->tcps_netstack->netstack_ip); 20534 if (addrtype == mlptSingle) { 20535 return (-TNOADDR); 20536 } 20537 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 20538 requested_port, addrtype); 20539 } 20540 } 20541 20542 if (mlptype != mlptSingle) { 20543 if (secpolicy_net_bindmlp(cr) != 0) { 20544 if (connp->conn_debug) { 20545 (void) strlog(TCP_MOD_ID, 0, 1, 20546 SL_ERROR|SL_TRACE, 20547 "tcp_bind: no priv for multilevel port %d", 20548 requested_port); 20549 } 20550 return (-TACCES); 20551 } 20552 20553 /* 20554 * If we're specifically binding a shared IP address and the 20555 * port is MLP on shared addresses, then check to see if this 20556 * zone actually owns the MLP. Reject if not. 20557 */ 20558 if (mlptype == mlptShared && addrtype == mlptShared) { 20559 /* 20560 * No need to handle exclusive-stack zones since 20561 * ALL_ZONES only applies to the shared stack. 20562 */ 20563 zoneid_t mlpzone; 20564 20565 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 20566 htons(mlp_port)); 20567 if (connp->conn_zoneid != mlpzone) { 20568 if (connp->conn_debug) { 20569 (void) strlog(TCP_MOD_ID, 0, 1, 20570 SL_ERROR|SL_TRACE, 20571 "tcp_bind: attempt to bind port " 20572 "%d on shared addr in zone %d " 20573 "(should be %d)", 20574 mlp_port, connp->conn_zoneid, 20575 mlpzone); 20576 } 20577 return (-TACCES); 20578 } 20579 } 20580 20581 if (!user_specified) { 20582 int err; 20583 err = tsol_mlp_anon(zone, mlptype, connp->conn_proto, 20584 requested_port, B_TRUE); 20585 if (err != 0) { 20586 if (connp->conn_debug) { 20587 (void) strlog(TCP_MOD_ID, 0, 1, 20588 SL_ERROR|SL_TRACE, 20589 "tcp_bind: cannot establish anon " 20590 "MLP for port %d", 20591 requested_port); 20592 } 20593 return (err); 20594 } 20595 connp->conn_anon_port = B_TRUE; 20596 } 20597 connp->conn_mlp_type = mlptype; 20598 } 20599 20600 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 20601 connp->conn_reuseaddr, B_FALSE, bind_to_req_port_only, 20602 user_specified); 20603 20604 if (allocated_port == 0) { 20605 connp->conn_mlp_type = mlptSingle; 20606 if (connp->conn_anon_port) { 20607 connp->conn_anon_port = B_FALSE; 20608 (void) tsol_mlp_anon(zone, mlptype, connp->conn_proto, 20609 requested_port, B_FALSE); 20610 } 20611 if (bind_to_req_port_only) { 20612 if (connp->conn_debug) { 20613 (void) strlog(TCP_MOD_ID, 0, 1, 20614 SL_ERROR|SL_TRACE, 20615 "tcp_bind: requested addr busy"); 20616 } 20617 return (-TADDRBUSY); 20618 } else { 20619 /* If we are out of ports, fail the bind. */ 20620 if (connp->conn_debug) { 20621 (void) strlog(TCP_MOD_ID, 0, 1, 20622 SL_ERROR|SL_TRACE, 20623 "tcp_bind: out of ports?"); 20624 } 20625 return (-TNOADDR); 20626 } 20627 } 20628 20629 /* Pass the allocated port back */ 20630 *requested_port_ptr = allocated_port; 20631 return (0); 20632 } 20633 20634 /* 20635 * Check the address and check/pick a local port number. 20636 */ 20637 static int 20638 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 20639 boolean_t bind_to_req_port_only) 20640 { 20641 tcp_t *tcp = connp->conn_tcp; 20642 sin_t *sin; 20643 sin6_t *sin6; 20644 in_port_t requested_port; 20645 ipaddr_t v4addr; 20646 in6_addr_t v6addr; 20647 ip_laddr_t laddr_type = IPVL_UNICAST_UP; /* INADDR_ANY */ 20648 zoneid_t zoneid = IPCL_ZONEID(connp); 20649 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 20650 uint_t scopeid = 0; 20651 int error = 0; 20652 ip_xmit_attr_t *ixa = connp->conn_ixa; 20653 20654 ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX); 20655 20656 if (tcp->tcp_state == TCPS_BOUND) { 20657 return (0); 20658 } else if (tcp->tcp_state > TCPS_BOUND) { 20659 if (connp->conn_debug) { 20660 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20661 "tcp_bind: bad state, %d", tcp->tcp_state); 20662 } 20663 return (-TOUTSTATE); 20664 } 20665 20666 ASSERT(sa != NULL && len != 0); 20667 20668 if (!OK_32PTR((char *)sa)) { 20669 if (connp->conn_debug) { 20670 (void) strlog(TCP_MOD_ID, 0, 1, 20671 SL_ERROR|SL_TRACE, 20672 "tcp_bind: bad address parameter, " 20673 "address %p, len %d", 20674 (void *)sa, len); 20675 } 20676 return (-TPROTO); 20677 } 20678 20679 error = proto_verify_ip_addr(connp->conn_family, sa, len); 20680 if (error != 0) { 20681 return (error); 20682 } 20683 20684 switch (len) { 20685 case sizeof (sin_t): /* Complete IPv4 address */ 20686 sin = (sin_t *)sa; 20687 requested_port = ntohs(sin->sin_port); 20688 v4addr = sin->sin_addr.s_addr; 20689 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 20690 if (v4addr != INADDR_ANY) { 20691 laddr_type = ip_laddr_verify_v4(v4addr, zoneid, ipst, 20692 B_FALSE); 20693 } 20694 break; 20695 20696 case sizeof (sin6_t): /* Complete IPv6 address */ 20697 sin6 = (sin6_t *)sa; 20698 v6addr = sin6->sin6_addr; 20699 requested_port = ntohs(sin6->sin6_port); 20700 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) { 20701 if (connp->conn_ipv6_v6only) 20702 return (EADDRNOTAVAIL); 20703 20704 IN6_V4MAPPED_TO_IPADDR(&v6addr, v4addr); 20705 if (v4addr != INADDR_ANY) { 20706 laddr_type = ip_laddr_verify_v4(v4addr, 20707 zoneid, ipst, B_FALSE); 20708 } 20709 } else { 20710 if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr)) { 20711 if (IN6_IS_ADDR_LINKSCOPE(&v6addr)) 20712 scopeid = sin6->sin6_scope_id; 20713 laddr_type = ip_laddr_verify_v6(&v6addr, 20714 zoneid, ipst, B_FALSE, scopeid); 20715 } 20716 } 20717 break; 20718 20719 default: 20720 if (connp->conn_debug) { 20721 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20722 "tcp_bind: bad address length, %d", len); 20723 } 20724 return (EAFNOSUPPORT); 20725 /* return (-TBADADDR); */ 20726 } 20727 20728 /* Is the local address a valid unicast address? */ 20729 if (laddr_type == IPVL_BAD) 20730 return (EADDRNOTAVAIL); 20731 20732 connp->conn_bound_addr_v6 = v6addr; 20733 if (scopeid != 0) { 20734 ixa->ixa_flags |= IXAF_SCOPEID_SET; 20735 ixa->ixa_scopeid = scopeid; 20736 connp->conn_incoming_ifindex = scopeid; 20737 } else { 20738 ixa->ixa_flags &= ~IXAF_SCOPEID_SET; 20739 connp->conn_incoming_ifindex = connp->conn_bound_if; 20740 } 20741 20742 connp->conn_laddr_v6 = v6addr; 20743 connp->conn_saddr_v6 = v6addr; 20744 20745 bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only; 20746 20747 error = tcp_bind_select_lport(tcp, &requested_port, 20748 bind_to_req_port_only, cr); 20749 if (error != 0) { 20750 connp->conn_laddr_v6 = ipv6_all_zeros; 20751 connp->conn_saddr_v6 = ipv6_all_zeros; 20752 connp->conn_bound_addr_v6 = ipv6_all_zeros; 20753 } 20754 return (error); 20755 } 20756 20757 /* 20758 * Return unix error is tli error is TSYSERR, otherwise return a negative 20759 * tli error. 20760 */ 20761 int 20762 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 20763 boolean_t bind_to_req_port_only) 20764 { 20765 int error; 20766 tcp_t *tcp = connp->conn_tcp; 20767 20768 if (tcp->tcp_state >= TCPS_BOUND) { 20769 if (connp->conn_debug) { 20770 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20771 "tcp_bind: bad state, %d", tcp->tcp_state); 20772 } 20773 return (-TOUTSTATE); 20774 } 20775 20776 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 20777 if (error != 0) 20778 return (error); 20779 20780 ASSERT(tcp->tcp_state == TCPS_BOUND); 20781 tcp->tcp_conn_req_max = 0; 20782 return (0); 20783 } 20784 20785 int 20786 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa, 20787 socklen_t len, cred_t *cr) 20788 { 20789 int error; 20790 conn_t *connp = (conn_t *)proto_handle; 20791 squeue_t *sqp = connp->conn_sqp; 20792 20793 /* All Solaris components should pass a cred for this operation. */ 20794 ASSERT(cr != NULL); 20795 20796 ASSERT(sqp != NULL); 20797 ASSERT(connp->conn_upper_handle != NULL); 20798 20799 error = squeue_synch_enter(sqp, connp, NULL); 20800 if (error != 0) { 20801 /* failed to enter */ 20802 return (ENOSR); 20803 } 20804 20805 /* binding to a NULL address really means unbind */ 20806 if (sa == NULL) { 20807 if (connp->conn_tcp->tcp_state < TCPS_LISTEN) 20808 error = tcp_do_unbind(connp); 20809 else 20810 error = EINVAL; 20811 } else { 20812 error = tcp_do_bind(connp, sa, len, cr, B_TRUE); 20813 } 20814 20815 squeue_synch_exit(sqp, connp); 20816 20817 if (error < 0) { 20818 if (error == -TOUTSTATE) 20819 error = EINVAL; 20820 else 20821 error = proto_tlitosyserr(-error); 20822 } 20823 20824 return (error); 20825 } 20826 20827 /* 20828 * If the return value from this function is positive, it's a UNIX error. 20829 * Otherwise, if it's negative, then the absolute value is a TLI error. 20830 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 20831 */ 20832 int 20833 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 20834 cred_t *cr, pid_t pid) 20835 { 20836 tcp_t *tcp = connp->conn_tcp; 20837 sin_t *sin = (sin_t *)sa; 20838 sin6_t *sin6 = (sin6_t *)sa; 20839 ipaddr_t *dstaddrp; 20840 in_port_t dstport; 20841 uint_t srcid; 20842 int error; 20843 uint32_t mss; 20844 mblk_t *syn_mp; 20845 tcp_stack_t *tcps = tcp->tcp_tcps; 20846 int32_t oldstate; 20847 ip_xmit_attr_t *ixa = connp->conn_ixa; 20848 20849 oldstate = tcp->tcp_state; 20850 20851 switch (len) { 20852 default: 20853 /* 20854 * Should never happen 20855 */ 20856 return (EINVAL); 20857 20858 case sizeof (sin_t): 20859 sin = (sin_t *)sa; 20860 if (sin->sin_port == 0) { 20861 return (-TBADADDR); 20862 } 20863 if (connp->conn_ipv6_v6only) { 20864 return (EAFNOSUPPORT); 20865 } 20866 break; 20867 20868 case sizeof (sin6_t): 20869 sin6 = (sin6_t *)sa; 20870 if (sin6->sin6_port == 0) { 20871 return (-TBADADDR); 20872 } 20873 break; 20874 } 20875 /* 20876 * If we're connecting to an IPv4-mapped IPv6 address, we need to 20877 * make sure that the conn_ipversion is IPV4_VERSION. We 20878 * need to this before we call tcp_bindi() so that the port lookup 20879 * code will look for ports in the correct port space (IPv4 and 20880 * IPv6 have separate port spaces). 20881 */ 20882 if (connp->conn_family == AF_INET6 && 20883 connp->conn_ipversion == IPV6_VERSION && 20884 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 20885 if (connp->conn_ipv6_v6only) 20886 return (EADDRNOTAVAIL); 20887 20888 connp->conn_ipversion = IPV4_VERSION; 20889 } 20890 20891 switch (tcp->tcp_state) { 20892 case TCPS_LISTEN: 20893 /* 20894 * Listening sockets are not allowed to issue connect(). 20895 */ 20896 if (IPCL_IS_NONSTR(connp)) 20897 return (EOPNOTSUPP); 20898 /* FALLTHRU */ 20899 case TCPS_IDLE: 20900 /* 20901 * We support quick connect, refer to comments in 20902 * tcp_connect_*() 20903 */ 20904 /* FALLTHRU */ 20905 case TCPS_BOUND: 20906 break; 20907 default: 20908 return (-TOUTSTATE); 20909 } 20910 20911 /* 20912 * We update our cred/cpid based on the caller of connect 20913 */ 20914 if (connp->conn_cred != cr) { 20915 crhold(cr); 20916 crfree(connp->conn_cred); 20917 connp->conn_cred = cr; 20918 } 20919 connp->conn_cpid = pid; 20920 20921 /* Cache things in the ixa without any refhold */ 20922 ixa->ixa_cred = cr; 20923 ixa->ixa_cpid = pid; 20924 if (is_system_labeled()) { 20925 /* We need to restart with a label based on the cred */ 20926 ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred); 20927 } 20928 20929 if (connp->conn_family == AF_INET6) { 20930 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 20931 error = tcp_connect_ipv6(tcp, &sin6->sin6_addr, 20932 sin6->sin6_port, sin6->sin6_flowinfo, 20933 sin6->__sin6_src_id, sin6->sin6_scope_id); 20934 } else { 20935 /* 20936 * Destination adress is mapped IPv6 address. 20937 * Source bound address should be unspecified or 20938 * IPv6 mapped address as well. 20939 */ 20940 if (!IN6_IS_ADDR_UNSPECIFIED( 20941 &connp->conn_bound_addr_v6) && 20942 !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) { 20943 return (EADDRNOTAVAIL); 20944 } 20945 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 20946 dstport = sin6->sin6_port; 20947 srcid = sin6->__sin6_src_id; 20948 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, 20949 srcid); 20950 } 20951 } else { 20952 dstaddrp = &sin->sin_addr.s_addr; 20953 dstport = sin->sin_port; 20954 srcid = 0; 20955 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid); 20956 } 20957 20958 if (error != 0) 20959 goto connect_failed; 20960 20961 CL_INET_CONNECT(connp, B_TRUE, error); 20962 if (error != 0) 20963 goto connect_failed; 20964 20965 /* connect succeeded */ 20966 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 20967 tcp->tcp_active_open = 1; 20968 20969 /* 20970 * tcp_set_destination() does not adjust for TCP/IP header length. 20971 */ 20972 mss = tcp->tcp_mss - connp->conn_ht_iphc_len; 20973 20974 /* 20975 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up 20976 * to the nearest MSS. 20977 * 20978 * We do the round up here because we need to get the interface MTU 20979 * first before we can do the round up. 20980 */ 20981 tcp->tcp_rwnd = connp->conn_rcvbuf; 20982 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 20983 tcps->tcps_recv_hiwat_minmss * mss); 20984 connp->conn_rcvbuf = tcp->tcp_rwnd; 20985 tcp_set_ws_value(tcp); 20986 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 20987 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 20988 tcp->tcp_snd_ws_ok = B_TRUE; 20989 20990 /* 20991 * Set tcp_snd_ts_ok to true 20992 * so that tcp_xmit_mp will 20993 * include the timestamp 20994 * option in the SYN segment. 20995 */ 20996 if (tcps->tcps_tstamp_always || 20997 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 20998 tcp->tcp_snd_ts_ok = B_TRUE; 20999 } 21000 21001 /* 21002 * tcp_snd_sack_ok can be set in 21003 * tcp_set_destination() if the sack metric 21004 * is set. So check it here also. 21005 */ 21006 if (tcps->tcps_sack_permitted == 2 || 21007 tcp->tcp_snd_sack_ok) { 21008 if (tcp->tcp_sack_info == NULL) { 21009 tcp->tcp_sack_info = kmem_cache_alloc( 21010 tcp_sack_info_cache, KM_SLEEP); 21011 } 21012 tcp->tcp_snd_sack_ok = B_TRUE; 21013 } 21014 21015 /* 21016 * Should we use ECN? Note that the current 21017 * default value (SunOS 5.9) of tcp_ecn_permitted 21018 * is 1. The reason for doing this is that there 21019 * are equipments out there that will drop ECN 21020 * enabled IP packets. Setting it to 1 avoids 21021 * compatibility problems. 21022 */ 21023 if (tcps->tcps_ecn_permitted == 2) 21024 tcp->tcp_ecn_ok = B_TRUE; 21025 21026 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21027 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 21028 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 21029 if (syn_mp != NULL) { 21030 /* 21031 * We must bump the generation before sending the syn 21032 * to ensure that we use the right generation in case 21033 * this thread issues a "connected" up call. 21034 */ 21035 SOCK_CONNID_BUMP(tcp->tcp_connid); 21036 tcp_send_data(tcp, syn_mp); 21037 } 21038 21039 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 21040 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 21041 return (0); 21042 21043 connect_failed: 21044 connp->conn_faddr_v6 = ipv6_all_zeros; 21045 connp->conn_fport = 0; 21046 tcp->tcp_state = oldstate; 21047 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 21048 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 21049 return (error); 21050 } 21051 21052 int 21053 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa, 21054 socklen_t len, sock_connid_t *id, cred_t *cr) 21055 { 21056 conn_t *connp = (conn_t *)proto_handle; 21057 squeue_t *sqp = connp->conn_sqp; 21058 int error; 21059 21060 ASSERT(connp->conn_upper_handle != NULL); 21061 21062 /* All Solaris components should pass a cred for this operation. */ 21063 ASSERT(cr != NULL); 21064 21065 error = proto_verify_ip_addr(connp->conn_family, sa, len); 21066 if (error != 0) { 21067 return (error); 21068 } 21069 21070 error = squeue_synch_enter(sqp, connp, NULL); 21071 if (error != 0) { 21072 /* failed to enter */ 21073 return (ENOSR); 21074 } 21075 21076 /* 21077 * TCP supports quick connect, so no need to do an implicit bind 21078 */ 21079 error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid); 21080 if (error == 0) { 21081 *id = connp->conn_tcp->tcp_connid; 21082 } else if (error < 0) { 21083 if (error == -TOUTSTATE) { 21084 switch (connp->conn_tcp->tcp_state) { 21085 case TCPS_SYN_SENT: 21086 error = EALREADY; 21087 break; 21088 case TCPS_ESTABLISHED: 21089 error = EISCONN; 21090 break; 21091 case TCPS_LISTEN: 21092 error = EOPNOTSUPP; 21093 break; 21094 default: 21095 error = EINVAL; 21096 break; 21097 } 21098 } else { 21099 error = proto_tlitosyserr(-error); 21100 } 21101 } 21102 21103 if (connp->conn_tcp->tcp_loopback) { 21104 struct sock_proto_props sopp; 21105 21106 sopp.sopp_flags = SOCKOPT_LOOPBACK; 21107 sopp.sopp_loopback = B_TRUE; 21108 21109 (*connp->conn_upcalls->su_set_proto_props)( 21110 connp->conn_upper_handle, &sopp); 21111 } 21112 done: 21113 squeue_synch_exit(sqp, connp); 21114 21115 return ((error == 0) ? EINPROGRESS : error); 21116 } 21117 21118 /* ARGSUSED */ 21119 sock_lower_handle_t 21120 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls, 21121 uint_t *smodep, int *errorp, int flags, cred_t *credp) 21122 { 21123 conn_t *connp; 21124 boolean_t isv6 = family == AF_INET6; 21125 if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) || 21126 (proto != 0 && proto != IPPROTO_TCP)) { 21127 *errorp = EPROTONOSUPPORT; 21128 return (NULL); 21129 } 21130 21131 connp = tcp_create_common(credp, isv6, B_TRUE, errorp); 21132 if (connp == NULL) { 21133 return (NULL); 21134 } 21135 21136 /* 21137 * Put the ref for TCP. Ref for IP was already put 21138 * by ipcl_conn_create. Also Make the conn_t globally 21139 * visible to walkers 21140 */ 21141 mutex_enter(&connp->conn_lock); 21142 CONN_INC_REF_LOCKED(connp); 21143 ASSERT(connp->conn_ref == 2); 21144 connp->conn_state_flags &= ~CONN_INCIPIENT; 21145 21146 connp->conn_flags |= IPCL_NONSTR; 21147 mutex_exit(&connp->conn_lock); 21148 21149 ASSERT(errorp != NULL); 21150 *errorp = 0; 21151 *sock_downcalls = &sock_tcp_downcalls; 21152 *smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP | 21153 SM_SENDFILESUPP; 21154 21155 return ((sock_lower_handle_t)connp); 21156 } 21157 21158 /* ARGSUSED */ 21159 void 21160 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle, 21161 sock_upcalls_t *sock_upcalls, int flags, cred_t *cr) 21162 { 21163 conn_t *connp = (conn_t *)proto_handle; 21164 struct sock_proto_props sopp; 21165 21166 ASSERT(connp->conn_upper_handle == NULL); 21167 21168 /* All Solaris components should pass a cred for this operation. */ 21169 ASSERT(cr != NULL); 21170 21171 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT | 21172 SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER | 21173 SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ; 21174 21175 sopp.sopp_rxhiwat = SOCKET_RECVHIWATER; 21176 sopp.sopp_rxlowat = SOCKET_RECVLOWATER; 21177 sopp.sopp_maxpsz = INFPSZ; 21178 sopp.sopp_maxblk = INFPSZ; 21179 sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL; 21180 sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3; 21181 sopp.sopp_maxaddrlen = sizeof (sin6_t); 21182 sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 : 21183 tcp_rinfo.mi_minpsz; 21184 21185 connp->conn_upcalls = sock_upcalls; 21186 connp->conn_upper_handle = sock_handle; 21187 21188 ASSERT(connp->conn_rcvbuf != 0 && 21189 connp->conn_rcvbuf == connp->conn_tcp->tcp_rwnd); 21190 (*sock_upcalls->su_set_proto_props)(sock_handle, &sopp); 21191 } 21192 21193 /* ARGSUSED */ 21194 int 21195 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr) 21196 { 21197 conn_t *connp = (conn_t *)proto_handle; 21198 21199 ASSERT(connp->conn_upper_handle != NULL); 21200 21201 /* All Solaris components should pass a cred for this operation. */ 21202 ASSERT(cr != NULL); 21203 21204 tcp_close_common(connp, flags); 21205 21206 ip_free_helper_stream(connp); 21207 21208 /* 21209 * Drop IP's reference on the conn. This is the last reference 21210 * on the connp if the state was less than established. If the 21211 * connection has gone into timewait state, then we will have 21212 * one ref for the TCP and one more ref (total of two) for the 21213 * classifier connected hash list (a timewait connections stays 21214 * in connected hash till closed). 21215 * 21216 * We can't assert the references because there might be other 21217 * transient reference places because of some walkers or queued 21218 * packets in squeue for the timewait state. 21219 */ 21220 CONN_DEC_REF(connp); 21221 return (0); 21222 } 21223 21224 /* ARGSUSED */ 21225 int 21226 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg, 21227 cred_t *cr) 21228 { 21229 tcp_t *tcp; 21230 uint32_t msize; 21231 conn_t *connp = (conn_t *)proto_handle; 21232 int32_t tcpstate; 21233 21234 /* All Solaris components should pass a cred for this operation. */ 21235 ASSERT(cr != NULL); 21236 21237 ASSERT(connp->conn_ref >= 2); 21238 ASSERT(connp->conn_upper_handle != NULL); 21239 21240 if (msg->msg_controllen != 0) { 21241 freemsg(mp); 21242 return (EOPNOTSUPP); 21243 } 21244 21245 switch (DB_TYPE(mp)) { 21246 case M_DATA: 21247 tcp = connp->conn_tcp; 21248 ASSERT(tcp != NULL); 21249 21250 tcpstate = tcp->tcp_state; 21251 if (tcpstate < TCPS_ESTABLISHED) { 21252 freemsg(mp); 21253 /* 21254 * We return ENOTCONN if the endpoint is trying to 21255 * connect or has never been connected, and EPIPE if it 21256 * has been disconnected. The connection id helps us 21257 * distinguish between the last two cases. 21258 */ 21259 return ((tcpstate == TCPS_SYN_SENT) ? ENOTCONN : 21260 ((tcp->tcp_connid > 0) ? EPIPE : ENOTCONN)); 21261 } else if (tcpstate > TCPS_CLOSE_WAIT) { 21262 freemsg(mp); 21263 return (EPIPE); 21264 } 21265 21266 msize = msgdsize(mp); 21267 21268 mutex_enter(&tcp->tcp_non_sq_lock); 21269 tcp->tcp_squeue_bytes += msize; 21270 /* 21271 * Squeue Flow Control 21272 */ 21273 if (TCP_UNSENT_BYTES(tcp) > connp->conn_sndbuf) { 21274 tcp_setqfull(tcp); 21275 } 21276 mutex_exit(&tcp->tcp_non_sq_lock); 21277 21278 /* 21279 * The application may pass in an address in the msghdr, but 21280 * we ignore the address on connection-oriented sockets. 21281 * Just like BSD this code does not generate an error for 21282 * TCP (a CONNREQUIRED socket) when sending to an address 21283 * passed in with sendto/sendmsg. Instead the data is 21284 * delivered on the connection as if no address had been 21285 * supplied. 21286 */ 21287 CONN_INC_REF(connp); 21288 21289 if (msg->msg_flags & MSG_OOB) { 21290 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output_urgent, 21291 connp, NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 21292 } else { 21293 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, 21294 connp, NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 21295 } 21296 21297 return (0); 21298 21299 default: 21300 ASSERT(0); 21301 } 21302 21303 freemsg(mp); 21304 return (0); 21305 } 21306 21307 /* ARGSUSED2 */ 21308 void 21309 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 21310 { 21311 int len; 21312 uint32_t msize; 21313 conn_t *connp = (conn_t *)arg; 21314 tcp_t *tcp = connp->conn_tcp; 21315 21316 msize = msgdsize(mp); 21317 21318 len = msize - 1; 21319 if (len < 0) { 21320 freemsg(mp); 21321 return; 21322 } 21323 21324 /* 21325 * Try to force urgent data out on the wire. Even if we have unsent 21326 * data this will at least send the urgent flag. 21327 * XXX does not handle more flag correctly. 21328 */ 21329 len += tcp->tcp_unsent; 21330 len += tcp->tcp_snxt; 21331 tcp->tcp_urg = len; 21332 tcp->tcp_valid_bits |= TCP_URG_VALID; 21333 21334 /* Bypass tcp protocol for fused tcp loopback */ 21335 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 21336 return; 21337 21338 /* Strip off the T_EXDATA_REQ if the data is from TPI */ 21339 if (DB_TYPE(mp) != M_DATA) { 21340 mblk_t *mp1 = mp; 21341 ASSERT(!IPCL_IS_NONSTR(connp)); 21342 mp = mp->b_cont; 21343 freeb(mp1); 21344 } 21345 tcp_wput_data(tcp, mp, B_TRUE); 21346 } 21347 21348 /* ARGSUSED3 */ 21349 int 21350 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr, 21351 socklen_t *addrlenp, cred_t *cr) 21352 { 21353 conn_t *connp = (conn_t *)proto_handle; 21354 tcp_t *tcp = connp->conn_tcp; 21355 21356 ASSERT(connp->conn_upper_handle != NULL); 21357 /* All Solaris components should pass a cred for this operation. */ 21358 ASSERT(cr != NULL); 21359 21360 ASSERT(tcp != NULL); 21361 if (tcp->tcp_state < TCPS_SYN_RCVD) 21362 return (ENOTCONN); 21363 21364 return (conn_getpeername(connp, addr, addrlenp)); 21365 } 21366 21367 /* ARGSUSED3 */ 21368 int 21369 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr, 21370 socklen_t *addrlenp, cred_t *cr) 21371 { 21372 conn_t *connp = (conn_t *)proto_handle; 21373 21374 /* All Solaris components should pass a cred for this operation. */ 21375 ASSERT(cr != NULL); 21376 21377 ASSERT(connp->conn_upper_handle != NULL); 21378 return (conn_getsockname(connp, addr, addrlenp)); 21379 } 21380 21381 /* 21382 * tcp_fallback 21383 * 21384 * A direct socket is falling back to using STREAMS. The queue 21385 * that is being passed down was created using tcp_open() with 21386 * the SO_FALLBACK flag set. As a result, the queue is not 21387 * associated with a conn, and the q_ptrs instead contain the 21388 * dev and minor area that should be used. 21389 * 21390 * The 'issocket' flag indicates whether the FireEngine 21391 * optimizations should be used. The common case would be that 21392 * optimizations are enabled, and they might be subsequently 21393 * disabled using the _SIOCSOCKFALLBACK ioctl. 21394 */ 21395 21396 /* 21397 * An active connection is falling back to TPI. Gather all the information 21398 * required by the STREAM head and TPI sonode and send it up. 21399 */ 21400 void 21401 tcp_fallback_noneager(tcp_t *tcp, mblk_t *stropt_mp, queue_t *q, 21402 boolean_t issocket, so_proto_quiesced_cb_t quiesced_cb) 21403 { 21404 conn_t *connp = tcp->tcp_connp; 21405 struct stroptions *stropt; 21406 struct T_capability_ack tca; 21407 struct sockaddr_in6 laddr, faddr; 21408 socklen_t laddrlen, faddrlen; 21409 short opts; 21410 int error; 21411 mblk_t *mp; 21412 21413 connp->conn_dev = (dev_t)RD(q)->q_ptr; 21414 connp->conn_minor_arena = WR(q)->q_ptr; 21415 21416 RD(q)->q_ptr = WR(q)->q_ptr = connp; 21417 21418 connp->conn_rq = RD(q); 21419 connp->conn_wq = WR(q); 21420 21421 WR(q)->q_qinfo = &tcp_sock_winit; 21422 21423 if (!issocket) 21424 tcp_use_pure_tpi(tcp); 21425 21426 /* 21427 * free the helper stream 21428 */ 21429 ip_free_helper_stream(connp); 21430 21431 /* 21432 * Notify the STREAM head about options 21433 */ 21434 DB_TYPE(stropt_mp) = M_SETOPTS; 21435 stropt = (struct stroptions *)stropt_mp->b_rptr; 21436 stropt_mp->b_wptr += sizeof (struct stroptions); 21437 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 21438 21439 stropt->so_wroff = connp->conn_ht_iphc_len + (tcp->tcp_loopback ? 0 : 21440 tcp->tcp_tcps->tcps_wroff_xtra); 21441 if (tcp->tcp_snd_sack_ok) 21442 stropt->so_wroff += TCPOPT_MAX_SACK_LEN; 21443 stropt->so_hiwat = connp->conn_rcvbuf; 21444 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 21445 21446 putnext(RD(q), stropt_mp); 21447 21448 /* 21449 * Collect the information needed to sync with the sonode 21450 */ 21451 tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID); 21452 21453 laddrlen = faddrlen = sizeof (sin6_t); 21454 (void) tcp_getsockname((sock_lower_handle_t)connp, 21455 (struct sockaddr *)&laddr, &laddrlen, CRED()); 21456 error = tcp_getpeername((sock_lower_handle_t)connp, 21457 (struct sockaddr *)&faddr, &faddrlen, CRED()); 21458 if (error != 0) 21459 faddrlen = 0; 21460 21461 opts = 0; 21462 if (connp->conn_oobinline) 21463 opts |= SO_OOBINLINE; 21464 if (connp->conn_ixa->ixa_flags & IXAF_DONTROUTE) 21465 opts |= SO_DONTROUTE; 21466 21467 /* 21468 * Notify the socket that the protocol is now quiescent, 21469 * and it's therefore safe move data from the socket 21470 * to the stream head. 21471 */ 21472 (*quiesced_cb)(connp->conn_upper_handle, q, &tca, 21473 (struct sockaddr *)&laddr, laddrlen, 21474 (struct sockaddr *)&faddr, faddrlen, opts); 21475 21476 while ((mp = tcp->tcp_rcv_list) != NULL) { 21477 tcp->tcp_rcv_list = mp->b_next; 21478 mp->b_next = NULL; 21479 /* We never do fallback for kernel RPC */ 21480 putnext(q, mp); 21481 } 21482 tcp->tcp_rcv_last_head = NULL; 21483 tcp->tcp_rcv_last_tail = NULL; 21484 tcp->tcp_rcv_cnt = 0; 21485 } 21486 21487 /* 21488 * An eager is falling back to TPI. All we have to do is send 21489 * up a T_CONN_IND. 21490 */ 21491 void 21492 tcp_fallback_eager(tcp_t *eager, boolean_t direct_sockfs) 21493 { 21494 tcp_t *listener = eager->tcp_listener; 21495 mblk_t *mp = eager->tcp_conn.tcp_eager_conn_ind; 21496 21497 ASSERT(listener != NULL); 21498 ASSERT(mp != NULL); 21499 21500 eager->tcp_conn.tcp_eager_conn_ind = NULL; 21501 21502 /* 21503 * TLI/XTI applications will get confused by 21504 * sending eager as an option since it violates 21505 * the option semantics. So remove the eager as 21506 * option since TLI/XTI app doesn't need it anyway. 21507 */ 21508 if (!direct_sockfs) { 21509 struct T_conn_ind *conn_ind; 21510 21511 conn_ind = (struct T_conn_ind *)mp->b_rptr; 21512 conn_ind->OPT_length = 0; 21513 conn_ind->OPT_offset = 0; 21514 } 21515 21516 /* 21517 * Sockfs guarantees that the listener will not be closed 21518 * during fallback. So we can safely use the listener's queue. 21519 */ 21520 putnext(listener->tcp_connp->conn_rq, mp); 21521 } 21522 21523 int 21524 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q, 21525 boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb) 21526 { 21527 tcp_t *tcp; 21528 conn_t *connp = (conn_t *)proto_handle; 21529 int error; 21530 mblk_t *stropt_mp; 21531 mblk_t *ordrel_mp; 21532 21533 tcp = connp->conn_tcp; 21534 21535 stropt_mp = allocb_wait(sizeof (struct stroptions), BPRI_HI, STR_NOSIG, 21536 NULL); 21537 21538 /* Pre-allocate the T_ordrel_ind mblk. */ 21539 ASSERT(tcp->tcp_ordrel_mp == NULL); 21540 ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI, 21541 STR_NOSIG, NULL); 21542 ordrel_mp->b_datap->db_type = M_PROTO; 21543 ((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND; 21544 ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind); 21545 21546 /* 21547 * Enter the squeue so that no new packets can come in 21548 */ 21549 error = squeue_synch_enter(connp->conn_sqp, connp, NULL); 21550 if (error != 0) { 21551 /* failed to enter, free all the pre-allocated messages. */ 21552 freeb(stropt_mp); 21553 freeb(ordrel_mp); 21554 /* 21555 * We cannot process the eager, so at least send out a 21556 * RST so the peer can reconnect. 21557 */ 21558 if (tcp->tcp_listener != NULL) { 21559 (void) tcp_eager_blowoff(tcp->tcp_listener, 21560 tcp->tcp_conn_req_seqnum); 21561 } 21562 return (ENOMEM); 21563 } 21564 21565 /* 21566 * Both endpoints must be of the same type (either STREAMS or 21567 * non-STREAMS) for fusion to be enabled. So if we are fused, 21568 * we have to unfuse. 21569 */ 21570 if (tcp->tcp_fused) 21571 tcp_unfuse(tcp); 21572 21573 /* 21574 * No longer a direct socket 21575 */ 21576 connp->conn_flags &= ~IPCL_NONSTR; 21577 tcp->tcp_ordrel_mp = ordrel_mp; 21578 21579 if (tcp->tcp_listener != NULL) { 21580 /* The eager will deal with opts when accept() is called */ 21581 freeb(stropt_mp); 21582 tcp_fallback_eager(tcp, direct_sockfs); 21583 } else { 21584 tcp_fallback_noneager(tcp, stropt_mp, q, direct_sockfs, 21585 quiesced_cb); 21586 } 21587 21588 /* 21589 * There should be atleast two ref's (IP + TCP) 21590 */ 21591 ASSERT(connp->conn_ref >= 2); 21592 squeue_synch_exit(connp->conn_sqp, connp); 21593 21594 return (0); 21595 } 21596 21597 /* ARGSUSED */ 21598 static void 21599 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 21600 { 21601 conn_t *connp = (conn_t *)arg; 21602 tcp_t *tcp = connp->conn_tcp; 21603 21604 freemsg(mp); 21605 21606 if (tcp->tcp_fused) 21607 tcp_unfuse(tcp); 21608 21609 if (tcp_xmit_end(tcp) != 0) { 21610 /* 21611 * We were crossing FINs and got a reset from 21612 * the other side. Just ignore it. 21613 */ 21614 if (connp->conn_debug) { 21615 (void) strlog(TCP_MOD_ID, 0, 1, 21616 SL_ERROR|SL_TRACE, 21617 "tcp_shutdown_output() out of state %s", 21618 tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); 21619 } 21620 } 21621 } 21622 21623 /* ARGSUSED */ 21624 int 21625 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr) 21626 { 21627 conn_t *connp = (conn_t *)proto_handle; 21628 tcp_t *tcp = connp->conn_tcp; 21629 21630 ASSERT(connp->conn_upper_handle != NULL); 21631 21632 /* All Solaris components should pass a cred for this operation. */ 21633 ASSERT(cr != NULL); 21634 21635 /* 21636 * X/Open requires that we check the connected state. 21637 */ 21638 if (tcp->tcp_state < TCPS_SYN_SENT) 21639 return (ENOTCONN); 21640 21641 /* shutdown the send side */ 21642 if (how != SHUT_RD) { 21643 mblk_t *bp; 21644 21645 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 21646 CONN_INC_REF(connp); 21647 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output, 21648 connp, NULL, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT); 21649 21650 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 21651 SOCK_OPCTL_SHUT_SEND, 0); 21652 } 21653 21654 /* shutdown the recv side */ 21655 if (how != SHUT_WR) 21656 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 21657 SOCK_OPCTL_SHUT_RECV, 0); 21658 21659 return (0); 21660 } 21661 21662 /* 21663 * SOP_LISTEN() calls into tcp_listen(). 21664 */ 21665 /* ARGSUSED */ 21666 int 21667 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr) 21668 { 21669 conn_t *connp = (conn_t *)proto_handle; 21670 int error; 21671 squeue_t *sqp = connp->conn_sqp; 21672 21673 ASSERT(connp->conn_upper_handle != NULL); 21674 21675 /* All Solaris components should pass a cred for this operation. */ 21676 ASSERT(cr != NULL); 21677 21678 error = squeue_synch_enter(sqp, connp, NULL); 21679 if (error != 0) { 21680 /* failed to enter */ 21681 return (ENOBUFS); 21682 } 21683 21684 error = tcp_do_listen(connp, NULL, 0, backlog, cr, FALSE); 21685 if (error == 0) { 21686 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 21687 SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog); 21688 } else if (error < 0) { 21689 if (error == -TOUTSTATE) 21690 error = EINVAL; 21691 else 21692 error = proto_tlitosyserr(-error); 21693 } 21694 squeue_synch_exit(sqp, connp); 21695 return (error); 21696 } 21697 21698 static int 21699 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len, 21700 int backlog, cred_t *cr, boolean_t bind_to_req_port_only) 21701 { 21702 tcp_t *tcp = connp->conn_tcp; 21703 int error = 0; 21704 tcp_stack_t *tcps = tcp->tcp_tcps; 21705 21706 /* All Solaris components should pass a cred for this operation. */ 21707 ASSERT(cr != NULL); 21708 21709 if (tcp->tcp_state >= TCPS_BOUND) { 21710 if ((tcp->tcp_state == TCPS_BOUND || 21711 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { 21712 /* 21713 * Handle listen() increasing backlog. 21714 * This is more "liberal" then what the TPI spec 21715 * requires but is needed to avoid a t_unbind 21716 * when handling listen() since the port number 21717 * might be "stolen" between the unbind and bind. 21718 */ 21719 goto do_listen; 21720 } 21721 if (connp->conn_debug) { 21722 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21723 "tcp_listen: bad state, %d", tcp->tcp_state); 21724 } 21725 return (-TOUTSTATE); 21726 } else { 21727 if (sa == NULL) { 21728 sin6_t addr; 21729 sin_t *sin; 21730 sin6_t *sin6; 21731 21732 ASSERT(IPCL_IS_NONSTR(connp)); 21733 /* Do an implicit bind: Request for a generic port. */ 21734 if (connp->conn_family == AF_INET) { 21735 len = sizeof (sin_t); 21736 sin = (sin_t *)&addr; 21737 *sin = sin_null; 21738 sin->sin_family = AF_INET; 21739 } else { 21740 ASSERT(connp->conn_family == AF_INET6); 21741 len = sizeof (sin6_t); 21742 sin6 = (sin6_t *)&addr; 21743 *sin6 = sin6_null; 21744 sin6->sin6_family = AF_INET6; 21745 } 21746 sa = (struct sockaddr *)&addr; 21747 } 21748 21749 error = tcp_bind_check(connp, sa, len, cr, 21750 bind_to_req_port_only); 21751 if (error) 21752 return (error); 21753 /* Fall through and do the fanout insertion */ 21754 } 21755 21756 do_listen: 21757 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 21758 tcp->tcp_conn_req_max = backlog; 21759 if (tcp->tcp_conn_req_max) { 21760 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 21761 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 21762 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 21763 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 21764 /* 21765 * If this is a listener, do not reset the eager list 21766 * and other stuffs. Note that we don't check if the 21767 * existing eager list meets the new tcp_conn_req_max 21768 * requirement. 21769 */ 21770 if (tcp->tcp_state != TCPS_LISTEN) { 21771 tcp->tcp_state = TCPS_LISTEN; 21772 /* Initialize the chain. Don't need the eager_lock */ 21773 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 21774 tcp->tcp_eager_next_drop_q0 = tcp; 21775 tcp->tcp_eager_prev_drop_q0 = tcp; 21776 tcp->tcp_second_ctimer_threshold = 21777 tcps->tcps_ip_abort_linterval; 21778 } 21779 } 21780 21781 /* 21782 * We need to make sure that the conn_recv is set to a non-null 21783 * value before we insert the conn into the classifier table. 21784 * This is to avoid a race with an incoming packet which does an 21785 * ipcl_classify(). 21786 * We initially set it to tcp_input_listener_unbound to try to 21787 * pick a good squeue for the listener when the first SYN arrives. 21788 * tcp_input_listener_unbound sets it to tcp_input_listener on that 21789 * first SYN. 21790 */ 21791 connp->conn_recv = tcp_input_listener_unbound; 21792 21793 /* Insert the listener in the classifier table */ 21794 error = ip_laddr_fanout_insert(connp); 21795 if (error != 0) { 21796 /* Undo the bind - release the port number */ 21797 tcp->tcp_state = TCPS_IDLE; 21798 connp->conn_bound_addr_v6 = ipv6_all_zeros; 21799 21800 connp->conn_laddr_v6 = ipv6_all_zeros; 21801 connp->conn_saddr_v6 = ipv6_all_zeros; 21802 connp->conn_ports = 0; 21803 21804 if (connp->conn_anon_port) { 21805 zone_t *zone; 21806 21807 zone = crgetzone(cr); 21808 connp->conn_anon_port = B_FALSE; 21809 (void) tsol_mlp_anon(zone, connp->conn_mlp_type, 21810 connp->conn_proto, connp->conn_lport, B_FALSE); 21811 } 21812 connp->conn_mlp_type = mlptSingle; 21813 21814 tcp_bind_hash_remove(tcp); 21815 return (error); 21816 } else { 21817 /* 21818 * If there is a connection limit, allocate and initialize 21819 * the counter struct. Note that since listen can be called 21820 * multiple times, the struct may have been allready allocated. 21821 */ 21822 if (!list_is_empty(&tcps->tcps_listener_conf) && 21823 tcp->tcp_listen_cnt == NULL) { 21824 tcp_listen_cnt_t *tlc; 21825 uint32_t ratio; 21826 21827 ratio = tcp_find_listener_conf(tcps, 21828 ntohs(connp->conn_lport)); 21829 if (ratio != 0) { 21830 uint32_t mem_ratio, tot_buf; 21831 21832 tlc = kmem_alloc(sizeof (tcp_listen_cnt_t), 21833 KM_SLEEP); 21834 /* 21835 * Calculate the connection limit based on 21836 * the configured ratio and maxusers. Maxusers 21837 * are calculated based on memory size, 21838 * ~ 1 user per MB. Note that the conn_rcvbuf 21839 * and conn_sndbuf may change after a 21840 * connection is accepted. So what we have 21841 * is only an approximation. 21842 */ 21843 if ((tot_buf = connp->conn_rcvbuf + 21844 connp->conn_sndbuf) < MB) { 21845 mem_ratio = MB / tot_buf; 21846 tlc->tlc_max = maxusers / ratio * 21847 mem_ratio; 21848 } else { 21849 mem_ratio = tot_buf / MB; 21850 tlc->tlc_max = maxusers / ratio / 21851 mem_ratio; 21852 } 21853 /* At least we should allow two connections! */ 21854 if (tlc->tlc_max <= tcp_min_conn_listener) 21855 tlc->tlc_max = tcp_min_conn_listener; 21856 tlc->tlc_cnt = 1; 21857 tlc->tlc_drop = 0; 21858 tcp->tcp_listen_cnt = tlc; 21859 } 21860 } 21861 } 21862 return (error); 21863 } 21864 21865 void 21866 tcp_clr_flowctrl(sock_lower_handle_t proto_handle) 21867 { 21868 conn_t *connp = (conn_t *)proto_handle; 21869 tcp_t *tcp = connp->conn_tcp; 21870 mblk_t *mp; 21871 int error; 21872 21873 ASSERT(connp->conn_upper_handle != NULL); 21874 21875 /* 21876 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_clr_flowctrl() 21877 * is currently running. 21878 */ 21879 mutex_enter(&tcp->tcp_rsrv_mp_lock); 21880 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 21881 mutex_exit(&tcp->tcp_rsrv_mp_lock); 21882 return; 21883 } 21884 tcp->tcp_rsrv_mp = NULL; 21885 mutex_exit(&tcp->tcp_rsrv_mp_lock); 21886 21887 error = squeue_synch_enter(connp->conn_sqp, connp, mp); 21888 ASSERT(error == 0); 21889 21890 mutex_enter(&tcp->tcp_rsrv_mp_lock); 21891 tcp->tcp_rsrv_mp = mp; 21892 mutex_exit(&tcp->tcp_rsrv_mp_lock); 21893 21894 if (tcp->tcp_fused) { 21895 tcp_fuse_backenable(tcp); 21896 } else { 21897 tcp->tcp_rwnd = connp->conn_rcvbuf; 21898 /* 21899 * Send back a window update immediately if TCP is above 21900 * ESTABLISHED state and the increase of the rcv window 21901 * that the other side knows is at least 1 MSS after flow 21902 * control is lifted. 21903 */ 21904 if (tcp->tcp_state >= TCPS_ESTABLISHED && 21905 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 21906 tcp_xmit_ctl(NULL, tcp, 21907 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 21908 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 21909 } 21910 } 21911 21912 squeue_synch_exit(connp->conn_sqp, connp); 21913 } 21914 21915 /* ARGSUSED */ 21916 int 21917 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg, 21918 int mode, int32_t *rvalp, cred_t *cr) 21919 { 21920 conn_t *connp = (conn_t *)proto_handle; 21921 int error; 21922 21923 ASSERT(connp->conn_upper_handle != NULL); 21924 21925 /* All Solaris components should pass a cred for this operation. */ 21926 ASSERT(cr != NULL); 21927 21928 /* 21929 * If we don't have a helper stream then create one. 21930 * ip_create_helper_stream takes care of locking the conn_t, 21931 * so this check for NULL is just a performance optimization. 21932 */ 21933 if (connp->conn_helper_info == NULL) { 21934 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 21935 21936 /* 21937 * Create a helper stream for non-STREAMS socket. 21938 */ 21939 error = ip_create_helper_stream(connp, tcps->tcps_ldi_ident); 21940 if (error != 0) { 21941 ip0dbg(("tcp_ioctl: create of IP helper stream " 21942 "failed %d\n", error)); 21943 return (error); 21944 } 21945 } 21946 21947 switch (cmd) { 21948 case ND_SET: 21949 case ND_GET: 21950 case _SIOCSOCKFALLBACK: 21951 case TCP_IOC_ABORT_CONN: 21952 case TI_GETPEERNAME: 21953 case TI_GETMYNAME: 21954 ip1dbg(("tcp_ioctl: cmd 0x%x on non streams socket", 21955 cmd)); 21956 error = EINVAL; 21957 break; 21958 default: 21959 /* 21960 * If the conn is not closing, pass on to IP using 21961 * helper stream. Bump the ioctlref to prevent tcp_close 21962 * from closing the rq/wq out from underneath the ioctl 21963 * if it ends up queued or aborted/interrupted. 21964 */ 21965 mutex_enter(&connp->conn_lock); 21966 if (connp->conn_state_flags & (CONN_CLOSING)) { 21967 mutex_exit(&connp->conn_lock); 21968 error = EINVAL; 21969 break; 21970 } 21971 CONN_INC_IOCTLREF_LOCKED(connp); 21972 error = ldi_ioctl(connp->conn_helper_info->iphs_handle, 21973 cmd, arg, mode, cr, rvalp); 21974 CONN_DEC_IOCTLREF(connp); 21975 break; 21976 } 21977 return (error); 21978 } 21979 21980 sock_downcalls_t sock_tcp_downcalls = { 21981 tcp_activate, 21982 tcp_accept, 21983 tcp_bind, 21984 tcp_listen, 21985 tcp_connect, 21986 tcp_getpeername, 21987 tcp_getsockname, 21988 tcp_getsockopt, 21989 tcp_setsockopt, 21990 tcp_sendmsg, 21991 NULL, 21992 NULL, 21993 NULL, 21994 tcp_shutdown, 21995 tcp_clr_flowctrl, 21996 tcp_ioctl, 21997 tcp_close, 21998 }; 21999 22000 /* 22001 * Timeout function to reset the TCP stack variable tcps_reclaim to false. 22002 */ 22003 static void 22004 tcp_reclaim_timer(void *arg) 22005 { 22006 tcp_stack_t *tcps = (tcp_stack_t *)arg; 22007 22008 mutex_enter(&tcps->tcps_reclaim_lock); 22009 tcps->tcps_reclaim = B_FALSE; 22010 tcps->tcps_reclaim_tid = 0; 22011 mutex_exit(&tcps->tcps_reclaim_lock); 22012 } 22013 22014 /* 22015 * Kmem reclaim call back function. When the system is under memory 22016 * pressure, we set the TCP stack variable tcps_reclaim to true. This 22017 * variable is reset to false after tcps_reclaim_period msecs. During this 22018 * period, TCP will be more aggressive in aborting connections not making 22019 * progress, meaning retransmitting for some time (tcp_early_abort seconds). 22020 * TCP will also not accept new connection request for those listeners whose 22021 * q or q0 is not empty. 22022 */ 22023 /* ARGSUSED */ 22024 void 22025 tcp_conn_reclaim(void *arg) 22026 { 22027 netstack_handle_t nh; 22028 netstack_t *ns; 22029 tcp_stack_t *tcps; 22030 extern pgcnt_t lotsfree, needfree; 22031 22032 if (!tcp_do_reclaim) 22033 return; 22034 22035 /* 22036 * The reclaim function may be called even when the system is not 22037 * really under memory pressure. 22038 */ 22039 if (freemem >= lotsfree + needfree) 22040 return; 22041 22042 netstack_next_init(&nh); 22043 while ((ns = netstack_next(&nh)) != NULL) { 22044 tcps = ns->netstack_tcp; 22045 mutex_enter(&tcps->tcps_reclaim_lock); 22046 if (!tcps->tcps_reclaim) { 22047 tcps->tcps_reclaim = B_TRUE; 22048 tcps->tcps_reclaim_tid = timeout(tcp_reclaim_timer, 22049 tcps, MSEC_TO_TICK(tcps->tcps_reclaim_period)); 22050 } 22051 mutex_exit(&tcps->tcps_reclaim_lock); 22052 netstack_rele(ns); 22053 } 22054 netstack_next_fini(&nh); 22055 } 22056 22057 /* 22058 * Given a tcp_stack_t and a port (in host byte order), find a listener 22059 * configuration for that port and return the ratio. 22060 */ 22061 static uint32_t 22062 tcp_find_listener_conf(tcp_stack_t *tcps, in_port_t port) 22063 { 22064 tcp_listener_t *tl; 22065 uint32_t ratio = 0; 22066 22067 mutex_enter(&tcps->tcps_listener_conf_lock); 22068 for (tl = list_head(&tcps->tcps_listener_conf); tl != NULL; 22069 tl = list_next(&tcps->tcps_listener_conf, tl)) { 22070 if (tl->tl_port == port) { 22071 ratio = tl->tl_ratio; 22072 break; 22073 } 22074 } 22075 mutex_exit(&tcps->tcps_listener_conf_lock); 22076 return (ratio); 22077 } 22078 22079 /* 22080 * Ndd param helper routine to return the current list of listener limit 22081 * configuration. 22082 */ 22083 /* ARGSUSED */ 22084 static int 22085 tcp_listener_conf_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 22086 { 22087 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 22088 tcp_listener_t *tl; 22089 22090 mutex_enter(&tcps->tcps_listener_conf_lock); 22091 for (tl = list_head(&tcps->tcps_listener_conf); tl != NULL; 22092 tl = list_next(&tcps->tcps_listener_conf, tl)) { 22093 (void) mi_mpprintf(mp, "%d:%d ", tl->tl_port, tl->tl_ratio); 22094 } 22095 mutex_exit(&tcps->tcps_listener_conf_lock); 22096 return (0); 22097 } 22098 22099 /* 22100 * Ndd param helper routine to add a new listener limit configuration. 22101 */ 22102 /* ARGSUSED */ 22103 static int 22104 tcp_listener_conf_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 22105 cred_t *cr) 22106 { 22107 tcp_listener_t *new_tl; 22108 tcp_listener_t *tl; 22109 long lport; 22110 long ratio; 22111 char *colon; 22112 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 22113 22114 if (ddi_strtol(value, &colon, 10, &lport) != 0 || lport <= 0 || 22115 lport > USHRT_MAX || *colon != ':') { 22116 return (EINVAL); 22117 } 22118 if (ddi_strtol(colon + 1, NULL, 10, &ratio) != 0 || ratio <= 0) 22119 return (EINVAL); 22120 22121 mutex_enter(&tcps->tcps_listener_conf_lock); 22122 for (tl = list_head(&tcps->tcps_listener_conf); tl != NULL; 22123 tl = list_next(&tcps->tcps_listener_conf, tl)) { 22124 /* There is an existing entry, so update its ratio value. */ 22125 if (tl->tl_port == lport) { 22126 tl->tl_ratio = ratio; 22127 mutex_exit(&tcps->tcps_listener_conf_lock); 22128 return (0); 22129 } 22130 } 22131 22132 if ((new_tl = kmem_alloc(sizeof (tcp_listener_t), KM_NOSLEEP)) == 22133 NULL) { 22134 mutex_exit(&tcps->tcps_listener_conf_lock); 22135 return (ENOMEM); 22136 } 22137 22138 new_tl->tl_port = lport; 22139 new_tl->tl_ratio = ratio; 22140 list_insert_tail(&tcps->tcps_listener_conf, new_tl); 22141 mutex_exit(&tcps->tcps_listener_conf_lock); 22142 return (0); 22143 } 22144 22145 /* 22146 * Ndd param helper routine to remove a listener limit configuration. 22147 */ 22148 /* ARGSUSED */ 22149 static int 22150 tcp_listener_conf_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 22151 cred_t *cr) 22152 { 22153 tcp_listener_t *tl; 22154 long lport; 22155 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 22156 22157 if (ddi_strtol(value, NULL, 10, &lport) != 0 || lport <= 0 || 22158 lport > USHRT_MAX) { 22159 return (EINVAL); 22160 } 22161 mutex_enter(&tcps->tcps_listener_conf_lock); 22162 for (tl = list_head(&tcps->tcps_listener_conf); tl != NULL; 22163 tl = list_next(&tcps->tcps_listener_conf, tl)) { 22164 if (tl->tl_port == lport) { 22165 list_remove(&tcps->tcps_listener_conf, tl); 22166 mutex_exit(&tcps->tcps_listener_conf_lock); 22167 kmem_free(tl, sizeof (tcp_listener_t)); 22168 return (0); 22169 } 22170 } 22171 mutex_exit(&tcps->tcps_listener_conf_lock); 22172 return (ESRCH); 22173 } 22174 22175 /* 22176 * To remove all listener limit configuration in a tcp_stack_t. 22177 */ 22178 static void 22179 tcp_listener_conf_cleanup(tcp_stack_t *tcps) 22180 { 22181 tcp_listener_t *tl; 22182 22183 mutex_enter(&tcps->tcps_listener_conf_lock); 22184 while ((tl = list_head(&tcps->tcps_listener_conf)) != NULL) { 22185 list_remove(&tcps->tcps_listener_conf, tl); 22186 kmem_free(tl, sizeof (tcp_listener_t)); 22187 } 22188 mutex_destroy(&tcps->tcps_listener_conf_lock); 22189 list_destroy(&tcps->tcps_listener_conf); 22190 } 22191